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We study the discrete Schro¨dinger operatorH in Zd with the surface potential of the
form V(x)5gd(x1)tanp(a•x21v), where for xPZd we write x5(x1 ,x2), x1

PZd1, x2PZd2, aPRd2, vP@0,1!. We first consider the case where the components
of the vectora are rationally independent, i.e., the case of the quasi-periodic po-
tential. We prove that the spectrum ofH on the interval@2d,d# ~coinciding with
the spectrum of the discrete Laplacian! is absolutely continuous. Then we show that
generalized eigenfunctions, corresponding to this interval, have the form of volume
~bulk! waves, which are oscillating and nondecreasing~or slow decreasing! in all
variables. They are the sum of the incident plane wave and of an infinite number of
reflected or transmitted plane waves, scattered by the subspaceZd2. These eigen-
functions are orthogonal, complete and verify a natural analog of the Lippmann–
Schwinger equation. We discuss also the case whered15d251 anda5p/q is a
rational number, i.e., aq-periodic surface potential. In this case we show that the
spectrum is absolutely continuous and besides the volume~Bloch! waves there are
also the surface waves, whose amplitude decays exponentially asux1u→`. The part
of the spectrum corresponding to the surface waves consists of a finite number of
bands. For largeq the bands outside of@2d,d# are exponentially small inq, and
converge in a natural sense to the pure point spectrum that was found@B. Kho-
ruzhenko and L. Pastur, Phys. Rep.288, 109–125~1997!# in the case of the Dio-
phantinea’s. © 2003 American Institute of Physics.@DOI: 10.1063/1.1521798#

I. INTRODUCTION

The progress of the last decades in spectral theory of differential and finite difference o
tors with random ergodic and almost periodic coefficients in the whole space makes natu
study of operators with same type of coefficients, supported on a subspace only. Being of e
interest from the point of view of wave physics, they provide a class of operators ‘‘intermed
between operators whose coefficients decay in all coordinates~scattering theory! and operators,
having coefficients of the same order of magnitude in all coordinates. We mention recent p
Refs. 2, 6, 8–15, and 19, devoted to the study of the spectral and related properties o
operators. They are either defined on the half-space by random, almost periodic or pe
boundary conditions or have the same type of coefficients supported on certain subspacesRd or
Zd.

As in Ref. 19 we consider here the discrete Schro¨dinger operator

H5H01V ~1.1!

acting onl 2(Zd), where

a!Author to whom correspondence should be addressed. Electronic mail: pastur@math.jussieu.fr
10022-2488/2003/44(1)/1/35/$20.00 © 2003 American Institute of Physics
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~H0C!~x!52
1

2 (
ux2yu51

C~y!, ~1.2!

is the discrete Laplacian,

V~x!5d~x1!v~x2!, x5~x1 ,x2!, x1PZd1, x2PZd2, d11d25d, ~1.3!

with

v~x2!5g tanp~a•x21v! ~1.4!

the multiplication operator~‘‘surface’’ potential!, whose support is the subspaceZd2 of the space
Zd, and

d1 ,d2PN, g.0, aPRd2, vP@0,1! ~1.5!

are the parameters determining the potential.
It was shown in Ref. 19 that for anygÞ0, vP@0,1!, and foraPRd2, satisfying the Diophan-

tine condition, i.e., there exists«.0 such that

ua•x22mu>const/ux2ud21«, ;x2PZd2\$0%, ;mPZ, ~1.6!

the spectrum ofH5H01V, lying outside the spectrum@2d,d# of the discrete Laplacian~1.2!, is
pure point, dense, of multiplicity one, and the respective eigenfunctions decay exponenti
infinity.

The ‘‘volume’’ version of this operator, corresponding to the cased150, has been studied
previously in Refs. 5 and 26. The operator has a complete system of exponentially de
eigenfunctions, corresponding to the pure point dense spectrum of multiplicity one occupyin
whole real axis. This spectral structure is caused by strong and irregular fluctuations
quasi-periodic potential~1.3!. It is the extreme case of the strong localization regime, which
general appears either if, for a fixed energy, the amplitude of the potential~random or almost
periodic! is large enough or, if for a fixed potential, the energy is close enough to the spe
edges~see Ref. 22 for related results and references!.

In the cased151 the support of the potential is the hyper-planeZd21 of the spaceZd. This is
why it is natural to call the respective operator~1.1!–~1.5! the surface Maryland model. Thi
operator is closely related to the boundary value problem~3.5!, considered in Refs. 15, 11, and 1
We may also call the operator~1.1!–~1.5!, for d1>2, the subspace Maryland model.

These models can be analyzed in great detail, thereby providing examples of spectra
which are only partly known for general random or almost periodic functionv in ~1.3!. All these
versions of the Maryland model have an absolutely continuous component of the spectrum
component was first indicated in Ref. 15, and then was studied in Ref. 11 in the context
boundary value problem defined by~1.4! and by formula~3.5! below. It was proven that if the
components of the vectoraPRd2 are rationally independent, this part of the spectrum ofH is
purely absolutely continuous and also that the properly defined wave operators correspon
this part exist and are complete. Besides, it was proven in Ref. 14 that the surface states~see Refs.
15 and 14 for definitions! are absent.

In this article we develop several general ideas and results of the theory by consideri
explicitly soluble model, defined by formulas~1.1!–~1.5!. We begin by showing that the Gree
function of the model can be written in a rather convenient form~Sec. II!. By using this form we
study first the quasi-periodic case of rationally independent components of the vectora in ~1.3!
~Sec. III!. We prove that the spectrum of the operator is purely absolutely continuous o
interval @2d,d# ~on the spectrum of discrete Laplacian! and that the wave operators correspon
ing to this part of the spectrum exist~these facts were proved in Refs. 11 and 14 by ot
methods!. Then we find an explicit form of the generalized eigenfunctions~polynomially bounded
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solutions of the respective equation!, corresponding to this part of the spectrum. These eigenfu
tions possess properties similar to those of the Sommerfeld solutions of scattering theory.
thex2 direction, they behave like Bloch–Floquet solutions. They are orthogonal and comple
the interval@2d,d# of the spectrum. As they do not decay in the longitudinal coordinatesx1 we
call them volume states. We consider also the case of rationally dependent components
vectora in ~1.4!, where the respective surface potential is periodic inx2 , restricting ourselves to
the technically simplest case ofd15d251, wherea5p/q is a rational number~Sec. IV!. In this
case the whole spectrum is absolutely continuous. It consists of the interval@22,2# as in the
quasiperiodic case, and of a certain number of intervals, some of them possibly inters
@22,2#. Generalized eigenfunctions, corresponding to the interval@22,2#, do not decay in the
longitudinal coordinatesx1 . However, the generalized eigenfunctions, corresponding to o
intervals, decay exponentially inx1 , being of the Bloch–Floquet form in the longitudinal coord
natex2 as those of the interval@22,2#. This type of surface states~see Definition 3.1 below! was
discovered by Rayleigh in the problem of oscillation of the homogeneous elastic half-space~see,
e.g., Ref. 21!, and since then was found and studied in a number of problems, describe
differential and finite difference equations whose coefficients are strongly varying in coordi
x1 ~see, e.g., Refs. 19, 20 for a list of references on respective physics results and applicatio
Refs. 7, 16, and 17 for spectral analysis of certain periodic cases!. We analyze also the case whe
an5pn /qn approaches an irrationala asn→`, and we show that there exists a certain continu
of the spectrum in this asymptotic regime. In particular, the width of surface bands lying ou
of @22,2# is exponentially small inqn asn→`, and the bands approach the dense set of eig
values, found in Ref. 19.

II. GENERALITIES

Recall that we are studying the self-adjoint operatorH, acting in l 2(Zd) and defined in
~1.1!–~1.5!. The operator is self-adjoint as the sum of the multiplication self-adjoint operatorV of
~1.3!, and of the bounded self-adjoint operatorH0 of ~1.2!. We will use an analogue of the Cayle
transform introduced in Ref. 5 for the ‘‘volume’’ potential (d150) and in Ref. 19 for the ‘‘sur-
face’’ case (d151), in both cases to study the pure point spectrum for the Diophantinea’s @see
~1.6!#.

To put the subsequent simple argument in a more general context, we rewrite the po
~1.3! as

V~x!5v~x2!xS~x!, ~2.1!

wherexS is the indicator of the subspaceS5Zd2 and we assume thatg.0 ~the caseg,0 can be
treated analogously!. We define the orthogonal projectionP of l 2(Zd):

~PF!~x!5xS~x!F~~0,x2!!, ~2.2!

and we write the potential~2.1! in the form

V5PvP. ~2.3!

Here and in the following we use lower cases to denote operators acting onl 2(S) defined by the
restriction onPl2(Zd) of the corresponding operator.

We use as a starting point the well known formulas for the resolventG(z)5(H2z)21 of a
self-adjoint operatorH5H01V:

G~z!5G0~z!2G0~z!T~z!G0~z!,IzÞ0 ~2.4!

with

G0~z!5~H02z!21, T~z!5V2T~z!G0~z!V. ~2.5!
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It follows from ~2.3! and from~2.5! that the operatorT(z) has the form

T~z!5Pt~z!P, ~2.6!

where the operatort(z), acting onl 2(S), satisfies the equation

t~z!5v2t~z!g0~z!v, ~2.7!

in which g0(z) is defined from the restriction ofG0(z) to the subspacePl2(Zd). The formal
solution of the equation is

t~z!5v~11g0~z!v !215~v211g0~z!!21. ~2.8!

Let u be the unitary operator inl 2(S) defined by the relation:

~uc!~x2!5e22ipa.x2c~x2!, x2PS. ~2.9!

Then, by using the Euler formula for the functionx°tanx and the notations above, we can wri
the potential~1.4! as

v5
g

i
•

12su

11su
, ~2.10!

where

s5e22ipv. ~2.11!

Formulas~1.3!–~2.11! motivate the following abstract statement.
Lemma 2.1: Let H be a self-adjoint operator, acting on l2(Zd), and having the form H5H0

1V, where H0 is a self-adjoint operator and V is given by formulas (2.3) and (2.10) in whic
is any subset ofZd and usu<1. Define the following operators in l2(S),

b~z!5~gg0~z!2 i !~gg0~z!1 i !21, ~2.12!

assuming that b(z) is bounded. If the operator gg0(z)1 i is invertible and if, for some z, Iz
.0, we have

uub~z!uu,1, ~2.13!

then the operator t(z), defined in (2.6) and in (2.8), can be represented in the form

t~z!5g~12su!~12sb~z!u!21~gg0~z!1 i !21, ~2.14!

or in the form

t~z!5g~gg0~z!1 i !21F122isu(
l 50

q21

~sb~z!u! l~12~sb~z!u!q!21~gg0~z!1 i !21G ,

~2.15!

wheres is defined in (2.11), and q>1 is an integer.
Proof: Note that the conditionsuub(z)uu,1 and usu<1 allow us to define the operator (

2sb(z)u)21 by the Neumann–Liouville series. Consider first the case, where the modulus
complex numbers in ~2.10! is strictly less than 1. In this case the operator (11su)21 is well
defined and we obtain from~2.10!, and from~2.12!,
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11g0v5@ i ~11su!1gg0~12su!#~ i ~11su!!21

5~gg01 i !~12~gg02 i !~gg01 i !21su!~ i ~11su!!21,

or 11g0v5(gg01 i )(12b(z)su)( i (11su))21, where the operatorsg0(z) and b(z) are de-
fined in ~2.12!. Formulas~2.7!, ~2.10!, and the hypotheses of the lemma lead to~2.14! for usu,1.
According to inequality~2.13! the Neumann–Liouville series for (12b(z)su)21 converges for
usu51, and since the operator (11su)21 is not present in formula~2.14!, we can make the limit
usu→1 in the formula, proved forusu,1, and obtain representation~2.14! in the caseusu51.

Proposition 2.1: Let H be the self-adjoint operator defined in Lemma 2.1 and G(z)5(H
2z)21, Iz.0 be its resolvent. Assume that z is such that the conditions of Lemma 2.1 hold
G(z) can be represented as follows:

G~z!5G0~z!2gG0~z!P~gg0~z!1 i !21PG0~z!12igG0~z!P~gg0~z!1 i !21

3su(
l 50

q21

~sb~z!u! l~12~sb~z!u!q!21~gg0~z!1 i !21PG0~z!, ~2.16!

where q>1 is an integer, u is defined in (2.9) and the operatorsg0(z), b(z) are defined in (2.12).
Proof: The proposition follows easily from~2.4!, and from Lemma 2.1.
Remarks. ~1! In formula~2.10! the unitary operatorsu can be viewed as the Cayley transfor

of v ~see Ref. 1 for the definition of the Cayley transform!. Likewise, the contraction operato
b(z) can be viewed as the Cayley transform of the dissipative operatorig0(z) (Rig0.0). Hence,
we can say that the passage from the operatorsv21 andg0(z) in ~2.8! to their Cayley transforms
su andb(z) in the case of the potential~1.3! and~1.4! leads to formulas~2.14!–~2.16!. This will
allow us to study the absolutely continuous spectrum of the operatorH for any d1>0, as it was
done in papers Refs. 22 and 19 for the pure point spectrum, despite that the subsequent tec
to study the resolvent~2.16! are different in these two cases.

~2! Integrate formula~2.16! with respect tovP@0,1! and denote this operation by^¯&. We
obtain

^G~z!&5G0~z!2gG0~z!P~gg0~z!1 i !21PG0~z!.

In view of the general formula~2.8!, valid for any surface potentialv, we can interpret the
equality ^t(z)&5g(gg0(z)1 i )215(2( ig)211g0(z))21 as the fact that̂G(z)& is the resolvent
of the Schro¨dinger operator whose surface potential is the complex constantV(x)52 igxS(x).
This fact plays an important role in the interpretation of results of analysis of the point spe
of H outside@2d,d# in Ref. 19. Similar fact is known also in the case of the volume poten
~2.3!, i.e., for the caseS5Zd.5

Now we are going to show that the above proposition is applicable to the operator defin
~1.1!–~1.5! whereS is chosen asZd2. To check the conditions of the lemma and the proposit
we will use the Fourier transformation which we define as follows:

F̂~k!5 (
xPZn

e22ipx"kF~x!, kPTn, F~x!5E
Tn

dke2ipx"kF̂~k!, xPZn, ~2.17!

whereTn5@0,1)n is then-dimensional unit torus.
By using the Fourier transformation we can write the following representation of the G

function G0
(n)(x2y;z) of the n-dimensional Laplacian@operator~1.2! for d5n]:

G0
(n)~x2y;z!5E

Tn
dk

e2ipk•(x2y)

En~k!2z
, IzÞ0, ~2.18!

where
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En~k!52(
i 51

n

cos 2pki , ~k1 ...,kn!5kPTn. ~2.19!

These formulas imply that the operatorg0(z) of ~2.12! has the following matrix inl 2(Zd2):

g0~x22y2 ;z!5G0
(d)~~0,x2!2~0,y2!;z!, ~2.20!

i.e., g0(z) is a convolution operator inl 2(Zd2). In view of ~2.18! we have

g0~x2 ;z!5E
Td2

dk2e2ipk2•x2E
Td1

dk1

Ed~k!2z
, ~2.21!

or

g0~x2 ;z!5E
Td2

dk2e2ipk2•x2G0
(d1)

~0,z2Ed2
~k2!!. ~2.22!

We shall denote

ĝ0~k2 ;z!ªG0
(d1)

~0,z2Ed2
~k2!!, ~2.23!

i.e., ĝ0(k2 ;z) is the symbol, representing the operatorg0(z) in L2(Td2) as a multiplication op-
erator. These formulas allow us to show that the hypotheses of Lemma 2.1 and Proposition
valid for anyz, Iz.0 ~see Lemma 5.2!. Besides, we have the following.

Lemma 2.2: Let b(z) and u be the operators, defined by (2.12) and (2.9). Then for any int
m>1,

~~b~z!u!mw~k2!5S )
l 50

m21

b̂~k21 la;z!D ŵ~k21ma!, k2PTd2, ~2.24!

whereŵ denotes the Fourier transform ofwP l 2(Zd2) and

b̂~k2 ;z!5
gĝ0~k2 ;z!2 i

gĝ0~k2 ;z!1 i
~2.25!

whereĝ0(k2 ,z) is defined in (2.23).
Proof: It follows from ~2.9! that the operatoru is the shift bya in the spaceL2(Td2):

~uw!̂~k2!5ŵ~k21a!. ~2.26!

From this and the fact thatb(z) of ~2.12! is the multiplication by the functionb̂(k2 ;z) of ~2.25!
in the spaceL2(Td2) we prove the lemma.

We will obtain now a representation of the Green function ofH which will be central in the
subsequent spectral analysis of the absolutely continuous spectrum of the operator.

Theorem 2.1: Let H be the operator, defined by (1.1)–(1.5). Then the Green function of H
[the matrix in l2(Zd) of its resolvent G(z)5(H2z)21] can be written in the following form for
Iz.0:

G~x,y;z!5G0
(d)~x2y;z!1 (

m50

` E
Td2

dk2e2ipk2•(x22y2)tm~k2 ;z!

3G0
(d1)

~x1 ;z2Ed2
~k2!!G0

(d1)
~y1 ;z2Ed2

~k21ma!!e22ipma•y2, ~2.27!

where
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tm~k2 ;z!5
g

gĝ0~k2 ;z!1 i 5
21, m50,

2is~gĝ0~k21a;z!1 i !21, m51,

2ism~gĝ0~k21ma;z!1 i !21 )
l 51

m21

b̂~k21 la;z!, m>2,

~2.28!

G0
(d1)(x1 ;z) is the Green function (2.18) of the d1-dimensional Laplacian, Ed2

(k2) is defined in

(2.19) forn5d2 , and ĝ0(k2 ;z), b̂(k2 ;z) are defined respectively in (2.23) and (2.25).
Besides, the (generalized) kernel of the operator T(z) of (2.4) and of Lemma 2.1 has th

following form in L2(Td):

T~k,p;z!5 (
m50

`

tm~k2 ;z!d~k21ma2p2!, ~2.29!

where tm(k2 ;z) is defined in (2.28). In particular, the kernel is independent of the compon
k1 ,p1PTd1 of its argumentsk,pPTd.

Remark:Formulas~2.27! and ~2.29! have to be compared with the formulas for respect
quantities for point potential:V(x)5vd(x), (d250) and for the constant surface potentia
V(x)5vd(x1), v5const. In the first case we have

G~x,y;z!5G0
(d)~x2y;z!2

v

11vG0
(d)~0;z!

G0
(d)~x;z!G0

(d)~y;z!, ~2.30!

and

T~k,p;z!5
v

11vG0
(d)~0;z!

, ~2.31!

while in the second case,

G~x,y;z!5G0
(d)~x2y;z!2vE

Td2

dk2

e2ipk2•(x22y2)

11vG0
(d1)

~0;z2Ed2
~k2!!

3G0
(d1)

~x1 ;z2Ed2
~k2!! G0

(d1)
~y1 ;z2Ed2

~k2!!, ~2.32!

and

T~k,p;z!5
vd~k22p2!

11vG0
(d1)

~0;z2Ed2
~k2!!

. ~2.33!

In particular the term, corresponding tom50 in ~2.27!, coincides with the second of~2.32! in
which v is replaced byig.

Proof of Theorem 2.1:According to Lemma 5.2,ib(z)i,1 for Iz.0. Hence we can write the
operator (12sbu)21 in ~2.14! for q51 as the Neumann–Liouville series in powers ofsbu.
Applying Lemma 2.2 to each term of the series, we get~2.27! after simple algebra. Formula~2.29!
follows from ~2.4! and ~2.27!. Theorem 2.1 is then proved.

Remark:Formulas~2.27! and ~2.29! are the basic tools of spectral and scattering analysi
the operator~1.1! presented in this article. An advantage of these formulas is that they are val
all values of the spectral parameterz5E1 i«, up to the real valuesz5E6 i0, for uEu,d, in the
case ofa’s with rationally independent components@quasi-periodic inx2 potentialV(x)] and they
are valid for allEPR in the case ofa’s with rational components@periodic inx2 potentialV(x)].
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One more general fact, concerning the operatorH and necessary in the sequel, is given by t
following theorem.

Theorem 2.2: Let H5H01V be the operator defined by (1.1), (1.2) and (2.1). Then
spectrums(H) contains the interval@2d,d#5s(H0) for all gPR, aPRd2 and vP@0,1#.

Proof: We will apply the H. Weyl criterion, according to whichEPR belongs to the spectrum
of a self-adjoint operatorH if and only if there exists a sequence$Cn%nPN of vectors of respective
Hilbert space such thatiCni51, and that limn→`i(H2E)Cni50.

Denote by1r the indicator of the ball$xPZd:uxu<r % and set for allkPTd

Cn~x!51n~x!~12d~x1!!e2ipk.x/Nn ; Nn
25 (

xPZd
u1n~x!~12d~x1!!u25O~nd!, n→`.

It is easy to find that

~HCn!~x!55
Ed~k!Cn~x!, uxu<n22,ux1u>2;

An~x!, n22<uxu<n12;

bn~x!, ux1u<1;

0, uxu>n13,

whereiAni5O(n21/2), ibni5O(n2d1/2) asn→`. This proves the theorem.

III. ABSOLUTE CONTINUOUS SPECTRUM IN THE ALMOST PERIODIC CASE

In this section we assume that the vectoraPRd2 from ~1.3! has rationally independent com
ponents, i.e., that the relationa1r 11¯1ad2

r d2
50 with rational coefficientsr 1 , . . . ,r d2

implies
that all these coefficients are equal to zero.

Theorem 3.1:Let H5H01V be the self-adjoint operator defined by (1.1)–(1.5) in which the
vectoraPRd2 has rationally independent components. Then H has purely absolutely contin
spectrum on the interval(2d,d).

Proof: According to the general principles~see, e.g., Ref. 24!, it suffices to prove that for any
vector FP l 2(Zd) of a dense set the limitI(G(E1 i0)F,F) exists and is bounded for a
EP(2d,d). Restricting ourselves to the vectors concentrated at a pointxPZd, i.e., to the vectors
dx5$d(x2y)%yPZd, we have to prove that for anyxPZd the limit IG(x,x;E1 i0) exists and is
bounded for allEP(2d,d). We shall prove more, namely thatG(x,y;E1 i0) exists and is
bounded for allEP(2d,d) and allx,yPZd. In view of Theorem 2.1, we have to prove that th
series of~2.27! converges not only forIz.0 but also forIz50.

Since the vectora has rationally independent components, we have uniformly ink2PTd2 and
for any g.0 ~see, e.g., Ref. 3!,

lim
m→`

]$ l PZ: $k21 la%PKg~E!, 1< l<m%m215uKg~E!u, ~3.1!

where$k21 la% is thed2-dimensional vector, whose components are the fractional parts of c
ponents of the vectork21 la,

Kg~E!5$k2PTd2: E2Ed2
~k2!P@2d11g,d12g#%, ~3.2!

anduKg(E)u denotes the Lebesgue measure of the setKg(E),Td2. It is easy to check that for any
uEu,d there existsg.0 such thatKg(E) is an open set ofTd2. According to Lemma 5.3, in this
case there existsd.0 such thatub̂(k2 ,E1 i0)u<12d,;k2PKg(E), and according to~3.1!, there
existsm0.0 such that

]$ l PZ: $k21 la%PKg~E!, 1< l<m%>
m

2
uKg~E!u
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for all m>m0 . Hence we have the following bound for the product on the r.h.s. of~2.27!:

U )
l 51

m21

b̂~k21 la;E1 i0!U<~12d!muKg(E)u/2, m>m0 , ~3.3!

and the series in the r.h.s. of~2.27! converges uniformly ink2PTd2. Besides, by using bound~3.3!
and Lemma 5.5, it can be shown that foruEu<d2g, g.0, the series is bounded ink2 and E,
hence we can integrate the series with respect tok2 . Theorem is proved.

Remarks:~1! Another form to express~3.1!–~3.3! is to write the relation:

lim
m→`

U )
l 51

m21

b̂~k21 la;E1 i0!U1/m

5expH E
Td2

dq2 logub̂~q2 ;E1 i0!uJ , ~3.4!

valid uniformly in k2PTd2 ~see Ref. 3! and showing that ifuEu<d2g, g.0, then the integral on
the r.h.s. is negative, thus the product on the l.h.s. is exponentially decaying inm asm→`.

~2! Theorem 3.1 reveals a fairly simple mathematical mechanism responsible for the
lutely continuous spectrum for the ‘‘subspace’’ potential~1.3! and~1.4! with d1>1 ~recall that in
the ‘‘volume’’ cased150, d25d, the absolutely continuous spectrum is absent, moreover ifa is
Diophantine, then the spectrum is pure point5!. The mechanism is the positiveness of the ima
nary part ofĝ0(k2 ;E1 i0)5G0

(d1)(0,E1 i02E(k2)) in a certain domain of (E,k2). This is most
transparent in the ‘‘genuine surface’’ cased151, whereG0

(1)(0,E1 i0) is pure imaginary ifuEu
,1 and is pure real ifuEu>1 @see formula~3.37! below#. In the latter caseub̂(k2 ;E1 i0))u51
and the series~2.27! diverges for a dense set of energies~see Ref. 19!. This leads to the pure poin
spectrum everywhere outside of the spectrums(H0) of the Laplacian~similarly to the volume
case,5 where the analog ofĝ0(k2 ;E) in ~2.25! is real for allEPR). In the former caseub̂(k2 ;E
1 i0))u is strictly less than 1 for anyEP(2d,d) on an open set ofk2PTd2, the series is
convergent and the spectrum inside ofs(H0)5@2d,d# is pure absolutely continuous.

As usual in scattering theory, a fact of primary interest is the existence and completen
wave operatorsV65s• limt→7`eitHe2 i tH 0E0(D), whereE0 is the resolution of identity ofH0 ,
andD is an interval of the spectral axis. In the next theorem we prove these properties in ou

We mention first that in Refs. 8, 9, 11, and 14, the scattering theory was developed f
operatorH1 , acting in l 2(Z1

d ), Z1
d 5$(x1 ,x2)PZd;x1>0,x2PZd21%, and defined as

~H1C!~x!5H (
ux2yu51

C~y!, x1>1;

C~1,x2!1 (
ux22y2u51

C~0,y2!1v~x2!C~0,x2!, x150,

~3.5!

for certain random and almost periodic surface potentialsv. The operator can be viewed as
boundary value problem for the discrete Laplacian inl 2(Z1

d ) with the boundary condition
C(21,x2)5v(x2)C(0,x2),x2PZd21. The ‘‘unperturbed’’ operatorH0 here is the discrete Dirich
let Laplacian, corresponding tov[0 in ~3.5!. The operatorH1 is closely related to our operatorH
of ~1.1! for the surface cased151, d25d21 via standard Green’s formulas.

Theorem 3.2: Under the conditions of Theorem 3.1, the wave operatorsV6 for the pair
(H,H0), defined by (1.1)–(1.5), exist and are complete for any closed intervalD5@a,b#
,(2d,d).

Proof: Existence of wave operators is a rather general fact. It was proved in Ref. 8
general surface perturbationv in ~3.5!. In our case the proof is practically the same. Thus we h
to prove the completeness. Mimicking the argument of Refs. 11 and 14, developed for the b
ary value problem~3.5!, it is easy to reduce the proof of completeness to the proof of the rela
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sup
«.0,EP[a,b]

(
x2PZd2

uG~~x1 ,x2!,y;E6 i«!u2,` ~3.6!

for any fixedx1PZd1, yPZd and @a,b#,(2d,d). Our formulas~2.27! and ~2.28! for the Green
function of H can be written in the form

G~~x1 ,x2!,y;z!5E
Td2

dk2e2ipk2•x2G~~x1 ,k2!,y;z!,

where

G~~x1 ,k2!,y;z!5G0
(d1)

~x12y1 ;z2Ed2
~k2!! (

m50

`

tm~k2 ,z!G0
(d1)

~x1 ;z2Ed2
~k2!!

3G0
(d1)

~y1 ;z2Ed2
~k21ma!!e2ipy2•(k21ma). ~3.7!

Thus, applying the Parseval equality for the Fourier transform with respect to the variablex2 , we
can present the sum in~3.6! as

E
Td2

dk2uG~~x1 ,k2!,y;E1 i«!u2. ~3.8!

We have shown in the proof of Theorem 3.1 that the series~3.7! converges uniformly ink2

PTd2 for z5E1 i«, EP@a,b#,(2d,d); «.0. Hence the integral in~3.8! is finite for these
values ofE and«. This proves~3.6!.

In the next theorem we construct a family of generalized eigenfunctions ofH, relating them
to the Green function of the operator, as in the conventional scattering theory.23,25

Theorem 3.3: Let G(x,y;z) be the Green function of the operator H5H01V, defined by
(1.1)–(1.5), in which the vectora is rationally independent. Set

G~x,k;z!5 (
yPZd

G~x,y;z!e2ipk•y, kPTd, ~3.9!

Cz~x,k!5~Ed~k!2z!G~x,k;z!, ~3.10!

and

~3.11!

Then, for z5Ed(k)7 i«, the limits

C6~x,k!5 lim
«→10

Cz~x,k!uz5Ed(k)7 i«5 lim
«→10

6 i«G~x,k;Ed~k!7 i«!, ~3.12!

exist for all kPṪd, are bounded inxPZd for any kPṪd, are continuous ink varying in any

compact set ofṪd, and have the form

C6~x,k!5e2ipk"x1 (
m50

`

tm~k22ma;z!G0
(d1)

~x1 ;z2Ed2
~k22ma!!uz5Ed(k)7 i0e2ip(k22ma)•x2,

~3.13!

where the coefficients tm(k2 ,z) are defined in (2.28).
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Moreover:

(i) the functionsC6(x,k) satisfy the Schro¨dinger equation inx for any kPṪd:

~~H01V!C6!~x,k!5Ed~k!C6~x,k!. ~3.14!

(ii) The functionsC6(x,k) are the unique solutions of the equation:

C6~x,k!5e2ipk"x2 (
yPZd

G0
(d)~x2y;Ed~k!7 i0!V~y!C6~y,k!, ~3.15!

for any kPṪd in the class of sequencesC5$C(x)%xPZd whose restrictionsc5$C(0,x2)%x2PZd2

and the sequences$(11se22ipa•x2)c(x2)%x2PZd2 are representable as the Fourier transforms

measures of bounded variation onTd2, and the sum of the r.h.s. of (3.15) is understood as
generalized convolution of respective functions and measures.

(iii) The families$C6(•,k)%kPṪd are orthonormalized, i.e., if for any continuous functionF̂

of compact support inṪd we set

F6~x!5E
Ṫd

C6~x,k!F̂~k!dk, ~3.16!

then for any two such functionsF̂ (1) and F̂ (2) we have

(
xPZd

F6
(1)~x!F6

(2)~x!5E
Ṫd

dkF̂ (1)~k!F̂ (2)~k!. ~3.17!

(iv) The functionsC6 :Zd3Ṫd→C are the kernels of the wave operatorsV6 , whose exis-
tence and completeness are proved in Theorem 3.2, i.e., for anyFP l 2(Zd) such that the suppor

of its Fourier transformF̂ is a compact set inṪd we have

~V6F!~x!5E
Ṫd

C6~x,k!F̂~k!dk. ~3.18!

Proof: We use again our basic formulas~2.27! and~2.28! for the resolvent ofH. Making the
Fourier transform of~2.27! with respect toy and multiplying the result byEd(k)2z, we present
~3.10! in the form

Cz~x,k!5e2ipk"x1 (
m50

`

tm~k22ma;z!G0
(d1)

~x1 ;z2Ed2
~k22ma!!e2ip(k22ma)•x2. ~3.19!

Each term in this series is continuous ink2 and z, Iz.0 and can be extended to realz5E
1 i0, EP@a,b#, if the closed interval@a,b# lies strictly inside (2d,d). According to bound~3.3!,
the series converges uniformly ink2PṪd2 and a<Rz<b, Iz>0, hence it defines a continuou
function in this domain. This allows us to perform the limits~3.12! for k2PṪd2 and to obtain
formula ~3.13!.

Our limitation kPṪd, whereṪd, is defined in~3.11!, is necessary because forkPTd\Ṫd and
for the respective two values ofE56d we cannot guarantee the validity of bound~3.3!, thus the
convergence of the series in formula~3.13!.

Let us prove now property (i ) of C6(x,k). We have obviously

(
ut2xu51

H0~x2t!G~ t,y;z!2EG~x,y;z!1V~x!G~x,y;z!5 i«G~x,y;z!1d~x2y!.
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The definition~3.10! of Cz(x,k) and an easy justification of the interchange of the multiplicat
by V(x) and of the Fourier transformation iny in the third term of the l.h.s. lead to the equali

(
ut2xu51

H0~x2t!Cz~ t,k!2ECz~x,k!1V~x!Cz~x,k!5 i«~Cz~x,k!1e2ipk"x!.

Now, in view of relation~3.12!, the limit of the r.h.s. of the last equality is zero as«→0, and we
get ~3.14!.

Let us prove now assertion~ii ! of the theorem, i.e., thatC6(x,k) satisfy ~the Lippmann–
Schwinger! equation~3.15!. We remark first that any solutionC of ~3.15! is uniquely determined
by its restrictionc(x2)5C((0,x2)) to the subspaceZd2, and thatc verifies the equation, which
can be symbolically written as

c~x2!5e2ipk2•x22~g0vc!~x2!, x2PZd2. ~3.20!

Hence we have to verify that the restrictionc(x2 ,k) of ~3.13! to Zd2 satisfies~3.20!. By using
~3.19 and~3.13!, we can write the restriction symbolically in the form

c5$12~gg01 i !21gg0@122isu~12sbu!21~gg01 i !21#%e2uz5Ed(k)7 i0 , ~3.21!

wheree2(x2)5e2ipk2•x2 and we used definition~2.12! of g0 . The symbolsg0 , b and u in the
formula denote now not operators onl 2(Zd2) or in L2(Td2), defined in~2.12! and in~2.9!, but just
operations acting on sequences~functions ofx2PZd2) and representable as Fourier transforms
measures of bounded variation depending on the parameterz5E(k)7 i0, kPṪd2. In order words,
they belong to the linear manifold:

Lk5H f ~x2!,x2PZd2: f ~x2!5E
Td2

e2ipp2•x2M k~dp2!; Var M k,`J . ~3.22!

The operationsb andg0 are multiplications ofM k by b̂(p2 ,z) and byĝ0(p2 ,z) with z5Ed(k)
7 i0, andu is the shift bya of the measure. The operation (12bu)21 is defined by the series
(m50

` (bu)m, whose terms are given by~2.24!, and which converges for allkPṪd. By using these
facts and a simple algebra, we can rewrite~3.21! as

c5 i ~11su!~12sbu!21~gg01 i !21e2uz5Ed(k)7 i0 . ~3.23!

Hence we have for the r.h.s. of~3.20!:

e22g0vc5e22gg0~12su!~11su!21~11su!~12sbu!21~gg01 i !21e2

or

e22g0vc5$12gg0~12su!~12sbu!21~gg01 i !21%e2 ,

meaning that the complex spectral parameterz is replaced byE(k)7 i0. The r.h.s. of the relation
coincides withc. To prove this fact we have to repeat the arguments leading to~3.13! and~3.21!,
but starting from formula~2.14! for the operatorT(z) instead of formula~2.15!. Thus we have
proved that~3.13! solves~3.15!.

Let us prove that~3.13! is the unique solution of~3.15! in Lk and such that their multiplication
by (11se2p ik2•x2) belongs also toLk . Consider the homogeneous equation, correspondin
~3.15!:

x5g0vx ~3.24!
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on the same manifold, and write the equalityx5(11u)w, wherew also belongs to~3.22!. Then
we obtain the following equation forw:

~11gg0!~12sbu!w50,

where the symbolsg0 , b, andu are again understood as operations in the classLk . Applying to
this relation the operation (12sbu)21(gg01 i )21,which is well defined inLk , we obtainw50.

According to the above considerations the second term in the r.h.s. of~3.15! is the Fourier
transform of the product ofG0

(d1)(x1 ;Ed(k)2Ed2
(k2)1 i0) @the Fourier transform of

G0
(d)(x;z)uz5Ed(k)1 i0 in x2] and of the measureM k , corresponding tovc:

E
Td2

G0
(d1)

~x1 ;Ed~k!2Ed2
~p2!1 i0!M k~dp2!. ~3.25!

In view of ~2.10!, and~3.23! we have

vc5g~12su!~12sbu!21~gg01 i !21e2uz5Ed(k)7 i0

5g~gg01 i !21S 122i (
m50

`

su~sbu!m~gg01 i !21e2DU
z5Ed(k)7 i0

. ~3.26!

By using this relation and the notations introduced in Lemma 2.1 and in Theorem 2.1, we
that the measure corresponding to the second term of the r.h.s. of~3.15! is

(
m50

`

tm~k22ma;Ed~k!6 i0!d~k22ma2p2!.

Combining these formulas we obtain~3.15!.
Let us prove now the orthogonality ofC6(x,k), corresponding to differentk’s, i.e., relation

~3.17!. It is clear that it is sufficient to prove~3.17! for F (1)5F (2). The proof is rather technica
and we outline only its scheme, considering, say,F2 .

The first step is the proof of the relation

lim
«→10

(
xPZd

uF2~x!2F«~x!u250, ~3.27!

where@cf. ~3.16!#

F«~x!5E
Td

CEd(k)1 i«~x,k!F̂~k!dk, ~3.28!

and Cz(x,k) is defined in~3.10!, i.e., CEd(k)1 i e(x,k)52 i«G(x,k;Ed(k)1 i«). The proof is

based on formulas~3.19! and~3.13!, and on the continuity ofG0
(d)(x,E1 i«) with respect to«.0.

It is given in Lemma 3.1 below.
The second step is the proof of the relation

lim
«→10

(
xPZd

uF̂«~x!u25E
Td

uF̂~k!u2dk, ~3.29!

which implies~3.17!. We will just sketch a proof of this relation.
Write the resolvent identity for the pairG( z̄8) andG(z9):
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(
tPZd

G~ t,y;z9!G~ t,x;z8!5~ z̄82z9!21~G~ t,x; z̄8!2G~ t,y;z9!!. ~3.30!

Replace on the r.h.s. of the identityG by G02G0TG0 @see ~2.4!#. We obtain after a simple
algebra

G08G091~ z̄82z9!21~G08T8G082G09T9G09!, ~3.31!

whereG085(H02 z̄8)21, G095(H02z9)21 and T8 and T9, are theT-operators for the spectra
parametersz̄8 andz9, respectively. Now we make the Fourier transformation with respect tox and
y, multiplying ~3.30! and~3.31! by e2ipp•y22ipk•x and summing the result overx,yPZd. The l.h.s.
of the obtained relation is (Cz9 ,Cz8). As for the r.h.s., it can be written symbolically as

d~k2p!2T~k,p; z̄8!S 1

Ed~p!2 z̄8
2

1

z92 z̄8D2T~k,p;z9!S 1

Ed~k!2z9
2

1

z̄82z9D , ~3.32!

whereT(k,p;z) is the kernel inL2(Td) of the T-operator, whose expression is given in Theore
2.1. Setting in~3.32! z85Ed(p)1 i« andz95Ed(k)1 i«, we obtain

d~k2p!2~T~k,p;Ed~k!1 i«!1T~k,p;Ed~p!1 i«!!

3S 1

Ed~p!2Ed~k!1 i«
2

1

Ed~p!2Ed~k!12i« D .

After multiplication byF̂(k)F̂(p), whereF̂(k) is a smooth function whose compact support
strictly insideṪd, and after the subsequent integration with respect tok,pPTd, the second term of
the last expression tends~weakly! to zero as«→0. We use the explicit form~2.29! of the kernel
T(k,p;z) to prove thatT(k,p;E1 i«) is weakly bounded in«>0, if k, p are strictly inside ofṪd

and uEu,d. After that we are left to prove that the expression in the parentheses tends wea
zero as«→0. This proves assertion~iii ! of the theorem.

Let us prove assertion~iv!, according to which the solutionsC6(x,k) are the kernels of the
wave operatorsV6 , whose existence and completeness are proved in Theorem 3.2~see also Ref.
14 for similar results!. We will base the proof on the formula~see Ref. 23!:

V6F5s2 lim
«→70

E
2`

`

G~E1 i«!E0~dE!F,

whereE0 is the resolution of identity of the LaplacianH0 of ~1.2!, andG(z)5(H2z)21. In the
(x,k) representation, usual in the scattering theory, this formula can be written as follows:

~V6F!~x!5s2 lim
«→70

~V«F!~x!, ~3.33!

where

~V«F!~x!5E
Td

CEd(k)1 i«~x,k!F̂~k!dk, ~3.34!

andCz(x,k) is defined in~3.10!.
According to general principles, it suffices to prove~3.33! for a dense set of vectors o

L2(Td). We choose a set of functions of the formF̂((k1 ,k2))5F̂1(k1)F̂2(k2), whereF̂1,2 are
smooth and the support ofF̂1 does not contain the critical points ofEd1

. Denoting the r.h.s. of
~3.34! by F«(x), we have to prove the relations:
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~a! lim«→70F«(x)5F6(x);
~b! lim«→70(xPZduF«(x)2F6(x)u250,

whereF6(x) are defined in~3.16!. Both facts are proved in the Lemma 3.1 below. Theorem
is proved.

Remarks:~1!. FunctionsC6(x,k) are analogs of the Sommerfeld solutions, which appea
the scattering theory for potentials decaying in all directions and which provide a complete
generalized eigenfunctions for the part of the spectrum that coincides with the spectrum
Laplacian.23,25 Likewise, ~3.15! is an analog of the Lippmann–Schwinger equation of scatte
theory.

~2!. According to formula~3.13!, C6(x,k) depends on the componentx2 of x5(x1 ,x2), x1

PZd1, x2PZd2 via the product ofeik2•x2 and of a one-periodic function of the argumenta•x2 , i.e.,
of a quasi-periodic function ofx2PZd2 @recall that we assume in this section that the compone
of the vectora in ~1.4! are rationally independent#. This fact is in agreement with the widel
accepted idea, according to which generalized eigenfunctions of absolutely continuous sp
of differential and finite difference operators with almost periodic coefficients have the ‘‘alm
Bloch’’ form, i.e., the form of the product of a plane wave and an almost periodic function with
same frequencies as the coefficients~see, e.g., Ref. 22!.

~3!. According to formula~2.18!, if uEu.n, the Green functionG0
(n)(x;E1 i0) of the

n-dimensional Laplacian decays exponentially and ifuEu,n it decays as 1/uxu(n21)/2 for n>2 @in
the one-dimensional case foruEu,1, G0

(1)(x;E1 i0) behaves aseih(E)uxu, whereh(E) is a real
valued function, see formulas~3.37! and ~3.38! below#. As m varies the expressionEd(k)
2Ed2

(k22ma) has values inside (2d1 ,d1) as well as outside this interval. Then the Gre
function

G0
(d1)

~x1 ;Ed~k!2Ed2
~k22ma!!,

entering the expression~3.13!, may be exponentially decaying or slowly decaying~i.e., as
1/uxu(n21)/2). In other words, we can write, say, forC2 ,

C2~x,k!5e2ipk"x1Cvol~x,k!1Csurf~x,k!, ~3.35!

whereCvol is the part of the sum in~3.13! containing only slow decaying terms, andCsurf is the
part containing the exponentially decaying terms.

Recall now the definition of the surface states according to Ref. 15~for other definitions see
Refs. 4, 10, and 14!.

Definition 3.1: LetCE be a generalized eigenfunction, corresponding to a point E of the
spectrum of the operator H of (1.1)–(1.3). We say thatCE is a surface state, if for any«.0 we
have

sup
x2PZd2

~11ux2ud2/21«!21 (
x1PZd1

uCE~~x1 ,x2!!u2,`. ~3.36!

Since the parte2ipk"x1Cvol(x,k) of the solution~3.35! C~x,k! is not decaying in thex1-direction,
the solution is not a ‘‘surface’’ state but a ‘‘volume’’ state. Hence, we can say that Theorem
above implies the existence of the volume states for allEP(2d,d). Theorem 3.4 below implies
that these generalized eigenfunctions are complete in the interval (2d,d). We conclude that there
is no surface states in the interval (2d,d) of the spectrum of the operatorH in the considered cas
of quasi-periodic surface potential~1.3! and~1.4!. However, despite that surface states are abs
the volume states~3.35! contain both a term,e2ipk"x1Cvol(x,k) which slowly decays or even only
oscillates inux1u, and a term,Csurf(x,k), which exponentially decays inux1u. They are respec-
tively the superposition of reflected or transmitted waves which propagate inside the bulk a
waves which propagate only along the subspaceZd2.
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~4! The scattering interpretation~3.35! of generalized eigenfunction~3.13! allows us to intro-
duce transmission and reflection amplitudes and coefficients~the latter as square of the modulus
the former!. Consider the simplest case ofd151 and recall that

G0
(1)~x;z!5

ieih(z)uxu

sinh~z!
52

eih(z)uxu

Az221
, ~3.37!

where2cosh5z, or

h~z!52 i log~2z1Az221!, ~3.38!

and we use the branch of the logarithm that has the cut along the negative semi-axis a
branch ofAz221 fixed by the conditionAz2215z(11O(z21)),z→`. In particularIh(z)>0
for Iz>0 and

h~E1 i0!PH ~0,p!, uEu,1,

p1 iR1 , E.1,

1 iR1 , E,21.

~3.39!

Combining these formulas and~3.13!, we can presentCvol(x,k) in ~3.35! for d151 as

Cvol~x,k!5(
m

Cm~k!eihm(k)ux1u12ip(k22am)•x2, ~3.40!

where(m denotes the sum of those terms in~3.13! for which hm(k)ªh(lm(k)1 i0) is real, and
lm(k) is defined by the equation:lm(k)5Ed(k)2Ed21(k22ma). Recall that in the one-
dimensional scattering problem for the potentialvd(x), xPZ, the Sommerfeld solutions are@cf.
~2.30! and ~2.31!#

C2~x,k!5e2ipkx2
iv

iv1sin 2pk
eih2(k)uxu,

whereh2(k)5h(cos 2pk1i0), kPT. Hence in this case

t~k!5
sin 2pk

iv1sin 2pk
, r 2~k!52

iv
iv1sin 2pk

are the transmission and the reflection amplitudes. This makes it natural to view

t0511C0~k!, r 05C0~k!,

whereC0(k) is given by ~3.40!, as the transmission and the reflection amplitudes of the p
waves scattered by the surface potential~1.3! and propagating in directionk of the incident wave
and in the opposite direction. Likewise it is natural to view the coefficientsCm(k), m>1 of
~3.40! as the transmission and the reflection amplitudes of the scattered plane waves prop
in the directions ((2p)21hm ,k21ma) and (2(2p)21hm ,k21ma), respectively, to the right
and to the left of the planex150. This scattering theory interpretation of the solutions~3.13! is in
agreement with the form of the scattering matrixS in our case. We use the general formula@see
Ref. 23, formula~4.2.30!#

S512T, T5~22ip! s2 lim
«1→0
«2→0

E d«2
~H02l!T~l1 i«1!E0~dE!, ~3.41!
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whered«(A)5(2ip)21@(A1 i«)212(A2 i«)21#, T(z) is defined in~2.4!, E0 is the resolution of
identity of H0 , and the limits have to be carried out in the following order: first«1→0, second
«2→0. Formula~3.41! implies that for any sufficiently smooth functionf̂ on Td we have

~T f̂ !~k!5~22ip! s2 lim
«1→0
«2→0

E
Td

d«2
~Ed~k!2Ed~p!!T~k,p;Ed~p!1 i«1! f̂ ~p!dp.

By using formula~2.29! for the kernel of theT-operator, it can be shown that the generaliz
kernelT(k,p) of the T-matrix of ~3.41! is

T~k,p!522ipd~Ed~k!2Ed~p!!T~k,p;Ed~p!1 i0!

522ipd~Ed~k!2Ed~p!! (
m50

`

tm~k2 ;Ed~k!1 i0!d~k21ma2p2!. ~3.42!

Now we formulate and prove the lemma that was used in the proofs of assertions~iii ! and~iv! of
Theorem 3.3.

Lemma 3.1: LetF̂1,2:Td1,2→C be smooth functions. Assume that the support ofF̂1 does not
contain the critical points of Ed1

:

supp F̂1ù$k1PTd1:¹1Ed1
~k1!50%5B. ~3.43!

Set for«Þ0

F«~x!5E
Td

CEd(k)1 i«~x,k!F̂~k!dk,

where Cz(x,k) is defined in (3.9), (3.10), and (3.19), andF̂(k) is of the formF̂((k1 ,k2))

5F̂(k1)F̂(k2). Then

lim
«→70

(
xPZd

uF«~x!2F6~x!u250, ~3.44!

whereF6(x,k) are defined in (3.12) and (3.16).
Proof: By using ~3.19!, we find that for any«Þ0

F«~x!5F~x!1 (
m50

` E
Td1

dp1F̂1~p1!E
Td2

dp2e2ip(k22ma)•x2F̂2~p2!

3tm~k2 ,Ed~k!1 i«!G0
(d1)

~x1 ,Ed~k!2Ed2
~k22ma!1 i«!, ~3.45!

whereF is the Fourier transform ofF̂. The integrals and the series in this formula converge
can be written in any order because of the bound~3.3! applicable in view of~3.43!. The integral
representation~2.18! for G0

(d1) allows us to rewrite the last formula as follows:

F«~x!5F~x!1E
Td

e2ipk•xĈ«~k!dk, ~3.46!

where
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Ĉ«~k!5 (
m50

` E
Td1

dp1

F̂1~p1!F̂2~k21ma!

Ed~k!2Ed1
~p1!2Ed2

~k21ma!1 i«

3tm~k2 ,Ed1
~p1!1Ed2

~k21ma!1 i«!. ~3.47!

This series and the integral are convergent because the modulus of the denominator is b
from below for«Þ0, and because of bound~3.3!.

Now we will prove that for anykPTd, the limits lim«→70Ĉ«(k)[Ĉ7(k) exist and that the
convergence is bounded. Consider the caseĈ2 for the sake of definiteness. The building block
the coefficient tm(k2 ,E1 i«) in ~3.47! is the function ĝ0(k2 ,E1 i«)5G0

(d1)(0,E2Ed2
(k2)

1 i«)). This function is real analytic ink2PṪd2 @see~3.11! for the definition ofṪd2], and in E
P(2d1g,d2g) for any fixed~small! g.0 @see~2.18! and ~2.19!#. By using identity~5.8! for
G0

(d1) , we can write themth term of formula~3.47! as

E
0

`

dte2«t2 i t (Ed(k)2Ed2
(k21ma))F̂2~k21ma!

3E
Td1

dp1F̂1~p1!e2 i tEd1
(p1)tm~k2 ,Ed1

~p1!1Ed2
~k21ma!1 i«!). ~3.48!

Since the support ofF̂1 does not contain critical points ofEd1
and sinceGm(k2 ,E1 i«) is real

analytic ink2PTd2 and inEP(2d1g,d2g),g.0 for all «>0, we can integrate by parts twic
in components ofp1PTd1, and obtain an expression of the formt22Fm(k,p1 ,«), whereFm is
bounded inkPTd, p1PTd1 and«.0. This allows us to make the limit«→10 in ~3.48! and obtain
a bounded ink expression.

Besides,Fm is a linear combination of the first and second partial derivatives in compon
of p1PTd1 of the integrand in~3.48!. The derivatives are a linear combination of products
bounded~and smooth! in kPTd,p1PTd1 for «.0, and independent ofm functions, multiplied by
the first and the second partial derivatives in components ofp1PTd1 of ) l 51

m b̂(k21 la,Ed1
(p1)

1Ed2
(k21ma)1 i«)). This leads to the bounduFm(k,p1 ,«)u<c1m2e2c2m wherec1 ,c2.0 and

are independent ofm,k,p1 and«. The bound allows us to make the limit«→10 in ~3.47! for any
kPTd:

lim
«→10

Ĉ«~k!5Ĉ2~k!,

and to obtain the bounduC«(k)u<const, valid for any«>0 and kPTd. Now the Lebesgue
dominated convergence theorem and relation~3.12! proved above lead to the representation:

C2~x!5F~x!1E
Td

e2ipk.xĈ2~k!dk. ~3.49!

Subtracting this relation from~3.46! and applying to the result the Parseval equality, we obtain

(
xPZd

uC«~x!2C2~x!u25E
Td

uĈ«~k!2Ĉ2~k!u2dk. ~3.50!

Thus ~3.49! and the Lebesgue theorem imply~3.44!. The lemma is proved.
Theorem 3.4:Let H5H01V be the self-adjoint operator on l2(Zd), defined by (1.1)–(1.5) in

which the vectoraPRd2 has rationally independent components. Then the family$Cz(x,k);x
PZd%kPṪd, defined in Theorem 3.3 [see (3.9), (3.12), and (3.13)], is the complete syste
generalized eigenfunctions of H in the part(2d,d) of the spectrum of H, i.e.,
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(i) for any fP l 2(Zd), the series

F6~k!5 (
xPZd

C6~x,k! f ~x! ~3.51!

converges in l2(Zd);
(ii) if EH(D) is the spectral projection of H, corresponding to the closed intervalD

5@a,b#,(2d,d), then

iEH~D! f i25E
kPṪd:Ed(k)PD

uF6~k!u2dk; ~3.52!

where Ed(k) is defined in (2.19);
(iii) the following relation is valid:

iHEH~D! f i25E
kPṪd:Ed(k)PD

uEd~k!F6~k!u2dk. ~3.53!

Proof: We write the Hilbert identity for the Green functionG(x,y;z1,2), Iz1,2Þ0:

G~x,y,z1!2G~x,y,z2!5~z12z2! (
sPZd

G~x,s;z1!G~y,s; z̄2!. ~3.54!

By using the Parseval equality for the Fourier transform with respect to the variables on the r.h.s.
of this identity, we rewrite it as follows:

E
kPTd

dkG~x,k,z1!G~y,k,z̄2!,

whereG(x,k,z) is the Fourier transform ofG(x,y,z) in the second variabley, defined in~3.9!.
Multiply now resulting relation byf (x) f (y), where f has compact support inZd and sum over
x,yPZd. This yields

~~G~z1!2G~z2!! f , f !5E
Ṫd

dk
z12z2

~Ed~k!2z1!~Ed~k!2z2!
Fz1

~k!Fz̄2
~k!,

where

Fz~k!5 (
xPZd

Cz~x,k! f ~x!, ~3.55!

andCz(x,k) is defined in~3.10!. Settingz15 z̄25E1 i«,«.0, we get

1

p
I~G~E1 i«! f , f !5

1

p E
Ṫd

dk
«

~Ed~k!2E!21«2 uFE1 i«~k!u2. ~3.56!

D5@a,b#P(2d,d), we obtain on the l.h.s. of the resulting relation the expressioniEH(D) f i2 can
be continued inz to the realz5Ed(k)1 i0PD, and that the continued function is uniform
continuous inkP$kPṪd:Ed(k)PD%, whereṪd is defined in~3.11!. Sincef is of compact support
in Zd, it suffices to show thatCz(x,k) possess this property for any fixedxPZd. But this fact is
proved Theorem 3.3. Thus we have established~ii ! for the case wheref ’s of finite support. The
extension tof ’s belonging tol 2(Zd) is based on the standard arguments of spectral theory@see,
e.g., Refs. 25 and 24!. This proves assertions~i! and~ii !. As for assertion~iii !, it follows from ~ii !
and from the spectral theorem.
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IV. THE PERIODIC CASE

In this section we consider the operatorH5H01V of ~1.1!–~1.5! in which d15d251 anda
is a rational number:a5p/q, whereq andp,q are positive integers andp is not a divisor ofq.
In this case our potentialv of ~1.4! is q-periodic. We show that under these conditions the wh
spectrum ofH is absolutely continuous and we construct corresponding generalized eigen
tions. It turns out that there are two types of generalized eigenfunctions. Both types ha
Bloch–Floquet form in the longitudinal coordinatesx2 but behave differently in the transvers
coordinatex1 . Similar spectral structure was found before in Refs. 7, 16, and 17 for the con
ous Scho¨dinger operator inRd, d<3, whose potential is a periodic system of point scatterer
Rd2, d251,2.

We will follow the same strategy as in the preceding section, namely the constructi
generalized eigenfunctions based on the formulas for the Green function of Sec. II and on
las ~3.9!, ~3.10! and ~3.12! of Theorem 3.3. Thus we have to analyze the behavior of the G
function as the spectral parameter tends to the real axis. Our first goal is to find the set of e
for which the limitG(x,y,E1 i0) exists and is bounded, i.e., the purely absolutely continuous
of the spectrum. We shall see that unlike the quasi-periodic case, where this set is@2d,d#, in the
periodic case the whole spectrum is pure absolutely continuous. The spectrum which lies o
@2d,d# consists of surface states only. As for the part in the interior of@2d,d#, it consists of the
volume states whose energies occupy the whole interval@2d,d#, and of the surface states th
may exist under certain conditions.

For anyzPC,IzÞ0, andm51, . . . ,q define the function:

Pm~k2 ;z!5sm)
l 51

m

b̂~k21 la;z!, ;k2PT, ~4.1!

wheres and b̂ are defined by~2.11!, ~2.12!,~2.25! andT5(0,1#. Then, by using Lemma 2.2, w
obtain fora5p/q

sq~~bu!qŵ !~k2!5sq)
l 51

q

b̂~k21 la;z!ŵ~k2!5Pq~k2 ;z!ŵ~k2!, ~4.2!

where the operatoru is defined in~2.9!. We conclude thatsq(bu)q is a multiplication operator by
the functionPq in the spaceL2(T).

Theorem 4.1:Let H5H01V be the operator defined by (1.1)–(1.5) in which d15d251 and
a5p/q, pPZ, qPZ\$0% is a rational parameter. Then the Green function G(x,y;z)5(H
2z)21(x,y), x,yPZ2 of H can be written in the form

G~x,y;z!5G0
(2)~x2y;z!1 (

m50

q E
T
dk2e2ipk2(x22y2)tm~k2 ;z!

3G0
(1)~x1 ;z1cos 2pk2!G0

(1)~y1 ;z1cos 2p~k21ma!!e22ipmay2, ~4.3!

where

tm~k2 ;z!5
g

gĝ0~k2 ;z!1 i
35

21, m50;

1

12Pq~k2 ;z!

2is

gĝ0~k21a;z!1 i
, m51;

1

12Pq~k2 ;z!

2is

gĝ0~k21ma;z!1 i
Pm21~k2 ;z!, m>2,

~4.4!
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G0
(n)(.;z), n51,2 is the Green function (2.27) of then-dimensional discrete Laplacian, ĝ0(.;z),

and b̂(.;z) are defined in (2.22) and in (2.25).
The proof of the theorem is based on the same argument as that used in the proof of Th

2.1.
Formulas ~4.3! and ~4.4! suggest that the spectrums(H) of H contains the setS5$E

PR:'k2PT;Pq(k2 ,E)51%. We prove below that indeed, the limitG(x,y,E1 i0) exists and is
bounded for allEPS\D whereD is a discrete set.

For any 1.g.0, EPR and l 51, . . . ,q, define the sets

Kg
l ~E!5$k2PT:E1cos 2p~k21 la!P@211g,12g#%, ~4.5!

and

Kg~E!5ø
l 51

q

Kg
l ~E!, Kg

c~E!5T\Kg~E!. ~4.6!

It follows from formula~4.2!, Lemma 5.3, and from the argument of the proof of Theorem 3.1
for any 0,g,1 there existsd~g!.0 such that the inequality sup«.0uPq(k2 ,E1 i«)u,12d is
valid uniformly ink2PKg(E). This means that the function (12Pq(k2 ,E1 i0))21 is well defined
and bounded on the sets

K~E!5 ø
0,g,1

Kg~E!,

and that possible singularities of this function which are given by the ‘‘band-equation,’’

Pq~k2 ,E!51, ~4.7!

where Pq(k2 ,E)5Pq(k2 ,E1 i0), are localized onKc(E). It is natural to think that energies
satisfying the band equation~4.7! for somek2PT, belong to the spectrum ofH. The following
proposition describes properties of solutions of the band equation.

Proposition 4.1: For any2<q,` the band equation (4.7) admits a finite number Nq8 of
positive solutions0<E1(k2), . . . ,EN

q8
(k2),` (the positive energy band functions), and a fin

number Nq9 of negative solutions2`,E2N
q9
(k2), . . . ,E21(k2)<0 (the negative energy ban

functions). The functions Ej , j 52Nq9 , . . . ,21,1,. . . ,Nq8 are 1/q-periodic in k2 , and are real
analytic in the interior of their respective domainsDj,T (each domainDj is a closed subset o
T). Moreover, the band functions are separated in the sense that

(i) for any j52Nq9 , . . .21,1, . . .Nq8 there exists a finite subsetDj8 of Dj , such that for all
kPT3(Dj \Dj8) we have

uEj~k2!2E2~k!u.0, ~4.8!

where E2(k)52cos 2pk12cos 2pk2;
(ii) there exists a positive constanthq.0 such that for any j, j 852Nq9 , . . .21,1, . . .Nq8 , j

Þ j 8 we have

inf
k2PDj ùD j 8

uEj~k2!2Ej 8~k2!u>hq.0. ~4.9!

The proof of the proposition will be given after the proof of Theorem 4.6.
The band functionEj , j 52Nq9 , . . . ,21,1,. . . ,Nq8 defined in Proposition 4.1 determines th

band-gap structure of the spectrum of the periodic inx2 operatorH in the following sense.
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Theorem 4.2: Let H5H01V be the operator defined in Theorem 4.1. Then for all ratio
parametera, gÞ0, and vP[0,1] the spectrums(H) of H is a finite union of closed interval
(energy bands):

s~H !5 ø
j 52Nq9

Nq8
RanEjø@22,2#. ~4.10!

The assertion that (2d,d) is in the spectrum ofH is a consequence of Theorem 2.2, the r
of the theorem will be proved after the proof of Theorem 4.5.

Let us now define the setEc of critical energies as

Ec5H EPR:' j P$2Nq9, . . . ,Nq8%, 'k2PT, Ej~k2!5E and either
dEj

dk2
~k2!50 or k2P]Dj J .

Denote

D5Ecø$2d,d%, ~4.11!

and notice that because of Proposition 4.1D is a discrete subset ofR.
Theorem 4.3:Let H5H01V be the operator defined in Theorem 4.1, and let G(x,y;z) be its

Green function. Then for any rationala, gPR, andvP[0,1) the limit G(x,y;E1 i0) exists and is
bounded for any EPs(H)\D and x,yPZ2, where D is defined in (4.11). In particular the spe
trum of H is absolutely continuous.

Proof: For anyEPs(H)\D setz5E1 i«, «.0 and fix 0,g,1. By using formula~4.3! we
can write that

G~x,y;z!5G1,g~x,y;z!1G2,g~x,y;z!, x,yPZ2, ~4.12!

where

G1,g~x,y;z!5G0
(2)~x2y;z!1E

Kg(E)
dk2e2ipk2(x22y2) (

m50

q

tm~k2 ;z!

3G0
(1)~x1 ;z1cos 2pk2!G0

(1)~y1 ;z1cos 2p~k21ma!!e22ipmay2, ~4.13!

Kg(E) and tm are defined in~4.6! and in ~4.4!, and

G2,g~x,y;z!5G~x,y;z!2G1,g~x,y;z!. ~4.14!

Since the inequality sup«>0uPq(k2 ,E1 i«)u,12d is valid uniformly on Kg(E) for some
d«(0,1), thesame arguments as in the proof of Theorem 3.1 imply that the limitG1,g(x,y;E
1 i0) exists and is bounded.

Hence, to prove the theorem we have to show the same property for the termG2,g(x,y;z) of
~4.12!. We first note that by Proposition 4.1 this term can be rewritten as

G2,g~x,y;z!5E
Kg

c (E)
dk2

g2,g~x,y,k2 ;z!

12Pq~k2 ;z!
, ~4.15!

where for any 0,g,1, «>0 and (x,y)PZ23Z2, g2,g(x,y,.;z) are smooth functions onKg
c(E).

Now in order to compute the integral on the r.h.s. of~4.15!, consider the level sets

Sj5Sj~E,g!5$k2PKg
c~E!:Ej~k2!5E%, j 52Nq9 , . . . ,Nq8 ,

and the following neighborhoodsn j of Sj :
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n j5n j~E,g,h!5$k2PKg
c~E!:uEj~k2!2Eu<h%.

If h is small enough, then Proposition 4.1 implies the relation:n jùn j 85B if j Þ j 8. Thus to prove
that G2,g(x,y;E1 i«) exists and is bounded as«→0, it suffices to show that this holds for

G2,g, j~x,y;E1 i«!5E
n j

dk2

g2,g~x,y,k2 ;E1 i«!

12Pq~k2 ;z!
, j 52Nq9 , . . . ,Nq8 . ~4.16!

Sinceh is small enough andE¹D, we can parametrizen j by the local coordinateẼ defined by
the relationẼ5Ej (k2). Denotingw j the respective change of variables andJw j

its Jacobian, we
have

G2,g, j~x,y;E1 i«!5E
2h

h
dẼ

g2,g+w j~Ẽ!

12Pq+w j~Ẽ!
Jw j

, j 52Nq9 ,...,Nq8 . ~4.17!

Suppose now thath and« are so small that we can write

12Pq~w j~Ẽ!,E1 i«!5~Ẽ2E2 i«!pj~Ẽ;E1 i«!,ẼP@2h,h#,

wherepj , j 52Nq9 ,...,Nq8 are smooth and nonvanishing functions on the interval@2h,h# such
that

upj~ .,E!u>Cu]EPq~ .,E!u1O~h!1O~«!

for some strictly positive constantC. Moreover, it follows from the proof of Proposition 4.1@see
formula ~4.46!# that

u]EPq~w j~Ẽ!,E!uÞ0, ẼP@2h,h#.

Then standard arguments show thatG2,g, j (x,y;E1 i0), j 52Nq9 ,...,Nq8 exist and are bounded
henceG2,g(x,y;E1 i0) also exists and is bounded. The theorem is proved.

The last theorem together with the arguments of the proof of Theorem 3.2 lead to the fo
ing.

Theorem 4.4: Under the conditions of Theorem 4.1, the wave operatorsV6 for the pair
(H,H0) defined in (1.1)–(1.5) with a rationala exist and are complete for any closed interv

D5@a,b#,(2d,d)\ø
j 52N

q9

Nq8 RanEj .

Our next theorem shows that surface states~see Definition 3.1! exist and are bounded. The
can be labeled by the ‘‘quasi-momentum’’k2PT/q, such that respective eigenvalues are given
the band functions:E5Ej (k2). The ‘‘volume’’ states that do not belong tol 2(Z) in x1 are labeled
by the ‘‘momentum’’kPT2, such that the corresponding eigenvalues are given by the dispe
law of the Laplacian:E5E2(k)52(cos 2pk11cos 2pk2). We consider here only the nondege
erate case, i.e., the case where chosen pairs (k2 ,E5Ej (k2)), and (k,E5E2(k)) are such that
Ej (k2)ÞE2(k). By Proposition 4.1 this property is valid for all energies except a finite set.

Consider the set

Tj
25$k5~k1 ,k2!PṪ2, k2PTj%, j 52Nq9 , . . . ,Nq8 ,

whereṪ2 is defined in~3.11!, Tj5Dj \Dj8 , andDj ,Dj8 are defined in Proposition 4.1, and the s

T̈25 ø
j 52Nq9

Nq8

$k5~k1 ,k2!PṪ2, k2PT\Dj8%.
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Hence the set of degenerate energies is

Ec85$EPR,'k5~k1 ,k2!PT2,' j 52Nq9 , . . . ,Nq8 , E5E2~k!5Ej~k2!%.

By Proposition 4.1Ec8 is a discrete set as well as the set

D85DøEc8 ,

whereD is defined in~4.11!.
Theorem 4.5:Let H5H01V be the operator defined in Theorem 4.1, G(x,y;z) be its Green

function, and G(x,k;z) be defined in (3.9). Then
(i) for z5E2(k)7 i« the limits

Cv,6~x,k!5 lim
«→10

Cz~x,k!uz5E2(k)7 i«5 lim
«→10

6 i«G~x,k;~E2~k!7 i«!!, ~4.18!

exist for all kPT̈2, are bounded inxPZ2 for any kPT̈2, are continuous ink on any compact

subset ofT̈2 for any xPZ2, and satisfy the Schro¨dinger equation

~~H01V!Cv,6!~x,k!5E2~k!Cv,6~x,k!. ~4.19!

(ii) For z5Ej (k2)7 i«, j 52Nq9 , . . . ,Nq8 the limits

Cs, j ,6~x,k2!5 lim
«→10

7 i«I j~k;z!G~x,k;~Ej~k2!7 i«!!,

in which

I j~k;z!5~E2~k!2z!F E
T
dk1

1

u~E2~k!2z!u2G1/2

exist for anyk5(k1 ,k2)PTj
2 , are bounded inxPZ2 for any k2PTj , are continuous in k2 on any

compact subset ofTj and satisfy the Schro¨dinger equation:

~~H01V!Cs, j ,6!~x,k2!5Ej~k2!Cs, j ,6~x,k2!. ~4.20!

(iii) Cs, j ,6(•,k2), k2PTj are surface states in the sense of Definition 3.1.

Remarks:~1! It can be shown that for allkPT̈2 such thatE2(k)P(2d,d)\ø
j 52N

q9

Nq8 RanEj

the functionCv,6 , defined by~4.18!, is the unique solution of the integral equation:

C~x,k!5e2ipk.x2 (
yPZd

G0
(2)~x2y;E2~k!7 i0!V~y!C~y,k!, ~4.21!

that has to be understood in the same way as in Theorem 3.3(i i ). On the other hand, it is easy t
check that for anyj 52Nq9 , . . . ,Nq8 , k5(k1 ,k2)PTj

2 and Ej (k2)¹@2d,d#, Cs, j ,6(x,k2) is a
solution of the homogeneous integral equation:

C~x,k2!52 (
yPZd

G0
(2)~x2y;Ej~k2!7 i0!V~y!C~y,k2!. ~4.22!

~2! One can view the above results from the point of view of the direct integral decompos
technique for finite difference operators with periodic coefficients.4 Namely by using the period
icity in x2 of the operatorH with a5p/q, we can write the direct integral decomposition
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H5E
uk221/2u<1/2q

%

Hq~k2!dk2 . ~4.23!

HereHq(k2) is the self-adjoint operator defined by the restriction ofH to the linear manifold of
functionsCk2

(x)5e2ipk2x2Fk2
(x), whereFk2

is q-periodic inx2 . ThusHq(k2) acts in the strip

$x1PZ, 1<x2<q%, and is the perturbation of the respective Laplacian by theq rank potential
~1.3! with 1<x2<q. This implies that the spectrum ofHq(k2) consists of two parts. The first i
the absolutely continuous component: the union of values of the functions2cos 2pk1

2cos 2p(k21l/q), k1PT, l 51, . . . ,q and k2P@ 1
21

1
2q,1/211/2q) is fixed, the corresponding

eigenfunctions are deformed plane waves inx1 . The second part is discrete spectrum, consist
of Nq<q eigenvaluesEj (k2), lying outside of the above absolutely continuous spectrum,
having exponentially decaying inx1 eigenfunctions. Ask2 varies in the direct integral the abso
lutely continuous spectrum ofHq(k2) gives rise to the volume states of the operatorH, while the
discrete spectrum ofHq(k2) gives rise to the surface states.

Proof of Theorem 4.5:Take (E,k)Ps(H)3T̈2, z5E6 i«, «.0 and denoteCz(x,k)
5(E2z)G(x,k;z), whereG(x,k;z) is defined in~3.9!. We know from the proof of Theorem 3.
that if for any xPZ2 the limit CE(x,k)5 lim«→0Cz(x,k) exists, thenCE is a solution of the
Schrödinger equationHCE5ECE . By Theorem 4.1 we can write the representation:

G~x,k,z!5
1

E2~k!2z Fe2ipk"x1 (
m50

q

tm~k22ma;z!G0
(1)~x1 ;z1cos 2p~k22ma!!e2ip(k22ma)x2G .

~4.24!

Choose first a pair (kPT̈2,E5E2(k)), as it was done in the proof of Theorem 3.3 for t
quasi-periodic case. By Proposition 4.1 the denominator 12Pq(E,k2) in tm of ~4.4! is nonzero
and we obtain from~4.25!

Cv,6~x,k!5e2ipk.x1(
m50

q

tm~k22ma;z!G0
(1)~x1 ;z1cos 2p~k22ma!!uz5E2(k)7 i0e2ip(k22ma)x2.

~4.25!

This proves the first assertion of the theorem.
Consider now the case wherek5(k1 ,k2)PTj

2 , andE5Ej (k2) for some j 52Nq9 , . . . ,Nq8 .
We know that the pair (k,E) is such thatE1cos2p(k21la)¹(21,1) for anyl 51, . . . ,q. Hence,
by using the separability property~4.9! and the periodicity of theEj ’s, given by Proposition 4.1,
we find thatE1cos 2p(k21la)¹@21,1# for any l 51, . . . ,q, i.e., all that these energies belong
the resolvent set of the one-dimensional Laplacian.

This observation implies the existence of the limit

Cs, j ,6~x,k2!5 lim
«→70

@ I ~k,z!Cz~x,k!#uz5Ej (k2)7 i« ,

provided that the limit

lim
«→10

«

12Pq~k2 ,Ej~k2!7 i«!
~4.26!

exists. This can be proved by using the relations

12Pq~k2 ,Ej~k2!7 i«!56 i«]EPq~k2 ,Ej~k2!!1O~«2!,

valid for sufficiently small«, and the relation]EPqÞ0. Now, it is easy to verify that
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Cs, j ,6~x,k2!5I j~k2! (
m51

q

t̃ m~k22ma!G0
(1)~x1 ;Ej~k2!1cos 2p~k22ma!!e2ip(k22ma)x2,

~4.27!

where

I j~k2!5F E
T
dk1

1

u~E2~k!2z!u2G1/2U
z5Ej (k2)7 i0

,

~4.28!
t̃ 1~k2!52is~~gĝ0~k2 ;z!1 i !]EPq~k2 ,z!~gĝ0~k21a;z!1 i !!21uz5Ej (k2)7 i0 ,

and form>2

t̃ m~k2 ;E!52igs~~gĝ0~k2 ;z!1 i !]EPq~k2 ,z!~gĝ0~k21ma;z!1 i !!21

3Pm21~k2 ;z!uz5Ej (k2)7 i0 . ~4.29!

By using the same argument as that in the proof of~4.19!, we find thatCs, j ,6 satisfies~4.20!. Let
us prove now thatCs, j ,6 is a surface state. We know thatE1cos 2p(k21la)¹@21,1# for any l
51,...,q. Since all these energies are in the resolvent set of the one-dimensional Laplacian
term of the sum of the r.h.s. of~4.27! decays exponentially with respect the transverse coordi
x1PZ. Since the number of these terms is finite, we conclude that for anyx2PZ, Cs, j ,6(.,x2)
P l 2(Z) and is bounded inx2PZ. The proof of the theorem is complete.

We can now use the last theorem, where we have constructed the generalized eigenfu
~4.25! and ~4.27!, to prove Theorem 4.2.

Proof of Theorem 4.2:It follows from the proof of Theorem 4.3 thats(H),@2d,d#

ø(ø
j 52N

q9

Nq8 RanEj ). Hence we have to prove the opposite inclusion. For the part@2d,d# of the

spectrum the inclusion was proved in Theorem 2.2. So assume thatEPø
j 52N

q9

Nq8 RanEj \

@2d,d# is such that there exists a surface stateCs(x) satisfying the Schro¨dinger equation:
(HCs)(x)5ECs(x). We apply again the H. Weyl criterion, setting

Cn~x!51n~x2!Cs~x!/Nn ; Nn5i1nCsi l 2(Z2) ,

where 1r is the indicator of the ball$x2PZ: ux2u<n%. A straightforward calculation shows tha
C1n1/2<Nn<C2n1/2 asn→` for some strictly positive constantsC1,2, and that

~HCn!~x!5H ECn~x!, ux2u,n;

An~x!, n<ux2u<n11;

ECn~x!50, ux2u>n12,

whereiAni l 2(Z2)5O(n21/2),n→`. It is easy to check thatCn is a Weyl sequence forH at the
energyE. This proves the theorem.

Our next result concerns the completeness of the system of generalized eigenvectors~4.25!
and ~4.27!, defined in Theorem 4.5.

Theorem 4.6: Let H5H01V be the self-adjoint operator in l2(Z2) defined in Theorem 4.1

Consider the familyF5$Cv(x,k), xPZ2%kPT̈2ø
j 52N

q9

Nq8 $Cs, j (x,k2);xPZ2%k2PTj
, defined by (4.25)

and (4.27). ThenF is a complete system of generalized eigenfunctions of H in any suffici
small intervalD of s(H) such thatDùD85B, i.e.,

(i) for any fP l 2(Z2) the series
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Fv~k!5 (
xPZd

Cv~x,k! f ~x!, kPT̈2,

and

Fs, j~k2!5 (
xPZd

Cs, j~x,k2! f ~x!, k2PTj , j 52Nq9 , . . . ,Nq8 ,

converge in l2(Z2).
(ii) If EH(D) is the spectral projection of H corresponding to the intervalDPs(H), then

iEH~D! f i25E
$kPT̈2:E2(k)PD%

uFv~k!u2dk1 (
j 52Nq9

Nq8 E
$k2PTj :Ej (k2)PD%

uF j ,s~k2!u2dk2 .

(iii) For the same interval we have

iHEH~D! f i25E
$kPT̈2:E2(k)PD%

uE2~k!u2uFv~k!u2dk

1 (
j 52Nq9

Nq8 E
$k2PTj :Ej (k2)PD%

uEj~k2!u2uFs, j~k2!u2dk2 .

Proof: For any compact intervalD,s(H)\D8 consider the sets

n5$kPT̈2:E2~k!PD%, n j5$k5~k1 ,k2!PTj
2 :Ej~k2!PD%, j 52Nq9 , . . . ,Nq8 . ~4.30!

Proposition 4.1 implies that there exists a constanth.0 such that

min
j

inf
kPnùTj

2

uE2~k!2Ej~k2!u, min
j

inf
kPn j ùT̈2

uE2~k!2Ej~k2!u>h.

Notice thath depends only on the dist(D,D8). Moreover, ifD is sufficiently small, then the set
n,n j , j 52Nq9 , . . . ,Nq8 are disjoint. The subsequent argument uses this property ofn, and n j ,
j 52Nq9 , . . . ,Nq8 .

We will follow now the proof of Theorem 3.4. Hence we have to prove assertion~ii ! first for
a function f with compact support. We have forz5E1 i«, whereEPD and«.0:

1

p
I~G~z! f , f !5

1

p E
n
dk

«

u~E2~k!2z!u2
uFz~k!u2

1
1

p (
j 52Nq9

Nq8 E
n j

dk
«

u~Ej~k2!2z!u2
uFz~k!u21O~«!, ~4.31!

where

Fz~k!5 (
xPZd

Cz~x,k! f ~x!, Cz~x,k!5~Ẽ2z!G~x,k;z!, ~4.32!

Ẽ5E2(k) or Ẽ5Ej (k2) and G(x,k;z) is defined by~3.9!, ~4.3!, and ~4.4!. Since for everyk
5(k1 ,k2)Pn and EPD, Pq(k2 ,E)21 is not zero, the limit lim«→0CE1 i«(x,k) exists for any
xPZ2 uniformly in k5(k1 ,k2)Pn and inEPD. Applying to the first term of the r.h.s of~4.31!
the operation lim«→0*D . . . dE, we get
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lim
«→0

E
D
dE

1

p E
n
dk

«

u~E2~k!2z!u2
uFz~k!u25E

$kPT̈2:E2(k)PD%
uFv~k!u2dk. ~4.33!

So we are left with the second term of the r.h.s of~4.31!. For every j P$2Nq9 , . . . ,Nq8%, k
5(k1 ,k2)Pn j , andEPD, we have

lim
«→0

FE1 i«~k!5 (
xPZd

C~x,k;E! f ~x!, ~4.34!

where

C~x,k,E!5
~Ej~k2!2E!

E2~k!2E Fe2ipk"x1 (
m50

q

tm~k22ma;E1 i0!G0
(1)~x1 ;E1 i01cos 2p~k2

2ma!!e2ip(k22ma)x2G , ~4.35!

which in particular corresponds to@(E2(k)2Ej (k2))I j (k2)#21Cs, j (x,k2) for E5Ej (k2). The
limit ~4.34! is also uniform ink5(k1 ,k2)Pn j and inEPD. Applying again the same operation
lim«→0*D . . . dE to the j th term of the sum on the r.h.s. of~4.31!, we get

lim
«→0

E
D
dE

1

p E
n j

dk
«

u~Ej~k2!2z!u2
uFz~k!u25E

$k2PTj :Ej (k2)PD%
uF j ,s~k2!u2dk2 . ~4.36!

Relations~4.33! and ~4.36! imply assertions~i! and ~ii ! of the theorem for the case of a functio
f with compact support. The proofs of these assertions for an arbitrary functionf P l 2(Z2), and the
proof of assertion~ii ! require standard means of spectral theory~see the proof of Theorem 3.4!.

Proof of Proposition 4.1:According to~4.1!, we can write Eq.~4.7! for a5p/q as

Pq~k2 ,E!5sq)
l 51

q

b̂~k21 l /q,E1 i0!51, ~4.37!

where

b̂~k2 ,z!5
gG0

(1)~0,z1cos 2pk2!2 i

gG0
(1)~0,z1cos 2pk2!1 i

. ~4.38!

Since the product on the l.h.s. of Eq.~4.37! is periodic ink2 with period 1/q, its solutions are also

periodic in k2 with period 1/q, and we can restrict ourselves to the interval@ 1
221/(2q), 1

2

11/(2q)). By Lemmas 5.1 and 5.2 we haveub̂(k2 ,z)u<1, k2PT, zPC, thus the band equation
~4.37! admits a solution if and only if the modulus of each factorb̂(k21 l /q,E1 i0), l
51, . . . ,q, on its l.h.s. is 1. Hence, we can write the representation

b̂~k2 ,E!5exp$2p if~k2 ,E!%.

In what follows we will consider the case whereE is positive~the arguments for negativeE are
similar and will be omitted!. In this case we have from~3.37!

G0
(1)~0,E1 i0!52

1

AE221
, E.1,

and we can choose the phasef(k2 ,E) as
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f~k2 ,E!51/p arctan~~1/g!A~E1cos 2pk2!221!. ~4.39!

For any k2P@ 1
221/(2q),1

211/(2q)) f is a non-negative and an increasing function ofE>1
2cos 2pk2, satisfying the inequalities

0<f~k2 ,E!, 1
2.

The above formulas show that the l.h.s. of Eq.~4.37! is real analytic in the domain

$~k2 ,E!:k2P@ 1
221/~2q!,1

211/~2q!!, E.12cos 2pk2%,

hence solutions of the equation, if they exist, are real analytic ink2 @notice that here the condition
E.12cos 2pk2 is equivalent to the conditionsE.12cos 2p(k21la),;l51,..,q].

We will use ~4.37! in the form

Fq~k2 ,E!2qv50 ~mod 1!, ~4.40!

where

Fq~k2 ,E!5(
l 51

q

f~k21 la,E!5 (
l 50

q21

f~k21 la,E!. ~4.41!

For any fixedk2P@ 1
221/(2q),1

211/(2q)), Fq(k2 ,E) is a positive and an increasing function
E>12cos 2pk2, bounded byq/2.

Fix now q andv and denote byav the integer part of the minimum

min
k2P[1/221/(2q),1/211/(2q))

Fq~k2,12cos 2pk2!2qv.

For a fixed integerj denote byEj (k2) the energy such that

Fq~k2 ,Ej~k2!!2qv5av1 j ~4.42!

and denote byDj the set ofk2PT such that~4.42! is satisfied. The setsDj , j 52Nq9 , . . . ,Nq8 form
an increasing family of the closed subsets ofT. For all j larger than somej 0 , Dj coincides with
T.

HenceEj is the j th energy band function and RanEj is the j th surface energy band. It is clea
that the maximum valueNq8 of j for which such a solution exists is such thatNq8<q/2. Since
Fq(k2,12cos 2pk2)2qv is analytic ink2PT, there may exist a discrete setDj8 of k2PT, for
which Fq(k2,12cos 2pk2)2qv is equal to the integerav1 j . Numerical experiments show tha

for smallq there are at most two values ofk2 in the interval@ 1
221/(2q),1

211/(2q)) for which this
event occurs, so the number of points inD18 is 2q and the otherDj8 are empty. We have proved tha
if k2PTj5Dj \Dj8 , Ej (k2) exceeds 12cos 2pk2, then we have for allkPTj

2

Ej~k2!.12cos 2pk2>2cos 2pk12cos 2pk25E2~k!, ~4.43!

i.e., the separation property~4.8! between the band of the volume states and the surface ban
Let us now discuss separation between the surface bandsE2N

q9
, . . .EN

q8
. We will use the

relation

15Fq~k2 ,Ej 11~k2!!2Fq~k2 ,Ej~k2!!, ~4.44!

implied by ~4.40!.
Consider first the energy rangeE>em for someem.2. It follows from ~4.40! that the maxi-

mum energyEq for which the equation is soluble is finite~this is the upper edge of the spectru
of the operatorH for a givenq). Hence the partial derivative
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]Fq

]E
51/p (

l 50

q21
g

g21@E1cos 2p~k21 l /q!#221

E1cos 2p~k21 l /q!

A~E1cos 2p~k21 l /q!!221
~4.45!

satisfies the inequalities:

0,
]Fq

]E
<

q

pg

Eq11

A~em22!em

ª~hq8!21,`.

This bound and~4.44! lead to the relations

15E
E(k2)

Ej 11(k2) ]Fq~k2 ,E!

]E
dE<~Ej 11~k2!2Ej~k2!!~hq8!21, ~4.46!

implying the separation property~4.9! in the case whereEj (k2).2.
In the case, where

0<12cos 2pk2<Ej~k2!<2, k2P@ 1
221/~2q!,1

211/~2q!!,

the r.h.s. of ~4.45! can be infinite because of the contribution of the first term~for E51
2cos 2pk2), and of the second term@for E512cos 2pk2, and k25 1

221/(2q)] or of the (q
21)th term @for E512cos 2pk2, andk25 1

211/(2q)]. Since, however, each term in the pha
~4.41! is non-negative and

fqª max
k2P[1/221/(2q),1/211/(2q))

f~k2,2!

is strictly less than1
2, the contribution of these terms in the difference~4.44! is bounded from

above by 2fq,1, and we obtain from~4.44! the inequality

0,122fq,E
Ej (k2)

Ej 11(k2) ]F̃q~k2 ,E!

]E
dE,

whereF̃q(k2 ,E) is the sum in~4.41!, in which the terms corresponding tol 50 and tol 51 if

k2P@ 1
221/(2q),1

2), and tol 5q21 if k2P@ 1
2,1/211/(2q)) are omitted. It is easy to check that th

partial derivative ofF̃q(k2 ,E) with respect toE is bounded from above by a constant (hq9)
21

,`. This leads to the bound~4.46! in which (hq8)
21 is replaced by (hq9)

21 andFq by F̃q . The
obtained bounds imply the separation property~4.9! with hq5min$hq8 ,hq9%. Proposition 4.1 is
proved.

Remark:It can be seen from the proof above that the distance between the bands incre
u j u increases. Besides, the distance between the two first bands is of orderO(1/q) whenq is large.

Denote from now on the operator of~1.1!–~1.4! asHa . We conclude this section by discus
ing correspondence between the spectrums of the operatorsHa with an irrational numbera and
with its rational approximationspn /qn :

lim
n→`

pn

qn
5a. ~4.47!

It is easy to prove, by using the basic formula~2.16! for the resolvent, that under condition~4.47!
Hpn /qn

converges toHa in the strong resolvent sense. Hence, according to general principles,18 the
spectrums(Hpn /qn

) is upper semi-continuous inn in the limit ~4.47!. Here is a statement tha
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gives a more detailed behavior ofs(Hp/q) for large q. Recall thats(Hp/q) is the union of the
interval @22,2# and ofNq91Nq8 surface bands, part of which can belong or intersect the inte
@22,2#.

Theorem 4.7:Assume that q sufficiently large. Then there exists at most one negative s
energy band above E522 and at most one positive surface energy band below E52. These
bands, if they exist, have the width of order O(1/q2) as q→`. The width of the surface energ
bands lying in~2`,22! and in ~2,1`! are of order O(exp$2const•q%) as q→`.

Proof: We start from the dispersion equations~4.41! and~4.40! for the surface energy bands
Since the functionFq(k2 ,E) has period 1/q in k2 , its Fourier series is

Fq~k2 ,E!5 (
nPZ

F̂q,n~E!e22p ik2qn,

where

F̂q,n~E!5q(
l 50

q21 E
0

1/q

dk2e2p ik2qnf~k21 l /q,E!5qE
0

1

dk2e2p ik2qnf~k2,E!ªqf̂qn~E!,

and f̂qn is theqnth Fourier coefficient of the functionf(.,E). Hence

Fq~k2 ,E!5q~f̂0~E!1f̂q~E!e22p ik2q1¯ !. ~4.48!

According to~4.39!, the functionf(•,E) is analytic foruEu.2, thus its Fourier coefficientf̂q(E)
is of order exp$2const•q% asq→`. In addition, formula~4.40! implies the relation

dEj

dk2
5

]Fq

]k2
•S ]Fq

]E D 21

.

It follows now from ~4.48! and from the exponential decay of the Fourier coefficientF̂q,n(E) that
the upper bound for the derivative]Fq /]k2 is of orderO(q2e2const•q), while the lower bound for
]Fq /]E, which is reached for the highest energy bandEN

q8
(k2), is of orderO(q). Thus the

derivativedEj /dk2 is of orderO(qe2const•q). SinceEj (k2) is periodic ink2 with period 1/q, then
denoting respectively byEj

max, and byEj
min the maximum and the minimum of thej th band

function Ej , we see thatuEj
max2Ej

minu is of the order exp$2const•q% if Ej
min.2.

Let us fix k2P@ 1
221/(2q),1

211/(2q)). To see how many bands are in between the low
possible energyE512cos 2pk2 and the energy,E52, let us calculatedF5Fq(k2,2)
2Fq(k2,12cos 2pk2). We have

dF51/p (
l 50

q21 E
12cos 2pk2

2

dE
g

g21~E1cos 2p~k21 l /q!!221

E1cos 2p~k21 l /q!

A~E1cos 2p~k21 l /q!!221
.

Performing the integration for the different values ofl and summing respective contribution
we obtain thatdF is of the order (1/q)logq asq→`, thusdF→0 asq→`. Remembering that for
eachk2 the energy of a band corresponds to an entire value ofFq1qv, we deduce that for large

q there is at most one band in the interval to the left of 2. Since the minimum ofE1 for k2P@ 1
2

21/(2q),1
211/(2q)) is larger than 11cosp/q, the width of any band, lying inside the interva

@11cosp/q,2), is bounded byp2/2q2.
It can also occur thatE1

max.2. In this case, the same argument as above shows that the p
the energy band in (2,̀) is exponentially small inq. Thus the total width in that case is at mo
of the order 1/q2.

Remark:The assertion of the theorem can be interpreted as a kind of continuity o
spectrum with respect to the limiting transition~4.47!. Indeed, according to the theorem, the wid
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of the surface bands ofHpn /qn
, lying outside the interval@2d,d#, is exponentially small inqn

→`. It can also be shown that the gaps between these bands are of the order 1/qn . This is in
agreement with the ‘‘limiting’’ form of this part of the spectrum ofHa for irrationala’s, satisfying
the Diophantine condition~1.6!. Indeed, according to Ref. 19, the spectrum ofHa in this case is
pure point and dense onR\@2d,d#. Here is one more manifestation of this continuity.

Recall that according to Ref. 19 the eigenvalues ofHa outside @2d,d# are indexed by
x2PZd2, and for eachx2PZd2 the eigenvalueEx2

is the unique solution of the equation

f ~Ex2
![a•x21v ~mod 1!, ~4.49!

where f :R\@2d,d#→R is the monotone increasing function, defined forE.d as

f ~E!52
1

p E
Td2

dk2 arctan~gg0~k2 ,E!!21, ~4.50!

or, in view of ~2.23! and ~3.37!, and ford251

f ~E!52
1

p E
T1

dk2 arctang21A~E1cos 2pk2!221. ~4.51!

On the other hand, we can write the band equation~4.40! as

1

qn
Fq~k2 ,E!5

l

qn
1v ~4.52!

for some integerl . Choosingl in the form l 5pnx21mqn for some integerm, we can write the
last equation as

1

qn
Fqn

~k2 ,E!5
pn

qn
x21v. ~4.53!

Recalling now the expression~4.41! for the functionFq(k2 ,E), we conclude that for the limiting
transition ~4.47! and E.2 the equation~4.40!, defining the surface bands ofHpn /qn

outside

@2d,d#, converges to the equation~4.49!, defining the all eigenvalues ofHa for a Diophantinea
outside@2d,d#.

V. AUXILIARY FACTS

We present here useful facts on the Green function~2.18! of then-dimensional Laplacian and
on related quantities.

Lemma 5.1: Let G0
(n)(x2y;z), x,yPZn, IzÞ0, be the Green function (2.18) of th

n-dimensional Laplacian (1.2). Write

G0
(n)~0;z!5Rn~z!1 i I n~z!, Rn ,I nPR. ~5.1!

Then
(i) for any «.0, and EPR,

uRn~E1 i«!u,`, 0,I n~E1 i«!,`; ~5.2!

(ii) the limits Rn(E1 i0) and In(E1 i0) exist for uEuÞn, satisfy inequality (5.2) foruEu,n, and
I n(E1 i0)50 if and only if uEu.n.

Proof: The part (i ) of the lemma follows from the integral representation~2.5!. It is also easy
to prove that the limitsRn(E1 i0) and I n(E1 i0) exist and are finite foruEuÞn ~in fact, for n
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>3 they are finite even foruEu5n, see Lemma 5.4 below!. Thus we have to prove thatI n(E
1 i0) is strictly positive foruEu,n. By using~3.37!, it easy to show that forn51

p21I 1~E1 i0!ªr1~E!5H ~12E2!21/2, uEu,1,

0, uEu.1,

and that p21I n(E1 i0) is the nth convolution of r1 . These two observations imply tha
p21I n(E1 i0) is strictly positive ifuEu,n, and is zero foruE u̇.n. The lemma is proved.

Lemma 5.2: Letg0(z) be the operator in l(Zd2), defined as

g0~z!5PZd2G0
(d)~z!PZd2 , d2,d,

and

b~z!5
gg0~z!2 i

gg0~z!1 i
. ~5.3!

Then the operatorg0(z)1 i is invertible for Iz>0, and the operator b(z) is a contraction for
IzÞ0:

ib~z!i,1.

Proof: According to ~2.18! and ~2.22! g0(z) is a convolution operator inl 2(Zd2) and its
symbol ĝ0(k2 ;z) satisfies the inequalityIĝ0(k2 ;z)>0, Iz>0. Since the symbol ofg0(z)1 i is
ĝ0(k2 ;z)1 i , we have thatuĝ0(k2 ;z)1 i u>I(ĝ0(k2 ;z)1 i )>1. Henceg0(z)1 i is invertible and
uu(g0(z)1 i )21uu<1.

The operatorb(z) is a rational function ofg0(z), thus its norm can be found as

ib~z!i5 sup
k2PTd2

ub̂~k2 ;z!u.

By using ~5.1!, we obtain that

ub̂~k2 ,z!u5
Rd1

2 1~ I d1
21!2

Rd1

2 1~ I d1
11!2U

z→z2Ed2
(k2)

, ~5.4!

whereRn and I n are defined in~5.1!. This formula and Lemma 5.1 lead to~5.3!.
Lemma 5.3: Let bˆ (k2 ;z) be defined by (2.25). Then

(i) ub̂(k2 ;E1 i0)u<1, ;EPR;
(ii) for any g.0 and uEu<d2g there exists an open set Kg(E),Td2, such that

b̂~k2 ;E1 i0!,1, k2PKg~E!. ~5.5!

Proof: The part~i! of the lemma follows from Lemma 5.1, and from~5.4!. To prove assertion
~ii ! we have to find that for anyg.0 anduEu,d2g there exists an open setKg(E) such that for
k2PKg(E), uE2Ed2

(k2)u,d1 . Then I d1
(E1 i0) will be strictly positive andb̂(k2 ;E1 i0) will

be strictly less then 1 in view of~5.4!. SinceEd2
is a continuous function ink2 on Td2, varying

between2d2 andd2 , respectively, open setKg(E) always exists ifuEu,d. The lemma is proved
Lemma 5.4: Let G0

(n)(x;z) be the Green function of then-dimensional Laplacian and g.0.
Then the expression
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G0
(n)~x;E1 i0!

gG0
(n)~0;E1 i0!1 i

~5.6!

is bounded in xPZn and in EPR.
Proof: Consider first the one-dimensional casen51. Then it follows from~3.37! that the

expression~5.6! is

eih(E1 i0)uxu

g1sinh~E1 i0!
,

and, according to~3.38! and ~3.39!, the modulus of the last expression is bounded byg21.
For n>2 we will use the integral representation ofG0

(n)(x;z) of ~2.18!, valid for Iz.0:

G0
(n)~x;z!5 i E

0

`

dteizt)
l 51

n

Jxl
~ t !eipxl /2, ~5.7!

wherex5$xl% l 51
n , andJn(t) is the Bessel function of the ordern:

Jn~ t !5
1

2p E
0

2p

einq1 i tsinqdq.

The representation follows easily from~2.5!, and from the identity

~l2z!215 i E
0

`

dte2 i t (l2z), lPR, Iz.0. ~5.8!

By using the asymptotic formula

Jn~ t !5S 2

pt D
1/2

cosS t2
~n11/2!p

2 D1OS 1

t D , t→`, ~5.9!

we find thatn>3 G0
(n)(x;E1 i0) is bounded inx and inE. Since, in addition,ugG0

(n)(0;E1 i0)
1 i u>gIG0

(n)(0;E1 i0)11>1 @recall that in view of~2.18! IG0
(n)(0;z) is non-negative#, we

obtain the assertion of the lemma forn>3.
Thus, we are left with the casen52. By using again~5.7! and ~5.9!, we find thatG0

(n)(x;E
1 i0) is bounded inx and in E everywhere exceptuEu52, and that in a sufficiently smal
neighborhood ofE52

G0
(n)~x;E1 i0!5A~x!loguE22u1B6~x!1O~ uE2zu!, E2z→0,

whereA(x) and B(x) are bounded inx, A(0)Þ0, andB6(x) correspond to sign(E22). The
same asymptotic representation is valid in a neighborhood ofE522. This shows that the ratio
G0

(n)(x;E1 i0)/G0
(n)(0;E1 i0) is bounded and continuous inEPR for anyxPZn. In addition we

have

U G0
(n)~0;E1 i0!

gG0
(n)~0;E1 i0!1 iU5U 1

g1 i @G0
(n)~0;E1 i0!#21U< 1

g2I@G0
(n)~0;E1 i0!#21 <g21,

because

2I@G0
(n)~0;E1 i0!#215IG0

(n)~0;E1 i0!/uG0
(n)~0;E1 i0!u2>0.

The lemma is proved.
Lemma 5.5: The expression
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G0
(d1)

~x;E2Ed2
~k2!1 i0!

gg0~k2 ,E1 i0!1 i

is bounded in EPR, k2PTd2, and xPZd1.
Proof: According to~2.18!, ĝ(k2 ,z)5G0

(d1)(0;z2Ed2
(k2)). Hence, we can apply Lemma 5.4
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The spreading of the quantum probability density for the highly-excited states of a
single-particle system with an exponential-type potential on the positive semiaxis is
quantitatively determined in both position and momentum spaces by means of the
Boltzmann–Shannon information entropy. This problem boils down to the calcula-
tion of the asymptotics of the entropy-like integrals of the modified Bessel function
of the second kind~also called the Mcdonald function or Basset function!. The
dependence of the two physical entropies on the large quantum numbern is given
in detail. It is shown that the semiclassical~WKB! position–space entropy grows
slower than the corresponding quantity of not only the harmonic oscillator but also
the single-particle systems with any power-type potential of the formV(x)5x2k,
xPR andkPN. The momentum–space entropy, calculated with a method based on
the properties of the Mcdonald function, is rigorously found to have a behavior of
the form2 ln ln n, in strong contrast with the corresponding quantity of other one-
dimensional systems known up to now~power-type potentials, infinite well!.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1527223#

I. INTRODUCTION

The one-particle position and momentum probability densities are the basic elements
quantum-mechanical description of the physical and chemical properties of the natural sy
according to the density functional theory~DFT! initiated by Hohenberg and Kohn.1,2 Indeed, all
the fundamental and/or experimentally accessible quantities of these systems may be calcu
means of these densities in position and momentum spaces. However, its determination fr
~wavefunction-based! Schrödinger equation of the system or even by means of the much sim
~density-based! Kohn-Sham equations of the DFT is an impossible analytical task. For this re
often attention is focused on deriving not the densities themselves but certain specific prope
them ~e.g., the spreading! directly from the Hamiltonian of the system.

Nowadays it is commonly accepted3,4 that the spreading of the quantum probability densit
in both position and momentum spaces are best measured not by the standard deviation bu
Boltzmann–Shannon information entropy. Moreover the uncertainty relation based on the
mation entropy of the densities~the entropic uncertainty relation! is valid for any quantum prob-
ability density, contrary to the Heisenberg uncertainty principle~which is based on the standar
deviation of the densities! or any of its generalizations based on moments other than the stan
deviation which yield nonuseful information or no information at all in certain cases.3–5

The analytical evaluation of the information entropies of quantum systems is a formi

a!Corresponding author. Electronic mail: dehesa@ugr.es
360022-2488/2003/44(1)/36/12/$20.00 © 2003 American Institute of Physics
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task, even for one-dimensional single-particle systems whose Hamiltonian operatorH has a dis-
crete eigenvalue spectrum,

E0,E1,E2¯ . ~1!

The corresponding eigenfunctions~time-independent wavefunctions of the system! Cn(x),
which satisfy

2Cn9~x!1V~x!Cn~x!5EnCn~x!, ~2!

will be assumed to be normalized to unity, i.e.,

E
R
uCn~x!u2 dx51. ~3!

The information entropy of the Born probability density associated with the wavefunc
Cn , r(x)5uCn(x)u2, is defined by

S~Cn!52E uCn~x!u2 lnuCn~x!u2 dx, ~4!

which is called the position–space entropy of the system.
Analogously, the momentum-space entropy is given by

S~Ĉn!52E uĈn~p!u2 lnuĈn~p!u2 dp, ~5!

whereĈn(p) is the Fourier transform ofCn(x), i.e.,

Ĉn~p!5
1

A2p
E

R
Cn~x!e2 ixp dx. ~6!

The entropic sum of this system, which measures the joint position–momentum uncerta
bounded from below according to the so-called entropic uncertainty relation of this system8 is

S~Cn!1S~Ĉn!>11 ln p, ~7!

which is a consequence of a well-known inequality in Fourier analysis, first conjecture
Hirschman6 and then proved by Beckner7 and Bialynicki-Birula and Mycielski.8 This inequality
strongly generalizes and improves5,8 the Heisenberg–Kennard–Robertson uncertainty princ
Dx Dp> \/2.

Up until now the calculation of these information functionals has been undertaken only fo
harmonic oscillator and the Coulomb potentials9,10as well as for the infinite well potential11–13and
the power-type potentials.11 In spite of the considerable effort done in recent years, it is not
known the explicit form of these physical entropies for all quantum states of the three afore
tioned prototype quantum-mechanical potentials except in the following cases.

~a! The position–space entropy for the ground and excited states of the infinite well poten
width L has the following constant value:11,13 ln(2L)21.

~b! The momentum–space entropy of the Coulomb potential (V521/uxu) has the following
decreasing logarithmic behavior with the quantum numbern:10 2 ln n1ln(8p)22.

The calculation of the other physical entropies boils down to the evaluation of entropy
integrals of certain special functions, which are the Hermite polynomials for the harmonic
lator in both complementary spaces, the Laguerre polynomials for the Coulomb poten
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position space and the trigonometric functions for the infinite well potential in momentum s
See Ref. 14 for a recent review. Up until now, these three quantities can only be exp
calculated in the region of large quantum numbers (n→`) by means of the semiclassical~WKB!
approach15,16 and/or a method based on the asymptotic behavior of theLq norm of the involved
polynomials, recently encountered.17 As well, the two information entropies of the power-typ
potentialV(x)5x2k, xPR, kPN, have been recently calculated although again only for high
excited states.11 The asymptotic or high-energy region is of special interest because therei
transition from classical to quantum phenomena takes place, the correspondence limit opera
the chaotic dynamics can be analyzed. The following asymptotical (n→`) results have been
found.

~c! The position–and momentum–space entropy of the harmonic oscillator (V5x2/2) behaves
as 1

2 ln n1ln(p&)21.9,13,18

~d! The momentum–space entropy of the infinite well potential of widthL has the following
constant value for all highly-excited states:11,12 2 ln(2L)1ln(8p)1o(1).

~e! The position–space entropy of the power-type potential (V5x2k, kPN) depends on the
large quantum numbern as (11k)21 ln(2n)1sk , wheresk is a known parameter.11

~f! The momentum–space entropy of the power-type potential depends for large values on as
k(11k)21 ln(2n)1«k , where«k is a known parameter ofk.11

~g! The position–space entropy of the Coulomb potential behaves as 2 lnn1ln(4p)22 for all
large quantum numbers.19

In this paper we shall investigate the position and momentum information entropies fo
highly-excited states~i.e., when the quantum numbern is large! of the single-particle system
submitted to the Toda-like potential,

V~x!5H ex, if x>0

1`, otherwise.
~8!

This system corresponds to the quantum SL~2! Toda chain of two particles21,20 or, equiva-
lently, to the motion of a particle on the positive semiaxis in the potential of the other par
fixed at the origin. The bound states of this exponential potential are solutions of the Schro¨dinger
equation~2!, also known as Liouville equation in certain contexts,21,20 with the following condi-
tion: C(x)50 for x<0.

The eigenfunctions of the Toda-like potential~8! turn out to be the modified Bessel functio
of the first kind~also called the Mcdonald function or Basset function!22–24 Kn(z); see Sec. III.
Then, the position–space entropy of the highly-excited states of this Toda-like system boils
to the calculation of the asymptotics of entropy-like integrals of the Macdonald function. The
of asymptotics of entropy-like integrals of special functions other than the classical ortho
polynomials17,14,18has not yet been explored. Recently, the relevant role of these novel mathe
cal objects has been shown to explain certain characteristics of the quantum probability de
of some physical systems such as the~two-dimensional! circular membrane~entropy-like integral
of Bessel functions of the first kind!25 and the~one-dimensional! single-particle system with a
general power-type potential,11 particularly the linear potential~entropy-like integral of Airy
functions!.13 Up until now, the asymptotics of these entropy-like integrals of nonpolynomial fu
tions has been studied by means of the semiclassical~WKB! approximation.

The Toda chains, which apply when the interaction between particles depends expone
on their mutual distance, play a relevant role in the theory of completely integrable system
classical mechanics, the Toda chain is the discrete analog of the wave Korteweg-de Vries eq
It is a completely integrable system solvable by means of the direct-inverse spectral proble
an operator of Jacobi-matrix type.26 It is worthwhile to mention that the solution of a quantu
Toda chain involves a new class of special functions, the Mcdonald or Whittaker functio
several variables.21,20
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Here, we shall use the WKB method to find the position–space entropy of the Tod
system above mentioned~see Sec. II!. This method has been previously applied13,27 to general
potentials with two turning points, which led us to obtain a simple asymptotical relation bet
the quantum and classical Boltzmann–Shannon13 and Renyi27 information entropies, respectively
The information entropy in the momentum space is calculated in Sec. IV by a method whic
shows the relationship between the momentum wavefunction of the system and the Mellin
form of the Mcdonald function, and then uses various asymptotical properties of this trans

II. ASYMPTOTICS IN THE POSITION SPACE

Here we shall compute the position information entropyS(Cn) given by ~4! for the wave-
functions of the highly excited states~i.e., the quantum states with a large quantum numbern) of
the Toda-like system described in the previous section, by means of the semiclassical~WKB!
approximation.

For this purpose we will estimate theLq norms of the WKB solution of the Schro¨dinger
equation~2! for the Toda-like potential~8!; then, an appropriate limit will lead us to the desire
asymptotics.

Information on the sequence of energiesEn can be obtained from the well-known WKB
quantization rule:15,16 up to a vanishing summand,En satisfies

2

p E
0

ln EnAEn2ex dx52n13/2, n50,1,2,. . . ,

or equivalently,

AEn ln~AEn1AEn21!2AEn215
p

2
~n13/4!.

Asymptotically we have

tn ln tn5
p

e
n , tn5

2

e
AEn.

It is straightforward to see that

pn5AEn5
p n

2 lnn
„11en1O~en

2!… , en5
ln ln n

ln n
. ~9!

It is interesting to observe that the energy levels of theSL(2) Toda chain grow faster than th
corresponding levels of any power-type potential,11 for which the potential isV(x)5x2k andEn

;n2k/(11k), but slower than the corresponding energies of the infinite potential well, which
given byAEn5pn/2. Here and below we write thatan;bn whenan5bn„11o(1)…, n→`.

If we denote

f n~x!5AEn2ex,

and

Fn~x!5E
x

xn
f n~ t ! dt , 2xn,x,xn , xn5 ln En ,

then the WKB solution of~2! on the interval of oscillatory behavior ofCn , (0,xn), has the form
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Cn~x!5cn

cos$Fn~x!2p/4%

Af n~x!
, ~10!

wherecn is a normalization constant given by~3!. Let us compute theLq norm ~Renyi entropy! of
Cn , that is,

Nn~q!5E
R
uCn~x!u2q dx.

From ~10! it is easy to obtain that

Nn~q!;cn
2q E

0

xn
ucos„Fn~x!2p/4…u2qu f n~x!u2q dx

5cn
2q xnE

0

1

ucos~Fn~xnt !2p/4!u2qu f n~xn t !u2q dt, ~11!

where the definition off n and the substitutionx°xnt have been used.
The function

w~ t !5
1

2n13/2
Fn~xnt !

is continuous on@0,1# and decreases monotonically fromp/2 to 0. Thus, the inverse functionv
5w21 on @0,p/2# exists and the integral in~11! is

E
0

p/2

ucos„~2n13/2! w2p/4…u2qu f n„xn v~w!…u2quv8~w!u dw.

We can use the analog of the Fejer’s lemma, established by Aptekarevet al. Ref. 17, Lemma 2.1,
by which this integral behaves as

E
0

p/2

ucos~w!u2qdw
2

p E
0

1

u f n~xn t !u2q dt.

Thus, if we denote

B~q!5
2

p E
0

p/2

ucos~w!u2qdw , hn~q!5E
0

xn
u f n~x!u2q dx, ~12!

then by~11!,

Nn~q!;cn
2q B~q! hn~q!.

Taking q51 and keeping in mind thatNn(1)51, we get

1;cn
2 B~1! hn~1!.

Finally, we arrive at

Nn~q!;
B~q!

B~1!q

hn~q!

hn~1!q . ~13!

It is well known and easy to verify that
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Sn5S~Cn!52
]

]q
Nn~q!U

q51

52
]

]q
ln Nn~q!U

q51

.

In consequence,

Sn52
]

]q
ln B~q!U

q51

1 ln B~1!2
]

]q
ln hn~q!U

q51

1 ln hn~1!. ~14!

We compute each term in this formula separately. The integralB(q) can be expressed in terms o
the beta functionB(x,y)5G(x)G(y)/G(x1y), namely

B~q!5
1

p
B~q11/2,1/2!,

so thatB(1)51/2 and

]

]q
ln B~q!U

q51

5$c~q11/2!2c~q11!%uq515c~3/2!2c~2!5122 ln 2,

wherec(x)5G8(x)/G(x) is the digamma function. We have used here~Ref. 23, Sec. 11.1! that
c(3/2)522g22 ln 2 andc(2)512g, whereg is the constant of Euler–Mascheroni.

Consider now the functionhn(q), given in ~12!. After a suitable change of variables, th
integral takes the form of the Markov function~Cauchy transform! of a simple Jacobi weight:

hn~q!5~En21!2q/2 E
0

1 x2q/2

En

En21
2x

dx.

Then,

hn~q!;En
2q/2 Fq~zn!,

where

Fq~z!5E
0

1 x2q/2

z2x
dx , and zn5

En

En21
.

In particular,

hn~1!;En
21/2F1~zn!.

Observe that

F1~z!5E
0

1 x21/2

z2x
dx5

1

Az
ln

Az11

Az21

and thatzn.1, zn→1; in consequence,

F1~zn!5 ln~4En!1o~1!.

On the other hand,
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]

]q
Fq~zn! U

q51

5
1

2 E0

1 ln1/x

z2x

dx

Ax
5

1

Az
$d~Az!2d~2Az!%,

where

d~z!5E
0

1 ln1/x

z2x
dx5 (

n51

`
1

zn

1

n2

is the dilogarithm.23 We have

lim
n→`

]

]q
Fq~zn! U

q51

5 lim
z→1

1

Az
$d~Az!2d~2Az!%5d~1!2d~21!. ~15!

Since

d~1!5z~2!5
p2

6
, d~21!52

1

2
z~2!52

p2

12
,

the limit in ~15! is p2/4.
Gathering in~14! all the formulas obtained above, we finally have the asymptotics for

entropy:

Sn5S~Cn!5 ln lnS p n

ln nD 2

1 ln 2211
p2

4 lnS p n

ln nD 2 1oS 1

ln nD . ~16!

It is interesting to observe that this entropy grows slower than that of a single-particle s
submitted to a power-type potential of the formV(x)5x2k, for whichSn; @1/(11k)# ln n. On the
other hand, nowSn→`, unlike in the case of the potential well, for which the entropy is cons
in all quantum states.

III. TODA-LIKE WAVE FUNCTIONS

In this section we shall determine the eigenfunctions of the Toda-like system with the
nential potential~8!. It is well known20 that the associatedSL(2) Toda equation reduces to th
well-known Bessel equation. Let us recall the corresponding procedure for completeness.

Setting a new variablez52 exp(x/2)52AV(x) in ~8! and takingy(z)5C(x), we get

z2y91zy82~z224E!y50,

which is the modified Bessel equation,

z2y91zy82~z21n2!y50,

wheren2524E. For n¹Z, this equation has two linearly-independent solutions,I n and I 2n ,
where

I n~z!5 (
n50

`
1

n! G~n1n11! S z

2D 2n1n

~17!

is the modified Bessel function of the first kind,23 also called a Bessel’s function of imagina
argument or hyperbolic Bessel function.24

The normalization condition~3! implies that
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E
2

1`

uyn~z!u2
dz

z
,1`.

The unique~up to a multiplicative constant! linear combination of the functionsI n andI 2n that is
not exponentially increasing corresponds to the modified Bessel function of the second ki~or
Mcdonald function!,

Kn~z!5
p

2

I 2n~z!2I n~z!

sin~pn!
,

which is also called the Bessel’s function of the second kind of imaginary argument, the mo
Hankel function or even the Basset function.24

Thus, theSL(2) Toda wave function has the form

Cn~x!5Cn Knn
„2 AV~x!…, ~18!

where the normalizing constantCn is obtained from

Cn
2E

1

1`

Knn

2 ~2 AV!
dV

V
51. ~19!

The spectrum of values of the parametern is given by the boundary condition,

Knn
~2 AV! uV5150.

As we have seen in~9!, this condition must be satisfied for purely imaginary values of the in
n, namely,

nn562ipn , pn5AEn, ~20!

which agrees with the asymptotic behavior of the Mcdonald function for large values o
parametern.22,24

IV. ASYMPTOTICS IN THE MOMENTUM SPACE

Here the momentum–space entropy~5! of the Toda-like potential~8! shall be calculated for al
quantum states withn→`. From Eqs.~6! and~18!, we have that the momentum wavefunction

Ĉn~p!5
1

A2p
E

1

1`

CnKnn
~2 AV! V2 ip

dV

V
.

With an account of the Mellin’s transform of the Mcdonald function~Ref. 28, Section 8.4.23! and
Eq. ~17!, we have

Mn~s!5E
1

1`

Kn~2Ax! xs21 dx

5
1

2
GS 2

n

2
1sDGS n

2
1sD1

G~n!

n22s 1F2S 2n/2 1s

12n,12 n/2 1s
U1D

2
G~2n!

n12s 1F2S n/2 1s

11n,11 n/2 1s
U1D ,
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where 1F2 is the generalized hypergeometric series. In particular, forn5nn52ipn and s
52 ip,

Mnn
~2 ip !5

1

2 S G~2 ip1 ipn!G~2 ip2 ipn!1
G~2ipn!

ip1 ipn
1

G~22ipn!

ip2 ipn
D

2
G~2ipn!

2 (
k51

`
1

k! ~122ipn!k

1

k2~ ip1 ipn!

2
G~22ipn!

2 (
k51

`
1

k! ~112ipn!k

1

k2~ ip2 ipn!
, ~21!

where (a)k is the Pochhammer’s symbol. The left hand side of this formula is an entire func
observe that on the right hand side we have a product of two gamma functions~which is mero-
morphic! minus the principal parts of its Laurent expansion.

When n→` the function uĈn(pn x)u2pn behaves as a half-sum of Dirac deltas atx561.
Since

Ĉn~p!5
Cn

A2p
Mnn

~2 ip !,

and with account of the symmetry ofĈn we obtain that

S~Ĉn!52E
R
uĈn~p!u2 lnuĈn~p!u2dp;2 lnuĈn~pn!u2522$ ln Cn1 lnuMnn

~2 ipn!u%2 ln~2p!.

~22!

Thus, we need to establish the asymptotic behavior ofuMnn
(2 ipn)u and of the sequence o

normalizing constantsCn .
Taking in ~21! z5 ipn2 ip we obtain that

Mnn
~2 ipn!5 lim

z→0
H 1

2
G~z!G~z22ipn!2

1

2z
G~22ipn!J

2
G~2ipn!

2 (
k51

`
1

k! ~122ipn!k

1

2ipn1k
2

G~22ipn!

2 (
k50

`
1

k! ~112ipn!k

1

k
.

~23!

Since in a neighborhood ofz50,

G~z!5
1

z
2g1O~z! , G~z22ipn!5G~22ipn!1zG8~22ipn!1O~z2!,

the limit in ~23! is equal to

c~22ipn!2g; ln pn .

On the other hand, the two series in~23! represent the integral Bessel functions of the first k
~Ref. 28, Appendix II.15! and are at the same time asymptotic expansions of these function
n→`. Thus, the series above behave asO(1/pn) for largen, and are infinitesimal with respect t
ln pn . Finally, we have that
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uMnn
~2 ipn!u; 1

2 uG~2ipn!u ln pn ,

or with account of the asymptotics of the gamma function~Stirling formula!,

uMnn
~2 ipn!u;

1

2
Ap

pn
e2ppn ln pn . ~24!

Now we study the normalizing constantCn , satisfying~19! or, equivalently,

Cn
2E

4

1`

Knn

2 ~Ax!
dx

x
51. ~25!

Once again we have to consider the Mellin transform, but now ofKn
2 . From Ref. 28, Section

8.4.23,

Nn~s!5E
0

1`

Kn
2~Ax! xs21 dx5

Ap

2

G~s!G~s1n!G~s2n!

G~s11/2!
,

and the integral in~25! is obtained subtracting from the formula above the principal parts of
Laurent series at the poles. Reasoning as in~23! we get

Cn
22; lim

s→0
HNnn

~s!2
1

s
ress50Nnn

~s!J
;

1

2

d

ds
$G~s1nn!G~s2nn!%us50

5 1
2 G~nn!G~2nn!@c~nn!1c~2nn!#.

The well-known asymptotics of the psi function and Stirling formula yield

Cn
2;

pn

p
e2ppn

1

ln pn
. ~26!

Finally, we can gather Eqs.~24! and ~26! in ~22! to obtain

S~Ĉn!;2 lnH 1

8p
ln pnJ .

With account of~9!,

S~Ĉn!52 ln ln n1 ln~8p!1o~1!. ~27!

We should notice that the entropy in momentum space gives a clear characterization

known one-dimensional physical systems. For instance,S(Ĉn) for the infinite potential well is
constant, for the power-type potentialV(x)5x2k it grows as@k/(11k)# ln n,11 and the maximal
ln n growth takes place for the Coulomb potential.19 As we have shown, for the Toda-like potenti

~8!, S(Ĉn)→2` as an iterated logarithm.
Finally, the combination of Eqs.~16! and ~27! allows us to realize that the entropy sum

given by

S~Cn!1S~Ĉn!;5 ln 2211 ln p, ~28!
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which certainly fulfils the entropic uncertainty relation~7!. This is most important since th
entropy sum~a! is invariant under uniform scaling of the coordinates,~b! provides the net infor-
mation content of the system and~c! measures the joint position-momentum uncertainty.
highlight that the entropy sum of the Toda-like system is asymptotically constant~i.e., it does not
depend on the quantum number which characterizes the state of the system! because the position
and momentum entropies have the same asymptotic behavior (ln lnn) but with opposite signs.
This is characteristic of the exponential-type potential in contrast to the power-type and Co
potentials whose entropy sum has an increasing logarithmic behavior as the quantum n
grows.

V. SUMMARY, CONCLUSION AND OPEN PROBLEMS

The spreading of the quantum probability of physical systems in position and mome
spaces may be quantitatively measured by the corresponding Boltzmann–Shannon infor
entropies. In general, however, the analytical determination of the explicit values of these
tities is an extremely difficult task. This is true even for one-dimensional single-particle sys
except for the infinite well potential at the position space11,13and for the Coulomb potential at th
momentum space.10 Then, ground state apart, most efforts have been concentrated in the
extreme of the spectrum where the wavefunctions of the highly-lying energy levels involve
special functions~orthogonal polynomials, Bessel functions, . . .! with asymptotics under control
see the Introduction and Ref. 14. The high-energy part of the spectrum is most interesting b
therein the transition of classical-to-quantum ideas takes place, the correspondence princ
erates and chaotic phenomena may show up.

In this paper we consider a Toda-like system composed by a particle moving on the po
semiaxis under the exponential-type potential~8!, which is equivalent to the quantumSL(2) Toda
chain of two particles.20,21 The eigenfunctions of this system involve the Mcdonald or Bas
function.22,24 We have calculated the information entropies for the highly-excited states o
system in the two complementary spaces. The position entropy was determined in the fram
of the semiclassical approximation, and the momentum entropy was calculated by means
the asymptotic properties of the Mellin’s transform of the Mcdonald function. Let us remark a
point that a most interesting open problem remains for the theorists of special functions: to fi
expression~16!, which gives the asymptotics of the position entropy of our Toda system, dire
from the asymptotics of the Mcdonald function.

We have found that the position~momentum! entropy of the Toda-like potential~8! increases
~decreases! without limit in a doubly logarithmic form as the quantum numbern characterizing the
state of the system tends to infinity. This means that the quantum probability density gets mo
more diffused~localized! in position~momentum! space as the quantum numbern grows. More-
over, the entropy sum or joint measure of the position–momentum uncertainty~which is invariant
to uniform scaling of coordinates and provides the net information content of the system! has an
absolute limit given by Eq.~28! for all ground and excited states of the system. This is becaus
position and momentum entropies have the same asymptotic behavior with the quantum nun
~namely, ln lnn) but with opposite signs.
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Spin coherent-state path integrals and the instanton
calculus a…

Anupam Garg
Northwestern University, Department of Physics and Astronomy, Evanston, Illinois 60208

Evgueny Kochetov
Bogoliubov Theoretical Laboratory, Joint Institute for Nuclear Research,
141980 Dubna, Russia

Kee-Su Park
Department of Physics, Pohang University of Science and Technology,
Pohang, Kyungbuk, Korea

Michael Stoneb)

University of Illinois, Department of Physics, 1110 W. Green Street, Urbana, Illinois 61801

~Received 20 November 2001; accepted 19 September 2002!

We use an instanton approximation to the continuous-time spin coherent-state path
integral to obtain the tunnel splitting of classically degenerate ground states. We
show that provided the fluctuation determinant is carefully evaluated, the path
integral expression is accurate to orderO(1/j ). We apply the method to the LMG
model and to the molecular magnet Fe8 in a transverse field. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1521797#

I. INTRODUCTION

One of the most convincing demonstrations of quantum effects in a near-macroscopic s
is provided by the dramatic oscillation1 of the level splittings in the molecular magnet Fe8 as
function of an external magnetic field. This system is small enough that one can obtain a
energy levels by a trivial numerical diagonalization of a 21321 Hamiltonian matrix, but little
insight into the phenomenon can be obtained this way. However, by thinking of the spin vec
an almost classical object, the oscillations can be understood as quantum interference b
competing tunneling paths for the large (J510) spin between two classically degenerate minim

The natural tool for studying tunneling in the semiclassical limit is the path integral. For
this should be the spin@SU~2!# coherent-state path integral,2,3 or its phase space relative.4,5 It is
easy to establish that this formalism gives a good qualitative description of the tunn
process—6–8 including the dramatic topological quenching of the tunneling9 that makes the Fe8

results so interesting. Unfortunately, a straightforward application of the spin coherent-stat
integral to compute the semiclassical propagator10 or the tunnel splitting11 yields results that are
incorrect beyond the leading exponential order. In other words, the first quantum correctio
J→` are incorrectly obtained.

This issue appears for other systems that involve, or can be modeled in terms of, lJ
quantum mechanical spins. Examples include molecular rotors,12,13 the Lipkin–Meshov–Glick
model of certain collective excitations in nuclei,14,15 and superdeformed rotating nuclei.16 The
large spin limit is also valuable as an approximate method for studying magnetic orderin17,18

including ‘‘order from disorder’’ effects in such systems.19 In all these cases the first quantu
corrections are not known. Often they are fixed by heuristic orad hocconsiderations. Lieb20 puts

a!This paper is dedicated to the memory of Victor Belinicher, who was lost when Siberia Airlines flight 1812 was sho
over the Black Sea, Oct. 4th, 2001. Victor made many contributions to physics, in particular to the spin tun
problem.

b!Author to whom correspondence should be addressed. Electronic mail: m-stone5@uiuc.edu
480022-2488/2003/44(1)/48/23/$20.00 © 2003 American Institute of Physics
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rigorous bounds on the partition function of quantum spin systems, but he does not determ
1/J corrections precisely.

In principle, a correct evaluation of the general spin propagator in the semiclassical
should resolve all these difficulties. This propagator is a notoriously refractory object, how
and its parent, the spin path integral, has a reputation for being mathematically ill defined—
least harder to deal with than the conventional Feynman path integral, whose mathematical
ties have been well studied. Many authors have therefore sought other ways of attaini
semiclassical limit, but none applies to general Hamiltonians. For the calculation of spin t
splittings, although there do exist other path integral approaches which solve particular pro
correctly,21,22 the resulting calculations tend to be intricate, and the simplicity seen in the con
tional Schro¨dinger particle case is lost. Further, they do not lead to generally applicable rec

Recently, however, it has begun to be appreciated that the problem with the spin cohere
calculation is simply that the fluctuation determinant has an ‘‘anomaly,’’ and that, once the ‘‘
phase’’ provided by the anomaly is taken into account, the coherent state path integral
correct answers. This extra phase seems to have been originally discovered in the 19
Solari,23 but the significance of his result was not widely appreciated. It was then rediscover
one of the present authors24 and also by Vieira and Sacramento.25 The interpretation of the extra
phase as an ‘‘anomaly’’ is due to the remaining authors of the present article.26

The present article is another step in the larger program of developing the spin semicla
limit. The discussions of the extra phase cited in the previous paragraph were restricted to th
of quantum evolution between generic values of the classical degrees of freedom. However
we calculate the tunnel splitting, the endpoints of the instanton path lie at local minima o
classical energy and, just as in the Schro¨dinger particle case, the Jacobi fluctuation operator ha
zero mode which makes the inverse of its determinant singular and the general formula
propagator inapplicable. Thus our earlier work was not directly amenable to calculating the
splitting. The present article fills this gap.

In the next section we provide a brief review of the spin coherent-state path integral, incl
the correction to the fluctuation determinant prefactor. In Secs. III and IV we discuss the co
cations that ensue when there is a zero mode and provide a general formula for the one-in
contribution to the tunneling amplitude. In Sec. V we apply this formula to the relatively sim
case of the Lipkin–Meshkov–Glick~LMG! model,14 and in Sec. VI we evaluate the tunn
splitting for a realistic model of Fe8 .

As explained above, our aim is not to find formulas for the energy splittings that ca
compared with experiment. After all, the splittings for both model Hamiltonians can easi
found numerically for moderate values ofJ, sayJ<20.27 Instead we are using these models
nontrivial test cases. It is our hope that our methods will prove practical in other situatio
multispin problems, for example—where numerical work is not so easy.

II. SPIN COHERENT STATES

We follow the conventions in Ref. 26 and define our spin coherent states28 to be

uz&5exp~zĴ1!u j ,2 j &, ~2.1!

whereu j ,2 j & is the lowest spin state in the 2j 11-dimensional representation of SU~2! andĴ1 is
the spin algebra ladder operator obeying

Ĵ1u j ,m&5Aj ~ j 11!2m~m11!u j ,m11&. ~2.2!

The variablez is a stereographic coordinate on the unit sphere withz50 at the south pole~spin
down direction! andz5` at the north pole~spin up!.

These coherent states are not normalized, but depend holomorphicly onz. This means that
matrix elements such aŝz8uÔuz& are holomorphic functions of the variablez, and anti-
holomorphic functions of the variablez8.
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The inner product of two coherent states is

^z8uz&5~11 z̄8z!2 j , ~2.3!

and they satisfy the overcompleteness relation

15
2 j 11

p E d2z

~11 z̄z!2 j 12 uz&^zu. ~2.4!

Hered2z is shorthand fordx dy. The factor 1/(11 z̄z)2 combines with this to make the invarian
measure on the the two-sphere. The remaining factor in the integration measure, 1/(11 z̄z)2 j ,
serves to normalize the coherent states.

We may use the overcompleteness relation to derive a formal continuous-time path in
representation for the propagator

K~ z̄ f ,z i ,T!5^z f ue2 iĤ Tuz i&. ~2.5!

We insertN intermediate overcompleteness relations into~2.5! and consider the limitN→`. This
leads to the path integration formula24

K~ z̄ f ,z i ,T!5E
z i

z̄ f dm~ z̄,z!exp$S~ z̄~ t !,z~ t !!%, ~2.6!

where the path measuredm is

dm~ z̄~ t !,z~ t !!5 lim
N→`

)
n51

N
2 j 11

p

d2zn

~11 z̄nzn!2 , ~2.7!

and the actionS( z̄(t),z(t)) is

S~ z̄~ t !,z~ t !!5 j $ ln~11 z̄ fz~T!!1 ln~11 z̄~0!z i !%1E
0

TH j
zGz2 z̄ż

11 z̄z
2 iH ~ z̄,z!J dt. ~2.8!

The c-number Hamiltonian,H( z̄,z), is obtained from the operatorĤ by

H~ z̄,z!5^zuĤuz&/^zuz&. ~2.9!

The pathsz(t), z̄(t) obey the boundary conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0), z(T), being
actually z̄(01e) andz(T2e), are unconstrained, and are to be integrated over.24

The manipulations leading to the continuous time path integral are heuristic, but with c
treatment the formal path integral should be as useful as the familiar configuration space Fe
path integral. In particular the semiclassical, or largej , propagator can be obtained from a s
tionary phase approximation to the path integral.26

The stationary phase approximation requires us to seek ‘‘classical’’ trajectories for whS
remains stationary as we vary the functionsz(t) andz̄(t). These stationary paths will generally b
complex. If we writez asx1 iy and z̄5x2 iy , then, except in special cases,x andy are not real
numbers. In particular there is no requirement thatz̄(0) be the complex conjugate ofz(0)[z i ,
nor thatz(T) be the complex conjugate ofz̄(T)[z̄ f . Bearing this in mind, we make variation
about a chosen path, and keep track of all boundary contributions resulting from integratio
parts. We find that
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dS5
2 jz~T!

11 z̄ fz~T!
d z̄~T!1

2 j z̄~0!

11 z̄~0!z i

dz~0!

1E
0

TH dz~ t !S 2 jzG

~11 z̄z!2
2 i

]H

]z
D 1d z̄~ t !S 2

2 j ż

~11 z̄z!2
2 i

]H

] z̄
D J dt. ~2.10!

Demanding that this change in the action be zero requires the trajectory to obey Ham
equations

zG5 i
~11 z̄z!2

2 j

]H

]z
, ż52 i

~11 z̄z!2

2 j

]H

] z̄
, ~2.11!

together with the conditionsdz(0)50 and d z̄(T)50. We can therefore impose the bounda
conditionsz(0)5z i , z̄(T)5 z̄ f , but z̄(0) andz(T) are free to vary, and so are determined by
equations of motion. This is important because Hamilton’s equations are first order in time a
cannot simultaneously impose initial and final conditions on their solutions.

The dynamically determined endpoints can also be read off from the Hamilton–Jacob
tions that follow from~2.10!. These are

]Scl

]z̄ f

5
2 jz~T!

11 z̄ fz~T!
,

]Scl

]z i

5
2 j z̄~0!

11 z̄~0!z i

. ~2.12!

The Hamilton–Jacobi relations also tell us that

]Scl

]z̄ i

5
]Scl

]z f

50, ~2.13!

showing thatScl is a holomorphic function ofz i , and an anti-holomorphic function ofz f . These
analyticity properties ofScl coincide with those ofK. This is reasonable since expScl is the leading
approximation toK, and we would expect analyticity to be preserved term-by-term in the larj
expansion. Finally, we have the Hamilton–Jacobi equation

]Scl

]T
52 iH ~ z̄ f ,z~T!!. ~2.14!

In Ref. 26 we showed that after we compute the Gaussian integral over small fluctu
about the stationary phase path the resulting semiclassical approximation to the propagato

Kscl~ z̄ f ,z i ,T!5S ~11 z̄ fz~T!!~11 z̄~0!z i !

2 j

]2Scl

]z i]z̄ f

D 1/2

expH Scl~ z̄ f ,z i ,T!1
i

2
E

0

T

fSK~ t !dtJ ,

~2.15!

or a sum of such terms over a set of contributing classical paths. In this expression

fSK~ z̄,z!5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ~2.16!

is the ‘‘extra-phase’’ discovered by Solari, Kochetov, and Vieira and Sacramento.
The form~2.15! is valid only if the prefactor is finite. When we compute instanton contri

tions to tunneling there is a zero mode in the quadratic form for small fluctuations, an
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resulting divergent integral over this mode is to be replaced by an integral over a colle
coordinate labeling the instant that the tunneling event occurred. This we will describe in th
section.

We conclude this section by writing the Solari–Kochetov phase in an alternative way tha
prove useful later. We first write

fSK5fSK8 2 iaWZ , ~2.17!

where

fSK8 5
~11 z̄z!2

2 j

]2H

]z] z̄
, ~2.18!

aWZ5 i
11 z̄z

2 j S z
]H

]z
1 z̄

]H

] z̄ D . ~2.19!

Along the classical trajectory, the equations of motion allow us to trade in the partial deriva
]H/]z and]H/] z̄ for zG and ż, so that

aWZ~t!5
zG clzcl2 żclz̄cl

11 z̄clzcl
. ~2.20!

This is nothing but the Wess–Zumino or kinetic term in the classical action, and was antic
in our notation. Hence,

i

2 E0

T

fSK~ t !dt5
1

2 E0

T

aWZ~ t !dt1
i

2 E0

T

fSK8 ~ t ! dt. ~2.21!

The advantage of this rewriting is that the integral ofaWZ is needed to findScl anyway, and it
is generally easier to integratefSK8 than fSK. In fact, fSK8 is essentially the Laplacian of th
energy on the unit sphere,29

fSK8 5
1

2 j
¹V

2 H. ~2.22!

III. DEALING WITH THE ZERO MODE

As is usual in calculating tunneling effects, it is convenient to perform the computatio
Euclidean~imaginary! time. For the sake of symmetry we will take the time evolution as runn
from 2T/2 to T/2 and the propagator~2.15! becomes

K~ z̄ f ,z i ,T!5@D~T!#2 1/2expH Scl1
1

2 E2T/2

T/2

fSKdtJ , ~3.1!

where againfSK is the integrand of the Solari–Kochetov phase

fSK5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D , ~3.2!

evaluated alongzcl(t), z̄cl(t), andD(T) is the fluctuation determinant. The latter may be found
the ‘‘shooting method.’’ As explained in Ref. 26, this involves solving the equation

L̂CL[F B~t! 2]t1A~t!

]t1A~t! B̄~t!
G S cL

c̄L
D 50, ~3.3!
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where

A5fSK5
1

2 S ]

] z̄

~11 z̄z!2

2 j

]H

]z
1

]

]z

~11 z̄z!2

2 j

]H

] z̄ D ,

B5
]

] z̄

~11 z̄z!2

2 j

]H

] z̄
, ~3.4!

B̄5
]

]z

~11 z̄z!2

2 j

]H

]z
,

with the initial condition

CL~2T/2!5S cL

c̄L
D

2T/2

5S 0
1D . ~3.5!

Given the solution of this equation, we read off the determinant asD(T)5c̄L(T/2). In real time,
and when there are no problems with zero modes, this recipe leads to the prefactor appe
~2.15!.

Now assume that the coherent statesuzi& anduzf& represent spins pointing along the directio
of two equal-energy global minima of the HamiltonianĤ. Because the gradient of the ener
vanishes at both ends, the classical path joiningzi to zf has the character of an instanton: as t
total time taken to traverse the path becomes longer and longer most of the motion still take
in an ‘‘instant,’’ a fixed period short in duration compared to the total. WhenT becomes infinite,
the epoch of this ‘‘instant’’ is arbitrary and this leads to a zero-eigenvalue mode in the fluctu
operator. ThusD(T) is formally zero. The problem of dividing by the square root of zero
avoided by introducing a collective coordinate for the tunneling epoch, and the formal infin
the one-instanton contribution to the propagator becomes a factor ofT.

The classical instanton solution can be writtenzcl(t2t0), z̄cl(t2t0) wheret0 is the epoch at
which the tunneling occurs. Since, in the largeT limit, the action for the tunneling event i
independent oft0 , the normalized zero mode is

C05S c0~t!

c̄0~t!
D 5

Ag

11 z̄clzcl
S żcl~t!

zG cl~t! D , ~3.6!

whereg is chosen to make

E
2T/2

T/2

C0
t C0dt5E

2T/2

T/2

~c0
21c̄0

2!dt51. ~3.7!

The divergent Gaussian integration over the coefficient of the zero mode is replaced
integral over possible tunneling epochst0 by inserting a factor of

15
1

A2pa
E

2T/2

T/2

dt0S ]F
]t0

Dexp2
1

2a
F 2~t0! ~3.8!

into the path integral, with the choice

F~t0!5E
2T/2

T/2

dt8
1

11 z̄clzcl~t82t0!
C0

t ~t82t0!S z~t8!

z̄~t8! D , ~3.9!

and then proceeding in a manner similar to that used for quantum mechanical instantons
Feynman path integral:30,31 we first setz5zcl(t2t0)1dz(t2t0) and similarly z̄. Next, after
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observing that everything depends only on the combinationt2t0 , we change variablest2t0

→t. The integral overt0 is then trivial and gives a factor ofT. Meanwhile, after an integration
by parts and ignoring the fuctuations of (z,z̄) about (zcl ,z̄cl) which are of higher order, the
Jacobian factor becomes

]F
]t0

5E
2T/2

T/2

dt8C0
t 1

11 z̄clzcl
S żcl~t8!

zG cl~t8! D5
1

Ag
. ~3.10!

The quadratic term in the exponent is a projector onto the zero mode and replaces the va
eigenvalue by 1/2j a. The net result is the replacement

@D~T!#2 1/2→TA j

pg FD~T!

l0
G2 1/2

, ~3.11!

wherel0(T) is the eigenvalue that vanishes asT becomes large.
The desired ratio, Det8(L̂)5D(T)/l0 , is equal toc̄L(T/2)/l0(T). We now turn to the evalu-

ation of this ratio. As we shall see, we will not have to obtainc̄L(T/2) andl0(T) separately.
The eigenvalue problem is

L̂Cl5lCl ; Cl5S cl

c̄l
D , ~3.12!

where L̂ is the same operator as in~3.3!, but with boundary conditionscl(2T/2)5c̄l(T/2)
50.

For finiteT the shooting method solution,CL , is close to, but not quite equal to, the ‘‘smal
eigenvalue’’ eigenfunction,Cl0

. AlthoughCL obeys the boundary condition att52T/2, it does
not quite obey the boundary condition att51T/2. In turnCl0

is close to, but not quite equal to
the infinite-T zero-eigenvalue mode,C0 .

Now C0 obeys the equationL̂C050, but no particular boundary conditions at6T/2. There
is a second solution of this equation,J05(j0 ,j̄0) t. The Wronskian of these solutions

W~C,J!5Uc0~t! j0~t!

c̄0~t! j̄0~t!
U ~3.13!

is independent oft. Next we observe that the differential equation~3.12! can be converted to an
integral equation

Cl~t!5CL~t!1lE
2T/2

t

dt8G~t,t8!Cl~t8!

5CL~t!1
l

W E
2T/2

t

dt8@C0~t!J0
t ~t8!2J0~t!C0

t ~t8!#Cl~t8!. ~3.14!

SinceCL(t) obeys the boundary conditions at2T/2, and the integral vanishes at this point, w
can find the eigenvaluesl by requiring that the lower component ofCl vanishes att5T/2. We
are only interested in solutions wherel5l0 is very small. Because of this we can approximate
Cl(t8) appearing in the integral in~3.14! by the zeroth-order solution,CL . In this way we see
that

c̄L~T/2!

l0~T!
52

1

W E
2T/2

T/2

dt@c̄0~T/2!J0
t ~t!2 j̄0~T/2!C0

t ~t!#CL~t!. ~3.15!
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The integral in~3.15! may be evaluated using only the asymptotic behavior ofC0 andJ0 , which
involve zcl and z̄cl . This asymptotic behavior depends only on the form of the Hamiltonian in
neighborhood of the endpoints.

In all cases we consider the instanton solutions have the property thatz̄cl5zcl* at their end-
points. Here the asterisk denotes a true complex conjugate as opposed to the formal co
denoted by the bar. The coincidence of the formal and true conjugate occurs because
endpoints lie on the real unit sphere.32 Taking this observation into account, we parametrize
Hamiltonian in the vicinity of the initial stationary point in terms of two frequencies,v1,2, as

H~ z̄,z!'
2 j

~11zi* zi !
2 Fv1~z2zi !~ z̄2zi* !1

1

2
v2~z2zi !

21
1

2
v2* ~ z̄2zi* !2G . ~3.16!

SinceH( z̄,z) is real, so isv1 . Also, because the initial point is an energy minimum, we must h
v1.uv2u. We can therefore define a real mean frequency,v, by

v2[v1
22v2v2* . ~3.17!

A similar expression holds atzf with the same values ofv1 andv2 provided the degeneracy in th
Hamiltonian is due to some symmetry.~There might be an extra phase factor inv2 , but this makes
no difference to the subsequent calculation.!

As t becomes large and negative,B→v2 , B̄→v2* andA5fSK→v1 , so we see that

S c0

c̄0
D→S c02

c̄02
Devt; S j0

j̄0
D→S j02

j̄02
De2vt, ~3.18!

where

F v2 2v1v1

v1v1 v2*
G S c02

c̄02
D 50. ~3.19!

There is an analogous relation for (j02 ,j̄02) t. We can use the Wronskian to connectC02 with
J02 , so everything can be expressed in terms ofW and the normalizationg. Similar remarks
apply toC01 andJ01 . If we write

S cL

c̄L
D 5aS c0

c̄0
D 1bS j0

j̄0
D , ~3.20!

and apply the boundary condition at2T/2, we can finda andb, and hence

S cL~t!

c̄L~t!
D 5

1

W F2j02evT/2S c0~t!

c̄0~t!
D 1c02e2vT/2S j0~t!

j̄0~t!
D G . ~3.21!

Inserting this into~3.15! and noting that thec0 c̄0 terms dominate, we find

c̄L~T/2!

l0~T!
52

1

W2 j02j̄01evTE
2T/2

T/2

~c0
21c̄0

2!dt, ~3.22!

or

c̄L~T/2!

l0~T!
5

uv2u2

c02c̄01

evT

4v2
. ~3.23!

Thus the one-instanton contribution to the propagator is
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K~ z̄f ,zi ,T!5expH Scl1
1

2 E2T/2

T/2

fSKdtJA j

pg
Fc02c̄01

uv2u2 G1/2

~2vTe2 ~1/2! vT!. ~3.24!

Note thatc0 , c̄0 are proportional toAg, thusAg drops out and we can simply putg51 in the
sequel. Let

żcl'vz2evt, t→2`,
~3.25!

zG cl'vz̄1e2vt, t→1`.

Then

c02c̄015
v2z2z̄1

N
~3.26!

with

N5~11 z̄izi !~11 z̄fzf !. ~3.27!

Using this we can write

K~ z̄f ,zi ,T!5expH Scl1
1

2 E2T/2

T/2

fSKdtJA j

pN
F z̄1z2

uv2u2 G
1/2

~2v2Te2 ~1/2! vT!. ~3.28!

IV. EXTRACTING THE ENERGY SPLITTING

Again assume that the coherent statesuzi& and uzf& represent spins pointing along the dire
tions of two equal energy global minima of the HamiltonianĤ. Let uc i , f& be the approximate
~tunneling-ignored! energy eigenstates localized near these minima. These should have
phases chosen so that when tunnelingis included the eigenstates become the linear combinat

uc6&5
1

&
~ uc i&6uc f&). ~4.1!

If the energies of these states are

E65Eav6
1
2 D, ~4.2!

andaa[^zauca&, then asT becomes large the coherent-state propagator,

K~ z̄f ,zi ,T!5^zf ue2ĤTuzi&, ~4.3!

is given by

K~ z̄f ,zi ,T!'afai* e2EavT sinhS 1

2
DTD ,

5afai* e2EavTS 1

2
DT1

1

6

D3T3

23 1¯ D . ~4.4!

We will find the energy splitting,D, by evaluatingK in the one-instanton approximation an
comparing with this expression.

It is necessary to find expressions for the amplitudesai andaf . These are obtained by lookin
at
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K f5^zf ue2ĤTuzf&'uaf u2e2EavT, ~4.5!

and

Ki5^zi ue2ĤTuzi&'uai u2e2EavT, ~4.6!

both evaluated in the harmonic approximation. This evaluation is performed in the Appendix
results in

K f5~11 z̄fzf !
2 jA 2v

v1v1
e2 ~1/2!~v2v1!T ~4.7!

and a similar expression forKi . Thus

1

2
D5

eScl1 ~1/2!*2T/2
T/2 (fSK2v1)dt

@~11 z̄fzf !
j~11 z̄izi !

j #
A j

pN
@2v~v1v1!#1/2vF z̄1z2

uv2u2 G
1/2

. ~4.8!

Now

2v~v1v1!

v2
2 5

2v

v12v
~4.9!

so finally

D52vAPeI , ~4.10!

where

P5
j

pN

2v

v12v
z̄1z2 ~4.11!

and

I 5 j E
2`

`

awz~t!dt1
1

2 E2`

`

~fSK2v1!dt ~4.12!

5S j 1
1

2D E
2`

`

awz~t!dt1
1

2 E2`

`

~fSK8 2v1!dt, ~4.13!

whereawz is the kinetic term

aWZ~t!5
zG clzcl2 żclz̄cl

11 z̄clzcl
~4.14!

in the classical action—the boundary terms having canceled with the (11 z̄fzf)
j (11 z̄izi)

j in the
denominator. In Eq.~4.13!, we have used the alternative form~2.17! of the Solari–Kochetov
phase.

V. THE LMG MODEL

In this section we will evaluate the tunnel splitting in the relatively simple case of the Lipk
Meshkov–Glick~LMG! model.14

We will take the LMG Hamiltonian to be
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Ĥ5
w

&~2 j 21!
~ Ĵ1

2 1 Ĵ2
2 !1

jw

&
, ~5.1!

with w.0. For half-integerj , the splitting vanishes due to Kramers’ theorem, and we will indic
below how this comes about. Unless stated otherwise, we will be thinking of integerj in what
follows. SinceĴ1

2 1 Ĵ2
2 52(Ĵx

22 Ĵy
2), we see that the classical minima lie along6 ŷ. The Hamil-

tonian which appears in the path integral is

H~ z̄,z!5
^zuĤuz&

^zuz&
5& jw

z21 z̄2

~11 z̄z!2 1
jw

&
. ~5.2!

By setting]H/]z5]H/] z̄50, the classical minima are found to be at the points

~z,z̄!5~ i ,2 i !, ~2 i ,i !, ~5.3!

which correspond to the6 ŷ directions of the Cartesian axes. The explicitly added constant iĤ
is chosen to makeH( z̄,z) zero at these points.

Now we write down the equations of motion for the instantons

zG5&w
z2 z̄3

~11 z̄z!
,

ż52&w
z̄2z3

~11 z̄z!
. ~5.4!

We seek a solution which goes from (zi ,z̄i)5(2 i ,i ) to (zf ,z̄f)5( i ,2 i ). The two equations in
~5.4! can be decoupled by exploiting the energy conservation conditionH( z̄,z)50 which follows
from the Hamiltonian nature of the trajectory. This can be written as

2~z21 z̄2!1112z̄z1 z̄2z250, ~5.5!

and may be solved to yieldz as a function ofz̄ andvice versa:

z̄52 i
&z1 i

z1& i
, z52 i

& z̄1 i

z̄1& i
. ~5.6!

~Choosing the other solution of the quadratic equation yields instantons running in the op
direction.! Substituting these formulas in the equations of motion yields

zG52 iw~11 z̄2!, ż5 iw~11z2!. ~5.7!

These may be integrated by elementary means to yield

zcl~t!5 i
e2wt2C

e2wt1C
5 i tanhw~t2t0!, ~5.8!

z̄cl~t!52 i
e2wt2C8

e2wt1C8
52 i tanhw~t2t08!, ~5.9!

whereC5e2wt0, C85e2wt08. These constants are not independent. Energy conservation req

C8

C
5
&21

&11
. ~5.10!
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It is useful at this point to find the frequenciesv, v1 andv2 . We have

v15
~11 z̄izi !

2

2 j

]2H

]z] z̄U
i

, v25
~11 z̄izi !

2

2 j

]2H

]z2 U
i

, ~5.11!

where the suffixi means that the derivatives are to be evaluated at the initial point. Carryin
the algebra, we obtain

v15
3

&
w, v25

1

&
w. ~5.12!

Hence,

v5~v1
22v2

2!1/252w. ~5.13!

We can now evaluate the Wess–Zumino and Solari–Kochetov terms in the tunneling
~4.13!. We denote

I WZ5S j 1
1

2D E
2`

`

aWZ~t!, ~5.14!

I SK5
1

2 E2`

`

~fSK8 2v1!dt. ~5.15!

Let us begin withI WZ . If we make use of Eq.~5.7!, we find

aWZ~t!5
1

11 z̄z
~zGz2 z̄ż!52 iw~ z̄1z!. ~5.16!

Substituting the explicit forms and performing the integration we get

I WZ52S j 1
1

2D ln~C/C8!52~2 j 11!ln~11& !. ~5.17!

Now consider the Solari–Kochetov term. We find that

fSK8 52
6w

&

~z21 z̄2!

~11 z̄z!2 . ~5.18!

By energy conservation this equals

3w

&
, ~5.19!

which is precisely equal tov1 . Thus,I SK vanishes, and the total tunneling action is

I 52~2 j 11!ln~11& !. ~5.20!

We must now evaluateP. This consists of a product of various factors, all of which are
hand. Thus,

j

pN
5

j

4p
. ~5.21!
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The factorsz̄1 andz2 are found by differentiating the formulas~5.8! and~5.9! and examining the
limits t→6`. In this we way we get

z2z̄154
C8

C
. ~5.22!

Finally,

2v

v12v
54&~312& !. ~5.23!

Putting these together, we obtain

P52
4 j

p
~413& !

C8

C
5

4 j

p
&. ~5.24!

At this point we have almost all that we need to write down the answer for the tu
splitting—except that we need to consider a second instanton. The trajectory~5.8! and~5.9! passes
close to the north pole of the sphere. By symmetry there must be a second instanton which
near the south pole. This is given by

zcl5 i cothw~t2t0!, z̄cl52 i cothw~t2t08!. ~5.25!

It is obvious by symmetry again that this instanton has exactly the same amplitude as the fi
the total amplitude~and thus the splitting! is obtained by simply doubling the answer from the fi
instanton.~For half-integerj , the amplitudes interfere destructively givingD50.) Hence

D516wS j

p D 1/2

21/4e2(2 j 11)ln(11&). ~5.26!

This agrees with Refs. 21, 22, and 33.@In the last reference putj251/& in Eqs. 4.31–4.34.# We
show in Table I a comparison between this formula and numerical evaluation ofD. The agreement
gets better with increasingj , up to j 518. After this value,D is close to the machine precision, an
the error is largely in the numerical answer.27

For completeness, we note that the average energy is given byEav51/2 (v2v1).

VI. APPLICATION TO FE 8

The LMG model is of interest to us primarily because it provides a check of our forma
against other well-confirmed calculations. In this section we will calculate the tunnel splittin
a family of models that includes a realistic approximation to the molecular magnet Fe8 . The
spin-direction-dependent energy in Fe8 is less symmetric than that of the LMG, and the releva
Hamiltonian includes an externally imposed magnetic field which serves to pull the cla
minima off the equator of the unit sphere. It is the experimentally observed oscillations i
tunnel splitting as a function of the external field that makes this system interesting. The o
tions are a consequence of interference between the two distinct instanton trajectories a
accurately reproduced by our calculation.

We take as our Hamiltonian

Ĥ5k1Ĵz
21k2Ĵy

22gmBHĴz , ~6.1!

with k1.k2.0. We definel5k2 /k1 , Hc52k1 j /gmB and

h5H/Hc . ~6.2!
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We will express all results in terms of the combinationsl andh. It is also convenient to define
1/j corrected fieldh̃ and anisotropyk̃1 by

h̃5 jhY S j 2
1

2D , k̃15k1S j 2
1

2D Y j . ~6.3!

We follow the same steps as in the LMG model. The ‘‘classical’’ Hamiltonian appearing in
path integral is

H~ z̄,z!5
^zuĤuz&

^zuz&
5 k̃1 j 2F ~12 z̄z!22l~z2 z̄!222h̃~12 z̄2z2!

~11 z̄z!2 G . ~6.4!

~We now use states in whichz50 corresponds to the north pole, as this is more convenient. A
a constant~k11k2) j /2 has been subtracted from the classical energy.! The energy minima are
now at the points

z̄5z56z0 , ~6.5!

wherez0 is real and given by

z05@~12h̃!/~11h̃!#1/2. ~6.6!

In Cartesian coordinates these minima lie in thexz plane—provided we confine ourselves toh̃
,1, which we shall do. In fact, we will assume that

h̃,A12l. ~6.7!

At the two minima, the energy is

e05H~ z̄0 ,z0!52 k̃1 j 2h̃2. ~6.8!

The classical equations of motion are

TABLE I. Comparison between numerical and analytic@Eq. ~5.26!# results
for the ground state tunnel splitting in the LMG model withw51. Numbers
in parentheses give the power of 10 multiplying the answer. The last column
gives the deviation of the analytic answer from the numerical one. Note,
however, that forj 519 and j 520, the splitting is getting close to the
machine precision, and the error is largely in the numerical result.

j D ~numerical! D ~analytic! Difference~%!

2 2.1878(21) 1.8511(21) 15.4
3 4.3279(22) 3.8899(22) 10.1
4 8.3587(23) 7.7064(23) 7.8
5 1.5781(23) 1.4783(23) 6.3
6 2.9339(24) 2.7784(24) 5.3
7 5.3948(25) 5.1489(25) 4.6
8 9.8372(26) 9.4441(26) 4.0
9 1.7820(26) 1.7186(26) 3.6

10 3.2111(27) 3.1082(27) 3.2
11 5.7611(28) 5.5932(28) 2.9
12 1.0298(28) 1.0023(28) 2.7
13 1.8352(29) 1.7899(29) 2.5
14 3.2618(210) 3.1869(210) 2.3
15 5.7836(211) 5.6598(211) 2.1
16 1.0233(211) 1.0029(211) 2.0
17 1.8157(212) 1.7737(212) 2.3
18 3.0813(213) 3.1314(213) 1.6
19 4.9021(214) 5.5199(214) 12.6
20 2.5766(214) 9.7166(215) 62.3
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zG5
k̃1 j

~11 z̄z!
@22z̄~12 z̄z!1l~ z̄2z!~11 z̄2!12h̃z̄~11 z̄z!#,

~6.9!

ż52
k̃1 j

~11 z̄z!
@22z~12 z̄z!1l~z2 z̄!~11z2!12h̃z~11 z̄z!#.

We wish to solve these subject to the boundary conditionszi5z(2`)5z0 , z̄f5z(`)52z0 . Note
that z̄i5zi , zf5 z̄f , so the instanton end points still lie on the real sphere, but the rest o
instanton does not. Once again the equations can be decoupled by exploiting the fact that
is conserved along the instanton trajectory. In this caseH( z̄,z)5e0 . This condition can be written
as

~12 z̄z!22l~z2 z̄!222h̃~12 z̄2z2!52h̃2~11 z̄z!2, ~6.10!

and may be solved to give

z̄5
Alz6~12h̃!

Al6~11h̃!z
. ~6.11!

Substituting this in the equation of motion forż, and simplifying, we get

ż56Al~11h̃!k̃1 j ~z0
22z2!. ~6.12!

We will see that to obtain instantons going fromz0 to 2z0 , we must pick the minus sign in thi
equation. The other sign yields instantons running in the opposite direction.

It is now elementary to integrate Eq.~6.12!, and use Eq.~6.11! to obtain the time dependenc
for both zcl(t) and z̄cl(t). We find

zcl~t!52z0 tanht, ~6.13!

z̄cl~t!52z0

Al tanht1A12h̃2

Al1A12h̃2 tanht
. ~6.14!

Here,

t5vt/2, ~6.15!

and the frequencyv is given by

v52k̃1 j @l~12h̃2!#1/2. ~6.16!

That this is the samev that follows from Eqs.~3.16! and~3.17! shall be shown shortly. It can b
seen that our solution corresponds to choosing the minus sign in Eq.~6.12! as asserted above. It i
also useful to note that the solution~6.13! and ~6.14! can be rewritten as

zcl52z0 tanht, z̄cl52z0 coth~ t1t0!, ~6.17!

where

tanht05S l

12h̃2D 1/2

. ~6.18!
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Equations~6.12! and ~6.11! possess a second solution,

zcl52z0 cotht, z̄cl52z0 tanh~ t1t0!. ~6.19!

Formally, this new trajectory can be obtained from the first by the shiftt→t1 ip/2. Alternatively,
we could obtain it by switching the expressions forzcl and z̄cl in Eqs. ~6.13! and ~6.14!, which
corresponds to reflection in thexz plane—a symmetry of the Hamiltonian—and then shiftingt by
2t0 .

Again we find the frequenciesv, v1 andv2 . We note that

v15
~11 z̄izi !

2

2 j

]2H

]z] z̄U
i

, v25
~11 z̄izi !

2

2 j

]2H

]z2 U
i

, ~6.20!

where the suffixi means that the derivatives are to be evaluated at the initial pointz̄5z5zi .
Carrying out the algebra, we obtain

v15 k̃1 j ~12h̃21l!, ~6.21!

v25 k̃1 j ~12h̃22l!. ~6.22!

We now use Eq.~3.17! to show thatv is given by Eq.~6.16!. The same frequencies are found
the final pointz̄5z5zf .

We next evaluate and integrate the Wess–Zumino and Solari–Kochetov terms in the tun
action, denoting these byI WZ andI SK as before. Since the calculations are somewhat lengthy,
best to do the two terms separately. We begin withI WZ , considering instanton 1, i.e., that given b
~6.13! and ~6.14!. After some algebra, we obtain

aWZ~t!52
p2~ tanht !

p3~ tanht !

v

2
sech2 t, ~6.23!

wherep2 andp3 are polynomials of degree 2 and 3, whose explicit form we do not require. W
we do need is the differentialaWZdt. If we make the substitution

v5tanht, ~6.24!

and factorize the polynomialsp2 andp3 , we obtain

E
2`

`

aWZ~t!dt52E
21

1 ~v2v3!~v2v4!

~v2v1!~v2v2!~v2v5!
dv, ~6.25!

where

v1,25
1

Al
S 11h̃

12h̃
D 1/2

~216A12l!, ~6.26!

v3,45
2A12h̃26A12h̃22l

Al
, ~6.27!

v552
Al

A12h̃2
. ~6.28!

The integral is best done by decomposing the integrand into partial fractions. We find
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~v2v3!~v2v4!

~v2v1!~v2v2!~v2v5!
5

1

v2v5
1

b

v2v1
2

b

v2v2
, ~6.29!

where

b52
h̃

A12l
. ~6.30!

Thus,

E
2`

`

aWZdt52F lnS 12v5

212v5
D1b lnS 12v1

212v1
D2b lnS 12v2

212v2
D G . ~6.31!

The ratio involvingv5 is

12v5

212v5
5

Al1A12h̃2

Al2A12h̃2
[R̃1 , ~6.32!

while theb terms combine to yield the logarithm of

12v1v21~v22v1!

12v1v22~v22v1!
5

h̃Al1A12lA12h̃2

h̃Al2A12lA12h̃2
[R̃2 . ~6.33!

Collecting together the various parts, we have

I WZ,152S j 1
1

2D ln R̃11S j 1
1

2D h̃

A12l
ln R̃2 . ~6.34!

We have added another suffix to show that this pertains to instanton 1.
The next step is to integrate the Solari–Kochetov term. For this we first needfSK8 . From Eqs.

~6.4! and ~2.17! we find

fSK8 5
k̃1 j

~11 z̄z!2 @22~124z̄z1~ z̄z!2!1l~~11 z̄z!213~ z̄2z!2!12h̃~12 z̄2z2!#. ~6.35!

~The reader may verify that ast→6`, fSK8 →v1 . This provides a check on our earlier calcul
tion of v1 .) After a little more work, we find

fSK8 2v15
k̃1 j

~11 z̄z!2 @23~12 z̄z!213l~ z̄2z!212h̃~12 z̄2z2!1h̃2~11 z̄z!2#. ~6.36!

This quantity is the integrand in Eq.~5.15! for I SK, and so it only needs to be evaluated along
instanton trajectories. We may simplify the calculation by using energy conservation to elim
the term inl. When this is done, we obtain

I SK52k̃1 j h̃E
2`

`

dt
2~12h̃!1~11h̃!z̄z

11 z̄z
. ~6.37!

The integrals are evaluated in the same way asI WZ . With the same change of variables, a
definitions ofv1 to v5 as before, we get
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I SK52
2h̃~12h̃2!1/2

Al~12h̃!
E

21

1 dv

~v2v1!~v2v2!
52

h̃

A12l
E

21

1 F 1

v2v1
2

1

v2v2
Gdv

52
h̃

A12l
ln R̃2 . ~6.38!

Note that this isO(1/j ) relative to the Wess–Zumino contribution. Adding together the t
contributions, we obtain the total action

I 52S j 1
1

2D ln R̃11
jh

A12l
ln R̃2 . ~6.39!

In the second term we have used the formula (j 2 1/2)h̃5 jh.
We now turn to the prefactorP. In evaluating this, we may ignore differences of order 1j ,

i.e., we may replacej̃ by j , h̃ by h, etc. The quantity consists of a product of various factors,
of which are already available. Thus,

j

pN
5

j

p~11z0
2!2 . ~6.40!

The factorsz̄1 andz2 are found by differentiating the formulas~6.13! and~6.14! and examining
the limits t→6`. In this we way we get

z2522z0 , ~6.41!

z̄152z0

A12h22Al

A12h21Al
. ~6.42!

Finally,

2v

v12v
54

Al~12h2!

~12h21l!22Al~12h2!
54

Al~12h2!

@A12h22Al#2
. ~6.43!

Making use of the identity

2z0

11z0
2 5~12h2!1/2, ~6.44!

we obtain

P52
4 j

p

l1/2~12h2!3/2

12h22l
. ~6.45!

We can now obtain the contribution of instanton 1 to the tunneling amplitude by substit
Eqs.~6.39! and ~6.45! in the general formula~4.10!. Denoting this quantity byD1 , we have

D152vAuPueI 2 ip/2, ~6.46!

where the additional factor ofe2 ip/2 arises from the fact thatP,0.
It remains to obtain the tunneling amplitudeD2 from the second instanton. Because the t

instantons are related by a complex shift int, it is apparent that the actionsI 1,2 ~where we
temporarily add suffixes to distinguish the two! and the prefactorsP1,2 will be given by the same
                                                                                                                



eneral
unam-
urest
an be

f

en-

y. As

e
nt

form

art of

66 J. Math. Phys., Vol. 44, No. 1, January 2003 Garg et al.

                    
analytic expressions. However, the phases to be assigned to the actions andAP are somewhat
ambiguous. Unlike the case of a particle moving in one dimension, the prefactor in the g
formula does not arise as the determinant of a Hermitian quadratic form, and there is no
biguous way for factors ofi to get partitioned between the prefactor and the exponent. The s
way of fixing the relative phases is to appeal to a physical argument. Alternatively, this c
regarded as fixing the signs of the amplitudesai andaf .

For the Fe8 Hamiltonian~6.4!, let us work in theJz basisu j ,m& with the standard definition o
the raising and lowering operatorsJ6 , so that the matrix elements^ j ,m61uJ6u j ,m& are all real.
Then the matrix ofĤ is completely real, and since it is Hermitian, all its eigenvalues and eig
vectors are also real. Second, sincezi5z0 andzf52z0 are real, the statesuzi , f& are real, i.e., all
the matrix elementŝj ,muzi , f& are real. Thus the amplitudesai andaf are real. It follows that the
amplitudeK is real, and so is the one-instanton contribution to it, i.e.,D11D2 is real. Therefore,
we must have

D25D1* . ~6.47!

Equation~6.47! determinesD2 , and the energy splittingD completely. However, it is still
useful to investigate the origin of the phase difference in the actions a little more closel
readers will have noticed already, the integrand in Eq.~6.25! is singular atv5v2 andv5v5 , since
for h̃,A12l,

v1,21, 21,v2,1, 21,v5,1. ~6.48!

Correspondingly, bothR̃1 andR̃2 are negative, and both lnR̃1 and lnR̃2 must be interpreted to hav
an imaginary part ofp modulo an integer multiple of 2p. The question is what the assignme
should be for the two instantons. We can see this most easily by examining the differenceDI WZ

5I WZ,22I WZ,1. To this end, we note that the WZ one-form may be written as a complex one-
in the z plane,

aWZdt5
1

11zz̄~z! Fz
dz̄

dz
2 z̄~z!Gdz[F~z!dz, ~6.49!

with z̄(z) given by Eq.~6.11!. Thus,I WZ may be written as az-plane contour integral ofF(z) from
z0 to 2z0 . In fact, apart from a scale factor ofz0 , the substitution~6.24! is tantamount to
changing the integration variable toz, so we see thatF(z) has poles atz0v2 andz0v5 ~the one at
z0v1 does not matter!. The two instantons go around these poles in opposite senses, soDI WZ is
given by integratingF(z) along a closed contour fromz0 to 2z0 and back toz0 :

DI WZ5~2 j 11! R F~z!dz. ~6.50!

The residues at the poles can be read off the partial fraction decomposition~6.29!, yielding

I WZ,22I WZ,15~2 j 11!pF12
h̃

A12l
G . ~6.51!

This is precisely what we would obtain from Eq.~6.47!, for that would have us assign6 ip for
ln R̃1 ~and lnR̃2) for the two instantons.

The energy splitting is given by

D5D11D2* . ~6.52!

To compare with previous results, it is useful to rewrite this as follows. Consider the real p
the action, Eq.~6.39!,
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G052ReI 5S j 1
1

2D lnuR̃1u2
jh

A12l
lnuR̃2u. ~6.53!

The ratiosR̃1 andR̃2 are defined in terms of the fieldh̃. If we write h̃5h1O(1/j ), and expand
in powers of 1/j , we discover that

G05S j 1
1

2D lnuR1u2
jh

A12l
lnuR2u1O~ j 21!, ~6.54!

whereRi is obtained fromR̃i by simply deleting the tildes above theh’s. Note that the corrections
are ofO(1/j ), not O(1). These are beyond the accuracy to which we are working, so we sim
drop them henceforth.

Thus, the complete expression for the splitting is

D5A8

p
vF1/2e2G0 cosL. ~6.55!

We give the expressions forF, G0 andL for ready reference:

F58 j
l1/2~12h2!3/2

12h22l
, ~6.56!

G05S j 1
1

2
D lnFA12h21Al

A12h22Al
G2

jh

A12l
lnFA~12l!~12h2!1hAl

A~12l!~12h2!2hAl
G , ~6.57!

L5Im I 2
p

2
5 j pS 12

h

A12l
D . ~6.58!

Our answer forD is identical to that found by means of the discrete WKB method in Ref
@see Eqs.~5.1!–~5.5!#. Naturally, the points at the which the tunnel splitting vanishes are the s
too. In Fig. 1, we compare our result with a numerical evaluation ofD. The error rises from
;1.5% ath50 to ;35% at the largest values ofh shown. However, given that our formula
only asymptotically valid asj→` for fixed h, and that it fits the overall behavior over five orde
of magnitude, this is quite acceptable. The approximation is clearly not uniform inh. The energy
barrier decreases with increasingh, and since semiclassical answers for splittings are gene
more accurate the higher the barrier, the trend in the error is not surprising either.

The nontrivial aspect of this calculation is that there are 1/j corrections in the quenching
condition. If we simply take the energy expectationH( z̄,z)5^zuĤuz&/^zuz& in the Wess–Zumino

FIG. 1. Comparison between numerical~solid line! and analytic@Eq. ~6.55!, dashed line# results for the splitting between
the two lowest levels in the Fe8 model. The parameters arek150.321 K, k250.229 K, close to the measured values.
                                                                                                                



e 1/
at was
now

ls, the
ension
w that
refore
oting as

. In

ions.
could

l

olari–
ula.

rsion
dation
Foun-
.

after
tify

68 J. Math. Phys., Vol. 44, No. 1, January 2003 Garg et al.

                    
term, we have the problem that the anisotropy and field terms scale withj differently if 1/j
corrections are included. This is how the quenching condition was found in Ref. 9, but thj
corrections were never considered, so it was somewhat serendipitous that the condition th
stated turned out to be rigorously correct. By including the SK correction, this deficiency is
repaired.

VII. DISCUSSION

We have shown in this article how to extend to the spin coherent-state path integra
methods used to calculate tunnel splittings from the Feynman path integral. Key to this ext
is the inclusion of the extra phase of Solari and Kochetov. The examples we discuss sho
with this inclusion, the spin coherent-state path integral is accurate and effective. It must the
be possible to put the spin coherent-state path integral on the same sound mathematical fo
the conventional Feynman integral.

Our calculations also bear on the old question of the correct ‘‘tunnelling action’’ for spin
their complex periodic orbit study of the rotational spectrum of the SF6 molecule for example,
Robbinset al.13 take, without proof, the differential of the action to be

dS5S j 1
1

2D cosudf, ~7.1!

whereu andf are the usual spherical polar coordinates. Harter and Patterson12 use the quantity
@ j ( j 11)#1/2 instead of (j 1 1/2). These are both attempts to include the first quantum correct
From our perspective, these corrections are somewhat ambiguously defined, since they
equally well be absorbed into the prefactorP in the splitting. Even if we do regard Eq.~4.13! as
the tunneling action, it is clear that there is no universalj→ j 1 1/2 rule. The Solari–Kochetov
term must be included. This term makes no contribution when it is a constant~and therefore equa
to v1). This happens in two very commonly studied cases:H5J"H ~Larmor precession!, and
H5gikJiJk , i ,k5x,y,z ~a homogeneous second order polynomial inJx , Jy , andJz). Indeed, the
special LMG model studied in Sec. V is of the second type. In general, however, the S
Kochetov phase will influence the first quantum corrections in any other semiclassical form
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APPENDIX: ZERO-POINT MOTION PROPAGATOR

Here we derive Eq.~4.6!. We first apply an SU~2! rotation to

H initial~ z̄,z!5
2 j

~11zi* zi !
2 Fv1~z2zi !~ z̄2zi* !1

1

2
v2~z2zi !

21
1

2
v2* ~ z̄2zi* !2G ~A1!

in order to placezi , z̄i at the origin, and to make the coefficientv2 real. The result is

H~ z̄,z!52 j Fv1z̄z1
1

2
v2z21

1

2
v2z̄2G . ~A2!

In the semiclassical limit, 2j @1, we may ignore the curvature of the phase space and,
rescalingA2 jz→z to account for the difference in the coefficient in the kinetic terms, iden
H( z̄,z) with the coherent state classical Hamiltonian for the squeezed harmonic oscillator
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Ĥ5v1a†a1 1
2 v2~a†2

1a2!. ~A3!

The Bogoliubov transformation

b5coshua1sinhua†,
~A4!

b†5sinhua1coshua†,

reduces the Hamiltonian

Ĥsqueezed5V cosh 2u~a†a1 1
2!1 1

2 V sinh 2u~a†2
1a2! ~A5!

to

Ĥsqueezed5V~b†b1 1
2!, ~A6!

and so we identify

V5v5Av1
22v2

2,

V cosh 2u5v1 , ~A7!

V sinh 2u5v2 .

The eigenvalues ofĤ are therefore

En5v~n1 1
2!2 1

2 v1 . ~A8!

The operatorsa†a, a2 anda†2
generate the Lie algebra su~1,1!. Therefore either the flat phase

space coherent state path integral or standard su~1,1! disentangling methods35,36 can be used to
derive

^z f ue2ĤTuz i&5D2 1/2exp$D21~ z̄ fz i2
1
2 sinh 2u sinhvT~ z̄ f

21z i
2!!%e2 1/2v1T, ~A9!

where

D5evT cosh2 u2e2vT sinh2 u, ~A10!

and the harmonic oscillator coherent statesuz& are defined by

uz&5expza†u0&, au0&50. ~A11!

In the large-T limit, and with z i and z̄ f both at the origin, this reduces to

^0ue2ĤTu0&→~coshu!21e2 ~1/2!(v2v1)T5A 2v

v1v1
e2 ~1/2!(v2v1)T. ~A12!

We now rotate back to the originalzi . Taking note of the transformation properties of theuz& ’s,
we get

Ki5~11 z̄izi !
2 jA 2v

v1v1
e2 ~1/2!(v2v1)T, ~A13!

as claimed.
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A new method is proposed for investigating spectral distribution of the combina-
torial Laplacian~adjacency matrix! of a large regular graph on the basis of quantum
decomposition and quantum central limit theorem. General results are proved for
Cayley graphs of discrete groups and for distance-regular graphs. The Coxeter
groups and the Johnson graphs are discussed in detail by way of illustration. In
particular, the limit distributions obtained from the Johnson graphs are character-
ized by the Meixner polynomials which form a one-parameter deformation of the
Laguerre polynomials. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1528275#

I. INTRODUCTION

Spectral analysis of the~combinatorial! Laplacian or the adjacency matrix of a graph has be
studied from various aspects with many applications in geometry, combinatorics, physics a
forth. In this paper we focus on asymptotic spectral properties for a large regular grap
propose a new method based on algebraic probability theory. In fact, we consider a ‘‘gro
family of graphs$Gl5(V(l),E(l));lPL% and study spectral properties of the limit

lim
lPL

Al

Zl
, ~1.1!

whereAl is the adjacency matrix ofGl and Zl a normalizing constant. A standard strategy
obtaining spectral properties of the limit~1.1! would be to take the limit after computation of th
spectrum ofAl for eachlPL though tedious combinatorial arguments are often required.
aim of this paper is to show another route to solve the question.

The key steps arequantum decompositionof the adjacency matrix andquantum central limit
theoremdescribing its asymptotic properties. We introduce a stratification:V(l)5øn50

` Vn
(l) on the

basis of the natural distance function ofGl and decompose the adjacency matrixAl into a sum of
quantum components:

Al5Al
11Al

2 . ~1.2!

The operatorsAl
6 act asymptotically in the Hilbert spaceG(Gl) associated with the stratificatio

of V(l). Then we construct an interacting Fock space (G,$ln%,B
1,B2) in which the limit

C65 lim
lPL

Al
6

Zl
~1.3!
710022-2488/2003/44(1)/71/18/$20.00 © 2003 American Institute of Physics
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are described, whereC6 is a linear combination ofB6 and a function of the number operatorN.
In fact, the convergence~1.3! is formulated in the sense of matrix elements. Moreover, spec
properties of~1.1! can be obtained by using the direct relation between interacting Fock sp
and orthogonal polynomials. It is noteworthy that our approach does not require any combin
argument forAl which is often tedious. A combinatorial argument appears only after the lim
procedure and is much easier than that forAl . On the other hand, it is natural to think that th
adjacency matrixAl grows as if it is added to new ‘‘independent’’ random variables when a gr
Gl grows up by adding new vertices and new edges. The limit theorem for~1.3! is thus called a
quantum central limit theorem in algebraic probability theory.

The term ofquantum decompositionwas first introduced explicitly by Hashimoto10 in a study
of an adjacency matrix of a large Cayley graph. This idea was also successfully applie
similar study for a large Hamming graph in Hashimotoet al.11 Furthermore, from the viewpoint o
quantum decomposition the singleton independence and the associated central limit theor
cussed in Accardiet al.2,3 are understood naturally together with Gauss–Poisson deformatio
Hashimoto.10 It is plausible that our method of quantum decomposition can be applied to o
scaled limit theorems with respect to such ‘‘nonvacuum states’’ as treated in Hashimoto9 and
Hora,14 though the discussion in this paper is limited to the ‘‘vacuum states.’’

While, the idea of quantum decomposition is not very new for essentially the same ide
already emerged in many literatures. For example, the Brownian motion$Bt%, regarded as a
family of multiplication operators acting on theL2 functions on the Wiener space, is decompos
into a sum of noncommuting operators:Bt5At1At* . The pair$At ,At* %, called aquantum Brown-
ian motion, is a basis of the quantum Itoˆ theory initiated by Hudson and Parthasarathy.15 A
Bernoulli random variableX admits an expression by 232 matrices:

X5S 0 1

0 0D 1S 0 0

1 0D ,

which is often referred to as aquantum coin-tossing. A discrete Schro¨dinger operatorS1S* ,
whereS is the one-sided shift operator on,2(N), is nothing but a quantum decomposition in o
context. Operators of this kind are also widely utilized in representation theory of Lie algeb

This paper is organized as follows: In Sec. II we assemble some fundamentals of an in
ing Fock space first introduced by Accardi–Lu,4 and explain general strategy to solve our qu
tion. In Sec. III we show a general result on asymptotic spectral properties of an adjacency
of a large Cayley graph with a concrete study of the Coxeter groups. We see that a re
Fendler8 is reproduced from our quantum central limit theorem. In Sec. IV we discuss a qua
decomposition of an adjacency matrix of a general distance-regular graph. As a concrete e
we prove the quantum central limit theorem associated with the Johnson graphs. Its cl
reduction is sharper than the result obtained by Hora12 with a classical method.

II. PRELIMINARIES

A. Interacting Fock space

Following Accardi–Lu–Volovich5 and Accardi–Boz˙ejko1 we assemble some notion and n
tation. Let l051,l1 ,l2 ,... be asequence of non-negative numbers and assume that iflm50
occurs for somem>1 thenln50 for all n>m. Assume first thatln.0 for all n. Let

G5 (
n50

`

% CFn

be the Hilbert space with a complete orthonormal basis$Fn%. We define linear operatorsB6 by

B1Fn5Aln11

ln
Fn11 , n>0, ~2.1!
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B2Fn5A ln

ln21
Fn21 , n>1, B2F050. ~2.2!

Equipped with the natural domains,B6 become closed operators which are mutually adjo
When lm50 occurs for somem>1, the situation falls into a finite dimension. Take the la
numberm0 such thatlm0

.0 and define

G5 (
n50

m0

% CFn .

The linear operatorsB6 are defined in a similar manner as in~2.1! and ~2.2! with a tacit under-
standing thatB1Fm0

50. ThenG(C,$ln%)5(G,$ln%,B
1,B2) is called aninteracting Fock space

associated with$ln%.
By a simple computation we have

B1B2Fn5
ln

ln21
Fn , n>1; B1B2F050, ~2.3!

B2B1Fn5
ln11

ln
Fn , n>0, ~2.4!

B1nF05AlnFn , n>0. ~2.5!

The number operatorN is defined as usual by

NFn5nFn , n50,1,2,... .

The famous commutation relations are realized as follows:

~a! Boson commutation relationB2B12B1B251 by ln5n!.
~b! Fermion commutation relationB2B11B1B251 by l05l151 andln50 for n>2.
~c! Free commutation relationB2B151 by ln51 for all n>0.

More generally, these are special cases ofq-commutation relation:B2B12qB1B251 with
21<q<1. This is realized by

ln5@n#q! 5@n#q@n21#q¯@1#q , @n#q511q1q21¯1qn21.

For more details, see, e.g., van Leeuwen–Maassen.18 Note thatN5B1B2 occurs only for the
Boson Fock space.

B. Orthogonal polynomials

An interacting Fock space is related to a system of orthogonal polynomials. Letm be a
probability measure with finite moments of all orders, i.e.,

E
R
uxumm~dx!,`, m50,1,2,... ,

and$Pn% the associated orthogonal polynomials normalized asPn(x)5xn1¯ . By orthogonality
they satisfy the famous recurrence formula:
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P0~x!51,

P1~x!5x2a1 ,

~x2an11!Pn~x!5Pn11~x!1vnPn21~x!, n>1, ~2.6!

wherea1 ,a2 , . . . PR andv1 ,v2 , . . .>0 are characteristic sequences for the orthogonal p
nomials called theSzego¨ –Jacobi parameter. When the probability measurem is supported by a
finite set, the orthogonal polynomials$Pn% terminates at a certain degree and the Szego¨ –Jacobi
parameter is by definition a pair of finite sequences. Note also thatm is symmetric if and only if
an50 for all n>1.

Theorem 2.1: Accardi–Bożejko:1 Let $Pn% be the orthogonal polynomials with respect tom
with Szego¨ –Jacobi parameters$an% and $vn%. Let G(C,$ln%) be an interacting Fock space
associated with

l051, l15v1 ,
ln11

ln
5vn11 .

Then there exists an isometry U fromG(C,$ln%) into L2(R,m) uniquely determined by

UF05P0 , UB1U* Pn5Pn11 , Q5U~B11B21aN11!U* ,

where Q is the multiplication operator by x densely defined in L2(R,m) andaN11 is the operator
defined byaN11Fn5an11Fn . In particular,

E
R
xmm~dx!5^F0 ,~B11B21aN11!mF0&G , m50,1,2,. . . . ~2.7!

The proof is straightforward. The isometryU is uniquely specified by

U:AlnFn5Av1¯vnFn°Pn .

A question of whenU is a unitary, or equivalently when the polynomials span a dense subspa
L2(R,m) is related to the so-called determinate moment problem, see, e.g., Deift~Ref. 7, Sec. 2.4!.

C. Quantum decomposition of a classical random variable

Let X be a classical random variable with probability distributionm having moments of all
orders. We keep the same notation as in Theorem 2.1. Define an algebraic probability spa~A,
f!, whereA is the* -algebra generated byQ andf is the state defined by

f~a!5^P0 ,aP0&L2(R,m) , aPA.

ThenX andQ are stochastically equivalent by an obvious relation

E~Xm!5E
R
xmm~dx!5f~Qm!, m50,1,2,... . ~2.8!

On the other hand, consider an algebraic probability space canonically associated with the
acting Fock space (G,$lm%,B1,B2). Let B be the* -algebra generated byB1,B2,aN11 andc the
vacuum state defined by

c~b!5^F0 ,bF0&G , bPB.

In view of ~2.7! in Theorem 2.1 and~2.8! we see thatX andB11B21aN11 are stochastically
equivalent. In this sense we have
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X5B11B21aN11 ,

which is a prototype of thequantum decomposition. Note that the quantum components are
longer commuting each other. In other words,~B, c! is noncommutative though~A, f! is com-
mutative~or classical!.

D. General question and method

Let G5(V,E) be a graph, whereV is the set of vertices andE,$$x,y%;x,yPV,xÞy% the set
of edges. If$x,y%PE, we say thatx and y are adjacentand write x;y. For a graphG the
adjacency matrix A5(Axy)x,yPV is defined by

Axy5H 1, x;y

0 otherwise.
~2.9!

Note that the (x,y)-component ofAn, n>1, stands for the number of walks of lengthn from x to
y.

The adjacency matrix acts on a Hilbert space,2(V) of all C-valued functionsf on V such that

i f i25 (
xPV

u f ~x!u2,`

in such a way that

A f~x!5 (
yPV

Axyf ~y!5(
y;x

f ~y!, f P,2~V!.

The degreeof xPV is defined byk(x)5u$yPV;y;x%u. The graph Laplacian (combinatorial
Laplacian) is a slight modification ofA:

D f ~x!5k~x! f ~x!2(
y;x

f ~y!.

A graph is calledregular if k(x)5k,` is a finite constant independent ofxPV. For a
regular graph there is no essential difference between the adjacency matrix and graph Lap
A graph is calledconnectedif any pair of verticesx,yPV are connected by a path. Spectr
properties of the adjacency matrix of a ‘‘large’’ regular connected graph is to be discusse
shall briefly explain our method which consists of two steps: quantum decomposition and qu
central limit theorem.

Let G5(V,E) be a regular connected graph and consider the adjacency matrixA acting in the
Hilbert space,2(V). Let A be the unital* -algebra generated byA. A statef on A is chosen by
a question. For example, for a fixedx0PV we often consider a vector state:

f~a!5^dx0
,adx0

&, aPA,

wheredx0
denotes the indicator function of a singlet$x0%. We thus considerA as an algebraic

random variable of an algebraic probability space~A, f!.
We fix x0PV as an origin and set

uxu5]~x,x0!, xPV,

where](x,y) denotes the distance ofx,yPV, namely, the length of the shortest path connect
x,y. SinceG is connected, the graph is stratified
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V5ø
n50

`

Vn , Vn5$xPV;uxu5n%. ~2.10!

We see from the triangle inequality that ifxPVn and](x,y)51, thenyPVn21øVnøVn11 . In
other words, there are no edges which connect strata beyond a stratum. Then the adjacenc
is decomposed into a sum of quantum components

A5A11A2, ~A1!* 5A2, ~2.11!

which will be called thequantum decomposition.
In order to study the adjacency matrix of a ‘‘large’’ graph we consider a growing famil

graphs$Gl5(V(l),E(l));lPL%, whereL is an infinite directed set. The adjacency matrixAl of
Gl is decomposed into a sum of quantum components as in~2.11! Then we shall construct an
interacting Fock space (G,$ln%,B

1,B2) in which the limits

C65 lim
lPL

Al
6

Zl
, ~2.12!

are described, whereC6 is a linear combination ofB6 and a function of the number operatorN
on G. Finally, asymptotic spectral properties ofAl follow from the probability distribution of
C11C2 with the help of orthogonal polynomials and Theorem 2.1.

III. CAYLEY GRAPHS

A. Quantum decomposition

Consider a discrete groupG with the identitye and a set of generatorsS,G satisfying

~i! sPS⇒s21PS, i.e., S215S;
~ii ! e¹S.

Then G becomes a graph, where a pairx,yPG satisfying yx21PS constitutes an edge
denoted byx;y. This is called aCayley graphand denoted by (G,S). A Cayley graph is regular
since the degree ofxPG is a constant given byk(x)5uSu.

Let (G,S) be a Cayley graph and (p,,2(G)) the left regular representation ofG defined by

p~g! f ~x!5 f ~g21x!, g,xPG, f P,2~G!.

The adjacency matrix is given by

A5 (
sPS

p~s!. ~3.1!

By definition eachgPG, gÞe, is expressed in a finite product of generators:

g5s1s2¯ss , s1 , . . . ,ssPS.

Let ugu be the smallest numbers among such expressions. We setueu50. Obviously,ugu51 if and
only if gPS. Note also that](x,y)5uyx21u. In particular,ugu21<usgu<ugu11 holds for any
gPG andsPS. We assume
~A1! usgu5ugu61 holds for anysPS andgPG.
Then, there exist no edges connecting two points in the same stratum.~In the next section,
however, we shall deal with graphs allowing such edges.!

For quantum decomposition ofA, we start withp~s!. We define
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p~s!1dg5H dsg if usgu5ugu11

0 otherwise,
~3.2!

p~s!2dg5H dsg if usgu5ugu21

0 otherwise.
~3.3!

Obviously,p(s)6 are bounded operators on,2(G) with ip(s)6i51 and

p~s!5p~s!11p~s!2, ~p~s!1!* 5p~s21!2, ~p~s!2!* 5p~s21!1.

Thus we come to thequantum decompositionof the adjacency matrixA in ~3.1!:

A5A11A2, ~3.4!

where

A15 (
sPS

p~s!1, A25 (
sPS

p~s!2.

B. Quantum central limit theorem

Let (G(N),S (N)) be a sequence of Cayley graphs. AsN increases, the Cayley graph grows b
adding new vertices generated by new generators. Our aim is to study spectral property
adjacency matrixAN of (G(N),S (N)) asN→`.

To state assumptions we set

v2
(N)~g!5$~s,x!PS (N)3G(N);p~s!1dx5dg%, ~3.5!

v1
(N)~g!5$~s,x!PS (N)3G(N);p~s!2dx5dg%. ~3.6!

Note that if (s,x)Pv6
(N)(g), thenuxu5ugu61 and

uv1
(N)~g!u1uv2

(N)~g!u5uS (N)u.

We set the following two assumptions.
~A2! for eachn there exist an integervn>1 and a constant numberCn>0 such that

u$gPG(N);ugu5n,uv2
(N)~g!uÞvn%u<CnuS (N)un21; ~3.7!

~A3! for eachn,

sup
N

sup$uv2
(N)~g!u;gPG(N),ugu5n%[Wn,`

and lim supn→`Wn
1/n,`.

Roughly speaking, condition~A2! means that ‘‘almost every’’gPG(N) in the nth stratum is
connected withvn vertices in the (n21)th stratum. Obviously,v151. By condition~A3!, new
edges added while the graph grows are mostly connected with vertices in the upper stratu

For each (G(N),S (N)) we consider the regular representation (pN ,,2(G(N))) and the adja-
cency matrix with quantum decompositionAN5AN

11AN
2 . According to the stratification ofG(N)

we set

F0
(N)5de , Fn

(N)5Av1¯vn

uS (N)un (
gPG(N),ugu5n

dg , n>1.
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Note thatFn
(N) is not exactly normalized:

iFn
(N)i2511O~ uS (N)u21!.

While, obviously they are mutually orthogonal. Then the subspace of,2(G(N)) defined by

G (N)5 (
n50

`

% CFn
(N)

has a similar property of a Fock space. In fact, we see easily that

AN
1

AuS (N)u
Fn

(N)5Avn11Fn11
(N) 1O~ uS (N)u21/2!, ~3.8!

AN
2

AuS (N)u
Fn11

(N) 5Avn11Fn
(N)1O~ uS (N)u21!, ~3.9!

where O(uS (N)ua) means that the norm of the error vector has this rate of decay. Settinln

5v1¯vn , we consider an interacting Fock space (G,$ln%,B
1,B2). At a formal level we un-

derstand easily from~3.8! and ~3.9! that

lim
N→`

AN
6

AuS (N)u
5B6. ~3.10!

In other words, the expected interacting Fock space in the limit is completely determined b
constants$vn% in ~A2!, which are obtained from the Cayley graphs. To complete the discus
we need to show the convergence of~3.10! in the sense of algebraic probability theory. In fact, w
have the following:

Theorem 3.1:Let (G(N),S (N)) be as above and(G,$ln%,B
1,B2) the interacting Fock space

corresponding to the constants$vn%. Let u5(n50
` unFnPG. Then, whenever u(N)

5(n50
` unFn

(N)PG (N), it holds that

lim
N→`

K u(N),
AN

e1

AuS (N)u
¯

AN
em

AuS (N)u
Fn

(N)L 5^u,Be1
¯BemFn&

for any choice ofe1 , . . . ,emP$6%, m>1.
The above statement is a slight generalization of the result by Hashimoto10 though the proof

is essentially the same and is omitted.
Example 3.2:For the lattice (ZN,$e61 , . . . ,e6N%) we see easily thatvn5n. In fact, if g

PZN is in thenth stratum,

g5p1e11¯1pNeN , up1u1¯1upNu5n.

Then any element in the (n21)th stratum connected withg is obtained by replacingpi with pi

21 if pi.0, or pi with pi11 if pi,0. Therefore 1<uv2
(N)(g)u<n and forN.n almost everyg

satisfiesuv2
(N)(g)u5n. Consequently,vn5n, ln5n!. Moreover,Wn5n is immediate. Then by

Theorem 3.1, the quantum components of the adjacency matrix converge to the creatio
annihilation operators on the Boson Fock space in the sense of algebraic probability theor

lim
N→`

AN
6

A2N
5B6.
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In particular, the spectral distribution ofAN5AN
11AN

2 in the vacuum state is asymptotically th
normal distribution:

lim
N→`

K F0
(N) ,S AN

A2N
D m

F0
(N)L 5

1

A2p
E

2`

1`

xme2x2/2 dx, m50,1,2,. . . .

Example 3.3:Consider a homogeneous tree (FN ,$g61 , . . . ,g6N%), where FN is the free
group onN generators.~For simplicity we writeg2 i5gi

21 .) It is obvious that for anygPFN in
the nth stratum there is just one element in the (n21)th stratum which is adjacent tog. Thus,
vn51 andln51 for all n. Moreover,Wn51 is obvious. Consequently, the quantum compone
of the adjacency matrix converge to the creation and annihilation operators on the free Fock
In particular, the spectral distribution in the vacuum state is asymptotically the Wigner semi
law:

lim
N→`

K F0
(N) ,S AN

A2N
D m

F0
(N)L 5

1

2p E
22

12

xmA42x2dx, m50,1,2,. . . .

C. Coxeter group

Let S5$g1 ,g2 , . . . % be a countable infinite set and consider a functionm:S3S
→$1,2,...,`% such thatm(s,s)51 andm(s,t)5m(t,s)>2 for sÞt. For eachN>1 let GN be a
group generated bySN5$g1 ,g2 ,...,gN% subject only to the relations:

~st!m(s,t)51, s,tPSN . ~3.11!

In case ofm(s,t)5` we understand thatst is of infinite order. It is known that the inclusio
SN→SN11 extends uniquely an injective homomorphismGN→GN11 . Let G be the inductive
limit.

By definition eachgPGN , gÞe, admits an expression of the formg5s1s2¯ sr , siPSN . If
r is as small as possible, the expression is called areduced expressionand the numberr 5ugu is
called thelengthof g. The length function is well defined onG.

The next fact is known as thedeletion condition.
Lemma 3.4: [Humphreys (Ref. 16, Sec. 5)]: Assume that gPG admits an expression g

5s1s2¯sm with siPS such thatugu,m. Then there exist a pair of indices1< i , j <m such that

g5s1¯ ŝi¯ ŝj¯sm ,

where ŝ stands for deletion. Thus, if g5s1s2¯sm , siPS, then a reduced expression of g
obtained by deleting even number of si appearing therein.

As an immediate consequence condition~A1! follows. To prove~A2! we start with the fol-
lowing.

Lemma 3.5: If s1 ,s2 , . . . ,snPS are mutually distinct, g5s1s2¯sn is a reduced expression.
Proof: For n51 the assertion is obvious sinceS is injectively contained inG. Let n>2.

Suppose thatg5s1s2¯sn is not a reduced expression for mutually distincts1 ,s2 , . . . ,snPS.
Then by Lemma 3.4,

s1¯sn5s1¯ ŝi¯ ŝj¯sn

and hence

si5si 11¯sj 21sjsj 21¯si 11 .
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Since the right-hand side is of length 1, deleting an even number of elements from the righ
side leads to a reduced expression. The obtained reduced expression should be
$si 11 , . . . ,sj 21%. This contradicts the assumption thats1 , . . . ,sn are mutually distinct. j

Lemma 3.6: Assume that m(s,t)>3 whenever sÞt. Let n>1 and s1 , . . . ,snPS mutually
distinct. If there exist sPS and xPG of length n21 such that

s1¯sn5sx,

then s5s1 .
Proof: For n51 the assertion is obvious. Assumen52 ands1s25sx whereuxu51. Froms

5s1s2x we see easily thats5s1 or s5s2 or s5x. If s5x we haves15s2 which is contradiction.
If s5s2 , x5s1 and (s1s2)25e which is again contradiction. Consequently,s5s1 as desired.

Assume that the assertion is valid up ton21, n>2. Since

ss1¯sn5x ~3.12!

is of lengthn21, deleting two elements from the left-hand side we obtain a reduced express
x. If these two elements are chosen from$s1 , . . . ,sn%, say,si ,sj ( i , j ), we come back to

s1¯ ŝi¯ ŝj¯sn5sx5s1¯sn ,

which is a reduced expression by Lemma 3.5. This is contradiction. Hence, to get a re
expression ofx in ~3.12! we need to deletes andsi for somei 51, . . . ,n. In that case we come to

s1¯ ŝi¯sn5x,

and hence

ss1¯si 215s1¯si . ~3.13!

If 1< i<n21, by the assumption of induction we haves5s1 . Supposei 5n, i.e.,

ss1¯sn215s1¯sn .

By a simple argument with the deletion condition we see thatsP$s1 , . . . ,sn%. If s5sj , 1< j
<n21, then

sn5sn21¯s1sjs1¯sn21 ,

which implies thatsn coincides with some of$s1 , . . . ,sn21%. But this contradicts the assumptio
Hences5sn , i.e.,

sns1 ¯ sn215s1 ¯ sn . ~3.14!

We shall prove that this does not occur. Note first that~3.14! is equivalent to the following:

~sn22¯ s1!sn~s1¯ sn22!sn215sn21sn .

Since this is of length 2, deleting an even number of elements from the left-hand side, we
a reduced expression of length 2, say,tt8. This is the case ofn52 so we know thatt5sn21 . But
this is impossible. j

Proposition 3.7: Assume that m(s,t)>3 for any pair s,tPS, sÞt. Then condition (A2) holds
with vn51.

Proof: It is sufficient to show that

u$gPGN ;ugu5n,uv2
(N)~g!uÞ1%u<CnuSNun21
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with some constantCn>0. It follows from Lemma 3.6 that forgPGN such thatg5si 1
¯si n

with

distinct si 1
, . . . ,si n

PSN we havev2
(N)(g)51. The number of suchg is N(N21)¯(N2n11).

Hence

u$gPGN ;ugu5n,uv2
(N)~g!uÞ1%u<Nn2N~N21!¯~N2n11!5O~Nn21!.

This proves the assertion. j

Condition ~A3! is satisfied withWn52, which follows again by repeated use of the delet
condition. This fact was also proved by Szwarc.20 Appealing to Theorem 3.1, we have an algebr
central limit theorem for the quantum components of the adjacency matrix of the Coxter
with condition m(s,t)>3 for any pairs,tPS, sÞt. The limit is described by the creation an
annihilation operators on the free Fock space. Thus the situation is the same as in Examp

We remind that the semicircle law was also obtained by Fendler8 with a totally different
method.

Remark 3.8:Let SN be the group of permutations of the set$1,2,. . . ,N% of N letters. It is
known thatSN is generated by the successive transpositions (12),(23), . . . ,(N21N). Then the
situation falls into the case of Coxeter groups. If all the transpositions are taken to be the
generatorsSN , we see that conditions~A1!–~A3! are satisfied withvn5n and Wn5n(n
11)/2. Hence the quantum componentsAN

6 converge to the creation and annihilation operators
the Boson Fock space and the situation is the same as in Example 3.2. The Gaussian limit
spectral distribution ofAN was first obtained by Kerov17 in the form of a central limit theorem fo
irreducible characters ofSN . See Hora13 for extension of such a central limit theorem to arbitra
conjugacy classes.

IV. DISTANCE-REGULAR GRAPHS

A. Quantum decomposition

A finite connected graphG5(V,E) is called distance-regularif for any choice of h,i , j
P$0,1,. . . ,d%, d being the diameter of the graph,

u$zPV;]~x,z!5 i ,]~z,y!5 j %u[pi j
h

does not depend on the choice ofx,yPV such that](x,y)5h. We call $pi j
h % the intersection

numbersof G. For simplicity we setk j5pj j
0 and k5k15p11

0 . Obviously, the distance-regula
graph is regular with degreek.

As usual, consider the Hilbert space,2(V) with an orthonormal basis$dx ;xPV%. We shall
introduce a quantum decomposition of the adjancency matrixA acting on,2(V). The idea is
modelled after Hashimotoet al.11

We first fix an arbitraryx0PV and introduce a stratification:

V5ø
j 50

d

Vj , Vj5$xPV;uxu5]~x0 ,x!5 j %. ~4.1!

Note thatuVj u5k j . We next introduce an orientation into the graphG, namely give an orientation
to each edgex;y, x,yPV. If xPVi andyPVj with i , j ~in fact j 5 i 11), we setx→y naturally.
In order to give an orientation for an edgex;y with x,yPVj we consider the subgraphX( j )

5(Vj ,EuVj 3Vj
) of (V,E). Note thatX( j ) is a regular graph with degreep1 j

j . We now assume the
following.

~A4! for eachj one of the two cases occurs
~Case 1! p1 j

j is even;
~Case 2! p1 j

j is odd and X( j ) admits a perfect matching, i.e., there is a subsetM
5$e1 , . . . ,em% of the edges ofX( j ) such that eachxPVj is an endpoint of just one edge ofM .
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When ~case 1! occurs, there is an Euler path forX( j ) along which each edge is given a
orientation. When~case 2! occurs, deletingM from the subgraphX( j ) we obtain another subgrap
X̃( j ) which is a regular graph with even degree. Taking an Euler path forX̃( j ), we give an
orientation to each edge ofX̃( j ). An edge ofM is given an arbitrary orientation.

Thus, under assumption~A4! the distance-regular graph is equipped with an orientation.
then set

A1dx5 (
y:x→y

dy , A2dx5 (
y:y→x

dy .

Obviously,A5A11A2, (A2)* 5A1. The action of the quantum componentsA6 on particular
vectors:

v j5 (
xPVj

dx

is of importance.
Lemma 4.1: LetG5(V,E) be a distance-regular graph satisfying condition (A4) and

5A11A2 the quantum decomposition of the adjacency matrix as above.

(1) If p1 j
j is even,

A6vj5p1j
j61vj611

p1j
j

2
vj , jP$0,1,. . . ,d%. ~4.2!

(2) Assume p1 j
j is odd. Let Vj

2 ~respectively, Vj
1) be the set of all xPVj which is the initial

(terminal) vertex of an edge of M. Then Vj5Vj
1øVj

2 and

A6vj5p1j
j61vj611

p1j
j 21

2
vj1 (

yPVj
6

dy , jP$0,1,. . . ,d%. ~4.3!

Proof: ~1! By definition we have

A1v j5 (
xPVj

A1dx

5 (
xPVj

(
y:x→y

dy

5 (
xPVj

(
yPVj 11 ,x→y

dy1 (
xPVj

(
yPVj ,x→y

dy

5 (
yPVj 11

p1 j
j 11dy1 (

yPVj

p1 j
j

2
dy

5p1 j
j 11v j 111

p1 j
j

2
v j .

A similar calulation proceeds forA2.
~2! In a similar manner as above we come to
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A1v j5 (
yPVj 11

p1 j
j 11dy1 (

yPVj
H p1 j

j 21

2
11V

j
1~y!J dy

5p1 j
j 11v j 111

p1 j
j 21

2
v j1 (

yPVj
1

dy ,

where 1V
j
1(y) is the indicator function ofVj

1 . A similar calulation proceeds forA2. j

B. Weak quantum decomposition and GNS representation

According to the stratification~4.1!, we define

G~G!5(
j 50

d

% CF j , F j5
1

Ak j

v j .

Here we note thatiF j i51. In view of Lemma 4.1, the quantum componentsA6 act onG~G! if p1 j
j

is even for all j . On the other hand, ifp1 j
j is odd, these actions are not defined withinG~G!.

Nevertheless, regardless of the parity ofp1 j
j we may define operatorsA6 on G~G! by

A6v j5p1 j
j 61v j 611

p1 j
j

2
v j , j P$0,1,. . . ,d%, ~4.4!

to haveA5A11A2, (A1)* 5A2. This decomposition of the adjacency matrixA is meaningful
for an arbitrary distance-regular graph. We call this theweak quantum decomposition.

The weak quantum decomposition is defined also in terms of the Bose–Mesner algebra
distance-regular graphG, the i th adjacency matrix is defined by

~Ai !xy5H 1, ]~x,y!5 i ,

0, otherwise,
i P$0,1,. . . ,d%. ~4.5!

By definition A15A. Then we have the following linearization formula:

AiAj5 (
h50

d

pi j
h Ah . ~4.6!

The unital* -algebraA generated byA is called theBose–Mesner algebra. It is not difficult to see
that A is the linear hull of$A051,A1 , . . . ,Ad%, see, e.g., Bannai–Ito.6

The Bose–Mesner algebra becomes an algebraic probability space~A, Tr!, where Tr stands
for the normalized trace. Then we consider the GNS representation ofA. Let H~A! be the Hilbert
space obtained fromA equipped with an inner product:

^Q1 ,Q2&A5Tr~Q1* Q2!, Q1 ,Q2PA.

In view of an obvious relation

^Ai ,Aj&A5d i j k i5^v i ,v j&,2(V) ,

the correspondenceAi↔v i yields a unitary isomorphism betweenH~A! and G~G!. Moreover,
since

Aiv j5 (
h50

d

pi j
h vh ,
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which is easily verified by definition, we see from~4.6! that the above unitary isomorphism
intertwines the action of the Bose–Mesner algebraA. In particular, the action of the adjacenc
matrix A on G~G! is unitarily equivalent to that induced from the GNS representation of~A, Tr!.

By the triangle inequality we have

AAj5p1 j
j 21Aj 211p1 j

j Aj1p1 j
j 11Aj 11 , j P$0,1,. . . ,d%.

The weak quantum decompositionof A5A11A2 is given by

A6Aj5p1 j
j 61Aj 611

p1 j
j

2
Aj , j P$0,1,. . . ,d%,

which is equivalent to~4.4!.

C. Quantum central limit theorem

We consider a growing family of distance-regular graphs$Gl ; lPL% such thatd(l)→` and
k(l)→`, whered(l) and k~l! are the diameter and the degree ofGl , respectively. The adja
cency matrix and the intersection numbers ofGl are denoted byAl and$p(l) i j

h %, respectively. By
definition

G~Gl!5 (
n50

d(l)

% CFn
(l) .

Theorem 4.2: Assume that everyGl satisfies condition (A4) and let Al5Al
11Al

2 be the
quantum decomposition of the adjacency matrix Al of Gl . Assume that the limits

lim
lPL

p~l!1 j
j 115v j 11 , lim

lPL

p~l!1 j
j

2Ak~l!
5c j , ~4.7!

exist for all jP$0,1,2, . . .%, and let (G,$ln%,B
1,B2) be the interacting Fock space, wherel0

51, ln5v1¯vn for n>1. Define

C65B61cN .

Then for any m>1, e1 , . . . ,emP$6%, nP$0,1,2, . . .% and uPG, it holds that

lim
lPL

K u(l),
Al

e1

Ak~l!
¯

Al
em

Ak~l!
Fn

(l)L
,2(V(l))

5^u,Ce1
¯CemFn&G , ~4.8!

where u(l)PG(Gl) is defined as u(l)5(n50
` unFn

(l) for u5(n50
` unFn , with understanding

Fn
(l)50 for n.d(l).

Proof: (1°) To avoid notational bothersome we omit the suffixl of the intersection numbers
We first show that

1

Ak
p1 j

j 11Ak j 11

k j
→Av j 11, j >0. ~4.9!

It follows from ~4.7! that v151. Hence~4.9! holds for j 50. Supposej >1. In view of p1 j
j

1p1,j 21
j 1p1,j 11

j 5k and ~4.7! we see that

p1,j 11
j

k
→1.
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Hence, combiningk j p1,j 11
j 5k j 11p1 j

j 11 , we obtain~4.9!. We note also that

1

Ak
p1 j

j 21Ak j 21

k j
5

1

Ak
p1,j 21

j A k j

k j 21
→Av j , j >1. ~4.10!

(2°) Weshow the convergence of arbitrary matrix elements, i.e., foru5(n50
` unFnPG such

that un51 for only onen and50 otherwise. By~4.2! and ~4.3! we see that

1

Ak
Al

6F j
(l)5

1

Ak
p1 j

j 61Ak j 61

k j
F j 61

(l) 1
p1 j

j 21

2Ak
F j

(l)1
1

2Ak
wj

6 ,

where

wj
65H F j

(l) ~Case 1!

2

Ak j
(

yPVj
6

dy ~Case 2!.
~4.11!

Then

wj
11wj

252F j
(l) , u^Fn

(l) ,wj
6&u<&.

The proof proceeds by induction. Suppose that the assertion is valid up tom. Then, by virtue of
~4.9! and ~4.10!, it suffices to prove

d6[K Fn
(l) ,

Al
e1

Ak

Al
e2

Ak
¯

Al
em

Ak

1

2Ak
wj

6L →0.

This can be proved easily by use ofd11d2→0 andd6>0.
(3°) For a generaluPG, the proof is completed by combination of(2°) and astandard

argument of norm estimate~or Lebesgue’s convergence theorem!. j

For a general distance-regular graph the above assertion remains true if we allow to u
weak quantum decomposition. The proof is essentially the same.

Theorem 4.3:Let Al5Al
11Al

2 be the weak quantum decomposition of the adjacency ma
Al of Gl . If the limits

lim
lPL

p~l!1 j
j 115v j 11 , lim

lPL

p~l!1 j
j

2Ak~l!
5c j ,

exist for all jP$0,1,2, . . .%, the same assertion as in (4.8) holds.

D. Johnson graph

Let v, d be a pair of positive integers such thatd<v. Set S5$1,2,. . . ,v% and V
5$x,S;uxu5d%. We say thatx, yPV are adjacent ifd2uxùyu51. Thus a graph structure i
introduced inV, which is called aJohnson graphand denoted byJ(v,d). By symmetry we may
assume that 2d<v.

The Johnson graphJ(v,d) is distance regular with intersection numbers

k5d~v2d!, p1 j
j 5 j ~v22 j !, p1 j

j 115~ j 11!2, ~4.12!

where j P$0,1,. . . ,d%. We fix the origin to bex05$1,2,. . . ,d%. We start with the following.
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Proposition 4.4: Every Johnson graph J(v,d) fulfills condition (A4), and hence the adjacenc
matrix admits the quantum decomposition.

If v or j is even,p1 j
j becomes even by~4.12! and the situation falls into~case 1! of ~A4!. It

is sufficient to prove that~case 2! occurs when bothv, j are odd. We need the following.
Lemma 4.5: Assume that n is even, j is odd, and j,n. Then J(n, j ) admits a perfect matching

~including the case of j.n/2).
Proof: Let us consider the Pascal triangle where the first row consists of~0,0!, the second row

consists of~1,0! and~1,1!, etc. Then the vertex set ofJ(n, j ) is identified with the set of paths o
the triangle passing from~0,0! to (n, j ). We check by induction on evenn that those paths to (n, j )
( j is odd! admit a pair partition in which two paths making a pair pass throughn common
vertices. Among the set of paths to (n12,j ), those paths passing through (n, j 22) or (n, j )
already admit such a pair partition by the assumption of induction. A path having reachedn, j
21) can split in the (n11)th row and produces two paths to (n12,j ). Clearly two paths making
such a pair correspond to two adjacent vertices ofJ(n, j ). j

We complete the proof of Proposition 4.4 by the following.
Lemma 4.6: Assume that bothv and j are odd. Then the subgraph X( j ) obtained from the jth

stratum of J(v,d) admits a perfect matching.
Proof: Either d or v2d is even. Assumev2d is even. Every vertex ofX( j ) is made by

removing j members fromx05$1,2,. . . ,d% and by gettingj members of$d11, . . . ,v%. Fix j
members removed from$1,2,. . . ,d%. Applying Lemma 4.5 ton5v2d, we divide the totality of
j -subsets of$d11, . . . .v% into pairs consisting of two adjacent vertices inJ(v2d, j ). Adding
these twoj -subsets to the fixed (d2 j )-subset of$1,2,. . . ,d%, we get two adjacent vertices i
J(v,d), which is obviously adjacent inX( j ) too. Taking all the choices of removedj members of
$1,2,. . . ,d% yields a perfect matching ofX( j ). A similar consideration proceeds in the case of ev
d if we first fix j members of$d11, . . . ,v% which should be added to the other side. j

Consider the growing family of Johnson graphsJ(v,d), whered→` and 2d/v→pP(0,1#.
Condition ~4.7! in Theorem 4.2 is satisfied with

v j 115~ j 11!2, c j5
j

Ap~22p!
, j P$0,1,. . . ,d%.

Consequently, we come to the following.
Theorem 4.7: Let A(v,d)5A(v,d)

1 1A(v,d)
2 be the quantum decomposition of the adjacen

matrix of a Johnson graph J(v,d). Then, in the limit as d→` and2d/v→pP(0,1#, the quantum
central limit theorem holds and the limits are given by

lim
d→`,2d/v→p

A(v,d)
6

Ad~v2d!
5B61

N

Ap~22p!
,

where B1, B2, N are, respectively, the creation operator, annihilation operator, and the num
operator on the interacting Fock spaceG5G(C,$(n!) 2%).

E. Classical reduction

Let pP(0,1#. It follows from Theorem 4.7 that

lim
d→`,2d/v→p

K F0
(v,d) ,S A(v,d)

Ak~v,d!
D m

F0
(v,d)L 5K F0 ,S B11B21

2N

Ap~22p!
D m

F0L
G

for all m50,1,2, . . . . Letnp be the probability measure onR whosemth moment is given as
above. We readily know from Theorem 2.1 that the Szego¨ –Jacobi parameters of the associat
orthogonal polynomials are given byvn5n2, an1152n/Ap(22p).
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We begin with the case ofp51. Recall that the Laguerre polynomialsLn(x)5xn1¯

satisfies the recurrence formula

L0~x!51,

L1~x!5x21,

~x2~2n11!!Ln~x!5Ln11~x!1n2Ln21~x!,

and form the orthogonal polynomials with respect to the probability measuree2x dx on the half
line @0,̀ !. Hence by Theorem 2.1

E
0

`

xme2x dx5^F0 ,~B11B212N11!mF0&G ,

whereG5G(C,$(n!) 2%). Sincen1 is the spectral distribution ofB11B212N in the vacuum
state, it coincides withe2(x11) dx on @21,̀ !.

For 0,p,1 we need the Meixner polynomials of the first kind.~We use this terminology to
specify one among several kinds of Meixner polynomials.! These Meixner polynomials$yn(x)%
with parameter 0,m,1 satisfy the recurrence formula

y0~x!51,

y1~x!52
12m

m
x11,

2xyn~x!5
m~n11!

12m
yn11~x!2

n1m~n11!

12m
yn~x!1

n

12m
yn21~x!,

and form the orthogonal polynomials with respect to the geometric distribution

(
xP$0,1, . . .%

~12m!mxdx .

See, e.g., Schoutens.19 Set

m5
p

22p
, Mn~x!5S p

22pD n/2

~21!nn! ynSAp~22p!

2~12p!
xD .

Then$Mn(x)% forms the orthogonal polynomials with respect to the probability measure

ñp5 (
k50

`
2~12p!

22p S p

22pD k

d2(12p)k/Ap(22p) ,

and satisfies the recurrence formula

M0~x!51,

M1~x!5x2A p

22p
,

S x2
2n1p

Ap~22p!
D Mn~x!5Mn11~x!1n2Mn21~x!.
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Then, applying Theorem 2.1, we have

E
R
xmñp~dx!5K F0 ,S B11B21

2N1p

Ap~22p!
D m

F0L
G

,

whereG5G(C,$(n!) 2%). Thus, by translation ofñp we obtain

np5 (
k50

`
2~12p!

22p S p

22pD k

d2p12(12p)k/Ap(22p) .

Remark 4.8:The above spectral distributionnp was first found by Hora12 with a different
method. Moreover, the result in Hora12 for p51 was obtained under an additional condition whi
is now removed.
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We study the essential spectrum of the magnetic Schro¨dinger operators on the
Poincare´ upper-half plane and establish a hyperbolic analog of Iwatsuka’s result@J.
Math. Kyoto Univ. 23~3!, 475–480~1983!# on the stability of the essential spec-
trum under perturbations from constant magnetic fields. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1527717#

I. INTRODUCTION AND RESULT

In this article, we study the essential spectrum of the magnetic Schro¨dinger operator on the
Poincare´ upper-half planeH5$z5(x,y)uxPR,y.0% endowed with the standard metric

g5~gjk! j ,k51
2 5S y22 0

0 y22D .

For a smooth one-form with real coefficients onH, a(x,y)5a1(x,y)dx1a2(x,y)dy, we
consider the differential operator

H~a!5
1

Adetg
(

j ,k51

2 S 1

i

]

]xj
2aj~x,y! DgjkAdetgS 1

i

]

]xk
2ak~x,y! D

5y2S 1

i

]

]x
2a1~x,y! D 2

1y2S 1

i

]

]y
2a2~x,y! D 2

, ~1.1!

where we setx15x, x25y andg215(gjk) j ,k51
2 .

The operator~1.1! has a physical interpretation as the Hamiltonian which governs a cha
particle moving onH under influence ofthe magnetic field

~da!~x,y!5S ]a2

]x
~x,y!2

]a1

]y
~x,y! Ddx∧dy. ~1.2!

The one-forma above is calledthe magnetic vector potential. In what follows, we say the
magnetic fieldda is constantif it is given, up to constant proportionality, by the volume form

In the constant magnetic field case, the operator~1.1!, which is sometimes calledthe Maass
Laplacian, has been studied by many authors~see, e.g., Roelche, 1996; Elstrodt, 1973; Fay, 19
Comtet, 1987; Grosche, 1988; Antaneet al., 1990; Avron and Pnueli, 1992; Ikeda and Matsumo
1999, and

a!Electronic mail: inahama@kusm.kyoto-u.ac.jp
b!Electronic mail: shirai@math.sci.osaka-u.ac.jp
890022-2488/2003/44(1)/89/18/$20.00 © 2003 American Institute of Physics
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references therein!. In particular, it is well-known that the spectrum of the Maass Laplac
consists of the absolutely continuous part and the point spectrum consisting of a finite num
eigenvalues of infinite multiplicity and the second part is absent for weak fields.

On the other hand, in the Euclidean case, the spectrum of the two-dimensional Schro¨dinger
operator with nonzero constant magnetic fieldB0 dx1∧dx2 consists of the so-called Landau leve
i.e., the eigenvalues$(2n21)B0%n51

` of infinite multiplicity. Iwatsuka~1993! has established the
stability of the essential spectrum of the magnetic Schro¨dinger operators under the perturbatio
from the constant magnetic fields (B01B1(x1 ,x2))dx1∧dx2 , whereB1 is a real-valued, smooth
function onR2 and decays at infinity. Moreover, the result needs no other decay propertiesB1

nor of the derivatives ofB1 . The purpose of this article is to obtain an analog of Iwatsuka’s re
in the hyperbolic case.

In what follows, we identify a one-forma1dx1a2dy and a two-formB dx∧dy with the
vector-valued function (a1 ,a2) and the functionB, respectively.

For a smooth manifoldV, we denote the set of all complex-valued, smooth functions w
compact support onV by C0

`(V) and denote the set of all complex-valued, continuous funtions
V by C(V). We denote the set of allRn-valued,k-times continuously differentiable functions o
V by Ck(V;Rn) and denote the set of allRn-valued, continuous functions onV by C(V;Rn). We
denote]/]x , (1/i )]/]x by ]x , Dx, respectively.

For a densely defined, closable linear operatorA acting in a Hilbert space, we denote th
domain ofA by D(A) and denote the operator closure ofA by Ā. For linear operatorsA1 ,A2 , the
notationA1,A2 means thatD(A1),D(A2) andA1f 5A2f for all f PD(A1). For any self-adjoint
operatorA we denote the spectrum ofA by s(A) and denote the essential spectrum ofA by
sess(A) ~e.g., Reed and Simon, 1978, Vol. I!. For simplicity, we denote byi•i both L2-norms on
any spaces and the operator norms for bounded linear operators on any Hilbert spaces wh
is no fear of confusion.

In order to formulate the main result, we introduce the condition for the magnetic fields
~B! The vector potentialaPC`(H;R2) satisfies

da~x,y!5
B01B1~x,y!

y2 , ~1.3!

for some real constantB0 and for some real-valued continuous functionB1 . Moreover, the per-
turbationB1 decays at infinity, i.e., for any«.0, there exists a compact subsetK of H such that
uB1(x,y)u,« holds for any (x,y)PKc. Here, we denote the complement of a subsetK by Kc.

The next result is a special case of Theorem 1.1 in Shubin~2001!.
Lemma 1.1: Assume thataPC1(H;R2). Then the differential operator (1.1) is essential

self-adjoint on C0
`(H).

In the sequel, we use the same symbolH(a) also for the unique self-adjoint extension whe
there is no fear of confusion.

The main result of this article is the following:
Theorem 1.2: Assume thata satisfies the condition (B). For each real number B0 with uB0u

. 1
2, we introduce the (discrete) Landau levels

sL~B0!5 ø
l 50

N(B0)

$~2l 11!uB0u2 l ~ l 11!%, ~1.4!

where the number N(B0) is the largest integer less thanuB0u2 1
2.

Then we have

sess~H~a!!5H sL~B0!ø@ 1
41B0

2 , `! ~ uB0u. 1
2!,

@ 1
41B0

2 , `! ~ uB0u< 1
2!.
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The rest of this article is organized as follows: In Sec. II, we recall some abstract results
the spectral theory and Sec. III contains some preliminary results for the operatorH(a). In Sec.
IV, we study the continuous spectrum by constructing the so-called Weyl sequence, a
determine the location ofsess(H(a)) for the case ofuB0u< 1

2 ~Lemma 4.5 below!. In Sec. V, we
show that the bottom ofsess(H(a)) is the pointB0 for any uB0u.1 ~Lemma 5.3 below!. In Sec.
VI, we complete the proof of Theorem 1.2.

II. RESULTS FROM SPECTRAL THEORY

In this section, we collect the auxiliary results from the spectral theory for later use.
Lemma 2.1: Let A be a densely defined, closed operator acting as a separable Hilbert

Then A* A and AA* have the same essential spectrum except perhaps at the point0.
Proof: This is a basic result in spectral theory. However, for the sake of completeness, w

an outline of the proof.
Let A5VuAu be the polar decomposition ofA, whereV is the unique partial isometry with th

initial subspace (kerA)' and the final subspace (kerA* )'. Then the identityA* A5V* (AA* )V
holds ~see, e.g., Birman and Solomjak, 1987, Theorem 4, p. 186!. Using the functional calculus
we havePV(A* A)5V* PV(AA* )V holds for each Borel subsetV,(0,̀ ), wherePV(T) is the
spectral projections associated with the self-adjoint operatorsT on V. SinceV, V* are injective on
the ranges ofPV(A* A), PV(AA* ), respectively, ifV does not contain 0, it follows that dim
RangePV(A* A)5dim RangePV(AA* ). This implies the lemma. j

Lemma 2.2: Letl be a real number and let A be a non-negative self-adjoint operator ac
in a separable Hilbert space K. Assume that there is a sequence in K, $wn%n51

` satisfying the
conditions: iwni51 for all n and wn→0 as n→` with respect to the weak topology on K, and
i(A11)21(A2l)wni→0 holds as n→`. Then we havelPsess(A).

Proof: One can find a proof in Cyconet al. ~1987!, p. 117. j

Let $An%n51
` and A be self-adjoint operators acting in a Hilbert space. ThenAn is said to

converge toA in the norm resolvent sense if

i~An6 i !212~A6 i !21i→0 as n→`,

respectively~see, e.g., Reed and Simon, 1978, Vol. I, p. 284!.
Lemma 2.3: Let$An%n51

` and A be self-adjoint operators and An→A in the norm resolvent
sense. Then we have:

(i) Let a,bPR, a,b and suppose that a and b belong to the resolvent set of A. Then

iP(a,b)~An!2P(a,b)~A!i→0 as n→`,

where P(a,b) is the spectral projection on the open interval(a,b).
(ii) In addition, if sess(An)5@Sn ,`) for all n, then Sn converges as n→` to someS

~possibly`! and sess(A)5@S,`).
Proof: One can find proofs of the assertions~i! and ~ii ! in Reed and Simon~1978!, Vol. I,

Theorem VIII.23~b! and Vol. IV, Corollary 2 of Theorem VIII.77, respectively. j

III. PRELIMINARIES

To the end of the proof of Theorem 1.2, we always assume thata satisfies the condition~B!,
and we set

B~x,y!5y2da~x,y!5B01B1~x,y!.

Without loss of generality, we may assume thatB0>0, since if we consider, instead ofH(a),
the operator

V21H~a!V5y2~Dx1a1~2x,y!!21y2~Dy2a2~2x,y!!2
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with (V f )(x,y)5 f (2x,y), then we have

]x~a2~2x,y!!2]y~2a1~2x,y!!52da~2x,y!5~2B02B1~2x,y!!/y2.

We show the theorem for all non-negativeB0 .
Throughout this article,B1 is an arbitrary fixed function decaying at infinity in the sense of

condition ~B!. For any vector potentialb(x,y) satisfying thatdb(x,y)5da(x,y)5B(x,y)/y2,
H(a) andH(b) are unitarily equivalent by the gauge transform. We often writeHB0

(a) or HB0
for

H(a) when there is no fear of confusion and we do not specify the dependence onB1 .
Let us introduce the following vector potentialb:

b~x,y!5S B01B1
\~x,y!

y
, 0D , ~3.1!

where

B1
\~x,y!5yE

y

1 B1~x,t !

t2 dt. ~3.2!

It is easy to see thatdb(x,y)5B(x,y)/y2. For this vector potentialb we have

HB0
~b!5y2~Dx2b1~x,y!!21y2Dy

2 . ~3.3!

In the sequel we often assume that the vector potential is of the form as in~3.1! and the operator
HB0

is of the form as in~3.3!.
Lemma 3.1: The operator inequality HB0

> 1
4 holds for any B0 .

Proof: For any f ,gPC0
`(H), an integration by parts yields

~Dyf ,g!L2(H)5E
R
dxE

0

` dy

y2 Dyf ~x,y!g~x,y!

5E
R
dxE

0

`

f ~x,y!Dy~y22g~x,y!!

5E
R
dxE

0

`

f ~x,y!~y22~Dyg!~x,y!12iy23g~x,y!!5S f ,S Dy1
2i

y DgD
L2(H)

,

from which we have

~yDy!* 5~Dy12i /y!y5Dyy12i 5yDy1 i . ~3.4!

Then we have, onC0
`(H),

0<S y~Dy2a2~x,y!!1
i

2D * S y~Dy2a2~x,y!!1
i

2D
5S y~Dy2a2~x,y!!1

i

2D S y~Dy2a2~x,y!!1
i

2D
5y~Dy2a2~x,y!!y~Dy2a2~x,y!!1 iy~Dy2a2~x,y!!2 1

4

5y2~Dy2a2~x,y!!22 1
4, ~3.5!

where we used~3.4! in the first equality, hence it follows that
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y2~Dy2a2~x,y!!> 1
4.

Then, owing to Lemma 1.1, we have the conclusion sincey2(Dx2a1)2>0. j

We introduce the differential operators

AB0
5y~Dx2a1~x,y!!1 iy~Dy2a2~x,y!!, ~3.6!

AB0

† 5y~Dx2a1~x,y!!2 iy~Dy2a2~x,y!!11 ~3.7!

with domainC0
`(H).

Note that, using~3.4!, we can find that

AB0
* 5~y~Dx2a1!1 iy~Dy2a2!!*

5y~Dx2a1!2 i ~yDy1 i 2ya2!

5y~Dx2a1!2 iy~Dy2a2!115AB0

† ~3.8!

holds onC0
`(H).

Lemma 3.2: The following statements (i)–(iii) hold:
(i) The operator AB0

maps C0
`(H) into C(H) and AB0

is closable on C0
`(H). Moreover, the

adjoint (AB0
)* coincides with AB0

† on C0
`(H).

(ii) The operator identity

HB0
5~AB0

!* AB0
1B ~3.9!

holds, where the last term B on the rhs stands for the bounded multiplication operator by B(x,y).
(iii) The operator identity

AB0
~AB0

!* 1B5HB021~b!12B21 ~3.10!

holds for somebPC`(H;R2).
Proof: It follows from ~3.8! that, for all f ,gPC0

`(H),

~AB0

† f , g!5~ f , AB0
g!. ~3.11!

The first part of the assertion~i! is obvious and the closability ofAB0
follows from the density of

the domain ofAB0
* . The rest of the statement follows also from~3.11!.

Next we show~ii !. If we set

P15y~Dx2a1!, P25y~Dy2a2!,

then we have, onC0
`(H),

P1
25y2~Dx2a1!2,

P2
25y~Dy2a2!y~Dy2a2!5y2~Dy2a1!2 iP2 ,

P1P25y~Dx2a1!y~Dy2a2!

5y2~Dx2a1!~Dy2a2!

5y2~DxDy2a1Dy2Dxa21a1a2!

5y2~DxDy2a1Dy2a2Dx1a1a21 i ]xa2!,
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P2P15y~Dy2a2!y~Dx2a1!

5y2~Dy2a2!~Dx2a1!2 iP1

5y2~DxDy2a2Dx2a1Dy1a1a21 i ]ya1!2 iP1 ,

P1P22P2P15 iy2~da!1 iP15 iB1 iP1 .

Then we have

AB0

† AB0
1B5~P12 iP211!~P11 iP2!1B

5P1
21P2

21 i ~P1P22P2P1!1P11 iP21B

5HB0
.

From ~i!, it follows that bothHB0
and the operator on the rhs of~3.9! extendsAB0

† AB0
1B defined

on C0
`(H). Then the essential self-adjointness ofHB0

implies the identity~3.9!, since the rhs of
~3.9! is self-adjoint~see, e.g., Reed and Simon, 1978, vol. II, Theorem X.25!.

Finally we show the assertion~iii !. We have

AB0
AB0

† 5~P11 iP2!~P12 iP211!

5P1
21P2

22 i ~P1P22P2P1!1P11 iP2

5P1
212P11y2~Dy2a2!21B

5~P111!21y2~Dy2a2!21B21

5y2S Dx2S a12
1

yD D 2

1y2~Dy2a2!21B215HB0211B21,

from which the conclusion obeys as in the case of the assertion~ii !. j

The property like~3.10! above is often calledthe (translation) shape invariancein the study
of the Morse-type Hamiltonian~see Molna´r et al., 2001; Benedict and Molna´r, 1999, and refer-
ences therein!. The shape invariance plays an important role in Sec. V.

In the sequel, for simplicity, we use the symbolsAB0
, AB0

* also forAB0
, (AB0

)* , respectively,

when there is no fear of confusion.
Lemma 3.3: The operator(HB0

11)21y(Dx2a1) defined on C0
`(H) extends to the unique

bounded operator acting on L2(H) whose operator norm is less or equal to1.
Proof: Note that Lemma 3.1 ensures that21 belongs to the resolvent set ofHB0

.

For any f PC0
`(H), we have

iy~Dx2a1! f i25~ f , y2~Dx2a1!2f !<~ f , HB0
f !1i f i2<i~HB0

11!1/2f i2,

where we used the inequalityy2(Dy2a2)2>1/4 in the first inequality. Then the operator doma
of the closure ofy(Dx2a1) containsD(HB0

), and the operatory(Dx2a1)(HB0
11)21/2 has the

unique bounded extension, hence soy(Dx2a1)(HB0
11)21. Finally the lemma follows from a

simple duality argument via the inner product. j

Lemma 3.4: Let z belong toC\@0,̀ ). The family of operators$(HB0
2z)21% (B0.0) is

continuous in B0 with respect to the norm operator topology.
Proof: Since

HB01«2HB0
5y2S Dx2

B01«1B1
\

y D 2

2y2S Dx2
B01B1

\

y D 2

522«yS Dx2
B01B1

\

y D 1«2
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holds for all«PR small enough, the resolvent equation yields

i~HB01«2z!212~HB0
2z!21i<2«i~HB01«2z!21yS Dx2

B01B1
#

y D ~HB0
2z!21i

1«2i~HB01«2z!21~HB0
2z!21i<Cz«

for someCz.0 independent of«, where we used Lemma 3.3 and the semi-boundedness ofHB0
in

the last inequality. This proves the lemma. j

Define the unitary operatorU from L2(H) to L2(R2) endowed with the Lebesgue measure

~U f !~x,t !5 f ~x,et!e2t/2 ~ f PL2~R2!!. ~3.12!

It is easy to see thatU mapsC0
`(H) onto C0

`(R2) and the inverseU21 is given by

~U21g!~x,y!5g~x, logy!y1/2

for eachgPL2(R2). By direct computations like

~UDyU
21g!~x,y!5UDy~g~x, logy!Ay!

5US ~Dtg!~x, logy!y21/22
i

2
g~x, logy!y21/2D

5S ~Dtg!~x,t !e2t/22
i

2
g~x,t !e2t/2De2t/2

5e2tS Dt2
i

2Dg~x,t !,

we have the operator equalities

UDxU
215Dx , UDyU

215e2tS Dt2
i

2D , U f ~x,y!U215 f ~x,et!, ~3.13!

where f stands for the multiplication by an arbitrary measurable functionf on H.
Lemma 3.5: Let LB0

denote the operator UHB0
U21 acting in L2(R2). Then we have

LB0
5e2t~Dx2a1~x,et!!21Dt

21 1
4. ~3.14!

Moreover, for each t0PR, there exists g(• ;t0)PC`(R2;R) such that

e2 ig(• ;t0)LB0
eig(• ;t0)5e2tS Dx2

B01B1
]~x,t;t0!

et D 2

1Dt
21

1

4

holds on C0
`(R2), where

B1
]~x,t;t0!5etE

t

t0
e2sB1~x,es!ds.

Proof: We denoteã1(x,t)5a1(x,et). Then it follows from~3.13! that

LB0
5UHB0

U215e2t~Dx2ã1!21e2tS e2tS Dt2
i

2D D 2

.
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Then ~3.14! follows since

S e2tS Dt2
i

2D D 2

5S e2tDt2
ie2t

2 D 2

5e2tDte
2tDt2

ie2tDte
2t

2
2

ie22tDt

2
2

e22t

4

5e22tDt
21 ie22tDt2

ie22tDt

2
1

e22t

2
2

ie22tDt

2
2

e22t

4

5e22t~Dt
21 1

4!.

The second part follows immediately from a simple argument using the gauge transform

] t~a1~x,et!!5] tS B01B1
]~x,t;t0!

et D 52~B01B1!e2t.

j

Lemma 3.6: For the self-adjoint operator2DH52y2(]x
21]y

2), the following statements (i
and (ii) hold:

(i) For each s.0, the operator esDH has a positive integral kernel.
(ii) For any continuous function onH, V, decaying at infinity in the same sense as in(B), the

operator V(2DH11)21 is compact.
Proof: It is well-known ~see, e.g., Terras, 1985! that the heat kernel is given explicitly by

&e2s/8

~2ps!3/2E
d~z1,z2!

` be2b2/2s

Acoshb2coshd~z1,z2!
db,

hence the statement (i ) follows.
It follows from Elstrodt~1973!, Part II, Satz 7.2 withk50, that the resolvent (2DH11)21

has the integral kernelG(x,y;x8,y8) such thatiG(x,y;•)iL2(H) is uniformly bounded in (x,y)
PH. Then we can find that, forVPL2(H), the operatorV(2DH11)21 belongs to the Hilbert–
Schmidt class. Then, by approximatingV by functions with compact support, we see the valid
of ( i i ) for generalV’s. j

SinceH is a separable measure space, the next result follows immediately from the
known Pitt theorem~Pitt, 1979, Theorem 1!:

Lemma 3.7: Let P, Q be bounded operators acting on L2(H). Assume that, for any g
PL2(H), u(Pg)(z)u<(Qugu)(z) for a.e. zPH, and assume Q is compact. Then P is compac.

The next result is the strong version of the Trotter product formula~Reed and Simon, 1978
vol. I, Theorem VIII.31; see also Chernoff, 1968!:

Lemma 3.8: Let X1 and X2 be semi-bounded, self-adjoint operators. Assume that the ope
sum Y5X11X2 with domain D(Y)5D(X1)ùD(X2) is essentially self-adjoint. Then we have t
Trotter product formula

e2sY5s2 lim
n→`

~e2sX1 /ne2sX2 /n!n

for each s.0. Here ‘‘s-lim’’ stands for the limit with respect to the strong operator topology.
Lemma 3.9: For each gPL2(H) and for each sPR, we have the dia-magnetic inequality

u~e2sHB0g!~x,y!u<~esDHugu!~x,y! a.e. ~3.15!
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Proof: We prove the lemma using Lemma 3.8. For each densely defined, semi-bou
symmetric operatorA, we denote the Friedrichs extension ofA by AF ~e.g., Reed and Simon
1978, Vol. II, Theorem X.23!. Note thatAF is self-adjoint.

First, let A1 and A2 be the semi-bounded, symmetric, differential operatorsA15y2(Dx

2a1)2 andA25y2(Dy2a2)2 defined onC0
`(H), respectively, and setC5A1

F1A2
F with domain

D(A1
F)ùD(A2

F) which containsC0
`(H), hence it is dense. Due to the essential self-adjointnes

HB0
on C0

`(H), we can deduce thatHB0
coincides withCF and thatHB0

5A11A2,C̄. On the

other hand, we haveC̄,CF sinceCF is closed and extendsHB0
. Hence,C̄ coincides withHB0

,

so C5A1
F1A2

F is essentially self-adjoint onD(A1
F)ùD(A2

F).
Second, letU be the unitary operator as in~3.12! and set

F1~x,t !5E
0

x

a1~ l ,et!dl, F2~x,t !5E
0

t

ela2~x,el !dl.

Then we can find thate2 iF1UA1
FU21eiF1 and e2 iF2UA2

FU21eiF2 extende2tDx
2 and Dt

21 1
4 on

C0
`(R2), respectively. We denote the closures ofe2tDx

2 and Dt
21 1

4 by X and Y, respectively.
Applying Lemma 3.8 withA15A1

F , A25A2
F andC5C, we have

Ue2sHB0U215s2 lim
n→`

~Ue2sA1
F/nU21Ue2sA2

F/nU21!n

5s2 lim
n→`

~eiF1e2sX/ne2 iF1eiF2e2sY/ne2 iF2!n. ~3.16!

where we used the essential self-adjointness ofX andY on C0
`(R2) in the last equality.

Third, bothX andY possess the positivity preserving property~Reed and Simon, 1978, Vol
IV, p. 201!, since they have the integral representations

~e2sXf !~x,t !5E
2`

`

kse2t~x2x8! f ~x8,t !dx8,

~e2sYf !~x,t !5E
2`

`

e2s/4ks~ t2t8! f ~x,t8!dt8

with the Gaussian kernelks(w)5(4ps)21/2e2uwu2/(4s). Then we can deduce from~3.16! and
Lemma 3.6 (i ) that

uUe2sHB0U21f ~x,y!u< lim
n→`

U~e2sX/ne2sY/n!nU21u f u~x,y! a.e. ~3.17!

holds for eachf PL2(H) and for eachs.0. Using the essential self-adjointness of2DH on
C0

`(H), we can deduce from the argument similar to the first step that

the rhs of ~3.17!5Ue2sH0(0)U21u f u~x,y!.

Finally, settingf 5Ug, we have the claim~3.15! sinceuUgu5Uugu. j

Lemma 3.10: For any VPC(H;R) decaying at infinity in the same sense of the condition(B),
the multiplication operator V is relatively compact with respect to HB0

. In particular, we have

sess(HB0
1V)5sess(HB0

).
Proof: Applying the well-known formula

~A11!215E
0

`

e2sAe2sds,
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we deduce from Lemma 3.9 that

uV~~HB0
11!21g!~x,y!u<~ uVu~2DH11!21ugu!~x,y! a.e.

if VPC`(H) decays at infinity. Then the lemma follows from Lemmas 3.6 (i i ) and 3.7. j

IV. THE CONTINUOUS SPECTRUM

In this section, we show thatsess(HB0
) consists of only the continuous spectrum@B0

21 1
4,`) if

uB0u< 1
2 ~Lemma 4.5 below!. Following the same line of argument in the Euclidean case~Cycon

et al., 1987, Theorem 6.1!, we give an analytic proof using Weyl’s criterion. The authors do
know whether the location of the continuous spectrum is determined only from some appro
algebraic structures~e.g., the shape invariance!.

In what follows, we use the symbolsC,C8,... ~with indices! to denote various positive con
stants, whose values may change from line to line when there is no fear of confusion.

Take and fixx0PC`(R) satisfying the following conditions: 0<x0(l)<1 for all lPR, and
x0(l)51 if l<1, x0(l)50 if l>4, moreover, for each multi-indexa, u]l

ax0(l)u<Ca for some
Ca.0, independent ofl. For each positive integern, set

xn~x,t !5x0~jn~x,t !!

where

jn~x,t !5
x21~ t1n2!2

n2 .

Note that suppxnùsuppxn135B for all n>1.
Lemma 4.1: Letxn be as above. We have the estimate

iDtxni1iDt
2xni1iet~Dxxn!i1ie2t~Dx

2xn!i<C

for some C.0 independent of n>1.
Proof: By a direct computation, we have

]xxn~x,t !5
2x

n2 x0
(1)~jn~x,t !!,

]x
2xn~x,t !5

2

n2 x0
(1)~jn~x,t !!14S x

n2D 2

x0
(2)~jn~x,t !!,

~4.1!

] txn~x,t !5
2~ t1n2!

n2 x0
(1)~jn~x,t !!,

] t
2xn~x,t !5

2

n2 x0
(1)~jn~x,t !!14S t1n2

n2 D 2

x0
(2)~jn~x,t !!,

wherex (k) denotes the derivative (dk/dlk) x0 .
For each integerk>0, we have

ix0
(k)~jn~•,• !!i25E E Ux0

(k)S x21~ t1n2!2

n2 D U2

dxdt5n2E E ux0
(k)~u21v2!u2dudv<Ckn

2,

~4.2!

where we changed the variablesu5x/n andv5(t1n2)/n in the second equality, and the consta
Ck.0 is independent ofn.
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Sincex21(t1n2)2<(2n)2 holds on supp]axn for uau>1, we observe that

uxu/n2<
2

n
, ut1n2u/n2<

2

n
~4.3!

on the region.
Then it follows from~4.1!–~4.3! that

iDtxni<
C

n
ix0

(1)~jn~•,• !!i<C,

iDt
2xni<

C

n2 ~ ix0
(1)~jn~•,• !!i1ix0

(2)~jn~•,• !!i !<C/n,

iet~Dxxn!i<
C

n S sup
ut1n2u<2n

et D ix0
(1)~jn~•,• !!i<Ce2n2n2

<C,

ie2t~Dx
2xn!i<

C

n2 S sup
ut1n2u<2n

e2t D ~ ix0
(1)~jn~•,• !!i1ix0

(2)~jn~•,• !!i !<
C

n
e2(2n2n2)<C.

This shows the lemma. j

Lemma 4.2: Let B1
] be as in Lemma 3.5 and letxn be as above. We have

lim
n→`

sup
(x,t)Psuppxn

uB1
]~x,t;2n2n2!u50.

Proof: Due to ~B!, for each«.0, we can findy0.0 such that

sup
xPR,0,y,y0

uB1~x,y!u,
«

2
. ~4.4!

If we choosen so large that 2n2n2, logy0, then we have

sup
suppxn

uB1
]~x,t;2n2n2!u<sup

xPR
sup

ut1n2u<2n
UetE

t

2n2n2

e2sB1~x,es!dsU
<sup

xPR
sup

ut1n2u<2n
U sup

ut81n2u<2n

B1~x,et8!etE
t

2n2n2

e2sdsU
<sup

xPRS sup
t8<2n2n2

B1~x,et8! D sup
t<2n2n2

etue2t2e22n1n2
u

,S «

2D325«,

where we used~4.4! in the last inequality. j

Lemma 4.3: We have the inclusion@B0
21 1

4,`),sess(HB0
).

Proof: Let g(•;t0) be as in Lemma 3.5 and letxn be as above. For eachn>1 and for each
kPR, setcn(x,t)5g(x,t;2n2n2)eiktxn(x,t). Without loss of generality, we may assume th
the sequence$cn /icni%n is orthonormal, for the original sequence contains an orthonormal
sequence by the definition ofxn’s. We show that the sequence satisfies the assumption in Le
2.2. We have from~4.2! that
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icni5ixni5nS E E ux0~u21v2!u2dudv D 1/2

>Cn ~4.5!

for someC.0.
In this proof, we denote the functionsB1

](•;2n2n2) andg(x,t;2n2n2) simply byB1
] andg,

respectively. It follows from Lemma 3.5 that

e2gLB0
cn5e2tS Dx2

B01B1
]

et D 2

~eiktxn!1S Dt
21

1

4D ~eiktxn!. ~4.6!

On the other hand, we have

~Dt
21 1

4!~eiktxn!5~k21 1
4!~eiktxn!1keikt~Dtxn!1eikt~Dt

2xn!, ~4.7!

and since

e2tS Dx2
B01B1

]

et D 2

5~etDx2~B01B1
]!!2

5~etDx2~B01B1
]!!~~etDx2B0!2B1

]!

5e2tDx
22~2B01B1

]!etDx2B0~B01B1
]!2~etDx2~B01B1

]!!B1
] ,

we have

e2tS Dx2
B01B1

]

et D 2

~eiktxn!5eikte2t~Dx
2xn!2~2B01B1

]!eiktet~Dxxn!2~B0
21B0B1

]!~eiktxn!

2~etDx2~B01B1
]!!B1

]~eiktxn!. ~4.8!

Then it follows from~4.6!–~4.8! that

e2 ig~LB0
2~B0

21 1
41k2!!cn5eikte2t~Dx

2xn!22B0eiktet~Dxxn!1keikt~Dtxn!1eikt~Dt
2xn!

2eiktB1
]et~Dxxn!1B0B1

]~eiktxn!

2~etDx2~B01B1
]!!B1

]~eiktxn!,

from which we have

i~LB0
11!21~LB0

2~B0
21 1

41k2!!cni5ie2 ig~LB0
11!21eige2 ig~LB0

2~B0
21 1

41k2!!eig~eiktxn!i

<ie2t~Dx
2xn!i12B0iet~Dxxn!i1ukuiDtxni1iDt

2xni

1 sup
suppxn

uB1
]uiet~Dxxn!i1B0 sup

suppxn

uB1
]uicni

1i~LB0
11!21~etDx2~B01B1

]!!i sup
suppxn

uB1
]uicni

<C1C sup
suppxn

uB1
]u1C sup

suppxn

uB1
]uicni ~4.9!

holds for someC.0 independent ofn, where we used Lemma 3.3 in the second inequality.
Then we can deduce from~4.5!, ~4.9! and Lemma 4.2 that
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i~LB0
11!21~LB0

2~B0
21 1

41k2!!cni /icni<C/n1C sup
suppxn

uB1
]u→0

asn→`. This proves the lemma. j

Lemma 4.4: Let B1
\ be as in (3.2). We have, on C0

`(H),

2~122B0!y~Dx2B1
\/y!>2HB0

1B0
21 1

41B1 .

Proof: We have, onC0
`(H),

0<~AB0
1B02 1

2!* ~AB0
1B02 1

2!

5AB0
* AB0

1~B02 1
2!~AB0

* 1AB0
!1~B02 1

2!
2

5AB0
* AB0

1S B02
1

2D S 2yS Dx2
B01B1

\

y D 11D 1S B02
1

2D 2

5AB0
* AB0

1S B02
1

2D S 2yS Dx2
B1

\

y D 2~2B021! D 1S B02
1

2D 2

5AB0
* AB0

1~2B021!yS Dx2
B1

\

y D 22S B02
1

2D 2

1S B02
1

2D 2

5HB0
2~B01B1!1~2B021!yS Dx2

B1
\

y D 2S B02
1

2D 2

5HB0
2B0

22 1
42B11~2B021!y~Dx2B1

\/y!.

This implies the lemma. j

Lemma 4.5: Let0<B0, 1
2. We have, on C0

`(H),

HB0
22B0B1>B0

21 1
4. ~4.10!

In particular, we havesess(HB0
)5@B0

21 1
4, `) in case0<B0< 1

2.
Proof: If 0<B0, 1

2, we have

HB0
5y2~Dx2~B01B1

\!/y!21y2Dy
2

5y2~Dx2B1
\/y!222B0y~Dx2B1

\/y!1B0
21~yDy1 i /2!* ~yDy1 i /2!1 1

4

>22B0y~Dx2B1
\/y!1B0

21 1
4

>
2B0

122B0
S 2HB0

1B0
21

1

4
1B1D1B0

21
1

4
,

where we used~3.5! in the second equality and used Lemma 4.4 in the second inequality. H
we have

1

122B0
HB0

>
2B0

122B0
S B0

21
1

4D1B0
21

1

4
1

2B0

122B0
B1 ,

from which ~4.10! follows.
If 0<B0, 1

2, it follows from ~4.10! and Lemma 3.10 that

sess~HB0
!5sess~HB0

22B0B1!,s~HB0
22B0B1!,@B0

21 1
4, `!.
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For the caseB05 1
2, it follows from Lemma 3.2 that

HB0
5AB0

* AB0
1B>B5 1

21B1 .

Then, again by Lemma 3.10 we have

sess~HB0
!5sess~HB0

2B1!,s~HB0
2B1!,@ 1

2, `!5@~ 1
2!

21 1
4, `!.

The converse inclusion holds for an arbitraryB0 by Lemma 4.3. j

V. THE BOTTOM OF sess„HB 0
… IF B 0Ì1

In this section, we assume thatB0.1 and show that the bottom ofsess(HB0
) is the pointB0 .

We follow the same line of argument as in Sec. 3 in Shigekawa~1991!.
We decomposeB asB5B(1)1B(2) so that bothB(1) andB(2) are real-valued smooth func

tions onH, inf B(1).1 and the support ofB(2) is compact. Forj 51,2, letW( j ) be a real-valued,
C2-solution to the equation

y2~]x
21]y

2!W( j )5B( j ) on H. ~5.1!

Such solutions do exist since the global solvability of elliptic partial differential equa
guarantees distributional ones~See, Ho¨rmander, 1963, Theorem 3.6.4 and Corolary 3.7.1! and then
the elliptic regularity yields smoothness. In addition, we may assume thatW(2) is bounded func-
tion on H because of the compactness of support ofB(2).

We set

W5W(1)1W(2)

and introduce the space

AW5$huh is holomorphic in H and he2WPL2~H !%.

Lemma 5.1: Let W be as above. Setc5(c1 ,c2)5(2]yW,]xW). Then we have

y2dc5y2~]x
21]y

2!W5B, ]̄zW52
i

2
~c11 ic2!,

where]̄z5
1
2(]x1 i ]y).

Proof: The lemma follows easily from the definitions and the usual gauge transform give
unitary equivalence. j

The lemma above implies thatHB0
is unitarily equivalent to the operatorH(c) of the form

~1.1!, since botha andc give the same magnetic field. Then we may assume thata5c without loss
of generality.

Lemma 5.2: LetAW be as above. Then dimAW5` if B0.1.
Proof: We transfer the problem to the one on the Poincare´ disc D5$w5(u,v)5reiuu uwu

5r ,1, 0<u,2p% endowed with the standard measure

dmD5
4rdrdu

~12r 2!2

and letEz5(z2 i )(z1 i )21 denote the Cayley transform, which defines an isometric isomorph
from H to D. In the end of this proof, for any functionf on H, we denote the function
f (E21

•) on D by f̃ for simplicity.
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Then the Laplace equation~5.1! is equivalent to

1
4 ~12r 2!2~]u

21]v
2!W( j )̃5B( j )̃ onD.

Set

w52W(1)̃12 log~12r 2!

and introduce the function space

Ã5$h̃u h̃ is holomorphic in D and h̃e2w/2~11r 2!3/2PL2~D!%

and setA5$huh̃PÃ%. Clearly the spaceA is isomorphic toÃ via the Cayley transformE.
Using the assumptionB0.1, we have

~]u
21]v

2!w5
8B(1)̃

~12r 2!2 12S ] r1
1

r D ] r~ log~12r 2!!5
8

~12r 2!2 ~B(1)̃21!.0.

This shows thatw is a subharmonic function, from which we conclude that the spaceÃ has infinite
dimension by Ho¨rmander~1966!, Theorem 4.4.4.

On the other hand, the inequality

E
D

uh̃~w!u2e22W̃(w)dmD~w!5E
D

uh̃~w!u2e2w(w)~11r 2!23~11r 2!3e22W(2)̃
dudv

<E
D

uh̃~w!u2e2w(w)~11r 2!23dudv

holds for all h̃PÃ, where we used the boundedness ofW(2) and ofD. Thus we can deduce tha
the inclusionA,AW holds, from which the lemma follows. j

Lemma 5.3: For B0.1, we have B0Psess(HB0
).

Proof: We denote byHdist, Adist andAdist
† the differential operators of the forms~1.1!, ~3.6!

and ~3.7! acting on the space of distributions, respectively.
Let $hn%n51

` be an orthogonal family of elements in the spaceAW and setwn5e2Whn . Then
it follows from Lemma 5.1 that

Adistwn50,

since

AB0
522iy ]̄z2y~a11 ia2!

andhn is holomorphic and satisfies]̄zhn50.
The integration by parts yields that, for anycPC0

`(H),

~wn , ~HB0
2B!c!5~~Hdist2B!wn , c!5~Adist

† Adistwn , c!50. ~5.2!

Due to Lemma 1.1, the relation~5.2! holds also for allcPD(HB0
), from which we deduce tha

wnPD(HB0
) and

~HB0
2B1!wn5B0wn . ~5.3!

ThusB0Pse(HB0
2B1).
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On the other hand, it follows from Lemma 3.10 that

se~HB0
!5se~HB0

2B1!.

This completes the proof. j

VI. PROOF OF THEOREM 1.2

We first show that the theorem holds whenB0 is contained in some subset ofR by combining
the shape invariance and the results obtained in the previous sections. Then, using th
resolvent continuity ofHB0

with respect toB0 , we extend the validity to the case of generalB0 .
In what follows, for anykPR and for anyS,R, we denote the set$s1kusPS% by S1k.
Lemma 6.1: LetsL(B0) be the set as in (4). Then we have

sL~B0!12~B011!215sL~B011!\$B011%.

Proof: By the definition~1.4!, we have

sL~B0!12~B011!215 ø
l 50

N(B0)

$~2l 11!B02 l ~ l 11!12~B011!21%

5 ø
l 50

N(B0)

$~2l 13!~B011!2 l 223l 22%

5 ø
m51

N(B0)11

$~2m11!~B011!2m~m11!%5sL~B011!\$B011%,

where we used the fact thatN(B0)115N(B011) if B0.0 and changed the variablem5 l 11 in
the third equality. j

Lemma 6.2: If B0.1, we have

sess~HB0
!5sess~HB0211~2B021!!ø$B0%

and, if 1
2,B0<1, we have

sess~HB0
!\$B0%5@B0

21 1
4 , `!.

Proof: From Lemma 3.2 (i ) and Lemma 3.10, we have

sess~HB0
!5sess~HB0

2B1!5sess~AB0
* AB0

1B0!. ~6.1!

It follows from Lemmas 3.2 (i i ) and 2.1 that the set~6.1! coincides, except perhaps atB0 ,
with the set

sess~AB0
AB0

* 1B0̂!5sess~HB21~b!1~2B021!!.

Then the lemma follows from Lemmas 4.5 and 6.2. j

Lemma 6.3: For each positive integer k, set

I k5$xPRu k,x<k1 1
2%.

Then, the conclusion of Theorem 1.2 is valid ifB0Pøk>0I k .
Proof: By mathematical induction onk, we show the following propositionsP(k):
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sess~HB0
!5@B0

21 1
4, `!øsL~B0! holds if B0PI k .

Whenk51, we have, from Lemma 6.2,

sess~HB0
!5sess~HB02112B021!ø$B0%

5@~B021!21 1
412B021, `!ø$B0%

5@B0
21 1

4, `!ø$B0%5@B0
21 1

4, `!øsL~B0!,

where we used the fact thatuB021u, 1
2 in the second equality.

Assume thatP(k) holds. By Lemma 6.1, we have

sess~HB011!5sess~HB0
12~B011!21!ø$B011%

5@B0
21 1

412~B011!21, `!ø~sL~B0!12~B011!21!ø$B011%

5@~B011!21 1
4, `!øsL~B011!,

where we usedP(k) in the second equality and used Lemma 6.2 in the last. This shows
validity of P(k11), hence the proof is completed. j

Let I denote the open interval (1
2,

3
2) which is equipped with the usual relative topolog

induced fromR. We introduce the set

S5$B0PI uB0Psess~HB0
!%

and denote the complement set ofS in I by Sc.
Lemma 6.4: Let S be as above. Then we have
(i) S is a closed set in I.
(ii) For any xPS and any«.0, there exists yPS such that x2«,y,x.
Proof: Assume thatxnPS, xPI and xn→x as n→`. Then, owing to Lemma 3.4, we ca

apply Lemma 2.3 toA5Hx , An5Hxn
and deduce that

iP(x2d, x1d)~Hx!2P(x2d, x1d)~Hxn
!i→0

asn→` for anyd.0 satisfyingx6dPR\s(Hx). Taking the fact that the dimension of range
P(x2d, x1d)(Hxn

) is infinite for large n into account, we have the same conclusion
P(x2d, x1d)(Hxn

), since the ranges of two orthogonal projectionsP, Q have same dimension i
iP2Qi,1. Then the assertion (i ) follows from the definition of the essential spectrum~Reed and
Simon, 1978, Vol. I, p. 236!.

We show (i i ) by contradiction. Assume that there existsxPS and «.0 such that@x
2«, x),Sc. Applying Lemma 2.3 toAn5Hx2«/n , A5Hx and Sn5(x2«/n)21 1

4, we have
sess(Hx)5@x21 1

4, `). This contradicts the assumptionxPS, for x,x21 1
4 if xPI . j

First we claim thatSc is an empty set. We show this by contradiction. Assume thatSc is not

empty. Note that the fact that (1,3
2),S. The setSc contains a connected component~a, b! with

a,b<1, sinceSc is open inI by Lemma 6.4 (i ). Then the maximality of~a, b! implies that
bPS. By Lemma 6.4 (i i ), this contradicts the connectedness of~a, b!. This proves the claim.

Then, if 1
2,B0<1, we can deduce that

sess~HB0
!5$B0%ø@B0

21 1
4, `!, ~6.2!

since Lemma 6.2 ensures that the possible point ofsess(B0) below the continuous spectrum is th
point B0 .
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Finally, repeating the same argument as in Lemma 6.3, we can deduce from Lemma 5
~6.2! that Theorem 1.2 is true for allB0 .
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Hörmander, L.,An Introduction to Complex Analysis in Several Variables~Van Nostrand, Princeton, NJ, 1966!.
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Noncommutative geometry of angular momentum space
U„su„2……

Eliezer Batista
Dep. de Matema´tica, Universidade Federal de Santa Catarina,
CEP: 88040-900, Florianopolis-SC, Brazil

Shahn Majida)

School of Mathematical Sciences, Queen Mary, University of London,
Mile End Rd, London E1 4NS, United Kingdom
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We study the standard angular momentum algebra@xi ,xj #5ıle i jkxk as a noncom-
mutative manifoldRl

3 . We show that there is a natural 4D differential calculus and
obtain its cohomology and Hodge* operator. We solve the spin 0 wave equation
and some aspects of the Maxwell or electromagnetic theory including solutions for
a uniform electric current density, and we find a natural Dirac operator]” . We
embedRl

3 inside a 4D noncommutative space–time which is the limitq→1 of
q-Minkowski space and show thatRl

3 has a natural quantum isometry group given
by the quantum doubleC(SU(2))’U(su(2)) which is a singular limit of the
q-Lorentz group. We viewRl

3 as a collection of all fuzzy spheres taken together.
We also analyze the semiclassical limit via minimum uncertainty statesu j ,u,f&
approximating classical positions in polar coordinates. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1517395#

I. INTRODUCTION

There has been much interest in recent years in the possibility that classical space or
time itself ~not only phase space! is in fact noncommutative and not a classical manifold. O
simple model where

@xi ,t#5ılxi ~1!

has already been shown3 to have physically measurable effects even ifl;10244 s ~the Planck
time!. So such a conjecture is not out of reach of experimenteven ifthe noncommutativity is due
to quantum gravity effects. Such noncommutativity of space–time, if verified, would amoun
new physical effect which could be called ‘‘cogravity’’ because it corresponds under non Ab
Fourier transform to curvature in momentum space.17 We are usually familiar with this correspon
dence the other way around, i.e., on a curved space such as a sphere the canonical m
~angular momentum! form a noncommutative algebra

@Ja ,Jb#5ıeabcJc , a,b,c51,2,3, ~2!

whereeabc denotes the totally antisymmetric tensor; if one believes in Born reciprocity, then
should also allow the theoretical possibility of a sphere in momentum space, which would
spond to the algebra

@xa ,xb#5ıleabcxc . ~3!

a!Electronic mail: s.majid@qmul.ac.uk
1070022-2488/2003/44(1)/107/31/$20.00 © 2003 American Institute of Physics
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This is the algebraRl
3 which we study in this article from the point of view of thexi as coordinates

of a noncommutative position space. We insert here a parameterl of length dimension. The
physical relevance of this algebra hardly needs to be justified, but we note some specific a
tions in string theory and quantum gravity in the discussion below. There are also possible
contexts where a noncommutative space–time might be a good effective model, not nece
connected with gravity and indeed this is an entirely independent~dual! effect.

Also from a mathematical point of view, the algebra~3! is a standard example of a forma
deformation quantization, namely of the Kirillov–Kostant Poisson bracket onsu2* in the coadjoint
orbit method.12 We identify su(2)* as the vector spaceR3 with basisJa* , say, dual to theJa .
Then among the algebra of suitable~polynomial! functionsC(R3) on it we identify theJa them-
selves with the ‘‘coordinate functions’’Ja(v)5va for any vPsu(2)* with componentva in the
Ja* direction. These generate the whole coordinate algebra and their Poisson bracket is defi

$Ja ,Jb%~v !5v~@Ja ,Jb# !, ;vPsu~2!* .

Hence when viewed as functions onR3, the Lie algebra generators have a Poisson bracket g
by the Lie bracket. Their standard ‘‘quantization’’ is evidently provided by~3! with deformation
parameterl.

Our goal in the present work is to use modern quantum group methods to take this furt
developing the noncommutative differential geometry of this quantum space at the level of
fields, forms, and spinors, i.e., classical field theory. We will solve wave equations, etc.
generally show that physics is fully possible onRl

3 . Note that the earlier example~1! above was
also of ‘‘dual Lie’’ type but there the Lie algebra was solvable whereas thesu~2! case that we
address here is at the other extreme and very much harder to work with. We expect our m
to extend also to U(g) for other simpleg.

The article begins in Sec. II with some mathematical preliminaries on quantum group me
and noncommutative geometry. As a quantum group,Rl

3>U(su(2)) ~the enveloping Hopf alge-
bra! which means that at the end of the day all computations can be reduced to the level osu~2!
and Pauli matrices. One of the first things implied by quantum group theory is thatRl

3 has an
isometry quantum group given by the Drinfeld quantum doubleD(U(su(2))) and wedescribe
this first, in Sec. III. A suitable Casimir of this induces a scalar wave operatorh and we also
describe spherical harmonicsYl

m dictated by action of rotations. This theory could be called
‘‘level 0’’ noncommutative geometry where we think of the space through its symmetries r
than its differential structure.

In Sec. IV we start the noncommutative differential geometry, introducing a natural diffe
tial calculus onRl

3 . The cotangent directions or basic forms are given literally by Pauli matr
plus an additional generatoru:

dxa5 1
2 sa , u5s0 , ~4!

wheres05 id ~the identity matrix!. There are also noncommutation relations between funct
and one-forms:

xadxb5~dxb!xa1
ıl

2
eabcdxc1

l

4
dabu, xau5uxa1ldxa . ~5!

Some other calculi are mentioned in the Appendix for comparison, but in fact this
dimensional one appears to be the most reasonable one. The extrau direction turns out to generat
the cohomology, i.e., is not d of anything inRl

3 . We interpret it as a local time direction in th
same spirit as in a different model.9

In Sec. V we introduce a Hodge* operator and solve the resulting wave equations for sp
and spin 1~the Maxwell equations!. We also find a natural Dirac operator for spin1

2. Among the
solutions of interest are plane waves obeying
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heık•x52
1

l2 H 4 sin2S luku
2 D1S cosS luku

2 D21D 2J eık•x,

for momentumkPR3. Among spin 1 solutions is a uniform electric current density in so
direction and magnetic field increasing with normal distance. This is computationally the e
case; we expect that the theory should similarly allow more conventional decaying solutio
Sec. VI we briefly consider quantum spheresSl

2 insideRl
3 by setting( ixi

251. These are then the
usual quantization of coadjoint orbits insu(2)* @as opposed to all ofsu(2)* as described above#
and we show that they inherit a three-dimensional differential geometry. This case cou
viewed as a slightly different approach to fuzzy spheres14,5,11,20,21that is more adapted to the
classical limitl→0. Fuzzy spheres also arise as world volume algebras in string theory,2 hence it
would be interesting to develop this point of contact further. In our case we obtain a 3D d
ential calculus onSl

2 .
In Sec. VII we explain the origin of theu direction as the remnant of the time direction dt of

a standard four-dimensional noncommutative space–timeRq
1,3 in a certain scaling limit asq→1. In

the qÞ1 setting the theory is much more nonsingular and there is a fullq-Lorentz symmetry
already covered in theq-deformation literature.6,16,15On the other hand, asq→1 we obtain either
usual commutative Minkowski space or we can make a scaling limit and obtain the algebr

@xa ,xb#5ıct eabcxc , @xa ,t#50, ~6!

where the parameterc has dimensions of velocity. Mathematically this is homogenized U(su(2))̃
and we see that it projects onto our above algebra~3! by sendingct→l. This algebra~6! is not
itself a good noncommutative Minkowski space because theq-Lorentz group action become
singular asq→1 and degenerates into an action of the above quantum double isometry grou
the other hand, it is the boundary pointq51 of a good and well-studied noncommutativ
Minkowski space.

The article concludes in Sec. VIII with a proposal for the interpretation which is nee
before the noncommutative geometry can be compared with experiment. In addition to a n
ordering postulate@i.e., noncommutativef (x) are compared with classical ones only when norm
ordered# along the lines of Ref. 3, we also propose a simple quantum mechanical point of
inspired by Penrose’s spin network theorem.19 In our case we construct minimum uncertain
statesu j ,u,f& for each spinj in which expectationŝ f (x)& behave approximately like classica
functions in polar coordinatesr ,u,f with r 5l j . In effect we viewRl

3 as a collection of fuzzy
spheres for all spinsj taken together. There are some similarities also with the star produc
coherent states discussed recently in Ref. 11.

Finally, whereas the above includes electromagnetic theory onRl
3 , we explain now that

exactly this noncommutative space is needed for a geometric picture underlying the appro
211 quantum gravity of Refs. 4 and 22. When a Euclidean signature and vanishing cosmo
constant are assumed, the gauge group of the classical gravitational action~as a Chern–Simons
field theory! is the group ISO~3!.23 Considering the three-dimensional space as the direct pro
S3R, where S is Riemann surface of genusg, one can find the space of solutions of th
gravitational field in terms of the topology ofS.1,8 The simplest case is to considerS as a sphere
with a puncture, which represents the topological theory of one particle coupled to gravity
known that the quantum states of this kind of theory correspond to irreducible representati
the quantum doubleD(U(su(2))).4 A more detailed explanation, based on representation the
of how the quantum double is a deformation ‘‘quantization’’ of the Euclidean group in t
dimensions can be found in Ref. 22. However, the direct geometrical role of the quantum d
has been missing except as an ‘approximate’ isometry ofR3. Our present results therefore provid
a new point of view, namely of the quantum double symmetry as anexactsymmetry but of the
noncommutative spaceRl

3 on which we should build a noncommutative Chern–Simons act
etc. This fits with the discussion above that noncommutative space–time could be used as
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effective description of corrections to geometry coming out of quantum gravity. Details o
required noncommutative Chern–Simons theory as well as gravity in the frame bundle app
of Ref. 18 will be presented in a sequel.

II. MATHEMATICAL PRELIMINARIES

Here we outline some notions from quantum group theory into which our example fits
Hopf algebras~i.e., quantum groups! we use the conventions of Ref. 15. It means an algebrH
equipped with a coproductD:H→H ^ H, counit e:H→C and antipodeS:H→H. We will some-
times use the formal sum notationD(h)5(h(1)^ h(2) , for anyhPH. The usual universal envel
oping algebra algebra U(su(2)) has astructure of cocommutative Hopf algebra generated b
andJa , a51,2,3 with relations~2! and

D~Ja!5Ja^ 111^ Ja , e~Ja!50, S~Ja!52Ja . ~7!

We also recall that as for Abelian groups, for each Hopf algebra there is a dual one whe
product of one is adjoint to the coproduct of the other. U(su(2)) is dually paired with the
commutative Hopf algebraC~SU~2!! generated by coordinate functionst i

j , for i , j 51,2 on SU~2!
satisfying the determinant relationt1

1t2
22t1

2t2
151 and with

D~ t i
j !5 (

k51

2

t i
k^ tk

j , e~ t i
j !5d i

j , Sti j5t21i
j , ~8!

where inversion is as an algebra-valued matrix. The pairing between the algebras U(su(2)) and
C~SU~2!! is defined by

^j, f &5
d

dt
f ~etj!u t50 ,

wherejPsu(2) and f PC(SU(2)) which results in particular in

^Ja ,t i
j&5 1

2 sa
i
j , ~9!

wheresa
i
j are thei , j entries of the Pauli matrices fora51,...,3. We omit here a discussion o

unitarity, but this is implicit and achieved by making the above into Hopf* -algebras~see Ref. 15
for further details!.

We also need standard notions of actions and coactions. A left coaction of a Hopf algeH
on a spaceV means a mapV→H ^ V obeying axioms like those of an action but reversing
maps. So a coaction ofC~SU~2!! essentially corresponds to an action of U(su(2)) via thepairing.
Examples are

AdL~h!~g!5hxg5( h(1)gS~h(2)!, ~10!

the left adjoint action AdL :H ^ H→H. Its arrow-reversal is the left adjoint coaction AdL:H→H
^ H,

AdL~h!5( h(1)S~h(3)! ^ h(2) . ~11!

There are also the regular action~given by the product!, regular coaction~given by D:H→H
^ H), and coadjoint actions and coregular actions of the dual, given via the pairing from
adjoint and regular coactions, etc.15 We will need the left coadjoint action ofH on a dual quantum
groupA:
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AdL* ~h!~f!5hxf5( f (2)^~Sf (1)!f (3) ,h&, ;hPH, fPA, ~12!

and the right coregular action ofA on H which we will view as a left action of the opposit
algebraAop:

fxh5( ^f,h(1)&h(2) , ;hPH, fPA. ~13!

Given a quantum groupH dual to a quantum groupA, there is a quantum double writte
loosely asD(H) and containingH, A as sub-Hopf algebras. More precisely it is a double cr
productAop

qH where there are cross relations given by mutual coadjoint actions.15 Also, D(H)
is formally quasitriangular in the sense of a formal ‘‘universal R matrix’’R with terms in
D(H) ^ D(H). The detailed structure ofD(U(su(2))) is covered in Sec. III and in this case
more simply a semidirect productC(SU(2))’U(su(2)) by thecoadjoint action.

We will also need the quantum doubleD(H) whenH is some other quasitriangular quantu
group such as Uq(su(2)). This is a standard deformation of~2! and the coproduct, etc., with
parameter q. In this case there is a second ‘‘braided’’ or covariantized version
A5Cq(SU(2)) which we denote by BSUq(2). Then

D~Uq~su~2!!!>BSUq~2!’Uq~su~2!!, ~14!

where the product is a semidirect one by the adjoint action of Uq(su(2)) and thecoproduct is also
a semidirect one. We will use this nonstandard ‘‘bosonization’’ version ofD(H) when H is
quasitriangular. Also whenH is quasitriangular withR21R nondegenerate, there is a third ‘‘twis
ing’’ version of the quantum double:

D~Uq~su~2!!!>Uq~su~2!!pRUq~su~2!!, ~15!

where the algebra is a tensor product and the coproduct is

D~h^ g!5R23
21DH ^ H~h^ g!R23.

We will use both versions in Sec. VII. Note that both isomorphisms are formal but the right
sides are well defined and we take them as definitions. Especially, the isomorphism~15! is highly
singular asq→1. In that limit the twisted version tends to U~so~1,3!! while the bosonization
version tends to U~iso~3!!.

Finally, we will need the notion of differential calculus on an algebraH. This is common to
several approaches to noncommutative geometry including that of Connes.7 A first order calculus
means to specify (V1,d), whereV1 is anH2H-bimodule, d:H→V1 obeys the Leibniz rule,

d~hg!5~dh!g1h~dg!, ~16!

andV1 is spanned by elements of the form (dh)g. A bimodule just means that one can multip
‘‘one-forms’’ in V1 by ‘‘functions’’ in H from the left or the right without caring about bracket

When we have a Hopf algebraH, a differential calculus can be asked to be ‘‘bicovariant,’’25

which means that there are left and right coactions ofH in V1 ~a bicomodule! which are them-
selves bimodule homomorphisms, and d intertwines the coactions with the regular coactionH
on itself. Given a bicovariant calculus one can find invariant forms

v~h!5( ~dh(1)!Sh(2) ~17!

for anyhPH. The span of such invariant forms is a spaceL1 and all ofV1 can be reconstructed
from them via
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dh5( v~h(1)!h(2) . ~18!

As a result, the construction of a differential structure on a quantum group rests on that oL1,
with V15L1.H. They in turn can be constructed in the form

L15ker e/I,

whereI,ker e is some left ideal inH that is AdL-stable.25 We will use this method in Sec. IV to
introduce a reasonable calculus on U(su(2)). Some general remarks~but not our calculus, which
seems to be new! appeared in Ref. 18.

Any bicovariant calculus has a ‘‘minimal’’ extension to an entire exterior algebra.25 One uses
the universal R-matrix of the quantum double to define a braiding operator onL1

^ L1 and uses it
to ‘‘antisymmetrize’’ the formal algebra generated by the invariant forms. These and eleme
H defineV in each degree. In our case of U(su(2)), because it is cocommutative, the braiding
the usual flip. Hence we have the usual anticommutation relations among invariant forms. W
extend d:Vk→Vk11 as a~right-handed! super-derivation by

d~v∧h!5v∧dh1~21!deghdv∧h.

A differential calculus is said to be inner if the exterior differentiation inV1 ~and hence in all
degrees! is given by the~graded! commutator with an invariant one-formuPL1, that is,

dv5v∧u2~21!degvu∧v.

Almost all noncommutative geometries that one encounters are inner, which is the funda
reason that they are in many ways better behaved than the classical case.

III. THE QUANTUM DOUBLE AS EXACT ISOMETRIES OF Rl
3

In this section we first of all recall the structure of the quantum doubleD(U(su(2))) in the
context of Hopf algebra theory. We will then explain its canonical action on a second copRl

3

>U(su(2)) arising from the general Hopf algebra theory, thereby presenting it explicitly a
exact quantum symmetry group of that. Herexa5lJa is the isomorphism valid forlÞ0. By an
exact quantum symmetry we mean that the quantum group acts onRl

3 with the product ofRl
3 an

intertwiner ~i.e. the algebra is covariant!.
Because U(su(2)) is cocommutative, its quantum doubleD(U(su(2))) is a usual crossed

product15

D~U~su~2!!!5C~SU~2!!Ad
L*
’U~su~2!!,

where the action is induced by the adjoint action@it is the coadjoint action onC~SU~2!!#. This
crossed product is isomorphic as a vector space withC(SU(2))^ U(su(2)) but with algebra
structure given by

~a^ h!~b^ g!5( aAdL* h~1!
~b! ^ h(2)g,

for a,bPC(SU(2)) andh,gPU(su(2)). In terms of the generators, the left coadjoint action~12!
takes the form

AdL* Ja
~ t i

j !5( tk
l^Ja ,S~ t i

k!t
l
j&5

1

2
~ t i

ksa
k

j2sa
j
kt

k
j !. ~19!

As a result we find thatD(U(su(2))) is generated by U(su(2)) andC~SU~2!! with cross relations
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@Ja ,t i
j #5 1

2 ~ t i
ksa

k
j2sa

j
kt

k
j !. ~20!

Meanwhile the coproducts are the same as those of U(su(2)) andC(SU(2)).
Next, a general feature of any quantum double is a canonical or ‘‘Schro¨dinger’’ representation,

where U(su(2)),D(U(su(2))) acts on U(su(2)) by the left adjoint action ~10! and
C(SU(2)),D(U(su(2))) acts by the coregular one~13!, see Ref. 15. We denote the acted-up
copy byRl

3 . ThenJa simply act by

Jax f ~x!5l21( xa(1)f ~x!S~xa~2!!5l21@xa , f ~x!#, ; f ~x!PRl
3, ~21!

e.g.,

Jaxxb5ıeabcxc ,

while the co-regular action reads

t i
jx f ~x!5^t i

j , f ~x!(1)& f ~x!(2) , e.g., t i
jxxa5

l

2
sa

i
j11d i

j xa .

The general expression is given by a shuffle product~see Sec. IV!. With this action, Rl
3 turns into

a left D(U(su(2)))-covariant algebra.
In order to analyze the classical limit of this action, let us consider the role of the nume

parameterl used to define the algebraRl
3 . Considering the relations~3!, we have already ex-

plained thatRl
3 becomes the usual algebra of functions onR3 asl→0. The same parameterl can

be introduced into the quantum double by means of a redefinition of the generators ofC~SU~2!! to

Mi
j5

1

l
~ t i

j2d i
j !, ~22!

so thatt i
j5d i

j1lMi
j . We stress that we are dealing with the same Hopf AlgebraD(U(su(2))),

but written in terms of new generators, it is only a change of variables. The homomorp
property ofD gives

DMi
j5 (

k51

2

~d i
k^ Mk

j1Mi
k^ dk

j1lMi
k^ Mk

j !,

while the condition on the determinant,t1
1t2

22t1
2t2

151, implies that

Tr~M !5M1
11M2

252l det~M !.

This means that in the limitl→0, the elementsMi
j have to obeyM1

152M2
2 and C~SU~2!!

becomes the commutative Hopf algebra U(R3). To make this explicit, we can define the mome
tum generators

P152ı~M1
21M2

1!, P25M1
22M2

1 , P352ı~M1
12M2

2!, ~23!

or

Pa52ısa
i
jM

j
i , a51,2,3 ~24!

~sum overi , j ). The inverse of this relationship is

Mi
j5

ı

2
sa

i
j Pa1d i

j P0 , P05
1

2
Tr~M !52

1

l S 12A12
l2

4
P2D . ~25!
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The other square root is also allowed, but thenP0 is not O~l!, i.e., this is not the ‘‘patch’’ of
C~SU~2!! that concerns us. Note also that there are unitarity conditions that we do not exp
discuss~if we put them in then thePa are Hermitian!. In these terms we have

DPa5Pa^ 111^ Pa1O~l!,

so that we have the usual additive coproduct in thel→0 limit. Meanwhile, the left coadjoint
action ~19! and the resulting cross relations in the double become

AdL* Ja
~Pb!5ıeabcPc , @Ja ,Pb#5ıeabcPc ,

i.e., D(U(su(2))) in thelimit l→0 with these generators becomes the usual U~iso~3!!. This part
is essentially known.4,22

Moreover, our action of these scaled generators onRl
3 is

Mi
jx f ~x!5] i

j~ f ~x!!, e.g., Mi
jxxa5^Ja ,t i

j&15 1
2 sa

i
j1, ~26!

where the operators] i
j are the same as those in the next section. We can also write the act

Pa as partial derivatives defined there@in ~35!# by

Pax f ~x!52ı]af ~x!, P0x f ~x!5
1

c
]0f ~x!,

where the constantc is put in order to make the equations have the same form as the cla
ones, interpreting roughly the zero-direction as a ‘‘time’’ direction. This relation will beco
clearer in Sec. VII.

In the limit l→0, the action ofJa becomes usual rotations in three-dimensional Euclid
space while the action ofPa becomes the action of translation operators of the algebra U(R3), so
we indeed recover the classical action of U~iso~3!! on R3. In three-dimensional gravity, conside
ing the dimension of the gravitational constantG3 and the speed of light to be equal to 1, we ha
that l must be proportional to the Planck constant.22

Next, there are several applications of the action of the double based on the above p
view. First and foremost, we could look for a wave operator from a Fourier transform poi
view as in Ref. 3~we give a different point of view later!. Namely we look for a Casimir of
D(U(su(2))) lying in momentum spaceC~SU~2!!, and define the wave operator as its action. T
possible such Casimirs are the U(su(2))-invariant functions, which means basically the cla
functions on SU~2!. In our case this just means any function of the trace functiont5t1

11t2
2 . The

one suggested by the noncommutative geometry in the next sections is

E[2P22
4

l2 S 12A12
l2

4
P2D 2

5
4

l2 ~t22! ~27!

and its action onRl
3 is then the wave operatorh on degree zero in Sec. V, but with metric24 in

the time direction. Note thatSt5t for C~SU~2!! so any such wave operator is invariant und
group inversion, which appears as the antipodeSPa52Pa .

A different question we can also ask is about the noncommutative analogs of spherica
monics as functions inRl

3 in the sense of irreducible representationsYl
m under the above action

~21! of the rotation group. We find the~unnormalized! lowest ones forl PZ1 and m52 l ,2 l
11,...,l as

Y0
051,

Y1
6157

1

&
~x16ıx2!, Y1

05x3 ,
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Y2
625~x16ıx2!2, Y2

6157~~x16ıx2!x31x3~x16ıx2!!,

Y2
05

1

A6
~4x3

22~x11ıx2!~x12ıx2!2~x12ıx2!~x11ıx2!!.

Let us note that such spherical harmonics can have many applications beyond their usual
physics. For example, they classify the possible noncommutative differential calculi on the
sical coordinate algebraC~SU~2!! which is dual to the space we study here.

IV. THE FOUR-DIMENSIONAL CALCULUS ON Rl
3

The purpose of this section is to construct a bicovariant calculus on the algebraRl
3 following

the steps outlined in Sec. II, the calculus we obtain being that on the algebra U(su(2)) onsetting
l51. We writeRl

3 as generated byx1 , x2 andh, say, and with the Hopf algebra structure giv
explicitly in terms of the generators as

@h,x6#562lx6 ; @x1 ,x2#5lh, ~28!

and the additive coproduct as before. The particular form of the coproduct, the relations an~17!
show that dj5v(j) for all jPsu(2). Because of the cocommutativity, all ideals inRl

3 are
invariant under adjoint coactions~11! so that first order differential calculiV1 on Rl

3 are classified
simply by the idealsI,ker e. In order to construct an ideal of kere, consider a two-dimensiona
representationr:Rl

3→EndC2, which in the basis$e1 ,e2% of C2 is given by

r~x1!e150, r~x1!e25le1 ,

r~x2!e15le2 , r~x2!e250,

r~h!e15le1 , r~h!e252le2 .

The representationr is a surjective map ontoM2(C), even when restricted to kere. The kernel of
ruker e is a two-sided ideal in kere. Then we have

M2~C![ker e/ker r. ~29!

This isomorphism allows us to identify the basic one-forms with 232 matrices,$ei j %, for i , j
51,2, whereei j is the matrix with 1 in the (i , j ) entry and 0 otherwise. Then the first ord
differential calculus is

V1~Rl
3!5M2~C! ^ Rl

3 .

The exterior derivative operator is

df ~x!5l21( r~ f ~x!(1)2e~ f ~x!(1)!1! f ~x!(2)5ei j ]
i
j~ f !,

where the last equality is a definition of the partial derivatives] i
j :Rl

3→Rl
3 . In particular, we have

dj5l21r~j!, ;jPsu~2!,

which, along with id, span the whole space M2(C) of invariant one-forms. For a general monomi
j1•••jn , the expression of the derivative is

d~j1•••jn!5l21(
k51

n

(
sPS(n,k)

r~js(1)•••js(k)!js(k11)•••js(n) ,
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wheres is a permutation of 1,...,n, such thats(1),¯,s(k) and s(k11),¯,s(n). This
kind of permutation is called a (n,k)-shuffle. And finally, for a~formal power series! grouplike
elementg ~whereDg5g^ g), the derivative is

dg5l21~r~g!2u!g.

On our basis we have

dx15e12, dx25e21, dh5e112e22, u5e111e22.

The compatibility conditions of this definition of the derivative with the Leibniz rule is due to
following commutation relations between the generators of the algebra and the basic one-

x6dx65~dx6!x6 ,

x6dx75~dx7!x61
l

2
~u6dh!,

x6dh5~dh!x67ldx6 ,

hdx65~dx6!h6ldx6 , ~30!

hdh5~dh!h1lu,

x6u5ux61ldx6 ,

hu5uh1ldh.

From these commutation relations, we can see that this calculus is inner, that is, the d
tives of any element of the algebra can be basically obtained by the commutator with the on
u. In the classical limit, this calculus turns out to be the commutative calculus on usual t
dimensional Euclidean space. The explicit expression for the derivative of a general mon
x2

a hbx1
c is given by

d~x2
a hbx1

c !5dhS (
i 50

@~b21!/2# S b
2i 11Dl2ix2

a hb22i 21x1
c D 1uS (

i 51

@b/2# S b
2i Dl2i 21x2

a hb22ix1
c D

1dx1S (
i 50

b S b
i Dl icx2

a hb2 ix1
c21D 1dx2S (

i 50

b S b
i Dl iax2

a21hb2 ix1
c D 1

1

2
~u2dh!

3S (
i 50

b S b
i Dl i 11acx2

a21hb2 ix1
c21D , ~31!

where the symbol@z# denotes the greatest integer less thanz and only terms with>0 powers of
the generators are included. Note that this expression becomes in the limitl→0 the usual expres
sion for the derivative of a monomial in three commuting coordinates.

In terms of the generatorsxa , a51,2,3, which are related to the previous generators by

x15
1

2
~x11x2!, x25

ı

2
~x22x1!, x35

1

2
h,

we have

dxa5 1
2 sa , u5s0 , ~32!
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i.e., the Pauli matrices are nothing other than three of our basic one-forms, and togethe
s05 id form a basis of the invariant one-forms. The commutation relations~30! have a simple
expression:

xadxb5~dxb!xa1
ıl

2
eabcdxc1

l

4
dabu,

~33!

xau5uxa1ldxa .

In this basis the partial derivatives defined by

df ~x!5~dxa!]af ~x!1u
1

c
]0f ~x! ~34!

are related to the previous ones by

] i
j5

1

2
sa

i
j]

a1
1

c
s0

i
j]

0 ~35!

as in ~25!. The exterior derivative of a general monomialx1
ax2

bx3
c is quite complicated to write

down explicitly, but we find it as

d~x1
ax2

bx3
c!5 (

i 50

@a/2#

(
j 50

@b/2#

(
k50

@c/2#

u
l2(i 1 j 1k)21

22(i 1 j 1k) S a
2i D S b

2 j D S c
2kD x1

a22ix2
b22 j x3

c22k

1 (
i 50

@a/2#

(
j 50

@b/2#

(
k50

@~c21!/2#

dx3

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i D S b

2 j D S c
2k11D x1

a22ix2
b22 j x3

c22k21

1 (
i 50

@a/2#

(
j 50

@~b21!/2#

(
k50

@c/2#

dx2

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i D S b

2 j 11D S c
2kD x1

a22ix2
b22 j 21x3

c22k

1 (
i 50

@a/2#

(
j 50

@~b21!/2#

(
k50

@~c21!/2#

ıdx1

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i D S b

2 j 11D
3S c

2k11D x1
a22ix2

b22 j 21x3
c22k211 (

i 50

@~a21!/2#

(
j 50

@b/2#

(
k50

@c/2#

dx1

l2(i 1 j 1k)

22(i 1 j 1k) S a
2i 11D S b

2 j D
3S c

2kD x1
a22i 21x2

b22 j x3
c22k2 (

i 50

@~a21!/2#

(
j 50

@b/2#

(
k50

@~c21!/2#

ıdx2

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i 11D S b

2 j D
3S c

2k11D x1
a22i 21x2

b22 j x3
c22k211 (

i 50

@~a21!/2#

(
j 50

@~b21!/2#

(
k50

@c/2#

ıdx3

l2(i 1 j 1k)11

22(i 1 j 1k)11 S a
2i 11D

3S b
2 j 11D S c

2kD x1
a22i 21x2

b22 j 21x3
c22k

1 (
i 50

@~a21!/2#

(
j 50

@~b21!/2#

(
k50

@~c21!/2#

u
l2(i 1 j 1k)12

22(i 1 j 1k)13 S a
2i 11D S b

2 j 11D
3S c

2k11D x1
a22i 21x2

b22 j 21x3
c22k212

u

l
x1

ax2
bx3

c . ~36!
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In both cases the expression for the derivatives of plane waves is very simple. In ter
generatorsxa , the derivative of the plane waveeı(akaxa5eik•x is given by

deık•x5H u

l S cosS luku
2 D21D1

2ı sin~luku/2!

luku
k•dxJ eık•x. ~37!

One can see that the limitl→0 gives the correct formula for the derivative of plane waves, t
is,

lim
l→0

deık•x5S (
a51

3

ıkadx̄aD eık• x̄5ık•~dx̄!eık• x̄,

where atl50 on the right hand side we have the classical coordinates and the classical one
in usual three-dimensional commutative calculus. In terms of the generatorsx6 , h, the plane
waveeı(k1x11k2x21k0h)5eık•x is given by

deık•x5H u

l
~cos~lAk0

21k1k2!21!1
ı~k1dx11k2dx21k0dh!

lAk0
21k1k2

sin~lAk0
21k1k2!J eik•x.

~38!

This calculus is four-dimensional, in the sense that one has four basic one-forms, bu
dimensions are entangled in a nontrivial way. For example, note that they satisfy the relati

eabcxa~dxb!xc50.

We can see that in the classical limitl→0, the calculus turns out to be commutative and the e
dimension, namely the one-dimensional subspace generated by the one-formu, decouples totally
from the calculus generated by the other three one-forms. The relation between this extra
sion and quantization can also be perceived by considering the derivative of the Casimir op

C5 (
a51

3

~xa!2,

which implies

dC52(
a51

3

~dxa!xa1
3l

4
u.

The coefficient of the term inu is exactly the eigenvalue of the Casimir in the spin1
2 representa-

tion, the same used to construct the differential calculus, and also vanishes whenl→0. We shall
see later that this extra dimension can also be seen as a remnant of the time coordinate
q-Minkowski spaceRq

1,3 when the limitq→1 is taken. A semi-classical analysis on this calcu
can also be made in order to recover an interpretation of time in the three-dimensional no
mutative space.

We can also construct the full exterior algebraV•(Rl
3)5 % n50

` Vn(Rl
3). In our case the genera

braiding25 becomes the trivial flip homomorphism because the right invariant basic one-form
also left invariant. Hence our basic one-forms in M2(C) are totally anticommutative and the
usual antisymmetric wedge product generates the usual exterior algebra on the vector
M2(C). The full V•(Rl

3) is generated by these and elements ofRl
3 with the relations~30!. The

exterior differentiation inV•(Rl
3) is given by the graded commutator with the basic one-formu,

that is,

dv5v∧u2~21!degvu∧v.
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In particular, the basic one-forms M2(C) are all closed, among whichu is not exact. The co-
homologies of this calculus were also calculated giving the following results:

Theorem 4.1:The noncommutative de Rham cohomology ofRl
3 is

H05C.1, H15C.u, H25H35H45$0%.

Proof: This is by direct~and rather long! computation of the closed forms and the exact on
in each degree using the explicit formula~31! on general monomials. To give an example of t
procedure, we will do it in some detail for the case of one-forms of the particular type

v5a~dx1!x2
a hbx1

c 1b~dx2!x2
mhnx1

p 1g~dh!x2
r hsx1

t 1dux2
u hvx1

w ,

and impose dv50. We start analyzing the simplest cases, and then going to more complex
Taking b5g5d50, then

v5a~dx1!x2
a hbx1

c .

The term indx2∧dx1 leads to the conclusion thatc50. Similarly, the term in dh∧dx1 leads to
b50 so that

v5a~dx1!x1
c 5dS 1

c11
x1

c11D ,

which is an exact form, hence belonging to the null cohomology class. The casesa5g5d50 and
a5b5d50 also lead to exact forms. The casea5b5g50 leads to the one-form

v5dux2
u hvx1

w .

The vanishing of the term in dx1∧u implies thatw50, the term in dx2∧u vanishes if and only if
u50 and the term in dh∧u has its vanishing subject to the conditionv50. Hence we have only
the closed, nonexact formu from this case.

Let us now analyze the case with two nonzero terms:

v5a~dx1!x2
a hbx1

c 1b~dx2!x2
mhnx1

p .

The vanishing condition in the term on dx2∧dx1 reads

a(
i 50

b S b
i Dl iax2

a21hb2 ix1
c 5b(

i 50

n S n
i Dl i px2

mhn2 ix1
p21 .

Then we conclude thatb5n, a215m, c5p21 andaa5b(c11). The vanishing of the term in
dh∧dx1 reads

(
i 50

@~b21!/2# S b
2i 11Dl2ix2

a hb22i 21x1
c 5

1

2 (
i 50

b S b
i Dl i 11acx2

a21hb2 ix1
c21 .

The terms in odd powers ofl vanish if and only ifac50. Then the left hand side vanishes if an
only if b50. The casea50 implies thatb50, which reduces to the previous case alrea
mentioned. For the casec50 we haveb5aa so that

v5a~~dx1!x2
a 1a~dx2!x2

a21x1!.

It is easy to see thatv is closed if and only ifa51. But
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~dx1!x21~dx2!x15dS x2x11
l

2
hD2

l

2
u,

which is a form homologous tou. It is a long, but straightforward, calculation to prove that all t
other cases of closed one-forms of the type above rely on these cases. The general cas
more complicated.

The proof that all higher cohomologies are trivial is also an exhaustive analysis of a
possible cases and inductions on powers ofh, as exemplified here for the four-forms: It is cle
that all four-forms

v5dx2∧dh∧dx1∧ux2
mhnx1

p

are closed. We use induction onn to prove that there exists a three-formh such thatv5dh. For
n50, we have

dx2∧dh∧dx1∧ux2
mx1

p 5dS 2
1

m11
dh∧dx1∧ux2

m11x1
p D .

Suppose that there exist three-formshk , for 0<k,n, such that

dx2∧dh∧dx1∧ux2
mhkx1

p 5dhk .

Then

dx2∧dh∧dx1∧ux2
mhnx1

p 5dS 2
1

m11
dh∧dx1∧ux2

m11hnx1
p D

2dx2∧dh∧dx1∧u(
i 51

n S n
i Dl ix2

mhn2 ix1
p

5dS 2
1

m11
dh∧dx1∧ux2

m11hnx1
p 2(

i 51

n S n
i Dl ihn2 i D .

Hence all four-forms are exact. The same procedure is used to show the triviality of the
cohomologies. L

For Rl
3 we should expect the cohomology to be trivial, since this corresponds to S

theorem and many other aspects taken for granted in physics. We find almost this except
generatoru which generates the calculus and which has no three-dimensional classical an
We will see in Sec. VII thatu is a remnant of a time direction even though from the point of vi
of Rl

3 there is no time coordinate. The cohomology result says exactly thatu is an allowed
direction but not d of anything.

V. HODGE * -OPERATOR AND ELECTROMAGNETIC THEORY

The above geometry also admits a metric structure. It is known that any nondege
bilinear formhPL1

^ L1 defines an invariant metric on the Hopf algebraH.18 For the case ofRl
3

we can define the metric

h5dx1^ dx11dx2^ dx21dx3^ dx31mu ^ u ~39!

for a parameterm. This bilinear form is nondegenerate, invariant by left and right coactions
symmetric in the sense that∧(h)50. With this metric structure, it is possible to define a Hod
*-operator and then explore the properties of the Laplacian and find some physical conseq
Our picture is similar to Ref. 9 where the manifold is similarly three-dimensional but there
extra time directionu in the local cotangent space.
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The Hodge*-operator on ann-dimensional calculus~for which the top form is of ordern),
over a Hopf algebraH with metric h is a map* :Vk→Vn2k given by the expression

* ~v i 1
¯v i k

!5
1

~n2k!!
e i 1 ...i ki k11 ...i n

h i k11 j 1
¯h i nj n¯kv j 1

¯v j n2k
.

In the case of the algebraRl
3 , we have a four-dimensional calculus withv15dx1 , v25dx2 ,

v35dx3 , v45u. The components of the metric inverse, as we can see from~39!, areh115h22

5h3351, andh4451/m. The arbitrary factorm in the metric can be set by imposing conditions
the map* 2. Then we have two possible choices for the constantm: The first ism51 making a
four-dimensional Euclidean geometry; then for ak-form v we have the constraint** (v)
5(21)k(42k)v. The second possibility ism521; then the metric is Minkowskian and th
constraint on ak-form v is ** (v)5(21)11k(42k)v. In what follows, we will be using the
Minkowskian convention on the grounds that this geometry onRl

3 is a remnant of a noncommu
tative geometry on aq-deformed version of the Minkowski space, as we shall explain in Sec.
The expressions for the Hodge*-operator are summarized as follows:

* 152dx1∧dx2∧dx3∧u,

* dx152dx2∧dx3∧u,

* dx25dx1∧dx3∧u,

* dx352dx1∧dx2∧u,

* u52dx1∧dx2∧dx3 ,

* ~dx1∧dx2!52dx3∧u,

* ~dx1∧dx3!5dx2∧u,

* ~dx1∧u!5dx2∧dx3 ,
~40!

* ~dx2∧dx3!52dx1∧u,

* ~dx2∧u!52dx1∧dx3 ,

* ~dx3∧u!5dx1∧dx2 ,

* ~dx1∧dx2∧dx3!52u,

* ~dx1∧dx2∧u!52dx3 ,

* ~dx1∧dx3∧u!5dx2 ,

* ~dx2∧dx3∧u!52dx1 ,

* ~dx1∧dx2∧dx3∧u!51.

Given the Hodge*-operator, one can write, for example, the coderivatived5* d* and the
Laplacian operatorD5dd1dd. Note that the Laplacian maps to forms of the same degree.
prefer to work actually with the ‘‘Maxwell-type’’ wave operator

h5dd5* d* d, ~41!
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which is just the same in degree 0 and the same in degree 1 if we work in a gauge whered50. In
the rest of this section, we are going to describe some features of the electromagnetic
arising in this noncommutative context. The electromagnetic theory is the analysis of sol
APV1(Rl

3) of the equationhA5J where J is a one-form which can be interpreted as a ‘‘ph
cal’’ source. We demonstrate the theory on two natural choices of sources, namely an elect
and a magnetic one. We start with spin 0 and we limit ourselves to algebraic plus plane
solutions.

A. Spin 0 modes

The wave operator onV0(Rl
3)5Rl

3 is computed from the definitions above as

h5* d* d5~]a!22
1

c2 ~]0!2,

where the partials are defined by~34!. The algebraic massless modes kerh are given by

~i! polynomials of degree one:f (x)5a1baxa ,
~ii ! linear combinations of polynomials of the typef (x)5xa

22xb
2,

~iii ! linear combinations of quadratic monomials of the type,f (x)5aabxaxb , with aÞb, and
~iv! The three particular combinationsf (x)5x1x2x32(ıl/4) xa

2, for a51,2,3.

General eigenfunctions ofh in degree 0 are the plane waves; the expression for their de
tives can be seen in~37!. Hence

heık•x52
1

l2 H 4 sin2S luku
2 D1S cosS luku

2 D21D 2J eık•x.

It is easy to see that this eigenvalue goes in the limitl→1 to the usual eigenvalue of the Laplacia
in three-dimensional commutative space acting on plane waves.

B. Spin 1 electromagnetic modes

On V1(Rl
3), the Maxwell operatorh15* d* d can likewise be computed explicitly. If we

write A5(dxa)Aa1uA0 for functionsAm , then

F5dA5dxa∧dxb]bAa1dxa∧u
1

c
]0Aa1u∧dxa]aA0.

If we break this up into electric and magnetic parts in the usual way, then

Ba5eabc]
bAc, Ea5

1

c
]0Aa2]aA0.

These computations have just the same form as for usual space–time. The algebraic zero
ker h1 are given by

~i! forms of the typeA5dxa(a1baxa1gaxa
2) with curvature

F5
l

4
gadxa∧u,

~ii ! forms of the typeA5bab(dxa)xb , with aÞb and curvature

F5babdxa∧dxb ,
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~iii ! forms of the typeA5u f with f Pker h. The curvatures for the latter threef (x) shown
above are

F522~dxa∧uxa2dxb∧uxb!,

F5aabS u∧~dxa!xb1u∧~dxb!xa1
ıl

2
eabcu∧dxcD

F52dx1∧uS x2x31
ıl

2
x1D2dx2∧uS x1x32

ıl

2
x2D2dx3∧uS x1x21

ıl

2
x3D2

ıl

2
dxa∧uxa .

These are ‘‘self-propagating’’ electromagnetic modes or solutions of the sourceless Maxwell
tions for a one-form or ‘‘gauge potential’’A.

C. Electrostatic solution

Here we take a uniform source in the ‘‘purely time’’ direction J5u. In this case the solution
of the gauge potential is

A5 1
6 uC,

whereC5(axa
2 is the Casimir operator. The curvature operator, which in this case can be

preted as an electric field, is given by

F5dA5 1
3 ~u∧~dx1!x11u∧~dx2!x21u∧~dx3!x3!.

If u is viewed as a time direction, then this curvature is a radial electric field. It has field stre
increasing with the radius, which is a kind of solution exhibiting a confinement behavior. Th
the correct physical solution for a uniform electric charge density throughout all space pro
this is understood with the correct boundary conditions; if one builds the uniform charge de
by a series of concentric shells about the origin, then, at radiusr , all shells of greater radius
produce no electric field and all shells of smaller radius total a charge proportional tor 3 and hence
a radial electric field of strength proportional tor .

D. Magnetic solution

Here we take a uniform electric current density along a direction vectorkPR3, i.e., J5k
•dx5(akadxa . In this case, the gauge potential can be written as

A5
1

4 H S (
a51

3

kadxaDC1
u

2 S (
a51

3

kaxaD 2 (
a51

3

ka~dxa!xa
2J .

The field strength is

F5dA5 1
2 $dx1∧dx2~k1x22k2x1!1dx1∧dx3~k1x32k3x1!1dx2∧dx3~k2x32k3x2!%. ~42!

If we decompose the curvature in the usual way, then this is a magnetic field in a direck
3x ~the vector cross product!. This is a ‘‘confining’’ ~in the sense of increasing with norm
distance! version of the field due to a uniform current density in directionk, taken with cylindrical
boundary conditions at infinity.

We have considered for the electromagnetic solutions only uniform sourcesJ; we can clearly
put in a functional dependence for the coefficients of the source to similarly obtain other sol
of both the electric and magnetic types. Solutions more similar to the usual decaying
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however, will not be polynomial~one would need the inverse of(axa
2) and are therefore wel

outside our present scope; even at a formal level the problem of computing d((axa
2)21 in a closed

form appears to be formidable. On the other hand, these matters could probably be addre
completing toC* -algebras and using the functional calculus for such algebras.

E. Spin 1
2 equation

For completeness, let us mention here also a natural spin1
2 wave operator, namely the Dira

operator. We consider the simplest~Weyl! spinors as two componentsc iPRl
3 . In view of the fact

that the partial derivatives] i
j already form a matrix, and following the similar phenomenon as

quantum groups,18 we are led to define

~]”c! i5] i
jc

j . ~43!

According to~35! this could also be written as

]”5
1

2
sa]a1

1

c
]0,

where the second term is suggested by the geometry over and above what we might also
This term is optional in the same way as (]0)2 in h is not forced by covariance, and isO(l) for
bounded spatial derivatives.

Here]” is covariant under the quantum double action in Sec. III as follows~the same applies
without the]0 term!. The action ofJa on Rl

3 is that of orbital angular momentum and we ha
checked already thath on degree 0 is covariant. For spin1

2 the total spin should be

Sa5 1
2 sa1Ja , ~44!

and we check that this commutes with]” :

~Sa]”c! i5 1
2 sa

i
j]

j
kc

k1JaMi
jxc j5 1

2 sa
i
jM

j
kxck1@Ja ,Mi

j #xc j1Mi
jJaxc j

5 1
2 Mi

jxsa
j
kc

k1Mi
jJaxc j5Mi

jx~Sac! j5~]”Sac! i ,

where we used the relations~20! ~those withMi
j have the same form! and the action~26!. The

operator]” is clearly also translation invariant underC(SU(2)) since the] i
j mutually commute.

The operatorssa and] i
j also commute since one acts on the spinor indices and the other onRl

3 ,
so Sa in place ofJa still gives a representation ofD(U(su(2))) on spinors, under which]” is
covariant.

F. Yang–Mills U „1… fields

Finally, also for completeness, we mention that there is a different U~1! theory which behaves
more like Yang–Mills. Namely instead ofF5dA as in the Maxwell theory, we defineF5dA
1A∧A for a one-formA. This transforms by conjugation asA°gAg211gdg21 and is a non-
linear version of the above, wheregPRl

3 is any invertible element, e.g., a plane wave. In th
context one would expect to be able to solve for zero-curvature, i.e.,A such thatF(A)50 and
thereby demonstrate the Bohm–Aharanov effect, etc. This is part of the nonlinear theory, ho
and beyond our present scope.

VI. DIFFERENTIAL CALCULUS ON THE QUANTUM SPHERE

In this section we briefly analyze what happens if we try to set the ‘‘length’’ function given
the CasimirC of Rl

3 to a fixed number, i.e., a sphere. We take this at unit radius, i.e., we definSl
2

as the algebraRl
3 with the additional relation
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C[ (
a51

3

~xa!251. ~45!

This immediately gives a ‘‘quantization condition’’ for the constantl if the algebra is to have an
irreducible representation, namelyl5 1/Aj ( j 11) for somej P 1

2Z1 . The image ofSl
2 in such a

spin j representation is a (2j 11)3(2 j 11)-matrix algebra which can be identified with the cla
of noncommutative spaces known as ‘‘fuzzy spheres.’’14,2,5,20,21In these works one does elemen
of noncommutative differential geometry directly on matrix algebras motivated by thinking a
them as a projection of U(su(2)) in thespin j representation, and the greater the spinj→`, the
greater the resemblance with a classical sphere. The role of this in our case is played byl→0
according to the above formula. On the other hand, note that we are working directly onSl

2 and
are not required to look in one or any irreducible representation, i.e., this is a slightly
geometrical approach to ‘‘fuzzy spheres’’ where we deform the conventional geometry ofS2 by a
parameterl and do not work with matrix algebras.

Specifically, when we make the constraint~45!, the four-dimensional calculus given by rela
tions ~33! is reduced to a three-dimensional calculus on the sphere because

dC5 (
a51

3

2~dxa!xa1
3l

4
u50,

which means thatu can be written as an expression on dxa . The remaining relations are given b

xadxb5~dxb!xa1
i

2
leabcdxc2

2

3
dab(

d51

3

~dxd!xd ,

~46!

l2dxa5
4i

3
leabc~dxb!xc2

16

9 (
d51

3

~dxd!xdxa .

In the limit l→0 we recover the ordinary two-dimensional calculus on the sphere, given in t
of the classical variablesx̄a5 liml→0xa . This can be seen by the relation

(
a51

3

~dx̄a!x̄a50,

allowing us to write one of the three one-forms in terms of the other two. For example, i
region wherex̄35A12 x̄1

22 x̄2
2 is invertible, one can write

dx̄352
x̄1

A12 x̄1
22 x̄2

2
dx̄12

x̄2

A12 x̄1
22 x̄2

2
dx̄2 .

VII. THE SPACE Rl
3 AS A LIMIT OF q-MINKOWSKI SPACE

In this section, we will express the noncommutative spaceRl
3 as a spacelike surface o

constant time in a certain scaling limit of the standardq-deformed Minkowski spaceRq
1,3 in Refs.

6, 16, and 15. This is defined in Ref. 15 as the algebra of 232 braided~Hermitian! matrices
BMq(2) generated by 1 and

u5S a b

c dD ,

with the commutation relations
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ba5q2ab,

ca5q22ac,

da5ad,
~47!

bc5cb1~12q22!a~d2a!,

db5bd1~12q22!ab,

cd5dc1~12q22!ca.

If we choose a suitable set of generators, namely,

t̃ 5
qd1q21a

2
, x̃5

b1c

2
, ỹ5

b2c

2i
, z̃5

d2a

2
,

then the braided determinant

det~u!5ad2q2cb ~48!

can be written as

det~u!5
4q2

~q211!2 t̃22q2x̃22q2ỹ22
2~q411!q2

~q211!2 z̃212qS q221

q211D 2

t̃ z̃.

This expression, in the limitq→1, becomes the usual Minkowskian metric onR1,3. Here we will
consider a different scaled limit related to the role of this algebra as braided enveloping alge
a braided Lie algebrasuq(2)̃ ~see Ref. 10 for a recent treatment!. This is such that we can stil
have a noncommutative space even whenq→1. Defining new generators

x15
c

~q2q21!
, x25

b

~q2q21!
, h5

a2d

~q2q21!
, t5

qd1q21a

c~q1q21!
, ~49!

and considering the commutation relations~47!, we have

@x1 ,x2#5q21cth1q21
~q2q21!

~q1q21!
h2,

q22hx15x1h1q22~q1q21!cx1t,

q2hx25x2h2~q1q21!cx2t, ~50!

tx65x6t,

th5ht.

In the limit q→1, we obtain the commutation relations

@xa ,xb#5ıcteabcxc , @xa ,t#50, ~51!

of the so-called homogenized universal enveloping algebra U(su(2))̃, which we will denote by
Rc

1,3. Here c is a parameter required by dimensional analysis~of dimensionms21). When ct
5l we recover exactly the relations~28! of Rl

3 . So the noncommutative space that we ha
studied in previous sections is the ‘‘slice’’ at a certain time ofRc

1,3, which in turn is a contraction
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of Rq
1,3. The possibility of these twoq→1 limits where one gives a classical coordinate alge

and the other gives essentially its dual~an enveloping algebra! is called a ‘‘quantum-geometry
duality transformation.’’

We now go further and also obtain the differential structure onRl
3 via this scaling limit. Thus,

the algebraRq
1,35BMq(2) has a standard Uq(su(2))-covariant noncommutative differential ca

culus whose commutation relations between basic one-forms and the generators of the alge
given by15

ada5q2~da!a,

adb5~db!a,

adc5q2~dc!a1~q221!~da!c,

add5~dd!a1~q221!~db!c1~q2q21!2~da!a,

bda5q2~da!b1~q221!~db!a,

bdb5q2~db!b,

bdc5~dc!b1~12q22!~~dd!a1~da!d!1~q2q21!2~db!c2~223q221q24!~da!a,

bdd5~dd!b1~q221!~db!d1~q2221!~db!a1~q2q21!2~da!b,
~52!

cda5~da!c,

cdb5~db!c1~12q22!~da!a,

cdc5q2~dc!c,

cdd5q2~dd!c1~q221!~dc!a,

dda5~da!d1~q221!~db!c1~q2q21!2~da!a,

ddb5q2~db!d1~q221!~da!b,

ddc5~dc!d1~q221!~dd!c1~q2q21!2~dc!a1~q2221!~da!c,

ddd5q2~dd!d1~q221!~dc!b1~q2221!~db!c2~12q22!2~da!a.

This is designed in theq→1 limit to give the usual commutative calculus on classicalR1,3. In
order to obtain a noncommutative calculus in our noncommutative scaled limitq→1, we have to
also redefine the derivative operator by a scale factor

d5~q2q21!d.

This scaled derivative gives the following expressions for the basic one-forms:

dx15dc5~q2q21!dx1 ,

dx25db5~q2q21!dx2 ,

dh5da2dd5~q2q21!dh.

Define also the basic one-form
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u5qdd1q21da,

which allows us to write

dt5
~q2q21!

c~q1q21!
u. ~53!

This new set of generators and basic one-forms satisfy the following relations:

x1dx15q2~dx1!x1 ,

x1dx25~dx2!x11
q21

~q1q21!
uct1

1

~q1q21!
~dh!ct1O~q2q21!,

x1dh5~dh!x12qdx11O~q2q21!,

x2dx15~dx1!x21
q23

~q1q21!
uct2

~22q22!

~q1q21!
~dh!ct1O~q2q21!,

x2dx25q2~dx2!x2 ,

x2dh5q2~dh!x21q21~dx2!ct1O~q2q21!,

hdx15~dx1!h1q~dx1!ct1O~q2q21!,

hdx25~dx2h!2q~dx2!ct1O~q2q21!,
~54!

hdh5~dh!h1
2q

~q1q21!
uct1O~q2q21!,

x1u5ux11q2~dx1!ct1O~q2q21!,

x2u5ux21q2~dx2!ct1O~q2q21!,

hu5uh1
2q

~q1q21!
~dh!ct1O~q2q21!,

tdx15~dx1!t1O~q2q21!,

tdx25~dx2!t1O~q2q21!,

tdh5~dh!t1O~q2q21!,

tu5ut1O~q2q21!.

In the limit q→1 we recover the relations~30! by settingct5l. Then the calculus onRl
3 can be

seen as the pull-back to the time slice of the scaled limit of the calculus onq-deformed Minkowski
space. Unlike for usualR3, the dt direction in our noncommutative case does not ‘‘decouple’’ a
has remnantu. In other words,the geometry ofRl

3 remembers that it is the pull-back of
relativistic theory.

Finally, let us recall the action of theq-Lorentz group on theRq
1,3 and analyze its scaled limi

when q→1. The appropriateq-Lorentz group can be written as the double cross coprod
Uq(su(2))pUq(su(2)). TheHopf algebra Uq(su(2)) is thestandardq-deformed Hopf algebra
which we write explicitly as generated by 1,X1 , X2 andq6H/2 with
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q6H/2X6q
7H/25q61X6 , @X1 ,X2#5

qH2q2H

q2q21 ,

D~X6!5X6 ^ qH/21q2 H/2
^ X6 , D~q6H/2!5q6H/2

^ q6H/2,

e~X6!50, e~q6H/2!51,

S~X6!52q61X6 , S~q6H/2!5q7H/2. ~55!

It is well known that one may also work with these generators in an R-matrix form

l15S qH/2 0

q2 1/2~q2q21!X1 q2 H/2D , l25S q2 H/2 q1/2~q212q!X2

0 qH/2 D , ~56!

and most formulas are usually expressed in terms of these matrices of generators. In particu
q-Lorentz group has two mutually commuting copies of Uq(su(2)), so let usdenote the genera
tors of the first copy bym6 or Y6 ,G @related as forl6 andX6 ,H in ~56!# and the generators o
the second copy of Uq(su(2)) by n6 or Z6 ,T ~similarly related!. The actions onRq

1,3 are given in
Ref. 15 in an R-matrix form

n6k
lxui

j5^n6k
l ,tm

j&u
i
m , m6k

lxui
j5^Sm6k

l ,t i
m&um

j . ~57!

Here^Sm6k
l ,t i

j& and^n6k
l ,t i

j& are thei , j matrix entries of the relevant functions ofY6 ,G and
Z6 ,T, respectively, in the Pauli matrix representation@as in~9! in other generators#. We need the
resulting actions more explicitly, and compute them as

qG2q2G

q2q21 xS h x2

x1 t D 5S 2
2ct

q2q21 2
q2q21

q1q21 h 2x2

x1

q2q21

q1q21 t2
q2q21

c~q1q21!2 h
D ,

Y1xS h x2

x1 t D 5S 2qx1 2
qct

q2q21 1
h

q1q21

0 2
q2q21

c~q1q21!
x1

D , ~58!

Y2xS h x2

x1 t D 5S q21x2 0

2
q21ct

q2q21 2
h

q1q21 2
q2q21

c~q1q21!
x2
D ,

qT2q2T

q2q21 xS h x2

x1 t D 5S 2ct

q2q21 1
q2q21

q1q21 h 2x2

x1 2
q2q21

q1q21 t1
q2q21

c~q1q21!2 h
D ,

Z1xS h x2

x1 t D 5S 2x1

ct

q2q21 1
qh

q1q21

0
q~q2q21!

c~q1q21!
x1

D , ~59!
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Z2xS h x2

x1 t D 5S x2 0

ct

q2q21 2
q21h

q1q21

q21~q2q21!

c~q1q21!
x2
D .

We are now able to see that these actions~58! and~59! blow up in the limitq→1 because of some
singular terms appearing in their expressions. Hence the scaling limitRc

1,3 is no longer Lorentz
invariant.

On the other hand, we also have the same quantum group symmetry in an isomorphi
BSUq(2)’Uq(su(2)) for qÞ1, and this version survives. The braided algebra BSUq(2) here is
simply the braided matrices BMq(2) with the additional conditiondet(u)51 ~i.e., geometrically,
it is the mass-hyperboloid inq-Minkowski space!. To be clear, the generators of BSUq(2) in this
crossed product will be denoted byū and the generators of Uq(su(2)) in this cross product will be
denoted byl6 or X6 ,H as before. The isomorphism with theq-Lorentz group in the form above
is given by the assignments15

ū^ 1°m1S~m2! ^ 1, 1^ l6°m6
^ n6. ~60!

Under the isomorphism~60!, the expressions~58! and ~59! become the action o
BSUq(2)’Uq(su(2)) on BMq(2) given by

ūxu5m1S~m2!xu, l6xu5m6x~n6xu!.

On the generators~49! the action of BSUq(2) reads

ū1
1xh52ct1qh2

q~q2q21!

q1q21 h,

ū1
1xx15qx1 ,

ū1
1xx25q21x2 ,

ū1
1xt5

q21q22

q1q21 t2
~q2q21!2

c~q1q21!2 h,

~61!
ū2

1xh5q22~q2q21!x2

ū2
1xx152q22ct2

q21~q2q21!

q1q21 h,

ū2
1xx250,

ū2
1xt52

q2q21

q1q21 t1
q21~q2q21!2

c~q1q21!2 h,

ū1
2xh52~q2q21!x1 ,

ū1
2xx150,

ū1
2xx252ct1

q~q2q21!

q1q21 h,
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ū1
2xt52

q~q2q21!

q1q21 t1
~q2q21!2

c~q1q21!2 h,

~62!

ū2
2xh5ct1qh2q21~q2q21!ct2

q21~q2q21!2q22~q2q21!2

q1q21 h,

ū2
2xx15q21x11q21~q2q21!2x1 ,

ū2
2xx25qx2 ,

ū2
2xt5

2t

q1q21 1
~q2q21!2

q1q21 t
~q2q21!22q21~q2q21!3

c~q1q21!2 h.

The action of Uq(su(2)) is given by

qH2q2H

q2q21 xS h x2

x1 t D 5S 0 2~q1q21!x2

~q1q21!x1 0 D ,

X1xS h x2

x1 t D 5S 2q~q1/21q21/2!x1 q1/2h

0 0 D , ~63!

X2xS h x2

x1 t D 5S q21/2~q1q21!x2 0

2q21/2h 0D .

In the limit q→1, the crossed product BSUq(2)’Uq(su(2)) becomes the doubleD(U(su(2))
5C(SU(2))’U(su(2)) asstudied in Sec. III. The elementsūj

i become in the limit thet j
i , andX6

andH become the usualsu(2) generators equivalent to theJa there.~More precisely, we should
mapū j

i to Stj
i for the action to become the right coregular one which we viewed in Sec. III as a

coaction.! Finally, this action of the double on BMq(2) thus becomes in the scaling limitq→1 an
action ofD(U(su(2)) on Rc

1,3 in the form

@x1 ,x2#52cth, @h,x6#56ctx6 ,

with the same change of variables toxa as in Sec. IV. The result is

Mi
jxt50, Mi

jxxa5
ct

2l
sa

i
j , Jaxt50, Jaxxa5ıeabcxc .

This is consistent with the time slicect5l and gives the action of the quantum double in Sec.
as in fact the nonsingular version of scaled limit of theq-Lorentz symmetry on theq-Minkowski
space.

One can also analyze a different time slice ofRq
1,3, namely, the quotient obtained by imposin

the conditionct5q21q2221. This algebra is the reduced braided algebra BMq(2)red, see Ref.
10, with commutation relations

x1x25x2x11q21~q21q2221!h1
~q2q21!

~q1q21!
h2,

q22hx15x1h1q22~q21q2221!~q1q21!x1 ,

q2hx25x2h2~q21q2221!~q1q21!x2 .
                                                                                                                



a,
n

com-
plain
n to a

when
to
of the

utative

rmal
for
that
ysical

ll as

f the
rtainly

bra
lassi-

howed
proxi-

pin

132 J. Math. Phys., Vol. 44, No. 1, January 2003 E. Batista and S. Majid

                    
This is also known in the literature as the ‘‘Witten algebra’’13,23 and in a scaled limitq→1 it
likewise turns into the universal enveloping algebra U(su(2)). A calculus on this reduced algebr
however, is not obtained from the calculus given by relations~52!; consistency conditions result i
the vanishing of all derivatives da, db and dc ~note that the constraint ont allows one to writed
in terms of the other generators!.

VIII. QUANTUM MECHANICAL INTERPRETATION AND SEMICLASSICAL LIMIT OF Rl
3

Finally, we turn to the important question of how to relate expressions in the above non
mutative geometry to ordinary numbers in order to compare with experiment. We will first ex
why a normal ordering postulate as proposed in Ref. 3 is not fully satisfactory and then tur
quantum mechanical approach. Thus, one idea is to write elements ofRl

3 as: f (x): where
f (x1 ,x2 ,x3) is a classical function defined by a powerseries and : : denotes normal ordering
we use noncommutative variablesxi . If one sticks to this normal ordering, one can use it
compare classical with quantum expressions and express the latter as a strict deformation
former controlled by the parameterl governing the noncommutativity in~28!. This will extend to
the rest of the geometry and allows an order-by-order analysis. For example, the noncomm
partial derivatives]a defined in~34! have the expressions to lowest order

]1 : f ~x!: 5 : ]̄1f ~x!:1
ıl

2
]̄2]̄3f ~x!,

]2 : f ~x!: 5 : ]̄2f ~x!:2
ıl

2
]̄1]̄3f ~x!,

~64!

]3 : f ~x!: 5 : ]̄3f ~x!:1
ıl

2
]̄2]̄2f ~x!,

1

c
]0 : f ~x!: 5

l

4
~~ ]̄1!2f ~x!1~ ]̄2!2f ~x!1~ ]̄3!2f ~x!!,

where ]̄a are the usual partial derivatives in classical variables and we do not write the no
ordering on expressions alreadyO(l) since the error is higher order. Note that the expression
(1/c) ]0 is one order ofl higher than the other partial derivatives, which is another way to see
this direction is an anomalous dimension originating in the quantization process. The ph
problem here is that the normal ordering is somewhat arbitrary; for algebras such as~1! or for
usual phase space, putting allt to one side makes a degree of sense physically, as we
mathematically because the algebra is solvable. But in the simple case such asRl

3 , each of thex1 ,
x2 , x3 should be treated equally. Or one could use other coordinates such asx2 , h, x1 in keeping
with the Lie algebra structure, etc.; all different ordering schemes giving a different form o
lowest order corrections and hence different predictions. Choosing a natural ordering is ce
possible but evidently would require further input into the model.

On the other hand, we can take a more quantum mechanical line and consider our algeRl
3

as, after all, a spin system. The main result of this section is to introduce ‘‘approximately c
cal’’ states’u j ,u,f& for this system inspired in part by the theorem of Penrose19 for spin networks,
although not directly related to that. Penrose considered networks labeled by spins and s
how to assign probabilities to them and conditions for when the network corresponds ap
mately to spin measurements oriented with relative anglesu,f. In a similar spirit we consider the
problem of reconstructing classical angles from the noncommutative geometry.

We let V( j ) be the vector space which carries a unitary irreducible representation of sj
P 1

2Z1 , generated by statesu j ,m&, with m52 j ,...,j such that

x6u j ,m&5lA~ j 7m!~ j 6m11!u j ,m61&,
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hu j ,m&52lmu j ,m&.

The projection ofRl
3 to an irreducible representation of spinj is geometrically equivalent to a

restriction to a fuzzy sphere,5,14 because the value of the Casimirx•x is l2 j ( j 11) in this repre-
sentation. We have discussed this in Sec. VI, where we setx•x51 and considered the algebr
geometrically as such a fuzzy sphere under a quantization condition forl. By contrast in this
section we leavex•x unconstrained and consider the geometry of our noncommutative th
dimensional spaceRl

3 as the sum of geometries on all fuzzy spheres with theV( j ) representation
picking out the one of radius;l j . Thus we use the Peter–Weyl decomposition ofC(SU2) into
matrix elements of irreducible representations regarded as functions on SU2, which gives~up to
some technical issues about completions! a similar decomposition for its dual asRl

3

5 % jEnd(V( j )). This also underlies the spherical harmonics in Sec. III.
Next, for each fixed spinj representation we look for normalized statesu j ,u,f& parametrized

by 0<u<p and 0<w<2p, such that

^ j ,u,wux1u j ,u,w&5r sinu cosw,

^ j ,u,wux2u j ,u,w&5r sinu sinw, ~65!

^ j ,u,wux3u j ,u,w&5r cosu,

wherer is some constant~independent ofu,f! which we do not fix. Rather, in the space of su
states and possibler>0, we seek to minimize the normalized variance

d5
^x•x&2^x&•^x&

^x&•^x&
, ~66!

where^ &5^ j ,u,fu u j ,u,f& is the expectation value in our state and we regard^xa& as a classical
vector in the dot product. Thus we seek states which are ‘‘closest to classical.’’ This is a
strained problem and leads us to the following states:

u j ,u,w&5 (
k51

2 j 11

22 jAS 2 j
k21D ~11cosu!~ j 2k11!/2~12cosu!~k21!/2eı(k21)wu j , j 2k11&. ~67!

These obeŷ j ,u,fu j ,u,f&51 and~65!–~66! with

r 5A^x&•^x&5l j , d5
1

j
. ~68!

We see that in these states the ‘‘true radius’’u^x&u is l j . The square root of the Casimir does n
give this true radius since it contains also the uncertainty expressed in the variance of the p
operators, but the errord vanishes asj→`. Thus the larger the representation, the more
geometry resembles to the classical.

We can therefore use these statesu j ,u,f& to convert noncommutative geometric functio
f (x) into classical ones in spherical polar coordinates defined by

^ f &~r ,u,f![^ j ,u,fu f ~x!u j ,u,f&, ~69!

wherer 5l j is the effective radius. If we start with a classical functionf and insert noncommu
tative variables in some order, then^ f (x)& ~which depends on the ordering! looks more and more
like f (^x&) as j→` and l→0 with the product fixed to an arbitraryr . As an example, the
noncommutative spherical harmonicsYl

m in Sec. III are already ordered in such a way th
replacing the noncommutative variables by the expectation values^xa& gives something propor
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tional to the classical spherical harmonics. On the other hand,^Yl
m& vanish for l .2 j and only

approximate the classical ones for lowerl . Moreover, in view of the above, we expect

^] i f &5 ]̄ i^ f &1OS l,
1

j D , ~70!

wherer 5 j l and ]̄ i are the classical derivatives in the polar form

]̄15sinu cosw
]

]r
1

1

r
cosu cosw

]

]u
2

1

r
sinu sinw

]

]w
,

]̄25sinu sinw
]

]r
1

1

r
cosu sinw

]

]u
1

1

r
sinu cosw

]

]w
,

]̄35cosu
]

]r
2

1

r
sinu

]

]u
,

where we understand]/]r 5 (1/l)(]/] j ) on expectation values computed as functions ofj . More
precisely, one should speak in terms of the joint limit as explained above withl j 5r a continuous
variable in the limit. We note finally that the star product forRl

3 as in Ref. 11 suggests that
should be possible to extend such a semiclassical analysis to all orders.
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APPENDIX: 2-D AND 3-D CALCULI ON Rl
3

It might be asked why we need to take a four-dimensional calculus onRl
3 and not a smaller

one. In fact, bicovariant differential calculi on enveloping algebras U(g) such asRl
3>U(su(2))

have been essentially classified18 and in this appendix we look at some of the other possibilities
our model. In general the co-irreducible calculi~i.e., having no proper quotients! are labeled by
pairs (Vr ,L), with r:U(g)→EndVr an irreducible representation of U(g) andL a ray in Vr . In
order to construct an ideal in kere, take the map

rL :U~g!→Vr , h°r~h!•L.

It is easy to see that kerrL is a left ideal in kere. Then, ifrL is surjective, the space of one-form
can be identified withVr5ker e/ker rL . The general commutation relations are

av5va1r~a!•v, ~A1!

and the derivative for a general monomialj1¯jn is given by the expression

d~j1¯jn!5 (
k51

n

(
sPS(n,k)

rL~js(1)¯js(k)!js(k11)¯js(n) ,

the sum being over all (n,k) shuffles.
We explore some examples of co-irreducible calculi for the universal enveloping algebrRl

3 ,
generated byx6 andh satisfying the commutation relations~28!. First, let us analyze the three
dimensional, co-irreducible calculus onRl

3 by takingVr5C3, with basis

e15S 1
0
0
D , e05S 0

1
0
D , e25S 0

0
1
D .
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In this basis, the representationr takes the form

r~x1!5lS 0 2 0

0 0 1

0 0 0
D , r~x2!5lS 0 0 0

1 0 0

0 2 0
D , r~h!5lS 2 0 0

0 0 0

0 0 22
D .

We choose, for example,L5e0 . The space of one-forms will be generated by the vectorse1 , e2

ande0 . The derivatives of the generators of the algebra are given by

dx15l21r~x1!•e052e1 , dx25l21r~x2!•e052e2 , dh5l21r~h!•e050.

The commutation relations between the basic one-forms and the generators can be deduc
~A1! giving

x1e15e1x1 ,

x1e05e0x112le1 ,

x1e25e2x11le0 ,

x2e15e1x21le0 ,

x2e05e0x212le2 , ~A2!

x2e25e2x2 ,

he15e1h12le1 ,

he05e0h,

he25e2h22le2 .

The expression for the derivative of a general monomialx1
a x2

b hc is

d~x1
a x2

b hc!52ae1x1
a21x2

b hc12be2x1
a x2

b21hc12labe0x1
a21x2

b21hc

14l2a~a21!be1x1
a22x2

b21hc. ~A3!

We define the exterior algebra by skew-symmetrizing and, using similar methods as in Sec.
compute the cohomologies as

H05C@h#, H15e0C@h#, H25H35$0%.

This calculus is a three-dimensional calculus but we have introduced an isotropy by choosL,
and related to this all functions ofh are killed by d, which is why the cohomology is large. Th
is why we do not take this calculus even though it has the ‘‘obvious’’ dimension. There is the
problem if we choose any other directionL.

We can also have a two-dimensional coirreducible calculus on U(su(2)) using thenVr

5C2, with basis

e15S 1
0D , e25S 0

1D .

In this basis, the representationr takes the form
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r~x1!5lS 0 1

0 0D , r~x2!5lS 0 0

1 0D , r~h!5lS 1 0

0 21D .

ChoosingL5e1 , the space of one-forms will be generated bye1 ande2 and the derivatives of the
generators of the algebra are given by

dx15l21r~x1!•e150, dx25l21r~x2!•e15e2 , dh5l21r~h!•e15e1 .

The commutation relations between the basic one-forms and the generators are then

x1e15e1x1 ,

x1e25e2x11le1 ,

x2e15e1x21le2 ,
~A4!

x2e25e2x2 ,

he15e1h1le1 ,

he25e2h2le2 .

And the derivative of a monomialx2
a hbx1

c is given by

d~x2
a hbx1

c !5e1S (
i 50

b S b
i Dl i 21x2

a hb2 ix1
c D 1e2S (

i 50

b

~21! i S b
i Dl iax2

a21hb2 ix1
c D . ~A5!

The cohomology of this calculus comes out as

H05C@x1#, H15H25$0%.

Here again d vanishes on all functions ofx1 , which is related to our choice ofL. On the other
hand, this calculus motivates us similarly to take forr the tensor product of the spin12 represen-
tations and its dual. In this tensor product representation there is a canonical choice ofL, namely
the 232 identity matrix. This solves the anisotropy and kernel problems and this is the cal
that we have used onRl

3 as the natural choice in our situation. The above spinorial ones
coirreducible quotients of it.
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Chern–Simons field theories with non-semisimple gauge
group of symmetry

Franco Ferraria)
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The subject of this work is a class of Chern–Simons field theories with non-
semisimple gauge group, which may well be considered as the most straightforward
generalization of an Abelian Chern–Simons field theory. As a matter of fact, these
theories, which are characterized by a non-semisimple group of gauge symmetry,
have cubic interactions like those of non-Abelian Chern–Simons field theories, but
are free from radiative corrections. Moreover, at the tree level in the perturbative
expansion, there are only two connected tree diagrams, corresponding to the propa-
gator and to the three vertex originating from the cubic interaction terms. For such
theories it is derived here a set of BRST invariant observables, which lead to metric
independent amplitudes. The vacuum expectation values of these observables can
be computed exactly. From their expressions it is possible to isolate the Gauss
linking number and an invariant of the Milnor type, which describes the topological
relations among three or more closed curves. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1525049#

I. FOREWORD

In several situations it has been experimentally observed that the topological proper
certain physical systems may influence their behavior to a relevant extent. This is, for instan
case of vortex structures in nematic liquid crystals1 and in 3He superfluids.2 Other examples are
provided by polymers3 or by the lowest lying excitations of two-dimensional electron gases, w
have topological nontrivial configurations at some filling fractions.4 In the investigation of phe-
nomena related to the presence of topological constraints in physical systems, the use of q
or statistical mechanical models coupled to Abelian Chern–Simons~C-S! field theories5 has been
particularly successful. One reason of this success is the fact that Abelian models do not re
complex mathematical treatment as their non-Abelian counterparts do, and thus their ph
meaning is more transparent.

Motivated by applications in polymer physics6–8 the aim of this work is the construction o
topological field theories with nontrivial cubic interactions similar to those of non-Abelian
field theories, but which still retain the simplicity of the Abelian case. For this purpose, sui
candidates are C-S field theories with non-semisimple group of gauge symmetry. Roughly
ing, Lie algebras associated to non-semisimple groups contain nontrivial Abelian ideals, s
one could expect on this ground that at least part of the observables of these theories shou
‘‘Abelian’’ characteristics.

Chern–Simons field theories and, more in general, gauge field theories with non-semi
groups of symmetry have been already proposed in Refs. 9 and 10. Here it is picked up a pa
class of such theories with the main property of being free from radiative corrections. Also
tree level in the perturbative expansion several simplifications occur and it is possible to sho
there are only two connected diagrams, the propagators and the three vertices correspondin
fields’ self-interactions. This situation is reminiscent of that of an Abelian field theory, in w
there is just one connected diagram, namely the propagator. Most interestingly, the theori

a!Electronic mail: ferrari@univ.szczecin.pl
1380022-2488/2003/44(1)/138/8/$20.00 © 2003 American Institute of Physics
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cussed in this work admit a set of observables which resemble Abelian Wilson loops and l
metric independent amplitudes. With respect to standard Wilson loops, these observables
extra terms, which are required to enforce BRST invariance. From their vacuum expec
values, which are computed exactly, it is possible to isolate a topological invariant, whic
scribes the topological properties of three or more closed loops.

The material presented in this article is divided as follows. In Sec. II a class of C-S
theories with non-semisimple group of symmetry is introduced, which consists in a set of Ab
BF models11 coupled together by cubic interaction terms. The BRST quantization of these the
is discussed using the covariant gauge of Lorentz in order to fix gauge invariance. Furthe
shown that radiative corrections are absent and that there are only two connected Feynm
grams at the tree level. The case of manifolds with nontrivial topology, in which zero modes
appear, is discussed in Sec. III. It is shown that zero modes generate large gauge transfor
which leave invariant the action and the equations of motion of the theories under conside
In this way, it becomes possible to treat zero modes as gauge degrees of freedom and to
them away, as advocated in Ref. 12. In Sec. IV a set of BRST invariant observables is deriv
their vacuum expectation values are computed. Finally, the conclusions and a possible p
application of the results contained in this work are presented in Sec. V.

II. CHERN–SIMONS FIELD THEORIES WITH NON-SEMISIMPLE GROUP OF SYMMETRY

Let us consider a class of Chern–Simons field theories with action:

S5E
M

V i I e
mnrS Bm

I ]nAr
i 1

l

6
f jk

I Am
i An

j Ar
kD , ~1!

where i, I 51,...,N and V I i denotes a nondegenerate bilinear form. Summation over repe
indices is everywhere understood. The theory is defined on a three-dimensional manifM
without boundary and equipped with a Euclidean metric. For simplicity, we assume for the
ment that all the de Rham cohomology groupsHn(M ) are trivial, so that the problem of harmon
zero modes does not appear. We will discuss zero modes in the next section.

The action~1! is invariant under the following gauge transformations:

Am
i →Am

i 1]mh i , ~2!

Bm
I →Bm

I 1]mu I2l f i j
I S h i]mh j

2
1h iAm

i D ~3!

for arbitrary functionsh i and u I . The above transformations correspond to a non-semisim
group of symmetry. The related generatorsXi and HI satisfy the following non-semisimple Lie
algebra:

@HI ,HJ#5@HI ,Xj #50, @Xi ,Xj #5 f i j
I HI ~4!

with structure constantsf i j
I . This Lie algebra consists in an Abelian Lie algebrag with a central

extension by an Abelian grouph. The generators ofg andh are theXi andHI ’s, respectively. Let
us denote with the symbolsG andH respectively the associated Abelian Lie groups. The ma
V I i appearing in~1! is the generalization of the Killing form to the case of non-semisimple gro
Theories such as those discussed here have been already proposed in Refs. 9 and 1
applications of non-semisimple Lie algebras can be found in Refs. 13 and 14.

To eliminate the gauge freedom of the action~1!, we introduce the covariant gauge condition

]mAm
i 5]mBm

I 50. ~5!
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The theory can now be quantized using the procedure of BRST quantization. The BRST tra
mations associated to the gauge transformations~2! and ~3! are given by

dAm
i 5]mci , ~6!

dBm
I 5]mj I1l f i j

I Am
i cj , ~7!

dj I5
l

2
f i j

I cicj , ~8!

dci50, ~9!

d c̄i5 iai , dai50, ~10!

dj̄ I5 ibI , dbI50, ~11!

whereci , j I and c̄i , j̄ I are anticommuting ghosts, whileai , bI are scalar fields. It is possible t
verify that the transformations~6!–~11! are nilpotent, i.e.,d250.

At this point, one can write the expression of the gauge fixed BRST invariant action:

SBRST5S1Sg f1SFP, ~12!

whereS is given by Eq.~1!, while the gauge fixing and Fadeev–Popov terms are respective

Sg f5 i E
M

d3x @ai]
mAm

i 1bI]
mBm

I #, ~13!

SFP5E
M

d3x @]mc̄i]
mci1]mj̄ I~]mj I1l f i j

I Am
i cj !#. ~14!

The combinationSg f1SFP amounts to a BRST exact variation as expected:

Sg f1SFP52dE
M

@ c̄i]
mAm

i 1 j̄ I]
mBm

I #. ~15!

Thus, the gauge fixing and Faddeev–Popov terms do not spoil the topological properties
original action~1!.

Let us note that the fieldsBm
I andj I play in ~12! the role of pure Lagrange multipliers, whic

constrain the fieldsAm
i and j̄ I in such a way that all possible radiative corrections vanish ide

cally. In particular, the interaction term in the ghost action~14! disappears after an integration ov
the fieldsj I , which gives as a result the constraints

]m]mj̄ I50. ~16!

Choosing suitable boundary conditions for which thej̄ I ’s do not diverge at infinity, the above
equation is satisfied only for constant fieldsj̄ I . The integration over the fieldsBm

I leads instead to
the flatness conditions:

V I i e
mnr]nAr

i 50. ~17!

The above equations determine the transverse components of the fieldsAr
i , while the longitudinal

components are fixed by the gauge fixing~13!.
Since radiative corrections are absent, the theory~12! is purely classical. Thus, contrarily t

what happens for instance in the case of Chern–Simons theories with gauge group SU(N), there
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is no rescaling of the Chern–Simons coupling constants, which here have been set equal
Also at the classical level several simplifications occur and in practice the theory admits on
two connected Feynman diagrams shown in Fig. 1. These diagrams correspond to the field
gators and to the three-vertex associated to the cubic interaction term present in Eq.~12!. Higher
order tree diagrams, which could in principle be constructed by contracting together the le
many three-vertices, are actually ruled out due to the off-diagonal structure of the propag
which forbids any self-interaction among the fieldsAm

i .
Due to the fact that the theory is purely classical, its partition function can be exactly de

once the classical solutions of the field equations are known. With a simple integration
possible to eliminate the fieldsBm

I and the ghosts. As an upshot, one obtains the constraints~16!
and ~17!. These constraints and the gauge fixing relations are enough to determine unique
remaining fields. If the theory is defined for instance on a manifold with flat metric, the solu
of the constraints~17! are simplyAm

i 50, so that the partition function is the trivial one.

III. THE ZERO MODE PROBLEM

In this section we consider the case in which the fields admit nontrivial classical confi
tions, the so-called harmonic zero modes. We can ignore possible zero modes in the sector
ghost fields and of the Lagrange multipliersai , bI , because these zero modes are not used in
gauge fixing procedure. We are thus left only with the zero modes of the fieldsAm

i , Bm
I , which we

denote with the symbolsam
i and bm

I , respectively. From the action~1! one finds the relevan
equations of motion which defineam

i andbm
I :

emnr]nAr
i 50, ~18!

emnr]nBr
I 1

l

2
emnr f jk

I An
j Ar

k50. ~19!

The general solution of Eq.~18! is

Am
i 5am

i 1]mh i , ~20!

where]mh i is an exact differential, whileam
i is a nontrivial Abelian flat connection correspondin

to the Abelian subgroup of the underlying gauge group. Let us consider now Eq.~19!. This
relation can be rewritten as follows:

emnr]nBr
I 5JIm ~21!

with the currentJIm given by

JIm52
l

2
emnr f jk

I An
j Ar

k . ~22!

Equation~18! implies thatJIm is purely transverse, i.e.,]mJIm50. Using this fact, it is possible to
show that Eq.~19! is solved by

FIG. 1. Feynman rules corresponding to the action~12!. Dashed lines propagateBm
I fields while solid lines are associate

to Am
i fields.
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Bm
I 5E

M
d3yGmn~x,y!JIn~y!1bm

I 1]mh I , ~23!

whereGmn(x,y) is the propagator of the theory in the Lorentz gauge~5! andbm
I is a nontrivial flat

connection satisfying the flatness conditionemnr]nbr
I 50. We remember that the fieldsBm

I are pure
Lagrange multipliers imposing the constraints~18! on the fieldsAm

i . It is easy to check that the
presence or not of the termbr

I does not affect these constraints nor the other equations of mo
so that one can putbm

I 50 without any loss of generality.
A possible strategy to treat harmonic zero modes is to consider them as gauge deg

freedom and to gauge them away using BRST techniques. This approach has been prop
Polyakov in Ref. 12 and further developed in Ref. 15. An application to the BF-systems c
found in Ref. 16. In order to check if it is possible to translate the zero mode problem in a g
fixing problem also in the present case, the crucial point is to verify the invariance of the t
~1! under large gauge transformations. As a matter of fact, theam

i ’s generate large gauge tran
formations, consisting in multivalued mapping of the manifoldM onto the elements of the Abelia
group which corresponds to the Lie algebraG defined after Eq.~4!.

To express the large gauge transformations acting on the fields in a closed form, it is c
nient to introduce potentialsL i such that

]mL i5am
i . ~24!

These potentials, which will be in general multivalued on the manifoldM, are the analogous of th
functionsh i appearing in the gauge transformations~2! and ~3!. In terms of theL i ’s, the large
gauge transformations induced by the harmonic modesam

i are given by

Am
i →Am

i 1]mL i , ~25!

Bm
I →Bm

I 2l f i j
I S L i]mL j

2
1L iAm

j D . ~26!

Actually, the full transformations of the fieldsBm
I are not necessary in order to discuss the ga

invariance of the actionS and of the equations of motion. As a matter of fact, apart from a t
derivative, the action~1! can be rewritten as follows:

S5E
M

d3x V I i e
mnrAm

i F]nBr
I 1

l

6
f jk

I An
j Ar

kG . ~27!

Thus, only the transformations of the pseudo-tensorsemnr]nBr
I are needed:

emnr]nBr
I →emnr]nBr

I 2
l

2
emnr f jk

I ~]nL j]rLk12L j]nAr
k12]nL jAr

k!. ~28!

At this point we are ready to perform a large gauge transformation of the kind~25!–~28! in the
actionS. Since the right-hand side of Eq.~28! has an explicit dependence on the potentialsL i , the
gauge transformed action will contain multivalued contributions. However, it is easy to prove
all these contributions vanish identically due to the following identities, valid up to total deriva
terms which are irrelevant on a manifold without boundary:

E
M

d3x V I i e
mnr f jk

I Am
i ]rAn

j Lk52
1

2 EM
d3x V I i e

mnr f jk
I Am

i An
j ar

k , ~29!

E
M

d3x V I i e
mnr f jk

I am
i ]rAn

j Lk52E
M

d3x V I i e
mnr f jk

I am
i An

j ar
k . ~30!
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Another important identity, which follows from the fact that theam
i ’s satisfy the classical equa

tions of motion~18!, is

E
M

d3x V I i e
mnr f jk

I am
i an

j ar
k5E

M
d3x V I i e

mnr f jk
I ]mL i]nL j]rLk50. ~31!

With the help of the relations~29!–~31! it is possible to verify the invariance of the actionSunder
large gauge transformations as desired.

One can also check that the gauge transformations~25! and ~28! preserve the form of the
equations of motion~18! and~19!. After a gauge transformation, in fact, one obtains the follow
result:

emnr]nAr
i 50, ~32!

emnr]nBr
I 1

l

2
emnr f jk

I ~An
j Ar

k22]nAr
kL j !50. ~33!

The spurious term proportional toL j in Eq. ~33! vanishes identically due to Eq.~32!.

IV. OBSERVABLES AND WILSON-LOOP-LIKE AMPLITUDES

Good observables of a topological field theory should be BRST invariant and lead to va
expectation values which are metric independent.

To derive a set of observables for the theory under consideration, we first observe th
following quantity is invariant under the BRST transformations~6!–~11!:

TI~G!5 R
G
dxm Bm

I 1
l

4p
f i j

I R
G
dxm Am

i E d3y
1

ux2yu
]y

rAr
j ~y!

1
l

2~4p!2 f i j
I R

G
dxmE d3y S ]m

x 1

ux2yu D ]y
rAr

i ~y!E d3z
1

ux2zu
]z

sAs
j ~z!. ~34!

In the above formula as well as in the rest of this article, it has been assumed for simplicit
the manifoldM coincides with the three-dimensional Euclidean spaceR3. The form ofTI(G) has
been obtained starting from the line integralrGdxmBm

I and adding suitable terms in order to ma
it gauge and BRST invariant. At this point, forM loopsGa, a51,...,M , it is possible to write down
analogs of the holonomic connections as follows:

W~C̄!5eiCaIT
I (Ga), ~35!

whereC̄ is a matrix having as elements constant parametersCaI .
We note thatW(C̄) is of the form

W~C̄!5expF iCaI R
Ga

dxmBm
I 1E d3xx i~x!]mAm

i ~x!G . ~36!

All contributions coming from the various line integrals which are present on the right-hand
of Eq. ~34! are now contained in the scalarsx i(x). As a consequence of Eq.~36!, even ifW(C̄)
is manifestly metric dependent, a metric variation of this observable can always be compe
by a shift of the Lagrange multipliersai which impose the gauge condition in the action~12!.
Thus, the vacuum expectation values of the operatorsW(C̄) lead to metric independent amplitude
as required.
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When computing the vacuum expectation value^W(C̄)& of the operator~34!, several simpli-
fications occur. One reason is that the fieldsAm

i are unaffected by the cubic interactions presen
the action~12!, because they can be contracted only with the fieldsBm

I due to the off-diagonal
form of the kinetic terms. On the other hand, as already mentioned, the fieldsBm

I behave as
Abelian fields and act as Lagrange multipliers, which impose the conditions

V I i e
mnr]nAr

i ~x!1 (
a51

M

CIa R
Ga

dym d~x2y!50. ~37!

The solution of the above equation is given by

Am
(cl) i~x!5~V21! i I CIaBm

a ~x! ~38!

with

Bm
a ~x!52

emst

4p R
Ga

dxs]t
1

ux2yu
. ~39!

Let us note thatAm
(cl) i(x) is a purely transverse vector field because the longitudinal compon

have been fixed to zero by the gauge condition~5!. At this point, it is possible to evaluate th
explicit expression of̂W(C̄)& using the saddle point evaluation method. After some calculat
one finds

^W~C̄!&5expF il

6 E d3x labce
mnrBm

a ~x!Bn
b~x!Br

c~x!G , ~40!

where

l abc5~V21! jJ~V21!kKCIaCJbCKcf jk
I . ~41!

From Eq. ~40! it turns out that the vacuum expectation values of the operatorsW(C̄) deliver
essentially a single topological invariant which is given by

H5E d3xlabce
mnrBm

a ~x!Bn
b~x!Br

c~x!. ~42!

Another topological invariant, namely the Gauss linking number, can be obtained by consid
also amplitudes containing Abelian holonomic connections of theAm

i fields. Abelian connections
are sufficient to grant BRST invariance in this case due to the simplicity of the BRST tran
mations~6! of the fieldsAm

i .

V. CONCLUSIONS

In this work we have investigated a class of topological field theories having the propert
its perturbative series contains only the finite set of Feynman diagrams given in Fig. 1.
theories are exactly solvable and, besides the Gauss link invariant which is typical of Abelia
field theories, produce the topological invariantH of Eq. ~42!. The fact that a non-Abelian
Chern–Simons field theory can sustain Abelian observables like theW(C̄) of Eq. ~34! is related to
the presence of a nontrivial Abelian ideal in the gauge group of symmetry.

It is interesting to consider the above results from the point of view of possible applicatio
the statistical mechanics of random walks. LetG1,...,GM be a set ofM closed random walks
interacting together via the topological potential~42!. The partition function of this system coin
cides with the sum over all possible configurations of the trajectoriesG1,...,GM:
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Z5E Dr1~s1!¯Dr M~sM !expF (
a51

M R
Ga

ṙa
21H~r1 ,...,r M !G , ~43!

wherera(sa), a51,...,M , are curves described in the space by the pathsGa and parametrized by
means of their arc-lengthssa . At this point the relation~40! may be interpreted as the analog
a Hubbard–Stratonovich transformation,6 which decouples the trajectoriesGa in the partition
functionZ. Such transformation simplifies the task of performing the path integration in Eq.~43!,
which is otherwise very complicated due to the presence of the topological termH(r1 ,...,r M).
Other applications can be in the study of the fractional quantum Hall effect.17,18

To conclude, one should mention that the idea of constructing a topological field theory
a finite number of Feynman diagrams has already been realized following a different route. T
the so-called Rozansky–Witten topological sigma model, which delivers topological invarian
the Milnor type of its hyper-Ka¨hler target space.19 Interesting new developments in this directio
have been presented in Refs. 20 and 21.
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Path integrals evaluation in two-dimensional
de Sitter space

A. V. Grinchuk and E. A. Ushakov
Belarussian State University, National Institute for Higher Education,
Moskovskaya Str. 15, 521, 220001 Minsk, Belarus
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The propagator in de Sitter space is calculated based on the path integrals. The
method of evaluation of path integrals for particles with spin is proposed. The
calculations are compared with the quantum mechanical ones. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1526452#

I. INTRODUCTION

de Sitter space–time plays a special role in the general relativity theory~GRT!: first, this space
is curved, and, second, it possesses a maximal symmetry group.1 Therefore, there is a possibility
to investigate the gravitational effect on quantum processes on the basis of exact analyti
pressions.

The propagator is one of the major objects of a quantum field theory. By means o
propagator one can obtain a vacuum expectation value of stress-energy tensor, pair crea
tensity, etc. Moreover, propagator plays a central role in the renormalization procedure in c
space–time.2

In this article it is offered to use the Feynman path integrals and proper time formalism3 for
calculation of a propagator. Such an approach gives clear and simple interpretation of the p
of a quantum particle interaction with an external gravitational field. In Ref. 4 the methods
perturbation theory were used. However, in symmetric spaces the exact solution might
pected. Recent developments of the path integration technique actually enable one to so
problem for a scalar particle.5

The Feynman integral for a particle with spin requires the operator of parallel trans
considerably complicating calculation of a propagator. In Refs. 6 and 7 the computational m
suitable for two-dimensional spaces was proposed. In this case parallel transport is exp
through a phase factor, because the rotation group in two-dimensional space is Abelian.
same time these methods fail in higher dimensional spaces. Moreover, we are unable
directly the formalism developed in Refs. 5 and 8 because GRT deals with a wider cla
manifolds than nonrelativistic quantum mechanics.

II. DESCRIPTION OF THE METHOD

A. Propagator for spinning particle

If the particle is described by Klein–Gordon equation~hereafterc5\51)

¹m¹mf1m2f50, ~1!

then the equation for Feynman propagator has the form

¹m¹mG~x,x0!1m2G~x,x0!5d~x,x0!. ~2!

The following substitution makes possible going to the path integral formulation:9

G~x,x0!5
i

2 E0

`

dte2 im2t/2^x,tux0,0&, ~3!
1460022-2488/2003/44(1)/146/10/$20.00 © 2003 American Institute of Physics
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i
]

]t
^x,tux0 ,0&52

1

2
¹m¹m^x,tux0 ,0&, ~4!

^x,0ux0 ,0&5d~x,x0!, ~5!

because we obtain the Schro¨dinger-type equation

K~x,x0 ;t!5^x,tux0 ,0&5E Dx~t!expH 2
i

2 E S gmnẋmẋn1
R

3 DdtJ . ~6!

The appearance and the role of an additional term;R/3 is discussed in Refs. 4 and 9. Anoth
way to obtain path integral formulation is based on the following operator identity:9

1

Ĥ
5 i E

0

`

e2 iĤ tdt ⇒G~x,x0!5^xu
1

¹m¹m1m2
ux0&

5
1

2
^xu

1
1
2 ~¹m¹m1m2!

ux0&

5
i

2
E

0

`

dte2 im2t/2^x,tux0,0&. ~7!

This formalism allows us to obtain the generalization of~7!:

1

Ĥ
5 f̂

1

f̂ Ĥ f̂
f̂ 5 i f̂ E

0

`

e2 i f̂ Ĥ f̂ tdt f̂ . ~8!

Further, we will use this transformation withf̂ 5 f (t)5a/t.
By analogy, for the particle with spin we have

~¹m¹m1m2!cA50, ~9!

i
]

]t
KA

B0
~x,x0 ;t!52

1

2
¹m¹mKA

B0
~x,x0 ;t!, ~10!

KA
B0

~x,x0 ;0!5d~x,x0!dB
A , ~11!

but the Feynman propagator assumes the form

GA9
B8~x9,x8!5E

0

`

dte2 im2t/2E Dx~t!expH 2
i

2 E S gmnẋmẋn1
R

3 DdtJ PA9
B8~x~t!!, ~12!

wherePA9
B8(x(t)) is an operator of parallel transport.7,10 The integral of such type has a mo

complicated structure than the ordinary one. This fact is caused by the difficulties connecte
calculations ofPA9

B8(x(t)). Fortunately, fast development of the path integration technique g
us possibility to solve a wide range of problems.8 The two-dimensional case is a good demonst
tion of these difficulties and also shows the possible way to overcome them.

B. Generation of an additional term by spin

Let us start with the consideration of parallel transport on pseudosphere. Then the me
horicyclic coordinates has the form~the casea51 is considered in Refs. 11 and 12!
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ds25S a

t D 2

~dt21dx2!, ~13!

where parametera is closely related to the curvature scalarR:

R52
2

a2 , a5const.

It is convenient to go from the natural basis

et5
]

]t
, ex5

]

]x
~14!

to orthonormal one

et5
t

a

]

]t
, ex5

t

a

]

]x
, ~15!

and correspondingly

dt,dx→et5S a

t Ddt,ex5S a

t Ddx. ~16!

From ~16! one can easily calculate the connection

v t
x52v t

x52
1

t
dx. ~17!

Then

¹xe
t5

1

t
ex, ¹xe

x52
1

t
et. ~18!

It is convenient to use the following complex combination of basis vectors~isotropic basis!:

e115
1

&
~et1 iex!, e215

1

&
~et2 iex!, ~19!

in this basis

¹xe
115¹x

1

&
~et1 iex!5

1

t

1

&
~ex2 iet!52 i

1

t
e11

¹xe
215 5 i

1

t
e21.

~20!

Similarly,

e115
1

&
S t

a

]

]t
2 i

t

a

]

]xD , e215
1

&
S t

a

]

]t
1 i

t

a

]

]xD . ~21!

Hence parallel transport reduces to the rotation; the angle of rotation is given by
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x52E 1

t
dx. ~22!

Then it is possible to obtain explicitly the rotation associated with a loopG,

x~G!52 R
G

1

t
dx5E 1

t2 dS, ~23!

with dS5dt dx as an element of spanned surface.
In the general case a two-dimensional manifold has the only ‘‘degree of freedom’’:

tangent Euclidean spaceei
251, de1,2;e2,1 dx-rotation in a single plane. Any geometrical obje

can be expanded into the sum of proper vectors of the operator of rotation:

i L̂es5ses, s50, 6 1
2 , 61, . . . . . ~24!

Then the law of parallel transports acquires the simplest form

P̂es5eisxes5e2 is*(1/t)dxes, ¹xe
s52 is

1

t
es. ~25!

Hence the path integral will have the form

K~x,x0 ;t!5(
s

es~x! ^ es~x0!E D$x~t!%eiS(x(t))1 isx(x(t)). ~26!

When the metric is pseudo-Euclidean, the isotropic basis looks like

e615
1

&
~eW06eW1!, ~27!

and parallel transport can be described by a real phase factor:

P̂es5esxes.

Then

eiS(x(t))→eiS(x(t))1 isx(x(t))

and additional term will be incorporated into Lagrangian in the following manner:

L→Leff5L2 isv i ẋ
i .

III. PARTICLE WITH SPIN ON PSEUDOSPHERE

In the isotropic basis the calculation of the operator of parallel transport is reduced to c
lation of a phase factor, and additional term arises in the effective Lagrangian:

Leff5
1

2 S a2

t2 ~ ṫ21 ẋ2!2
s

t
ẋD , ~28!

where s is the spin weight.7 The problem is reduced to the quantum mechanical one wi
Hamiltonian of the form

H5
t

a S pt
21px

2

2
2

px

t
s1

s22m2a2

2t2 D t

a
.
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Integration overx is quite simple, because neitherLeff nor H depends onx(t) explicitly, but only
on ẋ(t) andpx . In this case

E D~x~t!!D~px~t!!ei *pxẋdt2 i * f (px(t))dt5E dpxe
ipx(x2x0)2 i f (px)t. ~29!

Using ~7! one obtains

1

H
5^t9,x9u

a

t9

1

~pt
21px

2!/22~px /t ! s1 @~s22m2a2!/2t2#

a

t8
ut8,x8&

5
i

2

a2

t9t8
E

0

`

dtE dpx exp~ ipx
2t/2!exp~ ip~x92x8!!

3E Dt~t!expi E dtS ṫ2

2
2

px

t
s1

s22m2a2

2t2 D . ~30!

When integrating overt, one deals with a radial Coulomb problem. Its solution by means
continual integration can be found in Ref. 13. The propagator can be written as decomposit
eigenfunctions:

K~ t9,x9;t8,x8;t!5
a2

t9t8 (s
es~x! ^ es~x0!E dptdpxe

i t(pt
2
1px

2)/2eipx(x92x8)
sc~pt ,t9! sc* ~pt ,t8!,

~31!

where

sc~pt ,t !5
G~ 1

21n2 ispx /pt!

A2pG~2n12!
Mispx /pt ,n~22iptt !,

sc* ~pt ,t !5
G~ 1

21n1 ispx /pt!

A2pG~2n12!
M 2 ispx /pt ,n~2iptt !,

n5As22m2a211/4,

andMs,n(x) is the Whittaker function.

IV. TRANSITION TO de SITTER SPACE

The above decompositions of the propagator~31! were obtained as solutions of quantu
mechanical problems in polar coordinates. In order to go from the space with the metric

ds25S a

t D 2

~dt21dx2!, with t>0, 2`<x<`,

to

ds25S a

t D 2

~dt22dx2!, with 2`<t,x<`,

one has to take into account the change of the variablet range and the change of the sign of t
term dx2.
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The following limitation has been implicitly used in a radial Coulomb problem: radial co
dinate varies in the range~0,̀ !. This means the use of the mirror principle~see discussion o
boundary conditions in Refs. 5 and 8!:

c~r !→c~r !2c~2r !.

In de Sitter space the appropriate coordinate varies from2` to `. Therefore, it is necessar
to discard the reflected part of a wave. It seems to be convenient to consider asympto
eigenfunctions, as att→` the effective potential (2 i (px /t) s1 (s22m2a2)/2 t2) tends to zero,
and eigenfunctions tends toe6 iptt. For a scalar particle with

s50,

M0,n~2iz!5 i n11/222n11/2AzG~11n!Jn~z!,

the decomposition by cylindrical Bessel functions with the asymptotic

Jn~x!;A 2

px
sinS x2

np

2
1

p

4 D5A 2

px

1

2i
~ei (x2 np/2 1 p/4)2e2 i (x2 np/2 1p/4)!

can be obtained.
Cylindrical Hankel functions have the required asymptotic:

Hn
(1)~pt!;A 1

pt
eipt, Hn

(2)~pt!;A 1

pt
e2 ipt.

The Bessel function represents their linear combination. Then for a temporal part of the prop
we receive decomposition

K~ t9,t8; s!5E ptdptAt9t8Hn
(1)~ptt9!Hn

(1)* ~ptt8!e2 ispt
2/2, n5A2m2a211/4. ~32!

Similarly, for a particle with spin we should proceed from the Whittaker function of the
kind Mk,m(x) to the Whittaker function of the second kindWk,m(x):

Wk,m~x!5
G~22m!

G~ 1
22m2k!

xm11/2e2x/2
1F1~m1 1

22k; 2m11; x!

1
G~2m!

G~ 1
21m2k!

x2m11/2e2x/2
1F1~2m1 1

22k; 22m11; x!, ~33!

possessing the asymptotics

Wk,m~x!;xke2x/2, x→6`.

The functionsMk,m(x) represent a linear combination ofWk,m(x) andW2k,m(2x).
The outcome can be again represented as decomposition by eigenfunctions:

K~ t9,x9; t8,x8;t!5
a2

t9t8 (s
es~x! ^ es~x0!E dptdpxe

i t(pt
2
1px

2)/2eipx(x92x8)
sc~pt ,t9! sc* ~pt ,t8!,

~34!

sc~ t9!5e2 i pxps/2ptWispx /pt ,n~22iptt !, n5As22m2a21 1
4.

The second problem to be solved is the transition from pseudosphere metric
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ds25
a2

t2 ~dt21dx2!

to the de Sitter space one

ds25
a2

t2 ~dt22dx2!.

It is convenient to rotate thex axis: x→ ix, and correspondingly

px→2 ipx ,

e615
a

t

1

&
~et7ex!, e615

1

&
S t

a

]

]t
6

t

a

]

]xD ,

~35!

P̂es5esxes5e2s*(1/t)dxes, ¹xe
s52s

1

t
es,

Leff5
1

2 S a2

t2 ~ ṫ22 ẋ2!2 i
s

t
ẋD .

So, that propagator looks like

K~ t9,x9; t8,x8;t!5
a2

t9t8 (s
es

^ ese
i t(pt

2
2px

2)/2E dptdpxe
ipxx9eppxs/ptWpxs/pt ,n~2iptt9!

3e2 ipxx8eppxs/ptW2pxs/pt ,n~22iptt8!, ~36!

and

G~ t9,x9; t8,x8!5
i

2 E0

`

K~ t9,x9;t8,x8;t!dt. ~37!

In order to make sure that this expression is a required propagator, one needs to an
short-time kernel. It is possible to use asymptotical expansion of Whittaker function

Wa,c~x!'e2x/2S 12
~ 1

2 2a2c! ~ 1
2 2a1c!

x
D xa

'expS 2S ~ 1
2 2a2c! ~ 1

2 2a1c!

x
D 2

x

2
1a ln~x!D . ~38!

Substituting~38! into ~36!, one can ensure that

E dpt

2p
eppxs/ptWpxs/pt ,n~2iptt9!eppxs/ptW2pxs/pt ,n~22iptt8!

→ 1

A2p i t
expS i

~ t92t8!2

2t
2

pxs

t8
t1 i

a2m22s2

2t9t8
t D , ~39!

and this result actually leads to the initial effective Lagrangian~see the Appendix!.
Propagator~36! has two important features:
~1! It satisfies the boundary conditions~11!. Actually, if t→0, then
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1

A2p i t
expS i

~ t92t8!2

2t
2

pxs

t8
t1 i

a2m22s2

2t9t8
t D→d~ t92t8!. ~40!

~2! This propagator satisfies Eq.~10! because eigenfunctions are the solutions of the equa

2
1

2
~¹m¹m1m2!S eseipxx9

a

t
Wpxs/pt ,n~2iptt9! D5

pt
22px

2

2 S eseipxx9
a

t
Wpxs/pt ,n~2iptt9! D .

~41!

With ~35! one can obtain

2
d2

dt2
Wpxs/pt ,n~2iptt9!2S S px1 i

s

t D
2

1
m2a2

t2 DWpxs/pt ,n~2iptt9!5~pt
22px

2!Wpxs/pt ,n~2iptt9!,

2
d2

dt2
Wpxs/pt ,n~2iptt9!2S 2

ispx

t
1

m2a22s2

t2 DWpxs/pt ,n~2iptt9!5pt
2Wpxs/pt ,n~2iptt9!.

The Whittaker function actually satisfies this equation.
It is interesting to analyze a special case of this solution. The vector particle propaga

expanded into wavefunctions of the forme21 W21,n(2ikx) ande11 W1,n(2ikx), since after final
integration only pointpt

22px
250 will be taken into account andspx /pt561. It is common

practice to solve equations for the vector field by separation into the transverse and longit
parts. Using the connection between Hankel and Whittaker functions,

Hn
(1)~2kt!5A p

2ikt
W0,n~2ikt !52

1

2~ ikt !3/2A2

p S S n22
1

4DW21,n~2ikt !2W1,n~2ikt ! D ,

~42!

Hn11
(1) ~2kt!1Hn21

(1) ~2kt!5
1

2~ ikt !3/2A2

p S S n22
1

4DW21,n~2ikt !1~W0,n~2ikt !

1W1,n~2ikt !! D , ~43!

and the following relation

d

dt
Hn

(1)~2kt!52
ik

2
~Hn11

(1) ~2kt!1Hn21
(1) ~2kt!!, ~44!

one can ensure that these parts represent a linear combination of the above solutions. Actu
longitudinal one is

¹SA2ikt

p
Hn

(1)~2kt!eikxD 5e11S n22
1

4DW21,n~2ikt !eikx1e21W1,n~2ikt !eikx. ~45!

The transverse part is proportional to

e11~n22 1
4!W21,n~2ikt !2e21W1,n~2ikt !. ~46!

V. CONCLUSION

The path integral for particles with spin includes an additional factor—the operator of pa
transport. The use of parallel transport requires the development of new calculation metho
functional integrals. In contrast to the differential equations approach, the path integral form
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deals with a global object—the propagator. It has more general analytical properties, and gi
possibility to distinguish connections between compact and noncompact spaces, and con
and discrete spectrum.

Two-dimensional solutions have similar forms for arbitrary spin. A similar situation oc
also in some four-dimensional problems. Note the Teukolsky equation14 describing massless pa
ticles of spin 0,1

2, 1, 3
2, 2 in Kerr geometry.

Our interest in path integration is stimulated by the possibility of simple and clear descri
of a spinning quantum particle interaction with the curvature.15 This approach may be useful whe
obtaining common features of the fields of different spins in curved space and in quantizat
the gravitational field itself.

APPENDIX: PROOF OF EQ. „39…

We will consider~39! with t→0. In this case

pt→
t92t8

t
→

t→0

`

and one has to take into account terms up to (t92t8)2. After the substitution of expansion

Wa,c~x! →
x→`

e2x/2S 12

S 1

2
2a2cD S 1

2
2a1cD

x
1OS 1

x2D D xa

'expS 2S S 1

2
2a2cD S 1

2
2a1cD

x
D 2

x

2
1a ln~x!D

to

e2 ipt
2teppxs/pt~2pt!

spx /ptWpxs/pt ,n~2iptt9!eppxs/pt~2pt!
2spx /ptW2pxs/pt ,n~22iptt8!, ~A1!

one has up to the accuracy of 1/pt
2

expS 1

pt
S 2

is2

2t9
1

iM 2a2

2t9
1pxs ln~2iptt9! D2

1

pt
S 2

is2

2t8
1

iM 2a2

2t8
1pxs ln~2iptt8! D Deip(t92t8)

5eip(t92t8) expS 1

pt
S i ~s21M2a2!S 1

t9
2

1

t8D1spx~ ln~ t9!2 ln~ t8!! D D . ~A2!

After the use of

f ~ t9!2 f ~ t8!

pt
't

f 8~ t8!~ t92t8!1 f 9~ t8!~ t92t8!21¯

t92t8
5t f 8~ t !1o~t!, ~A3!

the following result can be obtained:

expS ipt~ t92t8!2 i tS pt
21 is

px

t8
1

s22M2a2

t82 D D . ~A4!

Finally, integration overpt can be made:
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E
2`

`

expS ipt~ t92t8!2 i tS pt
21 is

px

t8
1

s22M2a2

t82 D D dpt

2p

5
1

A2p i t
expS i

~ t92t8!2

2t
2

pxs

t8
t1 i

a2m22s2

2t9t8
t D .
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Towards vacuum superstring field theory: The supersliver
Marcos Mariñoa) and Ricardo Schiappab)

Department of Physics, Harvard University, Cambridge, Massachusetts 02138

~Received 3 September 2002; accepted 13 September 2002!

We extend some aspects of vacuum string field theory to superstring field theory in
Berkovits’ formulation, and we study the star algebra in the fermionic matter sector.
After clarifying the structure of the interaction vertex in the operator formalism of
Gross and Jevicki, we provide an algebraic construction of the supersliver state in
terms of infinite–dimensional matrices. This state is an idempotent string field and
solves the matter part of the equation of motion of superstring field theory with a
pure ghost BRST operator. We determine the spectrum of eigenvalues and eigen-
vectors of the infinite–dimensional matrices of Neumann coefficients in the fermi-
onic matter sector. We then analyze coherent states based on the supersliver and use
them in order to construct higher–rank projector solutions, as well as to construct
closed subalgebras of the star algebra in the fermionic matter sector. Finally, we
show that the geometric supersliver is a solution to the superstring field theory
equations of motion, including the~super!ghost sector, with the canonical choice of
vacuum BRST operator recently proposed by Gaiotto, Rastelli, Sen and
Zwiebach. © 2003 American Institute of Physics.@DOI: 10.1063/1.1523149#

I. INTRODUCTION AND SUMMARY

In the last two years, the search for nonperturbative information in string field theory1,2 has
experienced a renewed interest mainly due to a series of conjectures by Sen3–5 ~also see Ref. 6 for
a review and a list of references!. These conjectures have been tested numerically to a high de
of precision in level truncated cubic string field theory, and some of them have been prov
boundary string field theory~see, e.g., Ref. 7 for a review and a list of references!. In the
meantime, the elegant construction of Berkovits8–11 has emerged as a promising candidate for
open superstring field theory describing the NS sector: in here, Sen’s conjectures about the
the tachyon in the non-BPSD9-brane have been successfully tested by level truncation to a
level of accuracy,12–15 and kink solutions have been found that describe lower–dimensi
D-branes16 ~see, e.g., Ref. 17 for a review and a more complete list of references!.

So far, most of our understanding about tachyon condensation in both cubic string field
and Berkovits’ superstring field theory is based on level-truncated computations and it would
course desirable to have an analytical control over the problem. For the bosonic string, R
Sen and Zwiebach have proposed in a series of papers18–22a new approach to this problem calle
vacuum string field theory~VSFT!. In VSFT, the form of the cubic string field theory actio
around the tachyonic vacuum is postulated by exploiting some of the expected properties it
have~like the absence of open string states!. Then one can show that this theory has solutions t
describe the perturbative vacuum and the variousD-branes. In particular, the matter sector of t
maximalD25-brane is described by a special state called the sliver. This state was first cons
geometrically by Rastelli and Zwiebach23 and then algebraically by Kostelecky and Potting,24 and
it is an idempotent state of the string field star algebra, in the matter sector. The construc
VSFT has been recently completed in Ref. 25, where Gaiotto, Rastelli, Sen, and Zwiebac
proposed a canonical choice of the ghost BRST operator around the vacuum, with whic
identified closed string states; and also in Ref. 26, where Rastelli, Sen, and Zwiebach have

a!Electronic mail: marcos@lorentz.harvard.edu
b!Electronic mail: ricardo@lorentz.harvard.edu
1560022-2488/2003/44(1)/156/32/$20.00 © 2003 American Institute of Physics
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the eigenvalue and eigenvector spectrum of the Neumann matrices, which could allow for a
definition of the string field space. The study of VSFT has also unveiled beautiful alge
structures in cubic string field theory~for example, projectors of arbitrary rank in the star alge
have been constructed in detail in Refs. 20, 27, and 28!.

The main purpose of this paper is to give the first steps towards the construction of va
superstring field theory around the tachyonic vacua of the non-BPS maximalD9-brane in type IIA
superstring theory, and to explore the algebraic structure of the star algebra in the fermion
of the matter sector. In Sec. II, we begin with a review of Berkovits’ open superstring field th
for the NS sector and discuss the general features of vacuum superstring field theory. W
show in detail that, assuming a pure ghost BRST operator around the vacuum as in
Berkovits’ equation of motion for the superstring field admits factorized solutions whose m
part is an idempotent state of the star algebra. In a sense, idempotency is even more u
Berkovits’ theory since it drastically reduces the nonlinearity of the equation of motion. Ide
tent string field solutions can be constructed in the GSO(1) sector or in both GSO(6) sectors.

In order to construct idempotent states in superstring field theory, one first has to unde
in detail the structure of the star algebra in the fermionic matter sector. To do that, we u
operator construction of the interaction vertex for the superstring due to Gross and Jev29

which extends their previous work on the bosonic string30,31to the NSR superstring. In Sec. III w
review some of the relevant results and we further clarify the structure of the vertex. This a
us to write the Neumann coefficients in terms of two simple infinite–dimensional matrices w
shall play a key roˆle in the constructions of this paper.

Given any boundary conformal field theory~BCFT! one can construct geometrically a spec
state which is an idempotent of the star algebra.21 When the BCFT is that of aD25-brane, this
state is called the sliver.23,18 ~Strictly speaking, the construction of the sliver state is pur
geometric and is thus valid for arbitrary BCFT’s. However, in this paper, we shall use the
tation of ‘‘sliver’’ for the particular BCFT associated to the maximal brane in flat space.! This
geometric construction extends in a very natural way to the BCFT given by the NS sector
open superstring which describes the unstableD9-brane. This yields an idempotent state that
call the supersliver. The matter part of the supersliver is a product of two squeezed state
made of bosonic oscillators~the bosonic sliver previously considered in Refs. 24 and 19! and the
other made of fermionic oscillators, that we shall call the fermionic sliver. Although the geom
construction gives a precise determination of the fermionic sliver, it is important for many
poses to have an algebraic construction as well. In Sec. IV, and making use the results of S
for the interaction vertex, we find a simple expression for the fermionic sliver in terms of infi
dimensional matrices, as in Refs. 24, 19, and we compare the result to the geometric const
We also briefly address the supersliver conservation laws. In Sec. V we use the techniques r
introduced in Ref. 26 to determine the eigenvalue spectrum and the eigenvectors of the v
infinite-dimensional matrices involved in the fermionic star algebra, including the matrice
Neumann coefficients.

Once the fermionic sliver has been constructed algebraically, one can take it as a s
‘‘vacuum state’’ in order to build fermionic coherent states. This we do in Sec. VI, where
constructing these fermionic coherent states on the fermionic sliver, we study their star alg
As in Ref. 20, one can use these coherent states to construct higher-rank projectors of the
onic star algebra. We shall show that one can also construct closed fermionic star subal
These star subalgebras provide new idempotent states which yield new solutions to the v
superstring field theory equation of motion. However, some of them turn out to be related
fermionic sliver by gauge transformations.

In Sec. VII we consider the ghost/superghost sector, and we show that if one choos
vacuum BRST operator to be the recent canonical choice of Gaiotto, Rastelli, Sen and Zwieb25

then the geometrical sliver is a solution to Berkovits’ superstring field theory equations of m
i.e., we solve the equations of motion in the~super!ghost sector.

Finally, in Sec. VIII we state some conclusions and open problems for the future. In
Appendix we give some of the details needed in the proof that the structure of the vertex fo
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Sec. III agrees with the explicit expressions found by Gross and Jevicki in Ref. 29 using conf
mapping techniques.

II. BERKOVITS’ SUPERSTRING FIELD THEORY

A. A Short review of Berkovits’ superstring field theory

In this paper, we shall study the non-GSO projected open superstring in the NS sector.
matter sector, there are two fermionsc6(s) with the mode expansion

c6
m ~s!5 (

r PZ1 1/2
e6 ir sc r

m , ~1!

where the modes satisfy the anticommutation relations

$c r
m ,cs

n%5hmnd r 1s,0 . ~2!

We will therefore writec r
†5c2r for r .0. The ghost/superghost sector includes theb,c, and the

b,g, system and we bosonize the last one in the standard way,32

b5]je2f, g5hef. ~3!

A superstring field theory describing the GSO-projected NS sector of the open superstrin
proposed by Berkovits in Ref. 8~recent reviews can be found in, e.g., Refs. 10 and 17!. In this
theory, the string fieldF is Grassmann even, has zero ghost number and zero picture numbe
action has the structure of a WZW model:

S@F#5
1

2 E S ~e2FQBeF!~e2Fh0eF!2E
0

1

dt~e2tF] te
tF!$~e2tFQBetF!,~e2tFh0etF!% D ,

~4!

whereQB is the BRST operator of the superstring andh0 the zero-mode ofh ~the bosonized
superconformal ghost!.32 In a WZW interpretation of this model, these operators play the role
a holomorphic and an antiholomorphic derivatives, respectively. In this action, the integral a
star products are evaluated with Witten’s string field theory interaction.1 The exponentiation of the

string field F is defined by a series expansion with star products:eF5I1F1 1
2 F!F1¯ ,

whereI is the identity string field. As usual, we refer to the first term in~4! as the kinetic term and
to the second one as the Wess–Zumino term. It can be shown that the equation of motion
from this action is:8

h0~e2FQBeF!50. ~5!

The action~4! has a gauge symmetry given by

deF5JLeF1eFJR , ~6!

where the gauge parametersJL,R satisfy

QBJL50, h0JR50. ~7!

One can include GSO(2) states by introducing Chan–Paton-type degrees of freedom12,13

The string field then reads,

F5F1 ^ 11F2 ^ s1 , ~8!

whereF6 are, respectively, in the GSO(6) sectors, ands1 is one of the Pauli matrices. TheQB

andh0 operators also have to be tensored with the appropriate matrices
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Q̂B5QB^ s3 , ĥ05h0^ s3 . ~9!

The action is again given by one-half times~4!, where the bracket now includes a trace over
Chan–Paton-type matrices~the 1/2 factor is included to compensate for the trace over the m
ces!. The gauge symmetry is given again by~6!, whereJL,R take values in both sectors as in~8!.
It has been shown that Berkovits superstring field theory correctly reproduces the four–poi
amplitude in Ref. 11, and it can be used to computed the NS tachyon potential in level trun
~see Ref. 17 for a review!, giving results which are compatible with Sen’s conjectures.

B. Superstring field theory around a classical solution

In the cubic theory of Witten, one can consider a particular solution of the classical equ
of motion, F0 , and study fluctuations around it:F5F01F̃. It is easy to see that the actio
governing the fluctuationsF̃ has the structure of the original action forF, but with a different
BRST operator,Q. Bosonic VSFT, as formulated in the series of papers,18–22 is based on two
assumptions:

~1! First, it is assumed that, when one expands around the tachyonic vacuum, the new
operatorQ has vanishing cohomology and is made purely of ghost operators.

~2! Second, it is assumed that allDp-brane solutions of VSFT have the factorized form

F5Fg^ Fm , ~10!

whereFg,m denote states containing only ghost and only matter modes, respectively. Since t
product factorizes into the ghost and the matter sector, and since we have assumed thatQ is pure
ghost, the equations of motion split into

QFg1Fg!Fg50 ~11!

and

Fm!Fm5Fm . ~12!

The second equation says that the matter part is an idempotent of the star algebra~where the star
product is now restricted to the matter sector!. If these assumptions hold, the string field acti
evaluated at a solution of the form~10! is simply proportional to the BPZ norm ofuFm&, and this
allows one to compare in a simple way ratios of tensions of differentD-branes.19,21

An interesting question is to which extent are these assumptions valid in Berkovits’ s
string field theory. In order to answer this question, the first step is to analyze the fluctu
around a solution to the equations of motion. This was first addressed by Kluson in Ref. 33,
it was shown that with an appropriate parametrization of the fluctuations, the equation of m
is identical to~5!, albeit with a deformedQ operator. It was thus concluded~without proof! in Ref.
33 that the action for the fluctuation should have the form~4! with the deformed operator. We sha
now derive the equation of motion in a slightly different way from the one presented in Re
and this will allow us to show that the action is indeed of the required form by direct computa

Let us defineG5eF, the exponential of the string field that appears in Berkovits’ action.
F0 be a solution to the classical equations of motion~5! and let us consider a fluctuation aroun
this solution parameterized as follows:33

G5G0!h, G05eF0, h5ef. ~13!

Since Berkovits’ action has the structure of a WZW theory, one should expect an analog
Polyakov–Wiegmann equation34 to be valid. In fact, it is easy to show~by using, for example, the
geometric formulation of Refs. 33 and 35! that the action~4! satisfies
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S@G0!h#5S@G0#1S@h#2E ~G0
21QBG0!~hh0h21!, ~14!

for arbitraryG0 andh. The effective action for the fluctuations is then

Seff@h#5S@h#2E ~G0
21QBG0!~hh0h21!. ~15!

Let us now obtain the equation of motion satisfied byh. Varying S@h#, one obtains

E h21dhh0~h21QBh!,

and from the extra term inSeff@h# one gets

E h21dhh0~h21Ah!,

where we denotedA5G0
21QBG0 and we have used the equation of motionh0(A)50. Putting

both pieces together, one finds that

h0~h21QBh1h21Ah2A!50. ~16!

Therefore, the equation of motion is identical to~5! but with the deformedQ operator:

QA~X!5QB~X!1AX2~21!XXA. ~17!

One can moreover easily prove33 that the new operator satisfies all the axioms of superstring fi
theory ~it is a nilpotent derivation and it anticommutes withh0).

We shall now show thatSeff@h# has in fact the structure of~4! but with the operatorQA . For
that, we simply need to notice that

E A~hh0h21!5
1

2 E S ~h21Ah2A!~h21h0h!2E
0

1

dt A] t~ ĥh0ĥ212ĥ21h0ĥ! D , ~18!

where we have used integration by parts with respect toh0 , and the fact thatF0 satisfies its
equation of motion. We have also denotedĥ5etf. The first term in the RHS of~18! when added
to the kinetic term inS@h# gives a kinetic term with theQA operator, while the second term whe
added to the Wess–Zumino term inS@h# gives a Wess–Zumino term withQA . The conclusion of
this computation is that the action for the fluctuations is simply

Seff@h#5
1

2 E S ~e2fQAef!~e2fh0ef!2E
0

1

dt~e2tf] te
tf!$~e2tfQAetf!,~e2tfh0etf!% D ,

~19!

as anticipated in Ref. 33.
Let us now consider the superstring field theory describing the non-BPSD9-brane, i.e.,

Berkovits’ superstring field theory including both the GSO(6) sectors. It has been shown in lev
truncation that this theory has two symmetric vacua where the tachyon condenses. Accor
Sen’s conjectures, at any of these two vacua there are no open superstring degrees of freed
us then choose one of these vacua and study the action for fluctuations around it. As we hav
the action for the fluctuations has the same form as the original one, but with a different B
operator, that we shall now denote byQ. According to Sen’s conjectures, at this chosen vacu
there are no open string degrees of freedom and it is thus natural to assume, as in the VSFT
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bosonic string, that the new BRST operator has vanishing cohomology and is made pur
~super!ghost operators. In addition we will also assume that this operator annihilates the id

QI50. ~20!

This condition, although very natural, is strictly not necessary in order to preserve some
basic features of bosonic VSFT. In the superstring case however, it is crucial. It was notic
Ref. 18 that operators of the formQ5c01(nuncn also have vanishing cohomology in the supe
string case. In particular, theQ operator recently proposed in Ref. 25 for the bosonic VSFT is
this form and annihilates the identity after some proper regularization, so that in principle i
possible candidate for the superstring as well~where the superconformal ghost sector would
handled separately!. We shall come back to this question in Sec. VII.

With these assumptions at hand, and given the fact that the action around the vacuum
same form as the original one but with a pure~super!ghost operatorQ, it is now easy to show tha
the ansatz~10! solves the superstring field theory equations of motion ifFm is idempotent andFg

satisfies

h0~e2FgQeFg!50. ~21!

In order to see this, notice that idempotency ofFm and factorization of the star product in matt
and ghost parts yields

eF5eFg^ Fm1I2Fm , ~22!

and, sinceQ kills the identity and is pure ghost, one has

QeF5~QeFg! ^ Fm . ~23!

Using again idempotency ofFm , the equation of motion becomes

~h0~e2FgQeFg!! ^ Fm50. ~24!

Therefore, the above conditions are sufficient to solve the equations of motion. In the sam
one can show that in these circumstances the action factorizes as

S5K^FmuFm&, ~25!

where

K5S@Fg#. ~26!

Let us now look at the gauge symmetry of the new action around the tachyon vacuum. W
particularly interested in transformations that preserve the structure of~22!. Since bothQ andh0

annihilate the identity, it is easy to see that the gauge transformation~6! with

JL5Jm^ Ig , JR52Jm^ Ig , ~27!

preserves~22!. This gauge transformation leavesFg invariant and changesFm as follows:

dFm5@Jm ,Fm#! , ~28!

where@A,B#!5A!B2B!A is the commutator in the star algebra. Notice that this transforma
preserves idempotency ofFm at linear order. The gauge symmetry~28! is precisely the one tha
appears in bosonic VSFT whenQ annihilates the identity.19,21,25

The condition of idempotency ofFm in the non-GSO projected theory involves in fact tw
different conditions. In general, a matter string fieldFm has components in both GSO(6) sectors,
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Fm5Fm
1

^ 11Fm
2

^ s1 . ~29!

In this equation,Fm
6 is Grassmann even~odd!, and idempotency ofFm is equivalent to the

following equations:

Fm
1!Fm

11Fm
2!Fm

25Fm
1 ,

~30!
Fm

1!Fm
21Fm

2!Fm
15Fm

2 .

One particular solution is of course to takeFm
1 as an idempotent state andFm

250. The matter
supersliver state that we will discuss later is an example of such a solution. Another possib
to takeFm

1 an idempotent andFm
2 a nilpotent state satisfying the second equation in~30!. In Sec.

VI we will construct solutions with these characteristics, although we will also show that the
related to the supersliver solution by gauge transformations at the vacuum.

III. NEUMANN COEFFICIENTS AND OVERLAP EQUATIONS

In this section we review some of the results of Ref. 29 and we explain in detail the stru
of the overlap equations involving the matter part of the fermionic sector.

A. The identity

As in bosonic string field theory, the simplest vertex in superstring field theory is the int
tion, which corresponds to folding the string and identifying the two halves1 thus defining the
identity string fielduI &,

E F5^I uF&. ~31!

In the bosonic case, the overlap condition defining the identity is simplyx(p2s)5x(s). In the
fermionic case, and due to the conformal weighth51/2, the precise conditions are as follows

~c1~s!2 ic1~p2s!!uI &50, 0<s<
p

2
,

~32!

~c2~s!1 ic2~p2s!!uI &50, 0<s<
p

2
.

The different sign in the second equation is due to the NS boundary conditionsc2(0)5c1(0),
c2(p)52c1(p). As usual, we can define a single antiperiodic fermion fieldc~s! in the interval
@2p,p# by declaring thatc(s)5c1(s) for 0<s<p, andc(s)5c2(2s) for 2p<s<0. In
terms of this single field, the overlap conditions~32! read

c~s!5H ic~p2s!, 0<usu<
p

2
,

2 ic~p2s!,
p

2
<usu<p.

~33!

This condition leads to the following relation for the modes:

S c r

c2r
D5S Mrs M̃ rs

2M̃ rs 2Mrs
D S c r

c2r
D , ~34!

where the matricesM , M̃ , are defined by
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Mrs52
2

p

i r 2s

r 1s
, r 5s ~mod 2!, ~35!

M̃ rs5
2

p

i r 1s

s2r
, r 5s11 ~mod 2!. ~36!

These matrices will play an important role in this paper. They satisfy the following properti

M22M̃251, @M ,M̃ #50, ~37!

M̄5MT5M , M̃̄52M̃T5M̃ . ~38!

From ~34! one obtains the following relation between positive and negative modes for the fer
fields that annihilate the identity:

c r5S M̃

12M
D

rs

c2s . ~39!

Using this relation, one can then show that the identity is a squeezed state,

uI &5NI expF1

2
hmn (

r ,s>1/2
c2r

m I rsc2s
n G u0&, ~40!

where

I 5
M̃

12M
. ~41!

This equation can be obtained acting withc r
m on uI & and using~39!. In ~40!, NI is a normalization

constant that we shall determine later, when we discuss the supersliver. One can also determ
coefficientsI rs explicitly by using conformal mapping techniques. The result, derived in Ref.
is the following. Defining the coefficients

û2n5û2n115S 21/2
n D5

~21!n~2n21!!!

2nn!
, ~42!

one has

I rs5 i r 1sS I nm
1

r 1s
2

I nm
2

r 2sD , r 5n11/2, s5m11/2, ~43!

where

I nm
6 5H 2mûnûm , n5even, m5odd,

6nûnûm , n5odd, m5even,

0, otherwise.

~44!

One can check that this explicit expression satisfies the equation~41! ~see the Appendix!.

B. Interaction vertex and overlap equations

The interaction vertex,uV3&, involves the gluing of three strings and determines the
algebra multiplication rule,
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uF!C& (3)5 (1)^Fu(2)^CuuV3& (123) . ~45!

In the operator formulation, this vertex involves a set of infinite-dimensional matrices w
entries are called Neumann coefficients. Usually, in order to find an explicit expression for
coefficients, one uses conformal mapping techniques. On the other hand, in order to und
the structural properties of these matrices, it turns out to be very convenient to analyze the o
equations as well. In this section we shall deduce an expression for the Neumann coeffici
terms of the matricesM , M̃ , which will be very useful in the following. The starting point is th
overlap equation for the three string interaction vertex. This overlap equation simply states th
interaction is obtained by gluing the halves of the three strings in the usual way.1 In the fermionic
case the equation reads:29

~ca~s!2 ica21~p2s!!uV3&50, 0<s<
p

2
, a51,2,3. ~46!

The indexa labels each of the three strings. As in Ref. 30, it is convenient to diagonalize
condition by introducing the following discrete Fourier transforms:

q5
1

)
~c11vc21v̄c3!, ~47!

q35
1

)
~c11c21c3!, ~48!

together with their adjoints,

q̄†5
1

)
~~c1!†1v~c2!†1v̄~c3!†!, ~49!

q3
†5

1

)
~~c1!†1~c2!†1~c3!†!, ~50!

wherev5e2p i /3 is a cubic root of unity. The overlap conditions give the following condition
q3 :

q3~s!5 iq3~p2s!, 0<s<
p

2
, ~51!

which is identical in structure to~33!. On the other hand, forq(s) we find

q~s!5H ivq~p2s!, 0<s<
p

2
,

2 i v̄q~p2s!,
p

2
<s<p.

~52!

The overlap conditions forq then yield the following relation between the modes,

S qr

q̄r
†D5H 2

1

2 S Mrs M̃ rs

2M̃ rs 2Mrs
D 1
)

2 S 0 iCrs

2 iCrs 0 D J S qr

q̄r
†D , ~53!

where the matrixC is defined by
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Crs5~21!r 11/2d rs . ~54!

This matrix implements BPZ conjugation and satisfies the following conditions:

C251, CT5C̄5C, ~55!

CMC5M , CM̃C52M̃ , ~56!

CIC52I , ~57!

which guarantee the consistency of~53!.
We now write the three string vertex as

uV3&5exp@ 1
2 q3

†
•I •q31q†

•U•q̄†#u0& (123) , ~58!

whereI is the matrix~41!. This is of course a consequence of~51!. SincequV3&5Uq̄†uV3&, by
using ~53! we obtain an explicit expression forU in terms ofM , M̃ , andC:

U52
1

21M
•~M̃2 i)C!. ~59!

Using the above properties ofM , M̃ , andC, it is easy to show thatU satisfies

Ū52UT52CUC, IU 5ŪI , IŪ 5UI . ~60!

The following formulas will also be useful:

I 25
M11

M21
,

U25Ū25
M22

M12
,

~61!

U1Ū52
2M̃

M12
,

U2Ū5
2) iC

M12
.

Let us now find the structure of the Neumann coefficients for the three string vertex. T
coefficients are defined through

uV3&5expF1

2
hmn( c2r

(a)mKrs
abc2s

(b)nG u0& (123) , ~62!

and satisfy the condition

Krs
ab52Ksr

ba . ~63!

Using the above results, one finds that

Kab5 1
3 ~ I 1vb2aU1va2bŪ !, ~64!
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which has the same structure as the Neumann coefficients in the bosonic sector. We also h
cyclicity property,Ka11,b115Kab. We shall frequently use the matricesK11, K12, andK21, which
are given by

K115
1

3
~ I 1U1Ū !,

K125
1

3
I 2

1

6
~U1Ū !1

i)

6
~U2Ū !, ~65!

K215
1

3
I 2

1

6
~U1Ū !2

i)

6
~U2Ū !.

Again, one can use conformal mapping techniques to write explicit expressions for the Neu
coefficients.29 The result is the following. Define the coefficientsgn through the expansion

S 11x

12xD 1/6

5 (
n50

`

gnxn. ~66!

Next, define the following quantities:

Mnm
1 52@~21!n2~21!m#@~n11!gn11~m11!gm112ngnmgm#,

Mnm
2 52@~21!n2~21!m#@ngn~m11!gm112~n11!gn11mgm#,

M̄nm
1 5@~21!n1~21!m#@~n11!gn11~m11!gm112ngnmgm#,

M̄nm
2 5@~21!n1~21!m#@ngn~m11!gm112~n11!gn11mgm#. ~67!

The Neumann coefficients are then given by,

Krs
aa5

1

3
I rs1 i r 1sFMr 21/2,s21/2

1

r 1s
1

Mr 21/2,s21/2
2

r 2s G ,
Krs

aa115
1

2
I rs2

1

2
Krs

aa2
1

2
) i r 1s21F M̄ r 21/2,s21/2

1

r 1s
1

M̄ r 21/2,s21/2
2

r 2s
G ,

Krs
aa215

1

2
I rs2

1

2
Krs

aa1
1

2
) i r 1s21F M̄ r 21/2,s21/2

1

r 1s
1

M̄ r 21/2,s21/2
2

r 2s
G . ~68!

Using ~64! and ~68!, one can find explicit expressions for the matricesU1Ū andU2Ū:

~U1Ū !rs53i r 1sFMr 21/2,s21/2
1

r 1s
1

Mr 21/2,s21/2
2

r 2s G ,
~69!

~U2Ū !rs53i r 1sF M̄ r 21/2,s21/2
1

r 1s
1

M̄ r 21/2,s21/2
2

r 2s
G .

Notice that the matrixU2Ū has nonzero diagonal terms. Using the results of Ref. 29, one
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~U2Ū !rr 56i F ~n11!2gn11
2 2n2gn

2

2n11
1

1

3 (
l 50

n

~21! lgn2 l
2 G . ~70!

In the Appendix we show that these explicit expressions indeed agree with~59!.
For the calculations in the next section, it will be useful to define the following matrices

Mab5CKab. ~71!

Using ~64! and the relations~60!, it is easy to see that these matrices satisfy the follow
properties:

@Mab,Ma8b8#50, @CI,Mab#50. ~72!

These properties are of course similar to the properties of the matricesMab in the bosonic
case.24,19

IV. THE SUPERSLIVER

As we discussed in Sec. II, a factorized string field satisfies the equations of motion of va
superstring field theory, with a pure ghost BRST operator,Q, if the ghost part satisfies~21! and the
matter part is idempotent. We shall now consider idempotent matter states with the factorize

uC&5uCb& ^ uC f&, ~73!

where uCb, f& denote states which are obtained from the vacuum by acting with bosonic
fermionic oscillators, respectively, and which are idempotent with respect to the star prod
their respective matter sectors. In this section we will look for idempotent states in the ferm
sector. First, we provide an algebraic construction, in the spirit of Ref. 24. Then we compa
solution to the geometric construction of the sliver given in Ref. 23.

A. Algebraic construction

Our purpose here is to find a state in the fermionic part of the matter sector that star s
to itself. Our ansatz is a squeezed state of the form

uCF&5NF expF2
1

2
hmn (

r ,s> 1/2
c2r

m Frsc2s
n G u0&, ~74!

whereFrs is an antisymmetric matrix. Recall that the star product of two states,uC&, uF&, defined
as

uC!F& (3)5 (1)^Cu(2)^FuuV3& (123) , ~75!

involves the BPZ conjugate of the string field states. To obtain the BPZ conjugate ofuCF&, one
has to take into account that

bpz~c r
m!5~21!r 11/2c2r

m . ~76!

Therefore, the matrix that implements BPZ conjugation isC. It will be useful in the following to
define:

H5CF. ~77!

In order to evaluate the star product, one still needs the following formula. Letbi , bi
† be fermionic

oscillators with anticommutation relations$bi ,bj
†%5d i j , let l i ,m i be a set of Grassmann var

ables, and letSi j ,Ti j be antisymmetric matrices. One then has
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^0uexp~lT
•b1 1

2 b•S•b!exp~mT
•b†1 1

2b
†
•T•b†!u0&

5@det~11ST!#1/2 exp@mT~11ST!21l1 1
2 lTT~11ST!21l1 1

2 mT~11ST!21Sm#.

~78!

Similar expressions for bosonic oscillators and for the ghostbc system were presented in Refs. 2
and 19. Using this formula, one obtains the following expression:

uCF!CF& (3)5N F
2@det~11FK!#5exp@ 1

2 hmn$x
mT~11FK!21Fxn1 1

2c2r
3mKrs

33c2s
3n %#u0& (3) ,

~79!

where

F5S 2HC 0

0 2HCD , K5S K11 K12

K21 K22D , xm5S K13c3m†

K23c3m†D . ~80!

Using ~63! and the cyclicity property, one further obtains the following equation forH:

H52M112~M12 M21!S 12HM11 2HM12

2HM21 12HM22D 21S HM21

HM12D , ~81!

and the following value for the normalization constant:

NF5@det~11FK!#25. ~82!

Since the matricesMab commute, one can assume that@H,Mab#50 and proceed as if we wer
dealing with commuting variables. After some simple algebra, one finds the following c
equation forH:

A3H31A2H21A1H1A050, ~83!

where

A35M12M212~M11!2,

A253M11M12M212~M11!32~M12!32~M21!3,

A152122A3 , ~84!

A052M11.

In the bosonic case analyzed in Refs. 24 and 19, the coefficients of the cubic equation
bosonic piece of the sliver could be simplified by using relations among the matrices of Neu
coefficients. Here, it is convenient to express~84! in terms of the matricesU, Ū, andI , which in
turn can be expressed in terms ofC, M , and M̃ . After some simple algebra, one finds th
following:

A35
1

3
~U1Ū !I 1

1

6
~U21Ū2!5

M

M12
,

A25
1

2
C~U21Ū2!I 1

2

3
C~ I 1U1Ū !52CM̃

3M22

~M21!~M12!
,
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A152
3M12

M12
, ~85!

A05CM̃
M

~M21!~M12!
.

SinceuI !I &5uI &, an important check of the above is whetherH52CI is a solution of~83!. In
fact, one can further write~83! as

~H1CI !~MH222CM̃H2M !50. ~86!

In order to solve the quadratic equation, one has to be careful when extracting the squar
SinceF must be antisymmetric, and remembering thatF5CH, one finds the two solutions,

F65
M̃

M S 16
1

A12M2D . ~87!

Notice thatCF6C52F6. It is also easy to check thatH commutes withMab, as assumed in ou
initial ansatz. Using the above result forF6, one can compute

~11FK!2152
1

4
~M21!~M12!S 17

M11

A12M2D , ~88!

which determines the normalization constantN F6 through~82!. Using again~78!, one can further
compute the norm ofuCF6& and find, for both signs,

^CF6uCF6&5@det~~12M !~11M /2!2!#5. ~89!

Finally, notice that in order for the identity to star square to itself, one needs

NI5@det~~12M !~11M /2!!#5, ~90!

and its BPZ norm turns out to be

^I uI &5@det~2~12M !~11M /2!2!#5. ~91!

B. Numerical results and comparison to the geometric sliver

The above results involve infinite-dimensional matrices. They can however be analyze
merically by restricting the matrix rank toL,` and then using suitable numerics in order to stu
the limit L→`, as in Ref. 19. The first thing to notice is that the determinant ofM converges to
zero very rapidly. As a consequence, the solutionF1, which behaves like 2M̃M 21, has diverging
eigenvalues. The other solution, which behaves likeM̃M /2, has a better behavior. This is th
solution that we will discuss in the rest of the paper, and we shall henceforth simply denote
F5F2.

It turns out thatF is the matrix that appears in the fermionic part of the geometric sl
constructed by Rastelli and Zwiebach in Ref. 23. Since the sliver can be defined purely in
metric terms, one can construct a supersliver in the CFT given by the NS sector of the supe
Recall that the~super!sliver is defined by

^Ju5^0uU f , ~92!

whereU f is the operator associated to the conformal transformation given by
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f ~z!5arctan~z!. ~93!

The structure of the operatorU f was found in Ref. 23. It is given by

U f5exp (
n51

`

anL22n, ~94!

where the coefficientsan can be computed explicitly. The Virasoro operators split asL5Lb1L f

1Lg , where b, f , g refer, respectively, to the bosonic matter, fermionic matter and gh
superghost sectors. As a consequence, the supersliver will factorize as

uJ&5uJb& ^ uJ f& ^ uJg&. ~95!

The bosonic matter part is the one constructed algebraically in Ref. 24. In the following, we
present evidence that the fermionic matter part is the idempotent state constructed abo
corresponding toF, i.e.,

uJ f&5uCF&. ~96!

The first step is, as in Ref. 19, to writeuJ f& as a squeezed state

uJ f&5N expF2
1

2
hmn(

r ,s
c2r

m F̂rsc2s
n G u0&. ~97!

Using the CFT techniques of Refs. 36, 37, and 38, one finds for the matrixF̂:

F̂rs52 R
0

dw

2p i R0

dz

2p i

z2r 21/2w2s21/2

~11z2!1/2~11w2!1/2~ tan21~z!2tan21~w!!
. ~98!

One can see thatF̂rs50 if r 1s5odd, i.e.,CF̂C52F̂, as follows from the algebraic description
Evaluating the residues, one finds for the first nonzero entries:

F̂1/2,3/252 1
6 .20.1666, F̂1/2,7/25

43
60 .0.1194, F̂1/2,11/252 1459

15120 .20.0964,

F̂3/2,5/252 1
40 .20.0250, F̂3/2,9/25

71
15120 .0.0046, F̂5/2,7/252 239

7560.20.0316. ~99!

On the other hand, we can evaluate numerically the first few coefficientsFrs . SinceM ,M̃ do not
commute at finite rank, we can approximate the matrixF in two ways: multiplyingM̃ on the right,
or on the left. The results are shown, respectively, in the following tables:

L F1/2,3/2 F1/2,7/2 F1/2,11/2 F3/2,5/2 F3/2,9/2 F5/2,7/2

20 20.1929 0.1427 20.1186 0.0033 20.0178 20.0448
100 20.1876 0.1347 20.1102 20.0058 20.0099 20.0398
150 20.1847 0.1335 20.1091 20.0074 20.0087 20.0391
` 20.1676 0.1235 20.1098 20.0268 0.0036 20.0347

L F1/2,3/2 F1/2,7/2 F1/2,11/2 F3/2,5/2 F3/2,9/2 F5/2,7/2

20 20.1140 0.0752 20.0570 20.0397 0.0163 20.0076
100 20.1299 0.0886 20.0683 20.0346 0.0122 20.0155
150 20.1328 0.0910 20.0710 20.0338 0.0115 20.0168
` 20.1726 0.1251 20.1020 20.0250 0.0045 20.0335
                                                                                                                



and
the

m of
te

lving
the

Ref.
tter
conser-

the

taking

171J. Math. Phys., Vol. 44, No. 1, January 2003 Towards vacuum superstring field theory

                    
The last entry shows an extrapolation toL5` by fitting fifteen pointsL510,20,. . . ,150 toa0

1a1 /(logL)1a2(logL)2. We see that there is good agreement with the exact result~99!, and this
provides good numerical evidence that the matrixF is indeed given by the double residue~98!.

It is also interesting to consider the behavior of the BPZ norms of the fermionic identity
the fermionic part of the sliver. The fermionic identity turns out not to be normalizable:
determinant in~90! grows very quickly as we increase the rank. On the other hand, the nor
uJ f&, given in~89!, behaves like the norm ofuJb& analyzed in Ref. 19: an extrapolation to infini
rank, by fitting one hundred pointsL510,20,. . . ,1000, giveŝ J f uJ f&

1/5520.0075. This seems
to indicate that the norm of the fermionic part of the supersliver is zero.

C. Conservation laws

In this subsection we wish to derive conservation laws satisfied by the supersliver, invo
the superconformal generators,Gr , and following Refs. 23 and 19. We shall be schematic, as
procedure is by now well known. Observe that due to its purely geometrical construction~92! the
supersliver will clearly satisfy all the Virasoro conservation laws outlined in the Appendix of
19, involving theLn generators of the conformal algebra which now will have a fermionic ma
piece as well as a bosonic and ghost pieces. Let us then outline how can one derive the
vation laws associated to the rest of the superconformal algebra, i.e., the ones depending onGr

generators.
The sliver surface state is defined in the upper half plane by the conformal map,

f H~z!5arctan~z!, ~100!

while in the unit disk~coordinates that we will use in the following!, it is given by

f U~z!5
11 i arctan~z!

12 i arctan~z!
. ~101!

The usual contour deformation argument yields the expected conservation law,

^Ju R dzw~z!G~z!50, ~102!

whereG(z) is the super stress tensor,G(z)5(Gr /zr 1
3
2, and the conformal densitiesw(z) now

have weight21/2. Precisely because of this non-integer weight, one has to be careful when
the conformal transformation,

w~z!5w̃~ f ~z!!S d f~z!

dz D 2 1/2

, ~103!

so that we shall adopt the standard conventions.17

With the choice of conformal density,

w~z!52
4

3
A2

3
~12 i !S 11

1

z21D , ~104!

one obtains the following conservation law:

^Ju~G23/21
11
6 G1/21

43
360G5/22

1039
15120G9/21¯ !50. ~105!

If instead one chooses the conformal density,
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w~z!52
4

3
A2

3
~12 i !S 1

2
1 i
)

2
2

1

z2e2p i /3D , ~106!

one obtains the conservation law

^JuS G21/21
1

)
G1/21

11

6
G3/21

3

2)
G5/21

7

72
G7/21¯ D 50. ~107!

Other conservation laws can be obtained in similar fashions.

V. FERMIONIC STAR ALGEBRA SPECTROSCOPY

In this section we follow the methods of Ref. 26, in order to find the eigenvalue spectru
the various infinite-dimensional matrices involved in the star algebra for the matter ferm
sector, as well as the corresponding eigenvectors. We first find by inspection an eigenvectoM

andM̃ , and we then adapt the methods of Ref. 26 to find the rest of the spectrum. The star a
spectroscopy has also been studied in Refs. 39 and 40.

A. An eigenvector of M and M̃

In this section we want to show that the matricesM andM̃ have a common eigenvector wit
eigenvalues21 and 0, respectively. First define

nn21/25H S 21/2
k D , n52k11,

0, n52k.
~108!

Using ~A1!, and settingr 5n11/2, one easily finds

(
s

Mrsns52
2

p (
m50

`
~21!n2m

2m12n11 S 21/2
m D52S 21/2

n D52n r ,

(
s

M̃ rsns5
2

p (
m50

`
~21!n1m

2m22n21 S 21/2
m D5

~21!n

p

GS 1

2DGS 2n2
1

2D
G~2n!

50. ~109!

Therefore,n r is a common eigenvector toM andM̃ with eigenvalues21 and 0, respectively. This
vector can be understood geometrically as follows. Notice that its components are the ne
modes in the Fourier expansion of the function

f ~s!5
e2 i s/2

A11e22is
. ~110!

This function is antiperiodic in@2p,p# and satisfies the overlap equationf (s)5 i f (p2s).
Therefore, its modes satisfy the equation~34!. Since the positive modes are set to zero, it follo
from ~34! that the coefficients of the Fourier expansion give an eigenvector ofM andM̃ with the
required eigenvalues. Finally, notice that the vectorn is BPZ odd, sinceCn52n. A related
discussion of the geometric meaning of the eigenvectors in the bosonic case can be found
40.
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B. Diagonalizing K 1

To find the rest of the spectrum, we generalize the considerations of Ref. 26 to the ferm
sector. The derivation of the star algebra,

K15L11L21 , ~111!

has a fermionic part which is a sum of bilinears in the modesc6r . This allows for a definition of
an infinite-dimensional matrix as follows. Let$v r% r>1/2 be an infinite-dimensional vector. Defin
then the matrixK1 through

@K1 ,v•c#5~K1v !•c, ~112!

wherev•c5( r 51/2
` v rc r . In what follows, it will be quite useful to label the positive half-integ

indices with integer numbers by settingr 5n21/2, n51,2,... . Using the explicit expression fo
the Virasoro generators, we then find

~K1!nm52~n21!dn21,m2ndn11,m . ~113!

This is a symmetric matrix that anticommutes withC, $K1 ,C%50. To find its spectrum, one
associates to every vectorw a function f w(z) as follows:

f w~z!5 (
n51

`

wnzn. ~114!

The infinite-dimensional matrixK1 is then represented in the space of functions by the differen
operator

K152~11z2!
d

dz
1

1

z
, ~115!

and the problem of finding eigenvectors ofK1 now becomes the problem of finding eigenfunctio
for this differential operator. The solution is immediate: for any2`,k,` there is an eigen-
function of K1 given by

f w(k)~z!5
z

A11z2
exp~2k arctan~z!!, ~116!

with eigenvaluek. The normalization of this function has been chosen so thatw1
(k)51. One then

concludes thatK1 has a nondegenerate, continuous spectrum, similar to the bosonic case s
in Ref. 26. Also notice that

f Cw~z!52 f w~2z!, ~117!

so that the BPZ matrix acts as

Cw(k)52w(2k). ~118!

C. Diagonalizing M and M̃

We can now use this information in order to find the spectrum ofM andM̃ . First, observe the
following properties:

@K1 ,CI#50,
~119!

@K1 ,Mab#50.
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The first equation follows from the fact thatK1 kills the identity, and the second one from the fa
thatK1 is a derivation of the star algebra, and then (K1

(1)1K1
(2)1K1

(3))uV3&50.41 To derive~119!,
we have also used the fact thatK1 anticommutes withC. Making use of~64!, it follows that

@K1 ,M #5@K1 ,CM̃#50. ~120!

Therefore, and since the spectrum ofK1 is nondegenerate, an eigenvector ofK1 has to be an
eigenvector ofM andCM̃ as well. Notice that this makes sense sinceM andCM̃ are symmetric,
real matrices, and so they have real eigenvalues.

We have then shown that the eigenvectorsw(k) given implicitly in ~116! are also eigenvector
of M andCM̃. Now, we have to find out which are the corresponding eigenvalues. This ca
done with a trick from Sec. V B of Ref. 26. The eigenvalue equations are

Mn21/2,m21/2wm
(k)5m~k!wn

(k) ,
~121!

~CM̃!n21/2,m21/2wm
(k)5m̃~k!wn

(k) .

Since we chose the normalizationw1
(k)51, one can consider the above equations withn51 and

obtain for the eigenvalues:

m~k!5
2

p (
q51

`
~21!q

2q21
w2q21

(k) ,

~122!

m̃~k!52
2

p (
q51

`
~21!q

2q21
w2q

(k) .

Define now the functions

m~z!5 (
q51

`
~21!q

2q21
w2q21

(k) z2q21,

~123!

m̃~z!5 (
q51

`
~21!q

2q21
w2q

(k)z2q21,

which can be found to satisfy

dm~z!

dz
5

i

2z
~ f w(k)~ iz!2 f w(k)~2 iz!!,

~124!
dm̃~z!

dz
5

i

2z2 ~ f w(k)~ iz!1 f w(k)~2 iz!!.

Using the explicit expression forf w(k)(z), the fact thatm(0)5m̃(0)50, and integrating, one
finally finds

m~1!52
p

2
sech~kp/2!,

~125!

m̃~1!5
p

2
tanh~kp/2!.

This determines the eigenvalues ofM andCM̃ for the eigenvectorsw(k):
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m~k!52sech~kp/2!,
~126!

m̃~k!52tanh~kp/2!.

The spectrum ofM lies in the interval@21,0), while that ofCM̃ lies in (21,1). The above results
are of course compatible with the relationM22M̃251. Notice finally that, fork50, we recover
the results of the preceding section, since

f w(0)~z!5
z

A11z2
5 (

n50

` S 21/2
n D z2n11, ~127!

so w(0)5n and from~126! we read that the eigenvalues with respect toM andM̃ are in fact21
and 0, respectively, in agreement with the explicit computations of the preceding section.

We can now diagonalize the symmetric matrixH5CF that defines the fermionic sliver. Sinc
the derivationK1 kills the supersliver,19 one has that

@K1 ,H#50, ~128!

and by the same argument one has thatw(k) are eigenvectors ofH. The corresponding eigenvalue
will be denoted byh(k). In order to determine them first notice that, sinceH anticommutes with
C, one has

h~k!52h~2k!. ~129!

We can determineh(k) from the explicit expression given in~87!. However, one has to be carefu
when doing this. The reason is thatM̃ /(12M2)1/2 gives an indeterminacy of the type 0/0 whe
acting onw(0). If one naively substitutes the eigenvalues in~87!, one seems to find thath(0)
50, which contradicts~129!. Of course the appropriate way to regularize this indeterminacy i
expanding (12M2)21/2 in powers ofM , and if this is done then at every order in the expans
one indeed finds the right value of the eigenvalue, which ish(0)50 ~and can also be checked b
computingHw(0) in level truncation!. Related issues associated to the appearance of invers
singular matrices have been considered in the bosonic case in Ref. 39. Another subtlet~also
present in the bosonic case analyzed in Ref. 26! is that the quadratic equation determiningH gives
two branches for the eigenvalues, and in fact there is a jump from one branch to the othek
50. Since the numerical analysis of the spectrum shows that the eigenvalues ofH are in the
interval @21,1#, one finally finds that the spectrum ofH is given by

h~k!5H 2
k

uku
e2ukup/2, kÞ0,

0, k50,

~130!

in agreement with~129!.
Using all these results, one can also diagonalize the rest of the matrices that we have e

tered so far. For example, the eigenvalues of the real symmetric matricesM11,M12,M21 are,
respectively,

m11~k!52
sinh~kp/2!

~11cosh~kp/2!!~122 cosh~kp/2!!
,

m12~k!5
cosh~kp/2!~11cosh~kp/2!1sinh~kp/2!!

~11cosh~kp/2!!~122 cosh~kp/2!!
, ~131!
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m21~k!52
cosh~kp/2!~11cosh~kp/2!2sinh~kp/2!!

~11cosh~kp/2!!~122 cosh~kp/2!!
.

Of course there is still the possibility that all of these matrices have other eigenvectors whi
not eigenvectors ofK1 . We have not performed a systematic numerical search, but we are l
believe that, just as in the bosonic case, the above results determine the complete spec
eigenvectors and eigenvalues of the various infinite-dimensional matrices involved in the
onic matter sector.

It is also interesting to observe that, again just as in the bosonic case,40,26the eigenvectors tha
we have found are not normalizable. This can be seen in detail as follows. Given two in
dimensional vectorsv andw, their inner product is given by

v•w[ (
n51

`

vnwn5E
0

2p du

2p
f v* ~eiu! f w~eiu!. ~132!

The norm of a vectorv is defined as usual byivi2[v•v. Using~116! and~132!, one can find an
explicit expression for the norm ofw(k),

iw(k)i25cosh~kp/2!ini2, ~133!

where

ini254E
0

p/2 du

2p

1

A212 cos~2u!
. ~134!

This integral is logarithmically divergent, so the norm ofn ~and therefore of allw(k)) is infinite.
Another way to see this is to compute directly the sum:

ini25 (
n50

` S 21/2
n D 2

. ~135!

By using zeta-function regularization, we find that this series diverges as

lim
e→0

2

p
K~e2e!, ~136!

whereK(x) is the ellipticK function, which indeed diverges logarithmically asx→1.

VI. COHERENT STATES AND HIGHER-RANK PROJECTORS

Once the fermionic sliver has been constructed, it is natural to consider fermionic coh
states based on it, in analogy to the bosonic case.24,20 In this section we shall construct cohere
states and determine their star products. This will be useful in order to construct highe
projectors of the fermionic star algebra—idempotent states that should represent multipleD-brane
configurations.20

A. Coherent states on the supersliver

We define fermionic coherent states as follows. Letb5$b%r , r>1/2, be a Grassmannia
vector. Then, the coherent state on the fermionic sliver associated tob, that we shall denote by
uJb&, is given by

uJb&5exp@~2Cb!T
•c†#uJ f&. ~137!

This definition guarantees that the BPZ conjugate of~137! has a simple expression,
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^Jbu5^J f uexp@bT
•c#. ~138!

The star product of two coherent states can be computed very easily by using~78!, and one finds

uJb1
&!uJb2

&5exp~xT~11FK!21b1 1
2 bTK~11FK!21b!uJ f&, ~139!

whereF, K andx are given in~80!, andb denotes here the vector

b5S b1

b2
D . ~140!

An explicit computation yields

uJb1
&!uJb2

&5exp@N~b1 ,b2!#uJr1b12r2b2
&, ~141!

where

r152
1

11FK ~H~M21!21M12~12HM11!!5
1

2
~11MH2CM̃!,

r25
1

11FK ~H~M12!21M21~12HM11!!5
1

2
~12MH1CM̃!, ~142!

and

N~b1 ,b2!5
1

2
~b1 b2!S A B

C AD S b1

b2
D

52
1

2
~b1 b2!

C

2~12CIH ! S HM1~M12!M11 ~M12!M12

~M12!M21 HM1~M12!M11D S b1

b2
D .

~143!

The matricesr1 andr2 are real symmetric, and they have the following properties:

r11r251, r1r250,
~144!

r1
25r1 , r2

25r2 ,

just as in the bosonic case studied in Ref. 20. This means thatr1 , r2 are orthogonal projectors o
complementary subspaces. We also have

Cr1C5r2 .

Notice that the vectorsw(k) that we described in the previous section are eigenvectors ofr1,2. Let
us denote bys1(k) ands2(k) the corresponding eigenvalues. By using~126! and~130!, we find
that

s1~k!5H 1, k.0,

0, k,0,
~145!

with s2(k)512s1(k). Notice that the eigenvalues associated to the vectorn are s1(k)

5s2(k)5 1
2. This contradicts in principle the statement thatr1r250, and it gives yet anothe

example of a fact noticed in Ref. 39: formal computations involving inverses of matrices li
2M2 become ambiguous when acting on special eigenvectors.
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B. Higher-rank projectors

It is obvious from~141! that the star multiplication law for coherent states becomes par
larly simple whenb1,2 are eigenvectors of the projectorsr1,2 or combinations thereof. In this
subsection, we will show that with this choice one finds states that form closed subalgebras
fermionic star algebra. These states can be used to obtain new idempotent states that
higher-rank projectors, as in the bosonic situation.20 The construction is indeed a direct genera
zation of section 5.2 of Ref. 20. Letv be an eigenvector ofr2 ,

r1v50, r2v5v, ~146!

and definew52Cv. Therefore,ivi5iwi , and it follows fromCr1C5r2 that one will have

r1w5w, r2w50. ~147!

In addition, one has thatv•w5vT(r11r2)w50, as in Ref. 20. Using the explicit expressions f
r1,2, one can also show that

vTAw5vTCw5 1
2 vTMv,

~148!
vTBw5 1

2 vT~11CM̃!v,

where the matricesA, B, andC are the ones appearing in~143!.
Consider now the following states, obtained by acting with fermionic creation operators o

fermionic sliverJ f ~we suppress the brackets for notational convenience!:

Sv5S v
ivi •c†DJ f ,

Sw5S w

iwi •c†DJ f , ~149!

Jv,w5S v
ivi •c†D S w

iwi •c†DJ f .

Observe that the stateJv,w is Grassmann even, since fermions only appear via bilinears, while
Sv,w states are Grassmann odd. Consider now the coherent statesJb1

, Jb2
, whereb15u1v

1u2w, b25 û1v1 û2w, andu1,2, û1,2 are arbitrary Grassmann variables. It is simple to show,
computing the star productJb1

!Jb2
, that the states defined in~149! satisfy the following sub-

algebra of the star product, in the fermionic matter sector:

J f!Sv50, J f!Sw52Sw ,

Sv!J f5Sv , Sw!J f50,

Sv!Sv50, Sw!Sw50,

Sv!Sw5AvJ f2Jv,w , Sw!Sv52BvJ f , ~150!

J f!Jv,w5AvJ f , Jv,w!J f5AvJ f ,

Sv!Jv,w5AvSv , Sw!Jv,w5BvSw ,

Jv,w!Sv52BvSw , Jv,w!Sw52AvSw ,
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and finally

Jv,w!Jv,w5Av~Av2Bv!J f1BvJv,w . ~151!

In these equations we have introduced the notation

Av5
vTAw

ivi2 , Bv5
vTBw

ivi2 . ~152!

One can also find the BPZ norm of these states by computing^JbuJb&, with b5u1v1u2w. In
this computation one has to evaluate the inner products

vT
F

12F2 w52ivi2Av ,

~153!

vT
1

12F2 v5wT
1

12F2 w5ivi2Bv ,

as it can be checked by using the explicit expression forF and the fact thatv, w are eigenvectors
of r1,2. One obtains in the end:

^SvuSv&5Bv^J f uJ f&,

^SvuSw&50,
~154!

^J f uJv,w&52Av^J f uJ f&,

^Jv,wuJv,w&52~A v
21B v

2!^J f uJ f&,

together with their BPZ conjugates~notice that that BPZ conjugation exchangesv↔w).
One can now use this subalgebra in order to generate new solutions to the idemp

condition, and thus new solutions to the vacuum superstring field theory equations of motion
one can do by taking the most general combination of the four states,J f , Jv,w , Sv andSw , ~and
with the appropriate Chan–Paton factors, since theS’s are Grassmann odd!. One finds in this way
two types of new solutions:

~1! There is one new solution, which is Grassmann even. It is given by

x f5aJ f1bJv,w , ~155!

wherex f!x f5x f provided one chooses

a52
Av

Bv
, b5

1

Bv
. ~156!

One has that

x f!J f5J f!x f50, ~157!

and also

^x f ux f&5^J f uJ f&, ^x f uJ f&50. ~158!

Therefore, we see that if one interprets the fermionic sliver as a projector in the space of
fields, the string fieldx f is a projector on an orthogonal subspace and their sum is then a h
rank projector, as in Ref. 20. Indeed, the fermionic sliver is a rank-one projector on the ferm
sector of the space of half-string functionals. The best way to see this would be of cou
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construct a half-string formalism for the fermion fields. Unfortunately we have not been able
that, as we have not found good boundary conditions for the split fermions. However, one ca
bosonize the fermions and reduce the problem to the case already analyzed in Ref. 20, 27,
In fact, bosonization was used in Ref. 28 to show that the ghost part of the bosonic sliver i
a rank-one projector on the ghost sector of the space of half-functionals.~For a discussion on the
bosonization of the interaction vertex of the superstring in the operator formalism, see Ref!

~2! There are two families of new solutions, which have both a Grassmann even a
Grassmann odd piece. The first one is

J,5J f ^ 11,Sv ^ s1 , ,PR, ~159!

while the second one is

x,5x f ^ 11,Sw^ s1 , ,PR. ~160!

These string fields are idempotent for arbitrary real,, since the Grassmann odd piece is a nilpot
state, and they have the same norm for any,, which is the norm of the fermionic sliver. Moreove
one can show thatJ, and x, are related toJ and x by gauge transformations at the vacuu
Indeed, using nilpotency ofSv,w and the fact that

@Sv ,J f #!5J f , @Sw ,x f #!5x f , ~161!

one finds

J,5e,Sv ^ s1!J f!e2,Sv ^ s1,
~162!

x,5e,Sw^ s1!x f!e2,Sw^ s1,

i.e., in the terminology of Ref. 20J, andx, are star rotations ofJ f andx f . But on the other
hand, star rotations are indeed gauge transformations at the vacuum as it follows from~28!. In the
case we are considering, the gauge parameter is simply given byJm5, Sv,w^ s1 .

In order to construct higher-rank projectors, we have used simultaneous eigenvectors
projectorsr1 andr2 . These are precisely thew(k) that we have found in Sec. V, if one assum
that all the eigenvectors of these matrices are the eigenvectors ofK1 . In this case, one can take fo
v any vectorw(2k) with k.0, and thenw5w(k). The states defined in~149! give a family of
fermionic subalgebras parametrized byk.0, with coefficients

Av52
e2kp/2

11e2kp/2 , Bv5
1

11e2kp/2 . ~163!

Notice that we have normalized these states by introducing a factor 1/ivi . In this way, the norms
of v,w do not appear in the star subalgebra nor in the BPZ products. Since the vectorsw(k) have
infinite norm, this normalization factor actually vanishes. Observe, however, that the norm
~super!sliver is also strictly zero since it contains a positive power of (det(11X)), and the matrix
X is known to have an eigenvalue21/3.39,40,26In that respect, the states we have constructed
not essentially different. We should add that the same thing happens to the higher rank pro
constructed in Ref. 20: they are constructed from eigenvectors of the bosonic projectors,
have infinite norm,40,26 and the construction involves dividing by this norm. This is yet anot
manifestation of the rather singular structure of the idempotents of the string field star alge

Some remarks are now in order. It is simple to see from~141! and the fermionic subalgebr
~150!, that associativity of the star product does not hold in the fermionic sector. The break
of associativity is however rather mild, as it holds up to signs. It is known that in order to
associativity of the string star product both the three vertex and the four vertex need to be
~see for example, Ref. 36!. Although the three vertex analyzed in Sec. III is indeed cyclic, it
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been shown by Bogojevic´, Jevicki, and Meng43 that in the fermionic matter sector the four verte
is not cyclic. Cyclicity is however expected to hold once we restrict ourselves to the GSO1)
sector, and this is in agreement with the algebra~150!.

VII. THE GEOMETRIC SUPERSLIVER AND THE „SUPER…GHOST SECTOR

So far, we have restricted ourselves to the matter sector. In order to have a complete p
we still have to make a proposal for the the vacuum BRSTQ operator, and one has to solve th
equations of motion in the ghost sector~21!. In this section we will show that the ghost/supergh
part of the geometric supersliver satisfies~21! if we takeQ to be the canonical BRST operato
recently proposed by Gaiotto, Rastelli, Sen, and Zwiebach25 for the bosonic string, and that w
shall denote in the following byQGRSZ. Observe that this implies that the full geometric sup
sliver is a solution to the full superstring field theory equations of motion. Therefore, a na
proposal for vacuum superstring field theory is to takeQ5QGRSZ, and postulate that the maxima
D9-brane is described by the full geometric supersliver.

Notice that the string field in Berkovits’ theory has ghost and picture number zero,
therefore the geometric supersliver is a good string field. This is in contrast to bosonic
theory, where the string field has ghost number one and therefore the sliver is not an acc
string field. Indeed, theD25-brane is conjecturally described by the twisted sliver, whose algeb
construction was presented in Ref. 44 and has later been constructed in BCFT in Ref. 2
twisted sliver has in fact ghost number one, as required by cubic bosonic string field theor

Let us then analyze the equation~21!. We have seen in Sec. II that idempotency of the str
field seems to be even more useful in superstring field theory, where it reduces drastica
nonlinearity of the equation of motion. In fact, it is easy to see that an idempotent ghost/supe
state satisfyingFg!Fg5Fg reduces the WZW equation of motion~21! to a simpler form. IfFg

is idempotent, the exponential is linearized as

eFg5I1~e21!Fg , ~164!

and so the equation of motion becomes

h0H S I1S 1

e
21DFgDQFgJ 50. ~165!

It is clear that this equation of motion is solved if

QFg50. ~166!

Let us then assume that the vacuum BRST operator is the one chosen recently by G
Rastelli, Sen, and Zwiebach25 for the bosonic string,

QGRSZ5
1

2i
~c~ i !2c~2 i !!. ~167!

In terms of oscillators, this operator is given by

QGRSZ5 (
n50

`

~21!nC2n , ~168!

where

Cn5cn1~21!nc2n , nÞ0,
~169!

C05c0 .
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We can now show that the ghost part of the supersliver is annihilated byQGRSZ, and therefore
solves the equations of motion.~We thank L. Rastelli for pointing this out to us.! First of all, notice
that the ghost part of the supersliver factorizes intobc andbg pieces,

uJg&5uJbc& ^ uJbg&. ~170!

Since the choiceQGRSZ does not involve the superghosts, it is enough to show that

QGRSZuJbc&50. ~171!

We shall do this in two distinct ways. First, we use a geometric argument akin to that in Re
Second, we shall prove it by using oscillator methods.

The geometric argument goes as follows. The supersliver is defined by the following rel

^Juf&5^ f +f&, ~172!

wheref (z)5arctan(z), anduf& is any Fock state. If one now acts with the arbitrary Fock state^fu
on ~171!, one finds

^fQGRSZuJ&5
1

2i
^ f +f~0!~~ f 8~ i !!21c~ i`!2~ f 8~2 i !!21c~2 i`!!&. ~173!

But ( f 8(6 i ))2150, and therefore the above correlator is zero.
Let us now give an oscillator proof. Using the methods of Ref. 36, it is not too hard to s

that thebc part of the~super!sliver is given by a squeezed state of the form

uJbc&5expS (
s,i

c2sSsib2 i D u0&, ~174!

wheres521,0,1,..., i 52,3,..., andSsi is given by the double residue:

Ssi5 R
0

dz

2p i

1

zs21 R
0

dw

2p i

1

wi 12

~ f 8~z!!2~ f 8~w!!21

f ~z!2 f ~w! S f ~w!

f ~z! D 3

. ~175!

A different expression for this matrix has been given in Ref. 45. If we now defineU
5(s,ic2sSsib2 i , one has that forn>2,

cnU5Ucn2(
s

c2sSsi . ~176!

Using this result one can easily show that~171! holds if and only if the matrixS satisfies

(
n51

`

S2k,2n~21!n5~21!k, ~177!

where we have also used that, due to twist invariance,Ssi50 if s1 i 5odd. The above equation
says essentially thatS has an eigenvector with eigenvalue 1. One can check that~177! is true by
using the explicit representation ofS as a double residue and the techniques of Ref. 26. Ind
since

(
n51

`

~21!nw22n225
w22

11w2 , ~178!

we have to deform thew contour to pick the residue atw5z, and this yields
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(
n51

`

S2k,2n~21!n5 R
0

dz

2p i

1

z2k21

1

11z2 5~21!k, ~179!

as we wanted to show. This gives yet another proof of~171!, and also establishes a property ofS
that may be relevant in future investigations.

Notice that in order to annihilate the identity the BRST operator of Ref. 25 has to be
larized in an appropriate way. It is also immediate to observe that this regularization doe
affect the above computations.

VIII. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have taken the first steps towards the construction of vacuum superstrin
theory. More concretely, we have shown that idempotent states play a distinctive role in Berk
string field theory, and after clarifying the structure of the fermionic vertex in the NS secto
have given an explicit algebraic construction of the fermionic sliver. We have also explored
aspects of the star algebra. In particular, we have computed the spectrum of the fermioni
mann matrices and we have constructed higher-rank projectors by using closed star suba
obtained from coherent states. Finally, we have shown that the geometric sliver is a solution
superstring field theory equations of motion including both matter and ghost sectors.

Clearly, many things remain to be done. There are some obvious open problems th
should address to put this construction on a firmer ground, which we now list as direction
future research.

The most pressing problem is to construct solutions describing the various BPS and no
D-branes of type IIA superstring theory. It is natural to conjecture that the supersliver des
the tachyonic vacuum of theD9-brane, but a necessary test is to verify that one can cons
other D-branes with the right ratio of tensions. In Ref. 19, lower dimensionalD-branes were
constructed in the bosonic case by first identifying the sliver state with the maximalD25-brane
and then exploiting the spacetime dependence of the vertex. A more general construction w
described in Ref. 21 and implemented in detail in Ref. 46. It should be possible to adap
construction to the supersymmetric case, although there might be some subtle points that
be addressed. For example, it is not obvious to us how one would reproduce the mod two be
of the D-brane descent relations in the superstring case, i.e., the fact that in the IIA t
Dp-branes with oddp are unstable whileDp-branes with evenp are stable, and in particular th
fact that unstable and stableD-brane tensions differ with an extra& factor. One possibility is that
this question of ‘‘BPS versus non-BPS’’ brane solutions could also be associated to the con
tion of solutions to vacuum superstring field theory only in the GSO(1) sector or in both the
GSO(6) sectors. Another possibility may have to do with the introduction of the Grassmann
stateG21/2uJ& in the game. But surely the most straightforward way to proceed would b
follow the methods of Refs. 21 and 46.

One should also understand the structure of the ghost and superghost components of th
Notice that in Berkovits’ theory the correlation functions that enter into the star produc
defined in the large Hilbert space and, therefore, one should have a construction of the sup
vertex in terms of the bosonized superconformal ghosts. The full analysis of the ghost/supe
sector will be probably necessary in order to identify the closed superstrings at the nonpertu
vacuum, perhaps along the lines of Ref. 25.

It would be interesting to develop a half-string formalism47 in the fermionic sector. This would
make clear some of the properties of the fermionic sliver, like the fact that it is a rank
projector. As we pointed out in Sec. VI, a way to see this is to bosonize the fermions, but it w
be more convenient to have an explicit representation in terms of fermionic oscillators.

Although in this paper we have focused on Berkovits’ superstring field theory, there e
another proposal for superstring field theory of the NS sector, which is cubic and has bee
used to test Sen’s conjectures~see, e.g., the recent review48!. In this cubic superstring field theory
where the string field has picture number zero and ghost number one, one can immediately
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all of the results of bosonic VSFT: assuming a pure ghost/superghost BRST operator, and
ization of the solution, the equation of motion in the matter part again reduces to idempote
the string field. Since the star product is kept the same, all the results of this paper, concern
fermionic matter sector, are as well valid for the cubic superstring field theory. The ghost s
however, will probably require some sort of twisted ghost sliver as in Ref. 25.

Note added in proof :After this paper was completed, Ref. 49 appeared, which has s
overlap with Secs. III and IV in this paper and constructs the fermionic sliver in the context o
cubic superstring field theory.
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APPENDIX

In this appendix, we show that the explicit expressions given in~43! and~68! satisfy equations
~41! and~59!, respectively. Since this is very similar to the bosonic case analyzed in Ref. 30
shall only give a few details. In the case of the identity, we are required to prove that (12M )I
5M̃ . The only thing we actually need is the following result:

(
,50

`
~21!,

,1a S 21/2
, D5

GS 1

2DG~a!

GS a1
1

2D . ~A1!

From this, one deduces that

(
,50

`
û2,

2,1a11
5H p

2
ûa , a even,

1

aûa
, a odd,

~A2!

and this is enough to prove~41!. For the interaction vertex, one has to prove the followi
equations:

~M12!~U1Ū !522M̃22~U1Ū !,

~M12!~U2Ū !52) iC, ~A3!

where the matricesU1Ū, U2Ū are given in~69!. The necessary ingredients to prove~A3! are
the following. First, one can show that the coefficientsgn defined in~66! satisfy the recursion
relation:

1
3 gn5~n11!gn112~n21!gn21 . ~A4!

Next, define as in Ref. 30 the following sums:
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On5 (
m52,11

gm

n1m
,

~A5!

En5 (
m52,

gm

n1m
.

These sums can be written as integrals,

On5
1

2 E1

` dt

tn11 F S t11

t21D 1/6

2S t11

t21D 1/6G ,
~A6!

En5
1

2 E1

` dt

tn11 F S t11

t21D 1/6

1S t11

t21D 1/6G ,
and using this representation one can show that they satisfy the recursion relations:

~n11!En115 1
3 On1~n21!En ,

~A7!
~n11!On115 1

3 En1~n21!On .

To evaluate these sums, we proceed as in Ref. 30. On the one hand, we have

g2,5
1

2p i R dz

z2,11

1

2 F S z11

z21D 1/6

2S z11

z21D 1/6G , ~A8!

where the contour is around the origin. On the other hand, when, is greater than zero, one ca
deform the contour in the above integral to the real axis and obtain

O2,5pg2, , ,>1. ~A9!

Similarly, one proves that

E2,115pg2,11 , ,>0. ~A10!

The value ofO0 can be evaluated by direct integration. After performing the change of varia
x5tanh((logt)/2), one finds

O05E
0

1 dx

12x2 ~x21/62x1/6!5
1

2 S cS 7

12D2cS 5

12D D . ~A11!

We then find

O05p2
)

2
. ~A12!

Using this value and the recursion relations, one can obtainO22, , E22,21 as well. To evaluate
the other sums, we follow the procedure in the Appendix of Ref. 30. First, define the serie

Sn5H En , n52k,

On , n52k11.
~A13!

Since the sums satisfy the recursion relation~A7!, Sn satisfies the recursion relation of the coe
ficientsgn ~A4!. There is another solution to this relation which is given by
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Sn53S1gn13 (
m50

n21

~21!m
gmgn2m

m11
. ~A14!

To derive this, one first writes a differential equation for the functionS(x)5(n51
` Snxn by using

the recursion relation. The details are exactly like the ones in Ref. 30. To have the com
solution to the problem, we then just have to evaluateS1 ,

S1511
1

)
logS)21

)11
D . ~A15!

Notice thatSm;1/m, and one hasmSm→1 asm→0. The recursion relation also implies thatS2m

diverges form521,22,... , butmS2m2n with n.0 has a finite limit asm goes to zero that can
be evaluated using the recursion relations.

With these ingredients, we can already prove very easily the first equation in~A3!. For
example, in this proof one has to evaluate the quantity

Am5~21!mm~m11!~gm11Sm2Sm11gm!. ~A16!

Using the recursion relations, one can see thatAm does not depend onm, thereforeAm5A1

51/3. In order to prove the second equation in~A3!, one needs some extra ingredients to d
with the diagonal terms, since these involve the sums

Õn5 (
m52,1

gm

~n1m!2 ,

~A17!

Ẽn5 (
m52,

gm

~n1m!2 .

These sums have the integral representation

Õn5
1

2 E1

`

dt
log t

tn11 F S t11

t21D 1/6

2S t11

t21D 1/6G ,
~A18!

Ẽn5
1

2 E1

`

dt
log t

tn11 F S t11

t21D 1/6

1S t11

t21D 1/6G ,
and using them one can prove the recursion relations:

~n11!Ẽn115 1
3Õn1~n21!Ẽn1En112En21 ,

~A19!
~n11!Õn115 1

3Ẽn1~n21!Õn1On112On21 .

These can be solved as in Ref. 30, but we shall not need their explicit expression, and
evaluation of the relevant quantities it suffices to use the recursion relations they satisf
example, in the proof of the second equation in~A3! one has to compute

Cm5m~m11!~gm11S̃m2S̃m11gm!, ~A20!

whereS̃n is defined as follows:

S̃n5H Õn , n52k,

Ẽn , n52k11.
~A21!
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Using the recursion relations~A4! and ~A19!, as well as~A12!, one can show that

Cm5
p

3 (
l 50

m

~21! lgm2 l
2 2pgmgm112

p)

6
. ~A22!

Taking into account these results, the proof of the second equation in~A3! is immediate.
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An interesting and satisfactory fluid model has been proposed in the literature for
the description of relativistic electron beams. It is obtained by imposing the entropy
principle up to a certain order with respect to a smallness parametere measuring
the dispersion of the velocity about the mean. Here the general exact solution is
found, satisfying the entropy principle and the relativity principle up to whatever
order. © 2003 American Institute of Physics.@DOI: 10.1063/1.1527716#

I. INTRODUCTION

The following system of quasi-linear partial differential equations has been propose
Amendt and Weitzner1,2 to describe the behavior of relativistic electron beams,

]aVa50, ]aTab5eFbaVa , ]aAabg52eTa
(bFg)a, ~1!

whereFab is the electromagnetic field tensor ande is the electron charge.Va ~particle number-
particle flux vector! andTab ~stress-energy-momentum tensor! are assumed as independent va
ables, whileAabg is a constitutive function whose determination is also called the ‘‘clos
problem.’’ Restrictions on its generality can be obtained by considering the counterparts
above variables in statistical mechanics. They are defined there as moments of the distr
function f (xa,pa),

Va5E f padP, Tab5E f papbdP, Aabg5E f papbpgdP, ~2!

where pa is the four-momentum of the particle so that we havepapa52m2 and dP
5A2gdp1dp2dp3/p0 is the invariant element of momentum space;m is the particle mass.

Equations~2! show thatTab andAabg are symmetric with respect to all pairs of indices a
that the following ‘‘trace condition’’ holds:

Ab
ab52m2Va. ~3!

In Refs. 1 and 2, Amendt and Weitzner have proposed the following closure,

Aabg523m2~Tm
m!21V(aTbg)22m21~Tm

m!22VaVbVg,

and a detailed study of the linear wave modes in this model has been made in Ref. 3. This
constitutes a great improvement of those previously known in literature, because it is fully
riant and complete; moreover the resulting system~1! is hyperbolic. However, it satisfies th
condition~3! only approximately. In Refs. 4 and 5 a closure has been found satisfying exactly E
~3!; it has also been imposed that this closure is such that the entropy principle is satisfied
certain order with respect to a smallness parametere measuring the dispersion of the veloci
about the mean. The hyperbolicity of this model has been studied in Ref. 6. This new clos
more satisfactory also from a mathematical viewpoint; in fact, the resulting system is equiva
a symmetric hyperbolic one, a fact which guarantees the existence, uniqueness, well-pos

a!Electronic mail: spennisi@unica.it
1880022-2488/2003/44(1)/188/10/$20.00 © 2003 American Institute of Physics
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and stability of the solution of the initial values problem. A particular ordering in terms ofe, which
characterizes warm plasmas, is also satisfied. Here the exact general solution is found, sa
all these conditions up to whatever order. Before showing it, let us recall that the entropy pri
for the balance equations~1!, exploited via Liu’ s theorem,7 amounts to assuming the existence
the Lagrange multipliersj, lb , Sbg and of a four-vectorial functionh8a ~related to the entropy–
entropy flux! such that

Va5
]h8a

]j
, ~4a!

Tab5
]h8a

]lb
, ~4b!

S Aamn2
]h8a

]Smn
D S gm

bgn
g2

1

4
gmngbgD50, ~4c!

V[alb]12T[a
g Sb]g50, ~4d!

where the Lagrange multipliers have been taken as independent variables and it has bee
into account thatSbg is symmetric and traceless.

Usually, at this point, the representation ofh8a up to a certain order is introduced; from Eq
~4! one obtains the representations ofVa, Tab, andAabg. The symmetry conditions onTab and
Aabg, and the trace condition~3!, give restrictions on the above mentioned expression ofh8a;
these restrictions have been imposed in the last papers, in a neighborhood of thermod
equilibrium and, consequently, of the state withe50.

In the present article, an exact solution is found and is

h18
a5E F~j1Smnpmpn, lmpm!padP, ~5!

where the functionF(X,Y) is related to the distribution function at equilibrium by

]

]X
F~X,Y!5 f eq~X,Y!.

However, this solution of the above conditions is not unique; it will be shown below tha
general one ish8a5h18

a1h28
a with

h28
a5 (

n50

`
1

n!
Ban1s1n2s2¯nnsnSn1s1

Sn2s2
¯Snnsn

, ~6!

which is expressed in terms of the tensors

Ua5~2lmlm!21/2la, hab5gab1UaUb, ~7!

Ba1a2¯a2h115(
s50

h S 2h11
2s Dg22h23gh,2s~j,g!•

1

2s11
h(a1a2

¯ha2s21a2sUa2s11
¯Ua2h11).

Moreover, we have

gh,2s225
2g

2s11

]gh,2s

]g
1gh,2s for s50,...,h, ~8a!
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]

]g
gh11,2h1252m2g~2h13!

]

]j
gh,2h , ~8b!

the last one which can be written, by using Eq.~8a! also as

2m2g2
]

]j
gh,2h5gh11,2h122gh11,2h . ~9!

The equations~8! have the following meaning: Among the functionsgh,2s let us callgh,2h the
‘‘leading function of orderh. ’’ Equation ~8a! is a recurrence formula which givesgh,2s in terms of
this leading function, while~8b! gives the leading function of orderh11 in terms of the corre-
sponding one of orderh, except for a constant arising from integration; it is constant with res
to g, but it may depend onj. We note that also the expansion ofh18

a around equilibrium has the
form ~6! and ~7! with

gh,2s524pm2h13g2h13E
0

` ]hF~j,kg coshr!

]jh cosh2h22s11 r sinh2s12 r dr, ~10!

and it is easy to see that this expression satisfies exactly Eqs.~8a! and ~9!. It is clear thath18
a is

only a particular solution; in fact, it does not depend on the arbitrary functions of the si
variablej arising from integrating~8b!. If one wants thath18

a1h28
a yields for Va, Tab, Aabg at

equilibrium the same expressions which originate fromh18
a , it is sufficient thatg0,05g1,250. In

this case Eqs.~8! yield polynomial expressions forgh,2s in the variableg.
It is easy to see that ifh8a5h18

a , then the symmetry condition onTab andAabg and the trace
condition ~3! are surely satisfied. There remains to prove this same result for the general
solutionh8a5h28

a and this will be the subject of the next section. The last condition~4d! will be
exploited in Sec. III.

Before leaving the present section, it has to be noted that it is too much restrictive to tak
h8a5h18

a , when the functionF depends onX and Y only through their sum, i.e.,F5F(X
1Y). To understand better this point, let us substitute toh8a in Eqs.~4a! and ~4b! the arbitrary
expression ofh28

a ; one obtains at equilibrium

h28
a5g23g0,0~j,g!Ua, Va5g23

]g0,0

]j
Ua,

Tab52
m

k

]

]g
~g23g0,0!U

aUb1g24g0,0

m

k
hab,

which yields

ha52nsUa, Va5nUa, Tab5eUaUb1phab,

with n ~particle density!, p ~pressure!, e ~energy density! ands ~entropy density!, given by

n5g23
]g0,0

]j
, ~11a!

p5
m

k
g24g0,0, ~11b!

e52
m

k

]

]g
~g23g0,0!, ~11c!
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s5S ]g0,0

]j D 21Fg0,02j
]g0,0

]j
2g4

]

]g
~g23g0,0!G . ~11d!

From ~11d! and the Gibbs relation, it is evident thatg can be identified asm/kT, with T the
absolute temperature. If the particular material is characterized by the state functionsn5n(p,g)
and e5e(p,g), then ~11b! simply definesj in terms of p and g, while ~11a! and ~11c! are
equations from which to obtaing0,0 in terms ofn(p,g) ande(p,g); in fact, they are equivalent to

]

]j
~g23g0,0!5nS m

k
g24g0,0, g D ,

]

]g
~g23g0,0!52

k

m
eS m

k
g24g0,0, g D .

These equations giveg0,0 iff the following integrability condition is satisfied,

~e1p!np1gng5nep , ~12!

where~11b! has been used. Equation~12! is not a new condition on the state functions becaus
is the same integrability condition for the equations

]s

]p
5

m

kg F ]

]p S e

nD1p
]

]p S 1

nD G ,
]s

]g
5

m

kg F ]

]g S e

nD1p
]

]g S 1

nD G ,
which are equivalent to the Gibbs relation

Tds5dS e

nD1pdS 1

nD .

These considerations show that the most general state functions can be written as~11a!–~11c! with
g0,0 an arbitrary function of the two variablesj andg; this generality is not maintained if onlyh18

a

is used andF5F(X1Y), because in this case Eq.~10! yields

g0,0524pm3g3E
0

`

F~j1kg coshr!coshr sinh2 rdr,

which is expressed in terms of the single-variable functionF.
This fact does not mean that this solution is wrong, but that it can be applied only to

materials. Examples of these applications can be found in Refs. 8–14, together with the gui
which led to find this particular exact solution.

An example of the caseF5F(X1Y) is furnished by

f eq~X,Y!5
y

e~X1Y!/k61
,

i.e., the Ju¨ttner15,16 distribution function at equilibrium, wherek is the Boltzmann constant, th
upper and the lower signs refer to Fermions and Bosons, respectively,y is equal tow/h3 with h
the Planck’ s constant, andw is equal to 2s11 for particles with spinsh/2p. In this case Eq.~10!
becomes
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gh,2s524pym2h13g2h13
]h21

]jh21 J2s12,2h22s11

and

]21

]j21 J,
]0

]j0 J

can be considered symbols standing for

E Jdj, J

respectively.
Let us conclude reporting the expression ofg0,0 in the general caseF5F(X,Y); Eq. ~10!

shows that it is

g0,0524pm3g3E
0

`

F~j,kg coshr!coshr sinh2 rdr.

II. EXISTENCE AND UNIQUENESS OF THE SOLUTION OF OUR CONDITIONS AND
EXPRESSED BY h 8aÄh 28

a

Let us start with Eq.~6! which is the most general expansion ofh28
a with respect to the state

with Smn50, and substituteBan1s1¯nnsn with

Bam1d1¯mndn~gm1

(n1gd1

s1)
2 1

4 gm1d1
gn1s1!¯~gmn

(nngdn

sn)
2 1

4 gmndn
gnnsn!,

because Smn is traceless; in this way an expression like~6! is obtained, but with
Ba¯n is i¯nnsngn is i

50. Let us now write Eq.~6! as

h28
a5 (

n50

`
1

n!
BaA1¯AnSA1

¯SAn
, ~13!

whereAi stands for the couplen is i and let us act on it as it is a single index. Moreover, t
expression~13! of h28

a does not change if we replaceBaA1¯An with

DaA1¯An5Ba(A1¯An)1 (
s50

n21

Ca(A1¯AsgAs11
¯gAn),

and this is true for whatever tensorsCaA1¯As; in particular, these last tensors may be chosen
defined by

CaA1¯As52
1

4

s11

n2s
CaAA1¯AsgA for s50,...,n22

CaA1¯An2152
m2

4
n

]

]j
DaA1¯An21.

The first of these relations defines the tensorCaA1¯As, of orders11, in terms of the correspond
ing one of orders12; the second one defines the tensor with the higher order. In this
DaA1¯An is defined onceDaA1¯An21 is known. As a consequence of these definitions, it can
seen that
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DaA1A2¯AngA1
52m2

]

]j
DaA2¯An.

These considerations show that it is not restrictive to maintain Eq.~13! and impose thatBaA1¯An

is symmetric with respect to all couples of indicesAi andAj and, moreover, that

BaA1A2¯AngA1
52m2

]

]j
BaA2¯An. ~14!

In this way Eq.~4c!, by using Eq.~4a!, becomes

Aabg52
1

4
m2(

n50

`
1

n!
gbg

]

]j
BaA1¯AnSA1

¯SAn

1 (
n51

`
1

~n21!! S BabgA2¯An2
1

4
BaA1A2¯AngA1

gbgDSA2
¯SAn

5 (
n51

`
1

~n21!!
BabgA2¯AnSA2

¯SAn
, ~15!

because the first and third terms are opposite for Eq.~14!.
From Eq.~15! it can be seen that the symmetry condition onAabg holds iff BabgA2¯An is

symmetric with respect toabg. More than that, it is symmetric with respect to every couple
indices; in fact, one has

Ban1s1¯n is i¯nnsn5Ban is i¯n1s1¯nnsn5Bn ias i¯n1s1¯nnsn5Bn in1s1¯as i¯nnsn,

Ba¯n is i¯nnsn5Ba¯s in i¯nnsn5Bs i¯an i¯nnsn5Bs i¯n ia¯nnsn,

Ba¯a j¯ak¯an5Ba j¯a¯ak¯an5Bak¯a¯a j¯an5Ba¯ak¯a j¯an.

The first one of these relations shows thata can be exchanged withn i ; in the second onea is
exchanged withs i ; in the third one, it is exchanged with a generic couple of indicesa j andak .

By using the representation theorems it can be seen that Eq.~7! is the most general expressio
for Ba1¯a2h11, which takes into account that it is symmetric and depends only onj andla. The
factor neargh,2s has been introduced for later convenience.

Let us now impose the symmetry condition onTab as defined by Eq.~4b!; with some calcu-
lations, it can be seen that it is equivalent to Eq.~8a! and there remains

Ta1a25
m

k (
h50

`
1

h! F2(
s50

h S 2h12
2s D 1

2s11
h(a1a2

¯ha2s21a2sUa2s11
¯Ua2h12)

•

]

]g
~g22h23gh,2s!

1g22h24gh,2hh(a1a2
¯ha2h11a2h12)G•Sa3a4

¯Sa2h11a2h12
. ~16!

The symmetry condition onAabg and the trace condition~3! are already satisfied; it remains t
impose Eq.~14!. With some calculations, it can be seen that it is equivalent to

gh,2s122gh,2s52m2g2
]

]j
gh21,2s ,

which, by use of~8a!, becomes
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]

]g
gh,2s1252~2s13!m2g

]

]j
gh21,2s ,

or, with s21 instead ofs,

]

]g
gh,2s52~2s11!m2g

]

]j
gh21,2s22 . ~17!

Now, by using Eqs.~8a! and ~17!, one has also that

2~2s21!m2g
]

]j
gh21,2s2452~2s21!m2g

]

]j S 2g

2s21

]gh21,2s22

]g
1gh21,2s22D5

]

]g
gh,2s22 ,

i.e., Eq. ~17! with s21 instead ofs. Therefore, it is sufficient to impose Eq.~17! only for the
higher value ofs, that is,s5h:

]

]g
gh,2h52~2h11!m2g

]

]j
gh21,2h22 ,

which proves~8b!.

III. PROOF OF THE PROPERTY „4d…

Let us start by proving that a scalar functionf * exists, such that

h8a5
] f *

]la
, ~18!

and it can be expressed in the form

f * 5 (
n50

`
1

n!
Pn1s1¯nnsnSn1s1

¯Snnsn
,

with

Pn1¯n2n5(
s50

n S 2n
2sD 1

2s11
fn,2s~j,g!h(n1n2

¯hn2s21n2sUn2s11
¯Un2n).

One obtains that~18! is satisfied iff

fn,2s52
2n22s21

2s13
fn,2s121

k

m

g22n22

2s13
gn,2s12 for s50,...,n21, ~19a!

]

]g
fn,2s52

k

m
g22n23gn,2s for s50,...,n. ~19b!

This last one fors5n reads

]

]g
fn,2n52

k

m
g22n23gn,2n , ~20!

and it can be seen that~19b! is a consequence of~19a! and ~20!. Let us prove this by the
recurrence method. It is true fors5n; let us assume that~19b! holds and prove that it is satisfie
also whens21 replacess. We have
                                                                                                                



, the

t exact

ads

195J. Math. Phys., Vol. 44, No. 1, January 2003 Exact model for electron beams

                    
]

]g
fn,2s225

]

]g S 2
2n22s11

2s11
fn,2s1

k

m

g22n22

2s11
gn,2sD

52
k

m
g22n23gn,2s1

k

m

g22n22

2s11

]

]g
gn,2s52

k

m
g22n23gn,2s22 ,

where~19a!, ~19b! and~8a! have been used in this order. This completes the proof. Therefore
function f * exists andfn,2s are determined by~19a! and ~20!.

The condition~18! has already been found by Geroch and Lindblom17 in a more general
context; see also Ref. 18. Here the proof has been given that it is satisfied by the presen
solution; moreover, it helps in proving Eq.~4d! because it allows us to write it as

]2f *

]j]l [a
lb]12

]2f *

]lg]l [a
Sb]g50. ~21!

Now the following identity holds, as a consequence only of the representation theorems,

]2f *

]j]l [a
lb]12

]2f *

]j]Sg[a
Sb]g50. ~22!

It is simply a consequence of the fact thatf * depends onj, la , and Sga through j, G0

5lala, G15lgSgala , G25lgSgbSbala, G35lgSgbSbdSdala , Q25SgbSbg , Q3

5SgbSbdSg
d , andQ45SgbSbdSdeSeg .

The identity~22! allows us to write the condition~21! as

S ]2f *

]lg]l [a
2

]2f *

]j]Sg[a
DSg

b]50 ~23!

or

S Tg[a2
]2f *

]j]Sg[a
DSg

b]50.

By using also~16!, one obtains

]

]j
fn,2s52

m

k

]

]g
~g22n21gn21,2s!, for s50,...,n21, ~24a!

]

]j
fn,2n5

m

k
~2n11!g22n22gn21,2n22 . ~24b!

Note that Eq.~20! givesfn,2n except for an arbitrary function of the single variablej; now Eqs.
~20! and~24b! give fn,2n except for a constant, but there is an integrability condition which re

2
k2

m2

]

]j
~g22n23gn,2n!5~2n11!

]

]g
~g22n22gn21,2n22!,

or, equivalently,

]

]j
gh11,2h125

m2

k2 ~2h13!F ~2h14!gh,2h2g
]

]g
gh,2hG . ~25!
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Also in this case, note that~8b! gives gh11,2h12 except for an arbitrary function of the singl
variablej, while Eqs.~25! and ~8b! give it except for a constant arising from integration; t
integrability condition is

k2
]2

]j2 gh,2h2
]2

]g2 gh,2h1
2h13

g

]

]g
gh,2h50. ~26!

Now, the first member of this relation written withh11 instead ofh, can be exploited by mean
of ~8b! and ~25!, and becomes zero. Therefore, it is sufficient to impose Eq.~26! only for h50,
i.e.,

k2
]2

]j2 g0,02
]2

]g2 g0,01
3

g

]

]g
g0,050, ~27!

because for the other values ofh it is surely satisfied.
It remains now to impose Eq.~24b!; whens5n21 it is an identity, as consequence of~19a!,

~24a! and~25!. For the other values ofs, let us impose it with the recurrence method. Let it be tr
whens11 replacess; by using this new relation and~19a!, we see that~24a! is satisfied iff

]

]g F S 2n22s21

2s13
gn21,2s121gn21,2sDg22n22G1

k2

m2

g22n22

2s13

]

]j
gn,2s1250 for s50,...,n22.

~28!

It can be seen that this relation holds also fors5n21 as a consequence of~25! and of~8a!. Let
us write the first member of Eq.~28! with s21 instead ofs, and substitute in this expression th
functionsgn21,2s , gn21,2s22 , andgn,2s which can be obtained from~8a! in terms ofgn21,2s12 ,
gn21,2s , andgn,2s12 , respectively. In the result, let us substitute the expression of (]/]j) gn,2s12

which can be obtained from Eq.~28!; after that,gn21,2s can be expressed in terms ofgn21,2s12

from ~8a! and the result is identically zero. Therefore, Eq.~28! is satisfied because it already hold
for the higher value ofs.

IV. CONCLUSIONS

The present results are very satisfactory, because the closure which is found consti
consistent improvement of the previous ones appearing in the literature. Not only does it
the constraints exactly, still obeying the warm plasma ordering, but it satisfies exactly als
supplementary conservation law related to the entropy principle, not only in a neighborho
equilibrium as in the previous versions. This fact guarantees the existence and uniquenes
posedness and stability of the solution of the initial values problem.

It allows also further deepening investigations, which may be the subject of future wor
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16F. Jüttner, Z. Phys.47, 542 ~1928!.
17R. Geroch and L. Lindblom, Phys. Rev. D41, 1855~1990!.
18S. Pennisi, Pitagora Editrice Bolognat 259~1987!.
                                                                                                                



ur de-
have

re. For
ogress.
for new

odel
t one
del. In
mions.
rticle,

e
article
t

litera-
two

asure
en in

ll be
tandart
d 9. A
10. A
learly
of the

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 1 JANUARY 2003

                    
On two dimensional coupled bosons and fermions
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We study complex bosons and fermions coupled through a generalized Yukawa
type coupling in the large-Nc limit following ideas of Rajeev@Int. J. Mod. Phys. A
9, 5583 ~1994!#. We study a linear approximation to this model. We show that in
this approximation we do not have boson–antiboson and fermion–antifermion
bound states occuring together. There is a possibility of having only fermion–
antifermion bound states. We support this claim by finding distributional solutions
with energies lower than the two mass treshold in the fermion sector. This has
implications from the point of view of scattering theory to this model. We discuss
some aspects of the scattering above the two mass treshold of boson pairs and
fermion pairs. We also briefly present a gauged version of the same model and
write down the linearized equations of motion. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1516846#

I. INTRODUCTION

Quantum field theories are both fundamental and challenging. Despite the fact that o
scription of the world of elementary particles is based on quantum field theory, we still do not
a complete understanding of interacting field theories, especially their bound state structu
this reason it is interesting to study simple examples where one can actually make more pr
There are various such models in two dimensions and they have been a valuable source
ideas and testing ground for many years~see Ref. 1 for a comprehensive selection of topics!.

In this article we study a two dimensional model which could be another possible toy m
for understanding Yukawa coupled field theories in four dimensions. The physically importan
is the gauged Yukawa theory, as we know from the present day version of the standard mo
this work we will also study some aspects of the gauge coupled interacting bosons and fer
We will actually present the linearized equations of the gauged version at the end of our a
but our main emphasis is to understand the simpler case without the gauge potentials~of course it
is not so clear if this is really a simpler theory!. A more complicated version of the model w
discuss is investigated in Ref. 2 using path integral techniques. The results of the present
are somewhat different since we follow a Hamiltonian approach~and we are not taking the mos
complicated possible version!.

Let us comment on some fundamental work in the literature that we are aware of: the
ture on Yukawa theory is vast, we will mention only a few of them, a rigorous construction of
dimensional model is given in Refs. 3 and 4, and the construction of the probability me
within the Euclidean formalism is done in Ref. 5. The most recent rigorous analysis was giv
Ref. 6 by following a renormalization group type idea essentially inspired from Ref. 7. It wi
interesting to attempt such a rigorous approach for the model we discuss below. The s
Yukawa coupling in two dimensions in the light-cone approach is discussed in Refs. 8 an
further analysis using the Tamm–Dancoff approximation in the light-cone is pursued in Ref.
very interesting discussion of the Yukawa model in four dimensions is presented in Ref. 11, c
a four dimensional model has many more interesting features. A more recent analysis

a!Electronic mail: turgutte@boun.edu.tr and turgut@theophys.kth.se
1980022-2488/2003/44(1)/198/22/$20.00 © 2003 American Institute of Physics
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fermion bound states of the same model is discussed in Ref. 12. The equivalence betwe
light-cone and covariant perturbation theory is analyzed in Ref. 13.~Good reviews of field theories
in the light cone are given in Ref. 14 and renormalization of light cone Hamiltonians in Ref.!

In this work, we introduce a color degree of freedom for the purpose of reaching a Har
Fock type approximation. Following the ideas suggested by Rajeev in Ref. 16 we reformula
problem in terms of color invariant bilinears~see also Ref. 17 for some similar ideas!. The details
of this refromulation are explained in our previous work18 within the context of gauge theories
therefore in this work we will use the results of the cited article directly. In some sense the p
article is a natural continuation. The reader should consult Ref. 18 for more information o
geometry of the resulting classical phase space. We also recommend the lectures notes o
on two dimensional QCD.19 In Ref. 16, it is shown that the 111 dimensional QCD in the large-Nc

limit can be reformulated as a classical field theory with an infinite dimensional phase s
which is identified to be the restricted Grassmanian. The study of two dimensional QCD
large-Nc limit is given by ’t Hooft in his well-known paper,20 its generalization to scalar fields i
done in Ref. 21 and in Ref. 22 using Hamiltonian methods. The two dimensional com
fermions and bosons QCD is given by Aoki in Refs. 23 and 24 and also discussed by Cav2

Within Rajeev’s approach one can reach the same results by using a linear approximation
full theory. One can further study baryons by using a variational ansatz which does not corre
to small fluctuations of the fields, and therefore cannot be seen by the linear approximation
we obtain the general Hamitonian in the large-Nc limit for gauge coupled bosons and fermion
which are also interacting through a generalized Yukawa type interaction. The meson equati
given for the linearized theory. Our presentation is incomplete since we do not study beyo
linear approximation and we plan to come to a more detailed analysis in the future.

In the simpler model we can actually solve the integral equations, ending up with
eigenvalue or scattering solutions. These equations require a simple renormalization to be
ingful ~which at the end amounts to defining the singular integrals as the Hadamard pri
value!. We warn the reader that the form of the resulting Hamiltonian suggests that a phys
more relevant approximation in the nongauged models could be given by a variational ansat
is due to the fact that the interactions in the linear approximation are all multiplied by the fer
mass. For heavy fermions we expect that the linear approximation gives valuable results, b
example, in the case of massless fermions all the information is contained in the higher
terms, which cannot be accessed by the method we use.

II. COUPLING BETWEEN COMPLEX BOSONS AND FERMIONS

We start with the action of our model with two Yukawa type couplings,

S5E d2xS i c̄agm]mca2c̄a~m1Yf* bfa1m2Yf* lfldb
a1mFda

b!cb

1]mf* a]mfa2mB0
2 f* afa2

lB0
2

4
~f* afa!2D . ~1!

Herea refers to a common flavor index and it goes from 1 toNc ~we continue to write it as color
symmetry, since at the end we will also talk about the gauged model!. It is more natural to set
m1Y5m2Y when there are no gauge fields, since we will use the color degrees to arrive a
field description~but we will continue to use two different couplings!. We rewrite the action in the
light-cone coordinate system, andwe choose x1 as our ‘‘ time’’ coordinate,

S5E dx1dx2S i&cL*
a]2cLa1 i&cR*

a]1cRa1f* a~22]2!]1fa2m0B
2 f* afa

2~cL*
acRb1cR*

acLb!~m1Yf* bfa1m2Yf* lfldb
a1mFda

b!2
lB0

2

4
~f* afa!2D .
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There are many good introductions to the light-cone field theory; we refer the reader to
25–27. We note that the left-handed components of the fermion field are nondynamical, the
we will removecLa and its complex conjugate through the equations of motion in the quan
theory~we refer to Ref. 18 for our conventions in quantizing this theory, below we summariz
results!,

ĉLa5
&

2i ]2
@m1Y :f̂af̂†bĉRb :1m2Y :f̂†bf̂bĉRa :1mFĉRa#. ~2!

We do not really need to worry about the normal ordering in the first factor, since in the largNc

limit these corrections will be of smaller order; we wrote it to emphasize that the reduction s
be performed at the quantum level. At the second term we have a normal ordering for the
contracted bosons only. The second thing we notice from the light-cone action is that w
already in the Hamiltonian formalism. Therefore we can read off the Hamiltonian directly from
action when we insert the solution of the nondynamical field back into the action. Thus we
at the following Hamiltonian~ from now on we writec for cR since this is the only fermionic field
we have!,

Ĥ5E dx2S&mF
2

2
:ĉ†a

1

i ]2
ĉa :1mB0

2 :f̂†af̂a :1
lB0

2

4
~ :f̂†af̂a : !2

1
&

2
m1YmFF ĉ†a

1

i ]2
f̂af̂†bĉb1ĉ†bf̂bf̂†a

1

i ]2
ĉaG1

&

2
m1Y

2 ĉ†bf̂bf̂†a
1

i ]2
f̂af̂†lĉl

1
&

2
m1Ym2YF ĉ†lf̂lf̂†a

1

i ]2
ĉa :f̂†bf̂b :1:f̂†lf̂l :ĉ†a

1

i ]2
f̂af̂†bĉbG

1
&

2
mFm2YF ĉ†a

1

i ]2
ĉa :f̂†sfs :1:f̂†sf̂s :ĉ†a

1

i ]2
ĉaG

1
&

2
m2Y

2 :f̂†sf̂s :ĉ†a
1

i ]2
ĉa :f̂†bf̂b : D . ~3!

This Hamiltonian as it stands is not normal ordered; to define it properly we need to normal
the color singlet products of bosons in the sixth term and the products of fermions in the las
terms. All these terms except one will give some divergences which can be cancelled by
nitions ofmB0 andlB0

2 in the original Hamiltonian as we will see. One of them cannot be remo
by the original terms in the action and we will add a counter term which cannot be put int
original action. This Hamiltonian could be a better two dimensional representative of the
dimensional Yukawa theory, since in four dimensions phi-four coupling is necessary to reno
ize the Yukawa interaction.

Let us recall the quantization of this system in the light-cone coordinates. The Fourier
expansions read

fa~x2!5E aa~p!e2 ipx2 @dp#

~2upu!1/2, cLa~x2!5E xa~p!e2 ipx2 @dp#

21/4 .

The normalization factors are chosen to reproduce the correct classical limits. To precisely
these expansions, we assume that the momenta range between~2`,2e0] and @e0 ,`), and at the
end of our calculations we sete0→0. This is physically meaningful due to charge conjugati
invariance, and amounts to the principal value prescription~see Refs. 18 and 19 for details!

@xa~p!,x†b~q!#15da
bd@p2q#, @aa~p!,a†b~q!#5sgn~p!da

bd@p2q#. ~4!
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One defines a Fock vacuum stateu0& by the conditions

aa~p!u0&5xa~p!u0&50 for p.0 a†a~p!u0&5x†a~p!u0&50 for p,0. ~5!

~Recall that we are assuming that there is an infinitesimal hole aroundp50 to be taken to zero a
the end of the calculations.! The corresponding normal orderings are defined in Ref. 18. It is us
to keep in mind the normal ordering rules of the bilinears,

:aa†~p!ab~q!ªaa†~p!ab~q!2 1
2db

a~12sgn~p!!d@p2q# ~6!

and

:x†a~p!xb~q!ªx†a~p!xb~q!2 1
2 db

a~12sgn~p!!d@p2q#. ~7!

We provide some of the details of the reorganization of the Hamiltonian into normal ord
bilinears in the Appendix. We formulate the theory in terms of the color invariant bilin
following the idea proposed by Rajeev16 and use our results in Ref. 18. For the convenience of
reader we recollect some of the essential points: to define the large-Nc limit we introduce

M̂ ~p,q!5
2

Nc
:x†a~p!xa~q!:,

~8!

N̂~p,q!5
2

Nc
:a†a~p!aa~q!:,

and their odd counterparts,

Q̂~p,q!5
2

Nc
x†a~p!aa~q!, QC ~r ,s!5

2

Nc
a†a~r !xa~s!. ~9!

In the large-Nc limit these bilinears become classical variables,28 and we postulate the supe
Poisson brackets satisfied by these variables, which defines the kinematics of our theory:

$M ~p,q!,M ~r ,s!%522i @M ~p,s!d@q2r #2M ~r ,q!d@p2s#

2d@p2s#d@q2r #~sgn~p!2sgn~q!!#,

$N~p,q!,N~r ,s!%522i @N~p,s!sgn~q!d@q2r #2N~r ,q!sgn~p!d@p2s#

2d@q2r #d@p2s#~sgn~p!2sgn~q!!#,

$Q~p,q!,Q̄~r ,s!%1522i @M ~p,s!sgn~q!d@q2r #1N~r ,q!d@p2s#

1d@p2s#d@q2r #~12sgn~p!sgn~q!!#,

$M ~p,q!,Q~r ,s!%522id@q2r #Q~r ,q!, ~10!

$N~p,q!,Q~r ,s!%52id@q2s#sgn~p!Q~r ,q!,

$M ~p,q!,Q̄~r ,s!%52id@p,s#Q̄~r ,q!,

$N~p,q!,Q̄~r ,s!%522id@p2s#sgn~q!Q̄~p,s!.

These classical variables now satisfy,
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M ~p,q!5M* ~q,p!, N~p,q!5N* ~q,p!, Q̄~p,q!5Q* ~q,p!. ~11!

There are also constraints satisfied by these variables when we restrict ourselves to the sub
the color invariant states. For our problem,this is an approximation, since there is no reason
expect that all the physical states are color singlets. Furthermore, when there are no gauge fiel
there are scattering states of our linearized equations. We write explicitly the constraints f
basic variables,

~M1e!21QeQ†51,

eQ†M1eQ†e1eNeQ†1Q†50,
~12!

MQ1eQ1QeN1Qe50,

~eN1e!21eQ†Q51.

Above we use an operator notation,e(p,q)52sgn(p)d @p2q#, and (AB)(p,q)
5*dsA(p,s)B(s,q). The phase space of the resulting restricted theory is shown to be a s
Grassmannian in Ref. 18, with its natural symplectic structure generalizing the results in Re

We can reexpress our Hamiltonian in terms of the above mentioned basic variables. A
somewhat long but straightforward computation, the large-Nc limit Hamiltonian becomes

H5H01HY , ~13!

where

H05
1

4
mF

2E @dp#

p
M ~p,p!1

1

4
mBR

2 E @dp#

upu
N~p,p!, ~14!

HY5E @dpdqdsdt#

Ausqu
d@p2q1s2t#S 1

16
m1YmFF1

p
1

1

t G1k
1

s2t DQ~p,q!Q̄~s,t !2
m2YmF

16

3E @dpdqdsdt#

Austu
d@p2q1s2t#F1

p
1

1

qGM ~p,q!N~s,t !1
1

64E @dpdqdkdl#

Aupqklu

3lR
2d@p2q1k2 l #N~p,q!N~k,l !2E @dpdqdsdtdkdl#

Auqsklu
d@p2q1s2t1k2 l #

3Fm1Ym2Y

64 S 1

k2 l 2t
1

1

s2t2qD1
m1Y

2

64 S 1

s2t2 l D GQ~p,q!Q̄~s,t !N~k,l !

1
m2Y

2

64 E @dpdqdsdtdkdl#

Aupqklu
d@p2q1k2 l 1s2t#

1

t1 l 2k
N~p,q!N~k,l !M ~s,t !. ~15!

Note that we have rescaled the coupling constants asm1YNc°m1Y , m2YNc°m2Y and
lR

2Nc°lR
2 .

As we discussed in the Appendix, there are two possible renormalizations. In the first ca
allow for the nonlocal counter terms and remove the divergent parts finding a local Hamilto
thusk andlR are just constants. If we only allow for the local counter terms, then we find
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k5kR~mR!2
m1Y

2

64p
lnUs2t

mR
U,

lR
25lRB

2 ~mR!1
m2Y

2

p
lnUk2 l

mR
U.

We introduce a renormalization scalemR , and assume that the renormalized values of the c
plingskR(mR), lRB

2 (mR) vary with the scalemR such that the Hamiltonian does not really depe
on this scale. This means we should impose

kR~mR!5kR~m̃R!2
m1Y

2

64p
lnUmR

m̃R
U,

~16!

lRB
2 ~mR!5lRB

2 ~m̃R!1
m2Y

2

p
lnUmR

m̃R
U.

The sign of the new couplingkR should not be fixed since it does not exist in the original acti
and it has dimensions of mass square.

For the rest of this work we will take the simpler Hamiltonian, that is we assume that al
renormalized couplings are ordinary numbers. From a more conservative point of view the loc
counter terms should be the general class of models we should investigate. We hope to ret
more detailed analysis allowing momenta dependent couplings in the future.However, the Lorentz
invariance is not clear in such a renormalization scheme. This may be a more serious obje
perhaps one can find a better suited approach to cure all the problems at the same time.

This Hamiltonian along with the Poisson brackets and the contraint define our model
pletely. As it stands this is a complicated system. We plan to study a variational approach
model in a future work. We will study a linear approximation to this model in the next secti

III. THE LINEAR APPROXIMATION

We assume that all the basic variables deviate from the vacuum by small amounts, the
we keep everything to first order. This means the linearization of the constraint and the line
tion of the equations of motion. The constraint implies that

M ~u,v !50, N~u,v !50, Q~u,v !50 if uv.0. ~17!

The equations of motion foru.0, v,0, found from

]O~u,v !

]x1 5$O~u,v !,H%, ~18!

where O refers to any one of our variables, could be linearized. Let us write these linea
equations of motion for all the variables,

]M ~u,v !

]x1 5 i
mF

2

2 F1

u
2

1

vGM ~u,v !2 i
m2YmF

4 F1

u
1

1

vG E N~s,s2~u2v !!

Aus~~u2v !2s!u
@ds#, ~19!

]N~k,l !

]x1 5 i
mBR

2

2 F1

k
2

1

l GN~k,l !2 i
m2YmF

4Auklu
E @ds#F1

s
1

1

s2~k2 l !GM ~s,s2~k2 l !!

1
i

8
lR

2E @ds#

Auskl~~k2 l !2s!u
N~s,s2~k2 l !!, ~20!

and
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]Q~u,v !

]x1 5
i

2 FmF
2

u
2

mRB
2

v GQ~u,v !2k
4i

u2v E Q~p,p2~u2v !!

Auv~p2~u2v !!u
@dp#

1 i
m1YmF

4 E @dp#

Au~p2~u2v !!vu
F1

p
1

1

uGQ~p,p2~u2v !!. ~21!

The equation of motion forQ̄ can be found by complex conjugation and does not carry n
information. We note that the equations of motion forM andN are coupled, but the equations o
motion for Q within the linear approximation are decoupled from the rest.

So we will start with this one and make an ansatz as in Refs. 16 and 19. Let us assum
the solution can be written asQ(u,v;x1)5cQ(x)eiP1x1

, wherex5u/P2 , P25u2v and define
an invariant massLQ

2 52P2P1 . @Strictly speaking we could take the solution of the for
cQ(x) f Q(P2)eiP1x1

, the arbitrary functionf Q factors out in the equations.# Then we find

LQ
2 cQ~x!5FmF

2

x
1

mBR
2

12xGcQ~x!28kE
0

1 dy

A~12y!~12x!
cQ~y!

1
1

4
m1YmFE

0

1 dy

A~12y!~12x!
S 1

x
1

1

yD cQ~y!.

This innocent looking equation actually requires a renormalization, as we will see shortly.
Let

E
0

1 dy

A~12y!
cQ~y!5A E

0

1 dy

yA~12y!
cQ~y!5B. ~22!

Then we solve forcQ(x),

cQ~x!5A~12x!
~aA1bB!x1bA

LQ
2 x~12x!2mF

2~12x!2mB
2x

, ~23!

where

a528k, b5 1
4 m1YmF . ~24!

A straightforward solution will actually produce a divergence, the integration definingB is diver-
gent. To find a finite result we need a renormalization prescription. Let us assume that the
is given byei (P11dP1(e0))x1

, wheredP1(e0) denotes a divergent phase of the solution that
remove from the equations, ande0 denotes a low momentum cut-off. The time derivative will dr
a factor ofdP1(e0), and multiplying by 2P2 we denote it asdLQ(e0) and rewrite the same
equation as

FLQ
2 1dLQ~e0!2

mF
2

x
2

mBR
2

12xGcQ~x!5
aA

A12x
1

bA

xA12x
1

bB~e0!

A12x
. ~25!

Since the divergent part comes from theB term we expect thatdLQ(e0)cQ(x) can be taken as a
counter-term on the other side of the equality with the leading form2 ac(e0)/A12x. The un-
known function now is given by the same formula with a shifted coefficient ofx,

cQ~x!5A~12x!
~aA1bB~e0!2ac~e0!!x1bA

LQ
2 x~12x!2mF

2~12x!2mB
2x

. ~26!
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Let us insert this back into~22! and find the constantsA,B(e0). After some algebra, we reach

A52F2

aA1bB~e0!2ac~e0!

2LQ
2 2F S aA1bB~e0!2ac~e0!

2LQ
2 D ~LQ

2 2mRB
2 1mF

2 !1bAGF1~LQ!,

~27!

B~e0!5
bA

mF
2 ln~e0!1

bA

2mF
2 F22F bA

2mF
2 ~LQ

2 2mRB
2 1mF

2 !1~aA1bB~e0!2ac~e0!!GF1~LQ!,

~28!

where

F25E
0

1

dx
2LQ

2 x2~LQ
2 2mRB

2 1mF
2 !

LQ
2 x22~LQ

2 2mRB
2 1mF

2 !x1mF
2 5 lnFmRB

2

mF
2 G ,

~29!

F1~LQ!5E
0

1 dx

LQ
2 x22~LQ

2 2mRB
2 1mF

2 !x1mF
2 .

If we are looking for a bound state of a boson and a fermion, this requires

umRB2mFu,LQ,mRB1mF . ~30!

Then the last integral gives

F1~LQ!5
2

u S arctanFLQ
2 1mBR

2 2mF
2

u G2arctanFmBR
2 2mF

22LQ
2

u G D , ~31!

where

u5A~LQ
2 2~mRB2mF!2!~~mRB1mF!22LQ

2 !. ~32!

Let us impose the two conditions

B* 5B~e0!2
bA

mF
2 ln~e0!, bB~e0!2ac~e0!5bB* . ~33!

Then we see that if we set

ac~e0!5
b2A

mF
2 ln~e0!, ~34!

we can takee0→01 limit, and keepB* ,A finite. The renormalized equations become

A52F2

aA1bB*
2LQ

2 2F S aA1bB*
2LQ

2 D ~LQ
2 2mRB

2 1mF
2 !1bAGF1~LQ!, ~35!

B* 5
bA

2mF
2 F22F bA

2mF
2 ~LQ

2 2mRB
2 1mF

2 !1~aA1bB* !GF1~LQ!. ~36!

If we solve for the ratioA/B* , after some algebra, this gives us a consistency condition for
excitation energyLQ

2 ,
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FF22s~LQ!F1~LQ!2
2amF

2

b
F1~LQ!G @F21s~LQ!F1~LQ!#

52@11bF1~LQ!#FF21S s~LQ!1
2bLQ

2

a DF1~LQ!1
2LQ

2

a G 2mF
2a

b2 , ~37!

or, equivalently,

F lnUmRB
2

mF
2 U2s~LQ!F1~LQ!1

64kmF

m1Y
F1~LQ!GF lnUmRB

2

mF
2 U1s~LQ!F1~LQ!G

5F11
1

4
m1YmFF1~LQ!GF lnUmRB

2

mF
2 U1S s~LQ!2

m1YmFLQ
2

16k DF1~LQ!1
LQ

2

4k G 128k

m1Y
2 , ~38!

wheres(LQ)5LQ
2 2mRB

2 1mF
2 . This equation is written in terms of dimensionless ratios of

variables, and it should be investigated numerically under the conditions we have stated bef
LQ . Instead of numerically solving these equations we will look at one extreme case, wheLQ

'mBR1mF ~weak coupling!. ~It is interesting to investigate the opposite limitLQ'umF

2mBRu, but the result is not so simple to interpret.! It is better to use a different variable to stud
such limiting cases; we defineD, via LQ

2 5mBR
2 1mF

212mBRmFD. Note that we have21,D,1.
Our functionF1(LQ) becomes

F1~D!5
1

mFmBR

1

A12D2 S arctanF v1D

A12D2G1arctanF 1/v1D

A12D2G D . ~39!

Herev5mBR /mF , and if we takeD→12, that meansLQ→(mBR1mF)2 andD→211 corre-
sponds toLQ→umF2mBRu1. There is nothing subtle about the first limit; keeping everything
first order gives us

D512F12S 22
m1Y

k
~mF1mBR! D 21 m1Y

mF1mBR
lnUmBR

2

mF
2 UG22 p2m1Y

2

mB
2 . ~40!

We assumed all the wayD'1. This could be consistent if for example we choose the coup
constantm1Y such thatm1Y!mB when the ratiomF /mBR is not too large and ifk,0. There are
other possibilities, but this simple one shows that there are solutions with the expected be
If we assumeD→211, the functionF1(D)→1/mFmBR , and the calculations are more comple
If we set D5211d2, we haveF1(211d2)' (1/mFmBR) (12 3/2d2). This can be used to
study the opposite limit, but due to its algebraic complexity we leave it out, and only state th
various possible cases to be consistent, we find thatmF@mBR is a necessary condition.

Following the same strategy, we look for stationary solutions for the coupled equation
start with the following ansatz forM ,N: M (u,v)5jM(x)eiP1x1

and N(k,l )5jN(y)eiP1x1
,

where x5u/PM , PM5u2v and similarly for N. If we now substitute these into the couple
equations of motion, we see that the oscillations in time cancel out~since we select the sameP1)
and we end up with

LM
2 jM~x!5mF

2F1

x
1

1

12xGjM~x!2
m2YmF

4p F1

x
2

1

12xG E
0

1 jN~y!

Ay~12y!
dy, ~41!
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LN
2 jN~x!5mBR

2 F1

x
1

1

12xGjN~x!2
m2YmF

4pA~12x!x
E

0

1

dyS 1

y
2

1

12yD jM~y!

1
lR

2

8p E
0

1 dy

Ax~12x!y~12y!
jN~y!, ~42!

where we setLM
2 52PMP1 andLN

2 52PNP1 for the invariant masses of the excitations ofM and
N, respectively. We notice that the desired decoupling of the total momentum variables wou
have happened in the above equations if we had used the more general Hamiltonians.

Before we plunge into the standard way to solve these equations we will talk abo
interesting possibility, if we admit distributional solutions for these equations~this of course has a
meaning in terms of scattering theory as we will elaborate at the end of this section!.

Let us introduce

D5E
0

1

dy
jN~y!

Ay~12y!
. ~43!

Then we can rewrite the equation of motion forM as

LM
2 jM~x!5mF

2F12dD

x
1

11dD

12x GjM~x!, where d5
m2Y

4pmF
. ~44!

For the solution we have in mind we need to impose

dD,1, ~45!

otherwise the energy will be unbounded from below. Let us assume that the last two terms
jN equation cancel against each other. This condition implies that

m2YmF

4p E
0

1

dyS 1

y
2

1

12yD jM~y!5
lR

2

8p E
0

1 dy

Ay~12y!
jN~y!, ~46!

or, equivalently,

m2YmF

4p E
0

1

dyS 1

y
2

1

12yD jM~y!5
lR

2

8p
D. ~47!

Thus we have to consistently choose everything to satisfy these conditions. The equationM
andN can be solved by usingjM(x)5d(x2xF) andjN(x)5d(x2xB). What should we take as
xF andxB? One way is to minimize the excitation energy for fermions, and then fix the bos
parameter to have the cancellation. The eigenvalue forM becomes, after the minimizing choice
made,

LM
2 5mF

2@~11dD!1/21~12dD!1/2#2,4mF
2. ~48!

The last inequality is interesting since it implies that the fermions actually form a bound st
this energy. Now the condition we should have for the cancellation reads

S 11dD

12dDD 1/2

2S 12dD

11dDD 1/2

5 f D, ~49!

where
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f 5
lR

2

2m2YmF
. ~50!

From here we can solve forD,

D25
1

d2 2
4

f 2 . ~51!

We should haveD2.0. This puts a condition on our couplings and the fermion mass. But the
a stronger condition; once we have the solution for the value ofD, we can find the parameterxB

to choose for the bosons from the definition ofD,

D5E
0

1 dy

Ay~12y!
jN~y!5

1

AxB~12xB!
. ~52!

It is possible to findxB if D>2, since the minimum of the function on the right is 2, thus we ne
D2>4. This implies a condition on our couplings,

1

p S m2Y
2

mF
2 D F12

m2Y
2

4p2mF
2 G21/2

,
lR

2

mF
2 , ~53!

where we used dimensionless variables to express this inequality.
We have the other condition aboutD, which saysdD,1. This is actually satisfied by ou

solution, so we need

2<D,1/d. ~54!

From these we have a condition on the strength of the Yukawa coupling constant,

m2Y,2pmF . ~55!

Now we can go back and find the actual value of the fermion bound state and the mass
boson pair. The boson pair mass is simply given by

LN
2 5

mRB
2

xB~12xB!
5mRB

2 D25mRB
2 F 1

d2 2
4

f 2G516mRB
2 Fp2mF

2

m2Y
2 2

m2Y
2 mF

2

lR
4 G.4mRB

2 . ~56!

Similarly we have for the fermion pair,

LM
2 5mF

2F S 11F12
4d2

f 2 G1/2D 1/2

1S 12F12
4d2

f 2 G1/2D 1/2G2

5mF
2F S 11F12

m2Y
4

p2lR
4 G1/2D 1/2

1S 12F12
m2Y

4

p2lR
4 G1/2D 1/2G2

.

We note that the above solution is quite interesting: we assume that the relative strength
Yukawa coupling is small, i.e.,m2Y!lR , and expand the square roots,

LM
2 '2mF

2 S 11
2d2

f 2 D52mF
2F11

1

p

m2Y
4

lR
4 G . ~57!

This is not the result one should expect from a perturbative point of view.
Furthermore, the boson pair becomes in this approximation,
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LN
2 '16p2S m2Y

mF
D 22

mBR
2 .16mRB

2 . ~58!

If we further assume thatm2Y!mF , this implies that the boson pair mass becomes very larg
Actually, there is a whole range of solutions withjM(x)5d(x2xF) and jN(x)5d(x2xB).

We are free to choose one of them, sayxF . Then the other one will be determined by the sa
consistency relation as above. We see that the boson pair excitation will always be bigge
2mBR , since the minimum is given byxB5 1

2. For the fermion pair we choose the consistentxF’s
such that the mass is less than the two mass threshold. Let us briefly present our findings u
same notation as above.

Let us search for a solution of the equation

mF
2F12dD

x
1

11dD

12x GjM~x!5LM
2 jM~x! with LM

2 ,4mF
2. ~59!

We assume again thatdD,1. Then the equality is satisfied if we setjM(x)5d(x2xF), xF

51/2(12adD) for 0,a,1. We require the same delta function solution forjN . This means we
should solve for the equation

1

xF
2

1

12xF
5 f D. ~60!

If we solve forD now, we find

D25F12
4ad

f G 1

a2d2 . ~61!

This implies that the first factor in the big paratheses should be positive. This is truelR
2

.(2/p) am2Y
2 . Again, to have a solution forxB we need 4<D2. This means

4a2d21
4ad

f
21>0, ~62!

which can be satisfied if the quadratic form ford has real roots and we choosed in between—
assuminga is chosen. This implies an inequality forlR ,

2a

p S m2Y

mF
D 2F12S am2Y

2pmF
D 2G21

,
lR

2

mF
2 . ~63!

This means that we should chooselR above a certain value, and this condition is stronger than
first one we found above. A uniform bound for various values ofa can be chosen,

2

p S m2Y

mF
D 2F12S m2Y

2pmF
D 2G21

,
lR

2

mF
2 . ~64!

Incidentally this requiresm2Y,2pmF . We still havedD,1 to satisfy. If we simply use this
condition assuminga as given, we arrive at the positivity of a quadratic expression ina:

a21
2a

p

m2Y
2

lR
2 21.0. ~65!
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Notice that the range of alloweda will be bigger if we takem2Y /lR ratio as large as possible. I
we use the uniform lower bound forlR , we will find the largest region, and if we denote th
deviation from this value by a multiplicative factork.1, we can insert this ratio into the quadrat
expression,

a21
1

k F12S m2Y

2pmF
D 2Ga21.0. ~66!

The positivity is guaranteed if we choosea outside of the region between the two roots. T
choice consistent with 0,a,1 gives us

1

2k SAF12
m2Y

2

4p2mF
2 G2

14k22F12
m2Y

2

4p2mF
2 G D ,a,1. ~67!

The lower bound is a decreasing function ofk, so the stronger relative values oflR will have a
smaller domain ofa’s. Since for these choices we have a continuous range ofa’s, the spectrum of
the problem is rather different. Such distributional solutions are not eigenvalues, but they typ
refer to the continuous part of the spectrum. In some sense these are still scattering state
means we cannot use the free parts of the original Hamiltonian to study the scattering
below the two mass thresholds. Above these values we will see that the scattering theory
studied by conventional methods. Perhaps below this we need to use the minimum value
spectrum to define new effective pair mass for the fermionic sector. The continuum of bound
suggest that the free parts we start with should not be used to define the vacuum of the theo
we should go beyond the linear approximation. The correct minimum found for the clas
variables in the fully interacting theory may then be used to study a better linear approxim
We are not able to resolve this issue at the moment.

If we now go back to the standard approach, again as in the case of boson–fermion p
will need to renormalize our equations, by assuming a divergent common phasedP1(e0), M

5jMei (dP1(e0)1P1)x1
, and similarly for N. The derivative will bring terms of the form

dLN(e0)52PNdP1(e0) anddLM(e0)52PMdP1(e0). An inspection of the resulting equation
shows that we have the leading behavior

dLM~e0!jM~x!;
ac~e0!~122x!

x~12x!
, dLN~e0!jN~x!;

bc~e0!

Ax~12x!
. ~68!

In general,bc(e0)5sac(e0), as we will see the precise value ofs is not important. Now we can
solve for the unknown functions,

jM~x!5
~122x!~aA~e0!2ac~e0!!

LM
2 x~12x!2mF

2 ,

~69!

jN~x!5Ax~12x!
2aB~e0!1bA~e0!2sac~e0!

LN
2 x~12x!2mBR

2 ,

where

A~e0!5E
e0

1

dy
jN~y!

Ay~12y!
, B~e0!5E

e0

1

dy
jM~y!

y
, ~70!

and

a52
m2YmF

4p
, b5

lR
2

8p
. ~71!

If we introduce
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F~L,m!5PE
0

1 dy

L2y~12y!2m2 , ~72!

we find from the defining conditions ofA(e0), B(e0),

B~e0!5~aA~e0!2ac~e0!!
1

mF
2 ln e01~aA~e0!2ac~e0!!S LM

2

2mF
2 22DF~LM ,mF!,

~73!
A~e0!5@2aB~e0!1bA~e0!2sac~e0!#F~LN

2 ,mRB!.

We now defineaA* 5aA(e0)2ac(e0), andB* 5B(e0)2 (a/mF
2) A* ln e0, and insert these bac

into our equations,

B* 5A* aS LM
2

2mF
2 22DF~LM ,mF!

A* 5F2aB* 1bA* 1
2a2

mF
2 A* ln e01Fb

a
2s2

1

aF~LN ,mRB!Gac~e0!GF~LN ,mRB!. ~74!

If we set

ac~e0!52Fb

a
2s2

1

aF~LN ,mRB!G
21 2a2

mF
2 A* ln e0 , ~75!

we can takee0→01 limit while keepingA* , B* finite. These will be our renormalized equation

B* 5aA* S LM
2

2mF
2 22DF~LM ,mF!, A* 5@2aB* 1bA* #F~LN ,mBR!. ~76!

Incidentally we note that this physical prescription implies that the proper way we should d
these integral equations is to use the Hadamard finite value~see the similar issue in Refs. 19 an
29 for a recent discussion of the renormalization and distribution theory!.

Let us assume that we are looking for bound state solutions. The principal value integ
F(L,m) then becomes an ordinary integral. Now we have two different expressions for the
B* /A* , which give us the desired eigenvalues when we require square integrable solutions
assume that both of the eigenvalues are bound states, we find

F m2Y
2

4p2

ALM
2 24mF

2

LM
arctanF LM

A4mF
22LM

2 G1
LR

2

8pG 2

LNA4mBR
2 2LN

2
arctanF LN

A4mBR
2 2LN

2 G521.

~77!

Since the left-hand side is positive and the right one is negative this has no solution!If we demand
both boson–antiboson and fermion–antifermion pairs to form bound states, there is no solutio.
Another possibility is to demand a resonance for the bosonic sector. Then

F m2Y
2

4p2

ALM
2 24mF

2

LM
arctanF LM

A4mF
22LM

2 G1
LR

2

8pG 2

LNALN
2 24mBR

2
lnULN1ALN

2 24mBR
2

LN2ALN
2 24mBR

2 U51,

~78!

and this has solutions in general. The resonance case seems to be special to 111 dimensions; the
other possibility is to require bosons to have scattering states and fermions to be bound. T
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be studied by analyzing the pole structure of the analytic continuation of the scattering amp
that will be worked out below. Due to the algebraic complexity of the resulting formulas, we
not be able to answer it in this work.

We study the scattering states when we are beyond the two mass threshold. Let us
digression for the moment and study a simpler problem, the lambda-phi-four coupling. It is
to see from our equations forN(u,v) that the same ansatz for the solution leads to

L2j~x!5
m2

x~12x!
j~x!1

lB
2

8p

1

Ax~12x!
E

0

1 j~y!

Ay~12y!
. ~79!

We assume that the operator on the right is acting onL2(@0,1#), with vanishing at the end point
boundary conditions. The free part,

H05
m2

x~12x!
, ~80!

is an unbounded operator with a continuous spectrum@4m2,`). This is easy to understand b
studying a particle and an antiparticle in the center of momentum frame.

If the added term is not a ‘‘too strong’’ perturbation, then the absolutely continuous part o
spectrum of the full operator on the right is the same as the spectrum of the free part and
study the scattering states using the free part.~There are various conditions we can state so t
‘‘too strong’’ becomes a precise statement, we recommend Ref. 30 for a thorough mathem
discussion of these issues, and Ref. 31 with more physical emphasis.! The kind of scattering
problem we want to study is analyzed in a recent valuable book by Albeverio and Kurasov.32 The
interaction term is called a rank one perturbation. The Hamiltonian

H5
m2

x~12x!
1

lB
2

8p

1

Ax~12x!
E

0

1

dy
1

Ay~12y!
, ~81!

where everything acts on functions inL2(@0,1#), can be written as

H5H01
lB

2

8p
u f &^ f u, ~82!

with ^xu f &5 f (x)5 1/Ax(12x). If such a perturbation is relatively form bounded, then the sc
tering states are given by the scattering states of the free part. To verify this condition it is e
to show that the added term satisfies

i f i215i~ uH0u11!21/2f i,`, ~83!

wherei.i denotes the usualL2 norm. It is now simple to check that

i f i21
2 ,E

0

1

dxS m2

x~12x! D
21S 1

Ax~12x!
D 2

,`. ~84!

In fact, in the above problem we can find the resolvent of our integral operator~see Ref. 32!:

~RH~Z! f !~x!5@~H2Z!21f #~x!5S m2

x~12x!
2ZD 21

f ~x!

1
lB

2

8p
Ã~Z!

Ax~12x!

Zx~12x!2m2 E
0

1 Ay~12y!dy f~y!

Zy~12y!2m2 ,
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for Z outside of the spectrum~and complex in general!, and here we use the analytic continuati
of Ã(l) to complex numbers and its explicit form is given below. The knowledge of the reso
gives everything about the operator; for example, we can find the spectral density functionr(L)
~which heuristically corresponds to the density of states in the ‘‘eigenfunction’’ expansion! by
using the well-known Stone’s identity,

r~L!5
1

p i
lim

e0→01

S 1

H2L1 i e0
2

1

H2L2 i e0
D . ~85!

In Ref. 32 the scattering theory of finite rank perturbations has been worked out by using rig
methods. We will only contend with the result that the scattering theory makes sensebeyond the
bound state thresholds for both particles, and we can find the resolvents explicitly. For simplici
of our presentation we study the scattering theory by the standard methods in physics, an
find the wave operators. One can see that for a given value ofL25m2/l(12l) we have two
roots,

l65
1

2
6F1

4
2

m2

L2G1/2

. ~86!

In physics we typically think of two particles approaching and then scattering off to infinity
inspection of the kinematics of a particle and an antiparticle pair in the center of momentum
reveals thatl1 corresponds to the particle moving in the positivex1 direction~which we may take
as ‘‘incoming’’ states!, andl2 corresponds to the particle moving in the negativex1 direction.
From a physical point of view, the scattering data should give us the information about tran
sion and reflection of the pair. An equivalent description would be to find the wave operatoV,
which maps~in general the projection to the absolutely continuous part of the spectrum o
original operator! the Hilbert space to the scattering states~if we take the absolutely continuou
part of the spectrum and use the spectral projections corresponding to these values! of the inter-
acting Hamiltonian:

j5V f . ~87!

~In physics one typically usesV1 which takes the wave functions at time zero and evolves th
to positive infinity. This requires the1 i e prescriptions in the integrals, and we will see that for o
problem it is more suitable to define the principal value one. This is why we useV.!

To find the scattering amplitudes we rewrite the eigenvalue equation in the Lippm
Schwinger form,

jl~x!5d~x2l!1
lB

2

8p FL22
m2

x~12x!G
21 1

Ax~12x!
E

0

1

dy
jl~y!

Ay~12y!
. ~88!

We formally use the eigenvaluedl(x)5d(x2l) of the free Hamiltonian. We can now solve fo
A(l)5*0

1 @jl(y)/Ay(12y)#,

A~l!5F11
lB

2

4pLA~L224m2!
lnUL2AL224m2

L1AL224m2UG21
1

Al~12l!
, ~89!

whereL25m2/l(12l). Thus the wave operator acting on the~formal! eigenfunctions of the free
Hamiltonian can be written as
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jl~x!5~Vdl!(x)5E
0

1

dyS d~x2y!1
lB

2

8p
PF m2

y~12y!
2

m2

x~12x!G
21 Ã~y!

Ax~12x!y~12y!
D d~y2l!,

with Ã(l)5Al(12l)A(l). The left side of the expression gives the distributional kernel of
wave operator.~If we are interested in an incoming pair, we could restrict ourselves tol1 values.!
We can expand an arbitrary vector into a series of the formf 5*0

1dl f (l)dl(x), and we find

j~x!5FVS E
0

1

f ~l!dlD G~x!5E
0

1

dlV~x,l! f ~l!, ~90!

and this makes sense in general. Note that this result is exact~within the linearized large-Nc limit !
and we have a complete charaterization of the set of scattering states onceA(l) is given.

We will study the scattering states of the coupled equations beyond the bound state tre
that is, when the energies are larger than both 2mF and 2mBR . The preceeding discussion ind
cates that the free part and the interacting coupled equations may not have the same sc
states~recall the distributional solutions we present!. We follow the same idea as in the abov
problem and restrict ourselves to the heuristic Lippmann–Schwinger type approach. One
be able to find the resolvent exactly and verify the formulas below by more careful analysi

We solve for the scattering amplitude by using a renormalized Lipmann–Schwinger equ
thus we have for the scattering

jM~x;L!5d~x2lM !1P 1

L2x~12x!2mF
2 ~122x!aA* ~L!,

jN~x;L!5d~x2lN!1P 1

LN
2 x~12x!2mBR

2 Ax~12x!~aB* ~L!1bA* ~L!!,

whereA* (L),B* (L) satisfy

A* ~L!5
1

AlN~12lN!
1~aB* ~L!1A* ~L!!F~L,mBR!,

B* ~L!5
1

lM
2

1

12lM
1aA* ~L!S L2

mF
2 24DF~L,mF!,

and F(L,m) is the same function as before and we choose Max(4mBR
2 ,4mF

2),L2, with L2

5mF
2/lM(12lM) 5 mBR

2 /lN(12lN). We can uselM as the only parameter and call it simplyl.
If we solve for the scattering amplitudes,

A* ~l!5F12S lR
2

4pmF
2 1

m2Y
2

4p2mF
2 A~124l~12l!! lnU12A124l~12l!

11A124l~12l!
U D

3
l~12l!

A124~mBR
2 /mF

2 !l~12l!
lnU12A124~mBR

2 /mF
2 !l~12l!

11A124~mBR
2 /mF

2 !l~12l!
UG21F mF

mBR

1

Al~12l!

2
m2Y

4pmF

122l

A124~mBR
2 /mF

2 !l~12l!
lnU12A124~mBR

2 /mF
2 !l~12l!

11A124~mBR
2 /mF

2 !l~12l!
UG .

Note that this result is written in terms of dimensionless variables. We can read offB* (l) as well,
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B* ~l!5
122l

l~12l!
2

m2Y

2pmF
A124l~12l! lnU12A124l~12l!

11A124l~12l!
UA* ~l!. ~91!

The reader can check that the above results actually reduce to the phi-four theory results w
found if we setm2Y50.

For the sake of completeness we will also present the scattering solutions forcQ(x) variables.
Below, we use the same shorthand symbolsA(l) andB* (l) as in the bound state equation fo
cQ : The renormalized scattering equations become

cQ~x;l!5d~x2l!2P 1

L2x22~L22mBR
2 1mF

2 !x1mF
2 A12x@~aA~l!1bB* ~l!!x1bA~l!#.

~92!

We should set

L25
mF

2

l
1

mBR
2

12l
. ~93!

Not surprisingly,mF1mBR<L,`, and A(l),B* (l) found from their definitions. When we
simplify the result it becomes

A~l!5F12
4k

L2 F21S F2

m1Y
2

64L2 2
m1Y

2

64L2 ~L22mRB
2 1mF

2 !F11
m1YmFk

L2 F1D
3S 11

m1YmF

4
F1D 21

F2G21 1

A12l
F11

1

l

m1Y
2 mF

2

32L2 S 11
m1YmF

4
F1D 21

F2G
B* ~l!5S 11

m1YmF

4
F1D 21F 1

lA12l
1S 8kF12

m1Y

8mF
~L22mRB

2 1mF
2 !F11

m1Y

8mF
F2DA~l!G ,

where

F25 lnUmBR
2

mF
2 U, F15

1

u
lnUL21mBR

2 2mF
21u

L21mBR
2 2mF

22uU. ~94!

Hereu5A(L22(mF2mBR)2)(L22(mF1mBR)2).
These define the wave operators of our model, as discussed in the simpler model of p

coupling. We see that the results are fairly complex expressions. One should study vario
proximate forms of these equations, and a numerical investigation of the poles of the amp
should give information about the bound states.

Our present approach has one more weakness, our results are nontrivial since the fe
have nonzero mass. The results are also sensitive to the sign of the Yukawa type coupling
treated them as positive, but they are valid if we simply assume them to be negative. A phy
more interesting case would be to study the massless fermions. If we setmF50, all the interesting
information we have is lost, and we should go beyond the linear approximation. This obser
suggests that it is necessary to study some kind of variational approach to understand the
better. We plan to investigate this in the future.

IV. GAUGED MODEL

We will assume in this part that the model is gauged by introducing SU(Nc) Lie algebra
valued gauge potentialsAm and refer for our conventions to Ref. 18. In the light-cone coordina
and settingA250, the action becomes
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SY5E dx1dx2F2
1

2
TrF12F121 i&cL*

a]2cLa1 i&cR*
a~]11 igA1!a

bcRb22f* a]2]1fa

1 ig~]2f* aA1a
b fb2f* aA1a

b ]2fb!2mB0
2 f* afa2

lB0
2

4
~f* a!22~cL*

acRb1cR*
acLb!

3~m1Yf* bfa1m2Yf* lfldb
a1mFda

b!G . ~95!

The restriction to the color invariant states in the gauge theory is actually necessary to ma
Hamiltonian finite. For this theory the large-Nc limit should be a better approximation. Furthe
more, one expects baryons in this theory; the geometry of the large-Nc phase space should b
useful to find a variational ansatz~see Ref. 19 for a nice discussion of these ideas!. Following the
same reduction process, the Hamiltonian becomes

H5H01HY1HG , ~96!

where

H05
1

4 S mF
22

g2

p D E @dp#

p
M ~p,p!1

1

4 S mBR
2 2

g2

p D E @dp#

upu
N~p,p!, ~97!

HY is as given in Eq.~15!, and the gauge contribution is exactly given in Ref. 18,

HG52
g2

16E @dpdqdsdt#S 1

~p2t !2 1
1

~q2s!2D d@p1s2t2q#M ~p,q!M ~s,t !

1
g2

64E @dpdqdsdt#S 1

~p2t !2 1
1

~q2s!2D d@p1s2t2q#
qt1ps1st1pq

Aupqstu
N~p,q!N~s,t !

1
g2

8 E @dpdqdsdt#
q1s

~q2s!2

d@p1s2t2q#

Auqsu
Q~p,q!Q̄~s,t !.

Above we rescaled our coupling constants by a factor ofNc as before andg2Nc°g2. Let us
use exactly the same substitutions as before for the basic variables we have, and simp
resulting equations into

LM
2 jM~x!5S mF

22
g2

p D S 1

x
1

1

12xD jM~x!2
g2

p E
0

1 dy

~y2x!2 jM~y!

2
m2YmF

4p F1

x
2

1

12xG E
0

1 jN~y!

Ay~12y!
dy

and

LN
2 jN~x!5S mRB

2 2
g2

p D S 1

x
1

1

12xD jN~x!2
g2

4p E
0

1 dy

~y2x!2

~x1y!~22x2y!

Ax~12x!y~12y!
jN~y!

2
m2YmF

4pA~12x!x
E

0

1

dyS 1

y
2

1

12yD jM~y!1
lR

2

8p E
0

1

dy
jN~y!

Ax~12x!y~12y!
. ~98!

Again we see that the equations forjM andjN are coupled and they should be solved togeth
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LQ
2 cQ~x!5F S mF

22
g2

p D 1

x
1S mBR

2 2
g2

p D 1

12xGcQ~x!2
g2

2p E
0

1 dy

~y2x!2

22x2y

A~12x!~12y!
cQ~y!

28kE
0

1 dy

A~12y!~12x!
cQ~y!1

1

4
m1YmFE

0

1 dy

A~12y!~12x!
S 1

x
1

1

yD cQ~y!. ~99!

These singular integral equations can perhaps be investigated numerically. The linear appr
tion could be a better one for the gauged model, since the effect of the gauge interaction is t
a more singular operator. The nongauged models require renormalizations; it is possible t
above equations will behave better due to the singular operators in them. Another imp
application is to find a variational ansatz for the baryonic solutions and have a linear expa
around these solutions. We plan to study these issues in more depth in the future.
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APPENDIX: REDUCTION OF THE HAMILTONIAN

In this appendix we will give some of the details of the reduction of the Hamiltonian to
desired color invariant products. Let us recall that the Hamiltonian is given in Eq.~15!. Let us start
with the term

&

2
m1Y

2 E dx2ĉ†bf̂bf̂†a
1

i ]2
f̂af̂†lĉl . ~A1!

When we write this in terms of the Fourier mode expansions, it becomes

2
m1Y

2

8 E @dkdldtdpdqds#

Austkqu

d@k2 l 1t2s1q2p#

t2k1 l
x†a~p!aa~q!:a†b~s!ab~ t !:a†l~k!xl~ l !

2
m1Y

2 Nc

16 E @dkdldqds#

Auqku
x†a~p!aa~q!a†l~k!xl~ l !d@k2 l 1q2s#S E @ds#

sgn~s!21

s~k2 l 2s! D .

Notice that the divergent integral is isolated and a principal value regularization calculation s
that

PE @ds#
sgn~s!21

s~k2 l 2s!
5

1

p~k2 l !
lnUk2 l

eR
U, ~A2!

whereeR is an infrared cut-off. If we are only allowed to introduce local counter termsin the
original action, we should introduce a momentum scalemR so that we can separate the momentu
dependent part and purely divergent part of these type expressions~this point is somewhat difficult
to decide for this particular term since it is not possible to write such a term in the original ac!:

PE @ds#
sgn~s!21

s~k2 l 2s!
5

1

p~k2 l !
lnUk2 l

eR
U5 1

p~k2 l ! S lnUk2 l

mR
U1 lnUmR

eR
U D . ~A3!

If we remove the divergent part by a counter term of the form
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S m1Y
2 Nc

16p
lnUmR

eR
U18kR~mR! D E @dpdqdkdl#

Aqk

1

k2 l
d@p2q1k2 l #x†a~p!aa~q!a†b~k!xb~ l !,

~A4!

the finite term comes out to be

E @dkdldqds#

Au lqu
F8kR~mR!2

m1Y
2

8p
lnUk2 l

mR
UG 1

q2s
x†a~k!aa~ l !a†b~q!xb~s!d@k2 l 1q2s#.

~A5!

If we require the theory not to have a dependence on the arbitrary scale we introduced, it is
to demand that the residual coupling vary under a change of scale according to

kR~mR!5kR~m̃R!2
m1Y

2

64p
lnUmR

m̃R
U. ~A6!

The reader may be alarmed by the nonlocal expression in the interaction, but if we actua
back to the position space, the inverse Fourier transform gives a term, up to some consta

E dxdy~a sgn~x2y!2 lnumR~x2y!usgn~x2y!!ĉ†a~x!f̂a~y!f̂†b~y!ĉb~x!, ~A7!

which has a logarithmic correction to the sign function.@This behaves worse for the short distan
than the coulomb potentialux2yu, but we should interpret sgn(x2y)50 if x5y, so there is no rea
singularity at the short distance.# In the text we will only consider the cases where these nonlo
terms are dropped, or removed by taking them as part of the counter terms in the action. F
more conventional point of view we should only add local terms in the original action. We pl
study the more general case as a perturbation of the simplified models.~Notice that this is the
interaction one finds if we use a parity broken model as in Ref. 18. The sign of the rema
interaction term is not determined. Since it is not in the original action, it should be left a
arbitrary parameter.!

As another example we will discuss the term

&

2
mFm2YE dx2ĉ†a

1

i ]2
ĉa :f̂sf̂s :, ~A8!

a Fourier expansion and removing the vacuum expectation value gives us a term

2
m2YmF

4 E @dpdqdsdt#

Austu

d@p2q1s2t#

s2t2q
:x†a~p!xa~q!<a†b~s!ab~ t !:

1
m2YNcmF

8 E @ds#

usu
:a†b~s!ab~s!:E @dp#

12sgn~p!

p
,

and

PE @dp#
12sgn~p!

p
522 lnULR

eR
U, ~A9!

where we haveeR andLR as the infrared and ultraviolet cut-offs, respectively. If we introduc
boson mass counter-term of the form
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m2YNcmF

4
lnULR

eR
U E @ds#

usu
:a†b~s!ab~s!:, ~A10!

this divergence will be cancelled.
The other terms are also done in the same way, and the rest is to collect all of them to fi

Hamiltonian in terms of large-Nc bilinears.
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Magnetoencephalography in ellipsoidal geometry
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An exact analytic solution for the forward problem in the theory of biomagnetics of
the human brain is known only for the~1D! case of a sphere and the~2D! case of
a spheroid, where the excitation field is due to an electric dipole within the corre-
sponding homogeneous conductor. In the present work the corresponding problem
for the more realistic ellipsoidal brain model is solved and the leading quadrupole
approximation for the exterior magnetic field is obtained in a form that exhibits the
anisotropic character of the ellipsoidal geometry. The results are obtained in a
straightforward manner through the evaluation of the interior electric potential and
a subsequent calculation of the surface integral over the ellipsoid, using Lame´
functions and ellipsoidal harmonics. The basic formulas are expressed in terms of
the standard elliptic integrals that enter the expressions for the exterior Lame´ func-
tions. The laborious task of reducing the results to the spherical geometry is also
included. © 2003 American Institute of Physics.@DOI: 10.1063/1.1522135#

I. INTRODUCTION

Biomagnetics is by now a well-established interdisciplinary field extending from mathem
to electrical engineering, computer sciences, physics, and of course medicine. References
19, 22 provide an excellent exposure of the different models, methods, and techniques in
agnetics available today.

The actual size of the human organs such as the brain, the heart, or the lungs14,19 justifies the
use of the quasistatic approximation of the Maxwell system,17 where the time derivative of the
induction field in Faraday’s law and the time derivative of the displacement field in the B
Savart–Maxwell’s law are considered to be negligible. As it is well known,1,14,19 a chemically
stimulated electric source gives rise to an electric current within the conductive tissues, wh
turn generates a weak magnetic field in the surroundings of the organ. The direct bioma
problem consists of the evaluation of the magnetic field caused by a given current distributio
inverse biomagnetic problem then seeks the current distribution which generates a given~through
measurements! magnetic field. When the human organ under investigation is the brain, the
refer to the above problems as the direct MEG~MagnetoEncephaloGraphy! and the inverse MEG
problem.14,19

The inverse MEG problem is not uniquely solvable in the sense that an exteriously mea
magnetic field does not specify uniquely the current that generates it. Fokas, Gelfand
Kurylev9 have specified the extent of nonuniqueness for the case of a spherical brain model,
includes an arbitrary current density function.

The basic mathematics governing the MEG problem were developed by Geselowitz10,11 in the
late 60’s, while the complete solution for spherical geometry was given by Ilmoniemi,¨-
mäläinen, and Knuutila16 as well as by Sarvas.23 For related results in the case of spheroid
volume conductors we refer to Refs. 4 and 8. A systematic analysis of the dipole singularity
Geselowitz formula reveals that, as far as the magnetic field is concerned, one third of th
tribution from the volume current is canceled by one third of the contribution from the prim
source current.7 Sarvas’ solution for the sphere is based on the radial component of the pri
dipole field, and it is calculated via the use of a magnetic potential representing the irrota
2200022-2488/2003/44(1)/220/22/$20.00 © 2003 American Institute of Physics
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magnetic field in the space exterior to the brain. For some closely related work we refer to
4, 8, 12, 13, 18, 20, 21.

The actual geometry of the human brain is that of an ellipsoid with semiaxes equal to 6
and 9 cm.24 In contrast to the complete isotropy that is represented by the sphere, the tr
ellipsoid embodies the complete anisotropy of the three-dimensional space. As a conseque
much more complicated theory of ellipsoidal harmonics, as opposed to the theory of sph
harmonics, is necessary to solve the direct MEG problem for a realistic brain model. This pro
is realized in the work at hand. The analysis is based on Lame´ functions and ellipsoidal harmonics
In fact, only harmonics of degree less than or equal to 2 are needed to obtain the quadrupo
for the magnetic field. Besides the purely ellipsoidal expressions, the results are also given
more tractable form where Cartesian coordinates are used for the interior harmonics pl
standard elliptic integrals that appear in the exterior Lame´ products. The particular way thes
elliptic integrals are interconnected is provided in Appendix D.

Section II states the mathematical theory of the MEG problem. The solution of the in
boundary value problem that offers the electric potential within an ellipsoid due to an ele
dipole is obtained in Sec. III, while Sec. IV involves the evaluation of the magnetic induction
in the exterior of the ellipsoid. The exact analytic form of the quadrupole term is given expli
while as it is expected, the dipole term vanishes. As it is well known,5,6,15the reduction of genera
results from the ellipsoidal to the spherical geometry is not a straightforward task because
complicated indeterminacies that occur as the three semifocal distances of the ellipsoidal
approach zero. The only way to deal with these indeterminacies is to group appropriately the
of the solution and to perform the algebraic manipulations that eliminate the indetermin
before the limiting process is applied. In some cases this procedure is not much easier th
generation of the ellipsoidal solution itself. Section V is dedicated to this task and the corres
ing result for the spherical case is recovered. The necessary material from the theory of ellip
harmonics as well as some useful formulas associated with ellipsoidal functions are collec
the Appendices.

II. STATEMENT OF THE PROBLEM

In order to avoid technical complications and additional terminology, we will restrict atten
to the single component model, which is actually what we need in the present work.

Let S denotes the triaxial ellipsoid

x1
2

a1
2 1

x2
2

a2
2 1

x3
2

a3
2 51, ~1!

where 0,a3,a2,a1,1` are its semiaxes. The basic ellipsoid~1! specifies an ellipsoida
system15 with coordinates~r, m, n! which springs out of the focal ellipse

x1
2

h2
2 1

x2
2

h1
2 51, ~2!

with semifocal distance

h35Ah2
22h1

2, ~3!

where

h15Aa2
22a3

2

h25Aa1
22a3

2

h35Aa1
22a2

2
J ~4!
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are the semifocal distances of the principal ellipses of~1!. The ellipsoidal coordinates~r, m, n!,
given in Appendix A, involve the ellipsoidal variablerP@h2 ,1`) and the hyperboloidal vari-
ablesmP@h3 ,h2# and nP@2h3 ,h3#. The coordinater plays the role of the radial variabler,
while m andn correspond to the angular variableu andw in spherical coordinates. In particula
the valuer5h2 specifies the focal ellipse~2!, the valuer5a1 specifies the basic ellipsoid~1!, and
asr→1`, the corresponding ellipsoid approaches a sphere of infinite radius. In what follow
r5a1 ellipsoid, given by~1!, will represent the boundary of the ellipsoid representing the br
Then, the brain fills the interior spacerP@h2 ,a1) while the exterior space is described b
rP(a1 ,1`).

Having described the geometrical background, we turn now to the physics of our pro
Since the dielectric constant of the brain tissue is by five orders of magnitude higher tha
dielectric constant of vacuum and its electric conductivity is approximately 0.3V21 m21,14,19 a
simple arithmetic shows that the physical realm of bioelectromagnetics is that of the quas
approximation of Maxwell’s equations.17 Hence, the set of governing equations, in the absenc
electric charge, is taken to be

¹3E50, ~5!

¹3B5m0J, ~6!

¹•E50, ~7!

¹•B50, ~8!

whereE is the electric field,B is the magnetic induction field,m0 is the magnetic permeability
which is assumed to be the same inside as well as outside the brain, while the expression

J5JP1sE, ~9!

specifies the current density, withJP the primarily imposed equivalent current ands the conduc-
tivity of the brain tissue. The conductivity outside the brain is considered to be zero.

SinceE is irrotational, there exist an electric potentialu such that

E~r !52¹u~r !. ~10!

In particular, we denote the electric potential in the interior of the ellipsoidr5a1 by u2 and in the
exterior ofr5a1 by u1.

Equation~6! implies thatJ is solenoidal, and consequently~9! and ~10! force the electric
potential to solve Poisson’s equation

Du2~r !5
1

s
¹•JP~r !, ~11!

in the spaceV2 interior to the ellipsoidr5a1 and the Laplace’s equation

Du1~r !50, ~12!

in the spaceV1 exterior to the ellipsoidr5a1 .
It is easily shown10,11,23that in an unbounded, electrically homogeneous space with comp

supported primary current, the scalar fieldsu and the vector fieldm0
21B are the scalar and th

vector invariants, respectively, of the dyadic field

D̃~r !5
1

4p E
V

Jp~r 8! ^
r2r 8

ur2r 8u3
dy~r 8!, ~13!
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whereV denotes the support ofJp.
Indeed, the electric field is given by

u~r !5
1

4ps E
V

Jp~r 8!•
r2r 8

ur2r 8u3
dy~r 8!, ~14!

while the magnetic field is given by

B~r !5
m0

4p E
V

Jp~r 8!3
r2r 8

ur2r 8u3
dy~r 8!. ~15!

In general, for a single component model the electric potential solves the following tran
sion problem:

Du2~r !5
1

s
¹•Jp~r !, rPV2 ~16!

Du1~r !50, rPV1 ~17!

u2~r !5u1~r !, rPS ~18!

s2
]u2~r !

]n
5s1

]u1~r !

]n
, rPS ~19!

u1~r !5OS 1

r D , r→` ~20!

where the ‘‘2’’ and the ‘‘1’’ characterize the interior regionV2 and the exterior regionV1,
respectively. In the case ofs25s, s150, as it is assumed in MEG, the above transmiss
problem splits into the interior Neumann problem

Du2~r !5
1

s
¹•Jp~r !, rPV2 ~21!

]u2~r !

]n
50, rPS ~22!

which can be solved independently, and the exterior Dirichlet problem

Du1~r !50, rPV1 ~23!

u1~r !5u2~r !, rPS ~24!

u1~r !5OS 1

r D , r→` ~25!

which is postulated via the trace ofu2 on S.
Note that the interior problem~21!, ~22! involves an inhomogeneous equation with a hom

geneous boundary condition, while the exterior problem~23!–~25! involves a homogeneous equ
tion with an inhomogeneous boundary condition. In physical terms, the primary currentJp gen-
erates an electric field inV2 and the value of this field onS establishes the electric field inV1.
The asymptotic order ofu1 at infinity is dictated by~14!.

The plan now is as follows: solve~21!, ~22! and then calculate the magnetic field from t
integral form of the Biot–Savart–Maxwell law
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B~r !5
m0

4p E
V2

@Jp~r 8!2s¹u2~r 8!#3
r2r 8

ur2r 8u3
dy~r 8!. ~26!

Following magnetoencephalographic practice1,14,19,23we represent the actual localized electroma
netic activity of the brain tissue by an equivalent electric dipole current, at a fixed pointr0 , with
a dipole moment equal toQ. In other words, the primary current is given by

JP~r !5Qd~r2r0!, ~27!

whered stands for the Dirac measure atr0 .
Introducing~27! in ~14! and~15!, it is obvious that this point current~27! furnishes the electric

field

u0~r !5
1

4ps
Q•

r2r0

ur2r0u3 , ~28!

and the magnetic field

B0~r !5
m0

4p
Q3

r2r0

ur2r0u3 . ~29!

Furthermore, in view of~27!, Eq. ~26! implies

B~r !5
m0

4p
Q3

r2r0

ur2r0u3
2

m0s

4p E
V2

¹u2~r 8!3
r2r 8

ur2r 8u3 dy~r 8!. ~30!

The volume integral in~30! can be transformed to a surface integral,2,7,11 providing the formula

E
V2

¹u2~r 8!3
r2r 8

ur2r 8u3
dy~r 8!5E

S
u2~r 8!n̂83

r2r 8
ur2r 8u3

ds~r 8!, ~31!

whererPR32S andn̂ stands for the outward unit normal onSat r 8. Formula~31! shows that the
volume distribution of dipoles, with moments proportional to¹u2, can be replaced by a surfac
distribution of dipoles, with moments proportional tou2n̂8. Its proof demands a careful treatme
of the singularity atr0 .7

In terms of the transformation~31!, the magnetic field~30! is expressed as

B~r !5
m0

4p
Q3

r2r0

ur2r0u3
2

m0s

4p E
S
u2~r 8!n̂83

r2r 8
ur2r 8u3

ds~r 8!. ~32!

The following section provides the evaluation of the interior electric fieldu2 when S is the
ellipsoid ~1!.

III. THE INTERIOR ELECTRIC POTENTIAL

The goal of this section is to solve the interior problem~21!, ~22! whereJp is given by~27!.
Straightforward arguments conclude that the solutionu2 assumes the form

u2~r !5F~r !1
1

4ps
Q•

r2r0

ur2r0u3
5F~r !1

1

4ps
Q•¹r0

1

ur2r0u
, ~33!

where F is an interior harmonic function inside the ellipsoidh2<r,a1 which satisfies the
Neumann boundary condition
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]

]r
F~r !52

1

4ps

]

]r
Q•

r2r0

ur2r0u3
, ~34!

on the ellipsoidr5a1 .
The completeness of the ellipsoidal harmonics15 secures the existence of a sequence$bn

m%,
n50,1,2,..., andm51,2,...,2n11 such that

F~r !5 (
n50

`

(
m51

2n11

bn
mEn

m~r,m,n!, ~35!

for rP@h2 ,a1), whereEn
m(r,m,n) denotes the interior solid ellipsoidal harmonic of degreen and

order m ~see Appendix B!. The vectorr is always assumed to be represented by the ellipso
triplet ~r,m,n!. In order to be able to use the orthogonality properties of the ellipsoidal eigen
tions we need to express the particular solution of~21!, which is the singular part of~33!, in terms
of surface ellipsoidal harmonics. To this end, we use the ellipsoidal expansion of the fundam
solution for the Laplace’s operator6 in the form

1

ur2r0u
5 (

n50

`

(
m51

2n11
4p

2n11

1

gn
m En

m~r0 ,m0 ,n0!Fn
m~r,m,n!, ~36!

where (r0 ,m0 ,n0) represents the positionr0 of the dipole expressed in ellipsoidal coordinates,Fn
m

are the exterior solid ellipsoidal harmonics~see Appendix B! andgn
m are the ellipsoidal normal-

ization constants given by

gn
m5E

r5a1

@En
m~m!En

m~n!#2
1

Aa1
22m2Aa1

22n2
ds. ~37!

Actually, the constantgn
m is the square of theL2 norm of the surface ellipsoidal harmon

En
m(m)En

m(n) with respect to the weighting function

l ~m,n!5@~a1
22m2!~a1

22n2!#21/2, ~38!

which depends on the ellipsoidal surfacer5a1 .
Expansion~36! holds forr.r0 and provides the appropriate form for the application of

boundary condition~34!. In view of ~33!, ~35!, and~36!, the fieldu2 is written as

u2~r,m,n!5 (
n50

`

(
m51

2n11 Fbn
mEn

m~r,m,n!1
1

s~2n11!gn
m ~Q•¹r0

En
m~r0!!Fn

m~r,m,n!G . ~39!

Using the form ofFn
m , as it is given by~B6! as well as the fact theE0

1(r,m,n)51, Eq. ~39! is
written as

u2~r,m,n!5b0
11 (

n51

`

(
m51

2n11 Fbn
m1

1

sgn
m ~Q•¹r0

En
m~r0!!I n

m~r!GEn
m~r,m,n!, ~40!

whereI n
m(r) is given by~B4!.

Applying the boundary condition~34! to ~39! and using the orthogonality properties of th
surface ellipsoidal harmonics15 we are led to

bn
m5

1

sgn
m ~Q•¹r0

En
m~r0!!F 1

a2a3En
m~a1!En

m8~a1!
2I n

m~a1!G , ~41!
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for eachn50,1,2,... andm51,2,...,2n11, whereEn
m denote the Lame´ functions of the first kind

~see Appendix B! and the prime denotes differentiation with respect to the argument.
Using expression~41! for the coefficients the electric potential within the ellipsoid,r5a1 is

then written as

u2~r !5b0
11

1

4ps
Q•

r2r0

ur2r0u32 (
n51

`

(
m51

2n11
1

~2n11!sgn
m ~Q•¹r0

En
m~r0!!

Fn
m8~a1!

En
m8~a1!

En
m~r !,

~42!

whereFn
m are the Lame´ functions of the second kind~see Appendix B!.

We observe thatu2 is uniquely specified up to the additive constantb0
1, a fact that is com-

patible with the wellposedness of the Neumann problem~21!, ~22!.
In order to express the interior electric fieldu2 in a more tractable and useful form we u

formulas~B16!–~B27! and restrict consideration to the leading two terms in the multipole e
soidal expansion of~42!. Along these lines we introduce the following notation where the sin
wiggle on the top denotes a dyadic and the double wiggle on the top denotes a tetradic2

M̃ ~r!5 (
m51

3

~r22a1
21am

2 !x̂m^ x̂m , ~43!

L̃5 (
m51

3 x̂m^ x̂m

L2am
2 , ~44!

L̃85 (
m51

3 x̂m^ x̂m

L82am
2 , ~45!

H̃1~r!5 (
m51

3

I 1
m~r!x̂m^ x̂m , ~46!

H̃̃2~r!5 (
i , j 51
iÞ j

3

I 2
i 1 j~r!x̂i ^ x̂j ^ x̂i ^ x̂j , ~47!

Ñ15 (
m51

3 x̂m^ x̂m

a1
21a2

21a3
22am

2 , ~48!

Ñ̃25 (
i , j 51
iÞ j

3 x̂i ^ x̂j ^ x̂i ^ x̂j

a i
21a j

2 , ~49!

where the constantsL, L8 are given by~B14! and the elliptic integrals that appear in~46!–~47!
are given by~B4!. The unit vectorsx̂i , i 51,2,3 stand for the Cartesian basis. The characteristi
the quantities~43!–~49! is that they are all modifications of the identity dyadic or the iden
tetradic. If the~anisotropic! ellipsoid is replaced by the~isotropic! sphere all quantities~43!–~49!
are reduced to multiples of the identity, while as they stand they incorporate the particular
dards of each principal direction of the ellipsoid.

Furthermore, we define the dyadic functions

Ã~r!5
3

4ps
~H̃1~r!2H̃1~a1!!1

1

sV
Ĩ , ~50!
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B̃~r !52
5

4ps~L2L8! F S I 2
1~r!2I 2

1~a1!1
2p

3VL D L̃E2
1~r !

2S I 2
2~r!2I 2

2~a1!1
2p

3VL8D L̃8E2
2~r !G , ~51!

whereV denotes the volume of the ellipsoid (3V54pa1a2a3) and the tetradic function

G̃̃~r!5
15

4ps
~ H̃̃2~r!2 H̃̃2~a1!!1

5

sV
Ñ̃2 , ~52!

in terms of which the interior electric field within the shellr0,r,a1 assumes the compact form

u2~r !5b0
11Q•Ã~r!•r1Q^ r0 :B̃~r !1Q^ r0 : G̃̃~r!:r ^ r1O~el3!, ~53!

where the notationO(el3) denotes terms in the multipole expansion that are of order great
equal to 3~octapole or higher terms! and the double contraction is defined as

a^ b:c^ d5~a•c!~b•d!. ~54!

In obtaining expression~53! for u2, we have also used the multipole expansion

r2r0

ur2r0u3
53H̃1~r!•r2

5

L2L8
r0•@L̃E2

1~r !I 2
1~r!

2L̃8E2
2~r !I 2

2~r!#115r0• H̃̃2~r!:r ^ r1O~el3!. ~55!

Expressions~53! and ~55! combine both the Cartesian coordinates ofr and the elliptic integrals
I n

m(r) that depend on the ellipsoidal variabler. This combination leads to the most compact w
of expressing~53! and~55!, and at the same time it minimizes the indeterminacies as the ellip
reduces to the sphere.

An equivalent expression foru2 which avoids the polyadic notation is furnished by

u2~r,m,n!5b0
11

3

4ps (
m51

3

QmxmF I 1
m~r!2I 1

m~a1! 1
1

a1a2a3
G

2
5

4ps~L2L8! (
m51

3

Qmx0mF S I 2
1~r!2I 2

1~a1!1
1

2a1a2a3L D E2
1~r !

~L2am
2 !

2S I 2
2~r!2I 2

2~a1!1
1

2a1a2a3L8D E2
2~r !

~L82am
2 !G

1
15

4ps (
i , j 51
iÞ j

3

Qix0 j xixj S I 2
i 1 j~r!2I 2

i 1 j~a1!1
1

a1a2a3~a i
21a j

2! D 1O~el3!.

~56!

IV. THE EXTERIOR MAGNETIC FIELD

The magnetic induction fieldB is obtained from~32! after we insert the values ofu2 on the
surfacer5a1 and perform the indicated integration. Our plan is to focus on the dipole and
quadrupole terms, which provide the leading two approximations ofu2. To this end, we rewrite
the integral in~32! in such a way as to be able to use orthogonality of the surface ellipso
harmonics.

First, we observe that
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1

ur2r0u
5

4p

g0
1 I 0

1~r!1
4p

3 (
m51

3
1

g1
m E1

m~r0!F1
m~r !1

4p

5 (
m51

5
1

g2
m E2

m~r0!F2
m~r !1O~el3!. ~57!

Taking the gradient of~57! and using~B17!–~B27!, we obtain the following key formula in ou
work:

r2r0

ur2r0u3
5

3

h1h2h3
(

m51

3

hmI 1
m~r!x̂mE1

m~r !2
5

~L2L8!h1h2h3
(

m51

3
hm

L2am
2 E1

m~r0!x̂mE2
1~r !I 2

1~r!

1
5

~L2L8!h1h2h3
(

m51

3
hm

L82am
2 E1

m~r0!x̂mE2
2~r !I 2

2~r!

1
15

h1h2h3
3 F 1

h1
E1

2~r0!x̂11
1

h2
E1

1~r0!x̂2GE2
3~r !I 2

3~r!

1
15

h1h2
3h3

F 1

h1
E1

3~r0!x̂11
1

h3
E1

1~r0!x̂3GE2
4~r !I 2

4~r!

1
15

h1
3h2h3

F 1

h2
E1

3~r0!x̂21
1

h3
E1

2~r0!x̂3GE2
5~r !I 2

5~r!1O~el3!. ~58!

Obviously, expansion~58! is valid for r.r0 and it can be used in~32! and in ~42! to obtain the
three dipole terms and the five quadrupole terms for the multipole expansion of the primary
field at r0 , as well as for the induced dipole fields at the surface pointsr 8.

In order to be able to evaluate the surface integral in~32! we need to express th
interior electric potentialu2(r 8), the outward unit normalr̂8, and the basic dipole field
ur2r 8u23(r2r 8) in terms of surface ellipsoidal harmonics in the variable of integrationr 8 on the
surfacer5a1 . This is a long and tedious task which is developed in the following steps. Firs
expand the interior electric field~53! to obtain

u2~a1 ,m8,n8!5b0
11 (

m51

3

zmE1
m~m8!E1

m~n8!1 (
m51

5

umE2
m~m8!E2

m~n8!1O~el38!, ~59!

where

zm5
amhm

sVh1h2h3
~Q• x̂m!, m51,2,3 ~60!

and

u152
5

6sV~L2L8!
~Q^ r0 :L̃!, ~61!

u25
5

6sV~L2L8!
~Q^ r0 :L̃8!, ~62!

u35
5a1a2a3

sVh1h2h3

Q^ r0 :~ x̂1^ x̂21 x̂2^ x̂1!

a3h3~a1
21a2

2!
, ~63!

u45
5a1a2a3

sVh1h2h3

Q^ r0 :~ x̂1^ x̂31 x̂3^ x̂1!

a2h2~a1
21a3

2!
, ~64!
                                                                                                                



o

la-

229J. Math. Phys., Vol. 44, No. 1, January 2003 Magnetoencaphalography in ellipsoidal geometry

                    
u55
5a1a2a3

sVh1h2h3

Q^ r0 :~ x̂2^ x̂31 x̂3^ x̂2!

a1h1~a2
21a3

2!
. ~65!

The outward unit normal is written as5

r̂85a1a2a3l ~m8,n8!M̃21~a1!•r 8, ~66!

and if the basic dipole field is expanded forr.r8 it provides the form

r2r 8
ur2r 8u3 53r•H̃1~r!1F̃~r !•r 81O~el28!, ~67!

where

F̃~r !52
F2

1~r !

L2L8
L̃1

F2
2~r !

L2L8
L̃8115r ^ r : H̃̃2~r!. ~68!

Then, we calculate the expression

r̂83
r2r 8

ur2r 8u3 5a1a2a3l ~m8,n8!@3r 8•M̃21~a1!3H̃1~r!•r1r 8•M̃21~a1!3F̃~r !•r 8#1O~el38!

5a1a2a3l ~m8,n8!F3 (
m51

3

~ x̂m•M̃21~a1!3H̃1~r!•r !xm8

1 (
i , j 51

3

~ x̂i•M̃21~a1!3F̃~r !• x̂j !xi8xj8G1O~el38!. ~69!

Expression~69! contains the variable of integrationr 8 of ~32! in Cartesian form. Since we want t
use orthogonality properties over the ellipsoidr85a1 , we need to transform~69! to ellipsoidal
coordinates. To end we use formulas~C7!–~C9! and perform some extensive algebraic manipu
tions that lead to the expression

r̂83
r2r 8

ur2r 8u3U
r85a1

5a1a2a3l (m8,n8)H 1

3 (
m51

3

am
2 ( x̂m•M̃21(a1)3F̃(r )• x̂m)

1
3

h1h2h3
(

m51

3

amhm( x̂m•M̃21(a1)3H̃1(r)•r )E1
m(m8)E1

m(n8)

2
1

3(L2L8) (
m51

3 am
2

L2am
2 ( x̂m•M̃21(a1)3F̃(r )• x̂m)E2

1(m8)E2
1(n8)

1
1

3(L2L8) (
m51

3 am
2

L82am
2 ( x̂m•M̃21(a1)3F̃(r )• x̂m)E2

2(m8)E2
2(n8)

1
1

h1h2h3
(

i , j 51
iÞ j

3
a ia j

h62( i 1 j )
( x̂i•M̃21(a1)3F̃(r )• x̂j )E2

i 1 j (m8)E2
i 1 j (n8)J

1O~el38). ~70!

At this stage we observe that the monopole term in~70! vanishes. Indeed, from~43!–~45!, ~47!,
and ~68! we observe that
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(
m51

3

am
2 ~ x̂m•M̃21~a1!3F̃~r !• x̂m!

5 (
m51

3

x̂m3F̃~r !• x̂m

52
F2

1~r !

L2L8 (
m51

3 x̂m3 x̂m

L2am
2 1

F2
2~r !

L2L8 (
m51

3 x̂m3 x̂m

L82am
2 115(

m51

3

x̂m3~r ^ r : H̃̃2~r!!• x̂m

515 (
i , j 51
iÞ j

3

xixj I 2
i 1 j~r!x̂j3 x̂i50. ~71!

Then ~70! is written as

r̂83
r2r 8

ur2r 8u3U
r85a1

5 l ~m8,n8!F (
m51

3

bmE1
m~m8!E1

m~n8!1 (
m51

5

dmE2
m~m8!E2

m~n8!G1O~el38!,

~72!

where

bm53
a1a2a3

h1h2h3

hm

am
x̂m^ r3½ H̃1~r!, m51,2,3 ~73!

d152
a1a2a3

3~L2L8!
L̃3½ F̃~r !, ~74!

d25
a1a2a3

3~L2L8!
L̃83½ F̃~r !, ~75!

d35
a1a2a3

h1h2h3
2 Fa2

a1
x̂1^ x̂21

a1

a2
x̂2^ x̂1G3½ F̃~r !, ~76!

d45
a1a2a3

h1h2
2h3

Fa3

a1
x̂1^ x̂31

a1

a3
x̂3^ x̂1G3½ F̃~r !, ~77!

d55
a1a2a3

h1
2h2h3

Fa3

a2
x̂2^ x̂31

a2

a3
x̂3^ x̂2G3½ F̃~r !, ~78!

and the cross-dot product is defined as

~a^ b!3½ ~c^ d!5~a3c!~b•d!. ~79!

Finally, the surface integral in~32! can be evaluated after~37!, ~59!, ~72!, and~B8! are appropri-
ately used to conclude

E
s
u2~r 8!r̂83

r2r 8
ur2r 8u3

ds~r 8!5 (
m51

3

zmbmg1
m1 (

m51

5

umdmg2
m1O~el3!, ~80!

where the constantsgn
m are given by~B17!–~B20!.

Next, we analyze the dipole terms in~80!, which in view of ~60!, ~73!, and~B17! provide
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(
m51

3

zmbmg1
m5

3

s (
m51

3

~Q• x̂m!x̂m^ r3½ H̃1~r!5
3

s
Q^ r3½ H̃1~r!. ~81!

If we substitute the dipole contribution~81! into ~32! and use expansion~55!, we immediately see
that the dipole contribution to the exterior magnetic field vanishes, a conclusion that is comp
with the theory of magnetostatics.7,17

In the sequel we investigate further the form of the leading~quadrupole! contribution to the
exterior magnetic field as it is given by~32! and~80!. Indeed, formulas~55!–~65!, ~68!, ~74!–~78!,
~80!, and~B18!–~B20! yield

B~r !5
m0

4p
Q^ r03½ F̃~r !1

m0

12p

~L2a1
2!~L2a2

2!~L2a3
2!

L2L8
Q^ r0 :L̃^ L̃3½ F̃~r !

2
m0

12p

~L82a1
2!~L82a2

2!~L82a3
2!

L2L8
Q^ r0 :L̃8^ L̃83½ F̃~r !

2
m0

4p
Q^ r0 :

~ x̂1^ x̂21 x̂2^ x̂1! ^ ~a2
2x̂1^ x̂21a1

2x̂2^ x̂1!

a1
21a2

2 3½ F̃~r !

2
m0

4p
Q^ r0 :

~ x̂1^ x̂31 x̂3^ x̂1! ^ ~a3
2x̂1^ x̂31a1

2x̂3^ x̂1!

a1
21a3

2 3½ F̃~r !

2
m0

4p
Q^ r0 :

~ x̂2^ x̂31 x̂3^ x̂2! ^ ~a3
2x̂2^ x̂31a2

2x̂3^ x̂2!

a2
21a3

2 3½ F̃~r !1O~el3!. ~82!

By means of the scalar identities

~L2a1
2!~L2a2

2!~L2a3
2!

~L2a i
2!2 5~L2a i

2!2 (
m51

3

~L2am
2 !, i 51,2,3 ~83!

and

~L82a1
2!~L82a2

2!~L82a3
2!

~L82a i
2!2 5~L82a i

2!2 (
m51

3

~L82am
2 !, i 51,2,3 ~84!

we can easily prove the tetradic formula

~L2a1
2!~L2a2

2!~L2a3
2!

3~L2L8!
L̃^ L̃2

~L82a1
2!~L82a2

2!~L82a3
2!

3~L2L8!
L̃8^ L̃8

5
1

3
Ĩ ^ Ĩ2(

i 51

3

x̂i ^ x̂i ^ x̂i ^ x̂i . ~85!

Furthermore, the identities

~ x̂i ^ x̂j1 x̂j ^ x̂i ! ^ ~a j
2x̂i ^ x̂j1a i

2x̂j ^ x̂i !

a i
21a j

2

5 x̂i ^ x̂j ^ x̂i ^ x̂j1 x̂j ^ x̂i ^ x̂j ^ x̂i1
~a i

2x̂i ^ x̂j2a j
2x̂j ^ x̂i ! ^ ~ x̂j ^ x̂i2 x̂i ^ x̂j !

a i
21a j

2 , iÞ j

~86!

and
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x̂13 Ĩ5 x̂3^ x̂22 x̂2^ x̂3 , ~87!

x̂23 Ĩ5 x̂1^ x̂32 x̂3^ x̂1 , ~88!

x̂33 Ĩ5 x̂2^ x̂12 x̂1^ x̂2 , ~89!

can be used to reduce~82! to

B~r !5
m0

12p
~Q•r0! Î3½ F̃~r !2

m0

4p
~d3 Ĩ !3½ F̃~r !1O~el3!, ~90!

where

d5~Q•M̃ ~a1!3r0!•Ñ1 . ~91!

Some further algebra reveals that

Ĩ3½ L̃5 Ĩ3½ L̃850, ~92!

and

Ĩ3½ ~ x̂i ^ x̂j1 x̂j ^ x̂i !50 ~93!

for every pairi, j with iÞ j which in view of ~68! implies that

Ĩ3½ F̃~r !50. ~94!

Finally, relation~B15! confirms that

~d3 Ĩ !3½ L̃5d•L̃, ~95!

~d3 Ĩ !3½ L̃85d•L̃8, ~96!

and since foriÞ j

~d3 Ĩ !3½ ~ x̂i ^ x̂j1 x̂j ^ x̂i !5d•~ x̂i ^ x̂j1 x̂j ^ x̂i !, ~97!

we arrive at the expression

B~r !5
m0

4p
d•F F2

1~r !

L2L8
L̃2

F2
2~r !

L2L8
L̃82

3

h1
2h2

2h3
2 (

i , j 51
iÞ j

3

hihjF2
i 1 j~r !x̂i ^ x̂jG1O~el3!, ~98!

which provides the quadrupole approximation of the magnetic field exterior to the ellipsoid~1!.
Note thatB is a harmonic function, a property that follows from the fact thatB is both irrotational
and solenoidal in the exterior to the ellipsoid space.

The vector

Q•M̃ ~a1!5(
i 51

3

a i
2Qi x̂i , ~99!

represents the dipole moment as it is modified by the spatial effects of the anisotropy impo
the ellipsoid. It actually incorporates the effects of the geometry on the physics of the prob

Relations~C3!–~C5! can be invoked to rewrite~98! in Cartesian form as follows:
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B~r !5
5m0

4p

~L2a1
2!~L2a2

2!~L2a3
2!

L2L8
~d•L̃!~L̃:r ^ r11!I 2

1~r!

2
5m0

4p

~L82a1
2!~L82a2

2!~L82a3
2!

L2L8
~d•L̃8!~L̃8:r ^ r11!I 2

2~r!

2
15m0

4p
d• (

i , j 51
iÞ j

3

xixj I 2
i 1 j~r!x̂i ^ x̂j1O~el3!, ~100!

where the elliptic integralsI n
m(r) are given by~B4! and

3

h1
2h2

2h3
2 (

i , j 51
iÞ j

3

hihjF2
i 1 j~r !x̂i ^ x̂j515 (

i , j 51
iÞ j

3

xixj I 2
i 1 j~r!x̂i ^ x̂j515H̃̃2~r!:r ^ r . ~101!

As in the case of the electric potential, we also provide an expression of the magnetic field
avoids the use of polyadics. Indeed, if

d5
a2

2Q2x032a3
2Q3x02

a2
21a3

2 x̂11
a3

2Q3x012a1
2Q1x03

a1
21a3

2 x̂21
a1

2Q1x022a2
2Q2x01

a1
21a2

2 x̂3 , ~102!

then

B~r !5
m0

4p

F2
1~r,m,n!

L2L8 (
i 51

3
di

L2a i
2 x̂i2

m0

4p

F2
2~r,m,n!

L2L8 (
i 51

3
di

L82a i
2 x̂i

2
15m0

4p (
i , j 51
iÞ j

3

dixixj I 2
i 1 j~r!x̂j1OS 1

r4D . ~103!

V. REDUCTION TO THE SPHERE

The magnetic field outside a spherical conductor23 is given by

Bs~r !5
m0

4p
Q3r0•@ Ĩ1r ^ ¹#

1

F~r !
, ~104!

where

F~r !5r ur2r0u21r•~r2r0!ur2r0u. ~105!

In the interest of obtaining the quadrupole term of~104! we have to expand asymptotically~104!
and calculate the leading terms of this expansion. This program furnishes

1

F~r !
5

1

2r 3 1
r0• r̂

r 4 1OS 1

r 5D , ~106!

¹
1

F~r !
52

3r̂

2r 4 1
r0

r 5 •~ Ĩ25r̂ ^ r̂ !1OS 1

r 6D , ~107!

and finally

Bs~r !5
m0

8p
Q3r0•

Ĩ23r̂ ^ r̂

r 3 1
m0

4p
Q3r0•

Ĩ ^ r̂1 r̂ ^ Ĩ25r̂ ^ r̂ ^ r̂

r 4 •r01OS 1

r 5D . ~108!
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We turn now to our ellipsoidal result~98! or ~100! and we consider the limit as

~a1 ,a2 ,a3! →
e→s

~a,a,a!, ~109!

wheree→s indicates the limit as the ellipsoid becomes a sphere of radiusa.
It is easily shown that

lim
e→s

L5 lim
e→s

L85a2, ~110!

lim
e→s

hi50, i 51,2,3 ~111!

lim
e→s

m5 lim
e→s

n50, ~112!

and

lim
e→s

r5r , ~113!

wherer denotes the spherical radial variable.
Furthermore

lim
e→s

I 2
m~r!5

1

5r 5 , m51,2,3,4,5. ~114!

The last term on the right-hand side of~100! is continuous in the spherical limit, and it provide
the limit

lim
e→s

(
i , j 51
iÞ j

3

xixj I 2
i 1 j~r!x̂i ^ x̂j5

1

5r 5 (
i , j 51
iÞ j

3

xixj x̂i ^ x̂j5
r ^ r

5r 5 2
1

5r 5 (
i 51

3

xi
2x̂i ^ x̂i . ~115!

On the other hand, the corresponding limit of the first two terms on the right-hand side of~100!
exhibit an indeterminant behavior and they need to be handled in the following special wa

Long but straightforward calculations are needed to prove the identities

E2
1~r,m,n!

~L2L8!~L2am
2 !

2
E2

2~r,m,n!

~L2L8!~L82am
2 !

5r 223xm
2 1am

2 2
a1

21a2
21a3

2

3
, ~116!

and

I 2
1~r!2I 2

2~r!

L2L8
5

3

2
I 3

7~r!2
1

2rAr22h3
2Ar22h2

2~L2a1
21r2!~L82a1

21r2!
, ~117!

where

I 3
7~r!5E

r

1` dt

t2~ t22h2
2!3/2~ t22h3

2!3/2. ~118!

Then ~116! and ~117! are used to show that
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E2
1~r,m,n!I 2

1~r!

~L2L8!~L2am
2 !

2
E2

2~r,m,n!I 2
2~r!

~L2L8!~L82am
2 !

5S r 223xm
2 1am

2 2
a1

21a2
21a3

2

3 D I 2
1~r!

1
E2

2~r,m,n!

L82am
2 F3

2
I 2

7~r!2
1

2rAr22h3
2Ar22h2

2~L2a1
21r2!~L82a1

21r2!
G .

~119!

Furthermore

E2
2~r,m,n!

L82a1
2 5~L82a2

2!~x3
22x1

2!1~L82a3
2!~x2

22x1
2!1~L82a2

2!~L82a3
2!, ~120!

E2
2~r,m,n!

L82a2
2 5~L82a1

2!~x3
22x2

2!1~L82a3
2!~x1

22x2
2!1~L82a1

2!~L82a3
2!, ~121!

E2
2~r,m,n!

L82a3
2 5~L82a1

2!~x2
22x3

2!1~L82a2
2!~x1

22x3
2!1~L82a1

2!~L82a2
2!, ~122!

which imply that

lim
e→s

E2
2~r,m,n!

L82am
2 50, m51,2,3. ~123!

Consequently

lim
e→s

F E2
1~r,m,n!I 2

1~r!

~L2L8!~L2am
2 !

2
E2

2~r,m,n!I 2
2~r!

~L2L8!~L82am
2 !G5

r 223xm
2

5r 5 , ~124!

and

lim
e→s

F F2
1~r !

L2L8
L̃2

F2
2~r !

L2L8
L̃8G55 (

m51

3 r 223xm
2

5r 5 x̂m^ x̂m5
Ĩ

r 32
3

r 5 (
m51

3

xm
2 x̂m^ x̂m . ~125!

By virtue of the reduction formulas~115! and ~125!, expression~98! provides the limit

lim
e→s

B~r !5
m0

4p
~ lim

e→s
d!•F Ĩ

r 32
3

r 5 (
m51

3

xm
2 x̂m^ x̂mG2

m0

4p
~ lim

e→s
d!•F3

r ^ r

r 5 2
3

r 5 (
m51

3

xm
2 x̂m^ x̂mG

5
m0

8p
Q3r0•

Ĩ23r̂ ^ r̂

r 3 1OS 1

r 4D5Bs~r !, ~126!

whereBs is the sphere solution given by~108!.

APPENDIX A: THE ELLIPSOIDAL SYSTEM

The ellipsoidal coordinates~r,m,n! are connected to the Cartesian coordinates (x1 ,x2 ,x3) via
the expressions
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x15
rmn

h2h3
, ~A1!

x25
Ar22h3

2Am22h3
2Ah3

22n2

h1h3
, ~A2!

x35
Ar22h2

2Ah2
22m2Ah2

22n2

h1h2
, ~A3!

where the variablerP@h2 ,1`) specifies the ellipsoid

x1
2

r2 1
x2

2

r22h3
2 1

x3
2

r22h2
2 51, ~A4!

the variablemP@h3 ,h2# specifies the hyperboloid of one sheet

x1
2

m2 1
x2

2

m22h3
22

x3
2

h2
22m2 51, ~A5!

and the variablenP@2h3 ,h3# specifies the hyperboloid of two sheets

x1
2

n22
x2

2

h3
22n22

x3
2

h2
22n2 51. ~A6!

The three families of second-degree surfaces~A4!, ~A5!, ~A6! share the same set of foci at th
points6h1 , 6h2 , 6h3 . The outward unit normal on the ellipsoidr5a1 is given by

]

]n
5r̂•¹5

a2a3

Aa1
22m2Aa1

22n2

]

]r
. ~A7!

APPENDIX B: ELLIPSOIDAL HARMONICS

Separation of variables for the Laplace’s equation in the ellipsoidal coordinate system le
the Laméequation15

~x22h2
2!~x22h3

2!E9~x!1x~2x22h2
22h3

2!E8~x!1~Ax21B!E~x!50, ~B1!

for each one of the factorsE(r), E(m), andE(n) that form the harmonic function

E~r,m,n!5E~r!E~m!E~n!, ~B2!

whereA andB are constants.
The only difference between these functions is thatE(r) satisfies ~B1! in the interval

@h2 ,1`), E(m) in the interval@h2 ,h3#, andE(n) in the interval@2h3 ,h3#.
Laméequation~B1! has a long history that dominated differential equations the whole of

19th century.15 A complicated analysis shows that the constantsA andB are appropriately asso
ciated with two integersn andm, where just like the spherical harmonics,n specifies the degree
and m specifies the order, of the different Lame´ functions of the same degree. For ea
n50,1,2,... and eachm51,2,...,2n11 Eq. ~B1! has two linearly independent solutions, one reg
lar at the origin and one regular at infinity. For fixed values ofn andm, a solution of Eq.~B1! is
called a Lame´ function of degreen and orderm. In particular, the solutionEn

m that is regular at the
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origin is the Lame´ function of the first kind~interior solution!, while the solutionFn
m that is regular

at infinity is the Lame´ function of the second kind~exterior solution!. The interior solutionsEn
m(r)

are connected to the exterior solutionsFn
m(r) via the expression

Fn
m~r!5~2n11!En

m~r!I n
m~r!, ~B3!

where the elliptic integralsI n
m(r) are given by

I n
m~r!5E

r

1` dt

@En
m~ t !#2At22h2

2At22h3
2

5
1

2 Er22a1
2

1` dx

@En
m~Ax1a1

2!#2Ax1a1
2Ax1a2

2Ax1a3
2

.

~B4!

The Laméproducts

En
m~r,m,n!5En

m~r!En
m~m!En

m~n!, ~B5!

define the interior solid ellipsoidal harmonics and the Lame´ products

Fn
m~r,m,n!5Fn

m~r!En
m~m!En

m~n!5~2n11!En
m~r,m,n!I n

m~r!, ~B6!

define the exterior solid ellipsoidal harmonics. The surface ellipsoidal harmonics are defin
the productEn

m(m)En
m(n) and they form a complete orthogonal set of ‘‘angular’’ eigenfunctions

the surface of any ellipsoid from the confocal family~A4!. In fact, the orthogonality is defined vi
the weighting function

l ~m,n!5@~r0
22m2!~r0

22n2!#21/2, ~B7!

on the ellipsoidr5r0 and provides the relations

E E
r5r0

En
m~m!En

m~n!En8
m8~m!En8

m8~n!l ~m,n!ds50, ~B8!

unlessn5n8 andm5m8, in which case the normalization constantsgn
m are given by~37!.

Although the form of the ellipsoidal harmonics is known, the exact values of the param
they involve are not expressed in terms of the semiaxesa1 ,a2 ,a3 when the degreen is higher
than 3. This difficulty restricts the analytical solutions of related boundary value problems t
16th-dimensional harmonic subspace spanned by the harmonics of degree less than or equ15

The needs of the present work are restricted to the ellipsoidal harmonics of degree less
equal to 2 which are given explicitly below. These harmonics are enough to obtain an an
expression for the dipole as well as for the quadrupole term for the exterior magnetic field

The interior Lame´ functions of degree less than or equal to 2 are given by

E0
1~x!51, ~B9!

E1
m~x!5Aux22a1

21am
2 u, m51,2,3 ~B10!

E2
1~x!5x22a1

21L, ~B11!

E2
2~x!5x22a1

21L8 ~B12!

E2
62m~x!5

E1
1~x!E1

2~x!E1
3~x!

E1
m~x!

, m51,2,3 ~B13!
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where the constants

L
L8J 5

1

3 (
n51

3

an
26

1

3
A(

n51

3 S an
42

a1
2a2

2a3
2

an
2 D , ~B14!

are the two roots of the quadradic equation

(
n51

3
1

L2an
2 50. ~B15!

Once the interior Lame´ functions are known, the corresponding exterior ones are obtained
formulas~B3!, ~B4!. Interior and exterior solid ellipsoidal harmonics are then constructed via~B5!
and ~B6!, respectively. Finally, the normalization constants used in the present work ar
following:

g0
154p, ~B16!

g1
m5

4p

3

h1
2h2

2h3
2

hm
2 , m51,2,3 ~B17!

g2
152

8p

5
~L2L8!~L2a1

2!~L2a2
2!~L2a3

2!, ~B18!

g2
25

8p

5
~L2L8!~L82a1

2!~L82a2
2!~L82a3

2!, ~B19!

and

g2
62m5

4p

15
h1

2h2
2h3

2hm
2 , m51,2,3. ~B20!

It can be shown that allgn
m’s are positive as formula~36! demands. The following relation

express the gradients of ellipsoidal harmonics in terms of ellipsoidal harmonics as well:

¹E0
1~r,m,n!50, ~B21!

¹E1
m~r,m,n!5

h1h2h3

hm
x̂m , m51,2,3 ~B22!

wherex̂m stand for the Cartesian orthonormal basis, and

¹E2
1~r,m,n!52

~L2a1
2!~L2a2

2!~L2a3
2!

h1h2h3
(

m51

3
hm

L2am
2 E1

m~r,m,n!x̂m , ~B23!

¹E2
2~r,m,n!52

~L82a1
2!~L82a2

2!~L82a3
2!

h1h2h3
(

m51

3
hm

L82am
2 E1

m~r,m,n!x̂m , ~B24!

¹E2
3~r,m,n!5h1h2h3F 1

h1
E1

2~r,m,n!x̂11
1

h2
E1

1~r,m,n!x̂2G , ~B25!

¹E2
4~r,m,n!5h1h2h3F 1

h1
E1

3~r,m,n!x̂11
1

h3
E1

1~r,m,n!x̂3G , ~B26!
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¹E2
5~r,m,n!5h1h2h3F 1

h2
E1

3~r,m,n!x̂21
1

h3
E1

2~r,m,n!x̂3G . ~B27!

APPENDIX C: CONNECTION FORMULAS

The solid ellipsoidal harmonics are expressed in terms of Cartesian coordinates as fol5

E0
1~r,m,n!51, ~C1!

E1
m~r,m,n!5

h1h2h3

hm
xm , m51,2,3 ~C2!

E2
1~r,m,n!5~L2a1

2!~L2a2
2!~L2a3

2!S (
n51

3 xn
2

L2an
2 11D , ~C3!

E2
2~r,m,n!5~L82a1

2!~L82a2
2!~L82a3

2!S (
n51

3 xn
2

L82an
2 11D , ~C4!

E2
62m~r,m,n!5h1h2h3hm

x1x2x3

xm
, m51,2,3. ~C5!

Furthermore, the Cartesian monomials of degree less than or equal to 2 are expressed in t
surface ellipsoidal harmonics as follows:

15E0
1~r,m,n!, ~C6!

xm5
hm

h1h2h3
E1

m~r,m,n!, m51,2,3 ~C7!

xm
2 5

r22a1
21am

2

3 F12
E2

1~m!E2
1~n!

~L2L8!~L2am
2 !

1
E2

2~m!E2
2~n!

~L2L8!~L82am
2 !G , m51,2,3 ~C8!

x1x2x3

xm
5

1

h1h2h3hm
E2

62m~r,m,n!, m51,2,3. ~C9!

APPENDIX D: USEFUL RELATIONS

The constantsL, L8 given in ~B14!, the semifocal distancesh1 , h2 , h3 given by~4!, and the
semiaxesa1 ,a2 ,a3 , satisfy the following useful expressions:

3~L1L8!52~a1
21a2

21a3
2!, ~D1!

3LL85a1
2a2

21a2
2a3

21a3
2a1

2, ~D2!

(
n51

3

~21!n~L2an
2!hn

25 (
n51

3

~21!n~L82an
2!hn

250, ~D3!

(
n51

3

~21!n~L2an
2!hn

2an
25 (

n51

3

~21!n~L82an
2!hn

2an
25h1

2h2
2h3

2, ~D4!
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(
n51

3 an
2

an
22L

5 (
n51

3 an
2

an
22L8

53, ~D5!

3hn
2~L2an

2!~L82an
2!5~21!n11h1

2h2
2h3

2, ~D6!

for eachn51,2,3.
The elliptic integrals that enter the exterior ellipsoidal harmonicsFn

m , n<2 are connected via
the following relations:

I 1
1~r!1I 1

2~r!1I 1
3~r!5

1

rAr22h3
2Ar22h2

2
, ~D7!

a1
2I 1

1~r!1a2
2I 1

2~r!1a3
2I 1

3~r!5I 0
1~r!2

r22a1
2

rAr22h3
2Ar22h2

2
, ~D8!

I 2
1~r!5

1

2~L2a1
21r2!rAr22h3

2Ar22h2
2

2
1

2 S I 1
1~r!

L2a1
2 1

I 1
2~r!

L2a2
2 1

I 1
3~r!

L2a3
2D , ~D9!

I 2
2~r!5

1

2~L82a1
21r2!rAr22h3

2Ar22h2
2

2
1

2 S I 1
1~r!

L82a1
2 1

I 1
2~r!

L82a2
2 1

I 1
3~r!

L82a3
2D , ~D10!

I 2
3~r!5

1

h3
2 ~ I 1

2~r!2I 1
1~r!!, ~D11!

I 2
4~r!5

1

h2
2 ~ I 1

3~r!2I 1
1~r!!, ~D12!

I 2
5~r!5

1

h1
2 ~ I 1

3~r!2I 1
2~r!!. ~D13!

The expressions can be established through long and tedious manipulations and they actua
that among the nine integralsI n

m(r) with n<2, only two are independent. For instance, ifI 0
1(r)

andI 1
1(r) are known the other seven integrals can be expressed, via~D7!–~D13!, in terms of these

two.
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The investigation into new integrable systems
of equations in 2 ¿1-dimensions

Attilio Maccaria)

Technical Institute ‘‘G. Cardano,’’ Piazza della Resistenza 1,
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A new integrable class of systems of nonlinear partial differential equations
~NPDEs! in 211 dimensions is derived from the matrix Nizhnik–Novikov–
Veselov~NVV ! equation by means of an asymptotically exact nonlinear reduction
method based on Fourier expansion and spatio-temporal rescaling. The integrability
by the inverse scattering method is explicitly demonstrated, by applying the reduc-
tion technique also to the Lax pair of the starting matrix equation and thereby
obtaining the Lax pair for the new class of systems of equations. A reduction to a
system of two interacting complex fields is briefly described. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1525405#

I. INTRODUCTION

New classes of evolution nonlinear partial differential equations~NPDEs! integrable by the
inverse scattering method~S-integrable! have been found in recent years. These equations
known to be applicable to various branches of physics such as fluid dynamics, nonlinear
condensed matter physics and so on. The most famous examples are the Korteweg–de V
the nonlinear Schro¨dinger equations in 111 dimensions and the Kadomtsev–Petviashvili and
Davey–Stewartson equations in 211 dimensions.1

A simple explanation of this coincidence~integrability and applicative relevance! is based on
the observation that very large classes of evolution NPDEs in 111 and 211 dimensions, with a
dispersive linear part, can be reduced, by a limiting procedure involving the wave modu
induced by weak nonlinear effects, to a very limited number of ‘‘universal’’ evolution NPD
Moreover, the same model equations obtained in this way appear in many applicative situ
~for instance, in plasma physics, nonlinear optics, hydrodynamics, etc.!, where weakly nonlinear
effects are important.2–4

The reduction method preserves integrability and therefore the model equations are lik
be integrable; it is sufficient that the very large class of equations from which they are obta
contains just one integrable equation, provided the limiting procedure preserves integrabi
that the property of integrability is inherited through this limiting technique. Obviously, the
statement about the integrability is based on heuristic considerations and could not be cha
ized as a rigorous theorem, because no precise definition of integrability is available for evo
NPDEs.

In particular, the derivation of the Lax pair of the reduced equation from that of the orig
equation was first done, for a certain number of soliton equations in 111 and 211 dimensions,
by Zakharov and Kuznetsov.5

The above mentioned approach, besides explaining why certain model equations ar
grable and applicable, provides a powerful tool to investigate the relation among different
grable equations, to test the integrability of nonlinear evolution PDEs and, most importan
identify integrable evolution equations that are likely to be of applicative relevance.6

In previous papers, we applied this method to certain integrable equations in 211 dimen-

a!Electronic mail: solitone@yahoo.it
2420022-2488/2003/44(1)/242/9/$20.00 © 2003 American Institute of Physics
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sions. The most interesting results are that the Davey–Stewarston equation7,8 is the typical model
equation in 211 dimensions, while new integrable NPDEs can be obtained together with
Lax pair.9–12 Moreover, we used the reduction method to derive two equations of applic
relevance in plasma physics.13,14

The basic idea of the reduction method is to consider a nonlinear evolution PDE whose
part is dispersive; as it is well known the linear evolution is most appropriately described in
of Fourier modes and each Fourier mode evolves with constant amplitude and an associate
velocity, that represents the speed with which a wave packet peaked at the Fourier mode
move in configuration space. To evaluate the weak nonlinear effects it is convenient to con
specific Fourier mode and follow it by going over to a frame of reference that moves wit
group velocity. The weak nonlinear effects may yield a non-negligible contribution, because
give rise to a modulation of the amplitude of that Fourier mode~that would remain constant in th
absence of nonlinear effects!. The modulation is best described in terms of rescaled ‘‘coa
grained’’ and ‘‘slow’’ variables, that display the weak nonlinear effects on larger space and
scales; indeed, the first step of the reduction method is to use a moving frame of reference w
introduction of the slow variables:

j5«p~x2V1t !,h5«p~y2V2t !,t5«qt,
~1.1!

p.0, q.0,

where V15V1(K1 ,K2), V25V2(K1 ,K2) are the components of the group velocityVI (KI )
[(V1(K1 ,K2),V2(K1 ,K2)) of the linearized equation, i.e., of the equation obtained by neglec
all the nonlinear terms, and« is a ‘‘small’’ expansion parameter.

It is thereby seen that the function that represents the amplitude modulation satisfies, in
of the rescaled, slow, variables, evolution equations having a universal character; since the
grained nature of the new variables implies that only certain general features of the non
interaction are important.

In this paper we expose an interesting extension of this approach and consider the
Nizhnik–Novikov–Veselov~NVV ! equation15,16

Ut1Uxxx1Uyyy23~VU!x23~WU!y50, ~1.2a!

Wx5Uy , Vy5Ux , ~1.2b!

where U5U(x,y,t), V5V(x,y,t), W5W(x,y,t) are N^ N complex matrices, the subscrip
denote partial differentiation and@U,V#5UV2VU50, @U,W#5UW2WU50.

By applying the reduction method, a new class of integrable matrix systems of evo
NPDEs is obtained,

iCt1LC1DC50, ~1.3a!

Djh52L~ uCu2!, ~1.3b!

where@C,C* #5CC* 2C* C50, the linear differential operatorL is given by

L52
]2

]j2 1
]2

]h2 , ~1.4!

andC5C(j,h,t) is anN^ N complex matrix, whileD5D(j,h,t) is anN^ N real matrix. For
N51 the matrix equation~1.3! reduces to the well-known scalar Davey–Stewartson I equatio7,8

but for N.1 yields new integrable Davey–Stewartson type systems of equations.
The article is organized as follows. In the next section we apply the reduction method

starting equation~1.2! and obtain the new system of matrix equations~1.3! and ~1.4!. Moreover,
we reduce the matrix system of equations to a new integrable two-component complex
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system of nonlinear equations, which, in the one-component case, reduces to the scalar D
Stewartson equation. In Sec. III we discuss in some detail how the reduction method c
applied to the Lax pair of the equation~1.2! and we derive the Lax pair of the system of matr
equations~1.3! and~1.4!. Finally, in the last section we recapitulate the most important results
indicate some possible extensions.

II. A NEW INTEGRABLE MATRIX SYSTEM IN 2 ¿1 DIMENSIONS

The linear dispersive part of the starting equation~1.2! admits as a solution a Fourier mod
with a group velocityVI (KI )5(V1(K1 ,K2),V2(K1 ,K2)),

V1~K1 ,K2!523K1
2 , V2~K1 ,K2!523K2

2 , ~2.1!

where

VI ~KI !5
]v

]KI
, ~2.2!

and

v5v~K1 ,K2!52K1
32K2

3 ~2.3!

is the dispersion relation.
We use the transformation~1.1! and introduce the following formal asymptotic Fourier e

pansion

U~x,y,t !5 (
n52`

1`

«gncn~j,h,t;«!exp$ i ~nz!%, ~2.4!

wherez5K1x1K2y2vt, gn5unu for nÞ0, andg05r is a non-negative rational number whic
will be fixed later. The unknown functionscn’s depend on« and it is supposed that their limit fo
«→0 exists and is finite; in the following this limit will be denoted withcn(j,h,t). Moreover, we
suppose that they can be expanded in power series of«, i.e.,

cn~j,h,t;«!5(
i 50

`

« icn
( i )~j,h,t!, cn~j,h,t!5cn

(0)~j,h,t!. ~2.5!

We now introduce two analogous Fourier expansions

V~x,y,t !5 (
n52`

1`

«g̃nwn~j,h,t;«!exp$ i ~nz!%, ~2.6a!

W~x,y,t !5 (
n52`

1`

«g̃nxn~j,h,t;«!exp$ i ~nz!%, ~2.6b!

and in the following for simplicity we use the abbreviationsc1
(0)5C, c0

(0)5F ~andfn
(0)5fn ,

f0
(0)5L, xn

(0)5xn , x0
(0)5V).

We obtain

wn5~K1!~K2!21cn1O~«p!, xn5~K2!~K1!21cn1O~«p!. ~2.7!
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The final goal is to obtain the evolution equation satisfied by the modulation amplitudeC
5C(j,h,t) and to understand how it is modified by choosing different wave numbers. We i
the expansions~2.4! and~2.6! into the equation~1.2! and consider the different equations obtain
by considering the coefficients of the Fourier modes.

It is convenient to separate the contributions of the linear and nonlinear parts by writin

«gnDncn5«2Fn , ~2.8!

whereDn is a linear differential operator acting oncn(j,h,t) andFn is the contribution of the
nonlinear part. The operatorDn is

Dn5~2 inv1«q]t2V1«p]j2V2«p]h!1~ inK11«p]j!
31~ inK21«p]h!3. ~2.9!

Fn can be derived, by assessing the importance of the different terms, which originate fro
nonlinear interaction of the Fourier amplitudescn(j,h,t):

F256i
K1

2

K2
C21O~«p!, ~2.10a!

F056«pS K1

K2
~ uCu2!j1

K2

K1
~ uCu2!hD1O~«2p,«q,«2!, ~2.10b!

F153« r 21S 2K1LC2K2VC2S K1
2

K2
1

K2
2

K1
DCF12S K1

K2
2 1

K2

K1
2D uCu2C D 1O~« r 1p21,«3!,

~2.10c!

and so on.
By settingq52, p51, r 52 for the proper balance of terms, we obtain the equations for

Fourier modes at the lowest order forn52:

c252
1

K1
2 C2, ~2.11!

and after the cosmetic rescaling

3~K1
31K2

3!

K2AK1K2

L→L,
3~K1

31K2
3!

K1AK1K2

V→V, ~2.12a!

A6~K1
31K1

3!

K1K2
C→C,

3~K1
31K2

3!

K1K2
F→F, ~2.12b!

l5S K1

K2
D 3/2

, j85
j

A3K1

, h85
h

A3K2

, ~2.12c!

and

t852t, D5uCu22F2
l

l211
~L1F!, A l

l211
C→C, ~2.13!

we arrive at the matrix system of nonlinear evolution equations~1.3! and ~1.4!.
This matrix system must be integrable by the spectral transform, because it has been

from an S-integrable equation. This is explicitly demonstrated in the next section.
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Let us now look in more detail at the integrable NPDEs implied these results. If we taN
51, we obtain obviously the scalar Davey–Stewartson I equation.

In the caseN52, we get a nonlinear system for four interacting fields. However, an intere
reduction is possible. If we set

C5S c1 c2

c2 c1
D , F5S w1 w2

w2 w1
D , L5S L1 L2

L2 L1
D , V5S V1 V2

V2 V1
D , ~2.14!

we arrive at the matrix system of nonlinear evolution equations:

ic1,t2Lc11
l

l211
~L1c11L2c21V1c11V2c2!

1~w1c11w2c2!2~ uc1u2c11c1* c2
212c1uc2u2!50, ~2.15a!

ic2,t2Lc21
l

l211
~L1c21L2c11V1c21V2c1!

1~w1c21w2c1!2~ uc1u2c21c1
2c2* 12c2uc1u2!50, ~2.15b!

lF1,j1F1,h2l~ uc1u21uc2u2!j2~ uc1u21uc2u2!h50, ~2.15c!

lF2,j1F2,h2l~c1c2* 1c2c1* !j2~c1c2* 1c2c1* !h50, ~2.15d!

L1,h5F1,j ,L2,h5F2,jV1,j5F1,hV2,j5F1,h , ~2.15e!

where

L5]j
21]h

2 . ~2.15f!

Integrable nonlinear equations and system of equations in 211 dimensions have been extensive
investigated by many authors.17–21 A detailed list of systems and equations integrable by
inverse scattering method has been recently given.22 The system of equations~2.15! does not
appear in these papers. We expect that this new system is integrable by the inverse sc
method, because it has been obtained from an integrable equation and the property of integ
is expected to be maintained through the application of the reduction method. The integrab
the system of equations~1.3! and ~1.4! and of the system~2.15!, which is a particular case, i
demonstrated in the next section.

III. THE LAX PAIR FOR THE INTEGRABLE SYSTEM OF EQUATIONS

In this section we apply the reduction method also to the Lax pair of the starting m
equation~1.2!, to demonstrate explicitly the integrability by the spectral transform of the ma
system~1.3! and~1.4!, and we thereby identify the Lax pair for the system of equations~1.3! and
~1.4!.

Let us apply the reduction method to the Lax pair of equation~1.2!. The Lax operators are

L5
]2

]x]y
2U~x,y,t !, Lf~x,y,t !50, ~3.1!

A5
]3

]x3 1
]3

]y3 23V
]

]x
23W

]

]y
, ~3.2!

with
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f t~x,y,t !1Af~x,y,t !50. ~3.3!

It can be verified by direct substitution that the operator relation

Lt5 i @L,A#5 i ~LA2AL! ~3.4!

reproduces Eq.~1.2!.
The componentsf j (x,y,t), j 51,...,N, of the column vectorf(x,y,t) can be expanded in

Fourier modes as follows:

f j~x,y,t !5 (
n52`

1`

«gnf j ,n~j,h,t;«!expF i S ~l1x1l2y1l3t !1
n

2
zD G , ~3.5!

where z5K1x1K2y2vt, the f j ,n(j,h,t;«)’s depend parametrically on« and remain finite
when«→0, thegn’s are non-negative rational numbers andlm , m51,...,3, are real constants t
be determined.

Inserting now the expression forf j (x,y,t) in ~3.1!, we derive a series of relations which a
generated by the coefficients of the Fourier modes. Each relation must be valid for a given
of approximation in«.

In particular, for the fundamental harmonicsn561, considering termsO(«0) in ~3.1! and
~3.3!, we obtain

S 6
iK 2

2
1 il2D S 6

iK 1

2
1 il1D50, ~3.6a!

S 7
iv

2
1 il3D1S 6

iK 1

2
1 il1D 3

1S 6
iK 2

2
1 il2 1D 3

50, ~3.6b!

and then

l15
K1

2
, l252

K2

2
, l352

K2
3

4
2

K1
3

4
. ~3.7!

We thereby understand that the harmonics

f j ,1 ,f j ,21 , j 51,...,N, ~3.8!

are fundamental, i.e., for themgn assumes the smallest value,gn50.
The successive order« for the equation~3.1! allows us to obtain the new spectral problem

because all thef j ,n’s may be expressed by means of the fundamental harmonics~3.8!, which are
connected through the relations:

iK 1f1,h2Cf250, ~3.9!

2 iK 2f2,j
2C* f150, ~3.10!

where we set (f j ,1 ; j 51,...,N)5f1 , (f j ,21 ; j 51,...,N)5f2 .
By means of the variable rescaling~2.12!, and by introducing the 2N^ 2N matrix operatorL,

we arrive at the final form

Lf̂50, ~3.11!

where
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L5S L11 L12

L21 L22
D , ~3.12a!

L115 i I ]h , L1252
1

A2~l211!
C, ~3.12b!

L215
l

A2~l211!
C* , L225 i I ]j , ~3.12c!

f̂5S f1

f2
D , ~3.12d!

and I is theN^ N unit matrix.
To calculate the temporal evolution, we must insert the expression~3.5! in ~3.3! and consider

the relation obtained for the different harmonicsn and for a given order of approximation in«. If
we consider the first order in«, we obtain again the spectral problem~3.11! and~3.12!. Only if we
take into account the next orders of approximation of Eq.~3.3!, i.e., the order«2, the temporal
evolution can be determined. However, new quantities, the correctionsf̃6(j,h,t) of order« to
the fundamental harmonicsf6(j,h,t), appear. These unknown quantities can be eliminate
Eq. ~3.3! by taking advantage of the relation obtained from Eq.~3.1!, considering terms of orde
«2. This elimination is possible only because Eqs.~3.1! and ~3.3! are identical at the order«. In
particular, if we consider~3.3! calculated to the order«2 for n561, we get

f1,t13iK 1f1,jj23
K1

K2
Cf2,j23

K2

K1
Cf2,h2

23
K2

K1
S K2

K1
Cj2ChDf223iK 1Lf1

23S 2iK 1
2

K2
1

iK 2
2

K1
DC* f131

3K2
2

iK 1
~ iK 1f̃1,h2Cf̃2!50, ~3.13a!

and

f2,t23iK 2f2,hh23
K1

K2
C* f1,j23

K2

K1
C* f1,h23

K1

K2
S K1

K2
Ch* 2Cj* Df113iK 2Vf2

13S 2iK 2
2

K1
1

iK 1
2

K2
DCf232

3K1
2

iK 2
~ iK 2f̃2,j2C* f̃1!50. ~3.13b!

To evaluate this expression we took advantage of the fact thatf63 are connected with the
fundamental harmonics@these relations are obtained from~3.1! for n563 at the lower order in
«#:

f135S 21

2K1K2
DCf1 , f235S 21

2K1K2
DC* f2 . ~3.14!

We now consider Eq.~3.1! at the order«2 for n561, which provides the correctionsf̃1(j,h,t),
f̃2(j,h,t). Via the transformation~2.12! and after a lengthy calculation we arrive at the fin
form for the 2N^ 2N matrix operatorA, which satisfies the equation

f̂t1Af̂50, ~3.15!

and is given by
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A5S A11 A12

A21 A22
D , ~3.16a!

where

A115 i ]j
2I 2 i

lL

11l2 2 i
F

11l2 1 i
1

~11l2!
C* C, ~3.16b!

A125
1

A2~11l2!
~Ch2C]h!, ~3.16c!

A2252 i ]h
2 I 1 i

lV

~11l2!
1 i

l2F

11l2 2 i
l2

~11l2!
CC* , ~3.16d!

A215
l

A2~11l2!
~Cj* 2C* ]j!. ~3.16e!

The determination of the Lax pair~3.12! and ~3.16!, which satisfies Eqs.~3.11! and ~3.15!,
demonstrates the S-integrability of the system~1.3! and ~1.4!.

IV. CONCLUSION

We have derived a new, integrable, and presumably of applicative interest, nonlinear
system of evolution equations from the integrable matrix NVV equation~1.2!, by means of an
extension of the reduction method based on Fourier expansion and space–time rescal
reduces to a known integrable equation in the single mode case and to a new integrable sy
two interacting fields in theN52 case. Moreover, we have applied the reduction method to
Lax pair ~3.1!–~3.3! of the original equation and have demonstrated the integrability proper
the new matrix system of equations, by exhibiting the corresponding Lax pair~3.11! and ~3.12!
and ~3.15! and ~3.16!.

We have outlined the approach that permits us to obtain such a system of equations a
next steps will be the explicit resolution of the spectral problem and the possible identificat
localized or asymptotically finite solutions.

It is also convenient to push the approach beyond its ‘‘leading order’’ application by loo
at special cases when some key parameters vanish or considering different rescalings in
spatial variables, in analogy to the case of the model equations treated in Refs. 9 and 10.
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Deformations of the Monge ÕRiemann hierarchy
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Dispersive deformations of the Monge equationut5uux are studied using ideas
originating from topological quantum field theory and the deformation quantization
program. It is shown that, to a high order, the symmetries of the Monge equation
may also be appropriately deformed, and that, if they exist at all orders, they are
uniquely determined by the original deformation. This leads to either a new class of
integrable systems or to a rigorous notion of an approximate integrable system.
Quasi-Miura transformations are also constructed for such deformed
equations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1522134#

I. INTRODUCTION

Consider a general scalar evolution equation

ut5K~u!, ~1.1!

whereK(u) is a smooth function depending onu and thex derivatives ofu, but not explicitly on
the independent variablex. A characteristic feature of an integrable system is the existence o
infinite hierarchy of compatible, commuting flows, these being the generalized symmetries
original equation~1.1!. Such symmetries have the form

ut5Q~u!

~where againQ is a smooth function ofu and thex derivatives ofu, but not explicitly on the
independent variablex), and must satisfy the equation

K8Q2Q8K50,

where the prime denotes the Fre´chet derivative

K8~u!Q5
]

]e
K~u1eQ!U

e50

.

The paradigm for such constructions is the Korteweg–deVries equation

ut5uux1uxxx . ~1.2!

For this equation, the hierarchy of symmetries may be constructed by exploiting th
Hamiltonian structure of the KdV equation. Given the Hamiltonians

H15], H25]31 2
3 u]1 1

3 ux ,

one may form the recursion operatorR5H2H 1
21, with which the symmetries take the form

utn
5R nux ~1.3!

~for more details see, for example, Ref. 8!. Such flows constitute the KdV hierarchy.
2510022-2488/2003/44(1)/251/12/$20.00 © 2003 American Institute of Physics
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There has been much interest recently in the properties of the dispersionless limits o
grable systems, these being examples of equations of hydrodynamic type. As well as bein
esting integrable systems in their own right, they play an important role in topological qua
field theories and the construction of higher-genus Gromov–Witten invariants.1,2 Under the scal-
ings

t°\21t,

x°\21x,

u°u,

the KdV equation scales to

ut5uux1\2uxxx ,

and under the classical limit\→0 one obtains the Monge equation

ut5uux . ~1.4!

This singular limit has a drastic effect on the solution space of the KdV equation, for exa
soliton solutions do not survive, but many properties do survive, notably the form of conserv
laws and the existence of a bi-Hamiltonian hierarchy. Thus, a hierarchy of symmetries o
Monge equation may be obtained by scaling the KdV hierarchy and taking the\→0 limit. This
results in the Monge hierarchy~also called in Ref. 2 the Riemann hierarchy!

utn
5unux .

However, the Monge equation has many more symmetries; given any suitably differentiable
tion f (u), then

ut5 f ~u!ux ~1.5!

is a symmetry, labeled not by a discrete integer, but by aC2(R) function.
The purpose of this paper is to study not the dispersionless limit but the reverse, regard

KdV equation as a deformation of the Monge equation and constructing, term-by-term, th
responding deformation of the general symmetry~1.5!. In fact, a slightly more general equatio
than the KdV equation will be studied, namely the equation

ut5uux1~a~u!uxxx1b~u!uxxux1c~u!ux
3!,

where a,b,c are arbitrary functions. The motivation for this comes from the work of Egu
et al.,3 Dubrovin and Zhang,1,2 and, in particular, Lorenzoni.6 Their approaches utilize the bi
Hamiltonian structure of their systems. No such assumption will be made here and, as a
certain of Lorenzoni’s results will appear as a special case of the constructions that will app
the subsequent sections.

II. NOTATION AND THE FORM OF THE GENERAL PROBLEM

Let D denote the linear vector space/ring of differential polynomials in$u1 ,u2 ,...% where
u15ux ,u25uxx , etc., with coefficients in the spaceC`(R) of infinitely differentiable functions

D5C`~R!@u1 ,u2 ,...#,

so an arbitrary elementFPD takes the form
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F5 (
uI u,`

aI~u!uI ,

where

uI5)
k51

`

uk
I k,

aI(u)PC`(R), and I is a multi-index. To each monomial one may assign a scaling degre
counting the number ofx-derivatives it contains, so

deg~uk!5k, k>1,

deg~AB!5deg~A!1deg~B!, A,BPD

and no degree is assigned to the coefficient functions~this is very similar to the ideas used in th
theory of normal forms,4,5 but a different grading is used there!. With this, D decomposes into a
sum of subspaces/rings consisting of terms of the same degree

D5 %
k50

`

Dk .

Thus, for example

D35span$uxxx ,uxxux ,ux
3%.

Clearly, dim Dk5number of partitions ofk, denoted by #(k). With this notation it is easy to
describe the problem to be studied.

Consider the evolution equation

ut5K1 , ~2.1!

whereK15uuxPD1 , and corresponding symmetry

ut5Q1 , ~2.2!

where Q15 f (u)uxPD1 . Suppose the equation~2.1! is deformed by an arbitrary elementK3

PD3

ut5K@\#,

5K11\2K3 .

Can one construct a corresponding deformation of the symmetry~2.2!

ut5Q@\#,

5 (
n50

`

\2nQ2n11

with QiPDi and Q1 as above? The deformation parameter\ should be regarded as a form
parameter, labeling the scaling dimensions of the terms it precedes, rather than a small par
One may, at the end of all calculations, set\51.

By definition, the symmetryQ@\# must satisfy the governing equation
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K@\#8Q@\#2Q@\#8K@\#50,

and equating powers of\ give the basic equation

K18Q2n112Q2n118 K15Q2n218 K32K38Q2n21 , nPN. ~2.3!

By construction the equation for the lowest power\0 is automatically satisfied. This equation~2.3!
looks complicated but, since all the elements lie in various spaces with fixed scaling dimens
reduces to an overdetermined linear system.

III. INTEGRABLE DEFORMATIONS OF THE MONGE EQUATION

In this section equation~2.3! will be studied in more detail, with

K15uux ,

K35a~u!uxxx1b~u!uxxux1c~u!ux
3, a,b,cPC`~R!,

Q15 f ~u!ux ,

so

ut5uux1\2~a~u!uxxx1b~u!uxxux1c~u!ux
3!. ~3.1!

With these~2.3! becomes

F (
r 51

2n11

@~uu1!r2uur 11#
]

]ur
2u1GQ2n115F ~a8u31b8u2u11c8u1

3!1

~a]31bu1]21bu2]13u1
2]!2

(
r 50

2n21

] r~au31bu2u11cu1
3!

]

]ur

GQ2n21 ,

~3.2!

or schematically as

R~Q2n11!5S~Q2n21!, ~3.3!

where

R:Dn→Dn11 ,

S:Dn→Dn13 .

One may regard this equation in a number of ways.

~i! as a first-order quasilinear equation in the independent variablesu1 ,u2 etc., and solve it
using the method of characteristics. However, one requires, for the purposes of this
the solution to lie inD2n11 , which is hard to guarantee using this method;

~ii ! as a problem in differential Galois theory—one requires the solution to this linear equ
with coefficients in a particular ring to lie in that ring and not in some extension; and

~iii ! as an overdetermined linear system.

This third approach is the one that we will be using here. This interpretation holds because]u does
not appear in the operatorR, so no derivatives of the unknown coefficients appear. By introduc
a basis forD2n13 one obtains #(2n13) linear equations for #(2n11) unknowns.

In the next section it will be shown that the rank ofR ~viewed as a matrix! is maximal, and
hence the solution to this linear problem, if it exists, is unique. Existence is more problem
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While the form of the matrixR is easy to understand, the ‘‘source’’ vectorS(Q2n21) is compli-
cated, depending on all lower-order solutions, and so it would be extremely difficult to com
in general, the rank of the extended matrix. By direct calculation~using MATHEMATICA ! explicit
solutions up toO(\6) have been calculated. This suggests the conjecture that a solution exis
all n, so a formal symmetry of Eq.~3.1! of the form(\2nQ2n11PD exists.

IV. UNIQUENESS

One way to prove that the equation~3.3! has a unique solution is to introduce an ordered ba
for each subspaceDk of monomialsuI—the reverse lexiographic ordering—so, for example

D55span$u5 ,u4u1 ,u3u2 ,u3u1
2 ,u2

2u1 ,u2u1
3 ,u1

5%,

and this basis may be ordered

u5su4u1su3u2su3u1
2su2

2u1su2u1
3su1

5.

The symbol max$v% will denote the highest basis vector in the expansion ofv in this ordered basis
Lemma 1: In the reverse lexiographic ordered basis the operatorR:Dn→Dn11 is lower-

triangular.
It then follows that the equationRv50 has the unique solutionv50 and hence that the

solution to~3.3!, if it exists, is unique.
Proof: Let uI be a monomial inDn ,I being a multi-index. From the explicit form ofR it

follows that

max$RuI%5uIu1 .

Suppose thatuIsuJ. Then

max$RuI%5uIu1suJu15max$RuJ%.

Hence, in this basis, the matrixR is lower-triangular. h

For example

R@g1uxxx1g2uxxux1g3ux
3#53g1uxxxux13g1uxx

2 13g2uxxux
212g3ux

4,

so in the reverse lexiographic basis,R may be represented as the 335 matrix

R5S 0 0 0

3 0 0

3 0 0

0 3 0

0 0 2

D ,

which clearly is of maximal rank.

V. EXISTENCE

Recall that the given data areK1 ,K3 , andQ1 . Writing

Q35g1uxxx1g2uxxux1g3ux
3,

and solving the overdetermined linear system yields

g15a f8,
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g25b f812a f9,

g35c f81 1
2 b f91 1

2 a f-.

Thus, a solution exists. This gives an approximate symmetry, valid toO(\2). Recycling this
solution gives

Q55h1u51h2u4u11h3u3u21h4u3u1
21h5u2

2u11h6u2u1
31h7u1

5, ~5.1!

where thehi are explicit functions ofa, b, c, and f and their derivatives. These are given
Appendix A. TheO(\6) have also been calculated, again usingMATHEMATICA , but little purpose
is served by presenting them here—it suffices to say that they exist. Thus, for arbitrary fun
a,b,c a unique symmetry, labeled by a suitably differentiable functionf exists up toO(\6). The
existence of solutions up to this order of the over-determined linear system suggests the foll

Conjecture 1: A unique formal symmetry to the generalized KdV equation~3.1! exists, labeled
by a C`(R)-function.

If the conjecture is false, then this would raise the questions:
Conjecture 18: At what order does the above conjecture fail? Is there a way to determine

order a priori?
Note that if the conjecture is true then one obtains an entirely new integrable hiera

depending on three arbitrary functions and with flows labeled by another arbitrary function. I
false, then one may obtain the notion of anapproximatelyintegrable system, which has an infini
number of formal symmetries up to some fixed order~an example where obstructions do exist
given in Appendix B!. Either outcome is of interest. In a particular case, Lorenzoni6 has numeri-
cally observed elastic soliton scattering indicative of integrability. It would be interesting to s
basic integrability results such as inverse scattering could be modified~by, say, only including
terms up to a given order! to include such approximate integrable systems.

A. Formal symmetries of the KdV equation

In this approach, the KdV equation itself is recovered as the special casea51, b5c50, and
the symmetry takes the form

ut5 f ~u!ux1\2@ f 8uxx1
1
2 ux

2f 9#x

1\4@ 1
8 f (5)ux

41 11
10 f (4)ux

2uxx1
9

10 f (3)uxx
2 1 6

5 f (3)uxuxxx1
3
5 f (2)uxxxx#x1O~\6!.

@again, theO(\6) terms have been calculated explicitly, though not displayed here#. One may
prove from the now simplifier version of~2.3! that for the series to terminate the functionf must
be a polynomial, sayf 5( r 50

N a ru
r , and one recovers a linear combination of the flows obtai

via the recursion operator~1.3!

utN
5S (

r 50

N

a rR r D ux .

It would be of interest to see if the general flow generated from an arbitraryf could be written as
ut5F(R)ux for some suitableF.

Much has been written about the symmetries of the KdV equation. However, in suc
proaches the order of the symmetry is fixed, and the lower-order terms are determined fro
higher ones. Here the approach is opposite—determine the higher-order terms from lowe
The symmetries obtained in this way will turn out to be formal—infinite series. This approa
motivated, as was mentioned in the Introduction, by ideas originating in topological quantum
theories, where the deformation is known as a genus expansion, and from the deformation
tization program, where in both areas one constructs higher-order terms from lower-order
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B. Local Hamiltonian systems

An important subclass of systems in this class are those that are Hamiltonian with resp
the local Hamiltonian operatorH15], so the generalized KdV equation~3.1! takes the form

ut5H1

d

du
H,

for some HamiltonianH. This places the following restriction on the arbitrary functionsa,b,c:

a~u!5s~u!,

b~u!52s8~u!,

c~u!5 1
2 s9~u!,

wheres is an arbitrary function. With these~3.1! may be written in Hamiltonian form

ut5uux1\2@s~u!uxxx12s8~u!uxxux1 1
2 s9~u!ux

3#,

5
d

dx

d

du Fu3

6
2\2

1

2
s~u!ux

2G .
The formal symmetries are also Hamiltonian

ut5
d

dx

d

du F f (22)2\2H 1

2
s f9J ux

21\4H 3

10
s2f 9uxx

2 2
1

4! F3

2
~s2!9 f 91s2f (6)Gux

4J G1O~\6!

~where ]2f (22)5 f ). Again, theO(\6) terms have been calculated, and are also Hamilton
which suggests the following.

Conjecture 2. The formal system in Conjecture 1 is Hamiltonian to all orders.
This system has been extensively studied, forf (u)5un, by Lorenzoni.6 He showed that the

system is, up toO(\4), bi-Hamiltonian, with the second Hamiltonian structure being a defor
tion of the second Hamiltonian structure of the Monge/Riemann hierarchy. The existence o
terms in this deformation is controlled by a certain cohomology group.

C. Deformation of conservation laws and asymptotic integrability

Consider the special case of~3.1!, wherea,b andc are constants, so

ut5uux1\2~auxxx1buxxux1cux
3!. ~5.2!

This equation coincides with an example obtained from the theory of asymptotic integrabi4,5

With a scaling based on the dimensions@u#52,@]x#51, the above equation may be written as

ut5@uux1\2auxxx#1«@\2buxxux#1«2@\2cux
3#,

and viewed as a deformation of the KdV equation~rather than of the dispersionless KdV equ
tion!. The method of asymptotic integrability considers deformations of the conservation la
the KdV hierarchy. For the energy and momentum integrals

I 05E
R
udx, I 15E

R
u2dx,

to be conserved integrals for~5.2! implies b5c50, i.e., only the KdV equation itself belongs t
the class. Thus, the existence of~physically reasonable! conservation laws places far strong
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conditions on the system that the existence of formal symmetries~at least at low order!. Under-
standing the relationship between these two methods, based on different scaling, clearly d
further study.

VI. TRIVIAL AND QUASI-TRIVIAL MIURA TRANSFORMATIONS

In Ref. 2, transformation of the form

u°v5u1 (
k51

`

\kF̃k~u;ux ,...,u(nk)!,

whereF̃k are quasihomogeneous rational functions, was considered together with the corre
ing action on bi-Hamiltonian pencils. Such transformations were called quasi-Miura transfo
tions. In particular, the notion of trivial and quasitrivial transformations was given. In the co
of this paper, where local bi-Hamiltonian structures are not considered, an evolution equaut

5uux1( r\
rKr@u# will be said to be quasitrivial if it transforms under a quasi-Miura transf

mation to the Monge equationv t5vvx , and trivial if the further condition that the functionsFk

are polynomial is satisfied.
With the ansatz

v5u1(
r 51

`
\2r

ux
4r 22 Fr@u,u1 ,...,u6r 22#, FrPD6r 22

one may easily obtain recursion relations for theFr which take the form

R̃~Fn!5function of F1 ,...,Fn21

where

R̃:Dn→Dn12

is given by

R̃5u1R1~224n!u1
2

with R being the previously introduced recursion operator. It follows immediately from a re
tion of the argument in Sec. IV that this quasi-Miura transformation, if it exists, is unique, s
the operatorR̃ is lower-triangular in the reverse lexiographic ordered basis.

Lemma 2: The generalized KdV equation (3.1) is, up to O(\4), quasitrivial.
This may be proved by direct calculation. The quasi-Miura transformation is

v5u1
\2

ux
2 S 1

2
a~u!~uxxxux2uxx

2 !1
1

2
b~u!uxxux

21c~u!ux
4D1

\4

ux
6 f ~u,ux ,...,u10x!,

where f PD10 has been explicitly calculated, though not displayed here. In Ref. 2 it was sh
that the KdV equation is quasitrivial to all orders, this proof using the existing machinery fo
KdV equation. Conjecturally the generalized KdV equation studied here will be quasitrivial t
orders, though to prove it would first involve the development of a lot of associated mach
which, for the KdV equation, already exists in the literature.

One immediate question is whether the quasitrivial equation~3.1! can, for suitable choice o
functionsa,b,c be trivial. From the above form of the quasi-Miura transformation, it follows t
at O(\2) one requiresa(u)50 and atO(\4) one requires, in addition,b(u)50. After this no new
constraints appear, at least toO(\10), the explicit quasi-Miura map being
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v5u2\2cu1
21\4S 4

3
cc8u1

412c2u1
2u2D1\6S 228cc82u1

6

15
2

14c2c9u1
6

15
2

26c2c8u1
4u2

3
24c3u1

2u2
2

2
4c3u1

3u3

3 D 1\8S 836cc83u1
8

315
1

1268c2c8c9u1
8

315
1

16c3c(3)u1
8

35
1

1138c2c82u1
6u2

45

1
128c3c9u1

6u2

15
1

112c3c8u1
4u2

2

3
18c4u1

2u2
318c3c8u1

5u318c4u1
3u2u31

2c4u1
4u4

3 D 1O~\10!.

Thus, the first-order, third-degree evolution equation

ut5uux1\2c~u!ux
3,

is trivial to O(\8) and conjecturally to all orders. Further properties of this system are outline
the next section.

VII. FIRST-ORDER DEFORMATION OF ARBITRARY DEGREE

Exact results to all orders may be obtained in the above special casea5b50,c(u)5a(u).
The basic equation~3.1! simplifies to

ut5uux1\2a~u!ux
3, aPC`~R! ~7.1!

and the governing equation~2.3! simplifies drastically. With the ansatz

Q2n115bn~u!ux
2n11,

one obtains the recursion relation

nbn5~12n!a8bn211abn218 , n>1,

and hence, sinceb5b0 is arbitrary, the solution

bn5
1

n!
anb (n).

Thus, the general symmetry of the first-order, third-degree equation~7.1! is

utb
5 (

n50

`

\2n
anb (n)

n!
ux

2n11.

Thus, the space of commuting flows for Eq.~7.1! is labeled by an arbitrary functionb
PC`(R). This series truncates if and only ifb is a polynomial. This symmetry is, within th
constraints of this paper, unique. It can easily be checked that all the symmetries com
amongst themselves, i.e.,

~utb
!tg

5~utg
!tb

,

for arbitraryC`-functionsa,b,g.
The equation~7.1! is Hamiltonian with respect to the nonlocal Hamiltonian operator

H5ux]
21ux ,

so
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ut5S H d

duD E ~u2\2a~u!ux
2!dx.

The symmetry itself is also Hamiltonian

utb
5H dHb

du
,

where the Hamiltonian is

Hb5E (
r 50

`
\2r

~122r !
a rb (r )ux

2rdx,

and these are all conserved with respect to all the symmetries, as one would expect
integrable system. Owing to the arbitrariness in the functionsa andb, it is unlikely that~7.1! will
possess the Painleve´ property.

VIII. CONCLUSIONS

The central philosophy behind this paper is that the dispersionless limits of integrable sy
should not been seen as some limit, but as the kernel of the dispersive hierarchy itself, en
lating its integrability. To describe the full dispersive hierarchy one just has to specify a su
‘‘deformation vector’’ in some space of possible first-order deformations, from which the dis
sive hierarchy, if it exists, may be uniquely reconstructed. In this paper this vector isK3 , living in
the space of possible first-order deformationsD3 . If the above conjecture is true, then this spe
fies the hierarchy at all orders. For equations of hydrodynamic type constructed from semi
Frobenius manifolds this choice is automatic2,3—elliptic Gromov–Witten invariants may be con
structed from the genus-zero data. See also Ref. 3, where examples are given where high
deformations do not exist.

As a multidimensional example, consider the system

Ut5U+Ux ,

where+ is the product is someN-dimensional, commutativeN- dimensional algebra. With cerati
simple additional conditions on this algebra one may show that a hierarchy exists if and only
algebra is a Jordan algebra.9 It then may be shown that the deformed system

Ut5U+Ux1\2Uxxx

~corresponding to the deformation vector

UxxxPD 3
N5span$uxxx

i ,uxx
i ux

j ,ux
i ux

j ux
k ,i , j ,k51,...,N%,

whereU5uiei and theei form a basis for the algebra! defines a full dispersive hierarchy with n
extra conditions required. It would be interesting to repeat these calculations for a more g
vector inD 3

N—the results in this paper being forN51 only.
It may also be of interest to generalize the construction, in particular the quasitriviality p

erty, to includeK5 terms in~2.3!

ut5K11\2K31\4K5 .

A number of known systems fall into this class~with K15u2ux), including the higher flow of the
KdV equation, KdV5 , the Sawada/Kotera equation, the Caudrey/Dodd/Gibbons/Kaup equ
and the Kaup/Kupershmidt equation. This paper suggests a possible classification of suc
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order systems. Also, little mention has been made of bi-Hamiltonian structures in this paper
structures may be generated from the known bi-Hamiltonian pencil of the Monge equation

$u~x!,u~y!%l5~u2l!d8~x2y!1 1
2 uxd~x2y!,

via the appropriate quasi-Miura transformation. These, however, are unlikely to truncate.
The results outlined here have been computational; to obtain rigorous results at all ord

the expansion new techniques will have to be developed. In particular, a better understan
the overdetermined linear systems from which results of this paper were obtained will be req

APPENDIX A: THE O„\4
… ORDER TERMS

The explicit form of thehi in Eq. ~5.1! are

h15~3a2f 9!/5,

h25ab f91~8aa8 f 9!/51~9a2f (3)!/5,

h352ab f912aa8 f 913a2f (3),

h45~2b2f 9!/51~11ac f9!/51ba8 f 91~13ab8 f 9!/101~7a f9a9!/51~5ab f(3)!/2

1~37aa8 f (3)!/101~23a2f (4)!/10,

h55~8b2f 915b~a8 f 917a f (3)!1a~14c f9126b8 f 9113f 9a9144a8 f (3)131a f (4)!!/10,

h65~9b2f (3)1b~18c f919b8 f 914 f 9a9115a8 f (3)125a f (4)!12~4ca8 f 9110ac8 f 917a f9b9

116ac f(3)114ab8 f (3)112aa9 f (3)12a f9a(3)118aa8 f (4)18a2f (5)!!/10,

h75~4c2f 91b2f (4)12c~b8 f 912b f (3)1a8 f (3)12a f (4)!1b~2c8 f 91 f 9b912b8 f (3)1a9 f (3)

12a8 f (4)12a f (5)!1a~2 f 9c914c8 f (3)13b9 f (3)1 f (3)a(3)1 f 9b(3)13b8 f (4)13a9 f (4)

13a8 f (5)1a f (6)!!/8.

The 15 coefficients in the next-order term have been calculated, but are not presented he

APPENDIX B: THE KURAMUTO–SIVASHINSKY EQUATION

Consider the Kuramoto–Sivashinsky equation~suitably scaled!

ut5uux1\uxx1\3uxxxx.

The dispersionless limit of this equation is just the Monge equation, and hence the me
developed in the main body of this paper may be applied to seek, term-by-term, a forma
metry

ut5 f ~u!ux1\Q11\2Q21\3Q31\4Q41O~\5!.

By direct calculation, one obtains

Q15 f 8uxx1 f 9ux
2,

Q25 2
3 f 9uxxx1

5
3 f 9uxxux1 1

2 f (4)ux
3,
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Q35~ f 81 1
3!uxxxx1~ 5

2 f 91 f (4)!uxxxux1~ 3
2 f 91 2

3 f (4)!uxx
2 1~ 5

2 f (3)1 7
6 f (5)!uxxux

2

1~ 1
2 f (4)1 1

6 f (6)!ux
4.

However, at the next order an obstruction appears, and henceQ4 does not exist~interestingly, if
the termuxxxx is replaced byauxxxx an obstruction appear forQ3 ; this vanishes if and only if
a51). Thus, the Kuramoto–Sivashinsky equation does not possess a hierarchy of forma
metries, thus indicating its nonintegrability~a result that may also be obtained via Painle´
analysis7!. It does, however, possess an infinite number of formal symmetries up toO(\3). Thus,
this method may be used as a test of integrability~though, as with all such test, with care, as o
is only looking for expansions in some given,a priori, ring of functions!.
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Constructing solutions of Hamilton–Jacobi equations
for 2D fields with one component by means
of Bä cklund transformations

Wulf Böttger, Henning Wissowski, and Hans A. Kastrupa)

Institut für Theoretische Physik E, RWTH Aachen,
D-52056 Aachen, Federal Republic of Germany

~Received 14 March 1995; accepted 27 November 1995!

The Hamilton–Jacobi formalism generalized to two-dimensional field theories ac-
cording to Lepage’s canonical framework is applied to several relativistic real sca-
lar fields, e.g., massless and massive Klein–Gordon, Sinh and Sine–Gordon, Liou-
ville and f4 theories. The relations between the Euler–Lagrange and the
Hamilton–Jacobi equations are discussed in DeDonder and Weyl’s and the corre-
sponding wave fronts are calculated in Carathe´odory’s formulation. Unlike me-
chanics one has to impose certain integrability conditions on the velocity fields to
guarantee the transversality relations and especially the dynamical equivalence be-
tween Hamilton–Jacobi wave fronts and fields of extremals embedded therein.
Bäcklund transformations play a crucial role in solving the resulting system of
coupled nonlinear PDEs. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1526451#

I. INTRODUCTION

Varying a relativistically invariant action integral leads to covariant Euler–Lagrange e
tions. However, if one wants to reformulate the theory in terms of the conventional cano
Hamiltonian framework, one has to break the manifest covariance by distinguishing a time
able and regarding the other ‘‘spatial’’ coordinates as ‘‘indices’’ representing an infinite numb
degrees of freedom. The method is widely known from elementary particle physics, can
gravity, and other field theories. This approach, however, can obscure a part of the rich geo
cal structure contained in a generally covariant framework, at least on the classical level.1

Utilizing Cartan’s theory of alternating forms Lepage and others showed that a large vari
algebraically inequivalent covariant Hamiltonian formulations, including Hamilton–Jacobi e
tions, exists, e.g., that of DeDonder and Weyl2,3 and that of Carathe´odory,4 where only the latter
one provides a Hamilton–Jacobi equation the associated wave fronts which have the sam
transversality properties with respect to the extremals as one has in mechanics. All this ha
discussed in detail in Ref. 1 where many references to previous work on the subject are
Newer and additional papers can be found in Refs. 5–10, where the formalism is discussed
framework of fibered Jet manifolds.

In mechanics one can construct solutions of the canonical equations of motion if one h
appropriate solution of the corresponding Hamilton–Jacobi equation, the solutions of whic
scribe wave fronts which are transversal to a ‘‘field’’ of extremals and which contain the s
dynamical information as the extremals themselves.

For field theories this is no longer true:1 Solutions of the Hamilton–Jacobi equation~HJE!
associated with one of the canonical frameworks mentioned above provide ‘‘velocity’’ fields w
in general do not obey the necessary integrability conditions~ICs!. The latter have to be postulate

a!Present address: DESY, Theory Group, Notkestr. 85, D-22603 Hamburg, FR Germany; electronic
hans.kastrup@desy.de
2630022-2488/2003/44(1)/263/39/$20.00 © 2003 American Institute of Physics
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separately and give rise to an additional set of partial differential equations. However, if
equations and the associated Hamilton–Jacobi equation are satisfied, then combined they
the same dynamical content as the Euler–Lagrange equations.1 Thus, it is possible to construc
solutions of the Euler–Lagrange field equations~ELEs! by solving a Hamilton–Jacobi equatio
and a set of integrability conditions.

The aims of the present article are the following ones:
~1! All the different canonical formalisms just mentioned coincide if the field has just one

component,1 especially for fields in two space–time or Euclidean dimensions. In this case on
use the simpler DeDonder and Weyl HJE in order to solve it simultaneously with one integra
condition. Here we do not construct completely new solutions of the ELE but find one-para
extensions of a given solutionw0 . The method is applied to the following one-component mod
in two dimensions: massive and massless Klein–Gordon, sinh–, sine–Gordon, Liouville af4

theory. The solutions of the HJE plus IC are constructed by expanding the solutions of
equations in powers of the field variables. This leads to a hierarchy of nonlinear partial differ
equations~PDEs! that can be transformed into linear PDEs with nonconstant coefficients
applying integrable Ba¨cklund transformations these PDEs can be reduced further to free~massive
or massless! Klein–Gordon equations. Remarkably, it is only necessary to solve just two li
PDEs in order to obtain the general solution foreveryorder of the hierarchy!

~2! The solutions of the DeDonder and Weyl HJE do not have the appropriate transve
properties required to construct the wave fronts associated with a given one-parameter
extremals. Those have to be given in terms of the solutions of the more complicated H
Carathe´odory. As we are dealing with one-component fields here only, the two canonical fr
works are equivalent and one can construct the one-dimensional Carathe´odory wave fronts from
the solutions of the DeDonder and Weyl HJE. This procedure will be outlined and applied to
solutions~e.g., solitons! of the models mentioned above.

The article is organized as follows:
In Sec. II we very briefly summarize Lepage’s reformulation of canonical mechanics an

generalization to field theories with one component in two dimensions and especially the H
DeDonder and Weyl and of Carathe´odory, respectively. All the details are contained in Ref. 1

In Sec. III we study the hierarchy of equations derived within the Hamilton–Jacobi frame
of DeDonder and Weyl and the associated integrability condition for the velocity fields by
panding the wave fronts in powers of the field variablew in the neighborhood ofw0 .

In Sec. IV we determine the Ba¨cklund transformations which reduce this hierarchy of line
PDEs with nonconstant coefficients to free field equations.

In Sec. V we apply the general results to several well-known models and point out
relations to stability problems of solitons.

In Sec. VI we discuss the relations between the hierarchies of PDEs derived from expa
the HJE and the IC and a corresponding expansion of the Euler–Lagrange equations. Solu
the equations of motions are determined from those of the HJE and the IC perturbatively. Th
solution of the sine–Gordon equations is treated in considerable detail here.

In Sec. VII we calculate the wave fronts by means of Carathe´odory’s formulation, especially
for the kink solution just mentioned.

II. HAMILTON–JACOBI THEORIES FOR FIELDS

In the present chapter we very briefly recapitulate the main features of Lepage’s appro
a geometrical canonical framework for field theories, especially its associated Hamilton–J
equation. The details are discussed in Ref. 1. As we are interested mainly in local properties
various partial differential equations and their solutions, we do not employ the more sophist
formalism of fibered Jet manifolds, which can be found in Refs. 5–10 and which is more u
for the discussion of global and certain structural problems not investigated in the follo
Furthermore, this formalism has been applied to the DeDonder and Weyl case only.

We begin by very briefly recalling Lepage’s main idea1,11 of introducing the canonical for-
malism in mechanics for one configuration variableq.
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A. Lepage’s canonical formulation of mechanics

The starting point of the canonical theory for Lagrangian canonical systems is an a
functional. In mechanics it is given by a Lagrangian one-formv integrated along a pathC
ª$t,q5q(t),tPI 1,25@ t1 ,t2#% in the extended configuration spaceM111ª$(t,q)%:

A@C#5E
C
v5E

I 1,2

L~ t,q,q̇! dt.

As to the variational principle it is preferable to consider the generalized velocityv as an inde-
pendent variable, which coincides withq̇ on the extremalsC5C0ª$(t,q5q0(t)),tPI 1,2%. Nor-
mally this extension in the number of variables is performed by using Lagrangian multip
Lepage’s reformulation of the variational principle is similar in spirit.11

The initial canonical Lagrangian formv5L(t,q,q̇)dt is extended by the product of a La
grangian multiplierh(t,q,v) and the Pfaffian form%5dq2vdt vanishing on the tangent vector
of the extremals, which ensures the identification ofv(t) with q̇(t) on the solutions of the
equation of motion. Then the action integralA@C# over the pathCª$(t,q(t)),tPI 1,2% can be
modified

A@C#→Ã@C#5E
C
V5E

I 1,2

@L~ t,q,v ! dt1h~ t,q,v !%#, ~2.1!

without changing the Euler–Lagrange equations and their solutionsC5C0 .
The form% generates an idealI @%# in the algebraL of forms of the cotangent bundle of th

extended configuration spaceM111ª$(t,q)%: if aPL andbPI @%#, thena∧b is also an elemen
of the idealI @%#.

The Lagrangian multiplierh(t,q,v) can be fixed by varying the action integral~2.1! with
respect toq,v independently. This leads to the standard definition of the canonical momen

h5
!

]vL5..p.
We obtain the same results by requiring dV to be an element of the idealI @%#:

HenceV is a closed two-form on fields of extremals covering the extended configuration s
M1115$(t,q)%—or correspondingly—a~Lagrangian! submanifold Qª$t,q,p5c(t,q)u(t,q)
PM % of the extended phase spaceP211ª$(t,q,p)%.

Following Poincare´’s lemmaV is locally ~at least! exactV5dS(t,q) on Q.
According to Lepage11 the Legendre transformationL→H, v→p can be implemented as

change of basis in the cotangent bundleT* (M111), %→dq, dt→dt:

V5Ldt1p%5Ldt1p~dq2vdt !52~pv2L !dt1pdq52Hdt1pdq.

H denotes the usual HamiltonianH5pv2L5H(p,q,t).
The existence of a potentialS(t,q) for the basic differential formV5dS yields the familiar

Hamilton–Jacobi equation forS(t,q) and the corresponding condition for the momentum:

V52H~ t,q,p5c~ t,q!!dt1c~ t,q!dq5
!

dS~ t,q!5] tS~ t,q!dt1]qS~ t,q!dq.

Comparing the coefficients of dt, dq yields

] tS~ t,q!1H~ t,q,p5c~ t,q!!50, p5c~ t,q!5]qS~ t,q!.
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The extremals can be determined, if a complete integral of the Hamilton–Jacobi equation is
Dealing with one independent variableq this integral depends on one constantc0 . The solution of
the equation of motion can be calculated by solving the algebraic relation]c0

S(t,q,c0)5c1 with
a second constantc1 .

In mechanics there exists a special relation between the wavefrontS(t,q)5s5const,sPR
and the extremalsq5q0(t) called ‘‘transversality:’’ the union of their respective tangent spac
span$et5] t1q̇(t)]q% and span$w5p] t1H]q%, span the whole tangent spaceTP(M111) at any
point PPM111 , if the LagrangianL does not vanish in the field of extremals, because of

det~et ,w!5detUS 1 p

v H D U5~H2q̇p!52L.

This concept of the Hamilton–Jacobi framework developed for mechanics can easily be ge
ized to field theories. We confine our discussion to those theories depending onone real scalar
field w5w(z,z̄) in a 111 dimensions. Herez,z̄ play the role of lightcone variables. For details s
Refs. 1–3.

B. The Hamilton–Jacobi theories of DeDonder and Weyl and of Carathe ´odory

As in mechanics a canonical theory for fields is based on an action functionalA@S# defined on
a two-dimensional surfaceSª$(z,z̄,w(z,z̄)),z,z̄PG%, whereGPR2 is compact, in the extende
configuration spaceM211ª$(z,z̄,w)%:

A@S#5E
S
v5E

G
L~z,z̄,w~z,z̄!, v5]zw, v̄5] z̄w! dz∧dz̄.

Only on the extremalsw5w0(z,z̄) the generalized velocitiesv, v̄ coincide with the derivatives o
the fields:v5]zw0 , v̄5] z̄w0 .

The canonical two-formv5Ldz∧dz̄ is extended by means of two Lagrangian parame
h(z,z̄,w), h̄(z,z̄,w) and a one-form%5dw2vdz2 v̄dz̄ that vanishes on the two-dimension
extremalsw5w0(z,z̄):

V5Ldz∧dz̄1h̄dz∧%1h%∧dz̄. ~2.2!

The Lagrangian multipliersh,h̄ are determined by requiring dVPI @%#:

dV5~]vL2h!dv∧dz∧dz̄1~] v̄L2h̄!dv̄∧dz∧dz̄10~modI @%# !5
!

0~modI @%# !,

yielding

h5
!

]vL5..p, h̄5
!

] v̄L5..p̄.

The Legendre transformationL→H, $v,v̄%→$p,p̄% can be implemented as a change of the ba
in the cotangent bundleT * (M211), %→dw, dz→dz, dz̄→dz̄:

V52Hdz∧dz̄1 p̄dz∧dw1pdw∧dz̄ with Hªpv1 p̄v̄2L. ~2.3!

Because dV50(modI @%#) it is locally exact V5dS, SPT * (M211) on fields of extremals.
However, contrary to mechanicsV as an exact two-form can be represented in different ways
means of a Pfaffian formS. In the case of DeDonder and Weyl,2,3

SDW5S~z,z̄,w!dz2S̄~z,z̄,w!dz̄,
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and in the case of Carathe´odory4

SC5Sz~z,z̄,w!dSz̄~z,z̄,w!.

Comparing the exterior derivatives of these expressions with Eq.~2.3!,

V52Hdz∧dz̄1 p̄dz∧dw1pdw∧dz̄5
!

dS̄∧dz2dS∧dz̄,

we obtain the Hamilton–Jacobi equations and the transversality conditions for a one-com
field theory in DeDonder and Weyl’s formulation,

]zS1] z̄S̄52H, p5]wS, p̄5]wS̄, ~2.4!

and in Carathe´odory’s case,

V52Hdz∧dz̄1 p̄dz∧dw1pdw∧dz̄5
!

dSz∧dSz̄, ~2.5!

we get

]zS
z] z̄S

z̄2]zS
z̄] z̄S

z52H,
p5] z̄S

z̄]wSz2] z̄S
z]wSz̄,

p̄5]zS
z]wSz̄2]zS

z̄]wSz.
~2.6!

The two theories here are equivalent because ann-form in a space ofn11 variables has always12

the rank n. Due to this algebraic equivalence of covariant canonical formulations for
component field theories we may choose DeDonder and Weyl’s description to embed the e
als of interest in a system of solutions of the Hamilton–Jacobi equation. We use Carathe´odory’s
theory for the explicit calculation of the wave frontsSz5const,Sz̄5const.

In two-dimensional field theories involving one field variable the basic two-formV has
always the rank two, i.e., it can be constructed from two independent one-forms by linear
bination of exterior products. BecauseV is closed its rank is equal to its class, which gives t
codimension of the integral submanifold determined byV. To calculate this integral manifold—
the wavefronts in our case—we can use a corollary of Frobenius’ integrability theorem:1 there
exist two functionsSz(z,z̄,w), Sz̄(z,z̄,w) in such a manner that the exterior product of th
differentials equalsV. The corresponding one-dimensional wave fronts are just the subman
determined by the conditionsSz(z,z̄,w)5const,Sz̄(z,z̄,w)5const.

Thus the wave fronts are equipotential surfaces of the solutions of the Hamilton–J
equation formulated in Carathe´odory’s framework. For simplicity we first solve the HJE of D
Donder and Weyl and the associated IC and afterwards we return to Carathe´odory’s equation in
order to obtain an explicit expression for the wave fronts.

In mechanics for one variableq it is possible to construct wave fronts for one-parametric fie
of extremals that cover a certain region of the extended configuration spaceM111 andvice versa.
Provided a solutionS(t,q) of the Hamilton–Jacobi equation~HJE! is given, the corresponding
velocity field, the so-called ‘‘slope function,’’

F~ t,q!5]pH~ t,q,p5]qS~ t,q!!,

determines the corresponding one-parametric extremals by means of the ordinary first-ord
ferential equation:q̇(t)5F(t,q(t)).

In general this isnot true for field theories; the ability to embed extremalsw0(z,z̄) in a given
wave front can be maintained only if the slope functions~velocity fields! v5F(w,z,z̄), v̄
5F̄(w,z,z̄) obtained from the inverse Legendre transformation,

]zw~z,z̄!5v~p5]wS,p̄5]wS̄,z,z̄,w!5F~w,z,z̄!,

~2.7!
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] z̄w~z,z̄!5 v̄~p5]wS,p̄5]wS̄,z,z̄,w!5F̄~w,z,z̄!,

satisfy the integrability condition]z] z̄w(z,z̄)5
!

] z̄]zw(z,z̄), which results in the requirement

~2.8!

on F andF̄.
Provided the Hamilton–Jacobi equation and the integrability condition are fulfilled,

Euler–Lagrange equation is satisfied automatically. This can be seen as follows:
Differentiating the Hamilton–Jacobi equation~2.4! with respect to the field variablew one

obtains

]zp1] z̄p̄52]wH2]pH]wp2] p̄H]wp̄.

Because]wH52]wL, ]pH5F and] p̄H5F̄ ~see Ref. 1! we get

d

dz
p1

d

dz̄
p̄5

d

dz

]L
]v

1
d

dz̄

]L
] v̄

5]wL. ~2.9!

The momentap(z,z̄,w) and p̄(z,z̄,w) are defined on the extended configuration spaceM211 and
are considered to be associated with a field of extremalsw5w̃(z,z̄,u) parametrized byu. The
Euler–Lagrange equation has to be fulfilled for every single extremalw5w̃(z,z̄,u5const). Hence
if we insertp andp̄ into this equation of motion, we have to be aware of their implicit depende
of z,z̄ via the field variablew. Taking the defining equations~2.7! for the slope functions into
account, the total derivatives in the PDEs~2.8! and ~2.9! are defined as

d

dz
ª

]

]zU
z̄,w5const

1F
]

]wU
z̄,z5const

,
d

dz̄
ª

]

] z̄U
z,w5const

1F̄
]

]wU
z,z̄5const

.

Therefore the total derivatives are nothing but derivatives with respect to the independen
ablesz,z̄ regardingu to be a constant.

Due to the extent to which the integrability condition is taken into account, there exist
different methods of using a Hamilton–Jacobi theory: the weak and the strong embedd
extremals in fields of wave fronts.

1. Weak embedding

This method is used to embed a given single extremalŵ0(z,z̄) in fields of wave fronts. In
order to obtain a weak embedding it is sufficient to take only the Hamilton–Jacobi equatio
the transversality conditions~2.7! on ŵ0(z,z̄) into account. In this case usually one choose
linear ansatz in the field variable for one of the functionsS or S̄. However, this approach in
general will not provide new extremals, because the IC are fulfilled on the given extremal
For details see Ref. 13.

2. Strong embedding:

Here one requires the IC not only to hold on the given extremal but in a whole neighbor
of it. If this is the case, then one is able to generate new extremals from a given one by integ
the slope functions~2.7!.

In the following we study the strong embedding of a single given extremal into a field of w
fronts.

Like in mechanics there exists a transversality relation between extremalsw(z,z̄) and wave
fronts Sz(z,z̄,w)5const,Sz̄(z,z̄,w)5const, which holds if in every pointPPM112 the basis of
tangent spaceTM112 is given by a union of the basis of the two-dimensional tangent space o
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extremals ez5]z1v]w , ez̄5] z̄1 v̄]w and a basis vectorw5p]z1 p̄] z̄1H]w of the one-
dimensional tangent space of the wave fronts, i.e., iff the Lagrangian densityL does not vanish in
the field of extremals:

det~ez ,ez̄ ,w!5detUS 1 0 p

0 1 p̄

v v̄ H
D U5~H2pv2 p̄v̄ !52LÞ0. ~2.10!

Notice that in theories with more than one real field (d>2) bothL andH have to be nonvanishing
quantities to guarantee the transversality relation.1

III. HAMILTON–JACOBI THEORY FOR ONE REAL FIELD IN DEDONDER AND WEYL’S
FORMULATION

We here restrict ourselves to Lagrangian densities of the following type:L5]zw] z̄w
2V(w). The potentialV(w) is an analytic function. Here we have the canonical momentp
5 v̄, p̄5v, the Hamiltonian densityH5pp̄1V, and the slope functionsF5]wS̄, F̄5]wS. We
have the~DeDonder and Weyl! Hamilton–Jacobi equation

]zS1] z̄S̄5]wS]wS̄1V~w! ~3.1!

and the related integrability condition

]z]wS2] z̄]wS̄5]wS]w
2S̄2]wS̄]w

2S. ~3.2!

Knowing solutionsS and S̄ of the equations~3.1! and ~3.2! a field of embedded extremalsw
5w̃(z,z̄) is determined by a system of first-order PDEs:

]zw̃~z,z̄!5F5]wS̄~z,z̄,w5w̃ !, ~3.3!

] z̄w̃~z,z̄!5F̄5]wS~z,z̄,w5w̃ !. ~3.4!

A solution is obtained by expandingS(z,z̄,w) and S̄(z,z̄,w) in powers of the differencey5w
2w0 betweenw and a known extremalw0(z,z̄):

S~z,z̄,w!5 (
n50

`
1

n!
An~z,z̄!yn, S̄~z,z̄,w!5 (

n50

`
1

n!
Ān~z,z̄!yn. ~3.5!

This method of expanding about a given solution of the equations of motion is commonly
ployed, e.g., with stability investigations or determining~quantum! fluctuations around c-numbe
fields in self-interacting theories.14,15

Naturally w0 has to satisfy the transversality relations~3.4!, which fix only the functionsA1

5] z̄w0 and Ā15]zw0 , without influencing the remaining coefficients. Inserting the express
~3.5! into the HJE~3.1! and expanding the potentialV in powers ofy we see that the equation i
automatically fulfilled up to the ordery1, whereas the IC~3.2! is fulfilled on the extremals up to
the ordery0.

A0 and Ā0 are only affected by the HJE of zeroth order iny:

]zA01] z̄Ā05Luw5w0
5]zw0] z̄w02V~w0!. ~3.6!
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The general solution of the homogeneous equation]zA0
hom1] z̄Ā0

hom50 is given—at least
locally—by A0

hom5] z̄x0(z,z̄) andĀ0
hom52]zx0(z,z̄). One special solution of the inhomogeneo

PDE~3.6! can be obtained by integration:Ā0
inh5*Luw5w0

dz̄/2 andA0
inh5*Luw5w0

dz/2. This yields
the general solution~locally!:

A0~z,z̄!5
1

2 E @]zw0] z̄w02V~w0!# dz1] z̄x0~z,z̄!, ~3.7!

Ā0~z,z̄!5
1

2 E @]zw0] z̄w02V~w0!# dz̄2]zx0~z,z̄!. ~3.8!

In order to determine the coefficientsA2 andĀ2 , we insertA15] z̄w0 andĀ15]zw0 into the IC of
ordery:

]zA22A3]zw01Ā1A31Ā2A25] z̄Ā22Ā3] z̄w01A1Ā31A2Ā2 . ~3.9!

Sincey is a function ofz,z̄, its derivative with respect toz or z̄ yields ]zy52]zw0 and ] z̄y5

2] z̄w0 , respectively. Thus we infer from Eq.~3.9! that]zA25] z̄Ā2 , which permits us to expres
these two functions at least locally by one generating potential function:A25] z̄z2(z,z̄) and Ā2

5]zz2(z,z̄). z2 has to fulfill the PDE

] z̄]zz2~z,z̄!1]zz2~z,z̄!] z̄z2~z,z̄!1 1
2@]w

2V~w5w0~z,z̄!!#50.

The ansatz

z25 ln u~z,z̄!⇒A25] z̄ ln u, Ā25]z ln u

linearizes the HJE of second order iny:

~3.10!

In order to obtain the expressions forAn andĀn one has to substitute the power series~3.5! into
the IC and the HJE and to compare the coefficients of the powersyn21 and yn, respectively.
Starting with the IC in (n21)th order

]zAn2An11]zw01 (
p50

n21 S n21
p D Āp11An2p115] z̄Ān2Ān11] z̄w01 (

p50

n21 S n21
p DAp11Ān2p11 ,

we draw our attention to the coefficientsAn11 and Ān11 of highest order. Fortunately the
disappear from this equation as well as from the HJE due to the relationsA15] z̄w0 and Ā1

5]zw0 . Provided the coefficientsA0 ,...,An21 and Ā0 ,...,Ān21 have already been determine
recursively, one gets an equation for the functionsAn(z,z̄) and Ān(z,z̄):

]z~un22An!2] z̄~un22Ān!5un22(
p52

n22 F S n21
p D2S n21

p21D GAp11Ān2p11

5..Inh~A0 ,...,An21 ;Ā0 ,...,Ān21!. ~3.11!

The inhomogeneity Inh(A0 ,...,An21 ;Ā0 ,...,Ān21) vanishes forn<4. Similarly to ~3.8! this hi-
erarchy of equations is solved by splitting the solution in two parts: a general solution o
homogeneous part]z(u

n22An
hom)2] z̄(u

n22Ān
hom)50, that is obtained—at least locally—by
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An
hom5u22n] z̄zn~z,z̄! and Ān

hom5u22n]zzn~z,z̄!

with an arbitrary smooth functionzn(z,z̄). The second part is a special solution of the inhom
geneous equation~3.11!:

An
inh5u22n] z̄x̄n~z,z̄! and Ān

inh52u22n]zx̄n~z,z̄! ~3.12!

with

x̄n~z,z̄!5
1

2 E
zE z̄

Inh~A0 ,...,An21 ;Ā0 ,...,Ān21! dz8 dz̄8. ~3.13!

The general solution

An5u22n] z̄@zn~z,z̄!1x̄n~z,z̄!# and Ān5u22n]z@zn~z,z̄!2x̄n~z,z̄!#

has to satisfy the HJE~3.1! to nth order iny, in which, remarkably, the coefficients of highest ord
An11 and Ān11 vanish as well as in the IC, due to the relationsA15] z̄w0 and Ā15]zw0 .
Separating the functions of the remaining highest orderAn , Ān leads to the equation

]z~unAn!1] z̄~unĀn!52un(
p52

n22 S n
pD Āp11An2p112un

dn

dwn V~w!U
w5w0

. ~3.14!

It is convenient to setzn(z,z̄)5u21xn before inserting into expression~3.14!. Using the relation
~3.10! the HJE ofnth order in y yields an equation, which is nothing but the inhomogene
extension of the linear PDE~3.10!:

~3.15!

with the inhomogeneity

Inh̃~x0 ,...,xn21!5] z̄u]zx̄n2]zu] z̄x̄n2
1

2
un21(

p52

n22 S n
pD Āp11An2p112

1

2
un21]w

nV~w0!.

In general the coefficientsAn , Ān are determined by thenth order of the HJE and the (n21)th
order of the IC forn>3:

An5u22n] z̄Fxn~z,z̄!

u
2x̄n~z,z̄!G , Ān5u22n]z Fxn~z,z̄!

u
1x̄n~z,z̄!G . ~3.16!

Notably the infinite hierarchy of functionsxn(z,z̄) has to fulfill only one PDE of second order: th
equation~3.15!. Its integral can be obtained by determining the general solution of the hom
neous PDE~3.10!, which is the same for all orders n>2 andonespecial solution of the inhomo
geneous equation~3.15!. It is given by using a Green function that can be chosen to be the s
for all ordersn without any loss of generality. The solutions of~3.10! can be obtained by employ
ing Bäcklund transformations.

IV. BÄCKLUND TRANSFORMATIONS

Bäcklund transformations~BTs! are maps between the tangent bundles of integral subm
folds associated with PDEs. If we are able to find a BT from the PDE which we wish to solve
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to another one the general integral of which is known, we can obtain the general solution
first one by integrating the BT. This treatment of a single PDE can be generalized to syste
partial differential equations.16

By applying BTs we want to reduce the linear PDEs of second order withnonconstant
coefficients of type~3.10! to linear PDEs withconstantcoefficients. The inhomogeneous exte
sion of Eq.~3.10! could be solved by BTs, too, but for sake of simplicity we construct a spe
solution of the inhomogeneous equation~3.10! by using a Green function and Fourier transfo
mation. Like other authors17 the general form of a BT we are starting from is given by tw
functionsF1 , F2 :

]zû~z,z̄!5F1@z,z̄,u~z,z̄!,û~z,z̄!,]zu~z,z̄!#,

] z̄û~z,z̄!5F2@z,z̄,u~z,z̄!,û~z,z̄!,] z̄u~z,z̄!#.

u has to fulfill the relation~3.10!, whereasû denotes the transformed function which is suppos
to obey a linear PDE with a constant coefficientm2: ]z] z̄û2m2û50. Of coursem2 can be equal
to zero which would yield the wave equation. ObviouslyF1 andF2 have to fulfill the integrability
condition]z] z̄û5] z̄]zû⇒dF1 /dz̄5dF2 /dz. This integrability condition does not lead to a restr
tion on the solutions of the PDE~3.10!, if such a BT is found. ThusF1 andF2 have to fulfill the
two equations

dF1 /dz̄5dF2 /dz, dF1 /dz̄5m2û. ~4.1!

We would like to point out that the more general ansatz]z] z̄û5K(z,z̄) û leads to the same BT
~4.4! below at least for the models discussed here.18

Differentiating Eqs.~4.1! with respect to]zu and] z̄u leads to

]uz

2 F150⇒F15 f 1~u,û,z,z̄!]zu1m1~u,û,z,z̄!,

]u z̄

2 F250⇒F25 f 2~u,û,z,z̄!] z̄u1m2~u,û,z,z̄!.

Substituting these expressions into Eqs.~4.1!, comparing the coefficients of] z̄u and ]zu, and
differentiating with respect tou,û, we conclude by lengthy but straightforward calculations th

f 152 f 25c0 , c0PR, c0Þ0,

05]um12 f 1]ûm1⇒m15g1~ f 1u1 û,z,z̄!,

05]um21 f 1]ûm2⇒m25g2~ f 1u2 û,z,z̄!.

Inserting these results into relations~4.1! and differentiating with respect tof 1u1 û5h1 and
f 1u2 û5h2 we obtain ]h1

2 m150, ]h2

2 m250. Substituting f 1û→ û, f 1]zû→]zû, and f 1] z̄û

→] z̄û we get

]zû5]zu1a1~z,z̄!@u1 û #1b1~z,z̄!, ~4.2!

] z̄û52] z̄u1a2~z,z̄!@ û2u#1b2~z,z̄!. ~4.3!

Considering the two functionsb1 , b2 is only necessary for transformations betweeninhomoge-
neousPDEs. Thus, we here can chooseb1505b2 . Inserting our results~4.2! and~4.3! into Eqs.
~4.1! and comparing the coefficients ofu,û we finally obtain the linear BT

~4.4!
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with the BT generating functionc5c(z,z̄) which is aspecialsolution of

]z] z̄c2~]zc!~] z̄c!2 1
2]w

2V~w0!50, ]z] z̄c1~]zc!~] z̄c!2m250. ~4.5!

Substitutingc52 ln(c̃) in these equations we conclude

]z] z̄c̃1
1

2
]w

2V~w0!c̃50, ]z] z̄S 1

c̃ D 2m2S 1

c̃ D 50. ~4.6!

We therefore have to solve the following problem:
We have to find a solution of the equation~3.10!, the inverse of which has to fulfill a Klein–

Gordon or a wave equation. Then we can integrate the linear BT and obtain the general so
of ~3.10!.

Another method of solving Eqs.~4.5! is based on their linear combinations:

]z] z̄c5 1
4~2m21]w

2V~w0!!, ~]zc!~] z̄c!5 1
4~2m22]w

2V~w0!!. ~4.7!

Integrating the first equation and inserting this solution into the second expression impo
restriction on]w

2V(w0). We make use of Eqs.~4.7! when we study thef4-model.

V. APPLICATIONS

After solving the homogeneous equation~3.10!, we calculate a special solution of their inho
mogeneous extension~3.15! by determining a Green function—without need of specifying
inhomogeneity Inh˜. To obtain a solution of Eq.~3.15! specific for the models under consideratio
we have to fold the Green function with the inhomogeneity in every orderyn.

The Hamilton–Jacobi theory for the non-self-interacting scalar field theoriesL05]zw] z̄w and
L15]zw] z̄w21/2m2w2 with the light cone variablesz5(x1t)/2 and z̄5(x2t)/2 leads to the
wave or the Klein–Gordon equation~3.10! without need for a Ba¨cklund transformation or speci
fying an extremalw0(z,z̄):

L0 :]z] z̄xn5Inh̃~x0 ,...,xn21!, L1 :]z] z̄xn1m2xn5Inh̃~x0 ,...,xn21!.

The general solutions of these relations are known. Therefore we draw our attention to the
interesting case of self-interacting theories:

A. The homogeneous equations

1. Liouville model

Applying our formalism to Liouville’s theoryL5]zw] z̄w12 exp(w), using an arbitrary solu-
tion of the equation of motion for which the general expression is known,17

w05 lnH 2
~]zs~z!!~] z̄s̄~ z̄!!

~s1 s̄!2 J ,

with arbitrary smooth functionss(z) and s̄( z̄), the relation~3.10! yields

]z] z̄u
L22

~]zs!~] z̄s̄!

~s1 s̄!2 uL50⇒]s] s̄u
L~s,s̄!22

1

~s1 s̄!2 uL~s,s̄!50 ~5.1!

by employing a transformation of variablesz→s(z),z̄→ s̄( z̄). Obviouslyonespecial solution of
this equation isu0

L51/(s1 s̄). Its inverse fulfills the wave equation]s] s̄û
L50. Thus we know that

there exists at least one BT which connects the integral submanifolds of~5.1! and of the wave
equation. Returning to the equation~4.6! we conclude thatcL5 ln(s1s̄). So we can determine th
BT by integrating the relation~4.4! and obtain the general solution of the equation~5.1!:
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uL~s,s̄!5]sC~s!2] s̄C̄~ s̄!1
2

~s1 s̄!2 $C̄~ s̄!2C~s!% ~5.2!

with two arbitrary smooth functionsC(s) and C̄( s̄).

2. Sine and sinh –Gordon model

In two-dimensional space–time two types of solitons exist: the ‘‘bell’’ with the sa
asymptotic value atx52` and x5` and a ‘‘kink’’ soliton with different asymptotic values
Moreover, there exists a topological conserved quantum number associated with the asy
behavior of these solitons. The corresponding conserved current is given byJm5emn]nw with the
antisymmetric tensoremn52enm, m, n50, 1. Thus the charge associated with this current isN
5*2`

` J0 dx5wux5`2wux52` , which vanishes obviously in the case of the bell solitons.
kinks it is a nontrivial quantum number.

The sine–Gordon theory possesses an infinite hierarchy of multikink solutions, which c
constructed by auto-Ba¨cklund transformations. In this model the conserved quantity is assoc
with a particle number. For details as to solitons, see, e.g., Refs. 14, 15, 19, and 20.

We want to embed for the sine–Gordon modelL25]zw] z̄w12@12cos(w)# the ~anti! kink
solution w0564 arctan@exp(z1z̄)# and in the case of the sinh–Gordon modelL35]zw] z̄w
22@12cosh(w)# the bell solutionw0564 arctanh@exp(z1z̄)#, which is only defined forz1 z̄
,0. We then obtain for Eq.~3.10!

sine–Gordon: ]z] z̄u
SG2$2 tanh2~z1 z̄!21%uSG50, ~5.3!

sinh– Gordon: ]z] z̄u
Sh2$2 coth2~z1 z̄!21%uSh50. ~5.4!

Following the discussion of Liouville’s theory we are able to solve these two equations by on
For this it is sufficient to realize that the inverses of the two solutionsu0

SG51/cosh(z1z̄) and
u0

Sh51/sinh(z1z̄) solve the Klein–Gordon equation]z] z̄û5 û. The functionsu0
SG5c̃SG and u0

Sh

5c̃Sh can be calculated by using the relationsc̃5exp(2c) and ~A7! and ~A1! shown in the
Appendix. Thus the two generating functions arecSG5 ln(cosh(z1z̄)) and cSh5 ln(sinh(z1z̄))
which determine the BTs~4.4! between the Klein–Gordon equation and Eqs.~5.3! and~5.4!. Their
general solutions can be calculated by integration of the linear BTs~4.4!:

uSG5E
2`

` E
2`

`

exp@2 i ~qz1q̄z̄!#d~qq̄11!YSG~q,q̄!

3H 12
2

q211
2

2iq

q211
tanh~z1 z̄!J dq dq̄1c0 cosh21~z1 z̄!, ~5.5!

uSh5E
2`

` E
2`

`

exp@2 i ~kz1 k̄z̄!#d~kk̄11!YSh~k,k̄!

3H i ~k1 k̄!

2
2coth~z1 z̄!J dk dk̄1c1 sinh21~z1 z̄!, ~5.6!

with arbitrary constantsc0 , c1PR and two arbitrary functionsYSG(q,q̄), YSh(k,k̄) which have to
be chosen in such a way that the integrals exist. A property of this BT is that the solution w
was used for the transformation is multiplied with a constant and added to the modified solut
the Klein–Gordon or the wave equation.

This static kink w0564 arctan@exp(x)# can be transformed by a Lorentz boost in
time-dependent solutions of the relativistic invariant Euler–Lagrange equationw0
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564 arctan@exp(g(x2vt)1d)#, g251/(12v2), parametrized by the velocityv and the phase shif
d. We are able to include the embedding of these solutions in our discussion, making use
transformation of variables

z→w5zg~12v !1d/2, z̄→w̄5 z̄g~11v !1d/2. ~5.7!

The same holds for the static solitons of the relativistic covariant sinh- andf4-models.

3. f4-model

Contrary to the three previous models, the following ones can only be solved by at lea
BTs: thef4-theories

~ I! L5]zw] z̄w24w212w4 and ~ II ! L5]zw] z̄w12w222w4.

Both theories have soliton solutions. We choose the~anti-! kink w0
I 56tanh(z1z̄) and in case II

the bell solutionw0
II56cosh21(z1z̄). Then we get the two relation~3.10! for u I andu II :

~ I! ]z] z̄u
I2$6 tanh2~z1 z̄!22%u I50, ~5.8!

~ II ! ]z] z̄u
II2$6 tanh2~z1 z̄!25%u II50. ~5.9!

Except for the special values of same of the constants they are the same PDEs as tha
sine–Gordon model, but they cannot be solved byoneBT only ~see the Appendix!. Therefore we
employ two BTs for each model: the first BTs leads to two equations in which the coefficie
front of tanh2(z1z̄) is reduced to 2, the same as the one in the sine–Gordon theory. This allo
to obtain two Klein–Gordon equations which differ by the choice ofm2 after a second BT for each
model.

Inserting the function]w
2V(w0)5v(z1 z̄) in the results~A.12! and~A.1! of the Appendix we

are able to calculate the functionsc I, c II and the two solutions of the equations~5.8! and ~5.9!
which are necessary for the transformations:

~ I! u0
I 5cosh22~z1 z̄!, ~ II ! u0

II5exp@d0~z2 z̄!#cosh22~z1 z̄!, d0
253.

Thus, withc I52 ln$cosh(z1z̄)% andc II5d0( z̄2z)12 ln$cosh(z1z̄)% we obtain after one BT and
denoting the functionû of Eq. ~4.4! by ũ

~ I! ]z] z̄ũ
I2$2 tanh2~z1 z̄!12%ũ I50,

~ II ! ]z] z̄ũ
II2$2 tanh2~z1 z̄!21%ũ II50.

The second relation is the same as in the sine–Gordon theory. Thus we only have to treat t
case here. This PDE has the special solutionũ0

I 51/cosh(z1z̄)exp@id1(z2z̄)#, d1
253 the inverse of

which fulfills a Klein–Gordon equation, namely]z] z̄(1/ũ0
I )54/ũ0

I . The solutionũ0
I was found

according to the method discussed in the Appendix. The generating function for this BTc2
I

5 ln$cosh(z1z̄)%1id1(z̄2z)52ln(ũ 0
I ). Hence the resulting solutions of Eqs.~5.8! and ~5.9! are

u I5E
2`

` E
2`

`

Y I~q,q̄!d~qq̄14!exp@2 i ~qz1q̄z̄!#$q411624q22~6iq3224iq !tanh~z1 z̄!

212q2 tanh2~z1 z̄!% dq dq̄1c0 cosh22~z1 z̄!1c1 cosh21~z1 z̄!tanh~z1 z̄!exp@ id1~z2 z̄!#,

~5.10!
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u II5E
2`

` E
2`

`

Y II~k,k̄!d~kk̄11!exp@2 i ~kz1 k̄z̄!#$2~k211!226ik~12k2!tanh~z1 z̄!

112k2 tanh2~z1 z̄!% dk dk̄1c2 cosh22~z1 z̄!exp@d0~z2 z̄!#1c3 cosh21~z1 z̄!tanh~z1 z̄!

~5.11!

with d0
25d1

253, c0 , c1 , c2 , c3PR, and two arbitrary functionsY I(q,q̄), Y II(k,k̄).
Expressions like~5.3! and ~5.8! also occur, e.g., in stability investigations or in discuss

small fluctuations around the known soliton solutionsw0 of these theories.14,15 Carrying out the
second variation of the action functional in the case of the sine–Gordon and thef4-theory
employing the soliton solutions given above—or equivalently insertingw5w01wc , uwcu!uw0u,
into the Euler–Lagrange equation of the sine–Gordon or thef4-theory—yields

@2]x
21n~n11!tanh2~x!1c0#u~x!5v2u~x!, ~5.12!

wherewc(x,t)5exp(ivt)u(x). We haven51, c052 for the sine–Gordon andn52, c0522 for
the f4-model. Stability of the soliton solutions requires that all eigenvaluesv2 of this
Schrödinger-like equation should be non-negative, so that small perturbations aboutw0 do not
grow exponentially in time. The lowest eigenvalue isv250 and the corresponding solutionŵc is
the translation mode. It must be present, because of the translation invariance of our model
consideration. Remarkably we have used it for both models to construct the Ba¨cklund transfor-
mations:ŵc

SG51/cosh(x5z1z̄) and ŵc
I 51/cosh2(x).

The equations~5.3! and ~5.8! are reduced to Eq.~5.12! if one setsx5z1 z̄, t5z2 z̄ and
exp(ivt)u(x). The equation~5.12! are solvable by transforming them into hypergeometric diff
ential equations, the solutions of which can be given byfinite series in powers of tanh(x)
functions:21

SG: vk
25k211: u~x!5exp~ ikx!$k1 i tanh~x!%,

f I
4: v253: u~x!5tanh~x!/cosh~x!,

vk
25k214: u~x!5exp~ ikx!$212k223ki tanh~x!13 tanh2~x!%.

These solutions are contained in our more general results~5.5! and ~5.10!.

4. A mathematical remark

As discussed in the Appendix our results can be generalized in order to reduce the hie
of linear PDEs:

]z] z̄u5$n~n11!h21a%u, aPR, n50,1,2,..., ~5.13!

by n BTs to a Klein–Gordon or a wave equation successively. One BT can raise or lowe
coefficient n to n11 or n21. We have to assume that the smooth functionh( l ) fulfills the
nonlinear differential equation,] lh5b̄h21 c̄ with c̄PR, b̄561 andl 5z1 z̄:

b̄

c̄
.0: h5Auc̄u tan@Auc̄u~ l 1 l 0!#, c̄PR, l 0PC, ~5.14!

b̄

c̄
,0: h52Auc̄u tanh@Auc̄u~ l 1 l 0!#, c̄50: h5

1

l 02b̄l
. ~5.15!

The PDEs~5.13! and ~5.15! are solvable without need of specifying the constantsa or c̄.
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Obviously the PDEs~5.8!, ~5.9!, ~5.3!, and~5.4! correspond to special choices ofa, b̄, c̄, and
n: b̄521, c̄51, a521, andn51 give the sinh and the sine–Gordon models, whereasn52, b̄
521, c̄51 give thef4-theory witha522 ~case I! anda521 ~case II!.

B. The inhomogeneous equation

A special solution of the inhomogeneous equation~3.15! can be obtained for the sinh an
sine–Gordon theories and both cases of thef4-theory by employing Fourier transformations. W
discuss these theories first and return to the Liouville model later.

1. Sinh and sine –Gordon, f4 equations

We introduce the Green function G(z,z̄,ẑ,zC ) for the inhomogeneous equation~3.15!:

]z] z̄G1 1
2$]w

2V~w0!%G5d~z2 ẑ!d~ z̄2zC !. ~5.16!

If a Green function is found, we can calculate the solutionsxn of Eq. ~3.15! to all orders ofyn:

xn5
1

2p E
2`

1`E
2`

1`

Inh̃$x0~ ẑ,zC !,...,xn21~ ẑ,zC !%G~z,z̄,ẑ,zC ! dẑ dzC .

We introduce the Fourier transform G˜ by

G~z,z̄,ẑ,zC !5
1

4p2 E
2`

1`E
2`

1`

exp$ i @q~ ẑ2z!1q̄~zC2 z̄!#%G̃~z,z̄,q,q̄! dq dq̄. ~5.17!

As we need only a special G we try for G˜ the ansatz that depends onq, q̄, andl 5z1 z̄ only. We
then obtain

15] l
2G̃2 i ~q1q̄!] lG̃2 1

2]w
2VG̃. ~5.18!

In our cases the potential term is only a function ofl: ]w
2V52a012n@n11# f 2( l ), a0PR, n

51, 2, andf denotes a tanh(l) @see~5.3!, ~5.9!, and~5.8!# or coth(l) @see~5.4!#. In order to obtain
one solution of Eq.~5.18! it is sufficient to assume anyf that solves] l f 512 f 2. Since~5.18! is
only a linear differential equation we are able to calculate a special inhomogeneous solution
know a homogeneous one:

G̃inh~q,q̄,l !5E l

G̃hom~q,q̄, l̂ !22 exp~ i @q1q̄# l̂ !E l̂
G̃hom~q,q̄, l̃ !exp~2 i @q1q̄# l̃ ! dl̃ dl̂ .

Substituting G̃hom(q,q̄,l )5exp@i(q1q̄)l/2#Ĝ(q,q̄,l ) leads to

] l
2Ĝ2H a02

~q2q̄!2

4
1n~n11! f 2J Ĝ50. ~5.19!

Choosing the special ansatz Gˆ 5(c01c1f )exp(c3l), and comparing the coefficients of powers off,
we get forn51 with a5a02(q2q̄)2/4

aÞ22: c356Aa12, c052c1c3 , c1PR, c1Þ0, ~5.20!

a522: c3505c0 , c1PR, c1Þ0. ~5.21!

This choice of parameters provides the Green function for the sinh and sine–Gordon theorie~5.4!
and~5.3!. The casen52 is of interest within thef4-models~5.8! and~5.9!. Here we have to add
the termc2f 2 exp(c3l) to Ĝ. This yields finally
                                                                                                                



ction

e

n
z
p

an be

ls

ld

278 J. Math. Phys., Vol. 44, No. 1, January 2003 Böttger, Wissowski, and Kastrup

                    
aÞ26: 3c05c2~51a!, c252
c1

c3
, c356Aa16, c1PR, c1Þ0,

a526: c15c350, 3c0522c2 , c2PR, c2Þ0.

The sign ofc3 has to be chosen in such a way that the Fourier integral for the Green fun
G̃(z,z̄,q,q̄) exists.

Inserting these results into the expression for G˜
inh and inverting the Fourier transformation w

are able to obtain—in principle—the solution of Eq.~3.15! for every order ofyn by integration.

2. Liouville theory

For the Liouville model we start with Eq.~5.16!, too, and obtain instead of Eq.~5.19!, where
l 5s(z)1 s̄( z̄)

] l
2Ĝ2H 2

~q2q̄!2

4
1

2

l 2J Ĝ50.

The solution is

Ĝ5c0H 1

l
a sin~al !2a2 cos~al !J 1c1H 1

l
a cos~al !1a2 sin~al !J , a56

~q2q̄!

2
.

Obviously we can not integrate G˜
inh explicitly, if we use this solution. However, the Gree

function G can be obtained for the Liouville model. We return to Eq.~5.16! and choose the ansat
G(s(z),ŝ,s̄( z̄),sC )5H(s(z)2 ŝ)H( s̄( z̄)2sC )Ḡ(s(z),ŝ,s̄( z̄),sC ), where H is the usual Heaviside ste
function. We insert the ansatz into Eq.~5.19! and obtain

05H~s2 ŝ!H~ s̄2sC !H ]s] s̄2
2

~s1 s̄!2J Ḡ1d~s2 ŝ!d~ s̄2sC !@Ḡ21#

1H~s2 ŝ!d~ s̄2sC !]sḠ1H~ s̄2sC !d~s2 ŝ!] s̄Ḡ.

In order to solve this equation we have to find one solution G¯of the homogeneous equation~5.1!
with the following properties: Ḡ(s5 ŝ,s̄5sC )51, ] s̄Ḡus5 ŝ50, and]sḠu s̄5sC50. It can easily be
verified that a solution is given by

Ḡ5
1

ŝ1sC H 2s~z!2 ŝ1sC2
2

s~z!1 s̄~ z̄!
@s~z!1sC #@s~z!2 ŝ#J . ~5.22!

Thus we have determined an explicit expression for the Green function G5H(z2 ẑ)H( z̄2zC )Ḡ.

VI. RELATED EXTREMALS

Having determined solutions of the HJE~3.1! combined with the IC~3.2! associated with a
given extremal in terms of power series we now want to indicate how new extremals c
generated from a given one.

In order to connect the functionsxn from Eq. ~3.15!, with a one-parameter field of extrema
w̃(z,z̄,u) embedded, we expandỹ5(w̃2w0(z,z̄)) in the parameteru of the solutions of the
equation of motion. Therefore we have to consider the two-dimensional submanifoS
ª$(z,z̄,w̃(z,z̄))% of the extended configuration spaceM2115$(z,z̄,w)%. The starting points of
this calculation are the slope functions~3.4!:
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]zw̃~z,z̄!5]wS̄uw5w̃5Ā11(
i 52

`
1

~ i 21!!
Āi ỹ

i⇒]zỹ5(
i 51

`
1

i !
Āi 11ỹi 11, ~6.1!

] z̄w̃~z,z̄!5]wSuw5w̃5A11(
i 52

`
1

~ i 21!!
Ai ỹ

i⇒] z̄ỹ5(
i 51

`
1

i !
Ai 11ỹi 11 ~6.2!

with ỹ5w̃2w0 , A15] z̄w0 , andĀ15]zw0 . Expandingỹ in a power series ofu,

ỹ~z,z̄,u!5w̃~z,z̄,u!2w0~z,z̄!5u(
k50

`

Lk~z,z̄!
uk

k!
, ~6.3!

yields

] z̄(
k50

`
1

k!
Lku

k115(
i 51

`
1

i !
Ai 11H (

j 50

`
1

j !
L ju

j 11J i

, ~6.4!

]z(
k50

`
1

k!
Lku

k115(
i 51

`
1

i !
Āi 11H (

j 50

`
1

j !
L ju

j 11J i

. ~6.5!

Comparing the coefficients in (l 11)th order leads to

] z̄L l5A2L l1Inh~A2 ,...,Al 11 ;L0 ,...,L l 21!,

]zL l5Ā2L l1Inh~Ā2 ,...,Āl 11 ;L0 ,...,L l 21!,

with the inhomogeneities Inh which depend onAi , Āi calculated above and the functions of low
orderL j , j , l . Making use ofA25] z̄ ln(u) and Ā25]z ln(u) we get

~6.6!

So the solutions of the Euler–Lagrange equationsw̃5w01(k50
` Lku

k11/k! can be obtained by
successive integration of the coefficientsL l . Regarding the lowest order (l 50)]zL05Ā2L0 ,
] z̄L05A2L0 leads to

L05c0u, c0PR⇒ ỹ5uc0u1¯ .

Sinceu obeys the linear PDE~3.10!, c0 can always be absorbed into it.u is discussed in Sec. V
For applications, see~5.5!, ~5.6!, ~5.10!, and~5.11!.

Thus the one-parametric field of extremals in the vicinity (u!1) of the original solution of
the equation of motionw0(z,z̄) is determined by

~6.7!

We compare our considerations with an expansion of the field variablew̃ within the Euler–
Lagrange equation.w̃ is expanded in the parameter of the fields of the extremals denoted au:

w̃~z,z̄,u!5w̃0~z,z̄!1y~z,z̄,u!5w̃0~z,z̄!1u(
n50

`
1

n!
Ln~z,z̄!un.

w̃0(z,z̄) is an arbitrary extremal. The potential is assumed to be an analytic function ofw̃:
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V~ w̃ !5 (
m50

`
1

m!
]w̃

mV~ w̃ !u w̃5w̃0
~ w̃2w̃0!m

5 (
m50

`
1

m!
]w̃

mV~ w̃ !u w̃5w̃0
um

5H (
n50

`
1

n!
Ln~z,z̄!unJ m

.

Similar to the results of Sec. II, where we study the Hamilton–Jacobi theory, we obta
comparing the coefficients of equal order ofun:

u0: ]z] z̄w̃0~z,z̄!1 1
2]w̃V~ w̃ !u w̃5w̃0

50,

which is fulfilled due to assumption and

u1: ]z] z̄L01 1
2]w̃

2V~ w̃0!L050, ~6.8!

un11: ]z] z̄Ln1 1
2]w̃

2V~ w̃0!Ln5Inh~L0¯Ln21 ,]w̃
2V~ w̃0!¯]w̃

n11V~ w̃0!!. ~6.9!

The first one of these PDEs yields

w̃5w̃01uL0 .

BecauseL0 has to fulfill the same linear equation asu, which we introduced in the Hamilton–
Jacobi theory~3.10!, we are able to identifyL0 and u with each other. Thus our result~6.7! is
equivalentto a second variation of the action functional, which is commonly employed, e.g.,
semiclassical considerations14 and stability investigations.15

The PDE~6.9! is analogous to the equation~3.15!, which we obtained in the Hamilton–Jaco
framework. Both can be used to determine the fluctuations in a neighborhood of a given ex
w̃0 in every order ofu.

If one is able to find the general integral of the Hamilton–Jacobi equation and the integra
condition, the general solution of the Euler–Lagrange equation can be obtained.

A. An example

Here we would like to calculate the Hamilton–Jacobi functionsS(z,z̄,w) andS̄(z,z̄,w) and a
related field of extremalsw̃(z,z̄,u) according to the formalism developed in Secs. III, V, and V
For this we choose the sine–Gordon model with the one-kink solutionw054 arctan(exp(z1z̄)).
Though the functionsS and S̄ and the related extremals are determined perturbatively, the c
sponding formal series~3.5! and ~6.3! can be obtained explicitly.

1. The Hamilton –Jacobi potentials S and S ¯

The coefficientsAn(z,z̄) and Ān(z,z̄) of ~3.5! are determined by calculating the function
xn(z,z̄) and x̃n(z,z̄) as solutions of the PDEs~3.15! in every ordern50,1,2,... .

The coefficientsA0(z,z̄) and Ā0(z,z̄) can be calculated from~3.7! and ~3.8! where the La-
grangianL0 is given by

L0ª]zw0] z̄w02V~w0!532S ez1 z̄

11e2~z1 z̄!D 2

58
1

~cosh~z1 z̄!!2

on the single extremalw0 . Then we obtain
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A0~z,z̄!524 cosS w0

2 D1] z̄x0~z,z̄!54 tanh~z1 z̄!1] z̄x0~z,z̄!, ~6.10!

Ā0~z,z̄!524 cosS w0

2 D2]zx0~z,z̄!54 tanh~z1 z̄!2]zx0~z,z̄!. ~6.11!

The coefficients of first order are determined by the embedding conditions:

A1~z,z̄!5] z̄w05
2

coshl
, Ā1~z,z̄!5]zw05

2

coshl
, ~6.12!

with the substitutionl 5z1 z̄. Obviously these expressions for the coefficientsA0 , Ā0 , A1 , and
Ā1 obtained are the general solutions of these equations~6.10!–~6.12! in contrast to the following
coefficients of higher orders of~3.5!.

For the coefficients of the second orderA2(z,z̄) andĀ2(z,z̄) we choose the translation mod
u51/cosh(l) of ~5.5!:

A2~z,z̄!5] z̄ ln~u!52tanh~ l !, Ā2~z,z̄!5]z ln~u!52tanh~ l !.

The inhomogeneity of the equation forx̄3 @see~3.13! and ~3.16!# always vanishes. Therefore
according to~3.11!, ~3.13!, and the discussion, thereby we can choosex̄3(z,z̄)[0 without any
loss of generality. Hence the coefficientsA3 andĀ3 are only determined by the functionx3(z,z̄),
which fulfill the inhomogeneous PDE~3.15!:

]z] z̄x32$2 tanh2~z1 z̄!21%x352
1

2
]w

3V~w!uw5w0
u252

tanh~ l !

cosh3~ l !
.

A special solution is given byx352tanh(l)/(2 cosh(l)), which yields

A3~z,z̄!5
1

u
] z̄S x3

u D52
1

2 cosh~ l !
, Ā3~z,z̄!5

1

u
]zS x3

u D52
1

2 cosh~ l !
.

For n54 the inhomogeneity of the wave equation~3.11! for the coefficientx̄4 of ~3.13! vanishes.
Thus without any loss of generality we may setx̄450. The inhomogeneity of the equation~3.11!
for the functionx4 also vanishes. So we may choose the translation mode again:

A4~z,z̄!5
1

u2 ] z̄S x4

u D5
1

4
tanh~ l !, Ā4~z,z̄!5

1

u2 ]zS x4

u D5
1

4
tanh~ l !.

Regarding the series of coefficients, we see that those for odd and even indices contain th
functions 1/cosh(l) and tanh(l), respectively. So we assume the same for the higher orders:

A2n5Ā2n5
~21!n

22n24 tanh~ l ! and A2n115Ā2n115
~21!n

22n23

1

cosh~ l !
, n50,1,2,3,... .

Inserting these expressions into the formal expansion~3.5! we obtain
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S~z,z̄,w!54S (
n50

`
~21!ny2n

n!22n D tanh~ l !14S (
n50

`
~21!ny2n11

n!22n11 D 1

cosh~ l !
1] z̄x0~z,z̄!

54 cosS y

2D tanh~ l !14 sinS y

2D 1

cosh~ l !
1] z̄x0~z,z̄!

524 cosS y1w0

2 D1]zx0~z,z̄!

524 cosS w

2 D1]zx0~z,z̄!, ~6.13!

S̄~z,z̄,y!54S (
n50

`
~21!ny2n

n!22n D tanh~ l !14S (
n50

`
~21!ny2n11

n!22n11 D 1

cosh~ l !
2] z̄x0~z,z̄!

54 cosS y

2D tanh~ l !14 sinS y

2D 1

cosh~ l !
2] z̄x0~z,z̄!

524 cosS y1w0

2 D2] z̄x0~z,z̄!

524 cosS w

2 D2] z̄x0~z,z̄!. ~6.14!

These solutions satisfy the HJE~3.1! and the IC~3.2!. The embedding condition~3.4! is fulfilled
on the single extremalw0 by construction.

2. Embedded extremals
The embedded extremalsw̃(z,z̄,u) can be determined by a straightforward integration of

equations

]zw̃~z,z̄,u!5F5]wS̄~z,z̄,w5w̃~z,z̄,u!!52 sinS w̃

2 D , ~6.15!

] z̄w̃~z,z̄,u!5F̄5]wS~z,z̄,w5w̃~z,z̄,u!!52 sinS w̃

2 D , ~6.16!

which leads to

E w̃ dw

2 sin~w/2!
5 ln tanS w̃

4 D5z1 f̄ ~ z̄!,

E w̃ dw

2 sin~w/2!
5 ln tanS w̃

4 D5 z̄1 f ~z!.

Obviously this system of algebraic equations can only be satisfied by the functionsf (z)5z1u
and f̄ ( z̄)5 z̄1u, u5const, which gives the field of extremals:

w̃~z,z̄,u!54 arctan~exp~z1 z̄1u!!,

parametrized by one parameteru.
However, here we would like to show how the embedded extremals can be calculated

recursive formalism developed above, which is necessary if we are not able to determi
DeDonder and Weyl Hamilton–Jacobi functions or the corresponding family of extremals e
itly.
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First we calculate the first three orders (L0 ,L1 ,L2) of the expansion~6.3! of ỹ(z,z̄,u) in u
which will turn out to be sufficient to guess the general result for the embedded extremalsỹ. From
Eqs.~6.1!–~6.3! we get

]zỹ5Ā2ỹ1
1

2!
Ā3ỹ21

1

3!
Ā4ỹ31O~u4!,

] z̄ỹ5A2ỹ1
1

2!
A3ỹ21

1

3!
A4ỹ31O~u4!,

in which the formal expansion

ỹ~z,z̄,u!5w̃~z,z̄,u!2w0~z,z̄!5u(
k50

`

Lk~z,z̄!
uk

k!

has to be inserted. For the first orders we obtain

u1: ]zL05
1

u
]z~u!L0 ,

] z̄L05
1

u
] z̄~u!L0 ,

u2: ]zL15
1

u
]z~u!L11

1

2!u
]zS x3

u DL0
2,

] z̄L15
1

u
] z̄~u!L11

1

2!u
] z̄S x3

u DL0
2,

u3: ]zL252
1

2!u
]z~u!L212

1

3!u2 ]zS x4

u DL0
314

1

2!u
]zS x3

u DL0L1 ,

] z̄L252
1

2!u
] z̄~u!L212

1

3!u2 ] z̄S x4

u DL0
314

1

2!u
] z̄S x3

u DL0L1 .

The solutions of these equations are determined up to a constant which may be absorbe
redefinition of the parameteru:

L052u5
2

cosh~ l !
, L152x352

tanh~ l !

cosh~ l !
5

d

dl S 1

cosh~ l ! D ,

L25
8

3
x414

x3
2

u
2

1

3
u5

4

3 cosh2~ l ! S sinh2~ l !2
1

2
cosh2~ l ! D5

d2

dl 2 S 2

3 cosh~ l ! D .

From these coefficients we can already guess the form of the coefficients of the higher ord

Lk5
1

k11

dk

dl k S 2

cosh~ l ! D ,

from which we obtain the embedded extremals:
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w̃5w01u(
k50

`
uk

~k11!!

dk

dl k S 2

cosh~ l ! D
5w01E l

(
k50

`
uk11

~k11!!

dk11

dl 8k11 S 2

cosh~ l 8! D dl 8

5w01E l 2

cosh~ l 81u!
dl 82E l 2

cosh~ l 8!
dl 8

54 arctan~exp~ l 1u!!. ~6.17!

Obviously we get a one-parametric field of extremals satisfying the EL equations, as well
equations~6.15! and ~6.16!. It covers a strip of the extended configuration space: 0,w,2p, z,z̄
PR. By translationsw→w12p the wholeR3 parametrized byz,z̄, wPR can be covered by fields
of these extremals with the exception of the parallel planesw52kp, k50,61,62,..., which are
solutions of the equations of motion, too. These are the so-called ‘‘vacuum’’ solutions in
sine–Gordon theory. So this set of fields of extremals, counted by the integer numberk can be
completed by these planesw52kp, k50,61,62,..., so that the whole spaceR3 is covered by
extremals.

VII. WAVE FRONTS

In order to determine the wave fronts we have to turn to Carathe´odory’s framework, i.e., it is
necessary to transform the DeDonder and Weyl Hamilton–Jacobi functionsS(z,z̄,w) and
S̄(z,z̄,w) appearing in the expansion~3.5! and by the series~3.16! into those of Carathe´odory
Sz(z,z̄,w), Sz̄(z,z̄,w), namelySz andSz̄ of Eq. ~2.6!.

A. Carathé odory’s Hamilton–Jacobi functions

As stated in Sec. II, the two Hamiltonian formulations are algebraically equivalent for fi
with only one field component. Thus the Hamiltonian densityH and the momentap andp̄ are the
same in both formalisms. Therefore we can use the equality of the momenta in order to det
Sz andSz̄ from the functionsS and S̄ calculated above.

We therefore return to the transversality conditions in~2.4! and ~2.6! and obtain

] z̄S
z̄]wSz2] z̄S

z]wSz̄5p5]wS5(
i 50

`
1

i !
Ai 11yi , ~7.1!

]zS
z]wSz̄2]zS

z̄]wSz5 p̄5]wS̄5(
i 50

`
1

i !
Āi 11yi . ~7.2!

Inserting the functionsSz andSz̄ expanded in powers ofy5w2w0(z,z̄), like S and S̄,

Sz~z,z̄,w!5(
i 50

`
1

i !
Ai

z~z,z̄!yi , Sz̄~z,z̄,w!5(
i 50

`
1

i !
Ai

z̄~z,z̄!yi , ~7.3!

and comparing powers ofyn yields

Ān112(
i 50

n S n
i D $@]zAi

z2Ai 11
z ]zw0#An2 i 11

z̄ 2@]zAi
z̄2Ai 11

z̄ ]zw0#An2 i 11
z %50,

An111(
i 50

n S n
i D $@] z̄Ai

z2Ai 11
z ] z̄w0#An2 i 11

z̄ 2@] z̄Ai
z̄2Ai 11

z̄ ] z̄w0#An2 i 11
z %50.
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These equations determine the coefficientsAn11
z (z,z̄) andAn11

z̄ (z,z̄) recursively:

~]zA0
z!An11

z̄ 2~]zA0
z̄!An11

z 5Ān111Inh1
n11~A0

z ,A0
z̄,...,An

z ,An
z̄!, ~7.4!

~] z̄A0
z̄!An11

z 2~] z̄A0
z!An11

z̄ 5An111Inh2
n11~A0

z ,A0
z̄,...,An

z ,An
z̄!. ~7.5!

The functions Inh1
n11 and Inh2

n11 depend only on the coefficients of lower powers ofy, namely
A0

z , A0
z̄,...,An

z , An
z̄. They vanish forn50: Inh1

15Inh2
150. Forn51 we get

Inh1
25A1

z̄]zA1
z2A1

z]zA1
z̄ and Inh2

252A1
z̄] z̄A1

z1A1
z] z̄A1

z̄,

and for arbitrary ordersn.1

Inh1
n1152 (

i 51

n21 S n
i D $@]zAi

z2Ai 11
z ]zw0#An2 i 11

z̄ 2@]zAi
z̄2Ai 11

z̄ ]zw0#An2 i 11
z %1A1

z̄]zAn
z2A1

z]zAn
z̄,

~7.6!

Inh2
n1151 (

i 51

n21 S n
i D $@] z̄Ai

z2Ai 11
z ] z̄w0#An2 i 11

z̄ 2@] z̄Ai
z̄2Ai 11

z̄ ] z̄w0#An2 i 11
z %2A1

z̄] z̄An
z1A1

z] z̄An
z̄.

~7.7!

The determinant

D5~] z̄A0
z̄!~]zA0

z!2~]zA0
z̄!~] z̄A0

z!5Luw5w0
5L05]zw0] z̄w02V~w0!

of this linear system ofalgebraic equations is assumed to be not zero. We consider only th
extremalsw0 and regions in the Minkowski space where the Lagrange densityLuw5w0

does not
vanish. It makes sense to exclude those focal points and caustics, whereLuw5w0

50, because the
transversality relations of the wave fronts and extremals are violated otherwise.1

To obtain the functionsA0
z̄ and A0

z we have to consider the zeroth order of the Hamilto
Jacobi equation in~2.6!:

~] z̄A0
z̄!~]zA0

z!2~]zA0
z̄!~] z̄A0

z!5]zw0] z̄w02V~w0!5L0 . ~7.8!

If L0Þ0, then one of the functionsA0
z andA0

z̄ can be chosen arbitrarily and the other one has
be calculated according to this PDE. For example, we may chooseA0

z̄5 z̄ andA0
z5*L0 dz. In the

case of the kink solutionw0564 arctan(exp(z1z̄)) for the sine–Gordon theory we getA0
z

58 tanh(z1z̄).
The Hamilton–Jacobi equation of Carathe´odory is satisfied automatically in any order ofyn,

n>1, because the corresponding equation of DeDonder and Weyl is fulfilled:

]w$]zS
z] z̄S

z̄2]zS
z̄] z̄S

z1H%5]zp1] z̄p̄1]wH5]w$]zS1] z̄S̄1H%50.

The integrability condition holds, too, because it imposes a constraint on the slope functions
are independent of the special Hamiltonian description for one component field theories.

The linear system of equations forAz(z,z̄) andAz̄(z,z̄) can be solved easily:

An11
z 5

1

L0
@~]zA0

z!An111~] z̄A0
z!Ān11#1Inh̃1

n11~A0
z ,A0

z̄,...,An
z ,An

z̄!, ~7.9!

An11
z̄ 5

1

L0
@~]zA0

z̄!An111~] z̄A0
z̄!Ān11#1Inh̃2

n11~A0
z ,A0

z̄,...,An
z ,An

z̄!. ~7.10!
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The functions Inh˜
1
n11 and Inh̃2

n11 are linear combinations of the inhomogeneities~7.6!, and~7.7!
may easily be determined. So we get, e.g., for the coefficientsA1

z , A1
z̄ andA2

z , A2
z̄ the expressions

A1
z5

1

L0
@~]zA0

z!A11~] z̄A0
z!Ā1#5

@~]zA0
z!] z̄w01~] z̄A0

z!]zw0#

]zw0] z̄w02V~w0!
, ~7.11!

A1
z̄5

1

L0
@~]zA0

z̄!A11~] z̄A0
z̄!Ā1#5

@~]zA0
z̄!] z̄w01~] z̄A0

z̄!]zw0#

]zw0] z̄w02V~w0!
, ~7.12!

and

A2
z5

1

L0
@~]zA0

z!~A22A1
z̄] z̄A1

z1A1
z] z̄A1

z̄!1~] z̄A0
z!~Ā21A1

z̄]zA1
z2A1

z]zA1
z̄!#, ~7.13!

A2
z̄5

1

L0
@~]zA0

z̄!~A22A1
z̄] z̄A1

z1A1
z] z̄A1

z̄!1~] z̄A0
z̄!~Ā21A1

z̄]zA1
z2A1

z]zA1
z̄!#. ~7.14!

The two coefficientsA0
z and Ā0

z̄ have to fulfill only one equation~7.8!, because the closed two
form V5dSz∧dSz̄ is invariant under transformationsSz→Ŝz(Sz,Sz̄) and Sz̄→Ŝz̄(Sz,Sz̄) with a
Jacobi determinant that equals one. A field of wave fronts given by

Sz~z,z̄,w!5(
i 50

`
1

i !
Ai

z~z,z̄!~w2w0~z,z̄!! i5s5const, ~7.15!

Sz̄~z,z̄,w!5(
i 50

`
1

i !
Ai

z̄~z,z̄!~w2w0~z,z̄!! i5s̄5const ~7.16!

is not changed by this transformation, but only reparametrized,22 s→ŝ5Ŝz(s,s̄) and s̄→sC

5Ŝz̄(s,s̄).

B. An explicit representation for the wave fronts

In order to obtain an explicit expression for theone-dimensionalwave frontsz(s,s̄,w) and
z̄(s,s̄,w)—s,s̄ fixed—we have to invert the relations~7.16! which can be regarded as th
defining equations for these functionsz(w) and z̄(w). Here they are assumed to be analy
functions ofw:

z5(
i 50

`
1

i !
a i~s,s̄ !~ ŷ5w2ŵ0~s,s̄ !! i , z̄5(

i 50

`
1

i !
ā i~s,s̄ !~ ŷ5w2ŵ0~s,s̄ !! i ,

i.e., they can be expanded in powers of the differenceŷ5w2ŵ0(s,s̄), where ŵ0(s,s̄)
5w0(z(s,s̄),z̄(s,s̄)) denotes the extremal in terms of the variabless,s̄. Obviously there is a
difference between the quantitiesy5w2w0(z,z̄) and ŷ5w2ŵ0(s,s̄). Thus in order to deter-
mine the coefficientsan , ān we have to insert this series into the defining equations for the w
fronts ~7.15! and ~7.16!:

s5(
i 50

`
yi

i !
Ai

zS z5a0~s,s̄ !1 (
n51

`
ŷn

n!
an~s,s̄ !,z̄5ā0~s,s̄ !1 (

m51

`
ŷm

m!
ām~s,s̄ !D , ~7.17!

s̄5(
i 50

`
yi

i !
Ai

z̄S z5a0~s,s̄ !1 (
n51

`
ŷn

n!
an~s,s̄ !,z̄5ā0~s,s̄ !1 (

m51

`
ŷm

m!
ām~s,s̄ !D , ~7.18!
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where the variablesy have to be expanded in powers ofŷ, too:

y5w2w0S z5a0~s,s̄ !1 (
n51

`
ŷn

n!
an~s,s̄ !,z̄5ā0~s,s̄ !1 (

m51

`
ŷm

m!
ām~s,s̄ !D . ~7.19!

The wave fronts on the extremalsa0(s,s̄) and ā0(s,s̄) are determined by the zeroth-order
Eqs.~7.17!–~7.19!:

s5A0
z~z5a0~s,s̄ !,z̄5ā0~s,s̄ !! and s̄5A0

z̄~z5a0~s,s̄ !,z̄5ā0~s,ā !!. ~7.20!

For the sine–Gordon theory we obtain from the choice we have made for the functionsA0
z andA0

z̄

z̄5ā0(s,s̄)5s andz5a0(s,s̄)5artanh(s̄)2s.
Locally the functionsa0(s,s̄) and ā0(s,s̄) are determined uniquely, because the Jac

determinantD5(] z̄A0
z̄)(]zA0

z)2(]zA0
z̄)(] z̄A0

z)5Luw5ŵ0
of this transformationz,z̄→s,s̄ does not

vanish, as assumed.
Expanding the expressions~7.17! in ŷn, inserting the series~7.19!, and separating the coeffi

cientsan(s,s̄) andān(s,s̄) we obtain a pair of linear algebraic equations for these coefficie
which can be solved like the system~7.4! and~7.5!. After inserting the coefficientsA1 , Ā1 ,...,An ,
Ān of the DeDonder and Weyl Hamilton–Jacobi theory we get the final result forn>2:

~7.21!

~7.22!

The term ‘‘deriv’’ in the inhomogeneities denotes the derivatives ofAi
z andAi

z̄, i 51,...,n21 with
respect toz and z̄. The functionsAn

z and An
z̄ and their derivatives are short-cuts of, e.g.,]zAn

z

5]zAn
zuz5a0(s,s̄),z̄5ā0(s,s̄) and thus depend ons,s̄ only.

Obviously a not degenerated transformationz,z̄→s5Sz, s̄5Sz̄ only exists if the Lagrangian
L0 and the Hamiltonian densitiesH0 on the extremals do not vanish.

The coefficients of zeroth order are given in~7.20!; those of the next two powers inŷ are

a1~s,s̄ !5
] z̄w0

H0
5

] z̄w0

]zw0] z̄w01V~w0!
, ā1~s,s̄ !5

]zw0

H0
5

]zw0

]zw0] z̄w01V~w0!
, ~7.23!

and

a2~s,s̄ !5
V~w0!

H0
3 @2L0] z̄ ln~u!1] z̄~]zw0] z̄w0!#

2
] z̄w0] z̄w0

H0
3 @2L0]z ln~u!1]z~]zw0] z̄w0!#1

] z̄w0

H0
2 ]wV~w0!, ~7.24!

ā2~s,s̄ !5
V~w0!

H0
3 @2L0]z ln~u!1]z~]zw0] z̄w0!#

2
]zw0]zw0

H0
3 @2L0] z̄ ln~u!1] z̄~]zw0] z̄w0!#1

]zw0

H0
2 ]wV~w0!. ~7.25!
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Thus the wave frontsz(s,s̄,w) and z̄(s,s̄,w) can be calculated from the coefficientsAn andĀn

of DeDonder and Weyl’s Hamilton–Jacobi framework and the coefficientsA0
z andA0

z̄ of Carath-
éodory’s one. Carathe´odory’s coefficientsAn

z and An
z̄, n>1, are not necessarily involved in th

final expressions~7.21! and ~7.22!, since they can be substituted by those of DeDonder
Weyl—determined by Ba¨cklund transformations.

C. An alternative way to determine the wave fronts

If one is not interested in obtaining an explicit representation of Carathe´odory’s Hamilton–
Jacobi functionsSz(z,z̄,w) andSz̄(z,z̄,w), it is possible to get the coefficientsan and ân of the
last paragraph much more easily. However, this method can only be applied if the Hamilt
densityH does not vanish! IfH50, we have to calculate Carathe´odory’s Hamilton–Jacobi func-
tions Sz(z,z̄,w) andSz̄(z,z̄,w) as described above.

For nonvanishing Hamiltonian densitiesH we may change the independent variablesz and z̄
to s5Sz(z,z̄,w) and s̄5Sz̄(z,z̄,w), while the fieldw remains unchanged. The functional dete
minant of this transformation is justH according to Carathe´odory’s Hamilton–Jacobi equatio
~2.6!. Then the wave frontsz5z(w,s,s̄) andz̄5 z̄(w,s,s̄) can be determined explicitly from th
equations

]wz~w,s,s̄ !5
p

H , ]wz̄~w,s,s̄ !5
p̄

H .

These equations are obtained by comparing the coefficients of the wedge products dw∧ds and
dw∧ds in the equation~2.6!, if the variabless5Sz and s̄5Sz̄ and w are regarded as the inde
pendent ones.23 So we can, e.g., immediately determine the coefficients of the first-ordera1 and
ā1 in ~7.23!. The remaining coefficientsan and ān in ~7.22! and ~7.21! can be determined by
expanding the DeDonder and Weyl momentap andp̄ and the Hamiltonian densityH in powers of
ŷ.

D. An example: The sine–Gordon theory

We return to our example in Sec. VI in order to illustrate the formalism discussed abov

1. Carathé odory’s Hamilton –Jacobi functions

To obtain Carathe´odory’s Hamilton–Jacobi functionsSz(z,z̄,w) andSz̄(z,z̄,w) from those of
DeDonder and Weyl,~6.13! and~6.14!, we first have to solve the equation~7.8! in order to get the
coefficientsA0

z(z,z̄) and A0
z̄(z,z̄) of order y0. Because in our example the Lagrangian dens

depends only onl 5z1 z̄ on the extremals, it is useful to transform the independent variablesz and
z̄ into l 5z1 z̄ and l̄ 5z2 z̄:

~] l̄ A0
z!~] lA0

z̄!2~] l̄ A0
z̄!~] lA0

z!5
1

2
L05

4

cosh2~ l !
.

Due to the invariance of the two-formV5dSz∧dSz̄, with respect to the transformationsSz

→Ŝz(Sz,Sz̄) andSz̄→Ŝz̄(Sz,Sz̄) with a Jacobi determinant equal to one we can choose any s
solution of this equation without any loss of generality, e.g.,

A0
z5A0

z~ l !54 tanh~z1 z̄!, A0
z̄5A0

z̄52 l̄ 5 z̄2z.

Inserting this result into the equations~7.11! and ~7.12! we get the coefficients of first order,

A1
z5A1

z~ l !5
2

cosh~ l !
, A1

z̄50,
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which leads, using Eqs.~7.9!, ~7.10!, ~7.13!, and ~7.14!, to the coefficients of second and thir
order iny:

A2
z5A2

z~ l !52tanh~ l !, A3
z5A3

z~ l !52
1

2 cosh~ l !
, A2

z̄5A3
z̄50. ~7.26!

Inspecting the series of these coefficients we get an ansatz for those of all ordersyn, n>1,

A2n
z 5A2n

z ~ l !54
~21!n

22n tanh~ l !, A2n21
z 5A2n21

z ~ l !54
~21!n

22n21

1

cosh~ l !
, An

z̄50,

from which we obtain Carathe´odory’s Hamilton–Jacobi functionsSz(z,z̄,w) and Sz̄(z,z̄,w) by
determining the sum~7.3!:

S~z,z̄,w!54S (
n50

`
~21!ny2n

n!22n D tanh~ l !14S (
n50

`
~21!ny2n11

n!22n11 D 1

cosh~ l !

54 cosS y

2D tanh~ l !14 sinS y

2D 1

cosh~ l !
524 cosS w

2 D , ~7.27!

Sz̄~z,z̄,w!5 z̄2z. ~7.28!

These functions satisfy Carathe´odory’s Hamilton–Jacobi equation~3.1! and the integrability con-
dition ~3.2! as well as the embedding conditions~3.3! and~3.4!. The solutions~7.27! and~7.28! for
Sz andSz̄ are the only ones provided that we have fixed the coefficientsA0

z andA0
z̄, because Eqs

~7.9!, ~7.10!, ~7.13!, and ~7.14! lead to unique solutions. The general solution of the system
PDEs ~2.6!, ~3.2!, and ~3.4! is obtained by applying arbitrary smooth transformationsSz

→S(Sz,Sz̄) and Sz̄→S̄(Sz,Sz̄) to the functions~7.27! and ~7.28! with a Jacobi determinan
]1S]2S̄2]2S]1S̄51:

Sz~z,z̄,w!5S~ z̄2z,24 cos~w/2!! and Sz̄~z,z̄,w!5S̄~ z̄2z,24 cos~w/2!!. ~7.29!

2. An explicit representation of the wave fronts—the singular case

Carathe´odory’s Hamilton–Jacobi functionsSz andSz̄ are given now by the equations~7.29!.
If we would like to have them in the explicit formz(s,s̄,w) andz̄(s,s̄,w), we have to invert the
equations~7.15! and ~7.16!. Doing this we get only the zeroth-order coefficients,

a0~s,s̄ !5
1

2 S artanh
s

4
1s̄ D and ā0~s,s̄ !5

1

2 S artanh
s

4
2s̄ D ,

without any difficulties. All the other coefficientsan and ān , n>1, do not exist, because the
Hamiltonian densityH05p0p̄01V(w0) with V052(cos(w)21) vanishes on the given extrema
w0 @see~7.21! and ~7.22!#!

From the results~7.27! and~7.28! it becomes obvious why this happens. The function~7.28!
depends only on the differencez2 z̄ whereas~7.27! does not depend on the variablesz andz̄ at all!
Therefore it is impossible to invert the equations~7.15! and~7.16! to get the functionsz(s,s̄,w)
and z̄(s,s̄,w) at every point (s,s̄) of the parameter spaceY5$(s,s̄)%. Hence the wave fronts
are only defined at points (s,s̄,w) for which

w5
!

g~s!52 arccos~s/4!, 24<s<4,
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holds. The real parameters̄ remains arbitrary. Nevertheless the wave fronts are one dimens
straight lines parallel to each other:z2 z̄5s̄5const. They cover the extended configuration sp
M2115$z,z̄,w% as required, but the wave fronts cannot be given as functionsz(s,s̄,w) and
z̄(s,s̄,w) because they are parallel to the surfacesw5const.

Due to the transversality condition~2.10!, the two-parametric field of 1D wave fronts~see Fig.
1!,

z2 z̄5s̄5const, w5g~s!5const, ~7.30!

and the one-parametric set of the 2D extremalsw̃54 arctan (exp (l1u)) intersect each other trans
versally everywhere inM2115$z,z̄,w%, because the Lagrangian densityL differs from zero in
M211 contrary to the Hamiltonian density which vanishes everywhere inM211 . The angle
/(w,e) between the basis vectorW of the tangent spaceTPW of the wave front

w52 sin~w/2!~]z1] z̄!

and an arbitrary nonvanishing vectore in the tangent spaceTPE of the extremal parametrized b
the variablesl and l̄,

e5l]z1l̄] z̄12~l1l̄!sin~w/2!]w , with ulu1ul̄u.0,

at the pointP5(z,z̄,w) is given by

/~w,e!5arccosS ~w,e!

uwuueu D 5arccosS l1l̄

A2Al21l̄214~l1l̄!2 sin2~w/2!
D ,

the minimum of which with respect to a variation of the parametersl andl̄ gives the angle unde
which the wavefront intersects the extremal atP:

FIG. 1. Shown is the ‘‘singular’’ case~7.30!. The extremals are plotted by solid line and the wave fronts by dotted li
The axes are the field variablew and the independent variablel 5g(x2vt) which parametrizes the kink solution@see Eq.
~5.7!#.
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/~W,E!5min/~w,e!5arccosS 1

A118 sin2~w/2!
D 5arccosS 1

A92s2/2
D ,

/~W,E! is constant on a given wave fronts5const ands̄5const. This angle/~W,E! takes its
minimum /~W,E!50 for the valuesw5wk52kp, k50,61,62,... . So in the limitz1 z̄5 l
→6` the transversality condition is violated, since the wave fronts and extremals~6.17! are
asymptotically parallel at all pointsP in the planes$z,z̄PR,w52kp%PM211 parametrized by
the integer numberk50,61,62,... . Any of these planes separates the two one-parameter
w̃5arctan (exp(l1u))12(k21)p and w̃5arctan (exp(l1u))12kp. Every extremal of these field
‘‘touches’’ the plane w52kp in the limits l→2` or l→`. The maximum value for
/~W,E!5arccos~1

3! indicates that the wave fronts and the extremals are never perpendicu
each other.

Notice that the singular situation discussed above is essentially a coordinate singular
sulting from the singular change of variablesz andz̄ to s5Sz(z,z̄,w) ands̄5Sz̄(z,z̄,w). It shows
that we cannot choose the parameterss, s̄, andw as independent variables to represent the w
fronts. The wave fronts are not degenerated at all.

However, the transversality between the wave fronts and extremals is violated in this ca
the boundaries of the regionsMk5$2kp,w,2(k11)p,z,z̄PR%, where the fields of extremal
~6.17! are defined—a singularity that cannot be circumvented by a coordinate transformati

These results can be obtained in a straightforward manner by using the DeDonder
Hamilton–Jacobi functionsS(z,z̄,w) and S̄(z,z̄,w) from ~6.13! and ~6.14!.

The Hamiltonian densityH vanishes on the extremalsw̃(z,z̄,u) of ~6.17!:

H5]wS]wS̄1V~w!5~2 sin~w/2!!222~12cos~w!!50.

Notice that the ‘‘usual’’ canonical Hamiltonian density,

Hcan~x,t !5
1

2
p21

1

2
~]xw!21~12cos~w!! with p5

]L
]~] tw!

,

does not vanish on the kink solutionw0 , because the Legendre transformation is applied only w
respect to the time derivatives] tw of the fieldw and does not affect its spatial derivative]xw. This
underlines again that the energy densityHcan is different from the ‘‘covariant’’ Hamiltonian den-
sity H in ~2.3!, which we use in this article.

Carathe´odory’s Hamilton–Jacobi equation~2.6! on the field of extremals~6.17!,

]zS
z] z̄S

z̄2]zS
z̄] z̄S

z52H50, ~7.31!

the solutions of which determine the wave fronts transversal to the extremals we are interes
shows that the change of the variablesz andz̄ to s5Sz(z,z̄,w) ands̄5Sz̄(z,z̄,w) is not a regular
one, becauseH is nothing but the functional determinant of this transformation.

The general solution of Eq.~7.31! is

Sz5(
z

~ f ~z,z̄!,w!, Sz̄5(
z̄

~ f ~z,z̄!,w!,

with an arbitrary smooth functionf (z,z̄). Inserting this result into the conditions on the momen
~2.6!,

p52 sin~w/2!5] z̄S
z̄]wSz2] z̄S

z]wSz̄51~]zf !S ] f(
z

]w(
z̄

2]w(
z

] f(
z̄ D ,
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p̄52 sin~w/2!5]zS
z]wSz̄2]zS

z̄]wSz52~] z̄f !S ] f(
z

]w(
z̄

2]w(
z

] f(
z̄ D ,

shows, after subtracting these PDEs from each other, that the functionf depends on the differenc
l̄ 5z2 z̄ only: f 5 f (z2 z̄). Due to the invariance of the basic two-form~2.5! with respect to
symplectic transformations we may choosef 5z2 z̄, Sz524 cos(w/2), andS z̄5 z̄2z without any
loss of generality. This result coincides with~7.27! and ~7.28!.

3. An explicit representation of the wave fronts—the regular case

If we would like to circumvent the spurious singularity discussed above, we have to e
that the Hamiltonian density does not vanish inM211 , e.g., by adding a global constantc0 to the
Lagrangian density:

L⇒L5]zw] z̄w12~12cos~w!!1c0 , ~7.32!

which does not influence the equation of motion. More generally, we can add any exact two
G5d( f (z,z̄)dz1 f̄ (z,z̄)dz̄) to the basic form~2.2!, V→V1G, without affecting the momentap
andp̄, the slope functionsv andv̄ and the equation of motion, but modifying the Hamiltonian a
the Lagrangian densitiesH, L:

H→H1] z̄f 2]zf̄ , L→L2] z̄f 1]zf̄ .

We see that the form of the wave fronts is influenced by adding such a termG while the field of
extremals~6.17! remains unchanged—a property which is known in mechanics, too. For the
of simplicity we choosef 50 and f̄ 5c0z, which shiftsL andH merely by a constantc0 .

With the exception of the coefficientsA0 and Ā0 of zeroth order, which are of no interest i
determing the embedded extremals and the corresponding wave fronts, the DeDonder an
Hamilton–Jacobi functionsS(z,z̄,w) and S̄(z,z̄,w) and the resulting momentap5]wS and p̄
5]wS̄ are not affected by this shift contrary to the wave fronts.

Using Carathe´odory’s Hamilton–Jacobi equation~2.6!,

]zS
z] z̄S

z̄2]zS
z̄] z̄S

z52H[c0 ,

which represents nothing but the determinant of the linear system of equations@see~2.6!#

p52 sin~w/2!5] z̄S
z̄]wSz2] z̄S

z]wSz̄, ~7.33!

p̄52 sin~w/2!5]zS
z]wSz̄2]zS

z̄]wSz. ~7.34!

For the functions]wSz and]wSz̄ we get a system of decoupled linear PDEs for the functionsSz

andSz̄

~H]w1p]z1 p̄] z̄!S
z5~2c0]w12 sin~w/2!@]z1] z̄# !Sz50,

~H]w1p]z1 p̄] z̄!S
z̄5~2c0]w12 sin~w/2!@]z1] z̄# !Sz̄50.

The general solution

Sz5( ~2c0z/212 cos~w/2!,2c0z̄/212 cos~w/2!!,

Sz̄5(
—

~2c0z/212 cos~w/2!,2c0z̄/212 cos~w/2!!
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of this system PDEs is obtained by the method of characteristics. The functionsS andS̄ have only
to satisfy Carathe´odory’s Hamilton–Jacobi equation~2.6!. Taking the invariance with respect t
symplectic transformations into account we may choose the functions

Sz5A2@ z̄2~4/c0!cos~w/2!# and Sz̄5A2@2c0z/212 cos~w/2!# ~7.35!

without any loss of generality.
Obviously the transformation

~z,z̄!→~s5Sz~z,z̄,w!,s̄5Sz̄~z,z̄,w!!

exists now, leading to an explicit representation of the wave fronts:

z~s,s̄,w!52
A2s̄

c0
1

4

c0
cos~w/2!, z̄~s,s̄,w!5

s

A2
1

4

c0
cos~w/2! ~7.36!

with some properties different from those obtained in the ‘‘singular’’ case: the 1D wave front
not straight lines in the extended configuration space. Subtracting Eqs.~7.36! from each other
shows that they lie in planes parallel to thel-axis like in the singular case.

Similar to the ‘‘singular’’ case, the angle/(w,e) between the basis vector of the tange
spaceTPW of the wave front

w52 sin~w/2!~]z1] z̄!2c0]w

and an arbitrary nonvanishing vector in the tangent spaceTPE of the extremal

e5l]z1l̄] z̄12~l1l̄!sin~w/2!]w , with ulu1ul̄u.0

at the point (z,z̄,w) is given by

/~w,e!5arccosS ~w,e!

uwuueu D 5arccosS 2~12c0!~l1l̄!sin~w/2!

Ac0
218 sin2~w/2!Al21l̄214~l1l̄!2 sin2~w/2!

D ,

the minimum of which with respect to a variation of the parametersl,l̄ gives the angle/~W,E!
in which the one-dimensional wavefront intersects the two-dimensional extremal atP:

/~W,E!5min/~w,x!5arccosS 2A2u12c0uusin~w/2!u

Ac0
218 sin2~w/2!A118 sin2~w/2!

D .

Obviously in the casec051 the wave fronts cross the extremals alwaysperpendicularly, because
/~W,E!5p/2 holdseverywherein M211 ~see Fig. 2!.

For c0Þ0,1 the maximum value/~W,E!5p/2 is taken only forwk52kp, k50,61,62,...,
contrary to the singular casec050, where for these values of the field variable the minimum
the angle/~W,E! vanishes, indicating that the transversality relation between the wave front
extremals is violated there. The angle/~W,E! has a local minimum at those points whe
ucos~/~W,E!!u becomes maximal:

ucos~/~W,E!min 1!u5
2A2u12c0u

3Ac0
218

, ucos~/~W,E!min 2!u5
u12c0u
11uc0u

. ~7.37!

We find the first minima/(W,E)min 1 on planesw5(2k11)p, k50,61,62,..., where the cosine
of the field variable vanishes. They do exist for all values of the parameterc0PR\$0%. For c0
                                                                                                                



l to
the

ith the

ts

tion

e,
ue

s
grang-
at all.

mulas

the

294 J. Math. Phys., Vol. 44, No. 1, January 2003 Böttger, Wissowski, and Kastrup

                    
Þ28 the angle/(W,E)min 1 differs from zero, i.e., the transversality relation is fulfilled. Ifc0

528, both minima~7.37! coincide, therefore this case is discussed below.
The second minima/(W,E)min 2 exist only in the rangeuc0u<8, c0Þ0. These minima lie at

values of the field variable:w52kp62 arcsin(Auc0u/8), k50,61,62,... . If c0,0, this angle
vanishes, whereas it differs from zero for allc0.0.

It results that in the casec0.0 or c0,28 the wave fronts and extremals are never paralle
each other (/(W,E)min 1,2Þ0). This guarantees the transversality relations everywhere in
extended configuration spaceM211—even on the planeswk52kp, k50,61,62,... that separate
the one parameter fields of extremals—contrary to the singular case. This result coincides w
fact that both the Lagrangian and the Hamiltonian densities do not vanish inM211 for c0.0 or
c0,28.

For 28<c0,0 the minimum/(W,E)min 2 is equal to zero. This happens just for the poin
on the plane

w52kp62 arcsin~A2c0/8!, k50,61,62,..., ~7.38!

where the shifted Lagrangian density~7.32! vanishes, as expected from the transversality rela
~2.10! ~see Fig. 3!. The casec0528 is a special one: here the two planes~7.38! that exist in every
region 2kp,w,2(k11)p, z, z̄PR, k50,61,62,..., coincide. Hence we get only one plan
w52kp1p in the range 2kp,w,2(k11)p, where the transversality relations are violated d
to a vanishing shifted Lagrangian density.

The dependence of the angle/~W,E! on the constantc0 shows that the geometrical propertie
of the wave fronts and even the transversality relation may be affected by changes of the La
ian density that do not influence the equation of motions and the corresponding extremals

Now we would like to show how these results can be obtained using the recursion for
given in Secs. VII A and VII B. We first calculate Carathe´odory’s Hamilton–Jacobi functions
Sz(z,z̄,w), Sz̄(z,z̄,w) from those of DeDonder and Weyl,~6.13! and ~6.14!. For the sake of
simplicity we choose the shiftc0522 in order to eliminate the constant 2 in the Lagrangian of
sine–Gordon modelL5]zw] z̄w12(12cos(w)).

The coefficientsA0
z(z,z̄) andA0

z̄(z,z̄) can be chosen as special solutions,

FIG. 2. Shown is the regular case forc051 @see Eq.~7.32!#. Here the wave fronts intersect the extremalseverywhere
perpendicularly.
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A0
z5A0

z~ l !54 tanh~ l !2 l , A0
z̄5A0

z̄52 l̄ , ~7.39!

of the equation~7.8! written in terms of the variablesl 5z1 z̄ and l̄ 5z2 z̄:

~] l̄ A0
z!~] lA0

z̄!2~] l̄ A0
z̄!~] lA0

z!5
L0

2
5

4

cosh~ l !221.

The equations~7.11! and ~7.12! yield the coefficients of first order,

A1
z5A1

z~ l !5
2

cosh~ l !
, A1

z̄50,

and the relations~7.9!, ~7.10!, ~7.13!, and~7.14! lead to those of second and third order iny. They
coincide with those of the singular case~7.26! since the ratios (]zA0

z)/L and (] z̄A0
z)/L are the

same in the regular and in the singular case. The same holds for the coefficientsAn
z(z,z̄) and

An
z̄(z,z̄) of higher orders iny. So we get forn.0

A2n
z 5A2n

z ~ l !54
~21!n

22n tanh~ l !, A2n21
z 5A2n21

z ~ l !54
~21!n

22n21

1

cosh~ l !
, An

z̄50,

which combine the expressions~7.39! and yield the Hamilton–Jacobi functionsSz(z,z̄,w) and
Sz̄(z,z̄,w):

FIG. 3. Shown is the regular case forc0522 @see Eq.~7.32!#. Here the transversality relations are fulfilled outside t
planesw52kp6p/3, k50,61,62,..., where the extremals and wave fronts are parallel since the Lagrangian d
vanishes there. Notice that the transversality relations are fulfilled on the boundaries of the regionsMk5$2kp,w
,2(k11)p,z,z̄PR%, where the fields of extremals~6.17! are defined. Therefore the wave fronts can be continued fr
one of these regions to the next smoothly, contrary to the extremals.
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S~z,z̄,w!54S (
n50

`
~21!ny2n

n!22n D tanh~ l !14S (
n50

`
~21!ny2n11

n!22n11 D 1

cosh~ l !
2 l

54 cosS y

2D tanh~ l !14 sinS y

2D 1

cosh~ l !
2 l

524 cosS w

2 D2z2 z̄, ~7.40!

Sz̄~z,z̄,w!5 z̄2z. ~7.41!

Both functionsSz andSz̄ satisfy Carathe´odory’s Hamilton–Jacobi equation~3.1!, the integrability
criterion ~3.2!, and the embedding conditions~3.4!. They are related to the solutions~7.35! by the
transformation

Sz→S̃z52
1

A2
~Sz1Sz̄!, Sz̄→S̃z̄5

1

A2
~Sz̄2Sz!. ~7.42!

The wave frontsz(s,s̄,w) and z̄(s,s̄,w) can be determined recursively following the ide
discussed Sec. VII A.

The coefficientsa0(s,s̄) andā0(s,s̄) of zeroth order inŷ are given by inverting Eqs.~7.20!:

s5A0
z~z5a0~s,s̄ !, z̄5ā0~s,s̄ !!54 tanh~a01ā0!2~a01ā0!,

s̄5A0
z̄~z5a0~s,s̄ !, z̄5ā0~s,s̄ !!52a01ā0 ,

which yields:

a05 1
2~ f 21~s!2s̄ ! and ā05 1

2~ f 21~s!1s̄ !,

where the symbolf 21 denotes the inverse of the functionf (x)ªtanh(x)2x. The coefficients ofŷ,
ŷ2, and ŷ3 are given by~7.22!–~7.25!:

a1~s!5
] z̄w0

H0
5

1

cosh~ f 21~s!!
, ā1~s!5

]zw0

H0
5

1

cosh~ f 21~s!!
,

a2~s!52 1
2 tanh~ f 21~s!!, ā2~s!52 1

2 tanh~ f 21~s!!,

a3~s!52
1

4 cosh~ f 21~s!!
, ā3~s!52

1

4 cosh~ f 21~s!!
.

This leads to a general ansatz for the coefficientsan and ān , n>1:

a2n5ā2n52
~21!n

22n tanh~ f 21~s!!, a2n215ā2n2152
~21!n

22n21

1

cosh~ f 21~s!!
,

which give the wave fronts

z~s,s̄,w!52S (
n50

`
~21!ny2n

n!22n D tanh~ f 21~s!!12S (
n50

`
~21!ny2n11

n!22n11 D 1

cosh~ f 21~s!!

22 tanh~ f 21~s!!1
1

2
~ f 21~s!2s̄ !522 cosS w

2 D2
1

2
~s1s̄ !,

z̄~s,s̄,w!522 cosS w

2 D2
1

2
~s2s̄ !,
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which are related to the representation~7.36! by the transformation~7.42! applied toSz5s and
Sz̄5s̄, which reparametrizes the field of wave fronts only.

VIII. CONCLUSIONS

Within the manifest covariant Hamilton–Jacobi canonical frameworks of DeDonder and
and of Carathe´odory we have investigated relations between fields of extremals and Hami
Jacobi wave fronts for two 2-dimensional one-component field theories. This is of interest,
the dynamics of fields can be described either by the Euler–Lagrange or the Hamilton–
equations supplemented by the integrability conditions.

We developed a formalism to solve the DeDonder and Weyl Hamilton–Jacobi equatio
the integrability condition perturbatively by expanding the Hamilton–Jacobi functions in po
of the field variable. Starting from a single given extremal it is then possible to calculate new
from it by using the two DeDonder and Weyl Hamilton–Jacobi functions.

This formalism is useful especially for investigating extremals in the neighborhood of kn
extremals in several two-dimensional field theories: the massless and massive Klein–Gord
sine– and Sinh–Gordon, the Liouville as well as thef4-theory. In the Sine–, sinh–Gordon an
f4-theory we have studied the embedding of topologically nontrivial soliton solutions. This
proach is related to the usual stability investigations of solitons where perturbations are cons
which are a product of functions depending on the time and the space variables separat
determined thegeneral solutions of the equations of the second variation by using Ba¨cklund
transformations. In this manner we have obtained all the extremals in the vicinity of a given

Calculating proper Hamilton–Jacobi wave fronts makes the use of Carathe´odory’s Hamilton–
Jacobi functionsSz(z,z̄,w) and Sz̄(z,z̄,w) necessary. Solving Carathe´odory’s Hamilton–Jacobi
equation is considerably simplified by using the corresponding DeDonder–Weyl Hamilton–J
functions. One first obtains the wave fronts as equipotential surfacesSz5s5const andSz̄5s̄
5const in an implicit form. If the transformation of variables (z,z̄,w)→(s,s̄,w) is a regular one,
i.e., if Carathe´odory’s Hamilton density does not vanish on the field of extremals under cons
ation, we get an explicit representationz5z(w,s,s̄) and z̄5 z̄(w,s,s̄) for the wave fronts.

These general results have been applied in detail to a special single kink solution
sine–Gordon equation. After calculating the DeDonder and Weyl Hamilton–Jacobi potentS
and S̄ we obtained a corresponding one-parameter field of embedded extremals: a field o
solutions of constant energy covering the extended configuration space. From the functionsSand
S̄ we have determined Carathe´odory’s Hamilton–Jacobi functionsSz andSz̄ explicitly. The wave
fronts have been determined for the singular~H50! as well as for the regular case~HÞ0!. In
addition the transversality conditions between the wave fronts and the embedded extrema
been analyzed.

APPENDIX: SOME PROPERTIES OF THE EMPLOYED BÄ CKLUND TRANSFORMATIONS

Bäcklund transformations are employed to map the integral submanifolds of the PDE~3.10! to
those of the Klein–Gordon or wave equation, thegeneralsolutions of which are known. In this
chapter we determine all the functions] l

2V(w0( l )) with l 5z1 z̄ that allow this map byoneBT.
But unfortunately it turns out that the nonconstant coefficients] l

2V(w0( l )) in ~5.8! and ~5.9! for
the f4 models do not belong to this class. Thus, we need at least two BTs to connect the
equations to one PDE with constant coefficients. Moreover, we have to discuss which relati
type ~3.10! can be reduced to free field equations by one or afinite number of BTs at all.

We show that there is no BT which relates the PDEs~5.8! and ~5.9! and ]z] z̄û5m2û, m2

PR. Even if we make the more general assumption that the transformed functionû obeys the
equation]z] z̄û5m2(z,z̄) û with a nonconstant but separable coefficientm2: m25B(z)B̄( z̄), the
equations~5.8! and~5.9! for thef4-theories cannot be reduced byoneBT to such an equation fo
û and thus not solved like the PDEs~5.1!, ~5.3!, and ~5.4! for the Liouville, the sine–and the
sinh–Gordon models. The reason is that the equation]z] z̄û5m2(z,z̄) û can be reduced to a
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Klein–Gordon one by a suitable transformation18 of the independent variablesz→B(z) and z̄
→B̄( z̄). The equations~5.8! and~5.9! canbe transformed bytwo BTs to Klein–Gordon equations
This result can be generalized to PDEs of the following type:

]z] z̄u5$n@n11#h2~ l 5z1 z̄!1a%u, n51,2,..., aPR,

if h is a solution of] lh5b̄h21 c̄ with b̄2561 andc̄PR by n BTs. Especially the PDEs~5.8!
and~5.9! can be obtained by choosingb̄521, c̄51, andn52. We start from Eqs.~4.7!, assuming
m2→m2( l ) to be a function ofl 5z1 z̄ and rename]w

2V(w0( l )) as 2v( l ). From the equations
~4.7! we infer

c5c01A~z!1Ā~ z̄!, c0~ l !5
1

2 E
l

dl 8E l 8
dl 9~m2~ l 9!1v~ l 9!!, ~A1!

⇒05] l
2c01~] lc01]zA!~] lc01] z̄Ā!2m2~ l ! ~A2!

with two arbitrary functionsA and Ā. We are interested in the relation betweenm2( l ) andv( l ).
First we have to determine the functionsA and Ā, which depend only onz and z̄, respectively.
Differentiating the PDE~A2! with respect tol̄ 5z2 z̄ leads to

] lc0@]z
2A2] z̄

2Ā#5] z̄
2Ā]zA2]z

2A] z̄Ā, ~A3!

becausec0 depends onl only. Now, if ] z̄
2Ā50 or ]z

2A50, we obtain from Eq.~A3! that either
] z̄

2Ā50 and]z
2A50 ~case I! or ] lc052a0 ~case II!. The case II leads to] l

2c050 and using
relation~A2! givesm2( l )50. The definition ofc0 finally yields v50, which is of no interest for
us. Without any loss of generality we have chosen]z

2A50⇒]zA5a0 , a0PR.
If 0 5]z

2A2] z̄
2Ā ~case III!, then it follows that either]z

2A5] z̄
2Ā50 or ]zA5] z̄Ā5a

5const, the second case being a special case of the first one. So we have]zA5a1 and] z̄Ā5ā1

with a1 , ā1PR. Thus case III is contained in the first one.
If ]z

2A2] z̄
2ĀÞ0 ~case IV!, we are able to divide the relation~A2! by it and to apply the

operator] l̄ once more:

05~]z
3A] z̄

2Ā1]z
2A] z̄

3Ā!~]zA2] z̄Ā!22]z
2A] z̄

2Ā~]z
2A2] z̄

2Ā!, ~A4!

⇒05]zH ]z
3A

]z
2AJ 22]zH ]z

2A2] z̄
2Ā

]zA2] z̄Ā
J . ~A5!

Differentiating this equation with respect toz̄, dividing the result by] z̄
2Ā, and applying] z̄ leads to

] z̄
3Ā5] z̄

2Ā@e0] z̄Ā1e1#, ]z
3A5]z

2A@e2]zA1e3#, e0 ,e1 ,e2 ,e3PR. ~A6!

Substituting these results into the equation~A4! yields forA(z) andĀ( z̄) the differential equations

] z̄
2Ā5 1

2~] z̄Ā!2e01e4] z̄Ā1e5 , ]z
2A5 1

2~]zA!2e01e4]zA1e5 ,

with the same constantse0 , e4 , ande5 for both functions. Inserting these expressions into relat
~A3! we get for] l

2c05(m21v)/2:

] l
2c052

e0]z
2A] z̄

2Ā

2@~e0/2!~]zA1] z̄Ā!1e4#2 .

From Eq.~A2! it follows that
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m2~ l !5S 12
e0

2 D ]z
2A] z̄

2ĀFe0

2
~]zA1] z̄Ā!1e4G22

,

v~ l !52S 11
e0

2 D ]z
2A] z̄

2ĀFe0

2
~]zA1] z̄Ā!1e4G22

.

Thus we have to solve the differential equations~A6! for ]zA and] z̄Ā with different choices of the
constantse0 , e4 , and e5 . Depending on the sign ofD52e0e52e4

2 there exist three differen
cases:

IV.1: D50:]zA52
e4

e0
2

2

c~z2z0
, ] z̄Ā52

e4

e0
2

2

c~ z̄2 z̄0!
, z0 ,z̄0PC

IV.2: D,0:]zA5
AD

e0
tanSAD

2
~z2z0! D 2

e4

e0
,

] z̄Ā5
AD

e0
tanSAD

2
~ z̄2 z̄0! D 2

e4

e0
,

IV.3: D.0:]zA52
A2D

e0
tanhSA2D

2
~z2z0! D 2

e4

e0
,

] z̄Ā52
A2D

e0
tanhSAD

2
~ z̄2 z̄0! D 2

e4

e0
.

For the case IV.1 we obtain

m2~ l !5
4

e0
2 S 12

e0

2 D @ l 2 l 0#22, v52
4

e0
2 S 11

e0

2 D @ l 2 l 0#22, l 05z01 z̄0 .

If we choosee052, thenm2( l ) vanishes andv522@ l 2 l 0#22 is for l 050 identical with]w
2V(w0)

in Liouville’s model and, on the other hand, if one would like to obtain the PDE~5.1! only ~this
meansm2( l )522@ l 2 l 0#22), one has to calculatee0 from the equation2254(12e0/2)/e0

2

yielding e01,2
521,2. Therefore one obtains the wave equation or once again Liouville’s m

The last case represents only a map of~5.1! onto itself~for details of auto-BTs, see e.g., Ref. 24!.
The case IV.2 yields

m2~ l !5
D

e0
2 S 12

e0

2 D sin22FAD

2
~ l 2 l 0!G , v52

D

e0
2 S 11

e0

2 D sin22FAD

2
~ l 2 l 0!G .

This is of no interest for our special models. Notice, however, that the special choiv
52D221 sin22(AD@ l 2 l 0#/2) leads to the wave equation.

The case IV.3 is obviously similar to IV.2. The resulting functionsm2( l ) andv( l ) are

m2~ l !5
D

e0
2 S 12

e0

2 D sinh22FA2D

2
~ l 2 l 0!G , v5

D

e0
2 S 11

e0

2 D sinh22FA2D

2
~ l 2 l 0!G .

As the equations~5.8! and~5.9! for the f4 models are not contained in the cases discussed u
now, we return to case I:]zA5a1 and ] z̄Ā5ā1 . Assumingm2 to be independent ofl Eq. ~A2!
then gives

] l
2c01~] lc0!21~a11ā1!] lc01a1ā12m250.
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Substitutingj5] lc01(a11ā1)/2 andD̃5m21(a12ā1)2/4 leads to

I.1: D̃.0:j5D̃ tanh~D̃~ l 2 l 0!!, ⇒v52D̃2~12tanh2@D̃~ l 2 l 0!# !2m2, ~A7!

I.2: D̃,0:j52D̃ tan~D̃~ l 2 l 0!!, ⇒v522D̃2~11tan2@D̃~ l 2 l 0!# !2m2, ~A8!

I.3: D̃50:j5
1

l 2 l 0
, ⇒v522

1

~ l 2 l 0!22m2. ~A9!

The case I.1 is the essential one for us. Because of the special type of Eqs.~5.8! and~5.9!, we are
able to eliminateD by a transformation of variablesz→Dz and z̄→D z̄. Thus only the class of
PDEs with a coefficient 2 in front of their tanh2(l),

]z] z̄u5$n0 tanh2~ l !1n̄0%u, n052, n̄0PR, ~A10!

can be reduced byoneBT to a Klein–Gordon or wave equation, like the relations we obtain in
sine–Gordon~5.3! and the sinh–Gordon~5.4! theory. For thef4-models withn056 we need at
least two BTs.

Substitutingm2( l )52c0( l )2v( l ) in Eq. ~A2! leads to

] l
2c02~] lc01a1!~] lc01ā1!2v50. ~A11!

Choosingv to be equal to2bh2( l )2c where the functionh has to obey the equation] lh
5b̄h21 c̄ with b̄, c̄PR, making the special ansatz] lc05d01d1h with two constantsd0 , d1 ,
inserting all this into Eq.~A11!, and comparing the coefficients in front of the powers ofh yields

h2:d1b̄1b2d1
250, ⇒d11,2

5
b̄

2
6AS b̄

2D 2

1b,

h1:2d01a11ā150, ⇒2d052a12ā1 ,

h0:d1c̄1c2~d01a1!~d01ā1!50, ⇒ā1562A2d1c̄2c1a1 .

For m2( l ) we obtains

m2~ l !52] l
2c02v5c12d1c̄1~2d1b̄1b!h2. ~A12!

Of special interest is the coefficient in front ofh2. Insertingd1 into eq.~A12! we get

2d1b̄1b5b̄21b6b̄Ab̄214b,

with b5n(n11), and choosingb̄ to be equal to61 we obtain

2d1b̄1b5n~n11!116A114n~n11!5 Hn~n21!,
~n11!~n12!

.

Thus starting with a coefficientn(n11) one BT can raise or lowern by 1. Choosingn51,2,..., we
are able to calculate the functionsc i , which are essential in order to determine theith BT of the
hierarchy ofn BTs, using the equation~A1!. Moreover, the solutionsc̃ i5exp(2ci) of the ith PDE
]z] z̄u1v iu50, whose reciprocal fulfills]z] z̄û1mi

2( l ) û50 @see~4.4!#, can be calculated. Obvi
ously the special caseb̄521 andc̄51 leads to

]z] z̄u5@n~n11!tanh2~z1 z̄!1a#u.
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For n52 and special choices ofa this relation yields the PDEs~5.8! and~5.9! for thef4-theories.
So they can be solved byn52 BTs.
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Universitéde Savoie, B.P. 110, F-74941 Annecy-le-Vieux Cedex, France

~Received 3 April 2002; accepted 27 September 2002!

We give a RTT presentation of super-YangiansY(g) for g5osp(mu2n), thereby
unifying the formalism with the cases ofg5so(n) andg5sp(2n). © 2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1525406#

I. INTRODUCTION

The YangianY(a) based on a simple Lie algebraa is defined1,2 as the homogeneous quan
zation of the algebraa@u#5a^ C@u# endowed with its standard bialgebra structure, whereC@u# is
the ring of polynomials in the indeterminateu. There exists for the YangianY(a) three different
realizations, due to Drinfel’d.1–3 In the first realization the Yangian is generated by the elementJ0

a

of the Lie algebra and a second set of generatorsJ1
a in one-to-one correspondence withJ0

a

realizing a representation space thereof. The second realization is given in terms of generat
relations similar to the description of a loop algebra as a space of maps. However, in this r
tion no explicit formula for the comultiplication is known in general, except in the sl~2! case.4 The
third realization uses the Faddeev–Reshetikhin–Takhtajan~FRT! formalism,5 but it is only estab-
lished in the cases of classical Lie algebras.

The FRT formalism is also used as the original definition of the super YangianY(gl(M uN)).6,7

The purpose of this article is to define the Yangian for the orthosymplectic Lie superalgebr
the FRT formalism. As a by-product, we exhibit a unified construction which encompasse
three casesg5so(M ), g5sp(N) andg5osp(M uN). A key feature in this procedure is the explic
expression of a ‘‘quantum determinant’’-like central element which coincides with that give
Drinfel’d in the g5so(M ) case.1

Note that a first attempt for a FRT formulation of Yangians based on so(M ) and sp(N) was
done by Olshanskiet al.8,9 However, it led to the notion of twisted Yangians, which indeed
deformations of loop algebras on so(M ) and sp(N), but appear as Hopf coideals rather than Ho
algebras. The same feature holds for twisted super Yangians, corresponding to ospM uN)
superalgebras.10

Known rational solutions of the Yang–Baxter equation involveR-matrices of the form (i )
R(u)5I1 P/u and (i i ) R(u)5I1 P/u 2 K/(u1k).11–13The first case, whereP is defined as the
~super!-permutation map, is known to define the YangiansY(sl(N)) andY(sl(M uN)) via the FRT
formalism.5,14 In the case (i i ), K is a partial~super!-transposition ofP. SomeR-matrices of this
type occur as factorizedS-matrices of quantum field models in two dimensions exhibiting
so(M ) symmetry.11

We will show that theR-matrix R(u)5I1 P/u 2 K/(u1k) can be used to define the Yangia

a!Electronic mail: arnaudon@lapp.in2p3.fr
b!Member of Institut Universitaire de France.
3020022-2488/2003/44(1)/302/7/$20.00 © 2003 American Institute of Physics
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Y(g) within the RTT formalism, forg5osp(M uN) (N even! as well as for the known cases o
g5so(M ) or g5sp(N) (N even!. We prove that the algebra defined this way is indeed a qua
zation ofg@u# endowed with its canonical bialgebra structure.

The letter is organized as follows. In Sec. II, after some definitions, we introduce for eag
a rationalR-matrix expressed in terms of the~super!-permutation and of its partial transpositio
We check that it satisfies the~super! Yang–Baxter equation in all cases. In Sec. III we defin
~super!-algebra through the RTT formalism. We establish that the quotient of this algebra b
quantum-determinant-like central element is the YangianY(g), as defined in Refs. 1 and 2.

II. GENERAL SETTING

Let gl(M uN) be theZ2-graded algebra of (M1N)3(M1N) matricesXi j . Let u0561. The
Z2-gradation is defined by (21)[ i ]5u0 if 1< i<M and (21)[ i ]52u0 if M11< i<M1N. We
will always assume thatN is even. The following construction yields the osp(M uN) Yangian, and
it will lead to the non-super-Yangiansby taking N50, u051 ~orthogonal case! or M50, u05
21 ~symplectic case!.

Definition 2.1: For each index i, we introduce a signu i ,

u i5H 11 for 1< i<M1
N

2
,

21 for M1
N

2
11< i<M1N,

~2.1!

and a conjugate index i,̄

ī 5H M112 i for 1< i<M ,

2M1N112 i for M 11< i<M1N.
~2.2!

In particularu iu ī 5u0(21)[ i ] .
As usualEi j denotes the elementary matrix with entry 1 in rowi and columnj and zero

elsewhere.
Definition 2.2: For A5( i j A

i j Ei j , we define the transposition t by

At5(
i j

~21! [ i ][ j ] 1[ j ]u iu jA
i j Eji 5(

i j
~Ai j ! tEi j . ~2.3!

It satisfies(At) t5A and, forC-valued matrices, (AB) t5BtAt.
We shall use a graded tensor product, i.e., such that, fora, b, c andd with definite gradings,

(a^ b)(c^ d)5(21)[b][ c]ac^ bd.
Definition 2.3: Let P be the (super)permutation operator (i.e., X21[PX12P)

P5 (
i , j 51

M1N

~21! [ j ]Ei j ^ Eji ~2.4!

and

K[Pt15 (
i , j 51

M1N

~21! [ i ][ j ]u iu jEji ^ Eji , ~2.5!

where t1 is the transposition in the first space of the tensor product. In particular P215P12 and
K215K12.

We define the R-matrix
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R~u!5I1
P

u
2

K

u1k
. ~2.6!

Proposition 2.4: The matrix R(u) satisfies

R12
t1 ~2u2k!5R12~u! ~crossing symmetry!, ~2.7!

R12~u!R12~2u!5~121/u2!I ~unitarity!, ~2.8!

provided that2k5(M2N22)u05(a012r,a0)/2, wherer is the super Weyl vector anda0 the
longest root.

Proof: We use the fact that the operatorsP andK satisfy

P25I, PK5KP5u0K, and K25u0~M2N!K. ~2.9!

j

Theorem 2.5:The R-matrix (26) satisfies the super Yang–Baxter equation

R12~u!R13~u1v !R23~v !5R23~v !R13~u1v !R12~u! ~2.10!

for 2k5(M2N22)u0 , where the graded tensor product is understood.
Proof: We use the following relations obeyed by the matricesP andK:

P13K235K12P13, K13K125P23K12,

P12P23K125u0P13K12, P12K23K125u0K13K12, ~2.11!

K12K13K235u0P13K23, K12P23K125K12.

These relations are obtained by direct computation using the definition of the matricesP andK.
j

In the case related to so(N), this solution of the Yang–Baxter equation with spectral para
eter was found in Ref. 11. It is also one of the cases explored in Ref. 12.

III. YANGIANS

We consider the Hopf~super!algebraU(R) generated by the operatorsT(n)
i j , for 1< i , j <M

1N, nPZ>0 , encapsulated into an (M1N)3(M1N) matrix,

T~u!5 (
nPZ>0

T(n)u
2n5 (

i , j 51

M1N

(
nPZ>0

T(n)
i j u2nEi j 5 (

i , j 51

M1N

Ti j ~u!Ei j , ~3.1!

andT(0)
i j 5d i j . One definesU(R) by imposing the following constraints onT(u),

R12~u2v !T1~u!T2~v !5T2~v !T1~u!R12~u2v !, ~3.2!

with the matrixR(u) defined in~2.6!.
The explicit commutation relations between the generating operatorsTi j (u) read

@Ti j ~u!,Tkl~v !#5
~21! [k][ i ] 1[k][ j ] 1[ i ][ j ]

u2v
~Tk j~v !Til ~u!2Tk j~u!Til ~v !!

1
1

u2v1k (
p

~d i k̄~21! [ p] 1[ j ][ i ] 1[ j ][ p]u ī u p̄Tp j~u!Tp̄l~v !

2d j l̄ ~21! [k][ j ] 1[ i ][ k] 1[ i ][ p]u p̄u j̄ T
kp̄~v !Tip~u!!, ~3.3!
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that is, in terms of the generatorsT(n)
i j ,

@T(r 12)
i j ,T(s)

kl #1@T(r )
i j ,T(s12)

kl #

52@T(r 11)
i j ,T(s11)

kl #2k@T(r 11)
i j ,T(s)

kl #1k@T(r )
i j ,T(s11)

kl #1~21! [k][ i ] 1[k][ j ] 1[ i ][ j ]

3~T(s)
k j T(r 11)

i l 2T(r 11)
k j T(s)

i l 2T(s11)
k j T(r )

i l 1T(r )
k j T(s11)

i l 1kT(s)
k j T(r )

i l 2kT(r )
k j T(s)

i l !

1(
p

~d i k̄~21! [ p] 1[ j ][ i ] 1[ j ][ p]u ī u p̄~T(r 11)
p j T(s)

p̄l 2T(r )
p j T(s11)

p̄l !

2d j l̄ ~21! [k][ j ] 1[ i ][ k] 1[ i ][ p]u p̄u j̄ ~T(s)
kp̄T(r 11)

ip 2T(s11)
kp̄ T(r )

ip !!, ~3.4!

wherer , s>22 with, by convention,T(n)
i j 50 for n,0.

The Hopf algebra structure ofU(R) is given by5

D~T~u!!5T~u! ^̇ T~u!, i.e., D~Ti j ~u!!5 (
k51

M1N

Tik~u! ^ Tk j~u!, ~3.5!

S~T~u!!5T~u!21; e~T~u!!5IM1N . ~3.6!

Theorem 3.1: The operators generated by C(u)5Tt(u2k) T(u) lie in the center of the
algebraU(R) and C(u)5c(u)I. Furthermore, D(c(u))5c(u) ^ c(u) and the two-sided idealI
generated by C(u)2I is also a coideal. The quotientU/I is then a Hopf algebra.

Proof: We first prove thatC(u) is diagonal. Indeed, the relation~3.2! implies

K12T1~u2k!T2~u!5T2~u!T1~u2k!K12 ~3.7!

from which it follows, after having transposed in space 1,

(
i jkl

~21! [k]Tt~u2k! i j T~u! j l Eik ^ Ekl5 (
pqsr

~21! [ p][ s] 1[ p][ r ] 1[s][ r ]T~u!pqTt~u2k!qrEsr^ Eps .

~3.8!

Therefore, one has

(
j

Tt~u2k! i j T~u! j l 5d i l c~u! or C~u!5c~u!I. ~3.9!

Let us prove thatc(u) is a central element. One gets

C~u!T2~v !5T1
t ~u2k!T1~u!T2~v !5T1

t ~u2k!R12
21~u2v !T2~v !T1~u!R12~u2v !, ~3.10!

where we have used the unitarity and crossing properties~2.8! and~2.7! of R(u). Now using the
transposition of the relation~3.2! in space 1 and the crossing property ofR(u), one can derive the
following exchange relation:

T1
t ~u2k!R12

21~u2v !T2~v !5T2~v !R12
21~u2v !T1

t ~u2k!. ~3.11!

Hence

C~u!T2~v !5T2~v !R12
21~u2v !T1

t ~u2k!T1~u!R12~u2v !5T2~v !R12
21~u2v !C~u!R12~u2v !.

~3.12!

SinceC(u)5c(u)I, one obtains easilyC(u)T2(v)5T2(v)C(u).
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From the defining relations ofC(u) the coproduct ofc(u) is straightforwardly obtained a
D(c(u))5c(u) ^ c(u) which shows thatI is a coideal. It is interesting to note that this is precis
the structure of the coproduct of the quantum determinant whenever such an object ha
constructed. j

At order u21 the equationC(u)5I yields the relationT(1)
t 1T(1)50. Note that those linea

relationsT(1)
i j t

1T(1)
i j 50 for which iÞ j were already implied by the commutation relations~3.4!.

At higher orders,C(u)5I induces relations with the generic formT(n)
t 1T(n)5F(T(m) ,m,n)

whereF is a quadratic function.
In particular, once the exchange relations~3.4! ~for r 5s50) are taken into account, th

generatorsT(1)
i j exhibit the structure of the Lie~super! algebrag.

Definition 3.2: Letg be a finite dimensional complex simple Lie (super) algebra. We defin
bialgebrag@u# as g^ CC@u# endowed with the Poisson cobracketd defined by

d f ~u,v !52F I^ f ~v !1 f ~u! ^ I,
C

u2vG , ~3.13!

whereC is the tensorial Casimir element ofg associated with a given nondegenerate invaria
bilinear form B, and f:C→g is a polynomial map, i.e., an element ofg@u#.

Theorem 3.3: Let g be a finite dimensional complex simple Lie (super) algebra of t
so(M ), sp(N), osp(M uN). Let U(R) be the Hopf algebra with generators T(u) subject to the
relations (3.2) and Hopf structure (3.5) and (3.6). The quotient of the algebraU(R) by the
two-sided idealI generated by C(u)5Tt(u2k)T(u)5I @i.e., c(u)51] is a homogeneous quan
tization of (g@u#,d).

Proof: We defineU\ as the algebra generated by the generating functionalt̃ (u),

t̃ ~u!5
1

\
~T~u/\!21!, ~3.14!

and the identity, the relations being derived from those ofU(R), i.e.,

@ t̃ 1~u!, t̃ 2~v !#5F t̃ 1~u!1 t̃ 2~v !,
P

u2vG2
\

u2v
~P t̃1~u! t̃ 2~v !2 t̃ 1~u! t̃ 2~v !P!2F t̃ 1~u!

1 t̃ 2~v !,
K

u2v1\kG1
\

u2v1\k
~K t̃ 1~u! t̃ 2~v !2 t̃ 1~u! t̃ 2~v !K !. ~3.15!

Thus the relations inU\ /(\U\) are

@ t̃ 1~u!, t̃ 2~v !#5F t̃ 1~u!1 t̃ 2~v !,
P2K

u2v G . ~3.16!

The equationC(u)5I expressed inU\ generates a two-sided idealI\ , which now induces rela-
tions with the generic formt̃ (n)

t 1 t̃ (n)5\F( t̃ (m) ,m,n) whereF is a quadratic function. In the
quotient algebraU\ /(\U\) this becomes equivalent to the standard linear symmetrization rela
J(n)

t 1J(n)50 for the generators of the loop algebrag@u#, so thatU\8 /(\U\8).U(g@u#) as algebras,
for U\8[U\ /I\ . This characterizesU\8 as a quantization of the algebraU(g@u#).

We now examine the coproduct structure in order to recognize it as a quantization
cocommutatord, namely,

D2Dop

\
~ t̃ ~u!!U

mod \

5d~ t̃ ~u!umod \!. ~3.17!

From ~3.5!, the orderu2m of the (i , j ) entry of the left hand side of this formula reads
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D2Dop

\
t̃ (m)U

mod \

5(
r 50

m

~ t̃ (r ) ^̇ t̃ (m2r )2 t̃ (r ) ^̇ t̃ (m2r )!U
mod \

. ~3.18!

Now, denoting genericallyt̃ a5 t̃ i j 2( t̃ i j ) t and Ea5Ei j 2(Ei j )
t, and usingt̃ 5 t̃ t mod \, we can

symmetrize and get

(
c

D2Dop

\
t̃ (m)
c EcU

mod \

5(
a,b

(
r 50

m

t̃ (r )
a

^ t̃ (m2r )
b @Ea ,Eb#U

mod \

5(
a,b

(
r 50

m

t̃ (r )
a

^ t̃ (m2r )
b f ab

cEcU
mod \

. ~3.19!

The right hand side of the formula~3.17! can be computed once one recalls thatC5(abBabt
a

^ tb. One obtains

d~ t (m)
a !5(

a,b
(
r 50

m

t (r )
a

^ t (m2r )
b f c

ab , ~3.20!

where thet (m)
a denote the generators of the loop algebrag@u#. Since the modes of (t̃ (u)umod \)

coincide with thet (m)
a and the structure constantsf ab

c and f c
ab are identified through the bilinea

form B, one gets the desired result~3.17!.
Therefore the Hopf algebraU(R)/I[U\518 is a quantization ofU(g@u#) andD is a quantiza-

tion of d. j

From the above theorem, we are naturally led to the following definition:
Definition 3.4: We define the Yangian ofosp(M uN) as Y(g)[U(R)/I. Explicitly, its defining

relations are given by

R12~u2v !T1~u!T2~v !5T2~v !T1~u!R12~u2v !,

C~u!5Tt~u2k!T~u!5I,

where R12(u)5I1 P/u 2 K/(u1k).
For N50 or M50, this definition is consistent with the one of Drinfel’d1,2 for the so(M ) and

sp(N) cases, respectively.
Remark:The explicitR-matrices for the YangiansY(so(N)) andY(sp(N)) can be obtained by

taking the scaling limitq→1, z5qu→1 keeping u fixed, of the evaluated trigonometri

R-matrices ofUq(so(N)̂ ) andUq(sp(N)̂ ) computed in Ref. 15. Similarly, one can show that t
R-matrix of Y(osp(1u2)) is the scaling limit of the evaluated trigonometricR-matrix of

Uq(osp(1u2)̂).16

IV. TWISTED YANGIANS AND REFLECTION ALGEBRAS

We would finally like to comment upon a possible connection between the notions of tw
Yangians and reflection algebras within the framework of this Yangian construction.

Following the lines of Refs. 8 and 9~see also Ref. 10 for the supersymmetric case!, we define
on U(R)

t@T~u!#5Tt~2u2k!, ~4.1!

which reads for the super-Yangian generators

t~Tab~u!!5~21! [a]([ b] 11)uaubTb̄ā~2u2k!. ~4.2!
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Heret is an algebra automorphism, as a direct consequence of unitarity, crossing symmet
the propertyRt1t2(u)5R(u) which itself comes fromPt1t25P.

The twisted super-YangianU(R) tw is the subalgebra generated byS(u)5t@T(u)#T(u), with
t given in ~4.2!. S(u) obeys the following relation:

R12~u2v !S1~u!R12~u1v !S2~v !5S2~v !R12~u1v !S1~u!R12~u2v !. ~4.3!

It is easy to show thatU(R) tw is a coideal inU(R).
Similarly, one introduces the notion of reflection algebrasS(R), generated by

B~u!5T21~2u!T~u!, ~4.4!

which obeys the same relation~4.3!, interpreted here as a reflection equation.S(R) is also a
coideal ofU(R). This type of algebra was originally introduced in Ref. 17 for the YangianY(N),
based on gl(N), and plays an important role in integrable systems with boundaries~see, e.g., Ref.
18!.

However, in the cosetU(R)/I, one hasB(u)5S(u), so thatS(R) and U(R) tw are two
versions of the same Hopf coideal inU(R). The situation is here different from the case of t
YangianY(N). Indeed the twisted YangiansY6(N) and the boundary algebrasB(N,,) are known
to be different forN.2, while for N52 one hasB(2,0)5Y2(2) andB(2,1)5Y1(2).19
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On powers of Bessel functions
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A formula for the Taylor series expansion of ther th power of the modified Bessel
function @ I n(z)# r is derived for arbitraryr . The result is expressed in terms of a
recursive formula for a class of polynomials, which facilitates the systematic con-
struction of the expansion of@ I n(z)# r . © 2003 American Institute of Physics.
@DOI: 10.1063/1.1526940#

I. INTRODUCTION

Bessel functions are important special functions that appear widely in science and eng
ing. Bessel functions of the first kindJn(x) are oscillatory and may be regarded as generalizat
of trigonometric functions. Indeed, for large argument (x@1) the functionApx/2Jn(x) is well
approximated by the trigonometric function cos(x2pn/22p/4). Similarly, modified Bessel func
tions of the first kindI n(x), which are Bessel functions of imaginary argument, may be rega
as generalizations of exponentials. Exponential functions have the unique and special prope
they are particularly easy to multiply and to raise to powers:eaxebx5e(a1b)x and (ex) r5erx. This
raises the following question: How does one multiply modified Bessel functions and raise th
powers? This article shows that there are relatively elementary formulas for the powers of
functions in terms of ascending Taylor series.

While many of the mathematical properties of Bessel functions are well understood,1,2 sur-
prisingly little is known about the products of Bessel functions. Yet, powers and sums of po
of Bessel functions are of importance in many applications. For example, the expression
sum of products of pairs of Bessel functions have applications in the study of a beam of ch
particles in a plasma.3 Sums of products of Bessel functions typically arise in any statics
dynamics problem in which there is a spherical symmetry. An interesting case is that o
Casimir effect for a sphere.4

In the area of statistical mechanics, modified Bessel functions appear in the study of thXY
model. In particular, an application of the group theoretic method for lattice spin models,
duced in Ref. 5, to the two-dimensionalXY model shows that the partition function can b
expressed as a sum of products of modified Bessel functions. Given the importance of prod
Bessel functions in physical applications, it is desirable to have explicit representations for
ucts and powers of these functions.

The purpose of this article is to derive an explicit formula for arbitrary powers of the mod
Bessel functionI n(z). Specifically, we use the Taylor series forI n(z),

I n~z!5 (
k50

`
1

k!G~k1n11! S z

2D 2k1n

, ~1!

to construct a formula for the coefficientsAk(r ) of the Taylor series in powers ofz of the r th
power of I n(z),

a!Author to whom correspondence should be addressed. Electronic mail: d.brody@ic.ac.uk
3090022-2488/2003/44(1)/309/6/$20.00 © 2003 American Institute of Physics
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@ I n~z!# r5 (
k50

`

Ak~r !zk, ~2!

wherer is not necessarily an integer.
In Sec. II we consider the special casen50 and derive the recursion formula for the coef

cients ofzk in the power series for@ I 0(z)# r . These results are extended in Sec. III to the c
@ I n(z)# r , wheren is arbitrary.

II. POWERS OF I0

We begin by considering the special casen50. The Taylor expansion for the modified Bess
function I 0(z) is

I 0~z!5 (
k50

`
1

~k! !2 S z

2D 2k

. ~3!

There is a simple formula for the Taylor series of the squareI 0
2(z) of this Bessel function:

I 0
2~z!511

1

2
z21

3

32
z41

5

576
z61

35

73728
z81¯5 (

k50

`
~2k21!!!

2k~k! !3 z2k. ~4!

More generally, there is also a simple formula for the square ofI n(z),

I n
2~z!5 (

k50

`
1

@~n1n!! #2 S 2n12n
n D S z

2D 2n12n

. ~5!

@The derivation of~5! follows from the identity(k50
n (n2k

n1n)(k
n1n)5(n

2n12n). The referee of this
article has pointed out that this identity has a combinatorial interpretation. It comes from a
how many ways there are to choosen people from amongn1n physicists andn1n mathemati-
cians,k being the number of mathematicians chosen. Most of the results given in this articl
be presented in combinatorial terms. However, we prefer to use the generating function ap
that is used in this article.# However, if the Bessel function is raised to a power other than 2,
Taylor series coefficients are rather complicated, even for integer powers. For example, wr
54 we have

I 0
4~z!511z21

7

16
z41

1

9
z61

679

36864
z81¯ . ~6!

Because 67957397 and 97 is a large prime number, it appears that there is no simple for
like that in ~4! for the Taylor coefficients.

If we raise the Taylor series~3! to the powerr , wherer is any number, possibly complex, w
obtain the series

@ I 0~z!# r511
r

4
z21

r

64
~2r 21!z41

r

2304
~6r 229r 14!z61¯[11 (

k50

`

ckrPk~r !z2(k11),

~7!

where the combinatoric factors

ck5
1

22(k11)@~k11!! #2 ~8!
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are independent ofr , andPk(r ) are polynomials inr having integer coefficients. The first seve
of these polynomials are

P0~r !51,

P1~r !52r 21,

P2~r !56r 229r 14,

P3~r !524r 3272r 2182r 233, ~9!

P4~r !5120r 42600r 311250r 221225r 1456,

P5~r !5720r 525400r 4117700r 3230 600r 2127 041r 29460,

P6~r !55040r 6252 920r 51249 900r 42661 500r 311 011 017r 22826 336r 1274 800.

These polynomials satisfy the conditionPk(1)51, which follows from comparing equations~7!
and ~3!, and they obey the recursion relation

Pk~r !5rkPk21~r !1 (
j 51

k21

M j~21!k
k2 j

k~ j 11!
S k

j D 2

Pk2 j~r !, ~10!

where the numbersM j are positive integers. The first nine of theM j are 1, 1, 3, 16, 130, 1485
22 645, 444 136, 10 889 676.

The advantage of the recursion relation~10! is that it reduces the problem of determining t
polynomials Pk(r ) to the much simpler problem of identifying the integer sequenceM j ( j
51,2,3,...). If we now setbj[(21) jM j , we find that the integersbj obey the inhomogeneou
linear difference equation

bn5~n21!2 (
m52

n21

bm

n! ~n21!!

m! ~m21!! ~n2m!! ~n2m11!!
. ~11!

This equation is derived from~10! by settingr 51 and recalling thatPk(1)51.
We solve this difference equation by introducing the generating functionsf (x) and g(x) as

follows:

f ~x!5 (
m51

`
xmbm

m! ~m21!!
and g~x!5 (

m50

`
xm

m! ~m11!!
5

1

Ax
I 1~2Ax!. ~12!

Multiplying the difference equation~11! by xn and dividing byn!(n21)! gives

bnxn

n! ~n21!!
5

~n21!xn

n! ~n21!!
2 (

m52

n21
xmbm

m! ~m21!!
•

xn2m

~n2m!! ~n2m11!!
, ~13!

which is precisely the coefficient ofxn in the equation

f ~x!g~x!5 (
n51

`
~n22!xn

n! ~n21!!
5xI0~2Ax!22AxI1~2Ax!. ~14!

Finally, dividing both sides of~14! by g(x) gives
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(
m50

`
xmbm

m! ~m21!!
5xS AxI0~2Ax!

I 1~2Ax!
22D , ~15!

where we have used the Taylor series in~1! for the modified Bessel functions.
The power series expansion of the right side of~15! is

xS AxI0~2Ax!

I 1~2Ax!
22D 52x1

1

2
x22

1

12
x31

1

48
x42

1

180
x51

13

8640
x62¯ . ~16!

If we let ak denote the coefficient ofxk on the right-hand side of~16!, it is easy to see that the
sequence defined byk!(k21)!ak takes the values21, 1, 21, 3, 216, 130,21485, 22 645, and
so on. In other words, the formula for the integersMk is given by

Mk5~21!k~k11!!k!ak11 ~17!

for k51,2,... .
We are able to determine the integer sequenceM j by using the key fact thatPk(1)51.

However, because we also have an explicit power series expression~4! for the square ofI 0(z), by
comparing this formula with~7! and settingr 52, we obtain

Pk~2!5
2k~2k11!!!

~k11!!
. ~18!

This expression allows us to obtain an alternative method of determining the sequencM j .
Specifically, if we setr 52 in ~10! and substitute~18! in the resulting expression, we deduce t
identity

(
j 50

k21

M jF ~k2 j !~2k22 j 11!!!

2 j~ j 11!~k2 j 11!! S k
j D 2G5

k~2k21!!!

~k11!!
~11k2k2! ~19!

satisfied by the sequenceM j . Therefore, along withM151 we can determine values of th
integer sequenceM j iteratively from ~19!.

III. POWERS OF MODIFIED BESSEL FUNCTIONS

Having obtained the recursive formula that allows us to generate the power series exp
of @ I 0(z)# r , we now develop the corresponding formula for the powers of general modified B
functions:@ I n(z)# r . Our method follows very closely the approach of the previous section.

In order to simplify the computation, we defineĨ n by2

Ĩ n~z!52nn!z2nI n~z!5 (
k50

`
n!

k! ~k1n!! S z

2D 2k

, ~20!

so that the Taylor series representation forĨ n(z) begins with 1.@In this section we use the notatio
n! to meanG(n11) whenn is not a positive integer.# We write the series expansion of an arbitra
power of Ĩ n as

@ Ĩ n~z!# r5 (
k50

`
n!

22kk! ~n1k!!
Bk

n~r !z2k. ~21!

The polynomialBk
n(r ) indexed byn is the generalization of the polynomialPk(r ) considered in

the previous section. That is,Pk(r )5Bk
0(r ). We observe that, analogous to the polynomialPk(r ),
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if we setr 51 in ~21!, we find that the polynomialsBk
n(r ) satisfyBk

n(1)51 for arbitraryk andn.
However, unlike the case forn50, there is no simple formula for@ Ĩ n(z)#2 which allows us to
determine an elementary expression forBk

n(2).
The first five of the polynomialsBk

n(r ) are

B0
n~r !51,

B1
n~r !5r ,

B2
n~r !5

n12

n11
r 22

1

n11
r , ~22!

B3
n~r !5

~n12!~n13!

~n11!2 r 323
n13

~n11!2 r 214
1

~n11!2 r ,

B4
n~r !5

~n12!~n13!~n14!

~n11!3 r 426
~n13!~n14!

~n11!3 r 31
~n14!~19n141!

~n11!3~n12!
r 2

26
5n111

~n11!3~n12!
r .

from which we obtain the recursion relation for the polynomialsBk
n(r ). This is given by

Bk
n~r !5

r ~n1k!

n11
Bk21

n ~r !1(
j 51

k

~21! jWj~n!
~k2 j !! ~n1k2 j 11!!

k! ~n1k21!!
Bk2 j

n ~r !, ~23!

where

W1~n!5
1

~n11!~n12!
,

W2~n!5
1

~n11!~n12!2~n13!
,

W3~n!5
2

~n11!~n12!3~n13!~n14!
,

W4~n!5
5n116

~n11!~n12!4~n13!2~n14!~n15!
,

W5~n!5
2~7n126!

~n11!~n12!5~n13!2~n14!~n15!~n16!
,

and so on.
If we further defineWjk(n) by

Wjk~n!5
~n1k2 j 11!!

~n1k21!!
Wj~n! ~24!

for k> j , then the recursion relation~23! for Bk
n(r ) now reads
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Bk
n~r !5

r ~n1k!

n11
Bk21

n ~r !1(
j 51

k

~21! jWjk~n!
~k2 j !!

k!
Bk2 j

n ~r !. ~25!

Thus, if we definebj (n)5(21) jWj j (n), then by settingr 51 in ~25! we obtain the difference
equation

n1k

n11
225(

j 50

k

bj~n!
~k21!! ~n11!! ~n1k!!

~k2 j !! ~n1k2 j 11!! ~n1 j !! ~ j 21!!
, ~26!

which is analogous to~11!. Equation~26! may be rewritten as

(
k51

`
k2n22

~k21!! ~n1k!!

xk

~n11!~n11!!
5 (

k51

`
xkbj~n!

~n1 j !! ~ j 21!!

1

~k2 j !! ~n1k2 j 11!!
. ~27!

As in ~12! we introduce a pair of generating functions as follows:

f ~x!5 (
k51

`
xkbk~n!

~n1k!! ~k21!!
and g~x!5 (

k50

`
xk

k! ~n1k11!!
. ~28!

Then the product of these two functions gives

f ~x!g~x!52
2

~n11!! (
k50

`
xk11

k! ~n1k11!!
1

1

~n11!~n11!! (
k50

`
xk11

k! ~n1k!!
. ~29!

Dividing both sides of~29! by g(x) we finally deduce that

(
k51

`
xkbk~n!

~n1k!! ~k21!!
5

x

~n11!! S Ax

~n11!

I n~2Ax!

I n11~2Ax!
22D , ~30!

where we have again used the Taylor series in~1! for the modified Bessel functions.
In summary, we have derived an explicit recursive formula that determines the coefficie

the Taylor series expansion of powers of modified Bessel functions. Specifically, we have

@ I n~z!# r5 (
k50

`
1

k! ~n1k!! ~n! !r 21 Bk
n~r !S z

2D 2k1rn

, ~31!

where the polynomialsBk
n(r ) are determined recursively by

Bk
n~r !5r

n1k

n11
Bk21

n ~r !1(
j 50

k

bj~n!
1

k

~n11!!

~n111 j !! S n1k
j DBk21

n ~r !, ~32!

and the integer sequencebj (n) is identified by expanding the right-hand side of~30!.
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I. INTRODUCTION

This paper presents and proves in detail a Poincare´–Birkhoff–Witt ~PBW! commutator lemma
for the quantum superalgebraUq@gl(mun)#. The lemma itself is not new; it dates from a 199
paper of Rui Bin Zhang3 on the representation theory ofUq@gl(mun)#. However, its previous
incarnation contained several typographical and other minor errors in its details; and in an
an explicit proof was not supplied. Here, we correct those errors, and supply detailed proo
our claims.

We mention that we use the phrase ‘‘PBW commutator lemma’’ to indicate a result sho
commutations sufficient to render any expression within an algebra into a normal form in a
basis; for more details for our specific caseUq@gl(mun)#, we again refer the reader to the origin
work by Zhang.

II. THE STRUCTURE OF Uq†gl „m zn …‡

Following Zhang~Ref. 3, pp. 1237–1238!, we provide a full description ofUq@gl(mun)# in
terms of simple generators and relations. We do so after first introducing the generato
various divers notations.

First, we define aZ2 grading@•# on the set of gl(mun) indices$1, . . . ,m1n%:

@a#,H 0, a<m, even indices,

1, a.m, odd indices,

where we use the symbol ‘‘,’’ to mean ‘‘is defined as being.’’ Throughout, we shall use dumm
indicesa,b, etc., where meaningful.

A set of generators for the associative superalgebraUq@gl(mun)# is then

$Ka
6 ;Eb

au1<a,b<m1n,aÞb%,

where theKa
6 are called ‘‘Cartan generators’’~and of course we intend ‘‘61’’ where we write

‘‘ 6’’ !, andEb
a is called a ‘‘raising generator’’ ifa,b and a ‘‘lowering generator’’ ifa.b. We

indeed intend thatKa and Ka
21 are inverses, that is, that we have relationsKaKa

215Ka
21Ka

5Id, where Id is theUq@gl(mun)# identity element.
Elements ofUq@gl(mun)# are then in general weighted sums of noncommuting product

these generators, where each weight is in general a rational expression of integer-coe
Laurent polynomials in the polynomial variableq. Under the phrase ‘‘products of generators,’’ w
include powers of theKa ~see below!.

a!Electronic mail: ddw@maths.uq.edu.au
3150022-2488/2003/44(1)/315/13/$20.00 © 2003 American Institute of Physics
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For various invertibleX, we will repeatedly use the notationX̄,X21; in particular, we set
q̄,q21. Next, for any indexa we shall write

qa,q(2)[a]
,

where we have invoked the shorthand ‘‘~2!’’ for ‘‘( 21).’’ For any powerN, replacingq with qN

immediately shows that (qa)N5(qN)a , so we may writeqa
N with impunity; in particular, we will

write q̄a[qa
21 . Further, we will use the following notation:

D,q2q̄, Da,qa2q̄a5~2 ! [a]~q2q̄!5~2 ! [a]D,

D̄,~D!21, D̄a,~Da!215~2 ! [a]D̄.

Now, in terms ofq, an equivalent notation forKa is q
a

Ea
a

. ~Here, the exponentiation may b
understood in terms of a power series expansion of theU@gl(mun)# Cartan generatorsEa

a . Strictly
speaking, wecould define theseEa

a as theUq@gl(mun)# Cartan generators, allowing them t
appear in infinite sums as exponents ofq, but theKa notation is more convenient.! Thus, powers
Ka

N are meaningful, although we will only deal withNP 1
2Z ~that is, integer and half-intege

powers!. So, we may writeK̄a,Ka
21 ; indeed the mappingq°q̄ sendsKa

N to K̄a
N , and as ex-

pected, for arbitrary powersM ,N:

Ka
MKa

N5Ka
M1N , where Ka

0[Id.

Apart from NPN, powers~i.e., products! of the non-Cartan generators (Eb
a)N for aÞb, are not

meaningful.
The generators inherit aZ2 grading from the indices

@Ka#,0 and @Eb
a#,@a#1@b# ~mod 2!,

so we may also use the terms ‘‘even’’ and ‘‘odd’’ for generators. Elements ofUq@gl(mun)# are said
to behomogeneousif they are linear combinations of generators of the same grading or prod
of other homogeneous elements; the productXY of homogeneousX,Y has grading@XY#,@X#
1@Y#(mod 2).

Now, the full set of generators includes some redundancy; in that its elements may b
pressed in terms of a subset of them, that is the followingUq@gl(mun)# simple generators:

$Ka
6 ;Ea

a11 ,Ea11
a u1<a,a11<m1n%;

note that there are only twoodd simple generators:Em
m11 ~lowering! andEm11

m ~raising!. In the
gl(mun) case, the remainingnonsimple~non-Cartan! generators satisfy the same commutati
relations as the simple generators. However, forUq@gl(mun)#, the nonsimple generators are in
stead recursively defined in terms of weighted sums of products of simple generators@Ref. 2, p.
1971,~3!# and@Ref. 3, p. 1238,~2!#. Writing Sb

a,sign(a2b), the elements of the set of nonsimp
generators$Eb

au ua2bu.1% may be defined by

Eb
a,Ec

aEb
c2q

c

Sb
a

Eb
cEc

a , ~1!

where we intendc to be anarbitrary index strictly betweena andb; we donot intend a sum here
Last, thegraded commutator@•,•# is defined for homogeneousX,Y by

@X,Y#,XY2~2 ! [X][ Y]YX, ~2!

and extended by linearity. AsUq@gl(mun)# is anassociativesuperalgebra, we have the followin
useful identities involving homogeneous elements:
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~a! @XY,Z#5X@Y,Z#1~2 ! [Y][ Z]@X,Z#Y,
~3!

~b! @X,YZ#5@X,Y#Z1~2 ! [X][ Y]Y@X,Z#.

A. Uq†gl „m zn …‡ relations

In terms of the set of simple generators, that is

$Ka
6 ;Ea

a11 ,Ea11
a u1<a,a11<m1n%,

our algebraUq@gl(mun)# satisfies the following relations.

~1! The Cartan generators commute, that is forM ,NP$61%,

Ka
MKb

N5Kb
NKa

M . ~4!

~2! The Cartan generators commute with the simple raising and lowering generators in th
lowing manner:

KaEb61
b 5q

a

(db
a
2db61

a )
Eb61

b Ka . ~5!

~3! The non-Cartan simple generators satisfy

@Ea11
a ,Eb

b11#5db
aD̄a~KaK̄a112K̄aKa11!. ~6!

and, forua2bu.1, we have the commutations

Ea
a11Eb

b115Eb
b11Ea

a11 and Ea11
a Eb11

b 5Eb11
b Ea11

a . ~7!

~4! The squares of the odd simple generators are zero

~Em11
m !25~Em

m11!250. ~8!

~5! If neither m nor n is 1, we have theUq@gl(mun)# Serre relations~else if eitherm or n is 1,
omit them!. Most succinctly expressed in terms of the nonsimple generators, foraÞm, we
have

~a! Ea
a11Ea

a125qaEa
a12Ea

a11,

~b! Ea11
a Ea12

a 5qaEa12
a Ea11

a ,

~c! Ea21
a11Ea

a115qaEa
a11Ea21

a11,

~d! Ea11
a21Ea11

a 5qaEa11
a Ea11

a21 , ~9!

and also

@Em
m11 ,Em21

m12#5@Em11
m ,Em12

m21#50.

The interested reader may use~1! to expand these into expressions involving only the sim
generators; however the results are cumbersome and unedifying.

B. Useful results from the Uq†gl „m zn …‡ relations

~1! From ~4!, it immediately follows that all powers of the Cartan generators commute;
is, for any powersM ,NP 1

2Z:

Ka
MKb

N5Kb
NKa

M . ~10!

~2! Lemma 2 of Ref. 1 shows that~5! may be much strengthened to cover all non-Car
generators and all powers of Cartan generators:

Ka
NEc

b5q
a

N(db
a
2dc

a)
Ec

bKa
N , ~11!

that is, whereb,c are any meaningful indices~i.e., even including the caseb5c), and
NP 1

2Z is any power.
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The proof of our PBW commutator lemma uses these results, and also calls on Lemm
Ref. 3, which we now cite, with some slight notational changes and simplifications:

Lemma 1: Where a,b, we have the following two results.
First, if a,bÞc,c11, then

~a! @Eb
a ,Ec11

c #50,
~12!

~b! @Ea
b ,Ec

c11#50.

Second, if aÞc or bÞc11, then

~a! @Eb
a ,Ec

c11#5db
c11KcK̄c11Ec

a2dc
a~2 ! [Ec

c11]Eb
c11K̄cKc11 ,

~13!

~b! @Ea
b ,Ec11

c #5da
cKcK̄c11Ec11

b 2dc11
b ~2 ! [Ec11

c ]Ea
cK̄cKc11 .

C. The algebra antiautomorphism v

Again following Zhang,3 we introduce anungraded Uq@gl(mun)# algebra antiautomorphism
v, defined forsimplegeneratorsEb

a by

v~Eb
a!,Ea

b , v~Ka!,K̄a , v~q!,q̄, ~14!

where byv(q)5q̄, we intend the more intelligiblev(q Id)5q̄ Id. Declaringv to be an ungraded
antiautomorphism means that we intend

v~XY!5v~Y!v~X! and v~X1Y!5v~X!1v~Y!; ~15!

observe thatv does indeed preserve grading, that is for homogeneousX, we have@v(X)#
5@X#. Then, for homogeneousX,Y, we have, using~2!,

v~@X,Y# !5@v~Y!,v~X!#. ~16!

The expressionv(Eb
a)5Ea

b in fact holds forall Eb
a ; the generalization to nonsimple gener

tors follows from the application ofv to their definition in~1!. Moreover, we have immediatel
from ~14! the following useful results:

v~Ka
N!5K̄a

N , v~qN!5q̄N, v~qa
N!5q̄a

N , v~Da!52Da .

Zhang goes on to define a set of ‘‘generalized Lusztig automorphisms,’’ but we do not re
these. In fact, it appears to be impossible to define them consistently for superalgebras~as claimed
in Ref. 3!, hence invalidating their use in the proof of the PBW commutator lemma.

III. THE PBW COMMUTATOR LEMMA

Using the above machinery, we are now ready to state and prove theUq@gl(mun)# PBW
commutator lemma. To whit, we will prove the following, which is slightly different from t
original ~Lemma 2 of Ref. 3!.

Lemma 2: We have the following commutations.
First, ~6! generalizes to the case of nonsimple generators, that is

@Eb
a ,Ea

b#5D̄a~KaK̄b2K̄aKb! all a,b. ~17!

Second, where there are three distinct indices, we have
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@Ec
a ,Eb

c#55
~a! K̄bKcEb

a , c,b,a,

~b! Eb
aKaK̄c , c,a,b,

~c! Eb
aK̄aKc , b,a,c,

~d! KbK̄cEb
a , a,b,c,

~18!

@Ea
c ,Eb

c#5@Ec
a ,Ec

b#50, a,c,b or b,c,a, ~19!

@Ea
c ,Eb

c#5H ~a! ~2 !@Eb
c
#qcEb

cEa
c , a,b,c,

~b! ~2 !@Ea
c
#qcEb

cEa
c , c,a,b,

~20!

Ec
aEc

b5H ~c! ~2 !@Ec
b
#qcEc

bEc
a , a,b,c,

~d! ~2 !@Ec
a
#qcEc

bEc
a , c,a,b.

Third, we describe the situation where there are no common indices, where we have a,b and
c,d. For i , j PN, let S( i , j ) denote the set$ i ,i 11, . . . ,j %. Then, if S(a,b) and S(c,d) are either
disjoint or one is totally contained within the other, that is if a,c,d,b. a,b,c,d. c,a
,b,d or c,d,a,b, we have a total of 16 cases:

@Eb
a ,Ed

c#5@Eb
a ,Ec

d#5@Ea
b ,Ed

c#5@Ea
b ,Ec

d#50. ~21!

More interestingly, if there is some other overlap between the sets S(a,b) and S(c,d), that is if
a,c,b,d or c,a,d,b, then we have the eight cases

@Eb
a ,Ed

c#5H ~a! 1DbEd
aEb

c , a,c,b,d,

~b! 2DdEd
aEb

c , c,a,d,b,
~22!

@Ea
b ,Ec

d#5H ~c! 1DbEa
dEc

b , a,c,b,d,

~d! 2DdEa
dEc

b , c,a,d,b,

@Eb
a ,Ec

d#5H ~a! 2DbK̄bKcEc
aEb

d , a,c,b,d,

~b! 1DdEb
dEc

aK̄aKd , c,a,d,b,

~23!

@Ea
b ,Ed

c#5H ~c! 2DcEd
bEa

cK̄cKb , a,c,b,d,

~d! 1DaK̄dKaEa
cEd

b , c,a,d,b.

In the above, we disagree with the results published in Ref. 3 in several places. Firs~11!
shows that~18a! and ~18d! are actually equivalent to the published results

@Ec
a ,Eb

c#5H ~a! qbEb
aKcK̄b , c,b,a,

~d! q̄bEb
aKbK̄c , a,b,c.

However, for all the commutators involving no common indices, we differ in substance.
published results for~22! are

@Eb
a ,Ed

c#51DbEd
aEb

c , a,c,b,d, c,a,d,b,

@Ea
b ,Ec

d#52DbEc
bEa

d , a,c,b,d, c,a,d,b,
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and for ~23! are

@Eb
a ,Ec

d#5H ~a! 1DbEb
dEc

aK̄bKa , a,c,b,d,

~b! 1DaEc
aEb

dK̄aKd , c,a,d,b,

@Ea
b ,Ed

c#5H ~c! 2DbK̄aKbEa
cEd

b , a,c,b,d,

~d! 2DaKaK̄dEd
bEa

c , c,a,d,b.

We mention that it was the discovery of errors incomputationswhile working on material de-
scribed in Ref. 1 that led us to check and correct these PBW results, and consequently red
and debug the proof.

Proof of Lemma 2:We prove the components of the lemma in a different order to tha
which we state them. This is to ensure consistency as later parts of the proof recycle
previously shown.

„21… These are the 16 commutators involvinga,b andc,d, with no overlap betwenS(a,b)
andS(c,d).

First, in the casesa,b,c,d anda,c,d,b, in evaluating@Eb
a ,Ed

c#, we may use~1! to
recursively expand the raising generatorEd

c into a sum of products of simple raising generato
and then apply~3b! until we have a weighted sum of terms all involving commutators of the fo
@Eb

a ,Ee11
e #, wherea,bÞe,e11, all of which are necessarily 0 by~12a!, thus @Eb

a ,Ed
c#50 for

these two cases.
Second, swappinga↔c andb↔d in these two cases, and rearranging then yields@Eb

a ,Ed
c#

50 for the casesc,d,a,b andc,a,b,d.
Third, the four cases@Eb

a ,Ec
d#50 follow by a similar argument, calling on~13a! rather than

~12a!.
Last, the remaining eight cases@Ea

b ,Ed
c#50 and@Ea

b ,Ec
d#50 follow by the application ofv to

the first eight cases, and reversing the commutators.
„19… Initially, we show ~19a!, that is for the casea,c,b we show@Ea

c ,Eb
c#50. If in fact

a5c21, then the result is already known from~13a!, so we assume otherwise, that is we consi
the casea,c21,c,b,

@Ea
c ,Eb

c#5
~1!

@Ec21
c Ea

c21 ,Eb
c#2qc21@Ea

c21Ec21
c ,Eb

c#

5
~3a!

Ec21
c @Ea

c21 ,Eb
c#1~2 ! [Ea

c21][ Eb
c]@Ec21

c ,Eb
c#Ea

c21

2qc21~Ea
c21@Ec21

c ,Eb
c#1~2 ! [Ec21

c ][ Eb
c]@Ea

c21 ,Eb
c#Ec21

c !

5
~21!

~2 ! [Ea
c21][ Eb

c]@Ec21
c ,Eb

c#Ea
c212qc21Ea

c21@Ec21
c ,Eb

c# 5
~13a!

0.

Swappinga↔b and reversing the commutator then yields@Ea
c ,Eb

c#50 for the caseb,c,a.
Taking v of these two cases yields@Ec

a ,Ec
b#50 for the casesa,c,b andb,c,a.

„17… We show the result fora,b using strong mathematical induction, that is, we assum
true for all a8,b8 such thatua82b8u,ua2bu, and use this to show that it is then necessarily t
for our a,b. To this end, we already know from~6! that it is true forua2bu51. ~If ua2bu<1, the
result is already true, indeed trivially so ifa5b.) To whit, wherea,b, andb2a.1, that isa
,b21,b, we have
                                                                                                                



321J. Math. Phys., Vol. 44, No. 1, January 2003 A PBW commutator lemma for Uq@gl(mun)#

                    
@Eb
a ,Ea

b#5
~1!

@Eb
a ,Eb21

b Ea
b212qb21Ea

b21Eb21
b #

5
~3b!

@Eb
a ,Eb21

b #Ea
b211~2 ! [Eb

a][ Eb21
b ]Eb21

b @Eb
a ,Ea

b21#

2qb21@Eb
a ,Ea

b21#Eb21
b 2~2 ! [Eb

a][ Eb21
a ]qb21Ea

b21@Eb
a ,Eb21

b #, ~24!

where the factors@Eb
a#[@a#1@b# within the parity factors are redundant. In~24!, we thus require

the evaluation of the commutators@Eb
a ,Eb21

b # and @Eb
a ,Ea

b21#. To this end, we have first

@Eb
a ,Eb21

b # 5
~13a!

Kb21K̄bEb21
a , ~25!

and second

@Eb
a ,Ea

b21#5
~1!

@Eb21
a Eb

b212q̄b21Eb
b21Eb21

a ,Ea
b21#

5
~3a!

Eb21
a @Eb

b21 ,Ea
b21#1~2 ! [Eb

b21][ Ea
b21]@Eb21

a ,Ea
b21#Eb

b21

2q̄b21Eb
b21@Eb21

a ,Ea
b21#2q̄b21~2 ! [Ea

b21]@Eb
b21 ,Ea

b21#Eb21
a

5
~19!

@Eb21
a ,Ea

b21#Eb
b212q̄b21Eb

b21@Eb21
a ,Ea

b21#.

Using the strong inductive assumption, we then have

@Eb
a ,Ea

b21#5D̄aS ~KaK̄b212K̄aKb21!Eb
b21

2q̄b21Eb
b21~KaK̄b212K̄aKb21!

D
5
~11!

D̄aEb
b21S q̄b21KaK̄b212qb21K̄aKb21

2q̄b21KaK̄b211q̄b21K̄aKb21
D

52D̄aEb
b21K̄aKb21~qb212q̄b21!

52D̄~2 ! [a]D~2 ! [b21]Eb
b21K̄aKb21

52~2 ! [Ea
b21]Eb

b21K̄aKb21 . ~26!

Now substitute~25! and ~26! into ~24!,

@Eb
a ,Ea

b#5Kb21K̄bEb21
a Ea

b212~2 ! [Eb21
b ]~2 ! [Ea

b21]Eb21
b Eb

b21Kb21K̄a

1~2 ! [Ea
b21]qb21Eb

b21Kb21K̄aEb21
b 2~2 ! [Ea

b21]qb21Ea
b21Kb21K̄bEb21

a

5~Eb21
a Ea

b212~2 ! [Ea
b21]Ea

b21Eb21
a !Kb21K̄b2~2 ! [Eb

a]~Eb21
b Eb

b21

2~2 ! [Eb
b21]Eb

b21Eb21
b !Kb21K̄a

5
~2!

@Eb21
a ,Ea

b21#Kb21K̄b2~2 ! [Eb
a]@Eb21

b ,Eb
b21#Kb21K̄a

5D̄a~KaK̄b212K̄aKb21!Kb21K̄b2~2 ! [Eb
a]D̄b~KbK̄b212K̄bKb21!Kb21K̄a
                                                                                                                



322 J. Math. Phys., Vol. 44, No. 1, January 2003 David De Wit

                    
5D̄a~KaK̄b2K̄aKb21
2 K̄b2KbK̄a1K̄bKb21

2 K̄a!

5D̄a~KaK̄b2K̄aKb!.

Thus, we have shown~17! for generala,b. The casea.b then follows by swappinga↔b in the
above, and rearranging.

~18! We first show~18a!, that is for the casec,b,a,

@Ec
a ,Eb

c#5
~1!

@Eb
aEc

b ,Eb
c#2qb@Ec

bEb
a ,Eb

c#

5
~3a!

Eb
a@Ec

b ,Eb
c#1~2 ! [Ec

b]@Eb
a ,Eb

c#Ec
b2qbEc

b@Eb
a ,Eb

c#2~2 ! [Eb
a][ Eb

c]qb@Ec
b ,Eb

c#Eb
a

5
~19!

Eb
a@Ec

b ,Eb
c#2qb@Ec

b ,Eb
c#Eb

a

5
~17!

D̄b~Eb
a~KbK̄c2K̄bKc!2qb~KbK̄c2K̄bKc!Eb

a! 5
~11!

D̄b~qbKbK̄c2q̄bK̄bKc2qbKbK̄c

1qbK̄bKc!Eb
a

5K̄bKcEb
a .

A parallel proof yields~18c! for the caseb,a,c,

@Ec
a ,Eb

c#5
~1!

@Ec
a ,Ea

cEb
a#2qa@Ec

a ,Eb
aEa

c#

5
~3b!

@Ec
a ,Ea

c#Eb
a1~2 ! [Ec

a]Ea
c@Ec

a ,Eb
a#2qa@Ec

a ,Eb
a#Ea

c2~2 ! [Ec
a][ Eb

a]qaEb
a@Ec

a ,Ea
c#

5
~19!

@Ec
a ,Ea

c#Eb
a2qaEb

a@Ec
a ,Ea

c#

5
~17!

D̄a~~KaK̄c2K̄aKc!Eb
a2qaEb

a~KaK̄c2K̄aKc!!

5
~11!

D̄aEb
a~qaKaK̄c2q̄aK̄aKc2qaKaK̄c1qaK̄aKc!5Eb

aK̄aKc .

Taking v of ~18a! yields

@Ec
b ,Ea

c# 5
~15,16!

Ea
bKbK̄c , c,b,a,

and swappinga↔b then yields~18b!,

@Ec
a ,Eb

c#5Eb
aKaK̄c , c,a,b.

Similarly, takingv of ~18c! yields

@Ec
b ,Ea

c# 5
~15,16!

KaK̄cEa
b , b,a,c,
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and swappinga↔b then yields~18d!,

@Ec
a ,Eb

c#5KbK̄cEb
a a,b,c.

~20! In a sense, these results are really glorified Serre relations. We first prove~20a!, that is for
the casea,b,c. Initially assume thatbÞc21 that isa,b,c21,c. Then we have

Ea
cEb

c5
~1!

Ea
c~Ec21

c Eb
c212qc21Eb

c21Ec21
c ! 5

~21!

Ea
cEc21

c Eb
c212~2 ! [Eb

c21]qc21Eb
c21Ea

cEc21
c .

~27!

Thus, we must investigateEa
cEc21

c . To this end, observe that our assumption thatbÞc21 means
that we have already assumed thataÞc22, that is, that we safely havea,c22,c21,c, hence

Ea
cEc21

c 5
~1!

~Ec22
c Ea

c222qc22Ea
c22Ec22

c !Ec21
c 5

~21!

Ec22
c Ec21

c Ea
c222qc22Ea

c22Ec22
c Ec21

c .
~28!

So now, we must investigateEc22
c Ec21

c , and this falls into two cases. In the general case, ic
Þm11, the Serre relation of~9c! gives usEc22

c Ec21
c 5qc21Ec21

c Ec22
c . On the other hand, ifc

5m11, then we have

Em21
m11Em

m115
~1!

~Em
m11Em21

m 2qmEm21
m Em

m11!Em
m115

~8!

Em
m11Em21

m Em
m11,

Em
m11Em21

m115
~1!

Em
m11~Em

m11Em21
m 2qmEm21

m Em
m11!5

~8!

2qmEm
m11Em21

m Em
m11 ,

henceEm21
m11Em

m1152q̄mEm
m11Em21

m11 . Taken together, we have forany c,

Ec22
c Ec21

c 5~2 ! [Ec21
c ]qcEc21

c Ec22
c . ~29!

Installing ~29! into ~28!, we have

Ea
cEc21

c 5~2 ! [Ec21
c ]qc~Ec21

c Ec22
c Ea

c222qc22Ea
c22Ec21

c Ec22
c !

5
~21!

~2 ! [Ec21
c ]qcEc21

c ~Ec22
c Ea

c222qc22Ea
c22Ec22

c !

5
~1!

~2 ! [Ec21
c ]qcEc21

c Ea
c . ~30!

Installing ~30! into ~27!, we obtain the required~20a! for the special casea,b,c21,c,

Ea
cEb

c5~2 ! [Ec21
c ]qc~Ec21

c Ea
cEb

c212~2 ! [Eb
c21]qc21Eb

c21Ec21
c Ea

c!

5
~21!

~2 ! [Ec21
c ]~2 ! [Eb

c21]qc~Ec21
c Eb

c212qc21Eb
c21Ec21

c !Ea
c

5
~1!

~2 ! [Eb
c]qcEb

cEa
c .

If in fact b5c21, then if alsoaÞc22, then~30! covers our result, and ifa5c22, then~29!
covers it. Together, we have~20a! for all a,b,c. A parallel proof covers~20b!, that is, the case
c,a,b; but we omit this. Before proceeding, we condense our notation. We have
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Ea
cEb

c5H ~2 ! [Eb
c]qcEb

cEa
c , a,b,c,

~2 ! [Ea
c]qcEb

cEa
c , c,a,b.

Combining these two results, we may write, fora,b,

Ea
cEb

c5~2 ! [Ez(a,b,c)
c ]qcEb

cEa
c if z~a,b,c!Þc, ~31!

where z(a,b,c) is a little function which picks out the median element of the set of nat
numbers$a,b,c%. Applying v to ~31! and cross multiplying yields

Ec
aEc

b 5
~15!

~2 ! [Ec
z(a,b,c)]qcEc

bEc
a if z~a,b,c!Þc,

which is immediately seen to cover~20c! and ~20d!,

Ec
aEc

b5H ~2 ! [Ec
b]qcEc

bEc
a , a,b,c,

~2 ! [Ec
a]qcEc

bEc
a , c,a,b.

~22! Beginning with the casea,c,b,d, we have

@Eb
a ,Ed

c#5
~2!

Eb
aEd

c2~2 ! [Eb
a][ Ed

c]Ed
cEb

a

5
~1!

Eb
a~Eb

cEd
b2q̄bEd

bEb
c!2~2 ! [Eb

c]~Eb
cEd

b2q̄bEd
bEb

c!Eb
a

5~Eb
aEb

cEd
b2~2 ! [Eb

c]Eb
cEd

bEb
a!2q̄b~Eb

aEd
bEb

c2~2 ! [Eb
c]Ed

bEb
cEb

a!.

Now, for a,c,b, by ~20c!, we haveEb
aEb

c5(2) [Eb
c]qbEb

cEb
a . Installing this, we quickly obtain

~22a!,

@Eb
a ,Ed

c#5~2 ! [Eb
c]Eb

c~qbEb
aEd

b2Ed
bEb

a!2q̄b~Eb
aEd

b2q̄bEd
bEb

a!Eb
c

5
~1!

~2 ! [Eb
c]qbEb

cEd
a2q̄bEd

aEb
c 5

~21!

Ed
aEb

c~qb2q̄b!5DbEd
aEb

c .

Swappinga↔c andb↔d in ~22a! then yields

@Ed
c ,Eb

a#5DdEb
cEd

a , c,a,d,b. ~32!

Reversing both the commutator and the RHS product yields

2~2 ! [Ed
c][ Eb

a]@Eb
a ,Ed

c# 5
~21!

~2 ! [Eb
c][ Ed

a]DdEd
aEb

c ,

but for c,a,d,b, in fact @Ed
c#@Eb

a#5@Eb
c#@Ed

a#5@Ed
a#, yielding ~22b!,

@Eb
a ,Ed

c#52DdEd
aEb

c , c,a,d,b.

Next, applyingv to ~22a! yields

@Ec
d ,Ea

b# 5
~15,16!

2DbEc
bEa

d , a,c,b,d.

Reversing both the commutator and the RHS product yields~22c!,
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@Ea
b ,Ec

d# 5
~21!

DbEa
dEc

b , a,c,b,d.

Last, applyingv to ~32! yields ~22d!,

@Ea
b ,Ec

d# 5
~15,16!

2DdEa
dEc

b , c,a,d,b.

~23! We first show~23a!, that is for the casea,c,b,d. We have

@Eb
a ,Ec

d#5
~1!

@Eb
a ,Eb

dEc
b#2qb@Eb

a ,Ec
bEb

d#

5
~3b!

@Eb
a ,Eb

d#Ec
b1~2 ! [Eb

d][ Eb
a]Eb

d@Eb
a ,Ec

b#2qb~@Eb
a ,Ec

b#Eb
d1~2 ! [Eb

a][ Ec
b]Ec

b@Eb
a ,Eb

d# !

5
~19!

Eb
d@Eb

a ,Ec
b#2qb@Eb

a ,Ec
b#Eb

d

5
~18d!

Eb
dKcK̄bEc

a2qbKcK̄bEc
aEb

d

5
~11,21!

2DbK̄bKcEc
aEb

d .

Applying v to ~23a! yields

@Ed
c ,Ea

b# 5
~15,16!

DbEd
bEa

cK̄cKb , a,c,b,d, ~33!

and swappinga↔c andb↔d then yields~23b!,

@Eb
a ,Ec

d#5DdEb
dEc

aK̄aKd , c,a,d,b.

Next, reversing the commutator in~33! yields

@Ea
b ,Ed

c# 5
~16!

2~2 ! [Ea
b][ Ed

c]DbEd
bEa

cK̄cKb .

However, for the casea,c,b,d, we have@Ea
b#@Ed

c#5@Ec
b#, thus, (2) [Ea

b][ Ed
c]Db5(2) [Ec

b]

(2) [b]D5(2) [c]D5Dc , yielding ~23c!,

@Ea
b ,Ed

c#52DcEd
bEa

cK̄cKb , a,c,b,d.

Last, applyingv to ~23c! yields

@Ec
d ,Eb

a# 5
~15,16!

DcK̄bKcEc
aEb

d , a,c,b,d,

and then swappinga↔c andb↔d yields ~23d!,

@Ea
b ,Ed

c#5DaK̄dKaEa
cEd

b , c,a,d,b.

h
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IV. DISCUSSION

Of some interest is that we may use our PBW commutator lemma to show that~8! in fact
generalizes to the nonsimple odd generators, that is

~Eb
a!250,

for any indicesa, b such that@a#Þ@b#. The proof of this statement is left as an~easy! exercise
involving ~20!.

Now that it is established, we may concentrate the notation of our lemma—this is usef
encoding purposes.

The entirety of~19! and ~20! may be summarized by

Ec
aEc

b5kEc
bEc

a and Ea
cEb

c5kEb
cEa

c , any aÞbÞc,

where

k,H 1 if z~a,b,c!5c,

~2 ! [Ec
z(a,b,c)] q̄

c

Sb
a

otherwise

and wherez(a,b,c) is our little function which picks out the median element of the set of th
distinct natural numbers$a,b,c%. ~The 1 factor follows as@Ec

a#@Ec
b#50 for c strictly betweena

andb.)
The entirety of~21! to ~23! may be summarized by

@Eb
a ,Ed

c#5

¦

1DbEd
aEb

c , a,c,b,d,

2DdEd
aEb

c , c,a,d,b,

1DaEb
cEd

a , b,d,a,c,

2DcEb
cEd

a , d,b,c,a,

2DbK̄bKdEd
aEb

c , a,d,b,c,

1DcEb
cEd

aK̄aKc , d,a,c,b,

2DcEd
aEb

cK̄cKa , b,c,a,d,

1DbK̄dKbEb
cEd

a , c,b,d,a,

0, aÞbÞcÞd otherwise.

Finally, we mention that the consistency~if not the veracity! of our lemma is also supporte
by extensive computer tests usingMATHEMATICA . By this, we mean that we confirm that

NormalOrder ~XY!5NormalOrder ~ExpandNS~XY!!, ~34!

for a range ofUq@gl(mun)# nonsimple generatorsX, Y, whereNormalOrder (X) is a function
which rendersX in a normal form, andExpandNS(X) is a function which recursively expands a
nonsimple generators inX, using~1!.

To be more specific, let theheight of generatorX[Eb
a be ua2bu; this is a measure of its

distance from simplicity. ForUq@gl(mun)#, it varies from 0~for Cartan generators!, to 1 ~for
simple non-Cartan generators!; and then for the nonsimple generators from a minimum of 2 t
maximum ofm1n21 for the maximally nonsimpleE1

m1n andEm1n
1 .

Then, we confirm that our code satisfies~37!, for all Uq@gl(mun)# generatorsX,Y of height at
most m1n21 for all m,n such thatm1n<5; at most 3 form1n<10; and at most 2 form
1n<18. The computational expense in performing these checks rises at least exponential
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height, so we have to abandon our calculations at this point. However, our results do amou
complete consistency check of our lemma, for allUq@gl(mun)# such thatm1n<5.
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A Weierstrass-type system of equations corresponding toCPN harmonic maps is
presented. It constitutes a generalization of the previously constructed systems for
CP1 andCP2 fields. From the linear spectral problem for theCPN model a set of
conserved quantities is derived and used for a construction of a generalized Weier-
strass representation for conformally parametrized surfaces immersed in multidi-
mensional Euclidean spaces. Based on this representation a possible geometrical
interpretation ofCPN harmonic maps is discussed. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1528272#

I. INTRODUCTION

Recently many studies have been performed of variouss models in low dimensions. Of these
s models in two spatial dimensions have, perhaps, been the most commonly studied as,
hand, they lead to interesting generalizations of harmonic maps and on the other, they
treated as analogs, with many properties in common, of four-dimensional non-Abelian
theories.

Among two-dimensionals models perhaps the most interesting ones, from the topolog
point of view, are the so-calledCPN sigma models. Their classical solutions are examples
topological solitons, i.e., extended structures whose stability is partially guaranteed by topol
considerations.

The CPN models are, in fact, a generalization of the, perhaps the s mplest, sigma m
namely theS2 model—also called the vectorO(3) model. TheCPN models involve maps from
R2, or S2 if one wants to have a nontrivial topology, toCPN, i.e.,

CPN:C.V{z5z11 i z2°z5~z1, . . . .,zN!PS2N>SU~N!/SU~N21!, ~1!

where the homogeneous coordinatesz5(z1, . . . ,zN) have the following properties

z;z85lz for lÞ0.

Exploiting projective invariance we can require that

z†
•z51, ~2!

holds, where † denotes the Hermitian conjugation, and we are still left with gauge symme

z;z85zeif, ~3!

wheref is the real-valued function.

a!Electronic mail: Grundlan@crm.umontreal.ca
b!Electronic mail: W.J.Zakrzewski@durham.ac.uk
3280022-2488/2003/44(1)/328/10/$20.00 © 2003 American Institute of Physics
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It is easiest to defineCPN models in terms of the Lagrangian density1

L5 1
4 ~Dmz!†

•Dmz, z†
•z51, ~4!

where the covariant derivativesDm act onz:S2→CPN according to the formula

Dmz5]mz2~z†
•]mz!z. ~5!

Here the indexm51,2 denotesz1 andz2 . Note that the covariant derivativesDmz transform under
gauge~3!

Dmz→Dmz85~Dmz!eif, ~6!

so that the dependence on phasef drops out of Lagrangian density~4! and hence the model i
really based onCPN. The total Lagrangian is given by

L5E L dz dz̄ ~7!

and if theCPN model is defined overS2 we require thatL is finite.
For theCPN sigma model it is convenient to define

z5
f

u f u
, ~8!

where we have used the following notationu f u5( f †
• f )1/2. In terms of f the Lagrangian~7!

becomes

L5E u ]̄ f u21u] f u2

u f u4 dz dz̄, ~9!

where u] f u25(] f )†
•(] f ) and u ]̄ f u25( ]̄ f )†

• ]̄ f . The Euler Lagrange equations forf take the
form

S 12
f ^ f †

u f u2 D F ]]̄ f 2] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G50, ~10!

where we have introduced holomorphic and antiholomorphic derivatives

]5
]

]~z11 i z2!
5

]

]z
, ]̄5

]

]~z12 i z2!
5

]

]z
~11!

and a bar denotes the complex conjugation.
As is well known2 equation~10! can be written as a compatibility condition for a set of tw

linear spectral equations for aN component auxiliary vectorC

]C5
2

11l
@]P, P# C,

~12!

]̄C5
2

12l
@]̄P, P# C,

wherel is a spectral parameter and theN by N matrix P is the projector given by

P5
1

u f u2
f ^ f †, P†5P, P25P. ~13!
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The compatibility conditions for~12! are,

@]]̄P, P#50 ~14!

which, as can be easily checked, are equivalent to equations~10!. Note that~14! can be written in
the form of a conservation law

] @ ]̄P, P#1 ]̄ @]P, P#50 ~15!

or, equivalently, using the tracelessness of matrixK

]K2 ]̄K†50, ~16!

where the matricesK andK† are given by

K5@ ]̄P, P#5
]̄ f ^ f †2 f ^ ]̄ f †

u f u2
1

f ^ f †

u f u4 @~ ]̄ f †
• f !2~ f †

• ]̄ f !#, tr K50, ~17!

and consequently

K†52@]P, P#52
] f ^ f †2 f ^ ] f †

u f u2 1
f ^ f †

u f u4 @~] f †
• f !2~ f †

•] f !#.

Note that due to the invariance of the Lagrangian~4! under gauge~3!, without loss of gener-
ality, we can set one of the components of the vector fieldf , say f 1 , to 1. Then, in theCP1 case,
all quantities are expressible through one variable

w5
f 2

f 1
5 f 2 ~18!

and the Euler Lagrange equations~10! take the form

]]̄w2
2w̄

~11uwu2!
]w]̄w50. ~19!

Recently, a lot of effort has been put into relatingCP1 maps to the solutions of the Weierstra
problem.3,6 In this case one considers a system of first order equations~of Dirac type! for two
complex fieldsw andc of the form

]c5pw, ]̄w52pc, p5uwu21ucu2. ~20!

In Ref. 7 it was shown that solutions of the Weierstrass system~20! are in a one to one corre
spondence with the solutions of theCP1 sigma equtions~19!. If c and w are solutions of the
Weierstrass system~20!, then the functionw, defined by

w5
c

w̄
, ~21!

is a solution of theCP1 equations~19!. The converse is also true.6 Thus, ifw is a solution of~19!,
then the functionsw and c of the Weierstrass system~20! have the form~up to an overall
multiplication of w andc by 21)

c5w
~ ]̄w̄!1/2

11uwu2 , w5
~]w!1/2

11uwu2
, p5

u]wu
11uwu2 . ~22!
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From the Weierstrass system~20! one can construct three conservation laws~15!. These, in
turn, allow us to determine four real valued quantitiesXi(z,z̄), three of which are linearly inde
pendent~due to the tracelessness of the matrixK). Xi are constructed by taking diagonal an
off-diagonal entries of matrixK and are given by3

X15E
g
~c1

22c2
2!dz81~ c̄1

22c̄2
2!dz̄8,

X25E
g
~c1

21c2
2!dz82~ c̄1

21c̄2
2!dz̄8, ~23!

X352E
g
c1c2 dz81c̄1c̄2 dz̄8,

respectively, whereg is any curve from a fixed point toz.
The geometrical aspects of surfaces obtained from representation~23!, where functionsc and

w obey the Weierstrass system~20!, are described in detail in Ref. 4. In two recent papers8,9 we
have generalized this construction to the case of theCP2 sigma model.5 The aim of this paper is
to present a generalization to theCPN case.

The paper is organized as follows. In Sec. II, we derive the explicit form of conservation
corresponding to theCPN model. Section III deals withCPN maps and the corresponding Weie
strass representation for conformally parametrized two-dimensional surfaces immersed in
dimensional Euclidean space. In Sec. IV we discuss some geometric aspects ofCPN maps and
present some geometric characteristics of surfaces. The last section presents further r
discusses some possible developments and mentions some more ambitious objectives.

II. THE CPN MODEL

Here we derive explicit conservation laws~15! which are equivalent to the Euler Lagrang
equations~10!. In order to construct them we look first at the general form of the elements o
matricesK andK† in terms of f , given by~17!. Thus we have

Ki j 5
1

A2 @ f̄ k f k ]̄ f i f̄ j2 f̄ k f k f i ]̄ f̄ j1 f i f̄ j ]̄ f̄ k f k2 f i f̄ j f̄ k ]̄ f k#, ~24!

and consequently

Ki j
† 5

21

A2 @ f̄ k f k ] f i f̄ j2 f̄ k f k f i ] f̄ j1 f i f̄ j ] f̄ k f k2 f i f̄ j f̄ k ] f k#,

whereA5 f †
• f and the summation convention over the repeated indices from now on, is ass

throughout this paper.
Let us define

Fi j 5 f i ] f j2 f j] f i ,

and

Gi j 5 f i ]̄ f j2 f j ]̄ f i . ~25!

Then, using expressions~25!, the matricesK andK† take, equivalently, a simple form

Ki j 5 f̄ jF̄ i
22 f i w̄ j

2 , ~26!
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and

Ki j
† 52 f̄ jw i

22 f iF j
2 , ~27!

where we have introduced

w i
25

1

A2 f̄ k Fki , ~28!

and

F i
25

1

A2 f k Gki. ~29!

Note that from equations~25!, ~28!, and~29! we have two algebraic constraints, namely

f̄ k wk
250, f k Fk

250, ~30!

which imply that only (N21) functionsw i
2 are linearly independent. So in our further discuss

it is convenient to take as indepedent functionsw2
2 , . . .,wN

2 . Analogous situation holds for func
tionsF i

2 . Making use of the symmetry~3! we can set, without loss of generality, say,f 151, and
so we end up with the expressions@for ~28! and ~29!#

w i
25

1

A2 @~11 f k f̄ k! ] f i2 f i~ f̄ k ] f k!#,

F i
25

1

A2 @~11 f k f̄ k! ]̄ f i2 f i~ f̄ k ]̄ f k!#, i 52, . . . ,N, ~31!

where

A511u f 2u21u f 3u2 . . . 1u f Nu2,

and all the sums over repeated indices run overk52, . . .,N. Note that in~31! the termsk5 i in the
sum cancel leaving just term] f i . For instance ifk5 i 52 then we have

w2
25

1

A2 @~11 f l f̄ l ! ] f 22 f 2~ f̄ l ] f l !#,

where the sums over the repeated indices run overl 53, . . .,N. This fact allows us to invert
expressions~31! and so express all derivatives] f i in terms ofw i

2’s and f i . This way we find

] f i5A @w i
21 f i f̄ kwk

2#. ~32!

Thus, in particular, for theCP1 case, equation~32! becomes

] f 25A2w2
2 , A511u f 2u2,

and f 2 is often denoted in Ref. 1 byw, while in theCP2 case we have

] f 25A@~11u f 2u2!w2
21 f 2 f̄ 3 w3

2#,

] f 35A@~11u f 3u2!w3
21 f 3 f̄ 2 w2

2#, ~33!

A511u f 2u21u f 3u2.
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Note that in Refs. 8 and 9 the functionsf 2 and f 3 are denoted byw1 and w2 , respectively.
Similarly, all this discussion can be repeated forF i

2’s in the same way but using]̄ instead of],
f̄ instead off , andḠi j instead ofFi j .

III. THE GENERALIZED WEIERSTRASS REPRESENTATION IN RM

To introduce a generalized Weierstrass system in multidimensional spaces we need a sw i

andc i which generalize thew andc of the CP1 case andw i andc i , i 51,2 of theCP2 case.
Note that the quantitiesw i

2 , i 52,...,N, defined in~28! provide such a choice as~32! agrees
with the definition of the functionw in expression~22!. Next we address the question of wh
should we use for the functionc i? Clearly, relation~21! suggests that we put

c i5 f i w̄ i ~34!

with no summation over the indicesi 52, . . . ,N. Then to complete the generalization of th
Weierstrass system in multidimensional spaces we need analogs of relations~20!. We need to
prescribe the first derivatives]̄w i and]c i in terms ofw i andc i . Note that from~34! we get

]c i5]~ f i w̄ i !5] f i w̄ i1 f i ~ ]̄w i !. ~35!

So we need to specify]̄w i in terms ofw i , f i and their derivatives. To do this we note that fro
~32! we get

w i
25

1

A
] f i2 f i

f †
•] f

A2 , A5~ f †
• f 11!. ~36!

So we have

]̄w i
252

f i~ f̄ l ] f l !

A3 ~ f̄ k ]̄ f k1 f k ]̄ f̄ k!1
1

A2 @~11u f u2!]]̄ f i2~ f̄ k]̄ f k!] f i2~ f k]̄ f̄ k!] f i2 ]̄ f i~ f̄ k] f k!

2 f i~ ]̄ f̄ k] f k!2 f i~ f̄ k ]]̄ f k!#. ~37!

However, equation~10! gives us

]]̄ f i5 f i

~ f̄ k ]]̄ f k!

A
1] f i

~ f̄ k ]̄ f k!

A
1 ]̄ f i

~ f̄ k ] f k!

A
22 f i

~ f̄ k ] f k!~ f̄ l ]̄ f l !

A2 . ~38!

Eliminating the second derivatives]]̄ f i from equations~37! and ~38! we note that all the terms
involving the first derivatives]̄ f and] f̄ in ~37! cancel and we end up with a simple expressio

]̄w i52
w i

2A
~ f k ]̄ f̄ k!2

f i

2w iA
2 ~ ]̄ f̄ k] f k!1

f i

2w iA
3 ~ ]̄ f̄ kf k!~ f̄ l] f l !. ~39!

Moreover, taking the complex conjugation of~32!,

]̄ f̄ k5A @w̄k
21 f̄ k f l w̄ l

2# ~40!

and so by the virtue of~40! we have

]̄w i52
1

2 H Aw i~ w̄•c!1
c i

w i w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#J ~41!

~no summation overi ). The second pair of equations forc i then follows from~35!
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]c i5Aw̄ iw i
21

1

2
Ac i~ c̄•w!2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!# ~42!

~no summation overi ).
To summarize: the modified Weierstrass system in multidimensional space is a set oN

22) complex functionsw i andc i , i 52,3 ,. . .,N which obey the following system of equation
~no summation overi ):

]̄w i52
1

2 H Aw i~ w̄•c!1
c i

w i w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#J
and

]c i5Aw̄ iw i
21

1

2
Ac i~ c̄•w!2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#, ~43!

where

A511 (
k52

N ucku2

uwku2 .

From our construction it is clear that the above system of equations is equivalent t
equations of theCPN sigma model~10!. Moreover, it is easy to check that the system of equati
~43!, for N51 reduces to the equations~20!, and forN52 to the equations which were studied
Refs. 8 and 9.

Note that under the requirement of finiteness of the action all solutions of theCPN sigma
model~10! are well known1 and they split into three separate cases: analytic, antianalytic an
mixed ones. Hence based on this result we can construct large classes of solutions of the m
Weierstrass system~43!.

IV. GEOMETRICAL ASPECTS

Here we address the question of the existence of real variablesZi , of z and z̄, which are
constructed out of ourc i ’s andw i ’s determined by the system of equations~43!. Here we treat
Zi(z,z̄) as a map ofC into RM

Z5~Z1 , . . . ,ZM !:D,C→RM, ~44!

whereD is a region in the complex planeC. For some values ofM we can give a geometrica
interpretation of two-dimensional surfaces immersed inRM. This discussion will generalize th
result obtained by Konopelchenko and colaborators.3,4,10Moreover, we will find that the surface i
immersed in M5(N221)-dimensional Euclidean space. To construct real valued funct
Zi(z,z̄) it is convenient to exploit the conservation laws for the system of equations~43!. To
derive these conservation laws we look at~16! and we note that we can exploit the matricesK and
K† given by~26! and~27!. However, we note that we can drop the termsF j

2 in expressions~26!
and ~27! and we still have the conservation laws associated with~10!. Namely, we can define

Ki j8 52 f i w̄ j
2 ~45!

and

~Ki j8 !†5w i
2 f̄ j , ~46!

and we still have the conservation laws of the form
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]K81 ]̄~K8!†50. ~47!

It is easy to check the validity of~47! by making use of the equations~40! and ~41!.
Note that as our conservation laws do not involve terms containingF i then they can be

written entirely in terms of Weierstrass variablesw i andc i . As a result of so obtained conserv
tion laws we can introduce real valued functions

Zll 5E
g
f̄ lw l

2 dz1E
g
f l w̄ l

2 dz̄5E
g
c̄ lw l dz1E

g
c l w̄ l dz̄ ~48!

~no summation over indexl 51, . . .,N). These quantities have been constructed from the diag
entries of matricesK8 and (K8)†. From the off-diagonal entries of matricesK8 and (K8)† we can
construct

Zlk5Xlk1 iYlk5E
g
~a f̄ lwk

21ā f̄ kw l
2!dz1E

g
~ā f l w̄k

21a f k w̄ l
2!dz̄, aPC. ~49!

The transposition of the indiceslk to kl in Eq. ~49! corresponds to the interchangea to ā and
vice versa. In our expression we take alll ,k51 ,. . .,N and for k51 or l 51 we can use our
algebraic constraints~30! to rewrite all our expressions in terms of independent functionsw i and
c i , i 52, . . .,N. For our real variablesZi we takeZii , Xlk andYlk .

Note that the conservation laws~47! guarantee thatZll andZlk do not depend on the choice o
the contourg but only on its endpoints inC. This fact takes place because allZ’s can be written
in the form

Z5E
G
F~z,z̄ ! dz1F̄~z,z̄ ! dz̄,

whereF and F̄ satisfy the conserved quantity

]̄F5]F̄,

which shows that the integrands are total derivatives.
Looking at the diagonal terms in~48! we note that

(
l

Zll 50. ~50!

This follows from the tracelessness of matricesK8 and (K8)†.
Note that all our expressions forZll and Zlk are quadratic in terms ofw i and c̄ i and their

complex conjugates. They formally includew1 and c1 , with c15 f 1w̄1. However, both these
quantities (c1 andw1) should be eliminated using the algebraic constraint@i.e., the first expression
in ~30!# and f 151. It is easy to check that this process of elimination, in theCP1 case leads to

Z11522E
g
c̄w dz81cw̄ dz̄8,

X125E
g
~c̄2

22w2
2! dz81~c2

22w̄2
2! dz̄8, ~51!

Y125 i E
g
~c̄2

21w2
2! dz82~c2

21w̄2
2! dz̄8,
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which appeared in Ref. 3.
Next, following Ref. 11 we can calculate some geometric characteristics of a surfac

mersed in multidimensional space. We treat the functionsZll , Xlk , andYlk , as the coordinates o
a surface. We introduce the components of the induced metric

gab5(
lk

]Zlk

]a

]Z̄lk

]b
, ~52!

wherea andb arez or z̄. For conformally parametrized surfaces we have to make a choice fo
normalization of the off-diagonal entries of coordinatesXkl andYkl . We make the natural choic
a5 (11 i )/2. We find that

gzz5S (
i 51

N

f̄ i w i
2 D 2

50 ~53!

which coincides with the first algebraic contraint~30!. Similarly, its respective complex conjuga
equation is

gz̄ z̄50. ~54!

The only nonzero term of the induced metric is

gzz̄5~11u f 2u21u f 3u21¯1u f Nu2!FU(
k52

N

f̄ kwk
2U2

1uw2u41uw3u41¯1uwNu4G . ~55!

Of course, we can rewrite this expression to involve Weierstrass dataw i and c i by using
expressions~34! but the expressions become very complicated. Note, however, that writin
quantities in terms off i and ] f i , through ~31!, our expressions simplify considerably and w
obtain

gzz̄5uDzu2, ~56!

whereD5 1
2(D12 iD 2) and D1 , D2 are the covariant derivatives given by~5! involving ] ~i.e.,

evaluated with respect toz!.
In the special case of theCP1 maps the component of the induced metricgzz̄ takes a particu-

larly simple form; it is given by

gzz̄5S 11
uc2u2

uw2u2D @ uw2u41uc2u2uw2u2#5@ uc2u21uw2u2#25
u] f 2u2

~ u f 2u211!2 ~57!

which is exactly, of courseuDzu2; while in theCP2 case we have

gzz̄5
u] f 2u21u] f 3u21u f 2] f 32 f 3] f 2u2

~11u f 2u21u f 3!2u
~58!

which also isuDzu2.
Thus we have proved that the conformal immersion of surfaces inRN221 are determined by

the generalized Weierstrass representation~48! and ~49!, where the functionsw l and c l , or
equivalentlyw l and f l , have to obey system~43! of first order equations. Note that formulas~48!
and~49! define a surface on SU(N) and then using expressions in Ref. 12 we can calculate,
closed form, all geometric characteristics of this surface.
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V. SUMMARY AND CONCLUDING REMARKS

The main aim of this paper has been to derive a generalization of the Weierstrass system
CPN case. Thus we have found a set of 2N complex functionsc i andw i which satisfy a system
of first order equations~43! that are equivalent to the full system of equations of theCPN model
~10!.

We have also introduced a set of (N221) real quantitiesZ’s, which can be treated a
coordinates of a surface immersed inRN221 and we have shown that the induced metric of o
map is given by

ds252uDzu2 dz dz̄. ~59!

The study of the generalized Weierstrass representations for surfaces immersed in m
mensional spaces was initiated by Konopelchenkoet al.10 Our work here, in which we adopted a
alternative approach based onCPN sigma models, provides a generalization of their results.

A question arises whether our approach can be extended to Weierstrass systems de
surfaces immersed in multidimensional pseudo-Riemannian spaces. Further, can it provid
classes of solutions which will describe types of surfaces more diverse than those fou
multidimensional Euclidean spaces.
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The extended Lotka–Volterra lattice and affine Jacobi
varieties of spectral curves

Rei Inouea)

Institute of Physics, Graduate School of Arts and Sciences, University of Tokyo,
Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
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Based on the work by Smirnov and Zeitlin, we study a simple realization of the
matrix construction of the affine Jacobi varieties. We find that the realization is
given by a classical integrable model, the extended Lotka–Volterra lattice. We
investigate the integrable structure of the representative for the gauge equivalence
class of matrices, which is isomorphic to the affine Jacobi variety, and make use of
it to discuss the solvability of the model. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1527224#

I. INTRODUCTION

Consider anN by N matrix whose matrix elements are polynomials ofz of degreeM
PZ.0 . We write the characteristic equation of the matrix as

F~z,w![wN2 f 1~z!wN211 f 2~z!wN222¯1~21!Nf N~z!50, ~1.1!

then eachf i(z) satisfies degf i(z)< iM . We assume that the algebraic curveX defined by~1.1! is
smooth. The genus of the curveX is g5 1

2(N21)(MN22).
For the matrix and the curveX, Beauville introduced an isomorphism,1

MF.X~g!2D.

Here the left-hand side is the gauge equivalence classMF defined as

MF5$M ~z!udeg~M ~z! i , j !<M for all i , j ,

Detuw12M ~z!u5F~z,w!%/GLN~C!,

and on the right-hand side we have the set of nontrivial divisorsX(g)5Xg/Sg,Div(X) whereSg

is the symmetric group. The last termD is a subset ofX(g), where by the Abel transformationD
is mapped to a (g21)-dimensional subvariety of the Jacobi varietyJ(X), which is called the theta
divisor Q. The Abel transformation induces an isomorphism,

X~g!2D.J~X!2Q,

and we callJ(X)2Q the affine Jacobi variety. In other words, the gauge equivalence classMF

gives a matrix construction of the affine Jacobi variety. Before Beauville’s work, Mumford stu
the case that the curveX is a hyperelliptic curve~the N52 case!, and introduced a unique
representative of the gauge equivalence class.2

As discussed in Refs. 1–3, the above correspondence of matrices and Jacobi varieties
relates to the study of finite dimensional integrable systems. The coefficients of the charac
equation~1.1! correspond to commuting integrals of motion which generateg independent vector
fields on the affine Jacobi variety. These fields determine the time evolution of the diviso

a!Electronic mail: rei@gokutan.c.u-tokyo.ac.jp
3380022-2488/2003/44(1)/338/14/$20.00 © 2003 American Institute of Physics
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X(g)2D, which is linearized on the Jacobi varietyJ(X). Recently Nakayashiki and Smirno
studied Mumford’s representative of a 232 matrix from the view point of the affine ring for th
affine Jacobi variety.4 They investigated how the commuting integrals act on the polynomial
generated by the matrix elements, by calculating the cohomology group. The extension o
work to that for integrableN3N matrices is studied by Smirnov and Zeitlin.5,6 Starting with an
N3N integrable monodromy matrix, they introduced a unique representative for the g
equivalence classMF which is isomorphic to a divisor inX(g)2D. The generalization of
Mumford’s representative appears in Refs. 6 and 7. We should remark that the way of const
the divisor from the monodromy matrix is nothing but the separation of variables~SoV! invented
by Sklyanin.8

The aim of this paper is to study a simple realization of the representative forMF , based on
Ref. 5. For the characteristic equation~1.1! we have assumed

f k~z!5 f k
(0)zkM1 f k

(1)zkM211¯1 f k
(kM) for k51,...,N,

and we add a condition

f N
(0)50. ~1.2!

The realization of the representative is given by the extended Lotka–Volterra lattice~In some
papers we call it the Bogoyavlensky lattice.! This is a classical integrable dynamical mod
defined by (111)-dimensional differential-difference equation,9–11

dVn

dt
52Vn (

k51

N21

~Vn1k2Vn2k!, ~1.3!

whereVn[Vn(t), nPZ. In this article we denote this model using LV(N). The integrable struc-
ture of LV(N) is based on the Poisson algebraALV generated byVn , and on theN by N Lax
matrix given by9,11

L̃n~z!5~Vn!2 1/NS z1/NE1,11~21!N21VnE1,N1 (
k51

N21

Ek11,kD . ~1.4!

HerezPC is a spectral parameter and (Ei , j )m,n5dm,idn, j . The Lax matrix composes the mono
dromy matrix which generates a family of commuting integrals of motion. This proves the
grability of the model in Liouville’s sense.11 It is remarkable that the model has an integra
quantization which can be applied to construct the vertex model linked on the crystal
theory.12 In this paper, we study LV(N) of a periodic boundary condition, which gives a realiz
tion of the representative ofMF introduced in Ref. 5. For the case ofN52 our realization is
essentially the same as that introduced in Ref. 13, and the previous article gives what corre
to its generalization. Based on some special properties of the correspondence of LV(N) and the
representative, we try to solve LV(N) by describing the dynamical variablesVn ~1.3! in terms of
the divisor inX(g)2D.

The plan of this paper is as follows; in Sec. II, starting with LV(N) we construct a mono-
dromy matrixT̄(z) whose matrix elements have a special form of polynomials ofz, and whose
characteristic equation is~1.1! with ~1.2!. By applying the method SoV we obtain a divisor
X(g)2D. In Sec. III, following Ref. 5 we review the gauge transformation which derives
representative ofMF , MF(z), from T̄(z). We letAMF

be the Poisson algebra for the polynom
ring generated by the coefficients of the matrix elements of the representativeMF(z). Next we
investigate some nice properties of this gauge transformation; the transformation does not
the zeros of the separating equation~2.16!, and erases the zero modeB0 . These assure the
injection from a divisor to the representative. After eliminating the center ofAMF

, a family of
nontrivial integrals forAMF

is composed ofg independent variables. These integrals govern
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evolution of the divisor, which is linearized onJ(X). In Sec. IV, we investigate LV(N) by making
use of the results in Sec. III. We show that the center ofAMF

is a subset of the center forALV , and
the nontrivial integrals of motion of both algebras coincide. Our claims are that the represen
MF(z) can be written in terms of the dynamical variableVn , and that the structure ofMF(z) has
a close relationship with the solvability of LV(N). The last section, Sec. V, is devoted to summa
and remarks. We mention the quantization of LV(N) and propose some future problems.

II. SPECTRAL CURVE OF LV „N… AND DIVISOR

A. Derivation of a proper monodromy matrix

We study the integrable structure of LV(N), and derive a monodromy matrix of a special for
which fits to the construction in Ref. 5.

We consider the dynamical system~1.3! with a periodic boundary conditionVn1L5Vn , and
set L5N(N21)M , MPZ.0 for later convenience. The Hamiltonian structure of LV(N) is de-
fined by the Poisson brackets

$Vn ,Vm%52VmVn (
k51

N21

~dm,n1k2dm,n2k!, ~2.1!

and the HamiltonianH15(n51
L Vn .9 We let ALV be the Poisson algebra forC@Vn ,Vn

21 ;nPZ#,
whose defining relations are given by~2.1!. After a variable transformation12

Vn5~PnPn11¯Pn1N21!21Qn
21Qn1N21 , ~2.2!

~2.1! is transformed into the Poisson brackets

$Pn , Qm%5dn,mPnQn , $Pn , Pm%5$Qn , Qm%50, ~2.3!

wherePn andQn are canonical variables. Using these variables we apply a gauge transform
to the Lax matrix~1.4!, Ln(z)5Vn11(z)L̃n(z)Vn(z)21, and obtain the followinglocal Lax
matrix:

Ln~z!5z1/NS PnE1,11QnE1,21
1

z
~21!N21Qn

21EN,11 (
k52

N21

Ek,k11D . ~2.4!

See Appendix A for the concrete description of the gauge matrixVn(z). We introduce another Lax
matrix,

L̄n~z!5~Ln
21~z!!T5

1

z1/N S Qn
21E1,21 (

k52

N21

Ek,k111z~21!N21QnEN,11z~21!N22PnEN,2D ,

~2.5!

where the superscriptT denotes a transposition of the matrices. Note that DetLn(z)5DetL̄n(z)
51. These Lax matrices satisfy the Poisson relations as

$Ln~z! ,^Lm~z8!%5dn,m@r ~z/z8!, Ln~z! ^ Ln~z8!#,

$L̄n~z! ,^ L̄m~z8!%5dn,m@2r ~z8/z!, L̄n~z! ^ L̄n~z8!#, ~2.6!

$Ln~z! ,^ L̄m~z8!%5dn,m@2rT2~z/z8!, Ln~z! ^ L̄n~z8!#,
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wherer (z) is a classicalr -matrix,

r ~z!5
z11

z21 (
k51

N

Ek,k^ Ek,k1
2

z21 (
1< j ,k<N

~Ek, j ^ Ej ,k1zEj ,k^ Ek, j !.

In deriving the second Poisson relation in~2.6!, we have usedr (z/z8)T1T252r (z8/z), whereTi

denotes a transposition in thei th space. Now the meaning of thelocal Lax matrix becomes clea
that the Lax matrices~2.4! and ~2.5! satisfy the Poisson relations withdn,m .

We define two monodromy matrices,

T~z!5)
k51

L
[

L k~z!, T̄~z!5)
k51

L
[

L̄ k~z!.

Due to ~2.6! the monodromy matrices satisfy the following Poisson relations:

$T~z! ,^T~z8!%5@r ~z/z8!, T~z! ^ T~z8!#, ~2.7!

$T̄~z! ,^ T̄~z8!%5@2r ~z8/z!, T̄~z! ^ T̄~z8!#, ~2.8!

$T~z! ,^ T̄~z8!%5@2rT2~z/z8!, T~z! ^ T̄~z8!#. ~2.9!

The first relation denotes that the commuting integrals of motion for LV(N) are generated by
Tr T(z), since the HamiltonianH1 is obtained by expanding TrT(z) by z. Latter two denote that
the matrixT̄(z) also generate the commuting integrals of motion for LV(N).

The matrix elements ofT(z) and T̄(z) turn out to be polynomials ofz, and these matrices
have forms as

T~z!5T2~z!1T0~z!1zT1~z!, ~2.10!

T̄~z!5zT̄2~z!1T̄0~z!1T̄1~z!. ~2.11!

HereT6(z), T̄6(z) are upper/lower triangular matrices without diagonal terms, andT0(z), T̄0(z)
are diagonal matrices. All matrix elements ofT6(z) andT0(z) are polynomials of degreeM (N
21)21 but (T0(z))1,1 which has a polynomial of degreeM (N21). On the other hand, elemen
of T̄0(z) are degreeM except for (T̄0(z))1,1 which is degreeM21, andT̄6(z) has polynomials
of degreeM21.

We find that the matrixT̄(z) has the characteristic equation, Detuw12T̄(z)u50, which coin-
cides with ~1.1! of ~1.2! and satisfiesf N(z)51. Moreover, the construction of the matrixT̄(z)
~2.11! and its Poisson relation~2.8! are exactly the same as those discussed in Ref. 5 where
Poisson relation~2.8! defines what is calledthe classical algebra of observablesgenerated by the
coefficients of polynomials which compose the matrix. Therefore we conclude that LV(N) gives a
realization of the algebra of observables. In the following, unless we give a notification, w
T̄(z) be a matrix of a special form~2.11! whose Poisson structure is given by~2.8! and forget
about the model LV(N).
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B. Separation of variables and divisor

We apply SoV method to obtain the eigenvalues of the monodromy matrixT̄(z) algebraically,
following Refs. 6, 14, and 15. This method gives a surjective map from the monodromy m
T̄(z) to a divisor on the curveX.

Divide the matrixT̄(z) into parts as

T̄~z!5S a~z! bW ~z!

cW~z!T d~z!
D , ~2.12!

wherea(z)5(T̄(z))1,1, bW (z), andcW (z) are low vectors ofN21 entries, andd(z) is anN21 by
N21 matrix. We transformT̄(z) as

U~z!5KT̄ ~z!K21, K511 (
j 51

N22

kiEi 11,N ,

wherekiPC. On the matrixU(z) we impose some conditions,

~U~z!! i ,N50 for i 51,...,N21. ~2.13!

One sees that these conditions reduce to

bW ~z!•xWT50, xW id~z!•xWT50 for i 51,...,N22, ~2.14!

wherexW , xW iPCN21 are low vectors,

xW i5~0,...,0,1,0,...,0,ki !, xW5~2k1 ,2k2 ,...,2kN22 ,1!.

These vectors satisfyxW i'xW for all i , then the vectorsxW i compose basis of the plane normal toxW .
Since the vectorbW (z) is also orthogonal toxW , it can be uniquely written as

bW ~z!5 (
i 51

N22

l ixW i , l iPC.

By using ~2.14!, we havebW (z)d(z)•xWT50 which enables to writebW (z)d(z) as a linear combina-
tion of xW i again. By repeating this procedure, we obtainbW (z)dk

•xWT50 for kPZ>0 . SincexW is not
a zero vector, the condition~2.14! finally reduces to6

B~z![DetS bW ~z!

bW ~z!d~z!

bW ~z!d~z!2

]

bW ~z!d~z!N22

D 50. ~2.15!

By the construction ofT̄(z), B(z) becomes a polynomial ofz of degreeg,

B~z!5B0)
i 51

g

~z2zi !. ~2.16!

The Poisson relation~2.8! ensures that allzi andB0 are Poisson commutative to each other. F
eachzi the eigenvalue of the matrixU(z), wi[(U(zi))N,N , is obtained as
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wi5DetS b~zi !

b~zi !d~zi !

]

b~zi !d~zi !
N23

jWd~zi !

D DetS b~zi !

b~zi !d~zi !

]

b~zi !d~zi !
N23

jW

D 21

,

wherejW is a low vector ofN21 entries,jW5(0,...,0,1). The Poisson relation~2.8! shows that the
separated variables,wi andzi ( i 51,...,g), satisfy the canonical Poisson brackets,

$zi ,zj%5$wi ,wj%50, $zi ,wj%52d i , j ziwi ,

andB0 is a zero mode,

$B0 ,zi%50, $B0 ,wi%52B0wi .

We conclude that via SoV we get the map from the matrixT̄(z) to a divisor overX, P
5( i 51

g @(wi ,zi)#, as each pair of separated variables (wi ,zi) is a point on the curveX. We assume
that ~2.16! has different zeros,ziÞzj for all iÞ j , and that no point (wi ,zi) coincides with the
ramification points of the map fromX to P1. These assumptions assurePPX(g)2D.

III. INTEGRABLE MONODROMY MATRIX AND AFFINE JACOBI VARIETY

A. Representative of MF

Let $T̄(z)%F be a set of matrices with a form~2.11! and whose characteristic equatio
coincide with~1.1!. In the preceding section SoV defines a surjective map from the set$T̄(z)%F to
a certain set of divisorsPPX(g)2D, but it is not an injective map. One easily sees the reason
comparing their dimensions, namely$T̄(z)%F and X(g)2D, respectively, have
(g1N21)-dimension andg-dimension as affine spaces. Smirnov and Zeitlin introduced a re
sentative ofMF by setting a gauge transformation which eliminate the excessive dimensiN

21 of $T̄(z)%F . Following Ref. 5, we review the way to introduce the representative ofMF .
For the matrixT̄(z) we set

T̄~z!5m0zM1m1zM211¯1mM , ~3.1!

and definenW 5eW1•m1 whereeW i is a N-dimensional low vector whose entries are zero buti th is 1.
The gauge transformation from the monodromy matrixT̄(z) to the representative ofMF ,
MF(z), is

MF~z!5ST̄~z!S21, where S5S eW1

nW m0
N22

]

nW m0

nW

D . ~3.2!

Then we obtainMF(z) as

MF~z!5UzM1O~zM21!, U5 (
k51

N

m(k)E2,k1 (
k53

N

Ek,k21 , ~3.3!

wherem(k) are given by
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m(1)5~21!N DetS nW
eW2m0

eW3m0

]

eWNm0

D , zN212 (
k52

N

m(k)zN2k5)
k52

N

~z2~m0!k,k!).

Especially we have

~MF~z!!1,N5zN211O~zN22!, ~MF~z!!1,i5O~zN22!, for i 51,...,N21.

The set$T̄(z)%F is transformed to$MF(z)%, and one sees that$MF(z)% is a g-dimensional affine
space.

Under the gauge transformation~3.2!, the zeros ofB(z) ~2.16! are invariant and the zero mod
B0 is canceled~see Appendix B for the proof!;

B~z!°BF~z!5~2 !1/2(N21)(N22))
k51

g

~z2zk!.

Therefore a divisorP5( i 51
g @(wi ,zi)# determinesBF(z) uniquely. In conclusion, we get th

isomorphism,MF.X(g)2D, where the representativeMF(z) concretely gives the matrix con
struction of the affine Jacobi variety.

B. Integrable system on the Jacobi variety

Let us see how the integrable structure of the monodromy matrixT̄(z) is translated to that of
the matrixMF(z). Via ~3.2!, the Poisson structure of the matrix elements ofT̄(z) ~2.8! induces the
Poisson algebraAMF

generated by the matrix elements ofMF(z). For the defining relation of
AMF

, see the last part of Sec. II in Ref. 5 and take its classical limit. We study a commuting fa
of integrals of motion forAMF

without referring to the defining relation ofAMF
.

From ~2.8!, one obtains

$DetT̄~z! ,^ T̄~z8!%50, ~3.4!

$Det~w12T̄~z!!,Det~w812T̄~z8!!%50. ~3.5!

Equation~3.4! denotes that DetT̄(z) is Poisson commutative with all elements ofT̄(z8), namely
DetT̄(z) belongs to the center ofAMF

, AMF

0 . Equation~3.5! assures that the variablesf k
( j ) com-

pose a commutative subalgebra ofAMF
, $ f k

( j ) , f k8
( j 8)%50. Therefore, the dynamical system inAMF

has a family of integrals of motion,$ f k
( j )uk51,...,N21, j 50,...,kM%, whose number isg

12(N21). In the following we show that 2(N21) integrals,f k
(0) and f k

(kM) , k51,...,N21,
belong toAMF

0 , namely the number of nontrivial integrals of motion isg. What we should show

is

$ f k
( j ) ,^MF~z!%50, for k51,...,N21 and j 50,kM. ~3.6!

One sees that sincef k(z) can be written in terms oftk(z)[Tr(T̄(z))k,

f 1~z!5t1~z!, f 2~z!5 1
2 ~ t1~z!22t2~z!!, etc.,

~3.6! are reduced to
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$tk
( j ) ,^MF~z!%50, for j 50,kM. ~3.7!

Here we denote the dominant terms of Tr(T̄(z))k in the z→0,̀ limits using tk
(kM) , tk

(0) , respec-
tively. The Poisson relation~2.8! reduces to

$tk~z! ,^ T̄~z8!%5Tr1$~ T̄~z!!k ,^ T̄~z8!%5k Tr1@r ~z/z8!,~ T̄~z!!k
^ T̄~z8!#,

which derives

$tk
( j ) ,^ T̄~z8!%5k@~K ( j )!k,T̄~z8!#,

$tk
( j ) ,^nW %52knW ~K ( j )!k, ~3.8!

$tk
( j ) ,^ m0%5k@~K ( j )!k,m0#,

for j 50,kM. Here we use the matricesmk ~3.1! and

K (0)5diag@0,~m0!2,2,...,~m0!N,N#,

K (kM)52diag@0,~mM !2,2,...,~mM !N,N#.

Due to the relations~3.8! we get

$tk
( i ) ,^S%52k~S2E1,1!~K ( i )!k, for i 50,kM, ~3.9!

and ~3.7! is proved.
We arrange the nontrivial integrals as

f 1
(1) ,...,f 1

(M21) , f 2
(1) ,...,f 2

(2M21) ,...,f N21
(1) ,...,f N21

(M (N21)21) ,

and number them in order,

H1 ,H2 ,...,Hg . ~3.10!

In conclusion, we obtain the integrable structure ofAMF
that the g commuting integralsHi

describe the time evolution forOPAMF
;

]O
]t i

[$Hi ,O% for i 51,...,g. ~3.11!

On the Jacobi varietyJ(X), Hi generate the invariant vector field where the time evolution of
image of the divisorP is linearized. By the inverse map of the Abel transformation, we getzi as
functions of timest i , zi5zi(t1 ,...,tg) once the initial valueszi(0,...,0)5zi

0 is given. Note that
the curveX is determined by the eigenvalues ofHi .
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IV. DESCRIPTION OF THE LV„N…

Now we study the realization ofMF(z) given by LV(N). Since the characteristic equatio
~1.1! is invariant under the gauge transformation, the commuting family can be written in term
the dynamical variables of LV(N) by making use of the Lax matrixL̃n(z) ~1.4!. We introduce
variablesPk andP k8 ,

P05 )
n51

L

~Vn!2 1/N,

Pk5 )
n51

NM

~V(N21)n1k! for k51,...,N21,

Pk85 )
n51

(N21)M

~VNn1k! for k51,...,N.

These variables constitute the center ofALV , A LV
0 . Note that not all of them are independent, a

the generators ofA LV
0 are obtained by choosing any 2(N21) variables from$Pk>1 ,P k8%. The

direct calculations show that the elements ofAMF

0 are written in terms of these variables as

f N~z!5DetT̄~z!51,

f N21
(0) 5P0 ,

f 1
(0)5P 0

21~P 1
211¯1PN21

21 !,

f N21
(N21)M5P0~P181¯1PN8 !,

f 1
(N21)M5P 0

21~P18
211¯1PN8

21!,

and that other elements,f k
(0) , f k

(kM) for k52,...,N22, are obtained from the above. Therefore w
seeAMF

0 ,A LV
0 , and the nontrivial integrals of motion for LV(N) have one-to-one corresponden

to Hi .
Based on the above observation, we conjecture that

~i! the matrixMF(z) can be written in terms ofVn , namelyAMF
,ALV,

~ii ! then all zeros ofBF(z) are given byVn ,zi5zi($Vn%), and we cansolveLV( N) as

Vn5Vn~Pk ,P k8 ,Hi ;zi !.

To discuss the conjecture, using~A1! and ~3.2! we rewriteMF(z) as

MF~z!5S~V1~z!21!T~~ L̃L~z!¯L̃1~z!!21!TV1~z!TS21. ~4.1!

Due to the construction of the gauge matrixV1(z) ~A2!, we reduce~4.1! to

MF~z!5S̃X~z!21~~ L̃L~z!¯L̃1~z!!21!TX~z!S̃21. ~4.2!

We have conjectured by~i! that the matrixS̃ is written in terms ofVn . Remember that LV(N) has
N(N21)M dynamical variablesVn . Once we accept~i!, ~ii ! follows ~i! since we have enough
number of relations to describeVn in terms ofPk , P k8 , Hi , andzi . Actually we haveg relation
equations betweenzi and Vn , g nontrivial integrals of motionHi , and 2(N21) independent
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generators ofA LV
0 , whose summation coincides withN(N21)M . It should be remarked that du

to the periodic boundary condition of the system, we essentially have the translation inva
such asP15¯5PN21 andP 185¯5P N8 .

In the following, we study the cases ofN52,3 which illustrate the correspondence of LV(N)
and the integrable structure on the affine Jacobi variety. We prove the conjecture in theN52 case,
and the simplest case ofN53. For generalN, it seems to be very complicated even to show~i!.

N52 case: We haveL52M , g5M21, the integrals of motionHi , i 51,...,M21, and the
elements ofA LV

0 ,

P15~P0!225)
k51

2M

Vk , P 185)
k51

M

V2k21 , P 285)
k51

M

V2k .

By definition, we have

S5S 1 0

2P2¯PL21Q1QL
21 P1¯PL21QL

21D
5S 1 0

2P0VL P0PL
21QL

21D ,

B1
215P1

1/2Q1
2 1/2S 1 0

0 P1
21Q1

D ,

where Pn , Qn are canonical variables~2.3!, and Vn5(PnPn11)21Qn
21Qn11 ~2.2!. Then ~4.1!

reduces to~4.2! where the matrixS̃ is

S̃5S 1 1

0 2P0VL
D ,

which justifies~i!.
Let us consider the case ofM52, L54, andg51. Now ~1.1! becomes

w22P0~z22H1z1P 181P 28!w1150,

where we have three independent integrals of motion,

H15 (
k51

4

Vk , P 185V1V3 , P 285V2V4 . ~4.3!

Due to the translation invariance we setP[P 185P 28 which yieldsP 0
25P 22. The polynomial

BF(z) has a zeroz1 ,

z15V11V2 . ~4.4!

Here z1 is a function oft1 defined by~3.11! with H15P0H1 . Finally, the dynamical variables
Vn5Vn(P,H1 ;z1(t1)) for n51,2,3,4 are obtained from~4.3! and ~4.4!.

N53 case: We consider theL56, M51, andg51 case. Now the characteristic equation

w31P 0
2~z~P11P2!2~P 18P 281P 18P 381P 28P 38!!w21P0~z21zH11P 181P 281P 38!w2150,

where
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Pi5ViVi 12Vi 14 , for i 51,2, P i85ViVi 13 for i 51,2,3, H15 (
k51

6

Vk . ~4.5!

We setP i8[P, and for simplicity consider the case ofPi[P 3/2 andP0[P 21. Then the matrix
M (z) reduces to~4.2! where the gauge matrixS̃ is written in terms ofVn ,

S̃5S 0 1 1

P 21~V51V6!12P 2 1/2 P 21V6 2P 21~V51V6!22P 2 1/2

21 2P 2 1/2V6 1
D .

The polynomialBF(z) has a zeroz1 ,

z152~V11V2!S V3V4

P 1/2~V31V4!1P 11D . ~4.6!

As the same as in theN52 case, we obtainVn5Vn(P,H1 ;z1(t1)) by using~4.5! and ~4.6!.
For the generalN cases we support~i! and~ii !, and the dynamical variables of LV(N) should

be solved as

Vn5Vn~P,H1 ,...,Hg ;z1 ,...,zg!,

wherezi5zi(t1 ,...,tg).

V. SUMMARY AND REMARKS

In this paper, we have studied the realization of the representative of the gauge equiv
classMF , which is given by the classical integrable model, the extended Lotka–Volterra la

The gauge equivalence classMF have the elements whose characteristic equation~1.1! is
common, and the coefficients of~1.1! correspond to a set of commuting integrals of motion. Th
is the isomorphism fromMF to a set of divisorsX(g)2D, and the time evolution of the diviso
is linearized on the Jacobi varietyJ(X). In Ref. 5, it was introduced that the way to construct t
representative ofMF by starting with the integrable monodromy matrixT̄(z) ~2.11!. Based on
the integrable Poisson structure of the monodromy matrix, the divisor is determined via So

We have found that LV(N) gives the realizations not only for the monodromy matrixT̄(z) but
also for the representativeMF(z). We have studied the correspondence of LV(N) and the repre-
sentative and their Poisson algebras in detail. Then we have shown that the family of non
integrals of motion for the representative coincides with that of LV(N), and that the number o
these integrals are necessary and sufficient to describe the model. Especially our claim
MF(z) can be written in terms of the dynamical variables of LV(N). These make possible to solv
the model, and the time evolutions of the dynamical variablesVn are obtained as

Vn5Vn~P,H1 ,...,Hg ;z1~$t i%!,...,zg~$t i%!!.

HereP andHi are the integrals of motion, where eachHi generates the independent timet i .
In closing, we would like to mention the quantization of LV(N). By replacing the canonica

variables~2.3! in the Lax matricesLn(z) ~2.4! and L̄n(z) ~2.5! with the Weyl operators,

@ P̂n ,Q̂m#5dn,mP̂nQ̂n , @ P̂n ,P̂m#5@Q̂n ,Q̂m#50,

we get the quantum integrable model.11,12 As is the same as the classical case we note the
matrix L̄n(z) ~2.5!. Now this matrix with Weyl operators satisfies the fundamental commu
relation
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R~z/z8;q!~ L̄n~z! ^ 1!~1^ L̄n~z8!!5~1^ L̄n~z8!!~ L̄n~z! ^ 1!R~z/z8;q!,

whereR-matrix is

R~z;q!5 (
k51

N

~z2q2!Ek,k^ Ek,k1(
j 51

N

(
k51

N21

q~z21!Ej , j ^ Ej 1k, j 1k

1 (
1< j ,k<N

~12q2!~Ej ,k^ Ek, j1zEk, j ^ Ej ,k!.

Especially in theN52 case the Lax matrix becomes

L̄n~z!5
1

z1/2S 0 Q̂n
21

2zQ̂n zP̂n
D . ~5.1!

Taking into account the canonical transformation, this is essentially the same as what is dis
in Ref. 13. In the generalN case, the monodromy matrixT̄(z) is written as

T̄~z!5)
k51

MN
[

Lk~z!,

whereLk(z)5(L̄ k(N21)(z)L̄ k(N21)21(z)¯L̄ (k21)(N21)11(z)) is

1

z~N21!/NS 0 0 ¯ 0 Q̂N21
21

z~2!N21Q̂1 z~2!N22P̂1 0 ¯ 0

0 z~2!N21Q̂2Q̂1
21 z~2!N22P̂2 0 ]

] 0 � � 0

0 ¯ 0 z~2!N21Q̂N21Q̂N22
21 z~2!N22P̂N21

D
[k21]

.

Here in the matrix with the subscript [k21] the operatorsP̂i and Q̂i are regarded as
P̂i 1(k21)(N21) and Q̂i 1(k21)(N21) , respectively. We expect that the matrixLn(z) gives a key to
generalize the Baxter equations and their dual structure in the sense of Ref. 13, which is a
problem. The matrixLk(z) may link to the relatives or the extension to slN of the Toda lattice. It
seems to be interesting to study this matrix in both the classical and quantum cases from th
of view.
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APPENDIX A: LOCAL LAX MATRIX FOR LV „N…

We define a gauge transformation ofL̃n(x) ~1.4! as follows:

Ln~z!5Vn11~z!L̃n~z!Vn~z!21, ~A1!

Here the gauge matrixVn(z) is
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Vn~z!5BnAX ~z!, ~A2!

where

A5S (
k51

N

Ek,N112kD S 12 (
k51

N21

Ek,k11D ,

Bn5 )
k50

N22

~Pn1k!
2( j 5k12

N D( j )
~Qn1k!

D(k12)
,

X~z!5 (
k51

N

z~k21!/NEk,k ,

and we use

D( j )5
1

N
12Ej , j , ~Pn!D( j )

5 (
k51

N

Pn
(D( j ))k,kEk,k .

In the above we have used a notation,

Pn
D5diag@Pn

d1 ,Pn
d2 ,...,Pn

dN#, where D5diag@d1 ,...,dN#.

Finally we obtain the local Lax matrix~2.5!,

Ln~z!5z1/NS PnE1,11QnE1,21
1

z
~21!N21Qn

21EN,11 (
k52

N21

Ek,k11D .

Note that the gauge matrixVn(z) is different from that introduced in Ref. 12.

APPENDIX B: GAUGE TRANSFORMATION OF B „z…

We divide the matrixS ~3.2! in the same way as~2.12!,

S5S 1 0W

sW1
T s2

D ,

where we use

sW15cW0~d0
N212 i !T, s25S bW 0d0

N22

]

bW 0d0

bW 0

D ,

andcW0 , bW 0 , andd0 are dominant parts ofcW (z), bW (z), andd(z) in z→`. The matrixS transforms
the monodromy matrixT̄(z) to

MF~z!5ST̄~z!S215S ] bW ~z!s2
21

[ ~sW1
TbW ~z!1s2d~z!!s2

21D ,

where the parts indicated by] and[ are not important now. Following this transformation, t
polynomialB(z) ~2.16! becomesBF(z) as
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BF~z!5DetS bW ~z!s2
21

bW ~z!s2
21~sW1

TbW ~z!s2
211s2d~z!s2

21!

]

bW ~z!s2
21~sW1

TbW ~z!s2
211s2d~z!s2

21!N22
D

5DetS bW ~z!

bW ~z!d~z!

]

bW ~z!d~z!N22

D Det~s2
21!

5~2 !1/2(N21)(N22)B~z!B0
21.

The second equality is due to

bW ~z!s2
21sW1

TbW ~z!}bW ~z!,

and the third one follows~2.15! and

Dets25~2 !1/2(N21)(N22)B0 ,

whereB0 is the zero mode ofB(z). Finally we obtainBF(z) which do not have the zero mode
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I. INTRODUCTION

The main goal of this paper is to perform spherical averages over the hyperbolic coord
in Minkowski space–time by means of direct integration. We work with Lorentz invariant~or
‘‘radial’’ ! functions, defined onR1,n, which depend only on the distance to the light-cones2

5(x0)22(xW )2. (x0 is the time coordinate andxW stands for the spatial coordinates!. In particular,
we will compute their Fourier transforms:

F~k!ªE
R1,n

dxn11 f ~hmnxmxn!exp~22p ikmxm!, ~1!

where the metrichmn is of the form

hmn5diag~1,21,...,21!. ~2!

~We set the 2p in the exponential to avoid factors of 2p appearing in front of the integral
Here it is just for convenience but this strategy becomes crucial when integrating over in
dimensional spaces.1!

This type of integral is ubiquitous in quantum field theory~QFT!, since the fields can be
decomposed in terms of their Fourier components, and the correlation functions depend o
the radial distances2. Although QFT is defined in Minkowski space, a common procedure i
perform a Wick rotation at an early stage~this procedure can be found in standard textbooks, e
Ref. 2! in which all integrals over space–time are reduced to Euclidean integrals.

There are several obvious disadvantages to relying on the Wick rotation procedure, in
the time coordinatet is rotated to imaginary valuest→2 i t , and Minkowski space–time is trans
formed into Euclidean space. First, the special structure of Minkowski space–time in which
is a preferred direction~i.e., time direction! is lost. Second, Wick rotation might not be a val
procedure in all circumstances, e.g., in cases where the arc at infinity does not vanish.

The motivation for this work is to provide tools for performing calculations in QFT wh
working directly in Minkowski space.

In analogy with Euclidean space, we introduce a~pseudo-! spherical coordinate atlas, i.e., on
of the angles is hyperbolic. Integrating over all the angular variables leaves us with a

a!Now at Schonfeld Securities, 650 Madison Ave., New York, NY 10022.
3520022-2488/2003/44(1)/352/14/$20.00 © 2003 American Institute of Physics
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dimensional radial integral. The advantage of this procedure is that any possible light-con
gularities of the integrand are mapped to point singularities in the radial variable and the
easier to deal with.

In this paper we will not specify the function space for which the integrals are convergen
will assume that only such functions have been chosen.

Below, we will discuss the casesn51 andn52 in detail. For the case of generaln we only
quote the results.

After preparing an earlier version of this paper we found an article by Codelupi3 which seems
to be largely unknown. Codelupi studied Fourier transforms of Lorentz invariant functionsf (s),
using related methods, and found the same results. To find the case of arbitraryn he proved a
recursion relation, that relates Fourier transform ofn12 spatial dimensions to the Fourier tran
form of n spatial dimensions. In Sec. IV we adapt Codelupi’s elegant method to our case.

II. CASE R1,1

A. Pseudospherical coordinate atlas for R1,1

A characteristic feature of manifolds with an indefinite metric is that a global spherical c
dinate system does not exist.4 To coverR1,1 we use four patches and four different parametri
tions. The parametrizations coincide on the boundary between the domains, i.e., on the ligh
~See Fig. 1!.

Denote byt,x the global Cartesian coordinate system with distances25t22x2. We param-
etrize the different patches as follows.

Patch I:

t5s coshc, x5s sinhc,

wheresP@0,1`@ andcP] 2`,1`@ .
Volume element:dt∧dx5s ds∧dc.
Line element:s25t22x2.

Patch II:

FIG. 1. Standard division ofR1,1. I is the forward light-cone, III the backward light-cone, and II and IV the space
domains.
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t5 is sinhc, x5 is coshc,

wheresP] i`,i0] andcP] 2`,1`@ .
Volume element:dt∧dx5s ds∧dc.
Line element:s25t22x2.

Patch III:

t5s coshc, x5s sinhc,

wheresP@0,2`@ andcP] 2`,1`@ .
Volume element:dt∧dx5s ds∧dc.
Line element:s25t22x2.

Patch IV:

t5 is sinhc, x5 is coshc,

wheresP] 2 i`,i0] andcP] 2`,1`@ .
Volume element:dt∧dx5s ds∧dc.
Line element:s25t22x2.

The limits of integration in each patch are chosen to yield a positive result when the vo
element is integrated over a small, finite volume.

B. Fourier transform of radial functions

We integrate the functionf (s2) separately in the timelike and spacelike domain for the ca
of timelike and spacelike momenta. To simplify the calculation, we setkx50 when the momentum
is timelike, andkt50 when the momentum is spacelike. This can always be achieved w
Lorentz transformation and is not a restriction on the results.

Patch I1III:

~i! Timelike momentum:kx50,

II1III ~kt!5E
I1III

dt dx f~ t22x2!exp~22piktt!

5E
0

`

ds sf~s2!E
2`

1`

dc exp~22piktscoshc!

1E
0

2`

ds sf~s2!E
2`

1`

dc exp~22piktscoshc!

52E
0

`

ds0 s0 f~s0
2!E

2`

1`

dc cos~2pkts0 coshc!

522pE
0

`

ds0 s0 f~s0
2!N0~2pkts0!, ~3!

whereN0 is a Bessel function of zeroth order and

s05At22x2. ~4!

In the last line we have used formula 3.868~2! from Ref. 5, after a change of variable t
x5ec.
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~iii ! Spacelike momentum:kt50,

II1III ~kx!5E
I1III

dt dx f~ t22x2!exp~22pikxx!

5E
0

`

ds sf~s2!E
2`

1`

dc exp~22pikxssinhc!

1E
0

2`

ds sf~s2!E
2`

1`

dc exp~22pikxssinhc!

5E
0

`

ds0 s0 f~s0
2!E

2`

1`

dc cos~2pkxs0 sinhc!54E
0

`

ds0 s0 f~s0
2!K0~2pkxs0!, ~5!

whereK0 is a Bessel function of zeroth order ands0 as before. In the last line we have use
formula 3.868~4! from Ref. 5, after a change of variable tox5ec.

Patch II1IV:

~i! Timelike momentum:kx50,

III1IV~kt!5E
II1IV

dt dx f~ t22x2!exp~22piktt!

5E
i`

i0

ds sf~s2!E
2`

1`

dc exp~2pktssinhc!

1E
2i`

i0

ds sf~s2!E
2`

1`

dc exp~2pktssinhc!

5E
0

`

ds1 s1 f~s1
2!E

2`

1`

dc cos~2pkts1 sinhc!

54E
0

`

ds1 s1 f~s1
2!K0~2pkts1!, ~6!

whereK0 is a Bessel function of zeroth order and

s15Ax22t2. ~7!

In the last line we have used formula 3.868~4! from Ref. 5, after a change of variablex
5ec.

~ii ! Spacelike momentum:kt50,

III1IV~kx!5E
II1IV

dt dx f~ t22x2!exp~22pikxx!

5E
i`

i0

ds sf~s2!E
2`

1`

dc exp~2pkxscoshc!

1E
2i`

i0

ds sf~s2!E
2`

1`

dc exp~2pkxscoshc!

52E
0

`

ds1 s1 f~s1
2!E

2`

1`

dc cos~2pkxs1 coshc!

522pE
0

`

ds1 s1 f~s1
2!N0~2pkxs1!, ~8!

whereN0 is a Bessel function of zeroth order ands1 as before. In the last line we have use
formula 3.868~2! from Ref. 5, after a change of variable tox5ec.
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In summary

C. Example: Fourier transform of a Gaussian

In this section we apply the results from above to a specific test function and show th
correct answer is obtained. Whenever necessary, we define the integral*0

`dx f(x) as
lime→0*0

`dx e2ex2
f (x). With this proviso, we can directly compute the Fourier transform o

‘‘Gaussian’’ ~where the quotation marks remind us that the exponential is imaginary!,

E dt dx ei (t22x2)e22p iktt5pe2 ip2kt
2
.

We can now check that our Fourier transform integrals give the same result,

I 1~kt!54E
0

`

dr re2(e1 i )r 2
Kn~2prkt!

5
1

pkt

1

Ae1 i
GS 11

n

2DGS 12
n

2Dep2kt
2/2(e1 i )W2 1/2 , n/2S p2kt

2

2~e1 i ! D ,

I 2~kt!522pE
0

`

dr re2(e2 i )r 2
Nn~2prkt!

52
1

kt

1

Ae2 i

1

sinS pn

2 D e2 p2kt
2/2(e2 i )FW1/2 , n/2S p2kt

2

2~e2 i ! D

2cosS np

2 D GS 11
n

2D
G~11n!

M1/2 , n/2S p2kt
2

2~e2 i ! D G ,

where we have used 6.631~2,3! from Ref. 5. Each integral has a pole asn→0; the W function
with negative first argument has a simple pole inn, and there is an inverse sine inn in the second
integral. However, as we will see, this singularity exactly cancels between the two integrals
we may, in fact, taken→0 in the sum. First we convert theM function toW functions,

M1/2 , n/2~z!5 i
G~11n!

GS n

2D W2 1/2 , n/2~z!1
G~11n!

GS 11
n

2D e2 ipn/2W1/2 , n/2~z!

using formula 9.233~1! in Ref. 5. Then we make use of the following identities@9.234~1,2! and
9.235 in Ref. 5#:
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W1/2 , n/2~z!5
Az

2
W0,~11n!/2~z!1

Az

2
W0,~12n!/2~z!,

W2 1/2 , n/2~z!5
2Az

n
W0,~11n!/2~z!,

W0,1/2~z!5e2z/2.

Expanding theG functions and 1/sinz51/z1z/61O(z2), we can explicitly verify that the singu
larity cancels:

I 11I 252
2i

n
1

2i

n
1O~1!501O~1!.

We have verified numerically that the constant term is, in fact,

I 11I 25pe2 ip2k2
.

III. CASE R1,2

A. Pseudospherical coordinate atlas for R1,2

Global coordinate system:t,x,y, distances25t22x22y2.

Patch I:

t5s coshc, x5s sinhc cosu, y5s sinhc sinu,

wheresP@0,1`@ , cP] 2`,1`@ anduP@2p/2,p/2#.
To avoid problems when sinhc switches sign at 0, the integral overc needs to be split up into

two integrals:cP@0,1`# andcP@0,2`#.
Volume element:dt∧dx∧dy5s2 sinhc ds∧dc∧du.
Line element:s25t22x22y2.

Patch II:

t5 is sinhc, x5 is coshc cosu, y5 is coshc sinu,

wheresP@ i0,i`@ , cP] 2`,1`@ , anduP@2p/2,p/2#.
Volume element:dt∧dx∧dy5 is2 coshc ds∧dc∧du.
Line element:s25t22x22y2.

Patch III:

t5s coshc, x5s sinhc cosu, y5s sinhc sinu,

wheresP@0,2`@ , cP] 2`,1`@ , anduP@2p/2,p/2#.
To avoid problems when sinhc switches sign at 0, the integral overc needs to be split up into

two integrals:cP] 1`,0] andcP] 2`,0].
Volume element:dt∧dx∧dy5s2 sinhc ds∧dc∧du.
Line element:s25t22x22y2.

Patch IV:

t5 is sinhc, x5 is coshc cosu, y5 is coshc sinu,

wheresP] 2 i`,i0], cP] 2`,1`@ , anduP@2p/2,p/2#.
Volume element:dt∧dx∧dy5 is2 coshc ds∧dc∧du.
Line element:s25t22x22y2.
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The limits of integration in each patch are chosen to yield a positive result when the vo
element is integrated over a small, finite volume.

B. Fourier transform of radial functions

As before, we integrate the functionf (s2) separately in the timelike and spacelike domain
the cases of timelike and spacelike momenta. To simplify the calculation, we setkx5ky50 when
the momentum is timelike, andkt5ky50 when the momentum is spacelike. This can always
achieved with a Lorentz transformation and is not a restriction on the results.

Patch I1III:

~i! Timelike momentum:kx5ky50,

II1III ~kt!5E
I1III

dt dx dy f~ t22x22y2!exp~22piktt!

5pE
0

`

ds s2f~s2!FE
0

`

dc sinhc exp~22piktscoshc!

1E
0

2`

dc sinhc exp~22piktscoshc!G
1pE

0

2`

ds s2f~s2!F È0

dc sinhc exp~22piktscoshc!

1E
2`

0

dc sinhc exp~22piktscoshc!G
5E

0

`

ds s2f~s2!
exp~22pikts!

ikts
2E

0

2`

ds s2f~s2!
exp~22pikts!

ikts

52
2

kt
E

0

`

ds0 s0 f~s0
2!sin~2pkts0!, ~9!

where

s05At22x22y2. ~10!

The angular integrals have been computed as follows:

E
0

`

dc sinhc exp~2ia coshc!1E
0

2`

dc sinhc exp~2ia coshc!

5 lim
e→0

2E
02 i e

1`2 i e

dc sinhc exp~2ia coshc!

5 lim
e→0

2

ia
@2exp~2ia cosh~`2ie!!1exp~2ia cosh~02ie!!#5

2

ia
exp~2ia!,

wherea52pkts, and in the last line cosh(c6ie)5coshc6ie sinhc has been used.
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~ii ! Spacelike momentum:kt5ky50,

II1III ~kx!5E
I1III

dt dx dy f~ t22x22y2!exp~22pikxx!

5E
0

`

ds s2f~s2!E
2p/2

p/2

duF E
0

`

dc sinhc exp~22pikxssinhc cosu!

1E
0

2`

dc sinhc exp~22pikxssinhc cosu!G
1E

0

2`

ds s2f~s2!E
2p/2

p/2

duF È0

dc sinhc exp~22pikxssinhc cosu!

1E
2`

0

dc sinhc exp~22pikxssinhc cosu!G
5E

0

`

ds s2f~s2!
exp~22pkxs!

kxs
1E

0

2`

ds s2f~s2!
exp~22pkxs!

ikxs

5
2

kx
E

0

`

ds0 s0 f~s0
2!exp~22pkxs0!. ~11!

The angular integrals have been computed as follows (a52pkxs):

E
2p/2

p/2

duF E
0

`

dc sinhc exp~2 ia sinhc cosu!1E
0

2`

dc sinhc exp~2 iasinhc cosu!G
54E

0

`

dc sinhcE
0

p/2

du cos~a sinhc cosu!

52pE
0

`

dc sinhcJ0~a sinhc!

5
2p

a
exp~2a!.

To get to the third line we have used formula 3.753~2! from Ref. 5, after a change of variable t
x5cosu. The last line is obtained using 6.554~1! from Ref. 5, after a change of variable toy
5sinhc.

Patch II1IV:

~i! Timelike momentum:kx5ky50,

III1IV~kt!5E
II1IV

dt dx dy f~ t22x22y2!exp~22piktt!

5iE
i0

i`

ds s2f~s2!E
2p/2

p/2

duE
2`

1`

dc coshc exp~2pktssinhc!

1iE
2i`

i0

ds s2f~s2!E
2p/2

p/2

duE
2`

1`

dc coshc exp~2pktssinhc!

52pE
0

2`

ds8 s82f~2s82!E
2`

1`

dc coshc exp~22pikts8 sinhc!

2pÈ0

ds8 s82f~2s82!E
2`

1`

dc coshc exp~22pikts8 sinhc!50. ~12!
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The angular integrals have been computed as follows~with a52pkts8):

E
2`

1`

dc coshc exp~2ia sinhc!5 lim
e→0

E
2`2 i e

1`2 i e

dc coshc exp~2ia sinhc!

5 lim
e→0

i

a
@exp~2ia sinhc!#2`2ie

1`2ie

5 lim
e→0

i

a
@exp~2ia`!exp~2ea`!2exp~ia`!exp~2ea`!#50.

~ii ! Spacelike momentum:kt50,

III1IV5E
II1IV

dt dx dy f~ t22x22y2!exp~22pikxx!

5iE
i0

i`

ds s2f~s2!E
2p/2

p/2

duE
2`

1`

dc coshc exp~2pkxscoshc cosu!

1iE
2i`

i0

ds s2 f~s2! E
2`

1`

dc coshcE
2p/2

p/2

du exp~2pkxscoshc cosu!

54E
0

`

ds1 s1
2 f~2s1

2!E
0

p/2

duE
0

`

dc coshc exp~2pikxs1 coshc cosu!

14E
0

`

ds1 s1
2 f~s1

2!E
0

p/2

duE
0

`

dc coshc exp~22pikxs1 coshc cosu!

58E
0

`

ds1 s1
2 f~s1

2!E
0

p/2

duE
0

`

dc coshc cos~2pkxs1!

5
2

kx
E

0

`

ds1 s1 f~s1
2! cos~2pkxs1!, ~13!

where

s15Ax21y22t2.

The angular integral has been computed as follows~with a52pkxs1):

E
0

`

dc coshcE
0

p/2

du cos~acoshc cosu!5
p

2 E0

`

dc coshc J0~acoshc!5
p

a
cos~a!,

where in the second line, formula 3.715~19! from Ref. 5, and in the last line formula
6.554~3! from Ref. 5 have been used, after a change of variable tox5coshc.

In summary
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IV. CASE R1,n

In this section we follow Codelupi’s derivation3 of the 11n dimensional case. The idea is t
derive a recursion relation between the Fourier transform inn andn12 spatial dimensions, and
then use the explicit expressions found before to construct the general case.

A. Recursion relation

Define the radius inn spatial dimensions as follows:

r 25(
i 51

n

xi
2 .

Formally, the functionf (s)5 f (At22r 2) always looks the same, independent of the numbe
spatial dimensions. Suppose we have spaces with spatial dimensionsn51 to n5m. For each of
these spaces exists a transform

F (n)~k,k0!5E
0

`

dr xn~r ,k!G~r ,k0!, ~14!

where~proof given in the appendix!

xn~r ,k!52p
r n/2

kn/221 Jn/221~2prk ! ~15!

and

G~r ,k0!5E
2`

1`

dt f~At22r 2! exp~22p ik0t !. ~16!

But formally, G(r ,k0) looks the same for all cases, for example,

G~r ,k0!5E
0

`

dk xm~k,r !F (m)~k,k0!, ~17!

assuming that in the inverse Fourier transform, the angular contribution can also be integrat
Substitute in the line before,

F (n)~k,k0!5E
0

`

dr xn~r ,k!E
0

`

du xm~u,r !F (m)~u,k0!

5E
0

`

du F(m)~u,k0!E
0

`

dr xn~r ,k!xm~u,r !. ~18!

We can explicitly evaluate the second integral using formula 6.575~1! from Ref. 5. The result is

E
0

`

dr xn~r ,k!xm~u,r !5
2ph

G~h!
u~u22k2!h21Q~u2k!, ~19!

whereh5(m2n)/2, G(x) Euler’s gamma function andQ the step function. Equation~18! now
takes on the form

F (n)~k,k0!5
2ph

G~h!
E

k

`

du F(n12h)~u,k0!u~u22k2!h21. ~20!
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Considering the special caseh51, i.e.,m5n12, and taking the derivative with respect tok of
both sides of this equation leads to the recursion formula

F (n12)~k,k0!52
1

2pk

]

]k
F (n)~k,k0!. ~21!

So the problem is solved, at least in principle, once we find the explicit expressions forn51 and
n52. But as we will show in the next section~again following Codelupi3!, the recursion relation
above will also allow us to find explicit formulas for the case of generaln.

B. Explicit expressions for R1,n

Let us define

l 05Ak0
22k2,

l 15Ak22k0
2.

The recursion relation Eq.~21! can be rewritten in terms ofl 0 and l 1 ,

F (n12)~ l 0!52
1

2pk

]

]k
F (n)~ l 0!5

1

2p l 0

d

dl0
F (n)~ l 0!, ~22!

F (n12)~ l 1!52
1

2pk

]

]k
F (n)~ l 1!52

1

2p l 1

d

dl1
F (n)~ l 1!. ~23!

To find expressions for generaln consider the following two cases:

~a! n-even,

F(n)~l0!5S 1

2pl0

d

dl0
Dn/2 21

F (2)~ l 0!5~21!n/22pE
0

`

ds0 f ~s0!
s0

~n11!/2

l 0
~n21!/2 J~n21!/2~2ps0l 0!.

~24!
The last equation is proved be iteratively applying the derivative toF (2)( l 0) ~result of Sec.
III B ! and using formula 8.472~2! from Ref. 5. Similarly, we find

F(n)~l1!54E
0

`

ds0 f~s0!
s0
~n11!/2

l 1
~n21!/2 K ~n21!/2~2ps0l 1!22pE

0

`

ds1 f ~s1!
s1

~n11!/2

l 1
~n21!/2 N~n21!/2~2ps1l 1!,

~25!
where the formulas 8.472~2! and 8.486~13! from Ref. 5 have been used.

~b! n-odd,

F(n)~l0!5S 1

2pl0
D~n21!/2

F (1)~ l 0!

5~21!~n11!/22pE
0

`

ds0 f ~s0!
s0

~n11!/2

l 0
~n21!/2 N~n21!/2~2ps0l 0!1~21!~n21!/24

3E
0

`

ds1 f ~s1!
s1

~n11!/2

l 0
~n21!/2 K ~n21!/2~2ps1l 0! ~26!

and

F(n)~l1!54E
0

`

ds0 f~s0!
s0
~n11!/2

l 1
~n21!/2 K ~n21!/2~2ps0l 1!22pE

0

`

ds1 f ~s1!
s1

~n11!/2

l 1
~n21!/2 N~n21!/2~2ps1l 1!,

~27!
using the results of Sec. II B, and, again, formulas 8.472~2! and 8.486~13! from Ref. 5.
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For evenn, the Fourier transform with a timelike momentum has no contribution from
spacelike region of space–time.

We can summarize both cases in the following formulas, now valid for arbitraryn:

APPENDIX: DERIVATION OF EQ. „15…

Equation~15! can be derived in several different ways. For direct integration see, e.g., R
Chap. 4. We follow here a derivation presented in Ref. 7.

We define the Fourier transform onRn by

F~k1 ,...,kn!5E
2`

1`

¯E
2`

1`

dx1¯dxn f ~x1 ,...,x2!exp~22p i ~k1x11¯1knxn!!, ~A1!

or short

F~kW !5E
Rn

dnx f~rW !exp~22p ikW•rW ! ~A2!

and the inverse Fourier transform by

f ~rW !5E
Rn

dnk F~kW !exp~2p ikW•rW !. ~A3!

One property we will need is

D2f ~rW !5(
m

]2f

]xm
2 524p2E

Rn
dnk k2F~kW !exp~2p ikW•rW !. ~A4!

Now assume we have a radial function, and we work in spherical coordinates. We woul
to write the Fourier transformation as

F~k!5E
0

`

dr f ~r !xn~r ,k! ~A5!

and the inverse Fourier transform as
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f ~r !5E
0

`

dk F~k!xn~k,r !, ~A6!

where thex’s contain the integration over the compactn21 angular coordinates. From Eq.~A4!
we also know

D2f ~r !524p2E
0

`

dk k2xn~k,r !F~k!. ~A7!

CalculatingD2f (r ) @now starting with Eq.~A6!#,

]2f ~r !

]xm
2 5E

0

`

dk F~k!
]2

]xm
2 xn~k,r !,

where

]2

]xm
2 xn~k,r !5S 1

r
2

xm
2

r 3 D ]

]r
xn~k,r !1

xm
2

r 2

]2

]r 2 xn~k,r !

yields

D2f ~r !5(
m

]2f ~r !

]xm
2 5E

0

`

dk F~k!S n21

r

]

]r
xn~k,r !1

]2

]r 2 xnD . ~A8!

But with Eq. ~A7!,

E
0

`

dk F~k!F ]2

]r 2 xn~k,r !1
n21

r

]

]r
xn~k,r !14p2k2xn~k,r !G50. ~A9!

This equation is valid for arbitraryF(k), so the expression in brackets has to be zero. This O
~in r ) has the general solution~see Ref. 8, p. 146!

xn~k,r !5An~k!r 12n/2Zp~2pkr !, ~A10!

whereAn(k) is determined by the initial conditions,Z is a Bessel function of orderp, andp5
6(12n/2). Computing the inverse Fourier transform explicitly in the cases ofn51 andn52,
determinesp to ben/221.

To find An , considerf (r ) at r 50,

f ~0!5E
0

`

dk F~k!xn~k,0!.

From Eq.~A10! we have

xn~k,0!5 lim
r→0

An~k!r 12n/2Jn/221~2prk !

5An~k!
r 12n/2~prk !n/221

G~n/2!

5An~k!
~pk!n/221

G~n/2!
,

where 9.1.7 from Ref. 9 has been used.
But according to the definition of the inverse Fourier transform
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f ~0!5E
Rn

dkn F~k!5
pn/2n

G~11n/2!
E

0

`

dk kn21F~k!.

The factor in front of the integral is the volume of the unitn21-sphere. Equating both expressio
for f (0), which are valid for arbitraryF(k), yields

An~k!52pkn/2,

and therefore as the final result

xn~k,r !52pkn/2r 12n/2Jn/221~2prk !. ~A11!

Because of the symmetry of the transformation

xn~r ,k!52pr n/2k12n/2Jn/221~2prk !. ~A12!
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Erratum: ‘‘Contact metric 5-manifolds, CR twistor spaces
and integrability,’’ †J. Math. Phys. 43, 3783 „2002…‡

Mitsuhiro Itoha)

Institute of Mathematics, University of Tsukuba, 305-8571, Ibaraki, Japan

@DOI: 10.1063/1.1521523#

The scalar curvature conditions in Theorem 1.1, Corollary 1.1 and in Theorem 1.3 ar
necessary. These theorems must be changed as follows.

Theorem 1.1: Let (M ,h,j,f,g) be a K-contact 5-manifold andZ5U(L2
2 (E* )) its CR

twistor space.
Then,J on Z is integrable if and only if (M ,g) is self-dual contact metric, in other word

W 2
2 vanishes.

Corollary 1.1: Let (M ,h,j,f,g) be aK-contact 5-manifold. The almost complex manifo
(Z3R,I) is integrable if

W 2
250 and R o

25W o
21B o

250.

Theorem 1.3:Let (M ,h,j,f,g) be aK-contact 5-manifold which is anS1-principal bundle
over a 4-manifoldN with a connection formh. Then the CR twistor spaceZ of M is integrable if
and only if N is self-dual, i.e.,W N

250.
The proof of Corollary 1.1 and Theorem 1.3 is based on Theorem 1.1. So, we will recov

proof of Theorem 1.1 to correct its parts 3 and 4, pages 3795–3796.
3. Take another local sectione8 of PE ; e8:U→PE , e85(e18 , ¯ ,e48). e8 is then written as

e85e a

for a mappinga:U→SO(4).
The almost complex structureJ85JFu(e8) of Ey at yPU, defined in terms ofu and e8,

satisfies

J8~e18!5e28 , J8~e38!52e48 .

To see this, define a linear transformation ofEy by

A5Aa : Ey→Ey ;X5( xiei°A~X!5( xiei8

and observe that one writes

J85AJA21

in terms of theJ5JFu(e). This is from the definition ofJ8;

~e8!21~J8X!•u5A21~~e8!21~X!•u!,XPEy

where we regard the sectionse ande8 in PE at y as linear mappings :R4→Ey .
By using the sectione8 of PE we identify

a!Electronic mail: itohm@sakura.cc.tsukuba.ac.jp
3660022-2488/2003/44(1)/366/3/$20.00 © 2003 American Institute of Physics
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PEuU5U3SO~4!; e8~y!a↔~y,a!.

So the horizontal lift ofei8 , i 51,¯ ,4, is

Zi85ei82~vE~ei8!!* .

Here vE(•) is the connection matrix of¹E relative to the orthonormal frame fielde8
5(e18 , ¯ ,e48);

vE~X!5 (
j ,k51

4

v j 8k8
E

~X!Ej 8k8 , ¹X
Eei85(

j 51

4

v j 8k8
E

~X!ej8 .

We have then from the definition ofĴ

Ĵ~Z18!5Z28 , Ĵ~Z38!52Z48 .

So, the relation~ii 9! in A is in this case that at a pointe8(x)PPE , xPU

Ĵ q8~Ve8
E

~Z182A21Z28 ,Z381A21Z48!!* 2A21~Ve8
E

~Z182A21Z28 ,Z381A21Z48!!*

is spanned byh. This means that theY5- andY6-components must vanish.
Without loss of generality we assumevE vanishes at the pointx of U.
Denote byu18 , ¯ ,u48 the dual frame ofe8. Then, by calculating similarly as inA andB we

have

W~u18∧u482u28∧u38 ,u18∧u482u28∧u38!5W~u18∧u31u28∧u48 ,u18∧u381u28∧u48!, ~218!

W~u18∧u482u28∧u38 ,u18∧u381u28∧u48!50. ~228!

We now choose a particularaPSO(4) such that atxPU

u18∧u482u28∧u385u1∧u22u3∧u4 ,

u18∧u381u28∧u485u1∧u31u2∧u4

which we denote bys1 ands2 , respectively. So, we have from (218)

W~s1 ,s1!5W~s2 ,s2!.

By a similar argument

W~s1 ,s1!5W~s3 ,s3!,

where we sets35u1∧u42u2∧u3 .
Moreover, we choose a suitableaPSO(4) so that from (228)

W~s i ,s j !50, iÞ j

from which it follows

W 2
250.

As a concrete example of CR twistor space, we take a standard 5-sphereS5 which isK-contact
and also conformally flat and consider a subspaceZ 2,S53(CP2)* , more precisely
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Z 25H ~z,@w# !UzPS5, @w#5@w1 :w2 :w3#P~CP2!* , (
i

ziwi50J .

This space turns out by Theorem 1.3 to be the CR twistor space overS5, since the Hopf fibration
p:S5→CP2 is the Boothby-Wang fibration and the Penrose twistor space ofCP2 is the flag
manifoldF3 in C3. Thus the canonical projectionp yields theS1 fibration:Z 2→F3 between the
CR twistor space and the Penrose twistor space.

The author is thankful to Dr. D. Kobayashi for pointing him to the erratum.
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Scattering on compact manifolds with infinitely thin horns
J. Brüninga) and V. A. Geylerb)

Institut für Mathematik, Humboldt-Universita¨t zu Berlin, Unter den Linden 6,
10099 Berlin, Germany

~Received 19 September 2002; accepted 1 November 2002!

The quantum-mechanical scattering on a compact manifold with semi-axes at-
tached to the manifold~‘‘hedgehog-shaped manifold’’! is considered. The complete
description of the spectral structure of Schro¨dinger operators on such a manifold is
done, the proof of existence and uniqueness of scattering states is presented, an
explicit form for the scattering matrix is obtained and unitarity of this matrix is
proven. It is shown that the positive part of the spectrum of the Schro¨dinger op-
erator on the initial compact manifold as well as the spectrum of a point perturba-
tion of such an operator may be recovered from the scattering amplitude for one
attached half-line. Moreover, the positive part of the spectrum of the initial Schro¨-
dinger operator is fully determined by the conductance properties of an ‘‘electronic
device’’ consisting of the initial manifold and two ‘‘wires’’ attached to it. ©2003
American Institute of Physics.@DOI: 10.1063/1.1534893#

I. INTRODUCTION

In the paper of Ref. 1, Faddeev initiated the investigation of the quantum mechanical s
ing on manifolds of constant negative curvature with cusps~sometimes also called ‘‘horns2;’’
further developments of this theory are presented, e.g., in Refs. 3–6. It is interesting to no
an explicit expression for the reflection coefficient in the case of one horn was obtained ear
Godement.7 Note also that Gutzwiller has revealed a relation between the scattering theo
manifolds with horns and the description of chaotic behavior of quantum systems.2,8,9

If we imagine the width of the horns tending to zero, then we obtain a so-called hedg
shaped topological space~or ‘‘horned manifold’’!. Strictly speaking, we consider the limit of
family of horned spaces in the sense of the Hausdorff–Gromov distance.10 The simplest specimen
of such a manifold is the Euclidean plane with an attached half-line. The quantum mech
scattering in this system has been investigated for the first time by Exner and Sˇeba;11 in Ref. 12
these authors consider a compact plane domain with a half-line glued to it. A series of sign
physical applications of the corresponding results as well as an intensive bibliography rela
the subject in question may be found in the paper of Ref. 13; we may add that the cons
problem is also connected with the scattering on graphs.14–19 An explicit expression for the
transmission coefficient in the case of two half-lines~‘‘wires’’ ! attached to a compact Riemannia
manifold of dimension two or three with some special boundary conditions at the points of g
has been obtained by Kiselev.20 A general method of solving the transmission problem through
arbitrary quantum device was proposed in Ref. 21, this method is based on an approach
modeling of quantum systems developed by Pavlov;22 some of its applications are given, e.g.,
Refs. 23–27. Many-terminal problems for a bounded domain inRd (d52 or 3! with wires
attached to the boundary of the domain are considered recently in Refs. 28 and 29.

In this paper we consider the quantum mechanical scattering in a hedgehog-shaped
which is constructed by gluing a finite number of half-lines to distinct points of a com
Riemannian manifold of dimension less than four. The Hamiltonian of a quantum particle in

a!Electronic mail: bruening@mathematik.hu-berlin.de
b!On leave of absence from Laboratory of Mathematical Physics, Department of Mathematics, Mordovian State Un

430000 Saransk, Russia. Electronic mail: geyler@mathematik.hu-berlin.de and geyler@mrsu.ru
3710022-2488/2003/44(2)/371/35/$20.00 © 2003 American Institute of Physics
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a system coincides with a Schro¨dinger operator on the punctured manifold~the points of gluing
are removed! and with the free Schro¨dinger operator on each half-line. At the gluing points, so
boundary conditions are imposed. In particular, the Schro¨dinger operator in a magnetic field i
included in our scheme. The approach we use is based on the Krein resolvent formula
operator extension theory,30 therefore in Sec. II we give a very brief sketch of results needed f
this theory. Section III is devoted to the construction of Schro¨dinger operators on the hedgeho
shaped space; we use the theory of boundary value spaces31 to describe all possible kinds o
boundary conditions defining the Schro¨dinger operators. We distinguish among them operator
‘‘Dirichlet’’ and of ‘‘Neumann’’ type. It is worth noting that the results of Sec. III are valid for a
Riemannian manifolds of dimension less than four, not only for the compact ones. In principl
definition of the Schro¨dinger operator on a hedgehog-shaped space may be given in the fram
of pseudo-differential operator theory on such a space,32 but our approach is more convenient f
investigating the scattering parameters and connected with the approach to spectral probl
point perturbations on Riemannian manifolds.33,34

The main results of the paper are contained in Secs. IV and V. Here we get a com
description of the spectral structure of Schro¨dinger operators on hedgehog-shaped spaces~Theo-
rem 4!, the proof of existence and uniqueness of scattering states~Theorem 5!, and the proof of the
unitary nature of the scattering matrix~Theorem 6!. An explicit form for the scattering matrix is
given in the cases of arbitrary Schro¨dinger operator on the hedgehog-shaped space@Formula~67!#.
In the particular case of the boundary conditions of Neumann types our formulas contain the
result of Kiselev20 as a very special case. Theorem 7 from Sec. V shows that the positive p
the spectrum of the initial Schro¨dinger operator on the compact manifold as well as the spect
of a point perturbation of such an operator may be recovered from the scattering amplitude f
attached half-line~so, an ‘‘infinitely thin horn’’ may be considered as a kind of ‘‘quantum steth
scope’’!. Moreover, the positive part of the spectrum of the initial Schro¨dinger operator is fully
determined by the conductance properties of an ‘‘electronic device’’ consisting of the initial m
fold and two ‘‘wires’’ attached to it~Propositions 8 and 9!. We can choose the boundary conditio
in such a way, that in the limiting case when wires are attached at the same point, the sca
matrix coincides with that for thed8-interaction on the line. This fact is related to a conjectu
from Ref. 35: the scattering on the ‘‘d8-potential’’ may be realized geometrically. Finally, in Se
VI we give a series of examples in which the KreinQ-function entering our expressions for th
scattering matrix may be obtained in an explicit form. Note that some applications of the res
this paper to the conductance of the quantum sphere were considered recently in Ref. 36
aspects of the geometric scattering on noncompact Riemannian manifolds within the framew
the approach presented here are discussed in Ref. 37.

II. PRELIMINARIES

Here we rephrase some results of operator extension theory using the language of bo
value spaces and linear symplectic geometry~see, e.g., Refs. 22, 31, 38–41 for details!.

Let V be a complex vector space with a skew-Hermitian sesquilinear form@xuy#; this form
can be degenerate, moreover, it is degenerate in the case of nontrivial problems of the sym
geometry. The orthogonality with respect to this form will be denoted by@'#: x@'#y means that
@xuy#50; the orthogonal complement of a setX,V is denoted asX['] . A subspaceL,V is
called isotropic ~respectively,Lagrangian! if L,L ['] ~respectively,L5L ['] ). If H is a Hilbert
space with the scalar product^xuy&,1 then the Hilbert spaceH% H is endowed with thestandard
skew-Hermitian form

@xuy#5^x1uy2&2^x2uy1& ,

i.e., @xuy#5^xuJy&, whereJ:H% H→H% H is a unitary operator of the formJ(x1 ,x2)5(x2 ,
2x1). ~Throughout this paper, we assume that the scalar product is linear with respect
secondargument.! It is clear that@xuy# is a continuous sesquilinear form on the Hilbert spa
H% H, hence, every Lagrangian subspace inH% H is closed. Moreover, for every subsetX,H
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% H we haveX[']5(JX)'5J(X'), whereX' is the orthogonal complement with respect to t
standard scalar product^xuy& in H% H: ^xuy&5^x1uy1&1^x2uy2&. Therefore, a subspaceL,H
% H is isotropic~respectively, Lagrangian! iff JL,L' ~respectively,JL5L').

For every skew-Hermitian sesquilinear form@xuy# the form i @xuy# is Hermitian ~generally
speaking, degenerate!; therefore the geometry of a skew-Hermitian sesquilinear form does
differ from that of a Hermitian form. Nevertheless, the symplectic language is very usef
operator extension theory. For example, letA:D(A)→H be a densely defined linear operator inH
with the graph Gr (A), Gr (A),H% H. Then it is easy to check the following statements:

~1! A is symmetric if and only ifGr (A) is an isotropic subspace ofH% H.
~2! A is self-adjoint if and only ifGr (A) is a Lagrangian subspace ofH% H.

Remark 1:It is clear that every Lagrangian subspace is a maximal isotropic subspac
converse is not true even in the one-dimensional case. On the other hand, ifV is a finite-
dimensional complex space having at least one Lagrangian subspace, then according to
theorem,42 every maximal isotropic subspace is Lagrangian. Therefore, in the finite-dimens
spaceV5H% H every maximal isotropic subspace is Lagrangian. On the contrary, letH be an
infinite-dimensional Hilbert space, and letA be a maximal symmetric operator inH which is not
self-adjoint. Then Gr(A) is a maximal isotropic subspace ofH% H which is not Lagrangian.

A linear mappingu:V1→V2 of complex vector spacesV1 , V2 with skew-Hermitian forms
@ • u • #1 , @ • u • #2 , respectively, is calledskew-unitaryif @u(x)uu(y)#25@xuy #1 ; x,yPV1 . Now
let S be a symmetric operator inH; in the graph Gr (S* ) of S* we shall consider the skew
Hermitian form induced by the standard form fromH% H. A pair ~G, G!, whereG is a Hilbert
space andG is a surjective skew-unitary mapping from Gr (S* ) onto G% G is calleda boundary
value spacefor S. It is known that a boundary value space forS exists if and only if the deficiency
indicesn1(S) andn2(S) for S coincide, i.e., if and only ifS has a self-adjoint extension. If thi
is the case and~G, G! is a boundary value space forS, then dimG5n1(S)„5n2(S)… andG is a
continuous operator with respect to the standard Hilbert space topologies in Gr (S* ) andG% G.

Let Ĝ:D(S* )→G% G be the composition of the canonical bijectionD(S* )→Gr (S* )

„x°(x,S* x)… andG; it is clear thatĜ is surjective. Moreover, ifD(S* ) is endowed with the graph

scalar product̂ xuy&S5^xuy&1^S* xuS* y&, then Ĝ is continuous. Denote byP1 and P2 the ca-
nonical projections ofG% G ontoG% $0% and$0% % G, respectively, and byG (1), G (2) the operators

P1Ĝ andP2Ĝ, respectively. Then for allx,yPD(S* ) the following relation is valid:

^xuS* y&2^S* xuy&5^G (1)xuG (2)y&2^G (2)xuG (1)y& . ~1!

Conversely, a triple (G, G (1), G (2)), whereG is a Hilbert space andG ( j ):D(S* )→G ( j 51,2) are
linear operators, uniquely defines a boundary value space, if the mappingD(S* )
{x°(G (1)x, G (2)x)PG% G is surjective and the condition~1! holds. Indeed, it is sufficient to
defineG by the ruleG(x,S* x)5(G (1)x, G (2)x). The triple (G, G (1), G (2)) is also called a boundary
value space forS.

The following theorem describes all self-adjoint extensions ofS with help of the boundary
value space.

Theorem A: Let S be a symmetric operator in a Hilbert spaceH with equal deficiency
indices, and let~G, G! be a boundary value space for S. Then for every Lagrangian subspac
L,G% G the setG21(L) is the graph of a self-adjoint operator HL that is a self-adjoint extension
of S. Moreover, the correspondenceL°HL is a bijection between all Lagrangian subspaces
G% G and all self-adjoint extensions of S. j

In other words, the self-adjoint extensionHL is defined by the boundary condition

~G (1)x,G (2)x!PL . ~2!
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More precisely, the domain ofHL is the subspace ofD(S* ) given by D(HL)5$x
PD(S* ): (G (1)x,G (2)x)PL%, andHL is the restriction ofS* to D(HL). Condition ~2! can be
written in a more convenient ‘‘operator’’ form. Namely, for every Lagrangian subspaceL,G
% G there exists a uniquely defined unitary operatorUL acting in G such that the relations
(x1 ,x2)PL andi (I 1UL)x15(I 2UL)x2 are equivalent;UL is called theCayley transformfor L.
~If L is the graph of a self-adjoint operatorL in G, thenUL is just the Cayley transform forL.)
Moreover, the correspondenceL°UL is a bijection between the sets of all Lagrangian subspa
of G% G and all unitary operators inG. Using the notations above we can rewrite condition~2! in
the desired operator form:

~ I 2UL!G (2)x5 i ~ I 1UL!G (1)x .

It is clear that a given Lagrangian subspaceL,G% G has different equations of the formLx1

5Mx2 , whereL and M are bounded linear operators inG. Hence, a given boundary conditio
(G (1)x, G (2)x)PL may be represented in the operator form

LG (1)x5MG (2)x, ~3!

in many ways. Denote byA(L,M ) the bounded operator fromG% G to G taking x5(x1 ,x2)PG
% G to Lx12Mx2PG.

Proposition B: Let L,M : G→G be bounded linear operators. The subspaceL of G% G deter-
mined by the equation Lx15Mx2 is Lagrangian if and only if the following conditions ar
satisfied:(a) LM* 5ML* ; (b) the restriction of A(L,M ) to the subspace J(L) is injective.

Proof: First of all we prove the equivalence of the following assertions:
~1! L.L ['] ; ~2! LM* 5ML* .
Indeed, by definitionL5KerA(L,M ); on the other hand we have the well-known relati

KerA(L,M )'5RanA(L,M )* . Since KerA(L,M ) is closed, condition~1! is equivalent to the
condition ~3! J„KerA(L,M )….RanA(L,M )* . BecauseA(L,M )* x5(L* x,2M* x) for every x
PG, the equivalence of~2! and ~3! follows immediately.

Now let L be a Lagrangian subspace, thenJ(L)5KerA(L,M )'; therefore, the restriction o
A(L,M ) to J(L) is obviously injective. On the other hand, if conditions~a! and~b! are satisfied,
then J(L).L'. Moreover, if J(L)ÞL', then J(L) contains a nonzero element from
KerA(L,M ), and we have a contradiction with~b!. j

Note that a finite-dimensional version of Proposition B has been given in Ref. 17, bas
different arguments.

The self-adjoint extensions ofS defined by the conditionsG (1)x50 and G (2)x50 will be
denoted byH (1) andH (2), respectively; they correspond to the Lagrangian subspaces$0% % G and
G% $0%, respectively. IfL is the graph of a self-adjoint operatorL in G @i.e., if L is transversal to
$0% % G: Lù($0% % G)5$0%], then the condition~2! takes the simpler form

G (2)x5LG (1)x . ~4!

The self-adjoint extensionHL of S is defined by a boundary condition of the form~4! with a
self-adjoint L, if and only if HL is disjoint from H (1) @this means thatD(H (1))ùD(HL)
5D(S)].

On the other hand, at least in the case of a finite-dimensionalG we can always define a give
extensionHL by a condition of the form~4!. This may be done with the help of the abov
mentioned Witt theorem, but a more useful way is to use the complex version of the A
Lemma.43 To state this lemma we need some auxiliary notations. Lete1 ,...,en be a fixed ortho-
normal basis inG, then the vectorsaj5(ej , 0) andbj5(0,ej ) ( j 51, ...,n) form a symplectic
basis inG% G:

@aj uak#5@bj ubk#50 , @aj ubk#52@bkuaj #5d jk . ~5!
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Let h be a subset of$1,...,n%, h85$1,...,n%\h; by virtue of ~5! the linear hull of the set$aj : j
Ph%ø$bj : j Ph8%, is a Lagrangian subspace ofG% G which is called acoordinate subspaceand
denoted byGh . It is clear that ifh5$1,...,n%, thenG% $0%5Gh , $0% % G5Gh8 .

Proposition C (Arnold’s Lemma): LetG be finite-dimensional. Then every Lagrangian su
space ofG% G is transversal to some coordinate subspace. j

Moreover,G% G5Gh % Gh8 where the sums are orthogonal with respect to the standard s
product ^xuy& in G% G. Denote the orthoprojection ofG% G onto Gh by Ph ; by Jh

(1) we shall
denote the isomorphism ofGh ontoG which takes the elements fromGh of the formaj or bj to ej ,
by Jh

(2) we denote the isomorphism ofGh8 onto G which takes the elements fromGh of the form
aj to 2ej and of the formbj into ej . Let now ~G, G! be a boundary value space for a symmet
operatorS; denoteGh

(1)5Jh
(1)PhG, Gh

(2)5Jh
(2)PhG. Then the triple (G, Gh

(1) , Gh
(2)) is a boundary

value space forS as well. For example, ifh5$1,...,n%, thenGh
( j )5G ( j ); on the other hand,GB

(1)

5G (2), GB
(2)52G (1).

By virtue of the Arnold lemma, for every Lagrangian subspaceL,G% G there exists
h,$1,...,n% such that the self-adjoint extensionHL is given by the boundary condition of th
form Gh

(2)x5LGh
(1)x whereL is a self-adjoint operator inG. We shall denote this extension b

HL, h; the representation ofHL in the form HL, h is, clearly, not unique. The extensions ofS
defined by the conditionsGh

( j )x50 ( j 51,2) will be defined byHh
( j ) .

There exists a very convenient expression for the resolventRL(z)5(HL2z)21 of the opera-
tor HL which is given by the so-called Krein resolvent formula. To give this formula, we n
some preliminary notions~details may be found in Refs. 38 and 44. LetzPC\R, denote byNz the
deficiency subspace forS: Nz5Ker (S* 2z). It may be proven that the restrictions of both th
operatorsG ( j ) ( j 51,2) toNz are linear-topological isomorphisms ofNz onto G; we denote these
restrictions asG ( j )(z). Moreover, the operatorsg(z)5„G (1)(z)…21 form a holomorphic family of
elements from the Banach spaceL~G,H! of all linear continuous operators fromG to H. Further,
the operatorsQ(z)5G (2)g(z) form a holomorphic family in the Banach spaceL~G,G!. The
holomorphic operator-valued functionsz°g(z) andz°Q(z) have analytic continuations on th
set r(H (1)) of the regular values ofH (1): r(H (1))5C\s(H (1)). This assertion follows from the
relations below, which are valid for everyz,zPC\R:

g~z!5g~z!1~z2z!~H (1)2z!21g~z!;

Q~z!2Q~z!5~z2z!g* ~ z̄ !g~z!.

The functionsg:r(H (1))→L(G, H) andQ:r(H (1))→L(G, G) are called KreinG-field and Krein
Q-function of the operatorS associated with the boundary value space~G,G!.

Further, we shall consider a subspaceL,G% G as the graph of a multi-valued linear operat
ML with the domainD(ML)5P1(L). The operatorML takes eachxPD(ML) to an affine
subspace$yPG: (x,y)PL% of G. For every subspaceL,G% G we denote byL21 the ‘‘inverse’’
subspaceL215$(x,y)PG% G: (y,x)PL%. In particular, ifL is the graph of an invertible operato
L: D(L)→G, thenL21 is the graph of the inverse operatorL21. In the following we shall identify
mappings and their graphs if this does not lead to ambiguities.

Theorem D: Let S be a symmetric operator in a Hilbert spaceH with boundary value space
~G, G!, and letg and Q be the correspondingG-field andQ-function for S, respectively. Suppos
that HL is a self-adjoint extension of S associated with a Lagrangian subspaceL of G% G. Then
for every zPr(H (1))ùr(HL) the subspace@Q(z)2L#21 is the graph of a bounded (single
valued) operator inG and the resolvent of RL(z)5(HL2z)21 has the form

RL~z!5R(1)~z!2g~z!@Q~z!2L#21g* ~ z̄! , ~6!

where R(1)(z)5(H (1)2z)21 is the resolvent of H(1). j

If HL andH (1) are not disjoint, then the Krein formula~6! contains a multi-valued operatorL.
To avoid the use of such operators we can proceed as follows~see Ref. 44!. Let L be a Lagrangian
subspace ofG% G andUL be its Cayley transform. Denote byPL the orthogonal projection ofG
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onto subspaceGL5Ran (UL2I ), by JL the canonical embedding ofGL into G, and by I L the
identity operator inGL . ThenVL5PLULJL is a unitary operator inGL , and 1 is not an eigen
value of this operator. Therefore,L5 i (I L1VL)(I L2VL)21 is a self-adjoint operator inGL , and

@Q~z!2L#215JL@PLQ~z!JL2L#21PL . ~7!

Moreover, the following proposition holds.44

Proposition E: Let Ln be a self-adjoint operator inG of the form Ln5JLLPL1n(I 2PL).
Then for every zPr(H (1))ùr(HL),

lim
n→`

@Q~z!2Ln#215JL@PLQ~z!JL2L#21PL

in the strong operator topology. j

If G is finite-dimensional, then we can adapt the Arnold Lemma to avoid the use of m
valued mappings in the Krein formula. Namely, denote the KreinG-field andQ-function for the
boundary value space (G,Gh

(1) ,Gh
(2)) by gh(z) andQh(z), respectively. SinceHL coincides with

some operator of the formHL, h; then ~6! may be rewritten in the form

RL~z![RL, h~z!5Rh
(1)~z!2gh~z!@Qh~z!2L#21gh* ~ z̄! , ~8!

whereRh
(1)(z)5(Hh

(1)2z)21.

III. SCHRÖDINGER OPERATOR ON A ‘‘HEDGEHOG-SHAPED’’ SPACE

Consider a complete~not necessarily connected! Riemannian manifoldX of dimensiond,
with metricgmn . We shall denote byg the determinant det (gmn), by dl the Riemannian measure
and byr (x,y) the geodesic distance onX. Fix a nonempty finite subset$q1 , ...,qn% of X, and let
R1

( j ) ( j 51, ...,n) be copies of the half-lineR15$xPR: x>0%. Let X̂ be the topological space
obtained from the disjoint unionXtR1

(1)t¯tR1
(n) by gluing the point 0PR1

( j ) to the pointqj .
The ‘‘hedgehog-shaped’’ topological spaceX̂ may be considered as a limit of manifolds withn
horns as the widths of the horns tend to zero. LetH0ªL2(X, dl), HjªL2(R1

( j ) , dx). The sum of
the Riemannian measuredl on X and the Lebesgue measuresdx on R1

( j ) is a natural measuredm

on X̂; the spaceL2(X̂, dm) will be identified with the spaceHªH0% H1%¯% Hn .
To define a Schro¨dinger operator onX̂ we proceed as follows. Consider the symmetric o

eratort in H0 , with domainC0
`(X), defined by the differential expression

t52g21/2~x!„]m1 iAm~x!…g1/2~x!gmn~x!„]n1 iAn~x!…1p~x! ,

whereAm (m51,...,d) and p are real-valued smooth functions onX. The functionsAm are the
components of a vector potentialA, giving rise to a magnetic field onX. Similarly p may be
viewed as the scalar potential whose gradient is an electric field. We denote the closure oft in H0

by H0 , and suppose that the potentialsA andp are chosen in such a way thatH0 is a self-adjoint
operator inH0 , i.e., we assume thatt is essentially self-adjoint. Note that this is the case, ifAm

and p have compact supports, in particular, ifX is compact. IfA50 and p50 we get the
Laplace–Beltrami operator2DX on X. To use the techniques of the operator extension theory
need the condition~C! D(H0) imbeds in C(X).

By virtue of the well-known Sobolev embedding theorems, this condition is satisfied if
only if d<3. Therefore,from this point on we suppose that0,d<3.

Let now S0 be the operator inH0 that is the restriction ofH0 to the domain

D~S0!5$ f PD~H0!: f ~qj !50, ; j 51,...,n% .

It is clear thatS0 is symmetric inH0 , and Lemma 4 below shows that the deficiency indices ofS0

are (n, n). Denote next bySj ( j 51, ...,n) the closure inHj of the operator2d2/dx2 defined on
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C0
`(0,̀ ); Sj is a symmetric operator inHj with the deficiency indices~1,1!. Finally, we setS

ªS0% S1% ¯ % Sn ; it is evident thatS is a symmetric operator inH with deficiency indices
(2n, 2n).

Definition:Any self-adjoint extensionH of the operatorS we shall call aSchrödinger opera-

tor on X̂ with vector potentialA and scalar potentialp.
According to the theory presented in Sec. II to describe all the Schro¨dinger operators onX̂

with given vector and scalar potentials we must construct a boundary value space forS. For this
purpose we construct boundary value spaces for the operatorsS0 , S1 , . . . ., Sn and take the direct
sum of these spaces. Let us start with a simple case of the operatorsSj ( j 51, ...,n).

Lemma 1: SetGj5C and define the operatorsG j
(1) , G j

(2)PL(D(Sj* ),Gj ), j 51, ...,n, by the
rule

G j
(1)~ f !52 f 8~0! , G j

(2)~ f !5 f ~0! . ~9!

Then the triple(Gj ,G j
(1) ,G j

(2)) is a boundary value space for Sj .
We omit the simple proof.

It is clear thatH j
N
ªH j

(1) andH j
D
ªH j

(2) is the free Schro¨dinger operator on the semi-axisR1
( j )

with the Neumann and Dirichlet boundary condition at the pointx50, respectively. Since the
spaceGj is one-dimensional, the correspondingG-field g j (z) may be considered as a holomorph
function onC\R15r(H j

(1)) with values inHj5L2(R1), and the correspondingQ-functionQj (z)
as a holomorphic function inC\R1 . It is clear thatg j andQj are independent ofj .

Lemma 2: TheG-field and theQ-function for Sj associated with the boundary value spa
(Gj ,G j

(1) , G j
(2)) are given by

g j~z!~x!5
1

A2z
exp~2A2z x! ,

~10!

Qj~z!5
1

A2z
.

Remark 2:Throughout the paper, the continuous branch of the square root is chosenC\
(2`,0), such that ReAz.0 if zÞ0.

Proof: It is clear thatSj is the restriction ofH j
N to the domain$ f PD(H j

N) : f (0)50%. On the
other hand, it is easy to check that the Green’s functionGj

N(x,y;z) of the Neumann operatorH j
N

is given as

Gj
N~x,y;z!5

1

2A2z
@exp~2A2z ux2yu!1exp„2A2z ~x1y!…# . ~11!

Hence, the functiong(x)5Gj
N(x,0;z) is a nonzero element of Ker(Sj* 2z). Since2g8(0)51, the

operatorG j
(1)g j (z) is the identity onGj . Therefore,g j (z) is the G-field. The equationQj (z)

5G j
(2)g(z) is trivial, soQj (z) is theQ-function. j

Sometimes it is more convenient to use the boundary value space (Gj ,GB, j
(1) ,GB, j

(2) ) ~see
notations in the preceding section!. It is clear thatGB, j

(1) f 5 f (0), andGB, j
(2) f 5 f 8(0); thus HB, j

(1)

5H j
D , HB, j

(2) 5H j
N . Using the definitions and Lemma 2, we get the following.

Lemma 3: TheG-field g j
D andQ-function Qj

D for Sj associated with the boundary value spa
(Gj ,GB, j

(1) , GB, j
(2) ) have the following form:

g j
D~z!~x![gB, j~z!~x!5exp~2A2z x! ,

~12!
Qj

D~z![QB, j~z!52A2z .
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Now we turn to the operatorS0 . First of all, denote byR0(z) the resolvent forH0 , R0(z)
5(H02z)21; by G0(x,y;z) we shall denote the Green’s function forH0 @the integral kernel of
R0(z) in the spaceL2(X, dl)]. Fix qPX andzPr(H0), then nearq the functionG0(x,q;z) has
the expansion45–47

G0~x,q;z!5F0~x,q!1F1~x,q;z!1R~x,q;z! , ~13!

whereF0 is independent of the spectral parameterz and has the following form:

F0~x,q!55
2

c1~x,q!

2
r ~x,q! , if d51;

2
c2~x,q!

2p
ln r ~x,q! , if d52;

c3~x,q!

4p
@r ~x,q!#21 , if d53.

~14!

Herecj (x,q) ( j 51,2,3) does not depend onz, is a continuous functions ofx, andcj (q,q)51;
moreover,c1 is a smooth function ofx. Further, the functionF1 is continuous with respect tox;
as for the remainder termR, it has the following behavior nearq asx→q:

R~x,q;z!5H o„r ~x,q!… , if d51;

o ~1! , if d52 ord53 .
~15!

Finally, F1 andR are analytic functions ofz in the domainr(H0)5C\s(H0).
For zPr(H0) define a matrixQ0(z) by the relations

@Q0~z!# lmªH G0~ql ,qm ;z! , if lÞm;

F1~ql ,ql ;z! , if l 5m
~16!

„note that@Q0(z)# lm5G0(ql ,qm ;z) for all l and m, if d51…. Clearly, Q0(z) is a holomorphic
matrix-valued function in the domainr(H0) obeying the condition

@Q0~z!# lm5@Q0~ z̄!#ml . ~17!

The following assertion supplies a basis in the deficiency subspaceNz5Ker(S0* 2z).
Lemma 4: If zPC\R, then the functions G0(• ,qj ;z), j 51, ...,n, form a vector basis inNz .
The lemma is proved in Ref. 48 for an operatorH0 with the resolvent having the Carlema

integral kernelG0 @i.e., *X0
uG0(x,y;z)u2 dx,` for all zPr(H0) and almost allyPX0]. More

restrictive conditions have been considered previously in Refs. 49, 50.
Fix zPC\R, then D(S0* )5D(S̄0)1̇Nz1̇Nz̄ ~there is an algebraic direct sum here; ifz5 i ,

then this sum is orthogonal with respect to the scalar product^xuy&S). By Lemma 4 each function
f from D(S0* ) has the following asymptotic expansion near the pointqj :

f ~x!5aj~ f !F0~x,qj !1bj~ f !1R~x! , ~18!

where aj ( f ), bj ( f )PC, and the behavior of the remainder termR(x) is given by ~15! as x
→qj .

Lemma 5: SetG05Cn and define operatorsG0
(1) , G0

(2)PL(D(S0* ),G0) by

G0
(1)~ f !ª„aj~ f !…1< j <n ,

G0
(2)~ f !ª„bj~ f !…1< j <n ,
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where aj ( f ) and bj ( f ) are the constants from (18). Then the triple(G0 ,G0
(1) ,G0

(2)) is a space of
boundary values for S0 .

Proof: Since C0
`(X),D(H0) it is easy to conclude that the mappingf °(G0

(1)f , G0
(2)f ) is

surjective. It remains to prove the condition~1!.
Consider the sesquilinear formsB1 , B2 defined as follows:

B1~ f ,g!ª^ f uS0* g&2^S0* f ug&,

B2~ f ,g!ª^G0
(1)f uG0

(2)g&2^G0
(2)f uG0

(1)g&5(
j 51

n

@aj~ f !bj~g!2bj~ f !aj~g!#,

and set

gj
6~x!5G0~x,qj ;6 i !, j 51,...,n.

It is easy to check the following properties of the functionsgj
6 :

~ i! S0* gj
656 ig j

6 ; ~ ii ! aj~gk
6!5d jk ; ~ iii ! bj~gk

6!5Q0
jk~6 i !. ~19!

To prove the lemma, it is enough to verify thatB1( f ,g)5B2( f ,g) for f ,gPD(S0* ). Since
D(S0* )5D(S̄0) % Ni % N2 i , it is enough to check the equalityB1( f ,g)5B2( f ,g) for all functions
f ,gPD(S0)ø$gj

6 : j 51,...,n%. It is clear thataj ( f )5bj ( f )50 if f PD(S0); thereforeB1( f ,g)
505B2( f ,g) if f PD(S0) or gPD(S0). By ~i! from ~19!, B1(gj

1 ,gk
2)50 ; j ,kP$1,...,n%. On

the other hand, Eqs.~ii ! and ~iii ! from ~19! and ~17! imply that

B2~gj
1 ,gk

2!5bj~gk
2!2bk~gj

1!5@Q0~2 i !# jk2@Q0~ i !#k j50. ~20!

Hence,B1(gj
1 ,gk

2)5B2(gj
1 ,gk

2) ; j ,kP$1,...,n%. SinceBl( f ,g)52Bl(g, f ) ( l 51,2), we have
B1(gj

2 ,gk
1)5B2(gj

2 ,gk
1) ; j ,kP$1,...,n%. Similarly, we get

B2~gj
1 ,gk

1!5bj~gk
1!2bk~gj

1!5@Q~ i !# jk2@Q~ i !#k j5@Q~ i !# jk2@Q~2 i !# jk .

Further,

B1~gj
1 ,gk

1!52i ^gj
1ugk

1&52i E
X
G0~x,qj ; i !G0~x,qk ; i ! dl~x!

52i E
X
G0~qj ,x;2 i !G0~x,qk ; i ! dl~x! . ~21!

Using the Hilbert resolvent identity we obtain from~21! in casej Þk:

B1~gj
1 ,gk

1!5G0~qj ,qk ; i !2G0~qj ,qk ;2 i !5B2~gj
1 ,gk

1!.

If j 5k, then using the Hilbert identity again we get

B1~gj
1 ,gj

1!52i lim
q→qj

E
X
G0~q,x;2 i !G0~x,qj ; i ! dl~x!

5 lim
q→qj

@G0~q,qj ; i !2G0~q,qj ;2 i !#

5@Q~ i !# j j 2@Q~2 i !# j j 5B2~gj
1 ,gj

1!
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~of course, in the cased51 we can omit the limiting procedure!. The proof of the equalities
B1(gj

2 ,gk
2)5B2(gj

2 ,gk
2) is similar. j

Remark 3:It is clear that in the cased51 we havebj ( f )5 f (qj ). Moreover, we can get a
simple expression foraj ( f ) in this case. Namely, choose a chartU,X such thatqjPU ; j
51, ...,n andU is isometric to an interval (a,b),R. Using the Cartesian coordinates inU we
obtain from~18! that every functionf PD(S0* ) has the following expansion near each pointqj :

f ~x!52 1
2 aj~ f !ux2qj u1 f ~qj !1o~ ux2qj u!; ~22!

thus it follows from~22! that

aj~ f !5 f 8~qj20!2 f 8~qj10! ,

where the derivative is taken with respect to the Cartesian coordinate inU.
Now we describe the KreinG-field andQ-function forS0 associated with the boundary valu

space (G0 ,G0
(1) ,G0

(2)).
Lemma 6: The KreinG-field for S0 associated with the boundary value space(G0 ,G0

(1) ,G0
(2))

is an operator valued familyg0(z)PL(G0 ,H0) defined for an elementz5(z j )1< j <n from G0

5Cn by

g0~z!~z!5(
j 51

n

z jG0~•,qj ;z! . ~23!

The correspondingQ-function coincides with the matrix-valued function Q0(z).
Proof: To prove the first part of the lemma, it is enough to check thatG0

(1)g0(z) is the identity
operator onG0 , but this follows immediately from the definition ofG0

(1) and from~13! and ~14!.
Let gk(x)5G0(x,qk ;z), thenbj (gk)5@Q0(z)# jk by definition. Thus forzPG0 we have

@G0
(2)g0~z!z# j5 (

k51

n

@Q0~z!# jkzk ;

therefore,Q0(z) is theQ-function. j

Now we set

GªG0% G1%¯% Gn ~5C2n!;

G ( j )
ªG0

( j )
% G1

( j )
%¯% Gn

( j ) ~ j 51,2! ;
~24!

g~z!ªg0~z! % g1~z! %¯% gn~z! ~zPC\R! ;

Q~z!ªQ0~z! % Q1~z! %¯% Qn~z! ~zPC\R! .

Then the following theorem is an evident consequence of the preceding lemmas.
Theorem 1: The triple (G,G (1),G (2)) is a boundary value space for the operator S. The

corresponding KreinG-field andQ-function coincide withg(z) and Q(z), respectively. The op-
erator H5H (1) given by the boundary conditionG (1)f 50 coincides with the direct sum H5H0

% H1
N

% ¯ % Hn
N ~we shall denote this operator by HN). j

Remark 4:It is convenient to describe explicitly the boundary value space (G,Gh
(1) ,Gh

(2)) for
an arbitrary seth,$1,...,2n%. Denote

u5hù$1,...,n% , v5hù$n11,...,2n% ;
~25!

u85$1,...,n%\h , v85$n11,...,2n%\h .
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Then

Gh
( l )5Gu, 0

( l )
% G̃1

( l )
%¯% G̃n

( l ) ~ l 51,2! ;

gh~z!5gu, 0~z! % g̃1~z! %¯% g̃n~z! ~zPC\R! ; ~26!

Qh~z!5Qu, 0~z! % Q̃1~z! %¯% Q̃n~z! ~zPC\R! .

Here for j 51,...,n,

G̃ j
( l )5H G j

( l ) , if j 1nPv,

GB, j
( l ) , if j 1nPv8;

and similarly forg̃h(z) andQ̃h(z). In particular, ifh5$1,...,n%, then we denoteGh
( l )5GD

( l ) , gh

5gD , Qh5QD . The operatorH5HD
(1) given by the boundary conditionGD

(1)f 50 coincides with
the direct sumH5H0% H1

D
%¯% Hn

D and will be denoted byHD .
Now we can describe all Schro¨dinger operators onX̂ with given vector and scalar potentia

in terms of boundary conditions at the pointsq1 ,...,qn . First of all, we describe the elements
D(S* ) as functions onX̂. For f PL2(X̂)5H we denote byf 0 , f 1 ,...,f n the components off in
L2(X)5H0 , L2(R1

(1))5H1 ,..., L2(R1
(n))5Hn , respectively. It is clear thatf PD(S* ) if and only

if f jPH2(R1) ( j 51, ...,n) whereasf 0PH loc
2 (X\$q1 ,...,qn%) and has the asymptotics~18! near

each pointqj .
Theorem 2: The Schro¨dinger operators on Xˆ with a given vector potentialA and a given

scalar potential p are in bijective correspondence with the Lagrangian subspaces ofG% G. More
precisely, ifL is such a subspace and UL is the Cayley transform ofL having the matrix(ujk) in
the standard basis ofG, then the corresponding Schro¨dinger operator H5HL is defined on those
functions fPD(S* ) the components of which obey the boundary conditions

(
k51

n

@~d jk2ujk!bk~ f 0!1~d j ,k1n2uj ,k1n! f k~0!#

5 i (
k51

n

@~d jk1ujk!ak~ f 0!2~d j ,k1n1uj ,k1n! f k8~0!# , j 51,...,2n . ~27!

If L is the graph of a self-adjoint operator L inG with a Hermitian2n32n-matrix (l jk) then
conditions (27) take a simpler form:

bj~ f 0!5 (
k51

n

@l j ,kak~ f 0!2l j ,k1nf k8~0!# ,

f j~0!5 (
k51

n

@l j 1n,kak~ f 0!2l j 1n,k1nf k8~0!# , j 51,...,n . ~28!

In the general case there are a finite subseth,$1,...,2n% and a Hermitian2n32n-matrix L
5(l jk) such that the conditions (27) take the following equivalent form:

bj~ f 0!5 (
kPu

l jkak~ f 0!2 (
kPu8

l jkbk~ f 0!2 (
kPv

l jk f k2n8 ~0!1 (
kPv8

l jk f k2n~0! , j Pu ;

aj~ f 0!5 (
kPu

l jkak~ f 0!2 (
kPu8

l jkbk~ f 0!2 (
kPv

l jk f k2n8 ~0!1 (
kPv8

l jk f k2n~0! , j Pu8 ;
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f j~0!5 (
kPu

l j 1n,kak~ f 0!2 (
kPu8

l j 1n,kbk~ f 0!2 (
kPv

l j 1n,kf k2n8 ~0!1 (
kPv8

l j 1n,kf k2n~0! ,

j 1nPv ;

f j8~0!5 (
kPu

l j 1n,kak~ f 0!2 (
kPu8

l j 1n,kbk~ f 0!2 (
kPv

l j 1n,kf k2n8 ~0!1 (
kPv8

l j 1n,kf k2n~0! ,

j 1nPv8 ; ~29!

where the setsu, u8, v, and v8 are defined in Remark4.
Proof: The result follows immediately from Theorem A, Theorem 1, and Proposition C.j

Below we collect the most interesting particular cases of Schro¨dinger operators onX̂ with
given potentials. For this purpose we need some notions concerning point perturbations of¨-
dinger operators on the manifoldX. Let B5(b jk) be a Hermitiann3n-matrix, u a subset of
$1,...,n%, andu85$1,...,n%\u. Then the conditions

f 0PD~S0* ! ;

bj~ f 0!5 (
kPu

b jkak~ f 0!2 (
kPu8

b jkbk~ f 0! , j Pu ; ~30!

aj~ f 0!5 (
kPu

b jkak~ f 0!2 (
kPu8

b jkbk~ f 0! , j Pu8 ;

define a generic self-adjoint extensionH0
B, u of the operatorS0 . In particular, if B50 and u

5B, thenH0
B, u is the Schro¨dinger operatorH0 . If u5$1,...,n%, then the operatorH0

B5H0
B, u is

called apoint perturbationof H0 supported by the pointsq1 ,...,qn ~see, e.g., Ref. 51!. Generally
speaking, this perturbation is nonlocal in the sense of Ref. 52. IfB is a diagonal matrix,b jk

5b jd jk , b jPR, thenH0
B is called alocal point perturbation ofH0 .

In what follows we shall representan arbitrary Hermitian 2n32n-matrix L5(l jk) in
block form :

L5F B A

A* CG , ~31!

where B5(b jk) and C5(g jk) are Hermitiann3n-matrices whereasA5(a jk) is an arbitrary
complexn3n-matrix.

Examples:We list four important particular cases of the Schro¨dinger operatorH.

~1! Let h5B. Then the conditions~29! take the following simpler form:

aj~f0!52(
k51

n

bjkbk~f0!1(
k51

n

ajkfk~0! ,

f j8~0!52(
k51

n

ākjbk~f0!1(
k51

n

gjkfk~0! , j51,...,n .

If A5C50, thenH5H0
B, B

% H1
N

%¯% Hn
N . If, in addition,B50, then

aj~f0!50 , f j8~0!50 , j51,...,n ,

henceH coincides withHN .
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~2! Let h5$1,...,2n%, then the conditions~29! take the form

bj~f0!5(
k51

n

bjkak~f0!2(
k51

n

ajkfk8~0! ,

f j~0!5(
k51

n

ākjak~f0!2(
k51

n

gjkfk8~0! , j51,...,n ,

and we return to the conditions~28!. We shall denote this operator byHD
L and call it a

Schrödinger operator of the Dirichlet type. It is clear that this operator is disjoint fromHN . If
A5C50, thenHD

L 5S0
B

% H1
D

%¯% Hn
D .

~3! Let h5$n11,...,2n%. Then the conditions~29! become

aj~f0!52(
k51

n

bjkbk~f0!2(
k51

n

ajkfk8~0! ,

f j~0!52(
k51

n

ākjbk~f0!2(
k51

n

gjkfk8~0! , j51,...,n .

If A5C50, then we get an operatorH5H0
B, B

% H1
D

%¯% Hn
D . If, in addition,B50, then

aj~f0!50 , f j~0!50 , j51,...,n ,

i.e., H coincides withHD .
~4! Let h5$1,...,n%. Then the conditions~29! take the form

bj~f0!5(
k51

n

bjkak~f0!1(
k51

n

ajkfk~0! ,

f j8~0!5(
k51

n

ākjak~f0!1(
k51

n

gjkfk~0! , j51,...,n .

We shall denote this operator byHN
L and call it aSchrödinger operator of the Neumann type. It is

clear that this operator is disjoint fromHD . If A5C50, thenHN
L 5H0

B
% H1

N
%¯% Hn

N . In the case
n52, the operatorHN

L has been considered in Refs. 13 and 20.
Theorem 1 implies the following description of the resolvents of Schro¨dinger operators.
Theorem 3: Let L be a Lagrangian subspace ofG% G and H5HL the Schro¨dinger operator

defined by the boundary conditionG f PL. Then the resolvent R(z)5(H2z)21 of H is given by
the Krein formula

R~z!5RN~z!2g~z!@Q~z!2L#21g* ~ z̄! , ~32!

where RN(z)5(HN2z)21.
Similarly, if H is defined by the boundary conditionGDf PL, then the resolvent R(z)5(H

2z)21 is given by the expression

R~z!5RD~z!2gD~z!@QD~z!2L#21gD* ~ z̄! , ~33!

where RD(z)5(HD2z)21. In particular, if H5HD
L ~respectively, H5HN

L ), then (32) [respectively,
(33)] contains a single-valued operatorL with matrix L. In any case, using (8), we can rewri
(32) [or (33)] in the form

RL,h~z!5Rh~z!2gh~z!@Qh~z!2L#21gh* ~ z̄! ,

where L is a Hermitian operator inG. j
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IV. SPECTRAL AND SCATTERING PROPERTIES OF THE SCHRÖ DINGER OPERATORS
ON A ‘‘HEDGEHOG-SHAPED’’ SPACE

From this section on we,suppose that the manifold X is compact. Therefore, the spectrum
s(H0) is discrete; letm0,m1,¯,mm,¯ be the complete set of eigenvalues ofH0 . We shall
denote the eigenspace ofH0 corresponding tomm by H0(mm); in eachH0(mm) we fix an ortho-
normal basiscm

(1) ,...,cm
( l m) . Denote bysp(H0) the following subset ofs(H0):

sp~H0!ª$mmPs~H0!:' j P$1,...,n%, 'cPH0~mm! s.t. c~qj !Þ0% .

Proposition 1: Q0(z) is a meromorphic matrix-valued function on the complex plainC. The
set of poles of Q0 is infinite and coincides withsp(H0).

Proof: Using Mercer’s Theorem it is not hard to derive the equality

]@Q0~z!# jk

]z
5 (

m50

`

~mm2z!22(
s51

l m

cm
(s)~qj !cm

(s)~qk! , ~34!

where the series converges absolutely and locally uniformly with respect toz, zPC\s(H0). It is
hence clear thatQ0 is meromorphic andsp(H0) is the set of poles forQ0 . Suppose that this se
is finite; then there existsm0 such thatmm¹sp(H0) ;m.m0 . Consider the linear hullL of all
the eigenfunctionscm

(s) ; thenL,C(X). Fix j P$1,...,n% and setq5qj . If wPL, then the rela-
tions ^cm

(s)uw&50 ;m<m0 , s51,...,l m , imply dq(w)ªw(q)50. Therefore the linear functiona
dq on L is a linear combination of the linear functionals^cm

(s)u (m<m0 ,s51,...,l m). SinceL is
dense inC(X) with respect to both the Hilbert and Chebyshev norms, we conclude thatdq is a
continuous functional onC(X) with respect to the topology induced fromL2(X). This contradic-
tion concludes the proof. j

Remark 5:Generally speaking, the setsp(H0) depends on the tuple (q1 ,...,qn) but the set
Y5$(q1 ,...,qn)PXn:sp(H0)5s(H0)% is generic both in the sense of measure and category~i.e.,
the setXn\Y is a zero-measure set of the first Baire class!. Moreover, if X is a homogeneous
manifold, thenX5Y independently of the tuple (q1 ,...,qn).

The structure of the spectrum for an arbitrary self-adjoint extension of the operatorS0 ~in
particular, for the point perturbation ofH0) is very simple. Namely, the following proposition is a
evident consequence of Theorems 14.9 and 14.10 from Ref. 53.

Proposition 2: Let H̃0 be a self-adjoint extension of S0 . Then H̃0 is bounded from below and

the spectrum of H˜
0 is purely discrete:s(H̃0)5sdis(H̃0).

The spectral properties of a Schro¨dinger operator onX̂ are rather rich. Before we describ
them, we settle the following notations. For the rest of this sectionH will denote the Schro¨dinger
operator onX̂ defined by a Schro¨dinger operatorH0 on X and a Lagrangian subspaceL,G
% G. The next theorem describes the spectral properties ofH.

Theorem 4: The following assertions hold.

(i) sess(H)5sac(H)5@0,1`);
(ii) ssc(H)5B;
(iii) sdis(H) is a finite (possibly, empty) subset of(2`,0);
(iv) spp(H)ù@0,1`),s(H̃0), where H̃0 is a self-adjoint extension of S0 [therefore, spp(H)

has no accumulation points];
(v) the multiplicity of an eigenvalue E0Pspp(H) does not exceed2n1m, where m is the

multiplicity of E0 in the spectrum of H0 . Moreover, let N be the number of eigenvalues E
H (counting multiplicity) obeying the inequality E,min„0, inf s(H0)…; then0<N<2n.

Proof: Clearly, the spectrum ofHN possesses all the properties~i!–~v!. Therefore, genera
theorems about self-adjoint extensions with finite deficiency indices~Theorems 14.9 and 14.1
from Ref. 53, and Theorem 18 from Ref. 30! imply properties~iii ! and ~v! for the operatorH.
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Furthermore, taking into account~32! we see that the equalitysess(H)5@0,1`) follows from the
Weyl theorem~see Ref. 54, Theorem XII.14! and that the equalitysac(H)5@0,1`) is a conse-
quence of the Birman–Kuroda theorem~Ref. 54, Theorem XI.9!.

Let us prove property~iv!. Fix a representation ofH in the formHL,h, whereh,$1,...,2n%
andL is a Hermitian 2n32n-matrix. LetE0 , E0>0, be an eigenvalue ofH with an eigenvector
f 5( f 0 , f 1 ,...,f n). For everyj 51,...,n the functionf j belongs toL2(R1) and obeys the equatio
2 f j95E0f j ; hence,f j50. Using the first two equations from~29! we show thatE0 is an eigen-
value ofH̃05H0

B,u , whereu5$1,...,n%ùh andB is related toL by Eq. ~31!.
It remains to prove property~ii !. Denote by L the dense subspace of all elementsf

5( f 0 , f 1 ,...,f n) from H such thatf 0PC(X), f jPC0
`(0,1`), j 51,...,n. Let F be a family of

functions which are analytic in the upper half-planeC15$zPC:Im z.0%; we say that the familyF
is bounded near a pointE, EPR, if there exists a neighborhoodV of E such that every function
from F is bounded inVùC1. According to Theorem XIII.20 from Ref. 54 it is enough to prov
that for some countable subsetZ of R the family of the functionsz°^ f uR(z)g&, where f andg
run throughL, is bounded near every pointE, EP(0,1`)\Z. It is clear that forH5HN this
family is bounded near the points from (0,1`)\s(H0). Moreover, letF be the family of func-
tions of the form

z°E
X
G0~x,qj ;z! f 0~x!dl~x!,

or

z°E
0

`

Gj~x,0;z! f j~x!dx,

where j 51,...,n and f 5( f 0 , f 1 ,...,f n)PL. Then the familyF is bounded near every point from
(0,1`)\s(H0). According to ~32! it remains to show that there exists a discrete sub
Z0,R\s(H0) such that the elements of the matrix@Q(z)2L#21 form a bounded family nea
every point from (0,1`)\Z0 . Rewrite @Q(z)2L#21 in the form JL@PLQ(z)JL2L#21PL @see
~7!#. The elements of the matrixQ(z) have analytic continuations from the half-planeC1 to a
neighborhood of the set (0,1`)\s(H0); moreover, det@PLQ(z)JL2L#Þ0, if Im z.0. Therefore,
we obtain the required property from standard analyticity arguments. j

Now we are going to define the scattering matrix for the Schro¨dinger operatorH on X̂
following the ideas of geometric scattering theory~see, e.g., Ref. 55!. First of all we note that there
exists a natural extension ofH to a domain of functions not belonging toL2(X̂). Namely, Lemma
1 defines the boundary value operatorsG j

(1) andG j
(2) for every function fromH loc

2 (R1
( j )). There-

fore, ~24! defines the operatorsG j
(1) and G j (2) for every function f 5( f 0 , f 1 ,...,f n) from

D(S0* ) % H loc
2 (R1

(1)) %¯% H loc
2 (R1

(n)). Hence, we can consider the operatorH to be defined on the
domain,Dloc(H), consisting of all functionsf from D(S0* ) % H loc

2 (R1
(1)) %¯% H loc

2 (R1
(n)) obeying

the boundary condition (G (1)f ,G (2)f )PL @this operator takes values in the spaceL loc
2 (X̂)

5L2(X) % L loc
2 (R1

(1)) %¯% L loc
2 (R1

(n))]. If H is represented in the formH5HL,h, then the last
condition may be replaced by condition~29!. To define the scattering matrix we need solutions
the Schro¨dinger equation,

H f 5k2f , ~35!

f PDloc(H), k>0, the so-calledscattering states, which have a special behavior in the chann
R1

( j ) . The following theorem provides us with such solutions.
Theorem 5: ~Existence and uniqueness of scattering states.! For every Schro¨dinger operator

H5HL on X̂ there exists a discrete subset ZH of R such that the following assertion is valid.
For a given jP$1,...,n% and every k.0, k2¹ZH , the Schro¨dinger equation (35) has a uniqu

solution f5( f 0 , f 1 ,...,f n) satisfying the following conditions:
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(i) f j (x)5exp(2ikx)1r j(k)exp(ikx),
(ii) if l P$1,...,n% and lÞ j , then fl(x)5t l j (k)exp(ikx),
where rj (k), t l j (k)PC.

Proof: We defineZH as the union of the following sets:~1! s(H0); ~2! s(H0
B,u) if H may be

represented in the formH5HL,h and (B,u) is related to (L,h) with ~25!, ~31!; ~3! the set of all
solutions to the equation det@PLQ(E)JL2L#50 whereQ(E) is the analytic continuation ofQ(z)
from the upper half-planeC1 to R1 ~see the proof of Theorem 4!. Clearly,ZH is discrete.

Further we note that for everyz5(z l)1< l<2nPC2n5G the functiong(z)z5(w0 ,w1 ,...,wn)
has the form

w0~x!5 (
m51

n

zmG0~x,qm ;z!, ~36!

w l~x!5
z l 1n

A2z
exp~2A2zx!, 0, l<n, ~37!

@see~10!!, ~23!, and~24!#. Therefore, for anywPH,

g* ~ z̄!w5~z l !1< l<2n ,

where

z l5E
X
G0~ql ,x;z!w0~x!dl~x!, 1< l<n; ~38!

z l5
1

A2z
E

0

`

exp~2A2zx!w l 2n~x!dx, n11< l<2n. ~39!

Fix now k.0, k2¹ZH , and putz5k21 i«, where 0,«<«0 , with some«0.0. It is clear that
an elementg from H belongs toD(H) if and only if g5R(z)h, whereh is an element fromH
~which depends onz). Setc5RN(z)h, thencPD(HN) and from~32!,

g5c2g~z!@Q~z!2L#21g* ~ z̄!~HN2z!c, ~40!

and

~H2z!g5~HN2z!c. ~41!

Conversely, every functioncPD(HN) defines, by~40!, an elementg from D(H) in such a way
that ~41! holds. Note that according to~38! and~39!, the vectorj5g* ( z̄)(HN2z)c has the form

j l5H c0~ql !, if 1< l<n;

c l 2n~0!, if n11< l<2n.

Therefore, we can rewrite~40! as

g5c2g~z!z~c!,

with

z l~c!5 (
m51

n

@Q~z!2L# lm
21c0~qm!1 (

m5n11

2n

@Q~z!2L# lm
21cm2n~0!. ~42!
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Now fix j P$1,...,n% and definec5(c0 ,c1 ,...,cn) from L loc
2 (X̂) by

c l~x!5H exp~ ikx!1exp~2 ikx!, if l 5 j ,

0, otherwise.
~43!

It is clear thatcPDloc(HN) but c¹D(HN). To obtain a function fromD(H) we choose fora
.0 a cut-off functionxaPC0

`(R1) such thatxa(x)51 if 0<x<a, xa(x)50 if x.a11, and
0<xa(x)<1, ;xPR1 . Set x̃aª(1,xa ,...,xa), it is clear that the product x̃ac
5(c0 ,xac1 ,...,xacn) is in D(HN), and hence defines a function,

g(a)
ªx̃ac2g~z!z~ x̃ac!, ~44!

in D(H) such that

~H2z!g(a)5~HN2z!x̃ac. ~45!

We write the matrix@Q(z)2L#21 in block form,

@Q~z!2L#215F N~z! W~z!

M ~z! V~z!
G ; ~46!

whereW(z)5„wlm(z)… andV(z)5„v lm(z)… aren3n-matrices. From~42! we have

z l~ x̃ac!5 (
m5n11

2n

@Q~z!2L# l ,m
21cm2n~0!52 (

m51

n

@Q~z!2L# l ,m1n
21 d jm52@Q~z!2L# l , j 1n

21 .

In other words,

z l~ x̃ac!5H 2wl j ~z!, if 1< l<n,

2v l j ~z!, if n11< l<2n.

Hence, from~36!, ~37!, and~44! we get

g0
(a)~x!522 (

m51

n

wm j~z!G0~x,qm ;z!, ~47!

gl
(a)~x!5d l j xa~x!c j~x!2

2v l j ~z!

A2z
exp~2A2zx!, 0, l<n. ~48!

Passing to the limita→` in ~47! and ~48!, we obtaing5(g0 ,g1 ,...,gn)PL loc
2 (X̂) with

g0~x!522 (
m51

n

wm j~z!G0~x,qm ;z!,

gl~x!5d l j c j~x!2
2v l j ~z!

A2z
exp~2A2zx!, 0, l<n.

Moreover, sinceG (1)g(a) and G (2)g(a) are independent ofa, g satisfies the boundary conditio
(G (1)g,G (2)g)PL, and from~45! we have

~H2z!g5~HN2z!c.

In the limit «→0 we haveA2z→2 ik, whereasg has a limit f in L loc
2 (X̂) such that
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f 0~x!522 (
m51

n

wm j~k2!G0~x,qm ;k2!,

~49!

f l~x!5d l j c j~x!1
2v l j ~k2!

ik
exp~ ikx!, 0, l<n,

sincek2¹s(H0). Moreover, in the sense of distributions,

~H2z!g→~H2k2! f ,

~HN2z!c→~HN2k2!c50.

Hence, (H2k2) f 50. Further,f satisfies the boundary condition (G (1)f ,G (2)f )PL. Indeed, since
k2¹s(H0) we have

am„G0~•,ql ;z!…→d lm , bm„G0~•,ql ;z!…→Q0
ml~k2!,

asz→k2 @see~14! and~16!#. On the other hand, direct calculations show thatG l
(1)gl→G l

(1)f l and
G l

(2)gl→G l
(2)f l asz→k2 ( l 51,...,n;). Finally, from ~49! we get the properties~i! and ~ii ! with

r j~k!5122ik21v j j ~k2!,
~50!

t l j ~k!522ik21v l j ~k2!.

The proof is completed by establishing the uniqueness off which follows from Lemma 7
below. j

Lemma 7: Let f be a solution to the Schro¨dinger equation (35) for some k2¹ZH , with the
property that for all l, 1< l<n,

f l~x!5a l exp~ ikx!, ~51!

for somea lPC. Then f50.
Proof: Take z«5k21 i« and a.0 as in the proof of the theorem. It is evident thatx̃af

PD(H); denote

c («)5RN~z«!~H2z«!x̃af .

Then

~HN2z«!c («)5~H2z«!x̃af , ~52!

and

x̃af 5c («)2g~z«!z~c («)!. ~53!

Consider the integral kernelGl
N(x,y;z) of the operatorRl

N(z)5(Hl
N2z)21; then

Gl
N~x,y;z«!→ i

2k
@exp~ ikux2yu!1exp„ik~x1y!…#[Gl

N~x,y;k2!,

as«→0 @see~11!#. Denote byH l
(a) the following subspace ofHl5L2(R1

( l )):

H l
(a)
ª$wPL2~R1

( l )!:suppw,@0,a11#%;
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thenGl
N(x,y;z) is the kernel of a continuous linear operator fromH l

(a) to L loc
2 (R1

( l )) @recall that
L loc

2 (R1
( l )) is endowed with the topology ofL2-convergence on compact subsets ofR1

( l )] . Set
H (a)

ªH0% H 1
(a)

%¯% H n
(a) ; then

RN~k2!ªR0~k2! % R1
N~k2! %¯% Rn

N~k2!

is a continuous linear operator fromH (a) to L loc
2 (X̂). Moreover, if hPH (a) then RN(z«)h

→RN(k2)h as «→0; in particularc («)→RN(k2)(H2k2)x̃af 5..c (0). Hence,x̃ac («)→x̃ac (0) in
L2(X̂) as«→0, too. Fix«0.0 and putz05k21 i«0 ; then

~HN2z0!c («)5~HN2z«!c («)1~z«2z0!c («)5~H2z«!x̃af 1~z«2z0!c («).

Therefore, (HN2z0)c («) has a limit inL loc
2 (X̂) as«→0. Consequently,

c l
(«)~x!→c l

(0)~x!,
d

dx
c l

(«)~x!→ d

dx
c l

(0) ,

locally uniformly onR1
( l ) for eachl , 1< l<n. Now we have

~HN2z0!x̃ac («)5x̃a~HN2z0!c («)22~0,xa8~c1
(«)!8,...,xa8~cn

(«)!8!2~0,xa9c1
(«) , ...,xa9cn

(«)!.
~54!

It follows from ~54! that also (HN2z0)x̃ac («) has a limit inL2(X̂), and therefore,x̃ac («) has a
limit in the graph topology ofD(HN) as «→0. Thus, x̃ac (0)PD(HN) and (HN2z0)x̃ac («)

→(HN2z0)x̃ac (0) in L2(X̂).
Now ~52! implies that

~HN2z«!x̃ac («)5x̃a~H2z«!x̃af 22„0,xa8~c1
(«)!8,...,xa8~cn

(«)!8…2~0,xa9c1
(«) , ...,xa9cn

(«)!.
~55!

Since„x̃a(H2k2)x̃af …(x)50 if xPR1
( l ) and 0<x<a, we get from~55! by passing to the limit

«→0,

~HN2l!x̂ac (0)~x!50, ifxPR1
( l ) , 0<x<a.

Becausex̃ac (0)PD(HN), we have for everyl>1:

c l
(0)~x!5cl„exp~ ikx!1exp~2 ikx!…, if xP@0,a#.

Now, we turn to~53!; for l>1 this equality reads as

xa~x! f l~x!5c l
(«)~x!2

z l 1n~c («)!

A2z
exp~2A2zx!, ~56!

where

z l 1n~c («)!5 (
m51

n

@Q~z!2L# l 1n,m
21 c0

(«)~qm!1 (
m5n11

2n

@Q~z!2L# l 1n,m
21 cm2n

(«) ~0!

@see~37! and ~42!#. By definition of c («) we havec0
(«)5R0(k21 i«)(S0* 2k22 i«) f 0 . Moreover

R0(z) is a continuous mapping fromL2(X) to D(H0) endowed with the graph topology and
hence, a continuous mapping fromL2(X) to C(X) which continuously depends on«P@0,«0#.
Therefore,c0

(«)(qm)→c0
(0)(qm) as«→0. Hence, we obtain from~56! that for l>1,
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xa~x! f l~x!5c l
(0)~x!1

z l 1n~c (0)!

ik
exp~ ikx!, ~57!

where the coefficients

z l 1n~c (0)!5 (
m51

n

@Q~k2!2L# l 1n,m
21 c0

(0)~qm!1 (
m5n11

2n

@Q~k2!2L# l 1n,m
21 cm2n

(0) ~0! ~58!

are well defined becausek2¹ZH . Moreover,c0
(0)(q)50, sincek2¹s(H0), and~57! implies that

for xP@0,a# and l>1 the functionsf l have the form

f l~x!5cl exp~2 ikx!1cl8 exp~ ikx!.

Comparing with~51!, we getcl50 and, hence,c l
(0)(x)50 for xP@0,a#. Returning to~57! and

~58! we obtain thatf l(x)50 for xP@0,a#. Sincea is arbitrary, f l50, ; l 51,...,n.
Using ~29! we see thatf 0 satisfies the boundary conditions~30!. Moreover, by the hypothesi

of the lemma,f 0 is a solution to the equation (S0* 2k2) f 050. Sincek2¹s(H0
B,u), we get f 0

50. Thus, the lemma is proven, and the proof of Theorem 5 is completed. j

Property ~i! of Theorem 5 means that the functionf j (x) represents a superposition of a
incoming wave exp(2ikx) and a reflected waver j (k)exp(ikx) in the channelR1

( j ) .
Definition: rj (k) is called the reflection amplitudefor H in the channelR1

( j )) at energyE
5k2. The quantityRj (k)5ur j (k)u2 is calledthe reflection coefficient~or the reflection probability!
in the channelR1

( j ) .
Condition~ii ! in Theorem 5 means that the functionf l(x) ( lÞ j ) represents an outgoing wav

t l j (k)exp(ikx) in the channelR1
( l ) .

Definition: tl j (k) is called the transmission amplitudefor H from the channelR1
( j ) to the

channelR1
( l ) at energyE5k2. The quantityTl j (k)5ut l j (k)u2 is calledthe transmission coefficien

~or the transmission probability! from R1
( j ) to R1

( l ) .
Set

sl j ~k!5H r j~k!, if l 5 j ;

t l j ~k!, otherwise.

The matrixS(k)5„sl j (k)…1< l , j <n is called thescattering matrixfor H. We stress thatS(k) is
defined for allk.0 with the exception of such values ofk thatk2 belongs to a discrete subsetZH

of R.
Theorem 6: The scattering matrixS(k) is unitary for all k.0 such that k2¹ZH . If the

matrix @Q(k2)2L#21 is represented in the form (46), then

S~k!5I 22ik21V~k2!. ~59!

If L is the graph of a Hermitian operator L inG and the matrix L is represented in the form~31!,
then

S~k!5@C1A* „Q0~k2!2B…21A1 ik21I #@C1A* „Q0~k2!2B…21A2 ik21I #21. ~60!

In particular, if the matrix A is invertible, and C is a scalar matrix~i.e., C5gI , gPR), then

S~k!5@ ikI 1~ ikg21!A21
„Q0~k2!2B…A* 21#@ ikI 1~ ikg11!A21

„Q0~k2!2B…A* 21#21

5A21@ ikAA* 1~ ikg21!~Q0~k2!2B!#@ ikAA* 1~ ikg11!„Q0~k2!2B…#21A. ~61!

Proof: ~59! follows immediately from~50! as obtained in the proof of Theorem 5. To get~60!
we use the Frobenius formula for the inverse of a block-matrix:56
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FA11 A12

A21 A22
G21

5F @A112A12A22
21A21#

21 A11
21A12@A21A11

21A122A22#
21

@A21A11
21A122A22#

21A21A11
21 @A222A21A11

21A12#
21 G . ~62!

Since

Q~z!2L5FQ0~z!2B 2A

2A* ik21I 2CG ,
then

V~k2!5@ ik21I 2C2A* „Q0~k2!2B…21A#21,

and hence

S~k!5I 22@ I 1 ik~C1A* „Q0~k2!2B…21A!#21. ~63!

Now we get~60! from ~63! after some elementary algebra;~61! is an evident consequence of~60!.
In particular, ~60! shows thatS(k) is the Cayley transform of the Hermitian matrixC

1A* „Q0(k2)2B…21A. Hence, in caseL is the graph of a Hermitian operator inG; S(k) is a
unitary matrix. To prove the general case we use Proposition E. j

In the notation of Example~2! from Sec. III, ~60! gives the scattering matrix for the Schro¨-
dinger operator of Dirichlet type,HD

L . We now derive an explicit expression for the scatteri
matrix in case of an arbitrary Schro¨dinger operatorHL. It is convenient to write the boundar
conditions in the form~3! where the (2n32n)-matricesL andM have a block structure,

L5F B A1

A2 C G , M5F Y X1

X2 Z G , ~64!

and satisfy conditions~a! and~b! from Proposition B. In particular, condition~a! is equivalent to
the relations

BY* 1A1X1* 5YB* 1X1A1* ,

BX2* 1A1Z* 5YA2* 1X1C* , ~65!

A2X2* 1CZ* 5X2A2* 1ZC* .

Suppose for the moment thatM is invertible, then condition~3! reads asG (2)x5LG (1)x
whereL5M 21L. Therefore, using the Frobenius formula~62! we obtain the following expression
for the matrixV from ~46!:

V5@ ik21Z2C2~X2Q02A2!~YQ02B!21~ ik21X12A1!#21

•@Z2~X2Q02A2!~YQ02B!21X1#. ~66!

Substituting~66! in ~59!, we finally obtain

S~k!5@ ikC1Z2~X2Q0~k2!2A2!~YQ0~k2!2B!21~ ikA11X1!#21

•@ ikC2Z2„X2Q0~k2!2A2…„YQ0~k2!2B…21~ ikA12X1!#. ~67!

Since invertible matrices are dense in the space of all (2n32n)-matrices, expression~67! is valid
for all boundary conditions of the form~3!. In particular, ifM5I then we recover~60!.
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Next we consider some particular cases of~67! and determine the scattering matrices for t
Schrödinger operators from Examples~1!, ~3!, and~4! of Sec. III @Example~2! contains operators
of the Dirichlet type which are covered by~60!#.

~1! Consider Example~1! from Sec. III. Using the notations there we have

L5F I 0

0 I G , M5F2B A

A* 2CG .
Therefore,

S~k!5@ ik1C2A* „Q0
21~k2!1B…21A#@ ik2C1A* „Q0

21~k2!1B…21A#21. ~68!

In particular, ifA5B5C50 ~i.e., if H5HN), thenS(k)5I for all k.0. In this case the thin
horns are decoupled from the manifold; therefore, the transmission coefficients vanish.

~2! Now we turn to Example~3! from Sec. III. In this case

L5F2I A

0 CG , M5F B 0

A* I G .
Hence

S~k!5@C1 ik212A* ~Q0
21~k2!1B!21A#@C2 ik212A* ~Q0

21~k2!1B!21A#21. ~69!

In particular, ifA5B5C50 ~i.e., if H5HD), thenS(k)52I for all k.0. As in the case of
the operatorHN , the transmission coefficients vanish, since the horns are decoupled from
manifold X0 .

~3! Finally, let us consider an operator of Neumann typeHN
L @as in Example~4! of Sec. III#.

Now

L5F B 0

2A* 2I G , M5F I 2A

0 C G ,
and we get a simple expression forS(k), which is similar to~60!:

S~k!5@ ikI 1C1A* ~Q0~k2!2B!21A#@ ikI 2C2A* ~Q0~k2!2B!21A#21. ~70!

In particular, if the matrixA is invertible andC is a Hermitian scalar matrix (C5gI ), then

S~k!5@~ ik1g!A21
„Q0~k2!2B…A* 211I #@~ ik2g!A21

„Q0~k2!2B…A* 212I #21

5A21@~ ik1g!„Q0~k2!2B…1AA* #@~ ik2g!„Q0~k2!2B…2AA* #21A. ~71!

Remark 6:There is another way to get~70! which is similar to the derivation of~60!. Namely,
if we use~33! to express the resolvent ofHN

L and start with the function

c j~x!5exp~ ikx!2exp~2 ikx!

in the channelR1
( j ) @instead of the function~43!#, then we get, arguing as in the proof of Theore

5,

S~k!52ikVD~k2!21, ~72!

whereVD is then3n-matrix in the block representation of@QD(z)2L#21:

@QD~z!2L#215F ND~z! WD~z!

MD~z! VD~z!
G . ~73!
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@Note thatQD andgD in ~33! are given by~12!, ~16!, ~26!#. From~72! and~73! we get~70! again.
It is interesting to note that for the Schro¨dinger operatorH5H0

B,u
% H1

N
%¯% Hn

N ~see Ex-
ample 1 from Sec. III!, we haveS(k)5I independently ofk, i.e., we have in each channel
complete reflection without phase shift. On the other hand, ifH5H0

B,u
% H1

D
%¯% Hn

D ~see Ex-
ample 3 from Sec. III!, thenS(k)52I independently ofk, i.e., there is complete reflection i
each channel with a phase shift of magnitudep.

Remark 7:With obvious modifications, the results of this section are valid for the casd
50 (X is a finite set of isolated points!. This case is not as empty as it seems at first sight.
example, if we put in~67! A15A25X15X250, then

S~k!5@ ikC1Z#21@ ikC2Z#. ~74!

This is the scattering matrix for a system of quantum wires with a single common vertex de
in Ref. 17.

V. THE CASES OF ONE AND TWO ‘‘HORNS’’

We consider now the most interesting particular cases. Forn51 we denoteq1 asq andr 1 as
r for simplicity. If H is an operator of Dirichlet type, i.e., ifH5HD

L ~see Example 2 of Sec. III!,
then

Q~k2!2L5FQ0~k2!2b a

ā ik212gG ,
whereaPC, b,gPR are arbitrary. In this caseS(k) coincides with the reflection amplituder (k).
Using ~61!, we get

S~k!5
~ igk21!„Q0~k2!2b…1 i uau2k

~ igk11!„Q0~k2!2b…1 i uau2k
. ~75!

Obviously, we haveR(k)[1 for the reflection coefficient.
Similarly, for the operator of Neumann typeH5HN

L ~see Example 4 of Sec. III! we obtain

S~k!5
~ ik1g!„Q0~k2!2b…1uau2

~ ik2g!„Q0~k2!2b…2uau2 . ~76!

It is convenient to write

S~k!5..eiF(k),

whereF(k) is the so-calledscattering phase.
Equations~75! and ~76! have interesting consequences. First we recall that a pointEPR is

called apoint levelof the operatorH̃05H0
B[H0

b , if Q(E)2b50. The spectrum ofH̃0 ~recall that
H̃0 is a point perturbation ofH0) consists of all point levels and all multiple eigenvalues of t
unperturbed operatorH0 .

Theorem 7: 1. Let n51 and H be a Schro¨dinger operator of Dirichlet type: H5HD
L . Then

the following assertions hold.
(1a) S(k)51 [i.e., F(k)[0 mod 2p] if and only if k2 is an energy level for the poin

perturbation H0
b of H0 .

(1b) Let, in addition, g50. Then S(k)521 [i.e., F(k)[p mod 2p] if and only if k2

Psp(H0). Therefore, for a generic point qPX, S(k)521 if and only if k2Ps(H0).
2. Let n51 and H be a Schro¨dinger operator of Neumann type: H5HN

L . Then the following
assertions hold.
                                                                                                                



t

394 J. Math. Phys., Vol. 44, No. 2, February 2003 J. Brüning and V. A. Geyler

                    
(2a) S(k)521 [i.e., F(k)[p mod 2p] if and only if k2 is an energy level for the poin
perturbation H0

b of H0 .
(2b) Let, in addition, g50. Then S(k)51 [i.e., F(k)[0 mod 2p] if and only if k2

Psp(H0). Therefore, for a generic point qPX, S(k)51 if and only if k2Ps(H0).
Proof: The theorem is an immediate consequence of~75! and ~76!. j

Theorem 7 shows that by means of an infinitely thin hornR1 attached to the manifoldX at a
point q we can ‘‘hear’’ the positive point levels of a point perturbation ofH0 at the pointq.
Moreover, ifq is a generic point, we can hear the positive part of the spectrum of the Schro¨dinger
operatorH0 on X. Therefore, we can think of the hornR1 as a kind of quantum stethoscope.

Next we consider the case of two horns (n52) in some detail. For simplicity we shall write

Q̃~k2!5Q0~k2!2B,

whereB is a given Hermitian 232-matrix. We start with the Schro¨dinger operatorH of Dirichlet
type, H5HD

L . Let A5(a j l ) be an invertible 232-matrix, C5gI (gPR) a scalar 232-matrix.
We shall denote the matrixAA* by N:

N[Fn11 n12

n21 n22
G5F ua11u21ua12u2 a11ā211a12ā22

a21ā111a22ā12 ua22u21ua21u2 G .

Further we set

D~k!5~k2g2 ik !„n12Q̃21~k2!1n21Q̃12~k2!2n11Q̃22~k2!2n22Q̃11~k2!…

1~ ikg11!2 detQ̃~k2!2k2udetAu2 ,

M11~k!5~k2g1 ik !„n21Q̃12~k2!2n22Q̃11~k2!…1~k2g2 ik !

3„n12Q̃21~k2!2n11Q̃22~k2!…2~k2g211!detQ̃~k2!2k2udetAu2 ,

M22~k!5~k2g1 ik !„n12Q̃21~k2!2n11Q̃22~k2!…1~k2g2 ik !„n21Q̃12~k2!

2n22Q̃11~k2!…2~k2g211!detQ̃~k2!2k2udetAu2 ,

M12~k!52ik„n12Q̃11~k2!2n11Q̃12~k2!… ,

M21~k!52ik„n21Q̃22~k2!2n22Q̃21~k2!… .

Then we have for the elements of the scattering matrixS(k):

s11~k!5
a11a22M11~k!2a12a21M22~k!1a21a22M12~k!2a11a12M21~k!

detA D~k!
, ~77!

s22~k!5
a11a22M22~k!2a12a21M11~k!1a11a12M21~k!2a22a21M12~k!

detA D~k!
, ~78!

s12~k!5
a12a22„M11~k!2M22~k!…1a22

2 M12~k!2a12
2 M21~k!

detA D~k!
, ~79!

s21~k!5
a11a21~M22~k!2M11~k!!1a11

2 M21~k!2a21
2 M12~k!

detA D~k!
. ~80!

Shortly, we have
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S~k!5D21~k!A21M ~k!A , ~81!

whereM5(M jl ) j ,l 51,2.
Similarly we can obtain the scattering matrix for an operator of Neumann type,H5HN

L . We
assume for simplicity that the matrixA is diagonal:A5(a jd j l )1< j ,l<n with real numbersa j , and
that C is a scalar matrix,C5gI , gPR. In this case we set

DN~k!ª2ua1a2u21~ ik2g!„ua2u2Q̃11~k2!1ua1u2Q̃22~k2!…2~ ik2g!2 detQ̃~k2! .

Then ~71! yields

s11~k!5@ ua1a2u21~ ik1g!ua2u2Q̃11~k2!2~ ik2g!ua1u2Q̃22~k2!1~k21g2!detQ̃~k2!#DN
21~k! ,

s22~k!5@ ua1a2u21~ ik1g!ua1u2Q̃22~k2!2~ ik2g!ua2u2Q̃11~k2!1~k21g2!detQ̃~k2!#DN
21~k! ,

s12~k!52ikā1a2Q̃12~k2!DN
21~k! , ~82!

s21~k!52ika1ā2Q̃21~k2!DN
21~k! .

Remark 8:If 2H0 is the Laplace–Beltrami operator, then the scattering matrix~82! coincides
~up to notation! with the one derived in Ref. 13. Moreover, if we put in~82! B5C50 anda1

5a25a, then we get

s21~k!5
2ikuau2@Q0~k2!#12

k2 detQ0~k2!1 ikuau2~@Q0~k2!#111@Q0~k2!#22!2uau4 .

This result was obtained by Kiselev.20

Let us list some interesting consequences of~77!–~80!. First consider the following permuta
tion of the matrix elements ofA: a11↔a12, a21↔a22. Then the elements ofS(k) undergo the
permutations11↔s22, s12↔s21. The reason for this effect is intuitively clear: the permutati
a11↔a12, a21↔a22 means that we attach the semi-axisR1

1 to the pointq2 in place of q1 ,
whereas the semi-axisR2

1 is attached toq1 .
Another interesting consequence is related to the conducting properties of a qua

mechanical system with the configuration spaceX̂. Namely, at zero temperature the ballist
conductances(k) of an electric chain consisting of two one-dimensional wiresR1

(1) and R1
(2)

attached to a mesoscopic deviceX is given by the Landauer–Bu¨ttiker formula,

s~k!5
e2

p\

T12~k!

R1~k!
,

wheree is the electron charge,\ is the Planck constant, andk2 is the Fermi energy.57,58 For a
generic point (q1 ,q2)PX3X, q1Þq2 and for fixedz0Ps(H0), the functionz°detQ̃0(z) has a
pole of the second order atz0 . On the other hand, the functionsz°Q̃jl (z) have poles at most o
the first order at the same point. Therefore, forT12(k)5T21(k)5us12(k)u2 we have at a generic
point (q1 ,q2)PX3X, q1Þq2 , thatT12(k)50 if k2Ps(H0). In other words, ifk2Ps(H0), then
s(k)50. The converse is true, e.g., for a real operatorH0 ~i.e., for the operatorH0 commuting
with the operatorJ of complex conjugation:J f5 f̄ ) at least if the following conditions are satis
fied: ~1! the matrixA is diagonal anda11a22Þ0; ~2! Im b12Þ0. In this case@Q0(k2)#12 is a real
number ifk2¹s(H0), and thus we have the following proposition.

Proposition 8: Lets(k) be the conductance of an electric chain consisting of the‘‘ wires’’ R1
(1)

andR1
(2) attached to the ‘‘device’’ X at some generic points. Suppose that the Hamiltonian o

device X is a real Schro¨dinger operator H0 of the Dirichlet type. If the conditions (1) and (2
above are satisfied, thens(k) vanishes if and only if k2 is an eigenvalue of H0 . j
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Assume now that dimX>2. If the geodesic distancer (q1 ,q2) betweenq1 and q2 tends to
zero, then at a fixed value of the energyk2, k2¹s(H0), the numbersQ̃11(k

2) andQ̃22(k
2) remain

bounded, whereasQ̃12(k
2) andQ̃21(k

2) tend to infinity. Therefore, the conductances(k) tends to
zero@see~79! and~80!#. This paradoxical result is intimately related to an unusual behavior o
point perturbations of the Schro¨dinger operators in dimensions 2 or 3. Namely, consider a p
perturbationH0

B of H0 supported on a two-point set$q1 ,q2%. Then in the sense of the norm
resolvent convergence,H0

B tends to the unperturbed operatorH0 as r (q1 ,q2)→0. Indeed, the
above considerations imply the following assertion:If z is an arbitrary element ofr(H0), then

@Q0~z!2B#21→0, as r ~q1 ,q2!→0 . ~83!

A discussion of such a property of point perturbations may be found in Ref. 59. To overcom
difficulties arising in the limitr (q1 ,q2)→0, a renormalization procedure for boundary conditio
has been used.60 It is not our intention to discuss here this subject in detail; we restrict
consideration to some consequences of~83! for the limiting behavior of the Schro¨dinger operator
H on X̂.

Applying ~62! to the matrix@Q(z)2L#21, we get

@Q~z!2L#215FA11 A12

A21 A22
G ,

where

A115@ I 2Q̃0
21~z!A„~2z!21/2I 2C…

21A* #21Q̃0
21~z! ,

A125Q̃0
21~z!A@A* Q̃0

21~z!A2~2z!21/2I 1C#21 ,

A215@A* Q̃0
21~z!A2~2z!21/2I 1C#21A* Q̃0

21~z! ,

A225@~2z!21/2I 2C2A* Q̃0
21~z!A#21 . ~84!

Now using~83! we show that asr (q1 ,q2)→0, the operatorH tends in the norm-resolvent sens
to the direct sumH0% H8 whereH8 is a point perturbation~supported in 0! of the free Hamil-
tonian2d2/dx2 on the lineR. It follows from Arnold’s Lemma that in the limitr (q1 ,q2)→0, we
can obtain any operator of the formH0% H8 where H8 is an arbitrary point perturbation of
2d2/dx2 supported on the point 0. In the case of the operatorH5HD

L , the limiting scattering
matrix can be obtained from~60!; it has the form

SD
lim~k!5~ ikC2I !~ ikC1I !21 .

Similarly, if H5HN
L , then for the limiting form of the scattering matrix we obtain from~70!,

SN
lim~k!5~ ik1C!~ ik2C!21 .

We note that in both casesS lim(k) depends on the blockC of the matrixL only.
In particular, the matrix elements ofSN

lim have the form

sjl
lim~k!5

22ikg j l

k21 ikTr C2detC
, j Þ l ; ~85!
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sj j
lim~k!5

k22 ik~g j j 2g l l !1detC

k21 ikTr C2detC
, j 51,2 , lÞ j . ~86!

Moreover, ifA5I , then the elements of the scattering matrixSN(k) of the initial operatorHN
L

are the following:

s11~k!5
„k22 ik~g112g22!1detC…detQ̃~k2!1 ik„Q̃11~k2!2Q̃22~k2!…1Tr „CQ̃~k2!…11

D1~k!
,

s22~k!5
„k22 ik~g222g11!1detC…detQ̃~k2!1 ik„Q̃22~k2!2Q̃11~k2!…1Tr „CQ̃~k2!…11

D1~k!
,

s12~k!5
2ik„Q̃12~k2!2g12detQ̃~k2!…

D1~k!
,

s21~k!5
2ik„Q̃21~k2!2g21detQ̃~k2!…

D1~k!
,

where

D1~k!ª~k21 ikTr C2detC!detQ̃~k2!1 ikTr Q̃~k2!2Tr „CQ̃~k2!…21 .

It is interesting to compare these elements with those for the scattering matrix ofHN
L in the case

of an arbitrary diagonal matrixA and a scalar matrixC @see~82!#.
An important particular case of~85! and ~86! arises if we choose the matrixC in the form

C5F g 2g

2g g G ,

wheregPR, gÞ0. In this case,

s11
lim~k!5s22

lim~k!5
2 ikg21

22 ikg21 ,

s12
lim~k!5s21

lim~k!5
2

22 ikg21 .

Therefore, the limiting matrixS lim(k) coincides with the scattering matrix for thed8-perturbation
of the free Schro¨dinger operator on the lineR.51 There is a conjecture that the scattering on
d8-potential can be realized geometrically.35 Our result shows thatthe scattering on the
d8-perturbation can be realized with an arbitrary accuracy by means of a nontrivial geom
scattering on an arbitrary compact manifold of dimension 2 or 3.

Now we give an example of nontrivial boundary conditions such that the scattering mat
the corresponding Schro¨dinger operatorHL in the limit r (q1 ,q2)→0 ~for generic points! has the
form

F0 1

1 0G ,
i.e., in this limit we obtain a system with zero ballistic resistance~the condition dimX>2 is kept!.
Namely, let us consider the boundary conditions of the form~3!, where L and M have the
following 232-blocks@see~64! for notation#: X15X250, Y5I ,
                                                                                                                



s

t

s

or

of

398 J. Math. Phys., Vol. 44, No. 2, February 2003 J. Brüning and V. A. Geyler

                    
Z5F0 0

z 2z
G , A15Fa1 0

a2 0G , A25F 0 0

â1 â2
G , C5Fg g

0 0G ,
andB is an arbitrary Hermitian 232-matrix. It is easy to prove that conditions~65! are satisfied
iff â j5zā j . In this case the scattering matrixS(k) is independent ofZ, A2 , andC; its elements
have the form

s11~k!5s22~k!

5
ua1u2 Q̃11~k2!1ua2u2 Q̃22~k2!2ā1a2Q̃12~k2!2ā2a1Q̃21~k2!

ua1u2 Q̃11~k2!1ua2u2 Q̃22~k2!2ā1a2Q̃12~k2!2ā2a1Q̃21~k2!22ik21 detQ̃~k2!
,

~87!

s12~k!5s21~k!

5
2ik21 detQ̃~k2!

2ik21 detQ̃~k2!2ua1u2 Q̃11~k2!2ua2u2 Q̃22~k2!1ā1a2Q̃12~k2!1ā2a1Q̃21~k2!
.

~88!

It is curious that the conductance of a system with the HamiltonianHL is in some sense
reciprocal to the one described in Proposition 8. In fact,~87! and~88! show immediately that the
following proposition is true.

Proposition 9: Suppose that the semi-axesR1
(1) and R1

(2) are attached to X in generic point

and that the Schro¨dinger operator HL on X̂ is given as above. Thens(k)5` (i.e., the system Xˆ

is a superconductor at the energy level k2) if and only if k2Ps(H0). Moreover, s(k)50 if and
only if k2 is an energy level for the point perturbation H0

B of H0 .

VI. A FEW EXAMPLES

Here some examples of Schro¨dinger operatorsH0 on a compact manifoldX of constant
curvature are collected for which we can give an explicit form of theQ-matrix Q0 and, hence, ge
an explicit expression for the scattering matrixS(k) via ~60! or ~70!. Recall that forj Þ l ,

@Q0~z!# j l 5G0~qj ,ql ;z! , ~89!

whereG0(x,y;z) is the Green’s function ofH0 . Therefore, as a rule, only the diagonal term
Q0(z)] j j are written explicitly below.

A. Ring Sa

Let X be a ringSa ~i.e., a circle! of radiusa. It is easy to show that the Green’s function f
the Schro¨dinger operator of a free charged particle,

H052
1

a2

d2

dw2

(wP@0 ,2p) being the polar coordinate onSa) has the form

G0~w,w8;z!52
1

2Az

cosaAz~w82w6p!

sinpaAz
,

where the sign ‘‘plus’’ is taken ifw>w8, otherwise we take ‘‘minus.’’ The diagonal elements
the matrixQ0 have the form
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@Q0~z!# j j 5G0~qj ,qj ;z! . ~90!

B. Aharonov–Bohm ring

Consider a ringSa of radiusa located in an axially symmetric magnetic field perpendicular
the plane of the ring. LetF be the total magnetic flux through the ring. Putq5F/F0 , whereF0

is the quantum of the magnetic flux:F052p\c/ueu. Then the Schro¨dinger operator for a charge
particle in the system considered has the form

H05
1

a2 S 2 i
d

dw
1q D 2

.

For the Green’s function we have:61

G0~w,w8;z!5
1

4Az
Fexp„i ~w82w6p!~q2aAz!…

sinp~q2aAz!
2

exp„i ~w82w6p!~q1aAz!…

sinp~q1aAz!
G

~the choice of the signs is as in the previous example!. In the considered case the matrixQ0 is
given by ~89! and ~90! again.

C. Flat torus Td
„dÄ2 or 3 …

Let Ld be a lattice inRd with generatorsaW 1 , . . . ,aW d :

Ld5$n1aW 11¯1ndaW d : njPZ, j 51,...,d% ,

and letGd be the dual lattice forLd , i.e. Gd be the lattice with generatorsbW 1 ,...,bW d obeying the
conditionaW jbW k52pd jk . Denote byFd the elementary cell forLd :

Fd5$x1aW 11¯1xdaW d : 2 1
2 <xj,

1
2% ,

and fix pointsq1 ,...,qn from Fd . Let H052DX whereX is the the torusTd5Rd/Ld . Choosing
pointsq1 ,...,qnPTd, we have51

@Q0~z!# j l 55 vd
21 lim

v→`
(

gPGd , ugu<v

eig(qj 2ql )

ugu22z
, if j Þ l ;

~2p!2d lim
v→`

F (
gPGd , ugu<v

v̂d

ugu22z
2jd~v!G , if j 5 l .

~91!

Herevd and v̂d are the volumes of the toriRd/Ld andRd/Gd, respectively; the functionsjd (d
52,3) have the form

jd~v!5H 2p ln v , if d52;

4pv , if d53 .

Using either the eigenfunction expansion for the Laplace operator onTd or the Poisson
summation formula we can get a convergent absolutely series expansion forQ0(k2) j l ~see Ref. 62
for the cased53):

@Q0~k2!# j l 5~11z!vd
21 (

gPGd

eig(qj 2ql )

~ ugu22z!~ ugu211!
1kd~qj2ql ! . ~92!

Here the functionskd are defined as follows: Ifd52, then
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k2~x!55
1

2p (
lPLd

K0~ ux1lu! , if x¹Ld ;

1

2p F (
lPLd , lÞ0

K0~ ulu!1 ln 22CEG , if xPLd ,

whereK0 is the Macdonald function~i.e., the modified Bessel function of the third kind! andCE

is the Euler constant. In the cased53 we have

k3~x!55
1

4p (
lPLd

e2ux1lu

ux1lu
, if x¹Ld ;

1

4p F (
lPLd , lÞ0

e2ulu

ulu
21G , if xPLd .

D. Flat torus with Aharonov–Bohm fluxes

Consider the torusTd as the product ofd Aharonov–Bohm ringsSaj
with fluxes q j ( j

51,...,d). Let

H j5
1

aj
2 S 2 i

d

dw
1q j D 2

,

and

H05H H1^ I 21I 1^ H2 , if d52 ;

H1^ I 2^ I 31I 1^ H2^ I 31I 1^ I 2^ H3 , if d53 .

The operatorH0 may be considered as the Schro¨dinger operator on a torusTd with a nonuniform
magnetic field. Denote byq the vector (q1 ,...,qd); then theQ-function Q0 now takes the form

@Q0~z!# j l 55 vd
21 lim

v→`
(

gPGd , ug1uu<v

ei (g1q)(qj 2ql )

ug1qu22z
, if j Þ l ;

~2p!2d lim
v→`

F (
gPGd , ug1uu<v

v̂d

ug1qu22z
2jd~v!G , if j 5 l ,

or

@Q0~z!# j l 5~11z!vd
21 (

gPGd

ei (g1q)(qj 2ql )

~ ug1qu22z!~ ug1qu211!
1kd,q~qj2ql ! .

Now the functionskd,q (d52, 3! are defined as follows:

k2,q~x!55
1

2p (
lPLd

K0~ ux1lu!e2 iql , if x¹Ld ;

1

2p F (
lPLd , lÞ0

K0~ ulu!e2 iql1 ln 22CEG , if xPLd ;

k3,q~x!55
1

4p (
lPLd

e2ux1lu2 iql

ux1lu
, if x¹Ld ;

1

4p F (
lPLd , lÞ0

e2ulu2 iql

ulu
21G , if xPLd .
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E. Flat torus T2 with a perpendicular uniform magnetic field

Consider the Euclidean planeR2 with the latticeL2 and letB be a uniform magnetic field tha
is perpendicular to the plane and has the strengthB. Denote byq the number of the magnetic flu
quanta through the elementary cellF2 : q5Bvd /F0 . The Green’s functionG0 for the Schro¨-
dinger operator of a charged particle on the planeR2 with the fieldB has the form

G0~x,y;z!5
1

4p
GS 1

2
2

vdz

4puqu D3expF2 ipqvd
21x∧y2

puqu
2vd

~x2y!2G
3CS 1

2
2

vdz

4puqu
,1 ;

puqu
vd

~x2y!2D ,

whereG(z) is the EulerG-function, C(a,c;z) is the Tricomi function~the confluent hypergeo
metric function!, andx∧y5x1y22x2y1 is the standard symplectic product inR2. Let the follow-
ing quantization condition be satisfied:the numberq5Bvd /F0 of the flux quanta through the ce
F2 is an integer. Then we can consider the corresponding magnetic Schro¨dinger operator on the
torusT2. Using results from Ref. 63 we obtain for the KreinQ-matrix,

@Q0~z!# j l 5 (
lPL2 , lÞ0

G0~l1qj ,ql ;z!exp@p iqvd
21~qj∧l!2p iql1l2#1j j l ~z! . ~93!

Here

j j l ~z!5H G0~qj ,ql ;z! , if j Þ l ;

2
1

4p FcS 1

2
2

vdz

4puqu D1 ln~puquvd
21!12CEG , if j 5 l ,

wherec(z) is the digamma function~the logarithmic derivative of theG-function!. Note that in
~93!, l1 , l2 are the coordinates ofl in the basisaW 1 , aW 2 of L2 : l5l1aW 11l2aW 2 .

F. Sphere Sa
2

Let X be a two-dimensional sphereSa
2 of radiusa; then the Green’s function for the Schro¨-

dinger operatorH0 of a free particle onX, H052DX , has the form64

G0~x,y;z!52
1

4 cos„pt~z!…
P2 1/21t(z)S 2cos

r ~x,y!

a D ,

wherePa(z) is the Legendre function and

t~z!5
1

2
A114a2z .

Therefore, for everyj ,

@Q0~z!# j j 52
1

4p FcS 1

2
1t~z! D1cS 1

2
2t~z! D22 ln~2a!12CEG

52
1

2p FcS 1

2
1t~z! D2

p

2
tg „pt~z!…2 ln~2a!1CEG .
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G. Sphere Sa
3

Consider now a three-dimensional sphereX5Sa
3 of radiusa. Then the Green’s function for the

Schrödinger operatorH0 of a free particle onX, H052DX , reads64 as

G0~x,y;z!5
1

4pa sin
r ~x,y!

a

Fcos
r ~x,y!Aa2z11

a
2sin

r ~x,y!Aa2z11

a
ctgpAa2z11G .

Therefore, for everyj ,

@Q0~z!# j j 52
Aa2z11

4pa
cotanpAa2z11 .

H. Compact manifold of constant negative curvature

Let now X be a compactd-dimensional manifold of constant negative curvature~with sec-
tional curvature2a22 for somea.0). We shall considerX as a quotientHd/G, whereHd is the
d-dimensional Lobachevsky space~i.e., the complete simply connectedd-dimensional Riemann-
ian manifold of constant negative curvature! andG is a cocompact discontinuous group of motio
in Hd. Denote byGd

0 the Green’s function for the Laplace–Beltrami operator onHd. Recall that

Gd
0~x,y;z!

5H G2~s2~z!!

4pG~2s2~z!! Fcosh
r ~x,y!

2a G22s2(z)

FS s2~z!,s2~z!;2s2~z!;cosh22
r ~x,y!

2a D , if d52;

exp@a21r ~x,y!„12s3~z!…#

4pa sinh„a21r ~x,y!…
, if d53

~see Refs. 3 and 65!. HereF(a,b;c;z) is the Gauss hypergeometric function and

sd~z!5
d211A~d21!224a2z

2
, d52 ,3 . ~94!

Let H0 be a Schro¨dinger operator onX of the form H052DX . If Resd(z) is sufficiently large,
then there is an expansion of the Green’s functionG0(x,y;z) for xÞy into an absolutely conver
gent series:3,65

G0~x,y;z!5 (
gPG

Gd
0~x,gy;z! . ~95!

To find G0(x,y;z) for an arbitraryzPC\s(H0) we choose a numberz85Rez1ik, wherekPR is
so large that the series~95! absolutely converges atz5z8. Then the Neumann series,

R0~z!5 (
n50

`

~z2z8!nR0
n11~z8! ,

gives the desired valueR0(z) andG0(x,y;z) may be found as an infinite sum of iterated integ
kernelsG0(x,y;z8).

To find the KreinQ-function we use~95! again. If Resd(z) is sufficiently large, then

@Q0~z!# j j 5 (
gPG, gÞ1

Gd
0~qj ,gqj ;z!1kd~z! , ~96!
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where

kd~z!5H 2
1

2p
@c„s2~z!…2 ln 2a1CE# , if d52;

2
1

4pa
A12a2z , if d53 .

To find @Q0(z)# j j at an arbitrary pointz, z¹s(H0), we fix z0PR, z0,0 such that@Q0(z0)# j j is
given by ~96!. Using the Hilbert resolvent identity and taking into consideration that the inte
kernel forR0(z)R0(z0) is continuous,3,65 we get

@Q0~z!# j j 5@Q0~z0!# j j 1~z2z0!E
X
Gd

0~qj ,x;z!Gd
0~x,qj ;z0! dl~x! .

Remark 9:In some sense~96! is an analog of~91! for the space of constant negative curv
ture. Let us consider for simplicity the case of one horn (n51, q15q) and try to transform~96!
to an equality similar to~92! hoping to get a more convenient expression. First note that in gen
Q0(z) depends onq: Q0(z)5Q0(z,q). But the Poisson summation formula gives us an avera
valueQ0

av(z) of Q0(z,q):

Q0
av~z!ª~vol X!21E

X
Q0~z,q! dq .

If X is a homogeneous manifold, thenQ0
av(z) is independent ofq andQ0(z)5Q0

av(z). Therefore,
in the case of the torusTd, Q0(z) is given by~92!. Let nowX be a compact surface of consta
negative curvature. In this case the role of the Poisson summation formula is played by the S
trace formula. Using the Selberg formula in the form obtained by Cartier and Voros66 we get an
explicit expression forQ0

av(z) up to an additive constantc:

Q0
av~z!5~222g!c„s2~z!…1

1

A124a2z

ZX8 „s2~z!…

ZX„s2~z!…
1c ,

whereg is the genus ofX, ZX(s) is the Selberg zeta function forX ~see Refs. 67 and 68!, and
s2(z) is given by~94!. Note that without loss of generality we can putc50, otherwise we addc
to the parameterb in ~75! and ~76!.

I. Compact Riemann surface of constant negative curvature with a uniform magnetic
field

Consider the Lobachevsky planeH2 with a uniform magnetic fieldB of strengthB perpen-
dicular to the plane.69 Using the Poincare´ half-plane realization forH2 (H25$xPR2: x2.0% with
the metricr (x,y)5a cosh21

„11(2x2y2)21ux2yu2)…, we have the following representation fo
the Green’s functionG0(x,y;z) of the magnetic Schro¨dinger operator onH2 ~see Refs. 65 and 69!:

G0~x,y;z!5
exp~ ibw!

4p

G~ t~z!1b!G„t~z!2b…

G„2t~z!…
3Fcosh

r ~x,y!

2a G22t(z)

3FS t~z!1b , t~z!2b ; 2t~z! ; cosh22
r ~x,y!

2a D ,

where
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w52 arctan
x12y1

x21y2
,

t~z!5 1
2 ~11A124~a2z2b2! ! ,

b5Ba2/F0 .

Let SG be the area of a fundamental domain forG and suppose thatBSG /F0 is an integer.
Then one can define the magnetic Schro¨dinger operatorH0 on the manifoldX5H2/G, and its
Green’s function has the form~95! for sufficiently large Ret(z) ~Ref. 65!. For thist(z) we obtain,
using a result from Ref. 33,

@Q0~z!# j l 5 (
gPG, gÞ1

G0~qj ,gql ;z!1j j l ~z! ,

where

j j l ~z!5H G0~qj ,ql ;z! , if j Þ l ;

2
1

4p
@c~ t~z!1b!2c~ t~z!2b!22 ln 2a12CE# , if j 5 l .

To define theQ-matrix at other points ofC\s(H0) it is sufficient to apply the method pre
sented in Example 7.
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In this article we study the number of bound states for potentials in one and two
spatial dimensions. We first show that in addition to the well-known fact that an
arbitrarily weak attractive potential has a bound state, it is easy to construct ex-
amples where weak potentials have an infinite number of bound states. These
examples have potentials which decrease at infinity faster than expected. Using
somewhat stronger conditions, we derive explicit bounds on the number of bound
states in one dimension, using known results for the three-dimensional zero angular
momentum. A change of variables which allows us to go from the one-dimensional
case to that of two dimensions results in a bound for the zero angular momentum
case. Finally, we obtain a bound on the total number of bound states in two dimen-
sions, first for the radial case and then, under stronger conditions, for the noncentral
case. ©2003 American Institute of Physics.@DOI: 10.1063/1.1532538#

I. INTRODUCTION

In recent years, it has become apparent that studying physics in two spatial dimensions
just an academic exercise, especially for condensed matter physics where there are boun
due to impurities on the surface of a semiconductor or at a junction.1 In addition, we have
established a remarkable universality property for low energy scattering in two dimen
Namely, excluding some well-defined and rare exceptional cases, them50 phase shift for a radia
potential behaves like (p/2)(lnk)21 ask→0.2 This result has been recently generalized to non
dial and even nonlocal potentials.3

We believe that relatively little is known about bound states in one and two dimensions
any dimension, including one and two, we know that if the potential is sufficiently smooth
sufficiently rapidly decreasing at large distances, there is a semi-classical asymptotic estim
the number of bound states for a potentialgV, g→`, which was first established for the radi
case in Ref. 4, then generalized in Ref. 5 to arbitrary dimensions.

However, concerning strict bounds on the number of bound states the situation is rad
different for one and two dimensions from that in higher dimensions~including three dimensions!.
Lieb,6 Cwikel7 and Rozenblum8 have shown that forn>3, n being the number of spatial dimen
sions, there is a bound

N<BnE uVun/2 dn x, ~1!

a!Author to whom correspondence should be addressed. Electronic mail: andre.martin@cern.ch
4060022-2488/2003/44(2)/406/17/$20.00 © 2003 American Institute of Physics
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whereBn is definitely larger, even for very large dimensions, contrary to earlier belief,9 than the
semi-classical constantCn appearing in the asymptotic estimate5

N~g!;Cn gn/2E ~V2!n/2 dn x, g→`, Cn5
22np2n/2

G~11 n/2!
, ~2!

for a potentialgV where2V2 is the negative part of the potential:V5V12V2, V6>0. For
central potentials,Bn /Cn→1 for n→`.9 Other proofs have been obtained.9,10 Furthermore, it is
well known that for one and two dimensions a potential globally attractive, arbitrarily weak,
that

E dnxV~x!,0, n51,2, ~3!

has a bound state. The proof is trivial forn51 by using a Gaussian trial function. Forn52, there
is a proof by Simon, for instance.11 The simplest one is by Yang and De Llano12 who use a trial
function exp2(r1r0)

a, a sufficiently small.
However, this bound state has an incredibly small binding energy in absolute value,

potentialgV, which behaves like exp2 (c/g) for small g, as shown in Appendix A.
In addition to the above, we note that for thes-state (m50), andn52, there is an old bound

on the number of bound states due to Newton13 and Setoˆ.14 However, this bound is bilinear inV
and does not behave like the semi-classical result for largeg.

It was noticed in Ref. 9 that the number of bound states in two dimensions is certainly
than2 1/4*rV(r )dr , in the central case.

In this article we first find examples of potentials in one dimension for which the numb
bound states is infinite. Using a transformation which is systematically studied, one can find
refined potentials for which the number of bound states is infinite.

This same transformation allows us also to find radial potentials in two dimensions for w
the zero angular momentum bound states are infinite in number. Examples with nonradial
tials are also constructed. All these examples possess the property,*d2xuV(xW )u,`, and in addition
*d2xuV(xW )u ln(21uxWu)12«,`.

In Sec. III we find explicit bounds on the number of bound states in one dimension by
well-known bounds for the three-dimensional radial case with zero angular momentum. In
tion, using the above noted change of variables, we also obtain bounds on the number
angular momentum bound states in two dimensions.

Finally, in Sec. IV, we get bounds on thetotal number of bound states in two dimensions. Th
bound has the property that it is linear ing for a potentialgV and is thus similar to the semi
classical estimate.

In Appendix A we give upper and lower bounds on the ground state energy in two dimen
Next, in Appendix B, we present a system of transformations which first allow us to d

more and more refined examples of limit potentials with a finite or infinite number of bound s
Second, these transformations allow us to convert results obtained in a given dimension to
for another dimension for zero angular momentum.

In Appendix C we compare one of our two dimensional bounds with the Newton–Setoˆ bound.
Finally, in Appendix D, we sketch the proof that bound states are on real analytic R
trajectories.15

A preliminary account of these results was presented at a workshop in Les Houches.16

II. EXAMPLES WHERE THE NUMBER OF BOUND STATES IS INFINITE

We begin by using the well-known result that in one dimension, and for the radial case i
and three dimensions, the number of negative energy bound states is equal to the number o
of the zero energy wave-function.17
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For any two potentialsV1(x)<0, andV2(x)<0 in one dimension, one can easily show th
if V1(x).V2(x), then for any intervala<x<b, we have

n2~a,b!>n1~a,b!21, ~4!

wheren(a,b) is the number of nodes in the interval (a,b). Thus if n1(x,`) is infinite, n2(x,`)
is also infinite.

We write the zero energy one-dimensional Schro¨dinger equation for an attractive potenti
V52l/x2, x.x0.0, l.0:

S 2
d2

dx2 2
l

x2Df~x!50. ~5!

Because of the homogeneity of Eq.~5!, f5xs, wheres is given by the two rootss6 of the
equation

s~s21!52l,

or

s65 1
2 6A 1

4 2l. ~6!

For l. 1
4, boths1 ands2 are complex, and the solutionf can be constructed by taking a line

combination ofxs1 andxs2. We have

f~x!5Ax cos~Al21/4 lnx1d!. ~7!

Obviously, thisf has an infinite number of nodes for anyX<x,`, X.0.
We can now use the theorem summarized in Eq.~4! to get the following general result: th

number of one-dimensional bound states is infinite if there exists anX.0 such that

either x2V~x!,L,21/4, for x.X,
~8!

and/or x2V~x!,L,21/4, for x,2X.

On the other hand, ifV is bounded from below and ifx2V(x).2 1
4 for uxu.uXu, then the number

of bound states is finite.
Using the series of transformation described in Appendix B it is possible to approac

limiting case in a more refined way. For example, if

V~x!,2
1

4x2 2
m1

4x2~ ln x!2, x.X, m1.1,

or

V~x!,2
1

4x2 2
1

4x2~ ln x!2 F11
m2

~ ln ln x!2G , x.X, m2.1, ~9!

the number of bound states isinfinite. Notice that this is true forX arbitrarily large, i.e., in a way,
V arbitrarily small.

These two examples are such that*dxuV(x)u1/2→`. This is not surprising since in the three
dimensional radial case we have for a monotonic potential the Cohn–Calogero18 bound,

n,
2

p E
0

`

druVu1/2. ~10!
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However, we can have nonmonotonic potentials such that the above integral converges
number of bound states is infinite. For example, one can set

V52(
0

1`

d~x22n!. ~11!

For this potential* uVu1/2dx50 since thed-function can be effectively replaced by suitably chos
square wells of decreasing widths«n and depth 1/«n with SA«n convergent, and«o arbitrarily
small.

Next we consider the two-dimensional case. In this case we introduce a simple transform
which converts theone-dimensional zero energy Schro¨dinger equation to them50, two-
dimensional radial Schro¨dinger equation. In one dimension2`,x,1` we have

F2
d2

dx2 1U~x!Gf~x!50. ~12!

Our change of variables is given by

x[ ln r /R, 0<r ,`;

U~x![r 2 V~r !; ~13!

f~x!5c~r !.

This transformation is a particular case of the Liouville transformation.19 Equation ~12! now
becomes

S 2
d2

dr2 2
1

r

d

dr
1V~r ! Df~r !50. ~14!

But this equation is precisely them50 two-dimensional radial Schro¨dinger equation.
Using Eq. ~8! we now see that for a radial potentialV(r ), the number of bound states

infinite if

r 2S ln
r

RD 2

V~r !,L,2
1

4
, r .R0.R. ~15!

This time we see that the integral appearing in the semi-classical estimate,*0
`r uV(r )udr is

convergent and yet the number of bound states is infinite. Furthermore, the in
*0

`rdr uV(r )u@ ln(21r)#12« is also convergent for«.0, and the integral can be made arbitrar
small by takingR0 arbitrarily large.

Our limit potentials in the two-dimensional case are given by

V~r !52
m

4

1

r 2~ ln r /R!2, r>R0>1;

~16!
V~r !50, r ,R0,

with m.1.
In addition we can also solve the Schro¨dinger equation exactly for the class

V~r !5H 0, r ,R, with R.1,

2g/r 2~ ln r !a, r .R, 1,a,2,
~17!
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with g.0. The solution is given by

c~r !5a1b ln r , r ,R,
~18!

c~r !5~ ln r !1/2@AJn~2nAg~ ln r !1/2n!1BYn~2nAg~ ln r !1/1/2n!#, r>R,

wheren[(22a)21, andJn andYn are Bessel functions. This last solution has an infinite num
of nodes forr .R and hence the potential~17! has an infinite number of bound states, and this
true for arbitrarily smallg.

A completely different approach to get infinitely many bound states abandons radial sym
and considers scattering by circular ‘‘delta shell’’ potentials in the plane. Indeed a very s
example where*Vd2x is finite, arbitrarily small, and where one sees that has a bound stat
been invented by Richard.20 It is a delta shell potential:

V52gd~r 21!. ~19!

Here*d2xV522pg is finite. The zero-energy Schro¨dinger equation

S 2
d2

dr2 2
1

r

d

dr
1VDc50

has a solution, finite at the origin, which is

c51 for r ,1,
~20!

c512g ln r for r>1.

Hence the zero-energy radial solution has a node at

r 05exp
1

g
, ~21!

and therefore this potential has a bound state for arbitrarily smallg.
If, in addition, we now impose a Dirichlet boundary condition atr 5exp(1/g) and setc to be

identically zero forr .exp(1/g), i.e., physically, having an infinitely repulsive wall, we will sti
have a solution with a node atr 5exp(1/g), and hence a zero-energy bound state.

Take now a sequence of potentials

Vn52gn d~ uxW2xWnu21!, ~22!

gn.0, such thatS gn converges,xWn on the positivex axis. For simplicity,gn will be chosen a
decreasing sequence. It is always possible to choose thexWn’s in such a way that the disks

uxW2xWnu< exp
1

gn
5r n ~23!

do not overlap.
The number of bound states ofV5(n50

n0 Vn is certainly larger thann0 , the result one gets
when one imposes Dirichlet boundary conditions on the border of each disk~this strategy was
already used in Ref. 5!. Lettingn0 go to infinity, we see that we have infinitely many bound stat
and yet the integral* uVud2x52pSgn is finite and can be arbitrarily small.

We can, however, do better than that, i.e., try to build an example in which

E uVu@ ln~21uxW u!#a d2x
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is finite, wherea is to be determined. We take the centers of the circles on a line, and sinc
gn’s are decreasing, we have

uxWnu1r n,~2n11!exp
1

gn
,

and hence

E uVnu u ln~21uxW u!ua d2x,gn lnF21~2n11!exp
1

gn
Ga

.

However,

lnS 21~2n11!exp
1

gn
D,

ln 3

ln 2 F ln~2n11!1
1

gn
G ,

and hence

(
n51

` E uVnu u ln~21uxW u!ua d2x,2pS ln 3

ln 2D aFSgnF ln~2n11!1
1

gn
GaG .

Since we want the series on the right-hand side to converge,a is chosen to be less than 1.
With the choice

gn5g0 exp~2ln!,

this series will converge for anya,1.

III. BOUNDS ON THE NUMBER OF BOUND STATES IN ONE AND TWO DIMENSIONS

We start by considering the one-dimensional case, and write always, in obvious nota
V5V12V2 whereV1 andV2 are both>0.

The zero-energy one-dimensional Schro¨dinger equation is

S 2
d2

dx2 1V~x! Dc~x!50, xP~2`,1`!. ~24!

Except for the fact that one is restricted to the half line, the above equation is the same
reduced,50, three-dimensional Schro¨dinger equation

S 2
d2

dr2 1V~r ! Du~r !50, r P@0,̀ !. ~25!

Now if, in the one-dimensional case,V(x) hasN bound states, thenc(x) hasN nodes,xp ,
p51,...,N. Let k be such that

xk,0, xk11 .

Then the three-dimensional potential,V1(r )5V(x) with r[x2xk11 , has (N2k21) ,50 bound
states. Also the potential,V2(r )[V(x) with r 52(x2xk) hask bound states with,50. Hence
any three-dimensional bound gives a one-dimensional bound.

Starting with the well-known Bargmann21 bound for angular momentum,, we write

N~, !,
1

2,11 E0

`

r V2~r ! dr . ~26!
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Using ,50, we get, for the one-dimensional case,

N~1D !21,E
2`

xk
ux2xku V2~x! dx1E

xk11

`

ux2xk11u V2~x! dx,

and hence

N~1D !,11E
2`

1`

uxu V2~x! dx. ~27!

Similarly, we can use the bound obtained by one of us22 in the radial three-dimensional case:

N~3D,,50!, F E
0

`

r 2V2~r ! dr E
0

`

V2~r ! dr G1/4

~28!

to get, in the one-dimensional case, after some manipulations,

N~1D !,11&F E
2`

1`

x2 V2~x! dxE
2`

1`

V2~x! dxG1/4

, ~29!

which behaves likeAg if V5gV, like the semi-classical estimate.
Now to get bounds in two dimensions for them50 case is very simple. The change

variables given in Eq.~13! allows us to go from Eq.~27! to a bound for the 2D case:

N~2D,m50!,11E
0

`

rU lnS r

RD U V2~r ! dr . ~30!

In this boundR is arbitrary. We can minimize with respect toR. Rmin is given by

E
0

Rmin
xuV~x!udx5E

Rmin

`

xuV~x!udx. ~31!

The bound~30! with R5Rmin should be compared with the bound previously obtained
Newton13 and Setoˆ14 which is

N~m50!,11

1
2 *r dr r 8 dr 8V2~r !V2~r 8!u ln~r /r 8!u

*r dr V2~r !
511J. ~32!

It turns out that

J,I ~Rmin!,2J. ~33!

This is demonstrated in Appendix C. So the Newton–Setoˆ bound is slightly better but has
more complex structure. Both bounds are ‘‘optimal’’ in the sense that multiplying factors in
cannot be improved. This is because the Bargmann bound is itself known to be optimal.

Applying the same change of variable in Eqs.~13! and ~29! gives

N~m50,2D!,11&F E
0

`

~ ln r !2r dr V2~r !E
0

`

r dr V~r !G . ~34!

For large coupling this behaves likeAg for a potentialgV. The integrals appearing in Eq.~34! are
those which were required to converge in our original paper on low energy scattering in
dimensions.
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IV. A BOUND ON THE TOTAL NUMBER OF BOUND STATES IN TWO DIMENSIONS

In this section, we study the total number of bound states in two dimensions, mostly
rotationally symmetrical potential. The bound for this rotationally symmetrical case gives
some information for the general case, as discussed near the end of this section.

For the radial case, the easiest thing to do is to notice that the radial reduced equation~11! can
be viewed as a radial three-dimensional equation with noninteger angular momentum,5m2 1

2.
Therefore the Bargmann bound18 is valid:

Nm,
1

2m E
0

`

r V2~r ! dr . ~35!

To get the total number of bound states, we must remember that formÞ0 we have a multiplicity
2 and form50 multiplicity 1. Hence

Ntotal,N01 (
m51

m52*rV2(r )dr
1

m E r V2~r ! dr

Ntotal,N01F E r V2~r ! dr G lnF212E r V2~r ! dr G , ~36!

whereN0 is for instance given by~30!.
However, the logarithm is spurious. This has already happened in the past, for instance

three-dimensional bound obtained by Glaser, Grosse, Martin and Thirring.21

To show this, we use a technique due to Glaser, Grosse and Martin,9 in which the counting of
bound states for a radial potential is reduced to the calculation of a bound on the moment
eigenvalues of a one-dimensional problem.

The reduced radial Schro¨dinger equation for bound states,

F2
d2

dr2 1
m22 1

4

r 2 1V~r !2Ei~m!Gui~r !50, ~37!

wherei designates the number of nodes of the solution (i th eigenfunction starting from the groun
state designated byi 50), has been generalized by Regge23 to noninteger and even comple
angular momentum. What can be shown, under the weak condition

E r uV~r !udr ,`, ~38!

is that eachEi(m), i 50,1,..., is therestriction tom integer~physical! of a real analytic, mono-
tonically increasing function ofm, 0,m,mi , wheremi is such thatEi(mi)50. Thatmi exist
follows from the Bargmann bound and condition~38!. ~Notice thatm0.m1.¯ .) This is what is
called a ‘‘Regge trajectory.’’ Different trajectories with differentmi ’s do not intersect, due to
general Sturm–Liouville theory. In Appendix D, we sketch the proof of these statements.

The number of bound states on a given trajectory, withm>1, will be @mi #, where@x# is the
integer part ofx. Each of those bound states withmÞ0 has a multiplicity 2. So the total numbe
of bound states withmÞ0 is

2 (
i ,[mi ]>1

@mi #.

On the other hand, by using the change of variables~13! already employed in Secs. II and III th
zero-energy reduced Schro¨dinger equation
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S 2
d2

dr2 1
m22 1

4

r 2 1V~r !D u~r !50 ~39!

becomes

S 2
d2

dz2 1U~x! Df~x!52S m22
1

4Df~x!. ~40!

The eigenvalues of~39! are just themi
22 1

4, mi defined previously. The sum(@mi # is very
similar to the sum of moments of power1

2 of the eigenvalues of~38!:

(
[mi ] .1

@mi #,
2

)
( S mi

22
1

4D 1/2

. ~41!

It happens that this moment satisfies a bound proposed by Lieb and Thirring24

( uei u1/2, L1/2,1E
2`

1`

dx U2~x!5L1/2,1E
0

`

r V2~r ! dr , ~42!

where theei ’s are the eigenvalues of the one-dimensional Schro¨dinger equation with a potentia
U. L1/2,1 has been shown to be finite by Weidel25 and less than 1.005. More recently Hundertma
Lieb and Thomas26 have found the optimal value forL1/2,1, namely,1

2:

( uei u1/2,
1

2 E2`

1`

U2~x! dx, ~43!

which is obtained in the one-bound-state case with a delta function potential.
Therefore, using~30!, ~41! and~43! we get a bound on the total number of bound states in

space dimensions for a central potential

N,11E
0

`

r V2~r ! U lnS r

RD Udr 1
2

)
E

0

`

r V2~r ! dr . ~44!

We notice that for a potentialgV the bound islinear in g, similar to the semi-classical estimate fo
large g. It is probably almost optimal, in the sense that it is optimal form50 and that form
Þ0 the only foreseeable improvement is to remove the multiplicative factor 2/).

It is trivial, but not very elegant, to obtain also a bound on the total number of bound stat
a noncentral potential. Let

B~r !5 sup
0,u,2p

V2~r ,u!. ~45!

Then replacingV(r ) by B(r ) in ~44! we get a bound on the total number of bound states i
nonradial potential because of the monotonicity of the bound-state energies with respect
potential.

For a potential with a single singular point the replacement ofV2 by B(r ) is not too bad.
However, if V has several singular points the replacement will be catastrophic sinceB will be
infinite on successive circles corresponding to these singular points. It is certainly desirable
a better bound.

Our conjecture is

N,112E d2x

2p
VR~ uxu!ln2S uxu

R D1E d2x

2p
V2~x! lnS uxu

R D1
2

)
E d2x

2p
V2~x!, ~46!
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whereVR(uxu) is the decreasing rearrangement ofV2(x) ~see Appendix A!. The reasons for which
we propose this are the following.

~i! For a central decreasing potential,~46! coincides with~44!.
~ii ! For a central potential not necessarily decreasing, the rhs of~46! is larger than the rhs o

~44!.
~iii ! If we take a shifted central with a centeroutside the origin, the first and the last integra

in ~46! are, of course, invariant. The second integral, because of the harmonic proper
ln r in two dimensions, is larger than the one corresponding to a central potential cent
the origin.

Proving~46! or something similar might be rather difficult but, seeing what has been achi
for higher dimensions, not impossible.

Notice that the integrals in~44! and~46! will certainly converge under the conditions of Re
1, and we can announce that they do converge in Ref. 2 also.
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Note added in proof:Dr. P. Blanchard drew our attention to a paper by A. Laptev28 in which
he finds a bound on the number of bound states for a potentialbuxu222uV(uxu)u, which is

N,
A~b!

4p E uV~x!ud2x,

when A(b)→` for b→0. With methods developed in the present article, using the Bargm
bound for them50 contribution and~42! for the rest, we get

A~b!,
1

Ab
1

4

)
.

APPENDIX A: UPPER AND LOWER BOUNDS ON THE GROUND STATE ENERGY IN
TWO DIMENSIONS

We use the Schro¨dinger equation in integral form, for a potentialgV:

c~x!52
g

2p E K0~kux2yu!V~y!c~y!d2y, ~A1!

for an energyE52k2.
First we shall get an algebraic lower bound. ThenV can be replaced by2V2, the attractive

part of the potential. We have

uc~x!u,
g

2p E K0~kux2yu!V2~y!d2y supucu. ~A2!

SinceK0(t) is a decreasing function oft and given the rearrangement inequality,

E AB d2x,E AR BR d2x,
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whereA andB are positive, going to zero at infinity, andAR andBR are their decreasing circula
rearrangements, we have

uc~x!u,
g

2p E K0~kuyu!VR~ uyu!d2y supucu, ~A3!

whereVR is the rearrangement ofV2. (AR is a decreasing function ofuxu such that; t, m(AR

.t)5m(A.t), where m is the Lesbe`gue measure.! Hence, if we take the supremum of th
left-hand side overx, we can divide by supucu and obtain

1,
g

2p E K0~kuyu!VR~ uyu!d2y.

From the property

K0~ab!, ln1S 1

aD1K0~b!, ~A4!

where ln1(t)5ln t for t .1, 50 for t ,1, which is proved at the end of this appendix, we get

K0~k!.
1

g

12 ~g/2p!* ln1~1/uyu!VR~y!d2y

~1/2p!*V2~y!d2y
5X. ~A5!

As long asX is positive, this gives a lower bound onK0(k) and hence an upper bound onk and
an upper bound onk2, the absolute value of the binding energy.

If X.K0(1)50.42,..., we canagain use the inequality~A4! and get

k2, exp 2S 2
1

g

12 ~1/2p!* ln1~1/y!VR~y!d2y

~1/2p!*V2~y!d2y
1K0~1! D , ~A6!

which demonstrates that the absolute value of the binding energy is bounded by exp2C/g, C
.0 for g→0.

In the special case of apurely attractivepotential we can get an inequality going in th
opposite direction. We start again from~A1! and use the fact that the ground-state wave funct
is positive. We have

c~x!.
g

2p E
uyu, R

K0~kux2yu!uV~y!ud2y3Infuyu, R uc~y!u

and, taking alsouxu, R, and using the fact thatK0 is decreasing,

Infuc~y!u uxu,R.
g

2p
K0~2kR!E

uyu,R
uV~y!ud2y Infuc~y!u uxu,R. ~A7!

However, Infuc(y)u uxu, R cannot vanish in the ground state and hence we can divide~A7! by
Infuc(x)u. From

K0~ t !. ln
1

t
1 ln 22g, ~A8!

wheng is the Euler constant50.577 . . . we get
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k2.
e22g

R2 exp2
2

gMi uxu, RuV~k!ud2x
, ~A9!

which goes in the opposite direction to~A6!, but again has the form exp2 (C/g) for smallg. Both
upper and lower bounds onk2 have the same qualitative behavior for smallg. The lower bound
on k2 can be optimized with respect toR. Of course we cannot do that for a potential which is n
strictly attractive but only globally attractive. Nevertheless, we believe that the same quali
result will hold.

In a recent paper27 Nieto has given an explicit example in which he shows that the bind
energy in absolute value is incredibly small. A square well with unit radius and strength 0
natural units produces a bound state with energy210218.

Finally we give a proof of~A4! and ~A8!: consider the quantity

Z5K0~x!2 lnS x0

x D ,

Z852K1~x!1
1

x
.

From

K1~x!5E
1

` t dt

At221
exp2tx, E

1

` t dt

At221
exp2xAt221,

we getK1(x),1/x, and hence

Z8.0.

So, for x,x0 Z(x),Z(x0)5K0(x0), which proves ~A4!. On the other hand, we hav
limx→0 Z(x)5 ln 22g, and so

K0~x!. ln 22g1 lnS 1

xD .

APPENDIX B: TRANSFORMATIONS OF THE SCHRÖ DINGER EQUATION FROM ONE
TO TWO DIMENSIONS, THE CONVERSE, LIMIT POTENTIALS, AND
GENERALIZATION

In Sec. II we presented a transformation of the one-dimensional zero energy Schro¨dinger
equation,

S 2
d2

dx2 1U~x! Df~k!50, xP~2`,1`!, ~B1!

into the two-dimensional, zero angular momentum, Schro¨dinger equation,

S 2
d2

dr2 2
1

r

d

dr
1V~r ! Df~r !50, r P@0,̀ !. ~B2!

The transformation is given by

x[ lnS r

RD , xP~2`,1`!, r P@0,̀ !,
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U~x![r 2 V~r !, ~B3!

f~x![c~r !, x>0.

This enables us to prove that since a potential,U(x), given by

U~x!50, x,X,
~B4!

U~x!52
m

4x2, m.1, x>X,

has infinitely many bound states in one dimension, the potential

V~r !50, r ,R0;

V~r !52
m

r 2~ ln~r /R!!2, r>R0.R, m.1, ~B5!

will also have infinitely many bound states in two dimensions for them50, radial case.
This procedure can be continued further. Restricting ourselves now tox.0, we can retrans-

form ~B1! to make it look like a two-dimensional equation by definingx(x) as

f~x![x1/2 x~x!. ~B6!

The k satisfies the equation

S 2
d2

dx2 2
1

x

d

dx
1W~x! Dx~x!50,

with

W~x!5U~x!2
1

4x2. ~B7!

Relabelingx as r we have

S 2
d2

dr2 2
1

r

d

dr
1W~r ! Dx~r !50. ~B8!

This last equation is forr>0 exactly the two-dimensional radial equation.
From the chain,

V~r !→U~x!→W~r !,

we obtain

W~r !52
1

4r 2~ ln r !2 1
1

r 2 V~ ln r !. ~B9!

Thus if for x.x0 we set

U~x!52
m

4x2,

or
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V~r !52
m

4r 2~ ln r !2,

we get

W~r !52
1

4r 2~ ln r !2 2
m

4r 2~ ln r !2~ ln ln r !2, ~B10!

with r .R0.0.
This potential has infinitely many bound states ifm.1. Our procedure can be repeated

iterated producing potentials which are closer to the limit, and with wave functions which ca
expressed explicitly in terms of elementary functions.

Finally we stress that this procedure is not restricted to the connection between one a
dimensions, and the construction of limit potentials in one or two dimensions. It also appliesN
dimensions.

In N dimensions the radial Schro¨dinger equation becomes

S 2
d2

dr2 2
N21

r

d

dr
1V~r ! Dc~r !50.

We set

c~r !5r 12 N/2 c̃~r !;

and obtain

S 2
d2

dr2 2
1

r

d

dr
1

~12 N/2!2

r 2 1V~r ! D c̃~r !50.

We can defineṼ(r )[V(r )1(12 N/2)2/r 2, and hence again obtain the 2D form.
The conclusion is, using~B5!, that inN dimensions, the potential

V~r !52
~N22!2

4r 2 2
m

r 2~ ln r !2, r .R.1,

50, r<R, ~B11!

has infinitely many bound states ifm.1, and a finite number ifm, 1.
This procedure can be further iterated to get more refined results.

APPENDIX C: COMPARISON OF OUR BOUND ON THE NUMBER OF mÄ0 BOUND
STATES AND OF THE NEWTON-SETÔ BOUND

We wish to compare our bound

N~m50!,11I ~R!,
~C1!

I ~R!5E
0

`

r dr V2~r !U lnS R

r D U
and I (Rmin) given by
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E
0

Rmin
r V2~r !dr 5E

Rmin

`

r V2~r !dr , ~C2!

with the Newton–Setoˆ bound

N~m50!, 11J,

where

J5

1
2 **r dr r 8dr 8u ln~r /r 8!uV2~r ! V2~r 8!

*r dr V2~r !
. ~C3!

HereJ can be rewritten as

J5

1
2 *r dr V2~r ! I 2~r !

*r dr V2~r !
. ~C4!

Hence, from the mean value theorem,

J> 1
2 I ~Rmin!. ~C5!

On the other hand, taking into account~C2!, one has, withR.Rmin ,

I ~R!5I ~Rmin!12E
Rmin

R

r dr V2~r ! lnS R

r D . ~C6!

One gets

I ~R!,I ~Rmin!12 lnS R

Rmin
D E

Rmin

`

r dr V2~r !5I ~Rmin!1 lnS R

Rmin
D E

0

`

r dr V2~r !.

The caseR,Rmin can be treated in the same way and one gets

I ~R!,I ~Rmin!1U lnS R

Rmin
D U E

0

`

r dr V2~r !. ~C7!

Inserting in~C4! leads to

J,I ~Rmin!. ~C8!

APPENDIX D: REGGE TRAJECTORIES FOR BOUND STATES

What follows here is somewhat implicit in the work of Regge.23 We give here some details fo
the sake of completeness.

To find bound state energiesE52k2 for a givenm ~real.0), but not necessarily integer, w
must find a solution of

F2
d2

dr2 1
m22 1

4

r 2 1V~r !1k2Gu50, ~D1!

such thatu→0 for r→0 andr→`. For generalm andk, Rem.0, Rek.0, if

E r uV~r !udr ,`, ~D2!
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~D1! has in general two independent solutionsy andz such that

y;r m, r→0,
~D3!

z;exp~2kr !, r→`.

It is then shown that bothy(m,k;r ) and z(m,k;r ) are analytic inm and k in $Rem.0^Rek
.0%. The Wronskian ofy andz is given by

W~y,z![yz82y8z5F~m,k!,

whereF is analytic in the same domain. The bound state energies are given by

F~m,k!50. ~D4!

This defines the bound state energies as implicit functions ofm. If F(m̃i ,k̃ i)50, m̃i and k̃ i.0,
and (]/]k)pF50, p51,2,...,q21, and (]/]k)qFÞ0 at that point, we haveq different solutions in
the neighborhood ofm̃i , k̃ i . However, this is impossible forq>2 because there cannot be a
degeneracy as a general consequence of Sturm–Liouville theory. Hence,k is analytic inm in the
neighborhood ofm̃i , k̃ i , andk i is a real analytic function ofm for 0,m,mi , wheremi is such
thatEi(mi)50. In addition,k i is a decreasing function ofm since, from the Feynman–Hellman
theorem,

dEi

dm
52mE ui

2

r 2 dr . ~D5!

Let us remark here that the condition~D2! is certainly too strong. It is needed to ensure thaty and
z have the properties given by~D3!. But if V has strong repulsive singularities, one could a
proach it byVM ,VM5V if V,M , VM5M if V>M , and use a limiting procedure.
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Flux-across-surfaces theorem for a Dirac particle
D. Dürr and P. Pickl
Fakultät für Mathematik, Universita¨t München,
Theresienstr. 39, 80333 Mu¨nchen, Germany

~Received 6 June 2002; accepted 18 October 2002!

We consider the asymptotic evolution of a relativistic spin-1
2 particle, i.e., a particle

whose wave function satisfies the Dirac equation with external static potential. We
prove that the probability for the particle crossing a~detector! surface converges to
the probability, that the direction of the momentum of the particle lies within the
solid angle defined by the~detector! surface, as the distance of the surface goes to
infinity. This generalizes earlier nonrelativistic results, known as flux across sur-
faces theorems, to the relativistic regime. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1528276#

I. INTRODUCTION

In scattering experiments the scattered particles are measured at a macroscopic dista
the computations of scattering cross sections are based on the distribution of the wave func
momentum space. Therefore a relationship between the crossing probability through a far
detector surface and the shape of the wave function in momentum space is needed.

This relationship is given by the flux-across-surfaces theorem, which—as a problem in
ematical physics—has been formulated by Combes, Newton, and Shtokhamer,3 see also Refs. 5
and 8. For scattering states~material on scattering states for the Dirac equation is in Ref. 14! the
theorem asserts that the probability of crossing a far distant surface~physical interaction with the
detector is neglected! subtended by a solid angle is equal to the probability that the scatt
particle will, in the distant future, have a momentum, whose direction lies in that same solid a
Moreover, the probability, that the particle will cross the detector within a certain area is give
the integral of the flux over that area and time. This has been proven for Schro¨dinger evolutions
in great generality, see for instance, Refs. 15, 2, 1, 16, 12, and 6.

We consider here wave functionsc tPL2(R3) ^ C4 which satisfy the Dirac equation~conve-
niently settingc5\51),

i
]c t

]t
52 i(

l 51

3

a l] lc t1A” c t1bmc t[Hc t , ~1!

where

a l5S 0 s l

s l 0 D , b5S 1 0

0 21D , l 51,2,3, ~2!

s l being the Pauli matrices

s15S 1 0

0 21D , s25S 0 1

1 0D , s35S 0 2 i

i 0 D ,

1 the 232-unit matrix andA” the four-potential in the form

A” ªA01A"a
4230022-2488/2003/44(2)/423/43/$20.00 © 2003 American Institute of Physics
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with aª(a1 ,a2 ,a3). In the following we will always denote solutions of the Dirac equation
c t and byc0 the ‘‘time zero’’ wave function.

A” is an external static four-potential, which satisfies condition A@see~3!#, which concerns
smoothness and is for the sake of simplicity taken stronger than needed.

Condition A:

A” ~x!PC` 'M ,j.0: uA” ~x!u<M ^x&2(41j), ~3!

where^x&5uxu11 and the normu•u is defined as

uBuª sup
iwis51

iBwis ,

where

iwisª^w,w&1/2

with the inner product in spin space

^•,•&:C4
^ C4→C ^w,x&ª(

l 51

4

w lx l .

Often we have spinors depending onx, in that case we haveiwis(x).
The continuity equation involving the quantum flux of a relativistic spin-1

2 particle reads

]

]t
c̄ tc t5¹• j , ~4!

whereas the 4-flux is defined for anywPL2(R3) ^ C4 by

jI5S j 0

j D5^w,aI w&, ~5!

with aI 5ua
1u.

For notational convenience we sometimes omit the dependence onx. Furthermore, we have
the usualL2-Norm on the space of 4-spinors given by

iwi5S E iwis
2 d3xD 1/2

.

We introduce the Fourier transform ofw(x) as representation in the generalized basis~13! of the
free Hamiltonian, i.e.,

ŵs~k!5E ~2p!2 3/2^wk
s~x!,w~x!&d3x, ŵ~k!ª(

s51

2

sk
sŵs~k!. ~6!

We denote byx the Euclidian length ofx.
We assume that asymptotic completeness holds, i.e., that the wave operators exist

spectral subspaceHac of the continuous positive spectrum~‘‘scattering state’’! of the Dirac Hamil-
tonian: Letcout denote the wave function of the free asymptotic of a scattering statec then

lim
t→`

ie2 iH 0tcout2e2 iHtci50,

cout is given by the wave operator
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V15 lim
t→`

eiHte2 iH 0t, c5V1cout.

The existence of the wave operators and asymptotic completeness has been proven for sho
potentials. See, e.g., Thaller.14

We remark@see Lemma 3.4~d!# ~41!, that the Fourier transformĉout,s(k) of cout equals the
generalized Fourier transformcs

‡ of c in the generalized eigenbasis of the Dirac Hamiltonian w
potential.

In general, we do not have much information about scattering states. One can prove th
across surface theorem with conditions merely on the ‘‘out’’-states, where the correspo
properties of the scattering states are hidden in the mapping properties of the wave opera
better, in the smoothness properties of the generalized eigenfunctions. On the other han
would like to be sure, that such conditions are not too restrictive on the set of scattering s

We introduce the setG of functionsĉout, for which the flux across surfaces can naturally
proven,

f ~k!PG⇔H 'MPR: i]k
j f ~k!is<M ^k&2n for j 50,1,2;nPN

;kÞ0: ikugu21Dk
g f ~k!is<M ^k&2n for nPN,

~7!

whereg5(g1 ;g2 ;g3) is a multi-index withugu<2, Dk
g
ª]k1

g1]k2

g2]k3

g3 and]k is the partial derivative

with respect to the radial coordinatek.
This set maps under the wave operator to a dense set in the set of scattering states. A

theorem we shall give under more restrictive conditions more detailed information on the
scattering states for which the theorem holds.

The paper is organized as follows: In the next section we shall state the theorem. We sh
give its formulation in covariant form, but we shall prove the theorem using the rest frame o
dectector and the potential.

The following sections contain the proof of the theorem. We first prove the statement fo
free case (A” 50) and then for the case of nonzero potential. Both are done in Section 3. The
relies almost entirely on the stationary phase method, which we need to adapt to our purpos
main lemma is lemma~3.1!, whose lengthy technical proof is put in the Appendix.

The difficulty we have to face and which makes this paper not a simple generalization
results in the Schro¨dinger situation is, that the time evolution with the Dirac Hamiltonian is no
a ‘‘nice’’ form for the stationary phase method to be easily applied to. The Schro¨dinger case is
easier. On the other hand, the expression for the flux needs no differentiability of the
function and one might be lead to believe, that to describe scattering in the relativistic reg
simpler—in particular less restrictive theorems should result. One may even get the ide
asymptotic completeness and the flux across surfaces theorem become more or less eq
statements in the relativistic regime. But we are far from that. Nevertheless, that we re
smoothness and good decay on the potential may well be due to our method of proof.

We also need information about the generalized eigenfunctions of the Dirac Hamiltonian
external potential, see Lemma 3.4, whose proof is also set in the Appendix. The Appendix,
in fact is almost half of this paper, contains other tedious technical details.

II. THE THEOREM

The flux-across-surfaces theorem deals with the fluxj integrated over a spherical surface a
far distance and asserts the following:

~1! the absolute value of the flux and the flux itself yield the same asymptotics, allowin
interpret the flux integral as crossing probability;5,4

~2! the crossing probability equals the probability for the momentum to lie within the cone de
by the surface.
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Theorem 2.3:Let c be a scattering state with outgoing free asymptoticĉout, whose Fourier

transformĉout lies in G [cf. (7)]. Let R2 dV be the surface element at distance R with solid an
differential dV and letn denote the outward normal of the surface element. Furthermore let
a subset of the unit sphere. Then for all tiPR:

lim
R→`

E
S
E

t i

`

j ~R,t !dt R2 dV5 lim
R→`

E
S
E

t i

`

j ~R,t !•n dt R2 dV5E
S
E

0

`

^ĉout~k!,ĉout~k!&k2 dk dV.

~8!

Observing thatiĉouti(k) does not depend on time, we can choose a coordinate sy
t85t2t i , so that we may for definiteness always sett i50 in ~8!.

The conditions oncout can be translated into more detailed conditions on the scattering s
under more restrictive conditions on the potential. Let

Condition B: u]x
nA” (x)uPL2(R3) ;nP$0,1,2, . . .% 'M uA” (x)u<M ^x&26.

Then ~for the proof see the Appendix!.
Lemma 2.2:

ĉout~k!PG⇔c~x!PĜ, ~9!

whereĜ is the space of functionsc(x)PHac with xj¹” nc(x)PL2 for all j 50,1,2; nPN0 , where
¹” ª2 i ( l 51

3 a l] l .
Covariant form of the theorem:As we deal with a relativistic regime, it might be of interest

have also a covariant formulation of the theorem. As^ĉout,ĉout& is not conserved under Lorent
function we use

ĉout
LI ~kI !5~k21m2!1/4ĉout~kI !,

of which it is known that^ĉout
LI ,ĉout

LI & is a Lorentz-scalar~see, for instance, Ref. 9!. Then the
flux-across-surfaces theorem reads in a general and covariant way.

Theorem 2.3:Let the conditions of Theorem 2.1 be satisfied. Let

xI LyIªx0y02(
j 51

3

xjyj

be the Minkowski scalar product. Then for any subspace Z#$xI uxI LxI 5m2%,R4 and any smooth
scalar functionh(xI ), nonequal to zero for allx:

lim
l→`

E
Z̃(l)

jI~x!LnI ds̃5E
Z
^ĉout

LI ~kI !,ĉout
LI ~kI !&ds, ~10!

where

Z̃~l!ª$yI u'xI PZ:yI 5lh~xI !xI %,R4

and ds is the invariant measure on Z, ds̃ the invariant measure on Z˜ and nI is the vector

orthogonal on Z˜ with Lorentz length one.
This formulation may perhaps not be directly guessed, but once one understands its bas

~19!, this formulation becomes clear: The arbitrariness of the scalar functionh follows directly
from ~19!, observing that

lim
l→`

c~lkI !5 lim
l→`

c~lh~kI !kI !.
                                                                                                                



the

r

hape of
as the
.

eter
me as
ariant

ill be

n these

427J. Math. Phys., Vol. 44, No. 2, February 2003 Flux-across-surfaces theorem for a Dirac particle

                    
Physically this is related to the fact, that~on big scales! it is possible to ‘‘catch’’ any part of the
wave function in different ways~for example, by using a detector which is ‘‘close’’ and catches
wave function at an ‘‘early’’ time or one uses a far detector at a later time interval!.

Let us explain how~8! follows from ~10!. We choose a setZ whose projection on the
t50-subspace is a cone with angular distributionS:

Z5H kIU k

k
PSJ ù$kI LkI 5m2%.

The invariant measure on the mass hyperboloidds5 d3k/Ak21m2 we get for the right-hand
side of ~10!

E
Z
^ĉout

LI ~kI !,ĉout
LI ~kI !&ds5E

S
E

0

`

^ĉout~k!,ĉout~k!&k2 dk dV. ~11!

For the left-hand side of~10! we take

h~xI !ª
1

x
, xÞ0.

As both integrands in~10! are bounded, a small neighborhood ofx50 can be neglected. Fo
constantl, Z̃ represents a radial surface with arbitrary timet>0. So we have

lim
l→`

E
Z̃(l)

jI~x!LnI ds̃5 lim
R→`

E
S
E

t i

`

j ~R,t !dt R2 dV. ~12!

III. THE PROOF

A. Scattering into cones heuristics

The flux-across-surfaces theorem is based on an asymptotic connection between the s
the wave function in momentum space and in ordinary space. This is often referred to
scattering into cones theorem, which has been proven for nonrelativistic particles by Dollard7 For
that one chooses a certain parametrization ofR4 and evaluates the wave function, as the param
of the parametrizations goes to infinity. In the nonrelativistic case, it is easiest to choose ti
the parameter of the parametrization. In the relativistic case it is simplest to have Lorentz-inv
three-dimensional subspaces of the timelike part ofR4 as leaves of the parametrization.~We only
parametrize the timelike region, as for big time scales the main part of our wave function w
in this region.! This can easily be done, by choosing a Lorentz-vector as an argument ofc, i.e., a
vector xI with xI LxI 5x0

22x"x5lm2. Set c(lkI )5c(x5lk,t5lAk21m2). We denote the two
different eigenstates of momentumk of the free Hamiltonian with positive energy bywk

s , whereas
the s labels the two different spins our electron may have. In the standard representatio
eigenstates can be written as

wk
s5eik"xsk

s , ~13!

where thesk
s are

sk
15~2EkÊk!

2 1/2S Êk

0
k1

k1

D , sk
25~2EkÊk!

2 1/2S 0

Êk

k2

2k1

D ,

where
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k65k26 ik3 , Êk5Ek1m, Ek5Ak21m2.

~For a detailed calculation of these spinors see Ref. 14.!
The asymptotics result from a stationary phase analysis:

c~lkI !5U~ t5lAk21m2!c~lk,0!

5(
s51

2

e2 iHlAk21m2E ~2p!2 3/2wk8
s

~lk!ĉs~k8!d3k8

5(
s51

2

e2 iHlAk21m2E ~2p!2 3/2eik8•lksk8
s ĉs~k8!d3k8.

For convenience we define

ĉ~k8!5(
s51

2

sk8
s ĉs~k8!.

This leads to

c~lkI !5e2 iHlAk21m2E ~2p!2 3/2eik8•lkĉ~k8!d3k8

5E ~2p!2 3/2e2 il(Ak821m2Ak21m22k8•k)ĉ~k8!d3k8. ~14!

In view of the stationary phase method, in the limitl→` only a small neighborhood of the
stationary point of the phase function

h~k8!ª~Ak821m2Ak21m22k8•k!

will be relevant for the integral. The stationary point is given by

¹k8h~kstat!50⇒kstat5k. ~15!

Without loss of generality we can setk25k350. Near the stationary point the phase is to seco
order

2 il~Ak821m2Ak21m22k8•k!'2 ilS m21
m2

2~k21m2!
~k182k!21

1

2
~k28

21k38
2! D .

This in Eq.~14! leads to

c~lkI !'E ~2p!2 3/2e2 il(m21 m2/2(k21m2)(k182k)21 1/2(k28
2
1k38

2))ĉ~k8!d3k8,

and replacingĉ(k8) by ĉ(k) we obtain by integrating the Gaussian

c~lkI !'
e2 ilm2

~ il!3/2
ĉ~k!Ak2

m2 11.

We shall state now the stationary phase result in a somewhat more general setting, to cov
applications to the potential case considered later.
                                                                                                                



429J. Math. Phys., Vol. 44, No. 2, February 2003 Flux-across-surfaces theorem for a Dirac particle

                    
B. The stationary phase

Lemma 3.1: Letx̃ be in G [see (7)] and let the ‘‘phase function’’ g be

g~k8!5Ak821m21auk8u2y"k8.

Let kstat be the stationary point of the phase function

¹g~kstat!50.

Then there exist C1PC,C2 ,C3PR so, that for all x with i]k
j xis<i]k

j x̃is for j 50,1,2 and y
PR3.
(a) For a50,

I E e2 img(k8)x~k8!d3k82C1m2 3/2x~kstat!I
s

,C2m22. ~16!

For phase functions without stationary point C150, otherwise we can choose

C15~22p i !3/2e2 img(kstat)
~kstat

2 1m2!5/4

m
.

(b) For a.0,

I E e2 img(k8)x~k8!d3k8I
s

,C3S kstat

m D 1/2

ix~kstat!is1uC1um2 3/2ix~kstat!is1C2m22. ~17!

For phase functions without stationary point C15C350.
Moreover the Cj are uniformly bounded for allx, a andy.

In our application in the caseaÞ0, kstat will be of orderm21 so that theuC1u-term and the
C3-term are of the same order.

This statement is a slight adaptation to our situation of a theorem of Ho¨rmander,10 and its
proof is in the Appendix.

C. Scattering into cones for a free particle

Applying Lemma 3.1 to~14! we choose

m5lAk21m2, a50, y5
k

Ak21m2
, x~k8!5~2p!2 3/2ĉ~k8!

and calculate the stationary pointkstat,

kstat

Akstat
2 1m2

2y50,

kstat
2 5y2~kstat

2 1m2!,

kstat5
ym

A12y2
,

obtaining the following.
Corollary 3.2 (‘‘Scattering into cones’’): There exists a constant C,` so that for all k

PR3,
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Ic~lkI !2
e2 ilm2

~ il!3/2 ĉ~k!Ak2

m2 11I
s

<Cl22.

Note, that this implies

lim
l→`

sup
k

S iAl3c~lkI !is2 I ĉ~k!Ak2

m2 11I
s
D 50. ~18!

For the flux-across-surfaces theorem we need the asymptotics of the relativistic quantu
~5! of the particle. Since all thea l are bounded matrices andĉPG, we obtain from~5! and~18!
for the flux

lim
l→`

sup
k
Ul3 j l~lkI !2^ĉ~k!,a l ĉ~k!&S k2

m2 11D U50. ~19!

Next observe~see the Appendix! that

^ĉ~k!,aĉ~k!&5
k

Ak21m2
^ĉ~k!,ĉ~k!&. ~20!

Thus we get the uniform bound.
Corollary 3.3:

;«.0 'lPR:

sup
k
Ul3j ~lkI !2^ĉ~k!,ĉ~k!&

k

m2 Ak21m2U,«. ~21!

Observe, that after a long time of propagation, the flux atx5lk will always be parallel tok. So
in the limit t→` it will always point away from the origin of the coordinate system.

D. Flux across surfaces for a free particle

Theorem 2.1 reads in this case

lim
R→`

E
S
E

0

`

j ~R,t !•n dt R2 dV2E
S
E

0

`

^ĉ~k!,ĉ~k!&k2 dk dV50 ~22!

and

lim
R→`

E
S
E

0

`

j ~R,t !dt R2 dV2E
S
E

0

`

^ĉ~k!,ĉ~k!&k2 dk dV50. ~23!

In the following, we will prove~22! by inserting the longtime asymptotic~21! for j and showing,
that the integral of the error we get by this approximation tends to zero in the limitR→`.

Now, the longtime asymptotic ofj is parallel to the normaln of the radial surface. Therefor
the longtime asymptotic ofj is equal to the longtime asymptotic ofj "n. More detailed, one see
that using the approximation~21! for j in ~22! and~23!, the bound on the error terms in~22! and
~23! arising from~21! are equal.

So the proof of~23! is essentially the same as for~22! and we shall concentrate only o
showing~22!.
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The left-hand side of~22! includes an integral overt, whereas the right-hand side is integrat
overk. We therefore substitute fort in the first term, to get integration overk, too. Sincel plays
the role of a time parameter it is natural to substitute

k5
Rn

l

with

l5
At22R2

m
.

But this substitution is only possible in the timelike region (t>R). So we first handle the integra
starting att5R, later we deal with the spacelike part of the integral. Then, substitutingt by k, we
obtain

E
S
E

R

`

j ~R,t !•n dt R2 dV5E
S
E

0

`

j S R,
R

k
Ak21m2D •n

m2

Ak21m2

R3

k2 dk dV

5E
S
E

0

`

j ~l~k!k,l~k!Ak21m2!•n
m2

Ak21m2
kl~k!3 dk dV.

The integrand is now in the form that we can replace it by the asymptotic in~21!.
It turns out however, that the error in the integrand will be; k/Ak21m2 which is not

integrable, therefore the replacement is not straightforward. We separate large momentak.X and
small momentak,X. In the following we chooseX.m. GivenX andR05l0X,

k<X⇔ R0

k
5l~k!>l05

R0

X
.

Then by~21! for small momenta@k<X⇔t>RA11 (m2/X2)#,

;«.0 'R0PR ;R>R0 ,

U E
S
E

RA11 ~m2/X2!

` S j ~R,t !•n dt R22E
0

X

^ĉ~k!,ĉ~k!&k2D dk dVU
5U E

S
E

0

X

j ~lk,lAk21m2!•n
m2

Ak21m2
kl32^ĉ~k!,ĉ~k!&k2 dk dVU

<E
S
E

0

X km2«

Ak21m2
dk dV5..x~X!«, ~24!

where

x~X!ª4pE
0

X km2

Ak21m2
dk.

GivenX we can take« arbitrarily small, choosingR0 large enough, so that the rhs of~24! goes to
zero. Thus
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lim
X→`

lim
R→`

U E
S
E

RA11 ~m2/X2!

`

j ~R,t !•n dt R2 dV2E
S
E

0

X

^ĉ~k!,ĉ~k!&k2 dk dVU50. ~25!

For the large momenta note that by virtue ofĉPG:

lim
X→`

E
S
E

X

`

^ĉ~k!,ĉ~k!&k2 dk dV50 ~26!

and all it remains to show is that

lim
X→`

lim
R→`

E
S
E

0

RA11 ~m2/X2!
j ~R,t !•n dt R2 dV50, ~27!

where we also included the time integration outside the light cone, which we excluded i
substitution.

We first estimate the part of the integral~27! that lies in the spacelike region~more precisely,
tP@0,R#) then we estimate the timelike part near the light cone (tP@R,RA11 (m2/X2)#). That
is, we first show that

lim
R→`

E E
0

R

j ~R,t !•n dt R2 dV50. ~28!

That this holds is physically related to the fact, that a particle moves slower than light, so fo
time and space scales the main part of the wave function will be inside the light cone. This fo
from a straightforward application of the stationary phase method, outside of the stationary
choosing a special coordinate system, where thek1 coordinate is along the directionx. Two partial
integrations lead to

ic~x,hx!is5 I E ~2p!2 3/2e2 ix(Ak21m2h2k1)ĉ~k!d3kI
s

5 I E ~2p!2 3/2e2 ixgĉ~k!d3kI
s

<
1

x2 E I ~2p!2 3/2S ĉ9

g82 2
3ĉ8g9

g83 1
3ĉg92

g84 2
ĉg-
g83 D I

s

d3k,

where

gª~Ak21m2h2k1!, f 8ª]k1
f .

Since

2g8512
k1h

Ak21m2
>12

uk1u

Ak21m2
.0

it follows

ic~x,hx!is<~2p!2 3/2
C2

x2 ~29!

uniform in h<1. Hence
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lim
R→`

E E
0

R

j ~R,t !•n dt R2 dV<4p lim
R→`

E
0

R

ic~x,t !is
2 dt R2<

1

2p2 C2
2 lim

R→`

R3
1

R4 50.

It is left to prove that the second part of the integral in~27! goes to zero, i.e., that

lim
X→`

lim
R→`

E
S
E

R

RA11 ~m2/X2!
j ~R,t !•n dt R2 dV50.

The scalar norm ofc(x,t) is

ic~x,t !is5 I E ~2p!2 3/2e2 iAk21m2t1 ik"xĉ d3kI
s

~30!

5 I E ~2p!2 3/2e2 i (Ak21m22k"r )tĉ d3kI
s

. ~31!

Applying Lemma 3.1 with

m5t, a50, y5r , x~k8!5~2p!2 3/2ĉ~k8!,

we have by~16!, that

I E e2 iEkt1 ik"xĉ~k!d3k2C1t2 3/2ĉ~kstat!I
s

,C2t22.

As ĉ is bounded, we have

'MPR:;t.R ic~x,t !is5 I E e2 iEkt1 ik"xĉ~k!d3kI
s

<Mt2 3/2.

So

U E
S
j ~R,t !•nR2 dVU<4p

MR2

t3 .

So we can write

U E
S
E

R

RA11 m2/X2

j ~R,t !•n dt R2 dVU
<2pMR2S R222R22S 11

m2

X2 D 21D52pM S 12S 11
m2

X2 D 21D .

This term goes to zero asX→`.

E. The flux-across-surfaces theorem with potential

1. Generalized eigenfunctions for the Dirac equation with potential

For the proof of the free flux-across-surfaces theorem we used thewk
s as basis of the Hilbert

space. In the potential case we adopt a new basis for doing calculations.
Like in the free case, we again get four linear independent eigenfunctions for eachk, two of

them have positive energy-eigenvalueEk
eig5Ek5Ak21m2, two of them have negative energy

eigenvalueEk
eig52Ek . We denote byw̃k

s(x) the eigenfunctions withsP$1,2%:
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Ekw̃k
s~x!5~H01A” !w̃k

s~x!. ~32!

The corresponding Lipmann Schwinger equation reads

w̃k
s~x!5wk

s~x!1~Ek2H0!21A” w̃k
s~x!. ~33!

We replace the formal expression (Ek2H0)21 by the integral kernelGk
1 :

~Ek2H0!Gk
1~x2x8!5d~x2x8!. ~34!

The explicit form forGk
1(x2x8) can be found in Ref. 14

Gk
1~x!5

1

4p
eikxS 2x21S Ek1(

j 51

3

a j k
xj

x
1bmD 1x22(

j 51

3

a j

xj

x D 5..
eikx

x
Sk

1~x!. ~35!

Thus

w̃k
s~x!5wk

s~x!2E A” ~x8!Gk
1~x2x8!w̃k

s~x8!d3x8. ~36!

For Sk
1 , defined in~35!, we have

u]k
j Sk

1u5U 1

4p
]k

j S 2Ek2(
j 51

3

a j k
xj

x
2bm1x21(

j 51

3

a j

xj

x DU
5U 1

4p
]k

j S Ek1(
j 51

3

a j S k
xj

x
2

xj

x2D1bmDU
for j 50,1,2. Forx>1 we have

Uxj

x U<1, Uxj

x2U<1

and for suchx, observing, that]k
j Ek>0 andk enters linearly in the second term, it follows, th

u]k
j Sk

1u<U 1

4p
]k

j S Ek1(
j 51

3

a j~k11!1bmDU.
Thus with

S̃k
1
ª

1

4p S Ek1(
j 51

3

a j~k11!1bmD , ~37!

we have

u]k
j Sk

1u<u]k
j S̃k

1u ~38!

for j 50,1,2,x>1.
For the next steps we need some properties of the generalized eigenfunctions. We sum

these properties in the following Lemma which is proven in the Appendix.
Lemma 3.4: Let A” satisfy Condition A (3). Then there exist unique solutionsw̃k

s(x) of (36) for
all kPR3, such that
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(a) For anykPR3, s51,2 the functionsw̃k
s(x) are Hölder continuous of degree 1 inx.

(b) Any w̃k
s(x) which is a solution of (36) automatically satisfies (32).

(c) The functions

zk
s~x!ªw̃k

s~x!2wk
s~x! ~39!

are infinitely often continuously differentiable with respect to k, furthermore we have for jPN and
any multi-indexg with ugu<2:

~i! sup
xPR3

ixzk
s~x!is,`,

~ ii ! sup
xPR3

I ]k
j

zk
s~x!

ux11u j 21I
s

,`,

~ iii ! sup
xPR3

I kugu21Dk
g

zk
s~x!

ux11u j 21I
s

,`.

The w̃k
s(x) form a basis of the space of scattering states, i.e., for scattering statesc(x,t):

c~x,t !5(
s51

2 E ~2p!2 3/2e2 iAk21m2tw̃k
s~x!ĉout,s~k!d3k, ~40!

ĉout,s~k!5E ~2p!2 3/2^w̃k
s~x!,c~x!&d3x, ~41!

whereĉout,s(k) is the Fourier transform ofcout5V1c.

2. Flux-across-surfaces for the Dirac equation with potential

We prove now Theorem 2.1. As in the free case only the equality of the second and
integral is shown. From the nature of the estimates in the proof it will become evident
essentially by the same argument as in the free case, the first equality can be established,
do not say anything more to that.

We again split our flux integral into two parts, one inside the light-cone~from R to `! and one
outside the light-cone~from 0 toR), where the main contribution comes from the timest.R, i.e.,
we prove that

~ i! lim
R→`

U E
S
E

R

`

j ~R,t !•n dt R2 dV2E
S
E

0

`

^ĉout~k!,ĉout~k!&k2 dk dVU50,

~42!

~ ii ! lim
R→`

E E
0

R

j ~R,t !•n dt R2 dV50.

We start with~i!.
According to~40!,

c~x,t !5(
s51

2 E ~2p!2 3/2e2 iAk21m2tw̃k
s~x!ĉout,s~k!d3k.

Setting

ĉout~k8!5(
s51

2

sk8
s ĉout,s~k8!

and using~36! with ~39! we get
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c~x,t !5E ~2p!2 3/2e2 iAk21m2teik"xĉout~k!d3k

2E ~2p!2 3/2e2 iAk21m2tE eikux2x8u

ux2x8u
Sk

1~x2x8!A” ~x8!eik"x8 d3x8 ĉout~k!d3k

2(
s51

2 E ~2p!2 3/2e2 iAk21m2tE eikux2x8u

ux2x8u
Sk

1~x2x8!A” ~x8!zk
s~x8!d3x8 ĉout,s~k!d3k

5..S01S11S2 . ~43!

S0 is the propagation of the free outgoing state. The free flux-across-surfaces theorem
therefore,

lim
R→`

U E
S
E

R

`

^S0 ,aS0&•n dt R2 dV2E
S
E

0

`

^ĉout~k!,ĉout~k!&k2 dk dVU50.

Hence for~42!~i! it remains to show, that@using ~5!#

lim
R→`

E
S
E

R

`

~ j ~R,t !2^S0 ,aS0&!•n dt R2 dV

5 lim
R→`

E
S
E

R

`S K (
j 50

2

Sj ,a(
j 50

2

Sj L 2^S0 ,aS0& D •n dt R2 dV

5 lim
R→`

E
S
E

R

`S K c,a(
j 51

2

Sj L 1K (
j 51

2

Sj ,acL D •n dt R2 dV50.

By Schwartz inequality we need only show

lim
R→`

E
S
E

R

`

icis(
j 51

2

iSj is dt R2 dV50. ~44!

We first want to estimateiS1is . Recalling~43! we get by Fubinis theorem

S152E ~2p!2 3/2e2 iAk21m2tE eikux2x8u

ux2x8u
Sk

1~x2x8!A” ~x8!eik"x8 d3x8 ĉout~k!d3k

52E E ~2p!2 3/2e2 iAk21m2t
eikux2x8u

ux2x8u
Sk

1~x2x8!A” ~x8!eik"x8 d3x8 ĉout~k!d3k

5..2E ~2p!2 3/2
1

ux2x8u
S̃1~x,x8!A” ~x8!d3x8,

where

S̃1~x,x8!5E ~2p!2 3/2e2 iAk21m2teikux2x8uSk
1~x2x8!eik"x8 d3x8 ĉout~k!d3k. ~45!

Next we use Lemma 3.1, setting

m5t, a5t21ux2x8u, y5t21x8, k85k, x~k8!5~2p!2 3/2Sk
1~x2x8!ĉ~k8!.
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With regard to~38!, the function

x̃~k!5~2p!2 3/2S̃k
1ĉ~k8!

satisfies the properties we need in~17!. Furthermore we observe that for the stationary point

kstat

Akstat
2 1m2

1a2y50,

kstat5Akstat
2 1m2~y2a!.

So we can estimatekstat by

kstat5Akstat
2 1m2t21~x82ux2x8u!<Akstat

2 1m2xt21. ~46!

Hence by ~17! we obtain for ~45! that there existsM1,`, bounding in particular
Akstat

2 1m2x̂(kstat), which is bounded by the choice ofĉoutPG and incorporating also the con
stantsC1 andC2 , uniformly in y anda so that

iS1is< IM1t2 3/2~11x1/2!E 1

ux2x8u
A” ~x8!d3x8I

s

5M1t2 3/2P1~x!→x→`0. ~47!

That the functionP1 goes to zero in the limitx→` may be seen as follows: For any functio
f (x)PL1 with lim supx→`ux3f (x)u,`, we have

lim
x→`

xU E 1

ux2x8u
f ~x8!d3x8U

< lim
x→`

xE U 1

x8
f ~x2x8!Ud3x8

5 lim
x→`

xS E
B(0,x/2)

U 1

x8
f ~x2x8!Ud3x81E

R3\B(0,x/2)
U 1

x8
f ~x2x8!Ud3x8D

< lim
x→`

xS sup
x̃> x/2

$u f ~ x̃!u%E
B(0,x/2)

1

x8
d3x81

2

x ER3\B(0,x/2)
u f ~x2x8!ud3x8D

< lim
x→`

1

8
x3 sup

x̃> x/2
$u f ~ x̃!u%1 lim

x→`

2E
R3\B(0,x/2)

u f ~x2x8!ud3x8,`, ~48!

whereB(a,r ) means the ball with centera and radiusr .
Next we estimateiS2is . According to~43! we can write it as

S252(
s51

2 E ~2p!2 3/2e2 iAk21m2tE eikux2x8u

ux2x8u
Sk

1~x2x8!~x811!A” ~x8!
zk

s~x8!

x811
d3x8 ĉout,s~k!d3k.

Therefore we again use Lemma 3.1, setting

m5t, a5t21~ ux2x8u!, y50, k85k, x~k8!5~2p!2 3/2(
s51

2 zk
s~x8!

x811
Sk

1~x2x8!ĉout,s~k8!.

With regard to~38! and Lemma 3.4~c! there exists aM2,`, so that the function
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x̃5~2p!2 3/2M2S̃k
1ĉ~k8!

satisfies the properties we need in Lemma 3.1.
Since our phase function has no stationary point we get with~17!,

iS2is<M2t22U E 1

ux2x8u
~x811!A” ~x8!d3x8U5M2t22P2~x!xW→`0.

Choosing (x811)A” (x8) for f on the most left-hand side of~48!, one can see, thatxP2(x) is
bounded, soP2 goes to zero in the limitx→`. SinceS0 is the analogue of the freely evolvin
wave function, we have by Corollary 3.2,

iS0is<M0t2 3/2. ~49!

We use the estimates~49!, ~47!, and ~49! on the right-hand side of~44! and get, definingM
ªM01M11M2 :

lim
R→`

U E
S
E

R

`S icisI(
j 51

2

Sj I
s
D dt R2 dVU< lim

R→`
E

R

`

M2~P1~R!1P2~R!!t23 dt R2

< lim
R→`

3M2~P1~R!1P2~R!!50

and ~44! is proved.
Like in the free case,~42!~ii ! follows directly from an analogous argument which used E

~29!, thus we prove~29! for the case at hand. Since in~42!~ii ! we need only estimates of the wav
function for timest<x we have in view of~43!, settingt5hx with 0<h<1 and using Fubinis
theorem:

c~x,hx!5E ~2p!2 3/2e2 iAk21m2hx1 ik"xĉout~k!d3k

2E E e2 iAk21m2hx1 ikux2x8u1 ik"x8
A” ~x8!Sk

1~x2x8!ĉout~k!

~2p!3/2ux2x8u
d3k d3x8

2(
s51

2 E E e2 iAk21m2hx1 ikux2x8u
A” ~x8!zk

s~x8!Sk
1~x2x8!ĉout,s~k!

~2p!3/2ux2x8u
d3k d3x8

5..S01S11S2 .

For S0 we have~29!, for the other summands we define

S̃1ªE ~2p!2 3/2e2 iAk21m2hx1 ikux2x8u1 ik"x8Sk
1~x2x8!ĉout~k!d3

S̃2ª(
s51

2 E ~2p!2 3/2e2 iAk21m2hx1 ikux2x8u1 ik"x8e2 ik"x8zk
s~x8!Sk

1~x2x8!ĉout,s~k!d3k.

So we have forSj , j 51;2,

Sj52E S̃j

A” ~x8!

ux2x8u
d3x8.
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We can estimate theS̃j by two partial integrations. One can easily see, that the phase functio
S̃j have no stationary point. This leads to

iS̃j is5 I E ~2p!2 3/2e2 ixg(k)x j~x,x8,k!d3kI
s

5
1

x2 I E ~2p!2 3/2e2 ixg(k)]k1S 1

g8
]k1

x j

g8Dd3kI
s

5
1

x2 I E ~2p!2 3/2S x j9

g82 2
3x j8g9

g83 1
3x jg92

g84 Dd3kI
s

,

where

g~k!ªAk21m2h2k
ux2x8u

x
2k •

x8

x
,

x1~x,x8,k!ªSk
1~x2x8!ĉout~k!,

x2~x,x8,k!ª(
s51

2

e2 ik"x8zk
s~x8!Sk

1~x2x8!ĉout,s~k!,

g8ª]k1
g.

Since

ug8u5
x8

x
1

k1ux2x8u
kx

2
k1h

Ak21m2

>
k1

k S x8

x
1

ux2x8u
x

2
k

Ak21m2D
>

k1

k S 12
k

Ak21m2D .0.

g9 is bounded and due to Lemma 3.4 thex j are bounded, we can findC2,` with

(
j 51

2

S̃j<
C2

x2 .

So x2( j 51
2 Sj is bounded@see~48!# and the analogue of~29! is proved.
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APPENDIX

Proof of Lemma 3.1

We consider for a family of phase functionsg, which we should think of being indexed b
a>0,y:

g~k!5Ak21m21auku2y"k
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the integral

IªE e2 img(k)x~k!d3k,

wherexPG @see~7!#.
We shall find its asymptotic behavior as a function ofm. In major parts we will recall the proo

of theorem 7.7.5 in the book of Ho¨rmander,10 which unfortunately is formulated for compactl
supportedx and which moreover does not give uniformity over the family, i.e., uniformity ina,y
which we need. The compactness can easily be handled but for the uniformity we must invo
special form of the family of phase functionsg and we shall give the argument here.

The stationary points of the phase functions are given by

g8~kstat!5
kstat

Akstat
2 1m2

1a
kstat

kstat
2y50,

kstat
2 5~kstat

2 1m2!~y2a!2,

kstat5
m~y2a!

A12~y2a!2
,

kstatiy. ~A1!

Since kstat is a function ofa and y, we sometimes use the phrase: uniform inkstat to express
uniformity in a and y. ~I! For y>a11 there is no stationary point and fory5a the stationary
point is atkstat50.

First we handle the family whereyP@a1 1
2;a11@ . These phase-functions do exactly have o

stationary point bounded away from zero,

kstat5
m~y2a!

A12~y2a!2
>

m

)
. ~A2!

Later we will handle phase functions, where the stationary point is close to zero and
functions without stationary point.

We choose a coordinate system, where thek1 direction is parallel toy. So the stationary points
will have the coordinates (kstat,0,0). To estimate the integral, we separate from the integral
contribution coming from near the stationary point. This part of integral includes the leading
Therefore we define a smooth functionrkstat

which is one near the stationary points and zero aw
from the stationary point.~We shall omit further on for ease of notation the indexkstat).

More precisely we define the compact setQ by

kPQ⇔k1PFkstat

2
,2kstatG`k2 ,k3P@21,1#

and choose

r~k!ª1 ;kPQ

falling quickly off to zero outside ofQ, let’s say

r~k!ª0 ;k¹Q« , ~A3!
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whereQ« is some«-neighborhood ofQ for some«.0. With the help ofr we can splitx5x1

1x2 by defining

x1ªrx, x2ª~12r!x,

I 1ªE e2 img(k)x1~k!d3k, I 2ªE e2 img(k)x2~k!d3k. ~A4!

This split has the following advantages:
The compactly supportedx1 includes the stationary point, soI 1 can be estimated the sam

way as in Ho¨rmanders theorem, but with focus on the uniformity of the estimates.x2 is zero near
the stationary point, soI 2 can be easily estimated by partial integrations.r has been defined in
such a way, that we may estimate the terms we get by the partial integrations uniform inkstat.

We start withI 1 . We move the stationary point to the center of our coordinate system se
k8ªk2kstat, i.e., g(k) becomesg̃(k8)5g(k81kstat). Slightly abusing notation we simply write
g(k8) for g̃. By Taylor’s formula we obtain a functionf :

g~k8!5g~k850!1 (
ugu52

Dk8
g g~k850!k8g

g!
1 f ~k8!, ~A5!

where f (k8)/k83 bounded.
Computing the second-order terms ofg(k8) we find that only diagonal terms survive a

(kstat,0,0) and

]k
j8

2
g~k850!5]kj

2 g~k5kstat!5S ]kjS kj

Ak21m2
1a

kj

k
2yl D D U

k5kstat

5S k22kj
21m2

Ak21m23
1a

k22kj
2

k3 D U
k5kstat

,

so that

]k
j8

2
g~k850!5

kstat
2 1m2

Akstat
2 1m23

1a
1

kstat
for j 52,3,

]k
18

2
g~k850!5

m2

Akstat
2 1m23

. ~A6!

We define

g2~q,u!ª

( j 51
3 ]k

j8
2

g~k850!kj8
2

k82 . ~A7!

By this definition,g2 does only depend on the angular, not on the radial coordinate ofk8. Using
~A7! in ~A5!, we may write

g~k8!5g~0!1 1
2 k82g2~q,u!1 f ~k8!. ~A8!

Furthermore forsP@0,1# set

gsªg~0!1 1
2 k82g2~q,u!1s f~k8! ~A9!
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and

I ~s!5E e2 imgs(k8)x1~k8!d3k8.

Note thatg5g1 , I 15I (1). By Taylor’s formula there exitsj<1 so that

I 15I ~1!5I ~0!1]sI ~s!uj . ~A10!

We begin withI (0), introducing spherical coordinates. With slight abuse of notation:~leaving the
notation for the functions unchanged!

I ~0!5E e2 im(g(0)1 1/2k82g2(q,u))x1~k8,q,u!k82 dk8 dV.

Writing x15x(k850)1x̃ the integral splits into

I ~0!5E e2 im(g(0)1 1/2k82g2(q,u))x~k850!k82 dk8 dV

1E e2 im(g(0)1 1/2k82g2(q,u))x̃~k8,q,u!k82 dk8 dV5..I 1
11I 1

2. ~A11!

The integralI 1
1 is a Gaussian integral, which includes the leading term

I 1
15E e2 im(g(0)1 1/2k82g2(q,u))x~k850!k82 dk8 dV

5E e2 imS j 51
3 1/2]kj8

2g(k850))kj
2
e2 img(0)x~k850!k82 d3k8

5~2p!
3

2
m2 3/2e2 img(0)S )

j 51

3

]k
j8

2
g~k850!D 2 1/2

x~kstat!. ~A12!

For a50 the]k
j8
2g(k850) terms can be easily calculated. We get

]k
j8

2
g~k850!5]k

j8
2

g~k5kstat!5]k
j8

kj

Ak21m2Uk5kstat
5

k21m22kj
2

Ak21m23 U
k5kstat

.

So we get

)
j 51

3

]k
j8

2
g~k850!5

m2~kstat
2 1m2!2

Akstat
2 1m29

5
m2

Akstat
2 1m25

.

I 1
1 is the leading term of our integral. Fora50 we get the desired value forC1 ~Lemma 3.1!.

For I 1
2 set

f~k8,q,u!ªx̃~k8,q,u!k821

which is bounded and smooth,

I 1
25E e2 im(g(0)1 1/2k82g2(q,u))f~k8,q,u!k83 dk8 dV. ~A13!

One partial integration leads to
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i I 1
2is5m21I E e2 im 1/2k82g2(q,u)]k8

f~k8,q,u!k83

k8g2~q,u!
dk8 dV I

s

5m21I E e2 im 1/2k82g2(q,u)
]k8f~k8,q,u!k8212f~k8,q,u!k8

g2~q,u!
dk8 dV I

s

.

So another partial integration is possible

i I 1
2is5m22I E e2 im 1/2k82g2(q,u)]k8S ]k8f~k8,q,u!k8212f~k8,q,u!k8

k8~g2~q,u!!2 Ddk8 dV I
s

5m22I E e2 im 1/2k82g2(q,u)]k8S ]k8f~k8,q,u!k812f~k8,q,u!

~g2~q,u!!2 Ddk8 dV I
s

<m22I E ]k8S ]k8f~k8,q,u!k812f~k8,q,u!

~g2~q,u!!2 D dk8 dVI
s

. ~A14!

With our definition ofQ, the support of the integrand increases andg2(q,u) decreases polyno
mially with kstat @see ~A6! and ~A7!#. While the support moves away from the center of o
coordinate system. Butx̃5x2x(kstat) and its derivatives decay faster inkstat than any power, so
we get a constant C uniform inkstat with

I 1
2<m22C.

For I 1 it is left to estimate]sI (s)uj :

]sI ~s!uj5E 2 im f ~k8,q,u!e2 imgj(k8,q,u)x1~k8,q,u!k82 dk8 dV. ~A15!

By Taylor’s formula we can define

f̃ ~k8,q,u!ª f ~k8,q,u!k823, g̃~k8,q,u!ªk821]k8gj~k8,q,u!

and thus

]sI ~s!uj5E 2 im f̃ ~k8,q,u!e2 imgj(k8,q,u)x1~k8,q,u!k85 dk8 dV. ~A16!

On Q« @see below~A3!#, g is infinitely often differentiable. So these functions are well defin
and bounded onQ« .

To estimate the integral by partial integrations we have to assure, thatgj has only one
stationary point, which iskstat50 as one easily sees from~A17!.

By ~A9!,

gj5g~k850!1 1
2 k82g2~q,u!1j f ~k8!5jg1~12j!~g~k850!1 1

2 k82g2~q,u!!. ~A17!

Looking at

]k8
2 gj5j]k8

2 g1~12j!]k8
2 1

2 k82g2

we observe, that
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]k8
2 g5]k8

2
~Ak8222k8kstatcos~q!1kstat

2 1m21aAk8222k8kstatcos~q!1kstat
2 2y"k8!

5]k8S k82kstatcos~q!

Ak8222k8kstatcos~q!1kstat
2 1m2

1a
k82kstatcos~q!

Ak8222k8kstatcos~q!1kstat
2 D

5
~12cos~q!2!kstat

2 1m2

Ak8222k8kstatcos~q!1kstat
2 1m23

1a
~12cos~q!2!kstat

2

Ak8222k8kstatcos~q!1kstat
2 3

.0.

And for kPQ« , k1 is positive, so the angular componentq P] 2 p/2 , p/2@ , we also have, tha
on Q« also g2 is positive. SincejP@0;1# it follows, that ]k8

2 gj is positive, so]k8gj is strictly
monotonous onQ« and has only one stationary point. Recalling the definition ofg̃ @see~A16!# we
see, thatg̃ is bounded away from zero.

Now we can estimate the integral~A16!. By partial integration

]sI ~s!uj5E e2 imgj(k8,q,u)]k8

f̃ ~k8,q,u!x1~k8,q,u!k84

g̃~k8,q,u!
dk8 dV

5E e2 imgj(k8,q,u)S ]k8

f̃ ~k8,q,u!x1~k8,q,u!

g̃~k8,q,u!
k8414

f̃ ~k8,q,u!x1~k8,q,u!

g̃~k8,q,u!
D k83 dk8 dV.

Setting

c̃~k8,q,u!ª]k8

f̃ ~k8,q,u!x1~k8,q,u!

g̃~k8,q,u!
k814

f̃ ~k8,q,u!x1~k8,q,u!

g̃~k8,q,u!
. ~A18!

Hence

]sI ~s!uj5E e2 imgj(k8,q,u)c̃~k8,q,u!k83 dk8 dV.

This term is similar to~A13!. The only differences are, that we havec̃ instead off andgj instead
of g0 .

So with the same estimate as in~A13! we get:

i]sI ~s!ujis<m22I E ]k8

]k8c̃~k8,q,u!k812c̃~k8,q,u!

~ g̃~k8,q,u!!2 dk8 dVI
s

. ~A19!

This term again has uniform bound inkstat, as its support moves away from the center of t
coordinate system. So we get a constant C uniform inkstat with

i]sI ~s!ujis<m22C.

Now we estimateI 2 ~A4!. As this integral includes no stationary point, two partial integratio
are possible without any problem, but we have to assure, that we can estimate the factors
by these partial integrations uniform inkstat. To be able to find an uniform estimate, we estima
the areas ofx separately.

So we again split our integral
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I 25E
k1,kstat/2

e2 img(k)x2~k!d3k1E
k1.2kstat

e2 img(k)x2~k!d3k1E
k1PB;uk2u.1

e2 img(k)x2~k!d3k

1E
k1PB;uk2u,1;uk3u.1

e2 img(k)x2~k!d3k5..I 2
11I 2

21I 2
31I 2

4,

where

BªFkstat

2
;2kstatG .

The integralsI 2
1 andI 2

2 we estimate by two partial integrations under thek1 integral. This leads to

i I 2
1is<m22E

k1,kstat/2
I ]k1S 1

ġ~k!
]k1

x2~k!

ġ~k! D I
s

d3k

5m22E
k1,kstat/2

I3
ẍ2

ġ2 13
x2g̈2

ġ4 23
ẋ2g̈

ġ3 I
s

d3k,

~A20!

i I 2
2is<m22E

k1.2kstat

I ]kS 1

g8~k!
]k

x2~k!

g8~k! D I
s

d3k

5m22E
k1.2kstat

I3
x29

g82 13
x2g92

g84 23
x28g9

g83 I
s

d3k,

whereġ(k)ª]k1
g(k); g8(k)ª]kg(k).

At first sight these estimates do not seem to be uniform ina andy. In fact

g̈~k!5
m2

Ak21m23
1a

k2
281k3

2

k3

and

g9~k!5
m2

Ak21m23

are bounded on the area of integration. So it is left to show, that we can find functionshj with
j 51;2, which do not depend ona andy and which is bounded away from zero onR3\Q with

h1~k!<g8~k!, h2~k!<ġ~k!

for all a, y, k.
For this we estimateġ for k1< kstat/2. As g̈.0, it follows, that@see~A11!#

uġ~k!u5y2
k1

Ak21m2
2a

k1

k
>

1

2
.

For k1,0 and by virtuey>a1 1
2>

1
2.

For k1.0 we estimate, using thaty2a2 kstat/Akstat
2 1m2 50,
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uġ~k!u5y2
k1

Ak21m2
2a

k1

k

>y2a2
k1

Ak21m2

>y2a2
kstat

Akstat
2 1m2

1
kstat

Akstat
2 1m2

2
k1

Ak21m2
5

kstat

Akstat
2 1m2

2
k1

Ak21m2

>
kstatAk21m22k1Akstat

2 1m2

Ak21m2Akstat
2 1m2

5
kstat

2 ~k21m2!2k1
2~kstat

2 1m2!

~kstatAk21m21k1Akstat
2 1m2!Ak1

21m2Akstat
2 1m2

.

RecallingkP@0; kstat/2#,

uġ~k!u>
3
4 kstat

2 m2

~kstatAk21m21k1Akstat
2 1m2!Ak1

21m2Akstat
2 1m2

5
3m2

4~Ak21m21k1A11~m/kstat!
2!Ak1

21m2A11~m/kstat!
2

.

As kstat> m/) @see~A2!# it follows:

uġ~k!u>
3m2

8~Ak21m212k1!Ak1
21m2

5..h1 .

For k1>2kstat, g8 is positive. Therefore similar as before

ug8~k!u5
k

Ak21m2
1a2y cos~q!

>
k

Ak21m2
2

kstat

Akstat
2 1m2

1
kstat

Akstat
2 1m2

1a2y

5
k

Ak21m2
2

kstat

Akstat
2 1m2

5
kAkstat

2 1m22kstatAk21m2

Ak21m2Akstat
2 1m2

5
k2~kstat

2 1m2!2kstat
2 ~k21m2!

~k21m2!~kstat
2 1m2!

>

1
4 k2m2

~k21m2!2 5..h2~k!.

Note, thath1 andh2 do not depend ona andy.
We can use this estimate in~A20!. As g9 and g̈ have uniform bounds ina and y we get

uniform estimates forI 2
1 and I 2

2,
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i I 2
1is<m22E

k1,kstat/2
I3

ẍ2

h1
2 13

x2g̈2

h1
4 13

ẋ2g̈

h1
3 I

s

d3k

<m22E
R3
I 3

ẍ̃2

h1
2 13

x̃2g̈2

h1
4 13

ẋ̃2g̈

h1
3 I

s

d3k

i I 2
2is<m22E

k1.2kstat

I3
x29

h2
2 13

x2g92

h2
4 13

x28g9

h2
3 I

s

d3k

<m22E
k1> m/)

I3
x̃29

h2
2 13

x̃2g92

h2
4 13

x̃28g9

h2
3 I

s

d3k.

Hence

i I 2
1is1i I 2

2is<m22C

with a constantC uniform in kstat.
The integralsI 2

3 andI 2
4 can be estimated in a similar way, partial integration now be done

k2 andk3

u]kj
g~k!u5

1

Ak21m2
1

akj

k2 <
1

Ak21m2 1
a

k
for j 51;2

which is uniformly bounded away from zero on the area of integration.
So we have a uniform constantC with

I 2<m22C,

and the lemma is proven foryP@a1 1
2,a11#.

~II ! Next we prove the Lemma fory,a11/2.
We again have to assure, that all estimates are uniform ina andy. In the last section the main

difficulty we had to solve was, thatg8 near the stationary point was increasing withkstat ~recall
that limy→a11kstat5`).

So on the first view it seems to be simple to have uniform estimates fory,a11/2 just by
settingQ5R3. But we have to face a new problem, which is, that the stationary point may be
close to zero. This is problematical in the differentiation ofk appearing in our estimates.

For a50 this problem does not appear and the lemma is also proven fory, 1
2 with a50.

As the divergence only appears for smallkstatwe can setkstat,
1
2 @For kstat>

1
2 the estimates can

be done very closely to the ones of~I!, settingQ5R3.]
We solve the problem by first ‘‘cutting out’’ the stationary point. We split our integral

I 5E
B(0,Akstat)

e2 img(k)x~k!d3k1E
R3\B(0,Akstat)

e2 img(k)x~k!d3k5..I 11I 2 .

As kstat,
1
2, the stationary point is inside the ball.

We estimateI 1 , writing it in spherical coordinates ‘‘centered’’ around the stationary point,
one partial integration,
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i I 1is< I E
B(0,Akstat)

e2 img(k8)x~k8!k82 dk8 dV I
s

< Im21E
B(0,Akstat)

S x8k82

g8
1

2xk8

g8
1

xg9k82

g82 Ddk8 dV I
s

.

As xPG all these terms are bounded, we have

i I 1is<Mm21Akstat.

We now estimateI 2 .
The first idea is to estimate this integral by two partial integrations. But the integrand

comes ‘‘very close’’ to the stationary point, where (g8)21 is not bounded. So this procedure w
not yield uniform bound ina andy.

The trick to get uniform bound is to redo the split~A10!, ~A11! of ~I! into the integral for
a1 1

2,y,a11.

I 25I 1
11I 1

21]sI ~s!us5j

now usingk50 as the center for our Taylor expansion. So we get

I 1
15E

R3\B(0,Akstat)
ei (g8(0)k1

1
2 g9(0)k2)x~0!d3k

I 1
25E

R3\B(0,Akstat)
ei (g8(0)k1

1
2 g9(0)k2)~x~k!2x~0!!k2 dk dV

]sI ~s!us5j5E
R3\B(0,Akstat)

lk3 f̃ ~k!egj~k!x~k!k2 dk dV,

where

g8~0!5
k

Ak21m2
1a2y cos~q!uk505a2y cos~q!,

g9~0!5]k
2g5

m2

Ak21m23U
k50

5
1

m
,

~A21!
f̃ ~k!5~g~k!2g~0!2g8~0!k2 1

2 g9~0!k2!k23,

gj~k!5g~0!1g8~0!k1 1
2 g9~0!k21j f̃ ~k!.

As by similar argument concerning~A17! gj has only one stationary pointk̃stat. One can easily
see, that

g8~0!1g9~0!k5a2y cos~q!1
k

m
>a2y cos~q!1

k

Ak21m2
5g8~k!.

Furthermore we have, that

gj8~k!5~12j!~g8~0!1g9~0!k!1jg8~k!.
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It follows, that

g8~0!1g9~0!k>gj8>g8.

Therefore atk5 k̃stat @where by definitiongj8( k̃stat)50] the g8 has to be negative. It follows
~recalling, thatg8 increases monotonously on thek1 axis!, that

0< k̃stat<kstat.

For the same reasons we have the zero pointk̄stat of g8(0)1g9(0)k ~i.e., k̄stat52 g8(0)/g9(0)):

0< k̄stat<kstat.

As the second derivative ofgj9( k̃stat) is not equal to zero, we can define a functiong̃j with

0,M<g̃jªuk2 k̃statu21gj . ~A22!

The integralI 1
1 includes the leading term. It can be estimated like~A12!. The other terms can

be estimated again by partial integrations. For that we define

z1ª~x~k!2x~0!!k25..z̃1k3, z2ª f̃ ~k!x~k!k55..z̃2k5,

wherez̃1,2 are boundedC` functions.
We now make two partial integrations inI 1

2 and three partial integrations in]sI (s) to get the
estimates

i I 1
2is<m22I E

R3\B(0,Akstat)
]kS 1

g8~0!1g9~0!k
]kS z1

g8~0!1g9~0!kD Ddk dV I
s

5m22I E
R3\B(0,Akstat)

]kS z18

~g8~0!1g9~0!k!2 2
z1g9~0!

~g8~0!1g9~0!k!3Ddk dVI
s

,

i]sI ~s!us5jis<m22I E
R3\B(0,Akstat)

]kS 1

gj8
]kS 1

gj8
]k

z2

gj8
D DdkdV I

s

5m22I E
R3\B(0,Akstat)

]kS 1

gj8
]kS z28

gj8
2 2

z2gj9

gj8
3 D D dk dVI

s

5m22I E
R3\B(0,Akstat)

]kS z29

gj8
3 23

z28gj9

gj8
4 2

z2gj-

gj8
3 13

z2gj9
2

gj8
5 D dkdVI

s

.

So we can define functionsf j , j 51; . . . ;5 which are bounded, with

i I 1
2is<m22I E

R3\B(0,Akstat)
]k~ f 1q1

21 f 2q1
3!dkdV I

s

,

i]sI ~s!us5jis<m22I E
R3\B(0,Akstat)

]k~ f 3q2
31 f 4q2

41 f 5q2
5!dk dV I

s

,

where
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q1ª
k

uk2 k̄statu
, q2ª

k

uk2 k̃statu
.

So it is only left to show, that]kq1 and]kq2 are bounded onR3\B(0,Akstat). But this is easy

]kq15]k

1

A122
kstatcos~q!

k
1

kstat
2

k2

5
1

A122
kstatcos~q!

k
1

kstat
2

k2
3

S kstat
2

k3 2
kstatcos~q!

k2 D
for k>Akstat this term has obviously uniform bound.

The derivative ofq2 can be estimated in the same way. We only have to replacek̃stat by k̄stat.
~III ! For y.a11 we have no stationary point any more. So two partial integrations

possible without any problem. We again choosek1 parallel toy

i I 2is<m22E I ]kS 1

g8~k!
]k

x2~k!

g8~k! D I
s

d3k

5m22E I ]kS x8

g82 2
xg9

g83 D I
s

d3k

5m22E I x9

g82 22
x8g9

g83 2
x8g9

g83 2
xg-
g83 13

xg92

g84 I
s

d3k

( f 8 means]k1
f ).

This integral still depends onkstat. To get an estimate uniform inkstat we use

ug8~k!u5y2
k1

Ak21m2
2a

k1

k
>12

k1

Ak21m2
5..h~k!.

It follows

i I 2is<m22E Ix9

h2 13
x8g9

h3 13
xg92

h4 1
xg-
h3 I

s

d3k5..m22C.

Proof of Eq. „20…

For eachk we have two eigenstates for electrons. These two eigenstates span the two
sional spinor subspace for electrons. In the standard representation of the Dirac matrices th
spinors~the spinors here are not normalized! are

sk
15S Êk

0
k1

k1

D , sk
25S 0

Êk

k2

2k1

D ,

where

k65k26 ik3 , Êk5Ek1m, Ek5Ak21m2.

If we now take any linear combination of these spinorssk5aks
1(k)1b(k)sk

2 and compute,
for example,̂ sk* ,a1sk&, we get@see~2!#,
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^sk* ,a1sk&5^~a* ~k!sk
1* 1b* ~k!sk

2* !,a1~a~k!sk
11b~k!sk

2!&

5S a* ~k!S Êk

0
k1

k2

D 1b* ~k!S 0

Êk

k1

2k1

D D ,

S a~k!S k1

2k1

Êk

0

D 1b~k!S k2

k1

0

2Êk

D D 5~a2~k!1b2~k!!2Êkk1 .

With the normalization factor

^sk* ,sk&5~a2~k!1b2~k!!~Êk
21k2!

5~a2~k!1b2~k!!~Ek
212Ekm1m21k2!

5~a2~k!1b2~k!!~2Ek~Ek1m!!

5~a2~k!1b2~k!!~2EkÊk!,

we get

^sk* ,a1sk&5
k1

Ak21m2
^sk* ,sk&.

Analogously we get

^sk* ,ask&5
k

Ak21m2
^sk* ,sk&.

By linearity ~20! follows.

Proof of Lemma 3.4

~a! To begin with, we consider the integral

I ~x!5E 1

ux2x8u j f ~x8!d3x8 ~A23!

for bounded, integrablei f is and j51;2.
For j 51 it has been proven by Ikebe,11 that I is Hölder continuous. We extend this toj

52. Therefore we need to estimate

I ~x1h!2I ~x2h!

for arbitraryh with h< 1
4. @We do not need to focus onh. 1

4, as I (x) is bounded.# We split the
integral into

I ~x1h!2I ~x2h! ~A24!
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5E
B(x,Ah)

S 1

ux1h2x8u2 2
1

ux2h2x8u2D f ~x8!d3x8

1E
B(x,1)\B(x,Ah)

S 1

ux1h2x8u2
2

1

ux2h2x8u2D f ~x8!d3x8

1E
R3\B(x,1)

S 1

ux1h2x8u2
2

1

ux2h2x8u2D f ~x8!d3x8

5..I 11I 21I 3 . ~A25!

For I 1 we have

i I 1is<2 sup
xPR3

$i f ~x!is%E
B(x,Ah)

1

ux2x8u2
d3x8.

So we can find a constantM,`, so that

i I 1~x,h!is<MAh, ;hPR3. ~A26!

For I 2 we have, usinguAh2hu< 1
2Ah:

i I 2is5 I E
B(x,1)\B(0,Ah)

S 1

ux81hu2 2
1

ux82hu2D f ~x2x8!d3x8I
s

< sup
xPR3

$i f ~x!is%E
B(x,1)\B(0,Ah)

uux82hu22ux81hu2u
ux81hu2ux82hu2

d3x8

< sup
xPR3

$i f ~xis!%E
B(x,1)\B(0,Ah)

4hx8

ux81hu2ux2hu2 d3x8

< sup
xPR3

$i f ~x!is%E
B(x,1)\B(0,Ah)

8h

x83 d3x8.

So we can find a constantM,`, so that

i I 2~x,h!is<MAh, ;hPR3. ~A27!

For I 3 we have, using similar reasoning as above,

i I 3is<E
R3\B(0,1)

8h

x83 i f ~x2x8!is d3x8<8hE i f ~x2x8!is d3x8.

Since f is absolutely integrable, we can find a constantM,`, so that

i I 3~x,h!is<Mh ;hPR3. ~A28!

We use this estimate on~36!, observing, thatGk
1 multiplied byA” w̃k

s is essentially of the form
of the integrals in~A23!. Therfore,

iw̃k
s~x1h!2w̃k

s~x!is<MAh ;hPR3. ~A29!

Now we want to focus on integrals of the form~A23! for j 52 wheref (x) satisfies

i f ~x1h!2 f ~x!is<MAh. ~A30!
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We do a similar splitting as in~A24!. Now we have forI 1 , using~A30!:

i I 1is< I E
B(x,Ah)

1

ux2x8u2
~ f ~x81h!2 f ~x82h!!d3x8I

s

<U E
B(x,Ah)

1

ux2x8u2 MAhd3x8U.
Thus with an appropriateM̃,`:

i I 1~x,h!is<Mh ;hPR3. ~A31!

For I 2 we have

i I 2
2is5 I E

B(0,1)\B(0,Ah)
S 1

ux81hu2
2

1

ux82hu2D f ~x2x8!d3x8I
s

5 I E
B(0,1)\B(0,Ah)

ux82hu22ux81hu2

ux82hu2ux81hu2 f ~x2x8!d3x8I
s

.

Since the fraction under this integral is point-symmetric to zero, we can estimate the integ

i I 2
2is< I E

B(0,1)\B(0,Ah)
Uux82hu22ux81hu2

ux82hu2ux81hu2 U~ f ~x2x8!2 f ~x1x8!!d3x8I
s

< I E
B(0,1)\B(0,Ah)

Uux82hu22ux81hu2

ux82hu2ux81hu2 UMA2x8 d3x8I
s

< I E
B(0,1)\B(0,Ah)

4U 2h

x83 UMA2x8 d3x8U
<U16pM&E

Ah

1 U 2h

x82 1/2Ud3x8I
s

.

So we can find aM̃,` with

i I 2
2~x,h!is<M̃h ;hPR3. ~A32!

For I 3 we do the same estimations as before.
Applying this to ~36! we obtain the Ho¨lder continuity of degree 1 forw̃k

s .
~b! Assume thatw̃k

s(x) satisfies~36! and is Hölder continuous of degree 1. Insertingw̃k
s(x) in

the right-hand side of~32! leads to

Hw̃k
s~x!5~H01A” ~x!!S wk

s~x!2E A” ~x8!Gk
1~x2x8!w̃k

s~x8!d3x8 D
5~Ek1A” ~x!!wk

s~x!2~H01A” ~x!!E A” ~x8!Gk
1~x2x8!w̃k

s~x8!d3x8.

For ~32! this term has to be equal toEkw̃k
s(x). So we have to prove, that

~H02Ek!E Gk
1~x2x8!A” ~x8!w̃k

s~x8!d3x85A” ~x!w̃k
s~x!.

In other words we have to prove, that withf Hölder continuous of degree 1,
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~H02Ek!E Gk
1~x2x8! f ~x8!d3x85 f ~x8!. ~A33!

Gk
1 can be written as14

Gk
1~x!5~H01Ek!

eikx

4px
5..~H01Ek!Gk

KG

with

~H02Ek!~H01Ek!Gk
KG5~D2k2!Gk

KG5d. ~A34!

So for ~A33! we need to show that

~H02Ek!~H01Ek!E Gk
KG~x2x8! f ~x8!d3x85~D2k2!E Gk

KG~x2x8! f ~x8!d3x85 f ~x!.

~A35!

We define for«.0 the following functionGk
« :

Gk
«~x!ªGk

KG~x! for x>«, Gk
«~x!5Gk

KG~x!~12ex/~«2x!! for x,«. ~A36!

We denote

Gk8~x!5¹Gk
KG5

ikxeikx

4px2 1
xeikx

x3 . ~A37!

We split the right-hand side of~A35! into

~D2k2!E ~Gk
KG~x2x8!2Gk

«~x!! f ~x8!d3x81~D2k2!E Gk
«~x! f ~x8!d3x8. ~A38!

By definition of Gk
KG ~A34! we have outside the ballB(0,«):

~D2k2!Gk
«~x!5~n2k2!Gk

KG~x!50. ~A39!

So for the first summand we have
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lim
«→0

I ~D2k2!E ~Gk
KG~x2x8!2Gk

«~x2x8!! f ~x8!d3x8I
s

5 lim
«→0

IDE
B(x,«)

~Gk
KG~x2x8!2Gk

«~x2x8!! f ~x8!d3x8I
s

5 lim
«→0

I¹E
B(x,«)

¹~Gk
KG~x2x8!2Gk

«~x2x8!! f ~x8!d3x8I
s

5 lim
«→0

I¹E
B(x,«)

~¹x8~Gk
KG~x2x8!2Gk

«~x2x8!!! f ~x8!d3x8I
s

5 lim
«→0

I¹E
B(x,«)

~¹x8~Gk
KG~x8!2Gk

«~x8!!! f ~x2x8!d3x8I
s

< lim
«→0

E
B(x,«)

I ~¹x8~Gk
KG~x8!2Gk

«~x8!!!
f ~x2x8!2 f ~x1h2x8!

h I
s

drx8.

As f is Hölder continuous, the last term can be estimated by

lim
«→0

I ~D2k2!E ~Gk
KG~x2x8!2Gk

«~x2x8!! f ~x8!d3x8I
s

< lim
«→0

E
B(0,«)

u¹x8~Gk
KG~x8!2Gk

«~x8!!M ud3x8

< lim
«→0

E
B(0,«)

US Gk8~x8!2Gk8~x8!~12ex2/~«2x!!2Gk
«~x8!

2«

~x2«!2D MUd3x850.

For the second summand, we use~A39! and the mean value theorem

lim
«→0

~D2k2!E Gk
«~x2x8! f ~x8!d3x8

5 lim
«→0

~D2k2!E
B(x,«)

Gk
«~x2x8! f ~x8!d3x8

5 lim
«→0

E
B(x,«)

~D2k2!Gk
«~x2x8! f ~x8!d3x8

5 lim
«→0

E
B(x,«)

~D2k2!~e2 ikux2x8uGk
«~x2x8!eikux2x8u! f ~x8!d3x8

5 lim
«→0

E
B(x,«)

~D2k2!~e2 ikux2x8uGk
«~x2x8!eikux2x8u! f ~x8!d3x8

5 lim
«→0

E
B(x,«)

~D12ik¹!~e2 ikux2x8uGk
«~x2x8!!eikux2x8u f ~x8!d3x8

5 lim
«→0

E
B(x,«)

D~e2 ikux2x8uGk
«~x2x8!!eikux2x8u f ~x8!d3x8
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5 lim
«→0

eikux2x«u f ~x«!E
B(x,«)

D~e2 ikux2x8uGk
«~x2x8!!d3x8,

wherex«PB(x,«) using the positivity of

D~e2 ikux2x8uGk
«~x2x8!!52

12ex/~«2x!

4px3 12
«ex/~g2x!

~x2«!24px2 1
~«212x«!ex/~«2x!

~x2«!44px
>0.

Hence with Gauss’ theorem and~A37!

lim
«→0

~D2k2!E Gk
«~x2x8! f ~x8!d3x85 f ~x! lim

«→0
E

B(x,«)
D~e2 ikux2x8uGk

«~x2x8!!d3x8

5 f ~x! lim
«→0

E
]B(x,«)

¹~e2 ikux2x8uGk
«~x2x8!!•n dV

5 f ~x! lim
«→0

E
]B(x,«)

¹~e2 ikux2x8uGk
KG~x2x8!!•nux2x8u82 dV

5 f ~x! lim
«→0

E
]B(x,«)

x2x8

4pux2x8u3
•nux2x8u2dV5 f ~x!

and ~b! is proved.
We show now, that for anykPR3 there exists a unique solutionw̃k

s(x) of ~36!.
Using the definition of thezk

s(x) @see~39!# in ~36! yields

zk
s~x!5vk~x!2E A” ~x8!Gk

1~x2x8!zk
s~x8!d3x8, ~A40!

where

vk~x!ª2E A” ~x8!Gk
1~x2x8!wk

s~x8!d3x8. ~A41!

It suffices to prove, that~A40! has a unique solution for anykPR3. For the Schro¨dinger Greens
function, this has already been proven by Ikebe.11 We want to proceed in the same way.

Let B be the Banach space of all continuous functions tending uniformly to zero asx→`.
Due to ~48! v(x)PB. Ikebe uses the Riesz–Schauder theory of completely continuous ope
in a Banach space.13

If T is a completely continuous operator inB, then for any givengPB the equation

f 5g1T f ~A42!

has a unique solution inB if f̃ 5T f̃ implies that f̃ 50.
Defining the integral operatorT by

T f~x!ª2E A” ~x8!Gk
1~x2x8! f ~x8!d3x8

and usingv for g, ~A42! is equivalent to~A40!. Note, that this operator is completely continuo
by the proof of Lemma 3.4~a! following a similar argumentation as in Ref. 11 Lemma 4.2. So i
left to show, that the integral equation
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f̃ ~x!52E A” ~x8!Gk
1~x2x8! f̃ ~x8!d3x8 ~A43!

has the unique solutionf̃ [0.
Obviously f̃ [0 is a solution of~A43!. By virtue of ~48! any solution of~A43! has to be of

orderx21. Furthermoref̃ satisfies

~2D2k21A” ! f̃ 50 ~A44!

which can be shown by direct calculation.
Following Ikebe,f̃ [0 is the only solution of~A43!.
~c! ~i! follows directly from ~48!. For ~c! ~ii ! we need to work more. We prove~c! ~ii ! for

j 51,2.
Heuristically deriving~A40! with respect tok will yield ]kz. We denote the function we ge

by this formal method byzk8
s . Then

zk8
s~x!5]kvk~x!2E A” ~x8!]kGk

1~x2x8!zk
s~x8!d3x82E A” ~x8!Gk

1~x2x8!zk8
s~x8!d3x8.

~A45!

We will now show, that this integral equation has a unique solution. We define

p~x!ª]kvk~x!1E A” ~x8!]kGk
1~x2x8!zk

s~x8!d3x8 ~A46!

z̄k
s~x!ªzk8

s~x!2p~x! ~A47!

so z̄k
s satisfies

z̄k
s~x!52E A” ~x8!Gk

1~x2x8!p~x8!d3x82E A” ~x8!Gk
1~x2x8!z̄k8

s~x8!d3x8.

Since

v8~x!ª2E A” ~x8!Gk
1~x2x8!v8~x8!d3x8PB

this integral equation again has a unique solution, so does~A46!.
We will now show, thatz85]kz.
We define the integral ofz8,

z̃k,q,w
s ~x!ªz0

s~x!1E
0

k

zk8,q,w
8s

~x!dk8. ~A48!

Obviously]kz̃k
s5zk

s8 and z̃0
s5z0

s . Using ~A40! and ~A46! in ~A48! leads to

z̃k
s~x!5z0

s~x!1E
0

k

zk8,q,w
8s

~x!dk8

5v0~x!2E A” ~x8!G0
1~x2x8!z0

s~x8!d3x81E
0

k

]k8vk8~x!dk8

2E E A” ~x8!]k8Gk8
1

~x2x8!zk8
s

~x8!d3x81E A” ~x8!Gk8
1

~x2x8!zk8
8s

~x8!d3x8 dk8
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5vk~x!2E A” ~x8!G0
1~x2x8!z̃0

s~x8!d3x8

2E E A” ~x8!]k8Gk8
1

~x2x8!z̃k8
s

~x8!d3x81E A” ~x8!Gk8
1

~x2x8!zk8
8s

~x8!d3x8 dk8

2E E A” ~x8!]k8~Gk8
1

~x2x8!z̃k8
s

~x8!!d3x8 dk8

5vk~x!2E A” ~x8!Gk
1~x2x8!z̃k

s~x8!d3x8.

So z̃k
s satisfies~A40!. As the solution is unique, it follows, thatz̃k

s5zk
s , hence

]kzk
s5zk

s8 .

By ~48! z̃k
s andp(x) have uniform bound, so

sup
xPR3

i]kzk
s~x!is,`.

For the second derivative we have

]k
2 zs

x11
5]k

z̄s

x11
1]k

p

x11
.

The proof of the existence and uniqueness of]k ( z̄s/x) is the same as for]kz
s, furthermore]kz̄

s

is bounded uniformly inx.
For ]k @p/(x11)# we have

I ]k

p

x11I
s

5 I 1

x11
]kS ]kvk~x!2E A” ~x8!]kGk

1~x2x8!zk
s~x8!d3x8 D I

s

5 I 1

x11 S ]k
2vk~x!2E A” ~x8!]k

2Gk
1~x2x8!zk

s~x8!d3x8

2E A” ~x8!]kGk
1~x2x8!]kzk

s~x8!d3x8 D I
s

. ~A49!

Note, that

u]k
2Gk

1~x!u5ux2Sk
1~x!1x]kSk

1~x!1]k
2Sk

1~x!u<M S xk1
k

x2D . ~A50!

Observing~A50! and ~35! ]k
2Gk

1/x11 and]kzk
s are bounded uniformly inx, we have also, that

1

x11 S ]k
2vk~x!2E A” ~x8!]kGk

1~x2x8!]kzk
s~x8!d3x8 D

is uniformly bounded inx.
For the other summand we get
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sup
x,kPR3

I 1

x11 E A” ~x8!]k
2Gk

1~x2x8!zk
s~x8!d3x8I

s

< sup
xPR3

I 1

x11 E A” ~x8!~x2x8!zk
s~x8!d3x8I

s

< sup
xPR3

I E A” ~x8!
M ~x2x8!

~x11!~x811!
~x811!zk

s~x8!d3x8I
s

< sup
xPR3

I E A” ~x8!M ~x811!zk
s~x8!d3x8I

s

,` .

This proves~c!~ii !.
~c!~iii ! The proof of~c!~iii ! is very similar to the proof of~c!~ii !. The only difference is, tha

we get new functionsp(x).

p~x!5kugu21Dk
gvk~x!1E A” ~x8!kugu21Dk

gGk
1~x2x8!zk

s~x8!d3x8.

To havep(x) in B one only has to assure, thatkugu21Dk
gk is bounded forugu<2, which

follows by direct calculation.
~d! For potentials satisfying condition A~3! the scattering system (H,H0) is asymptotically

complete~see Ref. 14!, i.e., for any scattering statec there exists a free outgoing asymptoticcout

with

lim
t→`

ic~x,t !2cout~x,t !i50. ~A51!

We write this, using the Fourier transformĉout
s of cout,

lim
t→`

Ic~x,t !2(
s51

2 E ~2p!2 3/2ĉout,s~k!wk
s~x,t !d3kI50.

We shall show that

lim
t→`

I E ~2p!2 3/2ĉout,s~k!~ w̃k
s~x,t !2wk

s~x,t !!d3kI50. ~A52!

With that

lim
t→`

Ic~x,t !2(
s51

2 E ~2p!2 3/2ĉout,s~k!w̃k
s~x,t !d3kI

5 lim
t→`

I e2 iHtS c~x!2(
s51

2 E ~2p!2 3/2ĉout,s~k!w̃k
s~x!d3kD I

5Ic~x!2(
s51

2 E ~2p!2 3/2ĉout,s~k!w̃k
s~x!d3kI50

which establishes~40!. For ~A52! we consider
                                                                                                                



460 J. Math. Phys., Vol. 44, No. 2, February 2003 D. Dürr and P. Pickl

                    
E ~2p!2 3/2ĉout,s~k!~ w̃k
s~x,t !2wk

s~x,t !!d3k

5E ~2p!2 3/2eiEktĉout,s~k!zk
s~x!d3k

5E ~2p!2 3/2eiEktĉout,s~k!vk
s~x!d3k

2E ~2p!2 3/2eiEktĉout,s~k!E A” ~x8)Gk
1~x2x8!zk

s~x8!d3x8 d3k5..j1~x!1j2~x!.

~A53!

For thek-integration ofj1 we introduce~A41! and ~35! and then use Lemma 3.1, setting

m5t, a5t21ux2x8u, y5t21x8, k85k, x~k8!5~2p!2 3/2ĉout,s~k8!.

Furthermore we recall that

kstat

Akstat
2 1m2

1a2y50

kstat
2 5~kstat

2 1m2!~y2a!2

kstat5m~y2a!Akstat
2 1m25m

x8

t
Akstat

2 1m2.

For j2 we set

m5t, a5t21ux2x8u, y50, k85k, x~k8!5~2p!2 3/2zk
s~k8!ĉout,s~k8!.

Hence by~17! we obtain for~A53! that there existsM,` uniform in y anda, such that

ij1~x!1j2~x!is<Mt2 3/2U E A” ~x8!Gk
1~x2x8!~11x8!d3x8U5..Mt2 3/2G~x!. ~A54!

The integralG(x) is bounded and goes to zero in the limitx→` @see~48!#. This we shall use in
the following estimate. For~A52! we need to control

lim
t→`

ij11j2i5 lim
t→`

S E I j11j2I s
2d3xD 1/2

.

We split this integral into three parts, which are time dependent by introducing for all«.0,

r«~x!5IB(0,«t) , the indicator function of the setB~0,«t !,

r̃«~x!5IB(0,t)\B(0,«t) ,

rout~x!5IR3\B(0,t) ,

thus splitting our integral into
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lim
t→`

E ij11j2is
2 d3x5 lim

t→`
E r«~x!ij11j2is

2 d3x1 lim
t→`

E r̃«~x!ij11j2is
2 d3x

1 lim
t→`

E rout~x!ij11j2is
2 d3x5..I 11I 21I 3 . ~A55!

The last part of this integral is the part, that lies outside the light cone. For large times, all
functions which are solutions of the free or full Dirac equation will lie inside the light cone.
virtue of ~29!,

lim
t→`

irout~x!cout,s~x!i50,

lim
t→`

Irout~x!E ~2p!2 3/2ĉout,s~k!wk
s~x!d3kI50,

or by ~A51!,

lim
t→`

Irout~x!E ~2p!2 3/2ĉout,s~k!w̃k
s~x!d3kI50.

By ~A53! it follows, that:

I 35 lim
t→`

Irout~x!E ĉout,s~k!~ w̃k
s~x!2wk

s~x!!d3kI50.

Now we use~A54! on:

I 1<M2 lim
t→`

~ sup
x<«t

$G~x!%!2t23
4p

3
~«t !35C«3.

Since« is arbitrary,I 150.
For I 2 we have

I 25 lim
t→`

U E r̃«~x!ij11j2is
2 d3xU5 lim

t→`
UM2E t23r̃«~x!G~x!2 d3xU< lim

t→`

sup
x>«t

uG~x!2u50

and ~40! is proved.
We first prove~41! for wave functions, wherecout is in L1ùL2. The general result can the

be obtained by density arguments.
Therefore we again use the unitarity of the time propagator

E ~2p!2 3/2^w̃k
s~x!,c~x!&d3x5 lim

t→`
E ~2p!2 3/2eiHt^w̃k

s~x!,e2 iHtc~x!&d3x

5 lim
t→`

eiEtE ~2p!2 3/2^w̃k
s~x!,c~x,t !&d3x

5 lim
t→`

eiEtE
B(0,R)

~2p!2 3/2^w̃k
s~x!,c~x,t !&d3x

1 lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^w̃k
s~x!,c~x,t !&d3x.
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By asymptotical completeness~A51! we obtain therefore

E ~2p!2 3/2^w̃k
s~x!,c~x!&d3x5 lim

t→`

eiEtE
B(0,R)

~2p!2 3/2^w̃k
s~x!,cout~x,t !&d3x

1 lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^w̃k
s~x!,cout~x,t !&d3x.

By the free scattering into cones theorem, the first integral of the right-hand side goes t
because any freely evolving wave function leaves any bounded region. For the second inte
write for all R.0,

E ~2p!2 3/2^w̃k
s~x!,c~x!&d3x5 lim

R→`

lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^wk
s~x!,cout~x,t !&d3x

1 lim
R→`

lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^zk
s~x!,cout~x,t !&d3x.

Using Lemma 3.4~c!~i!, the second integral on the right-hand side becomes

U lim
R→`

lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^zk
s~x!,cout~x,t !&d3xU

< lim
R→`

M

R I lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2cout~x,t !d3xI
5 lim

R→`

M

R I E
R3\B(0,R)

~2p!2 3/2cout~x,0!d3xI50.

Therefore,

E ~2p!2 3/2^w̃k
s~x!,c~x!&d3x5 lim

R→`

lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^wk
s~x!,cout~x,t !&d3x

5 lim
R→`

lim
t→`

eiEtE
R3\B(0,R)

~2p!2 3/2^wk
s~x!,cout~x,t !&d3x

5 lim
R→`

lim
t→`

eiEtE ~2p!2 3/2^wk
s~x!,cout~x,t !&d3x

5 lim
R→`

E ~2p!2 3/2^wk
s~x!,cout~x,0!&d3x5ĉout,s~k!.

and ~41! is proved.

Proof of Lemma 2.2

First we want to prove⇒.
Let ĉout(k)PG. According to~40! we have for anynPN0 :

Hnc~x!5(
s51

2 E ~2p!2 3/2Hnw̃k
s~x!ĉout,s~k!d3k5(

s51

2 E ~2p!2 3/2Ek
nw̃k

s~x!ĉout,s~k!d3k.
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Since ĉout(k) decays faster than any polynom, this term is bounded and inL2
^ C4 for all n

PN0 . As the potentialA” PC`, also

~H2A” 2bm!nc~x!5¹” nc~x!

is bounded and inL2
^ C4 for all nPN0 .

Furthermore we have, using~36! in ~40!:

Hnc~x!5(
s51

2 E ~2p!2 3/2w̃k
s~x!Ek

nĉout,s~k!d3k

5(
s51

2 E ~2p!2 3/2wk
s~x!Ek

nĉout,s~k!d3k

2(
s51

2 E ~2p!2 3/2E A” ~x8!Gk
1~x2x8!w̃k

s~x8!d3x8 Ek
nĉout,s~k!d3k5..I 11I 2 .

I 1 is the Fourier transform ofEk
nĉout,s(k). As Ek

nĉout,s(k)PG, I 1 lies in Ĝ.
Next we write forI 2 ,

I 252(
s51

2 E ~2p!2 3/2E A” ~x8!eikx1 ik(ux2x8u2x)
Sk

1~x2x8!

ux2x8u
w̃k

s~x8!d3x8 Ek
nĉout,s~k!d3k dV

52(
s51

2 E E
0

`

~2p!2 3/2E A” ~x8!eikxF~k,x,x8!d3x8Ek
nĉout,s~k!k2 dk dV,

where

F~k,x,x8!ªeik(ux2x8u2x)
Sk

1~x2x8!

ux2x8u
w̃k

s~x8!. ~A56!

We make now two partial integrations under thek integral, which is possible by Fubinis theorem

I 252(
s51

2 E ~2p!2 3/2E
0

`E A” ~x8!eikxF~k,x,x8!d3x8 Ek
nk2ĉout,s~k!dk dV

52(
s51

2
1

x2 E ~2p!2 3/2E
0

`E A” ~x8!eikx]k
2~F~k,x,x8!d3x8 Ek

nk2ĉout,s~k!!dk dV

52(
s51

2
1

x2 E E
0

`E ~2p!2 3/2A” ~x8!eikx]k
2F~k,x,x8!Ek

nk2ĉout,s~k!

12]kF~k,x,x8!]k~Ek
nk2ĉout,s~k!!dk dV d3x8

2(
s51

2
1

x2 E
0

`E ~2p!2 3/2E A” ~x8!eikxF~k,x,x8!d3x8,s~k!)dk dV5..I 31I 4 .

For I 4 we can write, using the definition ofF ~A56! and ~36!
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x2I 45(
s51

2 E ~2p!2 3/2w̃k
s~x!]k

2~Ek
nk2ĉout,s~k!!

1

k2 d3k

2(
s51

2 E ~2p!2 3/2wk
s~x!]k

2~Ek
nk2ĉout,s~k!!

1

k2 d3k.

As ĉoutPG, ]k
2(Ek

nk2ĉout,s(k)) (1/k2) lies in L2 and so doesx2]k
nI 4 for nPN0 .

Under thek integral in I 3 one more partial integration is possible,

I 352(
s51

2
1

x3 E ~2p!2 3/2E A” ~x8!F̃~k,x,x8!d3x,

where

F̃~k,x,x8!ª]k~]k
2F~k,x,x8!Ek

nk2ĉout,s~k!12]kF~k,x,x8!]k~Ek
nk2ĉout,s~k!!!.

Due to Lemma 3.4~c! ]k
nw̃k(x8)<Mx8. Furthermore we have, that

u]ke
ik(ux2x8u2x)u5u~ ux2x8u2x!eik(ux2x8u2x)u<x8ueik(ux2x8u2x)u.

It follows, that @remember the definition ofF ~A56!#

iF̃~x,x!is<M2

x83

ux2x8u
.

So due to~48!, with condition B~9! on the potential, the integral

E A” ~x8!F̃~k,x,x8!d3x8

decays as fast as or faster thanx21, so x4I 3 is bounded. It follows, thatx2I 3 lies in L2 for n
PN0 .

The proof, thatx]x
ncPL2 is similar as above, just with one partial integration less. It follow

that cPĜ.
It is left to prove⇐.
By Lemma 3.4~b! it follows, that

Ekĉout,s~k!5Hĉout,s~k!

5E ~2p!2 3/2^w̃k
s~x!,Hc~x!&d3x

5E ~2p!2 3/2^w̃k
s~x!,~H01A” !c~x!&d3x.

For cPĜ, the right-hand side is integrable, soEkĉout,s(k) is bounded. AsA” PC`, this can be
repeated, soEk

nĉout,s(k) is bounded for anynPN.
SinceEk5Ak21m2>k, it follows, that

knĉout,s~k!,`.

Equivalently we get
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Ek
n]k

j ĉout,s~k!5E ~2p!2 3/2^]k
j w̃k

s~x!,Hnc~x!&d3x,

Ek
nkugu21Dk

gĉout,s~k!5E ~2p!2 3/2^kugu21Dk
gw̃k

s~x!,Hnc~x!&d3x.

With ~c! of Lemma 3.4 it follows, that forcPĜ these terms are bounded forj 51,2, nPN0 and
ugu<2. Soĉout,s(k)PG.
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Covariant phase difference observables in quantum
mechanics
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Covariant phase difference observables are determined in two different ways, by a
direct computation and by a group theoretical method. A characterization of phase
difference observables which can be expressed as the difference of two phase
observables is given. The classical limits of such phase difference observables are
determined and the Pegg-Barnett phase difference distribution is obtained from the
phase difference representation. The relation of Ban’s theory to the covariant phase
theories is exhibited. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1534383#

I. INTRODUCTION

In quantum optical phase measurements like heterodyne and eight-port homodyne det
one can measure the phase difference between two single-mode input fields. However
second field, the reference field, can be considered as a classical field with well-known pha
~high! amplitude, then the theory reduces to a single-mode theory with one input beam.
such conditions the heterodyne1,2 and the eight-port homodyne3–5 detection schemes measure t
single-mode phase observable

X°Eu0&~X!ª
1

p E
X
E

0

`

uz&^zu uzu duzu d~argz!

defined in terms of the coherent statesuz&ªe2uzu2/2(n50
` zn/An! un&. Hereuz&^zu denotes the pro-

jection on the one-dimensional subspace spanned byuz& andz5uzu argz is a complex number. The
phase observableEu0& is covariant with respect to the shifts generated by the single-mode nu
operatorNª(n50

` nun&^nu, that is,

eiuNEu0&~X!e2 iuN5Eu0&~Xuu!

for all ~Borel! setsX#@0,2p) anduPR, with u denoting the addition modulo 2p. This condition
is a natural covariance condition for observables describing coherent state phase measur
and one may define a~single-mode! phase observable as a phase shift covariant normal
positive operator measure.6–9 The structure of such observables is completely known and they
be characterized in at least four different ways in terms of phase matrices, sequences
vectors, sequences of generalized vectors, or using covariant trace-preserving operations, s
Refs. 6, 8, 10, and 11.

In this article we consider the difference of two~single-mode! phase observables and w
notice that it satisfies a natural covariance condition. We take this condition as the de

a!Electronic mail: temihe@utu.fi
b!Electronic mail: pekka.lahti@utu.fi
c!Electronic mail: juhpello@utu.fi
4660022-2488/2003/44(2)/466/14/$20.00 © 2003 American Institute of Physics
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condition of~two-mode! phase difference observables. We give both a direct~Sec. III! and a group
theoretical~Sec. IV! characterization of such observables whereas in Sec. V we obtain a ch
terization of the phase difference observables which can be expressed as a difference of tw
observables. Section VI puts the phase difference distribution of Barnett and Pegg12,13 in the
present context. Section VII studies the classical limit of the two-mode theory whereas Sec
discusses the relation of Ban’s theory14–16to the covariant phase and phase difference theories
the final section of the article some historical remarks are due and the question of measurab
the phase difference is briefly reviewed.

II. PHASE DIFFERENCE OBSERVABLES

Two phase observables can be joined in a natural way into a phase difference obse
Indeed, suppose thatE1 :B(@0,2p))→L(H) and E2 :B(@0,2p))→L(H) are phase observable
whereB(@0,2p)) is the Borels-algebra of the phase interval@0,2p!, H is a separable Hilber
space spanned by the number statesun&, nPN, andL(H) is the set of bounded operators onH.
The product map (X,Y)°E1(X) ^ E2(Y) determines through a continuous linear extensio
unique operator measure

Ẽ:B~@0,2p!3@0,2p!!→L~H^ H!,

with the property

Ẽ~X3Y!5E1~X! ^ E2~Y!.

Using the function

f :@0,2p!3@0,2p!→@0,2p!, ~x,y!°x2y~mod 2p!

one gets fromẼ the observable which is the difference of the observablesE1 andE2 :

Ediff :B~@0,2p!!→L~H^ H!, Ediff~X!ªẼ~ f 21~X!!.

Using the explicit form10 of a phase observableE:B(@0,2p))→L(H),

E~X!5 (
n,m50

`

^wnuwm&
1

2p E
X
ei (n2m)udu un&^mu, ~1!

where (wn)nPN,H is a sequence of unit vectors, one easily computes that the differenceE1

andE2 is

Ediff~X!5 (
n,m,k,l PN

dn2m,l 2k^wn
1uwm

1 &^wk
2uw l

2&
1

2p E
X
ei (n2m)udu un,k&^m,l u. ~2!

Here d is the Kronecker delta,un,k&^m,l u stands for the rank one operatorH^ H
{c°^m,l uc&un,k&PH^ H, and, for instance,un,k& is the short-hand notation for the tens
product vectorun& ^ uk&.

Let

SNªN^ I 1I ^ N,

D NªN^ I 2I ^ N

denote the sum and the difference of the number operators of the two modes, and lSN
5(kPNkPk

S and D N5(kPZkPk
D be their respective spectral decompositions, with the spe

projections
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Pk
S5 (

n50

k

uk2n,n&^k2n,nu, kPN,

Pk
D5 (

n>max$0,2k%
uk1n,n&^k1n,nu, kPZ.

Consider the unitary operators

VS~a!5eiaSN, aPR,

VD~b!5eibD N, bPR.

The differenceEdiff of the phase observablesE1 andE2 is invariant underVS ,

VS~a!Ediff~X!VS~a!* 5Ediff~X!, ~3!

for all aPR,XPB(@0,2p)). This condition is equivalent to the commutativity ofSN andEdiff ,
that is,

Pk
SEdiff~X!5Ediff~X!Pk

S

for all kPN,XPB(@0,2p)). Since the number sum is a projection valued observablek°Pk
S , the

commutativity ofSN andEdiff equals with their being~functionally! coexistent, that is, they hav
a joint observable, see, for instance, Ref. 17. It is another immediate observation thatEdiff satisfies
the following covariancecondition underVD :

VD~b!Ediff~X!VD~b!* 5Ediff~Xu2b!, ~4!

for all bPR,XPB(@0,2p)).
Let

Q~a,b!5eiaN^ I 1 ibI ^ N, a,bPR.

Since

Q~a,b!5VSS a

2 DVDS a

2 DVSS b

2 DVDS 2
b

2 D ,

we observe that the invariance and covariance conditions~3! and ~4! are equivalent with the
condition

Q~a,b!Ediff~X!Q~a,b!* 5Ediff~Xu~a2b!! ~5!

for all XPB(@0,2p)) anda,bPR.
These observations lead us to the following definition.
Definition 1: A phase difference observableis a normalized positive operator measu

E:B(@0,2p))→L(H^ H) which satisfies the covariance condition

Q~a,b!E~X!Q~a,b!* 5E~Xu~a2b!! ~6!

for all XPB(@0,2p)) anda,bPR.
In the next sections we characterize all phase difference observables and we also

necessary and sufficient condition for a phase difference observable to be a difference
~one-mode! phase observables.
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III. DIRECT METHOD

The following lemma simplifies the proof of the Theorem 1 below.
Lemma 1: Let qPZ and letnq :B(@0,2p))→C be as-additive set function. Thennq(Xuu)

5eiqunq(X) for all XPB(@0,2p)) and uP@0,2p) if and only if nq(X)5cq (1/2p) *Xeiqudu for
all XPB(@0,2p)), where cqPC.

Proof: The ‘‘if’’ part of the lemma is clear, so we have to prove ‘‘only if’’statement. Assum
that nq(Xuu)5eiqunq(X) for all XPB(@0,2p)) and uP@0,2p). Since @0,2p)uu5@0,2p) it
follows that

nq~@0,2p!!5nq~@0,2p!uu!5eiqunq~@0,2p!!,

and thusnq(@0,2p))5c0d0,q , wherec0 is a complex constant. The rest of the proof is same as
proof of Lemma 1 in Ref. 10. h

Let E:B(@0,2p))→L(H^ H) be an arbitrary operator measure, that is, anL(H^ H)-valued
map defined onB(@0,2p)) which is s-additive with respect to the weak operator topology.

Theorem 1: (a) If the operator measure E:B(@0,2p))→L(H^ H) satisfies the covariance
condition (6), then for all XPB(@0,2p)),

E~X!5 (
n,m,k,l 50

`

cn,m,k,l

1

2p E
X
ei (n2m)uduun,k&^m,l u, ~7!

where cn,m,k,lPC, and cn,m,k,l50 if n2mÞ l 2k, for all n,m,k,l PN.
(b) If, in addition, E is positive, that is, E(X)>O for all XPB(@0,2p)), then

(n,m,k,l 50
N cn,m,k,l un,k&^m,l u>O for all NPN, and

(c) if E is normalized, that is, E(@0,2p))5I , then cn,n,k,k51 for all n,kPN.
Proof: ~a! Using the covariance condition we get

^n,kuE~Xu~a2b!!um,l &5eia(n2m)1 ib(k2 l )^n,kuE~X!um,l &

for all n,m,k,l PN, a,bPR and XPB(@0,2p)). Choosing a5b it follows that
^n,kuE(X)um,l &50 if n2mÞ l 2k. Denote

nn,m,k~X!ª^n,kuE~X!um,k1n2m&.

We get

nn,m,k~Xu~a2b!!5^n,kuE~Xu~a2b!!um,k1n2m&

5ei (a(n2m)1b(m2n))^n,kuE~X!um,k1n2m&

5ei (a2b)(n2m)nn,m,k~X!.

Taking q5n2m, Lemma 1 now gives Eq.~7!.
~b! If (n,m,k,l 50

N cn,m,k,l^cun,k&^m,l uc&,0 for someNPN and cPH^ H, then, due to the
continuity of the density function, one may choose ane.0 such that̂ PNcuE(@0,e))PNc&,0,
wherePNª(n,k50

N un,k&^n,ku. This is a contradiction.
~c! This is a direct check. h

To prove the converse of the above theorem, consider a positive normalized operator m
Ẽ:B(@0,2p)3@0,2p))→L(H^ H) and a set of complex numbersc̃ª( c̃n,m,k,l)n,m,k,l PN . We say
that Ẽ is Q-covariant if

Q~a,b!Ẽ~Z!Q~a,b!* 5Ẽ~Zu~a,b!!

for all ZPB(@0,2p)3@0,2p)), a,bPR, with u meaning~componentwise! addition mod 2p, and
we say thatc̃ is normalized positive semidefiniteif
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c̃n,n,m,m51,

(
n,m,k,l 50

N

c̃n,m,k,l un,k&^m,l u>O,

for all n,m,NPN.
With the above notations the following theorem is then obtained. Its proof is essentiall

same as in the one-dimensional case8 so that we omit it here.
Theorem 2: (a) If Ẽ is Q-covariant, then there is a normalized positive semidefinitec̃ such

that for any ZPB(@0,2p)3@0,2p)),

Ẽ~Z!5 (
n,m,k,l 50

`

c̃n,m,k,lE
Z
ei [(n2m)x1(k2 l )y]

dx

2p

dy

2p
un,k&^m,l u. ~8!

(b) If c̃ is normalized positive semidefinite, then formula (8) defines (weakly) aQ-covariant

normalized positive operator measure E˜ :B(@0,2p)3@0,2p))→L(H^ H).
By the above theorem, given a normalized positive semidefinite set of complex numberc̃ we

get aQ-covariant normalized positive operator measureẼ. Consider again the functionf (x,y)
5x2y(mod 2p), defined on the rectangle@0,2p)3@0,2p). Then the map B(@0,2p))
{X°Ẽf(X)ªẼ( f 21(X))PL(H^ H) is a phase difference observable with the structure give
Eq. ~7!, where now

cn,m,k,l5 c̃n,m,k,ldn2m,l 2k . ~9!

Remark 1:Let (cn,k)n,kPN be a set of unit vectors inH. It is clear that defining

c̃n,m,k,l5^cn,kucm,l&, ~10!

c̃ is normalized positive semidefinite. Also the converse is true, any normalized positive sem
nite set of complex numbers is of the form~10!. Construction of a set of unit vectors$cn,k%n,kPN

for a givenc̃ is similar than the one given in Ref. 10, Sec. II.B. We note also that ifc̃ is positive
semidefinite defined by unit vectors (cn,k)n,kPN , thenc defined as in Eq.~9! is positive semidefi-
nite since one may choose a sequence (cn,k^ un1k&)n,kPN of unit vectors to constructc.

Remark 2:Equation ~9! shows thatQ-covariant observablesẼ form a ‘‘wider’’ class of
observables than phase difference observables of Definition 1 in the sense that there ar
Q-covariant observables which give the same phase difference observable, and any phas
ence observable withc defines aQ-covariant observable which has, for instance, the samec as its
structure unit. One may define an equivalence relation betweenQ-covariant observables as fo
lows: two Q-covariant observables withc̃ and d̃ are equivalent ifc̃n,m,k,l5d̃n,m,k,l for all
n,m,k,l PN, n2m5 l 2k, that is, if they define the same phase difference observable.

Remark 3:Using ~7!, it easy to see that any phase difference observableE has a uniform
distribution in states where one mode is in a number state. For example, ifcªw ^ us&, wPH,
ici51, sPN, then

^cuE~X!uc&5
1

2p E
X
du, n,kPN, XPB~@0,2p!!.

Moreover, one may also witness that there is no projection valued phase difference observa
example,

^0,0uE~X!2u0,0&5U 1

2p E
X
duU2

,

and choosingX5@0,p) we get^0,0uE(@0,p))2u0,0&5 1
4. Compared tô0,0uE(@0,p))u0,0&5 1

2, this
shows that a phase difference observable cannot be a spectral measure.
                                                                                                                



orem.
phase
torus

.

or

n

the

e

t us

asure

471J. Math. Phys., Vol. 44, No. 2, February 2003 Phase difference observables in quantum mechanics

                    
IV. GROUP THEORETICAL SOLUTION

In Ref. 10 all phase observables were calculated using a generalized imprimitivity the
Here we follow the same method to give an alternative way to derive the structure of
difference observables. In using group theoretical methods, it is convenient to work in the
Tª$zPC : uzu51%, instead of phase interval@0,2p! where addition is to be taken modulo 2p. We
regardT as a compact~second countable! Abelian group and we letm denote its Haar measure
The product groupT3T has a unitary representationU on L2(T3T,m3m), defined by

@U~a,b! f #~z1 ,z2!5 f ~az1 ,bz2!. ~11!

To solve the covariance condition~6!, we will first characterize all positive normalized operat
measuresF:B(T)→L(L2(T3T,m3m)) that satisfy

U~a,b!F~X!U~a,b!* 5F~ab21X! ~12!

for all XPB(T), a,bPT. The canonical spectral measureFcan satisfying this condition is of the
form

@Fcan~X! f #~z1 ,z2!5xX~z1
21z2! f ~z1 ,z2!, ~13!

wherexX is the characteristic function of the setX.
Notice thatU(a,b)5U(a,1)U(1,b), so that the covariance conditions

U~a,1!F~X!U~a,1!* 5F~aX!, aPT,XPB~T!, ~14!

and

U~1,b21!F~X!U~1,b21!* 5F~bX!, bPT,XPB~T!, ~15!

taken together are equivalent with the condition~12!. We will denote the representatio
a°U(a,1) asU1 and the representationa°U(1,a21) asU2 .

Covariance condition~12! can be solved by looking at the actionz°ab21z of T3T onT and
noting that the stability subgroup isT.18 Here we proceed in a different way. We characterize
normalized positive operator measures satisfying separately conditions~14! and ~15!. Then we
combine the results to obtain operator measures satisfying condition~12!. Finally, we go back to
the original Hilbert spaceH and to the phase interval@0,2p! to get all the phase differenc
observables.

Let F be a normalized positive operator measure satisfying condition~14!. Since the action
z°az of T on itself is transitive, (U1 ,F) is a transitive system of covariance based onT and,
hence, (U1 ,F) is described by Ref. 19, Proposition 2. In order to apply the cited result, le
notice the following facts. The stability subgroup of any point ofT is the trivial subgroup$1%. The
trivial representations of $1% acting onL2(T,m) contains all the~trivial! representations of$1% and
the corresponding imprimitivity system (R,P) for T based onT induced by s acts on
L2(T,m,L2(T,m)).L2(T3T,m3m) as

~R~a!w!~z1 ,z2!5w~a21z1 ,z2!, ~16!

~P~X!w!~z1 ,z2!5xX~z1!w~z1 ,z2!, ~17!

wherewPL2(T3T,m3m), aPT,XPB(T) andz1 , z2PT.
Proposition 2 of Ref. 19 shows that, given a normalized covariant positive operator me

F, there exists an isometry

W1 :L2~T3T,m3m!→L2~T3T,m3m!,
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which intertwines the actionU1 with R and such that

F~X!5W1* P~X!W1 , XPB~T!. ~18!

Conversely, given an intertwining isometryW1 from L2(T3T,m3m) to L2(T3T,m3m), Eq.
~18! defines a positive normalized operator measureF satisfying Eq.~14!.

Hence, to classify all normalized positive operator measures satisfying condition~14!, one has
to determine all the isometric mappingsW1 such that

W1U1~a!5R~a!W1 , aPT. ~19!

To perform this task, observe that the monomialsen , nPZ, en(z)5zn, zPT, form an ortho-
normal basis ofL2(T,m). Similarly, the product vectors

~enek!~z1 ,z2!5en~z1!ek~z2!5z1
nz2

k , n,kPZ,

form an orthonormal basis ofL2(T3T,m3m).
The action ofU1 in this base is

U1~a!~enek!5an~enek!

and the action ofR is simply

R~a!~enek!5a2n~enek!.

From Eq.~19! we get

R~a!W1~enek!5W1U1~a!~enek!5anW1~enek!

for all n,kPZ. It follows that W1(enek) must be in the vector spacespan$(e2nej )% j PZ
.L2(T,m). This means thatW1(enek)5(e2ncn,k), wherecn,k is some unit vector inL2(T,m).

The matrix elements ofF in the basis$(enek)%n,kPN are thus

^~enek!uF~X!~emel !&5^~enek!uW1* P~X!W1~emel !&

5^W1~enek!uP~X!W1~emel !&

5^~e2ncn,k!uP~X!~e2mcm,l !&

5^cn,kucm,l& E
X
zn2m dm~z!. ~20!

We consider next condition~15!. Like in the previous case,U2 and a normalized positive
operator measureF satisfying ~15! form a transitive system of covariance based onT. The
corresponding imprimitivity system is the same pair (R,P), defined in Eqs.~16! and ~17!. The
action ofU2 in the basis$(enek)%n,kPN is

U2~a!~enek!5a2k~enek!.

If W2 is an isometry intertwining representationsU2 andR, then

R~a!W2~enek!5W2U2~a!~enek!5a2kW2~enek!. ~21!

ThusW2(enek) must be in the vector spacespan$(ekej )% j PZ.L2(T,m) andW2(enek)5ekwn,k for
some unit vectorwn,kPL2(T,m).

Matrix elements are now
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^~enek!uF~X!~emel !&5^~enek!uW2* P~X!W2~emel !&

5^W2~enek!uP~X!W2~emel !&5^~ekwn,k!uP~X!~elwm,l !&

5^wn,kuwm,l& E
X
zl 2k dm~z!. ~22!

Assume now thatF is a normalized positive operator measure that satisfies condition~12!, or,
equivalently, conditions~14! and~15!. This means that the matrix elements~20! and~22! are the
same:

^cn,kucm,l& E
X
zn2m dm~z!5^wn,kuwm,l& E

X
zl 2k dm~z! ~23!

for all n,m,k,l PZ andXPB(T). From this we getn2m5 l 2k and ^cn,kucm,l&5^wn,kuwm,l&.
We summarize the above construction in the following theorem.
Theorem 3: Any normalized positive operator measure F:B(T)→L2(T3T,m3m) satisfying

covariance condition (12) is of the form

F~X!5 (
n,m,k,l PZ

dn2m,l 2k^cn,kucm,l&E
X
zn2mdm~z! uenek&^emel u ~24!

for some set(cn,k)n,kPZ,L2(T,m) of unit vectors.
We note that in~24! only the inner products of the vectorscn,k are relevant. Thus two sets o

unit vectors (cn,k)n,kPZ and (hn,k)n,kPZ define the same positive operator measure exactly w

dn2m,l 2k^cn,kucm,l&5dn2m,l 2k^hn,kuhm,l&

for all n,m,k,l PZ.
Example 1:The canonical spectral measureFcan of Eq. ~13! written in the above form is

simply

Fcan~X!5 (
n,m,k,l PZ

dn2m,l 2kE
X
zn2mdm~z! uenek&^emel u,

showing thatFcan can be defined by a set (cn,k)n,kPZ , wherecn,k5c for all n,kPZ andc is any
unit vector.

We are now ready to solve the covariance condition~6!. Let H be a complex separable Hilbe
space with an orthonormal basis$un&%nPN , andT:H^ H→L2(T3T,m3m) be a linear isometry
with the property

Tun,m&5enem , for all n,mPN.

If @0,2p! is identified with T by the mappinga°eia, then Q can be regarded as a unita
representation ofT3T. Clearly, T intertwines representationsQ and U, TQ5UT. If F̃:B(T)
→L(H^ H) satisfies the equation

Q~a,b!F̃~X!Q~a,b!* 5F̃~ab21X! ~25!

for all a,bPT, XPB(T), thenF(X)ªTF̃(X)T* is a normalized positive operator measure ha
ing property ~12!. Moreover, if F:B(T)→L(L2(T3T,m3m)) satisfies condition~12!, then X
→T* F(X)T is a normalized positive operator measure acting inL(H^ H) and satisfying~25!.
Using Theorem 3, one thus has the following result.

Theorem 4: A normalized positive operator measure E:B(@0,2p))→L(H^ H) is a phase
difference observable if and only if
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E~X!5 (
n,m,k,l PN

dn2m,l 2k^jn,kujm,l&
1

2p E
X
ei (n2m)udu un,k&^m,l u, ~26!

for some set of unit vectors(jn,k)n,kPN of H.
In view of Remark 1, this result is the same as the one obtained in Sec. III. SinceT:H^ H

→L2(T3T,m3m) is not surjective, there is no projection valued phase difference observa
Remark 4:The moment operatorsE(r ),r PN, of the phase difference observableE are defined

as

E(r )
ªE

0

2p

u rdE~u!

and they are bounded self-adjoint operators. By direct calculation we get

^n,kuE(1)um,l &5dn2m,l 2k^jn,kujm,l&
i

m2n
,

whennÞm. For n5m one gets

^n,kuE(1)un,l &5pdk,l .

Thus the phase difference observableE is uniquely determined by its first moment operatorE(1).
This is notable sinceE is not projection valued. The same result holds also for phase observa
see Ref. 20 for a further discussion of this conundrum.

Similarly, ther th cyclic moment operator ofE is defined as the operatorCE
(r ) ,

CE
(r )
ªE

0

2p

eir udE~u!, r PN.

They are easily determined to be

CE
(r )5 (

n,l 50

`

^jn,l 1r ujn1r ,l&un,l 1r &^n1r ,l u.

Since CE
(1)u0,0&50, the first cyclic moment is not unitary. This is another way to see

already mentioned fact that there is no projection valued phase difference observable.

V. PHASE DIFFERENCE OBSERVABLE VERSUS DIFFERENCE OF PHASE
OBSERVABLES

Till now we have characterized in two different ways the phase difference observables, a
have also constructed explicitly the difference of two phase observables. The following pro
tion characterizes those phase difference observables which are, that is, can be expresse
difference of two phase observables. Its proof is a direct comparison of formulas~2! and ~26!.

Proposition 1: Let E:B(@0,2p))→L(H^ H) be a phase difference observable, characteriz
by a set(jn,k)n,kPN . Observable E is a difference of two phase observables if and only if there
sequences(wn

1)nPN and (wn
2)nPN of unit vectors inH such that

dn2m,l 2k^jn,kujm,l&5dn2m,l 2k^wn
1uwm

1 &^wk
2uw l

2& ~27!

for all n,k,m,l PN.
The next example shows that there are phase difference observables that are not the di

of two phase observables. It also opens the question of finding physically meaningful cond
for Proposition 1.
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Example 2:Fix an arbitrary unit vectorcPH and letu j , j 51,2,3,4, be real numbers. Defin
j0,25eiu1c, j2,25eiu2c, j0,45eiu3c, j2,45eiu4c andjn,k5c otherwise. Assume now that ther
are sequences (wn

1)nPN and (wn
2)nPN such that Eq.~27! holds. Then

eiu45^j3,3uj2,4&5^w3
1uw2

1&^w3
2uw4

2&5
^w3

1uw2
1&^w1

2uw2
2&^w1

1uw0
1&^w3

2uw4
2&

^w1
1uw0

1&^w1
2uw2

2&

5
^j3,1uj2,2&^j1,3uj0,4&

^j1,1uj0,2&
5ei (u21u32u1).

Choosing the numbersu j in such a way thateiu4Þei (u21u32u1) we thus get a contradiction.
From Eq.~27! it is also clear that two different pairs of phase observables may define the

phase difference observable.
We close this section with a terminological choice. We say that a phase difference obse

is canonicalif it is the difference of two canonical phase observables and we denote it byEcan
diff .

Since the canonical phase observableEcan has the structure

Ecan~X!5 (
nPN

1

2p E
X
ei (n2m)uduun&^mu,

the explicit form ofEcan
diff can be read from both~2! and~24! with the involved inner products equa

to one in each case. Some properties of the canonical phase difference observable are disc
Secs. VI and VIII.

VI. RADON-NIKODÝM DERIVATIVES AND THE PHASE DIFFERENCE REPRESENTATION

Let T be a state~positive trace-one operator! onH^ H, let E be a phase difference observab
with c, and letẼ be aQ-covariant observable withc̃. Using similar methods as in Ref. 11, Sec.
one can show that

tr~TE~X!!5
1

2p E
X
gT

E~u! du, XPB~@0,2p!!,

tr~TẼ~Z!!5
1

~2p!2 E
Z
g̃T

Ẽ~x,y! dx dy, ZPB~@0,2p!3@0,2p!!,

where

gT
E~u!5 (

n,m,k,l 50

`

cn,m,k,le
i (n2m)u^m,l uTun,k&,

g̃T
Ẽ~x,y!5 (

n,m,k,l 50

`

c̃n,m,k,le
i (n2m)x1 i (k2 l )y^m,l uTun,k&;

for du—almost alluPR, and for dxdy—almost all (x,y)PR2. The above notations(n,m,k,l 50
`

mean that for some increasing subsequences (st) tPN#N, (n,m,k,l 50
` 5 limt→`(n,m,k,l 50

st . It is easy

to see that ifE is constructed fromẼ @that is, Eq.~9! holds#, then

gT
E~u!5

1

2p E
0

2p

g̃T
Ẽ~x1u,x!dx.
                                                                                                                



ry

at
lt also

476 J. Math. Phys., Vol. 44, No. 2, February 2003 Heinonen, Lahti, and Pellonpää

                    
SinceH is isomorphic with the Hardy spaceH2 of the unit circle spanned by the vectorsen , n
PN, one can consider anycPH as an element ofH2, that is, as a function~or equivalence class
of functions!. Using this interpretation, for anyw,cPH andXPB(@0,2p)), one may write

^w ^ cuEcan
diff~X!w ^ c&5

1

2p E
X

1

2p E
0

2p

uw~x1u!u2uc~x!u2dxdu. ~28!

This phase difference distribution was first suggested by Barnett and Pegg.12,13

VII. CLASSICAL LIMIT

Like in the one-mode case,9 it is easy to show that for any operator measureE:B(@0,2p))
→L(H^ H) the condition

^z1eia,z2eibuE~X!uz1eia,z2eib&5^z1 ,z2uE~Xu~a2b!!uz1 ,z2&,

z1 ,z2PC, a,bPR, XPB(@0,2p)), equals the covariance condition~6! where uz1 ,z2&ªuz1&
^ uz2& is a two-mode coherent state.

Suppose thatEdiff is the difference of phase observablesE1 andE2 with (cn,m
1 ) and (cn,m

2 ),
respectively. If, for example, limn→`cn,n1k

2 5eika for all k>1, aP@0,2p), then for any continu-
ous functiong: @0,2p#→C

lim
uzu→`

argz fixed

E
0

2p

g~x!d^zuE2~x!uz&5g~argz2a!

~see Ref. 21, Th. 7.1!. Let guz&
En : @0,2p#→@0,̀ ) be a continuous Radon-Nikody´m derivative of the

probability measureX°^zuEn(X)uz&, n51,2. Then

lim
uz2u→`

argz2 fixed

1

2p E
0

2p

guz1&
E1 ~x1u!guz2&

E2 ~x!dx5guz1&
E1 ~u1argz22a!,

which implies the following proposition:
Proposition 2: For any XPB(@0,2p)),

lim
uz2u→`

argz2 fixed

^z1 ,z2uEdiff~X!uz1 ,z2&5^z1uE1~X1argz22a!uz1&.

This means that, in the classical limituz2u→` of the second mode, the two-mode theo
reduces to a single-mode theory. Moreover, if also limn→` cn,n1k

1 5eika8 for all k>1, then

lim
uz1u,uz2u→`

argz1 , argz2 fixed

^z1 ,z2uEdiff~X!uz1 ,z2&5dargz12argz22a81a~X!,

where dp is a Dirac measure concentrated on the pointp. This is the classical limit of the
two-mode system.

Remark 5:It is known from the theory of homodyne detection22,23 that when the reference
mode is in a large amplitude coherent stateuz&, uzu@0, the lowering operatora of the reference
mode can be replaced with the ‘‘classical’’ observablez I in practical calculations. This means th
the energy and the phase of the reference field are well known and fixed. A similar resu
holds for the difference of phase observables, as well.

Let aP@0,2p) and define afixed-phase observable
                                                                                                                



the
se

n to
er dif-

f. 6 or

ctor 2
es

477J. Math. Phys., Vol. 44, No. 2, February 2003 Phase difference observables in quantum mechanics

                    
Fa : B~@0,2p!!→L~H!, X°da~X! I

whereda is the Dirac measure concentrated ona. The fixed-phase observableFa is the spectral
measure of a self-adjoint operatora I and, thus, it is not a phase observable. If we choose
phase observableE2 to be the fixed-phase observableFa ~this can be done similarly as in the ca
of two phase observables althoughFa is not covariant!, thenEdiff(X)5E1(Xua) ^ I , that is, the
‘‘phase difference’’Ediff and the single-mode phaseE1 are practically the same observables~up to
unitary equivalence or the choice of the reference phasea!.

VIII. BAN’S THEORY

In a series of papers14–16 Ban has proposed a unitary two-mode phase operator in relatio
the number difference. To discuss Ban’s theory in the present context, consider the numb
ferenceDN5(kPZkPk

D defined in Sec. II. All the eigenspacesHkªPk
D(H^ H) are infinite di-

mensional and the vectors$uk1n,n&%n>max$0,2k% constitute an orthonormal basis ofHk . One may
thus define a unitary operatorD on H^ H so that, for eachkPZ, D(Hk)5Hk21 . To exhibit such
an operator we rename the basis vectors using the notation of Ban:

uk,n&&ª H un1k,n&, k>0,
un,n2k&, k,0.

Then, for anykPZ, the spectral projectionPk
D can be expressed asPk

D5(nPNuk,n&&^̂ k,nu, and
one may choose, for instance,

D5(
kPZ

(
nPN

uk21,n&&^̂ k,nu.

This is Ban’s proposal for a phase operator. Writing

D5E
0

2p

eiu dB~u!, ~29!

the spectral measureB of D has the form

B~X!5 (
k,l PZ

(
nPN

1

2p E
X
ei (k2 l )udu uk,n&&^̂ l ,nu.

Clearly,B is not phase shift covariant so that it is not a phase observable in the sense of Re
7. However, the spectral measureB fulfills the covariance condition

VD~b!B~X!VD~b!* 5B~Xub!

for all bPR,XPB(@0,2p)). This differs from the covariance condition~4! by the factor 2. Thus
B is not a phase difference observable in the sense of Definition 1. The difference by the fa
in the covariance conditions satisfied byB andEcan

diff is also reflected in the commutation properti
of D andCE

can
diff

(1)
with DN. Indeed, for allkPZ andnPN,

@D,DN#uk,n&&5Duk,n&& ~30!

whereas

@CE
can
diff

(1)
,DN#uk,n&&52CE

can
diff

(1) uk,n&&. ~31!

Notice also that the first cyclic momentCEcan

(1) of the canonical phase observableEcan satisfies
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@CEcan

(1) ,N#un&5CEcan

(1) un&

for all nPN. The factor 2 in the covariance condition~4! and the commutation relation~31! is
natural for a phase difference observable. It is also worthwhile to note that condition~4! has a
projection valued solution.18 The corresponding unitary operator is

(
kPZ

(
nPN

uk22,n&&^̂ k,nu.

Compared to~29!, here is again 2 instead of 1.
Although spectral measureB is neither a phase observable nor a phase difference observ

it has the following relation to canonical phase observable. When the second mode is
vacuum state and the first mode is in an arbitrary stateT, then

tr~T^ u0&^0u B~X!!5tr~TEcan~X!!, XPB~@0,2p!!.

IX. DISCUSSION

The first phase difference operators studied in the literature were suggested by Sussk
Glogower24 ~see also Refs. 25 and 26!. Their operators were the so-called cosine and sine ph
difference operators which can be represented asC125*0

2p cosu dEcan
diff(u) and S12

5*0
2p sinu dEcan

diff(u), respectively. The operatorsC12 andS12 do not commute, and their spectr
are the interval@21,1#, including a countable dense set of eigenvalues.24–26

Lévy-Leblond27 defined the relative exponential phase operator*0
2peiudEcan(u)

^ *0
2pe2 iudEcan(u)5*0

2peiudEcan
diff(u) by analogy with the classical expressionei (u12u2)

5eiu1e2 iu2. The operator*0
2peiudEcan

diff(u) is not unitary but it is associated with the polar deco
position ofa^ a* in the following way: usingua^ a* u5AN^ (N1I ),

a^ a* 5E
0

2p

eiudEcan
diff~u! AN^ ~N1I !.

We can add an extra operatorTª(n50
` un&^0u ^ u0&^nu to *0

2peiudEcan
diff(u) and it still satisfies the

polar decomposition relation ofa^ a* . When doing this we get a unitary operatorE12

ª*0
2peiudEcan

diff(u)1T and, thus, a self-adjoint operatorF12 such thatE125eiF12. Obviously, the
operatorF12 is not the first moment operator of a covariant phase difference observable. Lu
Sánchez-Soto have shown28 that the point spectrum ofF12 consists of eigenvalues$2pr /(n
11)unPN, r 50,1,. . . ,n%,@0,2p), the closure of this set being@0,2p#. When the second mod
is in a large amplitude coherent stateuz&, the spectral measure ofF12 gives essentially the sam
results asEcan ~or the difference ofEcan andFargz).

28,29

Finally, we note that in eight-port homodyne detection the measurement data is alway
crete. Only in the limit of large intensity of the known fixed-phase reference oscillator the
becomes~essentially! ‘‘continuous,’’ giving rise to the phase observableEu0& . Thus, strictly speak-
ing eight-port homodyne detection cannot be described as a measurement of the phase di
observable intwo arbitrary signal fields. However, using two eight-port homodyne detectors
the same large amplitude fixed-phase reference field one can measure the difference of
phase observablesEu0& andEu0& .30
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Some integrable systems in nonlinear quantum optics
Maciej Horowski,a) Anatol Odzijewicz,b) and Agnieszka Tereszkiewiczc)

Institute of Theoretical Physics, University in Białystok,
Lipowa 41, 15-424 Białystok, Poland

~Received 30 August 2002; accepted 17 October 2002!

In the paper we investigate the theory of quantum optical systems. As an applica-
tion we integrate and describe the quantum optical systems which are generically
related to the classical orthogonal polynomials. The family of coherent states re-
lated to these systems is constructed and described. Some applications are also
presented. ©2003 American Institute of Physics.@DOI: 10.1063/1.1530756#

I. INTRODUCTION

Quantum optics affords a large amount of very interesting physical phenomena having i
tant application at the same time. Our aim is to formulate the theory of these phenomen
elucidate their connection with the theory of orthogonal polynomials. This allows us to use th
one for the rigorous integration of some nonlinear quantum optical models describing the
action of the finite number of modes of electromagnetic field with nonlinear medium. Le
mention that, in quantum optical literature~see, e.g., Refs. 3, 5, and 13–15!, the solutions of the
models of this type are usually approached by approximative or semiclassical methods.

In Sec. II we deduce from natural and not restrictive assumptions, the general form@see
~2.35!# of the HamiltonianHI describing the interaction of the finite number of modes of elec
field with the matter. Later on, in Sec. III, we investigate the quantum reduction method w
allows us to describe the quantum optical systems by the use of the theory of orthogonal p
mials ~see Refs. 1, 2, and 22!. We also show that the reduced system is related to some qua
algebras,@see relations~3.27!#. These algebras were investigated in Ref. 20, where their rela
to the theory of special andq-special functions were shown.

Having the spectral measure of the interaction Hamiltonian, which is, for example, the c
the model under consideration is related to the classical orthogonal polynomials or
q-deformation, see Refs. 22 and 12, we can introduce spectral coherent states. They ar
generalizations of Glauber coherent states~corresponding to the Hermite polynomials! and
squeezed states. In Sec. IV, we show that spectral coherent states admit the holomorphi
sentation for the Hamiltonians under consideration which supplements the spectral and
representations. This simplifies remarkably the calculation of many important physical char
istics of the described system.

The spectral coherent states should have some physical meaning which needs deepe
standing. In any case, they give the link of quantum optical systems with complex analyti
symplectic geometry. This opens the application of coherent states method, investigated in
20 and 21, to the problems of the theory of quantum optics.

In Sec. V, we give complete solution of the quantum systems@see~5.1!# related to the classica
orthogonal polynomials.

Finally, in Sec. VI, we present the physical interpretation of the Hamiltonian given by~2.37!
as the parametric modulator, which includes as special cases such quantum optical sys
nondegenerate parametric amplifier and the frequency up-converter~see Ref. 26!.

a!Electronic mail: horowski@alpha.uwb.edu.pl
b!Electronic mail: aodzijew@labfiz.uwb.edu.pl
c!Electronic mail: tereszk@alpha.uwb.edu.pl
4800022-2488/2003/44(2)/480/27/$20.00 © 2003 American Institute of Physics
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At the end we express our conviction that the proposed method will be helpful in b
understanding of quantum optical problems.

II. QUANTUM ELECTROMAGNETIC FIELD IN NONLINEAR MEDIUM

Nonlinear optics deals with phenomena that occur as a consequence of the modification
optical properties of a material system in the presence of light. Practically, only laser lig
sufficiently intense to produce the measurable effects. By an optical nonlinearity we mean th
dipole moment per unit volume, or polarizationPW , of a material system depends in a nonline
way upon the strength of the applied electromagnetic field. As many authors do,5,23we assume tha
PW depends only on the electric partEW of the electromagnetic field (EW ,BW ) i.e., PW [PW @EW #. We
assume moreover that this dependence is a functional one. Thus, in the most general case
write

PW @EW #~ t,rW !5«0 (
N50

` E dt1 d3rW1¯dtN d3rWNTW (N)~ t,rW,t1 ,rW1 , . . . ,tN ,rWN!~EW ~ t1 ,rW1!, . . . ,EW ~ tN ,rWN!!,

~2.1!

where the vector valuedN-linear mapTW (N) is called in optical literatureNth response tensor of th
medium.5

The time-invariance principle, which says that the dynamical properties of the system
assumed to be unchanged by a translation of the time origin, leads to

TW (N)~ t,rW,t1 ,rW1 ,...,tN ,rWN!5..RW (N)~rW,t12t,rW1 ,t22t,rW2 ,...,tN2t,rWN!. ~2.2!

The interaction of the electromagnetic field (EW ,BW ) with a nonlinear medium characterized b
polarizationPW can be described by the source-free Maxwell equations

¹3EW 52
]

]t
BW ,

¹3BW 5m0

]

]t
~«0EW 1PW @EW # !,

~2.3!
¹•~«0EW 1PW @EW # !50,

¹•BW 50.

Therefore the divergence of the Poynting vector (1/m0) EW 3BW takes the form

1

m0
¹•~EW 3BW !52

]

]t S 1

2m0
BW 21

«0

2
EW 2D2EW •

]PW

]t
@EW #, ~2.4!

where the quantity

u0ª
1

2m0
BW 21

«0

2
EW 2 ~2.5!

is the energy density of the free electromagnetic field. Analogously, we define the intera
energy densityu1 by the equation

]uI

]t
ªEW •

]PW

]t
@EW #. ~2.6!
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The energy density

u~ t,rW !ªu0~ t,rW !1u1~ t,rW ! ~2.7!

determines the HamiltonianH of our system

H5H01H1 , ~2.8!

where

H05E u0~ t,rW ! d3rW ~2.9!

is the Hamiltonian of the free electromagnetic field and the Hamiltonian

H15E u1~ t,rW ! d3rW ~2.10!

describes the interaction of electric fieldEW with the medium under consideration.
In order to obtain an explicit formula foru1 let us consider the electromagnetic field potent

AW ,

AW ~ t,rW !5(
l
E d3kW @eW k,lAl~kW !ei (vkt2kW•rW)1eW k,l* Al* ~kW !e2 i (vkt2kW•rW)#, ~2.11!

expressed in terms of Fourier modes, where the indexlP$1,2% labels the polarization of the field
which is described by the pair of unit vectorseW k,1 andeW k,2 orthogonal to the wave vectorkW ~we
choose the Coulomb gauge¹•AW 50). Here we do not specify the form of the dispersion relati
so we assume thatvk is any function ofukW u. In this gauge we have

EW 52
]

]t
AW , BW 5¹3AW . ~2.12!

Let us introduce the following simplifying notation:

eW k,l
s

ªH 2 ivk eW k,l for s51,

ivk eW k,l* for s521,
~2.13!

Al
s~kW !ªH Al~kW ! for s51,

Al* ~kW ! for s521.
~2.14!

We have now

EW ~ t,rW !5(
l,s

E eW k,l
s Al

s~kW ! es i (vkt2kW•rW) d3kW ~2.15!

and, therefore,~2.1! becomes

PW @EW #~ t,rW !5 (
N50

`

(
s1 ,l1

¯ (
sN ,lN

E d3kW1¯d3kWN eit (r 51
N srvkrAl1

s1~kW1!¯AlN

sN~kWN!

3xW (N)~rW,s1 ,kW1 ,vk1
,...,sN ,kWN ,vkN

!~eW k1 ,l1

s1 ,...,eW kN ,lN

sN !, ~2.16!
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wherexW (N)(rW,s1 ,kW1 ,vk1
,...,sN ,kWN ,vkN

), is theNth susceptibility tensor5 defined by

xW (N)~rW,s1 ,kW1 ,vk1
, . . . ,sN ,kWN ,vkN

!

ªE RW (N)~rW,t1 ,rW1 , . . . ,tN ,rWN!ei (s51
N ssvkstse2 i (s51

N ssk
W

s•rWs dt1 d3rW1¯dtn d3rWN .

~2.17!

Inserting~2.16! into ~2.6! we find up to an additive constant that

u1~ t,rW !5 (
N50

`

(
s0 ,l0

(
s1 ,l1

¯ (
sN ,lN

E d3kW1¯d3kWN

3eW k0 ,l0

s0
•xW (N)~rW,s1 ,kW1 ,vk1

, . . . ,sN ,kWN ,vkN
!~eW k1 ,l1

s1 ,...,eW kN ,lN

sN !

3
( r 51

N s rvkr

(s50
N ssvks

eit (s50
N ssvkse2 is0kW0•rW Al0

s0~kW0!Al1

s1~kW1!¯AlN

sN~kWN!. ~2.18!

In the quantization procedure the classical quantitiesAl
s(kW ) in ~2.11! are replaced by the

operators

ak,l
s

ªH ak,l for s51,

ak,l* for s521,
~2.19!

which satisfy the commutation relations of a free quantum field:

@al,k
s ,al8,k8

s8 #5dll8d~k2k8!
s

2
~12ss8!. ~2.20!

The productsAl0

s0(kW0)¯AlN

sN(kWN) in ~2.16! and ~2.18! are, moreover, replaced by the norma

ordered products of corresponding operators, i.e., by :ak0 ,l0

s0
¯akN ,lN

sN : .

In order to obtain the Hamiltonian it is enough to insert~2.19! into ~2.18! and then~2.18! into
~2.10!. With the Hamiltonian of the free electromagnetic field,

H05(
l
E d3kWvkak,l* ak,l , ~2.21!

we obtain

H5H01 (
N50

`

(
s0 ,l0

¯ (
sN ,lN

E d3kW0¯d3kWNeit (s50
N ssvks:ak0 ,l0

s0
¯akN ,lN

sN :

3eW k0 ,l0

s0
•QW (N)~s0 ,kW0 ,vk0

,s1 ,kW1 ,vk1
, . . . ,sN ,kWN ,vkN

!~eW k1 ,l1

s1 ,¯ ,eW kN ,lN

sN !, ~2.22!

where

QW (N)~s0 ,kW0 ,vk0
,s1 ,kW1 ,vk1

¯ ,sN ,kWN ,vkN
!

ª

( r 51
N s rvkr

(s50
N ssvks

E xW (N)~rW,s1 ,kW1 ,vk1
, . . . ,sN ,kWN ,vkN

!e2 is0kW0•rW d3rW. ~2.23!
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Using the commutation relations~2.20! one can prove that

e2 iH0tak,l
s eiH0t5eisvktak,l

s . ~2.24!

Hence the Hamiltonian~2.8! becomes

H5H01e2 iH0tHIe
iH0t, ~2.25!

where due to~2.22!

HI5 (
N50

`

(
s0 ,l0

¯ (
sN ,lN

E d3kW0¯d3kWN :ak0 ,l0

s0
¯akN ,lN

sN :

3eW k0 ,l0

s0
•QW (N)~s0 ,kW0 ,vk0

,s1 ,kW1 ,vk1
,¯ ,sN ,kWN ,vkN

!~eW k1 ,l1

s1 ,¯ ,eW kN ,lN

sN ! ~2.26!

does not depend on time, and therefore the solution of the Schro¨dinger equation

i
]

]t
uc~ t !&5Huc~ t !& ~2.27!

is given by

uc~ t !&5e2 iH0te2 iHI tuc~0!&. ~2.28!

The operator

U0~ t !ªe2 iH0t ~2.29!

is the free electromagnetic field evolution operator. The operator

UI~ t !ªe2 iHI t ~2.30!

is the evolution operator of the system in the interaction picture.
For the real models in quantum optics one assumes that the system under consid

contains a finite number of modes of electric field~see Refs. 3, 13, 14, and 23!. This means that
the label (kW ,l) in ~2.26! and ~2.21! takes a finite number of values

~kW ,l![ j P$0,1,...,M %, ~2.31!

and the integrals are reduced to finite sums overj :

H05(
j

v jaj* aj , ~2.32!

HI5 (
N50

`

(
s0 , j 0

¯ (
sN , j N

:aj 0

s0
¯aj N

sN:eW j 0

s0
•QW (N)~s0 ,v j 0

,...,sN ,v j N
!~eW j 1

s1,...,eW j N

sN!. ~2.33!

In this case the Hamiltonian~2.33! can be transformed into the form which is more useful for o
aims. It is defined by the exchange of the normal ordering of the annihilation and cre
operators into the one which we will call boson-number ordering in the sequel.

In order to define theboson-number ordering let us introduce the following notation fo
creation and annihilation operators.
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al
ªH al for l 51,2,...,

1 for l 50,

~a* !2 l for l 521,22,... .

~2.34!

A product of m annihilation andn creation operators being in the same mode is said to
boson-number ordered if it is of the formP(a* a)am2n, whereP is a polynomial.

Changing the normal ordering in each term of the Hamiltonian~2.33! to the boson-numbe
orderingP(a0* a0 ,...,aM* aM) a0

l 0...aM
l M whereP is a polynomial ofM11 variables and collecting

the terms with the same factora0
l 0...aM

l M we obtain

HI5 (
l 0 ,...,l MPZ

gl 0 ,...,l M
~a0* a0 ,...,aM* aM !a0

l 0...aM
l M , ~2.35!

wheregl 0 ,...,l M
are functions of (M11)-variables dependent onQW (N) . The HamiltonianHI is a

symmetric operator if

@gl 0 ,...,l M
~a0* a0 ,...,aM* aM !#* 5g2 l 0 ,...,2 l M

* ~a0* a02 l 0 ,...,aM* aM2 l M !. ~2.36!

In the next sections we restrict our considerations to the Hamiltonians of the form

HI5h~a0* a0 ,...,aM* aM !1~g~a0* a0 ,...,aM* aM !a0
l 0...aM

l M1h.c.!. ~2.37!

Such form of the Hamiltonian is strictly related to the theory of orthogonal polynomials.
physical interpretation of this Hamiltonian is given in Sec. VI A.

III. REDUCTION OF THE HAMILTONIAN

In this section, we briefly describe the decomposition of the Hilbert spaceH spanned by
elements of the orthonormal Fock basis

BF5H un0 ,...,nM&ª
1

An0!...nM!
~a0* !n0

¯~aM* !nMu0&: n0 ,...,nMPNø$0%J ~3.1!

into invariant subspaces of the operatorsH0 and HI . The method of this decomposition is pre
sented in details in Ref. 22. In such a way we obtain the reduction of the HamiltonianH.

The invariant subspaces ofHI are obtained in two steps. The first step is related to so
family of integrals of motion; the second one is related to a family of pseudo-vacuum vect

Let us start with a few definitions:

Aªg~a0* a0 ,...,aM* aM !a0
l 0
¯aM

l M ~3.2!

and

A i5A i*ª(
j 50

M

a i j aj* aj , 50,1,...,M , ~3.3!

wherea5(a i j ) is a real (M11)3(M11)-matrix satisfying the conditions

detaÞ0, ~3.4!

(
j 50

M

a i j l j5d0i . ~3.5!
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The invertibility of the matrixa allows one to express the boson-number operatorsai* ai by A j ,
which gives

H05(
j 50

M

g jA j ~3.6!

with real constantsg j determined by the matrixa. In particular we have

g05(
i 50

M

v j l j . ~3.7!

Additionally

HI5Hd~A0 ,A1 ,...,AM !1A1A* ~3.8!

with Hd uniquely determined by the functionh and the matrixa. Using the canonical commuta
tion relations for creation and annihilation operators one obtains

AA* 5G~A0 ,A1 ,...,AM !, ~3.9!

A* A5G~A021,A1 ,...,AM !, ~3.10!

@A0 ,A#52A, @A0 ,A* #5A* , ~3.11!

@A j ,A#50, j 51,...,M , ~3.12!

@A i ,A j #50, i , j 50,...,M , ~3.13!

with the non-negative functionG uniquely determined byg anda.
Direct calculations gives

@A j ,H0#5@A j ,HI #50, j 51,2,...,M , ~3.14!

which means that operatorsA1 ,A2 ,...,AM are integrals of motion.
In order to reduceH0 andHI to the common eigenspace of integrals of motion let us no

that the operatorsA* A, AA* , A0 ,...,AM are diagonal in the Fock basisBF . This, in particular,
means that each vectorun0 ,...,nM&PBF is the eigenvector of the operatorsA j , j 50,...,M , with
eigenvalues given by

l j5(
i 50

M

a j i ni . ~3.15!

Moreover, the operatorsA0 ,...,AM form a system of commuting independent observables. In s
a way we can use the sequences of eigenvalues (l0 ,l1 ,...,lM) as a new parametrizatio
$ul0 ,l1 ,...,lM&% of the Fock basis elements. So we obtain

A j ul0 ,l1 , . . . ,lM&5l j ul0 ,l1 , . . . ,lM&, j 50, . . . ,M . ~3.16!

Since@A0 ,A#52A, then, from~3.10! and ~3.9!, we have

Aul0 ,l1 ,...,lM&5AG~l021,l1 , . . . ,lM !ul021,l1 , . . . ,lM&, ~3.17!

A* ul0 ,l1 ,...,lM&5AG~l0 ,l1 , . . . ,lM !ul011,l1 , . . . ,lM&. ~3.18!
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It is clear that the subspaceHl1 ...lM
of the Fock spaceH spanned by the eigenvecto

ul0 ,l1 ,...,lM& with fixed l1 ,...,lM is H0 andHI-invariant and dimHl1 ...lM
5` if and only if

all l j in ~3.2! are non-negative. The problem of integration of the system~2.25! is reduced to
integration of the system described by the reduced Hamiltonian

H0,redªg0A01(
j 51

M

g jl j , ~3.19!

HI ,redªHd~A0 ,l1 ,...,lM !1A1A* , ~3.20!

and therefore~up to additive constant!

Hred5g0A01e2 ig0A0tHI ,rede
ig0A0t. ~3.21!

Now we go to the next step of the reduction. In order to make it let us define the pse
vacuum vector as such vectorul0 ,l1 ,...,lM& from the Fock basis inHl1 ,...,lM

which is annihi-
lated by the operatorA, i.e.,

Aul0 ,l1 ,...,lM&50 ~3.22!

or equivalently

G~l021,l1 ,...,lM !50. ~3.23!

In Ref. 22 it was shown that the set$l0,l% l 51
K

ª$l0 : Aul0 ,l1 ,...,lM&50% of the solutions of
~3.22! is nonempty if in the definition~3.2! any l i , i 50,1,...,M , is greater then zero.

Now, if for simplicity, we introduce the notation

un&ªul0,l1n,l1 ,...,lM&,

b~n!ªAG~l0,l1n21,l1 ,...,lM !, ~3.24!

NªA02l0,l ,

then

Nun&5nun&,

Aun&5b~n!un21&, ~3.25!

A* un&5b~n11!un11&.

Thus we obtain that the space

Fªspan$un&, n50,1,...% ~3.26!

is the irreducible representation space for the algebraAred generated by the operatorsN,A, and
A* , which satisfy the relations:

@N,A#52A, @N,A* #5A* ,

A* A5b2~N!, ~3.27!

AA* 5b2~N11!.
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These algebras were investigated in Ref. 21. The question when the dimension ofF is finite or
infinite was discussed in detail in Ref. 22. Here we assume that dimF5`. After restriction toF,
the Hamiltonians~3.19! and ~3.20! belongs toAred and take the form~up to additive constant!

H0,red5g0N, ~3.28!

HI ,red5h~N!1A1A* , ~3.29!

where h(N)ªHd(N1l0,l ,l1 ,...,lM). Thus the operatorsH0,red, HI ,red and consequentlyHred

belong to the algebraAred. In the Fock basis$un&, n50,1,...% the operatorHI ,red assumes the
three diagonal~Jacobi! form:

HI ,redun&5h~n!un&1b~n!un21&1b~n11!un11&, ~3.30!

whereasH0,red is diagonal,

H0,redun&5g0nun&. ~3.31!

From now on we restrict our consideration to the spaceF. In particular we restrict all opera
tors discussed above toF and omit the index red for simplicity.

The evolution of the system given by~2.28! now takes the form

uc~ t !&5e2 ig0Nte2 iHI tuc~0!&, ~3.32!

and therefore for any operatorF we have

^c~ t !uFc~ t !&5^c~0!ueiHI teig0NtFe2 ig0Nte2 iHI tuc~0!&. ~3.33!

For a special but interesting case this formula simplifies. Namely,

^c~ t !u f ~N! c~ t !&5^c~0!u eiHI t f ~N!e2 iHI tuc~0!&, ~3.34!

^c~ t !u f ~A! c~ t !&5 f ~e2 ig0t!^c~0!u eiHI t f ~A!e2 iHI tuc~0!&, ~3.35!

^c~ t !u H c~ t !&5g0^c~0!u eiHI tNe2 iHI tuc~0!&1^c~0!u HIc~0!&, ~3.36!

where f is an analytic function.
The next section is devoted to the detailed study of the operatorHI and one-paramete

group e2 iHI t generated by it.

IV. SPECTRAL AND COHERENT STATES REPRESENTATIONS

The operatorsHI of the type ~3.29! are very well known in the theory of orthogona
polynomials.1,2,7 They are symmetric inF and, by~3.30!, have a dense domain which consists
finite linear combinations of elements of the Fock basis. The deficiency indices ofHI are~0,0! or
~1,1!. One can prove that if(n51

` 1/b(n) 5`, then the operatorHI has deficiency indices (0,0)
which is equivalent to its essential self-adjointness.

From now on we will assume that the deficiency indices ofHI are ~0,0!. HenceHI admits a
unique self-adjoint extension, which will be denoted by the same symbol. Moreover,HI has
simple spectrum. This fact allows us to identify the Fock spaceF with the Hilbert space of squar
integrable functionsL2(R, ds) of real variablevPR. The measureds is determined by the
spectral measuredE of the HamiltonianHI and is defined by the formula

ds~v!ª^0udE~v!0&. ~4.1!
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Additionally one can prove that polynomials$vn%n50
` form a linearly dense subset inL2(R, ds).

After the Gram–Schmidt orthonormalization of the basis$vn%n50
` we obtain an orthonormal se

$Pn%n50
` in L2(R, ds) called the orthonormal polynomial system. Notice that degPn5n.
The unitary isomorphismU:F→L2(R,ds) of Hilbert spaces is given by

Uuc&ª(
n50

`

^nuc&Pn . ~4.2!

According to the spectral theorem and~4.2! one has

~U+ f ~HI !+U21!c~v!5 f ~v!c~v! ~4.3!

for cPL2(R,ds) and any measurable functionf . By ~4.2! and ~4.3! the expression~3.30! con-
verts into the three-term recurrence formula

vPn~v!5h~n!Pn~v!1b~n!Pn21~v!1b~n11!Pn11~v! ~4.4!

for the system of orthonormal polynomials$Pn%n50
` . So by the spectral theorem in the notion

this orthonormal system, we have

^mu f ~HI ! n&5E f ~v!Pm~v!Pn~v! ds~v!. ~4.5!

In particular, forf (HI)5 (1/P0
2) HI

k we obtain the momentsmk of the measure~4.1!:

mkªE vkds~v!5
1

P0
2 ^0u HI

k u0&. ~4.6!

Similarly, for f (HI)5 (1/P0
2) uHI uk we obtain the absolute momentsumku of ~4.1!:

umkuªE uvuk ds~v!5
1

P0
2 ^0u uHI uk u0&. ~4.7!

For the case under consideration the moments$mk%k50
` determine ds in the unique way.1

From ~4.3! and~4.5! one obtains that the evolution operatore2 iHI t, tPR, in the Hilbert space
L2(R,ds) is given by

~U+e2 iHI t+U21!c~v!5e2 ivtc~v! ~4.8!

and its mean value in the vacuum is realized by the characteristic function

ŝ~ t !ªE e2 ivtds~v!5
1

P0
2 ^0ue2 iHI tu0& ~4.9!

of the measure ds ~compare with Ref. 10!.
After these preliminary remarks we will show that apart from realizations of the Hamilto

HI in the Fock spaceF and in the Hilbert spaceL2(R,ds) it is useful and natural to consider it
realization in some Hilbert space which consists of square integrable holomorphic function
fined on an open subset of complex plane. To do it let us first prove the following:

Lemma 4.1: Let us assume that absolute momentsumun are finite for all nPNø$0% and they
satisfy the condition

lim
n→`

An umun
n

5..
1

eR
,1`. ~4.10!
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Then there exists a maximal strip inC, which is open, connected and invariant under the o
parameter group of translations

Ttzªz1t, tPR, ~4.11!

such that the characteristic functionŝ(t) can be holomorphically extended to it.
The maximality of the strip means thatŝ(t) cannot be extended to a larger set with the sa

properties.
Proof: We prove firstly that characteristic functionŝ is analytic on the stripuIm zu,R. One has

dn

dtn ŝ~ t !5~2 i !nE e2 i tvvnds~v! ~4.12!

for n50,1,... . In order to prove~4.12! one proceeds by induction. The equality~4.12! is valid for
n50. Let us assume that it is true forn. Then

d(n11)

dt (n11) ŝ~ t !5 lim
h→`

E e2 i (t1h)v2e2 i tv

h
vn ds~v!

5E lim
h→`

e2 ihv21

h
e2 i tvvn ds~v!52 i E e2 i tvvn11ds~v!. ~4.13!

Since

U e2 ihv21

h
vnU<uvun11 ~4.14!

and umun is finite for n50,1,..., wewere able to use Lebesgue theorem in~4.13!. For hPR we
have the estimate

Uŝ~ t1h!2 (
k50

n21
hk

k!

dk

dtk ŝ~ t !U5Uŝ~ t1h!2E (
k50

n21
~2 ihv!k

k!
e2 i tv ds~v!U

5U E S e2 i (t1h)v2 (
k50

n21

e2 i tv
~2 ih !k

k!
vkD ds~v!U

<
1

n! E uhvun ds~v!5
uhun

n!
umun , ~4.15!

where for the last inequality we used

Ue2 ih2 (
k50

n21
~2 ih !k

k! U< uhun

n!
. ~4.16!

By the Cauchy criterion and the Stirling formula,

n! 5A2pn nn e2n eQ(n), ~4.17!

whereQ(n),1/12n, the series(n50
` uhun/n! umun is convergent foruhu,R. This and~4.15! imply

that Taylor expansion

ŝ~ t1z!5 (
k50

`
zk

k!

dn

dtn ŝ~ t ! ~4.18!
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is convergent foruzu,R. We have proved the analyticity ofŝ on the stripuIm zu,R. So there exist
a nonempty, maximal strip$zPC:2r ,Im z,2s%, such that the characteristic functionŝ(t) can be
holomorphically extended to it. We have shown, moreover, that this strip contains the rea
i.e., 2`<2r ,0,2s<1`. Q.E.D.

Let us consider a ‘‘half’’ of the strip$zPC:2r ,Im z,2s%, i.e.,

Sª$zPC:r ,Im z,s%. ~4.19!

As a consequence of Lemma 1 we can formulate the following.
Proposition 4.1: Under the assumptions of Lemma 4.1 the map

K̃:S{z°e2 iz•PL2~R,ds! ~4.20!

is holomorphic and its image K˜ (S) is linearly dense in L2(R,ds).
Proof: In order to see that the functione2 iz• belongs toL2(R,ds) let us notice that

E ue2 izvu2 ds~v!5E e2 i (z2 z̄)v ds~v!5ŝ~z2 z̄! ,1` ~4.21!

for (z2 z̄)P$zPC:2r ,Im z,2s%. Thus in the basis$Pn%n50
` we have

K̃~z!5e2 iz•5 (
n50

`

ŝn~z!Pn~• !, ~4.22!

where the coefficients functionsŝn are holomorphic extensions of

ŝn~ t !ªE e2 i tvPn~v! ds~v! ~4.23!

onto the whole stripS. Thus the mapK̃ is a complex analytic map of the stripS into Hilbert space
L2(R,ds).

In order to show thatK̃(S) is linearly dense inL2(R,ds) let us notice that the monomials

vn5 i n
dn

dzn K̃~z!~v!uz50 , ~4.24!

wheren50,1,... , belong to the linear closure ofK̃(S). Therefore, they form a linearly dens
subset ofL2(R,ds) and the same property is shared byK̃(S). Q.E.D.

Combining~4.2! with ~4.22! we obtain a holomorphic map

KªU21+K̃:S{z°uz&ª(
n50

`

ŝn~z!un&PF ~4.25!

of S into Fock spaceF. Following Refs. 20 and 21 we shall callK:S→F the coherent states ma
related to the quantum system described by the HamiltonianHI . The statesuz&, wherezPS, will
be calledspectral coherent states. The coherent states map has nice physical properties an
we will show later, it is useful for the calculations of physical characteristics of the system.

By the formulas

Vª i
]2

] z̄]z
~ log ŝ~z2 z̄!! dz̄∧dz52

1

2

d2

dy2 ~ log ŝ~2iy !! dx∧dy, ~4.26!

wherez5x1 iy , we will define the symplectic formV on S. Using the mean value function
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^HI&zª
^zuHI uz&

^zuz&
52

1

2

d

dy
log ŝ~2iy ! ~4.27!

of the Hamiltonian in spectral coherent statesuz&, zPS, we define the classical Hamiltonia
system

X^HI &z
4V5d^HI&z ~4.28!

on the symplectic manifold~S,V!. The Hamiltonian flow, tangent to the vector fieldX^HI &z
is given

by ~4.11!. Let us denote byCP(F) the complex projective Hilbert space modeled on the Fo
spaceF. Let VFS denote Fubini-Study~1,1!-form on CP(F), ~for the definition ofVFS consult,
for example, Ref. 11!. The formVFS is closed and nonsingular. So, (CP(F),VFS) can be consid-
ered as a symplectic manifold which can be interpreted as the quantum phase space of the
described by the HamiltonianHI .

Proposition 4.2: The projectivizationK:S→CP(F), K(z)ªCuz& of the coherent states ma
(4.25) is the holomorphic symplectic map, i.e.,

K * VFS5V ~4.29!

and the diagram

S→
K

CP~F!

Tt↑ ↑e2 iHI t ~4.30!

S→
K

CP~F!

is commutative for any tPR.
Proof: The equality~4.29! can be checked by direct calculation. The commutativity of

diagram~4.30! follows from ~4.22! by the use of the formulas for quantum~4.8! and classical
~4.11! evolution of the system. Q.E.D

Recapitulating: we see that the coherent states map maps symplectically the classica
spaceS of the system (S,V,^HI&z) into the quantum phase spaceCP(F) of the system
(CP(F),VFS ,HI). It is equivariant with respect to the classical and the quantum flows. The m
value function̂ HI&z of the quantum HamiltonianHI give the classical Hamiltonian of the system
So, the above picture is analogous to the one related to the harmonic oscillator~see Ref. 24!. For
the general theory of quantization and description of physical systems in terms of the co
states map see Ref. 20. The model of the physical system considered here gives an impor
interesting example illustrating the theory which was developed in Ref. 21.

Let us definespectral annihilation operator a by the condition

auz&5zuz&, ~4.31!

which means thata has the spectral coherent statesuz& as eigenvectors with eigenvalueszPS. It
is defined on the dense linear domain, spanned by spectral coherent states. The represen
L2(R,ds) is given by

~U+a+U21c!~v![ i
d

dv
c~v!. ~4.32!

The domainD(U+a+U21) is given as a vector space of all polynomials.
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According to Proposition 4.1, the spectral coherent states form a linearly dense subseF.
Hence one can define antilinear monomorphismŪ,

F{uc&°Ūuc&ª^cuK~• !&PO~S!, ~4.33!

of the Fock spaceF into vector spaceO~S! of holomorphic functions onS. In such a way we
obtain the third realization of Hilbert space of states, this time as the space of holomo
functionsŪ(F),O(S) with the scalar product defined by

^FuC&[^Ū~ uf&!,Ū~ uc&)&ª^cuf&, ~4.34!

whereC5Ūuc&, F5Ūuf&.
Proposition 4.3: Let the measure

dm~ z̄,z!5m~y!dxdy, ~4.35!

on S, (z5x1 iy) be such that the weight functionm satisfies

ds

dv
~v!E

r

s

dym~y!e2yv51 ~4.36!

for vPsupp ds.
Then the scalar product (4.34) can be expressed by the integral

^cuf&5E
S
C̄~z!F~z! dm~ z̄,z!. ~4.37!

Moreover, the kernel function

^zuv&5ŝ~v2 z̄! ~4.38!

is a reproducing kernel function with respect to the measure (4.35), i.e.

C~v !5E
S
ŝ~v2 z̄!C~z! dm~ z̄,z! ~4.39!

for any CPŪ(F).
Proof: In order to prove that~4.37! and~4.39! are valid fordm( z̄,z) given by~4.35! and~4.36!

let us observe thatdm( z̄,z) has the form~4.35! since the kernelŝ(•2 z̄) is invariant with respect
to the one-parameter group of translation~4.11!. Hence we have

E
S
ŝ~v2 z̄!ŝ~z2w̄! dm~ z̄,z!

5E ds~v!E ds~v8!E
2`

`

dxE
r

s

m~y!dye2 ivv1 iw̄v8e2 ix(v82v)ey(v1v8)

5E ds~v!E ds~v8!d~v2v8!E
r

s

dym~y!ey(v1v8)e2 ivv1 iw̄v8

5E ds~v!E ds

dv
~v1t!d~t! dtE

r

s

dym~y!ey(2v1t)e2 i (v2w̄)veiw̄t

5E ds~v!
ds

dv
~v!E

r

s

dym~y!e2yve2 i (v2w̄)v. ~4.40!
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If m satisfies~4.36!, then~4.40! takes the form

E ŝ~v2 z̄!ŝ~z2w̄! dm~ z̄,z!5ŝ~v2w̄!, ~4.41!

which the reproducing property. Q.E.D
In the sequel, let us assume thatŪ(F)5L2O(S,dm), whereL2O(S,dm) denotes the Hilbert

space of holomorphic functions which are square-integrable with respect todm on S. Due to this
assumptionŪ is an anti-unitary map and the holomorphic functions

Ūun&5^nuz&5ŝn~z!, n50,1,..., ~4.42!

form an orthonormal basis inL2O(S,dm).
One has the commutative diagram

F

U↙ ↘Ū

L2~R,ds! ——→
Ū+U21

L2O~S,dm! ~4.43!

where the anti-unitary mapŪ+U21 is given by

~Ū+U21c!~z!5E e2 izvc̄~v! ds~v!, ~4.44!

wherecPL2(R,ds). Thus the Hamiltonian is given by

~Ū+HI+Ū21C!~z![ i
d

dz
C~z! ~4.45!

and is defined on the domainD(Ū+HI+Ū21)5$CPL2O(S,dm): (d/dz) CPL2O(S,dm)%.
In terms of the Hilbert spaceL2O(S,dm) it is possible to find an explicit form of the creatio

operatora* , i.e., Hermitian conjugate of the spectral annihilation operatora defined by~4.31!.
We will call a* the spectral creation operator. Using ~4.31! and ~4.33!, we obtain

~Ū+a* +Ū21C!~z![zC~z!. ~4.46!

Thus we see that the domain ofŪ+a* +Ū21 is given by

D~Ū+a* +Ū21!5$CPL2O~S,dm!:zCPL2O~S,dm!%. ~4.47!

Taking into the account the above considerations let us notice that the operatora* is de-
scribed explicitly in theL2O(S,dm)-realization and the operatora is explicitly given in
L2(R,ds)-realization. They satisfy the canonical commutation relations

@HI ,a#5@HI ,a* #5 i ~4.48!

with the HamiltonianHI , giving

@HI ,a2a* #50, ~4.49!

i.e., the operatora2a* is an integral of motion for the system under consideration.
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From a physical point of view@see~3.34!–~3.36!# it is important to describe the time evolu
tion in interaction picture of the system, i.e.,e2 iHI tuc(0)&. To do this let us introduce the follow
ing notation for the matrix elements ofe2 iHI t

ŝm,n~ t !ª^mue2 iHI tn&5E e2 ivtPm~v!Pn~v! ds~v!. ~4.50!

Note that

ŝm,n~ t !5PmS i
d

dtD ŝn~ t !, ~4.51!

whereŝn(t) are given by~4.23! and they satisfy

ŝn~ t !5
1

P0
^nue2 iHI t0&5PnS i

d

dtD ŝ~ t !. ~4.52!

The interaction evolution in the spaceF is thus given by

e2 iHI tuc&5 (
m,n50

`

^muc&ŝm,n~ t !un&, ~4.53!

while in the spaceL2(R,ds) the evolution is described by~4.8!. In L2O(S,dm)-realization we
have

~Ū+e2 iHI t+Ū21!C~z!5C~z1t !. ~4.54!

As a consequence of~4.50! and ~4.54! we obtain the relation

ŝm,n~z11z2!5(
k

ŝm,k~z1!ŝk,n~z2!, ~4.55!

which for m50 can be expressed in the form

ŝn~z11z2!5(
k

ŝk,n~z1!ŝk~z2!. ~4.56!

Moreover, puttingm5n50 in ~4.55! we obtain the formulas~4.38! for the reproducing kernel.
At the end of Sec. III it was shown@see~3.34!–~3.36!# that the quantities

^c~0!u eiHI t F e2 iHI tc~0!& ~4.57!

plays an important role if we consider the expectation values of the operatorF on the time
evolving stateuc(t)& @see~2.28!#.

The variety of the realizations of our model, namely, theF, L2(R,ds) and L2O(S,dm)
representations, allow us to give three equivalent formulas on~4.57!

^c~0!ueiHI tFe2 iHI t c~0!&5 (
m,n,k,l

^c~0!um&ŝm,n* ~ t !^nuF k&ŝk,l~ t !^ l uc~0!&

5E e2 ivtc~v!~U+F+U21!~eivtc~v!!ds~v!

5E
S
C̄~z1t !~Ū+F+Ū21!~C~z1t !!dm~z,z̄!, ~4.58!
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wherec5Uuc(0)& andC5Ūuc(0)&. In this way we have a very strong instrument for calcu
tions of many physical characteristics of the system under consideration.

In particular we have

eiHI tae2 iHI t5a1t ~4.59!

and therefore

^c~0!ueiHI tae2 iHI t c~0!&5^c~0!uac~0!&1t^c~0!uc~0!&. ~4.60!

V. INTEGRABLE SYSTEMS RELATED TO CLASSICAL ORTHOGONAL POLYNOMIALS

Here we shall investigate the classes of the physical systems with Hamiltonians of the
~3.30! with the coefficientsb(n) andh(n) given in Table III in the Appendix. The three classes
Hamiltonian operators are related to Hermite, Laguerre and Jacobi polynomials. We choo
mode case for simplicity and the circumstances which make the reduction not necessary. T
Hamiltonians are expressed in terms of usual creation and annihilation operators in the foll
form:

HI
Her

ª2
a0

a1
1A2

b0

a1
~a1a* !, ~5.1a!

HI
Lag

ª2
b1

a1
m2

b0

b1
2

2b1

a1
a* a2

b1

a1
Aa* a1m a2

b1

a1
Aa* a1m11 a* , ~5.1b!

HI
Jac
ª

2a*a~a1b!~m1n21!12~a* a!2~a1b!22bm22an1mn~a1b!1bm21an2

~m1n2212a* a!~m1n12a* a!

1~b2a!A ~m1a* a!~n1a* a!~m1n1a* a21!

~m1n12a* a21!~m1n12a* a!2~m1n12a* a11!
a

1~b2a!A ~m1a* a11!~n1a* a11!~m1n1a* a!

~m1n12a* a11!~m1n12a* a12!2~m1n12a* a13!
a* . ~5.1c!

The ranges of the parametersm, n, b0 , and a1 are chosen such that the operators are w
defined and are essentially self-adjoint. InL2(R,ds) ~i.e., spectral! representation the formula
~3.30! lead to three-term recurrence relation~4.4! @see also~A10!#.

From Pearson equation@see~A5! and Table I in the Appendix# we obtain the expressions fo
measures:

dsHer~v!5Ce~a1/2b0!(v1 a0 /a1)2
dv for vPR, ~5.2a!

dsLag~v!5CS v1
b0

b1
D m21

e~a1 /b1! v dv for vPS 2
b0

b1
,` D , ~5.2b!

dsJac~v!5C~v2a!m21~b2v!n21 dv for vP~a,b!. ~5.2c!

In the holomorphic representationL2O(S,dm) all Hamiltonians act as derivations:id/dz @see
formulas~4.45!#, but the difference between the systems is hidden in the reproducing mea
dm( z̄,z)5m(y) dxdy, (z5x1 iy), and the choice of the domainS. The general case is de
scribed in Proposition 4.3. Here we solve Eq.~4.36! for m(y) in the special class, namely
continuous functions except possibly finite number of points in every compact subset. Th
continuity points are assumed to be of first kind. Let us summarize the results in the follow
~H! Hermite case:S5C and
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mHer~y!5
1

C
e2 a0

2/2b0a1A2
a1

2b0p
e~2b0 /a1!(y1 a0/2b0)2

, ~5.3a!

~L ! Laguerre case:S5$z5x1 i yPC:y,2 a1/2b1 % and form.1

mLag~y!5
2 eb0a1 /b1

2

C G~m21! S 22y2
a1

b1
D m22

e~2b0 /b1! y. ~5.3b!

For m51 we obtain an isomorphism ofL2O(S,dm) with H2(D,dl)—the Hardy class of func-
tions on the unit discD,C with the measuredl supported on the circle]D5$eiw:wP@0,2p#%
and given by

dl5
1

12sinw
dw. ~5.4!

~J! Jacobi case:S5C and form1n.3

mJac~y!55
2

C

~b2a!12 ~m1n!/2

G~m21!
e2(b1a)y~2y!~m1n!/2 22 W~n2m!/2 , 3/22~m1n!/2@2~b2a!y#

for y.0,

2

C

~b2a!12 ~m1n!/2

G~n21!
e2(b1a)y~22y!~m1n!/2 22 W~m2n!/2 , 3/22~m1n!/2@22~b2a!y#

for y,0,
~5.3c!

whereWk,l(z) are confluent hypergeometric Whittaker’s functions~for definition, see Ref. 4!.
This formula simplifies in the casem5n corresponding to the Gegenbauer polynomials. T
following statement is true for a larger domain of parameterm, namely form.1,

mGeg~y!5
2

C S 22y

b2aD m2 3/2

e2(b1a)y
1

G~m21!Ap
Km2 3/2~~a2b!y! ~5.5!

with Ka(z) being the modified Bessel functions~for definition, see Ref. 4!.
For all three cases one can find the explicit form of matrix elements of propagator~4.50!.

Because of the relations~4.52! and~4.51!, we should display the characteristic functions~4.9! first:

ŝHer~z!5CA2p
2b0

a1
e a0

2/2a1b0 e~b0/2a1!(z1 i a0 /b0)2
, ~5.6a!

ŝLag~z!5CG~m! e2 b0a1 /b1
2S 2

z

i
2

a1

b1
D 2m

e~b0 /b1! iz, ~5.6b!

ŝJac~z![ŝJ~z;m,n!5C
G~m!G~n!

G~m1n!
~b2a!m1n21e2 iaz

1F1~m1n
m ; ~a2b!iz!. ~5.6c!

The symbolsŝJac(z;m,n) are introduced in order to simplify the next formulas. Using the R
rigues formula@see~A8!# we obtain the explicit form ofŝn(z):

ŝn
Her~z!5cn

Her~ ib0z!n ŝHer~z!, ~5.7a!

ŝn
Lag~z!5cn

LagS b1z

z1 i a1 /b1
D n G~m1n!

G~m!
ŝLag~z!, ~5.7b!
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ŝn
Jac~z!5cn

Jac~ ib2z!n ŝJac~z;m1n,n1n!. ~5.7c!

After a simple but tedious calculation we find

ŝm,n
Her~z!5e~b0/2a1!(z1 i a0 /b0)2

ea0
2/2a1b0~ iz!m1nAS 2

b0

a1
D m1n

Am!n! (
k50

min$m,n%
~a1 /b0!kz22k

~m2k!! ~n2k!!k!
,

~5.8a!

ŝm,n
Lag~z!5cm

Lagcn
Lagb1

m1n G~m1m!G~m1n!

G2~m!
ŝLag~z!

3 (
k50

m S m
k D S ia1

b1z1 ia1
D k

2F1S m
m1k,2n ;

ia1

ia11b1zD , ~5.8b!

ŝm,n
Jac~z!5cm

Jaccn
Jac~2b2!m1n(

k50

m

(
l 50

n S m
k D S n

l D ~21!k1 l
G~m1m!G~m1n!

G~m1m2k!G~m1n2 l !

3
G~n1m!G~n1n!

G~n1k!G~n1 l !
ŝJac~z;m1m1n2k2 l ,n1k1 l !. ~5.8c!

The physical quantities which are of great importance are the HamiltoniansH and HI , the
creationa* and annihilationa operators, and the occupation number operatorN5a* a. In our case
the operatorsA, A* are also important. They can be interpreted as the cluster annihilation
cluster creation operators. Similarly, the operatorsa and a* which are related to the spectra
coherent states map~4.25! are interesting, too. Their physical meaning is partially explained by
commutation relations~4.48!. They are related toHI , a anda* in the following way:

aHer5
2 i a1

A2a1b0

a, ~5.9a!

~b01b1 HLag!aLag52 i b1 a* a1 iAb1
2~a* a1m! a, ~5.9b!

~a2HJac!~b2HJac!aJac5 i a* a
b~2m2n1 a* a21!1a~2n2m1 a* a21!

m1n12 a* a22

2 i HJaca* a2 i
~b2a!~2m2n1 a* a21!~m1 a* a!~n1 a* a!

ub2u~m1n12 a* a21!2~m1n12 a* a!3

3Am1n12 a* a11

~m1n1 a* a21!
a. ~5.9c!

In the spectral representation ofHI the operatora is given for all the cases byid/dv but the
conjugates are given by different formulas:

~aHer!* 52 i S a1

b0
v1

a0

b0
1

d

dv D , ~5.10a!

~aLag!* 52 i S a1v1a02b1

b1v1b0
1

d

dv D for m.1, ~5.10b!

~aJac!* 52 i S ~a112b2!v1a02b2~a1b!

b2~v2a!~b2v!
1

d

dv D for m, n.1. ~5.10c!
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In the holomorphic representation the operatora* is given by~4.46!, i.e., as the operator o
multiplication by the argumentz. The operatorsaHer, aLag andaJac are pseudodifferential one
and we shall not express them explicitly here.

The occupation number operatorsN defined by~3.25! take in the spectral representation t
following form:

NHer5S v1
a0

a1
D d

dv
1

b0

a1

d2

dv2 , ~5.11a!

NLag5S v1
a0

a1
D d

dv
1S b1

a1
v1

b0

a1
D d2

dv2 . ~5.11b!

For the Jacobi caseNJac we are able to write down only the relation

NJac~NJac2m2n21!5~v2a!~b2v!
d2

dv2 1@~2m2n!v1mb1na#
d

dv
. ~5.11c!

In the holomorphic representationN can be expressed as

NHer52
b0

a1
S z2 i

a0

b0
D z1z

d

dz
, ~5.12a!

NLag5 i S b1

a1
m1

b0

b1
1 i

b0

a1
zD z1S 11

b1

a1
i zD z

d

dz
. ~5.12b!

Now, we will present the expectation values on the following states, interesting from
physical point of view:

~i! occupation number statesun&, nPNø$0%, i.e., the eigenstates ofN, Nun&5nun&;
~ii ! Gaussian coherent statesuz&, zPC, i.e., the eigenstates ofa, auz&5zuz&;
~iii ! spectral coherent statesuz&, zPS, i.e., the eigenstates ofa, auz&5zuz&.

Using the operatorsU and Ū one can realize these states in spectral or holomorphic repres
tion, too @see~4.2!, ~4.20!, ~4.33!, and~4.42!#.

Of course the HamiltonianHI does not depend on timet and its mean values are given by

^HI&n5h~n!, ~5.13!

^HI&z5e2uzu2(
n50

` uzu2n

n! Fh~n!1
b~n11!

An11
~ z̄1z!G , ~5.14!

^HI&z52
1

2

d

dy
ln ŝ~2iy !, y5

z2 z̄

2i
. ~5.15!

The indicesn, z, z are related to the occupation number eigenstates, Gaussian coherent
and spectral coherent states, respectively. The functionb(n) andh(n) are given in Table III in the
Appendix andŝ(z) is presented in~5.7!.

The mean values of the powers of the occupation number operator are given as follow

^Nl~ t !&n5 (
k50

`

uŝn,k~ t !u2nl , ~5.16!
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^Nl~ t !&z5e2uzu2 (
m,k,n

`
znz̄m

Am!n!
kl ŝm,k~ t !ŝn,k~ t !, ~5.17!

^Nl~ t !&z5
1

ŝ~z2 z̄! (
n50

`

uŝn~z1t !u2nl , ~5.18!

wherel PN. It is interesting to rewrite the last formula for every polynomial class separatel

^~NHer~ t !! l&z5e~b0 /a1! uz1tu2S 2
b0

a1
D uz1tu2l 21Fl 21S 2,...,2

1,...,1;2
b0

a1
uz1tu2D , ~5.19a!

^~NLag~ t !! l&z5
~22~a1 /b1!~z2 z̄/2i ! 1~a1

2/b1
2!!muz1tu2m

uz1t2 i ~a1 /b1!u2m12 lFl 21

3S m11,2...,2
1,...,1 ;U z1t

z1t2 i ~a1 /b1!
U2D , ~5.19b!

^~NJac~ t !! l&z5
1

ŝJac~z2 z̄! (
n50

`

cn
Jac2ub2~z1t !u2n uŝJac~z1t;m1n,n1n!u2nl . ~5.19c!

We give now the formulas for the correlation functions:

^a* r~ t !as~ t !&n5 (
m50

`

ŝn,m1r~ t !ŝn,m1s~ t !
A~m1r !! ~m1s!!

m!
, ~5.20!

^a* r~ t !as~ t !&z5e2uzu2 (
k,m,n50

`
z̄mzk

Am!k!
ŝm,n1r~ t !ŝn1s,k~ t !

A~n1r !! ~n1s!!

n!
, ~5.21!

^a* r~ t !as~ t !&z5
1

ŝ~z2 z̄! (
n50

`

ŝn1r~z1t !ŝn1s~z1t !
A~n1r !! ~n1s!!

n!
. ~5.22!

Replacing the creation and annihilation operatorsa* , a by the cluster creation and the clust
annihilation operatorsA* and A we obtain the functions which by analogy will be called t
cluster correlation functions:

^A* r~ t !As~ t !&n5 (
k,l 50

`

b~k1r ! . . . b~k11!b~k1s! ¯b~k11!ŝn,k1r~ t !ŝk1s,l~ t !, ~5.23!

^A* r~ t !As~ t !&z5e2uzu2 (
k,m,l 50

`
z̄mz l

Am! l !
b~k1r ! . . . b~k11!

3b~k1s!¯b~k11!ŝm,k1r~ t !ŝk1s,l~ t !, ~5.24!

^A* r~ t !A l~ t !&z5
1

ŝ~z2 z̄! (
k50

`

b~k1r ! . . . b~k11!b~k1s!¯b~k11!ŝk1r~z1t !ŝk1s~z1t !.

~5.25!

The time evolution ofa is given by~4.59!. This allows us to express the time dependence
^a l(t)&c , ~whereuc& is an arbitrary state andl PN), in terms of the mean values of some powe
a[a(0) acting on the stateuc&:
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^a l~ t !&c5 (
k50

l S l
kD tk^a l 2k&c . ~5.26!

As a consequence we conclude that the dispersion (Da(t))c5A^c u@a2(t)2^c ua(t)c&2#c& of
the operatora(t) in an arbitrary stateuc& does not depend on time,

~Da~ t !!c[~Da!c . ~5.27!

The following expectations take especially simple form:

^a l~ t !&n5t l , ~5.28!

^a l~ t !&z5~z1t ! l . ~5.29!

Let us now see what will happen when the intensity of electromagnetic field is suffici
large ~the light of a strong laser!. This corresponds to the limit of the largen in the Hamiltonian
~3.30! ~see Table III in the Appendix, too!. We get the following strong-field HamiltoniansHs :

Hs
Her5A2

b0

a1
~a1a* !, ~5.30a!

Hs
Lag522

b1

a1
a* a2

b1

a1
~Aa* a11 a1Aa* a12 a* !, ~5.30b!

Hs
Jac5

a1b

2
1

b2a

4 S 1

Aa* a11
a1

1

Aa* a12
a* D . ~5.30c!

These Hamiltonians belong to the respective families given by~5.1!. They are obtained in the
Hermite case by puttinga050 in ~5.1a!, in the Laguerre case by puttingm51 and b05
2 b1

2/a1 in ~5.1b!, and in the Jacobi case by puttingm5n5 3
2 in ~5.1c!.

Let us recall the definition of the phase operatorf̂:23

exp~ i f̂ !ª~a* a11!2 1/2a, ~5.31!

exp~2 i f̂ !ªa* ~a* a11!2 1/2, ~5.32!

cos~f̂ !ª 1
2 ~exp~ i f̂ !1exp~2 i f̂ !!. ~5.33!

We can now rewrite~5.30b! and ~5.30c!:

Hs
Lag52

b1

a1
~2a* a12a* acos~f̂ !1exp~ i f̂ !!, ~5.34!

Hs
Jac5

a1b

2
1

b2a

2
cos~f̂ !. ~5.35!

So, in the Jacobi case in the strong-field limit, the Hamiltonian tends, up to a constant,
cosine of the phase operator. This subcase does not depend on the choice of the range
parametersm, n.
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VI. A PHYSICAL REMARKS

A. Parametric modulator

In order to present some physical interpretations of the Hamiltonian~2.25! with HI given by
~2.37!, let us rewrite it in the following form

HI5(
j 50

M

v jaj* aj1h~a0* a0 ,...,aM* aM !1~eit ( j 50
M v jaj* ajg~a0* a0 ,...,aM* aM !a0

l 0...aM
l M

1@eit ( j 50
M v jaj* ajg~a0* a0 ,...,aM* aM !a0

l 0...aM
l M#* !. ~6.1!

The first term, which is linear in photon number operators, describes the free field. The s
term, which is an arbitrary function of these operators, may be treated as a generalization
Kerr medium description, whereHI5(x/2) ((a* a)22a* a), wherex is proportional to the third-
order nonlinear susceptibility.23 The terms of the typeh(a0* a0 ,...,aM* aM), after the appropriate
choice of the functionh, play an important role in the theory of the nondemolitio
measurement26,19 and in the description of many other phenomena, e.g., the optical bista
effect.9

The last term in~6.1! one can interpret as a general form of the parametric modulator Ha
tonian. To motivate this interpretation let us recall the form of the Hamiltonian of nondegen
parametric amplifier,17,18

H5v0a0* a01v1a1* a11 ig~e2ivta0a12~e2ivta0a1!* !. ~6.2!

This Hamiltonian describes the case when the classical pump mode at frequency 2v interacts in a
nonlinear optical medium with two modes at frequencyv0 andv1 , such thatv01v152v. If the
system starts in an initial Gaussian two-photon coherent stateuz0z1&, the mean photon number i
0-mode after timet is

^a0* ~ t !a0~ t !&5uz0 coshgt1z1* sinhgtu21sinh2 gt, ~6.3!

hence this mode is amplified. The next example is the Hamiltonian for the frequ
up-converter,26

H5v0a0* a01v1a1* a11k~eivta0* a11e2 ivta0a1* !, ~6.4!

wherev5v12v0 .
It is easy to compare~6.1! with ~6.2! and with ~6.4! and conclude that our Hamiltonian is

natural generalization of that describing parametric amplification. In order to understand t
general~6.1! describes not only amplification but also modulation, let us notice that due to~3.3!
we can express the mean values^aj* (t)aj (t)&, j 50,...,M , in terms of the mean values of th
operatorsA0(t),...,AM(t). But A1(t),...,AM(t) are the integrals of the motion, so if our syste
starts at the initial state from the reduced subspaceF @see~3.26!# we obtain

^aj* ~ t !aj~ t !&5 l j^A0~ t !&1b j , ~6.5!

where the constantb j are uniquely determined byl1 ,...,lM and the matrixa. This means that
the mean photon number in each mode is a linear function of^A0(t)& or, in other words, the
strength of the light in each mode is modulated by the function^A0(t)&. The modulation of thej th
mode depends on the exponentl j . The shape of the function̂A0(t)& depends on the choice of th
coupling functiong(a0* a0 ,...,aM* aM) in ~6.1! and the initial state of the system.

As an example of the modulation function^A0(t)& let us consider the situation when, aft
reduction, we obtain the case corresponding to Laguerre polynomials and the initial state
spectral coherent stateuz&. From ~5.19b! we obtain
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^A0~ t !&z5Euz1tu21F, ~6.6!

where the real constantsE,F depend onm, a1 , b1 and l0,l . In this example the modulation
function is of parabolic shape. This means that in some interval of time we have the amplifi
and dumping of the light signal in others.

B. Generalized squeezed states

The special cases of the interaction evolution operatorse2 iHI t are the unitary displacemen
operators16

D~z!5exp~za* 2 z̄a!, zPC, ~6.7!

the unitary squeeze operators6

S~z!5exp~ z̄a22za* 2!, zPC, ~6.8!

and the unitary two-mode squeeze operators8

T~j!5exp~ j̄a0a12ja0* a1* !, jPC. ~6.9!

This means that the Glauber coherent states and the squeezed states are special cas
spectral coherent states defined in Sec. IV. In such a way, the two concepts of the notion
coherent states meet each other in our framework. The first one, presented in Refs. 24, 16
8, is related to the minimalization of the suitable uncertainty relations. The second one, pre
in Refs. 20 and 21, is based on the symplectic embedding of the classical phase space
system into the quantum phase space~equipped with the Fubini–Study symplectic form!.
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APPENDIX: CLASSICAL POLYNOMIALS

Here we present some facts from the theory of classical polynomials.25

Let us consider a pair of real polynomials (A(v),B(v)) of degree not greater than one an
two, respectively

A~v!ªa1v1a0 , aiPR, ~A1!

B~v!ªb2v21b1v1b0 , biPR. ~A2!

The Pearson equation associated with (A(v),B(v)) on the interval (a,b),R (2`<a,b
<1`) is the differential equation for the weight function%:

d

dv
~%B!5%A ~A3!

with the boundary conditions

%~a!B~a!505%~b!B~b!. ~A4!

Each family of classical orthogonal polynomials$P̃n% can be obtained by the Gram–Schmi
orthogonalization of the basis$vn%n50

` in L2(R,ds), where
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ds~v!ªH 0, v,a,

%~v! dv, a<v<b,

0, v.b,

~A5!

and % satisfies the Pearson equation with appropriately chosen polynomials (A(v),B(v)).
Namely if degB(v)50 ~i.e., b25b150), then we obtain the Hermite polynomials;
degB(v)51 ~i.e., b250, b1Þ0), we obtain the Laguerre polynomials and if degB(v)52
~i.e.,b2Þ0), we obtain the Jacobi polynomials. In the last case the boundary conditions~A4! hold
if and only if a andb are roots ofB(v). For solution of the Pearson equation in these cases
Table I. Additional conditions enforced onA(v) by ~A4! are presented in this table, too.

By straightforward calculation one can prove that the family of polynom
$ (dk/dvk) Pn(v)%n5k

` , kPN, is orthogonal in the spaceL2(R,ds (k)), where

ds (k)~v!ªBk~v! ds~v!. ~A6!

The weight function% (k) satisfies the Pearson equation on the interval (a,b) associated with
(A(k)(v),B(v)), where

TABLE I. Pearson data and solutions of Pearson equation.

Pearson data (A(v), B(v)) (a,b) Weight function%~v!

AHer(v)5a1v1a0 %Her(v)5Cea1/2b0(v1 a0 /a1)2

BHer(v)5b0 (2`,`)
where C.0,

a1

b0
,0

ALag(v)5a1v1a0
%Lag~v!5CS v1

b0

b1
D m21

ea1 /b1 v

BLag(v)5b1v1b0 S2 b0

b1
,`D where C.0,

a1

b1
,0,

mª

a0b12b0a1

b1
2 .0

AJac(v)5a1v1a0 %Jac(v)5C(v2a)m21(b2v)n21

BJac(v)5b2(v2a)(b2v) (a,b) whereC.0, a,b, b2.0

mª
aa11a0

b2~b2a!
.0, nª

ba11a0

b2~a2b!
.0

TABLE II. Normalizing factor in Rodrigue’s formulae~A8!.

cn—in Rodrigues’ formula

cn
Her5S Cn! ~2a1b0!nA2p

2b0

a1
D 21/2

cn
Lag5S Cn! ~2a1b1!nS 2

b1

a1
D m1n

G~m1n!e2 a1b0 /b1
2D 21/2

cn
Jac5S Cn! b2

2n~b2a!m1n12n21

3
G~m1n!G~n1n!

~m1n12n21!G~m1n1n21! D
21/2
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Attention:The necessary conditionb(0)50 is automatically satisfied with the exception
the Jacobi case form5n51/2 andm5n53/2 where we must put it additionally.

A(k)~v!ªA~v!1k
dB~v!

dv
. ~A7!

Proposition A1: For a given Pearson data, i.e., a pair(A(v),B(v)) on (a,b),R, the
following statements are equivalent:

(A) $Pn(v)%n50
` form an orthonormal system in L2(R,ds).

(B) The polynomials are given by Rodrigues’ formula

Pn~v!5cn

1

%~v!
•

dn

dvn ~%~v!Bn~v!!, ~A8!

where cn is the normalizing constant (see Table II).
(C) The polynomials$Pn(v)%n50

` satisfy the differential equation

S A~v!
d

dv
1B~v!

d2

dv2D Pn~v!5lnPn~v!, ~A9!

whereln5a1n1b2n(n21).
(D) The polynomials$Pn(v)%n50

` are related by the three-term recurrence formula [for h(n)
and b(n) see Table III]

vPn~v!5h~n!Pn~v!1b~n!Pn21~v!1b~n11!Pn11~v! ~A10!

with the initial condition

P0~v![const5F E ds~v!G2 1/2

. ~A11!
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TABLE III. Coefficients in recurrence formula~A10!.

b(n), h(n)

bHer~n!5A2
b0

a1
n

hHer~n!52
a0

a1

bLag~n!52
b1

a1
An~n1m21!

hLag~n!52
b1

a1
~2n1m!2

b0

b1

bJac~n!5~b2a!A n~m1n21!~n1n21!~m1n1n22!

~m1n12n23!~m1n12n22!2~m1n12n21!

hJac~n!5
2n~a1b!~m1n21!12n2~a1b!22bm22an1mn~a1b!1bm21an2

~m1n12n22!~m1n12n!
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This article gives a semiclassical description of nucleonic propagation through
codimension two crossings of electronic energy levels. Codimension two crossings
are the simplest energy level crossings, which affect the Born–Oppenheimer ap-
proximation in the zeroth order term. The model we study is a two-level Schro¨-
dinger equation with a Laplacian as kinetic operator and a matrix-valued linear
potential, whose eigenvalues cross, if the two nucleonic coordinates equal zero. We
discuss the case of well-localized initial data and obtain a description of the wave-
function’s two-scaled Wigner measure and of the weak limit of its position density,
which is valid globally in time. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1527221#

I. INTRODUCTION

The quantum-mechanical description of molecular dynamics is given by the time-depe
Schrödinger equation

ih ] tf
h5Hmol

h fh, fh~0!5f0
h . ~1!

Ignoring spin degrees of freedom, we assume initial dataf0
hPL2(R3N,C), N>1, and a self-adjoint

molecular HamiltonianHmol
h to have a unique solution

fh~ t !P C~R,L2~R3N,C!!.

If the molecule consists ofke electrons andkn nuclei withke1kn5N, the molecular Hamiltonian
Hmol

h can be written as

Hmol
h 52

h2

2
Dxn

1He~xn!,

whereDxn
denotes the Laplacian acting on the 3kn nucleonic coordinates, whileHe(xn) is the

electronic Hamiltonian acting on the 3ke electronic coordinates.He(xn) depends parametrically
on the nucleonic coordinatesxn and comprises the electrons’ kinetics as well as the interac
between electrons and nuclei. The scale-parameterh.0 is given byh5Ame /M , whereme is the
electronic mass andM is the average mass of the molecule’s nuclei. In the following, we
study the limit

h→0, i.e., M→`.

a!Electronic mail: clotilde.fermanian@math.u-cergy.fr
b!Electronic mail: classer@ma.tum.de
5070022-2488/2003/44(2)/507/21/$20.00 © 2003 American Institute of Physics
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We will concentrate on a closed subsets* (xn) of the electronic spectrums(He(xn)), which is the
union of two eigenvaluesl1,2(xn) with the same multiplicityk and which is uniformly isolated
from the rest of the electronic spectrum. That is, there is a constantd.0, such that

dist~ s* ~xn!,s~He~xn!!\s* ~xn! !>d for all xnPR3kn.

We denote the spectral projection ofHe(xn) associated withs* (xn) by Pe(xn) and the extension
to L2(R3N,C) by P* 5*R3kn

% Pe(xn) dxn . If $x j (xn)(•)% j 51
2k is a family of normalized eigenfunc

tions of He(xn) for the eigenvaluesl1,2(xn), then we can write

RanP* 5H (
j 51

2k E
R3kn

%

f j~xn!x j~xn! dxn : f5~f j ! j 51
2k PL2~R3kn,C2k!J .

This description of RanP* induces an isometryU:RanP* →L2(R3kn,C2k). Now, time-dependen
Born–Oppenheimer theory, as carried out by H. Spohn and S. Teufel in Ref. 20, gives the f
ing: If we choose initial dataf0

hPRanP* with if0
hiL251, such that (ih2Df0

hiL2)h.0 is a
bounded sequence, then the solutionfh of the molecular Schro¨dinger equation~1! can be approxi-
mated by a Born–Oppenheimer solution modulo an error of orderh. That is, there exists a
constantC.0, such that

ifh~ t !2fBO
h ~ t !iL2<C~11utu! h,

for all timestPR, wherefBO
h (t)5U* exp(2i (t/h) HBO

h ) U f0
h . If the eigenfunctionsx j (xn)(•) can

be chosen real-valued, then the Born–Oppenheimer Hamiltonian is given by

HBO
h 52

h2

2
Dxn

1V~xn!, ~2!

where V(xn) is a potential, whose values are 2k32k matrices. In this framework, RanP* is
referred to as an adiabatically protected subspace~adiabatos;impassable!. We also note that this
type of observation dates back to the late 1920s and is originally assigned to M. Born, V.
and R. Oppenheimer.

If the eigenvaluesl1 andl2 also satisfy the gap-condition, that is, if

ul1~xn!2l2~xn!u>d for all xnPR3kn,

then Born–Oppenheimer theory shows again adiabatic decoupling between the subspaces
ated withl1 andl2 , and the two-level Hamiltonian~2! splits into two scalar Born–Oppenheime
Hamiltonians, modulo an error of orderh. If the preceding gap-condition is violated, we have
consider two cases: either the eigenvalues cross, i.e.,

' x̃nPR3kn:l1~ x̃n!5l2~ x̃n! ~crossing!,

or they do not cross, but cannot be separated uniformly~avoided crossing!. For generic crossings
with mimimal multiplicity k, general symmetry considerations, as carried out in G. Hagedo
monograph,12 restrict the codimension of the crossing manifold to be one, two, three, or five

codim R3kn$xnPR3kn:l1~xn!5l2~xn!%51,2,3, or 5.

Codimension two, three, and five crossings affect the Born–Oppenheimer approximation
zeroth order term. This means that there is leading order exchange between the eige
associated tol1 andl2 . In the following, we will turn to the simplest model system showing
codimension two crossing and study the Wigner measure associated with its solution. Re
the nucleonic configuration spaceR3kn to R2, we study
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ih ] tc
h52

h2

2
Dx ch1V~x!ch, ch~0!5c0

h , ~3!

with (c0
h)h.0 a bounded family inL2(R2,C2), andV a matrix-valued potential of the form

V~x!5S x1 x2

x2 2x1
D , xPR2.

The Hamiltonian2 (h2/2)Dx1V(x) is an essentially self-adjoint operator onL2(R2,C2), and we
have a unique solutionchPC(R,L2(R2,C2)). The potential’s eigenvalues6uxu cross forx50 as
depicted in Fig. 1 below, which plots6uxu versusx1 andx2 .

The mathematical analysis of the above model system has been initiated by G. Haged
Ref. 12. His result describes the evolution of the solutionch itself, given special initial data, so
called semi-classical wave packets. Recently, the first author and P. Ge´rard6 have studied codi-
mension two crossings from a Wigner measures’ point of view. Their method applies to ge
initial data and covers Hamiltonians of the formHW(x,hDx) with symbol H(x,j)5K(j)
1V(x), KPC `(R2,R).

Here, we aim at applying their result to well-localized initial data and the case wher
kinetics is given by a Laplacian, i.e., forK(j)5uju2/2. For this special situation, we will obtain a
asymptotic description of the solutionch(t), which is validglobally in time.

Actually, we consider for a family of solutions (ch(t))h.0 of ~3! the Wigner transforms

~Whch!~ t,x,j!5
1

~2p!2 E
R2

exp~ iy•j! chS t,x2
h

2
yD ^ chS t,x1

h

2
yDdy,

wheretPR and (x,j)PT* R25R23R2. Sincech(t,x) is a vector inC2, the Wigner transform is
a Hermitian matrix inC2,2. The families (ch(t))h.0 inherit uniform boundedness inL2(R2,C2) for
all times tPR from the initial data. Therefore, the family (Whch)h.0 is bounded in
L`(R,S8(T* R2,C2,2)), which means

FIG. 1. The eigenvalues.
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U E
T* R2

~Whch!~ t,x,j! a~x,j! dxdj U < C

for all tPR and all aPS(T* R2,C2,2). Thus, there exist weak* -limit points of (Whch)h.0 in
L`(R,S8(T* R2,C2,2)). These limit points are calledWigner measures, since for fixed timest they
are positive matrix-valued Radon measures on the phase spaceT* R2. We refer to Refs. 7, 8, 17
and to Ref. 10 for a complete treatment of these measures.

One important property of the Wigner measuresm(t,•) is their relation to the position densit
uch(t,x)u2. Let us consider some fixed timetPR. If the family of initial data (c0

h)h.0 is
h-oscillating, that is, if

lim sup
h→0

E
uju> R/h

uc0
ĥ~j!u2 dj ——→

R→1`

0,

then (ch(t))h.0 inherits this property as well~see the proof of Corollary 1 in Sec. IV!. Roughly
speaking,h-oscillating families have frequencies of oscillations, which are of order less or e
than 1/h. Furthermore, as in Ref. 9, givenh-oscillation, the weak limit points of (uch(t,x)u2 )h.0

in L1(R2,C2) can be described by Wigner measuresm(t,•) of (ch(t))h.0 via

w2 lim
h→0

uch~ t,x!u25E
R j

2
tr ~m~ t,x,dj!!. ~4!

In the following, we will perform acompletestudy of the evolution of Wigner measure
associated with solutions to~3!, assuming specific initial data. The reader will find precise
sumptions and statements in Sec. IV, Theorem 2. For example, our result applies to initia
microlocally localized on a setS0 of the form

S05$~x,j!PT* R2:uxu5R,x5j%

with radiusR.0, which means

;aPC 0
`~T* R2\S0 ,C2,2!:E

T* R2
~Whc0

h!~x,j! a~x,j! dxdj ——→
h→0

0.

Thus, (c0
h)h.0 concentrates asymptotically on a circle in position space and has asymptot

equal position and momentum. Moreover, we assume that (c0
h)h.0 is h-oscillating and localized

on the eigenspace associated, say, with the eigenvalue1uxu of V(x). For example, we suppose

P2~x!c0
h~x! ——→

h→0
0

strongly inL2(R2,C2), whereP6(x)5 1/2 (Id6V(x)/uxu) denote the spectral projectors ofV(x)
associated with6uxu. Assuming these initial data, the solution (ch(t))h.0 stays localized on the
mode plus until it hits the crossing manifold$x50%. At the crossing, we observe a Landau–Zen
exchange between the eigenspaces, and (ch(t))h.0 will be localized on both modes. Our analysi
which is summarized later on in Sec. IV, Theorem 2, results in the following description o
weak limit of the position density for all times.

Theorem 1: Let (c0
h)h.0 be bounded in L2(R2,C2), h-oscillating, microlocally localized on

S0 , and localized on the mode plus. Let(ch(t))h.0 be a family of solutions of (3) given the initia
data (c0

h)h.0 . We denote C5R2/21R and choose a smooth, compactly supported func
fPC 0

`($xPR2:uxu.C%,C). Then we have
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lim
h→0

E
R2

f~x!uP1~x!ch~ t,x!u2 dx50

for all times tPR. Moreover, there exists a positive, increasing sequence(t j ) j >0 with tj→1` as
j→1`, a sequence(a j ) j >0 of positive Radon measures onS1, and a sequence(xj ) j >0 in
C(R,R2), such that

lim
h→0

E
R 2

f~x!uP2~x!ch~ t,x!u2dx5 (
0<k< j

E
S1

f~xk~ t !v!ak~dv!

for tP(t j 21 ,t j ), j PN0 , where t2150.
Thus, on the mode plus the solution asymptotically stays inside the ball of radiusC. On the

mode minus, points outside the ball are charged recurrently in time. Explicit formulas for tha j ,
t j andxj are given in Sec. IV.

We will proceed as follows: In Sec. II, we discuss propagation of Wigner measures and
the classical trajectories associated with the Schro¨dinger equation~3!. Section III introduces two-
scaled Wigner measures and gives some examples for well-localized data. In Sec. IV, we
Landau–Zener transitions between the two eigenspaces at points, where classical trajecto
the crossing manifold$x50% recurrently in time, and obtain an asymptotic description of
solution’s position density, which is valid globally in time.

II. PROPAGATION OF WIGNER MEASURES

Let (c0
h)h.0 be a family of initial data, which is bounded inL2(R2,C2), (ch(t))h.0 be a

family of solutions of~3!, andm(t,•) be an associated Wigner measure. The evolution of Wig
measures associated with solutions of a system, whose principal symbol admits eigenva
constant multiplicity~and thus no crossings!, has been studied in Ref. 10. These results apply
system~3! outsidethe crossing manifold

S5$~x,j!PT* R2:x50%.

We consider initial data (c0
h)h.0 , such that the associated Wigner measuresm0 have support

outside the singular setS. By the results of Ref. 10, outsideS the Wigner measurem(t,•)
commutes with the projectorsP6 and thus can be decomposed as

m~ t,• !5P1m~ t,• !P11P2m~ t,• !P2

in D8(R,S8(T* R2,C2,2)). Since the eigenspaces are one-dimensional, the decomposition s
fies to

m~ t,• !5m1~ t,• !P11m2~ t,• !P2,

wherem6(t,•)5tr (P6m(t,•)) are scalar positive Radon measures satisfying the transport e
tions

] tm
61j•¹xm

67
x

uxu
•¹jm

650, m6~0!5tr ~P6m0!. ~5!

These transport equations give continuity of the mapst°m6(t,•) and thus a description o
m6(t,•) on any given time interval, provided that the supports ofm6(t,•) do not intersect the
crossing manifoldS. We consider the flows of the associated Hamiltonian systems

ẋ6~ t !5j6~ t !, j̇6~ t !57
x6~ t !

ux6~ t !u
, ~6!
                                                                                                                



ued by

h

e

e
n

us,

512 J. Math. Phys., Vol. 44, No. 2, February 2003 C. Fermanian Kammerer and C. Lasser

                    
which describe the classical motion corresponding to the quantum-mechanical motion iss
the Schro¨dinger equation~3!. Therefore, their solutions are calledclassical trajectories. The fol-
lowing proposition characterizes the trajectories, which touch the singular setS. For this, we will
use the symplectic product

x∧j5x'
•j5x1j22x2j1

for (x,j)PT* R2.
Proposition 1: We consider classical trajectories with initial data x6(0)5x0 , j6(0)5j0 ,

(x0 ,j0)PT* R2\$(0,0)%.

1. If x0∧j0Þ0, then x6(t)∧j6(t)Þ0 for all t PR, and the classical trajectories do not reac
S5$x50%.

2. If x0∧j050, then x6(t)∧j6(t)50 for all t PR, and the trajectory associated with the mod
1uxu is the first classical trajectory to hit S for a positive time t0 ,

t05j0•v1Auj0u212ux0u,

wherev5 x0 /ux0u for x0Þ0 and v5 j0 /uj0u for x050. Moreover we have for tP(0,t0)

x6~ t !57
t2

2
v1t j01x0 , j6~ t !57 tv1j0 . ~7!

Proof: Omitting the plus-minus superscripts forx(t) andj(t) unless the context requires, w
start with the observation that the Hamiltonian systems~6! are equivalent to the Newtonia
equations

ẍ~ t !52¹U6~x~ t !!, ẋ~0!5j0 , x~0!5x0 ,

with central fieldU6(y)56uyu. Motion in a central field conserves the angular momentum. Th
we have

x~ t !∧ ẋ~ t !5x0∧j0 , i.e., x~ t !∧j~ t !5x0∧j0 for all tPR,

and the first assertion follows.
We turn to the casex0∧j050. Inserting a Taylor expansion ofx(t) into ~6!, we get

x~ t !

ux~ t !u
——→

t→01

v5H x0

ux0u
if x0Þ0,

j0

uj0u
if x050.

We rewritex(t),j(t) for small t.0 asx(t)5k(t)v, j(t)5 l (t)v with k(t),l (t)PR, and are left
with

k̇6~ t !5 l 6~ t !, l̇ 6~ t !57 1, k~0!5k0 , l ~0!5 l 0 .

Thus, we havel 6(t)57t1 l 0 , k6(t)57t2/21 l 0t1k0 for small t.0. Since x(t)5x01tj0

1o(t), we havek05ux0u. Moreover,l 05sgn(x0•j0)uj0u if x0Þ0 andl 05uj0u if x050.
The determinant for the zeros ofk6(t) is l 0

262k0 . We distinguish different cases.
If l 0

2,2k0 , then only the plus-trajectory hitsS for some positive timet0 , i.e., for t05 l 0

1Al 0
212k0.
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If l 0
2>2k0 , then l 0Þ0 and we have to distinguish two cases. If sgn(l0).0, then only the

plus-trajectory has a positive hitting timet0 , and we get againt05 l 01Al 0
212k0. If sgn(l0),0,

then the minus-trajectory also has a positive hitting times05u l 0u2Al 0
222k0. However, an easy

calculation givest0,s0 , and we are done.
The preceding proof contains the following easy observation concerning the trajectory

ciated with the mode2uxu, which will be useful later on.
Remark 1: The minus-trajectory with initial data x2(0)50, j2(0)5j0 with j0Þ0 is given

for positive times tPR1 by

x2~ t !5S t2

2uj0u
1t D j0 , j2~ t !5S t

uj0u
11D j0 .

This trajectory does not hit S for times tPR1.
Next, we consider the plus-trajectory with initial data (x0 ,j0), x0∧j050, x0Þ0. By Propo-

sition 1, we can also calculate the plus-trajectory after the first hitting timet0 . For this, we set
againv5 x0 /ux0u and

L5Auj0u212ux0u, t j5j0•v1~2 j 11!L ~ j PN0!.

Remark 2: The positive times, at which the plus-trajectory hits S, are given by tj , j PN0 , and
we have for tP(t j ,t j 11), j PN0 ,

x1~ t !5~21! j S ~ t2t j !
2

2
2L~ t2t j ! Dv, j1~ t !5~21! j~ t2t j2L ! v.

We point out, that at any hitting timet j we havej1(t j )5(21) j 11LvÞ0. Thus, the preceed
ing remark is an immediate consequence of Proposition 1, using the change of sign of the f
x6(t)/ux6(t)u at the hitting timest5t j .

Figure 2 summarizes our discussion, depicting the trajectories’x-component: Classical trajec
tories touching the singular setS are contained in the hypersurface

I 5$~x,j!PT* R2:x∧j50%.

Starting a plus-trajectory with initial data (x0 ,j0)PI \S, its x-component runs along the straig
line given byv. It hits S at timet5t0 for the first time, and we start a minus-trajectory going
in the opposite direction. The plus-trajectory hitsS again at timet5t1 , and the mode minus goe
off in the opposite direction, and so on.

If we consider initial data (c0
h)h.0 for the Schro¨dinger equation~3!, such that the associate

Wigner measuresm0 are supported in$(x0 ,j0)% with (x0 ,j0)PI \S, then the transport equation
~5! describe the evolution of the measuresm6(t,•) until the hitting timet0 . When arriving onS,
we will observe some exchange between the plus and the minus mode, a Landau–Zen

FIG. 2. The classical trajectories.
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nomenon. This quantum-mechanical effect has been described quantitatively for the first ti
L. Landau in Ref. 16 and C. Zener in Ref. 21, independently from each other. The work of th
author and P. Ge´rard6 shows that this transfer does not depend on microlocal, i.e., phase s
information only, but that a second level of observation, which can be called ‘‘two-microloc
must be taken into account as well. Their Landau–Zener type formula relies on some two-
variant of Wigner measures, which we will focus on in the following, such that we can con
the evolution ofm6(t,•) for times t.t0 in the manner described for the classical trajector
above.

These two-scaled Wigner measures, which have first been introduced in Ref. 19 in a
context, quantify the way a wave packet concentrates on the hypersurfaceI by introducing a new
variablehPR̄, which, roughly speaking, describes the position of the core of a wave packet
respect toI versus the scaleAh, that is,

h5
x∧j

Ah
.

We note that, for all types of crossings, avoided and real crossings, the scaleAh is known to play
an important role~see the work of Y. Colin de Verdie`re, M. Lombardi, and J. Pollet,1 G.
Hagedorn,11,12G. Hagedorn and A. Joye,13,14A. Joye,15 P. Exner and A. Joye,3 or P. Martin and G.
Nenciu.18

III. TWO-SCALED WIGNER MEASURES

The critical hypersurfaceI 5$x∧j50% is an involutive ~or coisotropic! submanifold of
T* R2\$0,0%, i.e., we have (TzI )

',TzI for all zPI , where (TzI )
' denotes the symplectic

complement of the tangent spaceTzI in TzR
2. This is an immediate consequence of the obvio

fact that (TzI )
' is the linear span of the Hamiltonian vector field associated with the functio

g:T* R2→R, ~x,j!°x∧j.

We now define a two-scaled Wigner transform of (ch)h.0 for I 5$x∧j50% with scaleAh by

W2
hch~x,j,h!5Whch~x,j! ^ dS h2

x∧j

Ah
D , ~x,j,h!PT* R23R,

which acts on the following class of test functions

A5$aPC `~T* R23R,C2,2!:supp~a!,K3R for compact K,T* R2\$~0,0!%,

'a`PC `~T* R23$61%,C2,2!, 'R5R~a!P@0,1`!,;x,jPR2,;uhu.R:

a~x,j,h!5a`~x,j,sgn~h!!%.

These test functions differ from standard matrix-valued test functions in two ways: first, as
tions of (x,j) alone they are compactly supported outside$~0,0!%. This restriction assures that w
are working in regions of the phase spaceT* R2, where the gradient of the functiong chosen to
describeI does not vanish. Second, there is an additional coordinatehPR, which is used for
measuring the position of points inT* R2 with respect to the hypersurfaceI versus the scaleAh.
We denote byR̄ the one point compactification ofR and continuea(x,j,•) continuously onR̄.

Let (ch)h.0 be a bounded family inL2(R2,C2). Theorem 1 in Ref. 6 shows that there exis
a subsequence (hk)k.0 with hk→0 and a positive matrix-valued Radon measuren on I 3R̄, such
that for all aPA
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E
T* R23R

tr ~W2
hch~x,j,h!a~x,j,h!!dxdjdh

5E
T* R2

tr S Whch~x,j!aS x,j,
x∧j

Ah
D D dxdj →

hk→0E
T* R2\I

tr ~a~x,j,sgn~x∧j!`!m~dx,dj!!

1E
I 3R̄

tr ~a~x,j,h!n~dx,dj,dh!!, ~8!

wherem is a Wigner measure of (ch)h.0 .
Definition 1: Let(ch)h.0 be a bounded family in L2(R2,C2). Then we call the Radon mea

suresn, which are associated via (8) to theweak* -limit points of (W2
hch)h.0 in A8, two-scaled

Wigner measures of(ch)h.0 for I 5$x∧j50% with scaleAh.
We note that a two-scaled Wigner measuren depends on the functiong chosen to describe th

hypersurfaceI ; we consider another functiong̃5 f g with f (x,j)Þ0 for all x,jPR2 to describe
the hypersurfaceI and a two-scaled Wigner measureñ associated withg̃ via ~8!. Then, we have
for aPA

E
I 3R̄

a~x,j,h! ñ~dx,dj,dh!5E
I 3R̄

a~x,j, f ~x,j!h! n~dx,dj,dh!. ~9!

This relation allows a geometrical interpretation ofn, see Sec. 1.3 in Ref. 6. For our purpos
however, it will be enough to have relation~9!. The key property of two-scaled Wigner measur
is

1I~x,j! m~x,j!5E
R̄
n~x,j,dh!.

That is, we can recover a Wigner measure’sm restriction toI by projecting a two-scaled measu
n onto I . Indeed, if we consideraPC 0

`(T* R2,C2,2) with support outside (0,0), then we obvious
have

E
T* R23R

tr ~W2
hch~x,j,h! a~x,j!! dxdjdh5E

T* R2
tr ~Whch~x,j! a~x,j!! dxdj ,

and passing to the limit, we obtain1T* R2\I m11I* R̄n(dh)5m outside~0,0!.
In Ref. 12, G. Hagedorn has also studied molecular propagation through codimension

and five crossings. For those systems, the codimension of the associated critical submanifI is
greater than one, but the submanifoldsI are still involutive, and two-scaled Wigner measures
the same type as here can be applied. We refer to Ref. 6 for a definition of two-scaled W
measures associated with general involutive submanifolds. Notice that two-scaled measu
also be associated with symplectic subspaces~see Ref. 5!; the measures obtained are then mo
complicated and close to those of Ref. 4.

In the following, we discuss some examples for two-scaled Wigner measures associate
I 5$x∧j50%. For simplicity, the considered functions are all scalar-valued.

A. Some coherent states

We start with some coherent states of the form

ch~x!5h2bFS x2x02hgh0

hb DexpS i

h
j0•xD

with FPL2(R2,C), 0,b<1, 0,g,b, andx0 ,j0 ,h0PR2 with x0∧j050.
If we chooseb5 1/2 , h050, andF(x)5exp((x•BA21x)/2) with A,BPC2,2 invertible, then

ch is a semiclassical wave packet as considered by G. Hagedorn in Ref. 12. Moreover, (ch)h.0 is
h-oscillating, and we have for scalar-valued test functionsaPA
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E
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj5~2p!22E

T* R23R2
exp~ iy•j!F~x2y/2!F̄ ~x1y/2!3a~x0

1hbx1hgh0 ,j01h12bj,h2 1/2d~x,j!! dydxdj,

whered(x,j)5hx∧j1hbx∧j01h12bx0∧j1h11g2bh0∧j1hgh0∧j0 , so that

d~x,j!

Ah
5hb2 1/2x∧j01h1/22b x0∧j1hg2 1/2h0∧j01o~h1/22b!1o~1!. ~10!

Ignoring theh-component ofa, we obtain the Wigner measure of (ch),

m~x,j!5iFiL2
2 d~x2x0! ^ d~j2j0!,

which shows that (ch) concentrates onI 5$x∧j50%.
However, the two-scaled measure forI with scaleAh depends onh0 andg. If b5 1/2 and

h0∧j050, then the concentration of (ch) on I is issued from finite distance. Otherwise, th
concentration occurs from infinite distance~versusAh). Below, we discuss some significant case
For simplicity, we assumeux0u5uj0u51.

b5 1/2 andh0∧j050: The dominating term in~10! is x∧j01x0∧j. For tPR andzPR2, we
setC(x)5exp(2 (i/2) uxu2sgn(x0•j0))F(x). Then,

n~x,j,h!5d~x2x0! ^ d~j2j0! ^ ~2p!22S E
R
uĈ~ tx01hx0

'!u2 dt D dh.

g,b5 1/2 andh0∧j0Þ0: The dominating term in~10! is hg21/2h0∧j0 and

n~x,j,h!5m~x,j! ^ d~h2sgn~h0∧j0! `!.

g,b,1/2 : The dominating term in~10! is hg21/2h0∧j0 if h0∧j0Þ0 and hb21/2x∧j0 if
h0∧j050. In the first case we obtain as before

n~x,j,h!5m~x,j! ^ d~h2sgn~h0∧j0! `!.

In the second case we have to consider

E
R2

uF~x!u2a~x0 ,j0 ,sgn~x∧j0!`! dx5E
R2

uF~ tj01hj0
'!u2a~x0 ,j0 ,2sgn~h!`! dtdh.

Therefore,

n~x,j,h!5d~x2x0! ^ d~j2j0! ^ F S E
x•j0

'
.0

uF~x!u2 dxD d~h1`!

1S E
x•j0

'
,0

uF~x!u2 dxD d~h2`!G .
The caseb.1/2 leads to a similar discussion with results depending on the sign ofg2(12b).

B. Arbitrary phase

Replacing the linear phase by an arbitrary one, we now consider families of the form

ch~x!5h2bFS x2x0

hb DexpS i

2h
f ~ uxu2! D
                                                                                                                



e

517J. Math. Phys., Vol. 44, No. 2, February 2003 Wigner measures and codimension two crossings

                    
with FPL2(R2,C), f PC 1(R,R), 0,b,1, andx0PR2\$0%. Again, this family ish-oscillating.
Writing

f ~ ux01hbzu2!2 f ~ ux01hbz8u2!

52hb~z2z8!•S x01hb
z1z8

2 D E
0

1

f 8~ tux01hbzu21~12t !ux01hbz8u2! dt

5..2hb~z2z8!•S x01hb
z1z8

2 D l h~x0 ,z,z8!,

for z,z8PR2, we calculate for scalar-valuedaPA

E
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj

5~2p!22E
T* R23R2

exp~ iy•j!F~x2y/2!F̄~x1y/2!

3aS x01hbx,l hS x0 ,x1
y

2
,x2

y

2D ~x01hbx!1h12bj,
d~x,j!

Ah
D dydxdj,

with

d~x,j!

Ah
5 h~1/2! 2b~x01hbx!∧j 5 h~1/2! 2b x0∧j1o~1!. ~11!

Since limh20 l h(x0 ,z,z8)5 f 8(ux0u2), we obtain the Wigner measure

m~x,j!5iFiL2
2 d~x2x0! ^ d~j2 f 8~ ux0u2! x0!,

and have again concentration onI 5$x∧j50%. However,Ah-concentration is issued from finit
distance if and only ifb< 1/2. We distinguish three different cases, assumingux0u51.

b,1/2 :

n~x,j,h!5m~x,j! ^ d~h!.

b5 1/2 :

n~x,j,h!5d~x2x0! ^ d~j2 f 8~1! x0! ^ ~2p!22S E
R
uF̂~ tx01hx0

'!u2 dtD dh.

b.1/2 :

n~x,j,h!5d~x2x0! ^ d~j2 f 8~1! x0! ^ ~2p!22F S E
x0`j.0

uF̂~j!u2 dj D d~h2`!

1S E
x0`j,0

uF̂~j!u2 dj D d~h1`!G .
Of course, the above discussion easily extends to families

ch~x!5h2bFS x2x02hgh0

hb DexpS i

2h
f ~ uxu2! D
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with 0,g,b andh0PR2.

C. Concentration on a circle

Finally, we consider families of the form

ch~x!5h2 1/4FS uxu22R2

Ah
D expS i

2h
ux2hgx0u2D ,

whereFPC 0
`(R,C), x0PR2, R.0 and 0,g,1. Once again, such families areh-oscillating. We

have for scalar-valuedaPA

I hªE
T* R2

Whch~x,j!aS x,j,
x∧j

Ah
D dxdj

5E
T* R23R2

exp~ iy•j!FS ux2y/2u22R2

Ah
D F̄S ux1y/2u22R2

Ah
D

3a~x,x2hgx01hj,Ahx∧j1hg2 1/2x0∧x!
dy dx dj

~2p!2Ah
,

and thus by the Fourier inversion formula

I h5E a~x,x2hgx01hj,Ahx∧j1hg2 ~1/2!x0∧x!F̂~m2v/2!F̂̄ ~m1v/2!

3exp~ iy•j!expS 2
2i

Ah
m x•y2

i

Ah
vS uxu21

uyu2

4
2R2D D dm dv dy dx dj

~2p!4Ah
.

Substitutingj by 2h2 1/2mx1h2 1/4z andy by h1/4z, we obtain

I h5E a~x,x2hgx012Ah m x1h3/4z,h1/4x∧z1hg2 ~1/2!x0∧x!F̂~m2v/2!

3 F̂̄ ~m12/v !expS iz•z2
i

4
vuzu2DexpS 2

i

Ah
v~ uxu22R2!D dm dv dz dx dz

~2p!4Ah
.

Then, the stationary phase method in the variablesv andr5uxu yields that

I h ;
h20

~2p!22 iFiL2
2 E

uxu5R
a~x,x,hg2 ~1/2!x0∧x! dx.

Therefore, we obtain the Wigner measure

m~x,j!5~2p!22iFiL2
2 1$uxu5R%~x! dx^ d~j2x!,

and observe again concentration onI 5$x∧j50%. The two-scaled measure provides addition
information concerning the exponentg and the directionx0 . There are three different cases.

g,1/2: n(x,j,h)5m(x,j) ^ d(h2sgn(x0∧x)`),
g51/2: n(x,j,h)5m(x,j) ^ d(h2x0∧x),
g.1/2: n(x,j,h)5m(x,j) ^ d(h).
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IV. LANDAU–ZENER TRANSITIONS AT HITTING POINTS

A. Propagation outside the crossing

Next, we discuss the propagation of two-scaled Wigner measures outside the singularS.
As before,P6(x) denote the orthogonal projectors ofV(x) corresponding to the eigenvalue
6uxu. The weak* -limit points in L`(R,A8) of (W2

hch(t))h.0 , which are associated via~8! with
solutions (ch(t))h.0 of the Schro¨dinger equation~3!, are referred to as two-scaled Wigner me
suresn(t,•) of the family (ch(t))h.0 .

Proposition 2: Let(ch(t))h.0 be a family of solutions of the Schro¨dinger equation (3) with
given initial data (c0

h)h.0 , which are bounded in L2(R2,C2). Let n(t,•) and n0 be two-scaled
Wigner measures of(ch(t))h.0 and (c0

h)h.0 for the hypersurface I5$x`j50% and the second
scaleAh. If supp (n0)ùS5B, thenn(t,•) can be decomposed inD8(R,A8) as

n~ t,• !5n1~ t,• !P11n2~ t,• !P2 outside S, ~12!

wheren6(t,•) are scalar-valued positive Radon measures supported on I3R̄,

] tn
61j•¹xn

67
x

uxu
•¹jn

650 outside S. ~13!

Proposition 2 is a consequence of Theorem 28 in Ref. 6. We note, however, that Theorem 28
shows transport terms inh-direction, which vanish in our case. This is due to the fact t
$ uju2/26uxu,x∧j %50, where$ f ,g%5¹j f •¹xg2¹xg•¹j denotes the Poisson bracket of two fun
tions f and g on phase spaceT* R2. For the convenience of the reader, we give a proof
Proposition 2 in the Appendix.

From the above transport equations~13! we deduce the continuity of the mapt°n6 on any
given time interval, provided the support ofn6 does not intersect the singular setS. To obtainn6

on S and to restart the tranport equations every time when hittingS, the work in Ref. 6 provides
us with a local result describing the branching ofn6 near some point (0,j0)PS\$(0,0)%, which we
shall explain next.

B. A local Landau–Zener formula

We consider some hitting point (0,j0)PS with j0Þ0 and some neighborhoodW of (0,j0)
with (0,0)¹W, such that any classical trajectory included inW crossesS at most once for some
given bounded time interval. Such an open setW exists due to the geometry of the trajectori
described in Sec. III. We denote byJ6,p (p; past! the sets of classical trajectories, which go in
SùW,

J6,p5$~x,j!PT* R2:'~0,z0!PSùW,'sP~2`,0!,x5xz0

6 ~s!,j5jz0

6 ~s!%,

where (xz0

6 (s),jz0

6 (s)) are the plus-minus trajectories with initial datum (0,z0). Similarly, we

define the setsJ6, f ( f ; future! of classical trajectories, which go out ofSùW,

J6, f5$~x,j!PT* R2:'~0,z0!PSùW,'sP~0,1`!,x5xz0

6 ~s!,j5jz0

6 ~s!%.

Measuresn6 with support in W are supported in (J6,pøJ6, f)ùW and propagate along th
classical trajectories of the corresponding mode. For any (0,z0)PJ6,pùWùS the tangential space
T(0,z0)(J

6,pùW) is spanned by (z0 ,e1) and (z0 ,e2), where theej denote the canonical uni
vectors ofR2. SinceT(0,z0)(S) is spanned by (0,e1) and (0,e2), and sincez0Þ0, J6,pùW andS

intersect transversally, and the restriction ofn6 to J6,pùWùS is a well-defined distribution,
which we denote byn6,p. Analogously, we definen6, f .

If n1,p andn2,p are mutually singular on$uhu,1`%, then according to Theorem 3 in Ref.
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S n1, f

n2, f D5S 12T T

T 12TD S n1,p

n2,pD in SùW ~14!

with T5T(j,h)5exp(2 ph2/uju3). We point out that we have describedI by the function
g(x,j)5x∧j, while in the framework of Ref. 6 the hypersurfaceI is specified by the equation
g̃(x,j)5uju21(x∧j). Thus, our transfer coefficientT is different from the one in Ref. 6. It is
obtained using relation~9!.

The proof6 of the above Landau–Zener formula reduces the Schro¨dinger equation~3! to a
scattering problem, which is close to the original system studied by Landau16 and Zener21 in the
early 1930s and can be solved explicitly; see the Appendix of Ref. 6. The reduction is achiev
a change of symplectic time-space coordinates (t,x,t,j)°(s,z,s,z), such that in the new coor
dinates

J6,p5$s6s50,z250,s,0%,

J6, f5$s7s50, z250,s.0%,

I 5$z250%,S5$s5s5z250%.

The system~3! reduces to

h

i
]sv

h5QW~s,z,hDs ,hDz!v
h

with

Q5S s a~s,z!z2

a~s,z!z2 2s D ,

a(z,s)Þ0 for all zPR2, sPR, and vh5Uch, whereU is a suitably chosen unitary, matrix
valued Fourier integral operator. Of course, most of the work in Ref. 6 deals with
s-dependence of the functiona.

Roughly speaking, the singularity condition on the incident measuresn1,p andn2,p excludes
Ah-interferences betweenP1ch and P2ch at the crossing. One might expect that after o
hitting time this seemingly restrictive condition does not hold any more. However, the follo
result shows that for several interesting cases the singularity condition is indeed satisfied
hitting times. Thus, the local result~14! can be used to describe the evolution of two-sca
Wigner measuresglobally in time. Recovering the Wigner measure from the two-scaled meas
we also obtain a global description of the weak limit of the position density via relation~4!.

C. A global result

We consider a family of initial data (c0
h)h.0 bounded inL2(R2,C2) and we suppose that it

two-scaled Wigner measuren0 is supported in some setS,I such that

S5$~k~v!v,l ~v!v!:vPV%

with V#S1 and measurable functionsk:V→(0,1`) and l :V→R. Such families can be easil
built provided the examples of Section 3. If we also assume localization on the mode plu
have an associated two-scaled Wigner measuren0 of the form

n0~x,j,h!5n0
1~x,j,h!P1~x!.

Using the one-to-one mapping betweenS andV, we rewriten0 as
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n0
1~x,j,h!5S E

V
r0~h,dv! ^ d~x2k~v!v! ^ d~j2 l ~v!v! DP1~x!, ~15!

wherer0 is a positive Radon measure onR̄3V.
In this situation there are two types of classical trajectories, which carry the energy. Th

type are plus-trajectories with initial data (x0 ,j0) for x05k(v0)v0 , j05 l (v0)v0 with v0PV.
The second type consists of minus-trajectories, which are issued by plus-trajectories hittingS. By
Remarks 1 and 2, there are two important facts:

~i! At any of the hitting points (t,0,j,h), the incident energy is only carried intoS by the
plus-trajectories, so that the required singularity assumption holds.

~ii ! At any of the hitting points (t,0,j,h) we havejÞ0, so that we can use the Landau–Zen
formula ~14!.

We denote by (x1(t,v),j1(t,v)) the plus-trajectory described in Remark 2 with initial da
(k(v)v,l (v)v), vPV, and we set

L~v!5Au l ~v!u212uk~v!u, t j~v!5 l ~v!12~ j 11!L~v!, j PN0 .

Moreover, fort>t j (v) we denote by (xj
2(t,v),j j

2(t,v)) the minus-trajectory, which has initia
data (0,j1(t j (v),v)) at time t5t j (v). By Remark 1, we have fort>t j (v)

xj
2~ t,v!5~21! j~~ t2t j~v!!2/22L~v!~ t2t j~v!!!v,

j j
2~ t,v!5~21! j~ t2t j~v!2L~v!!v.

Now, we can describe the evolution of a two-scaled Wigner measuren(t,•) for the solutions
(ch(t))h.0 of the Schro¨dinger equation~3! as follows.

Theorem 2: Let (ch(t))h.0 be a family of solutions of the Schro¨dinger equation
(3) with initial data (c0

h)h.0 , which are bounded in L2(R2,C2). Let (c0
h)h.0 have a

two-scaled Wigner measuren0 for I 5$x∧j50% and scaleAh, which is of the form (15). If we
decompose a two-scaled Wigner measuren(t,•) of (ch(t))h.0 for I and scale Ah as
n(t,•)5n1(t,•)P11n2(t,•)P2 in D8(R,A8), then we have for all t>0

n1~ t,x,j,h!5E
V

r1~ t,h,dv! ^ d~x2x1~ t,v!! ^ d~j2j1~ t,v!!,

n2~ t,x,j,h!5(
j >0

E
V

r j
2~ t,h,dv! ^ d~x2xj

2~ t,v!! ^ d~j2j j
2~ t,v!!,

wherer1 and r j
2 , j >0, are time-dependent positive scalar-valued Radon measures onR̄3V

given by

r1~ t,h,v!5(
j >0

1(t j 21(v),t j (v))~ t ! ~12T~h,v!! j r0~h,v!,

r j
2~ t,h,v!51(t j (v),1`)~ t ! T~h,v! ~12T~h,v!! j r0~h,v!

with T(h,v)5exp(2 ph2/L(v)3) and t21(v)50 for all hPR̄, vPV.
Proof: We consider first somen0 of the form

n0~x,j,h!5~d~x2x0! ^ d~j2j0! ^ r̃0~h!!P1~x!.
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As mentioned before, we just have to use the description of the classical trajectories issue
the point (x0 ,j0)5(k0v0 ,l 0v0), v0PV, which is contained in Remarks 1 and 2. We know th
for all tP(0,t0(v0)) the measuren1 propagates along the trajectory (x1(t,v0),j1(t,v0)). Thus,
we have

n~ t,x,j,h!5~d~x2x1~ t,v0!! ^ d~j2j1~ t,v0!! ^ r̃0~h!!P1~x!,

when testing against functionsfPC 0
`(R,A) with supp(f),(0,t0(v0)). At time t5t0(v0), there

occurs some Landau–Zener partition of energy. Using~14!, we obtain

n~ t,x,j,h!5n1~ t,x,j,h! P1~x!1n2~ t,x,j,h!P2~x!,

when testing on (t0(v0),t1(v0)), where

n1~ t,x,j,h!5~12T~h,v0!!r̃0~h! ^ d~x2x1~ t,v0!! ^ d~j2j1~ t,v0!!,

n2~ t,x,j,h!5T~h,v0! r̃0~h! ^ d~x2x0
2~ t,v0!! ^ d~j2j0

2~ t,v0!!.

The measuren2 propagates along (x1
2(t,v0),j1

2(t,v0)) for tP(t0(v0),t1(v0)), while for n1

there happens a new Landau–Zener phenomenon at timet5t1(v0) at the point (0,L(v0)v0),
which opens another trajectory on the mode minus. Now, that is, fortP(t1(v0),t2(v0)), the
measuren2 propagates along the two trajectories (xj

2(t,v0),j j
2(t,v0)), j 51,2. The same argu

ments apply recurrently for any of the hitting points

t5t j~v0!, x50, j5~21! j 11L~v0!v0 .

This proves Theorem 2 for a measurer0(h,v) of the form r̃0(h) ^ d(v2v0). By linearity, the
above arguments directly extend tor0(h,v), which is a discrete Radon measure with respect tov.
Since discrete Radon measures are dense in the set of positive Radon measures, this ob
also closes our proof.

Remark 3: Ifn0($uhu51`%)50, then (12T(h,v)) j goes to zero for(h,v)Psupp(r0) as
j→1`, and

E
R̄3V

r1~ t,dh,dv! ——→
t→1`

0.

Thus, as t goes to1` all the energy is transferred from the mode plus to the mode minus.
Remark 4: Since the singularity assumption guaranteeing (14) concerns only the parts

two-scaled measure supported in$uhu,1`%, the result of Theorem 2 easily extends to initial da
n0 , which are also localized on the mode minus withsupp(n0

2)#$uhu51`%.
Remark 5: We note that for the linear codimension three and five crossings consider

G. Hagedorn in Ref. 12, again the classical trajectories are the Hamiltonian curves of the
tions uju2/26uxu. Therefore, provided the expected generalization of Ref. 6 to these crossing
same result as in Theorem 2 will hold for them as well.

We close by a corollary concerning the weakL1(R2,C)-limit of the position density, which
implies Theorem 1 of the Introduction when applied toS5S0 .

Corollary 1: Let us suppose initial data(c0
h)h.0 , which are bounded in L2(R2,C2), which are

h-oscillating, and which have a Wigner measurem0 with supp(m0)#S and m05m0
1 P1. If we

denote

C5sup$uk~v!u1 1
2 u l ~v!u2:vPV%,

then we have for the solutions(ch(t))h.0 of the Schro¨dinger equation (3) for all times t>0 and
for all fPC 0

`($xPR2:uxu.C%,C)
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lim
h20

E
R2

f~x!uP1~x!ch~ t,x!u2 dx50,

lim
h20

E
R2

f~x!uP2~x!ch~ t,x!u2 dx5E
V

(
j >0

1(t j (v),1`)~ t ! f~xj
2~ t,v!! a j~dv!,

wherea j (v)5* R̄T(h,v)(12T(h,v)) jr0(dh,v).
Proof: First we prove that for all timest>0 the family of solutions (ch(t))h.0 inherits the

property of h-oscillation from the initial data (c0
h)h.0 . We consider some function

xPC `(R2,R) with x(u)51 for uuu.1 andx(u)50 for uuu, 1
2. We study

wh~ t,x!5xWS hDx

R D ch~ t,x!

for h,R.0. We have

0 <E
huju>R

uĉh~ t,j!u2 dj<iwR
h~ t !iL2(R2)

2 .

Moreover, if we denoteH(x,j)5 (uju2/2) 1V(x), then we have

ih ] twR
h5HW~x,hDx!wR

h1
h

R
MR

h ch

with MR
h5(R/h) @xW(hDx /R),V(x)#. Analyzing MR

h , the linear growth ofV(x), prevents a
direct application of semiclassical Weyl calculus. However, sinceMR

h is a linear polynomial inx,
the standard arguments still apply—see the proof of Proposition 7.7 in Ref. 2 for example
we have

MR
h5

1

2i
~$x,V%2$V,x%!W~x,hDx!.

Thus,MR
h is a bounded operator, whose norm is independent fromh,R, and will be denoted by

iM i . SinceHW(x,hDx) is symmetric, we have for all timest

d

dt
iwR

h~ t !iL2(R2)
2 <

iM i
R

ich~ t !iL2(R2) iwR
h~ t !iL2(R2) .

Since (ch(t))h.0 is bounded inL2(R2,C2) uniformly for all timest>0, we obtain

iwR
h~ t !iL2(R2)<iwR

h~0!iL2(R2)1
CiM i t

2R
.

Passing to the limitsh→0 andR→`, we get theh-oscillation of (ch(t))h.0 for all times t.
Finally, integrating over the distanceh and the momentumj in the formulas of Theorem 2, we
conclude our corollary’s proof.

Observe thatuk(v)u1 1
2 u l (v)u25L(v)2/2 describes the boundaries of the strip in t

Rx
2-plane, between which the plus-trajectory oscillates. In other words, Corollary 1 means

we consider x̄5«rv with vPV,«P$61%,r .uk(v)u1 1/2u l (v)u2, then the weak limit of
(u P2(x)ch(t,x)u2)h.0 chargesx̄ recurrently at times

t5tk~v!1L~v!1AL~v!212ux̄u,
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for kPN such that (21)k5«. Moreover, the mass abovex̄ is ak(v).
Remark 6: Theorem 2 and thus Corollary 1 rely on the special features of the Hamilto

curves of the functionsuju2/26uxu. We emphasize that the special form of the initial data has b
assumed, such that explicit calculations can easily be performed. However, as long as we
initial data, which have a Wigner measurem0 with support outside S and a two-scaled Wign
measuren0 with supp(n0

2)#$uhu51`%, the assumption for applying (14) is fulfilled for eac
hitting time at the crossing. Thus, the evolution of the weak-limit of the position density is u
described by the transport equations (13) and the Landau–Zener formula (14).

APPENDIX: PROPAGATION OUTSIDE THE CROSSING

Proof: Proposition 2 gives a description of the two-scaled Wigner measuren outside the
singular set S5$x50%. Thus, all the test functionsaPA used in the following have
supp(a)ùS5B, assuring that in the region under investigation the projectorsP6(x) depend
smoothly onx. There are two steps:

~1! First, we show@n(t,•),P6#50 in D8(R,A8) by analyzing

L1
h~ t !5E

T* R2
tr S ~Whch!~ t,x,j! aS x,j,

x∧j

Ah
D D dxdj

for matrix-valued test functionsaPA. Due to this commutativity, we can then decompo
n(t,•) asn(t,•)5n1(t,•)P11n2(t,•)P2 with n6(t,•)5tr (n(t,•)P6).

~2! Second, we show the transport equations for the scalar-valued measuresn6(t,•). Thus, we
study the evolution of

L2
h~ t !5E

T* R2
tr S ~Whch!~ t,x,j! P6~x! aS x,j,

x∧j

Ah
D D dxdj,

for scalar-valued test functionsaPA.
First step: Let (ch(t))h.0 be a family of solutions of the Schro¨dinger equation~3!, whose

Hamiltonian’s symbol will be denoted byH(x,j)5 (uju2/2) 1V(x). Testing against functions
aPA, we will use the notationah(x,j)5a(x,j, (x∧j/Ah)). In the distributional sense, we hav
by the duality of Wigner transformation and Weyl quantization

ih
d

dt
L1

h~ t !5^ch~ t !uah
W~x,hD! HW~x,hD! ch~ t ! &L2(R2)

2^ HW~x,hD! ch~ t !uah
W~x,hD! ch~ t ! &L2(R2)

5^ch~ t !u@ah
W~x,hD!,HW~x,hD!# ch~ t !&L2(R2) , ~A1!

where the last equation is due to the symmetry ofHW(x,hD). Analyzing this commutator by
semiclassical Weyl calculus—see for example Proposition 7.7 in Ref. 2—we apply a c
functionxPC 0

`(R2,R) compensating the linear growth inx of H(x,j). We choosex with support
outside$x50%, such thatx(x)51 for all xPR2, which lie in the projection of supp(a) onto
position space. Sincexa5a anda(¹xx)50, we have

ah
W~x,hD!5ah

W~x,hD! x5x ah
W~x,hD!

and therefore

@ah
W~x,hD!,V#5@ah

W~x,hD!,x V#5@ah ,x V#W~x,hD!1
h

2i
~$ah ,x V%2$x V,ah%!W~x,hD!.

Moreover,
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Fah
W~x,hD!,2

h2

2
DG5

h

i H ah ,
uju2

2 J W

~x,hD!1h2Rh,

where (Rh)h.0 is a sequence of bounded operators onL2(R2,C2) built with second order deriva
tives of ah . We note, thatL2-continuity here and in the following is always implied by th
Theorem of Calderon-Vaillancourt; see for example, Theorem 7.11 in Ref. 2. Since every d
tive of ah produces an extra factor 1/Ah, we have

@ah
W~x,hD!,HW~x,hD!#5@ah ,V#W~x,hD!1Ah Qh ~A2!

with (Qh)h.0 a bounded sequence of bounded operators onL2(R2,C2). Since we also have
ich(t)iL25ic0

hiL2 for all tPR, we obtain

ih
d

dt
L1

h~ t !5E
T* R2

tr ~@~Whch!~ t,x,j!,V~x,j!# ah~x,j!!dxdj1Ah qh~ t !

with (qh)h.0 a bounded sequence inL`(R,C). Obviously, we have for allfPC 0
`(R,A)

ih E
R

d

dt
L1

h~ t ! f~ t ! dt5 ih E
R
L1

h~ t !
d

dt
f~ t ! dt ——→

h20
0,

since (L1
h)h.0 is bounded inL`(R,C). Therefore, in view of~A2!, passing to the limit in~A1!, we

obtain@n,V#50 and thus@n,P6#50. Since theP6 are rank one projectors, we can simplify th
decompositionn5P1nP11P2nP2 to n5n1P11n2P2, wheren65tr (nP6).

Second step:Now, we consider scalar-valued test functionsaPA. We have

d

dt
L2

h~ t !5
i

h
^@P6ah

W~x,hD!P6, HW~x,hD!# ch~ t !uch~ t ! &L2(R2) .

We denotel6(x,j)5 (uju2/2) 6uxu. Obviously,

@P6ah
W~x,hD!P6, HW~x,hD!#5@P6ah

W~x,hD!P6, l6
W~x,hD!#.

We reuse the cut-off functionx and obtain

x P6 l6
W~x,hD!5l6

W~x,hD! x P61
h

2i
r W~x,hD!1o~h!,

l6
W~x,hD! x P65xP6 l6

W~x,hD!2
h

2i
r W~x,hD!1o~h!,

where r (x,j)5$xP6,uju2/2%. Here and in the following, theo-notation refers to the space o
bounded operators onL2(R2,C2). Therefore,

i

h
@P6ah

W~x,hD!P6, l6
W~x,hD!#

5
i

h
x P6 @ah

W~x,hD!,l6
W~x,hD!# x P61

1

2
~x P6ah

W~x,hD!r W~x,hD!

1r W~x,hD!ah
W~x,hD!x P6!1o~1!.

Sincexa5a anda(¹xx)50, we obtain
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x P6 ah
W~x,hD!r W~x,hD!1r W~x,hD!ah

W~x,hD!x P6

5P6 ah
W~x,hD!r W~x,hD!1r W~x,hD!ah

W~x,hD!P6

5qh
W~x,hD!1o~1!

with q5q(x,j,h),

q5a~P6r 1rP6!5a~P6$P6,uju2/2%1$P6,uju2/2%P6!.

Moreover, using$x∧j,l6(x,j)%50, we have

i

h
x@ah

W~x,hD!, l6
W~x,hD!#x5bh

W~x,hD!1o~1!,

with b(x,j,h)52j•¹xa6(x/uxu) •¹ja. Thus, theh-dependance drops, and we obtain

lim
h20

d

dt
L2

h~ t !5E
T* R2

tr ~~P~x!6b~x,j,h!P6~x!1q~x,j,h!!n~ t,dx,dj,dh!!

5E
T* R2

b~x,j,h! n6~ t,dx,dj,dh!1E
T* R2

tr ~q~x,j,h! n~ t,dx,dj,dh!!.

For concluding the proof, it remains to show thattr (q n(t,•))50. Using (P6)25P6, we get
P6$P6,uju2/2%P65P6$P6,uju2/2%P61P6$P6,uju2/2%P650. Since traces are invariant un
der cyclic permutations, and since@n(t,•),P6#50, we finally have

tr ~q n~ t,• !!5tr ~a P6$P6,uju2/2%P6n~ t,• !1a P6$P6,uju2/2%P6n~ t,• !!50.
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Choi’s proof as a recipe for quantum process tomography
Debbie W. Leung
IBM T.J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598

~Received 5 February 2002; accepted 16 August 2002!

Quantum process tomography is a procedure by which an unknown quantum op-
eration can be fully experimentally characterized. We reinterpret Choi’s proof@Lin-
ear Algebr. Appl.10, 285 ~1975!# of the fact that any completely positive linear
map has a Kraus representation as a method for quantum process tomography. The
analysis for obtaining the Kraus operators is extremely simple. We discuss the
systems in which this tomography method is particularly suitable. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1518554#

I. INTRODUCTION

The formalism of quantum operation can be used to describe a very large class of dyn
evolution of quantum systems, including quantum algorithms, quantum channels, noise pro
and measurements. The task to fully characterize an unknown quantum operationE by applying it
to carefully chosen input state~s! and analyzing the output is called quantum process tomogra
The parameters characterizing the quantum operation are contained in the density matrice
output states, which can be measured using quantum state tomography.1 Recipes for quantum
process tomography have been proposed.2–6 In earlier methods,2–4 E is applied to different input
states each of exactly the input dimension ofE. In Refs. 5 and 6,E is applied to part of a fixed
bipartite entangled state. In other words, the input toE is entangled with a reference system, a
the joint output state is analyzed.

Quantum processing tomography is an essential tool in reliable quantum information pr
ing, allowing error processes and possibly imperfect quantum devices such as gates and c
to be characterized. The method in Ref. 3 has been experimentally demonstrated and
benchmark the fidelities of teleportation7 and the controlled-NOT gate,8 and to verify a core as-
sumption in fault tolerant quantum computation.8

The minimum experimental resource for quantum process tomography is determined
number of parameters characterizing a quantum operationE, and is fixed by the input and outpu
dimensions ofE. However, different methods that consume the same quantity of resource
require different types of resources, and be suitable for different physical systems. Furthe
each method defines a procedure to convert the measured output density matrices to a
representation ofE, and a simpler procedure will enhance the necessary error analysis.

In this paper, we describe in detail the method initially reported in Ref. 6, which is derive
a simple corollary of a mathematical proof reported in Ref. 9. Our goal is twofold. We hop
make this interesting proof more accessible to the quantum information community, as wel
provide a simple recipe for obtaining the Kraus operators of an unknown quantum operati
the rest of the paper, we review the different approaches of quantum operations, describe
proof and the recipe for quantum process tomography in Secs. II, III, and IV. We discus
relative merits of various tomography methods in Sec. V.

II. EQUIVALENT APPROACHES FOR QUANTUM OPERATIONS

A quantum state is usually described by a density matrixr that is positive semidefinite (r
>0, i.e., all eigenvalues are non-negative! with tr(r)51. A quantum operationE describes the
evolution of one stater to anotherr85E(r).
5280022-2488/2003/44(2)/528/6/$20.00 © 2003 American Institute of Physics
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More generally, letH1 and H2 denote the input and output Hilbert spaces ofE. A density
matrix can be regarded as an operator acting on the Hilbert space~but it evolves as a state rathe
than as an operator!. Let B(Hi) denote the set of all bounded linear operators acting onHi for
i 51,2. We can considerE(M ) for any MPB(H1) without restricting the domain to densit
matrices. A mapE from B(H1) to B(H2) is a quantum operation if it satisfies the followin
equivalent sets of conditions:

~1! E is ~i! linear, ~ii ! trace nonincreasing for allM>0 (tr(E(M ))<tr(M )), and~iii ! completely
positive.10 The mapE is positive if M>0 in B(H1) implies E(M )>0 in B(H2). It is com-
pletely positive if, for any auxiliary Hilbert spaceHa , M̃>0 in B(H1^ Ha) implies
(E^ I)(M̃ )>0 in B(H2^ Ha) whereIa is the identity operation onB(Ha).

~2! E has aKraus representationor anoperator sum representation:11,9,12

E~M !5(
k

AkMAk
† , ~1!

where(kAk
†Ak<I , and I is the identity operator inB(H1). The Ak operators are called th

Kraus operators or the operation elements ofE.
~3! E(M )5Tr0@U(M ^ ra)U†(I ^ P0)# for some unitaryU in B(H1^ Ha). Here,raPB(Ha) is a

density matrix of the initial state of the ancilla,I is the identity operator inB(H2), H2^ H0

5H1^ Ha , P0PB(H0) is a projector, and Tr0 is a partial trace overH0 .

Each set of conditions represents an approach to quantum operation when the inp
density matrix (M5r). The first approach puts down three axioms any quantum operation sh
satisfy. Completely positivity requires that if the input is entangled with some other sy
~described by the Hilbert spaceHa), the output afterE acts onH1 should still be a valid state. The
second approach describes a noise process in whichAk is applied to the state at random, which
particularly convenient in quantum information theory~see Ref. 13 for a review!. The third
approach describes system-ancilla~or system-environment! interaction. Each evolution result
from a unitary interaction of the system with a fixed ancilla statera , followed by a measuremen
on a subsystemH0 with measurement operators$P0 ,I 2P0%, post-selection of the first outcome
and removal ofH0 @see~2!#.

~2!

The fact that the third approach is equivalent to the first is nontrivial—the operations in the
approach are actually all that satisfy the three basic axioms.

The earliest proof of the equivalence of the three approaches is due to Ref. 11. Summar
simplified proofs can be found in Refs. 6, 14, and 15. There are four major steps, showing th
first set of conditions implies the second set and vice versa, and similarly for the second an
sets of conditions. The most nontrivial step is to show that every linear and completely po
map has a Kraus representation. We will describe a proof due to Choi,9 which is independent of
Ref. 11 and is much simpler and elementary.

III. CHOI’S PROOF

The precise statement to be proved is that, ifE is a completely positive linear map from
B(H1) to B(H2), thenE(M )5(kAkMAk

† for somen23n1 matricesAk , whereni is the dimen-
sion of Hi . Let uF&5 (1/An1) ( i u i & ^ u i & be a maximally entangled state inH1^ H1 . Here,

$u i &% i 51,̄ ,n1
is a basis forH1 . Consider (I^ E)(M̃ ) where
                                                                                                                



as

h

530 J. Math. Phys., Vol. 44, No. 2, February 2003 Debbie W. Leung

                    
M̃5n1uF&^Fu5 (
i , j 51

n1

u i &^ j u ^ u i &^ j u. ~3!

M̃ is ann13n1 array ofn13n1 matrices. The (i , j ) block is exactlyu i &^ j u:

~4!

WhenI^ E is applied toM̃ , the (i , j ) block becomesE(u i &^ j u), and

~5!

which is ann13n1 array ofn23n2 matrices.

We now express (I^ E)(M̃ ) in a manner completely independent of Eq.~5!. Since M̃ is

positive and E is completely positive, (I^ E)(M̃ ) is positive, and can be expressed

(I^ E)(M̃ )5(kuak&^aku, whereuak& for k51,̄ ,n1n2 are the eigenvectors of (I^ E)(M̃ ), nor-
malized to the respective eigenvalues. One can represent eachuak& as a column vector and eac
^aku as a row vector. We can divide the column vectoruak& into n1 segments each of lengthn2 ,
and define a matrixAk with the i th column being thei th segment, so that thei th segment is
exactlyAku i &. Then
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~6!

~7!

Comparing Eqs.~5! and ~7! block by blockE(M )5(kAkMAk
† for ;M5u i &^ j u, and thus;M

PB(H1) by linearity.

IV. RECIPE FOR QUANTUM PROCESS TOMOGRAPHY

The basic assumptions in quantum process tomography are as follows. The unknown qu
operationE is available as an ‘‘oracle’’ or a ‘‘blackbox’’ without information about its intern
mechanism. One prepares certain input states andmeasuresthe corresponding output densit
matrices to learn aboutE systematically. The task to measure the density matrix of a quan
system is called quantum state tomography.1 To obtain a Kraus representation forE, one needs an
experimental procedure that specifies the input states to be prepared, and a numerical me
obtaining the Kraus operators from the measured output density matrices.

A method follows immediately from the proof in Sec. III. We retain all the previously defi
notation. The crucial observation is that (1/n1)M̃ and (1/n1) (I^ E)(M̃ ) correspond to the inpu
and output physical statesuF&^Fu and (I^ E)(uF&^Fu) which can be prepared and measure
Therefore, the procedure is as follows.

~1! Prepare a maximally entangled stateuF& in H1^ H1 .
~2! Subject one system to the action ofE, keeping the other system from evolving.
~3! Measure the joint output density matrix (I^ E)(uF&^Fu)5 (1/n1) (I^ E)(M̃ ), multiply by

n1 , obtain the eigen-decomposition(kuak&^aku. Divide uak& ~of length n1n2) into n1 equal
segments each of lengthn2 . Ak is then23n1 matrix having thei th segment as itsi th column.

The maximally entangled state in the above procedure can be replaced by any pure sta
maximum Schmidt number,uf&5( ia i(Uu i &) ^ (Vu i &) wherea i.0 are real and( ia i

251. The
output density matrixrout is equal to (I^ E)(uf&^fu)5( i , ja ia j (Uu i &^ j uU†) ^ E(Vu i &^ j uV†). One
computes (U†

^ I )rout(U ^ I ), divides the (i , j ) block bya ia j , and performs eigen-decompositio
to obtain a set ofAk operators. The Kraus operators ofE are given byAkV

†.
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V. DISCUSSION

We have provided an experimental and analytic procedure for obtaining a set of Kraus
tors Ak for an unknown quantum operationE. The set ofAk is called ‘‘canonical’’ in Ref. 9,
meaning that theAk are linearly independent. We remark that any other Kraus representatio
be obtained fromAk using the fact thatE(r)5(kAkrAk

†5(kBkrBk
† if and only if Ak5( juk jBk

whenuk j are the entries of an isometry.9 Alternatively, one can replace the eigen-decomposition
(I^ E)(uF&^Fu) by any decomposition into a positive sum to obtain other valid sets of K
operators.

Previous methods of quantum process tomography2–4 involve preparing a set of physical inpu
statesr i that form a basis ofB(H1), and measuringE(r i) to determineE. Since the inputr i are
physical states, they are not trace orthonormal, causing complications in the analysis.@A set of
n3n matrices$Oi% is trace orthonormal if tr(Oi

†Oj )5d i j .] In contrast, the output state in th
current method automatically contains complete information onE(u i &^ j u) for the unphysical or-
thonormal basis for operatorsu i &^ j u @see Eq.~5!#, which greatly simplifies the analysis to obta
the Kraus operators.

Both previous and current methods require state tomography. The current method requ
preparation of an entangled input state and the ability to stop the evolution of the reference
while E is being applied. In systems such as the optical system, these requirements are all s
forward, and process tomography can be realized with current experimental techniques. In s
NMR,16,17 the method still applies to an effective pure maximally entangled input state,16 if the
evolution of the reference system can be stopped. This is possible using decoupling tech
though at the risk of increased error rates due to the decoupling procedure. In general, the
method is suitable for any system in which a maximally entangled can be easily prepared
controllable reference system~such as one physically separated from the original system!.

Any efficient quantum process tomography procedure consumes approximately the
amount of resources, which is determined by the number of degrees of freedom in the qu
operation. In general, to measure ann3n density matrix,n2 ensemblemeasurements are neede
requiring'O(n2) steps. The previous methods require the determination ofn1

2 density matrices
eachn23n2 and take'O(n1

2n2
2) steps. The current method requires the determination of

n1n23n1n2 density matrix which also requires'O(n1
2n2

2) steps. In both cases, the number
steps is of the same order as the number of degrees of freedom in the quantum operation
optimal in some sense.
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Robust procedures for converting among Lindblad, Kraus
and matrix representations of quantum dynamical
semigroups

Timothy F. Havel
Nuclear Engineering, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

~Received 22 January 2002; accepted 1 September 2002!

Given a quantum dynamical semigroup expressed as an exponential superoperator
acting on a space ofN-dimensional density operators, eigenvalue methods are
presented by which canonical Kraus and Lindblad operator sum representations can
be computed. These methods provide a mathematical basis on which to develop
novel algorithms for quantum process tomography—the statistical estimation of
superoperators and their generators—from a wide variety of experimental data.
Theoretical arguments and numerical simulations are presented which imply that
these algorithms will be quite robust in the presence of random errors in the
data. © 2003 American Institute of Physics.@DOI: 10.1063/1.1518555#

I. INTRODUCTION

The statistical estimation of superoperators from experimental data is variously know
‘‘quantum channel identification’’1 or ‘‘quantum process tomography’’~QPT!.2 While this task is
important throughout experimental quantum physics, it is an essential component of on
efforts to develop devices capable of reliable quantum information processing and transm
At the same time, it is only through these efforts that it is now becoming possible to observ
control quantum systems with the precision needed to collect sufficient data for QPT. At the
of writing, however, very few experimental efforts to systematically determine the complet
peroperators of natural or engineered quantum processes have been carried out. An ins
example may be found in Ref. 3, where the QPT procedure detailed in Ref. 2 was applied to
data on the two-qubit molecule chloroform. This was followed by fitting a specific decoher
model to the superoperators thereby obtained at multiple time points, in order to estima
decoherence rates in the model.

The goal of the present paper is to give a reasonably complete and self-contained acc
the mathematics needed forrobustQPT, assuming for the most part that the quantum dynam
may be aptly modelled as a quantum dynamical semigroup~QDS!. A QDS describes the evolution
of a general open quantum system under the Born–Markov approximations,4–6 and as such is
sufficient to cover most of the systems currently being used or developed for quantum inform
processing and transmission. By ‘‘robust,’’ we mean that the QPT results will not be sensit
random errors in the data, which is critical since these data are often difficult to obtain
significantly contaminated by noise and other errors. In addition, it is desirable to avoid m
fitting and instead to determine the complete superoperator making no prior assumptions a
although this significantly increases the number of parameters to be estimated.

The robustness of our approach is obtained primarily by using the orthogonal projection
arbitrary Hermiticity-preserving superoperator or QDS generator onto the convex cone of
pletely positive superoperators and their generators.4–6 Of necessity, therefore, this account w
rederive much that is already known about quantum dynamical semigroups as well as
general completely positive superoperators, using a consistent notation, fixed operator basi
standard set of matrix tools.7,8 These derivations do not involve qualitative physical argume
~coarse-graining, separation of time scales, etc.!, but only the mathematical definitions of th
objects involved, and extend much of our earlier work on the ‘‘Hadamard’’ representation, w
5340022-2488/2003/44(2)/534/24/$20.00 © 2003 American Institute of Physics

                                                                                                                



rs and

trary
posi-
onical
rators,
the

e must
xample
such

may be

ded in
otation

t

f

e-

or,

es
-

useful
opera-

one-

535J. Math. Phys., Vol. 44, No. 2, February 2003 Quantum dynamical semigroup representations

                    
exists for any ‘‘diagonal’’ superoperator, to more general completely positive superoperato
QDS generators.9

The main results will be eigenvalue methods by which the projection of an arbi
Hermiticity-preserving superoperator or QDS generator onto the convex cone of completely
tive superoperators can be computed. These projections will be shown to yield certain can
Kraus and Lindblad representations of completely positive superoperators and QDS gene
respectively, which may be novel and are certainly not well known. The explicit form of
involution which identifies a Hermiticity-preserving superoperator with a quadratic form~or Her-
mitian supermatrix!, herein denoted by ‘‘Choi,’’ also appears to be new~see Corollary 2 ff.!. It is
not the intention of this paper to give a single fixed recipe for QPT, because any such recip
depend to some extent on the nature of the data to be analyzed. Nevertheless, a simple e
will be given using simulated data plus added random noise, which should make it clear how
recipes can be derived from these results and further demonstrates that such recipes
expected to be robust.

II. BACKGROUND ON QUANTUM DYNAMICAL SEMIGROUPS AND THEIR
REPRESENTATIONS

This section provides the essential background on quantum dynamical semigroups nee
the remainder of the paper, and in addition defines the basic mathematical operations and n
to be used throughout the paper. A quantum dynamical semigroup~QDS!4–6 constitutes a bounded
one-parameter family of ‘‘superoperators’’S 5 S(t;•) acting linearly on a space of self-adjoin
‘‘density’’ operatorsr, and satisfyingS(t1t8; r) 5 S(t; r)S(t8; r) for all r and t, t8> 0.
Assuming thatr acts in turn on a complex Hilbert space of dimensionN,`, a general means o
representing a QDS is as aKraus operator sum,10 namely

r~ t ! [ S~ t;r! 5 (
m50

M

Sm~ t !r Sm
† ~ t !, ~1!

where one may takeM , N2, the Sm act on the same Hilbert space asr 5 r(0), and the
dagger~†! denotes the adjoint. This ensures not merely thatS preserves the positive semidefinit
ness of the density operatorr, but moreover that it iscompletely positive, meaning that the trace
over any other quantum system on whichS acts trivially is again a positive semidefinite operat
as expected for any physically realizable process@loc. cit.#.

On identifying the Kraus operatorsSm with a matrix representation thereofSm , a well-known
result regarding Kronecker matrix~or tensor! products7,8 implies

col~r~ t !! 5 S~ t ! col~r! [ (
m50

M

~S̄m~ t ! ^ Sm~ t !! col~r!, ~2!

where col~r! denotes the result of stacking the columns of the corresponding density matrixr in
left-to-right order on top of one another to get a single column vector of dimensionN2, the
overline denotes the complex conjugate, ‘‘^ ’’ the Kronecker product and juxtaposition denot
matrix multiplication. Although this result~which can be proved by straightforward index gym
nastics! is often neglected in theoretical treatises on open quantum systems, it is extremely
for computational purposes. In particular, it converts the two-sided operations in the Kraus
tor sum to one-sided matrix operations, thereby providing a matrix representation of the
parameter semigroupS. It further makes clear that a completely general linear transformationT of
the ‘‘Liouville’’ ~matrix! spaceCN3N can also be written in operator sum form as

X8 [ T ~X! 5 (
m,n50

N221

tmnTm X Tn
† , ~3!
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whereXPCN3N, theTm are a matrix basis thereof, andtmnPC are coefficients, since

col~X8! 5 S (
m,n50

N221

tmn T̄n^ TmD col~X! [ T col~X!, ~4!

and@ T̄n^ Tmu0 < m, n < N221# constitutes an induced basis for the space of ‘‘supermatric
CN23N2

. It is easily shown thatT preserves Hermiticity if and only if the matrix of coefficien

@tmn#m,n50
N221 is Hermitian, and that Eq.~3! can be reduced to a Kraus operator sum as in Eq.~1! if

and only if the matrix of coefficients is positive semidefinite.2,4

The semigroup propertyS(t1t8; r) 5 S(t; r)S(t8; r) is of course not assured by the exi
tence of a Kraus operator sum representation, but it is equivalent to the existence of a c
superoperatorG P CN23N2

such thatS(t) 5 Exp(2G t) for all t > 0, whereExp(2Gt) 5 I
2G t1 1

2 G 2 t21¯ is the corresponding exponential superoperator~see Ref. 11 and citation
therein!. In general, however, such an exponential will not possess a Kraus operator sum
sentation, even if the real parts of the eigenvalues ofG are non-negative~ensuring that the
evolution is bounded!. General necessary and sufficient conditions for a bounded one-para
family of superoperators to be a QDS were first derived independently by Lindblad12 and by
Gorini, Kossakowski, and Sudarshan,13 and require that the derivativeṙ can be written in the
so-calledLindblad form,

ṙ~ t ! 5 L~r~ t !! [ ı@r~ t !, H# 1 (
m50

M S Lm r~ t ! Lm
† 2

1

2
Lm

† Lm r~ t ! 2
1

2
r~ t ! Lm

† LmD ,

~5!

whereM, N2 as above, and both the HamiltonianH and Lindblad operatorsLm are time inde-
pendent. The superoperatorL itself is called theLindbladian. Translated into matrices, this implie
that the decoherent part of the LindbladianG(•)5L(•)2ı@ • , H# can be written as

2G 5 (
m50

M S L̄m^ Lm2
1

2
I ^ ~Lm

† Lm!2
1

2
~ L̄m

† L̄m! ^ I D , ~6!

whereI is theN3N identity matrix.

III. A CANONICAL KRAUS OPERATOR SUM REPRESENTATION

Although superoperators on Liouville space can be represented with respect to an ar
matrix basis, as in Eq.~4!, any Liouville space basis induced by an arbitrary Hilbert space b
can be regarded as the basis of elementary matricesEi j ~with a ‘‘1’’ in the i j th position and zeros
elsewhere!, which has the advantage identifying the coefficients and the supermatrix elemen
example, one can write the transpose of an arbitraryN3N matrix in operator sum form as

XT 5 (
i , j 50

N21

Ei j X E j i
† 5 (

i , j 50

N21

Ei j X E i j , ~7!

or equivalently, as

col~XT! 5 S (
i , j 50

N21

Ej i ^ Ei j D col~X! [ K col~X!. ~8!

It should be clear that the existence of this operator sum representation of the transpose d
imply that it is a completely positive superoperator~which it is not!, since the left and right
operators here are identical rather than adjoints of one another as in Eq.~3!.
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The above supermatrixK plays a important role in what follows. It is easily seen to be b
symmetric and orthogonal, i.e. involutory. Using the relationEi j 5 ei ej

T ~whereei ,ej are the
elementary unit column vectors! together with the mixed product formula (A^ B)(C^ D)5AC
^ BD,7 we can also show that it has the interesting property of swapping the order of the fa
in a Kronecker product, since

K ~X^ Y!K 5 S (
i , j 50

N21

Ej i ^ Ei j D ~X^ Y! S (
k,,50

N21

E,k^ Ek,D
5 (

i , j ,k,,50

N21

~Ej i X E,k! ^ ~Ei j Y Ek,!

5 (
i , j ,k,,50

N21

~ej~ei
TX e,! ek

T! ^ ~ei~ej
TY ek! e,

T!

5 S (
j ,k50

N21

YjkEjkD ^ S (
i ,,50

N21

Xi , Ei ,D 5 Y^ X, ~9!

where the matrix elements have been denoted byXi , [ ei
T X e, andYjk [ ej

T Y ek .
We now use the relation col(xyT) 5 y^ x for arbitrary column vectorsx, y to show how the

matrixK also gives us the col of a Kronecker product of matrices as a Kronecker product of
respective cols.

Lemma 1: Given any two N3N matricesX, Y, we have

col~X! ^ col~Y! 5 ~ I ^K^ I ! col~ X^ Y !, ~10!

whereK is defined as in Eq. (8).
Proof: Applying the definitions, we obtain

~ I ^K^ I ! col~ X^ Y ! 5 (
i , j 50

N21

~~ I ^ Ej i ! ^ ~Ei j ^ I !! col~ X^ Y !

5 colS (
i , j 50

N21

~Ei j ^ I ! ~ X^ Y ! ~ I ^ Ei j !D
5 colS (

i , j 50

N21

~~Ei j X! ^ ~Y E i j !!D
5 colS (

i , j 50

N21

~~ei ~ej
TX!! ^ ~~Y ei ! ej

T!!D
5 colS S (

i 50

N21

~ei ^ ~Y ei !!D S (
j 50

N21

~~ej
T X! ^ ej

T!D D
5 col~col~Y! colT~X!! 5 col~X! ^ col~Y!. ~11!

Q.E.D.
Corollary 2: With everything defined as in the Lemma,
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col~Y! col†~X! 5 (
i , j 50

N21

~Ei j ^ I !~X̄^ Y!~ I ^ Ei j !. ~12!

Proof: Just apply the inverse of the col operation to the second and last lines of the pro
the Lemma, and add a complex conjugation to account for our use of ‘‘†’’ instead of ‘‘T.’’

Q.E.D.
The ‘‘super-superoperator’’ on the right-hand side of Eq.~12! maps anyN23N2 supermatrix

S, acting onN 3 N matricesX asS col(X), to a new supermatrixT 5 ( i , j 50
N21 (Ei j ^ I ) S

(I ^ Ei j ), the elements of which are a permutation of those ofS. The Corollary shows that ifS is
a sum of Kronecker products, as in Eq.~2!, thenT is a sum of the corresponding rank one dyad
products, as in Eq.~12!. Thus, while Eq.~4! allows us to construct a supermatrix representat
from an operator sum, we are now able to give a procedure for going in the other direction

Proposition 3: LetS,TPCN23N2
with T 5 ( i , j 50

N21 (Ei j ^ I )S (I ^ Ei j ), and let

T [ VVW† 5 (
k50

N221

vk vk wk
† , ~13!

be the singular value decomposition ofT ~wherevk , wk are the columns of the unitary supe
matricesV, W, respectively, andvk>0 are the singular values). Then for anyXPCN3N,

S col~X! 5 col~T xX! [ colS (
k50

N221

vk Vk X W k
†D , ~14!

wherecol(Vk) 5 vk , col(Wk) 5 wk and the symbol‘‘ x ’’ should be read as ‘‘applied to.’’
Proof: This follows immediately from our foregoing observations, together with the fact

the super-superoperator is involutory, since

(
k,,50

N21

~Ek, ^ I !S (
i , j 50

N21

~Ei j ^ I ! S ~ I ^ Ei j !D ~ I ^ Ek,!

5 (
i , j ,k,,50

N21

d i , d jk ~Ek j ^ I ! S ~ I ^ Ei ,!

5 S (
j 50

N21

Ej j ^ I D S S I ^ (
i 50

N21

Ei i D 5 S. ~15!

Q.E.D.
The matrices$Vk% and$Wk% are not generally unitary, but each of these two sets forms a bas
CN3N, and each is orthonormal with respect to the Hilbert–Schmidt~or Frobenius! inner product
^X,Y& [ tr(X†Y). By expanding the right-matricesWk as linear combinations of the leftVk ,
one can rewrite the action ofT on X in the more symmetric form given in Eq.~3!. Thus we have
obtained a general means of converting a supermatrixS acting on columnized matrices col(X) to
operator sum form. Much of the foregoing can of course be extended to nonsquare m
CM3N, but we shall have no need of that here.

In the case thatS is an elementary~super!matrix representation of a quantum dynamic
semigroup, the matrixT derived from it has considerably more structure, as we shall now sh

Proposition 4: With everything defined as in Proposition 3, the derived supermatrixT can be
written as
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T 5 (
i , j 50

N21

col~Si j ! colT~Ei j ! 5 @S~Ei j !# i , j 50
N21 [ F S~E11! S~E12! ...

S~E21! S~E22! ...

] ] �

G , ~16!

whereS(Ei j )PCN3N is defined bycol(S(Ei j ))5S col(Ei j ), andSi j is the i jth N3N block of the
supermatrixS.

Proof: The first equality in Eq.~16! follows immediately from Corollary 2 together with th
obvious fact thatS 5 ( i , j 50

N21 Ei j ^ Si j . To prove the second, we first note that for any 0
< k, , , N,

S col~Ek,! 5 S (
i , j 50

N21

Ei j ^ Si j D col~Ek,! 5 colS (
i , j 50

N21

Si j Ek, Ej i D 5 colS (
i 50

N21

Si , EkiD .

~17!

It follows that

@S~Ek,!#k,,50
N21 5 (

k,,50

N21

Ek, ^ S~Ek,!

5 (
k,,50

N21

Ek, ^ S (
i 50

N21

Si ,EkiD
5 (

i ,k,,50

N21

~ I ^ Si ,!~Ek, ^ Eki!. ~18!

On the other hand,

T 5 (
i ,,50

N21

col~Si ,! colT~Ei ,! 5 (
i ,,50

N21

~ I ^ Si ,! col~ I ! colT~Ei ,!

5 (
i ,,50

N21

~ I ^ Si ,!S (
k 5 0

N21

ek^ ekD ~e,
T

^ ei
T!

5 (
i ,,,k50

N21

~ I ^ Si ,!~Ek, ^ Eki!. ~19!

Q.E.D.
In the form (k,l col(Sk,)colT(Ek,) the derived supermatrixT appears to have first bee

studied in connection with superoperators by Jordan and Sudarshan,14 whereas the form
@S(Ei j # i , j 50

N21 was first used to give an intrinsic characterization of completely positive supero
tors by Choi.15 For this reason we shall henceforth denote it byChoi(S) [ ( i , j 50

N21 (Ei j

^ I )S(I ^ Ei j ). The next Lemma will enable us to show that in the cases of interest here, i
Hermitian matrix.

Lemma 5: A superoperatorS commutes with the operation of taking its adjoint, i.,
S(Z†) 5 (S(Z))† for all operators Z in its domain, if and only if it maps self-adjoint operato
to self-adjoint operators, and if and only if for any elementary matrix representationS of S,

S̄ 5 KSK, ~20!

where the overbar denotes the complex conjugate andK is defined as in Eq. (8).
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Proof: Clearly if S commutes with the adjoint, it maps self-adjoint operators to the same.
suppose thatS is a matrix representation ofS, and letXPCN3N satisfyX 5 X†; then

col~X! 5 K col~XT! 5 K col~X̄! ~21!

and hence ifS preserves Hermiticity,

S col~X! [ col~Y! 5 K col~Ȳ! [ KS̄ col~X̄! 5 KS̄K col~X!. ~22!

Letting X range over any Hermitian basis ofCN3N now proves Eq.~20!. And finally, if Z
PCN3N is any ~not necessarily Hermitian! matrix andS satisfies Eq.~20!, we have

col~S~Z†!! [ S col~Z†! 5 SK col~ Z̄! 5 KS̄ col~ Z̄! [ col~~S~Z!!†! ~23!

which, since it holds for any representationS and matrixZ, provesS(Z†) 5 (S(Z))†.
Q.E.D.

Corollary 6: If a superoperatorS commutes with the adjoint operation on its domain, th
any Choi matrix for it is Hermitian.

Proof: Clearly a Choi matrix @S(Ei j )# i , j 50
N21 is Hermitian if and only if S(Ei j )

5 (S(Ej i ))
† for all 0 < i , j , N, and ifS is the corresponding matrix representation ofS,

Lemma 5 implies

col~~S~Ej i !!†! 5 K col~ S̄~Ej i !! 5 KS̄ col~Ej i ! 5 ~KS̄K! col~Ei j ! 5 S col~Ei j !

5 col~S~Ei j !!. ~24!

Q.E.D.
Theorem 7~Choi15

…: LetS be a superoperator which commutes with the adjoint operation
its domain. ThenS is completely positive if and only if the Choi matrix associated with any ma
representation ofS is positive semidefinite.

Proof: Let S be an elementary matrix representation ofS andT 5 Choi(S) be its Choi
matrix. This is Hermitian by Corollary 6, and accordingly, we let

T 5 UJ U † 5 (
n50

N221

jn un un
† ~25!

be its eigenvector decomposition, whereU is unitary and the eigenvaluesjn are real. Then if
jn > 0 for 0 < n , N2, we let Tn be the sequence ofN 3 N matrices such tha
col(Tn) 5 Ajn un . It now follows from Proposition 3 that

S col~r! 5 S (
n50

N221

T̄n^ TnD col~r! 5 colS (
n50

N221

Tn r Tn
†D . ~26!

The right-hand side provides a Kraus operator sum representation forS, which by the previously
mentioned work of Kraus10 proves thatS is completely positive, as claimed.

Conversely, ifS is completely positive, it may be expressed in Kraus operator sum form

S~r! 5 (
m50

M

Sm r Sm
† , ~27!

and it follows from Eq.~2! that any elementary matrix representationS thereof satisfies
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S 5 (
m50

M

S̄m ^ Sm ~28!

for suitableSmPCN3N. By Proposition 3, therefore, corresponding Choi matrixT 5 Choi(S) is
a sum of dyads, that is

T 5 (
m50

M

col~ Sm ! col†~ Sm !, ~29!

which is necessarily positive semidefinite.
Q.E.D.

Corollary 8: Any Kraus operator sumS(r) 5 (m50
M Smr Sm

† can be written in canonical
operator sum form as

S~r! 5 (
n50

N221

Tn r Tn
† , ~30!

with ^Tn , Tn8& 5 tr(Tn
†Tn8) 5 0 for all 0 < n Þ n8 , N2 and iTni2 5 ^Tn , Tn&

5 0 for all n . M . Subject to these conditions, the canonical form is unique up to the ov
phase of the operators Tn unless the Hilbert–Schmidt norms satisfyiTni 5 iTn8i for some n8
Þ n, in which case it is only unique up to unitary linear combinations of the operators in s
degenerate subspaces.

Proof: Implicit in the proof of Theorem 7.
Q.E.D.

IV. A CANONICAL LINDBLAD REPRESENTATION

We now turn our attention specifically to quantum dynamical semigroups, which~as men-
tioned in the Introduction! may be assumed to be given in the form of a superoperator expone
S 5 Exp(2F t). The time-independent generator will usually be of the formF 5 G1ı H for
superoperatorsG andH, whereı2 5 21, H(r) [ @H, r# for the HamiltonianH of the system
in question, andG is often called therelaxation superoperator.16 Although G may often be self-
adjoint, this is not necessarily the case.

An important property of physically meaningful operations on density operatorsr, which we
have neglected up to now, is that they preserve the trace tr(r) 5 1. Given an operator sum

representation S(r) 5 (m,n50
N221 tmnTmr Tn

† , this is easily seen to be equivalent

(m,n50
N221 tmnTn

†Tm 5 I , the identity. We seek an equivalent condition in terms of an elemen
matrix representationS. To this end we expandS versus the basis of elementary matrices as

S [ (
i , j ,k,,50

N21

sk,
i j ~E, j ^ Eki! 5 (

i , j ,k,,50

N21

sk,
i j ~e, ^ ek! ~ej ^ ei !

†, ~31!

where

sk,
i j [ tr~~E, j ^ Eki!

†S! 5 ~e, ^ ek!
†S ~ej ^ ei !, ~32!

so that the corresponding operator sum representation becomes

S col~r! 5 colS (
i , j ,k,,50

N21

sk,
i j Eki r Ej ,D . ~33!

For future reference, we note further that the associated Choi matrix is given by
                                                                                                                



n
result

dentity
tisfy

pre-

n

n

542 J. Math. Phys., Vol. 44, No. 2, February 2003 Timothy F. Havel

                    
Choi~S! [ (
i , j ,k,,50

N21

(
m,n50

N21

sk,
i j ~EmnE, j ^ EkiEmn!

5 (
i , j ,k,,50

N21

sk,
i j ~Ei j ^ Ek,!

5 (
i , j ,k,,50

N21

sk,
i j ~ei ^ ek! ~ej ^ e,!†. ~34!

This shows that while the representative supermatrixS in this basis is formed by identically
ordering the upper and lower index pairs ofsk,

i j and using the resulting list as the row and colum
indices, the Choi matrix is obtained by ordering the right and left index pairs and using the
as the row and column indices, respectively.

Lemma 9: A superoperatorS with representative matrixS 5 @sk,
i j #k,,; i , j 50

N21 versus a Hilbert
space basis$ei% i 50

N21 preserves the trace of its operands if and only if

col†~ I ! S ~ei ^ ej ! 5 (
k50

N21

skk
i j 5 d i j for 0 < i , j , N, ~35!

whered i j is a Kronecker delta.
Proof: The usual trace-preservation condition can be written as

I 5 (
i , j ,k,,50

N21

sk,
i j Ej , Eki 5 (

i , j ,k50

N21

skk
i j Ej i 5 (

i , j 50

N21 S (
k50

N21

~ek^ ek!
†S ~ej ^ ei !DEj i

5 (
i , j 50

N21

~col†~ I ! S ~ei ^ ej !!Ei j , ~36!

which is equivalent to the stated conditions.
Q.E.D.

The Lemma can be stated more succinctly by saying that col(I ) is a left-eigenvector ofS with
eigenvalue 1. We note that for another important class of superoperators, namely the i
preserving or unital superoperators, the operator sum representations of which sa

I 5 S(I ) 5 (m,n50
N221 tmnTmTn

† , may also be characterized in terms of their supermatrix re
sentations by( i 50

N21 sk,
i i 5 (ek^ e,)†S col(I ) 5 dk, , i.e., col(I ) is a right-eigenvector ofS

with eigenvalue 1. It is easily seen that if the Lindblad operators are normal~or commute with the
adjoints!, thenS 5 S(t) is a unital QDS.

Returning now to the problem of deriving a Lindblad representation for a QDSS(t) from a
matrix exponential representationS(t) 5 Exp(2Ft) thereof, the obvious way to proceed, give
the results of the preceding section, is to simply differentiate it,

] t Exp~2F t !u t50 5 2F [ 2 (
i , j ,k,,50

N21

f k,
i j ~E, j ^ Eki!

5 ] t (
i , j ,k,,50

N21

sk,
i j ~E, j ^ Eki!U

t50

[ (
i , j ,k,,50

N21

ṡk,
i j ~E, j ^ Eki! ~37!

~note that the generator is actually time independent!. Differentiation of our trace-preservatio
condition similarly yields(k50

N21 ṡkk
i j 5 2(k50

N21 f kk
i j 5 0 for all 0 < i , j , N, and hence
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ṙ~ t ! 5 (
i , j ,k,,50

N21

ṡk,
i j Eki r~ t ! Ej , 5 2 (

i , j ,k,,50

N21

f k,
i j Eki r~ t ! Ej ,

5 ṙ~ t ! 2
1

2 (
i , j ,k50

N21

ṡkk
i j ~Ej i r 1 r Ej i !

5 (
i , j ,k,,50

N21

ṡk,
i j S Eki r~ t ! Ej , 2

1

2
~Ej , Eki r 1 r Ej , Eki! D .

~38!

Thus we could in principle obtain a canonical Lindblad representation forṙ(t) simply by diago-
nalizing the ~time-independent! Choi matrix of the generator @ ṡk,

i j # i ,k; j ,,50
N21

5 @(m,n50
N21 wn

m ukn
im ū,n

jm# i ,k; j ,,50
N21 , and letting the Lindblad operators be defined by the matr

Ln
m [ Awn

m (
i ,k50

N21

ukn
im Eik ~39!

—providing that the eigenvalueswn
m > 0 for all 0 < m, n , N. But then our trace-

preservation condition forṙ implies

(
m,n50

N21

Ln
m~Ln

m!† 5 (
m,n50

N21

wn
m (

i , j ,k,,50

N21

ukn
im ū,n

jm Eik E, j

5 (
i , j ,k50

N21

(
m,n50

N21

~wn
mukn

imūkn
jm!Ei j

5 (
i , j ,k50

N21

ṡkk
i j Ej i 5 0, ~40!

which contradicts the fact that a nontrivial sum of positive semidefinite matrices cannot va
This result is easily shown to be independent of the choice of matrix basis.

It follows that there must be some redundance in our choice of coefficients in any nondia
Lindblad-type equation of the form given in Eq.~38!. Moreover, such an equation, by its ve
form, is assured of preserving the trace (] t tr(r(t)) 5 tr(ṙ(t)) 5 0), so that the trace-
preservation condition satisfied by the derivatives of the coefficients in an operator sum rep
tation is not needed. Our problem is to find a way to modify the matrix of coefficients@ ṡk,

i j #m,n50
N21 ,

while preserving the underlying mappingr ° ṙ, such that the result is positive semidefinite a
so can be diagonalized to obtain a canonical Lindbladian. Because any Lindblad operator
form L 5 aI with aPC adds nothing toṙ, we shall seek to eliminate the corresponding deg
of freedom from the coefficients.

Lemma 10: In any quantum dynamical semigroup with exponential representationS(t)
5 Exp(2Ft), the generator’s matrixF versus a Hilbert space basis satisfies

col†~ I ! Choi~2F! col~ I ! , 0. ~41!

If the generator is of the formF 5 G1ıH where H is a commutation superoperator an
^G, C& [ tr(G †C) 5 0 for any commutation superoperatorC, then the corresponding matrix
projection satisfies

P I Choi~G!P I 5 P I Choi~F!P I ~P I [ I ^ I 2 col~ I ! col†~ I !/N!. ~42!
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Proof: To prove Eq.~41!, we first observe that

col†~ I ! Choi~2F! col~ I ! 5 2 (
m,n50

N21

~em^ em!†S (
i , j ,k,,50

N21

f k,
i j ~Ei j ^ Ek,!D ~en^ en!

5 2 (
m,n50

N21 S (
i , j ,k,,50

N21

~ f k,
i j ~~em

† Ei j en! ^ ~em
† Ek, en!!!D

5 2 (
m,n50

N21

f mn
mn 5 2tr~F!. ~43!

SinceChoi(2F) is Hermitian, this quantity is real, and sinceS(t) is bounded, the eigenvalues o
2F must all have negative real parts, so that2tr(F) , 0.

To prove Eq.~42!, we first note that it is sufficient to prove this for the commutation sup
operator of an arbitrary elementary matrixEi j , and transform its generating supermatrix to t
corresponding Choi matrix:

Choi~Ei j ^ I 2 I ^ Ej i ! 5 (
k,,50

N21

~~Ek, Ei j ! ^ Ek, 2 Ek, ^ ~Ej i Ek,!!

5 (
k50

N21

~Ek j ^ Eki 2 Eik ^ Ejk!. ~44!

Plugging the second term into the projection now yields

P IS (
k50

N21

Eik ^ EjkDP I 5 (
k50

N21

Eik ^ Ejk 2
d i j

N
col~ I ! (

k50

N21

~ek^ ek!
†

2 ~ei ^ ej ! col†~ I ! 1
d i j

N
col~ I ! col†~ I !. ~45!

Since the first and third terms as well as the second and fourth terms on the right-hand side
only in sign, this projection vanishes identically. A similar calculation shows that the projectio
the first term on the right-hand side of Eq.~44! likewise vanishes, establishing the Lemma.

Q.E.D.
Henceforth, we takeG 5 F 2 ıH whereH is the commutator part ofF, and letgk,

i j be the
corresponding array of coefficients. A final technical Lemma will be needed to prove the firs
result in this section.

Lemma 11: If̂ G,C& [ tr(G †C) 5 0 for every commutation superoperatorC as above, then
the coefficients gk,

i j of any supermatrix representationG satisfy

(
k50

N21

gkm
kn 5 (

,50

N21

gn,
m, ~46!

for all 0 < m, n , N.
Proof: The proof is by direct computation:
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0 5 trS ~Enm^ I 2 I ^ Emn! (
i , j ,k,,50

N21

gk,
i j ~E, j ^ Eki!D

5 trS (
i , j ,k,,50

N21

gk,
i j ~~Enm E, j ! ^ Eki 2 E, j ^ ~Emn Eki!!D

⇒ trS (
i , j ,k50

N21

gkm
i j ~En j ^ Eki!D 5 trS (

i , j ,,50

N21

gn,
i j ~E, j ^ Emi!D

⇒ (
i , j ,k50

N21

gkm
i j tr~En j! tr~Eki! 5 (

i , j ,,50

N21

gn,
i j tr~E, j ! tr~Emi!

⇒ (
i , j ,k50

N21

gkm
i j dn j dki 5 (

i , j ,,50

N21

gn,
i j d, j dmi . ~47!

Q.E.D.

This Lemma may be paraphrased by saying that the ‘‘partial trace’’~or contraction byI ! of G with
respect to either its left or right Kronecker factors are the transposes of one another.

Proposition 12: Let S(t) 5 Exp(2Ft) be a quantum dynamical semigroup wi
F 5 G 1 ıH as above. Then if their supermatrices versus a Hilbert space basis

F 5 @ f k,
i j #k,,; i , j 50

N21 , G 5 @gk,
i j #k,,; i , j 50

N21 andH 5 I ^ H 2 H̄ ^ I , we have

ṙ~ t ! [ 2 (
i , j ,k,,50

N21

f k,
i j Eki r~ t ! Ej , [ ı@r~ t !, H# 2 (

i , j ,k,,50

N21

gk,
i j Eki r~ t ! Ej ,

5 ı@r~ t !, H# 2
1

2 (
i , j ,k,,50

N21

ǧk,
i j ~2 Eki r~ t ! Ej , 2 Ej , Eki r~ t ! 2 r~ t ! Ej , Eki!

5 ı@r~ t !, H# 2 (
i , j 50

N21 S (
k,,50

N21

ǧk,
i j Eki r~ t ! Ej , 2

1

2 (
k50

N21

ǧkk
i j ~Ej i r~ t ! 1 r~ t ! Ej i !D ,

~48!

where@ ǧk,
i j #k,,; i , j 50

N21 are the coefficients of the supermatrix

Ǧ [ Choi~P I Choi~G!P I ! 5 Choi~P I Choi~F!P I !. ~49!

Proof: Note thatH occurs on both sides of Eq.~48!, so we can just ignore it~i.e., setH
5 0) in the proof. Since col(I )col†(I ) 5 (m,n50

N21 Emn^ Emn , we find that

P I Choi~G!P I5 (
i , j ,k,,50

N21

gk,
i j S Ei j ^ Ek, 2

1

N (
m,n50

N21

~EmnEi j ^ EmnEk,1Ei j Emn^ Ek,Emn!

1
1

N2 (
m,n,p,q50

N21

EmnEi j Epq^ EmnEk,EpqD
5 (

i , j ,k,,50

N21

gk,
i j S Ei j ^ Ek, 2

1

N S dk
i (

m50

N21

Em j^ Em, 1 d ,
j (

n50

N21

Ein ^ EknD
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1
1

N2 d k
i d,

j (
m,n50

N21

Emn^ EmnD
5 (

i , j ,k,,50

N21 S gk,
i j 2

dk
i

N (
m50

N21

gm,
m j 2

d ,
j

N (
n50

N21

gkn
in

1
dk

i d ,
j

N2 (
m,n50

N21

gmn
mnD Ei j ^ Ek,

[ (
i , j ,k,,50

N21

ǧk,
i j Ei j ^ Ek, . ~50!

Equation~50! thus determines the projected coefficientsǧk,
i j in terms of the original coefficients

and if we compute the Lindbladian versus a Hilbert space basis using the projected coeffici
in the last line of Eq.~48!, we get

L~r~ t !! [ (
i , j 50

N21 S (
k,,50

N21

ǧk,
i j Eki r~ t ! Ej , 2

1

2 (
k50

N21

ǧkk
i j ~Ej i r~ t ! 1 r~ t ! Ej i !D . ~51!

The supermatrix representation of the first operator sum in this equation can be further sim
as follows:

(
i , j ,k,,50

N21

ǧk,
i j E, j ^ Eki 5 (

i , j ,k,,50

N21

gk,
i j E, j ^ Eki 2 (

j ,,50

N21 S 1

N (
m50

N21

gm,
m j DE, j ^ I

2 (
i ,k50

N21 S 1

N (
n50

N21

gkn
in D I ^ Eki 1 S 1

N2 (
m,n50

N21

gmn
mnD I ^ I . ~52!

Similarly, by Eq. ~50! the supermatrix representation of the second operator sum in Eq.~51!
simplifies to

1

2 (
i , j ,k,,50

N21

dk, ǧk,
i j ~Ej i ^ I 1 I ^ Ei j !

5
1

2 (
i , j 50

N21 S (
k50

N21

gkk
i j 2

1

N (
m50

N21

gmi
m j 2

1

N (
n50

N21

gjn
in D ~Ei j ^ I1I ^ Ej i !

1 S 1

N2 (
m,n50

N21

gmn
mnD I ^ I . ~53!

Taking into account the difference in the signs of the operator sums in Eq.~51!, the last terms on
the right-hand sides of Eqs.~52! and ~53! clearly cancel, while the first summation on the righ
hand side of Eq.~53! vanishes by our trace preservation condition~cf. Lemma 9!. The remaining
terms on the right-hand side of Eq.~53! can be rearranged using the symmetries of the summat
proved in Lemma 11, as follows:
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2
1

2N (
i , j 50

N21 S (
m50

N21

gmi
m j 1 (

n50

N21

gjn
in D ~Ei j ^ I 1 I ^ Ej i !

5 2
1

2N (
i , j 50

N21 S S (
m50

N21

gmi
m jD Ei j ^ I 1 S (

m50

N21

gjm
im D I ^ Ej i

1 S (
n50

N21

gni
n jD Ei j ^ I 1 S (

n50

N21

gjn
in D I ^ Ej i D

5 2
1

N (
i , j 50

N21 S S (
m50

N21

gmi
m jD Ei j ^ I 1 S (

n50

N21

gjn
in D I ^ Ej i D . ~54!

It is now apparent that these terms cancel with the second and third terms in Eq.~52! after a
change of dummy indices, leaving only its first term behind.

Q.E.D.
It is easily shown that applying the projectionP I to the Choi matrix obtained from the

Lindbladian of any one Lindblad,LrL† 2 (L†Lr 1 rL†L)/2, annihilates the last two term
while removing the trace from the LindbladL in the first. Removing the trace fromL does not
affect the action of the~Hermiticity-preserving! Lindbladian onr, but it can also be shown that
is equivalent to projecting the Lindbladian onto the orthogonal complement of the subspa
commutation superoperators. The above superoperator derivation has the advantage, how
not assuming that the derivative of the superoperatorṠu t50 can be placed in Lindbland form. I
remains to be shown that the Choi matrix of the operator sum is positive semidefinite if and
if the projection of the Choi matrix of its derivative is positive semidefinite. For the sak
completeness, we first prove the following~well-known! result, using only the techniques deve
oped above.

Lemma 13: The composition of two completely positive superoperatorsA +B is again com-
pletely positive.

Proof: Let UDiag(a)U† andVDiag(b)V† be the eigenvalue decompositions of the sup
matricesChoi(A) and Choi(B), respectively, and consider the Choi matrix of their produ
namely

Choi~AB! 5 (
i , j ,k,,50

N21 S (
m,n50

N21

ak,
mnbmn

i j D Ei j ^ Ek,

5 (
i , j ,k,,50

N21 S (
m,n50

N21 S (
p,q50

N21

ukq
mpū,q

npaq
pD S (

r ,s50

N21

vms
ir v̄ns

jr bs
r D Ei j ^ Ek,D

5 (
i , j ,k,,50

N21 S (
p,q,r ,s50

N21

aq
p bs

rS (
m50

N21

ukq
mpvms

ir D S (
n50

N21

ū,q
npv̄ns

jr D Ei j ^ Ek,D
5 (

p,q,r ,s50

N21

aq
p bs

rS (
i ,k50

N21

~ei ^ ek!S (
m50

N21

ukq
mpvms

ir D D
•••S (

j ,,50

N21

~ej ^e,!†S (
n50

N21

ū,q
npv̄ns

jr D D
[ (

p,q,r ,s50

N21

aq
p bs

r xqs
pr ~xqs

pr!†. ~55!

Such a sum of positive semidefinite matrices~Hermitian dyads, in this case! is always again
positive semidefinite, proving the Lemma.

Q.E.D.
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Theorem 14: The integral of a Lindbladian yields a quantum dynamical semigroup,
conversely, and the derivative of any quantum dynamical semigroup can be placed in can
Lindblad form.

Proof: Given any Kraus operator sum for a quantum dynamical semigroupS(t), we know that
its time derivative will be equal to the result of applying a fixed generator2F to the
density operatorr(t) at any givent > 0. Integration of a matrix representation thus yiel
S(t) 5 Exp(2F t), and for a sufficiently smalldt . 0 this exponential may be approximate
arbitrarily closely by

Exp~2Ft ! ' I2F dt 1 O~~dt !2! 5 I2 G dt 2 ıH dt 1 O~~dt !2!, ~56!

whereI [ I ^ I andiH denotes the commutator part ofF. SinceS(t) is completely positive,
any Choi matrix for it must be positive semidefinite, and so must any projection thereo
particular,

P I Choi~I2F dt !P I 5 2P I Choi~G!P I dt [ 2Choi~Ǧ! dt. ~57!

This allows2Ǧ and hence also its sum with2iH to be placed in canonical Lindblad form, whic
by Proposition 12 must have the same action on anyr as the differential superoperator2F.

Conversely, suppose that a given superoperatorF 5 G 1 iH can be placed in canonica
Lindblad form,

2F~r! 5 L~r! [ 2ıH~r! 1 (
m51

M S Lm r Lm
† 2

1

2
Lm

† Lm r 2
1

2
r Lm

† LmD , ~58!

whereH(r) [ @H,r# for the commutator part ofF. In terms of a matrix representationH, Lm

of these operators, this is equivalent to

2F 5 2G2ıH [ (
m51

M S L̄m^ Lm2
1

2
I ^ Lm

† Lm2
1

2
L̄m

† L̄m^ I D1 ı~ H̄ ^ I2I ^ H!.

~59!

Then over a sufficiently small time intervaldt, the exponential~integral! can be approximated
arbitrarily closely by the product of the exponentials

Exp~2dtF! ' ExpS 2
1

2
dt (

m51

M

~ I ^ Lm
† Lm1L̄m

† L̄m^ I !D ¯

¯ ExpS dt (
m51

M

L̄m^ L D Exp~2dt ıH ! 1 O~~dt !2!

[ A~dt !B~dt ! C~dt ! 1 O~~dt !2!. ~60!

Since the two types of terms in the argument to the first exponential commute, it evalua
a Kronecker product, namely

A~dt ! [ ExpS 2
1

2
dt (

m51

M

~ I ^ Lm
† Lm1L̄m

† L̄m^ I !D
5 ExpS 2

1

2
dt (

m51

M

Lm
† LmD ^ ExpS 2

1

2
dt (

m51

M

L̄m
† L̄mD ~61!

Thus by Lemma 2, the corresponding Choi matrix is the dyad
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Choi~A~dt !! 5 colS ExpS 2
1

2
dt (

m51

M

Lm
† LmD D col†S ExpS 2

1

2
dt (

m51

M

Lm
† LmD D , ~62!

which is necessarily positive semidefinite, proving thatA(t) is completely positive for allt. As for
the second factor in Eq.~60!, we may expand it as

B~dt ! [ ExpS dt (
m51

M

L̄m^ LmD ' I 1 dt (
m51

M

L̄m^ Lm 1 O~~dt !2!. ~63!

BecauseP I Choi(X^ I )P I 5 P I Choi(I ^ X)P I 5 0 for all XPCN3N, the Choi matrix of
the summation on the right-hand side is easily seen to beChoi(Ǧ) [ P I Choi(G)P I, so that

Choi~B~dt !! ' col~ I ! col†~ I ! 1 dt Choi~Ǧ! 1 O~~dt !2!. ~64!

The Choi matrixChoi(Ǧ) 5 (m51
M col(Lm)col†(Lm) is of course positive semidefinite, an

@since Ǧ 5 (n51
N ǧn(Ūn^ Un) where ǧn , col(Un) are the eigenvalues and eigenvectors

Choi(Ǧ)] so are the Choi matrices of all higher terms in the Taylor expansion ofChoi(B(dt)),
thus showing thatB(t) is also completely positive for allt > 0. Finally, the last factor of Eq.
~60!,

C~dt ! [ Exp~2dt ıH !, ~65!

is unitary and hence likewise corresponds to a completely positive superoperator for all tim
It now follows from Lemma 13 that fordt ! iGi21, the product of all three factorsA(dt),

B(dt), C¢ (dt) in Eq. ~60! will be completely positive, and hence for any givent > 0 the
telescoping product

~66!

will also be completely positive for alln . t/dt. The Theorem now follows by noting that th
set of completely positive superoperators is closed, and taking the limit asn → `.

Q.E.D.

V. APPLICATION TO QUANTUM PROCESS TOMOGRAPHY

The applicability of the foregoing results to QPT derives from the following theorem, wh
origins can be traced back to work by Eckart, Young, and Householder,17,18 and has since given
rise to a field of statistical data analysis widely known as ‘‘principal component analysis.’’19 The
present author has proven it several times in the course of his career,20–22and regards the follow-
ing proof as the simplest.

Theorem 15: Let MPCN3N be a Hermitian matrix with eigenvalue decomposition

M 5 U† L U 5 (
,50

N21

l, u, u,
† , ~67!

where the eigenvalues have been sorted in nonincreasing orderl, > l,11 for 0 < ,
< N22. Also letP denote the convex cone of positive semidefinite matrices inCN3N andPP(M )
be the orthogonal projection ofM onto P with respect to the Hilbert–Schmidt (or Fro-
benius) matrix normi•i , which satisfies the ‘‘least-squares’’ criterion23
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i M 2PP~M ! i2 5 min
M8PP

i M 2 M 8 i2. ~68!

Then we have

PP~M ! 5 M! [ U† L! U 5 (
,50

N!21

l,
! u, u,

† , ~69!

whereL! is the diagonal matrix of eigenvaluesL with all of its N2N! nonpositive eigenvalue
set to zero.

Proof: Any positive semidefiniteN3N matrix can be written asXX†, whereXPCN3N8 and
N8 is its rank. It follows that the minimum in Eq.~68! can also be written as

min
XPCN3N8

z~X! [ min
XPCN3N8

i XX† 2 M i2. ~70!

It is easily seen that the gradient matrix ofz(X) is

dz

dX
5

d

dX
tr~~XX† 2 M !2! 5 2 ~XX† 2 M ! X. ~71!

On setting this to the zero matrix, we obtain the nonlinear matrix equation

M X 5 X~X†X!, ~72!

whereinX†X is anN83N8 Hermitian matrix which, forN8 5 3 andXPRN33, is essentially the
inertial tensor~plus a multiple of the identity! of a system of unit mass points with coordinat
ei

TX (0 < i , N). Since the Hilbert–Schmidt norm is unitarily invariant, we may assume
these ‘‘coordinates’’ have been chosen so thatX†X 5 Diag(j1 ,...,jN8) is diagonal, in which
case Eq.~72! becomes

M x j 5 j j xj ~ j 50,...,N21!, ~73!

wherexj [ Xej are the columns ofX. It follows that thexj are proportional to the eigenvecto
uj associated with certain nonnegative eigenvaluesl j 5 j j of M where, sinceixj i2 5 j j , the
constant of proportionality isAl j . On expanding the trace in the functionz(X), we now obtain

z~X! 5 tr~ M2 2 2 XX† M 1 ~XX†!2 ! 5 tr~ M2 ! 2 tr~ 2 X†M X 2 ~X†X!2 !. ~74!

By Eq. ~72!, however, the matrixX8PCN3N8 that minimizesz(X) satisfies

~X8!† M X 8† 5 ~ ~X8!†X8 !2 5 Diag~ l0
2 ,...,lN821

2
!, ~75!

so that

z~X! 5 tr~ M2 ! 2 (
j 50

N821

l j
2. ~76!

From this we see that, for any integerN9 with 0 < N9 < N8 and l j > 0 for 0 < j

, N9, the minimizingX9PCN3N9 is obtained by settingX9 [ @Al juj # j 50
N921. It follows that the

minimizing positive semidefinite matrixX!(X!)† is obtained by settingN9 to the numberN! of
positive eigenvalues ofM .

Q.E.D.
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This theorem can be used to ‘‘filter’’ statistical estimates of either superoperators or
generators so as to obtain a completely positive estimate. In the case of an estimateS8 of a matrix
representing an unknown superoperatorS, one simply sets any negative eigenvalues of the as
ciated Choi matrixT 8 5 Choi(S8) to zero, reconstructs the improved estimateT ! from these
modified eigenvalues and the original eigenvectors as in the theorem, and converts the res
into a new estimateS! 5 Choi(T !) of the superoperator via the same involutory mapp
Choi. The theorem assures us that this procedure makes the smallest possible change inT 8, with
respect to the Hilbert–Schmidt norm, so as to render it positive semidefinite and so ensure tS!

represents a completely positive superoperator. Because the mapping Choi simply permu
elements of its argument, we can be sure that this procedure also minimizes the chaniS8
2S!i in S8. We now show thatS! is assured of being an improved estimate of the correspon
matrix of the true superoperatorS, again in the least-squares sense.

Corollary 16: ForS, S8, andS! defined as above, we have

i S! 2 S i < i S8 2 S i . ~77!

Proof: SinceS! is the orthogonal projection ofS8 onto the convex coneChoi~P! of matrices
representing completely positive superoperators,S82S! is orthogonal to a supporting hyperplan
atS!, while by its definitionSPChoi(P) must be on the opposite side of this hyperplane fr
S8. This in turn implies that the angleu betweenS andS8 atS! satisfiesu > p/2, and hence
by the law of cosines

0 > cos~u! 5
1

2
~ iS!2S8i2 1 iS!2Si2 2 iS82Si2!, ~78!

i.e., iS82Si2 > iS!2S8i21iS!2Si2 > iS!2Si2.
Q.E.D.

The procedure in the case of a QDS generatorF 5 G 1 iH is a bit more involved, since
one needs to compute the projection of the Choi matrixE8 [ P I Choi(F8)P I of the estimate
F8 before diagonalizing it. This of course will remove the Hamiltonian superoperator compo
which must then be obtained by some other means. In addition, one cannot reconstruct a
G! for the decoherent componentG of F from the matrixE! obtained by setting any negativ
eigenvalues«m of E8 to zero simply by applying the Choi mapping, since the other terms nee
to preserve the trace will also have been lost in the projection~if indeed the estimateF8 itself
were trace preserving!. Instead, one has to construct all the Lindblad operatorsLm such that
col(Lm) 5 A«mvm , where«m . 0, vm are eigenvalue, eigenvector pairs ofE8, and compute
G! as indicated in Eq.~6!. As a result, there is no guarantee thatG! will be closer to its true value
G versus the Hilbert–Schmidt norm, although we expect that this will usually be the case. F
discussion regarding how one might go about solving these problems must take the exact
mental situation at hand into account, and as such is outside the scope of this paper.

In the remainder of this section we will illustrate how the above results may be applied
simple example, namely theBloch equationsfor a single spin-1/2 qubit in a frame rotating at i
Larmour frequency in an applied magnetic field.16 As is well-known,24 these can be expressed
canonical Lindblad form as

ṙ 5 L~r! [
11D

4T1
~2 E01r E102E00r2r E00!

1
12D

4T1
~2 E10r E012E11r2r E11!

1S 1

2T2
2

1

4T1
D ~~E002E11! r ~E002E11!2r!, ~79!
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whereT1 andT2 are the characteristic relaxation and decoherence times andD 5 p0 2 p1 is
the excess probability in the ground stateE00 at equilibrium. The supermatrix of the generat
versus a Hilbert space basis in the orderingE00, E10, E01, E11 induced by the ‘‘col’’ operator is

11D

4T1
~2 E01^ E012I ^ E002E00^ I !

1
12D

4T1
~2 E10^ E102I ^ E112E11^ I !

1S 1

2T2
2

1

4T1
D ~~E002E11! ^ ~E002E11!2I ^ I !

5 3
2

12D

2T1
0 0

11D

2T1

0 2
1

T2
0 0

0 0 2
1

T2
0

12D

2T1
0 0 2

11D

2T1

4 [ L. ~80!

The time-dependent exponential of this matrix may be shown to be

Exp~2L t !

5
1

2 F ~11e2t/T1!1D~12e2t/T1! 0 0 ~12e2t/T1!1D~12e2t/T1!

0 2 e2t/T2 0 0

0 0 2e2t/T2 0

~12e2t/T1!2D~12e2t/T1! 0 0 ~11e2t/T1!2D~12e2t/T1!

G ,

~81!

which in turn corresponds to the Choi matrix

M~ t !

[
1

2 F ~11e2t/T1!1D ~12e2t/T1! 0 0 2e2t/T2

0 ~12e2t/T1!~12D! 0 0

0 0 ~12e2t/T1!~11D! 0

2 e2t/T2 0 0 ~11e2t/T1!2D ~12e2t/T1!
G .

~82!

This in turn is readily shown to be positive semidefinite for allt > 0 if 2T1 > T2 . Its deriva-
tive at t 5 0, however, is
                                                                                                                



Ṁ ~0! 5 2Choi~L! 5
1

2 3
2

12D

2T1
0 0 2

1

T2

0
12D

2T1
0 0

0 0
11D

2T1
0 4 , ~83!
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2
1

T2
0 0 2

11D

2T1

and the outermost 232 block of this matrix is positive semidefiniteonly if 2T1 < T2 . Applying
the projectionP I [ I2col(I )col†(I )/2 converts it to

2P I Choi~L!P I 5 3
1

2T2
2

1

4T1
0 0

1

4T1
2

1

2T2

0
12D

2T1
0 0

0 0
11D

2T1
0

1

4T1
2

1

2T2
0 0

1

2T2
2

1

4T1

4 , ~84!

which is now positive semidefinite with eigenvalue, eigenvector pairs:

S 0, F 1

0

0

1

G D , S 1

2T2
2

1

4T1
, F 1

0

0

21

G D , S 11D

2T1
, F 0

1

0

0

G D , S 12D

2T1
, F 0

0

1

0

G D . ~85!

The eigenvectors are easily seen to be obtained by applying the ‘‘col’’ operator to the ma
I 5 E00 1 E11, E00 2 E11, E10, andE01, returning us to the canonical Lindblad form in E
~79!.

We will now use this example to illustrate how the matrix formulas obtained in this pape
be applied to QPT, by numerically simulating the ‘‘data’’ needed for QPT from the above sol
to the Bloch equations. These data correspond to an experimental scenario in which a
precisely known input states$rk

in%k51
K were allowed to evolve under the propagator in Eq.~81! for

varying periods of time, and the results$rk
out%k51

K determined bystatetomography.2,3,25–27Assum-
ing that the input states span the space of single-qubit Hermitian operators, this allows
determine the propagators at each time point according to

Exp~2L t !@col~r1
in!,...,col~rK

in!# 5 @col~r1
out!,...,col~rK

out!# ⇔ Exp~2L t !

5 @col~r1
out!,...,col~rK

out!#@col~r1
in!,...,col~rK

in!#21.

~86!

Although this relation is exact when the output states are known precisely, in actual pr
experimental errors would result in only an approximate estimateS8(t) of the actual propagato
S(t) [ Exp(2L t). If one obtains such estimates at an arithmetic sequence of time p
0 5 t0 ,t1 ,...,tJ 5 Jt1 , however, one may solve a linear least-squares problem to obta
improved estimate of the propagatorS1 [ S(t1) at the first nonzero time point,28 namely
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minT ~x~T !! where x~T ! [ (
j 50

J21

iTSj8 2 Sj 118 i2. ~87!

One may of course setS08 5 S(t0) 5 I ^ I , the 434 identity, and one should also filter th
remaining estimates by symmetrizing their Choi matrices~i.e., by adding them to their adjoint
and dividing by 2!, setting any negative eigenvaluesc 5 0 and transforming back to a new
estimate~as described previously!. The minimizing solution to this least-squares problem is ea
shown to be

S19 [ S (
j 51

J21

Sj8 ~Sj 218 !†D S (
j 51

J21

Sj8 ~Sj8!†D ‡

, ~88!

where in most cases the Moore–Penrose inverse~‡! may be replaced by the usual matrix inverse23

Finally, S19 may be converted into an estimate of the generator via the matrix ‘‘pseudo
rithm,’’ Plog. This is computed by diagonalizingS19 5 WFW21, setting any eigenvalue
f i < 0 or f i > 1 to zero while taking the usual logarithm of the rest, then performing
inverse similarity transformation and dividing byt1 , i.e.,

t1L9 5 Plog~S19! [ WPlog~F!W21 5 (
i 50

3

plog~f i ! ~W ei !~W21ei !
†, ~89!

where

plog~f i ! [ H log~f i ! if 0 , f i , 1,

0 otherwise.
~90!

The eigenvalues will be real since no Hamiltonian was assumed in the simulations, and arg
similar to those involved in Theorem 15 can be used to show that the pseudo-logarithm wi
yield a generatorL9 that minimizesiS 19 2 Exp(2L9t1)i . Last, the estimateL9 is filtered by
projecting its symmetrized Choi matrix byP I, setting any eigenvalues« 5 0, and reconstruct-
ing to obtain the optimum estimateL!, as described above.

The specific values of the parameters used for the simulations wereT1 5 0.5, T2 5 0.1,
andD 5 0.1; the relaxation timesT1 andT2 are typical of liquid-state NMR samples, while th
polarizationD was deliberately made larger to render it visible despite the noise. In accord
Eq. ~80!, these gave rise to the generator

L [ F 20.9 0 0 1.1

0 210.0 0 0

0 0 210.0 0

0.9 0 0 21.1

G ~91!

TABLE I. Average over 100 runs of Hilbert–Schmidt norms of the changes in the propagators on symmetrizin
filtering the eigenvalues$c % of their Choi matrices, divided by the norm of the actual propagatoriS i ~see text!; the last
column shows the average numberu$c , 0%u of negative eigenvalues of that were set to zero.

t1 t2 t3 t4 u$c , 0%u

V1 0.0108 0.0121 0.0116 0.0127 0.000
V2 0.0581 0.0601 0.0644 0.0605 0.000
V3 0.3062 0.3038 0.3074 0.3098 0.290
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The input states were taken to beE00, E11, (e01e1)(e01e1)/2, and (e02ie1)(e01ie1)/2, while
the times used were set tot j [ j /4 ( j 5 0,...,4). Finally, the noise levels evaluated we
V1 5 0.01, V2 5 0.05 andV3 5 0.25, where the noise was simply added to the out
states$rk

out% with a Gaussian distribution, zero mean, and variancess j
2Vk

2 proportional to the
mean-square sizes j

2 of the elements ofS(t j ) ( j 5 0,...,J; k 5 1, 2, 3). The results below
were averaged over 100 independent estimations of the propagators at each time poin
different random noise for each estimation and time point, followed by filtering and fittin
obtain estimates of the generator, all at each of the three specified noise levels.

Table I shows the average changes made to the propagator estimates upon symmetriz
filtering the eigenvalues of their Choi matrices, as measured by the Hilbert–Schmidt norm
difference divided by that of the true propagator, together with the average numberu$c , 0%u of
eigenvalues set to zero in the process. It may be seen that the changes in the estimated pro
upon filtering became significant as the noise level increased, but were generally little mor
the added noise. Negative eigenvalues were frequently encountered only at the highest noi
V3 5 0.25, however, so in fact most of these changes were due to the symmetrization nee
make the estimated Choi matrices Hermitian.

Table II shows the average changes made to the various generator estimates co
~this time normalized by the norm of the true generator!, together with the average numbe
of eigenvalues set to zero in computing the pseudologarithm (u$f , 0%u) and in filtering
(u$« , 0%u). Again, few eigenvalues with incorrect signs were encountered either in comp
the pseudologarithm, or in symmetrizing and filtering the resulting generators. This mean
once again, most of the improvement was obtained via the projectionP I and subsequent recon
struction, forcing the estimated generatorsL! to preserve the trace~which the unfiltered estimate
L9 did not!. Finally, it should be noted that the filtered generatorsL! usually came out closer to
the actual solution than the unfiltered, although this was not invariably so. Together, these n
cal results strongly support our claim that the formulas derived in this paper provide a power
of tools with which to tackle quantum process tomography on systems that may be aptly mo
as a quantum dynamical semigroup.

VI. CONCLUSIONS

In this paper we have presented formulas by which the supergenerators and superprop
of quantum dynamical semigroups may be manipulated, placed in canonical Lindblad and
form, and all these forms interconverted. These formulas constitute a set of tools that sho
particularly valuable in developing robust procedures for quantum process tomography2 and quan-
tum channel identification,1 using diverse forms of experimental data. We have illustrated one
application using data simulated from the well-known Bloch relaxation equations on a s
spin-1/2 qubit,16 which assumed that full state tomography versus a basis of input states co
performed. This example demonstrated the anticipated robustness of the procedures em
which was the result of combining the eigenvalue characterizations of completely positive
generators and superpropagators derived in this paper with powerful matrix approximation
ods derived from the field of principal component analysis.19

TABLE II. Average Hilbert–Schmidt distances~columns 1–3! among the estimates of the generators divided by the n
of the actual generatoriLi , and~columns 4–5! average numbers of eigenvalues set to zero in obtaining these estim
~see text!.

iL92L!i iL92Li iL!2Li u$f , 0%u u$« , 0%u

V1 0.0077 0.0305 0.0300 0.000 0.000
V2 0.0634 0.1720 0.1676 0.010 0.420
V3 0.2971 0.6355 0.5553 0.580 0.840
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It should be clearly understood, nevertheless, that the procedures given above were in
primarily to provide a concrete example of how the mathematical results derived in this pap
be applied to quantum process tomography, and not as a prescriptive recipe that is in al
optimal—or even applicable. For example, the system of interest will often evolve coherentl
relaxes towards equilibrium, and at a rate far larger than the relaxation processes themse
this case the relaxation generator itself will be averaged, significantly complicating its ph
interpretation, and the superpropagators determined from full state tomography versus a
basis set will usually have complex eigenvalues. Even assuming its matrix can be fully dia
ized, the well-known ambiguity of the matrix logarithm with respect to the addition of arbit
multiples of 2pı onto its eigenvalues will render our ‘‘pseudologarithm’’ technique inapplica
Particularly in such cases, better results can be expected from nonlinear fits of the superge
to the superpropagators,11,28 but the question of whether these problems are best solved by
putational means, experimental means, or some combination thereof, will clearly depend up
circumstances.

There are further many other ways to represent a quantum state besides a density ma
example by a Wigner distribution,25 or it may even be desirable to forgo state tomography a
gether and to base quantum process tomography on a sequence of time-dependent obse
which, although individually insufficient to fully determine the superoperator or even the sys
quantum state, nevertheless do so in aggregate. Alternatively, one might utilize a form of in
measurement via qubits outside of, but interacting with, the system of interest.1,16,29We anticipate
that many creative applications and extensions of the techniques introduced in this paper
developed in the years ahead, as quantum information processing technologies progress
experimental reality.
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Non-Abelian braid statistics versus projective
permutation statistics

N. Reada)

Department of Physics, Yale University,
P.O. Box 208120, New Haven, Connecticut 06520-8120

~Received 29 January 2002; accepted 10 October 2002!

Recent papers by Finkelstein, Galiautdinov, and co-workers@J. Math. Phys.42,
1489 ~2001!; 42, 3299 ~2001!# discuss a suggestion by Wilczek that non-Abelian
projective representations of the permutation group can be used as a new type of
particle statistics, valid in any dimension. Wilczek’s suggestion was based in part
on an analysis by Nayak and Wilczek~NW! of the non-Abelian representation of
the braid group in a quantum Hall system. We point out that projective permutation
statistics is not possible in a local quantum field theory as it violates locality, and
show that the NW braid group representation is not equivalent to a projective
representation of the permutation group. The structure of the finite image of the
braid group in a 2n/221-dimensional representation is obtained. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1530369#

Moore and Read1 showed that a physical realization of non-Abelian statistics~as a non-
Abelian representation of the braid group! was a possibility in a quantum Hall effect system. T
Moore–Read state now seems likely to be the ground state in then55/2 quantum Hall effect~for
a review, see Ref. 2!. The non-Abelian statistics was analyzed further,3–5 and in particular Nayak
and Wilczek~NW!3 showed that exchange of the quasiparticles by braiding can be repres
using a subgroup of the rotation group SO(n), acting in the spinor~projective! representation,
using Clifford algebra methods. Wilczek6 then proposed a connection with the projective rep
sentations of the permutation group, and suggested that such ‘‘projective permutation sta
are a possibility in any space dimension. This was explored extensively in Refs. 7–9, where
termed ‘‘Clifford statistics.’’ In view of the interest in non-Abelian statistics also in connec
with quantum computation,10 it seems worthwhile to correct the confusion that has arisen.

To begin, considern indistinguishable point objects in a two-dimensional plane. For gen
positions, they can be projected onto a generic line in such a way that they do not coincid
can then be labeled 1,...,n in sequence from left to right. The permutation~or symmetric! group
acting on the objects is generated by the set ofsj , j 51,..., n21, that exchange objectsj , j 11.
The generators obey relations

sj
251, ~1!

~sjsk!
351 ~ u j 2ku51!, ~2!

sjsk5sksj ~ u j 2ku.1! ~3!

~where 1 denotes the identity element of the group!, and this set of generators and relations defin
the symmetric group onn objectsSn . It hasn! elements.

Similarly, the braid groupBn is generated by nearest-neighbor transpositionst j , but now they
do not square to the identity. The braid group can be defined by the relations~see, e.g., Ref. 11!

a!Electronic mail: nicholas.read@yale.edu
5580022-2488/2003/44(2)/558/6/$20.00 © 2003 American Institute of Physics
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t j tkt j5tkt j tk ~ u j 2ku51!, ~4!

t j tk5tkt j ~ u j 2ku.1!. ~5!

The braid group is an infinite discrete group.
The projective representations of the symmetric groupSn can be viewed as ordinary linea

representations of a covering group, that is a nontrivial central extension ofSn by U~1! ~or by a
subgroup thereof!. The central extensions ofSn by U~1! are classified up to isomorphism by th
cohomology groupH2(Sn ,U(1)) which for n>4 is >Z2 .12–14Hence forn>4 ~we consider only
this range from here on! there are nontrivial extensions ofSn by Z2 , which have 2•n! elements,
and we denote one of these byS̃n . S̃n can be defined byn generatorss j ( j 51,...,n21), z and
relations14,15

z251, ~6!

zs j5s j z, ~7!

s j
25z, ~8!

s jsks j5sks jsk ~ u j 2ku51!, ~9!

s jsk5zsks j ~ u j 2ku.1!. ~10!

Thusz is a central element that commutes with all elements, and can be set to either11 or 21
in any irreducible representation~note that we do not distinguish between the abstract genera
z, sj , t j , s j , etc., and their matrix representatives in a particular representation!. The relations are
the same as for the symmetric group, modulo factors ofz. Representations in whichz51 descend
to linear representations of the quotient group,S̃n /$1,z%>Sn , while representations in whichz
521 are projective representations ofSn . ~The only other nontrivial double coverŜn , not
isomorphic toS̃n except forn56,14 is obtained by using instead generatorss j8 which obey similar
relations but with 1 in place ofz in Eq. ~8!.14,15 In a representation in whichz521, this results
from settings j85 is j for all j . These were the relations used in Ref. 6.!

The proposal for projective permutation statistics6 was that, as quantum mechanics welcom
the use of projective representations of symmetries, identical particles might be describ
projective representations of the permutation group. Since the permutations do not refer
topology of space~unlike the braiding operations!, this proposal, if correct, could be used in an
dimension~the ordering of the particles along the line is then arbitrary!. Then the operation of
exchange of nearest neighbors would be represented by an elementTj acting on Hilbert space, and
in the projective permutation statistics proposal, eachTj must be eithers j or 2s j , since these are
the elements that project to transpositionssj in the quotient groupSn . In particular, there is a
representation ofS̃n of dimension 2[(n21)/2] ~where @x# denotes the largest integer<x). This
coincides with the dimension of the representation of the braid group identified1,3,4 in the Moore–
Read quantum Hall state, and Wilczek6 claimed that this representation ofS̃n is equivalent to the
representation of the braid group obtained in Ref. 3, up to some phase factors that we will d
in a moment. Note that the complex Clifford algebra onm generatorsg j , with relationsg j

251,
g jgk52gkg j ( j Þk), has dimension 2m. For m even, the Clifford algebra is isomorphic to th
algebra of matrices on a vector space of dimension 2m/2. This applies here withm52@(n
21)/2#.

The difficulty with the general proposal is that statistics of particles in quantum field theo
many-body theory must obey locality. That is, the underlying physics is presumed to be giv
a local Hamiltonian containing local interactions between local fields~for example, the electrons
in the quantum Hall system!. The locality assumption plays a crucial role in the general rigor
analysis of particle statistics; see, e.g., Refs. 16–21. In particular, it appears that projectiv
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resentations of the permutation group are explicitly ruled out~see, e.g., Theorem. 2.2.3c in Cha
IV of Ref. 21 for the case of relativistic theories in space dimension>3 under some technica
assumptions that are relaxed by the end of Sec. IV.3.3, and Sec. IV.5 of Ref. 21 for some d
sion of space dimension 2 where the braid group enters!. The central step of the analysis is
move particles aroundcontinuouslyin space–time, and the results depend only on the homo
class of the path taken in configuration space. In particular, exchanges of disjoint well-sep
pairs of particles must commute as the two orderings of the exchanges are homotopically e
lent, so in particularTjTk5TkTj for u j 2ku.1, or in other words the group-theoretic commuta
TjTkTj

21Tk
2151. In the projective representations of the symmetric group, the commutat

instead21 ~whatever the choice of the lift,Tj5s j or 2s j , of eachsj ), and soprojective
statistics violates locality. On the other hand, locality is not violated by braid statistics, wh
Tj5t j in some representation ofBn , and it is known that non-Abelian braid statistics can
realized in a local theory in 211 dimensions,19,18 for example in pure Chern–Simons gau
theory.

Independent of the physical requirement of locality, the difference between the commu
of generators inBn ~5! and in S̃n ~10! implies that a projective representation ofSn ~in which z
521) cannotalso be a representation of the braid groupBn , in contradiction to Wilczek’s claim.6

Put another way, the image of the braid group in U(2[(n21)/2]) given by the representation matrice
~the existence of which will be checked later! and that ofS̃n are not isomorphic as groups~given
the way that both project to the symmetric group!. ~Later we will see that these two groups, thou
both finite, are actually of different orders.!

No escape from these conclusions can be found in a remark by Wilczek6 that in the quantum
Hall example, the projective statistics is combined with anyonic phase factors,e2p i /8 in a Tj . If
this is taken to mean that the physical exchangesTj act in a tensor product of the 2[(n21)/2]

dimensional representation ofS̃n as above, with an Abelian representation of the braid grout j

5eiu for some realu, soTj5s j ^ t j , then it is clear that this does not affect the noncommuta
of disjoint exchanges,TjTkTj

21Tk
21521. ~A special case iseiu5 i , discussed earlier.! These

generators clearly obey the relations~reintroducingz for convenience!

z251, ~11!

zt j5t j z, ~12!

t jtkt j5tkt jtk ~ u j 2ku51!, ~13!

t jtk5ztkt j ~ u j 2ku.1!. ~14!

The existence of representationsTj5t j of these relations implies their consistency, and hence
existence of a nontrivial central extensionB̃n of the braid group, defined abstractly by the ge
eratorsz, t j and the above-given relations. Any of the four groups mentioned earlier,S̃n , Bn , Sn ,
or Ŝn can be obtained fromB̃n by imposing additional relationst j

25z, z51, both of these, or
t j

251, respectively. Similarly, ift j
(1) and t j

(2) , j 51,...,n21, are two representations of the bra
group Bn , then t j5t j

(1)
^ t j

(2) gives another one. In particular,t j
(2)5eiu ~for all j ) is a one-

dimensional representation, and so a continuum of distinct representations of the same dim
can be found for each choice oft j

(1)’s. In quantum Hall effect systems, such Abelian tensor fact
are common, as there is a contribution toTj from the charge degrees of freedom, which produ
a u that depends on the filling factor.

If one considers representations modulo phase factors, then this distinction between th
mutators~5!, ~10! cannot be made. This is the notion of isomorphism of groups modulo scala
contrast to the usual isomorphism we have been invoking so far. Isomorphism modulo s
amounts to isomorphism of the images of the group~s! in the projective linear group PGL(N)
>GL(N)/GL(1), or since we are considering unitary representations, PU(N)>U(N)/U(1).
However, isomorphism modulo scalars is generally too weak a property to use in quantum
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ics. That is because we must keep track of interference between processes that corres
distinct group operations, and the phases involved may be relative phases that affect suc
ference. That is, we are interested in more than just the representation of a group. For examSn

has two one-dimensional representations, one in whichsj511, one in whichsj521, correspond-
ing to Bose and Fermi statistics, respectively. Modulo scalars, these are isomorphic, but li
~and physically! they are not.

We now examine the construction of NW3 to find the structure of their braid group represe
tation of dimension 2[(n21)/2]52n/221 ~we consider onlyn even from here on; there are simila
results forn odd!. Essentially the same construction, based on the Temperley–Lieb~TL! algebra
specialized to the Ising model, was obtained much earlier by Jones.22 See also Ref. 23. NW
deduce most of its properties from the properties of conformal blocks of spin fields in the
model, as in Ref. 1. The central idea is that each object corresponds to an orthogonal direc
real n-dimensional Euclidean spaceRn, and the elementary transpositionsTj correspond to a
rotationy j by p/2 in the plane spanned by objectsj , j 11, acting in one of the two inequivalen
spinor representations of dimension 2n/221 of the covering group Spin(n) of SO(n), up to a
j -independent phase factor as just discussed:Tj5eiuy j . Clearly these operations have the effect
permuting then axes~if we ignore the direction along each axis!, and thus do project to the actio
of the permutation group as desired. Each rotation can be defined asy j5exp@i(p/2)ej , j 11#, where
ej ,k ( j ,k) is the element of the Lie algebra so(n) that generates a rotation in thejk plane, acting
here in the chosen spinor representation. Since the generatorsej ,k for disjoint pairs j 1k1 , j 2k2

commute, and this remains true in any representation including the spinors~there are no nontrivial
central extensions of any semisimple Lie algebra!!, the y j ’s commute,y jyky j

21yk
2151 for u j

2ku.1. Hence there is no difficulty with locality of the proposal of Ref. 3, and so far i
consistent with the claim that they j ’s form a linear representation of the braid group, witht j

5y j . It remains to check the other relation~4!.
To understand the structure of the representation of the braid group of dimension 2n/221 given

by t j5y j , it is useful first to consider the geometry of the group of rotations byp/2 about the axes
in Rn in more detail. This amounts to studying the group generated by elementuj

5exp@i(p/2)ej , j 11#, where this timeej ,k act in the definingn-dimensional representation o
SO(n). The operationu1 , for example, sends the point with coordinates (x1 ,...,xn) to
(2x2 ,x1 ,x3 ,...,xn). The group generated by theuj ’s can be seen to be the set of all permutatio
of x1 ,..., xn , together with sign changes, but with the condition that an even permutatio
combined with an even number of sign changes, and an odd permutation with an odd num
sign changes. If the latter condition is dropped, we obtain the group of all permutations an
changes, which is generated by all reflections in the diagonalsxj5xk (1< j ,k<n) and in the
coordinate planesxj50, j 51,... n. This is therefore a Coxeter group, denotedBn ~Ref. 24! @it is
the Weyl group of so(2n11) and sp(2n)]. It can be described by generators and relations, but
will not need these here. There is a subgroup of index 2, which we denoteB n

1 , consisting of the
elements that are proper rotations, and it is exactly the group generated by theuj ’s. Bn is a
semidirect product ofSn with the group of sign changes (Z2)n, and has order 2n•n!. Its rotation
subgroupB n

1 has order 2n21
•n!, and is an extension ofSn by (Z2)n21, but not a semidirect

product ~that is, there is noSn subgroup ofB n
1 that projects ontoSn under the quotient map

B n
1→B n

1/(Z2)n21>Sn). Finally, the cover Spin(n) of SO(n), and the inclusion ofB n
1 in SO(n),

induce a double coverB̃n
1 ~there is a similar double coverB̃n of Bn). B̃n

1 , which has order 2n

•n!, is almost the group we need. It is generated by the lifts of theuj ’s, and the irreducible
representations of dimension 2n/221 of Spin(n) induce representations of the same dimension

B̃n
1 , which can also be viewed as projective representations ofB n

1 . To find the order of the image

of B̃n
1 in the irreducible spinor representations, we note that, forn>6, the only normal subgroup

of Spin(n) are contained in its center, which isZ4 (n/2 odd),Z23Z2 (n/2 even), so the kernel o

the mapB̃n
1→U(2n/221) must also be contained in the center of Spin(n). Hence the order of the

image of B̃n
1 is the same as the order ofB̃n

1 , within a factor of 2 or 4. Forn54, Spin(4)
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>SU(2)3SU(2), and theirreducible spinor representations do not faithfully represent the
algebra so~4!, so the factor could be larger.

For B n
1 , it is easy to show that settingt j5uj does satisfy relation~4! defining the braid group

Bn . To study the other groups explicitly, we resort to Clifford algebra methods. The redu
spinor representation of so(n), of dimension 2n/2, can be naturally constructed as a representa
of the even part of a complex Clifford algebra onn generators by settingej ,k52 ig jgk/2. The
representation splits into two irreducibles of dimension 2n/221 ~this is also the structure of th
Temperley–Lieb algebra in the Ising model,22 and of a full Clifford algebra on onlyn21 gen-

erators, which Jones constructs22!. Spin(n) and its center~and henceB̃n
1 , by a similar argument to

that in the previous paragraph! act faithfully in the 2n/2-dimensional representation. We findy j

5(11g jg j 11)/&.23 It is then easy to verify that settingt j5y j , relation ~4! is satisfied. The

center of Spin(n) is contained inB̃n
1 . It includes the elementsU5y1

2y3
2
¯yn21

2 5g1g2¯gn and
y j

4521. Forn/2 odd,U2521, andU generates the center>Z4 of Spin(n). The two irreducible
components are distinguished by the valuesU5 i , 2 i . In these cases,Z4 and hence the whole o

B̃n
1 are represented faithfully in the 2n/221-dimensional representations, and hence the image oBn

has order 2n•n!. For n/2 even,U251, and the center of Spin(n) is $1,U,2U,21%. U51 in one
irreducible component,U521 in the other, and the reverse for2U. Hence forn>8 the image

of B̃n
1 ~and ofBn) is >B̃n

1/Z2 for someZ2 in either component, and has order 2n21
•n!. For n

54, one finds22 that y35y1
21, y1 in the two components, and the image ofB̃4

1 andB4 is isomor-

phic to B̃3
1 (B̃n

1 for n odd is defined the same way as forn even! of order 23
•3!548. Finally, for

all evenn>4, the center of the even part of the Clifford algebra is generated byU, and the center

of B̃n
1 is the same as that of Spin(n).
Our conclusion for the order of the finite group generated by the imagesy j of the t j ’s in these

irreducible representations agrees with the analysis by Jones, who showed that the imageBn in
PU(2n/221) has order 2n22

•n! for n>6, and 24 forn54 ~see Theorem. 5.2 in Ref. 22!. This is
consistent with our results since passing to the projective group involves division by the c

~the center ofB̃3
1 is Z2).

For comparison, the symmetric groupSn can be viewed as the Coxeter groupAn21 ~Ref. 24!
@the Weyl group of su(n)]. As such it is generated by reflections~representing thesj ’s) in the
hyperplanesxj5xj 11 in Rn, and this represents it as a subgroup of O(n). As all the generators
leave the points on the linex15x25¯xn fixed, the reflections can be restricted to the orthogo
hypersurface( j xj50, and so generate a subgroup of O(n21). O(n21) has an irreducible
projective spinor representation@or linear representation of its double cover Pin(n21)] of dimen-
sion 2n/221, in which the lift of a reflection in any hyperplane is represented by a linear co
nation of generators of a Clifford algebra onn21 generators. The liftss j8 , zs j8 to Pin(n21) of

sj ( j 51,..., n21) then generateŜn . In terms of the Clifford algebra~for convenience we will
continue to use the Clifford algebra associated withRn), the explicit expressions ares j85(g j

2g j 11)/& ~these elements generate a full Clifford algebra onn21 generators!, and the anticom-
mutation ofs j8 , sk8 for u j 2ku.1 follows.14 This isnot the construction proposed in Ref. 3 for th

braiding operations. If an Abelian factoreiu is tensored into eachs j8 , then the image ofB̃n in
U(2n/221) is again a finite group ifu/2p is rational. Even if this finite group happens to have t

same order asB̃n
1 , it has a different structure, as we have already shown.

We should mention that the statistics described by representations of the groupB̃n
1 discussed

here cannot describe particles in more than two space dimensions, because the exchangTj do
not obey~even up to a phase! the well-known conditionsTj

251 that are required16,21 in higher
dimensions.

There are also other examples of quantum Hall systems with non-Abelian braid statistics
no obvious relation to Clifford algebras. In the sequence of quantum Hall states, labeledk
51, 2,..., constructed in Ref. 25, the braiding of the quasiparticles is the same as that of W
lines in SU~2! Chern–Simons gauge theory of levelk, up to tensoring by an Abelian represent
tion. It is known that the image of the braid group in U(N) ~for certainN) in these cases is finite
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for k51, 2, 4 ~Abelian for k51), and dense in SU(N) for all other k.26 Therefore in general,
study of the statistics involves the braid group, and not a finite group.

To conclude, we have pointed out that the image of the braid group in
2[(n21)/2]-dimensional representation is not isomorphic to the nontrivial double cover of the
metric group, even if an Abelian representation of the braid group is tensored with the
Projective permutation statistics is not consistent with locality, but the physical exampl
quantum Hall states are described by the braid group and are consistent with locality. In th
of the quasiparticles in the Moore–Read state, the statistics is nonetheless related to C
algebras.
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A connection between distributivity and locality
in compound P-lattices
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A P-lattice is as-complete, orthomodular atomic latticeL which is formed by the
set of propositions of a physical system. A composition of physical systems is
considered, and some concept of locality in a compound physical system is repre-
sented in terms of P-lattices. We give a remark toward necessary and sufficient
conditions for it to hold, which have been provided implicitly in antecedent studies,
and we show that it can be provided under weaker conditions. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1532537#

I. INTRODUCTION

For the realist, the main motivation to tackle an interpretative problem of quantum theo
that it seems impossible to apply some concepts of physical reality to this new theory consis
As a result of analyses for problems to be called ‘‘the hidden variable problem,’’ this kind of
between classical and quantum concepts is becoming clear gradually. On the one hand,
algebraic analyses,1 it is known that~noncontextual! definite value assignments to every obse
able in quantum system are impossible. On the other hand, according to the stochastic arg
for compound systems,2 we must admit that there exists some sort of nonlocality in quan
systems. Then, do the new features have any logical connection such that the one imp
other?3 Or, do they merely show how far the distance between classical and quantum pictu

To deal with the problems of~non-!locality, we must consider compound physical system
Now, we would like to regard the combination of two physical systemsS1 , S2 as a single oneS.
In the context of lattice-theoretical description, there have been various discussions abo
problem of the representation of the compound systemS in terms ofS1 and S2 .4–10 Aerts and
Daubechies5 proposed some natural requirements to describe a compound system based
recognition of subsystems. In the line of them, we would like to deal with the relation betwee
problem of locality and algebraic structures of physical systems. In antecedent studies conc
it, some authors explicitly or implicitly have provided some important results. However, t
results were given under somewhat strong conditions. We shall show similar results under w
conditions, and give a remark toward a necessary and sufficient condition for some conc
locality to hold, and show logical connections between~non-!locality in a compound system an
structures of its components.

Remark:For lattice-theoretical construction of so-called ‘‘tensor product,’’ there is the w
known open question about its uniqueness in quantum case.4–10 However, our purposes are not t
deal with this problem but to consider some property in a compound system if such constr
is possible.

II. PROPOSITIONAL STRUCTURE OF PHYSICAL SYSTEMS

A P-lattice is a s-complete, orthomodular atomic latticeL which is formed by the set o
propositions of a physical system.11

a!Electronic mail: teppei@hps.sci.hokudai.ac.jp
5640022-2488/2003/44(2)/564/6/$20.00 © 2003 American Institute of Physics
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A distributive P-lattice is calledclassical, which is isomorphic to the Borels-field of some
phase space in classical mechanics. An irreducible P-lattice is calledquantum, which is isomor-
phic to the lattice of all closed subspaces of some Hilbert space.

Let L andL8 be P-lattices. A maph:L→L8 is called aninjectives-orthohomomorphismif it
is one-to-one and it preservess-meets, orthocomplements and the minimal element~consequently,
it preservess-joins and the maximal element as well!. If an injectives-orthohomomorphismh
preserves all existing meets, including meets~if they exist! for families which are not necessarl
countable, then it is called aninjective strong orthohomomorphism.

Let L1 , L2 bes-complete lattices, andL1]L2 be the direct sum12 of L1 andL2 . If L1 andL2

are P-lattices, then it is easy to show thatL1]L2 is also a P-lattice.
For notation, (a,b) C denotes that elementsa , bPL commute with each other,C(L) stands

for the center ofL, andA(L) for the set of all atoms ofL.

III. SOME THEOREMS ABOUT P-LATTICES

Let L be a lattice. Recall thatL is calledatomic when every nonzero element majorizes
least one atom, and is calledatomisticwhen every element is the join of the atoms it contains

Lemma (A): If an orthomodular lattice is atomic, then it is also atomistic.
Proof: Let L be an orthomodular atomic lattice. PutS5$pPA(L)up<a% for nonzeroa

PL. Let b be an upper bound ofS such thatb<a. Suppose thata∧b'Þ0. By atomicity, there is
qPA(L) such thatq<a∧b'. We haveq<a, so qPS. Therefore we getq<b, thenq<b∧b'

50, a contradiction.
Now, let c be any upper bound ofS. Thena∧c is so, anda∧c<a. From above results, we

havea∧(a∧c)'50. Due to orthomodularity ofL, we geta5(a∧c)∨@a∧(a∧c)'#5a∧c, which
meansa<c. Thereforea is the least upper bound ofS, i.e., a5∨S, which showsL is also
atomistic. h

Lemma (B): Let L1 and L2 be P-lattices, and a map h:L1→L2 be an injective
s-orthohomomorphism. Let a be any nonzero element inL1 . Then,

h~a!5∨$h~p!PL2upPA~L1!,p<a%.

In particular, I 25h(I 1)5∨$h(p)PL2upPA(L1)%.
Proof: It is obvious that imageh(L1)#L2 is isomorphic toL1 and is also a P-lattice. It is als

obvious thatA(h(L1))5$h(p)PL2upPA(L1)%. Sinceh(L1) is atomistic by virtue of Lemma
~A!, for any nonzero elementh(a) in h(L1) we have

h~a!5∨$h~p!PL2upPA~L1!,p<a%.

In the case ofa5I 1 , the last statement in the lemma immediately follows. h

In the following sections, we prove some theorems. For their proofs, we shall appea
quently to the following two theorems:

Theorem „Foulis-Holland…: If, in an orthomodular lattice, one of the elements a,b,c com-
mutes with the other two, then triple( a,b,c ) is distributive.

Theorem „direct sum decomposition…: Let L be a lattice. IfL has a nontrivial central
element c, thenL5@0 , c#]@0 , c'#, where@•,•# denotes a segment.

IV. THE REQUIREMENTS FOR COMPOUND SYSTEM

We shall be almost exclusively concerned with a compound systemS consisting of the sub-
systemsS1 andS2 . In this case, it is natural to require at least the following;

~1! Structures ofS1 andS2 must be preserved if they are considered as subsystems ofS.
~2! Maximum information aboutS1 andS2 implies maximum information aboutS.
~3! Propositions~or properties! on S that refer only to subsystemS1 have to be compatible with

propositions onS that refer only to subsystemS2 .
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~4! Compound systemS contains onlyS1 andS2 as the subsystems.

These requirements seem to represent very minimal and natural assumptions.5,6 Mathematical
formulation is the following: LetL1 , L2 and L be P-lattices associated withS1 , S2 and S,
respectively.L is called thecompound P-latticeof L1 , L2 if

~i! there exist two injectives-orthohomomorphismshi :Li→L ( i 51,2),
~ii ! h1(p)∧h2(q)PA(L) for everypPA(L1), qPA(L2),
~iii ! (h1(a),h2(b)) C for everyaPL1 , bPL2 , and
~iv! h1(L1)øh2(L2) generatesL, that is the smallest P-lattice containing bothh1(L1) and

h2(L2) is L.

Remark that it is not required that maximum information aboutS is merely the sum of
maximum information aboutS1 and S2 . That is, it is not assumed that a compound P-latticeL
always has the property such that

A~L!5$h1~x!∧h2~y!uxPA~L1! , yPA~L2!%.

If every atom in a P-lattice corresponds to some pure state of the system, we can rega
property as expressing some sort of locality, i.e., the separability of states of the compound s
So we will call this propertySEPARABILITY.

V. NECESSARY CONDITION FOR SEPARABILITY IN COMPOUND P-LATTICES

In antecedent studies, some authors have provided necessary conditions for SEPARAB
in their schemes. For example, Pulmannova´ ~Ref. 8, Theorem 2! provided a necessary conditio
for SEPARABILITY in the free orthodistributive product ofcompleteatomistic orthomodular
lattices, in which injective mapshi :Li→L ( i 51,2) are not onlys-orthohomomorphisms but als
strong orthohomomorphisms. It is easy to show that a similar result applies to our comp
P-lattice as follows:

Theorem 1: Let L1 , L2 be P-lattices andL be the compound P-lattice ofL1 and L2 . If
A(L)5$h1(x)∧h2(y)uxPA(L1) , yPA(L2)%, then at least one ofL1 and L2 is classical.

In the proof by Pulmannova´ ~Ref. 8, Theorem 2!, three lemmas~Lemma 1, 3, and 4! are used,
and only one of them~Lemma 4! is proved by using strong conditions which is not supposed
our compound P-lattice. Therefore only what we need is to prove Pulmannova´’s Lemma 4 under
our conditions. In this lemma, we say that the elementsb,cPL are separated by a superselecti
rule if for any atoma<b∨c we havea<b or a<c.

Lemma 1.1 [Pulmannova´ (Ref. 8, Lemma 4)]: LetL be a P-lattice. If a,bPL are two different
atoms which are separated by a superselection rule, then a'b.

Proof: Let a,bPL be two different atoms which are separated by a superselection rule
xª(a∨b)∧a'. Now, we will showxÞ0. Supposex50. Sincea<a∨b andL is orthomodular,
we have

a∨b5a∨@~a∨b!∧a'#5a∨x5a,

so we haveb<a, which contradicts the supposition thata,b are two different atoms. Therefor
we seexÞ0. By atomicity, there exists an atomp such thatp<x<a∨b. It is obvious thatp
<x<a', so pÞa. If a'∧b50, then we have

p∧b<x∧b5~a∨b!∧a'∧b50,

so pÞb, which contradicts to the supposition thata,b are separated by a superselection ru
Therefore we seea'∧bÞ0. Sincea'∧b<b and bPA(L), we obtainb5a'∧b, which means
a'b. h
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VI. SUFFICIENT CONDITION FOR SEPARABILITY IN COMPOUND P-LATTICES

There have been many important results concerning compositions of a quantum and a
cal system,6,8,9,13 derived from somewhat strong conditions as mentioned in previous sectio
might be unnoticed that some of them can be provided under weaker conditions. In particu
can show a similar result, which provides a sufficient condition for SEPARABILITY, as follo

Theorem 2: Let L1 , L2 be P-lattices andL be the compound P-lattice ofL1 and L2 . If at
least one ofL1 and L2 is classical, thenA(L)5$h1(x)∧h2(y)uxPA(L1) , yPA(L2)%.

Proof: Let L1 be a classical P-lattice andL2 be an arbitrary P-lattice. As a first step, we ne
the following lemma:

Lemma 2.1: LetL1 be a classical P-lattice andL2 be an arbitrary P-lattice. LetL be the
compound P-lattice ofL1 and L2 . Then h1(a)PC(L) for every aPA(L1).

Proof of Lemma 2.1:Put Sª$xPLu(x,h1(a)) C %. First, we will show thatS is a P-lattice
whose order-relation is due toL.

~1! By supposition, it is obvious thatS is a partially ordered set.
~2! Due tos-completeness ofL, there exist∨ ixi and∧ ixi in L for $xi% i PN#S. Then, it follows

that (∨ ixi ,h1(a)) C and (∧ ixi ,h1(a)) C ~see Ref. 12, Lemma 36.4!. So ∨ ixiPS and ∧ ixi

PS. ThereforeS is a s-complete lattice. Further, it is evident that 0,I PS.
~3! Since (x',h1(a)) C for every xPS, we havex'PS, which means thatS is orthocomple-

mented.
~4! Due to orthomodularity ofL, @x<y ⇒ y5x∨( y∧x' )# holds for everyx,yPS. ThereforeS

is orthomodular.
~5! We can writex5( x∧h1(a) )∨( x∧h1(a)' ) for nontrivial xPS. Suppose thatx∧h1(a)Þ0.

SinceL is atomic andx∧h1(a)PL, there exists an atomp in L such thatp<x∧h1(a). Then,
we haveh1(a)>p, which means thatp belongs toS. After all, we havex>p, which shows
S is atomic. Similar steps are applied tox∧h1(a)'Þ0 if x∧h1(a)50.

Second, we will show thatS5L. By the definition ofS, we haveS#L. Sinceh1(L1)#S and
h2(L2)#S by the requirement (i i i ), we haveh1(L1)øh2(L2)#S. From the result above, we ca
see thatS is a P-lattice and containsh1(L1)øh2(L2). On the other hand,L is the smallest
P-lattice containing the set because of the requirement~iv!. Therefore we obtainS5L, which
meansh1(a)PC(L). This completes the proof of Lemma 2.1.

Let L be the compound P-lattice ofL1 andL2 . Suppose that there exists an atomp such that
p¹$h1(x)∧h2(y)uxPA(L1) , yPA(L2)%. Hence, there must exist at least one atomaPA(L1)
such thatp<h1(a) for the atomp. ~Otherwise, we havep∧h1(a)50 for everyaPA(L1). By
using Lemmas ~B! and 2.1, it follows that 05∨$p∧h1(a)uaPA(L1)%5p∧( ∨$h1(a)ua
PA(L1)% )5p∧h1(I 1)5p, a contradiction!. By using the direct sum theorem for theh1(a), L is
represented byL5@0 , h1(a)#]@0 , h1(a)'#.

Let us consider the mapping fromL2 into the segment@0 , h1(a)# defined as

u2,a :y°h1~a!∧h2~y! for everyyPL2 .

It is obvious that the imageu2,a(L2) does not contain the atomp above. Further, if we define

L*ªu2,a~L2!]@0 , h1~a!'#,

then we can show the following:
Lemma 2.2:L* defined above is a P-lattice such thatL*�L.
Proof of Lemma 2.2:First, we will show that the segment@0 , h1(a)'#,L is a P-lattice in

which orthocomplement is defined as the relative orthocomplement inL mod h1(a)'.

~1! By supposition, it is obvious that the@0 , h1(a)'# is a partially ordered set.
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~2! Due tos-completeness ofL, there exist∨ ixi and∧ ixi in L for $xi% i PN#@0 , h1(a)'#. Obvi-
ously, ∨ ixi<h1(a)' and ∧ ixi<h1(a)'. So we have ∨ ixiP@0 , h1(a)'# and ∧ ixi

P@0 , h1(a)'#, which mean@0 , h1(a)'# is s-complete. The maximal element ish1(a)' and
the minimal element is 0.

~3! By supposition, xr
ªh1(a)'∧x'<h1(a)' for all xP@0 , h1(a)'#. Then we havexr

P@0 , h1(a)'#. It shows that@0 , h1(a)'# is orthocomplemented.
~4! Due to orthomodularity ofL, for all x,yP@0 , h1(a)'#

x<y⇒y5x∨ ~ y∧x' !

5x∨ ~ y∧h1~a!'∧x' !.
Therefore@0 , h1(a)'# is orthomodular.

~5! SinceL is atomic andxPL for nontrivial xP@0 , h1(a)'#, there exists an atomq such that
h1(a)'>x>q. It shows that@0 , h1(a)'# is atomic.

Second, because the imageu2,a(L2) is isomorphic toL2 by definition, we can see thatu2,a(L2)
is also a P-lattice in which orthocomplement is defined as relative orthocomplementL
modh1(a). Remark that, for allyPL2 ,

u2,a~y!r
ªh1~a!∧u2,a~y!'

5h1~a!∧~ h1~a!∧h2~y! !'

5h1~a!∧h2~y'!5u2,a~y'!.

Then theL* is a direct sum of P-lattices, which is also a P-lattice. Becauseu2,a(L2) does not
contain the atomp above, it is obvious thatL*�L. This completes the proof of Lemma 2.2.

Now, sinceh1(a)PC(L), we have, foryPL2 ,

h2~y!5~ h1~a!∧h2~y! !∨~ h1~a!'∧h2~y! !.

Further, sinceh1(a)∧h2(y)Pu2,a(L2) and h1(a)'∧h2(y)P@0 , h1(a)'#, we have alsoh2(y)
PL* . Therefore,h2(L2),L* .

Moreover, it follows that, forxPL1 , we have the following.

~i! In the case ofa<x:
Let P be a set of atoms$bPA(L1)ub<x , bÞa%. Then we havex5a∨( ∨P ) because of
atomicity of L1 . Sinceb'a for all b, we haveh1(b)<h1(a)'. As a consequence, w
obtainh1(x)5h1(a)∨( ∨h1(P) ), which belongs toL* because ofh1(a)Pu2,a(L2) and
∨h1(P)P@0 , h1(a)'#.

~ii ! In the case ofa<” x:
Let Q be a set of atoms$bPA(L1)ub<x%. Then we havex5∨Q and b'a for all b.
Therefore, we haveh1(x)50∨( ∨h1(Q) ), which belongs toL* because of 0Pu2,a(L2)
and∨h1(Q)P@0 , h1(a)'#.

Thus we obtainh1(L1),L* , therefore,h1(L1)øh2(L2),L* .
From these results and the requirement (iv), it must beL5L* . However,pPL andp¹L* ,

which show a contradiction. Therefore, we haveA(L)5$h1(x)∧h2(y)uxPA(L1) , yPA(L2)%.
This completes the proof of Theorem 2. h

VII. CONCLUDING REMARKS

From the previous two sections, we have just obtained a necessary and sufficient condit
the SEPARABILITY in compound P-lattice: LetL1 , L2 be P-lattices andL be the compound
P-lattice ofL1 andL2 .

Corollary: The SEPARABILITY holds inL if and only if at least one ofL1 andL2 is classical.
Or, equivalently, we have the following.
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Corollary: The SEPARABILITY violates inL if and only if bothL1 andL2 are not classical.
For discussions, we need to add some to the results above. It is easy to show the followi

theorems:
Theorem: LetL1 , L2 be P-lattices andL be the compound P-lattice ofL1 andL2 . If bothL1

and L2 are classical, thenL is also classical.
Remark that the compound P-lattice in this case is aBoolean product.14

Theorem: Let L1 , L2 be P-lattices andL be the compound P-lattice ofL1 andL2 . If either
L1 or L2 is not classical, thenL is not classical.

From all the results above, we can summarize a connection between the distributiv
P-lattices and the separability of atoms in a compound P-lattice in Table I.

We should state that there can be compound systems, nonclassical and separable. The
one recognizes our requirements for compound P-lattice, nonclassicality of the system do
necessarily mean nonlocality of it. When we explain some property of a quantum system
logico-algebraic approach, it is incomplete only to show that distributive law does not hold i
system. We must show the way of construction of the compound system if we would like to
the nonseparable properties of quantum systems.
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We discuss a systematic way to dimensionally regularize divergent sums arising in
field theories with an arbitrary number of physical compact dimensions or finite
temperature. The method preserves the same symmetries of the action as the con-
ventional dimensional regularization and allows an easy separation of the regulated
divergence from the finite term that depends on the compactification radius
~temperature!. © 2003 American Institute of Physics.@DOI: 10.1063/1.1531215#

I. THE PROBLEM

In a variety of problems one has to deal with formally divergent sums, usually relate
Feynman diagrams with one or more discrete momenta, as in the case of theories with c
extra-dimension, finite-size scaling theory in critical phenomena, thermal field theory. It is c
to find a regulator that preserves the symmetries of the problem and leads to a simple co
tional procedure. When the momenta are not discrete but continuous, such a procedure ex
it is the well-known dimensional regularization~DR! of integrals.1,2 In this article we discuss a
systematic way to obtain the dimensional regularization of an important class of sums, follo
closely the analogy with the case of a continuous variable.3 Even if practical recipes to deal with
particular examples have been given in the past and the use of special functions to this pur
not new,4–9 our aim is to provide a general method, which extends and in a sense justifie
analysis of Ref. 10, where the idea of dimensionally regularized series was applied to a num
different loop sums. In Ref. 11 the approach to dimensional continuation was adopted and
bined with complex analysis techniques to delineate a general procedure, restricting, howe
the case of only one physical compact dimension. In Ref. 12 the use of the Mellin trans
together with dimensional regularization, was introduced to deal with asymptotic expansi
series in thermal field theory, formally the same problem as discussed in Ref. 11.

We propose todefinesums in complex dimension using the analytic properties of a gen
ized zeta function, resulting in a simple method where the regulated divergence can be
separated from the finite part. Our technique has some common points with the well-k
zeta-function regularization,8 which leads to quite similar calculations but is well distant from t
spirit of analytical continuation in the number of dimensions.

We hope that this work may contribute to clarify some debated aspects of regularizat
extra-dimensional models, where it is crucial to preserve the symmetries of the action.13–16In Ref.
14 it was suggested that the finite result obtained by Barbieri, Hall and Nomura13 for the radiative
correction to the Higgs mass coming from the Yukawa sector of their model was a regulari
artifact. Unfortunately, the authors of Ref. 14 made use of a sharp cut-off on the series,
explicitly breaks the supersymmetry of the model of Ref. 13 and invalidates their argumen
result of Ref. 13 was reobtained in Ref. 15 by using a thick brane as a regulator for the seri
in Ref. 16 in two different ways, with a Pauli–Villars and by using dimensional regularization
this work we give a formal procedure to introduce the dimensional regularization of a serie

a!Electronic mail: roberto.contino@cern.ch
5700022-2488/2003/44(2)/570/18/$20.00 © 2003 American Institute of Physics
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demonstrate in detail some important properties. In particular, we show that there isno ambiguity
in exchanging the series and the integral over loop momenta if both are properly regulariz

The article is organized as follows. In Sec. II we briefly review standard dimensional r
larization of integrals and give our rules for extending it to the case of a series by us
generalized zeta function. We discuss the infinite radius limit in Sec. III, showing that the~regu-
lated! divergence equals that of the corresponding integral and as such does not depend
radius. A representation usingq-functions is also given in Sec. III B, which is useful to perfor
explicit computations of sums in a class of physical problems. In Sec. IV we show how
method works on an explicit example, computing the Casimir energy of a massive scalar fi
Sec. V we draw our conclusions.

Finally, in the appendices we briefly recall the definition of the Mellin transform~Appendix
A!, present the analytic continuation of the generalized zeta function, together with its asym
behavior~Appendix B!, and discuss some important properties of the dimensionally regula
series~Appendix C!.

II. DIMENSIONALLY REGULARIZED SERIES

Dimensional regularization of integrals was introduced in Ref. 1 as a simple tool to ma
the divergences that arise in~perturbative! field theory, preserving the gauge symmetry. It w
later derived as an axiomatic procedure by Wilson2 ~see Ref. 3 for a detailed discussion!. The
problem is to give a meaning to the integration of a functionf (p2) over a space of complex
dimensiond, getting the usual result wheneverd is an integer and the integral exists in th
ordinary sense. Without going into too much detail, one candefinethe integral through the formula

E ddp f~p2!5VdE
0

`

dp pd21 f ~p2! ; Vd5
2pd/2

G~d/2!
, ~1!

for all ~complex! values ofd for which the integral converges and then analytically continue
result to the desired value. Typically one has to cope with ultraviolet~UV! divergences, which are
cured by considering a sufficiently small~real part of! d and appear as poles in the final express
for the integral. It may happen that the value ofd that makes~1! UV-convergent is so small tha
the integral diverges in the infrared~IR!: in this case one defines the integral subtracting
leading behavior of the functionf for p2→0. Let us suppose thatf (t) has the following
asymptotic expansion fort→0:

f ~ t !5a0 ta01a1 ta11a2 ta21¯ ,
~2!

a0,a1,a2,¯ ,

and f (t);t2r for t→`. Then, for2aq,Red/2,min(2aq21,r), q a positive integer, the integra
is defined by

E ddp f~p2!5VdE
0

`

dp pd21 F f ~p2!2 (
k50

q21

ak~p2!akG . ~3!

If 2a0,r, subtractions are not really needed and the integral on the r.h.s. of Eq.~1! converges
for 2a0,Red/2,r; in this case Eq.~3! is simply the correct analytic extension to the interv
2aq,Red/2,2aq21 , q.0. On the contrary, when2a0.r, there is no value ofd that makes
~1! both UV- and IR-convergent and~3! becomes a definition.

This general procedure does not work in the case of sums, given that there is no close
for what corresponds to the ‘‘solid angle’’Vd in the case of a hypercubic lattice and one can
directly take advantage of the spherical symmetry of the functionf . We then proceed as describe
below, following closely the analysis of Ref. 3 for the integrals.

We want to give a meaning to the expression
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( 8
nPZd

f ~n!, ~4!

where the prime means thatn50 is omitted in the sum andf is assumed to be continuous. W
restrict for simplicity to the case of a scalar function~the case of tensorial functions can b
addressed in the same way as for standard DR of integrals! and require covariance of our resu
under~discrete! rotations of the hypercubic lattice. In the case of only one variable, this imp
that the functionf depends only on the norm of the vectorn and not on its direction. The genera
case in whichf depends also on external momenta is considered below.

An operation of summation in arbitrary complex dimension is uniquely determined by re
ing the following basic properties, valid for standard summation:@Except for an arbitrary normal
ization, which can be fixed on a set of basis functions.2,3 We require the usual result of intege
dimensions

(
nPZd

e2psn2
5qd~s!,

to hold for all dPC ~see Appendix B for the definition of theq-function!.#
~1! Linearity: for any complex numbersa, b

( 8
nPZd

@a f~n!1b g~n!#5a ( 8
nPZd

f ~n!1b ( 8
nPZd

g~n!. ~5!

~2! Invariance under lattice translations:for any vectorq in Zd

(
nPZd

f ~n1q!5 (
nPZd

f ~n!. ~6!

Notice that the scaling axiom required for dimensionally regularized integrals does not
for the series.~It states that; s.0,

E ddp f~s2p2!5s2dE ddp f~p2!.

See Ref. 3.! As for the standard case of integrals, vectors are thought to lie in an infinite di
sional space, with the difference that now each component of the vector has an integer valu
dimensionalityd is introduced by the sum operation with the requirement that ifd is a positive
integer, all vectors collapse in ad-dimensional subspace. When the functionf depends also on
some external momentaqi @actually only through the scalar products (n•qi), (qi•qj ) being a
scalar function#, one can proceed again in complete analogy with Ref. 3: it is always possib
find an N-dimensional sublatticeZN ~with N finite being the external vectors in finite numbe!,
which contains all the external vectors. Let us decomposen into a longitudinal and a transvers
part with respect toZN: n5ni1n' , so that

(
nPZd

f ~n,qi !5 (
niPZN

(
n'PZd2N

f ~n'
2 1ni

2 ,niqi ,qi•qj !. ~7!

The outer sum in the r.h.s. of~7! is a standard series on the latticeZN, while the inner one can be
defined through~4!, f now being independent of the direction ofn' . Then there is no loss o
generality in reducing to the case in whichf is a function of only the dummy variable.
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Let us now describe an explicit procedure for summing in complex dimensions. Giv
function f (t) continuous fortPR1, let us assume thatu(t2a) f (t) ~whereu is the step function!
is Mellin-transformable with fixed 0,a,1 ~see Appendix A and Refs. 17 and 18 for details
the Mellin transform!, i.e., ' rPR such that

E
a

`

dt u f ~ t !u ts21,` ; s,r.

Then the Mellin transform

Ma@ f ,s#[M@u~ t2a! f ~ t !,s#5E
a

`

dt f ~ t ! ts21 ~8!

is an analytic function forsPC if Res,r. In particular, the assumption of the existence of t
Mellin transform excludes from our discussion those functionsf (t) growing exponentially fort
→1`. The inversion theorem guarantees that

u~ t2a! f ~ t ! 5
1

2p i Ec2 i`, c,r

c1 i`

dsMa@ f ,s# t2s. ~9!

Usually, the Mellin transform of the functionf is defined in the strip2a0,Res,r, if f (t)
;ta0 for t→0; choosing the parametera.0 allows the lower limit2a0 to be sent to2`. Let
us now assume that there exists an integer value ofd such that~4! exists in the ordinary sense.
is easy to realize that if it is the case, thend/2,r and

( 8
nPZd

f ~n2!5
1

2p i Ec2 i`, c,r

c1 i`

dsMa@ f ,s# ( 8
nPZd

1

~n2!s, ~10!

where exchanging the series with the integral is allowed in the domain of uniform converg
~see below!. We define a generalizedz-function ~a particular Epstein’s zeta function, see Refs
and 19!

z~s,d![ ( 8
nPZd

1

~n2!s, ~11!

whose properties are discussed in Appendix B. This series converges uniformly in any
subset of the line Res.d/2, i.e., the functionz(s,d) is analytic in the half-plane Res.d/2. Thus
we may give the following representation of our original sum:

( 8
nPZd

f ~n2!5
1

2p i EG
ds z~s,d!Ma@ f ,s#; G5$Res5c;d/2,c,r%. ~12!

Let us observe that bothMa@ f ,s# andz(s,d) can be analytically continued outside their definitio
domains. Their analytic continuations will generally have singularities in the complex plane.
the recipe to define the sum~4! even ford/2>r is clear: it is simply the continuation of integra
~12!, where we consider the analytic continuation ofMa@ f ,s# andz(s,d) in the integrand. In the
same way we candefine~4! by using the representation~12! even if there is no integer value ofd
such thatd/2,r ~for example, if f (x);xa for x→` anda>21) and the same consideration
apply for complexd if one considers Red instead ofd in previous relations.

When Red is increased towards values greater thanr, the integral~12! gets a residue contri
bution from the pole ofz(s,d) in s5d/2: as we will show below, this term is divergent fo
Red/2.r and coincides with the infinite radius limit.@If the physical value ofd is less than 2r,
the series is convergent and there is no need to~dimensionally! regularize it; in this case the
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representation~12! is still useful for an explicit evaluation.# The remaining complex integral alon
the contourG5$Res5c;c,r,d/2% corresponds to the finite radius-dependent part; in the follo
ing section we give a practical recipe to evaluate it using theq-function. Note that the operation
~12! respects the required properties: linearity follows from linearity of the Mellin transfo
translational invariance follows from translational invariance of the usual sum over the trans
subspace, if this is taken sufficiently large to contain the vectorq in Eq. ~6!. In Appendix C we
prove some remarkable properties which hold for the sum over complex dimensions.

Finally, a comment on~12! is in order to clarify the meaning of the parametera: as already
said after Eq.~1!, going to too smalld without performing an appropriate subtraction in the ca
of the integral would introduce a spurious IR divergence which has no physical meaning.
same way, had we not introduced the parametera.0, the Mellin transform

E
0

`

dt f ~ t ! ts21

would have been divergent~for anys) in all cases in which the integral corresponding to the se
needs IR subtraction to be defined in dimensional regularization. Settinga.0 is a simple way of
avoiding IR subtractions for the series. We prove below that the final result does not dependa,
as one expects having the initial series~4! no IR problems at all.

III. AN ALTERNATIVE REPRESENTATION

Once given the definition of a series in complex dimensions, we present an alternative
sentation of~12! to show that

~i! the result is independent of the actual value of 0,a,1;
~ii ! the UV dimensional poles are the same as those of the corresponding integral;
~iii ! the property~analogous to that for ordinary sums!

lim
R→`

1

Rd ( 8
nPZd

f ~n2/R2!5E ddp f~p2! ~13!

is formally valid.

The final formula will be easier to handle for a numerical evaluation or an expansion in
parameters.

A. The infinite radius limit

Our strategy is to obtain first a compact expression for Red/2,r and then analytically con-
tinue this result to the case Red/2.r. Introducing the radiusR explicitly, definition~12! becomes
(0,a,1)

S~d,R![
1

Rd ( 8
nPZd

f ~n2/R2!5
1

2p i EG
ds z~s,d! R2s2dMa/R2@ f ,s#, ~14!

where the contourG has to be fixed according to~12!. Let us assume thatf (t) has the asymptotic
expansion~2! for t→0 andf (t);t2r for t→`, even if the derivation goes the same way for mo
general expansions. We can take

G5$Res5c ; 2aq,Red/2,c,min~2aq21 ,r!%,

q being the smallest integer such that2aq,Red/2,r ~see Fig. 1!. @For q50 the subtraction
terms are omitted and we mean min(2a21,r)[r.] Defining

f sub~ t !5 f ~ t !2 (
k50

q21

ak tak, ~15!
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it follows, for 2aq,Res,min(2aq21,r),

Ma/R2@ f ,s#5M@ f sub,s#2E
0

a/R2

dt f sub~ t ! ts212 (
k50

q21
ak

s1ak
S a

R2D s1ak

. ~16!

Note that the Mellin transform in the first term is IR-convergent thanks to the subtraction ma
f and the second term is analytic for Res.2aq . Using the asymptotic limitz(s,d)→2d for
Res→1` ~see Appendix B!, and moving the contourG at infinity in the positive half-plane, one
easily finds that the integral in the complex variables of the second term vanishes, sincea,1.
Integrating the third term alongG, again closing the contour in the positive half-plane, one g
instead a residue contribution from the poless52ak , k50, . . . ,(q21). We end up with

S~d,R!5
1

2p i EG
ds z~s,d! R2s2dM@ f sub,s#1 (

k50

q21
ak

R2ak1d z~2ak ,d!. ~17!

This expression represents a definition of the series for2aq,Red/2,min(2aq21,r) alternative
to ~12!, where the use of the IR cut-offa has been replaced by an appropriate subtraction of
initial function, much in the same way as one does in standard DR.

If 2a0,r the IR subtractions are not really required to define the series: choosingd in the
strip 2a0,Red/2,r (q50), Eq.~17! coincides with~12! with a50. In this case Eq.~17! with
q.0 represents the correct analytical extension of the series to the interval2aq,Red/2
,2aq21 , but it becomes nontrivial when2a0.r and the subtractions are really necessary
give a meaning to the expression. It is interesting to notice thatM@ f sub,s# in the first term is
nothing but the dimensionally regularized integral off in d52s dimensions, up to a solid-angl
factor.

The limit R→` cannot be extracted immediately from~17!, as one must first extrapolate th
result to values of Red/2 greater than2a0 . To analytically continue~17! to Red/2.min
(2aq21,r) we have to take into account that increasing Red/2, the poles5d/2 of z(s,d) crosses
the contourG and gives a residue term. To simplify the analytic continuation, we can rewrite~17!
in a suitable form, evaluating this residue term from the very beginning, i.e., moving the co
G into a new one~see Fig. 1!,

G85$Res5c ; 2aq,c,Red/2,min~2aq21 ,r!%,

so that

FIG. 1. Position of the contourG andG8: the poles for Res>r are those of the continuation ofMa@ f ,s#.
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S~d,R!5
pd/2

G~d/2!
M@ f sub,d/2#1

1

2p i EG8
ds z~s,d! R2s2dM@ f sub,s#

1 (
k50

q21
ak

R2ak1d z~2ak ,d!. ~18!

The continuation of this expression can be easily found by considering those ofM@ f sub,d/2# in
the first term and ofz(s,d) in the second and third ones, while the contour is always given
G85$Res5c;2aq,c,min(2aq21,r,Red/2)%.

Dimensional poles of this expression may arise from the first and third terms on the r.h.
former isR-independent and exactly corresponds to the integral~3! defined in dimensional regu
larization with the proper subtraction. Its possible IR divergences are cancelled by the poles
last term ford522ak , k50,...,(q21), which may be ‘‘physically’’ accessible, i.e., be positiv
if someak is negative. The final result is thus IR-finite, as it should be, the series being free
IR divergences. From~18! it is evident that the UV divergences are the same for the series an
corresponding integral. Finally, when Red.22a0 the infinite radius limit can be safely extracte
from ~18!, leading to Eq.~13! as stated.

B. Evaluating the finite part with a q-function

A general formula for the complex integral in~18! can be obtained under particular assum
tions. Performing the appropriate IR subtraction, one always reduces oneself to the computa
the integral

1

2p i EG
ds z~s,d!R2s2dM@ f ,s#, ~19!

where, if the functionf has the usual asymptotic expansion~2! and f (t);t2r for t→`, thenG
5$Res5c ; 2a0,c,min(r,Red/2)%. Let us suppose that

~1! f (s) is analytical in the half-plane Res.c̄, c̄<0,

~2! lim
Res→1`

f ~s!50, i.e., r.0, and

~3!
1

2p i Ec2 i`, c. c̄

c1 i`

ds f~s! ets,` for t.0.

Under these hypotheses the inversion theorem~see Ref. 17! guarantees that the Laplace antitran
form

L 21@ f ,t#5
1

2p i Ec2 i`, c. c̄

c1 i`

ds f~s! ets, ~20!

exists fort.0 and

f ~s!5E
0

`

dt L 21@ f ,t# e2st, Res. c̄. ~21!

Using these results, the Mellin transform can be expressed as follows:
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M@ f ,s#5E
0

`

dt ts21f ~ t !5E
0

`

dt ts21E
0

`

dy e2tyL 21@ f ,y#

5G~s!E
0

`

dy L 21@ f ,y# y2s. ~22!

This relation holds when2a0,Res,r and it is therefore valid along the contourG of Eq. ~19!.
If a0.0, Res can be negative andf (k)(0)50, for k50,...,ba0c, bxc[max$nPN u n,x%. Then the
simple poles ins50,21,22,...,2 ba0c of G(s) in ~22! are cancelled by corresponding first ord
zeros of the integral of the Laplace antitransform

E
0

`

dy L 21@ f ,y# yk5~21!k f (k)~0!50 for k50, 1, ...,ba0c if a0.0,

resulting in a Mellin transform well defined in the whole interval2a0,Res,r. Using ~22! and
the analytic extension ofz(s,d) in terms of theq-function ~see Appendix B!,

z~s,d!5
ps

G~s! H 1

s2d/2
2

1

s
1E

1

`

dy ~ys211yd/22s21! @qd~y!21#J ,

it is not difficult to compute the complex integral in~19! by applying standard residue technique
The result is

1

2p i EG
ds z~s,d!R2s2dM@ f ,s#

52
p

Rd22 E
1

`

dy ~L 21@ f ,ypR2# y2d/21L 21@ f ,pR2/y# y22!

1
p

Rd22 E
1

`

dy @qd~y!21#~L 21@ f ,pR2y#1yd/222L 21@ f ,pR2/y# !. ~23!

The two integrals converge under the assumed hypotheses.@This is easily understood from th
asymptotic behavior of the Laplace antitransform~see Ref. 17!:

L 21@ f ,t#;H tr21, t→0,

t2(a011), t→`,
which follows if f ~ t !;H t2r, t→`,

ta0, t→0.]

Equation~23! is a useful representation for the complex integral in~18!, which allows an expan-
sion of the result in terms of the parameters inf or even to perform a numerical integration. Th
results of Ref. 10 are easily obtained as particular applications of~23!. It is worth noting that one
could have derived the same result by giving a definition of the series directly in terms o
q-function, never usingz-functions, and this is exactly the procedure adopted in Ref. 10
course, to define the series usingq-functions one has to assume the same hypotheses we imp
on the functionf to guarantee the existence of the Laplace antitransform. In this respec
definition seems more general and more suitable to isolate the divergent from the finite te

IV. A SAMPLE COMPUTATION: THE CASIMIR ENERGY

To give an explicit example of our procedure, we compute the Casimir energyE(R) for a

scalar field with massm and periodicity conditions in a space geometryTd̄3RD̄, corresponding to
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d̄ compactified dimensions with radiusR. This is defined as theR-dependent part of the zero poin

energyV(R) of the (D̄1d̄)-dimensional theory multiplied by the volume (2pR) d̄ of the compact
space:

E~R!5~2pR! d̄ @V~R!2V~`!#. ~24!

Continuing the physical dimensionsD̄, d̄ to generic values

D5D̄2e ; d5d̄2h, ~25!

the one-loop contribution to the zero point energy is given by

V~R!5
1

2

me1h

~2pR!d (
nPZd

E dDp

~2p!D log~p21n2/R21m2!. ~26!

To extractE(R) we first computeV(R), then extract the limite→0, h→0 and finally multiply by
the volume factor.

For convenience let us callV0(R) the zero mode contribution in~26!. We will show explicitly
that performing first the series and then the integral or vice versa leads to the same resu~see
Property 2 in Appendix C! and there is no ambiguity. Let us perform the integral first. The func
f (x)5 log(x1c) has the asymptotic behaviorf (x); logx for x→` and f (x);const forx→0; this
means that the dimensionally regulated integral needs subtractions to be defined. Perform
subtraction, i.e., consideringf sub(x)5 log(x/c11), we can fix22,D,21, obtaining

V~R!2V0~R!52
1

2
me1h

pD/2

~2p!D G~2D/2!
1

~2pR!d ( 8
nPZd

~n2/R21m2!D/2. ~27!

BecauseD is negative and the functiong(x)5(x1m2)D/2 has the asymptotic behaviorg(x)
;xD/2 for x→` and g(x);const for x→0, the series is defined by~17! with G5$Res5c;0
,d/2,c,2D/2,1% and without any subtraction:

V~R!2V0~R!52
1

2
me1h

pD/2

~2p!D G~2D/2!
1

~2pR!d

1

2p i EG
ds z~s,d! R2sM@g,s#. ~28!

Even if the Mellin transform is easy to derive,

M@g,s#5
G~s!G~2D/22s!

G~2D/2!
~m2!D/21s,

the complex integral along the contourG cannot be solved with simple residue techniques beca
of the nontrivial behavior of the integrand at infinity. However,g(s) is analytic in the half-plane
Res.2m2 and the requirements needed to apply the representation in terms of theq-function are
fulfilled. From Eqs.~18! and ~23! with a Laplace antitransform

L 21@g,y#5
e2m2y

G~2D/2!
y2D/221,

we obtain
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V~R!2V0~R!52
1

2
me1h

p (D1d)/2

~2p!D1d GS 2
D1d

2 D ~m2!(D1d)/2

1
1

2

me1h

~2pR!D1d H E
1

`

dy ~e2py(mR)2
y2(D1d)/2211e2p(mR)2/yyD/221!

2E
1

`

dy @qd~y!21#~e2py(mR)2
y2D/2211e2p(mR)2/yy(D1d)/221!J . ~29!

We recognize the infinite radius contribution in the firstR-independent term, while the remainin
terms are finite. More exactly, the integral in the second line is convergent when ReD,0 as
supposed from the beginning to regularize the dimensional integral. Therefore, when RD is
increased to~physical! values ReD.0 a divergence appears which, however, depends only oD
but not on the value ofd. This means that in some way this must be a ‘‘zero mode’’ diverge
and this becomes evident by rewriting

E
1

`

dy e2p(mR)2/yyD/2215@p~mR!2#D/2G~2D/2!2E
1

`

dy e2py(mR)2
y2D/221. ~30!

The first term on the r.h.s. of~30! exactly cancels the zero mode contributionV0(R) in ~29! and
we get the final result

V~R!52
1

2
me1h

p (D1d)/2

~2p!D1d GS 2
D1d

2 D ~m2!(D1d)/21
1

2

me1h

~2pR!D1d

3H E
1

`

dy e2py(mR)2
~y2(D1d)/2211y2D/221!

2E
1

`

dy @qd~y!21#~e2py(mR)2
y2D/2211e2p(mR)2/yy(D1d)/221!J . ~31!

The first term is the ordinary divergent renormalization of the cosmological constant, which c
put to zero with a suitable counterterm if we accept the usual fine tuning. Whatever sche
renormalization one chooses, the radius dependent partV(R)2V(`) of the zero point energy is
nonambiguous and finite. We can therefore safely extract the limite→0, h→0 and insert the
result forV(R)2V(`) in Eq. ~24! to extract the Casimir energy

E~R!5
1

2

1

~2pR!D̄ H E
1

`

dy e2py(mR)2
~y2(D̄1d̄)/2211y2D̄/221!2E

1

`

dy @q d̄~y!21#

3~e2py(mR)2
y2D̄/2211e2p(mR)2/yy(D̄1d̄)/221!J . ~32!

The same result can be obtained by performing first the series. Again, subtractions ar
essary if one does not introduce an IR cut-off in the Mellin transform. The functionf (x)5 log(x
1p21m2) has an expansion aroundx50 as in ~2! with a050, a151; we can therefore apply
definition~17! with one subtraction and, choosing the contourG5$Res5c;21,d/2,c,2 1

2%, we
obtain

V~R!2V0~R!5
1

2

me1h

~2pR!d E dDp

~2p!D z~0,d!log~p21m2!

1
1

2

me1h

~2pR!d E dDp

~2p!D

1

2p i EG
ds z~s,d! R2sM@ f sub,s#, ~33!
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with

M@ f sub,s#52@p21m2#sG~s!G~2s!.

The complex integral along the contourG cannot be solved with simple residue techniques nor
can apply theq-function representation (f sub diverges at infinity!, but we can make use of
standard trick. Namely, defining

S~p21m2!5
1

2p i EG
ds z~s,d! R2sM@ f sub,s#,

we know how to sum the seriesdS(p21m2)/dp2 becaused fsub/dp251/(x1p21m2) goes to
zero forx→`. Then we can deduce the expression ofS(p21m2) except for an unknown function
independent ofp2, which, however, is irrelevant as its dimensional integral inp gives zero. In
particular, we have

d

dp2 S~p21m2!5
1

2p i EG
ds z~s,d! R2s

d

dp2 M@ f sub,s#

5
1

2p i EG8
ds z~s,d! R2s

d

dp2 M@ f sub,s#2z~0,d!
1

p21m2, ~34!

where the contourG has been moved into a new one,G85$Res5c;d/2,0,c,1%, and a residue
contribution ins50 has been isolated. The first term corresponds to the~dimensionally regular-
ized! series of the functiond log(p21n2/R21m2)/dp2, defined without subtractions by choosing th
contourG8, and it can be easily computed using theq-function representation~23!. We do not
show the details of this calculation but we only notice that using~34! to extractS(p21m2) and,
finally plugging the result into~33!, the residue term in the former equation cancels the subtrac
term of the latter and we end up with

V~R!2V0~R!5
1

2
me1hE dDp

~2p!D H 2
pD/2

~2p!d G~2D/2!@p21m2#d/2

1
1

~2pR!d F E
1

`

dy ~e2py(m21p2)R2
y2d/2211e2p(m21p2)R2/yy21!

1E
1

`

dy @qd~y!21#~e2py(m21p2)R2
y211e2p(m21p2)R2/yyd/221!G J . ~35!

The result of the dimensional integration overp coincides with Eq.~29!, from which the final
expression~31! follows.

V. CONCLUSIONS

We discussed in detail a general procedure to dimensionally regularize divergent serie
novelty of the method consists in using a suitable combination of two well-known tools,
Mellin transform and analytic extension of special functions, to provide a continuation o
series in the number of dimensions.

The virtue of conventional dimensional regularization is to preserve all the symmetries
action that do not depend on the dimensionality, in particular gauge invariance and supersym
~if the dimensional reduction scheme is used!. The same happens with dimensional regularizat
of sums, making this technique a natural choice to handle divergences of field theory. I
respect, our analysis should contribute to clarify some controversial aspects about the comp
of quantum corrections in supersymmetric theories with extra dimensions.13–16 In particular, we
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have shown that there is no ambiguity in exchanging the series and the integral over loop mo
if both are consistently regularized with dimensional regularization~see Property 2 in Appendix C
and the example in Sec. IV!. The same is not true, for instance, if the sum over Kaluza–K
modes is truncated by a raw cut-off.

Our definition of sums in complex dimensions by using a generalized zeta function is pa
larly suited to isolate the divergence from the finite part and applies to a large class of func
Moreover, it leads to simple computations and it is valid for an arbitrary number of phy
compact dimensions. The idea of dimensionally regularized series was applied in Ref.
compute a number of loop sums by using a representation in terms ofq-functions. We obtain the
results of Ref. 10 as particular cases of our general formulas. A different method was propo
Ref. 11, which however applies only to the case of one physical compact dimension. Our
dure has no such limitation and it is therefore more general; in the case of only one ph
compact dimension it gives the same result as Ref. 11, as we have explicitly checked for pa
examples.

Although the class of functions we considered is not the most general one, the basic ide
be applied to more complicated cases by using suitable zeta functions. In particular, our fo
are specific to series that appear in theories with toroidal compact dimensions and scala
with simple periodical conditions. In the case of twisted periodic conditions or theories
fermions, our method should be easily extended introducing the following zeta function

z~s,d u a![ ( 8
nPZd

1

@~n1a!2#s , 2
1

2
,a<

1

2
,

whose properties are sketched in Appendix B. The way to treat spinors in the dimensiona
tinuation is similar as in conventional DR~see Refs. 3 and 11!.

Even when the compact manifold is not toroidal~see, for example, Ref. 20! or the single
dimensions have different radii, we see no obstacle in principle to apply the approach of d
sional regularization, maybe taking advantage of more general special functions such as
introduced in Ref. 8. In these cases, however, computations may become involved and pa
recipes specific to the case may be simpler to use.
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APPENDIX A: MELLIN TRANSFORM

Let us briefly recall the definition of the Mellin transform.17,18 Given a functionf , if a,b
PR, a,b exist such that

E
0

`

dtu f ~ t !utr21 , `; ;r: a,r,b,

then one can define the Mellin transform off (t),

M@ f ,s#5E
0

`

dt f ~ t !ts21, ~A1!

which is an analytic function ofsPC in the stripa,Res,b. This inversion formula holds:

f ~ t !5
1

2p i Ec2 i`

c1 i`

dsM@ f ,s# t2s; a,c,b. ~A2!
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Obviously it is a linear integral transformation. It has very useful applications and remar
properties~see, for instance, Ref. 17!.

APPENDIX B: PROPERTIES OF z„s ,d …

We define, for integerd,

z~s,d![ ( 8
nPZd

1

~n2!s, ~B1!

which is absolutely convergent for Res.d/2. This function is a particular case of the more gene
zeta functions~see, for example, Ref. 8 and 19!. Let us write an explicit expression for the analyt
continuation ofz(s,d) to the whole complex plane ins and, eventually, extend its definition als
for all complexd. The function~related to Jacobi’sq3),18

q~ t ![ (
n52`

1`

e2p t n2
~B2!

has the following modular property, which is easily derived from Poisson’s resumm
formula:17

q~ t !5
1

t1/2q~1/t !. ~B3!

By means of

1

~n2!s 5
1

G~s!
E

0

`

dt ts21 e2t n2
, ~B4!

we may write

z~s,d!5
ps

G~s!
E

0

`

dt ts21 @qd~ t !21#; ~B5!

incidentally, this tells us that the Mellin transform of@qd(t)21# is p2s G(s) z(s,d).
For Res.0, Res.d/2, it follows from ~B3! that

E
0

1

dt ts21 @qd~ t !21#5E
1

`

dt td/22s21 @qd~ t !21#1
1

s2d/2
2

1

s
,

which gives

z~s,d!5
ps

G~s! H 1

s2d/2
2

1

s
1E

1

`

dt ~ ts211td/22s21! @qd~ t !21#J . ~B6!

This expression represents the analytic continuation ofz(s,d) in both s and d. It is easy to
demonstrate the following properties:

~1! z(s,d) is a meromorphic function, having a simple pole fors5d/2, dÞ0, with residue

Res$z~s,d!;s5d/2%5
pd/2

G~d/2!
;

~2! z(s,0)50, ;sPC;
~3! z(0,d)521, for dÞ0;
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~4! z(2n,22n)5(21)n n!/pn, for nPN, nÞ0;
~5! z(2n,d)50, for dÞ22n andnPN, nÞ0;
~6! Given the symmetrys→d/22s of the terms inside the brackets in~B6!, we have

G~s! z~s,d!

ps 5
G~d/22s! z~d/22s,d!

pd/22s .

This is the so-calledreflection formula, which is also valid in the more general case of Epst
zeta functions.8

We now derive a ‘‘convolution’’ property ofz(s,d), used in Appendix C, Eq.~C3!. For p,q
.0 and Res.(p1q)/2,

z~s,p1q!5 ( 8
mPZp

( 8
nPZq

1

~m21n2!s 1 ( 8
mPZp

1

~m2!s 1 ( 8
nPZq

1

~n2!s

5 ( 8
mPZp

( 8
nPZq

1

~m21n2!s 1z~s,p!1z~s,q!. ~B7!

We can write the argument of the double sum using~B4! and then introduce the Mellin
representation for one of the two exponential factors, getting the result

( 8
mPZp

( 8
nPZq

1

~m21n2!s

5
1

G~s!
E

0

`

dt ts21 ( 8
nPZq

e2t n2

( 8
mPZp

1

2p i Ec2 i`,c.0

c1 i`

dw G~w! ~m2 t !2w

5
1

G~s!

1

2p i Ec2 i`

c1 i`

dw G~w! z~w,p! G~s2w! z~s2w,q!, ~B8!

where, in the last line,p/2,c,Res2q/2. Taking into account relation~B7!, we have

1

2p i Ec2 i`

c1 i`

dw G~w! z~w,p! G~s2w! z~s2w,q!

5G~s! z~s,p1q!2G~s! z~s,p!2G~s! z~s,q!. ~B9!

This relation is still valid if one considers the analytic extensions of the functions involved.~Note
that it is not possible to close the contour of integration at infinity, given the asymptotic beh
of the integrand.!

Next, we determine the asymptotic behavior ofz(s,d) for large Res andd.0. Let us observe
that we may write

qd~ t !5112d e2p t1 (
k50

`

Nk~d! e2ak p t, ~B10!

whereNk(d) are real coefficients and 4<a0,a1,¯ . For largek, the series is asymptotic to th
one withak5k2 andNk(d) is the number of points inZd with a distance from the origin bounde
betweenk and (k11). SoNk(d);Vd kd21 ~for k@1). For Res.d/2 we may insert~B10! into
~B5!, obtaining

z~s,d!52d1 (
k50

`

Nk~d! ak
2s,
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so that

u z~s,d!22d u<a0
2Res (

k50

`

Nk~d! ~ak /a0!2Res. ~B11!

The series on the r.h.s. is always convergent for Res.d/2, and thereforez(s,d)22d;a0
2Res for

Res→1`. Using the reflection formula we immediately obtain the asymptotic behavior fors
→2`: in this case the function is unbounded:

z~2x,d!5~21! bxc 2d~x/p!2x1d/2 e22x

G~x2 bxc11! G~ bxc2x!
~11O~x21!!, xPR1. ~B12!

FWe use the fact that forxPR1, m[ bxc, q[x2 bxc, one has

G~2x!5~21!m
G~q11! G~2q!

G~x11!
,

G~2x!5~21!mG~q11! G~2q!
x2x ex

A2px
~11O~x21!!.G

1. A useful generalization

In some cases of interest~such as in theories with fermions! it is useful to introduce the
following generalization of our zeta function. Given a constant2 1

2,a< 1
2, we define

z~s,d u a![ ( 8
nPZd

1

@~n1a!2#s, ~B13!

where now(8 means that fora50 we omit the termn50 in the sum. This series converges f
Res.d/2. Obviouslyz(s,d u 0)5z(s,d). To get the analytic continuation of this function on
proceeds as in the case ofz(s,d). Introducing theq-function @It has the asymptotic behavior:

q~ tua!;e2pta2
for t→`; q~ tua!;t21/2 for t→0.] ~B14!

q~ t u a![ (
n52`

1`

e2p t (n1a)2
, ~B15!

from the Poisson resummation formula easily follows the modular property

q~ tua!5
e2p a2 t

t1/2 q~1/t u i a t !. ~B16!

The analogs of Eqs.~B5! and ~B6! are

z~s,d u a!5
ps

G~s!
E

0

`

dt ts21 @qd~ t u a!2da,0#, ~B17!
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z~s,d u a!5
ps

G~s! H 1

s2d/2
2

1

s
da,01E

1

`

dt ts21@qd~ t u a!2da,0#

1E
1

`

dt td/22s21 @e2p a2 d/tqd~ t u ia/t !21#J , ~B18!

where the last expression has a meromorphic extension with the same general properties
of z(s,d). We remark that the reflection formula does not hold in the general caseaÞ0.

APPENDIX C: PROPERTIES OF DIMENSIONAL CONTINUATION OF SUMS

We present here some basic properties of the dimensionally regularized series as defi
~12!. They are the analogs of those discussed in Ref. 3, valid for dimensionally regula
integrals.

Property 1:

(
nPZp

(
mPZq

f ~n21m2!5 (
nPZp1q

f ~n2!. ~C1!

Proof: Consider a Mellin-transformable functionf (x), assuming for simplicity thatf (x)
→0 for x→0 and f (x);x2r, r.0 for x→`, such that its series can be defined without
subtractions, which are irrelevant to this discussion. Let us denote byM@ f ,s;y# the Mellin
transform off (x1y) with respect to the variablex:

M@ f ,s;y#[E
0

`

dx f~x1y! xs21.

Transforming also ony and performing a change of variables we get

M@ f ,s;w#[E
0

`

dy M@ f ,s;y# yw21

5E
0

`

dt f ~ t ! ts1w21 E
0

1

dv vs21~12v !w21

5
G~s!G~w!

G~s1w!
M@ f ,s1w#, ~C2!

with Res, Rew.0, Res1Rew,r for these expressions to make sense. Applying the definitio
regularized sums and using~C2!, it follows that

( 8
mPZp

( 8
nPZq

f ~n21m2!5
1

~2p i !2 E
Gw

dw E
Gs

ds z~w,p!z~s,q!
G~s!G~w!

G~s1w!
M@ f ,s1w#.

By making a change of variable in the double complex integral and taking into account Eqs~B8!
and ~B9!, we get
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( 8
mPZp

( 8
nPZq

f ~n21m2!5
1

~2p i !2 E
Gu

du
M@ f ,u#

G~u!
E

Gw

dw G~w!z~w,p!G~u2w!z~u2w,q!

5
1

2p i EGu

du M@ f ,u# @2z~u,p!2z~u,q!1z~u,p1q!#

52 ( 8
mPZp

f ~m2! 2 ( 8
nPZq

f ~n2!1 ( 8
nPZp1q

f ~n2!, ~C3!

whereGu is a contour laying in the half-plane Rew,r. This is exactly the equality we are lookin
for.

Property 2:

E dDp ( 8
nPZd

f ~p2,n2!5 ( 8
nPZd

E dDp f~p2,n2!. ~C4!

Proof: It is convenient to introduce an auxiliary function

f ~a,p2,n2!5 f ~p2,n2! e2a(p21n2),

for which the right- and left-hand sides of~C4! become

l.h.s.:
VD

2 E
0

`

dx xD/221
1

2p i EG
ds z~s,d! E

0

`

dy ys21 f ~a,x,y!, ~C5L!

r.h.s.:
VD

2

1

2p i EG
ds z~s,d! E

0

`

dy ys21 E
0

`

dx xD/221 f ~a,x,y!. ~C5R!

Thanks to the exponential factor, the series and the integral in both expressions have been
without recourse to subtractions, by simply choosing a large enough value for~the real part of! D
and d to have IR convergence. Also, the contourG5$Res5c ;c.d/2% can be defined to be th
same in~C5L! and~C5R! by fixing c sufficiently large. Then, Property 2 for the auxiliary functio
follows trivially from exchanging the integrals overx andy and~C5L! and~C5R! are both equal
to the same functionI (D,d,a) analytic in its variables. The analytical continuation ofI (D,d,a)
down to smallerD andd is still given by~C5L! and~C5R!, but now with subtractions made. If w
take~the real part of! D andd small enough to have UV convergence even without the expone
factor, we can puta50 and~C4! follows.

Property 3:

( 8
nPZp

( 8
mPZq

f ~n,m!5 ( 8
mPZq

( 8
nPZp

f ~n,m!. ~C6!

Proof: We give the proof only for the simpler case in which the functionf (n2,m2) does not
depend on the product (m•n). Proceeding as in the previous case, one can introduce the aux
function

f ~a,n2,m2!5 f ~n2,m2! e2a(n21m2),

for which the right- and left-hand sides of~C6! become

l.h.s.:
1

~2p i !2 E
Gs

ds z~s,p!E
0

`

dx xs21E
Gu

du z~u,q!E
0

`

dy yu21 f ~a,x,y!, ~C7L!
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r.h.s.:
1

~2p i !2 E
Gu

du z~u,q!E
0

`

dy yu21E
Gs

ds z~s,p!E
0

`

dx xs21 f ~a,x,y!. ~C7R!

Again, both series have been defined without recourse to subtraction, by choosing a large
value for Res and Reu along the contoursGs5$Res5c;c.p/2%, Gs5$Reu5c;c.q/2%. Property
3 follows trivially for the auxiliary function by simply exchanging the various integrals and
recover~C6! by continuing both sides~C7L! and ~C7R! analytically toa50.
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Interacting fermions and domain wall defects
in 2¿1 dimensions

L. Da Rold,a) C. D. Fosco,b) and A. Lópezc)

Centro Atómico Bariloche-Instituto Balseiro, Comisio´n Nacional de Energı´a Atómica,
8400 Bariloche, Argentina

~Received 30 May 2002; accepted 11 October 2002!

We consider a Dirac field in 211 dimensions with a domain wall like defect in its
mass, minimally coupled to a dynamical Abelian vector field. The mass of the
fermionic field is assumed to have just one linear domain wall, which is externally
fixed and unaffected by the dynamics. We show that, under some general conditions
on the parameters, the localized zero modes predicted by the Callan and Harvey
mechanism are stable under the electromagnetic interaction of the
fermions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1528270#

I. INTRODUCTION

It is a well-known fact that, in an odd dimensional space–time, a domain wall defect i
mass term of a Dirac field induces a fermionic zero mode localized on the defect.1 This effect is
known to occur even in the presence of an external gauge field, if the corresponding electr
netic field is contained in the defect hyperplane. Different aspects of this kind of system have
studied both for static,2,3 and dynamical4 defects. As far as we know, however, possible effects
to interactions between the fermions have not been considered for this system. In this artic
shall study the stability of this kind of configuration when the electromagnetic interaction bet
the fermions is turned on. That the localization phenomenon should survive this interaction
a priori evident. For example, for a static configuration, the Coulomb repulsion betwee
localized charges could be so important as to spread the charge density out over a large
since the charge density due to the zero mode shall induce an electromagnetic field norma
defect hypersurface. On the other hand, we note that our study may be thought of as a doma
analog of the consideration of the self-consistent vacuum currents in the presence of vorti5

This paper is organized as follows: In Sec. II, we introduce the model and derive a
consistent equation based in some approximations. This equation is solved for two differen
profiles in Sec. III. Finally, in Sec. IV we discuss the effects of the nonzero modes and prese
conclusions.

II. THE MODEL

The Euclidean actionS, for the system we shall consider, is given by

S5SF1SG , ~1!

where

SF5E d3xc̄~x!@]”1 ieA” ~x!1M ~x!#c~x!, ~2!

is the fermionic action, and

a!Electronic address: darold@ib.cnea.gov.ar
b!Electronic address: fosco@cab.cnea.gov.ar
c!Electronic address: lopezana@cab.cnea.gov.ar
5880022-2488/2003/44(2)/588/11/$20.00 © 2003 American Institute of Physics
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SG5E d3x 1
4 FmnFmn , ~3!

the Maxwell action, which defines the gauge field dynamics.x5(x0 ,x1 ,x2) denote the Euclidean
coordinates, and the Hermitiang matrices are assumed to be in an irreducible 232 representation
of the Dirac algebra, verifying the anticommutation relations$gm ,gn%52dmn . The complete
Green’s functions can be derived from the generating functional

Z@ j m ;h̄,h#5E DAmDc̄Dc expH 2S@c̄,c;A#1E d3x@ j m~x!Am~x!1h̄~x!c~x!1c̄~x!h~x!%,

~4!

where we included source terms for the gauge and fermionic fields. The fermion mass is re
as an external classical ‘‘field,’’ dependent on thex2 coordinate only. We also fix the number o
defects to one, by requiringM (x) to cross 0 once, atx250, say.

By applying the property that the functional integral of a~functional! derivative vanishes to
Eq. ~4!, we derive the ‘‘quantum equations of motion’’

05E DAmDc̄DcF dS

dAm~x!
2 j m~x!G

3expH 2S@c̄,c;Am#1E d3x@ j m~x!Am~x!1h̄~x!c~x!1c̄~x!h~x!#J , ~5!

for Am , and

05E DAmDc̄DcF dS

dc̄~x!
2h~x!G

3expH 2S@c̄,c;Am#1E d3x@ j m~x!Am~x!1h̄~x!c~x!1c̄~x!h~x!#J , ~6!

for c̄ ~the adjoint equation is trivially obtained!. Taking the functional derivative with respect t
h(y) in ~6!, and putting all the external sources equal to zero afterwards, we find that Eqs.~5! and
~6! reduce to

]mFmn~x!5Jn~x! ~7!

and

^@]”1 ieA” ~x!1M ~x!#c~x!c̄~y!&5d~x2y!, ~8!

where

Jn~x!5 ie^c̄~x!gnc~x!& ~9!

and

Fmn5]mAn2]nAm , Am5^Am&. ~10!

Equation~7! is an inhomogeneous ‘‘classical’’ Maxwell equation, with the average gauge
Am5^Am& playing the role of the classical gauge field, and the average~vacuum! fermionic
current Jm as its source. Equation~8! involves the expectation valueŝcc̄& and ^Acc̄&. Of
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course, an exact treatment would require the use of an infinite set of coupled equations inv
all the different Green’s functions of the system. In order to find a simpler and closed syst
equations, we make the following approximation:

^Am~x!c~x!c̄~y!&.^Am~x!&^c~x!c̄~y!&5Am~x!SA~x,y!, ~11!

where we introducedSA(x,y), which denotes the fermionic propagator in the presence o
‘‘external field’’ A(x), which corresponds to the average gauge field. This amounts to a so
mean-field approximation, where the gauge field is treated classically. To make the approxim
involved more explicit, we note that the~exact! three point function appearing in~11! can be
written in the equivalent form

^Am~x!c~x!c̄~y!&5E DA Am~x!^xu~]”1 ieA” 1M !21uy&e2SG[A] 2GF[A] , ~12!

where

GF@A#52 log det@]”1 ieA” 1M #. ~13!

The approximation~11! is obtained from~12! by replacingA by its saddle point value. Namely
the approximation amounts to using the~leading! saddle point approximation, where the ‘‘action
which is minimized at the saddle point is the bare Maxwell action plus an effective contrib
GF@A# coming from the fermionic determinant.

Equation~11! is sufficient to close the system of equations, since then~8! becomes

@]”1 ieA” ~x!1M ~x!#SA5d~x2y!. ~14!

It is now important to realize that the average current can be expressed as a functional oA, as
follows:

Jm~x!5 ietr@gm^c~x!c̄~x!&#52 ietr@gmSA~x,x!#. ~15!

Equation~7!, together with~15!, define a closed system of equations, which allows us to find
average gauge fieldA, and then the current density induced in that background. The equation
determinesA is obtained by replacingJm by its expression~15! into ~7!

]mFmn~x!52 ietr@gmSA~x,x!#, ~16!

which, in general, and depending on the approximation used to evaluateSA , will be a nonlinear
integro-differential equation. The nonlinearity comes from the fermionic propagatorSA , which is
defined as

Sab~x,y!5^x,auD 21uy,b&, ~17!

whereD5(]”1 ieA” 1M ).
We shall now look for particular solutions of the coupled set of equations, under s

restrictions and simplifying approximations. We shall restrict ourselves tostatic, purely electric
solutions, with no electric current~hence, no magnetic field!. In the Coulomb gauge, the onl
remaining component for the~average! gauge field isA0 , which is determined by the equation

¹2V52 ietr@g0SV~x,x!#, ~18!

whereV5A0 . It should be noted that this equation involves the fermion propagator evaluat
coincident points, thus introducing the danger of a possible ambiguity~infinity!. In a homogeneous
system, the corresponding ambiguity is related to the infinite charge of the Dirac sea, an
usually regards as neutral the states where the Dirac sea is filled. The ambiguity is just a c
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density for a homogeneous system but may have a spatial dependence when there are inh
neities. Indeed, this will appear later as the need to fix the charge at the defect.

It is perhaps worth remarking that, for this particular kind of situation, the problem
consider amounts to solving a Poisson equation for the potential, combined with a Dirac eq
for the fermion field. The latter determines the gauge field through its associated density, a
fermions move in the gauge field background. The charge density is gauge invariant, as wel
Gauss law. The only point were a gauge has been chosen is in the Coulomb gauge choice
is the most sensible choice for an static situation such as this.

Our approach to solve the system of equations shall be to first evaluate the fermionic
gator in the external potentialV. Then, we shall find the corresponding vacuum charge densit
a functional ofV, and insert it into the Gauss law~18! to determineV. The resultingV can then
be used to fix the precise form of the charge density. We will be able to say that there are loc
modes if the system admits solutions where the charge density is confined to a small region
the defect. Of course, we shall have to make some assumptions also on the allowed bo
conditions for the fields. The choice of these conditions is also part of the kind of ansatz use
also on the amount of generality one wants to introduce into the treatment.

To find the fermion propagator in the presence of the external fieldV, we shall use the
perturbative expansion ofD 21 in powers ofV, namely, we decomposeD as follows:

D5D01V, ~19!

where

D05]”1M ~x! ~20!

and

V5 ieg0V~x!. ~21!

Thus,D 21 is naturally expanded as

D 215D 0
212D 0

21VD 0
211D 0

21VD 0
21VD 0

212 ¯ . ~22!

We note that the ‘‘free’’ propagatorD 0
21 includes the mass field and its space dependence exa

This must be so, since the defect changes the spectrum of the Dirac field, an effect that ca
described perturbatively. To find the inverse ofD0 , we use the equivalent expression

D 0
215~D 0

†D0!21D 0
† . ~23!

which requires finding the inverse of the Hermitian operator

H05D 0
†D0 . ~24!

This is a much simpler task than invertingD0 , and it allows one to dimensionally reduce th
problem. To see this, we follow the procedure of Ref. 2, of which we give a lightning review
First we write

D05~a1]”̂ !PL1~a†1]”̂ !PR , ~25!

where]”̂5g0]01g1]1 . We define the operatorsa† anda, that act on functions of thex2 coordi-
nate as

a5]21M a†52]21M , ~26!

and the projectorsPL , PR
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PL5
11g2

2
, PR5

12g2

2
. ~27!

These projectors behave like chirality projectors from the point of view of the 111 dimensional
theory which describes the chiral zero mode. This decomposition makes it possible to disen
the dynamics corresponding to thex2 coordinate from the coordinatesx̂5(x0 ,x1). The ‘‘dimen-
sional reduction’’ can be seen to arise at the level of the operatorH0

H05~h2]”̂ 2!PL1~ h̃2]”̂ 2!PR , ~28!

where

h5a†a h̃5aa†. ~29!

To expand the fermionic fields, we definefn and f̃n , eigenstates of the operatorsh and h̃,
respectively. We denote byln

2 their ~common! eigenvalues

hfn5ln
2fn , h̃f̃n5ln

2f̃n , ~30!

^fnufm&5dnm , ^f̃nuf̃m&5dnm , ~31!

since the spectra coincide, except forln50, and the eigenvalues are of course positive. Theln

50 eigenvalue will, by assumption, be present only forh. This will depend of course on the mas
profile near the defect, i.e., the zero of the mass. Since the sign ofln is arbitrary, we take it
positive by convention.

Thus, the fermionic fields can be expanded as

c~ x̂,x2!5(
n

@fn~x2!cL
(n)~ x̂!1f̃n~x2!cR

(n)~ x̂!#, ~32!

c̄~ x̂,x2!5(
n

@c̄L
(n)~ x̂!fn

†~x2!1c̄R
(n)~ x̂!f̃n

†~x2!#. ~33!

The spinors that carry the dependence onx̂ are defined by

cL,R
(n) ~ x̂!5PL,Rc (n)~ x̂!, c̄L,R

(n) ~ x̂!5c̄ (n)~ x̂!PR,L , ~34!

wherecL,R
(n) denotes a general bidimensional fermionic field~one for each value of the indexn). In

terms of this expansion, the fermionic action becomes

S5SL
(0)1(

n
S(n), ~35!

whereSL
(0) denotes the action for a chiral left-handed fermion in 111 dimensions, whileS(n) is a

massive Dirac action, also in 111 dimensions, with a mass equal toln ~the sign of the mass is
irrelevant in 111 dimensions!.

Since

H 0
215~h2]”̂ 2!21PL1~ h̃2]”̂ 2!21PR , ~36!

the free propagator becomes

D 0
215~h2]”̂ 2!21PL~a†2]”̂ !1~ h̃2* ]”̂ 2!21PR~a2]”̂ !. ~37!
                                                                                                                



ding
the

f the
or
nal

by the
g
e error
mode.
use no
c-

propa-

been
ence

e

e out of
are

ng the

593J. Math. Phys., Vol. 44, No. 2, February 2003 Interacting fermions and domain wall defects

                    
Translation invariance along thex0 andx1 coordinates suggests the use of a potential depen
only on x2 , V5V(x2). To find the propagator in configuration space, we need to evaluate
following expression:

Sab~x,y!5~D 0
21!ab~x,y!2~D 0

21VD 0
21!ab~x,y!1 ¯ , ~38!

with V5V(x2). In the perturbative expansion for the propagator, we insert expansions o
identity constructed with intermediate states corresponding to eigenstates of the operatH0 .
Using the fact that each eigenvalueln corresponds to the effective mass of a two-dimensio
mode, and that the lowest mode is massless~the zero mode!, it is natural to keep only the zero
mode in the intermediate states as a first approximation. Note that the massln of the nonzero
modes is separated from the zero mode by a finite gap whose magnitude is controlled
profile of the mass near the defect~see Ref. 2!. With this in mind, we shall first use the leadin
approximation of keeping just the zero mode, and then make a quantitative evaluation of th
involved in this procedure, by including the correction corresponding to the lowest massive
On the other hand, we shall keep the full dependence in the potential, namely, we shall
truncation for the perturbative series inV. To implement this approximation, we introduce proje
tors P0 along the zero mode. They are explicitly given by

P05f0f0
†(

n
cL

(n)c̄L
(n) . ~39!

Taking this into account, after some algebra one can show that, in this approximation, the
gator is given by

Sab~x,y!.f0
†~x2!f0~y2!^x0 ,x1 ,au

]”̂1 ieg0V0,0PL

~ ]̂1 ieg0V0,0!
2

uy0 ,y1 ,b&. ~40!

In this expression there appears the average ofV in the zero mode which is denoted by

V0,05^f0uVuf0&. ~41!

It is worth noting that this result is approximate in the sense that only the zero mode has
included, but all the powers ofAm have been added, as it is evident from the nonlinear depend
of the propagator onAm . The charge density is evaluated by multiplying byg0 , taking the Dirac
trace, and finally calculating the coincidence limitx→y. Inserting the result so obtained for th
charge density as a functional of the potential into~18! yields

]2

]x2
2 V~x2!5f0~x2!f0

†~x2!E d2k

2p

2 ik01 ieV0,0

~2 ik01 ieg0V0,0!
2 . ~42!

The momentum space integral has both linear and logarithmic divergences. We make sens
it by applying a symmetric limit kind of regularization. Specifically, the momentum integrals
evaluated by first defining the integrals over a symmetric interval around zero, and then taki
limit of an infinite interval. Namely,

E d2k¯[ lim
L1→`

lim
L2→`

E
2L1

1L1E
2L2

1L2
¯ . ~43!

By an application of this regularization, we see that~42! can be expressed as

]2

]x2
2 V~x2!5f0~x2!f0

†~x2!
e2V0,0

2
. ~44!
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It is remarkable that, as a consequence of the fact that we are only keeping the zero mo
expression for the charge density becomes linear in the potential. This happens in spite of t
that we have kept all the powers of the potential in the fermionic propagator, since the resu
consequence of the fact that massless two-dimensionalQED is exactly solvable,6 with the exact
fermionic determinant being quadratic in the gauge field.

Now we come back to the arbitrariness in the coincidence limit for the propagator. This
is not, of course, the only possible choice, since one may modify its value according to the
charge in the system. Indeed, if the system is neutral, something we shall assume, one ma
for the addition of a constant to the density. This constant reflects the charge of the Dirac sea
defect, and as such it is concentrated onx250. Thus, the form of~44! for a neutral system is

]2

]x2
2 V~x2!5

e2V0,0

2
f0~x2!f0

†~x2!2
e2

2
V0,0d~x2!, ~45!

where the constant multiplying thed function has been chosen in order to have zero total cha
We have obtained an integro-differential equation involving derivatives ofV and its average

on the lowest energy mode. To solve it self-consistently, we first derive from~44! ~by integration!
an equation forV, depending also the average of the potential. Then, as a second step, w
insert this average into~44! in order to obtain the explicit profile of the potential as a function
x2 . At this point, it is clear that the existence of a self-consistent solution depends on the par
form of the zero modes appearing in Eq.~44!. This differential equation will have a solution onl
if the charge density is localized in such a way that the integrals involved are well define
particular, the zero modes need to be localized around the defect. It was shown in Ref. 1
2n11 dimensions the zero mode has the form

he2*
a

x2dyM(y), ~46!

whereh is an spinor independent ofx2 .

III. EXAMPLES

In what follows we will discuss the possible solutions of Eq.~44! for two different kinds of
mass profiles.

• Step-like defect.
Given a mass of the form:

M ~x2!5L~2Q~x2!21!, ~47!

whereL is a constant with the dimensions of a mass, andQ is the Heaviside function, there is onl
one zero mode,2 which can be explicitly written as

f0~x2!5L1/2e2Lux2u. ~48!

In this case, the differential equation becomes

]2

]x2
2 V~x2!5

1

2
Le2V0,0e

22Lux2u2
e2

2
V0,0d~x2!, ~49!

and integrating it twice we obtain for the potentialV

V~x2!5a1
1

8L
e2V0,0e

22Lux2u, ~50!

where a is a constant, akin to a chemical potential for the charge of the zero mode. In
expression, the neutrality implies the decay in the potential for large values ofx2 . Of course, we
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might have wanted to consider a charged system; the resulting potential would then be the
position of ~50! and the potential due to thed function, which is linearly rising.

In order to find a self-consistent solution for the potential we evaluate the expectation va
V, which is expressed by~50!, in the zero mode

V0,05a1
1

8L
e2V0,0E

2`

`

dxuf0~x!u2e22Luxu. ~51!

Thus,V0,0 is easily seen to be given by

V0,05
a

12
e2

16L

. ~52!

Therefore, the potential written in terms of the zero modes results

V~x2!5uf0~x!u2
2ae2

16L22Le2 . ~53!

Notice that the solution is only stable if the electromagnetic coupling constant and the
coupling constant satisfy the bound:e2,16L, which means that the strength of the interacti
~repulsion! between the electrons cannot be larger than the scale given by the height of the
We note that ‘‘stability’’ refers here to the property of having a confining potential. We see th
this case, i.e., for an step-like mass and keeping only the zero energy mode, there exist
consistent solution for the fermionic interaction potential. In other words, even in the ca
interacting electrons, the fermions are localized in thex2 direction and can only move along th
defect.

The interpretation ofa as a chemical potential proceeds from the fact that the Gauss law~49!,
combined with~52!, means that the charge density of the configuration is

r~x2!5a
Le2

2S 12
e2

16L D e22Lux2u, ~54!

and ~by integrating overx2) one sees that the total charge is proportional to the constanta. Of
course, thetotal charge is zero, but it may be decomposed into the contributions from the
mode~which is fixed bya) and the ‘‘neutralizing’’ charge density, which is proportional tod(x2).

• Linear defect.
Assuming than the mass can be expanded as a power series inx2 , for small enoughx2 we

only keep the first-order term

M ~x2!5M 8~0!x2 , ~55!

where we assumeM 8(0)Þ0 beingM 8 the first derivative of the mass. For this mass profile
can still find the zero mode by defining2

h52]2
22M 81M2x2

2. ~56!

which is an harmonic oscillator Hamiltonian. The lowest energy mode is

f0~x2!5S uM 8u
p D 1/4

e2 uM8u/2 x2
2
. ~57!
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Following the same steps as in the previous example we find that the potential can be wri
terms of the zero mode as

V~x2!5a1E
B

x2
dyE

A

y

dzuf0~z!u2S e2a

22e2CD , ~58!

where

C5E
2`

`

dx2uf0~x2!u2E
B

x2
dyE

A

y

dzuf0~z!u2. ~59!

Thus we see that also in this case there exists a self-consistent solution for the Gauss law
charge density localized around the defect. However there is a necessary condition for th
tence of this localized mode. The wave function of the zero mode has to vanish rapidly outsi
region of the space where the mass can be approximated linearly. A quantitative criterion
validity of this condition can be found in Ref. 2.

In summary, up to know we have shown the existence of localized solutions if we keep
the lowest energy modes in the expansion of the fermionic propagator. This solution depe
the mass profile, and it is nonperturbative in the electromagnetic interaction between the fer
We have neglected the~more energetic! massive modes based on the fact that the terms on
action that come from these modes go as 1/ln

2, whereln is the mass of the mode.2 Therefore, for
a large and steep enough mass, our approximation will be valid. In particular, for a linear d
the mass of the modes is proportional to the slope of the mass profile. Therefore, by changi
slope we could makeln arbitrarily large.

IV. EFFECT OF THE MASSIVE MODES

We shall now study the problem of including one massive mode in our calculation in ord
check whether there still exist localized solutions or not. It will provide also a quantitative
about the error involved in considering only the lowest energy modes.

We proceed as follows: In the perturbative expansion for the fermion propagator~22!, we
consider only the projection of the operatorsD 0

21 andV onto the two lowest energy modes. The
each factorD 0

21 contributes with

D 0
21.f̃1f1

†l1PL2f̃1f̃1
†]”̂PR1f1f̃1

†l1PR2f1f1
†]”̂PL2f0f0

†]”̂PL . ~60!

For an evenV(x2), selection rules imply the vanishing of the matrix elementsVn,m , Vn,m̃ , and
Vñ,m̃ .

Replacing ~60! into ~22!, and keeping only the nonvanishing matrix elements ofV, the
first-order correction inV to the fermion propagator@i.e., correction to~60!# is

D 0
21VD 0

21.
ief̃1f1

†

~l1
22 ]̂2!2

@2]”̂l1g0V
1̃,1̃

0
2l1g0V1,1]”̂ #PL1

ief̃1f0
†

~l1
22 ]̂2!]̂2

@2l1g0V1,0]”̂ #PL

1
ief̃1f̃1

†

~l1
22 ]̂2!2

@l1
2g0V1,11]”̂g0V1̃,1̃]”̂ #PR1

ief1f̃1
†

~l1
22 ]̂2!2

@2]”̂l1g0V1,12l1g0V1̃,1̃]”̂ #PR

1
ief0f̃1

†

~l1
22 ]̂2!]̂2

@2]”̂l1g0V1,1#PR1
ief1f1

†

~l1
22 ]̂2!2

@l1
2g0V1̃,1̃1]”̂g0V1,1]”̂ #PL
                                                                                                                



1
ief1f0

†

l22 ]̂2 ]̂2
@]”̂g0V1,0]”

”PL1
ief0f1

†

l22 ]̂2 ]̂2
@]”̂g0V0,1]”̂ #PL1

ief0f0
†

]̂2 2
@]”̂g0V0,0]”̂ #PL .
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~ 1 ! ~ 1 ! ~ !

~61!

Notice that in this case it is not possible to obtain a nonperturbative expression for the fe
propagator due to the fact that we are taking into account massive modes as well as the m
one. In order to write the Gauss law we need to compute

tr~g0D 21!.2
ie~f̃1f̃1

†1f1f1
†!

~l1
22 ]̂2!

]01
ief0f0

†

~ ]̂2!
]01

ief̃1f̃1
†

~l1
22 ]̂2!2

@l1
2V1,11~2]0

22 ]̂2!V1̃,1̃#

1
ief1f1

†

~l1
22 ]̂2!2

@l1
2V1̃,1̃1~2]0

22 ]̂2!V1,1#1
ie~f1f0

†1f0f1
†!

~l1
22 ]̂2!]̂2

@~2]0
22 ]̂2!V0,1#

1
ief0f0

†

~ ]̂2!2
@~2]0

22 ]̂2!V0,0#. ~62!

Taking the Fourier transform in the above expression and regularizing the integrals by a sym
limit, the Gauss law becomes

]2

]x2
2 V~x2!5f̃1~x2!f̃1

†~x2!
e2V1,1

2
1f1~x2!f1

†~x2!
e2V1̃,1̃

2
. ~63!

Thus we have obtained a differential equation whose solution will depend on the localiz
properties of the fermionic modes around the defect.

In the case of a mass that can be approximated by a linear function ofx2 near the defect, it is
simple to check that2

fn5f̃n11 , ~64!

therefore, there is only one zero mode, and the Gauss equation becomes

]2

]x2
2 V~x2!5f0~x2!f0

†~x2!
e2V1,1

2
1f1~x2!f1

†~x2!
e2V0,0

2
. ~65!

Integrating this expression we find

V~x2!5a1S e2V1,1

2 D E
B

x2
dyE

A

y

dzuf0~z!u21S e2V0,0

2 D E
B

x2
dyE

A

y

dzuf1~z!u2. ~66!

Once again, we look for the self-consistent solutions for the expectation values of the pot
When computed on the two lowest energy modes, they are given by the solution of the equ

Vi ,i5a1S e2V1,1

2 DDi01S e2V0,0

2 DDi1 , ~67!

wherei 50,1 andDi j are

2Di j 5E
2`

`

dx2uf i~x2!u2E
B

x2
dyE

A

y

dzuf j~z!u2. ~68!
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Solving ~67! we obtain

V0,05a
12e2D101e2D00

~12e2D01!~12e2D10!2e4D11D00
, ~69!

V1,15a
12e2D011e2D11

~12e2D01!~12e2D10!2e4D11D00
. ~70!

We have found that, in the case of a linear mass, there exist a self-consistent solution of the
equation to first order in the interaction potential, if we include apart from the zero mode
massive mode. Notice that, for a linear mass around the defect,fn andf̃n are harmonic oscillator
eigenstates. Far enough from the defect, the eigenstates decay exponentially~as a Gaussian func
tion!, ensuring that the charge density is localized around the defect in such a way that the
solution for the Gauss equation. Obviously all the caveats regarding the range of valid
approximating the mass by a linear function, that we mention in the previous case, must be
into account here.

Summarizing, we have considered a Dirac field in 211 dimensions with a domain wall like
defect in its mass, minimally coupled to a dynamical Abelian vector field. The mass o
fermionic field is assumed to have just one linear domain wall, externally fixed and unaffect
the dynamics. In the absence of electromagnetic interactions among the fermions, it is a
known fact that localized zero modes exist on the defect.1 We have studied here the effect of th
fermionic interactions on these modes showing that, under some general conditions on the
eters, the localized zero modes stable under the electromagnetic interactions of the fermio

There are of course many interesting direction around which one could extend this res
extending the family of field configurations entering into the coupled equations. An intere
possibility is perhaps the consideration of a system with a nonvanishing current on the defe
would of course require the introduction of extra fields into the game: Magnetic fields gene
by the current and fermionic states with energies just above the ground state.
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Casimir energy of a relativistic perfect fluid confined
to a D-dimensional hypercube

Ariel Ederya)

Al Solutions, Inc., 10001 Derekwood Lane, Suite 215, Lanham, Maryland 20706

~Received 23 August 2002; accepted 18 October 2002!

Compact formulas are obtained for the Casimir energy of a relativistic perfect fluid
confined to aD-dimensional hypercube with von Neumann or Dirichlet boundary
conditions. The formulas are conveniently expressed as a finite sum of the well-
known gamma and Riemann zeta functions. Emphasis is placed on the mathemati-
cal technique used to extract the Casimir energy from aD-dimensional infinite sum
regularized with an exponential cutoff. Numerical calculations show that initially
the Dirichlet energy decreases rapidly in magnitude and oscillates in sign, being
positive for evenD and negative for oddD. This oscillating pattern stops abruptly
at the critical dimension ofD536 after which the energy remains negative and the
magnitude increases. We show that numerical calculations performed with 16-digit
precision are inaccurate at higher values ofD. © 2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1531822#

I. INTRODUCTION

If a system has boundary conditions, the infinite vacuum energy is slightly altered com
to the free continuum case; this leads to a force on the boundaries called the Casimir fo
1948, Casimir1 calculated the attractive force between two conducting plane-parallel plat
vacuum due to the zero-point fluctuations of the electromagnetic field. There has been an
mous amount of theoretical work on the subject since the pioneering work of Casimir~for a
general review up to 1997 we refer the reader to Refs. 2 and 3!. The earliest experiment to tes
Casimir’s calculation was carried out by Sparnaay4 in 1958. The results were inconclusive due
large systematic errors and uncontrollable electrostatic forces leading to a 100% uncertainty
results. In 1997, a landmark experiment5,6 using a torsion pendulum improved significantly o
previous results. The most recent experiments using atomic force microscopes7 and high precision
capacitance bridges8 are now in agreement with theoretical calculations to within 1%, elimina
any doubt as to the reality of the Casimir force.

In this work, we calculate the Casimir energy for phonons in a relativistic perfect
confined to aD-dimensional hypercube using the cut-off method. The Casimir energy of a s
field in a rectangular cavity withp sides of lengthsa1 ,a2 , . . .ap andD2p sides of characteristic
lengthL@ai was calculated in Ref. 10 using the Epstein zeta function regularization schem
was shown that Neumann and periodic boundary conditions yield a negative Casimir e
Determining the sign for Dirichlet boundary conditions turned out to be more complicated an
studied in detail in Refs. 11 and 12 where Epstein zeta function regularization was agai
ployed. In Ref. 11 it was shown that in a rectangular cavity withp sides of equal lengthL and
D2p sides of length@L, the sign of the Dirichlet energy depends on whetherp is even or odd.
For even values ofp, the energy is positive whenD is less than a critical valueDc and negative
whenD is aboveDc . For odd values ofp the sign is always negative and no critical dimensi
exists. It was later shown12 that it is possible for the Dirichlet energy to be positive for odd valu
of p if the sides have unequal lengths.

a!Research partly done at: Physics Department, McGill University, Montreal, Quebec H3A 2T8, Canada. Electroni
edery@mailaps.org
5990022-2488/2003/44(2)/599/12/$20.00 © 2003 American Institute of Physics
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One alternative to zeta function regularization is the exponential cutoff. The cut-off me
was employed in Ref. 13 to calculate the Casimir energy of scalar fields confined to parallel
in higher dimensions. In our article, we apply the cutoff method to a perfect fluid confined
D-dimensional hypercube. We develop a mathematical technique that enables us to extr
relevant Casimir term from aD-dimensional infinite sum: one that contains the square root
sum ofD squares modified by an exponential cut-off term. This technique makes repeated
the Euler–Maclaurin integration formula and a series expansion for the infinite sum of mo
Bessel functions. For both von Neumann and Dirichlet boundary conditions we obtain conv
formulas for the Casimir energy as a function ofD. The formulas are expressed as a single s
of D terms containing the Riemann zeta and gamma functions. Numerical calculations sho
the Dirichlet energy exhibits a clear oscillating pattern up toD535: it is positive for evenD,
negative for oddD and its magnitude decreases rapidly. However, this oscillating pattern
abruptly at the critical dimension ofD536; for D>36, the sign remains negative and the ma
nitude increases. In contrast to the Dirichlet energy, the Neumann energy is negative for all
of D.

It is instructive to compare the Casimir calculation of a perfect fluid to that of the o
bosonic string. A string embedded inD spatial dimensions supports transverse vibrations
D21 orthogonal directions. The boundary conditions at the two ends of the string, responsi
the Casimir effect, is independent of the dimensionD. Therefore, the number of dimensions do
not complicate the Casimir calculation: the quantityD21 contributes only a multiplicative facto
~see Ref. 9 for details!. A fluid confined to aD-dimensional hypercube supports longitudin
vibrations inD orthogonal directions. In contrast to the string, it has boundary conditions in aD
directions leading to a Casimir energy with a non-trivial dependence onD. Simply put, for the
open bosonic string one needs to calculate a single infinite sum which is multipliedD21 times
whereas for the fluid one needs to calculate aD- dimensional infinite sum. This reflects the fa
that the perfect fluid is described by one scalar field which is a function ofD11 spacetime
dimensions whereas the string is described byD11 scalar fields each a function of two spacetim
dimensions.

II. THE ACOUSTIC MODES IN A RELATIVISTIC PERFECT FLUID

A perfect fluid is defined as having at each point a velocityv such that an observer movin
with this velocity observes the fluid as being isotropic. This occurs when the mean free
between collisions is small compared to the wavelength. In a frame where the fluid is at r
some particular position and time the energy-momentum tensorTm n has spherical symmetry an
is given by14

Ti j 5Pd i j , Ti050 , T005r , ~1!

wherer is defined as the proper energy density andP the pressure. In the same frame the curr
four-vectorNm is given by

Ni50 , N05n ~2!

wheren is defined as the particle number density. The motion of the fluid is governed by co
vation of energy momentum and particle number, i.e.,

]aTab50 , ]aNa50 . ~3!

Small perturbations from equilibrium (r5r0 , P5P0 , andn5n0) lead to sound waves with th
following scalar equation:

]2r~x!

]2 t
2v2¹2r~x!50, ~4!
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where r(x) is a scalar field,v is the speed of the sound waves given byv5AP0 /r0 and x
5(x,t). Consider the fluid confined to aD-dimensional hypercube with sides of lengthL. The
von Neumann (N) and Dirichlet~Di! boundary conditions atxi50 andxi5L are] ir(x)50 and
r(x)50 respectively~where i 51,2,. . . ,D). The solution to the wave equation~4! for the von
Neumann and Dirichlet boundary conditions are respectively,

r~x!5 (
$ni %50

`

~a$ni %
† eiv t1a$ni %

e2 iv t !)
i 51

D

cosS ni p xi

L D1 a t1 b ~5!

and

r~x!5 (
$ni %51

`

~a$ni %
† eiv t1a$ni %

e2 iv t !)
i 51

D

sinS ni p xi

L D ~6!

wherev is given by

v5
p v
L

~n1
21n2

21¯1nD
2 !1/25p b ~n1

21n2
21¯1nD

2 !1/2 . ~7!

The parameterb[v/L is dependent on the physical and geometrical properties of the fluid
pressureP0 , the proper densityr0 and the proper lengthL of the sides of the hypercube.

III. QUANTIZATION AND CASIMIR ENERGY

After imposing equal time commutation relations on the scalar fieldr(x), i.e.,

@r~x,t !,ṙ~x8,t !#5 idD~x2x8! ~8!

one obtains the well-known form for the vacuum energyE5 1
2(v ~where \51). For the

D-dimensional perfect fluid in consideration,v is given by ~7! and the vacuum energy in th
Neumann (N) and Dirichlet~Di! cases are

E5
p b

2 (
$ni %

50(N)
51(Di )

`

~n1
21n2

21¯1nD
2 !1/2. ~9!

The multiple sum corresponds to the vacuum energy of the fluid with boundary conditions
divergent due to the high-frequency modes. The vacuum energy with no boundaries, i.e.,
continuum, is given by multiple integrals and is also divergent. It is the difference between
two energies that is of interest and leads to the finite quantity we call the Casimir energ~the
energy needed to set up the boundaries starting from the continuum!. To extract the relevan
constant from the infinite sum~9!, one regularizes the sum to isolate the infinite contribution of
continuum from the finite contribution stemming from the boundary conditions. There are

ways to regularize a sum. In this article we choose an exponential cutoff terme2 a (n1
2
1n2

2
1¯1nD

2 )1/2

where the parametera is a positive real number. The regularized vacuum energyEDi in the
Dirichlet case is then

EDi5S p b

2 D (
nD51

`

¯ (
n151

`

~n1
21n2

21¯1nD
2 !1/2 e2 a (n1

2
1n2

2
1¯1nD

2 )1/2

5S p b

2 D ~2]a! (
nD51

`

¯ (
n151

`

e2 a (n1
2
1n2

2
1¯1nD

2 )1/2
. ~10!
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In the Neumann case the sums start atni50 instead ofni51. The regularized vacuum energy~10!
is finite and is a function of the parametera. Our goal is to obtain the leading terms in this su
asa→0 and extract the constant Casimir term as a function of the dimensionD. To accomplish
this task we make repeated use of the Euler–Maclaurin integration formula: a formula that r
an infinite sum of a function to its integral, i.e.,

(
i 51

`

f ~ i !5E
0

`

f ~x! dx2
1

2
f ~0!2 (

p51

`
1

~2p!!
B2p f (2p21)~0!, ~11!

wheref (2p21)(0) are odd derivatives off evaluated at zero. There areD sums in~10! to evaluate
and we apply the Euler–Maclaurin formula to each sum except the last one. In Appendix
show that for the exponential functionf in ~10!, the value off 2p21(0) is always zero except fo
the last sum. At the last sum, the value off 2p21(0) can diverge and oscillate between positive a
negative infinity ~depending on the value ofp) and we therefore use a different method
calculation. To summarize, we convertD21 sums in~10! into multiple integrals by repeate
application of the Euler–Maclaurin formula and then evaluate separately the last sum. W
from ~11! that each sum~except the last one! gets replaced by an integral of the function min
half of the function at zero. This can be expressed by a simple and useful prescription

( →E 2
1

2
. ~12!

The prescription~12! can be applied repeatedly to convert multiple sums to multiple integrals.
caseD53 is illustrated below where two of the three sums are replaced by~12!:

(
n351

`

(
n251

`

(
n151

`

e2 a (n1
2
1n2

2
1n3

2)1/2→ (
n351

` S E 2
1

2D 2

5 (
n351

` S E2

2E 1
1

4D
5 (

n351

` E
0

`

e2 a (n1
2
1n2

2
1n3

2)1/2
dn1 dn2

2 (
n351

` E
0

`

e2 a (n2
2
1n3

2)1/2
dn21

1

4 (
n351

`

e2 a n3 .

To evaluate~10!, we applyD21 times the prescription given in~12!. This yields

EDi52~p b/2! ]a (
nD51

` S E 2
1

2 D D21

5p b ~21!D 22D ]a (
nD51

` S 122 E D D21

5p b ~21!D 22D (
p50

D21 S D21
p D ~ 22 !p ]a (

nD51

` Ep

5p b ~21!D 22D (
p50

D21 S D21
p D ~ 22 !p ]a I ~p,a!, ~13!

whereI (p,a) is defined by
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I ~p,a![ (
n51

` Ep

5 (
n51

` E
0

`

e2 a (n21x1
2
1...1xp

2)1/2
dx1¯dxp . ~14!

To determine~13! we need to evaluate]a I (p,a). The p-dimensional integral inI (p,a) can be
expressed in terms of the derivative of the modified Bessel functionK (p21)/2(a n)15

E
0

`

e2 a (n21x1
2
1...1xp

2)1/2
dx1¯dxp522~12p!/2 p~p21!/2]aS K ~p21!/2~a n!S n

aD ~p21!/2D . ~15!

Using the identity

S d

z dzD
m

$z2n Kn~Z!%5~21!m Z2n2m Kn1m~Z! ~16!

with n50, m5 (p21)/2 , Z5a n yields

~21!~12p!/2S d

a daD ~p21!/2

K0~a n!5K ~p21!/2~a n!S n

aD ~p21!/2

. ~17!

By substituting~17! and ~15! into ~14! one obtains

]aI ~p,a!52~12p!/2p~p21!/2~21!~32p!/2~]a!2S d

a daD ~p21!/2

(
n51

`

K0~a n!. ~18!

We are interested in obtaining a series expansion of~18! and isolating the relevant constant fro
the infinite continuum in the limit asa→0. We therefore replace the infinite sum ofK0(a n) by the
following series expansion:15

(
n51

`

K0~a n!5
1

2
~C1 ln~a/4p!!1

p

2 a
1p (

m51

` H 1

Aa214 m2 p2
2

1

2 m pJ . ~19!

Consider the terms ln(a/4p)/2 andp/(2 a) in ~19!. They yield terms proportional to 1/ap11 and
1/ap12, respectively, in the series expansion of~18!. These two terms correspond to the infini
continuum asa→0. The relevant constant related to the Casimir energy stems from the in
sum in ~19!, i.e.,

lim
a→0

~]a!2S d

a daD ~p21!/2

(
m51

`
p

Aa214 m2p2

5 lim
a→0

~21!~p11!/2G~p11!

GS p11

2 D2~p21!/2
(

m51

`
p

~a214m2p2!~p12!/21O~a!

5

~21!~p11!/2GS p12

2 D
p~2p13!/22~p13!/2) (

m51

`
1

mp12 5

~21!~p11!/2GS p12

2 D z~p12!

p~2p13!/22~p13!/2 . ~20!

Inserting~20! into ~18! one obtains

]aI ~p,a!5

GS p12

2 D z~p12!

2p11p~p14!/2 . ~21!
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We finally obtain the Casimir energy for the Dirichlet case by substituting~21! into ~13!,

EDi5b 2(2D21) (
p50

D21 S D21
p D ~21!p1Dp~2p22!/2GS p12

2 D z~p12!. ~22!

Equation~22! is our final formula for the Casimir energy of a relativistic perfect fluid confined
a hypercube with Dirichlet boundary conditions. It is conveniently expressed as a finite sumD
terms involving the gamma and Riemann zeta functions; this makes it well-suited for num
calculations. The parameterb encompasses the physical and geometrical properties of the re
istic perfect fluid: its proper energy density, pressure and lengthL. It plays the same role for the
fluid as the string tension does for the bosonic string; bothb and the string tension appear in th
Casimir energy as dimensionful free parameters.

Having solved the Dirichlet case it is now relatively straightforward to obtain the Neum
case. The regularized vacuum sum in the Neumann case, labeledEN , has its sums starting atni

50 instead ofni51, i.e.,

EN5S pb

2 D ~2]a! (
nD50

`

¯ (
n150

`

e2a(n1
2
1n2

2
1¯1nD

2 )1/2
. ~23!

The aboveD-dimensional sum can be expressed as a series ofk-dimensional sums that start a
ni51 instead ofni50, i.e.,k-dimensional Dirichlet sums. The procedure is as follows: we cho
k out of theD sums and let thesek sums start at 1 instead of zero~while the remainingD2k
variables are not summed and set to zero!. One is left with ak-dimensional Dirichlet sumEDi

(k) .
There are (k

D) ways to choosek amongD sums so that the Neumann Casimir energy is given

EN5 (
k51

D S D
k DEDi

(k) , ~24!

whereEDi
(k) is thek-dimensional Dirichlet Casimir energy obtained by replacingD by k in ~22!.

Equations~22! and~24! are our final expressions for the Dirichlet and Neumann Casimir ener
respectively.

In Table I we quote values of the Dirichlet and Neumann Casimir energies forD up to 6
calculated using~22! and~24!. Note that the Neumann Casimir energy is negative. In Appendi
we prove that it is negative for all values ofD. The Neumann energy, plotted in Fig. 1, has
magnitude which increases withD. The Dirichlet case is considerably more complicated. Tab
shows that the sign of the Dirichlet energy is negative for odd values ofD, positive for even
values ofD and that its magnitude decreases rapidly. These features of the Dirichlet ener
valid for low values ofD and are plotted in Fig. 2. The values quoted in Table I are in agreem
with those calculated using the Epstein zeta function in Ref. 10~values in Ref. 10 are quoted u
to D55). It is important that the numerical values agree because the Casimir force shou
independent of the regularization scheme employed.

Calculations of the Dirichlet energy at higher values ofD reveal that the oscillation of the sig
and the rapid decrease in magnitude stops at the critical dimension ofD536. The Dirichlet energy
decreases by 12 orders of magnitude fromD51 to D536. To view a plot over such a large spa
requires the energy to be scaled. The magnitude of the Dirichlet energyE is less than 1 for the
range we consider so that the function2E/„uEu log(uEu)… is well-suited for plotting; it preserves th

TABLE I. Dirichlet and Neumann Casimir energies in units ofb.

D51 D52 D53 D54 D55 D56

EDi 20.131 0.0415 20.0157 0.00625 20.00261 0.00112
EN 20.131 20.220 20.284 20.331 20.367 20.396
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sign and scales the magnitude appropriately. A plot of this function up toD5110 is shown in Fig.
3. The distinctive features of Fig. 3 are the oscillating pattern which stops abruptly at the c
dimension ofD536 and the plateau region which emerges immediately afterwards. ForD>36,
the energy remains negative and the magnitude increases, though slowly in the plateau
extending to approximatelyD580. To obtain accurate values of the Casimir energy at hig
values ofD, numerical calculations must be performed with greater precision than 16-digit
cision. We quote in Table II the Dirichlet energy fromD510 toD580 for calculations performed
using 16-digit, 24-digit and 50-digit precision. With 16-digit precision, numbers begin to s
errors in the first significant digit atD542 and the sign is wrong for the first time atD549 ~yields
a positive instead of a negative sign!. Note that in 16-digit precision oscillations in the sign resum
in the regionD.49. This is incorrect; higher-precision calculations show that the sign rem
negative starting atD535. The plot in Fig. 3 corresponds to numerical calculations done w
50-digit precision; for our plot up toD5110 this is more than enough precision. Note that
24-digit and 50-digit precision calculations yield identical results for values quoted up toD580
with four significant digits.

FIG. 2. Dirichlet Casimir energy at low values of D.

FIG. 1. Neumann Casimir energy as a function of the dimension D.
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We now summarize our results in light of previous work on the Casimir energy of scalar
confined to rectangular boundaries. One of our goals was mathematical: to develop a proced
calculating~10!, a multidimensional infinite sum regularized with an exponential cutoff. By
peated use of the Euler–Maclaurin formula and a series expansion for the infinite sum
modified Bessel functionK0(a n), we were able to isolate the divergent terms and extract
finite Casimir energy. In effect, we reduced~10! to a finite sum containing only the gamma an
Riemann zeta functions, i.e., formula~22!. Numerical calculations show thatD536 is a critical
dimension, being the first even dimension with negative Dirichlet energy. Our work focused o
simple geometry of the hypercube whereas previous work10–12 considered the more general rec
angular case and employed Epstein zeta function regularization. Results for the rectangul
are expressed in terms of asymptotic formulas. In Ref. 11, the Dirichlet energy f
D-dimensional rectangle withp equal sides is conveniently expressed by a single integral
limits running from zero to infinity and integrand containing the ellipticu function. In Refs. 10 and
11, numerical values are quoted for low values ofD for the hypercube case and they are
agreement with our values. However, the finite formula~22! was not derived in Refs. 10 and 11 fo
the special case when all sides of the rectangle are equal.

It is worth noting that the original sum~9! is mathematically a special case of a more gene
class of multiple sums involving arbitrary exponents, i.e.,

M ~s;a1 ,...,aD ;a1 ,...,aD ;c!5 (
n1 , . . . ,nD51

`

~a1n1
a11 . . . 1aDnD

aD1c!2s. ~25!

Using zeta function regularization, Elizalde16 obtained explicit formulas for~25! expressed as an
asymptotic expansion containing the Riemann and Hurwitz zeta functions. In contrast
exponential cutoff method, zeta function regularization does not require the introduction o
terms like exponentials for convergence; one starts with a convergent sum like~25! valid for
Res.0 big enough and then one makes an analytical~usually meromorphic! continuation to other
values ofs. For a detailed mathematical treatment of the zeta function regularization theorem
its applications to the Casimir energy, the reader is referred to Ref. 17.

FIG. 3. Scaled Value of the Dirichlet Casimir energy E.
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TABLE II. Dirichlet Energy ~in units of b! for Different Precision Calculations.

D 16-digit precision 24-digit precision 50-digit precision

10 4.438e205 4.438e205 4.438e205
11 22.035e205 22.035e205 22.035e205
12 9.389e206 9.389e206 9.389e206
13 24.360e206 24.360e206 24.360e206
14 2.034e206 2.034e206 2.034e206
15 29.538e207 29.538e207 29.538e207
16 4.487e207 4.487e207 4.487e207
17 22.120e207 22.120e207 22.120e207
18 1.004e207 1.004e207 1.004e207
19 24.770e208 24.770e208 24.770e208
20 2.269e208 2.269e208 2.269e208
21 21.085e208 21.085e208 21.085e208
22 5.177e209 5.177e209 5.177e209
23 22.488e209 22.488e209 22.488e209
24 1.189e209 1.189e209 1.189e209
25 25.754e210 25.754e210 25.754e210
26 2.741e210 2.741e210 2.741e210
27 21.345e210 21.345e210 21.345e210
28 6.303e211 6.303e211 6.303e211
29 23.205e211 23.205e211 23.205e211
30 1.416e211 1.416e211 1.416e211
31 28.027e212 28.028e212 28.028e212
32 2.855e212 2.856e212 2.856e212
33 22.322e212 22.323e212 22.323e212
34 2.635e213 2.651e213 2.651e213
35 29.364e213 29.389e213 29.389e213
36 23.207e213 23.169e213 23.169e213
37 25.916e213 25.975e213 25.975e213
38 24.621e213 24.516e213 24.516e213
39 25.104e213 25.255e213 25.255e213
40 25.293e213 25.041e213 25.041e213
41 25.079e213 25.414e213 25.414e213
42 26.230e213 25.631e213 25.631e213
43 25.106e213 26.071e213 26.071e213
44 27.900e213 26.572e213 26.572e213
45 24.473e213 27.244e213 27.244e213
46 21.239e212 28.075e213 28.075e213
47 21.927e213 29.126e213 29.126e213
48 22.230e212 21.044e212 21.044e212
49 7.406e213 21.210e212 21.210e212
50 24.455e212 21.418e212 21.418e212
51 4.079e212 21.683e212 21.683e212
52 21.250e211 22.020e212 22.020e212
53 1.403e211 22.452e212 22.452e212
54 23.676e211 23.010e212 23.010e212
55 5.400e211 23.735e212 23.735e212
56 21.040e210 24.685e212 24.685e212
57 1.560e210 25.937e212 25.937e212
58 23.040e210 27.603e212 27.603e212
59 5.219e210 29.834e212 29.834e212
60 29.100e210 21.285e211 21.285e211
61 1.702e209 21.694e211 21.694e211
62 22.655e209 22.256e211 22.256e211
63 4.438e209 23.033e211 23.033e211
64 27.300e209 24.115e211 24.115e211
65 1.000e208 25.634e211 25.634e211
66 21.600e208 27.782e211 27.782e211
                                                                                                                



sity of
ergy
ments

r

sides

608 J. Math. Phys., Vol. 44, No. 2, February 2003 Ariel Edery

                    
ACKNOWLEDGMENTS

I wish to thank Professor Manu Paranjape and the Particle Physics group of the Univer
Montreal for their invitation to present a talk on this subject at the Montreal Joint High En
Physics Seminars on March 28, 2002. I also wish to thank Dr. Paranjape for his useful com
and suggestions on the paper.

APPENDIX A

In applying the Euler–Maclaurin formula~11! to the sums in~10!, we show thatf 2p21(0)
50 @except when applied to the last sum in~10!#. The most general form for the functionf is a
k-dimensional integral

f [E
0

`

e2a(n1
2
1¯1nq

2
1x1

2
1¯1xk

2)1/2
dx1¯dxk5E

0

`

G dx1¯dxk , ~A1!

whereG[e2 a (n1
2
1¯1nq

2
1x1

2
1¯1xk

2)1/2
. In f there arek continuous variablesx1 ,...,xk which run

from zero to infinity and there areq discrete variablesn1 ,...,nq which run from one to infinity,
i.e., f is being summedq times. Our goal is to show that the odd derivatives ofG with respect to
one of the discrete variables, sayn1 , evaluated atn150 is zero, i.e., thatG2p21(0)50. The first
derivative ofG with respect ton1 is G852a n1 G (n1

21¯1nq
21x1

21¯1xk
2)21/252a n1G H

where H[(n1
21¯1nq

21x1
21¯1xk

2)21/2. The derivative ofH with respect ton1 is H8
52n1 H3. Note thatG8 and H8 are expressed in terms ofG, H, a, andn1 . Any subsequent
derivatives ofG8 will therefore contain terms of the form

ain1
j HlG, ~A2!

where i , j , and l are non-negative integers. Every additional derivative ofG either increases o
decreasesj by one. Two consecutive derivatives will therefore produce anevenchange inj . The
first derivative ofG, G8, hasj 51 so that an additional even number of derivatives applied toG8
leads toj being odd and positive. Therefore, odd derivatives ofG cannot produce terms withj
50. As long asG andHm do not diverge atn150, the terms~A2! are zero atn150. Clearly,G
does not diverge atn150. Hm does not diverge atn150 as long asq>2, i.e., aftern1 is set to
zero the denominator inHm is never zero if there exists at least one other discrete variable be
n1 . Therefore, ifq>2, the odd derivatives ofG evaluated atn150 are zero~and hence the odd
derivatives off evaluated atn150 are zero!.

TABLE II. ~Continued.!

D 16-digit precision 24-digit precision 50-digit precision

67 1.300e208 21.084e210 21.084e210
68 23.700e208 21.524e210 21.524e210
69 7.062e208 22.161e210 22.161e210
70 29.500e208 23.088e210 23.088e210
71 1.100e207 24.451e210 24.451e210
72 27.000e208 26.467e210 26.467e210
73 2.000e207 29.472e210 29.472e210
74 21.213e207 21.398e209 21.398e209
75 21.000e206 22.080e209 22.080e209
76 5.000e207 23.119e209 23.119e209
77 0.000e201 24.710e209 24.710e209
78 0.000e201 27.168e209 27.168e209
79 22.000e205 21.099e208 21.099e208
80 4.000e205 21.697e208 21.697e208
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If n1 is the last discrete variable, i.e.,q51, thenHm evaluated atn150 diverges at the poin
where the limits of integration are zero. The last sum is therefore calculated using a dif
method.

APPENDIX B

In this Appendix we show that the Neumann Casimir energy is negative for all values oD.
The Neumann Casimir energy is given by~24!, i.e.,

EN5 (
k51

D S D
k DEDi

(k) , ~B1!

whereEDi
(k) is thek-dimensional Dirichlet Casimir energy obtained by replacingD by k in ~22!,

i.e.,

EDi
(k)5b~21!k22k(

i 51

k S k21
i 21 D ~22! i 21 G~ i !z~ i 11!

22i 21p i /2GS i

2D . ~B2!

Substituting~B2! into ~B1! one obtains

EN5b(
k51

D

(
i 51

k S D
k D S k21

i 21 D ~21!k1 i 2122 i 2kp2 i /2z~ i 11!
G~ i !

GS i

2D
52b(

i 51

D

p2 i /2z~ i 11!
G~ i !222i

GS i

2D ~ i 21!!
(
k5 i

D S D
k D ~k21!¯~k2 i 11!S 21

2 D k2 i

~B3!

where we used the equality (21)k1 i 2152(21)k2 i . Note the change in the limits of the doub
sum, i.e.,k runs now fromi to D and i runs now from 1 toD. This change does not affect th
double sum because one obtains the same pairs (k,i ). To show thatEN is negative all we need to
show is that the sum overk in ~B3! is positive. The sum overk is

(
k5 i

D S D
k D ~k21!¯~k2 i 11!S 21

2 D k2 i

5S d

dxD
i 21

(
k51

D S D
k D xk21U

x521/2

5S d

dxD
i 21S ~x11!D21

x D U
x521/2

5S d

dyD
i 21 S yD21

y21 D U
y51/2

5S d

dyD
i 21

~yD211yD221¯11!U
y51/2

, ~B4!

wherey5x11. Clearly derivatives of the polynomialyD211yD221¯11 evaluated aty51/2
are positive. We therefore have shown that the Neumann Casimir energy is negative for all
of D ~assuming the dimensionD are positive integers!.
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Proof of a mass singularity free property
in high temperature QCD

T. Grandoua)

Institut Non Linéaire de Nice UMR CNRS 6618;
1361, Route des Lucioles, 06560 Valbonne, France

~Received 8 October 2002; accepted 12 November 2002!

It is shown that three series of diagrams entering the calculation of some hot QCD
process, are mass~or collinear! singularity free, indeed. This generalizes a result
which was recently established up to the third nontrivial order of~thermal! pertur-
bation theory. ©2003 American Institute of Physics.@DOI: 10.1063/1.1536255#

I. INTRODUCTION

During the past 14 years, a considerable amount of work has been devoted to the st
quantized fields at high temperature and/or chemical potential1 ~high temperature, e.g, mean
higher than any bare or renormalized mass involved in the theory!. The inherent non perturbativ
character of thermal quantum field theories has been recognized,2 and naive perturbation theorie
accordingly reorganized. This is achieved by means of a resummation program~RP!,3 which, in
the high temperature limit, must be used whenever one is calculating processes involving G
functions with soft external/internal lines. The soft scale is defined to be on the order ofgT where
T is the temperature andg some relevant and small enough coupling constant, so as todecide, at
least formally,4 of two separate hard~on the order ofT) and soft energy scales. The RP is giv
by effective Feynman rules, consisting of effective field propagators andn-points proper vertices
all at a given leading order of approximation which turns out to beg2T2, and is referred to as HTL
~hard thermal loops!. While HTL vertices are purely perturbative objects, effective propagators
not, as they give rise to pole residues and dispersion laws that do not admit perturbative
expansions in the coupling constant. In the course of practical calculations, effective propa
are easily handled, relying on analyticity properties and Cauchy’s theorem.

Endowed with most beautiful symmetries, the RP is an effective theory that has led
number of satisfying results,1 but has also met two serious obstructions, emanating both from
infrared (IR) sector.5,6

Now, resummations can in general be defined a number of consistent, still different wa
this article, we take advantage of a so-called perturbative resummation scheme, hereafter
PR for short, previously introduced7 in the context of the first obstruction,5 to address the problem
of the soft real photon emission rate of thermal QCD.6 This problem is the following. When us
is made of the resummation program to calculate the soft real photon emission rate, ou
quark–gluon plasma in thermal equilibrium, the answer comes out affected with a collinea
gularity. In the context of massless quantum field theories, it may be worth recalling that col
singularities8 manifest themselves as singularities of the angular integration, or equivalently, o
integration on the virtuality,P25p0

22p2, and are thus also called mass singularities. Though
different nature, mass/collinear singularities are regrouped with singularities of the integrati
three-momentaupW u, under the common spell of infrared singularities.

Several attempts to cure that IR disease have been proposed ever since,9 which, though
consistent at one loop order, encounter further important difficulties when extended to h
number of loop calculations.10 Our present work is motivated by a recent study of the probl
projected out on a toy model, with the conclusion that things come out very different accord

a!Electronic mail: grandou@inln.cnrs.fr
6110022-2488/2003/44(2)/611/30/$20.00 © 2003 American Institute of Physics
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the resummation scheme in use, RP or PR.11 Then, the case of interest, that is hot QCD, has b
studied in its first three nontrivial perturbative orders: Again, no collinear singularity did sho
in a PR resummation scheme. Moreover, both the questionable nature of that singularity,12 and the
very mechanism through which it comes about in an RP scheme, have been discovered th
an original comparison with the PR scheme.13

However encouraging, this first analysis of the QCD case has only been performed up to
loop order. In order to see if a PR resummation scheme has any chance to avoid that
problem, it is crucial to extend the proofs of Ref. 13 to any loop order, and this sets in, we
the strategical interest of the present analysis. By the same token, we note that the quite a
important collinear enhancement problem,10 which comes out of the latter if one tries to solve t
difficulty by introducing a so-called asymptotic thermal mass,m` ,9 is circumvented also.

The paper is organized as follows. Section II is a reminder of the collinear singularity pro
under consideration, while introducing elements and notations necessary to the next sect
Sec. III, topologies involving only bare vertices, withN(N8) HTL self-energy insertions along th
P(P8) internal fermionic lines, denoted by (N,N8;0), areinvestigated in details. To do so, th
matter of Ref. 7 is exploited so as to show that any (N,N8;0) imaginary part is mass singularit
free, or msf for short. The same property can be established concerning the contributions a
to (N,N8;1) topologies, with one HTL-vertex correction included, and this is Sec. IV. The re
of both preceding sections are obtained on the basis of purely technical calculations, but it
almost impossible to proceed further along this line of approach: For contributions of
(N,N8;2), involving two HTL-vertex corrections, functions at play are so complicated that
preclude any control of the ensuing integrals. Remarkably enough, though, Sec. III is a
provide enough information so as to initiate an efficient, global and conclusive approac
induction. On the other hand, used right from the onset, an induction procedure does not ap
be, by itself, fully conclusive. This efficient articulation of Sec. III calculational approach, to
induction process is the matter of Sec. V. All three series of diagrams are definitely sho
possess mass/collinear singularity free imaginary parts, in the end.

Our conclusions are gathered in Sec. VI, whereas an Appendix displays the technica
plexities encountered by a calculational approach to (N,N8;2)-type diagrams.

Throughout the article, we work in theR/A real time formalism, which is based on retarde
advanced free field functions.14 Also, we will be using the convention of upper case letters
quadrimomenta and lower case ones for their components, writing, for example,P5(p0 ,pW ). Our
conventions for labeling internal and external momenta can be read off Fig. 1.

II. THE SOFT REAL PHOTON EMISSION RATE OF HOT QCD

It is convenient to work in the real time formalism with retarded/advanced (R/A) field func-
tions, where a concise and elegant derivation of the famous collinear singularity can be achi15

The soft real photon emission rate is essentially related to the imaginary part of the qu

FIG. 1. A graph denoted by (N,N8;0), with N(N8) insertions of HTL self-energy along theP(P8)-line, and two bare
vertices2 iegm of ~2.4!.
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PRRm
m(Q), trace of the soft real photon polarization tensor, hereafter written asPR(Q). At pure

one loop order, this imaginary part is zero. However, when the photon is soft, this res
incomplete and the resummation program must be used instead of bare thermal pertu
theory. This amounts to keep the one loop diagram of ordinary perturbation theory, while rep
bare vertices and propagators by their HTL-dressed counterparts. In Feynman gauge, the r
expression reads~with nF , the Fermi–Dirac statistical factor, defined without absolute value!,

PR~Q!5 i E d4P

~2p!4 ~122nF~p0!! disc

3Tr$!SR~P!!Gm~PR ,QR ,2PA8 !!SR~P8! !Gm~PR ,QR ,2PA8 !%. ~2.1!

The discontinuity is to be taken in the energy variablep0 , by forming the difference ofR and
A-indiced P-dependent quantities. Within standard notations, the fermionic HTL self-ener
effective propagators and vertices are, respectively, given by

Sa~P!5m2E dK̂

4p

K”̂

K̂•P1 i ea

, m25CF

g2T2

8
, a5R,A, ~2.2!

!Sa~P!5
i

P”2Sa~P!
, ~2.3!

!Gm~Pa ,Qb ,Pd8!52 ie~gm1Gm
HTL~Pa ,Qb ,Pd8!!, ~2.4!

Gm
HTL~Pa ,Qb ,Pd8!5m2E dK̂

4p

K̂mK”̂

~K̂•P1 i ea!~K̂•P81 i ed!
, ~2.5!

where K̂ is the lightlike four vector (1,k̂). In the sequel, it will reveal extremely useful t
introduce a ‘‘self-energy four vector’’~of course, not a genuine Lorentz-4-vector!, by writing,
instead of standard expression~2.2!,

Sa~P! 5
~def!

S” a~P!5g•Sa~P!5gm m2E dK̂
4p

K̂m

K̂•P1 i ea
. ~2.6!

The RP basic steps entering the soft real photon emission rate calculation of thermal QCD
follows. In view of ~2.1! and ~2.4!, one gets three types of terms: A term with two bare verti
Gm

(0) , two terms with one bare vertexGm
(0) and the otherGm

HTL , and a term with two HTL vertices

Gm
HTL . In QCD, the first three terms pose no problem: Terms of second type entail a col

singularity which, thanks to aU(1)-Ward identity, cancels out with a similar singularity comin
from the last term. A residual collinear singularity remains though, induced by the latter, an
therefore focus on that particular contribution including two verticesGm

HTL . One gets

PR~Q!5 i E d4P

~2p!4 ~122nF~p0!! disc

3Tr$!SR~P!GHTL
m~PR ,QR ,2PA8 !!SR~P8!GHTLm~PR ,QR ,2PA8 !%. ~2.7!

Then substituing the relevant QCD expressions,~2.2!–~2.5!, one can write, with the conventio
eR51e,
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PR~Q!52 ie2m4E d4P

~2p!4
~122nF~p0!!

3E dK̂

4p
E dK̂8

4p
disc

K̂•K̂8 Tr~!SR~P!K”̂ !SR~P8!K”̂ 8!

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!
. ~2.8!

Because of the factorK̂•K̂8 appearing in the numerator, there is no double pole but a sim
collinear one atK̂5Q̂, whose residue just involes theU(1) Ward identity alluded to above, tha
is,

m2E dK̂8

4p

@Q̂•K̂8#K”̂ 8

~K̂8•P1 i e!~K̂8•P81 i e!
5

1

q
@S” R~P!2S” R~P8!# ~2.9!

and yields forPR(Q) the expression

2 i
e2m2

q
E d4P

~2p!4
~122nF~p0!!discE dK̂

4p

1

~K̂•P1 i e!~K̂•P81 i e!

3Tr~!SR~P!Q”̂ !SR~P8!@S” R~P!2S” R~P8!# !. ~2.10!

The discontinuity inp0 can be taken, and an appropriate choice of the integration contour i
p0-complex plane allows to write

PR~Q!522
e2m2

q
E d4P

~2p!3
~122nF~p0!!E dK̂

4p

d~K̂•P!

K̂•Q1 i e

3Tr~!SA~P!Q”̂ !SR~P8!@S” A~P!2S” R~P8!# !, ~2.11!

where a factor of 2 accounts for the two possibilitiesK̂5Q̂ and K̂85Q̂, and where the relation
P85P1Q has been used. The angular integration develops a collinear singularity atK̂5Q̂, and
is responsible for that singular part ofPR(Q) which can be expressed as

22
e2m2

q
S E dK̂

4p

1

Q•K̂1 i e
D E d4P

~2p!3
d~P•Q̂!~122nF~p0!!

3Tr~!SA~P!Q”̂ !SR~P8!@S” A~P!2S” R~P8!# !. ~2.12!

The two terms involving one bare vertexgm and a one loop HTL correctionGm
HTL , entail a similar

singularity which, when combined with~2.12!, leave uncancelled thePR(Q) singular contribution

22i
e2m2

q2 S E dK̂

4p

1

Q̂•K̂1 i e
D E d4P

~2p!3
d~P•Q̂!~122nF~p0!!

3@Tr~!SA~P!Q”̂ !2Tr~!SR~P8!Q”̂ !#. ~2.13!

It is this result which, in the literature6 is most usually written in the form
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Cst

« E d4P

~2p!4 d~Q̂•P!~122nF~p0!! (
s561,V5P,P8

pS 12s
v0

v Dbs~V!, ~2.14!

where the overall 1/« results of a dimensionally regularized evaluation of the factored out ang
integration of ~2.13!, and wherebs(V) is related to the effective fermionic propagator usu
parametrization,16

!SR,A~P!5 i (
s561

P”̂s

DR,A
s ~p0 ,pW !

~2.15!

with Pŝ5(1,sp̂), the labels referring to the two dressed fermion propagating modes. Then
has

1

DR,A
s ~V!

5as~V!7 ipbs~V!. ~2.16!

III. SELF-ENERGY DIAGRAMS, OF TYPE „N, N8; 0 …

The imaginary part of a general term of type (N, N8; 0), depicted in Fig. 1, can be written

2e2E d4P

~2p!4 ~122nF~p0!!TrP” discPS ~S” R~P!P” !N

~P2!N11 DP”8 discP8S ~S” R~P8!P”8!N8

~P82!N811 D , ~3.1!

where the ‘‘self-energy four-vector’’~2.2! has components,

Sa
0~P!5

m2

2p
lnS p01p

p02pD , Sa
i ~P!5S pW i

p
[ p̂i D m2

p
Q1S p0

p D ~3.2!

with Q1 standing for the Legendre function of the second kind

Q1~x!5xQ0~x!21, Q0~x!5
1

2
lnS x11

x21D . ~3.3!

The labela5$R,A% denoting one of the two retarded or advanced specifications of the real
formalism being used, in the right-hand sides of~3.2! these specifications are encoded in t
logarithmic determinations.

It is elementary to prove that one has

~S” RP” !N5aNS” RP”1bNI4 , ~3.4!

where I4 is the 434 identity matrix, and the coefficientsaN and bN are polynomials in the
variablesP•SR(P)5m2 and2P2SR

2 whose formation laws can be found to be given by

aN5~m2!N21 (
j 50

j M(N)

CN
2k11S 12

P2S2

m4 D k

, ~3.5!

bN5~m2!NS 2
P2S2

m4 D (
j 50

j M(N21)

CN21
2k11S 12

P2S2

m4 D k

. ~3.6!

The CN
2k11 are the binomial coefficients, andj M , the maximal value ofj can be expressed as

j M~N!5
~N212Q~~21!N!!

2
, ~3.7!
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whereQ(x) is the usual Heaviside step function.
Because of the decomposition law~3.4!, four types of trace factors are found, that are

4P•P8, ~3.8!

8m2P•P824P2P8•SR~P! 1 ~P↔P8!, ~3.9!

~3.9!~P↔P8!, ~3.98!

~2m2!24P•P82~8m2P82P•SR~P8!1~P↔P8!!14P2P82SR~P!•SR~P8!. ~3.10!

We will therefore begin with proving that integrals of the generic type

E d4P

~2p!4 ~122nF~p0!!discPS ~2P2SR
2~P!!n

~P21 i ep0!N11DdiscP8S ~2P82SR
2~P8!!n8

~P821 i ep08!N811 D ~3.11!

are mass singularity free, or msf, for short. Then, since all of the trace factors~3.8!–~3.10! come
into play as multiplicative functions of the integrands appearing in~3.11!, we will check that they
leave unaltered its msf character.

Integrals of generic type~3.11!: With y5q̂• p̂, whereq̂ andp̂ are the unit three vectors in th
directions ofqW and pW , respectively, integration ony can be traded for an integration on th
virtuality P8252x8p82(y) by writing

E
@~P212qp0/2qp!#

1

dy5
~p01q!2

2qp E
0

12 @(p01q)2/(p1q)2# dx8

~12x8!2 , ~3.12!

where the restrictions ony and x8 come from theQ(2P82) support of the distribution to be
folded in ~3.11!. Now, particular to the thermal context,17 so-called Lebesgue nonintegrable ma
~and/or IR! singularities do arise, which cannot be taken care of by means of a standard d
sional regularization procedure, and require that an extra IR regulator be introduced.18 This is
achieved by proceeding to the following replacement:

1

~P821 i ep08!N811
°

1

~P822m21 i ep08!N811
~3.13!

that is also,

d (N8)~P82!°d (N8)~P822m2!,
P

~P82!N811
°

P

~P822m2!N811
, ~3.14!

where, as shown in Ref. 7, Appendix B, the auxiliary IR regulatorm2, is chosen to be a smal
negative parameter, to be taken to zero in the end. Gathering pieces, integration ony can even-
tually be written as
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~m4!n8

~2m21~p01q!2!N811
~21!N811

~p01q!2

2qp E
0

12 @(p01q)2/(p1q)2# dx8

~12x8!2

3~12x8!N811 ~x8!n8H P

~x82l8!N811
ImS 211

x8

4
@e~p08!ln X8#21A12x8 @e~p08!ln X8# D n8

1pe~p08!
~21!N8

N8!
d (N8)~x82l8!ReS 211

x8

4
@e~p08!ln X8#21A12x8 @e~p08!ln X8# D n8J ,

~3.15!

where we have defined

l8 5
def 2m2

2m21~p01q!2, X8 5
defe~p08!A12x811

e~p08!A12x821
, ~3.16!

and wheree(p08) is the distribution ‘‘sign ofp08 . ’’ The remaining two integrations are onp
5upW u, and p0 , and the latter can be translated into an integration on the virtuality variablex5
2P2/p2.

Now, if we consider the integral,

E
2p

1p

dp0 ~122nF~p0!!discPS ~2P2SR
2~P!!n

~P21 i ep0!N11D ~3.17!

which enters~3.11! as a building block:

~3.11!5E p2 dp

~2p!3 E
2p

1p

dp0~122nF~p0!!discPS ~2P2SR
2~P!!n

~P21 i ep0!N11D 3~3.15!, ~3.18!

we get for~3.17! the expression

1

2
pS 21

p2 D N11

~m4!n (
e(p0)561

E
0

1 dx

A12x
~122nF~e~p0!pA12x!! xnH P

~x2l!N11

3ImS 211
x

4
@e~p0!ln X#21A12x@e~p0!ln X# D n

1pe~p0!
~21!N

N!
d (N)~x2l!

3ReS 211
x

4
@e~p0!ln X#21A12x@e~p0!ln X# D nJ ~3.19!

with the definitions,

l 5
def2m2

p2 , X5
defe~p0!A12x11

e~p0!A12x21
. ~3.20!

Eventually, an integration onp must be performed, which can symbolically be written as

E
pm

p! p2 dp

~2p!3 3G~p,q,m!. ~3.21!

An upper bound of integration onp is introduced so as to avoid the hard regionp5O(T) ~a
customary choice consists in takingp! on the order of an intermediate scale, say, on the orde
AgT), whereas the lower boundary,pm , not relevant to our concern here, will be discuss
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elsewhere.19 Note that in~3.15! and ~3.19!, we have written between brackets expressions of
form @e(p0)ln X#. This is because, irrespective of the sign ofp0 , these expressions can be writte
with the help of a most efficient representation7,11,13

e~p0!ln X~p0!5e~2p0!ln X~2p0!5 lim
«50

1

« S 12
x«eip«

~11A12x!2«D . ~3.22!

Thanks to thex« factor, this representation is able to provide mass/collinear singularities with
same regularization as a dimensional one would operate, while being far simpler. It is als
dowed with interesting regularity properties, since, in particular, the limit«50, commutes with
both the sum overN and integral onp0 .7

Using ~3.22!, one obtains an expansion

S 211
x

4
@e~p0!ln X#21A12x@e~p0!ln X# D n

5(
i 50

n

Cn
i ~21! i S x

4D n2 i

(
k50

i

Ci
k~21!kA12xk3

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m

3~21!m
eipm«xm«

~11A12x!2m«
~3.23!

which can be put back into~3.19!. Introducing the following family of functions:

Fk21,m~m«,x!5
A12xk21

~11A12x!2m«
~122nF~e~p0!pA12x!! ~3.24!

we note that it is convenient to proceed as for the moving fermion damping rate problem,7 keeping
the leading order term of the statistical weight high temperature expansion

Fk21,m~m«,x!5
pe~p0!

2T

A12xk

~11A12x!2m«
~11O~g2!! 5

def pe~p0!

2T
Fkm~m«,x! ~11O~g2!!.

~3.25!

Though no way mandatory~the same results being obtained otherwise!, this simplification is
consistent with the leading order calculation we are concerned with, preserves the correct p
p0 , and allows to recognize inFkm the same expression as defined in Ref. 7, Eq.~7.2!. Whereof
we know that~3.19! is rigorously integrable and nonintegrable mass singularity free: The exp
sion ~3.19! can effectively be written as

1

4T
p2 S 21

p2 D N11

~m4!n (
e(p0)561

(
i 50

n

Cn
i ~21! i S 1

4D n2 i

(
k50

i

Ci
k~21!k

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m

3~21!mE
0

1

dx H P
Im~eipm«!

~x2l!N11 1Re~eipm«!pe~p0!
~21!N

N!
d (N)~x2l!J

3x2n2 i 1m«Fkm~m«,x! ~3.26!

which is Eq.~D.3! of Ref. 7. Mass singularities of thenonintegrabletype,O(1/l)k, cancel out
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E
0

1

dx H P
Im~eipm«!

~x2l!N11 1Re~eipm«!pe~p0!
~21!N

N!
d (N)~x2l!J x2n2 i 1 l 1m«

5
sin~pm«!

2n2 i 1 l 2N1m«
1O~l!, ~3.27!

whereasintegrablemass singularities obey arithmetical cancellation patterns thanks to the
tities

H «p

« j J 3 (
m50

j

Cj
m~21!m mp50, 1<p< j 21, ~3.28!

(
m50

j

Cj
m~21!mmj5~21! j j ! ~3.29!

It can even be shown~Appendix D of Ref. 7! that ~3.26! defines a mapping ofC3C into C which

is analytic for~«, l! choosen in the product of discsD(0,1/2N)3D(0,1
2). The limit «50,l50

therefore exists and is independent of the sequence along which it is taken.
The entirely new feature is of course that the integrand appearing in~3.19!, gets supplied,

now, with the extra function~3.15!. Considered as a function ofx, the properties of~3.15! are
therefore crucial in order to address the ensuing behavior of generic type~3.11! integrals, and this
is what we now turn to examine in the particular case of positive energies,p0.0, for the sake of
a simpler illustration.

As made obvious by inspection,~3.15! is essentially relevant of the same structure as d
played by~3.19!: Up to an overall multiplicative function ofp0 ,

~m4!n8

~2m21~p01q!2!N811

~p01q!2

2qp
~3.30!

the difference is entirely in the integration range

0<x8<xM8 ~x! 5
def

12
~p0~x!1q!2

~p1q!2 ~3.31!

instead of 0<x<1. Using the representation~3.22! for the expression@e(p08)ln X8#, and the
binomial expansion~3.23!, the same functions as in~3.25! can effectively be identified, with
accordingly, the same properties

F2(N821)1k8, m8 ~m8«8,x8!5
A12x82(N821)1k8

~11A12x8!2m8«8
. ~3.32!

In the limit of l850, we learn out of Ref. 7, thatLebesgue non-integrablemass singularities
cancel out: Up to the overall multiplicative factor~3.30!, one is left for the full expression~3.15!,
with an expression which still displays a finite series of Lebesgue integrable mass singula
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(
l 850

`
1

l 8! (
i 850

n8

Cn8
i 8 ~21! i 8 (

k850

i 8

Ci 8
k8~21!k8S g~p0!

~q1p!2

2P2 D N82(2n82 i 81 l 8)

3
1

«82(n82 i 8)1k8 (
m850

m852(n82 i 8)1k8

C2(n82 i 8)1k8
m8 ~21!m8

sin~pm8«8!

N82~2n82 i 81 l 8!2m8«8

3S g~p0!
~q1p!2

2P2 D 2m8«8
F2(N821)1k8, m8

( l 8)
~m8«8,0!, ~3.33!

where we have defined the function,

g~p0!5
def p1p0

p1p012q
512

2q

2q1p S 11
p

2q1p
A12xD 21

. ~3.34!

Type O(«82r)-mass singularities are thus controlled by the finite sum,

1

«82(n82 i 8)1k8 (
m850

m852(n82 i 8)1k8

C2(n82 i 8)1k8
m8 ~21!m8S x

g~p0! D
m8«8

3
sin~pm8«8!

N82~2n82 i 81 l 8!2m8«8
3S S p

p1qD 2D m8«8
3 F2(N821)1k8,m8

( l 8)
~m8«8,0!,

~3.35!

where the last term appearing in the right-hand side of~3.35!, stands for thel 8th-order derivative
of the function~3.32!, taken atx850. This means that, in deriving~3.35!, we have interchanged
the sum onl 8, in the Taylor expansion of~3.32!,

F2(N821)1k8, m8 ~m8«8,x8!5 (
l 850

`
~x8! l 8

l 8!
F2(N821)1k8, m8

( l 8)
~m8«8,0! ~3.36!

with the integration onx8. Such a permutation is proven to be licit in Ref. 7, Appendix C~note
that in the present situation, this permutation is the more licit, as the integration range~3.31! lies
within the unit convergence radius of the series expansion for the func
F2(N821)1k8, m8 (m8«8,x8)). Likewise, it is demonstrated@Eqs.~C.7!–~C.9!, ~C.12! of Ref. 7# that

each of the coefficientsF2(N821)1k8, m8
( l 8) (m8«8,0) admits a Taylor series expansion in the para

eterm8«8. Now, whateverN8 and 2n82 i 81 l 8, the same property holds clearly true, for any

the other three factors of~3.35! which, with F2(N821)1k8, m8
( l 8) (m8«8,0), enter the sum overm8.

Then, forming the Cauchy’s product of theirm8«8-Taylor series expansions, and relying o
the set of arithmetical identities~3.28! and ~3.29!, we conclude that the«850 limit of ~3.35! is
msf, and reduces to a polynomial of degree 2(n82 i 8)1k8 in the variable ln(x/g(p0)),

lim
«850

~3.35!5~21!2(n82 i 8)1k8 (
j 850

2(n82 i 8)1k8

C2(n82 i 8)1k8
j 8 H (2(n82 i 8)1k82 j 8)~0! lnj 8S x

g~p0! D ,

~3.37!

whereH (2(n82 i 8)1k82 j 8)(0), a pure ~real! number, is a shorthand notation for the derivative
order (2(n82 i 8)1k82 j 8), taken atm8«850, of the product

sin~pm8«8!

N82~2n82 i 81 l 8!2m8«8
3 S S p

p1qD 2D m8«8
3 F2(N821)1k8,m8

( l 8)
~m8«8,0!. ~3.38!
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Gathering all pieces, the whole expression~3.15! can eventually be written as

2
~m4!n8

~2m21~p01q!2!N811

~p01q!2

2qp
3 (

l 850

`
~21! l 8

l 8! (
i 850

n8

Cn8
i 8 S g~p0!

~q1p!2

1P2 D N82(2n82 i 81 l 8)

3 (
k850

i 8

Ci 8
k8 (

j 850

2(n82 i 8)1k8

H (2(n82 i 8)1k82 j 8)~0! lnj 8S x

g~p0! D . ~3.39!

Getting back to~3.18!, one is now in a position so as to estimate the incidence on~3.19! of any of
the extrax-dependences which are introduced by~3.39!.

For positive~as well as negative! energies, the auxiliary IR regulator2m2 can safely be taken
to zero in the prefactor of~3.39!, and the latter expanded as

2~m4!n8

~2m21~p01q!2!N811

~p01q!2

2qp
52

~m4!n8

2pq (
r 50

`

Ck~N8,p,q! ~A12x! r , ~3.40!

where it is easy to check that the existence of~3.40! does not depend on the relative magnitude
p and q, contrarily, of course, to the explicit form of the coefficientsCk(N8,p,q). The same
property is obviously shared by the function

g~p0!N82(2n82 i 81 l 8)5S 12S 2q

2q1pD 1

11
p

2q1p
A12xD N82(2n82 i 81 l 8)

. ~3.41!

Eventually, such is also the case of factors like

S ln
1

g~p0! D
r 8

5~21!r 8 lnr 8S 12S 2q

2q1pD 1

11
p

2q1p
A12xD . ~3.42!

The product of terms~3.40!–~3.42! can therefore be written as a series in the variableA12x,
whose general term, no matters how complicated, just redefines the integer powerk of the function
Fkm(m«,x) introduced in~3.25!. The properties of~3.25! are thus left the same, and the ext
x-dependences introduced through~3.40!–~3.42! preserve the msf character of~3.19!.

The extra factors of~3.39!,

S ~q1p!2

P2 D N82(2n82 i 81 l 8)

~3.43!

redefine the powerN11 of the scalar propagator appearing in~3.11!, according to the replacemen

1

~P22m21 i ep0!N11 °
1

~P22m21 i ep0!N111N82(2n82 i 81 l 8)
.

This splits into the distributions

d (N1N82(2n82 i 81 l 8))~P22m2! ,
P

~P22m2!N111N82(2n82 i 81 l 8)

which, with respect to the previous power ofN11, require extra differentiability of thex depen-
dences they act upon. Now, this condition is clearly met thanks both to a full identification o
new x dependences brought about by~3.39!, and to the introduction of the auxiliary IR regulato
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l52m2/p2 of ~3.20!. Since, atN>2n2 i 1 l 11 ~which is just the condition for the occurrence
mass singularities!, the overall compensation of mass singularities does not depend on the re
magnitude of the integersN11 and 2n2 i 1 l , in mass singularity compensation patterns of t
generic type,7

lim
«,l50

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m ~21!mFkm

( l ) ~m«,0!E
0

1

dx H P
Im~eipm«!

~x2l!N11

1Re~eipm«!pe~p0!
~21!N

N!
d (N)~x2l!J x2n2 i 1 l 1m« 5O~1! ~3.44!

we deduce that the same mass singularity compensations hold true of~3.44!, with N111N8
2(2n82 i 81 l 8) replacingN11, and that extra factors of type~3.43! are msf preserving.

Eventually, the last extrax-dependences introduced into~3.18! by ~3.39!, are the functions

lnr 8 x , r 8PN , 0<r 8<2~n82 i 8!1k8. ~3.45!

Previous patterns~3.44! are now taken to the form

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m ~21!mFkm

( l ) ~m«,0!E
0

1

dx H P
Im~eipm«!

~x2l!N11

1Re~eipm«!pe~p0!
~21!N

N!
d (N)~x2l!J x2n2 i 1 l 1m« lnr 8 x. ~3.46!

As in ~3.22!, we introduce the representation

lnr 8 x5 lim
«̂50

~21!r 8

«̂ r 8 (
s850

r 8

Cr 8
s8~21!s8~x!s8«̂ ~3.47!

and interchange the sum ons8, which is finite, with the integration onx. In the limit l50, we get
first the expression,7

~21!r 8

«̂ r 8 (
s850

r 8

Cr 8
s8~21!s8

2sin~pm«!

N2~2n2 i 1 l !1m«1s8«̂
1O~l!. ~3.48!

At N>2n2 i 1 l 11, such a factor admits ans8«̂-Taylor series expansion, so that relying o
arithmetical identities~3.28! and~3.29!, the«̂50-limit of ~3.48! is readily obtained to be given b

S sin~pm«!

N2~2n2 i 1 l !1m«1s8«̂ D
us8«̂ 50

(r 8)

5~21!r 8r 8!
sin~pm«!

~N2~2n2 i 1 l !1m«!r 811
. ~3.49!

At its turn, ~3.49! admits itself a Taylor series expansion in the variablem«. Since the whole
expression~3.46! factors out a global factor of

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m ~21!mFkm

( l ) ~m«,0! ~3.50!

the «50-limit of ~3.46! is finite in view, again, of arithmetical identities~3.28! and ~3.29!, and
extra factors of type~3.45! are msf-preserving too.

We thus reach the conclusion that generic type~3.11! integrals are msf. Now, getting back t
the mass singularity issue of (N,N8;0) self-energy diagrams, it is immediate to realize that all
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the trace factors~3.8!–~3.10! only involve x(x8), A12x(A12x8), and@e(p0)ln X#(@e(p08)ln X8#)
msf-preserving dependences~some of them will be treated in full details in next Sec. V!, as, for
example, the most involved piece of~3.10!,

4P2P82SR~P!•SR~P8!54p~p01q!
xx8

12x8
~m2!2Q0S p0

p D A12x8 Q0S p08

p8
D

24p
xx8

12x8
~m2!2Q1S p0

p D
3Q1S p08

p8
D H p~12x8!1

q

2 S p

q
1

q

pD x81S qA12x2
p

2
xD J .

Since the same analysis can be carried through in the case of negative energies,
conclude that (N,N8;0) self-energy diagrams have collinear singularity free imaginary parts

IV. DIAGRAMS OF TYPE „N, N8; 1 …, WITH ONE EFFECTIVE VERTEX

Using ~3.4!, the trace factors associated with diagrams of type (N, N8; 1), depicted in Fig. 2,
are easily obtained to be

8 ~K̂•P!~K̂•P8!, ~4.1!

16m2 ~K̂•P!~K̂•P8!28P2K̂•P8K̂•SR~P!, ~4.2!

~4.2!~P↔P8!, ~4.28!

8~2m2!2 ~K̂•P!~K̂•P8!28~2m2!~P2K̂•P8K̂•SR~P!1~P↔P8!!

18P2P82K̂•SR~P!K̂•SR~P8!. ~4.3!

In (N, N8;1)-type diagrams, each of the trace factors~4.1!–~4.3! must be integrated overK̂ with
the ‘‘measure,’’

m2E dK̂

4p

1

~K̂•P1 i e!~K̂•P81 i e!
. ~4.4!

Then the above trace factors yield, respectively,

FIG. 2. A graph denoted by (N,N8;1), with N(N8) insertions of HTL self-energy along theP(P8)-line, one bare vertex
2 iegm , and one HTL vertex correction~2.5!.
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8m2, ~4.5!

16m428P2SR
2~P!, ~4.6!

~4.6!~P↔P8!, ~4.68!

8m2S ~2m2!222~P2SR
2~P!1~P→P8!!1P2P82E dK̂

4p

K̂•SR~P!

K̂•P1 i e

K̂•SR~P8!

K̂•P81 i e
D . ~4.7!

One may observe that the trace factors of (N,N8;0) diagrams are more involved than tho
attached to diagrams of type (N, N8; 1). In particular, it should be clear that at the exception
the last term of~4.7!, all of the factors appearing in~4.5!–~4.7! will preserve the msf character o
type ~3.11! integrals.

That is, the whole mass singularity issue of (N, N8;1) contributions is entirely in the inci-
dence, upon generic type~3.11! integrals, of the very function

E dK̂

4p

K̂•SR~P!

K̂•P1 i e

K̂•SR~P8!

K̂•P81 i e
. ~4.8!

As it stands,~4.8! can be calculated with the help of the three angular identities,

E dK̂

4p

K̂0K̂0

~K̂•R1 i e!2
5

1

R21 i er 0

, ~4.9!

E dK̂

4p

K̂0K̂ i

~K̂•R1 i e!2
5 r̂ iS 21

2r 2
lnS r 01r

r 02r
D 1

r 0

r

1

R21 i er 0
D , ~4.10!

E dK̂

4p

K̂ i K̂ j

~K̂•R1 i e!2
52

gi j

r 2
Q1S r 0

r
D 2 r̂ i r̂ j S 3

r 2
Q1S r 0

r
D 2

1

R21 i er 0
D , ~4.11!

where a Feynman parameter,s, has been introduced so as to rewrite~4.8! as

Sm~P!S~P8!n E
0

1

dsE dK̂

4p

K̂mK̂n

~K̂•R~s!1 i e!2
~4.12!

with

R~s!5P1sQ. ~4.13!

At this point, and though not immediately relevant to our concern, the following remark may
order.

Some years ago, the use of a Feynman parametrization in thermal quantum field theor
been questioned.20 Feynman parametrization was suspected delicate, using, for example,
propagator determinations different from the usual1 i e-Feynman’s one. Of course, passing fro
~4.8! to ~4.12!, this situation is not encountered, but the difficulty may come about, in particul
a real time formalism using retarded/advanced propagator prescriptions. The solution to th
ficulty has been given in Ref. 21. Later on, it has even been suggested that using a Fe
parametrization in a hot quantum field context could lead to nongauge invariant results.22 This
latter statement however was erroneous, based on incorrect calculations, and indeed, tak
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modification of Ref. 21 into account, it must be stated that there is definitely no problem in de
with Feynman parametrizations in nonzero temperature quantum field theories.

Getting back to~4.8!, a shortcut to its calculation consists in writing,

K̂•SR~P!

K̂•P1 i e
5

m2

p2
Q1S p0

p
D 1

m2

p
S p0

p
2

1

2

P2

p2
ln XD 1

K̂•P1 i e
~4.14!

from which a remarkable relation may be deduced,

m2E dK̂

4p

K̂•SR~P!

K̂•P1 i e
5SR

2~P! ~4.15!

and likewise, in obvious notations,

~4.8!5
m2

p2 Q1

m2

p82 Q181S m2

p2 Q1

m2

p8
S p08

p8
2

1

2

P82

p82 ln X8D 1

2p8
ln X811~P↔P8! D

1
m2

p S p0

p
2

1

2

P2

p2 ln XD m2

p8
S p08

p8
2

1

2

P82

p82 ln X8D 1

2Q•P1 i eq0
ln

P821 i ep08

P21 i ep0
,

~4.16!

where identity~4.9! only, has been used. Noting that 2Q•P5P822P2, one recovers in~4.16! the
full original symmetry of~4.8! under the exchangeP↔P8. Since the terms appearing in~4.16!
just redefine the integer numbersk(k8), n(n8) and 2(n2 i )1k (2(n82 i 8)1k8), they leave to-
tally unaffected the msf structures of Sec. III. The only new feature is the factorQ
•P)21 ln P82/P2. As observed in Ref. 13 for the topology~1, 1; 1!, this factor is reminiscent of the
collinear singularity plaguing (N,N8;1) diagrams at the light cone, when an RP treatment of
problem is adopted.

In the end, recalling that~4.8! comes out affected with a multiplicative factor of 8m2P2P82,
this means that expressions

E d4P

~2p!4
~122nF~p0!!S ~2P82SR

2~P8!!n8

~P821 i ep08!N8 D
3discS ~2P2SR

2~P!!n

~P21 i ep0!N D E dK̂

4p

K̂•SR~P!

K̂•P1 i e

K̂•SR~P8!

K̂•P81 i e
~4.17!

do have msf imaginary parts, if integrals

E d4P

~2p!4 ~122nF~p0!!
~2P82SR

2~P8!!n8

~P821 i ep08!N8
disc

~2P2SR
2~P!!n

~P21 i ep0!N

1

2Q•P1 i eq0
ln

P821 i ep08

P21 i ep0

~4.18!

have msf imaginary parts either. That it is so can be demonstrated quite easily. Howe
byproduct of the next section will provide this statement with a systematic derivation, so th
can here content ourselves with a heuristic, still instructive argument.

The potential collinear singularity due to the HTL vertex comes from the factor (1/2Q•P), as
Q•P reaches zero. For example, in the RP calculation of Sec. II, we learn out of Eqs.~2.12!–
~2.14!, that the collinear singularity expression effectively involves ad(P•Q) constraint. Now, as
Q•P tends to zero, one has indeed
                                                                                                                



opa-

ass

. 5,
rtex
singu-
In an

st
ouble

ld

626 J. Math. Phys., Vol. 44, No. 2, February 2003 T. Grandou

                    
1

2Q•P1 i eq0
ln

P212Q•P1 i ep08

P21 i ep0
.

1

P21 i ep0
~4.19!

and this light cone potentially singular behavior obviously gets mixed with partial effective pr
gatorSR

(N)(P) own light cone potentially singular behavior,

P2SR
(N)~P!5P2

i P”~S” R~P! P” !N

~P21 i ep0!N11 ~4.20!

the whole just boiling down to a simple shift of power,

P2
1

~P21 i ep0!N11 ° P2
1

~P21 i ep0!N12 .

From Sec. III, Eqs.~3.43!–~3.44!, we know that the overall detailed balance compensation of m
singularities is preserved by such a shift, and this is how we can see that (N,N8;1) contributions
to the soft real photon emission rate are msf.

This generalizes to any (N,N8;1) contribution, the observation first made in Ref. 13, Sec
for the diagram~1, 1; 1!, and simply enforces the conclusion we drew then, that HTL ve
collinear singularities should not be desentangled from partial effective propagator mass
larities, as they all mix up into structural patterns which grant their overall compensations.
RP resummation scheme, unfortunately, a dissociation of Eqs.~4.19! and~4.20! potentially singu-
lar behaviors is achieved right from the onset. There, in effect, the sum overN being performed
before the integration onp0 , partial effective propagatorsSR

(N)(P), get replaced by full effective
ones,!SR(P), whose poles, contrarily toSR

(N)(P)-poles, are no longer lightlike atP2.0, but
timelike, at p056vs(p)1. It results that the light cone singular behavior of~4.19! remains
isolated, with no other singular behavior to cancel with.

V. TWO EFFECTIVE VERTEX DIAGRAMS „N, N8; 2 …

We now turn to the analysis of (N, N8;2) topologies depicted in Fig. 3, which are the mo
important to consider, the famous collinear problem of hot QCD being induced by these d
effective vertex insertions.

In Ref. 13, it was shown that~1, 0; 2! is singularity free. While an encouraging result, it wou
certainly be preposterous to take it for granted that the property trivially extends to any (N, N8;2)
diagram, and in our opinion, this is why the present analysis had to be undertaken.

The contribution toPR(Q) of a diagram (N, N8;2) reads

FIG. 3. A graph denoted by (N,N8;2), with N(N8) insertions of HTL self-energy along theP(P8)-line, and two HTL
vertex corrections~2.5!.
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PR
(N,N8;2)~Q!5 ie2m4E d4P

~2p!4
~122nF~p0!!E dK̂

4p
E dK̂8

4p
K̂•K̂8

3disc TrSP”
~S” R~P! P” !N

~P21 i ep0!N11
K”̂ P” 8

~S” R~P8! P”8!N8

~P821 i ep08!N811
K”̂ 8D

3
1

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!
. ~5.1!

Expanding the (S” R(P)P” )N factors as in~3.4!, four types of traces come about,

4~2K̂•PK̂8•P82K̂•K̂8P•P8!, ~5.2!

8m2~2K̂•PK̂8•P82K̂•K̂8P•P8!24P2~2K̂•SK̂8•P82K̂•K̂8P8•S!, ~5.3!

8m2~2K̂•PK̂8•P82K̂•K̂8P•P8!24P82~2K̂•S8K̂8•P2K̂•K̂8P•S8!, ~5.4!

~2m2!2~8K̂•PK̂8•P824K̂•K̂8P•P8!28m2P82~2K̂•S8K̂8•P2K̂•K̂8P•S8!

28m2P2~2K̂•SK̂8•P82K̂•K̂8P8•S!14P2P82~2K̂•SK̂8•S82K̂•K̂8S•S8!.

~5.5!

Integrated on both lightlike vectorsK̂,K̂8, the first trace~5.2! yields the expression

8

m4 S•S824P•P8W2~P,P8!, ~5.6!

whereW2(P,P8) is the double vertex function met in Ref. 13,

W2~P,P8!5E dK̂

4p
E dK̂8

4p

~K̂•K̂8!2

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!
. ~5.7!

The second trace~5.3! gives

2m23~5.6!24P2H 2

m2 E dK̂

4p

~K̂•S!2

~K̂•P1 i e!~K̂•P81 i e!
2P8•S W2~P,P8!J . ~5.8!

The third trace~5.4! gives the same as~5.8! with P andP8 interchanged,

2m23~5.6!24P82H 2

m2 E dK̂

4p

~K̂•S8!2

~K̂•P1 i e!~K̂•P81 i e!
2P•S8 W2~P,P8!J . ~5.9!

Eventually, the fourth trace~5.5! yields

2~2m2!23~5.6!12m23~5.8!12m23~5.9!24P2P82 S•S8W2~P,P8!

18P2P82E dK̂

4p
E dK̂8

4p

~K̂•K̂8!~K̂•S!~K̂8•S8!

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!
.

~5.10!
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To summarize, the whole expression~5.1! reads

PR
(N,N8;2)~Q!5 ie2m4E d4P

~2p!4 ~122nF~p0!!
1

~P821 i ep08!N811
3disc

1

~P21 i ep0!N11

3$bNbN83~5.6!1aNbN83~5.8!1bNaN83~5.9!1aNaN83~5.10!%,
~5.11!

where the coefficientsaN ,bN , polynomials of degreej M(N) and j M(N)11 in the variable
2P2S2/m4, respectively, are given in~3.5! and ~3.6!. That is, one must again investigate th
incidence upon generic type~3.11! integrals, of the new multiplicative functions appeari
through ~5.6!–~5.10!. For example, we quote that an expression like~5.6! will contribute
(N,N8;2) a quantity,

~m2!N1N8 (
j 50

j M

CN21
2 j 11 (

j 850

j M8

CN821
2 j 811 (

n50

j

Cj
n21 (

n850

j 8

Cj 8
n821

3 ie2m4E d4P

~2p!4 ~122nF~p0!!

3
1

~m4!n1n8

~2P82S82!n8

~P821 i ep08!N811
disc

~2P2S2!n

~P21 i ep0!N11 S 8

m4 S•S824P•P8W2~P,P8! D ,

~5.12!

where the sums overj andn, which are finite, have been interchanged with the integral onP.
Actually, things may be further reduced, and this helps identify the new mutiplicative f

tions that come out to be specific to the double effective vertex diagrams. To do so, we can
use of the relation

E dK̂

4p

~K̂•S!2

~K̂•P1 i e!~K̂•P81 i e!

5
1

p2
Q1S p0

p
D S•S81

m2

p
S p0

p
2

1

2

P2

p2
ln XD m2

p2
Q1S p0

p
D 1

2p8
ln X8

1S m2

p
S p0

p
2

1

2

P2

p2
ln XD D 2

1

2Q•P1 i eq0

ln
P212Q•P1 i ep08

P21 i ep0

~5.13!

and of a similar one, withP8 andP interchanged, and likewise,

E dK̂

4p
E dK̂8

4p

~K̂•K̂8!~K̂•S!~K̂8•S8!

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!

5
1

p2
Q1S p0

p
D 1

p82
Q1S p08

p8
D S•S81

m2

p2
Q1S p0

p
D m2

p82
Q1S p08

p8
D

3S 1

p
S p0

p
2

1

2

P2

p2
ln XD 1

2p8
lnX81~P↔P8!D

1S 1

p82
Q1S p08

p8
D S m2

p
S p0

p
2

1

2

P2

p2
ln XD D 2

1

2Q•P1 i eq0

ln
P212Q•P1 i ep08

P21 i ep0

1~P↔P8!D
1S m2

p
S p0

p
2

1

2

P2

p2
ln XD D S m2

p8
S p08

p8
2

1

2

P82

p82
ln X8D D W1~P,P8!, ~5.14!
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whereW1(P,P8) is another double effective vertex function, not encountered in Ref. 13,

W1~P,P8!5E dK̂

4p
E dK̂8

4p

~K̂•K̂8!1

~K̂•P1 i e!~K̂•P81 i e!~K̂8•P1 i e!~K̂8•P81 i e!
. ~5.15!

Deriving ~5.13! and ~5.14!, identities~4.9! and ~4.14! only, have been used. As expected on t
basis of general gauge invariance arguments,15 ~5.13! and ~5.14! entail some potential collinea
structures similar to those found in the case of one effective vertex diagrams~4.16!. Now, a
comparison with the previous cases of (N, N8;0) and (N, N8;1), also allows to identify withW1

andW2 , the new extra mutiplicative functions that come out to be specific to the double effe
vertex diagrams, (N, N8;2).

But it seems difficult to proceed further : As shown in the Appendix, an explicit calculatio
functionsW1 andW2 is able, relying this time, on the full set of angular identities~4.9!–~4.11!.
Results, however, come out so cumbersome that controlling the ensuing integrals onx8 and onx,
is rendered extremely hazardous. In order to prove that~5.11! does have an msf imaginary part, w
must therefore proceed differently, and construct a proof by induction.

We consider the contribution toPR(Q) of the diagram (N12,N8;2). It is,

PR
(N12,N8;2)~Q!58ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

1

~P2!R
N13

3E
0

xM8 dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~P”~S” RP” !N12 K”̂ P”8~S” R8 P”8!N8K”̂ 8!

~K̂•P!R~K̂•P8!R~K̂8•P!R~K̂8•P8!R

,

~5.16!

where some obvious shorthand notations have been introduced so as to alleviate too large
sions,

E dK̂

4p
E dK̂8

4p
[E

K̂,K̂8
,

1

P21 i ep0

[
1

~P2!R

, SR~P![SR , SR~P!8

[SR8 ,
1

P821 i ep08
[

1

~P82!R

,
1

K̂•P1 i ep0

[
1

~K̂•P!R

. ~5.17!

Having,

~S” RP” !252m2S” RP”2P2SR
2I4 , ~5.18!

Eq. ~5.16! may be written as

8ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T H disc
2m2

~P2!R
N13

3E
0

xM8 dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~¯~S” RP” !N11

¯ !

~K̂•P!R ¯~K̂8•P8!R

2disc
SR

2

~P2!R
N12 E0

xM8 dx8

~P82!R
N811

3E
K̂,K̂8

K̂•K̂8
Tr~¯~S” RP” !N

¯ !

~K̂•P!R ¯~K̂8•P8!R
J , ~5.19!
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where the dots stand for all of those factors which are left the same as in~5.16!. Next, we can form
the difference of~5.16! with the first term of~5.19!, obtaining

8ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

1

~P2!R
N13

3E
0

xM8 dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~¯$~S” RP” !N1222m2~S” RP” !N11% ¯ !

~K̂•P!R ¯ ~K̂8•P8!R

.

~5.20!

This difference is, of course, also given by

28ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

S2

~P2!R
N12

3E
0

xM8 dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~¯~S” RP” !N

¯ !

~K̂•P!R ¯~K̂8•P8!R

. ~5.21!

Our induction hypothesis is that (N11,N8;2) is endowed with an msf imaginary part, that is, t
expression

8ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

1

~P2!R
N12

3E
0

xM8 dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~¯~S” RP” !N11

¯ !

~K̂•P!R ¯~K̂8•P8!R

. ~5.22!

We will need the following result: Let there beS(2)(q,p;p0) some function, such that, for a
integersk and l , and all integersi andn, with 0<n2 i , the following finite sum of integrals,

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m ~21!mFkm

( l ) ~m«,0!E
0

1

dx H P
Im~eipm«S(2)~q,p;p0!!

~x2l!N11

1pe~p0!
~21!N

N!
d (N)~x2l! Re~eipm«S(2)~q,p;p0!!J x2n2 i 1 l 1m« ~5.23!

has msf imaginary part in the limitsl50 and«50, with no further specifications required.7 Then
we claim that so is the case of the finite sum of integrals,

1

«2(n2 i )1k (
m50

2(n2 i )1k

C2(n2 i )1k
m ~21!mFkm

( l ) ~m«,0!E
0

1

dxH P
Im~eipm« S(2)~q,p;p0!3SR

2~P!!

~x2l!N11

1pe~p0!
~21!N

N!
d (N)~x2l! Re~eipm«S(2)~q,p;p0!3SR

2~P!!J x2n2 i 1 l 1m« ~5.24!

with

SR
2~P!5

m4

p2 S 211
x

4
@e~p0!ln X#21A12x@e~p0!ln X# D . ~5.25!
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Before we proceed further, the relation of structural patterns~5.23! @and ~5.24!#, with a general
term (N, N8;2) is worth making explicit. This is achieved by noting that the imaginary par
(N, N8;2) can be written as

8e2m4E p2 dp

~2p!2 (
e(p0)561

E
0

1 dx

2p

p0~x!

2T
discP

aNSa
(2)1bNSb

(2)

~P2!R
N11 ~5.26!

with p0(x)5e(p0)pA12x, andS(2)(q,p;p0) the distributions,

Sa
(2)~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~P”$S” RP”% K”̂ P”8~S” R8P”8!N8K”̂ 8!

~K̂•P!R ¯ ~K̂8•P8!R

,

~5.27!

Sb
(2)~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811 EK̂,K̂8

K̂•K̂8
Tr~P”$I4%K”̂P”8~S” R8 P”8!N8K”̂ 8!

~K̂•P!R ¯ ~K̂8•P8!R

.

~5.28!

In the R/A real time formalism we are using, the imaginary part of (N, N8;2) is effectively
obtained out of~5.1!, by forming the difference~divided by a factor of 2! of retarded and advance
P8-lines. Whereof results~after integrating onx8) functions ofP which exhibit the features o
distributions rather than of ordinary functions. As displayed, for example, by~3.43! in the
(N,N8;0) case, the discontinuities inp0 of the S(2)(q,p;p0) may develop imaginary parts, an
this is why they appear inside the discontinuity prescription of~5.26!, and not simply factored out
as would be the overall real valued multiplicative functions.

The connection with patterns~5.23! and~5.24! is made complete by recalling that, in virtue o
~3.5! and ~3.6!, the coefficientsaN and bN are polynomials of degreej M(N) in the variable
(2P2SR

2/m4). We have then, for alln, 0<n< j M(N),

E
0

1

dx discPS ~2P2SR
2 !n S(2)

~P2!R
N11 D 5(

l 50

`
1

l ! (
i 50

n

Cn
i ~21! i S 1

4D n2 i

(
k50

i

Ci
k~21!k3~5.23!. ~5.29!

Now, the statement~5.23!–~5.24! is rather obvious indeed, because expression~5.25! is noth-
ing but a linear combination of terms whose general form reads

xa~A12x!b@e~p0!ln X#c , 0<a,b<1 , 0<c<2. ~5.30!

The first contribution of~5.25! to ~5.24!, is at a5b5c50, and up to an overall multiplicative
factor of 2m4/p2, leaves~5.23! the same as it is. The second contribution, is ata51,b50,c
52. Up to an overall multiplicative factor ofm4/4p2, this contribution leaves~5.23! unchanged,
but for the only modification brought about by the shift of integer numbern2 i ,

~n2 i ! ° ~n2 i !11. ~5.31!

The third contribution is ata50,b51,c51, and up to an overall multiplicative factor ofm4/p2,
it is entirely contained in the shift of integer numberk, with

k ° k11. ~5.32!

It results that, if~5.23! has an msf imaginary part, then, so does~5.24!. Somehow conversely, th
very structure of mass singularity compensation patterns~5.23!, makes it clear that if~5.29! is msf,
then so is the case of the same whole expression, but taken atn21 instead ofn.

Next we need to proof that if~5.22! has an msf imaginary part, then, so does
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28ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

1

~P2!R
N12

3E
0

xM8 dx8

~P82!R
N811

3E
K̂,K̂8

K̂•K̂8
Tr~¯~S” RP” !N

¯ !

~K̂•P!R ¯~K̂8•P8!R

, ~5.33!

where the difference with~5.22! is that, inside the trace, we have now a power ofN instead of
N11. This statement is again rather obvious if one considers that the only change is
substitution of the couple of polynomials (aN11 ,bN11) by the couple (aN ,bN). However, the
proof of the above statement can be obtained by induction either, assuming first that the in
ment holds true at (N11,N8;2), that is between~5.22! and~5.33!. At next order, (N12,N8;2) is
given by~5.16!, which decomposes into the sum~5.19!. Now, it has just been assumed that~5.22!,
and hence~5.33! have msf imaginary parts. In view of statement~5.23!–~5.24!, the same is
therefore true of the second term in~5.19!, which only differs~5.33! a multiplicative function of
SR

2 . It results that if (N12,N8;2) has an msf imaginary part, then so does the expression

8ie2m4E p2 dp

~2p!2 (
e(p0)

E
0

1 dx

2p

p0~x!

2T
disc

1

~P2!R
N13

3E
0

xM8 dx8

~P82!R
N811

3E
K̂,K̂8

K̂•K̂8
Tr ~P”~S” RP” !N11 K”̂ P”8~S” R8 P”8!N8K”̂ 8!

~K̂•P!R~K̂•P8!R~K̂8•P!R~K̂8•P8!R

. ~5.34!

That is, the involvement extends from (N11,N8;2) to (N12,N8;2). Eventually, we learn out of
Ref. 13, that~0,0;2! and~1,0;2! have msf imaginary parts. Whereas it is immediate to check
the property of involvement under consideration is verified atN51; and thus, at allN.

Getting back to our central induction hypothesis that (N11,N8;2) has an msf imaginary part
the above two statements allow to conclude that~5.21! does have an msf imaginary part, and th
establishes that the imaginary part of the difference~5.20! is msf.

Two possibilities have to be considered whereupon: Either mass singular behaviors o
members compensate for each others in the difference~5.20!, or both members of~5.20! have,
separately, msf imaginary parts.

Let us suppose that a compensation of singularities is at the origin of the difference
imaginary part. The trace of~5.20! can be written as

Tr~ P”~S” RP” !N11$S” RP”22m2%K”̂ P”8~S” R8 P” 8!N8K”̂ 8!. ~5.35!

As ~5.35! stands, however, inspection shows that nothing conclusive can be derived. Relying
on ~3.4!–~3.6!, it is interesting to decompose~5.35! into a sum of terms

~Da!aN8 Tr~P”~S” RP” !K”̂ P”8~S” R8 P”8!K”̂ 8!1~Da!bN8 Tr~P”~S” RP” !K”̂ P”K”̂ 8!

1~Db!aN8 Tr~P”K”̂ P”8~S” R8 P”8!K”̂ 8!1~Db!bN8 Tr~ P”K”̂ P”8K”̂ 8!, ~5.36!

where we have defined

Da5aN1222m2aN11 , Db5bN1222m2bN11 . ~5.37!

At its turn, the first trace of~5.36!, decomposes into a sum of terms,

Tr~P”~S” RP” !K”̂ P”8~S” R8 P”8!K”̂ 8!5m2 Tr~ P”~S” RP” !K”̂ P”8K”̂ 8!1m2 Tr~ P”K”̂ P”8~S” R8 P” 8!K”̂ 8! 1 ¯ ,
~5.38!
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where the two traces of the right-hand side are the second and third traces of~5.36!, respectively,
whereas the dots stand for terms which belong, in proper, to the trace under consideration
latter induce further singular imaginary parts, the imaginary part msf character of~5.20! indicates
that mass singularity compensations are taking place, that is,

Da50. ~5.39!

If N is an even number, then,j M(N11)5 j M(N12)5N/2, and one has

Da5~m2!N11(
j 50

N/2

~CN12
2 j 1122CN11

2 j 11! (
n50

j

Cj
nS 2

P2SR
2

m4 D n

. ~5.40!

For some given powersn to induce singular integrations to be further compensated in the di
ence, the following condition must therefore be satisfied:

(
j 5n

N/2

Cj
n~CN12

2 j 1122CN11
2 j 11!50. ~5.41!

Binomial coefficients are positive definite, and ifn.N/4, then, the terms in the sum~5.41! are
positive definite either, precluding any compensations of possible singular contributions. T
contributions attached to the range of powersN/4,n<N/2 are necessarily msf in imaginary part
separately. Now, so are also all of the other powers, 1<n<N/2, in virtue of the statemen
‘‘somehow reciprocal’’ to~5.24!. Since a similar argument can be developed in case of an
numberN, it results that the dots of~5.38! induce, in both members of the difference~5.20!,
contributions whose imaginary parts are msf, separately.

We consider the second trace, and note that in view of~5.36! and ~5.38!, it has coefficient

~bN81m2aN8!Da. ~5.42!

If, when plugged into~5.20!, the second trace of~5.36! generates non-msf imaginary parts, th
the latter have to compensate each others in the difference. Now, selecting a power ofn8 in the
variable (2P82S8R

2/m4), its coefficient reads

(
j 85n8

N8/2

~Cj 8
n821CN821

2 j 811
1Cj 8

n8CN8
2 j 811

!, ~5.43!

where an even value ofN8 is choosen, for the sake of illustration. It is clear that for alln8
P$1,2,...,N8/2%, ~5.43! is a never vanishing quantity. A compensation of possible singular su
quent integrations onx, can only come from~5.39!, with the conclusion that for this second tra
of ~5.36!, both members of the difference~5.20! have, separately, msf imaginary parts.

The third trace of~5.36! comes into play with a coefficient of

aN8~Db1m2Da! ~5.44!

which may be wtitten as

aN8~m2!N12H (
j 50

N/2

~CN12
2 j 1122CN11

2 j 11!S 12
P2SR

2

m4 D j

1S 2
P2SR

2

m4 D
3 (

j 50

N/221

~CN11
2 j 1122CN

2 j 11!S 12
P2SR

2

m4 D j

1S 2
P2SR

2

m4 D S 12
P2SR

2

m4 D N/2J . ~5.45!

The higher power in the variable2P2SR
2/m4 is a power ofN/211, with coefficient 1. There is no

available compensation for this isolated term of~5.45! which must accordingly yield a regula
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subsequent integration onx. So is therefore the case of all of the powersnP$1,2,...,N/211%,
because of the statement reciprocal to~5.24!. Whereas results that, irrespective of possible co
pensations among the other~regular! terms of~5.45!, both members of the difference~5.20! have
msf imaginary parts attached to the third trace of~5.36!.

The fourth trace of~5.36! has coefficient,

~m2!2aN8Da1m2~aN8Db1bN8Da!1bN8Db5~bN81m2aN8!~Db1m2Da!. ~5.46!

If this trace generates any singular subsequent integration onx, when put back into both member
of ~5.20!, the msf character of the imaginary part of~5.20! requires thatDb1m2Da vanishes. This
condition turns out to be the one just dealt with, and it results that, when put into both mem
of the difference~5.20!, the fourth trace of~5.36! induce subsequentx integrations that have
separately, msf imaginary parts.

To summarize, both~0,0;2! and~1,0;2! diagrams, have been shown to possess msf imagin
parts in Ref. 13. Then, assuming that a diagram (N11,N8;2) has msf imaginary part, we hav
been able to prove that the next diagram (N12,N8;2), with one more HTL self-energy insertion
has an msf imaginary part either. We can therefore conclude that any of the two effective
diagrams contribute msf imaginary parts to the soft real photon emission rate.

The power and simplicity of the proof just developed appears to be more clear as one re
that the distributionsS(2)(q,p;p0) introduced in full generality in~5.23!, entail the double vertex
functionW2(P,P8) andW1(P,P8) defined in~5.7! and~5.15!, respectively. We have in effect, fo
the S(2)(q,p;p0), the expressions

1

2
discP8E

0

xM8 (x)
dx8

aN8~2P82S82/m4!

~P82!R
N811 E

K̂,K̂8
K̂•K̂8

Tr~P”$S” RP” ,I4%K”̂P”8$S” R8 P”8%K”̂ 8!

~K̂•P!R ..~K̂8•P8!R

1

2
discP8E

0

xM8 (x)
dx8

bN8~2P82S82/m4!

~P82!R
N811 E

K̂,K̂8
K̂•K̂8

Tr~P”$S” R P” ,I4%K”̂ P”8$I4%K”̂ 8!

~K̂•P!R ..~K̂8•P8!R

~5.47!

and whereas the second term entailsW2(P,P8), the first one entails bothW2(P,P8) and
W1(P,P8) which are so complicated functions ofP,P8, that they practically exclude any contro
of the ensuing integrations onx8, anda posteriorion x, contrarily to what could be achieved i
Secs. III and IV, for the topologies (N,N8;0) and (N,N8;1).

An interesting byproduct of this analysis is obtained by writing

Sa
1~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811 E dK̂

4p

Tr~P”$S” RP”%K”̂ P”8~S” R8 P”8!N8K”̂ !

~K̂•P!R~K̂•P8!R

, ~5.48!

Sb
1~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811 E dK̂

4p

Tr~ P”$I4%K”̂ P”8~S” R8P”8!N8K”̂ !

~K̂•P!R~K̂•P8!R

, ~5.49!

and by recognizing that the imaginary part of a diagram (N,N8;1) is hereby expressed as

8e2m2E p2 dp

~2p!2 (
e(p0)561

E
0

1 dx

2p

p0~x!

2T
discP

aNSa
11bNSb

1

~P2!R
N11 . ~5.50!
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Then, knowing from Ref. 13 that~0,0;1!, ~1,0;1!, and~1,1;1! have msf imaginary parts, the sam
steps as followed throughout this section can be taken, and allow to conclude by inductio
(N,N8;1) diagrams contribute msf parts to the soft photon emission rate. This is the more
tematic derivation which was advertised in the end of Sec. IV: It encompasses all of the
~4.5!–~4.7! of the (N,N8;1) situation, and not solely the peculiar one,~4.8!, which was treated
there.

Likewise, identifying nowSa
0(q,p;p0) andSb

0(q,p;p0), the distributions

Sa
0~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811

Tr~P”$S” RP”%P”8~S” R8 P”8!N8!,

Sb
0~q,p;p0!5

1

2
discP8E

0

xM8 (x) dx8

~P82!R
N811

Tr~P”$I4%P”8~S” R8 P”8!N8!,

and observing that the imaginary part of a diagram (N,N8;0) can be expressed as

8e2E p2 dp

~2p!2 (
e(p0)561

E
0

1 dx

2p

p0~x!

2T
discP

aNSa
01bNSb

0

~P2!R
N11 ,

we can make use of the msf character of~1,0;0! and~2,0;0! imaginary parts as established in Re
13 so as to follow the same steps as taken throughout this section and conclude, in agreem
the calculational approach of Sec. III, that (N,N8;0) diagrams contribute msf parts to the so
photon emission rate.

VI. CONCLUSION

Some years ago,23 we had suggested that the collinear problem met in hot QCD when
resummation program~RP! is used, could be traced back to the particular perturbative se
rearrangement the RP amounts to. Strictly speaking though~and contrarily to what can be read o
the existing literature! the RP should not be mistaken for any Feynman diagrams resumma
possibly infinite. This happens to be so, simply because of the effective propagators nonpe
tive character: Pole residues and dispersion relations, in effect, cannot be derived out o
thermal perturbation theory.

This suggestion has motivated our construction of a coherent perturbative resumm
scheme~PR! of the leading thermal effects~the so-called hard thermal loops, HTL! enjoying by
construction the same symmetry properties as the usual RP, with the hope that things coul
out at variance with the troublesome~undefined! RP results.

In the case of the so-called rapid fermion damping rate problem of both QED and QCD,
obstruction met by the RP,5 this hope revealed itself nondeceptive indeed,6,7 whereas the collinea
problem under consideration was subsequently projected out on a simpler toy model, with
ising results.11

In a recent publication,13 the physically interesting case of hot QCD has been analy
through its first nontrivial perturbative orders, with very instructive new insights. As stated i
introduction, not only did the PR analysis allow to elucidate the so far questionable nature12 of the
collinear singularity encountered in hot QCD, when the RP is used, but a tight and or
comparison of both RP and PR calculations made it possible to understand how the co
singularity unavoidably shows up in an RP treatment.

Now, a PR calculation of the soft real photon emission rate, involves the infinite resumma
on N and N8, of any perturbative contribution of type (N,N8;0), (N,N8;1), and (N,N8;2),
describing one loop photonic self-energy diagrams atN(N8) HTL self-energy insertions along th
P(P8) -fermionic line, respectively, endowed with zero, one and two HTL effective vertex
rections. In order to set our PR calculation a sound, significant result, in contradistinction
yet confused RP situation, it was therefore crucial to check that the properties that cou
                                                                                                                



f

d ex-
rds, a
ingu-

. This
f the

rtial
es:
a PR
lation,
, then
d

n
ation

t it be
ty free
ostly
from

the

o

636 J. Math. Phys., Vol. 44, No. 2, February 2003 T. Grandou

                    
derived for the perturbative orders ofm2, m4, andm6, extended indeed to any contribution o
orderm2n, and this is the task which has been achieved throughout the present article.

However tedious the calculational developments of Sec. III, they eventually reveale
tremely useful so as to provide a proof by induction with sound enough a basis. In other wo
proof by induction is not reliable until enough information is gained concerning the mass s
larity cancellation patterns, and not before.

Physically, a salient aspect comes out to be the one of propagator’s pole migration
migration in effect, from the lightlike to the timelike region, appears to be at the very origin o
RP dramatic consequence under consideration, and in contrast to theT50 situation, is really
peculiar to the thermal context.7 This is because pole displacements involve a decoupling of pa
effective propagators~potential! mass singularities, from effective vertices collinear on
Whereas all singularities mix up into patterns which grant their overall compensations in
calculation, effective vertices mass/collinear singularities remain isolated in an RP calcu
with no singular counterpart to cancel against. This mechanism, first guessed in Ref. 11
discovered in Ref. 13 for the perturbative orders ofm2, m4, andm6, is easily seen here to sprea
to any perturbative orders, (m2)n.

As we have long been suspecting,23 the collinear singularity plaguing the soft real photo
emission rate RP calculation is likely to be nothing but an artefact, peculiar to the RP resumm
scheme itself. Here may be the place to recall a part of our conclusion in Ref. 13:After all,
whenever resummation is required by the context, a guiding principle could very well be tha
conceived and taken out of finite, well-defined elements, and in particular, of mass singulari
terms. In this respect, it is instructive to come back to the original article where the RP was m
founded, and to realize that the authors were conscious of difficulties that could be inherited
the fact that the RP did not necessarily comply with this requirement.24
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APPENDIX: CALCULATING THE Wi„P,P8…

In this appendix account is given of the difficulty inherent to the explicit calculations of
double effective vertex functionsWi(P,P8), i 51,2. The first function,W1(P,P8) is given in
~5.15!. It is given by the integration on a Feynman parameters, of the squared norm of awould
be four-vector with components on the right-hand sides of~4.9! and ~4.10!,

m2E dK̂

4p

K̂m

~K̂•P1 i e!~K̂•P81 i e!
m2E dK̂8

4p

K̂m8

~K̂8•P1 i e!~K̂8•P81 i e!

5m4E
0

1

dsS r 0

r 3

ln Xr

R21 i er 0

2
1

4r 4
ln2 Xr2

1

r 2~R21 i er 0!
D . ~A1!

As it stands however, the remaining integration ons is not very easy. A more economic way t
proceed consists in writing

m4E dK̂

4p

K̂m

~K̂•P1 i e!~K̂•P81 i e!
E dK̂8

4p

K̂m8

~K̂8•P1 i e!~K̂8•P81 i e!

5E
0

1

dsE
0

1

ds8m2E dK̂

4p

K̂m

~K̂•R~s!1 i e!2
m2E dK̂8

4p

K̂m8

~K̂8•R~s8!1 i e8!2
. ~A2!

This allows to write~A1! as,
                                                                                                                



g

637J. Math. Phys., Vol. 44, No. 2, February 2003 Mass singularity free property in QCD

                    
S 2
d

di e D S 2
d

di e8D E0

1

dsE
0

1

ds8S~R~s!!•S~R~s8!!

5E
0

1

dsE
0

1

ds8
m2

R2~s!1 i er 0~s!

m2

R2~s8!1 i er 0~s8! S 12
r 0

r
~s!

r 0

r
~s8! r̂ • r̂ 8D . ~A3!

The term11 in the right hand side last parenthesis yields simply,

E
0

1

dsE
0

1

ds8
m2

R2~s!1 i er 0~s!

m2

R2~s8!1 i er 0~s8!
5S m2

2P•Q
ln

P82

P2 D 2

. ~A4!

The contribution of the term involving the cosiner̂ • r̂ 8 is of course more involved. It is

2E
0

1

ds
m2

R2~s!1 i er 0~s!

p01qs

r 2~s!

3E
0

1

ds8
m2

R2~s8!1 i er 0~s8!

p01qs8

r 2~s8!
~p~p1qys!1q~py1qs!s8!, ~A5!

where

r 2~s!5p212pqys1q2s2, R2~s!5P212P•Qs. ~A6!

Introducing the three functions

F1~P,Q!5
1

2Q•P
ln

P82

P2 , ~A7!

F2~P,Q!5
1

qpA12y2
arctan

qA12y2

p1qy
, ~A8!

F3~P,Q!5
1

~P2pW 82pW P82!2

3$ 1
2 ~2Q•P!2F1~P,Q!2~q2P22qp0~2Q•P!1 1

2 ~2Q•P!2!F2~P,Q!% ~A9!

one verifies that~A4! cancels out, and that the integration of~A1! can be given by the interestin
following form:

m2E dK̂

4p

K̂m

~K̂•P1 i e!~K̂•P81 i e!
m2E dK̂8

4p

K̂m8

~K̂8•P1 i e!~K̂8•P81 i e!

52m4 (
i , j 51

3 S (
k522

11

ai j
k ~2Q•P!kDFiF j , ~A10!

where the nonvanishingai j
k coefficients are given by

a22
2252q2P2, a22

215qp0 , ~A11!

a33
2252q2~P2!3, a33

215
5

2
qp0~P2!2, a33

0 52
9

4
~P2!22

5

2
p2P2, a33

1 5
p0~3P214p2!

4q
,

~A12!
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a12
0 51, ~A13!

a13
2152qp0P2, a13

0 5
3

2
P2, a13

1 52
p0

q
, ~A14!

a23
2252q2~P2!2, a23

21524qp0P2, a23
0 5

11

4
P21

3

2
p2, a23

1 52
p0

q
. ~A15!

CalculatingW2(P,P8), given in ~5.7!, is the most tedious angular integration to be cop
with, ‘‘an order of magnitude’’ more difficult than the latter. One has

W2~P,P8!5E
0

1

dsE
0

1

ds8E dK̂

4p
E dK̂8

4p

122K̂ i K̂ i81K̂ i K̂ j K̂ i8K̂ j8

~K̂•R~s!1 i e!2~K̂8•R~s8!1 i e!2
. ~A16!

The full set of angular identities~4.9!–~4.11! must be used, but since the first two terms in t
numerator of~A16! are those which have just been dealt with in the calculation ofW1(P,P8), we
may focus on the contribution due to the third term,$K̂ i K̂ j K̂ i8K̂ j8%. Relying on the angular identity
~4.11!, one finds, withQ1 as defined in~3.3!,

23S E
0

1

ds
Q1~R~s!!

r 2~s! D 2

16S E
0

1

ds
Q1~R~s!!

r 2~s! D S E
0

1 ds8

R2~s8!1 i er 0~s8! D
19E

0

1

ds
Q1~R~s!!

r 2~s!
E

0

1

ds8@ r̂ ~s!• r̂ ~s8!#2
Q1~R~s8!!

r 2~s8!
26E

0

1

ds
Q1~R~s!!

r 2~s!

3E
0

1

ds8
@ r̂ ~s!• r̂ ~s8!#2

R2~s8!1 i er 0~s8!
1E

0

1 ds

~R2~s!1 i er 0~s!!
E

0

1

ds8
@ r̂ ~s!• r̂ ~s8!#2

~R2~s8!1 i er 0~s8!!
.

~A17!

The second term gives

6F1E
0

1

ds
Q1~R~s!!

r 2~s!
5

3F1

pq~12y2! S S p0y2p1
Z

2pD ln X8

p8
2~p0y2p!

ln X

p D2
3

2

~ZF1!2

p2q2~12y2!
,

~A18!

where the shorthand notationZ52Q•P has been introduced. The first term of~A17! gives

23S E
0

1

ds
Q1~R~s!!

r 2~s! D 2

5
23

4p2q2~12y2!2 S 2
1

2

Z2F1

pq
1S p0y2p1

Z

2pD ln X8

p8
2~p0y2p!

ln X

p D 2

.

~A19!

The fifth term of~A17! gives

(
i , j 51

3 S (
k522

11

ci j
k ZkDFiF j , ~A20!

where the nonvanishingci j
k are given by

c11
0 51, ~A21!
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c22
2252q2p2~12y2!, ~A22!

c33
22522q2p4~12y2!2P2, c33

21522qp0p2~12y2!P2, c33
0 5

p213p0
2

2
, ~A23!

c13
0 522p2~12y2!, ~A24!

c23
2252q2p2~12y2!~2P21p2~12y2!!, c23

2152qp0p2~12y2!, c23
0 52

3p2~12y2!

2
.

~A25!

The fourth term of~A17! can first be expressed as

26~F12p2~12y2!F3!S E
0

1

ds
Q1~R~s!!

r 2~s! D 16p2~12y2!~F122p2F3!S E
0

1

ds
Q1~R~s!!

r 4~s! D
212qp3y~12y2!F3S E

0

1

ds s
Q1~R~s!!

r 4~s! D ~A26!

allowing to see that the second term contribution,~A18!, cancels out with an identical part i
~A26!. In terms of more elementary integrals, the remaining parts of~A26! may be written

6F1F226F1p2~12y2!E
0

1 ds

r 4~s!
26F1S 1

2 E0

1 ds

r 3~s!
r 0 ln XR(s)D 16p2~12y2!~F12F3!

3S 1

2 E0

1 ds

r 5~s!
r 0 ln XR(s)D 26F3p2~12y2!S F222p2E

0

1 ds

r 4~s!
22qpyE

0

1

ds
s

r 4~s! D
112q~12y2!

F22P2F3

Z S p3yE
0

1 ds

r 4~s!
1qP2E

0

1

ds
s

r 4~s! D 26qp2~1

2y2!
F22P2F3

Z H E
0

1

ds
ln XR(s)

r 3 1p~yp02p!E
0

1

ds
ln XR(s)

r 5 1
Z

2 E
0

1

ds
s ln XR(s)

r 5 J . ~A27!

The third term of~A17! is the more involved one, and may be written as

9S E
0

1

ds
Q1~R~s!!

r 2~s! D 2

218p2~12y2!S E
0

1

ds
Q1~R~s!!

r 2~s! D S E
0

1

ds
Q1~R~s!!

r 4~s! D
118p4~12y2!S E

0

1

ds
Q1~R~s!!

r 4~s! D 2

136qp3y~12y2!S E
0

1

ds
Q1~R~s!!

r 4~s! D S E
0

1

dss
Q1~R~s!!

r 4~s! D
118q2p2~12y2!S E

0

1

dss
Q1~R~s!!

r 4~s! D 2

. ~A28!

To summarize, the last piece ofW2(P,P8) can eventually be expressed in the form
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(
i , j 51

3 S (
k522

11

ci j
k ZkDFiF j16p2~12y2!H F3S E

0

1

ds
Q1

r 2 D 1~F122p2F3!S E
0

1

ds
Q1

r 4 D J
112qp3y~12y2!S E

0

1

dss
Q1

r 4 D S 2F313E
0

1

ds
Q1

r 4 D 16S E
0

1

ds
Q1

r 2 D 2

218p2~12y2!S E
0

1

ds
Q1

r 2 D S E
0

1

ds
Q1

r 4 D 118p4~12y2!S E
0

1

ds
Q1

r 4 D 2

118q2p2~12y2!S E
0

1

ds s
Q1

r 4 D 2

. ~A29!

We will not proceed further, giving, for example, the more elementary integrals display
~A27! and~A29!, as it should already appear clear that the statement concerning ‘‘so cumbersome
calculations that they practically preclude any peer control of ensuing integrations on x8 and then
on x... ’’ is not exaggerated.

Before concluding this appendix we may stress that the calculation ofW1(P,P8) and
W2(P,P8) does not display singularities other than~potentially! collinear ones, showing up by th
light cone boundary, atP2.0. For the functionF3 of ~A9!, this property may be not so easy
see. However, it is straightforward to check that the denominator of~A9! reads as

~P2pW 82pW P82!254q2p2p0
2S y2

p0
21p2

2p0p D 2

. ~A30!

It vanishes at the light cone only, atp056p, and this corresponds effectively to a colline
singularity, aty561.
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Geometry of crossing null shells
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New geometric objects on null thin layers are introduced and their importance for
crossing null-like shells are discussed. The Barrabe`s–Israel equations are repre-
sented in a new geometric form and they split into a decoupled system of equations
for two different geometric objects: tensor densityGb

a and vector fieldI. Continuity
properties of these objects through a crossing sphere are proved. In the case of
spherical symmetry Dray–t’Hooft–Redmount formula results from continuity
property of the corresponding object. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1512973#

I. INTRODUCTION

Self-gravitating matter shell~see Refs. 15 and 18! became an important laboratory for testin
global properties of gravitational field interacting with matter. Models of a thin matter layer a
us to construct useful mini-superspace examples. Toy models of quantum gravity, star
Dirac,5 may give us a deeper insight into a possible future shape of the quantum theory of g
~see Refs. 7 and 14!. Especially interesting are null-like shells, carrying a self-gravitating light-l
matter ~see Refs. 10–13!. Classical equations of motion of such a shell have been derive
Barrabès and Israel in their seminal paper.3 Junction conditions for general hypersurfaces
space–time are also given in Ref. 22.

A complete Lagrangian and Hamiltonian description of the theory of self-gravitating light
matter shell, which is no longer spherically symmetric, was given~in terms of gauge-independen
geometric quantities! in Ref. 17. For this purpose the notion of an extrinsic curvature fo
null-like hypersurface was discussed and the corresponding Gauss–Codazzi equation
proved. These equations imply Bianchi identities for space–times with null-like, singular c
ture. Energy-momentum tensor density of a light-like matter shell is unambiguously defin
terms of an invariant matter Lagrangian density. Noether identity and Belinfante–Rosenfeld
rem for such a tensor density was also proved. Finally, the Hamiltonian dynamics of the int
ing system: ‘‘gravity1matter’’ was derived from the total Lagrangian, the latter being an invar
scalar density.1,19,26

Starting from the action functional for a single spherical shell due to Louko, Whiting,
Friedman,21 Hájı́ček and Kouletsis generalized it for any number of spherically symmetric
shells, including the cases, when the shells intersect.12

In this paper we consider a general nonsymmetric case of two crossing null shells. It o
that the geometric objects on the null shells are continuous through an intersecting sphere
the observation that ‘‘jump of the jump’’ vanishes~see Lemma 2!. This implies that the dynamics
of the crossing shells is described by the equations for a single shell plus continuity pro
across an intersecting sphere.

We also discuss a special case of spherical symmetry. In particular, we give a simple arg
~in the case of spherical symmetry! for triviality of the whole ‘‘ADM-momentum’’ tensor density
Gb

a which implies that the corresponding energy-momentum tensor densitytb
a of a light-like

matter shell is vanishing.
Geometry of a single shell introduced in Ref. 17 is completed by an extra object—a

a!Electronic mail: jacek.jezierski@fuw.edu.pl
6410022-2488/2003/44(2)/641/21/$20.00 © 2003 American Institute of Physics
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vector field I, which is always well defined on a null shell and does not vanish in the cas
spherical symmetry. Roughly speaking, in the case of a null shell the ‘‘ADM-momentum’’ te
densityGab ~which is well defined for any nondegenerate surfaceS! splits into two geometric
objects: a tensor densityGb

a and a null vectorI a. They contain a similar information as the jum
of a ‘‘transverse’’ extrinsic curvatureKab in Barrabès–Israel approach.

The dynamical system constituted of two spherically symmetric null shells has been stud
Ref. 11. The shells at intersection sphereS3 exchange energy according to the Dray–t’Hoof
Redmount formula.6,25 We show that the continuity of the metric~around intersection sphere!
implies the continuity of the vector fieldI throughS3 on both shells. Moreover, in the case
spherical symmetry we show that the continuity ofI gives the Dray–t’Hooft–Redmount formula
This means that our new object should be useful in generalizations of the Dray–t’H
Redmount formula for the case of crossing two null shells without any symmetry.

II. GEOMETRY OF A SINGLE NULL SHELL

A. Geometry of a null hypersurface and Gauss–Codazzi constraints

A null hypersurface in a Lorentzian spacetimeM is a three-dimensional submanifoldS,M
such that the restrictiongab of the spacetime metricgmn to S is degenerate.

We shall often use adapted coordinates, where coordinatex3 is constant onS. Space coordi-
nates will be labeled byk, l 51, 2, 3; coordinates onS will be labeled bya, b50, 1, 2; finally,
coordinates onStªVtùS ~whereVt is a Cauchy surface corresponding to constant value of
‘‘time-like’’ coordinate x05t) will be labeled byA, B51, 2. Space–time coordinates will b
labeled by Greek charactersa, b, m, n.

The nondegeneracy of the space–time metric implies that the metricgab induced onS from
the space–time metricgmn has signature~0, 1, 1!. This means that there is a nonvanishi
null-like vector field Xa on S, such that its four-dimensional embeddingXm to M ~in adapted
coordinatesX350) is orthogonal toS. Hence, the covectorXn5Xmgmn5Xagan vanishes on
vectors tangent toS and, therefore, the following identity holds:

Xagab[0. ~2.1!

It is easy to prove~cf. Ref. 16! that integral curves ofXa, after a suitable reparameterization, a
geodesic curves of the space–time metricgmn . Moreover, any null hypersurfaceSmay always be
embedded in a one-parameter congruence of null hypersurfaces.

We assume that topologically we haveS5R13S2. Since our considerations are purely loc
we fix the orientation of theR1 component and assume that null-like vectorsX describing degen-
eracy of the metricgab of S will be always compatible with this orientation. Moreover, we sh
always use coordinates such that the coordinatex0 increases in the direction ofX, i.e., inequality
X(x0)5X0.0 holds. In these coordinates degeneracy fields are of the formX5 f (]02nA]A),
wheref .0, nA5g0A and we rise indices with the help of the two-dimensional matrixg5 AB, inverse
to gAB .

If by l we denote the two-dimensional volume form on each surfacex05const:

lªAdetgAB, ~2.2!

then for any degeneracy fieldX of gab the following object

vXª
l

X~x0!

is a well-defined scalar density onS according to Ref. 17. This means thatvX

ªvX dx0∧dx1∧dx2 is a coordinate-independent differential three-form onS. However,vX de-
pends upon the choice of the fieldX.

It follows immediately from the above definition that the following object:
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L5vXX

is a well defined~i.e., coordinate-independent! vector density onS. Obviously, itdoes not depend
upon any choice of the fieldX:

L5l~]02nA]A!. ~2.3!

Hence, it is an intrinsic property of the internal geometrygab of S. The same is true for the
divergence]aLa, which is, therefore, an invariant,X-independent, scalar density onS. Mathemati-
cally ~in terms of differential forms!, the quantityL represents the two-form

LªLa~]acdx0∧dx1∧dx2!,

whereas the divergence represents its exterior derivative~a three-from!: dL
ª(]aLa)dx0∧dx1∧dx2. In particular, a null surface with vanishing dL is called anonexpanding
horizon ~see Ref. 2!.

Both objectsL andvX may be defined geometrically, without any use of coordinates. For
purpose we note that at each pointxPS, the tangent spaceTxS may be quotiented with respect t
the degeneracy subspace spanned byX. The quotient space carries a nondegenerate Rieman
metric and, therefore, is equipped with a volume formv ~its coordinate expression would bev
5l dx1∧dx2). The two-formL is equal to the pull-back ofv from the quotient space toTxS. The
three-formvX may be defined as a product:vX5a∧L , wherea is any one-form onS, such that
^X,a&[1.

The degenerate metricgab on S does not allow to definevia the compatibility condition¹g
50, any natural connection, which could be applied to generic tensor fields onS. Nevertheless,
there is one exception: it was shown in Ref. 17 that the degenerate metric definesuniquely a
certain covariant, first order differential operator. The operator may be applied only to m
~contravariant-covariant! tensor density fieldsHb

a , satisfying the following algebraic identities:

Hb
aXb50, ~2.4!

Hab5Hba , ~2.5!

whereHabªgacHb
c . Its definition cannot be extended to other tensorial fields onS. Fortunately,

the extrinsic curvature of a null-like surface and the energy-momentum tensor of a null-like
are described by tensor densities of this type.

The operator, which we denote by¹̄a , is defined by means of the four-dimensional met
connection in the ambient space–timeM in the following way: GivenHb

a , take any its extension
Hmn to a four-dimensional, symmetric tensor density, ‘‘orthogonal’’ toS, i.e., satisfyingH'n50

~‘‘'’’ denotes the component transversal toS!. Define ¹̄aHb
a as the restriction toS of the four-

dimensional covariant divergence¹mHn
m . It was shown in Ref. 17 that ambiguities which ari

when extending three-dimensional objectHb
a living on S to the four-dimensional one, cance

finally and the result is unambiguously defined as a covector density onS. It turns out, however,
that this result does not depend upon the space–time geometry and may be defined intrinsic
S as follows:

¹aHb
a5]aHb

a2 1
2H

acgac,b ,

wheregac,bª]bgac , a tensor densityHb
a satisfies identities~2.4! and~2.5!, and moreover,Hac is

any symmetric tensor density, which reproducesHb
a when lowering an index:

Hb
a5Hacgcb . ~2.6!
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It is easily seen, that such a tensor density always exists due to identities~2.4! and ~2.5!, but the
reconstruction ofHac from Hb

a is not unique, becauseHac1CXaXc also satisfies~2.6! if Hac does.
Conversely, two such symmetric tensorsHac satisfying~2.6! may differ only byCXaXc. Fortu-
nately, this nonuniqueness does not influence the value of~2.6!. Hence, the following definition
makes sense:

¹̄aHb
a
ª]aHb

a2 1
2H

acgac,b . ~2.7!

The right-hand side does not depend upon any choice of coordinates~i.e., transforms like a
genuine covector density under change of coordinates!.

To express directly the result in terms of the original tensor densityHb
a , we observe that it has

five independent components and may be uniquely reconstructed fromHA
0 ~two independent

components! and the symmetric two-dimensional matrixHAB ~three independent components!.
Indeed, identities~2.4! and ~2.5! may be rewritten as follows:

HB
A5g5 ACHCB2nAHB

0, ~2.8!

H0
05HA

0nA, ~2.9!

H0
B5~g5 BCHCA2nBHA

0 !nA. ~2.10!

The correspondence betweenHb
a and (HA

0,HAB) is one-to-one.
To reconstructHab from Hb

a up to an arbitrary additive termCXaXb, take the following,
coordinate dependent, symmetric quantity:

FAB
ªg5 ACHCDg5 DB2nAHC

0 g5 CB2nBHC
0 g5 CA, ~2.11!

F0A
ªHC

0 g5 CA5..FA0, ~2.12!

F00
ª0. ~2.13!

It is easy to observe that anyHab satisfying~2.6! must be of the following form:

Hab5Fab1H00XaXb. ~2.14!

The nonuniqueness in the reconstruction ofHab is, therefore, completely described by the ar
trariness in the choice of the value ofH00. Using these results, we finally obtain

¹̄aHb
a
ª]aHb

a2 1
2H

acgac,b5]aHb
a2 1

2F
acgac,b5]aHb

a2 1
2~2HA

0n,b
A 2HACg5 ,b

AC!. ~2.15!

The operator on the right-hand side of~2.15! is called the~three-dimensional! covariant derivative
of Hb

a on S with respect to its degenerate metricgab . It was proved in Ref. 17 that it is wel
defined~i.e., coordinate-independent! for a tensor densityHb

a fulfilling conditions ~2.4! and~2.5!.
It was also shown that the above definition coincides with the one given in terms of the
dimensional metric connection and due to~2.6!, it equals

¹mHb
m5]mHb

m2 1
2H

mlgml,b5]aHb
a2 1

2H
acgac,b , ~2.16!

and, whence, coincides with¹̄aHb
a defined intrinsically onS.

To describe exterior geometry ofS we begin with covariant derivativesalong Sof the ‘‘or-
thogonal vectorX.’’ Consider the tensor¹aXm. Unlike in the nondegenerate case, there is
unique ‘‘normalization’’ ofX and, therefore, such an object does depend upon a choice of the
X. The length ofX vanishes. Hence, the tensor is again orthogonal toS, i.e., the components
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corresponding tom53 vanish identically in adapted coordinates. This means that¹aXb is a purely
three-dimensional tensor living onS. For our purposes it is useful to use the ‘‘ADM-momentum
version of this object, defined in the following way:

Qb
a~X!ª2s$vX~¹bXa2db

a¹cX
c!1db

a]cL
c%, ~2.17!

wheresª sgng03561. Due to above convention, the objectQb
a(X) feels onlyexternal orienta-

tion of S and does not feel any internal orientation of the fieldX.
Remark:If S is a nonexpanding horizon, the last term in the above definition vanishes.
The last term in~2.17! is X independent. It has been introduced in order to correct algeb

properties of the quantityvX(¹bXa2db
a¹cX

c): it was shown in Ref. 17 thatQb
a satisfies identities

~2.4! and~2.5! and, therefore, its covariant divergence with respect to the degenerate metricgab on
S is uniquely defined. This divergence enters into the Gauss–Codazzi equations, which rel
divergence of Q with the transversal componentGb

' of the Einstein tensor densityGn
m

5Au detgu(Rn
m2dn

m 1
2R). The transversal component of such a tensor density is a well-defined t

dimensional object living onS. In coordinate system adapted toS, i.e., such that the coordinatex3

is constant onS, we haveGb
'5Gb

3. Due to the fact thatG is a tensor density, componentsGb
3 do not

changewith changes of the coordinatex3, provided it remains constant onS. These components
describe, therefore, an intrinsic covector density living onS.

Proposition 1: The following null-like-surface version of the Gauss–Codazzi equation is true

¹̄aQb
a~X!1svX]bS ]cL

c

vX
D[2Gb

' . ~2.18!

We remind the reader that the ratio between two scalar densities:]cL
c and vX , is a scalar

function. Its gradient is a covector field. Finally, multiplied by the densityvX , it produces an
intrinsic covector density onS. This proves that also the left-hand side is a well-defined geom
object living onS: The Eq.~2.18! is closely related to Raychaudhuri24 equation for the congruenc
of null geodesics generated by the vector fieldX.

B. Bianchi identities for space–times with distribution valued curvature

In this paper we consider a space–timeM with distribution valued curvature tensor in th
sense of Taub.27 This means that the metric tensor, although continuous, is not neces
C1-smooth acrossS: we assume that the connection coefficientsGmn

l may have only step discon
tinuities ~jumps! acrossS. Formally, we may calculate the Riemann curvature tensor of su
space–time, but derivatives of these discontinuities with respect to the variablex3 produce a
d-like, singular part ofR:

sing~R!mnk
l 5~dn

3@Gmk
l #2dk

3@Gmn
l #!d~x3!, ~2.19!

where byd we denote the Dirac distribution~in order to distinguish it from the Kronecker symb
d! and by@ f # we denote the jump of a discontinuous quantityf between the two sides ofS. The
above formula is invariant undersmoothtransformations of coordinates. There is, however,
sense to impose such a smoothness acrossS. In fact, the smoothness of space–time is an in
pendent condition on both sides ofS. The only reasonable assumption imposed on the diffe
tiable structure ofM is that the metric tensor—which is smooth separately on both side
S—remains continuous acrossS. Admitting coordinate transformations preserving the above c
dition, we lose a part of the information contained in quantity~2.19!, which becomes now
coordinate-dependent. It turns out, however, that another part, namely the Einstein tensor
calculated from~2.19!, preserves its geometric, intrinsic~i.e., coordinate-independent! meaning. In
case of a nondegenerate geometry ofS, the following formula was used by many authors~see
Refs. 7–9, 15 and 18!:
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sing~G!mn5Gmnd~x3!, ~2.20!

where the ‘‘transversal-to-S’’ part of Gmn vanishes identically,

G'n[0, ~2.21!

and the ‘‘tangent-to-S’’ part Gab equals to the jump of the ADM-momentumQab of S @Qab

5Audetgcdu(gabtrK2Kab), wheregab is the inverse three-metric andKab is an extrinsic curvature#
between the two sides of the surface:

Gab5@Qab#. ~2.22!

This quantity is a purelythree-dimensional, symmetric tensor density living onS. When multiplied
by theone-dimensional densityd(x3) in the transversal direction, it produces thefour-dimensional
tensor densityG according to formula~2.20!.

In the case of our degenerate surfaceS it was shown in Ref. 17 that formulas~2.20! and~2.21!
remain valid also in this case. In particular, the latter formula means that the four-dimen
quantity Gmn reduces in fact to an intrinsic, three-dimensional quantity living onS. However,
formula ~2.22! cannot be true, because—as we have seen—there is no way to define uniqu
objectQab for the degenerate metric onS. Instead, we are able to prove the following formula

Gb
a5@Qb

a~X!#, ~2.23!

where the bracket denotes the jump ofQb
a(X) between the two sides of the singular surface. T

quantity does not dependupon any choice ofX and the singular part sing(G)b
a of the Einstein

tensor is well defined. We will show in the sequel that the missing componentG00 can be
recovered in another geometric object, which is presented in the next section.

Remark:Otherwise as in the nondegenerate case, the contravariant componentsGab in for-
mula ~2.20! do not transform as a tensor density onS. Hence, the quantity defined by thes
components would be coordinate-dependent. According to~2.23!, G becomes an intrinsic three
dimensional tensor density onS only after lowering an index, i.e., in the version ofGb

a . This
proves thatGmn may be reconstructed fromGb

a up to an additive termCXmXn only. We stress that
the dynamics of the shell is unambiguously expressed in terms of the gauge-invariant, in
quantityGb

a .
We conclude that the total Einstein tensor of our space–time is a sum of the regular pa@the

regular part is a smooth tensor density on both sides of the surfaceS ~calculated for the metricg
separately! with possible step discontinuity acrossS# reg~G! and the above singular part sing~G!
living on the singularity surfaceS. Thus

Gn
m5reg~G!n

m1sing~G!n
m , ~2.24!

and the singular part is givenup to an additive term CXmXnd(x3). The following four-
dimensionalcovariant divergence is unambiguously defined:

05¹mGc
m5]mGc

m2Ga
mGmc

a 5]mGc
m2 1

2Gmlgml,c . ~2.25!

It is proved in Ref. 17 that this quantity vanishes identically and the total singular part o
Bianchi identities reads

sing~¹mGc
m!5~@reg~G!c

'#1¹̄aGb
a!d~x3![0, ~2.26!

and vanishes identically due to the Gauss–Codazzi equation~2.18!, when we calculate its jump
acrossS. Hence, the Bianchi identity¹mGc

m[0 holds universally~in the sense of distributions! for
space–times with singular, light-like curvature.
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It is worthwhile to notice that the last term in definition~2.17! of the tensor densityQ of S is
identical on its both sides. Hence, its jump acrossSvanishes identically. This way the singular pa
of the Einstein tensor density~2.23! reduces to

Gb
a5@Qb

a#52svX~@¹bXa#2db
a@¹cX

c# !. ~2.27!

C. Energy-momentum tensor of a light-like matter. Belinfante–Rosenfeld identity

The interaction between a thin light-like matter-shell and the gravitational field is describ
Ref. 17. In particular, all the properties of such a matter are derived from its Lagrangian denL,
which depends upon~nonspecified! matter fieldszK living on a null-like surfaceS, together with
their first derivativesza

K
ª]azK and, of course, the~degenerate! metric tensorgab of S,

L5L~zK;za
K ;gab!. ~2.28!

We assume thatL is an invariant scalar density onS. Similarly as in the standard case of canonic
field theory, invariance of the Lagrangian with respect to reparametrizations ofS implies important
properties of the theory: the Belinfante–Rosenfeld identity and the Noether theorem, whic
be discussed in this section. To get rid of some technicalities, we assume in this paper t
matter fieldszK are ‘‘space–time scalars,’’ like, e.g., material variables of any thermomecha
theory of continuous media~see, e.g., Refs. 8 and 20!. This means that the Lie derivativeLYz of
these fields with respect to a vector fieldY on S coincides with the partial derivative:

~LYz!K5za
KYa.

The following Lemma characterizes Lagrangians which fulfill the invariance condition:
Lemma 1: Lagrangian density (2.28) concentrated on a null hypersurface S is invariant i

only if it is of the following form:

L5vXf ~z;LXz;g!, ~2.29!

where X is any degeneracy field of the metric gab on S and f(•;•;•) is a scalar function, homo-
geneous of degree 1 with respect to its second variable.

Remark:Because of the homogeneity off with respect toLXz, the above quantity does no
depend upon a choice of the degeneracy fieldX.

Dynamical properties of such a matter are described by its canonical energy-mom
tensor density, defined in a standard way:

Tb
a
ª

]L

]za
K zb

K2db
aL. ~2.30!

It is ‘‘symmetric’’ in the following sense.
Proposition 2: Canonical energy-momentum tensor density Tb

a constructed from an invarian
Lagrangian density fulfills identities (2.4) and (2.5), i.e., the following holds:

Tb
aXb50 and Tab5Tba . ~2.31!

In the case of a nondegenerate geometry ofS, one considers also the ‘‘symmetric energ
momentum tensor density’’tab, defined as follows:

tab
ª2

]L

]gab
. ~2.32!

In our case the degenerate metric fulfills the constraint: detgab[0. Hence, the above quantityis
not uniquely defined. However, we may define it, but onlyup to an additive termequal to the
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annihilator of this constraint. It is easy to see that the annihilator is of the formCXaXb. Hence, the
ambiguity in the definition of the symmetric energy-momentum tensor is precisely equal t
ambiguity in the definition ofTab, if we want to reconstruct it from the well-defined objectTb

a .
This ambiguity is cancelled, when we lower an index. The next theorem says that for
configurations satisfying field equations, both the canonical and the symmetric tensors co
@In our convention, the energy is described by formula:H5T0

05pK
0 żK2L>0, analogous toH

5pq̇2L in mechanics and well adapted for Hamiltonian purposes. This convention differs
the one used in Ref. 23, where the energy is given byT00. To keep standard conventions fo
Einstein equations, we take standard definition of thesymmetricenergy-momentum tensortb

a .
This is why Belinfante–Rosenfeld theorem takes formtb

a52Tb
a .] This is an analog of the stan

dard Belinfante–Rosenfeld identity~see Ref. 4!. Moreover, Noether theorem~vanishing of the
divergence ofT! is true. We summarize these facts in the following:

Proposition 3: If L is an invariant Lagrangian and if the field configuration zK satisfies
Euler–Lagrange equations derived from L:

]L

]zK2]a

]L

]za
K 50, ~2.33!

then the following statements are true:

(1) Belinfante–Rosenfeld identity: canonical energy-momentum tensor Tb
a coincides with

(minus—because of the convention used) symmetric energy-momentum tensortab:

Tb
a52tacgcb, ~2.34!

(2) Noether theorem:

¹̄aTb
a50. ~2.35!

It is shown in Ref. 17 that the Einstein equations for the singular part

Gb
a58ptb

a ~2.36!

can be derived from an action principle and they contain an intrinsic part of the Barrabe`s–Israel
equations in mixed~contravariant–covariant! tensor density representation. Let us notice that if
assume vacuum Einstein equations outside surfaceS then, in particular, they imply reg(G)c

'50
which gives compatibility of~2.26! with ~2.35!.

Remark:We may also include a regular matter part into the action and we obtain tha
regular part of the energy momentum tensor density is no longer vanishing. In that case o
singular matter fulfills the following equation:

sing~¹mTc
m!5~@reg~T!c

'#1¹̄atb
a!d~x3!50, ~2.37!

whereTmn is the symmetric energy-momentum tensor density of the whole matter surroundin
shell S. If reg(T)mn is derived form the~regular part of! Lagrangian then Eq.~2.36! may be also
considered as a generalized Noether theorem for the full (regular1singular) Lagrangian of matter

III. CANONICAL NULL VECTOR ON A SINGLE SHELL

Let us rewrite the Ricci tensor:

Rmn5]lGmn
l 2]~mGn)l

l 1Gsl
l Gmn

s 2Gms
l Gnl

s , ~3.1!

in terms of the following combinations of Christoffel symbols:

Amn
l
ªGmn

l 2d~m
l Gn)k

k . ~3.2!
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We have

Rmn5]lAmn
l 2Ams

l Anl
s 1 1

3Aml
l Ans

s . ~3.3!

The terms quadratic inA’s may have only step-like discontinuities. The derivatives alongSare
thus bounded and belong to the regular part of the Ricci tensor. The singular part of the
tensor is obtained from the transversal derivatives only. In our adapted coordinate system,
x3 is constant onS, we obtain

sing~Rmn!5]3Amn
3 5d~x3!@Amn

3 #, ~3.4!

where byd we denote the Dirac delta-distribution and by square brackets we denote the ju
the value of the corresponding expression between the two sides ofS. Consequently, the singula
part of Einstein tensor density reads

sing~Gn
m!ªAugusing~Rn

m2 1
2R!5d~x3!Gn

m , ~3.5!

where

Gn
m
ªAugu~dn

bgma2 1
2dn

mgab!@Aab
3 #5@Q̃n

m#, ~3.6!

Q̃mn
ªAugu~gmagnb2 1

2g
mngab!Aab

3 , ~3.7!

and explicit formulas forQ̃n
m are given in Appendix B. It was also shown in Ref. 17 that t

contravariant version of this quantity:

sing~G!mn5@Q̃mn#d~x3!,

is coordinate-dependent and, therefore, does not define any geometric object. Let us obse
Gab

ª@Q̃ab# is not well-defined intrinsic tensor density onS in contrast toGb
a5@Q̃b

a#, as was
shown in Appendix A of Ref. 17. However, one can extract the following object:

I a
ªsXa

G00

X0L0 , ~3.8!

which is well defined because of the following.
Proposition 4: The vector field I defined by (3.8) does not depend on the choice of the fi

and coordinate x0, hence it is a well-defined intrinsic object on the null surface S.
Proof: Let us express the componentG00 in terms of the objects which arise i

(11211)-decomposition of space–time~see Appendix B!:

G005@Q̃00#5g03@Q̃3
0#1g0b@Q̃b

0#

5
l

M
~2@]3 ln l#1mb@wb# !2sS 1

N2 Xb1
s

M
mbDl@wb#

52
1

M
@]3l#52sYm@]ml#, ~3.9!

where the last equality holds because tangent toS derivatives]al are continuous, hence@]al#
50. The transformation laws, introduced in Ref. 16 and given in Appendix A, imply that

sXa
G00

X0L0 52Ym@]m ln l#Xa
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is not dependent on the choice of the basisX, ]A , Y at the pointxPS. More precisely, for any two
tetradsX, ]A , Y and X̃, ] B̃ , Ỹ related by~A1!, ~A2!, and~A14! we get@Y(ln l)#X5@Ỹ(ln l̃)#X̃.

We also haveGmnYmYn5G00 becauseGmnXm50 @cf. ~2.21! and Appendix B#.
h

Remark:One can define a symmetric tensor densityWªI ^ L5L ^ I on S. However, there is
no possibility to include objectWab into Gab unlessGb

a50. Moreover, ifGb
a is vanishing~which

happens for spherical symmetry cf. Prop. 5!, one can check from Bianchi identities¹mGn
m50 that

¹mI muS50

for any extensionI m which is tangent toS. Unfortunately, this equation is not intrinsic onS.
The Eq.~2.36! cannot be completed by the equalityG0058pt00 on the tensor density leve

because norGab neithertab are geometric objects~in the nondegenerate case both tensor dens
are well defined! on S. On the other hand, the definition~3.8! allows to complete singular Einstei
equations~2.36! in the following form:

I a58pPa, ~3.10!

where the vector fieldPa defined as follows:

Pa
ªsXa

t00

X0L0 ~3.11!

contains missing information about singular energy-momentum tensor densitytmn.
Let us finish this section with the following observation: for nondegenerate surfaceS the

tensor densityGab @given by~2.22!# is well defined. For the null shellS it splits into two objects:
the tensor densityGb

a defined by~2.23! and the null vectorI a given by~3.8!. This means that the
information about the jump of a ‘‘transverse’’ extrinsic curvatureKab ~in Barrabès–Israel ap-
proach! is contained in two different geometric objects2Gb

a and I a.

IV. CROSSING SHELLS

Let us consider two shells intersecting each other along surfaceS3 which is a sphere. One ca
imagine this situation with the help of Fig. 1, where one spherical coordinate is suppressed a

FIG. 1. Crossing shells.
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spheres are drawn as one-dimensional circles.
Let us introduce a local coordinate system (v,xA,u) aroundS3 , such thatNuª$u5u0% is the

first shell andNvª$v5v0% is a second one. HenceS35NuùNv . The metric takes the form
similar to ~B1! but now both~transversal toS3) coordinatesu andv are null, i.e., corresponding
level three-surfaces are degenerate. More precisely,

gmn5F nAnA nA sM1mAnA

nA gAB mA

sM1mAnA mA mAmA

G ~4.1!

which givesAudetgmnu5lM, and the contravariant four-metric takes the form

gmn5F 0 2s
mA

M

s

M

2s
mA

M
g5 AB1s

nAmB1mAnB

M
2s

nA

M

s

M
2s

nA

M
0

G , ~4.2!

whereM.0, sªsgnguv561, gAB is the induced two-metric on surfaces$u5const,v5const% and
g5 AB is its inverse~contravariant! metric. Bothg5 AB and gAB are used to rise and lower indice
A,B51,2 of the two-vectorsnA andmA.

Let us choose the null vector fields

Kª]v2nA]A and Lª]u2mA]A

which are tangent toNu or Nv , respectively, andg(K,L)5sM. We can use the coordinate
(v,xA) on the first shellNu . On the second shellNv we have the coordinate system (xA,u). The
canonical vector fieldI is well defined on both shells:

I ~K !52
K

M
@L~ ln l!#u , I ~L !52

L

M
@K~ ln l!#v , ~4.3!

where the indexu or v corresponds to jump across first or second shell, respectively.
Several continuity properties of discontinuities acrossS3 are implied by the observation tha

jump of the jump vanisheswhich we explain below on the example of a real function of tw
variables.

Let f be a function on an open setU,R2 containing point~0,0! such thatf is smooth outside
axes~corresponding to our crossing shells!, i.e., f PCk(U8) for sufficiently largek>2 and

U8ªU\~$~x,y!PR2ux50%ø$~x,y!PR2uy50%!.

Moreover, we assume thatf is continuous across the axes with finite jumps of first normal der
tives. More precisely, the jump

F ] f

]xG
x

ª lim
x→01

] f

]x
~x,y!2 lim

x→02

] f

]x
~x,y!

is well defined foryÞ0 and splits into upper~positivey! and lower~negativey! parts. Under the
above assumptions we get the following.

Lemma 2: The jump@] f /]x#x is continuous across~0,0!, i.e.,
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lim
y→01

F ] f

]xG
x

~y!5 lim
y→02

F ] f

]xG
x

~y!

and the similar property holds on thex axis.
Proof: Let us enumerate the quadrants of the plane: I, II, III, IV, i.e., I→$(x,y)PR2ux.0,y

.0%, II→$(x,y)PR2ux,0,y.0%, III→$(x,y)PR2ux,0,y,0%, IV→$(x,y)PR2ux.0,y,0%,
and the corresponding restrictions of the functionf we denote by index, e.g., the functionf in the
second quadrant we denote byf II . Continuity of f and its tangent derivatives across positi
y-half-axis impliesf I(0,y)5 f II(0,y) and (]nf I/]y)(0,y)5(]nf II /]y)(0,y),n51,2,...,k, where the
boundary values off and its derivatives are defined in an obvious way, e.g.,f I(0,y)
5 limx→01 f I(x,y). In particular, we have

] f I

]y
~0,y!5

] f II

]y
~0,y! for y.0,

] f IV

]y
~0,y!5

] f III

]y
~0,y! for y,0.

Passing to the limit at~0,0!, we get

] f I

]y
~0,0!ª lim

y→01

] f I

]y
~0,y!5 lim

y→01

] f II

]y
~0,y!5..

] f II

]y
~0,0!

and similarly

] f IV

]y
~0,0!ª lim

y→02

] f IV

]y
~0,y!5 lim

y→02

] f III

]y
~0,y!5..

] f III

]y
~0,0!.

Finally, from the last two equations we get

] f I

]y
~0,0!2

] f IV

]y
~0,0!5

] f II

]y
~0,0!2

] f III

]y
~0,0!,

which implies continuity of jump@] f /]x#x acrossy50. h

We can denote symbolically the results as@@] f /]x#x#y50, i.e., jump of the jump at the
crossing point vanishes.

Using Lemma 2 one can show the following:
Theorem 1: The continuity of the metric across null shells implies that the vector fields I(K)

and I(L) are continuous across S3 .
Moreover, from Lemma 2 we get thatGb

a(K) on Nu and Gb
a(L) on Nv are also continuous

@althoughGb
a(K) does not depend on the choice of the null fieldK, we keep this argument to

distinguish the shells; moreover, we should remember that the coordinatesxa depend on the shell
i.e., (xa)5(v,xA) for Nu but (xa)5(u,xA) for Nv] acrossS3 .

Proof: From definition~4.3! of the null fieldK and ~4.1! we have

I ~K !52
K

Ml
@]ul#u ,

hence we apply Lemma 2 for the functionl. More precisely, we take

f ~x,y!ªl~u5x1u0 ,y5y1y0 ,xA!
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with fixed coordinatesxA, hence the pointx50, y50 corresponds to the fixed point onS3 with
coordinatesxA.

For Gb
a(K) we observe that

Gb
a~K !5sLa@wb#5

l

2M
KaKc@]ugcb#u

which is implied by~B11!, and~B14! and ~B15!. Moreover, from~B15! we get@wv#5nA@wA#,
hence it is enough to consider

@wA#5
s

2M
gAB@]unB#u

implied by ~B14!, and using Lemma 2 for the functionfªnB we obtain the result. h

The above theorem and the considerations from Sec. II imply thatthe dynamics of crossing
shells is described by Eqs. (2.36) and (2.37) which hold on both shells plus continuity pro
across S3 .

A. Spherically symmetric shells

Proposition 5: For spherically symmetric null shell the tensor densityGb
a is vanishing.

This implies that the dynamics of the spherical shell is very simple, i.e.,tb
a50, hence Eqs.

~2.36! and~2.37! are trivially satisfied but vector fieldI is not vanishing as we show in the sequ
Proof: From ~2.27!, ~B11!, and~B15! we get

Gb
a5@Qb

a#5La@wb# ~4.4!

but spherical symmetry gives@wA#50 and, moreover,~B15! implies @w0#50. h

Let us check the value ofI for the spherical null shell which arises from matching tw
Schwarzschild metrics along spherically symmetric null surface,

gi52S 12
2mi

r i
Ddu222 du dr i1r i

2 dV, i 51,2, ~4.5!

where

dVªdu21sin2 u dw2.

We takeu>0 for g1 and u<0 for g2 , and r i(R,u)ªR1(mi /r )u. This implies that the full
metric is continuous in coordinates~u,R! across the shellu50. More precisely,

g1uu5052S 12
2m1

R Ddu222 duS dR1
m1

R
duD1R2 dV

52du222 du dR1R2dV

52S 12
2m2

R Ddu222 duS dR1
m2

R
duD1R2 dV5g2uu50 .

Moreover, if we choose null fieldX5]/]R then the transversal field may be chosen asY5
2]/]u andl5r i

2 sinu, hence

Y~ ln l!uu50522
]

]u
lnS R1

mi

R
uD U

u50

52
2mi

R2

and finally
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I 52
m12m2

R2 X. ~4.6!

Next, for crossing two spherical null shells we may check the Dray–t’Hooft–Redm
formula6,25 as follows: first we apply Theorem 1 which from continuity of the metric impl
continuity of the vector fieldI, second we check that the vector fieldI is continuous through the
crossing sphere if and only if the Dray–t’Hooft–Redmount formula is true.

Theorem 2: If the shells are spherically symmetric than continuity of the vector field I g
the Dray–t’Hooft–Redmount formula~4.13!.

Proof: Let us consider the full description of crossing spherically symmetric null shells w
can be nicely given in Kruskal–Szekeres coordinates@instead of Eddington–Finkelstein used
~4.5!#. We assume four domains~cf. Fig. 2! equipped with the Schwarzschild metrics

gi52
32mi

3

r i
expS 2

r

2mi
Ddui dv i1r i

2 dV, i 51,2,3,4, ~4.7!

wherer i52mik(2uiv i) and the Kruskal functionk is defined by its inversek21(x)5(x21)ex

on the interval (0,̀ ),R. One can easily check the following identity for the first derivative ofk:

k85
exp~2k!

k
. ~4.8!

The four domains Mi ( i 51,2,3,4) are matched together along null surfaces$xPMi u
ui5a i%,Mi and$xPMi u v i5b i%,Mi , as is shown in Fig. 2.

The coordinatesv1 , v4 on the shellN14 do not match but

r 52m1k~2a1v1!52m4k~2a4v4! ~4.9!

is the same on both sides and can be chosen as a coordinate on the surfaceN14. This equality also
means thatl is continuous across this shell. On the other hand, the continuity of the
(32mi

3/r i)exp(2r/2mi) dui dv i acrossN14 implies

m1
3

r
expS 2

r

2m1
Ddu1 dv1uu15a1

5
m4

3

r
expS 2

r

2m4
Ddu4 dv4uu45a4

,

hence using~4.8! and ~4.9! we obtain the transformation law between first derivatives of coo
natesu1 andu4 ,

FIG. 2. Matching domains.
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du4

du1
5S m1

m4
D 3

expS 2
r

2m1
DexpS r

2m4
D dv1

dv4
5

m1a4

m4a1
. ~4.10!

Moreover, the null vector fieldX tangent to the first shell can be represented inM1 as follows:

X5
]

]r
5S dr

dv1
D 21 ]

]v1
,

and using~4.8! we have

dr

dv1
522m1a1k8~2a1v1!522m1a1~k~2a1v1!exp@k~2a1v1!# !21,

hence

X52
k~2a1v1!exp~k~2a1v1!!

2a1m1

]

]v1
.

The transversal vector field

Y5
a1

4m1

]

]u1

fulfills normalization conditiong1(X,Y)51. Moreover, using equality

Y~ ln l!5
a1

2m1r 1

]r 1

]u1
5

r 122m1

r 1
2

and the similar one inM4 we can check the formula~4.6! in new coordinate representation

I 1452@Y~ ln l!#X5
2m122m4

r 2 X.

Similar considerations for the first shellN23 give the following expression for the vector fiel
~3.8!:

I 235
2m222m3

r 2 X,

where nowr 52m2k(2a2v2)52m3k(2a3v3) and

X5
]

]r
52

k~2a2v2!exp~k~2a2v2!!

2a2m2

]

]v2
52

k~2a3v3!exp~k~2a3v3!!

2a3m3

]

]v3
.

We can compareI 14 with I 23 acrossS3 by using the transformation law@cf. ~4.10!# betweenv4

andv3 ,

dv4

dv3
5

b4m3

b3m4
, ~4.11!

which is implied by continuity of the metricsg3 and g4 across second shellN34 (v35b3 and
v45b4). Finally, we obtain
                                                                                                                



an find

ly

656 J. Math. Phys., Vol. 44, No. 2, February 2003 Jacek Jezierski

                    
I 23~v35b3!52
2~m22m3!

r 2

k~2a3b3!exp~k~2a3b3!!

2a3m3

]

]v3

52
2~m22m3!

r 2

r

2m3
expS r

2m3
D

2a3m3

b4m3

b3m4

]

]v4

52

~m22m3!b4 expS r

2m3
D

2ra3b3m4m3

]

]v4

and

I 14~v45b4!52
2~m12m4!

r 2

r

2m4
expS r

2m4
D

2a4m4

]

]v4
,

henceI 235I 14 on S3 implies

~m12m4!expS r

2m4
D

2ra4m4
5

~m22m3!b4 expS r

2m3
D

2ra3b3m3
,

or

~m12m4!a3b3m3 expS 2
r

2m3
D5~m22m3!a4b4m4 expS 2

r

2m4
D . ~4.12!

Moreover, onS3 ,

a ib i expS 2
r

2mi
D512k~2a ib i !512

r

2mi

which applied to~4.12! gives

~m12m4!~r 22m3!5~m22m3!~r 22m4!,

which is equivalent to Dray–t’Hooft–Redmount formula

~r 22m1!~r 22m3!5~r 22m2!~r 22m4!. ~4.13!

h

In the above proof we have restricted ourselves to the case of positive massesmi and to the
matching null surfaces which are not horizons. The analysis of possible special cases one c
in Ref. 11 but obviously the formula~4.13! remains valid for any special case.
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APPENDIX A: TRANSFORMATION RULES

The triad (X,]A) on S depends upon a particular (211)-decomposition ofS, given by the
choice of the time coordinatex0 on S. However, several objects constructed by means of the t
do not depend upon this choice and describe the geometry ofS. To prove this independence
observe that we have the following transformation law:

X̃5cX, ~A1!

]̃ B̃5C
B̃

A
]A1 f B̃X, ~A2!

where (X̃,]̃ B̃) is the new triad, corresponding to the new coordinate system (x̃ã) on S. The
coefficientc may be obtained from the following equation:

15^dx̃0,X̃&5 K ] x̃0

]xA dxA1
] x̃0

]x0 dx0,cXL 5cS 2
] x̃0

]xA nA1
] x̃0

]x0D , ~A3!

hence,

c5S ] x̃0

]x02
] x̃0

]xA nAD 21

. ~A4!

On the other hand, we have

] B̃5
]xA

] x̃B̃
]A1

]x0

] x̃B̃
~X1nA]A!5S ]xA

] x̃B̃
1

]x0

] x̃B̃
nAD ]A1

]x0

] x̃B̃
X, ~A5!

hence,

C
B̃

A
5

]xA

] x̃B̃
1

]x0

] x̃B̃
nA, ~A6!

f B̃5
]x0

] x̃B̃
. ~A7!

The transformation law forgAB

gÃB̃5C
Ã

A
C

B̃

B
g~]A1 f AX,]B1 f BX!5C

Ã

A
C

B̃

B
gAB ~A8!

implies

l̃5l detC
Ã

B
. ~A9!

In order to complete the triad (X,]A) on S to a tetrad inM it is useful to choose a transverse fie
Y fulfilling the following ‘‘normalization conditions:’’

g~Y,X!51, ~A10!

g~Y,]A!50. ~A11!

These equationsdo not determineY uniquely, butmoduloan additive term proportional toX: a
‘‘gauge transformation’’
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Y→Y1hX, ~A12!

with an arbitrary scalar fieldh is always possible. Extending coordinatex0 from S to a neighbor-
hood ofS, we may choose the following transverse field:

Y5
s

M
~]32mA]A!. ~A13!

We stress, however, that this particular choice ofY depends not only upon a (211)-decomposition
of S, but also on a (311)-decomposition ofM in a neighborhood ofS. Because of~A11!, the
vectorsX andY span the bundle of vectors normal toS.

The transformation law forY, when passing from one to another (211)-decomposition ofS,
reads

Ỹ5c21~Y2kA]A!1hX, ~A14!

where the scalar fieldh is arbitrary@it is determined by the extension of the (211)-decomposition
of S to a (311)-decomposition ofM#, and the coefficientskA are uniquely determined by equa
tion

f B̃5C
B̃

A
gACkC, ~A15!

with f B̃ given by~A7!. Despite of the freedom in choice ofY, some geometric objects constructe
with help of the tetrad (X,]A ,Y) do not depend upon this choice and characterize only
geometry ofS,M .

APPENDIX B: STRUCTURE OF THE SINGULAR EINSTEIN TENSOR

We are going to relate the coordinate-dependent quantityQ̃mn with the external curvatureQb
a

of S. We use the form of the metric introduced in Ref. 16,

gmn5F nAnA nA sM1mAnA

nA gAB mA

sM1mAnA mA S M

N D 2

1mAmA

G , ~B1!

and

gmn5F 2S 1

ND 2 nA

N22s
mA

M

s

M

nA

N22s
mA

M
g5 AB2

nAnB

N2 1s
nAmB1mAnB

M
2s

nA

M

s

M
2s

nA

M
0

G , ~B2!

whereM.0, sªsgng03561, gAB is the induced two-metric on surfaces$x05const,x35const%
andg5 AB is its inverse~contravariant! metric. Bothg5 AB andgAB are used to rise and lower indice
A, B51, 2 of the two-vectorsnA andmA.

Formula ~B1! implies Au detgmnu5lM. Moreover, the objectLa defined by formula~2.3!,
takes the formLa5lXa, wherel is given by formula~2.2! andXª]02nA]A . This means that
we have chosen the following degeneracy field:Xm5(1,2nA,0).

For calculational purposes it is useful to rewrite the two-dimensional inverse metricg5 AB in
three-dimensional notation, settingg5 0a

ª0. This object satisfies the obvious identity
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g5 acgcb5db
a2Xadb

0.

Hence, the contravariant metric~B2! may be rewritten as follows:

gab5g5 ab2
1

N2 XaXb2
s

M
~maXb1mbXa!, ~B3!

wherema
ªg5 aBmB , so thatm0

ª0, and

g3m5
s

M
Xm.

It may be easily checked~see, e.g., Ref. 16, p. 406! that covariant derivatives of the fieldX along
S are equal to

¹aX52waX2 l abg5
bc]c , ~B4!

where

waª2XmGma
0 ~B5!

and

l abª2g~]b ,¹aX!5g~¹a]b ,X!5XmGab
m . ~B6!

Moreover,

]cL
c52lgabl ab52lg5 abl ab52l l , ~B7!

wherel 5g5 abl ab .
The following lemma was proved in Ref. 17.
Lemma 3.The object Q˜ b

a is related to Qb
a as follows:

sQ̃a
b5sQb

a2 1
2l ldb

a1Laxb2db
aLcxc , ~B8!

wherexcª
1
2]c ln(M/l).

Moreover, from definition~2.17! and property~B4! one can check that

sQb
a5ldb

a¹cX
c2l¹bXa2db

a]cL
c

52ldb
a~wcX

c1 l !1l~wbXa1g5 acl cb!1db
al l

5lg5 acl cb1Lawb2db
aLcwc . ~B9!

Remark:Formula~B9!, together withl abX
b505gabX

b, gives us the orthogonality conditio
Qb

aXb50 and symmetry of the tensorQabªgacQb
c .

Now, we would like to examine the properties ofGmn5@Q̃mn#. From continuity of the metric
acrossS we obtain

@ l ab#5sM@Aab
3 #5sM@Gab

3 #5Xc@Gcab#50, ~B10!

s@Q̃b
a#5La@A3b

3 #2db
aLc@A3c

3 #5La@wb#2db
aLc@wc#5s@Qb

a#, ~B11!

and
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@Q̃m
3 #50 ~B12!

becausesQ̃3
352 1

2l l andsQ̃a
350.

Finally, the missing component@Q̃3
a# has the following form:

@Q̃3
a#5sLa$2@]3 ln l#1mb@wb#%1Mlg5 ab@wb#. ~B13!

We also have from

@wa#52Xbg03@G3 ba#5
s

2M
Xb@gab,3# ~B14!

that

Xa@wa#5
s

2M
@XaXbgab,3#50. ~B15!

Using these results from~B12! one can easily check the property~2.21!,

G335@Q̃33#5g33@Q̃3
3#1g3b@Q̃b

3#50,

G3a5@Q̃3a#5g33@Q̃3
a#1g3b@Q̃b

a#52
s

M
@XbQb

a#50,

where we used the equality@Q̃b
a#5@Qb

a# which is crucial to admit that the objectGb
a is a well

defined geometric object onS.

APPENDIX C: GAUSS–CODAZZI EQUATIONS

It was shown in Ref. 17 that

sGa
352s]bQa

b1 1
2sQbcgbc,a1l]al , ~C1!

where we have used the formula

sQab5lg5 acg5 bdl cd1~Lag5 bc1Lbg5 ac2g5 abLc!wc .
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By considering the quantum vacuum states in the asymptotic regions of the gravi-
tational background, the production rates of scalar and spin-1

2 particles created by
gravitational fields in specific geometries are computed, with energy distributions
shown to be of the Bose–Einstein and Fermi–Dirac types. The analysis is extended
in the case of scalar particles to include a constant electric field. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1500793#

I. INTRODUCTION

Particle creation in time dependent cosmologies1–7 is a most exciting problem in contempo
rary theoretical physics. Following the pioneer works5,6 performed in this area, a new approa
was suggested by Hawking7 and further by a series of authors who have given the rela
between thermal distribution and thermodynamics. Recently, Villalba2 used the semiclassical ap
proximation in which the gravitational field was treated classically and analyzed quantize
ementary particles propagating on the classical background. The idea behind this approa
study quantum effects in gravitational backgrounds in the neighborhood of the timelike singu
concentrating in particular on the vacuum solutions.

In this article, some specific classes of Friedman–Robertson–Walker~FRW! geometries with
timelike singularities are analyzed from that point of view, in order to identify the vacuum s
in the asymptotic regions.

The rates of scalar and spin-1
2 particle creation may be computed through Bogoliub

transformations,8 which, however, requires first to identify the ‘‘in’’ and ‘‘out’’ vacuum state
Since, for our choices of geometries, the gravitational background does not possess a t
Killing vector, the standard interpretation of positive and negative frequency solutions is a
This difficulty is circumvented by identifying such modes through a comparison of t
asymptotic behavior to that of the solutions to the relativistic Hamilton–Jacobi Eq.~1!.

The organization of this article is as follows. In Sec. II we introduce the natural criterion
identifying the initial and final states based on the asymptotic behavior of the quasiclassical
solving the Hamilton–Jacobi equation. In Secs. III and IV, the Klein–Gordon and Dirac equa
are solved, whose results are compared to the previous quasiclassical solutions. After identi
of the positive and negative frequency states, the distributions of scalar and spin-1

2 particle pro-
ductions by the considered gravitational fields is computed. In Sec. V, some particular ca
Kantowiski–Sacks, Bianchi I, and Bianchi III backgrounds in the presence of a constant e
field are analyzed, and the rate of thermal distribution of scalar particle production is given

II. SOLUTION OF THE HAMILTON–JACOBI EQUATION

The relativistic Hamilton–Jacobi equation is

gab]aS]bS1m250, ~1!

a!Electronic mail: mendiz19@hotmail.com
6620022-2488/2003/44(2)/662/14/$20.00 © 2003 American Institute of Physics
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where we adopt the conventionc51, \51. Since the metric15

ds252dt21a2~ t !~dx21b2~x!@dy21c2~y!dz2# ! ~2!

depends ont, x andy, the solution of Eq.~1! can be written as a sum

S5F~ t !1G~x!1H~y!2kzz. ~3!

Let us analyze two special models for expansion.
( i ) a(t)5a0t, wherea0 is an arbitrary constant: The line element~2! becomes

ds252dt21a0
2t2~dx21b2~x!@dy21c2~y!dz2# !. ~4!

Substituting~3! into ~1! and taking into account~4!, we obtain

2F .t
21

1

a0
2t2 G.x

2 1
1

b2a0
2t2 H .y

2 1
1

b2c2a0
2t2 kz

21m250, ~5!

where by the dot we denote a derivative with respect tot, x, andy.
Then the quasiclassical behavior of the solution of the Klein–Gordon and Dirac equatio

the metric~4! is

f~ t,x,y,z!5eiS→C~x,y,z!expS 6 i EAm21
l2

a0
2t2 dtD

5C~x,y,z!
exp~6 imAt21 l2/m2a0

2!t6 il/a0

~l/ma0 1At21 l2/m2a0
2! il/a0

. ~6!

Then ast→` we find

f`→C~x,y,z!exp~7 imt!, ~7!

and ast→0

f0→C~x,y,z!S 2l

ma0
D 2 il/a0

t7 il/a0, ~8!

where the upper and the lower signs in~7! and~8! correspond respectively to the positive and t
negative frequency modes. The results~7! and~8! give the quasiclassical asymptotic behaviors
the relativistic wave equations.

( i i ) a(t)5eHt: The line element~2! becomes

ds252dt21e2Ht~dx21b2~x!@dy21c2~y!dz2# !. ~9!

Substituting~3! into Hamilton Jacobi equation~1! and taking into account~9!, we arrive at

2F .t
21

1

e2Ht G.x
2 1

1

b2e2Ht H .y
2 1

1

b2c2e2Ht kz
21m250. ~10!

The solution of Eq.~10! has the form

S~ t,x,y,z!52kzz6 i EAl21
k2

b2 dx6EAk22
kz

2

c2 dy6E Am21l2e22Htdt, ~11!

which in t→2` reduces to
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S~ t,x,y,z!52kzz6 i EAl21
k2

b2 dx6EAk22
kz

2

c2 dy7
l

H
e2Ht. ~12!

The quasiclassical behavior of the solution of the Klein–Gordon and Dirac equations in the m
~9! is

f2`5eiS→C~x,y,z!expS 7
il

H
e2HtD . ~13!

Analogously, we have that ast→` reduces to

S~ t,x,y,z!52kzz6 i EAl21
k2

b2 dx6EAk22
kz

2

c2 dy6mt7
l2e22Ht

4Hm
, ~14!

and, consequently,

f`5eiS→C~x,y,z!e7 imt expS 7 i
l2e22Ht

4Hm D , ~15!

where the upper and the lower signs in~13! and ~15! correspond respectively to the positiv
frequency modes and to the negative frequency modes. After making this identification, w
analyze the solution of the Klein–Gordon and Dirac equations in the background field~2!.

III. SOLUTION OF THE KLEIN–GORDON EQUATION

The covariant generalization of the Klein–Gordon equation takes the form

gab¹a¹bf2~m21jR!f50, ~16!

where¹a is the covariant derivative andR the scalar curvature. We consider a scalar field in
acting only with the space–time geometry, with the massm and minimal couplingj50.

We can write~16! in the form

S ] t
22

1

a2 ]x
22

1

a2b2 ]y
22

1

a2b2c2 ]z
21m2Dc50. ~17!

Since ~17! commutes with the operator2 i ]z we can look at a solution of the formc5eikzzf
which reduces Eq.~18! to

S ] t
22

1

a2 S ]x
21

1

b2 ]y
22

1

b2c2 kz
2D1m2Df50. ~18!

Equation~18! can be solved by using separation of variables. Therefore,

S d2

dt2
1

l2

a2 1m2Df150, ~19!

S d2

dx2 1
k2

b2 2l2Df250, ~20!

S d2

dy2 2
kz

2

c2 2k2Df350, ~21!
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wherel andk are constants of separation andf(t,x,y)5f1(t)f2(x)f3(y). To solve Eqs.~19!,
~20! and ~21! we set the following for a FRW space–time

~a! b(x)5sinhx: Equation~20! becomes

S d2

dx2 1
k2

sinh2 x
2l2Df250, ~22!

and the solution is given by

f25A sinhq xF~ 1
2 ~q1l!, 1

2 ~q2l!,q1 1
2 ,2sinh2 x!, ~23!

with q5 1
21 i (k22 1

4)
1/2.

~b! c(y)5siny: Equation~21! becomes

S d2

dy2 2
kz

2

sin2 y
2k2Df350, ~24!

and the solution takes the form

f35BsinqyF~ 1
2 ~q1 ik !, 1

2 ~q2 ik !,q1 1
2 ,sin2 y!, ~25!

with q5 1
21(kz

21 1
4)

1/2.
(i) a(t)5a0t, a curvature-dominated model of FRW space–time: Equation~19! can be writ-

ten as follows:

S d2

dt2
1m21

l2

a0
2t2Df150. ~26!

Making the change of variablesz52imt, we obtain the Whittaker equation

S d2

dz2 1
l22 1

4

a0
2z2 D f150, ~27!

the solution of which is

f15C1Wk,m~z!1C2Mk,m~z!, ~28!

wherek50 andm5 ( i /4) (4l2/a0
221)1/2.

Looking at the asymptotic behavior foruzu→`, ~Ref. 9!

Wk,m~z!→e2z/2zk, ~29!

and, forz→0,

Mk,m~z!→zm11/2. ~30!

We have that the solution of Eq.~27!, having an asymptotic behavior of the form~7!, is

f`5C`
1Wk,m~z!1C`

2W2k,m~2z!, ~31!

whereC`
1 andC`

2 are normalization constants.
Analogously, referring at the quasiclassical solutiont50, Eq.~8!, the corresponding negativ

(2) and positive (1) frequency solutions take the form

f05C0
2Mk,m~z!1C0

1Mk,2m~z!, ~32!
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whereC0
2 andC0

1 are normalization constants.
Then, using the relation betweenMk,m(z) andWk,m(z), Ref. 9

Mk,m~z!5G~2m11!e2 ipkF W2k,m~2z!

G~ 1
2 1m2k!

,1eip(m11/2)
Wk,m~z!

G~ 1
2 1m1k!

G , ~33!

with (2 p/2,argz,3p/2 ; 2mÞ21,22, . . . ), wehave that the negative frequency solutionf0
2

can be written in terms off`
2 and (f`

2)* as follows:

f0
25G~2m11!e2 ipkF f`

2

G~ 1
2 1m2k!

1eip(m11/2)
~f`

2!*

G~ 1
2 1m1k!

G , ~34!

where we have used the property (Wk,m(z))* 5W2k,m(2z).
Since we have been able to obtain single-particle states in the vicinity oft50 as well as in the

asymptotet→`, we can compute the density of particles created by gravitational field.
From ~34!, and using the Bogoliubov coefficients,8 we can write

f0
25af`

21b~f`
2!* . ~35!

From the normalization of the wave function,uau22ubu251 and, taking into account~34!, we
obtain

ubu2

uau2
5exp22pAl2/a0

22 1
4, ~36!

that the density of scalar particles created is thermal.
(ii) a(t)5eHt, an inflationary universe: The basic idea of inflation is that the vacuum en

is the dominant component of the energy density of the universe, so the scale factora(t) grows
exponentially. When that occurs the universe begins a de Sitter phase, expanding expone

Substituting the above expression into~19!, we obtain

S d2

dt2
1l2e22Ht1m2Df150. ~37!

Introducing the new coordinatez5 (l/H) e2Ht, Eq. ~37! becomes the Bessel equation

S z2
d2

dz2 1z
d

dz
1z21

m2

H2Df150, ~38!

whose solution can be expressed in terms of the Hankel functions9 Hn
(1) andHn

(2) ,

f15C1Hin
(1)S l

H
e2HtD1C2Hin

(2)S l

H
e2HtD , ~39!

whereC1 andC2 are arbitrary constants andn5m/H.
Let us analyze the behavior of the solution of Eq.~38!. As t→2`, we find that

f1,2`5C1,2`Hin
(1)S l

H
e2HtD1C2,2`Hin

(2)S l

H
e2HtD5C1,2`8 ei ~l/H ! e2Ht

1C2,2`8 e2 i ~l/H ! e2Ht
,

~40!

and whent→` we obtain
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f1,̀ 5C1,̀ JinS l

H
e2HtD1C2,̀ J2 inS l

H
e2HtD5C1,̀8 ~e2Ht! in1C2,̀8 ~e2Ht!2 in

5C1,̀8 e2 imt1C2,̀8 eimt. ~41!

We can identify the first and the second right hand side terms as positive and negative freq
modes, respectively, by comparing~40! and ~41! with ~13! and ~15!.

The recurrence relation betweenHin
(1)(z) andJin(z),

Hin
(1)~z!5

1

sinh~pn!
~epnJin~z!2J2 in~z!!, ~42!

permits one to express

f1,2`
1 5

1

sinh~pn!
~epnf1,̀

1 2~f1,̀
1 !* !. ~43!

Sincef1,2`
1 andf1,̀

1 are related via Bogoliubov coefficients, Eq.~43! gives

f1,2`
1 5af1,̀

1 1b~f1,̀
1 !* . ~44!

From uau22ubu251, we obtain

ubu2

uau2 5e22pn5e22pm/H. ~45!

The density of scalar particles created is thermal, and we get the Bose–Einstein distribu
scalar particles as follows:

ubu25
1

e2pm/H21
. ~46!

IV. SOLUTION OF THE DIRAC EQUATION

Now, we proceed to discuss the process of creation of spin-1
2 particles in the cosmologica

background~2!. The covariant generalization of the Dirac equation in curved-space–time is

$ḡa~]a2Ga!1m%C50, ~47!

where Ga are the spinor connections, andḡa are the curvilinear Dirac matrices satisfying th
anticommutation relations$ḡa,ḡb%52gab. The matricesḡa are related to theg i-standard flat
Dirac matrices as follows:

ḡa5hi
ag i , ~48!

with $g i ,g j%152h i j . In the diagonal tetrad gaugehi
a takes the form

hi
a5diagS 1,

1

a
,

1

ab
,

1

abcD , ~49!

and we can verify thatgab5hi
ahj

bh i j .
The connection spinor is defined by the relation

Ga52 1
4 ~]ahi

r1Gsa
r hi

s!gbrhj
bg jg i , ~50!

andGa take the form
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G050, G15 1
2 a.tg

0g1, G25 1
2 ba.tg

0g21 1
2 b.xg

1g2,

~51!
G35 1

2 bca.tg
0g31 1

2 cb.xg
1g31 1

2 c.yg
2g3.

Substituting Eqs.~48!, ~49! and ~51! into ~47!, we obtain

H g0] t1
1

a
g1]x1

1

ab
g2]y1

1

abc
g3]z1mJ c50, ~52!

whereC is related toc by

C5a23/2b21c21/2c. ~53!

Since Eq.~52! commutes with2 i ]z , we can write

c5c~ t,x,y!eikzz. ~54!

Applying the algebraic method of separation of variables,14 it is possible to write Eq.~52! as a sum
of two first-order differential operators commuting between them as follows:

@K̂1 , K̂2#250, ~K̂11K̂2!F50; K̂1F52kF, K̂2F5kF, ~55!

wherek is a constant of separation, and

K̂152 i ~abg0] t1bg1]x1abm!g1g0, K̂252 i S g2]y1
1

c
g3]zDg1g0, ~56!

c5g1g0F. ~57!

Adopting a suitable representation of Dirac matrices,13 we can apply the transformationF5Sf
defined by~Ref. 12!

S5 1
2 ~ I 1g1g21g2g31g3g1!, ~58!

and Eq.~55! reduces to the form

~abg3] t1bg0]x1abmg3g01 ik !f50, ~59!

S g1g3g0]y1
1

c
g2g3g0]z2 ik Df50. ~60!

Now, we proceed to solve Eq.~60!, where the spinorf has the following structure:12

f5S f1

f2
D5S a~ t,x!x1~y!

a~ t,x!x2~y!

b~ t,x!x1~y!

2b~ t,x!x2~y!

D eikzz. ~61!

Let us put the following as above.
~a! c(y)5siny: Substituting~61! into ~60!, we obtain

S d

dy
1

kz

sinyDx12kx250, S d

dy
2

kz

sinyDx21kx150, ~62!

and the solutions take the form
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x15d1~siny!kz sin~y/2!Pn
(kz11/2,kz21/2)

~cosy!, ~63!

x25d2~siny!kz cos~y/2!Pn
(kz21/2,kz11/2)

~cosy!, ~64!

where n reads asn5 ik2kz2
1
2. To solve Eq.~59!, it is convenient to introduce the auxiliar

function z defined by

f5F ~ag0] t1am!g3g01S g0]x2
ik

b D Gz. ~65!

Substituting Eq.~65! into Eq. ~59! we obtain two first-order differential operators commuti
between them,

@K̂3 , K̂4#250, ~K̂31K̂4!z50, ~66!

with

K̂35~ag0] t1am!~2ag0] t1am!, K̂45S g0]x1
ik

b D S g0]x2
ik

b D , ~67!

K̂3z52l2z, K̂4z5l2z, ~68!

and l is a constant of separation. From Eqs.~65!, ~67! and ~68! the spinorf can be written as
follows:

f5C0S f 1~ t !g1~x!x1~y!

f 1~ t !g1~x!x2~y!

f 3~ t !g3~x!x1~y!

2 f 3~ t !g3~x!x2~y!

D eikzz, ~69!

where f 1(t), f 3(t), g1(x) andg3(x) satisfy

S ]x1
k

bDg15lg3 , S ]x2
k

bDg352lg1 , ~70!

~a] t1 iam! f 352 il f 1 , ~a] t2 iam! f 152 il f 3 . ~71!

~b! b(x)5sinhx: Equation~70! becomes

S d

dx
1

k

sinhxDg12lg350, S d

dx
2

k

sinhxDg31lg150, ~72!

the solutions of which are given by

g15c1~sinhx!k sinh~x/2!Pn
(k21/2,k11/2)~2coshx!, ~73!

g35c2~sinhx!k cosh~x/2!Pn
(k11/2,k21/2)~2coshx!, ~74!

wheren is given byn5 il2k2 1
2.

When n is not an integer value, we have to express the Jacobi polynomials in terms o
Gauss hypergeometric functions by means of the relation11

Pn
(a,b)~x!5

G~n1a11!

G~n11!G~a11!
FS 2n,n1a1b11,a11,

12x

2 D . ~75!
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Now we proceed to analyze the asymptotic limit ast→0 andt→` of the spinor solution~69!.
We consider these two special models for expansion:

(i) a(t)5a0 t: From Eq.~71!, we obtain

S d2

dt2
1

l2/a0
211/4

t2 7
im

t
1m2Dh1,350, ~76!

where f 1,35t21/2h1,3. This Whittaker equation has as a solution the expression

C1Wk,m~2imt!1C2Mk,m~2imt!, ~77!

wherek5 1
2, m5 il/a0 and the type of Whittaker function to be considered depends on the v

of t.
For large values in time (t→`) the positive and negative frequency modes are solutions

f 1,̀
1 5C`

1t21/2Wk,m~2imt!, f 1,̀
2 5C`

2t21/2W2k,m~22imt!,
~78!

f 3,̀
1 52

ia0
1/2

l
C`

1t21/2W2k,m~2imt!, f 3,̀
2 5

il

a0
3/2C`

2t21/2Wk,m~22imt!,

whereC`
1 , C`

2 are normalization constants, and we have the Whittaker identity9 with k51 1
2 to

the first identity andk52 1
2 to the second identity:

z
d

dz
Wk,m~z!5S 1

2
1m2kD S 1

2
2m2kDWk21,m~z!1S k2

z

2DWk,m~z!,

~79!

z
d

dz
Wk,m~z!5S z

2
2kDWk,m~z!2Wk11,m~z!.

Analogously for small values oft (t→0) we have

f 1,0
1 5C0

1t21/2Mk,2m~2imt!, f 1,0
2 5C0

2t21/2Mk,m~2imt!,
~80!

f 3,0
1 5C0

1t21/2M 2k,2m~2imt!, f 3,0
2 52C0

2t21/2M 2k,m~2imt!,

whereC0
1 , C0

2 are normalization constants, and we have used the following relation:11

z
d

dz
Mk,m~z!5S z

2
2kD Mk,m~z!1S 1

2
1m1kD Mk11,m~z!. ~81!

In both cases, the choice of the modes was based on a comparison with the quasiclassical b
given by Eqs.~7! and ~8!. In the asymptotes, we obtain a time dependent term multiplied b
factor depending on space variables.

Considering Eq.~33!, we can express the negative frequency mode solutionf1,0
2 in terms of

f1,̀
2 andf1,̀

1 as follows:

f1,0
2 5G~2m11!e2 ipkF f1,̀

2

GS 1

2
1m2kD 1eip(m11/2)

f1,̀
1

GS 1

2
1m1kD G , ~82!

and using the Bogoliubov coefficients we obtain

f1,0
2 5af1,̀

2 1bf1,̀
1 . ~83!
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Considering the normalization condition of the wave functionuau21ubu251, we arrive at

ubu2

uau2 5e22pl/a0, ~84!

and we compute the density of particles created by the gravitational field

n5ubu25
1

e2pl/a011
, ~85!

a result that can be identified as a Fermi–Dirac distribution of particles. We can already es
that the spectrum of particles created is a thermal one with the temperatureT5a0 /2p.

( i i ) a(t)5eHt: From Eq.~71! we have

S d2

dt2
2

H2

4
7 imH1l2e22Ht1m2Dh1,350, ~86!

where f 1,35e2Ht/2h1,3. Introducing the change of variablesz5 (l/H) e2Ht into ~86!, we get the
Bessel equation

S z2
d2

dz2 1z
d

dz
1z22n2Dh1,350, ~87!

the solution of which has the form

h1,35CZ1/26 im/H~z!. ~88!

Then, looking at the asymptotic behavior of the Hankel function asz→` (t→2`), ~Ref. 9!

Hn
(2)~z!;A 2

pz
e2 i (z2np/22p/4), ~89!

and the behavior of the Bessel function atz→0 (t→`),

Jn~z!;
zn

2nG~n11!
, ~90!

we have forz→` (t→2`) that the positive and negative frequency modes are solutions

f 1,̀
1 5C`

1z1/2H1/21 im/H
(2) ~z!, f 1,̀

2 5C`
2z1/2H21/22 im/H

(2) ~z!,
~91!

f 3,̀
1 52 iC`

1z1/2H21/21 im/H
(2) ~z!, f 3,̀

2 5 iC`
2z1/2H1/22 im/H

(2) ~z!,

whereC`
1 , C`

2 are constants of normalization, and we have used the Bessel functions iden11

d

dz
Jn~z!5Jn21~z!2

n

z
Jn~z!,

~92!
d

dz
Jn~z!52Jn11~z!1

n

z
Jn~z!.

Analogously forz→0 (t→`) we obtain
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f 1,0
1 5C0

1z1/2J1/21 im/H~z!, f 1,0
2 5C0

2z1/2J21/22 im/H~z!,
~93!

f 3,0
1 52 iC0

1z1/2J21/21 im/H~z!, f 3,0
2 5 iC0

2z1/2J1/22 im/H~z!,

whereC`
1 , C`

2 are constants of normalization.
From the relation existing between the Hankel and the Bessel functions,11

Hn
(2)~z!5

eipnJn~z!2J2n~z!

i sinpn
, ~94!

we have that the positive frequency mode solutionf1,̀
1 can be expressed in terms off1,0

1 andf1,0
2

as

f1,̀
1 5D~f1,0

1 2eipnf1,0
2 !5af1,0

1 1bf1,0
2 , ~95!

whereD is a constant. Sinceuau21ubu251, we obtain

ubu2

uau2
5e22pm/H, ~96!

and the rate of particles created is

n5ubu25
1

e2pm/H11
. ~97!

We obtain the thermal Fermi–Dirac distribution forubu2 and the exponential has the form of
Boltzmann factor with temperatureT5H/2p.

V. SCALAR PARTICLES IN THE PRESENCE OF A CONSTANT ELECTRIC FIELD

Now, we consider the scalar particles when a constant electric field minimally coupled
spinor field is present. Then the Hamilton–Jacobi equation coupled to an electromagnetic fie
be written as

gab~]aS2eAa!~]bS2eAb!1m250. ~98!

Reducingb at unit, the line element~2! takes the following form,

ds252dt21e2Ht~dx21dy21c2~y!dz2!, ~99!

wherea(t)5eHt for an inflationary universe and we obtain some particular cases

c~y!5H siny Kantowiski–Sacks models,

y Bianchi I,

sinhy Bianchi III.

~100!

The solution of Eq.~98! can be separated as

S5F~ t !2kxx1H~y!2kzz. ~101!

The vector potenialAm associated with a constant fieldE0 is

Am5S 0, 2
E0

H
eHt, 0, 0D . ~102!

Substituting~99! and ~101! into ~98! we obtain
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2F .t
21

1

e2Ht S 2kx1
eE0

H
eHtD 2

1
1

e2Ht H .y
2 1

1

c2e2Ht kz
21m250. ~103!

Then the solution of Eq.~103! presents the following asymptotic behavior. Fort→2`,

S~ t,x,y,z!52kxx2kzz6EAl22
kz

2

c2 dy7
Al21kx

2

H
e2Ht, ~104!

f2`5eiS→C~x,y,z!expS 7 i
Al21kx

2

H
e2HtD , ~105!

and for t→`

S~ t,x,y,z!52kxx2kzz6EAl22
kz

2

c2 dy6Am21
e2E0

2

H2 t, ~106!

f`5eiS→C~x,y,z!expS 7 iAm21
e2E0

2

H2 t D . ~107!

For scalar particles, the Klein–Gordon equation in minimal coupling is written as

gab~¹a2 ieAa!~¹b2 ieAb!f2m2f50. ~108!

Equation~108! becomes

S ] t
22

1

a2 S ~]x2 ieA1!21]y
21

1

c2 ]z
2D1m2Dc50. ~109!

Since Eq.~109! commutes with the operators2 i ]x and2 i ]z , we can look at a solution of the
form c5eikxx1 ikzzf, which reduces Eq.~109! after separation of variables to

S ] t
22

1

a2 S ikx1 ie
E0eHt

H D 2

1
1

a2 l21m2Df150, ~110!

S ]y
22

1

c2 kz
21l2Df250, ~111!

wherel is a constant of separation andf(t,y)5f1(t)f2(y).
For the Kantowiski–Sacks modelc(y)5siny, and we obtain the solution by

f25A sinqyF~ 1
2 ~q1l!, 1

2 ~q2l!,q1 1
2 ,sin2 y!, ~112!

whereq5 1
21(kz

21 1
4)

1/2.
For the Bianchi I modelc(y)5y, we arrive at

f25By1/2Zn~ly!, ~113!

whereZn is the general solution of the cylindrical Bessel equation andn5(kz
21 1

4)
1/2.

For the Bianchi III modelc(y)5sinhy, the solution takes the form

f25C sinhq yF~ 1
2 ~q1 il!, 1

2 ~q2 il!,q1 1
2 ,2sinh2 y!, ~114!

whereq5 1
21(kz

21 1
4)

1/2.
We analyze the inflationary universe casea(t)5eHt, and Eq.~101! can be written as follows,
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S d2

dz2 1
1

z

d

dz
1

2eE0kx

H2z
1

e2E0
2

H2z2 1
m2

H2z2 1kx
21l2Df150, ~115!

wherez5 (1/H) e2Ht. Therefore, we can reduce Eq.~115! to

S d2

dz2 1

1
41e2E0

2/H41m2/H2

z2 1
2eE0kx

H2z
1kx

21l2D f 50, ~116!

with f15z21/2f . Making a change of variablesu52i e(kx
21l2)1/2z, with sign(e)561, we get as

a solution for sign(e)521

C1Wk,m~2iAkx
21l2z!1C2Mk,m~2iAkx

21l2z!, ~117!

where

m5
i

H2 Am2H21e2E0
25 i umu, k5

ieE0kx

H2Akx
21l2

. ~118!

For z→` (t→2`), we get the negative and the positive frequency mode solutions in the

f1,̀
1 5C`

1z21/2Wk,m~2iAkx
21l2z!,

~119!
f1,̀

2 5C`
2z21/2W2k,m~22iAkx

21l2z!,

and forz→0 (t→`) we have

f1,0
1 5C0

1z21/2Mk,2m~2iAkx
21l2z!,

~120!
f1,0

2 5C0
2z21/2Mk,m~22iAkx

21l2z!,

whereC`
1 , C`

2 , C0
1 andC0

2 are constants of normalization.

Then, using the relation9

Mk,m~z!5G~2m11!eiplFW2k,m~eipz!

G~m2k1 1
2!

1e2 ip(m11/2)
Wk,m~z!

G~m1k1 1
2!
G , ~121!

with (2 3p/2,argz,p/2 ; 2mÞ21,22, . . . ), and thefollowing relation9

uG~ 1
21 iy !u25

p

coshpy
, ~122!

we arrive at

uau2

ubu2 5
cosh~pumu1p eE0kx /H2Akx

21l2!

cosh~pumu2p eE0kx /H2Akx
21l2!

e22pumu. ~123!

For um6eE0kx /H2Akx
21l2 u@1, Eq. ~123! becomes

uau2

ubu2 5expS 22pF umu2
eE0kx

H2Akx
21l2G D . ~124!

Considering the normalization conditionuau21ubu251, we obtain the thermal distribution
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ubu25
1

11exp~2p@ umu2eE0kx /H2Akx
21l2# !

'expS 2
2p

H2 F ~m2H21e2E0
2!1/22

eE0kx

H2Akx
21l2G D .

~125!

It points out that the temperature depends on the intensity of the electric fieldE0 and on the
impulsionkx of the particle. Moreover, we have thatubu2 changes according to the sign ofe; the
result for sign(e)511 is obtained by replacinge by 2e in Eq. ~125!.

In (111) dimension,2,4 we havel50 and Eq.~125! becomes

ubu2'expS 2
2p

H2 @~m2H21e2E0
2!1/22eE0# D . ~126!

In the limit H→0, we obtain a Minkowski~flat! metric, and the exponent ofubu2 in Eq. ~126!
takes the form

lim
H→0

S 2
2peE0

H2 F S m2H2

e2E0
2 11D 1/2

21G D→2
pm2

eE0
, ~127!

which reduces the flat limit of the density of particles created to

ubuflat
2 5 lim

H→0
ubu25e2pm2/eE0. ~128!

This result is obtained by Villalba2 in the study of particle creation by a strong constant elec
field in de Sitter space, and it is proportional to the probability, per unit time, per unit volum
pair created by a constant electric field obtained by Schwinger.10

VI. CONCLUSION

After solving the relativistic Hamilton–Jacobi, Klein–Gordon and Dirac equations in
gravitational background~2! by separation of variables, we identify the relativistic solutions
negative and positive frequency modes and make comparison with the quasiclassical one o
by the Hamilton–Jacobi equation to compute the density of scalar and spin-1

2 particles.
We also study some special cases of background when a constant electric field is pres

calculate the thermal distribution of the density of particles created. We recover the result fo
de Sitter space2,4 in (111) dimensions.
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Trigonometric osp „1z2… Gaudin model
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The problems connected with Gaudin models are reviewed by analyzing model
related to the trigonometric osp~1u2! classicalr -matrix. The eigenvectors of the
trigonometric osp~1u2! Gaudin Hamiltonians are found using explicitly constructed
creation operators. The commutation relations between the creation operators and
the generators of the trigonometric loop superalgebra are calculated. The coordinate
representation of the Bethe states is presented. The relation between the Bethe
vectors and solutions to the Knizhnik–Zamolodchikov equation yields the norm of
the eigenvectors. The generalized Knizhnik–Zamolodchikov system is discussed
both in the rational and in the trigonometric case. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1531250#

I. INTRODUCTION

Classifying integrable systems solvable in the framework of the quantum inverse scat
method1–3 by underlying dynamical symmetry algebras, one could say that the Gaudin mode
the simplest ones being based on loop algebras and classicalr -matrices. More sophisticate
solvable models correspond to more complicated algebras: Yangians, quantum affine al
elliptic quantum groups, dynamical quantum groups, etc.

Gaudin models4,5 are related to classicalr -matrices, and the density of Gaudin Hamiltonia

H (a)5 (
bÞa

N

r ab~za2zb! ~1.1!

coincides with ther -matrix. The condition of their commutativity@H (a),H (b)#50 is nothing else
but the classical Yang–Baxter equation~YBE!

@r ab~za2zb!,r ac~za2zc!1r bc~zb2zc!#1@r ac~za2zc!,r bc~zb2zc!#50, ~1.2!

where r is antisymmetric and belongs to the tensor productg^ g of a Lie algebrag, or its
representations and the indices fix the corresponding factors in theN-fold tensor product of this
algebra~see Sec. II!.

The Gaudin models~GMs! related to classicalr -matrices of simple Lie algebras were studi
intensively~see Refs. 5–14 and references therein!. The spectrum and eigenfunctions were fou
using different methods~coordinate and algebraic Bethe ansatz,5,6 separated variables,6 etc.!. The
correlation functions were evaluated forg5sl(2) by the Gauss factorization approach.7 A relation
to the Knizhnik–Zamolodchikov~KZ! equation of conformal filed theory was established.11–13

There exists a variety of classicalr -matrices with trigonometric dependence on spectral
rameter. Although algebraic construction of integrals of motion is straightforward, the calcu

a!On leave of absence from Steklov Mathematical Institute, Fontanka 27, 191011, St. Petersburg, Russia. Electro
kulish@pdmi.ras.ru

b!Electronic mail: nmanoj@ualg.pt
6760022-2488/2003/44(2)/676/25/$20.00 © 2003 American Institute of Physics
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of the spectrum and the corresponding eigenstates, by means of algebraic Bethe ansa
depends on the underlining Lie algebra andr -matrix. Moreover, many trigonometricr -matrices
are invariant under diagonal action of the Cartan subalgebra only,

@ha1hb , r ab~za2zb!#50 , ~1.3!

as opposed to the rational case where the classicalr -matrix is invariant under the action of th
whole Lie algebrag. Hence, one can modify the Gaudin Hamiltonian~1.1! by adding a local
generator of the Cartan subalgebra

Ha→H̃ (a)5g ha1H (a) . ~1.4!

This modification does not change the creation operators, but the Bethe equations and solu
the KZ system. However, the dependence on the parameterg ~a magnetic field! will be described
by a difference equation.15,16

The aim of this article is to review problems connected with Gaudin models by analyzin
model related to the trigonometric osp~1u2! classicalr -matrix. Results obtained here are in ma
respects similar to the ones we obtained in the case of osp~1u2!-invariant rationalr -matrix.17

However, connection of Gaudin model with magnetic field and KZ equations requires mod
tion of the latter by adding a dynamical difference equation.15,16

There are additional peculiarities of Gaudin models related to classicalr -matrices based on
Lie superalgebras due toZ2-grading of representation spaces and operators. The study o
osp~1u2!-invariant Gaudin model corresponding to the simplest nontrivial super-case o
osp~1u2! invariant r -matrix18 started in Ref. 19. The spectrum of the osp~1u2! invariant Gaudin
HamiltoniansH (a) was given, an antisymmetry property of their eigenstates was claimed, a
two site model was connected with some physically interesting one~a Dicke model!. Let us also
point out that recently rational and trigonometric sl~2! Gaudin models were used to descri
different physical phenomena in metallic grains20 and a condensate fragmentation of confin
bosons.21 Connection with perturbed WZNW models of conformal field theory was found in R
22.

The creation operators used in the sl~2! Gaudin model@and similarly for sl(n) case# coincide
with one of theL-matrix entry.5,6 However, in the osp~1u2! case, as it was shown for rationa
r -matrix,17 the creation operators are complicated polynomials of the two generatorsX1(l) and
v1(m) of the loop superalgebra. We introduceB-operators belonging to the Borel subalgebra
the trigonometric loop superalgebraLt(osp(1u2)) by a recurrence relation. Acting on the lowe
spin vector~bare vacuum! BM(m1 , . . . ,mM)V2 theB-operators generate exact eigenstates of
Gaudin HamiltoniansH (a), provided Bethe equations are imposed on parameters$m j% of the
states. For this reason theB-operators are sometimes referred to as the creation operators an
eigenstates as the Bethe vectors, or simplyB-vectors. Furthermore, the recurrence relation
solved explicitly and the commutation relations between theB-operators and the generators of t
loop superalgebraLt(osp(1u2)) as well as the generators of the global superalge
osp(1u2),Lt(osp(1u2)) are calculated. We prove that the constructed states are eigenvect
the generator of the global Cartan subalgebrahgl , but theB-vectors are not the lowest spin vecto
anymore, as it was the case for the invariant model.23,17 Analogously to the rational case,17 a
striking coincidence between the spectrum of the osp~1u2! invariant Gaudin Hamiltonians of spin
s and the spectrum of the Hamiltonians of the sl~2! Gaudin model of the integer spin 2s is also
confirmed in the trigonometric case.

A connection between theB-states, when the Bethe equations are not imposed on thei
rameters~‘‘off-shell Bethe states’’!, of the Gaudin models for simple Lie algebras to the solutio
of the Knizhnik–Zamolodchikov equation was established in Refs. 11 and 12. An explanat
this connection based on Wakimoto modules at critical level of the underlying affine algebr
given in Ref. 12. An explicit form of the Bethe vectors in the coordinate representation was
in both Refs. 11 and 12. The coordinate Bethe ansatz for theB-states of the osp~1u2! Gaudin model
is obtained in our article as well. Using commutation relations between theB-operators and the
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transfer matrixt(l), as well as the HamiltoniansH (a), we give an algebraic proof of the fact tha
explicitly constructedB-states yield a solution to the Knizhnik–Zamolodchikov equation co
sponding to a conformal field theory. This connection permits us to calculate the norm o
eigenstates of the Gaudin Hamiltonians. An analogous connection is expected between q
osp~1u2! spin system related to the graded Yang–Baxter equation18,24–26and quantum Knizhnik–
Zamolodchikov equation following the lines of Ref. 27. We point out possible modifications o
Gaudin Hamiltonians and corresponding modifications of the Knizhnik–Zamolodchikov equ
similar to the case of the sl~2! Gaudin model which was interpreted in Refs. 28 and 29 a
quantization of the Schlesinger system for isomonodromy deformation.

The norm and correlation functions of the sl~2! invariant Gaudin model were evaluated in Re
7 using Gauss factorization of a group element and the Riemann–Hilbert problem. The st
this problem for the trigonometric Gaudin model based on the osp~1u2! Lie superalgebra is in
progress. However, we propose a formula for the scalar products of the Bethe states w
analogous to the sl~2! case.

The article is organized as follows. In Sec. II we review the main data of the qua
trigonometric osp~1u2! spin system: the osp~1u2! solution to the graded Yang–Baxter equati
(R-matrix!, monodromy matrixT(l), the transfer matrixt(l)5strT(l), its eigenvalues and the
Bethe equations. The eigenvectors of this quantum integrable spin system can be construc
by a complicated recurrence procedure30 which is not given here. Nevertheless, it is useful
remind the main data of the quantum integrable spin system because some characteristic
corresponding Gaudin model can be obtained easily as a quasi-classical limit of these da
trigonometric osp~1u2! Gaudin model and its creation operatorsBM are discussed thoroughly i
Sec. III. Some of the most important properties of these operators are formulated and d
strated pure algebraically: antisymmetry with respect to their arguments, commutation re
with the trigonometric loop superalgebra generators, commutation relations with the gene
function t(l) of the Gaudin Hamiltonians, and a differential identity, valid in the case of
Gaudin realization of the loop superalgebra. Using these properties of theB-operators we prove in
Sec. IV that, acting on the lowest spin vectorV2 , these operators generate eigenvectors of
generating function of integrals of motion, provided the Bethe equations are imposed o
arguments of theB-operators. Possible modifications of the Gaudin Hamiltonians are pointed
also. In particular, one of them yields Ricardson type Hamiltonian. An algebraic proof is giv
Sec. V that constructed Bethe vectors are entering into solutions of the Knizhnik–Zamolodc
equation of conformal field theory. A quasi-classical asymptotic with respect to a parameter
Knizhnik–Zamolodchikov equation permits us to calculate the norm of the eigenstates o
Gaudin Hamiltonian. We pointed out that modification of Gaudin Hamiltonians by adding a C
element requires a more complicated change of KZ system, as opposed to the rationa
Further development on possible evaluation of correlation functions is discussed in Se
Finally, some definitions of the orthosymplectic Lie superalgebra osp~1u2! are given in the Appen-
dix.

II. QUANTUM osp „1z2… SUPERALGEBRA AND CORRESPONDING SPIN SYSTEM

The quantum superalgebraUq(osp(1u2)) as a deformation of the universal enveloping alge
of the Lie superalgebra osp~1u2! ~see Appendix! is generated by three elementsh,v1,v2.31,32The
q-deformed commutation relations between the generators are

@h,v6#256v6, @v1,v2#152
qh2q2h

q2q21 ª2@h#q. ~2.1!

Its center is spanned by theq-deformed Casimir element

c2~q!5A~q!~@h#q!21B~q!2
~q1/21q21/2!2

2
@v12

,v22
#11

~q1q21!

4
~qh1q2h!@v1,v2#2

~2.2!
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with 2A(q)5q1q211 1
2(q2q21)2 and B(q)5(q1/21q21/2)22. The q-deformed Casimir ele-

ment can be written also in the form

c2~q!5~@h2 1
2#q!22~q1/21q21/2!2v12

v22
1~qh211q2h11!v1v2 . ~2.3!

Like in the case of the Lie superalgbra osp~1u2! ~see the Appendix!, there exists an element

c1~q!5~@h2 1
2#q1~q1/21q21/2!v1v2! , ~c1~q!!25c2~q! , ~2.4!

with a grading property@c1 ,h#50 and c1v652v6c1 . In the quasi-classical limitq→1 the
relations~2.1!–~2.4! are reduced to the Lie superalgebra osp~1u2! ones.33 There is a coproduct map
D:Uq→Uq^ Uq consistent with the commutation relations~2.1! and a universalR-matrix R as an
element ofUq^ Uq .31,32 Let us write its matrix formR(q)5(r ^ r)R in the basise1^ e1 ,e1

^ e2 ,e1^ e3 ,...,e3^ e3 of the tensor product of two copies of the fundamental representa
V(1)

^ V(1), r:Uq→End(V(1)),

R~q!51
q

1 a

q21 b c

1

1 b

1 a

q21

1

q

2 , ~2.5!

here a5q2q21, b5q23/22q1/2 and c5(11q21)(q2q21). Multiplying R(q) by the graded
permutationP of V(1)

^ V(1):(P)ab;cd5(21)p(a)p(b)daddbc , one gets the braid group form of th
R-matrix Ř(q)5R(q)P which has a spectral decomposition. Using the projectors on the irre
ible representation components in the Clebsch–Gordan decompositionV(1)

^ V(1)5V(2)
% V(1)

% V(0), one can represent thisR-matrix in the form31,32

Ř~q!52q22P0~q!2q21P1~q!1qP2~q!, ~2.6!

where projectors are

P0~q!5
q1/21q21/2

q3/21q23/21
0

0

q21 q21/2 21

0

2q21/2 21 q1/2

0

21 2q1/2 q

0

0

2 , ~2.7!
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1

q1q21 1
0

q21 21

21 2n 1

21 q

n n2 2n

q21 21

1 n 21 2 , ~2.8!
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21 q

0

heren5q1/21q21/2, and P2(q)5I 2P0(q)2P1(q). By the Baxterization procedure, or simp
changing functions (l2a)/(l1a) to the trigonometric ones sinh(l2a)/sinh(l1a) in the
osp~1u2!-invariantR-matrix,18,17one gets the trigonometricR-matrix related to the quantum affin
algebraUq(osp(1u2)̂)

Ř~l,h!5P22
sinh~l22h!

sinh~l12h!
P12

sinh~l23h!

sinh~l13h!
P0 . ~2.9!

Here q5e2h ~normalized tol50 Ř51). The L-operator of the quantum spin system on
one-dimensional lattice withN sites coincides withR-matrix acting on a tensor productV0^ Va of
auxiliary spaceV0 and the space of states at sitea51,2, . . .N,

L0a~l2za!5R0a~l2za! , ~2.10!

whereza is a parameter of inhomogeneity~site dependence! andR0a(l,h)5PŘ(l,h) is the usual
R-matrix. Corresponding monodromy matrixT is an ordered product of theL-operators

T~l;$za%1
N!5L0N~l2zN!¯L01~l2z1!5 )

a51
←

N

L0a~l2za! . ~2.11!

The commutation relations of theT-matrix entries follow from the (Z2-graded! FRT-relation2

R12~l2m!T1~l!T2~m!5T2~m!T1~l!R12~l2m! . ~2.12!

Multiplying ~2.12! by R12
21 and taking the super-trace overV1^ V2 , one gets commutativity of the

transfer matrix

t~l!5str T~l!5(
j

~21! j 11Tj j ~l;$za%1
N!5T112T221T33 ~2.13!

for different values of the spectral parametert(l)t(m)5t(m)t(l).
The choice of theL-operators~2.10! corresponds to the following space of states of

osp~1u2!-spin system

H5 ^

a51

N

Va
(1).

The eigenvalues of the transfer matrixt(l) in this space are18,24,25
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L~l;$m j%1
M !5a1

(N)~l;$za%1
N!)

j 51

M

S1~l2m j !2a2
(N)~l;$za%1

N!

3)
j 51

M

S1~l2m j1h!S21~l2m j12h!

1a3
(N)~l;$za%1

N!)
j 51

M

S21~l2m j13h!, ~2.14!

wherea j
(N)(l;$za%1

N)5)b51
N a j (l2zb) ; j 51,2,3,

a1~l!5sinh~l12h!sinh~l13h!, a2~l!5sinh~l!sinh~l13h!,
~2.15!

a3~l!5sinh~l!sinh~l1h!, Sn~m!5
sinh~m2nh!

sinh~m1nh!
.

Although according to~2.14! the eigenvalue has formally two sets of poles atl5m j2h andl
5m j22h, the corresponding residues are zero due to the Bethe equations on the paramete$m j%
of the eigenstate18,24,25

)
a51

N
sinh~m j2za1h!

sinh~m j2za2h!
5)

k51

M

S1~m j2mk!S22~m j2mk!. ~2.16!

If we take different spinsl a at different sites of the lattice and the following space of sta

H5 ^

a51

N

Va
( l a),

then the factors on the left hand side of~2.16! will be spin dependent, too.
Due to the more complicated structure of theR-matrix ~2.9! @see~2.7! and ~2.8!#, than the

gl(n), or gl(mun) trigonometricR-matrices, the commutation relations of the entriesTi j (l) of
theT-matrix ~2.11! have more terms and construction of the eigenstates of the transfer matrixt(l)
by the algebraic Bethe ansatz can be done only using a complicated recurrence relation ex
in terms of Ti j (mk).

30 It will be shown below that due to a simplification of this recurren
relation in the quasi-classical limith→0 one can solve it and find the creation operators for
trigonometric osp~1u2! Gaudin model explicitly. Furthermore, the commutation relations betw
the creation operators and the generators of the trigonometric loop superalgebra as well
generating functiont(l) of the Gaudin Hamiltonians will be given explicitly, yielding the solutio
to the eigenvalue problem.

III. osp „1z2… TRIGONOMETRIC GAUDIN MODEL

As in the case of any simple Lie algebra, the trigonometric classicalr -matrix of the ortho-
symplectic Lie superalgebra osp~1u2! can be expressed in a pure algebraic form as an eleme
the tensor product osp(1u2)^ osp(1u2)

r̂ ~l!5coth~l! h^ h1
2

sinh~l!
~e2lX1

^ X21elX2
^ X1!

1
1

sinh~l!
~e2lv1

^ v22elv2
^ v1!, ~3.1!

and it is a solution of theZ2-graded classical YBE~1.2!.2 This r -matrix can be decompose
naturally into positive and negative parts,34
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r̂ ~l!5
1

sinhl
~elr (2)1e2lr (1)!

5
el

sinhl S 1

2
h^ h12X2

^ X12v2
^ v1D

1
e2l

sinhl S 1

2
h^ h12X1

^ X21v1
^ v2D . ~3.2!

It can also be represented in another form useful for modifications,

r̂ ~l!5coth~l! c2
^ 12~X2

^ X12X1
^ X2!2~v2

^ v11v1
^ v2!; ~3.3!

here

c2
^ 5h^ h12~X1

^ X21X2
^ X1!1~v1

^ v22v2
^ v1!. ~3.4!

The matrix form ofr̂ in the fundamental representation of osp~1u2! follows from ~3.1! by substi-
tuting appropriate 333 matrices instead of the osp~1u2! generators and taking into account th
Z2-graded tensor product of even and odd matrices. One can get it also as the quasi-classic
h→0 from theR-matrix ~2.9!. Let us write explicitly the matrix form ofr̂ in the basis of the
tensor product of two copies of the fundamental representationV(1)

^ V(1) ~see the Appendix!:

r ~l!5
1

sinh~l! 1
cosh~l!

0 e2l

2cosh~l! 2e2l 2e2l

el 0

el 0 2e2l

0 e2l

2el el 2cosh~l!

el 0

cosh~l!

2
~3.5!

with all the other entries of this 939 matrix being identically equal to zero.
A quasi-classical limith→0 of the FRT-relations~2.12! @R(l;h)5I 1hr (l)1O(h2) and

T(l;h)5I 1hL(l)1O(h2)] results in a matrix form of the loop superalgebra relation, the
called Sklyanin linear bracket,

@L
1
~l!, L

2
~m!#52@r 12~l2m! , L

1
~l!1L

2
~m!# . ~3.6!

Both sides of this relation have the usual commutators of even 939 matricesL
1
(l)5L(l) ^ I 3 ,

L
2
(m)5I 3^ L(m) and r 12(l2m), whereI 3 is 333 unit matrix andL(l) has loop superalgebr

valued entries:

L~l!5S h~l! 2v2~l! 2X2~l!

v1~l! 0 v2~l!

2X1~l! v1~l! 2h~l!
D . ~3.7!
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From the expression~3.2! of the classicalr -matrix it is natural to assume that theL-operator has
a triangular decompositionL6 asl→6`,

L15h^ hgl14X2
^ Xgl

122v2
^ vgl

1, ~3.8!

L25h^ hgl14X1
^ Xgl

212v1
^ vgl

2. ~3.9!

Here the first factors are generators in the fundamental representationV(1) ~see the Appendix! and
the second factors are generators of a finite dimensional osp~1u2! Lie superagebra.

The relation~3.6! is a compact matrix form of the following commutation relations betwe
the generatorsh(l), v6(m), X6(n) of the trigonometric loop superalgebraLt(osp(1u2)):

@h~l!, h~m!#250 ,

@h~l!, X6~m!#25
6 2

sinh~l2m!
~cosh~l2m!X6~m!2e7(l2m)X6~l!! ,

@X1~l!, X2~m!#25
2 e(l2m)

sinh~l2m!
~h~l!2h~m!! ,

@h~l!, v6~m!#25
6 1

sinh~l2m!
~cosh~l2m!v6~m!2e7(l2m)v6~l!! ,

~3.10!

@v1~l!, v2~m!#15
e(l2m)

sinh~l2m!
~h~l!2h~m!!,

@v6~l!, v6~m!#15
6 2

sinh~l2m!
~e6(l2m)X6~m!2e7(l2m)X6~l!!,

@X6~l!, v7~m!#25
e6 (l2m)

sinh~l2m!
~v6~m!2v6~l!!,

@X6~l!, v6~m!#25@X6~l!, X6~m!#250.

In order to define a dynamical system besides the algebra of observables we need to
a Hamiltonian. Due to ther -matrix relation~3.6! the elements

t~l!5 1
2 str L2~l!5h2~l!12@X1~l!, X2~l!#11@v1~l!, v2~l!#2

5h2~l!1h8~l!14X1~l!X2~l!12v1~l!v2~l! ~3.11!

commute for different values of the spectral parameter

t~l!t~m!5t~m!t~l! . ~3.12!

Thus, t(l) can be considered as a generating function of integrals of motion. The supertra
~3.11! for an even matrix$Ai j % means strA5( i 51

3 (21)p( i )Aii , and we use the gradingp(1)
5p(3)50, p(2)51 ~see the Appendix!.

One way to show~3.12! is to notice that the commutation relation betweent(l) andL(m) can
be written in the form

@ t~l! , L~m!#5@M ~l,m! , L~m!# , ~3.13!

where
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M ~l,m!52str
1

~r 12~l2m!L
1
~l!!2 1

2str
1

~r 12
2 ~l2m!!, ~3.14!

and the second term is a quantum correction, which is absent if we consider the left hand
~3.6! and ~3.10! as Poisson brackets.35 Also, in the sl(n) case this term does not contribute sin
it is proportional to the unit matrix. Using~3.5! and~3.7! it is straightforward to calculateM (l,m)
explicitly:

M ~l,m!5
22

sinh~l2m! S cosh~l2m! h~m! 2el2m v2~m! 2el2m X2~m!

e2(l2m) v1~m! 0 el2m v2~m!

2e2(l2m) X1~m! e2(l2m) v1~m! 2cosh~l2m! h~m!
D

2
1

sinh2~l2m! S cosh2~l2m!11 0 0

0 22 0

0 0 cosh2~l2m!11
D . ~3.15!

Substituting~3.15! into the equation~3.13! we obtain the commutation relations betweent(l) and
the generators of the superalgebraLt(osp(1u2)). In particular,

@ t~l!, X1~m!#254 coth~l2m! X1~m!h~l!2
4e2(l2m)

sinh~l2m!
X1~l!h~m!14X1~m!

2
2e2(l2m)

sinh~l2m!
~v1~l!v1~m!2v1~m!v1~l!!, ~3.16!

@ t~l!, v1~m!#252 coth~l2m! v1~m!h~l!2
2e2(l2m)

sinh~l2m!
v1~l!h~m!1v1~m!

1
4

sinh~l2m!
~e2(l2m) X1~l!v2~m!2e2(m2l) X1~m!v2~l!!.

~3.17!

Preserving some generality we can consider the representation spaceH of the dynamical
algebra to be a lowest spinr~l! representation of the loop superalgebra with the lowest spin ve
V2 ,

h~l!V25r~l!V2 , v2~l!V250 . ~3.18!

One can study spectrum and eigenstates oft(l) in this general representationH. However, to have
a physical interpretation we will use a local realization of the trigonometric superalg
Lt(osp(1u2)) with

H5 ^

a51

N

Va,

as a tensor product of osp~1u2! representations. Then,

h~l!5 (
a51

N

coth~l2za! ha , ~3.19!

v1~l!5 (
a51

N
el2za

sinh~l2za!
va

1 , v2~l!5 (
a51

N
e2l1za

sinh~l2za!
va

2 , ~3.20!
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X1~l!5 (
a51

N
el2za

sinh~l2za!
Xa

1 , X2~l!5 (
a51

N
e2l1za

sinh~l2za!
Xa

2 , ~3.21!

whereha , va
6 , Xa

6PEnd (Va) are osp~1u2! generators in a representationVa associated with each
sitea. If in this realization one considers the limitsl→6`, then one finds the expressions of th
generators of the global Lie superalgebra osp(1u2),Lt(osp(1u2)) in terms of the local generator

Ygl5 (
a51

N

Ya; ~3.22!

hereY5(h,X6,v6).
In particular, a representation of the Gaudin realization can be obtained by considering a

sitea an irreducible representationsVa
( l a) of the Lie superalgebra osp~1u2! defined by a spinl a and

a lowest spin vectorva such thatva
2va50 andhava52 l ava . Thus,

V25 ^

a51

N

va, and r~l!5 (
a51

N

~2 l a! coth~l2za!. ~3.23!

It is a well-known fact in the theory of Gaudin models5,6 that the Gaudin Hamiltonian is
related to the classicalr -matrix ~1.1! and ~3.2!,

H (a)5 (
bÞa

r ab~za2zb!

5 (
bÞa

1

sinh~za2zb!
~e(za2zb)r ab

(2)1e(zb2za)r ab
(1)!

5 (
bÞa

coth~za2zb!hahb1
2

sinh~za2zb!
~e2(za2zb)Xa

1Xb
21e(za2zb)Xa

2Xb
1!

1
1

sinh~za2zb!
~e2(za2zb)va

1vb
22e(za2zb)va

2vb
1!, ~3.24!

and can be obtained as the residue of the operatort(l) at the pointl5za using the expansion

t~l!5hgl
2 1 (

a51

N S c2~a!

sinh2~l2za!
12

el2za

sinh~l2za!
H (a)D , ~3.25!

c2(a)5ha
212(Xa

1Xa
21Xa

2Xa
1)1va

1va
22va

2va
1 . As opposed to the rational osp~1u2!-invariant

case,17 the generating function~3.25! commutes only with one generatorhgl of the global super-
algebra osp~1u2!:

@ t~l!,hgl#50. ~3.26!

To construct the set of eigenstates of the generating function of integrals of motiont(l) we
have to define appropriate creation operators. The creation operators used in the sl~2! Gaudin
model coincide with one of theL-matrix entry.5,6 However, in the osp~1u2! case the creation
operators are complicated functions of the two generators of the loop superalgebraX1(l) and
v1(m).

Definition 3.1: Let BM(m1 , . . . ,mM) belong to the Borel subalgebra of theosp~1u2! loop
super algebraLt(osp(1u2)) such that

BM~m1 , . . . ,mM !5v1~m1!BM21~m2 , . . . ,mM !

12X1~m1!(
j 52

M

~21! j
e2(m12m j )

sinh~m12m j !
BM22

( j ) ~m2 , . . . ,mM ! ~3.27!
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with B051, B1(m)5v1(m) and BM50 for M,0. The notation BM22
( j ) (m2 , . . . ,mM) means that

the argumentm j is omitted.
As we will show below, theB-operators are such that the Bethe vectors are generated by

action on the lowest spin vectorV2 ~3.18!. To prove this result we will need some importa
properties of theB-operators. All the properties of the creation operatorsBM(m1 , . . . ,mM) listed
below can be demonstrated by induction method. Since the proofs are lengthy and quite te
we will present only two of them.

Lemma 3.1: The creation operators BM(m1 , . . . ,mM) are antisymmetric functions of thei
arguments

BM~m1 , . . . ,mk ,mk11 , . . . ,mM !52BM~m1 , . . . ,mk11 ,mk , . . . ,mM !, ~3.28!

here1<k,M and M>2.
Lemma 3.2: The commutation relations between the creation operator BM and the generators

v1(l), h(l), v2(l) of the loop superalgebra are given by

v1~l!BM5~21!MBMv1~l!12(
j 51

M
~21! j

sinh~l2m j !
3~e2(l2m j )X1~l!2e2(m j 2l)X1~m j !!BM21

( j ) ,

~3.29!

h~l!BM5BMS h~l!1(
i 51

M

coth~l2m i !D 1(
i 51

M

~21! i
e2(l2m i )

sinh~l2m i !

3S v1~l!BM21
( i ) 12X1~l!(

j Þ i

M

~21! j 1Q( i 2 j )
e2(m i2m j )

sinh~m i2m j !
BM22

( i , j ) D , ~3.30!

v2~l!BM5~21!MBMv2~l!1(
j 51

M

~21! j 21BM21
( j ) S e2(l2m j )

sinh~l2m j !
~h~l!2h~m j !!

1(
kÞ j

M
e2(l2mk)

sinh~l2mk!

e2(mk2m j )

sinh~mk2m j !
D 1v1~l!(

i , j

M

~21! i 2 j 21

3
e2(m i2m j )

sinh~m i2m j !
BM22

( i , j ) S e2(l2m i )

sinh~l2m i !
1

e2(l2m j )

sinh~l2m j !
D . ~3.31!

Here the upper index of BM21
( j ) means that the argumentm j is omitted, the upper index of BM22

( i , j )

means that the parametersm i ,m j are omitted andQ( j ) is Heaviside function

Q~ j !5H 1 if j .0,

0 if j <0.

It is useful to have explicit formulas for the commutators between the global generator
the B-operators.

Remark 3.1: The commutation relations between the generators of the globalosp~1u2! (3.22)
and the BM elements follow from the previous Lemma 3.2. To see this we take the appropriat
l→6` in (3.29)–(3.31). In this way we obtain

vgl
1BM5~21!MBMvgl

122(
j 51

M

~21! jX1~m j !BM21
( j ) , ~3.32!

hglBM5BM~hgl1M !, ~3.33!
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vgl
2BM5~21!MBM vgl

21(
j 51

M

~21! jBM21
( j ) S hgl1h~m j !1(

kÞ j

M
e(m j 2mk)

sinh~m j2mk!
D . ~3.34!

Lemma 3.3: The generating function of integrals of motion t(l) (3.11) has the following
commutation relation with the creation operator BM(m1 , . . . ,mM),

t~l!BM5BMt~l!1BMS 2h~l!(
i 51

M

coth~l2m i !12(
i , j

M

coth~l2m i !coth~l2m j !1M D
12(

i 51

M

~21! i
e2(l2m i )

sinh~l2m i !
S v1~l!BM21

( i ) 12X1~l!(
j Þ i

M

~21! j 1Q( i 2 j )

3
e2(m i2m j )

sinh~m i2m j !
BM22

( i , j ) D b̂M~m i !14(
i 51

M

~21! i 1M
BM21

( i )

sinh~l2m i !
~e2(l2m i )X1~l!v2~m i !

2e2(m i2l)X1~m i !v
2~l!!. ~3.35!

The notation used here for the operatorb̂M(m i) is b̂M(m i)5h(m i)1( j Þ i
M coth(mi2mj).

In the trigonometric Gaudin realization~3.17!–~3.19! the creation operatorsBM(m1 , . . . ,mM)
have some specific analytical properties.

Lemma 3.4: The B-operators in the Gaudin realization (3.17)–(3.19) satisfy an important
differential identity

]

]za
BM5(

j 51

M
]

]m j
S ~21! j

em j 2za

sinh~m j2za!

3S va
1BM21

( j ) 12 Xa
1 (

kÞ j

M

~21!k1Q( j 2k)
e2(m j 2mk)

sinh~m j2mk!
BM22

( j ,k) D D . ~3.36!

This identity will be a fundamental step in establishing a connection between the Bethe v
and solutions to the KZ equation.

The proofs of the lemmas are based on the induction method. As illustrations, we
explicitly Lemma 3.1 and the formula~3.29! in Lemma 3.2.

Proof of Lemma 3.1:ConsiderM52:

B2~m1 ,m2!5v1~m1!v1~m2!1
2e2(m12m2)

sinh~m12m2!
X1~m1!.

Using the commutation relations~3.10! it is straightforward to check thatB2(m1 ,m2) is antisym-
metric:

B2~m1 ,m2!52B2~m2 ,m1!.

AssumeBN(m1 , . . . ,mN) is antisymmetric forN>2 and for N,M . We have to prove tha
BM(m1 , . . . ,mM) is antisymmetric also.

Considerj >2, the antisymmetry ofBM(m1 , . . . ,mM) with respect tom j and m j 11 follows
directly form the recurrence relation~3.27! and our assumption. Namely, the term
BM22

( j ) (m2 , . . . ,mM)e2(m12m j )/sinh(m12mj) and BM22
( j 11)(m2 , . . . ,mM)e2(m12m( j 11))/sinh(m1

2m(j11)) enter with the opposite sign.
Therefore we only have to show the antisymmetry ofBM(m1 , . . . ,mM) with respect to the

interchange ofm1 andm2 . To see this we have to iterate the recurrence relation~3.27! twice and
combine the appropriate terms
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BM~m1 , . . . ,mM !5S v1~m1!v1~m2!1
2e2(m12m2)

sinh~m12m2!
X1~m1! DBM22~m3 , . . . ,mM !

12v1~m1!X1~m2!(
j 53

M

~21! j 11
e2(m22m j )

sinh~m22m j !
BM23

( j ) ~m3 , . . . ,mM !

12v1~m2!X1~m1!(
j 53

M

~21! j
e2(m12m j )

sinh~m12m j !
BM23

( j ) ~m3 , . . . ,mM !

14X1~m1!X1~m2!(
j 53

M

~21! j
e2(m12m j )

sinh~m12m j !
(
k53

M

~21!k1Q( j 2k)

3
e2(m22mk)

sinh~m22mk!
BM24

( j ,k) ~m3 , . . . ,mM !, ~3.37!

whereBM24
( j ,k) (m3 , . . . ,mM) means that the argumentsm j andmk are omitted. Sincev1(m) com-

mutes withX1(n), the antisymmetry of the right hand side of~3.37! with respect tom1 andm2

follows. Hence we have demonstrated the lemma. h

Proof of Lemma 3.2:Here we prove explicitly only formula~3.29!. In particular, whenM
51, the expression~3.29! is just the anticommutator betweenv1(l) and v1(m). Using the
recurrence relations~3.27! it is straightforward to check that the formula~3.29! holds for M
52:

v1~l!B2~m1 ,m2!5B2~m1 ,m2!v1~l!2
2

sinh~l2m1!
~e2(l2m1)X1~l!

2el2m1X1~m1!! v1~m2!1
2

sinh~l2m2!
~e2(l2m2)X1~l!

2el2m2X1~m2!! v1~m1!. ~3.38!

Therefore we can proceed to demonstrate Lemma 3.3 by induction. Assume that the relation~3.29!
holds forBN , M>N>2. Then we have to show the formula~3.29! is valid for M11. We use the
recurrence relations~3.27! to write

v1~l!BM115v1~l!S v1~m1!BM12X1~m1! (
j 52

M11
e2(m12m j )

sinh~m12m j !
BM21

( j ) D
52v1~m1!v1~l!BM2

2

sinh~l2m1!
~e2(l2m1)X1~l!2el2m1X1~m1!!BM

12X1~m1! (
j 52

M11

~21! j
e2(m12m j )

sinh~m12m j !
v1~l!BM21

( j ) . ~3.39!

Now we can substitute the expressions forv1(l)BM and v1(l)BM21
( j ) . After rearranging the

terms in an appropriate way we have

v1~l!BM115~21!M11BM11v1~l!12 (
j 51

M11
~21! j

sinh~l2m j !

3~e2(l2m j )X1~l!2e2(m j 2l)X1~m j !!BM
( j ) . ~3.40!

This completes the proof of the lemma. h
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The proofs of the other lemmas are analogous to the proofs we have illustrated above. T
not contain illuminating insights and are considerably longer than the two we have seen. Th
will omit them.

The recurrence relation~3.27! can be solved explicitly. To be able to express the solution
compact form it is useful to introduce a contraction operatord.

Definition 3.2: Let d be a contraction operator whose action on an ordered pro
)

→
j 51
M v1(m j ), M>2, is given by

d~v1~m1!v1~m2!¯v1~mM !!52 (
j 51

M21

X1~m j ! (
k5 j 11

M

~21!s( jk)
e2(m j 2mk)

sinh~m j2mk!
)

mÞ j ,k
→

M

v1~mm!,

~3.41!

wheres( jk) is the parity of the permutation

s:~1,2,. . . ,j , j 11, . . . ,k, . . . ,M !→~1,2,. . . ,j ,k, j 11, . . . ,M !.

Thed operator can be applied on an ordered product)
→
j 51
M v1(m j ) consecutively several times

up to @M /2#, the integer part ofM /2.
Theorem 3.1:Explicit solution to the recurrence relation (3.27) is given by

BM~m1 , . . . ,mM !5)
j 51
→

M

v1~m j !1 (
m51

[ M /2]
1

m!
dm)

j 51
→

M

v1~m j !5expd )
j 51
→

M

v1~m j !. ~3.42!

The properties of the creation operatorsBM studied in the this section will be fundament
tools in determining characteristics of the trigonometric osp~1u2! Gaudin model. Our primary
interest is to obtain the spectrum and the eigenvectors of the generating function of integ
motion t(l) ~3.11!.

IV. SPECTRUM AND EIGENSTATES OF TRIGONOMETRIC osp „1z2… GAUDIN MODEL

With the help of the creation operatorsBM it is possible to obtain the eigenvectors as well
the corresponding eigenvalues of the Hamiltonians of the trigonometric Gaudin model. This
is a direct consequence of the following theorem.

Theorem 4.1:The lowest spin vectorV2 (3.18) is an eigenvector of the generating functi
of integrals of motion t(l) (3.11) with the corresponding eigenvalueL0(l):

t~l! V25L0~l! V2, L0~l!5r2~l!1r8~l!. ~4.1!

Furthermore, the action of the B-operators (3.27) on the lowest spin vectorV2 yields the eigen-
vectors

C~m1 , . . . ,mM !5BM~m1 , . . . ,mM ! V2 ~4.2!

of the t(l) operator

t~l!C~m1 , . . . ,mM !5L~l; $m j% j 51
M ! C~m1 , . . . ,mM !, ~4.3!

with the eigenvalues

L~l; $m j% j 51
M !5y21]ly. ~4.4!

Here
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y~l; $m j% j 51
M !5r~l!1 (

k51

M

coth~l2mk!, ~4.5!

provided that the Bethe equations are imposed on the parameters$m j% j 51
M of the state (4.2):

bM~m j !5r~m j !1(
kÞ j

M

coth~m j2mk!50. ~4.6!

Proof: The equation~4.1! can be checked by a direct substitution of the definitions of
operatort(l) and the lowest spin vectorV2 , the equations~3.11! and ~3.18!, respectively.

To show the second part of the theorem, we use the equation~4.2! to express the Bethe vector
C(m1 , . . . ,mM),

t~l!C~m1 , . . . ,mM !5t~l! BM~m1 , . . . ,mM ! V2. ~4.7!

Our next step is to use the third property of theB-operators, the equation~3.3!, and the definition
of the lowest spin vectorV2 , the equation~3.18!, in order to calculate the action of the operat
t(l) on the Bethe vectors when the Bethe equations~4.6! are imposed:

t~l!BMV25BMt~l!V2

1S 2r~l!(
i 51

M

coth~l2m i !12(
i , j

M

coth~l2m i !coth~l2m j !1M DBMV2 .

~4.8!

We can express the first term on the right hand side since we know how the operatort(l) acts on
the vectorV2 , the equation~4.1!. Thus we have

t~l! BMV25L~l; $m j% j 51
M ! BMV2, ~4.9!

with

L~l; $m j% j 51
M !5L0~l!12r~l!(

i 51

M

coth~l2m i !12(
i , j

M

coth~l2m i !coth~l2m j !1M ,

and we complete the proof by expressing the eigenvalue as

L~l; $m j% j 51
M !5y21]ly, with y~l; $m j% j 51

M !5r~l!1 (
k51

M

coth~l2mk!.

h

Corollary 4.1: In the trigonometric Gaudin realization given by the equations (3.19)–(3.21)
and (3.23) the Bethe vectorsC(m1 , . . . ,mM) (4.2) are the eigenvectors of the Gaudin Hamilt
nians (3.24)~see also Ref. 36)

H (a)C~m1 , . . . ,mM !5EM
(a)C~m1 , . . . ,mM !, ~4.10!

with the eigenvalues

EM
(a)5 (

b51
bÞa

N

l a l b coth~za2zb!1(
j 51

M

l a coth~m j2za!, ~4.11!

when the Bethe equations are imposed:
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bM~m j !5r~m j !1(
kÞ j

M

coth~m j2mk!5 (
a51

N

~2 l a!coth~m j2za!1(
kÞ j

M

coth~m j2mk!50.

~4.12!

Proof: The statement of the corollary follows from residue of the equation~4.3! at the point
l5za . The residue can be determined using~3.25!, ~4.4! and ~4.1!. h

Comparing the eigenvaluesEM
(a) ~4.11! of the Gaudin Hamiltonians and the Bethe equatio

~4.12! with the corresponding quantities of the sl~2! Gaudin model5,6 we arrive at an interesting
observation.

Remark 4.1: The spectrum of theosp~1u2! trigonometric Gaudin model with the spins la

coincides with the spectrum of thesl~2! trigonometric Gaudin system for the integer spins (see
analogous observation for partition functions of corresponding anisotropic vertex models in
32).

Remark 4.2: The Bethe vectors are eigenstates of the global generator hgl

hglC~m1 , . . . ,mM !5S 2 (
a51

N

l a1M DC~m1 , . . . ,mM !. ~4.13!

As opposed to the osp~1u2!-invariant model,17 these Bethe vectors are not the lowest spin vec
of the global osp~1u2! since they are not annihilated by the generatorvgl

2 ,

vgl
2C~m1 , . . . ,mM !Þ0, ~4.14!

once the Bethe equations are imposed,~4.12!. These conclusions follow from Remark 3.1,
particular the equations~3.33! and ~3.34!, and the definition of the Bethe vectors~4.2!.

As was pointed out already in Ref. 5 for the sl~2! case, there are several modifications of t
Hamiltonians ~3.24!. One of them is the Richardson’s pairing-force Hamiltonian.37,38,5 These
modifications can be formulated in the framework of the universalL-operator andr -matrix for-
malism ~3.6!.6

Due to invariance of ther -matrix ~3.5! with respect to the Cartan element

@r ~l!,h^ I 1I ^ h#50, hPosp~1u2!, ~4.15!

one can add to theL-operator the elementh,

L~l!→L̃~l!5g h1L~l!, ~4.16!

preserving commutation relations~3.6!. Then

t̃ ~l!5 1
2 strL̃2~l!5t~l!12g h~l!1g2 ~4.17!

will have the commutativity property, i.e.,t̃ (l) t̃ (m)5 t̃ (m) t̃ (l). Hence we can taket̃ (l) to be
the generating function of the~modified! integrals of motion,

t̃ ~l!5~hgl2g!21 (
a51

N S c2~a!

sinh2~l2za!
1 2

el2za

sinh~l2za!
H̃ (a)D , ~4.18!

H̃ (a)5 res
l5za

t̃ ~l!5g ha1H (a). ~4.19!

In this case the eigenstatesCM are generated by the sameB-operators. However, correspondin
eigenvalues and Bethe equations are now given by
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L̃~l; $m j% j 51
M !5~y1g!21]ly; ~4.20!

here as beforey(l; $m j% j 51
M )5(a51

N (2 l a)coth(l2za)1(k51
M coth(l2mk),

ẼM
(a)5EM

(a)1g ~2 l a!, ~4.21!

(
a51

N

~2 l a!coth~m j2za!1(
kÞ j

M

coth~m j2mk!1g50. ~4.22!

The crucial step in the proof of these equations is the observation that the commutation re
between the operatort̃ (l) ~4.17! and the creation operatorsBM are equal to the commutatio
relations~3.3! but with modified operatorb̂M(m j )→b̂M(m j )1g. To see this notice the similarity
between the terms withv1(l)BM21

( i ) operators and withX1(l)BM22
( i , j ) operators in Lemma 3.2, th

equation~3.30!, and in Lemma 3.3, the equation~3.3!.
A Richardson-like Hamiltonian37,38,5,20,21can be obtained as a coefficient in thel→1`

expansion,17

t̃ ~l!5~hgl1g!214e22lS ~hgl211g!S (
a

e2zahaD 14Xgl
1S (

a
e2zaXa

2D 12vgl
1S (

a
e2zava

2D D
1O~e24l!. ~4.23!

Let us denote the coefficient next to the factor 4e22l by H1 :

H15~hgl211g!S (
i

e2zahaD 14Xgl
1S (

a
e2zaXa

2D 12vgl
1S (

a
e2ziva

2D . ~4.24!

This Hamiltonian is obviously not symmetric. Similar Hamiltonian can be obtained as a coeffi
in the l→2` expansion

t̃ ~l!5~hgl2g!214e2lS S (
a

e22zahaD ~hgl212g!14S (
a

e22zaXa
1DXgl

2

12S (
a

e22zava
1D vgl

2 D 1O~e4l!. ~4.25!

Let us denote the coefficient next to the factor 4e2l by H2 , which is also not symmetric. Thus
we choose the following symmetric combination for a trigonometric generalization of the R
ardson Hamiltonian:

HR5
1

2
~H11H2!5~hgl21!S (

a
cosh~2za! haD 1g S (

a
sinh~2za! haD

12S Xgl
1S (

a
e2zaXa

2D 1S (
a

e22zaXa
1DXgl

2 D 1vgl
1S (

i
e2zava

2D 1S (
a

e22zava
1D vgl

2 .

~4.26!

The eigenvalues ofHR have different dependence on the quasi-momenta from the rat
case,37,17

HRCM~m1 ,...,mM !5ER~M !CM~m1 ,...,mM !, ~4.27!

with
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ER~M !5S (
j 51

M

cosh~2m j !2 (
a51

N

l a cosh~2za!D S M2 (
a51

N

l a21D
1S (

j 51

M

sinh~2m j !2 (
a51

N

l a sinh~2za!D g. ~4.28!

More complicated modifications of Gaudin models can be obtained considering the q
classical limit of the quantum spin system with nonperiodic boundary conditions and corres
ing reflection equation.39,40 The L-operator can be expressed in terms of the original one~3.7! as

L (bGM)~l;$zj%!5L~l;$zj%!2L~2l;$zj%!, ~4.29!

in the case of the open chain, and it will satisfy more complicated liner brackets, defin
subalgebra of the loop algebra~3.6! ~see also Ref. 41 and references therein!.

Most of the trigonometric Gaudin model relations have their counterparts in the rat
osp~1u2!-invariant case. To show this one takes a scaling limitl→«l, za→«za ,

lim
«→0

«L trig~«l;$«za%!5L inv~l;$za%!, ~4.30!

and in this way one reproduces known results for the osp~1u2!-invariant model. However, as w
shall see in the next section, some relations of the invariant GM have quite complicated ana
the trigonometric case~a generalization of KZ system to include a ‘‘magnetic field’’ parameteg
requires a difference dynamical equation15,16!. Also the modifiedL-operator~4.16! requires to
scale the parameterg→g/«.

Another modification can be obtained by performing the similarity transformation on
r -matrix ~3.1! by the tensor square of the element exp(tX1). Then the scaling limitl→«l, t
→j/2«, results in a modifiedr -matrix:

r̂ ~l!5
c2

^

l
1j~h^ X12X1

^ h2v1
^ v1!. ~4.31!

The loop superalgebra will be modified, as well as corresponding Hamiltonians~1.1!. Similarly,
the algebraic Bethe ansatz will require changes, although the Bethe equations and the sp
will be the same as in the osp~1u2!-invariant case@see the sl~2! case in Ref. 42#.

The expression of the eigenvectors of a solvable model in terms of local variables p
etrized by sites of the chain or by space coordinates, is known as coordinate Bethe ansat5 The
coordinate representation of the Bethe vectors gives explicitly analytical dependence on t
rameters$m i%1

M and$za%1
N useful in a relation to the Knizhnik–Zamolodchikov equation~Sec. V!.

Using the Gaudin realization~3.19!–~3.21! of the generators

v1~m!5 (
a51

N
em2za

sinh~m2za!
va

1, X1~m!5 (
a51

N
em2za

sinh~m2za!
Xa

1,

and the definition of the creation operators~3.42!, one can get the coordinate representation of
B-operators:

BM~m1 ,m2 , . . . ,mM !5(
p

~va1

1
¯vaM

1 !p )
a51

N

w~$mm
(a)%1

uKau ;za!, ~4.32!

where the first sum is taken over ordered partitionsp of the set (1,2,...,M ) into subsetsKa , a
51,2,...,N, including empty subsets with the constraints
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ø
a

Ka5~1,2,...,M !, KaùKb5B for aÞb.

The corresponding subset of quasimomenta

~m1
(a)5m j 1

,m2
(a)5m j 2

,...,m uKau
(a) 5m j uKau

; j mPKa!,

whereuKau is the cardinality of the subsetKa , and j k, j k11 , entering into the coordinate wav
function

w~$nm%1
uKu ;z!5 (

sPSuKu
~21!p(s)

ens(1)2ns(2)

sinh~ns(1)2ns(2)!

ens(2)2ns(3)

sinh~ns(2)2ns(3)!
¯

ens(uKu)2z

sinh~ns(uKu)2z!
.

Due to the alternative sum over permutationssPSuKu this function is antisymmetric with respec
to the quasi-momenta. Finally, the first factor in~4.32!,

~va1

1
¯vaM

1 !p ,

means that forj mPKa , corresponding indices ofvaj m

1 are equal toa so thatvaj m

1 5va
1 . One can

collect these operators into product)a51
N (va

1) uKau; consequently, we have an extra sign fac
(21)p(p).

This coordinate representation is similar to the representations obtained in Refs. 11–13
Gaudin models related to the simple Lie algebras~see also Ref. 43!. The Z2-grading of superal-
gebra results in extra signs, while the complicated structure of theBM-operators@for the sl~2!
Gaudin model they are just products ofB1-operatorsB1(m j )5X1(m j )] is connected with the fac
that (v j

1)25Xj
1Þ0 while for j Þk v j

1 andvk
1 anticommute.

V. SOLUTIONS TO THE KNIZHNIK–ZAMOLODCHIKOV EQUATION

Correlation functionsc(z1 , . . . ,zN) of a two dimensional conformal field theory satisfy th
Knizhnik–Zamolodchikov equation44

k ]za
c~z1 , . . . ,zN!5H (a)c~z1 , . . . ,zN!, ~5.1!

whereH (a)(a51, . . . ,N) are the Gaudin Hamiltonians~3.24! andc(z1 , . . . ,zN) is a function of
N complex variables with its values in a tensor productH5 ^

a51
N Va

( l a) .

A relation between the Bethe vectors of the Gaudin model related to simple Lie algebra
the solutions to the Knizhnik–Zamolodchikov equation is well known for some time.11,12 Ap-
proach used here to obtain solutions to the Knizhnik–Zamolodchikov equation correspond
conformal field theory and Lie superalgebra osp~1u2! starting fromB-vectors~4.2! is based on Ref.
11.

A solution in question is represented as a contour integral over the variablesm1 , . . . ,mM

c~z1 , . . . ,zN!5 R ¯ R f~mW uzW !C~mW uzW ! dm1¯dmM, ~5.2!

where an integrating factorf(mW uzW) is a scalar function

f~mW uzW !5)
i , j

M

sinh~m i2m j !
1/k )

a,b

N

sinh~za2zb! l al b /kS )
k51

M

)
c51

N

sinh~mk2zc!
2 l c /kD , ~5.3!

andC(mW uzW) is a Bethe vector~4.2! where the corresponding Bethe equations are not impose
As a first step in the proof thatc(z1 , . . . ,zN) given by ~5.2! is a solution of ~5.1! we

differentiate the productfC with respect toza and obtain
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]za
~fC!5]za

~f!C1f]za
~C!. ~5.4!

Using ~5.3! the first term on the right hand side can be calculated explicitly:

k]za
f5S (

b51
bÞa

N

l a l b coth~za2zb!2(
j 51

M

l a coth~za2m j !D f5EM
(a)f. ~5.5!

Furthermore, taking a residue of~3.3! at l5za we have

H (a)C5EM
(a)C1(

j 51

M

~21! j
e2(za2m j )

sinh~za2m j !
bM~m j !C̃

( j ,a), ~5.6!

where

C̃ ( j ,a)5S va
1BM21

( j ) 12Xa
1(

kÞ j

M

~21!k1Q( j 2k)
e2(m j 2mk)

sinh~m j2mk!
BM22

( j ,k) D V2. ~5.7!

Hence~5.4! can be written as

k]za
~fC!5H (a)~fC!1f(

j 51

M

~21! j
em j 2za

sinh~m j2za!
bM~m j !C̃

( j ,a)1kf]za
~C!. ~5.8!

Moreover, from~5.3! we also have

k]m j
f5S (

a51

N

~2 l a!coth~m j2za!1 (
k51
j Þk

M

coth~m j2mk!D f5bM~m j !f, ~5.9!

and from Lemma 3.4 follows

]za
C5(

j 51

M

~21! j]m j S em j 2za

sinh~m j2za!
C̃ ( j ,a)D . ~5.10!

Thus, using~5.9! and~5.10!, we can combine the last two terms in~5.8! into a sum of first order
derivatives inm j :

k]za
~fC!5H (a)~fC!1k(

j 51

M

~21! j]m j S em j 2za

sinh~m j2za!
f C̃ ( j ,a)D . ~5.11!

A closed contour integration offC with respect tom1 , . . . ,mM will cancel the contribution from
the terms under the sum in~5.11! and thereforec(z1 , . . . ,zN) given by ~5.2! satisfies the
Knizhnik–Zamolodchikov equation.

Conjugated Bethe vectors (BMV2)* are entering into the solutionc̃(z1 , . . . ,zN) of the dual
Knizhnik–Zamolodchikov equation

2k
]

]za
c̃~z1 , . . . ,zN!5c̃~z1 , . . . ,zN! H (a). ~5.12!

The scalar product (c̃(z1 , . . . ,zN), c(z1 , . . . ,zN)) does not depend on$zj%1
N and its quasi-

classical limitk→0 gives the norm of the Bethe vectors due to the fact that the stationary p
of the contour integrals fork→0 are solutions to the Bethe equations13
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]S

]m j
5 (

a51

N

~2 l a!coth~m j2za!1 (
k51
j Þk

M

coth~m j2mk!50, ~5.13!

S~mW uzW !5k ln f5 (
a,b

N

l al b ln~sinh~za2zb!!1(
i , j

M

ln~sinh~m i2m j !!

2 (
a51

N

(
j 51

M

l a ln~sinh~za2m j !!. ~5.14!

According to the remark at the end of Sec. IV, analytical properties of the Bethe vectors
trigonometric osp~1u2! Gaudin model coincide with the analytical properties of the trigonome
sl~2! Gaudin model. Thus, the expression for the norm of the Bethe vectorsC ~4.2! obtained as the
first term in the asymptotic expansionk→0 coincides also

~C,C!5detS ]2S

]m j ]mk
D , ~5.15!

]2S

]m j
2 5 (

a51

N
l a

sinh2~m j2za!
2(

kÞ j

M
1

sinh2~m j2mk!
,

]2S

]m j ]mk
5

1

sinh2~m j2mk!
, ~5.16!

for j Þk.
Finally we notice that the modification of the Gaudin Hamiltonians we discussed at the e

the previous section can be easily transfered to the corresponding modification of the Kniz
Zamolodchikov equations. The modification~4.16! for the sl~2!-invariant Gaudin model was stud
ied in Ref. 29 as a quantization of the Schlesinger system~see also Ref. 28!. This modification is
related with extra factor in the integrating scalar function~5.3!,

f j5expS Sj

k D , j 50,1, ~5.17!

whereS05S ~5.14! and

S15S01g(
j 51

M

m j2g(
a51

N

l aza ~5.18!

correspond to the modification~4.16!.
Moreover, following the lines of Ref. 29, one can try to extend the connection between th

equation and the Guadin model based on the modifiedL-operator~4.16! by extending the KZ
system to include an equation of the form

S k
]

]g
2HRichDc50 . ~5.19!

However, such a straightforward generalization has failed in the trigonometric case~see below!.
We can comment on the extension in the rational case17 as a scaling limit of the trigonometric
Gaudin model~4.30!. The equations of original KZ system are defined by mutually commu
differential operators@see~3.4!#:

¹a5k
]

]za
2H̃ (a)5k

]

]za
2gha2 (

bÞa

c2
^~a,b!

za2zb
. ~5.20!

The operator
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¹g5k
]

]g
2HRich5k

]

]g
2 (

a51

N

zaha2
1

2g
~c2~gl !2hgl~hgl21!! ~5.21!

is commuting pairwise with the operators¹a . Thus in the rational case the KZ system can
generalized to include the operator¹g .

To prove that the solution to the modified KZ system withf1 given by~5.17! and~5.18! is a
solution to the generalized KZ system we have to extend the trigonometric KZ equations~5.1!
with modified Hamiltoniansgha1H (a) along the lines of Refs. 15 and 16. A difference equat
must be introduced,

K~z1 , . . . ,zN ;g! c~z1 , . . . ,zN ;g!5c~z1 , . . . ,zN ;g22k!, ~5.22!

instead of~5.21!. The operatorK is defined on the spaceH

K~z1 , . . . ,zN ;g!5expS 22(
a51

N

zahaD P~g;hgl ,vgl
1 ,vgl

2!, ~5.23!

where the operatorP depends on the global generators of the subalgebra osp(1u2),Lt , and is
constructed form the extremal projectorp(h,v1,v2) by a shift of the Cartan generator~see the
Appendix!. We introduce only oneK operator since the rank of osp~1u2! Lie superalgebra is one
In the general case of simple Lie superalgebra of rankr , one has to consider a set ofKk , k
51, . . . ,r ~see Refs. 15 and 16!.

VI. CONCLUSION

By analyzing the model related to the trigonometric osp~1u2! classicalr -matrix the algebraic
Bethe ansatz approach to the Gaudin models is reviewed. The results presented in this ar
in some sense analogous to the ones we obtained for the osp~1u2!-invariant model.17 In particular,
a striking similarity between some of the most fundamental characteristics of this system a
sl~2! trigonometric Gaudin model was confirmed. Although explicitly constructed creation op
tors BM ~3.42! of the Bethe vectors are complicated polynomials of theL-operator entriesv1(l)
andX1(l), the coordinate form of the eigenfunctions differs only in signs from the correspon
states in the case of sl~2! trigonometric model, being antisymmetric functions of the qua
momenta. Moreover, the eigenvalues and the Bethe equations coincide, provided that th~2!
Gaudin model with integer spins is considered. Analogously, the KZ equations based on
trigonometric models and for the nontrivial magnetic fieldg require extension of the system o
equations by the dynamical difference equation.

Let us point out that by the method presented in this article one can construct exp
creation operators of the Gaudin models related to trigonometric Izergin-Korepinr -matrix3,30

corresponding to the twisted affine algebraA2
(2) . Similarly to the simple Lie algebra case, sol

tions to the Knizhnik–Zamolodchikov equation were constructed from the Bethe vectors
algebraic properties of the creation operatorsBM and the Gaudin realization of the loop super
gebraLt(osp(1u2)). This interplay between the Gaudin model and the Knizhnik–Zamolodch
equation enabled us to determine the norm of eigenfunctions of the Gaudin Hamiltonians

iC~m1 , . . . ,mM ;$za%1
N!i25detS ]2S

]m j ]mk
D .

The difficult problem of correlation function calculation for general Bethe vectors

C~$n j%1
M ;$m i%1

M ;$lk%1
K!5S V2, BM* ~n1 , . . . ,nM !)

k51

K

h~lk! BM~m1 , . . . ,mM !V2D
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was solved nicely for the sl~2!-invariant Gaudin model in Ref. 7 using the Gauss factorization
the loop algebra group element and the appropriate Riemann-Hilbert problem. Although th
responding factorization is known even for the quantum superalgebraUq(osp(1u2)),45 the final
expression of the correlation functions is difficult to obtain due to the complicated structure
creation operatorsBM(m1 , . . . ,mM)5Poly(v1,X1) ~3.42!. The study of this problem is in
progress and the following expression for the scalar product of the Bethe states is conjectur~see
Ref. 7!:

~V2, BM* ~n1 , . . . ,nM !BM~m1 , . . . ,mM !V2!5 (
sPSM

~21!p(s) detM s,

where the sum is over symmetric groupSM andM3M matrix M s is given by

M j j
s 5

em j 2ns( j )

sinh~m j2ns( j )!
~r~m j !2r~ns( j )!!2(

kÞ j

M
em j 2mk e2(ns( j )2ns(k))

sinh~m j2mk! sinh~ns( j )2ns(k)!
,

M jk
s 5

em j 2mk e2(ns( j )2ns(k))

sinh~m j2mk! sinh~ns( j )2ns(k)!
, for j ,k51,2,...,M .
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APPENDIX: ORTHOSYMPLECTIC LIE SUPERALGEBRA osp „1z2…

The rank of the orthosymplectic Lie algebra osp~1u2! is one and its dimension is five.33 The
three even generators areh,X1,X2 and the two odd generators arev1,v2. The ~graded! com-
mutation relations of the generators are

@h,X6#2562X6, @X1,X2#25 h,

@h,v6#256v6, @v1,v2#152h,
~A1!

@X7,v6#25 v7, @v6,v6#1562X6,

@X6,v6#250.

The Casimir element is

c25h212~X1X21X2X1!1~v1v22v2v1!5h22h14X1X212v1v2 . ~A2!

It is interesting to point out the existance of a ‘‘square root’’ of this element

c15h12v1v22 1
2 , ~c1!25c21 1

4 , ~A3!

with a grading property@c1 ,X6#50, @c1 ,h#50 andc1v652v6c1 . The finite dimensional irre-
ducible representationsV( l ) of the osp~1u2! Lie superalgebra are parametrized by an integerl , so
that their dimensions 2l 11 and the values of the Casimir element~A2! c25 l ( l 11) coincide with
the same characteristics of the integer spinl irreducible representations of sl~2!.

The fundamental irreducible representationV(1) of osp~1u2! is three dimensional. We choose
grading of the basis vectorsej , j 51,2,3, to be~0,1,0!. Explicitly we have
                                                                                                                



for

n-
er

ns

ions,’’

699J. Math. Phys., Vol. 44, No. 2, February 2003 Trigonometric osp(1u2) Gaudin model

                    
h5S 1 0 0

0 0 0

0 0 21
D ,

v25~v1!st5S 0 0 0

21 0 0

0 1 0
D ,

together withX656(v6)2. The matrixv1 in the representationV( l ) has 2l nonzero elements on
the second upper diagonal only, and these elements are

$~v1! j j 11%5~Al ,A1,Al 21,&, . . . ,A1,Al !, j 51,2,. . . ,2l . ~A4!

The extermal projector46 for osp~1u2! ~on the lowest weight vectors! is

p~h,v1,v2!5 (
k50

`
~21!k

k! S ~v1!2k~v2!2k1~v1!2k11~v2!2k11
1

h2k21D )
j 51

k
1

h2 j

5S 11v1v2
1

h21D S (
k50

`

~X1!k~X2!k)
j 51

k
1

j ~h2 j 21!D
5ps~h,v1,v2!p0~h,X1,X2!; ~A5!

herep0(h,X1,X2) is the usual sl~2! extermal projector. There is no such factorization property
the extermal projector of the quantum superalgebraUq(osp(1u2)).31
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In this paper we deal with the category of nonlinear evolution equations~NLEEs!
associated with the spectral problem and provide an approach for constructing their
algebraic structure andr -matrix. First we introduce the category of NLEEs, which
is composed of various positive order and negative order hierarchies of NLEEs
both integrable and nonintegrable. The whole category of NLEEs possesses a gen-
eralized Lax representation. Next, we present two different Lie algebraic structures
of the Lax operator: one of them is universal in the category, i.e., independent of
the hierarchy, while the other one is nonuniversal in the hierarchy, i.e., dependent
on the underlying hierarchy. Moreover, we find that two kinds of adjoint maps are
r -matrices under the algebraic structures. In particular, the Virasoro algebraic struc-
tures without a central extension of isospectral and nonisospectral Lax operators
can be viewed as reductions of our algebraic structure. Finally, we give several
concrete examples to illustrate our methods. Particularly, the Burgers’ category is
linearized when the generator, which generates the category, is chosen to be inde-
pendent of the potential function. Furthermore, an isospectral negative order hier-
archy in the Burgers’ category is solved with its general solution. Additionally, in
the KdV category we find an interesting fact: the Harry–Dym hierarchy is con-
tained in this category as well as the well-known Harry–Dym equation is included
in a positive order KdV hierarchy. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1532769#

I. INTRODUCTION

The integrability study of nonlinear evolution equations has been an attractive topic in s
theory and nonlinear phenomenon. Calogero1 proposed theC-integrable~namely, linearizable by
an appropriate change of variables! andS-integrable~namely, integrable via some spectral tran
form technique! terminology for dealing with nonlinear partial diiferetial equations~PDEs!. Many
nonlinear PDEs were shownC-integrable andS-integrable.2 Mikhailov, Shabat and Sokolov3

discussed some classes of nonlinearC-integrable andS-integrable PDEs through using the sym
metry approach. Flaschka, Newell and Tabor4 considered in detail the Painleve analysis proc
for both ODEs and PDEs and investigated its test for integrable equations.

a!Electronic mail: qiao@cnls.lanl.gov; qiaozj@hotmail.com
b!Electronic mail: cwcao@public2.zz.ha.cn
c!Electronic mail: strampp@hrz.uni-kassel.de
7010022-2488/2003/44(2)/701/22/$20.00 © 2003 American Institute of Physics
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On the other hand, ther -matrix method is also an important part in classical and quan
integrable systems.5 The classicalr -matrix has been first introduced by Sklyanin in Refs. 6 an
as the limit of its quantum counterpart. Subsequently, Drinfeld used this to introduce a
geometric notion, that of a Poisson Lie group.8 Following Drinfeld’s ideas8 Semenov–Tian–
Shansky showed that the concept of a classicalr -matrix leads to an algebraic construction
integrable systems generalizing the AKS scheme. In terms of ther -matrix9 an effective view of the
multi-Hamiltonian property of such equations can be presented. In addition, it gives a ge
explanation of the dressing transformations used for obtaining solutions in terms of
factorizations.10 In Ref. 11 Jimbo constructed explicit solutions of the quantum YB equation
the generalized Toda system and moreover obtained many beautiful results12–14 by using the
r -matrix method.

For the study of an algebraic structure of integrable evolution equations, there has als
a discussion in the literature. For example, the well-knownW-algebra was constructed by Orlo
and Schulman through using the vertex operator.15 The KP system was also found to have th
kind of W-algebraic structure by Dickey,16 which includes the Virasoro algebra as its subalgeb
TheW-algebra played an important role in the so-called second Poinsson structure.16 For this, the
most important thing is to find the generators ofW-algebra. All these facts were only for the ca
of integrable hierarchies. How about the case for both integrable and nonintegrable hierarch
this paper we will deal with this problem through introducing the category of nonlinear evolu
equations~NLEEs!. The category of NLEEs develops the positive order to the negative o
hierarchies for both the integrable and the nonintegrable cases. In particular, the positive a
negative order integrable hierarchies will be generated by the recursion operator, its invers
some kernel elements from the pair of Lenard’s operators. Mikhailov, Shabat and Sokolo3 ex-
tended the integrable equations by employing the symmetry procedure and discussed the
cations for the integrable hierarchies. All of their results were forC-integrable andS-integrable
cases. In this paper, we will discuss the case for both integrable and nonintegrable hierarch
will not interfere with the existence of symmetries. Here, we point out that throughout this p
‘‘integrable’’ means the sense of Lax, namely, the PDE admits isospectral~i.e., l t50) or usual
nonisospectral~i.e., l t5aln, nPZ, aPR/C) Lax form; otherwise, we say the PDE is nonint
grable in the sense of the Lax form.

Our purpose in the present paper is to give an approach to the category of nonlinear ev
equations directly from a spectral problem and to connect ther -matrix to the category of NLEEs
The whole paper is organized as follows. In the next section we first introduce the notation
category of NLEEs, which is composed of various positive and negative order hierarchies o
integrable and nonintegrable NLEEs, and then we give the generalized Lax representation~GLR!.
In Secs. III and IV we, respectively, present two different Lie algebraic structures of the
operator. One structure is produced independently of the hierarchy in the category while the
holds only within one hierarchy. Moreover, by using these algebraic structures we find tha
kinds of adjoint maps result inr -matrices for the NLEEs. In Sec. V, it is pointed out that the w
known Virasoro algebraic structures~without the central extension! of isospectral and nonisospec
tral Lax operators are obtained as reductions of our algebraic structure. Finally, in Sec.
examples of several continuous spectral problems are given to illustrate our methods. Parti
the Burgers’ category is linearized when the generator, which generates the category, is ch
be independent of the potential function. Furthermore, an isospectral negative order hiera
the Burgers’ category is solved with its general solution. Additionally, in the KdV category we
an interesting fact: the Harry–Dym hierarchy is contained in this category as well as the
known Harry-Dym equation is included in a positive order KdV hierarchy.

Before displaying our main results, let us first give some necessary notations:
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for arbitrarily fixed t, S(Rl ,R) stands for the Schwartz function space onRl . B denotes all
complex~or real! value functionsP(x,t,u) of the classC` with respect tox, t, and of the class
C` in Gateaux’s sense with respect tou. B N5$(P1 , . . . ,PN)TuPiPB%, V N stands for all linear
operatorsf5f(x,t,u): B N→B N which are of the classC` with respect tox, t, and of the class
C` in Gateaux’s sense with respect tou.

The Gateaux derivate of vector functionXPB n in the directionYPB m is defined by

X* ~Y!5
d

de U
e50

X~u1eY!. ~1.1!

For the two arbitrary vector fieldsX, YPB m, define the following operation:

@X, Y#5X* ~Y!2Y* ~X!. ~1.2!

Then,B m composes a Lie algebra about the above multiplication operation.17 For the operator
fPV N, its Gateaux derivate operatorf* :B m→V N in the directionj is defined as follows:

f* ~j!5
d

de U
e50

f~u1ej!, jPB m. ~1.3!

If not otherwise stated, the spectral operatorsL5L(u) @or the spectral operatorsL
5L(u, l) with the spectral parameterl# considered in this paper are denoted byLPV N, and we
always assume thatL* :B m→V N is an injective homomorphism. An operatorH acting on a
function f is denoted byH• f . I stands for theN3N unit operator.

II. CATEGORY OF NLEEs AND GENERALIZED LAX REPRESENTATION „GLR…

In this section, a procedure for constructing the category of NLEEs and generalized
representations are presented, and, moreover, it is shown how to construct theL2A2B triple
representation18 for a given nonlinear quation.

Let us start from a generalN3N spectral problem:

L•c5lc, LPV N, ~2.1!

wherel is a spectral parameter,cPB N. Denote the functional gradient of spectral parametel
with regard to the potential vectoru by dl/du 5(dl/du1 ,¯ , dl/dum)T. Tu and Cao, respec
tively, gave some discussions about the calculations of the functional gradient in Ref. 19 an
20. Strampp ever studied recursion operators, spectral problems, and Ba¨cklund transformations by
introducing a relation between recursion operators and eigenvalue functions.21,22 Thus, we define
the Lenard operators as follows:

Definition 2.1: If there exists a pair of m3m operators K5K(u), J5J(u): Sm(Rl , R)
→Sm(R,R) such that

K•

dl

du
5lcJ•

dl

du
, ~2.2!

then K, J are called a pair of Lenard operators of (2.1), and (2.2) is called the Lenard spe
problem of (2.1). Here the constant c is definitely chosen by the concrete form of (2.1).

In many cases, there exist~but not unique! the pair of Lenard’s operators satisfying~2.2!, and
frequently both of them are Hamiltonian operators. For instance, for the KdV–Schro¨dinger spec-
tral problemcxx1uc5lc, dl/du 5c2, only choosingK52 1

4]
32 1

2(u]1]u), J5]5 ]/]x, we
haveK• dl/du 5lJ• dl/du. Eq. ~2.2! plays an important role in the nonlinearization theory a
the construction of completely integrable finite-dimensional systems.23
                                                                                                                



fi-

r

,

s (2.6)

f

of

al
rator

ion
r the
nta-

is the
er
-

which

ectral
a-

704 J. Math. Phys., Vol. 44, No. 2, February 2003 Qiao, Cao, and Strampp

                    
Let M5(mi j )N3N , M̃5(m̃i j )N3N be the arbitrarily given 11 l -dimensional@i.e., independent
variables (x, t)PRl3R, l>1] linear N3N matrix operators. Then we have the following de
nitions.

Definition 2.2: G0PSm(Rl , R), G21PSm(Rl , R) are, respectively, called the positive orde
and the negative order generators, if they, respectively, satisfy the operator equations,

L* ~J•G0!5M , ~2.3!

L* ~K•G21!5M̃ . ~2.4!

Denote the solution sets of~2.3! and ~2.4! by NJ(M ) andNK(M̃ ), respectively. In general
they are not empty.

Definition 2.3: LetNJ(M )ÞB, NK(M̃ )ÞB and choose G0PNJ(M ), G21PNK(M̃ ). Write
the recursion operatorL5J21K. The sequence$Gj% j 52`

` #Sm(Rl ,R) recursively determined by

Gj5HL j
•G0 , j >0,

L j 11
•G21 , j ,0,

~2.5!

is called the Lenard’s sequence of (2.1); the set of the following nonlinear equations:

ut5Xm~u,G0 ,G21!, mPZ, ~2.6!

produced by the vector field

Xm~u,G0 ,G21!,J•Gm , mPZ, ~2.7!

is called the category of nonlinear evolution equations of (2.1). The subset of the equation
obtained for m>0 is called the positive order category while the subset obtained for m,0 is
called the negative order category.

Apparently, the positive and the negative order generatorsG0 , G21 depend on the choice o
matrix operatorsM , M̃ , thus the category~2.6! is composed of various hierarchies~both inte-
grable and nonintegrable! of NLEEs which are generated according to the choice of operatorsM ,
M̃ .

For example, withM[0 ~i.e., G0PKer J), the hierarchy in the positive order category
~2.6! just reads as the isospectral hierarchy of evolution equations;24 with M̃[0 ~i.e., G21

PKerK), the hierarchy in the negative order category of~2.6! is exactly the second isospectr
hierarchy of evolution equations studied in Ref. 25. Additionally, the negative order gene
G21 can be considered to produce finite-dimensional constrained Hamiltonian systems.26 Obvi-
ously, the negative order category of~2.6! is generated with the help of the inverse recurs
operatorL. Strampp and Oevel gave the inverse recursion operator in an explicit form fo
nonlinear derivative Schro¨dinger equation.27 In 1991 we suggested the commutator represe
tions for the negative order hierarchy of isospectral NLEEs.28 Afterwards, we29 further found that
the same spectral problem can generate two different hierarchies of integrable NLEEs: one
usual higher order~i.e., positive order! hierarchy of NLEEs, the other is the negative ord
hierarchy of NLEEs. All these equations have the Lax representations.29 Here we study the gen
eralized case, i.e., the category of NLEEs.

With M5I or M̃5I , under the basic conditionNJ(I )ÞB or NK(I )ÞB, Eq. ~2.6! actually
gives the positive and the negative order hierarchies of nonisospectral evolution equations,
can be obtained from the following, Theorem 2.2. Thus, by the arbitrariness ofM and M̃ , Eq.
~2.6! unifies together all possible hierarchies of evolution equations associated with the sp
problem ~2.1!. Due to this fact, Eq.~2.6! is named ‘‘the category of nonlinear evolution equ
tions.’’
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Theorem 2.1: Let M5(mi j )N3N , M̃5(m̃i j )N3N be two arbitrarily given N3N linear ma-

trix operators, NJ(M )ÞB, and NK(M̃ )ÞB. Suppose that for G5(G[1] ,...,G[m] )T

PSm(Rl , R) and a,bPZ the operator equation,

@V,L#5L* ~K•G!Lb2L* ~J•G!La, ~2.8!

possesses a solution V5V(G); then the vector field Xm5Xm(u,G0 ,G21) satisfy

L* ~Xm!5@Wm ,L#1M̄Lmh, mPZ, M̄5H M , m>0,

M̃ , m,0,
~2.9!

whereh5a2b and the operator Wm is given by

Wm5( V~Gj !L
(m2 j )h2a, ( 55 (

j 50

m21

, m.0,

0, m50,

2 (
j 5m

21

, m,0.

~2.10!

Here Gj are determined by (2.5), and L21 is the inverse of L, i.e., LL215L21L5I , and @•,•#
denotes the usual commutator.

Proof: For m50, it is obvious. Form.0,

@Wm ,L#5 (
j 50

m21

@V~Gj !,L#L (m2 j )h2a

5 (
j 50

m21

$L* ~K•Gj !L
(m2 j 21)h2L* ~J•Gj !L

(m2 j )h%

5 (
j 50

m21

$L* ~J•Gj 11!L (m2 j 21)h2L* ~J•Gj !L
(m2 j )h%5L* ~Xm!2L* ~J•G0!Lmh

5L* ~Xm!2MLmh.

For m,0, the proof is similar. j

Remark 2.1:The structure equation~2.8! of commutator representations is a natural gener
zation of the structure equation@V,L#5L* (K•G)2L* (J•G)L presented by Cao Cewen.30

Remark 2.2:The choice of constantsa,bPZ is determined by the concrete form of~2.1!. In
many cases,29 V5V(G) can be solved for the givenL.

Theorem 2.2:The category (2.6) of NLEEs has the following representation:

Lt5@Wm ,L#1M̄Lmh, mPZ, M̄5H M , m.0,

M̃ , m,0.
~2.11!

Proof: For m>0, becauseL* (ut)5Lt andL* is injective,

Lt5@Wm ,L#1MLmh⇔L* ~ut2Xm!50⇔ut5Xm ,

which completes the proof. j

Definition 2.4: Equation (2.11) and Wm are called the generalized Lax representations (GL
and the generalized Lax-operator (GLO), respectively.
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Obviously, withM̄50 ~i.e., G0PKer J, G21PKerK), Eq. ~2.11! reduces the standard~i.e.,
isospectral case:l t50) Lax representations, and withM̄5I @of courseNJ(I )ÞB and NK(I )
ÞB are needed#, Eq.~2.11! reduces the nonisospectral~i.e.,l t5lmh, mPZ) Lax representations
For two special cases: the isospectral case~i.e. M5M̃50) and the nonisospectral case~i.e., M

5M̃5I ), Ma31 discussed the Lax operator algebras of the positive order~i.e., m.0) hierarchy of
NLEEs. But a general framework has not been obtained for all integermPZ and all linear matrix
operatorsM ,M̃ . In the following sections, we shall construct a general frame–generalized
braic structure and furthermore present ther -matrix for the category of NLEEs.

Remark 2.3:Equation~2.11! admits the structure ofL2A2B representations of the catego
~2.6! in an explicit form. Thus, we give a constructive approach to the Manakov operator paA,
B in the L2A2B triple representation.18 In Ref. 32, we determined the range of theL2A2B
triple representation through defining the Lie quotient algebras.

Remark 2.4:Equation~2.11! contains both the integrable and the nonintegrable hierac
because of the multiple choices ofM̄ . Therefore, our category of NLEEs are not included in t
system of multi-component KP and its reduction.

Corollary 2.1: Assume that the potential vector functionu is independent oft and the fol-
lowing condition holds:

F (
i 52r

s

ciWi ,LG52M̄ (
i 52r

s

ciL
ih,

with constantsci (2r< i<s). Thenu will satisfy the stationary system of the category~2.6!:

(
i 52r

s

ciXi~u!50, ;r ,sPZ1.

We shall give several concrete examples in Sec. VI.

III. UNIVERSAL ALGEBRAIC STRUCTURE AND r -MATRIX

From ~2.9!, we have seen that for various linear matrix operatorsM ,M̃ , the category~2.6! of
NLEEs indeed yields different hierarchies of NLEEs. That means the hierarchy in the cat
~2.6! changes according to the choice ofM ,M̃ . In this section, we shall construct the algebra
structure andr -matrix which holds for all hierarchies of NLEEs in the category~2.6!. Let us start
from the following definition.

Definition 3.1: Suppose that for a spectral operator LPV N and an integer nPZ there exist
pairs (A,M ) of vector fields XPB m and operators A,MPV N with the property

@A,L#5L* ~X!2MLn. ~3.1!

Then(A,M ) is called a Manakov operator pair of L. The set of all Manakov operator pairs i
denoted byM L

n . X is called the vector field corresponding to(A,M ). The set of all vector fields
X is denoted by V(M L

n). The set of all triples(A,M ,X) is denoted byP L
n .

As long as Eq.~2.8! has an operator solution for a givenLPV N, then by theorem 2.1 and Eq
~2.9! there exists a triple (A,M ,X)PP L

n satisfying~3.1!.
It is easy to prove the following proposition.
Proposition 3.1:

(1) The vector field associated with each Manakov operator pair is unique;
(2) bothP L

n and M L
n form linear spaces.

Apparently, if there isA, MPV N for XPB m such that Eq.~3.1! holds, thenut5X possesses
the GLRLt5@A, L#1MLn. It is not difficult to see thatP L

n andP L
0 , M L

n andM L
0 are equiva-
                                                                                                                



-

, we

707J. Math. Phys., Vol. 44, No. 2, February 2003 Category of NLEEs, algebras, and r-matrix

                    
lent, respectively, under the bijective mapF: P L
n→P L

0 , defined by (A, M , X)°(A, MLn, X).
So, in the following we simply considerP L

0 , M L
0 and writeM L

05ML , P L
05PL .

Definition 3.2: Let(A, M , X), (B, N, Y)PPL . In ML , define a binary operation as fol
lows:

~A, M !(~B, N!5~A(B, M(N!, ~3.2!

where

A(B5A* ~Y!2B* ~X!1@A,B#, ~3.3!

M(N5M* ~Y!2N* ~X!1@M ,B#2@N,A#. ~3.4!

Obviously ~3.2! is a skew-symmetric and bilinear operation.
Theorem 3.1:Let (A, M , X), (B, N, Y)PPL , then(A(B, M(N, @X, Y#)PPL , andML

form a Lie algebra under the operation (3.2).
Proof: Since (V N, @•,•#) builds up a Lie algebra under the usual commutator operation

have

†@A, B#,L‡5†@L, B#,A‡2†@L, A#, B‡

5@L* ~X!2M , B#2@L* ~Y!2N, A#

5@L* ~X!, B#2@L* ~Y!, A#1@N, A#2@M , B#.

For arbitraryLPV N, X, YPB m, we also have

„L* ~X!…* ~Y!2„L* ~Y!…* ~X!5L* ~@X,Y# !.

Thus,

@A(B, L#5@A* ~Y!2B* ~X!1@A, B#, L#

5@A* ~Y!, L#2@B* ~X!, L#1@L* ~X!, B#2@L* ~Y!, A#1@N, A#2@M , B#

5~@A, L# !* ~Y!2~@B, L# !* ~X!1@N, A#2@M , B#

5„L* ~X!…* ~Y!2„L* ~Y!…* ~X!2M* ~Y!1N* ~X!1@N, A#2@M , B#

5L* ~@X, Y# !2M(N.

That means (A(B, M(N, @X, Y#)PPL .
Now, we shall prove the Jacobi identity. Choosing any (Ai , Mi , Xi)PPL , i 51, 2, c3, then

we have

~A1(A2!(A31c.p.5„A1* ~X2!2A2* ~X1!1@A1 , A2#…(A31c.p.

5†@A1 , A2#, A3‡1c.p.

50.

Similarly, we can show the following equality:

~M1(M2!(M31c.p.50, ~* !

which completes the proof. j

Corollary 3.1: The set of all vector fields V(ML) forms a Lie subalgebra ofB m with regard
to the operation (1.2).
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Denote the vector fields of (A, M ) and (B, N) by X and Y, respectively, thenut5X, ut

5Y represent the twodifferenthierarchies of NLEEs, respectively, determined byM ,N. Theorem
3.1 shows that there is universal algebraic structure for thedifferenthierarchies of NLEEs, and if
both ut5X, andut5Y (X, YPB m) have GLR, then so does the new hierarchy of equationut

5@X, Y# produced byX, Y.
For the given spectral operatorLPV N, we now consider the following adjoint map:

adL :A°M5adL A5@L, A#, ;APV N. ~3.5!

Then according to the original definition of anr -matrix,9 we have the following theorem.
Theorem 3.2:The adjoint mapadL is an r-matrix.
Proof: For anyA, BPV N, write M5adL A, N5adL B. Then we have

@A, B#adL
,@adLA, B#1@A, adLB#5@M , B#1@A, N#5M(N.

The last equality holds because the associated vector fields are obviously zero. And Eq.~* ! implies
that @A,B#adL

satisfies the Jacobi identity. Thus the adjoint map adL is an r -matrix. j

In the last section we shall illustrate that through giving several examples.

IV. NONUNIVERSAL ALGEBRAIC STRUCTURE AND r -MATRIX

For a given spectral operatorLPV N and integernPZ, in the above section we discussed t
Manakov operator pair (A,M ), the universal Lie algebraic structure and ther -matrix available for
differenthierarchies of NLEEs. Now, for a givenN3N matrix operatorM and a spectral operato
LPV N, we study the operator algebra andr -matrix which can be attached only to theunderlying
hierarchy of NLEEs.

Let us first give some conventions in this section:~i! M is invertible; ~ii ! For a givenL
PV N, V L

N stands for all matrix operatorsS:B N→B N possessing the following formS
5(aPZPa(u)La, Pa(u)PB, where (aPZ is a finite sum. Next, we introduce the followin
definition.

Definition 4.1: Let LPV N and M be a spectral operator and an N3N matrix operator,
respectively. If there exist a vector field XPB m and operators A,PPV L

N such that

@A, L#1M P5L* ~X!, ~4.1!

then(A, P) is said to be an LM operator pair of L. The set of all such pairs is denoted byL L
M .

X is called the vector field of(A, P) associated with LM. The set of all associated vector field
is denoted by V(L L

M). Furthermore, we denote the set of all triples(A, P, X) by R L
M .

For a givenLPV N and anN3N matrix operatorM or M̃ theorem 2.1 and Eq.~2.8! assure
that there exists a triple (A, P, X)PR L

M satisfying ~4.1!. Definition 4.1 directly leads to the
following proposition.

Proposition 4.1:

(1) The vector field associated with each LM operator pair is unique.
(2) BothL L

M and R L
M are linear spaces.

If for given operatorsL, M there existA, PPV L
N such that~4.1! holds, then obviously the

evolution equationut5X has the following representation@also called generalized Lax represe
tation ~GLR!#:

Lt5@A, L#1M P. ~4.2!

Now, we define a binary operation inL L
M .

Definition 4.2: Let(A, P),(B, Q )PL L
M ,X,YPV(L L

M), respectively, be the vector fields o
(A, P),(B, Q). Declare a binary operation,
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~A,P!*~B,Q!5~A*B,P*Q!, ~4.3!

through

A*B5A* ~Y!2B* ~X!1@A,B#, ~4.4!

P*Q5P* ~Y!2Q* ~X!1@A,Q#2@B,P#

1M 21
„M* ~Y!2@B,M #…P2M 21

„M* ~X!2@A,M #…Q. ~4.5!

Proposition 4.2:

(1) Equation (4.3) is a skew-symmetric, bilinear binary operation.
(2) V L

N is closed under the operations (4.4) and (4.5).

Proof: The proof follows directly from Definition 4.2. j

Theorem 4.1: Let (A, P, X),(B, Q, Y)PR L
M , then (A*B, P*Q, @X,Y#)PR L

M , where
@X, Y# is defined by (1.2). Thus under the operation (4.3)L L

M forms an algebra, and
„V(L L

M), @•,•#… composes a Lie subalgebra ofB m.
Proof: Because (A, P, X),(B, Q, Y)PR L

M , and

†@A, B#, L‡5†@L, B#, A‡2†@L, A#, B‡5@L* ~X!, B#2@L* ~Y!, A#1@MQ, A#2@M P, B#,

we have

@A*B, L#5@A* ~Y!, L#2@B* ~X!, L#1†@A, B#, L‡

5„L* ~X!…* ~Y!2„L* ~Y!…* ~X!2~M P!* ~Y!1~MQ!* ~X!1@MQ,A#2@M P, B#

5L* ~@X, Y# !2M ~P*N!,

which completes the proof. j

For a given spectral operatorL and anN3N matrix operatorM , denote the vector fields o
(A, P),(B, Q) by X, Y, respectively. Then from Sec. II we knowut5X, ut5Y are the two
different NLEEs in thesamehierarchy. Theorem 4.1 reveals that there exists an algebraic stru
available for all equations in thesamehierarchy. And ifut5X, ut5Y (X, YPB m) have the GLR
~4.2!; then the evolution equationut5@X, Y# is still in the same hierarchy, and possesses the G
~4.2!, too.

Remark 4.1:In general,L L
M is not forming a Lie algebra under the operation~4.3!, because

the Jacobi identity cannot be guaranteed. Nevertheless, the subsetSL
M,L L

M , considered below, is
an exception.

Set SL
M5$(A, P)PV L

N3V L
Nu P5M 21 adL A%; then SL

M is corresponding to the stationar
systemX(u)50 of evolution equationut5X(u).

Theorem 4.2:For all (A, P)PSL
M , define a map rM:A°P5M 21 adL A. The map rM is an

r -matrix under the operation (4.5) iff M5aI, aÞ0,aPR.
Proof: For any (A, P),(B, Q)PSL

M , define

@A, B# r M,@r M~A!, B#1@A, r M~B!#.

Then

@A, B# r M5@P, B#1@A, Q#5P*Q⇔M5aI, aÞ0, aPR,

i.e., the mapr M is an r -matrix ⇔M5aI, aÞ0, aPR. j
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Since M and M̃ can be fixed arbitrarily we have found two algebraic operator structu
namely a universal one being independent of the hierarchy in the category and a nonuniver
depending on the underlying hierarchy. In addition, in this procedure we have found two kin
adjoint maps beingr -matrices.

The two algebraic structures are associated with the category of NLEEs~2.11! which includes
both the integrable and the nonintegrable cases~see Remark 2.4!. Therefore, here our algebrai
structures are not contained in anyW-algebras which are usually suitable for the integra
hierarchy such as the KP, etc.

In the next section, we shall give two reductions of the algebraic structure and the r
r -matrix.

V. TWO REDUCTIONS: VIRASORO ALGEBRA AND r -MATRIX OF ISOSPECTRAL AND
NONISOSPECTRAL LAX OPERATOR

If we chooseM50 in Definition 4.1, then we have@A,L#5L* (X). That meansA is an
isospectral (l t50) Lax operator. Set@B,L#5L* (Y); then the operationA*B defined by~4.4!
forms an algebraic structure of the isospectral Lax operator, which just coincides with the
described in Ref. 31. In this case, ther -matrix is zero, i.e., adL A50, ;APV N.

In this section, we always chooseM5M̃5I and assume that the conditions of Theorem
hold. Then, by Theorem 2.1, we obtain

~Wm , Lmh, sm!PR L
I , mPZ,

whereWm is expressed through~2.10!, sm stands for the corresponding vector field. ThereforeWm

is a sequence of nonisospectral (l t5lmh,mPZ) Lax operators and this matches with choosi
A5Wm , P5Lmh (mPZ), X5sm in ~4.1!. By Theorem 4.1$(Wm ,Lmh),mPZ% represents an
algebra under the operation~4.3!, which is called the nonisospectral Lax operator algebra of
spectral operatorL. In the stationary case wheres i5s j50 the following holds.

Theorem 5.1: A realization of the operations (4.5) and (4.4) on pairs(Wi ,Lih), (Wj ,L j h)
PSL

I is given by

Lih*L j h5~ u i u2u j u!L ( i 1 j 21)h, ; i , j PZ, ~5.1!

Wi*Wj5~ u i u2u j u!Wi 1 j 21 , ; i , j PZ, ~5.2!

respectively.
Proof: For (Wi , Lih),(Wj , L j h)PSL

I , we have

@Wi , L#52Lih, @Wj , L#52L j h.

Thus, in the casei , j >0,

Lih*L j h5@Lih, Wj #2@L j h, Wi #

5 (
k50

i 21

L ( i 212k)hIL (k1 j )h2 (
k50

j 21

L ( j 212k)hIL (k1 i )h

5 iL ( i 1 j 21)h2 jL ( i 1 j 21)h5~ i 2 j !L ( i 1 j 21)h.

Similarly, Eq. ~5.1! holds for the other three casesi>0, j <0; i<0, j <0; i<0, j >0.
Equation~5.2! can be directly obtained by~5.1! and Theorem 4.1. j

Corollary 5.1: If M5M̃5I , under the operation~5.1! the mapr I :Wi°Lih is an r -matrix.
Proof: This can be directly derived from Theorem 5.1 and Theorem 4.3. j
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Remark 5.1:Theorem 5.1 and Corollary 5.1 actually describe the Lie algebraic structure o
Lax operator for the stationary equations j50 ( j PZ) and ther -matrix of a concrete form of an
operation~4.5! and ~4.4!, respectively.

For the usual nonstationary vector fields jÞ0 ( j PZ) in the nonisospectral case,~5.1! and
~5.2! do not hold. But, we have the following results.

Theorem 5.2:Let (Wj , L j h)PL L
I , j PZ; then for any i, j PZ, L satisfies the relation

Lih*L j h5~ u i u2u j u!hL ( i 1 j 11)h21, ; i , j PZ. ~5.3!

Proof: We give the proof only for the case ofi>0, j >0. The other cases are shown ana
gously.

Let (Wi , Lih, s i), (Wj , L j h, s j )PR L
I ; then we have

~Lih!* ~s j !5 (
k50

i 21

L ( i 212k)hL
*
h ~s j !L

kh

5 (
k50

i 21

L ( i 212k)h~@Wj , Lh#1hL ( j 11)h1h21!Lkh

5@Wj , Lih#1 ihL ( i 1 j 11)h21,

and

~L j h!* ~s i !5@Wi , L j h#1 j hL ( i 1 j 11)h21.

So, by Eq.~4.5! and noticingM5I , we obtain

Lih*L j h5~ i 2 j !hL ( i 1 j 11)h21, ; i , j PZ1, ~5.4!

which is the desired result. j

Equations~5.1!, ~5.2!, and~5.3! are three special Virasoro algebras, namely, without a cen
extension. Because here we do calculations based on our definitions of binary operations~4.4! and
~4.5!, they have no central extensions.

Remark 5.2:For the usual nonstationary vector fields jÞ0 ( j PZ) in the nonisospectral cas
the operation~5.1! does not always satisfy the Jacobi identity,~see Remark 4.1!. Thus Corollary
5.1 does not hold in general.

Remark 5.3:A particular case of Theorem 5.2 ish51. Then Eq.~5.3! becomes

Li*L j5~ u i u2u j u!Li 1 j , ; i , j PZ, ~5.5!

which implies the following equations:

Wi*Wj5~ u i u2u j u!Wi 1 j , ; i , j PZ, ~5.6!

and

@s i ,s j #5~ u i u2u j u!s i 1 j , ; i , j PZ. ~5.7!

Theorem 5.2 reveals that under Eq.~5.5! for the same nonisospectral hierarchy the followi
holds: if ut5sm andut5sn , respectively, possess the nonisospectral Lax operatorsWm andWn ,
then ut5sm1n still possesses the nonisospectral Lax operator 1/(umu2unu) Wm*Wn , ;m,n
PZ. Thus, the Virasoro operator algebras~without the central extension! for the nonisospectra
hierarchy of NLEEs is reflected by Eqs.~5.5!–~5.7!.

Remark 5.4:If we chooseM50 andM5I , respectively, then under the algebraic operat
~3.3! we can also have the Virasoro algebra of the Lax operator for the isospectral hierarch
the nonisospectral hierarchy, which is actually a special case of universal algebraic structu
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VI. SOME EXAMPLES

Through taking several examples, we illustrate our methods. For our convenience, we
the following conventions:

f t5] f /]t , f mxt5]m11f /]t ]xm (m>0), ]5 ]/]x , ]21 is the inverse of], i.e., ]]215]21]
51, ]mf means the operator]mf acts on some functiong, i.e.,]mf •g5]m( f g), mPZ. Cm

k stands
for the combinatorial constants:Cm

k 5m(m21)¯(m2k11)/k! , i an imaginary unit satisfying
i 2521, andI 232 the 232 unit matrix.

In the spectral problems~6.1!, ~6.32! and ~6.74! the functionu stands for the potential func
tion, and the potential functions in spectral problems~6.43! and ~6.56! are denoted byq, r . In
those spectral problems,l is always assumed to be a spectral parameter. The domain of the s
variable x is V which becomes equal to (2`, 1`) or (0, T), while the domain of the time
variablet is the positive time axisR15$tutPR, t>0%. In the caseV5(2`, 1`) the decaying
condition at infinity and in the caseV5(0, T) the periodicity condition for the potential function
is imposed.

6.1: Consider the Burger’s spectral problem:33

L•y5ly, L5L~u!5]1u. ~6.1!

Choosing the recursion operatorL5]1]u]21 leads to

L•yx5lyx . ~6.2!

Obviously,L* (j)5j,;jPB, i.e., L* is an identity operator. In this case, the Lenard’s opera
pair is chosen asJ51, andK5L.

The Lenard recursive sequence$Gj% j 52`
` (Gj5L j

•M , j PZ) gives the Burgers category o
NLEEs:

ut5L m
•M5„e2u(21)

~eu(21)
M (21)!(m)

…x , mPZ, ~6.3!

where MPB is an arbitrarily given function, and L5]e2u(21)
]eu(21)

]21, L 21

5]e2u(21)
]21eu(21)

]21 which impliesL j5]e2u(21)
] jeu(21)

]21, j PZ.
For an arbitraryGPB, the operator equation@V, L#5L* (L•G)2L* (G)L, which matches

with choosingb50, a51 in ~2.8!, has the following solution:

V5V~G!52G1G(21)]. ~6.4!

Thus the category~6.3! possesses the generalized Lax representation~GLR!,

Lt5@Wm , L#1MLm, mPZ, ~6.5!

with Wm5M (21)Lm2Lm
•M (21), Lm5e2u(21)

]meu(21)
, mPZ.

The transformationu5(ln v)x yields a simple form of Eq.~6.3!:

v t5~vM (21)!(m), mPZ, ~6.6!
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which has the GLR Lt5@Wm , L#1MLm with L5]1(ln v)x , Wm5v21
„M (21) ]mv

2 (vM (21))(m)
….

Apparently, if M is chosen to be independent ofv (v5eu(21)
), then the category~6.3! is

linearized. Thus,~6.3! includes many linearized hierarchies. Now, let us discuss reductions o
category~6.3! or ~6.6!.

A. Positive case „mÄ0, 1, 2,...…

In this case, the Lax operatorWm can be written as

Wm5v21(
k51

m

Cm
k v (m2k)~M (21) ]k2M (k21)!. ~6.7!

~i! With M50, 0(21)51, the positive order category of~6.3! reads as the well-known Bur
gers’ hierarchy,

ut5„~]1u!m
•1…x . ~6.8!

Particularly, withm52 it becomes the Burger’s equationut5uxx12uux whose Lax operator is
W25]212u] in the standard Lax representationLt5@W2 ,L#. This corresponds to the isospectr
case:l t50. According to Eq.~6.6!, a simple but quite interesting fact is that under the trans
mationu5vx /v the whole Burgers’ hierarchy~6.8! is linearized as

vt5vmx, m50,1,2,... . ~6.9!
Equation ~6.9! can be solved very easily and have the standard Lax pairWm

5v21(k51
m Cm

kv (m2k)]k and L5]1 vx /v. In this way, the solutions of all equations in th
Burgers’ hierarchy~6.8! can be worked out.

~ii ! With M5a, a(21)5ax1 f (t), aPR, f (t)PC`(R), the positive order category of~6.3!
becomes the nonisospectral (l t5alm) Burgers’ hierarchy,

ut5~~]1u!m•„ax1 f ~ t !…!x . ~6.10!
A representative equation (m52) of Eq. ~6.10! is

ut5„ax1 f ~ t !…~uxx12uux!13aux1au2, ~6.11!

possessing the GLRLt5@W2 ,L#1aL2 with W25„ax1 f (t)…(]212u])22au andL5]1u. By
virtue of M5a andu5(ln v)x , Eq. ~6.10! is linearized as

vt5„ax1 f ~ t !…vmx1mav (m21)x , ~6.12!
which can be solved. Equation~6.12! has the generalized Lax operator~GLO! Wm5(ax
1 f (t))v21(k51

m Cm
k v (m2k)]k2mav21v (m21). Particularly, Eq.~6.11! has a linearization equatio

(m52),
vt5„ax1 f ~ t !…vxx12av, ~6.13!

possessing the GLOW25„ax1 f (t)…(]212v21vx])22av21vx . In a general case,M can be
extended asM5( j 50

n cj (t)x
j , cj (t)PC`(R), which will be considered below.

~iii ! With M5( j 50
n cj (t)x

j , cj (t)PC`(R), the positive order category of~6.3! reads as a
nonisospectral (l t5„( j 50

n cj (t)x
j
…lm) hierarchy,

ut5S~]1u!m•S f~t!1(
j50

n

cj~t!
xj11

j11DD
x

, ~6.14!

where an arbitraryf (t)PC`(R) is attached by virtue of integration with respect tox. Of course,
Eq. ~6.14! is easily linearized as

vt5
]m

]xmSvf~t!1v(
j50

n
cj~t!

j11
xj11D, ~6.15!

via u5(ln v)x . Equation~6.15! has the generalized Lax operator,
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Wm5v21(
k51

m

Cm
k v(m2k)~M(21)]k2M(k21)!,

with

M(21)5f~t!1(
j50

n
cj~t!

j11
xj11.

~iv! With M5(u21)x , M (21)5u21, the positive order category of~6.3! reads as the follow-
ing hierarchy of NLEEs:

ut5„~]1u!m
•u21

…x , m50,1,2... . ~6.16!

A representative equation of~6.16! is

ut5S 1

uD
xx

, ~6.17!

with the GLOW052(u21)x1u21].

B. Negative case „mÄÀ1,À2,...…

~i! With M50, the generatorG215]e2u(21)
]21eu(21)

]21
•0 is determined by the following

two seed functions:

Ḡ215 f ~ t !~e2u(21)
!x ~6.18!

and

G̃215g~ t !„e2u(21)
~eu(21)

!(21)
…x , ~6.19!

wheref (t), g(t)PC`(R) are two arbitrarily given functions. Apparently, the seed function~6.18!
produces the following isospectral (l t50) negative order hierarchy of~6.3!,

ut5 f ~ t !~e2u(21)
1(m)!x , m,0, mPZ, ~6.20!

i.e.,

ut5 f ~ t !e2u(21)

(
k50

2m21

ck

x2m2k22~2m2k212xu!

~2m2k21!!
, c051, ~6.21!

whereck5ck(t)PC`(R) (2m21>k>1) is arbitrarily given. Thus although Eq.~6.20! is non-
linear, we have its general solution:

u~x,t !5

(k50
2m22ck~ t !

x2m2k22

~2m2k22!!
] t

21f ~ t !1h8~x!

(k50
2m21ck~ t !

x2m2k21

~2m2k21!!
] t

21f ~ t !1h~x!

, ;h~x!, ck~ t !PC`~R!, ~6.22!

where] t
21f (t)5* f (t)dt, c0(t)51, h8(x)5(d/dx) h(x). Of course, Eq.~6.21! has the standard

Lax representationLt5@Wm ,L# with Wm52 f (t)e2u(21)
(k50

2m21ck(t) x2m2k21/(2m2k21)!.
On the other hand, the seed function~6.19! generates the following isospectral (l t50) nega-

tive order hierarchy of~6.3!:

ut5g~ t !~e2u(21)
~eu(21)

!(m)!x , m,0, mPZ, ~6.23!
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which is a hierarchy of integro-differential equations and can be changed to the linear differ
equations,

v2mxt5g~ t !v, m,0, mPZ, ~6.24!

via the transformationu5v21vx . The Lax operatorWm of ~6.23! or ~6.24! is Wm52g(t)e2u(21)

(eu(21)
) (m) or Wm52g(t)v21v (m), m,0.

~ii ! With M5a, a(21)5ax1 f (t), aPR, f (t)PC`(R), the negative order category of~6.3!
through settingu5v21vx reads as the linear equations,

v2mxt5„ax1 f ~ t !…v, m,0, mPZ, ~6.25!

which corresponds to the nonisospectral case:l t5alm, and has the GLOWm5v21
„ax

1 f (t)…]mv2v21(v„ax1 f (t)…)(m), m,0. For a general case, we have the following.
~iii ! SettingM5( j 50

n cj (t)x
j
„cj (t)PC`(R)… yields a negative order hierarchy of~6.3!,

ut5S e2u(21)
]meu(21)

•(
j 50

n

cj~ t !
xj 11

j 11D
x

, m,0, mPZ, ~6.26!

which corresponds to the nonisospectral casel t5„( j 50
n cj (t)x

j
…lm, and can be linearized as

v2mxt5v(
j 50

n

cj~ t !
xj 11

j 11
, m,0, mPZ, ~6.27!

via u5v21vx . Equation~6.27! has the Lax operator

Wm5v21(
j 50

n
cj~ t !

j 11
„xj 11 ]mv2~vxj 11!(m)

…, m,0.

~iv! With M5(v/vx)x , ]21M5 v/vx , the associated negative order hierarchy of~6.3! is

v2mxt5
v2

vx
, m,0, mPZ, ~6.28!

which has a representative equation (m521)

vxvxt5v2, ~6.29!

with the Lax operatorW215(1/vx) ]21v2 (1/v) (v2/vx)
(21).

Through choosing differentM , we still have other hierarchies of~6.3!. Because of the arbi-
trariness ofM , all results in Secs. III–V are valid for the Burgers’~B! spectral problem~6.1!.
Particularly, ther -matrix adL becomes

adL
B :Wm°MLm, mPZ, ~6.30!

whereWm5M (21)Lm2Lm
•M (21), Lm5e2u(21)

]meu(21)
, MPB is an arbitrarily given function.

And the r -matrix r M (M5aÞ0, aPR) reads as

r B
a :Wm°Lm, mPZ, ~6.31!

whereWm5„ax1 f (t)…Lm2Lm
•„ax1 f (t)…. Equations~6.30! and ~6.31! generate the stationar

B-categorical systems (Lm
•M (21))x50 and (Lm

•„ax1 f (t)…)x50, respectively.
We can also apply the above procedure to other spectral problems. Now, we list some

results as follows.
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6.2: KdV case. The KdV–Schro¨dinger spectral problem,34

L•y5ly, L5L~u!5]21u, ~6.32!

has the following Lenard operator pair:

K5 1
4 ]31 1

2 ~]u1u]!, J5]. ~6.33!

Apparently,L* (j)5j,;jPB. Settingu52 fxx /f yields the product-form ofK and its inverse,

K5 1
4 f22 ]f2 ]f2 ]f22,

~6.34!
K2154f2 ]21f22 ]21f22 ]21f2.

Let M , M̃PB be two arbitrarily given functions. Then the positive order and negative o
generators,

G05M (21); G215K21
•M̃54f2 ]21f22 ]21f22 ]21

•~f2M̃ !, ~6.35!

leads to the KdV category of NLEEs

ut5J•Gm , mPZ, Gm5HL m
•G0 , m>0,

L m11
•G21 , m,0,

~6.36!

where the recursion operatorL is given by

L5J21K5 1
4 ]21 1

2 ~u1]21u]!5 1
4 ]21f22 ]f2 ]f2 ]f22,

and its inverse is

L 2154f2 ]21f22 ]21f22 ]21f2 ].

For an arbitraryGPB, the operator equation@V,L#5L* (K•G)2L* (J•G)L has the follow-
ing operator solution:

V5V~G!52 1
4 Gx1 1

2 G], ~6.37!

which implies that the KdV category~6.36! possesses the GLR,

Lt5@Wm , L#1M̄Lm, mPZ, M̄5H M , m>0,

M̃ , m,0,
~6.38!

with the GLO

Wm5( V~Gj !L
m2 j 21. ~6.39!

HereV(Gj ) is determined by~6.37! with G5Gj5L j
•G0 , j >0 or G5Gj5L j 11

•G21 , j ,0,
L5]21u5f21 ]f22 ]f22, andL215f2 ]21f2 ]21f.

In particular, we are concerned with the following reduction.

~i! With M54(u21/2)x , G05M (21)54u21/2, the positive order category of~6.36! reads as
the well-known Harry–Dym hierarchy,

ut5JL m
•4u2 1/2, m50,1,2,... . ~6.40!
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With m51, Eq. ~6.40! yields the Harry–Dym equation,

ut5S 1

Au
D

xxx

, ~6.41!

which has now the GLRLt5@W0 ,L#14(u21/2)xL with W052(u21/2)x12u21/2], and appar-
ently belongs to the KdV category~6.36!; with m52, Eq.~6.40! yields a higher order Harry–Dym
equation,

ut5
1
4 S 1

Au
D

4x

1uS 1

Au
D

3x

1 1
2 uxS 1

Au
D

xx

~6.42!

possessing the GLOW152u21/2]32(u21/2)x]
21 1

2((u
21/2)xx14u21/2)]2 1

4(u
21/2)xxx1u21/2ux .

So, we have obtained an interesting fact:the Harry–Dym equation (6.41) can be included i
the KdV category (6.36) with the generalized Lax operator. Similar to the process of the Burger
case, we can also have many reduced hierarchies both positive and negative from Eq.~6.36!.

6.3: AKNS case. The ZS-AKNS spectral problem,35,36

L•y5ly, L5L~q,r !5 i S ] 2q

r 2]
D , y5S y1

y2
D , ~6.43!

has its Lenard’s operators pair,

K5S q ]21q 1
2 ]2q ]21r

1
2 ]2r ]21q r ]21r

D , J5 i S 0 21

1 0 D . ~6.44!

Apparently,

L* ~j!5S 0 2 i j1

i j2 0 D , j5~j1 ,j2!TPB 2, ~6.45!

is an injective homomorphism.
Equation~6.44! gives the recursion operator

L5J21K5
1

2
i S 2]12r ]21q 22r ]21r

2q ]21q ]22q ]21r D . ~6.46!

Choosing two functionsu, sPC`(R) satisfying ux5 1
2u

21r 21r xu22qr, sx5 1
2s

21q21qxs
22qr, leads to the inverse ofL,

L 215K21J522i S 2E~]r 21 ]r 2122qr21! 22E
2F F~]q21 ]q2122rq21!

D , ~6.47!

whereE, F denote the following two operators:

E5e2u(21)
]21eu(21)

r ]21r eu(21)
]21e2u(21)

, F5e2s(21)
]21es(21)

q ]21q es(21)
]21e2s(21)

.
~6.48!

Let A,B,C,DPB be four arbitrarily given functions; then iff

M5S 0 2B

2A 0 D , M̃5S 0 2D

2C 0 D , ~6.49!
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the operator equationsL* (J•G0)5M , L* (K•G21)5M̃ give the positive order and negativ
order generators~function vectors!,

G05S A
BD , G21522i S 2E•„]r 21

•~r 21C!x22qr21C12D…

F•„]q21
•~q21D !x22rq21D12C…

D , ~6.50!

which directly leads to the AKNS category of NLEEs:

S q
r D

t

5H JL m
•~A,B!T, m50,1,2,...,

JL m
•~C,D !T, m521,22,...,

~6.51!

whereJ, L andL 21 are defined by~6.44!, ~6.46! and ~6.47!, respectively.
For an arbitrarily givenG5(G[1] ,G[2] )TPB 2, the operator equation@V,L#5L* (K•G)

2L* (J•G)L has the solution

V5V~G!5
1

2 S 2~rG [2]2qG[1] !(21) G[2]

G[1] ~rG [2]2qG[1] !(21)D , ~6.52!

which is obviously a function matrix. Thus, the AKNS category~6.51‘! has the GLR:

Lt5@Wm ,L#1M̄Lm, mPZ, ~6.53!

M̄55 S 0 B

A 0 D , m>0,

S 0 D

C 0 D , m,0,

with the GLO

Wm5( V~Gj !L
m2 j 21, mPZ. ~6.54!

HereV(Gj ) is given by~6.52! with G5Gj5L j
•(A,B)T, j >0 or L j

•(C,D)T, j ,0, L is defined
by ~6.43!, and its inverseL21 is determined by

L215 i S S ]q21 2S
2T T ]r 21D , ~6.55!

with the operators S5e2r(21)
]21e2r(21)

q ]21e2r(21)
,T5e2m(21)

]21e2m(21)
r ]21e2m(21)

,
wherer andm are two functions satisfyingrx5r21q21qxr2qr, mx5m21r 21r xm2qr.

Here, we omit the reductions and ther -matrix representation of the AKNS category~6.51!.
6.4: WKI ~Wadati–Konno–Ichikowa! case. The WKI spectral problem,37

L•y5ly, L5L~q,r !5
1

12qr S i 2q

2r 2 i D ], y5S y1

y2
D , ~6.56!

has the following Lenard’s operators pair:

K5
1

2i S 2
1

2
]2

q

p
]21

q

p
]2 ]31

1

2
]2

q

p
]21

r

p
]2

]31
1

2
]2

r

p
]21

q

p
]2 2

1

2
]2

r

p
]21

r

p
]2
D , ~6.57!
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J5S 0 2]2

]2 0 D , p5A12qr, ~6.58!

which yields the recursion operatorL5J21K

L5
1

2i S ]1
r

2p
]21

q

p
]2 2

r

2p
]21

r

p
]2

q

2p
]21

q

p
]2 2]2

q

2p
]21

r

p
]2
D . ~6.59!

Apparently, the Gateaux derivative operatorL* (j) of the spectral operatorL in the direction
j5(j1 ,j2)TPB 2 is

L* ~j!5
1

12qr S qj2 2 i j1

i j2 r j1
D L, ~6.60!

which is an injective homomorphism.
Through lengthy calculations, one can obtain the invertible operators ofL, J, K andL:

L215S 2 i ]21 ]21q

]21r i ]21 D , ~6.61!

J215S 0 ]22

2]22 0 D , ~6.62!

K2152iS 1

2
]21r ]21r ]21 ]232

1

2
]21r ]21q ]21

]232
1

2
]21q ]21r ]21

1

2
]21q ]21q ]21

D , ~6.63!

L 2152iS ]212
1

2
]21r ]21q ] 2

1

2
]21r ]21r ]

1

2
]21q ]21q ] 2]211

1

2
]21q ]21r ]

D . ~6.64!

Let A, B, C, D be four arbitrarily givenC`-functions; then iff

M5
1

12qr S qA iB

iA 2rB D L, M̃5
1

12qr S qC iD

iC 2rD D L, ~6.65!

the operator equationsL* (J•G0)5M , L* (K•G21)5M̃ have the following solutions:

G05S A(22)

B(22)D , ~6.66!

G215S 2iC (23)2 i ]21r ]21
•~rD (21)1qC(21)!

22iD (23)1 i ]21q ]21
•~rD (21)1qC(21)! D , ~6.67!

which directly yields the WKI category of NLEEs:
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S q
r D

t

5J•Gm , mPZ, ~6.68!

Gm5HL m
•~A(22),B(22)!T, m50,1,2,...,

L m
•~C(22),D (22)!T, m521,22,...,

~6.69!

whereJ, L andL 21 are defined by~6.58!, ~6.59! and ~6.64!, respectively.
For any givenG5(G[1] , G[2] )TPB 2, the equation@V, L#5L* (K•G)L212L* (J•G) has

the following operator solution:

V5V~G!5S 0 B̄

C̄ 0
D 1ĀS 2 i q

r i D L, ~6.70!

whereĀ, B̄, C̄ are the following three functions given by

Ā5Ā~G!5
1

2p S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)

, p5A12qr,

B̄5B̄~G!5
1

4i S 2Gxx
[2]2]

q

p
•S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)D ,

C̄5C̄~G!5
1

4i S 2Gxx
[1]1]

r

p
•S q

p
Gxx

[1]2
r

p
Gxx

[2] D (21)D .

Thus, the WKI category~6.68! has the GLR:

Lt5@Wm ,L#1M̄Lm11, mPZ, ~6.71!

M̄55
1

12qr S qA iB

iA 2rB D , m>0,

1

12qr S qC iD

iC 2rD D , m,0,

~6.72!

with the GLO

Wm5( V~Gj !L
m2 j , mPZ. ~6.73!

Here L, L21 and V(Gj ) are given by~6.56!, ~6.61! and ~6.70! with G5Gj defined by~6.69!,
respectively.

6.5: The following spectral problem:

L•y5ly, L5L~u!5
1

u S i 12u

1 2 i D ], y5S y1

y2
D , ~6.74!

yields its Lenard operators pair,

K5]3, J522~]u1u]!.

The Gateaux derivative operatorL* (j) of the spectral operatorL in the directionjPB is
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L* ~j!5
j

u2 S 2 i 21

21 i D ]5
j

u S 0 2 i

0 21D L. ~6.75!

Apparently,L* is a homomorphism andL* (j)50⇔j50.
In the category derived from Eq.~6.75!, we can obtain the Harry–Dym hierarchy as well

some new integrable equations. For example, the following nonlinear equation:

vxt22
52vvxx1vx

2 ~6.76!

is a new integrable equation with many unknown physical properties. In fact, this equat
included in an isospectral (l t22

50) negative order hierarchy of~6.74!, and its standard Lax
operator is

W2252V~G22!L212V~G21!L23,

whereV(Gj ) ( j 522,21) is given by

V5V~G!5GxxS 0 1

0 0D 1GxS 1 22i

0 21 D L12GS 2 i u21

21 i D L2, ~6.77!

with G5G2252v (21), G215 1
2, respectively, andL21 is the inverse ofL, given by

L215S 2 i ]21 ]21vx2]21

2]21 i ]21 D . ~6.78!

We will give in detail some reductions for the latter four spectral problems in a later pa
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Dirichlet forms and symmetric Markovian semigroups
on CCR algebras with respect to quasi-free states

Changsoo Bahna)

Institute of Natural Science, Yonsei University, Seoul 120-749, Korea
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Employing the construction method of Dirichlet forms on standard forms of von
Neumann algebras developed inInfinite Dimensional Analysis, Quantum Probabil-
ity and Related Topics, 2000, Vol. 3, No. 1, pp. 1–14~Ref. 1!, we construct Di-
richlet forms and associated symmetric Markovian semigroups on CCR algebras
with respect to quasi-free states. More precisely, letA(h0) be the CCR algebra over
a complex separable pre-Hilbert spaceh0 and letv be a quasi-free state onA(h0).
For any normalized admissible functionf and complete orthonormal system
~CONS! $gn%,h0 , we construct a Dirichlet form and corresponding symmetric
Markovian semigroup on the natural standard form associated to the GNS repre-
sentation of„A(h0),v…. It turns out that the form is independent of admissible
function f and CONS$gn% chosen. By analyzing the spectrum of the generator
~Dirichlet operator! of the semigroup, we show that the semigroup is ergodic and
tends to the equilibrium exponentially fast. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1532770#

I. INTRODUCTION

Our purpose in this paper is to construct Dirichlet forms and associated symmetric Mark
semigroups on CCR algebras with respect to gauge invariant quasi-free states, and then inv
detailed properties such as ergodicity of the semigroups. LetA(h0) be the CCR algebra over
complex separable pre-Hilbert spaceh0 and letv be a gauge invariant quasi-free state onA(h0).2

For any normalized admissible functionf and complete orthonormal system~CONS! $gn%,h0 ,
we use the general construction method of Dirichlet forms developed in Ref. 1 to const
Dirichlet form and corresponding symmetric Markovian semigroup on the natural standard
associated to the GNS representation of the pair„A(h0),v…. We show that the Dirichlet form we
constructed is independent of the admissible functionf and the CONS$gn% chosen. By establish
ing a ~chaos! decomposition of the quasi-free Hilbert space~see Sec. V! and investigating the
spectrum of the generator~Dirichlet operator! of the semigroup, we prove that the semigroup
ergodic and tends to the equilibrium exponentially fast.

The study of noncommutative Dirichlet forms was pioneered by Albeverio
Ho”egh-Krohn,3 Sauvageot4–6 and extensively developed by Davies and Lindsay,7 and Guido,
Isola, and Scarlatti.8 All these authors considered Markovianity of forms and semigroups only
respect to a tracial statef0 . Recently, the abstract theory has been extended to a faithful no
statef0 by Goldstein and Lindsay9,10 in the setting of the Haagerup’s standard forms and
Cipriani11 in the context of general standard forms of von Neumann algebras, respectively.

The need to construct Markovian semigroups on von Neumann algebras, which are sym
with respect to a nontracial state, is clear for various applications to open systems,12 quantum

a!Electronic-mail: bahn@yonsei.ac.kr
b!Electronic-mail: kochulki@hotmail.com
c!Electronic-mail: ympark@yonsei.ac.kr
7230022-2488/2003/44(2)/723/31/$20.00 © 2003 American Institute of Physics
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statistical mechanics,2 and quantum probability theory.13–15Although on an abstract level we hav
quite a well-developed theory as mentioned above, the progress in a concrete application
slow. We would like to mention a few recent works in this direction. The completely pos
Hamiltonian semigroup for quantum spin chains in the ground state representation has
considered in Refs. 16–18. In Refs. 19–20, Majewski and Zegarlinski used the generalize
ditional expectation to construct generators of spin-flip type dynamics for quantum spin sys
In Ref. 1, one of the authors gave a general construction method of Dirichlet forms on sta
forms of von Neumann algebras and applied the method to construct translation invarian
kovian semigroups for quantum spin systems. In Ref. 21, quantum Ornstein–Uhlenbeck
groups were constructed by means of noncommutative Dirichlet forms. Extending the meth
Ref. 1 and the techniques developed in this paper, we construct symmetric Markovian semi
on CAR algebras with respect to quasi-free states.22

Let us describe the content of this paper briefly. Leth0 be a complex separable pre-Hilbe
space andh the completion ofh0 . Denote byA(h0) theC* -algebra overh0 generated by the Wey
operatorsW(g), gPh0 . Let A be a self-adjoint operator onh satisfying

0,A<a1,1, ~1.1!

for someaP(0,1). The gauge invariant quasi-free statev on A(h0) is given by

v„W~ f !…5exp$2~ f , 1
4 ~11A!~12A!21f !%, f Ph0 .

We assume thatA21 exists as a~unbounded! self-adjoint operator and that any vector inh0 is an
analytic vector forA21/2 ~Assumption 3.1!.

Let (Hv , pv , Vv) be the GNS representation of the pair„A(h0),v… and M
5pv„A(h0)…9. We suppressv andpv from the notation, i.e.,H5Hv , W( f )5pv„W( f )…, etc.
We also writej05Vv . Let s t :M→M be the one parameter group of automorphisms defined

s t„W~ f !…5W~Ait f !, f Ph0 , tPR.

Then v satisfiess-KMS conditions.2 We useD and J to denote the modular operator and t
modular conjugation, respectively. Thens t becomes the modular group :s t(B)5D i tBD2 i t , B
PM. Let M8 be the commutant ofM. The mapj :M→M8 is the antilinear* -isomorphism
defined by j (B)5JBJ, BPM. The natural positive coneP associated with (M, j0) is the
closure of the set$B j(B)j0 : BPM%. The form (M, H, P, J) is the standard form associate
with (M, j0).

For anygPh0 , let F(g) be the infinitesimal generator of the unitary groupW(tg), tPR, and

a~g!5221/2
„F~g!1 iF~ ig !…,

a* ~g!5221/2
„F~g!2 iF~ ig !….

For anyf ,gPh0 , a( f ) anda* (g) are densely defined, closed anda( f )* 5a* ( f ), and satisfy the
canonical commutation relations~CCRs!.2 Notice thata#(g) and j „a#(g)…, gPh0 , are affiliated
with M andM8, respectively, wherea#(g) stands for eithera(g) or a* (g).

For anyBPM andnPN, we write

Bn5S n

p D 1/2E s t~B!e2nt2dt.

Let W be the algebra generated byW( f ), f Ph0 . We setWn( f )ªW( f )n , where W( f )n is
defined in the above withB5W( f ). We useW0 and M0 to denote the algebras generated
Wn( f ), f Ph0 , nPN and by Bn , BPM, nPN, respectively. We also useHfin to denote the
subspace ofH spanned by the vectors of the form„) j 51

n F(gj )…j0 , gjPh0 , j 51,2,...,n. Obvi-
ously,Wj0 , W0j0 , M0j0 andHfin are dense inH.
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For any normalized admissible functionf ~Definition 2.1! and CONS$gn%,h0 for h, we
define a sesquilinear formE:D(E)3D(E)→C by

D~E!5W0j0 ~ orWj0 , M0j0!,
~1.2!

E~h, j!5 (
n51

`

E (n)~h, j!, h, jPD~E!,

where for eachnPN, h, jPD(E (n))5W0j0 ~or Wj0 , M0j0)

E (n)~h, j!5E ^„s t2 i /4„a~gn!…2 j ~s t2 i /4„a* ~gn!…!…h,

„s t2 i /4„a~gn!…2 j ~s t2 i /4„a* ~gn!…!…j& f ~ t ! dt

1E ^„s t2 i /4„a* ~gn!…2 j ~s t2 i /4„a~gn!…!…h,

„s t2 i /4„a* ~gn!…2 j ~s t2 i /4„a~gn!…!…j& f ~ t ! dt. ~1.3!

See Sec. III for the details.
It turns out that the forms (E,_Wj0) and (E,_W0j0) are closable and independent of th

admissible functionf and the CONS$gn% chosen~Proposition 3.1!. For eachnPN, the form
(E (n),_M0j0) is closable and its closure„Ē(n), D( Ē(n))… is a Dirichlet form~Proposition 3.2!. Let
Ē be the form defined by

Ē5 (
n51

`

Ē(n).

Then„Ē, D( Ē)… is a densely defined Dirichlet form~Theorem 3.1!. As a Corollary of Theorem 3.2
the form„Ē, D( Ē)… is also independent of thef and$gn% we have chosen.

Let H be the infinitesimal generator of the Markovian semigroup$Tt% t>0 associated to
„Ē, D( Ē)…. In order to analyze the spectrums(H) of H, we introduce a~chaos! decomposition of
H. Let B be the operator given by

BªA21/22A1/2. ~1.4!

For anygPh0 , let D1(g) andD2(g) be the operators onH defined by

D1~g!ªs2 i /4„a~B21/2g!…2 j ~s2 i /4„a* ~B21/2g!…!,

D2~g!ªs2 i /4„a* ~B21/2g!…2 j ~s2 i /4„a~B21/2g!…!.

ThenDi( f )j050, i 51, 2, f Ph0 ~Lemma 5.1! and the following CCRs hold~Proposition 5.1! :
for any f , gPh0 ,

@D1~ f !, D1~g!* #5~ f , g!1,

@D2~ f !, D2~g!* #5~g, f !1,

@Di~ f !, Di~g!#50, i 51, 2,

@D1~ f !#,D2~g!##50,
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whereDi( f )# is eitherDi( f ) or Di( f )* , i 51,2. ThusDi( f ) andDi(g)* can be considered a
annihilation and creation operators, respectively, andj0 is the vacuum vector. ThusH has the
following decomposition~Theorem 5.1!:

H5 %
m,n50

`

H (m,n),

where for eachm,nPNø$0%, H (m,n) is the closure of the subspace spanned by vectors of
form

S )
j 51

m

D1~gj !* D S )
l 51

n

D2~hl !* D j0 , gj , hlPh0 .

It follows that Hfin,D(H) and for any CONS$gn%,h0 ,

H5 (
n51

`

$D1~B1/2gn!* D1~B1/2gn!1D2~B1/2gn!* D2~B1/2gn!%,

as a bilinear form onHfin3Hfin @Lemma 5.4~b!#. Let F be the symmetric Fock space overh.2 Then
there is an anti-unitary operatorV:F→F and a unitary operatorU:H→F^ VF (5F^ F) ~Propo-
sition 5.2! such that

UHU215dG~B! ^ 111^ dG~B!,

where dG(B) is the second quantization ofB.2 Thus H is essentially self-adjoint onHfin and
independent of the admissible functionf and CONS$gn%,h0 chosen. Moreover the zero is
simple eigenvalue ofH with eigenvectorj0 and (0,a21/22a1/2)ùs(H)5B ~Theorem 3.2!.

We should mention that the main results in this paper can be generalized. For instance
replacesgn by Blgn , nPN, lP@2 1

2,`), in the definition ofE(h,j) in ~1.2! and~1.3!, the results
in Sec. III still hold with an appropriate modification on the spectral gap. See Remark 3.3.

We organize this paper as follows: In Sec. II we first introduce some terminologies in
theory of noncommutative Dirichlet forms11 and then review the general construction method
Ref. 1. We extend the method of Ref. 1 slightly and produce its proof. In Sec. III, we giv
explicit expression of a Dirichlet form for given normalized admissible functionf and CONS
$gn%,h0 for h, and then state main results in this paper. Section IV is devoted to the proo
Proposition 3.1, Proposition 3.2 and Theorem 3.1. In Sec. V, we introduce a chaos decomp
of H and then prove the ergodicity of the semigroup and the existence of a spectral gap.
Appendix, we give the proofs of technical lemmas~Lemma 4.3 and Lemma 5.4!.

II. REVIEW ON CONSTRUCTION OF DIRICHLET FORMS ON STANDARD FORMS OF
VON NEUMANN ALGEBRAS

In this section, we first introduce necessary terminologies in the theory of noncommu
Dirichlet forms in the sense of Cipriani,11 and then describe the general construction method
Dirichlet forms on the standard form of von Neumann algebras developed in Ref. 1. We exte
result of Ref. 1 slightly and give its proof.

Let M be as-finite von Neumann algebra acting on a complex Hilbert spaceH. A self-dual
coneP in H is a subset satisfying the property

$jPH:^j,h&>0, ;hPP%5P.

P is then a closed convex cone andH is the complexification of the real subspaceH J
ª$j

PH:^j,h&PR, ;hPP%, which elements are calledJ-real: H5H J1 iH J. Such aP gives rise to
a structure of ordered Hilbert space onH J ~denoted by<) and to an anti-unitary involutionJ on
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H, which preservesH J: J(j1 ih)ªj2 ih for all j,hPH J. Any J-real elementjPH J can be
decomposed uniquely as a difference,j5j12j2 , of two orthogonal, positive elements, calle
the positive and the negative part ofj:j1 , j2PP, ^j1 , j2&50.

A standard form(M,_H, P, J) of the von Neumann algebraM acting faithfully on the
Hilbert spaceH consists of self-dual, closed, convex coneP in H and the anti-unitary involution
J satisfying the following properties:

~a! JMJ5M8
~b! JxJ5x* , ;xPMùM8
~c! Jj5j, ;jPP
~d! xJxJ(P),P, ;xPM,

whereM8 is the commutant ofM.
A bounded operatorA onH is calledJ-real if AJ5JA andpositive preservingif AP,P. The

semigroup$Tt% t>0 is said to beJ-real if Tt is J-real for any t>0 and it is calledpositive
preservingif Tt is positive preserving for anyt>0.

Let us fix a cyclic and separating vectorj0 in P. A bounded operatorA:H→H is called
sub-Markovian~with respect toj0) if 0<j<j0 implies 0<Aj<j0 . A is calledMarkovianif it is
sub-Markovian and alsoAj05j0 . A semigroup$Tt% t>0 is said to besub-Markovian~with respect
to j0) if Tt is sub-Markovian for everyt>0. The semigroup$Tt% t>0 is calledMarkovian if Tt is
Markovian for everyt>0.

Next, we consider a sesquilinear form on some linear manifold ofH:E(•,•):D(E)3D(E)
→C. We also consider the associated quadratic form:E@•#:D(E)→C, E@j#ªE(j,j). A real valued
quadratic formE@•# is said to besemi-boundedif inf $E@j#:jPD(E), iji51%52b.2`. A
quadratic form„E,D(E)… is said to beJ-real if JD(E),D(E) and E@Jj#5E@j# for any j
PD(E). For a given semi-bounded quadratic formE, one consider the inner product given b
^j,h&lªE(j,h)1l^j,h&, for l.b. The formE is closedif D(E) is a Hilbert space for some o
the above norms. The formE is calledclosableif it admits a closed extension.

Associated to a semi-bounded closed formE, there are a self-adjoint operator„H, D(H)… and
a strongly continuous, symmetric semigroup$Tt% t>0 . Each of the above objects determin
uniquely the others according to well known relations~see Section 3.1 of Ref. 2 and Section 1
of Ref. 23!.

From now on we will consider onlyJ-real, real-valued, semi-bounded, densely defined q
dratic forms. It is easy to check that these forms satisfy the relationE@j1 ih#5E@j#1E@h# for all
j1 ihPD(E)J1 iD (E)J5D(E) whereD(E)J

ªD(E)ùHJ.
Let us denote by Proj (j,Q) the projection of the vectorjPH J onto the closed, convex con

Q,H J. For j,hPH J, define

j∨hª Proj~j,h1P!,

j∧hª Proj~j,h2P!.

A J-real, real-valued, densely defined quadratic form„E,D(E)… is called Markovian with
respect toj0PP if

jPD~E!J implies j∧j0PD~E! and E@j∧j0#<E@j#.

A closed Markovian form is called aDirichlet form. Let $Tt% t>0 be the semigroup associated to
semi-bounded closed form„E,D(E)…. Then one of the main results in Ref. 11 is that$Tt% t>0 is
sub-Markovian if and only if„E,D(E)… is a Dirichlet form~Theorem 4.11 of Ref. 11!.

Next, we describe a general construction method of Dirichlet forms on the natural sta
forms of von Neumann algebras associated with the Tomita–Takesaki theory.2,24 The method has
been developed in Ref. 1. However we generalize the result of Ref. 1 slightly and produ
proof.
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Let M be as-finite von Neumann algebra acting on a Hilbert spaceH and letj0PH be a
cyclic and separating vector forM. We useD andJ to denote, respectively, the modular opera
and the modular conjugation associated with the pair (M, j0).2,25 The associated modular auto
morphism group is denoted bys t :s t(A)5D i tAD2 i t , APM. Finally, j :M→M8 is the anti-
linear* -isomorphism defined byj (A)5JAJ, APM. The natural positive coneP associated with
(M,j0) is the closure of the set

$A j~A!j0 :APM%.

By a general result the coneP can be obtained by the closure of the set,

$D1/4AA* j0 :APM%.

The natural coneP is self-dual.2,25 For the detailed properties ofP, we refer to Section 2.5.4 o
Ref. 2. The form (M,H,P,J) is the standard form associated with the pair (M,j0).

In order to construct Dirichlet forms, let us introduce the notion of admissible functions
Definition 2.1: An analytic function f:D→C on a domain D containing the stripIm z

P@21/4,1/4# is said to be admissible if the following properties hold:

(a) f(t)>0 for ;tPR,
(b) f(t1 i /4)1 f (t2 i /4)>0, for ;tPR,
(c) there exist M.0 and p.1 such that the bound

uf~t1is!u<M~11utu!2p

holds uniformly in sP@21/4,1/4#.
Let us give an example of an admissible function. Using the residue integration metho

easy to check that

E
2`

`

~coshk!21eikt dk52p~ep/2 t1e2 p/2 t!21.

See also the expression in p. 94 of Ref. 2. Consider the following function:

f ~ t !5
2

A2p
E

2`

`

~ek/41e2k/4!21e2 1/2k2
e2 ikt dk. ~2.1!

Clearly f has an analytic extension to a domain containing the strip. It can be checked thatf is an
admissible function such that the bound in Definition 2.1~c! holds with anyp.1. See the proof
of Lemma 3.1 of Ref. 1.

We are ready to give a construction of Dirichlet forms on the standard form (M, H, P, J)
associated with the pair (M, j0). Denote byMan the dense subset ofM consisting of every
s t-analytic element with a domain containing the stripI 1/2ª$z:uIm zu<1

2%.
2 By Prop. 2.5.21 of Ref.

2, anyAPMan is strongly analytic. In the following, the inner product^•,•& on H is conjugate
linear in the first and linear in the second variable. For given admissible functionf and x
PMan, define a sesquilinear formE:H3H→C by

E~h,j!5E ^~s t2 i /4~x!2 j „s t2 i /4~x* !…!h,~s t2 i /4~x!2 j „s t2 i /4~x* !…!j& f ~ t ! dt

1E ^~s t2 i /4~x* !2 j „s t2 i /4~x!…!h,~s t2 i /4~x* !2 j „s t2 i /4~x!…!j& f ~ t ! dt

[E (1)~h,j!1E (2)~h,j!. ~2.2!

Then the associated quadratic form is given by
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E@j#5E i @s t2 i /4~x!2 j ~s t2 i /4~x* !!#ji2f ~ t ! dt1E i @s t2 i /4~x* !2 j ~s t2 i /4~x!!#ji2f ~ t ! dt

[E (1)@j#1E (2)@j#. ~2.3!

In Ref. 1, we have considered the casex5x* PMan. The following is the result corresponding t
Theorem 3.1 of Ref. 1.

Theorem 2.1:For a given admissible function f and xPMan, let ~E,H! be defined as in (2.2)
Let H be the self-adjoint operator associated with (E, H!. Assume that there exists a consta
M.0 such that the bound

sup
sP@21/4,1/4#

i s t1 is~x! i<M

holds uniformly in tPR. Then the following properties hold:

(a) Hj050,
(b) E is J-real,
(c) E(j1 ,j2)<0 ;jPH J.

Furthermore the form~E,H! is a Dirichlet form.
We will produce the proof of Theorem 2.1 at the end of this section. The following

consequence of Theorem 2.1.
Theorem 2.2: Let $Tt% t>0 be the semigroup generated by the form~E,_H! in Theorem 2.1.

Then$Tt% t>0 is a J-real, strongly continuous, symmetric Markovian semigroup.
Proof: It follows from Theorem 2.1~a! that Tt(j0)5j0 for any t>0. Thus the theorem

follows from Theorem 4.11 of Ref. 11. h

Remark 2.1: Consider the symmetric embedding:

i 0 : M → H,

i 0~A!5D1/4Aj0 .

Define the maps St on M by

St :M→M, i 0+St[Tt+ i 0 .

It follows from Theorem 2.12 of Ref. 11 that$St% t>0 is a weakly continuous, Markovian semigrou
on M. The Markoviam semigroup$Tt% extends also to a strongly continuous semigroup on
predual space and to a family of strongly continuous Markovian semigroups on their interpol
Lp-space. See Theorem 2.12 and Theorem 2.14 of Ref. 11.

We now produce the proof of Theorem 2.1.
Proof of Theorem 2.1:~a! Notice thatJAj05D1/2A* j0 for any APM. Thus we have that

~s t2 i /4~x!2 j „s t2 i /4~x* !…! j05D1/4s t~x!j02JD1/4s t~x!* D21/4j0

5D1/4s t~x!j02D1/4s t~x!j050.

Replacingx by x* in the above, we get

~s t2 i /4~x* !2 j „s t2 i /4~x!…! j050.

Thus ~a! follows from ~2.2! and the above facts.
~b! A direct estimate shows that
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i ~s t2 i /4~x!2 j ~s t2 i /4~x* !!! Jj i2 5i 2J ~s t2 i /4~x* !2 j ~s t2 i /4~x!!! j i2

5i ~s t2 i /4~x* !2 j ~s t2 i /4~x!!! j i2,

which implies E (1)@Jj#5E (2)@j#. The method used in the above also implies thatE (2)@Jj#
5E (1)@j#.

~c! By the expression ofE~h, j! in ~2.2!, E(j1 , j2) can be written as

E~j1 , j2!5E (1)~j1 , j2!1E (2)~j1 , j2!5~ I(1)1II (1)!1~ I(2)1II (2)!, ~2.4!

where

I(1)5E „^s t2 i /4~x!j1 , s t2 i /4~x!j2&1^s t2 i /4~x* !j2 , s t2 i /4~x* !j1&…f ~ t ! dt, ~2.5!

II (1)52E ~^s t2 i /4~x!j1 , j ~s t2 i /4~x* !!j2&1^ j ~s t2 i /4~x* !!j1 , s t2 i /4~x!j2&! f ~ t ! dt

and I(2) and II(2) are obtained from I(1) and II(1), respectively, replacingx by x* in the above.
As a consequence of Theorem 4~7! of Ref. 25, Mj1'Mj2 , which implies I(1)50 and

I(2)50. See also the proof of Proposition 5.3~ii ! of Ref. 11. Next, we first consider II(1). It can be
checked thats t2 is(x)* 5s t1 is(x* ), for anyxPMan andsPR, and so

^s t2 i /4~x!j1 , j „s t2 i /4~x* !…j2&5^ j1 , s t1 i /4~x* ! j „s t1 i /4~x!* …j2& ~2.6!

and

^ j „s t2 i /4~x* !…j1 , s t2 i /4~x!j2&5^j1 , s t2 i /4~x! j „s t2 i /4~x* !* …j2&. ~2.7!

It follows from ~2.5!–~2.7! that

II (1)52E ^ j1 , s t1 i /4~x* ! j „s t1 i /4~x!* …j2& f ~ t !dt

2E ^j1 , s t2 i /4~x! j „s t2 i /4~x* !* …j2 & f ~ t !dt.

Notice that the mapA° j (A* ) from M to M8 is linear. It can be shown that for anyxPMan and
jPH, the map

z° j „sz~x!* …j

is analytic on a domain containing the stripI 1/2. In fact, the analyticity follows from the facts tha
^h , j „sz(x)* …j&5P(sz(x)* Jj , Jh &5^Jj,sz(x)Jh & for anyh, jPH, and that weak analytic-
ity implies strong analyticity~see Theorem VI.4 of Ref. 26!.

Using the Cauchy integral theorem, the assumption in the theorem, the property~c! in the
Definition 2.1 ands t(x)* 5s t(x* ), we obtain that

II (1)52E ^j1 , s t~x!* j „s t~x!* …j2& f ~ t2 i /4! dt2E ^j1 , s t~x! j „s t~x!…j2& f ~ t1 i /4! dt.

Replacingx andx* in the above, we obtain the expression of II(2). Thus we get

II52E ^j1 , @s t~x! j „s t~x!…1s t~x!* j „s t~x!* …#j2&•„f ~ t2 i /4!1 f ~ t1 i /4!… dt.
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Since s t(x) j „s t(x)…j2PP, ^j1 , @s t(x) j „s t(x)…1s t(x)* j „s t(x)* …#j2&>0 for tPR. By the
property~b! in the Definition 2.1, we conclude that II<0. This proved the part~c! of the theorem.

ClearlyE@•#>0. Note thatE(j0 ,j)50, ;jPH. By Theorem 2.1~b!–~c!, Proposition 4.5~b!
of Ref. 11 and Proposition 4.10~ii ! of Ref. 11,~E,_H! is a Dirichlet form. h

III. DIRICHLET FORMS ON CCR ALGEBRAS WITH RESPECT TO QUASI-FREE STATES:
PRELIMINARIES AND MAIN RESULTS

Let h0 be a complex separable pre-Hilbert space. Denote byh the completion ofh0 . The inner
product~•,•! onh is conjugate linear in the first and linear in the second variable. LetA(h0) be the
C* -algebra generated by the Weyl operatorsW( f ), f Ph0 , satisfying

W~2 f !5W~ f !* ,

W~ f !W~g!5e2 ~ i /2! Im( f ,g)W~ f 1g!, ; f ,gPh0 . ~3.1!

For the abstract properties ofA(h0), see Theorem 5.2.8 of Ref. 2.
Next, we describe quasi-free states onA(h0). Let A be a bounded and non-negative opera

on h. Recall thatwPh is an analytic vector for an operatorB on h if wPD(Bn), nPN, and if

(
n50

` iBnwi
n!

tn,`,

for somet.0. In the rest of this paper, we assume thatA satisfies the following properties.
Assumption 3.1: (a) There existsaP(0, 1) such that

0,A<a1,1.

(b) The inverse A21 of A exists as a (unbounded) self-adjoint and positive operator onh.
(c) For any zPC, Az leavesh0 invariant, i.e., Azh0,h0 . Moreover, z°Azw is entire analytic

for any wPh0 .
(d) AnywPh0 is an analytic vector for A21/2.
We remark that a dense submanifoldh0 of h satisfying the assumption exists by the spect

theorem.
Example 3.1 (ideal Bose gases): Leth be L2(Rd,dx) and D the Laplacian operator on

L2(Rd, dx). Let A be given by

A5exp$2b~2 1
2 D1m1!%,

whereb.0 and m.0. For f PL2(Rd,dx), denote by fˆ the Fourier transform of f. Chooseh0

5$ f PL2(Rd, dx): f̂ PCc(R
d)%. Clearly Assumption 3.1 satisfied witha5exp(2bm).

For givenAPL(h) satisfying Assumption 3.1, the gauge invariant quasi-free statev onA(h0)
is defined by

v„W~ f !…5exp$2~ f , 1
4 ~11A!~12A!21f !%, f Ph0 . ~3.2!

Let (Hv ,pv , Vv) be theGNS representation2 of „A(h0), v…, and letM5pv„A(h0)…9. Notice
that the representation (Hv , pv , Vv) of the CCR algebraA(h0) is regular2 in the sense that the
unitary groupstPR°pv„W(t f )… are strongly continuous for allf Ph0 . We use the notation
Fv( f ) to denote the infinitesimal generator of the unitary grouppv„W(t f )…:

pv„W~ t f !…5exp„i tFv„f )…. ~3.3!
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Notice that, sincev is an entire analytic state2 by ~3.2! and Assumption 3.1, the cyclic vectorVv

is an entire analytic vector for allFv( f ), f Ph0 . The annihilation and creation operators defin
for eachf Ph0 by

D„av~ f !…5D„Fv~ f !…ùD„Fv~ i f !…5D„av* ~ f !…

and

av~ f !ª221/2
„Fv~ f !1 iFv~ i f !…,

~3.4!
av* ~ f !ª221/2

„Fv~ f !2 iFv~ i f !…,

are densely defined, closed andav( f )* 5av* ( f ), and satisfy the canonical commutation relatio
~CCRs!: for ; f , gPh0 ,

@av~ f !, av~g!#50,
~3.5!

@av~ f !, av* ~g!#5~ f ,g!1.

See Sec. 5.2.3 of Ref. 2 for the details.
In the rest of this paper, we suppressv and pv from the notations. ThusH5Hv , W( f )

5pv„W( f )…, F( f )5Fv( f ), a ( f )5av( f ) anda* ( f )5av* ( f ) for any f Ph0 . We also use the
notationj05Vv . Let s t :M→M be the group of automorphisms onM defined by

s t„W~ f !…5W~Ait f !, f Ph0 .

It can be checked that the statev defined by~3.2! is a s-KMS state.2 Thus s t , tPR, is the
modular automorphism by Theorem 5.3.10 of Ref. 2. LetD and J be the modular operator an
modular conjugation, respectively. Then (M, H, P, J) is the natural standard form associated
(M, j0).

Next, we introduce several dense manifolds ofH. For anyBPM, define

Bn5S n

p D 1/2E s t~B!e2nt2dt, nPN. ~3.6!

ThenBn is an entire analytic element fors t , iBni<iBi for all nPN andBn→B strongly. See the
proof of Proposition 2.5.22 of Ref. 2. In the rest of this paper, we write thatWn( f )ªW( f )n , f
Ph0 , whereW( f )n is defined as in~3.6! with B5W( f ). Put

M0ªthe algebra generated byBn , BPM,nPN;

W0ªthe algebra generated byWn~ f !, f Ph0 ,nPN; ~3.7!

Wªthe algebra generated byW~ f !, f Ph0 .

Denote byHfin the subset of finite linear combinations of the vectors of the following type:

cn5F)
j 51

n

F~ f j !Gj0 , for f jPh0 , j 51,...,n, nPN.

Clearly M0j0 , W0j0 , Wj0 andHfin are dense inH ~See Lemma 4.1!.
We denote bya#( f ) eithera( f ) or a* ( f ), for any f Ph0 . Notice thata#( f ) and j „a#( f )…,

f Ph0 , are affiliated withM andM8, respectively. For anyf Ph0 andzPC, we write

sz„a~ f !…ªa~Aiz̄f !,

~3.8!
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sz„a* ~ f !…ªa* ~Aizf !.

In fact, one may be able to show that for anyf Ph0 andjPM0j0 the functiont°s t„a
#( f )…j has

an analytic extension onC, which is denoted bysz„a
#( f )…j, and thatsz„a

#( f )… is equal to that
on the right hand side of~3.8! on M0j0 . See the proof of Lemma 4.3.

We are ready to describe Dirichlet forms. An admissible functionf is said to benormalizedif
* f (t)dt51. For given normalized admissible functionf and a complete orthonormal system
~CONS! $gn%n51

` ,h0 of h, define a sesquilinear formE:D(E)3D(E)→C as follows:

D~E!5W0j0 ~ orWj0 , M0j0!,
~3.9!

E~h, j!5 (
n51

`

E (n)~h, j!, h, jPD~E!,

where for eachnPN, h, jPD(E (n))5W0j0 ~or Wj0 , M0j0):

E (n)~h, j!5E ^„s t2 i /4„a~gn!…2 j ~s t2 i /4„a* ~gn!…!…h,

„s t2 i /4„a~gn!…2 j ~s t2 i /4„a* ~gn!…!…j& f ~ t ! dt

1E ^„s t2 i /4„a* ~gn!…2 j ~s t2 i /4„a~gn!…!…h,

„s t2 i /4„a* ~gn!…2 j ~s t2 i /4„a~gn!…!…j& f ~ t ! dt. ~3.10!

We also define the associated quadratic forms by

E (n)@j#5E (n)~j, j!, jPD~E (n)!, nPN;

E@j#5 (
n51

`

E (n)@j#, jPD~E!.

We remark that the expressionE (n)(h, j) in ~3.10! can be obtained fromE~h, j! in ~2.2! by
replacingx by a(gn).

We state the main results. It turns out that the form defined in~3.9! and~3.10! is independent
of the normalized admissible functionf and the CONS$gn%,h0 we have chosen.

Proposition 3.1: Let D(E) be eitherW0j0 or elseWj0 and let„E,D(E)… be defined as in (3.9)
and (3.10). The form„E,D(E)… is closable. Moreover, „E,D(E)… is independent of the normalize
admissible function f and the CONS$gn%,h0 we have chosen.

Proposition 3.2: For each nPN, (E (n),M0j0) is closable. The closure„Ē(n),D( Ē(n))… is a
Dirichlet form.

Theorem 3.1:Let us consider the following form:

D~ Ē!5H jPù
n51

`

D~ Ē(n)!: (
n51

`

Ē(n)@j#,`J ,

Ē@j#5 (
n51

`

Ē(n)@j#,

where for each nPN, „Ē(n),D( Ē(n))… is the Dirichlet form obtained in Proposition 3.2. The

„Ē,D( Ē)… is a densely defined Dirichlet form.
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Theorem 3.2: Let $Tt% be the symmetric Markovian semigroup associated to the Diric

form „Ē, D( Ē)…, and let H be the Dirichlet operator, i.e., Tt5e2tH, t>0. Then the following
results hold:

(a) H is essentially self-adjoint onHfin .
(b) H is independent of the normalized admissible function f and the CONS$gn%,h0 we have

chosen.
(c) The zero is a simple eigenvalue of H with eigenvectorj0 . Moreover (0,a21/2

2a1/2)ùs(H)5B. Thus$Tt% is ergodic in the sense of Cipriani.27 See Remark 3.2.

By the spectral theorem, Theorem 3.2~c! implies that for anyjPH and t>0,

iTtj2^j0 ,j&j0iH<e2mtij2^j0 ,j&j0iH , ~3.11!

where m5a21/22a1/2. Thus $Tt% t>0 converges to the equilibrium exponentially fast. Befo
closing this section, we would like to make the following remarks.

Remark 3.1: As a consquence of Theorem 2.12 of Ref. 11 and Theorem 3.1 in the abo
Markovian semigroup extends to a weakly continuous Markovian semi-group St on M
5(p„A(h0)…)9. See Remark 2.1.

Remark 3.2: Theorem 3.2 (c) implies that the vectorj0 is a simple, strictly positive ground
state for the generator H. In view of Ref. 27, Tt satisfies the indecomposability and the ergodic
~for each positivej, h, there exists t.0 such that̂ j,Tth&.0). See Theorem 4.3 of Ref. 27.

Remark 3.3: The main results in this paper can be generalized in several ways. For ins
let B be the operator onh defined in (1.4). If one replaces gn by Blgn , nPN, for somel
P@2 1

2,`) in the definition ofE~h, j! in (3.9) and (3.10), and modify Assumption 3.1 (d) app
priately, then all of the results in this section still hold with a modified spectral gap in Theorem
(c), i.e., „0,(a21/22a1/2)112l

…ùs(H)5B.

IV. MARKOVIANITY OF FORMS: PROOFS OF PROPOSITION 3.1–THEOREM 3.1

In this section, we produce the proofs of Proposition 3.1, Proposition 3.2 and Theorem
The most difficult part is the proof of Proposition 3.2 which states the Dirichlet property of
componentE (n), nPN, of E in ~3.10!. In Theorem 2.1, we established the Dirichlet property
anys t-analytic elementxPM. Howevera(gn) in the definition ofE (n) in ~3.10! is an unbounded
operator affiliated withM for any gnPh0 . Thus we have to employ several limiting process
which make the paper lengthy.

Recall the definitions ofW, W0 , andM0 in ~3.7! andHfin in the below of~3.7!. In the rest
of this paper, we denote bya#( f ) eithera( f ) or a* ( f ), f Ph0 . We first state elementary facts

Lemma 4.1: (a)Wj0 , W0j0 , M0j0 and Hfin are dense inH.
(b) The inclusions

Wj0,D„a#~ f !…, W0j0,D„a#~ f !… and Hfin,D„a#~ f !…

hold for any fPh0 .
(c) The inclusion

M0j0,D„a#~ f !…

holds for any fPh0 . Moreover the relation

a#~ f !Bj05 j „s2 i /2~B* !…a#~ f !j0

holds for any fPh0 and BPM0 .
Proof: ~a! SinceW is norm-dense inpv„A(h0)…, Wj0 is dense inH. Let f Ph0 be given.

Using ~3.6! and~3.2! it is easy to show that the sequence$Wn( f )j0% converges toW( f )j0 . This
implies thatW0j0 is dense inH. SinceW0j0,M0j0 , M0j0 is dense inH. It follows from ~3.2!
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and Assumption 3.1 thatv is an entire analytic state2 and so the cyclic vectorj0 is an entire
analytic vector forF( f ), f Ph0 . Also see Sec. 5.2.3 of Ref. 2. Thus the sequence of the vec

(
k50

n
i k

k!
F~ f !kj0 ,

converge toW( f )j0 , which implies thatHfin is dense inH.
~b! For any f Ph0 andnPN, we write that

F~ f ,n!52 inS WS 1

n
f D21D .

For given gPh0 , consider the sequence$F( f , n)W(g)j0%. Using ~3.1! and ~3.2!, it can be
checked that the sequence is a Cauchy sequence. ThusW(g)j0PD„F( f )… for any f , gPh0 , and
so Wj0,D„F( f )…, f Ph0 . By ~3.4!, this implies thatWj0,D„a#( f )…, f Ph0 . The method
similar to that used in the above implies thatW0j0,D„a#( f )…, f Ph0 . Sincej0 is an entire
analytic vector forF( f ), f Ph0 , Hfin,D„a#( f )…, f Ph0 .

~c! Notice that for anyBPM0 , j „s2 i /2(B* )…j05Bj0 . Thus we have that

F~ f , n!Bj05F~ f , n! j „s2 i /2~B* !…j05 j „s2 i /2~B* !…F~ f , n!j0 .

Since the sequence$F( f , n)j0% converges toF( f )j0 , it follows that Bj0PD„F( f )… and the
relation

F~ f !Bj05 j „s2 i /2~B* !…F~ f !j0 ,

hold for any f Ph0 andBPM0 . By ~3.4!, this proved the part~c!. h

We next state a well-known formula~4.2! on quasi-free expectations which we will us
repeatedly in the sequel.

Lemma 4.2: Letv be the quasi-free state given in (3.2). The equalities

v„F~ f !F~g!…5 1
2 ~„f ,~12A!21g…1„g,A~12A!21f !… ~4.1!

and

vS F~ f !S )
j 51

m

F~gj !D S )
l 51

n

W~hl !D D
5 (

k51

m

v„F~ f !F~gk!…vS S )
j 51

k21

F~gj !D S )
j 5k11

m

F~gj !D S )
l 51

n

W~hl !D D
1 i (

k51

n

v„F~ f !F~hk!…vS S )
j 51

m

F~gj !D S )
l 51

n

W~hl !D D ~4.2!

hold for any f, g, gj , hlPh0 , j 51,...,m, l 51,...,n.
Proof: The Weyl relations in~3.1! and the quasi-free expectation in~3.2! yield

v„W~ f !W~g!…5expH 2
i

2
Im~ f ,g!2 1

4 „f 1g, D~ f 1g!…J ,

for any f , gPh0 , whereD5(11A)(12A)21. Replacingf andg by t f andsg, respectively, in
the above, and differentiating both sides with respect totPR andsPR at the zero, one obtain
~4.1!.
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Again, replacingf by t f in the above relation and differentiating with respect totPR at the
zero, one can deduce that

v„F~ f !W~g!…5 iv„F~ f !F~g!…v„W~g!….

Settingg5g11¯1gp in the above and using the relation in~3.1!, one obtains

vS F~ f !S )
j 51

p

W~gj !D D 5 i S (
k51

p

v„F~ f !F~gk!…DvS )
j 51

p

W~gj !D .

Choosep5m1n. Replacinggj by t jgj , j 51,...,m andgm1 l by hl , l 51,...,n, in the above, and
differentiating with respect tot j , j 51,...,m, at the zero, we obtain~4.2!. h

We remark thatf °a( f ) is conjugate linear andf °a* ( f ) is linear. See~3.4!, ~3.1! and~3.2!.
Recall the definitions ofsz„a

#( f )…, f Ph0 , zPC in ~3.8!, i.e.,

sz„a~ f !…ªa~Aiz̄f !,

sz„a* ~ f !…ªa* ~Aizf !.

We also write that

sz„F~ f !…ª
1

&
$a~Aiz̄f !1a* ~Aizf !%, ~4.3!

for any zPC and f Ph0 . Using CCRs in~3.5!, one can check that for anyf ,gPh0 the relations

@a~ f !, W~g!#5
i

&
~ f , g!W~g!,

~4.4!

@a* ~ f !, W~g!#52
i

&
~g, f !W~g!,

hold onWj0 ~also onW0j0). See also the proof of Proposition 5.2.4.~1! of Ref. 2.
For any f Ph0 andm,nPN, we write that

F~ f ,n!ª2 inH expS i

n
F~ f ! D21J ,

Fm~ f !ªAm

p E s t„F~ f !…e2mt2 dt, ~4.5!

Fm~ f ,n!ªAm

p E s t„F~ f ,n!…e2mt2 dt.

Notice that for anyf Ph0 and m, n PN, Fm( f , n) is an entire analytic element fors t and
sz„Fm( f ,n)… is given by

sz„Fm~ f , n!…5Am

p E s t„F~ f , n!…e2m(t2z)2
dt, ~4.6!

for any zPC. See the proof of Proposition 2.5.22 of Ref. 2.
We establish technical lemmas which will be used later.
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Lemma 4.3: (a) For any fPh0 , m,nPN and z5t1 isPC, there exist constants M1( f , s) and
M2( f , s) depending only on fPh0 and s5Im z such that the bounds

isz~Fm~ f , n!!j0i<M1~ f , s!,

isz~F~ f !!j0i<M2~ f , s!,

hold ~uniformly on m, nPN).
(b) For any fPh0 , nPN and zPC, the equality

sz„F~ f !…j05 lim
n→`

sz„Fn~ f ,n!…j0

holds.
The proof of the above lemma will be given in the Appendix.
We define that for anyf Ph0 andm,nPN,

am~ f , n!ª
1

&
$Fm~ f , n!1 iFm~ i f , n!%, ~4.7!

am* ~ f , n!ª
1

&
$2Fm~2 f , n!1 iFm~2 i f , n!%.

We denote byam
# ( f , n) eitheram( f , n) or am* ( f , n). The following is a consequence of Lemm

4.3.
Corollary 4.1: (a) For any fPh0 , m, nPN and z5t1 isPC, there exist constants M3( f , s)

and M4( f , s) depending only on fPh0 and s5Im z such that the bounds

isz~am
# ~ f , n!!j0i<M3~ f , s!,

isz~a#~ f !!j0i<M4~ f , s!,

hold ~uniformly on m,nPN).
(b) For any fPh0 , nPN and zPC, the equality

sz~a#~ f !!j05 lim
n→`

sz„an
#~ f , n!…j0

holds.
Proof: The corollary follows from Lemma 4.3 and the definition ofam

# ( f , n) in ~4.7!. h

Lemma 4.4: (a) For any fPh0 , m,nPN, z5t1 isPC and BPM0 , there exist constants
M5(B, f , s) and M6(B, f , s) such that the bounds

isz„am
# ~ f ,n!…Bj0i<M5~B, f , s!,

isz„a
#~ f !…Bj0i<M6~B, f , s!

hold ~uniformly on m, nPN).
(b) The equality

sz„a
#~ f !…Bj05 lim

n→`

sz„an
#~ f , n!…Bj0

holds for any fPh0 , zPC and BPM0 .
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Proof: ~a! As in the proof of Lemma 4.1~c!, one has that for anym, nPN, BPM0 andz
PC,

sz„am
# ~ f , n!…Bj05 j „s2 i /2~B* !…sz„am

# ~ f , n!…j0 . ~4.8!

Thus the bounds follow from Corollary 4.1~a!, Lemma 4.1~c! and the above relations.
~b! This follows from Corollary 4.1~b!, ~4.8! and Lemma 4.1~c!. h

In order to show the closability of the form (E (n),_M0j0), nPN, in Proposition 3.2, we will
use the proposition listed below. The proposition is probably well known to the experts.

Proposition 4.1: Let~V, m! be a probability space, H a separable Hilbert space and D
dense subset inH. For any tPV, let A(t) be an operator defined on D satisfying the followin
properties:

(a) (A(t), D) is closable for each tPV,
(b) for anyjPD, V{t°iA(t)ji2 is an integrable function onV.

Then the quadratic form defined by

D~E!5D,

E@j#5E
V

iA~ t !ji2dm~ t !, jPD,

is closable.
Proof: Let $jn% be a sequence inD such thatjn→0 asn→` andE@jn2jm#→0 asn, m

→`. One has to show thatE@jn#→0 as n→`. Since $jn% is a E-Cauchy sequence, one ca
choose a subsequence$jnk

% of $jn% such thatE@jnk11
2jnk

#,1/22k for any kPN, which implies
that

(
k51

`

E@jnk11
2jnk

#1/2,`.

It follows from the Schwarz inequality and the above bound that

(
k51

` E
V

iA~ t !~jnk11
2jnk

!i dm~ t !,`.

The monotone convergence theorem and the above bound imply that

(
k51

`

iA~ t !~jnk11
2jnk

!i,`, m2a.e.

This implies that$A(t)jnk
% is a Cauchy sequencem2a.e. SinceA(t) is closable onD for any

tPV, we conclude that

A~ t !jnk
→0, ask→`, m2a.e.

Using Fatou’s lemma and the above result, we obtain that

E@jn#5E limk→`iA~ t !~jn2jnk
!i2 dm~ t !< limk→` E@jn2jnk

#,

which implies thatE@jn#→0 asn→`. This proved the proposition. h

We write that
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d„a#~ f !…ªa#~ f !2 j „s2 i /2~„a
#~ f !…* !…, ~4.9!

for f Ph0 . By Lemma 4.1,d„a#( f )… is well defined onWj0 and also onM0j0 for any f Ph0 .
Notice that for anyBPM0 , j „s2 i /2(B* )…j05Bj0 . Thus it follows from Lemma 4.1~b! and
Corollary 4.1~b! that for anyf ,hPh0 ,

d„a#~ f !…W~h!j05@a#~ f !,W~h!#j0 . ~4.10!

Since (s2 i /4„a
#( f )…)* 5s i /4(„a

#( f )…* ) by ~3.8!, we have that

d~s2 i /4„a
#~ f !…!5s2 i /4„a

#~ f !…2 j „s2 i /4~„a
#~ f !…* !…, ~4.11!

for any f Ph0 .
We are ready to prove Proposition 3.1, Proposition 3.2 and Theorem 3.1. We first produ

proof of Proposition 3.1.
Proof of Proposition 3.1:Let us first consider (E, Wj0). Recall the definition ofE~h, j! in

~3.9!–~3.10!. Let f be a normalized admissible function and let$gn%,h0 be a CONS forh. We
first note that by~4.10! and ~4.4!,

d~s t2 i /4„a~gn!…!W~h!j05d„a~Ait 2 1/4gn!…W~h!j05
i

&
~Ait 2 1/4gn , h!W~h!j0 ,

d~s t2 i /4„a* ~gn!…!W~h!j052
i

&
~h, Ait 1 1/4gn!W~h!j0 .

It follows from ~3.9!, the above relations, the dominated convergence theorem and the Par
relations that forg, hPh0 ,

E„W~g!j0 , W~h!j0…5H 1

2 (
n51

` E ~A2 i t 2 1/4g, gn!~gn , A2 i t 2 1/4h! f ~ t ! dtJ
3^W~g!j0 ,W~h!j0&

1H 1

2 (
n51

` E ~A2 i t 1 1/4h, gn!~gn , A2 i t 1 1/4g! f ~ t ! dtJ
3^W~g!j0 , W~h!j0&

5
1

2
$~g, A2 1/2h!1~h, A1/2g!%^W~g!j0 ,W~h!j0&. ~4.12!

Here we have used the fact that by the Schwarz inequality and the Bessel inequality,

U(
n51

m

~A2 i th1 , gn!~gn , A2 i th2!U<ih1iih2i ,

for any mPN, tPR and h1 , h2Ph0 . Thus E is well defined onWj0 and independent of the
normalized admissible functionf and the CONS$gn% chosen.

In order to show that the closability of (E,Wj0), we introduce the operator (H,Wj0) defined
by

D~H !5Wj0 ,
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HW~h!j05
i

&
~d„a~A2 1/2h!…!* W~h!j02

i

&
~d„a* ~A1/2h!…!* W~h!j0 . ~4.13!

By ~4.9! and Lemma 4.1~b!, H is well-defined onWj0 . It follows from ~4.10! and~4.4! that for
any g,hPh0 ,

^W~g!j0 ,HW~h!j0&5
i

&
^d„a~A2 1/2h!…W~g!j0 ,W~h!j0&

2
i

&
^d„a* ~A1/2h!…W~g!j0 ,W~h!j0&

5 1
2 $~g, A2 1/2h!1~h, A1/2g!%^W~g!j0 ,W~h!j0&. ~4.14!

By the method used in the above, we get that for anyg,hPh0 , ^HW(g)j0 ,W(h)j0& is equal to
the right hand side of~4.14!. ThusH is symmetric onWj0 . It follows from ~4.12! and~4.14! that

^h, Hj&5E~h, j!,

for h, jPWj0 . Since (H,Wj0) is a positive symmetric operator, the form (E, Wj0) is closable
~Theorem X.23 of Ref. 26!.

Next, we consider (E,W0j0). Employing the method similar to that used to derive~4.12!, one
can check that (E,W0j0) is independent of admissible functionf and the CONS$gn%,h0 chosen.
To prove the closability, one may introduce the Dirichlet operator (H,W0j0) similar to that in
~4.13! and then use the argument in the below of~4.13!. We leave the details to the reader.h

Remark 4.1: For any CONS$gn%,h0 , the relation

E~h,j!5 (
n51

`

^d~s2 i /4„a~gn!…!h, d~s2 i /4„a~gn!…!j&

1 (
n51

`

^d~s2 i /4„a* ~gn!…!h, d~s2 i /4„a* ~gn!…!j& ~4.15!

holds for anyh,jPWj0 . In fact, the relation follows from the method used to derive (4.12).
In order to show Proposition 3.2, we introduce the following forms: For given normal

admissible functionf andgPh0 , let (Ẽ, M0j0) be a sesquilinear form defined by

D~ Ẽ!5M0j0 ,

Ẽ~h, j!5E ^d~s t2 i /4„a~g!…!h, d~s t2 i /4„a~g!…!j& f ~ t !dt

1E ^d~s t2 i /4„a* ~g!…!h, d~s t2 i /4„a* ~g!…!j& f ~ t !dt, ~4.16!

where for anyhPh0 , d„a#(h)… has been defined in~4.9!. For anynPN, let (Ẽn ,H) be the form
given by

Ẽn~h,j!5E ^d~s t2 i /4„an~g, n!…!h, d~s t2 i /4„an~g, n!…!j& f ~ t !dt

1E ^d~s t2 i /4„an* ~g, n!…!h, d~s t2 i /4„an* ~g,n!…!j& f ~ t !dt, ~4.17!
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where fornPN andgPh0 , an
#(g, n) has been defined in~4.7!. Sincean

#(g, n)PM0 , it follows
from Theorem 2.1 that (Ẽn ,_H) is a Dirichlet form for eachnPN.

Lemma 4.5: For anyh, jPM0j0 ,

Ẽ~h, j!5 lim
n→`

Ẽn~h, j!.

Proof: The lemma follows from Lemma 4.4 and the dominated convergence theorem.h

Proposition 4.2: The form( Ẽ, M0j0) defined in (4.16) is closable. Denote by„Ẽ, D( Ẽ)… the

closure of( Ẽ, M0j0) and by H̃ the positive self-adjoint operator associated to„Ẽ, D( Ẽ)…. Then
the following properties hold:

(a) j0PD(H̃) and H̃j050,
(b) Ẽ is J-real,
(c) Ẽ(j1 , j2)<0 for any jPD( Ẽ)J.
Furthermore the form„Ẽ,D( Ẽ)… is a Dirichlet form.
Proof of Proposition 3.2:By settingg5gn , nPN, the proposition follows from Proposition

4.2. h

Proof of Proposition 4.2:The closability of (Ẽ, M0j0) follows from Lemma 4.1~c!, Lemma
4.4 and Proposition 4.1.

~a! It follows from ~4.16! that for m, nPN andh1 , h2Ph0 ,

Ẽ„Wm~h1!j0 ,Wn~h2!j0…5^Wm~h1!j0 , H̃Wn~h2!j0&,

where

H̃5E „d~s t2 i /4„a~g!…!…* d~s t2 i /4„a~g!…! f ~ t ! dt

1E „d~s t2 i /4„a* ~g!…!…* d~s t2 i /4„a* ~g!…! f ~ t ! dt.

Using ~4.10! and Lemma 4.4~a!, it is not hard to show thatH̃Wn(h2)j0 is defined as a vector in
H. SinceW0j0,M0j0 , we conclude thatW0j0,D(H̃). By ~4.10!, we get that

d~s t2 i /4„a
#~g!…!j050,

for any tPR andgPh0 , and soH̃j050.
~b! This follows from the method in the proof of the property~b! in Theorem 2.1 and the fac

that M0j0 is a form core.
~c! The proof of the property~c! is the hardest part in the proof. We have to employ seve

limiting processes. We assert that

jPM0j0ùH J⇒j1 ,j2PD~ Ẽ! and Ẽ@j6#5 lim
m→`

Ẽm@j6#. ~4.18!

Let us prove our assertion. Lets1 and s2 be the projections onto the closure ofM8j1 and
M8j2 , wheres1 , s2PM. See Ref. 25. Forj5Aj0 , APM0 , we write that

jn,65~s6A!nj0 ,

where

~s6A!n5An

p E s t~s6A!e2nt2 dt.
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Notice thati(s6A)ni<iAi , nPN, and that for anyhPH, (s6A)nh→s6Ah asn→`. See, i.e.,
the proof of Proposition 2.5.22 of Ref. 2. SinceD i tP,P for tPR, jn,65(s6A)nj0

5 j „(s6A)n…j0 , and so

sz„a
#~g!…jn,65 j „~s6A!n…sz„a

#~g!…j0 ,

for any zPC. Sincesz„a
#(g)… is a closed operator for anygPh0 , zPC, we taken to infinity to

conclude thatj6PD(sz„a
#(g)…), and

sz„a
#~g!…j65 j ~s6A!sz„a

#~g!…j0 ,

and so

d~sz„a
#~g!…!j65 j ~s6A!sz„a

#~g!…j02~s6A! j „s2 i /2~sz„a
#~g!…!* …j0 . ~4.19!

Thus, it follows from Corollary 4.1~a! and the dominated convergence theorem thatẼ@jm,6

2jn,6#→0 asm,n→`. Since„Ẽ,D( Ẽ)… is closed,j6PD( Ẽ). Next we will prove thatẼn@j6#

converges toẼ@j6# asn tends to infinity. Using~4.19!, the analogous relation forsz„an
#(g,n)…,

and Corollary 4.1~a!, we conclude that forj5Aj0 , there exists a constantM.0 such that the
bounds

id~s t2 i /4„an
#~g,n!…!j6i1id~s t2 i /4„a

#~g!…!j6i<M

hold uniformly in nPN and tPR. Using the above bounds,~4.19! and Corollary 4.1, we get tha

uẼn@j6#2 Ẽ@j6#u<2ME i$d~s t2 i /4„an
#~g, n!…!2d~s t2 i /4„a

#~g!…!%j6i f ~ t !dt

<M 8E is t2 i /4„an
#~g, n!…j02s t2 i /4„a

#~g!…j0i f ~ t !dt→0, as n→`.

Here we have used Corollary 4.1~b! and the dominated convergence theorem to obtain the
conclusion in the above. This completes the proof of our assertion.

We turn to the proof of the property~c!. A direct computation shows that

ij62h6i<ij2hi , ;j, hPH J. ~4.20!

See also the proof of Proposition 1.2 of Ref. 7. Sinceuju5j11j2 , the assertion~4.18! implies
that

jPM0j0ùH J⇒ujuPD~ Ẽ! and Ẽ@ uju#5 lim
n→`

Ẽn@ uju#. ~4.21!

Let jPD( Ẽ)ùH J be given. Choose$jk% in M0j0ùH J such thatjk→j and Ẽ@jk#→Ẽ@j# ask

→`. By ~4.20!, ujku→uju ask→`. Notice thatẼ@ uju#< Ẽ@j# is equivalent toẼ(j1 , j2)<0 and
that eachẼm , mPN, satisfies the property~c! by Theorem 2.1. By the lower semi-continuity ofẼ
and ~4.21!, we obtain that

Ẽ@ uju#< limk→` Ẽ@ ujku#5 limk→`S lim
n→`

Ẽn@ ujku# D< limk→`S lim
n→`

Ẽn@jk# D5 limk→` Ẽ@jk#5 Ẽ@j#.

Thus ujuPD( Ẽ) and Ẽ@ uju#< Ẽ@j#. This completes the proof of the property~c!.
Since Ẽ(j,j0)50 for any jPD( Ẽ), the properties~b! and ~c! imply that Ẽ is a Dirichlet

form. h
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Proof of Theorem 3.1:By Proposition 3.1,W0j0,D( Ē). Since each componentĒn is a
Dirichlet form, it follows from Theorem 5.2 of Ref. 11 that„Ē,D( Ē)… is a Dirichlet form. h

V. DECOMPOSITION OF QUASI-FREE HILBERT SPACE: ERGODICITY

For given quasi-free statev, we will decompose the Hilbert spaceH5Hv into a direct sum
of H (m,n), m, nPNø$0%, whereH (m,n) is the Hilbert space ofm quasi-particles andn anti-
quasi-particles. We then use the result to show that the symmetric Markovian semigroup
godic.

Recall the definition ofd„a#(g)…, gPh0 in ~4.9!. Denote byB the operator given by

B5A2 1/22A1/2. ~5.1!

It follows from ~4.9! that for gPh0 ,

d„a~B2 1/2A2 1/4g!…5a~B2 1/2A2 1/4g!2 j ~s2 i /2„a* ~B2 1/2A2 1/4g!…!

5a~B2 1/2A2 1/4g!2 j „a* ~B2 1/2A1/4g!…, ~5.2!

d„a* ~B2 1/2A1/4g!…5a* ~B2 1/2A1/4g!2 j ~s2 i /2„a~B2 1/2A1/4g!…!

5a* ~B2 1/2A1/4g!2 j „a~B2 1/2A2 1/4g!….

The above operators are well defined onM0j0 and also onHfin . Since (j „a(g)…)* 5 j „a* (g)…,
etc., a computation shows that

~d„a~B2 1/2A2 1/4g!…!* 5a* ~B2 1/2A2 1/4g!2 j „a~B2 1/2A1/4g!…

5a* ~B2 1/2A2 1/4g!2 j ~s2 i /2„a~B2 1/2A3/4g!…!

5a* ~B1/2A1/4g!1d„a* ~B2 1/2A3/4g!…. ~5.3!

Here we have used the fact thatB2
1
2(A2

1
42A

3
4)5B

1
2A

1
4. Using the method similar to that used

the above, we get that

~d„a* ~B2 1/2A1/4g!…!* 52a~B1/2A2 1/4g!1d~„a~B2 1/2A2 3/4g!…. ~5.4!

From notational brevity, we write that forgPh0 ,

D1~g!ªd„a~B2 1/2A2 1/4g!…,
~5.5!

D2~g!ªd„a* ~B2 1/2A1/4g!….

Then it follows from~5.3! and ~5.4! that

D1~g!* 5a* ~B1/2A1/4g!1D2~A1/2g!, ~5.6!

D2~g!* 52a~B1/2A2 1/4g!1D1~A2 1/2g!.

We first collect some properties ofDi(g) for gPh0 and i 51, 2.
Lemma 5.1: Di(g)j050 for any gPh0 and i51, 2.
Proof: This follows from ~5.5! and ~4.10!. h

Lemma 5.2: As operators defined onWj0 and W0j0 , the following relations hold for any
g, hPh0 :

(a) @Di(g), j (h)#50, i 51, 2, j 51, 2,
(b) @D1(g), a(h)#50,
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(c) @D2(g), a* (h)#50,

(d) @D1(g), a* (B
1
2A

1
4h)#5(g, h)1,

(e) @D2(g), a(B
1
2A2

1
4h)#52(h, g)1.

Proof: We first remark that each operator in the commutators in the lemma is defined onWj0

and alsoW0j0 . ~a! This follows from ~4.10!, ~4.4! and the definition ofDi(g), i 51, 2, in ~5.5!.
~b! and ~c! follow from ~5.5! and ~4.9!. ~d! and ~e! follow from ~5.5!, ~4.9! and the CCRs in
~3.5!. h

Proposition 5.1: As operators defined onWj0 , Wj0 and also onHfin , the following canonical
commutation relations (CCRs) hold for any g, hPh0 :

(a) @D1(g), D1(h)* #5(g, h)1,
@D1(g), D1(h)#50, @D1(g)* , D1(h)* #50;

(b) @D2(g), D2(h)* #5(h, g)1,
@D2(g), D2(h)#50, @D2(g)* , D2(h)* #50;

(c) @D1(g), D2(h)#50, @D1(g), D2(h)* #50,
@D1(g)* , D2(h)#50, @D1(g)* , D2(h)* #50.

Proof: The commutation relations onWj0 andW0j0 in the proposition follow from Lemma
5.2 and~5.6!. Thus we need to extend the relations toHfin . Recall the definition ofF( f , n), f
Ph0 , nPN, in ~4.5!. Using Lemma 4.2 and~3.2!, it is not hard to check that for anyg, h, f j ,
Ph0 , njPN, j 51, . . . ,m,

F~g!F~h!S )
j 51

m

F~ f j ,nj !D j0→F~g!F~h!S )
j 51

m

F~ f j !D j0 , ~5.7!

asnj→`, j 51, . . . ,m. This implies that the relations in the proposition extend toHfin . h

We are ready to decompose the Hilbert spaceH5Hv , called quasi-free Hilbert space. Ac
cording to Lemma 5.1 and the CCRs in Proposition 5.1,Di(g) andDi(h)* , g, hPh0 , i 51, 2, can
be thought of as annihilation and creation operators, respectively. We remark thath°D1(h)* is
linear, butg→D2(g)* is conjugate linear. With an abuse of terminology, we callD1(h)* and
D2(h)* the creation operators for quasi-particles and anti-quasi-particles, respectively,h
Ph0 . The following is the decomposition ofH.

Theorem 5.1:The following decomposition holds:

H5 %
m,n50

`

H (m,n),

where for each m,nPNø$0%, H (m,n) is the closure of the subspace spanned by the vectors o
form

S )
j 51

m

D1~gj !* D S )
l 51

n

D2~hl !* D j0 , gj , hlPh0 .

In the case in which m50 (n50), we replace the operator in the first (second) parentheses in
above by the identity.

Proof: It follows from ~5.6! that any F(g), gPh0 , can be written as the sum of fou
Di(h)#, hPh0 , i 51, 2. Thus any„) l 51

m F(gl)…j0 , glPh0 , l 51,...,m, can be expressed as a fini
linear combination of the vectors of the form

S )
j 51

p

D1~gj8!#D S )
l 51

q

D2~hl8!#D j0 , gj8 , hl8Ph0 ,
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whereDi
#(g) is eitherDi(g) or Di* (g), i 51, 2. As a consequence of Lemma 5.1 and the CC

in Proposition 5.1, the above vector can be expressed as a finite linear combination of the
of the form

S )
j 51

m8

D1~gj8!* D S )
l 51

n8

D2~hl8!* D j0 , gj8 , hl8Ph0 , m8, n8PNø$0%.

SinceHfin is dense inH, we conclude that the set of finite linear combinations of the vectors o
above form is dense inH. Thus the decomposition follows from Lemma 5.1 and the CCRs
Proposition 5.1. h

Recall thath0 is a dense subspace of a complex Hilbert spaceh. Let F5F(h) be the sym-
metric Fock space overh, and a(g) and a* (g), gPh0 , the annihilation and creation operato
respectively. Denote byV the vacuum vector inF. Let C:h→h be an anti-unitary operator. Ifh is
a L2-space, one may consider thatC is the complex conjugation. Denote byG(C) the second
quantization ofC. See Sec. 5.2.1 of Ref. 2. LetF1 , V1 , a1(g) anda1* (g), gPh0 be the identical
copies of F, V, a(g) and a* (g), gPh0 , respectively. Notice thatG(C)a#(g)G(C)21

5a#(Cg). We write thatF25G(C)F(5F), V25V, a2(g)5a(Cg), and a2* (g)5a* (Cg), g
Ph0 . Then the following commutation relations hold: forg, hPh0 ,

@a2~g!, a2* ~h!#5~h, g!1,
~5.8!

@a2~g!, a2~h!#50.

One may compare the above relations to those in Proposition 5.1~b!.
Proposition 5.2: Let U be the operator defined by

U:H→F1^ F2 ,S )
j 51

m

D1~gj !* D S )
l 51

n

D2~hl !* D j0°S )
j 51

m

a1* ~gj !DV1^ S )
l 51

n

a2* ~hl !DV2 ,

for gj , hlPh0 , j 51, . . . ,m,l 51, . . . ,n. Then U is unitary.
Proof: SinceD1

#(g) anda1
#(g), andD2

#(g) anda2
#(g) for g Ph0 satisfy the same commutatio

relations, respectively, by Proposition 5.1 and~5.8!, the unitarity ofU follows from the fact that
a(g)V50 for anygPh0 . h

We next turn to the spectral analysis ofH̄, where H̄ is the generator of the symmetri
Markovian semigroup$Tt% t>0 associated to the Dirichlet form„Ē,D( Ē)….

Let us first describe the basic idea of the proof Theorem 3.2. Recall the definitions ofD1(g)
andD2(g) in ~5.5!. Let $ f n%,h0 be a CONS forh. By Remark 4.1 and~5.5!, we have that for any
g, hPh0 ,

Ē„W~g!j0 ,W~h!j0…5 (
n51

`

^D1~B1/2f n!W~g!j0 , D1~B1/2f n!W~h!j0&

1 (
n51

`

^D2~B1/2f n!W~g!j0 , D2~B1/2f n!W~h!j0&

5^W~g!j0 ,HW~h!j0&,

where

H5 (
n51

`

$D1* ~B1/2f n!D1~B1/2f n!1D2* ~B1/2f n!D2~B1/2f n!%, ~5.9!
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as a bilinear form onWj03Wj0 . By Proposition 5.2, one can see thatH is unitary equivalent to
sum of two second quantizations ofB. If one can show thatHfin,D(H̄), H̄5H on Hfin , and that
Hfin is a core forH̄, then one expects that the spectrum ofH̄ can be analyzed completely.

We first establish technical lemmas. Recall thatW0j0,D( Ē).
Lemma 5.3:Wj0,D( Ē)
Proof: Since (Ē,D( Ē)) is closed andW0j0,D(E), it is sufficient to show that for anyg

Ph0 ,

Ē@Wn~g!j02W~g!j0#→0, as n→`.

Notice that by Remark 4.1,

Ē@„Wn~g!2W~g!…j0#5 (
m51

` E id~st2 i /4„a~gm!…!„Wn~g!2W~g!…j0i2f ~t!dt

1 (
m51

` E id~st2 i /4„a* ~gm!…!„Wn~g!2W~g!…j0i2f ~t!dt

[An
(1)1An

(2) .

Employing the method similar to that used to derive~4.12!, it is easy to show that

An
(1)5

n

2p E E K~ t1 ,t2 ,g!e2nt1
2
e2nt2

2
dt1 dt2 ,

where

K~ t1 ,t2 ,g!5„Ait 1g, ~Ait 221!A21/2g… ^W~Ait 1g!j0 ,W~Ait 2g!j0&

1~Ait 1g, A21/2g! ^W~Ait 1g!j0 ,„W~Ait 2g!2W~g!…j0&

1~g, A21/2Ait 2g! ^W~g!j0 ,„W~g!2W~Ait 2g!…j0&

1„g, A21/2~12Ait 2!g… ^W~g!j0 ,W~g!j0&.

Notice thatK(t1 , t2 , g) is bounded uniformly with respect to (t1 , t2)PR2. Changing the vari-
ables (t185n1/2t1 , t285n1/2t2) and using the dominated convergence theorem, we conclude t

An
(1)→0, as n→`.

By the similar calculation, we get that

An
(2)→0, as n→`.

This proved the lemma completely. h

Lemma 5.4: (a)Hfin,D( Ē).
(b) Let $gn%,h0 be a CONS forh. Then forjPHfin the equality

Ē@j#5 (
n51

`

$iD1~B1/2gn!ji21iD2~B1/2gn!ji2% ~5.10!

holds.
The proof of the above lemma will be given in the Appendix.
The following theorem is one of the main results in this section.
Theorem 5.2: (a) Let H:Hfin→H be the operator defined by
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H )
p51

m

D1~gp!* )
q51

n

D2~hq!* j05 (
k51

m

)
p51

k21

D1~gp!* D1~Bgk!* )
p5k11

m

D1~gp!* )
q51

n

D2~hq!* j0

1 (
k51

n

)
p51

m

D1~gp!* )
q51

k21

D2~hq!* D2~Bhk!* )
q5k11

n

D2~hq!* j0 ,

~5.11!

for any m, nPNø$0% and gp , hqPh0 , p51, . . . ,m,q51, . . . ,n. Then the relation

Ē~h,j!5^h, Hj&

holds for anyh, jPHfin .
(b) H is essential self-adjoint and the self-adjoint extension denoted by H again is equal

Dirichlet operator H̄.
Proof: ~a! Let (E1 , Hfin) be the form given by

E1@j#5 (
k51

`

iD1~B1/2f k!ji2,

where$ f k%, f kPh0 is a CONS forh. We writeH5H11H2 , where the image underH1 ~resp.,H2)
is defined by the first~resp., second! vector on the right hand side of~5.11!. The CCRs in
Proposition 5.1~a! and Lemma 5.1 imply that

E1F S )
j 51

m

D1~gj !* D j0G5 (
k51

`

(
p51

m

(
q51

m

~B1/2gp , f k!~ f k , B1/2gq!G~g1 , ..., gm ; p,q!,

where

G~g1 , . . . , gm ; p, q!ªK )
t51

p21

D1~gt!* )
t5p11

m

D1~gt!* j0 , )
t51

q21

D1~gt!* )
t5q11

m

D1~gt!* j0L .

Using the Parserval relations and the fact that

(
p51

m

~gp , Bgq!G~g1 , . . . , gm ; p,q!

5K D1~Bgq!)
k51

m

D1~gk!* j0 , )
k51

q21

D1~gq!* )
k5q11

m

D1~gk!* j0L ,

we have that

E1F)
j 51

m

D1~gj !* j0G5 (
q51

m K )
j 51

m

D1~gj !* j0 ,)
j 51

q21

D1~gj !* D1~Bgq!* )
j 5q11

m

D1~gj !* j0L
5K )

j 51

m

D1~gj !* j0 , H1)
j 51

m

D1~gj !* j0L .

Notice thatH25H2H1 commutes withD1(g)* for anygPh0 by ~5.11!. Thus by the polarization
identity, we proved that

E1~h, j!5^h, H1j&,
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for any h, jPHfin . The method similar to that used in the above implies that

E2~h, j!5^h, H2j&,

for any h, jPHfin . This proved the part~a! of the theorem.
~b! By Proposition 5.2, we have that

UHU215dG1~B! ^ 111‹dG2~B!, ~5.12!

where eachi , i 51, 2, dG i(B) is the second quantization ofB on Fi . We remark thatdG2(B) is
anti-unitary equivalent todG1(B). By Assumption 3.1, anygPh0 is an analytic vector forB, and
so it is easy to check that„) j 51

m a* (gj )…V is an analytic vector fordG(B) for any gjPh0 , j
51, . . . ,m. Thus it follows that anyjPHfin is an analytic vector forH. SinceHHfin,Hfin by
~5.11! and sinceH5H̄ on Hfin by part~a! of the theorem, it follows from Corollary 2 of Theorem
X. 39 in Ref. 26 thatH and H̄ are essentially self-adjoint onHfin , and soH5H̄. h

Finally we are able to produce the proof of Theorem 3.2.
Proof of Theorem 3.2:~a! and ~b! follow from Theorem 5.2.
To show~c!, recall 0,A<a1, 0,a,1. SinceB5A21/22A1/2,

infs~B!>a21/22a1/2.

It follows from the above lower bound and~5.12! that zero is a simple eigenvalue with eigenvec
j0 and

inf„s~H !2$0%…>a21/22a1/2.

Thus the Markovian semigroup$Tt% t>0 is ergodic. This completes the proof of Theorem 3.2.h
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APPENDIX: PROOFS OF LEMMA 4.3 AND LEMMA 5.4

Proof of Lemma 4.3:~a! Let us prove the first bound. Recall the definition ofF( f , n), f
Ph0 , nPN, in ~4.5!. Notice that

F~ f , n!5E
0

1

WS s

n
f DF~ f !ds. ~A1!

It follows from ~4.6! and ~A1! that

isz~Fm~ f , n!!j0i25S m

p D E E S E
0

1E
0

1

F~ t1 , t2 , s1 , s2 ; f , n! ds1 ds2D
•e2m(t12 z̄)2

e2m(t22z)2
dt1 dt2 ,

where

F~ t1 , t2 , s1 , s2 ; f , n!ªvS s t1
„F~ f !…s t1S WS 2

s1

n
f D Ds t2S WS s2

n
f D Ds t2

„F~ f !…D .

We use~4.4! and the fact thats t„F( f )…5F(Ait f ), etc., to obtain that
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F~ t1 , t2 , s1 , s2 ; f , n!5vS F~Ait 1f !F~Ait 2f !WS 2
s1

n
Ait 1f DWS s2

n
Ait 2f D D

1
s1

n
Im ~Ait 1f ,Ait 2f !vS F~Ait 1f !WS 2

s1

n
Ait 1f DWS s2

n
Ait 2f D D .

Iterating~4.2! and then using~4.1!, ~3.1! and~3.2!, the above function can be calculated explicit
More precisely, let us use~4.2! iteratively in the above to obtain that

F~ t1 , t2 , s1 , s2 ; f , n!5 (
k51

7

F (k)~ t1 , t2 , s1 , s2 ; f , n!,

where

F (1)~ t1 , t2 , s1 , s2 ; f , n!5v„F~Ait 1f !F~Ait 2f !…vS WS 2
s1

n
Ait 1f DWS s2

n
Ait 2f D D ,

and appropriate expressions forF (k)(t1 , t2 , s1 , s2 ; f , n), k52,...,7. It follows from~4.1!, ~3.1!
and ~3.2! that

F (1)~ t1 , t2 , s1 , s2 ; f , n!5 1
2 ~„f , ~12A!21A2 i t 1Ait 2f …1„f , A~12A!21Ait 1A2 i t 2f …!

• expH i

2
ImS f ,

s1

n

s2

n
A2 i t 1Ait 2f D J

• expH 2
1

4 S S s2

n
Ait 22

s1

n
Ait 1D f , DS s2

n
Ait 22

s1

n
Ait 1D f D J ,

whereD5(11A)(12A)21. By Assumption 3.1,F (1) has an analytic extension onC3C in t1 and
t2 variables. From the above expression, it is easy to see that there exists a constantC1( f ,Im z)
independent ofn such that

sup
s1 ,s2P@0,1#

uF (1)~ t11 z̄, t21z, s1 , s2 ; f , n!u<C1~ f ,Im z!,

for any nPN. Using the Cauchy integral theorem and the above bound, we conclude th
contribution of F (1) in F is bounded byC1( f ,Im z). Now, it is obvious that the function
F(t1 , t2 , s1 , s2 ; f , n) has an analytic extension onC3C in t1 and t2 variables and there exist
a constantM1( f ,Im z) depending only onf Ph0 and Imz such that the bound similar to that in th
above holds. We use the Cauchy integral theorem to conclude that

isz„Fm~ f , n!…j0i25S m

p D E E S E
0

1E
0

1

F~ t11 z̄, t21z, s1 , s2 ; f , n!ds1 ds2D
•e2mt1

2
e2mt2

2
dt1 dt2<M1~ f , Im z!2.

We leave the details to the reader.
We next consider the second bound. It follows from~4.1! that

v„a* ~ f !a~g!…5„g, A~12A!21f …, ~A2!

v„a~g!a* ~ f !…5„g, ~12A!21f ….

A direct computation yields that
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isz„F~ f !…j0i25 1
2 ~v„a* ~Aiz̄f !a~Aiz̄f !…1v„a~Aizf !a* ~Aizf !…!.

Thus the bound follows from~A2! and the above result.
~b! Notice that

isz„Fn~ f , n!…j02sz„F~ f !…j0i<isz„Fn~ f , n!…j02sz„Fn~ f !…j0i

1isz„Fn~ f !…j02sz„F~ f !…j0i

[An
(1)1An

(2) . ~A3!

It follows from ~4.5! and ~A1! that

~An
(1)!25S n

p D E E S E
0

1E
0

1

G~ t1 , t2 , s1 , s2 ; f , n! ds1 ds2D •e2n(t12 z̄)2
e2n(t22z)2

dt1 dt2 ,

where

G~ t1 , t2 , s1 , s2 ; f , n!ªvS F~Ait 1f !S WS 2
s1

n
Ait 1f D21D S WS s2

n
Ait 2f D21DF~Ait 2f ! D .

~A4!

Notice that fors, tPR,

WS s

n
Ait f D215 i

s

n
F~Ait f !E

0

1

WS st

n
Ait f Ddt. ~A5!

We substitute~A5! into ~A4!. Iterating~4.2!, and then using~4.1! and~3.2!, the function given in
~A4! can be calculated explicitly. Using Assumption 3.1, it can be proved
G(t1 , t2 , s1 , s2 ; f , n) has an analytic extension onC3C in the t1 andt2 variables. By using the
method similar to that used in the proof of the part~a! of the lemma, it is not hard to check tha
there exists constantC2( f , Im z) such that

sup
s1 ,s2P@0,1#

uG~ t11 z̄, t21z, s1 , s2 ; f , n!u<
1

n2 C2~ f , Im z!.

It follows from the Cauchy integral theorem and the above bound that

~An
(1)!2→0, as n→`.

We leave again the details to the reader.
Next, considerAn

(2) defined in~A3!. Notice that

~An
(2)!25S n

p D E E G̃~ t1 , t2 ; f !e2n(t12 z̄)2
e2n(t22z)2

dt1 dt2 ,

where

G̃~ t1 , t2 ; f !5v„„F~Ait 1f !2s z̄~F~ f !!…~F~Ait 2f !2sz„F~ f !…!….

We use~A2! to obtain that
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G̃~ t1 ,t2 ; f !5 1
2 v„$a~Ait 1f !2a~Aizf !%$a* ~Ait 2f !2a* ~Aizf !%…

1 1
2 v„$a* ~Ait 1f !2a* ~Aiz̄f !%$a~Ait 2f !2a~Aiz̄f !%…

5 1
2 „~Ait 12Aiz! f , ~12A!21~Ait 22Aiz! f …

1 1
2 „~Ait 22Aiz̄! f , A~12A!21~Ait 12Aiz̄! f ….

ThusG̃(t1 ,tt2 ; f ) has an analytic extension onC3C in the t1 and t2 variables and

G̃~ t11 z̄, t21z; f !5 1
2 „f , ~12A!21~A2 i t 121!~Ait 221!A2 i z̄Aizf …

1 1
2 „f , A~12A!21~Ait 121!~A2 i t 221!A2 izAiz̄f …. ~A6!

We use the Cauchy integral theorem to get

~An
(2)!25S n

p D E E G̃~ t11 z̄, t21z; f !e2nt1
2
e2nt2

2
dt1dt2 .

By ~A6!, G̃(t11 z̄, t21z; f ) is bounded uniformly with respect to (t1 , t2)PR2. Changing the
variables (t185n1/2t1 and t285n1/2t2) and using the dominated convergence theorem, we conc
that

An
(2)→0, as n→`.

This proved the part~b! of the lemma completely. h

Proof of Lemma 5.4:~a! Recall the definition ofF( f , n) in ~4.5! for any f Ph0 andnPN. For
given ~fixed! mPNø$0% and hlPh0 , l 51, . . . ,m we will use the following abbreviated nota
tions:

F l~n!ªF~hl , n!, l 51, . . . ,m,

F lªF~hl !, l 51, . . . ,m, ~A7!

j~n!ªS )
l 51

m

F l~n!D j0 , and jªS )
l 51

m

F l D j0 .

Notice thatj(n)PWj0 , nPN andjPHfin . It is not hard to show thatj(n)→j asn→`. See the
method used below. We will show thatĒ@j(n)2j#→0 asn→`. SinceĒ is closed, this implies
that Hfin,D( Ē) and

Ē@j#5 lim
n→`

Ē@j~n!#. ~A8!

By Remark 4.1 and~5.5!, the relation~5.10! holds forjPWj0 . Let j andj(n), nPN be defined
as in ~A7!. Notice that

j~n!2j5 (
p51

m S )
l 51

p21

F l~n!D „Fp~n!2Fp…S )
l 5p11

m

F l D j0 .

We use the Schwarz inequality twice to obtain that
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iD1~B1/2gk!„j~n!2j…i2<m(
p51

m ID1~B1/2gk!S )
l 51

p21

F l~n!D „Fp~n!2Fp…S )
l 5p11

m

F l D j0I 2

.

~A9!

Recall thatD1(B1/2gk)5a(A21/4gk)2 j (s2 i /2„a(A21/4gk)…). It follows from the CCRs and
Lemma 5.1 that

D1~B1/2gk!S )
l 51

p21

F l~n!D „Fp~n!2Fp…S )
l 5p11

m

F l D j05
1

&
(
q51

m

~gk , A2 1/4hq!C (m)~p, q; n!,

~A10!

where

C (m)~p, q; n!ªS )
l 51

q21

F l~n!D WS 1

n
hqD S )

l 5q11

p21

F l~n!D •„Fp~n!2Fp…S )
l 5p11

m

F l D j0 ,

1<q<p21,

C (m)~p, q; n!ªS )
l 51

p21

F l~n!D S WS 1

n
hpD21D S )

l 5p11

m

F l D j0 , q5p,

C (m)~p, q; n!ªS )
l 51

p21

F l~n!D „Fp~n!2Fp…S )
l 5p11

q21

F l~n!D •S )
l 5q11

m

F l D j0 , p11<q<m.

We use the Schwarz inequality twice again to~A10! and substitute the result into~A9! to conclude
that

iD1~B1/2gk!~j~n!2j!i2<
1

2
m2(

p51

m

(
q51

m

u~gk , A2 1/4hq!u2iC (m)~p, q; n!i2.

Using the Parserval relation, we obtain that

(
k51

`

iD1~B1/2gk!„j~n!2j…i2<
1

2
m2(

p51

m

(
q51

m

iA2 1/4hqi2iC (m)~p, q; n!i2. ~A11!

Iterating ~4.2!, iC (m)(p, q; n)i2 can be calculated explicitly for anyp, q andn. One notes that
eachC (m)(p, q; n) contains either„Fp(n)2Fp… or else„W(1/n hp)21…, which implies that

iC (m)~p, q; n!i2→0, as n→`,

for any p, q. Thus it follows from~A11! that

(
k51

`

iD1~B1/2gk!~j~n!2j!i2→0, as n→`.

The method similar to that used in the above implies that

(
k51

`

iD2~B1/2gk!„j~n!2j…i2→0, as n→`.

This proved part~a! of this lemma.
~b! This follows from ~5.9! and ~A8!. h
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I. INTRODUCTION

In this paper we study representation theory of some infinite rank subalgebras of th
conformal algebragc1 associated to the Lie algebraD of differential operators on the circle
Recall thatgc15C@],x#, with l-bracket given by~see Refs. 3 and 7!

@a~],x!lb~],x!#5a~2l,l1]1x!b~l1],x!2b~l1],2l1x!a~2l,x!.

Also recall that theVirasoro conformal algebra~which is particularly important in physics! is
defined as the freeC@]#-module of rank 1 generated by an elementL, with l-bracket defined by

@LlL#5~2l1]!L,

and extended toC@]#L using sesquilinearity. Observe that all Virasoro subalgebras ofgc1 are
generated by

L5x1a] , aPC.

The complete list of infinite rank proper subalgebras ofgc1 that contain a Virasoro subalgebr
is ~see Ref. 3 and Remark 3.10 in Ref. 5!:

gc1, x5x C@],x#,

oc15$a~],x!2a~],2]2x! u a~],x!PC@],x#%,

spc15$x@a~],x!1a~],2]2x!# u a~],x!PC@],x#%,

where the Virasoro element isx1a], with a50,1
2,0, respectively. They are the most importa

gc1-subalgebras from the point of view of physics.
In the present paper we classify all finite growth representations of all infinite rank confo

subalgebras ofgc1 that contain a Virasoro subalgebra.

a!Electronic mail: boyallia@mate.uncor.edu
b!Electronic mail: kac@math.mit.edu
c!Electronic mail: liberati@mate.uncor.edu
7540022-2488/2003/44(2)/754/17/$20.00 © 2003 American Institute of Physics
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This problem reduces to the study of finite growth representations on the correspo
extended annihilation algebras, which are certain subalgebras ofD ~see Ref. 7!. The main tools
used here are the recent results~Refs. 1, 4, 9–11! on the classification of quasifinite highest weig
modules over the central extension ofD and some of its important subalgebras.

The paper is organized as follows. In Sec. II, we describe the infinite rank Lie algebrag,̂`
[m]

and its classical subalgebras, and discuss their representation theory that will be needed.
III–VI, we obtain the classification of all finite growth representations ofgc1 , gc1, x , oc1 , and
spc1 respectively.

II. LIE ALGEBRA g ø̂`
†m ‡ AND ITS CLASSICAL SUBALGEBRAS

A. Lie algebra g ø̂`
†m ‡

Denote byC1` the set of all sequencesl5(l1 ,l2 ,...) for which all but a finite number of
l i ’s are zero, and letd(l) denote the number of nonzerol i ’s andulu denote their sum. Denote b
Par1 the subset ofC1` consisting of nonincreasing sequences of~non-negative! integers.

Denote byg,1` the Lie algebra of all matrices (ai j ) i , j 51
1` with a finite number of nonzero

entriesai j PC. Given lPC1`, there exists a unique irreducibleg,1`-moduleL1(l), also de-
noted byL(g,1` ;l), which admits a nonzero vectorvl such that

Ei j vl50 for i , j and Eii vl5l ivl . ~2.1!

Here and furtherEi j denotes, as usual, the matrix whose (i , j )-entry is 1 and all other entries ar
0. EachL1(l) has a uniqueZ1-gradation.L1(l)5 % j PZ1

L1(l) j , called itsprincipal grada-

tion, which satisfies the properties

L1~l!05Cvl , Ei j L
1~l!k,L1~l!k1 i 2 j .

SincelPC1`, it is easy to see that dimL1(l) j,`, hence we can define theq-character

chq L1~l!5 (
j PZ1

~dimL1~l! j !q
j .

For lPPar1, let d5d(l) and l̄5(l1 ,...,ld). Let g,d be the Lie algebra of alld3d

matrices (ai j ) i , j 51
d ; it may be viewed as a subalgebra ofg,1` in a natural way. Denote byL̄1(l̄)

the ~irreducible! g,d-submodule ofL1(l) generated byvl . It is, of course, isomorphic to the
finite-dimensional irreducibleg,d-module associated tol̄, so that itsq-character is a~well-
known! polynomial inq.

Lemma 2.1: LetlPPar1,d5d(l). Then

chq L1~l!5chq L̄1~ l̄ !Y )
j 51

d

~12qj !q
ld2 j 11 ,

where (12a)q
m5(12a)(12qa)¯(12qm21a).

Proof: Recall the well-known formula~see Ref. 6!:

chq L1~l!5 )
a.0

~12q^l1r,a&!/~12q^r,a&! . ~2.2!

Here the product is taken over the set of all positive coroots ofg,1` , which are all elements
Eii 2Ej j with i , j , ^l,Eii &5l i and ^r,Eii &52 i . Of course, a similar formula holds fo
chqL̄1(l̄); it is a part of the product~2.2! corresponding toi , j <d.
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It is also clear that the factors of~2.2! corresponding tod, i , j are equal to 1, and it is eas
to see that the product over all pairsi , j with fixed i<d and all j .d is equal to 1/(1
2qd2 i 11)q

l i .
h

Recall that, given a vector spaceV with an increasing filtration by finite-dimensional su
spacesV[ j ] , thegrowth of V is defined by

growthV5 lim
j→1`

~ log dimV[ j ] !/ log j .

We define the growth ofL1(l) using its filtration L1(l) [ j ]5 % i< jL
1(l) i associated to the

principal gradation.
Theorem 2.2: (a) If lPPar1, then

growthL1~l!5ulu .

(b) If lPC1`\Par1, thengrowthL1(l)5`.
Proof: It follows from Lemma 2.1 that forlPPar1, growthL1(l) is equal to the growth of

the polynomial algebra on generators of degree 1,2,...,ls ; 2,3,...,ls2111; ...; s,s11,...,l11s
21. The total number of these generators isulu, and since growth of a polynomial algebra
independent of the degrees of generators,~a! is proved.

Let now lPC1`\Par1. Thenlk2lk11¹Z1 for somek. But thenEk11,k
N vlÞ0 for eachN

PZ1 . Looking at the subalgebra ofg,1` spanned by allEi j with i , j >k11, we conclude from
~a! that

growthL1~l!>N1 (
i>k11

l i .

This proves~b!. h

In a similar fashion one may consider the Lie algebrag,2` of all matrices (ai j ) i , j 50
2` with a

finite number of nonzero entries and the irreducibleg,2`-modulesL2(l), also denoted by
L(g,2` ;l), parametrized by the setC2` of sequencesm5(...,m21 ,m0) with finitely many
nonzero members. Results similar to Lemma 2.1 and Theorem 2.2 hold for the subset Par2,C2`

consisting of nonincreasing sequences of~nonpositive! integers.
Let g,̃` denote the Lie algebra of all matrices (ai j ) i , j PZ such thatai j 50 if u i 2 j u@0. Denote

by g,̃1` ~respectively,g,̃2`) the subalgebra ofg,̃` consisting of matrices withai j 50 for i or
j <0 ~respectively,i or j .0). Note that these two subalgebras commute and thatg,̃6` contains
g,6` as a subalgebra. Note also that theg,6`-modulesL6(l) extend uniquely tog,̃6` .

The Lie algebrag,̃` has a well-known central extensiong,̂`5g,̃1CC by C defined by the
cocycle

a~A,B!5tr@J,A#B , where J5(
i<0

Eii . ~2.3!

The restriction of this cocycle tog,̃1` and tog,̃2` is zero.
We will also need briefly the Lie algebrag,̂`

[m] defined for eachmPZ1 by replacingC by
Rm5C@u#/(um11). That is,g,̂`

[m]5g,̃`
[m]

% Rm is the central extension ofg,̃`
[m] by the 2-cocycle

~2.3! with values inRm , whereg,̃`
[m] is the Lie algebra of infinite matrices with finitely man

nonzero diagonals with entries inRm .
The principalZ-gradation of all the above Lie algebras is defined by letting

degEi j 5 i 2 j ~2.4!
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~in the case ofg,̂`
[m] we also let degRm50). This gives us a triangular decomposition

g,̂`
[m]5~g,̂`

[m] !1 % ~g,̂`
[m] !0% ~g,̂`

[m] !2 ,

where

~g,̂`
[m] !65 % j PN~g,̂`

[m] !6 j .

The Lie algebrag,̂` has a family of modulesL(g,̂` ;l,c), parametrized bylPC`

5$(l i) i PZu all but finitely many ofl i are 0% andcPC, defined by~2.1! andCvl5cvl . Similarly,
g,̂`

[m] has a family of modulesL(g,̂`
[m] ;lW ,cW ), wherelW P(C`)m11, cWPCm11, defined in a similar

fashion. That is, the highest weightg,̂`
[m] -module L(g,̂`

[m] ;L), with highest weight L

P(g,̂`
[m] )0* that is determined by itslabelslW i

( j )5L(ujEii ) and thecentral charges cW
j5L(uj ).

The gradation~2.4! is obviously consistent with the principal gradation ofL6(l) and of
L(g,̂` ;l,c).

B. Lie algebras b `
†m ‡ and d `

†m ‡

The Lie algebrag,̃`
[m] acts on the vector spaceRm@ t,t21# via the usual formula

Ei j vk5d j ,kv i ,

wherev i5t2 i , i PZ is anRm basis. Now consider the followingC-bilinear forms on this space:

B~umv i ,unv j !5um~2un!d i ,2 j ,

D~umv i ,unv j !5um~2un!d i ,12 j .

Denote byb̄`
[m] ~respectively,d̄`

[m] ) the Lie subalgebra ofg̃,`
[m] which preserves the bilinear form

B ~respectively,D). We have

b̄`
[m]5$~ai j ~u!! i , j PZPg,̃`

[m] u ai j ~u!52a2 j ,2 i~2u! %,

d̄`
[m]5$~ai j ~u!! i , j PZPg,̃`

[m] u ai j ~u!52a12 j ,12 i~u! % .

Denote byb`
[m]5b̄`

[m]
% Rm ~respectively,d`

[m]5d̄`
[m]

% Rm) the central extension ofb̄`
[m] ~respec-

tively, d̄`
[m] ) given by the 2-cocycle defined ing,̃`

[m] . Both subalgebras inherit the formg,̂`
[m] the

principal Z-gradation and the triangular decomposition,~see Refs. 11 and 6 for notation!

b`
[m]5 % j PZ~b`

[m] ! j , b`
[m]5~b`

[m] !1 % ~b`
[m] !0% ~b`

[m] !2 ,

d`
[m]5 % j PZ~d`

[m] ! j , d`
[m]5~d`

[m] !1 % ~d`
[m] !0% ~d`

[m] !2 .

In particular whenm50, we have the usual Lie subalgebras ofg,̂` , denoted byb` ~respec-
tively, d`).

Denote byL(b`
[m] ;l) @respectively,L(d`

[m] ;l)] the highest weight module overb`
[m] ~respec-

tively, d`
[m] ) with highest weightlP(b`

[m] )0* @respectivelylP(d`
[m] )0* ] parametrized byblW

P(C`)m11, cWPCm11, with

cW i5l~ui !,

blW j
( i )5l~ui Ej , j2~2u! i E2 j ,2 j !,
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@respectively,dlW P(C`)m11, with dlW j
( i )5l(ui Ej , j2(2u) i E12 j ,12 j )]. The superscriptsb and d

here meanB andD type, respectively. TheblW j
( i ) ~respectively,dlW j

( i )) are called the labels andcW j

the central charges ofL(b`
[m] ;l) @respectively,L(d`

[m] ;l)].
All these modules will appear in Sec. V. Now, we are interested in representation theo

b` .
The set of simple coroots ofb` , can be described as follows@cf. Ref. 11#:

P ˇ5$a0ˇ52~E21,212E1,1!12C,

a i ˇ5Ei ,i2Ei 11,i 112E2 i ,2 i1E212 i ,212 i , i PN% .

The set of roots is

D5$6«0 , 6« i , 6« i6« j , iÞ j , i , j PN% .

The set of positive coroots is

D1ˇ 5$a i ˇ1a i 11ˇ1¯1a j ˇ , 0< i< j % ø$a0ˇ12a1ˇ1¯12a i ˇ1a i 11ˇ1¯1a j 21ˇ , 1< i , j % .

The set of simple roots

P5$a052«1 , a i5« i2« i 11 , i PN% .

Here « i are viewed restricted to the restricted dual of the Cartan subalgebra ofb` , so that
« i52«2 i . Given lP(b`)0* , the labels and central charge are simply~in this case, we skip the
superscriptb)

l i5l~Ei ,i2E2 i ,2 i !, i .0 , c5l~C!.

So thatl(a0ˇ)52c22l1 and l(a i ˇ)5l i2l i 11 for i PN. Denote byL i the i th fundamental
weight of b` , namelyL i(a j ˇ )5d i , j .

Let P15$lP(b`)0* u ^l,a i ˇ&PZ1 ,for all i PZ1% denote the set of dominant integral weigh
of b` . Given lPP1 , we havel5Ln1

1Ln2
1¯1Lnk

1hL0 , n1>n2>¯>nk>1, hPZ1 ,
and the moduleL(b` ;l) has central chargec5k1h/2. Observe that the conjugate of the Youn
diagram corresponding to the partition (n1 ,n2 ,...,nk) is (l1 ,...,ln1

), andl i50 for i .n1 . Note
that n15n1(l)5max$iPN u ^l,a

i
&Þ0%. Observe thatso(2n111) may be viewed as a subalge

bra of b` in a natural way, whose set of simple roots is$2«1 ,«12«2 , . . . ,«n1212«n1
%. Denote

by l̄ the dominant integral weight ofso(2n111) given byl̄(2(E21,212E1,1))52(c2l1) and
l̄(Ei ,i2Ei 11,i 112E2 i ,2 i1E212 i ,212 i)5l i2l i 11 for 1< i ,n1 . Denote byL̄(l̄) the ~irreduc-
ible! so(2n111)-submodule ofL(b` ;l) generated by its highest weight vector. It is, of cour
isomorphic to the finite-dimensional irreducibleso(2n111)-module associated tol̄, so that its
q-character is a~well-known! polynomial inq.

Lemma 2.3: LetlPP1 ,n15n1(l). Then

chq L~b` ;l!5chq L̄~ l̄ !)
j 51

n1 1

~12qj !
q

ln12 j 11 )i 51

n1 1

~12qn11 i !q
2c2l i )n1< i

1

~12q2i 11!q
2c ,

where(12a)q
m5(12a)(12qa)¯(12qm21a).

Proof: The proof is completely similar to the one of Lemma 2.1, using the data introd
above~cf. proof of Proposition 1.1 in Ref. 11!.

h

Theorem 2.4:All nontrivial modules L(b`
[m] ;l) have infinite growth.
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Proof: It is enough to consider the casem50. GivenlP(b`)0* , we look at the subalgebra o
b` isomorphic tog,1` spanned by allEi , j2E2 j ,2 i with i , j >1, and by Theorem 2.2, we con
clude thatL(b` ;l) has infinite growth ifl i2l i 11¹Z1 for somei>1.

Let us assumel i2l i 11PZ1 for all i>1. If 2c22l1¹Z1 , then (E1,02E0,21)NvlÞ0 for
eachNPZ1 . Looking at the subalgebra ofb` isomorphic tog,1` previously defined, we con
clude from Theorem 2.2 that

growthL~b` ;l!>N1(
i>1

l i .

If 2c22l1PZ1 , then by the same argument in the proof of Theorem 2.2, and looking at the
factor in Lemma 2.3, we conclude thatL(b` ;l) has the same growth as the polynomial alge
in infinitely many generators, finishing the proof.

h

C. Lie algebra c `
†m ‡

As before, we consider the vector spaceRm@ t,t21#, and take theRm-basisv i5t2 i , i PZ.
Denote byc̄`

[m] the Lie subalgebra ofg,̃`
[m] which preserves the bilinear form

C~umv i ,unv j !5um~2un!~21! i d i ,12 j . ~2.5!

We have

c̄`
[m]5$~ai j ~u!! i , j PZPg,̃`

[m] u ai j ~u!5~21! i 1 j 11a12 j ,12 i~2u! % .

Denote byc`
[m]5 c̄`

[m]
% Rm the central extension ofc̄`

[m] given by the 2-cocycle defined ing,̃`
[m] .

This subalgebra inherits the formg,̂`
[m] of the principalZ-gradation and the triangular decomp

sition ~see Refs. 11 and 6 for notation!

c`
[m]5 % j PZ~c`

[m] ! j , c`
[m]5~c`

[m] !1 % ~c`
[m] !0% ~c`

[m] !2 .

In particular whenm50, we have the usual Lie subalgebra ofg,̂` , denoted byc` ~see Ref.
6!.

Denote byL(c`
[m] ;l) the highest weight module overc`

[m] with highest weightlP(c`
[m] )0*

parametrized by its labelsclW P(C`)m11 and central chargescWPCm11, with

cW i5l~ui !,

clW j
( i )5l~ui Ej , j2~2u! i E12 j ,12 j !.

Now, we are interested in representation theory ofc` .
The set of simple coroots ofc` , denoted byP ˇ, can be described as follows~cf. Ref. 11!:

P ˇ5$a0ˇ 5E0,02E1,11C,

a i ˇ5Ei ,i2Ei 11,i 111E2 i ,2 i2E12 i ,12 i , i PN% .

The set of roots is

D5$62« i , 6« i6« j , iÞ j , i , j PN% .

The set of positive coroots is

D1ˇ5$a i ˇ1a i 11ˇ1¯1a j ˇ , 0< i< j % ø$2a0ˇ12a1ˇ1¯12a i ˇ1a i 11ˇ1¯1a j ˇ , 0< i , j % .
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The set of simple roots is

P5$a0522«1 , a i5« i2« i 11 , i PN% .

Here « i are viewed restricted to the restricted dual of the Cartan subalgebra ofc` , so that« i

52«12 i . Given lP(c`)0* , the labels and central charge are simply~in this case, we skip the
superscriptc):

l j5l~Ej , j2E12 j ,12 j !, j PN, c5l~C!.

So thatl(a0ˇ)52l11c and l(a i ˇ)5l i2l i 11 for i PN. Denote byL i the i th fundamental
weight of b` , namelyL i(a j ˇ)5d i , j .

Let P15$lP(c`)0* u ^l,a i ˇ &PZ1 ,for all i PZ1% denote the set of dominant integral weigh
of c` . Given lPP1 , we havel5Ln1

1Ln2
1¯1Lnk

1hL0 , n1>n2>¯>nk>1, hPZ1 ,
and the moduleL(c` ,l) has central chargec5k1h. Observe that the conjugate of the Youn
diagram corresponding to the partition (n1 ,n2 ,...,nk) is (l1 ,...,ln1

), andl i50 for i .n1 . Note
thatn15n1(l)5max$iPN u ^l,a

i
&Þ0%. Observe thatsp(2n1) may be viewed as a subalgebra

c` in a natural way, whose set of simple roots is$22«1 ,«12«2 , . . . ,«n1212«n1
%. Denote byl̄

the dominant integral weight ofsp(2n1) given by l̄((E0,02E1,1))5c2l1 and l̄(Ei ,i2Ei 11,i 11

1E2 i ,2 i2E12 i ,12 i)5l i2l i 11 for 1< i ,n1 . Denote by L̄(l̄) the ~irreducible!
sp(2n1)-submodule ofL(c` ,l) generated by its highest weight vector. It is, of course, isom
phic to the finite-dimensional irreduciblesp(2n1)-module associated tol̄, so that itsq-character
is a ~well-known! polynomial inq.

Lemma 2.5: LetlPP1 ,n15n1(l). Then

chq L~c` ;l!5chq L̄~ l̄ !)
i 51

n1 1

~12qj !
q

ln12 j 11
.)
i 51

n1 1

~12qn11 i 13!q
2c2l i 11

3
1

~12qn111!q
c )

n1< i

1

~12q2i 13!q
2c ,

where(12a)q
m5(12a)(12qa)¯(12qm21a).

Proof: The proof is completely similar to the one of Lemma 2.1, using the data introd
above~cf. proof of Proposition 1.1 in Ref. 11!.

h

Theorem 2.6:All nontrivial modules L(c`
[m] ;l) have infinite growth.

Proof: It is enough to consider the casem50. GivenlP(c`)0* , we look at the subalgebra o
c` isomorphic tog,1` spanned by allEi , j2E12 j ,12 i with i , j >1, and by Theorem 2.2, we
conclude thatL(c` ,l) has infinite growth ifl i2l i 11¹Z1 for somei>1.

Let us assumel i2l i 11PZ1 for all i>1. If c2l1¹Z1 , then (E1,0)
NvlÞ0 for eachN

PZ1 . Looking at the subalgebra ofc` isomorphic tog,1` previously defined, we conclude from
Theorem 2.2 that

growthL~c` ,l!>N1(
i>1

l i .

If c2l1PZ1 , then by the same argument in the proof of Theorem 2.2, and looking at the
factor in Lemma 2.3, we conclude thatL(c` ,l) has the same growth as the polynomial algebra
infinitely many generators, finishing the proof.

h
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III. IRREDUCIBLE FINITE GROWTH gc 1-MODULES

We are interested in representation theory of the Lie algebraD 2 of regular differential op-
erators onC. It consists of linear combinations of differential operators of the formf (t)
3(d/dt)m, wheref is a polynomial andmPZ1 . In particular,D5t (d/dt) PD 2. The principal
Z-gradationD 25 % j PZD j

2 is defined by letting

degt521 deg
d

dt
51.

Given a sequence of complex numbersD5(D0 ,D1 ,...) wedefine the highest weight modul
L(D;D 2) over D 2 as the~unique! irreducible module that has a nonzero vectorvD with the
following properties:

D j
2vD50 for j ,0, DnvD5DnvD for nPZ1 .

The principal gradation ofD 2 induces the principal gradationL(D;D 2)5 % j PZ1
L j such that

L05CvD . The moduleL(D;D 2) is calledquasifiniteif dim L j,` for all j PZ1 .
Quasifinite modules overD 2 can be constructed as follows. Consider the natural actio

D 2 onC@ t,t21# and choose the basisv j5t2 j ( j PZ) of C@ t,t21#. This gives an embedding ofD 2

in g,̃` . SinceC@ t# is D 2-invariant, we getD 2-modulesC@ t,t21#/C@ t# andC@ t#, which gives us
an embedding ofD 2 in g,̃1` and g,̃2` , respectively, hence an embedding ofD 2 in g,̃1`

% g,̃2` . All these embeddings respect the principal gradations. Now takel6PC6` and consider
the g,̃1` % g,̃2`-module L1(l1) ^ L2(l2). The same argument as in Ref. 10, gives us
following.

Lemma 3.1: When restricted toD 2, the module L1(l1) ^ L2(l2) remains irreducible.
It follows immediately thatL1(l1) ^ L2(l2) is an irreducible highest weight module ov

D 2, which is obviously quasifinite. It is easy to see that we have

Dn5(
j >1

~2 j !nl j
11(

j <0
~2 j !nl j

2 ,

so that

D~x!ª(
n>0

Dnxn/n! 5(
j >1

l j
1e2 jx1(

j <0
l j

2e2 jx .

It is also clear that forl6PPar6 we have~cf. Theorem 1a!:

growthL1~l1! ^ L2~l2!5ul1u1ul2u .

We shall prove the following theorem.
Theorem 3.2:TheD 2-modules L1(l1) ^ L2(l2), wherel6PPar6, exhaust all quasifinite

irreducible highest weightD 2-modules that have finite growth.
Let D denote the Lie algebra of all regular differential operators onC* . The Lie algebraD is

the linear span of differential operatorsf (t)(d/dt)k, wheref (t)PC@ t,t21# andkPZ1 , or, equiva-
lently of operatorstkf (D), where f (D)PC@D# andkPZ. Obviously,D 2 is a subalgebra ofD,
and the principal gradation extends fromD 2 to D in the obvious way.

The basic idea of the proof of Theorem 3.2 is the same as in Ref. 10: to reduce the pr
to the well developed~in Ref. 10! representation theory of the universal central extensionD̂ of D.
Recall that the central extensionD̂5D1CC is defined by the cocycle10

CS f ~ t !S d

dtD
m

, g~ t !S d

dtD
nD5Res0 dt f (n11)~ t !g(m)~ t ! . ~3.1!
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The principal gradation ofD lifts to D̂ by letting degC50. Note also that the restriction of th
cocycleC to D 2 is zero.

For eachsPC one defines a Lie algebra homomorphismws :D→g,̃` ~via the action ofD on
tsC@ t,t21#) by

ws~ tkf ~D !!5(
j PZ

f ~2 j 1s!Ej 2k, j . ~3.2!

This homomorphism lifts to a homomorphism of central extensionŵs :D̂→g,̂` by

ŵs~ tkf ~D !!5ws~ tkf ~D !!if kÞ0 ,
~3.3!

ŵs~exD !5ws~exD!2
esx21

ex21
,ŵs~C!5C .

More generally, for eachmPZ1 one defines a homomorphismws
[m] :D→g,̃`

[m] by

ws
[m]~ tkf ~D !!5(

j PZ
f ~2 j 1s1u!Ej 2k, j5(

i 50

m

(
j PZ

f ( i )~2 j 1s!

i
uiEj 2k, j , ~3.4!

which lifts to ŵs
[m] :D̂→g,̂`

[m] in a similar way. One of the main results of Ref. 10 is the followin
Lemma 3.3: For each i51,...,r , pick a collection miPZ1 , siPC, lW iP(C`)mi11, cW i

PCmi11, such that si2sj¹Z for iÞ j . Then the% i 51
r g,̂`

[mi ] -module ^ i 51
r L [mi ] (lW i ,cW i) remains

irreducible when restricted toD̂ via the embedding% i 51
r ŵsi

[mi ] :D̂→ % i 51
r g,̂`

[mi ] . All irreducible

quasifinite highest weightD̂-modules are obtained in this way.
Proof of Theorem 3.2:Note that forj >1 one has

D j
25$t2 j f ~D !u f ~0!5 f ~1!5¯5 f ~ j 21!50% . ~3.5!

Hence D j
2 has finite codimension inDj and therefore the quasifiniteness of aD 2-module

L(D;D 2) implies the quasifiniteness of any of theD̂-modulesL(D,c;D̂). Due to Lemma 3.3,
L(D,c;D̂) is a tensor product of theg,̂`

[m] -modulesL [m] (lW ,cW ) on whichD̂ acts via the embedding
ŵs

[m] defined by~3.2! and ~3.3!.
It is clear from Theorem 2.2 that all non-trivial modulesL [m] (lW i ,cW i) have infinite growth~by

choosing an appropriate subalgebra isomorphic tog,1` in g,`).
Recall that for any quasifiniteD̂-module one can extend the action ofD̂j for j Þ0 to D̂j

O ,
whereO is the algebra of all holomorphic functions onC,10 in other words, in~3.2! and~3.3! one
can take anyf PO if j Þ0. The same holds forD 2, except that forj >1, f must obey conditions
in ~3.5!. We apply this to theD̂-moduleL(g,̂`

[m] ;lW ,cW ) on whichD̂ acts viaŵs
[m] .

Choosingf PO such that for allj PZ:

f ~2 j 1s!5d r j , f ( i )~2 j 1s!50 if i 51,...,m ,

we see from~3.2! that all operatorsEr 11,r lie in the image ofŵs
[m] (D 2O), except forE1,0 when

s50 @here we use~3.5! for j 51]. Hence, when restricted toD 2, the moduleL [m] (lW ,cW ) remains
irreducible, provided thatsÞ0. Thus, ifL(D;D 2) has finite growth, thenL(D;D̂)5L [m] (lW ,cW ) on
which D̂ acts via the embeddingŵ0

[m] .
Choosing f PO to vanish in all j PZ up to mth derivative except fori th derivative (0, i

<m) at j 52r , we see that all operatorsuiEr 11,r with 0, i<m lie in the image ofŵs
[m] (D 2O).
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Suppose that themth coordinate oflW r is nonzero, and thatm.0. Thenvª(umEr 11,r)
NvlW

Þ0 for all N.0. But

Err v5~2N1l r
0!v, Er 11,r 11v5~N1l r 11

0 !v.

Therefore, restricting to the subalgebra ofg,` consisting of matrices (ai j ) i , j <r or (ai j ) i , j >r 11 we
conclude by Theorem 2.2, thatL(g,̂`

[m] ;lW ,cW ) is either trivial or is of infinite growth.
Thus, the only possibility that remains iss5m50. As has been already shown, the image

ŵs(D 2O) contains all Er 11,r except for E1,0, hence it contains all operators fromg,2`

% g,1` . Therefore, by Theorem 2.2, the highest weight of a finite growthD 2-module must be
the same as one of theD 2-modulesL1(l1) ^ L2(l2) with l6PPar6.

h

Given two partitionsl6PPar6, we denote byL(l1,l2) the D 2-module, obtained by re-
striction via w0 from the g,̃1` % g,̃2`-moduleL1(l1) ^ L2(l2). Now we shall construct the
D 2-modulesL(l1,l2) explicitly.

Consider theD 2-moduleC@ t,t21#. ThenC@ t# is its maximal submodule~which is irreduc-
ible!. Hence theD 2-module

VªC@ t,t21#/C@ t# ~3.6!

is irreducible. It is clear that this is the highest weightD 2-module of growth 1 with a highes
weight vectort211C@ t#. It is immediate to deduce thatV is isomorphic toL(v1,0) wherev1

5(1,0,...)PPar1.
Likewise, theD 2-moduleC@ t#* 5 % j PZ1

(Ct j )* is an irreducible highest weight module o
growth 1 with a highest weight vector 1* , hence it is isomorphic toL(0,v21), where v21

5(...,0,21)PPar2. We denote thisD 2-module byV8.
As in the Schur–Weyl theory, theD 2-moduleTM(V) ^ TN(V8) has a natural decompositio

as (D 2,SM3SN)-modules:

TM~V! ^ TN~V8!5 %

l6PPar6

ul1u5M
ul2u5N

~Vl1 ^ Vl28 ! ^ ~Ul1 ^ Ul2!,

where Ul1 (respectively,l2) denotes the irreducibleSM (respectively,N)-module corresponding to th
partition l1 ~respectively,l2).

Lemma 3.4: TheD 2-modules Vl1 ^ Vl28 are irreducible.
Proof: As in the proof of Theorem 3.2, we extend the action ofD 2 on Vl1 ^ Vl28 to D j

2O for
each j Þ0, to obtain that anyD 2-submodule ofVl1 ^ Vl28 is a submodule overg,1` % g,2` .
But, by Schur–Weyl theory, theg,1` % g,2`-moduleVl1 ^ Vl28 is irreducible, which completes
the proof. h

Thus, we have proved the following.
Theorem 3.5: The D 2-module L(l1,l2) is isomorphic to Vl1 ^ Vl28 for any pair l6

PPar6.
Remark: Considering l5(l2,l1)PC` we may say that irreducible highest weig

D 2-modules of finite growth are parametrized by nonincreasing sequences of integers (l j ) j PZ
PC` with the exception thatl0<l1 . Equivalently, lettingmi5l i2l i 11 we may say that these
modules are parametrized by sequences of non-negative integers (mi) i PZ\$0% , all but finite num-
bers of which are zero.

Recall that the extended annihilation algebra Lie2(gc1) for gc1 is isomorphic to the direct
sum of the Lie algebraD 2 and the one-dimensional Lie algebraC@]1 (d/dt)# and that conformal
modules for a Lie conformal algebra coincide with the conformal modules over the asso
extended annihilation algebra.7
                                                                                                                



f

ation
s in

proofs.

e

g

er

roblem

764 J. Math. Phys., Vol. 44, No. 2, February 2003 Boyallian, Kac, and Liberati

                    
Given a moduleM over a Lie conformal algebraR andaPC, we may construct thea-twisted
moduleMa by replacing] by ]1a in the formulas for action ofR on M . Theorems 3.2 and 3.5
and the above remarks imply the following.

Theorem 3.6:The gc1-modules L(l1,l2)a , wherel6PPar6, aPC, exhaust all irreducible
conformal gc1-modules of finite growth.

Corollary: The gc1-modulesC@]#a and C@]#a* , whereaPC, exhaust all finite irreducible
gc1-modules.

Remark:It is straightforward to generalize Theorems 3.2 and 3.5 to the case ofN3N matrix
differential operators and hence Theorem 3.6 to the case ofgcN . In particular thegcN-modules
C@]#a

N and (C@]#N* )a , whereaPC, exhaust all finite irreduciblegcN-modules. This is a result o
Kac, Radul, and Wakimoto. Moreover, these authors completely described all finitegcN-modules,
which amounted to prove a complete reducibility result for finite modules over the annihil
algebra~see Ref. 8!. It is an open question whether a similar complete reducibility result hold
the case of finite growth modules.

IV. IRREDUCIBLE FINITE GROWTH gc 1, x -MODULES

The results of this section are almost the same as the preceding section as well as the
Therefore, we will skip the details.

Let D0 ~respectively,D 0
2) be the Lie subalgebra ofD ~respectively,D 2) of all regular

differential operators onC* ~respectively,C! that kill constants. That is,D0 consists of linear
combinations of elements of the formtkD f (D), where f is a polynomial. Denote byD̂0 the
corresponding central extension. These algebras inherit theZ-gradation fromD̂.

In this section, we will need the representation theory of the Lie algebraD 0
2 .

Given a sequence of complex numbersD5(D1 ,D2 ,...) wedefine the highest weight modul
L(D;D 0

2) over D 0
2 as the~unique! irreducible module that has a nonzero vectorvD with the

following properties:

~D 0
2! jvD50 for j ,0, DnvD5DnvD for nPN .

The principal gradation ofD 0
2 induces the principal gradationL(D;D 0

2).
Quasifinite modules overD 0

2 can be constructed as follows. TheD 0
2-modulesC@ t,t21#/C@ t#

andC@ t#/C, give us an embedding ofD 0
2 in g,̃1` andg,̃2` , respectively, hence an embeddin

of D 0
2 in g,̃1` % g,̃2` . All these embeddings respect the principal gradations. Now takel6

PC6` and consider theg,̃1` % g,̃2`-moduleL1(l1) ^ L2(l2).
The same argument as in Ref. 10, gives us the following.
Lemma 4.1: When restricted toD 0

2 , the module L1(l1) ^ L2(l2) remains irreducible.
It follows immediately thatL1(l1) ^ L2(l2) is an irreducible highest weight module ov

D 0
2 , which is obviously quasifinite.

We have the following theorem.
Theorem 4.2:TheD 0

2-modules L1(l1) ^ L2(l2), wherel6PPar6, exhaust all quasifinite
irreducible highest weightD 0

2-modules that have finite growth.
The proof of Theorem 4.2 is the same as Theorem 3.2, but in this case we reduce the p

to the representation theory of the universal central extensionD̂0 of D0 that was developed in
Refs. 1 and 9.

Let sPZ and denote byg,̂`,s
[m] the Lie subalgebra ofg,̂`

[m] generated byC and $ulEi j u0< l

<m,iÞsand j Þs%. Observe thatg,̂`,s
[m] is naturally isomorphic tog,̂`

[m] . Let ps :g,̂`
[m]→g,̂`,s

[m]

→g,̂`
[m] be the projection map composed with this isomorphism. Ifs¹Z, we also denote byŵs

[m]

the homomorphism~3.4! restricted toD̂0 . If sPZ, we redefineŵs
[m] by the homomorphism

ps+ŵs
[m] :D̂0→g,̂`,s

[m] .
In this case, we should replace Lemma 3.3 by one of the results of Ref. 9~see also Ref. 1!:
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Lemma 4.3: For each i51,...,r , pick a collection miPZ1 , siPC, lW iP(C`)mi11, cW i

PCmi11, such that si2sj¹Z for iÞ j . Then the% i 51
r g,̂`

[mi ] -module ^ i 51
r L [mi ] (lW i ,cW i) remains

irreducible when restricted toD̂0 via the embedding% i 51
r ŵsi

[mi ] :D̂0→ % i 51
r g,̂`

[mi ] . All irreducible

quasifinite highest weightD̂0-modules are obtained in this way.
Proof of Theorem 4.2:The proof is the same as Theorem 3.2 but use Lemma 4.3, and i

cases50 one should use the redefinedŵ0
[m] .

h

Given two partitionsl6PPar6, theD 2-moduleL(l1,l2) that is obtained by restriction via
w0 from theg,̃1` % g,̃2`-moduleL1(l1) ^ L2(l2), remains irreducible as aD 0

2-module. The
construction of theD 0

2-modulesL(l1,l2) is the same as before, and Lemma 3.4 and Theo
3.5 holds forD 0

2 .
In this case, the extended annihilation algebra Lie2(gc1,x) for gc1,x is isomorphic to the direct

sum of the Lie algebraD 0
2 and the one-dimensional Lie algebraC@]1 (d/dt)#. Theorems 4.2 and

3.5 and the above remarks imply the following.
Theorem 4.4:The gc1,x-modules L(l1,l2)a , wherel6PPar6, aPC, exhaust all irreduc-

ible conformal gc1,x-modules of finite growth.
Corollary: The gc1,x-modulesC@]#a and C@]#a* , whereaPC, exhaust all finite irreducible

gc1,x-modules.

V. IRREDUCIBLE FINITE GROWTH oc 1-MODULES

Now, consider the anti-involutions on D defined by~cf. Ref. 11!

s~ t !5t , sS d

dtD52
d

dt
.

Denote byDs the fixed subalgebra ofD by 2s, namely,Ds5$aPD u s(a)52a %. This subal-
gebra corresponds to the Lie algebra denoted byD 1 in Ref. 11. LetD̂s5Ds1CC denote the
central extension given by the restriction of the cocycle~3.1! on D.

We are interested in representation theory of the Lie subalgebraD s
25D 2ùD̂s of regular

differential operators onC that are invariant by2s. Both subalgebras inherit aZ-gradation from
D, sinces preserve the principalZ-gradation ofD, and we haveDs5 % j PZ(Ds) j , where

~Ds! j5$t jg~D1~ j 11!/2! u g~w!PC@w# is odd%. ~5.1!

In the case of (D s
2) j , we need to add condition~3.5! for j ,0.

Similarly, we have the corresponding subalgebras ofD O, denoted byD s
O andD s

2O .
As in the case ofD 2, given a sequence of complex numbersD5$Dn%nPNodd

, we define the

highest weight moduleL(D;D s
2) overD s

2 as the~unique! irreducible module that has a nonze
vectorvD with the following properties:

~D s
2! jvD50 for j ,0, ~D11/2!nvD5DnvD for nPNodd.

The principal gradation ofD s
2 induces the principal gradationL(D;D s

2)5 % j PZ1
L j such that

L05CvD . The moduleL(D;D s
2) is calledquasifiniteif dim L j,` for all j PZ1 .

Quasifinite modules overD s
2 can be constructed as follows. TheD s

2-moduleC@ t,t21#/C@ t#
gives us an embedding ofD s

2 in g,̃1` . This embedding respect the principal gradations. N
takel1PC1` and consider theg,̃1`-moduleL1(l1) introduced in~2.1!. The same argument a
in Ref. 10, gives us the following.

Lemma 5.1: When restricted toD s
2 , the module L1(l1) remains irreducible.

ThereforeL1(l1) is an irreducible quasifinite highest weight module overD s
2 , and it is easy

to see that we have
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Dn5(
j >1

~2 j 11/2!nl j
1 , nPNodd,

so that

D~x!ª (
nPNodd

Dnxn/n! 5(
j >1

l j
1 2 sinh~~2 j 11/2!x! .

We shall prove the following theorem.
Theorem 5.2: TheD s

2-modules L1(l1), wherel1PPar1, exhaust all quasifinite irreduc-
ible highest weightD s

2-modules that have finite growth.
The basic idea of the proof of Theorem 5.2 is the same as in Theorem 3.2: to redu

problem to the well developed~in Ref. 11! representation theory of the universal central extens
D̂s .

Recall that the homomorphismŵs
[m] :D̂→g,̂`

[m] defined in ~3.4! lift to a homomorphism
ŵs

[m] :D̂O→g,̂`
[m] . Now, the restrictionŵs

[m] :D̂s
O→g,̂`

[m] to D̂s
O is surjective iffs¹Z/2, and in the

other cases, using~5.1!, we have that~see Ref. 11 for details!

ŵ0
[m] :D̂s

O→d`
[m] , ŵ21/2

[m] :D̂s
O→b`

[m] ~5.2!

are surjective homomorphisms. Now, let us consider the restriction toD s
2O . Since the constrains

given by ~3.5! do not affect the casesÞ0, we still have thatŵs
[m] :D s

2O→g,̂`
[m] (s¹Z/2) and

ŵ21/2
[m] :D s

2O→b`
[m] are surjective.

One of the main results of Ref. 11 is the following.
Lemma 5.3: For each i51,...,r , pick a collection miPZ1 , siPC, lW iP(C`)mi11, cW i

PCmi11, such that siPZ implies si50, siP
1
21Z implies si52 1

2, and si2sj¹Z for iÞ j . Then the

% i 51
r g[mi ] -module^ i 51

r L(g[mi ] ;lW i ,cW i) remains irreducible when restricted toD̂s via the embed-

ding % i 51
r ŵsi

[mi ] :D̂s→ % i 51
r g[mi ] , whereg[mi ]5g,̂`

[mi ] ~respectively, b`
[mi ] or d`

[mi ] ) if si¹Z/2 (re-

spectively, si52 1
2 or si50). All irreducible quasifinite highest weightD̂s-modules are obtained

in this way.
Proof of Theorem 5.2:The proof is similar to that of Theorem 3.2. Due to Lemma 5

Theorem 2.4 and~5.2!, it is easy to see that ifL(D;D s
2) has finite growth, thenL(D;D̂s)

5L(d`
[m] ;lW ,cW ) on whichD̂s acts via the embeddingŵ0

[m] .
Choosingf POodd to vanish in all j PZ up to mth derivative except fori th derivative (0, i

<m) at j 52r , we see that all operatorsuiEr 11,r2(2u) iE2r 11,2r with 0, i<m lie in the image
of ŵ0

[m] (D s
2O).

Suppose that themth coordinate oflW r is nonzero, and thatm.0. Then vª(umEr 11,r2
(2u) iE2r 11,2r)

NvlW Þ0 for all N.0. But

Er 11,r 11v5~N1l r 11
0 !v.

As in Theorem 3.2, restricting to the subalgebra ofd`
[m] isomorphic tog,1` consisting of matrices

(ai , j2a12 j ,12 i) i , j >r 11 we conclude by Theorem 2.2, thatL(d`
[m] ;lW ,cW ) is either trivial or is of

infinite growth.
Thus, the only possibility that remains iss5m50. As has been already shown, the image

ŵs(D s
2O) contains all Er 11,r2E12r ,2r for all rÞ0, hence it contains all operators fro

d`ù(g,2` % g,1`).g,1` . Therefore, by Theorem 2.2, the highest weight of a finite grow
D s

2-module must be the same as one of theD s
2-modulesL1(l1) with l1PPar1.

h
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Now we shall construct theD s
2-modules L1(l1) explicitly. The D 2-module V

5C@ t,t21#/C@ t# defined in~3.6!, viewed as aD s
2-module, remains irreducible. This is the highe

weight D s
2-module of growth 1 isomorphic toL1(v1) wherev15(1,0,...)PPar1.

Observe that theD s
2-moduleC@ t#* 5 % j PZ1

(Ct j )* is isomorphic toL1(v1).

As in the Schur–Weyl theory, theD s
2-module TM(V) has a natural decomposition a

(D s
2 ,SM)-modules:

TM~V!5 %

l1PPar1

ul1u5M

Vl1 ^ Ul1,

whereUl1 denotes the irreducibleSM-module corresponding to the partitionl1.
Lemma 5.4: TheD s

2-modules Vl1 are irreducible.
Proof: As in the proof of Theorem 5.2, we extend the action ofD s

2 on Vl1 to (D s
2O) j for

each j Þ0, to obtain that anyD s
2-submodule ofVl1 is a submodule overg,1` @.d`ù(g,1`

% g,2`)#. But, by Schur–Weyl theory, theg,1`-moduleVl1 is irreducible, which completes th
proof. h

Thus, we have proved the following.
Theorem 5.5: The D s

2-module TM(V) has the following decomposition a
(D s

2 ,SM)-modules:

TM~V!5 %

l1PPar1

ul1u5M

L1~l1! ^ Ul1,

where Ul1 denotes the irreducible SM-module corresponding to the partitionl1.
Remark:Consideringl1PC1` we may say that irreducible highest weightD s

2-modules of
finite growth are parametrized by nonincreasing sequences of integers (l j ) j PNPC1`. Equiva-
lently, letting mi5l i2l i 11 we may say that these modules are parametrized by sequenc
non-negative integers (mi) i PN , all but finite numbers of which are zero.

Recall that the extended annihilation algebra Lie2(oc1) for oc1 is isomorphic to the direct
sum of the Lie algebraD s

2 and the one-dimensional Lie algebraC@]1 d/dt# and that conformal
modules for a Lie conformal algebra coincide with the conformal modules over the asso
extended annihilation algebra.7

Theorems 5.2 and the above remarks imply the following.
Theorem 5.6: The oc1-modules L1(l1)a , wherel1PPar1, aPC, exhaust all irreducible

conformal oc1-modules of finite growth.
Corollary: The gc1-modulesL1(l1), wherel1PPar1, remain irreducible when restricte

to oc1 .
Corollary: The oc1-modulesC@]#a , whereaPC, exhaust all finite irreducibleoc1-modules.

VI. IRREDUCIBLE FINITE GROWTH spc 1-MODULES

Now, consider the anti-involutions̄ on D0 defined by

s̄~ tkD f ~D !!52tkD f ~2D2k!.

This antiinvolution was studied by Bloch2 in connection with the values ofz-function.
Denote byD0,s̄ the Lie subalgebra ofD0 fixed by2s̄. Let D̂0,s̄5D0,s̄1CC denote the centra

extension given by the restriction of the cocycle onD.
We are interested in representation theory of the Lie subalgebraD 0,s̄

2 5D 2ùD̂0,s̄ of regular

differential operators onC that kills constants and are invariant by2s̄. Both subalgebras inheri
a Z-gradation fromD0 , sinces̄ preserve the principalZ-gradation ofD0 : D0,s̄5 % j PZ(D0,s̄) j ,
where
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~D0,s̄! j5H t jD gS D1
j

2D U g~w!PC@w# is even J . ~6.1!

In the case of (D 0,s̄
2 ) j , we need to add condition~3.5! for j ,0.

Similarly, we have the corresponding subalgebras ofD O, denoted byD0,s̄
O andD0,s̄

2O .
As in the case ofD 2, given a sequence of complex numbersD5$Dn%nPNodd

, we define the

highest weight moduleL(D;D 0,s̄
2 ) overD 0,s̄

2 as the~unique! irreducible module that has a nonze
vectorvD with the following properties:

~D 0,s̄
2 ! jvD50 for j ,0, DnvD5DnvD for nPNodd.

The principal gradation ofD 0,s̄
2 induces the principal gradationL(D;D 0,s̄

2 )5 % j PZ1
L j such that

L05CvD . The moduleL(D;D 0,s̄
2 ) is calledquasifiniteif dim L j,` for all j PZ1 .

As in the preceding section, theD 0,s̄
2 -moduleC@ t,t21#/C@ t# gives us an embedding ofD 0,s̄

2 in

g,̃1` . This embedding respects the principal gradations. Now takel1PC1` and consider the
g,̃1`-moduleL1(l1) introduced in~2.1!. The same argument as in Ref. 10, gives us the follo
ing.

Lemma 6.1: When restricted toD 0,s̄
2 , the quasifinite module L1(l1) remains irreducible.

We shall prove the following theorem.
Theorem 6.2:TheD 0,s̄

2 -modules L1(l1), wherel1PPar1, exhaust all quasifinite irreduc-
ible highest weightD 0,s̄

2 -modules that have finite growth.
The basic idea of the proof of Theorem 6.2 is the same as in Theorem 3.2: to redu

problem to the recently developed~in Ref. 4! representation theory of the universal central ext
sion D̂0,s̄ .

Recall that the homomorphismŵs
[m] :D̂→g,̂`

[m] defined in ~3.4! lift to a homomorphism
ŵs

[m] :D̂O→g,̂`
[m] . Now, the restrictionŵs

[m] :D̂0,s̄
O →g,̂`

[m] to D̂0,s̄
O is surjective iffs¹Z/2, and in

the other case, using~6.1!, we have that~see Ref. 2 for details!

ŵs
[m] :D̂0,s̄

O →c`
[m] , sPZ/2 ~6.2!

is a surjective homomorphism. Now, let us consider the restriction toD0,s̄
2O . Since the constrains

given by ~3.5! do not affect the casesÞ0, we still have thatŵs
[m] :D0,s̄

2O→g,̂`
[m] (s¹Z/2) and

ŵ21/2
[m] :D0,s̄

2O→c`
[m] are surjective.

One of the main results of Ref. 4 is the following.
Lemma 6.3: For each i51,...,r , pick a collection miPZ1 , siPC, lW iP(C`)mi11, cW i

PCmi11, such that siPZ implies si50, siP
1
21Z implies si52 1

2, and si2sj¹Z for iÞ j . Then the

% i 51
r g[mi ] -module^ i 51

r L(g[mi ] ;lW i ,cW i) remains irreducible when restricted toD̂0,s̄ via the embed-

ding % i 51
r ŵsi

[mi ] :D̂0,s̄→ % i 51
r g[mi ] , where g[mi ]5g,̂`

[mi ] ~respectively, c`
[mi ] ) if si¹Z/2 ~respec-

tively, si52 1
2 or si50). All irreducible quasifinite highest weightD̂0,s̄-modules are obtained in

this way.
Proof of Theorem 6.2:The proof is similar to that of Theorem 3.2. Due to Lemma 6

Theorem 2.6 and~6.2!, it is easy to see that ifL(D;D 0,s̄
2 ) has finite growth, thenL(D;D̂0,s̄)

5L(c`
[m] ;lW ,cW ) on whichD̂0,s̄ acts via the embeddingŵ0

[m] .
Choosingf POodd to vanish in all j PZ up to mth derivative except fori th derivative (0, i

<m) at j 52r , we see that all operatorsuiEr 11,r1(2u) iE2r 11,2r with 0, i<m lie in the image
of ŵ0

[m] (D 0,s̄
2O).

Suppose that themth coordinate oflW r is nonzero, and thatm.0. Then vª(umEr 11,r

1(2u) iE2r 11,2r)
NvlW Þ0 for all N.0. But
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Er 11,r 11v5~N1l r 11
0 !v.

As in Theorem 3.2, restricting to the subalgebra ofc`
[m] isomorphic tog,1` consisting of matrices

(ai , j2(21)i 1 ja12 j ,12 i) i , j >r 11 we conclude by Theorem 2.2, thatL(c`
[m] ;lW ,cW ) is either trivial or

is of infinite growth.
Thus, the only possibility that remains iss5m50. As has been already shown, the image

ŵs(D 0,s̄
2O) contains all Er 11,r1E12r ,2r for all rÞ0, hence it contains all operators fro

c`ù(g,2` % g,1`).g,1` . Therefore, by Theorem 2.2, the highest weight of a finite grow
D 0,s̄

2 -module must be the same as one of theD 0,s̄
2 -modulesL1(l1) with l1PPar1.

h

As in the preceding section, we can construct theD 0,s̄
2 -modulesL1(l1) explicitly. The

D 2-module V5C@ t,t21#/C@ t# defined in~3.6!, viewed as aD 0,s̄
2 -module, remains irreducible

This is the highest weightD 0,s̄
2 -module of growth 1 isomorphic toL1(v1) wherev15(1,0,...)

PPar1.
Observe that theD 0,s̄

2 -moduleC@ t#* 5 % j PZ1
(Ct j )* is isomorphic toL1(v1).

As in the Schur–Weyl theory, theD 0,s̄
2 -module TM(V) has a natural decomposition a

(D 0,s̄
2 ,SM)-modules:

TM~V!5 %

l1PPar1

ul1u5M

Vl1 ^ Ul1,

whereUl1 denotes the irreducibleSM-module corresponding to the partitionl1.
Lemma 6.4: TheD 0,s̄

2 -modules Vl1 are irreducible.
Proof: As in the proof of Theorem 5.2, we extend the action ofD 0,s̄

2 on Vl1 to (D 0,s̄
2O) j for

each j Þ0, to obtain that anyD 0,s̄
2 -submodule ofVl1 is a submodule overg,1` @.c`ù(g,1`

% g,2`)#. But, by Schur–Weyl theory, theg,1`-moduleVl1 is irreducible, which completes th
proof. h

Thus, we have proved the following.
Theorem 6.5: The D 0,s̄

2 -module TM(V) has the following decomposition a
(D 0,s̄

2 ,SM)-modules:

TM~V!5 %

l1PPar1

ul1u5M

L1~l1! ^ Ul1,

where Ul1 denotes the irreducible SM-module corresponding to the partitionl1.
Recall that the extended annihilation algebra Lie2(spc1) for spc1 is isomorphic to the direct

sum of the Lie algebraD 0,s̄
2 and the one-dimensional Lie algebraC@]1 (d/dt)# and that confor-

mal modules for a Lie conformal algebra coincide with the conformal modules over the asso
extended annihilation algebra.7

Theorems 6.2 and the above remarks imply the following.
Theorem 6.6:The spc1-modules L1(l1)a , wherel1PPar1, aPC, exhaust all irreducible

conformal spc1-modules of finite growth.
Corollary: The gc1-modulesL1(l1), wherel1PPar1, remain irreducible when restricte

to spc1 .
Corollary: The spc1-modules C@]#a , where aPC, exhaust all finite irreducible

spc1-modules.
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On the invariants of some solvable rigid Lie algebras
Rutwig Campoamor-Stursberga)

Laboratoire de Mathe´matiques et Applications, Faculte´ de Sciences et Techniques,
Universitéde Haute Alsace, 4, rue des Fre`res Lumière, F-68093 Mulhouse Cedex, France

~Received 5 April 2002; accepted 21 October 2002!

We determine fundamental systems of invariants for complex solvable rigid Lie
algebras having nonsplit nilradicals of characteristic sequence~3,1,...,1!, these al-
gebras being the natural followers of solvable algebras having Heisenberg nilradi-
cals. A special case of this allows us to obtain a criterion to determine the number
of functionally independent invariants of rank one subalgebras of~real or complex!
solvable Lie algebras. Finally, we give examples of the inverse procedure, obtain-
ing fundamental systems of an algebra starting from rank one subalgebras, and a
criterion for the nonexistence of nontrivial invariants. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1532536#

I. INTRODUCTION

An important problem arising in the theory of representations of Lie algebras and va
physical applications is the determination of invariant functions for the coadjoint represent
These are useful for labeling irreducible representations or splitting arbitrary representation
irreducible ones. Reductions like the Levi decomposition theorem simplify the question t
classes of semi-simple and solvable Lie algebras. The invariants in the semi-simple cas
determined in 1950 by Racah.18 Here the invariants are polynomials, which correspond to class
Casimir operators~i.e., polynomials in the generators which are in the center of the unive
enveloping algebra!. Their number coincides with the rank of the algebra. The study of
non-semi-simple case is physically motivated by considerations like internal symmetries o
ticles or the invariant operators of symmetry groups of physical systems.9,13 Important groups such
as the Galilei and Poincare´ groups have been deeply studied,11–13,19as well as the subgroups of th
latter. These invariants allow us to characterize certain systems by giving their energy s
angular momenta, etc. For solvable Lie algebras, much less is known. These algebras have
their interest in relation with the integrability problem of Hamiltonian systems. Their invari
have been determined up to dimension six.15,17The invariants found here need not be polynomi
any more, which suggests calling them generalized invariants. The nonexistence of classifi
of solvable algebras in dimensionn>7 forces us to restrict to more concrete classes. In this fra
the generalized Casimir invariants of solvable algebras having an Abelian or a Heisenbe
algebra as nilradical~i.e., as maximal nilpotent ideal! have recently been computed.14,20 The
choice of these maximal nilpotent ideals is not casual. The Heisenberg Lie algebra is the si
nontrivial nilpotent Lie algebra, and has the lowest nilpotence index. Their deformations a
much interest in the study of Lie algebras of nilindex 2. However, for a solvable Lie algebra
arbitrary nilradical the invariants will not be inferrable in arbitrary dimension, either becaus
structure of the algebra depends on too many parameters or because of formidable compu
obstructions.20 However, if we restrict to the class of rigid~also called stable! Lie algebras, i.e., the
algebras all of whose deformations lead to an equivalent structure, the number and form
invariants can always be determined in arbitrary dimension, at least what concerns solvabl
bras ~the semi-simple being well known!. This is a consequence of the structural properties
these algebras, which are determined, in some sense, by the action of semisimple element

a!Electronic mail: r.campoamor@uha.fr
7710022-2488/2003/44(2)/771/14/$20.00 © 2003 American Institute of Physics
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maximal nilpotent ideal. The main advantage of studying rigid algebras lies in the fact tha
analysis of the invariants in low dimension will always allow us to determine the number an
form of the invariants in arbitrary dimension.

Starting from this situation, we determine fundamental systems of invariants for all sol
rigid Lie algebras whose nilradical is a nonsplit of characteristic sequence~3,1,...,1!. These alge-
bras are the natural followers of those having Heisenberg nilradicals. It is shown that the n
of functionally independent invariants is a linear function of their rank. As applications, we de
a general result on the cardinal of fundamental systems of invariants of rank one subalgebr
solvable Lie algebra. The converse of this procedure, whenever possible, is also of interes
it allows us to calculate fundamental systems of an algebra analyzing certain rank one subal
In particular, we can find a criterion to ensure that a solvable Lie algebras has no non
invariants.

We convene that nonwritten brackets are either zero or obtained by antisymmetry. We a
Einstein’s convention for sums. Unless otherwise stated, any Lie algebra is nonsplit~i.e., it is not
a direct sum of ideals! and complex.

II. GENERALITIES

Let G be a connected Lie group andg its Lie algebra. As known, the coadjoint representat
is given by

ad* :G→GL~g* !: ~adg* x!~y!5x~adg21!y, x,yPg* ,gPG ~2.1!

and a functionFPC`g* is called invariant ifF(x)5F(adg* x). Clearly it suffices to find a maxi-
mal set of functionally independent invariants to obtain all of them. Such a family is usually c
a fundamental set of invariants for the coadjoint representation. The most extended method
physical literature to obtain the invariants of a Lie algebra is not the orbit method,9 but its
reduction to the problem of solving a system of linear first order partial differential equati1

Low dimensional Lie algebras and subalgebras of the Poincare´ algebra have been studied usin
this procedure.14–17Let g be ann-dimensional Lie algebra with structure constants$Ci j

k % over the
basis$X1 ,...,Xn%. Let $x1 ,...,xn% be the dual basis and consider the differential operators

Xî52Ci j
k xk

]

]xj
, 1< i<n. ~2.2!

These operators act on differentiable functionsf (x1 ,...,xn)PC`(g* ). It is a straightforward veri-
fication that these operators satisfy the brackets

@X̂i ,X̂j #5Ci j
k X̂k ,

and therefore define a representation ofg. Now an invariant is a functionF(x1 ,...,xn) such that

X̂iF~x1 ,...,xn!50, 1< i<n. ~2.3!

This reduces the problem to solve the system of partial differential equations~PDEs!:

2Ci j
k xk

]

]xj
F~x1 ,...,xn!50, 1< i<n. ~2.4!

Since the solutions of this system are not necessarily polynomials, it is reasonable to c
solutions generalized Casimir invariants. IfF is a polynomial solution of~2.4!, then we obtain a
Casimir operator by symmetrizing the polynomial with respect to the variablesxi and then sub-
stituting them by the corresponding generatorXi of the algebra. The corresponding bracket in t
enveloping algebra satisfies
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@Xi ,F~X1 ,...,Xn!#50, ~2.5!

which is easily seen to be equivalent to requirement~2.4!. For rational invariants an analogou
procedure is possible, by symmetrizing numerator and denominator and substituting prope

The number of functionally independent invariantsN of the coadjoint representation ad* of a
Lie algebrag can be computed by elementary algebraic means, as shown Beltrametti and5

They proved that

N~g!5dim~g!2supx1 ,...,xn
$rank ~Ci j

k xk!%, ~2.6!

where (Ci j
k xk) is the matrix representing the commutator table ofg for the chosen basis. Since th

matrix (Ci j
k xk) is skew-symmetric, its rank is even, which implies that dim~g! andN~g! have the

same parity. However, the preceding formula does not distinguish whether the solutions are
nomials or not. Thus we will havep<N(g) Casimir operators~and possibly none, as happens f
the algebra of dilatations and translations in the plane, which has one rational solution1! for the
general case.

The following example illustrates the method and the application of the Beltrametti–
formula: Consider the four dimensional Lie algebra given by the brackets

@X0 ,X1#5X2 ,

@X0 ,X2#5X3 ,

over the basis$X0 ,X1 ,X2 ,X3% ~the representations of this algebra are used in the theor
anharmonic oscillators!. The matrix associated to the commutator table is

S 0 x2 x3 0

2x2 0 0 0

2x3 0 0 0

0 0 0 0

D . ~2.7!

The rank of the matrix is two, so that this algebra has a fundamental set of invariants form
two functions, which are solutions of the following system:

X̂0F5~2x2]x2
2x3]x2

!F50, ~2.8!

X̂1F5~x2]x0
!F50, ~2.9!

X̂2F5~x3]x0
!F50, ~2.10!

X̂3F50. ~2.11!

The equationsX̂iF50 (i 51,2) imply thatF does not depend onx0 . From X̂3F50 we see
that x3 is a polynomial solution, while the equationX̂1F50 gives us the subsidiary equation

dx1

x2
5

dx2

x3
, ~2.12!

which can be immediately integrated and gives the solutionx2
222x1x3 . In this case both solutions

are polynomials and correspond to classical Casimir operators.
As told before, invariants of solvable Lie algebras have been determined only in low di

sions, due to the impossibility of obtaining classifications in dimensionsn>7 ~even the existing
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classification of six dimensional solvable Lie algebras has been proven to contain mistakes!. Two
types of solvable algebras have been analyzed in some detail in arbitrary dimension: those
Abelian nilradical and those having it isomorphic to the Heisenberg Lie algebrahk . An important
class of solvable rigid Lie algebras consists of those algebras having a Heisenberg Lie alghk

as nilradical. Since for rigid Lie algebras the torus determines almost completely the isomor
class of the nilradical and these algebras decompose in a particular manner, in addition
existing algorithms that allow~theoretically! a classification of solvable rigid Lie algebras,4 it is
reasonable to focus on this class and their invariants. We therefore recall the most elementa
about rigidity:

The setL n of all n-dimensional Lie algebras is well known to form an algebraic variety,
which the general linear group GL(n,C) acts as follows:

f* @X,Y#g5f@f21X,f21Y#g , x,yPg, ~2.13!

where@ –,– #g denotes the Lie bracket ofg. The action is nothing more than the changes of ba
so that it is immediate that the orbitO~g! of g by this action consists of all Lie algebras isomorph
to g.

Definition 1: The algebrag is called rigid if the orbitO~g! is open inL n.
If an algebrag does not admit nontrivial deformations, i.e., if it is rigid in the sense

Gerstenhaber, then its orbit is easily seen to be open. Indeed the classical definition of rigid
Definition 1 are equivalent overC. Rigidity imposes severe structural restrictions in the solva
case, which simplifies their description. Solvable rigid Lie algebrasg decompose as a semidire
product:

g5n%W t, ~2.14!

wheren is the nilradical ofg and t is an Abelian subalgebra consisting ofad-semisimple endo-
morphisms. Such an algebra will be called decomposable, andt will called a torus of derivations.
The similarity of this decomposition with the Cartan decomposition of classical algebras is
gested to consider a linear system of roots for solvable decomposable Lie algebras. Th
formal linear systems for which the eigenvalues of the adjoint operators ad(X) for elementsX
Pt are solutions. The rank of this system provides a useful criterion for the rigidity of a solv
Lie algebra.

Given a solvable rigid Lie algebran%W t, we say thatXÞ0 is a regular vector if the dimensio
of the kernel of the adjoint operator is minimal among the elements oft, i.e.,

dim Ker ad~X!5min $dim Ker ad~Y! u YPt%. ~2.15!

If q5dim Ker ad(X), then we can find a basis formed by eigenvectors of the adjoint ope
(X1 , . . . ,Xn5X) such that (X1 ,...,Xp1q) is a basis of the nilradicaln, (Xp111q ,...,Xn) is a basis
of t and (Xp11 ,...,Xn) is a basis of Ker ad(X).

The linear system of roots associated to (X1 ,...,Xn) is the linear system ton21 variablesxi

whose equations are

xi1xj5xk ~2.16!

if the Xk-component of the bracket@Xi ,Xj # is nonzero. We will note this system byS(X) or
simply (S). The following result establishes a necessary condition for a Lie algebra to be ri10

Theorem 1: (of the rank10) If the solvable, decomposable Lie algebrag5n%W t is rigid, then
for all regular vectors X we have

rank S~X!5dimn21.

In particular the rank does not depend on the choice of the basis or the regular vector.
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Corollary 1: If g5n%W t is rigid, thent is a maximal torus (for the inclusion relation).
As an example of how the linear system is applied, let us consider the four dimens

subalgebraP7,4 of the Poincare´ algebra generated by$K3 ,L12K2 ,L21K1 ,P02P3%, whereLi

denotes the rotation operators,Ki the boosts andPj the translations.1 P7,4 is a solvable Lie algebra
whose derived algebra@P7,4,P7,4# is isomorphic to the three dimensional Abelian algebra 3A1 .
Therefore the system (S) associated toP7,4 is zero (K3 being a regular vector!, and since
dim(3A1)21Þrank(S), this algebra is not rigid. Indeed the minimal dimensional rigid Lie al
bra which containsP7,4 as subalgebra isP7,2, which is generated by the above generators
$P1 ,P2%.

17

For a decomposable algebra, we note the rank byrg(g)5dim t. If g is rigid we can always
find a regular vector such that the operator ad(X) is diagonalizable and its eigenvalues a
integers.10 The preceding results allow us to search for rigid laws either starting with a sequ
of weights for a fixed regular vectorX, or considering fixed nilpotent Lie algebras as nilradic
and analyzing their semisimple derivations. Since nilpotent Lie algebras are classified on
dimensionn<7, the latter method is valid in generic dimension only if we introduce a n
invariant, called the characteristic sequence.10 This invariant measures the dimension of success
Jordan blocks of the matrices of adjoint operators ad(X), and in particular it indicates the nilpo
tence index of the algebra. Letn be a nilpotent Lie algebra andXPn2@n,n# be a nonzero vector
We denote byc(X) the ordered sequence of dimensions of the Jordan blocks for the ad
operator ad(X). Considering the lexicographical order in the set of these sequences, i.e.,

~c1 ,...,ct!>~c18 ,...,cs8!⇔' i such thatcj5cj8 for i . j and ci.ci8 , ~2.17!

we define the characteristic sequence ofg as

c~g!5 max
XPg2[g,g]

$c~X!%. ~2.18!

A vector XÞ0, XPg2@g,g# satisfyingc(g)5c(X) is called characteristic vector.
Example 1: Letn be a nilpotent Lie algebra.

(i) If c (n)5(1,1,...,1),then for any element X¹@n,n# the Jordan form ofad(X) is zero. This
shows thatn is an Abelian Lie algebra.

(ii) If c (n)5(2,1,...,1), then n is an algebra of nilindex 2, i.e., @X,@Y,Z##50 for any X,Y,Z
Pn. We can find a basis$X1 ,...,Xn% such that X1 is a regular vector, @X1 ,X2#5X3 and
@X1 ,Xi #50 for i>3. In particular the rank of the matrix ofad(X1) is one. If there exists a
vector Y5( i>3aiXi such that@X2 ,Y#Þ0, then necessarily@X2 ,Y#5aX3 , since otherwise
we can consider the vector X185X11X2 whose matrix ofad(X18) has rank 2, contradicting
the assumption that X1 is regular. Therefore we can reorder the basis such thatg.hk

% Cn2(2k11), wherehk is the(2k11)-dimensional Heisenberg Lie algebra. If, moreover, g is
not a direct sum of ideals, thendim~g! is odd andg5hk for some k>1.

Thus the characteristic sequence divides the nilpotent Lie algebras of nilindexk into more
specific classes. It should be remarked that the classification of seven-dimensional nilpote
algebras can be made by using only this invariant. The natural followers of Heisenber
algebras are those of characteristic sequence~3,1,...,1!. These are the simplest nilpotent Lie alg
bras of nilindex 3. Contrary to the previous case, where the Heisenberg is the only nonsplit a
obtained, we will obtain two families of algebras having this property:2

Theorem 2: Any solvable rigid law whose nilradicaln is of characteristic sequence~3,1,...,1!
is isomorphic to one of the following algebras:

(i) The Lie algebrad2m5g2m%W t(m>2) with basis(X0 ,X1 ,X2 ,X3 ,Y1 ,...,Y2m24 , V1 ,...,Vm)
and brackets

@X0 ,Xi #5Xi 11 , i 51,2,
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@Y2i 21 ,Y2i #5X3 , 1< i<m22,

@V1 ,Xi #5Xi , i 50,2,

@V1 ,X3#52Y3 ,

@V1 ,Y2i #52Y2i , 1< i<m22,

@V2 ,Xi #5Xi , i 51,2,3,

@V2 ,Y2i #5Y2i , 1< i<m22,

@Vi 12 ,Y2i 21#5Y2i 21 , 1< i<m22,

@Vi 12 ,Y2i #52Y2i , 1< i<m22.

(ii) The Lie algebra d2m115g2m11%W t(m>2) with basis (X0 ,...,X3 ,Y1 ,...,Y2m23 ,
V1 ,...,Vm) and brackets

@X0 ,Xi #5Xi 11 , i 51,2,

@X1 ,Y2m23#5X3 ,

@Y2i 21 ,Y2i #5X3 , 1< i<m22,

@V1 ,Xi #5Xi , i 50,2,

@V1 ,X3#52X3 ,

@V1 ,Y2i #52Y2i , 1< i<m22,

@V1 ,Y2m23#52Y2m23 ,

@V2 ,Xi #5Xi , i 51,2,3,

@V2 ,Y2i #5Y2i , 1< i<m22,

@Vi 12 ,Y2i 21#5Y2i 21 , 1< i<m22,

@Vi 12 ,Y2i #52Y2i , 1< i<m23.

(iii) The seven dimensional Lie algebrad58 with basis(X0 ,...,X3 ,Y1 ,V1 ,V2) and brackets

@X0 ,Xi #5Xi 11 , i 51,2,

@X1 ,X2#5Y1 ,

@V1 ,Xi #5~ i 11!Xi , i 50,1,2,3,

@V1 ,Y1#55Y1 ,

@V2 ,Xi #5Xi , i 51,2,3,

@V2 ,Y1#52Y1 .
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Remark 1: Indeed more is true: any nonsplit nilpotent Lie algebran of characteristic se-
quence~3,1,...,1! is isomorphic to the nilradical of one of the former solvable algebras.2

III. THE INVARIANTS

In this section we determine the invariants of the preceding solvable Lie algebras. We
that it suffices to analyze the lowest dimensional algebras to deduce both the numberN and the
explicit form of the invariants in arbitrary dimension. Table I presents the invariants of the
bras for the valuesm52,3,4,5.

We observe that the algebrasd4 , d6 , d8 and d10 admit the same invariantI 5 (v3x3

1y1y2)/x3 , and that

N~d10!5N~d8!115N~d6!125N~d4!13. ~3.1!

We can thus expect that for the general case we will haveN(d2m)5m22, and that a fundamenta
set of invariants is formed by the rational functionsI 5 (v i 12x31y2i 21y2i)/x3 . For the algebras
d2m11 the situation is similar:d11 has four invariants, three invariants (v3x31y1y2)/x3 , (v4x3

1y3y4)/x3 , (v5x31y5y6)/x3 , from which the first is an invariant ofd7 andd9 and the second an
invariant ofd9 , and a function (x0x2x31x2

2y722x3
2v21v1x3

222x1x3y7)/x3
2. This is also an in-

variant ofd5 , d7 andd9 if we substitutey7 by y1 , y3 andy5 , respectively. We can thus expect th
N(d2m11)5m21 and that the invariants are of the preceding form.

Theorem 3:Let r be a solvable rigid Lie algebra whose nilradical is nonsplit of characteris
sequence~3,1,...,1!. Then a fundamental set of invariants is given by

(i) $ y2k21y2k1x3vk12 /x3 %1<k<m22 if r.d2m ,
(ii) $ x0x2x31x2

2y2m2322x3
2v21v1x3

222x1x3y2m23 /22x3
2 , x3vk121y2k21y2k /

x3 %1<k<m22 if r.d2m11 ,
(iii) $ (2x0y11x2

222x1x3)3/(x3y1)2 % if r.d58 .
Proof:
(i) Let r5d2m . The system~2.4! is in this case

X0̂F5~2x2]x1
2x3]x2

1x0]v1
!50, ~3.2!

X1̂F5~x2]x0
1x1]v2

!F50, ~3.3!

X2̂F5~x3]x0
1x2]v1

1x2]v2
!F50, ~3.4!

X3̂F5~2x3]v1
1x3]v2

!F50, ~3.5!

Ŷ2i 21F5~2x3]y2i
1y2i 21]v i 12

!F50, 1< i<m22, ~3.6!

Y2îF5~x3]y2i 21
2y2i]v i 12

12y2i]v1
1y2i 21]v2

!F50, 1< i<m22, ~3.7!

V̂1F5S x0]x0
1x2]x2

12x3]x3
12 (

i 51

m22

y2i]y2i DF50, ~3.8!

V̂2F5S x1]x1
1x2]x2

1x3]x3
1 (

i 51

m22

y2i]y2i DF50, ~3.9!

V̂i 11F5~y2i 21]y2i 21
2y2i]y2i

!F50, 1< i<m22. ~3.10!
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TABLE I. Invariants in low dimensions.

g dim Brackets Invariants

d4 6 @X0 ,Xi #5Xi 11 , i 51,2; @V1 ,X3#52X3 none
@V1 ,Xi #5Xi , i 50,2; @V2 ,Xi #5Xi ,i 51,2,3

d5 7 @X0 ,Xi #5Xi 11 ( i 51,2); @X1 ,Y1#5X3 I15
x0x2x31x2

2y1

x3
2

@V1 ,Xi #5Xi ( i 50,2); @V1 ,X3#52X3 1
x3

2~v122v2!22x1x3y1

x3
2

@V1 ,Y1#52Y1 ; @V2 ,Xi #5Xi ( i 51,2,3)

d6 9 @X0 ,Xi #5Xi 11 ( i 51,2); @Y1 ,Y2#5X3 I15
v3x31y1y2

x3

@V1 ,Xi #5Xi ( i 50,2); @V1 ,X3#52X3

@V1 ,Y2#52Y2 ; @V2 ,Xi #5Xi ( i 51,2,3)
@V2 ,Y2#5Y2 ; @V3 ,Y1#5Y1

@V3 ,Y2#52Y2 ;

d7 10 @X0 ,Xi #5Xi 11 ( i 51,2); @X1 ,Y3#5X3 I15
x0x2x31x2

2y3

x3
2

@Y1 ,Y2#5X3 ; @V1 ,Xi #5Xi ( i 50,2) 1
x3

2~v122v2!22x1x3y3

x3
2

@V1 ,X3#52X3 ; @V1 ,Y2i #52Y2i ( i 51,
3
2) I25

v3x31y1y2

x3

@V2 ,Xi #5Xi ( i 51,2,3); @V2 ,Y2#5Y2

@V3 ,Y1#5Y1 ; @V3 ,Y2#52Y2

d8 12 @X0 ,Xi #5Xi 11 ( i 51,2); @Y2i 21 ,Y2i #5X3 ( i 51,2) I15
v3x31y1y2

x3

@V1 ,Xi #5Xi ( i 50,2); @V1 ,X3#52X3 I25
v4x31y3y4

x3

@V1 ,Y2i #52Y2i ( i 51,2); @V2 ,Xi #5Xi ( i 51,2,3)
@V2 ,Y2i #5Y2i ( i 51,2); @Vi 12 ,Y2i 21#5Y2i 21 ( i 51,2)
@Vi 12 ,Y2i #52Y2i ( i 51,2);

d9 13 @X0 ,Xi #5Xi 11 ( i 51,2); @X1 ,Y5#5X3 I15
x0x2x31x2

2y5

x3
2

@Y2i 21 ,Y2i #5X3 ( i 51,2); @V1 ,Xi #5Xi ( i 50,2) 1
x3

2~v122v2!22x1x3y5

x3
2

@V1 ,X3#52X3 ; @V1 ,Y2i #52Y2i ( i 51,2,
5
2) I25

v3x31y1y2

x3

@V2 ,Xi #5Xi ( i 51,2,3); @V2 ,Y2i #5Y2i ( i 51,2) I35
v4x31y3y4

x3

@Vi 12 ,Y2i 21#5Y2i 21 ( i 51,2); @Vi 12 ,Y2i #52Y2i ( i 51,2)

d10 15 @X0 ,Xi #5Xi 11 ( i 51,2); @Y2i 21 ,Y2i #5X3 ( i 51,2,3); I15
v3x31y1y2

x3

@V1 ,Xi #5Xi ( i 50,2); @V1 ,X3#52X3 I25
v4x31y3y4

x3

@V1 ,Y2i #52Y2i ( i 51,2,3); @V2 ,Xi #5Xi ( i 51,2,3) I35
v5x31y5y6

x3

@V2 ,Y2i #5Y2i ( i 51,2,3); @Vi 12 ,Y2i 21#5Y2i 21 ( i 51,2,3)
@Vi 12 ,Y2i #52Y2i ( i 51,2,3)
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Elementary manipulations of the equationsXîF50(0< i<3) show that]v i
F50(i 51,2) and

]x0
F50. Moreover, from the equationsV̂iF50(i 51,2) we easily deduce that]xi

F50 for
i 51,2. This reduces the system to the following:

~2x3]y2i
1y2i 21]v i 12

!F50, 1< i<m22, ~3.11!

~x3]y2i 21
2y2i]v i 12

!F50, 1< i<m22, ~3.12!

S x3]x3
1 (

i 51

m22

y2i]y2i DF50, ~3.13!

~y2i 21]y2i 21
2y2i]y2i

!F50. ~3.14!

Equations ~3.11!, ~3.12! and ~3.14! show that we can find invariants of the form
f (x3 ,y2i 21 ,y2i ,v i 12), which are clearly functionally independent for distinct values ofi . Inte-
gration of Eq.~3.13! taking into account this observaion provides us with the following fun
mental set of invariants:

H f i5
y2i 21y2i1x3v i 12

x3
J

1< i<m22

. ~3.15!

(ii) Let r5d2m11 . The system of PDEs corresponding to this algebra has the follow
subsystem:

Xî .F50, 0< i<3, ~3.16!

Ŷ2m23 .F50. ~3.17!

This is the same system which we obtain form52, whose invariant has already been co
puted in Table I:

TABLE I. ~Continued.!

g dim Brackets Invariants

d11 16 @X0 ,Xi #5Xi 11 ( i 51,2); @X1 ,Y7#5X3 I15
x0x2x31x2

2y7

x3
2

@Y2i 21 ,Y2i #5X3 ( i 51,2,3); @V1 ,Xi #5Xi ( i 50,2) 1
x3

2~v122v2!22x1x3y7

x3
2

@V1 ,X3#52X3 ; @V1 ,Y2i #52Y2i ( i 51,2,3,
7
2) I25

v3x31y1y2

x3

@V2 ,Xi #5Xi ( i 51,2,3); @V2 ,Y2i #5Y2i ( i 51,2,3) I35
v4x31y3y4

x3

@Vi 12 ,Y2i 21#5Y2i 21 ( i 51,2,3); @Vi 12 ,Y2i #52Y2i ( i 51,2,3) I45
v5x31y5y6

x3

d58 7 @X0 ,Xi #5Xi 11 ( i 51,2); @X1 ,X2#5Y1 I15
~2x0y11x2

222x1x3!
3

x3
2y1

2

@V1 ,Xi #5( i 11)Xi ( i 50,...,3); @V1 ,Y1#55Y1

@V2 ,Xi #5Xi ( i 51,2,3); @V2 ,Y1#52Y1
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f 15
2x3

2v22x3
2v112x1x3y2m232x0x2x32x2

2y2m23

x3
2 . ~3.18!

Therefore this function is an invariant ofd2m11 for any m>2. Now observe that, since
X3̂.F5x3(2]v1

1]v2
)50, the equationY2î .F50 can be reduced to

Y2i8̂ F5~x3]y2i 21
2y2i]v i 12

!F50. ~3.19!

As a consequence, the functionf 1 is a solution of~3.16! and ~3.17! for any m>3, and the
remaining fundamental solutions are obtained from the system

Ŷ2i 21 .F5~2x3]y2i
1y2i 21]v i 12

!F50, ~3.20!

Ŷ2i8 .F50, 1< i<m22, V̂1 .F5~x3]y2i 21
2y2i]v i 12

!F50, ~3.21!

V̂i 12 .F5~y2i 21]y2i 21
2y2i]y2i

!F50, i>1, ~3.22!

for 1< i<m22. This system is equivalent to the one given by Eqs.~3.11!–~3.14!, from which we
deduce the solutions

f i 115
x3v i 121y2i 21y2i

x3
. ~3.23!

Thus a fundamental system of invariants ford2m11 is given by$ f 1 , f i 11%1< i<m22 .
(iii) It is easily verified that any invariant satisfies]v1

F5]v2
F50. Elementary transforma

tions of the corresponding system show that an invariant functionF must be a solution of the
following equation:

~2x2
21y1x012x1x3!]x1

F13y1x3]y1
F50. ~3.24!

This equation admits the rational solution

F15
~2x0y11x2

222x1x3!3

x3
2y1

2 ~3.25!

and it can be easily verified that this function satisfies the system. Thus a set of invariants is
by $F1%.

j

Since the fundamental sets of invariants of the algebrasdm andd58 consist of rational func-
tions, one can ask whether these invariants will confirm the observation that rational fun
occur as ratio of two commuting polynomials.15,17 For the algebrasd2m we have@X3 ,Y#50 for
any Y¹CV1% CV2 . Thus, as polynomial operators, the following identity holds for anyk
P$1,...,m22%:

@X3 ,Y2k21Y2k1X3Vk12#50, ~3.26!

which shows that the numerator and denominator of the invariants are commuting polyno
For the algebrasd2m11 we also have@X3 ,Y#50 wheneverY¹CV1% CV2 . Therefore the invari-
ants (vk12x31y2k21y2k)/x3 are also the ratio of commuting polynomials. The remaining inv
ant I 5 (x0x2x31x2

2y2m231x3
2(v122v2)22x1x3y2m23)/x3

2 depends on bothV1 and V2 , but,
since@V1 ,X3#52X3 and @V2 ,X3#5X3 , we again obtain that
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@X0X2X31X2
2Y2m231X3

2~V122V2!22X1X3Y2m23 ,X3#50. ~3.27!

Finally, for the special cased58 the center is spanned byX3 andY1 , and since the invariant doe
not depend on the variablesv1 ,v2 associated to toral elements, the numerator and denominat
the invariant are commuting polynomials.

In terms of representation theory this fact is of importance, since it ensures us the existe
bases for irreducible representations in which the operators are all simultaneously diagonal,
to the invariants a precise meaning which is useful to characterize the representations o
algebras.

IV. APPLICATIONS TO RANK ONE SUBALGEBRAS

The seven dimensional rigid Lie algebrad58 is a nice example to illustrate how, under certa
assumptions, we can deduce the invariants of some subalgebras. Let us consider the r
solvable~non-nilpotent! subalgebrasd5

a,b of d58 having the following brackets:

@X0 ,X1#5X2 , @X0 ,X2#5X3 , @X1 ,X2#5Y1 ,

@V,X0#5aX0 , @V,X1#5bX1 , @V,X2#5~a1b!X2 ,

@V,X3#5~2a1b!X3 , @V,Y1#5~a12b!Y1 ; a,bPC.

Clearly we haveV5aV11bV2 . The system of PDEs giving the invariants ofd5
a,b is

XîF50, 0< i<3, ~4.1!

Ŷ1F50, ~4.2!

V̂F50, ~4.3!

where

V̂5~ax0]x0
1bx1]x1

1~a1b!x2]x2
1~2a1b!x3]x3

1~a12b!y1]y1
!. ~4.4!

Now any invariantF satisfies]vF50, and we obtain that any invariant ofd58 is also an
invariant ofd5

a,b , since the five first equations coincide and the sixth is a linear combination o
toral equations ofd58 .

Lemma 1: For any a,bPC not simultaneously zero we haveN(d5
a,b)52.

Proof: SinceF1 satisfies the system,N>1. Now it can easily be seen that the matrix obtain
from the commutation table has rank four, from which the assertion follows. j

We make a distinction among the subalgebrasd5
a,b : those having trivial center and those no

It is a routine verification thatd5
a,b has nontrivial center if and only ifa12b50 or 2a1b50.

Since solvable Lie algebras having nontrivial center admit at least a polynomial invarian
obtain the following:

Lemma 2: Letd5
a,b have nontrivial center. Then a fundamental set of invariants is given

(i) $F1 ,x3% if 2a1b50,
(ii) $F1 ,y1% if a12b50.

For the case of a nontrivial center, it is easy to verify that any invariant ofd5
a,b is a function

of F1 , x3 andy1 . Specifically, we have the following.
Lemma 3: If Z(d5

a,b)Þ0, a fundamental set of invariants ford5
a,b is given by

$F1 , y1
2a1b/x3

a12b %.
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The interest of this example is that it provides us with a general result: Letr5n%W t be a
solvable non-nilpotent Lie algebra overK5$R,C% and t a torus of derivations. Let
$X1 ,...,Xn ,V1 ,...,Vp% be a basis such that the nilradicaln is generated by theXi and the torus by
the Vi . Suppose, moreover, thatr satisfies the following property:

]v i
F50, 1< i<p for any invariantF, ;v iPt. ~4.5!

Let t8 be a one dimensional subtorus oft andr85n%W t8 such thatt8.Z(n)Þ0, i.e., the action
of the subtorust8 on the center of the nilradical is nonzero.

Proposition 1: In the preceding conditions, any element F of a fundamental set of invar
for r is an invariant ofr8. Moreover, N(r8)>N(r).

Proof: Let V generatet8. We can find coefficientsa1 ,...,apPK such thatV5( i 51
p a iVi .

Sincen is nilpotent, its center is nonzero, and byt8.Z(n)Þ0, we deduce that]vF50 for any
invariantF of r8. The system of PDEs giving the invariants is

Xî .F52@Xi ,Xj #]xj
.F50, 1< i<n, ~4.6!

V̂.F52@V,Xi #]xi
.F50. ~4.7!

Now V̂5( i 51
p a i V̂i . This shows that any invariantG of r also satisfies the system~4.6! and

~4.7!, since the equations concerning the operatorsXî coincide, and the last equation is a line
combination of the equations$V̂i .F50% of r. Thus any fundamental set of invariants forr is a set
of functionally independent invariants forr8. As a consequenceN(r8)>N(r). j

Remark 2: If p is even, by the Beltrametti–Blasi formula we deduceN(r8)>N(r)11.
The main interest of this result is its application in the other direction~whenever it makes

sense!, i.e., starting from the invariants of a rank one subalgebra to find a fundamental set
algebrar. We illustrate it by an example:

Example 2: Consider the solvable Lie algebrag given by the brackets

@V1 ,Yi #5 iYi , 1< i<7,

@V2 ,Yi #5Yi , 2< i<7,

@Y1 ,Yi #5Yi 11 , 2< i<6.

This algebra is of rank two, and a torus is generated by V1 and V2 . From the corresponding
system (2.4) it can be seen that for any invariant F ofg we have]v i

F50,i 51,2, thus we can

apply the preceding proposition. Consider the one dimensional subtorus generated by V2 . The
semidirect product of this torus and the nilradical is an eight dimensional Lie algebrag8 satisfying
N(g8)52. A fundamental set of invariants for this algebra is formed by the following functio

g15
6y4y6y7

226y3y7
312y6

428y5y6
2y715y5

2y7
2

3y4y7
31y6

3y723y5y6y7
2 ,

g25
25y2y7

415y4y5y7
315y5y6

3y725y5
2y6y722y6

515y3y6y7
325y4y6

2y7
2

3y4y7
41y6

3y7
223y5y6y7

3 .

As the assumption of the proposition are satisfied, we know that there exists a function F(g1 ,g2)
that forms a fundamental system of invariants for the Lie algebrag. In this case it is not difficult
to see that such a function is given by F5 g2 /g1

2. Since both g1 and g2 are ratios of commuting
polynomials, we deduce that F is also a rational invariant of this kind (in the correspon
enveloping algebras).
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Of course this inverse procedure is applicable only in quite concrete cases, since the a
r could have no invariants, while a rank one odd dimensional Lie subalgebra necessar
solutions. Condition~4.5! provides us with another interesting fact: Letr5n%W t be an even di-
mensional solvable Lie algebra satisfying~4.5!.

Proposition 2: IfN(n)51, thenr has no nontrivial invariants.
Proof: Since ]vF50 for any invariant F and any vPt, over an arbitrary basis

$X1 ,...,X2p11 ,V1 ,...,V2q11% such that$X1 ,...,X2p11% is a basis ofn and $V1 ,...,V2q11% is a
basis oft, the system of PDEs giving the invariants is

X̂i .F50, 1< i<2p11, ~4.8!

V̂i .F50, 1< i<2q11. ~4.9!

Since there is only one functionally independent invariantF0 satisfying the equation~4.8!, be-
cause it corresponds exactly to the system ofn, we would obtain a fundamental set of invarian
of r generated by at most one invariant, namely some function ofF0 . But this contradicts the fac
that N~r! has the same parity as dimr, which is even. ThusN(r)50. j

This property can be of interest for some physical applications. The six dimensional su
bra P5,2 of the Poincare´ algebra generated by$cosaL31sinaK3,L21K1,L12K2,P02P3,P1,P2%
with 0<a<p,aÞ p/2 satisfies the preceding conditions. Its nilradicaln is five dimensional, and
the center ofn is generated by (P02P3). This ensures that] tF50 for any invariant, wheret
5cosal31sinak3. Since the invariants ofn are all functions of (p02p3), the algebraP5,2 has
none invariants.

V. CONCLUDING REMARKS

The preceding results show that rigid Lie algebras are an adequate class for studyi
generalized Casimir invariants. Since the torus determines the nilradical, the equations des
the action of the torus are of importance for the structure of the invariants, specifically if
invariants do not depend on the variables corresponding to toral elements. Since solvable ri
algebras can theoretically be classified following the algorithm given in Ref. 4, the analys
these algebras in relatively low dimension and their subalgebras can provide alternative crit
attack the general case, as classifications in general are not possible. This in particular ap
the class of two-step solvable Lie algebras~the Heisenberg algebras being the most import
examples!, for which general constructions exist.6 Observe further that, like in Proposition 1, th
results do not depend on the field, which allows us to derive results for both real and compl
algebras. The reason to analyze the complex rigid laws lies in their decomposition: for rea
Lie algebras no decomposition like~2.14! is known, and it is still an open question whether it c
exist.8

Finally, the same analysis could be applied to any solvable Lie algebra whose nilradic
characteristic sequence (p,1,...,1) forp>4. These algebras, which are completely classified u
p55,3,7 consist of a low dimensional subalgebram generated by a characteristic vector, to whi
three dimensional Heisenberg Lie algebras having their derived subalgebras in the center om are
glued. For the solvable Lie algebras having nilradicals of this type the determination of a f
mental set of invariants should also be possible from the analysis in low dimensions. This str
makes this class worthy of being analyzed to obtain alternative criteria for the generalized C
invariants of solvable Lie algebras.

Finally, the absence of invariants of an algebra is a very interesting property, because,
ever the algebra is related to some physical system, other solutions in more general space
also provide important information on the system~as happens with the sign of energy for th
Poincare´ algebra!.17 It is also of interest to find characterizations of these algebras.
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Modified braid equations, Baxterizations and
noncommutative spaces for the quantum groups
GLq„N…, SOq„N…, and Sp q„N…
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Modified braid equations satisfied by generalizedR̂ matrices~for a given set of
group relations obeyed by the elements ofT matrices! are constructed for
q-deformed quantum groups GLq(N), SOq(N), and Spq(N) with arbitrary values
of N. The Baxterization ofR̂ matrices, treated as an aspect complementary to the
modificationof the braid equation, is obtained for all these cases in particularly
elegant forms. A new class of braid matrices is discovered for the quantum groups
SOq(N) and Spq(N). The R̂ matrices of this class, while being distinct from the
restrictions of the universalR̂ matrix to the corresponding vector representations,
satisfy thestandardbraid equation. The modified braid equation and the Baxter-
ization are obtained for this new class ofR̂ matrices. Diagonalization of the gen-
eralizedR̂ matrices is studied. The diagonalizers are obtained explicitly for some
lower dimensional cases in a convenient way, giving directly the eigenvalues of the
correspondingR̂ matrices. Applications of such diagonalization are then studied in
the context of associated covariantly quantized noncommutative spaces. ©2003
American Institute of Physics.@DOI: 10.1063/1.1530370#

I. INTRODUCTION

Previously one of us has studied themodifiedbraid equation~MBE! in the context of the
quantum groups GLp,q(2), GLg,h(2), and GLq,h(1u1) ~biparametric unitary, nonstandard Jord
nian and hybrid deformations respectively! in Ref. 1; and also the orthogonal quantum gro
SOq(3) in Ref. 2. The terminology is adopted from that of Gerstenhaber, Giaquinto, and Scha3,4

who have studied a generalized class of deformations leading to MBE, where unlike the st
Yang–Baxter equation there are also inhomogeneous terms linear in tensoredR̂ matrices. These
authors indicate the significance of and the interest in this equation. In Refs. 1 and 2 the
general solutions of the quantum inverse scattering equation

R̂T1T22T1T2R̂50, T15T^ I, T25I^ T ~1.1!

for the relevant quantum groups were considered. Starting from agivenset of group relations of
the elements of the monodromy matrixT, the most generalR̂ matrix satisfying~1.1! was con-
structed. It was observed that the standard braid equation was modified for this generalR̂
matrix. In this procedure theconservation of the group laws postulated for the elements of thT
matrix was maintained.

a!Electronic mail: chakra@cpht.polytechnique.fr
b!Permanent address: Department of Theoretical Physics, University of Madras, Guindy Campus, Chennai, 600 02

Electronic mail: ranabir@imsc.res.in
7850022-2488/2003/44(2)/785/28/$20.00 © 2003 American Institute of Physics
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Here we construct, systematically and explicitly, the MBE for the quantized groups GLq(N),
SOq(N), and Spq(N), respectively. As explained in Sec. 1 of Ref. 2, we will methodically use
generalized spectral decomposition of the relevantR̂ matrices in the vector representations. For
R̂ matrix obeying the characteristic equation

~R̂2k1I! ~R̂2k2I!¯~R̂2kpI!50, ~kiÞkj if iÞ j u~ i , j !5~1,2,...,p!!, ~1.2!

the projectors in the eigenspaces of thisR̂ matrix read

Pi5)
j Þ i

~R̂2kj I!

~ki2kj !
, ~1.3!

and satisfy the usual property

Pi Pj5Pid i j , (
i

Pi5I. ~1.4!

This orthonormalized set then provides the spectral decomposition.
Following Refs. 5–7 we first review the situation for the standard braid equation. In

discussion concerning braiding matrices, projectors and so on, we draw on Refs. 5 and 6.
study of the Baxterization of theR̂ matrices the analysis in Ref. 7 is particularly relevant. A lar
number of sources are cited in Ref. 7, and we also refer to that list. The standard, i.e., nonm
in our context, braid equation reads

R̂12R̂23R̂122R̂23R̂12R̂2350. ~1.5!

The spectral decomposition of the braid matrix of the quantum group GLq(N) with the conven-
tional normalization7 is given by

R̂5qP(1)2q21P(2) , ~1.6!

whereas braid matrices of the quantum groups SOq(N) and Spq(N) ~whereN52n) in the usual
normalization7 may be written in a unified manner

R̂5qP(1)2q21P(2)1«q«2NP(0) . ~1.7!

In ~1.7! we have«51(21) for the quantum group SOq(N) @Spq(N)#. The explicit expressions o
the R̂ matrices and the corresponding projectors for the above quantum groups are given in
5–7.

Now we proceed as follows. Maintaining thesameprojectors as in the standard braid equ
tion, we generalize theR̂ matrix of the quantum group GLq(N) as

R̂~v !5I1vP(2)5P(1)1~11v !P(2) . ~1.8!

A similar parametrization in the context of the quantum group GLq(2) was used in Ref. 8. The
generalizedR̂ matrices for the quantum groups SOq(N) and Spq(N) read

R̂~v,w!5I1vP(2)1wP(0)5P(1)1~11v !P(2)1~11w!P(0) . ~1.9!

Setting the braid values of the variables

v52~11q72!, w52~12«q7(N112«)! ~1.10!
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in ~1.8! and~1.9! we may recover theR̂61 matrices satisfying the braid equation~1.5!. Here and
henceforth we adopt the convention that for the braid matrices satisfying~1.5! we do not explicitly
exhibit the corresponding values of the relevant spectral variables. We will throughout imple
the normalizations used in~1.8! and ~1.9!. For the purpose of later use we enlist here the br
matrices and their inverses according to our normalization scheme. TheR̂61 matrices of the
quantum group GLq(N) read

R̂615I2~11q72!P(2) , ~1.11!

whereas theR̂61 matrices of the quantum groups SOq(N) and Spq(N) are given by

R̂615I2~11q72!P(2)2~12«q7(N112«)!P(0) . ~1.12!

We observe that the braid matrices defined in~1.11! and ~1.12! following our normalization
scheme and the corresponding matrices given, respectively, by~1.6! and ~1.7! as per the usua
normalization prescriptions, differ by an overall multiplicative factor

R̂5qR̂. ~1.13!

TheR̂(v) andR̂(v,w), defined, respectively, in~1.8! and~1.9!, satisfy the following characteristic
equations:

~R̂~v !2I!~R̂~v !2~11v !I!50, ~1.14!

~R̂~v,w!2I!~R̂~v,w!2~11v !I!~R̂~v,w!2~11w!I!50. ~1.15!

Using ~1.3! the relevant projectors can also be expressed directly as linear and quadratic fun
of R̂(v) andR̂(v,w), respectively. We also note that anyR̂ matrix satisfying~1.1! also necessarily
satisfies

f ~R̂!T1T22T1T2 f ~R̂!50, ~1.16!

wheref (x) is any well-behaved function. Due to the relations~1.14! and~1.15! the operatorf (R̂)
reduces to a linear and a quadratic expression in the matrixR̂ in the respective cases. Thus fo
arbitrary values of the variablesv and (v,w), our constructions in~1.8! and~1.9! provide themost
general solutionsin the relevant examples.

Now comes the crucial question. What modifications in the braid equation~1.5! are enacted as
the variablesv and (v,w) move away from the braid values given in~1.10!? We are thus lead to
our MBE for each case considered. As shown later in Sec. II, the MBE for the quantum
GLq(N) reads

R̂12~v !R̂23~v !R̂12~v !2R̂23~v !R̂12~v !R̂23~v !5c~R̂12~v !2R̂23~v !!, ~1.17!

whereas in the examples of the quantum groups SOq(N) and Spq(N) these equations have th
form

R̂12~v,w!R̂23~v,w!R̂12~v,w!2R̂23~v,w!R̂12~v,w!R̂23~v,w!

5c1~R̂12~v,w!2R̂23~v,w!!1c2~R̂12
21~v,w!2R̂23

21~v,w!!1c3~R̂12~v,w!R̂23
21~v,w!

2R̂23~v,w!R̂12
21~v,w!!2c3~R̂12

21~v,w!R̂23~v,w!2R̂23
21~v,w!R̂12~v,w!!. ~1.18!

The coefficientsc and (c1 ,c2 ,c3) are given explicitly in Secs. II and III, respectively. Inhom
geneous terms linearly depending onR̂ matrix elements on the right hand side of the modifi
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braid equation, as in~1.17!, were first considered3,4 in the context of the quantum group GLq(N)
with two projectors. There is, however, a sudden leap in complexity as the number of proj
increases by one as in the cases of quantum groups SOq(N) and Spq(N). By restricting the
parametersv andw, we also select special cases in Secs. III and IV, where, for instance,c350 or
$c250,c350% holds.

There is another aspect of our analysis. In Refs. 1 and 2~particularly in Sec. 4 of Ref. 2! it was
pointed out that themodificationof the braid equation and the Baxterization of theR̂ matrix are
two complimentary facets of the generalized spectral decompositions in~1.8! and ~1.9!. It is
possible to proceed in one of the following two alternate directions.

~i! The variablesv andw are held fixed in each factor of the left, as in~1.17! and~1.18!, and
the inhomogeneous terms on the right are computed. This yields the MBE.

~ii ! The inhomogeneous terms on the right-hand side of the braid equation may be cons
to be zero. This fixes the variablesv andw in the appropriateR̂ matrices in a particular
fashion to be shown below. This provides the Baxterization of theR̂ matrices.

The final results for the first possibility were presented above. Similarly we enlist below
final results for the other possibility. In Sec. III C we study the additive form of Baxterizatio
the R̂ matrices

R̂12~u!R̂23~u1u8!R̂12~u8!2R̂23~u8!R̂12~u1u8!R̂23~u!50, ~1.19!

whereq5exp(h). For this form of Baxterization the variablev(u) reads

v~u!5
sinh~h2u!

sinh~h1u!
21, ~1.20!

for all the quantum groups studied here, namely GLq(N), SOq(N), and Spq(N). The variable
w(u), appearing for the quantum groups SOq(N) and Spq(N), assumes two alternate forms. F
the orthogonal quantum group SOq(N) it is given by

w~u!5

coshS N

2
h2u D

coshS N

2
h1u D 21 ~1.21!

or

w~u!5

sinhS S N

2
21Dh2u D sinh~h2u!

sinhS S N

2
21Dh1u D sinh~h1u!

21. ~1.22!

For the symplectic quantum group Spq(N), whereN52n, the variablew(u) assumes the form

w~u!5
sinh~~n11!h2u!

sinh~~n11!h1u!
21 ~1.23!

or

w~u!5
cosh~nh2u!sinh~h2u!

cosh~nh1u!sinh~h1u!
21. ~1.24!
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In each case our parametrization and normalization assure the validity of the constraint

R̂~u!R̂~2u!5I. ~1.25!

It has been implicitly assumed above thatvÞ0,wÞ0. But the parametrization~1.9! insistently
points at the following question. What happens for the special choices (vÞ0,w50) and (v
50,wÞ0)? Certain properties of the projectorsP(2) and P(0) being different, there is no recip
rocal symmetry concerning the two above choices. For thew50 case there is no nontrivia
solution. But for thev50 case we discussa hitherto unnoticed new class of solutionsstudied in
detail in Sec. IV. Even in the limitq51, this class of solutionsremains nontrivial. For the purpose
of comparison with the preceding results, here we just exhibit the Baxterized values of the s
variables corresponding to these solutions for the quantum groups SOq(N) and Spq(N):

v50, w~u!5
sinh~h2u!

sinh~h1u!
21, where tanhh5~124~11«@N2«#!22!1/2. ~1.26!

In ~1.26! we have used the standard notation@x#5(qx2q2x)/(q2q21). The quantity under the
radical sign in~1.26! is positive forN.2, and hence its square root is real.

In Sec. V we construct matrices diagonalizing the generalized braid operatorsR̂(v) and
R̂(v,w). Explicit results are presented for the quantum groups GLq(2), SOq(3), and SOq(4). The
key result valid for the cases studied is that the indefinite parameters in the diagonalizers m
chosen to ensurethe mutual orthogonality of their rows. This remarkably helpful property allow
us to effortlessly obtain the eigenvectors of the generalized braiding matricesR̂(v) andR̂(v,w).
These can be of interest in related statistical models.

Also we show, in Sec. VI, how such diagonalizations may be exploited in the descripti
associated noncommutative spaces. One principal objective in introducing our generalized s
decompositions has been1,2 the exploration of the roles of the variables (v,w) in the instances,
where the generalized braid matricesR̂(v) and R̂(v,w) are used to construct the relevant no
commutative spaces. The constraints due to Leibnitz rule and the covariance prope
discussed, for instance, in Refs. 9–11 and a large number of sources cited therein—are pr
in Sec. VI after incorporating our spectral variables.

But in this paper our study remains essentially limited to showing how the the diagonaliz
of Sec. V can help in better understanding certain features of such spaces. We hope to d
other aspects elsewhere. Remarks on various features of the results obtained and other
tives are presented in Sec. VII.

II. MODIFIED BRAID EQUATION AND BAXTERIZATION FOR THE QUANTUM GROUP
GLq„N…

In the vector representation the braid matrixR̂ of the quantum group GLq(N) has two or-
thogonal projectors. The spectral decomposition of its generalizedR̂(v) matrix has been defined in
~1.8!. Adopting the definitions

X15P(2) ^ I, X25I^ P(2) , S15~X12X2!, T15~X1X2X12X2X1X2!, ~2.1!

we write

R̂12~v !R̂23~v8!R̂12~v9!2R̂23~v9!R̂12~v8!R̂23~v !5~v1v91vv92v8!S11vv8v9T1 . ~2.2!

Equating the variables to their braid valuesv5v85v952(11q22) the right-hand side of~2.2!
vanishes as in this limit the braid matrixR̂ in ~1.11! satisfying the braid equation~1.5! is obtained.
This restricts
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T15
S1

@2#2 . ~2.3!

Hence the right-hand side of~2.2! reads

S ~v1v91vv92v8!1
vv8v9

@2#2 DS1 , ~2.4!

where following~1.8! and the related discussions we obtain

S15v21~R̂12~v !2R̂23~v !!52q@2#21~R̂122R̂23!. ~2.5!

Setting v5v85v9 we obtain the MBE obeyed by the generalized braid matrixR̂(v) of the
quantum group GLq(N):

R̂12~v !R̂23~v !R̂12~v !2R̂23~v !R̂12~v !R̂23~v !5~11v1@2#22v2!~R̂12~v !2R̂23~v !!. ~2.6!

Comparing the above MBE with~1.17! we obtain

c511v1@2#22v2. ~2.7!

For the Baxterization of theR̂(v) matrix we set

v5v~x!, v95v~y!, v85v~xy! ~2.8!

and denoteR̂(v)[R̂(x). Now for the right-hand side of~2.2! to vanish, we must have

v~xy!5
v~x!1v~y!1v~x!v~y!

12@2#22v~x!v~y!
. ~2.9!

This functional relation is solved in a more general form in Sec. III. Here we present the
result concerning the functionv(x) as follows. The solution satisfying the constraint

R̂~x!R̂~x21!51 ~2.10!

reads

v~x!5
qx212q21x

qx2q21x21 21. ~2.11!

Settingx5exp(u) and q5exp(h) in ~2.11!, we obtain the functional structure in~1.20!. For the
choicey5exp(u8) and the above value ofv(u) the braid equation takes the form given in~1.19!.
Combining~1.8!, ~1.11!, and~2.11! we may expressR̂(x) as

R̂~x!5
qxR̂2q21x21R̂21

qx2q21x21 . ~2.12!

Suitably changing the normalizations, namely, observing~1.13! and setting

R̂~x!5~qx212q21x!R̂~x21!, ~2.13!

we obtain

R̂~x!5x21R̂2xR̂21. ~2.14!
                                                                                                                



. II,

e

their

s
re use

791J. Math. Phys., Vol. 44, No. 2, February 2003 Modified braid equations

                    
In this form the Baxterization of theR̂ matrix of the quantum group GLq(N) is often presented.7

We have preferred~2.12! to achieve uniform utilization of the same functional equation in Secs
III, and IV. This also ensuresone uniform normalization prescription, whether theR̂ matrix is
Baxterized or not, by fixing the top left element~row 1, column 1! to be unity. This condition is
evidently satisfied by~2.12!.

III. MODIFIED BRAID EQUATION AND BAXTERIZATION FOR THE QUANTUM GROUPS
SOq„N… AND Spq„N…

A. Reduction of trilinear terms

For arbitrary parameters (v,w) the generalizedR̂(v,w) matrix is given by~1.9!. In addition to
quantities already introduced in~2.1!, here we further define the following objects:

Y15P(0)^ I, Y25I^ P(0) , S25~Y12Y2!,

J15~X1Y22Y1X2!, J25~Y2X12X2Y1!,

K15~X1X2Y12Y2X1X2!, K25~X1Y2X12X2Y1X2!, K35~Y1X2X12X2X1Y2!,

L15~Y1Y2X12X2Y1Y2!, L25~Y1X2Y12Y2X1Y2!, L35~X1Y2Y12Y2Y1X2!,

S35~K11K21K3!, S45~L11L21L3!, T25~Y1Y2Y12Y2Y1Y2!. ~3.1!

In terms of these quantities we obtain

R̂12~v,w!R̂23~v8,w8!R̂12~v9,w9!2R̂23~v9,w9!R̂12~v8,w8!R̂23~v,w!

5~v1v91vv92v8!S11~w1w91ww92w8!S21~vw82v8w!J11~w8v92w9v8!J2

1~vv8w9!K11~vw8v9!K21~wv8v9!K31~ww8v9!L11~wv8w9!L21~vw8w9!L3

1~vv8v9!T11~ww8w9!T2 . ~3.2!

We will discuss below how to express the trilinear combinations (K1 ,K2 ,K3 ,L1 ,L2 ,L3 ,T1 ,T2) in
terms of the linear (S1 ,S2) and the bilinear (J1 ,J2) constructs. For the braid values of th
parameters

v5v85v952~11q22!, w5w85w952~12«q2(N112«)! ~3.3!

the right-hand side of~3.2! vanishes. As noted before, when the spectral variables assume
braid values, the generalized braid matrixR̂(v,w), while satisfying~1.5!, reduces to theR̂ matrix
given in ~1.12!. The characteristic equation~1.2! for the R̂ matrix now reads

~R̂2I!~R̂1q22I!~R̂2«q2(N112«)I!50. ~3.4!

The projectors may be extracted from~3.4! as quadratic expression in the matrixR̂ à la ~1.3!. For
the choice

v5v85v952~11q2!, w5w85w952~12«qN112«! ~3.5!

the inverse of the braiding matrix, namelyR̂21 is obtained. The braid matrix and its inverseR̂61

obtained following the choices~3.3! and ~3.5! have been listed in~1.12!. For these matrices, a
mentioned before, we will suppress the particular values of the spectral variables. For futu
here we note that the inverse of the generalized braid matrix~1.9! is given by
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~R̂~v,w!!215I2v~11v !21P(2)2w~11w!21P(0) . ~3.6!

The braid equation~1.5! may be utilized to yield the well-known constraints

f ~R̂12
61!R̂23

61R̂12
615R̂23

61R̂12
61f ~R̂23

61!, R̂12
61R̂23

61 f ~R̂12
61!5 f ~R̂23

61! R̂12
61R̂23

61 , ~3.7!

where f (x) is any well-behaved function ofx. The projectorsP(2) and P(0) are quadratic func-
tions of the matrixR̂. Choosing these particular functions in the constraints~3.7!, and utilizing the
definitions~2.1! and ~3.1! we obtain

X1A(6)5A(6)X2 , Y1A(6)5A(6)Y2 , B(6)X15X2B(6) , B(6)Y15Y2B(6) , ~3.8!

where the bilinear elements read

A(6)5R̂23
61R̂12

615I2~11q72!~X11X2!2~12«q7(N112«)!~Y11Y2!1~11q72!2X2X1

1~11q72!~12«q7(N112«)!~X2Y11Y2X1!1~12«q7(N112«)!2Y2Y1 ,

~3.9!

B(6)5R̂12
61R̂23

615I2~11q72!~X11X2!2~12«q7(N112«)!~Y11Y2!1~11q72!2X1X2

1~11q72!~12«q7(N112«)!~X1Y21Y1X2!1~12«q7(N112«)!2Y1Y2 .

~3.10!

We also enlist other useful relations,

YiYjYi5~11«@N2«#!22Yi , ~3.11!

YiXjYi5
«@N2«#~@2#1«@N212«#!

@2#~11«@N2«#!2 Yi , ~3.12!

where (i , j )5(1,2) or ~2, 1!. Employing the above constraints and defining the following qua
ties:

c5
«@N2«11#

@2#~11«@N2«#!
, d5~11«@N2«#!21,

~3.13!

k5~q2q21!
q(N112«)/22«q2(N112«)/2

q(N212«)/21«q2(N212«)/2 ,

we obtain the promised reduction

K152c~J21~12c!S2!, K25~12c!~J11J21~12c!S2!, K352c~J11~12c!S2!,

L152d~J11~12c!S2!, L25~12c!~12d!S2 , L352d~J21~12c!S2!, ~3.14!

T15@2#22~S11k~J11J21~12c!S2!!, T25d2S2 .

It is useful to define the ratios of the spectral variables (w/v) for the R̂61 matrices as given in
~1.12!:

f 65q61@2#21~12«q7(N112«)!52«q7(N112«) f 7 . ~3.15!

Then it may be shown that
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c5@2#21S q21f 12q f2

f 12 f 2
D , d5

q2q21

@2#~ f 12 f 2!
,

~3.16!

k52~q22q22!S f 1 f 2

f 12 f 2
D52@2#2d f1 f 2 .

For the special case of the quantum group SOq(3), where«51 andN53, we obtain the para-
metric values

c512@2#21, d5~11@2# !21, k52~11@2# !~22@2# !. ~3.17!

As a valuable consistency check we carried through the reduction starting directly with«51, N
53. Agreement for this special case was obtained as the reduction scheme~3.14! was reproduced
with the appropriate values of the parameters~3.17!.

B. Modified braid equation

For the choice of the variablesv5v85v9 andw5w85w9, the result~3.2! reduces to

R̂12~v,w!R̂23~v,w!R̂12~v,w!2R̂23~v,w!R̂12~v,w!R̂23~v,w!

5v~11v !S11w~11w!S21v2wS31vw2S41v3T11w3T2 , ~3.18!

where, using~3.14! we obtain

S35K11K21K35~12c!~123c!S21~122c!~J11J2!,
~3.19!

S45L11L21L35~12c!~123d!S22d~J11J2!.

Using the reduction~3.14! for the trilinear constructsT1 andT2 , we finally obtain the right-hand
side of ~3.18! as

a1S11a2S21b~J11J2!, ~3.20!

where the coefficients read

a15@2#22v~v1@2#q!~v1@2#q21!,

a25w~11w!1d2w31~12c!v3S @2#22k1~123c!S w

v D1~123d!S w

v D 2D , ~3.21!

b52dv3S w

v
2 f 1D S w

v
2 f 2D .

The choice of the ‘braid values’ for the variablesv52@2#q71, w/v5 f 6 for the R̂61 matrices
readily reduces~3.21! to a150, a250, b50. This is obvious fora1 andb, whereas the result fo
a2 provides a good consistency check.

To obtain the general MBE we now express~3.20! in terms of (R̂(v,w))61. The projectors
now read

P(2)5
11v

v~v2w!
~~R̂~v,w!2I!1~11w!~R̂21~v,w!2I!!,

~3.22!

P(0)5
11w

w~w2v !
~~R̂~v,w!2I!1~11v !~R̂21~v,w!2I!!.
                                                                                                                



s
n

e

iled
s, the
the

of the

794 J. Math. Phys., Vol. 44, No. 2, February 2003 A. Chakrabarti and R. Chakrabarti

                    
In passing we mention that by implementing the braid values~1.10! of the variables (v,w) the
projectorsP(1) andP(0) may also be expressed in terms of the braid matricesR̂61. Now we can
express the constructsS1 , S2 , J1 andJ2 defined in~3.1! in terms of the generalized braid matrice
R̂12

61(v,w) andR̂23
61(v,w). Substituting these results in~3.20! we obtain the general MBE stated i

~1.18!, where, with the values of (a1 ,a2 ,b) given in ~3.21!, the coefficients read

c15
~11v !~11w!

vw~v2w! S w

11w
a12

v
11v

a212bD ,

~3.23!

c25
~11v !~11w!

vw~v2w!
~wa12va222b!, c352

~11v !~11w!

vw~v2w!
b.

For the braid values~1.10! of the variablesv andw the coefficients (c1 ,c2 ,c3) vanish.
We now discuss the following special cases depending on values of the parametersv andw.

~i! For an arbitrary nonzero value ofv, and for the choicesw5 f 6v, we, via ~3.21! and
~3.23!, obtainc350. Hence the right hand side of the MBE~1.18! reduces to the first two
terms. Using the characteristic equation~1.15! the right-hand side of the MBE may now b
expressed in terms of the generalized braiding operators (R̂12(v,w)2R̂23(v,w)) and
(R̂12

2 (v,w)2R̂23
2 (v,w)).

~ii ! For v50 and an arbitrary value ofw we have an interesting case deserving a deta
treatment that is provided in Sec. IV. Here we just note that, for these parametric value
operatorR̂(0,w) satisfies aquadratic rather than a cubic characteristic equation; and
right-hand side of the MBE~1.18! is now proportional to (R̂12(0,w)2R̂23(0,w)).

C. Baxterization

As was noted in Sec. I, the MBE and the Baxterization are two complementary aspects
generalized braid operatorR̂(v,w) with its spectral decomposition given in~1.9!. Having formu-
lated the MBE, we now turn to Baxterization of the braid operator.

From ~3.2! and ~3.14! we obtain

R̂12~v,w!R̂23~v8,w8!R̂12~v9,w9!2R̂23~v9,w9!R̂12~v8,w8!R̂23~v,w!5a1S11a2S21b1J11b2J2 ,
~3.24!

where, with the parametersc, d andk given by ~3.13!, the coefficients read

a15~v1v91vv9!2~12@2#22vv9!v8,

a25~w1w91ww9!2~12d2ww9!w81~12c!~~12c!vv9w82c~vw91v9w!v8!

1~12c!~~12d!ww9v82d~vw91v9w!w8!1~12c!k@2#22vv9v8,
~3.25!

b15~vw82wv8!2cwv9v81~12c!vv9w82dwv9w81k@2#22vv9v8,

b25~v9w82w9v8!2cvw9v81~12c!vv9w82dvw9w81k@2#22vv9v8.

For Baxterization the variables (v,v9,v8) and (w,w9,w8) are re-expressed as (v(x),v(y),v(xy))
and (w(x),w(y),w(xy)), respectively; and then the functional equations

ai~x,y!50, bi~x,y!50, i 5~1,2! ~3.26!

obtainedvia ~3.25! are solved.
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We start by noting a crucial constraint on the functional solutions to be implemented sy
atically. In ~3.24! the R̂(v,w) matrix may be replaced with its inverseR̂21(v,w) given in ~3.6!.
Hence for consistency our functional solutions must be such that

2
v~x!

11v~x!
5v~x8!, 2

w~x!

11w~x!
5w~x8!, ~3.27!

wherex8 is some suitable function ofx. We have chosen the parametrization

x85x21 ~3.28!

such that the validity of the constraint

R̂~x!R̂~x21!5I ~3.29!

is assured. The functionsf (x) andg(x) being suitably well-defined, the relations~3.27! and~3.28!
now imply

v~x!5
f ~x!

f ~x21!
21, w~x!5

g~x!

g~x21!
21. ~3.30!

It will, in fact, thus be necessary to solve onlytwo functional equations from the set~3.26!:

a1~x,y!50, b1~x,y!50. ~3.31!

As for the functionb2 we note that the following exchange relation holds:

b2~x,y!5b1~y,x!. ~3.32!

Moreover the solutions of the functional equations~3.31!, along with~3.30!, will be seen to fix the
functionsv(x) and w(x) completely with all the parameters determined. Then the much more
complicated functional equation fora2(x,y) does not have to be solved at all. The consistency
the scheme may be verified by checking thata2(x,y) indeed vanishes by implementingv(x) and
w(x) already available. So now we consider the equations in~3.31!. The first equation in~3.31!
implies ~2.9!. It will turn out to be quite useful to solve a more general function equation w
arbitraryl given by

u~xy!5
u~x!1u~y!1u~x!u~y!

12l2u~x!u~y!
. ~3.33!

By direct substitution it may be verified that the general solution maintaining the structure~3.30!,
namely

u~x!5
a~x!

a~x21!
21 ~3.34!

is given by

a~x!52~x2x21!6A124l2~x1x21!. ~3.35!

For all cases of interest to us the square root will turn out to be real. The lower sign before th
in the right-hand side of~3.35! corresponds tou(x21) with the upper sign. So it is sufficient to
consider only one, say, the upper sign before the root, since, more generally, replacing ofx by xp

in ~3.30! does not change the essential functional form. Now settingl5@2#21, we obtain the
solution of the first equation in~3.30! with the functionf (x) given by
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f ~x!52~x2x21!1~q2q21!@2#21~x1x21!. ~3.36!

Apart from the basic structures~3.34! and ~3.35!, the following form is also of interest:

u~x!5bS x221

x21b11D , where b522~11A124l2!21. ~3.37!

Substitutingx5exp(u), tanhg5A124l2 we obtain the elegant form of additive Baxteriz
tion, as seen in the context of~1.19!:

u~x!;u~u!5
sinh~g2u!

sinh~g1u!
21. ~3.38!

For the functionv(x);v(u), we obtain, after settingq5exp(h), the solution~1.20!.
Now to solve the second equation in~3.31! we proceed in successive steps as follows. E

pressing the parameters (c,d,k) in terms of the ratiosf 6 as given in~3.16!, we define

b1[2
vv8v9

@2#~ f 12 f 2!
F, ~3.39!

where

F5~q2q21!
w

v
w8

v8
1@2#

f 12 f 2

v9 S w

v
2

w8

v8 D1~q21f 12q f2!
w

v

2~q f12q21f 2!
w8

v8
1~q2q21! f 1 f 2 . ~3.40!

In ~3.40! we have assumed that the spectral functionvÞ0. Now defining

U5@2#d~wv212 f 1!, ~3.41!

we obtain after simplification

F5~q2q21!
UU8

~@2#d!2 S 11S q1
@2#

v9 D 1

U8
2S q211

@2#

v9 D 1

U D . ~3.42!

In the context of~3.41! we note that by translating the ratio (w/v) by f 2 the same functiona
solutions are finally obtained. Substituting for the functionv the form corresponding to~3.37!, i.e.,

v95v~y!52@2#q21~y221!~y22q22!21, ~3.43!

we find that the requirement forF50 reads

U21~xy!1~q2q21!215~U21~x!1~q2q21!21!y2. ~3.44!

Hence, with an as yet arbitrary parameterd that is to be fixed immediately afterwards, we obta
the solution as

U21~x!1~q2q21!215d~q2q21!21x2. ~3.45!

Now the spectral functionw(x) may be solved in terms of the already known solutionv(x):

w~x!5~ f 1dx22 f 2!~dx221!21 v~x!. ~3.46!
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Using the crucial constraint~3.30! on w(x) now it may be shown that there areonly two permitted
valuesof the parameterd, which, in turn, generate the corresponding solutions of the spe
function w(x):

d52«q(N112«)⇒w~x!5
x1«q(N112«)x21

x211«q(N112«)x
21, ~3.47!

d5«q(N212«)⇒w~x!5
~qx2«q(N2«)x21!~q21x2qx21!

~qx212«q(N2«)x!~q21x212qx!
21. ~3.48!

At this stage our procedure of Baxterization of the braid operator is complete. In view o
discussion following~3.32! we need not solve the functional equations corresponding toa2(x,y)
and b2(x,y). The functionw(x) corresponding to the additive form of Baxterization may
obtained by settingx5exp(u),q5exp(h) in the solutions~3.47! and~3.48!. For the quantum group
SOq(N), with «51, these solutions assume the form~1.21! and~1.22!, respectively. Similarly for
the quantized symplectic group Spq(N), where«521 andN52n, they are given by~1.23! and
~1.24!, respectively.

Finally, expressing the projection operatorsP(2) andP(0) in terms of the braid matricesR̂61,
as discussed following equation~3.22!, we obtain

R̂~x!5 l (0)~x!I1 l (1)~x!R̂1 l (2)~x!R̂21. ~3.49!

Denoting the braid values~1.10! of the spectral variables corresponding to theR̂ matrix by
(v0 ,w0), respectively, the coefficients in~3.49! may be listed as

l (0)~x!512~11v0!~21w0!v0
21~v02w0!21 v~x!2~21v0!~11w0!w0

21~w02v0!21 w~x!,

l (1)~x!5~11v0!v0
21~v02w0!21 v~x!1~11w0!w0

21~w02v0!21 w~x!, ~3.50!

l (2)~x!5~11v0!~11w0!~v0
21~v02w0!21 v~x!1w0

21~w02v0!21w~x!!.

Consistent with our normalization, the relationl (0)(x)1 l (1)(x)1 l (2)(x)51 is maintained.

IV. A NEW CLASS OF SOLUTIONS OF THE BRAID EQUATION

So far we have been studying the general case (vÞ0,wÞ0) of the spectral variables. We not
that for the choicew50, there is no solution of the braid equation with nontrivialv as more than
one functional constraints on the single spectral parameter, or the functionv(x) in the Baxterized
case, need to be satisfied.

For the alternate choicev50, it is, however,possibleto obtain a remarkable class of gene
alized braid matricesR̂(w) depending on the single variablew. This was already studied in th
context of the quantum group SOq(3) in Ref. 2. Here we present this class for general quan
groups SOq(N) and Spq(N). Denoting the generalized braid matrixR̂(0,w) by R̂(w), we write

R̂~w!5I1wP(0) , R̂21~w!5I2w~11w!21P(0) , ~4.1!

where the matrixR̂(w) satisfies a quadratic characteristic equation

~R̂~w!2I!~R̂~w!2~11w! I!50. ~4.2!

Instead of restricting our preceding general formulas to the special casev50 it is much simpler to
start again with~3.2! which, in conjunction with the last relation in~3.14!, now gives
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R̂12~w!R̂23~w!R̂12~w!2R̂23~w!R̂12~w!R̂23~w!

5~w~11w!1d2w3!S25~11w1d2w2!~R̂12~w!2R̂23~w!!. ~4.3!

Thus we have already obtained the MBE with a simple linear structure in the generalized
matrix on the right-hand side. But as the coefficient on the right-hand side of~4.3! may be
factorized as

d2w21w115d2~w2w1!~w2w2!, w65221d22~216A124d2!, ~4.4!

we obtain two nonmodifiednew braid matrices:

R̂12~w6!R̂23~w6!R̂12~w6!2R̂23~w6!R̂12~w6!R̂23~w6!50. ~4.5!

But the constraint

R̂~w1!R̂~w2!5I, ~4.6!

observed using~4.1! and ~4.4! indicate the presence of onlyone braid matrix and its inverse
Following the expression ofd in ~3.13! we also note that the quantity under the radical sign
~4.4! satisfies 1.(124d2).0 for all values of (N,«) relevant to us. Hence the square root is re

The prescription of Baxterization of this class ofR̂(w) matrices is immediately obtained from
~3.33!–~3.35!. Only relevant functional equationa2(x,y)50 in the set~3.26! now yields

w~xy!5
w~x!1w~y!1w~x!w~y!

12d2w~x! w~y!
, ~4.7!

whereas the other functional equations in the set~3.26! trivially vanishes for the casev50. The
solution of the equation~4.7! read

w~x!5
2~x2x21!1A124d2~x1x21!

~x2x21!1A124d2~x1x21!
21. ~4.8!

Settingx5exp(u) and tanhh5A124d2, we, following ~3.38!, obtain

w~x!;w~u!5
sinh~h2u!

sinh~h1u!
21. ~4.9!

For the quantum group SOq(3) the generalized braid operatorR̂(w) in the present class wa
explicitly presented before in Ref. 2. Here we present the general prescription regardin
quantum groups SOq(N) and Spq(N). To this end we include the standard and well-kno
construction of the projectors for the sake of completeness. Let (r1 ,r2 ,...,rN) denote theN-tuple
with the following assignments for the respective quantum groups:

~n2 1
2 ,n2 3

2 ,..., 1
2 ,0,2 1

2 ,...,2n1 1
2! for SOq~2n11!,

~n21,n22,...,1,0,0,21,...,2n11! for SOq~2n!, ~4.10!

~n,n21,...,1,21,...,2n! for Spq~2n!.

We also fix the values$e i51u i 51,...,N% for the quantum group SOq(N); and $e i51, if i<n,
e i521, if i .n% for the quantum group Spq(2n). As usualEi j denotes theN3N matrix where the
only nonzero element (i , j ) equals unity. With these notations the projectors are given by
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P(0)5~11@N21# !21 (
i , j 51

N

q(r i2r j ) Ei 8, j ^ Ei , j 8 ~4.11!

and

P(0)5~12@N11# !21 (
i , j 51

N

q(r i2r j ) e ie j Ei 8, j ^ Ei , j 8 ~4.12!

for the quantum groups SOq(N) and Spq(N), ~whereN52n), respectively. In the above equation
we have used the notationi 85N112 i . We have recapitulated the above standard prescription
the additional purpose of displaying the braid operators in theq51 limit.

We enlist below the lowest dimensional cases as examples. The projectorP(0) in the 939
vector representation for the quantum group SOq(3) is given by

~11@2# !P(0)5q21E11^ E331q21/2E12^ E321E13^ E311q21/2E21^ E231E22^ E221q1/2E23

^ E211E31^ E131q1/2E32^ E121qE33^ E11, ~4.13!

whereas 16316 vector representations for the quantum groups SOq(4) and Spq(4) read as

~11@3# !P(0)5q22E11^ E441q21E12^ E431q21E13^ E421E14^ E411q21E21^ E341E22^ E33

1E23^ E321qE24^ E311q21E31^ E241E32^ E231E33^ E221qE34^ E211E41

^ E141qE42^ E131qE43^ E121q2E44^ E11 ~4.14!

and

~@5#21!P(0)5q24E11^ E441q23E12^ E432q21E13^ E422E14^ E411q23E21^ E341q22E22

^ E332E23^ E322qE24^ E312q21E31^ E242E32^ E231q2E33^ E221q3E34

^ E212E41^ E142qE42^ E131q3E43^ E121q4E44^ E11, ~4.15!

respectively.
For this class, directly setting q51 we still get nontrivial braid matrices, the MBE satisfied b

them, and also the Baxterized forms of these braid matrices. ~We note that we are not considerin
the so-called quasiclassical limit obtained as the coefficients of the terms linear inh, while
implementing series expansion inh[ ln q. We simply setq51 in the relevant quantities, and thu
obtain the terms of zero order inh). The corresponding example for the quantum group SOq(3)
was discussed in Ref. 2.

In the classicalq51 limit, we denote the projectors byP̂ to avoid confusion. Using~4.11! we
now obtain the projector for the classical group SO(N) as

P̂(0)5N21 (
i , j 51

N

Ei 8, j ^ Ei , j 8 , ~4.16!

while the projector for the classical symplectic group Sp(N) reads

P̂(0)52N21 (
i , j 51

N

e ie jEi 8, j ^ Ei , j 8 . ~4.17!

Moreover the parameters,via ~3.13!, ~4.4!, and~4.9!, are obtained in the limitq51 as
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du(q51)[d̂5« N21, h u(q51)[ĥ5arctanh~N21AN224!,
~4.18!

w(6)u(q51)[ŵ(6)5
N

2
~2N6AN224!.

Using the above value ofd̂ in ~4.3! we may directly obtain the MBE in theq51 case. In the
Baxterized function~4.9! we now use the value ofĥ given in ~4.18!, and thereby obtain the
limiting structure

w~u!u(q51)5ŵ~u!5
sinh~ ĥ2u!

sinh~ ĥ1u!
21. ~4.19!

We now focus on theq51 limiting case of the braid solution described in~4.5!. The braid
matrices in this limit has the structure

R̂~ŵ(6)!5I1ŵ(6)P̂(0) . ~4.20!

Even in the saidq51 limit, these matrices, on account of the characteristic equation~4.2!, satisfy
a nontrivial Hecke condition. These braid matrices are not of co-boundary type, which m
obtained by twisting the identity operator. The situation may be profitably contrasted withq
51 limiting behavior of the general case (vÞ0) of braid matrices satisfying~1.5!. Setting the
limit q51 in the braid values~1.10! of the spectral variables we obtain

vu(q51)[ v̂522, wu(q51)[ŵ52~12«!. ~4.21!

Incidentally, identical conditions in the said classical limith50 may be derived from the Baxter
ized version of the spectral variables given in~1.20!–~1.24!. For the values of the spectral var
ables given in~4.21! the braid matrix for the quantum group SOq(N) assumes the form

R̂~ v̂,ŵ!5I22P(2) , ~4.22!

whereas the the braid matrix for the quantum group Spq(N) reads

R̂~ v̂,ŵ!5I22P(2)22P(0)52P(1)2I. ~4.23!

The above two braid matrices satisfy the condition (R̂( v̂,ŵ))25I, typical of twisted identity
matrices. Finally we note that here the result parallel to~2.12! is

R̂~w!5
~w2w2!R̂~w1!2~w2w1!R̂~w2!

~w12w2!
, ~4.24!

wherew6 , via ~4.4!, is given byw652(11exp(72h)).

V. DIAGONALIZATION OF THE MODIFIED BRAID MATRICES AND THEIR
CORRESPONDING EIGENVECTORS

We present below explicitly the 434, 939, and 16316 matrices which, through similarity
transformations, diagonalize respectively the matricesR̂(v) for the quantum group GLq(2), and
R̂(v,w) for the quantum groups SOq(3) and SOq(4). Explicit constructions for arbitrary dimen
sions N3N is beyond the scope of the present work. But we start by considering, for de
understanding, certain aspect of the problem for the general quantized orthogonal group Sq(N).
The case for the general linear quantum group GLq(N) is, as usual, much simpler. In the diag
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nalization process, as throughout the present work, the projectors involved in the spectral d
position of the generalized braid matrices play essential roles. Interest in the results obtain
be discussed at the end.

Traces of the projectors satisfying the completeness property

P(1)1P(2)1P(0)5IN23N2, ~5.1!

are given by

Tr P(1)5
1
2N~N11!2 1

2~«11!, Tr P(2)5
1
2N~N21!1 1

2~«21!, Tr P(0)51. ~5.2!

The sum of the above three traces, consistent with~5.1!, is N2. We consider below only the
examples of quantum orthogonal algebras corresponding to the choice«51. Moreover, in view of
~5.1!, we will only consider the projectorsP(2) and P(0) , thus continuing the methodolog
followed in the earlier sections.

A projector when diagonalized can have for each diagonal elementeither zero or unity. The
number of unit elements are fixed by trace. The diagonal elements can be permuted by suc
similarity transformations. So we can choose a suitable canonical ordering for them as fo
Denoting a diagonalized projectorP by P(d), we choose the ordering presented below. For
quantum group SOq(3) the diagonalized projectors read

P(0)
(d)5~1,0,0,0,0,0,0,0,0!(diagonal),

~5.3!
P(2)

(d) 5~0,1,1,1,0,0,0,0,0!(diagonal),

whereas these diagonalized projectors for the quantum group SOq(4) are given by

P(0)
(d)5~1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0!(diagonal),

~5.4!
P(2)

(d) 5~0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0!(diagonal).

The prescription for general quantized orthogonal group SOq(N) is evident.
A transformation that diagonalizes the generalized braid matrixR̂(v,w) must diagonalize each

projectorseparately, as these projectors are functions of the matrixR̂(v,w). Using the above form
of the diagonalized projectors, we avoid introducing the inverse of the diagonalizing matrixM as
follows. Assuming that a diagonalizing matrix of nonzero determinant exists, we have

M P(0)5P(0)
(d)M , M P(2)5P(2)

(d) M , ~5.5!

where the diagonalized projectorsP(d) have explicit forms given by~5.3! and ~5.4!, and their
evident generalizations. The projectorsP(0) andP(2) being known from the standard results, w
avoid direct introduction of the matrixM 21, which is nonlinear in elements ofM .

The diagonalizing relations~5.5! generate a set oflinear constraints on the elements ofM .
The coefficients in each equation are fully known. They will in general leave room for m
arbitrary parameters in the matrixM , subject to the constraint that it has a nonzero determin
This arbitrariness can be factored out as follows. Supposing that in the case of the the qu
group SOq(3) we have found a convenient solutionM̂ for the diagonalizing matrix, the relation
~5.5! in conjunction with~5.3! yield the structure

M̂R̂~v,w!M̂ 215M̂ ~ I1vP(2)1wP(0)!M̂
215~11w,11v,11v,11v,1,1,1,1,1!(diagonal).

~5.6!

Keeping the above block structure in mind we now use a block diagonal matrix

M5~M(0) ,M(2) ,M(1)!(block diagonal), ~5.7!
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whereM(0) , M(2) , andM(1) , respectively, are 131, 333, and 535 invertible matrices with
nonzero determinant. Using the property~5.6! and the above structure of the matrixM, we obtain

~MM̂ !R̂~v,w!~MM̂ !215M̂R̂~v,w!M̂ 21. ~5.8!

Thus the diagonalization is preserved exactly. The above matrixM(0) is a nonzero constant
whereas the matricesM(7) , apart from the single constraint of invertibility havearbitrary ele-
ments. This is the source of arbitrariness in the diagonalization procedure. For the general c
dimensions ofM(0) , M(2) , andM(1) are given by the respective traces~5.2! of the corresponding
projectors.

But how do we selectM̂? For the quantum groups SOq(3) and SOq(4) we present below the

diagonalizing matrixM̂ possessing a remarkably helpful feature:the rows of M̂ are mutually

orthogonal. It is presumably possible to choose the diagonalizing matrixM̂ retaining this feature
for all orthogonal quantum groups. But here we do not attempt to construct such a general s
for an arbitrary case.

For the quantum group SOq(3) we define the parameterss52q21/2(12q), t52q23/2(1
1q), and obtain the relevant diagonalizing matrix:

M̂51
0 0 1 0 q1/2 0 q 0 0

0 1 0 2q 0 0 0 0 0

0 0 0 0 0 1 0 2q 0

0 0 1 0 s 0 21 0 0

1 0 0 0 0 0 0 0 0

0 1 0 q21 0 0 0 0 0

0 0 1 0 t 0 q22 0 0

0 0 0 0 0 1 0 q21 0

0 0 0 0 0 0 0 0 1

2 . ~5.9!

Here we note the existence of the following orthogonal triplets:

~1,q1/2,q!,~1,s,21!,~1,t,q22!, ~5.10!

which, as will be seen later, play a role in the context of the noncommutative coordinates. F
quantum group SOq(4), one possible choice of the ordering of the rows gives the followi
diagonalizing matrix:
                                                                                                                



M̂5

¨

0 0 0 1 0 0 q 0 0 q 0 0 q2 0 0 0

0 0 0 1 0 0 q 0 0 2q21 0 0 21 0 0 0

0 1 0 0 2q 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 2q 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 2q 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 2q 0

0 0 0 1 0 0 2q21 0 0 q 0 0 21 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 q21 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 q21 0 0 0 0 0 0 0

0 0 0 1 0 0 2q21 0 0 2q21 0 0 q22 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 q21 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 q21 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

~5.11!

Here the relevant orthogonal quadruplets read

~1,q,q,q2!,~1,q,2q21,21!,~1,2q21,q,21!,~1,2q21,2q21,q22!. ~5.12!

It may be noted that the orthogonality of the rows delivers the inverse of the diagona
matrix M̂ 21 effortlessly. To this end, we take the transposed matrixM̂T and normalize each
element of its columnj by the same factorcj so that the sum of squares of all elements of t
column j multiplied with cj equates to unity. For the diagonalizing matrixM̂ in ~5.9!, these
normalization constants are given by

q~11@2# !c15q@2#c25q@2#c35@2#c45c55q21@2#c6 ,

5q22@2#~11@2# !c75q21@2#c85c951, ~5.13!

whereas the corresponding normalization constants for the matrix in~5.11! read

q2@2#2c15@2#2c25q@2#c35q@2#c45q@2#c55q@2#c65@2#2c75c85q21@2#c95q21@2#c10

5q22@2#2c115q21@2#c125q21@2#c135c145c155c1651. ~5.14!

Now we show that the orthogonality of the rows also directly leads to the eigenvectors
generalized braid matrixR̂(v,w). We again choose the quantum group SOq(3) as a typical
example. Let$uVk&u(k51,...,9)% be the eigenvectors of theR̂(v,w) matrix with the eigenvalues
ak :

R̂~v,w!uVk&5akuVk&, ~5.15!

where no summation over the indexk on the right is implied. Multiplying the equation~5.15! with
the matrixM̂ on both sides and employing diagonalization property~5.6! we obtain

~11w,11v,11v,11v,1,1,1,1,1!(diagonal)uM̂Vk&5akuM̂Vk&. ~5.16!
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Hence, apart from overall constant factors, we may choose the transposed vectors as follo

uM̂Vk&
T5$~1,0,...,0!,~0,1,0,...,0!,...,~0,...,0,1!%. ~5.17!

The eigenvalues are given by the diagonal elements of the matrixM̂R̂(v,w)M̂ 21 as exhibited in
~5.6!. Hence the obvious constructionuVk&5M̂ 21uM̂Vk&, along with ~5.17! furnishes the eigen-
vector uVk& as thekth column ofM̂ 21. Now, in view of the construction of the inverse matr
M̂ 21 previously discussed preceding~5.13!, the eigenvectoruVk& is finally given by the kth row of

the matrix M̂. Replacing here the matrixM̂ by its alternativesMM̂ amounts to, as given in~5.8!,
taking linear combinations of the above eigenvectors with the same eigenvalue. The eigen
and particularly the highest eigenvalue, dependent here on the choice of the spectral va
(v,w), of the generalized braid matrixR̂(v,w) are of interest in related models of statistic
mechanics. Another, quite different, interest in the above diagonalization of theR̂(v,w) matrix
will be pointed out in Sec. VI in the context of noncommutative spaces.

So far we have considered the orthogonal quantum group SOq(N). A parallel, but much
simpler, formalism may be developed for the linear quantum group GLq(N), as only two projec-
tors are present there. Instead of discussing the general case, we, for the purpose of illus
consider a biparametric (p,q) deformation of the group GL~2! in the remaining part of the presen
section. In Ref. 1 one of us introduced the generalized braid matrix~for pÞ0)

R̂~K;p,q!5S 1 0 0 0

0 ~12K ! Kp21 0

0 Kq ~12Kqp21! 0

0 0 0 1

D , ~5.18!

which satisfies the strict braid equation for the two parametric valuesK51,pq21. Maintaining a
specific parametrization of the spectral variablev, we write in conformity with the notations of the
Sec. II:

R̂~K;p,q!5I2K~11qp21!P(2) , ~5.19!

where the projector is

P(2)5~11qp21!21S 0 0 0 0

0 1 2p21 0

0 2q qp21 0

0 0 0 0

D . ~5.20!

The projectorP(2) may be diagonalized by

M̂5S 0 21 p21 0

0 q 1 0

1 0 0 1

1 0 0 21

D ~5.21!

giving M̂ P(2)M̂
215(1,0,0,0)(diagonal). This, following the spectral decomposition~5.19!, pro-

vides the diagonalizedR̂ matrix. In this simple case the matrixM̂ 21 may be easily computed fo
all values of deformation parameters (p,q). But except for the special casepq51, the first two
rows of the present diagonalizerM̂ are not orthogonal to each other.
                                                                                                                



ng the
re

able us
re, the
nal
resent

-
c

805J. Math. Phys., Vol. 44, No. 2, February 2003 Modified braid equations

                    
VI. GENERALIZED BRAID MATRICES AND CONSEQUENT NONCOMMUTATIVE
SPACES

We first present the general prescription for covariant quantization of spaces implementi
generalized braid matricesR̂(v) and R̂(v,w). Our prescription follow the standard structu
except for the presence of the arbitrary values of the spectral variables (v,w). Then we will
display how the diagonalizations of the generalized braid matrices presented in Sec. V en
to extract in a convenient fashion the contents of the above prescription using, as befo
quantum groups GLq(2), SOq(3), and SOq(4) as examples. Generalization to higher dimensio
quantum groups can then be easily carried out. Our study will thus be limited. We hope to p
elsewhere a fuller exploration of the possible roles of the variables (v,w).

For the quantum group GLq(2), we use theprojector~5.20! with the restrictionp5q21, and
set theR̂(v) matrix as in~1.8! satisfying the characteristic equation~1.14!. Using the standard
notations with coordinates and differentials given, respectively, by$xi ,j i[dxi u i 5(1,2)%, we
obtain

P(2)x^ x50 ~6.1!

and

x^ j5Bj ^ x, ~6.2!

whereas Leibnitz rule and covariance lead to

~B1I!j ^ j50. ~6.3!

The matrixB reads

B52I1m~R̂~v !2~11v !I!, ~6.4!

while the parameterm is arbitrary. We also note that the above structure ofB ensures the orthogo
nality: (B1I)P(2)50. Using the diagonalizerM̂ given in ~5.21!, and adapting it to the parametri
choicep5q21, we evaluate

M̂x^ j5M̂S x1j1

x1j2

x2j1

x2j2

D 5S 2x1j21qx2j1

qx1j21x2j1

x1j11x2j2

x1j12x2j2

D . ~6.5!

The analogous results forM̂x^ x, M̂j ^ j, and M̂j ^ x can be read off~6.5! readily. Using the
previous explicit constructions we may now obtain the following diagonalized structures:

M̂ P(2)M̂
215~1,0,0,0!(diagonal),

M̂R̂~v !M̂ 215~11v,1,1,1!(diagonal),
~6.6!

M̂ ~B1I!M̂ 215m~0,2v,2v,2v !(diagonal),

M̂BM̂2152~1,11mv,11mv,11mv !(diagonal),

which in conjunction with~6.5! allow us to immediately write down the relations

x1x25qx2x1 , j1j252q21j2j1 , j1
250, j2

250 ~6.7!

and
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~2x1j21qx2j1!52~2j1x21qj2x1!,

~qx1j21x2j1!52~11mv !~qj1x21j2x1!,
~6.8!

~x1j11x2j2!52~11mv !~j1x11j2x2!,

~x1j12x2j2!52~11mv !~j1x12j2x2!.

Adapting notations and parametrizations the corresponding results of Ref. 1 may be obtaine
the consequences of the diagonalization is particularly striking in the modular structure evid
~6.8!. Linear combinations ofxij j are picked out that areproportional to the same combinationof
j ixj on the right. This is, as will be seen, a general feature in all cases. It was shown in Ref.

F25~j1x22qj2x1!250. ~6.9!

Here, using~6.8! it immediately follows that the combination (x1j22qx2j1) is also nilpotent. Our
formalism also signals clearly special values of the parameters. It is evident from~6.8! that m
52v21 is a very special case. For the quantum group GLq(N) for an arbitraryN the prescriptions
~6.1! to ~6.4! remain the same except that higher dimensionalN23N2 matrices need to be con
sidered.

Now we consider the noncommuting spaces associated with the generalized braid
R̂(v,w) of the orthogonal quantum group SOq(N). This matrix has the structure~1.9! and it
satisfies the characteristic equation~1.15!. The braiding structure~6.1! of the noncommutative
coordinates now may also be expressed as

~R̂~v,w!2I!~R̂~v,w!2~11w!I!x^ x50. ~6.10!

Leibnitz rule and covariance ensure equations~6.2! and~6.3! with the matrixB given by~6.4!. As
there are three projectors for the orthogonal quantum groups, the braiding relation~6.3! now
reduces to

P(1)j ^ j50, P(0)j ^ j50. ~6.11!

Now we will explicitly demonstrate the above structure for the quantum groups SOq(3) and
SOq(4). For thequantum group SOq(3) the diagonalizing matrixM̂ is given in~5.9!. The diago-
nalized operators now read

M̂ P(2)M̂
215~0,1,1,1,0,0,0,0,0!(diagonal),

M̂R̂~v,w!M̂ 215~11w,11v,11v,11v,1,1,1,1,1!(diagonal), ~6.12!

M̂BM̂2152~11m~v2w!,1,1,1,11mv,11mv,11mv,11mv,11mv !(diagonal).

Here we choose, as in Ref. 2, the triplets (x2 ,x0 ,x1) and (j2 ,j0 ,j1) as the basis elements fo
the noncommuting coordinates and the differentials, respectively. Using the diagonalizing m
M̂ given in ~5.9! we now compute
                                                                                                                



M̂x^ j5M̂S x2j2

x2j0

x2j1

x0j2

x0j0

x0j1

x1j2
D 5S x2j11q1/2x0j01qx1j2

x2j02qx0j2

x0j12qx1j0

x2j11sx0j02x1j2

x2j2

x2j01q21x0j2

x2j11tx0j01q22x1j2
21

D . ~6.13!
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x1j0

x1j1

x0j11q x1j0

x1j1

The matricesM̂x^ x, M̂j ^ j andM̂j ^ x have evident analogous forms. The parameters (m,v,w)
do not appear in the braiding structures~6.1! and ~6.11!. Therefore these braiding relations ha
the usual form, given, for example, in Eq.~3.48! of Ref. 2. For the sake of completeness w
present them here

x2x05qx0x2 , x0x15qx1x0 , x1x22x2x15~q1/22q21/2!x0
2 ,

j2
2 50, j1

2 50, j2j11j1j250, ~6.14!

qj2j01j0j250, qj0j11j1j050, j0
25~q1/22q21/2!j2j1 .

The constraints due to~6.2! do involve the parameters (m,v,w) and have been obtained in Eq
~3.48! of Ref. 2. Here we present them in the form directly given by~6.12! and ~6.13!. After
implementing our diagonalization, we obtain

~x2j11q1/2x0j01qx1j2!52~11m~v2w!!~j2x11q1/2j0x01qj1x2!,

~x2j11sx0j02x1j2!52~j2x11sj0x02j1x2!,

~x2j11tx0j01q22x1j2!52~11mv !~j2x11tj0x01q22j1x2!,

~x2j02qx0j2!52~j2x02qj0x2!,

~x2j01q21x0j2!52~11mv !~j2x01q21j0x2!, ~6.15!

~x0j12qx1j0!52~j0x12qj1x0!,

~x0j11q21x1j0!52~11mv !~j0x11q21j1x0!,

x2j252~11mv !j2x2 ,

x1j152~11mv !j1x1 .

Thus, as signaled before, the diagonalization selects out linear combinations, which are p
tional under the operationxij j→j ixj . We note that the coefficients appearing in the triple
namely: (1,q1/2,q),(1,2q21/2(12q),21),(1,2q23/2(11q),q22) are mutually orthogonal. The
same property is evident with the doublets: (1,2q),(1,q21). The parametric valuesm52v21

again generate a special case. Using~6.15! eachxij j may be written as linear combination ofjkxl

terms. This is provided in Ref. 2. Here we want to emphasize the modular structure of~6.15!. In
the preceding discussion regarding the quantum group GLq(2) it was noted that a nilpoten
bilinear structure, given in~6.9!, arise directly out of the diagonalization process. Presence of
structures in~6.15! should be sought. A detailed study of our generalized spaces, arising
consequence of generalized braid matrices, will be presented elsewhere.
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To investigate our noncommutative spaces associated with the quantum group SOq(4), we
proceed exactly as in the previous example. Now the diagonalizing matrixM̂ is given by~5.11!.
The basis for the coordinates and the corresponding basis for the differentials are deno
(x1 ,x2 ,x3 ,x4) and (j1 ,j2 ,j3 ,j4), respectively. The braiding relations for the bilinearsx^ x and
j ^ j are independent of the parameters (m,v,w) introduced here; and, consequently, remain
standard noncommutativity constraints. We exhibit below, for brevity, only the relevant mo
structure analogous to~6.15!. Now we have the quadruplets, doublets and singlets with typic
orthogonalized constraints as before:

~x1j41qx2j31qx3j21q2x4j1!52~11m~v2w!!~j1x41qj2x31qj3x21q2j4x1!,

~x1j41qx2j32q21x3j22x4j1!52~j1x41qj2x32q21j3x22j4x1!,

~x1j42q21x2j31qx3j22x4j1!52~j1x42q21j2x31qj3x22j4x1!,

~x1j42q21x2j32q21x3j21q22x4j1!52~11mv !~j1x42q21j2x32q21j3x21q22j4x1!,

~6.16!

~xij j2qxjj i !52~j ixj2qj j xi !,

~xij j1q21xjj i !52~11mv !~j ixj1q21j j xi !,

xkjk52~11mv !jkxk ,

where (i , j )5$(1,2),(1,3),(2,4),(3,4)%, and k5$1,2,3,4%. No summation over the indexk is
meant in the last equation in~6.16!. Comments parallel to those following~6.15! are relevant here

Here we sum up the above procedure for the quantum group SOq(N) with an arbitrary value
of N. The formalism described in equations~6.1!–~6.4!, and also in~6.11! holds for an arbitrary
value ofN. We have emphasized on the modular structure and the parameter dependence
braiding relations arising from~6.2! and our diagonalization of the generalized braid matric
Setting the spectral variables (v,w) equal to their braid values~1.10!, and also fixing the param
eter m5q2, we may recover the standard quantization prescriptions. So far we have imp
assumed that the spectral variables are nonvanishing:vÞ0,wÞ0. When one of them vanishes, th
characteristic equation obeyed by the generalized braid matrix becomes, as discussed for
in ~4.2!, quadratic rather than cubic. The corresponding reformulation of the prescription fo
noncommutative spaces is straightforward and will not be presented here.

VII. REMARKS

The following braid matrices,

R̂5S 1 0 0 1

0 1 21 0

0 1 1 0

21 0 0 1

D ~7.1!

and

R̂5S 0 0 0 q

0 1 0 0

0 0 1 0

q 0 0 0

D , ~7.2!
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were studied in detail12–14 in the context of exotic bialgebras. These authors investigated
spectral decomposition of these braid matrices and the Baxterization thereof. These res
cases were denominated asS03 andS14 in the classification scheme of 434 braid matrices
presented in Ref. 15. The analogies and differences of theR̂ matrix in ~7.1! with the unitary case,
and that in~7.2! with the orthogonal case have been discussed12–14 earlier. Noncommutative
spaces associated with these two and other exotic 434 R̂ matrices have also been studied.12–14

These 434 matrices classified in Ref. 15 are exotic in the sense that they are not obtain
restricting some universalR̂ matrix to this dimension. They represent distinct supplemen
possibilities for the dimension 434.

How do we construct higher dimensional analogues of these matrices? In Sec. IV we
presented a canonical construction of a class ofN23N2 braid matrices complete with the corre
sponding MBE and the Baxterized forms of these matrices. In fact for each evenN we havetwo
solutions: exotic orthogonal for the choice«51, and exotic symplectic for the parametric valu
«521. But these class presumably does not exhaust such possibilities for eachN. Our general
reduction of trilinear terms in Sec. III insistently pointed out the class studied in Sec. IV. Ho
we investigate other possibilities? Generalization of Hietarinta’s approach15 to higher dimensional
cases would be extremely laborious. Still a more thorough search may be worthwhile.

Several interesting aspects of our formalism have not been addressed in the presen
Quasiclassical limits,L operators and Yangians are relevant examples. Applications, particu
of our new class of solutions, to integrable models16,17would be worth exploring. Certain specifi
properties would be lost if the parameters (m,v,w) move away from their standard values. W
wish to study new interesting features which may emerge for other values of the param
(m,v,w). The present approach via diagonalization may be helpful.

Let us end by taking a closer look at the mutually orthogonal sets of triplets and quadru
appearing in~5.10! and ~5.12! as a consequence of our diagonalizations. For the quantum g
SOq(3) the constraint~6.1! contain, corresponding to the set (1,(q1/22q21/2),21) in ~5.10!, the
commutation relation, listed before in the set~6.14! but remodeled here for the purpose of co
venience:

x2x12x1x21~q1/22q21/2!x0
250. ~7.3!

A constraint trivially true in the commutative limit (q51) is thus consistently maintained. Th
analogous expressions corresponding to the other two triplets in the set~5.10!, selected out by the
other two diagonalized projectorsP(0) and P(1) are not constrained to be zero. Introducing th
metric and the star operation~Ex. 4.1.22 in Ref. 10! as

~x6!* 5q71/2~x7!, x0* 5x0 , ~7.4!

the other two triplets mentioned above lead to the surfaces with invariantsk1 andk2 :

x2* x21x1* x11x0* x05k1 ,
~7.5!

q2 3/2x2* x21q3/2x1* x12~q1/21q21/!x0* x05k2 ,

wherek1 is usually denoted as the distance squared, i.e.,k1[r2>0. The above two surfaces deno
a q-deformed sphere and aq-deformed hyperboloid, respectively. In the context of our diagon
ization scheme these two noncommutative surfaces enter in a parallel fashion.

For the quantum group SOq(4) the second and the third quadruplets in the set~5.12! corre-
spond to the constraints originating from~6.1!, namely

x1x41qx2x32q21x3x22x4x150,
~7.6!

x1x42q21x2x31qx3x22x4x150.
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The consistency with the commutative limit is, therefore, maintained. The other two quadrup
the list ~5.12! correspond to the action of the diagonalized projectorsP(1) andP(0) on the tensor
product spaceM̂ (x^ x), and thereby lead to theq-deformation of the surfaces

x1x41x2x35k1 , x1x42x2x35k2 . ~7.7!

Changing the basis from (x1 ,x4) and (x2 ,x3) to (x6 i t ) and (y6 iz), respectively, we obtain a
3-sphere in the first case~with k1>0) and a noncompact surface in the second case, as obt
before in the second equation in~7.5!. Suitably implementing theq-dependent star operation w
may obtain the corresponding noncommutative deformations related to the first and the la
druplets in~5.12!.

APPENDIX A

Here we briefly indicate the derivations of the relations~3.11! and~3.12!. We demonstrate this
in the case of the quantum group SOq(N), where the parameter«51. To this end we define the
operator

K[~11@N21# !P(0)5 (
i , j 51

N

q(r i2r j )Ei 8, j ^ Ei , j 8 , ~A1!

where i 85N112 i . The relevant notations are explained in Sec. IV. Using the standard te
structures

K125 (
i , j 51

N

q(r i2r j )Ei 8, j ^ Ei , j 8^ IN3N K235 (
i , j 51

N

q(r i2r j )IN3N^ Ei 8, j ^ Ei , j 8 , ~A2!

and the identityEi , j 8Ek8,l5d j ,kEi ,l , we obtain

K12K235 (
i , j ,k51

N

q(r i2rk)Ei 8, j ^ Ei ,k^ Ej ,k8 ~A3!

and the following triple product rules:

K12K23K125S (
i , j 51

N

q(r i2r j )Ei 8, j ^ Ei , j 8D ^ (
k51

N

Ek,k5K ^ IN3N[K12,

K23K12K235(
i 51

N

Ei ,i ^ S (
j ,k51

N

q(r j 2rk)Ej 8,k^ Ej ,k8D IN3N^ K[K23. ~A4!

The triple product rules~A4! and the defining property~A1! ensure that the following identitie
hold:

P(0)12P(0)23P(0)125~11@N21# !22P(0)12, P(0)23P(0)12P(0)235~11@N21# !22P(0)23.
~A5!

Using the definitions~4.10! and ~4.12! we may proceed analogously for the quantum gro
Spq(N), whereN52n. The two cases can finally be unified after adopting the following defi
tion:

K[~11«@N2«#!P(0) ~A6!

and then proceeding as before. The final results may be summarized as
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P(0)12P(0)23P(0)125~11«@N2«#!22P(0)12,

P(0)23P(0)12P(0)235~11«@N2«#!22P(0)23. ~A7!

Employing the definitions of (Y1 ,Y2) given in ~3.1!, we now obtain~3.11!.
In order to prove the identity~3.12! we proceed as follows. Using the standard expressions

the braid generatorsR̂61 for the quantum groups SOq(N) and Spq(N), and proceeding exactly
analogously as before we obtain

P(0)12R̂23
61P(0)125

«q6(N212«)

11«@N2«#
P(0)12, P(0)23R̂12

61P(0)235
«q6(N212«)

11«@N2«#
P(0)23. ~A8!

Expressing the braid matrices as in~1.12! we now use the relations~A7! and ~A8! to obtain

P(0)12P(2)23P(0)125
«@N2«#~@2#1«@N212«#!

@2#~11«@N2«#!2 P(0)12. ~A9!

The above result also holds after an exchange of the tensor indices: (12)
(23). The equation
~A9!, in conjunction with the definitions~2.1! and ~3.1!, now produces the identity~3.12!.

APPENDIX B

The correspondence between our result for Baxterization and that of Ref. 7 being quite
in the context of the quantum group GLq(N), we discuss below the results for the quantum gro
SOq(N) and Spq(N). In Sec. 3.9 of Ref. 7 Isaev starts Baxterization of the braid matrices with
parametrization

R̂~x!5c~x!~ I1a~x!R̂1b~x!K !, ~B1!

where the matricesR̂ andK are given in~1.7! and~A6!, respectively. Substituting these results w
may rewrite

R̂5c~x!~11qa~x!!R̂~x!, ~B2!

where

R̂~x!5I2
@2#a~x!

11qa~x!
P(2)1

~11«@N2«#!b~x!2q~12«q2(N112«)!a~x!

11qa~x!
P(0) . ~B3!

Comparing this with our starting point~1.9! we obtain the relations

a~x!52
v~x!

@2#1qv~x!
, b~x!5

@2#~w~x!2 f 1v~x!!

~@2#1qv~x!!~11«@N2«#!
, c~x!5@2#21~@2#1qv~x!!,

~B4!

where the parameterf 1 has been defined in~3.15!. In the present work we have preferred th
parametrization in~1.9! as it assigns the key roles to the two projectorsP(2) andP(0) , leading to
the systematic reduction of the trilinear forms presented in~3.14!. As emphasized earlier thi
permitted us to display MBE and Baxterization as complementary facets of the same gene
R̂(v,w) matrix. As for solutions of the braid equation obtained in the present work we note
the special case of the spectral variablesv50,wÞ0 has not been discussed in Ref. 7. We ha
devoted Sec. IV to study this remarkable new class of solutions.

Our formalism led through~3.27! to the significant parallel structures of the Baxterized fun
tionsv(x) andw(x) given in ~3.30!. This enabled us to obtain the solutionscompletelyby solving
the two simplest equations, before verifying that the more complex functional equation@corre-
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sponding toa2 in ~3.25!# is indeed consistent with them. In Ref. 7 the relatively complica
equation@Eq. ~3.9.7! of Ref. 7# had to be used to fix the two possible values of a parameter@Eq.
~3.9.15! of Ref. 7#. The attractive forms of additive Baxterization, as evident in~1.20! and~1.21!–
~1.24! for the functionsv(u) and w(u), respectively, are also direct consequences of
formalism.
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A Weierstrass-type system of equations corresponding toCPN harmonic maps is
presented. It constitutes a generalization of the previously constructed systems for
CP1 andCP2 fields. From the linear spectral problem for theCPN model a set of
conserved quantities is derived and used for a construction of a generalized Weier-
strass representation for conformally parametrized surfaces immersed in multidi-
mensional Euclidean spaces. Based on this representation a possible geometrical
interpretation ofCPN harmonic maps is discussed. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1534384#

I. INTRODUCTION

Recently many studies have been performed of variouss models in low dimensions. Of these
s models in two spatial dimensions have, perhaps, been the most commonly studied as,
hand, they lead to interesting generalizations of harmonic maps and on the other, they
treated as analogs, with many properties in common, of four-dimensional non-Abelian
theories.

Among two-dimensionals models perhaps the most interesting ones, from the topolog
point of view, are the so-calledCPN sigma models. Their classical solutions are examples
topological solitons, i.e., extended structures whose stability is partially guaranteed by topol
considerations.

The CPN models are, in fact, a generalization of the, perhaps the s mplest, sigma m
namely theS2 model—also called the vectorO(3) model. TheCPN models involve maps from
R2, or S2 if one wants to have a nontrivial topology, toCPN, i.e.,

CPN:C.V{z5z11 i z2°z5~z1, . . . .,zN!PS2N>SU~N!/SU~N21!, ~1!

where the homogeneous coordinatesz5(z1, . . . ,zN) have the following properties

z;z85lz for lÞ0.

Exploiting projective invariance we can require that

z†
•z51, ~2!

holds, where † denotes the Hermitian conjugation, and we are still left with gauge symme

z;z85zeif, ~3!

wheref is the real-valued function.

a!Electronic mail: Grundlan@crm.umontreal.ca
b!Electronic mail: W.J.Zakrzewski@durham.ac.uk
8130022-2488/2003/44(2)/813/10/$20.00 © 2003 American Institute of Physics
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It is easiest to defineCPN models in terms of the Lagrangian density1

L5 1
4 ~Dmz!†

•Dmz, z†
•z51, ~4!

where the covariant derivativesDm act onz:S2→CPN according to the formula

Dmz5]mz2~z†
•]mz!z. ~5!

Here the indexm51,2 denotesz1 andz2 . Note that the covariant derivativesDmz transform under
gauge~3!

Dmz→Dmz85~Dmz!eif, ~6!

so that the dependence on phasef drops out of Lagrangian density~4! and hence the model i
really based onCPN. The total Lagrangian is given by

L5E L dz dz̄ ~7!

and if theCPN model is defined overS2 we require thatL is finite.
For theCPN sigma model it is convenient to define

z5
f

u f u
, ~8!

where we have used the following notationu f u5( f †
• f )1/2. In terms of f the Lagrangian~7!

becomes

L5E u ]̄ f u21u] f u2

u f u4 dz dz̄, ~9!

where u] f u25(] f )†
•(] f ) and u ]̄ f u25( ]̄ f )†

• ]̄ f . The Euler Lagrange equations forf take the
form

S 12
f ^ f †

u f u2 D F ]]̄ f 2] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G50, ~10!

where we have introduced holomorphic and antiholomorphic derivatives

]5
]

]~z11 i z2!
5

]

]z
, ]̄5

]

]~z12 i z2!
5

]

]z
~11!

and a bar denotes the complex conjugation.
As is well known2 equation~10! can be written as a compatibility condition for a set of tw

linear spectral equations for aN component auxiliary vectorC

]C5
2

11l
@]P, P# C,

~12!

]̄C5
2

12l
@]̄P, P# C,

wherel is a spectral parameter and theN by N matrix P is the projector given by

P5
1

u f u2
f ^ f †, P†5P, P25P. ~13!
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The compatibility conditions for~12! are,

@]]̄P, P#50 ~14!

which, as can be easily checked, are equivalent to equations~10!. Note that~14! can be written in
the form of a conservation law

] @ ]̄P, P#1 ]̄ @]P, P#50 ~15!

or, equivalently, using the tracelessness of matrixK

]K2 ]̄K†50, ~16!

where the matricesK andK† are given by

K5@ ]̄P, P#5
]̄ f ^ f †2 f ^ ]̄ f †

u f u2
1

f ^ f †

u f u4 @~ ]̄ f †
• f !2~ f †

• ]̄ f !#, tr K50, ~17!

and consequently

K†52@]P, P#52
] f ^ f †2 f ^ ] f †

u f u2 1
f ^ f †

u f u4 @~] f †
• f !2~ f †

•] f !#.

Note that due to the invariance of the Lagrangian~4! under gauge~3!, without loss of gener-
ality, we can set one of the components of the vector fieldf , say f 1 , to 1. Then, in theCP1 case,
all quantities are expressible through one variable

w5
f 2

f 1
5 f 2 ~18!

and the Euler Lagrange equations~10! take the form

]]̄w2
2w̄

~11uwu2!
]w]̄w50. ~19!

Recently, a lot of effort has been put into relatingCP1 maps to the solutions of the Weierstra
problem.3,6 In this case one considers a system of first order equations~of Dirac type! for two
complex fieldsw andc of the form

]c5pw, ]̄w52pc, p5uwu21ucu2. ~20!

In Ref. 7 it was shown that solutions of the Weierstrass system~20! are in a one to one corre
spondence with the solutions of theCP1 sigma equtions~19!. If c and w are solutions of the
Weierstrass system~20!, then the functionw, defined by

w5
c

w̄
, ~21!

is a solution of theCP1 equations~19!. The converse is also true.6 Thus, ifw is a solution of~19!,
then the functionsw and c of the Weierstrass system~20! have the form~up to an overall
multiplication of w andc by 21)

c5w
~ ]̄w̄!1/2

11uwu2 , w5
~]w!1/2

11uwu2
, p5

u]wu
11uwu2 . ~22!
                                                                                                                



-
d

laws
r-
multi-

emarks,

e
f the

umed

816 J. Math. Phys., Vol. 44, No. 2, February 2003 A. M. Grundland and W. J. Zakrzewski

                    
From the Weierstrass system~20! one can construct three conservation laws~15!. These, in
turn, allow us to determine four real valued quantitiesXi(z,z̄), three of which are linearly inde
pendent~due to the tracelessness of the matrixK). Xi are constructed by taking diagonal an
off-diagonal entries of matrixK and are given by3

X15E
g
~c1

22c2
2!dz81~ c̄1

22c̄2
2!dz̄8,

X25E
g
~c1

21c2
2!dz82~ c̄1

21c̄2
2!dz̄8, ~23!

X352E
g
c1c2 dz81c̄1c̄2 dz̄8,

respectively, whereg is any curve from a fixed point toz.
The geometrical aspects of surfaces obtained from representation~23!, where functionsc and

w obey the Weierstrass system~20!, are described in detail in Ref. 4. In two recent papers8,9 we
have generalized this construction to the case of theCP2 sigma model.5 The aim of this paper is
to present a generalization to theCPN case.

The paper is organized as follows. In Sec. II, we derive the explicit form of conservation
corresponding to theCPN model. Section III deals withCPN maps and the corresponding Weie
strass representation for conformally parametrized two-dimensional surfaces immersed in
dimensional Euclidean space. In Sec. IV we discuss some geometric aspects ofCPN maps and
present some geometric characteristics of surfaces. The last section presents further r
discusses some possible developments and mentions some more ambitious objectives.

II. THE CPN MODEL

Here we derive explicit conservation laws~15! which are equivalent to the Euler Lagrang
equations~10!. In order to construct them we look first at the general form of the elements o
matricesK andK† in terms of f , given by~17!. Thus we have

Ki j 5
1

A2 @ f̄ k f k ]̄ f i f̄ j2 f̄ k f k f i ]̄ f̄ j1 f i f̄ j ]̄ f̄ k f k2 f i f̄ j f̄ k ]̄ f k#, ~24!

and consequently

Ki j
† 5

21

A2 @ f̄ k f k ] f i f̄ j2 f̄ k f k f i ] f̄ j1 f i f̄ j ] f̄ k f k2 f i f̄ j f̄ k ] f k#,

whereA5 f †
• f and the summation convention over the repeated indices from now on, is ass

throughout this paper.
Let us define

Fi j 5 f i ] f j2 f j] f i ,

and

Gi j 5 f i ]̄ f j2 f j ]̄ f i . ~25!

Then, using expressions~25!, the matricesK andK† take, equivalently, a simple form

Ki j 5 f̄ jF̄ i
22 f i w̄ j

2 , ~26!
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and

Ki j
† 52 f̄ jw i

22 f iF j
2 , ~27!

where we have introduced

w i
25

1

A2 f̄ k Fki , ~28!

and

F i
25

1

A2 f k Gki. ~29!

Note that from equations~25!, ~28!, and~29! we have two algebraic constraints, namely

f̄ k wk
250, f k Fk

250, ~30!

which imply that only (N21) functionsw i
2 are linearly independent. So in our further discuss

it is convenient to take as indepedent functionsw2
2 , . . .,wN

2 . Analogous situation holds for func
tionsF i

2 . Making use of the symmetry~3! we can set, without loss of generality, say,f 151, and
so we end up with the expressions@for ~28! and ~29!#

w i
25

1

A2 @~11 f k f̄ k! ] f i2 f i~ f̄ k ] f k!#,

F i
25

1

A2 @~11 f k f̄ k! ]̄ f i2 f i~ f̄ k ]̄ f k!#, i 52, . . . ,N, ~31!

where

A511u f 2u21u f 3u2 . . . 1u f Nu2,

and all the sums over repeated indices run overk52, . . .,N. Note that in~31! the termsk5 i in the
sum cancel leaving just term] f i . For instance ifk5 i 52 then we have

w2
25

1

A2 @~11 f l f̄ l ! ] f 22 f 2~ f̄ l ] f l !#,

where the sums over the repeated indices run overl 53, . . .,N. This fact allows us to invert
expressions~31! and so express all derivatives] f i in terms ofw i

2’s and f i . This way we find

] f i5A @w i
21 f i f̄ kwk

2#. ~32!

Thus, in particular, for theCP1 case, equation~32! becomes

] f 25A2w2
2 , A511u f 2u2,

and f 2 is often denoted in Ref. 1 byw, while in theCP2 case we have

] f 25A@~11u f 2u2!w2
21 f 2 f̄ 3 w3

2#,

] f 35A@~11u f 3u2!w3
21 f 3 f̄ 2 w2

2#, ~33!

A511u f 2u21u f 3u2.
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Note that in Refs. 8 and 9 the functionsf 2 and f 3 are denoted byw1 and w2 , respectively.
Similarly, all this discussion can be repeated forF i

2’s in the same way but using]̄ instead of],
f̄ instead off , andḠi j instead ofFi j .

III. THE GENERALIZED WEIERSTRASS REPRESENTATION IN RM

To introduce a generalized Weierstrass system in multidimensional spaces we need a sw i

andc i which generalize thew andc of the CP1 case andw i andc i , i 51,2 of theCP2 case.
Note that the quantitiesw i

2 , i 52,...,N, defined in~28! provide such a choice as~32! agrees
with the definition of the functionw in expression~22!. Next we address the question of wh
should we use for the functionc i? Clearly, relation~21! suggests that we put

c i5 f i w̄ i ~34!

with no summation over the indicesi 52, . . . ,N. Then to complete the generalization of th
Weierstrass system in multidimensional spaces we need analogs of relations~20!. We need to
prescribe the first derivatives]̄w i and]c i in terms ofw i andc i . Note that from~34! we get

]c i5]~ f i w̄ i !5] f i w̄ i1 f i ~ ]̄w i !. ~35!

So we need to specify]̄w i in terms ofw i , f i and their derivatives. To do this we note that fro
~32! we get

w i
25

1

A
] f i2 f i

f †
•] f

A2 , A5~ f †
• f 11!. ~36!

So we have

]̄w i
252

f i~ f̄ l ] f l !

A3 ~ f̄ k ]̄ f k1 f k ]̄ f̄ k!1
1

A2 @~11u f u2!]]̄ f i2~ f̄ k]̄ f k!] f i2~ f k]̄ f̄ k!] f i2 ]̄ f i~ f̄ k] f k!

2 f i~ ]̄ f̄ k] f k!2 f i~ f̄ k ]]̄ f k!#. ~37!

However, equation~10! gives us

]]̄ f i5 f i

~ f̄ k ]]̄ f k!

A
1] f i

~ f̄ k ]̄ f k!

A
1 ]̄ f i

~ f̄ k ] f k!

A
22 f i

~ f̄ k ] f k!~ f̄ l ]̄ f l !

A2 . ~38!

Eliminating the second derivatives]]̄ f i from equations~37! and ~38! we note that all the terms
involving the first derivatives]̄ f and] f̄ in ~37! cancel and we end up with a simple expressio

]̄w i52
w i

2A
~ f k ]̄ f̄ k!2

f i

2w iA
2 ~ ]̄ f̄ k] f k!1

f i

2w iA
3 ~ ]̄ f̄ kf k!~ f̄ l] f l !. ~39!

Moreover, taking the complex conjugation of~32!,

]̄ f̄ k5A @w̄k
21 f̄ k f l w̄ l

2# ~40!

and so by the virtue of~40! we have

]̄w i52
1

2 H Aw i~ w̄•c!1
c i

w i w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#J ~41!

~no summation overi ). The second pair of equations forc i then follows from~35!
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]c i5Aw̄ iw i
21

1

2
Ac i~ c̄•w!2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!# ~42!

~no summation overi ).
To summarize: the modified Weierstrass system in multidimensional space is a set oN

22) complex functionsw i andc i , i 52,3 ,. . .,N which obey the following system of equation
~no summation overi ):

]̄w i52
1

2 H Aw i~ w̄•c!1
c i

w i w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#J
and

]c i5Aw̄ iw i
21

1

2
Ac i~ c̄•w!2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2!1~ w̄•c!~c̄•w!#, ~43!

where

A511 (
k52

N ucku2

uwku2 .

From our construction it is clear that the above system of equations is equivalent t
equations of theCPN sigma model~10!. Moreover, it is easy to check that the system of equati
~43!, for N51 reduces to the equations~20!, and forN52 to the equations which were studied
Refs. 8 and 9.

Note that under the requirement of finiteness of the action all solutions of theCPN sigma
model~10! are well known1 and they split into three separate cases: analytic, antianalytic an
mixed ones. Hence based on this result we can construct large classes of solutions of the m
Weierstrass system~43!.

IV. GEOMETRICAL ASPECTS

Here we address the question of the existence of real variablesZi , of z and z̄, which are
constructed out of ourc i ’s andw i ’s determined by the system of equations~43!. Here we treat
Zi(z,z̄) as a map ofC into RM

Z5~Z1 , . . . ,ZM !:D,C→RM, ~44!

whereD is a region in the complex planeC. For some values ofM we can give a geometrica
interpretation of two-dimensional surfaces immersed inRM. This discussion will generalize th
result obtained by Konopelchenko and colaborators.3,4,10Moreover, we will find that the surface i
immersed in M5(N221)-dimensional Euclidean space. To construct real valued funct
Zi(z,z̄) it is convenient to exploit the conservation laws for the system of equations~43!. To
derive these conservation laws we look at~16! and we note that we can exploit the matricesK and
K† given by~26! and~27!. However, we note that we can drop the termsF j

2 in expressions~26!
and ~27! and we still have the conservation laws associated with~10!. Namely, we can define

Ki j8 52 f i w̄ j
2 ~45!

and

~Ki j8 !†5w i
2 f̄ j , ~46!

and we still have the conservation laws of the form
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]K81 ]̄~K8!†50. ~47!

It is easy to check the validity of~47! by making use of the equations~40! and ~41!.
Note that as our conservation laws do not involve terms containingF i then they can be

written entirely in terms of Weierstrass variablesw i andc i . As a result of so obtained conserv
tion laws we can introduce real valued functions

Zll 5E
g
f̄ lw l

2 dz1E
g
f l w̄ l

2 dz̄5E
g
c̄ lw l dz1E

g
c l w̄ l dz̄ ~48!

~no summation over indexl 51, . . .,N). These quantities have been constructed from the diag
entries of matricesK8 and (K8)†. From the off-diagonal entries of matricesK8 and (K8)† we can
construct

Zlk5Xlk1 iYlk5E
g
~a f̄ lwk

21ā f̄ kw l
2!dz1E

g
~ā f l w̄k

21a f k w̄ l
2!dz̄, aPC. ~49!

The transposition of the indiceslk to kl in Eq. ~49! corresponds to the interchangea to ā and
vice versa. In our expression we take alll ,k51 ,. . .,N and for k51 or l 51 we can use our
algebraic constraints~30! to rewrite all our expressions in terms of independent functionsw i and
c i , i 52, . . .,N. For our real variablesZi we takeZii , Xlk andYlk .

Note that the conservation laws~47! guarantee thatZll andZlk do not depend on the choice o
the contourg but only on its endpoints inC. This fact takes place because allZ’s can be written
in the form

Z5E
G
F~z,z̄ ! dz1F̄~z,z̄ ! dz̄,

whereF and F̄ satisfy the conserved quantity

]̄F5]F̄,

which shows that the integrands are total derivatives.
Looking at the diagonal terms in~48! we note that

(
l

Zll 50. ~50!

This follows from the tracelessness of matricesK8 and (K8)†.
Note that all our expressions forZll and Zlk are quadratic in terms ofw i and c̄ i and their

complex conjugates. They formally includew1 and c1 , with c15 f 1w̄1. However, both these
quantities (c1 andw1) should be eliminated using the algebraic constraint@i.e., the first expression
in ~30!# and f 151. It is easy to check that this process of elimination, in theCP1 case leads to

Z11522E
g
c̄w dz81cw̄ dz̄8,

X125E
g
~c̄2

22w2
2! dz81~c2

22w̄2
2! dz̄8, ~51!

Y125 i E
g
~c̄2

21w2
2! dz82~c2

21w̄2
2! dz̄8,
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which appeared in Ref. 3.
Next, following Ref. 11 we can calculate some geometric characteristics of a surfac

mersed in multidimensional space. We treat the functionsZll , Xlk , andYlk , as the coordinates o
a surface. We introduce the components of the induced metric

gab5(
lk

]Zlk

]a

]Z̄lk

]b
, ~52!

wherea andb arez or z̄. For conformally parametrized surfaces we have to make a choice fo
normalization of the off-diagonal entries of coordinatesXkl andYkl . We make the natural choic
a5 (11 i )/2. We find that

gzz5S (
i 51

N

f̄ i w i
2 D 2

50 ~53!

which coincides with the first algebraic contraint~30!. Similarly, its respective complex conjuga
equation is

gz̄ z̄50. ~54!

The only nonzero term of the induced metric is

gzz̄5~11u f 2u21u f 3u21¯1u f Nu2!FU(
k52

N

f̄ kwk
2U2

1uw2u41uw3u41¯1uwNu4G . ~55!

Of course, we can rewrite this expression to involve Weierstrass dataw i and c i by using
expressions~34! but the expressions become very complicated. Note, however, that writin
quantities in terms off i and ] f i , through ~31!, our expressions simplify considerably and w
obtain

gzz̄5uDzu2, ~56!

whereD5 1
2(D12 iD 2) and D1 , D2 are the covariant derivatives given by~5! involving ] ~i.e.,

evaluated with respect toz!.
In the special case of theCP1 maps the component of the induced metricgzz̄ takes a particu-

larly simple form; it is given by

gzz̄5S 11
uc2u2

uw2u2D @ uw2u41uc2u2uw2u2#5@ uc2u21uw2u2#25
u] f 2u2

~ u f 2u211!2 ~57!

which is exactly, of courseuDzu2; while in theCP2 case we have

gzz̄5
u] f 2u21u] f 3u21u f 2] f 32 f 3] f 2u2

~11u f 2u21u f 3!2u
~58!

which also isuDzu2.
Thus we have proved that the conformal immersion of surfaces inRN221 are determined by

the generalized Weierstrass representation~48! and ~49!, where the functionsw l and c l , or
equivalentlyw l and f l , have to obey system~43! of first order equations. Note that formulas~48!
and~49! define a surface on SU(N) and then using expressions in Ref. 12 we can calculate,
closed form, all geometric characteristics of this surface.
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V. SUMMARY AND CONCLUDING REMARKS

The main aim of this paper has been to derive a generalization of the Weierstrass system
CPN case. Thus we have found a set of 2N complex functionsc i andw i which satisfy a system
of first order equations~43! that are equivalent to the full system of equations of theCPN model
~10!.

We have also introduced a set of (N221) real quantitiesZ’s, which can be treated a
coordinates of a surface immersed inRN221 and we have shown that the induced metric of o
map is given by

ds252uDzu2 dz dz̄. ~59!

The study of the generalized Weierstrass representations for surfaces immersed in m
mensional spaces was initiated by Konopelchenkoet al.10 Our work here, in which we adopted a
alternative approach based onCPN sigma models, provides a generalization of their results.

A question arises whether our approach can be extended to Weierstrass systems de
surfaces immersed in multidimensional pseudo-Riemannian spaces. Further, can it provid
classes of solutions which will describe types of surfaces more diverse than those fou
multidimensional Euclidean spaces.

ACKNOWLEDGMENTS

One of the authors, A.M.G., would like to thank the University of Durham and the G
College for the award of Alan Richards fellowship that allowed him to spend two terms in Du
during the academic years 2001 and 2002. Partial support for the work of A.M.G. was provid
a research grant from NSERC of Canada and Fonds FCAR du Gouvernement du Quebec

1See, e.g., W. J. Zakrzewski,Low Dimensional Sigma Models~Adam Hilger, Bristol, 1989!.
2V. E. Zakharov and A. V. Mikhailov, Zh. Eksp. Teor. Fiz.74, 1953~1978! @Sov. Phys. JETP47, 1017~1979!#.
3B. Konopelchenko and I. Taimanov, J. Phys. A29, 1261~1996!.
4R. Carroll and B. Konopelchenko, Int. J. Mod. Phys. A11, 1183~1996!.
5R. Osserman,A Survey of Minimal Surfaces~Dover, New York, 1996!.
6P. Bracken and A. M. Grundland, J. Math. Phys.42, 1250~2001!, and references therein.
7K. Kenmotsu, Math. Ann.245, 89 ~1979!.
8A. M. Grundland and W. J. Zakrzewski, J. Math. Phys.43, 3352~2002!.
9A. M. Grundland and W. J. Zakrzewski, ‘‘OnCP1 andCP2 maps and Weierstrass representations for surfaces imme
into multi-dimensional Euclidean spaces,’’ J. Nonlin. Math. Phys.~to be published, 2003!.

10B. Konopelchenko and G. Landolfi, Stud. Appl. Math.104, 129 ~1999!.
11See, e.g., T. J. Willmore,Riemannian Geometry~Oxford Science Publication, Clarendon, Oxford, 1996!.
12A. S. Fokas and I. M. Gelfand, Commun. Math. Phys.177, 203 ~1996!.
                                                                                                                



assical
closely

nd

ua-

c

uation

dif-
corre-

is

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 2 FEBRUARY 2003

                    
A Laplace operator and harmonics on the quantum
complex vector space

N. Z. Iorgov and A. U. Klimyka)

Institute for Theoretical Physics, Kiev 03143, Ukraine

~Received 26 July 2002; accepted 28 October 2002!

The aim of this article is to study theq-Laplace operator andq-harmonic polyno-
mials on the quantum complex vector space generated by elementszi ,wi , i
51,2,...,n, on which the quantum group GLq(n) @or Uq(n)] acts. Theq-harmonic
polynomials are defined as solutions of the equationDqp50, wherep is a polyno-
mial in zi ,wi , i 51,2,...,n, and theq-Laplace operatorDq is determined in terms
of q-derivatives. Theq-Laplace operatorDq commutes with the action of GLq(n).
The projectorHm,m8 :Am,m8→Hm,m8 is constructed, whereAm,m8 and Hm,m8 are
the spaces of homogeneous~of degreem in zi and of degreem8 in wi) polynomials
and homogeneousq-harmonic polynomials, respectively. By using these projectors,
a q-analog of the classical zonal spherical and associated spherical harmonics are
constructed. They constitute an orthogonal basis ofHm,m8 . A q-analog of separa-
tion of variables is given. The quantum algebra Uq(gln), acting onHm,m8 , deter-
mines an irreducible representation of Uq(gln). This action is explicitly con-
structed. The results of the article lead to the dual pair (Uq(sl2),Uq(gln)) of
quantum algebras. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1532106#

I. INTRODUCTION

Laplace operators, harmonic polynomials, and related separations of variables of the cl
analysis are of a great importance for mathematical and theoretical physics. They are
related to the rotation groups SO(n) ~if we deal with Euclidean space! and to the unitary groups
U(n) ~if we deal with the complex vector space! ~see, for example, Ref. 1, Chaps. 10 and 11!. In
this article we are interested in aq-analog of Laplace operators, harmonic polynomials, a
related separations of variables on complex spaces.

Harmonic polynomials on then-dimensional complex vector space are defined by the eq

tion Dp50, whereD is the Laplace operator( i 51
n ]2/]zi] z̄i and p belongs to the spaceR of

polynomials inz1 ,...,zn ,z̄1 ,...,z̄n on the complex spaceCn. The spaceH of all harmonic poly-
nomials onCn decomposes as a direct sum of the subspacesHm,m8 of homogeneous harmoni
polynomials of degreem in z1 ,...,zn and of degreem8 in z̄1 ,...,z̄n : H5 % m,m850

` Hm,m8 . The
Laplace operatorD onCn commutes with the natural action of the unitary group U(n) on the space
Cn. This means that the subspacesHm,m8 are invariant with respect to U(n). The irreducible
representationTm,m8 of the group U(n) with highest weight (m,0,...,0,2m8) is realized on
Hm,m8 .

The equationDp50 permits solutions in separated variables on the spaceHm,m8 . In other
words, there exist different coordinate systems~spherical, polyspherical, etc.! on Cn and for each
of them it is possible to find the corresponding basis of the space of solutions of the eq
Dp50 consisting of products of functions depending on separated variables~see Ref. 2 for the
general theory of separation of variables!. To different coordinate systems there correspond
ferent separations of variables. From the other side, to different coordinate systems there
spond different chains of subgroups of the group U(n) ~see Ref. 1, Chap. 11, for details of th

a!Author to whom correspondence should be addressed. Electronic mail: aklimyk@bitp.kiev.ua
8230022-2488/2003/44(2)/823/26/$20.00 © 2003 American Institute of Physics
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correspondence!. The bases of the spaceHm,m8 in separated variables consist of products of Jac
polynomials multipled byr m1m8 ~different sets of Jacobi polynomials for different separations
variables!, wherer is the radius. These polynomials~considered only on the unit sphereSC

n21 in
Cn) are matrix elements of the class 1@with respect to the subgroup U(n21)] irreducible repre-
sentationsTm,m8 of U(n) belonging to zero column~see Ref. 1, Chap. 11!.

Many new directions of mathematical physics are related to quantum group and nonco
tative geometry. It is natural to generalize the above-described theory to noncommutative s
Such generalizations can be of a great importance for further development of some branc
mathematical and theoretical physics related to noncommutative geometry.

The aim of this article is to construct aq-deformation of the above-described classical theo
In theq-deformed case, instead ofCn we take the quantum complex vector space. It is defined
the associative algebraA generated by the elementsz1 ,...,zn ,w1 ,...,wn satisfying a certain natu
ral defining relations. The elementsz1 ,...,zn play a role of Cartesian coordinates ofCn and
w1 ,...,wn play a role ofz̄1 ,...,z̄n .

Theq-Laplace operatorDq onA is defined in terms ofq-derivatives@see formula~17! below#.
The quantum group Uq(n) plays a role of the unitary group U(n) in the q-deformed case. It will
be convenient for us to use the quantum algebra~that is, the quantized universal envelopin
algebra! Uq(gln) instead of the quantum group Uq(n). Theq-harmonic polynomials on the quan
tum complex vector space are defined as elementsp of the algebraA ~that is, polynomials in
z1 ,...,zn ,w1 ,...,wn) for which Dqp50. By using the quantum algebra Uq(gln) we construct for
q-harmonic polynomials a theory similar to the theory for classical harmonic polynomials
construct the projectorHm,m8 :Am,m8→Hm,m8 , where Am,m8 and Hm,m8 are the subspaces o
homogeneous~of degreem in z1 ,...,zn and of degreem8 in w1 ,...,wn) polynomials inA and in
the spaceH of all q-harmonic polynomials fromA, respectively. Using these projectors we c
make different calculations inHm,m8 . In this way, zonal spherical and associated spherical p
nomials can be calculated. The associated spherical polynomials ofHm,m8 constitute an orthogona
basis of this space. Here we obtain aq-analog of the spherical separation of coordinates. We s
that the natural action of the algebra Uq(gln) on the quantum complex vector space realizes on
spaceHm,m8 the irreducible representation of this algebra with highest weight (m,0,...,0,2m8).
Note that restrictions of zonal spherical and associated spherical polynomials fromHm,m8 to the
quantum sphere in the quantum complex vector space coincide with matrix elements of irred
representationsTm,m8 of the quantum group Uq(n) corresponding to zero column~the latter matrix
elements were calculated in Ref. 3; see also Ref. 4!. Some our formulas coincide with formulas o
Ref. 3. However, no Laplace operator and noq-harmonic polynomials are presented in Ref. 3

Note that this article is an extension of the results of our previous paper~see Ref. 5! ~where we
studiedq-Laplace operator andq-harmonic polynomials on the quantum real vector space! to the
case of quantum complex vector space. It is well known that in the classical case, the the
Laplace operators and harmonic polynomials onCn can be reduced to the corresponding theory
the real spaceR2n ~see Ref. 1, Chap. 11!. It is not the case for the quantum spaces. The reaso
that the quantum complex vector space cannot be obtained from the quantum real vector s
the same way as in the classical case.

Everywhere below we suppose thatq is not a root of unity. Under considering a scalar produ
on the spacesA andH we assume thatq is a positive real number. By@a#, aPC, we denote the
so calledq-number defined as

@a#5
qa2q2a

q2q21 .

II. THE QUANTUM ALGEBRA U q„gln… AND THE QUANTUM VECTOR SPACE

The Drinfeld-Jimbo quantum algebra Uq(gln) is generated by the elementski
1/2[qhi /2, ki

21/2

[q2hi /2, i 51,2,...,n, andej , f j , j 51,2,...,n21, satisfying the relations
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kiki
215ki

21ki51, kikj5kjki , kiejki
215qai j ej , ki f jki

215q2ai j f j ,

@ei , f j #[ei f j2 f jei5d i j

kiki 11
21 2ki

21ki 11

q2q21 ,

ei
2ei 612~q1q21!eiei 61ei1ei 61ei

250,

f i
2f i 612~q1q21! f i f i 61f i1 f i 61f i

250,

@ei ,ej #5@ f i , f j #50, u i 2 j u.1,

whereaii 51, ai ,i 215ai 21,i521 andai j 50 otherwise~see, for example, Ref. 6, Chap. 6!.
The algebra Uq(gln) is a Hopf algebra, and the Hopf algebra operations~comultiplicationD,

counit « and antipodeS) are given by the formulas

D~ki
61!5ki

61
^ ki

61 , D~ei !5ei ^ ki
21/2ki 11

1/2 1ki
1/2ki 11

21/2
^ ei ,

D~ f i !5 f i ^ ki
21/2ki 11

1/2 1ki
1/2ki 11

21/2
^ f i , «~ki !51, «~ei !5«~ f i !50,

S~ki !5ki
21 , S~ei !52q21ei , S~ f i !52q fi .

The group GL(n,C) and its Lie algebra gl(n,C) act linearly on then-dimensional complex
vector space. Similarly, the quantum group GLq(n,C) and the algebra Uq(gln) acts on the quantum
~noncommutative! analog of the complex vector space. This quantum space is determined b
algebra of polynomialsA[Cq@z1 ,...,zn , w1 ,...,wn] ~see Ref. 7!. This algebra is the associativ
algebra generated by elementsz1 , z2 ,...,zn , w1 , w2 ,...,wn satisfying the defining relations

zizj5qzjzi , wiwj5q21wjwi , i , j , ~1!

wjzi5qziwj , iÞ j , i , j 51, 2, . . . ,n, ~2!

wkzk5zkwk1~12q2!(
s51

k21

zsws . ~3!

The elementsw1 ,..., wn play a role ofz̄1 ,..., z̄n in the classical analysis.
A *-operation can be defined on the algebraA turning it into a*-algebra. This* -operation is

uniquely determined by the relationszi* 5wi , wi* 5zi , i 51, 2,...,n. The compact quantum
group Uq(n) acts on this* -algebra. Note that the algebraA is similar to~and not coinciding with!
the algebra considered by Pusz and Woronowicz.8

Note that the relations~3! are equivalent to the following ones:

zkwk5wkzk2~12q2!(
s51

k21

q2(k2s21)wszs . ~4!

The set of all monomials

z1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn , r j , sj50, 1, 2,..., ~5!

form a basis of the algebraA ~see Ref. 9!. The set

w1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn , r j , sj50, 1, 2,..., ~6!

also form a basis of this algebra.
                                                                                                                



aces

of

,

826 J. Math. Phys., Vol. 44, No. 2, February 2003 N. Z. Iorgov and A. U. Klimyk

                    
The vector space of the algebraA can be represented as a direct sum of the vector subsp
Am,m8 consisting of homogeneous polynomials of homogeneity degreem in z1 , z2 ,..., zn and of
homogeneity degreem8 in w1 , w2 ,..., wn , m, m850, 1, 2,...:

A5 %
m50

`

%
m850

`

Am,m8 . ~7!

We have the linear space isomorphism

A.Az^ Aw ,

where the associative algebraAz ~the associative algebraAw) is a subalgebra ofA coinciding with
% m50

` Am,0 ~respectively, with% m850
` A0,m8).

We can define an action of the algebra Uq(gln) on the vector spaceA. To determine this action
we give the action of Uq(gln) on zj andwj by the formulas9

kixzj5qd i j zj , eixzj5d j ,i 11zj 21 , f ixzj5d j ,izj 11 , ~8!

kixwj5q2d i j wj , eixwj52d j ,iq
21wj 11 , f ixwj52d j ,i 11qwj 21 , ~9!

and extend it toA by using the comultiplication, that is, by means of the relation

Xx~p1p2!5( ~X(1)xp1!~X(2)xp2!,

whereD(X)5(X(1)^ X(2) ~in the Sweedler notation!, and linearity.
This action of the algebra Uq(gln) on the vector spaceA determines a representation

Uq(gln) on this space~we denote it byL). Evidently, the subspacesAm,m8 are invariant with
respect to this action. Therefore,L determines representations of Uq(gln) on these subspaces
which are denoted byLm,m8 . We haveL5 % m,m850

` Lm,m8 .

III. OPERATORS ON THE ALGEBRA A

In order to introduce theq-Laplace operator onA and to studyq-harmonic polynomials we
need some operators on the linear space of the algebraA. By g i and ḡ i we denote the linear
operators acting on monomials as

g i~z1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn!5qr iz1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn ,

ḡ i~w1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn!5qr iw1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn .

Definition of the operatorsg i
21 and ḡ i

21 is obvious.
By ẑi and z̆i we denote the linear operators of multiplication by the elementzi :

ẑi~z1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn!5ziz1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn ,

z̆i~z1
r 1z2

r 2
¯zn

r nw1
s1w2

s2
¯wn

sn!5z1
r 1z2

r 2
¯zn

r nziw1
s1w2

s2
¯wn

sn .

The corresponding linear operatorsŵi and w̆i are defined as

ŵi~w1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn!5wiw1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn ,

w̆i~w1
r 1w2

r 2
¯wn

r nz1
s1z2

s2
¯zn

sn!5w1
r 1w2

r 2
¯wn

r nwiz1
s1z2

s2
¯zn

sn .
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We define onA the q-differentiations] i and ]̄ i . The linear operators] i act as] i p50 on
monomialsp of the form ~5! not containingzi and as

] i5 z̆i
21

g i2g i
21

q2q21 ~10!

on monomials containingzi . The q-differentiations]̄ i are linear operators acting as]̄ i p50 on
monomialsp of the form ~6! not containingwi and as

]̄ i5w̆i
21

ḡ i2ḡ i
21

q2q21 ~11!

on monomials containingwi . In particular, we have

] i~z1
r 1
¯zn

r nw1
s1
¯wn

sn!5@r i #q
r i 111¯1r nz1

r 1
¯zi

r i21
¯zn

r nw1
s1
¯wn

sn ,

]̄ i~w1
r 1
¯wn

r nz1
s1
¯zn

sn!5@r i #q
2(r i 111¯1r n)w1

r 1
¯wi

r i21
¯wn

r nz1
s1
¯zn

sn .

The action formulas~8! and~9! mean that the multiplication operatorsẑj , j 51, 2,...,n, and
ŵj , j 51, 2,...,n, constitute tensor operators transforming under the vector representatio
under the contragredient to the vector representation, respectively.

The actions~8! and~9! of Uq(gln) on zj andwj determines its action on the operators] j and
]̄ j :

kix] j5q2d i j ] j , eix] j52d j ,iq
21] j 11 , f ix] j52d j ,i 11q] j 21 , ~12!

kix ]̄ j5qd i j ]̄ j , eix ]̄ j5d j ,i 11q22]̄ j 21 , f ix ]̄ j5d j ,iq
2]̄ j 11 . ~13!

That is, the set]̄ j , j 51, 2,...,n, ~respectively, the set] j , j 51, 2,...,n) is a tensor operato
transforming under vector~respectively, contragredient to vector! representation.

The operators] i , ]̄ i , ẑi , ŵi satisfy the relations, which will be presented by means of
quantumR-matrix R for the quantum algebra Uq(gln) ~see, for example, Ref. 6, Sec. 8.1, and R
7 for definition of theR-matrix!. Let R5PR, where the matrixP permutes the spaces in th
tensor product of two spaces on whichR-matrix acts. Then

Rkl
i j 5qd i j d i l d jk1~q2q21!d ikd j l u~ j 2 i !,

whereu(k)51 if k.0 andu(k)50 if k<0. Its inverse matrix is

~R21!kl
i j 5q2d i j d i l d jk2~q2q21!d ikd j l u~ i 2 j !.

We also need the matrixFkl
i j 5Rlk

j i q2(i 2 l ), which satisfies the relations

(
j ,l

Fp j
ul ~R21! lk

j i 5(
j ,l

~R21!p j
ulF lk

j i 5dupd ik ,

(
l

F lk
l i 5d ikq2(n2 i )11, (

k
F lk

jk5d j l q
2l 21.

The relations~1!–~3! rewritten for operatorsẑi and ŵi can be presented as

ẑi ẑj5q21Ri j
klẑkẑl , ŵi ŵj5q21Rlk

j i ŵkŵl , ŵi ẑj5q~R21! j l
ikẑkŵl .

We also have the relations
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] i] j5q21Rlk
j i ]k] l , ]̄ i ]̄ j5q21Ri j

kl]̄k]̄ l , ] i ]̄ j5q21F l j
ki]̄k] l ,

] i ŵ j5q~R21! lk
j i ŵk] l , ]̄ i ẑj5qF j i

lkẑk]̄ l ,

] i ẑj5g71d i j 1~R61! j l
ikẑk] l , ]̄ i ŵ j5ḡ71d i j 1~R61!ki

l j ŵk]̄ l ,

which can be represented in the form

] i] j5q21] j] i , ]̄ i ]̄ j5q]̄ j ]̄ i , i , j ,

]̄ i] j5q] j ]̄ i , iÞ j , ]̄ i] i5] i ]̄ i1~12q2!(
k. i

]k]̄k ,

] i ]̄ i5 ]̄ i] i1~12q22!(
k. i

q2(k2 i )]̄k]k .

] i ŵi5ŵi] i , ] i ŵ j2qŵj] i5~12q2!ŵi] j , ] j ŵi5qŵi] j , i , j ,

]̄ i ẑi5 ẑi ]̄ i , ]̄ i ẑj2q21ẑj ]̄ i5~12q22!q2( j 2 i )ẑi ]̄ j , ]̄ j ẑi5q21ẑi ]̄ j , i , j ,

] i ẑj5 ẑj] i , ]̄ i ŵ j5ŵj ]̄ i , iÞ j ,

] i ẑi5qẑi] i1~q2q21!(
k. i

ẑk]k1g215q21ẑi] i2~q2q21!(
k, i

ẑk]k1g,

]̄ i ŵi5qŵi ]̄ i1~q2q21!(
k, i

ŵk]̄k1ḡ215q21ŵi ]̄ i2~q2q21!(
k. i

ŵk]̄k1ḡ,

whereg5g1g2¯gn and ḡ5ḡ1ḡ2¯ḡn . From last two lines, we obtain

(
k51

n

ẑk]k5$g%[
g2g21

q2q21 , (
k51

n

ŵk]̄k5$ḡ%[
ḡ2ḡ21

q2q21 .

We also have the relations

g ẑi5qẑig, gŵi5ŵig, ḡ ẑi5 ẑi ḡ, ḡŵi5qŵi ḡ,

g] i5q21] ig, g]̄ i5 ]̄ ig, ḡ] i5] i ḡ, ḡ ]̄ i5q21]̄ i ḡ.

Note that

gp5qmp, ḡp5qm8p, pPAm,m8 . ~14!

To compare these relations with those known from literature, we introduce the operato] i8

5g] i , ]̄ i85ḡ21]̄ i . Then the operatorsẑi , ŵi , ] i8 , ]̄ i8 , i 51,..., n, satisfy the relations from Ref
10 which are known to be covariant with respect to Uq(gln). Note that the operators] i85g] i

coincide with theq-deformed differential operators of Pusz and Woronowicz8 and of Wess and
Zumino11 if to restrict their action upon the subalgebraAz generated byz1 , z2 ,..., zn .

Note that the above elementsẑ1 ,..., ẑn , ]18 ,..., ]n8 generate theq-Weyl algebra, that is, they
satisfy the relations
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ẑi ẑj5qẑj ẑi , ] i8] j85q21] j8] i8 i , j , ] i8ẑj5qẑj] i8 , iÞ j ,

] i8ẑi2q2ẑi] i8511~q221!(
j . i

ẑj] j8

~the definition of theq-Weyl algebra; see, for example, in Ref. 6, Chap. 12!. Similarly, the
elementsŵ1 ,...,ŵn ,]̄18 ,...,]̄n8 generate theq21-Weyl algebra.

The operatorsDª(k51
n ẑk]k andD̄ª(k51

n ŵk]̄k are called theq-Euler operators. The formula
~7! gives the decomposition ofA into a direct sum of eigenspaces of the operatorsD and D̄.

Let us show that the above relations for the operators] i ,]̄ i ,ẑi ,ŵi determine uniquely the
formulas~10! and~11! for ] i ,]̄ i . We use the action formulas] i15 ]̄ i150, take into account tha
ẑi , ŵi act as the operators of left multiplication on the basis elements~5! and~6!, respectively, and
g, ḡ are gradation operators onA @see~14!#. By means of commutation relations between] i and
ŵj , it is easy to obtain that] iw1

s1w2
s2
¯wn

sn50. To calculate] i(zi
r iw1

s1w2
s2
¯wn

sn) with r i.0, we
use the relation

] i ẑi5qẑi] i1~q2q21!(
k. i

ẑk]k1g21.

It gives ] i(zi
r iw1

s1w2
s2
¯wn

sn)5@r i #zi
r i21w1

s1w2
s2
¯wn

sn . Finally, we have the action formula

] i~z1
r 1
¯zi

r i
¯zn

r nw1
s1
¯wn

sn!5qr i (r i 111¯1r n)] i~z1
r 1
¯zi 21

r i 21zi 11
r i 11

¯zn
r nzi

r iw1
s1
¯wn

sn!

5qr i (r i 111¯1r n)ẑ1
r 1
¯ ẑi 21

r i 21ẑi 11
r i 11

¯ ẑn
r n] i~zi

r iw1
s1
¯wn

sn!

5qr i 111¯1r n@r i #z1
r 1
¯zi

r i21
¯zn

r nw1
s1
¯wn

sn ,

which exactly coincides with the action~10!. The action formula for]̄ i is recovered in a similar
way.

The action of the algebra Uq(gln) on A.Az^ Aw , defined by formulas~8! and ~9!, can be
determined in terms of the operators] i and ]̄ j . We first note that the action of Uq(gln) on Az is
given by the operators

L~ki !5g i , L~ei !5q21/2~g ig i 11!1/2z̆i] i 11 , L~ f i !5q1/2~g ig i 11!21/2z̆i 11] i

and onAw by the operators

L~ki !5ḡ i
21 , L~ei !52q23/2~ ḡ i ḡ i 11!1/2w̆i 11]̄ i , L~ f i !52q3/2~ ḡ i ḡ i 11!21/2w̆i ]̄ i 11 .

Taking into account the comultiplication on Uq(gln) the action of Uq(gln) on the linear spaceA
.Az^ Aw can be written asL(ki)5g i ^ ḡ i

21 and

L~ei !5q21/2~g ig i 11!1/2z̆i] i 11^ ~ ḡ i ḡ i 11
21 !1/22q23/2~g ig i 11

21 !1/2
^ ~ ḡ i ḡ i 11!1/2w̆i 11]̄ i ,

L~ f i !5q1/2~g ig i 11!21/2z̆i 11] i ^ ~ ḡ i ḡ i 11
21 !1/22q3/2~g ig i 11

21 !1/2
^ ~ ḡ i ḡ i 11!21/2w̆i ]̄ i 11 .

IV. SQUARED q-RADIUS AND q-LAPLACE OPERATOR

The element

Q5(
i 51

n

ziwi5(
i 51

n

q2(n2 i )wiziPA1,1 ~15!
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of the algebraA is called thesquared q-radius on the quantum complex vector space. It is
important element inA. One can check by a direct computation thatQ is invariant with respect to
the representation L1,1 ~and hence with respect to the representationL), that is,L(ki

61)Q5Q,
L(ej )Q50 and L( f j )Q50. Similarly, the elementQkPAk,k is invariant with respect to the
representationLk,k .

The squaredq-radius Q belongs to the center of the algebraA, that is, Qzi5ziQ, Qwi

5wiQ, i 51, 2,...,n. We shall also use the elements

Qj5(
i 51

j

ziwi5(
i 51

j

q2( j 2 i )wizi ,

which are squaredq-radii for the subalgebrasCq@z1 , w1 ,..., zj , wj #. They satisfy the relations9

QjQi5QiQj , ziwi5Qi2Qi 21 , wizi5Qi2q2Qi 21 ,

ziQj5q22Qjzi , wiQj5q2Qjwi for i . j ,

ziQj5Qjzi , wiQj5Qjwi for i< j .

It can be checked9 by direct computation that

zi
kwi

k5Qi
k~Qi 21 /Qi ;q22!k , wi

kzi
k5Qi

k~q2Qi 21 /Qi ;q2!k , ~16!

where

~a;q!s5~12a!~12aq!¯~12aqs21!.

We consider onA the operator

Dq5]1]̄11]2]̄21¯1]n]̄n5(
i 51

n

q2(i 21)]̄ i] i , ~17!

which is called theq-Laplace operatoron the quantum complex vector space. SincegDq

5q21Dqg and ḡDq5q21Dqḡ, thenDq :Am,m8→Am21,m821 .
To the element~15! there corresponds the operatorQ̂ on A defined as

Q̂5 ẑ1ŵ11 ẑ2ŵ21¯1 ẑnŵn .

Proposition 1: The operatorsDq and Q̂ satisfy the relations

DqQ̂k2Q̂kDq5qn21Q̂k21@k#$qk1n21gḡ%, ~18!

Dq~Qk!5qn21Qk21@k#@k1n21#, ~19!

where

$a%5
a2a21

q2q21

and @r #[$qr% is a q-number.
Proof: First we prove the relation@Dq ,Q̂#5qn21$qngḡ%. Using relations of Sec. III we

derive
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DqQ̂5(
k,l

]k]̄kẑl ŵl

5 (
k,l ,i , j

]k~q21F lk
j i ẑi ]̄ j !ŵl

5 (
k,l ,i , j

q21F lk
j i S d ikg211(

r ,s
Ris

krẑr]sD ]̄ j ŵl

5(
k,l , j

q21F lk
jkg21]̄ j ŵl1 (

k,l ,i , j ,r ,s
q21F lk

j i Ris
krẑr]sS d j l ḡ1(

u,p
~R21!p j

ul ŵp]̄uD
5(

l
q2l 22g21]̄ l ŵl1(

i ,r ,s
q2(n2 i )Ris

ir ẑr]sḡ1 (
k,i ,r ,s

q21Ris
krẑr]sŵi ]̄k .

The third summand is equal to

(
k,i ,r ,s

q21Ris
krẑr]sŵi ]̄k5 (

k,i ,r ,s
q21Ris

krẑr S q(
u,p

~R21!pu
is ŵu]pD ]̄k5Q̂Dq .

Using explicit expressions for matrix elements ofR andR21 we have

(
i

q2(n2 i )Ris
ir 5q2n21d rs , (

l
q2l 22~R21!pl

ul5q21dpu ,

(
l

q2l 22]̄ l ŵl5(
l

q2l 22S ḡ1(
u,p

~R21!pl
ulŵp]̄uD

5qn21@n#ḡ1q21(
p

ŵp]̄p

5qn21@n#ḡ1q21$ḡ%

5qn21$qnḡ%.

Thus, @Dq ,Q̂#5qn21g21$qnḡ%1q2n21$g%ḡ5qn21$qngḡ%. Now, it is easy to obtain~18! by
induction if to use the relation$qrgḡ%Q̂5Q̂$qr 12gḡ% and the explicit expression for$a%. Acting
by both sides of~18! on 1 we obtain~19!.

Proposition 2: The operatorsDq and Q̂commute with the action of the algebraUq(gln) onA,
that is, with all operators of the representation L ofUq(gln).

Proof: It follows from ~12! and~13! thatkixDq5Dq , ejxDq50 andf jxDq50. Now using
the comultiplication forki , ej and f j , we obtain the proposition for theq-Laplace operator. ForQ̂
the proposition is proved similarly.

V. q-HARMONIC POLYNOMIALS

A polynomial pPA is calledq-harmonicif Dqp50. The linear subspace ofA consisting of
all q-harmonic polynomials is denoted byH. Let

Hm,m85Am,m8ùH.

Proposition 3: The spaceAm,m8 can be represented as the direct sum

Am,m85Hm,m8% QAm21,m821 . ~20!
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Proof: First we prove thatHm,m8ùQAm21,m8215$0%. If it is not true, then there exists
nonzero elementpPHm,m8ùQAm21,m821 . Let k be a maximal integer such thatp5Qkp8 with
some nonzero polynomialp8. Then it follows fromDq(p)50 and~18! that

05Dq~Qkp8!5QkDq~p8!1Qk21qn21@k#@k1n211m1m822k#p8.

Sinceqn21@k#@k1n211m1m822k#Þ0, thenp8 can be divided byQ. This is a contradiction.
Thus,Hm,m8ùQAm21,m8215$0%. Using this fact and the equality kerDq5Hm,m8 , whereDq is
considered only onAm,m8 , we obtain the chain of inequalities

dim Am,m82dim ker Dq>dim QAm21,m8215dim Am21,m821>dim im Dq .

The last inequality follows from the fact thatDq :Am,m8→Am21,m821 . Now we take into accoun
the relation dim kerDq1dim imDq5dimAm,m8 . Thus, in fact, the above inequalities are exa
equalities, andAm,m85Hm,m8% QAm21,m821 . Proposition is proved.

Remark:If n51, thenA consists of all polynomials in commuting elementsz1 andw1 . In this
case, the spaceH of q-harmonic polynomials has a basis consisting of the polynomials

1, z1
k , w1

k , k51, 2, ... . ~21!

The decomposition~20! has also the following consequences:
Corollary 1: If pPHm,m8 , then p cannot be represented as p5Qkp8, kÞ0, with some

polynomial p8.
Corollary 2: The spaceAm,m8 decomposes into the direct sum

Am,m85 %
j 50

min(m,m8)

QjHm2 j ,m82 j . ~22!

Corollary 3: For dimension of the space of q-harmonic polynomialsHm,m8 we have the
formula

dim Hm,m85
~m1n22!! ~m81n22!! ~m1m81n21!

~n21!! ~n22!!m!m8!
.

Corollary 4: The space of q-harmonic polynomialsH can be represented in the form of
direct sum

H5 %
m50

`

%
m850

`

Hm,m8 .

Corollary 1 is a direct consequence of formula~20!. Corollary 2 easily follows from repeate
application of ~20!. Corollary 3 is proved in the same way as in the classical case~see, for
example, Ref. 1, Chap. 10!. For this we note that

dim Am,m85
~n1m21!! ~n1m821!!

~n21!! 2m!m8!
.

Hence, for dimHm,m85dim Am,m82dim Am21,m821 we obtain the expression stated in the co
ollary. In order to prove Corollary 4 we note that

A5 %
m>0

%
m8>0

%
j 50

p

QjHm2 j ,m82 j5 %
m>0

%
m8>0

S Hm,m8 % S %
j 51

p

QjHm2 j ,m82 j D D ,

wherep5min(m,m8). Now Corollary 4 follows from here and Corollary 1.
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Theorem 1: The linear space isomorphismA.C@Q# ^ H is true, whereC@Q# is the space of
all polynomials in Q.

This theorem follows from Corollary 2.
The decompositionA.C@Q# ^ H is a q-analog of the theorem on separation of variables

Lie groups in an abstract form.12 It follows from this decomposition that

A.C@Q# ^ H.C@Q# ^ %
m>0

%
m8>0

Hm,m85 %
m>0

%
m8>0

~C@Q# ^ Hm,m8!. ~23!

Since the subspacesAm,m8 are invariant with respect to the action of the algebra Uq(gln), it
follows from Proposition 2 forDq that the subspaceHm,m8 is invariant with respect to the repre
sentationLm,m8 of Uq(gln). We denote the restriction of this representation toHm,m8 by Tm,m8 . It
follows from Proposition 2 forQ and from~22! that

Lm,m85 %
j 50

min(m,m8)

Tm2 j ,m82 j . ~24!

Proposition 4: The representations Tm2 j ,m82 j of Uq(gln) in (24) are irreducible with highest
weights(m2 j , 0, ..., 0,2m81 j ), respectively.

Proof: Let us show that the representationLm,05Tm,0 in the space of holomorphic polynom
alsAm,0 is irreducible with highest weight (m, 0, ..., 0). Infact, a direct calculation shows that th
monomialsz1

m1
¯zn

mn , m11¯1mn5m, are weight vectors of this representation. The high
weight vector coincides withz1

m . Therefore, the irreducible representation with highest wei
(m, 0, ..., 0) is asubrepresentation ofLm,05Tm,0 . Since their dimensions coincide,Lm,05Tm,0 is
an irreducible representation with highest weight (m, 0, ..., 0). It can beproved in the same way
that the representationL0,m85T0,m8 in the space of polynomialsA0,m8 is irreducible with highest
weight (0,..., 0,2m8).

Now we can prove the proposition by the induction. Assume that the proposition is true fo
representationsTm212 j ,m8212 j which are contained in the decomposition

Lm21,m8215 %
j 50

min(m21,m821)

Tm212 j ,m8212 j . ~25!

Note that sinceAm,m85Hm,m8% QAm21,m821 , thenLm21,m821 is a subrepresentation inLm,m8 and

dimAm21,m8215dimLm21,m8215 (
j 50

min(m21,m821)

dimTm212 j ,m8212 j .

The spaceAm,m8 contains the highest weight vectorz1
mwn

m8 which is of the weight (m, 0, ..., 0,
2m8). Therefore,Lm,m8 contains an irreducible representationT̂m,m8 of Uq(gln) with highest
weight (m, 0, ..., 0,2m8). This irreducible representation is absent in the decomposition~25!.
Hence, T̂m,m8 is a subrepresentation inTm,m8 . By the formula for dimensions of irreducibl
representations of Uq(gln) and by Corollary 3 we have dimT̂m,m85dimHm,m8 . Therefore,T̂m,m8 is
equivalent toTm,m8 . Proposition is proved.

Thus, we proved that the action of the algebra Uq(gln) on the spaceA realizes the irreducible
representationsTm,m8 on the subspacesHm,m8 of homogeneousq-harmonic polynomials, respec
tively.

We denote byA Uq(gln) the space of elements ofA consisting of invariant elements wit
respect to the action of Uq(gln).

Proposition 5: We haveA Uq(gln)5C@Q# and
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A Uq(gln21). %
k,l

C@Qn21#zn
kwn

l . %
k,l

C@Q#zn
kwn

l .

Proof: The formula~23! leads to the decomposition of the representationL on A into irre-
ducible subrepresentations of Uq(gln) ~the representation multiple to the irreducible representa
Tm,m8 is realized onC@Q# ^ Hm,m8). Since the trivial representation of Uq(gln) is realized only on
H0,0, thenA Uq(gln) coincides withC@Q# ^ H0,0[C@Q# ^ C.C@Q#.

In order to prove the second equality we note that for Uq(gln21)-moduleA we have

A5Cq@z1 ,w1 ,...,zn ,wn#5 %
k,l

Cq@z1 ,w1 ,...,zn21 ,wn21#zn
kwn

l .

The action of the subalgebra Uq(gln21) on monomials zn
kwn

l is trivial. Moreover,
C@z1 ,w1 ,...,zn21 ,wn21#Uq(gln21)5C@Qn21#, where Qn215z1w11¯1zn21wn21 . Since Q
5Qn211znwn , we haveA Uq(gln21). % k,lC@Qn21#zn

kwn
l . % k,lC@Q#zn

kwn
l . Proposition is proved.

VI. THE DUAL PAIR „Uq„sl 2…,Uq„gln……

The formulas

ke5q2ek, k f5q22f k, e f2 f e5
k2k21

q2q21 ~26!

determine the quantum algebra Uq(sl2) generated by the elementsk,k21,e, f . Let L(A) be the
space of linear operators on the algebraA. It is directly verified by means of formula~18! that the
operators

v~k!5qngḡ, v~e!5q2n11Q̂, v~ f !52Dq ~27!

satisfy relations~26!. This means that the algebra homomorphismv:Uq(sl2)→L(A) uniquely
determined by formulas~27! is a representation of Uq(sl2).

Since the operatorsv(k), v(e), v( f 8) commute with the operatorsL(X), XPUq(gln) we
can introduce the representationv3L of the algebra Uq(sl2)3Uq(gln) onA, whereL is the above
defined natural action of Uq(gln) on A. This representation is reducible. Let us decompose it
irreducible constituents.

By ~23!, we haveA5 % m,m8>0(C@Q# ^ Hm,m8). The subspacesC@Q# ^ Hm,m8 are invariant
under Uq(sl2)3Uq(gln), since the spaceC@Q# is elementwise invariant under Uq(gln), and for
f PC@Q# andhm,m8PHm,m8 we have

Q̂~ f ~Q! ^ hm,m8!5Q f~Q! ^ hm,m8 , ~28!

Dq~Qr
^ hm,m8!5qn21@r #@r 1m1m81n21#Qr 21

^ hm,m8 , ~29!

gḡ~Qr
^ hm,m8!5q2r 1m1m8~Qr

^ hm,m8!. ~30!

These formulas show that Uq(sl2) acts onC@Q# and Uq(gln) acts onHm,m8 . However, this action
of Uq(sl2) depends on the componentHm,m8 . Taking the basis

ur &ªq2r (n21)@r 1m1m81n21#! 21Qr , r 50, 1, 2,...,

in the spaceC@Q#, we find from~28!–~30! that

v~k!ur &5q2r 1m1m81nur &, v~ f !ur &52@r #ur 21&,

v~e!ur &5@r 1m1m81n#ur 11&.
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Comparing this representation with the known irreducible representations of Uq(sl2) ~see, for
example, Ref. 13! we derive that the irreducible representation of Uq(sl2) of the discrete series
with lowest weightm1m81n is realized on the componentC@Q# of the spaceC@Q# ^ Hm,m8 . We
denote this representation of Uq(sl2) by Dm1m81n .

Thus, we have derived that on the subspaceC@Q# ^ Hm,m8,A the irreducible representatio
Dm1m81n3Tm,m8 of the algebra Uq(sl2)3Uq(gln) acts. This means that for the reducible rep
sentationv ^ L we have the following decomposition into irreducible components:

v3L5 %
m,m850

`

Dm1m81n3Tm,m8 ,

that is, each irreducible representation of Uq(gln) in this decomposition determines uniquely th
corresponding irreducible representation of Uq(sl2) and vise versa. This means that Uq(sl2) and
Uq(gln) constitute adual pair under the action onA.

VII. RESTRICTION OF q-HARMONIC POLYNOMIALS ONTO THE QUANTUM SPHERE

The associative algebraF(Sq,n21
C ) generated by the elementsz1 , ..., zn , w1 , ..., wn satisfy-

ing the relations~1!–~3! and the relation

z1w11z1w11¯1znwn51

is calledthe algebra of functions on the quantum sphere Sq,n21
C ~see Ref. 6, Chap. 11, and Ref. 7!.

It is clear that the following canonical algebra isomorphism has place:

F~Sq,n21
C !.A/I,

whereI is the two-sided ideal ofA generated by the elementQ21[( iziwi21. We denote byt
the canonical algebra homomorphism

t:A→A/I.F~Sq,n21
C !.

This homomorphism is called therestriction of polynomials of A onto the quantum spher
Sq,n21

C .
Proposition 6: We havetH.F(Sq,n21

C ). This means thatt:H→F(Sq,n21
C ) is a one-to-one

mapping, that is, the restriction of a q-harmonic polynomial to the sphere Sq,n21
C determines this

polynomial uniquely.
Proof: By Theorem 1, we haveF(Sq,n21

C )5tA5t(C@Q# ^ H)5tH. SinceQ is invariant
with respect to the action of the algebra Uq(gln), then the idealI is an invariant subspace unde
the action of Uq(gln) on A. Therefore, an action of Uq(gln) on A/I is defined. This action
coincides with the action in Ref. 9. The homomorphismt intertwines the action of Uq(gln) on A
and onA/I. SincetHm,m8Þ$0%, then the action of Uq(gln) realizes the same irreducible repr
sentation onHm,m8 and ontHm,m8 . This means that dimHm,m85dim tHm,m8 , that is, the map-
ping t is one-to-one onHm,m8 . Therefore, it is one-to-one onH. Proposition is proved.

Proposition 6 allows us to determine a scalar product onH. For this, we use the invarian
functionalh on the quantum sphere defined in Ref. 9, Sec. 4.2. This functionalh is determined by
introducing a linear gradation intA: tA5(lPZn(tA)l, where (tA)l5$pPtAup(tz,t21w)
5tlp(z,w)%, t5(t1 ,t2 ,...,tn) aren indeterminates, and

tz5~ t1z1 , ..., tnzn!, t21w5~ t1
21w1 , ...,tn

21wn!, @\#n tl5t1
l1 . . . tn

ln .

The subalgebra (tA)0 is spanned by the monomialsz1
m1
¯zn

mnwn
mn
¯w1

m1 ~or by the monomials

w1
m1
¯wn

mnzn
mn
¯z1

m1), m i50, 1, 2, .... Thefunctionalh is defined as a linear mappingh:tA→C
such thath(p)50 if pP((tA)l, lÞ0, and
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h~w1
m1
¯wn

mnzn
mn
¯z1

m1!5
~q2; q2!m1

¯~q2; q2!mn
~q2; q2!n21

~q2; q2!m11¯1mn1n21
.

The following assertions are proved in Ref. 9:

~a! The subalgebra (tA)0 is a commutative algebra generated by the elementsQn21 ,
Qn22 ,...,Q1 .

~b! The algebra (tA)0 is isomorphic to the polynomial algebra inn21 commuting indetermi-
nates.

~c! For any polynomialp(z,w)5 f (Q1 , ..., Qn21)P(tA)0 the valueh(p) is expressed in term
of Jackson integral:

h~p!5
~q2;q2!n21

~12q2!n21 E
0

1E
0

Qn21
¯E

0

Q2
f~Q1, ...,Qn21!dq2Q1¯dq2Qn21

~the definition of Jackson integral; see, for example, in Ref. 14, Chap. 1!.
~d! Now we can introduce a scalar product^•,•& on H:

^p1 , p2&5h~~tp1!~tp2!* !, ~31!

wherea* determines an element conjugate toaPA under action of the*-operation.
Proposition 7: We haveHm,m8'Hr ,r 8 if (m, m8)Þ(r , r 8).
Proof follows from the fact that (tp1)(tp2)* ¹(tA)0 if p1PHm,m8 , p2PHr ,r 8 , and

(m, m8)Þ(r , r 8).

VIII. THE PROJECTION Am,m8\Hm,m8

Let us go back to the decomposition~20! and construct the projector

Hm,m8 :Am,m85Hm,m8% QAm21,m821→Hm,m8 .

We present this projector in the form

Hm,m8p5 (
k50

min(m,m8)

akQ̂
kDq

kp, akPC, pPAm,m8 . ~32!

We have to calculate values of the coefficientsak . In order to do this, we act by the operatorDq

upon both parts of~32! and use the relation~18!. Under this action, the left hand side vanishe
Equating the right hand side to 0, we derive a recurrence relation

qn21@k#@m1m81n2k21#ak1ak2150

for ak which gives

ak5~21!kq2(n21)k
@m1m81n2k22#!

@k#! @m1m81n22#!
, ~33!

where@s#! 5@s#@s21#@s22#¯@1# for sÞ0 and@0#! 51.
Note that the coefficientsak are determined by the recurrence relation uniquely up t

constant. In~33! we have chosen this constant in such a way thatHm,m8p5p for pPHm,m8 . This
means thatHm,m8

2
5Hm,m8 .

Proposition 8: The operatorHm,m8 commutes with the action ofUq(gln), that is, with the
operators of the representation Lm,m8 of Uq(gln).

Proof: This assertion follows from the fact that the operatorsLm,m8(X), XPUq(gln), com-
mute withQ̂ andDq ~see Proposition 2!. Proposition is proved.
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A polynomial w of the spaceHm,m8 is calledzonal if it is invariant with respect to operator
Lm,m8(X), XPUq(gln21). We shall show below that zonal polynomials can be expressed in t
of the basic hypergeometric function2w1 which is defined by the formula

2w1~a, b; c; q, x!5 (
k50

`
~a; q!k~b; q!k

~c; q!k~q; q!k
xk

~see Refs. 14 and 15 for properties of this function!.
Proposition 9: (a) The subspace of zonal polynomials inHm,m8 is one-dimensional. (b) Up to

a constant, a zonal polynomial ofHm,m8 is given by the formula

wm,m8
8 5zn

m2m8Qm8(
s50

m8 ~q22m8;q2!s~q2(m1n21);q2!s

~q2(n21);q2!s~q2;q2!s

Qn21
s

Qs q2s ~34!

if m>m8, and by the formula

wm,m8
8 5Qm(

s50

m
~q22m;q2!s~q2(m81n21);q2!s

~q2(n21);q2!s~q2;q2!s

Qn21
s

Qs q2swn
m82m ~35!

if m<m8.
Proof: ~a! As we have seen, the irreducible representationTm,m8 of Uq(gln) with highest

weight (m, 0, ..., 0,2m8) is realized onHm,m8 . It is known that this representation, under restr
tion to Uq(gln21), contains trivial~one-dimensional! representation of this subalgebra with mu
tiplicity 1. This proves the first assertion.

~b! We construct a zonal polynomial ofHm,m8 by using the projection operatorHm,m8 . In
order to do this, we have to take a polynomialpPAm,m8 invariant with respect to Uq(gln21) and
to act upon it by the operatorHm,m8 . Since the projectorHm,m8 commutes with the action o
Uq(gln21), a polynomial obtained in this way is a zonal polynomial. Clearly, the polynomiap

5zn
mwn

m8 belongs toAm,m8 and is invariant under the action of Uq(gln21). In order to find an

expression forHmm8(zn
mwn

m8) we first assume thatm>m8.
Using the second expression forDq in ~17! and relation]̄nẑn5 ẑn]̄n we have

wm,m8ªHm,m8~zn
mwn

m8!5(
s50

m8

asQ̂
sDq

szn
mwn

m8

5zn
m2m8(

s50

m8

asq
2(n21)sQ̂s

@m#!

@m2s#!

@m8#!

@m82s#!
zn

m82swn
m82s .

Taking into account the expression for the coefficientsas and using the formulas

@s#! 5
~q2;q2!s~21!s

~q2q21!s q2s(s11)/2,
@m#!

@m2s#!
5

~q22m;q2!s

~q2q21!s qms2s(s21)/2,

we obtain

wm,m85zn
m2m8(

s50

m8

q2s
~q22m;q2!s~q22m8;q2!s

~q2;q2!s~q22(m1m81n22);q2!s

Qszn
m82swn

m82s . ~36!

Using the first relation in~16! we obtain from~36! that
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wm,m85Qm8zn
m2m8(

s50

m8

q2s
~q22m;q2!s~q22m8;q2!s

~q2;q2!s~q22(m1m81n22);q2!s

~Qn21 /Q;q22!m82s .

Since@see relation~II.4! from Appendix II in Ref. 14#

~Qn21 /Q;q22!m82s5 (
n50

m82s

q2n
~q22(m82s);q2!n

~q2;q2!n
Qn21

n /Qn,

we have

wm,m85Qm8zn
m2m8(

s50

m8 q2s~q22m; q2!s~q22m8; q2!s

~q2; q2!s~q22(m1m81n22); q2!s
(
n50

m82s

q2n
~q22(m82s); q2!n

~q2; q2!n

Qn21
n

Qn

5Qm8zn
m2m8(

n50

m8 Qn21
n

Qn q2n (
s50

m82n
~q22(m82s); q2!n

~q2; q2!n

q2s~q22m; q2!s~q22m8; q2!s

~q2; q2!s~q22(m1m81n22); q2!s

.

~37!

Applying relation~I.7! and then relation~I.13! from Appendix I in Ref. 14 we find

~q22(m82s); q2!n5~21!nq22m8nqn(n21)
~q2m822n12; q2!n~q22m812n; q2!s

~q22m8; q2!s

.

Therefore, for the sum overs in ~37! ~which will be denoted byI n) we obtain the expression

I n5~21!nq22m8nqn(n21)
~q2m822n12; q2!n

~q2; q2!n
(
s50

m82n
~q22m812n; q2!s~q22m; q2!sq

2s

~q2; q2!s~q22(m1m81n22); q2!s

.

The sum overs here is the basic hypergeometric function

2w1~q22m, q22m812n; q22(m1m81n22); q2, q2!5
q22mm812mn~q22m822n14; q2!m82n

~q22(m1m81n22); q2!m82n

,

where we used formula~II.6! from Appendix II in Ref. 14.
Therefore, for the functionwm,m8 we have the expression

wm,m85Qm8zn
m2m8(

n50

m8 Qn21
n

Qn q2n~21!nq22m8nqn(n21)q22mm812mn

3
~q2m822n12; q2!n

~q2; q2!n

~q22m822n14; q2!m82n

~q22(m1m81n22); q2!m82n

.

By formula ~I.8! of Appendix I in Ref. 14 we have

~q2m822n12; q2!n5~q22m8; q2!n~21!nq2m8nq2n(n21)

and by formula~I.11! from Appendix I in Ref. 14 we obtain

~q22m822n14; q2!m82n

~q22(m1m81n22); q2!m82n

5q22mn
~q22m822n14; q2!m8

~q22(m1m81n22); q2!m8

~q2(m1n21); q2!n

~q2n22; q2!n
.
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For this reason, we have

Hmm8~zn
mwn

m8!5wm,m85q22mm8
~q22m822n14; q2!m8

~q22(m1m81n22);q2!m8

Qm8zn
m2m8

3 (
n50

m8 ~q22m8; q2!n~q2(m1n21); q2!n

~q2;q2!n~q2(n21);q2!n

Qn21
n

Qn q2n

5
~q2(n21); q2!m8

~q2(m1n21); q2!m8
Qm8zn

m2m8
2w1~q22m8, q2(m1n21);

3q2(n21); q2, q2Qn21 /Q!.

This proves the second assertion of the proposition for the casem>m8. The casem,m8 is
proved in the same way. Proposition is proved.

The formula

Pk
(a,b)~x; q!52w1~q2k, qa1b1k11; qa11; q, qx!

defines the so-called littleq-Jacobi polynomials. The zonal polynomials from Proposition 9 can
written in term of these polynomials as

wm,m8
8 5Qm8zn

m2m8Pm8
(n22,m2m8)

~Qn21 /Q; q2!

if m>m8 and as

wm,m8
8 5QmPm

(n22,m82m)~Qn21 /Q; q2!wn
m82m

if m<m8. Restricting these polynomials onto the quantum sphereSq,n21
C we obtain

twm,m8
8 5zn

m2m8Pm8
(n22,m2m8)

~Qn21 ;q2!

if m>m8 and

twm,m8
8 5Pm

(n22,m82m)~Qn21 ; q2!wn
m82m

if m<m8. These polynomials are calledzonal spherical functionson the quantum sphereSq,n21
C

and were calculated in Ref. 9~see also Refs. 3 and 4!.

IX. q -ANALOG OF ASSOCIATED SPHERICAL HARMONICS WITH RESPECT TO
Uq„glnÀ1…

It is known ~see Ref. 1, Chap. 11! that in the space of classical homogeneous harmo
polynomials on the unitary~complex Euclidean! spaceEn

C there exist different orthonormal base
They correspond to different separations of variables. Each separation of variables corresp
a certain chain of subgroups of the unitary groupU(n). A similar picture has place for the space
Hm,m8 of homogeneousq-harmonic polynomials. We consider in this section aq-analog of sepa-
ration of variables corresponding to spherical coordinates on the sphereSn21

C ~see Ref. 1, Chap
11!.

In the classical case, the tree method distinguishes different separations of variables. D
separations of variables are in a one-to-one correspondence with different chains of subgr
U(n). The same tree method can be used forq-harmonic polynomials, but instead of chains
subgroups of U(n) we have to take the corresponding chains of subalgebras of the alg
Uq(gln). A certain orthogonal basis corresponds to such a chain of subalgebras.
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The aim of this section is to construct an orthogonal basis of the spaceHm,m8 of homogeneous
q-harmonic polynomials which corresponds to the chain

Uq~gln!.Uq~gln21!.¯.Uq~gl3!.Uq~gl2!.Uq~gl1!. ~38!

This basis is aq-analog of the set of associated spherical harmonics on the complex vector
which are products of certain Jacobi polynomials~see Ref. 1, Chap. 11!. The basis elements giv
solutions of the equationDqp50 in ‘‘separated coordinates.’’ So, we obtain aq-analog of the
classical separation of variables.

Lemma 1: Let fk8(z8) and gl 8(w8) be homogeneous polynomials of degrees k8 in z8
[(z1 , z1 ,..., zn21) and of degrees l8 in w8[(w1 , w1 ,..., wn21), respectively. Then for any
non-negative integers k and l we have

Dq~zn
kwn

l f k8~z8!gl 8~w8!!5ql 2kzn
kwn

l Dn21~ f k8~z8!gl 8~w8!!1q2(n21)ql 81k8@k#

3@ l #zn
k21wn

l 21f k8~z8!gl 8~w8!,

whereDn215( i 51
n21q2i 22]̄ i] i is the q-Laplace operator for the elementsz8[(z1 , ..., zn21) and

w8[(w1 ,...,wn21).
Proof: Using the relations for the operators from Sec. III we derive

]̄n]nzn
kwn

l f k8~z8!gl 8~w8!5q( l 2k)k8]̄n]nf k8~z8!zn
kwn

l gl 8~w8!

5q( l 2k)k8@k#]̄nf k8~z8!zn
k21wn

l gl 8~w8!

5q( l 21)k8@k#]̄nzn
k21f k8~z8!wn

l gl 8~w8!

5q( l 21)k8@k#zn
k21]̄nf k8~z8!wn

l gl 8~w8!

5q22k81 l (k81 l 8)@k#zn
k21f k8~z8!]̄ngl 8~w8!wn

l

5q22k81 lk81 l 8@k#@ l #zn
k21f k8~z8!wn

l 21gl 8~w8!

5q2k81 l 8@k#@ l #zn
k21wn

l 21f k8~z8!gl 8~w8!.

Since] i ŵn5qŵn] i1(12q2)ŵi]n , i ,n, and]n(wn
l f k8(z8)gl 8(w8))50, we have

]̄ i] izn
kwn

l f k8~z8!gl 8~w8!5 ]̄ izn
k] iwn

l f k8~z8!gl 8~w8!5ql ]̄ izn
kwn

l ] i f k8~z8!gl 8~w8!.

Using recurrently the relation]̄ i ẑn5q21ẑn]̄ i1(12q22)q2(n2 i )ẑi ]̄n , we obtain

]̄ i] izn
kwn

l f k8~z8!gl 8~w8!5ql 2kzn
kwn

l ]̄ i] i f k8~z8!gl 8~w8!1q2(n2 i )~12q22!ql 811@k#

3@ l #zn
k21wn

l 21ẑi] i f k8~z8!gl 8~w8!.

Thus, one has

Dn21~zn
kwn

l f k8~z8!gl 8~w8!!5ql 2kzn
kwn

l Dn21f k8~z8!gl 8~w8!1q2n23~q221!ql 8@k#@ l #

3@k8#zn
k21wn

l 21f k8~z8!gl 8~w8!,

where the relation

(
i 51

n21

ẑi] i f k8~z8!gl 8~w8!5(
i 51

n

ẑi] i f k8~z8!gl 8~w8!5$g% f k8~z8!gl 8~w8!5@k8# f k8~z8!gl 8~w8!
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has been used. From the above results and from the equalityDq5q2(n21)]̄n]n1Dn21 , the lemma
follows.

Proposition 10: Let s and s8 be integers such that0<s<m and0<s8<m8. Let hs,s8(z8,w8)
be a homogeneous harmonic polynomial of degree s inz85(z1 ,z2 ,...,zn21) and of degree s8 in

w85(w1 ,w2 ,...,wn21). Then for zn
m2swn

m82s8hs,s8(z8,w8)PAm,m8 we have

Hm,m8~zn
m2swn

m82s8hs,s8~z8,w8!!5zn
m2s2m81s8Qm82s8dss8

mm8hs,s8~z8,w8!, ~39!

where m2s>m82s8,

dss8
mm85q22(m2s)(m82s8)

~q22m822s22n14;q2!m82s8

~q22m22m822n14;q2!m82s8

32w1~q22(m82s8),q2(m1s81n21);q2(s1s81n21); q2, q2Qn21 /Q!,

and

Hm,m8~zn
m2swn

m82s8hs,s8~z8,w8!!5Qm2sdss8
mm8wn

m82s82m1shs,s8~z8,w8!, ~40!

where m2s<m82s8,

dss8
mm85q22(m2s)(m82s8)

~q22m22s822n14;q2!m2s

~q22m22m822n14;q2!m2s

32w1~q22(m2s),q2(m81s1n21);q2(s1s81n21); q2, q2Qn21 /Q!.

Proof: The proof of this proposition is similar to that of Proposition 6 and we shall o
details. Taking into account formula~32! for the projectorHm,m8 and Lemma 1, we obtain

Hm,m8~zn
m2swn

m82s8hs,s8~z8,w8!!5 (
k50

min(m,m8)

akQ
kDq

kzn
m2swn

m82s8hs,s8~z8,w8!

5 (
k50

b

akQ
kq2(n21)kq(s1s8)k

@m2s#! @m82s8#!

@m2s2k#! @m82s82k#!

3zn
m2s2kwn

m82s82khs,s8~z8,w8!,

whereb5min(m2s, m82s8). Let m2s>m82s8, then

Hm,m8~zn
m2swn

m82s8hs,s8~z8,w8!!5zn
m2s2m81s8Qm82s8dss8

mm8hs,s8~z8,w8!,

where

dss8
mm85 (

k50

m82s8

q2k
~q22(m2s); q2!k~q22(m82s8); q2!k

~q2; q2!k~q22(m1m81n22); q2!k
(
n50

d

q2n
~q22(m82s82k); q2!n

~q2; q2!n

Qn21
n

Qn .

Hered5m82s82k. Changing the order of summations in the last expression we have

dss8
mm85 (

n50

s8 ~Qn21 /Q!nq2n

~q2; q2!n
(
k50

s82n

q2k
~q22(m2s); q2!k~q22(m82s82k); q2!n~q22(m82s8); q2!k

~q2; q2!k~q22(m1m81n22); q2!k

,

~41!
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wheres85m82s8. Since

~q22(m82s82k); q2!n5qn(n21)~2q22(m82s82k)!n~q2m822s822kq22n12; q2!n

5~21!nqn(n21)q22(m82s8)n
~q2m822s822n12; q2!n~q22m812s812n; q2!k

~q22m812s8; q2!k

,

for the sum overk in ~41! we have

~21!nqn(n21)~q22nq2m822s812; q2!n

q2(m82s8)n (
k50

s82n
~q22m812s812n; q2!k~q22(m2s); q2!k

~q2; q2!k~q22(m1m81n22);q2!k

q2k

5an~21!nqn(n21)q22(m82s8)n
2w1~q22(m2s), q22(m82s8)12n; q22(m1m81n22); q2, q2!

5an~21!nqn(n21)q22(m82s8)n
~q22m822s22n14; q2!m82s82n

~q22m22m822n14; q2!m82s82n

q22(m2s)(m82s82n)

5an

~21!nqn(n21)

q2(m82s8)n

~q22m822s22n14; q2!m82s8

~q22m22m822n14; q2!m82s8

~q2m12s812n22; q2!n

~q2s12s812n22; q2!n

q22(m2s)(m82s8),

wherean5(q22nq2m822s812; q2)n . Since

an[~q22nq2m822s812; q2!n5~21!nq2n(n21)q2(m82s8)n~q22m812s8; q2!n ,

for dss8
mm8 we have the expression

dss8
mm85css8

mm8
2w1~q22(m82s8), q2(m1s81n21); q2(s1s81n21); q2, q2Qn21 /Q!,

where

css8
mm85q22(m2s)(m82s8)

~q22m822s22n14; q2!m82s8

~q22m22m822n14; q2!m82s8

5
~q2(s1n21); q2!m82s8
~q2(m1n21); q2!m82s8

.

In the case whenm2s<m82s8, the proof is similar and we omit it. Proposition is proved.
Remark:If n52, then polynomialshs,s8(z1 , w1) in Proposition 10 are multiple to elemen

from ~21!, that is, we haves50 or s850 or s5s850.

The expressions fordss8
mm8 from Proposition 10 can be represented in terms of littleq-Jacobi

polynomialsPk
(a,b)(x; q) as

dss8
mm85css8

mm8Pm82s8
(s1s81n22,m2s2m81s8)

~Qn21 /Q!,

if m2s>m82s8, and as

dss8
mm85cs8s

m8mPm2s
(s1s81n22,m82s82m1s)~Qn21 /Q!,

if m2s<m82s8.

We denote the expressionzn
m2s1m81s8Qm82s8dss8

mm8 from formula ~39! and the expression

Qm2sdss8
mm8wn

m82s81m1s from ~40! by ts,s8
n;m,m8 . Then

Hm,m8~zn
m2swn

m82s8hs,s8~z8,w8!!5ts,s8
n;m,m8hs,s8~z8,w8!. ~42!
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Moreover, the spaceHm,m8 can be represented as the direct sum

Hm,m85 %
s50

m

%
s850

m8
ts,s8
n;m,m8H s,s8

(n21) , ~43!

whereH s,s8
(n21) are the corresponding spaces of homogeneousq-harmonic polynomials inzi , wi ,

i 51, 2,...,n21. To prove this, we note that the subspacests,s8
n;m,m8H s,s8

(n21) pairwise do not intersec

and % s50
m

% s850
m8 ts,s8

n;m,m8H s,s8
(n21)

,Hmm8 . Now the equality~43! follows from the fact that dimen-
sions of the spaces on the right and on the left coincide.

To have a correspondence with the classical case, below we denotets,s8
2;m,m8 ~in this cases

50 or s850) by ts
2;m,m8 if s850 and byt2s8

2;m,m8 if s50.
Taking into account the orthogonality relation~7.3.3! in Ref. 14 for littleq-Jacobi polynomials

we obtain for the scalar product ofts,s8
n;m,m8hs,s8

(n21) andt r ,r 8
n;m,m8hr ,r 8

(n21) , hp,p8
(n21)PH p,p8

(n21) , the expres-
sion

^ts,s8
n;m,m8hs,s8

(n21) , t r ,r 8
n;m,m8hr ,r 8

(n21)&5dsrds8r 8~css8
mm8!22bss8

mm8^hs,s8
(n21) , hr ,r 8

(n21)& (n21) ,

where^•,•& (n21) is the scalar product in the spaceH ss8
(n21) and

bss8
mm85

~12q2(n1s1s821)!q2(m82s8)(n1s1s821)~q2; q2!m2s~q2; q2!m82s8

~12q2(2m1n21)!~q2(n1s1s821); q2!m2s~q2(n1s1s821); q2!m82s8

.

Note that a calculation of this scalar product reduces toq-integration ~see Refs. 3 and 4 on
calculation ofq-integrals of this type!.

Now we apply the decomposition~43! to the subspacesH s,s8
(n21) and obtain

Hm,m85 %
s50

m

%
s850

m8

%
r 50

s

%
r 850

s8
ts,s8
n;m,m8t r ,r 8

n21;s,s8H r ,r 8
(n22) ,

where H r ,r 8
(n22) are the subspaces of homogeneousq-harmonic polynomials inzi ,wi , i

51, 2, ...,n22. Continuing such decompositions we obtain the decomposition

Hm,m85 %
m,m8,m1

CJm,m8,m1
~z,w!,

where the polynomialsJm,m8,m1
are given by the formula

Jm,m8,m1
~z,w!5tmn21 ,m

n218
n;m,m8 t

mn22 ,m
n228

n21;mn21 ,mn218
¯t

m2 ,m
28

3;m3 ,m38t
m1

2;m2 ,m28t1;m1, ~44!

and the summation is over all sets of 2n23 integers m5(mn21 , ..., m2),
m85(mn218 , ..., m28), m1 such thatmi>0, mi8>0, i 52, 3, ...,n21, m2>m1>2m28 ,

m>mn21>mn22>¯>m2 , m8>mn218 >mn228 >¯>m28 .

Here t
mp21 ,m

p218

p;mp ,mp8 and t
m1

2;m2 ,m28 are determined by formulas given above and

t1;m15z1
m1 for m1.0, t1;051, t1;m15w1

2m1 for m1,0.
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It is easy to show that the basis~44! is orthogonal with respect to the scalar product introduc
above.

At q51, polynomials~44! turn into the basis elements of the spaces of homogeneous
monic polynomials onCn in separated coordinates determined by formulas~2! of Sec. 11.1.4 in
Ref. 1. These classical homogeneous harmonic polynomials, restricted to the sphereSn21

C , coin-
cide with associated spherical functions from Sec. 11.3 in Ref. 1. They are matrix elements o
column of the corresponding irreducible representations of the group U(n).

The basis elements~44! give solutions of the equationDp50 in Hm,m8 . A representation of
solutions in the form~44! can be considered as aq-analog of the corresponding classical sepa
tion of variables.

In order to have an orthonormal basis inHm,m8 we replace eacht
mn2 i 21 ,m

n2 i 218

n2 i ;mn2 i ,mn2 i8
in the expres-

sion ~44! for Jm,m8,m1
(z,w) by

t̂
mn2 i 21 ,m

n2 i 218

n2 i ;mn2 i ,mn2 i8
5c

mn2 i 21 ,m
n2 i 218

mn2 i ,mn2 i8
~b

mn2 i 21 ,m
n2 i 218

mn2 i ,mn2 i8
!21/2t

mn2 i 21 ,m
n2 i 218

n2 i ;mn2 i ,mn2 i8
.

We denote the expression~44! with such the replacement byĴm,m8,m1
(z,w). These polynomials

constitute an orthonormal basis ofHm,m8 .
It was shown above that the irreducible representationTm,m8 with highest weight

(m, 0, ..., 0,2m8) acts on the spaceHm,m8 . The following assertion is true.
Proposition 11: The operators Tm,m8(ej ), Tm,m8( f j ) and Tm,m8(kj ), corresponding to the

generating elements ej , f j ,kj of the algebraUq(gln), act upon the basis elementsĴm,m8,m1

[um,m8,m1& as

Tm,m8~ej 21!um, m8, m1&5A~m, m8!umj 21
11 , m8, m1&1B~m, m8!um, m8 j 21

21 , m1&,

Tm,m8~ f j 21!um, m8, m1&5A~mj 21
21 , m8!umj 21

21 , m8, m1&1B~m, m8 j 21
11 !um, m8 j 21

11 , m1&,

Tm,m8~kj 21!um, m8, m1&5qmj82mj 1mj 212mj 218 um, m8, m1&,

where

A~m, m8!5S @mj2mj 21#@mj81mj 211 j 21#@mj 212mj 2211#@mj 211mj 228 1 j 22#

@mj 211mj 218 1 j 22#@mj 211mj 218 1 j 21#
D 1/2

,

B~m, m8!5S @mj82mj 218 11#@mj1mj 218 1 j 22#@mj 218 2mj 228 #@mj 218 1mj 221 j 23#

@mj 211mj 218 1 j 22#@mj 211mj 218 1 j 23#
D 1/2

,

mn[m, mn8[m8, and mj
61 denotes the set of the numbersmj 21 with mj 21 replaced by mj 21

61, respectively.
A proof of this proposition is awkward. Since it is similar to that of Theorem 1 in Ref. 5,

omit it.

X. q -ANALOG OF ASSOCIATED SPHERICAL HARMONICS WITH RESPECT
TO Uq„glp…ÃUq„glnÀp…

In Sec. IX we found an orthogonal basis of the spaceHmm8 of homogeneousq-harmonic
polynomials corresponding to the chain of subalgebras~38!. In this section we shall find orthogo
nal bases of the same space corresponding to the reductions

Uq~gln!.Uq~glp!3Uq~gln2p!.¯ . ~45!
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In the classical case~see Ref. 1, Chap. 11!, further reductions can be made taking any chain
subgroups of the groups U(p) and U(n2p). In particular, the usual tree method~see Ref. 1, Sec
10.2! can be used to describe different chains of these groups corresponding to different or
nal bases ofHmm8 . In our case, there are some difficulties with construction of orthogonal b
corresponding to any chain of subalgebras in~45!. For this reason, we construct orthogonal ba
corresponding to the case, when we take chains of the type~38! for the subalgebras Uq(glp) and
Uq(gln2p) in ~45!.

We represent the set (z,w)5(z1 , ..., zn ; w1 , ..., wn) as ~y, t!, where y5(z1 , z2 , ..., zp ,
w1 , w2 , ..., wp) and t5(zp11 , ..., zn , wp11 , ..., wn). Then theq-Laplace operatorDq can be
written as

Dq5D (y)1D (t) , ~46!

where

D (y)5]1]̄11¯1]p]̄p , D (t)5]p11]̄p111¯1]n]̄n5 (
i 51

n2p

q2(i 21)]̄p1 i]p1 i . ~47!

The operatorDq can be also represented as

Dq5D̂ (y)1q2pD (t) ,

where

D̂ (y)5 ]̄1]11q2]̄2]21¯1q2(p21)]̄p]p . ~48!

We have

D (y)2D̂ (y)5~12q2p!D (t) . ~49!

In order to find bases ofHm,m8 corresponding to the reduction~45! we take non-negative
numbersr , r 8, s, s8 such that

uªm2r 2s5m82r 82s8>0.

We wish to find a harmonic projection of the polynomials

Qy
uhs,s8~ t!hr ,r 8~y!PAmm8 , hs,s8~ t!PH̃ss8

(t) , hr ,r 8~y!PH r ,r 8
(y) , ~50!

whereQyªz1w11¯1zpwp , H r ,r 8
(y) is the space of homogeneousq-harmonic polynomials iny

5(z1 , z2 , ..., zp , w1 , w2 , ..., wp), and H̃s,s8
(t) is the space obtained in the following way. W

take the spaceH s,s8
(n2p) of homogeneousq-harmonic polynomials in (z1 , ..., zn2p , w1 , ..., wn2p)

and, using the relations betweenzi andwj , represent each of its polynomial in such a form that
each of its summands~monomials! the elementsz1 , ..., zn2p stand before the element
w1 , ..., wn2p . Then we replacez1 , ..., zn2p , w1 , ..., wn2p by zp11 , ..., zn , wp11 , ..., wn , re-
spectively, in each of these polynomials. The space of these polynomials
zp11 , ..., zn , wp11 , ..., wn is denoted byH̃ss8

(t) .

Lemma 2: Polynomials P ofH̃s,s8
(t) satisfy the conditions] i P50, ]̄ i P50, i 51, 2, ..., p.

Proof: Fulfillment of the conditions] i P50, i 51, 2,..., p, follow from the construction of
polynomials of the spaceH̃s,s8

(t) . In order to prove the fulfillment of the conditions]̄ i P50, i

51,2,...,p, we note that according to formulas~8! and~9! the spaceH̃s,s8
(t) is elementwise invarian

with respect to the subalgebra Uq(glp). Moreover, this space is invariant and irreducible w
respect to the subalgebra Uq(gln2p) acting ont.
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Now we rearrange elementszp11 , ..., zn , wp11 , ..., wn in each of polynomials ofH̃s,s8
(t) such

that in each summand~monomial! elementswp11 , ..., wn stand before the elementszp11 , ..., zn .
We denote the spaceH̃s,s8

(t) with this rearrangement in polynomials byL s,s8
(t) . Because of element

wise invariance with respect to Uq(glp), the spaceL s,s8
(t) can be represented as a direct sum

L s,s8
(t)

5Rs,s8% QyRs21,s821% Qy
2Rs22,s822%¯ , ~51!

where Rs2 j ,s82 j denote the space of homogeneous polynomials in whichwp11 , ..., wn stand
beforezp11 , ..., zn . Due to formulas~8! and~9!, the spacesRs2 j ,s82 j are invariant with respec
to Uq(gln2p). However, the representation of Uq(gln2p) on L s,s8

(t) is irreducible. Therefore, the
decomposition~51! contains only one summand andL s,s8

(t)
5Rs,s8 . It is clear that for elements o

Rs,s8 the conditions]̄ i P50, i 51, 2, ..., p, are fulfilled. Lemma is proved.
Corollary 1: Elements P of the spaceH̃s,s8

(t) satisfy the relationD (t)P50.

Corollary 2: Elements P of the spaceH̃s,s8
(t) are q-harmonic, that is, DqP50.

Corollary 1 follows from~47!–~49!. Corollary 2 follows from Corollary 1 and formula~46!.
Lemma 3: For polynomial hs,s8(t)PH̃s,s8

(t) and arbitrary polynomial f(y) we have

D̂ (y)hs,s8~ t! f ~y!5qs2s8hs,s8~ t!D̂ (y) f ~y!.

Proof: We first prove the relations] ihs,s8(t) f (y)5qs8hs,s8(t)] i f (y), i 51, ..., p. The poly-
nomial hs,s8(t) can be represented in the form of a linear combination of monom
zp11

kp11
¯zn

knwn
l n
¯wp11

l p11 , wherekp111¯1kn5s, l p111¯1 l n5s8. We have

] izp11
kp11

¯zn
knwn

l n
¯wp11

l p11f ~y!5zp11
kp11

¯zn
kn~] iwn

l n
¯wp11

l p11f ~y!!

5qs8zp11
kp11

¯zn
knwn

l n
¯wp11

l p11~] i f ~y!!,

where the relation] j f (y)50 and relations from Sec. III were used. It proves our relations.
analogously prove the relations]̄ ihs,s8(t) f (y)5q2shs,s8(t) ]̄ i f (y), i 51,...,p. In this case, it is
useful to represent the polynomialhs,s8(t) in the form of a linear combination of monomia
wp11

l p11
¯wn

l nzn
kn
¯zp11

kp11 ~such representation is possible due to Lemma 2!. Now the lemma follows

from explicit formula forD̂ (y) . Lemma is proved.
SinceD (t)(Qy

uhs,s8(t)hr ,r 8(y))50, then using Lemma 3 and relation~18! with n replaced by
p we have

Dq~Qy
uhs,s8~ t!hr ,r 8~y!!5D̂ (y)~Qy

uhs,s8~ t!hr ,r 8~y!!

5qahs,s8~ t!D (y)Qy
uhr ,r 8~y!

5qa@u#@p1u1r 1r 821#~Qy
u21hs,s8~ t!hr ,r 8~y!!,

wherea52(s2s8)u1s82s.
Now we may find a harmonic projection of the polynomials~50!. Denoting this projection by

hm,m8
(r ,r 8;s,s8)(z,w) we have

hm,m8
(r ,r 8;s,s8)

~z,w!5 (
k50

min(m,m8)

akQ
kDq

k~Qy
uhs,s8~ t!hr ,r 8~y!!

5S (
k50

u

akQ
kq(s2s81p21)k

@u#! @r 1r 81p1u21#!

@u2k#! @r 1r 81p1u2k21#!
Qy

u2kD hs,s8~ t!hr ,r 8~y!,
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where ak is determined by formula~33!. Denoting the expression in the parentheses

t r ,r 8;s,s8
n,p;m,m8(Qy ,Qt), we have

hm,m8
(r ,r 8;s,s8)

~z,w!5Hm,m8~Qy
m2r 2shs,s8~ t!hr ,r 8~y!!5t r ,r 8;s,s8

n,p;m,m8~Qy ,Qt!hs,s8~ t!hr ,r 8~y!. ~52!

After some simple transformations, we obtain fort r ,r 8;s,s8
n,p;m,m8(Qy , Qt) the expression

t r ,r 8;s,s8
n,p;m,m8~Qy , Qt!5Qy

u(
k50

u
~q22u; q2!k~q22(r 1r 81p1u21); q2!k

~q22(m1m81n22); q2!k~q2; q2!k

qksQkQy
2k ,

where s522n22s81212p. Taking into account the definition of the basis hypergeome
function 2w1 , we derive

t r ,r 8;s,s8
n,p;m,m8~Qy , Qt!5Qy

u
2w1~q22u, q22(r 1r 81p1u21); q22(m1m81n22); q2, QQy

21qs!.

Applying the relation

2w1~q2n, b; c; q, z!5q2(n11)n/2~2z!n
~b; q!n

~c; q!n
2w1~q2n, q12n/c; q12n/b; q, cqn11/bz!

@see, for example, formula~2! of Sec. 14.1.8 in Ref. 16# we reduce this expression to

t r ,r 8;s,s8
n,p;m,m8~Qy , Qt!5~2qs!uq2(u11)u

~q22(r 1r 81p1u21); q2!u

~q22(m1m81n22); q2!u

Qu

32w1~q22u, q2(m1m81n2u21); q2(r 1r 81p); q2, q22s12Qy /Q!.

Using the definition of the littleq-Jacobi polynomials, we derive from here that

t r ,r 8;s,s8
n,p;m,m8~Qy ,Qt!5~2qs!uq2(u11)u

~q22(r 1r 81p1u21); q2!u

~q22(m1m81n22); q2!u

Qu

3Pu
(r 1r 81p21,s1s81n2p21)~q22sQy /Q; q2!. ~53!

Thus, we proved thatthe projectionHm,m8(Qy
m2r 2shs,s8(t)hr ,r 8(y)) is given by formula (52),

where tr ,r 8;s,s8
n,p;m,m8 is determined by (53). The restrictionthm,m8

(r ,r 8;s,s8)(z,w) of this projection onto the
quantum sphereSq,n21

C is given by

thm,m8
(r ,r 8;s,s8)

~z,w!5~tt r ,r 8;s,s8
n,p;m,m8!~Qy!hs,s8~ t!hr ,r 8~y!,

where (tt r ,r 8;s,s8
n,p;m,m8)(Qy)5cPu

(r 1r 81p21,s1s81n2p21)(q22sQy /Q;q2) @c is the multiplier from the
right hand side of~53!#.

For the scalar product of polynomials of the form~52! we have

^hm,m8
(r ,r 8;s,s8) ,hm,m8

(r 9,r-;s9,s-)&50 if ~r , r 8,s, s8!Þ~r 9, r-, s9, s-!

~since the spacesH r ,r 8
(y) and H r 9,r-

(y) and the spacesH̃s,s8
(t) and H̃s9,s-

(t) are orthogonal!. If
(r , r 8, s, s8)5(r 9, r-, s9, s-), then the norm of the polynomial~52! reduces to the orthogona
ity relation for q-Jacobi polynomials and to norms ofhs,s8(t) andhr ,r 8(y).

In order to obtain aq-analog of separation of variables in this case we have to take bas
the spacesH r ,r 8

(y) andH̃s,s8
(t) in separated coordinates~as it was made in Sec. IX!.
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A sum rule for associated Legendre polynomials
with spherical triangles

Armik V. M. Khachatourian and Anders O. Wistroma)

Department of Chemical and Environmental Engineering, University of California,
Riverside, California 92521

~Received 14 September 2001; accepted 27 September 2002!

An explicit solution to the classical electrostatic problem of the electrostatic force
betweenN conducting spheres requires the expansion of the electrostatic potential.
The boundary conditions for the potentials are given by Gauss which requires an
expansion of the inverse of the distance that encompasses six angles. A sum rule for
this expansion is presented in terms of associated Legendre polynomials with com-
plex exponentials. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1525048#

The expansion of the inverse of the distance in systems involving more than two o
requires a sum rule for associated Legendre polynomials on the sphere. A solution is presen
expresses the product of the associated Legendre polynomials and the complex exponen
terms of the relations for oblique spherical triangles.

ConsiderN conducting spheres each held at constant potential. The boundary condition
surface of the spheres is given by Gauss,1

Vi5K (
j 51

N E dQj

Ri j
, ~1!

where the geometry is shown in Fig. 1. For a system comprised of three conducting sp
Equation ~1! can be written terms of Legendre polynomials. SinceV2 , V3 , etc. follow from
obvious interchange of symbols we need only to consider the expression forV1 :

V15 (
,50

`

(
m52,

, F P,
m~cosb!

1

a1
,11 eimfA,,m

1 1P,
m~cosb!eimf(

j 50

`
~,1 j !!

~,1m!! ~ j 2m!!

a1
,

h12
j 1,11 Aj ,m

2

1P,
m~cosb138 !eimf8(

j 50

`
~,1 j !!

~,1m!! ~ j 2m!!

a1
,

h13
j 1,11 Aj ,m

3 G , ~2!

whereAj ,m
n 5(21)man

j 12*0
p*0

2psn(u,g)sinu dudg Pj
2m (cosu)eimg, and wheresn(u,g) is the elec-

tric charge density on the surface of thenth sphere and where the first, second, and third terms
the contributions stemming from charges on sphere 1, sphere 2, and sphere 3, respectiv
express the expansion of the inverse of the distance inN-body systems thus requires a sum rule
associated Legendre polynomials expressed as the product of the two basis—the associa
endre polynomials and the complex exponentials,P,

m(cosb138 )eimf8.
The derivation of a sum rule for associated Legendre polynomials proceeds as follows

that the six angles~Fig. 1! satisfy the relationships for oblique spherical triangles:2

cosb138 5cosl13cosb1sinl13sinb cos~f2fl13!,
~3!

a!Author to whom correspondence should be addressed. Electronic mail: wistrom@engr.ucr.edu
8490022-2488/2003/44(2)/849/4/$20.00 © 2003 American Institute of Physics
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sinb

sin~fl132f8!
5

sinb138

sin~f2fl13!
.

From Eq.~3! it follows that

cosb5cosl13cosb138 1sinl13sinb138 cos~fl132f8! ~4!

and, substitution of cosb138 from Eq. ~3! into Eq. ~4! gives

2sinl13cosb1cosl13sinb cos~f2fl13!1sinb138 cos~fl132f8!50. ~5!

From Eqs.~3!–~5! the following relations@Eqs.~6! and~7!# are obtained when the partial deriva
tives are performed withb andf constant~we have dropped the subscripts 13 in what follow!:

S ]

]l
6

i

sinl

]

]fl
D cosb85sinb8e6 i ~f82fl!, ~6!

S ]

]l
6

i

sinl

]

]fl
D sinb8e6 i ~f82fl!5

cosl

sinl
sinb8e6 i ~f2fl!. ~7!

It follows that

1

sinl S ]

]l
6

i

sinl

]

]fl
D P,~cosb8!5S e6 i ~f82fl!

sinl
D P,

1~cosb8!, ~8!

from which the recursive product to all orders follows:

1

sinl S ]

]l
6

i

sinl

]

]fl
D 1

sinl S ]

]l
6

i

sinl

]

]fl
D P,~cosb8!5S e6 i ~f82fl!

sinl
D 2

P,
2~cosb8!

] ~9!

S 1

sinl S ]

]l
6

i

sinl

]

]fl
D D m

P,~cosb8!5S e6 i ~f82fl!

sinl
D m

P,
m~cosb8!,

FIG. 1. Schematic representation of three spheres with radiia1 , a2 , anda3 each having constant potential.
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which can also be written as

eimf8P,
m~cosb8!5sinm leimflF 1

sinl S ]

]l
1

i

sinl

]

]fl
D Gm

P,~cosb8! ~10!

where P,(cosb8)5(n52,
, (21)mP,

2n(cosb)P,
n(cosl)ein(gl2g) and is the sought-after sum rule fo

the associated Legendre polynomial with complex exponentials. Noticeably, this result wa
tained directly from the boundary conditions on the spheres given by Gauss without invokin
approximations or simplifications with respect to vectorial quantities of the electric field. Fo
sake of completeness we also give the relation:

F 1

sinl S ]

]l
1

i

sinl

]

]fl
D Gm

P,
k~cosl!e2 ikfl

5e2 ikfl(
j 5k

,

~21! j
~,11!! ~11cosl!k/2~12cosl! j 2k/22m

2 j~,2 j !! ~ j 2k!! ~ j 2m!!
,

which may be verified directly using the definition2 for associated Legendre polynomialsP,
k(x)

5( j 50
, (21) j@(,1 j )!/2j j !( ,2 j )!( j 2k)! #(11x)k/2(12x) j 2k/2. Using the well-known orthogo-

nality relations of Legendre polynomials and the new sum rule the boundary condition for s
1 can now be written as

V1dk,0d,8,05~21!k
1

a1
,811

A,8,2k
1

1~21!k(
j 50

`
~,81 j !!

~,82k!! ~ j 1k!!

a1
,8

h12
j 1,811

Aj ,2k
2

1(
j 50

`

~,81 j !!
a1

,8

h13
j 1,811 (

m52,8

,8 g,8,k
m

~2cosl13!

~,81m!! ~ j 2m!!
~21!m1,1kei ~m1k!fl13Aj ,m

3

for k>0, and

g,8,k
m

~2cosl!5 (
n50

,8 ~21!n~,81n!!

2n~n2m!! ~n2k!! ~,82n!!
~12cosl!~k1m!/2~11cosl!n2~k1m!/2

~11!

and, importantly, be generalized to any number of spheres by cyclic permutation.
The sum rule for associated Legendre polynomials is an important result because it allo

expansion of the potential that is proportional to the inverse of the distance for any numb
spheres that are finite in size. As a result, many-body interactions between spheres can
accounted for in a true three-dimensional system by explicitly including ther, u, andf compo-
nents of the potentials.

A consequence of the expansion@Eq. ~10!# is an explicit definition of an operator, here calle
a ‘‘rotor,’’ to all orders in the from~J1,18 [J1!

J1,m8 5~sinleifl!mF 1

sinleifl
J1Gm

, ~12!

where

J15eifS ]

]l
1

i

sinl

]

]fl
D5L11S1 .

Examination of its structure exhibits the familiar characteristics of the angular momentum op
J15L11S1 where the complex angular momentum operator for space is
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L15eiflS ]

]l
1 i cotl

]

]fl
D ~13!

and the second term is identified as the first-order spin operator

S15 ieifl tan
l

2

]

]fl
. ~14!

In this light,

eimf8P,
m~cosb8!5L1

m~b8,f8!P,~cosb8!5J1,m8 ~l,fl!P,~cosb8!, ~15!

which states thatJ1,m8 (l,fl) is the eigenvalue of the space angular momentumL1
m(b8,f8)

noting that no assumptions with respect to vectorial quantities of the electric field have been

1C. F. Gauss,Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre, English Translation in S
Memoirs, Selected from the Transactions of Foreign Academies of Science and Learned Societies, No. 7, 153–196,
~Johnson Reprint, New York, 1966!.

2CRC Standard Mathematical Tables and Formulae, 30th ed., edited by D. Zwillinger~CRC, Boca Raton, FL, 1996!.
                                                                                                                



r
e

t
hat

eg-

ngth
s

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 2 FEBRUARY 2003

                    
Probability density distribution of random line segments
inside a convex body: Application to random media

Alain Mazzoloa)

CEA-Centre d’Etudes de Saclay, DEN/DM2S/SERMA/LEPP, 91191 Gif sur Yvette, France

~Received 26 August 2002; accepted 11 November 2002!

We study the probability density distribution of random line segments entirely
contained inside a convex body ofRn. Relations between this distribution function
and other distribution functions of importance in geometric probability are shown.
The expression for the probability density distribution of random line segments is
given for several simple geometric bodies inR2, R3, andRn, application to ran-
dom media is then presented. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1536254#

I. INTRODUCTION

In his paper on random packing, Dixmier1 introduces the probability distribution of radii fo
a convex bodyK in Rn, where the radius of lengthr is defined by the distance of a point insid
K to the frontier ]K of K. Dixmier also considers sets of random lines which intersectK,
measured with the uniform densityM in the sense of the theory of geometric probability.2–4 Let
P( l )5Pr$ l (M )< l :MùKÞØ% be the distribution function ofl ~the length of the chord! and
G(r )5Pr$u P1P2u<r : P1P K, P2P]K% the distribution function of the radii. Moreover, le
p( l )5dP( l )/dl andg(r )5dG(r )/dr be the corresponding density functions. Dixmier shows t
since the radii are supported by the chords of length greater thanr, the distribution of radiig(r )
is related to the distribution of random chordsp( l ) by

g~r !5
1

l̄
E

r

d
p~ l !dl, ~1!

whered5max(l) and l̄ is the mean value of the chord:

l̄ 5E
0

d
lp~ l !dl. ~2!

Dixmier found several interesting relations betweenkth moments of the chords andkth moments
of the radii, in particular:

r̄ 5
l 2

2 l̄
. ~3!

Following Dixmier’s approach we define the probability distribution function for a line s
ment of lengthz of being entirely insideK as S(z)5Pr$S(M )<z: MùKÞØ, S,K%, and let
s(z)5dS(z)/dz be the corresponding density function. Considering that a line segment of le
z belongs to a chord of length greater thanz, the conditional density distribution function follow
from the definition:

a!Electronic mail: alain.mazzolo@cea.fr
8530022-2488/2003/44(2)/853/11/$20.00 © 2003 American Institute of Physics
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s~z!5
*y<dQ~y2z!~y2z!p~y!dy

*z<ddz*y<dQ~y2z!~y2z!p~y!dy
, ~4!

whereQ(x) is the Heavyside step function.
The denominator is

E
0

d
dzE

0

y

~y2z!p~y!dy5E
0

d
dyp~y!E

0

y

dz~y2z!5
l 2

2
, ~5!

wherel 2 is the second moment of the chord distribution:

l 25E
0

d
l 2 p~ l !dl. ~6!

Thus, the line segment distribution function is related to the chord distribution by

s~z!5
2

l 2
E

z

d

~y2z!p~y!dy. ~7!

II. PROPERTIES OF THE PROBABILITY DENSITY OF RANDOM LINE SEGMENTS

Properties of the functions(z) are easily obtained from Eq.~7!. s(z) is a concave function
since

d2s~z!/dz252p~z!/ l 2>0 ~8!

moreovers(0)52 l̄ / l 2, ands(0)8522/l 2.
More generally, thekth moment of the random line segment is given by

sk5
2

l 2
E

0

d
dzzkE

0

y

~y2z!p~y!dy5
2

l 2
E

0

d
dyp~y!E

0

y

dzzk~y2z!5
2

~k11!~k12!

l k12

l 2
, ~9!

wherel k denotes thekth moment of the random chord.
In particular, the mean line segment is given by

s̄5
1

3

l 3

l 2
. ~10!

Except in the one-dimensional case, wheresk5Lk2/(k11)(k12) whereL is the length ofK,
from Eq. ~9!, there is no simple relation betweensk and the surface and the volume of the bod
However, by using~see Ref. 2 for instance!

l n115n~n11!
V2

F
GFn11

2 Gp (12n)/2

whereF is the surface area ofK, sn21 simplifies to

sn2152
V2

F

GFn11

2
G

p~n21!/2

1

l 2
. ~11!
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Another distribution function of interest in geometric probability is the distribution function
the distanceuP1P2u between two random pointsP1 and P2 in K: T(z)5Pr$uP1P2u<r : P1 ,P2

PK%. t(z)5dT(z)/dz is as usual the corresponding probability function. Piefke5 proves that

t~z!5Bnzn21E
z

d

~y2z!p~y!dy with n>2 ~12!

where

Bn5Fp~n21!/2FV2GFn11

2 G G21

.

So from Eqs.~7! and~12! the distribution function of line segments and the distribution funct
of the distance of two random points inK are related by

s~z!5
2

l 2Bn

t~z!

zn21 . ~13!

Normalizing Eq.~13! leads to

l 25
2

Bn
E

0

d t~z!

zn21 dz ~14!

and Eq.~13! can be rewritten only in terms oft(z),

s~z!5

t~z!

zn21

*0
d t~z!

zn21 dz

. ~15!

The last relation will be useful whenl 2 is unknown.
As a consequence of Eq.~13! there are also relations between the moments of the

segments distribution and the moments of the distance distribution. A simple calculation
that

sk5
2

l 2Bn

tk112n with k112n>0 and n>2. ~16!

By taking k5n21 in Eq. ~16! we recover Eq.~11!. Equation~16! gives also the remarkabl
identity:

t̄ 5
sn

sn21
. ~17!

In Sec. III we shall derive an analytical expression fors(z) and its moments for various simpl
geometric objects in two, three, andn dimensions and then extend our analysis to random me

III. EXAMPLES

A. Sphere

The chord distribution function for a sphere of diameterD in arbitrary dimension has bee
derived by Dixmier:1
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p~ l !5H ~n21!D22 l S 12
l 2

D2D ~n23!/2

~ l<D !

0 ~ l .D !

. ~18!

The kth moment of the chord is given by

l k5Dk

GS k

2
11DGS n11

2 D
GS n1k11

2 D . ~19!

Since the second moment of the chord isl 252D2/(n11), by using Eq.~9! we obtain

sk5Dk

GS k

2
11DGS n13

2 D
~k11!GS n1k13

2 D ~20!

and in particular the mean line segment is

s̄5
D

4
Ap

GS n13

2 D
GS n14

2 D , s̄ ;
n→`

D

2
A p

2n
. ~21!

Using Dixmier’s result,1 namely

l̄ ;
n→`

DAp/2n,

yields:

lim
n→`

s̄

l̄
5

1

2
. ~22!

Analytical expressions fors(z) in the two- and three-dimensional case are given in the follow

1. Two-dimensional case (disk)

The chord density distribution function for the disk is given by Eq.~18! ~with n52). A
straightforward integration of Eq.~7! gives

s~z!5
3

4D2 FpD22zA12
z2

D222D arcsinS z

D D G ~23!

in agreement with Santalo.2

This result can be achieved by a simple geometric argument as follows: Since the d
invariant under rotations we can fix the directionV of the random line segments. LetD(z,V) be
the translate ofD by a distancez in the directionV. Line segments of lengthz that contribute to
s(z) have their right end lying insideDùD(z,V)[A(z) ~hatched area in Fig. 1!. So the line
segments distribution function isA(z) averaged over all possibleA(z), i.e.,
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s~z!5
A~z!

*0
DA~z!dz

. ~24!

Figure 1 yields

A~z!5pS D

2 D 2

22z
D

2
cosS a

2 D2S D

2 D 2 ~a2sina!

2
5

D

4 FpD22zA12
z2

D222D arcsinS z

D D G .
~25!

Since*0
DA(z)dz5D3/3, by using Eq.~24! we recover Eq.~23!. These geometric techniques ha

been recently used by Tu and Fischbach6 for calculating the random distance between two unifo
random points inside anN-dimensional spherical object. Several of their analytical results
similar to ours since the distance distribution is linked to the line segments distribution thr
Eq. ~13!. The authors of Ref. 6 also discussed the cases of nonuniform random point distrib
~spherically symmetric density distributions and arbitrary density distributions!.

2. Three-dimensional case (sphere)

This case is particularly simple since, withn53, Eq. ~18! reduces top( l )52l /D2. We find:

s~z!5
8

D4 FD2S D

3
2

z

2D1
z3

6 G ~26!

and sk58Dk/(k11)(k12)(k14) in particular s̄54D/15, again in agreement with Santalo
results.2

B. Three-dimensional hemisphere

The chord density distribution for the three-dimensional unit hemisphere has been obtai
Dirac and co-workers,7

p~ l !55
2

3p FA12
l 2

D2S 3

D
1

D

2l 2D1
D2

2l 3 arccosS l

D D2
p

4 S D2

l 3 216
l

D2D G S l<
1

2D
2

3p FA12
l 2

D2S 3

D
1

D

2l 2D1
D2

2l 3 arccosS l

D D G S l .
1

2D . ~27!

From Eq.~27!, we first calculatel 25D2/4. Using Eq.~7! we thus obtain the probability densit
function of the random line segment:

FIG. 1. Geometric interpretation of the distribution function of the random line segment for the disk.
                                                                                                                



s~z!5

2

9pz F6
z

D S 112S z

D D 2DA12S z

D D 2

16 arccosS z

D D
1pS 4

z

D S 429
z

D
14S z

D D 3D23D124S z

D D 2

arcsinS z

D D G S z<
D

2 D
2 2 2

. ~28!
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5 4

3pz F z

D S 112S z

D D DA12S z

D D 1S 124S z

D D DarccosS z

D D G S z.
D

2 D
The kth moment of the random line segment in the hemisphere is

sk5
2

~k11!~k12! S D

2 D kF ~k11!G~51k!24~k13!GS 21
k

2DGS 31
k

2D
3k~k13!GS 31

k

2D 2 G . ~29!

In particular the mean random line segment is

s̄5
4~3223p!

135p
D. ~30!

C. Square

To the author’s knowledge the chord length distribution function for the square has not
derived. However, Ghosh8 found that the cumulative probability for the distance between
points randomly positioned in a unit square is

T~z!55
z2S z2

2
2

8z

3
1p D ~0<z<1!

4

3
Az221~2z211!2S z4

2
12z22

1

3D
12z2S arcsinS 1

zD2arccosS 1

zD D ~1,z<& !

. ~31!

Thus, the probability distribution of the distance is

t~z!55
2pz12z2~z24! ~0<z<1!

24z22z21
16

3
zAz2212

8

3

z

Az221
1

8

3

z3

Az221

14zS arcsinS 1

zD2arccosS 1

zD D ~1,z<& !

. ~32!

Sincel 2 is unknown, we use Eq.~15! to computes(z); the denominator of Eq.~15! is

E
0

& t~z!

z
dz5

4

3
@12&13 log~11& !#5C0 , ~33!

which is the mean value of the inverse of the distance for two random points inside the s
Finaly from Eqs.~15!, ~32!, and~33! we get
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s~z!5
1

C0 5
2pz12z2~z24! ~0<z<1!

2422z1
16

3
Az2212

8

3

1

Az221

1
8

3

z2

Az221
14S arcsinS 1

zD2arccosS 1

zD D ~1,z<& !

. ~34!

D. Cube

The chord density distribution for the three-dimensional unit cube has been obtained ind
dently by several authors:9,10

p~ l !5
1

3p 5
823l ~0< l<1!

6p21

l 3 16l 2
8

l 3 ~2l 211!Al 221 ~1, l<& !

6p25

l 3 23l 1
8

l 3 ~ l 211!Al 222

2
24

l 3 arctanAl 222 ~&, l<) !

. ~35!

Unfortunately due to the term arctan(Al 222)/l , l 2 cannot be simply evaluated. A numeric
integration givesl 250.5978. Using Eq.~13! with B3(cube)56p and another result due to Piefke5

who found the density distribution of the distance inside the unit cube~see the Appendix for
Piefke’s result, where we calculate the interaction energy of two constant charge distrib
inside a cube!, we obtain

s~z!5
1.673

3p

¦

4p26pz18z22z3 ~0<z<1!

6p21

z
28p16z12z32

8

z
~2z211!Az221

124z arccosS 1

zD ~1,z<& !

6p25

z
14p26~11p!z2z3

1
8

z
~z211!Az2222

24

z
A~z! ~&,z<) !

~36!

with

A~z!5arctanAz22212z arctan~z2212zAz222!2z2 arctan
1

Az222
.

Density distributions of random line segments inside a disk, a sphere, an hemisphere, a squ
a cube are plotted in Fig. 2.

E. Random media

In the last section we considered a two phase random media made of monosize hard
of radiusR randomly placed in space. Under such conditions the system is statistically isot
Spheres fill the space with a volume fraction~or packing fraction! f2 and the void has the volum
fractionf1512f2 . Following Torquato11 we define the chords as the line segments between
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intersections of an infinitely long line with the two-phase interface~these lines are measured
usual with the uniform density!. The void is in general a nonconvex domain as shown in Fig

With these hypotheses, valid in any dimension, Torquato found that the density distrib
function for the chords inside the void region is given by

p~ l !5
f2vn21

f1vnR
expF2

f2vn21

f1vn

l

RG , ~37!

wherevn is the n-dimensional volume of the unit sphere, i.e.,vn5pn/2/G(11n/2). Note that
formula ~37! is exact only in one dimension, in higher dimension formula~37! is an accurate
approximation for isotropic equilibrium hard-sphere system Ref. 12. Sincel̄
5(f1vnR)/(f2vn21), we rewrite Eq.~37! as

p~ l !5
1

l̄
e2 l / l̄ . ~38!

FIG. 2. Random line segment distribution functions for various geometric shapes.

FIG. 3. Examples of chords for randomly placed disks in the plane.
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From Eq.~38! we have immediatelyl 252 l̄ 2 and from Eq.~7!:

s~z!5
1

l̄
e2z/ l̄ . ~39!

So p( l ) ands(z) have the same distribution function. As a matter of fact, in an infinite medi
if p( l ) ands(z) are the same, they must be exponential distributions~38!: In Eq. ~8!, with s(z)
5p(z) we have:d2s(z)/dz252s(z)/ l 2 whose solution with the condition*0

`s(z)dz51 is:

s~z!5A2

l 2
expF2A2

l 2
zG ,

which is just Eq.~39!.
Moreover, for asymptotically largen we have

s̄ ;
n→`

f1

f2
An

2
R. ~40!

Thus, asn gets large, the behavior ofsvoid is the inverse ofssphere~see Eq.~21!!. More precisely

svoid ssphere5
R2

2
Ap

f1

f2
, ~41!

which is independent ofn.
Lu and Torquato13 also introduce a useful statistical measureLi(z) called the lineal-path-

function, which is defined for statistically isotropic media as the probability that a line segme
length z lies wholly in phase i when randomly thrown into the sample.

Note thatLi(z) is a probability and not a probability density. Using a simple probab
argument these authors12 show thatLi(z) is related to the usual chord length probability dens
function in phase i,pi(z) by

Li~z!5
f i

l̄
E

0

`

Q~y2z!~y2z!p~y!dy. ~42!

So we have immediately from Eqs.~42! and ~7! the simple relation betweenLi(z) andsi(z):

Li~z!5f i

l 2

2 l̄
si~z!. ~43!

IV. CONCLUSION

As already noted by Santalo,2 the problem of finding the measure of segments of a cons
length that are contained in a convex body has no simple solution. The solution depends larg
the shape of the body through thel 2 term. However this article shows that the links between
segment distribution function and other distribution functions thoroughly covered in the litera
allow us to find an analytical solution for several geometric shapes such as the square, the c
the hemisphere. Results can also be applied for certain types of random media where the
distribution function is well defined. Moreover, in the Appendix, we have shown that geom
probability techniques are a powerful tool for calculating quantities that are extremely diffic
treat otherwise.
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APPENDIX: INTERACTION ENERGY OF TWO CONSTANT CHARGE DISTRIBUTIONS IN
A CUBE

In this Appendix, we show how Piefke’s results regarding the random distribution of dist
inside a cube, allow us to calculate the electrostatic energy of two constant charge distrib
inside a cube. So far, this quantity, of interest in the theory of ionic crystals as well as in
areas of solid state theory~Ref. 14!, has only been evaluated numerically~Ref. 15!.

We consider two electrons of chargee in a cubic box of lengthL and we assume that bot
electrons have a constant charge densityr5e/L3 in this box. The Coulomb electrostatic intera
tion energy of such a charge distribution is:

F E
r 1PVL

1S Er 2PVL
2

dV2

ur12r2u D dV1G S e

L3D 2

[Cc

e2

L6 , ~A1!

whereVL
i ( i 51,2) denote the cubic regions over which the integration variables,r i5(xi ,yi ,zi)

take their values. If we introduce units so thate5L51 these regions are thenV i

5$(xi ,yi ,zi); 0<xi<1, 0<yi<1, 0<zi<1% ( i 51,2) and the energy can simply be expressed

Cc5E
V1
E

V2

dV1dV2

ur12r2u
~A2!

or alternatively in the form of a six-dimensional integral

Cc5E
0

1E
0

1E
0

1E
0

1E
0

1E
0

1 dx1dy1dz1dx2dy2dz2

A~x12x2!21~y12y2!21~z12z2!2
. ~A3!

Essen and Nordmark have performed this integral numerically~five integrations are done analyt
cally and the last integration is done numerically, see Ref. 15 for calculation details!, they found:

Cc51.882 312 645. ~A4!

In light of geometric probability, integral~A2! is reinterpreted as the average of the functionz
taken with the probability density functiont(z) of finding two points separated by a distancez,
randomly chosen in a uniform cube. So,Cc immediately appears as a one-dimensional integr

Cc5E
0

d
dz

t~z!

z
. ~A5!

This approach has been applied with success for general radial potential Ref. 16 and the u
ellipsoid Ref. 17. We used Piefke’s formula Ref. 5 for the density distribution of the dist
inside the unit cube

t~z!55
4pz226pz318z42z5[t1~z! ~0<z<1!

~6p21!z28pz216z312z528z~2z211!Az221

124z arccosS 1

zD[t2~z! ~1,z<& !

~6p25!z14pz226~11p!z32z5

18z~z211!Az222224zA~z![t3~z! ~&,z<) !

~A6!
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with:

A~z!5arctanAz22212z arctan~z2212zAz222!2z2 arctan
1

Az222
.

So Cc is

Cc5E
0

1 t1~z!

z
dz1E

1

& t2~z!

z
dz1E

&

) t3~z!

z
dz. ~A7!

These three integrals can be evaluated analytically and we obtain

E
0

1 t1~z!

z
dz5

9

5
,

E
1

& t2~z!

z
dz52

7

5
2

47&

5
110~&21!p12 log~11& !, ~A8!

E
&

) t3~z!

z
dz5

49&

5
2

4)

5
1S 28

3
210& Dp22 log 214 log~11) !,

and eventually the constantCc is

Cc5
2

5
1

2&

5
2

4)

5
2

2p

3
22 log 212 log~11& !14 log~11) !. ~A9!

The numerical value isCc51.882 312 644 389, which is very close to the approximate valu
Eq. ~A4! given by Essen and Nordmark.
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Induced representations of U qso „5…
Preeti Parashara)

Max-Planck Institut fu¨r Mathematik, Vivatsgasse 7, 53111 Bonn, Germany

~Received 15 February 2002; accepted 21 October 2002!

We study the reduction of the left regular representation of the quantum algebra
Uqso(5).This yields induced representations of Uqso(5) on some quotient space of
the matrix quantum group SOq(5). To facilitate the construction of a suitable basis
the Gauss decomposition of SOq(5) is worked out explicitly. We then investigate
the behavior of these representations for a genericq as well as whenq is anNth
root of unity leading to some finite dimensional irreducible representations of
Uqso(5). Two basic intertwining operators are also constructed via the right
action. © 2003 American Institute of Physics.@DOI: 10.1063/1.1531822#

I. INTRODUCTION

A canonical method for the construction of differential operators intertwining representa
of semisimple Lie groups was proposed in Ref. 1. This rather algebraic procedure was gene
to the case of quantum groups also. The left regular representation, its reduction to infinite
of reducible and irreducible representaions and theq-difference intertwining operators were stu
ied on many quantum algebras, namely, the Lorentz quantum algebra,2 the Euclidean algebra
Uqe(2) ~Ref. 3! @as a contraction of Uqsl(2)] and generalizations to Uqsl(3) ~Ref. 4! and
Uqsl(n).5,6 Recently induced representations of the three dimensional quantum orthogonal a
Uqso(3) have also been obtained.7

In this article we investigate the case of Uqso(5,C), a quantization of the five dimensiona
complex special orthogonal Lie algebra of rank two. For simplicity we shall prefer to call it
Uqso(5) ~and similarly for the dual group!. Besides being computationally horrendous, it prese
some interesting features which would facilitate generalization to then-dimensional case and als
help us to understand better the important relation between representation theory and the ge
of quantum groups. On the other hand, one of the real forms of this algebra obtained by
gation is the noncompact quantum anti-de Sitter~AdS! algebra Uqso(3,2) which happens to be th
symmetry algebra of the noncommutative AdS space. This aroused a lot of interest especial
the AdS–conformal field theory duality conjecture was formulated~see, for example, Ref. 8 an
references therein for physical applications!. This connection motivates us further to look
Uqso(5) in somewhat more detail but mainly from the point of view of representation theo

We start out by defining the quantum matrix group SOq(5) and the quantum algebra Uqso(5)
in Sec. II. The duality pairings between these two Hopf algebras are explicitly given. In Sec
and IV we present the left and right regular representations of Uqso(5) on the matrix element
~generators! of the dual group SOq(5). Recall that the classical SO~5! group is defined by ten
independent generators, whereas here our quantum group SOq(5) has 25 generators. We mu
therefore, redefine these generators to get only ten independent ones. The monomials
would give us a suitable basis to extend the left and right action. This is achieved by G
decomposition of the quantum matrix belonging to SOq(5) and is explicitly worked out in Sec. V

Next, in Sec. VI we carry out the procedure of reduction of the left regular representatio
in the classical case the left and right actions commute~due to associativity!. Therefore, we use the
right covariance to reduce the left regular representation, i.e., we select the eigenspaces of t
regular representation of some particular generators of the quantum algebra Uqso(5). This basi-

a!Electronic mail: parashar@iopb.res.in
8640022-2488/2003/44(2)/864/18/$20.00 © 2003 American Institute of Physics
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cally implies imposing the condition that the Cartan generators act as a multiplication
constant and that some of the aforementioned generators act as a multiplication by zero.
way we obtain an infinite family of induced representations of Uqso(5) realized on the noncom
mutative coset space of SOq(5). In Sec. VII we investigate the reducibility of these induc
representaions whenq is in general a complex number and also whenq is anNth root of unity.
This leads to some finite dimensional irreducible representations under some restricted va
the labels which parametrize them. The right action of the remaining generators on the b
presented in Sec. VIII. These remaining Uqso(5) generators yield~via the right action! interesting
intertwining operators which we give in Sec. IX. The explicit commutation relations of the q
tum group SOq(5) are contained in the Appendix. We conclude the article with some remar

II. SOq„5… AND THE DUAL U qso „5…

We begin by defining the matrix quantum group SOq(5) and its corresponding quantum
universal enveloping algebra Uqso(5) which can be recovered from the general formulas of R
9.

SOq(5) is generated byI and elementsT 5 (t i j ), i , j 51,...,5, obeying the following com
mutation relations:

RT1T2 5 T2T1R, ~2.1!

TCTtC21 5 CTtC21T 5 I , ~2.2!

whereR is a quantum 52352 invertible matrix,T1 5 T^ I , T2 5 I ^ T, I is the identity 535
matrix, andC is an~antidiagonal! 535 matrix. The coalgebra structure is given by the followi
co-productD, co-unit«, and antipodeS:

D~ t i j ! 5 (
k51

5

t ik ^ tk j , ~2.3a!

«~ t i j ! 5 d i j , ~2.3b!

S~T! 5 C Tt C21. ~2.3c!

Using this compact matrix form relations~2.2! can be rewritten in the general form:

T S~T! 5 S~T! T 5 I . ~2.4!

The quantumR-matrix is given by

R5 q(
iÞ i 8

5

eii ^ eii 1e3,3^ e3,31 (
iÞ j , j 8

5

eii ^ ej j 1q21 (
iÞ i 8

5

ei 8 i 8^ eii

1l(
i . j

5

ei j ^ eji 2l(
i . j

5

qr i2r jei j ^ ei 8 j 8, ~2.5!

with l5q2q21, (r1 , . . . .,r5)5( 3
2,

1
2, 0,2 1

2,2
3
2) and i 855112 i . For SOq(5) the quantumR

matrix is a lower triangular 25325 matrix whose non zero elements are explicitly given bel
(Ri j

kl5eik ^ ejl ):

Rii
ii 5q, iÞ3, Rii 8

i i 85q21, iÞ3, R33
3351,

Ri j
i j 51, iÞ j , j 8, Ri j

j i 5l, i . j , iÞ j 8,
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R33
245R42

3352lq21/25a, R42
2452l~q2121!5b, ~2.6!

R42
155R51

2452lq225g, R51
1552l~q2321!5d,

R33
155R51

3352lq23/25h, R24
155R51

4252lq215j.

The corresponding antidiagonalC-matrix is

C 5 S 0 0 0 0 q23/2

0 0 0 q21/2 0

0 0 1 0 0

0 q1/2 0 0 0

q3/2 0 0 0 0

D , C2 5 I . ~2.7!

In order to derive the explicit commutation relations among the 25 generatorst i j of SOq(5) we
need to substitute the aboveR andC matrices in the defining relations~2.1! and ~2.2!.

By doing so we get an overwhelming number of relations ('400). These have been con
densed to less than 40 in such a way that transparency is not lost. They are given in the Ap
as they would be essential for the Gauss decomposition in Sec. V.

The quantum universal enveloping algebra Uqso(5) dual to SOq(5) is generated by the unit 1
and the functionalsl i j

1 with i , j ; l i j
2 with i . j ; l i i

1 andl i i
2 , wherei , j 51, . . . ,5.When arranged in

upper- and lower-triangular matricesL6, respectively, they are defined by the duality condition9

~L6, T1 . . . Tm!5R1
6
¯ Rm

6 , for m51,2,. . . , ~2.8!

where for 1<,<m, T,
6 act in the,th factor; R,

6 act in the (0,,)th factor of (C 5) ^ (m11); R1

5PRP , R25R21 andPPMat(C 5
^ C 5) is the permutation matrix.

The commutation relations are written in a compact form

R1L1
6L2

65L2
6L1

6R1 , R1L1
1L2

25L2
2L1

1R1. ~2.9!

Additional constraints are

l i i
1l i i

25 l i i
2l i i

151, i 51,...,5 ; ~2.10!

l 11
1

¯ l 55
1 5 l 11

2
¯ l 55

2 51 ; ~2.11!

L6Ct~L6! t~C21! t5Ct~L6! t~C21! tL65I . ~2.12!

The complete Hopf algebra structure is given by

D~ l i j
6!5 (

k51

5

l ik
6

^ l k j
6 , ~2.13!

«~ l i j
6!5d i j , ~2.14!

S~L6!5Ct~L6! t~C21! t. ~2.15!

Since we shall be needing the explicit form of the antipode in defining the left action in the
section, we give it below:
                                                                                                                



S~L1! 5 S l 55
1 ql45

1 q3/2l 35
1 q2l 25

1 q3l 15
1

0 l 44
1 q1/2l 34

1 ql24
1 q2l 14

1

0 0 l 33
1 q1/2l 23

1 q3/2l 13
1

0 0 0 l 1 ql1 D , ~2.16!
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22 12

0 0 0 0 l 11
1

S~L2! 5 S l 55
2 0 0 0 0

q21l 54
2 l 44

2 0 0 0

q23/2l 53
2 q21/2l 43

2 l 33
2 0 0

q22l 52
2 q21l 42

2 q21/2l 32
2 l 22

2 0

q23l 51
2 q22l 41

2 q23/2l 31
2 q21l 21

2 l 11
2

D . ~2.17!

The l i j
6 can be expressed in terms of more popular generatorsHi ,Xi

6 , i 51,2, via

qH25 l 11
1 ~ l 22

1 !21, qH15~ l 22
1 !2,

X2
25l21q1/2l 12

1 ~ l 11
1 !21/2~ l 22

1 !21/2, X1
25l21A@2#qq1/2l 23

1 ~ l 22
1 !21/2, ~2.18!

X2
152l21q21/2l 21

2 ~ l 11
1 !1/2~ l 22

1 !1/2, X1
152l21A@2#ql 32

2 ~ l 22
1 !1/2.

They satisfy the following commutation relations:

@Hi ,H j #50, @Hi ,Xj
6#56~ai j !Xj

6 , i , j 51,2,

@Xi
1 ,Xj

2#5d i j @Hi #qi
, q15q, q25q2,

~2.19!
~X1

6!3X2
62@3#q1

~X1
6!2X2

6X1
61@3#q1

X1
6X2

6~X1
6!22X2

6~X1
6!350,

~X2
6!2X1

62@2#q2
X2

6X1
6X2

61X1
6~X2

6!250,

where@x#qi
5 (qi

x/22qi
2x/2)/(qi

1/22qi
21/2) andai j 5(21

2
2
22) is the Cartan matrix for so~5!. The

duality between Uqso(5) and SOq(5) is given by the pairing~2.8! between the generatorsHi , Xi
6

and theT matrix:

^H1 ,T&5S 0 0 0 0 0

0 2 0 0 0

0 0 0 0 0

0 0 0 22 0

0 0 0 0 0

D , ^H2 ,T&5S 1 0 0 0 0

0 21 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 21

D ,

^X1
1 ,T&5A@2#q1S 0 0 0 0 0

0 0 1 0 0

0 0 0 21 0

0 0 0 0 0

0 0 0 0 0

D , ^X1
2 ,T&5A@2#q1S 0 0 0 0 0

0 0 0 0 0

0 1 0 0 0

0 0 21 0 0

0 0 0 0 0

D ,

~2.20!
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^X2
1 ,T&5S 0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 21

0 0 0 0 0

D , ^X2
2 ,T&5S 0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 21 0

D .

To complete the Hopf algebra structure, the other maps are given as (i 51,2)

D~Hi ! 5 1^ Hi1Hi ^ 1, ~2.21a!

D~Xi
6! 5 qi

Hi /4^ Xi
61Xi

6
^ qi

2Hi /4 , ~2.21b!

«~Hi ! 5 0, «~Xi
6! 5 0, ~2.21c!

S~Hi ! 5 2Hi , S~Xi
6! 5 2qi

2Hi /4Xi
6qi

Hi /4 . ~2.21d!

III. LEFT REGULAR REPRESENTATION

The left regular representation of Uqso(5) is defined in a standard way as

pL~X! t i j 5 (
k51

5

^S~X!, t ik& tk j , XPUqso~5!, ~3.1!

which whenq51 can be seen as the infinitesimal version of

pL~T8! T 5 T821 T, T8, TPSO~5!. ~3.2!

In the present case it is explicitly given as

pL~H1!T 5 2 S 0 0 0 0 0

2t21 2t22 2t23 2t24 2t25

0 0 0 0 0

t41 t42 t43 t44 t45

0 0 0 0 0

D ,

pL~H2!T 5 S 2t11 2t12 2t13 2t14 2t15

t21 t22 t23 t24 t25

0 0 0 0 0

2t41 2t42 2t43 2t44 2t45

t51 t52 t53 t54 t55

D ,

pL~X1
1!T 5 q1

21/2A@2#q1S 0 0 0 0 0

2t31 2t32 2t33 2t34 2t35

t41 t42 t43 t44 t45

0 0 0 0 0

0 0 0 0 0

D , ~3.3!
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pL~X1
2!T 5 q1

1/2A@2#q1S 0 0 0 0 0

0 0 0 0 0

2t21 2t22 2t23 2t24 2t25

t31 t32 t33 t34 t35

0 0 0 0 0

D ,

pL~X2
1!T 5 q2

21/2 S 2t21 2t22 2t23 2t24 2t25

0 0 0 0 0

0 0 0 0 0

t51 t52 t53 t54 t55

0 0 0 0 0

D ,

pL~X2
2!T 5 q2

1/2 S 0 0 0 0 0

2t11 2t12 2t13 2t14 2t15

0 0 0 0 0

0 0 0 0 0

t41 t42 t43 t44 t45

D ,

supplemented by the following action on the unit element of SOq(5):

pL~Hi !I 50, pL~Xi
6!I 50, i 51,2. ~3.4!

The actionpL can be extended on arbitrary monomials by making use of the following twi
derivation rule consistent with the coproduct and the representation structure:

pL~x!a b 5 m~pL~s+D~x!!~a^ b!!, ~3.5!

wherem is the multiplication map ands is the permutation operator. Explicitly we obtain

pL~Hi !a b 5 a•pL~Hi ! b1pL~Hi ! a•b, ~3.6a!

pL~Xi
6!a b 5 pL~Xi

6! a•pL~qi
Hi /4! b1pL~qi

2Hi /4! a•pL~Xi
6! b. ~3.6b!

Further, we have

pL~xy! 5 pL~x!•pL~y!,
~3.7!

pL~ax1by! 5 apL~x! 1 bpL~y!, a,bPC,x, yPUqso~5!.

IV. RIGHT REGULAR REPRESENTATION

Analogous to the previous section we now introduce the right regular representati
Uqso(5) on SOq(5) as

pR~X! t i j 5 (
k51

5

t ik ^X, tk j&, XPUqso~5!, ~4.1!

which in the classical case is the infinitesimal counterpart of

pR~T8!T 5 TT8, T, T8 PSO~5!. ~4.2!
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The explicit expressions are given below in matrix form:

pR~H1!T 5 2 S 0 t12 0 2t14 0

0 t22 0 2t24 0

0 t32 0 2t34 0

0 t42 0 2t44 0

0 t52 0 2t54 0

D ,

pR~H2!T 5 S t11 2t12 0 t14 2t15

t21 2t22 0 t24 2t25

t31 2t32 0 t34 2t35

t41 2t42 0 t44 2t45

t51 2t52 0 t54 2t55

D ,

pR~X1
1!T 5 A@2#q1S 0 0 t12 2t13 0

0 0 t22 2t23 0

0 0 t32 2t33 0

0 0 t42 2t43 0

0 0 t52 2t53 0

D ,

~4.3!

pR~X1
2!T 5 A@2#q1S 0 t13 2t14 0 0

0 t23 2t24 0 0

0 t33 2t34 0 0

0 t43 2t44 0 0

0 t53 2t54 0 0

D ,

pR~X2
1!T 5 S 0 t11 0 0 2t14

0 t21 0 0 2t24

0 t31 0 0 2t34

0 t41 0 0 2t44

0 t51 0 0 2t54

D ,

pR~X2
2!T 5 S t12 0 02t15 0

t22 0 02t25 0

t32 0 02t35 0

t42 0 02t45 0

t52 0 02t55 0

D .

Similar to the left action, the right action of the generators of Uqso(5) on the unit element o
SOq(5) is zero.

The twisted derivation rule is given by

pR~x!a b 5 m~pR~D~x!!~a^ b!!, ~4.4!

which in the present situation translates into
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pR~Hi !a b 5 a•pR~Hi ! b1pR~Hi ! a• b, ~4.5a!

pR~Xi
6!a b 5 pR~Xi

6! a•pR~qi
2Hi /4! b1pR~qi

Hi /4! a•pR~Xi
6! b. ~4.5b!

Note that sincepR is a representation, relations similar to~3.7! hold for the right action also.

V. GAUSS DECOMPOSITION OF SOq„5…

We know that the classical SO~5! group is defined in terms of ten generators and
Poincare–Birkoff–Witt~PBW! basis is defined as monomials in these generators. We have se
Sec. II that the quantum analog SOq(5) has 25 generatorst i j obeying hundreds of commutatio
relations among them, which gives us a lot of freedom to introduce the PBW basis. Here we
adopt the method of Gauss decomposition to achieve it.

The Gauss decomposition for the quantumT matrix of the SOq(5) group is

T5TLTDTU , ~5.1!

where TL5( l i j ) is a strictly lower-triangular matrix with units on the main diagonal (l i i 51),
TD5diag(Aii) and TU5(ui j ) is a strictly upper-triangular matrix (uii 51). All these are 535
matrices, i.e.,i , j 51, . . . ,5.

After very lengthy and cumbersome computations we find that the matrix elements c
described in terms of generators of which only ten are independent. The diagonal generatAii

are assumed to be invertible:

A115t11, A225t222t21t11
21t12 5 t222 l 21A11u12,

A335t332 l 31A11u132 l 32A22u23 51, ~5.2!

A445A22
21, A555A11

21,

u125t11
21t12, u135t11

21t13, u145t11
21t14,

u155t11
21t1552u12u142q@2#21u13

2,

u235A22
21~ t232t21t11

21t13!, u2452@2#21u23
2, ~5.3!

u2552u24u122q21/2u23u132q21u14, u3452q1/2u23,

u355q1/2u23u122q21/2u13, u4552u12,

l 215t21t11
21, l 315t31t11

21, l 415t41t11
21,

l 515t51t11
2152 l 21l 412q@2#21l 31

2,

l 325~ t322t31t11
21t12!A22

21, l 4252@2#21l 32
2, ~5.4!

l 5252 l 21l 422q1/2l 31l 322ql41, l 4352q21/2l 32,

l 535q21/2l 21l 322q1/2l 31, l 5452 l 21,

where@2#5 (q2q21)/(q1/22q21/2).
It turns out thatA33 commutes with all the other generators, hence we have set it to 1. S

ten independent generators areA11, A22, u12, u13, u14, u23,l 21, l 31, l 41 andl 32. Below we give
the commutation relations among them (i , j 52,3,4) by making use of the relations between thet i j

from the Appendix:
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A11u1i5qu1iA11, A11l i15qli1A11,

A11u235u23A11, A11l 325 l 32A11,

@uki ,l j l #50, k,l 51,2, k, i , j . l , A11A225A22A11,

A22u125q21u12A22, A22l 215q21l 21A22,

A22u135u13A22, A22l 315 l 31A22,

A22u145qu14A22, A22l 415ql41A22,

A22u235qu23A22, A22l 325ql32A22, ~5.5!

u12u135qu13u12, l 21l 315ql31l 21,

u12u145u14u122l@2#21u13u13, l 21l 415 l 41l 212l@2#21l 31l 31,

u12u235q21u23u121q21lu13, l 21l 325q21l 32l 211l l 31,

u13u145qu14u13, l 31l 415ql41l 31,

u13u235u23u132q21/2lu14, l 31l 325 l 32l 312q1/2l l 41,

u14u235qu23u14, l 41l 325ql32l 41.

There is an inherent symmetry in the relations foru’ s and l ’ s. Note that the diagona
generatorsAii form an Abelian subgroup whileA22, u23 and l 32 generate the subgroup SOq(3).
The above commutation relations obtained by Gauss decomposition are much simpler in fo
easier to handle and would thus result in a convenient basis for SOq(5).

VI. INDUCED REPRESENTATIONS

In this section we shall use the right action to reduce the left regular representation~which is
highly reducible!. But before we do so we need to construct a basis from the above ten ind
dent generators. Let us choose the following ordering. Then the representation space wi
elements which are formal power series in the basis:

f 5 ( l 21
n1l 31

n2l 41
n3l 32

n4A11
n5A22

n6u12
n7u13

n8u14
n9u23

n10. ~6.1!

Here the summation is overni , i 51,2,. . . ,10. They take values in the set of non-negat
integersZ1 , exceptn5 andn6 which belong to the set of integersZ.

We shall now impose the condition of~infinitesimal! right covariance on this independe
basis of SOq(5). This essentially means annihilation by the raising operatorsXi

1 and scalar
multiplication by exponentials of the Cartan generatorsHi ~similar to a highest weight module!.
Therefore, the right covariance conditions for the holomorphic representations with resp
X1

1 , X2
1 , K1 andK2 whereK15q1

H1/2, K25q2
H2/2 are given by

pR~Xi
1! f 5 0, i 51,2, ~6.2a!

pR~K1! l 21
n1
¯u23

n10 5 qn61n72n92n10 l 21
n1
¯ u23

n10, ~6.2b!

pR~K2! l 21
n1
¯ u23

n10 5 qn52n622n72n81n10 l 21
n1
¯ u23

n10. ~6.2c!
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All the l ’ s and A’ s are annihilated by the right action ofX1
1 and X2

1 whereas we get
nontrivial action on theu’ s. Thus~6.2! implies that the functionf does not depend onu’ s and
hence it is reduced to

f 5 (
n1 ,...,n4PZ1

n5 ,n6PZ

l 21
n1l 31

n2l 41
n3l 32

n4A11
n5A22

n6. ~6.3!

For convenience let us denote byF the above ordered monomial, i.e.,

F5..l 21
n1l 31

n2l 41
n3l 32

n4A11
n5A22

n6. ~6.4!

Then the right covariance conditions on the reduced basis become

pR~Xi
1! F 5 0, ~6.5a!

pR~K1! F 5 qn6 F, ~6.5b!

pR~K2! F 5 qn52n6 F. ~6.5c!

So the monomialF forms a basis in the space of common solutions of the equations~6.5!. The
above algebra with PBW basisF may be viewed as theq-deformation of the quotient manifold
SO(5)/U, whereU is the subgroup of upper diagonal matrices with 1 on the diagonal.

Next, we shall reduce the left regular representation on the eigenspaces of the right r
representation obtained above. For this we need the left action ofK1 andK2 on the reduced basi
F. This turns out to be

pL~K1! F 5 q2n11n31n42n6 F, ~6.6a!

pL~K2! F 5 q2n11n22n42n51n6 F. ~6.6b!

In order to proceed for the calculation of the left action ofXi
1 and Xi

2 on F, it would be
convenient to first find the action on the powers of the individual generators. This is obtain
iterating the twisted derivation rule~3.6! which yields

pL~X1
1! l 21

n1 5 2A@2# q2n1/2 @n1#q2 l 21
n121 l 31, ~6.7a!

pL~X1
1! l 31

n2 5 A@2# q2n2/2 @n2#q l 31
n221 l 41, ~6.7b!

pL~X1
1! l 41

n3 5 0, ~6.7c!

pL~X1
1! l 32

n4 5 A@2#21 q21 @n4#q l 32
n411, ~6.7d!

pL~X1
1! A11

n5 5 0, ~6.7e!

pL~X1
1! A22

n6 5 2A@2# q(n622)/2 @n6#q2 l 32 A22
n6, ~6.7f!

pL~X2
1! l 21

n1 5 q23/2 @n1#q2 l 21
n111, ~6.8a!

pL~X2
1! l 31

n2 5 q2(n213)/2 @n2#q2 l 21 l 31
n2, ~6.8b!

pL~X2
1! l 41

n3 5 2@2#21 q2(2n311)/2 @n3#q2 l 31
2 l 41

n321, ~6.8c!
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pL~X2
1! l 32

n4 5 2q(n423)/2 @n4#q2 l 21 l 32
n4 1 qn421 @n4#q l 31 l 32

n421

1~qn421!@n421#q l 41l 32
n422, ~6.8d!

pL~X2
1! A11

n5 5 2q(n523)/2 @n5#q2 l 21 A11
n5, ~6.8e!

pL~X2
1! A22

n6 5 q2(n613)/2 @n6#q2 l 21 A22
n6, ~6.8f!

pL~X1
2! l 21

n1 5 0, ~6.9a!

pL~X1
2! l 31

n2 5 2A@2# q(22n2)/2 @n2#q l 21 l 31
n221, ~6.9b!

pL~X1
2! l 41

n3 5 A@2# q(22n3)/2 @n3#q2 l 31 l 41
n321, ~6.9c!

pL~X1
2! l 32

n4 5 2A@2# q @n4#q l 32
n421, ~6.9d!

pL~X1
2! A11

n5 5 0, ~6.9e!

pL~X1
2! A22

n6 5 0, ~6.9f!

pL~X2
2! l 21

n1 5 2q3/2 @n1#q2 l 21
n121, ~6.10a!

pL~X2
2! l 31

n2 5 0, ~6.10b!

pL~X2
2! l 41

n3 5 0, ~6.10c!

pL~X2
2! l 32

n4 5 0, ~6.10d!

pL~X2
2! A11

n5 5 0, ~6.10e!

pL~X2
2! A22

n6 5 0. ~6.10f!

Using the above expressions and again using the twisted derivation rules~3.6! we obtain the left
action of the generators on the entire monomialF:

pL~X1
1! F52q(2n11n31n42n6)/2A@2#@n1#q2 F~n121, n212!

1q(n12n21n31n42n6)/2A@2#@n2#q F~n221, n311!

1q(n12n31n622)/2A@2#@n4/22n6#q2 F~n411!, ~6.11!

pL~X2
1! F5q(2n21n41n52n623)/2@n11n22n42n51n6#q2 F~n111!

2q(22n12n222n313n413n523n621)/2@2#21@n3#q2 F~n212, n321!

1q(22n12n222n312n413n523n622)/2@n4#q F~n211, n421!

1~q(22n12n22n51n6)/21q(22n12n21n41n52n622)/2@n52n6#q2l!

3~qn421!@n421#q F~n311, n422!, ~6.12!

pL~X1
2! F5q(n12n21n31n42n612)/2A@2#@n2#q F~n111, n221!

1q(n12n31n42n612)/2A@2#@n3#q2 F~n211, n321!

2q(n12n32n612)/2A@2#@n4#q F~n421!, ~6.13!

pL~X2
2! F52q(n22n42n51n613)/2@n1#q2 F~n121!. ~6.14!
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Therefore, we have obtained induced representations of Uqso(5) on the coset space of SOq(5)
which are parametrized by the integersn5 andn6 . The noncommutative representation space
spanned by functionsF obeying the covariance conditions~6.5!. Notice that the dependence ofF
on n5 andn6 remain constant under the above transformations. Hence it is appropriate to lab
representaions by these two integers. For the remainingn’ s the left action induces an increase
decrease in some of these powers. For example,F(n121, n211) appearing on the r.h.s. mean
that the power of the generatorl 21 is lowered by one while that ofl 31 is raised by one, keeping th
other powers constant. More explicitly,

F~n121, n211!5 l 21
n121l 31

n211l 41
n3l 32

n4A11
n5A22

n6.

VII. REDUCIBILITY FOR q GENERIC AND ROOT OF UNITY

The induced representations obtained above are in general irreducible for complexq and
n5 , n6 . However, they become reducible forqPC and some specific values ofn5 andn6 . The
representation space decomposes into two invariant subspaces as we see below.

SettingpL(X1
2) F50 implies thatn25n35n450, which gives us the corresponding lowe

weight vector, while settingpL(X1
1) F50 yields the highest weight vector under the conditi

n15n250 andn452n6 . We call this invariant subspaceV1 . The parametern6 which up to now
belonged to the set of integers, is restricted to only non-negative integers, i.e.,n6PZ1 .

Similarly for the second subspaceV2 , by imposingpL(X2
6) F50 we get the lowest weigh

vector whenn150 and the highest weight vector whenn35n450 andn11n25n52n6 . Sincen1

andn2 are both non-negative integers, this restricts the values ofn52n6>0. Thus we get finite
dimensional irreducible representations of the quantum algebra Uqso(5) obtained as subreprese
tations of the elementary representations realized on the quotient group of SOq(5) and param-
etrized byn5 andn6 .

Next, we wish to observe the behavior of our representations whenq is a root of unity, i.e.,
qN51 for N53,4,5,. . . . For this we substituteq5e2p i /N and find conditions on the label
n1 , . . . ,n6 for which the representations become reducible~i.e., r.h.s. becomes zero as was do
above for the generalq). One has to be careful here since we would be dealing with two diffe
q-numbers@nj #q and @nj #q2. Hence we obtain

pL~X1
1! F 5 0, n15k1N8, n25k2N, n4/22n65k8N8, ~7.1!

wherekj ( j 51,2,3,4)50,1,2,3, . . ., k850,61,62, . . . , N85N for oddN andN/2 for evenN.
Also @2#5 sin(2p/N)/sin(p/N) Þ0 sinceN53,4, . . .,

pL~X1
2! F 5 0, n25k2N, n35k3N8, n45k4N, ~7.2!

pL~X2
1! F 5 0, n11n22n42n51n65kN8, n35k3N8, n45k4N, ~7.3!

wherek50,61,62, . . .,

pL~X2
2! F 5 0, n15k1N8, ~7.4!

It is clear that in this case we have an enlarged center as elements of the form (l i j )
N would belong

to the center of the group. Analogously elements of the form (Xi
6)N would lie in the center of the

quantum algebra Uqso(5).
Let us now analyze the non trivial conditions given above. The third condition in~7.1! can be

written asn452(k8N81n6). We know thatn4 is a non-negative integer whilen6 is an integer.
Hence two possibilities arise:

n6>0, k850,1,2, . . . , ~7.5a!

n6,0, k8N8>2n6 . ~7.5b!
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The first condition in~7.3! can be written asn11n25N1n52n61kN8. Since the l.h.s. is
always a non-negative number, there are three main possibilities:

~1! If n52n6.0, thenk50,1,2, . . . (N and N8 are positive valued!. k can also have negativ
values providedN1n52n6>2KN8.

~2! If n52n650, thenk50,1,2,. . . . No negative values are allowed here.
~3! If n52n6,0, thenkN81N>2(n52n6).

There could be further many subcases of each of the three possibilities mentioned abo

~1! n52n6.0 is possible when
n5.0, n6.0, n5.n6 , ~7.6a!

n5,0, n6,0, n5.n6 , ~7.6b!

n5.0, n6,0, ~7.6c!

n5.0, n650, ~7.6d!

n550, n6,0. ~7.6e!
~2! n52n650 is possible when

n550, n650, ~7.7a!

n55n6Þ0. ~7.7b!
~3! n52n6,0 is possible when

n5.0, n6.0, n5,n6 , ~7.8a!

n5,0, n6,0, n5,n6 , ~7.8b!

n5,0, n6.0, ~7.8c!

n5,0, n650, ~7.8d!

n550, n6.0. ~7.8e!

In this way we obtain finite dimensional irreps under certain restrictions on the values o
parameters labeling them. As is clear from the above analysis, the representation theory w
quite similar to the classical case for a genericq changes drastically whenq is taken to be a root
of unity.

VIII. RIGHT ‘‘ACTION’’

For the sake of completeness we evaluate the right action on the monomialF. The covariance
condition ~6.5a! implies that the right action of the raising generatorsXi

1 on the monomialF is
zero. Thus we need to compute it only for the remaining lowering generators.

Right action ofX1
2 :

pR~X1
2! l 21

n1 5 0, ~8.1a!

pR~X1
2! l 31

n2 5 0, ~8.1b!

pR~X1
2! l 41

n3 5 0, ~8.1c!

pR~X1
2! l 32

n4 5 A@2# q(22n4)/2 @n4#q l 32
n421 A22

21, ~8.1d!

pR~X1
2! A11

n5 5 0, ~8.1e!

pR~X1
2! A22

n6 5 A@2# q(12n6)/2 @n6#q2A22
n6 u23. ~8.1f!

Right action ofX2
2 :
                                                                                                                



s
ly as

s

877J. Math. Phys., Vol. 44, No. 2, February 2003 Induced representations of Uqso(5)

                    
pR~X2
2! l 21

n1 5 q(322n1)/2 @n1#q2l 21
n121 A11

21 A22, ~8.2a!

pR~X2
2! l 31

n2 5 q(22n2)/2~@n2#q l 31
n221 l 321~q2q12n!@n221#q l 31

n222 l 41!

3 A11
21 A22, ~8.2b!

pR~X2
2! l 41

n3 5 2@2#21 q(322n3)/2 @n3#q2 l 41
n321 l 32

2 A11
21 A22, ~8.2c!

pR~X2
2! l 32

n4 5 0, ~8.2d!

pR~X2
2! A11

n5 5 q(12n5)/2 @n5#q2 A11
n5 u12, ~8.2e!

pR~X2
2! A22

n6 5 2q(11n6)/2 @n6#q2 A22
n6 u12. ~8.2f!

So the action on the entire monomial becomes

pR~X1
2! F 5 A@2# q(22n42n6)/2 @n4#q F~n421,n621! 1A@2# q(12n6)/2 @n6#q2 F u23,

~8.3!

pR~X2
2! F 5 q(22n122n212n42n51n613)/2 @n1#q2 F~n121,n521,n611!

1q(2n222n312n42n51n612)/2 @n2#qF~n221,n411,n521,n611!

1q(2n42n51n6)/2~q2q12n2!@n221#q F~n222,n311,n521,n611!

2q(22n312n42n51n613)/2 @2#21 @n3#q2 F~n321,n412,n521,n611!

1 q(2n51n611)/2 @n52n6#q2 F u12. ~8.4!

We notice the appearance of terms involving the variablesui j , which is natural since there i
no intrinsic right action ofXi

2 on the induced representations. Such actions are needed on
input in singular vectors in which all such terms involving the variablesui j will vanish. Thus, it
would be fine to neglect them at this stage provided they do not produce any wanted term~i.e.,
terms involvingl ’ s andA’ s) when we act repeatedly withpR(Xi

2). For this we should check the
action ofXi

2 on ui j .
Right action ofX1

2 on theu’ s:

pR~X1
2! u12 5 A@2# u13, ~8.5a!

pR~X1
2! u13 5 2A@2# u14, ~8.5b!

pR~X1
2! u14 5 0, ~8.5c!

pR~X1
2! u23 5 2A@2#~12q21/2 @2#21! u23

2. ~8.5d!

Right action ofX2
2 on theu’ s:

pR~X2
2! u12 5 2q1/2 u12

2, ~8.6a!

pR~X2
2! u13 5 2u12 u13, ~8.6b!

pR~X2
2! u14 5 q1/2 @2#21 u13

2 , ~8.6c!

pR~X2
2! u23 5 q~u12 u232u13!. ~8.6d!
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We see that theu23 term in ~8.3! would not disappear under the action ofX1
2 . Similarly, theu12

term in ~8.4! would still remain under the action ofX2
2 .

IX. INTERTWINERS

There are various partial equivalences among the reducible representations. These
equivalences are realized by intertwining operators for which a canonical derivation was gi
Ref. 1. We shall follow this approach without going into details as here we would be interes
obtaining only the simplest intertwiners.

Let us denote our representation space obtained in Sec. VI byV n̄ wheren̄5(n5 ,n6) since it is
characterized by the integersn5 ,n6 . The corresponding representations are similarly denoted
pL5p n̄ . Then the intertwiner is a map from the spaceVn̄ to another spaceVn̄8 labeled byn58 and
n68 such that

Ii p n̄~Xi
2! 5 p n̄8~Xi

2! Ii , ~9.1!

wheren̄8 is expected to be2n̄21. According to the general prescription,1 these operators shoul
be given by (pR(Xi

2))s and the parameters is expected to be equal to the dimension of t
subspace. It is easy to check this directly. LetsPN and suppose thatF8 5 (pR(Xi

2))s F where
F8 belongs toVn̄8 . Extending the right covariance condition~6.5a! leads topR(Xi

1) F8 5 0.
Below we calculate this explicitly forX1

2 :

pR~X1
1! F8 5 pR~X1

1! ~pR~X1
2!!s F

5 @pR~X1
1!, ~pR~X1

2!!s# F

5 pR~@X1
1, ~X1

2!s# ! F

5 pR~@s#q~X1
2!s21 ~q2(s21)/2 K1 2 q(s21)/2 K1

21!/~q1/22q21/2!! F

5 @s#qpR~X1
2!s21 ~~q2(s21)/21n6 2 q(s21)/22n6!/~q1/22q21/2!! F

5 2@s#q @s2122n6#q pR~X1
2!s21 F. ~9.2!

If q is a generic complex number, then, as expected, this quantity becomes zero onlys
5 2n611. Next, employing the other conditions of right covariance we havepR(Ki) F8

5 qn̄8 F8, i.e.,

pR~K1! F8 5 pR~K1!~pR~X1
2!!s F

5 pR~q2s ~X1
2!s K1! F

5 q2s pR~X1
2!s qn6 F5 qn62s F8. ~9.3!

So,n685n62s52n621. Then the intertwining operatorI1 ~up to a multiplicative nonzero con
stant! is

I1 5 ~pR~X1
2!!2n611. ~9.4!

Similar calculations for the other generatorX2
2 yield

pR~X2
1! F8 52@s#q2 @s212n51n6#q2 pR~X2

2!s21 F, ~9.5!

which vanishes whens5n52n611. On the other hand,
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pR~K2! F8 5 qn52n622s F8. ~9.6!

So, n582n685n52n622s5(2n521)1(n621) and thus the second intertwining operatorI2 is
indeed given by

I2 5 ~pR~X2
2!!n52n611. ~9.7!

The finite-dimensional invariant subspacesV1 and V2 discussed earlier are the kernels of the
intertwining operators.

X. CONCLUDING REMARKS

In this article we have obtained induced representations of the quantum algebra Uqso(5)
realized on some~noncommutative! coset space of the dual quantum group SOq(5) . We remark
that although we have assumed integer values for the parametersn5 and n6 which characterize
them, the formulas~of left action! define a representaion of Uqso(5) also for arbitrary complex
values. However, only for integer values, they comprise a deformation of representations
are integrable to a representation of the group SOq(5). Wehave also investigated the reducibilit
of these representations under restricted values ofn5 , n6 which lead to finite dimensional irrep
for q generic and for root of unity.

Two basic intertwiners corresponding to the two simple roots were shown to be express
terms of powers of the right action. It would be interesting to find out other mixed or comp
intertwiners corresponding to the nonsimple roots. For that we would need to compute the p
of the right action explicitly, i.e., by iteration of the results presented in Sec. VIII. In this way
can obtain whole new families of intertwiners. By a suitable redefinition of the generators it s
be possible to realize them asq-difference operators. This yields a naturalq-deformation of
several equations in mathematical physics, which can be viewed as intertwiner between
representations of the underlying symmetry algebra. Also it would be interesting to explo
connection with the noncompact quantum anti-de Sitter algebra Uqso(3,2) in the context of in-
duced representations andq-difference intertwiners. We hope to address all these issues
sequel.
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APPENDIX: COMMUTATION RELATIONS OF SO q„5…

Here we give the relations which the 25 elementst i j obey and which follow from~2.1! and
~2.2! using ~2.6! and ~2.7!. This explicit form is also necessary for the verification of the Ga
decomposition of Sec. III. The relations are

t i j t i ,5qti , t i j , iÞ3, j ,,, j 8Þ,, ~A1!

t i j tk j5qtk j t i j , j Þ3, i ,k,i 8Þk, ~A2!

t i j t i j 85q2 ~ t i j 8 t i j 1l t i , j 811 t i , j 21 !, iÞ3, j 51,2, ~A3!

t i j t i 8 j5q2 ~ t i 8 j t i j 1l t i 811,j t i 21,j !, j Þ3, i 51,2, ~A4!

t3 j t3,5t3, t3 j 1a t2, t4 j 1h t1, t5 j , j ,,, j 8Þ,, ~A5!
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t i3 tk35tk3 t i3 1a tk2 t i4 1h tk1 t i5 , i ,k, i 8Þk, ~A6!

t3 j
2 52q21 @2#t2 j t4 j 2q22 @2#t1 j t5 j , j Þ3, ~A7!

t i3
2 52q21 @2#t i2 t i4 2q22 @2#t i1 t i5 , iÞ3, ~A8!

t i j tk,5tk, t i j 1l tk j t i , , i ,k, i 8Þk, j ,,, j 8Þ,, ~A9!

t i j tk,5tk, t i j , i ,k, i 8Þk, j .,, j 8Þ,, ~A10!

t i j t i 8,5q~ t i 8, t i j 1l t i 8 j t i ,! 1l t i 21,j t i 811,, , i 51,2, j ,,, j 8Þ,, ~A11!

t i j t i 8,5q~ t i 8, t i j 1l t i 811,, t i 21,j !, i 51,2, j .,, j 8Þ,, ~A12!

t i j tk j85q~ tk j8 t i j 1l t i j 8 tk j!, i ,k,i 8Þk, j 51,2, ~A13!

t i j 8 tk j5q21 ~ tk j t i j 8 2l tk, j 21 t i , j 811!, i ,k, i 8Þk, j 51,2, ~A14!

t i2 tk45q21tk4 t i2 1a tk3 t i3 1b tk2 t i4 1g tk1 t i5 , i ,k, i 8Þk, ~A15!

t11 t555t55 t111q~jt54 t121ht53 t131gt52 t141dt51 t15!, ~A16!

t12 t545t54 t121q~at53 t131bt52 t141gt51 t15!, ~A17!

t13 t535q~ t53 t131at52 t141ht51 t15!, ~A18!

t14 t525t52 t142lt51 t15, ~A19!

t15 t515t51 t15, ~A20!

t21 t455t45 t211q~jt44 t221ht43 t231gt42 t241dt41 t25!1lt11 t55, ~A21!

t22 t445t44 t221q~at43 t231bt42 t241gt41 t25!1lt12 t54, ~A22!

t23 t435q~ t43 t231at42 t241ht41 t25!1lt13 t53, ~A23!

t24 t425t42 t241l ~ t52 t142t51 t152t41 t25!, ~A24!

t25 t415t41 t251lt51 t15, ~A25!

t31 t355q~ t35 t311at25 t411ht15 t51!, ~A26!

t32 t345q~ t34 t321at24 t421ht14 t52!1lt31 t35. ~A27!

The additional constraints are (i 51,2,3,4,5)

at23 t431ht13 t535at32 t341ht31 t35, ~A28!

q3 t i5 t511q2 t i4 t521q3/2 t i3 t531q ti2 t541t i1 t555d i1 , ~A29!

q2 t i5 t411qti4 t421q1/2 t i3 t431t i2 t441q21 t i1 t455d i2 , ~A30!

q3/2 t i5 t311q1/2 t i4 t321t i3 t331q21/2 t i2 t341q23/2 t i1 t355d i3 , ~A31!

qti5 t211t i4 t221q21/2 t i3 t231q21 t i2 t241q22 t i1 t255d i4 , ~A32!
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t i5 t111q21 t i4 t121q23/2 t i3 t131q22 t i2 t141q23 t i1 t155d i5 , ~A33!

t55 t1i1q21 t45 t2i1q23/2 t35 t3i1q22 t25 t4i1q23 t15 t5i5d1i , ~A34!

qt54 t1i1t44 t2i1q21/2 t34 t3i1q21 t24 t4i1q22 t14 t5i5d2i , ~A35!

q3/2 t53 t1i1q1/2 t43 t2i1t33 t3i1q21/2 t23 t4i1q23/2 t13 t5i5d3i , ~A36!

q2 t52 t1i1qt42 t2i1q1/2 t32 t3i1t22 t4i1q21 t12 t5i5d4i , ~A37!

q3 t51 t1i1q2 t41 t2i1q3/2 t31 t3i1qt21 t4i1t11 t5i5d5i . ~A38!

In fact, we can obtain the set of relations~A.34!–~A.38! from ~A.29!–~A.33! by q→q21 and
t i j tkl→t lk t j i .
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Belov–Chaltikian and Blaszak–Marciniak lattice equations:
Recursion operators and factorization

R. Sahadevan and S. Khousalya
Ramanujan Institute for Advanced Study in Mathematics, University of Madras,
Chepauk, Chennai—600 005, Tamil Nadu, India

~Received 14 August 2002; accepted 10 October 2002!

A systematic investigation on the construction of recursion operators for partial
differential–difference equations~PDDEs! with two independent variables~one
continuous and one discrete! using its generalized symmetries is presented. Also it
is explained how to factorize the obtained recursion operators. The applicability of
the above procedure have been illustrated for the relativistic toda~RT!, Belov–
Chaltikian~BC! and Blaszak–Marciniak~BM! lattice equations and shown that the
former two lattice equations admit (232) matrix recursion operators while the
latter one possesses a (333) matrix recursion operator. Furthermore, the con-
structed recursion operators can be written as a factor of 2 distinct invertible matrix
operators in each of the lattice equations. It is also proved explicitly that the fac-
torized operators are Hamiltonian and hence RT, BC and BM lattice equations are
bi-Hamiltonian systems. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1530755#

I. INTRODUCTION

Integrable systems governed by nonlinear partial differential equations~PDEs! admitting soli-
tons have a variety of rich mathematical structures such as Lax representation, certain s
singularity structure in the complex manifold of the independent variables, multi-Hamilto
formulation, etc.1–6 A notable characteristic of integrable nonlinear PDEs~if conservative! is the
existence of a sequence of generalized symmetries~involving dependent variables and its spat
derivatives! and conserved densities. The existence of generalized symmetries quite often h
derive other integrability properties: recursion operator, hereditary operator, bi-Hamiltonia
mulation, etc., of nonlinear PDEs. This fact has been verified for a large number of non
PDEs with (111) and (211) dimensions possessing solitons by different researchers durin
past few decades4,7–10 ~see also Refs. 11–16!. Recent investigation reveals that certain integra
nonlinear discrete systems characterized by nonlinear PDDEs including lattice equation
similar mathematical structures like for integrable nonlinear PDEs.17–29

In Ref. 21, we have considered the BC lattice equation, which is a two coupled first
lattice equation,30 and the BM lattice equation, which is a three coupled one,31 and shown that
both the lattice equations admit a sequence of generalized symmetries~involving dependent vari-
ables and their shifts! and conserved densities. In this article, a systematic investigation on
construction of recursion operators for PDDEs with two independent variables~one continuous
and one discrete! using its generalized symmetries is presented. Also, it is explained ho
factorize the obtained recursion operators. We illustrate the above procedure for the RT,32 BM and
BC lattice equations, respectively, governed by

vnt5vn~un212un!, unt5un~un212un112vn111vn!, ~1!

unt5wn112wn21 , vnt5un21wn212unwn , wnt5wn~vn2vn11!, ~2!

unt5un~un112un21!1vn212vn , vnt5vn~un122un21!, ~3!
8820022-2488/2003/44(2)/882/17/$20.00 © 2003 American Institute of Physics
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whereunt5]un /]t , vnt5]vn /]t , wnt5]wn /]t , un5u(n,t), vn5v(n,t), wn5w(n,t), t is a
continuous variable andn is a discrete variable and show that the RT and BC lattice equat
admit (232) matrix recursion operators while the BM lattice equation possesses (333) matrix
recursion operator. Furthermore, we prove explicitly that the lattice equations~1!–~3! are bi-
Hamiltonian systems.

The plan of the article is as follows. In Sec. II, we consider a first order PDDE with
independent variables~one continuous and one discrete! and show how to construct a recursio
operator using its generalized symmetries. Also, we explain how to factorize the obtained
sion operator. In Sec. III, we apply the above procedure to RT, BM and BC lattice equation
construct their recursion operators which can be factorized. Section IV deals with the investi
of the nature of the operators, Hamiltonian or not, in each of the lattice equations, and we
that all the lattice equations~1!–~3! are bi-Hamiltonian systems. Section V contains a brief su
mary of our results.

II. PDDES: GENERALIZED SYMMETRIES, RECURSION OPERATOR AND
FACTORIZATION

A. Generalized symmetries

To be self-contained, we first explain how to derive generalized symmetries involving d
dent variables and their shifts for a given PDDE. Consider, for example, a first order PDDE
two independent variables~one continuous and one discrete! of the form

]Un

]t
5F~ ...,Un21 ,Un ,Un11 ,...!, ~4!

whereUn5U(n,t) andF~...! are vector quantities with same number of components, saym. The
vector functionF is assumed to be a polynomial in the dependent variable and their shifts. T
are no restriction on the level of shifts or the degree of nonlinearity. We also assume that E~4!
is invariant under the scaling symmetry.

Let us assume that the PDDE~4! is invariant under the infinitesimal transformations:

n* 5n, t* 5t, Un* 5Un1eG~n!1O~e2!, ~5!

whereG(n)5G(...,Un21 ,Un ,Un11 ,...). HereG(n)5(G1(n),G2(n),...,Gm(n)).
Then the transformed equation is

]Un*

]t*
5F~ ...,Un21* ,Un* ,Un11* ,...!

5F~ ...,Un211eG~n21!,Un1eG~n!,Un111eG~n11!,...! ~6!

providedUn satisfy Eq.~4!. Now the left hand side of Eq.~6! can be written as

]Un*

]t*
5

]

]t
~Un1eG~n!1O~e2!!

]t

]t*
5

]Un

]t
1e@G~n!# t1O~e2!, ~7!

where@G(n)# t is the first extension given by

@G~n!# t5¯1
]G~n!

]Un21

]Un21

]t
1

]G~n!

]Un

]Un

]t
1

]G~n!

]Un11

]Un11

]t
1... .

To compute the right hand side of Eq.~6!, we use the Frechet derivative ofF defined as
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F8~Un!@G~n!#5
]

]e
F~Un1eG~n!!ue50

5F1eS¯1
]F

]Un21
E211

]F

]Un
1

]F

]Un11
E1...DG~n!1O~e2!, ~8!

Substituting Eqs.~7! and~8! in Eq. ~6! and equating both sidesO(e) terms we obtain the follow-
ing invariant equation,

]G~n!

]Un21

]Un21

]t
1

]G~n!

]Un

]Un

]t
1

]G~n!

]Un11

]Un11

]t
1...

5S ...1
]F

]Un21
E211

]F

]Un
1

]F

]Un11
E1...DG~n!, ~9!

whereE andE21 are shift operators defined byEUn5Un11 , E21Un5Un21 . Solving the invari-
ant equation~9! we can determine the generalized symmetryG(n) explicitly.

B. Recursion operator

We would like to recall the following definitions required for further discussion.
Definition 1:An operator valued functionR is said to be a recursion operator of Eq.~4! if it

satisfies

G̃~n!5RG~n!, ~10!

where the vector functions G(n)5(G1(n),G2(n),...,Gm(n)) and G̃(n)
5(G̃1(n),G̃2(n),...,G̃m(n)) are generalized symmetries of~4! andR is a (m3m) matrix opera-
tor.

Note that there exist different methods to construct recursion operatorR for PDDEs~see, for
example, Ref. 28!. In this article, we construct the recursion operator satisfying the above rel
~10!.

Definition 2:A local conservation law is defined by

]rn

]t
5Jn2Jn11 , ~11!

which is satisfied on all solutions of~4!. The functionrn is the local conserved density andJn is
the associated flux.

Let us assume that the components of the generalized symmetryG(n) andG̃(n), respectively,
are of ranks (p1 ,p2 ,...,pm) and (q1 ,q2 ,...,qm). Here (p1 ,p2 ,...,pm) and (q1 ,q2 ,...,qm) may be
integers or rational numbers. The construction of the recursion operator essentially consists
steps: In the first step, we determine the rank of (Ri j ), i , j 51,2,...,m, of the matrix operatorR
which must be equal to (qj2pi) which can be determined from the following relations,

rank G̃1~n!5rank R111rank G1~n!5¯5rank R1m1rank Gm~n!,

rank G̃m~n!5rank R211rank G1~n!5¯5rank R2m1rank Gm~n!,

]

rank G̃m~n!5rank Rm11rank G1~n!5¯5rank Rmm1rank Gm~n!. ~12!
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The second step involves determination of the explicit form of (Ri j ) which may be expressed i
terms of difference and inverse difference operators of the dependent variables and their
satisfying the relations~10! and ~12!.

C. Factorization of recursion operator

Having constructed the recursion operatorR we explain how it can be factorized. For that, w
first assume that the constructed (m3m) matrix recursion operatorR5(Ri j ) of Eq. ~4! can be
written as a factor of 2 distinct (m3m) matrix operatorsA5(Ai j ) andB5(Bi j ). That is,

F R11 ... R1m

R21 ... R2m

] ]

Rm1 ... Rmm

G5F A11 ... A1m

A21 ... A2m

] ]

Am1 ... Amm

GF B11 ... B1m

B21 ... B2m

] ]

Bm1 ... Bmm

G . ~13!

Equation ~13! suggests that the entries of the matrixAB must be of the same rank as ofR.
Accordingly, we choose the entries of (Ai j ) and (Bi j ) which may be expressed in terms
difference and inverse difference operators of the dependent variables and their inverse.
tuting then the expression for (Ai j ) and (Bi j ) in Eq. ~13! and solving yields the explicit form of the
matrix operators (Ai j ) and (Bi j ) with the required ranks.

III. RT, BM AND BC LATTICE EQUATIONS: RECURSION OPERATORS AND THEIR
FACTORIZATION

A. RT lattice equation

1. Generalized symmetries

To be self-contained, in this subsection, we present computational details of the deriva
generalized symmetries for the RT lattice equation given by

vnt5vn~un212un!, unt5un~un212un112vn111vn!,

which is invariant under the scaling symmetry

~ t,un ,vn!→~l21t,lun ,lvn!, ~14!

wherel is an arbitrary parameter. Assume that the RT lattice equation~1! or ~14! is invariant
under the infinitesimal transformations

n* 5n, t* 5t, un* 5un1eGi
(1)~n!1O~e2!, vn* 5vn1eGi

(2)~n!1O~e2!, i 51,2,...,
~15!

where

Gi
(1)~n!5Gi

(1)~ ...,vn21 ,un21 ,un ,vn ,un11 ,vn11 ,...!,

Gi
(2)~n!5Gi

(2)~ ...,vn21 ,un21 ,un ,vn ,un11 ,vn11 ,...!

provided un and vn satisfy Eq.~1!. For clarity, we denoteGi(n)5(Gi
(1)(n),Gi

(2)(n)) and the
subscripti represents thei th order generalized symmetry. Consequently, we obtain the follow
invariant equation,

]Gi
(1)~n!

]t
5Gi

(1)~n!~un212un111vn2vn11!

1un~Gi
(1)~n21!2Gi

(1)~n11!1Gi
(2)~n!2Gi

(2)~n11!!, ~16a!
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]Gi
(2)~n!

]t
5Gi

(2)~n!~un212un!1vn~Gi
(2)~n21!2Gi

(2)~n!!. ~16b!

From Eq.~16! we see that

G2~n!5~G2
(1)~n!,G2

(2)~n!!5~vn~un212un!,un~un212un111vn2vn11!!

is a trivial generalized symmetry with rank~2,2!. This suggests that the componentsG3
(1)(n) and

G3
(2)(n) of the next generalized symmetryG3(n) must have rank~3,3!. With this in mind we first

form monomials inun and vn of rank ~3,3! that lead to a set:L5$un ,un
2 ,un

3 ,vn ,vn
2 ,vn

3%. For
compactness, hereafter we use the following notation unless otherwise specified,

un5u, vn5v, un215uI , vn215vI , un225u= , vn225v= , un235uT , vn235vT ,

un115ū, vn115 v̄, un125u% , vn125v% , un135 ū̄
¯

, vn135 v̄̄
¯

, etc.

Then the necessary partial derivatives with respect tot in each monomial of L
5$u,v,u2,v2,u3,v3% along with Eq.~14! gives the following

]0

]t0 ~u3!5u3,
]0

]t0 ~v3!5v3;
]

]t
~u2!52u2 ~uI 2ū1v2 v̄ !,

]

]t
~v2!52v2 ~uI 2u!,

]2

]t2 ~u!5u ~uI 2ū1v2 v̄ !21u uI ~u=2u1vI 2v !

2u ū~u2u% 1 v̄2v% !1v u ~uI 2u!2u v̄ ~u2ū!,

]2

]t2 ~v !5v ~uI 2u!21v uI ~u=2u1vI 2v !2u v~uI 2ū1v2 v̄ !,

and a set

M5$u3,v3,u2 uI ,u2ū,u2 v,u2 v̄,v2 uI ,v2 u,uuI 2,u ū2,u v̄2,

u uI v,u ū v,u ū v̄,u v v̄,uuI u= ,u uI vI ,u ū u% ,u ūv% ,v uI 2,uI u= v,uI v vI %.

~17!

Thus the most general form of the generalized symmetryG3(n)5(G3
(1)(n),G3

(2)(n)) will be

G3
(1)~n!5a1u31~a2 uI 1a3 ū1a4 v1a5 v̄ !u21~a6u1a7v !uI 21a8u ū2

1~a9uI v1a10ūv1a11ū v̄1a12v v̄1a13uI u=1a14uI vI 1a15ū u% 1a16ū v% !u

1a17v
31~a18uI 1a19u!v21a20u v̄21~a21uI u=1a22uI vI !v, ~18a!

G3
(1)~n!5b1u31~b2 uI 1b3 ū1b4 v1b5 v̄ !u21~b6u1b7v !uI 21b8u ū2

1~b9uI v1b10ūv1b11ū v̄1b12v v̄1b13uI u=1b14uI vI 1b15ū u% 1b16ū v% !u

1b17v
31~b18uI 1b19u!v21b20u v̄21~b21uI u=1b22uI vI !v, ~18b!

whereaj , bj , j 51,2,...,22, are arbitrary constants. We now substitute the componentsG3
(1)(n)

andG3
(2)(n) in the invariant equation~16! with i 53 and making use of the RT lattice equation~1!

or ~14! we find, after a detailed calculation, that the consistency condition holds only fo
following parametric restrictions:
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a452a1052a125a1852a195a215a225a75b25b452b551,

2b35b1152b2052b165b1952b85b652b155b2151,b952,b11522,

and so the first nontrivial generalized symmetryG3(n)5(G3
(1)(n),G3

(2)(n)) with rank ~3,3! be-
comes

G3
(1)~n!52vu21~2ū v2vv̄ !u1~uI 2u!v21~uI u=1uI 21uI vI !v, ~19a!

G3
(2)~n!5~uI 1v2 v̄2ū!u21~uI vI 2 v̄22ū v% 1v22ū21uI 212uI v2ū u% 22ū v̄1uI u= !u.

~19b!

Next we look for the generalized symmetryG4(n)5(G4
(1)(n),G4

(2)(n)) with rank ~4,4!. As
usual we form a monomial inu and v of rank 4 which givesL̃5$u,v,u2,v2,u3,v3,u4,v4% and
then, taking the necessary partial derivatives with respect tot in each monomial setL̃, we obtain
a set like the one given in Eq.~17!. Proceeding further along the lines described earlier we
that the invariant equations~16a! and ~16b! with i 54 satisfy only if

G4
(1)~n!52vu31~22v v̄22v22vuI 22ūv !u21v uI 3

1~v vI 12v21uv1v u=1v21v u= !uI 22uv uI 2

1~2v v̄22ū v v̄1ūv22v2v̄1ū2ū v v̄2ū u% v2v32ū u% v1uI v2!u

1~2uv21v2 vI 1v21u= v1u= v=1u= v1u= u= !uI , ~20a!

G4
(2)~n!5~v2vI 1uI 1ū!u31~2v214v uI 22v̄212uI 21uI vI 1uI u=22ū2

22ū v̄2ū u% 22ū v̄2ū v% !u21~3uI v21uI vI 21uI 2vI 2 v̄2 ū2ū v% 22ū u% v%

22ū2v% 1uI 2 vI 1uI 2 vI 1uI 2v1uI u=2ū2 v̄2ū2u% 22v̄2 v̄2ū2 u% 22v̄2 ū22ūu% v̄

22ū v̄ v% 2ū u% v̄̄
¯

12uI 2 v12v vI uI 12v2 uI 12v uI u=2ūu% 2ū u% ū̄
¯

1uI u= vI 2 v̄32ū u% v% 2ū2 u% 1uI u= 21uI u= v=1uI 2u=1uI u= vI 1uI u= uT !u. ~20b!

In a similar manner we have proved that the RT lattice equation admits a sequence of gene
symmetriesG5(n)5(G5

(1)(n),G5
(2)(n)), G6(n)5(G6

(1)(n),G6
(2)(n)) @with ranks ~5,5!,~6,6!, ...#

which involve a lengthy expressions.

2. Conserved densities and flux

It is easy to see that the RT lattice equation is scaling invariant,

~ t,u,v !→~lt,l21u,l21v !,

wherel is an arbitrary parameter. To derive a conserved density with rank 2, we form mono
of u andv which gives the listL15$u,u2,v,v2%. Introducing then the necessaryt derivatives in
each monomial ofL1 leads to $u2,v2,ūu,uI u,uv,uI v%. Using u ū[u uI we obtain M1

5$u2,v2,ūu,uv,uI v%. Thus the most general form of the conserved density of rank 2 will be

rn5c1u21c2v21c3ūu1c4uv1c5uI v, ~21!

wherec1 , c2 , c3 , c4 andc5 are constants and so
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]rn

]t
2Jn1Jn115~22c11c4!u2 ū1~2c12c3!u2v1~c522c1!u2 v̄

1~22c21c3!u v21~c42c3!u ū v1~c52c3!u v ū, ~22a!

with flux

Jn52c1u2 uI 12c2uI v212c3u uI v1c4uuI ū1c5u uI v̄. ~22b!

The definition of conservation law, Eq.~11!, demands that each bracket in the right hand side
Eq. ~22a! vanishes and so the conserved densityrn and the associated fluxJn become

rn5 1
2 u21~v1ū1 v̄ !u1 1

2 v2, Jn5u2 uI 1~2uI v1ūuI 1uI v̄ !u1uI v2.

To find the next conserved densityrn of rank 3 and the corresponding fluxJn , as usual we
first form the monomials inu andv givesL25$u,v,u2,v2,u3,v3% and then the setM2 which can
be obtained by introducing the necessaryt derivatives in each monomial ofL2 . Proceeding as
before we find the following conserved densityrn of rank 3 and the associated fluxJn ,

rn5 1
3 u31~ ū1v1 v̄ !u21~v21ū21 v̄21ū v12ū v̄1v v̄1ū u% 1ū v% !u1 1

3 v3,

Jn5u3 uI 1~2ū uI 13uI v12uI v̄ !u21~uI ū213uI v21uI v v̄12uI ū v12uI v v̄

12uI ū v̄1uI ū u% 1uI ū v% !u1uI v3.

In a similar manner we have proved that the RT lattice equation admits a sequence of con
densities with rank 4,5,... along with the flux which involves lengthy expressions and so the d
are omitted here.

3. Recursion operator

The relation~10! for the RT lattice equation can be written as

FGk11
(1) ~n!

Gk11
(2) ~n!G5RFGk

(1)~n!

Gk
(2)~n!G5FR11 R12

R21 R22
G FGk

(1)~n!

Gk
(2)~n!G , k51,2,..., ~23!

where Gk(n)5(Gk
(1)(n),Gk

(2)(n)), Gk11(n)5(Gk11
(1) (n),Gk11

(2) (n)) are the generalized symme
tries. The construction of the recursion operatorR for the RT lattice equation is as follows: Fo
k53, Eq. ~23! becomes

FG4
(1)~n!

G4
(2)~n!G5FR11 R12

R21 R22
G FG3

(1)~n!

G3
(2)~n!G , ~24!

whereG3(n),G4(n) are the generalized symmetries of ranks~3,3! and~4,4! given in Eqs.~19! and
~20!. From Eq.~24! it is clear that the entriesR11, R12, R21 andR22 of the matrix operatorR must
be of ranks 1 which can be determined from the following relations,

rank G4
(1)~n!5rank R111rankG3

(1)~n!5rank R121rank G3
(2)~n!,

rank G4
(2)~n!5rank R211rankG3

(1)~n!5rank R221rank G3
(2)~n!.

So we consider the entriesR11, R12, R21 and R22 written in terms of difference and invers
difference operators of the dependent variables and their shifts having the form

R115e0v1e1u1e2uD1e3Du1e4Dv1e5vD1e6vD1uD21u21, ~25a!
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R125 f 0v1 f 1vD1uD21u211 f 2u1 f 3Du1 f 4uD1 f 5Dv1 f 6uD, ~25b!

R215g0u1g1uD1g2vD1g3Du1g4Dv, ~25c!

R225h0u1h1uD1h2uDvD21u211h3uDuD21u211h4uD1uD21u21, ~25d!

whereei , f i ,i 51,2,3,4,5,6,hj ,gj , j 51,2,3,4, are arbitrary constants to be determined andD and
D1 are difference operators defined by

Du5un112un5ū2u, D1u5un212un5uI 2u,

andD21, (D2D1)21 and (D1)21 are inverse difference operators defined as

D21u5
1

2 F (
k52`

21

@un1112k1un12k#2 (
k51

`

@un2112k1un2212k#G ,

~D2D1!21u5
1

2 F (
k52`

21

un1112k2 (
k51

`

un2112kG ,

~D1!21u52
1

2 F (
k52`

21

@un1212k1un1112k#2 (
k51

`

@un12k1un2112k#G .

Substituting the entriesR11, R12, R21 and R22 in Eq. ~24!, we have checked that it is satisfie
identically only if

e051, f 0521, 2 f 15h15g15g25g352g451, h05g052,

and so the recursion operator for the RT lattice equation~1! becomes

R5F v v1v~12E21!u~E21!21
1

u

u~11E! u~11E!1u~E21!v~E21!21
1

u
1u~E2E21!u~E21!21

1

u

G , ~26!

whereE andE21 are the shift operators defined byEun5(11D)un andE21un5(11D1)un .

4. Factorization of recursion operator

Let us assume that the constructed (23 2) matrix recursion operatorR, Eq. ~26!, can be
written as a product of two distinct (23 2) matrix operatorsA5(Ai j ) and B5(Bi j ), i , j 51,2.
That is,

FR11 R12

R21 R22
G5FA11 A12

A21 A22
GFB11 B12

B21 B22
G . ~27!

Equation~27! suggests that the entries of the matrixAB must be of the same rank as ofR. Thus
we consider the entries of the matrix operatorA andB having the form

A115a11uDv1a12uvD1a13uvD11a14vDu1a15uD1u, ~28a!

A125b11uDv1b12vD1u1b13uDu1b14vDu1b15uD1u, ~28b!

A215c11uDv1c12uvD1c13uvD11c14vDu1c15uD1v1c16vD1u1c17uDu1c18uD1u,
~28c!
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A225d11uDu1d12uD1u1d13uDv1d14vDu1d15vDv1d16vD1v, ~28d!

B115ã11u
21D21u211ã12u

21~D1!21u211ã13v
21D21u211ã14u

21~D1!21v21, ~29a!

B125b̃11D
21u211b̃12v

21~D1!211b̃13v
21D211b̃14~D1!21v211b̃15u

21D21, ~29b!

B215 c̃11D
21v211 c̃12u

21~D1!211 c̃13v
21D211 c̃14~D1!21u211 c̃15D

21u21, ~29c!

B225d̃11v
21D211d̃12D

21u211d̃13u
21~D1!21, ~29d!

whereai j , ãi j , bi j , b̃i j ci j , c̃i j di j andd̃i j are unknown constants to be determined. Substitu
the above entries (Ai j ) and (Bi j ) on the right hand side of Eq.~27! and then equating with the
entries on the left hand side we find that the consistency condition holds only for the follo
parametric restrictions:

b1252c115d1152d1252b̃115 c̃125d̃1352d̃1251

and so the matrix operatorsA andB become

A5F 0 vD1u

2uDv u~D2D1!u
G , B5F 0 2D21u21

u21~D1!21 u21~D1!212D21u21G . ~30!

We have also verified that both the matrix operatorsA andB are invertible. To write the recursion
operatorR in the standard formR5H2H1

21 we choose

H25A5F 0 vD1u

2uDv u~D2D1!u
G ~31a!

and

B5H1
21,

and so

H15FuE2E21u ~E2121!u

2u~E21! 0 G . ~31b!

B. BM lattice equation

1. Generalized symmetries

The invariant equation~9! takes the following form for the BM lattice equation:

]Gi
(1)~n!

]t
5Gi

(3)~n11!2Gi
(3)~n21!, ~32a!

]Gi
(2)~n!

]t
5Gi

(1)~n21!wn211Gi
(3)~n21!un212Gi

(1)~n!wn2Gi
(3)~n!un , ~32b!

]Gi
(3)~n!

]t
5Gi

(3)~n!~vn2vn11!1wn~Gi
(2)~n!2Gi

(2)~n11!!. ~32c!

Solving the above invariant equations along the lines described for the RT lattice equation w
derived a sequence of generalized symmetries. The explicit forms of generalized symmetrie~also
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conserved densities! are given in Ref. 21. The first few generalized symmetriesG2(n)
5(G2

(1)(n),G2
(2)(n),G2

(3)(n)), G3(n)5(G3
(1)(n),G3

(2)(n),G3
(3)(n)), G45(G4

(1)(n),G4
(2)(n),

G4
(3)(n)), respectively, having ranks (3

2,2,52), ( 5
2,3,72), ( 7

2,4,92), are given by

G2
(1)~n!5w̄2wI , G2

(2)~n!5uI wI 2u w, G2
(3)~n!5w~v2 v̄ !, ~33!

G3
(1)~n!5wI ~v1vI !2w̄~ v̄1v% !, G3

(2)~n!5uw~v1 v̄ !2uI wI ~v1vI !1wI w= 2ww̄,
~34!

G3
(3)~n!5w~ v̄22v2!1w~w̄ū2wI uI !,

G4
(1)~n!52w̄v% 22w̄ v̄22w̄w% u% 2w w̄u1wI v21wI vI 21wwI u1wI w= u=1vwI vI

1uI wI 22ū w̄22w̄v̄v% ,

G4
(2)~n!52uw2v1uw2v̄22uI wI wv2uI wI wvI 1wwI w= 2wv312ww̄ūv̄1ww̄ūv% 2ww̄w% 1wv̄3,

~35!

G4
(3)~n!5wI w= vI 1wI w= v=2uI wI v22uI wI vI 22wI w= uI u=1uwv̄21uwv2

1uwūw̄2ww̄v̄2ww̄v% 1u2w21uvw v̄2ww̄v1wI w= v2uI wI vvI 2uI 2wI 2,

wherewn5w,wn115w̄,wn215wI , wn125w% ,wn225w= .

2. Recursion operator and factorization

Here the generalized symmetryGk(n)5(Gk
(1)(n),Gk

(2)(n),Gk
(3)(n)) and so the relation~10!

takes

FGk11
(1) ~n!

Gk11
(2) ~n!

Gk11
(3) ~n!

G5RFGk
(1)~n!

Gk
(2)~n!

Gk
(3)~n!

G5FR11 R12 R13

R21 R22 R23

R31 R32 R33

G FGk
(1)~n!

Gk
(2)~n!

Gk
(3)~n!

G , k51,2,... . ~36!

Let k53. Now

rank G3
(1)5 5

2 , rank G3
(2)53, rank G3

(3)5 7
2 ,

rank G4
(1)5 7

2 , rank G4
(2)54, rank G4

(3)5 9
2 .

Then the rank of the entries ofR can be determined from the following relations,

rank G4
(1)~n!5rankR111rank G3

(1)~n!5rank R121rank G3
(2)~n!5rank R131rank G3

(3)~n!,

rank G4
(2)~n!5rank R211rank G3

(1)~n!5rank R221rankG3
(2)~n!5rank R231rank G3

(3)~n!,

rank G4
(3)~n!5rank R311rank G3

(1)~n!5rank R321rankG3
(2)~n!5rank R331rank G3

(3)~n!,

and so

rank R11 51, rank R12 5 1
2 , rank R13 50,

rank R21 5 3
2 , rank R22 51, rank R23 5 1

2 ,

rank R31 52, rank R325
3
2 , rank R33 51.
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We then choose the entriesR11, R12, R13, R21, R22, R23, R31, R32, R33 written in terms of the
difference and inverse difference operators of the dependent variables and their inverse
proceeding further as explained for the RT lattice equation, we obtain the explicit form o
recursion operatorR,

R53
(Ev2vE212u~E21!Ẽ21 u~E21!Ẽ21 2~EwE2E21w!D21

1

w

~E2121!u)~D2D1!21

~wE2E21wE21!~D2D1!21 v ~E21uw2uwE!D21
1

w

w~E21!Ẽ21~E2121! w~2Ẽ211~12E!!Ẽ21 w~E21!vD21
1

w

u~D2D1!21

4 ,

which can be factorized into

R5H2H1
21 ,

where

H15F ~D2D1! 0 0

0 0 D1w

0 2wD 0
G , ~37!

H25F Ev2vE212u~E21! EwE2E21w u~E21!

~Ẽ!21~E2121!u ~Ẽ!21~E2121!w

wE2E21wE21 E21uw2uwE v~E2121!w

w~E21!~Ẽ!21 2w~E21!v w(2Ẽ2~E21!~Ẽ!21

~E2121!u ~E2121!)w

G , ~38!

whereẼ5D2D1, (D2D1)21 and (D1)21 are inverse difference operators defined as

~D2D1!21u5
1

2 F (
k52`

21

un1112k2 (
k51

`

un2112kG ,

and

~D1!21u52
1

2 F (
k52`

21

@un1212k1un1112k#2 (
k51

`

@un12k1un2112k#G .

C. BC lattice equation

1. Generalized symmetries

Here the invariant equation~9! takes the following form,

]Gi
(1)~n!

]t
5Gi

(1)~n!~un112un21!1un~Gi
(1)~n11!2Gi

(1)~n21!!1Gi
(2)~n21!2Gi

(2)~n!,

~39a!
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]Gi
(2)~n!

]t
5Gi

(2)~n!~un122un21!1vn~Gi
(1)~n12!2Gi

(1)~n21!!. ~39b!

In Ref. 21, we have solved the above invariant equations and shown that the BC lattice eq
admits a sequence of generalized symmetries~also conserved densities!. First few generalized
symmetriesG2(n)5(G2

(1)(n),G2
(2)(n)), G3(n)5(G3

(1)(n),G3
(2)(n)), G4(n)5(G4

(1)(n),G4
(2)(n))

having ranks~2,3!, ~3,4!, ~4,5! are

G2
(1)~n!5u~ ū2uI !1vI 2v, G2

(2)~n!5v~u% 2uI !, ~40!

G3
(1)~n!5~v2uū!~u1ū1u% !1~uuI 2vI !~u1uI 1u= !2u~v=2 v̄ !,

G3
(2)~n!5uI v~u1uI 1u= !2u% v~ ū1u% 1 ū̄

¯
!1v~ v̄1v% 2vI 2v= !, ~41!

G4
(1)~n!52@u3ū12u2ū21uū31u2ūu% 12uū2u% 1uūu% 21uūu% ū̄

¯
2uuI u=uT2uuI u= 2

22uuI 2u=2uuI 32u2uI u=2u3uI 22u2uI 2#13uūv1ū2v12ūu% v12uūv̄1uu% v̄1uū̄
¯

v̄

1u2v1uūv% 1uu% v2u2vI 23uuI vI 2uu= vI 2u2v=1u2v̄2uI 2vI 22uI u= vI 2uu= v=

2uuT v=2uuI vT2u= 2vI 2u=uT vI 1vI v=1vI vT1u% 2v22uuI v=1u% ū̄
¯

v2vv̄2vv% 2v21vI 2,

G4
(2)~n!52ūvvI 1uūuI v1u% vv% 1vv% ū̄

¯
1vv% ū̄̄̄22u% 2ū̄

¯
v2u% ū̄2̄v2u% ū̄

¯
ū̄
¯̄

v22ūu% 2v2ū2u% v

2uūu% v1u% vv̄1ūvv̄1uvv̄1v2u% 1u% vv̄̄
¯

2u% 3v2uI vvI 2uvvI 12uuI 2v1u2uI v12uI 2u= v

1uI u= 2v1uI u=uT v2uI vv=2u= vv=2uT vv=2uI vvT2v2uI 1uuI u= v2vv= u2vvI u=1vv̄ ū̄
¯

u2ūu% ū̄
¯

v

1vv% ū1uI 3v. ~42!

2. Recursion operator and factorization

Here the relation~10! related with the recursion operatorR is

FGk11
(1) ~n!

Gk11
(2) ~n!G5RFGk

(1)~n!

Gk
(2)~n!G5FR11 R12

R21 R22
G FGk

(1)~n!

Gk
(2)~n!G , k51,2,... . ~43!

Let k53. Now

rank G3
(1)~n!53, rankG3

(2)~n!54, rank G4
(1)~n!54, rankG4

(2)~n!55.

The ranks of the entries ofR can be determined from the following relations,

rank G4
(1)~n!5rank R111rank G3

(1)~n!5rank R121rank G3
(2)~n!,

rank G4
(2)~n!5rank R211rank G3

(1)~n!5rank R221rank G3
(2)~n!.

Thus

rank R1151, rank R1250, rankR2152, rank R2251.

Proceeding in a similar manner as for the RT and BM lattice equations~1! and ~2! we
construct the recursion operatorR which can be written as a product of two invertible operato
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R5H2H1
21 ,

where

H15FH11
(1) H12

(1)

H21
(1) H22

(1)G and H25FH11
(2) H12

(2)

H21
(2) H22

(2)G ,

H11
(1)5uEu2uE21u1E21v2vE,

H12
(1)52uE22v1uEv, ~44a!

H21
(1)5vE2u2vE21u,

H22
(1)5vE2v1vEv2vE22v2vE21v.

H11
(2)5u~uE1Eu1EuE2uE212E21u2E21uE21!u1uE21v

2uEvE1E21vE21u2vE2u2uvE2vEu1E21uv1uE22v),

H12
(2)52u~2uE2Eu2EuE1uE221E21uE221E21uE21!v

2v~11E1E2!v1E21v~11E211E22!v2~uE21u2uEuE21!v,
~44b!

H21
(2)52v~uE211E21u1E21uE212EuE2E2u2E2uE!u

2v@~11E1E2!vE2~11E211E22!v#2v@2uE1EuE21#u,

H22
(2)52v~E21uE221uE222uE2E2uE1E21u1E21uE21

2E2uE212EuE1EuE222E2u!v.

IV. BI-HAMILTONIAN SYSTEM

We prove, in this section, that the factorized operatorsH1 and H2 for each of the lattice
equations~1!–~3! are Hamiltonian.

A. RT lattice equation

Obviously the operatorsH1 and H2 given in Eqs.~31a! and ~31b! are skew-symmetric. In
order to prove that the operatorsH1 andH2 are Hamiltonian it remains to prove that they satis
the Jacobi identity. Let us first consider the skew symmetric operatorH1 . It is appropriate to
mention the following theorem for a system of nonlinear PDEs]u/]t 5K(u) due to Olver.6

Theorem: Let D be a skew-adjointq3q matrix differential operator of the system of PDE
]u/]t 5K(u) andQ5 1

2*$Q∧DQ%dx, the corresponding functional bi-vector. ThenD is Hamil-
tonian if and only if

PrVDu~Q!50. ~45!

Hereu5u(x,u). Recent investigations by Sanders and Wang33 suggest that the above result, E
~45!, holds good for nonlinear PDDEs as well. Thus it remains to prove that the skew-symm
operatorH1 , Eq. ~31a!, of the RT lattice equation~1! satisfies Eq.~45!. For nonlinear PDDEs,
prolongation of the vector field is defined as33

PrVHu5(
a,J

EJS (
b

HabubD ]

]uJ
a ,
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whereEJ is the shift operator andH is a skew-symmetric operator. Letu15(u,§)T. Then

H1u15H1Fu§ G5F ~uE2E21u!u1~E2121!u§
2uDu G5FF1

F2
G .

Define a bi-vectorQ of H1 by

QH1
5

1

2 ( @u∧F11§∧F2#

5
1

2 ( @u u ∧ ū2u ū ∧u1u ū ∧ §2u u ∧ §2u § ∧ ū1u § ∧u#.

Making use of the wedge product,

u∧ ū52 ū∧u,ū∧§52§∧ ū,u∧u50,

we rewrite the bi-vectorQH1
as

QH1
5( @u u ∧ ū1uū ∧ §1u § ∧u#,

where§̄5§n11 ,ū5un11 . Now

PrVH1u1
~QH1

!5( @~2u ū1uu! ∧ ~u ∧ ū1 ū ∧ §1§ ∧ u!50.

Here ( is used to denote the equivalence classes after dividing the image of (12E). These
equivalence classes are called functionals. In a similar manner, we checked that for the
symmetric operatorH2 ,

PrVH2u1
~QH2

!50.

Thus the operatorsH1 andH2 are Hamiltonian. Hence the RT equation~1! can be written in the
bi-Hamiltonian form. Using the compatible Hamiltonian operatorsH1 andH2 , we have

Fv t

ut
G5H1F dH1

du

dH1

dv

G5H2F dH0

du

dH0

dv

G ,

associated with the Hamiltonian functionals,H0(u,v)5(n logv and H1(u,v)5(n@ 1
2(u

21v2)
1uv1uv1uu#. Hence the RT lattice equation~1! is a bi-Hamiltonian system. A similar obse
vation is also pointed out by Fuchssteineret al. using a different approach.32

B. BM lattice equation

It is straight forward to check that the operatorsH1 and H2 , Eqs.~37! and ~38!, are skew-
symmetric. In order to prove that the operatorsH1 andH2 are Hamiltonian it remains to prove tha
they satisfy the Jacobi identity. First consider the operatorH1 . As before, letu15(u,x,§)T and

H1u15H1F u
x
§
G5F Ẽu

~E2121!w§
2w~E21!x

G5FF1

F2

F3

G .
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Define a bi vectorQ of H1 by

QH1
5

1

2 ( @u∧F11x∧F21§∧F3#

5
1

2 ( @u∧~E2E21!u1x∧~E2121!w§1§∧~2w~E21!x!#

5
1

2 ( @u∧Eu2u∧E21u1x∧E21w§2x∧w§2§∧wEx1§∧wx#

5
1

2 ( @u ∧ ū2 ū ∧ u1x̄ ∧ w§2x ∧ w §2§ ∧ w x̄1§ ∧ wx#. ~46!

Making use of the property of wedge product, we simplify Eq.~46! into

QH1
5( @u ∧ ū1wx̄ ∧ §1w § ∧ x#,

whereū5un11 ,x̄5xn11 , etc. Proceeding as before for the RT lattice equation~1!, it is easy to
see that

PrVH1u1
~QH1

!5( @2w~E21!x∧x̄∧§2w~E21!x∧§∧x#

5( @2w ~ x̄ ∧ x̄∧ §2x ∧ x̄ ∧§!2w ~ x̄ ∧§ ∧ x2x ∧ § ∧x!#50

and henceH1 is a Hamiltonian operator. Similar conclusion can also be arrived at for the ope
H2 . Now the BM lattice equation~2! can be written as

F ut

v t

wt

G5H1F dH1

du

dH1

dv

dH1

dw

G5H2F dH0

du

dH0

dv

dH0

dw

G ,

where the Hamiltonian functionalsH0(u,v,w) andH1(u,v,w) take the formsH0(u,v,w)5(v
andH1(u,v,w)5(@ 1

2v
21uw# and so the BM lattice equation~2! is a bi-Hamiltonian system. The

bi-Hamiltonian formulation for the BM lattice equation has also been obtained by Blaszaket al.
using a different approach.31

C. BC lattice equation

It is straight forward to check that the operatorsH1 andH2 given in Eqs.~44a! and~44b! are
skew-symmetric. For Hamiltonian operator, it remains to prove the Jacobi identity. First con
the operatorH1 . As before, letu15(u,§)T and

H1u15H1Fu§ G5FH11
(1)u1H12

(1)§

H21
(1)u1H22

(1)§G5FF1

F2
G ,

whereH11
(1) ,H12

(1) ,H21
(1) , H22

(1) ,H11
(2) ,H12

(2) ,H21
(2) andH22

(2) are given in Eqs.~44a! and ~44b!.
Define a bi-vectorQ of H1 by
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QH1
5

1

2 ( @u∧F11§∧F2#

5
1

2 ( @u∧~uEu2uE21u1E21v2vE!u1u∧~2uE22v1uEv !§

1§∧~vE2u2vE21u!u1§∧~vE2v1vEv2vE22v2vE21v !§#

5
1

2 ( @u∧~uEu!u2u∧~uE21u!u1u∧~E21v !u2u∧~vEu!1u∧~2uE22v !§

1u∧~uEv !§1§∧~vE2uu!2§∧~vE21u!u1§∧~vE2v !§

1§∧~vEv§!2§∧~vE22v§!2§∧~vE21v !§#

5
1

2 ( @u ∧ uū ū2 ū ∧ ū uu1 ū ∧ v u2u ∧ v ū2u% ∧ u% v §1u ∧ uv̄ §̄

1§ ∧ v u% u% 2 §̄ ∧ v̄u u1§ ∧ vv% §% 1§ ∧ vv̄ §̄2§% ∧v% v §2 §̄ ∧ v̄ v §#,

~47!

where §̄5§n11 , §I 5§n21 , ū5un11 , uI 5un21 , etc. Making use of the property of the wedg
product, Eq.~47! can be written as

QH1
5( @u ū u ∧ ū1v ū ∧ u1u% v § ∧ u% 1v v̄§ ∧ §̄1u v̄ u∧ §̄1v v% §∧ §% #.

Proceeding further along the same lines as for the RT and BM lattice equations~1! and~2! we find
that

PrVH1u1
~QH1

!50 ~48!

and so the operatorH1 is Hamiltonian. A similar conclusion can also be arrived at for the oper
H2 and therefore the BC lattice equation~3! can be written as

Fut

v t
G5H1F dH1

du

dH1

dv

G5H2F dH0

du

dH0

dv

G ,

where the Hamiltonian functionals areH0(u,v)52( 1
3 logv andH1(u,v)5(u, indicating that it

is a bi-Hamiltonian system. The bi-Hamiltonian formulation for the BC lattice equation has
been obtained by Belovet al. using a different approach.30

V. CONCLUSION

It is shown how to construct recursion operators systematically for PDDEs with two inde
dent variables~one continuous and one discrete! using its generalized symmetries and then e
plained how to factorize it explicitly. This was illustrated for the relativistic toda~RT!, Belov–
Chaltikian~BC! and Blaszak–Marciniak~BM! lattice equations and it was shown that the RT a
BC lattice equations admit (232) factorizable matrix recursion operators while the BM latti
equation possesses (333) factorizable matrix recursion operator. Furthermore, it is explic
proved that the factorized operators are Hamiltonian in all the lattice equations. The existe
the multi-Hamiltonian structure for the above lattice equations is under investigation.
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Kolakoski- „2m,2n … are limit-periodic model sets
Bernd Singa)

Universität Greifswald, Institut fu¨r Mathematik und Informatik,
Jahnstr. 15a, 17487 Greifswald, Germany

~Received 5 August 2002; accepted 29 August 2002!

We consider~generalized! Kolakoski sequences on an alphabet with two even
numbers. They can be related to a primitive substitution rule of constant length,.
Using this connection, we prove that they have pure point dynamical and pure point
diffractive spectrum, where we make use of the strong interplay between these two
concepts. Since these sequences can then be described as model sets with,-adic
internal space, we add an approach to ‘‘visualize’’ such internal spaces. ©2003
American Institute of Physics.@DOI: 10.1063/1.1521239#

I. INTRODUCTION

A one-sided infinite sequencev over the alphabetA5$1,2% is called a~classical! Kolakoski
sequence~named after W. Kolakoski who introduced it in 1965, see Ref. 12!, if it equals the
sequence defined by its run lengths, e.g.,

~1!

Here, arun is a maximal subword consisting of identical letters. The sequencev851v is the only
other sequence which has this property.

One way to obtainv of ~1! is by starting with 2 as a seed and iterating the two substituti

s0 :
1°2
2°22 and s1 :

1°1
2°11,

alternatingly, i.e.,s0 substitutes letters on even positions ands1 letters on odd positions~we begin
counting at 0!:

2 ° 22 ° 2211° 221121° 221121221° ¯ .

Clearly, the iterates converge to the Kolakoski sequencev ~in the obvious product topology!, and
v is the unique~one-sided! fixed point of this iteration.

One can generalize this by choosing a different alphabetA5$p,q% @we are only looking at
alphabets with card(A)52]. Such a~generalized! Kolakoski sequence, which is also equal to t
sequence of its run lengths, can be obtained by iterating the two substitutions

s0 :
q°pq

p°pp and s1 :
q°qq

p°qp ~2!

alternatingly. Here, the starting letter of the sequence isp. We will call such a sequence
Kolakoski-(p,q) sequence, or Kol(p,q) for short. The classical Kolakoski sequencev of ~1! is
therefore denoted by Kol~2,1! @andv8 by Kol~1,2!#.

a!Electronic mail: sing@uni-greifswald.de, URL: http://schubert.math-inf.uni-greifswald.de
8990022-2488/2003/44(2)/899/14/$20.00 © 2003 American Institute of Physics
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While little is known about the classical Kolakoski sequence~see Ref. 6!, and the same holds
for all Kol( p,q) with p odd andq even or vice versa~see Ref. 22!, the situation is more favorable
if p andq are either both even or both odd. If both are odd, one can, in some cases, rewr
substitution as a substitution of Pisot type~see Refs. 22 and 2!, which can be described as~limit- !
aperiodic model sets. By this method, Kol~3,1! is studied in Ref. 2 and shown to be a deform
model set. The case where both symbols are even will be studied below.

It is the aim of this article to determine structure and order of the sequences Kol(2m,2n). This
will require two steps: First we establish an equivalent substitution of constant lengt
Kol(2m,2n) and analyze it with methods known from the theory of dynamical systems. The
conclude diffractive properties from this.

Remark:Every Kol(p,q) can uniquely be extended to a bi-infinite~or two-sided! sequence.
The one-sided sequence~to the right! is Kol(p,q) as explained above. The added part to the
is a reversed copy of Kol(q,p), e.g., in the case of the classical Kolakoski sequence of~1!, this
reads as

...11221221211221u22112122122112...,

where ‘‘u’’ denotes the seamline between the one-sided sequences. Note that, ifq51 ~or p51),
the bi-infinite sequence is mirror symmetric around the first position to the left~right! of the
seamline. The bi-infinite sequence equals the sequence of its run lengths, if counting is be
the seamline. Alternatively, one can get such a bi-infinite sequence by starting withqup and
applying the two substitutions to gets1(q)us0(p) in the first step and so forth. This also implie
that Kol(p,q) and Kol(q,p) will have the same spectral properties, and it suffices to study on
them.

II. Kol „2m,2n … AS SUBSTITUTION OF CONSTANT LENGTH

If both letters are even numbers, i.e.,p52m andq52n ~with mÞn, where we can concen
trate onm.n by the above discussion!, one can build blocks of two letters and obtain an~ordi-
nary! substitution. SettingA5pp andB5qq, these substitutions and theirsubstitution matrixM
~sometimes calledincidence matrixof the substitution! are given by

s:
A°AmBm

B°AnBn and M5S m m

n n D , ~3!

where the entryMi j is the number of occurrences ofj in s( i ) ( i , j P$A,B%; sometimes the
transposed matrix is used!. A bi-infinite fixed point can be obtained as follows:

BuA ° AnBnuAmBm ° ¯ .

This corresponds to the unique bi-infinite Kol(2m,2n) according to our above convention.
A substitution% is primitive if the corresponding substitution matrixM is primitive, i.e.,M k

has positive entries only for somekPN. Equivalently,% is primitive if there exists a positive
integerkPN such that everyi PA occurs in%k( j ) for all j PA. The vectorø with components
, i5u%( i )u, for i PA, is called thelengthof the substitution%. If all , i are equal,% is a substi-
tution of constant length. For the substitutions of ~3!, we have

ø5S 2m
2n D ,

which is therefore not of constant length~recall thatmÞn).
We will also need some notions from the theory ofdynamical systems, ~see Refs. 18 and 8

Chaps. 1, 5, and 7 for details!. Let % be a primitive substitution overA anduPA Z a bi-infinite
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fixed point of% @i.e., u5%k(u) for somekPN]. Denote byuk thekth letter ofu(kPZ) and byT
the shift map@i.e., (T(u))k5uk11]. Let A be equipped with the discrete andA Z with the corre-
sponding product topology. If we set

X~% !5$Tk~u!ukPZ%,

then (X(%),T) is a dynamical system. Since we require% to be primitive, this dynamical system
is minimal @i.e., $Tk(u)ukPZ% is dense inX(%) for all uP(X(%),T)], does not depend on th
chosen fixed pointu ~if more than one exists, which is possible in the two-sided situation! and has
a unique probability measurem associated with it. In other words, it isstrictly ergodic. On the
Hilbert spaceL 2(X(%),m), we have the unitary operator

U: L 2~X~% !,m!→L 2~X~% !,m!,

f ° f +T.

If U f 5eil f for some 0Þ f PL 2(X(%),m), we call eil an eigenvalueof (X(%),T) and f the
correspondingeigenfunction. The spectrum~of the dynamical system! is said to be apure point
dynamical spectrum~or discrete spectrum!, if the eigenfunctions spanL 2(X(%),m). If 1 is the
only eigenvalue and the only eigenfunctions are the constants, the spectrum iscontinuous. It is
also possible that it has pure point and continuous components. In that case it is calledpartially
continuous. Two dynamical systems (X,T) and (Y,S) are isomorphic~or measure-theoretically
isomorphic!, if there exists an invertible measurable mapw:X→Y, almost everywhere defined
such thatw preserves the measure and the dynamics~i.e., w+T5S+w).

The spectral theory of primitive substitutions of constant length is well understood. B
following criterion, we know that the substitutionss of ~3! are related to substitutions of consta
length.

Lemma 1 (Ref. 5, Sec. V, Theorem 1):Let % be a substitution of nonconstant lengthø. If ø is
a right eigenvector of the corresponding substitution matrixM , then(X(%),T) is isomorphic to a
substitution dynamical system generated by a substitution of constant length. h

@Note that from~2!, one can also construct a primitive substitution by distinguishing odd
even positions, e.g., for Kol~4,2! we would get~we use•̃ as mark for even positions!

4 → 44̃44̃,

4̃ → 22̃22̃,

2 → 44̃,

2̃ → 22̃.

Instead of~3!, we would get a substitution with substitution matrix

M5S m m 0 0

0 0 m m

n n 0 0

0 0 n n

D , ~4!

which is also primitive (M2 has positive entries only!, but does not fulfill the requirements o
Lemma 1. The eigenvalues of thisM are$0,0,0,m1n%].

Since the substitutionss of ~3! fulfill the requirements of Lemma 1, the next task is now
construct the corresponding substitutions of constant length. This is achieved by numberi
A’s and B’s in ~3!, i.e., we make the substitutionsAmBm→A1¯AmB1¯Bm , respectively
AnBn→Am11¯Am1nBm11¯Bm1n . Then, the former substitutions~3! induce
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A1¯AmB1¯Bm ° ~A1¯AmB1¯Bm!m~Am11¯Am1nBm11¯Bm1n!m,
~5!

Am11¯Am1nBm11¯Bm1n ° ~A1¯AmB1¯Bm!n~Am11¯Am1nBm11¯Bm1n!n.

From this we get substitutions of constant lengthm1n @the eigenvalue of the substitution matr
M in ~3!# by parting the right sides in blocks ofm1n letters. For example, letm52 andn51.
Then

A1A2B1B2 ° A1A2B1 B2A1A2 B1B2A3 B3A3B3 ,

A3B3 ° A1A2B1 B2A3B3 ,

and one extracts the following substitution of constant length 3:

A1 ° A1A2B1 ,

A2 ° B2A1A2 ,

B1 ° B1B2A3 ,
~6!

B2 ° B3A3B3 ,

A3 ° A1A2B1 ,

B3 ° B2A3B3 .

In the same way, we get substitutions of constant lengthm1n from ~5!. Note that these substi
tutions are all primitive since@compare to~5!# in every block of 2m212n successive letters~note
that we usem.n) every letter of A5$A1 ,...,Am1n ,B1 ,...,Bm1n% occurs, so if (m1n)k0

>2m212n, then M k0 has positive entries only~this holds fork0>3). Note also that we can
reduce the alphabet by one letter by identifyingA15Am11 @A15A3 in the example~6!#, because
both A’s always yield the same substitution.

Let us now determine the positions ofA1 in the sequenceu generated by~5!. They are given
by a•2m1b•2n for some a,bPZ ~e.g., 0, 2m, 4m,..., 2m2, 2m212n, 2m214n, . . . , 2m2

12nm,...).Therefore we get gcd$ i uui5u05A1%5gcd(2m,2n)52gcd(m,n). Theheight h(%) of
a primitive substitution% of constant length, which generates a sequenceu is defined as

h~% !5max$k>1ugcd~k,, !51 and k divides gcd$ i uui5u0%%. ~7!

Then the following lemma holds.
Lemma 2: Let(X(%),T) be a dynamical system, where% is a primitive substitution of con-

stant length, and height h(%). Then the pure point part of this dynamical system is isomorp
to the dynamical system(Z,3Z/h(%)Z,t), wheret is the addition of~1,1! on the Abelian group
Z,3Z/h(%)Z, i.e., the direct product of the,-adic integersZ, and the cyclic groupZ/h(%)Z of
order h(%). Therefore the pure point dynamical spectrum is given by

$e2p i n/,m 12p ik/h(%)u k,nPZ,mPN%.

Note that

Z,.Zp1
3¯3Zpr

, ~8!

wherep1 ,...,pr are the distinct primes dividing, ~see Ref. 16, Sec. 3.10!.
Proof: The lemma is just a reformulation of Ref. 5, Theorem II.13~compare with Ref. 18, Sec

VI and Ref. 8, Sec. 7.3!. h
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Proposition 1: Suppose(X(s),T) has pure point dynamical spectrum, wheres is the substi-
tution of (3). Then

~X~s!,T!.H ~Zm1n3Z/2Z,t! if m1n is odd,

~Zm1n ,t̃ ! if m1n is even,

wheret is the addition of~1,1! and t̃ the addition of1.
Proof: For the substitution~5! of constant length,5m1n, we have already seen tha

gcd$ i uui5u0%52gcd(m,n). Therefore, using~7!, the height of this substitution is 2 if, is odd and
1 if , is even. The dynamical system of the substitution~5! is isomorphic to (X(s),T) by Lemma
1, therefore they have the same spectrum. The remaining statement follows from Lemmah

We want to show that the spectrum ofs is indeed pure point. For this we use slightly differe
substitutions of constant length that we deduce froms. We substituteAmBm→a1¯am and
AnBn→b1¯bn @so in ~5! we build essentially blocks of two, e.g.,a15A1A2]. We get

a1 •••am ° ~a1 •••am!m~b1 •••bn!m,
~9!

b1 •••bn ° ~a1 •••am!n~b1 •••bn!n,

which again gives substitutions of constant length,5m1n. They are all primitive substitutions
by the same argument as before~in every block ofm21n successive letters every letter occur!.
In the case n.1, we can reduce the alphabet by one letter by identifyinga1

5b1°a1¯ama1¯an . So we have two cases,n51 with substitutions

ũ: 5
a1 ° a1 a2 a3 ... am21 am a1 ,

a2 ° a2 a3 a4 ... am a1 a2 ,

] ...

am21 ° am21 am a1 ... am23 am22 am21 ,

am ° am b1 b1 ... b1 b1 b1 ,

b1 ° a1 a2 a3 ... am21 am b1 ,

~10!

andn.1 with substitutionsu ~it is cumbersome to write down such au in general form, but we
will investigate its structure in the next section!. Now the height ofu and ũ is always 1, because
if n.1 we get gcd$ i uu05ui5a1%5gcd(m,n), and if n51 we get gcd$ i uu05ui5a1%
5gcd(m,m11)51.

Let % be a primitive substitution of constant length, and heighth(%)51. One says that%
admits acoincidence, if there exist akPN and j ,,k such that%k( i ) j is the same for alli PA @the
j th letter of each%k( i ) is the same, i.e.,%k admits a column of identical values#.

Lemma 3 (Ref. 5, Sec. III, Theorem 7): Let(X(%),T) be a substitution dynamical system
constant length and height h(%)51. Then(X(%),T) has pure point dynamical spectrum if an
only if % admits a coincidence. h

If a substitution has heighth.1, one gets a substitution of height 1 by combining letters i
blocks ofh letters. If this new substitution has pure point dynamical spectrum, so has the or
substitution of heighth ~see Ref. 5!. Obviously, we get the following: if the substitutionsu and ũ
@which arise from~9!# admit coincidences, then the dynamical systems defined bys of ~3! have
pure point dynamical spectrum.

III. COINCIDENCES AND COINCIDENCE MATRIX

Let us first checkũ of ~10! for coincidences. For this we begin by exploring the structu
ũ(a1) has twoa1’s at position 0 andm, ũ(a2) has ana1 at positionm21, etc. We get ana1 in
ũ(ak) at positionm112k for 1<k<m21. Similar arguments show that there is anam in ũ(ak)
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at positionm2k for 1<k<m and atm21 in ũ(b1). Now, ũ(am) has b1’s at all positions

1,...,m. Furthermore,ũ(b1) has ab1 at positionm and shares the firstm letters with ũ(a1).
Schematically, we get the following structure ofũ:

a1 ° * * * ... * am a1 ,

a2 ° • • • ... am a1 • ,

] / /

] / /

am21 ° • am a1 ... • • • ,

am ° am b1 b1 ... b1 b1 b1 ,

b1 ° * * * ... * am b1 .

~11!

Here we have omitted~.! all letters that are not necessary and by* we denote the part thatũ(a1)
and ũ(b1) share. We now check forpairwise coincidences, i.e., for i 1 ,i 2PA we check whether
there is akPN and aj ,,k5(m11)k such thatsk( i 1) j5sk( i 2) j .

So we picki 1 ,i 2PA5$a1 ,...,am ,b1%, i 1Þ i 2 . Supposei 1Þam ~otherwise we interchangei 1

andi 2). Theni 2 either equalsam or at leastũ( i 2) has anam @everyũ( i ), i PA has one#. In the first
case takek51, otherwisek52. Observe that there arem successiveb1’s in ũ(am). So, if we look
at ũk( i 1) and ũk( i 2), we get the following: On the one hand, there arem successiveb1’s some-
where inũk( i 2), say at positionsj ,...,j 1m21. On the other hand, inũk( i 1), there is at one of
these positionsj ,...,j 1m21 either ab1 , and we have a pairwise coincidence, or ana1 . Say there
is ana1 at j̃ with j < j̃ < j 1m21. Then inũk11( i 1) andũk11( i 2) we have pairwise coincidence
at positionsj̃ •,,...,j̃ •,1m @the * ’s of ~11!#.

From this pairwise coincidences we get a coincidence inductively: We start with two le
i 1 ,i 2 and afterk1<3 substitutions we have a pairwise coincidence, say atj 1 . Now a third letter
i 3 may have something else atũk1( i 3) j 1

, but whatever it is, inũk11k2 (k2<3) all three coincide
somewhere at a positionj 2 with j 1•,k2< j 2,( j 111)•,k2. Since there are card(A)5m11 letters,
we get a coincidence after at most 3•m substitutions@i.e., there is aj ,,3m such that allũ3m( i ) j

are the same for alli PA].
The structure ofu is different. We haveA5$a1 ,...,am ,b2 ,...bn% and therefore card(A)

5m1n21. Let us first show an example, withm55 andn53:

a1 ° a1 a2 a3 a4 a5 a1 a2 a3 ,

a2 ° a4 a5 a1 a2 a3 a4 a5 a1 ,

a3 ° a2 a3 a4 a5 a1 a2 a3 a4 ,

a4 ° a5 a1 b2 b3 a1 b2 b3 a1 ,

a5 ° b2 b3 a1 b2 b3 a1 b2 b3 ,

b2 ° a4 a5 a1 a2 a3 a4 a5 a1 ,

b3 ° b2 b3 a1 b2 b3 a1 b2 b3 .

~12!

Since the positions of two consecutivea1’s in the sequence differ by at mostm, there is ana1 in
everyu( i ) with i PA ~note thatu is a substitution of constant length,5m1n). Again we look for
pairwise coincidences, so choosei 1 ,i 2PA. Then there is~at least! onea1 in u( i 1), say at position
j 1 , and~at least! one inu( i 2), say at positionj 2 . Since there can be more than onea1 in either,
we choosej 1 , j 2 such thatu j 12 j 2u is minimal. We further choosei 1 ,i 2 such thatj 1, j 2 ~in the
casej 15 j 2 , e.g., i 15a1 and i 25a5 in the above example, we are already done!. If we look at
u( i 1) andu( i 2), there are two cases each~and therefore four cases, if we look at the combin
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tions!: Eitheru( i 1) j 1115a2 ,...,u( i 1) j 2
5aj 2112 j 1

or u( i 1) j 1115b2 ,...,u( i 1) j 2
5bj 2112 j 1

and ei-
ther u( i 2) j 1

5am111 j 12 j 2
,...,u( i 2) j 2215am or u( i 2) j 1

5bm111 j 12 j 2
,...,u( i 2) j 2215bm . This is

all that can occur by the chosen minimality ofj 22 j 1.0.
Now we examine the case whereu( i 1) j 1115a2 ,...,u( i 1) j 2

5aj 2112 j 1
and u( i 2) j 1

5am111 j 12 j 2
,...,u( i 2) j 2215am . We want to show thatu2( i 1) andu2( i 2) have a pairwise coin-

cidence. Let us look at thea1’s in u(ai) only ~we use again the above example, but the reas
given apply for arbitrarym, n):

a1 ° a1
1

a2 a3 a4 a5 a1
2

a2 a3 ,

a2 ° a4 a5 a1
3

a2 a3 a4 a5 a1
4

,

a3 ° a2 a3 a4 a5 a1
5

a2 a3 a4 , ~13!

a4 ° a5 a1
6

b2 b3 a1
7

b2 b3 a1
8

,

a5 ° b2 b3 a1
9

b2 b3 a1
10

b2 b3 .

First we number thea1’s with 1,...,2m @left to right in u(ai) and top (i 51) to bottom (i 5m)]
and we will speak of thekth a1 ~with 1<k<2m) according to that number. We observe t
following:

~i! Let k,m. If the kth a1 occurs at positionj >n in u(ai), then the (k11)-st a1 occurs at
position j 2n in u(ai 11). If the kth a1 occurs at positionj ,n, then the (k11)-st a1

occurs atj 1m in the sameu(ai).
~ii ! Let k.m11. If thekth a1 occurs at positionj >n, then the (k21)-sta1 occurs atj 2n in

the sameu(ai). If the kth a1 occurs at positionj ,n in u(ai), then the (k21)-sta1 occurs
at positionj 1m in u(ai 21). @Notice the contrary behavior of the first two observations
going to a different or staying in the sameu(ai) and the position of the correspondinga1 .
We call this the ‘‘contrary line break property.’’#

~iii ! The second and the (2m)-th a1 occur at the same positionm in u(a1), respectivelyu(am).
With the previous two observations we get thekth and the (2m122k)-th a1 occur at the
same position for 1,k,m.

~iv! The first and the (m11)-st a1 occur inu(ai) where there is at least one morea1 . This is
obvious for the firstai ; for the (m11)-st observe that if it occurs at positionj ,m, then
there is also one atj 1n, and if it occurs at positionj >m, then there is also one a
j 2m.

These observations are based on the facts that the length of the substitution ism1n and that the
position of thea1’s in the sequence are separated bym or n only. Now the fact that theai always
occur in ascending order~i.e., we havea1a2a3¯ and nota3a1a2¯ or something else! together
with the first two observations essentially gives us an algorithm, which always yields a pa
coincidence inu2( i 1) and u2( i 2). Let us explain it in our example~13!: Suppose we have
i 15a2 and i 25a3 . Then we havej 152 and j 254. The first step is always to reducej 2 by one,
so we havej 2853. We havej 28Þ j 1 , but there is a seconda1 in u(am) (am occurs at positionj 28 in
i 2!), so we can incrementj 1 by 1 and getj 1853. We havej 185 j 28 , andu(u(a2) j

18
)5u(a2) and

u(u(a3) j
28
)5u(a5) both have ana1 at position 2~the third respectively the nintha1). Therefore

we get a pairwise coincidence inu2(a2) andu2(a3). This algorithm relies on the ‘‘contrary line
break property.’’

The other three cases are mutatis mutandis the same@see the positions of thea1’s in ~12!#. So,
starting with any twoi 1 , i 2PA we get a pairwise coincidence inu2( i 1) andu2( i 2). Inductively
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like before, we get a coincidence after at most 2•(m1n22) substitutions. Therefore we hav
established the following.

Theorem 1: (X(s),T) with s of ~3! has pure point dynamical spectrum. Also, the dynami

system of the substitutions of constant length as defined implicitly in~5! and u,ũ of ~9! and ~10!
have pure point dynamical spectrum. h

Proposition 18: We have

~X~s!,T!.H ~Zm1n3Z/2Z,t! if m1n is odd,

~Zm1n ,t̃ ! if m1n is even,
~14!

wheret is the addition of~1,1! and t̃ the addition of1. h

Remark:Let % be a primitive substitution of constant length, and height 1 over the alphabe
A5$1,...,r %. Then we can define the coincidence matrixC, which is a quadraticr •(r 11)/2
3r •(r 11)/2 matrix. The entries are defined as follows~wheret<s andv<u):

C(st)(uv)5H u$ j u%~s! j5u ∧ %~ t ! j5u%u, if u5v,

u$ j u%~s! j5u ∧ %~ t ! j5v%u1u$ j u%~s! j5v ∧ %~ t ! j5u%u, if uÞv.

Note that the substitution matrixM is a submatrix ofC, sinceMsu5C(ss)(uu) . Also, C has row
sums,. With this definition, Lemma 3 reads as follows.

Proposition 2 (Ref. 18, Proposition X.1): For(X(%),T) are equivalent:

(i) (X(%),T) has pure point dynamical spectrum.
(ii) , is a simple eigenvalue of the corresponding coincidence matrixC. h

@Note, however, that we use a definition ofC different from Ref. 18. The coincidence matrix the
has dimensionr 23r 2 and has the form~with the proper enumeration of the pairs!

S M 0 0

R P Q

R Q P
D t

,

while the one defined above has the form

S M 0

R P1QD .

HereM , P, Q are quadratic matrices andM is the substitution matrix. Proposition 2 is true fo
both matrices, the proof is analogous.#

Obviously, , is an eigenvalue ofC ~C/, is a stochastic matrix with row sum 1!. Now the
above proof of Theorem 1 translates to the following statements forC:

~a! For ũ, the third power of the coincidence matrix,C3, has a column (C(st)(a1a1)
3 ) with

nonzero entries only.
~b! For u, the square of the coincidence matrix,C2, has a column (C(st)(a1a1)

2 ) with nonzero

entries only.

Lemma 4 (Ref. 18, Lemma X.3): LetB be a quadratic matrix with non-negative integra
entries and row sums,. If Bi j >1 for all i and a fixed j, then, is a simple eigenvalue ofB. h

This establishes the desired result that, is a simple eigenvalue for the coincidence matrixC
of u ( ũ), since,2 (,3) is a simple eigenvalue ofC2 (C3).

We end this section with an example. We takeũ for m52, n51 and therefore the substitutio
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a1 ° a1 a2 a1 ,

a2 ° a2 b1 b1 ,

b1 ° a1 a2 b1 .

~15!

We get the coincidence matrix

C5S 2 1 0 0 0 0

0 1 2 0 0 0

1 1 1 0 0 0

0 0 0 1 1 1

1 1 0 0 1 0

0 0 1 1 0 1

D , C25S 4 3 2 0 0 0

2 3 4 0 0 0

3 3 3 0 0 0

1 1 1 2 2 2

3 3 2 0 1 0

1 1 2 2 1 2

D .

Here, alreadyC2 has columns with positive entries only. The eigenvalues ofC are $0,0,1,1,2,3%.

IV. MODEL SETS AND DIFFRACTION

A model setL(V) (or cut-and-project set) in physical spaceRd is defined within the following
general cut-and-project scheme~see Refs. 17 and 1!

Rd ←——
p

Rd3H ——→
p int H

121↖ ø ↗dense

G

where theinternal space His a locally compact Abelian group, andG,Rd3H is a lattice, i.e., a
co-compact discrete subgroup ofRd3H. The projectionp int(G) is assumed to be dense in intern
space, and the projectionp into physical space has to be one-to-one onG. The model setL(V) is

L~V!5$p~x!uxPG, p int~x!PV%,Rd,

where thewindowV,H is a relatively compact set with nonempty interior.
Let u be a bi-infinite sequence overA5$1,...,r % andn:A→C, i °ci be a~bounded! function

which assigns to every letter a complex number~thescattering strength!. Then theautocorrelation
coefficientsh(z) are given by

h~z!5 lim
N→`

1

2N11 (
n52N

N

n~un!•n~un1z!

provided the limits exist. We writedz for the Dirac measure atz, i.e.,dz( f )5 f (z) for f continu-
ous. Then thecorrelation measureg of u is given by

g5(
zPZ

h~z! dz ,

and thediffraction spectrumis given by the Fourier transformĝ of this measure.@So we think of
u as an atomic chain, where there is an atom of typeun at positionn with scattering strength
n(un). We represent this atom asn(un)•dn and therefore get a~countable! sum of weighted Dirac
measures with autocorrelationg.# If ĝ is a sum of Dirac measures only, i.e.,ĝ5(kPS dk•dk with
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a countable setS @for any choice of complex numbers (ci) i PA], thenu is pure point diffractive,
i.e., the diffraction spectrum consists ofBragg peaksonly. Also, thedk’s are the square of the
absolute value of the correspondingFourier–Bohr coefficientat k and therefore non-negativ
~real! numbers. If there is no Dirac measure inĝ, except one at position 0,d0 , which is deter-
mined by the density of the structure only, then the diffraction spectrum iscontinuous.

For substitutive systems, the diffraction spectrum and the spectrum of the correspo
dynamical system are closely related, see Refs. 7, 19, 21, 13, and 14.

Proposition 3 (Ref. 13, Corollary 1): Let% be a primitive substitution of constant length,
with height1 over A5$1,...,r %, where u is a fixed bi-infinite word of%. Define Ui5$ j PZuuj

5 i % for all i PA. We haveZ5U1ø̇¯ø̇Ur , whereø̇ denotes disjoint union. Then the followin
are equivalent:

(i) % admits a coincidence.
(ii) The Ui ’ s are model sets for

R ←——
p R3Z, ——→

p int Z,

ø 121↖ ø ↗dense ø

Z ←—— G5$~z,z!uzPZ% ——→ Z

(iii) The sequence u and the sets Ui are pure point diffractive. ~By this we mean the specia
choice ofn, where we setci51 andcj50 for all j Þ i .) h

Note that properties ‘‘one-to-one’’ and ‘‘dense’’ are obvious; the interesting part is that t
exist relatively compact windows~with respect to the,-adic topology! with non-empty~!! interior.
We will discuss this point in the next section.

With this Proposition, we know thatu and ũ @as defined implicitly in~9!# generate sequence
which are pure point diffractive. But we got every letteri PA for the appropriate alphabet foru,
ũ by building four-letter blocks in the substitution rule~2!, e.g., in ~15! we havea154444,
a252222 andb154422. Such a deterministic substitution rule@i.e., Kol(2m,2n) is local deriv-

able from the sequence generated byu, respectivelyũ] does not change the nature of the diffra
tion spectrum, only the Fourier-Bohr coefficients. The diffraction spectrum of Kol(2m,2n) can be
calculated from the one generated byu, ũ as follows: For Kol(2m,2n) we only have scattering
strengthsc2m8 and c2n8 . If we therefore chooseci ( i PA with respect tou, ũ) according to its
four-letter-composition in$2m,2n%, then the diffraction spectrumĝ of u, ũ is also a diffraction
spectrum of Kol(2m,2n), where Kol(2m,2n) is realized as an atom chain with atoms not onZ but
Z/4 @we get the diffraction spectrum of Kol(2m,2n) realized onZ by a simple rescaling with the
factor 4#. For the example~15!, this means that we choose

ca1
5c48•~11e2 2p i /41e22 2p i /41e23 2p i /4!50,

ca2
5c28•~11e2 2p i /41e22 2p i /41e23 2p i /4!50,

cb1
5c48•~11e2 2p i /4!1c28•~e22 2p i /41e23 2p i /4!5~12 i !~c482c28!.

So in this case, the diffraction spectrum of Kol~4,2! is given by the one ofUb1
only. All

Kol(2m,2n) are pure point diffractive.
Lemma 5: For a sequence u5f(v), wherev is a bi-infinite fixed point of a primitive substi

tution andf:Av→Au* is a morphism [where u(v) is a sequence overAu (Av)], the following
statements are equivalent:

(i) The dynamical system of u has pure point dynamical spectrum.
(ii) u has pure point diffraction spectrum.
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Proof: This is a~weak! conclusion of Ref. 14, Theorem 3.2. h

We therefore obtain the following.
Theorem 2: All Kol(2m,2n) have pure point diffraction and pure point dynamical spe

trum. h

Remarks:The dynamical system of Kol(2m,2n) is isomorphic to

~Zm1n3Z/4Z,t! if m1n[1,3 ~4!,

~Zm1n3Z/2Z,t! if m1n[2 ~4!, ~16!

~Zm1n ,t̃ ! if m1n[0 ~4!,

wheret is the addition of~1,1! and t̃ the addition of 1. This can be seen by the fact that we
Kol(2m,2n) from the one generated bys of ~3! by the substitutionA5pp, B5qq, which
corresponds just to doubling each letter in the latter one@see the substitution matrices in~3! and
~4!#.

If we consider how to get from~5!, respectively~9!, to Kol(2m,2n) and compare this to
Proposition 3, we get@compare with~16!# Kol(2m,2n), respectivelyU2m , U2n are model sets for

R ←——
p R3Zm1n3F ——→

p int Zm1n3F

121↖ ø ↗dense

G5$~z,z,z mod ord~F !!uzPZ%

where

F.H Z/4Z if m1n[1,3 ~4!,

Z/2Z if m1n[2 ~4!,

$0% if m1n[0 ~4! .

~17!

~As before,Zm1n.Zp1
3¯3Zpr

, wherep1 ,...,pr are the distinct primes dividingm1n.) The
diffraction spectrum calculated from this cut-and-project scheme is consistent with the pre
one, since the Fourier–Bohr coefficients which arise in eachZm1n separately are weighted b
factors 1,e2 2p i /4, e22 2p i /4 or e23 2p i /4 which depend on the element of the cyclic groupZ/4Z
~similar for the caseZ/2Z! ~compare with Ref. 3—but this is just how we calculated theci ’s from
c2m8 andc2n8 ).

Let us show how one calculates the diffraction spectrum ofUb1
of ~15! explicitly. This

substitution can be written in recursive equations forUa1
, Ua2

and Ub1
by observing at which

position in which substitution a certain letter occurs@e.g.,b1 occurs inũ(a2) at positions 1 and 2
and in ũ(b1) at position 2#:

Ua1
5 ~3Ua1

! ø ~3Ua1
12! ø ~3Ub1

!,

Ua2
5 ~3Ua1

11! ø ~3Ua2
! ø ~3Ub1

11!,

Ub1
5 ~3Ua2

11! ø ~3Ua2
12! ø ~3Ub1

12!,

where rU i1s5$r •z1suzPUi%. $Note that these recursive equations form aniterated function
system~IFS! in 3-adic space, because multiplication by a factor of 3 is a contraction in the 3
topology. The closure of the windows in the 3-adic internal space is therefore given by the u
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compact solution of this IFS by~a generalized version of! Hutchinson’s theorem@Ref. 11 Sect.
3.1~3!#. This method is well known for unimodular substitutions of Pisot-type~see Refs. 15 and 2
and the vast literature about Rauzy fractals!. Similar results apply for all primitive substitutions o
constant length, in ,-adic space.% Iterating these equations and usingUa1

øUa2
øUb1

5Z, one
gets

Ub1
5~9Z15! ø ~27Z117! ø ~27Z122! ø ~81Z153!

ø ~81Z158! ø ~81Z164! ø ~81Z165! ø ¯ .

The Fourier transform of each lattice cosetv rZ1s5(zPZd r •z1s is easy to calculate:

v rZ1 ŝ5
1

r
e22p iksvZ/r .

Every Fourier–Bohr coefficient ofUb1̂
is then given by the sum of the Fourier–Bohr coefficien

of the correspondingv rZ1 ŝ. The structure ofUb1
~similar for all Ui that occur for substitutions o

constant length! as a union of a countable but infinite set of~periodic! lattice cosetsr •Z1s gives
rise to the namelimit-periodic ~see Ref. 9!.

The supportof the Bragg peaks of Kol(2m,2n) is given by

H k

4•~m1n!sUkPZ, sPN0J 5H k

2«
•p1

s1
•¯•pr

srUkPZ, s1 ,...,srPN0 , «P$0,..., log2~ord~F !!%J ,

wherep1 ,...,pr are the distinct primes dividingm1n andF is the cyclic group of~17!. However,
there need not be a Bragg peak on every point of the support, e.g., Kol~8,4! is equivalent to a
substitutionu of constant length,5m1n56, but the positions of a letterai , bi are separated by
multiples of 2: The support in this case is better described by$ k/2s ukPZ, sPN0% than by
$ k/(2s

•3r) ukPZ, s,r PN0%.

V. EUCLIDEAN MODELS OF ø-ADIC INTERNAL SPACES

So far, we have talked in an ‘‘abstract’’ way about the,-adic internal space. Usually th
discussion ends at this point, but we want to ‘‘visualize’’ this,-adic space. We hope that by doin
this, we also gain some intuition for such spaces and the meaning ofp-adic internal spaces fo
model sets.

Recall that ap-adic integer can be written as a formal seriest5( i>0t i•pi with integral
coefficientst i satisfying 0<t i<p21 ~Hensel expansion!. For the following, we identify ap-adic
integer t with the sequence (t i) i>0 of its coefficients. The set of allp-adic integers~a ring! is
written asZp , while the field ofp-adic numbers is written asQp and can be seen as the set of
Laurent series( i>Nti•pi with NPZ. There is ap-adic valuation vp :Qp\$0%→Z defined by
vp(t)5min$iPZut iÞ0%, which gives rise to thep-adicmetricwith utup5p2vp(t) andu0up50 ~and
Qp andZp are the completions ofQ andZ with respect to thep-adic metric!. So with respect to the
p-adic metric, two numbers inZ are close if their difference is divisible by a high power ofp.
Note that this is anon-Archimedeanabsolute value~i.e., ux1yup<max$uxup ,uyup% for all x,y
PQp) and we therefore get some ‘‘strange’’ properties: all triangles are isosceles, every
inside a ballBr(x)5$yuuy2xup,r % is the center of this ball, all balls are open and closed, e
~see Ref. 10!.
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For Euclidean models~see Ref. 20, Sec. 1.2! of Zp we only need to know the formal serie
t5( i>0t i•pi . We can even show models forZ, , where we do not make use of~8!. For this, we
use the addressing scheme known for fractals, for example in the Sierpinsky gasket~see Ref. 4,
Chap. IV!,

Now the interesting thing here is that each point in the Sierpinsky gasket has a unique add~at
least if we do not take the usual connected Sierpinsky gasket but the totally disconnected v
this can be obtained by using a contraction factor less than1

3 in the IFS for the Sierpinsky gasket!.
So each point in the Sierpinsky gasket corresponds to a sequence (t i) i>0 with elements 0<t i

<2—this is just the Hensel expansion of the 3-adic integers. Similarly, the Cantor set is s
geometric encoding of the 2-adic integers. ‘‘Reasonable’’ geometric representations ofZ, in Rd are
those, where the setsK $x0 ...xr %

5$tPZ,ut05x0 ,...,t r5xr% of points starting with the same addre
are represented by objects of the same size for a fixedr PN. Therefore we get that ind-dimension,
Z, with d11<,<(kissing number inRd)11 can reasonably be represented, if we do not m
use of~7!. Note that we can representZ3 either inR2 or R.

This geometric representation surely fails for somep-adic ~or ,-adic! properties~all triangles
are isosceles, every point inside a ball is its center, etc.!, but some are also ‘‘preserved:’’ point
which are close in thep-adic topology are also close in this geometric representation and
representation as totally disconnected fractal corresponds to the totally disconnected fieldQp , Zp

and its geometric models are both compact sets. And balls in thep-adic topology correspond to
scaled down copies of the whole fractal.

We like to conclude this section with our example from~15!. The 3-adic geometric models ar
given in Fig. 1. Observe that, in the two-dimensional representation, the parts~according to our
above addressing scheme for the Sierpinsky gasket! K $02% , K $12% andK $21% are colored by only one

FIG. 1. 3-adic model for the internal space of~14! in R2 ~above! andR ~below, stretched for better representation!. The
colors correspond toa1 ~black!, a2 ~dark gray! andb1 ~light gray!.
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color. This corresponds to the fact that at positions 9Z16 area1’s, on 9Z17 area2’s and on
9Z15 areb1’s only in the bi-infinite sequence. So, large patches of the same color in the
metric representations correspond to lattice cosets, rZ1s with small r . A similar addressing
scheme can be used for the one-dimensional representation~and in fact for all,-adic representa-
tions!.
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We give a natural geometric condition calledgeodesic compatibilitythat implies
the existence of integrals in involution of the geodesic flow of a pseudo-
Riemannian metric. We prove that if two metrics satisfy the condition of geodesic
compatibility then we can produce a hierarchy of metrics that also satisfy this
condition. A lot of metrics studed in Riemannian and Ka¨hlerian geometry satisfy
such conditions. We apply our results for obtaining an infinite family~hierarchy! of
completely integrable flows on the complex projective planeCPn. © 2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1526939#

I. INTRODUCTION

Our main purpose in the present paper is to prove that if a pair of pseudo-Riemannian m
g andḡ satisfies a natural geometric condition calledgeodesic compatibility~or PQe-projectivity)
then the geodesic flows of the metricsg andḡ admit integrals in involution of a special form. Th
integrals we find usually have singularities that can be localized out of every arbitrary taken
set D with compact closure~Theorem 1!. If the manifold is compact then the integrals can
taken smooth. We prove a Ka¨hlerian analog of the results proved in Ref. 1.

In what follows we call pseudo-Riemannian metrics simplymetrics. Positively definite met-
rics are calledRiemannian metrics. All tensor object and manifolds we consider are smooth (C`).
If E→M is a vector bundle over a manifoldM then G(E) denotes the space of the smoo
sections ofE→M .

Let us consider some examples of metrics that satisfy the condition of the geo
compatibility.

~a! Geodesic equivalence. A classical example of geodesic compatibility is the so-calledgeode-
sic equivalence. Recall the main definitions.
Let g and ḡ be pseudo-Riemannian metrics given on the manifoldMn, n5dimMn.
Definition 1: The metrics gand ḡ are calledgeodesically equivalentiff they have the same
geodesics (considered as unparametrized curves on Mn).
We say that the metricg admitsnontrivial geodesic equivalenceiff there exists a metricḡ
Þconstg such thatg and ḡ are geodesically equivalent. The first theorems concerning
existence of integrals of the geodesic flows of the metrics admitting nontrivial geo
equivalence were proved by Dini, Painleve´, Levi-Civita and Liouville ~see Ref. 2!. The
Liouville integrability of the corresponding geodesic flows in the case when one o
metrics g and ḡ is Riemannian is proved in Ref. 3~see also Refs. 4–9!. The pseudo-
Riemannian analogs of these theorems are proved in Ref. 11.

~b! h-projectivity. Another example of geodesic compatibility appears about a century lat
the papers of Ōtsuki and Tashiro~Refs. 10 and 11!.
Let M2n be a 2n-dimensional real manifold endowed with a complex structureJ,
J2521, where1 denotes the identity operator of the tangent bundleTM2n. Recall that,
a metric g on M2n is called Kählerian iff the next two conditions are satisfied:~1! g
is Hermitian metric, i.e., g(Jj,Jh)5g(j,h), j,hPTxM

2n, and ~2! the Kähler form

a!Permanent address: Department of Differential Equations, Institute of Mathematics, BAS, Sofia 1113, Bulgaria.
9130022-2488/2003/44(2)/913/17/$20.00 © 2003 American Institute of Physics
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V(j,h)5
def

g(Jj,h) is a symplectic form~i.e., V is nondegenerate and closed,dV50).
Denote by¹ the Levi-Civita connection corresponding to the Ka¨hlerian metricg. Following
Ref. 10 we give Definition 2.
Definition 2: A smooth curve(t1 ,t2){t→g(t)PM2n, t1,t2 , is called holomorphically
planar(with respect to the Ka¨hlerian metric g) iff

¹ġ

dt
~t!5a~t!ġ~t!1b~t!Jġ~t!, ~1!

where a and b are smooth functions of the parameter t.
Holomorphically planar curves always exist. For example, the geodesic lines of the meg
are holomorphically planar curves. More generally, fixing any smooth functionsa,b
PC`(t1 ,t2), a point x0PM2n and a tangent vectorg0PTx0

M2n, we can find a smalle0

.0 and a unique solutiong:(2e0 ,e0)→M2n of Eq. ~1! with initial datag(0)5x0 , ġ(0)
5g0 .
Let g and ḡ be Kählerian metrics onM2n.
Definition 3 (see Ref. 11): The Ka¨hlerian metrics g and ḡare calledholomorphically pro-
jective (or h-projective) iff every holomorphically planar with respect to the metric g cu
g(t) is holomorphically planar with respect to the metric g¯as well, and vice versa.
It is not hard to prove~see, for example, Refs. 11 and 12! that the condition that the
Kählerian metricsg and ḡ are h-projective is equivalent to a nonlinear partial different
equation on the ‘‘deformation’’ tensor of the Levi-Civita connections of the metricsg andḡ.
In coordinates$(x1, . . . ,x2n)%, the equation is

Ḡjk
i 2Gjk

i 5dj
ifk1dk

i fj2faJj
aJk

i 2faJk
aJj

i , ~2!

wheref l( l 51, . . . ,2n) are the components of a globally defined on anM2n 1-form,G jk
i and

Ḡ jk
i are the Christoffel symbols of the metricsg and ḡ, respectively,d j

i is the Kronecker
delta andJj

i are the components of the complex structureJ. As usual, we use the standa
tensor conventions and omit the summation symbols in the formulas. It can be easily
thatfk5]kf, where]k stands for the partial derivative]/]xk andf is a globally defined on
an M2n function ~see Sec. II A!. Remark that Eq.~2! cannot be obtained without using th
condition that the metricsg and ḡ are Kählerian.

~c! PQe-projectivity. Here we give the definition of the geodesic compatibility that genera
the both previous notions.
Consider two metricsg and ḡ given on the manifoldMm, m5dimMm. Let P,Q
PG„End(TMm)… satisfy the next properties:
~i! P andQ are antisymmetric with respect to the both metricsg and ḡ;
~ii ! PQ5e1, wheree is a fixed real constant such thateÞm11 andeÞ1.

Denote byx the numberx5
def

m112e. It follows from (i i ) that xÞ0.
Definition 4: The metrics g and g¯are called PQe-projective(or geodesically compatible) iff
their Christoffel symbols satisfy the equation

Ḡjk
i 2Gjk

i 5f(jdk)
i 2faP(j

aQk)
i , ~3!

wherefk are the components of a globally defined on Mm 1-form and the operators Pand
Q satisfy relations (i)and (ii) .
As usual, Eq.~3! is written in a fixed coordinate chart$(x1, . . . ,xm)% andPj

i andQj
i are the

components of the operatorsP andQ. The brackets (i • • • j ) in formula ~3! denote sym-
metrization with respect to the pointed indices. For example, the tensor fieldTa( i j )b stands
for Ta i j b1Ta j i b . It is not hard to give an invariant definition ofPQe-projectivity.
Remark 1: IfeÞ0 then the operators P and Q are nondegenerate on Mm, Q5eP21 and the
dimension m of the manifold is even.
Remark 2: Suppose that gandḡ are Kählerian metrics given on the complex manifold M2n
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with complex structure J. Taking P5Q5J and e521 we see that h-projectivity is a
particular case of PQe-projectivity. Taking P5Q50 and e50 we obtain the notion of the
geodesic equivalence.

Let us give a brief description of the results proved in the paper. Suppose that the meg
and ḡ given on the manifold Mm are PQe-projective. Define the endomorphismA
PG„End(TMm)… of the tangent bundleTMm by the formula

Aj
i ~g,ḡ!5

defUdetḡ

detgU
1/x

ḡiaga j . ~4!

Consider the locally defined one-parameter family of quadratic forms,

Kc~g,ḡ!~j!5
def

udet~A1c1!u1/(12e)g„~A1c1!21j,j…, ~5!

wherejPTMm andc is an appropriately chosen real parameter.
Following Ref. 1 define therank of the pair gandḡ. Denote byr (g,ḡ)(x) the degree of the

minimal polynomial of the operatorA(g,ḡ)ux .
Definition 5: The number r(g,ḡ)(x) is called rank of the pairg and ḡ of PQe-projective

metrics at the pointxPMm. The number r(g,ḡ)5
def

maxxPMm(g,ḡ)(x) is called rank of the pair of
PQe-projective metrics.

Recall that the smooth functionsF1 , . . . ,Fk given on a smooth manifoldV are calledfunc-
tionally independent in Viff the set of the pointsxPV where the differentialsdxF1 , . . . ,dxFk are
linearly independent is dense inV.

Theorem 1: Suppose that the manifold Mm is connected and let the rank of the pair
PQe-projective metrics g and g¯be r. Denote byvg the symplectic structure on TMm given by the
pull-back FLg* v wherev is the canonical symplectic structure on T* Mm (the form ‘‘ dp`dq’’ !
and FLg :TMm→T* Mm denotes the Legendre transformation corresponding to the metric.
Then for every open set D,Mm with compact closure in Mm there exist r quadratic in velocities
functions B1

D(j), . . . ,Br
D(j), jPTD, such that we have the following:

(a) B1
D(j), . . . ,Br

D(j) are smooth functionally independent pairwise commuting integrals of
geodesic flow of the metric g on D;

(b) if the quadratic form Kc(g,ḡ)(j), c5const,is correctly defined on some open set U,D then
there exist constantsa1 , . . . ,a r such that Kc(j)5(k51

r akBk
D(j) on D.

The integrals B1
D(j), . . . ,Br

D(j) can be taken in the form Bk
D(j)5

def

Kck
(j), where the con-

stants c1 , . . . ,cr are appropriately chosen.
Remark 3: Actually, the constants c1 , . . . ,cr in Theorem 1 are taken ‘‘sufficiently big,’’ i.e.

ucku.mD , mD5
def

supxPD maxlPSpect(Aux)ulu.
As a simple corollary of this theorem we obtain the next statement.
Corollary 1: The set of the points xPMm where r(g,ḡ)(x)5r is open and dense in Mm.
We prove Theorem 1 in Sec. IV.
A Hermitian version of Theorem 1 is given in Sec. V~see Theorem 4!. An important corollary

is the next Ka¨hlerian analog of that proved in Ref. 1 Theorem 2. Suppose that the Ka¨hlerian
metrics s and s̃ are h-projective. Denote byr the Hermitian rank of the pair s and s̃ ~see
Definition 9!.

Theorem 2: If two Kählerian metrics s and s˜ are h-projective then their geodesic flows adm
r functionally independent integrals in involution.

The paper is organized as follows.
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In Sec. II we prove that the quadratic forms given by formula~5! are integrals of the geodesi
flow of the metricg ~Proposition 3, Sec. II C!. In Sec. II D we prove Proposition 4. As in Ref.
the existence of hierarchies is a crucial point proving the commutativity of the integrals give
formula ~5!. We prove the commutativity of these integrals in Sec. III, Theorem 3. Section I
devoted to the proof of Theorem 1. The Hermitian analog of this theorem is proved in Sec. V
last section is devoted to the applications of the results. A simple geometrical construction
us to find an infinite family~‘‘ CPn-hierarchy’’! of completely integrable Hamiltonian systems o
the complex projective planeCPn ~see Theorem 6!. The integrals obtained by Thimm in Ref. 1
are not included in this hierarchy as a particular case.

In what follows, if a coordinate chart is fixed, we usually identify the tensor fields we cons
with their coordinate~‘‘index’’ ! representations and denote the corresponding objects by the
letters. We use also the common tensor notations and conventions and omit the summatio
bols in the formulas. An endomorphismLPG„End(TMn)… is called invertible or nondegenerate
on Mn iff det LÞ0 on Mn.

II. PROPERTIES OF PQ-PROJECTIVITY

In the present section the main properties of thePQe-projective metrics are established.

A. Existence of an integral

Suppose that the metricsg andḡ arePQe-projective. Here we prove that the geodesic flow
the metricg admits an integral~Proposition 1!.

Contracting the indicesi and j in formula ~3! and using that traceQ50 we getḠ ik
i 2G ik

i

5xfk wherex5
def

m112e. Using thatG ik
i 5]k lnAudetgu we obtain

2xfk5
]

]xk S lnUdetḡ

detgU D . ~6!

Therefore,fk5]kf, wheref is a smooth function onMm.
The next technical lemma is needed for the sequel.
Lemma 1: The metrics g and g¯are PQe-projective if and only if their components satisfy th

next equation in covariant derivatives:

¹kḡi j 52fkḡi j 1f ( i ḡ j )k2faP( i
a ḡ j )bQk

b , ~7!

where¹ denotes the Levi-Civita connection of the metric g and the operators P and Q s
conditions( i ) and ( i i ).

Proof of Lemma 1:Suppose that the metricsg and ḡ arePQe-projective. In coordinates, we
obtain

¹kḡi j 5]kḡi j 2G ik
a ḡa j2G jk

a ḡia

5¹̄kḡi j 1~f ( idk)
a 2f l P( i

l Qk)
a !ḡa j1~f ( jdk)

a 2f l P( j
l Qk)

a !ḡia

52fkḡi j 1f ( i ḡ j )k2f l P( i
l ḡ j )aQk

a2f l Pk
l Q( i

a ḡ j )a

52fkḡi j 1f ( i ḡ j )k2f l P( i
l ḡ j )aQk

a .

The inverse statement immediately follows from the classical fact that the Levi-Civita conne
of some metric is the unique torsion free connection that preserves the considered metric. L
1 is proved.

Equations~7! are equivalent to

2mḡi j ,k522mkḡi j 2m ( i ḡ j )k2m l P( i
l V̄ j )k

Q , ~8!
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where m5
def

u detg/detḡ u1/x, mk5
def

]m/]xk (k51, . . . ,2n), and V̄k j
Q are the components of th

2-form V̄Q(j,h)5
def

ḡ(Qj,h), j,hPTxM
m. The equivalence of Eqs.~7! and ~8! easily follows

from the relation 2fk52 mk /m.
Proposition 1: Suppose that the metrics g and g¯are PQe-projective. Then the quadratic form,

K~j!5
defUdetg

detḡU
2/x

ḡ~j,j!, ~9!

is an integral of the geodesic flow of the metric g.

Proof of Proposition 1:In coordinates, we haveKi j 5
def

m2ḡi j . Following Levi-Civita, a qua-
dratic formQ(j,j)5Qi j j

ij j , Qi j 5Qji , is an integral of the geodesic flow of the metricg if and

only if Q( i jk )5
def

(Qi j ,k1Qjk,i1Qki, j )/350, whereQi j ,k5
def

¹kQi j and¹ is the Levi-Civita connec-
tion of the metricg. Indeed, letg(s) „g(0)5x0 , ġ(0)5j… be a geodesic line of the metricg. We
have 05 d/dsus50(Qi j ġ

i ġ j )5Qi j ,k(x0)jkj ij j5Q( i jk )(x0)jkj ij j and therefore Qi j ,k1Qjk,i

1Qki, j50. Conversely, ifQi j ,k1Qjk,i1Qki, j50 thenQ is an integral of the geodesic flow of th
metric g.

We have

2Ki j ,k54mmkḡi j 12m2ḡi j ,k ,

2K jk,i54mm i ḡ jk12m2ḡ jk,i ,

2Kki, j54mm j ḡki12m2ḡki, j .

Summing these equations and using~8! we obtain that

2~Ki j ,k1K jk,i1Kki, j !52m~maPi
aV̄ jk

Q 1maPj
aV̄ ik

Q1maPj
aV̄ki

Q1maPk
aV̄ j i

Q1maPk
aV̄ i j

Q

1maPi
aV̄k j

Q !50.

This completes the proof of Proposition 1.
Remark 4: In the case of geodesically equivalent metrics the integral given by formu

coincides with the classical Painleve´ integral (see Refs. 1, 2). The existence of the integral (9
the case of h-projective Kählerian metrics is a new fact.

B. Existence of a family of PQ-projective metrics

Suppose that the metricsg and ḡ are PQe-projective. Consider the endomorphismA of the
tangent bundleTMm defined by formula~4!. It is clear thatA is self-adjoint with respect to the
both metricsg and ḡ. Condition (i ) imposed on the operatorsP andQ ~see p. 5! yields thatA
commutes withP andQ. The next important technical lemma is needed for the sequel.

Lemma 2: If the metrics g and g¯are PQe-projective then the metric ai j 5
def

giaAj
a satisfies the

equation

ai j ,k5l ( igj )k2l l P( i
l gj )qQk

q , ~10!

where l i5
def

2f lAi
l . The operators P and Q are antisymmetric with respect to the metric.

Inversely, consider a metric g and two antisymmetric with respect to g operators P and Q
that PQ5e1. Suppose that P and Q are antisymmetric with respect to a nondegenerate sy
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ric form ai j and let ai j satisfy Eq. (10) for some globally defined on M2n 1-form lk . Then the

metrics g and ḡ5
def

udetǧ/detg u1/(12e)ǧ, are PQe-projective, where gˇ i j 5
def

giaaabgb j , aiaaa j5d i
j .

Proof of Lemma 2:Suppose thatg and ḡ are PQe-projective. Denoteǧi j 5
def

exp(22f)ḡij .
Using formula~7! we obtain

ǧi j ,k522fkǧi j 1exp~22f!ḡi j ,k5f ( i ǧ j )k2f l P( i
l ǧ j )aQk

a .

For the inverse tensorǧi j (ǧiaǧa j5d i
j ) we have

ǧ,k
i j 52ǧiaǧab,kǧ

b j52f l ǧ
l ( idk

j )1f l Ps
l ǧs( iQk

j ) .

Finally, takingaab5
def

ga i ǧ
i j gj b we obtain

aab,k52f l ǧ
l i gi (agb)k1f l Pr

l A(a
r gb) jQk

j 5l (agb)k2l l P(a
l gb)qQk

q ,

wherela5
def

2f lAa
l .

Let us prove the inverse part of the proposition. Suppose that the nondegenerate sym
tensorai j satisfies Eq.~10! where P and Q are antisymmetric with respect tog and a, PQ
5e1, andlk are the components of a globally defined onMm 1-form. Consider the tensorǧi j

5
def

giaaabgb j . For the inverse tensorǧpq (ǧpaǧaq5dp
q) we have

ǧpq,k52ǧpiǧ,k
i j ǧ jq52laga i ǧi (pǧq)k1l l Pa

l ga i ǧi (pǧq) jQk
j .

Denotingfp5
def

2laga i ǧip we obtain

ǧpq,k5f (pǧq)k2f l P(p
l ǧq) jQk

j . ~11!

Lemma 3:2fk5]k lnu detǧ/detg u1/(12e).

Proof of Lemma 3:Denote byǦ jk
i the Christoffel symbols of the metricǧ. Using formula~11!

we obtain

Ǧak
a 5

1

2
ǧab

]ǧab

]xk

5
1

2
ǧab~ ǧab,k1ǧl (aGb)k

l !

5
1

2
ǧab

„~f (aǧb)k2f l P(a
l ǧb) jQk

j !1ǧl (aGb)k
l

…

5~12e!fk1Gak
a .

Therefore, (12e)fk5Ǧak
a 2Gak

a 5]kln u detǧ/detg u1/2. Lemma 3 is proved.

Finally, taking ḡi j 5
def

exp(2f)ǧij we obtain thatgi j ,k52fkḡi j 1f ( i ḡ j )k2f l P( i
l ḡ j )aQk

a . Using
Lemma 1 we complete the proof of Lemma 2.

Proposition 2: Suppose that the metrics g and g¯ are PQe-projective and let c be a rea
constant such that the operator A1c1 is invertible. Then the metrics g and

ḡc~g,ḡ!5
def

udet~A1c1!u21/(12e)g~A1c1!21, ~12!

where A5A(g,ḡ) is given by formula (4), are PQe-projective.
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Proof of Proposition 2:Suppose that the metricsg andḡ arePQe-projective and letc be the
constant given in the statement of the corollary. It follows from Lemma 2 that the metra

5
def

gA satisfies Eq.~10!. Hence, the metrica1cg5g(A1c) also satisfies Eq.~10!. Using the

inverse part of Lemma 2 we obtain that the metricsg and ḡc5
def

u detǧc /detg u1/(12e)ǧc , ǧc5
def

g(a
1cg)21g5g(A1c1)21. This completes the proof of Proposition 2.

C. Existence of a family of integrals

Here we prove that the geodesic flows of a pair ofPQe-projective metric locally admit a
family of integrals.

Proposition 3: Suppose that the metrics g and g¯ are PQe-projective and let c be a rea
constant such that the operator A1c1 is nondegenerate on Mm. Then the quadratic form,

Kc~g,ḡ!5
def

udet~A1c1!u1/(12e)g~A1c1!21, ~13!

is an integral of the geodesic flow of the metric g.
Remark 5: Let D,Mm be an open set with compact closure in Mm. Taking ucu>mD , mD

5
def

supxPD maxlPSpectAux
ulu, we obtain a one-parameter family of integrals of the geodesic flow

the metric g.
Proof of Proposition 3:Suppose that the metricsg andḡ arePQe-projective. It follows from

Proposition 2 thatg andḡc @given by formula~12!# arePQe-projective. Applying Proposition 1 to
these metrics we obtain that the quadratic form

Kc5
defU detg

detḡc
U2/x

ḡc5udet~A1c1!u1/(12e)g~A1c1!21

is an integral of the geodesic flow of the metricg. Proposition 3 is proved.

D. Existence of hierarchies

In the present section we prove the next proposition.

Proposition 4: If the metrics g and g¯ are PQe-projective then the metrics a5
def

gA and ā

5
def

ḡA are P1Q1
e-projective, where P15

def
PA, Q15

def
A21Q, and A5A(g,ḡ) is given by formula~4!.

Proof of Proposition 4:It follows from Lemma 2 thataab,k5l (agb)m2l l P(a
l gb)qQk

q , where

la5
def

2f lAa
l . We have

2
]aab

]xk 1Gk(a
l ab) l52l (agb)k1l l P(a

l gb)qQk
q ,

]aak

]xb 2Gb(a
l ak) l5l (agk)b2l l P(a

l gk)qQb
q ,

]abk

]xa 2Ga(b
l ak) l5l (bgk)a2l l P(b

l gk)qQa
q .

Summing these equations, and using the relationsl l5
def

2faAl
a , PA5AP, g(Qj,h)

52g(j,Qh), we obtain the next formula for the Christoffel symbolsAjk
i of the metricai j ,

Aab
k 5Gab

k 1l la
lkgab1l l P(a

l gb)qQr
qark5Gab

k 2f lg
lkgab1fsPl

sA(a
l Qb)

q Ãq
k , ~14!

whereÃq
k are the components of the inverse operatorA21.
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By definition, āi j 5
def

ḡikAj
k5exp(2f)gij . Using this relation we immediately obtain the ne

relation between the Christoffel symbols of the metricsā andg,

Āi j
k 5G i j

k 1f ( id j )
k 2f lg

lkgi j . ~15!

Finally, ~14! and ~15! yield

Āi j
k 2Ai j

k 5f ( id j )
k 2fsPl

sA( i
l Qj )

q Ãq
k . ~16!

This completes the proof of Proposition 4.
Suppose that a pair ofPQe-projective metricsg andḡ is given. It follows from Proposition 4

that for every integer k the metrics g(k)5
def

gAk and ḡ(k)5
def

gAk are PkQk-projective, where Pk

5
def

PAk and Qk5
def

A2kQ. Indeed, suppose thatg( l ) and ḡ( l ) are PlQl-projective. It follows from
formula ~4! that A(g( l ),ḡ( l ))5A and A(ḡ( l ),g( l ))5A21. Applying Proposition 4 to the pairg( l )

andḡ( l ) we obtain thatg( l 11) andḡ( l 11) arePl 11Ql 11-projective. Similarly, applying Proposition
4 to the pairḡ( l ) andg( l ) we obtain thatg( l 21) and ḡ( l 21) arePl 21Ql 21-projective.

Definition 6: The sequence of pairs g(k) and ḡ(k) (k50,61, . . . ) are called the PQe-hierarchy
corresponding to the pair g and g¯of PQe-projective metrics.

The PQe-hierarchy is an analog of thegeodesic hierarchyconsidered in Ref. 1. Proposition
is an analog of the Sinyukov transformation in the theory of geodesically equivalent metric~see
Refs. 14, 15!. We will describe thePQe-hierarchy by the next formal scheme,

↓ ↓
g(21) ↔ ḡ(21)

↓ ↓
g ↔ ḡ

↓ ↓
g(1) ↔ ḡ(1)

↓ ↓

where the horizontal arrows mean that the metricsg(k) and ḡ(k) arePkQk-projective.

III. INVOLUTIVITY OF THE FAMILY OF THE INTEGRALS

In the present section we prove that the integrals given by Proposition 3 are in involut
Theorem 3: Suppose that the metrics g and g¯are PQe-projective. Suppose in addition tha

the operators A1c11 and A1c21 are nondegenerate on Mm where c1 and c2 are some fixed rea
numbers. Then the quadratic forms Kc1

(g,ḡ) and Kc2
(g,ḡ), given by formula~5!, are in involu-

tion with respect to the symplectic structurevg5
def

FLg* v, wherev denotes the canonical symplect
structure on the cotangent bundle T* Mm and FLg :TMm→T* Mm is the Legendre transformation
corresponding to the metric g.

Proof of Theorem 3:Suppose that the metricsg and ḡ are PQe-projective. Proposition 2

shows that the metricsg andḡc1
5
def

udet(A1c11)u21/(12e)g(A1c11)21 arePQe-projective as well.
Consider the correspondingPQe-hierarchy,
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c1
↔ c1

↓ ↓
A simple calculation shows thatA(g,ḡc1

)5A1c11, and A(ḡc1
,g)5(A1c11)21. Hence,ḡc1

(2)

5
def

ḡc1
A(g,ḡc1

)25udet(A1c11)u21/(12e)g(A1c11). It is clear that A(ḡc1

(2) ,gc1

(2))5(A1c11)21.

Suppose that the nonzero real number (2a) is not an eigenvalue of the operator (A1c11)21. It
follows from Proposition 3 that the quadratic formKa(ḡc1

(2) ,gc1

(2)) is an integral of the geodesi

flow of the metricḡc1

(2) . Applying the inverse to the Legendre transformation corresponding to

metric ḡc1

(2) , we obtain that the forms

~ ḡc1

(2)!215udet~A1c11!u1/(12e)~A1c11!21g21 ~17!

and

~FLḡ
c1

(2)
21

!* ~Ka!5
def

udet„~A1c1!211a…u1/(12e)
„~A1c1!211a…21~ ḡc1

(2)!21

5c~a!udet„A1~c111/a!…u1/(12e)
„A1~c111/a!…21g21,

considered as functions on the cotangent bundleT* Mm, are in involution with respect to the
canonical symplectic structurev on T* Mm. Finally, applying the Legendre transformation corr
sponding to the metricg, we obtain that the formsKc1

(g,ḡ) andKc11
1
a
(g,ḡ) are in involution

with respect tovg . Theorem 3 is proved.

IV. FUNCTIONAL INDEPENDENCE OF THE INTEGRALS

Here we prove Theorem 1 formulated in the Introduction.
Proof of Theorem 1:We follow the idea of the proof of Theorem 2 in Ref. 1.
In what follows we use the next convention. IfV is a complex vector space we assume that

linear maps and subspaces are complex linear, all tensor products are overC, and the word
‘‘dimension’’ means the complex dimension.

Let V be a real~or complex! vector space of dimensionm. Consider a nondegenerate sym
metric bilinear formsPSymm(V* ^ V* ) and a linear self-adjoint with respect tos operatorL
PEnd(V). Denote byr (L) the degree of the minimal polynomial of the operator L. Let d be a
fixed real number. Consider the curves

g:t→udet~L2t1!uds~L2t1!21PSymm~V* ^ V* !

and

gj :t→udet~L2t1!uds„~L2t1!21j,")PV* ,

wherejPV is a fixed vector inV, 1 is the identity operator, and the parametert is defined in an
open setU in R ~or C), UùSpect(L)50” . Remark that we admit three possibilities:V is real and
t is real,V is complex andt is complex or real. Given a curvel :D→W, whereW is a vector space
andD is an open domain inR or C, denote by dimDl the dimension of the linear subspace spann
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on the vectors$ l (t)utPD%. Following our convention, ifW is a complex vector space, dimDl
denotes the complex dimension of the complex linear subspace spanned on$ l (t)utPD%.

Lemma 4:

(a) dimUg5r (L);
(b) dimUgj<r (L) and there exists an open and dense subsetS,V such that for everyjPS,

dimUgj5r (L);
(c) if t1 , . . . ,t r (L)PU, t iÞt j ( iÞ j ), theng(t1), . . . ,g(t r (L)) are linearly independent.

Proof of Lemma 4:Consider the case whenV is a real vector space and the parametert is real,
tPU,R, UùSpect(L)Þ0” . The case of complex vector space is considered similarly. It follo
from the nondegeneracy of the metrics that dimUg5dimUg̃ and dimUgj5dimUg̃j , whereg̃(t)

5
def

det(L2t1)(L2t1)21 and g̃j(t)5
def

det(L2t1)(L2t1)21j. It is clear thatg̃(t)5Lm21tm211¯

1L0 , LkPEnd(V), Lm215(21)m211. Using the nondegeneracy of the Vandermonde dete
nant we obtain that dimUg̃5rk$Lm21 , . . . ,L0% and dimUg̃j5rk$Lm21j, . . . ,L0j%. Denote byVC

the complexification ofV. Let LC,Lk
CPEnd(VC) be the complexifications of the real operatorsL

andLk (k50, . . . ,m21). Denote byr 0 the numberr 05
def

max
jPV

rk$Lm21j, . . . ,L0j%.

Lemma 5:

(i) rk$Lm21 , . . . ,L0%5rkC$Lm21
C , . . . ,L0

C%;
(ii) r 05maxjPVC rkC$Lm21

C j, . . . ,L0
Cj%;

(iii) there exists an open dense subsetS,V such that for every jPS, r 0

5rk$Lm21j, . . . ,L0j%.

Proof of Lemma 5:Item (i ) of the lemma is obvious. Let us prove (i i i ). Taking a basis inV,
denote by (j1 , . . . ,jm) the coordinates of the vectors ofV. Consider them3m matrix T formed
of the coordinates of the vectorsLm21j, . . . ,L0j. The elements of this matrix are linear polyn
mials of the variablesj1 , . . . ,jm . It is clear that there exists a nonzero minorTr 0

PRr 0@j1 , . . . ,jm# of the matrixT. The setS5
def

$jPVuTr 0
(j)Þ0% satisfies the statement of item

( i i i ). The assumption that the variablesj1 , . . . ,jm take complex values does not change the ra
of the matrixT. This proves item (i i ). Lemma 5 is proved.

Consider the curvesg̃C(l)5
def

(LC2l1)21 and g̃j
C(l)5

def
det(LC2l1)21j, where l

PC\Spect(L), jPVC, and1 denotes the identity operator inVC. As above, using the nondegen
eracy of the Vandermonde determinant, we obtain that dimC\Spect(L)g̃

C5rkC$Lm21
C , . . . ,L0

C% and
dimC\Spect(L)g̃j

C5rkC$Lm21
C j, . . . ,L0

Cj%. Lemma 5 shows that dimUg5dimC\Spect(L)g̃
C and r 0

5maxjPVCdimC\Spect(L)g̃j
C . Without loss of generality we can suppose that the operatorLC is

given in a Jordan’s basis. Using the explicit form ofLC, it is not hard to see that

dim
C\Spect(L)

g̃C5r ~L !

and

max
jPVC

dim
C\Spect(L)

g̃j
C5r ~L !.

The first equality proves item (a). The second one shows thatr 05r (L). Applying Lemma 5(i i i )
we prove (b). To prove item (c) remark that instead of the curvesg(t1), . . . ,g(t r (L)) it is
sufficient to prove the linear independence overC of the curvesg̃C(t1), . . . ,g̃C(t r (L)), where the
operatorLC is given in a Jordan’s basis. Using the simple form of these curves we prove itemc).
Lemma 4 is proved.
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Let us return to the proof of Theorem 1. Suppose thatg and ḡ are PQe-projective metrics
given on the connected manifoldMm. Denote byr the rank of the pairg and ḡ, and letD,Mm

be an open set with compact closure inMm. Without loss of generality we can suppose thatD is
connected. Taking r different real numbers c1 , . . . ,cr such that ucku.mD , mD

5
def

supxPD maxlPSpect(Aux)ulu, consider the quadratic formsBi
D5

def
Kci

(g,ḡ) ( i 51, . . . ,r ). The forms

Bi
D are well-defined onD. Considered as functions of the tangent bundleTD, Bi

D ( i 51, . . . ,r )
are pairwise commuting integrals of the geodesic flow of the metricg ~Theorem 3!.

Definition 7: A point x0PMm is called stable iff the rank r(g,ḡ)(x) of the pair of
PQe-projective metrics g and g¯is equal to some constant q in an open neighborhood of the p
x0 . We say that x0 is a stable point of rank q.

Definition 8: A point x0PMm is calledsingulariff it is not stable.
Denote the set of stable points byM(g,ḡ) and the set of singular points byS(g,ḡ).
Lemma 6: The set of stable pointsM(g,ḡ) is open and dense in Mm.
Proof of Lemma 6:The setM(g,ḡ) is open by its definition. It follows from Lemma 4 thatfor

every xPMm there exists an open neighborhood U(x) such that if yPU(x) then r(g,ḡ)(y)
>r (g,ḡ)(x). Indeed, taking p5r (g,ḡ)(x) different real numbers t1 , . . . ,tp ,
(2t i)¹Spect(Aux), we see @item (c), Lemma 4# that the forms Kt1

ux , . . . ,Ktp
ux

PSymm(Tx* Mm
^ Tx* Mm) are linearly independent. There exists an open neighborhoodU(x)

such that ifyPU(x) thenKt1
uy , . . . ,Ktp

uy are linearly independent. Finally, applying item (a) of
Lemma 4 we obtain thatr (g,ḡ)(y)>r (g,ḡ)(x).

Therefore,if x0 is a singular point, then every open neighborhood of x0 contains a point y
such that r(g,ḡ)(y).r (g,ḡ)(x0).

Let us prove that the set of stable pointsM(g,ḡ) is dense inMm. Suppose that there exists a
open setY,Mm that consists of singular points. Take a pointy1PY, r (g,ḡ)(y1)5r 1 . The point
y1 is singular, and therefore there exists a pointy2PY such thatr (g,ḡ)(y2)5r 2.r 1 . Applying
this argument several times we find a~singular!! point ylPY of maximal rankm. From another
side, the points of maximal rankm are stable. This contradiction proves Lemma 6.

Lemma 7: Let x0 be a stable point of rank q<r , x0PD. Then there exists an open neighbo
hood U(x0),D such that we see the following:

(a) the quadratic in velocities functions B1
D(j), . . . ,Bq

D(j) are functionally independent on
TU(x0). For every fixed xPU(x0) the set of the pointsjPTxM

m where the differentials
djB1

D , . . . ,djBq
D are linearly independent is open and dense in TxM

m;
(b) if c is a real constant such that(A1c1) is nondegenerate on U(x0), then there exist

constantsa1 , . . . ,aq such that

Kc~g,ḡ!~j!5(
k51

q

akBk
D~j!, jPTU~x0!.

Proof of Lemma 7:(c) of Lemma 4 shows that the formsB1
Dux0

, . . . .,Bq
Dux0

, considered as

elements of Symm(Tx0
* Mm

^ Tx0
* Mm), are linearly independent. There exists an open neigh

hoodU(x0) of the pointx0 such that for everyyPU(x0) the formsB1
Duy , . . . ,Bq

Duy are linearly
independent andr (g,ḡ)(y)5q. Hence, there exist smooth functionsa1 , . . . ,aqPC`

„U(x0)…
such that

Kc~g,ḡ!~j!5 (
k51

q

ak~y!Bk
D~j!,

wherejPU(x0), y5p(j), andp:TMm→Mm is the projection on the baseMm. Denote byEg

the ‘‘energy’’ integralEg(j)5
def

1
2g(j,j) and let$•,•%g be the Poisson bracket corresponding to

symplectic structurevg . Using thatB1
D(j), . . . ,Bq

D(j) and Kc(j) are integrals of the geodesi
flow of the metricg, we obtain 05$Eg ,Kc%g5(k51

q $Eg ,ak%gBk
D(j) for everyjPTU(x0). The
                                                                                                                



t

ne

o-

,

f

924 J. Math. Phys., Vol. 44, No. 2, February 2003 Peter Topalov

                    
linear independence of the formsB1
Duy , . . . ,Bq

Duy for every fixedyPU(x0) shows that$Eg ,ak%
[0 on TU(x0), and thereforeak are constants. Item (b) of Lemma 7 is proved.

Denote byBk
DuTxMm the restriction of the functionBk

D(j) on the fiberTxM
m
�TMm. Taking a

point jPTxM
m, we obtaindj(Bk

DuTxMm)(h)52Bk
Dux(j,h), wherehPTxM

m>Tj(TxM
m). It fol-

lows from Lemma 4 (b) that for every pointxPU(x0) there exists an open and dense inTxM
m

subsetSx,TxM
m such that ifjPSx thenB1

Dux(j,.), . . . ,Bq
Dux(j,•)PTx* Mm are linearly indepen-

dent. Therefore, the functionsB1
D(j), . . . ,Bq

D(j) are functionally independent inTU(x0). Lemma
7 is proved.

Let us prove that the functionsB1
D(j), . . . ,Br

D(j) are functionally independent inTD. Ac-
cording to Lemma 6 and Lemma 7, it is sufficient to prove that the stable points inD have rank
r . Assume that there exists a stable pointy0PD having rankr 0,r . Without loss of generality we
can suppose that the open setD contains a stable pointx0PD of rank r . Assume for simplicity
that the pointsx0 and y0 can be connected by a geodesic linet→g(t)PD, g(0)5x0 , g(1)
5y0 . Let us take neighborhoodsU(x0) andV(y0) of the pointsx0 andy0 , respectively, such tha
the conditions of Lemma 7 are satisfied. We can suppose that the differentialsdwB1

D , . . . ,dwBr
D

are linearly independent at the pointw5
def

ġ(0) „If not, we take w8PTx0
Mm such that

dw8B1
D , . . . ,dw8Br

D are linearly independent and expw8PV(y0) @see Lemma 7 (a)] …. Denote by
z t(j), jPTMm, the one-parameter family of local diffeomorphisms ofTMm corresponding to the
geodesic flow of the metricg. Using the fact that the functionsB1

D(j), . . . ,Br
D(j) are integrals of

the geodesic flow ofg, we obtain that the differentialsdvB1
D , . . . ,dvBr

D , v5
def

z1(w), are linearly
independent. From another side, Lemma 7 (b) shows thatBr 011

D (j)5(k51
r 0 akBk

D(j) wherej lies

in TV(y0) and ak are some constants. Hence, for everyjPTV(y0), djBr 011
D 5(k51

r 0 akdjBk
D .

This contradiction proves thatthe stable points xPD, that can be connected by a geodesic li
g(t) lying in D with another stable point yPD of rank r, are also of rank r. By assumption,D
is connected. Therefore, the stable points inD have rankr . Item (a) of Theorem 1 is proved. Item
(b) easily follows from Lemma 7 (b). Theorem 1 is proved.

V. PQ „À1…-PROJECTIVE HERMITIAN METRIC

Let Mn be a complex manifold of complex dimensionn. Denote byJ the complex structure
of Mn, (M2n,J)>Mn. Consider a pair ofPQ(21)-projective Hermitian metricss and s̃ (e521
andPQ521). Denote byKc(s,s̃) the local family of pairwise commuting integrals of the ge

desic flow of the metrics ~Theorem 3!. In our casee521 and we obtain thatKc(s,s̃)5
def

udet(A
1c1)u1/2s(A1c1)21, whereA5A(s,s̃).

Fixing a complex chart$(z1, . . . ,zn)% consider the Hermitian matricesS5
def

(sab̄) and S̃

5
def

( s̃ab̄) related to the metricsds252sab̄ dza dz̄b andds̃252s̃ab̄ dza dz̄b, respectively. As usual

we omit the summation symbols in the formulas. Define the operatorA5
def

Ab
a (]/]za) ^ dzb,

where

A b
a5

defUdetS̃
detSU

1/~n11!

s̃an̄sn̄b , ~18!

ands̃an̄s̃n̄b5db
a . By definition,A is a smooth section of the vector bundle EndC(T(1,0)Mn), where

T(1,0)Mn denotes the bundle of theholomorphictangent vectors toMn. Fixing a pointxPMn,
denote byr(s,s̃)(x) the minimal polynomial of the operatorAux .

Definition 9: The numberr(s,s̃)5
def

max
xPMn

r(s,s̃)(x) is called the Hermitian rank of the pair o

PQ(21)-projective Hermitian metrics.
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Theorem 4: Suppose that the complex manifold Mn is connected and let the Hermitian ran
of the pair of PQ(21)-projective Hermitian metrics s and s˜ be r. Then there exist r Hermitian
forms B1 , . . . ,Br such that we have the following:

(a) considered as functions of the tangent bundle TMn, the quadratic forms B1(j), . . . ,Br(j)
are functionally independent pairwise commuting integrals of the geodesic flow of the m
s;

(b) for every fixed real constant c, the integral Kc(s,s̃)(j) is well-defined and

Kc~s,s̃!~j!5(
k51

r

akBk~j!,

whereak are some constants.

The functions B1(j), . . . ,Br(j) can be taken in the form Bk5Kck
(s,s̃), where ck are appro-

priately chosen constants.
Proof of Theorem 4:Fixing a complex chart$(z1, . . . ,zn)% we haves5sab̄(dza

^ dz̄b1dz̄b

^ dza) ands̃5 s̃ab̄(dza
^ dz̄b1dz̄b

^ dza), whereS5
def

(sab̄) andS̃5
def

( s̃ab̄) are Hermitian matrices
Denote by@s# and @ s̃# the Gramians of the metricss and s̃, respectively, i.e.,

@s#5F0 S

S̄ 0G
and

@ s̃#5F 0 S̃

S̄̃ 0G .

It follows from the definition of the operatorA(s,s̃) @formula ~4!# that in the fixed complex char
we have

A~s,s̃!5
defUdet@ s̃#

det@s#U
1/2(n11)

@ s̃#21@s#5UdetS̃
detSU

1/~n11!

@ s̃#21@s#.

Hence,A(s,s̃)5A b
a (]/]za) ^ dzb1A

b̄

ā
(]/] z̄a) ^ dz̄b, whereA b

a is given by formula~18! and

A
b̄

ā
coincides with the complex conjugation ofA b

a ~i.e., A
b̄

ā
5Ā b

a). As usual, we identify the
operatorA with the square matrix (A b

a).
Lemma 8: The degree of the minimal polynomial of the operatorA(s,s̃) coincides with the

degree of the minimal polynomial of the operator A(s,s̃).
Proof of Lemma 8:A simple calculation shows that

A2l̄15S̃21~A2l!* S̃,

where (•)* denotes the Hermitian conjugation of a matrix. Hence, for every integerk we have
(A2l̄1)k5S̃21@(A2l)k#* S̃. Consider the Jordan’s normal form of the operatorA. The last
equalities show that the Jordan’s decompositions corresponding to the eigenvaluesl and l̄ coin-
cide. Finally, we conclude the statement of the lemma from the formulaA(s,s̃)5A b

a (]/]za)
^ dzb1Ā b

a(]/] z̄a) ^ dz̄b. Lemma 8 is proved.
It follows from Lemma 8 that the rankr (s,s̃) of the pair s and s̃ coincides with their

Hermitian rank, i.e.,r 5r (s,s̃)5r(s,s̃).
Let us fix an arbitrary real constantc. Denote byKc(s,s̃) the Hermitian matrix of the form

Kc(s,s̃). A simple calculation shows that
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Kc~s,s̃!5det~Ā1c1!S~Ā1c1!215In21~s,s̃!cn21
¯1I0~s,s̃!.

The last formula is valid in every fixed complex chart. Therefore, there exist well-defined o
whole Mn Hermitian forms I n21 , . . . ,I 0 such that Kc5I n21cn211 ¯ 1I 0 . Denote by
I n21(j), . . . ,I 0(j) the corresponding smooth functions of the tangent bundleTMn. We obviously
have

Kc~j!5I n21~j!cn211¯1I 0~j!, ~19!

where I jPC`(TMn). Denote by I(s,s̃) the vector space spanned on the functionsI j

PC`(TMn) ( j 50, . . . ,n21). Take a basisB1(j), . . . ,Br 8(j) of the linear spaceI(s,s̃). Let us
fix an open setD,Mn with compact closure inMn and consider the quadratic form
B1

D(j), . . . ,Br
D(j) given by Theorem 1. Item (b) of Theorem 1 and formula~19! show that

BkuTDPSpan(B1
DuTD , . . . ,Br

DuTD) (k51, . . . ,r 8) where Span(B1
DuTD , . . . ,Br

DuTD) denotes the
vector space spanned on the restrictions of the functionsBk

D(j) on TD. From another side

Bk
D(j)5

def
Kck

(s,s̃)(j). Using formula~19! again we obtain thatBk
DuTDPSpan(B1uTD , . . . ,Br uTD)

(k51, . . . ,r ). Therefore,r 5r 8. The functionsB1
D(j), . . . ,Br

D(j) are functionally independent o
TD. Hence, the functionsB1(j), . . . ,Br(j) are functionally independent as well. Finally, reca
that the setD was taken arbitrary. Theorem 4 is proved.

Remark 6: In the present section we do not use essentially the integrability of the co
structure J. Therefore, Theorem 4 still holds if(M2n,J) be an almost complex manifold of rea
dimension2n.

VI. EXAMPLES. INTEGRABLE SYSTEMS ON CP n

Our aim in the present section is to find a family of completely integrable systems o
complex projective spaceCPn. Denote by$(z0 : ¯ :zn)% the homogeneous coordinates ofCPn

and consider the affine chartCn{(z1 , . . . ,zn)°(1:z1 : ¯ :zn)PCPn. In coordinates
$(z1 , . . . ,zn)%, the Fubini metrics are given by the formula

dg25
def

2
(a51

n eaudzau21
K
2 ~~(a51

n eauzau2!~(a51
n eaudzau2!2u(a51

n eaz̄adzau2!

S 11
K
2 (a51

n eauzau2D 2 , ~20!

where KÞ0 and the ‘‘signs’’ ea561 (a51, . . . ,n) are fixed. Consider the hermitian form

Q(j,h̄)5
def

j0h̄01K/2(a51
n eajah̄a , j,hPCn11. The hypersurfaceAbs�CPn given in homoge-

neous coordinates byAbs5
def

$Q(z)5
def

Q(z,z̄)50% is calledabsoluteof the corresponding Fubin
metric. The Fubini metrics are smoothly defined onCPn\Abs. If K.0 and ea51 then Abs
50” , and the corresponding Fubini metric is a smooth Riemannian metric onCPn. The Fubini

metrics are usually considered only on the subsetF5
def

$Q(z).0%,CPn. Nevertheless, it will be
more convenient for us to think of the Fubini metrics as metrics defined on the wholeCPn and
having ‘‘singularities’’ inAbs. The Fubini metrics are Hermitian and the corresponding Hermi
matrices aregab̄5eadab /Q(z) 2(K/2)@(eaz̄a)(ebzb)/Q(z)2#. It is well-known that the Fubini
metrics are Ka¨hlerian metrics.

Denote by¹ the Levi-Civita connection corresponding to the Fubini metricg. The connection
¹ can be extended in a natural way to a connection on the complexification of the tangent b
It can be easily seen that the corresponding Christoffel symbols are given by the formulGpq

a

52 @K/2Q(z)# (dp
aeqz̄q1dq

aepz̄p), G p̄q̄
ā 5Ḡpq

a , and the other components of the Christoffel sy
bols vanish~see Ref. 10, Sec. 5, for the caseea51).
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Let mL :CPn→CPn be a projective transformation induced by some~complex! linear trans-
formation L:Cn11→Cn11 given in matrix form by the nondegenerate complex matrixL
PGLn11(C). Denote byg̃ the pull-backmL* g.

Proposition 5: The metrics g and g˜ are h-projective Kählerian metrics.
Proof of Proposition 5:Let L2 be a complex 2-plane inCn11. The set of complex lines lying

in L2 gives a natural embedding of the complex projective lineCP1 in CPn. We call such
embeddingsprojective lines. Proposition 5 easily follows from the next simple lemma.

Lemma 9: A smooth curveg(t)PCPn\Abs is holomorphically planar with respect to a fixe
Fubini metric iff g(t) lies in a projective line.

Proof of Lemma 9:Consider the affine chart$(z1 , . . . ,zn)% and suppose thatg(t)
5„g1(t), . . . ,gn(t)…. The condition thatg(t) is holomorphically planar with respect to a fixe
Fubini metricg is equivalent to the equation

¹ġa

dt
~ t !5r~ t !ġa~ t !, a51, . . . ,n,

where r(t) is a smooth complex-valued function of the real parametert and ¹ġa/dt are the
components of the ‘‘holomorphic’’ part of the real vector¹ġ/dt. Using the explicit form of the
Christoffel symbols of the Fubini metricg we obtain

¹ġa

dt
~ t !5

d2ga

dt2
1Gpq

a ġpġq5
d2ga

dt2
2

K

Q
~epz̄pġp!ġa.

Therefore, the curveg(t) is holomorphically planar if and only ifd2ga/dt2 5r1(t) (dga/dt),
wherer1(t) is a smooth complex-valued function oft. This completes the proof of Lemma 9.

Finally, Proposition 5 follows from the fact thatmL :CPn→CPn maps projective lines to
projective lines. Proposition 5 is proved.

An analog of Lemma 9 in the case of positive definite Fubini metrics is proved in Ref
Sec. 6.

Let us takeL5diag(1,l1 , . . . ,ln) wherela are fixed constants. In the chart$(z1 , . . . ,zn)%,
the induced projective transformationmL :CPn→CPn is given by the formula
(z1 , . . . ,zn)°(l1z1 , . . . ,lnzn). We have

dg̃252

Q̃~z!~(a51
n earaudzau2!2

K

2
u(a51

n earaz̄a dzau2

Q̃~z!2
, ~21!

wherera5
def

ulau2 andQ̃(z)5
def

11 K/2(a51
n earauzau2. The components of the corresponding He

mitian matrix areg̃ab̄5earadab /Q̃(z) 2(K/2)@(earaz̄a)(ebrbzb)/Q̃2(z)#. Let us remark that

the metricg̃ is smoothly defined onCPn\Abs̃, whereAbs̃5
def

$Q̃(z)50%.
Lemma 10: Let B be a non-degenerate symmetric n3n-matrix and a,bPCn are complex

vectors considered as n31-matrices. Denote by(•)8 the transposition of a matrix and̂x,y&

5
def

(a51
n xaya . Then

(i) (B1ab8)215B212(B21a)(B21b)8/11^B21a,b& ;
(ii) det(B1ab8)5(11^B21a,b&)detB.

The proof of Lemma 10 is straightforward.

Using Lemma 10 we obtaing̃ab̄5Q̃„eara
21dab1 (K/2) zaz̄b…. Hence, the operatorA(g,g̃) is

given by the formulaA(g,g̃)5A b
a (]/]za) ^ dzb1A

b̄

ā
(]/] z̄a) ^ dz̄b , whereA

b̄

ā
5Āb

a and A b
a

5u detG̃/detG u1/(n11)g̃an̄gn̄b , G̃5
def

(g̃ab̄), G5
def

(gab̄) ~see Sec. 5!. Applying Lemma 10 we obtain
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A b
a5rb

21db
a2

K

2Q
„~12ra!za /ra…~ebz̄b!. ~22!

Denote byA the matrix with elementsA b
a . Consider the sequences of Hermitian matric

$G( l )% l PZ and $G̃( l )% l PZ defined by the formulasG( l )5
def

GĀl and G̃( l )5
def

G̃Āl . Denote byg( l ) and
g̃( l ) the Hermitian metrics,

dg( l )2
5
def

2g
ab̄

( l )
dza dz̄b ~23!

and

dg̃( l )2
5
def

2g̃
ab̄

( l )
dzadz̄b , ~24!

whereg
ab̄

( l )
and g̃

ab̄

( l )
are the elements of the Hermitian matricesG( l ) andG̃( l ), respectively.

Consider the operatorsPl ,QlPG(EndC„T
(1,0)(CPn\Abs)…) given in coordinates by the ma

trices iA l and iA 2 l , respectively, and define the ‘‘real’’ operatorsPl5
def

Pl1P̄l and Ql5
def

Ql

1Q̄l . The next theorem follows from the results proved in Sec. II D.
Theorem 5: For every fixed integer lPZ the Hermitian metrics g( l ) and g̃( l ) given by formu-

las (23) and (24) are PlQl
(21)-projective Hermitian metrics.

The sequence of metricsg( l ) and g̃( l ) ( l PZ) given by Theorem 5 is called aCPn-hierarchy.
Let us consider the one-parameter groups of transformations ofCPn given in coordinates by

the formulas

Tk~f!:~z1 , . . . ,zk , . . . ,zn!°„z1 , . . . ,exp~ if!zk , . . . ,zn….

It follows from ~20! and~21! thatTk(f) preserve the metricsg andg̃, and therefore they preserv
the wholeCPn-hierarchy. Denote byTk the corresponding Killing symmetries,

Tk5
def

i S zk

]
]zk

2 z̄k

]
] z̄k

D . ~25!

Consider the ‘‘complex’’ impulsespk5
def

1
2(pxk

2 ipyk
) and p̄k5

def
1
2(pxk

1 ipyk
) (k51, . . . ,n),

where pxk
and pyk

are the impulses corresponding to the chart$(x1 ,y1 , . . . ,xn ,yn)%, zk5
def

xk

1 iyk . The chart$(p1 , . . . ,pn ;z1 , . . . ,zn)% is a complex chart ofT* CPn. The canonical sym-
plectic structurev on T* CPn is given by the formulav5(k51

n dpk`dzk1(k51
n dp̄k`dz̄k .

Theorem 6: For every fixed integer lPZ the functionsI n21
( l ) (p), . . . ,I 0

( l )(p) given by the
expansion

K c
( l )~p!5

def
det~A1c1!^~A1c1!21A l Ḡ21p̄,p&5I n21

( l ) ~p!cn211¯1I 0
( l )~p!, ~26!

where p5
def

(p1 , . . . ,pn), p̄5
def

( p̄1 , . . . ,p̄n) and ^X,Y&5
def

(k51
n XkYk , are in involution with respect

to the canonical symplectic structurev on the cotangent bundle T* CPn. If raÞrb (aÞb) then
the functionsI n21

( l ) (p), . . . ,I 0
( l )(p) are functionally independent on T* (CPn\Abs). Adding to the

functionsI n21
( l ) (p), . . . ,I 0

( l )(p) the Noether integrals Tk(p)5
def

i (zkpk2 z̄kp̄k) (k51, . . . ,n) corre-
sponding to the Killing symmetries (25), we obtain a complete system of functionally indepe
functions in involutions on T* (CPn\Abs).

Proof of Theorem 6:It follows from formula ~22! that A b
a(0)5rb

21db
a . Hence, ifraÞrb

(aÞb) then the Hermitian rank of the pairg( l ) andg̃( l ) is n. Finally, the statement of the theore
follows from Theorem 4, Sec. V, applied to the pairg(2 l ) and g̃(2 l ) from the CP-hierarchy.
Theorem 6 is proved.
                                                                                                                



ng

4.

c.

929J. Math. Phys., Vol. 44, No. 2, February 2003 Geodesic compatibility and integrability

                    
Corollary 2: ProvidedraÞrb (aÞb), the geodesic flows of the metrics g( l ) and g̃( l ) from the
CPn-hierarchy are completely integrable.

Remark 7: Taking l50 and ea51, we obtain a complete family of pairwise commuti
integrals of the geodesic flow of the standard Fubini metric onCPn ~see Refs. 13 and 16!. Our
theorem gives an infinite family of metrics onCPn with completely integrable geodesic flows.
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Representation of semigroups in rigged Hilbert spaces:
Subsemigroups of the Weyl–Heisenberg group

S. Wickramasekaraa) and A. Bohm
Department of Physics, University of Texas at Austin, Austin, Texas 78712

~Received 12 August 2002; accepted 1 November 2002!

In this paper we study how differentiable representations of certain subsemigroups
of the Weyl–Heisenberg group may be obtained in suitably constructed rigged
Hilbert spaces. These semigroup representations are induced from a continuous
unitary representation of the Weyl–Heisenberg group in a Hilbert space. Aspects of
the rigged Hilbert space formulation of time asymmetric quantum mechanics are
also investigated within the context of the results developed here. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1533835#

I. INTRODUCTION

Rigged Hilbert spaces have been used in quantum physics since the mid-1960’s. Althou
motivation of the first contributions1–3 was to provide a rigorous mathematical context for Dira
~already well-established! bra-and-ket formulation of quantum mechanics, subsequ
investigations4–7 have led to some interesting new physical results. Among these are a formu
of scattering theory which accommodates an asymmetric time evolution given by asemigroupof
operators, and a related vector description for an~isolated! resonance state. The more recent
these works7 extend the earlier results to relativistic resonances where it is shown that they c
characterized by irreducible representations of the causal Poincare´ semigroup.

Many of the results of these theories can be subsumed under a general study of the re
tations of Lie groups and their subsemigroups in rigged Hilbert spaces. We call a subsetS of a Lie
group G a subsemigroup of the group ifS contains the identity element and remains invaria
under the group multiplication ofG. Notice thatS need not be closed under the inverse operat
x→x21. If S is such a subsemigroup of a Lie groupG, the problem in its broadest generality ca
be stated as follows: IfU is a continuous~often unitary! representation ofG in a Hilbert spaceH,
does there exist a rigged Hilbert spaceF,H,F3 such thatF reducesU to a continuous
representation ofS?

It is clear that ifUuF is such a representation ofS, then there also exists a dual representat
UuF

3 of S in F3. The semigroup time evolution of Gamow vectors,4–7 which describe the~iso-
lated! resonance states, is given by such a representation inF3 dual to a semigroup representatio
in F. In particular, in the nonrelativistic scattering theory developed in Refs. 4–6, time, i.e
Lie group of real numbers under addition, is unitarily represented, by way of the map
„U(t) f …(E)5eiEt f (E), in the Hilbert space of square integrable functions defined on the s
trum of the HamiltonianH. The rigged Hilbert spacesF2,H,F2

3 andF1,H,F1
3 of Hardy

class functions, introduced to represent the in- and out-states, have the property thatF1 andF2

reduce the unitary group representationU(t) in H to representations of the semigroups~under
addition! of negative and positive real numbers, respectively. In the relativistic theory deve
in Ref. 7, there exist two rigged Hilbert spaces which reduce a unitary representation
Poincare´ group inH to continuous representations of the forward and backward causal Poi´
semigroups.

These cases provide examples to the general question posed above. At present, the c
answer to this question is not known to us. It is perhaps the case that the problem is unansw

a!Electronic mail: sujeewa@physics.utexas.edu
9300022-2488/2003/44(2)/930/13/$20.00 © 2003 American Institute of Physics
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at least in the affirmative, as stated above; it may be that such rigged Hilbert spaces are p
for only certain classes of subsemigroups ofG, and this then means that it is necessary to deve
a classification criterion for the subsemigroupsS of a Lie groupG. ~Recall that even in the Lie
group theory, all subgroups are not considered to be of much interest. It is Lie subgroups t
generally investigated.! In this paper, we shall mainly restrict ourselves to semigroups which
the unions of the products of continuous one parameter subsemigroups.

Our purpose in this paper is to study the representations of some subsemigroups
Weyl–Heisenberg group as illustrative of the above general question. Our treatment wil
reveal the general group theoretical content underlying the rigged Hilbert space formulation
time asymmetric quantum mechanics developed in Refs. 4–6.

It is convenient to introduce here some preliminary concepts which we shall make use
the following sections.

Definition 1.1: A rigged Hilbert space consists of a triad of vector spaces,

F,H,F3, ~1.1!

where

(1) H is a Hilbert space
(2) F is a dense subspace ofH and it is endowed with a complete, locally convex, nucle

topologytF that is stronger than theH-topology
(3) F3 is the space of continuous antilinear functionals onF. It is complete in itsweak*

topologyt3 and it containsH as a dense subspace.

Definition 1.2: A continuous representation of a Lie group G on a topological vector spaC
is a continuous mappingT: G3C→C such that

(1) for every gPG, T(g) is a linear operator inC
(2) for everycPC and g1 , g2PG, T(g1g2)c5T(g1)T(g2)c
(3) T(e)5I , the identity operator inC

Definition 1.3: A differentiable representation of a Lie group G on a complete topolog
vector spaceC is a mappingT: G3C→C which fulfills all the requirements of Definition 1.
and has the additional property that for every one parameter subgroup$g(t)% of G,
limt→0 $@T„g(t)…f2f#/t% exists for allfPC (and, a fortiori, defines a continuous linear opera
tor on C).

The semigroup analogs of these definitions are obvious. For instance, in Definition 1.
simply replace the one parameter subgroupsg(t) of G by one parameter subsemigroupsg(t) of S.

II. WEYL–HEISENBERG GROUP AND ITS SUBSEMIGROUPS

The three dimensional Euclidean spaceR3 is a Lie group under the associative multiplicatio
rule, defined by

~a,b,c!~a,b,g!5~a1a,b1b,c1g1ab!. ~2.1!

It is easily verified that the origin~0,0,0! of R3 is the identity element and that each eleme
(a,b,c) has an inverse given by (a,b,c)215(2a,2b,2c1ab). Thus, under~2.1! R3 is a group,
the well known Weyl–Heisenberg group. Throughout the rest of this paper we shall refer t
group byG. We shall denote an element ofG by (a,b,c), or by j, wherej5(j1 ,j2 ,j3).

The Lie algebraG of the group G is also isomorphic toR3, and the elementsx1

5(1,0,0), x25(0,1,0) andx35(0,0,1) can be chosen as a basis forG. In fact,G can be made into
an associative algebra~of operators acting onR3 itself! by way of the multiplication ruleG^ G
→G defined by

~a,b,c!~a,b,g!5~0,0,ab!. ~2.2!
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Under~2.2!, the basis elementsx i fulfill the relationsx ix j5d1id2 jx3 , and thereupon we have th
very well-known Heisenberg commutation relations:@x1 ,x2#5x3 ,@x1 ,x3#5@x2 ,x3#50.

Among the subsemigroups ofG are the following:

S1~0!5$j: j1>0, j250, j3PR%,

S15$j: j1>0, j2 ,j3PR%,

S2~0!5$j: j150, j2>0, j3PR%,
~2.3!

S25$j: j2>0, j1 ,j3PR%,

S35$j: j1 ,j2>0, j3PR%,

S45$j: j1 ,j2>0, j1j2>j3>0%.

It is readily seen that each set in~2.3! is a topological semigroup. More specifically,~2.1! reduces
to a continuous, associative multiplication on everySi , and none is closed under the inver
operationj→j21. Thus eachSi is truly a topological subsemigroup ofG. Furthermore, it is
straightforward to verify that the set consisting of the inverses of the elements in eachSi of ~2.3!
is also a subsemigroup ofG. We shall denote this complementary semigroup toSi by Si

21 .
Next, let L2 be the Hilbert space of square integrable~with respect to Lebesgue measur!

functions on the real lineR. The mappingU: G^ L2→L2, defined by

„U~j! f …~x!5ei j3eixj2f ~x1j1!, ~2.4!

furnishes a continuous unitary representation ofG in L2. The differential ofU at the identity0,
dUu0 , yields a representation of the Lie algebraG, a well known result from the classical repre
sentation theory. In particular, the basis elementsx i acquire representation as the linear operato

„dUu0~x1! f …~x![~M f !~x!5 ix f ~x!,

„dUu0~x2! f …~x![~D f !~x!5S d f

dxD ~x!, ~2.5!

„dUu0~x3! f …~x!5 i f ~x!.

It is clear that the first two equalities may be defined not on the whole ofL2 but on a dense
subspace thereof.

In the remainder of this paper we shall discuss how a rigged Hilbert space may be cons
so that the restrictionUuF of U to F yields therein a nontrivial~i.e., one that does not extend t
a representation of a subgroup ofG) differentiable representation of two of the subsemigroups
~2.3!. We shall also remark on how rigged Hilbert spaces may be constructed for the
subsemigroups in~2.3!.

III. A DIFFERENTIABLE REPRESENTATION OF S1„0… IN A RIGGED HILBERT SPACE

In this section we shall construct a rigged Hilbert spaceC,L2,C3 such that the restriction
of U to C yields a representation of the subsemigroupS1(0) of G defined in~2.3!. The main
technical result is the construction of the rigged Hilbert space.

A. Construction of the rigged Hilbert space

Definitions: Let L1
2 and L2

2 be the Hilbert spaces of square integrable~with respect to Le-
besgue measure! functions supported in~0,̀ ! and (2`,0), respectively. Let us denote the norm
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in these spaces byi•i1 and i•i2 . The restriction ofL2-functions to~0,̀ ! and (2`,0) define,
respectively, two projection operatorsQ1 and Q2 onto L1

2 and L2
2 . Thus, L1

2 5Q1L2, L2
2

5Q2L2, andL25L2
2

% L1
2 .

The mappingH: L2→L2 defined by

~Hf !~ t !5
1

p E
2`

`

dx
f ~x!

x2t
,

where the integral is defined as the Cauchy principal value, is called the Hilbert transform
well known that the operatorsP15 1

2(I 1 iH) andP25 1
2(I 2 iH) are projections fromL2 ontoH1

2

andH2
2 , the Hilbert spaces of Hardy class functions from above and below, respectively.8 Thus,

H1
2 5P1L2, H2

2 5P2L2, andL25H2
2

% H1
2 .

For any f PL1(R), the functionf̂ defined by the integral

f̂ ~ t !5
1

A2p
E

2`

`

f ~x!e2 ixt dx, ~3.1!

is said to be the Fourier transform off . It is well known that the mappingF: f→ f̂ defined by
~3.1! extends to a unitary transformation onL2.

Fourier transformF provides a unitary equivalence between the two sets of projection op
tors introduced above: A Paley–Wiener theorem asserts thatF„Q6(L2)…5P7(L2), Q6(L2)
5F 21

„P7(L2)…, F 21
„Q6(L2)…5P6(L2), andQ6(L2)5F„P6(L2)….

A remarkable theorem of van Winter9 states that a function inH6
2 is completely determined

by its values on~0,̀ ! @or on (2`,0)]. Further, the restriction ofH6
2 -functions to ~0,̀ !

form a dense subspace ofL1
2 . Similarly, their restrictions to (2`,0) are dense inL2

2 . Transcribed
to our notation, the theorem states that theL2-inclusions Q1P6(L2),Q1(L2) and
Q2P6(L2),Q2(L2) are dense.

Proposition 3.1: The functions2 iP1(L2
2 ) form a dense subspace ofH1

2 . Similarly, the
functions iP2(L2

2 ) are dense inH2
2 .

Proof: Supposef 0PH1
2 , ande, any positive number. For anyhPH2

2 , we haveP1( f 01h)
5P1 f 05 f 0 . Now, by the above mentioned theorem of van Winter, we can choosehPH2

2 such
that

i2 i f 01hi1,
e

2
.

For such anh, let g̃5Q2( i f 02h). Then,

i2 iP1g̃2 f 0i5iP1~ g̃2 i f 0!i5iP1~ g̃2 i f 01h!i<i g̃2 i f 01hi

5~ i g̃2 i f 01hi2
2 1i2 i f 01hi1

2 !1/25i2 i f 01hi1,
e

2
. ~3.2!

Thus,2 iP1(L2
2 ) is dense inH1

2 . The same argument shows thatiP2(L2
2 ) is dense inH2

2 . h

This proposition shows that the denseness of the inclusionsQ1P6(L2),Q1(L2) and
Q2P6(L2),Q2(L2), i.e., van Winter’s theorem, implies the denseness of the compleme
inclusionsP1Q6(L2),P1(L2) andP2Q6(L2),P2(L2).

Definitions: Let S be the space of Schwartz functions onR. That is, if f PS, then we have
f PC`(R) and limx→6` xnf (x)50 for n50,1,2,... . It is well known thatS is denseL2. There
exists a locally convex topology under whichS becomes a Fre´chet space, and the Fourier tran
form F defined by~3.1! is a homeomorphism on this Fre´chet space.@This topology is defined by
the countable family of normsi f imn5supxPRuxm (dn/dxn) f (x)u, where m and n are positive
integers. Equivalently, the normsi f in5i(M21D21I )nf i can be used. See also~3.5!.# Further,
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S6 , the space ofS-functions with the support in (0,6`) is dense inL6
2 . The above mentioned

Paley–Wiener theorem implies thatF(S7)5SùH6
2 and thatSùH6

2 is dense inH6
2 .

Let N be the subspace of Schwartz functions with vanishing moments of all orders. Tha
f PN, then f PS and *2`

` xnf (x)dx50 for n50,1,2,... . LetN6 be the space ofN-functions
supported in (0,6`). It is shown in the Appendix thatN6 is dense inL6

2 . Since N2

% N1,N, it then follows thatN is dense inL2.
The unitarity of the Fourier transformF implies that the image ofN underF is dense inL2.

Let this space be denoted byM. A function f in M, being the Fourier transform of a function i
N, is smooth, rapidly decaying and has vanishing derivatives of all orders at the origin. Fu
from the Appendix, it is clear thatN2 % N1,NùM, and so, the spaceNùM is dense inL2. It
is also straightforward to verify thatNùM is a closed subspace ofS. Its invariance under the
Fourier transform is an interesting property.

Proposition 3.2:7 iP6(N2) is dense inSùH6
2 .

Proof: Let f 0 , g̃ ande be as in the proof of Proposition 3.1. The denseness ofN2 in L2
2 ~see

the Appendix! allows us to choosegPN2 such that

ig2g̃i,
e

2
.

Thus,

i2 iP1g2 f 0i<i2 iP1~g2g̃!i1i2 iP1g̃2 f 0i,
e

2
1

e

2
5e.

It only remains to show that2 iP1gPS. To that end, recall that the Fourier transform of t
Hilbert transform of a function satisfies the equality (Hf ) (y)52 i (y/uyu) f̂ (y). Therefore,

~2 iP1g! ~y!5S 1

2
~H2 i I !gD ~y!52

i

2

y

uyu
ĝ~y!2

i

2
ĝ~y!. ~3.3!

SincegPN, ĝ has vanishing derivatives of all orders aty50. Thus, (2 iP1g) , and therewith
also (2 iP1g), belongs toS.

The same argument proves the denseness ofiP2(N2) in SùH2
2 . h

The proof of Proposition 3.2 also implies that7 iP6(N1) is dense inSùH6
2 .

Remark: Notice that (2 iP1g) is in fact an element ofM. This means that (2 iP1g)
PNùH1

2 whenevergPN. That is,N has the interesting property that it is invariant under
Hilbert transformH. Furthermore, it follows thatNùH1

2 is dense inH1
2 , and therefore also in

SùH1
2 .

Definitions:From Proposition 3.2 it follows that2 iP1(N2) % iP2(N2) is a dense subspac
of L2. If f is an element of this subspace, then for unique functionsg,hPN2 ,

f 52 iP1g1 iP2h. ~3.4!

We may introduce a locally convex topology on2 iP1(N2) % iP2(N2) by defining a family of
normsi f in for f :

i f in
25i2 iP1gin

21i iP2hin
21i iP2gin

21i2 iP1hin
2. ~3.5!

The norms on the right hand side of~3.5! refer to the topology that2 iP1(N2) % iP2(N2)
inherits as a subspace ofS. For instance,i2 iP1gin can be iteratively defined by

i2 iP1gin11
2 5iM ~2 iP1g!in

21iD~2 iP1g!in
21i2 iP1gin

2 , n50,1,2,..., ~3.6!
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whereM andD are the multiplication and differentiation operators defined in~2.5! andi•i0 is the
L2-norm. The topology induced onS by the norms of~3.6! is equivalent to the one given by th
more customary normsi f imn5supxPRuxm (dn/dxn) f (x)u.

Let C be the direct sum space2 iP1(N2) % iP2(N2) endowed with the topology given b
the norms~3.5!.

Proposition 3.3:C is a nuclear Fréchet space.
Proof: Local convexity and metrizability ofC are obvious from~3.5!. To see thatC is

complete, suppose that$ f i% is a Cauchy sequenceC. Since eachf i has the decomposition

f i52 iP1gi1 iP2hi , ~3.7!

for somegi ,hiPN2 , we obtain four Cauchy sequences:$2 iP1gi% and $2 iP1hi% in SùH1
2 ;

$ iP2gi% and $ iP2hi% in SùH2
2 . Since these two spaces are complete, we conclude that

exist functionsg,hPSùH1
2 and g̃,h̃PSùH2

2 such that

2 iP1gi→g, 2 iP1hi→h,
~3.8!

iP2gi→g̃, iP2hi→h̃.

The convergences in~3.8! are of course with respect theS-topology~3.6!. Therefore, the functions
(2 iP1gi) converge tog point-wise~and similarly for the other three sequences!. Next, notice that
the two functions2 iP1 f and iP2 f obtained from anyf PN2 coincide on~0,̀ !: (2 iP1 f )(x)
5(Hf )(x)5( iP2 f )(x) for xP(0,̀ ). Thus,g(x)5g̃(x) andh(x)5h̃(x) for xP(0,̀ ). Now let
g05 i (g2g̃), h05 i (h2h̃), and

f 052 iP1g01 iP2h0 . ~3.9!

The function f 0 is an element ofC. The convergences~3.8! imply that f i→ f 0 . Hence,C is a
Fréchet space.

It is well-known thatS is a nuclear space. Since every subspace of a nuclear space is nu
2 iP1(N2) % iP2(N2) is nuclear. It then follows thatC is a nuclear space as its topology~3.5!
is derived from the nuclear topology~3.6! of S. h

Let C3 be the space of continuous antilinear functionals onC, endowed with the
weak* -topology. Then, the triplet of spaces,

C,L2,C3, ~3.10!

constitutes a rigged Hilbert space.
Remark:From the proof of Proposition 3.3, in particular from the coincidence of the funct

2 iP1 f andiP2 f on ~0,̀ ! for any f PN2 , it follows that the elements ofC do not vanish on any
subset of~0,̀ ! with nonzero~finite! measure. In fact, this property could have been used to de
the spaceC. Furthermore, iff 1 is theL1

2 -function obtained from somef PC by f 15Q1 f , then
it follows that f 1 extends to both a unique function inNùH1

2 ,SùH1
2 and a unique function in

NùH2
2 ,SùH2

2 . That is, Q1(C),F1ùF2 , where F15Q1(SùH1
2 ) and F2

5Q1(SùH2
2 ), the spaces defined in Refs. 4 and 5 in their study of scattering and time a

metric quantum mechanics. The denseness ofC in L2 shows that@Q1(C) and thus also# the
intersectionF1ùF2 is dense inL1

2 , extending the result in Ref. 5 that it is nontrivial.

B. Representation of S1„0… in C

Proposition 3.4: The restriction of U toS, where U is the continuous unitary representatio
of G given in~2.4!, yields a differentiable representation of G inS.

Proof: From the definition~2.4!, it follows directly that S remains invariant under al
U(j), jPG. Then, direct computations show,10 for all f PS andn50,1,2,...,
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iU~j! f in<~11j1
21j2

2!n/2i f in ~3.11!

and

lim
j1→0

I S U„~j1,0,0!…2I

j1
2D D f I

n

50,

lim
j2→0

I S U„~0,j2,0!…2I

j2
2M D f I

n

50, ~3.12!

lim
j3→0

I S U„~0,0,j3!…2I

j3
2 i I D f I

n

50,

where the normsi•in are those defined in~3.6!. This proves thatUuS is a differentiable represen
tation of G. h

Remark:Equations~3.12! show that theS-generators of the representationUuS coincide onS
with theL2-generators ofU. This has an interesting implication for the rigged Hilbert formulati
of quantum physics in that, just as in the conventional Hilbert space theory, the concept
observable has an interpretation as the infinitesimal form of a symmetry~or asymmetry/
semigroup! transformation.

Let us next consider the action ofU on the elements ofC.
Proposition 3.5: The restriction of U toC yields a nontrivial differentiable representation o

S1(0) in C.
Proof: If C is invariant underU(j), jPS1(0), then it follows from the topology~3.5! and

Proposition 3.4 thatUuC furnishes a differentiable representation ofS1(0). Therefore, we must
simply show thatU(j), jPS1(0), leavesC invariant and that the resulting semigroup repres
tation does not extend inC to a representation ofG or a subgroup thereof. To that end, letf
PC. Then, there exist unique functionsg andh in N2 such thatf 52 iP1g1 iP2h, and

U„~j1,0,j3!…f 5U„~j1,0,j3!…~2 iP1g!1U„~j1,0,j3!…iP2h

52 iP1U„~j1,0,j3!…g1 iP2U„~j1,0,j3!…h, ~3.13!

where the second equality follows from the commutativity of translations with the Hilbert tr
form: U„(j1,0,j3)…H5HU„(j1,0,j3)….

From the construction ofN2 ~the Appendix!, it is clear that U„(j1,0,j3)…gPN2 and
U„(j1,0,j3)…hPN2 if j1>0, or, equivalently, if (j1,0,j3)PS1(0). That is,C is invariant under
the operator semigroupU„(j1,0,j3)…, j1>0. Furthermore, from the Appendix it is also clear th
for any j1,0, there exist functionsf in N2 such thatU„(j1,0,j3)…f ¹N2 . Thus, the semigroup
representationU(j), jPS1(0) in C does not extend to a representation of the whole ofG or even
the subgroup$(j1,0,j3): j1 ,j3PR%. h

IV. A DIFFERENTIABLE REPRESENTATION OF S2„0…

As a corollary to the construction carried out in Sec. III, we can obtain a rigged Hilbert s

C̃,L2,C̃3 such thatC̃ reduces the continuous unitary representation ofG given by ~2.4! to a
differentiable representation of subsemigroupS2(0) defined in~2.3!. This can be easily achieve

by letting C̃ be the Fourier transformF~C! of the nuclear Fre´chet spaceC constructed in the
above section. SinceF is a unitary mapping onL2, it follows that the triad,

C̃,L2,C̃3, ~4.1!
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is a rigged Hilbert space. The topology onC̃ can be induced from the topology ofC via the

Fourier transform. That is, ifwPC̃, thenw5 f̂ for a uniquef PC, and a locally convex nuclea

topology can be defined onC̃ by way of the norms

iwin5i f in , ~4.2!

wherei f in are the norms inC defined by~3.5!.
It is well known thatF ~andF 21) establishes a unitary equivalence between the opera

U„(j1,0,j3)… and U„(0,j1 ,j3)…, i.e., F+U„(j1,0,j3)…5U„(0,j1 ,j3)… and U„(j1,0,j3)…5F21

+U„(0,j1 ,j3)…. It thus follows thatC̃ reduces the unitary representationU of G in L2 given by
~2.4! to a nontrivial differentiable@with respect to the topology given by~4.2!# representation of
S2(0).

It is perhaps worthwhile to take a closer look at the properties of the functions inC̃. Each
such functionw is the Fourier transform of a function inC, i.e.,

w5~2 iP1g! 1~ iP2h! , ~4.3!

for unique functionsg andh in N2 . From ~3.3!, we then have

w~x!52
i

2 S 11
x

uxu D ĝ~x!1
i

2 S 12
x

uxu D ĥ~x!. ~4.4!

This means that the spaceC̃ is the direct sum of the restrictions ofF(N2) to ~0,̀ ! and to
(2`,0). SinceF(N2)5MùH1

2 , we have

C̃5Q1~MùH1
2 ! % Q2~MùH1

2 !. ~4.5!

The topology ofC̃ can also be defined by way of the norms

iwin
25i ĝin

21i ĥin
2, ~4.6!

whereĝ and ĥ are as in~4.4! and the norms on the right hand side of~4.6! are as in~3.6!. This
topology is clearly equivalent to one given by the norms~4.2!. In this light, the differentiable

representation ofS2(0) in C̃ is just that which is induced from its differentiable representation
MùH1

2 .

V. SUBSEMIGROUPS S1 ,S2 AND S3

Notice that the centrally significant feature of the preceding constructions of two ri
Hilbert spaces is the existence of dense subspaces of the Hilbert space which remain in
under the differentialdUu0 but not the representationU. Once a subspace invariant underdUu0
andU(j), jPS1(0), ordUu0 andU(j), jPS2(0), wasidentified, it was possible to construct th
rigged Hilbert space~3.10! or ~4.1!.

Such dense subspaces can be constructed also for the operator semigroups$U(j): jPS1%,
$U(j): jPS2% and $U(j): jPS3%. It is interesting to notice, however, that any subspace wh
remains invariant under the operator semigroup$U(j): jPS4% will be invariant also under
$U(j): jPS3%. This means that the general method implied by the preceding two construc
~by way of dense subspaces invariant under the relevant operator semigroup! does not lead to a
rigged Hilbert space for a nontrivial differentiable representation of the subsemigroupS4 , i.e.,
such a representation naturally extends to a representation ofS3 .

A dense subspace ofL2 which is invariant under the operator Lie algebradUu0 and the
semigroupU(S1) can be easily obtained from theC of Sec. III. It was shown thatC remains
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invariant under the operator semigroup$U(j): jPS1(0)%. However,C is not invariant under any
operator such asU(j) where j5(0,j2 ,j3). This is easily seen when either the Hardy cla
property or the vanishing moment~in N! property of the functions inC is considered. For
instance, for an arbitrary elementf PC, the integrals*2`

` xnf (x)dx50 for n50,1,2,..., but the
integrals of the transformed element U(j) f , *2`

` xn(U„(0,j2 ,j3)…f )(x)dx
5ei j3*2`

` xnei j2xf (x)dx do not vanish forn50,1,2,..., when j2Þ0, i.e., U„(0,j2 ,j3)…f ¹C.
Therefore, letCj5U„(0,j2 ,j3)…(C). Unitarity of the operatorsU„(0,j2 ,j3)… implies thatCj is
dense inL2. Thus, a dense subspace ofL2 which remains invariant under the operator semigro
U(S1) can be obtained by setting

C15øjPS1
Cj , ~5.1!

and, starting from the dense subspace~5.1!, a rigged Hilbert space may be built as in Sec. III f
a differentiable representation of the semigroupS1 .

In complete analogy to~5.1!, we can construct a dense subspace invariant under the ope

semigroup$U(j): jPS2%, starting from the spaceC̃ of Sec. IV.
As is evident from the vector spaceNùM introduced in Sec. III, there also exist den

subspaces ofL2 which are invariant under the operator Lie algebradUu0 but not under any
nontrivial U(j), i.e., under anyU(j) wherej is a noncentral element ofG. Now consider the
vector space,

C35øjPS3
U~j!~NùM!. ~5.2!

The unitarity ofU(j) and the denseness ofNùM imply thatC3 is dense inL2. By construction,
C3 is invariant under bothdUu0 and the operator semigroup$U(j):jPS3%, but not under any
U(j) with j¹S3 . Thus, a rigged Hilbert space furnishing a nontrivial differentiable representa
of S3 may be built from the dense subspaceC3 .

VI. CONCLUDING REMARKS—JUXTAPOSITION WITH TIME ASYMMETRIC QUANTUM
THEORY

In this paper we have investigated how differentiable representations of certain subsemi
of the Weyl–Heisenberg group may be obtained in rigged Hilbert spaces. These represen
were induced from a given continuous unitary representation of the Weyl–Heisenberg grouG in
the Hilbert space ofL2-functions onR. As stated earlier, the construction of the particular rigg
Hilbert space, which we denote here as in Definition 1.1 generically byF,H,F3, begins with
the identification of a dense subspace ofL2 which stays invariant under the action of th
L2-differential dUu0 and the relevant operator subsemigroup$U(j): jPSi%. In order to make
certain that the ensuing differentiable representation is nontrivial, i.e., that it does not exten
representation of the groupG or a subgroup thereof, it was necessary to verify that the de
subspace invariant for the subsemigroup$U(j): jPSi% does not remain invariant under certa
U(j) with j¹Si . Once such a dense subspace was identified, it was possible to introd
topology on it, by means of the enveloping operator algebra ofdUu0 , so as to obtain a differen
tiable representation ofSi in the inner spaceF of the rigged Hilbert space. With respect to th
topology, elements of the enveloping algebra ofdUu0 become continuous as operators inF.
Moreover, as seen from~3.12!, the elements of theF-differential of the semigroup representatio
U(Si) in F coincide with the corresponding elements of theH-differential dUu0 of the group
representationU(G) in the Hilbert spaceH.

In a definite technical sense, the semigroup time evolution of the rigged Hilbert space f
lation of quantum mechanics developed in Refs. 4–6 has at its heart the Weyl–Heisenbe
semigroupsS1 andS2 of ~2.3!. Recall first that the rigged Hilbert spaces of Hardy class functi
constructed in Refs. 4–6 are
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SùH1
2 u1,L1

2 ,~SùH1
2 u1!3, SùH2

2 u1,L1
2 ,~SùH2

2 u1!3, ~6.1!

whereu1 indicates the restrictions of theSùH6
2 -functions to the half line~0,̀ !. From the above

mentioned van Winter’s theorem,9 a function f 6 in SùH6
2 u1 extends to a unique functionf 6 in

SùH6
2 . This property is used in Refs. 4, 5 to define a nuclear Fre´chet topology onSùH6

2 u1 :

i f 6in5i f 6in , ~6.2!

where the norms on the right hand side refer to the Schwartz space topology~3.5! the space
SùH6

2 inherits fromS2. @The countable family of norms used to characterizeS in Refs. 4, 5 is not
that of ~3.5! but the more customaryi f in5i(M21D21I )nf i0 .] The continuous unitary repre
sentation ofR given inL1

2 by „U(t) f …(E)5eiEt f (E) reduces to a differentiable representation
(0,6`) in SùH6

2 u1 . These semigroup representations can be related to the representati
S1

21 andS2 of ~2.3! in the following way.
Observe that the mapping~2.4! yields a continuous representation ofS1

21 in L1
2 by contrac-

tions:

„U~j! f …~x!5ei j3eixj2f ~x1j1!, jPS1
21 , f PL1

2 , ~6.3!

and iU(j) f i1<i f i1 .
Further, the multiplication subgroup$(0,j2 ,j3):j2 ,j3PR% of S1

21 is unitarily represented by
U in L1

2 :

~U„~0,j2 ,j3!…f !~x!5ei j3eixj2f ~x!. ~6.4!

The dense subspaceS1 remains invariant under both the operator semigroup$U(j): j
PS1

21% and the basis elementsM , D, I of the differentialdUu0 . Moreover,S1 , a closed sub-
space ofS, is a nuclear Fre´chet space, and therewith the triplet

S1,L1
2 ,S1

3 ~6.5!

constitutes a rigged Hilbert space. The continuous representation~6.3! of S1
21 in L1

2 yields a
differentiable representation of the semigroup inS1 .

The Fourier transform~3.1! establishes a unitary equivalence between~6.5! and the rigged
Hilbert space,

SùH2
2 ,H2

2 ,~SùH2
2 !3, ~6.6!

while its inverseF 21 maps~6.5! unitarily onto

SùH1
2 ,H1

2 ,~SùH1
2 !3. ~6.7!

SinceF is a homeomorphism onS, SùH6
2 are closed subspaces ofS. They are thus nuclea

Fréchet spaces with respect to the Schwartz space topology~3.5!.
The mappings from~6.5! onto ~6.6! and~6.7! given byF andF 21 also transform the repre

sentation ofS1
21 in ~6.5! to a representation ofS2

21 and S2 in ~6.6! and ~6.7!, respectively. In
particular,

FU~j!F 215U„~2j2 ,j1 ,j32j1j2!…,
~6.8!

F 21U~j!F5U„~j2 ,2j1 ,j32j1j2!…,

and whenjPS1
21, the contractionsU„(2j2 ,j1 ,j32j1j2)… andU„(j2 ,2j1 ,j32j1j2)… provide

continuous representations ofS2
21 and S2 in H2

2 and H1
2 , respectively. Further, in the nuclea

Fréchet spacesSùH2
2 andSùH1

2 the mappings~6.8! furnish differentiable representations of th
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semigroupsS2 and S2
21, respectively. In particular, the differentiation operatorD generates the

one parameter group of translations in bothSùH2
2 and SùH1

2 , whereas the multiplication
operatorM generates only a one parameter semigroup, one inSùH2

2 for negativej1 and another
in SùH1

2 for positivej1 .
Consider the subsemigroupS2(0) of S2 . As just seen, it is represented differentiably by t

mapping~2.4!, j→U(j), in SùH1
2 :

„U~j! f …~x!5ei j3eixj2f ~x!, jPS2~0!, f PSùH1
2 . ~6.9!

The relation~6.8! and the description following it shows that this representation ofS2(0) in
SùH1

2 is nontrivial. Now, since the mappingSùH1
2 →SùH1

2 u1 is one-to-one and onto Refs. 5
9, it follows that~6.9! induces a non-trivial differentiable representation ofS2(0) in SùH1

2 u1 .
Observe next that the differentiable representation~6.9! of the subsemigroupS2(0) in

SùH1
2 u1 can be identified with the unitary representation~6.4! of the subgroup $j

5(0,j2 ,j3): j2 ,j3PR% in L1
2 . Once this identification is made, we conclude that the continu

unitary representation ofR given by ~6.4!,

~U„~0,j2,0!…f !~x!5eixj2f ~x!, ~6.10!

in L1
2 is reduced by the subspaceSùH1

2 u1 to a representation of the half line~0,̀ !. This is the
semigroup that is interpreted in Refs. 4–6 as governing the asymmetric time evolution o
states and the decaying Gamow vectors. We see here that it is induced from a continuous
sentation of the Weyl–Heisenberg semigroupS2 in H1

2 . The latter representation, in turn,
equivalent to the continuous representation of the semigroupS1

21 in L1
2 , given by~6.3!. In this

sense, it can be said that the semigroup time evolution of the quantum theory developed in
4–6, where the Hilbert spaceL1

2 consists of the square integrable functions defined on the en
spectrum~0,̀ ! andj2 is interpreted as time,t, is obtained from the semigroup of translations
L1

2 given by ~6.3!, „U(j) f …(E)5 f (E2j), jP(0,̀ ).
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APPENDIX: DENSENESS OF NÁ IN LÁ
2

Proposition A.1:N1 is dense in L1
2 .

Proof (Ref. 11): We prove this assertion by showing that any compactly suppo
C`-function inL1

2 can be approximated by functions inN1 . Since the class ofC`-functions with
compact support is dense inL1

2 , the proposition follows.
Let g be a compactly supported smooth function inL1

2 ande, any positive number. Withou
loss of generality, let us assume that*0

`g(x)dxÞ0, for otherwise we may choose a compac
supported smooth function arbitrarily close tog in theL2-metric with this property. Now, suppos
that there exists a family of compactly supported smooth functionsf k , with supports contained in
say (ak ,ak11), such that we have the following.

~1! The support off k is to the right of the support off k21 and disjoint from it; the support o
f 0 is to the right of that ofg.

~2! *0
`xi f k(x)dx50, for i 50,1,2,...,k21.

~3! *0
`xkf k(x)dx52*0

`xk(g1 f 01 f 11¯1 f k21)(x)dx.
~4! i f ki,e/2k11ak11

k .
If such a family$ f k% can be found, then set

f 5 (
k50

`

f k1g. ~A1!
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The f is well defined since for each 0,x,` all but onef k are zero.
Since thef k have disjoint supports,

E
an

an11
xm(

k50

`

f k~x!dx5E
an

an11

(
k50

`

xmf k~x!dx5E
an

an11
xmf n~x!dx50, for all n.m, ~A2!

and so

(
n50

` S E
an

an11

(
k50

`

xmf k~x!dxD 5 (
n50

m S E
an

an11

(
k50

`

xmf k~x!dxD 5 (
n50

m E
an

an11
xmf n~x!dx. ~A3!

Therefore,

E
0

`

xmf ~x!dx5E
0

`S (
k50

`

xmf k~x!1xmg~x!D dx5 (
k50

m E
0

`

xmf k~x!dx1E
0

`

xmg~x!dx50,

for m50,1,2,..., ~A4!

where the above property~2! of the f k is used in the last equality of~A2! and the property~3!, in
the last equality of~A4!. Further, from the inequality~4!, it is clear thatxnf PL1

„(0,̀ )…. Since the
functions f k have increasing supports, it then follows thatf PN1 .

Furthermore, from the disjointness of the supports and the property~4! above of thef k , it
follows readily that

ig2 f i5I (
k50

`

f kI5S (
k50

`

i f ki2D 1/2

<S (
k50

`
e2

22k12ak11
2k D 1/2

,e, ~A5!

i.e., N1 is dense inL1
2 .

It remains to show that theC` functions f k can be chosen subject to the conditions~1!–~4!
above. This can be done by induction. To that end, suppose the smooth functionsf 0 ,...,f k21 with
their supports in (a0 , a1),...,(ak21 , ak), respectively, have been aptly chosen. Assume fur
that the given smooth function is supported in (0,a0) with a0.1. Define now a functionf k by
setting

f k~x!5gk

dkg

dxk S a0~x2ak!

ak112ak
D . ~A6!

The function f k is supported in (ak , ak11), whereak11 and the constantgk are to be chosen
subject to the conditions~A10! and ~A12! below.

From the definition~A6! it is clear that

E
0

`

xi f k~x!dx50, for n50,1,2,...,k21 ~A7!

and

E
0

`

xkf k~x!dx5~21!kk! IgkS ak112ak

a0
D k11

, ~A8!

whereI 5*0
`g(x)dx. Next, in accordance with condition~3! above, we require

E
0

`

xkf k~x!dx5l, ~A9!
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wherel52*0
`xk

„g(x)1 f 0(x)1¯1 f k21(x)…dx. Equalities~A8! and ~A9! yield

gk5
~21!kl

k! I S a0

ak112ak
D k11

. ~A10!

It remains only to chooseak11 . By the definition~A6! of f k and the inequality~4! on itsL2 norm,
we have

i f ki5ugkuS a0

ak112ak
D 1/2I dkg

dxk I,
e

2k11ak11
k . ~A11!

Along with the relation~A10! above, we then observe thatak11 is to be chosen subject to th
inequality

~ak112ak!
k13/2

ak11
k .

ulu2k11

euI uk!
a0

k13/2I dkg

dxk I . ~A12!

By construction,ak.a0.1, and so it is clear that this inequality can be fulfilled by choos
ak11 large enough. Once theak11 is picked out, the equation~A10! determinesgk , and therewith
the expression~A6! completely determines the functionf k . Thus, the functionsf k are simply the
derivatives of the given smooth functiong with their supports appropriately dilated and transla
on the real axis, followed by a suitable overall scaling. h

1J. E. Roberts, Commun. Math. Phys.3, 98 ~1966!.
2A. Bohm, inBoulder Lectures in Theoretical Physics 1966, edited by A. O. Barutet al. ~Gordon and Breach, New York
1967!, Vol. 9A.

3J. P. Antoine, J. Math. Phys.10, 53 ~1969!; 10, 2276~1969!.
4A. Bohm and M. Gadella,Dirac Kets, Gamow Vectors and, Gel’fand Triplets, Lecture Notes in Physics~Springer-Verlag,
Berlin, 1989!, Vol. 348.

5M. Gadella, J. Math. Phys.24, 1462~1983!.
6A. Bohm, I. Antoniou, and P. Kielanowski, J. Math. Phys.36, 2593~1995!.
7A. Bohm et al., Phys. Lett. A264, 425 ~2000!; Eur. Phys. J. C.18, 333 ~2000!.
8E. C. Titchmarsh,Introduction to the Theory of Fourier Integrals~Clarendon, Oxford, 1937!.
9C. van Winter, Trans. Am. Math. Soc.162, 103 ~1972!.

10S. Wickramasekaraet al., J. Phys. A35, 807 ~2002!.
11The idea of this proof is due to I. Katznelson and N. Wickramasekara~private communications!.
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Erratum: Pseudo-Hermiticity for a class
of nondiagonalizable Hamiltonians
†J. Math. Phys. 43, 6343 „2002…‡

Ali Mostafazadeha)

Department of Mathematics, Koc¸ University,
Rumelifeneri Yolu, 34450 Sariyer, Istanbul, Turkey

@DOI: 10.1063/1.1540714#

Recently, the authors of Ref. 1 used the framework provided in Ref. 2 to re-examin
consequences of pseudo-Hermiticity for the class of block-diagonalizable Hamiltonians intro
in Ref. 2. In doing so, they discovered that Theorem 2 of Ref. 2 did not hold, as they could
a counter-example. This theorem must be replaced with the following.

Theorem 2: Let H be as in Theorem 1 of Ref. 2. ThenH is pseudo-Hermitian if and only if
it is Hermitian with respect to an inner product^^,&& that supports a positive-semidefinite bas3

including the eigenvectors ofH. In particular, for every eigenvectorc of H, ^^cuc&&>0; if the
corresponding eigenvalue is real and nondefective~algebraic and geometric multiplicities ar
equal!, ^^cuc&&.0; otherwisê ^cuc&&50.

Proof: As shown in Ref. 2, pseudo-Hermiticity ofH implies thatH is Hermitian with respect
to the inner product̂^,&&h with h given by Eq.~15! of Ref. 2 andsn0 ,a51. It is not difficult to
check that indeed the basis vectorsucn ,a,i &, constructed in Ref. 2, have the property th
^^cn ,a,i ucn ,a,i &&>0, and that̂ ^cn ,a,i ucn ,a,i &&.0 only for the cases thatpn,a51 and En

PR, i.e., ucn ,a,i 51& is an eigenvector ofH with a real eigenvalue. Furthermore, by constructio
this basis includes all the eigenvectors ofH. The proof of the converse is the same as the one g
in Ref. 2.

It is important to note that having a positive-semidefinite basis does not imply that the
product ^^,&&h is positive-semidefinite~unless the Hamiltonian is diagonalizable and has a
spectrum in which case both the basis and the inner product^^,&&h are positive definite.4! If the
Hamiltonian has defective or complex~-conjugate pair~s! of! eigenvalues, there will always be a
least two null vectors with negative3 linear combinations. Unlike positive vectors, linear com
nations of nonnegative vectors need not be nonnegative.

1G. Scolarici and L. Solombrino, ‘‘On the pseudo-Hermitian nondiagonalizable Hamiltonians,’’ arXiv:quant-ph/021
2A. Mostafazadeh, J. Math. Phys.43, 6343~2002!.
3A vectorf is respectively said to be positive, null~zero!, negative, if^^fuf&&.0, ^^fuf&&50, ^^fuf&&,0. It is said to be
nonnegative if̂ ^fuf&&>0. A basis is called positive-semidefinite if it consists of nonnegative vectors. See, for exa
J. Bognar,Indefinite Inner Product Spaces~Springer, Berlin, 1974!.

4A. Mostafazadeh, J. Math. Phys.43, 2814~2002!.

a!Electronic mail: amostafazadeh@ku.edu.tr
9430022-2488/2003/44(2)/943/1/$20.00 © 2003 American Institute of Physics
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Critical energies in random palindrome models
Túlio O. Carvalhoa)

Depto de Matema´tica Aplicada—UEL, CP 6001, Londrina, PR, 86051-970 Brazil

César R. de Oliveira
Departamento de Matema´tica—UFSCar, Sa˜o Carlos, SP, 13560-970 Brazil

~Received 6 November 2002; accepted 15 November 2002!

We investigate the occurrence of critical energies—where the Lyapunov exponent
vanishes—in random Schro¨dinger operators when the potentials have some local
order, which we callrandom palindrome models. We give necessary and sufficient
conditions for the presence of such critical energies: the commutativity of finite
word elliptic transfer matrices. Finally, we perform some numerical calculations of
the Lyapunov exponents showing their behavior near the critical energies and the
respective time evolution of an initially localized wave packet, obtaining the expo-
nent ruling the algebraic growth of the second momentum. We also consider special
random palindrome models with one-letter bounded gap property; the transport
effects of such long range order are showed numerically. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1537462#

I. INTRODUCTION

This article is concerned with the random tight-binding HamiltonianHv on l 2(Z),

~Hvc!n5vncn1cn111cn21 , ~1!

wherev5(vn) is a finitely valued sequence with some local correlation. We address the pro
of occurrence ofcritical energiesin the spectrum, which are those where theLyapunov exponen
g(E) vanishes. For Schro¨dinger operators in the one-dimensional lattice,g(E) is defined when the
limit

lim
n→`

1

n
logiTn~E!¯T1~E!i ~2!

exists, whereTi(E) is a sequence of unimodular matrices of the form

Ti~E!5S E2v i 21

1 0 D .

This question has come to surface after Dunlap, Wu and Phillips’ work on the random d9

and has been addressed rigorously by some authors.5,8,11Although the spectrum is pure point,8 the
behavior of the Lyapunov exponent near the critical energies is responsible for dynamica
calization, characterized by the positivity of the asymptotic growth exponent,a, of the moment

mb~ t !5 (
nPZ

unubucn~ t !u2;tba ~3!

for a packet initially localized at the origin:cn(0)5dn,0 . This is proven by Jitomirskaya, Schulz
Baldes and Stolz11 about the time average of the above moment. In the vicinity of a critical ene
the same authors show that the Lyapunov exponent vanishes quadratically, a fact already a
by Bovier5 for the dimer model with some assumptions on the density of the invariant me

a!Electronic mail: tcarvalho@uel.br
9450022-2488/2003/44(3)/945/17/$20.00 © 2003 American Institute of Physics
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l(E) of the one-dimensional dynamical system obtained from the eigenvalue equationHvc
5Ec.

We take as our motivation this striking effect of local order on dynamical delocalization.
contribution is on the conditions for the appearance of critical energies in random palind
models: these are obtained as random concatenations of palindrome words~of length greater than
2!. Recall that apalindromeis a word that reads the same from left to right or from right to le
Since the potential assumes a finite number of values, it is useful to think of a bijective no
stant real functionw, such thatw21:w(B),@2D/2,D/2#→B, whereB is some finite alphabet, an
identify clusters with words inB.

We are able to tackle the problem of local order fairly generally with what we callcluster
maps. These are injective mapsC:A→B* , taking each lettera of an alphabetA to a cluster
C(a)PB* , whereB* is the set of finite words in the alphabetB and B.A. Thus we think of
random palindrome models as images of random sequences under a cluster map for whicC(a)
are palindromes for allaPA. We make some additional assumptions on these maps in Sec.
order to control the extent of the correlations introduced onC(v) for a randomv. We stress that
the palindromes have appeared quite naturally, as indicated in the discussion in Sec. III D.

The critical energies in random palindrome models occur when the transfer matrices a
ated with each palindrome in the potential commute and are elliptic. We get a recipe for obt
a prescribed minimum number of critical energies, in contrast with just two in the random d
This result is interesting in its failure to produce an interval of critical energies, which woul
an absolutely continuous component of the spectrum. An absolutely continuous spectral c
nent is~already! prohibited by Kotani’s theory12 for almost everyHv in some ergodic structure
but the reasoning which leads us to this provides further understanding of potentials assu
finite number of values. Our second result will tell us that, apart from a set of codimension 1
potential intensities,g(E).0 for almost everyE different from the above constructed critic
energies, cf. Ref. 8.

The analysis of the invariant measurel(E),5,13 which could yield the Taylor series ofg(E)
near these critical energies, is not possible to carry over, because the palindromes need n
the same length. To check the behavior of the Lyapunov exponent near the critical energi
perform numerical calculations ofg(E) using the Thouless formula, or rather its approximation
finite dimension. We also provide some numerics on the mean square displacement, for
b52 in Eq.~3!, and obtain, due to the larger number of critical energies, a superdiffusive beh
with an exponenta larger than3

4 for small disorder, as in the random dimer.9 For sufficiently large
disorder,m2 is bounded and dynamical localization sets in.

Iterating cluster mapsC:A→A* such that for anyaPA, Ck(a) contains all letters ofA, i.e.,
primitive cluster maps, provides a sequence of potentialsu(n)5Cnk(v), for any vPA Z which,
under some additional hypotheses, will converge to a substitution sequence. Here we
specialize the clusters to palindromes. This is stated and proven in Sec. III F. For primitive c
maps, for any given potentialv, any letter inA occurs inC(v) with bounded gaps. This long
range order is not generally present in a random palindrome model and one applied reason
proposal is that it yields an interesting boost in transport, measured by the second momenm2 .

The article is organized as follows: in Sec. II we give the definition of a cluster map, spe
ize it to give random palindrome models and state most of our analytic results. We prove th
Sec. III, where we also discuss the ergodic structure of the models and a simple particu
ample. In Sec. III F we discuss some random models generated by primitive cluster maps.
IV we illustrate the numerical results with plots ofg(E) andm2(t).

II. THE MODEL AND STATEMENT OF RESULTS

We are given a random sequence int5(t j )PA Z and acluster map

C: A→B* ,

a°C~a!,
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whereB* is the set of finite words in an alphabetB.A. We consider only cluster maps for whic
the whole wordC(a) does not occur inC(b), for all aÞbPA. This prevents the introduction o
spurious long range correlations inC(t) even if tPA Z is random~see, however, Sec. III F!.

To extendC to tPA Z by concatenation, we declare the position of the first letter ofC(t0) to
be 21 ~this will be convenient in Sec. III F!:

r 5
def

C~ t !, r 21r 0¯r uC(t0)u225C~ t0!.

WhenB5A, C is also asubstitution.
The range of the functionw defined in the Introduction defines thedisorder parameterD.

Denoting the potential sequences byv5w(t) andw5w(C(t)), we are interested in finding con
ditions for the vanishing of the Lyapunov exponentg for someE in the spectrum ofHw , albeitg
in the spectrum ofHv is positive for almost everyvPA Z.6 With the exception of Sec. III F, we
restrict our attention to cluster maps for whichC(a) is a palindrome, for eachaPA. The potential
w5C(v) for vPA Z is then called arandom palindrome model. In this setting, we can get a rathe
complete answer to the problem of makingg(E) vanish in the spectrum ofHw .

Consider first the caseA5$a,b%. Let Ca and Cb be general palindromes with sizesuCau
5n anduCbu5k; and letA5F(Ca) andB5F(Cb) be their associated transfer matrices. The
of values of the potentials$v i :1< i<n1k% in both clusters defines an ordereds-tuple v taken
from some open setV,Rs, wheres5 d n/2 e1 d k/2 e.

Proposition 1: Let TiP$A,B%,i PZ, be a Bernoulli trial with A, B transfer matrices of pal-
indromes. Then, if@A, B#Þ0,

G5 lim
n→`

1

n
iTn¯T1i ~4!

exists and is positive for almost every trial, and except for a set of codimension greater t
in V.

In this excluded set of potential intensities, critical energies do occur and have app
before in Sec. 3 of Ref. 8. There is a simple proportional relation betweenG, Eq. ~4!, andg, Eq.
~2!, when both exist; see Corollary 2.

In proving Proposition 1, we will use the Furstenberg and Kesten theorem, thus the stat
is restricted to a set of full measurem, with m being the product or Bernoulli measure inA Z.

Define the left-shift by (t(u))n5un11 . The left-shift translations ofC(u), uPA Z, generate
an ergodic systemL,B Z with a Markov measuren. We will discuss this point in detail in Sec
III A.

Given a random sequenceu5(un)nPZ in a finite alphabetA, we assume that each lette
occurring inu does so with positive probability.

Definition 1: LetC be a cluster map defined on the alphabetA, carrying each letter ai to a
palindrome pi5C(ai). Then we say the sequencev5C(u) is tessellated by palindromes.

A transversality argument together with Proposition 1 leads to the following
Theorem 1: There is a set Y,L of aperiodic sequences tessellated by palindromes, w

n(Y)51 such that for allvPY the critical energies ins(Hv) are at most countable.
Theorem 1 is a special case of Kotani’s results12 which rule out the absolutely continuou

spectrum from potentials assuming finitely many values. However, the sets of realizatio
which one and the other refer are not directly related. In order to properly make a compariso
above mentioned ergodic structure~L,t,n! is needed. We settle this question in Sec. III A. Final
we do not have reasons to exclude the possibility of a singular continuous spectrum in ra
palindrome~cluster! models, particularly with long range order.
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We analyze a simple generalization of the random dimer, whereA5$a,b%. If we restrictCb

to a constant word of length two,Cb5bb, we get an open condition on the wordCa , if Ca is a
palindrome of odd length,Ca5t0t1¯tk¯t1t0 , for small disorder. We setv i5w(t i), va5w(a),
vb5w(b) and

D5max$uv i2vbu,0< i<k%.

Theorem 2: Let Cb5bb and Ca be a palindrome of length2k11, k>1, with potentialsv i

such thatuv i2vau,e,D, 0< i<k. Then

(i) For small enough disorderD.0, any realization of such random palindrome model has
least2k11 critical energies.

(ii) For 0,D<2, the random palindrome model has at least k critical energies.
(iii) For 2,D,4, if k is sufficiently large, the random palindrome model has at least one crit

energy.

We build on the proof by De Bie`vre and Germinet8 on the existence of critical energies
E56v if v<1 for the random dimer. The steps are elementary and the conclusion is bas
Taylor series expansions. Bovier mentioned some plans along these lines in his paper
random dimer.5 Some generalizations of the random dimer were studied earlier.13

Applying Furstenberg and Kesten’s theorem we have the following.
Corollary 1: For Ca and Cb as in Theorem 2 and sufficiently smalle, there exists0,zmax

,2 such that, for disorderD.21zmax, the Lyapunov exponentg(E) is positive, whenever it
exists.

We will say more aboutzmax for e50 from the details of the proof of Theorem 2.

III. PROOFS

A. Ergodic structure

We are given two finite alphabetsA and B, with B.A, A having more than one elemen
and a cluster mapC:A→B* . We construct the Kakutani tower15 from A Z as follows: Sa

5$xPA Z:x05a%3$1,...,na%, wherena 5
def

uC(a)u, for eachaPA. Write the disjoint unionV

5ø̇aPASa endowed with the metric

r~~x,i !,~y, j !!5 (
nPZ

d~xn ,yn!

2unu 1d~ i , j !, ~5!

whered is the discrete metric. ThenV is compact. OnV, we have the shift transformation

t̂~x,i !5H ~x,i 11! if i ,na ,

~t~x!,1! if i 5na ,

wheret is the shift onA Z. We extendC to V, definingĈ so that the diagram below commute

V →
Ĉ

BZ

t̂↓ ↓t

V →
Ĉ

BZ

and Ĉ(x,1)5C(x).
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A simple averaging over the components ofV gives an ergodic measure11 which, however,
does not account for the systematic local repetitions of letters inĈ(V). Therefore the push-
forward of this ergodic measure does not give a suitable ergodic structure. We have inste
following.

Proposition 2: LetV be as above andL5Ĉ(V),B Z be its image under the cluster map
ThenL is a subshift of finite type.

Let us introduce some terminology. Ifv is a finite word inB* , define

Yv5$xPB Z:v does not occur inx%.

We are to prove thatL is the intersection of finitely manyYv’s. We say that a~finite! word is
acceptable~in L) if it occurs in somexPL; otherwise we call itunacceptable. We shall use
block, cluster and word interchangeably. If the wordu is contained inw, thenYu,Yw .

In our context, note that a wordw is acceptable, i.e.,wPĈ(V), if, and only if,w is contained
in some concatenation of clusters. If an acceptable wordv ends with a block andu is an accept-
able word beginning with a block, then the concatenationvu is acceptable inĈ(V).

Proof of Proposition 2:Ĉ is clearly continuous, thereforeL is compact, and shift invariant by
Ĉ’s definition. ThenL is a subshift.14

Note thatB* is partially ordered with word inclusion and the corresponding length. Fixw
5w0¯wk an arbitrary unacceptable word and letv be a word contained inw formed by blocks
C(a) which cannot be enlarged with the concatenation of another such block and still be con
in w. Finally let v̄5wi¯wj be an acceptable word satisfyingv, v̄,w and which cannot be
enlarged with the concatenation of any other letter ofw. Putn5maxaPAuC(a)u.

We prove that there is some unacceptableu occurring inw, with uniformly bounded length.
Case (i)v is empty. Thenuv̄u<n21. And any wordu of length n occurring inw is unac-

ceptable.
Case (ii)v is a single cluster. Thenuv̄u<n12(n21) and hence a wordu. v̄, whose maxi-

mum length is 3n21, occurring inw is unacceptable.
Case (iii) v is the concatenation of various clusters.
Suppose, without loss, thatj ,k and let p11 be such thatwp11 is the first letter of the

rightmost cluster inv. Let s5wp11¯wj 11 and r 5wi¯wp . So, s cannot be acceptable, sinc
otherwise we could appendr to its left producing an acceptable word larger thanv̄. Note that
usu<2n. h

On L, t is a Markov shift14 and we have the Markovian measuren. Consider the projection
p:V→A Z. It is clear that to each setY,A Z invariant under the shift, there corresponds
invariant setĈ(p21(Y)),L.

Kotani’s theorem12 says there is a setW,L with n(W)51 such thatsac(Hv)5B for all
vPW. Proposition 1 tells that there is someY,A Z with m(Y)51, m the product measure, suc
that for uPY, then sac(HC(u))5B. Sincev5Ĉ(t) for some t, there is aj such thatt j Ĉ(t)
5C(u), uPA Z. The spectrum is the same for points in the same orbit, henceW,Ĉ(p21(Y)).
Thereforen(Ĉ(p21(Y)))51. We also have immediately the two useful corollaries:

Corollary 2: Let Y5$uPA Z:G exists% and W5$vPL:g(E) exists%. Then W

5Ĉ(p21(Y)).
Proof: Denote bypa the probability of the lettera appearing in a Bernoulli trial onA

5$a,b% referred to in Proposition 1.pa is the probability ofTi5A in Eq. ~4!. Then, ifg exists, by
the law of large numbers,

G5 lim
n→`

1

n
iTn¯T1i5~pauC~a!u1~12pa!uC~b!u!g.

The reciprocal is analogous. Note also that this can be extended to the case whenA has more than
two letters. h
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Corollary 3: Let Y1,A Z be an invariant set such thatm(Y1)51. Then n(Ĉ(p21(Y1)))
51.

Proof: Let Y and W be the sets of Corollary 2. ConsiderY25Y1ùY. Y2 is invariant and
nonempty, sincem(Y1)51. Now Ĉ(p21(Y2))ùW is invariant and clearly nonempty, therefo
n(Ĉ(p21(Y2)))51. h

B. Some preliminaries

In this subsection, we establish conditions for the existence of critical energies on such l
correlated disordered Hamiltonians. They are preliminaries for the proofs of the main resu

Let r(T) denote the spectral radius of the square matrixT. We begin with the following
observations.

Lemma 1: Suppose that the matrices A and B commute, @A,B#50, and r(A)5r(B)51. If
TiP$A,B%,; i , then the Lyapunov exponentg vanishes.

Proof: If na is the frequency ofA in Tn¯T1 , then by the law of large numbersna→pa , and
similarly nb→(12pa). Hence, using the definition of the Lyapunov exponent Eq.~2!, g
5 log(r(A)par(B)12pa)50. h

Lemma 2: Let A,B be232 real matrices, and A not a multiple of the identity matrix I.
(i) If @A,B#50, then there existu,lPR such that B5uI 1lA.
(ii) If, moreover, detA5detB51, then

u21l21lutr A51.

In this case, we denote by B(l) the pencil of matrices commuting with A. If furthermorer(A)
51, thenr(B(l))51.

Proof: ~i! and the first part of~ii ! follow by direct calculation. To show~ii !, note first that
whenutr Au,2, the pair~l,u! lies in an ellipse. The extrema of trB52u1ltr A along this ellipse
occur atl50. h

Let A denote the transfer matrix corresponding to the clusterCa andB the transfer matrix of
the clusterCb . For a lettert i with corresponding potentialv i5w(t i), recall that

Tv i
5S E2v i 21

1 0 D
and for the wordCa5t0t1¯tn , A5Tvn

¯Tv1
Tv0

and correspondingly forB. Suppose we can find

v i such that, for someE, they commute. We can then write (ai j )5A(E) and (bi j (l))
5B(E,l), lPR, with

b125la12,

b215la21, ~6!

b112b225l~a112a22!.

Note that this system is equivalent to@A,B#50, in caseA is not a multiple of the identity matrix.
Let us writeF(w) for the transfer matrix associated with the finite wordw. So the notation

for the basic transfer matrices of our lattice is

A5F~Ca! andB5F~Cb!.

If t i is the letter at positioni , we have thatF(t i) is a function ofxi5E2w(t i). The following is
well known and can be checked by induction:

Lemma 3: For any word w5t0¯tn , the transfer matrixF(w) has the following form,
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F~w!5S Pn11~x0 ,...,xn! 2Pn~x1 ,...,xn!

Pn~x0 ,...,xn21! 2Pn21~x1 ,...,xn21!
D ,

where Pn11(x0 ,...,xn)5Pn(x0 ,...,xn21)xn2Pn21(x0 ,...,xn22), n>0, with the understanding
that P2150 and P051 (Pn is a polynomial of E of degree n).

Note thatF(bb) has off-diagonal elements with the propertyb2152b12. An inductive argu-
ment shows thatA also has this property ifCa is a palindrome:

Lemma 4: If Ca is a palindrome, the A5F(Ca) has off-diagonal elements with the proper
a1252a21.

Proof: If Ca is a dimer, we already knowA satisfiesa1252a21. If it has lengthn>3, then
Ca5t0Pt0 , whereP is a palindrome of lengthn22, and we can write

A5S x0 21

1 0 D M S x0 21

1 0 D
with M5(

2a
128 a

228

a118 a128 ), by the induction hypothesis; from this we geta2152a12. h

Lemma 5: If Ca and Cb are palindromes withuCau.uCbu>2 and Cb does not occur in Ca ,
then the system (6) has a finite number of solutions.

Proof: Put Ca5a0¯an andCb5b0¯bk , with 1,k,n. We will make an induction on the
size of the palindromesuCau5n11 anduCbu5k11. Rewriting system~6! using Lemmas 3 and 4
we get

Pk~y1 ,...,yk!5lPn~x1 ,...,xn!,

Pk11~y0 ,...,yk!1Pk21~y1 ,...,yk21!5l~Pn11~x0 ,...,xn!1Pn21~x1 ,...,xn21!!,

whereyi5E2w(bi) andxi5E2w(ai). Eliminatingl in the system above, we get the followin
equation:

Pk~y1 ,...,yk!~Pn11~x0 ,...,xn!1Pn21~x1 ,...,xn21!!2Pn~x1 ,...,xn!~Pk11~y0 ,...,yk!

1Pk21~y1 ,...,yk21!!50. ~7!

If there is an infinite number of energiesEi such that Eq.~7! holds, then it is apolynomial
equality, meaning that on the left each polynomial coefficient is zero.

For k51 andk52, from this polynomial equation and the recursion relation given in Lem
3, we can prove directly thatCb occurs inCa , contrary to our hypothesis. We reduce the probl
to the following.

Lemma 6: LetuCau5n11 and uCbu5k11, n.k>3, Ca and Cb palindromes. Let Q( j )
denote the property described in items (a) and (b) below:

(a) Pk2 j~y1 ,...,yk2 j !Pn2 j 21~x1 ,...,xn2 j 21!2Pk2 j~yj 11 ,...,yk!Pn2 j 21~xj 12 ,...,xn!

[Pn2 j~x1 ,...,xn2 j !Pk2 j 21~y1 ,...,yk2 j 21!2Pn2 j~xj 11 ,...,xn!Pk2 j 21~yj 12 ,...,yk!,

(b) x05y05xn5yk , ..., xj5yj5xn2 j5yk2 j ,

for some 0< j <k22; then Q( j 12) holds. In particular xj 115yj 115xn2 j 215yk2 j 21 and
xj 125yj 125xn2 j 225yk2 j 22 .

Proof of Lemma 6:We use the recursion relation of Lemma 3 and

Pn11~x0 ,...,xn!5x0Pn~x1 ,...,xn!2Pn21~x2 ,...,xn!.

PropertiesQ(0) andQ(1) are immediate from Eq.~7! and the recursion relations.
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From point~a! of Q( j ), expanding the occurrences ofPk2 j andPn2 j ,

yk2 j Pk2 j 21~y1 ,...,yk2 j 21!Pn2 j 21~x1 ,...,xn2 j 21!

2Pk2 j 22~y1 ,...,yk2 j 22!Pn2 j 21~x1 ,...,xn2 j 21!

2yj 11Pk2 j 21~yj 12 ,...,yk!Pn2 j 21~xj 12 ,...,xn!

1Pk2 j 22~yj 13 ,...,yk!Pn2 j 21~xj 12 ,...,xn!

5xn2 j Pn2 j 21~x1 ,...,xn2 j 21!Pk2 j 21~y1 ,...,yk2 j 21!

2Pn2 j 22~x1 ,...,xn2 j 22!Pk2 j 21~y1 ,...,yk2 j 21!

2xj 11Pn2 j 21~xj 12 ,...,xn!Pk2 j 21~yj 12 ,...,yk!

1Pn2 j 22~xj 13 ,...,xn!Pk2 j 21~yj 12 ,...,yk!.

Since we know thatxn2 j5yn2 j already, the first term and the first term after the equality s
cancel out. The terms containing the highest power inE are the third before and after the equali
sign. The other terms do not affect the leading coefficient. Therefore, we havexj 115yj 11 , which
are also equal toxn2 j 21 andyn2 j 21 by palindromicity.

We now expandPk2 j 21(yj 12 ,...,yk) and Pn2 j 21(xj 12 ,...,xn) to conclude thatxj 12

5yj 12 . The polynomials remaining give the equality~a! of Q( j 12). h

Q(k) contradicts the hypothesis thatCb does not occur inCa . h

C. Proofs of proposition 1 and theorem 1

Proof of Proposition 1:We follow de Bièvre and Germinet8 closely. We first note that the
group generated byA andB is not compact and, resorting to Theorem II.4.4 of Ref. 3, we w
prove that the orbit of any directionxPP(R2) under this group contains at least three elements
is sufficient to consider the three cases:~a! A andB elliptic, ~b! A parabolic and~c! A hyperbolic,
as the other cases will follow by interchanging the roles ofA andB.

The noncompactness of the group is clear in cases~b! and~c!. SinceA andB are palindromic
transfer matrices, they have the form~using Lemma 4!

A5S a11tA 2a2

a2 2a1
D , B5S b11tB 2b2

b2 2b1
D ,

wheretA5tr A and tB5tr B. For A andB palindromes,@A,B#Þ0⇔@A,B# is invertible. Hence
using Theorem 7.39.2 of Ref. 2 forA and B elliptic, the noncommutativity implies
tr (ABA21B21).2. This shows that also in this case the group generated byA and B is not
compact.

~a! If both utAu,2 and utBu,2, then fromA25tAA2I , one sees thatA2 or B2 are elliptic,
unless bothtA5tB50. In the first case, the set$x,Ax,A2x,Bx,B2x% contains at least three differen
directions. The latter case, viewed as a geometric condition, is the intersection set of zeroes
transverse polynomialstA and tB ~by the same analysis of leading order coefficients given
Lemma 5!. This intersection is empty unless gcd(tA(E),tB(E))Þ1, that is, if these polynomials
have a common divisor.

Now, if for a givens-tuplevPV, gcd(tA ,tB)Þ1, sincetA andtB are also polynomials inv, it
is clear that to preserve this conditionv has to stay in an algebraic variety in parameter spacV.

~b! If utAu52, thenA has a single fixed point inP(R2), but it cannot be a fixed point ofB
since

@A,B#5~~2a11tA!a22~2b11tB!b2!S 0 1

1 0D
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is invertible. Now it is clear that the set$x, Bx, Ax, ABx, A2x% has at least three differen
directions.

~c! Again it suffices to consider the orbit of the two eigenvectors ofA. If utBu>2, we are done,
again becauseA andB do not have eigenvectors in common. But it could be the case thatB, being
elliptic, exchanged the eigendirections ofA. These aree15(a11l,a2) and e25(a11l̄,a2),
wherel5(tA1AtA

224)/2 andl̄51/l.
From Be15ke2 and Be252k21e1 , it follows that tB50. Moreover, from the system o

equations

b1~a11l!2b2a25k~a11l̄ !,

b2~a11l!2b1a25ka2

one obtains the equation 2b2a25(2a11tA)b1 . Now we have again two polynomials, whose se
of zeros have, by transversality, empty intersection. h

By Corollary 2, there is a setW,L of measuren(W)51 which corresponds to the subset
A Z given in the proposition above. The closure of the orbit of each periodic sequence is a
measure zero. The closure of the orbit of a sequence which is periodic except in a finite n
of indices~that is, in the complement of a cylinder set15! is also a set of measure zero. Subtracti
these sets fromW we get a measurable setY of full measure. For everyvPY, g(E).0 except
possibly when@A,B#50.

Proof of Theorem 1:Fix A andB transfer matrices of palindromesCa andCb . As noted in the
proof of Proposition 1, Eq.~6! is a system of two independent polynomials and two variab
(l,E), with a finite number of~real! roots.

A random palindrome model may have long range order; then we have to consider all
bilities of palindromes which tessellate the lattice potential. But sinceA, B are transfer matrices
on factors in a finite alphabet, they belong to a denumerable set of unimodular matrices. The
the set of critical energies is at most countable. h

Lemmas 1 and 2 tell us that to find critical energies for the tight binding Hamiltonian, we
to search for commuting transfer matrices with one of them with spectral radius equals to 1.
Lemma 2, the pencil of matrices commuting with a given one is compact in SL~2,R!. Hence, for
eachA, a choice ofB from the intersection of a countable set and a compact set has gener
a finite number of possibilities. This reasoning leads us to question whether the critical en
given by system~6! are real.

From Proposition 1, we also have the following.
Corollary 4: ConsiderL the set of all random palindrome models whose potentials

tessellated by palindromes p1 ,...,pn with pi not contained in pj , iÞ j . Let n be the Markov
measure invariant under the shift. Forn-almost everyv, g(E)50 implies that the transfer ma
trices Ai5F(pi) are elliptic and pairwise commuting.

D. A particular case

Now we illustrate the construction leading to critical energies in a simple situation: ta
Ca5t0t1t2 andCb5t3t4 , we shall determine transfer matrices for which the above setting app
The potentialsv i5w(t i) are allowed to take on more than two values. Note that, being the tra
matrices unimodular, the condition on the determinant is automatically fulfilled. As above, d
by A the transfer matrix of the clusterCa and byB the transfer matrix ofCb :

A~E!5Tv2
Tv1

Tv0
andB~E!5Tv4

Tv3
.

We shall use the abbreviationxi5E2v i and drop the reference toE at our convenience in
what follows. From the system of equations~6! we have the following,

x35l~x0x121!,
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x45l~x1x221!,

x3x45l~x0x1x22x02x21x1!,

and the conditionr(A)51 ⇔ utr Au<2 reads

ux0x1x22x02x12x2u<2.

Since thev i are fixed values of the potential, we have three equations in two variables. We
the first two of these~algebraic! curves in the (E,l) plane coincide by settingv45v3 , andv2

5v0 , but with v0 , v1 and v3 all different from each other. Notice that this makesCa and Cb

palindromes; that was the initial motivation for Theorem 2.
An obvious solution isx350, that is,E5v3 , andl50. We call this thedimerenergy, because

for it B52I and the above lemmas are satisfied trivially, except for the conditionr(A)51, which
remains to be verified for this energy to be critical. IflÞ0, we get the equation

x3~x0x121!5x0
2x12x01~v02v1!,

with the two solutions~note thatxi2xj5v j2v i is a constant!

x0652
v016Av01

2 1414v01/v03

2
,

wherev i j 5v i2v j .
The three energiesE5$v3 ,v01x01 ,v01x02% will be critical energies if the following con-

dition holds:

utr Au<2 ⇔ ux0
31v01x0

223x02v01u<2.

One possible way to achieve this is by settingv0152v03 and uv03u<1, which is enough for the
purpose of showing the existence of three energies where the Lyapunov exponent vanishe

Remark 1: (i) It may happen that A56I for transfer matrices, and obviously@B,A#50 for
any B, but the equations (6) above would have the ‘‘strange’’ solutionl5`. In this caser(B)
51 alone impliesg50.

(ii) From the above remark, or interchanging the roles of A and B in system (6), we see
the natural domain forl is the projective line(2`,`#.

(iii) We fix Cb5bb from now on and will call the word Cb a dimer. For those E* where
A(E* )56I , we haveg(E* )50 if r(B)51, that is, if uE* 2vbu<2.

To proceed with the generation of critical energies, we choose to enlarge the clusterCa . For
Cb5bb, the system of equations~6! always keeps the trivial solution coming from the dime
E5vb and l50. Eliminating this solution, we get a polynomial of degreen in the variableE,
which has uCau21 roots. However, it is harder to anticipate if for these energiesutr Au<2.
Providing this, Lemmas 1 and 2 will yieldg(E)50, and sinceg(E).0 outside the spectrum
EPs(Hv).

E. Proof of Theorem 2

Let us begin with the idea of the proof. The strategy is first to analyze the simple case
Ca5a2k11 and then make use of perturbative arguments. Without loss of generality, we su
vb.va , so that the disorder strength isD5vb2va . We can show that there are 2k energies where
A56I ~actually this is an old known fact4!, and vb can be chosen as in Remark 1~iii !. This
imposes the bound on the disorderD,4, see below. These energies are roots of a Chebysh
polynomial of degree 2k, so they are simple. Then we consider the palindromeCa5akt8ak,
meaning that only the central position has a different potentialw(t8)5va1e. If e.0 is small, we
can prove that there are 2k perturbed energies satisfyingutr Au,2. Since this is now an open
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condition onCa , we will conclude the proof of the first part of the theorem. The second and
parts will be proven by an analysis of the sign of the second derivative of trA in caseD,4 is
arbitrary.

First, for Ca5an, we have

A5S Pn~xa! 2Pn21~xa!

Pn21~xa! 2Pn22~xa!
D ,

where xa5E2va . The recursion relationPn(x)5xPn21(x)2Pn22(x) gives that Pn(x)
5Un(x/2), whereUn are the Chebyshev polynomials of the second type, following the notatio
Gradshteyn–Ryzhik.11 The equations for commutativity ofA andB read

xb5lPn21~xa! and xb
25l~Pn~xa!1Pn22~xa!!,

with lP~2`,`# as noted in Remark 1~iii !. Since xaÞxb , we have only two possibilities
xb50 or Pn21(xa)50. In the latter case, trA522Pn22(xa). A calculation using the expressio
Un(u)5 @sin (n11)u#/sinu , u5arccos(x/2) shows that at the~simple! roots of Pn21 , tr A
562.

So we have the partial conclusion that if we combine constant words of lengthn and dimers
we get at leastn critical energies forD small enough, namely, less than 21min$z%, wherez are the
roots ofPn21(x)50, again using Remark 1~iii !. In general, these rootsz are critical energies if,
and only if, uD2zu<2, for e50.

However, if D>4, since every root ofPn21(x) satisfiesuzu,2, one cannot have simulta
neouslyr(B)51, so these critical energies cease to be so. Also, for the dimer energyE5vb , a
necessary condition forutr Au<2 is D<2. In other words, the dimer energy ceases to be crit
when the disorder strengthD.2. Note that this is the same bound for the originalrandom dimer
model,9 in particular, forD52,

utr Au5uUn~21!2Un22~21!u52.

Now consider the case wheren52k11 andxi5xa except fori 5k wherexk5xa2e. Let us
make the abbreviationx5xa and replacexb5x2D. Now A reads

A5S ~x2e!Pk
222PkPk21 2~x2e!PkPk211Pk21

2 1PkPk22

~x2e!PkPk212Pk21
2 2PkPk22 2~x2e!Pk21

2 12Pk21Pk22
D .

Then forlÞ0,

tr A5~Pk
22Pk21

2 !~x2e!12Pk21~xPk2122Pk!,
~8!

D~Pk
22Pk21

2 !5e~Pk
21Pk21

2 2~x2D!PkPk21!.

We make Taylor expansions on Eqs.~8! around the critical energies fore50, namely, around
the zeroes ofP2k5Pk

22Pk21
2 . Let $zi52 cos@pi/(2k11)#;1<i<2k% be the set of roots ofPk

2(x)
5Pk21

2 (x). For e50, the fact that trA562 at these 2k roots yields the useful relation

Pk~zi !~2Pk~zi !2zi Pk21~zi !!51. ~9!

For smalle, the roots of the second equation in~8! will be d(zi ,e) away fromzi , for each 1
< i<2k. We fix i and writed5d(zi ,e). Expanding the second equation in~8! one obtains

2DdS 2k11

42zi
2

Pk21

Pk
D 5e~11DPkPk21!1O2~e,d!,

whereO2(e,d) is a remainder of order 2 ine andd.
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Now we compute the first terms in the power series of trA starting from Eq.~8.949.6! in Ref. 10.
To first order ind ande, utr Au52. We omit the details of the calculation of second order ter
which yields

tr A5t0S 12
d2

2
p~zi ,k! D1O~d3!

where

p~x,k!5
4x2~2k11!

~42x2!2 1 f ~D!
~2k11!2

~42x2!2 1
~2k11!2

42x2 ,

f ~D!5
2t0D

12t0DPk
2~zi !/2

,

t052
2Pk21~zi !

Pk~zi !
.

The problem is reduced to evaluating the sign ofp(zi ,k). We remark thatd is independent of
the disorder strengthD and therefore can be made as small as one likes by diminishinge. Hence

p~zi ,k!.0⇔ 2 f ~D!,
4zi

2

2k11
142zi

2 ~10!

and it is clear that, for smallD, in particularD<sin2 @p/(2k11)#, the above holds for all 1< i
<2k. Part (i ) is proved.

We havezi52 cos(pi/(2k11)), 1< i<2k, and for eveni , Pk(zi)52Pk21(zi) and conse-
quentlyt052, while for oddi , t0522. If t052 andi 52 j , we note that2 f (D),0 for smallD.
Therefore, the above inequality~10! remains true for allzi such that

12DPk
2~zi !,0⇔D,

sin2 @p i /~2k11!#

sin2 @pki/~2k11!#
54 cos2S p i

2~2k11! D .

For t0522 andi 52 j 11, we have

4D

11DPk
2~zi !

<4 sin2
p i

2k11
⇔D<

sin2 @p i /~2k11!#

cos2 @pki/~2k11!#
54 cos2S p i

2~2k11! D .

Note that the bound forD is a decreasing function ofi for 1< i<2k. To finish, note that forD,2,
everyzi for i<k satisfies the above inequality. ForD,4, the critical energyz1 remains so for large
enoughk. h

Remark 2: From the condition that, fore50, uD2zi u<2 if, and only if, E5va1zi is a critical
energy, we obtain zmax52 cos@p/(2k11)#. This relates to the critical energy referred to in Theore
2(iii). This also proves Corollary 1.

F. Primitive cluster maps

In this subsection, we comment upon cluster maps of the formC:A→A* , i.e.,substitutions.16

Fixing one such cluster map, it can be iterated on random sequences and, providing condit
that it is a contraction, its fixed point is a substitution sequence. Thus we have a seque
random locally correlated potentials converging to a potential with long range order~compare Ref.
1!.

One extra requirement is thatC beprimitive: there existsk>1 such that for anyaPA, Ck(a)
contains all letters ofA. Without loss of generality we assumek51. We call the extension of suc
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C to A Z a primitive cluster map. Note thatC(v), for anyvPA Z, has also a long range order fo
primitive C: this is the bounded gap property for one letter. Further iterations will give ris
larger words occurring in bounded gaps inCn(v).

Theorem 3: Let C:A Z→A Z be a primitive cluster map. If the second letter ofC(a) is the
same for every aPA, thenC is a contraction.

In this sense, givenuPA Z, Cn(u) provides a sequence of random cluster potentials conv
ing to an almost periodic one.

Remarks: (i) The assumption on the second letter is due to the definition ofC(u), u5(un), so
that the second letter ofC(u0) sits at the zeroth position ofC(u). This assumption in turn is
necessary for

lim
n→`

Cn~a!

to pertain toA Z, for each aPA. In fact, here we also needuC(a)u>3, but this can be accom
plished by redefining the substitutionC on A as some power of itself.

(ii) It is known that, for primitive substitutions, the finite alphabetA splits into disjoint classes
Aj , j 51,...,r , such that, for some k>1, for each aPAj , Ck(a) begins with a fixed a8PAj . We
can relax the assumption above to

for eachaPAj , the second letter inCk(a) also belongs toAj .
Thus we get r fixed points. The Rudin–Shapiro substitution is an example of this more gene

setting.
(iii) The hull of an almost periodic sequence u, V(u), is the set ofvPA Z such that any finite

word occurring in v occurs in u. With this definition it is clear that the limit above yields
sequence in its hull.

(iv) The above assumption can be adjusted to a given substitution: for instance, fo
Thue–Morse substitution, C(a)5abbabaab, C(b)5baababba, we may use the fourth letter in
place of the second.

(v) If C is primitive and palindromic, critical energies appearing inC(u) for a random u will
be given by Theorem 1. InC2(u), these critical energies are preserved, but others may appea
other tessellations by palindromes are generated.

IV. NUMERICAL EXPERIMENTS

In these numerical experiments, we first analyze the behavior of the Lyapunov exponeng(E)
near a critical energyE* . Fixing e.0 we perform an average ofg(E) over a number of realiza
tions of the Schro¨dinger operator for a finite size lattice. From a fitting procedure, we extrac
value of the exponentn in the expression

g~E!;CuE2E* un for small uE2E* u.

We use the finite basis approximation in the Thouless formula to calculateg(E), EP@22
1va,21vb# ~recall thatvb.va). Fluctuations ing(E), when it is small, spoil the calculation o
the exponentn, and this is why we perform an average over the hull. Since we do not have a
bounds onuE2E* u, a numerical calculatedn is expected to be a rough approximation. Figure
illustrates the procedure to estimate the exponentn.

For the random dimer potential, Bovier5 has found thatn52. A look at the calculations
showing how the linear term vanishes in the expansion ofg(E) and the expression of the leadin
~second! order term permits us to guess thatn does not increase for the random cluster mo
~compare Ref. 11!. For comparison, we present the numerical values ofn for the dimer case as
well, calculated using the same procedure. However, Bovier’s hypothesis that the invarian
sure ~its density, in fact! has a Taylor expansion in the vicinity of the critical energy is n
necessarily true in these general models.
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We then perform the time evolution of a packet initially located at the central position
finite lattice. We integrate the time-dependent Schro¨dinger equation using a sympletic integrato
the details of which have been explained elsewhere.7

We address the question whether propagation over the lattice is enhanced as an effec
local order compared with the random dimer. We do this by computing the exponenta in the
asymptotic regime of

@m2~ t !#25 (
nPL

n2ucn~ t !u2;Ct2a,

whereL5@2L11,L#ùZ is the finite lattice@we used basis sizes up to 2~Ref. 14!#. For the dimer,
a53

4,
9 and we obtain, for the palindromeCa of size 5, thata is higher at the beginning, but settle

down to around3
4 at later times.

Table I summarizes the results on transport. For the extreme disorders considered, th
clear transient behavior. On the one hand, for smallD it appears that the potential is mor
transparent, but aroundt51000, there is a change in slope in a curve logm2 vs logt. This is why
we consider the time span only for logt.7 until the packet reaches the border of the lattice, w
probability greater than 1028. On the other hand, for largeD, the lattice conducts poorly at th
beginning, but after logt.7, m2 also shows a power law behavior. WhenD is increaseda
decreases. Furthermore, the disorder can be larger than 2 maintaining superdiffusive be
from this we can say that conduction is enhanced in the random palindrome model as comp
the random dimer.

The reason for the highera for short times and small disorderD stems from the extra critica
energies, which forcesg(E) to be small in a larger portion of the spectrum. This also explains w
then column in Table I is not a decreasing function of the disorder. The leftmost critical energ

FIG. 1. On top, the graphs of the Lyapunov exponent with disorderD51.2, therandom palindrome modelon the left
and therandom dimeron the right. The bottom figures show examples of dilog fitting of the Lyapunov exponent
the left, for therandom palindrome model, near the critical energyE* 521.197, coming from the first minimum for
e50 ~the minima fore50 occur at 2 cospi/520.6, i 51,2,3, and at 0.6, positions marked with3!. As seen, the right
branchE,E* approaches zero faster than the left branchE.E* : the slopes of the fitting lines are 1.8 and 1.7, resp
tively. On the right, for therandom dimernear E* 520.6, we get the slopes 2.2 for the left branch and 1.9 for
right branch.
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smallD ceases to be so aroundD50.38 fork55. ForD50.6,g is still not growing sufficiently fast
off the critical energy20.913: it is as small as 0.036 atE521.75, just ten times its minimum
value attained at 0.913. For long enough times, the exponential decay eventually sets in s
those states with localization lengths of the order of the lattice size or larger contribute to tra
up until the packet reaches the border. Briefly, we have numerically found thata, the exponent
measuring transport, does not increase if we have a finite number of contributing critical en
all of them with the same exponentn<2.

We can make the dimer critical energy and one of the critical energies due to the palind
Ca for e50 coalesce, by takingD52 cos 2p/5. It is reasonable to expect thatg(E) will have a
higher tangency at the corresponding critical energy,E* 5cos 2p/5, or, more precisely, thatn(E* )
will be greater than 2. Even though this is apparently true~as we saw numerically!, we did not
observe an increase ina, which continued around 0.75.

We also investigated the following interesting example:Ca a palindrome whose potentia
looks like a staircase:

2
w~Ca!

D/2
5$0.4,0.6,0.8,1,0.8,0.6,0.4%

and Cb5bb. We obtain qualitatively the same behavior, as displayed in Figure 2, fixingD.0,
and computingg(E) and m2(t). We also get apparent critical energies even forD.4, where
g(E)'0 @however, this could be credited to the disorder definition, which is max$w(u)2vb ,u
PCa%].

FIG. 2. The Lyapunov exponent for disorderD54.2 and palindromeCa5u1u2u3u4u3u2u1 of length 7, such that the value
of the potential arew(ui)5(D/2)(120.2u i 24u). The approach to zero atE'0.2 hasn50.5 from the left andn50.8 from
the right. On the right plot, the mean square displacement together with the linear fitting using data fort.e7.5, from which
we get the slopea50.64.

TABLE I. The growth exponenta and the behavior ofg(E) near the critical energyE* for increasing disorder in the
random palindrome model with cordsCa5aaa8aa andCb5bb.

D
n

~left branch! E* a

Time spant

ln T12ln T2

T1,t,T2

0.2 2.2 21.720 0.78 7–9
0.6 0.8 20.913 0.73 7–9
1.2 1.8 21.197 0.75 0–9
2 1.1 20.3855 0.68 0–9.5
3 1.1 0.1826 0.67 7–10
                                                                                                                



on
of

th
trices

ible for

w

q.

un.

.

p

e

960 J. Math. Phys., Vol. 44, No. 3, March 2003 T. O. Carvalho and C. R. de Oliveira

                    
Finally, we consider a random palindrome model with a primitive cluster map~see Sec. III F!.
The mapC(a)5abbbaandC(b)5aba for A5$a,b% has the one-letter bounded gap property
the image sequence. Since the second letter ofC(a) andC(b) is the same, then independently
the initial sequencev in A Z, Cn(v) tends, forn→`, to

¯abbbaa•baabbbā ,

which is the limit sequence ofCn(b) ~recall that the central dot marks, to its right, the zero
position!. Critical energies can be determined from the commutation of the transfer ma
F(C(a)) andF(C(b)).

ForD<1 we have two critical energies, whenE5va andE5vb , and onlyE5va for 1,D<2.
The commutation of the transfer matrices corresponding to each cluster is the sole respons
the critical energies upon the first iteration ofC(u), for a randomuPA Z, cf. Proposition 1. We
considered, however, the random clusterw5C2(u), with u a random sequence inA Z. The se-
quencew has the bounded gap property for the wordsC(a) and C(b), whose corresponding
transfer matrices commute at the critical energiesE50.4 andE520.4. There appears a ne
numerical behavior in bothm2(t) andg(E), with an apparent boost in transporta'0.92, as seen
in Fig. 3.
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New summation technique for rapidly divergent
perturbation series. Hydrogen atom in magnetic field

J. Čı́žek, J. Zamastil, and L. Skála
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Ke Karlovu 3, 121 16 Prague 2, Czech Republic
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The perturbation series for the ground state energy of the hydrogen atom in the
external magnetic field is summed via the sequence transformations. The formula
for the large-order behavior of the partial sums of the series is derived. From this
formula a new general sequence transformation is suggested. This transformation
contains free parameters that can be further optimized. It is shown that if the
renormalization approach is used, the optimal choice of these parameters leads to
the previously suggested Weniger transformation. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1541119#

I. INTRODUCTION

The hydrogen atom in a constant magnetic field is an elementary but tricky problem, and
deal of effort has been devoted to the solution of this problem~see, e.g., Refs. 1–20 and referenc
therein!. It is of special interest from the point of view of the summation of the divergent pe
bation series. Searching for the solution of the Schro¨dinger equation,

F2
¹2

2
2

1

r
1

B2

8
~x21y2!Gc5Ec, ~1!

in the form of the Rayleigh–Schro¨dinger perturbation series in the powers of the intensity of
constant magnetic fieldB

E52
1

2
1 (

n51

`

EnS B2

8 D n

, ~2!

it appears that the perturbation coefficientsEn behave for largen as1–4

En5~21!n11S 4

p D 5/2S 8

p2D nS 2n1
1

2D ! ~11O~1/n!!. ~3!

It means that the series~2! diverges for everyuBu.0. Moreover, because of the peculiar logarit
mic behavior of the energy for high magnetic fields,5 the series is known to be one of the mo
difficult summable divergent series encountered in physics. Particularly, it is known2 that the
series is not efficiently summed by the Pade´ approximants, the most widely used summati
technique~see, e.g., Refs. 21–23!. Some time ago a new method for the summation of
divergent series, the so-called Weniger summation, was introduced.24,25 This method was com-
bined with the renormalization approach26 and succesfully applied to the one-dimensional anh
monic oscillators.24 Since there have been only a few attempts to sum the series for the hyd
atom in the magnetic field,2,6,7 we apply the Weniger summation technique to this problem
better understand its advantages and drawbacks.

The article is organized as follows. In Sec. II, the large-order behavior of the partial sum
the series~2! is derived. On the basis of this behavior a new general sequence transforma
suggested. This transformation contains free parameters that can be further optimized. In
9620022-2488/2003/44(3)/962/7/$20.00 © 2003 American Institute of Physics
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cases, both previously suggested Levin23,27,28and Weniger,24,25 sequence transformations are o
tained. In Sec. III, the renormalization of the energy and the coupling constant is made. In th
section, Sec. IV, discussion of the results and a few general remarks on the sequence tran
tions are made.

II. SEQUENCE TRANSFORMATIONS

On the basis of some heuristic arguments we suggest in this section a new sequence t
mation. We shall proceed in an intuitive way and arguments given here should serve onl
basis for more rigorous treatment.

For the sake of simplicity, we replace the coefficientsEn of the series~2! by their large-order
behavior~3! and consider the partial sums of such a series

sm5 (
n50

m

an , ~4!

where

an5C~21!n11S B2

p2D nS 2n1
1

2D ! ~5!

andC5(4/p)5/2.
Obviously, the partial sums~4! have no limit in ordinary sense and, consequently, the sum

the series(an does not exist in ordinary sense. Nevertheless, we can try to give some mean
the sum of such a series. Namely, we can try to fit the partial sums~4! to a finite number of terms
The most natural way of doing it is to write the system ofl equations

sm5c0am1c1am211¯1cl 22am2 l 121s, m5n2 l 11,...,n, ~6!

for l unknown coefficientsc0 ,c1 ,...,cl 22 and s. As discussed below, the coefficients has the
meaning of the generalized sum of the series. Since the index of the coefficientam2 l 12 has to be
greater or equal to zero, and since the smallest value ofm is n2 l 11, we takel as the integer par
of (n13)/2.

Now, we extend the meaning of the limit to the sequence (21)n11(2n1 1
2)!. Particularly, if

we say that such a sequence exhibits ‘‘regular oscillations’’ and its generalized limit is zero
the divergent regular oscillationsciai are singled out by the transformation~6! and the remaining
constant terms approaches with increasingn the generalized sum of the series(n50

` an .
This transformation yields nothing but Pade´ approximants@n,n# and@n21,n# for n even and

odd, respectively. This is most easily seen by transforming the system of Equations~6! to the
system of equations for computing the Pade´ approximants,@see, e.g., Eq.~3.10! in Ref. 24#.

However, the Pade´ summation~6! does not work efficiently enough for the series with t
coefficients growing like (21)n(2n)! ~see, e.g., Ref. 2!, which is also our case. The transform
tion ~6! for such a series is not able to single out all of the regular oscillations and a more effi
method has to be found.

Let us insert the explicit form of the coefficientsan , Eq. ~5!, into the system of the equation
for the partial sums~6!. Then, this system can be rewritten into the form

sm5C~21!m11~2m11/2!! ~B/p!2mS c01c1

p2

B2~2m2 1
2!~2m2 3

2!

1c2

p4

B4~2m2 1
2!~2m2 3

2!~2m2 5
2!~2m2 7

2!
1...D 1s. ~7!

For largem, the partial sumssm behave as
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sm5C~21!m11S 2m1
1

2D ! S B

p D 2mS d01
d1

m11
1

d2

~m11!2 1...D1s, ~8!

where the coefficientsdi can be obtained from the coefficientsci by expanding Eq.~7! into the
asymptotic series in the powers of 1/(m11). If we fitted the partial sumssm to the infinite number
of the coefficientsci or di , there would be no difference between the sequences~7! and ~8!.
However, if we fit the partial sumssm to afinite number of the coefficientsci or di , the sequence
transformation~8! accounts better for the large-order behavior of the partial sumssm than the
transformation~7!.

On the basis of these considerations we suggest a new generalized sequence transfo

sm5amS d01
d1

~m1q1!
1

d2

~m1q1!~m1q2!
1...1

dl 22

~m1q1!~m1q2!...~m1ql 22! D1s,

~9!
m5n,...,n1 l 21,

whereqi , i 51,2,...,l 22, are arbitrary coefficients that have to be determined from some a
tional requirement andn denotes the index of the first partial sum taken into account. In princ
it can be arbitrary; however, for fast convergence of the method it is convenient to take it
but not necessarily equal, to zero~see below!.

Equations~9! represent a system ofl equations forl unknownsd0 ,d1 ,...,dl 22 and s. It is
remarkable that, regardless of the particular form of the coefficientsqi , the system of equation
~9! can be solved in the closed form, namely

s5sn1
( j 50

l 21~21! j @~ l 21!!/ ~ l 212 j !! j ! # P i 51
l 22~ j 1n1qi !~sj 1n2sn!/aj 1n

( j 50
l 21~21! j @~ l 21!!/ ~ l 212 j !! j ! # P i 51

l 22~ j 1n1qi !1/aj 1n
. ~10!

This can be interpreted that the sum of the series is thenth partial sum plus a correction involvin
partial sums of higher order. This result, which is the main result of this article, was derive
generalizing the procedure for derivation of the Levin23 and Weniger24 transformations. In specia
casesqi51 andqi5 i , the Levin and Weniger transformations are obtained, respectively.

III. RENORMALIZATION

In this section, the renormalization of the energy and the coupling constant is discusse
Proceeding similarly as in Ref. 26, we make the scaling transformationx→(12k)x, y

→(12k)y andz→(12k)z. Equation~1! then becomes

~12k!22F2
¹2

2
2

12k

r
1

B2

8
~12k!4~x21y2!Gc5Ec. ~11!

Introducing the renormalized coupling constantk related to the coupling constantB via the
equation

B2

8
5

k

4~12k!4 ~12!

and the renormalized energyER

ER~k!5~12k!2E~B! ~13!

we get from Eq.~11!
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F2
¹2

2
2

1

r
1kS x21y2

4
1

1

r D Gc5ERc. ~14!

The advantages of the renormalization approach were discussed in detail in Refs. 24, 2
29–32 and can be summarized as follows. First, the originally unbounded interval of the ma
fields BP(0,̀ ) is shrunk to the intervalkP(0,1). Second, in contrast to the ordinary energyE,
the renormalized energyER remains finite at the pointk51 corresponding toB→`. The constant
4 in the denominator of Eq.~12! is the result of the optimization procedure suggested in Ref.

The renormalized energyER(k) can be expanded into the power series in the coupling c
stantk,

ER52
1

2
1 (

n51

`

bnkn. ~15!

Proceeding analogously to Refs. 32 and 33 we find that the coefficientsbn behave for largen as

lim
n→`

bn

En
5

1

4n . ~16!

Therefore, the rate of the divergence of the coefficientsbn , although somewhat milder, is esse
tially the same as that of the coefficientsEn .

IV. RESULTS AND DISCUSSION

In this section, we discuss the application of the sequence transformation~10! to the series~2!
and ~15!.

The perturbation coefficientsEn andbn can be calculated either by using the so~4,2! algebraic
formulation of the perturbation theory2,10 or the Bender–Wu difference equation method descri
in Appendix D of Ref. 2. We calculated 80 coefficientsEn and bn in the rational form using
MAPLE. The coefficientsaj in Eq. ~10! were set toaj5Ej 11Bj 11 or aj5bj 11k j 11 for j
50,1,2... and the partial sumssj were calculated via Eq.~4!. The zeroth-order coefficient2 1

2 was
added to the sums at the very end of calculations in both the ordinary and renormalized ca

The results obtained with the sequence transformation~10! for different choices of the coef
ficientsqi are compared to those obtained via the Pade´ approximants in Tables I and II. We found
in agreement with the earlier observation made in the case of the sextic anharmonic oscil24

that except for the fields smaller thanB'0.2 the Levin transformation (qi51) fails to sum the
series~2!. The same is true also in the renormalized case. To find the reason for this failu
replaced the actual values of theEn coefficients by the values given by the large-order formula~3!.
In this case the Levin choice of the coefficientsqi yields the best results. Therefore, we belie
that the reason for failure of the Levin transformation to sum the series~2! is that the large-order
formula ~3!, and consequently also the large-order formula~8!, is only asymptotic, i.e., holds only
for a sufficiently largem. To remain valid for small values ofm, the series~8! has to be truncated
after few terms. The smallerm, the sooner the series~8! has to be truncated. Therefore, it

TABLE I. The energiesE obtained by the summation of the ordinary series
for the hydrogen atom in the magnetic field. The sequence transformation
~10! for Weniger (qi5 i ) and quadratic (qi5 i 2) choices of the coefficients
qi and the Pade´ approximants are compared. Only the numbers stabilized for
l from 70 to 79 in Eq.~10! are displayed. The constantn in Eq. ~10! was set
to zero. ‘‘-’’ means that no stabilization was achieved.

B Weniger Quadratic Pade´ @39,40# Padé@39,39#

0.6 20.4274622877 20.427462287 20.4274619 20.4274626
1.0 20.33116 20.331168 20.33105 20.33128
2.0 - 20.0221 20.00648 20.03868
                                                                                                                



l

s

that
all
e
e best

to the
in the

ult pro-
o

on the

al
t

ed on
t is for
ef. 12

pping
coef-
imilar
s
w-
y for

and

and
nts of

gnetic

umbers

966 J. Math. Phys., Vol. 44, No. 3, March 2003 Čı́žek, Zamastil, and Skála

                    
important for efficiency of the sequence transformation~9! that the contribution of the individua
termsdi /@(m1q1)(m1q2)¯(m1qi)# in Eq. ~9! decreases for smallm with increasingi . This is
better accomplished by the Weniger choiceqi5 i than by the Levin choiceqi51. The decrease ha
to be moderate; if the growth of the coefficientsqi is too large~e.g., quadratic!, the contribution of
the termsdi /@(m1q1)(m1q2)¯(m1qi)# in Eq. ~9! is suppressed with increasingi not only for
small m, but also for largem. Then we fit the partial sumssm only to few constantsdi and the
transformation~9! becomes inefficient again. This is well illustrated in Tables I and II. We see
if the coupling constantB or k is sufficiently small, i.e., either the external magnetic field is sm
or the renormalization is made, the Weniger choiceqi5 i provides the best results. However, if th
coupling constant is too large, the Weniger transformation becomes also unstable and th
result yields the quadratic choiceqi5 i 2.

Further, we note that the efficiency of the Weniger sequence transformation with respect
Padéapproximants decreases with the increasing value of the coupling constant. Indeed,
case of the ordinary series the Weniger transformation for the fieldB50.2 gives the result
20.490 381 565 034 762 584 774 394 74 which is by ten orders more accurate than the res
duced by the Pade´ approximants. However, forB51.0, the Weniger transformation is only by tw
orders better than the Pade´ approximants~see Table I!.

The results displayed in Table II show that the results of the summation depend slightly
choice ofn in Eq. ~10!. Particulary, it is seen that better results for the series~15! are achieved for
n55 than forn50. The reason for it is the following. Due to the term 1/r in the interaction part
of Eq. ~14!, the first fewbn coefficients in Eq.~15!, and consequently also the first few parti
sumssn , behave irregularly~for detailed discussion see Ref. 32!. Therefore, it is better to star
with n around 5 when these irregularities do not play significant role.

As it is seen from Table II, the results obtained by the sequence transformation~10! agree with
the results given in Ref. 12 obtained by a completely different nonperturbative method bas
the rigorous Kato inequalities for the operators in the Hilbert space. The only disagreemen
the fieldB50.6. Since otherwise our results agree with these results, the result given in R
for B50.6 contains probably a typographical error.

We also compared our method with the Borel summation and order dependent ma
~ODM! performed in Ref. 7. For this purpose we considered only the first 62 perturbation
ficients as in Ref. 7. The comparison shows that the Weniger method yields results of s
accuracy as the Borel summation up to the field strengthB520.0. It is of the same accuracy a
ODM up to the field strengthB51.0. For larger fields, it yields worse results than ODM. Ho
ever, it is due to the fact that we did not incorporate into our method behavior of the energ
very large magnetic fields.5 Moreover, the method given in this paper is both conceptually
technically simpler than those given in Ref. 7.

It is worth remarking the question whether the series~2! does uniquely define the energyE
5E(B2). If the series~2! is the Stieltjes series, then it does~see, e.g., Refs. 21 and 22!. In such a
case,@n21,n# and@n,n# Padéapproximants provide monotonically decreasing upper bounds
monotonically increasing lower bounds to the exact eigenvalue. Moreover, if the coefficie

TABLE II. The energiesE obtained by the summation of the renormalized series for the hydrogen atom in the ma
field. The sequence transformation~10! for different choices of the coefficientsqi and n is compared with the Pade´
approximants and the results obtained in Ref. 12 with completely different nonperturbative method. The displayed n
are stabilized forl from 70 to 79 and forl from 65 to 74 forn50 andn55 respectively.

B Weniger (n50) Quadratic (n50) Weniger (n55) Quadratic (n55) Pade´ Ref. 12

0.6 20.4274622877571 20.42746228 20.427462287757120.42746228775 20.427462 20.42746227877
1.0 20.331168896 20.331168 20.3311688967 20.33116889 20.331 20.33116889
2.0 20.022213 20.0221 20.022213 20.02221 20.02 20.0222139
3.0 0.3354 0.335 0.33546 0.33548 0.33 0.33546
10.0 3.253 3.26 3.252 3.254 3. 3.252
20.0 7.79 7.8 7.78 7.8 7. 7.784
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the series do not grow more rapidly than (21)n(2n)! ~which is also our case!, then the sequence
@n21,n# and@n,n# converge to the same value. We do not know the rigorous proof that the s
~2! is a Stieltjes one. However, the numerical results indicate strongly that this is really the
Particularly, if the zeroth term of the series is excluded, then@n,n# and @n21,n# Padéapproxi-
mants provide lower and upper bounds to the energyE(B2) ~see Table I and Ref. 2!. The renor-
malized series~15! is not the Stieltjes series. However, it was shown in Ref. 32 on an analo
problem of the one-dimensional anharmonic oscillator that the series~15! consists of a divergen
Stieltjes part and a rapidly convergent part~the rate of the convergence is geometric!.

Summarizing, we found in this article the large-order behavior of the partial sums o
strongly divergent perturbation series. On the basis of this behavior a new general se
transformation containing free parameters that can be subject of further optimalization wa
gested. This sequence transformation was applied to the problem of the hydrogen atom
constant magnetic field. Numerical analysis shows that for small values of the coupling con
the best choice of the parameters leads to the previously suggested Weniger transformatio
small values of the coupling constant can be achieved even for large fields, by utilizing the i
the renormalization. Although most of our discussion was restricted to the summation of the
for the ground state energy of the hydrogen atom in magnetic field, we believe that sugge
made in this article are of much broader importance. Particulary, they show that even vio
diverging series behaving as (21)n(2n)! can be summed to accurate and realiable results.
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Preserving the measure of compatibility between quantum
states
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In this article after defining the abstract concept of compatibility-like functions on
quantum states, we prove that every bijective transformation on the set of all states
which preserves such a function is implemented by an either unitary or antiunitary
operator. ©2003 American Institute of Physics.@DOI: 10.1063/1.1545164#

In the last couple of years several communications have appeared in connection w
following problem raised by R. Peierls:8 when different density matrices can characterize
knowledge available to different people about one and the same physical system. The first
given by Peierls in Refs. 8 and 9 was that the density matrices under consideration must co
and their product must be nonzero. However, C. Fuchs4 ~also see Ref. 5! gave an example which
made Peierls’ first condition questionable. After that several attempts have been made to fi
proper solution of the problem~e.g., Refs. 1 and 5!. All those attempts operate with the concept
compatibility of density matrices. According to them, we say that a collection of density mat
is compatible if the supports of the matrices under consideration~i.e., the orthogonal complement
of their null spaces! have nontrivial intersection. So, it is just an easy task to determine whet
pair of density matrices is compatible or not. Having this in mind, it is now a natural proble
give sense to the following question: if a pair of density matrices is compatible, then ‘‘how m
compatible they are. In other words, we arrive at the problem of measuring the compatibility
possibility to define such a measure was described in Ref. 10. Namely, in some analogy w
fidelity, C. Poulin and R. Blume-Kohout defined a compatibility function~Ref. 10, Definition 1!
which fulfills certain natural physical requirements and they proved some important proper

In our recent paper7 we have determined the structure of the bijective transformations on
set of all density operators which preserve the fidelity. This result is in close relation with Wig
theorem on symmetry transformations. In fact, it can be considered as a Wigner-type result
set of all mixed states~recall that Wigner’s original result concerns the pure states!. In Ref. 7 we
proved that the transformations in question are all implemented by unitary or antiunitary ope
on the underlying Hilbert space. In view of this result and the analogy between the fidelity an
measure of compatibility defined by Poulin and Blume-Kohout, it is a natural problem to d
mine the structure of the bijective transformations of the set of all density matrices which pre
the compatibility function. We shall see below that the solution of this problem is the same a
one concerning fidelity. This is the content of the present article.

Let us begin with the notation. LetH be a ~complex, not necessarily finite dimensiona!
Hilbert space. If not stated otherwise, all operators onH are meant to be bounded and linear. T
expression rngA denotes the range of the operatorA. If A is positive,A1/2 stands for its unique
positive square root.

Denote byS(H) the set of all states~or, in another terminology, density operators! on H, i.e.,
the positive trace-class operators onH with trace 1. The setS(H) is a convex subset of the spac

a!Electronic mail: molnarl@math.klte.hu
b!Electronic mail: timmerma@math.tu-dresden.de
9690022-2488/2003/44(3)/969/5/$20.00 © 2003 American Institute of Physics
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of all self-adjoint operators onH and its extreme points~which are exactly the rank-one projec
tions! are called pure states.

Now, instead of using the concept due to Poulin and Blume-Kohout, we define the ab
concept of compatibility-like functions which extends Ref. 10, Definition 1, to obtain a resu
higher generality.

Definition 1:Let C:S(H)3S(H)→@0,1# be a function such that for any pairA, BPS(H) of
states we have
~i! C(A,B)50 if and only if rngA1/2ùrng B1/25$0%,
~ii ! C(A,B)5C(B,A), and
~iii ! if P is a pure state, then

C~A,P!25sup$lP@0,1# : lP<A%.

We say thatC is a compatibility-like function on the set of all states on the Hilbert spaceH.
Several remarks should be made concerning the above definition. First, we emphasize t

definition is formulated for both finite and infinite dimensional Hilbert spaces~in Ref. 10, Defi-
nition 1, only finite dimensional spaces were considered!. Concerning the correctness of th
definition we note the following. The quantity on the right hand side of the equality in~iii ! also
appears in relation with effects. A self-adjoint operatorT on H with the property 0<T<I (I is the
identity operator! is called an effect. The effects are well-known to play important roles in
quantum theory of measurement~e.g., Ref. 3!. Now, it is clear that every state onH as a linear
operator can also be viewed as an effect. IfT is an effect,w is a unit vector inH, andPw denotes
the rank-one projection onto the subspace generated byw, then the quantity

l~T,Pw!5sup$lP@0,1# : lPw<T%

is called the strength ofT along the ray represented byw. This concept was introduced by Busc
and Gudder in Ref. 2. It was proved in Ref. 2, Theorem 3, thatl(T,Pw)50 if and only if
w¹rng T1/2, which is equivalent to rngT1/2ùrng Pw

1/25$0%. This means that there is no contr
diction between the conditions~i! and ~iii !.

Observe that ifH is finite dimensional, then the ranges of a positive operator and its sq
root are the same and they are automatically closed. Therefore, in the finite dimensional c
have

rng A1/25rng A5rng A5~ker A!',

and hence~i! says thatC(A,B).0 if and only if A, B are compatible in the sense mentioned
the Introduction. The meaning of~ii ! is clear. Now, what about~iii !? One might think that this
condition is quite restrictive and probably has no physical meaning for states. But it can be
that the compatibility function defined by Poulin and Blume-Kohout satisfies~iii ! ~see either Ref.
10, Definition 1 itself or Ref. 10, Theorem 3! as well as~i! and~ii !. So, to sum up, our definition
is a generalization of the one given by Poulin and Blume-Kohout and hence it certainly has
at least from the mathematical point of view.

The reason why we assume~iii ! is that there is a nice formula to computeC(A,P). Namely,
by Ref. 2, Theorem 4, for every unit vectorwPH we have

C~A,Pw!25l~A,Pw!5H iA21/2wi22, if wPrng~A1/2!;

0, otherwise.
~1!

~Here A21/2 denotes the inverse ofA1/2 on rngA1/2.) The proof of our result is based on th
correspondence.

We further note that it would be another natural assumption to suppose thatC is invariant
under unitary-antiunitary transformations. But, as we do not need it in our proof, we do
assume it.
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To conclude our remarks, we show a natural example for a compatibility-like function w
might also justify our definition. So, for any pairA, BPS(H) define

C~A,B!5supH(
n

Alnmn : ln ,mnP@0,1#, (
n

ln5(
n

mn51 and

' pure statesQn with (
n

lnQn5A, (
n

mnBn5BJ .

It is easy to verify that this function has the properties~i!–~iii !. In fact, in accordance with the
discussions in Refs. 1 and 5, we believe that this compatibility-like function represents the
natural way of defining a measure of compatibility between quantum states.

Now, our result reads as follows.
Theorem 2: Let H be a Hilbert space and let C be a compatibility-like function on S(H). Let

f:S(H)→S(H) be a bijective function which preserves C, that is, assume that

C~f~A!,f~B!!5C~A,B! ~A,BPS~H !!.

Then there exists an either unitary or antiunitary operator U on H such thatf is of the form

f~A!5UAU* ~APS~H !!.

Proof: Clearly, we can assume that dimH>2. For temporary use, we say that the statesD, A
are compatible~resp. incompatible! if C(D,A).0 @resp.C(D,A)50]. It is useful to introduce the
following notation. IfM is a subset ofS(H), then denote

Mic5$DPS~H ! : C~D,A!50 for all APM%.

By condition ~i! in Definition 1, C(D,A)50 means that the subspaces rngD1/2, rng A1/2 of H
have trivial intersection. It can be easily verified that the operatorAPS(H) has rank one~which
means thatA is a pure state! if and only if

~$A% ic! ic5$A%.

Sincef preserves the compatibility in both directions, it follows from this characterization thf
preserves the pure states in both directions. This means thatAPS(H) is a pure state if and only if
so isf(A).

Next we assert thatf maps independent pure states to independent ones. Here, a set ofn pure
states~rank-one projections! is called independent if their ranges generate ann-dimensional sub-
space ofH. To prove the assertion we use induction. The statement is obvious if the set ha
one element. Let$P1 ,...,Pn ,Pn11% be a set ofn11 pure states such that the subset$P1 ,...,Pn%
is independent. It is easy to see that$P1 ,...,Pn ,Pn11% is dependent if and only if for anyA
PS(H) with C(A,P1).0,...,C(A,Pn).0 we have thatC(A,Pn11).0 holds too. Indeed, this
follows from the fact that for any pure stateP we haveC(A,P).0 if and only if the range ofP
is included in the range ofA1/2 ~see the remarks after Definition 1!. Using the above description o
dependence, it is now clear that assumingf maps independent sets ofn pure states to sets of th
same kind, we have the same property off for n11 in the place ofn. Sincef21 has the same
properties asf, we deduce thatf preserves the independence of the sets of pure states in
directions.

It is easy to see that an operatorAPS(H) has rankn if and only if there exists an independe
set ofn pure states such thatC(A,P).0 for every element of that set, but there does not exi
set ofn11 elements having the same property. This gives us thatf preserves the rank.
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Now we prove thatf preserves the transition probability between pure states. Recall tha
any pairP, Q of pure states, the transition probability between them is trPQ, where tr is the usua
trace-functional. To verify the mentioned preserver property off, first let P, Q be rank-one
projections with orthogonal ranges. Define

A5lP1mQ,

wherel, m are fixed and satisfy 0,l,m,1,l1m51. Clearly,A acts on the two-dimensiona
subspaceHA of H generated by the ranges ofP, Q. @Here, the phrase thatA acts onHA means
that (kerA)'5rng A5rng A5HA .] We assert thatf(A) acts on the subspace generated by
ranges of the independent pure statesf(P), f(Q). Indeed,f(A) has rank 2 and taking into
account that

C~f~A!,f~P!!5C~A,P!.0, C~f~A!,f~Q!!5C~A,Q!.0,

we see that the ranges off(P), f(Q) are included in rngf(A)1/25rng f(A). This clearly
implies our assertion. In what follows we restrict the considerations onto those two-dimen
subspaces, that is, to the ranges ofA andf(A), respectively. By property~iii ! in the definition of
compatibility-like functions, we see that

l<C~A,R!2<m

holds for every rank one projectionR on the range ofA. As f preservesC, we have

l<C~f~A!,f~R!!2<m

for every rank-one projectionf(R) on the range off(A). Moreover, we have

C~f~A!,f~P!!25C~A,P!25l, C~f~A!,f~Q!!25C~A,Q!25m.

Now we refer to a result in Ref. 6. Namely, Lemma 3 given there states that ifT is an effect and
0,e,d<1 are scalars such thateI<T<dI and we have unit vectorsw, cPH such that
l(T,Pw)5e andl(T,Pc)5d, thenw, c are eigenvectors ofT and the corresponding eigenvalu
are e, d, respectively. Using this result and the correspondence between compatibility-like
tions and the strength, we obtain that the range off(P) is the eigensubspace off(A) correspond-
ing to the eigenvaluel and the range off(Q) is the eigensubspace off(A) corresponding to the
eigenvaluem. Therefore, we have

f~A!5lf~P!1mf~Q!. ~2!

Now let P, R be arbitrary rank-one projections. Pick a rank-one projectionQ which is
orthogonal toP such that the subspace generated by the ranges ofP andQ includes the range o
R. Let l, m andA be as above. It is easy to check that by the formula~1! we have

C2~A,R!5
1

~1/l!trPR1 ~1/m!trQR
5

lm

mtrPR1ltrQR
5

lm

mtrPR1l~12trPR!

5
lm

~m2l!trPR1l
. ~3!

As the spectral resolution off(A) is ~2!, we similarly have

C2~f~A!,f~R!!5
lm

~m2l!trf~P!f~R!1l
. ~4!

Sincef preservesC, it follows from ~3! and ~4! that
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trf~P!f~R!5trPR,

which means thatf preserves the transition probability between pure states. It follows f
Wigner’s theorem thatf, when restricted onto the set of all pure states, is of the form

f~P!5UPU*

for some unitary or antiunitary operatorU on H.
It remains to show that the above formula holds for every state as well. The proof go

follows. Let APS(H). For every rank-one projectionP we compute

l~UAU* ,P!5l~A,U* PU!5C~A,U* PU!25C~f~A!,f~U* PU!!25C~f~A!,P!2

5l~f~A!,P!.

Now we refer to Ref. 2, Corollary 1, which states that if the strengths of two effects are the
along every ray, then the effects in question are equal. This gives us that

f~A!5UAU* ~APS~H !!

and the proof is complete. h
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We study certain linear and antilinear symmetry generators and involution opera-
tors associated with pseudo-Hermitian Hamiltonians and show that the theory of
pseudo-Hermitian operators provides a simple explanation for the recent results of
Bender, Brody and Jones~quant-ph/0208076! on theCPT-symmetry of a class of
PT-symmetric non-Hermitian Hamiltonians. We present a natural extension of
these results to the class of diagonalizable pseudo-Hermitian HamiltoniansH with
a discrete spectrum. In particular, we introduce generalized parity~P!, time-
reversal~T!, and charge-conjugation~C! operators and establish thePT- andCPT-
invariance ofH. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1539304#

I. INTRODUCTION

Bender, Brody and Jones1 have recently shown that for the class ofPT-symmetric Hamilto-
nians

Hn5p21x2~ ix !n, nP@0,̀ !, ~1!

one can use a complete set of eigenfunctionscn to construct a linear operatorC with the following
properties.

~1! C is an involution generating a symmetry of the system, i.e.,

C251, @C,Hn#50. ~2!

In particular,Hn is CPT-invariant.
~2! In the position representation,C has the form

C~x,y!5(
n

cn~x!cn~y!, ;x,yPR. ~3!

~3! The inner product

^fuc&CPTªE
g
dx @CPTf~x!#c~x! ~4!

is positive-definite, and the eigenfunctionscn are orthonormal with respect to this inner produ
i.e.,

^cmucn&CPT5dmn . ~5!

~4! For n50, where the HamiltonianH0 is Hermitian,C5P.

a!Electronic mail: amostafazadeh@ku.edu.tr
9740022-2488/2003/44(3)/974/16/$20.00 © 2003 American Institute of Physics
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In Eq. ~4!, g is the contour in the complex plane used to impose the vanishing boundary cond
for the eigenvalue problem of~1!.2 For nP@0,2), g may be taken as the real lineR.

The purpose of this article is twofold. First, we show that the results of Ref. 1, in particula
items 1–4 of the above list, may be explained as a straightforward application of the the
pseudo-Hermitian operators.3–7 Second, we outline an extension of these results to the clas
quasi-Hermitian Hamiltonians, i.e., diagonalizable Hamiltonians with a real spectrum, and
generally diagonalizable pseudo-Hermitian Hamiltonians.~By definition, a quasi-Hermitian opera
tor is an operator obtained from a Hermitian operator by a similarity transformation.8 Therefore it
is diagonalizable and has a real spectrum. The converse of this statement is also true; as s
Ref. 4, a diagonalizable operator with a real discrete spectrum is related to a Hermitian op
through a similarity transformation.! In order to achieve this purpose, we explore certain sym
try properties and involution operators associated with pseudo-Hermitian Hamiltonians.

The organization of the article is as follows. In Sec. II, we offer a discussion of pse
Hermitian operators and their symmetries. In Sec. III, we consider the problem of the exis
and characterization of certain involution operators associated with a pseudo-Hermitian H
tonian. In Sec. IV, we explain the mathematical structure underlying the results of Ref. 1 fo
Hamiltonians~1! with nP@0,2) andg5R. In Sec. V, we introduce generalized parity~P!, time-
reversal~T!, and charge-conjugation~C! operators for an arbitrary quasi-Hermitian HamiltonianH
with a discrete spectrum and establish thePT- andCPT-invariance ofH. In Sec. VI, we extend the
results of Sec. V to the more general class of diagonalizable pseudo-Hermitian operators
discrete spectrum. Finally, in Sec. VII, we conclude the article with a summary of our main re

II. PSEUDO-HERMITIAN OPERATORS AND THEIR SYMMETRIES

A linear operatorH acting in a Hilbert spaceH is said to be pseudo-Hermitian3 if there is a
linear, invertible, Hermitian operatorh:H→H such that

H†5hHh21. ~6!

For a given pseudo-Hermitian operatorH, h is not unique.6,9 If one fixes a particularh, one says
that H is h-pseudo-Hermitian. In this case,H is Hermitian with respect to the pseudo-inn
product

^̂ fuc&&hª^fuhc&, ~7!

where^ u & is the inner product ofH. @We use the term pseudo-inner product for a possibly~but
not necessarily! indefinite inner product.#

For diagonalizable Hamiltonians with a discrete spectrum pseudo-Hermiticity is equivale
the condition that the complex eigenvalues come in complex-conjugate pairs.3 Here the discrete-
ness of the spectrum is not essential, and as shown in Ref. 7 the diagonalizability conditio
be replaced by a weaker block-diagonalizability condition. Furthermore, for the class of diag
izable Hamiltonians with a discrete spectrum, pseudo-Hermiticity is also equivalent to the c
tion that the Hamiltonian admits an antilinear symmetry.5

Pseudo-Hermiticity also provides a characterization of the reality of the spectrum for d
nalizable Hamiltonians with a discrete spectrum. Specifically it may be used to establis
equivalence of the following statements.4

~1! The spectrum is real.
~2! The Hamiltonian is quasi-Hermitian.
~3! Among the operatorsh satisfying~6! there is a positive operatorh1 , i.e., the Hamiltonian is

h1-pseudo-Hermitian for a positive operatorh1 .
~4! The Hamiltonian is Hermitian with respect to a positive-definite inner product, nam

^̂ u &&h1
.5,6
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One can actually constructh1 . Given a quasi-Hermitian HamiltonianH and an associated com
plete biorthonormal system$ucn ,a&,ufn ,a&%, which by definition satisfies Hucn ,a&
5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, and

^fn ,aucm ,b&5dnmdab , ~8!

(
n

(
a51

dn

ucn ,a&^fn ,au51, ~9!

H5(
n

(
a51

dn

Enucn ,a&^fn ,au, ~10!

one can expressh1 according to

h15(
n

(
a51

dn

ufn ,a&^fn ,au. ~11!

In Eqs.~8!–~11! and throughout this articlen andm are spectral labels taking non-negative integ
values,dn stands for the multiplicity or degree of degeneracy ofEn , anda andb are degeneracy
labels.

It turns out thath1 is unique up to the choice of the biorthonormal system$ucn ,a&,ufn ,a&%.6

However, besidesh1 , there are nonpositive invertible Hermitian operatorsh that are also asso
ciated with the same biorthonormal system and satisfy~6!. These are determined by a sequen
sª$sn

a% of signssn
a56 and have the general form

hsª(
n

(
a51

dn

sn
aufn ,a&^fn ,au. ~12!

Obviously, the choice of the biorthonormal system is arbitrary. This means that given a com
biorthonormal system$ucn ,a&,ufn ,a&%, we can express the most generalh satisfying~6! accord-
ing to ~12! with ufn ,a& replaced with possibly different eigenvectors ofH† with the same eigen-
value asufn ,a&. Labeling these byuf̃n ,a& and noting that bothufn ,a& anduf̃n ,a& form bases of
H, we haveuf̃n ,a&5A†ufn ,a& for some invertible linear operatorA:H→H. Clearly, the vectors
uf̃n ,a& anduc̃n ,a&ªA21ucn ,a& form a complete biorthonormal system. Furthermore, the op
tor A commutes with the Hamiltonian, and

h5A†hsA. ~13!

This proves the following proposition. Here we include a direct proof for completeness.
Proposition 1:For a given quasi-Hermitian HamiltonianH with a complete biorthonorma

system$ucn ,a&,ufn ,a&%, the most general Hermitian invertible linear operatorh satisfying~6! is
given by ~13! whereA is an invertible linear operator commuting with the Hamiltonian~a sym-
metry generator! ands5$sn

a% is a sequence of signssn
a56.

Proof: Let h be an arbitrary Hermitian invertible linear operator satisfying~6!. Then one can
easily check thatXªh1

21h commutes withH.3 Therefore,X is an invertible linear operato
generating a symmetry ofH. This implies thatX and H have simultaneous eigenvectors.
particular,X has the form

X5(
n

(
a,b51

dn

xab
n ucn ,a&^fn ,bu, ~14!
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wherexab
n are complex coefficients. Expressingh in terms ofh1 andX and using Eqs.~14!, ~11!

and ~8!, we find

h5h1X5(
n

(
a,b51

dn

xab
n ufn ,a&^fn ,bu. ~15!

Taking the adjoint of both sides of this equation and making use of the Hermiticity ofh, we have
xab

n* 5xba
n . Hence the matricesxn with entriesxab

n are Hermitian; they may be diagonalized:

xn5un xdiag
n un†, ~16!

where un are dn3dn unitary matrices andxdiag
n are dn3dn diagonal real matrices. Next, w

introduce

Uª(
n

(
a,b51

dn

uab
n ucn ,a&^fn ,bu,

Dª(
n

(
a51

dn

Auxa
nu ucn ,a&^fn ,au, ~17!

AªDU5(
n

(
a,b51

dn

Auxa
nu uab

n ucn ,a&^fn ,bu,

whereuab
n andxa

n denote the entries ofun and the diagonal entries ofxdiag
n , respectively. Note tha

becauseun are unitary matricesU is invertible. In fact, one can check by direct computation t

U21
ª(

n
(

a,b51

dn

uba* nucn ,a&^fn ,bu

satisfiesU21U5UU2151. Furthermore, becauseX5h1
21h, it is invertible, its eigenvaluesxa

n

are nonzero, andD is also invertible. This in turn implies thatA is invertible. Finally, using Eqs.
~15!–~17!, ~12!, ~11!, ~8! and settingsn

a
ªxa

n/uxa
nu, we can compute

A†hsA5(
n

(
abc

uac
n xc

nubc
n* ufn ,a&^fn ,bu5h.

h

Another interesting property of quasi-Hermitian Hamiltonians with a discrete spectrum is
they admit an exact antilinear symmetry. This follows from the observation that every diag
izable pseudo-Hermitian Hamiltonian with a discrete spectrum is anti-pseudo-Hermitian wi
spect to the antilinear operator5

t1ª(
n

(
a51

dn

ufn ,a&!^fn ,au, ~18!

where! is the operation of the complex conjugation of numbers. In particular, for alluf&,uc&
PH,

! ^fuc&ª^fuc&* 5^cuf&.

Anti-pseudo-Hermiticity ofH with respect tot1 means

H†5t1Ht1
21 . ~19!
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Again, up to the choice of a complete biorthonormal system,~18! is the unique antilinear, Her
mitian, invertible operator satisfying~19!. This in turn leads to the following theorem. Again he
we include an explicit proof for completeness.

Proposition 2:For a given diagonalizable pseudo-Hermitian HamiltonianH with a complete
biorthonormal system$ucn ,a&,ufn ,a&%, the most general antilinear, Hermitian, invertible opera
satisfying~19! has the form

t5A†t1A, ~20!

whereA is an invertible linear operator commuting withH.
Proof: Let t be an arbitrary antilinear, Hermitian, invertible operator satisfying~19!. Then one

can easily check thatXªt1
21t commutes withH.3 Therefore,X is an invertible linear operato

generating a symmetry ofH and having the form~14!. Solving fort in Xªt1
21t and using~18!,

~14!, and~8!, we have

t5(
n

(
a,b51

dn

xab
n* ufn ,a&!^fn ,bu. ~21!

Now, we recall that t is a Hermitian antilinear operator. Thereforêcn ,autucn ,b&
5^cn ,butucn ,a&. Substituting~21! in this equation we findxab

n 5xba
n , i.e., the matricesxn

formed out ofxab
n are in general complex symmetric matrices. As shown in Ref. 10, the l

admit a factorization of the form

xn5anTan, ~22!

wherean aren3n matrices and the superscriptT denotes the transpose. Next, we introduce

Aª(
n

(
a,b51

dn

aab
n ucn ,a&^fn ,bu, ~23!

whereaab
n are entries ofan. Clearly,A commutes withH. Moreover, using Eqs.~18!, ~21!–~23!,

and ~8!, we have

A†t1A5(
n

(
a,b51

dn

aca
n* acb

n* ufn ,a&!^fn ,bu5t.

For a quasi-Hermitian Hamiltonian with a discrete spectrum, we can use Eq.~20! to define
antilinear analogs of the operatorshs , namely

tsª(
n

(
a51

dn

sn
aufn ,a&!^fn ,au, ~24!

where agains5$sn
a% is a sequence of signssn

a56. This is simply done by settingaab
n

5(Asn
a)* dab in ~20!.

Combining Eqs.~6! and ~19!, we see thatH commutes with

Xªh21t, ~25!

whereh andt are linear and antilinear Hermitian, invertible, operators such thatH is h-pseudo-
Hermitian andt-anti-pseudo-Hermitian; they have the general form~13! and~20!, respectively. In
particular if we seth5hs and t5t1 in ~25!, we find a set ofcanonical antilinear symmetry
generators:

Xsªhs
21t15h1

21ts . ~26!
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In view of Eqs.~8! and ~24! and the identity3

hs
215(

n
(
a51

dn

sn
aucn ,a&^cn ,au, ~27!

we can easily calculate

Xs5(
n

(
a51

dn

sn
aucn ,a&!^fn ,au. ~28!

It is not difficult to show that in view of~10!, ~8!, and~28!,

@Xs ,H#50, ~29!

Xsucn ,a&5sn
aucn ,a&. ~30!

In particular,

X1ªh1
21t15hs

21ts ~31!

satisfies

@X1 ,H#50, ~32!

X1ucn ,a&5ucn ,a&. ~33!

Hence the antilinear symmetry generated byXs is an exact symmetry. The converse of th
statement is also valid. That is, if a diagonalizable Hamiltonian with a discrete spectrum adm
exact symmetry generated by an invertible antilinear operator, then its spectrum is real4 it is
quasi-Hermitian. A direct consequence of this statement is that if a diagonalizable ps
Hermitian Hamiltonian with a discrete spectrum has nonreal eigenvalues, then it cannot s
exact antilinear symmetries. Such a Hamiltonian always admits antilinear symmetries,5 but these
symmetries are necessarily broken.

We can repeat the above analysis of quasi-Hermitian Hamiltonians for the more ge
diagonalizable pseudo-Hermitian Hamiltonians with a discrete spectrum.3,5 For the latter Hamil-
tonians nonreal eigenvalues come in complex-conjugate pairs with identical multiplicity, s
identify the spectral labeln with n0 , n1 , or n2 depending on whether the imaginary part ofEn

is zero, positive, or negative, respectively. In this case, Eqs.~8!–~10!, with n5n0 ,n6 and m
5m0 ,m6 , are still valid,dn1

5dn2
, and the analog of the positive operator~11! is the operator

h15(
n0

(
a51

dn0

ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!. ~34!

Here we usen to denote the common value ofn6 .
It is not difficult to see that the proof of Proposition 1 extends to the class of diagonaliz

pseudo-Hermitian Hamiltonians with a discrete spectrum; it yields the following generalizati
Proposition 1, see also Ref. 5.

Proposition 3:For a given diagonalizable pseudo-Hermitian HamiltonianH with a complete
biorthonormal system$ucn ,a&,ufn ,a&%, the most general Hermitian invertible linear operatorh
satisfying ~6! is given by ~13! where A is an invertible linear operator commuting with th
Hamiltonian,
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hsª(
n0

(
a51

dn0

sn0

a ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!, ~35!

ands5$sn0

a % is a sequence of signssn0

a 56.

Similarly, one can show that every diagonalizable pseudo-Hermitian HamiltonianH with a
discrete spectrum admits antilinear symmetries generated by~25!. For instance, we have th
canonical antilinear symmetry generators~26! where nowh1 is given by~34! and

tsª(
n0

(
a51

dn0

sn0

a ufn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&!^fn1

,au1ufn2
,a&!^fn2

,au!. ~36!

We can express these symmetry generators according to

Xs5(
n0

(
a51

dn0

sn0

a ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!, ~37!

where we have used Eqs.~26!, ~34!, ~36!, and~8! and the identity3

hs
215(

n0
(
a51

dn0

sn0

a ucn0
,a&^cn0

,au1(
n

(
a51

dn

~ ucn1
,a&^cn2

,au1ucn2
,a&^cn1

,au!. ~38!

Next, we observe that in light of Eqs.~10!, ~8!, and~37!,

@Xs ,H#50, ~39!

Xsucn ,a&5Hsn0

a ucn0
, a& if n5n0 ,

ucn7
, a& if n5n6 .

~40!

In particular, the operator~31! satisfies

@X1 ,H#50, ~41!

X1ucn ,a&5H ucn0
, a&, if n5n0 ,

ucn7
, a&, if n5n6 .

~42!

Therefore,Xs generate symmetries ofH which are, however, broken.

III. INVOLUTION OPERATORS ASSOCIATED WITH A PSEUDO-HERMITIAN
HAMILTONIAN

Among the basic properties of theP, T, andPT operators~within the scalar/bosonic quantum
mechanics! is that they are involutions of the Hilbert space, i.e., their square is the ide
operator. In this section we study the problem of the existence and characterization of c
involutions of the Hilbert space which are associated with a given pseudo-Hermitian Hamilto

Proposition 4:The operatorsSsªh1
21hs andXsªh1

21ts are involutions.
Proof: according to Eqs.~11!, ~12!, and~8!, we have

Ss5(
n0

(
a51

dn0

sn0

a ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn2

,au1ucn2
,a&^fn1

,au!. ~43!

Squaring this expression and using~8!, we findSs
251. Similarly, we haveX s

251. h
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Corollary 1: Every diagonalizable pseudo-Hermitian HamiltonianH with a discrete spectrum
admits a symmetry generated by a linear involutionS and a symmetry generated by an antiline
involution S, i.e., @H,S#5@H,S#50 andS25S251.

Proof: Again we recall that becauseh1 and hs satisfy ~6!, the linear operatorS5Ss

ªh1
21hs commutes with the Hamiltonian.3 Therefore, in view of Proposition 4,S andS5Xs are

involutions generating symmetries ofH. Clearly,S is linear whereasS is antilinear. h

Corollary 2: Let H be a diagonalizable Hamiltonian with a discrete spectrum. ThenH is
pseudo-Hermitian if and only if it admits an antilinear symmetry generated by an involution

Proof: If H is pseudo-Hermitian, then according to Proposition 4 it admits such a symm
Conversely, suppose thatH admits such a symmetry. Then because this is an antilinear symm
H must be pseudo-Hermitian.5 h

Proposition 5: A diagonalizable HamiltonianH with a discrete spectrum is anti-pseud
Hermitian with respect to a Hermitian antilinear involution if and only if there is a comp
biorthonormal system$ucn ,a&,ufn ,a&% satisfying

^fn ,aufm ,b&5^cm ,bucn ,a&. ~44!

Proof: SupposeH is anti-pseudo-Hermitian with respect to a Hermitian antilinear involut
t. Then there is a complete biorthonormal system$ucn ,a&,ufn ,a&% for which t5t1 . Now,
imposing the condition thatt251 and using Eq.~8!, one finds~44!. Conversely, one can chec
that if a complete biorthonormal system$ucn ,a&,ufn ,a&% satisfies this equation, the Hermitia
antilinear operatort1 given by~18! is an involution. As we mentioned above and shown in R
5, H is anti-pseudo-Hermitian with respect to this operator. h

Corollary 3: A pseudo-Hermitian HamiltonianH is anti-pseudo-Hermitian with respect to
Hermitian antilinear involution if and only if for every complete biorthonormal syst
$ucn ,a&,ufn ,a&% there is an invertible linear symmetry generatorA satisfying

(
n

(
a51

dn

^ck ,cu~AA†!21ucn ,a&^cm ,bu~AA†!21ucn ,a&5dkmdbc . ~45!

Proof: According to Proposition 5, anti-pseudo-Hermiticity ofH with respect to a Hermitian
antilinear involution is equivalent to the existence of a complete biorthonormal sy

$uc̃n ,a&,uf̃n ,a&% satisfying

^f̃n ,auf̃m ,b&5^c̃m ,buc̃n ,a&. ~46!

Now, let $ucn ,a&,ufn ,a&% be an arbitrary complete biorthonormal system. Then there is a li
invertible symmetry generatorA satisfyinguc̃n ,a&5A21ucn ,a& and uf̃n ,a&5A†ufn ,a&. Substi-
tuting these relations in~46!, we find

^fn ,auAA†ufm ,b&5^cm ,bu~AA†!21ucn ,a&. ~47!

Next, we multiply^ck ,cu(AA†)21ucn ,a& by both sides of~47! and sum overn anda. This yields
~45!. Conversely, assuming the existence of an invertible symmetry generatorA satisfying~45!,
one can easily check that the complete biorthonormal system defined byuc̃n ,a&ªA21ucn ,a& and
uf̃n ,a&ªA†ucn ,a& satisfies~46!. h

Equation~47! is particularly useful as it gives the necessary and sufficient conditions f
given invertible Hermitian antilinear operatort satisfying~19! to be an involution. For example, in
order to find the necessary and sufficient conditions under whichts of Eq. ~36! is an involution,
we write ts5A†t1A, where

A5(
n0

(
a51

dn0

~Asn0

a !* ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn1

,au1ucn2
,a&^fn2

,au!,
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and substitute this equation in~47!. This yields the following conditions:

^fn0
,aufm0

,b&5sn0

a sm0

b ^cm0
,bucn0

,a&, ~48!

^fn0
,aufm6

,b&5sn0

a ^cm6
,bucn0

,a&, ~49!

^fn6
,aufm6

,b&5^cm6
,bucn6

,a&. ~50!

Proposition 6:A diagonalizable HamiltonianH with a discrete spectrum is pseudo-Hermiti
with respect to a Hermitian linear involutionh if and only if there is a complete biorthonorma
system$ucn ,a&,ufn ,a&%, with n5n0 ,n6 as above, and a sequence of signss5$sn0

a % such that

^fn0
,aufm0

,b&5sn0

a sm0

b ^cn0
,aucm0

,b&, ~51!

^fn0
,aufm6

,b&5sn0

a ^cn0
,aucm7

,b&, ~52!

^fn6
,aufm6

,b&5^cn7
,aucm7

,b&. ~53!

Proof: This follows from a similar argument as the one used in the proof of Proposition
is based on the observation thath takes the canonical form~35! in some complete biorthonorma
system$ucn ,a&,ufn ,a&% and that in this system the conditionh251 is equivalent to Eqs.~51!–
~53!. h

Corollary 4: Let H be a diagonalizable pseudo-Hermitian HamiltonianH with a discrete
spectrum and a complete biorthonormal system$ucn ,a&,ufn ,a&%. Then the operatorsts of ~36!
andhs of ~35! are involutions if and only if Eqs.~48!–~50! and ~51!–~53! are satisfied. Further
more, in this case

@ts ,hs#50. ~54!

Proof: The equivalence of Eqs.~48!–~50! and~51!–~53! with the condition thatts andhs are
involutions follows from Corollary 4 and Proposition 6. Finally, in view of the identities:ts

5ts
21 , hs5hs

21 ,

t1
215(

n
(
a51

dn

ucn ,a&!^cn ,au, ~55!

and Eqs.~36!, ~35!, ~38!, and~8!, we have

tshs5tshs
215t1h1

215h1t1
215hsts .

h

IV. APPLICATION TO HAMILTONIANS „1… WITH gÄR

Consider the class ofPT-symmetric HamiltoniansHn of Eq. ~1! with nP@0,2), g5R, and
H5L2(R). Then, following Ref. 1, we may choose a set of eigenvectorsucn& of Hn satisfying

PTucn&5ucn&. ~56!

Because the eigenvalues ofHn are nondegenerate, we have dropped the degeneracy labela51.
~Note that what we denote byufn& are eigenvectors ofH†. This is the notation used in Refs. 3–
which differs from that of Ref. 1.! Also as usual thePT operator is defined byPTc(x)ª@c
(2x)#* whereuc& is an arbitrary state vector represented by the wave functionc(x). Moreover,
relying on the numerical evidence2 that is also used in Ref. 1, we assume the validity of
completeness relation
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(
n

~21!ncn~x!cn~y!5d~x2y!, ~57!

and the orthogonality condition

~cm ,cn!5~21!ndmn , ~58!

where the indefinite inner product~ , ! is defined by

~f,c!ªE
R
dx@PTf~x!#c~x!. ~59!

Introducing the functions

fn~x!ª~21!ncn~x!* , ~60!

which also belong toH5L2(R), and using Eqs.~58! and ~59! we can show that

^fmucn&ªE
R
dxfm~x!* cn~x!5~21!m~cm ,cn!5dmn .

This coincides with the biorthonormality relation~8!. Furthermore, we write Eq.~57! in the form

d~x2y!5(
n

fn~x!cn~y!* 5(
n

^xufn&^cnuy&,

which is equivalent to the completeness relation~9!. Therefore,$ucn&,ufn&% forms a complete
biorthonormal system, and thePT-symmetric Hamiltonians~1! are diagonalizable.5 Moreover,
because their spectrum is real and discrete, these Hamiltonians are examples of quasi-He
Hamiltonians having a discrete spectrum.

Next, we calculate

~f,c!5E
R
dx f~2x!* c~x!

5E
R
dx f~x!* c~2x!

5E
R
dx f~x!* Pc~x!5^fuPuc&5 ^̂ fuc&&P , ~61!

where

^fuc&ªE
R
dx f~x!* c~x!. ~62!

According to Eq.~61!, the inner product~59! is nothing but̂^ u &&P . This observation together with
Eqs.~58! and ~60! implies

P5(
n

~21!nufn&^fnu. ~63!

Comparing this equation with~12!, we see thatP is an example of the canonical operatorshs of
Eq. ~12! with
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sn5~21!n. ~64!

This is another verification of the fact that the Hamiltonians~1! areP-pseudo-Hermitian.3

Note that as a result of Eq.~56!, cn(2x)* 5cn(x). This equation together with~60! implies

fn~x!5~21!ncn~2x!, ~65!

^cmucn&5E
R
dxcm~x!* cn~x!5E

R
dxcm~2x!cn~2x!* 5E

R
dxcm~x!cn~x!* 5^cnucm&,

~66!

^fmufn&5E
R
dxfm~x!* fn

5~21!m1nE
R
dxcm~2x!* cn~2x!

5~21!m1nE
R
dxcm~x!* cn~x!5~21!m1n^cmucn&. ~67!

In view of Eqs.~64! and ~67!, the condition~51! of Propositions 6 holds. Therefore, Eq.~63! is
consistent with the fact thatP is an involution.

Next, we use Eqs.~56! and ~8! to calculate

PT5(
n

ucn& ! ^fnu. ~68!

Then, multiplying both sides of this equation byP and using Eqs.~63! and ~8!, we find

T5(
n

~21!nufn& ! ^fnu. ~69!

This shows that the time-reversal operatorT is nothing but the canonical antilinear operator~24!
with sn given by ~64!. @This is consistent with the known fact5 that thePT-symmetric standard
Hamiltonians of the formH5p21V(x;t) which haveR as their configuration space, in gener
and the Hamiltonians~1! with nP@0,2) andg5R, in particular, areT-anti-pseudo-Hermitian. Se
also Ref. 11.# Again, in view of ~66! and ~67!, we see that the condition~48! of Corollary 4 is
satisfied and the expression~69! is consistent withT251.

Next, we consider the positive operatorh1 for the Hamiltonians~1! with nP@0,2) andg
5R. Because these Hamiltonians are pseudo-Hermitian with respect to bothh1 and P, they
admit a symmetry generated byh1

21P. This is a particular example of the symmetry generatorS
of Proposition 4, wheren05n, sn0

5(21)n05(21)n, andn6 are absent. We can computeh1
21P

using Eq.~43!. Alternatively, we may use the identity3

h1
215(

n
ucn&^cnu ~70!

together with Eqs.~63! and ~8!. This yields

h1
21P5(

n
~21!nucn&^fnu. ~71!

The symmetry generatorh1
21P has the following form in the position representation:
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^xuh1
21Puy&5(

n
~21!ncn~x!* fn~y!5(

n
cn~x!cn~y!. ~72!

Comparing this equation with Eq.~3!, we see thath1
21P coincides with the charge-conjugatio

operatorC of Ref. 1,

C5h1
21P. ~73!

Next, we use Eqs.~70!, ~69!, ~8!, ~67!, ~66!, and~9! to compute

Th15(
nm

~21!nufn& ! ^fnufm&^fmu

5(
nm

~21!mufn& ! ^cnucm&^fmu

5(
nm

~21!mufn& ! ^cmucn&^fmu

5(
nm

~21!mufn&^cnucm& ! ^fmu

5(
m

~21!mucm& ! ^fmu

5(
nm

~21!mucm&^cmufn& ! ^fnu5h1
21T5h1

21P2T5CPT. ~74!

Hence,

^fuc&CPT5E
R
dx @CPTf~x!#c~x!

5E
R
dx @Th1f~x!#c~x!

5E
R
dx @h1f~x!#* c~x!5E

R
dx f~x!* @h1c~x!#5^fuh1c&5 ^̂ fuc&&h1

, ~75!

where we have used the fact thath1 is Hermitian. Equations~75! show that theCPT-inner
product~4! advocated in Ref. 1 is nothing but the positive-definite inner product^̂ u &&h1

that was
extensively used in Ref. 9. Moreover, the orthonormality relation~5! is a simple consequence o
Eqs.~12! and ~8!.

Comparing the expressions given in~68! and ~74! for the PT and CPT operators with Eq.
~28!, we see that thePT and CPT operators are specific examples of the canonical antilin
symmetry generators~28!.

V. GENERALIZED P, T, AND C OPERATORS FOR QUASI-HERMITIAN OPERATORS

In the preceding section we explored the mathematical basis of the charge conjugation
tor ~3! for the Hamiltonians~1! with the choiceg5R which is allowed fornP@0,2). In this
section we will demonstrate that indeed the approach based on the theory of pseudo-He
operators applies to quasi-Hermitian Hamiltonians with a discrete spectrum in general a
PT-symmetric Hamiltonians~1! with nP@0,̀ ) in particular.
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As we discussed in Sec. III, every quasi-Hermitian HamiltonianH with a discrete spectrum is
h1-pseudo-Hermitian for a positive operatorh1 , and thatH is Hermitian with respect to the
inner product^̂ u &&h1

. This in turn implies the existence of a complete set of eigenvec
ucn ,a& of H such thatucn& are orthonormal with respect tô̂ u &&h1

.
Lemma 1:Let H, h1 , anducn ,a& be as in the preceding paragraph, and

ufn ,a&ªh1ucn ,a&, ~76!

Pª(
n

(
a51

dn

~21!nufn &^fn u, ~77!

Tª(
n

(
a51

dn

~21!nufn &!^fn u, ~78!

Cª(
n

(
a51

dn

~21!nucn &^fn u. ~79!

Then we have the following.
~1! $ucn ,a&,ufn ,a&% forms a complete biorthonormal system.
~2! h1 satisfies~11! and

h1
215Th1T. ~80!

~3! H is P-pseudo-Hermitian andT-anti-pseudo-Hermitian.
~4! PT andCPT, which have the form

PT5(
n

(
a51

dn

ucn ,a&!^fn ,au, ~81!

CPT5(
n

(
a51

dn

~21!nucn ,a&!^fn ,au, ~82!

are antilinear symmetry generators andC is a linear symmetry generator forH; the corresponding
symmetries are exact, in particularucn ,a& satisfy

PT ucn ,a&5ucn ,a&, ~83!

CPT ucn ,a&5Cucn ,a&5~21!nucn ,a&. ~84!

~5! P, T, andC satisfy

~PT !25C 251, ~85!

C5h1
21P5Th1TP. ~86!

~6! The operatorsP andT are involutions if and only if

~21!m1n^fn ,aufm ,b&5^cn ,aucm ,b&5^cm ,bucn ,a&. ~87!

~7! If H is a Hermitian Hamiltonian,C 21P is a Hermitian invertible linear operator commu
ing with H. In particular, if for alln anda, ufn ,a&5ucn ,a&, thenC5P.
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Proof: Statement 1 may be established by checking Eqs.~8! and~9! directly. Statements 2–4
follow from these equations and~77!–~79!. PT andCPT are respectively examples of the antilin
ear symmetry generatorsX1 andXs . Statement 5 is a result of Proposition 4; Eq.~86! may be
checked by direct computation. Statement 6 is a consequence of Corollary 4. In order to
statement 7, we introduce

Lª(
n

(
a51

dn

ucn ,a&^cn ,au, ~88!

which is clearly a Hermitian invertible linear operator commuting withH. Now it suffices to use
~8! to establishLP5C. Finally, for the case thatufn ,a&5ucn ,a&, Eq. ~9! implies L51. h

In view of the analogy with the systems studied in Sec. IV, we shall respectively cal
operatorsP, T, andC thegeneralized parity, time-reversal, andcharge conjugationoperators. The
following theorem follows as a direct consequence of Lemma 1.

Theorem 1: Every diagonalizable Hamiltonian with a real discrete spectrum is invar
under the action of the generalized charge-conjugation operatorC and the combined action of th
generalized parity and time-reversal symmetry~PT !. In particular, every such Hamiltonian ha
exactPT- andCPT-symmetry.

Clearly for the Hamiltonians~1! with nP@0,2), the operatorsP, T, andC coincide withP,T,
and C. For nP@2,̀ ), we define the vectorsufn& according to~60! so that in the position
representation

h1~x,y!5(
n

fn~x!fn~y!* 5(
n

cn~x!* cn~y!, ;x,yPR. ~89!

Next, we note that Eqs.~56!, ~60!, and consequently~65! also hold fornP@2,̀ ). Using ~65! and
~57!, we can show that in the position representation

P~x,y!5(
n

~21!nfn~x!fn~y!*

5(
n

~21!ncn~2x!cn~2y!*

5(
n

~21!ncn~2x!cn~y!

5d~x1y!5P~x,y! ;x,yPR, ~90!

i.e., P andP have the same position representations. Furthermore, we can easily see that i
of ~81! and~56!, PT5PT, so thatT andT also have the same position representations. Finally,
can employ~79! and ~3! to infer thatC andC have the same position representations as well

VI. GENERALIZED P, T, AND C OPERATORS FOR PSEUDO-HERMITIAN
HAMILTONIANS

The construction of the operatorsP, T, andC may be easily generalized to the class of
diagonalized pseudo-Hermitian operators with a discrete spectrum. Comparing the operaths

andXs for the quasi- and pseudo-Hermitian Hamiltonians discussed in Sec. III, and noting
according to Eqs.~77!, ~81!, and~82!, P is an example ofhs andPT andCPT are examples of
Xs , we introduce

Pª(
n0

(
a51

dn0

~21!n0ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!, ~91!
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Tª(
n0

~21!n0(
a51

dn0

ufn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&!^fn2

,au1ufn2
,a&!^fn1

,au!,

~92!

Cª(
n0

~21!n0(
a51

dn0

ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn2

,au1ucn2
,a&^fn1

,au!, ~93!

where we have used the conventions of Secs. III and IV.
Again we can check that Eqs.~85! and ~86! hold. Furthermore,

PT5(
n0

(
a51

dn0

ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!, ~94!

CPT5(
n0

~21!n0(
a51

dn0

ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!.

~95!

In view of Eqs.~93!–~95!, Proposition 4, and the construction given in the proof of Corollary
we can check that the operatorsC, PT, andCPT are involutions of the Hilbert space commutin
with the HamiltonianH. Therefore, we have the following generalization of Theorem 1.

Theorem 2: Every diagonalizable pseudo-Hermitian HamiltonianH with a discrete spectrum
is invariant under the action ofC, PT, and CPT. These operators which are involutions of th
Hilbert space generate broken symmetries ofH.

We wish to conclude this section by pointing out that the operatorsP, T, andC are determined
by a complete biorthonormal system associated with the HamiltonianH. As the latter is unique
only up to invertible symmetries ofH, so are these operators.

VII. CONCLUSION

In this article, we discussed certain properties of pseudo-Hermitian operators and d
strated their application in understanding the mathematical origin and exploring generalizati
the findings of Bender, Brody, and Jones.1 In particular, for arbitrary diagonalizable pseud
Hermitian Hamiltonians with a discrete spectrum, we introduced generalized parity, time-rev
and charge-conjugation operators that coincide with the ordinary parity, time-reversal, and c
conjugation for thePT-symmetric Hamiltonians~1!. The generalized parity-time-reversal an
charge conjugation operators are examples of generators of a set of generic symmetries o
diagonalizable pseudo-Hermitian Hamiltonians having a discrete spectrum. A common prop
these symmetries is that they are generated by involutions. The generalized parity and
reversal operators are, however, involutions only under certain conditions.
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Resolvent convergence of sphere interactions
to point interactions a…

Shin-ichi Shimadab)

Department of Mathematics and Physics, Setsunan University,
Ikeda-nakamachi 17-8, Neyagawa, 572-8508, Japan

~Received 2 June 2000; accepted 16 October 2002!

We consider the HamiltonianH(a)52D1a21l(a)q( x̂)d(uxu2a) which de-
scribes a sphere interaction„x̂5 x/uxu ,l(a)511aa1O(a2)…. We study the con-
vergence ofH(a) whena↓0 in the norm resolvent sense. The existence of the zero
resonance of 2D1q( x̂)d(uxu21) affects the form of the limiting
operator. ©2003 American Institute of Physics.@DOI: 10.1063/1.1533834#

I. INTRODUCTION

In this paper we are concerned with the HamiltonianH(a) describing a sphere interaction i
L2(R3). H(a) is formally given by

H~a!52D1a21l~a!q~ x̂!d~ uxu2a!, ~1.1!

where d denotes the 1-dimensional delta function andx̂5 x/uxu . q(v) is a real and smooth
function on the unit sphereS1 . l(a) is a real valued function whose asymptotic behavior n
a50 is

l~a!511aa1O~a2!, aPR. ~1.2!

H(a) is defined rigorously via the quadratic formh:

h@u,v#5~¹u,¹v !1^a21l~a!qgau,gav&a ,

Dom@h#5H1~R3!.

HereHm(G) denotes the Sobolev space of orderm overG, ~,! the L2(R3) inner product,̂ ,&a the
L2(Sa) inner product (Sa5$xPR3;uxu5a%,a.0,̂ ,&5^,&1) and ga the trace operator from
H1(R3) to L2(Sa). h is seen to be a lower semibounded closed form, and thus determine
unique self-adjoint operator,

H5H„a;a21l~a!q…, ~1.3!

such that

Dom~H !,Dom@h#, h@u,v#5~Hu,v !,

for uPDom(H), vPDom@h# @~Ikebe, 1991!, Theorem 1.4#. H„a;a21l(a)q… is seen to be2D
with the interface condition onSa :

S ]u

]r D
1

~x!2S ]u

]r D
2

~x!5a21l~a!q~ x̂!~gau!~x!, ~1.4!

a!Dedicated to Professor Yoshimi Saito¯on his 60th birthday.
b!Electronic mail: shimada@mpg.setsunan.ac.jp
9900022-2488/2003/44(3)/990/16/$20.00 © 2003 American Institute of Physics
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where (]u/]r )1(x) and (]u/]r )2(x) mean the limit of]u/]r (x) obtained by approachingSa

from $uxu.a% and$uxu,a%, respectively@~Ikebe, 1991!, Theorem 1.7#.
In the present paper we examine to which operatorH„a;a21l(a)q… converges whena↓0.

Since we have asa↓0,

a22q~ x̂!d~ uxu2a!→md~x! S m5E
S1

q~v!dv D , ~1.5!

in the distribution sense, whered(x) denotes the 3-dimensional delta function anddv the surface
measure onS1 , we may expect2D1a22q( x̂)d(uxu2a) converges to a Hamiltonian describing
point interaction2D1md(x) in some sense. Contrary to this expectation our results~Theorems
3.3–3.6! show that we should replacea22 in 2D1a22q( x̂)d(uxu2a) by a21 in order to obtain
a meaningful limiting operator which describes a point interaction. This operator turns out to
self-adjoint extensionHp(t) parametrized bytPRø$`% of

Ĥ0052D�C
0
`(R3\$0%) .

That is uniquely determined by its resolventRp(z;t):

Rp~k2;t!u~x!5R0~k2!u~x!1S t2
ik

4p D 21

„R0~k2!u…~0!
eikuxu

4puxu
, ~1.6!

whereR0(z)5(H02z)21 andH0 the free Hamiltonian:

H05Hp~`!5~2D�C
0
`(R3)!,

T̄ being the closure ofT @~Albeverio, 1988!, Theorem 1.1.1, 1.1.2#.
We can letH„a;a21l(a)q… converge to anyHp(t) (tPR) in the norm resolvent sense

taking a suitablea in ~1.2! under the condition thatH(1;q) has zero resonance. In this case w
should note thata21l(a)q( x̂) tends to 0 in the distribution sense asa↓0. A similar situation
occurs if we try to approximateHp(t) by short range Hamiltonians@~Albeverio, 1988!, Theorem
1.2.10#. On the other hand, we do not have to pay any attention to the zero resonance wh
approximateH(a;q) by short range Hamiltonians whose potential converges toq( x̂)d(uxu2a) for
a fixeda.0 @~Shimada, 1992!, Theorem 3#.

The resolventR(k2;a) of H(a;a21l(a)q) is given by

R~k2;a!5R0~k2!1l~a!T~k;a!„12l~a!T̃~k;a!…21gaR0~k2! ~1.7!

@~Ikebe,1991!, ~7.2!#. Here,T(k;a):L2(Sa)→L2(R3) is defined by

T~k;a!u~x!5
21

4pa ESa

eikux2yu

ux2yu
q~ ŷ!u~y!dSy

for uPL2(Sa),xPR3 and T̃(k;a):L2(Sa)→L2(Sa);

T̃~k;a!u~x!5
21

4pa ESa

eikux2yu

ux2yu
q~ ŷ!u~y!dSy ,

for uPL2(Sa),xPSa . Introducing the unitary operatorUa :L2(S1)→L2(Sa) defined by

Uau~x!5
1

a
u~ x̂!,
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we can rewrite~1.7! as

R~k2;a!5R0~k2!1l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaR0~k2!, ~1.8!

whereT̃(ak)5T̃(ak;1). We shall derive the asymptotic expansions of„12l(a)T̃(ak)…21 near
a50 in Sec. II. In Sec. III, after examining the asymptotic behavior ofUa

21gaR0(k2) and
l(a)T(k;a)Ua , we prove the norm resolvent convergence ofH„a;a21l(a)q…. We shall also
treat the case thatq is a constant onS1 , where we can compute the zero resonance function
H(1;q) explicitly.

At the end of this section, we refer to Antoine~1987!, Hounkonnau~2000!, and Hounkonnau
~1999! ~and references therein! for a recent development of this area includingd8-sphere and
relativistic d-sphere interactions. All authors mentioned above have treated Hamiltonians re
into the direct sum of operators by a separation of variables. Among them we should menti
work of Antoine ~1987!. They have proved the norm resolvent convergence of theird-sphere
Hamiltonian to any Hamiltonian describing point interaction by a suitable choice of paramet
contrast to our case, no properties of zero resonance enter into their discussion as well as i
of approximating one-dimensional point interactions by scaled short range Hamiltonians@~Albev-
erio, 1988!, Sec. I.3.2#. They have reduced the problem to the one concerning radial Hamilton
since their Hamiltonian is rotationally invariant. However, the author could not relate these
cases more clearly.

II. THE EXPANSION OF „1Àl„a…T̃„ak……

À1 NEAR aÄ0

In this section, we derive the asymptotic expansion of„12l(a)T̃(ak)…21 neara50. It will
be done along the line of@~Shimada, 1994!, Sec. 4#. The behavior depends heavily on the structu
of the null space of 12T̃(0).

Let us recall some results obtained in@~Shimada, 1994!, Sec. 3# ~up to the end of this
paragraph!. First, L2(S1) is decomposed into the direct sum of subspaces:

L2~S1!5N„12T̃~0!…uR„12T̃~0!…, ~2.1!

where N(T) means the null space ofT, R(T) the range ofT, and u the ~not necessarily
orthogonal! direct sum. LetQ be the projection ontoN„12T̃(0)… alongR„12T̃(0)…. Then

dimR~Q!,1`.

Since 12T̃(0)2Q is invertible, we defineK by

K5„12T̃~0!2Q…

21Q0PB„L2~S1!…, ~2.2!

where Q0512Q and B(X,Y) denotes the set of all bounded operators fromX to Y„B(X)
5B(X,X)…. We defineAjPB„L2(S1)… by

Aju~v!5
2 i j

4p j ! ES1

uv2v8u j 21q~v8!u~v8!dv8,

for uPL2(S1). Then we have

T̃~k!5(
j 50

`

k jAj in B„L2~S1!… ~kPC!. ~2.3!

Let P0 be the orthogonal projection ontoN„H(1;q)…. Let P̂05g1P0 . Then we have
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P̃0PB„L2~R3!,L2~S1!…, R~ P̃0!5N2 , ~2.4!

whereN2 is the subspace ofN„12T̃(0)… defined by

N25$uPL2~S1!;uPN~12T̃~0!!,^u,q&50%. ~2.5!

We putP5 P̃0P̃0* , where* means the adjoint. We defineQ1 andQ2 by

Q15~11PqA2!Q, Q252PqA2Q.

Then it is seen thatQj ( j 50,1,2) are~not necessarily orthogonal! projections and satisfy the
following relations:

Q11Q25Q, Q01Q11Q251, QiQj5d i j Qj ~ i , j 50,1,2!, ~2.6!

R~Q0!5R„12T̃~0!…, R~Q2!5N2 . ~2.7!

If Q1Þ0, we can findf 0PR(Q1) such that

^ f 0 ,q&5~4p!1/2, R~Q1!5$c f0 ;cPC%. ~2.8!

We put

N15R~Q1!. ~2.9!

Then, in view of~2.1!, ~2.6!, ~2.7! and ~2.9! we have the following decompositions:

N„12T̃~0!…5N1uN2 , L2~S1!5N1uN2uR„12T̃~0!…. ~2.10!

N1 corresponds to the zero resonance state ofH(1;q) in the following sense. Letu0

5T(0;1)f 0 . Thenu0 satisfies

Du050 on R3\S1 ,

S ]u0

]r D
1

2S ]u0

]r D
2

5qu0 on S1 ,

and

u0~x!52~4p!21/2uxu211O~ uxu22! as uxu→`.

Thus,u0 satisfiesH(1;q)u050 formally and does not belong toL2(R3). On the other hand, ther
exists a bijection betweenN2 andN„H(1;q)… by @~Shimada, 1994!, Theorem 2.4#.

Now we derive the asymptotic expansion of„12l(a)T̃(ak)…21 neara50 according to the
possible four cases ofQ1 andQ2 .

Lemma 2.1: Assume that Q15Q250. Then we have as a↓0,

„12l~a!T̃~ak!…215O~1!,

where O(as) means a bounded linear operator whose norm is O(as) as a↓0.
Proof: Since„12T̃(0)…21 exists by~2.7!, ~2.9! and ~2.10!, we have asa↓0,
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12l~a!T̃~ak!512T̃~0!2„T̃~ak!2T̃~0!…1O~a!

512T̃~0!1o~1!

5„12T̃~0!…@11„12T̃~0!…21o~1!#,

where we have used~1.2! and the fact thatT̃(ak) is a compact operator valued continuo
function in a. The desired result follows immediately. h

To treat cases other thanQ15Q250, we use the following lemma obtained by@~Jensen,
1979!, Lemma 3.12#.

Lemma 2.2: LetX, Y, X and Y be vector spaces. Let L:X→Y,B:X→X and C:Y→Y be linear
operators. Let A5CLB. If A21 exists, B is surjective and C is injective, then L21 exists and
L215BA21C.

Lemma 2.3: Assume that Q1Þ0 and kÞ2 ia^q f0 , f 0&. Then Q1* q(kA11aA0)Q1 is invert-
ible in B„R(Q1),R(Q1* )… with the inverse

@Q1* q~kA11aA0!Q1#215~2 ik1a^q f0 , f 0&!21^•, f 0& f 0 .

Proof: We can takeg0PR(Q1* ) such that

^ f 0 ,g0&51

by @~Shimada, 1994!, Lemma 3.19#. ThenuPR(Q1) is of the form

Q1u5u5^u,g0& f 0 . ~2.11!

SinceA05T̃(0) andA152 i /4p^•,q&, we have

~kA11aA0! f 052 i ~4p!21/2k1a f 0 , ~2.12!

where we used~2.8! and the fact thatf 0PN„12T̃(0)…. SinceQ1* 5^•, f 0&g0 , we have by~2.8!
and ~2.12!,

Q1* q~kA11aA0! f 05~2 ik1a^q f0 , f 0&!g0 ,

and hence, together with~2.11!,

Q1* q~kA11aA0!Q1u5~2 ik1a^q f0 , f 0&!^u,g0&g0 .

From this, the desired result follows. h

Lemma 2.4: Assume that Q1Þ0, Q250 and kÞ2 ia^q f0 , f 0&. Then we have as a↓0,

„12l~a!T̃~ak!…2152a21~2 ik1a^q f0 , f 0&!21^•,q f0& f 01O~1!.

We should note that̂q f0 , f 0&Þ0 holds ifq(v)>0 „or q(v)<0… on S1 under the assumption
Q1Þ0 ~in which caseqÓ0). In fact, assume thatq>0 and^q f0 , f 0&50. Then we have

q1/2f 050,

and hence

q f050.

Thus we have
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f 0~v!5
21

4p E
S1

1

uv2v8u
q~v8! f 0~v8!dv850,

which is a contradiction.
Proof: Under our assumption, we have by~2.7! and ~2.10!

L2~S1!5R~Q0!uR~Q1!. ~2.13!

As was shown in the proof of@~Shimada, 1994!, Lemma 4.3#, we have

L2~S1!5R~Q0!uR~Q1* !. ~2.14!

Now let

X5Y5L2~S1!, X5R~Q0!uR~Q1!, Y5R~Q0!uR~Q1* !,

L512l~a!T̃~ak!,

B5@Q0 a21/2Q1#,

C5F Q0

a21/2Q1* qG .
Then, from ~2.13! and ~2.14!, B and C are well-defined bounded operators onL2(S1). B is
obviously surjective. From the proof of@~Shimada, 1994!, Lemma 4.3# it follows that C is injec-
tive. DefineA5CLB. ThenA has the following form:

A5F Q0„12l~a!T̃~ak!…Q0 a21/2Q0„12l~a!T̃~ak!…Q1

a21/2Q1* q„12l~a!T̃~ak!…Q0 a21Q1* q„12l~a!T̃~ak!…Q1
G5FA11 A12

A21 A22
G .

We have by~1.2! and ~2.3!,

12l~a!T̃~ak!512T̃~0!2a~kA11aA0!1O~a2!. ~2.15!

We know by@~Shimada, 1994!, Lemma 3.15#,

„12T̃~0!…Qj5Qj* q„12T̃~0!…50 ~ j 51, 2!. ~2.16!

Thus, using~2.15! and ~2.16! we have

A115Q0„12T̃~0!…Q01O~a!,

A125O~a1/2!

A215O~a1/2!

A2252Q1* q~kA11aA0!Q11O~a!.

So, we can rewriteA asA5D2E with

D5FQ0„12T̃~0!…Q0 0

0 2Q1* q~kA11aA0!Q1
G ,
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E5F O~a! O~a1/2!

O~a1/2! O~a!
G .

We know by@~Shimada, 1994!, Lemma 3.18#,

@Q0„12T̃~0!…Q0#215KuR(Q0) in B„R~Q0!… ~2.17!

@see~2.2!#. Thus, from Lemma 2.3 and~2.17!, D is invertible with the inverse,

D215FK 0

0 2~2 ik1a^q f0 , f 0&!21^•, f 0& f 0
G .

Therefore, sinceA is invertible with the inverse,

A215~12D21E!21D215D211(
j 51

`

~D21E! jD21,

we have by Lemma 2.2,

L215BD21C1(
j 51

`

B~D21E! jD21C.

Direct computation shows that

BD21C52a21~2 ik1a^q f0 , f 0&!21^•, f 0& f 01O~1!,

(
j 51

`

B~D21E! jD21C5O~1!.

Thus we completed the proof. h

Lemma 2.5: Assuume that Q150 and Q2Þ0. Then Q2* qQ2 is invertible in
B„R(Q2),R(Q2* )….

Proof: SinceQ25Q, we have by@~Shimada, 1994!, Lemma 3.3#,

R~Q2!5N„12T̃~0!…, R~Q2* !5N„12T̃~0!* ….

Now, sinceq is a bijection fromN„12T̃(0)… to N„12T̃(0)* … ~@~Shimada, 1994!, Lemma 3.1#!,
the lemma follows. h

WhenQ150 andQ2Þ0, we putW5(Q2* qQ2)21PB„R(Q2* ),R(Q2)….
Lemma 2.6: Assume that Q150, Q2Þ0 and aÞ0 in ~1.2!. Then we have as a↓0,

„12l~a!T̃~ak!…2152a21a21Q2WQ2* q1O~1!.

Proof: Under our assumption, we have

L2~S1!5R~Q0!uR~Q2!5R~Q0!uR~Q2* !.

Let

X5Y5L2~S1!, X5R~Q0!uR~Q2!, Y5R~Q0!uR~Q2* !,

L512l~a!T̃~ak!,
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B5@Q0 a21/2Q2#,

C5F Q0

a21/2Q2* qG .
Then, from an argument similar to the proof of@~Shimada, 1994!, Lemma 4.3#, it follows thatB
is surjective andC is injective. DefineA5CLB. ThenA has the following form:

A5F Q0~12l~a!T̃~ak!!Q0 a21/2Q0~12l~a!T̃~ak!!Q2

a21/2Q2* q~12l~a!T̃~ak!!Q0 a21Q2* q~12l~a!T̃~ak!!Q2
G5FA11 A12

A21 A22
G .

Using ~2.15! and ~2.16! we have

A115Q0„12T̃~0!…Q01O~a!,

A125O~a1/2!,

A215O~a1/2!,

A2252Q2* q~kA11aA0!Q21O~a!.

Moreover, sinceA1Q250 @~Shimada, 1994!, Lemma 3.6# andA05T̃(0), wehave by~2.16!,

A2252aQ2* qT̃~0!Q21O~a!5aQ2* q~12T̃~0!!Q22aQ2* qQ21O~a!52aQ2* qQ21O~a!.

So, we can rewriteA asA5D2E with

D5FQ0~12T̃~0!!Q0 0

0 2aQ2* qQ2
G ,

E5F O~a! O~a1/2!

O~a1/2! O~a!
G .

From Lemma 2.5 and~2.17!, D is invertible with the inverse,

D215FK 0

0 2a21WG .
Thus, an application of Lemma 2.2 gives

L215BD21C1O~1!52a21a21Q2WQ2* q1O~1!.

Therefore we completed the proof. h

Lemma 2.7: Assume that Q1Þ0, Q2Þ0 and q(v)>0 @or q(v)<0] on S1 . Then Q2* qQ2 is
invertible in B„R(Q2),R(Q2* )….

Proof: Since dimR(Q2)5dimR(Q2* ),1` @~Shimada, 1994!, Theorem 2.4, Lemma 3.19#!,
we have only to show the injectivity ofQ2* qQ2 . Assume that

Q2* qQ2u50, uPR~Q2!.

Then
                                                                                                                



998 J. Math. Phys., Vol. 44, No. 3, March 2003 Shin-ichi Shimada

                    
05^Q2* qQ2u,u&5^qu,u&5E
S1

q~v!uu~v!u2 dv,

and hence, by our assumption,

q~v!u~v!50.

Thus we have

u~v!5T̃~0!u~v!5
21

4p E
S1

1

uv2v8u
q~v8!u~v8!dv850. h

Lemma 2.8: Assume that q(v)>0 @or q(v)<0] on S1 . Assume that Q1Þ0, Q2Þ0, aÞ0
and kÞ2 ia @det(̂ fi ,qfj&)0<i,j<n /det(̂ fi ,qfj&)1<i,j<n#. Define the operator D1 :R(Q1)uR(Q2)
→R(Q1* )uR(Q2* ) by

D15FQ1* q~kA11aA0!Q1 aQ1* qQ2

aQ2* qQ1 aQ2* qQ2
G .

Then D1 is invertible. Here$ f j%1< j <n is a basis ofR(Q2).
We put

D1
2152FB11 B12

B21 B22
G : R~Q1* !uR~Q2* !→R~Q1!uR~Q2!.

We should remark that

~ i ! det~^ f i ,q f j&!0< i , j <nÞ0; ~ i i ! det~^ f i ,q f j&!1< i , j <nÞ0;

( i i i ) det(̂ fi ,qfj&)0<i,j<n /det(̂ fi ,qfj&)1<i,j<n does not depend on the choice of basis$ f j%1< j <n . In
fact, letx5(c0 ,c1 ,...,cn). Assume that

~^ f i ,q f j&!0< i , j <nx50.

Then, if we assumeq>0, we have

05„~^ f i ,q f j&!0< i , j <nx…•x5I q1/2S (
j 50

n

cj f j D I 2

.

Thus

qS (
j 50

n

cj f j D 50.

Sinceq:R(Q)→R(Q* ) is bijective @~Shimada, 1994!, Lemma 3.1#, we have

(
j 50

n

cj f j50.

Since f 0 , f 1 ,...,f n are linearly independent, we obtain

c05c15¯5cn50,
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and hence

x50.

From this, (i ) follows. We can show (i i ) in a similar way. We show (i i i ). We use the identity

det~^ f i ,q f j&!1< i , j <n5udet~ci j !1< i , j <nu2 det~^gi ,qgj&!1< i , j <n , ~2.18!

provided that

@ f 1 f 2 ¯ f n#5@g1 g2 ¯ gn#F c11 c12 ... c1n

c21 c22 ... c2n

A A � A

cn1 cn2 ... cnn

G . ~2.19!

Let $gj%1< j <n be another basis ofR(Q2). Then there exists the regular matrix (ci j )1< i , j <n such
that ~2.19! holds. On the other hand,

@ f 0 f 1 f 2 ¯ f n#5@ f 0 g1 g2 ¯ gn#F 1 0 0 ... 0

0 c11 c12 ... c1n

0 c21 c22 ... c2n

A A A � A

0 cn1 cn2 ... cnn

G , ~2.20!

holds. Applying~2.18! for ~2.19! and ~2.20!, (i i i ) follows.
Proof of Lemma 2.8:Since

dim„R~Q1!uR~Q2!…5dim„R~Q1* !uR~Q2* !…,1`,

we have only to show thatD1 is injective. We can findg0PR(Q1* ),gjPR(Q2* ) ( j 51,2,...,n)
such that

^ f 0 ,g0&51, ^ f i ,gj&5d i j ~ i , j 51,2,...,n!.

Then we have

Q1* 5^•, f 0&g0 , Q2* 5(
j 51

n

^•, f j&gj . ~2.21!

Let

u5c0f 0 , v5(
j 51

n

cj f j ~ckPC,k50,1,...,n!. ~2.22!

Then, using~2.8!, ~2.12! and ~2.21! we have

Q1* q~kA11aA0!Q1u5c0~2 ik1a^ f 0 ,q f0&!g0 ,

aQ1* qQ2v5aS (
j 51

n

cj^ f j ,q f0& D g0 ,
~2.23!
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aQ2* qQ1u5ac0(
j 51

n

^ f 0 ,q f j&gj ,

1aQ2* qQ2v5a(
k51

n

(
j 51

n

cj^ f j ,q fk&gk .

Thus the equation

D1S u
v D50

implies

D̃1S c0

c1

A
cn

D 50,

where

D̃15F 2 ik1a^ f 0 ,q f0& a^ f 1 ,q f0& ... a^ f n ,q f0&

a^ f 0 ,q f1& a^ f 1 ,q f1& ... a^ f n ,q f1&

A A � A

a^ f 0 ,q fn& a^ f 1 ,q fn& ... a^ f n ,q fn&

G . ~2.24!

Since

detD̃15an
„2 ik det~^ f i ,q f j&!1< i , j <n1a det~^ f i ,q f j&!0< i , j <n…Þ0, ~2.25!

the lemma follows. h

Lemma 2.9: Assume that q(v)>0 @or q(v)<0] on S1 . Assume that Q1Þ0, Q2Þ0, aÞ0
and kÞ2 ia det(̂ fi ,qfj&)0<i,j<n /det(̂ fi ,qfj&)1<i,j<n . Then we have as a↓0,

„12l~a!T̃~ak!…215a21~Q1B11Q1* 1Q1B12Q2* 1Q2B21Q1* 1Q2B22Q2* !q1O~1!.

Proof: Under our assumption, we have

L2~S1!5R~Q0!uR~Q1!uR~Q2!5R~Q0!uR~Q1* !uR~Q2* !.

Let

X5Y5L2~S1!, X5R~Q0!uR~Q1!uR~Q2!,

Y5R~Q0!uR~Q1* !uR~Q2* !,

L512l~a!T̃~ak!,

B5@Q0 a21/2Q1 a21/2Q2#,

C5F Q0

a21/2Q1* q

a21/2Q2* q
G .
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Then, it is seen thatB is surjective andC is injective. Define

A5CLB5F A11 A12 A13

A21 A22 A23

A31 A32 A33

G .

Then, using the relations

„12T̃~0!…Qj5Qj* q„12T̃~0!…50 ~ j 51,2!,

A1Q25Q2* qA150

@~Shimada, 1994!, Lemmas 3.15, 3.16#, we have

A115Q0~12T̃~0!!Q01O~a!,

A125O~a1/2!,

A135O~a1/2!,

A215O~a1/2!,

A2252Q1* q~kA11aA0!Q11O~a!,

A2352aQ1* qQ21O~a!,

A315O~a1/2!,

A3252aQ2* qQ11O~a!,

A3352aQ2* qQ21O~a!.

So, we can rewriteA asA5D2E with

D5F Q0~12T̃~0!!Q0 0 0

0 2Q1* q~kA11aA0!Q1 2aQ1* qQ2

0 2aQ2* qQ1 2aQ2* qQ2

G ,

E5F O~a! O~a1/2! O~a1/2!

O~a1/2! O~a! O~a!

O~a1/2! O~a! O~a!
G .

From Lemma 2.8 and~2.17! D is invertible with the inverse,

D215F K 0 0

0 B11 B12

0 B21 B22

G .

Thus an application of Lemma 2.2 gives the desired result. h
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III. RESOLVENT CONVERGENCE OF H„a;aÀ1l„a…q …

In order to prove the norm resolvent convergence ofH„a;a21l(a)q…) asa↓0, we prepare the
following two lemmas.

Lemma 3.1: Let zPC be such that Im zÞ0. Then, for any«.0, we have as a↓0,

Ua
21gaR0~z!5a„R0~z!•…~0!1O~a3/22«! in B„L2~R3!,L2~S1!….

Proof: SinceUa
21 :L2(Sa)→L2(S1),

~Ua
21u!~v!5au~av! ~vPS1!

is unitary, we have only to show that

gaR0~z!5„R0~z!•…~0!1O~a3/22«! in B„L2~R3!,L2~Sa!…, ~3.1!

asa↓0 for sufficiently small«.0. LetuPS ~the Schwartz space of rapidly decreasing function!.
Then, forxPSa we have

„gaR0~z!u…~x!5„R0~z!u…~x!5~2p!23/2E eix•j

uju22z
û~j!dj, ~3.2!

whereû5Fu is the Fourier transform ofu defined by

Fu~j!5~2p!23/2E e2 i j•xu~x!dx.

Let m be such that 0,m,1/2. Then, since

ueix•j21u<212mamujum ~ uxu5a!, ~3.3!

we have by~3.2! and the Schwarz inequality,

u„gaR0~z!u…~x!2„R0~z!u…~0!u<~2p!23/2212mamI ujum

uju22z I •iui , ~3.4!

and hence

i„gaR0~z!u…2„R0~z!u…~0!iL2(Sa)<p2121/22ma11mI ujum

uju22z I •iui , ~3.5!

which implies~3.1!. h

Lemma 3.2: LetkPC be such that ImkÞ0. Then, for any«.0, we have as a↓0,

l~a!T~k;a!Ua52
eikuxu

4puxu ^•,q&1O~a1/22«! in B„L2~S1!,L2~R3!….

Proof: In view of ~1.2!, we have only to show that

T~k;a!Ua52
eikuxu

4puxu ^•,q&1O~a1/22«! in B„L2~S1!,L2~R3!…, ~3.6!

asa↓0 for sufficiently small«.0. Let uPL2(S1). Then, since

FS eiku•2yu

4pu•2yu D ~j!5~2p!23/2
e2 i j•y

uju22k2 ,
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we have by the Parseval identity,

IT~k;a!Uau1
eikuxu

4puxu ^u,q&I 2

5E djU2~2p!23/2

uju22k2 E
S1

dv~e2 i j•av21!q~v!u~v!U2

5I ~a!.

~3.7!

Let m be such that 0,m,1/2. Then, by~3.3! and the Schwarz inequality, we obtain

I ~a!<~2p!2322(12m)a2mE dj
uju2m

uuju22k2u2
iqi2iui2. ~3.8!

Thus ~3.7! and ~3.8! imply ~3.6!. h

Now we are in a position to prove the norm resolvent convergence ofH(a) asa↓0.
Theorem 3.3:Assume that Q15Q250. Then we have as a↓0,

R~k2;a!5R0~k2!1O~a! in B„L2~R3!…

for kPC such that Imk2Þ0.
Proof: In view of Lemmas 2.1, 3.1 and 3.2 we have

l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaRa~k2!5O~a!.

Thus, from~1.8! we obtain the required result. h

Theorem 3.4:Assume that Q1Þ0 and Q250. Let kPC be such that Imk2Þ0. Then, for any
«.0, we have as a↓0,

R~k2;a!5Rp~k2;t!1O~a1/22«! in B„L2~R3!…,

where

t5
a^ f 0 ,q f0&

4p
.

Proof: In view of Lemmas 2.4, 3.1 and 3.2 we have by using~2.8!,

l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaR0~k2!

5S a^ f 0 ,q f0&
4p

2
ik

4p D 21

„R0~k2!•…~0!
eikuxu

4puxu
1O~a1/22«!.

Thus, from~1.8! we obtain the required result. h

Theorem 3.5: Assume that Q150, Q2Þ0 and aÞ0 in ~1.2!. Let kPC be such that Imk2

Þ0. Then, for any«.0, we have as a↓0,

R~k2;a!5R0~k2!1O~a1/22«! in B„L2~R3!….

Proof: First we show that

Q2* qw50 in L2~S1!, ~3.9!

@w(v)[1 on S1]. In fact, we have foruPL2(S1),

^u,Q2* qw&5^Q2u,q&50,

sinceQ2uPN2 . Thus ~3.9! holds. Now, in view of Lemmas 2.4, 3.1 and 3.2 we have toget
with ~3.9!,
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l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaR0~k2!

5a21
„R0~k2!•…~0!

eikuxu

4puxu ^Q2WQ2* qw,q&1O~a1/22«!5O~a1/22«!.

Thus, from~1.8! we obtain the required result. h

Theorem 3.6: Assume that q(v)>0 @or q(v)<0] on S1 . Assume that Q1Þ0, Q2Þ0 and
aÞ0. Let kPC be such that Imk2Þ0. Then, for any«.0, we have as a↓0,

R~k2;a!5Rp~k2;t!1O~a1/22«! in B„L2~R3!…,

where

t5
a det~^ f i ,q f j&!0< i , j <n

4p det~^ f i ,q f j&!1< i , j <n

and $ f 1 , f 2 ,...,f n% is a basis ofR(Q2).
Proof: In view of Lemmas 2.9, 3.1 and~3.9! we have

„12l~a!T̃~ak!…21Ua
21gaR0~k2!5„R0~k2!•…~0!~Q1B11Q1* qw1Q2B21Q1* qw!1O~a1/22«!.

~3.10!

Moreover, we have

l~a!T~k;a!Ua„R0~k2!•…~0!Q2B21Q1* qw5O~a1/22«!. ~3.11!

In fact, sinceQ2B21Q1* qw is of the form

Q2B21Q1* qw5(
j 51

n

cj f j ~cjPC, f jPN2!,

we have

^Q2B21Q1* qw,q&5(
j 51

n

cj^ f j ,q&50.

Thus,~3.11! holds from Lemma 3.2. Therefore we have

l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaR0~k2!5„R0~k2!•…~0!Q1B11Q1* qw1O~a1/22«!.

~3.12!

Let us computeQ1B11Q1* qw. We put

u52Q1B11Q1* qw, v52Q2B21Q1* qw.

We note

R~B11!,R~Q1!, R~B21!,R~Q2!.

Then, by~2.8! and ~2.21! we have

2~4p!1/2B11g05u, 2~4p!1/2B21g05v,

which implies
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D1S u
v D5S ~4p!1/2g0

0 D .

Thus, from~2.24! and ~2.25! it follows that

u5~4p!1/2S a
det~^ f i ,q f j&!0< i , j <n

det~^ f i ,q f j&!1< i , j <n
2 ik D 21

f 0 ,

and hence, by~2.8!, ~3.12! and Lemma 3.2,

l~a!T~k;a!Ua„12l~a!T̃~ak!…21Ua
21gaR0~k2!

54pS a
det~^ f i ,q f j&!0< i , j <n

det~^ f i ,q f j&!1< i , j <n
2 ik D 21

„R0~k2!•…~0!
eikuxu

4puxu
1O~a1/22«!,

from which the theorem follows. h

Finally, we will give an example of the zero resonance state ofH(1;q). Assume thatq(v)
5V0 ~real constant!. Then, by@S2, Theorem 7.1# we have the following.

Theorem 3.7: If V0Þ2(2l 11) (l 50,1,2,...), then Q15Q250. If V0521 „V052(2l
11) ,l 51,2,...…, then Q1Þ0 and Q250 (Q150,Q2Þ0).

Moreover, whenV0521, f 0 is seen to be of the form

f 0~v!52~4p!21/2,

from the proof of the theorem above. Thus the zero resonance functionu0(x)5(T(0;1)f 0)(x) of
H(1;q) is given by

u0~x!5H 2~4p!21/2 ~ uxu<1!,

2~4p!21/2uxu21 ~ uxu>1!.
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Gauge theories of Yang–Mills vector fields coupled
to antisymmetric tensor fields

Stephen C. Ancoa)
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A non-Abelian class of massless/massive nonlinear gauge theories of Yang–Mills
vector potentials coupled to Freedman–Townsend antisymmetric tensor potentials
is constructed in four space–time dimensions. These theories involve an extended
Freedman–Townsend-type coupling between the vector and tensor fields, and a
Chern–Simons mass term with the addition of a Higgs-type coupling of the tensor
fields to the vector fields in the massive case. Geometrical, field theoretic, and
algebraic aspects of the theories are discussed in detail. In particular, the geometri-
cal structure mixes and unifies features of Yang–Mills theory and Freedman–
Townsend theory formulated in terms of Lie algebra valued curvatures and connec-
tions associated to the fields and nonlinear field strengths. The theories arise from
a general determination of all possible geometrical nonlinear deformations of linear
Abelian gauge theory for one-form fields and two-form fields with an Abelian
Chern–Simons mass term in four dimensions. For this type of deformation~with
typical assumptions on the allowed form considered for terms in the gauge sym-
metries and field equations!, an explicit classification of deformation terms at first-
order is obtained, and uniqueness of deformation terms at all higher orders is
proven. This leads to a uniqueness result for the non-Abelian class of theories
constructed here. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1528271#

I. INTRODUCTION

Gauge field theories continue to be fundamental in the study of many areas of mathem
physics, ranging from elementary particle interactions, and completely integrable nonlinear
ential equations, to topology of three- and four-dimensional manifolds. Consequently, an ef
generalize the important types of gauge field theories is of natural interest. In recent work,1,2 a new
nonlinear gauge theory was found for massless vector fields in three space–time dime
describing a novel type of generalization of non-Abelian Yang–Mills theory. Its origin can
understood by considering nonlinear deformations of the Abelian linear gauge theory of one
potentials ind dimensions.3–5

The deformation process considered here consists of adding linear and higher power te
the Abelian gauge symmetry while also adding quadratic and higher power terms to the linea
equations, such that a gauge invariant action principle exists which is not equivalent
undeformed linear theory under nonlinear field redefinitions. The property of gauge invaria
very restrictive and can be used to derive determining equations for the allowed form o
deformation terms added order by order in powers of the fields.

Non-Abelian Yang–Mills theory describes one type of allowed deformation, which works
one-form potentials in any dimensiond.1. Interestingly, ind53 dimensions, another type o
deformation is allowed,1 analogous to the Freedman–Townsend theory of antisymmetric te
gauge fields.6 The Freedman–Townsend theory was derived originally only for antisymm
tensor fields ind54 dimensions but it has a simple geometrical formulation in any dimen

a!Electronic mail: sanco@brocku.ca
10060022-2488/2003/44(3)/1006/38/$20.00 © 2003 American Institute of Physics
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d.2 as a nonlinear gauge theory ofd22-form potentials, in particular, one-form potentials
d53 dimensions. Moreover, this formulation of the theory has a further natural extension
coupled tower ofp-form potentials of all ranks 1<p<d22, in particular, coupled one-form an
two-form potentials ind54 dimensions.7,8

The novel generalization of non-Abelian Yang–Mills theory in Ref. 2 arises by combining
Yang–Mills-type and Freedman–Townsend-type deformations of the Abelian linear one-for
tential gauge theory ind53 dimensions. In the present paper, a similar nonlinear deformatio
the Abelian linear gauge theory of one-form and two-form potentials ind54 dimensions is
studied, which has been announced in earlier work.2,9 The resulting nonlinear gauge theory ge
eralizes both non-Abelian Yang–Mills theory and Freedman–Townsend theory, desc
coupled massless vector and antisymmetric tensor fields in four space–time dimensions. As
new result, an interesting extension of this theory to include a Chern–Simons-type mas
involving both the vector and antisymmetric tensor fields is presented.

Physically speaking, the field strengths in this nonlinear gauge theory together rep
coupled massive spin-one fields in the case with a Chern–Simons term, and otherwise re
massless spin-one fields coupled to massless spin-zero fields in the case with no Chern–
term. The construction and features of these two cases of the theory are given in Secs. II a
The theory has a very rich and interesting geometrical structure, mixing and unifying featu
Yang–Mills theory and Freedman–Townsend theory in terms of curvatures and connection
ciated with the fields and field strengths, which is discussed in Sec. IV. In Sec. V, the the
derived from an analysis of allowed nonlinear geometrical deformations of the Abelian l
gauge theory of massless/massive sets of one-form and two-form potentials in four dimen
with the mass determined by a Chern–Simons-type term. This analysis yields a novel no
gauge theory for coupled massless and massive sets of vector and antisymmetric tenso
generalizing the two preceding cases of the new theory from Secs. II and III. Finally,
concluding remarks are made in Sec. VI.

II. DEFORMATION OF NON-ABELIAN YANG–MILLS ÕFREEDMAN–TOWNSEND GAUGE
THEORY

First consider, as a starting point, the formulation of non-Abelian Yang–Mills theory
Freedman–Townsend theory as respective nonlinear gauge theories of massless vector a
symmetric tensor fields on four-dimensional Minkowski space–time. For simplicity, the g
groups will be taken to be three dimensional. Recall, in Yang–Mills theory, the Lie alg
underlying the gauge group is required to be compact semisimple, which then fixes it here
SU~2!. In Freedman–Townsend theory, however, no such condition arises on the underlyin
algebra of the gauge group, and thus here it can be any three-dimensional non-Abeli
algebra,G. From the classification of three-dimensional Lie algebras, it then follows thatG either
is semisimple and thusG5SU(2),G5SU(1,1), or is solvable and thusG5U(1)’U(1)2 which is
a semidirect product of Abelian Lie algebras U~1! and U(1)2.

To formulate Yang–Mills theory with an SU~2! gauge group, introduce as the field variable
vector potentialAm that takes values in the Lie algebra SU~2!. Equivalently, with respect to a fixed
SU~2! basisea , a51,2,3, the vector potential componentsAm5Am

a ea can be regarded as a set
three ordinary vector fieldsAm

a on Minkowski space–time. Let«a
bc denote the SU~2! structure

constants, and letkab denote an SU~2! positive–definite invariant metric, related to Killing metr
by kab52«c

ad«
d

bc , and so«abc5«e
bckae is totally antisymmetric.

The SU~2! Yang–Mills field strength is given by

Fsm
a 5] [sAm]

a 1 1
2«

a
bcAs

bAm
c . ~2.1!

It is convenient in four dimensions to work with the dual field strength

F̃sm
a 5esm

tnFtn
a , ~2.2!
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which satisfies the Bianchi identity

DsF̃sm
a 50, ~2.3!

where

Ds5]s1«a
bcAs

b ~2.4!

is the SU~2! covariant derivative operator. The Yang–Mills Lagrangian is given by

LYM5 1
2kabF̃sm

a F̃tn
b hsthmn ~2.5!

yielding the SU~2! Yang–Mills field equation

EAt
a5et

snmDsF̃mn
a 50 ~2.6!

for At
a . Under the Yang–Mills gauge symmetry onAm

a , given by the field variation

djAm
a 5Dmja, ~2.7!

whereja are arbitrary functions that take values in the Lie algebra SU~2!, the Lagrangian is gauge
invariant, djLYM50. These gauge symmetries generate a SU~2! gauge group with commutato
structure@dj1

,dj2
#5dj3

such thatj3
a5«a

bcj1
bj2

c. The Lagrangian gives rise to a gauge invaria
stress-energy tensor

Tmn~ F̃ !5kabh
ab~ F̃ma

a F̃nb
b 2 1

4hmnhstF̃sa
a F̃tb

b !, ~2.8!

which yields a causal energy-momentum for the vector potentialAm
a on spacelike hypersurfaces

i.e., Tmn(F̃)tn is timelike or null for all unit timelike vectorstn on Minkowski space–time. Gaug
invariance of the Yang–Mills Lagrangian relies on the property that SU~2! is semisimple. The
additional property that SU~2! is compact, corresponding to positive–definiteness ofkab , is es-
sential for causality of the Yang–Mills stress-energy tensor obtained from the Lagrangian.

Next, for formulating Freedman–Townsend theory with gauge group determined byG, intro-
duce as the field variable an antisymmetric tensor potentialBmn that takes values in the Lie algebr
G. Hereafter, it is convenient to identify the vector spaces ofG and SU~2!, so the SU~2! basis
provides a vector-space basisea , a51,2,3, for G. Then the components of the antisymmet
tensor potentialBmn5Bmn

a ea can be regarded equivalently as a set of three ordinary antisymm
tensor fieldsBmn

a on Minkowski space–time. Finally, introduce the Abelian field strength forBmn
a

given by the curl

Hsmn
a 5] [sBmn]

a , ~2.9!

along with its dual

H̃s
a5es

tmnHtmn
a ~2.10!

which satisfies the divergence identity

]sH̃s
a50. ~2.11!

Let ca
bc denote structure constants ofG, and letcab

c5ce
bdkaek

cd, where the SU~2! invariant
metric provides a positive–definite metrickab on G. Note this metric is not invariant with respec
to the Lie algebra product inG unlessG.SU(2).

Now the field strength for Freedman–Townsend theory is defined in terms ofBmn
a andHtmn

a

by the relation
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Ksmn
a 1K̃ [s

b Bmn]
c ccb

a5Hsmn
a , ~2.12!

where

K̃t
a5et

smnKsmn
a ~2.13!

is the dual field strength. This field strength has a nonpolynomial expression in terms ofBmn
c given

by

K̃m
a 5Y21

mb
an ~B!H̃n

b ~2.14!

with Y21
mb
an (B) denoting the inverse of the tensor matrix

Ymb
an ~B!5dm

nkb
a1em

nstccb
aBst

c , ~2.15!

whereBst
c is restricted to satisfy det(Ymb

an (B))Þ0. Note the tensor matrix is symmetricYmn
ab(B)

5Ynm
ba(B) due to the antisymmetry of volume tensoremn

st and the structure constantsca
cb . Then,

the Freedman–Townsend Lagrangian is given by

LFT5 1
2kabK̃m

a K̃n
bYab

mn~B!. ~2.16!

This yields the field equation forBst
a ,

EBst
a 5est

nm~]nK̃m
a 1 1

2c
a

bcK̃n
bK̃m

c !50. ~2.17!

The gauge symmetry onBmn
a is given by the field variation

dxBmn
a 5] [mxn]

a 2ccb
aK̃ [m

b xn]
c , ~2.18!

where xn
a are arbitrary covector functions that take values in the Lie algebraG. These gauge

symmetries generate an Abelian gauge group@dx1
,dx2

#50 on solutions of the field equation. O
solutions, the commutator structure closes to within a trivial symmetry proportional to the
equation. Finally, the Lagrangian is gauge invariant to within a total divergence,dxLFT

5]m(e mnst 1
2c

d
abkcdK̃s

aK̃t
bxn

c). In particular, gauge invariance holds without the need forG to be
semisimple. Moreover, the stress-energy tensor obtained from the Lagrangian

Tmn~K̃ !5kab~
1
2K̃m

a K̃n
b2 1

4hmnhstK̃s
aK̃t

b! ~2.19!

yields a causal energy-momentum for the antisymmetric tensor potentialBmn
a on spacelike hyper-

surfaces, i.e.,Tmn(K̃)tn is timelike or null for all unit timelike vectorstn on Minkowski space–
time.

A. Nonlinear generalization

We now construct a massless gauge theory with a nonlinear interaction for the fieldsAm
a ,

Bmn
a , a51,2,3, giving a novel generalization of the Yang–Mills/Freedman–Townsend the

above. The origin of the generalization will be explained by the deformation analysis carrie
in Sec. V.

To begin, the following algebraic structure10 is needed on the Lie algebras SU~2! andG. Let
f ab

c denote a bilinear mapf from G3SU(2) into SU~2! defining a representation ofG on SU~2!

2 f [duc
af ue]b

c5 f cb
acc

de ~2.20!

such that this representation acts as a derivation preserving the SU~2! commutator
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f ed
c«d

ab52 f e[au
d«c

dub] . ~2.21!

Since SU~2! is semisimple, any derivation is given by an adjoint representation map

f eb
c5«c

dbhe
d ~2.22!

with he
d denoting some linear maph from G into SU~2!. Then, the relation~2.20! implies thath

is a homomorphism~with respect to the Lie algebra product! of G into SU~2!.
Consequently, ifG is semisimple then clearlyh(G)5SU(2) and soG.SU(2) are isomorphic

Lie algebras, with the linear maph being one-to-one. If insteadG is solvable then the Abelian
two-dimensional Lie subalgebra U(1)2 in G is the kernel ofh, with G/U(1)2.h(G)5U(1) being
any one-dimensional Lie subalgebra in SU~2!. Hence there are two different cases allowed for
Lie algebra structures in the construction of the massless nonlinear theory. For the semisimp
whenG.SU(2), sinceh is an isomorphism, then without loss of generality it follows that

ha
b5kda

b, ca
bc5 f bc

a5k«a
bc , ~2.23!

where k is an arbitrary nonzero constant. Alternatively, for the solvable case whenG5
U(1)’U(1)2, the properties ofh andG lead to

ha
b5vawb, ca

bc5ca
[bvc] , f bc

a5«a
dcw

dvb ~2.24!

for some fixed vectorsva, wa in the common vector space ofG and SU~2!, and for some fixed
linear mapca

b such that

ca
bva50, ca

bvb50. ~2.25!

To proceed, the construction now follows the pattern of the novel deformation of S~2!
Yang–Mills theory in three dimensions from Ref. 2. Letcab

c5cd
bekadk

ce and f a
bc

5 f db
ekadkce .

Nonlinear field strengthsPmn
a , Qmns

a are introduced in terms ofAm
a , Bmn

a by

Pmn
a 2 f bc

aQ̃[m
b An]

c 5Fmn
a , ~2.26!

Qmns
a 2 f a

cbP̃[mn
b As]

c 1ccb
aQ̃[m

b Bns]
c 5Hmns

a , ~2.27!

where

P̃sm
a 5esm

tnPtn
a , Q̃s

a5es
tmnQtmn

a ~2.28!

are the duals. These field strengths depend nonpolynomially onAm
a , Bmn

a in the following form.
Define the tensor matrix

Y~A,B!5YT~A,B!5S db
adm

sdn
a 2 f bc

aemn
stAt

c

2 f a
cbem

satAt
c db

adm
s1ccb

aem
stnBtn

c D ~2.29!

and consider the inverse matrixY21(A,B) satisfying

Y21~A,B!Y~A,B!5Y~A,B!Y21~A,B!5S db
adt

sdn
a 0

0 db
adt

sD ~2.30!

with At
a andBtn

a restricted by the condition det(Y(A,B))Þ0 necessary for invertibility ofY(A,B).
Assemble the field strength duals into tensor matrices
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N5S P̃mn
a

Q̃m
a D , M5S F̃mn

a

H̃m
a D . ~2.31!

ThenN5Y21(A,B)M , whereY21(A,B) is nonpolynomial in terms ofAm
a , Bmn

a .
The Lagrangian for the massless nonlinear theory is constructed by

LN5kab~hsthmnP̃sm
a F̃tn

b 1hstQ̃s
aH̃t

b! ~2.32!

which can be also expressed in a more symmetrical formL5NTY(A,B)N5MTY21(A,B)M . The
gauge symmetries in this theory consist of the field variations given by

djAm
a 5Dmja1 f bc

aQ̃m
b jc, ~2.33!

djBmn
a 5 f a

cbP̃mn
b jc, ~2.34!

in terms of arbitrary functionsja, and also

dxAm
a 50, ~2.35!

dxBmn
a 5] [mxn]

a 2ccb
aQ̃@m

b xn]
c , ~2.36!

in terms of arbitrary covector functionsxn
a . Under both these gauge symmetries the Lagrangia

invariant to within a total divergence,

djLN5]m~emnst2 f ac
dkbdQ̃n

aP̃st
b jc!, dxLN5]m~emnstcc

abkcdQ̃n
aQ̃s

bxt
d! ~2.37!

as shown by results in Sec. V.
In this construction, we refer to the underlying Yang–Mills/Freedman–Townsend alge

structure~SU~2!,G! as the structure group of the massless nonlinear theory.

B. Features

The field equations forAm
a andBmn

a obtained from the Lagrangian are given by

EAt
a5et

nsm~DnP̃sm
a 1 f bc

aQ̃n
bP̃sm

c !50, ~2.38!

EBts
a 5ets

nm~]nQ̃m
a 1 1

2c
a

bcQ̃n
bQ̃m

c !50. ~2.39!

Both these field equations are of second order in derivatives ofAm
a , Bmn

a , with the second
derivatives appearing linearly and first derivatives appearing quadratically, whileAm

a , Bmn
a appear

nonpolynomially. As a consequence of gauge invariance, the field equations satisfy non
divergence identities

DtEAt
a52htm f bc

aQ̃m
b EAt

c2htmhsn f cb
aP̃mn

b EBts
c , ~2.40!

]tEBts
a 52htmca

bcQ̃m
b EBts

c . ~2.41!

There are also nonlinear divergence identities that arise on the dual field strengths

hsm~DsP̃mn
a 1 f bc

aQ̃s
b P̃mn

c !5hsm f bc
aEBmn

b As
c , ~2.42!

hsm~]sQ̃m
a 2cbc

aQ̃s
bQ̃m

c 2 f a
bch

tnP̃st
b P̃mn

c !52hsm f a
bcEAm

c As
b2hsmhtncbc

aEBmn
c Bst

b ,
~2.43!
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due to the SU~2! Bianchi identity~2.3! on F̃mn
a and the linear divergence identity~2.11! on H̃smn

a .
Consequently, for solutions of the field equations, the field strengths satisfy a system of dive
and curl equations

D [nP̃sm]
a 52 f bc

aQ̃[n
b P̃sm]

c , DnP̃mn
a 52hsn f bc

aQ̃s
b P̃mn

c , ~2.44!

] [nQ̃m]
a 52 1

2c
a

bcQ̃[n
b Q̃m]

c , ]mQ̃m
a 5hsmcbc

aQ̃s
bQ̃m

c 1hsmhtn f a
bcP̃st

b P̃mn
c , ~2.45!

with quadratic source terms. In the divergence equation onQ̃m
a , the source terms identically

vanish whenc(ab)c5kd(acd
b)c50, which occurs in the caseG.SU(2).

In both casesG.SU(2) or U(1)’U(1)2, the divergence and curl equations~2.44! and~2.45!
together with equations~2.26! and ~2.27! constitute a first-order nonlinear field theory forAm

a ,
Bmn

a , P̃mn
a , Q̃n

a . Moreover, its linearization reduces to the Abelian linear gauge theory of ve
potentials and antisymmetric tensor potentials~see Sec. V A!, whose field strengths represent fre
massless spin-one and spin-zero fields. Hence, in physical terms, solutions of the nonline
strength equations~2.44! and ~2.45! describe a set of nonlinearly interacting massless fields
spin-one and spin-zero, respectively, in Minkowski space–time.

Under the gauge symmetries the field strengths have the transformation

djP̃mn
a 5«a

bcP̃mn
b jc1~Y21j•E!mn

a , djQ̃m
a 5~Y21j•E!m

a , ~2.46!

dxP̃mn
a 5~Y21x•E!mn

a , dxQ̃m
a 5~Y21x•E!m

a , ~2.47!

whereY21j•E andY21x•E are the respective products of the inverse of the tensor matrix~2.29!
with the field equation tensor matrices

j•E5S f bc
aEBmn

b jc

2 f a
cbEAm

b jcD , x•E5S 0
hsnccb

aEBsm
b xn

cD . ~2.48!

Hence, for solutions of the field equations,P̃mn
a and Q̃m

a are gauge invariant with respect todx ,
while with respect todj , Q̃m

a is gauge invariant andP̃mn
a transforms homogeneously by the adjoi

representation of the Lie algebra SU~2!.
The gauge symmetries on solutions of the field equations have the commutator structu

@dj1
,dj2

#5dj3
, @dx1

,dx2
#50, @dj1

,dx1
#50, ~2.49!

wherej3
a5«a

bcj1
bj2

c. Exponentiating these gauge symmetries leads to a group of finite g
transformations closed on solutions forAm

a , Bmn
a . In particular,dx generates a U(1)3 Abelian

group of nonlinear gauge transformations, whiledj generates an SU~2! non-Abelian group of
nonlinear gauge transformations, withdx anddj commuting. Thus the complete gauge group
the nonlinear theory has the direct product structure SU(2)3U(1)3.

The spin-one field strength equations~2.44! lead to conserved electric and magnetic ty
currentsJem

a 5]nPmn
a , Jmm

a 5]nP̃mn
a in the nonlinear theory. Corresponding sets of electric a

magnetic charges are given by

Qe
a5

1

4p E
S
Pnm

a tn dSm, a51,2,3, ~2.50!

Qm
a5

1

4p E
S
P̃nm

a tn dSm, a51,2,3 ~2.51!
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for any closed surfaceS in a constant time hypersurface in Minkowski space–time, with surf
elementdSm and hypersurface unit normaltn. If the closed surface is taken to be a sphereS` at
spatial infinity, the resulting enclosed total charges are time-independent constants,tn]nQe

a

5tn]nQm
a50, provided there is no current flow normal toS` . These total charges are gaug

invariant with respect todx and transform by the adjoint representation of the Lie algebra SU~2!
with respect todj if the functionsja are constant onS` ,

djQe
a5«a

bcQe
bjc, djQm

a5«a
bcQm

bjc, ~2.52!

dxQe
a5dxQm

a50. ~2.53!

Similarly, the spin-zero field strength equations~2.45! yield a conserved tensorJssm
a

5]nQsmn
a , which leads to a set of scalar type charges

Qs
a5

1

2p E
C
Qsnm

a nstn dsm, a51,2,3 ~2.54!

for any closed curveC on a surfaceS in a constant time hypersurface in Minkowski space–tim
with line elementdsm, surface unit normalns, and hypersurface unit normaltn. If the closed
curve is taken to be a circleC` at spatial infinity, the resulting enclosed total charges are ti
independent constants,tn]nQs

a50, provided there is no current flow normal toC` . These total
charges are gauge invariant with respect to bothdj anddx ,

djQs
a5dxQs

a50. ~2.55!

Note that, due to the source terms in the spin-one and spin-zero field strength equatio
total charges~2.50!, ~2.51!, ~2.54! are, in general, nonzero for solutions.

The Lagrangian gives rise in the standard manner~under diffeomorphisms on Minkowsk
space–time! to a stress-energy tensor

Tmn~ P̃,Q̃!5kab~ P̃ms
a P̃nt

b hst1 1
2Q̃m

a Q̃n
b2 1

4 hmn~ P̃sa
a P̃tb

b hsthab1Q̃s
aQ̃t

bhst!!. ~2.56!

This tensor is conserved and gauge invariant on solutions. The conservation eq
]mTmn( P̃,Q̃)50 can be derived in a standard manner from the space–time covariance
theory, while gauge invariancedjTmn( P̃,Q̃)5dxTmn( P̃,Q̃)50 manifestly holds due to the gaug
transformation properties of the field strengths.

Conserved currentsJm(z)5znTmn( P̃,Q̃) are obtained from the stress-energy tensor by c
traction with a Killing vector fieldzn on Minkowski space–time. These conserved currents de
gauge invariant fluxes of energy momentum and stress carried by the fields on a consta
hypersurfaceS, when zn is taken to be a time translation and space translation, respecti
Fluxes of angular momentum and boost momentum are defined similarly withzn taken to be a
rotation or boost. In particular, forzn5tn given by the timelike unit normaltm to S, a positive
energytmtnTmn( P̃,Q̃) and a causal energy-momentumtmTmn( P̃,Q̃) is obtained for solutions. The
corresponding total fluxes are given by

Q~z!5E
S
tmznTmn~ P̃,Q̃!dV, ~2.57!

wheredV is the volume element onS.
An extension of this theory from an~SU~2!,G! structure group to a general non-Abelia

structure group is presented in Sec. IV.
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III. EXTENDED DEFORMATION WITH CHERN–SIMONS MASS TERM

The nonlinear generalization of Yang–Mills/Freedman–Townsend gauge theories in S
has an interesting extension to include a Chern–Simons mass term. This construction y
novel gauge theory for massive vector potentialsAm

a coupled to massive antisymmetric tens
potentialsBmn

a , a51,2,3, presented here. For simplicity, the Lie algebra of the underlying Ya
Mills and Freedman–Townsend gauge groups will again be given by the most general
dimensional possibilities, respectively, SU~2! andG.SU(2) or U(1)’U(1)2.

The natural starting point is a non-Abelian Chern–Simons-type term11

LCS5menmstkab~Bst
a ]nAm

b 1lAn
dAm

e Bst
a «b

de!, ~3.1!

wheremÞ0 is the Chern–Simons mass,l is a coupling constant, and, recall,kab52«c
ad«

d
bc is

a positive definite metric on the common three-dimensional vector space of the Lie alg
SU~2!,G. In the caseG5SU(2), theaddition of this Lagrangian to the pure Yang–Mills an
Freedman–Townsend Lagrangians~2.5! and ~2.16! gives a gauge invariant LagrangianL5
LYM1LFT1LCS if a SU~2! Yang–Mills–Higgs-type coupling is added between the antisymme
tensor potentialsBmn

a and the Yang–Mills vector potentialsAm
a . Gauge invariance also determine

the Chern–Simons coupling to bel5 1
2. This yields a massive SU~2! Yang–Mills/Freedman–

Townsend gauge theory6 with the mass arising from the nonlinear interaction of the fieldsAm
a and

Bmn
a through the Chern–Simons Lagrangian. The origin of the Yang–Mills–Higgs coupling ofBmn

a

with Am
a will be explained by the deformation analysis in Sec. V. Remarkably, this coupling

allows the Chern–Simons Lagrangian~3.1! to be compatible with the nonlinear generalization
massless Yang–Mills/Freedman–Townsend theory constructed in Sec. II A, as we now car

To begin, we replace the ordinary curl~2.9! of Bmn
a in the nonlinear field strengths~2.26! and

~2.27! by the Yang–Mills covariant curl

Hsmn
a 5D [sBmn]

a ~3.2!

using the SU~2! covariant derivative operator~2.4!. Note the dual~2.10! of Hsmn
a now satisfies an

SU~2! divergence identity

DsH̃s
a5F̃mn

b Bst
c «a

bch
mshnt. ~3.3!

We also covariantly modify the nonlinear gauge symmetries~2.34! and ~2.36! on Bmn
a to involve

an SU~2! covariant curlD [mxn]
a in dxBmn

a and an SU~2! commutator«a
bcBmn

b jc in djBmn
a . The

nonlinear gauge symmetries~2.33! and ~2.35! on Am
a remain unchanged. Furthermore, in th

algebraic structure used to construct the massless nonlinear theory, the bilinear map defi
f ab

c from G3SU(2) into SU~2! remains a representation ofG and a derivation of SU~2!. However,
consistency of the Yang–Mills–Higgs coupling betweenBmn

a and Am
a requires that the SU~2!

commutator needs to act as a derivation ofG,

«c
dec

d
ab52«d

[auec
c
dub] . ~3.4!

This holds only ifG.SU(2), andtherefore excludes the possibilityG.U(1)’U(1)2. Hence, we
thereby have

cc
ab5k«c

ab , ~3.5!

wherek is a nonzero constant. Sincef ab
c is then both a derivation of and representation ofG,

these properties fixf ab
c to be the adjoint representation

f ab
c5cc

ab . ~3.6!
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As a result, with the underlying Yang–Mills/Freedman–Townsend algebraic structuG
.SU(2), thenonlinear field strengths are given by

Pmn
a 2k«a

bcQ̃@m
b An]

c 5Fmn
a , ~3.7!

Qmns
a 2k«a

bc~Q̃[m
b Bns]

c 2 P̃[mn
b As]

c !5Hmns
a , ~3.8!

while the nonlinear gauge symmetries take the form

djAm
a 5Dmja1k«a

bcQ̃m
b jc, ~3.9!

dxAm
a 50, ~3.10!

and

djBmn
a 5«a

bc~Bmn
b 1k P̃mn

b !jc, ~3.11!

dxBmn
a 5D [mxn]

a 1k«a
bcQ̃[m

b xn]
c , ~3.12!

in terms of arbitrary scalar functionsja and covector functionsxn
a . The complete Lagrangian i

then constructed by adding the Chern–Simons Lagrangian~3.1! to the nonlinear field strength
Lagrangian~2.32!, L5LN1LCS. This Lagrangian depends onAm

a andBmn
a in the nonpolynomial

form

L5MTY21~A,B!M1mMT~~222l!B1~2l21!A!, ~3.13!

whereY(A,B) is the symmetric tensor matrix~2.29! constructed linearly fromAm
a , Bmn

a , andM
is the tensor matrix~2.31! of the SU~2! field strengths ofAm

a , Bmn
a , and where, in the Chern–

Simons term,

A5S 0
Am

a D , B5S Bmn
a

0 D , ~3.14!

are tensor matrices defined by the fields. NoteN5Y21(A,B)M yields the tensor matrix~2.31! of
the nonlinear field strengths.

Under both gauge symmetries~3.9! to ~3.12!, the Lagrangian~3.13! is invariant to within a
total divergence,

djL5]m~emnstkkcd«
c
baQ̃n

a~2P̃st
b 1mBst

b !jd!, ~3.15!

dxL5]m~emnstkcd~k«c
abQ̃n

aQ̃s
b1mF̃ns

c !xt
d!, ~3.16!

provided the coupling constantsk andl are fixed such that

k51/m, l51/2 ~3.17!

as shown by results in Sec. V. This gauge theory gives a nonlinear deformation of the m
SU~2! Yang–Mills/Freedman–Townsend theory from Ref. 6. We refer to the underlying alge
structure SU~2! as the structure group of the massive nonlinear theory.
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A. Features

The Lagrangian~3.13! yields the following field equations forAm
a andBmn

a :

EAt
a5et

nsm~DnP̃sm
a 1«a

bc~~1/m!Q̃n
b2An

b!P̃sm
c !1mQ̃t

a50, ~3.18!

EBts
a 5ets

nm~DnQ̃m
a 1«a

bc~~1/~2m!! Q̃n
b2An

b!Q̃m
c !1mP̃ts

a 50. ~3.19!

These field equations are of second order in derivatives ofAm
a , Bmn

a , with the second derivatives
appearing linearly and first derivatives appearing quadratically, whileAm

a , Bmn
a appear nonpoly-

nomially through the nonlinear field strengths. Due to the SU~2! Bianchi identity~2.3! and SU~2!
divergence identity~3.3!, these field strengths satisfy nonlinear divergence identities

hns~DnP̃sm
a 1«a

bc~~1/m! Q̃n
b2An

b!P̃sm
c !5 ~1/m! hns«a

bcEBnm
b As

c , ~3.20!

hns~DnQ̃m
a 2«a

bcAn
bQ̃s

c !5 ~1/m! hns«a
bc~EAn

bAs
c 1hmtEBnm

b Bst
c !. ~3.21!

Consequently, for solutions of the field equations, the field strengths satisfy a system of dive
and curl equations. Here, in contrast to the massless nonlinear theory in Sec. II A, this syste
be written in terms of the field strengths alone

] [sP̃nm]
a 1mQsnm

a 52 ~1/m! «a
bcQ̃[s

b P̃nm]
c , ]nP̃nm

a 52 ~1/m! hsn«a
bcQ̃s

b Pnm
c , ~3.22!

] [sQ̃n]
a 1mPsn

a 52 ~1/~2m!! «a
bcQ̃[s

b Q̃n]
c , ]nQ̃n

a50, ~3.23!

constituting a first-order nonlinear field theory forP̃nm
a , Q̃n

a .
Linearization of the equations~3.22! and~3.23! produces a system of linear massive spin-o

field strength equations, with the mass given bym. The corresponding linearization in terms ofAm
a

and Bmn
a thus reduces to the Abelian linear gauge theory of massive vector potentials and

symmetric tensor potentials~see Sec. V A!. Hence, solutions of the nonlinear field theory forAm
a

andBmn
a together describe a set of nonlinearly interacting massive spin-one fields in Minko

space–time, where the coupling constant of the interaction is proportional to the inverse m
connection between this massive nonlinear theory and pure massive SU~2! Yang–Mills theory is
discussed in Sec. IV.

Some additional features of the massive nonlinear theory will now be highlighted and
pared to the massless nonlinear theory from Sec. II A.

The gauge symmetries on solutions of the field equations have the commutator structu

@dj1
,dj2

#5dj3
, @dx1

,dx2
#50, @dj1

,dx1
#5dx3

, ~3.24!

wherej3
a5«a

bcj1
bj2

c andx3m
a 5«a

bcj1
bx1m

c . Thus the gauge group generated by exponentia
of these gauge symmetries is the semidirect product SU(2)’U(1)3 which differs from the direct
product structure in the massless nonlinear theory. Surprisingly, under this gauge group th
linear field strengths for solutions of the field equations are gauge invariant

djP̃mn
a 5dxP̃mn

a 50, djQ̃n
a5dxQ̃n

a50. ~3.25!
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Off solutions, the gauge symmetries are closed to within trivial gauge symmetries proportio
the field equations.

Conserved electric, magnetic, and scalar type charges are given by the same currents~2.50!,
~2.51!, and~2.54! as derived for the massless nonlinear theory. These currents are gauge in
on solutions of the field equations, due to the gauge transformation properties of the
strengths.

More remarkably, the conserved stress-energy tensor obtained from the Lagrangian~3.13! is
of the same form~2.56! as in the massless nonlinear theory. In particular, the Chern–Simons
~3.1! makes no contribution to the stress-energy, as it has no dependence on the space–tim
hmn other than through the associated~metric compatible! volume tensoremnst. This stress-energy
tensor~2.56! is again conserved and gauge invariant on solutions of the field equations i
massive nonlinear theory. Likewise it again yields a positive energytmtnTmn( P̃,Q̃) and a causal
energy momentumtmTmn( P̃,Q̃) carried by the fields on any constant time hyperplane, with a
timelike normaltm.

An extension of this theory from an SU~2! structure group to a general non-Abelian structu
group is presented in the next section.

IV. GEOMETRICAL ASPECTS

The massless and massive nonlinear deformations of SU~2! Yang–Mills/Freedman–Townsen
gauge theory constructed in Secs. II and III have a straightforward extension from a~2!
structure group to a general non-Abelian structure group. The resulting non-Abelian massle
massive theories of coupled vector and antisymmetric tensor potentials possess a geom
rich structure involving connections on Lie group bundles and associated covariant deri
operators and curvatures, which blend geometrical features of pure Yang–Mills theory an
Freedman–Townsend theory, as will be discussed here. In particular, this structure exp
striking equivalence between the massless/massive Yang–Mills equations for a Lie group c
tion and the field strength equations in the massless/massive nonlinear deformation. An inte
duality between the massive Yang–Mills equations and massive Freedman–Townsend eq
will also be noted.

To begin, recall, the field variables consist of a set of three vector fieldsAm
a and three

antisymmetric tensor fieldsBmn
a , a51,2,3, with which is associated an internal three-dimensio

real vector space. We fix a basisea , a51,2,3, for the Lie algebra SU~2! on this vector space an
formulate the field variables geometrically as an SU~2!-valued one-formA5Am

a ea dxm and an
SU~2!-valued two-formB5Bmn

a ea dxm dxn. Similarly, the nonlinear field strengths are represen
geometrically as an SU~2!-valued two-formP5Pmn

a ea dxm dxn and an SU~2!-valued three-form
Q5Qmns

a ea dxm dxn dxs, whose duals are the two-form* P5 P̃mn
a ea dxm dxn and the one-form

* Q5Q̃m
a ea dxm.

We now introduce the following SU~2! covariant derivative operators, usingA and * Q as
connection one-forms:

DA5d1@A,•#, ~4.1!

D* Q5d1@l* Q,•#, ~4.2!

DA1* Q5d1@A1l* Q,•#, ~4.3!

wherel is a coupling constant, and@•,•# denotes the SU~2! Lie bracket. The corresponding SU~2!
curvatures are given by the two-forms

RA5dA1 1
2 @A,A#, ~4.4!

R* Q5l~d* Q1 1
2 l@* Q,* Q# !, ~4.5!
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RA1* Q5RA1R* Q1l@A,* Q#, ~4.6!

which satisfy

~DA!25@RA ,•#, ~D* Q!25@R* Q ,•#, ~DA1* Q!25@RA1* Q ,•#. ~4.7!

A. Massless SU „2… theory

The nonlinear massless field equations~2.38! and ~2.39! for A,B together with the massles
field strength equations~2.26! and ~2.27! which defineP,Q are given in geometrical form by

P5RA1* Q2R* Q , ~4.8!

Q5D* QB1l@A,* P#, ~4.9!

and

DA1* Q* P50, ~4.10!

R* Q50. ~4.11!

Thus,* Q is a zero-curvature connection, while* P is covariantly curl-free.
Hence, on solutions, it follows that

P5RA1* Q ~4.12!

is a curvature, while

Q5D* Q~B2l* P! ~4.13!

is a covariant curl. In addition, the field strength identities~2.42! and ~2.43! become

DA1* QP50 ~4.14!

due to the SU~2! Bianchi identity, and

D* QQ5dQ50 ~4.15!

since@* Q,Q#50 is an identity.
Now, consider the SU~2!-valued one-form,

ASU(2)5A1l* Q. ~4.16!

Under the gauge symmetrydj , ASU(2) transforms as a SU~2! connection

djASU(2)5DASU(2)
j, ~4.17!

where

DASU(2)
5d1@ASU(2) ,•#. ~4.18!

This connection is invariant under the gauge symmetrydx ,

dxASU(2)50. ~4.19!

Moreover, in terms ofASU(2) , the nonlinear field strength equations~4.10! and~4.12! involving P
are simply the SU~2! Yang–Mills equations. In particular,
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FSU(2)5P ~4.20!

is the SU~2! curvature ofASU(2) , satisfying the Yang–Mills connection equation

DASU(2)* FSU(2)50 ~4.21!

and the Bianchi identity

DASU(2)
FSU(2)50. ~4.22!

Similarly, consider the SU~2!-valued two-form

BSU(2)5B2l* P. ~4.23!

From the field strength equation~4.13!, noteQ5D* QBSU(2) is equivalent to

* Q5YBSU(2)

21 ~* dBSU(2)!, ~4.24!

whereYBSU(2)

21 is the inverse of the linear map

YBSU(2)
511l* @BSU(2) ,•# ~4.25!

acting on SU~2!-valued one-forms. Thus,

KSU(2)5* Q ~4.26!

is the SU~2! Freedman–Townsend three-form field strength ofBSU(2) . In particular, under the
gauge symmetrydx , BSU(2) transforms as a Freedman–Townsend antisymmetric tensor pote

dxBSU(2)5DKSU(2)
x ~4.27!

and is invariant under the gauge symmetrydj ,

djBSU(2)50. ~4.28!

Here

DKSU(2)
5d1@* KSU(2) ,•# ~4.29!

is an SU~2! covariant derivative using the dual field strength as the connection one-form. M
over,KSU(2) satisfies both the Freedman–Townsend field equation

RKSU(2)
50 ~4.30!

and field strength identity

dKSU(2)50, ~4.31!

which follow from the field strength equations~4.11! and ~4.15! involving Q.
Interestingly, we therefore see that pure SU~2! Yang–Mills theory for a vector potentialASU(2)

and pure SU~2! Freedman–Townsend theory for an antisymmetry tensor potentialBSU(2) possess
a combined formulation as a massless nonlinear gauge theory given by a nonlinear deforma
SU~2! Yang–Mills gauge theory forA5ASU(2)2lKSU(2) and SU~2! Freedman–Townsend gaug
theory forB5l* FSU(2)1BSU(2) .
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B. Massive SU „2… theory

Compared to the massless case, the massive nonlinear theory has some significant geo
differences. The nonlinear massive field equations~3.18! and ~3.19! for A, B together with the
field strength equations~3.7! and ~3.8! which defineP, Q take the geometrical form

P5RA1* Q2R* Q , ~4.32!

Q5DA1* QB1
1

m
@A,* P#, ~4.33!

with l51/m in the covariant derivatives~4.2! and ~4.3!, and

1

m
D* Q* P52Q, ~4.34!

R* Q52P. ~4.35!

By substitution of equations~4.35! and ~4.34!, respectively, into expressions~4.32! and ~4.33!, it
follows that

RA1* Q50 ~4.36!

and

DA1* Q~* P1mB!50. ~4.37!

Hence, on solutions,A1 (1/m)* Q is a zero-curvature connection, while* P1mB is covari-
antly curl-free. In addition, the field strength identities~3.20! and ~3.21! become

D* QP50 ~4.38!

due to the SU~2! Bianchi identity, and

D* QQ5dQ50 ~4.39!

since@* Q,Q#5@* P,P#50 is an identity.
Now, in analogy with the massless case, consider the SU~2!-valued one-form

ASU(2)5
1

m * Q. ~4.40!

In terms ofASU(2) , the nonlinear field strength equations~4.34!, ~4.35!, and~4.38! involving P are
simply the massive SU~2! Yang–Mills equations, in particular,

* DASU(2)* FSU(2)1m2ASU(2)50 ~4.41!

and the Bianchi identity

DASU(2)
FSU(2)50, ~4.42!

where

FSU(2)52P ~4.43!

is the SU~2! curvature ofASU(2) . Moreover,ASU(2) satisfies Lorentz gauge
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d* ASU(2)50 ~4.44!

due to the field strength identity~4.39!. Correspondingly, under the SU~2! gauge symmetrydj ,
ASU(2) is gauge invariant

djASU(2)50. ~4.45!

Finally, from the remaining field strength equations~4.36! and ~4.37!, it follows that the
SU~2!-valued one-form

Aflat5A1
1

m * Q ~4.46!

is a flat connection, with respect to which the SU~2!-valued two-form

Bcurl-free5B1
1

m * P ~4.47!

is covariantly curl-free. Thus, up to gauge transformations,Bcurl-free is an exact two-form andAflat

vanishes. This two-form has no apparent geometrical relation to Freedman–Townsend the
contrast to the situation in the massless case.

Interestingly, however, the nonlinear field strength equations~4.34!, ~4.35!, ~4.38!, ~4.39!
exhibit a direct relation to massive SU~2! Freedman–Townsend theory as follows. Consider
SU~2!-valued two-form

BSU(2)52
1

m * P. ~4.48!

From the field strength equation~4.34!, we see that

KSU(2)5
1

m
Q ~4.49!

is the SU~2! Freedman–Townsend field strength three-form determined by

DKSU(2)
BSU(2)5KSU(2) , ~4.50!

and hence

YBSU(2)

21 ~* dBSU(2)!5* KSU(2) . ~4.51!

We then see that the field strength equation~4.35! is simply the massive Freedman–Townse
field equation

RKSU(2)
5m2* BSU(2) , ~4.52!

while the field strength equation~4.38! yields the SU~2! Freedman–Townsend field strength ide
tity

dKSU(2)50. ~4.53!

Finally, from the field strength equation~4.39!, we obtain

DKSU(2)* BSU(2)50, ~4.54!
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which is a nonlinear SU~2! Lorentz gauge onBSU(2) .
It now follows through the duality

ASU(2)5* KSU(2) , mBSU(2)5* FSU(2) , mÞ0 ~4.55!

given by Eqs.~4.40!, ~4.43!, ~4.48!, and~4.49! that this massive Freedman–Townsend theory
BSU(2) is equivalent to the massive Yang–Mills theory forASU(2) .

Consequently, we see that pure massive SU~2! Yang–Mills theory for a vector potentialASU(2)

@or equivalently pure massive SU~2! Freedman–Townsend theory for an antisymmetric ten
potentialBSU(2)], along with a SU~2! theory of a covariantly exact antisymmetric tensor poten
Bcurl-free with respect to a flat connectionAflat , together possess a reformulation as a mass
nonlinear gauge theory given by a nonlinear deformation of SU~2! Yang–Mills/Freedman–
Townsend theory with a Chern–Simons mass term forA5Aflat2ASU(2) and B5Bcurl-free

2 (1/m)* FSU(2) .

C. General non-Abelian theory

The SU~2! massless and massive nonlinear theories are easily generalized so that in p
the SU~2! structure group we have a non-Abelian structure group based on any semisimp
algebra,A. Geometrically,A, * Q, B, * P thereby are generalized to beA-valued one-forms and
two-forms. The field strength equations in Secs. IV A and IV B retain the same geometrical
with @•,•# given by the Lie bracket ofA. As shown by the deformation analysis in Sec. V, th
provides the most general non-Abelian massless and massive nonlinear theories repres
geometrical deformation of semisimple Yang–Mills/Freedman–Townsend gauge theory fo
algebra valued field variablesA, B.

A further type of extension arises from considering non-semisimple structure groups. R
from Sec. II, for the massless nonlinear theory an allowed structure group is (SU(2),G5
U(1)’U(1)2), based on using the Lie algebras SU~2! for the Yang–Mills algebraic structure an
G for the Freedman–Townsend algebraic structure underlying the construction of the the
more general non-semisimple structure group is allowed for both the massless as well
massive nonlinear theories, which will now be presented. This extension involves some
pected, novel algebraic features compared to the SU~2! case.

To proceed, we first introduce two Lie algebrasA andA8 along with a homomorphismh from
A8 into A. Thus,h(A8)#A is a subalgebra ofA while ker(h)#A8 is an invariant subalgebra o
A8. ~In particular, noteA8.A are isomorphic Lie algebras iff the kernel ofh is empty andh is
surjective.! Then the algebraic structure common to both the massless and massive no
theories consists of the Lie brackets@•,•#A , @•,•#A8 , and inner products (•,•)A , (•,•)A8 fixed on
A and A8, and a bilinear mapf (•,•)5@•,h(•)#A from A3A8 into A. There are additiona
properties required to hold on this algebraic structure in the separate massless and massiv
An explanation for the origin of these properties will be provided by the deformation analys
Sec. V.

We begin with some algebraic preliminaries of a techincal nature. Associated with th
brackets and bilinear map, introduce the linear mapsadA(•) and adA8(•) denoting the adjoint
representation of the Lie algebrasA andA8,

adA~v !u5@v,u#A , adA8~v8!u85@v8,u8#A8 , ~4.56!

and the additional linear mapsadA+h(•) andadh,A(•) defined viaf (•,•) by

adA+h~v8!u5adA~u!h~v8!5@u,h~v8!#A5 f ~u,v8!, ~4.57!

adh,A~v !u85adA+h~u8!v5 f ~v,u8!, ~4.58!
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for all u, v in A, and allu8, v8 in A8. Let hT(•) denote the adjoint map ofh(•) from A into A8
defined in the natural manner with respect to the inner products onA andA8. This gives a bilinear
map f T(•,•)5@•,hT(•)#A8 from A83A into A8. Now, introduce the associated linear ma
adA8+hT(•) andadh,A8(•), defined viaf T(•,•) by

adA8+hT~v !u85adA8~u8!hT~v !5@u8,hT~v !#A85 f T~u8,v !, ~4.59!

adh,A8~v8!u5adA8+hT~u!v85 f T~v8,u!, ~4.60!

for all u, v in A, and allu8, v8 in A8.
Similarly, let adA

T (•) andadA8
T (•) denote the adjoint maps ofadA(•),adA8(•) and define the

related adjointsadA* (•) andadA8
* (•) by

adA* ~v !u5adA
T ~u!v, adA8

* ~v8!u85adA8
T

~u8!v8, ~4.61!

as well as the analogous adjoint mapsadh,A
T (•), adh,A8

T (•), adh,A* (•), adh,A8
* (•) given via

adh,A* ~u!v52hT~adA* ~u!v !52hT~adA
T ~v !u!5adh,A

T ~v !u, ~4.62!

adh,A8
* ~u8!v852h~adA8

* ~u8!v8!52h~adA8
T

~v8!u8!5adh,A8
T

~v8!u8, ~4.63!

again for allu, v in A, and allu8, v8 in A8. Sinceh is a homomorphism ofA8 into A, it follows
that

adh,A* ~• !h52adA8
* ~hT~• !!. ~4.64!

The appearance of these adjoint maps is an essential feature in the general non-A
algebraic structure of the massless and massive nonlinear theories. Note, we haveadA* (•)
5adA(•) andadA8

* (•)5adA8(•) if and only if the inner products are invariant with respect to t
Lie brackets, which holds wheneverA andA8 are semisimple and the inner products are given
the Cartan–Killing metrics ofA andA8.

Next, we takeA, * Q to be A-,A8-valued one-forms andB, * P to be A8-,A-valued two-
forms, respectively. For later use in formulating* Q, * P geometrically in terms ofA, B, we first
introduce the following inner product norm on pairs~a,b! consisting of aA-valued two-forma
and aA8-valued one-formb:

YA,B~~a,b!,~a,b!!5~a,a!A1~b,b!A822~@h~b!,A#A ,* a!A2~@b,b#A8 ,* B!A8 ,
~4.65!

where (•,•)A and (•,•)A8 are extended to act onA-,A8-valued forms via the Hodge inne
product. Then letYA,B(•)5YA,B

T (•) be the associated symmetric linear map on pairs~a,b!.
Finally, we also introduce the following covariant derivative operators:

DA5d1adA~A!, ~4.66!

D* Q5d1adA+h~* Q!, ~4.67!

DA1* Q5d1adA~A1h~* Q!!, ~4.68!

which act onA-valued functions and forms, and

D
* Q8 5d2adA8

T
~* Q!, ~4.69!

DA85d2adA8
T

+h21~A!, ~4.70!
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DA1* Q8 5d2adA8
T

~h21~A!1* Q!, ~4.71!

which act onA8-valued functions and forms, where the last two derivative operators are de
only when h is invertible. The Lie-algebra valued curvature two-forms associated with t
connections are determined by

RA5dA1 1
2 @A,A#A , ~4.72!

R
* Q8 5d* Q1 1

2 @* Q,* Q#A8 , ~4.73!

which satisfy

~DA!25adA~RA!, ~4.74!

~D
* Q8 !252adA8

T
~R

* Q8 !. ~4.75!

Moreover, note that sinceh is a homomorphism ofA8 into A, we have

R* Q5h~R
* Q8 !, ~4.76!

while from the property that2adA8
T (•) is the coadjoint representation ofA8, we also have

RA852adA8
T

+h21~RA! ~4.77!

since whenh21 exists it gives a homomorphism ofA onto A8.

1. Massless theory

In the massless nonlinear theory, the Lie algebraA is required to be semisimple, and henc

adA* ~• !52adA
T ~• !5adA~• !, ~4.78!

with the inner product (•,•)A given by the Cartan–Killing metric ofA. Note that, consequently

adA8
T

+hT~• !5hT+adA+h~• ! ~4.79!

and so

hT~D* Q~• !!5D
* Q8 ~hT~• !!. ~4.80!

No further properties are needed on the Lie algebra structure ofA, A8. Now the entire theory
can be constructed geometrically in terms of the covariant derivatives~4.66!, ~4.68!, ~4.69! and
curvatures~4.72! and ~4.73! along with the linear map~4.65!. First, the massless nonlinear fie
strengths are defined by

~* P,* Q!5YA,B
21 ~* RA ,* dB!, ~4.81!

whereYA,B
21 (•) is the inverse of the linear mapYA,B(•). In terms of these field strengths, the gau

symmetries onA, B are given by

djA5DA1* Qj, djB5G
* P8 j, ~4.82!

for arbitraryA-valued functionsj on M , and

dxA50, dxB5D
* Q8 x, ~4.83!
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for arbitraryA8-valued one-formsx on M . HereG
* P8 (•) is a linear map associated with* P by

G
* P8 5adh,A8

T
~* P!. ~4.84!

Finally, the Lagrangian is given by

L5 1
2 ~* P,RA!A1 1

2 ~* Q,* dB!A85
1
2 ~* P,* Q!•YA,B~* P,* Q!, ~4.85!

where (a,b)•(a,b)5(a,a)A1(b,b)A8 for any A-valued formsa, A8-valued formsb. This
yields the field equations forA, B:

* EA5DA1* Q* P50, * EB5R
* Q8 50. ~4.86!

Thus, on solutions,* Q is a zero-curvature connection, while* P is covariantly curl-free.
From the field strength equation~4.81!, * P and* Q have the form

P5RA1* Q2R* Q , Q5D
* Q8 B2G

* P8 A. ~4.87!

Hence, sinceR* Q5h(R
* Q8 )50 and adA(* P)A5D* Q* P on solutions, it respectively follows

that

P5RA1* Q ~4.88!

is a curvature, while

Q5D
* Q8 ~B2hT~* P!! ~4.89!

is a covariant curl, using in addition the algebraic relation

adh,A
T ~• !5hT+adA~• !. ~4.90!

Then, the covariant exterior derivativesD
* Q8 of Q andDA1* Q of P yield

DA1* QP50 ~4.91!

and

D
* Q8 Q50. ~4.92!

These are the same geometrical expressions as those in the SU~2! case.
Therefore, geometrically,adA(A1hT(* Q))5AYM is a Yang–Mills connection one-form

whose curvatureadA(P)5FYM satisfies the massless Yang–Mills equationsDAYM* FYM50 and
the Bianchi identityDAYM

FYM50, with DAYM
5d1adA(AYM), based on the gauge group asso

ated to the semisimple Lie algebraA.

2. Massive theory

In the massive nonlinear theory, the homomorphismh is required to be a Lie-algebra isomo
phism

h~• !5
1

m
id~• ! ~4.93!

soA5h(A8).A8, wheremÞ0 is the mass, and id is a linear map identifying the vector spa
of A and A8. But, A and A8 need not be semisimple here, and there are no further prope
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required on the Lie algebra structure ofA, A8. Thus, surprisingly, compared to massive Yan
Mills/Freedman–Townsend theory6 as well as to pure massless Yang–Mills theory, a more gen
structure group is allowed for the massive nonlinear theory.

First, the massive nonlinear field strengths are defined by

~* P,* Q!5YA,B
21 ~* RA ,* DA8B!, ~4.94!

whereYA,B
21 (•) is the inverse of the linear mapYA,B(•). In terms of these field strengths, the gau

symmetries onA, B are given by

djA5DA1* Qj, djB5GB1* P8 j, ~4.95!

for arbitraryA-valued functionsj on M , and

dxA50, dxB5DA1* Q8 x, ~4.96!

for arbitraryA8-valued one-formsx on M , where now

GB1* P8 52adh,A8
* ~* P!1adh,A8~B!. ~4.97!

The Lagrangian is given by

L5 1
2 ~* P1m2h~B!,RA!A1 1

2 ~* Q,* DA8B!A8 , ~4.98!

which yields the field equations forA, B:

* EA5h~D
* Q8 h21~* P!!1m2h~Q!50, * EB5R

* Q8 1h21~P!50, ~4.99!

whereh21 is the inverse of the isomorphismh,

h21~• !5m id~• !5m2hT~• !. ~4.100!

From the field strength equation~4.94!, * P and* Q have the form

P5RA1* Q2R* Q , Q5DA1* Q8 B2G
* P8 A. ~4.101!

Hence, since

R* Q52P ~4.102!

holds on solutions, it follows that

RA1* Q50 ~4.103!

and soA1* Q is a zero-curvature connection. Furthermore, from

D
* Q8 hT~* P!52Q ~4.104!

on solutions, and fromG
* P8 A5adA8

T
+h21(A)hT(* P) through the algebraic relation

adh,A
T ~• !52adA8

T
+h21~• !hT ~4.105!

obtained from the homomorphism equation~4.64!, it follows that

DA1* Q8 ~B1hT~* P!!50 ~4.106!
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and soB1hT(* P) is covariantly curl-free. Then, the covariant exterior derivativesD
* Q8 of Q and

D* Q of P yield

D* QP50 ~4.107!

and

D
* Q8 Q5hT~adA

T ~* P!P!. ~4.108!

Therefore, geometrically,adA+h(* Q)5AYM is a Yang–Mills connection one-form, whos
curvature2adA(P)5FYM satisfies an adjoint version of the massive Yang–Mills equations

* DAYM

T
* FYM1m2AYM50 ~4.109!

and the Bianchi identity

DAYM

T FYM50, ~4.110!

where

DAYM

T 5d2adA
T ~AYM !. ~4.111!

In addition,AYM satisfies a nonlinear covariant gauge condition

DAYM

T
* AYM52adA

T ~* FYM !FYM . ~4.112!

Interestingly, this adjoint modification is based on having a non-semisimple Lie algebraA, so that
adA* (•)ÞadA(•). Its consistency relies on the property that, for any Lie algebraA, 2adA

T (•) is
the coadjoint representation ofA. If A is chosen to be semisimple, then note the standard mas
Yang–Mills theory is obtained.

Similarly to the SU~2! case, the non-semisimple massive Yang–Mills theory~4.109! to ~4.112!
here is equivalent to a non-semisimple massive Freedman–Townsend theory given by the

AYM5* KYM , mBYM5* FYM ~4.113!

as follows from the field strength equations~4.102!, ~4.104!, ~4.107!, and~4.108!.

V. DEFORMATION ANALYSIS

Here a systematic determination of the most general nonlinear geometrical deformatio
be given for the linear gauge theory ofn>1 vector potentialsAm

a , a51,...,n, andn8>1 anti-

symmetric tensor potentialsBmn
a8 , a851,...,n8, with a Chern–Simons-type mass term, on a fo

dimensional space–time manifoldM . The method used is a geometrical version of the fi
theoretic approach to deformations developed in Refs. 3, 1, and 12.

A. Linear theory

We formulate the linear theory geometrically, using a set of one-formsAa5Am
a dxm and

two-forms Ba85Bmn
a8 dxm dxn. These field variables are regarded as taking values in respe

internal vector spacesA, A8 of dimensionsn, n8.
To proceed, the only structure we require on the space–time manifoldM is the exterior

derivative operatord and the Hodge dual* such that* 2561 where1 is the identity operator.
Hereafter, products of fields will be understood to be wedge products of forms onM ~and tensor
products with respect toA, A8). Recall, in terms of* , there is a standard Hodge inner product
pairs ~a, b! of one-forms and two-forms, (a,b)•(a,b)5* (a* a)2* (b* b).
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The linear field strengths associated with the field variables are given by theA-valued two-
form Fa5dAa andA8-valued three-formHa85dBa8. Then the Lagrangian is given by the fo
lowing real-valued four-form:

L
~2!

5 1
2 dabF

a* Fb2 1
2 da8b8H

a8* Hb81maa8F
aBb8, ~5.1!

wheredab , da8b8 represent components of respective inner products onA, A8, andmaa8 repre-
sents components of a bilinear form onA3A8. We refer tomaa8 as the mass tensor. Thi
Lagrangian is invariant to within an exact four-form under the separate Abelian gauge symm
given by

d
~0!

jA
a5dja, d

~0!

jB
a850, ~5.2!

for arbitraryA-valued functionsja, and

d
~0!

xAa50, d
~0!

jB
a85dxa8, ~5.3!

for arbitraryA8-valued one-formsxa8. Under variations of the fieldsAa andBa8, the Lagrangian
yields the Euler–Lagrange field equations

* E
~1!

A
a5d* Fa1ma8

aHa850, ~5.4!

* E
~1!

B
a85d* Ha81ma

a8Fa50, ~5.5!

wherema8
a5dabmba8 andma

a85da8b8mab8 are components of linear mapsmA(•) from A into
A8, andmA8(•) from A8 into A.

Note, in the case when the mass tensor vanishes,maa850, the fieldsAa andBa8 are decoupled
and the linear theory reduces to massless Abelian Yang–Mills gauge theory forAa and massless
Abelian Freedman–Townsend gauge theory forBa8. The field strengthsFa and Ha8 obviously
then describe free massless spin-one and spin-zero fields.

In contrast, in the opposite case when the mass tensor is fully nondegenerate,maa85mdaa8
whereda

a8 is a vector-space isomorphism ofA andA8 ~and hencen5n8), the fieldsAa andBa8

are coupled through a Chern–Simons mass term. The linear theory then reduces to m
Abelian Yang–Mills/Freedman–Townsend gauge theory, which is the linearization of the no
ear theory given in Ref. 6. Consequently, the field strengthsFa and Ha8 together describe free
massive spin-one fields, with the mass given bym. ~In particular,Aa supplies two of the three
spin-one helicity components whileBa8 supplies the third.!

To continue, we consider the general case with no conditions assumed on the mass ten
A0 and A80 denote the kernels of the mapsmA(•) and mA8(•), and letAm and A8m denote
the orthogonal complements of these kernels. Note there is a direct sum decompo
A5A0% Am , A85A80% A8m , with respect to the inner products on the internal vector spa
Moreover,Am andA8m are isomorphic vector subspaces, with a common dimension denote
0<k<n,n8.

Fix a basis for these vector subspaces so that the fieldsAa andBa8 belong toA0 andA80 for
a5a851,...,k and belong toAm andA8m for a5k11,...,n, a85k11,...,n8. Then, physically
speaking, it follows from the linear field equations that the field strengthsFa andHa8 given by
a5a851,...,k, together describe a set ofk free massive spin-one fields with mass equal to
nonzero eigenvalues ofmaa8 , while the remaining field strengthsFa and Ha8 given by a5k
11,...,n and a85k11,...,n8 describe separate sets ofn2k free massless spin-one fields an
n82k free massless spin-zero fields, respectively.
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B. Determining equations for nonlinear deformations

We now consider nonlinear deformations of the linear Abelian gauge theory forAa andBa8,
with the deformation terms being locally constructed in a geometrical manner from the fiel
using only the exterior derivatived and Hodge dual* on M . Here, a deformation consists o
adding linear and higher power terms to the Abelian gauge symmetries~5.2! and ~5.3!,

djA
a5 d

~0!

jA
a1 d

~1!

jA
a1¯ , djB

a85 d
~0!

jB
a81 d

~1!

jB
a81¯ , ~5.6!

and

dxAa5 d
~0!

xAa1 d
~1!

xAa1¯ , dxBa85 d
~0!

xBa81 d
~1!

xBa81¯ , ~5.7!

while simultaneously adding quadratic and higher power terms to the linear field equations~5.4!
and ~5.5!,

EA
a5 E

~1!

A
a1 E

~2!

A
a1¯ , EB

a85 E
~1!

B
a81 E

~2!

B
a81¯ , ~5.8!

such that there exists a locally constructed Lagrangian four-form that is gauge invariant to
an exact four-form. The condition of gauge invariance is expressed by

djL5 d
~0!

j L
~2!

1 d
~1!

j L
~2!

1 d
~0!

j L
~3!

1¯5dQj , ~5.9!

dxL5 d
~0!

x L
~2!

1 d
~1!

x L
~2!

1 d
~0!

x L
~3!

1¯5dQx , ~5.10!

holding for some locally constructed three-formsQj andQx , where the Lagrangian is related t
the field equations through

dL5dAa* EA
bdab1dBa8* EB

b8da8b81dG, ~5.11!

holding for some locally constructed three-formG, under arbitrary variationsdAa, dBa8.
For writing down deformation terms and analyzing the deformation equations, a pr

formal setting is provided by the field spaceS5$(Aa(x),Ba8(x))% defined as the set of all section
of the vector bundle ofA-valued one-forms andA8-valued two-forms onM . Hereafter, geometri-
cally, a field variation (dAa, dBa8) is regarded as a vector field onS while field equations (EA

a ,
EB

a8) are regarded as a covector field onS, whereEA
a , EB

a8 are related toEA
a, EB

a8 by

dab* EA
a
•dAb5dAacEA

a , da8b8* EA
a8
•dBb85dBa8cEB

a8 . ~5.12!

Here the hookc denotes interior product of a vector field with a covector field onS. Associated to
S is the jet space defined using local coordinates

J(`)~S!5~x,Aa,Ba8,dAa,dBa8,d* dAa,d* dBa8,...!, ~5.13!

where x represents a point inM ; Aa, dAa, d* dAa,... , represent the values of theA-valued
one-form fieldAa(x) and its exterior derivatives atx; andBa8, dBa8, d* dBa8,... , represent the
values of theA8-valued two-form fieldBa8(x) and its exterior derivatives atx. In this setting, a
locally constructed function orp-form on M is a function purely of the jet variable
(Aa,Ba8,dAa,dBa8,d* dAa,d* dBa8,...) and their Hodge duals (* Aa,* Ba8,* dAa,* dBa8,

* d* dAa,* d* dBa8,...), up to some finite order. Let]Aa, ]Ba8 , and ] (d* )k dAa, ] (d* )k dBa8 ,
k50,1,2,... , denote derivatives with respect to the jet variables. Note the derivatives]Aa, ]Ba8
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produce covector fields onS. We define contravariant derivatives]Aa
[ , ]

Ba8
[

that produce vector

fields on S via the natural pairing]Aa
[ gc]Aaf 5dab]Aag•]Abf and ]

Ba8
[

gc]Ba8 f 5da8b8]
Ba8
[

g

•]Bb8 f , for any locally constructed functionsf , g. Likewise we define] (d* )k dAa
[ , ]

(d* )k dBa8
[

.
Then, we introduce Euler–Lagrange operators given by

EAa
[

5]Aa
[

2 (
k>0

~* d* !k11]
~d* !k dAa
[ , E

Ba8
[

5]
Ba8
[

2 (
k>0

~* d* !k11]
~d* !k dBa8
[

. ~5.14!

These operators take locally constructed functionsf into vector fields (EAa
[ ( f ), E

Ba8
[

( f )) onS and

have the property thatEAa
[ ( f )5E

Ba8
[

( f )50 annihilates a locally constructed functionf if and
only if * f 5dG for some locally constructed three-formG. The related operators

EAa
]

5]Aa2 (
k>0

~* d* !]k11] (d* )k dAa, E
Ba8
]

5]Ba82 (
k>0

~* d* !]k11] (d* )k dBa8 ~5.15!

yield covector fields onS, where* ] and d] denote the contravariant Hodge dual operator a
contravariant exterior derivative operator on vectors and antisymmetric tensors onM .

The relation between the deformation terms in the field equations and Lagrangian is
naturally expressed through the Euler–Lagrange operators by

E
~k!

A
a5EAa

]
~* L

~k11!

!, E
~k!

B
a85E

Ba8
]

~* L
~k11!

!, ~5.16!

which determines

L
~k11!

52
1

k11
~ E

~k!

A
aAbdab2 E

~k!

B
a8Bb8da8b8! ~5.17!

to within an exact four-form.
In terms of the Euler–Lagrange operators, the condition for existence of a gauge-inv

Lagrangian is equivalent to the equations

EAa
[

~djA
a
•* EA

bdab1djB
a8
•* EB

b8da8b8!50, ~5.18!

EAa
[

~dxAa
•* EA

bdab1dxBa8
•* EB

b8da8b8!50, ~5.19!

E
Ba8
[

~djA
a
•* EA

bdab1djB
a8
•* EB

b8da8b8!50, ~5.20!

E
Ba8
[

~dxAa
•* EA

bdab1dxBa8
•* EB

b8da8b8!50. ~5.21!

These four equations are the determining system for all allowed deformations.
Remark: To proceed, we restrict attention to deformations that involve at most one deri

of Aa, Ba8, ja, xa8 in the gauge symmetries and at most two derivatives of Aa, Ba8 in the field
equations. Such deformations automatically preserve the number of gauge degrees of freed
initial-data degrees of freedom in the nonlinear theory to be the same as those in the linear t
Also, we consider only nontrivial deformations such that the field equations and gauge symm
in the nonlinear theory are not equivalent to those in the linear theory by a change either o
variables or of gauge symmetry variables (see Ref. 3).

The determining system can be reformulated more usefully and geometrically as Lie d
tive equations. We introduce the Lie derivativeLd with respect to a vector field (dAa, dBa8) on
S acting on a locally constructed covector field (f a

A , f a8
B ) by
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~Ld f !a
A5S dAbc]Abf a

A1dBb8c]Bb8 f a
A1(

k>0
~d*!k dd Abc] (d* )k dAbf a

A1~d* !k dd Bb8c] (d* )k dBb8 f a
AD

2S ]AadAbc f b
A1]AadBb8c f b8

B
2 (

k>0
~* d* !]k11~] (d* )k dAadAbc f b

A1] (d* )k dAadBb8c f b8
B

! D ,

~5.22!

~Ld f !a8
B

5SdAbc]Abf a8
B

1dBb8c]Bb8 f a8
B

1(
k>0

~d*!k dd Abc] (d* )k dAbf a8
B

1~d*!k dd Bb8c] (d* )k dBb8 f a8
B D

2S ]Ba8dAbc f b
A1]Ba8dBb8c f b8

B
2 (

k>0
~* d* !]k11~]dBa8dAbc f b

A1]dBa8dBb8c f b8
B

! D .

~5.23!

Theorem 1: Local gauge invariance holds if and only if the Lie derivative of the fi
equations with respect to the gauge symmetries vanishes

Ldj
~EA

a ,EB
a8!50, Ldx

~EA
a ,EB

a8!50. ~5.24!

Geometrically, these equations assert that the gauge symmetries are vector fields tange
the surface inS corresponding to the field equations. Due to gauge invariance, the commutat
these vector fields have the same property.

Theorem 2: Local gauge invariance holds only if the Lie derivative of the field equations
respect to the gauge symmetry commutators vanishes

L[dj1
,dj2

]~EA
a ,EB

a8!50, L[dx1
,dx2

]~EA
a ,EB

a8!50, L[dj1
,dx1

]~EA
a ,EB

a8!50. ~5.25!

An expansion of these equations in powers ofAa and Ba8 ~and their derivatives! gives a
hierarchy of determining equations whose solutions yield all allowed deformation terms i
field equations and gauge symmetries. We now find the solution of these determining equ
explicitly at the lowest orders to give all first-order deformations and then outline an indu
analysis to obtain a uniqueness result for the higher-order deformations.

C. First-order deformations and uniqueness of higher-order deformations

Up to a change of field variables and gauge symmetry variables, the most general p
first-order deformation terms for the gauge symmetries are given by

d
~1!

jA
a5aa

bcA
bjc1ba

b8c* Hb8jc1ca
b8c* ~Bb8 djc!1 c̃a

b8c* ~* Bb8 djc!, ~5.26!

d
~1!

jB
a85da8

b8cB
b8 jc1d̃a8

b8c* Bb8 jc1ea8
bcF

bjc1ẽa8
bc* Fbjc1 f a8

bc* ~Ab djc!, ~5.27!

with

ea8
[bc]5 f a8

[bc]50, ~5.28!

and by
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d
~1!

xAa5ga
b8c8* ~Bb8xc8!1g̃a

b8c8* ~* Bb8xc8!1ha
bc8* ~Fbxc8!1h̃a

bc8* ~* Fbxc8!

1 i a
bc8A

b* d* xc81 ĩ a
bc8~* d* Ab!xc8, ~5.29!

d
~1!

xBa85 j a8
bc8A

bxc81 j̃ a8
bc8* ~Abxc8!1ka8

b8c8* Hb8xc81 k̃a8
b8c8* ~* Hb8xc8!

1 l a8
b8c8* d* ~Bb8xc8!1 l̃ a8

b8c8* d* ~* Bb8xc8!1ma8
bc8B

b8* d* xc81m̃a8
bc8* Bb8* d* xc8,

~5.30!

where the coefficients are constants, which represent the components of bilinear map
A3A, A3A8, A83A, A83A8 into A andA8. These coefficients are determined by solving
zeroth-order part of the Lie derivative commutator equation from Theorem 2~using the methods
of Refs. 3 and 12!. This yields the linear algebraic relations

aa(bc)50, f a8(bc)50, ~5.31!

l a8b8c85 l̃ a8b8c85ma8b8c85m̃a8b8c850, gab8c85g̃ab8c850, ~5.32!

cab8c5 c̃ab8c50, j̃ a8bc85d̃a8cb850, da8b8c1 j a8cb850. ~5.33!

Additional linear algebraic relations arise from the first-order part of the Lie derivative equ
from Theorem 1 applied to the rigid symmetries

~dj!rigid5djudj50 , ~dx!rigid5dxudx50 ~5.34!

given by restricting the gauge symmetry variables so thatdja5dxa850. This leads to~by the
methods of Refs. 3 and 12!

ẽa8bc1bba8c50, ~5.35!

ma
a8 j a8cb82mb8

babac50, a(ab)c2m(b
b8ba)b8c50, j (a8ucub8)2m(a8

abuaub8)c50, ~5.36!

k(a8b8)e850, ma
a8ka8b8c81 j b8ac850, ~5.37!

habc85h̃abc850, k̃a8b8c850. ~5.38!

Then, we return to the first-order part of the Lie derivative equation withja andxa8 now taken to
be arbitrary, which determines the first-order deformation terms in the field equations~by the
methods of Ref. 1!. This yields

* E
~2!

A
a5d* ~ 1

2 aa
bcA

bAc1ba
b8c* Hb8Ac!2acb

aAb* Fc2bcb8
a* Hb8Fc

1~2Fb* Hc82Abd* Hc8!ea8
bc1 j b8

a
c8* Hb8Bc82mc8

cacb
aAbBc8, ~5.39!

E
~2!

B
a85d* ~ j a8

bc8A
bBc82ka8

b8c8* Hb8Bc81bb
a8

c* FbAc!1 1
2 kb8c8

a8* Hb8* Hc82d~Ab* Fc!ea8
bc

2 j c8b
a8Ab* Hc81ma

a8aa
bcA

bAc, ~5.40!

together with the linear algebraic relation

m(au
a8ea8buc)1mb

b8eb8ac50. ~5.41!
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The corresponding Lagrangian is given by

L
~3!

5 1
2 aabc* FaAbAc1 j a8bc8* Ha8AbBc81bab8c* Fa* Hb8Ac2 1

2 ka8b8c8* Ha8* Hb8Bc8

2ea8bc* Ha8FbAc1 1
2 maa8a

a
bcB

a8AbAc. ~5.42!

These deformation terms are related to the deformation terms in the gauge symmetries~as follows
from general results in Ref. 3! by being the Noether currents of the rigid symmetries associate
the first-order deformed gauge symmetries

d
~1!

jA
a5aa

bcA
bjc1ba

b8c* Hb8jc, ~5.43!

d
~1!

jB
a852 j a8

cb8B
b8jc2bb

a8
c* Fbjc1ea8

bcF
bjc, ~5.44!

d
~1!

xAa50, ~5.45!

d
~1!

xBa85 j a8
bc8A

bxc81ka8
b8c8* Hb8xc8. ~5.46!

In particular, we have * d( E
(2)

A
ajbdab)5( d

(1)

jA
a)rigidc E

(1)
A

a and * d( E
(2)

B
a8xb8da8b8)

5( d
(1)

jB
a8)rigidc E

(1)
B

a8 , wheredjb5dxb850.
We next note that, from~5.43! to ~5.46!,

@dj1
,dj2

]
~0!

5dj3

~0!

, j3
a5aa

bcj1
bj2

c, ~5.47!

@dx1
,dx2

]
~0!

50, ~5.48!

@dj1
,dx2

]
~0!

5dx3

~0!

, x3
a85 j a8

bc8j1
bx2

c8. ~5.49!

Now we consider the first-order part of the Lie derivative commutator equation from The
2 and subtract the first-order part of the Lie derivative equation from Theorem 1 with the g
symmetry variables given by the commutators~5.47!–~5.49!. This combined equation leads to th
result ~by the methods of Refs. 3 and 12! that the gauge symmetry commutators are closed

first-order whenAa,Ba8 satisfy the linear field equationsE
(1)

A
a50 and E

(1)

B
a850. Then if the gauge

symmetry variables are taken to be rigid,dj1
a5dj2

a50 and dx1
a85dx2

a850, we obtain an
integrability condition involving just the first-order deformation terms,

~@dj1

~1!

,dj2

~1!

# !rigidA
a2~dj3

~1!

!rigidA
a5d j

~1!

(j1 ,j2)
a , ~@dj1

~1!

,dj2

~1!

# !rigidB
a82~dj3

~1!

!rigidB
a85d x

~1!

(j1 ,j2)
a8 ,

~5.50!

~@dx1

~1!

,dx2

~1!

# !rigidA
a5d j

~1!

(x1 ,x2)
a , ~@dx1

~1!

,dx2

~1!

# !rigidB
a85d x

~1!

(x1 ,x2)
a8 , ~5.51!

~@dj1

~1!

,dx2

~1!

# !rigidA
a2~dx3

~1!

!rigidA
a5d j

~1!

(j1 ,x2)
a , ~@dj1

~1!

,dx2

~1!

# !rigidB
a82~dx3

~1!

!rigidB
a85d x

~1!

(j1 ,x2)
a8 ,

~5.52!
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which hold for some locally constructedA-valued functionsj
(1)

(•,•)
a and A8-valued one-forms

x
(1)

(•,•)
a8 depending linearly onj1

a,j2
a,x1

a8,x2
a8. The solution of these six equations~using the

methods of Ref. 12! yields the quadratic algebraic relations

aadba
b

ec22aab[cua
b

due]50, ~5.53!

2aab[cb
b

ud8ue]2bad8bab
ec12bab8[cub

db8
ue]md8d22bab8[cu j

b8
ue]d850, ~5.54!

j a8be8a
b

dc22 j a8[dub8 j b8
uc]e850, ~5.55!

plus three others that are redundant as a consequence of~5.36! and ~5.37!.
Another integrability condition arises for the first-order deformation terms if we conside

second-order part of the Lie derivative equation from Theorem 1 under the previous cond
imposed onAa,Ba8,ja,xa8. Contracting this equation with (Aa,Ba8), we obtain

~ d
~1!

j!rigidA
a
c E
~2!

A
a1~ d

~1!

j!rigidB
a8 c E

~2!
B

a85dQ
~3!

j , ~5.56!

~ d
~1!

x!rigidA
a
c E
~2!

A
a1~ d

~1!

x!rigidB
a8 c E

~2!
B

a85dQ
~3!

x , ~5.57!

holding for some locally constructed three-formsQ (3)j ,Q (3)x which depend linearly onja,xa8.
The solution of these two equations~again using the methods of Ref. 12! yields the additional
quadratic algebraic relations

k[a8b8uc8k
c8

ud8]e850, ~5.58!

bab8ckd8e8
b822ba[d8ubbb

ue8]c50, ~5.59!

2ea8(buca
c
ud)e2ec8bdj c8

ea822ea8c(dmb)b8b
cb8

e50, ~5.60!

plus others that reduce to combinations of~5.53! to ~5.55! through~5.36! and ~5.37!. Moreover,
the quadratic relation~5.55! itself is a consequence of~5.58! and ~5.37!.

It can be shown that the integrability relations~5.53!–~5.55! are necessary and sufficient
allow solving for the second order deformation terms in the gauge symmetries from the first
part of the Lie derivative commutator equation in Theorem 2. The additional integrability rela
~5.58!–~5.60! are necessary in then solving the second-order part of the Lie derivative equ
from Theorem 1 for the second order deformation terms in the field equations. However
found that a solution exists if and only if the following additional algebraic relation holds on
coefficients of the field equation deformation terms,

kd8e8
c8ec8ab22e[d8ucab

c
ue8]b22e[d8ucbb

c
ue8]a50. ~5.61!

This relation imposes in effect a further integrability relation on allowed first-order deformat
Theorem 3: Up to a change of field variables and gauge symmetry variables, all first-o

geometrical deformations are given by Eqs. (5.43)–(5.46), Eqs. (5.39) and (5.40), with the coe
ficients satisfying the linear relations (5.36) and (5.37) and the quadratic relations (5.53)–(5.55)
and (5.58)–(5.61). There are no further algebraic obstructions to the existence of second-
geometrical deformations.

These first-order deformations have the following classification: theaabc terms represent a
massless Yang–Mills self-coupling ofAa, the ka8b8c8 terms represent a massless Freedma
Townsend self-coupling ofBa8, and thebab8c terms represent an extended Freedman–Towns
coupling betweenAa andBa8, while the j a8bc8 terms represent a Higgs-type coupling ofBa8 to Aa
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which is nontrivial only when the mass tensormaa8 is nonzero. Theea8bc terms, in contrast,
represent a different type of coupling betweenAa and Ba8 unrelated to Yang–Mills and
Freedman–Townsend type couplings. It is similar in form to the coupling known for one-form
two-form fields in extended supergravity theory.13,14 Moreover, the deformation corresponding
the ea8bc terms is characterized by possessing opposite parity compared to the parity of the
deformation terms. In particular, consider the parity operatorP defined by dP5Pd, * P
52P* . If we assign even parity toAa and odd parity toBa8,

PAa5Aa, PBa852Ba8, ~5.62!

which thus determines

P* Fa52Fa, P* Ha85Ha8, ~5.63!

and

Pja5ja, Pxa852xa8, ~5.64!

then it follows that all the deformation terms except for theea8bc terms have even parity.
To proceed, we now consider the uniqueness of the higher-order deformation terms

mined by the first-order terms in Theorem 3. LetD EA
a

(k11)

, DEB
a8

(k11)

, D d
(k)

jA
a, D d

(k)

xAa, D d
(k)

jB
a8,

D d
(k)

xBa8 denote the difference of any two deformations that agree up to some given
k>1. Then thek11st-order part of the Lie derivative equation from Theorem 1 yields

d
~0!

jD EA

~k12!
a5 d

~0!

xD EA

~k12!
a50, d

~0!

jD EB

~k12!
a85 d

~0!

xD EB

~k12!
a850. ~5.65!

Similarly, thekth order part of the Lie derivative commutator equation from Theorem 2 yields
result that, after a change of field variables and gauge symmetry variables,

dj2

~0!

D dj1

~k11!

Aa5dx2

~0!

D dj1

~k11!

Aa50, dj2

~0!

D dx1

~k11!

Aa5dx2

~0!

D dx1

~k11!

Aa50, ~5.66!

dj2

~0!

D dj1

~k11!

Ba85dx2

~0!

D dj1

~k11!

Ba850, dj2

~0!

D dx1

~k11!

Ba85dx2

~0!

D dx1

~k11!

Ba850. ~5.67!

Under the assumptions on the number of derivatives considered for possible deformation
~see Remark in Sec. V B!, the solution of Eqs.~5.65!–~5.67! is immediately given by

D EA

~k12!
a50, D EB

~k12!
a850, k>1, ~5.68!

D dj

~k11!

Aa5D dx

~k11!

Aa50, D dj

~k11!

Ba85D dx

~k11!

Ba850, k>1. ~5.69!

Hence, we have established the following uniqueness result.

Theorem 4: If two deformations agree at all orders1< l<k, D E
( l 11)

A
a5D E

( l 11)

B
a850,

D d
( l )

jA
a5D d

( l )

xAa50, D d
( l )

jB
a85D d

( l )

xBa850, then up to a change of field variables and gau
symmetry variables, the deformations also agree at order l5k11.

D. Deformations to all orders

Hereafter we restrict attention to parity-invariant and opposite-parity deformations sepa
and proceed to write down a complete deformation to all orders in each case. A full discuss
the combined parity non-invariant deformations from Theorem 3 is given in Ref. 15.
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For a deformation determined at first-order purely by theea8bc terms, note that the linea
algebraic relations~5.28! and ~5.41! imply

ma8
aea8

bc50 ~5.70!

and hence theea8bc terms are incompatible with a nonzero mass tensor. However, in the mas
case, theea8bc terms produce a nontrivial deformation, which we now write down to all orde

The algebraic structure onA,A8 associated toea8
bc consists of a symmetric product from

A3A into A8. Then the gauge symmetries are given by

djA
a5dja, djB

a85ea8
bcF

bjc, ~5.71!

dxAa50, dxBa85dxa8, ~5.72!

while the Lagrangian is constructed by

L5 1
2 Fa* Fbdab2 1

2 Ha8* Hb8da8b82* Ha8FbAcea8bc1
1
2 FbAc* ~FdAe!ea8

bcea8de . ~5.73!

It is straightforward to see that this Lagrangian is gauge invariant,djL5dxL50, and that the
gauge symmetries commute,@dj1

,dj2
#5@dx1

,dx2
#5@dj1

,dx2
#50. From the Lagrangian, the fiel

equations are given by

EA
a5d* Fa1~2Fb* Hc82Abd* Hc8!ec8b

a2~2Fb* ~FcAd!1Abd* ~FcAd!!ea8
cdea8b

a50,
~5.74!

EB
a85d~* Ha82* ~FbAc!!ea8

bc50. ~5.75!

Theorem 5: The massless nonlinear theory (5.71)–(5.75) is the unique nonlinear geometrica
deformation of the Abelian linear theory (5.1)–(5.5) determined by the first-order deformatio
terms ea8bc .

Next we consider a general deformation determined at first-order by all terms exceptea8bc .
This deformation is more general than the massless/massive nonlinear theories constru
Secs. II and III, since it includes a mixing of massless and massive fieldsAa,Ba8, controlled by the
eigenvalues of the mass tensormaa8 .

Let aa
bc ,ba

b8c , j a8
bc8 ,ka8b8

c8 be the components of respective bilinear maps fromA3A into
A, A83A into A, A3A8 into A8, A83A8 into A8, fixed to satisfy the linear and quadrat
relations~5.36! and~5.37!, ~5.53!–~5.55!, ~5.58!, and~5.59!. Thus, it follows thataa

bc andka8b8
c8

define the commutator structure constants~5.53! and ~5.58! of respective Lie algebras onA,A8,
while j a8

bc8 andba
b8c define linear maps that are representations~5.55! and ~5.59! of these Lie

algebras on the vector spaces ofA8,A, respectively. Further discussion of the additional algebr
structure imposed by the relations~5.36!, ~5.37!, ~5.54! is given in the next section.

To write down the deformation to all orders, we first define a Yang–Mills field stren
two-form and a related antisymmetric tensor field strength three-form by

FA
a5dAa1 1

2 aa
bcA

bAc, HA
a85dBa81 j a8

bc8A
bBc8. ~5.76!

Geometrically,FA
a is the curvature of the connection one-formaa

bcA
b, andHA

a8 is the covariant
curl of Ba8 in terms of the associated connectionj a8

bc8A
b. Consequently, using the covaria

exterior derivative operators given by

DA5d1aa
bcA

b, DA85d1 j a8
bc8A

b, ~5.77!

we have
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DA8Ba85HA
a8 , ~5.78!

@DA ,DA#5aa
bcFA

b , @DA8 ,DA8 #5 j a8
bc8FA

b , ~5.79!

due to the algebraic structure~5.53! and~5.55!. Next we define a nonlinear field strength two-for
Pa and three-formQa by the equations

Pa2* Qb8Acba
b8c5FA

a , ~5.80!

Qa82* PbAcbb c
a82* Qb8Bc8ka8

b8c85HA
a8 . ~5.81!

These field strengths are nonpolynomial expressions in terms ofAa,Ba8, as given by

~Pa,Qa8!5Y21
A,B~FA

a ,HB
a8!, ~5.82!

whereY21
A,B is the inverse of the linear map

YA,B5S id Abba
c8b*

2Abbc
a8

b* id2Bb8ka8
c8b8*

D ~5.83!

defined to act on the vector space of pairs ofA-valued two-forms,A8-valued three-forms.
Now we write down the deformation, using the previous structure. The gauge symmetr

Aa,Ba8 are given by the field variations

djA
a5DAja1ba

b8c* Qb8jc, ~5.84!

djB
a852 j a8

cb8B
b8jc2bb

a8
c* Pbjc, ~5.85!

dxAa50, ~5.86!

dxBa85DA8xa81ka8
b8c8* Qb8xc8, ~5.87!

where ja is an arbitraryA-valued function, andxa8 is an arbitraryA8-valued one-form. The
Lagrangian four-form forAa,Ba8 is constructed by

L5 1
2* PaFA

bdab1 1
2* Qa8Hb8

Ada8b81FA
aBb8mab8 . ~5.88!

Gauge invariance of this Lagrangian is established as follows.
The variation ofL under the gauge symmetrydj yields

djL5mab8~DAdjA
aBb81FA

adjB
b8!1* Pe~DAdjA

a1ba
b8c* Qb8djA

c!dae

1* Qe8~DA8djB
a81 j a8

bc8djA
bBc81 1

2 ka8
b8c8* Qb8djB

c8!da8e8 . ~5.89!

To proceed, collecting all termsdjc we obtain2(* Pbbba8c1Bb8mbb8b
b

a8c)* Qa8djc. Next we
integrate by parts and use the field strength equations~5.76!, ~5.80!, ~5.81! to eliminatedAa,dBa8

algebraically in terms ofPa,Qa8,Aa,Ba8. This yields terms of the typePa* Pbjc, Qa8* Qb8jc,

* Qa8* Qb8* Pcjd, * Pa* Qb8Acjd, * Qa8* Qb8Bc8jd. Then we find that the coefficients of thes
terms vanish, respectively, due to the algebraic relations~5.36!, ~5.59!, ~5.54!, ~5.55!. Hence, it
follows that

djL5d~~bba8cP
b1mbb8b

b
a8cB

b8!* Qa8jc!. ~5.90!
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Similarly, under the gauge symmetrydx , the variation ofL is given by

dxL5mab8FA
adxBb81* Qe8~DA8dxBa81 1

2 ka8
b8c8* Qb8dxBc8!da8e8 . ~5.91!

Proceeding as before, we find that alldxc8 terms yield (2 1
2* Qa8* Qb8ka8b8c81FA

amac8)dxc8. An
integration by parts and use of the field strength equations~5.76!, ~5.80!, and~5.81! leaves terms
of the type* Qa8Pbxc8, * Qa8* Qb8* Qc8xd8, * Qa8* Qb8Acxd8, PaAbxc8, AaAb* Qc8xd8. Then we
find that the coefficients of these terms vanish, respectively, due to the algebraic relations~5.37!,
~5.58!, ~5.55!, ~5.36!. Hence, it follows that

dxL5d~~ 1
2 ka8b8c8* Qa8* Qb81mac8FA

a !xc8. ~5.92!

Proposition: The Lagrangian~5.88! is invariant to within an exact four-form (5.90) and (5.92
under the gauge symmetries (5.84)–(5.87).

The field equations forAa,Ba8 are given by

EA
a5DA* Pa1~ba

c8bmc
c8Ab2bcb8

a* Qb8!* Pc1Qb8mb8
a50, ~5.93!

EB
a85DA8* Qa81 1

2 kb8c8
a8* Qb8* Qc82bc

a8
bmc8

cAb* Qc81Pbmb
a850. ~5.94!

On solutions of these field equations, the gauge symmetries onAa,Ba8 have the commutato
structure

@dj1
,dj2

#5dj3
, @dx1

,dx2
#50, @dj1

,dx2
#5dx3

, ~5.95!

where

j3
a5aa

bcj1
bj2

c, x3
a85 j a8

bc8j1
bx2

c8. ~5.96!

Off solutions, the commutator structure remains closed to within trivial symmetries proportion
the field equations

dEAa52bab8
[cubdb8ue]j1

cj2
e* EA

d2bab8
ckb8d8e8j1

c* ~x2
e8EB

d8!, ~5.97!

dEBa852ba8b
[cubbd8ue]j1

cj2
e* EB

d81ka8b8
e8bdb8cj1

cx2
e8* EA

d2ka8b8
c8kb8d8e8x1

c8* ~x2
e8EB

d8!

1ka8b8
e8kb8d8c8x2

e8* ~x1
c8EB

d8!. ~5.98!

Theorem 6: The nonlinear theory (5.84)–(5.94) is the unique nonlinear geometrical defo
mation of the Abelian linear theory (5.1)–(5.5) determined by the first-order deformation term

aa
bc ,ba

b8c , j a8
bc8 ,ka8

b8c8 .
We remark that the pure massless/massive SU~2! case of this theory, given by

aa
bc5ebc

a, ba
b8c5leb8c

a, j a8
bc85ebc8

a8, ka8
b8c85leb8c8

a8 ~5.99!

~wherea,a8,...51,2,3) withl51/m andm5constÞ0 in the massive case, andl5constÞ0 in
the massless case, yields the SU~2! theories from Secs. II and III.

E. Algebraic structure in the nonlinear theory

Finally, we discuss the full algebraic structure onA,A8 underlying the nonlinear theory
~5.84!–~5.94! given by the general parity-invariant deformation.

We start from the vector space decompositionsA5A0% Am andA85A08% A8m into massless
and massive subspaces defined by the mass tensormaa8 . Let P0 ,Pm ,P08 ,Pm8 be the respective
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projection operators onto these subspaces inA,A8. Thus we havemA(u0)5mA8(v08)50 and
um8 5mA(um)Þ0, vm5mA8(vm8 )Þ0, with subscripts denoting subspace projections for allu,v in
A andu8,v8 in A8. Let (u,v)A5uavbdab and (u8,v8)A85u8av8bda8b8 denote the vector spac
inner products onA,A8. We denote the Lie algebra multiplicationaa

bcu
bvc andkb8c8

a8u8bv8c on
A andA8 by the brackets@u,v#A and @u8,v8#A8 . In addition we denote the Lie algebra repr
sentationsj a8

bc8u
b and ba

b8cu8b by the linear mapsr8(u) and r(u8). Similarly, adA(u) and
adA8(u8) denote the adjoint representations given byaa

bcu
b andkb8c8

a8u8b on A andA8.
We begin by noting Eqs.~5.58! and~5.59! show thatr8 is a derivation of the Lie algebraA8,

r8~w!@u8,v8#A85@r8~w!u8,v8#A81@u8,r8~w!v8#A8 , ~5.100!

for all w in A, u8v8 in A8.
We now consider the additional algebraic structure imposed by the algebraic relations~5.36!

and ~5.37!. To proceed, first note that, by Eq.~5.37!,

r8~u0!50, r8~um!5adA8~mA~um!!, ~5.101!

which completely determinesr8 in terms of the adjoint representation ofA8. Next, by Eq.~5.36!,
it follows that

mA~@u,v#A!5@mA~u!,mA~v !#A8 . ~5.102!

Hence,A8m is a Lie subalgebra ofA8, and A0 is an invariant Lie subalgebra ofA, namely
@A8m ,A8m##A8m , @A,A0##A0 . Furthermore, it also follows from Eq.~5.36! that

~u0 ,@v0 ,w#A!A52~v0 ,@u0 ,w#A!A ~5.103!

and thus the inner product onA is an invariant metric with respect to the massless subspaceA0 .
Consequently, sinceA0 is a Lie subalgebra, it must be a direct sum of an Abelian Lie algebraA0

c

and a semisimple Lie algebraA0
s . However, the inner product is not required to be invariant w

respect to the whole Lie algebraA, since

~u,@v,w#A!A1~v,@u,w#A!A5~u,r~mA~v !!w!A1~v,r~mA~u!!w!A, ~5.104!

which need not vanish foru,v in Am . Thus, surprisingly,A need not be semisimple unless i
massive subspaceAm is empty. Moreover, the inner product on the Lie algebraA8 likewise is not
required to be invariant except on the massless subspaceA08 ,

~u08 ,@v08 ,w8#A8!A852~v08 ,@u08 ,w8#A8!A8 , ~5.105!

since, by Eq.~5.37!,

~u8,@v8,mA~w!#A8!A81~v8,@u8,mA~w!#A8!A85~u8,mA~r~v8!w!!A81~v8,mA~r~u8!w!!A8,

~5.106!

which need not vanish foru8,v8 in A8m . Hence, asA8m is a Lie subalgebra, it need not b
semisimple and therefore, again, the whole Lie algebraA8 is not required to be semisimple unle
its massive subspaceA8m is empty.

Finally, we consider the remaining algebraic relation~5.54!. This imposes further structure o
the Lie algebrasA,A8, and on the representationr as follows. We first examine, separately, th
pure massless casemaa850 and pure massive casemaa85mdaa8 , mÞ0.

In the massless case,

A5A0 , A85A08 , ~5.107!
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and soA and A8 are each a direct sum of Abelian Lie algebrasAc,A8c and semisimple Lie
algebrasAs,A8s, respectively. Now, Eq.~5.54! reduces to

r~w8!@u,v#A5@r~w8!u,v#1@u,r~w8!v#, ~5.108!

which states that the linear mapr is a derivation of the Lie algebraA8. Since the quotient ofA8
by its centerA8c is semisimple,r must take the form

r~w8!5adA~h~w8!! ~5.109!

for some linear maph from A8 into A. It then follows that

@h~u8!,h~v8!#A5h~@u8,v8#A8!. ~5.110!

Hence, the kernel ofh is an invariant Lie subalgebra ofA8. As a consequence of the decomp
sition A85A8c

% A8s, any such subalgebra must belong toA8c. Furthermore, the image ofh is a
Lie subalgebra ofA isomorphic toA8s. Hence,h(A8s)#As yields a Lie algebra homomorphism
This now fully describes the structure imposed onA andA8 by the algebraic relations~5.36! and
~5.37!, ~5.53!–~5.55!, ~5.58!, and~5.59! in the massless case.

In the massive case, note

A5Am , A85A8m ~5.111!

are isomorphic as vector spaces under the mapmA8(A8m)5m id(A8m)5mAm . Since this map is
a Lie algebra homomorphism by Eq.~5.102!, thenA andA8 are isomorphic Lie algebras. Con
sequently, Eq.~5.54! becomes

@rm~w!u,v#A1@u,rm~w!v#A2rm~w!@u,v#A

5rm~rm~w!u!v2rm~rm~w!v !u2rm~@w,u#A!v1rm~@w,v#A!u, ~5.112!

where rm(w)5r(mA(w)). Taking into account Eq.~5.36!, the relation~5.112! states that the
linear map onA defined by

r̃m~u!v5rm~v !u2adA~v !u ~5.113!

must be a skew-adjoint representation of the Lie algebraA,

~u,r̃m~w!v !A52~v,r̃m~w!u!A , @ r̃m~u!,r̃m~v !#5 r̃m~@u,v#A!. ~5.114!

This is satisfied ifrm5adA , in which caser̃m50 is a trivial representation, or ifrm50, in which
caser̃m52adA

T is the coadjoint representation. In either case, there is no further algebraic
ture imposed by Eq.~5.112!. Note then, surprisingly,A is thus not required to be semisimple
massive case withrm5adA .

To conclude the discussion, we return to the general situation whenA andA8 contain both
massless and massive nonempty subspaces. In this case, from Eq.~5.54!, it follows that

@r~w8!u,v#A1@u,r~w8!v#A2r~w!@u,v#A

5r~mA~r~w8!u!!v2r~mA~r~w8!v !!u2r~@w8,mA~u!#A8!v1r~@w8,mA~v !#A8!u.

~5.115!

We now show that this equation is satisfied by

r~w8!5adA~h~w8!! ~5.116!

for some linear maph from A8 into A if
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h~mA~Am!!5Am , mA~h~A8m!!5A8m , h~A08!#A0 ~5.117!

and if

@Am ,Am##Am , @Am ,A0##A0
c , @adA0

~Am!,adA0
~Am!#50, ~5.118!

whereA0
c is the center of the Lie algebraA. To begin the proof, first note that if Eq.~5.116! holds

then the left-hand side of Eq.~5.115! directly vanishes for anyh sinceadA is a derivation ofA.
Next, from Eq.~5.59!, the last two terms on the right-hand side of Eq.~5.115! become

2@adA~wm!,adA~um!#v1@adA~wm!,adA~vm!#u

52adA~@wm ,um#A!v1adA~@wm ,vm#A!u

52@@wm ,um#A ,v#A1@@wm ,vm#A ,v#A , ~5.119!

where wm5mA8(w8). Then, by Eq.~5.118!, the first two terms on the right-hand side of E
~5.115! reduce to

adA~adA~wm!um!v2adA~adA~wm!vm!u5@@wm ,um#A ,v#A2@@wm ,vm#A ,u#A.
~5.120!

Hence, the right-hand side of Eq.~5.115! vanishes, which completes the proof.
Consequently, note that Eqs.~5.116!–~5.118! determine

r~wm8 !5adAm
~mA8

21
~wm8 !!, r~w08!5adA0

~h0~w08!! ~5.121!

in terms of some linear maph05h+P08 from A08 into A0 , and using the inversemA8
21 from Am into

A8m of the linear mapmA8+Pm8 . It then follows that

mA8~@u8,v8#A8!5@mA8~u8!,mA8~v8!#A . ~5.122!

Hence,A08 is an invariant Lie subalgebra ofA8, andAm is a Lie subalgebra ofA. Consequently,
since by Eq.~5.105! the inner product onA08 is an invariant metric with respect toA8, the Lie
subalgebraA08 is a direct sum of an Abelian Lie algebraA80

c and a semisimple Lie algebraA80
s .

Furthermore, from Eq.~5.122!, it follows thatAm andA8m are isomorphic Lie algebras, but no
that they are not required to be semisimple. This now gives a complete description of the alg
structure imposed by the relations~5.36! and ~5.37!, ~5.53!–~5.55!, ~5.58!, and~5.59! in the case
given by Eqs.~5.116!–~5.118!.

Thus, the previous algebraic analysis leads to an interesting generalization of the ma
massive nonlinear theories in Secs. II and III given by the nonlinear theory~5.84!–~5.94! with the
following algebraic structure:

~i! The massless and massive subspacesA0 ,A08 ,Am ,A8m are Lie subalgebras ofA,A8 with
A8m andAm being isomorphic under the linear mapsmA ,mA8 given by the mass tensor.

~ii ! A0 and A08 are semisimple Lie algebras and ideals inA,A8, such thatA0 and Am

commute; however, the Lie algebrasAm.A8m are not restricted to be semisimple~they may be
nilpotent or solvable! andA8m is not restricted to commute withA08 .

~iii ! The representationr8 is the adjoint representation ofA8m5mA(Am) on A8, while the
representationr is the sum of the adjoint representations ofAm5mA8

21(A8m) and of A0

5h0(A08) on A, for any linear maph0 .
In physical terms, the resulting nonlinear theory~5.84!–~5.94! is a novel generalization o

Yang–Mills gauge theory for vector potentialsAa coupled to Freedman–Townsend gauge the
for antisymmetric tensor potentialsBa8, involving a Chern–Simons-type mass term. It describe
set of nonlinearly interacting massive spin-one fields and massless spin-one and spin-zero
with a mutual interaction between the massive and massless fields.
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VI. CONCLUDING REMARKS

This paper has developed in detail the geometrical, field theoretic, and algebraic aspect
interesting nonlinear generalization of massless/massive Yang–Mills/Freedman–Townsend
theory in four dimensions. The generalization involves an extended Freedman–Townsen
pling between the Yang–Mills one-form gauge fields and Freedman–Townsend two-form
fields, in addition to a Higgs-type coupling tied to a Chern–Simons mass term, and accom
by a novel form of generalized Yang–Mills and Freedman–Townsend gauge symmetries an
equations in both the massless and massive cases. In particular, the geometrical structur
resulting nonlinear gauge theory mixes and unifies well-known features of Yang–Mills theor
Freedman–Townsend theory in terms of Lie algebra valued curvatures and connections ass
to the gauge fields and nonlinear field strengths.

This generalization was found by a general determination of the geometrical nonlinear
mations of linear Abelian gauge theory for one-form fields and two-form fields with an Abe
Chern–Simons mass term. The deformation framework used here is a geometrical version
field theoretic approach developed in Refs. 3, 1, and 12. It exposes clearly the existence
integrability conditions on the first-order parts of possible deformations and leads to a s
uniqueness argument for the higher-order parts of allowed deformations.

Another approach to deformations~see Ref. 4 for an overview!, which is based on BRST
cohomology,5,16,17has recently yielded important results on the classification of allowed first-o
deformations of the free gauge theory for a set ofp-form fields, p51,...,n21, in n>2
dimensions.7,18 While this classification analysis is complete for masslessp-form fields with
p>2 and lists the extended Freedman–Townsend and Yang–Mills types of first-order def
tions, it did not explicitly treat deformations of massivep-form fields with the mass given by a
Abelian Chern–Simons term in the free gauge theory. Moreover, integrability conditions~i.e.,
obstructions to the existence of higher-order deformation terms! associated with combining th
distinct types of allowed first-order deformations were not obtained for anyp>1. In the case
p<2, these gaps are closed by the deformation results obtained in Sec. V. In particular, a co
classification of first-order geometrical deformations of the free gauge theory for a ma
massless set of one-form and two-form fields has been obtained inn54 dimensions, including all
integrability conditions that arise on such deformations~with typical assumptions on the allowe
number of derivatives considered for terms in the gauge symmetries and field equations!. Also,
uniqueness results on deformations to all orders in this setting have been proved.~Interestingly, if
the restriction to geometrical deformations is relaxed, then an additional type of deformat
known to exist in the casep51.19!

There are several directions in which the main results in this paper could be generalized
an extension of the general massless/massive nonlinear theory constructed here for Yan
one-form gauge fields coupled to Freedman–Townsend two-form gauge fields with a C
Simons mass term in four dimensions is expected to exist inn dimensions, involving a tower o
Lie-algebra valuedp-form fieldsA(p) , p51,...,n22, with a Yang–Mills self-coupling onA(1) , a
Freedman–Townsend self-coupling onA(n22) , and an extended Freedman–Townsend coup
betweenA(1) , . . . ,A(n22) , in addition to a Higgs coupling ofA(2) , . . . ,A(n22) with A(1) in the
massive case.

Second, it is straightforward to couple such a geometrical nonlinear gauge theory to grav
particular, on a space–time with metric tensorg, the only structure needed is the Hodge du
operator* determined byg, and the exterior derivatived operator~which is independent ofg).
For the casen54 dimensions, if the Lagrangian of the nonlinear gauge theory given in this p
for A(1) andA(2) is combined with the Einstein gravitational Lagrangian forg, then this achieves
an interesting generalization of the Einstein–Yang–Mills theory~and there is obvious extension t
n dimensions forA(1) , . . . ,A(n22)). Of particular interest would be to consider its field theore
features, such as black hole solutions, non-Abelian monopole solutions, and critical beha
the initial value problem.
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The thermodynamic free energyF(b) is calculated for a gas consisting of the
transverse oscillations of a piecewise uniform bosonic string. The string consists of
2N parts of equal length, of alternating type I and type II material, and is relativ-
istic in the sense that the velocity of sound everywhere equals the velocity of light.
The present paper is a continuation of two earlier papers, one dealing with the
Casimir energy of a 2N-piece string@I. Brevik and R. Sollie, J. Math. Phys.38,
2774 ~1997!#, and another dealing with the thermodynamic properties of a string
divided into two ~unequal! parts @I. Brevik, A. A. Bytsenko, and H. B. Nielsen,
Class. Quantum Grav.15, 3383~1998!#. Making use of the Meinardus theorem, we
calculate the asymptotics of the level state density, and show that the critical tem-
peratures in the individual parts are equal, for arbitrary space–time dimensionD. If
D526, we findb5(2/N)A2p/TII , TII being the tension in part II. Thermody-
namic interactions of parts related to high genus g is also considered. ©2003
American Institute of Physics.@DOI: 10.1063/1.1540235#

I. INTRODUCTION

Whereas the bosonic string of lengthL in D-dimensional space–time is assumed to be u
form, the compositestring is imagined to consist of two or more uniform pieces. In a Casi
context, such a model was introduced in 1990.1 The string was assumed to be divided into tw
pieces, of lengthsLI andLII , and the model was relativistic in the sense that the velocity of so
was everywhere required to be equal to the velocity of light. With this contraint imposed o
model, the Casimir energy of the string, i.e., the zero-point energy associated with its discon
properties, was easily calculable as a function of the length ratios5LII /LI . Later, various aspect
of the relativistic piecewise uniform string model were studied.2–12One may note, for instance, th
paper of Lu and Huang12 in which the model finds application in relation to the Green–Schw
superstring.

The present article focuses attention on the thermodynamic free energyF(b) at inverse
temperatureb51/T of a 2N-piece string, made up of 2N parts of equal length, of alternating typ
I and type II material. The model is relativistic, in the sense explained above. In an earlier p7

we developed the Casimir theory for a string of this type, whereas in another paper8 we considered
the free energy for the case where the string consists oftwo pieces only, i.e., the model of Ref. 4
The calculation ofF(b) for a 2N-piece string has to our knowledge not been undertaken be

a!Electronic mail: iver.h.brevik@mtf.ntnu.no
b!Electronic mail: abyts@uel.br
c!Electronic mail: rsol@statoil.com
10440022-2488/2003/44(3)/1044/12/$20.00 © 2003 American Institute of Physics
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It turns out, similarly as in Ref. 10, that the Meinardus theorem13–15 is powerful, allowing us to
find the asymptotics of the level state density. Using this we find, for a general space
dimensionD, that the critical~Hagedorn! temperatures for the two kinds of pieces are the sa
When D526, the common space–time dimension for a bosonic string, we findbc

5(2/N)A2p/TII , TII being the tension in region II. This result is derived in Sec. VI. In Sec. V
we comment upon the thermodynamic properties of the composite string for arbitrary genu

II. RESUMÉ OF THE 2N-PIECE STRING THEORY

Assume, as mentioned, that the string of total lengthL is divided into 2N equally large pieces
of alternating type I and type II material; see Fig. 1. The string is relativistic, in the sense th
velocity of sound is everywhere equal to the velocity of light,vs5ATI /r I5ATII /r II 5c, where
TI ,TII are the tensions andr I ,r II the mass densities in the two pieces. We will study the tra
verse oscillationsc5c(s,t) of the string,s denoting as usual the position coordinate andt the
time coordinate of the string. We can thus write in the two regions

c I5j Ie
iv(s2t)1h Ie

2 iv(s1t),
~1!

c II 5j II e
iv(s2t)1h II e

2 iv(s1t),

wherej and h are constants. The junction conditions are thatc itself as well as the transvers
elastic forceT]c/]s are continuous, i.e.,

c I5c II , TI]c I /]s5TII ]c II /]s, ~2!

at each of the 2N junctions. We definex as the tension ratio,x5TI /TII , and define also the
symbolspN anda by pN5vL/N, a5(12x)/(11x). Now introduce the matrixL,

L~a,pN!5S a b

b* a* D , ~3!

with

FIG. 1. Sketch of the composite 2N string, whenN56.
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a5e2 ipN2a2, b5a~e2 ipN21!. ~4!

Then, as shown in Ref. 7, the eigenfrequenciesv are determined from the equation

Det@~12a2!2NLN~a,pN!21#50. ~5!

For practical purposes it is convenient to reformulate the condition~5!. Let us define two new
quantitiesl6 :

l6~pN!5cospN2a26@~cospN2a2!22~12a2!2#1/2. ~6!

Then, we can reexpress the condition~5! as7

l1
N 1l2

N 52~12a2!N. ~7!

We can now make use of the following recursion formula for the quantitySN[l1
N 1l2

N :

SN52~cosp2a2!SN212~12a2!2SN22 , N>2, ~8!

in which it is assumed thatvL/N is constant, at all recursive steps. The initial values ofSN are
S052, S15l11l252(cosp2a2).

Assume now thatL5p, in conformity with usual practice. ThuspN5pv/N. We let
Xm(s,t), with m50,1,2,...,(D21), specify the coordinates on the world sheet. For each of
eigenvalue branches determined by the dispersion equation~5! we can writeXm on the form

Xm5xm1
pmt

pT0
1XI

m , region I, ~9!

Xm5xm1
pmt

pT0
1XII

m , region II, ~10!

wherexm is the center-of-mass position,pm is the total momentum of the string, andT05 1
2(TI

1TII ) is the mean tension. Further,XI
m andXII

m are decomposed into oscillator coordinates,

XI
m5

i

2
,s(

nÞ0

1

n
@anIe

iv(s2t)1ãnIe
2 iv(s1t)#, ~11!

XII
m5

i

2
,s(

nÞ0

1

n
@anIIe

iv(s2t)1ãnIIe
2 iv(s1t)#. ~12!

Here,,s is the fundamental string length, unspecified so far, andan ,ãn are oscillator coordinates
of the right- and left-moving waves, respectively. A characteristic property of the composite
is that the oscillator coordinates have to be specified for each of the various branches dete
by Eq. ~5!. This makes the handling of the formalism complicated, in general. A signifi
simplification can be obtained if, following Ref. 8, we limit ourselves to the case of extreme s
ratios only. Sincea occurs quadratically in Eqs.~6! and ~7!, the eigenvalue spectrum has to b
invariant under the transformationx→1/x. It is sufficient, therefore, to consider the tension ra
interval 0,x<1 only. The case of extreme tensions corresponds tox→0. We will consider only
this case in the following.

III. THE CASE OF EXTREME TENSIONS

We assume thatTII has a finite value, so that the limiting casex→0 corresponds toTI→0.
ThusT0→ 1

2TII . Since nowa→1 we get from Eq.~6! l250, l15cospN21, so we obtain from
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Eq. ~7! the remarkable simplification that all the eigenfrequency branches degenerate in
single branch determined by cospN51. That is, the eigenvalue spectrum becomes

vn52Nn, n561,62,63, . . . . ~13!

Then, choosing the fundamental length equal to,s5(pTI)
21/2, we can write the expansion~11!

in region I as~with subscript I on thean’s omitted!

XI
m5

i

2ApTI
(
nÞ0

1

n
@an

me2iNn(s2t)1ãn
me22iNn(s1t)#. ~14!

The junction conditions~2! permit all waves to propagate from region I to region II. Whenx
→0, they reduce to the equations

j I1h I52j II 52h II , ~15!

which show that the right- and left-moving amplitudesj I andh I in region I can be chosen freel
and that the amplitudesj II ,h II in region II are thereafter fixed. This means, in oscillator langua
thatan

m andãn
m can be chosen freely. The expansion in region II can in view of Eq.~15! be written

as

XII
m5

i

2ApTI
(
nÞ0

1

n
gn

me22iNnt cos~2Nns!, ~16!

where we have definedgn
m as

gn
m5an

m1ãn
m , nÞ0. ~17!

The oscillations in region II are thus standing waves. This is the same kind of behavior a
found for the two-piece string.8

The action of the string is

S52
1

2 E dtdsT~s!hab]aXm]bXm , ~18!

wherea,b50,1 andT(s)5TI in region I,T(s)5TII in region II. The momentum conjugate t
Xm is Pm(s)5T(s)Ẋm, and the Hamiltonian is accordingly

H5E
0

p

@Pm~s!Ẋm2L#ds5
1

2 E0

p

T~s!~Ẋ21X82!ds, ~19!

whereL is the Lagrangian.
As for the constraint equation for the string, some care has to be taken. Conventionally,

classical theory for the uniform string the constraint equation readsTab50, Tab being the
energy–momentum tensor. As discussed in Ref. 8, the situation is here more complicated
the junctions restrict the freedom one has to take the variationsdXm. We thus have to replace th
strong conditionTab50 by a weaker condition, and the most natural choice, which we will ad
is to impose thatH50 when applied to the physical states.

Let us introduce lightcone coordinates,s25t2s ands15t1s. The derivatives conjugate
to s7 are]75 1

2(]t7]s). In region I,
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]2Xm5
N

ApTI
(
2`

`

an
me2iNn(s2t),

~20!

]1Xm5
N

ApTI
(
2`

`

ãne22iNn(s1t),

and in region II

]7Xm5
N

2ApTI
(
2`

`

gn
me62in(s7t), ~21!

where we have defined

a0
m5ã0

m5
pm

NTII
ATI

p
, g0

m52a0
m . ~22!

Inserting these expressions into the Hamiltonian

H5E
0

p

T~s!~]2X•]2X1]1X•]1X!ds

5NTIE
0

p/(2N)

~]2X•]2X1]1X•]1X!ds

1NTII E
p/(2N)

p/N

~]2X•]2X1]1X•]1X!ds ~23!

we get

H5
1

2
N2(

2`

`

~a2n•an1ã2n•ãn!1
N2

4x (
2`

`

g2n•gn . ~24!

Now consider the expression for the squareM2 of the mass of the string. One must haveM2

52pmpm , as in the case of a uniform string.16 We start from the constraintH50 when applied
to physical states, making use of Eq.~24! in which we separate out then50 terms. Using that
a0•a052M2x/(pN2TII ) according to Eq.~22! we obtain in this way, when again observing th
x!1,

M25pN2TII (
n51

` Fa2n•an1ã2n•ãn1
1

2x
g2n•gnG . ~25!

The following point ought to be stressed in order to prevent misunderstanding. The reason w
have dealt with the limit of extreme tensions,x5TI /TII →0, is merely practical; therewith the
eigenvalue branches degenerate into one single branch, Eq.~13!. This simplification is however
not of fundamental importance; in particular, it has no bearing on the general problem of h
distinguish between the actions for massive and massless particles. We never putTI exactly equal
to zero.

IV. QUANTIZATION

The momentum conjugate toXm is at any position on the string equal toT(s)Ẋm. We
accordingly require the commutation rules in region I to be

TI@Ẋm~s,t!,Xn~s8,t!#52 id~s2s8!hmn, ~26!

and in region II
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TII @Ẋm~s,t!,Xn~s8,t!#52 id~s2s8!hmn, ~27!

hmn being theD-dimensional flat metric. The other commutators vanish. The quantities t
promoted to Fock state operators area7n andg7n . We insert the expansions forXm and Ẋm in
regions I and II into Eqs.~26! and ~27! and make use of the effective relationship

(
n52`

`

e2iNn(s2s8)52 (
n52`

`

cos 2Nns cos 2Nns8→ p

N
d~s2s8!. ~28!

We then get in region I

@an
m ,am

n #5ndn1m,0h
mn, ~29!

with a similar relation forãn . In region II,

@gn
m ,gm

n #54nx dn1m,0 hmn. ~30!

We introduce annihilation and creation operators by

an
m5An an

m , a2n
m 5An an

m† ,
~31!

gn
m5A4nx cn

m , g2n
m 5A4nx cn

m† ,

and find forn>1 the standard form

@an
m ,am

n†#5dnmhmn,
~32!

@cn
m ,cm

n†#5dnmhmn.

These expressions are formally the same as those found for a two-piece string.8 From Eq.~24! we
get, when separating out then50 term,

H52
M2

pTII
1

1

2
N(

n51

`

vn~an
†
•an1ãn

†
•ãn12 cn

†
•cn!. ~33!

Herean
†
•an[an

m†anm , andvn52Nn as before. From the conditionH50 we now get

M25
1

2
pNTII (

i 51

24

(
n51

`

vn~ani
† ani1ãni

† ãni12 cni
† cni2C!, ~34!

where we have putD526 and summed over the transverse 24 oscillator operators. Furthe
have introduced a constantC in order to account for ordering ambiguities. Note that in Eq.~20! the
denominator goes to zero whenTI does, but the sameTI is restored again in Eqs.~22! and ~26!.
The result is that the commutation rules for the creation and annihilation operators, Eq.~29!, take
the same form as usual in quantum field theory.

V. QUANTUM THERMODYNAMICS

The constraint for the closed string~fat circles at Fig. 2!, expressing the invariance of th
theory in the region I under shifts of the origin of the coordinate, has the form

(
i 51

24

(
n51

`

vn@ani
† ani2ãni

† ãni#50. ~35!
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The commutation relations for the above operators are given by Eq.~32!. The mass of state
~obtained by acting on the Fock vacuumu0& with creation operators! can be written as follows:
(mass)2;an1

†
¯ani

† cn1
†
¯cni

† u0&.
Let us start with the discussion of the free energy in field theory at nonzero temperatT

5b21 ~we put kB51). As usual the physical Hilbert space consists of all Fock space s
obeying the condition~35!, which can be implemented by means of the integral representatio
Kronecker deltas. Thus the free energy of the field content in the ‘‘proper time’’ represen
becomes

F~b!5F~b5`!2p~2p!214E
0

` dt2

t2
14 Fu3S 0U ib2

2pt2
D21GTr expH 2

t2M2

2 J
3E

2p

p dt1

2p
Tr expH iNt1(

i 51

24

(
n51

`

vn@ani
† ani2ãni

† ãni#J , ~36!

where F(b5`) is the temperature independent part ofF(b) ~the Casimir energy!, while the
second term in~36! presents the temperature dependent part~the statistical sum!. Once the free
energy has been found, the other thermodynamic quantities can readily be calculated. For in
the energyU and the entropyS of the system areU5(]/]b)(bF(b)), S5b2(]/]b)(F(b)).

VI. THE CRITICAL TEMPERATURE

First we consider some mathematical results on the asymptotics of the level degeneracy
leads to the asymptotics of the level state density. Let

G~z!5 )
n51

`

@12e2zn#2an511 (
n51

`

J~n!e2zn ~37!

be the generating function, whereR z.0 andan are non-negative real numbers. Let us consi
the associated Dirichlet series

FIG. 2. Fat circles correspond to closed strings, double lines correspond to open strings.
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D~s!5 (
n51

`

ann2s, s5s1 i t , ~38!

which converges for 0,s,p. We assume thatD(s) can be analytically continued in the regio
s>2C0 (0,C0,1) and hereD(s) is analytic except for a pole of order one ats5p with
residueA. Besides we assume thatD(s)5O(utuC1) uniformly in s>2C0 asutu→`, whereC1 is
a fixed positive real number. The following lemma13–15 is useful with regard to the asymptoti
properties ofG(z) at z50:

Lemma 1: IfG(z) and D(s) satisfy the above assumptions and z5y12p ix, then

G~z!5expH AG~p!zR~11p!z2p2D~0!logz1
d

ds
D~s!Us501O~yC0!J ~39!

uniformly in x as y→0, provideduargzu<p/2 and uxu< 1
2. Moreover, there exists a positive numb

« such that

G~z!5O~exp$AG~p!zR~11p!y2p2Cy2«%!, ~40!

uniformly in x with ya<uxu< 1
2 as y→0, C being a fixed real number anda511p/22pn/4, 0

,n, 2
3.

The main result below follows from the lemma and permits one to calculate the com
asymptotics ofJ(n).

Theorem 1: ~Meinardus13,14! For n→` one has

J~n!5Cpnk expH 11p

p
@AG~11p!zR~11p!#1/~11p!np/~11p!J ~11O~n2k1!! , ~41!

Cp5@AG~11p!zR~11p!#~122D(0)!/2(11p)
exp~~d/ds!D~s!us50!

@2p~11p!#1/2 , ~42!

k5
2D~0!2p22

2~11p!
, k15

p

11p
minS C0

p
2

n

4
,
1

2
2n D . ~43!

Coming back to the composite string problem, note that the generation function has the

W~b!5Tr@e2bM2
# (C50)5W(I )~b!W(II )~b![ )

n51

`

@12e2nbQ(N)#248)
n51

`

@12e22nbQ(N)#224,

~44!

whereQ(N)5pTII N
2. Some remarks are in order. Taking into accountan5D22 @or an52(D

22) in the case of region II#, we havep51. In fact, Eq.~38! gives the Riemann zeta function
Therefore, from the Meinardus theorem, Eqs.~41!–~43!, it follows that

J (I )~n!5C1
(I )nk(I )

expH pA4np~D22!

3Q~N! J ~11O~n2k1!! , ~45!

J (II )~n!5C1
(II )nk(II )

expH pA2n~D22!

3Q~N! J ~11O~n2k1!! . ~46!

Using the mass formulaM25n ~for the sake of simplicity we assume a tension parameter, w
dimensions of (mass)p11, equal to 1! we find for the number of bosonic string states of massM
to M1dM
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n~M !dM.2C1M ~12D !/2 exp~bM!dM , b5pA D22

3Q~N!
. ~47!

One can show that the constantb is the inverse of the Hagedorn temperature.
For the closed bosonic string in the region I the constraintN05Ñ0 should be taken into

account, whereN0 is a number operator related toM2. As a result, in Eq.~45! the total degeneracy
of the leveln is simply the square ofJ (I )(n). Therefore the critical temperatures of compos
string are given by

bc
(I )5pA D22

3Q~N!
5

2

N
A2p

TII
, ~48!

bc
(II )5pA D22

3Q~N!
5

2

N
A2p

TII
, ~49!

and sobc
(I )5bc

(II )5bc .

VII. HIGH GENERA

The aim of this section is to consider thermodynamic properties of the composite stri
arbitrary genus g associated with Riemann surface world-sheetSg . Such considerations allow u
to identify the critical temperature at arbitrary loop order. It is well-known that the gen
temperature contribution to the free energy for the bosonic string can be written as17

Fg~b!5 (
m,nPZ2g/$0%

E ~dt!WP ~detP1P!1/2~detDg!
213e2DS(b;m,n) , ~50!

where (dt)WP is the Weil–Petersson measure on the Teichmu¨ller space. This measure as well a
the factors det(P1P) and detDg are each individually modular invariant.17 In addition,

I g~t!5~detP1P!1/2~detDg!
2135ec(2g22)S d

ds
Z~s!Us51D 213

Z~2! , ~51!

whereZ(s) is the Selberg zeta function andc an absolute constant.18 Furthermore, the winding-
number factor has the form of a metric over the space of windings, namely

DS~b;m,n!5
p

2
NTII b

2@m,V, i2ni #~~IV!21! i j @V̄ jkmk2nj #5gmn~V!NmNn , ~52!

wherem,n51,2, . . . ,2g, $N1, . . . ,N2g%[$m1 ,n1 , . . . ,mg ,ng%. The periodic matrixV, corre-
sponding to the string world-sheet of genus g, is a holomorphic function of the moduli,V i j

5V j i andIV.0. The matrixV admits a decomposition into real symmetric g^ g matrices:V
5V11 iV2 . As a result

g~V11 iV2!5S V1V2
21V11V2 2V1V2

21

2V2
21V1 V2

21 D . ~53!

Besides, g(V)5L̂ tg(L(V))L̂,18 where L is an element of the symplectic modular grou
Sp(2g,Z) and the associated tranformation of the periodic matrix readsV°V85L(V)5(AV
1B)(CV1D)21. As a consequence, the winding factor(m,n exp@2DS(b;m,n)# is also modular
invariant. It can be shown that the 2g summations present in the expression forFg(b) can be
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replaced by a single summation together with a change in the region of integration from
fundamental domain to the analog of the stripSa1

related to the cyclea1 , whose choice is entirely
arbitrary.17,19 Then, one has

Fg~b!5(
r 51

` E ~dt!WP I g~t!expH 2
p

2
NTII b

2r 2~V1i~~IV!21! i j V̄ j 1!J . ~54!

To make use of the Mellin transform the genus-g free energy can be present in the form20–22

Fg~b!5
1

2p i ER s5s0

dsG~s!z~2s!S p

2
NTII b

2D 2s

3 H E ~dt!WP I g~t!@V1i~~IV!21! i j V̄ j 1#2sJ
(Reg)

. ~55!

In order to deal with Eq.~55! the integrals on a suitable variable in (dt)WP should be understood
as the regularized ones. In this way the order of integration may be interchanged.

The critical behaviors of closed and open strings of the composite model coincide~at least at
level g51). Let us consider, for example, the open string genus-g contribution to the free e
The matrixV may be chosen asV5diag(V2,V2

21). In the limit V2→0, one has

expH 2
p

2
NTII b

2~NtVN!2sJ→expH 2
p

2
NTII b

2V2
21NtNJ , ~56!

and

S (
NPZ2g/$0%

~NtVN!2sD
(V2→0)

→V2
s (
NPZg/$0%

~N tN!2s5V2
sZgu0

0u~2s! , ~57!

where the Epstein zeta function of order g is defined by

Zguh
bu~s!5 (

NPZg/$0%

@~n11b1!21¯1~ng1bg!
2#2s/2 exp@2p i ~N t,h!# . ~58!

The corresponding contribution is given by

1

2p i ER s5s0

ds G~s!S p

2
NTII b

2D 2s

Zgu0
0u~2s!H E dtWPV2

sI g~t!J
(Reg)

. ~59!

Since a tachyon is present in the spectrum, the total free energy will be divergent, for a
The infrared divergence may be regularized by means of a suitable cutoff parameter. This
gence could be associated with pinching a cycle nonhomologous at zero. The behavior
factor (dt)WP I g(t) is given by the Belavin–Knizhnik double-pole result and has a unive
character for any g. It should also be noticed that this divergence isb independent and the
meromormphic structure is similar to the genus-one case. As a consequence, the whole
dependence of the critical temperature is encoded in the Epstein zeta functionZgu0

0u(2s) ~see for
details Ref. 20!.

For this reason, we mention the asymptotic properties of functionZgu0
0u(2s). The following

result holds:
Corollary 1 (Ref. 20):
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Bg[ lim
Rs →1`

Zgu0
bu~2s12!

Zgu0
bu~2s!

5@~ b̂12h1!21¯1~ b̂g2hg!2#21, ~60!

where at least one of the bi is noninteger, b̂i5bi2@bi # with @bi # the noninteger (decimal) part o
bi and

h i5H 0 , 0<b̂i<
1
2,

1 , 1
2<b̂i,1.

~61!

Furthermore, ifb5(0,0, . . .,0), then Bg51.
As a consequence, the interactions of bosonic strings do not modify the critical temper

However, one can consider different linear real bundles over compact Riemann surface
spinorial structures on them. The procedure of evaluation of the free energy in terms of th
integral over the metrics does not depend on whatever type of real scalars are considered. T
leads to new contributions to the genus-g integral~50!.

One could investigate the role of these contributions for the torus compactification.2,18,23 In
this case, the sum in Eq.~50! should be taken over the vectors on the lattice on which some s
dimensions are compactified. The half-lattice vectors can be labelled by the mult
(b1 , . . . ,bp), with bi5

1
2. The critical temperature related to the multipletb

5(b1 , . . . ,bp,0, . . . ,0) can beeasily evaluated by means of Eq.~60!, which givesBp54p21. As

a resultbc,p5(2/Ap) bc . As an example, we note the particular multiplets (0, . . . ,1
2, . . . ,0) and

(0,..12,
1
2,...,0), where only onebi and twobi are different from zero. In this case we have ‘‘min

mal’’ critical temperatures given bybc,1
215bc

21/2 andbc,2
215bc

21/&, respectively.

VIII. CONCLUDING REMARKS

Making use of the Meinardus theorem in Sec. VI, we found the critical temperatures o
two kinds of pieces in the string~I and II! to be equal and to be given by Eqs.~48! and ~49! for
arbitrary space–time dimensionD. The calculation generalizes earlier calculations of the Cas
energy of the 2N-piece string in Ref. 7, and of thermodynamics of the two-piece string in Re
Interactions of bosonic parts of a piecewice uniform string do not modify the critical tempera
However, for the sectors of parts having a spinor structure, the critical temperatures, ass
with genus g, depend on the windings.

It ought to be emphasized again that a fundamental property of this kind of string theory
relativistic invariance. It means the velocity of sound is everywhere required to be equal to
velocity of light. If this requirement were to be abandoned, the regularization procedure wou
more difficult. The requirement about relativistic invariance makes the string theory quite a
gous to the Casimir theory in a continuous medium satisfying the condition«m51, « being the
premittivity andm the permeability~cf., for instance, Refs. 24 and 25, and also the recent dis
sion in Ref. 26!.

The theory above was worked out in explicit form, making the simplifying assumptiox
5TI /TII →0. It should be noted, however, that no important physical property of the string m
is lost by going to the case of extreme string tensions. In particular, as already mentione
simplification does not prevent one from distinguishing between the actions for massiv
massless particles.

As for physical implications of the string model, we note that it can be looked upon a
vacuum state of a quantum field theory in a two-dimensional space–time endowed with s
properties. One of the most fundamental properties of the string is thenegativityof the Casimir
energy. Moreover, as we would expect, the Casimir energy can always be made more neg
the string chooses to divide itself into a larger number of pieces. It becomes natural to sugge
the model could be of some importance for cosmology. Perhaps a ‘‘phase transition’’ of thi
played a physical role in the early universe.
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Let us also mention another argument, taken from the theory of superstrings, which sim
points towards the physical importance of two-dimensional field theory. In Ref. 27 it is argue
at high temperatures, the free energy for a superstring isFstring;2VT2, whereV is the volume
andT is the temperature. One can compare this with the quantum field theory behavior of th
energy ind spatial dimensions,FQFT;2VTd11. It becomes natural to interpret this to mean th
the fundamental degrees of freedom in string theory are much less than in quantum field th
the same dimensions, and that the underlying string theory should be like a two-dimen
quantum field theory. See also the recent discussion in Ref. 28.
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Adjoint operators, gauge invariant perturbations,
and covariant symplectic form for black holes
in string theory
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Using a scheme of adjoint operators, we give a covariant and gauge invariant
treatment for the perturbation theory of static charged black holes in string theory,
valid for curvature below the Planck scale; conserved quantities and a covariant
symplectic form on the phase space are explicitly constructed. Future extensions of
the present results are discussed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542661#

I. INTRODUCTION

At present, the theories of extended objects such as membranes and strings represent t
viable candidates for a quantum theory of gravity. Particularly, there have been many e
studying black holes in string theory from different points of view, with the main task of el
dating on the problem of quantum gravity embedded in them, since such objects appear to
crucial role in the subject. However, because of the many technical and conceptual difficul
treating the full theory, the low-energy limit of string theory has been developed as a
pragmatic approach. This low-energy physics emerges as an effective action obtained fr
lowest order in the world-sheet and string loop expansion, where the usual Einstein–H
gravity is supplemented by gauge fields, scalar fields such as the axion and the dilaton,
couple in a nontrivial way to the other matter fields.1 As it is well known, the presence of th
dilaton changes drastically the dynamical properties of the systems, and new features arise
theory due to the nontrivial coupling of this field. In particular, dilaton black holes have show
have novel thermodynamics properties,2,3 and to behave like elementary particles in the sense
the excitation spectrum has an energy gap.4–6 Besides, it has been explored the viewpoint th
quantum black holes are massive excitations of extended objects and also correspond,
sense, to elementary particles~Ref. 7, and references cited therein!.

In all issues discussed above, the first-order perturbation analysis plays a fundament
Perturbation theory revels important physical information of the system under study. As we
see, the adjoint operators approach will cover, in a unified way, various aspects of the
problem ~in this case, the perturbation analysis of string black holes!, which traditionally have
been treated separately. In the remainder of this Introduction, we discuss such aspects, poin
our aims and successes in the present work, and we make a review of previous works in wh
present approach has been employed.

In the scheme of the perturbation theory, the black holes~and other space–times! have been
studied from different approaches. The traditional approaches consist of trying to solve the
nal set of equations for the field perturbations directly. This approach has several disadva
and difficulties that can be overcome by means of an alternative and more convenient ap
based on the concept of the adjoint of a differential operator~Wald’s method!. The reach and
differences of this approach with respect to the usual ones have been already discussed w
previous works; in fact, in the cases where string fields are involved, the approach has

a!Electronic mail: rcartas@sirio.ifuap.buap.mx
10560022-2488/2003/44(3)/1056/15/$20.00 © 2003 American Institute of Physics
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applied successfully in the setting of the Einstein–Maxwell-dilaton-axion~EMDA! theory, which
contains the low-energy limit of string theory as a particular case.8,9 Additionally, as we shall see
with the connection recently established between adjoint operators and conserved curren10–12

Wald’s method becomes the more convenient and powerful approach for facing the stu
perturbations.

At a more general context, the study of conservation laws in field theories involving gr
becomes particularly interesting because of the lack of conserved currents representing t
servation of energy and momentum. Additionally, in the construction of acovariant symplectic
structureon the phase space of classical systems, a bilinear product on first-order deformat
classical solutions on such phase space is required.13–15In both cases, the problem is to find a loc
expression physically meaningful and coming from some continuity equation. As we shall se
present adjoint operators scheme allows us to establish a local continuity law with the fe
described above, from which conserved quantities and a covariant symplectic structure~in terms
of Debye potentials! are derived.

In this manner, the purpose of the present work is to perform an analysis of the first-
perturbations of the dilatonic charged black holes employing Wald’s method. Previously
self-adjointness of the operator governing the field perturbations in the EMDA theory has
demonstrated,10 leaving only the finding of the corresponding decoupled set of equations in
case where the background space–time corresponds to the solution considered, in order t
lish our results.

For this purpose, the outline of this article is as follows. The relevant information on
background solution is given in Sec. II. In Sec. III, a decoupled set of equations for metric, v
potential, and dilaton perturbations is obtained from the original equations for the field per
tions using the Newman–Penrose formulation. Employing the results of Sec. III, the equatio
the Debye potentials, and the expressions for the metric, vector potential, and dilaton pertur
in terms of those, are found in Sec. IV A. In Sec. IV B, our fundamental continuity equatio
established and a symplectic structure is derived in Sec. IV C. The separation of variables
equations for the Debye potentials and for the continuity equation is performed in Sec. V, suc
two conserved quantities are obtained. Finally, we finish with some concluding remarks and
extensions of the present results.

It is worth pointing out some issues on the notation. The first-order field variations appe
in Refs. 8 and 9 are denoted by a superscript B. On the other hand, the field variations co
according to Witten’s interpretation,13,14 with an infinite-dimensional generalization of the usu
exterior derivative, which is traditionally represented by the symbold. However, in Refs. 8 and 9
and the present work, the Newman–Penrose formalism is used, in which the symbold is employed
for denoting one of the directional derivatives defined by the null tetrad. In this manne
avoiding confusion, we will maintain the symbold as usual in the Newman–Penrose notation, a
the superscript B for the first-order field variations~the exterior derivative of background fields!.
In the present article, the exterior derivative will not be performed explicitly, and it will
sufficient for our purposes to understand any quantity with the superscript B as a one-form
phase space. Quantities without such a superscript will correspond to background fields,
mean zero-forms on the phase space. With these previous considerations, formulas and no
Refs. 8 and 9 will be used throughout this article; the concepts and definitions on differ
forms, exterior derivatives, etc., come from Ref. 14.

II. BACKGROUND SPACE–TIME

Static, spherically symmetric solutions of the Einstein–Maxwell-dilaton equations have
found, representing charged black holes for curvature below the Planck scale.2,3 The solutions for
magnetically charged dilaton black holes have, using the metric convention (1222), the line
element

ds25x2dt22x22dr22R2dV, ~1!
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wherex andR depend only onr :

x25S 12
r 1

r D S 12
r 2

r D (12a2)/(11a2)

, R5r S 12
r 2

r D a2/(11a2)

, ~2!

wherer 1 andr 2 are the values of the parameterr at the outer and the inner horizons, respective
and are related to the physical mass (M ) and charge (Q); a is the dilaton coupling parameter. Th
Maxwell and dilaton fields are given by

F5Q sinudu∧dw, e22af5S 12
r 2

r D 2a2/(a211)

~j[2e22af!. ~3!

There are also electrically charged solutions which may be obtained by a duality rotation
more details see Refs. 2 and 3.

For our present purpose, it is more convenient to specify the line element~2! by the null tetrad

D[ l m]m5
1

x2 ] t1] r , D[nm]m5
1

2
~] t2x2] r !,

~4!

d[mm]m5
1

&R
~]u1 i cscu]w!, d̄[m̄m]m5

1

&R
~]u2 icscu]w!.

Using the commutation relations of the tetrad~4!, the nonvanishing spin coefficients can b
conveniently expressed as

r5D ln R21, m5D ln R, g5D ln x21,
~5!

b5d ln sin1/2u, a52 d̄ ln sin1/2u,

wherer, m, andg depend only onr , andb anda on bothr andu.
On the other hand, considering the first of Eqs.~3! and the definitionsw0[ l mmnFmn , w1

[ 1
2( l

mnn1m̄mmn)Fmn , and w2[m̄mnnFmn , the Newman–Penrose components of the elec
magnetic field are given by

w0505w2 , w1~r !5
iQ

2R2 . ~6!

Note thatw11w̄1505df1 , which will be used implicitly below. On the other hand, from Eq
~3! and ~4!, the only nonvanishing derivatives of the dilaton field are Df andDf, which depend
only on r , and

df505 d̄f. ~7!

Thus, the only nonvanishing Ricci scalars are~see Appendix of Ref. 8!

F0052~Df!2, F2252~Df!2,
~8!

F1152 1
2 ~Df!~Df!22jw1

2 , L52 1
6 ~Df!~Df!,

and the only nonvanishing component of the Weyl spinor can be expressed as

C2~r !52gr2 2
3 DfDf. ~9!

Furthermore, the background Maxwell equations take the form8
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~D22r!w150, ~D12m!w150, ~10!

and, similarly, the background dilaton equation is

DDf12mDf22ajw1
250. ~11!

Additionally, using Eqs.~4!–~9! and the commutation relations, we can find the following re
tions:

~D1pr!~d1qb!5~d1qb!@D1~p11!r#,
~12!

~D1pg1p8m!~d1qb!5~d1qb!@D1pg1~p821!m#,

wherep, q, andp8 are arbitrary constants.
In the Newman–Penrose formalism, the adjoints of the tetrad components~4! are given, in

general, by Eqs.~16! of Ref. 8, which reduce to

D†52~D22r!, D†52~D22g12m!, d†52~d12b!, d̄†52~ d̄12b̄ !, ~13!

for the present background solution. These equations will be used below.

III. DECOUPLED SET OF EQUATIONS FOR GAUGE INVARIANT PERTURBATIONS

The notation, conventions, and Appendix of Ref. 8 will be used extensively throughou
article. In particular, the metric, vector potential, and dilaton variations are represented byhmn ,
bm , andfB, respectively. The metric and vector potential perturbations are defined modulo g
transformations. Since the dilaton is a fundamental physical field, no gauge invariance ass
with this field exists.

On the other hand, it is well known that when the perturbation analysis is performed usin
Newman–Penrose formalism, one is faced with the perturbed tetrad gauge freedom. The
tional approaches make use of this gauge freedom in order to simplify the equations f
perturbations~Ref. 8 and references therein!. However, we shall see that in the present ca
although including string fields, there is no need to invoke perturbed tetrad rotations, bu
appropriate combinations of the perturbed quantities, which are independent on the pe
tetrad gauge freedom, lead in a natural way to a decoupled set of equations from the origin
Such combinations prove to be also independent on the ordinary gauge transformations
electromagnetic potential perturbations. This system of equations consists of five second

linear partial differential equations for five unknowns,C0
B , C̄4

B , s̃, l̃, and (d22b)f̃B, and can
be expressed in the following matrix form~a detailed derivation of this system is given in Ref. 1!:

O~CB!5SS ~Tmn!

~ j m!

fs

D , ~14!

whereO is the 535 matrix

O[S O11 0 O13 2F1Df F1

0 O22
x4

4
DfF1 O24

x4

4
F1

O31 0 O33 O34 O35

0 O42 O43 O44 O45

x4

8
F1

1

2
F1 O53 O54 O55

D , ~15!
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~CB![S C0
B

C̄4
B

s̃B

l̃B

~d22b!f̃B

D , ~16!

andS is the 533 matrix

S[S S11 0 0

S21 0 0

S31 S32 0

S41 S42 0

S51 S52 S53

D , ~17!

where the entries are given explicitly by

O115~D25r!~D24g1m!2~d22b!~ d̄14b̄ !2~3C222F1112DfDf!,

O13528jw1
2D24Df~gDf23ajw1

2!,

F1~r !58x22DfS g1
ajw1

2

Df D ,

O225~D12g15m!~D2r!2~d22b!~ d̄14b̄ !2~3C212DfDf22F11!,

O2458jw1
2~D12g!14Df~gDf23ajw1

2!,

O315D24g12m,

O335~D24g!~D22r!2aDf~D22g!2~d22b!~ d̄14b̄ !22~3C212F11!,

O3452aDfD12F00,

O355a~D22r!22Df, ~18!

O425D22r,

O435aDf~D22g!22F22,

O4452D~D12g12m!1aDfD1~d22b!~ d̄14b̄ !12~3C212F11!,

O455a~D12m!22Df,

O5352
x4

8
F1~D22r!1@Df~D2r!22ajw1

2#~D22g1m!

2Df~d22b!~ d̄14b̄ !2mF22F22Df,

O545~F22mDf!~D2r!2~D23r!Df~D12g12m!1Df~d22b!~ d̄14b̄ !

1@~DfD22ajw1
2!r#1Df~3C212F11!,
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O555~D23r!~D13m!2~d22b!~ d̄14b̄ !23C212mr23DfDf24~a221!jw1
2 ,

F2[2DfS m1
ajw1

2

Df D ,

and

S1152~d22b!~D23r!l (mmn)2@~D25r!~D2r!1F00#m
mmn2~d22b!d l ml n,

S2152~d22b!~D12g13m!n(mmn)2@~D12g15m!~D1m!1F22#m
mmn2~d22b!dnmnn,

S3152~d22b!l (mmn)22~D2r!mmmn,

S325
1

2w1
~d22b!@~D23r!j21mm2dj21l m#,

S4152~d22b!n(mmn)22~D1m!mmmn, ~19!

S425
1

2w1
~d22b!@~D13m!j21mm2dj21nm#,

S5152Df~d22b!n(nmn)12Df~d22b!l (nmn)1~4ajw1
22DfD2DfD!mmmn,

S52524aw1~d22b!mm,

S535
1
2 ~d22b!d.

Note that bothO and S depend only on the background fields. As mentioned previous
gauge-fixing condition on the perturbed tetrad is unnecessary for obtaining the complete s
~14!. Furthermore, the entries of the matrix (CB) are automatically independent on the gau
transformations of the vector potential variationsbm : (CB)(hmn ,bm)5(CB)(hmn ,bm1¹m«). In
this manner, the invariance under the gauge freedoms of the matter fields and the perturbe
is guaranteed. This issue will be particularly important below, when we discuss the bilinear
on the reduced phase space.

In the traditional approach, the field perturbations are separated in polar and axial pe
tions ~and some gauge-fixing conditions are imposed! with the purpose of reducing the equatio
governing the perturbations to Schro¨dinger-type equations, and then to apply semiclassical m
ods based on the Hermiticity of such a system of equations. However, as shown in Ref. 11
treatment is unnecessary, and for many aims one can obtain essentially the same physica
working directly with the original non-Hermitian system of equations. In fact, when string fi
are involved, such as the present case, those reductions seem to be very difficult to carry
when possible, the interaction matrix is too complex to be displayed in explicit form.5 Therefore,
Eqs.~14! in their original form, without separations nor reductions, are sufficient for our pre
purposes.
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IV. LOCAL CONTINUITY LAWS ON THE PHASE SPACE AND DEBYE POTENTIALS

A. Equations for the Debye potentials

Following that made in Ref. 12, if the matrix potential~c! satisfiesO †(c)50, with

~c!5S cG

cH

cE

cF

cD

D , ~20!

then the metric, vector potential, and dilatonreal variations are given by

S 2
1

2
hmn

2bm

fB

D 5S †~c!5S S 11
† cG1S 21

† cH1S 31
† cE1S 41

† cF1S 51
† cD1c.c.

S 32
† cE1S 42

† cF1S 52
† cD1c.c.

S 53
† cD1c.c.

D ; ~21!

from Eqs.~13!, and~19!, we have explicitly that

S 11
† 52l (mmn)~D1r!~d14b!2mmmn@~D2r!~D13r!1F00#2 l ml n~d12b!~d14b!,

S 21
† 52n(mmn)~D24g2m!~d14b!2mmmn@~D22g1m!~D24g23m!1F22#

2nmnn~d12b!~d14b!,

S 31
† 52mmmn~D2r!22l (mmn)~d14b!,

S 41
† 52mmmn~D22g1m!22n(mmn)~d14b!,

S 51
† 522Dfn(mmn)~d14b!22Df l (mmn)~d14b!1mmmn~8ajw1

21DfD1DfD!, ~22!

S 32
† 5

1

2j
@mm~D1r!2 l m~d12b!#~d14b!

1

w1
,

S 42
† 5

1

2j
@mm~D22g2m!2nm~d12b!#~d14b!

1

w1
,

S 52
† 54aw1mm~d14b!,

S 53
† 5

1

2
~d12b!~d14b!.

In this manner, the complete field variations are given by Eqs.~21! in terms of the Debye
potentials, which satisfy a system of five second-order linear partial differential equations:
                                                                                                                



O †~c!51
O 11

† 0 O 31
† 0

x4

8
F1

0 O 22
† 0 O 42

† 1

2
F1

O 13
† x4

4
DfF1 O 33

† O 43
† O 53

†

2F1Df O 24
† O 34

† O 44
† O 54

†

4
2 S cG

cH

cE

cF

cD

D 50, ~23!
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F1
x

4
F1 O 35

† O 45
† O 55

†

where

O 11
† 5~D12g1m!~D13r!2~ d̄22b̄ !~d14b!2~3C222F1112DfDf!,

O 13
† 58jw1

2~D12r!1F1Df,

O 22
† 5~D2r!~D24g23m!2~ d̄22b̄ !~d14b!2~3C222F1112DfDf!,

O 24
† 528jw1

2~D24g22m!1
x2

2
F1Df,

O 31
† 52~D12g!,

O 33
† 5D~D12g12m!1aDf~D12m!2~ d̄22b̄ !~d14b!22~3C212F11!1aDDf,

O 34
† 5aDf~D22r!1aD2f12F00, ~24!

O 35
† 52aD22Df, O 42

† 52D, O 43
† 52aDf~D12m!2aD2f22F22,

O 44
† 52~D24g1aDf!~D22r!1~ d̄22b̄ !~d14b!12~3C212F11!2aDDf,

O 45
† 52a~D22g!22Df,

O 53
† 5 1

8 Dx4F11~D1m!~4ajw1
22mDf1DfD !2Df~d̄22b̄ !~d14b!2F22Df2mF2 ,

O 54
† 52~D2r!~F22mDf!2~D24g!Df~D1r!1Df~d̄22b̄ !~d14b!

1@~DfD22ajw1
2!r#1Df~3C212F11!,

O 55
† 5~D22g2m!~D1r!2~ d̄22b̄ !~d14b!23C212mr23DfDf14~a221!jw1

2 ,

and Eqs.~13!, and~18! have been used. Equations~23! are our fundamental equations since, as
shall see, all conserved quantities and bilinear forms on the phase space are defined in term
Debye potentials. Although these equations admit separable solutions in a simple way, we w
them first in the form~23! in order to establish acovariantconservation law, and subsequently
carry out such separation.

B. Covariant continuity equation and bilinear forms on the phase space

Since the decoupled system~14! and the system of equations for the Debye potentials~23! are
adjoints to each other, we have that12
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~c!O~CB!2O †~c!~CB!5¹mJm~c,CB!. ~25!

The left-hand side contains terms of the formcGO 11C0
B2O 11

† cGC0
B @see Eqs.~15!, and ~23!#,

which can be expressed in the following form, considering the explicit forms of the operatorsO11,
and O 11

† given in Eqs. ~18! and ~24!, respectively, thatD[ l m]m , D[nm]m , d[mm]m , d̄
[m̄m]m , and that they are acting on scalar fields:

cGO 11C0
B2O 11

† cGC0
B5¹m@ l mcG~D24g1m!C0

B2nm~D13r!cGC0
B2mmcG~ d̄14b̄ !C0

B

1m̄m~d14b!cGC0
B#, ~26!

and similarly for the remaining terms:

cGO 13s̃
B2O 13

† cGs̃B5¹m~28jw1
2l mcGs̃ B!,

cHO 22 C̄4
B2O 22

† cH C̄4
B5¹m@nmcH~D2r! C̄4

B2 l m~D24g23m!cH C̄4
B2mmcH~ d̄14b̄ ! C̄4

B

1m̄m~d14b!cH C̄4
B#,

cHO 24l̃
B2O 24

† cHl̃B5¹m@8jw1
2nmcHl̃B!,

cEO 31C0
B2O 31

† cEC0
B5¹m@nmcEC0

B#,

cEO 33s̃
B2O 33

† cEs̃B5¹m@nmcE~D22r2aDf!s̃ B2 l m~D12g12m!cEs̃B

2mmcE~ d̄14b̄ !s̃B1m̄m~d14b!cEs̃B#,

cEO 34l̃
B2O 34

† cEl̃B5¹m~2aDf l mcEl̃B!,

cEO35~d22b!f̃B2O 35
† cE~d22b!f̃B5¹m@almcE~d22b!f̃B#,

~27!

cFO 42 C̄4
B2O 42

† cF C̄4
B5¹m~ l mcF C̄4

B!,

cFO 43s̃
B2O 43

† cEs̃B5¹m@aDfnmcFs̃B#,

cFO 44l̃
B2O 44

† cFl̃B5¹m@nm~D22r!cFl̃B2 l mcF~D12g12m2aDf!l̃B1mmcF~ d̄14b̄ !l̃B

2m̄m~d14b!cFl̃B#,

cFO45~d22b!f̃B2O 45
† cF~d22b!f̃B5¹m@anmcF~d22b!f̃B#,

cDO 53s̃
B2O 53

† cDs̃B5¹mF2nm~DfD2mDf14ajw1
2!cDs̃B1 l mDfcDS D1m1

2ajw1
2

Df D s̃B

2DfmmcD~ d̄14b̄ !s̃B1Dfm̄m~d14b!cDs̃BG ,
cDO 54l̃

B2O 54
† cDl̃B5¹mFDfnm~D1r!cDl̃B2Df l mcDS D12g1m2

2ajw1
2

Df D l̃B

1DfmmcD~ d̄14b̄ !l̃B2Dfm̄m~d14b!cDl̃BG ,
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cDO55~d22b!f̃B2O 55
† cD~d22b!f̃B5¹m@2nm~D1r!cD~d22b!f̃B1 l mcD~D13m!

3~d22b!f̃B2mmcD~ d̄14b̄ !~d22b!f̃B

1m̄m~d14b!cD~d22b!f̃B#.

Moreover, from Eqs.~14! and~23! O(CB)50 andO †(c)50. @The presence of an inhomo
geneous term corresponding to the additional sources of the field variations in Eqs.~14! is only a
knackfor finding the operatorS. Finally we setTmn50, j m50, fs50.] Hence, from Eq.~25! we
have the local continuity law:

¹mJm~CB,c!50,
~28!

Jm5J11
m 1J13

m 1J22
m 1J24

m 1J31
m 1J33

m 1J34
m 1J35

m 1J42
m 1J43

m 1J44
m 1J45

m 1J53
m 1J54

m 1J55
m ,

and, of course, theJi j
m ’s ( i , j 51,2,3,4,5) are the components coming from Eqs.~26!, and~27!; for

example,J34
m 52aDf l mcEl̃B. Thus,Jm is a covariantlyconserved current. We will discuss no

the properties and physical meaning ofJm.
It is easy to verify that, such as (CB) in Eq. ~16!, the matrix potential~c! in Eq. ~20! is made

out of one-forms. Equations~21! give the field variationshmn , bm , andfB ~one-forms!, in terms
of ~c!. Since the operatorS † is dependent only on background fields~zero-forms!, thus ~c!
corresponds to one-forms. This implies automatically thatJm5Jm(CB,c) in Eq. ~28! is a ~non-
degenerate! two-form on the corresponding phase space of the solution considered~the matrix
operatorsO andO † involved in the construction ofJm are also dependent only on the backgrou
fields!. In next section, we will demonstrate thatJm is aclosedtwo-form on the phase space, fro
which a symplectic structure will be constructed.

C. Covariant symplectic structure on the phase space

For demonstrating thatJm is a closed two-form, we need to rewrite theJi j
m ’s in Eq. ~28!. For

example,J11
m @see Eq.~26!# can be rewritten as

l mcG~D24g1m!C0
B2nm~D13r!cGC0

B2mmcG~ d̄14b̄ !C0
B1m̄m~d14b!cGC0

B

52@ l mcG~D24g1m!C0#B1@nm~D13r!cGC0#B1@mmcG~ d̄14b̄ !C0#B

2@m̄m~d14b!cGC0#B, ~29!

where we have considered thatC0 vanishes at the background, and the Leibniz rule for
exterior derivative. Eq.~29!, implies thatJ11

m is an exact two-form, and automatically a close

two-form. Similarly, using the fact thatC̄4
B, s̃B, l̃B, and (d22b)f̃B can be expressed a

variations of vanishing background fields, and the property of exterior derivative used abov
can find that

~Ji j
m!B50, ~30!

which makes thatJm itself to be closed. In this manner, the geometrical structure definedv
[*SJmdSm , whereS is an initial value hypersurface, corresponds to a symplectic structur
the phase space. AsJm is conserved,v is independent of the choice ofS and, in particular, is
Poincare´ invariant. Since (CB) is invariant under gauge transformation ofbm , Jm andv have the
same invariance properties. Hence, we have constructed a gauge-invariant closed two-forv on
the reduced phase space, which means the phase space modulo gauge transformations. S
Jm andv are independent of the perturbed tetrad gauge freedom.
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V. SEPARATION OF VARIABLES AND CONSERVED QUANTITIES

Our fundamental equations for the Debye potentials~23! and the continuity equation~28!
admit separation of variables in terms of harmonic time and the spin-weighted spherical ha
ics. The first ones are reduced to a system ofordinary differential equations for the radial parts o
the potentials, the second one yields two conserved quantities expressed in terms of suc
parts.

A. Separable solutions for the potentials

An advantage of using the Newman–Penrose formalism is that each quantity has a typ
its corresponding boost weight and spin weight. This property suggests the separable so
more convenient for the equations under study.

More specifically, the effect of the~relevant! Geroch–Held–Penrose operators on the sp
weighted spherical harmonics is given by16

]” sYlm5~d22sb! sYlm5
1

&R
@~ l 2s!~ l 1s11!#1/2

s11Ylm ,

~31!

]” s8Ylm5~ d̄12sb̄ ! sYlm52
1

&R
@~ l 1s!~ l 2s11!#1/2

s21Ylm ,

where Eqs.~4! and~5! have been used. On the other hand, from Eqs.~23!, it is easy to determine
that the potentialscG , cH , cE , cF , andcD have types$24,0%, $0, 4%, $23,1%, $21,3%, and
$22,2%, respectively. Therefore, all potentials have spin weight22. Thus, making use of the fac
that the background solution is static and spherically symmetric, we seek for solutions fo
potentials of the form:

c I5c i~r ! 22Ylm ~u,w!e2 ivt, ~32!

where the subscriptsI 5G,H,E,F,D and i 5g,h,e, f ,d, respectively. Since (d̄22b̄)(d14b) is
the only operator appearing in Eqs.~23! that involves angular variables, we only need to know t

~ d̄22b̄ !~d14b!c I52
L2

2R2 c I , L5@~ l 21!~ l 12!#1/2, ~33!

where Eqs.~31! and~32! have been employed. The remaining terms correspond to functions
differential operators involving only radial and time variables. In fact, from Eqs.~4! and~32! we
have that

Dc I5Dc I , Dc I52
x2

2
D̄c I S Dc̄ I5D̄ c̄ I , Dc̄ I52

x2

2
Dc̄ I D , ~34!

where

D5] r2
iv

x2 , D̄5] r1
iv

x2 . ~35!

In this manner, it suffices to substitute the operatorsD andD, according to Eqs.~34!, by D
and2(x2/2)D̄, respectively, (d̄22b̄)(d14b) by 2( L2/2R2) @according to Eq.~33!#, andc I by
c i ~the corresponding radial part! into Eqs. ~23!, for reducing them to a system of ordinar
equations for the radial partsc i ’s of the potentials. Hence, the separation of variables propose
Eq. ~32! applies in a natural and straightforward way.
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B. Separation of variables for the continuity equation

In this section we will see that the covariant continuity equation~28!, together with the
separable solutions admitted for the potentials@Eq. ~32!#, and the corresponding separation
variables for the field variations12 ~where a more detailed version of the present work is p
sented!, lead to the existence of two conserved quantities.

As we have seen, at each space–time point,Jm in Eq. ~28! is a two-form on the phase spac
Regardless of the last interpretation, we can maintainJm as a bilinear product on field perturba
tions on the space–time manifold. In this manner, the covariantly conserved current~28! can be
rewritten, grouping conveniently its components on the null tetrad, in the form

Jm5Vl l
m1Vnnm1Vmmm1Vm̄m̄m, ~36!

where

Vl[cG~D24g1m!C0
B28jw1

2cGs̃B2 C̄4
B~D24g23m!cH2s̃B~D12g12m!cE2aDfcEl̃B

1acE~d22b!f̃B1cF C̄4
B2cF~D12g12m2aDf!l̃B1DfcdS D1m1

2ajw1
2

Df D s̃B

2DfcdS D12g1m2
2ajw1

2

Df D l̃B1cD~D13m!~d22b!f̃B,

Vn[2C0
B~D13r!cG1cH~D2r! C̄4

B18jw1
2cHl̃B1cEC0

B1cE~D22r2aDf!s̃B

1aDfcFs̃
B1l̃B~D22r!cF1acF~d22b!f̃B2s̃B@4ajw1

22mDf1DfD#cD

1Dfl̃B~D1r!cD2@~D1r!cD#~d22b!f̃B,

Vm[2cG~ d̄14b̄ !C0
B2cH~ d̄14b̄ ! C̄4

B2cE~ d̄14b̄ !s̃B1cF~ d̄14b̄ !l̃B2DfcD~ d̄14b̄ !s̃B

1DfcD~ d̄14b̄ !l̃B2cD~ d̄14b̄ !~d22b!f̃B,

Vm̄[C0
B~d14b!cG1 C̄4

B~d14b!cH1s̃~d14b!cE2l̃B~d14b!cF1Dfs̃B~d14b!cD

2Dfl̃B~d14b!cD1~d14b!cD~d22b!f̃B. ~37!

Therefore, considering that in the Newman–Penrose formalism]ml m522r, ]mnm52m
22g, ]mmm52b, the continuity equation~28! can be rewritten in the following form:

]m~Vl l
m1Vnnm1Vmmn1Vm̄m̄m!5~D22r!Vl1~D12m22g!Vn50, ~38!

where we have considered that (d12b)Vm1( d̄12b̄)Vm̄50, which can be shown using th
explicit forms ofVm andVm̄ in Eqs.~37!, and considering that all components of (CB) have spin
weight 2.12

Thus, the whole physical information about our conserved quantities is contained inVl and
Vn . Furthermore, direct substitutions of the separable solutions for the potentials@Eq. ~32!#, and
field variations12 into the expressions for the bilinear productsVl andVn given in Eqs.~37!, lead
to a splitting of such products in terms of the forme0 ande22ivt:

Vn5FVn
11

iv

x2 G1G 22Ylm 22Ylm1e22ivtFVn
21

iv

x2 G2G 22Ylm 2Ylm ,

~39!

Vl5FVl
11

iv

2
G1G 22Ylm 22Ylm1e22ivtFVl

22
iv

2
G2G 22Ylm 2Ylm ,
                                                                                                                



1068 J. Math. Phys., Vol. 44, No. 3, March 2003 R. Cartas-Fuentevilla

                    
where

Vn
6[C0

B6@ce2R3] r~R23cg!#1ch@R21] r~R C̄4
B6!18jw1

2l̃B6#1ceR
22j21/2] r~R2j1/2s̃B6!

1ac f@Dfs̃B61f̃B6#1l̃B6R2] r~R2c f !2s̃B6@DfR] r~R21cd!14ajw1
2cd#

1R@Dfl̃B62f̃B6#] r~R21cd!,

Vl
6[ C̄4

B6@c f1
1
2 x22R3] r~R23x2ch!#2cg@ 1

2 x22R21] r~Rx4C0
B6!18jw1

2s̃B6#

1 1
2 c fx

4R22j21/2] r~j1/2R2x22l̃B6!1ace@f̃B62Dfl̃B6#1 1
2 s̃B6x4R22] r~R2x22ce!

1DfcdF2
1

2
x2R21] r~Rs̃B6!1

2ajw1
2

Df
s̃B6G

1DfcdF1

2
x4R21] r~Rx22l̃B6!1

2ajw1
2

Df
l̃B6G2

1

2
x2R23cd] r~R3f̃B6!, ~40!

and

G1[cgC0
B11ch C̄4

B11ces̃
B12c f l̃

B11cd@Dfs̃B12Dfl̃B11f̃B1#,
~41!

G2[cgC0
B22ch C̄4

B22ces̃
B22c f l̃

B21cd@Dfs̃B22Dfl̃B21f̃B2#5
L2l ~ l 11!

8R4 cd
2

are only functions ofr . Since the components (CB)2 are directly proportional to the potentials,12

Vn
2 andVl

2 in Eqs.~40! have remarkable reductions~unlike Vn
1 andVl

1):

Vn
252

L2l ~ l 11!

8R4 F22cgch] r ln R31Rcd] r S cd

R D G ,
~42!

Vl
252

L2l ~ l 11!x2

16R4 F2cgch] r ln R31Rcd] r S cd

R D G ,
therefore, from Eqs.~41!, and~42!, is very easy to show that

Vn
212x22Vl

21R22] r~R2G2!50,

Vl
22

x2

2
Vn

252
L2l ~ l 11!x2

4R4 ~] r ln R3!cgch , ~43!

which will be useful below.

C. Conserved quantities

Substituting expressions~39! into Eq. ~38!, using the explicit form forD, D, r, m, andg we
obtain, after some simplification and suitably grouping, that

1

R2 ] rR
2FVl

12
x2

2
Vn

1G 22Ylm 22Ylm1
e22ivt

R2 ] rR
2FVl

22
x2

2
Vn

2G 22Ylm 2Ylm

2 ive22ivtF2
Vl

2

x2 1Vn
21R22] r~R2G2!G 22Ylm 2Ylm50, ~44!
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the last term vanishes according to the first of Eqs.~43!, thus Eq.~44! reduces to

] rR
2FVl

12
x2

2
Vn

1G 22Ylm 22Ylm1e22ivt] rR
2FVl

22
x2

2
Vn

2G 22Ylm 2Ylm50, ~45!

which implies~using the linear independence of terms of the formeivt ande2 ivt) that there exist
two conserved quantities, which we denote byK (6):

R2FVl
(6)2

x2

2
Vn

(6)G[K (6). ~46!

AlthoughK1 has a complicated form in terms of the potentials,K2 has a remarkably simple form
in accordance with the last expression in Eq.~43!:

K2[R2FVl
22

x2

2
Vn

2G52
L2l ~ l 11!

4

x2~] r ln R3!

R2 cgch . ~47!

Note that, since (CB)1 depends on (c̄ i), K1 depends on (c i) and (c̄ i), whereasK2 directly on
the potentials without involving its complex conjugates.

The existence of these two conserved quantities deserves some important comments
although the equations used for obtaining such quantities are not Hermitian ones~for which the
constancy of the Wronskian yields traditionally conserved quantities!, one can obtain, without any
restrictions and full generality, conserved quantities, provided that the original system of equ
and its adjoint system are used. Second: as we have seen, if the potentials have a time dep
of the form e2 ivt, the field perturbations appearing in the decoupled system contain terms
portional toe2 ivt andeivt ~in the classical cases, unlike the present case involving string fie
only terms proportional toeivt are present11!, which lead finally to two conserved quantities. In th
classical cases, only a conserved quantity analogous to the presentK1 is obtained. In fact, the
bilinear terms depending onC0

B1 andcg in the expression forK1 @see the explicit forms forVn
1

andVl
1 in Eqs.~40!# yield a conservation relation for the energy of gravitational perturbation

the classical Schwarzschild black hole~and something similar for electromagnet
perturbations!.11 In this manner, it is possible thatK1 has the same physical meaning for t
present string black hole: the conservation of the energy for the coupled field perturba
However, this question will require a long asymptotic analysis and will be studied in a subse
work. On the other hand,K2 is a novel conserved quantity apparently without classical analo
it is also an open question to investigate its physical meaning.

VI. CONCLUDING REMARKS

We summarize some questions that remain open and will be the subject of forthcoming w
First, although string black holes are considered as classical black holes plus Planc

corrections, they are not actuallyquantum black holes. Hence, for example, the thermodynami
properties argued in Refs. 2 and 3 are limited in this sense; a proper quantization will give a
complete and satisfactory description of such objects~see the paragraph before final comments
Ref. 5!. The idea is, of course, that the symplectic structure constructed in the present wor
be the starting point for such a~canonical! quantization, which will give us a consistent quantu
extension of string black holes.

Second, as mentioned, the physical meaning of the conserved quantities obtained
present work remains to be worked out. This subject will include the calculation of phy
quantities such as scattering amplitudes, reflection and transmission coefficients, etc.

Finally, the scheme of adjoint operators employed in the present work can be understoo
important extension of the original Wald’s method: wherever there exists an appropriate dec
equation, it is not only possible to express the complete solution in terms of scalar potentia
also to find automatically a corresponding~covariantly! conserved current.
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Spherically symmetric solutions of a boundary value
problem for monopoles
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In this article we study spherically symmetric monopoles, which are critical points
for the Yang–Mills–Higgs functional over a disk in three dimensions, with pre-
scribed degree and covariant constant at the boundary. This is a three-dimensional
gauge-theory generalization of the Ginzburg-Landau model in two dimensions.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1543226#

I. INTRODUCTION

In this article we treat a three-dimensional analog of the vortex equations in two dimen
and look for solutions with spherical symmetry as described in Sec. II. The domain conside
a three-dimensional disk and we prescribe the degree of the monopole at the boundary. Un
two dimensions, where Ginzburg–Landau-type functionals appear either with or without g
potentials, the problem in three dimensions is well-posed only in gauge theory. Without a c
ture term in the action, a minimizing sequence for the action would yield a trivial limit.2 In the
presence of a gauge potential, this problem is well-posed, natural and has physical meani

The most general Yang–Mills–Higgs functional takes the form

YMH~A,f!5
e

2
iFiL2

2
1

r

2
iDAfiL2

2
1

l

8
i ufu22a2iL2

2 , ~1.1!

for appropriate constantse, r, l anda. Working onR3, one usually applies a rescaling off, a
rescaling of space, and a rescaling of the action to sete5r5a51, so the action functiona
depends on a single parameter,l. On the unit ball, however, we cannot rescale space, so we
only eliminate two of the four parameters. We setr5a51, and obtain a two-parameter family o
functionals

YMHe,l~A, f!5
e

2
iFiL2(B3)

2
1

1

2
iDAfiL2(B3)

2
1

l

8
i ufu221iL2(B3)

2 . ~1.2!

~Alternatively, we could work on a sphere of radiusR. One can then rescale to sete51, at the cost
of varying R. We then obtain a two-parameter family of functionals indexed byl and R.) We
know from the general theory for monopoles~cf. Ref. 2 for e51, l>0) that there exists a
minimum for this functional which satisfies the Euler Lagrange equations

e * DA* F5@DAf, f#,
~1.3!

* DA* DAf5
l

2
~ ufu221!f,

a!Electronic mail: marini@univaq.it
b!Electronic mail: sadun@math.utexas.edu
10710022-2488/2003/44(3)/1071/13/$20.00 © 2003 American Institute of Physics
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and suitable boundary conditions on]B3[S2 ~cf. Sec. IV and Refs. 2 and 3!, and is smooth. In
this article we prove the existence, and describe the form, of spherically symmetric solutio
these equations.

We note that, even forl50, these are not solutions to the Bogomolnyi equations foun
Ref. 1. The Bogomolnyi solutions are obtained only in the limitl→0, R→`, or equivalently
l→0, e→0.

II. SPHERICALLY SYMMETRIC CONNECTIONS, MONOPOLES, AND GAUGE
TRANSFORMATIONS

We work on the trivial principal SU~2!-bundle P5B33SU(2) and its associated vecto
bundles.A is a connection onP, which can be viewed as a one-form onB3 with values in su~2!.
The Higgs fieldf is a section of the adjoint bundle, i.e., a mapf : B3→su(2). Here su(2)
[$XPM232:tr X50 ; X1X̄T50% is the Lie algebra of SU~2!. We identify su~2! with the imagi-
nary quaternions ImH[$x1i 1x2 j 1x3k: (x1 ,x2 ,x3)PR3% by identifying the matrices

S 0 1

21 0D , S 0 i

i 0D S i 0

0 2 i D ,

with i , j ,k, respectively, and extending this mapping to a Lie-algebra isomorphism. It is
convenient to define the three-vector of Lie-algebra elementssW 5( i , j ,k).

The symmetry group SO~3! acts on pairs (A,f), simultaneously rotating the three
dimensional base space and the three-dimensional Lie algebra. That is, the triple (i , j ,k) trans-
forms in the same way as the triple (x1 ,x2 ,x3), so quantities such assW •xW are invariant.

We are interested in finding Yang–Mills–Higgs fields (A,f) which are invariant under this
group action. To this purpose, one needs to specify the value of the connection one-formA : B3

→L1(B3) ^ Im H and of the Higgs fieldf : B3→Im H at one point of each group orbit~on the
base! and impose invariance under the isotropy group of that point. We find it convenient to fi
values of (A,f) on the sliceL[$xWPB3 : x25x350,x1P(0,1#%. The isotropy group at (x,0,0)
PL is SO~2!, i.e., rotations about thex1-axis ~and about thei axis in the Lie algebra!. For the
Higgs fieldf one has in general

f~x,0,0!5w1~x!i 1w2~x! j 1w3~x!kPIm H.su~2! ,

wherew l(x) , l 51,2,3 are real-valued functions. Imposing invariance under SO~2! forcesw2(x)
5w3(x)50 for all xP(0,1#. Applying the action of SO~3!, one obtains the symmetric form of th
Higgs fieldf

f5
w~r !

r
sW •xW[

w~r !

r
~x1i 1x2 j 1x3k! , ~2.1!

with r[uxW u, xW[(x1 ,x2 ,x3)PR3, sW [( i , j ,k)PIm H.
An su~2!-valued connection on the sliceL is given in general by

A~x,0,0!5a11~x!i dx11a12~x!i dx21a13~x!i dx31a21~x! j dx11a22~x!k dx21a23~x! j dx3

1a31~x!k dx11a32~x!k dx21a33~x!k dx3 . ~2.2!

Imposing SO~2!-invariance yieldsa125a135a215a3150, a225a33, and a2352a32. Thus the
final form of the SO~2!-invariant connection evaluated at the points (x,0,0)PL is

A~x,0,0!5a~x!i dx11b~x!~ j dx21k dx3!1c~x!~k dx22 j dx3! .

Transporting this slice via the SO~3! group action onB3 one obtains the invariant version
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A~x1 ,x2 ,x3!5
a~r !

r
sW •dxW1

b~r !

r 3 ~xW3dxW !•~xW3sW !1
g~r !

r 2 sW •~xW3dxW ! , ~2.3!

where‘‘3 ’’ denotes the cross product of vectors anddxW[(dx1 ,dx2 ,dx3).
At this point there is still some gauge freedom available to further specify the connectioA,

namely that provided by ‘‘symmetric’’ gauge transformations. Such a transformationg is deter-
mined by its values on the sliceL, which must be SO~2!-invariant. This yieldsi g(x,0,0)
5g(x,0,0) i , thusg(x,0,0)5exp (i h(x)). Therefore, symmetric gauge transformations are of
type

g~x1 ,x2 ,x3!5expS h~r !
sW •xW

uxW u D , ~2.4!

whereh(r ) is an arbitrary function of the radiusr . Performing such a gauge transformation do
not change the form~2.1! of the Higgs fieldf. However,A transforms nontrivially. In particular
settingh(r )[* a(r )/r dr exactly cancels thea-piece ing21dg1g21A g. Thus, one can impose
a(r )50. The final version ofA is then

A~x1 ,x2 ,x3!5
b~r !

r 3 ~xW3dxW !•~xW3sW !1
g~r !

r 2 sW •~xW3dxW ! . ~2.5!

The only gauge freedom remaining is from the constant of integration in the indefinite int
* @a(r )/r # dr ~cf. Sec. IV!.

Note that theb andg terms have opposite parities. The isometryxW→2xW sendsb to 2b but
sendsg to 1g.

III. THE YANG–MILLS–HIGGS FUNCTIONAL ON SPHERICALLY SYMMETRIC
CONFIGURATIONS

In this section we explicity compute the Yang–Mills–Higgs functional, and the resu
equations of motion, for symmetric pairs (A,f). Our connection is a sum of two terms,

A5B1C ,

where

B5
b~r !

r 3 ~xW3dxW !•~xW3sW !

5
b~r !

r 3 @~r 22x1
2!i 2x1x3k2x1x2 j #d x11

b~r !

r 3 @~r 22x2
2! j 2x2x3k2x1x2i #d x2

1
b~r !

r 3 @~r 22x3
2!k2x1x3i 2x2x3 j #d x3 , ~3.1!

and

C5
g~r !

r 2 sW •~xW3dxW !

5
g~r !

r 2 ~x3 j 2x2k!d x11
g~r !

r 2 ~x1k2x3i !d x21
g~r !

r 2 ~x2i 2x1 j !d x3. ~3.2!
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A. Preliminary computations

The curvature ofA is given by

F5dA1A∧A5dB1dC1B∧B1C∧C ,

since the cross termB∧C1C∧B is identically zero.
ComputingF12, the various nonzero terms are

~d B!125
b8

r 2 ~2x2i 1x1 j !, ~3.3!

~d C!125S 2g

r 2 D 8S x1x3

r
i 1

x2x3

r
j D1S 2g

r 2 1S g

r 2D 8S x2
2

r
1

x1
2

r D D k, ~3.4!

~B∧B!125
2b2

r 4 @x1x3i 1x2x3 j 1x3
2k#, ~3.5!

~C∧C!125
2g2

r 4 @x1x3i 1x2x3 j 1x3
2k#. ~3.6!

By rotational symmetry, the contributions toF13 andF23 are similar.
The covariant derivative of the monopolef5 @w(r )/r #sW •xW is given by

DAf[df1@B,f#1@C,f# , ~3.7!

where

df5
sW •xW

r
dw1w d S sW •xW

r D , ~3.8!

@B,f#[Bf2fB5
2bw

r 2 ~2x3 j 1x2k! d x11cyclic permutations, ~3.9!

@C,f#[Cf2fC5
2gw

r 3 @~r 22x1
2!i 2x1x3k2x1x2 j #d x11cyclic permutations. ~3.10!

At this point we are ready to compute the three terms involved in the Yang–Mills–H
functional ~1.2!. They are

~1! uFu2[F∧* F,
~2! uDfu2[Df∧* Df,
~3! (ufu221)2 .

Computation of (1):One shows easily that

dB∧* dC5dC∧* dB50 ,

dB∧* ~B∧B!5~B∧B!∧* dB50 ,

dB∧* ~C∧C!5~C∧C!∧* dB50 ,

thus
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uFu25udBu21udCu21dC∧* ~B∧B!1dC∧* ~C∧C!1~B∧B!∧* ~B∧B!

1~B∧B!∧* ~C∧C!1~C∧C!∧* ~C∧C!

52
b82

r 2 12
g82

r 2 14
g2

r 4 14
b2g

r 4 14
g3

r 4 14
b4

r 4 18
b2g2

r 4 14
g4

r 4

5
2b82

r 2 1
2g82

r 2 1
4~b21g21g!2

r 4 . ~3.11!

Computation of (2):One shows that

df∧* @B,f#5@B,f#∧* df50 ,

@B,f#∧* @C,f#5@C,f#∧* @B,f#50 ,

thus

uDfu25udfu21u@B,f#u21u@C,f#u212 df∧* @C,f# ~3.12!

5S w8212
w2

r 2 D18
b2w2

r 2 18
g2w2

r 2 18
gw2

r 2 . ~3.13!

Computation of (3):One easily obtains

~ ufu221!25S w2

r 2 21D 2

.

Collecting terms, the Yang–Mills–Higgs functional calculated on spherically symmetric
figurations is given by

SYMH~g,w!54pE
0

1F 2eS b821g821
2

r 2 ~b21g21g!2D1r 2w82

12w2@114~b21g21g!#1lr 2~w221!2 Gdr . ~3.14!

IV. FURTHER GAUGE TRANSFORMATIONS AND THE EULER–LAGRANGE
EQUATIONS

We want to search for absolute minima of the functional~3.14! among all finite-action spheri
cally symmetric configurations~b, g, w!. The following theorem restricts the possibilities:
Theorem 4.1: If the functional (3.14) has a minimum, then this minimum is achieved by func
~b, g, w! with b identically zero andg(0)50.

Proof: First we find a gauge transformation that yieldsb(0)5g(0)50. In that gauge, we
then show that minimization requiresb/(g1 1

2) to be constant, hence forb to be identically zero.
If SYMH(b,g,w),`, then b and g much approach well-defined limits asr→0, and

b2(0)1g2(0)1g(0)50. If b~0! andg~0! are not already zero, we letu be the argument of the
complex numberb(0)1 ig(0), anddefine

g5expS u
sW •xW

uxW u D[expS u
x1i 1x2 j 1x3k

uxW u D[cos~u!1sin~u!
sW •xW

uxW u
. ~4.1!

Then
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d g~x1 ,x2 ,x3!5sin~u!FsW •dxW

uxW u
1dS 1

uxW u DsW •xW G , ~4.2!

and evaluating on our slice gives

d g~r ,0,0!5
sin~u!

r
~ j d x21k d x3!. ~4.3!

Our transformed connection on the slice is then

@g21d g1g21A g#~r ,0,0!5Fcos~2u! b~r !

r
1

sin~2u! g~r !

r
1

cos~u!sin~u!

r G~ j d x21k d x3!

1F2
sin~2u! b~r !

r
1

cos~2u! g~r !

r
2

sin2~u!

r G~k d x22 j d x3!

[
b̂~r !

r
~ j d x21k d x3!1

ĝ~r !

r
~k d x22 j d x3!. ~4.4!

Plugging in the values of sin(u), cos(u), etc., gives

b̂~r !5
~b2~0!2g2~0!!b~r !12b~0!g~0!g~r !1b~0!g~0!

b2~0!1g2~0!
, ~4.5!

ĝ~r !5
~22b~0!g~0!!b~r !1~b2~0!2g2~0!!g~r !2g2~0!

b2~0!1g2~0!
. ~4.6!

As r→0, both these terms go to zero, sinceb2(0)1g2(0)1g(0)50.
Having setb(0)5g(0)50, we now show thatb must be identically zero. We choose pol

coordinates in the (b,g1 1
2)-plane:

b5n cost,
~4.7!

g1 1
2 5n sint.

In these coordinates, the functional~3.14! becomes

SYMH~n,t !54pE
0

1F 2eS n821t82n21
2

r 2 S n22
1

4D 2D1r 2w8218w2n21lr 2~w221!2 Gdr ,

~4.8!

with n2(0)5 1
4. The only dependence ont is in the t82n2 term, which is minimized by settingt

5const. But then cot(t)5b/(g11
2) must be constant, and equal tob(0)/(g(0)1 1

2) 50, so b is
identically zero. h

We may therefore restrict our attention to the functional

S~g,w!54pE
0

1F 2eS g821
2

r 2 ~g21g!2D1r 2w8212w2~112g!21lr 2~w221!2 Gdr .

~4.9!

The Euler–Lagrange equations for this functional together with the appropriate boundary
tions are then
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g92
2

e
w2~112g!2

2

r 2 ~g21g!~112g!50 on ~0,1!,

w91
2w8

r
2

2w

r 2 ~112g!222lw~w221!50 on ~0,1!,

g~1!52 1
2, ~4.10!

g~0!50,

w~1!511 ~or w~1!521!.

The boundary conditions above come directly from the variational principle. In fact, to canc
boundary terms one needs to either restrict the space of connections to those with pre
boundary data, or to impose Neumann-type boundary conditions. The boundary conditionw(1)
561 comes fromufu51 on ]B3 andg(1)52 1

2 comes from

~Df!t5~df!t1@At ,f#5~112g!f dS sW •xW

r D50 ~4.11!

on ]B3, where the subscriptt denotes tangential components~cf. Refs. 2 and 3!.
Observation:After some computation, the system~4.10! could also be obtained by imposin

spherical symmetry in~1.3!, thus critical symmetric points for the action~4.9! are symmetric
critical points~not necessarily minima! for ~1.2!. This is also knowna priori from the ‘‘principle
of symmetric criticality.’’4

V. EXISTENCE OF SPHERICALLY SYMMETRIC MONOPOLES

Our basic existence result is the following.
Theorem 5.1:For all values ofl>0, e.0, there exists a symmetric solution of

e * DA* F5@DAf, f# on B3,

* DA* DAf5
l

2
~ ufu221!f on B3,

~5.1!
~Df!t50 on ]B3,

uwu51 on ]B3.

Observation:These equations do not reduce to the Bogomolnyi equations, even ifl50. The
Bogolmolnyi argument involves an integration by parts; on a finite domain, this results
boundary contribution.1

Proof: Because of the derivative terms in the action, the natural space forg ~denotedHg) is
H1(0,1), while the natural spaceHw for w is the weighted Sobolev spaceH1((0,1),r 2dr). By the
Sobolev embedding theorem, functions inHg are continuous on@0,1#. Functions inHw are con-
tinuous on~0,1#, but may not have a limit atr 50. We may therefore apply boundary conditions
g at r 50 and atr 51, and tow at r 51.

Let

F5$~g,w!PHg3Hw : g~1!52 1
2 , g~0!50,w~1!51%. ~5.2!
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The action functional~4.9! is well-defined onF, and is finite wheneverw is bounded. In particular
m[In f F S is finite. We follow the direct method in the calculus of variations. That is, tak
minimizing sequence forS, show that it converges weakly inF, and then show that the weak lim
minimizes the action and so solves the Euler–Lagrange equations.

Let (gn ,wn) be a minimizing sequence forS. Sincel>0, the action is not increased if w
make the replacement

w~r !→H 21, if w~r !,21;

w~r !, if 21<w~r !<1;

1, if w~r !.1.

~5.3!

As a result, we can assume that eachwn(r ) is bounded in magnitude by 1. Under these circu
stances, the sequence (gn ,wn) is bounded inF,Hg3Hw . However, balls inHg are weakly
compact, as are balls inHw , so the pair (gn ,wn) converges weakly inHg3Hw to a limit
(g` ,w`).

By Sobolev,gn(r ) andwn(r ) converge pointwise tog`(r ) andw`(r ), so the limiting values
g(0), g(1), andw(1) are preserved, and (g` ,w`)PF. Moreover, terms inS(gn ,wn) that do not
involve derivatives converge to the corresponding terms inS(g` ,w`). The derivative terms are
quadratic, hence weakly semicontinuous. As a result,S(g` ,w`) is bounded above bym, and
therefore must equalm.

Showing thatg` and w` satisfy the Euler–Lagrange equations~4.10! is then a standard
exercise in the calculus of variations. Smoothness of (g` ,w`) away fromr 50 follows by elliptic
regularity of the equations~4.10!. Smoothness atr 50 follows from regular singular-point analy
sis, combined with the fact that both functions are bounded~see Sec. VI for details!. This in turn
implies that the connection and Higgs field (A,f) constructed from (g` ,w`) comprise a smooth
symmetric classical solution to the PDE system~5.1!. @Alternatively, one can establish regularit
of (A,f) from the ellipticity of the PDE system~5.1!, since we are working in a gauge wit
d* A50.]

VI. REGULAR SINGULAR POINT ANALYSIS

In Sec. V we demonstrated the existence of symmetric monopoles for arbitraryl>0 ande
.0. In this section we explore their form near the regular singular point of the equations~4.10!,
namelyr 50.

Theorem 6.1: Let ~g, w! be a bounded finite-action solution to the ODE system (4.10)
some fixede.0 and l>0. Then there exist constants a1 and b2 such that

w~r !5a1r 1O~r 3!,

g~r !5b2r 21O~r 4!, ~6.1!

g8~r !52b2r 1O~r 3!,

near r50. In particular, w(0)5g8(0)50.
Proof: We begin with the equation forw, which we write as

w91
2w8

r
2

2w

r 2 5
8w

r 2 ~g1g2!12lw~w221!. ~6.2!

Sincew is bounded andg(0)50, the terms on the right hand side are less singular than thos
the left hand side, and to leading orderw resembles the solution to the homogeneous equatio

w91
2w8

r
2

2w

r 2 50. ~6.3!
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The general solution to this equation isw5a1r 1a22r 22. However,w is bounded by assumption
so a2250. Thus the solution to~6.2! is, to leading order,a1r .

Next we turn to the equation forg, namely

g92
2g

r 2 5
2

e
w2~112g!1

2g

r 2 ~2g213g!. ~6.4!

Again, sincew is bounded andg(0)50, this may be viewed as a perturbation of the homogene
linear equation

g92
2g

r 2 50, ~6.5!

whose solution isg5b21r 211b2r 2. Sinceg is bounded,b2150. Thus our solution to~6.4! is, to
leading order,b2r 2.

With these basic results, we can estimate the right hand sides of~6.2! and~6.4!. The right hand
side of~6.2! is O(r ), which gives anO(r ) correction tow9, hence anO(r 3) correction tow. The
right hand side of~6.4! is O(r 2), thus giving anO(r 3) correction tog8 and anO(r 4) correction
to g. h

One can do an expansion forw andg in powers ofr . Indeed, only odd powers contribute t
w and only even powers contribute tog. This is seen by induction. By Theorem 6.1,w is odd and
g is even through orderr 2. However, ifw is odd andg is even through orderr k, then the right
hand sides of~6.2! and ~6.4! are odd and even, respectively, to orderr k, and sow andg are odd
and even, respectively, to orderr k12. Thusw andg are odd and even to all orders inr .

We can therefore write an asymptotic expansion

w~r !; (
n odd

anr n,

~6.6!

g~r !; (
n even

bnr n.

Plugging this expansion into Eqs.~6.2! and~6.4! and equating coefficients ofr n22 gives recursion
relations of the form

~2k!~2k13!a2k115algebraic expression involvinga1 ,b2 ,...,b2k ,
~6.7!

~2k11!~2k22!b2k5algebraic expression involvinga1 ,b2 ,...,b2k22 .

These relations do not constraina1 or b2 . However, once we havea1 and b2 , the remaining
coefficients are determined. The first few are

a35~4a1b22la1!/5,

b45~3b2
21e21a1

2!/5,

a55~4a1b414a3b214a1b2
21l~a1

32a3!!/14,

b65~b2
313b2b41e21~a1a31a1

2b2!!/7,
~6.8!

a75@4~a1b61a3b41a5b21a3b2
212a1b2b4!1l~3a1

2a32a5!#/27,

b85@3~2b2
2b41b4

212b2b6!1e21~a3
212a1a512a1

2b414a1a3b2!#/27,
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a95@4~a1b81a3b61a5b41a7b21a5b2
212a3b2b41a1b4

212a1b2b6!

1l~3a1
2a513a1a3

22a7!#/44,

b105@3~b2
2b61b2b4

21b2b81b4b6!1e21~a1a71a3a51a1
2b61a3

2b212a1a3b412a1a5b2!#/22.

VII. SYMMETRIES AND STABILITY

The action functional and the resulting Euler–Lagrange equations are invariant unde
natural symmetries,

w~r !→2w~r !, g~r !→1g~r !; ~7.1!

w~r !→w~r !, g~r !→212g~r !. ~7.2!

The first symmetry~7.1! comes from the isometryxW→2xW of B3, which of course respect
rotational symmetry. SincesW •xW is odd andsW •(xW3dxW ) is even, pulling the pair (A,f) back by this
isometry flips the sign ofw while preservingg. Using this symmetry, we can fix the sign ofw~1!,
which we henceforth take to be positive.

The second symmetry~7.2! is a gauge transformation by (sW •xW )/r . This is of the form of~4.2!,
with u5p/2. From~4.4! it is clear that this transformation sendsg to 212g without generating
a b term or changingw. Applying this to a connection withg(0)50 yields a new connection with
g(0)521. This connection has finite action but is singular at the origin, reflecting the sing
gauge transformation that generated it.

We now consider stability properties of the ODE system~4.10!. These ODEs have severa
fixed points, namely

~g,w!5~2 1
2,1!, ~2 1

2 ,21!, ~2 1
2,0!, ~0,0! or ~21,0!. ~7.3!

TABLE I. Taylor coefficients (a1 ,b2) for various values of~e, l!.

e l a1 b2

0.1 0 2.829 090 77 24.474 602 32
0.1 1 3.147 735 51 24.920 725 56
0.1 3 3.626 927 66 25.571 109 38
0.1 10 4.628 924 07 26.819 479 99
0.1 30 6.192 746 93 28.464 748 94
0.3 0 2.019 049 55 21.885 499 02
0.3 1 2.261 181 76 22.049 949 84
0.3 3 2.665 179 94 22.316 736 22
0.3 10 3.595 504 62 22.868 170 01
0.3 30 5.125 103 42 23.583 740 45
1 0 1.670 981 22 21.028 947 46
1 1 1.859 737 04 21.075 046 39
1 3 2.195 729 81 21.155 777 83
1 10 3.048 984 41 21.340 418 24
1 30 4.553 843 41 21.589 104 70
3 0 1.570 810 44 20.806 159 86
3 1 1.741 842 36 20.820 788 59
3 3 2.051 561 43 20.846 952 10
3 10 2.867 501 86 20.909 244 87
3 30 4.357 761 01 20.995 512 35

10 0 1.536 222 87 20.731 466 86
10 1 1.700 996 54 20.735 764 32
10 3 2.001 022 88 20.743 501 47
10 10 2.801 981 39 20.762 191 07
10 30 4.285 717 13 20.788 386 76
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The point (2 1
2,21) is related to (2 1

2,1) by the symmetry~7.1!, while (21,0) is related to~0,0!
by ~7.2!, so we do not need to study these. What remains is (2 1

2,1), (2 1
2,0), and~0,0!.

For theg521/2 fixed points, we defined5g11/2, and the equation forg becomes

d954dS w2

e
2

1

4r 2 1
d2

r 2 D . ~7.4!

The fixed pointg52 1
2 is stable forw51 whenr 2,e/4, but is unstable ifr 2.e/4. This defines

a natural length scale to the problem, namelyAe/2. We should expect our solutions to beha
qualitatively differently forr less than or greater than this length scale. Of course, ife.4, then all
radii r are less than this length scale. In the case ofw50, the valueg5 1

2 is always stable,
regardless ofe or r .

Nearg52 1
2, the equation forw becomes

w912
w8

r
52wS 4d2

r 2 1l~w221! D . ~7.5!

The behavior of this fixed point depends on the value ofw. Nearw50 we have

~rw!9522lrw1O~d2!1O~w2!,

which is stable for all positive values ofr . Nearw51, however, we writew511z and have

~r z!954l~r z!1O~z2!1O~d2!.

This is unstable as long asl.0, and has natural length scale 1/A4l.

FIG. 1. Trajectories with fixede.
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To summarize, the fixed point (2 1
2,0) is stable, while the fixed point (2 1

2,1) is unstable. If
r 2,e/4, then there is one unstable mode, corresponding to growth ofw21. If r 2.e/4, then there
are two unstable modes, one forw and one forg.

Finally, there is the fixed point~0,0!. Near~0,0! we have

g952g/r 21higher order,
~7.6!

w912w8/r 52w~r 222l!1higher order.

This fixed point is always unstable, withg growing rapidly. w will grow exponentially if r
,1/Al, and will oscillate ifr .1/Al.

VIII. NUMERICAL RESULTS AND QUALITATIVE ANALYSIS

For any fixede and l, and givena1 and b2 , one can in principle integrate the differenti
equations out tor 51. In practice, numerical errors due to the discretization of the interval@0,1#
can be very bad near the origin, due to the singular nature of the ODE system there. A
method is to use the power series~6.6! in a neighborhood of the origin and to numerical
integrate from there. In a discretization of 10 000 points, we use the power series our
50.01, or 100 lattice spacings from the origin.

In this way we get a pair~g~1!,w~1!! for each (a1 ,b2). Using Newton’s method, we then fin
values of (a1 ,b2) such that (g(1),w(1))5(2 1

2,1). Table I lists the correct values ofa1 andb2 for
several values ofe andl.

The resulting functionsw(r ) and g(r ) are sketched in Figs. 1 and 2. Figure 1 shows
functions for different values ofl ande fixed at 0.1 or at 10. Figure 2 is similar, only withl fixed
ande variable. In each case the positive function isw and the negative function isg.

From these figures several qualitative features are clear. Althoughw depends significantly on
both e and l, g is practically independent ofl, especially whene is large. The length scale o

FIG. 2. Trajectories withl fixed.
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which g changes from 0 to2 1
2 is the smaller ofAe and 1. The length scale on whichw changes

from 0 to 1 is the smallest ofAe, 1/Al, and 1. Thus changingl has the greatest effect whenl is
greater than 1, while changinge has the greatest effect whene,1.

The source code for these numerical results can be obtained from the authors.
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Massive complex scalar field in the Kerr–Sen geometry:
Exact solution of wave equation
and Hawking radiation

S. Q. Wua)

Interdisciplinary Center for Theoretical Study, and Department of Astronomy and Applied
Physics, University of Science and Technology, Hefei 230026, People’s Republic of
China and Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079,
People’s Republic of China

X. Caib)

Institute of Particle Physics, Hua-Zhong Normal University, Wuhan 430079,
People’s Republic of China

~Received 4 September 2001; accepted 2 December 2002!

The separated radial part of a massive complex scalar wave equation in the Kerr–
Sen geometry is shown to satisfy the generalized spheroidal wave equation which
is, in fact, a confluent Heun equation up to a multiplier. The Hawking evaporation
of scalar particles in the Kerr–Sen black hole background is investigated by the
Damour–Ruffini–Sannan method. It is shown that quantum thermal effect of the
Kerr–Sen black hole has the same character as that of the Kerr–Newman black
hole. © 2003 American Institute of Physics.@DOI: 10.1063/1.1539899#

I. INTRODUCTION

In a recent paper,1 we have investigated exact solution of a massive complex scalar
equation in the Kerr–Newman black hole background, and demonstrated that both its radi
and its angular part can be transformed into the form of a generalized spheroidal wave equ2

Previous work on solution of a massive scalar wave equation in the Kerr~–Newman! space–time
had been completed in Refs. 3 and 4. It is interesting to extend our analysis to solution of a
wave equation in a Kerr–Sen black hole background.5 The Kerr–Sen solution arising in the low
energy effective string field theory is a rotating charged black hole generated from the
solution. The thermodynamic property of this twisted Kerr black hole was discussed in Ref
using separation of the Hamilton–Jacobi equation of a test particle. The aim of this pape
study some exact solutions to a massive charged scalar wave equation and to find its conne
the confluent Heun equation7 as well as to investigate quantum thermal effect of scalar particle
the Kerr–Sen space–time.

The paper is organized as follows: In Sec. II, we separate a massive charged scala
equation on the Kerr–Sen black hole background into the radial and angular parts. Sectio
devoted to transforming the radial part into a generalized spheroidal wave equation and to r
it to the confluent Heun equation. Then, we investigate quantum thermal effect of scalar pa
in the Kerr–Sen space–time in Sec. IV. Finally, we summarize our discussions in the conc
section.

II. SEPARATING VARIABLES OF KLEIN–GORDON EQUATION ON THE KERR–SEN
BLACK HOLE BACKGROUND

Constructed from the charge neutral rotating~Kerr! black hole solution, the Kerr–Se
solution5 is an exact classical four dimensional black hole solution in the low energy effe
heterotic string field theory. In the Boyer–Lindquist coordinates, the Kerr–Sen metric an
electromagnetic field vector potential can be rewritten as6

a!Electronic mail: sqwu@ustc.edu.cn
b!Electronic mail: xcai@ccnu.edu.cn
10840022-2488/2003/44(3)/1084/5/$20.00 © 2003 American Institute of Physics
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ds252
D

S
~dt2a sin2 u dw!21

sin2 u

S
@a dt2~S1a2 sin2 u!dw#21SS dr2

D
1du2D ,

~1!

A5
2Qr

S
~dt2a sin2 u dw! ,

where D5r 212(b2M )r 1a25(r 2r 1)(r 2r 2), S5r 212br1a2 cos2 u and r 65M2b6e
with e5A(M2b)22a2.

This metric describes a black hole carrying massM , chargeQ, angular momentumJ
5Ma, and magnetic dipole momentQa. The twist parameterb is related to the Sen’s paramet
a via b5Q2/2M5M tanh2(a/2). BecauseM>b>0, r 5r 2 is a new singularity in the regionr
<0, the event horizon of the Kerr–Sen black hole is located atr 5r 1 . The area of the outer even
horizon of the twisted Kerr solution5 is given byA154p(r 1

2 12br11a2)58pMr 1 .
We consider the solution of a massive charged test scalar field on the Kerr–Sen blac

background~we use Planck unit systemG5\5c5kB51 throughout the paper!. Because the
Kerr–Sen metric~1! only differs from the Kerr~–Newman! solution by the form of two functions
D and S, the minimal electromagnetic coupling Klein–Gordon field equation satisfied by
complex scalar wave functionF with massm and chargeq in such a space–time can be separa
as F(t,r ,u,w)5R(r )Sm,0

l (ka,u)ei (mw2vt), in which the angular partSm,0
l (ka,u) is an ordinary

spheroidal angular wave function with spin weights50, while the radial part can be given a
follows:

] r@D] rR~r !#1F ~Ar2ma!2

D
1k2D12Dr 2l GR~r !50 , ~2!

herel is a separation constant,A52Mv2qQ, D5Av2Mm2, k5Av22m2 ~we assume tha
v.m). For later convenience, we also denoteeB5A(M2b)2ma and introduceW65(A
6B)/2.

With further substitutionR(r )5(r 2r 1) i (A1B)/2(r 2r 2) i (A2B)/2F(r ), we can transform Eq
~2! for R(r ) into a modified generalized spheroidal wave equation with imaginary spin weighiA
and boost weightiB for F(r ),1

D] r
2F~r !12@ i eB1~11 iA !~r 2M1b!#] rF~r !1@k2D12Dr 1 iA2l#F~r !50 . ~3!

Equation~2! has two regular singular pointsr 5r 6 with indices6 iW1 and6 iW2 , respec-
tively, whereas Eq.~3! has indicesr150, 22iW1 and r250, 22iW2 at two singularitiesr
5r 6 , respectively. The infinity is an irregular singularity of Eqs.~2! and~3!. Equation~3! has the
same form as the radial part of the massive complex scalar wave equation in the Kerr–Ne
geometry1 with its solution~whenm50) named as the generalized spheroidal wave function2 It
is interesting to note that a special solution of functionF(r ) satisfies the Jacobi equation o
imaginary index whenv56m5qQ/M ~namely,k5D50).

III. GENERALIZED SPHEROIDAL WAVE FUNCTION AND HEUN EQUATION

In this section, we shall show that the generalized spheroidal wave equation~3! of imaginary
number order is, in fact, a confluent form of Heun equation.7 To this end, let us make a coordina
transformationr 5M2b1ez and substituteR(r )5(z21)i (A1B)/2(z11)i (A2B)/2F(z) into Eq.~2!,
then we can reduce it to the following standard forms of a generalized spheroidal
equation:1,7

~z221!R9~z!12zR8~z!1F ~ek!2~z221!12Dez1
~Az1B!2

z221
12D~M2b!2l GR~z!50

~4!
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and

~z221!F9~z!12@ iB1~11 iA !z#F8~z!1@~ek!2~z221!

12Dez12D~M2b!1 iA2l#F~z!50 , ~5!

where a prime denotes the derivative with respect to its argument.
The spin-weighted spheroidal wave functionF(z) is symmetric under the reflectk→2k.

Letting F(z)5ei ekzG(z) without loss of generality, we can transform Eq.~5! to

~z221!G9~z!12@ iB1~11 iA !z1 i ek~z221!#G8~z!1@2i ek~11 iA2 iD /k!z22ekB1 iA

12D~M2b!2l#G~z!50 . ~6!

By means of changing variablez5122x, we arrange the singularitiesr 5r 1 (z51) to x50 and
r 5r 2 (z521) to x51, respectively, and reduce Eq.~6! to a confluent form of Heun’s equation7,8

G9~x!1S b1
g

x
1

d

x21DG8~x!1
abx2h

x~x21!
G~x!50 , ~7!

with g5112iW1 , d5112iW2 , b54i ek, a52(11 iA)1 iD /k, h5l22i ek2 iA14ekW1

22Dr 1 .
This confluent Heun equation~7!, with h its accessory parameter, has two regular singu

points atx50, 1 with exponents (0, 12g) and (0, 12d), respectively, as well as an irregula
singularity at the infinity point. The power series solution in the vicinity of the pointx50 for Eq.
~7! can be written as

G~a,b,g,d,h;x!5 (
n50

`

gnxn , ~8!

and the coefficientgn satisfies a three-term recurrence relation7,8

g051 , g152h/g ,
~9!

~n11!~n1g!gn112b~n211a!gn215@n~n212b1g1d!2h#gn .

It is not difficult to deduce the exponent 12g solution8 for x50 and obtain the power serie
solution in the vicinity of the pointx51 by a linear transformation interchanging the regu
singular pointsx50 andx51: x→12x. Expansion of solutions to the confluent Heun’s equat
in terms of hypergeometric and confluent hypergeometric functions has been presented in
and 7. The confluent Heun’s functions can be normalized to constitute a group of ortho
complete functions.7 It should be noted that Heun’s confluent equation also admits quasipo
mial solutions for particular values of the parameters.7,8 It follows from the three-term recurrenc
relation thatG(a,b,g,d,h;x) is a polynomial solution if

a52N , with integer N>0 ,
~10!

gN11~h!50 ,

wheregN11 being a polynomial of degreeN11 in h, that is, there areN11 eigenvalueshi for h
such thatgN11(hi)[0.

IV. HAWKING RADIATION OF SCALAR PARTICLES

Now we investigate the Hawking evaporation9 of scalar particles in the Kerr–Sen black ho
by using the Damour–Ruffini–Sannan’s~DRS! method.10 This approach only requires the exi
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tence of a future horizon and is completely independent of any dynamical details of the p
leading to the formation of this horizon. The DRS method assumes analyticity properties
wave function in the complexified manifold.

In the following, we shall consider a wave outgoing from the event horizonr 1 over interval
r 1,r ,`. According to the DRS method, a correct outgoing waveFout5Fout(t,r ,u,w) is an
adequate superposition of functionsF r .r 1

out andF r ,r 1

out ,

Fout5C@h~r 2r 1!F r .r 1

out 1h~r 12r !F r ,r 1

out e2pW1# , ~11!

whereh is the conventional unit step function,C is a normalization factor.
In fact, componentsF r .r 1

out andF r ,r 1

out have asymptotic behaviors,

F r .r 1

out 5F r .r 1

out ~ t,r ,u,w!→c1~r 2r 1! iW1Sm,0
l ~ka,u!ei (mw2vt) ~r→r 1!, ~12!

F r ,r 1

out 5F r ,r 1

out ~ t,r ,u,w!→c2~r 2r 1!2 iW1Sm,0
l ~ka,u!ei (mw2vt) ~r→r 1! ~13!

when r→r 1 . Clearly, the outgoing waveF r .r 1

out cannot be directly extended fromr 1,r ,` to

r 2,r ,r 1 , but it can be analytically continued to an outgoing waveF r ,r 1

out that inside event

horizon r 1 by the lower half complexr -plane around unit circler 5r 12 i0:

r 2r 1→~r 12r !e2 ip .

By this analytical treatment, we have

F r ,r 1

out ;c2~r 2r 1!2 iW1Sm,0
, ~ka,u!ei (mw2vt) . ~14!

Equation~13! just takes one solution to the radial equation inside the event horizonr 1 , it has
the same form of Eq.~14! generated by the analytical method. AsF r .r 1

out differs F r ,r 1

out by a factor

(r 2r 1)22iW1, then a difference factore2pW1 emerges due to the above analytical treatment. T
we can derive the relative scattering probability of the scalar wave at the event horizon

UF r .r 1

out

F r ,r 1

out U2

5e24pW1 , ~15!

and obtain the thermal radiation spectrum with the Hawking temperatureT5k/2p.

^N&5uCu25
1

e4pW121
,

~16!

W15
Ar12ma

2e
5

v2mV2qF

2k
,

where the angular velocity at the horizon isV5a/2Mr 1 , the electric potential isF5Q/2M
5b/Q, the surface gravity at the pole isk5(r 12M1b)/2Mr 15e/2Mr 1 .

The black body radiation spectrum~16! demonstrates that the thermal property of Kerr–S
black hole is similar to that of Kerr–Newman black hole though its geometry character is like
of the Kerr solution.6 Correspondingly, there exist four thermodynamical laws of the Kerr–
black hole, similar to those of Kerr–Newman black hole thermodynamics.
                                                                                                                



in the
Kerr
uation,

at of
The

ermal

in

1088 J. Math. Phys., Vol. 44, No. 3, March 2003 S. Q. Wu and X. Cai

                    
V. CONCLUSION

In this paper, we have shown that the separation of variables of the scalar wave equation
Kerr–Newman black hole background can apply completely to the case of the twisted
solution. The separated radial part can be recast into the generalized spheroidal wave eq
which is, in fact, a confluent form of Heun equation.

In addition, we find that the thermal property of the twisted Kerr black hole resembles th
Kerr–Newman black hole though its geometry character likes that of the Kerr solution.
Kerr–Sen solution shares similar four black hole thermodynamical laws and quantum th
effect as the Kerr–Newman space–time does.
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Quasi-homogeneous thermodynamics and black holes
F. Belgiornoa)

Dipartimento di Fisica, Universita` Degli Studi di Milano,
Via Celoria 16, 20133 Milano, Italy

~Received 14 October 2002; accepted 29 November 2002!

We propose a generalized thermodynamics in which quasi-homogeneity of the
thermodynamic potentials plays a fundamental role. This thermodynamic formal-
ism arises from a generalization of the approach presented in Ref. 1, and it is based
on the requirement that quasi-homogeneity is a nontrivial symmetry for the Pfaffian
form dQrev. It is shown that quasi-homogeneous thermodynamics fits the thermo-
dynamic features of at least some self-gravitating systems. We analyze how quasi-
homogeneous thermodynamics is suggested by black hole thermodynamics. Then,
some existing results involving self-gravitating systems are also shortly discussed
in the light of this thermodynamic framework. The consequences of the lack of
extensivity are also recalled. We show that generalized Gibbs–Duhem equations
arise as a consequence of quasi-homogeneity of the thermodynamic potentials. An
heuristic link between this generalized thermodynamic formalism and the thermo-
dynamic limit is also discussed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542922#

I. INTRODUCTION

In Ref. 1 we have shown that, by choosing the extensive variables (U,V,X1,...,Xn) as inde-
pendent variables, and by postulating that the integrable Pfaffian formdQrev representing the
infinitesimal heat exchanged reversibly is homogeneous of degree one and that the homo
symmetry is nontrivial~for the definition of nontrivial symmetry see the next section!, it is
possible to find immediately an integrating factor fordQrev. In fact, if Y5U]U1V]V1( iX

i]Xi is
the Liouville vector field associated with the homogeneity symmetry, one has that an integ
factor is given byf 5dQrev(Y)5 i YdQrevÓ0 ~see Ref. 1 and references therein!. The entropy
S(U,V,X1,...,Xn), which represents the fundamental equation in the entropy representati
then straightforwardly recovered. The framework presented in Ref. 1 can be generalized
following sense. A generalized thermodynamics wheredQrev is a quasi-homogeneous integrab
Pfaffian form is proposed. Quasi-homogeneity is realized to be a property which characteriz
behavior of thermodynamic functions like, e.g., the entropy in the black hole case, in
statistical mechanical models involving nonrelativistic matter interacting via the Newtonian
tential and also in the case of self-gravitating radiation. When gravity plays an important ro
standard extensivity property of thermodynamics does not hold; nevertheless, one can stil
form of thermodynamics in which each thermodynamic variable follows a power scaling
where the power can be different from one or zero, i.e., the variables are allowed to be n
extensive nor intensive. Black hole thermodynamics is the most evident and special ther
namics belonging to this framework.

The plan of the paper is the following. In Sec. II we give some definitions and then in Se
we propose a theoretical framework for quasi-homogeneous thermodynamics, by generaliz
standard thermodynamics case.1 In Secs. IV, V, and VI examples displaying a quasi-homogene
thermodynamics are discussed. In Sec. IV, the role of quasi-homogeneity in black hole th
dynamics is shown; in Sec. V, we discuss a model of fermionic nonrelativistic matter with N
tonian interaction which displays a quasi-homogeneous behavior. In Sec. VI, the general r
istic case of thermal geons and self-gravitating radiation are discussed. Sec. VII concer

a!Electronic mail: belgiorno@mi.infn.it
10890022-2488/2003/44(3)/1089/40/$20.00 © 2003 American Institute of Physics
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discussion of the physical consequences for thermodynamics when the requirement of ho
neity is relaxed. In Sec. VIII a summary of constructive assumptions is made. In Sec. I
generalized Gibbs–Duhem identities are discussed. In Sec. X the energy representation
Legendre transform are analyzed. In Sec. XI some further suggestions from black hole th
dynamics are discussed. Section XII has an heuristic nature, a link between the thermod
limit and the formalism of quasi-homogeneous thermodynamics is proposed. In the App
further mathematical and physical aspects are explored.

II. QUASI-HOMOGENEOUS PFAFFIAN FORMS

Given a set of real coordinatesx[(x1,...,xn) and a set of weightsa[(a1 ,...,an)PRn, a
real-valued functionG(x1,...,xn) is quasi-homogeneous of degreer and typea if, under the
action of the one-parameter group of quasi-homogeneous dilatations

gt:~x1,...,xn!→~ea1tx1,...,eantxn!, ~1!

wheretPR, one finds

G~gtx!5er tG~x!. ~2!

A differentiable functionG on a open connected domain

D5$xPDugtxPD ; xPD,tPR%#Rn ~3!

is quasi-homogeneous of degreer , if and only if,2,3

DG5rG, ~4!

where the Euler vector field

D[a1x1
]

]x1 1¯1anxn
]

]xn ~5!

is the infinitesimal generator of the transformation. Notice that a quasi-homogeneous trans
tion is also called ‘‘similarity transformation’’ and ‘‘stretching transformation.’’4 The identity~4!
is a generalization of the Euler identity for homogeneous functions. Quasi-homogeneity for
tions and vector fields is defined in Ref. 2. Notice that, according to the definition given a
one cannot avoid specifying, together with the degree of quasi-homogeneity, the type
quasi-homogeneous object one is considering.

Homogeneous functions are a subset of quasi-homogeneous functions, in fact they have
weights equal to 1. We definestrictly quasi-homogeneous functionsthe functions which satisfy the
above definition with weights which cannot be all equal. A quasihomogeneous functionn
variables is characterized byn weights and its degree. If all the weights are undetermined
arbitrary, or if they are in part undetermined and in part equal to 1, then all the weights can
equal to 1, and then the function is actually homogeneous. The vice versa is not true, becau
are homogeneous functions which do not admit different weights~i.e., they are not strictly quasi
homogeneous!. A trivial example is given byg(x,y)5x21y2, which is homogeneous of degree
but it is not also strictly quasihomogeneous. Instead, the functionh(x,y)5xy is homogeneous o
degree 2 and it is also quasi-homogeneous with undetermined weights. In the following, ‘‘q
homogeneous’’ is used as synonymous of strictly quasi-homogeneous, unless a more
discussion is required.

A Pfaffian form

v5(
i 51

n

v i~x!dxi ~6!
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is defined to be quasi-homogeneous of degreer PR if, under the scaling

x1,...,xn°la1x1,...,lanxn ~7!

one finds

v°l rv. ~8!

This happens if and only if the degree of quasi-homogeneity deg(v i(x)) of v i(x) is such that
deg(v i(x))5r 2a i ; i 51,...,n. Let us assume that a quasi-homogeneousv is integrable, i.e.,
v∧dv50. A quasi-homogeneous transformation is a symmetry forv ~see, e.g., Refs. 5 and 6!, in
the sense that

~LDv!∧v50 ~9!

whereLD is the Lie derivative associated withD defined in~5!. An integrating factorf such that
the formv/ f is closed can then be constructed by contracting the vector fieldD with v:

f [v~D !5 i D~v!, ~10!

andv(D)Ó0 is to be assumed. This means that the symmetry generated byD is nontrivial, in the
sense that it does not belong to the distribution of codimension one which is associated w
kernel of v. Then, the symmetry is not tangent to each leaf of the foliation associated wit
integrable one-formv, but it carries leaves onto other leaves. In this sense, a nontrivial symm
is transversal with respect to the foliation.
One gets

dS v

f D50. ~11!

The integrating factorf is a quasi-homogeneous function of degreer , becauseDi D(v)
5 i DLDv5ri D(v) ~due to the Cartan formulaLXi Y2 i YLX5 i [X,Y] and toi 050). Thenv/ f is of
degree zero and its integral can be found only by quadratures~cf. Sec. III!; one gets

Ŝ2Ŝ0[E
G

v

f
. ~12!

It can be shown that there exists a quasi-homogeneous functionF of degree one with respect toD
such that

Ŝ5 log~F !, ~13!

DF5F, ~14!

thus it holdsDŜ51 andŜ is not quasi-homogeneous. On this topic see Appendix A, where
case of a generic transversal symmetry is treated. The above construction is completely an
to the construction developed for homogeneous integrable Pfaffian forms in Ref. 1.

III. A GENERAL FRAMEWORK

Quasi-homogeneous thermodynamics~recall that we mean strictly quasi-homogeneous! over-
comes the standard distinction between extensive and intensive variables. We propose the
ing generalization for the integrable Pfaffian formdQrev which represents the infinitesimal he
exchanged by the system:
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dQrev5dU* 2(
i 51

n

j i* dXi* ~15!

where the asterisk indicates that both the independent variablesU* ,X1* ,...,Xn* and the depen-
dent onesj1* ,...,jn* in ~15! are generalizations of the usual ones in the sense that they ar
simply intensive and/or extensive but quasi-homogeneous, in such a way that the Pfaffia
dQrev is quasi-homogeneous of degreer . Moreover, for the sake of definiteness and in order to
some requirements for the validity of Frobenius’ theorem,dQrev is assumed to be of class at lea
C1 in the thermodynamic domain~except, maybe, on the boundary as, e.g., the surfaceT50).

The thermodynamic domainD is assumed to be a simply connected set which satisfies~3!. A
further requirement forD has to be introduced if the entropyS* is required to be superadditive:D
has to be closed with respect to the sum~see Sec. VII for further details!. Compare also Sec. III B
@In standard homogeneous thermodynamics, the thermodynamic domain can be assumed
convex cone,1 which is a cone with the property to be closed under addition~Ref. 7, pp. 13–14!.
One can also assume that the domainD is still a convex cone with the further requirement tha
has to be invariant under quasi-homogeneous transformations. This can be obtained by co
ing a setC,Rn11 which is invariant under quasi-homogeneous transformations and then theK
of all the positive linear combinations of elements ofC. The setK is the smallest convex con
containingC ~Ref. 7, p. 14!. This coneK is trivially still invariant under quasi-homogeneou
transformations.#

In the following, it is useful to refer to the variablesU* ,X1* ,...,Xn* as would-be extensive
variables, and to the variablesj1* ,...,jn* ~and alsoT* ) as would-be intensive variables. Th
variablesU* ,X1* ,...,Xn* could also be chosen to be such that they are additive, i.e., if
considers a system which is composed by two noninteracting subsystems, thenX* 5X1* 1X2* . See
also Ref. 8.

We assume that theXi* are of degreea i ; notice that the degree ofU* is a5r , i.e., the degree
r of dQrev and the weighta of U* have to coincide in every case. The Euler vector field is

D5aU*
]

]U*
1(

i
a iX

i*
]

]Xi*
. ~16!

An integrating factor fordQrev is given by

f * 5aU* 2(
i

a ij i* Xi* , ~17!

and it is assumed thatf * Ó0 as in standard thermodynamics and, moreover, it is assumed
f * >0, which is related to the positivity of the absolute temperature. Then, it is possible to
that, as in standard thermodynamics, the potentialŜ* , which is not quasi-homogeneous, is ass
ciated with a positive definite potentialS* which is a quasi-homogeneous function of degree
with respect to the Euler vector fieldD:

Ŝ* 2Ŝ0* 5E
G

v

f *
5 logS S*

S0*
D . ~18!

The proof is found in Appendix A.
Before continuing our analysis, we recall that a detailed and important study on q

homogeneous functions and their application to scaling and universality is the subject of R
and 10~therein, quasi-homogeneous functions are called ‘‘generalized homogeneous func
which is a better denomination, but we adopt a common mathematical denomination!. See also
Ref. 11. Further mathematical properties are found in Ref. 12@note that, therein, quasi
homogeneous functions are called ‘‘almost-homogeneous functions’’~Ref. 12, p. 231!, whereas
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the definition ‘‘generalized homogeneous functions’’ is assigned to a further generalization
equation defining homogeneous and almost-homogeneous functions~Ref. 12, p. 304!#.

A. Metrical entropy

By analogy with the construction for standard thermodynamics, a possibility is thatS* is the
metrical entropy for the system. This is what happens in standard homogeneous thermody
and also in black hole thermodynamics, and we conjecture that this occurrence is not spec
however the discussion at the end of this section.

We defineT* >0 by means of

]S*

]U*
[

1

T*
.0, ~19!

which means thatS* is assumed to be monotonically increasing inU* . T* is another integrating
factor for ~15!, it is such that

dQrev5T* dS* . ~20!

T* is a quasi-homogeneous function of degreer 21 ~see theorem 1 of Ref. 9, where it is show
that the partial derivative]g/]X of a quasi-homogeneous functiong of degreea with respect to a
variableX of weightb is a quasi-homogeneous function of degreea–b and the same type asg).
When rÞ1, the functionT is not intensive, but changes under quasi-homogeneous rescalin
the system. In the case of a Kerr–Newman black hole, one finds, e.g., that, by doubling the
and the charge, and by quadruplicating the angular momentum, the temperature becomes
the temperature of the original black hole state. This behavior is well justified in the light o
Hawking effect.

As a consequence of~19! and of ~18!, one finds

]Ŝ*

]U*
5

1

f *
5

1

S*
]S*

]U*
5

1

T* S*
, ~21!

thus

f * 5T* S* , ~22!

as in standard thermodynamics. From~20! it is easy to show that the quasi-homogeneous entr
can be written as

S* 5a
U*

T*
2(

i
a i

j i*

T*
Xi* . ~23!

In fact, T* is an integrating factor of degreer 21 for dQrev, and dS* [dQrev/T* is an exact
quasi-homogeneous Pfaffian form of degree 1. Then, as a consequence of lemma 1 in App
~cf. also result 1 therein!, one findsS* 5 i D(dQrev/T* ), i.e., Eq.~23! holds. When all the weights
in ~23! are equal to 1, the well-known expression for the homogeneous thermodynamic entr
recovered.

B. Thermodynamic foliation

As in the case of standard thermodynamics, one can require that the thermodynamic fo
is defined by the leavesŜ* 5const everywhere in the thermodynamic manifold, except maybe
the boundary. Singularities forŜ* can occur where f * 50, i.e., in the set Z( f * )
5Z(T* )øZ(S* ).
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The surfaceT* 50 is expected to represent an adiabatic boundary of the thermodyn
manifold. Notice that, as in the case of standard thermodynamics, the setZ(S* ) of zeroes of the
function S* , if nonempty, is assumed to be contained in the setZ(T* ). In standard thermody-
namics the occurrence of a zero forS at a temperatureT.0 can be considered pathological,
system in such a state should necessarily absorb heat in a neighborhood of this state, wh
reversible process could be considered. Compare Ref. 1. The same would happen in the
homogeneous case.

Because of~18!, the singular values for the thermodynamic foliation are represented by
points whereS* 50 ~if any!.

A stronger assumption on the domain: One could also assume that

f * >0⇔U* >b~X1* ,...,Xn* !, ~24!

whereb(X1* ,...,Xn* ) is a quasi-homogeneous function of degreea and weights (a1 ,...,an).
This functionb(X1* ,...,Xn* ) plays the role of lowest energy for the system, because by defin
U* >b. The domainD has to include the following set:

epi~b![$~U* ,X1* ,...,Xn* !u~X1* ,...,Xn* !PK(n) , U* >b~X1* ,...,Xn* !%, ~25!

whereK(n)#Rn is an open connected set. epi(b) is by definition the epigraph of the functionb.
If K(n) is closed under quasi-homogeneous dilatations (X1* ,...,Xn* )°(la1X1* ,...,
lanXn* ), then epi(b) is closed under quasi-homogeneous dilatations involving alsoU* , because
b(la1X1* ,...,lanXn* )5lab(X1* ,...,Xn* )<laU* . Moreover, if K(n) is also closed under the
sum and ifb is subadditive, then epi(b) is closed under the sum too, thus the closure ofK(n)

under quasi-homogeneous dilatations and under the sum allows us to chooseD5epi(b), in
analogy with the standard homogeneous case.~Notice that if, e.g.,K(n)5R1

n , then it is a convex
cone which is invariant under quasi-homogeneous dilatations.! An example where the domainD
coincides with the epigraph of a quasi-homogeneous function is furnished by black hole th
dynamics.

Under this assumption on the structure of the domain, one finds that it is not possible t
a state havingS* 50 at T* .0, because by introducing

B* [U* 2b~X1* ,...,Xn* !>0 ~26!

one finds

S* ~B* ,X1* ,...,Xn* !5S* ~0,X1* ,...,Xn* !1E
0

B*
dY

1

T* ~Y,X1* ,...,Xn* !
, ~27!

which cannot be zero for anyB* .0 ~in the last formula mathematical conditions ensuring
continuous entropy atT* 50 have been implicitly assumed, cf. Ref. 1!.

As far as the reference state is concerned, we assume that states like the one where
variablesU* ,X1* ,...,Xn* are zero, and any states which imply the absence of the system
unphysical. The thermodynamic description starts being meaningful if a statistically relevant
ber of degrees of freedom is available. Compare Sec. II of Ref. 1.

C. Possible ambiguities

One may wonder what should happen if one finds thatv is quasi-homogeneous but the exa
weights are nota priori known. In particular, one can assume that their ratio is known, i.e.,a/a i

anda j /a i are known for alliÞ j ; then, there is an overall undetermined multiplicative const
qÞ0, in the sense that these ratios do not change if one multiplies all the weights by the
constant. One could, e.g., knowr (1)[a/a1 and r j

(1)[a j /a1 for a1Þ0 and for all j Þ1, but the
absolute weighta1 is not known, thus the weights are (a1r (1),a1 ,a1r 2

(1) ,...,a1r n
(1)). An example

where this ambiguity appears is represented by black hole thermodynamics~see Sec. IV!. One can
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also assign the weights with respect to a scalel whose absolute weight could be unknown. T
absolute weights are then of the form (qa,qa1 ,...,qan) with q undetermined. We treat the latte
case without loss of generality, being the former equivalent to it under the
a1°qa1 , qa1r (1)°qa,qa1r i

(1)°qa i for all iÞ1. As a consequence of the undetermined ov
all factor q, one has a one-parameter family of Euler vector fields$D (q)%, with

D (q)5qaU*
]

]U*
1(

i
qa iX

i*
]

]Xi*
. ~28!

Thus, there exist a one-parameter family$ f (q)* % of integrating factors, withf (q)* 5dQrev(D (q)), and
a one-parameter family$Ŝ(q)% of potentials such that

dQrev

f (q)*
5dŜ(q) ~29!

and a one-parameter family of entropies$S(q)* % satisfying

dŜ(q)5
dS(q)*

S(q)*
, ~30!

D (q)S(q)* 5S(q)* . ~31!

The true metrical entropyS* , according to our conjecture, belongs to the family$S(q)* % but is
undetermined because the overall factorq is undetermined. In order to see which relation occ
between the various entropies in this family, let us consider a fixed valueq̄ of the parameterq.
Then we obtain the entropyS(q̄)

* . If one considers a genericq̂Þq̄, one has

D (q̂)5
q̂

q̄
D (q̄) ~32!

and

f (q̂)
* 5

q̂

q̄
f (q̄)
* . ~33!

Then,

dQrev

f (q̂)
*

5
q̄

q̂

dQrev

f (q̄)
*

~34!

⇔

d log~S(q̂)
* !5

q̄

q̂
d log~S(q̄)

* !. ~35!

As a consequence, by assuming in the integral ofdQrev/ f the same reference sta
(U0* ,X0

1* ,...,X0
n* ), one finds

S(q̂)
* ~U* ,X1* ,...,Xn* !5

S(q̂)
* ~U0* ,X0

1* ,...,X0
n* !

~S(q̄)
* ~U0* ,X0

1* ,...,X0
n* !! q̄/q̂ ~S(q̄)

* ~U* ,X1* ,...,Xn* !! q̄/q̂, ~36!

i.e.,
                                                                                                                



d

lute
meters
. As
ty by
has a

solute
at the
by

f
geneous
f. 10.

sible

quasi-
ts
pies

1096 J. Math. Phys., Vol. 44, No. 3, March 2003 F. Belgiorno

                    
S(q̂)
* 5z q̂,q̄~S(q̄)

* ! q̄/q̂, ~37!

wherez q̂,q̄[S(q̂)
* (U0* ,X0

1* ,...,X0
n* )/(S(q̄)

* (U0* ,X0
1* ,...,X0

n* )) q̄/q̂ is a constant, once one has fixe
the reference state. The metrical entropyS* is related with the entropyS(q̄)

* by a simple power law.
Compare also Appendix A.

The one-parameter family of temperatures$T(q)* %, with

1

T(q)*
[

]S(q)*

]U*
, ~38!

is such that

1

T(q̂)
*

5z q̂,q̄

q̄

q̂
~S(q̄)

* ! q̄/q̂21
1

T(q̄)
*

. ~39!

Analogous relations exist for the other partial derivatives ofS(q̄)
* and S(q̂)

* . Notice that it holds
f (q)* 5T(q)* S(q)* , because

]Ŝ(q)*

]U*
5

1

f (q)*
5

1

S(q)*

]S(q)*

]U*
5

1

T(q)* S(q)*
. ~40!

1. Phenomenological resolution of the ambiguity

The metrical entropyS* could be phenomenologically identified by means of an abso
temperature thermometer, made of standard matter, allowing to find, as the para
U* ,X1* ,...,Xn* are varied, the functionT* describing the absolute temperature of the system
a consequence, alsoS* can be recovered. We remark that the resolution of the above ambigui
means of a phenomenological input is completely in the spirit of thermodynamics, which
phenomenological nature as far as statistical mechanics is not taken into account.

2. How to fix the absolute weights by means of statistical mechanics

A priori, even in statistical mechanics, there is a scaling ambiguity, unless the ab
weights are somehow fixed. On this topic, see also Sec. XII. In fact, let us assume th
statistical mechanical entropy~calculated by means of some sort of thermodynamic limit or
means of some mean field approximation; cf. Sec. XII! under rescaling by means of a scalel is a
quasi-homogeneous function of degreeaS and weights a1 ,...,an . This means that
Ssm(laU,la1X1,...,lanXn)5laSSsm(U,X1,...,Xn). By changing the scalel5l̄q, the scaling of
the variables becomesl̄qa i. Thus, there is an overall factorq of ambiguity. Such a redefinition o
the scale, unless the absolute weights are somehow fixed, allows to remap any quasi-homo
function of degreeaÞ0 into a quasi-homogeneous function of degree one, as noticed in Re
The statistical mechanical entropy is then assumed to satisfy

Ssm~lqaU,lqa1 X1,...,lqanXn!5lqaSSsm~U,X1,...,Xn!, ~41!

where the overall factor ambiguity is enhanced. With respect to the Euler vector fieldD (q) which
corresponds to the above weights it holdsD (q)Ssm5qaSSsm.

We know that from a thermodynamic point of view there is a one-parameter family of pos
metrical entropies, each of which is of degree one. The statistical mechanical entropySsm has to
coincide with the metrical thermodynamic entropyS* and it has to holdT dSsm5T* dS*
5dQrev. As a consequence, the statistical mechanical entropy has to be a degree one
homogeneous function. This requirement fixesqaS51, and fixes unambiguously the weigh
~then, it eliminates also the ambiguity in the one-parameter family of thermodynamic entro!.
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We could also relax our conjecture about the identification ofS* in formula ~18! as the
metrical entropy. The Clausius-type formula~18! gives in general an empirical entropy which is
be uniquely related with the metrical entropy by identifying the absolute temperature scale
the standard procedure. One could still assume that the metrical entropy is quasi-homoge
but it would be possible in line of principle to require that its degree isq, with q non-necessarily
equal to 1. Then, even in the case where all the weights are known, one would findSmetric*
}(S* )q, whereS* is obtained from formula~18!. Compare also Appendix A. The above pheno
enological procedure could be still allowed. Compare also Sec. XII and the conclusions he

A further consideration is in order, and it concerns the possible presence of variables of w
zero. All the mathematical approach developed in this section remains unaltered. It is to be
that, if a variableI * having weight zero is present, the termI * ]/I * does not appear in the Eule
operator and in the integrating factorf the term proportional toI * is missing.

Notice that it is possible that the thermodynamic description allows a reducing/enlargi
the thermodynamic space as the one discussed in Ref. 1. This means that part of the variabXi*
appearing indQrev and inS* could be set equal to zero consistently, which means that a m
ingful thermodynamic description is still allowed whenXi* 50 ~in standard thermodynamics suc
variables play, e.g., the role of external fields1!; consistency requires that, ifXi* 50 is allowed,
thenj i* 50 asXi* 50.1 Black hole thermodynamics represents a good example, and this to
discussed in Sec. XI.

We underline that this kind of generalization of thermodynamics can be considered
subcase of a generalization proposed by Landsberg in Ref. 13. Therein, a discussion of gen
ideal gases appears, where the properties of the following generalized entropy are analyz

S5bN logS a
UVg

Nh D . ~42!

Given the Euler field

Dabg5aU
]

]U
1bV

]

]V
1gN

]

]N
, ~43!

it is easy to show thatS in ~42! is quasi-homogeneous~of degreeg! if and only if a1gb2hg
50. If the latter constraint is not implemented, thenS is not quasi-homogeneous. Homogene
requiresh5g11.

IV. THE BLACK HOLE CASE

We summarize herein the results obtained in Ref. 14 in the black hole case~we set\5c
5G5kb51, wherekb is the Boltzmann constant; moreover, we work with unrationalized e
trical units!. For a general discussion about black hole thermodynamics see, e.g., Refs. 15 a
Herein, as well as in Sec. V and in Sec. VI, we do not use the asterisk, which is in genera
only in theoretical sections. The Pfaffian form of black hole thermodynamics for black holes o
Kerr–Newman family is

dQrev[dM2F dQ2V dJ, ~44!

where the parametersM ,Q,J are the massM , the angular momentumJ and the chargeQ of the
black hole; the angular velocity

V5
J

M

1

2M22Q212MAM22Q22J2/M2
~45!

and the electric potential
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F5
Q~M1AM22Q22J2/M2!

2M22Q212MAM22Q22J2/M2
~46!

are associated with the black hole horizon.M in ~44! plays the role of internal energy, th
remaining terms in~44! being ‘‘standard’’ work terms. Each black hole of the Kerr–Newm
family is a stationary solution of the Einstein equations, and it can be considered, from
thermodynamic point of view we develop here, rather loosely speaking, as an ‘‘equilibrium
of the geometry.’’ The variation occurring in~44! is taken along such stationary solutions. T
thermodynamic domain for the nonextremal black holes is the~open! nonextremal manifold im-
plicitly defined by the inequalityM42M2Q22J2.0; the extremal submanifoldM42M2Q2

2J250 is a boundary of the former, and its status is analyzed in Ref. 17~therein a discussion o
the third law of thermodynamics also in the light of this approach is found!. ~We limit ourselves
to recall that in black hole thermodynamics the entropic form of the third law is violated18 but still
the unattainability ofT50 holds under suitable hypotheses.!

The Pfaffian form~44! is integrable, it satisfies the conditiondQrev∧d(dQrev)50, i.e.,

2]JF1]QV1F]MV2V]MF50. ~47!

Moreover, the Pfaffian form~44! is quasi-homogeneous. In fact, underM→laM ; Q→laQ; J
→l2aJ, one obtainsdQrev→ladQrev, wherel.0. The weightsa, a, 2a are not known, only
their ratio is determined. Then, the degree ofdQrev is not fixed.14 Nevertheless, a thermodynam
construction is allowed. One finds that the integrating factor fordQrev is given by f 5a(M
2FQ22VJ), that is

f 5aAM22Q22J2/M2 ~48!

~it is interesting to notice that this integrating factor is proportional to the horizon coordinac
introduced by Carter in Ref. 19, thus, it is constant on the horizon!. Then, one gets14

E dQrev

f
[Ŝ2Ŝ05

1

2a
log S A

A0
D , ~49!

where A54p(M2(11A12Q2/M22J2/M4)21J2/M2) is the black hole area and is positiv
definite. The main difficulty is in finding the metrical entropy, because of the undetermined o
multiplicative constanta. Both a51/2 and a undetermined proportionality constantc0 appearing
in the Bekenstein–Hawking lawS5c0A are recovered, e.g., by comparing the temperature of
black hole with the Hawking temperature, and one findsc051/4; also the Euclidean path integr
method can be used with this aim20 ~see also the papers collected in Ref. 21!, as well as a
phenomenological plot of the temperature as a function ofM ,Q,J. @Moreover, we notice that the
same resultS}A could be obtained by requiring that the metrical entropy is quasi-homogen
of degree one with respect to the Euler fieldD which is obtained by normalizing to one the bigge
weight 2a:

D5
1

2
M

]

]M
1

1

2
Q

]

]Q
1J

]

]J
. ~50!

But this normalization rule should be justified on a general thermodynamic footing, and the
J50 ~Reissner–Nordstro¨m solution!, being homogeneous inM ,Q, shows that the physically
correct valuea51/2 cannot be found on the ground of such a rule.#

S is quasi-homogeneous of degree one and of type~1/2,1/2,1! and it is well defined every-
where in the thermodynamic manifold. It is such thatS50 only for M5Q5J50, which should
not be considered as a state belonging to the thermodynamic manifold~see the discussion in Sec
III; moreover, nearM50 quantum gravity effects are non-negligible and general relativity
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expected to be nonviable!. Thus,Z(S)5B and one findsZ( f )5Z(T), and Ŝ is regular every-
where; as a consequence,Ŝ andS could be continued even on the extremal submanifold~but see
Ref. 17 for arguments against this continuation!. All nonextremal states haveT.0, whereas the
extremal boundary corresponds toT50. As it is well-known, one obtains an entropy which is n
concave, but simply strictly superadditive when the merging of two black holes is considered
ensures the second law of thermodynamics.13,22,23See also Sec. VII.

By introducing

b~Q,J![
1

&
AQ21AQ414J2, ~51!

which is a quasi-homogeneous function of degree 1/2 and weights~1/2,1!, as it can be easily
verified ~see also Ref. 17!, the domain can be also written as follows:

D5$~M ,Q,J!u~Q,J!PR2,M>b~Q,J!%[epi~b!. ~52!

In fact, M5b(Q,J) is the physical~i.e., having positive mass! solution of M42M2Q22J250
and the black hole manifold isM42M2Q22J2>0, which meansM>b. The functionb(Q,J)
indicates, for given values ofQ,J, which is the lowest mass such that a black hole solution
exist. The lowest mass coincides with the mass of the extremal black hole havingQ,J as charge
and angular momentum, respectively.

We point out that the quasi-homogeneous behavior of black hole thermodynamics is
special feature of the Kerr–Newman family. In fact, it can be realized easily, e.g., in the case
Kerr–Newman–anti–de-Sitter~KN–AdS! case.24 A peculiar feature arises, one has to define
thermodynamic angular velocityV as the difference between the angular velocity of the hori
and the angular velocity at infinity, and the same is true in the case of the electric poten24

Nevertheless, these definitions are necessary, e.g., the ‘‘electric’’ work term has to involv
difference between the potential at the horizon and the potential at infinity when the latter
zero, and, on the same footing, the redefinition ofV is due to the fact that the angular velocity
not zero at infinity. The change in the energy associated with these work terms has to involv
a difference, which does not appear in the KN case because of the vanishing ofF and of V at
infinity.

General relativity is surprising from a thermodynamic point of view. Black hole solution
the Einstein equations are involved with an integrability condition~47!, and they allow a fine
explicit thermodynamic construction via Carathe´odory. One finds a link with thermodynamic
which is a priori unexpected and it is not simply the formal analogy between laws of therm
namics and laws of black hole mechanics, because the above construction belongs to the
dynamic framework, apart from the geometric inputsV, F, which come from general relativity
See also the discussion in Ref. 14.

V. NEWTONIAN GRAVITY. A MODEL OF HERTEL, NARNHOFER, AND THIRRING

There exists an interesting statistical mechanical calculation for gravitating fermions w
corroborates the idea that, in presence of gravity, a quasi-homogeneous thermodynam
allowed.25–27The model~HNT model in the following! involves nonrelativistic fermions interact
ing by means of a Coulomb potential and a Newtonian potential, with vanishing~or small! total
charge. Thus, the calculation does not involve general relativity but only Newtonian gr
Nevertheless, the result is still interesting and, to some extent, puzzling. The quantum mec
Hamiltonian which is considered is

H5(
i 51

N pW i
2

2Mi
1(

i , j

eiej2Gmimj

uxW i2xW j u
. ~53!
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The authors state that a thermodynamic limit exists if the following asymptotic behavior
lowed forU,V: V;1/N, U;N7/3, and the microcanonical entropy is of degree 1 in the numbeN
of fermions. The scaling properties ofU, V with N are peculiar, they are homogeneous of deg
1 if the potential term in~53! is suppressed by means of a multiplicative factor 1/N2/3, which
means that, as the system gets larger, the interaction becomes weaker.27 If this suppression is no
in agreement with the physics, and if the fermions do not become relativistic, then the mic
nonical entropyS(U,V,N) is a quasi-homogeneous function of degree 1, and the weight
U,V,N are 7/3,21,1, respectively. Compare also Sec. XII, where the notion of qu
homogeneous thermodynamic limit is introduced. The Euler field is

DUVN5
7

3
U

]

]U
2V

]

]V
1N

]

]N
. ~54!

For details of the highly nontrivial calculations, see Refs. 25,26 and 28. We are interested h
pointing out that, as stressed in Ref. 25, there is a one-parameter family of equivalent limN
→`, whose parameterg remains fixed by the requirement that the ground state energy goe
N7/3, according to a result of Ref. 29. A scaling ambiguity, which would reflect itself in
undetermined weights (22g15/3,3g,1) of (U,V,N), respectively, is thus solved by comparin
with the scaling behavior of the ground state. See also Ref. 28. Another important point is th
temperature-dependent Thomas–Fermi equation, which allows these scaling properties, b
exact in the thermodynamic limit for the system under discussion.25 We limit ourselves to under-
line that Newtonian gravity furnishes a statistical mechanical example where unusual scalin
for the ‘‘extensive’’ variables are allowed. The purely attractive nature of gravity plays a m
role, because it does not saturate, i.e., it does not allow to obtain a ground state proportiona
number of particles.29 Notice also that a lack of concavity is allowed.27

It is interesting to notice that another model involving different scaling relations has
developed in Ref. 30. Therein, a classical gas of nonrelativistic particles which interact by m
of Newtonian gravity is considered in a diluted regime where particles of massm are enclosed in
a box; the following behavior is recovered in a nonconventional thermodynamic limit w
V/N3→const. asN→`. A dilution parameter

j[
1

Gm2

UV1/3

N2 ~55!

is kept constant in the thermodynamic limit. One finds thatS(U,V,N) is quasi-homogeneous o
degree 1 and weights~1,3,1!, as can be inferred from Ref. 30. Compare also Sec. XII. This mo
differs from the previous one because it involves classical matter, the gas is kept diluted
thermodynamic limit, no collapse is considered. Note that even the HNT model can be r
with the parameterj introduced in~55!, in fact even in HNT model this parameter is constant
the appropriate thermodynamic limit.j can be qualitatively interpreted as the ratio between
internal energy and the Newtonian gravitational energy, in fact the gravitational energy
homogeneous sphere of massM[N2m is proportional toGM2/V1/3. Thus, in both cases, th
requirement of a non-negligible contribution of the gravitational energy to the internal ener
realized in the thermodynamic limit. In the HNT model, a self-bounded system is considered
a ~cold! star, whereV contracts as the mass is increased; in the model of Ref. 30, the phy
conditions are different, a gaseous system is considered, the energy per particle remains c
and small, and the systems remains gaseous in the thermodynamic limit.

In the regime where gravitational forces cannot be neglected, one can expect that a d
kind of quasi-homogeneous thermodynamics can arise, with different weights, depending
actual physical conditions, e.g., the amount and the type of matter. Semirelativistic ma
expected to behave in a different manner~cf. Ref. 29!. The point is that a different scaling
behavior of the ground state of the matter can be expected if relativistic effects in the k
energy are non-negligible. A self-consistent calculation taking into account general relativ
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expected to give another kind of contribution. An approach, combining in a self-consisten
general-relativistic equations and finite-temperature Thomas–Fermi approximation for the th
dynamic functionals would be required. In this direction, see Ref. 31. It is also interesting to
out that such an approach probably would not be useful for understanding black hole ther
namics, in fact no stable ground state for the matter could exist by hypothesis~a collapse of the
matter beyond the possible stable states represented by white dwarf and neutron stars sho
place, with no possibility to prevent the formation of an event horizon!.

VI. A LOOK AT THE THERMAL GEON AND AT SELF-GRAVITATING RADIATION

We discuss naively the scaling properties of the so-called thermal geons.32 A geon is a ‘‘gravi-
tational electromagnetic entity’’ which consists in a self-gravitating ensemble of electromag
modes.33 The most stable configuration is such that the photons are distributed within a to
region of the space–time, but also a spherical distribution can be allowed. Geons do not re
strictly stationary solutions of the Einstein equations, because a leakage of photons to infi
allowed. Nevertheless, they can be considered as metastable quasistationary solutions. M
sizes are considered where no contribution of electron physics, due to pair creation by th
tromagnetic field, is considered, and no zero-point energy is taken into account. In Ref. 32 th
of a geon has been generalized to the case of thermally distributed electromagnetic mod
main assumptions are the following ones:~a! the metric is a spherosymmetric static diagon
metric in the Schwarzschild gauge;~b! there exist two separate classes of electromagnetic mo
the first class is constituted by bounded null geodesics which represent modes whose
cannot escape to infinity~the actual rate of flux to infinity goes to zero exponentially with the ra
between the dimensions of the geon and the wavelengthl!. The second class is constituted by fr
electromagnetic modes, i.e., by null geodesics which reach infinity.~c! The energy of the free
modes is zero, the energy of the bounded modes of frequencyV is ~in natural units!

EV5V
1

expS V

T D21

, ~56!

which is the usual distribution for black-body radiation andT is the temperature. See also Ref.
on this topic. The active region of the geon is defined as the region where the metric coef
g00 satisfiesug00u,1. By definingR as the radius of the active region andM as its mass, the
following scaling laws can be deduced:32

R;RT[S 15\3c7

8p3G D 1/2 1

~kbT!2 }
1

T2 , ~57!

M;MT[S 15\3c11

8p3G3 D 1/2 1

~kbT!2 }
1

T2 . ~58!

As an order of magnitude estimation on the same footing of the previous evaluations, one c
that the entropy behaves asS}VT3, whereV is the volume of the active region, thusS}T23.
From the above naive considerations, one finds thatS is a quasi-homogeneous function

S~l22M ,l26V!5l23S~M ,V!. ~59!

In the case of a massless gas, there is an ambiguity in the identification of the absolute wei
the variables. There is an overall multiplicative factor to be determined in the Euler vector
Let us assume thatS is of degree 1, as suggested by the formal picture of thermodynamics~cf.
Sec. III and Sec. XII!; thenT has degree21/3 and the scaling law for the fundamental equat
is
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S~l2/3M ,l2V!5lS~M ,V!, ~60!

i.e., M has weight 2/3 andV has weight 2. We note that the ratioM /V1/3 is scale-invariant and it
is the same ratio which is kept constant in the thermodynamic limit discussed in Ref. 30
above result about thermal radiation can be confirmed by comparing it with the study of Re
Black-body self-gravitating radiation enclosed in a spherical box of radiusR is considered in Ref.
34. It is shown that the maximization of the entropy in a spherosymmetric geometry leads
following results:~i! the metric is static;~ii ! the perfect fluid of photons satisfies the Tolman
Oppenheimer–Volkov~TOV! equation. In particular, the TOV equation one obtains is scale
variant. By introducing the densityr(r ), the massm(r )5*0

r dy 4py2r(y) (r is the radial coor-
dinate! one can define, by following Ref. 34, the dimensionless variables

m5m~r !/r , ~61!

q5dm/dr54pr 2r~r !, ~62!

and the TOV becomes equivalent to the following couple of equations:

r
dq

dr
5

2q

122m S 124m2
2

3
qD , ~63!

r
dm

dr
5q2m. ~64!

No equilibrium is attained ifm.0.25.34 We are interested here in the scaling properties of
Pfaffian form

dQrev5dM1p dV, ~65!

where M[m(R) is the mass,V is the volume~as seen from infinity! and p5r(R)/3 is the
pressure as a function of the box radius. These variations are to be intended, as in the bla
case, as ‘‘on shell,’’ i.e., along static spherosymmetric equilibrium solutions of the TOV. E
solution represents a thermodynamic equilibrium state. Under the scalingM→lM ; V→l3V;
p→l22p, which corresponds to~30! of Ref. 34 and is allowed by the scale invariance of t
TOV, one findsdQrev→ldQrev. Particularly, one has

D5a S M
]

]M
13V

]

]VD , ~66!

wherea has to be determined. FromdV54pR2 dR and from~64! one finds

dQrev5
4
3 q dR ~67!

and the integrating factor

dQrev~D !5a~M13pV!5a 1
3~3m1q!R. ~68!

Thus,

v

f
5

4

a

q

3m1q

dR

R
. ~69!

By comparing this result with the ratiodS/S which can be obtained by the exact result~34! of Ref.
34, one finds thata52/3. As the consequence, the weights ofD are the same as in the case
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thermal geons@notice that the requirement forS to be quasi-homogeneous of degree one in
scale factorl would lead to the scalingr→l2/3r ; m→l2/3m; r→l24/3r in ~30! of Ref. 34#.

VII. CONSEQUENCES OF THE NONEXTENSIVITY OF S

We have to underline that the lack of extensivity has important consequences on the pro
of the entropy. In fact, if one considers for a continuous entropyS superadditivity (S), concavity
(C) and homogeneity (H), one finds:
~a! (H) and (S) imply (C);35

~b! (H) and (C) imply (S);36

~c! (S), with the conditionS(0)50, and (C) imply (H).8,22

We recall that a functionh(x) of n variables, collectively indicated withx in this section, is
superadditive ifh(x1y)>h(x)1h(y) for all x,y in its domain. Superadditivity, in the case o
entropy, means that the principle of entropy increase in a irreversible adiabatic process
spected. Moreover, (C) requires a convex domain, (S) a domain which has to be closed und
addition, and (H) a domain which has to be closed under multiplication ofx by a real scalarl
.0 ~a cone!.

Notice that the conditionS(0)50 appearing in~c! is a mathematical condition which could b
required even if the statex50 does not belong to the thermodynamic space, in the light of
discussion in Sec. III; see however also Ref. 22, wherex50 is included in the thermodynami
space. One could consider an extended domain includingx50, on a purely mathematical ground
even if the thermodynamic formalism at such a point is meaningless. Moreover,S is required to be
a continuous function. Then, if homogeneity does not hold andS(0)50, either superadditivity or
concavity has to be violated. It can be easily shown that the conditionS(0)50 in ~c! can be
replaced by the~natural! requirement thatS(x)>0 for any statex in the thermodynamic domain
In fact, (C) implies

S~ 1
2 y1 1

2 z!> 1
2 S~y!1 1

2 S~z! ~70!

for any y,z; moreover, (S) implies

S~2x!>2S~x!. ~71!

If z50 andy52x, from ~70! one obtains

S~x!> 1
2 S~2x!1 1

2 S~0!. ~72!

Then, 1/2S(2x)11/2 S(0)<S(x)<1/2 S(2x), which impliesS(0)<0. As a consequence, th
requirement of a non-negative entropyS, together with (S) and (C), impliesS(0)50, thus also
(H) has to hold. This shows that the conditionS(0)50, in the framework of thermodynamics
whereS>0, cannot be actually considered as a true restriction leaving room for a thermodyn
in which a concave and superadditive but nonhomogeneous entropy is allowed ifS is defined in
x50 ~of course, this holds as far as negative values ofS are forbidden!. Notice thatS* (0)50 for
a continuous quasi-homogeneous entropy defined in 0.

Superadditivity of the entropy means that for the thermodynamic system the entropy do
increase by fragmenting the system.8 From the point of view of the energy representation, to
discussed in Sec. X, superadditivity of the entropy is equivalent to the subadditivity of the e
under the condition~19! ~for a proof, see Refs. 35 and 36!. @This equivalence holds even
conditions (C), (H) are violated.# Subadditivity of the energy means that exploding is not en
getically advantageous for the system.37,38 The relevance of (S) for the second law of thermody
namics is discussed and underlined in Ref. 13. Accordingly, one should privilege the supe
tivity property against the concavity, and superadditivity should be required as a fundam
property for the quasi-homogeneous picture of thermodynamics. Notice that a lack of con
for thermodynamics in presence of gravity is verified in Refs. 39 and 40, where negative
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capacities in presence of gravity are calculated. Therein, a discussion on how to deal with th
of the standard stability properties of thermodynamics is sketched. See also Refs. 41 and 4
to be noted that this lack of concavity in presence of gravity forces to abandon the usual Gi
scheme for thermodynamics, and the homogeneity property has to be withdrawn because o~a!, if
one adopts the superadditivity as a fundamental property for the metrical entropy of a system
to the above equivalence between superadditivity of the entropy and subadditivity of the in
energy, one can naively justify this choice by underlining that, because of the purely attr
nature of gravity, internal energy of a self-gravitating system should be strictly subadditive, i
energy decreases as the accretion of matter increases. Thus, there is an implosive insta
gravity, which eventually leads to the formation of black holes, to be identified as very long-
metastable states. By passing, we note that there is another instability which is opposite in
acter with respect to the one implied by gravity. It involves system fragmentation/explo
because of a superadditive energy.37,38 It should be characterized only by unstable states~systems
with a suitable charge excess would be explosive28!. ~See also the works of Lieb collected in Re
43, in particular the review in Ref. 44; see also Ref. 45.!

VIII. SUMMARY OF CONSTRUCTIVE ASSUMPTIONS

We summarize the set of constructive assumptions upon which our approach is based
correspond to the assumptions leading to standard homogeneous thermodynamics,1 the difference
consists in the substitution of the homogeneity symmetry with the quasihomogeneity sym
and also in the explicit request that the entropy is superadditive. We comment only some as
tions which require further remarks with respect to the discussion developed in the text.

~a1! The quasi-homogeneity symmetry which characterizes the thermodynamic syst
translated into the quasi-homogeneity of the Pfaffian formdQrev5dU* 2( i 51

n j i* dXi* .
~a2! The quasi-homogeneity symmetry ofdQrev is nontrivial.
~a3! The thermodynamic foliation is defined by the leavesŜ* 21(c), wherecPR is a constant,

everywhere inD.
This assumption does not leave room for foliations which are based on a quasi-homoge

S* which is allowed to be negative. Compare the discussion in Ref. 1 for the homogeneous
~a4! The integrating factorf * is non-negative.
~a5! The metrical entropyS* is quasi-homogeneous of degree 1.
This assumption could also be weakened, as discussed in the text.
~a6! The metrical entropyS* is superadditive.
This assumption substitutes the requirement for a concave entropy occurring in sta

homogeneous thermodynamics. Notice that in standard thermodynamics it would lead aga
concave metrical entropy, because of the implication~a! of Sec. VII ~cf. Ref. 35!.

~a7! We require thatZ(S* )#Z(T* ).
This assumption is, e.g., implemented as in Sec. III B. One can also add the followin

sumptions which appear to be physically appealing.
~a8! We require that to each level setS* 5const corresponds a unique leaf.
This assumption means that two states of the same quasi-homogeneous system lying

same isoentropic surface are path-connected, i.e., it is possible to find a reversible adiaba
connecting each other.

~a9! We require that]S* /]V* is positive if V* is the volume of the system.
This simply means that the pressurep* is positive whenever it is definite.
~a10! We require thatf * 50 corresponds to an integral manifold ofdQrev.
This assumption is natural and is related to the problem of the third law. Compare Ref.

standard thermodynamics; see also Ref. 17 for the black hole case and also Appendix B.

IX. GENERALIZED GIBBS–DUHEM EQUATION

Quasi-homogeneity ofS* allows to find a generalization of the standard Gibbs–Duh
equation.46
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A. Case where none independent variable of weight zero appears

We first discuss the case where none independent variable of weight zero appears. By
entiating~23! one finds

dS* 5a
1

T*
dU* 1aU* dS 1

T* D2(
i

a i

j i*

T*
dXi* 2(

i
a iX

i* dS j i*

T* D ~73!

and by comparing with

dS* 5
1

T*
dU* 2(

i

j i*

T*
dXi * ~74!

one finds that the following generalized Gibbs–Duhem equation has to hold:

aU* 2 @~a21!/a# 11dS U* @~a21!/a#

T* D 2(
i

a iX
i* 2 @~a i21!/a i # 11dS Xi* @~a i21!/a i #j i*

T* D 50. ~75!

This equation, as in the usual thermodynamic case, allows to express the differential of a wo
intensive variable as a function of all the other ones, and then to find such a would-be int
variable apart from a integration constant~cf. Ref. 46 for the case of standard thermodynamics!. In
fact, one could, e.g., find for 1/T* :

d logS 1

T* D52
a21

f *
dU* 1

1

f * (
i

a iX
i* 2 @~a i21!/a i # 11d~Xi* @~a i21!/a i #j i* !. ~76!

Notice that

d logS 1

T* D52d log~ f * !1
dQrev

f *
. ~77!

Equation~76! is implemented if~18! and~74! hold. Let us consider the inverse problem where o
assigns n would-be intensive functionsj1* ,...,jn* which are quasi-homogeneous
U* ,X1* ,...,Xn* and such thatdQrev is quasi-homogeneous as well. Equation~76!, or, equiva-
lently, Eq.~77! can be used for recoveringT* , and then for reconstructingS* by means of~18!,
if and only if one has ensured thatdQrev/ f * is an exact differential, i.e., thatdQrev is integrable
and f * is an integrating factor fordQrev. Otherwise,~76! is not even meaningful@a closed form
on the left-hand side of~77! should be equal to a nonclosed form on the right-hand side of
same equation#. Compare also Ref. 1.

Notice that, ifS* has degreeq, then~75! becomes

a

q
U* 2 @~a2q!/a# 11dS U* @~a2q!/a#

T* D 2(
i

a i

q
Xi* 2 @~a i2q!/a i # 11dS Xi* @~a i2q!/a i #j i*

T* D 50.

~78!

See also Appendix C.

B. Case where independent variables of weight zero appear

Let us assume that, the independent variablesXi* have weight zero fori 5p11,...,n, with
p,n. This means thatj i* have degreea for i 5p11,...,n. The Euler vector field is

D5aU*
]

]U*
1(

i<p
a i Xi*

]

]Xi*
, ~79!
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and the integrating factor is

f * 5aU* 2(
i<p

a ij i* Xi* . ~80!

Then, one has

S* 5
1

T* S aU* 2(
i<p

a ij i* Xi* D . ~81!

It is easy to show that the Gibbs–Duhem equation in this case is

aU* 2 @~a21!/a# 11dS U* @~a21!/a#

T* D 2(
i<p

a iX
i* 2 @~a i21!/a i # 11dS Xi* @~a i21!/a i #j i*

T* D
1 (

p, i<n

j i*

T*
dXi* 50. ~82!

One can also obtain the analogous of Eq.~76!,

d logS 1

T* D52
a21

f *
dU* 1

1

f * (
i<p

a iX
i* 2 @~a i21!/a i # 11d~Xi* @~a i21!/a i #j i* !2

1

f * (
p, i<n

j i* dXi* .

~83!

Equation~77! still holds.
Concerning the Gibbs–Duhem equation in standard thermodynamics, see Ref. 47.

C. Examples

In the black hole case, as well known, one has~we do not write the asterisk in what follows!

S5
M

2T
2

FQ

2T
2

VJ

T
~84!

and

dS5
1

T
dM2

F

T
dQ2

V

T
dJ; ~85!

the generalized Gibbs–Duhem equation, associated with the quasi-homogeneity ofS, is

2
1

2T
dM1

M

2
dS 1

TD1
F

2T
dQ2

Q

2
dS F

T D2JdS V

T D50, ~86!

which can be rewritten as14

1

2
M2dS 1

MTD2
1

2
Q2dS F

QTD2JdS V

T D50. ~87!

Then, one can find 1/T from

d logS 1

TD5
1

f S 1

2
dM1

1

2
Q2dS F

QD1J dV D . ~88!
                                                                                                                



tive

pear;

rence,
o

iterate
-
volv-
rgy

1107J. Math. Phys., Vol. 44, No. 3, March 2003 Quasi-homogeneous thermodynamics, black holes

                    
It can be easily shown that 1/T can be determined apart from an undetermined multiplica
constant.

X. ENERGY REPRESENTATION AND LEGENDRE TRANSFORM

In the energy representation, the fundamental equation isU* 5U* (S* ,X1* ,...,Xn* ). One has

dU* 5T* dS* 1(
i

j i* dXi* . ~89!

U* is a quasi-homogeneous function of degreer and type (1,a1 ,...,an); T* is quasi-
homogeneous of degreer 21, j i* are quasi-homogeneous of degreea i2r . Equation~89! repre-
sents an exact quasi-homogeneous Pfaffian form of degreer . The Euler operator is

D5S*
]

]S*
1(

i
a iX

i*
]

]Xi*
. ~90!

One has then

U* 5
1

r S T* S* 1(
i

a ij i* Xi* D . ~91!

~Notice that the generalization to the case whereS* is quasi-homogeneous of degreeq is trivial.!
As far as the Gibbs–Duhem equation is concerned, one easily finds~we shift to the case where

S* has degreeq)

q

r
S* 2@~ q2r !/q# 11d~S* @~q2r !/q#T* !1(

i

a i

r
Xi* 2 @~a i2r !/a i # 11d~Xi* @~a i2r !/a i #j i* !50. ~92!

For a proof see Appendix C. One can, e.g., determineT* from

d~S* @~q2r !/q#T* !52S* @~q2r !/q# 21
1

q (
i

a iX
i* 2 @~a i2r !/a i # 11d~Xi* @~a i2r !/a i #j i* !. ~93!

A formula analogous to~82! can be obtained if some independent zero-weight variables ap
one obtains~cf. Appendix C!

q

r
S* 2 @~q2r !/q# 11d~S* @~q2r !/q#T* !1(

i<p

a i

r
Xi* 2 @~a i2r !/a i # 11d~Xi* @~a i2r !/a i #j i* !

2 (
p, i<n

j i* dXi* 50. ~94!

A. Legendre transforms

Legendre transforming of the potentials involves the usual procedure. A noticeable diffe
with respect to standard thermodynamics, is that, if, between then11 independent variables, n
variable of weight zero appears and no intensive dependent variable occurs, then one can
the Legendre transformations of the potentialn11 times and find a potential which is not iden
tically vanishing. Moreover, the would-be intensive variables appear in the Euler operator in
ing the new independent variables. Let us, e.g., consider the quasi-homogeneous free ene

F* ~T* ,X1* ,...,Xn* !5U* 2T* S* . ~95!

It is a quasi-homogeneous function of degreer with respect to the Euler operator
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D15~r 21!T*
]

]T*
1(

i
a iX

i*
]

]Xi*
. ~96!

One can Legendre transform also with respect to the remainingn variablesX1* ,...,Xn* :

Gn11* ~T* ,j1* ,...,jn* !5U* 2T* S* 2(
i 51

n

Xi* j i* Ó0. ~97!

The corresponding Euler operator is

Dn115~r 21!T*
]

]T*
1(

i
~r 2a i !j i*

]

]j i*
. ~98!

Notice that, all the potentials which are obtained by Legendre transforming the internal enerU*
are quasi-homogeneous of degreer with respect to the corresponding Euler operator; all
Massieu–Planck potentials, which are obtained by Legendre transforming the entropyS* , are
quasi-homogeneous of degree 1. In other terms, the Legendre transform preserves the d
quasi-homogeneity@but it changes variables and weights: the function

h* ~j* ,Y* !5g* 2j* X* ~99!

which is obtained by a Legendre transform with respect to a variablej of weight a of a function
g(X* ,Y* ) which is quasi-homogeneous of degreer and weights (r 2a,r 2b), has weight (a,r
2b)]. For a proof, see Ref. 9~theorem 2, Appendix A therein!.

1. Case where weight-zero independent variables appear

Let us consider the case where a variableh* of degreer and a variableI * of weight zero
appears:

dU* 5T* dS* 1j* dX* 1h* dI* . ~100!

The Euler operator is

D5S*
]

]S*
1bX*

]

]X*
. ~101!

One can Legendre transform three times, obtaining

G3~T* ,j* ,h* !5
1

r
@~12r !T* S* 2~r 2b!j* X* 2rh* I * # ~102!

and

D35~r 21!T*
]

]T*
1~r 2b!j*

]

]j*
1rh*

]

]h*
. ~103!

2. Case with would-be intensive variable of degree zero

Let us consider the case where a variablez* of degree zero and a variableZ* of weight r
appears,

dU* 5T* dS* 1j* dX* 1z* dZ* . ~104!

The Euler operator is
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D5S*
]

]S*
1bX*

]

]X*
1rZ*

]

]Z*
. ~105!

One can Legendre transform three times, obtaining

G3~T* ,j* ,z* !5
1

r
@~12r !T* S* 2~r 2b!j* X* # ~106!

and

D35~r 21!T*
]

]T*
1~r 2b!j*

]

]j*
. ~107!

This case is analogous to what happens in standard thermodynamics, e.g., when one pas
U(S,V,N) to F(T,V,N) and then toG(T,p,N).

B. From the entropy to the energy representation and further considerations

In order to pass from the entropy representationS* (U* ,X1 * ,...,Xn * ) to the energy repre-
sentationU* (S* ,X1* ,...,Xn* ), one inverts the first relation with respect toU* , which is possible
because]S* /]U* .0. If S* has degree 1 and weights (r ,a1 ,...,an), thenU* has degreer and
weights (1,a1 ,...,an). Analogous considerations hold when passing from the energy to the
tropy representation. We show that, when it is possible to invert, at least locally, a q
homogeneous function with respect to one variable, a quasi-homogeneous function is ob
again, having obvious degree and weights.

In the general case, let us consider a quasi-homogeneous functionw5g(x1,...,xn) of degree
r and weights (a1 ,...,an); the partial derivatives

pi[
]w

]xi ~108!

are quasi-homogeneous functions of degreer 2ai for i 51,...,n. Let us assume, e.g., thatp1

Þ0. Then, at least locally, one can invertw with respect tox1 and findx15h(w,x2,...,xn) such
that g(h(w,x2,...,xn),x2,...,xn)5w. The inverse functionh ~where it exists and it is sufficiently
smooth! is easily shown to be a quasi-homogeneous function of degreea1 and weights
(r ,a2 ,...,an). In fact, one has

g~la1x1,la2x2,...,lanxn!5g~la1h~w,x2,...,xn!,la2x2,...,lanxn!5l rg~x1,...,xn!. ~109!

Moreover, one has

g~h~l rw,la2x2,...,lanxn!,la2x2,...,lanxn!5l rw5l rg~x1,...,xn!, ~110!

thus it has to hold

h~l rw,la2x2,...,lanxn!5la1h~w,x2,...,xn!. ~111!

Compare Ref. 35, where an analogous property is shown in passing from the entropy repr
tion to the energy representation in standard~homogeneous! thermodynamics. See also Ref. 48

As a further example, let us consider Kerr–Newman black holes. By inverting~where pos-
sible! the relation T5T(M ,Q,J) with respect to M , one obtains~at least formally! M
5M (T,Q,J). We know thatM andQ have degree 1/2,J has degree one andT has degree21/2.
In the new variables,M5M (T,Q,J) is a quasi-homogeneous function of degree 1/2 and wei
(21/2,1/2,1). The Euler operator corresponding to the independent variables (T,Q,J) is
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D̄52
1

2
T

]

]T
1

1

2
Q

]

]Q
1J

]

]J
~112!

and it holds

D̄M5 1
2 M . ~113!

XI. FURTHER INSIGHTS FROM BLACK HOLES

A feature of quasi-homogeneous thermodynamics, shared also with homogeneous the
namics, is that in the expression of the metrical entropy and of the absolute temperature a
termined multiplicative constant appears~cf. also Ref. 1!. Such a constant is phenomenologica
fixed once the absolute scale of temperature is chosen. From the point of view of the
analytic expression of this constant, it should be furnished by a statistical mechanical calcu
The black hole case can be again useful. By dimensional analysis, if we make the hypothe
the entropy of a black hole can depend only on\,c,G,kb , we find that

S}
kbc3

\G
A; ~114!

this is the same procedure as in the original proposal of Bekenstein.49 For the temperature on
obtains

T}
\c

kb
S ]A

]~GM/c2! D
21

. ~115!

A dimensionless constant has still to be determined.
If one considers standard thermodynamics cases, this hypothesis which allows to reco

dimensions of the entropy by involving only the above constants works for the photon gas
does not work in other cases; e.g., in the case of a Fermi gas of electrons, the electro
represents a further scale, related to a microscopic analysis of the system, to be taken into a
In our case, the confirmation of the above hypothesis comes from the Hawking effect, which
us the behavior of the black hole temperature, to be compared with~115!. Then, because of the
absence of a particle mass scale and, e.g., in the Schwarzchild and in the Kerr case
involved only vacuum solutions of the Einstein equations, one could be tempted to think
some sort of ‘‘graviton gas,’’ but, actually, this is far from being evident. See also Ref. 14.

Black holes represent an example of the the procedure of reducing/enlarging consisten
thermodynamics space discussed in Sec. III. In fact, the construction of the fundamental eq
sketched in Sec. IV is allowed also in the case of a black hole withJ50 and of a black hole with
Q50. Two parameters appear,M ,Q and M ,J, respectively. The integrability condition is the
trivially satisfied, but a well-defined potentialS is obtained everywhere. Moreover, black holes
the Kerr–Newman family are a consistent extension of the black holes of the Reissner–Nord¨m
family ~by addingJ) or of the Kerr family~by addingQ). To this family belong also a thermo
dynamically degenerate case: the Schwarzschild caseJ505Q, which is described only by one
variableM . Notice also that the Kerr–Newman family can be obtained by settingL50 in the
KN–AdS family.

In the case of black hole thermodynamics, it is tempting to conjecture that the q
homogeneous behavior of the thermodynamic potentials could be related to an explanat
some extent, analogous to the one for the quasi-homogeneous behavior of the thermod
potentials in standard thermodynamics near the critical point:50,51As in standard thermodynamic
the ~leading order! quasi-homogeneous behavior can be related to the conformal invariance
underlying quantum field theory near criticality,51 one could conjecture that the quas
homogeneous behavior of black hole thermodynamics could be related to some sort of con
invariance of the quantum theory underlying general relativity~superstring theory!. This field
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deserves further investigation. We however point out that it does not seem to be necessa
quasi-homogeneous thermodynamics should be related to some sort of conformal invaria
every case. For black holes, as well as for the general case, one should determine the rea
quasi-homogeneous behavior by means of statistical mechanical calculations. In the fol
section, a further discussion is found.

XII. HEURISTICS: QUASI-HOMOGENEOUS THERMODYNAMICS AND THERMODYNAMIC
LIMIT

In this section we suggest that the thermodynamic limit, under suitable hypotheses, ca
only to quasi-homogeneous thermodynamics. The thermodynamic limit should not be inten
a literal sense, of course, but as a tool which allows to determine the leading terms in the sta
mechanical functionals as large systems occur. Compare e.g., Ref. 52, Chap. 4, and also
Thermodynamics of macrosystems emerges as an asymptotic law which is extrapolated fr
asymptotic behavior of statistical mechanics. To some extent, the thermodynamic limit is
tool by means of which the vague notion of ‘‘macroscopic system’’ is meant to be impleme
and a proper thermodynamic behavior recovered. Such a behavior depends on the interacti
on the nature of the system involved~e.g., fermionic or bosonic matter!, together with a depen
dence on the initial conditions~from a quantum-mechanical point of view, a sort of ‘‘preparatio
of the system, even if it is of ‘‘astrophysical size’’!. As far as the gravitational interaction can b
neglected, the standard thermodynamic behavior emerges, with the usual asymptotic laws
justify the extensivity of standard thermodynamics. At the same time, extensivity cannot be
sidered as an absolute and unmodifiable property of thermodynamics, because of the
attractive nature of gravity. One can also expect a different asymptotic behavior for diff
systems at different scales. See also the discussion in the following sections.
The basic set~B! of assumptions is the following.

Assumptions (B): Let$Zi% be the set of the thermodynamic variables, both independent(Zi
(I ))

and dependent(Zi
(D)) ones. Let the independent variables describe the Gibbs thermodyn

space. Let l be the parameter such that, by takingl→`, one recovers the thermodynamic lim
Assume that the thermodynamic limit properly describes the bulk properties of the system
consideration.

Assume that the thermodynamic limit of the statistical mechanical quantities, like, e.g
entropy or the free energy, exists under the hypothesis that, in the limitl→`, the independent
thermodynamic variables Zi

(I )(l) are rescaled as

Zi
(I )5gi

(I )~l!Zi
(I ) 0 , ~116!

where gi
(I )(l) is a positive function which is either an invertible function ofl or it is one (or a

constant), and Zi
(I ) 0 is the value of the i-esime variable Zi

(I ) at an arbitrary reference state (cf. Re
53 for the extensive case).

We now state the following result~R-group!.
Result (R-group): Let us assume the set of assumptions (B) and that for the rescalings

independent variables the group property holds,

gi
(I )~lm!5gi

(I )~l!gi
(I )~m!. ~117!

This implies that for each independent variable there exists a real numbera i
(I ) such that

gi
(I )(l)5la i

(I )
.

Let us assume that the dependent thermodynamic variables

Zi
(D)5Zi

(D)~Z1
(I ) , ...,Zn

(I )!, ~118!
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are obtained as leading terms in the asymptotic expansion of the corresponding statistica
chanical functionalsZ i

(D) in the following sense: for each i there exists a positive continu
functionr i(l) such that

lim
l→`

1

r i~l!
Z i

(D)~g1
(I )~l!Z1

(I ) , ...,gn
(I )~l!Zn

(I )!5Zi
(D)~Z1

(I ) , ...,Zn
(I )!, ~119!

and let us assume that the domain of the functionalsZ i
(D) is invariant under the above rescalings.

Then, the dependent thermodynamic variables are quasi-homogeneous, i.e., they satisfy

Zi
(D)~g1

(I )~l!Z1
(I ) , ...,gn

(I )~l!Zn
(I )!5gi

(D)~l!Zi
(D)~Z1

(I ) , ...,Zn
(I )!, ~120!

where gi
(D)(l)5la i

(D)
and a i

(D)PR.
Moreover, for all i, the functionsr i(l) are regularly varying functions:54 for all mPR1 ,

lim
l→`

r i~lm!

r i~l!
5ma i

(D)
~121!

(a i
(D) is also called degree ofr i).

In order to be more explicit, let us consider~R-group! for a specific case. Let us, e.g., assum
that the thermodynamic limit for the statistical mechanical functionalS representing the entrop
exists in the sense that

lim
l→`

1

rS~l!
S~laUU,laVV,laNN!5S~U,V,N!, ~122!

where the functionrS is positive andaU ,aV ,aN are real numbers. Then for each realm.0 the
function rS satisfies

lim
l→`

rS~lm!

rS~l!
5mg ~123!

for somegPR. Moreover,S is quasi-homogeneous of degreeg. In fact, from ~122! it follows

lim
l→`

1

rS~lm!
S~~lm!aUU,~lm!aVV,~lm!aNN!5S~U,V,N!. ~124!

Moreover, it holds

lim
l→`

1

rS~l!
S~laU~maUU !,laV~maVV!,laN~maNN!!5S~maUU,maVV,maNN!. ~125!

Then

lim
l→`

rS~l!

rS~lm!

S~~lm!aUU,~lm!aVV,~lm!aNN!

S~laU~maUU !,laV~maVV!,laN~maNN!!

5
S~U,V,N!

S~maUU,maVV,maNN!
5 lim

l→`

rS~l!

rS~lm!
, ~126!
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which is possible only if the above conditions are implemented. A general proof is foun
Appendix E. Compare Ref. 55, where a rigorous approach for asymptotics of tempered di
tions is developed.

The case where one or more variables are ‘‘intensive,’’ i.e., are not rescaled, prese
difficulty. The above reasoning about the leading order in the asymptotic law identified i
thermodynamic limit is corroborated b y the standard thermodynamic limit, which allows to fin
a leading-order homogeneous thermodynamics. We definequasi-homogeneous thermodynam
limit the thermodynamic limit satisfying the group property.

Moreover, we notice that, if, e.g., for the thermodynamic entropyS(U,V,N) it holds

S~gU~l!U0 ,gV~l!V0 ,gN~l!N0!5gS~l!S05gS~l!S~U0 ,V0 ,N0!, ~127!

where the functionsgU ,gV ,gN ,gS are positive and the group property holds, thenS has to be
quasi-homogeneous and thegi are power-like functions. The key point is that a behavior like
one in~127! under the group property is necessarily quasi-homogeneous; as it is shown in R
‘‘powers need no generalization’’~see Appendix A in Ref. 9 and Appendix C in Ref. 10!. A
different proof is sketched in Appendix D for the sake of completeness. The aforement
theorem implies that actually one has

S~g~l!aUU,g~l!aVV,g~l!aNN!5g~l!aSS~U,V,N! ~128!

with the same scaling functiong(l). By defining

l̄[g~l! ~129!

one finds S(l̄aUU,l̄aVV,l̄aNN)5l̄aSS(U,V,N), i.e., the standard definition of quas
homogeneous behavior for a function. A generalization of the quasi-homogeneous behavi
function under rescaling with the group property is not allowed.

We now relax the requirement for the group property, one can still make a conjecture~C-reg!
which would allows a quasi-homogeneous behavior under rather general conditions.

Conjecture (C-reg): Let us assume the set (B) and that g,gi (for i 51,...,n) are positive and
continuous functions which are regularly varying functions of real degreeg,a1 ,...,an respec-
tively.

Assume that the statistical mechanical functionalZ satisfies

lim
l→`

1

g~l!
Z~g1~l!Z1,...,gn~l!Zn!5Z~Z1,...,Zn!, ~130!

where Zi are the independent thermodynamic variables [we omit the suffix (I)].
We conjecture that, under suitable hypotheses, the asymptotic Z(Z1,...,Zn) is quasi-

homogeneous of degreeg and weights(a1 ,...,an).
For each positive realm one should find

lim
l→`

1

g~lm!
Z~g1~lm!Z1,...,gn~lm!Zn!5Z~Z1,...,Zn! ~131!

‘‘ 5 ’’ lim
l→`

1

g~l!mg Z~g1~l!ma1Z1,...,gn~l!manZn! ~132!

5
1

mg Z~ma1Z1,...,manZn!, ~133!
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where ‘‘5 ’’ indicates that further hypotheses on the statistical mechanical functional shou
satisfied. Notice that the casegi(l)5la i is a subcase of the preceding one and requires only
the limit ~130! exists and that the state (ma1Z1,...,manZn) belongs to the domain of the statistic
mechanical functionalZ.

From a physical point of view, it can be noticed that, when passing from the statis
mechanical functionalS representing the entropy to its asymptoticSsm under dilatations, as in the
standard thermodynamic limit, it would be not strictly necessary,a priori, to impose thatg(l)
5l in order to obtain an homogeneousSsm @herein we indicate bySsm the asymptotic which is
indicated byS in ~122!#. (Ssm corresponds to the statistical mechanical entropy one takes
account in Sec. III C 2.! A generic regularly varying function of degree one could also be allow
@e.g.,g(l)5l log(l) could be allowed#. The requirement

lim
l→`

1

l
S~lx!5Ssm~x! ~134!

amounts to the requirement that in some sense alsoS is extensive.
We have found that, under rather general hypotheses, the only possible outcome of th

modynamic limit is a form of quasi-homogeneous thermodynamics. The thermodynamic lim
the same time, is not expected to describe all possible systems; e.g., it cannot be applied t
~molecular thickness! metallic film.56 Nevertheless, it can be safely applied to a huge clas
macroscopic systems, and, in the nonrelativistic case, it allows to conclude that the Thomas
approximation becomes exact in the limit.

In partially concluding these heuristic considerations, we point out that a relation betw
so-called pseudoextensive thermodynamics and the thermodynamic limit has been postu
Ref. 57 and an analysis of Newtonian self-gravitating systems is made in Ref. 58. We
ourselves to refer the reader to the aforementioned papers.

A. Nonconventional thermodynamic limit

A nonconventional thermodynamic limit has already been proposed. A very interesting
cussion of the thermodynamic limit in physical systems is found in Ref. 59. Therein, phy
systems are divided into two classes each of which can be associated with its own thermod
limit; one can distinguish between the standard thermodynamic limit~STL! and the inhomoge-
neous mean field thermodynamic limit~IMFTL ! which occurs, e.g., in self-gravitating systems
the one of HNT model. The latter kind of thermodynamic limit can be related with the presen
long-range forces.59 In order to identify the correct limit, the key notion of characteristic bu
length scale is introduced, which corresponds to a typical length scalel typ resulting from the
interaction of many particles in the system. Such length scalel typ plays the role of characteristi
invariant in the thermodynamic limit. In the case of a classical self-gravitating isothermal ga
Jeans lengthlJeansis such a typical length. Moreover, the requirement that mean thermodyn
quantities exist almost everywhere in the thermodynamic limit is a tool for selecting the a
priate thermodynamic limit at constantl typ .59 A complementarity between STL and IMFTL ca
also be allowed for the same system, in the sense that STL and IMFTL can describe comp
tary asymptotic properties for the same large but finite system~the case of classical Coulom
systems is discussed!. We do not discuss further on this approach herein, we limit ourselve
point out that one obtains the same limit, in the case of classical self-gravitating matter,
keepslJeansfixed or j fixed ~cf. Sec. V!. Notice thatj is an intensive function with respect to th
Euler operator relative to the HNT model. At an heuristic level one expects that in general
exists a physically meaningful function which is left invariant under a quasi-homogeneous
modynamic limit and which is intensive under the corresponding Euler operator.

A nonconventional discussion of the thermodynamic limit is found also in Secs. 1.2 and
Ref. 27. Both for stable and for unstable interactions are discussed, and the criterion for se
the limit is a comparison between the kinetic and the potential energies involved in the sy
According to Ref. 28~pp. 1–3!, a nonconventional thermodynamic limit has to be associated
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the peculiar scaling behavior for ‘‘nonstable interactions;’’ the notion of ‘‘Thomas–Fermi ther
dynamic limit’’ is also introduced for nonextensive systems. Note that a more general therm
namic limit can also be allowed, where also the coupling constants are allowed to vary in the
Compare Refs. 25, 28, and 59.

B. Absolute weights again

It is evident that one has a reference quantity with respect to which all the other
‘‘weighted’’ in the thermodynamic limit. Then an overall undetermined scale factorq is expected
to appear, unless an absolute weight is known.

In the standard homogeneous case, the problem of assigning absolute weights does n
they are all equal to 1 for extensive variables and 0 for intensive ones, the thermodynamic l
performed with the aim of studying bulk properties of the system, and the ratiosU/N andV/N are
kept constant. Roughly, one fixes the energy per particle and the volume per particle~or, equiva-
lently, the densityN/V and the energy densityU/V) and then performs the limit with the aim o
neglecting any finite-size effect. The same is true also for a massless particle gas, like the
gas, where the limitU,V→`,U/V5const is performed.

If a strict quasi-homogeneous picture is required, then the above problem is instead p
WhenN is available, as it is when nonzero rest-mass particles are considered, it is to some
natural to assume that its weight is 1. Such a special role ofN can be justified. In the model o
Hertel, Narnhofer, and Thirring, the existence of the Boltzmann’s entropy per particle in
thermodynamic limit limN→` log(V)/N is ensured, in agreement with Boltzmann’s postula
which states that the entropy per particle log(V)/N exists for an equilibrium system. As a cons
quence of the coincidence of limN→` log(V)/N with the thermodynamic entropy density~per
particle!, one can justifya posteriori the assumption thatN has weight 1, in fact log(V) in the
thermodynamic limit coincides with the thermodynamic entropy which has degree 1. The
weightsa i appropriate to the physical condition one is considering for the system are recove
the asymptotic limit. Then, no ambiguity for an overall multiplicative constant in the definitio
the weight like the one discussed in Sec. III C appears. Note also that the Boltzmann’s en
being the logarithm of the number of microstates compatible with a given macrostate, by in
ing the~vague! concept of macrostate and thus of macroscopic system can legitimately rela
the thermodynamic limit~again in the sense of asymptotic law!. @About Boltzmann’s entropy and
its coincidence with the Gibbs entropy~which, in the quantum case, corresponds to the v
Neumann entropy! see, e.g., Ref. 60.# A more puzzling case is represented by a self-gravitat
massless gas, but weights can be still fixed. See Sec. VI.

In general, if l→` corresponds to the thermodynamic limit, one could also require
existence of the Boltzmann entropy density functional asl→`, to be defined as

sboltz[ lim
l→`

1

laS
log~V!, ~135!

whereaS is a constant which is fixed by the requirement of finiteness of the above limit.aS has
to be introduced because the scalel can also be such thatl/N is not asymptotically a positive
constant, i.e.,l;” N in the sense of the asymptotic behavior. This more general choice for the
is also necessary ifN is not a good thermodynamic variable~as in the massless gas case!. We
know that it is consistent to fix the weights by choosing the Boltzmann entropy to be of deg

If another variable, e.g., the internal energy, would be used as reference variable, the r
weights could be still recovered in line of principle, but the aforementioned ambiguity w
emerge in absence of a criterion for finding the absolute weight of at least one~independent or
dependent! variable.

One could also choose to work in the energy representation, and decide to fix the weight
internal energy to be 1. Then the entropy in general would not be a degree 1 quasi-homog
function; in the HNT model, one would obtain deg(V)523/7; deg(N)53/7; deg(S)53/7,
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against the weight 7/3 ofU resulting by assuming thatN has weight 1. This procedure, althoug
legitimate because of the overall ambiguity, is less satisfactory, because the thermodynam
struction, in the case the entropy is a quasi-homogeneous function and the weights pres
overall factor ambiguity, allows naturally the thermodynamic entropy to be of degree 1. The
exception which, in line of principle could be admitted, is given by the case where the weig
the Gibbs space are all fixed and the statistical-mechanical entropy is not of degree 1, b
apparently not allowed~unless some reason for fixing the absolute weight of a variable appe!.

C. Thermodynamics, weights and gravity

As far as gravity is negligible, one finds the standard extensivity property for the fundam
equation in the entropy~energy! representation; when the scale of the system is such that i
more possible to neglect self-gravity effects, then the weights of the thermodynamic var
change according to the nature of the system and to the scale itself. The quasi-homog
character of thermodynamics with fixed weights (a1 ,...,an) has to be intended as relative to th
validity range of the asymptotic expansion which leads to those particular (a1 ,...,an), whose
nature is thus nonabsolute.@One could also be tempted to writea i5a i(l), in order to recall that
the weights can change with the scale. Nevertheless, in light of the above theorem about
homogeneity, such a dependence is not allowed. The quasi-homogeneity is extrapolated
fixed scale, and it is made ‘‘absolute’’ by the thermodynamic formalism.# Also an estimate of the
error for finitel should be allowed.52 One could think also to a sort of ‘‘evolving picture’’ for th
formalism, in which one starts from standard homogeneous systems, characterized by sta
teractions, and then, as far as gravity becomes non-negligible, a quasi-homogeneous beh
allowed. Weights can change, even in a discontinuous way, depending on the physical con
leading to the new stationary equilibrium state. Because of the Hawking effect, the ‘‘end o
story’’ does not occur even when the scale and the physical conditions are such that a bla
forms, whose ‘‘classical’’ weights are the ones presented in Sec. IV.

It is interesting to underline again that ordinary thermodynamics implements the pi
described above, as discussed in several fundamental papers on the stability of matter.29,61–63See
also Refs. 43 and 64. Strict quasi-homogeneity is expected to be effective when gravitation
playing an essential role in the physics of the system. Moreover, the so-called fourth la
thermodynamics13 should be generalized in such a way to include the general quasi-homoge
behavior of the thermodynamic variables~dependent as well as independent ones!.

XIII. CONCLUSIONS

Quasi-homogeneous thermodynamics is proposed as the unifying picture for thermodyn
where both stationary black holes, fermionic nonrelativistic matter, and self-gravitating ele
magnetic radiation are found.

We have chosen to introduce quasi-homogeneity in thermodynamics by generalizing th
malism developed for standard homogeneous thermodynamics.1 The basic requirement is that th
Euler vector field which generates quasi-homogeneous dilatations in the Gibbs’ thermody
space is a nontrivial symmetry for the integrable Pfaffian formdQrev. This means that the sym
metry maps leaves of the thermodynamic foliation onto other leaves. The leaves of the fo
are naturally associated with a quasi-homogeneous functionS* of degree 1, which is suggested
be the~unique apart from a multiplicative constant! metrical entropy corresponding to the fund
mental equation in the entropy representation. This is true also in the case one knows the w
of the thermodynamics variables apart from an overall unknown factor. Notice that q
homogeneity could be introduced also at the level of the fundamental equation in the e
representation or in the energy one, but, in the case where only the relative weights
independent thermodynamic variables are known, it should be considered equivalent the ch
a degree one internal energy with respect to the choice of a degree 1 entropy~cf. also Ref. 9!,
whereas the aforementioned approach privileges a degree 1 entropy.
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The consequences of the lack of homogeneity are recalled, and superadditivity of the m
entropy is a privileged property ensuring the second law even in absence of concavity forS* .

The generalized Gibbs–Duhem identities are also derived, and the energy representat
the behavior under Legendre transforms is analyzed.

An heuristic argument which can relate quasi-homogeneous thermodynamics to the th
dynamic limit in statistical mechanics~even if in a nonconventional framework! has been intro-
duced. According to this argument, under the group property only a form of quasi-homoge
thermodynamics can be recovered in the thermodynamic limit. Moreover, a mean field ther
namic limit appears to be appropriate; the suggestion from the existing models is that one
search for asymptotic scaling properties of the equations allowing to find out the mean
thermodynamics for the system, in fact the scaling properties of a finite temperature Tho
Fermi equation appears to be involved in the quasi-homogeneity of the HNT model, where
scaling properties of the TOV equations are related with the quasi-homogeneity of self-grav
radiation.

Gravity appears to play a fundamental role in allowing a generalization of the stan
scheme for thermodynamics. The purely attractive nature of gravity, as well-known, is the r
for the failure of the extensivity property in thermodynamics of self-gravitating systems, be
of the absence of saturation which leads to an implosive instability, and matter systems eve
can implode into a black hole if the mass is sufficiently large. Moreover, the thermodyn
ensembles become inequivalent,28 and the lack of concavity leads to phase transitions in ma
systems in the canonical ensemble.27,28 Negative heat capacities arise in the microcanonical
semble. Also black holes present this feature.

Black hole thermodynamics requires some special comments. From the point of vie
thermodynamic formalism, black hole thermodynamics can be realized to be a rather strai
ward generalization of the formalism developed for standard thermodynamics in Ref. 1; mor
its quasi-homogeneous behavior can no more be considered as exceptional, becau
gravitating systems exist where quasi-homogeneous scaling laws are satisfied. Neverthele
other points of view black hole thermodynamics is still to be considered special, also becau
still unclear which statistical mechanics should lie beyond it.

We limit ourselves herein to this proposal for a generalization of the thermodynamic fo
ism, without pursuing it further on~apart from a note on the third law in Appendix B!. For future
investigations, it would be interesting to develop a statistical mechanical formalism where g
relativity is self-consistently included.

It would be also interesting to explore, if other long range forces are allowed to be includ
the framework of quasi-homogeneous thermodynamics. Classical two-component Coulomb
seems to belong to this framework,59 further investigations are required in order to see if this
true also for quantum Coulomb matter.

APPENDIX A: INTEGRAL OF vÕm AND POTENTIALS ASSOCIATED WITH QUASI-
HOMOGENEOUS EXACT PFAFFIAN FORMS

We first present some results in the general case of a generic symmetryX for a Pfaffian form
v. Then we translate the results for the case of the quasi-homogeneity symmetry. We recal
vector fieldX is defined to be a symmetry for a Pfaffian formv if

~LXv!∧v50. ~A1!

This means that there exists a functionh such that

LXv5hv. ~A2!

See Refs. 5 and 6.
We need the following two lemmas.
Lemma 1: Letv̄ be an exact Pfaffian form; let X be a symmetry such that
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LXv̄5qv̄, ~A3!

where qÞ0 is a constant. Then, one finds thatv̄5df is implemented by

f[
1

q
i Xv̄. ~A4!

Proof: The proof is elementary. One has trivially

df5
1

q
d~ i Xv̄ !52

1

q
i X~dv̄ !1

1

q
LXv̄. ~A5!

From dv̄50 becausev̄ is closed and from the symmetry ofv̄, which impliesLXv̄5qv̄ the
thesis follows. Notice thatf satisfiesXf5qf. h

Lemma 2: Letv (0) be an exact Pfaffian form; let Wˆ be the associated potential: dWˆ [v (0) ;
let X be a symmetry such that LXv (0)50. Then

dŴ5
dF

F
, ~A6!

where F satisfies

XF5qF, ~A7!

with qPR constant. Moreover,

i Xv (0)5q. ~A8!

As a consequence, q50 is allowed if and only if the symmetry is tangent (i.e., trivial).
Proof: We have

05LXv (0)5LX dŴ5dLXŴ. ~A9!

As a consequence,

LXŴ5XŴ5q, ~A10!

whereq is a constant. We can define a positive definite functionF such that

Ŵ[ log~F !. ~A11!

Then we get that~A10! is equivalent to the following equation forF:

XF5qF; ~A12!

moreover

dŴ5
dF

F
, ~A13!

and

i Xv (0)5 i X dŴ5LXŴ5
1

F
XF5q. ~A14!
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If the symmetry is tangent, theni Xv (0)[0. Thenq50 necessarily. Ifq50, thenF andŴ satisfy
XF50 andXŴ50, respectively. As a consequence,i Xv (0)5 i X dŴ5LXŴ50, which completes
the proof. h

Notice thatŴ has to be found by quadratures, the contraction of the Pfaffian form with
vector fieldX is not useful in order to find a potential without explicit integration.

One can in general show that the following theorem holds.
Theorem 1: Let v be a integrable Pfaffian form which is defined in a simply connec

domain; let X be a nontrivial symmetry forv; let m5 i Xv. Thenm is an integrating factor forv
and the foliation corresponding to the Pfaffian equationv50 is associated with a potential F
which satisfies the following equation:

XF5F. ~A15!

Proof: The proof thatv/m is closed is trivial. See also Refs. 6 and 1. Moreover

LX

v

m
50, ~A16!

beingX a symmetry forv. In fact,

LX

v

m
5

1

m2 ~~LXv!m2~LXm!v!5
1

~ i Xv!2 ~~LXv!~ i Xv!2~LXi Xv!v! ~A17!

5
1

~ i Xv!2 i X~v∧~LXv!!, ~A18!

where the rulesi XLX5LXi X and i X(a∧b)5( i Xa)∧b1(2)na∧( i Xb) for a n-form a and a
m-form b are used. Compare Ref. 65.

As a consequence,v/m is an exact one-form such that the previous lemma applies. One

v

m
5dŴ5

dF

F
, ~A19!

whereF satisfied Eq.~A7! with qÞ0, because of the hypothesis of nontrivial symmetry. Then
finds

dF5
F

m
v, ~A20!

which satisfiesLX dF5q dF and is closed. Then, from~A4!, we obtain

F5
1

q

F

m
i Xv, ~A21!

which, because of the definition ofm, impliesq51. h

Notice that the integrating factor satisfies

LXm5LXi Xv5 i XLXv5hm. ~A22!

It is interesting to underline that this theorem allows to construct a general theory of therm
namics ifdQrev has a nontrivial symmetry. It is easy to see that the constructions of Secs. III A
III B remain unaltered, and also the constructive assumptions of Sec. VIII can be trivially g
alized@it is sufficient to delete ‘‘quasi-homogeneous’’ in~a1! and~a2! and to change~a5! into ‘‘the
metrical entropyS satisfiesX S5S’’ #. The case of quasi-homogeneous symmetry is immedia
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obtained by requiring that each independent variable in the thermodynamic space has th
kind of symmetry as the potentialS. More general symmetries can also be introduced. Fur
details will be given elsewhere.66

1. The quasi-homogeneous case

The following results are immediate consequences of the previous lemmas and theorem
case of quasi-homogeneous symmetry.

Result 1: Let

v5(
i 51

n

v i dxi ~A23!

be an exact quasi-homogeneous Pfaffian form of degree rÞ0 and weights(a1 ,...,an); let

D[(
i 51

n

a ix
i

]

]xi ~A24!

be the Euler operator; let the symmetry be nontrivial (or transversal), i.e.,

v~D !5 i Dv5(
i 51

n

a iv ix
iÓ0. ~A25!

Then, one finds thatv5df is implemented by

f[
1

r
v~D !. ~A26!

The above result can be used even when some zero weights occur. It cannot be used ifr 50, in
which case the potential can be found only by quadratures. When one considers, e.g.,dQrev/ f , the
potential has to be found by integrating the exact form.

Result 2: Letv (0) be an exact quasi-homogeneous Pfaffian form of degree r50; let W be the

associated potential: dWˆ [v (0) . Then

dŴ5
dF

F
, ~A27!

where F is a quasi-homogeneous function of degree q with respect to the Euler vector fie.
Moreover,

i Dv (0)5q. ~A28!

As a consequence, q50 is allowed if and only if the symmetry is tangent.
Notice thatŴ has to be found by quadratures, the contraction of the Pfaffian form with

Euler vector field is not useful in order to find a potential without explicit integration.
Result 3: Ifv (r ) is a quasi-homogeneous integrable Pfaffian form of degree r defined

connected, simply connected domain, if the symmetry is nontrivial and ifm is the corresponding
integrating factorv(D), then

dŴ[
v (r )

m
5

dF

F
, ~A29!

where F is a quasi-homogeneous function of degree 1 with respect to the Euler vector fiel.
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The degreer of v (r ) can also be zero in the case where at least one weight, saya1 , is
different from zero~the would-be intensive variablev1 has then weight2a1). Herein examples
are given where 0,r ,`. It would be interesting to see ifr<0 is physically meaningful.

Notice that the fact that the caseq50 is not allowed by the requirement of nontriviality fo
the symmetry can be verified by direct inspection, in fact from Eq.~A20! it follows

] iF5
F

m
v i ; i 51,...,n, ~A30!

thusDF50 becomes

(
i 51

n

a ix
i

F

m
v i50, ~A31!

which is not allowed, in fact, because ofm5( i 51
n a ix

iv i , it would imply F[0. It is interesting to
note that, from a mathematical point of view,Ŵ is an almost quasi-homogeneous function
degree zero with first order deficiency index identically equal to 1~cf. Ref. 3!, i.e., its behavior
under quasi-homogeneous scaling is

Ŵ~la1x1,...,lanxn!5Ŵ~x1,...,xn!1 log~l!. ~A32!

This property ofŴ is to be related with the nontriviality of the symmetry, which allows to find
integrating factormÓ0.

2. Some more results on quasi-homogeneous integrable Pfaffian forms

We have found that, for nontrivial symmetry,

v (r )5g(r 21)dF, ~A33!

where g(r 21) is quasi-homogeneous of degreer 21. If G is a quasi-homogeneous function
degreeq such that

v (r )5g(r 2q) dG ~A34!

then necessarily

G5zFq, ~A35!

wherez5const. In fact, one has

v (r )5g(r 2q) dG5g(r 21) dF ~A36!

and

g(r 2q)5
g(r 21)

dG/dF
. ~A37!

Moreover, the quasi-homogeneity ofG(F) implies

DG5qG5
dG

dF
F, ~A38!

that is,
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dG

dF
5q

G

F
, ~A39!

whose solution is~A35!. For q51, one obtains that the quasi-homogeneous functionF of degree
one implementing~A33! is unique apart from a multiplicative constant.@Notice that this result can
be generalized easily to the case of a generic symmetryX. By referring to theorem 1, ifG satisfies
XG5qG andv5b dG, thenG5G(F), whereF is the potential~A15!, andG5kFq, wherek is
a constant.#

It is evident that, ifD is a symmetry generator,Dq5qD is another symmetry generator fo
qPR2$0%. It is also interesting that, by changingq, the integrating factorf q changes in such a
way thatv/ f q5d log(Fq), whereFq5F1/q is quasi-homogeneous of degree 1 with respect toDq

~i.e., DqFq5Fq). In fact, one hasf q5q f and

v

f q
5

1

q

v

f
5

1

q
d log~F !5d log~F1/q!; ~A40!

then,DqF1/q5qDF1/q5q1/qF1/q21DF5F1/q.

APPENDIX B: S AS A FUNCTION OF T IN QUASI-HOMOGENEOUS THERMODYNAMICS
AND THE THIRD LAW IN ENTROPIC FORM

We assume that the metrical entropyS* is quasi-homogeneous of degree 1, and t
a,a1 ,...,an are the weights of the independent variablesU* ,X1* ,...,Xn* . The temperature is
then a quasi-homogeneous function of degreea21. Let us considerS* 5S* (T* ,X1* ,...,Xn* ).
The entropic form of the third law, for standard thermodynamics, states thatS→S0 as T→0,
whereS0 is a constant which has to be zero.1 Planck’s restatement of the third lawS→0 asT
→0 is mandatory, if the third law holds, also in the case of quasi-homogeneous thermodyn
In fact, if, for any fixed value ofX1* ,...,Xn* ,

lim
T* →0

S* ~T* ,X1* ,...,Xn* !5S* ~0,X1* ,...,Xn* ![S0* ~B1!

holds, then, from

lim
T* →0

S* ~la21T* ,la1X1* ,...,lanXn* !5l lim
T* →0

S* ~T* ,X1* ,...,Xn* !5l S0* ~B2!

and

lim
T* →0

S* ~la21T* ,la1X1* ,...,lanXn* !5S* ~0,la1X1* ,...,lanXn* !5S0* ~B3!

one findsS0* 50. In the above formulas, continuity ofS* at T* 50 is assumed~otherwise the third
law is violated67!.

We know that black hole thermodynamics violates the entropic form of the third law.
behavior is not a general feature of quasi-homogeneous thermodynamics. We construct
entropy which is both quasi-homogeneous and superadditive and implements the third law. H
as in Sec. VII, withx we indicate collectively then variables appearing inS. Our starting point
consists in realizing that, given two non-negative superadditive functionsg(x),h(x), the function

F~x![g~x!h~x! ~B4!

is superadditive too. In fact,

F~x11x2!5g~x11x2!h~x11x2!>~g~x1!1g~x2!!~h~x1!1h~x2!! ~B5!
                                                                                                                



-
m

g
trictly

n
andard

s

1123J. Math. Phys., Vol. 44, No. 3, March 2003 Quasi-homogeneous thermodynamics, black holes

                    
5g~x1!h~x1!1g~x2!h~x2!1g~x1!h~x2!1g~x2!h~x1! ~B6!

>g~x1!h~x1!1g~x2!h~x2!5F~x1!1F~x2!. ~B7!

Then, let us considerg52AU* X* andh5X* 2. Both are superadditive functions (g is superad-
ditive because of its homogeneity and concavity!. ThenS* [2AU* X* X* 2 is superadditive and
quasi-homogeneous. ForS* as a function ofT* , one finds

S* 52T* X* 5 ~B8!

which satisfiesS* →0 asT* →0.
It is also interesting to notice that, in general, ifS is a strictly superadditive function every

where~i.e., also on the boundaryT50) then the entropic version of the third law in Planck’s for
has to be violated; in fact, if (U0 ,X0

1 ,...,X0
n) is such thatT(U0 ,X0

1 ,...,X0
n)50, then

S~U1U0 ,X11X0
1 ,...,Xn1X0

n!.S~U0 ,X0
1 ,...,X0

n!1S~U,X1 ,...,Xn! ~B9!

is possible with the strict inequality only ifS(U0 ,X0
1 ,...,X0

n).0. In the case of a self-gravitatin
system belonging to quasi-homogeneous thermodynamics framework, if the energy is s
subadditive everywhere, then the third law cannot hold.

As far as mathematical properties of the Pfaffian formdQrev ensuring the validity of the
entropic form of the third law are concerned, it can be shown that a quasi-homogeneousdQrev

which isC1 everywhere is a sufficient condition, in analogy with standard thermodynamics.1,67 In
fact, a superadditive non-negative functionS:D→R1ø$`% cannot be divergent at a limit pointx0

of its domain~we mean that all the pointsx in the domain satisfyixi,`, wherei•i stays for the
Euclidean norm and thatx0 can be included in the domain by settingS(x0)5`). This is evident
if one translates rigidly the domain in such a way thatx0[0. Then, ifz0 is another point in the
domain ofS one hasS(z0)5S(z010)>S(0)1S(z0)5`. Thus, ifSÓ`, thenS has to be finite.
ThenS has to be finite in the limit asT→0. As a consequence, iff * is the integrating factor, one
has

] f

]U*
511S*

]T*

]U*
~B10!

and]T* /]U* 51/C, whereC is the heat capacity at fixed parametersXi* , which has to tend to
zero if S* is finite and non-negative asT* →0. Then, if f * is everywhereC1 ~and it is such if
dQrev is C1 everywhere!, it holds S* →0 as T* →0. Moreover, it is evident from~18! that
limT* →0S* 50 holds if and only if*gdQrev/ f * →2` as T* →0 whichever path is chosen i
approachingT* 50. Even the latter is an extension to the quasi-homogeneous case of the st
case.1,67 See also Ref. 68 for further conditions.

APPENDIX C: GIBBS–DUHEM EQUATION REVISITED

Let us consider a quasi-homogeneous functiong(x1,...,xn) of degreeqÞ0 and of weights
(a1 ,...,ap,0,...,0) where 1<p<n is an integer and the lastn2p weights are all zero. It satisfie

Dg5qg, ~C1!

where

D5(
i<p

a ix
i

]

]xi . ~C2!

If one defines
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gi[
]g

]xi ; i 51,...,n, ~C3!

and

vg[(
i

gi dxi5dg, ~C4!

one finds

g5
1

q
i Dvg . ~C5!

This formal manipulation is useful in order to derive the Gibbs–Duhem equation. In fact, on

dg5d S 1

q
i DvgD5

1

q
~2 i D dvg1LDvg!, ~C6!

where LDvg5qvg holds. Moreover,dvg50 becausedg5vg by construction. The Gibbs–
Duhem equation is shown to be equivalent to

2
1

q
i D dvg50. ~C7!

One can easily see that

dvg5(
i

dgi∧dxi ~C8!

and that

i D dvg5(
i

~ i D dgi !dxi2(
i

dgi~ i D dxi !

5(
i

~Dgi !dxi2(
i<p

dgi~a ix
i !

5(
i<p

~q2a i !gi dxi2(
i<p

dgi~a i xi !1 (
p, i<n

qgi dxi . ~C9!

As a consequence,~C7! becomes

(
i<p

a i

q
~xi !q/a id~~xi !12q/a igi !2 (

p, i<n
gi dxi50. ~C10!

If none independent variable of weight zero appears, then one finds

(
i

a i

q
~xi !q/a id~~xi !12q/a igi !50. ~C11!

Let us consider the inverse problem, where one assignsn would-be intensive variablesgi and the
quasi-homogeneous one-form of degreevg5( igi dxi such thatLDvg5qvg @one has to require
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that deg(gi)5q2a i , where the weights of the independent variablesxi are the same as above#.
Then one can also define a functiong[ i Dvg /q. Fromdg5(2 i D dvg)/q1vg follows thatvg is
closed if i D dvg50, i.e., if the Gibbs–Duhem equation is satisfied.

We limit ourselves to point out that more general Gibbs–Duhem equations are obtained
generic symmetric case.66 The generalization of~83! is

~ i XdQrev!d logS 1

TD2 i X dd Qrev1~LX21!dQrev50. ~C12!

APPENDIX D: QUASI-HOMOGENEITY „SCALING … CANNOT BE GENERALIZED

We show that, iff (x1,...,xn) is a C1 function on a open connected set which satisfies
following identity:

f ~g1~l!x1,...,gn~l!xn!5g~l! f ~x1,...,xn! ~D1!

and the functionsg(l),gi(l) for i 51,...,n are positive definite and invertible, thenf (x1,...,xn) is
necessarily quasi-homogeneous. The above transformation is meant to be obtained by a
alized similarity transformation’’ which carriesx1,...,xn into g1(l)x1,...,gn(l)xn. Let us con-
sideru[g(l) and the inversel5g21(u). Define

hi~u![gi~g21~u!! ; i 51,...,n. ~D2!

It is also useful to define

u[es. ~D3!

Then we obtain

f ~h1~es!x1,...,hn~es!xn!5esf ~x1,...,xn!. ~D4!

Note that, fors50, one finds

f ~h1~1!x1,...,hn~1!xn!5 f ~x1,...,xn!. ~D5!

This a priori does not imply thathi(1)51 ; i 51,...,n, but the one-parametersPR1 ‘‘general-
ized similarity transformation’’Ts : (x1,...,xn)→(h1(es)x1,...,hn(es)xn) is consistently defined
if Ts50 is the identity, i.e., ifhi(1)51 ; i 51,...,n.

We introduce the auxiliary function

F~s;x1,...,xn![e2sf ~h1~es!x1,...,hn~es!xn!. ~D6!

It is such that]sF50, i.e.,

F5(
i 51

n

eshi8~es!xi S ]F

]xi D ~h1~es!x1,...,hn~es!xn!, ~D7!

wherehi8(u)[dhi /du. For s50 one obtains

f ~x1,...,xn!5(
i 51

n

hi8~1!xi S ] f

]xi D ~x1,...,xn!. ~D8!

Thus, f (x1,...,xn) is a quasi-homogeneous function of degree 1 and weights (h18(1),...,hn8(1))
[(a1 ,...,an). As a consequence, one has

f ~ea1sx1,...,eansxn!5esf ~x1,...,xn!, ~D9!
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i.e.,

hi~es!5ea i s ; i 51,...,n. ~D10!

By resorting the original dependence onl, one finds

f ~~g~l!!a1x1,...,~g~l!!anxn!5g~l! f ~x1,...,xn!, ~D11!

i.e.,

gi~l!5~g~l!!a i ; i 51,...,n. ~D12!

If somegi51 above, then one simply finds that the variablexi is quasi-homogeneous of degre
zero, i.e., it has weight zero. If insteadg(l)51, thenf is quasi-homogeneous of degree zero. T
proof is straightforward. Letl0 be such thatgi(l0)51 ; i 51,...,n. We have that

] f

]l
505(

i 51

n

gi8~l!xi S ] f

]xi D ~g1~l!x1,...,gn~l!xn!. ~D13!

By settingl5l0 , one finds

05(
i 51

n

gi8~l0!xi S ] f

]xi D ~x1,...,xn!, ~D14!

i.e., f is quasi-homogeneous of degree zero and weights (g18(l0),...,gn8(l0)).

APPENDIX E: SCALING AND ASYMPTOTICS

Let us assume thatf (x) is a function ofn variables collectively indicated withx. Let the
domain of f be invariant under quasi-homogeneous transformations. Let$Tl% be a one-paramete
quasi-homogeneous transformation. If we require that there exist a positive continuous fu
r~l! and a continuous functiong(x)Ó0 such thatg is an asymptotic off in the following sense:

lim
l→`

1

r~l!
f ~Tlx!5g~x!, ~E1!

where the limit is assumed to exist. Then,~a! the functionr~l! is a regularly varying function, i.e.
it satisfies for alla.0,

lim
l→`

r~la!

r~l!
[C~a!, ~E2!

where C(a)C(b)5C(ab), i.e., C(a)5ag for somegPR; g is also defined the order of th
regularly varying functionr~l!; ~b! the function satisfies the ‘‘homogeneity’’ relation

g~Tmx!5mgg~x!, ~E3!

i.e., g(x) is quasi-homogeneous of degreeg.
Proof: for each reals.0 it holds

lim
l→`

1

r~ls!
f ~Tlsx!5g~x!, ~E4!

and, because ofTls5TlTs ,
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lim
l→`

1

r~l!
f ~Tl~Tsx!!5g~Tsx!. ~E5!

As a consequence,

lim
l→`

r~l!

r~ls!

f ~Tlsx!

f ~Tl~Tsx!!
5

g~x!

g~Tsx!
5 lim

l→`

r~l!

r~ls!
. ~E6!

This is possible only if the following conditions:

lim
l→`

r~ls!

r~l!
5C~s! ~E7!

and

g~Tsx!5C~s!g~x! ~E8!

are both satisfied. Moreover, it is easy to see that it holds

C~st!5C~s!C~ t !, ~E9!

which implies that there exists a real numberg such thatC(s)5sg. Thus, one obtains

g~Tsx!5sgg~x!, ~E10!

which concludes the proof. h

Compare also Ref. 55.
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31N. Bilić and R. D. Violler, Gen. Relativ. Gravit.31, 1105~1999!.
32E. A. Power and J. A. Wheeler, Rev. Mod. Phys.29, 480 ~1957!.
33J. A. Wheeler, Phys. Rev.97, 511 ~1955!.
34R. D. Sorkin, R. M. Wald, and Z. Z. Jiu, Gen. Relativ. Gravit.13, 1127~1981!.
35L. Galgani and A. Scotti, Pure Appl. Chem.22, 229 ~1970!; in Proceedings of the International Conference on The

modynamics, edited by P. T. Landsberg~Butterworths, London, 1970!.
36P. T. Landsberg, inProceedings of the International Conference on Thermodynamics, edited by P. T. Landsberg~But-

terworths, London, 1970!.
37W. Thirring, introduction to Ref. 43. pp. 1–8.
38W. Thirring, in Fundamental Aspects of Quantum Theory, NATO ASI Series, Series B, Physics 144, edited by V. Gor

and A. Frigerio~Plenum, New York, 1986!, pp. 343–354.
39D. Lynden-Bell and R. M. Lynden-Bell, Mon. Not. R. Astron. Soc.181, 405 ~1977!.
40W. Thirring, Z. Phys.235, 339 ~1971!.
41T. Padmanabhan, Phys. Rep.188, 285 ~1990!.
42P.-H. Chavanis, C. Rosier, and C. Sire, cond-mat/0107345, 2001.
43The Stability of Matter: From Atoms to Stars, selecta of Elliott H. Lieb, edited by W. Thirring~Springer-Verlag, Berlin,

2001!.
44E. H. Lieb, Rev. Mod. Phys.48, 553 ~1976!.
45E. H. Lieb and J. L. Lebowitz, Adv. Math.9, 316 ~1972!.
46H. B. Callen,Thermodynamics and an Introduction to Thermostatistics~Wiley, New York, 1985!.
47F. Belgiorno, physics/0210031, 2002.
48P. T. Landsberg,Thermodynamics and Statistical Mechanics~Dover, New York, 1990!.
49J. D. Bekenstein, Phys. Rev. D7, 2333~1973!.
50D. I. Uzunov,Theory of Critical Phenomena~World Scientific, Singapore, 1993!.
51M. Henkel,Conformal Invariance and Critical Phenomena~Springer-Verlag, Berlin, 1999!.
52A. Münster,Statistical Thermodynamics~Springer–Academic, New York, 1969!.
53E. Still, K. Haubold, and A. Mu¨nster, Z. Naturforsch. A24A, 201 ~1969!; 24a, 412 ~1969!.
54E. Seneta,Regularly Varying Functions, Lecture Notes in Mathematics 508~Springer-Verlag, Berlin, 1976!.
55V. S. Vladimirov, B. I. Zavjalov, and J. N. Drozzinov,Tauberian Theorems for Generalized Functions, Mathematics and

its Applications~Soviet Series! 10 ~Kluwer Academic, Dordrecht, 1988!.
56R. Balescu,Equilibrium and Nonequilibrium Statistical Mechanics~Wiley, New York, 1975!.
57L. Velasquez and F. Guzman, cond-mat/0107439, 2001.
58L. Velasquez and F. Guzman, cond-mat/0205085, 2002.
59M. K.-H. Kiessling, J. Stat. Phys.59, 1157~1990!.
60S. Goldstein, cond-mat/0105242, 2001.
61M. E. Fisher and D. Ruelle, J. Math. Phys.7, 260 ~1966!.
62A. Lenard and F. J. Dyson, J. Math. Phys.8, 423 ~1967!; F. J. Dyson and A. Lenard,ibid. 9, 698 ~1968!.
63J. L. Lebovitz and E. H. Lieb, Phys. Rev. Lett.22, 731 ~1969!.
64D. Ruelle,Statistical Mechanics. Rigorous Results~Benjamin, New York, 1969!.
65S. Morita, Geometry of Differential Forms, Translations of Mathematical Monographs 201~American Mathematical

Society, Providence, RI, 2001!.
66F. Belgiorno, Equilibrium thermodynamics and symmetries ofdQrev ~in preparation!.
67F. Belgiorno, physics/0210037, 2002.
68F. Belgiorno, Notes on the third law of thermodynamics. II~in preparation!.
                                                                                                                



of
com-
3
a

ents of

time; in

st

More-

rve the
nian
e

pos-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 3 MARCH 2003

                    
Leibnizian, Galilean and Newtonian structures
of space–time a…

Antonio N. Bernal and Miguel Sánchezb)
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Fuentenueva s/n, E-18071 Granada, Spain
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The following three geometrical structures on a manifold are studied in detail:
Leibnizian: a nonvanishing one-formV plus a Riemannian metriĉ•,•& on its an-
nhilator vector bundle. In particular, the possible dimensions of the automorphism
group of a LeibnizianG-structure are characterized.Galilean: Leibnizian structure
endowed with an affine connection¹ ~gauge field! which parallelizesV and ^•,•&.
For any fixed vector field of observersZ(V(Z)[1), an explicit Koszul-type for-
mula which reconstructs bijectively all the possible¹’s from the gravitational
Gª¹ZZ and vorticity vª1

2 rot Z fields ~plus eventually the torsion! is provided.
Newtonian: Galilean structure witĥ •,•& flat and a field of observersZ which
is inertial ~its flow preserves the Leibnizian structure andv[0!. Classical concepts
in Newtonian theory are revisited and discussed. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1541120#

I. INTRODUCTION

It is well-known since Cartan’s era2 that Newtonian theory can be stated in the language
differential geometry, and many authors have studied this geometrization on its own and in
parison with~or as a limit of! Einstein’s general relativity@see for example, Refs. 3–8, 11, 12, 1
~Box 12.4!, 14–16, 18, and 21#. The aim of this article is to carry out a geometrization from
more general viewpoint, which arises from the fundamental considerations on measurem
space and time in Ref. 1.

A Leibnizianstructure on anm-manifold M is a pair~V,^•,•&! consisting of a nonvanishing
one-form V and a ~positive definite! Riemannian metriĉ•,•& on its kernel. Whenm54, this
structure appears naturally as a consequence of our methods of measurement of space–
fact, it is natural to assume the existence of a Leibnizian~or dualanti-Leibnizian! structure in the
degenerate part of a signature-changing metric from Lorentzian to Riemannian.1 WhenV is exact,
i.e., V5dT for anabsolute timefunctionT, the intuitive idea ‘‘at each instant of time there exi
a Riemannian metric on space’’ is geometrized. Given the Leibnizian space–time aGalilean
connection is an affine connection which parallelizesV and ^•,•&. As a difference with the Levi-
Civita connection for a semi-Riemannian~Riemannian, Lorentzian or with any index! manifold,
symmetric Galilean connections are not univocally determined by the Leibnizian structure.
over, there exists a symmetric Galilean connection if and only ifV is closed~i.e., locally, V
5dT). Galilean connections can be seen as gauge fields, which are necessary to prese
covariance of physical laws under the change of ‘‘Galilean reference frames.’’ A Newto
space–time will be a Galilean one (M ,V,^•,•&,¹) where¹ satisfies certain symmetries. In th
present article we study the mathematical properties of each level~Leibnizian/Galilean/
Newtonian! and the corresponding physical interpretations.

From the purely mathematical viewpoint, some questions arise naturally: which are the

a!Part of the results of this article has been announced at the RSME meeting ‘‘Encuentros de Oton˜o de Geometrı´a y Fı́sica’’
Miraflores de la Sierra~Madrid!, September 2001.

b!Author to whom correspondence should be addressed. Electronic mail: sanchezm@goliat.ugr.es
11290022-2488/2003/44(3)/1129/21/$20.00 © 2003 American Institute of Physics
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sible dimensions of the group of automorphisms of a Leibnizian space–time? How many Ga
connections admit a Leibnizian structure? Is there an explicit way to construct them? The an
to such questions are interesting also from the physical viewpoint. The cornerstone of o
proach can be stated as follows~see Lemma 25, Theorem 27, and Corollary 28!: given a Leibni-
zian space–time, a field of observers Z and an (unknown) Galilean connection¹, the gravitational
field G and the vorticity/Coriolis fieldv measured by Z~plus, eventually, any skew-symmetr
tensor Tor representing the torsion, subject to the restrictionV+ Tor5dV) permit us to recon-
struct univocally the connection¹. Even though partial versions of this result are well-known~ad
nauseamif ^•,•& is flat andZ determines an ‘‘inertial reference frame’’!, the full result is new, as
far as we know. In fact, it relies on formula~13!, which plays a similar role to Koszul’s formula
in semi-Riemannian geometry, and introduces a type of ‘‘sub-Riemannian’’ geometry with in
of its own. Then, classical Newtonian concepts are revisited under this viewpoint.

In the comparison with classical geometrizations of Newtonian theory~see, e.g., Refs. 21, 13
Box 12.4, and 5!, where one assumes first that the space is flat and then some sort of assum
to make inertial references frames appear, the advantages of our approach become appa
only for its bigger generality but also for the sake of clarity: the detailed study of the structu
each level Leibnizian/Galilean/Newtonian clarifies both the mathematical results and the ph
interpretations. It is also worth pointing out that Kunzle and some co-workers11,12,4 have also
studied some Leibnizian structures; in fact, they call (M ,V,^•,•&) with V closed ‘‘Galilei struc-
ture’’ and the corresponding compatible connections ‘‘Galilei connections.’’ Nevertheless
constructive procedure of all Galilean connections and associated physical interpretations
ther @see Remark 29~2!#. ~In fact, our study led us to put different names to the structures dep
ing on if ¹ was fixed or not, as in Ref. 5. The names Leibnizian, Galilean and Newtonian
suggested by some famous historical facts–Galilean studies on freely moving bodies, contr
between Leibniz and Newton, and Newton’s discussion of the spinning water-bucket.!

The present article is divided into three parts. In the first one~Sec. II!, the properties of pure
Leibnizian structures are studied. Leibnizian vector fields and fields of Leibnizian obse
~FLOs! are introduced, as infinitesimal generators of automorphisms. In Theorem 8, the po
dimensions of these vector fields are characterized, in agreement with some known prope
classicalkinematical group.

The second part~Sec. III! is devoted to Galilean structures. Apart from the commented res
on our Koszul-type formula~13!, we introduce both Galilean vector fields and fields of Galile
observers~i.e., the corresponding Leibnizian fields which preserve infinitesimally the conne
¹!, see Table I. In Sec. III C, coordinate expressions for the connection, geodesics and cu
~for coordinates adapted to general fields of observers as well as more restricted ones: Leib
Galilean orinertial! are also provided.

Finally, in the third part~Sec. IV! the Newtonian case is specifically revised, discussing
classical concepts. In fact, our definition of Newtonian space–time is a Galilean one which a
an inertial field of observers and with~anV,^•,•&! flat. This definition avoids conditions at infinity
which are discussed in relation to the properties of gravitational fields and the uniquen
Poisson’s equation. Even though from the mathematical viewpoint the results are clearer
nonsymmetric connections are also taken into account@see Remark 29~1!#, we restrict to symmet-
ric connections for physical concepts or coordinate expressions, in particular along all the
part.

II. LEIBNIZIAN STRUCTURES

A. Leibnizian space–times

1. Setup

A Leibnizianspace–time is a triad, (M ,V,^•,•&), consisting of a smooth connected manifo
M , of any dimensionm5n11>2, a differential one-formVPL1(M ), nowhere null (Vp

Þ0, ;pPM ), and a smoth, bilinear, symmetric and positive definite map
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^•,•&:G~anV!3G~anV!→C`~M !, ~V,W!°^V,W&,

where anV5$vPTMuV(v)50%, is then-distribution induced byV, and the symbolG denotes
the corresponding vector fields, soG(anV)5$VPG(TM)uVpPanV, ;pPM %. @As usual,M will
be assumed Hausdorff and paracompact; ‘‘smooth’’ will meanC` ~even thoughC2 is enough!.#
Summing up, the Leibnizian structure onM is the nonvanishing one-formV plus the Riemannian
vector bundle~an~V!,^•,•&!.

Note:Let the superscript* denote dual space. For anypPM there exists a canonical isomo
phism between (anVp)* and the quotient vector space (TpM )* /SpanVp . Therefore, the metric
^•,•&p induces a canonical Euclidean product on (TpM )* /SpanVp , as well as a positive semidefi
nite metric on (TpM )* , with radical generated byVp . Thus, a Leibnizian structure is equivale
to a degenerate semidefinite positive metric of constant rankn in the cotangent bundleTM* , plus
a one-form generating its radical. In Ref. 1, ananti-Leibnizianstructure onM is defined as a
degenerate semidefinite positive metric of constant rankn in the tangent bundleTM, plus a vector
field Z generating its radical. Thus, the study of anti-Leibnizian structures is analogous~dual! to
the study of the Leibnizian ones.

According to Ref. 1, Euclidean space (an(Vp),^•,•&p) is called theabsolute spaceat p
PM , and the linear formVp is theabsolute clockat p. A tangent vectorZpPTpM is timelike, if
Vp(Zp)Þ0 ~spacelike, otherwise!. If, additionally,Vp(Zp).0 @resp.Vp(Zp),0], Zp points out
the future ~resp. the past!. Any normalized timelike vectorZp @that is, with Vp(Zp)51] is a
standard timelike unit~or instantaneous observer! at p; any ~ordered! orthonormal base of the
absolute space atp is a set of standard spacelike unitsat p.

Let us introduce definitions for the concepts of observer and field of observers~or reference
frame! analogous to the Lorentzian ones; compare with Ref. 17, Chap. 2. Anobserveris a smooth
curve, g:I→M (I #R, interval!, such that its velocity is always a standard timelike un
Vg(s)(g8(s))51, ;sPI . The parameter of this curve is theproper timeof the observerg. A field
of (instantaneous) observers~FO! is a vector fieldZPG(TM) with V(Z)[1, that is, integral
curves ofZ are observers. The existence of a FO on any Leibnizian space–time is straightfo
from the paracompactness ofM . @Conversely, if we assume the existence of a FO, then Lemm
and Remark 26 permit us to construct an affine connection onM ; thus, we could deduce th

TABLE I. Semi-Riemannian versus Leibnizian/Galilean.

d Structure Semi-Riemannian, (M ,g) Leibnizian, (M ,V,,,.)
dim M5m, indexg5s dim M5m (5n11)

d Structural group Orthonormal,Os(m) Galilean,Gm(R)
dim Os(m)5m(m21)/2 dim Gm(R)5m(m21)/2

d Infinitesimal automorphisms Killing vector fields Leibnizian vector fields
Possible dimensions:
0,1,. . . , m(m11)/2

Possible dimensions (dV50):
0, 1 or`

d Possible connections
¹ which parallelize
the structure

Determined by all torsion
tensors, bijective correspondence:

Connections↔two-covar.
one-contrav. skew-symmetric

tensors
Unique connection without

torsion ~Levi-Civita!

Determined by:
~a! Possible torsions:

V+ Tor5d V
~b! Fixed Z (V(Z)51):

¹ZZ andv5rot Z/2
Existence of¹ without Tor

⇔d V50

d Fixed a connection
¹ which parallelizes
the structure

Canonically, Tor50
Killing ⇒Affine

No new definition of vector
fields required

Even if Tor50,
Leibnizian⇒” Affine

Galilean vector fields:
Leibnizian1affine

Dimension Galilean:
0,1, . . . ,m(m11)/2
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paracompactness ofM by using Ref. 19, Vol. II, Addendum 1, p. 8-52.# Let Z(M )[Z(M ,V) be
the set of all the FOs. Clearly,Z(M ) has a structure of affine space with associated vector fi
G(anV). For each FO,ZPZ(M ), define the field of endomorphisms:

PZ~v !5v2V~v !Z, ;vPTM, ~1!

or spacelike projection along Z. Obviously, the image ofPZ is an~V!.
When the absolute clockV satisfiesV∧dV50 ~i.e., the distribution anV is involutive:

@V,W#PG(anV), ;V,WPG(anV)), we say that (M ,V,^•,•&) is locally sincronizable; if dV
50 ~V is closed!, then (M ,V,^•,•&) is proper time locally syncronizable. In fact, it is well-known
that the equalityV∧dV50 is equivalent, locally, toV5 f dt, for some smooth functionsf
.0, t. That is, in the domain off andt, hipersuperfacest[const are tangent to the absolute spa
at each point. Thus, in principle, any observer could be ‘‘syncronized,’’ that is, it can regardt as
a compromise time, obtained by rescaling its proper time. In the more restrictive casedV50, one
has locallyV5dt. Thus, any observerg is direcly ‘‘syncronized,’’ up to a constantcg @i.e., t
+g(s)5s1cg ,;sPI ]. Notice that these concepts about local syncronizability are intrinsic to
Leibnizian structure and, then, applicable to each particular observerg. This is a clear difference
with the Lorenzian case, where the analogous concepts have meaning only for fields of obs
@If ( M ,g) is a time-oriented Lorentzian manifold, a FO is a unit future-pointing timelike ve
field Z. If Z[ is the metrically associated one-form,Z is said locally syncronizable~resp. proper
time locally sincronizable! if Z[∧dZ[50 ~resp.dZ[50). It is not difficult to prove that, in the
neighborhood of any point,a proper time locally syncronizable vector field can be always c
structed~compare with Ref. 17, Sec. 2.3!.#

WhenV is exact, that is,V5dT for some~unique up to a constant! TPC`(M ), T will be
called the functionabsolute time. In this case, any observerg will be assumed to be parametrize
with T (T+g(s)5s,;sPI ). WhenM is simply connected, local proper time synchronizability
equivalent to the existence of such an absolute time function.

2. Coordinates

Given a Leibnizian space–time (M ,V,^•,•&) and a FO,ZPZ(M ), for eachpPM there exist
charts (U,y0, . . . ,yn) such that]y05ZuU . We can wonder if, additionally, these charts may
adapted to the absolute spaces. More precisely, we have the following.

Definition 1: Let(M ,V,^•,•&) a Leibnizian space–time and(U8,t,x1, . . . ,xn) a coordinate
system in M. (U8,t,x1, . . . ,xn) is adapted to the absolute spaceif

V~]xi
!50, ; i P$1, . . . ,n%

(in particular, hipersuperfaces t[constare integral manifolds of the distributionanV).
Given a FO, ZPZ(M ), (U8,t,x1, . . . ,xn) is adapted to Zif, on U8,

] t5Z and V5dt.

If the chart is adapted to the absolute space, thenV5V(] t)dt; if it is adapted toZ, then it is
adapted to the absolute space too. Clearly, if (U8,t,x1, . . . ,xn) is adapted to the absolute spa
~resp. aZ), thenV∧dV50 ~resp.dV50) onU8. The converse also holds; in fact, the followin
result yields adapted charts constructively.

Proposition 2: Let Z be a FO on a Leibnizian space–time (M ,V,^•,•&). Fix a chart
(U,y0, . . . ,yn) such that]y05ZuU , and put

Vk5PZ~]yk!PanV, ;kP$1, . . . ,n%, ~2!

with PZ in (1). Then
(i) (Z,V1 , . . . ,Vn) is a local base of vector fields~moving frame! with V(Vk)50 and
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dV~Z,Vj !52V~@Z,Vj # !, dV~Vi ,Vj !52V~@Vi ,Vj # !, ; i , j P$1, . . .n%. ~3!

(ii) If V∧dV50, then, at some neighborhood U8 of each pPU, there exist coordinates
(t,x1, . . . ,xn) satisfying on U8:

V5V~] t!dt, ]xk5Vk , ;kP$1, . . . ,n%.

Thus, such coordinates are adapted to the absolute space.
(iii) If d V50, then, in addition to (ii), one has

] t5Z,

on U8 ~i.e., the coordinates are adapted to Z).
Proof: (i) Obvious.
(ii) As the distribution anV is involutive,V(@Vi ,Vj #)50 and, from~2!, @Vi ,Vj #50. Thus, it

is enough to apply classical Frobenius’ theorem~see, for example, Ref. 23 Chap. 1!.
(iii) By using ~3!, one checks@Z,Vj #50 and, again, the result follows from Frobeniu

theorem. h

From now on, Latin indexesi , j , k will vary in 1, . . . ,n. We will simplify the notation, too:
]xk[]k .

3. Galilean group at a point

Fix pPM . An ~ordered! base B5(Zp ,e1 , . . . ,en) of TpM is a Galilean base at pif
V(Zp)51 and$e1 , . . . ,en% is an orthonormal base of an(Vp), that is, ifZp is a standard timelike
unit at p ande1 , . . . ,en are standard spacelike units.

A Galilean transformation at pis a linear map,A:TpM→TpM , which maps some~and thus,
any! Galilean base onto a Galilean base. Or, equally,Vp(A(Xp))
5Vp(Xp) and ^A(Vp),A(Wp)&p5^Vp ,Wp&p , ;XpPTpM , ;Vp ,WpPan(Vp). The group
of all such transformations will be called theGalilean groupat p.

Matricial Galilean group Gm(R), m5n11, is the group of the matrixes

S 1 0

a AD , where a5S a1

]

an
D PRn and A•At5I n ~4!

(A is an orthogonal matrixn3n).
It is straightforward to check that, given a Galilean baseB and any other baseB8

5(Zp8 ,e18 , . . . ,en8) in TpM , the baseB8 is Galilean if and only if the transition matrix belongs
Gm(R), that is,

Zp85Zp1(
i 51

n

aiei , ej85(
i 51

n

aj
i ei , ; j P$1, . . .,n%,

whereA5(aj
i ) is a orthogonal matrix. In this case,v5( ja

jej is thevelocity of Zp8 measured by
Zp .

B. Leibnizian vector fields

1. Automorphisms of Leibnizian G-structures

Let LM be the linear frame bundle ofM , that is, each element ofLM can be seen as
~ordered! base of the tangent space at some point ofM . The Leibnizian structure (V,^•,•&) on M
determines the fiber bundle of all the Galilean basesGM,LM . As Gm(R) acts freely and
transively on each fiber,GM is a G-structure withG5Gm(R) @i.e., a principal fiber bundle with
structural groupGm(R), obtained as a reduction ofLM ]. Recall that the set of the orthonorma
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bases for any semi-Riemannian metric~in particular, Riemannian or Lorentzian! is a well-known
example ofG-structure; the dimension of its structural group is equal to the dimension ofGm(R),
i.e., m(m21)/2 (m5n11). G-structures have mathematical interest in their own right~see, for
example, Ref. 9!, and we will be interested in two properties of LeibnizianG-structures with
striking differences with respect to the semi-Riemannian case: their infinitesimal automorp
~studied below! and the set of all the compatible affine connections~Sec. III B!.

An infinitesimal automorphism of aG-structure is a vector fieldK generating a group o
automorphisms of the principal fiber bundle. In the semi-Riemannian case, such aK is called a
Killing vector field. In the Leibnizian one, the following definition is equivalent.

Definition 3: Given(M ,V,^•,•&), a vector field KPG(TM) is Leibnizian~Killing ! if its local
flowscs preserve the absolute clock and space, that is,

cs* V5V and cs* ^•,•&5^•,•&.

Leib(M )[ Leib(M ,V,^•,•&) will denote the set of all the Leibnizian vector fields.
As LK , the Lie derivative alongK, can be recovered from the local flows ofK, the following

characterizations of Leibnizian vector fields are straightforward.
Proposition 4: Let(M ,V,^•,•&) be a Leibnizian space–time, and KPG(TM) be a vector

field. The following assertions are equivalent:

(1) K is a Leibnizian vector field.
(2) LKV50 and LK^•,•&50,
(3) The following two properties hold:

(a) V(@K,Y#)5K(V(Y)), ;YPG(TM) [equally: 2dV(K,Y)5Y(V(K))] .
(b) K^V,W&5^@K,V#,W&1^V,@K,W#&, ;V,WPG(anV).

In particular, Leib(M ) is a Lie algebra.
Remark 5:~1! The right hand side of3(b) makes sense@i.e., @K,V#, @K,W#PG(anV)# when

3(a) holds.
~2! WhendV50, property3(a) holds if and only ifV(K)5cte. We will put then, for each

cPR,

Leibc~M !5$KPLeib~M !uV~K !5c% ~5!

~clearly, the relevant cases will bec50,1).
~3! As we will see, the dimension of Leib(M ) may be infinite. This was expected from

purely algebraic viewpoint: a straightforward computation from~4! shows that the Lie algebra
Gm(R) contains elements of rank 1 and, thus, this algebra is of finite type~see Ref. 9, Proposition
1.4!. As a consequence, the automorphisms of a Leibnizian manifold are not necessarily a~finite
dimensional! Lie group.

2. Fields of Leibnizian observers

Consider now the case thatZ is afield of Leibnizian observers (FLO), that is,ZPZ(M ), and
Z is Leibnizian.~The name ofrigid vector fieldsis also natural for FLO’s, see Ref. 17, Sec. 2.!.
We will be interested in the classical interpretations of these vector fields; thus, we assum
dV50. According to formula~5! the set of all the FLOs will be denoted as Leib1(M ).

From Proposition 2, givenZPZ(M ) a chart (t,x1, . . . ,xn) adapted toZ exists. Put

hi j 5^] i ,] j&, h[^•,•&.

The following characterization of the FLOs is immediate from its definition and Proposition
Proposition 6: Let(M ,V,^•,•&) be a Leibnizian space–time with dV50 and ZPZ(M ). The

field of observers Z is a FLO if and only if for each pPM there exists a chart(t,x1, . . . ,xn)
adapted to Z such that
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] thi j 50, ; i , j P$1, . . .n%. ~6!

Remark 7:Of course, in this case equality~6! holds for any chart adapted toZ. Thus, the
FLOs are those fields of observers satisfying the following: their observers see that, local
metric ^•,•& does not change with the local absolute timet ~they are always at the same distan
of the neighboring observers!.

3. Main result

Now, let us characterize the dimension of the Lie algebra Leib(M ). For simplicity, we will
assume the existence of a globally defined time functionT ~of course, the results hold locally i
only dV50).

Notice first that Leib1(M ) may be empty@and then Leib(M )5Leib0(M )], no matter the
dimension of Leib0(M ) be. Recall also that a vector fieldZPG(TM) is called completeif it
admits a globally defined flowf, i.e., f t :M→M , for all tPR @for ZPZ(M ), one can say,
equally, that the—inextendable—observers inZ are defined on allR#.

Theorem 8: Consider the Leibnizian space–time (M ,dT,^•,•&).

(1) (a) Let KPLeib0(M ) be. The restriction of K to each hypersurface T[T0 (constant) is a
Killing vector field of the Riemannian manifold(T21(T0),^•,•&).
(b) If Leib0(M )Þ0, thendim(Leib0(M )5`).

(2) If Leib1(M ) is not empty, then it is an affine space of associated vector spaceLeib0(M ). Thus,
dim(Leib(M ))P$0,1,̀ %.

(3) If there exists a complete FLO, ZPLeib1(M ), then we have the following.
(a) All the hypersurfaces T[constare isommetric.
(b) If one of the T21(T0) admits a Killing vector field K0(Ó0), then dimLeib0(M )5`.

Proof: ~1! Assertion (a) is obvious. For (b) take anyKPLeib0(M ). Notice that, for any
function a:R→R, the vector field

Ka~p!5a~T~p!!K~p!, ;pPM ,

satisfiesKaPLeib0(M ) too. If KÓ0, one can choose a neighborhoodU whereK does not vanish,
and some interval ]T1 ,T2@ ,T1,T2 included inT(U). Now, just take infinite independient func
tions a(T) vanishing outside of ]T1 ,T2@ .

~2! Obvious.
~3! For (a) recall that the flowf t of Z generates an isommetry betweenT21(T0) and

T21(T01t),;tPR. For (b), we have just to find someKPLeib0(M ), KÓ0 and apply1(b).
Such a vector field can be constructed fromK0 and the flow ofZ as follows:

Kp5df (T(p)2T0)~K0@f2(T(p)2T0)~p!# ! ~7!

$with the notation:K0@q#[(K0)q , for q5f2(T(p)2T0)(p)%, h

Remark 9:ChoosingM5R3S (S any manifold! with T:R3S→R the natural projection, it is
not difficult to prove that all the dimensions of Leibc(M ) permited by Theorem 8 can occu
Substracting a small neighborhood of some point, the importance of the hypothesis of com
ness in(3) can be easily verified~even though this result is always true locally, for any FLO!.

Moreover, locally, when there exists a FLO and there arer independent Killing vector fields
K01, . . . ,K0r in the neighborhood of some point at a hypersurfaceT[T0 , then infinitely many
new FLOs can be constructed, typeZ* 5Z1( ia

i(T)Ki , for any functionsa1, . . .,ar andKi ’s as
in ~7!. That is, as the timeT varies, all the observers inZ* can move in the direction of a spacelik
Killing vector field with a speed which depends arbitrarily onT; this generalizes well-known
properties of thekinematical group, see Ref. 5.
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III. GALILEAN STRUCTURES

A. Galilean space–times

1. Galilean connections

As already commented, a Leibnizian structure has no canonical affine connection asso
Now, affine connections preserving the Leibnizian structure will be studied. The existence o
a fixed connection can be seen as a physical requirement from gauge covariance. In fac
connection is fixed, then all the the sections of the principal fiber bundleGM, or Galilean
reference frames, are physically equivalent. But, in this case, physical laws as Newton’s se
one should be covariant under changes of Galilean reference frames. This forces the exist
a gauge field~i.e., a compatible connection! which restates covariance. Recall that general re
tivity can also be seen as a gauge theory, where the gauge invariance under different cho
sections in the principle fiber bundle of the orthonormal basis must be preserved. Neverthe
this theory the gauge field~the gravitational field! is canonically fixed as the unique torsionle
connection of the bundle.

Definition 10: AGalilean connectionin a Leibnizian space–time (M ,V,^•,•&), is a connec-
tion ¹ such that its parallel transport maps Galilean bases onto Galilean bases.

A Galilean space–time (M ,V,^•,•&,¹) is a Leibnizian space–time (M ,V,^•,•&) endowed
with a Galilean connection¹.

As the connection can be reconstructed from the parallel transport, it is not difficult to c
the following characterization.

Proposition 11: An affine connection¹ on a Leibnizian space–time (M ,V,^•,•&) is Galilean
if and only if the following two conditions hold:

(1) ¹V50 @i.e., ¹XV50, ;XPG(TM)].
(2) ¹^•,•&50, that is, X^V,W&5^¹XV,W&1^V,¹XW&, ;XPG(TM), ;V,WPG(anV).

Remark 12:Item ~1! holds if and only ifV(¹XY)5X(V(Y)), ;YPG(TM). Thus, ifV(Y) is
constant, then¹XYPG(anV),;XPG(TM). In particular, this happens ifY5ZPZ(M ) or if Y
5V,WPG(anV); therefore, the right-hand side of item~2! is well defined.

Equally, a Galilean connection can be seen as a connection in the fiber bundle of the G
basesGM. As any principal fiber bundle,GM admits connections, but it does not admit nec
sarily a symmetric connection. Thus, in principle, Galilean connections are not assumed sy
ric. Even more, our results on existence of Galilean connections will be mathematically c
without this restriction. Thus, thetorsion

Tor~X,Y!5¹XY2¹YX2@X,Y#,

which measures the lack of symmetry of the connection, will be relevant. The existence
symmetric Galilean connection implies restrictions on the one-formV, as the following result
shows.

Lemma 13: For any Galilean space–time (M ,V,^•,•&,¹),

V+Tor5dV. ~8!

Therefore, if there exists a symmetric Galilean connection, then dV50.
Proof: By using Remark 12,

dV~X,Y!5X~V~Y!!2Y~V~X!!2V~@X,Y# !

5V~¹XY!2V~¹YX!2V~@X,Y# !

5V~Tor~X,Y!!, ;X,YPG~TM!,

which proves~8!. h
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Remark 14:If a G-structure is parallelizable, then it admits a symmetric connection~Ref. 9,
Proposition 1.2!, but the converse is clearly false. Nevertheless, as we will see in Sec. III
dV50, then there are symmetric connections. Thus, for LeibnizianG-structures one can say
there exists a symmetric connection if and only if‘‘ V is parallelizable’’ ~i.e., locallyV5dt).

WhendVÞ0, only ‘‘connections symmetric for a field of observers’’ can be defined:
Definition 15: Let ZPZ(M ) be a FO, and PZ its associated projection [formula (1)]. A

Galilean connection isZ-symmetric,if

PZ+Tor[0.

If dV50, thenV+Tor[0 and, therefore,PZ+Tor[Tor; that is symmetric andZ-symmetric con-
nections are equal. More precisely, we have the following.

Proposition 16: Let(M ,V,^•,•&,¹) be a Galilean space–time. The following assertions ar
equivalent:

(1) ¹ is symmetric.
(2) dV50 and, given any point pPM , there exist a neighborhood U and a FO on U, Z

PZ(U), such that¹ is Z-symmetric on U.
(3) Fix any point pPM ; there exists a neighborhood U and two FOs Z,Z8 on U, which are

independent at p and such that¹ is Z and Z8-symmetric on U.
(4) ¹ is Z-symmetric for any FO, ZPZ(M ).

Proof: By using Lemma 13 and the above comments, the implications 1⇒2⇒1⇒4⇒3 are
obvious. For 3⇒2, notice that

05~PZ2PZ8!+Tor~v,w!5~Z2Z8!p dV~v,w!, ;v,wPTpM . h

Finally, let us define the following fundamental concepts~see Sec. III A 3 for interpretations!.
Definition 17: Let ZPZ(M ), a FO in a Galilean space–time, (M ,V,^•,•&,¹). The gravita-

tional field induced by¹ in Z is the vector field:

G5¹ZZ.

Thevorticity or Coriolis field induced by¹ in Z is the skew-symmetric two covariant tensor fie
v[ 1

2rotZ defined by

v~V,W!5 1
2 ~^¹VZ,W&2^V,¹WZ&!, ;V,WPG~anV!.

An observerg:I→M , V(g8)[1, is freely falling if it is a geodesic for¹.
Remark 18:Recall thatV(G)5V(¹ZZ)5Z(V(Z))50, that is, as the Galilean connectio

parallelizesV, the gravitational field is always spacelike.
Analogously, the definition ofv makes sense becausev is applied only on spacelike vecto

fields ~Remark 12!. In general, therotational of a vector field rotX, as in Definition 17, makes
sense whenV(X) is constant~in particular, ifX is spacelike or a FO! and it is applied on pairs o
spacelike tangent vectors.

2. Galilean vector fields

As for the Leibnizian case, vector fields~and, in particular, FOs! with flows preserving the
Galilean structure become natural now. Recall first that, given an affine conection¹, a vector field
K with local flows preserving¹ ~i.e., LK¹50) is called affine~Killing ! and is characterized by
the equality

@K,¹YX#5¹[K,Y]X1¹Y@K,X#, ;X,YPG~TM! ~9!
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~when K, X and Y are coordinate vector fields, this means that the Christoffel symbols
independent of the coordinate associated toK).

Definition 19: Given a Galilean structure(M ,V,^•,•&,¹), a vector field KPG(TM) is Gal-
ilean (Killing) if K is Leibnizian for (M ,V,^•,•&) and affine for¹. If, additionally, K is a FO,
then K is afield of Galilean observers(FGO).

Denote by Gal(M )[Gal(M ,V,^•,•&,¹) the Lie algebra of all the Galilean vector fields.
dV50, Gal1(M ) will denote the affine space of all the FGOs, in agreement with the notatio
Remark 5~2!. Although Leibnizian vector fields might have infinite dimension, this cannot hold
the Galilean ones, which are always affine; recall that the maximum dimension for affine v
fields is m(m11). Therefore, from the classical results by Palais, the diffeomorphisms oM
preserving the Galilean structure are a~finite dimensional! Lie group, and its associated algebra
the subalgebra of Gal(M ) generated by its complete vector fields~see, for example, Ref. 10, Vol
I, Note 9!. It is not difficult to find the best bound for the dimension of Gal(M ):

Proposition 20: If m5dimM , thendim~Gal(M ))<m(m11)/2.
Proof: ChoosepPM and take coordinates (t,x1, . . . ,xn) such that the corresponding set

coordinate vector fields (]m) is a Galilean base atp. Each Galilean vector fieldKPGal(M ) is
determined by the values ofKm(p) and]nKm(p). ~This holds for any affine vector field. The proo
is analogous to the one for the Killing case in Ref. 22 p. 442-3.! Condition3(b) of Proposition 4
imposesm(m21)/2 independent linear equations for the values of] iK

j (p); Condition3(a) fixes
the values of]nK0,;nP$0,1,. . . ,n%, that is, it imposesm independent conditions more. h

Remark 21:This bound for dim(Gal(M )) is the best one, as one can check in the stand
example: (Rn11,dt2,^•,•&0 ,¹0), t being the usual projection on the first variable and^•,•&0 ~resp.
¹0) the usual metric on each hypersuperface~resp. usual connection!.

Remarkably, the maximum dimension of Gal(M ) is equal to the maximum dimension for th
Killing vector fields of a semi-Riemannian metric onM . This was expected because, on one ha
the groupsGm(R) and orthogonalOs(n11,R) have the same dimensio´n and, on the other, Killing
vector fields are automatically affine for the Levi-Civita connection of the semi-Riemannian
ric.

Finally, we give the following consequence on gravitational and Coriolis fields~Definition
17!, interesting for its classical physical interpretation.

Proposition 22: Let ZPZ(M ) be a FGO of(M ,V,^•,•&,¹). Then

LZG~5@Z,G# !50, LZv50, LZTor50.

If dV50, then the first (resp. second, third) equality is equivalent to the following fact: for
chart (t,x1, . . . ,xn) adapted to Z, the fieldG (resp.v, Tor) is independent of the coordinate t.

Proof: The first equality is a consequence of~9! with K5X5Y5Z. From this formula one
also has

@Z,¹XZ#5¹[Z,X]Z. ~10!

Then, for any spacelike vector fieldsV,W,

2LZv~V,W!52~Z~v~V,W!!2v~@Z,V#,W!2v~V,@Z,W# !!5Z~^¹VZ,W&2^V,¹WZ&!

2^¹[Z,V]Z,W&1^@Z,V#,¹WZ&2^¹VZ,@Z,W#&1^V,¹[Z,W]Z&.

But this expression vanishes, by using Proposition 4@formula 3(b)# and~10!. For the torsion, we
can assume thatX, Y, Z, at any fixed point, commute and then

LZTor~X,Y!5@Z,¹XY#2@Z,¹YX#.

By ~9!, the last two terms vanish.
Finally, the last assertion is straightforward from the expressions in coordinates. h
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3. Classical physical interpretations

Next, some definitions will suggest the classical interpretations for observers in (M ,V,
^•,•&,¹). For simplicity, we will consider the casedV50 and¹ symmetric, but the definitions
can be extended formally to the general case.

Fix a FO,ZPZ(M ). Denote, as usual,

AZ :anV→anV, AZ~V!52¹VZ, ;VPG~anV!,

and decompose2AZ in its symmetricŜ and skew-symmetricv̂ parts.@The sign2 in the defini-
tion of AZ is a usual convention differential geometry:AZ is then the Weingarten endomorphis
for the hypersuperficiest[const~see, for example, Ref. 10!. Nevertheless, this sign is ruled out
the decomposition.# That is,

2AZ5Ŝ1v̂

whereŜ is self-adjoint for^•,•&, andv̂ skew-adjoint. Denote byS,v the corresponding fields o
two-covariant associated tensors:

S~V,W!5^Ŝ~V!,W&5 1
2 ~^¹VZ,W&1^V,¹WZ&!,

v~V,W!5^v̂~V!,W&5 1
2 ~^¹VZ,W&2^V,¹WZ&!.

Tensorv is, then, the vorticity or Coriolis field in Definition 17. The name ‘‘vorticity’’ mean
that, if Z represents the trajectories of the particles of a fluid, thenv measures how, given a fixe
trajectory, the others turn around. The name ‘‘Coriolis field’’ appears becausev measures the
‘‘lack of inerciality’’ of Z due to the spinning of the observers~even though this lack of inerciality
maybe intrinsic, see Remark 36!. In fact, whenn53 andM ~or, equally, anV! is orientable,v can
be represented by aCoriolis vector field Cv in a standard way. Indeed, fix an orientation contin
ously at each fiber of anV; the metric^•,•& yields a standardoriented volume element, dv, which
is a skew-symmetric three-covariant tensor. Now, defineCv by the equality v(V,W)
5dv(Cv ,V,W),;V,WPG(anV). Ŝ ~or, S) will be called theintrinsic Leibnizian part of AZ ,
because of the following result.

Proposition 23: Fix ZPZ(M ). The endomorphism field Sˆ (and, thus, S) depends only on th
Leibnizian structure(M ,V,^•,•&); thus, it is independent of the Galilean connection¹.

Moreover, Z is Leibnizian if and only if Sˆ 50.
Proof: From the definition ofS ~recall that we assume now Tor50)

S~V,V!5^¹VZ,V&5~^@V,Z#,V&1^¹ZV,V&!52^@Z,V#,V&1 1
2 Z^V,V&, ~11!

and the first assertion holds. The last assertion is straightforward from~11!, the third character-
ization in Proposition 4, and Remark 5~2!. h

Now, Ŝ can be decomposed as

Ŝ5
u

n
I 1s,

whereI is the identity endomorphism,s is theshear, characterized because it must be tracele
and u is the expansion. So, u measures how, with an observer fixed, neighboring observer
away on average, ands is the deviations of this average. From Proposition 23, each observerg in
a FLO,Z, stands at a constant distance from any other observerḡ in Z; nevertheless, dependin
on the Galilean connection, they may rotate whenvÞ0. Then, the gravitational field of a FLOZ
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measures the forces which must be used, in order to compensate gravity and maintain a c
distance between its observers. Alternatively,Z may represent arigid solid, and G measures
gravitational tensions.

Finally, fields of inertial observers will be defined. Notice that, from a classical phys
viewpoint, it is natural to assume that they are FLOs without ‘‘rotations.’’ But, under our m
ematical approach, it is also natural to assume that they are FGO. Thus, we give two defin

Definition 24: Let (M ,V,^•,•&,¹) be a Leibnizian space–time with symmetric¹, and Z
PZ(M ). We will say that Z is afield of inertial observers~FIO! if Z is a FLO andv50.

In this case, the FIO Z isproperif it is a FGO.

B. Existence of Galilean connections: Fundamental theorem

Next, we determine all the Galilean connections compatible with a fixed Leibnizian struc
Recall that, for a semi-Riemannian metricg, all the connections which parallelizeg can be

computed from their torsion, Tor and Koszul’s formula~which determines the Levi-Civita con
nection, i.e., the unique one with Tor50). The only condition for Tor is to be a two-skew
symmetric covariant, one-contravariant tensor field, TorPL2(TM,TM). Thus, there exists a natu
ral bijection between the connections which parallelizeg and the tensors field inL2(TM,TM).

On the contrary, formula~8! does represent an obstruction for the possible torsions assoc
to a Galilean connection. As a consequence, we will have to consider tensors fie
L2(TM,TM) under a restriction type~8!. In addition, we will need so many new parameters
restrictions in~8!. As we will see, gravitational and Coriolis fields will be these new paramet

Our study will be carried out in two steps. In the first one~Sec. III B 1! we will see how, given
a Galilean structure and fixedZ, the values ofG, v and Tor fix the Galilean connection. In th
second step~Sec. III B 2! we will see how, given a Leibnizian structure and fixedZ, the permitted
values ofG, v and Tor are in bijective correspondence with the space of all the Galilean con
tions.

1. Formula ‘‘a` la Koszul’’

Our aim is to prove formula~13!, which plays a role similar to the Koszul formula i
semi-Riemannian geometry. Our next result is, then, the ‘‘fundamental lemma of the Ga
geometry’’~compare, for example, with Ref. 19, Vol. IV, Chap. 6!. As in previous notation, put, for
any Galilean connection¹,

A~X,Y!5Tor~X,Y!1@X,Y#5¹XY2¹YX, ;X,YPG~TM!. ~12!

That is,A is two times the skew-symmetric part of¹, and it depends just on its torsion. Notice th
A(Z,W)PG(anV), ;ZPZ(M ),;WPG(anV) andA(W1 ,W2)PG(anV), ;W1 ,W2PG(anV).

Lemma 25: Let(M ,V,^•,•&,¹) be a Galilean space–time, and ZPZ(M ) a FO with gravi-
tational fieldG and Coriolisv. Then, ¹ satisfies the following formula:

2^PZ~¹XY!,V&5X^PZ~Y!,V&1Y^PZ~X!,V&2V^PZ~X!, PZ~Y!&12~V~X! V~Y!^G,V&

1V~X! v~PZ~Y!,V!1V~Y! v~PZ~X!,V!!1V~X!~^A~Z, PZ~Y!!,V&

2^A~Z,V!, PZ~Y!&!2V~Y!~^A~Z, PZ~X!!,V&1^A~Z,V!, PZ~X!&!

1^A~PZ~X!, PZ~Y!!,V&2^A~PZ~Y!,V!, PZ~X!&2^A~PZ~X!,V!, PZ~Y!&,

~13!

where X,YPG(TM) and VPG(anV) is any spacelike vector field.
Proof: From the cyclic identities,

V^PZ~X!, PZ~Y!&5^¹VPZ~X!, PZ~Y!&1^PZ~X!,¹VPZ~Y!&, ~14!

PZ~X!^PZ~Y!,V&5^¹PZ(X)P
Z~Y!,V&1^PZ~Y!,¹PZ(X)V&, ~15!
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PZ~Y!^V, PZ~X!&5^¹PZ(Y)V, PZ~X!&1^V,¹PZ(Y)P
Z~X!&, ~16!

compute (15)1(16)2(14) to obtain

^¹PZ(X)P
Z~Y!1¹PZ(Y)P

Z~X!,V&5 PZ~X!^PZ~Y!,V&1 PZ~Y!^V, PZ~X!&2V^PZ~X!, PZ~Y!&

2^A~PZ~Y!,V!, PZ~X!&2^A~PZ~X!,V!, PZ~Y!&. ~17!

On the other hand, using~1! and ~12!,

2^¹XPZ~Y!,V&52^¹PZ(X)P
Z~Y!,V&12 V~X!^¹ZPZ~Y!,V&

5^¹PZ(X)P
Z~Y!,V&1^¹PZ(Y)P

Z~X!,V&1^A~PZ~X!,PZ~Y!!,V&

12 V~X!^¹ZPZ~Y!,V&. ~18!

Substituing~17! in ~18!,

2^¹XPZ~Y!,V&5 PZ~X!^PZ~Y!,V&1 PZ~Y!^V, PZ~X!&2V^PZ~X!, PZ~Y!&

2^A~PZ~Y!,V!, PZ~X!&2^A~PZ~X!,V!, PZ~Y!&1^A~PZ~X!,PZ~Y!!,V&

12 V~X!^¹ZPZ~Y!,V&. ~19!

Substituting also, in the two first terms on the right-hand side of~19!, the values ofPZ(X),PZ(Y)
by its expresion~1!,

2^¹XPZ~Y!,V&5V~X!^¹ZPZ~Y!,V&2V~X!^ PZ~Y!,¹ZV&2V~Y!^¹ZV, PZ~X!&

2V~Y!^V,¹PZ(X)Z&2V~Y!^V,A~Z, PZ~X!&1$Koszul%, ~20!

where

$Koszul%5X^PZ~Y!,V&1Y^V, PZ~X!&2V^PZ~X!, PZ~Y!&1^A~PZ~X!,PZ~Y!!,V&

2^A~PZ~Y!,V!, PZ~X!&2^A~PZ~X!,V!, PZ~Y!&.

But, using¹X(V(Y)Z)5V(¹XY)Z1V(Y)(V(X)¹ZZ1¹PZ(X)Z), one has

PZ~¹XY!5¹XY2V~¹XY!Z5¹X~V~Y!Z!1¹XPZ~Y!2V~¹XY!Z

5V~X!V~Y!G1V~Y!¹PZ(X)Z1¹XPZ~Y!. ~21!

Thus, substitute~20! in ~21!:

2^PZ~¹XY!,V&52 V~X! V~Y!^G,V&1V~Y!^¹PZ(X)Z,V&1V~X!^¹PZ(Y)Z,V&

1V~X!^A~Z, PZ~Y!!,V&2V~X!^ PZ~Y!,¹VZ&2V~X!^ PZ~Y!,A~Z,V!&

2V~Y!^¹VZ, PZ~X!&2V~Y!^A~Z,V!, PZ~X!&2V~Y!^V,A~Z, PZ~X!&

1$Koszul%

52 V~X! V~Y!^G,V&12 V~X! v~PZ~Y!,V!12 V~Y! v~PZ~X!,V!

1V~X!~^A~Z, PZ~Y!!,V&2^A~Z,V!, PZ~Y!&!2V~Y!~^A~Z, PZ~X!!,V&

1^A~Z,V!, PZ~X!&!1$Koszul%,

as required. h

Remark 26:As ¹XY5PZ(¹XY)1X(V(Y))Z, formula (13) permits us to reconstruct¹ from
V,^•,•&, Tor, and the values ofG,v associated to Z.
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2. Natural bijection

Let us see how, for fixed FO, formula~13! determines all the Galilean connections of
Leibnizian space–time. As in previous notation, let (i ) L2(anV) be the vector space of all th
two-covariant skew-symmetric tensors defined on spacelike vectors@that is,qPL2(anV), if and
only if, q:anV3anV→C`(M ), q is C`(M ) –bilinear and skew-symmetric# and (i i )
L2(TM,anV) be the vector space of all the two-covariant skew-symmetric tensors,
contravariant spacelike valued@that is, QPL2(TM,anV), if and only if, Q:G(TM)3G(TM)
→G(anV), Q is C`(M ) –bilinear and skew-symmetric#.

Theorem 27: Given a Leibnizian space–time (M ,V,^•,•&), let D(V,^•,•&) be the set of all
its Galilean connections. For fixed FO, Z, the map, DZ:D(V,^•,•&)→G(anV )3 L 2(anV)
3L2(TM,anV), given by

DZ~¹!5~G~[¹ZZ!, v~[ 1
2rotZ!, PZ+Tor!, ;¹PD~V,^•,•&!,

is one-to-one and onto.
Proof: Obviously, this map is well-defined. Let us prove that it is one-to-one. By using~8! and

~12!

PZ+Tor5A~•,• !2d V~•,• !Z2@•,•# ~22!

and

DZ~¹̃ !5 DZ~¹! ⇒ G̃5G, ṽ5v, Ã5A.

Thus, from formula~13!,

^PZ~¹̃XY!2 PZ~¹XY!,V&50, ;X,YPG~TM!,;VPG~anV! ⇒¹̃XY2¹XY5 PZ~¹̃XY!

2 PZ~¹XY!50, ;X,YPG~TM!,

as required.
In order to check thatDZ is onto, fixGPanV, vPL2(anV) andQPL2(TM,anV). Taking

into account~22!, define

A~X,Y!5Q~X,Y!1d V~X,Y!Z1@X,Y#, ;X,YPG~TM!.

Then

V~A~X,Y!!5d V~X,Y!1V~@X,Y# !5X~V~Y!!2Y~V~X!!,

andA(Z,W)PG(anV), ;WPG(anV), A(W1 ,W2)PG(anV), ;W1 ,W2PG(anV). As a conse-
quence, there exists an unique mapP:G(TM)3G(TM)→G(anV), such that

2 ^P~X,Y!,V&, ;X,YPG~TM!,;VPG~anV!,

satisfies formula~13! for previously fixedG, v andA. Define then

¹XY5X~V~Y!!Z1P~X,Y!, ;X,YPG~TM!.

A straightforward computation shows that the so-defined¹ is a Galilean connection, withDZ(¹)
equal to the initial (G,v,Q). h

According to this theorem, there exists a canonical way to construct a Galilean conn
from ZPZ(M ), and a gravitational and Coriolis field: the unique¹ such thatDZ(¹)5(G,v,0).
If, additionally, the space–time satisfiesdV50, we can consider only symmetric connections, t
is, as in the following.
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Corollary 28: Let(M ,V,^•,•&) be a Leibnizian space–time, and fix ZPZ(M ). The set of all
the Z-symmetric Galilean connections is mapped bijectively onto the set of all the possible
tational GPG(anV ) and CoriolisvPL2(anV) fields.

In particular, if dV50, then the set of all the symmetric Galilean connections is also map
bijectively ontoG(anV)3L2(anV).

Notice also that, whendV50, if nonsymmetric connections are considered, then Theorem
can be rewritten putting Tor instead ofPZ+Tor.

Remark 29:~1! It is well-known that the set of all the affine connections on a manifoldM has
a natural structure of affine space, the associated vector space being the one of all th
covariant, one-contravariant tensors fields. As commented at the beginning of this sectio
semi-Riemannian metricg is fixed, the set of all the connections parallelizingg has a natural
structure of vector space~the Levi-Civita connection would play the role of vector 0!, isomorphic
to the vector space of all the possible torsions, i.e., the spaceL2(TM,TM). Recall that
L2(TM,TM) is a vector fiber bundle, with fiber of dimensionm2(m21)/2. Theorem 27 shows
that, for fixed Z, the spaceD(V,^•,•&) admits a natural structure of vector space~the
Z-symmetric connection with null gravitational and Coriolis fields would play the role of ve
0!, isomorphic to the vector spaceG(anV)3L2(anV)3L2(TM,anV). Recall that this vector
space is also a vector fiber bundle, with fiber of equal dimensionn1n(n21)/21n2(n11)/2
5m2(m21)/2.

~2! Corollary 28 can be seen as an improved version of Ref. 11, Theorem 7. In fact, this
asserts that the degrees of freedom for the symmetric Galilean connections can be put in
one correspondence with the setL2(TM) of all two-forms onM . Thus, we obtain not only the
further splitting of such two forms inG and v but also the more precise associated phys
interpretations, which are developed in the remainder of the article.

C. Formulas for the connection, geodesics and curvature

Next, we will give explicit formulas in coordinates for the different geometric eleme
~Christoffel symbols, geodesics, curvature! associated to a Galilean connection. By using Lem
25, these formulas can be given in terms of the Leibnizian estructure, and the fieldsG, v, Tor. For
simplicity, we will assume that the connection is symmetric and, thus,dV50, but it is not difficult
to give general expressions~see the computations following Remark 33!.

Thus, fix (M ,V,^•,•&,¹) with a symmetric¹, and a FO,ZPZ(M ). Let (t,x1, . . . ,xn) be a
chart adapted toZ as in Proposition 2, and letG k ~resp.v i j ) be the components of the gravita
tional fieldG ~resp. Coriolis fieldv! for Z. Let (hkl)n3n , be the smooth local functions obtaine
from the inverse of the matrix (hi j 5^] i ,] j&)n3n at each point. Indices will be raised as usual, th
v i

k(5v i
k)5( lv i l h

kl.
Theorem 30: The Christoffel symbols of¹ in any chart adapted to ZPZ(M ) are

Gmn
0 50, G00

k 5G k, G i0
k 5v i

k1
1

2 (
l 51

n

hkl
]hil

]t
,

;m,nP$0,1,. . . ,n%, ; i ,kP$1, . . . ,n%, the remainder being equal to the symbols for the hyp
surfaces t[constwith the induced metric, i.e.,

G i j
k 5

1

2 (
l 51

n

hklS ]hil

]xj 1
]hjl

]xi 2
]hi j

]xl D , ; i , j ,kP$1, . . . ,n%.

As a consequence, for any freely falling observerg:I→M (Definition 17), the following equations
of the motion hold, puttingg i5xi+g:
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d2gk

dt2
1

1

2 (
i , j ,l 51

n

~hkl+g!S ]hil

]xj 1
]hjl

]xi 2
]hi j

]xl D +g •

dg i

dt

dg j

dt

52G k+g2 (
i ,l 51

n

~hkl+g! S ]hil

]t
+g D dg i

dt
22(

i 51

n

~v i
k+g!

dg i

dt
, ~23!

for all kP$1, . . . ,n%.
Proof: From Remark 26, one hasGmn

0 50. For the remainder, just apply formula~13! with
PZ(] i)5] i and A(]m ,]n)50, @recall thatA(X,Y)5@X,Y#, ;X,YPG(TM), because of the
symmetry of¹#. h

Notice that, ifhi j is independent oft ~i.e., Z is a FLO, Proposition 6!, the left-hand side of
~23! yields the acceleration of the curve obtained as the projection ofg in a hypersurfacet
[const~acceleration computed with the metric^•,•& on this hypersurface!. Denote this left-hand
side asDh(gk)8/dt. On the other hand, recall thatZ is an affine vector field if and only if

] tGmn
r 50,

for all m, n, r. Thus, the following characterization of a previously defined field of observe
straightforward~see also Propositions 6 and 22!.

Corollary 31: Let (M ,V,^•,•&,¹) be a Galilean space–time with symmetric¹, and Z
PZ(M ). Then, in the domain of any chart adapted to Z,

(1) Z is a FLO if and only if] thi j 50.
In this case, G i0

k 5v i
k and, for freely falling observers,

Dh~gk!8

dt
52G k+g22(

i

n

~v i
k+g!

dg i

dt
. ~24!

(2) Z is a FGO if and only if] thi j 5] tv i j 5] tG k50.
In this case, (24) holds withG k5G k(x1, . . . ,xn),v i

k5v i
k(x1, . . . ,xn).

(3) Z is a FIO if and only if] thi j 50,v i j 50.
In this case, G i0

k 50 and, for freely falling observers,

Dh~gk!8

dt
52G k+g. ~25!

(4) Z is a proper FIO if and only if] thi j 5] tG k50,v i j 50.
In this case, (25) holds withG k5G k(x1, . . . ,xn).

From the Christoffel symbols one can readily compute the curvature tensorR ~we will follow the
convention of signR(X,Y)5@¹X ,¹Y#2¹[X,Y] ). As

V~R~X,Y!Q!50, ;X,Y,QPG~M !, ~26!

the operatorR is spacelike-valued; moreover,

^V,R~X,Y!W&52^R~X,Y!V,W&, ;X,YPG~TM!,;V,WPanV ~27!

@notice that~26! and ~27! are also valid if¹ is not symmetric#. Recall that, in a Galilean space
time, neither the four-covariant curvature tensor nor the scalar curvature make sense, but th
tensor, Ric, does make sense. For each Riemanian hypersurfacet[const, the symbol¹h will
denote the Levi-Civita connection~as well as the gradient!, and the corresponding curvature an
Ricci tensors~defined on spacelike vectors! will be Rh, Rich, resp. IfRh[0, we will say that the
space (anV,^•,•&) is flat. In this case, ifZ is a FLO, we can assume that the spacelike coordin
are parallel, i.e.,G i j

k [0 ~see Proposition 35 for a general result!.
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Corollary 32: Given a Galilean space–time (M ,V,^•,•&,¹) with symmetric¹, for any chart
adapted to ZPZ(M ) we have the following.

(1) R(] i ,] j )]k5Rh(] i ,] j )]k and Ric(] i ,] j )5Rich(] i ,] j ).
(2) If Z is a FLO, R(] i ,] t)] t5¹] i

h G2(k(] tv i
k1( lv i

lv l
k)]k . [In particular, if Z is a FIO,

R(] i ,] t)] t5¹] i

h G.]

Moreover, Ric(] t ,] t)5divhG1ivi2, wheredivh denotes the divergence with respect to^•,•&
in the corresponding hypersurface t[const,and ivi252( i , jv j

i v i
j . [In particular, if Z is a FIO,

Ric(] t ,] t)5divhG.]
(3) If Z is a FLO, R(] t ,] i)] j5(k(2] iv j

k1( l(G i j
l v l

k2G i l
k v j

l ))]k .
In particular, (a) if Z is a FIO, then R(] t ,] i)] j50, and (b) if the space is flat, and paralle

spacelike coordinates are taken, R(] t ,] i)] j52(k] iv j
k]k .

(4) If Z is a FLO, R(] i ,] j )] t5(k(] iv j
k2] jv i

k1( l(G i l
k v j

l 2G j l
k v i

l))]k .
In particular, (a) if Z is a FIO, then R(] i ,] j )] t50, and (b) if the space is flat, and paralle

spacelike coordinates are taken, R(] i ,] j )] t5(k(] iv j
k2] jv i

k)]k .
Remark 33:Item ~1! makes it natural to define thesectional curvatureof a tangent plane

included in an absolute spacepp,anVp as the curvature ofpp for the hypersurfaceT[T(p)
endowed with the Riemannian metric^•,•&, i.e.,K(pp)5^Rh(v,w)w,v&, wherev,w is any ortho-
normal base ofpp . If pp,TpM does not lie in the absolute space anVp , we can define:

K~pp!5^R~v,Zp!Zp ,v&,

wherev is any unit vector ofpp ù anVp and ZpPpp satisfiesV(Zp)51. Thus, from a purely
geometrical viewpoint, a rich ‘‘sub-Riemannian’’ geometry is introduced in this way, with inte
on its own~compare with Ref. 20!.

Alternatively, it is not difficult to study the curvature tensor by means of moving framesà la
Cartan. For the sake of completeness, we sketch the structural equations. Locally, fix a fi
observersZ and an orthonormal base of vector fieldsE1 , . . . ,En of anV, and consider the dua
base (V,w1, . . . ,wn) of (E05Z,E1 , . . . ,En), plus the one-formsw r

i :

w r
i ~X!5w i~¹XEr!, ; i P$1, . . . ,n%, ;rP$0,1,. . . ,n%, ;XPG~TM!.

Then, a straightforward computation shows the following three properties, valid even if¹ is not
symmetric:

~1! The curvature tensor

R~X,Y!Er5 (
k51

n

Yk
r~X,Y!Ek

is univocally determined by thesecond structural equation:

Yk
r5d wk

r1(
l 51

k

wk
l∧w l

r , ;kP$1, . . . ,n%, ;rP$0,1,. . . ,n%.

~2! For the gravitational and Coriolis fieldsG, v of the FO,Z, the one-formsw i
0 satisfy

2PZ* v5PZ* G [∧V1 (
k51

n

wk
0∧wk,

whereG [(V)5^G,V&, for all VPanV.
~3! Y j

i52Y i
j andw j

i52w i
j , for all i , j P$1, . . . ,n%.

Therefore, if ¹ is Z-symmetric, theconnection one-formsw i
r , are the unique one-form

satisfying thefirst structural equation:
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2PZ* v5PZ* G [∧V1 (
k51

n

wk
0∧wk,

d w i52w i
0∧V2 (

k51

n

w i
k∧wk,

plus the skew-symmetry relationsw j
i52w i

j .

IV. NEWTONIAN STRUCTURES

A. Newtonian space–times

As a difference with most previous references, our definition of Newtonian space–tim
independent of hypotheses at infinity, i.e., it would be locally testable.

Definition 34: A Galilean space–time (M ,V,^•,•&,¹) with symmetric¹ is Newtonianif its
space is flat and it admits a FIO.

In this case, the Newtonian space–time will beproperif some of its FIOs are proper.
Now, it is natural to wonder:~a! which hypotheses imply the existence of a FIO? and~b!

under these hypotheses, how many FIO’s exist? In order to answer~a!, we will assume for
simplicity some global hypotheses, as the existence of a function absolute timeT.

Proposition 35: Let(M ,dT,^•,•&,¹) be a Galilean space–time with ¹ symmetric and geo-
desically complete. Assume that each hypersurface T[constis flat and simply connected. Then w
have the following.

(1) There exist a FLO, Z, and the Leibnizian structure(M ,dT,^•,•&) isomorphic to the
standard one(Rn11,dt,^•,•&0) @with ^•,•&05( i 51

n (dxi)2 and (t,x1, . . . ,xn) the usual coordi-
nates ofRn11], being identifiable under the isomorphism T[t,Z[] t .

(2) For fixed FLO Z with vorticityv, there exists a FIO (and, then, the space–time is
Newtonian) if and only if there exists a spacelike vector field APG(anV) such that2v5rotA.

Equally, under the identification with(Rn11,dt,^•,•&0), there exists a FIO if and only if there
exist n functions ai :Rn11→R such that2v j i ([2v j

i )5] ja
i2] ia

j .
(3) If there exists a FLO, Z, with vorticity v depending only on T(] iv jk[0), then there

exists a FIO.
Proof: Recall first thatV(b8) is a constantcb for any geodesicb. Takingb with cbÞ0, the

range ofT must be allR. By using geodesics withcb50, each hypersurfaceT[const must be
isommetric toRn.

~1! The flow fs of Z can be defined directly as follows. Fix any geodesicg(s) parametrized
by T, i.e., T+g(s)5s,;sPR. For eachpPM , take the unique spacelike geodesica:@0,1#
→T21(T(p)) connectingg(T(p)) with p. Let vs ,sPR, be the vector field alongg obtained by
parallel transport ofa8(0) alongg, from g(T(p)) to g(T(p)1s). If as* is the geodesic with
initial velocity vs , define fs(p)5as* (1). It is straightforward to check that the infinitesim
generatorZ of fs is a FLO and, fixing an orthonormal base of the absolute space atg~0!, the
isomorphism with the standard Leibnizian structure is straightforward.

~2! Fix the FLOZ. Put Z̄5Z2A, where, using the isomorphism of item~1!, A5(ka
k]k for

some functionsak on Rn11. Easily, rotZ̄(] i ,] j )52v i j 2] ia
j1] ja

i , and the result follows.
~3! Use item~2! with aj52(kv jkxk. h

Remark 36:~1! For all Newtonian space–times the Leibnizian structure must be loc
isomorphic to the standard one onRm. For the sake of simplicity, we will assume from now o
that this standard Leibnizian structure underlies globally on any Newtonian space–time.

~2! From item (2) it is clear that if, for some indexesi , j ,k, one has] iv jk1]kv i j 1] jvki

Þ0, ~v is not ‘‘spatially closed’’!, then there are no FIOs. Notice that, whenZ is a FLO but not
a FIO, ~i! if the space–time is Newtonian~i.e., there exists a FIO!, thenv represents ‘‘inertial
~Coriolis! forces,’’ ~ii ! otherwise,v represents ‘‘true’’ gravitational forces~which cannot be
‘‘gauged away’’!.
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~3! An alternative formulation of Definition 34 is to impose the ‘‘gyroscope principl
R(X,Y)V50 wheneverV is spacelike@see, for example, Ref. 13, Box 12.4, Axiom~3!; and Ref.
14, Def. 1.1, Axiom 5#. In this case, Corollary 32~1! implies that the space is flat and Corolla
32~4! plus Proposition 35~3! implies the existence of a FIO.

Next, we will focus on the question~b! at the beginning of this section. Recall first th
following straighforward result.

Lemma 37: Let(Rn11,dt,^•,•&0 ,¹) be a Newtonian space–time and fix a FIO, ZPZ(M ).
Consider a generic FO, Z̄5Z1( ia

i] i for some functions ai on Rn11.
(1) The relation between the gravitational fieldsG,Ḡ of Z, Z̄ is

Ḡ5G1(
i 51

n

] ta
i] i1 (

i , j 51

n

~ai] ia
j !] j . ~28!

(2) Z̄ is a FIO if and only if the ai ’s are independent of x, ai[ai(t), and, thus,

Ḡ5G1~ai !8~ t !] i . ~29!

(3) If Z and Z̄are proper FIOs then (28) and (29) hold with constant derivatives(ai)8, for all
i .

Therefore, ifZ is a FIO, thenZ̄5Z1( ia
i(t)] i is a FIO for anyai(t), and the FIOs have

infinite dimension. IfZ is proper,Z̄ will be proper if and only ifai(t)5a1
i
•t1a0

i for some
constantsa1

i ,a0
i . And if Z andZ̄ are FIOs~proper or not! with the same gravitational field, the

ai(t)[a0
i for all i . Summing up, we have the following.

Theorem 38: Let (Rn11,dt,^•,•&0 ,¹) be a Newtonian space–time.

(1) The set of all the FIOs is an affine space of infinite dimension.
(2) If the Newtonian space–time is proper, proper FIOs are a2n-dimensional subspace.
(3) For fixed FIO, Z, with gravitational fieldG, the set FIO(G)5$Z̄PZ(M )uZ̄ is a FIO and

G5G% is an n-dimensional subspace.

Remark 39: ~1! When Z is a proper FIO, one can also put FIO(G)5$Z̄
PZ(M )uZ̄ is a FIO and@Z,Z̄#50%. In this case, FIO~G! is the set of all the FOswhose observers
move with constant velocity respect to Z. Of course, there are onlyn independent directions fo
such velocities. Any other proper FIOZ̄ measures a gravitational fieldḠ5G1G0 , whereG0 is
parallel ~‘‘a uniform gravitational field cannot be distinguished from a uniform acceleration’’!.

~2! Any possible gravitational fieldG for ¹ fixes then-dimensional set of fields of observe
FIO~G!. One of such gravitational fieldsG0 maybe privileged by some physical or mathemati
reason. For example,G0 may be the unique gravitational field vanishing at infinity~this is a natural
condition for Poisson’s equation! or the unique one vanishing along a concrete observerg0 . ~This
observer can be called ‘‘the center of the Universe’’ following ideas of Newton himself—
center of the Universe is not accelerated by gravitation.’’! In this case, FIO(G0) is a distinguished
n-dimensional set of fields of inertial observers.

~3! It is commonly accepted that ‘‘inertial reference frames’’@see~4! below# can be defined
only if there exist a privilegedG0 which vanishes at infinity~see, for example, Ref. 21!. Under our
viewpoint, it is preferable to maintain our definition of FIOs and, when necessary, to speak
proper FIOs or FIO(G0) ~as in the next section!. Recall that, under our definition, the questio
whether a field of observers is inertial or not ispurely localand can be determined, in principle
from Corollaries 31 and 32. In any case, those who prefer more classical names can c
inertial observers ‘‘Newtonian observers’’ and reserve the name ‘‘inertial’’ for our FIO(G0) when
G0 vanishes at infinity.

~4! From our definition of FIO, we can give a natural definition ofinertial reference frame
~IRF!, as a particular case of Galilean reference frame~see Sec. III A 1!, i.e., as the choice of a
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privileged gauge. Consider a Newtonian space–time, and fix anypPM . Each orthonormal base
(e1 , . . . ,en) of the absolute space (anVp ,^•,•&p) can be parallelly propagated to obtain a orth
normal base of vector fields (E1 , . . . ,En). A IRF is a base of vector fields~moving frame!
(Z,E1 , . . . ,En) where Z is a FIO andE1 , . . . ,EnPG(anV) is a parallel orthonormal base o
vector fields. The gravitational field of the IRF is, by definition, the one ofZ ~the IRF will be
proper if Z is a proper FIO!. @Notice that this gravitational field is a gauge field; thus, FIO~G!
characterizes all the IRFs with the same gauge fieldG.# For fixedG0 , all the IRF’s with gravita-
tional field equal toG0 are determined by the value of (Z,E1 , . . . ,En) at p. Thus, the Galilean
group Gm(R) acts freely and transitively on the set of all the IRF’s with gravitational fieldG0

~classical homogeneous Galilean transformations!.

B. Poisson’s equation

Up to now, Newtonian space–times have been described in a purely geometric way.
that the knowledge of a FIOZ and its correspondingG allows one to reconstruct¹ @as a very
particular case of formula~13!#. Poisson’s equation relates geometry to the ‘‘source’’ of
gravitational field, by connectingG to the density of mass. Units with gravitational Newton
constantG51 will be assumed. Recall first the following result@straightforward from~29! and
Corollary 32#:

Lemmma 40: For any Newtonian space–time, we have the following.
(1) The spatial divergence of the gravitational fielddivhG is equal for all the FIOs.
Moreover, Ric(Zp ,Zp)5divhG(p) for all Zp with dt(Zp)51 and, thus, Ric54prdt^ dt

wherer is thedensity of massdefined as

r~ t,x!5divhG~ t,x!/4p.

(2) If, for some FIO Z, the gravitational fieldG is a spatial gradient, i.e., G5¹hF for some

functionF, then the gravitational fieldḠ of any other FIO Z̄5Z1( ia
i(t)] i is the spatial gradient

Ḡ5¹hF̄ with

F̄~ t,x!5F~ t,x!1(
i 51

n

~ai !8~ t !xi1b0~ t !

and b0(t) arbitrary.
Thus, classical Newton’s gravitational law and Poisson’s equation suggest the followin
Definition 41: A Newtonian (resp. proper Newtonian) space–time (Rn11,dt,^•,•&0 ,¹) is

Poissonian(resp.proper Poissonian) if the following two conditions hold:
(i) The density of mass is non-negative, r>0.
(ii) The gravitational field G of a FIO is a spatial gradientG5¹hF, for some F

PC2(Rn11).
Remark 42:An alternative assumption to(ii) is to impose the conservative character

gravitational forces by means of an assumption on the curvature, say, for someZPZ(M ),
^R(V,Z)Z,W&5^R(W,Z)Z,V& wheneverV,W are spacelike@use Corollary 32; compare with
Ref. 14@Def. 1, Axiom 4#, and Ref. 13, Box 12.4, Axiom~7!#. From Lemma 40, assumption (i )
can also be formulated as Ric(v,v)>0 for all v. Recall that, in any case, our axioms avoid a
type of redundancy~as, for example, those in Ref. 13, Box 12.4!.

In any Poissonian space–time, denoting byDh the spacelike Laplacian, intrinsicPoisson’s
equation

DhF54pr ~30!

holds. Taking coordinates adapted to some FIOZ ~and spacelike parallel!, it is well-known that if
F(t,x) is a solution of~30!, thenF* (t,x)5F(t,x)1( ib

i(t)xi1b0(t) is a new solution. Thus
Poisson’s equation does not determine univocally the value ofG for Z5] t , but the value of all the
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possibleG’s for all the FIOs@this happens even in the proper case, wherer is necessarily inde-
pendent oft, and the solutions of~30! can be chosen independent oft]. But this is not surprising,
because, in principle,~30! should not privilege any particular inertial gauge.

In order to avoid this difficulty, one assumes usually that~30! can be written in coordinate
such thatZ5] t is not an arbitrary FIO but one in a priviledged set FIO(G0). The classical
assumption forG0 is to assume that it vanishes at spatial infinity@thus, if such aG0 exists, then
~29! implies that it is unique#, and this can be always assumed ifr has spatial compact suppor

Nevertheless, whenr(t,•) does not have compact support for somet, perhaps noG0 vanishes
at spatial infinity. The simplest case happens for a nonempty spatially homogeneous Univer
whenr(t,x)[r0(t) with r0(t)Ó0 @even though perhapsr0(t)[const]. Then, a typical solution
of ~30! whenn53 is, in spatial spherical coordinates,F(t,x)52pr0(t)r 2/3. The corresponding
gravitational fieldG0 is null at r 50, i.e., along the observerg0(t)5(t,0) ~the ‘‘center of the
Universe’’!. Thus, if one chooses such ag0 , then a tridimensional set of fields of inertial observe
FIO(G0) is privileged, andG0 can be reconstructed fromr.
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Reciprocal transformations of Hamiltonian operators
of hydrodynamic type: Nonlocal Hamiltonian formalism
for linearly degenerate systems
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Reciprocal transformations of Hamiltonian operators of hydrodynamic type are
investigated. The transformed operators are generally nonlocal, possessing a num-
ber of remarkable algebraic and differential-geometric properties. We apply our
results to linearly degenerate semi-Hamiltonian systems in Riemann invariants, a
typical example beingRt

i5((m51
n Rm2Ri)Rx

i , i 51,2,. . . ,n. Since all such sys-
tems are linearizable by appropriate~generalized! reciprocal transformations, our
formulas provide an infinity of mutually compatible nonlocal Hamiltonian struc-
tures, explicitly parametrized byn arbitrary functions of one variable. ©2003
American Institute of Physics.@DOI: 10.1063/1.1542921#

I. INTRODUCTION

Equations of hydrodynamic type,

ut
i5v j

i ~u!ux
j , i , j 51,... ,n,

naturally arise in applications such as gas dynamics, hydrodynamics, chemical kinetic
Whitham averaging procedure, differential geometry and topological field theory~see, e.g., Refs
9, 10, 27, 28, 8, 21, and 22!. In this article we study Hamiltonian systems,

ut
i5v j

i ~u!ux
j 5Ji j

]h

]uj , i 51,2,... ,n, ~1!

where

Ji j 5gi j ~u!
d

dx
2gis~u!Gsk

j ~u!ux
k ~2!

is the Hamiltonian operator andh(u) is the density. As pointed out by Dubrovin and Novikov9

expression~2! defines a Hamiltonian operator if and only if the metricgi j (gi j 5gji , detgijÞ0) is
flat andGsk

j are the Christoffel symbols of the corresponding Levi-Civita connection. Notice
Eqs.~1! and ~2! imply that v j

i is the matrix of second covariant derivatives of the densityh,

v j
i 5¹ i¹jh,

where¹ i[gi j ¹j . The theory of integrability of Hamiltonian systems of hydrodynamic type w
proposed by Tsarev.27,28 He demonstrated that if a Hamiltonian system~1! is diagonalizable, that
is, can be written in the diagonal form

Rt
i5v i~R!Rx

i

a!Electronic mail: e.v.ferapontov@lboro.ac.uk
11500022-2488/2003/44(3)/1150/23/$20.00 © 2003 American Institute of Physics
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~the corresponding coordinatesRi are called the Riemann invariants!, then it necessarily possess
an infinity of conservation laws and commuting flows and, moreover, is integrable by the so-
‘‘generalized hodograph transform.’’ In Riemann invariantsRi , the flat metricgi j also becomes
diagonal,gi j 5gii d i j , thus establishing a correspondence between Hamiltonian diagonalizabl
tems ~1! and n-orthogonal curvilinear coordinates in flat spaces. This shows that the theo
Hamiltonian systems of hydrodynamic type is deeply rooted in classical differential geome

There exists an important class of nonlocal transformations which act on hydrodynamic
systems. Unlike the classical Ba¨cklund transformations~Miura-type transformations! familiar
from the soliton theory, these transformations change theindependentvariables of a system. The
are defined as follows. LetB(u)dx1A(u)dt andN(u)dx1M (u)dt be two conservation laws o
system~1!, understood as one-forms which are closed by virtue of~1!. In the new independen
variablesx̃ and t̃ defined by

dx̃5B~u!dx1A~u!dt, d t̃5N~u!dx1M ~u!dt, ~3!

Eqs.~1! take the form

u
t̃

i
5 ṽ j

i ~u!ux̃
j , ~4!

where the transformed matrixṽ is ṽ5(Bv2AE)(ME2Nv)21, E5 id. Transformations of the
type ~3! originate from gas dynamics and are known asreciprocal.26 The simplest example is
probably, the passage from Eulerian to Lagrangian coordinates in one-dimensional gas dyn
Reciprocal transformations are known to preserve the class of diagonalizable systems, whic
immediate corollary of the form of the transformed matrixṽ. Moreover, all conservation laws an
commuting flows of the initial system can easily be recalculated in the new independent var
Therefore, reciprocal transformations preserve the whole class of integrable systems of hy
namic type.

The only object which, under reciprocal transformations, behaves in a nontrivial way i
Hamiltonian structure. Generic reciprocal transformations destroy the local Hamiltonian fo
ism of the form~2!. To the best of our knowledge, the behavior of Hamiltonian structures un
reciprocal transformations~and their appropriate generalizations! has not been discussed in th
literature. Investigation of this problem is, thus, the main objective of our article.

In Secs. III and IV we study the behavior of Hamiltonian structures~2! under reciprocal
transformations~3!. The main conclusion is that local Hamiltonian structures generally bec
nonlocal, so that the transformed system~4! is still Hamiltonian,u

t̃

i
5 J̃i j ]h̃/]uj , however, with the

nonlocal Hamiltonian operator

J̃i j 5g̃i j
d

dx̃
2g̃isG̃sk

j ux̃
k1( «aw(a)k

i ux̃
kS d

dx̃D
21

w(a)s
j ux̃

s . ~5!

Here«a561; the explicit form of the transformed metricg̃i j and the nonlocal terms is stated
Secs. III and IV.

Remark:In the particular case of constantA, B, M , N, transformations~3! reduce to linear
changes of the independent variables,x̃5bx1at, t̃ 5nx1mt, (a, b, m, n are constants!. As
pointed out by Tsarev,28 transformations of this type preserve the locality of Hamiltonian str
tures of hydrodynamic type~see also Ref. 24!.

Nonlocal operators of the form~5! have been extensively investigated in Refs. 20, 11, 13,
1, 18, 5, and 2, and have a remarkable differential-geometric interpretation. The general th
briefly recalled in Sec. II. As an illustration of our approach, we discuss Hamiltonian formalis
linearly degenerate semi-Hamiltonian systems in Riemann invariants,

Rt
i5v i~R!Rx

i ,
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where the characteristic speedsv i(R) satisfy the identities

~1! ] iv
i50 for any i 51,2, . . .n, ] i5]/]Ri ~linear degeneracy!;

~2! ]k@] jv
i /(v j2v i)# 5] j@]kv

i /(vk2v i)# for any iÞ j Þk ~semi-Hamiltonian property!.

Linearly degenerate semi-Hamiltonian systems have interesting interrelations with sep
~Stäckel! systems in classical mechanics15,16,4,12,14and finite-gap solutions of integrable solito
equations. For instance, the linearly degenerate semi-Hamiltonian systemRt

i5((Rm2Ri)Rx
i gov-

erns the evolution of zeros of then-gap c-function in the KdV theory.6,7,12 For n52 we have
essentially one nontrivial linearly degenerate system,

ut5vux , v t5uvx , ~6!

arising in gas dynamics~Chaplygin gas!, field theory~Born–Infeld equation! and classical differ-
ential geometry~minimal surfaces in Minkowski three-space, improper affine spheres!. Theorem 1
of Sec. III provides infinitely many Hamiltonian representations of system~6!,

S u
v D

t

5JS ]h/]u
]h/]v D , ~7!

with nonlocal operators

J5~u2v !2S f ~u! 0

0 w~v !
D d

dx
1~u2v !

3S 1
2 ~u2v ! f 8~u!ux1 f ~u!~ux2vx! w~v !ux1 f ~u!vx

2w~v !ux2 f ~u!vx
1
2 ~u2v !w8~v !vx1w~v !~ux2vx!

D
1S w1ux ux

w2vx vx
D S d

dxD
21S ux vx

w1ux w2vx
D ,

wherew15 1
2@(u2v) f 8(u)2 f (u)2w(v)# and w25 1

2@(v2u)w8(v)2 f (u)2w(v)# are the char-
acteristic speeds of commuting flows of system~6!, and the corresponding Hamiltonian densiti

h5
1

4~v2u! S F Eu dn

Af ~n!
G 2

2F Ev dn

Aw~n!
G 2D ,

parametrized by two arbitrary functionsf (u) andw(v). In view of the linearity ofJ in f (u) and
w(v), all these Hamiltonian structures are mutually compatible. Notice that the local part o
operatorJ is of the form~2!, corresponding to the metric

~u2v !22S du2

f ~u!
1

dv2

w~v ! D ,

which is not flat for genericf (u) and w(v). Particular choices off (u) and w(v) lead to local
Hamiltonian structures which were first discovered in Refs. 23 and 3~see Example 1 in Sec. III!.

Another example of this type is the three-component linearly degenerate semi-Hamilt
system

ut5~v1w!ux , v t5~u2w!vx , wt5
1
2 ~u1v !wx , ~8!
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which is the Riemann invariant form of non-isentropic gas dynamics with the special equat
state P(r,s)5s21/r ~see Refs. 29 and 19!. Our approach provides infinitely many nonloc
Hamiltonian structures of the form

J5
4

r2 S f ~u! 0 0

0 w~v ! 0

0 0 c~w!
D d

dx

1
2

r S 1

r
f 8~u!ux12 f ~u!S 1

r D
x

2w~v !ux2 f ~u!vx 22c~w!ux2 f ~u!wx

w~v !ux1 f ~u!vx

1

r
w8~v !vx12w~v !S 1

r D
x

22c~w!vx1w~v !wx

2c~w!ux1 f ~u!wx 2c~w!vx2w~v !wx

1

r
c8~w!vx12c~w!S 1

r D
x

D
1S w1ux ux

w2vx vx

w3wx wx

D S d

dxD
21S ux vx wx

w1ux w2vx w3wx
D , r5S w1

v2u

2 D 21

.

Here the local part is of the form~2!, generated by the diagonal metric

~2w1v2u!22S du2

f ~u!
1

dv2

w~v !
1

dw2

c~w! D , ~9!

which is not flat in general, andw1, w2, w3 are the characteristic speeds of commuting flows
system~8!:

w152 1
2 ~2w1v2u! f 8~u!2 1

2 @ f ~u!1w~v !14c~w!#,

w25 1
2 ~2w1v2u!w8~v !2 1

2 @ f ~u!1w~v !14c~w!#,

w35~2w1v2u!c8~w!2 1
2 @ f ~u!1w~v !14c~w!#.

These Hamiltonian operators depend linearly on three arbitrary functionsf (u), w(v) andc(w),
and are mutually compatible~Example 2 in Sec. III!.

Similar arguments applied to the three-component linearly degenerate semi-Hamil
system

ut5~v1w!ux , v t5~u1w!vx , wt5~u1v !wx ~10!

provide infinitely many nonlocal Hamiltonian structures

J5S g11 0 0

0 g22 0

0 0 g33
D d

dx

1S g11F f 8~u!

2 f ~u!
ux1

ux2vx

u2v
1

ux2wx

u2w G g22ux1g11vx

u2v
g33ux1g11wx

u2w

2
g22ux1g11vx

u2v
g22F w8~v !

2w~v !
vx1

ux2vx

u2v
1

vx2wx

v2w G g33vx1g22wx

v2w

2
g33ux1g11wx

u2w
2

g33vx1g22wx

v2w
g33F c8~w!

2c~w!
wx1

wx2vx

w2v
1

ux2wx

u2w G D
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l3wx m3wx h3wx wx

dx S m ux m vx m wx

l1ux l2vx l3wx

D
Here the metric components are

g115~u2v !2~u2w!2f ~u!, g225~v2u!2~v2w!2w~v !, g335~w2u!2~w2v !2c~w!,

the coefficientsh15v1w, h25u1w andh35v1w are the characteristic speeds of system~10!,
andmk, lk are the characteristic speeds of its commuting flows:

m152
1

2
~u2v !~u2w! f 8~u!1u f~u!1vw~v !1wc~w!2Eu

f ~n!dn2Ev
w~n!dn

2Ew

c~n!dn2
1

2
~v1w!~ f ~u!1w~v !1c~w!!,

l15~u2v !~u2w!@2 f ~u!1u f8~u!#22@u2f ~u!1v2w~v !1w2c~w!#

1~v1w!Fu f~u!1vw~v !1wc~w!1Eu

f ~n!dn1Ev
w~n!dn1Ew

c~n!dn G .
(m2, m3 and l2, l3 can be obtained by a cyclic permutation ofu, v, w and f , w, c.! These
operators depend linearly on three arbitrary functionsf (u), w(v) and c(w) and are mutually
compatible. The details can be found in Example 3 in Sec. IV.

Generalized reciprocal transformations and their action on the local Poisson brack
Dubrovin–Novikov type are discussed in Sec. V.

II. NONLOCAL HAMILTONIAN OPERATORS OF HYDRODYNAMIC TYPE. NONLOCAL
HAMILTONIAN FORMALISM FOR SEMI-HAMILTONIAN SYSTEMS

In this section we recall the necessary information about nonlocal Hamiltonian operat
hydrodynamic type

Ji j 5gi j
d

dx
2gisGsk

j ux
k1(

a
«aw(a)k

i ux
kS d

dxD
21

w(a)n
i ux

n , «a561, ~11!

which are defined by a metricgi j (gi j 5gji , detgijÞ0), the corresponding Levi-Civita connectio
Gsk

j and a set of affinorsw(a) forming the nonlocal ‘‘tail.’’
Theorem 1:11 The operator Ji j is Hamiltonian if and only if the affinors w(a) satisfy the

equations

gikw(a) j
k 5gjkw(a) i

k , ~12!

¹kw(a) j
i 5¹jw(a)k

i , ~13!

and the curvature tensor of the metric gi j has the expansion

Rkl
i j 5(

a
«a~w(a)k

i w(a) l
j 2w(a) l

i w(a)k
j !. ~14!

Moreover, the set of affinors w(a) must be commutative,

@w(a) , w(b)#50. ~15!
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As pointed out in Ref. 11, Eqs.~12!–~15! constitute the Gauss–Codazzi–Ricci equations
submanifolds of pseudo-Euclidean spaces with flat normal bundle. There are three parti
interesting special cases of the general formula~11!.

Hamiltonian operators associated withconstant curvaturemetrics, first introduced in Ref.
20 ~see also Ref. 25!, are of the form

Ji j 5gi j
d

dx
2gisGsk

j ux
k1cux

i S d

dxD
21

ux
j . ~16!

Heregi j is a metric of constant curvaturec, so that the Gauss equation~14! takes the form

Rkl
i j 5c~dk

i d l
j2d l

idk
j !.

Hamiltonian operators associated withconformally flat metrics are of the form13

Ji j 5gi j
d

dx
2gisGsk

j ux
k1wk

i ux
kS d

dxD
21

ux
j 1ux

i S d

dxD
21

wk
j ux

k . ~17!

The corresponding equations~12!–~14! reduce to

gikwj
k5gjkwi

k ,

¹kwj
i 5¹jwk

i ,

while the curvature tensor of the metricgi j has the expansion

Rkl
i j 5wk

i d l
j1wl

jdk
i 2wk

j d l
i2wl

idk
j ,

implying that the metricgi j is conformally flat.
Hamiltonian operators associated withhypersurfaces of the Euclidean spaceare11

Ji j 5gi j
d

dx
2gisGsk

j ux
k1wk

i ux
kS d

dxD
21

wn
j ux

n . ~18!

The corresponding equations~12!–~14!,

gikwj
k5gjkwi

k ,

¹kwj
i 5¹jwk

i ,

Rkl
i j 5wk

i wl
j2wl

iwk
j ,

are the Gauss–Codazzi equations governing the first fundamental formgi j and the shape operato
wj

i of a hypersurface in the Euclidean space.
Nonlocal Hamiltonian operators of the form~11! and their particular instances~16!–~18!

appear in a variety of applications including the Whitham theory@where operators of the form~11!
arise as a result of the Whitham averaging of nonlocal higher order Poisson brackets of inte
PDEs1,2#, recursion scheme, Dirac reduction, etc.11 Canonical coordinates for these operators w
introduced in a recent paper by Maltsev and Novikov.18 The corresponding nonlocal symplect
structures were investigated in Ref. 17.

Notice that Eqs.~11!–~14! simplify if the metric g and affinorsw(a) are diagonal,gi j

5gii d i j , w(a) j
i 5w(a)

i d j
i . In this case the operator~11! takes the form

Ji j 5gii d i j
d

dx
2gii G ik

j ux
k1(

a
« (a)w(a)

i ux
i S d

dxD
21

w(a)
j ux

j , ~19!
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while Eqs.~12!–~14! reduce to

] j ln Agii 5
] jw(a)

i

w(a)
j 2w(a)

i , ~20!

Ri j
i j 5(

a
« (a)w(a)

i w(a)
j ~21!

for any iÞ j . Nonlocal Hamiltonian operators of the form~19! naturally arise as Hamiltonian
structures of semi-Hamiltonian systems in Riemann invariants.11,5 Let us recall the main construc
tion. Following Tsarev,28 a system in Riemann invariants

Rt
i5v i~R!Rx

i , i 51,2,... ,n, ~22!

is called semi-Hamiltonian if the characteristic speedsv i(R) satisfy the identities

]k

] jv
i

v j2v i 5] j

]kv
i

vk2v i

for any triple iÞ j Þk. Let us introduce the diagonal metricgii dRi 2 by the formulas

] j ln Agii 5
] jv

i

v j2v i ~23!

for any iÞ j . Notice thatgii is defined up to a multiplegii →gii / f i(Ri), where f i(Ri) is an
arbitrary function ofRi .

Although the metricgii may happen to be flat for particular choices off i(Ri) ~in this case our
system is Hamiltonian with the local Hamiltonian operator of Dubrovin–Novikov type co
sponding to the metricgii ), it is not flat in general. Suppose one can find the expansion of
curvature tensor of this metric in the form~21!, wherew(a)

i are characteristic speeds of commuti
flows of system~22!:

Rta
i

5w(a)
i ~R!Rx

i . ~24!

Notice that the flows~22! and ~24! commute if and only if

] jv
i

v j2v i 5
] jw(a)

i

w(a)
j 2w(a)

i ~25!

for any iÞ j . In this case the system~22! will be Hamiltonian with the nonlocal Hamiltonian
operator~19! @indeed, both conditions~20! and~21! are satisfied#. The main problem is thus to find
the expansion~21! for a metric satisfying~23!. We point out that the sum in~21! is infinite in
general.

Remarkably, there exist semi-Hamiltonian systems for which one can explicitly constru
expansion~21! for an arbitrary metricgii satisfying~23!. Moreover, for any choice off i(Ri) the
summation in~21! is finite, so that the corresponding systems possess infinitely many Hamilto
structures explicitly parametrized byn arbitrary functions of one variable. Among the most inte
esting examples of this type are systems of Temple’s class and linearly degenerate
Hamiltonian systems. The construction of nonlocal Hamiltonian formalism for linearly degen
semi-Hamiltonian systems is based on the formulas for reciprocal transformations of local H
tonian operators which we derive in Secs. III–V.
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III. RECIPROCAL TRANSFORMATIONS WHICH CHANGE ONLY THE SPACE
VARIABLE x

Consider a Hamiltonian system~1!,

ut
i5v j

i ~u!ux
j 5~¹ i¹jh!ux

j 5Ji j
]h

]uj ,

with the local Hamiltonian operator~2!,

Ji j 5gi j
d

dx
2gisGsk

j ux
k .

In this section we discuss special reciprocal transformations of the form~3! which change the
space variablex only,

dx̃5B~u!dx1A~u!dt, t̃ 5t. ~26!

Notice that an arbitrary reciprocal transformation~3! can be represented as a composition

R1+T+R2

where R1 and R2 are reciprocal transformations of the form~26! and T is the transformation
interchanging the independent variables:x̃5t, t̃ 5x. After the transformation~26!, system~1!
takes the form

ut
i5 ṽ j

i ~u!ux̃
j 5~¹ i¹jh•B2d j

i A!ux̃
j , ~27!

while the Hamiltonian operatorJi j undergoes a nontrivial transformation and becomes nonlo
To write down the transformed operatorJ̃i j , we introduce the Hamiltonian system

ut
i 5wj

i ~u!ux
j 5Ji j

]B

]uj 5~¹ i¹jB!ux
j ~28!

generated by the Hamiltonian operatorJi j and the densityB. Clearly, systems~1! and ~28!
commute. Since the flux of the conserved densityB corresponding to the flow~28! is given by the
formula 1

2(¹B)2 @here¹B5Bidui is the gradient ofB and (¹B)25gi j BiBj ], we can incorporate
the timet into the reciprocal transformation~26! as follows:

dx̃5Bdx1Adt1 1
2 ~¹B!2dt.

Therefore, the transformed system~28! takes the form

ut
i 5w̃j

i ~u!ux̃
j 5~¹ i¹jB•B2 1

2 d j
i ~¹B!2!ux̃

j . ~29!

The transformed systems~27! and ~29! commute. Now we can formulate the main result of th
section.

Theorem 2:The transformed system (27) is Hamiltonian,

ut
i5 J̃i j

]h̃

]uj ,

with the nonlocal operator
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J̃i j 5g̃i j
d

dx̃
2g̃isG̃sk

j ux̃
k1w̃k

i ux̃
kS d

dx̃D
21

ux̃
j 1ux̃

i S d

dx̃D
21

w̃k
j ux̃

k ~30!

and the Hamiltonian density h˜ (u)5h(u)/B(u). Here the transformed metric is g˜ i j 5B2gi j , G̃ is
the Levi-Civita connection of g˜ , and w̃j

i is given by (29). Notice that the transformed metric
conformally flat with the curvature tensor

R̃kl
i j 5w̃k

i d l
j1w̃l

jdk
i 2w̃k

j d l
i2w̃l

idk
j .

The proof follows directly from results of Ref. 13 where nonlocal Hamiltonian operator
the form~30! associated with conformally flat metrics were investigated. As an illustration o
procedure outlined in Theorem 1, we explicitly construct nonlocal Hamiltonian formalism fo
two-component linearly degenerate system~6!.

Example 1:The linear system

ut5ux , v t52vx ~31!

possesses infinitely many Hamiltonian representations

S u
v D

t

5JS ]h/]u
]h/]v D ~32!

with local Hamiltonian operatorsJ of the type~2!,

J54S f ~u! 0

0 w~v !
D d

dx
12S f 8~u!ux 0

0 w8~v !vx
D , ~33!

corresponding to flat metrics

ds25
du2

4 f ~u!
1

dv2

4w~v !
~34!

@here f (u) andw(v) are arbitrary functions#. The corresponding Hamiltonian densities are

h~u,v !5
1

8 F Eu dn

Af ~n!
G 2

2
1

8 F Ev dn

Aw~n!
G 2

. ~35!

Consider the reciprocal transformation

dx̃5Bdx1Adt5 1
2 ~v2u!dx2 1

2 ~v1u!dt, t̃ 5t, ~36!

mapping the linear system~31! to the linearly degenerate system

ut5vux̃ , v t5uv x̃ . ~37!

To write down the transformed Hamiltonian operators~33!, we first introduce the transforme
metric

ds̃25
ds2

B2 5~u2v !22S du2

f ~u!
1

dv2

w~v ! D , ~38!

which is no longer flat for genericf (u) andw(v). Following the procedure outlined in Theore
1, we calculate the Hamiltonian flow generated by the Hamiltonian operator~33! and the Hamil-
tonian densityB5 1

2(v2u). A simple computation gives the system
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ut52 f 8~u!ux , vt5w8~v !vx , ~39!

which clearly commutes with~31!. To incorporate the timet into the reciprocal transformation
~36!, we calculate the flux of the densityB corresponding to the flow~39!,

1
2 ~¹B!25 1

2 @ f ~u!1w~v !#.

Thus, reciprocal transformation~36! takes the form

dx̃5Bdx1Adt1 1
2 ~¹B!2dt5 1

2 ~v2u!dx2 1
2 ~v1u!dt1 1

2 @ f ~u!1w~v !#dt, t̃ 5t,

so that the transformed system~39! is

ut5w1ux̃ , vt5w2v x̃ , ~40!

where

w15 1
2 @~u2v ! f 8~u!2 f ~u!2w~v !#, w25 1

2 @~v2u!w8~v !2 f ~u!2w~v !# ~41!

@notice that Eqs.~40! and ~41! constitute a general commuting flow of the linearly degener
system~37!#. According to Theorem 1, system~37! is Hamiltonian,

S u
v D

t

5 J̃S ]h̃/]u

]h̃/]v
D ,

with nonlocal operatorsJ̃ of the form

~u2v !2S f ~u! 0

0 w~v !
D d

dx̃
1~u2v !

3S 1
2 ~u2v ! f 8~u!ux̃1 f ~u!~ux̃2v x̃! w~v !ux̃1 f ~u!v x̃

2w~v !ux̃2 f ~u!v x̃
1
2 ~u2v !w8~v !v x̃1w~v !~ux̃2v x̃!

D
1S w1ux̃ ux̃

w2v x̃ v x̃
D S d

dx̃D
21S ux̃ v x̃

w1ux̃ w2v x̃
D ~42!

and the Hamiltonian densities

h̃5h/B5
1

4~v2u! S F Eu dn

Af ~n!
G 2

2F Ev dn

Aw~n!
G 2D .

All these operators are mutually compatible. Let us discuss some particular cases. Forf (u)51,
w(v)521 and f (u)5u, w(v)52v we havew15w250, so that the transformed operators ta
local forms

~u2v !2S 1 0

0 21D d

dx̃
1~u2v !S ux̃2v x̃ v x̃2ux̃

ux̃2v x̃ v x̃2ux̃
D ~43!

and
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~u2v !2S u 0

0 2v D d

dx̃
1~u2v !S ~ 3

2 u2 1
2 v !ux̃2uv x̃ uv x̃2vux̃

vux̃2uv x̃ ~ 3
2 v2 1

2 u!v x̃2vux̃
D , ~44!

the corresponding Hamiltonian densities being

h~u,v !5
u21v2

4~v2u!
and h~u,v !5

u1v
v2u

,

respectively. In the casef (u)5u2, w(v)52v2 we havew152w25 1
2(u2v)2 so that the opera-

tor J̃ takes the form

~u2v !2S u2 0

0 2v2D d

dx̃
1~u2v !S u~2u2v !ux̃2u2v x̃ u2v x̃2v2ux̃

v2ux̃2u2v x̃ v~2v2u!v x̃2v2ux̃
D

1S 1
2 ~u2v !2ux̃ ux̃

2 1
2 ~u2v !2v x̃ v x̃

D S d

dx̃D
21S ux̃ v x̃

1
2 ~u2v !2ux̃ 2 1

2 ~u2v !2v x̃
D ~45!

with the corresponding density

h~u,v !5
~ ln u!21~ ln v !2

4~v2u!
.

Notice that the local part of the Hamiltonian operator~45!,

~u2v !2S u2 0

0 2v2D d

dx̃
1~u2v !S u~2u2v !ux̃2u2v x̃ u2v x̃2v2ux̃

v2ux̃2u2v x̃ v~2v2u!v x̃2v2ux̃
D , ~46!

is itself Hamiltonian, indeed, the metric

~u2v !22S du2

u2 2
dv2

v2 D
is flat.

One can show that the operators~43!, ~44! and~46! ~are arbitrary linear combinations thereo!
are the only local Hamiltonian structures of Dubrovin–Novikov type of the system~37!. This
follows from the fact that the metric

~u2v !22S du2

f ~u!
2

dv2

w~v ! D
is flat if and only if

f ~u!5au21bu1g, w~v !52av22bv2g,

wherea, b andg are arbitrary constants. These local structures were first discovered in Re
and 3, and subsequently generalized to polytropic gas dynamics in Refs. 21 and 22. The
nonlocal operator~42! first appeared in Ref. 5.

Example 2:The linear system
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ut5ux , v t52vx , wt50 ~47!

possesses infinitely many Hamiltonian representations

S u
v
w
D

t

5JS ]h/]u
]h/]v
]h/]w

D
with local operators

J54S f ~u! 0 0

0 w~v ! 0

0 0 c~w!
D d

dx
12S f 8~u!ux 0 0

0 w8~v !vx 0

0 0 c8~w!wx

D .

corresponding to flat metrics

ds25
du2

4 f ~u!
1

dv2

4w~v !
1

dw2

4c~w!

@heref (u), w(v) andc(w) are arbitrary functions#. The corresponding Hamiltonian densities a

h~u,v !5
1

8 F Eu dn

Af ~n!
G 2

2
1

8 F Ev dn

Aw~n!
G 2

.

Consider the reciprocal transformation

dx̃5Bdx1Adt5@w1 1
2 ~v2u!#dx2 1

2 ~u1v !dt, t̃ 5t, ~48!

mapping the system~47! to the linearly degenerate semi-Hamiltonian system

ut5~v1w!ux̃ , v t5~u2w!v x̃ , wt5
1
2 ~u1v !wx̃ . ~49!

Notice that under the change of variables

u52c1s2
1

r
, v52c2s1

1

r
, w5s, ~50!

system~49! takes the form of equations of gas dynamics

r t1] x̃~rc!50, ct1ccx̃1
1

r
] x̃P~r,s!50, st1csx̃50 ~51!

with the special equation of stateP5s21/r generalizing isentropic Chaplygin gas@see Refs. 29
and 19#.

To calculate the transformed Hamiltonian operators~3!, we introduce the conformal metri
~9!,

ds̃25
ds2

B2 5~2w1v2u!22S du2

f ~u!
1

dv2

w~v !
1

dw2

c~w! D ,

which is no longer flat in general. Following the recipe of Theorem 1, we introduce the Ha
tonian flow generated by the Hamiltonian operator~3! and the Hamiltonian densityB5w1 1

2(v
2u). A simple computation gives the system
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ut52 f 8~u!ux , vt5w8~v !vx , wt52c8~w!wx , ~52!

which commutes with~47!. To incorporate the timet into the reciprocal transformation~48!, we
calculate the flux of the densityB corresponding to the flow~52!,

1
2 ~¹B!25 1

2 @ f ~u!1w~v !14c~w!#.

Thus, transformation~48! takes the form

dx̃5Bdx1Adt1 1
2 ~¹B!2dt5@w1 1

2 ~v2u!#dx2 1
2 ~v1u!dt1 1

2 @ f ~u!1w~v !14c~w!#dt,

t̃ 5t,

so that the transformed flow~52! is

ut5w1ux̃ , vt5w2v x̃ , wt5w3wx̃ , ~53!

where

w152 1
2 ~2w1v2u! f 8~u!2 1

2 @ f ~u!1w~v !14c~w!#,

w25 1
2 ~2w1v2u!w8~v !2 1

2 @ f ~u!1w~v !14c~w!#, ~54!

w35~2w1v2u!c8~w!2 1
2 @ f ~u!1w~v !14c~w!#.

Notice that Eqs.~53! and ~54! constitute a general commuting flow of the linearly degener
system~49!. According to Theorem 1, the system~49! is Hamiltonian,

S u
v
w
D

t

5 J̃S ]h̃/]u

]h̃/]v

]h̃/]w
D ,

with nonlocal operatorsJ̃ of the form

4

r2 S f ~u! 0 0

0 w~v ! 0

0 0 c~w!
D d

dx̃

1
2

r S 1

r
f 8~u!ux̃12 f ~u!S 1

r D
x̃

2w~v !ux̃2 f ~u!v x̃ 22c~w!ux̃2 f ~u!wx̃

w~v !ux̃1 f ~u!v x̃

1

r
w8~v !v x̃12w~v !S 1

r D
x̃

22c~w!v x̃1w~v !wx̃

2c~w!ux̃1 f ~u!wx̃ 2c~w!v x̃2w~v !wx̃

1

r
c8~w!v x̃12c~w!S 1

r D
x̃

D
1S w1ux̃ ux̃

w2v x̃ v x̃

w3wx̃ wx̃

D S d

dx̃D
21S ux̃ v x̃ wx̃

w1ux̃ w2v x̃ w3wx̃
D ~55!

and the Hamiltonian densities
                                                                                                                



il-

an

med

tric
r the

1163J. Math. Phys., Vol. 44, No. 3, March 2003 Reciprocal transformations of Hamiltonian operator

                    
h̃5h/B5
r

8 S F Eu dn

Af ~n!
G 2

2F Ev dn

Aw~n!
G 2D ,

where 2w1v2u52/r @see~50!#. We point out that the corresponding metric~9! is flat if and only
if

f ~u!5«u1a, w~v !5«v1b, c~w!52
«

2
w1g,

where the constantsa, b, g and « are constrained bya1b14g50. In this casew15w25w3

50, so that the corresponding operators~55! are local, thus providing three nonequivalent Ham
tonian structures of Dubrovin–Novikov type.

IV. RECIPROCAL TRANSFORMATIONS WHICH CHANGE BOTH x AND t

Consider again the Hamiltonian system~1!,

ut
i5v j

i ~u!ux
j 5~¹ i¹jh!ux

j 5Ji j
]h

]uj ,

with the local Hamiltonian operator

Ji j 5gi j
d

dx
2gisGsk

j ux
k

corresponding to the flat metricgi j . In this section we discuss the behavior of Hamiltoni
operators~2! under general reciprocal transformations

dx̃5B~u!dx1A~u!dt, d t̃5N~u!dx1M ~u!dt

of the form ~3! which map system~1! to the system~4!,

u
t̃

i
5 ṽ j

i ~u!ux̃
j , ṽ5~Bv2AE!~ME2Nv !21, E5 id.

First of all, we introduce the transformed metric

g̃i j 5
~Md i

s2Nv i
s!~Md j

r2Nv r
j !

~BM2AN!2 gsr, ~56!

which is no longer flat in general. This metric will generate the local part of the transfor
Hamiltonian operatorJ̃.

Remark:In the particular case of reciprocal transformations changing only the variablex, we
haveN50, M51 so that formula~56! reduces to the conformal transformation

g̃i j 5gi j /B
2.

Similarly, if we interchange the independent variables~that is, if A5N51, B5M50), we have

g̃i j 5v i
sgsrv j

r ,

which coincides with the formula proposed in Ref. 28. Notice that in the second case the meg̃i j

is automatically flat, which means that the local Hamiltonian formalism is invariant unde
interchange of independent variables.
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To calculate the nonlocal ‘‘tail’’ of the transformed operatorJ̃, we introduce the Hamiltonian
flows

ut
i 5~¹ i¹jN!ux

j 5Ji j
]N

]uj ~57!

and

uz
i 5~¹ i¹jB!ux

j 5Ji j
]B

]uj , ~58!

generated by the Hamiltonian operatorJi j and the Hamiltonian densitiesN andB which enter the
reciprocal transformation~3!. Clearly, systems~57! and~58! commute with~1!. To incorporate the
timest andz into the reciprocal transformation~3!, we calculate the fluxesP, Q andR, S of the
Hamiltonian densitiesB andN,

dx̃5Bdx1Adt1Pdt1Qdz,

d t̃5Ndx1Mdt1Rdt1Sdz,

that is, the coefficients which make these one-forms closed by virtue of~1!, ~57! and ~58!. Here

Q5 1
2 ~¹B!25 1

2 gi j BiBj ,

R5 1
2 ~¹N!25 1

2 gi j NiNj ,

~see Ref. 28! andP, S are normalized as

P1S5~¹B,¹N!5gi j BiNj .

Therefore, the transformed flows~57! and ~58! take the forms

ut
i 5m j

i ~u!ux̃
j ~59!

and

uz
i 5l j

i ~u!ux̃
j , ~60!

where the matricesm j
i andl j

i are

m j
i 5B¹ i¹jN2Pd j

i 1Nṽ j
k¹ i¹kN2Rṽ j

i ~61!

and

l j
i 5B¹ i¹jB2Qd j

i 1Nṽ j
k¹ i¹kB2Sṽ j

i , ~62!

respectively@these formulas readily follow from~57! and~58! after one changes fromx, t, t, z to
x̃, t̃ , t, z#. The transformed flows~59! and ~60! commute with~4!. Now we can formulate the
main result of this section.

Theorem 3: After the reciprocal transformation~3!, the local Hamiltonian operator~2! cor-
responding to the flat metric gi j becomes nonlocal of the form
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J̃i j 5g̃i j
d

dx̃
2g̃isG̃sk

j ux̃
k1lk

i ux̃
kS d

dx̃D
21

ux̃
j 1ux̃

i S d

dx̃D
21

lk
j ux̃

k

1mk
i ux̃

kS d

dx̃D
21

ṽn
j ux̃

n1 ṽn
i ux̃

nS d

dx̃D
21

mk
j ux̃

k .

Here the local part is defined by the metric g˜ i j given by (56), G̃ is the Levi-Civita connection of g˜ ,
and the nonlocal termsl j

i , m j
i and ṽ j

i are defined in (61), (62) and (4). In particular, the curvature
tensor of g̃i j is

R̃kl
i j 5lk

i d l
j1l l

jdk
i 2lk

j d l
i2l l

idk
j 1mk

i ṽ l
j1m l

j ṽk
i 2mk

j ṽ l
i2m l

i ṽk
j .

The proof of Theorem 3 will follow from general results of Sec. V.
As an illustration of this procedure, we explicitly calculate nonlocal Hamiltonian opera

associated with the three-component linearly degenerate system~10!.
Example 3:We start with the same linear system~47! as in Example 2,

ut5ux , v t52vx , wt50,

which possesses infinitely many Hamiltonian structures with operators

J5S f ~u! 0 0

0 w~v ! 0

0 0 1
4 c~w!

D d

dx
1

1

2 S f 8ux 0 0

0 w8vx 0

0 0 1
4 c8wx

D ~63!

corresponding to flat metrics

ds25
du2

f ~u!
1

dv2

w~v !
14

dw2

c~w!
~64!

@here f (u), w(v) andc(w) are arbitrary functions; the multiple 4 is chosen for convenience#.
Consider the reciprocal transformation

dx̃5Bdx1Adt5~2w22u22v2!dx1~v22u2!dt,
~65!

d t̃5Ndx1Mdt5~u1v22w!dx1~u2v !dt,

which maps system~47! to the three-component linearly degenerate semi-Hamiltonian syste

ut̃5~v1w!ux̃ , v t̃5~u1w!v x̃ , wt̃5~u1v !wx̃ . ~66!

The transformed metric~64! @apply formula~56!#,

ds̃25
du2

~u2v !2~u2w!2f ~u!
1

dv2

~v2u!2~v2w!2w~v !
1

dw2

~w2u!2~w2v !2c~w!
, ~67!

is no longer flat for genericf (u), w(v) andc(w). The commuting flows of system~47! generated
by the Hamiltonian densitiesN5u1v22w andB52w22u22v2 are

ut5 1
2 f 8ux , vt5 1

2 w8vx , wt52 1
4 c8wx ~68!

and
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uz52~2 f 1u f8!ux , vz52~2w1vw8!vx , wz5~c1 1
2 wc8!wx , ~69!

respectively. To incorporate the timest andz into the reciprocal transformation~65!, we have to
calculate the fluxesP, Q andR, S of the Hamiltonian densitiesB andN,

dx̃5Bdx1Adt1Pdt1Qdz,
~70!

d t̃5Ndx1Mdt1Rdt1Sdz,

that is, the coefficients which make these one-forms closed by virtue of~47!, ~68! and~69!. Here

Q5 1
2 ~¹B!252@u2f ~u!1v2w~v !1w2c~w!#,

R5 1
2 ~¹N!25 1

2 @ f ~u!1w~v !1c~w!#,

while P andS are of the form

P52u f2vw2wc1Eu

f ~n!dn1Ev
w~n!dn1Ew

c~n!dn,

S52u f2vw2wc2Eu

f ~n!dn2Ev
w~n!dn2Ew

c~n!dn,

respectively. Notice thatP1S5(¹B, ¹N)5gi j BiNj . Under the extended reciprocal transform
tion ~70!, the commuting flows~68! and ~69! take the form

ut5m1ux̃ , vt5m2v x̃ , wt5m3wx̃ ~71!

and

uz5l1ux̃ , vz5l2v x̃ , wz5l3wx̃ , ~72!

where the characteristic speeds are

m152 1
2 ~u2v !~u2w! f 82~v1w!R2P,

m252 1
2 ~v2u!~v2w!w82~u1w!R2P,

m352 1
2 ~w2u!~w2v !c82~u1v !R2P,

and

l15~u2v !~u2w!~2 f 1u f8!2~v1w!S2Q,

l25~v2u!~v2w!~2w1vw8!2~u1w!S2Q,

l35~w2u!~w2v !~2c1wc8!2~u1v !S2Q,

respectively. The transformed flows~71! and ~72! commute with~66!. According to Theorem 2,
the transformed metric~67! and the transformed flows~71! and~72! generate the nonlocal Hamil
tonian operator which, in matrix form, is
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J̃5S g̃11 0 0

0 g̃22 0

0 0 g̃33
D d

dx̃

1S g̃11F f 8~u!

2 f ~u!
ux̃1

ux̃2v x̃

u2v
1

ux̃2wx̃

u2w G g̃22ux̃1g̃11v x̃

u2v

g̃33ux̃1g̃11wx̃

u2w

2
g̃22ux̃1g̃11v x̃

u2v
g̃22F w8~v !

2w~v !
v x̃1

ux̃2v x̃

u2v
1

v x̃2wx̃

v2w G g̃33v x̃1g̃22wx̃

v2w

2
g̃33ux̃1g̃11wx̃

u2w
2

g̃33v x̃1g̃22wx̃

v2w
g̃33F c8~w!

2c~w!
wx̃1

wx̃2v x̃

w2v
1

ux̃2wx̃

u2w G D
1S l1ux̃ m1ux̃ h1v x̃ ux̃

l2v x̃ m2v x̃ h2v x̃ v x̃

l3wx̃ m3wx̃ h3wx̃ wx̃

D S d

dx̃D
21S ux̃ v x̃ wx̃

h1ux̃ h2v x̃ h3wx̃

m1ux̃ m2v x̃ m3wx̃

l1ux̃ l2v x̃ l3wx̃

D ,

whereg̃i i are components of the transformed metric~67!, h15v1w, h25u1w andh35u1v
are the characteristic speeds of system~66!, andlk, mk are the characteristic speeds of its co
muting flows~71! and~72!. In the particular casef (u)5a, w(v)5b andc(w)5g, wherea, b,
g are constants subject to a single constrainta1b1g50, we havelk5mk50, so that the
transformed operator takes the local Dubrovin–Novikov form, the corresponding flat metric

ds̃25
du2

a~u2v !2~u2w!2 1
dv2

b~v2u!2~v2w!2 1
dw2

g~w2u!2~w2v !2 .

As shown in Ref. 23, these are the only local Hamiltonian structures of hydrodynamic type
three-component system~66!.

Remark:Modifying the reciprocal transformation~65! from Example 3 as

dx̃5@2R~w!2P~u!2Q~v !#dx1@Q~v !2P~u!#dt,

d t̃5@A~u!1B~v !22C~w!#dx1@A~u!2B~v !#dt,

we obtain the transformed system

ut̃5
R~w!2Q~v !

C~w!2B~v !
ux̃ , v t̃5

P~u!2R~w!

A~u!2C~w!
v x̃ , wt̃5

Q~v !2P~u!

B~v !2A~u!
wx̃ , ~73!

whereA(u), B(v), C(w) and P(u), Q(v), R(w) are arbitrary functions. As shown in Ref. 12
formulas ~73! define a general three-component linearly degenerate semi-Hamiltonian sy
Repeating the construction of Example 3, one can obtain the associated family of nonlocal H
tonian structures.

V. GENERALIZED RECIPROCAL TRANSFORMATIONS

ConsiderN commuting flows of hydrodynamic type

Rtb
i

5vb
i ~R!Rt1

i , i 51,2, . . .n, b51,2,. . . ,N, ~74!

where we have sett1[x andt2[t ~so thatv1
i [1). We assume that the flows~74! are Hamiltonian

with the local Hamiltonian operator~2! generated by the flat metricds25gii (R)dRi 2, so that
vb

i 5¹ i¹ihb , where hb are the corresponding Hamiltonian densities. Let us change fromt1,
t2, . . . , tN to the new independent variablest̃ 1, t̃ 2, . . . , t̃ N defined as

d t̃g5ab
g~R!dtb, g,b51,2, . . .N, ~75!
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wherea1
g(R) are the conserved densities of systems~74!, andab

g(R) are the corresponding fluxes

] tba1
g5] t1ab

g . ~76!

Transformations of the type~75! naturally generalize reciprocal transformations~the caseN52).
Under thegeneralizedreciprocal transformation~75!, the commuting flows~74! transforms to

R
t̃ b
i

5 ṽb
i ~R!R

t̃ 1
i

, ~77!

where

ṽb
i 5

Ab
gvg

i

A1
nvn

i , ~78!

while the metricds2 transforms to

ds̃25g̃i i dRi 2, g̃i i 5gii ~A1
nvn

i !2. ~79!

HereAg
b is the inverse ofab

n ,

dtb5Ag
bd t̃g. ~80!

We emphasize that the transformed metricds̃2 is no longer flat in general. In the particular ca
N52 formula ~79! reduces to~56!. To calculate the curvature tensor of the metricds̃2 we intro-
duceN extra flows

Rtg
i

5wg
i ~R!Rt1

i , i 51,2,. . . ,n, g51,2,. . . ,N, ~81!

generated by the Hamiltonian operator~2! and the Hamiltonian densitiesa1
b(R):

wb
i 5¹ i¹ia1

b .

Clearly, the flows~81! commute with~74!. To calculate the transformed flows~81!, we have to
incorporate the timestb into the generalized reciprocal transformation~75!, namely,

d t̃g5ab
gdtb1cb

gdtb, g,b51,2,. . . ,N.

Here the fluxescb
g are restricted by

cg
b1cb

g5~¹a1
b , ¹a1

g!5( gkk~]ka1
b!~]ka1

g!, ~82!

where (¹ f , ¹g) denotes a scalar product of the gradients off andg in the metricds2. Finally, the
transformed flows~81! take the form

Rtg
i

5w̃g
i ~R!R

t̃ 1
i

, ~83!

with

w̃g
i 5

wg
i 2cg

bAb
« v«

i

A1
nvn

i . ~84!

Theorem 4: The curvature tensor of the transformed metric ds˜2 is
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R̃i j
i j 5 (

b51

N

~ ṽb
i w̃b

j 1 ṽb
j w̃b

i !.

The metric ds˜2 generates the nonlocal Hamiltonian operator

J̃i j 5g̃i i d i j
d

dx̃
2g̃i i G̃ ik

j Rx̃
k1 (

b51

N

ṽb
i Rx̃

i S d

dx̃D
21

w̃b
j Rx̃

j 1 (
b51

N

w̃b
i Rx̃

i S d

dx̃D
21

ṽb
j Rx̃

j .

Proof: Let us introduce the Lame coefficientsH1i5Agii and the rotation coefficientsb ik

5] iH1k /H1i ~for any iÞk). According to Ref. 28, the linear problem

] iHk5b ikHi , iÞk,

has N particlular solutionsHb i , where Hb i5vb
i H1i , and N other solutionsHi

b , where Hi
b

5wb
i H1i . Since commuting flows~74! and ~81! are locally Hamiltonian (vb

i 5¹ i¹ihb and wb
i

5¹ i¹ia1
b), the relationship between conserved densities (hb anda1

b) and the corresponding com
muting flows (vb

i andwb
i ) can be written as

Hb i5cb i ,i1 (
mÞ i

bmicbm , Hi
b5c i ,i

b 1 (
mÞ i

bmicm
b , ~85!

wherecb i andc i
b are defined by the equations] ihb5cb iH1i and] ia1

b5c i
bH1i . In this notation

the formulas~78!, ~84! and ~79! become

H̃b i5Ab
gHg i , H̃ i

b5Hi
b2H̃g icb

g

~whereṽb
i 5H̃b i /H̃1i and w̃b

i 5H̃ i
b/H̃1i) and the transformed rotation coefficients are

b̃ ik5b ik2c i
bH̃bk .

Since the metricds2 is flat, the curvature componentsRjik
i ( iÞ j Þk) vanish identically, that is,

] ib jk5b j i b ik ( iÞ j Þk). This identity is preserved under generalized reciprocal transformat
] i b̃ jk5b̃ j i b̃ ik . However, the componentsR̃i j

i j defined as

R̃i j
i j 52

D̃ i j

H̃1i H̃1 j

,

where

D̃ i j [] i b̃ i j 1] j b̃ j i 1 (
mÞ i

b̃mib̃m j ,

will no longer be zero. Indeed,

D̃ i j 5] i b̃ i j 1] j b̃ j i 1 (
mÞ iÞk

b̃mib̃m j

5] i@b i j 2c i
gH̃g j #1] j@b j i 2c j

gH̃g i #1 (
mÞ iÞ j

~bmi2cm
g H̃g i !~bm j2cm

b H̃b j !

5D i j 2H̃g jFc i ,i
g 1 (

mÞ i
bmicm

g G
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2H̃g iFc j , j
g 1 (

mÞ j
bm jcm

g G1H̃b i H̃g j( cm
b cm

g .

SinceD i j [0, Eqs.~85! and ~82! imply

D̃ i j 52H̃g jHi
g2H̃g iH j

g1H̃g i H̃b j~cg
b1cb

g !

52H̃b j@Hi
b2H̃g icb

g#2H̃b j@Hi
b2H̃g icb

g#

52H̃b j H̃ i
b2H̃b i H̃ j

b .

Thus, the transformed curvature tensor is

R̃i j
i j 52

1

H̃1i H̃1 j

D̃ i j 5
H̃b j H̃ i

b1H̃b i H̃ j
b

H̃1i H̃1 j

5 ṽb
i w̃b

j 1 ṽb
j w̃b

i .

For N52 this proves Theorem 2 formulated in Sec. IV.
As shown in Ref. 12, any linearly degenerate semi-Hamiltonian system in Riemann inva

can be linearized by a generalized reciprocal transformation. Applying the results of Sec
local Hamiltonian structures of a linear system, one can explicitly construct an infinity of mut
compatible nonlocal Hamiltonian structures for an arbitrary linearly degenerate semi-Hamilt
system in the same way as it was done in Examples 1–3. In the example below we exp
construct nonlocal Hamiltonian formalism for then-component linearly degenerate system me
tioned in the abstract.

Example 4:As shown in Ref. 12, the linearly degenerate semi-Hamiltonian system

R
t̃ 2
i

5S Ri2 (
m51

n

RmDR
t̃ 1
i

, i 51,2,. . . ,n, ~86!

and its linearly degenerate commuting flows

R
t̃ b
i

5~21!b11~] i h̃b!R
t̃ 1
i

, i 51,2,. . . ,n, b53,4,. . . ,n,

where

h̃5)
k51

n

~11lRk!511lh̃11l2h̃21l3h̃31¯1lnh̃n ,

can be obtained from a set of commuting linear flows

Rtb
i

5~« i !b21Rt1
i , b51,2,. . . ,n

(« i are arbitrary constants! by a generalized reciprocal transformation,

d t̃b5ag
bdtg,

where

ag
b5 (

k51

n

~«k!g21~Rk!n2b.

In the two- and three-component cases the explicit form of this transformation is stated i
amples 1 and 3. The inverse reciprocal transformation is
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dtb5Ag
bd t̃g,

where

Ag
b5 (

k51

n

~21!n1g1b11
]k«̃n112g

)mÞk
n ~«k2«m!

]kh̃b

)sÞk
n ~Rk2Rs!

and

«̃5)
k51

n

~11l«k!511l«̃11l2«̃21l3«̃31¯1ln«̃n .

Applying Theorem 4 to local Hamiltonian structures of the corresponding linear systems
obtain infinitely many nonlocal Hamiltonian operators associated with the system~86!:

Ai j 5gii d i j
d

dx
2gii G ik

j Rx
k1 (

b51

n21 F ṽb
i Rx

i S d

dxD
21

w̃b
j Rx

j 1w̃b
i Rx

i S d

dxD
21

ṽb
j Rx

j G . ~87!

Heregii (dRi)2 is the diagonal metric of the form

dR12

)kÞ1~R12Rk! f 1~R1!
1¯1

dRn2

)kÞn~Rn2Rk! f n~Rn!
, ~88!

with the curvature tensor

R̃ik
ik5 (

b51

n21

~ ṽb
i w̃b

k 1 ṽb
k w̃b

i !,

where

ṽb
i 5] i h̃b ,

w̃b
i 5~n2b!)

kÞ i
~Ri2Rk!F1

2
f i8~Ri !~Ri !n2b211~n2b21! f i~Ri !~Ri !n2b22G2 (

g51

n21

ṽg
i cb

g ,

] icb
g5~n2b!~n2g!@ 1

2 f i8~Ri !~Ri !2n2b2g221~n2b21! f i~Ri !~Ri !2n2b2g23#.

Operators~87! depend onn arbitrary functionsf 1(R1), . . . , f n(Rn), and are mutually compatible
It was demonstrated in Ref. 23 that the metric~88! is not flat forn>4, whateverf i(Ri) are.

ACKNOWLEDGMENTS

We thank the Royal Society for their financial support of M.V.P. to Loughborough, ma
this collaboration possible. M.V.P. is also partially supported by the Russian Foundation for
damental Research~Grant Nos. 00-01-00210 and 00-01-00366!.

1Alekseev, V. L., ‘‘On nonlocal Hamiltonian operators of hydrodynamic type connected with Whitham’s equations,’’
Math. Surveys50, 1253–1255~1995!.

2Alekseev, V. L. and Pavlov, M. V., ‘‘Hamiltonian structures of the Whitham equations,’’ in Proceedings of the Confe
on NLS, Chernogolovka, 1994.

3Arik, M., et al., ‘‘Multi-Hamiltonian structure of the Born-Infeld equation,’’ J. Math. Phys.30, 1338–1344~1989!.
4Blaszak, M. and Ma, W. X., ‘‘Separable Hamiltonian equations on Riemann manifolds and related integrable hy
namic systems,’’ arX:nlin.SI/0209014, to appear in J. Geom. Phys.
                                                                                                                



ody-

unct.

d the

and

’’ Am.

’’ Usp.

ods of

Geom.

tonians

kets,’’

heor.

nstant

ath.

.

bles,’’

. Dokl.

’’ Math.

1172 J. Math. Phys., Vol. 44, No. 3, March 2003 E. V. Ferapontov and M. V. Pavlov

                    
5Bogdanov, L. V. and Ferapontov, E. V., ‘‘A nonlocal Hamiltonian formalism for semi-Hamiltonian systems of hydr
namic type,’’ Theor. Math. Phys.116, 829–835~1998!.

6Dubrovin, B. A., ‘‘A periodic problem for the Korteweg-de Vries equation in a class of short-range potentials,’’ F
Anal. Appl. 9, 41–51~1975!.

7Dubrovin, B. A., ‘‘The inverse scattering problem for periodic short-range potentials,’’ Funct. Anal. Appl.9, 65–66
~1975!.

8Dubrovin, B. A., ‘‘Geometry of 2D topological field theories,’’ Lect. Notes Math.1620, 120–348~1996!.
9Dubrovin, B. A. and Novikov, S. P., ‘‘Hamiltonian formalism of one-dimensional systems of hydrodynamic type an
Bogolyubov-Whitham averaging method,’’ Sov. Math. Dokl.27, 665–669~1983!.

10Dubrovin, B. A. and Novikov, S. P., ‘‘Hydrodynamics of weakly deformed soliton lattices. Differential geometry
Hamiltonian theory,’’ Russ. Math. Surveys44, 35–124~1989!.

11Ferapontov, E. V., ‘‘Nonlocal Hamiltonian operators of hydrodynamic type: differential geometry and applications,
Math. Soc. Trans.170, 33–58~1995!.

12Ferapontov, E. V., ‘‘Integration of weakly nonlinear hydrodynamic systems in Riemann invariants,’’ Phys. Lett. A158,
112–118~1991!.

13Ferapontov, E. V., ‘‘Conformally flat metrics, systems of hydrodynamic type and nonlocal Hamiltonian operators,
Mat. Nauk4, 175–176~1995!.

14Ferapontov, E. V., ‘‘Integration of weakly nonlinear semi-Hamiltonian systems of hydrodynamic type by the meth
web theory,’’ Math. USSR-Sb.71, 65–79~1992!.

15Ferapontov, E. V. and Fordy, A. P., ‘‘Separable Hamiltonians and integrable systems of hydrodynamic type,’’ J.
Phys.21, 169–182~1997!.

16Ferapontov, E. V. and Fordy, A. P., ‘‘Nonhomogeneous systems of hydrodynamic type related to quadratic Hamil
with electromagnetic term,’’ Physica D108, 350–364~1997!.

17Maltsev, A. Ya., ‘‘On the compatible weakly-nonlocal Poisson brackets of hydrodynamic type,’’ nlin.SI/0111015.
18Maltsev, A. Ya. and Novikov, S. P., ‘‘On the local systems Hamiltonian in the weakly non-local Poisson brac

Physica D156, 53–80~2001!.
19Meshkov, A. G. and Mikhalyaev, B. B., ‘‘Gas dynamics equations that admit an infinite number of symmetries,’’ T

Math. Phys.72, 163–171~1987!.
20Mokhov, O. I. and Ferapontov, E. V., ‘‘Nonlocal Hamiltonian operators of hydrodynamic type associated with co

curvature metrics,’’ Usp. Mat. Nauk45, 191–192~1990!.
21Nutku, Y., ‘‘On a new class of completely integrable nonlinear wave equations. Multi-Hamiltonian structure,’’ J. M

Phys.28, 2579–2585~1987!.
22Olver, P. and Nutku, Y., ‘‘Hamiltonian structures for systems of hyperbolic conservation laws,’’ J. Math. Phys29,

1610–1619~1988!.
23Pavlov, M. V., ‘‘Hamiltonian formalism of weakly nonlinear systems in hydrodynamics,’’ Teor.. Mat. Fiz.73, 316–320

~1987! ~in Russian!.
24Pavlov, M. V., ‘‘Preservation of the ‘‘form’’ of Hamiltonian structures under linear changes of the independent varia

Math. Notes57, 489–495~1995! ~in Russian!.
25Pavlov, M. V., ‘‘Integrable Systems and Metrics of Constant Curvature,’’ to appear in JNMP~2002!.
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Involution analysis of the partial differential equations
characterizing Hamiltonian vector fields
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In a recent article, certain underdetermined linear systems of partial differential
equations connected with Lie–Poisson structures have been studied. They were
constructed via power series solutions of the evolution equation for a given Hamil-
tonian. We extend the results to arbitrary Poisson manifolds, correct an error in the
case of degenerate Poisson structures, and show that these linear systems simply
characterize Hamiltonian vector fields. Our basic tool is the formal theory of dif-
ferential equations with its central concept of an involutive system. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1536021#

I. INTRODUCTION

In a recent article, Benderet al.1 studied certain underdetermined linear systems of pa
differential equations connected with Lie–Poisson structures. These systems arose from co
ing power series solutions of the corresponding evolution equations. In the present work
results are extended to arbitrary Poisson manifolds and the relation to Poisson geometry i
fied. In particular, it turns out that these systems are simply the equations characterizi
Hamiltonian vector fields on the manifold.

Furthermore, we correct an error in the cited work. For degenerate Poisson structures,
the Poisson matrixJ is singular, the claimed expression isnot the general solution of the unde
determined system; further solutions exist. Let us take for example the system related
Lie–Poisson structure induced by the Lie algebraE2 :

y
]G

]z
1x

]F

]z
50 ,

y
]H

]z
1y

]F

]x
2x

]F

]y
2G50 , ~1!

x
]H

]z
2y

]G

]x
1x

]G

]y
2F50 .

Benderet al.1 claimed that its general solution was

F52y
]K

]z
, G5x

]K

]z
, H5y

]K

]x
2x

]K

]y
, ~2!

with an arbitrary functionK(x,y,z). However, one easily checks thatF5c1 /x, G5c2 /y and
H5(c1 /x21c2 /y2)z solves~1! for arbitrary values of the constantsc1 , c2 and only forc15
2c25c these expressions are contained in the solution family~2!, namely for the choiceK5
2cz/xy. We will show that~2! represents the general solution only, if we augment~1! by the
algebraic constraintxF1yG50.

a!Electronic mail: werner.seiler@math.uni-mannheim.de
11730022-2488/2003/44(3)/1173/10/$20.00 © 2003 American Institute of Physics
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Our basic tool will be the formal theory of differential equations.2–4 Some elements of this
theory are about a century old, but it still seems to be fairly unknown. In fact, Benderet al.1

mentioned a number of questions concerning the arbitrariness of the general solution of a
of partial differential equations many of which can be answered with the help of the formal th
~see, e.g., Ref. 5!.

A key concept within the formal theory isinvolution. For lack of space, we cannot give
detailed introduction but must refer to the above cited works. Any serious analysis of a syst
differential equations not in Cauchy–Kovalevskaya form requires usually that the system is
lutive. Involution comprises in particular the absence of integrability conditions. Any system
be completed to an involutive one~under some mild regularity assumptions!. Fortunately, we do
not have to bother with a completion, as it turns out that due to the properties of Poisson ma
our system is already involutive.

In the next section those basic properties of Poisson manifolds that are needed la
reviewed. In Sec. III an underdetermined system of partial differential equations characte
Hamiltonian vector fields is derived and the conditions under which it is involutive are anal
The relation to the work of Benderet al.1 is found in Sec. IV, studying the fundamental pow
series solutions of the Hamiltonian evolution equation. Finally, after considering explicitly
case of the Lie–Poisson structure ofE2 , some conclusions are given in Sec. VI.

II. POISSON MANIFOLDS

For easier comparison with the results presented by Benderet al.,1 we use throughout loca
coordinates; the intrinsic theory of Poisson manifolds can be found in the book of Vaisman6 ~with
an emphasis on the geometry; see also Ref. 7! or in the books of Marsden and Ratiu,8 resp.,
Libermann and Marle9 ~with an emphasis on applications in mechanics!.

A Poisson manifoldis a ~smooth! manifold M equipped with a bracket structure on the rin
F(M ) of smooth functions onM . This bracket$•,•%:F(M )3F(M )→F(M ) must satisfy four
axioms for arbitrary functionsF,G,HPF(M ) and real constantsl,m:

~i! $F,G%52$G,F% ~skew-symmetry!,
~ii ! $lF1mG,H%5l$F,H%1m$G,H% ~linearity!,
~iii ! $FG,H%5F$G,H%1$F,H%G ~Leibniz rule!,
~iv! ˆF,$G,H%‰1ˆG,$H,F%‰1ˆH,$F,G%‰50 ~Jacobi identity!.

Thus the ringF(M ) acquires the structure of an infinite-dimensional Lie algebra.
In terms of local coordinates (z1, . . . ,zn) on the manifoldM , the bracket is uniquely deter

mined by thePoisson matrix Jkl5$zk,zl%. For two arbitrary functionsF,GPF(M ) we find
$F,G%5(¹F) tJ ¹G. The matrixJ is obviously skew-symmetric and the Jacobi identity induc
the following differential equations for its components:

Jkl
]Ji j

]zl 1Jil
]Jjk

]zl 1Jjl
]Jki

]zl 50 , 1< i , j ,k<n . ~3!

In an intrinsic language, the Poisson bracket is defined in terms of the Poisson bivecw
PL2(TM) by $F,G%5w(dF,dG). The matrixJ is a coordinate representation of this bivect
w5Jkl]zk∧]zl, and the Jacobi identity~3! expresses the vanishing of the Schouten–Nijenh
bracket ofw with itself.

If the matrixJ is regular~which obviously can only happen on even-dimensional manifol!,
then M is in fact a symplectic manifold with the symplectic structure locally defined by
inverse ofJ. If A is an n-dimensional Lie algebra, then its dual spaceA* carries a canonica
Lie–Poisson structure. Since TA* >A* 3A* , we may identify for any smooth functionf
PF(A* ) at the pointlPA* the tangent mapTlf:A* →R with an element ofA ** 5A and
define forf,cPF(A* ),

$f,c%~l!5l~@Tlf,Tlc#! .
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If Ckl
i denotes the structure constants ofA for some basis$A1 , . . . ,An%, i.e. @Ak ,Al #5Ckl

i Ai , then
in coordinates (z1 , . . . ,zn) with respect to the dual basis$A1, . . . ,An% of A* the Poisson matrix
is given byJkl5Ckl

i zi . It is trivial to check that it satisfies~3!. Benderet al.1 considered exclu-
sively Poisson structures of this form.

A Poisson structure defines a homomorphism]:T* M→TM by v1(v2
])5w(v1 ,v2) for

arbitrary one-formsv1 ,v2PT* M . The structurew is nondegenerate, if ] is an isomorphism or,
equivalently, the Poisson matrixJ is regular. More generally, the rank of a Poisson structure
defined as the dimension of im] ~we restrict here and in the sequel to the case that im] defines
a regular distribution onM ). If rankw5n2r , then r linearly independent one-formsx (a)

5xk
(a) dzk exist onM such that ker]5^x (1), . . . ,x (r )&. If a functionCPF(M ) is such thatdC

Pker], then$C,F%50 for all FPF(M ) andC is called aCasimir function.
We associate with any functionHPF(M ) its Hamiltonian vector field,

XH5~dH!]5$•,H%5Jkl
]H

]zl

]

]zk .

For a Casimir functionC, XC is obviously the zero vector field. For later use, we introduce a
special case the short hand

X(k)5X2zk5$zk,•%5Jkl
]

]zl .

The Poisson bracket may now conveniently be expressed with these fields:

$F,G%5
]F

]zk X(k)G52
]G

]zk X(k)F .

The Hamiltonian vector fields form a Lie algebra under the Lie bracket. Indeed, one e
obtains for arbitrary functionsF,G,HPF(M ) with the help of the Jacobi identity,

X$F,G%~H !5ˆH,$F,G%‰5ˆ$H,F%,G‰2ˆ$H,G%,F‰5@XG ,XF#~H ! . ~4!

Thus the mappingF°XF defines a Lie algebraantihomomorphism betweenF(M ) and the
Hamiltonian vector fields~if we had defined XF5$F,•%, we would have obtained a
homomorphism6!. It follows from ~4! that the distribution im] is involutive and thus defines
foliation of the manifold M . By a classical result in Poisson geometry, the leaves
(n2r )-dimensional symplectic manifolds, i.e., they carry a nondegenerate Poisson structur
viously, the codistribution ker] is just the annihilator of im].

A Hamiltonian vector fieldXH may be written either in the formXH5(X(k)H)]zk or asXH

52HzkX(k). Thus the fieldsX(k) span the distribution im] and ~4! takes the form

@X(k),X( l )#5
]Jkl

]zj X( j ) . ~5!

Note that in the special case of a Lie–Poisson structure the vector fieldsX(k) provide us with a
representation of the underlying Lie algebra, as then]Jkl /]zj5Ckl

j .
The vector fieldXH defines a dynamical system on the Poisson manifoldM . We denote its

flow by f, i.e., f is a mapR3M→M ~as we are only interested in local properties, we do
bother about the precise domain of definition off! andfz(t)5f(t,z) yields the integral curve of
XH passing through the pointzPM . A central property of Hamiltonian flows is that they preser
the Poisson structure. Indeed, it follows again from the Jacobi identity that for arbitrary func
F,G,HPF(M ),
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~LXH
w!~dF,dG!5XH„w~dF,dG!…2w~LXH

dF,dG!2w~dF,LXH
dG!

5XH~$F,G%!2$XHF,G%2$F,XHG%50,

whereLX denotes the Lie derivative with respect to the vector fieldX. ThusLXH
w50 for every

Hamiltonian vector fieldXH .
If we consider how functionsFPF(M ) vary along the integral curves of the Hamiltonia

vector fieldXH , then we find for arbitrary pointszPM ,

d

dt
~fz* F !~ t !5fz* „dF~XH!…~ t !5fz* ~$F,H%!~ t ! . ~6!

Often this equation is briefly written asḞ5$F,H%.
Let us expand the functionf* F in a formal power series int,

~f* F !~ t,z!5 (
a50

`

Fa~z!ta, ~7!

with coefficientsFaPF(M ). A trivial computation shows then that

~$F,G%!a5 (
b50

a

$Fa2b ,Gb% . ~8!

Since, by definition of a flow, (f* F)(0,z)5F(z), we may express the coefficientsFa in a
closed form: entering the expansion~7! into the differential equation~6! yields the relationaFa

5$Fa21 ,H% and thus

F05F , F15$F,H% , F25 1
2 $$F,H%,H% ,

~9!

III. A PARTIAL DIFFERENTIAL SYSTEM AND ITS INVOLUTION ANALYSIS

Assume we are given an arbitrary vector fieldX on the Poisson manifoldM . A natural
question is whether or not a functionHPF(M ) exists such thatX5XH5(dH)]. By the results of
Sec. II, this corresponds in local coordinates whereX5jk]zk to studying the solvability of the
following overdetermined inhomogeneous linear first-order system forH:

X(k)H5Jkl
]H

]zl 5jk . ~10!

It should be noted that we consider in the sequel only theformal solvability, i.e., the existence o
formal power series solutionsH.

In the language of the formal theory, conditions on the right hand sidejW for the existence of
solutions are calledcompatibility conditions. They are determined by rendering~10! involutive.
For linear first-order systems with one unknown function this is a classical problem much st
in the 19th century~see, e.g., the references in the textbooks10,11!; in modern geometric languag
it leads to the Frobenius theorem. The system~10! is involutive, if and only if the vector fieldsX(k)

span an involutive distribution, i.e., if the distribution is closed under the Lie bracket.
But we have already determined in~5! that this is indeed the case. Applying these commuta

relations to the functionH and using~10! immediately yields the following compatibility condi
tions for the right hand sidejW :
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X(k)j l2X( l )jk5
]Jkl

]zj j j , 1<k, l<n . ~11!

Restricted to the special case of a Lie–Poisson manifold, this is the underdetermined
studied by Benderet al.1 In general,~11! doesnot contain all compatibility conditions of~10!. If
the Poisson structure is degenerate, the vector fieldsX(k) are not linearly independent, as triviall
xk

(a)X(k)50 for the one-formsx (a) spanning ker]. Thus we find in addition,

xk
(a)jk50 , 1<a<r . ~12!

Benderet al.1 ignored these equations and they are the reason for the problem mentioned
Introduction.

In an intrinsic language,~11! is ~up to a constant factor! the local coordinate form ofLXw
50 and~12! of x (a)(X)50. This observation is not too surprising: by definition of the one-for
x (a), the second equation simply says that the vector fieldX must lie in im] and we showed
above that for every Hamiltonian vector field the Lie derivative of the Poisson bivectorw van-
ishes. Thus both conditions are obviouslynecessaryfor X being Hamiltonian. Because of th
involution of the linear system~10!, they are alsosufficientfor the vector fieldX being~formally!
Hamiltonian.

It follows from these considerations that the general formal solution of~11!, ~12! is

jk5X(k)H5Jkl
]H

]zl ,

where the functionHPF(M ) is arbitrary. Hence~11!, ~12! indeed always represents an underd
termined system, although it comprises more equations than unknown functions.

We proceed with an involution analysis of the combined system~11!, ~12!. We first analyze
whether it is possible to generate integrability conditions via cross-differentiations within
differential equations~11!. We introduce the short handAkl5X(k)j l2X( l )jk2(]Jkl/]zj )j j ~the
antisymmetric tensor corresponding to the bivectorLXw) and thus~11! may be written asAkl

50. If we take the cyclic combination

X(m)Akl1X(k)Alm1X( l )Amk50 , ~13!

all second-order derivatives vanish and thus an integrability condition might be hidden her
Here~13! contains the difference (X(m)X(k)2X(k)X(m))j l ~and cyclic permutations of it!. Here

we enter the commutation relation~5!. The arising equation contains expressions of the fo
(]Jmk/]zj )(X( j )j l2X( l )j j ) which are simplified using~11!. These operations finally yield th
algebraic integrability conditions

S ]Jmk

]zi

]Jil

]zn 1
]Jlm

]zi

]Jik

]zn 1
]Jkl

]zi

]Jim

]zn 1Jil
]2Jmk

]zn]zi 1Jik
]2Jlm

]zn]zi 1Jim
]2Jkl

]zn]zi D jn50 .

As the coefficient ofjn is just thezn-derivative of the Jacobi identity~3!, this condition is always
satisfied. If our Poisson structure is nondegenerate@so that the equations~12! do not arise#, this
result suffices to conclude that~11! is involutive, as~13! is the only linear combination of differ-
entiated equations where all second-order derivatives vanish.

In the case of a degenerate Poisson structure we must also analyze prolongations
algebraic equations~12!. We first consider the application of one of the vector fieldsX( l ). Upon
entering the differential equations~11!, a trivial computation yields

X( l )~xk
(a)jk!5S Jlm

]xk
(a)

]zm 1
]Jlm

]zk xm
(a)D jk .
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Exploiting the relationJlmxm
(a)50 we have thus found the integrability conditions

JlmS ]xk
(a)

]zm 2
]xm

(a)

]zk D jk50 , 1< l<n . ~14!

A necessary condition for involution is that these conditions are linearly dependent of the alg
equations~12! or, equivalently, that contracting the coefficients withJnk yields zero. Relabeling
the indicesm andk in the second term, we arrive at the condition

~JnkJlm2JlkJnm!
]xk

(a)

]zm 50 .

Exploiting again the relationJlmxm
(a)50 and using the Jacobi identity~3! we find

~JnkJlm2JlkJnm!
]xk

(a)

]zm 5S Jlm
]Jkn

]zm 1Jnm
]Jlk

]zmDxk
(a)5Jkm

]Jln

]zm xk
(a)50,

and hence this condition is always satisfied by the definition of the one-formsx (a).
As the vector fieldsX( l ) are not linearly independent, the analysis above does not cove

possible prolongations of the constraints~12!. Let Y(b) be r further vector fields such that togethe
with the fieldsX( l ) they span the full tangent spaceTM. This implies the existence of function
Ak

lb andBc
lb such that

@X( l ),Y(b)#5Ak
lbX(k)1Bc

lbY(c) . ~15!

Applying the vector fieldsY(b) to ~12! yields differential equations

Y(b)~xk
(a)jk!50, ~16!

which are obviously algebraically independent of the system~11!. In a strict geometric sense, the
represent integrability conditions, albeit of a rather trivial nature. The more interesting ques
whether it is possible to derive further integrability conditions via cross-differentiations betw
equations in~16! and ~11!, respectively. But one fairly easily sees that this cannot be the ca

A further integrability condition could only be generated by applying one of the vector fi
X( l ) to ~16! and eliminating all arising second-order derivatives using equations obtaine
applying some of the fieldsY(b) to ~11!. But according to~15! we may write

X( l )Y(b)~xk
(a)jk!5~Y(b)X( l )1Ak

lbX(k)1Bc
lbY(c)!~xk

(a)jk! .

The second and the third terms on the right hand side consist of linear combinations of equ
already present in the augmented system~11!, ~12!, ~16!. In the first term we find the expressio
X( l )(xk

(a)jk) of which we have shown above that it may also be written as a linear combinati
equations in~11!, ~12!. Thus the right hand side is algebraically dependent of~11!, ~12!, ~16! plus
the equations obtained by applyingY(b) to ~11! and there are no further integrability condition
hidden.

Hence we have proven that for nondegenerate Poisson structures the system~11! is directly
involutive, whereas in the degenerate case we must only add the trivial integrability cond
~16! to the system~11!, ~12! in order to achieve involution.

The Schouten–Nijenhuis bracket allows us to reformulate these lengthy coordinate ca
tions in an intrinsic language. As already mentioned, the system~11! is equivalent toLXw5
2@X,w#50. Let Y be an arbitrary vector field; then the prolongation of~11! in the directionY is
simply given byLYLXw5†Y,@X,w#‡50. The graded Jacobi identity of the Schouten–Nijenh
bracket yieldsLYLXw5LXLYw2L [X,Y]w. On the right hand side, all second-order derivatives
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X are located in the second term. It vanishes ifY is a Hamiltonian vector field~i.e., a linear
combination of the fieldsX(k)), as@X,Y# is then Hamiltonian, too. However, in this case we a
haveLYw50, so that no integrability conditions appear.

In a similar manner, we can analyze the prolongation of the equationsx (a)(X)50. If Y is a
Hamiltonian vector field, thenLY„x

(a)(X)…5(LYx (a))(X)2x (a)(@X,Y#)5(LYx (a))(X). By Car-
tan’s formula,LYx (a)5iYdx (a)1d(iYx (a)) whereiY denotes the interior derivative with respect
Y. The second term vanishes, asY is Hamiltonian and thusiYx (a)50. For the first term, we
exploit that the codistribution ker] spanned by the formsx (a) is involutive, as it annihilates the
involutive distribution im]. This implies by the Frobenius theorem thatdx (a)5vb

(a)∧x (b) for
some one-formsvb

(a) and henceiXiY dx (a)50. Thus no integrability conditions appear in th
prolongation with respect to a Hamiltonian vector fields and the trivial ones~16! in any other
prolongation.

IV. THE FUNDAMENTAL POWER SERIES SOLUTIONS

Benderet al.1 derived the underdetermined system~11! differently. They considered in som
local coordinate chart then special functionsF (k)PF(M ) given byF (k)(z)5zk. We may call the
functionsf* F (k) the fundamental solutionsof the differential equation~6!, as it obeys a kind of
nonlinear superposition principle: for any functionFPF(M ) we have

~f* F !~ t,z!5F„~f* F (1)!~ t,z!, . . . ,~f* F (n)!~ t,z!… .

Indeed, the functionsf* F (k) are obviously nothing but the components of the flow in the lo
coordinates (z1, . . . ,zn).

Benderet al.1 expanded the fundamental solutions into power series of the form~7! and
determined partial differential equations for the coefficientsFa

(k) . Using our results above it is
straightforward to find these equations. We first apply the relation~8! for a51:

~$F (k),F ( l )%!15$F1
(k) ,F0

( l )%1$F0
(k) ,F1

( l )% .

By the definition of the functionsF (k), the right hand side may obviously be written in the for
X(k)F1

( l )2X( l )F1
(k) . Because of ($F (k),F ( l )%)05$F0

(k) ,F0
( l )%5Jkl, the left hand side evaluates to

~$F (k),F ( l )%!15$Jkl,H%5
]Jkl

]zj $zj ,H%5
]Jkl

]zj $F0
( j ) ,H%5

]Jkl

]zj F1
( j ) .

Putting the pieces together, we find that the first-order coefficientsF1
(k) satisfy the compatibility

conditions~11!. This is of course not surprising: by definition of the flowf and the functionsF (k),
the coefficientsF1

(k) are nothing but the componentsjk of the Hamiltonian vector fieldXH in the
given local coordinates.

We may derive similarly systems of partial differential equations for the higher-order co
cientsFk

( i ) . In second order, the starting point is the relation

~$F (k),F ( l )%!25$F2
(k) ,F0

( l )%1$F1
(k) ,F1

( l )%1$F0
(k) ,F2

( l )% .

The right hand side equalsX(k)F2
( l )2X( l )F2

(k)1$F1
(k) ,F1

( l )%. Using the results above we evalua
the left hand side to

~$F (k),F ( l )%!25$~$F (k),F ( l )%!1 ,H%5H ]Jkl

]zj F1
( j ) ,HJ 5

]Jkl

]zj F2
( j )1H ]Jkl

]zj ,HJ F1
( j ) .

Thus we obtain the following system for the second-order coefficients:

X(k)F2
( l )2X( l )F2

(k)2
]Jkl

]zj F2
( j )5H ]Jkl

]zj ,HJ F1
( j )2$F1

(k) ,F1
( l )% . ~17!
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Note that the homogeneous part of this linear system is identical with our compatibility cond
~11!. It is easy to see that if we continue in this manner, the homogeneous part always re
unchanged. Only the right hand side becomes a more and more complicated expression
coefficients of lower order. More precisely, we find

X(k)Fa
( l )2X( l )Fa

(k)2
]Jkl

]zj Fa
( j )5Ra

kl2 (
b51

a21

$Fa2b
(k) ,Fb

( l )%, ~18!

where the termRa
kl is determined by the recurrence relation

Ra11
kl 5H ]Jkl

]zj ,HJ Fa
( j )1$Ra

kl ,H% , R1
kl50 .

It should be noted that so far we have only shown that the functionsFa
(k) satisfy certain

differential equations. We havenot shown that they form their respective general solution. Inde
we already know from the last section that this is the case only for nondegenerate P
structures. It is trivial to see that

xk
(a)F1

(k)5xk
(a)$F0

(k) ,H%5xk
(a)X(k)H50 , 1<a<r .

Thus we recover~12!. However, using the power series approach we still have no rigorous p
that we have found all equations satisfied by the first-order coefficientsF1

(a) whereas this followed
trivially from our compatibility analysis in the last section.

The higher-order coefficientsFa
(k) also satisfy some algebraic constraints which may be

termined recursively. If we setGa
(a)5xk

(a)Fa
(k) , then a trivial computation yields

Ga11
(a) 5$Ga

(a) ,H%2$xk
(a) ,H%Fa

(k) . ~19!

Of course, such a relation holds for arbitrary one-formsx. The special property of the one-form
x (a)Pker] is that for themG1

(a)50.
Bender et al.,1 explicitly determined and solved for several concrete instances of a

Poisson manifold the inhomogeneous system~17! for the second-order coefficients. They used
traditional approach of finding a particular solution of the inhomogeneous system and addi
general solution of the homogenous system. But obviously,~9! provides us with simpler closed
form expressions for the general solution of the combined system~18!, ~19! for any ordera.

V. AN EXPLICIT EXAMPLE

We detail the calculations presented so far for the Lie–Poisson structure associated w
three-dimensional Lie algebraE2 generating the Euclidean motions inR2. This structure is char-
acterized by the Poisson matrix

J5S 0 0 2y

0 0 x

y 2x 0
D .

If we exclude the origin and confine ourselves toM5R2\$0%, its constant rank is 2 and ker] is
spanned by the single one-formx5x dx1y dy. The vector fieldsX(k) have the form

X(1)52y]z , X(2)5x]z , X(3)5y]x2x]y .

They yield a representation ofE2 on R3, as the only nonvanishing Lie brackets are

@X(1),X(3)#52X(2) , @X(2),X(3)#5X(1) .
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If we write j15F, j25G, j35H, then the evaluation of~11! yields the system~1!.
Obviously,X(1) andX(2) are linearly dependent:xkX

(k)5xX(1)1yX(2)50. Hence~12! takes
the formxF1yG50 and all solutions given by~2! satisfy this equation. However, the system~1!
implies only the relations]/]z(xF1yG)50 and (y]/]x2x]/]y)(xF1yG)50. Thus it pos-
sesses further solutions for whichxF1yGÞ0; one example has been given in the Introductio

The Hamiltonian vector fieldXK associated to an arbitrary functionK is of the formXK5
2yKz]x1xKz]y1(yKx2xKy)]z . As expected, the components are just the components o
general solution~2!. A direct compatibility analysis yields that a general vector fieldX5F]x

1G]y1H]z is Hamiltonian, if and only if its components satisfy

xF1yG50 , Fx1Gy1Hz50 .

This system is equivalent to~1! plus the algebraic constraintxF1yG50.
Let us perform an involution analysis of the system consisting of~1! and the constraintxF

1yG50. Cross-differentiations of the equations within~1! do not lead to any new equation
There is not short-cut for showing this; one must perform some lengthy computations whic
equivalent to our analysis of~13!.

Thez-prolongation of the constraint is already contained in~1!; thus applying neitherX(1) nor
X(2) to the constraint yields an integrability condition. If we applyX(3) to it, we obtain an equation
which is a linear combination of the second and the third equation in the system~1!. Indeed, it is
easy to see that in our special case the one-formx is such that in~14! the expression in the
parentheses vanishes.

However, the vector fieldsX(k) do not form a basis ofTM. Thus we must also study either th
x- or they-prolongation of the constraint. Either one leads to a trivial integrability condition,
xFx1yGx1F50, if we chooseY5]x . Now, as a last step, we must check whether a cro
differentiation of this equation with some equation contained in~1! yields something nontrivial.
But it is easy to see that this is not the case and we have arrived at an involutive system.

VI. CONCLUSIONS

We rederived the results of Benderet al.1 on Lie–Poisson structures in a more geomet
fashion using the formal theory of differential equations and generalized them to arbitrary Po
manifolds. It turned out that their system simply describes necessary and sufficient conditio
the components of a vector field for the field to be Hamiltonian with respect to the given Po
structure. We also corrected an error of Benderet al.,1 in the case of degenerate Poisson structu
where the Poisson matrix admits nontrivial null vectors.

We studied only the formal solvability of our differential systems. In the analytic categor
could use the Cartan–Ka¨hler theorem for proving the existence of analytic solutions~because of
the linearity of the systems, the Holmgren theorem ensures that these solutions are unique
much larger function spaces!. The assumption that the Poisson matrix is analytic is not so res
tive, as it is for example trivially true for any Lie–Poisson structure. In contrast, the restrictio
analytic vector fields is surely too severe for applications.

An existence theory in more general function spaces would require a deeper analysis
systems. In the case of a nondegenerate Poisson structure it is not difficult to prove that bo~10!
and ~11!, ~12! form elliptic systems in the sense that their symbol maps are injective. Thus
could apply the results outlined in the encyclopaedia article by Dudnikov and Samborski.12 But as
for our purposes the formal analysis was sufficient, we refrain from going further in this direc

It is very instructive to see how deeply the involution analysis of our partial differen
system~11!, ~12! is related to Poisson geometry. The two characteristic properties of the Po
matrix J, skew-symmetry and the Jacobi identity~3!, must be applied repeatedly for showing t
vanishing of all integrability conditions. It is tempting to conjecture that conversely the system
the wanted properties, if and only if the matrixJ defines a Poisson structure, but we have not b
able to prove this. Such a proof would require to solve theinverseproblem of compatibility for the
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system ~11!, ~12!. Fairly recently, an algorithmic solution of this inverse problem has b
developed.13,14 However, the involved computations are rather tedious and it seems hopel
perform them for our system.

We studied in this article only classical Poisson systems. Benderet al.1 also considered quan
tum systems where the coordinateszj become noncommutative. We developed recently a theor
involutive bases in a fairly large class of algebras, the polynomial algebras of solvable type.4 This
class contains in particular the universal enveloping algebras of finite-dimensional Lie alg
The latter should provide the right setting for an analogous analysis of the quantum version
evolution equation~6!.
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Discrete symmetry’s chains and links between integrable
equations

A. V. Yurova)
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We consider the discrete symmetry’s dressing chains of the nonlinear Schro¨dinger
equation ~NLS! and Davey–Stewartson equations~DS!. The modified NLS
~mNLS! equation and the modified DS~mDS! equations are obtained. The explic-
itly reversible Bäcklund auto-transformations for the mNLS and mDS equations are
constructed. We demonstrate discrete symmetry’s conjugate chains of the KP and
DS models. The two-dimensional generalization of theP4 equation is
obtained. ©2003 American Institute of Physics.@DOI: 10.1063/1.1523641#

I. INTRODUCTION

Darboux transformations~DT! are very useful method to construct exact solutions of in
grable PDE.1 Some time ago a new approach to the DT~called dressing chains of discre
symmetries! emerged at the horizon of soliton’s mathematics. This approach to proliferate
grable equations was proposed in the example of the Korteweg–de Vries~KdV! and sine-Gordon
equations.2 The scheme to proliferate the integrable equation~we choose the KdV for definiteness!
starts out from Lax pair and DT of this equation. After very simple transformations~see Sec. II!
we obtain new integrable equations with their Lax pairs. The modified KdV (mKdV5m1KdV),
m2KdV, and m3KdV equations were thus constructed, the second of which can be reduced
exponential Calogero–Degasperis~CD! equation by an exponential point change of variables
the third contains the elliptic CD equation. The only price we have to pay for this simplicity
rapidly growing amount of calculation.

Despite its apparent simplicity, the method of dressing chains is an extremely pow
method, as can be illustrated in following example~see details in Refs. 2–4!: as noted in Refs. 2
and 3, the mnKdV equations (n50, . . . ,3), together with the Krichever–Novikov equation, e
haust all the integrable equations of the formut1uxxx1 f (uxx ,ux ,u)50. In Ref. 4 we generalized
the dressing-chain method to considerably (112)-dimensional nonlinear equations: th
Kadomtsev–Petviashvili~KP! and the Boiti–Leon–Pempinelli~BLP! equations. A new result
which is characteristic precisely of multidimensional equations, is the discovery of two typ
dressing chains for the KP equation~we call these the conjugate chains!. The new chain can be
constructed with the help of binary DT.

The aim of this work is the generalization of the dressing-chains method for the non
Schrödinger~NLS! and Davey–Stewartson~DS! equations. The plan of this paper is as follows.
Secs. II and III we review the dressing-chains method for the higher and lower KdV equation
for the higher KP equations. The dressing chains for the NLS and for the DS equation
discussed in Secs. IV and V. In Sec. VI we develop a technique for constructing exact loc
solution of DS equations with a reduction constraint imposed and give some of these solutio
conclude with a discussion on possible role of discrete symmetry’s dressing chains in the the
integrable PDE.

Last but not least, the dressing-chains method allows us to construct new integrable eq
and, on the other hand, to find a link between known ones. For example, the sine-Gordon

a!Electronic mail: yurov@freemail.ru
11830022-2488/2003/44(3)/1183/19/$20.00 © 2003 American Institute of Physics
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and CD equations can be constructed starting out from the KdV equation via dressing c
Maybe it is really only one integrable equation?

II. 2D-P4 EQUATION

Let us begin our discussion of the Borisov–Zykov method by analyzing the simplest o
possible integrable systems, the KdV equation. The starting point is the Lax pair for the
equation

cxx5~u2l!c, c t52~u12l!cx2uxc, ~1!

where the KdV equation

ut26uux1uxxx50. ~2!

Settingt5fx /f, wheref is a partial solution of~2! with thel5m, we can write the Lax pair as

tx52t21u2m, t t5@2~u12m!t2ux#x . ~3!

Exemptingu from ~4!, we get

t t56t2tx2txxx16mtx . ~4!

If m50 then we have the well-known mKdV equation. To construct Lax pair for~4! we use the
DT

u15u22tx , c15cx2tc.

Settings5c1,x /c1 , we get thex chain

~s1t!x52s21t22l1m ~5!

and t chain

~s1t! t5@2~2tx1t21m12l!s22ttx16mt12t3#x .

At last, after introduction of the auxiliary function~denoted byC!

s1t5C,

we obtain the Lax pair for~4!

Cx52C212tC2l1m, C t52@~t22tx1m12l!C12~m2l!t#x . ~6!

Starting out from~6!, we can find the m2KdV ~which can be reduced to the exponential C
equation by an exponential point change of variables! with its Lax pair. Continuing this procedure
we obtain the elliptic CD equation (m3KdV) and it is the end of this way. The m3KdV equation
is the last equation which can be obtained by this method.

At first, one may wonder why the limitation appears by then53. However, we can write the
Lax pairs for the mnKdV with n,4 as two Riccati equations. It is incorrect for the m4KdV.2 This
equation, therefore, is different from the ones found earlier and cannot be used by the old s
On the other hand, as we have mentioned in the Introduction, the mnKdV equations (n
50, . . . ,3), together with the Krichever–Novikov equation, exhaust all the integrable equatio
the formut1uxxx1 f (uxx ,ux ,u)50. So, this limitation is something beyond that. We can und
stand the triviality of this limitation with the help of the Painleve property. Let consider
m1KdV equation~4!. The functiont is the solution of both this equation and two Riccati equatio
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~3! @inserting tx from the first equation~3! in the second one we obtain the second Ricc
equation#, so it is obvious that the functiont has the Painleve property and that it is incorrect
the solutions of the m3KdV with n.3.

In Ref. 5 the continuation of the KdV equation hierarchy in the direction corresponding t
negative power of the spectral parameter is constructed in the following way: let the L op
have the form~1!

L52]x
21u~x,t !,

and the nonlinear equations are

Lt5@L,AN#.

The operatorsAN have the form

AN5 (
m521

N

Km~L !m,

whereN521,22, . . . , andKm are some operators.
The first lower KdV (N521) equation has the form~see Ref. 5!,

KdV21~s![~sx
21sxx! t2~e2s!x50,

wheres is connected withu in the following way:

u52sxx2sx
2 .

Let s5 iq/2, whereq5q(x,t). It easy to see that

KdV21~s!5 1
2 ~ i ]x2qx!~qxt22 sinq!50, ~7!

so we have the Miura transformation between the KdV21 equation and the sine-Gordon equatio
Lax pair for the~7! has the form

cxx5S iqxx

2
2

qx
2

4
1l2Dc, c t5

1

2l2 eiqS cx2
iqx

2
c D . ~8!

Starting out from~8!, we can find the Lax pair for the sine-Gordon equation. To do this
introduce a new functionc̃

c̃5
1

l S cx2
i

2
qxc D . ~9!

Therefore

c̃x5lc2
i

2
qxc̃, c t5

1

2l
eiqc̃, c̃ t52

1

2l
~ iqxt2eiq!c. ~10!

Substituting 2 sinq in place ofqxt ~in the equation for thec̃ t) we can see that~9! and~10! are the
well-known Lax pair for the sine-Gordon equation.

Thus, we can use the method of dressing chains for both higher and lower KdV equation
sine-Gordon, KdV, and CD equations can be constructed starting out from the KdV equatio
dressing chains of discrete symmetries. These are simply different representations of th
equation. From this standpoint,the difference between sine-Gordon, KdV, mKdV, and CD equa-
tions is similar to the difference between the Maxwell equations in different gauges!
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Surprisingly, much of the analysis of the simple system carries over directly to the mu
mensional case. The KP equations are given by

ut16uux1uxxx523a2vy , vx5uy ,

whereu5u(x,y,t), v5v(x,y,t), a2561. The Lax pair for the KP equations is

acy1cxx1uc50, c t14cxxx16ucx13~ux2av !c50. ~11!

Setting f [ logf, t[ f x , wheref is a partial solution of~11!, we can write Lax pair~11! as

aty1~tx1t21u!x50,
~12!

t t1~4txx112ttx14t316ut13ux23av !x50.

It follows from the first equation in~12! that

u52tx2t22aF, Fx5ty . ~13!

Substituting~12! into the second equation in~13! and making some simple transformations, w
obtain the well-known mKP equation6

t t26t2tx1txxx53a~2txF2aFy!, Fx2ty50. ~14!

We now construct dressing chains of discrete symmetries. The KP equation admits the D
transformation1

c15c2tc, u15u12tx , v15v12ty . ~15!

Settings[ logc1, s5sx , we see thats satisfies the system of equations obtained from~12! by
replacingu→u1 andv→v1 . Comparing these equations with~12! and eliminating the potentials
u andv, we obtain

a~s2 f !y1~s1 f !xx1sx
22 f x

250,
~16!

~s2 f ! t1@2~2s1 f !xx16sx
223 f x

2#x14sx
316~ f xx2 f x

22a f y!sx26a~ f xy2 f xf y!12 f x
350.

The first equation in~16! determines they chain and the second determines thet chain, denoted
by Cy

(1) and Ct
(1) , respectively. Later~in Sec. III! we will generalize the Borisov–Zykov ap

proach for the case of the KP equation, and we will find that the results of Borisov–Zykov
over with only one important change.

As we have seen, the Painleve property is connected with the dressing chains. The ap
of using dressing chain~5! to construct theP4 equation was proposed in Ref. 7. It is interesting
apply this method to the chain~16!.

To do this, it is helpful to insert the periodic condition. It is well known that the perio
condion for~5! led to theP4 equations. Let us consider the dressing chainCy

(1) ~16!. Setting f
5 f n , s5 f n11 , we use the condition of periodic

f n1N5 f n1c~y!. ~17!

It easy to see that

un1N5un1ac8,

so the condition~17! gets us some generalization of the harmonic oscillator. We chooseN53 and
c522y/a. Introducing new fieldsgn , n51,2,3
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f 15 1
2 ~g12g21g31c!, f 25 1

2 ~g11g22g32c!, f 35 1
2 ~2g11g21g31c!,

we can now rewrite the equations for thef n in the following way:

a~g2y
2g3y

2cy!1~g2x
2g3x

!g1x
1g1xx

50,

a~2g1y
1g3y

1cy!1~g3x
2g1x

!g2x
1g2xx

50,

a~g1y
2g2y

2cy!1~g1x
2g2x

!g3x
1g3xx

50.

Excluding g3 , and using thecompatibility condition]y(g2,xx)5]x
2(g2,y), we get the nonlinear

equation which can be written via some transformation as

zxx5
1

2

zx
2

z
1

3

2
z314xz212~x222!z1

b

z
1

3a2q2

2z
23aqz1

a

z
]x

21]y~z312xz223aqz!,

zy5qx , ~18!

wherez5g1x
and q5g1y

. The one-dimensional limit~where]y5q50) of Eq. ~18! is the P4

equation, so~18! is the two-dimensional generalization of theP4 equation and should be called th
2D-P4 equation.

The price we pay for the D52 is that locality inx is lost, that is, in the usual run of things fo
the multidimensional integrable systems.

III. CONJUGATE CHAINS FOR THE KP EQUATIONS

The correspondence between the KdV dressing-chains formalism that we developed
previous section and the KP dressing-chains formalism is quite remarkable. We find that
the entire KdV formalism can be imported into the KP chains.

Chains~16! involve two Lax pairs for Eqs.~14!, which arise after introducting the auxiliar
function ~denoted byC! according to one of two rules

C5s2 f , C5s1 f . ~19!

Using the first rule, we obtain

aCy1~2 f 1C!xx12 f xCx1Cx
250,

C t12~2Cxx16 f xCx13Cx
213u!x16uCx14~3 f 1C!xCx

250, ~20!

u[ f xx1 f x
22a f y ,

from ~16!. The compatibility condition for these equations is

~ f t22 f x
31 f xxx!x53a~2 f xxf y2a f yy!, ~21!

which is merely another form of the mKP equation~for t5 f x andF5 f y).
This process can be repeated. In particular, the system~20! contains a new nonlinear equatio

obtained by eliminating the potentialf . For this purpose, we linearize the first equation in~20! by
substituting

f 52 1
2 ~C1aj!, ~22!

wherej5j(x,y,t). Inserting~22! in the second equation in~20!, differentiating it with respect to
x, and introducingS[Cx , we obtain the system
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St1Sxxx2
3
2S

2Sx523a2@~ 1
2jx

21jy!S1~ 1
2jx

21jy!x#x ,

~23!
Sy5~jxx1jxS!x .

Although Eq.~23! looks like a two-dimensional generalization of the mKdV equation, the o
dimensional limit~where]y50) of ~20! is

gt1S gxx2
a2

2
g32

3

2

gx
2

g D
x

50

@whereg(x,t)[jx5exp(2C)] rather than the mKdV equation. After an exponential point cha
of variable, this equation reduced to the exponential CD equation. Therefore, Eq.~23! should be
called the two-dimensional CD equation rather than the two-dimensional mKdV equation.

In Ref. 2, another representation forC was used in the derivation of the CD equation, name
the representation determined by the second formula in~19!. We have used this representation
Ref. 4.

In addition to the usual DT, the KP equations admit the so-called binary Darb
transformations,1 which, as we now show, allow us to construct new KP dressing chains.

It is obvious that the KP equation admits the Lax pair

2axy1xxx1ux50, x t14xxxx16uxx13~ux1av !x50, ~24!

which can be obtained from~11! by simply replacinga→2a. Let

dQ~x,c!5xcdx1
1

a
~xxc2xcx!dy14S cxxx2xxxc2xcxx2

3

2
uxc Ddt,

Q~x,c![E dQ~x,c!.

It is easy to see that the one-formdQ(x,c) is closed ifc andx are solutions of Eqs.~11! and~24!.
Pair ~24! also admits the Darboux transformation

x215x2rx, u215u12rx , v215v12ry , ~25!

wherer5(log x̃)x , andx̃ is a partial solution of~24!. Applying DT ~15!, we have

x15
A1BQ~x,c!

c
,

whereA andB are arbitrary constants. Now, using~25! we obtain

u1,215u12@ log~A1BQ~x,c!!#xx , v1,215v12@ log~A1BQ~x,c!!#xy .

We set s[x1,x /x1 . This function satisfies the equations obtained from~12! by replacingu
→u1 , v→v1 , anda→2a. In other words, this yields new integrabley- andt-chains (Cy

(2) and
Ct

(2)), which can be calledconjugateto theC(1) chains discussed above

2a~s1 f !y1~s1 f !xx1sx
22 f x

250,

~s1 f ! t1@4~s1 f !xx16sx
223 f x

2#x14sx
316~ f xx2 f x

22a f y!sx26a f xf y22 f x
350,

where we still havet5 f x ands5sx . Comparing the expressions forC(2) andC(1) from ~16!, we
see that these chains do not reduce to each other, thereby justifying the term ‘‘conjugate
implies that the chainsC(2) lead to new integrable equations and also to the corresponding
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pairs. To construct these, we should again use two possibilities to defineC; see Eq.~19!. In the
present case, it is convenient to choose the second formula. As a result, we obtain yet anot
pair for the mKP equation~21!

2aCy1Cxx22 f xCx1Cx
250,

C t12~2Cxx23 f xCx13Cx
2!x16~ f x

22a f y!Cx26 f xCxx14~C23 f !xCx
250.

Linearizing the first equation by the substitution that differs from~22! only by the sign of the
right-hand side and defined asS[Cx , we get

St14Sxxx2
3
2S

2Sx53a@jxxS12jxSx1a~jy2 1
2jx

2!S#x ,

~26!
aSy5~Sx2ajxS!x .

Equations~26! are similar to~23! and also reduce to the CD equation in the one-dimensio
limit ~for a251). At the same time, as follows from the method of their construction, Eqs.~26! do
not reduce to system~23! via a 1:1 change of dependent variables~by a gauge transformation!;
therefore, Eqs.~26! can be called conjugate to the Eqs.~23!.

IV. DRESSING CHAINS FOR THE NLS EQUATION

The results in the last section indicate that generalizing the dressing-chain method to c
erably more complicated NLS and DS equations can be very fruitful. In this section we us
dressing chains of discrete symmetries to proliferate the NLS equation. Recently, Shab
studied such chains for the Zakharov–Shabat spectral problem in some unusual gauge.8 We have
another aim: to construct higher mNLS equations. We can do it in two gauges, each with it
advantages and disadvantages.

~1! Standard symmetric Zakharov–Shabat gauge. In this gauge we have very clear connectio
between NLS and mnNLS equations. The disadvantage of this gauge is a very rapidly grow
amount of calculations. For then.2 we obtain very cumbersome equations.

~2! New Shabat gauge.8 The advantage of this gauge is that the equations have more com
form. However, the connection between real NLS and real mNLS equations is not obvio
this gauge. The reconstruction of the mnNLS for a n.2 must be checked tediously.

Here, we choose the standard gauge for the spectral problem; therefore, the Lax pair for th
equation is

C t522is3CL212iUCL1VC, Cx52 is3CL1 iUC, ~27!

where

U5S 0 u

v 0D , s35S 1 0

0 21D , V5s3~ iU 22Ux!,

andL is an arbitrary constant matrix. The compatibility condition gets us the NLS equation

iut1uxx12u2v50, 2 iv t1vxx12v2u50.

Let F is a partial solution of~27! with the L5diag((l1m)/2,(l2m)/2), C is the same for the
L15diag((l11m1)/2,(l12m1)/2) and t[FLF21. This matrix function is the solution of the
system

tx5 i @t,s3#t1 i @U,t#, t t52txt1@V,t#. ~28!
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The Darboux transformation has the form

C→C15CL12tC, U→U15U1@t,s3#. ~29!

There are two discrete symmetries of the Zakharov–Shabat spectral problem:S- andT symme-
tries. The transformation~29! is S2 symmetry. We must use squaredS symmetry because a
elementaryS symmetries are insufficient to construct exact solutions of the NLS.

Using ~29!, we obtain

u→u15u22b, v→v15v12c, ~30!

where

t5S a b

c dD . ~31!

Substituting~31! into ~28!, we get

ax52dx52 i ~2bc2uc1vb!, bx52 i ~2bd1~a2d!u!, ~32!

cx5 i ~2ac1~a2d!v !,

and

at5~a2!x12bxc2bvx2cux , dt5~d2!x12bcx1bvx1cux ,
~33!

bt52~ ibuv1axb1bxd!1~a2d!ux , ct52~2 icuv1acx1cdx!1~a2d!vx .

Calculating the determinant and trace of matrixt we get

ad2bc5
l22m2

4
, a1d5l. ~34!

Using ~34!, we get

a5 1
2 ~l6Am224bc!. ~35!

Eliminating u andv from the last two Eqs.~32! and putting everything together, we find mNL
(m1NLS) equation

~m224bc!~ ibt1bxx22b2c!12l~lc12icx!b
212~bxc12bcx!bx[~m224bc!b~b,c!50,

~36!
~m224bc!~2 ict1cxx22c2b!12l~lb22ibx!c

212~bcx12bxc!cx[~m224bc!g~b,c!50.

The designationsb(b,c) andg(b,c) will be useful @see~41!, ~42!#.
As we have mentioned above, the NLS equation has a broader set of symmetries. In a

to the Darboux transformations, the discrete symmetries include the Schlesinger transform
or T symmetries. TheT symmetries produce an explicity invertible Ba¨cklund auto-transformations
for the NLS equation

u→u15uxx1u2v2
ux

2

u
, v→v15

1

u
,

and
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u→u215
1

v
, v→v215vxx1v2u2

vx
2

v
,

where

~u1!215~u21!15u, ~v1!215~v21!15v.

These symmetries are related to the Toda chain and some of its generalizations.9

The mNLS equation~36! has the similar property. We have very cumbersome Schlesi
transformations for~36! so we show ones whenl5m50. In this case,~36! has an elegant form

ibt1bxx22b2c2
bxcx

c
2

1

2

bx
2

b
50,

~37!

2 ict1cxx22bc22
bxcx

b
2

1

2

cx
2

c
50.

The explicity invertible Ba¨cklund auto-transformations for~37! are

b→b15
1

4

~2cbx
222cbbxx1cxbxb14c2b3!2

c2b~bx
224cb3!

, c→c15
4cb2

bx
224cb3 ,

b→b215
4bc2

cx
224bc3 , c→c215

1

4

~2bcx
222bccxx1bxcxc14b2c3!2

b2c~cx
224bc3!

.

It is easy to verify that

~b1!215~b21!15b, ~c1!215~c21!15c.

To obtain dressing chains of discrete symmetriesS2, we construct new matrix functiont1

5C1L1C1
21 with C1 from ~29!. Its elementsa1 , b1 , c1 , andd1 are solutions of~32!–~35! by

replacingl→l1 , m→m1 , u→u1 , and v→v1 @see~30!#. Eliminating potentialsu and v, we
obtain our chains

~l22a!b1,x2~l122a1!bx12i ~l12a1!~l22a!b122i ~l122a1!ab50,

~l22a!c1,x2~l122a1!cx22i ~l22a!a1c112i ~l122a1!~l2a!c50,
~38!

b1,tb2b1bt12@~l2a!b1bx2~l12a1!b1,xb#1~l122a1!~b2!x1K1b11M1b50,

c1,tc2c1ct12~ac1cx2a1c1,xc!1~l122a1!~c2!x1K2c11M2c50,

where

K154iC~2,2!b212@~a2a1!x12iB~22,22!c#b2~l22a!Bx~22,22!,

K2524iB~0,2!c222@~a2a1!x12iC~0,22!b#c2~l22a!Cx~0,22!,

M15~l122a1!Bx~22,22!, M25~l122a1!Cx~0,22!,

B~n,k!5
ibx1~nl2ka!b

l22a
, C~n,k!5

icx1~nl2ka!c

l22a
,

and fieldsa, d (a1 , d1) are expressed in term ofb, c (b1 , c1) via ~34!–~35!.
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Chains~38! involve Lax pair for the mNLS~36!, which arise after introducing the auxiliar
fields

c[
b1

b
, f[

c1

c
, A[a1 .

After some calculations, we obtain

cx5S 2i ~A2l1!2
bx

b Dc1
i ~2A2l1!

b
B~0,2!,

fx5S 2iA2
cx

c Df1
i ~2A2l1!

c
C~2,2!,

c t52~l12A!cx24ibcfc222i ~bC~2,2!c1cB~0,2!f!c1Pc1
l122A

b
Bx~0,2!,

~39!

f t52Afx14ibccf212i ~bC~2,2!c1cB~0,2!f!f1Qf2
l122A

c
Cx~2,2!,

Ax52 i @2bcfc1bC~2,2!c1cB~0,2!f#,

At524il1bcfc2b@2iAC~2,2!1Cx~2,2!#c1c@2i ~A2l1!B~0,2!1Bx~0,2!#f,

where

P5
@2bx~l12A!2 ibxx#~m224bc!12~bc!x@2b~l2a!2 ibx#

b~m224bc!
,

Q5
~2cxA1 icxx!~m224bc!12~bc!x~2ca1 icx!

c~m224bc!
.

The mNLS equation~36! arises from the compatibility condition of~39!

~cx! t5~c t!x , ~fx! t5~f t!x , ~Ax! t5~At!x . ~40!

From the first two equations~40!, we get two nonlinear equations

b1~b,c!50, g1~b,c!50.

The connection between these equations and the mNLS~36! is given by

b1~b,c!5bS b~b,c!

b D
x

, g1~b,c!5cS g~b,c!

c D
x

, ~41!

so we have not~36! but

b~b,c!5mb, g~b,c!5m8c, ~42!

wherem andm8 are arbitrary constants. Substitutingbt andct @which are expressed from~42!#
into the third equation of the system~40!, we obtainm85m. Thus, using the gauge transformatio

b→e2 imtb, c→eimtc,

we can reduce~42! to mNLS ~36!
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b~b,c!2mb→e2 imtb~b,c!50, g~b,c!2mc→e2 imtg~b,c!50.

This completes the proof that the system~39! is the Lax pair of mNLS. We are giving two
formulas~for convenience of reader! which are useful to check for this Lax pair

ax5
~bc!x

l22a
, at5lax1bxc2bcx2bCx~0,22!1cBx~22,22!.

We will shortly see the advantage of carefully working out the details of the NLS dres
chains. We will find that almost all of this formalism carried over directly into the more com
cated DS dressing chains. Formulas for the DS dressing chains are very bulky but have th
structure.

V. CONJUGATE CHAINS OF THE DS EQUATIONS

The DS equations has the form

iut1uxx1
1

a2 uyy2
2

a2 u2v1qu50, 2 iv t1vxx1
1

a2 vyy2
2

a2 v2u1qv50, ~43!

qyy2a2qxx524~uv !xx ,

whereu5u(x,y,t), v5v(x,y,t), q5q(x,y,t). We have the DS-I system ifa51, and DS-II if
a5 i . Under the reductionv56ū, one obtains a known model that describes the propagatio
a small amplitude wave packet that is quasi-one-dimensional and quasi-monochromatic o
surface of a nonviscous curl-free liquid.10 The quantityu is the envelope of the velocity potentia
while q describes the nonlocal flow generated by the wave packet. A different application o~43!
is related to the dynamics of plasma waves.11 We will not use this reduction restriction in thi
section.

Lax pair for the~43! has the form

cy5acx1uf, fy52afx1vc,
~44!

c t52icxx1
2i

a
ufx1S 1

2 F 1

a
Fy1FxG2

i

a2 uv Dc1
i

a2 ~aux1uy!f,

f t522ifxx1
2i

a
vcx1S 1

2 F 1

a
Fy2FxG1

i

a2 uv Df1
i

a2 ~avx2vy!c,

whereq52 iF x .
Let $c1 ,f1 ;c2 ,f2 ;c,f% be solutions of~44! for the sameu, v, andF. DT is given by

c→c15cx2ac2bf, f→f15fx2cc2df,

u→u15u12ab, v→v15v22ac, F→F15F14i ~a1d!, ~45!

where

a5
c1,xf22c2,xf1

D
, b5

c2,xc12c1,xc2

D
, c5

f1,xf22f2,xf1

D
, ~46!

d5
f2,xc12f1,xc2

D
, D5c1f22c2f1 .

The quantitiesa, b, c, d are solutions of the system
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ay5a~ax12bc!1uc2vb, by5a~bx12bd!1~d2a!u1ux ,

cy52a~cx12ac!1~a2d!v1vx , dy52a~dx12bc!2uc1vb,
~47!

at52i F S ax12bc1a21
q

4D
x

12~a1d!bcG1
i

a2 @bvy1cuy2~uv !x#

1
i

a Fcux2bvx12~cdu2abv1~uc!x!1
qy

2 G ,
bt52i F ~bx12bd!x12S ax1bc1d21

q

4DbG1
i

a2 @uxy1~d2a!uy22buv#

1
i

a
@uxx1~3d2a!ux12~dx1d22ad1bc!u22b2v#,

ct522i F ~cx12ac!x12S dx1bc1a21
q

4D cG2
i

a2 @vxy1~a2d!vy22cuv#

1
i

a
@vxx1~3a2d!vx12~ax1a22ad1bc!v22c2u#,

dt522i F S dx12bc1d21
q

4D
x

12~a1d!bcG2
i

a2 @bvy1cuy2~uv !x#

2
i

a Fcux2bvx12~cdu2abv2~bv !x!2
qy

2 G .
These equations can be obtained from~44!. Equations~47! are similar to~32! and~33!. The Lax
pair ~44! and Eqs.~47! are simply two different representations of the same equation. To cons
mDS equations we must first express fieldsa andd via one functionu5u(x,y,t), defined by the
relations

a5
aux1uy

2a
, d5

aux2uy

2a
. ~48!

It is easy to check the accuracy of this representation by the substitution~48! into the first and
fourth equations~47!. Second, we must exclude potentialsu andv from the first four equations
~47!. Introducing new fieldsj5j(x,y,t), X5ux , Y5uy

q522Xx2X224bc1
1

a2 ~j2Y2!,

and putting everything together, we find mDS~mDS-I if a51 and mDS-II ifa5 i ) equations as
the system of five equations for the five functionsb, c, j, X, andY:

ibt12~bX1bx!x1
1

a
@~UX1Ux!x12b~Uc2Vb!22Y~bX1bx!#

1
1

a2 @Uxy2U~Xy1XY!22~UxY1bUV!1jb#1
1

a3 Y~UY2Uy!50,
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2 ict12~cX1cx!x2
1

a
@~VX1Vx!x22c~Uc2Vb!22Y~cX1cx!#

1
1

a2 @Vxy2V~Xy1XY!22~VxY1cUV!1jc#2
1

a3 Y~VY2Vy!50,

iXt14@~bc!x12Xbc#2
2

a
@X~Vb2Uc!14cby22~cU!x1bVx2cUx2YXx#

2
2

a2 @~UV!x2Vby2Ucy1Y~bV1cU!#2
1

a3 ~Y22j!y50,

~49!

iYt14~byc2bcy!1
1

a
@2~Uyc2Ucy1Vyb2Vby!1jx#50,

Xy2Yx50,

where

U5
G1

2a~2bcY1a~bcx2bxc!!
, V5

G2

2a~2bcY1a~bcx2bxc!!
,

G15a3@bxXx2bXxx12b~2bcX1bxc2bcx!#

1a2@2~bcy2byc!2~Xx14bc!Y#b1a~bXyy2bxYy!1bYYy ,

G25a3@cxXx2cXxx12c~2bcX2bxc1bcx!#

1a2@2~bcy2byc!1~Xx14bc!Y#c1a~cXyy2cxYy!2cYYy .

As we have mentioned above, the NLS equation has two types of discrete symmetries
boux and Schlesinger transformations. In just the same way, the discrete symmetries of
equations includeT symmetry. These transformations are given by12,13

u→u15u~uv1a2~ logu!xx2~ logu!yy!, v→v15
1

u
, q→q15q14~ logu!xx ,

u→u215
1

v
, v→v215v~uv1a2~ logv !xx2~ logv !yy!, q→q215q14~ logv !xx .

Similar transformations for~49! are given by

b→b15
M1

aU~U12ab!
, c→c15

b

U~U12ab!
,

X→X15X12a
Ubx2Uxb

U~U12ab!
, Y→Y15

2U2Y12a@UUx2bUy1aU~bx1bX!#

U~U12ab!
,

j→j15j14a
a2U~bxx1~bX!x!1a@b~UYx2Uxy!1U~Uxx2bxY!#2UUxY

U~U12ab!
,

and
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c→c215
M 21

aV~V22ac!
, b→b215

c

V~V22ac!
,

X→X215X22a
Vcx2Vxc

V~V22ac!
, Y→Y215

V2Y12a@VVx2cVy2aV~cx1cX!#

V~V22ac!
,

j→j215j24a
a2V~cxx1~cX!x!2a@c~VYx2Vxy!1V~Vxx2cxY!#2VVxY

V~V22ac!
,

where

M15a3@U2b~2Xx2X2!12U~~Uxb2Ubx!X1~U2!xbx14~Ub!2c1~Ux
222UUxx!b#

1a2U@U~UXx12bYx!1~2Uyb2UUx!X22UbxY14U2cb22Uxyb2UUxx12bxUy

12Ux
2#1a@U3~Yx1XY1Uc!1U2~bY222UxY2Uxy!1Uy~~U2!x2bUy!#

1U2Y~UY2Uy!,

M 215a3@V2c~X222Xx!22V~Vxc2Vcx!X2~V2!xcx24~Vc!2b2~Vx
222VVxx!c#

1a2V@V~VXx12cYx!1~2Vyc2VVx!X22VcxY14V2bc22Vxyc2VVxx12cxVy

12Vx
2#2a@V3~Yx1XY1Vb!1V2~cY222VxY2Vxy!1Vy~~V2!x2cVy!#

1V2Y~VY2Vy!.

It is possible to verify thatX61,y5Y61,x , (b1)215(b21)15b, and so on.
To obtain dressing chains of discrete symmetries, we must exclude potentialsu, v, q from the

two systems:~47! and the system of equations obtained from~47! by replacinga→a1 , b→b1 ,
c→c1 , d→d1 , q→q15q14(a1d)x , u→u1 , v→v1 @it is necessary to use~45!#. As a result, we
havey chains

@2bc~d2a!1bxc2bcx#~a1,y2aa1,x!1~bc12b1c!~ay2aax!x1~bc12b1c!~bcy2byc!

1a@~b1c12b1c11bc1!~bcx2bxc!14bc~ac1~b1b1!2b1d~c1c1!!#

1@~bc11b1c!~a2d!1b1cx2bxc1#~ay2aax!50,

~bc12b1c!@~b12b!y2a~b1b1!x#1~a2a12d1d1!@a~a1,xb2axb1!1ayb12a1,yb#

12a@~b1b1!~abc11cb1d1!2bb1~c1c1!~a11d!#50,
~50!

~b1c2bc1!@~c12c!y1a~c1c1!x#1~a2a12d1d1!@a~a1,xc2axc1!1ayc12a1,yc#

22a@~c1c1!~a1c1b1cdb1!2cc1~b1b1!~a1d1!#50,

~a11d1!y2a~a12d1!x50,

and t chains

a2~a12a! t1 i @2a2~~a22a1
222b1c12a1,x2dx!x12~~a1d!bc2~b1b1!c1d12~c1c1!a1b1

2~bc1!x!2bxc12b1cx!1a~~c23c1!Ux1~b1b1!Vx12~b1cy2byc12~a1d!xy

1~bx1a1b12ab!V2~c1,x1c1d12cd!U !!1~b2b1!Vy1~c2c1!Uy#50,
                                                                                                                



ore

e that

te. It
s true

ir

1197J. Math. Phys., Vol. 44, No. 3, March 2003 Discrete symmetry’s chains and links

                    
a2~bb1,t2btb1!1 i @2a2~2b2~a1d12b1c1!22bb1
2~c11c!1bxxb12b1,xxb22bd1,x~b1b1!

12~bxdb12b1,xd1b!1b@a1bx22a1,xb12bxx23bxd112~b1~d22bc!2d1
2~b1b1!!# !

1a~~b12b!Uxx1~3~b1d2bd1!1a1b2ab1!Ux12@b1bV~b1b1!1bby~a12d1!2bbxy

1U~b1dx2bd1,x1b1d22bd1
22bb1~c1c1!1ba1d12b1ad!# !1Uxy~b12b!1Uy~b~a1

2d1!2b1~a2d!!#50,
~51!

a2~cc1,t2ctc1!1 i @2a2~2c2~b1c12a1d1!12cc1
2~b11b!1c1,xxc2c1cxx12ca1,x~c1c1!

12~ca1c1,x2c1acx!1c@2c1d1,x2d1cx1cxx13cxa112~c1~bc2a2!1a1
2~c1c1!!# !

1a~~c12c!Vxx1~3~ac12a1c!1cd12c1d!Vx12@c1cU~c1c1!1ccy~d12a1!2ccxy

1V~c1ax2ca1,x1c1a22ca1
22cc1~b1b1!1ca1d12c1ad!# !1Vxy~c2c1!1Vy~c~a12d1!

2c1~a2d!!#50,

a2~d12d! t1 i @2a2~~d1
22d212b1c11ax1d1,x!x22~~a1d!bc2~b1b1!c1d12~c1c1!a1b1

2~b1c!x!1bxc11b1cx!1a~~b23b1!Vx1~c1c1!Ux12~c1by2b1cy2~a1d!xy

1~cx1c1d12cd!U2~b1,x1a1b12ab!V!!1~c12c!Uy1~b12b!Vy#50.

These formulas are an awful sight! Unfortunately, I don’t know how to write them in m
compact form in our gauge. Equation~51! has the best form I could imagine.

Although these equations are long and difficult, the end result is quite simple. We can se
all of the (111) NLS formalism carried over directly into the (211) DS dressing chains. In
particular, the chains~51! involve Lax pair for the mDS~49!. We do not give it here.

As noted in Sec. III, the KP equations admit two types of chains, which we call conjuga
is a new result, which is characteristic precisely of multidimensional systems. Of course, it i
for the DS equations.

To construct the chains which are conjugate to~50!–~51!, we must introduce the new Lax pa
for the DS equations@p5p(x,y,t), f 5 f (x,y,t)]

py5apx2v f , f y52a f x2up,
~52!

pt522ipxx1
2i

a
v f x2S 1

2 F 1

a
Fy1FxG2

i

a2 uv D p1
i

a2 ~avx1vy! f ,

f t52i f xx1
2i

a
upx2S 1

2 F 1

a
Fy2FxG1

i

a2 uv D f 1
i

a2 ~aux2uy!p,

two matrix functions

C5S c1 c2

f1 f2
D , F5S p1 f 1

p2 f 2
D ,

and one form

dV5FC dx1aFs3C dy12i S Fs3Cx2Fxs3C1
1

a
Fs3C D , V5E dV.

This one form is closed ifc1,2, f1,2, p1,2, andf 1,2 are solutions of Eqs.~44! and~52! for the same
u, v, F. It is easy to see that the quantities
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A5
p1,xf 22p2,xf 1

D
, B5

f 1,xf 22 f 2,xf 1

D
, C5

p2,xp12p1,xp2

D
,

D5
f 2,xp12 f 1,xp2

D
, D5p1f 22p2f 1 .

are solutions of they system

Ay5a~Ax12BC!1uC2vB, By52a~Bx12AB!1~D2A!u2ux ,
~53!

Cy5a~Cx12CD!1~A2D !v2vx , Dy52Ay1a~A2D !x .

Here, we don’t needt system~four equations for theAt , Bt , Ct , andDt).
The Darboux transformation~45! @for the system~44!# give us the transformation rule for th

functionsA, B, C, D

A→a15L112a, B→b15L122b, C→c15L212c, D→d15L222d,

wherea, b, c, andd are defined in~46!, andL ik are elements of the matrixL5CV21F, i ,k
51,2. Transforming the system~53! and exluding potentialsu andv from this system and from
the first four equations~47!, we gety chains which are conjugate to~50!. There are four equations
two of them are equaivalent to the first and fourth equations~50!. The remaining two equations ar
given by

~bc12b1c!@~b1b1!y1a~b1b1!x#1~a1a12d2d1!@a~axb12a1,xb!1a1,yb2ayb1#

22a@~b1b1!~abc11a1b1c!2bb1~c1c1!~d1d1!#50,

~b1c2bc1!@~c1c1!y2a~c1c1!x#1~a1a12d2d1!@a~axc12a1,xc!1a1,yc2ayc1#

12a@~c1c1!~bc1d11b1cd!2cc1~b1b1!~a1a1!#50.

The conjugatet chains can be obtained by the same way. We do not give them here.

VI. ON THE LOCALIZED SOLUTIONS OF THE DS EQUATIONS

Discrete symmetries are a good way to obtain exact solutions of the nonlinear integ
equations. In Ref. 14 we applied the DT (S symmetry! to construct exact solutions to the DS-I an
DS-II equations~the same to the BLP equations; see Ref. 15!. In particular, we have obtained th
dromion solutions of the DS-I equations. In this section we use theT symmetry to construct
nonsingular solutions to the DS-I that fall off according to the exponential and/or rationa
along all directions in the plan~see also Ref. 16!. In the rest of this section we present~via S
symmetry! novel exact solution of the DS-II equations describing the soliton on the plane-w
background.

A. DS-I equations

To study the DS-I equations it is convenient to use the following change of variables:

]x→
1

&
~]x1]y!, ]y→

1

&
~]x2]y!, v→2

ū

2
.

We are interested in localized solutions to the DS-I equations which move without s
distortions, and we look for these solutions in the form

u~ t,x,y!5v~ t,x,y!5U~j,h!exp~ iu!, q~ t,x,y!5Q~j,h!,
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where

j5x22at, h5x24bt, u5ax1by2~a21b2!t,

andU(j,h) is the real function. It was shown in Ref. 16 that a solution to the DS-I equations
be found in this setting from the nonlinear Liouville equation

]x]yF5 1
2 exp~F!, ~54!

for the functionF[ log(U2). This result was obtained via theT symmetries~see the previous
section!.

It is convenient to introduce the boundary conditions for theU(x,y) as

U~x,0!5A~x!, U~0,y!5B~y!, A~0!5B~0!5C, ~55!

whereA(x) andB(y) are the given functions. Now, we can use the solution to the Gousat pro
for ~54! given in Ref. 17, from which we find

U~x,y!5
4CA~x!B~y!

4C22*0
xdpA2~p!*0

ydqB2~q!
. ~56!

Using T symmetries, one can also find the explicit expression for theQ(x,y) field

Q~x,y!5
1

2 S P8S 1

P8D 9
1G8S 1

G8D 9D2
3

4
~@~ log P8!8#21@~ logG8!8#2!

1
2

PG24 S PG91P9G2
~PG8!21~P8G!218P8G8

PG24 D ,

where

P~x!5
1

C E
0

x

dpA2~p!, G~y!5
1

C E
0

y

dq B2~q!.

Expression~56! also allows us to construct localized solutions. For example, choosing
boundary functions in the form of two solutions of the NLS equation, we obtain the well-kn
‘‘one-dromion’’ solution.18 Other localized objects are found by choosing the boundary condit
appropriately. Thus, assumingA(x) andB(y) to be solutions of the KdV equation, we obtain
new solution that decays exponentially inall directions.16 It is possible to show that these equ
tions are different from the~L,M! dromions19 andN2-soliton solutions built in Refs. 20 and 21

The rational localized solutions~‘‘lamps’’ ! are obtained in the same way. We get the two-la
solution and the four-lamp solution in Ref. 16. One can always choose the parameters such
solutions falling off in all directions according to rational law are nonsingular. Finally, we
obtain the localized solution falling off according to the exponential law as a function ofx and
according to the ratianol law as a function ofx.

B. DS-II equations

We couldn’t find a localized nonstationary solution of the DS-II equation. We present
soliton on the plane-wave background. We choose the initial solution of the DS-II equation

u5A exp~ iS!, S52~2A21a22b2!t1ax1by, q50,

whereA, a andb are real constants. The solutions of the Lax pair~44!
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c15 f expS i
S

2
1M D , c25

i ~2m2b!2p

2A S f 22i
a1

p DexpS i
S

2
1M̄ D ,

where

f 5a1Fx1
1

p
~~b22m!y12~2~bm2A222m2!2ap!t !G1a2 ,

M5mx1 1
2 ~~p2a!y1@p~b12m!24am#t !, p21@4A21~b22m!2#250.

Using ~45! ~with m̄5m, ā15a1 , anda250) we get nonsingular solutionu1 which is the soliton
on the plane-wave background

uu1u2→A2 at x21y2→`.

This solution is a two-dimensional generalization of the ‘‘exulton’’ solution of the NLS buil
Ref. 1.

VII. CONCLUSION

The past years of intense theoretical research have made it increasingly clear that the s
integrability most likely lies in the power of discrete symmetries. Let us summarize some o
promising features of the discrete symmetries.

~1! It is an extremely powerful method to construct exact solutions of integrable equations
~2! This approach includes all ‘‘soliton miracles:’’ finite-gap solutions, the Painleve property,
~3! Discrete symmetries allow us to proliferate integrable equations. For example, the

MKdV theory can be considered as the DT theory and the Toda–Volterra theory ca
considered as the theory ofS- andT symmetries of the NLS equations~Ref. 9!.

~4! Discrete symmetries led to a connection between integrable system and supersymmet
~5! Discrete symmetries allow us to construct discrete integrable systems.

Ideally, we would want a unified theory to unite and understand all soliton miracles. Ther
two ways to find this unified theory. The first path is connected with the Hirota bilinear differ
equation.22 This famous equation is known to provide a canonical integrable discretizatio
most important types of soliton equation.

The second path is the theory of dressing chains. This approach allows us to prol
integrable equations and, at the same time, to establish a link between known integrable eq
~it is clear that the Miura map can be obtained from the dressing chains!. Ideally, we want to show
that all integrable equations are nothing but different forms of a single equation!

Even if this direction is right, it is still a long way off. Now, the theory itself often seems l
a confused jumble of random~but useful! rules and random~but remarkable! observations. It
remains to be seen how useful the dressing chains will become in the future.
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Scattering of solitons of the Klein–Gordon equation
coupled to a classical particle
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Long-time asymptotics are established for finite energy solutions of the scalar
Klein–Gordon equation coupled to a relativistic classical particle: any ‘‘scattering’’
solution is asymptotically a sum of a soliton and of a dispersive free wave packet as
t→6`. These asymptotics mean the nonlinear scattering of free wave packets by
the soliton. © 2003 American Institute of Physics.@DOI: 10.1063/1.1539900#

I. INTRODUCTION: KLEIN–GORDON FIELD COUPLED TO A CLASSICAL PARTICLE

In this paper we consider the classical scalar Klein–Gordon equation coupled~noncovari-
antly! to a relativistic classical particle subjected to an external potentialV of compact support.
The system is a finite-range perturbation of the corresponding translation-invariant system w
V that admits soliton-type solutions describing a particle traveling with constant velocity th
dressed by a comoving wave field. The set of all such solutions forms a finite-dimensional
fold, called thesoliton manifold, in the phase space~a Hilbert space! of the unperturbed system
We are interested inscatteringsolutions of the perturbed system in which the particle travels
infinity as t→6`.

The reason for the namesoliton manifoldresides the fact, proven in this paper, that it is
attracting set for the scattering solutions of the perturbed dynamical system. The attraction
in the Fréchet topology defined by the local energy seminorms.

Our main result is the long-time asymptotics in the global energy norm: each scat
solution is asymptotically the sum of a soliton and a dispersive free wave ast→6`. This means
that the solution is scattering of the free wave by a soliton. This representation of the sol
gives a mathematical description of the wave-particle duality: fort52` such solution is a union
of a ‘‘particle’’ 5soliton and ‘‘photon’’5free wave, for finitet the solution in general does no
admit such a representation, and fort5` the representation again appears.

Previously similar results have been proved for relativistic charged particles coupled, re
tively, to the wave equation corresponding tom50 ~Refs. 11 and 13! and to Maxwell’s
equations.2,10,16 The proof of these results is based on the nonautonomous integral ineq
method19 that uses essentially the strong Huygen’s principle. In the case of the Klein–Go
equation withm.0 the strong Huygen’s principle fails. That is why we develop a new m
general version of the integral inequality method that does not use the strong Huygen’s pri
An important role play the known time decay of the Green function for the Klein–Gordon e
tion and a sufficiently fast spatial decay of the solitons in the casem.0.

a!Electronic mail: vimaikin@mat.univie.ac.at
b!Electronic mail: komech@mathematik.tu-muenchen.de
c!Electronic mail: peter.markowich@univie.ac.at
12020022-2488/2003/44(3)/1202/16/$20.00 © 2003 American Institute of Physics
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We consider a scalar wave fieldc(x)PR, xPR3, coupled to a relativistic particle with
positionq and momentump, governed by

ċ~x,t !5p~x,t !, ṗ~x,t !5Dc~x,t !2m2c~x,t !2r~x2q~ t !!,
~1!

q̇~ t !5p~ t !/~11p2~ t !!1/2, ṗ~ t !52¹V~q~ t !!1E d3x c~x,t ! ¹r~x2q~ t !!

subject to appropriate initial conditions determining the dynamics. This is a Hamiltonian sy
with the Hamiltonian functional

H~c,p,q,p!5~11p2!1/21V~q!1
1

2 E d3x~ u¹c~x!u21m2uc~x!u21up~x!u2!

1E d3x c~x!r~x2q!. ~2!

We have set the mechanical mass of the particle and the speed of wave propagation equa
The case of the point particle corresponds tor(x)5d(x) and then the interaction term in th
Hamiltonian is simplyc(q). This would result however in an energy which is not bounded fr
below implying for the scattering theory the well-known ultraviolet divergence. Therefore
smooth the coupling by the functionr(x) following the strategy proposed by Abraham1 for the
Maxwell field. Respectively, the system~1! is not relativistic covariant. In analogy to th
Maxwell–Lorentz equations we callr the ‘‘charge distribution.’’ We assume the real-valued fun
tion r to be in the Sobolev spaceH1 and of compact support, i.e.,

r,¹rPL2~R3! , r~x!50 for uxu>Rr . ~C!

An important assumption is that the norm ofr in L2 is sufficiently small,

grªiriL2!1 ~3!

meaningweakfield-particle interaction.
For the potentialV we introduce two sets of assumptions: smooth and bounded from be

VPC2~R3!, V0ª inf
qPR3

V~q!.2`; ~Pmin!

and of a compact support,

V~x![0 for uxu.RV.0. ~K !

Consider the corresponding nonperturbed system withV[0:

ċ~x,t !5p~x,t !, ṗ~x,t !5Dc~x,t !2m2c~x,t !2r~x2q~ t !!,
~4!

q̇~ t !5p~ t !/~11p2~ t !!1/2, ṗ~ t !5E d3x c~x,t ! ¹r~x2q~ t !!.

The system~4! has solutions traveling with constant velocityv,uvu,1. Up to spatial translations
they are given by

Sv~ t !5~cv~x2vt !,pv~x2vt !,vt,pv! ~5!

with
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cv~x!52
1

4p E e2mu(y2x) i1l(y2x)'ur~y!d3y

u~y2x! i1l~y2x!'u
,

~6!

pv~x!52v•¹cv~x!, pv5v/l.

Here we setl5A12v2 andx5xi1x' , wherevixiPR3 andv'x'PR3 for xPR3. We callSv(t)
the soliton with velocity v centered atq(t)5vt.

Let us discuss and summarize now our main results, the precise theorems to be state
following sections. Consider the set of scattering solutions to~1! for which uq(t)u→` as t→`.
Below we discuss the properties of these solutions. Since only a finite amount of energy c
dissipated to infinity, we shall show the relaxation of acceleration,

q̈~ t !→0, t→6`. ~7!

More precisely, we shall establish the rate of convergenceuq̈(t)u;t212s with a s.0. This is a
crucial point of our asymptotic analysis. It implies that

q̇~ t !→v6 , t→6`. ~8!

Also we show that the fields are asymptotically traveling waves in the sense

~c~x,t !,p~x,t !!;~cv6
~x2q~ t !!,pv6

~x2q~ t !!!, t→6`. ~9!

Since the energy is conserved, the convergence here is in the sense of local energy semino
Sec. II. Further, we shall establish the corresponding asymptotics in theglobal energy norm,

~c~x,t !,p~x,t !!;~cv6
~x2q~ t !!,pv6

~x2q~ t !!!1U~ t !C6 , t→6`, ~10!

whereU(t) is the unitary group generated by the free Klein–Gordon equation, andC6 are the
scattering states. At last we suggest simple sufficient conditions for solutions to be scattering
that all finite energy solutions are scattering ifV(x)[0. We prove~8!, ~9!, and ~10! with the
assumption~3!, however we suggest the same asymptotics hold in more general framework

We mention now some previous results which reflect the gradual progress in investigati
long-time asymptotics for coupled field-particle equations.

The results of Ref. 14 for the wave equation,m50, imply the long-time convergence to th
set of solitons of type~5! in the sense of local energy seminorms, as in~9!.

Soliton-type asymptotics were proved for certain translation invariant completely integ
1D equations.18 Soliton-type asymptotics inlocal energy seminorms was proved for a translati
invariant 3D system of a scalar field coupled to a particle15 and for translation invariant 1D
kinetic-reaction systems.8

Soliton-type asymptotics of type~10! in global energy norm were proved initially forsmall
perturbationsof soliton-type solutions of 1D nonlinear Schro¨dinger equations.3,4

Soliton-type asymptotics of type~10! in the energy norm for all finite energy scatterin
solutions is proved here for the first time for coupled particle-field equations~1!. The asymptotics
is provided by radiation of the energy to infinity which leads to the relaxation~7!. The relaxation
in classical electrodynamics is known as ‘‘radiative damping’’ studied by Lorentz,17 Dirac,5

Feynman7 and others.9

Note that a lot of numerical experiments12 confirm the long-time convergence of an arbitra
finite energy solution of a general relativistic equation to a finite sum of solitons with veloc
less than the light speed and of ‘‘photons’’ propagating at the light speed. Nevertheless the
remains an absolutely open problem.
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II. EXISTENCE OF DYNAMICS, A PRIORI ESTIMATES

To formulate our results precisely, we need some definitions. We introduce the phase
suitable for the Cauchy problem corresponding to~1! and ~2!. Let L2 be the real Hilbert space
L2(R3) with scalar product̂ •,•& and norm z• z, and let H1 be the Sobolev spaceH15$c
PL2: u¹cuPL2% with the normici5 zc z1 z¹c z. Let zc zR denote the norm inL2(BR) for R.0,
whereBR5$xPR3:uxu<R%. Then the seminormsiciR5 zc zR1 z¹c zR are continuous onH1.

Definition 1: (i) The phase spaceE is the Hilbert space H13L23R33R3 of states Y
5(c,p,q,p) with finite norm

i YiE5ici1 zp z1uqu1upu .

(ii) EF is the spaceE endowed with the Fre´chet topology defined by the local energy seminor

iYiR5iciR1 zp zR1uqu1upu, ;R.0 .

(iii) F is the Hilbert space H13L2 of fieldsC5(c,p) with finite norm

i CiF5ici1 zp z .

(iv) FF is the spaceF endowed with the Fre´chet topology defined by the local energy seminor

iCiR5iciR1 zp zR , ;R.0 .

Note that both spacesE andEF are metrisable. ForcPL2 we have

2
1

2m2 zr z2<
m2

2
zc z21^c,r~•2q!&<

m211

2
zc z21

1

2
zr z2. ~11!

ThereforeE is the space of finite energy states. The Hamiltonian functionalH is continuous on the
spaceE and the lower bound in~11! implies that the energy functional~2! is bounded from below,
namely,

inf
YPE

H~Y!>11V02
1

2m2 zr z2. ~12!

We consider the Cauchy problem for the Hamiltonian system~1!, which we write as

Ẏ~ t !5V0~Y~ t !!1V1~Y~ t !!, tPR, Y~0!5Y0. ~13!

All derivatives are understood in the sense of distributions. HereY(t)5(c(t),p(t),q(t),p(t)),
Y05(c0,p0,q0,p0)PE, andV0 :Y°(p,Dc2m2c,0,0). Recall that we are interested in situ
tions where the particle is allowed to travel to infinity, e.g., when the external potentialV(q)
vanishes identically. The existence of dynamics is true under such conditions (Pmin).

Theorem 2: Let (C) and (Pmin) hold. Then (i) for every Y0PE the Cauchy problem (13) ha
a unique solution Y(t)PC(R,E). (ii) For every tPR the map Wt :Y0°Y(t) is continuous both on
E and onEF . (iii) The energy is conserved, i.e.,

H~Y~ t !!5H~Y0! for tPR. ~14!

(iv) The speed is bounded,

uq̇~ t !u< v̄,1 for tPR. ~15!

Proof: We follow Ref. 14, where the casem50 is considered. Let us fix an arbitraryb.0 and
prove ~i!–~iii ! for iY0iE<b and utu<«5«(b) for some sufficiently small«(b).0.
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ad (i) Fourier transform provides the existence and uniqueness of solutionY0(t)PC(R,E) to
the linear problem~13! with V150. Let Wt

0 :Y0°Y0(t) be the corresponding strongly continuo
group of bounded linear operators onE. Then uniqueness of solution to the~inhomogeneous!
linear problem implies that~13! for Y(t)PC(R,E) is equivalent to

Y~ t !5Wt
0Y01E

0

t

ds Wt2s
0 V1~Y~s!!, ~16!

becauseV1(Y(•))PC(R,E) in this case. The latter follows from a local Lipschitz continuity of t
mapV1 in E: for eachb.0 there exist ak5k(b).0 such that for allY,ZPE with iYiE ,iZiE
<b,

iV1~Y!2V1~Z!iE<kiY2ZiE . ~17!

For example, we have

U E d3x ~c1~x!2c2~x!!¹r~x2q!U<u¹~c12c2!uuru.

Moreover, by the contraction mapping principle, Eq.~16! has a unique local solutionY(•)
PC(@2«,«#,E) with «.0 depending only onb. Then the existence of the global dynamics w
follow from the a priori estimate, see inad ( i i i ) below.

ad (ii) The mapWt :Y0°Y(t) is continuous in the normi•iE for utu<« and iY0i<b. To
prove continuity ofWt in EF , let us consider Picard’s successive approximation scheme

YN~ t !5Wt
0Y01E

0

t

ds Wt2s
0 V1~YN21~s!!, N51,2, . . . .

The equation forqN in this system impliesuq̇N(t)u,1 and thereforeuq(t)u,uq0u1utu. Now we fix
tPR and chooseR.uq0u1utu1Rr with Rr from (C). From the explicit solution of the free
Klein–Gordon equationWt

0Y0 ~see Sec. III! we conclude that every Picard’s approximationYN(t)
and hence the solutionY(t)5(c(x,t),p(x,t),q(t),p(t)) for uxu,R depends only on the initia
data (c0(x),p0(x),q0,p0) with uxu,R1utu. Thus the continuity ofWt in EF follows from the
continuity in E.

ad (iii) For k50,1, . . . denote byC0
k(R3) the space of functionsc(x)PCk(R3) with compact

support. For initial data (c0,p0)PC3(R3)3C2(R3) the solutionc5c(x,t) satisfiescPC2(R3

3R). Indeed, this is well known for the solutionWt
0Y0 of the linear Klein–Gordon equation. Th

integral representation~16! then implies the same property forc. In addition, letY0 have compact
support, i.e.,

c0~x!5p0~x!50 for uxu.R0 ~18!

with someR0.0. Sinceuq(t)u,uq0u1utu, ~16! implies

c~x,t !50 for uxu>utu1max$R0,Rr1uq0u1utu%.

Thus, for such initial data energy conservation can be shown by integration by parts. Henc~iii !
follows from the continuity ofWt and the fact thatC0

3(R3) % C0
2(R3) % R3

% R3 is dense inE.
We use now energy conservation to ensure the existence of a global solution and its con

Similar to ~11! we have

H~Y!>
1

2
zp z21

1

2
z¹c z21

m2

4
zc z21A11p21V~q!2

1

m2 zr z2,

and by energy conservation, forutu<«,
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1

2
zp~ t !z21

1

2
z¹c~ t !z21

m2

4
zc z21A11p2~ t !1V~q~ t !!2

1

m2 zr z2<H~Y~ t !!5H~Y0!. ~19!

Therefore (Pmin) implies thea priori estimate

ic~ t !i1 zp~ t !z1up~ t !u<B for tPR ~20!

with B depending only on the normiY0iE of the initial data and onzr z. Properties~i!–~iii ! for
arbitrarytPR now follow from the same properties for smallutu and from thea priori bound~20!.

ad (iv) Note first that~20! implies up(t)u<p0,`. Hence

uq̇~ t !u/~12q̇2~ t !!1/25up~ t !u<p0,`,

which yieldsuq̇(t)u<q15..v̄,1. h

III. INTEGRAL INEQUALITY ARGUMENT

Definition 3: Let 0,s,1/2 and let a5(122s)/3. The setE s is the set of the state
(c,p,q,p)PE such that

E
R<uxu

d3x~R2uc~x!u21u¹c~x!u2!5O~R2(412s)! ~21!

and

E
Ra<uxu

d3x ~ uc~x!u21up~x!u2!5O~R2(412s)! ~22!

as R→1`.
If the soliton-type asymptotics is approximately valid, then the field should be close t

soliton centered atq(t) with velocity v(t)5q̇(t). We therefore consider the difference

Z~x,t !5C~x,t !2Cv(t)~x2q~ t !!, ~23!

where

C~x,t !5~c~x,t !,p~x,t !!

and Cv(x)5(cv(x),pv(x)) is the field part of the soliton. Definingr̄(x)5(0,r(x)) and
A(c,p)5(p,Dc2m2c), it follows thatC obeys the equations of motion:

Ċ~x,t !5AC~x,t !2 r̄~x2q~ t !!. ~24!

On the other hand, for the soliton fieldCv with a fixedv, the equation

2
]Cv

]x
~x2q~ t !!v5ACv~x2q~ t !!2 r̄~x2q~ t !! ~25!

holds. Then~24! and ~25! imply the following equation forZ:

Ż~x,t !5AZ~x,t !2
]Cv(t)

]p
~x2q~ t !!ṗ~ t !. ~26!

Here, according to the chain rule,
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]Cv

]p
5

]Cv

]v
]v
]p

, ~27!

where]v/]p is the Jacobi matrix of the mapp°v(p)5p/A11p2.
Proposition 4: Let(C), (Pmin), (K) hold, let the solution Y(t) to the system (1) be scatterin

and Y(0)PE s for a certainsP(0;1/2). Then for any R.0 and sufficiently smallgrª zr z,

iZ~•1q~ t !,t !iR<CR~Z~0!,q0,v̄,Rr!~11utu!212s. ~28!

Proof: First, we prove the estimate withR5Rr . Definition ~23! implies Z(•,t)PF. Solving
the equations~26! we get the mild solution representation,

Z~ t !5U~ t !Z~0!2E
0

t

U~ t2s!F]Cv(s)

]p
~•2q~s!! ṗ~s!G ds, ~29!

with U(t) the group generated by the free Klein–Gordon equation inH1
% L2, see the explicit

formulas in Sec. III A below.
Thus, the proof consists of two essential parts:~1! estimating, in local seminorms, the actio

of the free Klein–Gordon groupU(t)Z(0) and~2! estimating, in local seminorms, the free Klein
Gordon group applied to the Jacobian of the soliton field,U(t2s)@]Cv(s) /]p(•2q(s))#.

A. Local decay for the free Klein–Gordon group

Let us denoteSt(x)5$y: uy2xu5t%, Bt(x)5$y: uy2xu<t%. For sufficiently smooth initial
data, sayu0 ,v0PC0

`(R3), the action of the free Klein–Gordon group inR3 reads@Ref. 6, Chap.
5, formulas~6.4!, ~6.11!, ~6.12!#,

U~ t !~u0~x!,v0~x!!5~u~x,t !,v~x,t !!5~uw~x,t !2um~x,t !,vw~x,t !2vm~x,t !!

with

uw~x,t !5
1

4pt2 E
St(x)

d2y u0~y!1
1

4pt ESt(x)
d2y

]u0~y!

]n
1

1

4pt ESt(x)
d2y v0~y!, ~30!

um~x,t !5
m2

8p E
St(x)

d2y u0~y!1
m

4p E
Bt(x)

d3y Ḟ~ t,x2y!u0~y!1
m

4p E
Bt(x)

d3y F~ t,x2y!v0~y!,

~31!

and

vw~x,t !5u̇w~x,t !5
1

2pt2 E
St(x)

d2y
]u0~y!

]n
1

1

4pt ESt(x)
d2y

]2u0~y!

]n2

1
1

4pt2 E
St(x)

d2y v0~y!1
1

4pt ESt(x)
d2y

]v0~y!

]n
, ~32!

vm~x,t !5u̇m~x,t !5
m2

4pt ESt(x)
d2y u0~y!2

m4t

32p E
St(x)

d2y u0~y!1
m2

8p E
St(x)

d2y
]u0~y!

]n

1
m

4p E
Bt(x)

d3y F̈~ t,x2y!u0~y!1
m2

8p E
St(x)

d2y v0~y!

1
m

4p E
Bt(x)

d3y Ḟ~ t,x2y!v0~y!. ~33!

Heren5(y2x)/uy2xu is the exterior unit normal vector of the sphereSt(x) at a pointy,
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F~ t,z!5
J1~mAt22z2!

At22z2
,

J1 being the Bessel function of order 1. Note that (uw(x,t),vw(x,t)) is the solution to the free
wave equation corresponding tom50, with the same initial conditions (u0 ,v0). From the well-
known asymptotics

uJ1~s!u1uJ18~s!u1uJ19~s!u5O~ usu21/2! ass→`

of the Bessel function, see Ref. 20, Chap. XVII, it follows that

uF~ t,z!u1uḞ~ t,z!u1uF̈~ t,z!u1u¹zF~ t,z!u5O~ utu23/2! as t→`, ~34!

if uzu<nutu with 0,n,1. However, near the boundary of the coneuzu5utu only some weaker
decay is valid, namely foruzu<utu21,

uF~ t,z!u1uḞ~ t,z!u1uF̈~ t,z!u1u¹zF~ t,z!u5O~ utu23/4! as t→`, ~35!

Definition 5: The setF s for 0,s,1/2 is the set of the fields(c,p)PF satisfying the
conditions (21),(22).

Lemma 6: Let(u0 ,v0)PF s with somesP(0;1/2). Then;R.0,

iU~ t !~u0 ,v0!iR<C~u0 ,v0 ,R!~11utu!212s. ~36!

Proof: Note that for any fixedt the mapU(t):(u0 ,v0)→(u(t),v(t)) is continuous inF. For
initial data (u0 ,v0)PF s we can approximate them withu0

n , v0
nPC0

` such that the bounds~21!,
~22! hold for u0 , v0 uniformly in n. Hence, it is sufficient to obtain the estimate~36! for u0 ,v0

PC0
` , with C(u0 ,v0 ,R) depending only on the constant of~21!, ~22! and on the norm ofu0 ,v0

in F. Thus, we may use the integral representation~30! to ~33!.
At first consider (uw ,vw). For the free wave equation the following energy inequality is w

known:

E
BR

d3x~ u¹uw~x,t !u21uvw~x,t !u2!<E
Bt1R

d3x~ u¹u0~x!u21uv0~x!u2!.

Further, from the strong Huygen’s principle it follows that fort.R the solution (uw(x,t),
vw(x,t)) does not change if one replacesu0(x), v0(x) by zero inside the ballBt2R . Hence,

E
BR

d3x~ u¹uw~x,t !u21uvw~x,t !u2!<E
Bt2R,t1R

d3x~ u¹u0~x!u21uv0~x!u2!,

whereBt2R,t1R5$xPR3: t2R<uxu<t1R%. Then the conditions~21!, ~22! imply, for sufficiently
large t,

z¹uw~•,t !zR1 zvw~•,t !zR<C~R,u0 ,v0!~11utu!212s. ~37!

It remains to estimatezuw(•,t) zR , ium(•,t)iR , and zvm(•,t) zR . We claim that if (u0 ,v0)
PF s, then for sufficiently larget any of the normszI (•,t) zR , iJ(•,t)iR , zK(•,t) zR is bounded by
C(u0 ,v0 ,R)(11utu)212s for any integralI (x,t) of ~30!, J(x,t) of ~31!, K(x,t) of ~33!. At first
consider the spherical integrals. For example, let us prove these estimates for the integral

I ~x,t !5
1

4pt ESt(x)
d2y

]u0~y!

]n
, J~x,t !5

m2

8p E
St(x)

d2y u0~y!, K~x,t !5
m4t

32p E
St(x)

d2y u0~y!.
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For I (x,t) we should estimatezI (•,t) zR . We have

zI ~•,t !zR
25E

BR

d3x~ I ~x,t !!2

5
C

t2 E
BR

d3xS E
St(x)

d2y
]u0~y!

]n D 2

<
C

t2 E
BR

d3x 4pt2E
St(x)

d2yS ]u0~y!

]n D 2

5C1E
BR

d3xE
St(x)

d2yS ]u0~y!

]n D 2

.

For a non-negative continuous functionu andt>R the following bound follows by integration in
polar coordinates and geometric argument:

E
BR

d3xE
St(x)

d2y u~y!<8pR2E
Bt2R,t1R

d3x u~x!. ~38!

Hence

zI ~•,t !zR
2<C2R2E

Bt2R,t1R

d3xS ]u0~x!

]n D 2

~39!

for t.R. Thus, from the condition~21! the stated bound follows.
For J(x,t) we should estimateiJ(•,t)iR5 zJ(•,t) zR1 z¹J(•,t) zR . ConsiderzJ(•,t) zR . Similar

to ~39! we obtain

zJ~•,t !zR
2<CR2t2E

Bt2R,t1R

d3x~u0~x!!2.

Then from the condition ~21! the required estimate follows. For ¹J(x,t)
5(m2/8p)*St(x)d

2y ¹u0(y) the estimate is analogous. ConsiderzK(•,t) zR . Similarly to ~39! we
obtain

zK~•,t !zR
2<CR2t4E

Bt2R,t1R

d3x~u0~x!!2.

Then the estimate we need follows from the condition~21!.
Now estimate the integrals over the balls. For example, consider the integral

J~x,t !5
m

4p E
Bt(x)

d3y F~ t,x2y!v0~y!.

We should estimatezJ(•,t) zR and z¹J(•,t) zR . We have

uJ~x,t !u5CU E
Bt(x)

d3y F~ t,x2y!v0~y!U
<CU E

Bta(x)
d3y F~ t,x2y!v0~y!U1CU E

B
ta
8 (x)

d3y F~ t,x2y!v0~y!U,
whereBta(x)5$y:uy2xu<ta%, Bta

8 (x)5$y:ta<uy2xu<t%. The first integral is bounded by

S E
Bta(x)

d3y F2~ t,x2y! D 1/2S E
Bta(x)

d3y v0
2~y! D 1/2

<C1t (3a23)/2uv0u<C1t212suv0u

for a5(122s)/3. The second integral is bounded by
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U E
Bta,t21(x)

d3y F~ t,x2y!v0~y!U1U E
Bt21,t(x)

d3y F~ t,x2y!v0~y!U, ~40!

where Bta,t21(x)5$y:ta<uy2xu<t21%, Bt21,t(x)5$y:t21<uy2xu<t%. Further, for suffi-
ciently larget the first integral of~40! is bounded by

S E
Bta,t21(x)

d3y F2~ t,x2y! D 1/2S E
Bta,t21(x)

d3y v0
2~y! D 1/2

<C~ t323/2!1/2~ t27/222s!1/25Ct212s,

due to~35! and ~22!. The second integral of~40! is bounded by

C t S E
Bt21,t(x)

d3y v0
2~y! D 1/2

<Ct212s

by ~22!. Thus we have the pointwise bounduJ(x,t)u<Ct212s that implies the stated integra
bound.

Now let us estimatez¹J(•,t) zR . Note that

¹J~x,t !5
m

4p E
Bt(x)

d3y F~ t,x2y!¹v0~y!.

SinceF(t,x2y)5m/2 for ux2yu5t, the partial integration gives

U E
Bt(x)

d3y F~ t,x2y!
]

]yi
v0~y!U< m

2 E
St(x)

d2y uv0~y!u1E
Bt(x)

d3y U ]

]xi
F~ t,x2y!v0~y!U.

Then the estimates for both the spherical integral and the integral over the ball are made as
Hence, the boundz¹J(•,t) zR<C(v0 ,R)(11utu)212s follows from the condition~22!.

Altogether, we obtain that for sufficiently larget the estimate~36! is true. For boundedt this
estimate follows from the energy conservation for the free Klein–Gordon equation.

h

Remark:The statement of the lemma is true under some weaker conditions on initial
than ~21!, ~22!. Namely, it suffices to assume that

E
R<uxu<R11

d3x~R2uu0~x!u21u¹v0~x!u2!5O~R2(412s)!,

E
Ra<uxu<R

d3x ~ uu0~x!u21uv0~x!u2!5O~R2(412s)!

asR→1`; a5(122s)/3.
Thus, for the first term on the right-hand side of~29! we have

iU~ t !Z~0!iRr
<

C~Z~0!,v̄,Rr!

~11utu!11s .

Then from~15! the estimate

iU~ t !Z~0!~•1q~ t !!iRr
<

C~Z~0!,q0,v̄,Rr!

~11utu!11s ~41!

follows.
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B. Decay of the soliton field subject to free Klein–Gordon group

Denote byZ1(x,t)5c(x,t)2cv(t)(x2q(t)) the first component ofZ(x,t) and observe tha
^cv ,¹r&50 for uvu,1 because the soliton~5! is a solution to~4!. Note that for scattering
solutions, for sufficiently largeutu, the fourth equation of the system~1! transforms to the fourth
nonperturbed equation of the system~4! Then for theseutu,

ṗ~ t !5^Z1~x1q~ t !,t !,¹r~x!& . ~42!

Thus we obtain,

u ṗ~ t !u<CiZ~•1q~ t !,t !iRr
gr . ~43!

DenoteSt2s(x)5$y: uy2xu5t2s%, Bt2s(x)5$y: uy2xu<t2s%, cv
p5]cv /]p, pv

p5]pv /]p,
and

~cU~•,t,s!,pU~•,t,s!!5U~ t2s!F]Cv(s)

]p
~•2q~s!!G . ~44!

Then the formulas~30!, ~31! for U(t2s) imply

cU~x,t,s!5
1

4p~ t2s!
E

St2s(x)
d2y pv(s)

p ~y2q~s!!2
m

4p E
Bt2s(x)

d3y F~ t2s,x2y!pv(s)
p ~y2q~s!!

1
1

4p~ t2s!2 E
St2s(x)

d2y cv(s)
p ~y2q~s!!1

1

4p~ t2s!
E

St2s(x)
d2y

]

]n
cv(s)

p ~y2q~s!!

2
m2

8p E
St2s(x)

d2y cv(s)
p ~y2q~s!!2

m

4p E
Bt2s(x)

d3y Ḟ~ t2s,x2y!cv(s)
p ~y2q~s!!.

~45!

From this one derives the explicit formula for¹cU(x,t,s); ~32! and ~33! give the formula for
pU(x,t,s).

Now cU(x1q(t),t,s) can be represented as the sum of type~45! of integrals over the shifted
sphereSt2s(x1q(t)) and ballBt2s(x1q(t)) and withx1q(t) replacingx in F and Ḟ. Denote
cS

U(x1q(t),t,s) the sum of the integrals over the sphereSt2s(x1q(t)) andcB
U(x1q(t),t,s) the

sum of the integrals over the ballBt2s(x1q(t)). Let us estimatecS
U(x1q(t),t,s). If uxu<Rr , we

have on the sphereSt2s(x1q(t)),

uy2q~s!u5u~y2x2q~ t !!1~x1q~ t !2q~s!!u>~ t2s!2uxu2 v̄~ t2s!>~12 v̄ !~ t2s!2Rr
~46!

by the bound~15! on q̇(t). On the other hand, the integral representation~6! yields by Cauchy–
Schwartz inequality,

sup
uvu< v̄

sup
uxu>2Rr

emuxu~ u]acv
p~x!u1u]bpv

p~x!u!<C~ v̄,Rr!gr,` ~47!

for all multi-indicesa,b with uau<2, ubu<1, recall thatgrª zr z. Then ~47! and ~46! imply the
following pointwise bound forcS

U(x1q(t),t,s):

ucS
U~x1q~ t !,t,s!u<C1~ v̄,Rr!gre2m(t2s) ~48!

for uxu<Rr and providedt2s>3Rr /(12 v̄).
Now let us estimatecB

U(x1q(t),t,s). Set m5(122s)/6 and consider two regionsBm

5$y:uy2q(s)u<(t2s)m% and
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Bm8 5Bt2s~x1q~ t !!2Bm5$y:uy2~x1q~ t !!u<~ t2s! & uy2q~s!u.~ t2s!m%.

Represent every integral over the ballBt2s(x1q(t)) as the sum of the integrals overBm andBm8 .
Note that the volume ofBm is of order (t2s)3m, the volume ofBm8 is of order (t2s)32(t
2s)3m. Furthermore, for sufficiently larget2s and yPBm we have uy2xu<nutu with some
positiven,1. Hence, by~34! the following estimate is true:

uF~ t2s,x2y!u1uḞ~ t2s,x2y!u1uF̈~ t2s,x2y!u<Cut2su23/2.

Then for the integrals overBm we have

U E
Bm

¯U<C1~ t2s!3m~ t2s!23/2C2gr5C3gr~ t2s!3m23/25C3gr~ t2s!212s

for m5(122s)/6.
For the integrals overBm8 we obtain, due to~47!, providedt2s>(2Rr)1/m,

U E
Bm8
¯U<C4~~ t2s!32~ t2s!3m!C5exp~2m~ t2s!m!gr<

C6gr

~ t2s!11s

for sufficiently large t2s. Thus, the sum of the integrals overBm8 is bounded by
(C7( v̄,Rr)gr)/(11(t2s)11s). So we come to

ucB
U~x1q~ t !,t,s!u<

C8~ v̄,Rr!gr

11~ t2s!11s ~49!

for uxu<Rr and sufficiently larget2s. Therefore~48! and~49! imply for larget –s, together with
similar bounds for¹cU(x1q(t),t,s) andpU(x1q(t),t,s), the integral estimate

i~cU~•1q~ t !,t,s!,pU~•1q~ t !,t,s!!iRr
<

C9~ v̄,Rr!gr

11~ t2s!11s . ~50!

On the other hand, for boundedt2s this integral estimate follows from~44! by energy conserva
tion for the groupU(t2s) sincei]Cv /]piF<C( v̄,Rr)gr by (C). Finally, ~43! and ~50! imply

i ṗ~s!•~cU~•1q~ t !,t,s!,pU~•1q~ t !,t,s!!iRr
<C10~ v̄,Rr!gr

iZ~•1q~s!,s!iRr
gr

11~ t2s!11s . ~51!

C. Completing the proof of Proposition 4

The method was initially developed in Ref. 13 form50, see also Ref. 11. Combining~29! to
~51! and ~41! we arrive at

iZ~•1q~ t !,t !iRr
<

C~Z~0!,q0,v̄,Rr!

~11utu!11s 1gr
2C10~ v̄,Rr! E

0

t iZ~•1q~s!,s!iRr

11~ t2s!11s ds, t>0. ~52!

Therefore, settingM (t)5max0<s<t(11usu)11siZ(•1q(s),s)iRr
, we have

M ~ t !<C0~Z~0!,q0,v̄,Rr!1gr
2C~ v̄,Rr!I sM ~ t !,

where

I s5sup
t>0

~11utu!11sE
0

t ~11usu!212s

~11ut2su11s!
ds,`.
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It remains to choosegr
2C( v̄,Rr)I s,1, then~28! with R5Rr follows.

Remark:It is important thatv̄ is bounded for boundedgr and fixed initial data.
At last, we claim that the bound~28! with R5Rr implies~28! for anyR.0. Indeed,~50!–~52!

hold with the normi•iR instead ofi•iRr
on the left-hand sides and withCi( v̄,r,R) instead of

Ci( v̄,Rr) on theright-hand sides. Then~52! with this generalization and~28! with R5Rr imply
~28! for any R.0. h

IV. SCATTERING

Theorem 7: Under the conditions of Proposition 4, for sufficiently smallgr , the convergence
(7) holds, and the solution Y(t) displays the following long-time asymptotics:

(i) There existv65 limt→6` q̇(t)PV such that
uq̇~t!2v6u <C ~11utu!2s, ~53!

iC~•1q~t!,t!2Cv6
iR<CR~11utu!2s, ;R.0. ~54!

(ii) There existC6PF such that
iC~•,t!2Cv(t)~•2q~t!!2U~t!C6iF<C~11utu!2s. ~55!

Proof: ~i! Equation~28! with R5Rr and ~43! imply

u ṗ~ t !u<C~11utu!212s⇔uq̈~ t !u<C1~11utu!212s. ~56!

Then the limits~8! exist, and~53! follows. Therefore,~28! implies ~54!.
~ii ! We have to prove thatiZ(x,t)2U(t)F6iF<C(11utu)2s. This is equivalent to

iU(2t)Z(x,t)2F6iF<C(11utu)2s since the groupU(t) is isometric inF. Apply U(2t) to the
integral equation~29!. We obtain

U~2t !Z~ t !5Z~0!2E
0

t

U~2s!F]Cv(s)

]p
~•2q~s!! ṗ~s!G ds.

The condition~15! implies that the norm ofCv(s)(•2q(s)) in F is bounded uniformly with
respect tos. Then~56! implies the convergence of the integral inF at the stated rate and Theore
7 is proved. h

A. Constructing scattering solutions

Let us formulate a criterion for a solutionY(t) to be scattering. Introduce the energy of t
field part of a solution

h~ t !5
1

2 E d3x~ u¹c~x,t !u21m2uc~x,t !u21up~x,t !u2!.

SetG5supxPR3u¹V(x)u andv(t)5q̇(t).
Theorem 8: Let (C), (Pmin), ~K! hold. Consider solutions Y(t) to the system (1) with initial

data Y(0)PE s, 0,s,1/2. Let RV ,G,h(0),uq(0)u be finite. Then foruq̇(0)u close enough to 1
and sufficiently smallgr , we have

lim
t→6`

uq~ t !u5`. ~57!

Proof: Since the system~1! is time invertible, we consider only the caset→1`. Consider the
particle with initial dataq(0),v(0)ªq̇(0). Introducee5v(0)/uv(0)u. The orthogonal projection
of the vectorsv(t),p(t),q(t) onto e read ve(t)e, pe(t)e, qe(t)e, respectively, withve(t)
ªv(t)•e, pe(t)ªp(t)•e, qe(t)ªq(t)•e, here the dot means the scalar product inR3. Note that
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the vectorsv(t) andp(t), ve(t) andpe(t) are of the same directions andve(0)5uv(0)u, pe(0)
5up(0)u. Introduce the layer inR3, L(e,RV)5$x:ux•eu<RV%, then suppV, L(e,RV).

The statement of the theorem follows from the three propositions below. Since the syste~1!
is invariant with respect to time translations, we start fromt50 in either proposition.

Proposition 9: Let uq(0)u.RV , uv(0)u be close enough to 1, let e be directed towa
L(e,RV). Then the particle enters L(e,RV) at a certain momentt with uve(t)u close to 1.

Proposition 10: Letuq(0)u<RV , let uv(0)u be close to 1. Then the particle leaves L(e,RV) at
a certain momentt such thatuve(t)u.0 and ve(t)e is directed outside L(e,RV).

Proposition 11: Letuq(0)u>RV , uv(0)u.0 and e is directed outside L(e,RV). Then the
particle never enters L(e,RV) and uqe(t)u→` as t→1`.

Proof of Proposition 9:For ve(t) we have the estimate

ve~ t !>ve~0!2E
0

t

uv̇~s!uds5uv~0!u2E
0

t

uv̇~s!uds.

Since outsideL(e,Rv) the free equations~4! are satisfied, the following estimate~see@28! and
~43!# is valid:

uv̇~ t !u<
C~Z~0!,q~0!,v̄,Rr!gr

~11utu!s11 . ~58!

HereC(Z(0),q(0),v̄,Rr) is bounded uniformly with respect to the valuesq(0),c(0),p(0) under
consideration. Thus,

ve~ t !>uv~0!u2E
0

` Cgr dt

~11utu!s11 5uv~0!u2
Cgr

s
,

and we obtain the required result for sufficiently smallgr . h

Proof of Proposition 10:First we check that the growth of the field energy is not very fa
Lemma 12: The following bound holds:

h~ t !<~Ah~0!1A2grt !2. ~59!

Proof: Multiply the equationc̈5Dc2m2c2r by ċ and integrate overR3. We obtainḣ(t)
52*d3x rċ and henceḣ(t)<A2grAh. Integrating this differential inequality int we come to
Ah(t)<Ah(0)1A2grt which proves~59!. h

Let us now prove the proposition. Recall thatv5p/A11p2 and hence,p5v/A12v2. Thus,
uvu is close to 1 if and only ifupu is large. From the equation

ṗ~ t !52¹V~q~ t !!1E d3x c~x,t ! ¹r~x2q~ t !!

we obtain, due to~59!, u ṗu<G1icigr<G1(2h(t))1/2gr<G1((2h(0))1/212grt)gr5G1

12gr
2t with G15G1(2h(0))1/2gr . The conditions of the theorem imply thatG1 is bounded. We

obtain the following lower and upper bounds:

pe~ t !>pe~0!2E
0

t

u ṗ~s!uds>up~0!u2G1t2gr
2t25P2 f ~ t !,

up~ t !u<up~0!u1E
0

t

u ṗ~s!uds<up~0!u1G1t1gr
2t25P1 f ~ t !,

wherePªup(0)u, f (t)ªG1t1gr
2t2. These estimates imply forve(t),
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ve~ t !5
pe~ t !

up~ t !u S 11
1

up~ t !u2D 21/2

>
P2 f ~ t !

P1 f ~ t ! S 12
1

~P2 f ~ t !!2D
5

12a222a f~ t !1a2f 2~ t !

12a2f 2~ t !

>~12a222a f~ t !1a2f 2~ t !!~11a2f 2~ t !!512a21g~ t !, ~60!

whereaªP21, g(t)ª22a f(t)1(2a22a4) f 2(t)22a3f 3(t)1a4f 4(t). The corresponding esti
mate forqe(t) is

qe~ t !>qe~0!1~12a2!t1E
0

t

g~s!ds. ~61!

Take sufficiently largeP, that is smalla, then from the estimates~61!, ~60! the statement of the
proposition follows. h

Proof of Proposition 11:We claim that there exist such smallgr.0,vI .0 that ; t
.0ve(t)>vI . Indeed, setT5sup$t.0: ve(t).vI %. If vI ,ve(0)/2, then, by continuity,T.0. We
claim that it is possible to choose such smallgr.0, vI .0 thatT51`. Indeed, fortP@0,T# the
free equations~4! are satisfied, hence the estimate~58! is valid. Take

0,vI ,ve~0!2E
0

` Cgr

~11utu!s11 5ve~0!2
Cgr

s
;

this choice is possible for sufficiently smallgr . If T,1`, thenve(T).vI , hence, by continuity,
ve(T1«).vI for some«.0. This contradicts to the definition ofT. Thus,T51`. Hence, for
t.0 one obtainsqe(t)>qe(0)1vI t. h

Note that from the proof of the theorem the following statement follows.
Corollary 13: Let ~C!, (Pmin), ~K! hold, let Y(0)PE s,0,s,1/2. Let RV ,h(0),uq(0)u be

finite. Then for q˙ (0)Þ0 and sufficiently smallgr , G the solution Y(t) is scattering.
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Transport of energy in dissipative advection phenomena
Manuel Núñeza)
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~Received 4 November 2002; accepted 26 November 2002!

A study of the distribution of energy among the different scales is performed for
several systems in fluid mechanics, including the Navier–Stokes, magnetohydro-
dynamics and active scalars equations. It is found that all these systems possess a
common structure which enables us to deduce how the energy introduced by the
forcing is transferred to the scales present in the flow. It is also shown that in
special cases an energy cascade will occur. The limits of this method are also
considered. ©2003 American Institute of Physics.@DOI: 10.1063/1.1540237#

I. INTRODUCTION

It is well known that the energy injected into a fluid by some forcing will be distributed am
all the scales of the flow. In a general sense this is true for all phenomena governed by no
equations: for every decomposition of the solution in different modes representing the scal
nonlinearity will make interact different modes so that they do not evolve independently.
details of how this interaction occurs depend essentially on the particular equation modeli
phenomenon. However, for certain equations, prevalent in several processes in fluid mec
the transfer of energy may be studied with some generality. These equations could be
dissipative advection phenomena by the two terms of their expression:

]w

]t
5Aw1Tw1 f , ~1!

wherew is the magnitude under study. It is assumed that the solution of our initial value pro
exists for all time, and thatw(t) belongs to a certain Hilbert spaceH. A is a linear self-adjoint
dissipative operator; it is defined in a dense domain

A:D~A!→H,

and it satisfies, for some constanta.0 and allwPD(A),

2~Aw,w!>aiwi2. ~2!

Thus the whole spectrum ofA is contained in (2`,2a#. For simplicity purposes we will assum
that H is separable and the spectrum ofA discrete, although it is not really necessary.T is a
generally nonlinear and time-dependent operator densely defined inH, satisfying the orthogonal-
ity property:

~Tw,w!50, ~3!

for every w in the domain ofT. A represents the dissipation andT the advective effect in the
evolution ofw. As we will see, condition~3! means that the energy injected by the forcingf will
be distributed without loss by this advective term among all scales, while dissipation act
different way on each of them.

a!Electronic mail: mnjmhd@am.uva.es
12180022-2488/2003/44(3)/1218/8/$20.00 © 2003 American Institute of Physics
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The present article represents a simplification of the arguments advanced in Ref. 1 f
study of hydrodynamics turbulence. The Navier–Stokes case is analyzed there in more ge
and depth, without making use of some of our hypotheses concerning uniqueness of the s
which in fact are not proved in general. While it is probably overoptimistic to think that Re
answers all the questions on the origin and behavior of cascades in turbulence, it repre
valuable attempt to rigorize a classical and difficult problem. The method developed there
difficult and we have been able to extend its range beyond the original hydrodynamic proble
addition to the Navier–Stokes equations, the magnetohydrodynamics~MHD! system possesse
also the required form, along with several equations describing passive and active scalars.
the latter we may mention the vorticity in plane flows, the magnetic potential in two-dimens
plasmas, the temperature in Be´nard convection, the salinity in oceanic waters and other ma
tudes relevant in geophysical phenomena.

In a limit case we can prove something similar to energy cascades in the sense of Ko
orov: energy is transferred without loss to smaller~direct cascade! or larger scales~inverse cas-
cade! in a form independent ofA, i.e., of viscosity.2 However, the assumptions needed to pro
this are probably excessive and the fact that there is no discernible influence of the space
sion, unlike what is experimentally known, seems to indicate that physical cascades hav
own phenomenology not covered by this case.

II. THE MAIN RESULTS

Let (en) be a basis ofH formed by eigenfunctions ofA, 2Aen5lnen , with l15a, l1

<l2<¯ . We will consider that the scales of the problem are given by the orthogonal de
positionw5((w,en)en , so that a large-scale function is one limited to the lower eigenfuncti
When, as usual,A is essentially the Laplacian, certainly the higher eigenfunctions are m
irregular than the lower ones. In particular, ifH is formed by periodic functions, the basis
formed by the trigonometric functionsx→exp(ik"x) and the spectral decomposition is the Four
one, so that the concept coincides with the classical one.

The energy estimates are classical: by making the scalar product of~1! with w,

1

2

]

]t
~w,w!2~Aw,w!5~Tw,w!1~ f ,w!5~ f ,w!. ~4!

Thus

1

2

d

dt
iwi22~Aw,w!5~ f ,w!<i f i iwi<

1

2a
i f i21

a

2
iwi2. ~5!

Since2(Aw,w)>aiwi2,

d

dt
iwi21aiwi2<

1

a
i f i2, ~6!

so that

iw~ t !i2<iw~0!i2e2at1
1

a E
0

t

e2a(t2s)i f ~s!i2 ds, ~7!

which is bounded in particular ifi f i is bounded for all time: e.g., if it does not depend on tim
In the absence of forcing the solution tends exponentially to zero. We will only need to ass

lim
t→`

1

T
iw~T!i250, ~8!
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which certainly happens ifw remains bounded. Our remaining hypotheses are as follows: le
denote bŷ & the time mean of a magnitude:

^g&5 lim
T→`

1

T E
0

T

g~s! ds, ~9!

provided it exists. We will assume that the time mean of all the magnitudes occurring in
~11!–~16! exists. This is not an unreasonable hypothesis, since turbulent phenomena are
considered decaying or statistically stationary.

Let H1 be the finite-dimensional subspace ofH whose basis is$ek ,ek11 , . . . ,el%. We will
consider thatH1 is the space of some intermediate range of scales, called the injection
because we will assume thatf lies within this range for all time; iff is large-scale, thenk51. Let
H2 be the subspace orthogonal toH1 , a Hilbert basis of whom is formed by the remainingej . Let
w5w11w2 be the orthogonal decomposition of an element ofH in the subspacesH1 and H2 .
The condition (Tw,w)50 means therefore

~Tw,w2!52~Tw,w1!. ~10!

By taking the scalar product of~1! with w1 andw2 we obtain, analogously to~4!,

1

2

d

dt
iw1i22~Aw1 ,w1!5~Tw,w1!1~ f ,w1!,

~11!
1

2

d

dt
iw2i22~Aw2 ,w2!5~Tw,w2!52~Tw,w1!,

since (f ,w2)50. We also have

K d

dt
iwi i2L 5 lim

T→`

1

T
~ iwi~T!i22iwi~0!i2!50, ~12!

and therefore

^~2Aw1 ,w1!&5^~Tw,w1!&1^~ f ,w1!&,
~13!

^~2Aw2 ,w2!&5^~Tw,w2!&52^~Tw,w1!&.

Now (2Awi ,wi)>0 may be regarded as the dissipation of the componentwi , whereas (Tw,wi)
is the energy transferred by the advection to that component. Therefore the mean energy
ferred to the noninjective scales is positive and identical to the mean dissipation of them, an
equal to the energy lost by the injective scales. Notice that this does not yield any inform
about if the energy goes to larger or smaller scales than the injective range, or more likely to
If we decompose againw2 in w2

11w2
2 , formed respectively by smaller scales~projection in the

ej : j . l ) and larger~projection inei : i ,k), what we can deduce is

^~Tw,w2
1!&1^~Tw,w2

2!&5^~2Aw2 ,w2!&5^~2Aw2
1 ,w2

1!&1^~2Aw2
2 ,w2

2!&. ~14!

Cascades are not merely energy transfer. In the Kolmogorov2 theory of homogeneous turbulenc
it is admitted that there exists a range of scales~called inertial! where energy is transferred withou
viscous loss. To prove something similar we need to make an additional hypothesis, also m
Ref. 3: we assume that there is a range outside the injection one such that the projection ofw there
is zero, or very small. Take the injection range generated byek , . . . ,el , and assume that fromel

to en there is no projection ofw. Let Eh
1 be the energy transferred to modes larger thaneh , i.e.,

the product ofTw with the projectionwh
15( j .h(w,ej )ej . Then
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^~2Aw2
1 ,w2

1!&5El 11
1 5El 12

1 5¯5En
15^~Tw,w2

1!&. ~15!

Thus the energy passes without loss through this inertial range. Since it goes to smaller sc
is called a direct cascade. The same could be done for larger scales if we assume t
projection ofw in some rangeei , ei 11 , . . . ,ek21 is zero: then, with an obvious notation,

^~2Aw2
2 ,w2

2!&5Ek21
2 5Ek22

2 5¯5Ei
25^~Tw,w2

2!&. ~16!

This should be an inverse cascade. For the direct one, however, there is a more man
criterion to ascertain that the projection ofw in small ranges is itself small: if the energy satisfi
the inequality

iwi25( u~w,en!u2!( lnu~w,en!u25~2Aw,w!, ~17!

it is because largeln must play the main role, i.e.,w is localized at the higher frequencies. Th
a much larger ‘‘enstrophy’’ (2Aw,w) than energy means that a direct cascade is more likely
stated in Ref. 3. This, however, does not seem to be a prerequisite for the actual cascades o
in turbulent phenomena.

III. EXAMPLES

A. The Navier–Stokes equations

The original example, developed as stated in much more depth and detail in Ref. 1,
Navier–Stokes system for incompressible Newtonian fluids. It is worth to study how the ab
framework applies to this classical case. The Navier–Stokes equations are

]u

]t
5nDu2u•¹u2¹p1f,

~18!
¹•u50,

whereu represents the fluid velocity,n the viscosity,p the kinetic pressure andf the forcing.
Boundary conditions determine the spaceH. By taking the divergence of the first equation, o
finds thatp is in fact a ~nonlocal! function of the velocity gradient, the solution of an ellipt
problem~see, e.g., Ref. 1!. We may either define

Tu52u•¹u1¹p~u!,
~19!

A5nD,

or, as usual, project~18! into the space of functions with null divergence. Denoting byP this
projection, one gets the Stokes system:

]u

]t
5nPDu2Pu•¹u1Pf. ~20!

Then we may defineTu52Pu•¹u, A5nPD. The spaceH is defined by the boundary cond
tions. For periodic ones in a boxV, one sets

H5H uPL2~V!N:¹•u50, E
V

u dV50,u"nU
]V

antiperiodicJ . ~21!
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N is the space dimension. The condition¹•u50 is to be understood in the sense of distributio
For these functions the trace ofu"n at the boundary makes sense. The domain ofA is defined as
D(A)5H2(V)NùH.

For no-slip boundary conditions, the velocity at the boundary of the smooth bounded do
V is taken as zero: we therefore set

H5$uPL2~V!N:¹•u50,u"nu]V50%,
~22!

D~A!5H2~V!NùH0
1~V!NùH.

That T andA satisfy the previous conditions is classical~see, e.g., Ref. 1 or 4!.

B. Magnetohydrodynamics

The MHD system for an incompressible plasma with velocityu and magnetic fieldB are

]u

]t
5nDu2u•¹u1B•¹B2¹S p1

B2

2 D1f1 ,

]B

]t
5hDB2u•¹B1B•¹u1f2 ,

~23!
¹•u50,

¹•B50.

h.0 is the plasma resistivity. Again a projectionP to the space of fields with null divergence
applied to the equations, obtaining

]u

]t
5nPDu2Pu•¹u1PB•¹B1Pf1 ,

~24!
]B

]t
5hPDB2Pu•¹B1PB•¹u1Pf2 .

Now we definew5(u;B),

Tw5~2Pu•¹u1PB•¹B; 2Pu•¹B1PB•¹u!,
~25!

Aw5~nPDu; hPDB!.

The spaceH again depends on the boundary conditions. It is defined essentially as~21! for
periodic problems, with the exception that now both componentsu andB of w must be periodic.
D(A) is defined asH2(V)2NùH. For Dirichlet homogeneous problems, the analog of~22! is
used; in this caseD(A)5H2(V)2NùH0

1(V)2NùH. For the case where the boundary ofV is
supposed to be a perfect conductor, i.e.,uu]V50, B"nu]V50, (¹3B)3nu]V50, one sets

H5$~u; B!PL2~V!2N:¹•u5¹•B50,u"nu]V5B"nu]V50%,
~26!

D~A!5$~u; B!PH2~V!2NùH:uPH0
1~V!N, ~¹3B!3nu]V50%.

~See, e.g., Refs. 4, 5.! Again A andT satisfy the main conditions and therefore one should exp
an analogous transfer of energy for MHD problems. However, it is known that cascades in
are very different from the hydrodynamic ones~see, e.g., Ref. 6!, which is a warning not to expec
fine details from our calculations on energy transfer.
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C. Passive scalars

These are magnitudesf that are transported and diffused by an incompressible flow wi
given velocityu. They evolve according to

]f

]t
5kDf2u•¹f1 f . ~27!

The velocity is a datum of the problem. It satisfies¹•u50, u"nu]V50. k.0 is a diffusion
coefficient; as we seef has no influence onu. Boundary conditions depend on the meaning off,
and these define the domain ofA5kD. Set H5L2(V); for Dirichlet problems, D(A)
5H2(V)ùH0

1(V); for periodic ones,D(A)5$fPH2(V):fu]V periodic%; for Neumann ones,
D(A)5$fPH2(V):]f/]nPH0

1(V)%. The condition of symmetry forA,

E
]V

f
]f

]n
ds50,

is satisfied for allfPD(A). Tracers in a fluid are assumed to behave as passive scalars, pro
they are not dense enough to modify the density or other properties of the fluid. For instanc
in ocean water is not taken as a passive, but as an active scalar.

D. Active scalars

The equation is formally similar to~27!, but nowu depends onf through some other equa
tion, makingu a ~usually nonlocal! function of f. These equations are rather common in flu
mechanics~see, e.g., Ref. 7!. We will consider two examples: the magnetic potential in tw
dimensional MHD and the temperature in Be´nard convection.

E. Magnetic potential

Two-dimensional magnetic fieldsB5(B1 ,B2) in a simply connected domainV are of the
form B15]A/]x2 , B252]A/]x1 for some scalar fieldA, called the magnetic potential. With thi
variable the MHD equations~without forcing on the magnetic field! become

]A

]t
5hDA2u•¹A1C~ t !,

]u

]t
5nDu2u•¹u1DA¹A1 f , ~28!

¹•u50.

C(t) is some time-dependent constant depending on the choosing ofA, which is indifferent to the
addition of any gradient. Boundary conditions and the gauge constantC are linked. We may
chooseC50, but at the expense of not being able to precise the values ofA at any point. If
B"nu]V50, A is constant along every connected component of]V. By allowing CÞ0 and choos-
ing A50 at a given point of]V, we haveAu]V50. Thus we may takeH5L2(V), A5hD,
D(A)5H2(V)ùH0

1(V). The second equation of~28! is ignored; we may study the transfer o
energy without knowing the full evolution of the system. The magnetic potential is repute
possess an inverse cascade,6 such as the velocity in two-dimensional turbulence.
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F. Temperature in Be´nard convection

In a simple model, this satisfies

]T

]t
5kDT2u•¹T1 f ,

]u

]t
5nDu2u•¹u2¹p1e2~T2T1!, ~29!

¹•u50.

T is the temperature in a box@0,1#3@0,1#, k is a thermal diffusion constant,e25(1,0), T1 is the
temperature at the upper lidx251, andT111 is the temperature at the lower onex250. p, u, T,
]u/]x1 and]T/]x1 are assumed one-periodic in thex1-direction,u50 at x250 andx251.4,8 f is
a possible injection of temperature.

These conditions make it possible to findu as a nonlocal function ofT ~sinceu satisfies a
parabolic equation on a cylinder! so that we may define for the temperature the spaces

H5L2@0,1#3L2@0,1#,
~30!

D~A!5D~kD!

5H TPH2~V!: T~x,1!5T1 , T~x,0!5T111,T~0,y!5T~1,y!,
]T

]x1
~0,y!5

]T

]x1
~1,y!J .

Neumann conditions on the lateral walls are also admissible. Conditions are easily seen
satisfied~the integral at the boundary ofT]T/]n always vanishes! so that we may ignoreu to see
that the temperature is transferred to the different scales according to our model.

IV. CONCLUSIONS

It is found that the transfer of energy among the different scales acts in a similar w
several processes of fluid mechanics, including the Navier–Stokes equations, the magnet
dynamics system, and passive and active scalar equations. The essence of this fact is th
magnitudes follow an evolution equation formed by the addition of a linear dissipative term w
determines the scales of the flow and an advective one which distributes the energy injected
forcing among the different scales. In some extreme cases the presence of a direct or
cascade, where energy is transferred without dissipative loss through some inertial range, m
be proved. However, it is pointed that these results do not yield precise information on the tr
of energy in some specific direction, which is known to differ according to the magnitude an
space dimension.
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The partial averaging method
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Department of Chemistry, Brown University, Providence, Rhode Island 02912

~Received 28 October 2002; accepted 5 December 2002!

The partial averaging technique is defined and used in conjunction with the random
series implementation of the Feynman–Kac¸ formula. It enjoys certain properties
such as good rates of convergence and convergence for potentials with coulombic
singularities. In this work, I introduce the reader to the technique and I analyze the
basic mathematical properties of the method. I show that the method is convergent
for all Kato class potentials that have finite Gaussian transform. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1541933#

I. INTRODUCTION

The thermodynamic properties of a monodimensional spinless quantum system charac
by the inverse temperatureb51/(kBT) are completely determined by the canonical partiti
function

Z~b!5E
R
r~x,x;b!dx, ~1!

where the~unnormalized! density matrix

r~x,x8;b!5^xue2bHux8&

can be computed with the help of the Feynman–Kac¸ representation formula1,2

r~x,x8;b!

r f p~x,x8;b!
5E expH 2bE

0

1

V@x0~u!1sBu
0#duJ ~2!

for a large class of potentials. In Eq.~2!, m0 is the mass of the particle,x0(u) is a shorthand for
x1(x82x)u, s5(\2b/m0)1/2, and

r f p~x,x8;b!5
1

A2ps2
expF2

~x2x8!2

2s2 G
is the density matrix of a similar free particle. The stochastic element that appears in Eq~2!,
$Bu

0 , 0<u<1%, is a so-called standard Brownian bridge defined as follows: if$Bu , u>0% is a
standard Brownian motion starting at zero, then the Brownian bridge is the stochastic p
$Bu2uB1 ,0<u<1%. Unless otherwise stated, in this article, we shall reserve the symbolE to
denote the expected value~average value! of a certain random variable against the underlyi
probability measure of the Brownian bridgeBu

0 .
The generalization of Eq.~2! to a d-dimensional system is straightforward. The symbolBu

0

now denotes ad-dimensional standard Brownian bridge, which is a vector (Bu,1
0 ,Bu,2

0 ,...,Bu,d
0 )

with the components being independent standard Brownian bridges. The symbols stands for the

a!Electronic mail: cristian–predescu@brown.edu
12260022-2488/2003/44(3)/1226/14/$20.00 © 2003 American Institute of Physics
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vector (s1 ,s2 ,...,sd) with components defined bys i
25\2b/m0,i . The productsBu

0 is inter-
preted as thed-dimensional vector of componentss iBu,i

0 . Finally, x and x8 are points in the
configuration spaceRd connected by the linex0(u)5x1(x82x)u.

As emphasized in Ref. 3, the success of the Feynman–Kac¸ formula in the computation of the
thermodynamic properties of quantum systems is fortuitously due to another remarkable res
Metropolis et al.4 sampling algorithm of arbitrary finite-dimensional probability distribution
which lies at the heart of the Monte Carlo integration schemes.5 This leads to the related bu
separate problem of finding a rapidly convergent sequence of finite-dimensional approximat
the stochastic integral~2!. The main techniques found in literature can be classified in two
egories: the discrete path integral methods and the random series techniques~for reviews, see
Refs. 6 and 7, respectively!. The latter methods lend themselves to various modifications w
result in convergence for a wider class of potentialsV(x) or/and improved asymptotic conve
gence. One such method is the partial averaging~PA! technique, which was initially introduced b
Doll, Coalson, and Freeman8 as a way to accelerate the convergence of the ‘‘primitive’’ Four
path integral method~FPI!.9

As we shall see, the partial averaging method requires the Gaussian transform of the po
V for its implementation. For real life potentials this is a difficult but not impossible task. H
ever, it was generally considered that the improvement the technique brings in does not w
the effort of computing the Gaussian transform of the potential and therefore, the so-calle
dient corrected partial averaging method was used instead. It has been shown that thi
method has generalO(1/n2) asymptotic behavior for sufficiently smooth potentials and it has b
argued that there is not much reason to suspect a better convergence rate for the full
averaging method.10 However, more accurate numerical evidence recently presented in R
suggests that the full partial averaging method does have in fact a better behavior: if the tec
is used in conjunction with the FPI approach and if the potential is smooth enough, the asym
convergence isO(1/n3). The importance of the partial averaging method resides also in the
that it acts as a prototypical strategy for improving the asymptotic rate of convergence o
random series path integral methods. As such, the reweighted random series technique7 achieves
superior asymptotic convergence by simulating the partial averaging approach.

In this work, I shall argue for one more property of the partial averaging method which i
shared by the gradient corrected version and in general by the nonaveraged methods. Mo
cifically, I shall show that the method can be employed for potentials having negative coulo
singularities, for which standard discrete path integral techniques~and also the primitive random
series ones! fail to converge.11,12 In this respect, it is quite surprising that the technique has b
scarcely used for this purpose, despite the fact that in several instances its application
polaron problem13,14 and for the computation of statistical properties of quantum systems15 was
numerically successful. Though several other methods for dealing with the coulombic singul
have been proposed~see, for instance, Ref. 16!, I appreciate that the advantage of the part
averaging strategy can be best emphasized by its ability of handling such systems.

In this article, I establish a sufficiently large class of potentials for which the partial avera
sequence of approximations converges to the correct Feynman–Kac¸ result, though I only study the
convergence of the density matrix and of the partition function. This class includes most
smooth and bounded from below potentials as well as most of the potentials having coul
singularities. The proofs I perform are of a rather trivial nature, as they are direct consequen
well established convergence theorems from general probability theory. In fact, they explo
martingale property of the partial averaging method. Besides their intrinsic value, these c
gence theorems are important because they set the proper mathematical context in wh
partial averaging method should be further discussed or utilized.

II. FORMULATION OF THE PROBLEM

A. A chemically relevant class of „scalar … potentials

A sufficiently large class of potentials for which the Feynman–Kac¸ formula ~2! and its mul-
tidimensional analog hold is the so-called Kato class, which we define below. If
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g~y!5H uyu, d51,

ln~ iyi21!, d52,

iyi22d, d>3,

then the Kato classKd is made up of all measurable functionsf :Rd→R such that

lim
a↓0

sup
xPRd

E
ix2yi<a

u f ~y!g~x2y!udy50. ~3!

We also say thatf is in Kd
loc if 1 Df PKd for all bounded domainsD,Rd. We say that the potentia

V(x) is of Kato class if its negative partV25max$0,2V% is in Kd , while its positive partV1

5max$0,V% is in Kd
loc . In these conditions, as shown in Refs. 17 and 18, the Feynman–¸

formula ~2! holds. Moreover, Theorem B.7.5 of Ref. 18 shows that the density matrixr(x,x8;b)
is continuous onRd3Rd3(0,̀ ), while Theorem B.6.7 of the same reference shows that fo
given b.0, the density matrix is uniformly bounded in the variables (x,x8).

A remarkable theorem due to Aizenman and Simon19 gives an alternative definition for th
Kato classKd . More precisely, Theorem 4.5 of Ref. 19 says thatVPKd if and only if

lim
e↓0

sup
xPRd

EF E
0

e

uV~x1sBu!uduG50, ~4!

whereE denotes the expectation value against thed-dimensional Brownian motionBu . Inverting
the order of integration in Eq.~4! and remembering thatBu is a Gaussian distributed variable o
varianceu, we obtain the equivalent condition

lim
e↓0

sup
xPRd

E
0

e

duE
Rd

~2pu!2d/2e2izi2/(2u)uV~x1sz!udz50. ~5!

We leave it for the reader to perform the substitutionsu85u/e and thenz85z/Ae in successive
order and prove the following reformulation of the condition given by Eq.~5!:

lim
e↓0

sup
xPRd

eE
0

1

duE
Rd

~2pu!2d/2e2izi2/(2u)uV~x1sAez!udz50. ~6!

In the Appendix, we shall use Eq.~4! in the proof of Theorem 5 and Eq.~6! in the proof of
Theorem 4, respectively.

As far as the chemical physicist is concerned, the Kato class of potentials is suffic
general. It contains, for instance, the coulombic potential as it appears in electronic str
calculations. For another example, theab initio intermolecular potential computed at the level
the Born-Oppenheimer approximation cannot have singularities worse than the coulombi
and therefore it is of Kato class. However, we do not consider certain empirical potentials
are not of Kato class, as for example the Leonard-Jones potential. Nevertheless, this
brought into the Kato class if the unphysicalr 212 singularity is removed by truncation or by othe
approximations.

Let us anticipate a little and also demand that the potentialV have finite Gaussian transform
The reader may read ahead in the next subsection and see that this condition is natural
proper definition of the partial averaging method. More precisely, we require that

uVua~x!5S )
i 51

d
1

2pa i
2D 1/2E

R
dz1¯E

R
dzdexpS 2(

i 51

d zi
2

2a i
2D uV~x1z!u,`, ~7!
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for all xPRd andaPR1
d . @In this article,R15(0,̀ ).] Certain properties of the potentials havin

finite Gaussian transform are given by Theorem 3 of the Appendix.
From the thermodynamic point of view, only the diagonal density matrixr(x,x;b) is of

interest. Moreover, in order to have a physically relevant statistics, the condition

0,Z~b!,`, ;b.0 ~8!

must hold, but the inequality~8! is not a requirement for the results obtained in this article to
valid. In practice, the condition is achieved by the addition of aconstrainingpotential, which is
usually a continuous and bounded from below function~thus still in the Kato class!. The con-
straining potential is intended to simulate, for example, the effect of the container in wh
reaction takes place. A sufficient condition for the quantum partition function to be finite is tha
analog classical partition function be finite. This follows from the following inequality:

Proposition 1: Set

Zcl~b!5
1

A2ps2 ER
e2bV(x)dx.

Then, Z(b)<Zcl(b).
Proof: By Jensen’s inequality and Tonelli theorem,

Z~b!5
1

A2ps2 ER
dx E e2b*0

1V(x1sBu
0)du

<
1

A2ps2 ER
dx EE

0

1

du e2bV(x1sBu
0)

5
1

A2ps2
EE

0

1

duE
R
dx e2bV(x1sBu

0)5Zcl~b!.

h

As stated, Proposition 1 remains true for multidimensional systems. In this article, we
perform the proofs only for monodimensional systems. The reader should notice that our
ments are purely measure theoretic, in fact irrespective of the dimensionality of the ph
systems. On the other hand, in the chemical physics literature it is customary to perfor
analysis in ‘‘monodimensional’’ notation. I consider that the mathematician will have little tro
generalizing the proofs, yet the chemist may find it hard to accommodate a more comp
notation.

B. The partial averaging strategy

In this section, we shall give a short review of the partial averaging method for monodi
sional systems~the multidimensional generalization is straightforward!. For a more complete
discussion, the reader should consult Ref. 7. The most general series representation of the
ian bridge is given by the Ito-Nisio theorem,20 the statement of which is reproduced belo
Assume given$lk(t)%k>1 a system of functions on the interval@0,1# which, together with the
constant functionl0(t)51, makes up an orthonormal basis inL2@0,1#. Let Lk(u) denote the
primitives

Lk~u!5E
0

u

lk~t!dt

of the functionslk(u). If V is the space of infinite sequencesā[(a1 ,a2 ,...) and

P@ ā#5)
k51

`

m~ak! ~9!
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is the ~unique by the Kolmogorov extension theorem! probability measure onV such that the
coordinate mapsā→ak are independent identically distributed~i.i.d.! variables with distribution
probability

m~akPA!5
1

A2p
E

A
e2z2/2 dz, ~10!

then

Bu
0~ ā!5 (

k51

`

akLk~u!, 0<u<1 ~11!

is equal in distribution to a standard Brownian bridge. Moreover, the convergence of the
series is almost surely uniform on the interval@0,1#.

Using the Ito–Nisio representation of the Brownian bridge, the Feynman–Kac¸ formula ~2!
takes the form

r~x,x8;b!

r f p~x,x8;b!
5E

V
dP@ ā#expH 2bE

0

1

VFx0~u!1s(
k51

`

akLk~u!GduJ .

The independence of the coordinatesak , which physically amounts to choosing those repres
tations in which the kinetic energy operator is diagonal, is the key to the use of the p
averaging method. Denoting byEn the average over the coefficients beyond the rankn, the partial
averaging formula reads

rn
PA~x,x8;b!

r f p~x,x8;b!
5E

R
dm~a1!...E

R
dm~an!expH 2b EnE

0

1

VFx0~u!1s(
k51

`

akLk~u!GduJ .

~12!

Assuming that the Fubini theorem holds~this is proved in the next section!, one may invert the
order of integration in the exponent and compute

EnE
0

1

V@x0~u!1sBu
0~ ā!#du5E

0

1

EnV@x0~u!1sBu
0~ ā!#du5E

0

1

V̄u,nFx0~u!1s(
k51

n

akLk~u!Gdu,

~13!

where

V̄u,n~y!5E
R

1

A2pGn
2~u!

expF2
z2

2Gn
2~u!GV~y1z!dz. ~14!

The functionGn
2(u) is defined by

Gn
2~u!5s2 (

k5n11

`

Lk~u!25s2Fu~12u!2 (
k51

n

Lk~u!2G . ~15!

@Again, the reader is referred to Ref. 7 for additional explanations. It is customary to us
notation Gn

2(u) to mean the square ofGn(u).] To summarize, wedefine the nth order partial
averaging approximation to the diagonal density matrix by the formula
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rn
PA~x,x8;b!

r f p~x,x8;b!
5E

R
dm~a1!...E

R
dm~an!expH 2b E

0

1

V̄u,nFx0~u!1s(
k51

n

akLk~u!GduJ .

~16!

III. MARTINGALE PROPERTY AND CONVERGENCE RESULTS

This section establishes the martingale property of the partial averaging method. On
notice that we obtain some important convergence results without actually doing much work
than citing some well-established theorems. The chemical physicist will probably be more
ested in Corollary 1, which is for that matter presented separately.

On the setV of sequencesā[(a1 ,a2 ,...), consider thes-algebra generated by the finite
dimensional Borel setsF`5s(øn>0Fn), whereFn5s(a1 ,a2 ,...,an) andF05$B,V%. By con-
struction,$Fn%n>0 is a filtration. Also, the probability measure dP@ ā# introduced in the previous
section is, of course, defined overF` so that the default probability space we refer to in this wo
is (V,F` ,P). If f is an integrable random variable onV, we shall sometimes denote the cond
tional expectationE @ f uFn# simply by Enf .

To continue with the introduction of the notations, we define

Un~x,x8,b;ā!5E
0

1

V̄u,nFx0~u!1s(
k51

n

akLk~u!Gdu

and

U`~x,x8,b;ā!5E
0

1

VFx0~u!1s(
k51

`

akLk~u!Gdu.

The variablesx, x8, andb are interpreted here as parameters and, just as a reminder, we se
them by a semicolon from the ‘‘true’’ variableā. By construction,Un(x,x8,b;ā) is Fn measur-
able, while U`(x,x8,b;ā) is F` measurable. Let us prove thatUn(x,x8,b;ā)
5En@U`(x,x8,b;ā)# for P-almost everyā. As shown in the previous section, this boils down
proving

EnE
0

1

V@x0~u!1sBu
0~ ā!#du5E

0

1

EnV@x0~u!1sBu
0~ ā!#du

P-almost surely. The relation follows from the Fubini–Tonelli theorem provided that

E
0

1

EnuV@x0~u!1sBu
0~ ā!#udu ~17!

is finite P-a.s. Since the above integrand is non-negative, it is enough to show th
P-expectation is finite. Let

dme~z!5
1

A2pe2
e2z2/(2e2)dz

denote the respective Gaussian measure onR. Using the Tonelli theorem to invert the order o
integration, one computes
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EH E
0

1

EnUV@x0~u!1sBu
0~ ā!#UduJ 5E

0

1

EuV@x0~u!1sBu
0~ ā!#udu

5E
0

1

duE
R
uV@x0~u!1z#udmG0(u)~z!,`. ~18!

The last expression is finite for all (x,x8;b)PR23R1 by Theorem 4 of the Appendix. Equatio
~18! also shows thatU`(x,x8,b;ā) is P-integrable for all (x,x8;b). Then, standard theorems from
martingale theory show@see Theorem 5.7 of Ref. 21# the following:

Theorem 1: For all (x,x8,b)PR23R1 , the sequence Un(x,x8,b;ā) is a martingale adapted
to the filtrationFn and is a.s. and L1 convergent toE@U`(x,x8,b;ā)uF`#5U`(x,x8,b;ā).

Let us define

Xn~x,x8,b;ā!5r f p~x,x8;b!exp@2b Un~x,x8,b;ā!#

and

X`~x,x8,b;ā!5r f p~x,x8;b!exp@2b U`~x,x8,b;ā!#.

Then, we have

r~x,x8;b!5E @X`~x,x8,b;ā!# ~19!

and

rn
PA~x,x8;b!5E @Xn~x,x8,b;ā!#, ~20!

respectively.
Theorem 2: (PA Convergence Theorem) For all(x,x8,b)PR23R1 , the sequence

Xn(x,x8,b;ā) is a submartingale adapted to the filtrationFn and is a.s. and L1 convergent to
X`(x,x8,b;ā).

Proof: We notice thatXn(x,x8,b;ā) is the exponential of a martingale. Thus, by the con
tional Jensen’s inequality~see p. 225 of Ref. 21!, we have

Xn<E @Xn11uFn#<E @X`uFn#. ~21!

The above inequality establishes the submartingale property because, as mentioned in Se

r~x,x8;b!5E @E @X`uFn##5EX`

is uniformly bounded in the variables (x,x8) for all b.0. An elementary proof of this assertion
given in the Appendix~see Theorem 5!. Finally, the a.s. convergence follows directly from The
rem 1, while theL1 convergence follows from the Dominated convergence theorem and
inequality ~21!. h

We define thenth order partial averaging partition function by the formula

Zn
PA~b!5E

R
rn

PA~x,x;b!dx.

Using the symbol↑ to mean ‘‘monotonically increasing to,’’ a direct consequence of Theorem
the following.

Corollary 1: As n→`,

rn
PA~x,x8;b!↑r~x,x8;b! andZn

PA~b!↑Z~b!. ~22!
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Proof: The pointwise monotonic convergence of the density matrix is a direct consequen
the submartingale property and of theL1(V,P) convergence of the partial averaging metho
Then, the convergence of the partition functions follows from the monotone convergence
rem. h

IV. SUMMARY

In this article, I presented the basic properties of the partial averaging method. I demons
that the method can be employed for a quite general class of potentials by proving s
convergence results of interest for the chemical physicist. In particular, I proved that th
method is convergent for most of the potentials having negative coulombic singularities. The
of the convergence theorems deduced in the present article consists of the fact that they e
the mathematical context in which the partial averaging method should be utilized or discus
also anticipate that the martingale property will play an important role in establishing
asymptotic rates of convergence for different partial averaging schemes and, in fact, it may e
the superior asymptotic behavior of these methods.
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APPENDIX: SOME USEFUL THEOREMS

The following theorem consists of well known facts about the Gaussian transform a
present it here for ease of reference.

Theorem 3: Let f:Rd→R be a Borel measurable function, let a5(a0 ,...,ad)PR1
d , and let

iai5max1<i<dai . Consider the d-dimensional Gaussian measure

dma~z!5)
i 51

d F 1

A2pa i
2

e2zi
2/(2a i

2)dzi G ~A1!

and let

F~x,a!5E
Rd

u f ~x1z!udma~z!

be defined onRd3R1
d . Assume there is(y,h)PRd3R1

d such that F(y,h),` and let D5Rd

3) i 51
d (0,h i). Then the following are true:
(a) f is locally integrable.
(b) F(x,a),` for all (x,a)PD.
(c)

G~x,a!5E
Rd

f ~x1z!dma~z!

is well defined, continuous and infinitely differentiable in both arguments on D.
(d) limiai→0G(x,a)5 f (x) a.e. More strongly,

lim
iai→0

E
Rd

u f ~x1z!2 f ~x!udma~z!50 a.e.
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Theorem 4: Let x and x8 be arbitrary points inRd, let b.0, and let Bu
0 be a standard

d-dimensional Brownian bridge on@0,1#. Pick some arbitrarys5(s1 ,...,sd)PR1
d and set y

5x82x. If VPKd
loc and V has finite Gaussian transform, then

E
0

1

EuV~x1yu1sBu
0!udu5E

0

1

duE
Rd

uV~x1yu1z!udmG0(u)~z!,`, ~A2!

whereG0
2(u)5u(12u)(s1

2 ,...,sd
2) and the Gaussian measuredma(z) is defined by the relation

(A1).
Observation:We stated this theorem separately because its proof depends upon the d

sionality of the problem. More precisely, if the system is monodimensional, one may useG0
2(u)

<s2 to show that the integral~A2! is smaller than

E
0

1

du
1

Au~12u!
E

R
uV~x1yu1z!udms~z!. ~A3!

By Theorem 3~c!, the integral

E
R
uV~x1yu1z!udms~z!

as a function ofu is continuous on@0,1#, thus bounded. Then, by the integrability of@u(1
2u)#21/2, it follows that the integral~A3! is finite. However, this reasoning is not valid for high
dimensions because@u(12u)#2d/2 is not integrable ford>2 and the additional conditionV
PKd

loc is needed.
Proof of the theorem:The equality~A2! was discussed in the text. From Theorem 3~c!, it

follows that

E
Rd

uV~x1yu1z!udmG0(u)~z!

as a function ofu is continuous on all compact intervals@e,12e# with 0,e, 1
2, thus bounded and

integrable. It is then enough to show that

I e~x,y!5E
0

e

duE
Rd

uV~x1yu1z!udmG0(u)~z!5E
0

e

duE
Rd

uV~x1z!udmG0(u)~z2yu!,`

for all x andy and small enoughe. This is so because the integral over the end@12e,1# can be
shown to equalI e(x1y,2y) by the change of variableu8512u. We shall prove the above
inequality in two steps.

Step 1:In the first step, we prove the inequality

I e~x,y!<2d expS (
i 51

d yi
2

4s i
2D E

0

e

duE
Rd

uV~x1z!udmsA2u~z!. ~A4!

The inequality 0,u, 1
2 implies

)
i 51

d H 1

A2ps i
2u~12u!

expF2
~zi2yiu!2

2s i
2u~12u!G J <2d/2)

i 51

d H 1

A2ps i
2u

expF2
~zi2yiu!2

2s i
2u G J .

~A5!

On the other hand, the minimum of the expression
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zi
2/222ziyiu1yi

2u2

as a quadratic function ofzi is attained atzi52yiu and has the value2yi
2u2. Therefore,

~zi2yiu!2

2s i
2u

5
zi

2/21zi
2/222ziyiu1yi

2u2

2s i
2u

>
zi

2

4s i
2u

2
yi

2u

2s i
2 >

zi
2

4s i
2u

2
yi

2

4s i
2 ,

where we used again the conditionu, 1
2. Replacing the last inequality in Eq.~A5!, we obtain

)
i 51

d H 1

A2ps i
2u~12u!

expF2
~zi2yiu!2

2s i
2u~12u!G J <2d expS (

i 51

d yi
2

4s i
2D)

i 51

d F 1

A4ps i
2u

expS 2
zi

2

4s i
2uD G

and, consequently, the inequality given by Eq.~A4! is proven.
Step 2:By the results from the first step, it suffices to show that the last integral in Eq.~A4!

is finite. By appropriate transformation of coordinates, we may rewrite this last integral as

E
0

e

duE
Rd

uV~x1z!udmsA2u~z!5eE
0

1

duE
Rd

uV~x1z!udmsA2eu~z!

5eE
0

1

duE
Rd

uV~x1zsA2e!udmAu~z!.

Even more, the integral overRd in the last relation can be restricted to the ballizi,1. Indeed if
izi>1, we have

~2pu!2d/2 expH 2
izi2

2u J 5u2d/2 expH 2
izi2

2 S 1

u
21D J ~2p!2d/2exp~2izi2/2!

<u2d/2e1/2e21/(2u)~2p!2d/2exp~2izi2/2!.

Notice that

M05sup
u.0

e1/2u2d/2 exp@21/~2u!#,`.

Then, a little calculus and Theorem 3~c! show that

eE
0

1

duE
izi>1

uV~x1zsA2e!udmAu~z!<eM0E
Rd

uV~x1zsA2e!udm1~z!,`.

To conclude the theorem, we only need to prove that

eE
0

1

duE
izi,1

uV~x1zsA2e!udmAu~z!,`

for e small enough. Pick an arbitraryh.0. Remembering thate, 1
2 and takingx such thatixi

,h, we notice that in order to compute the integral overz in the above formula, we only need t
know the potential over the ballD of radiush1max1<i<dsi centered at origin. Therefore, if we se
VD51DV, then

eE
0

1

duE
izi,1

uV~x1zsA2e!udmAu~z!<eE
0

1

duE
Rd

uVD~x1zsA2e!udmAu~z! ~A6!

for all x such thatixi,h. SinceD is bounded andVPKd
loc , it follows thatVDPKd and then Eq.

~6! guarantees that there ise0.0 such that the last integral in Eq.~A6! is uniformly bounded for
all x. Consequently,
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e0E
0

1

duE
izi,1

uV~x1zsA2e0!udmAu~z!

is bounded for allx such thatixi,h. Sinceh is arbitrary, we are done. h

Theorem 5: Assume V is a Kato-class potential. Then there is Mb.0 a constant depending
upon the inverse temperatureb such thatr(x,x8;b)<Mb for all (x,x8)PRd3Rd.

Observation:The proof of this theorem will show why the Kato class is the natural class
the treatment of Feynman–Kac¸ semigroups. Most of the arguments used in the proof are borro
from Aizenman and Simon.19

Proof of the theorem:If V2 denotes the negative part ofV, we notice that

E expH 2bE
0

1

V@x0~u!1sBu
0#J <E expH bE

0

1

V2@x0~u!1sBu
0#J ,

so, without loss of generality, we may assume thatV is of classKd . The proof of this theorem is
organized in three steps, each step reducing the problem to a simpler statement.

Step 1:In the first step, we prove that it suffices to show that

sup
x
E

Rd
r~x,x8;b!dx8,` ~A7!

for all b.0 andVPKd .
In this part of the proof, it is convenient to denote the density matrix byrV(x,x8;b), the index

V indicating the potential from which the density matrix is derived. For the proof, we need
well-known properties of the density matrixrV(x,x8;b): it is symmetrical

rV~x,x8;b!5rV~x8,x;b!

and it satisfies the Trotter product rule

rV~x,x8;b!5E
Rd

rV~x,y;b/2!rV~y,x8;b/2!dy.

These two properties can be established by direct computation starting with the definition
Brownian bridge. The first one is a consequence of the symmetry of the standard Brownian b
that is $B12u

0 :0<u<1% is also a Brownian bridge and is equal in distribution to$Bu
0 :0<u

<1%. The Trotter product rule is a consequence of the Markov property of the Brownian m
Bu entering the definition of the Brownian bridge. The simple proofs are left to the reader.

Now, the Cauchy–Schwartz inequality gives the estimate

rV~x,x8;b!<F E
Rd

rV~x,y;b/2!2dyG1/2F E
Rd

rV~y,x8;b/2!2dyG1/2

.

Taking the supremum overx andx8 and using the symmetry of the density matrix, one conclu
that

sup
x,x8

rV~x,x8;b!<sup
x
E

Rd
rV~x,y;b/2!2dy. ~A8!

Again by the Cauchy–Schwartz inequality,
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rV~x,x8;b/2!2

r f p~x,x8;b/2!2 5S E expH 2
b

2 E
0

1

VFx0~u!1
s

&
Bu

0GduJ D 2

<E expH 2
b

2 E
0

1

2VFx0~u!1
s

&
Bu

0GduJ .

Next, we combine the last equation with the bound

r f p~x,x8;b/2!2<S )
i 51

d
1

Aps i
2D r f p~x,x8;b/2!

to obtain the inequality

rV~x,x8;b/2!2<S )
i 51

d
1

Aps i
2D r2V~x,x8;b/2!. ~A9!

Substituting Eq.~A9! in Eq. ~A8!, one obtains

sup
x,x8

rV~x,x8;b!<S )
i 51

d
1

Aps i
2D sup

x
E

Rd
r2V~x,y;b/2!dy

and the claim of Step 1 is concluded becauseb/2.0 and 2VPKd .
Step 2:Simple transformations of coordinates show that

E
Rd

r~x,x8;b!dx85E
Rd

dm1~z!E e2b*0
1V[x1zus1sBu

0]du

and from the very definition of the Brownian bridge, we learn thatzu1Bu
0 is in fact a Brownian

motion Bu starting at zero. Thus,

E
Rd

r~x,x8;b!dx85E e2b*0
1V(x1sBu)du.

For the remainder of the proof,E stands for the expectation value with respect to the underly
measure of the standard Brownian motionBu .

In this second step, we use the Markov property of the Brownian motion to show that if
is e0.0 such that the inequality

sup
x

E e2b*0
eV(x1sBu)du,`

holds for alle,e0 , then Eq.~A7! also holds.
Let u andt be some positive real numbers such thatu1t51. We break the integrand in th

above equation in two parts:

e2b*0
1V(x1sBu)du5e2b*0

uV(x1sBu)due2b*u
1V(x1sBu)du5e2b*0

uV(x1sBu)due2b*0
tV(x1sBu1u)du.

Using the Markov property, we learn that the expected value of the above integrand condi
on the random variablesBu with uP@0,u# is

e2b*0
uV(x1sBu)duE8e2b*0

tV(x1sBu1sBu8)du.
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Here, the symbolE8 denotes the expected value against the standard Brownian motion start
zero Bu8 , Brownian motion that is independent fromBu . The above conditional expectation
smaller than or equal to

e2b*0
uV(x1sBu)dusup

x
E e2b*0

tV(x1sBu)du,

where the prime sign becomes superfluous and is therefore dropped. Taking the total expe
and then the supremum overx, we obtain the inequality

sup
x

E e2b*0
1V(x1sBu)du<sup

x
E e2b*0

uV(x1sBu)du3sup
x

E e2b*0
tV(x1sBu)du.

A simple inductive argument then shows that

sup
x

E e2b*0
1V(x1sBu)du< H sup

x
E e2b*0

1/nV(x1sBu)duJ n ~A10!

for all n>1. Clearly, the claim of Step 2 is concluded because the right-hand side of Eq.~A10! is
finite for all n such that 1/n,e0 .

Step 3: In this final step, we prove that there ise0 small enough such that

sup
x

E e2b*0
eV(x1sBu)du,`

for all e,e0 . Equation~4! allows us to pick somee0.0 such that

sup
x

E FbE
0

e

uVu~x1sBu!duG,
1

2
~A11!

for all e,e0 . Next, we consider the inequality

sup
x

E e2b*0
eV(x1sBu)du<sup

x
E eb*0

e uVu(x1sBu)du5sup
x

(
k51

`
bk

k!
EF E

0

e

uVu~x1sBu!duG k

<(
k50

`

Ak ,

~A12!

where

Ak5sup
x

bk

k!
EF E

0

e

uVu~x1sBu!duG k

5bkEE
0<s1<...<sk<e

uVu~x1sBs1
!¯uVu~x1sBsk

!ds1¯dsk .

~A13!

Notice that the term by term integration of the first series appearing in Eq.~A12! is guaranteed by
the monotone convergence theorem. The last equality in Eq.~A13! follows by symmetry argu-
ments.

To construct a bound for the termsAk , we first condition on the random variablesBu with
uP@0,sk21# and use the Markov property ofBu to show that this conditional expectation has t
value

bk21E
0<s1<...<sk21<e

uVu~x1sBs1
!¯uVu~x1sBsk21

!

3FE8bE
0

e2sk21
uVu~x1sBsk21

1sBu8!duGds1¯dsk21 . ~A14!
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Equation~A11! shows that the quantity in the square brackets is bounded by1
2. Therefore, the

conditional expectation given by Eq.~A14! is bounded by

1

2
bk21E

0<s1<...<sk21<e
uVu~x1sBs1

!¯uVu~x1sBsk21
!ds1¯dsk21 . ~A15!

Taking the total expectation in Eqs.~A14! and~A15! and then the supremum overx, we learn that

Ak<Ak21/2,

from which the inequalityAk<1/2k follows by induction. Substituting this last inequality in E
~A12!, we obtain

sup
x

E e2b*0
eV(x1sBu)du<(

k50

`
1

2k 52,`

for all e,e0 and the proof of Step 3 and of the theorem is concluded. h
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16M. H. Müser and B. J. Berne, J. Chem. Phys.107, 571 ~1997!.
17B. Simon,Functional Integration and Quantum Physics~Academic, London, 1979!.
18B. Simon, Bull. Am. Math. Soc.7, 447 ~1982!.
19M. Aizenman and B. Simon, Commun. Pure Appl. Math.35, 209 ~1982!.
20S. Kwapien and W. A. Woyczynski,Random Series and Stochastic Integrals: Single and Multiple~Birkhäuser, Boston,
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Limits of a Ginzburg–Landau model with codimension-
one defects

J. Rubinstein and P. Sternberga)

Department of Mathematics, Indiana University, Bloomington, Indiana 47405

~Received 11 December 2002; accepted 20 December 2002!

We derive a nondimensional Ginzburg–Landau energy functional that does not use
temperature-dependent scaling quantities. Using the machinery of gamma-
convergence, the asymptotic limits of the functional are computed in the presence
of thin defects centered around co-dimension 1 manifolds. We classify the defects
into three groups depending on theL1-norm of the defect potential. We show that
each group has its own distinguished asymptotic limit as the thickness of the defect
converges to zero. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1545165#

I. INTRODUCTION

The Ginzburg–Landau model has successfully captured a wide range of phenomena
ated with the behavior of a superconducting material subjected to external magnetic fields
includes the analysis of the relation between the transition temperature below which on
observes superconductivity and the strength of the applied field. In this article we pres
modification of the standard Ginzburg–Landau model that incorporates the presence of no
that is, non-superconducting—material appearing as thin inclusions within the supercond
bulk. We study the effect of this modification in the asymptotic regime where the thickness o
normal inclusions is small. Particular attention is paid to the effect on the transition temperat
the material.

As we shall see, in our model the normal inclusions are broken into three distinct reg
involving a weak, critical and strong influence on the behavior of the superconductor. Pre
attempts by physicists to model the presence of normal defects in a superconducting mate
Ginzburg–Landau theory include Refs. 1 and 9. In Refs. 2, 5 and 6, a modification o
Ginzburg–Landau model is studied which corresponds in our language to the case of weak
sions only. The identification of the three regimes was set forth in Ref. 7 for the case
one-dimensional superconductor and a primary purpose of the present study is to exte
model and analysis to the more physically interesting cases of two- and three-dimen
samples.

Because a central application we have in mind concerns the temperature versus extern
transition curve, we shall begin our analysis with a careful nondimensionalization of the un
fied Ginzburg–Landau model. Commonly used nondimensionalizations typically involve sc
space as well as the order parameter and field by temperature-dependent quantities. This
to inappropriate formulations for our purposes. Consequently, in Sec. II we present in some
a nondimensionalization that involves scaling only by temperature-independent quantitie
believe this formulation may prove useful in other investigations stressing temperature d
dence in superconducting materials.

We follow this in Sec. III with a presentation of the modified Ginzburg–Landau mode
incorporate the normal inclusions. A central component of the standard Ginzburg–La
energy11 is a bulk term depending on the complex-valued order parameterũ of the form

a!Author to whom correspondence should be addressed. Electronic mail: sternber@indiana.edu
12400022-2488/2003/44(3)/1240/12/$20.00 © 2003 American Institute of Physics
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E
Ṽ

2auũu21
b

2
uũu4 dx̃,

whereṼ is the region occupied by the superconductor. The factorb is a positive, temperature
independent constant buta is a factor depending on temperature. For temperatures below
critical temperatureTc , where onset first occurs in the absence of magnetic fields,a is positive,
while it is negative above this value where superconductivity is precluded. Since the phys
relevant quantity here isuũu2, which measures the density of superconducting electron pairs,
sign change ina allows for the emergence of the stable stateuũu25a/b signaling the presence o
superconductivity in the model. In the modification we pursue, we model the presence of n
regions withinṼ by takinga to be negative, regardless of temperature, in certain small port
of the sample. It is the size of the positive factor2a, taken to be of the form2a5 a/dp, that
distinguishes the three different asymptotic regimes alluded to earlier. Herea is a positive con-
stant,p is non-negative and 0,d!1 corresponds to the thickness of the normal region. W
turns out to be relevant is theL1-norm of this factora/dp taken over the normal region, thu
leading to the regimesp,1, p51 andp.1.

In Sec. IV we invoke the theory of gamma-convergence~cf. Ref. 4! to study the limit of the
modified Ginzburg–Landau energy for smalld. We review the definition of this convergence at t
outset of the section. The identification of the gamma-limits allows one to characterize min
ers, both global and local, of the original energies as being minimizers of the identified lim
energies.

Finally, in Sec. V we focus on the issue of transition temperatures in the presence of n
inclusions by calculating the second variation of the limiting energies taken about the p
normal state. This leads to concrete eigenvalue problems whose first eigenvalue correspond
shift down in transition temperature due to the presence of applied magnetic fields fo
superconducting/normal sample in thed→0 first approximation.

II. FORMULATION OF THE NONDIMENSIONAL PROBLEM FOR A CLEAN
SUPERCONDUCTOR

The dimensional Ginzburg–Landau functional is given by

G~ ũ,Ã!5E
D̃

1

2mUS i\¹̃2
e

c
ÃD ũU2

2auũu21
b

2
uũu4dx̃1E

Rn

1

8p
u¹̃3Ã2H̃eu2dx̃. ~2.1!

HereD̃,Rn (n51, 2 or 3! is the bounded domain occupied by the superconducting samplec is
the speed of light,\ is Planck’s constant,e and m are the electron’s charge and half-ma
H̃e:Rn→Rn and Ã:Rn→Rn are the applied magnetic field and the total magnetic potential,
spectively,u:D̃→C is the order parameter, anda andb are material parameters. The dependen
of b on the temperatureT is weak. Since in most applications one works at temperatures tha
not too far from the critical temperature, we can assume thatb is temperature-independent. Th
parametera, on the other hand, is sensitive to the temperature. The standard model is to t

a;a0~Tc2T! for Tc2T!1, ~2.2!

wherea0 is a positive constant andTc is the critical temperature for the material, below whi
superconductivity is observable in the absence of any applied field~cf. Ref. 3!.

We wish to nondimensionalize the various terms in the energy functional~2.1! without scaling
by any temperature-dependent quantities. We start with generic scalings:H̄ for the magnetic field,
l for lengthscale, andAM for u, and later we shall make judicious choices for these three fac
It is useful to recall the definitions of four fundamental parameters that appear frequen
superconductivity: the coherence length
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j5A \2

2ma
, ~2.3!

the penetration depth

l5A mbc2

4pae2, ~2.4!

the ~dimensionless! Ginzburg–Landau parameter

k5
l

j
, ~2.5!

and the basic flux quantum

F052p
\c

e
. ~2.6!

We now scale:

u5
ũ

AM
, x5

x̃

l
, He5

H̃e

2~2p!1/2H̄
, A5

Ã

2~2p!1/2lH̄
. ~2.7!

Under this scaling, the Ginzburg–Landau functional becomes

G~u,A!5E
D
S M\2

2m

1

l 2US i¹2
2~2p!1/2H̄el2

c\
AD uU2

2aM uuu21
bM2

2
uuu4D l n dx

1E
Rn

H̄2u¹3A2Heu2 l n dx

⇒

1

l nH̄2
G~u,A!5E

D
S M\2

2mH̄2

1

l 2US i¹2
2~2p!1/2H̄el2

c\
AD uU2

2
aM

H̄2
uuu21

bM2

2H̄2
uuu4D dx

1E
Rn

u¹3A2Heu2 dx. ~2.8!

HereD denotes the original domainD̃ scaled byl .
Again, our goal is to find a nondimensionalization such thatM , H̄ and l are not temperature

dependent. Before proceeding, we should perhaps mention that in addition to the coherence
and the penetration depth, there is another length-scale in the problem given by

z5
2mb

\2 .

An elementary calculation shows thatz andk are related through

z54pkr 0 , ~2.9!

where r 05e2/mc2 is the classical radius of the electron. Sincel and j depend on temperatur
through a, we are left with only two choices for scaling length in a temperature-indepen
manner. One isz and the other one is some typical lengthl associated with the domainD̃ such as
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its diameter. The former choice is not desirable sincer 0;10215 m, which is much smaller than
any other length in the problem. We therefore opt for the latter choice thatuses the problem’s
specific geometry to fix its length-scale. Thus we are guaranteed to end up working with a dom
D whose size isO~1!.

Choosing a value forM is trickier. It is not desirable to use the geometrical quantityl . If we
choosez, we end up with a representation forG that has terms such asr 0 / l that are extremely
small as explained above. We cannot usej andl since this will lead to a formulation where th
temperature appears implicitly inu, and this causes difficulties in any phase transition analysis
remedy the situation we use the formula~2.2! to define

j05A \2

2ma0
and l05A mbc2

4pa0e2. ~2.10!

These definitions imply thatl5l0r(T) andj5j0r(T), with r(T);(Tc2T)21/2. We can there-
fore usej0 , or, even better,a0 , as a natural scaling length forM :

M5
H̄2

a0
. ~2.11!

ScalingH is to a large extent dependent on the specific problem at hand. For example, if w
interested in mesoscopic domains, we can use the number of fluxoids inD̃ as a scaling paramete
and set

H̄5
F0

2~2p!3/2l 2 5
\c

2~2p!1/2el2
. ~2.12!

Up to a factor and an additive constant, we obtain that the energy is given by

G~u,A!5E
D
S S j0

l D 2

u~ i¹2A!uu21
n2

2
~ uuu22m2!2D dx1E

Rn
u¹3A2Heu2 dx. ~2.13!

Here

n25
bH̄2

a0
2 ~2.14!

and is independent of temperature, while the temperature dependence is captured in the pa
m2 given by

m2;
a0

2~Tc2T!

bH̄2
for Tc2T!1. ~2.15!

It is also useful to write the energy in another form that exposes the parameterk. It follows
from ~2.10! and ~2.12! that

l 2n2

j0
2 5

l0
2

l 2 .

Substituting this into~2.13! and noting thatk5l0 /j0 we obtain~after multiplyingG by a con-
stant!
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G~u,A!5E
D
S u~ i¹2A!uu21

s

2
~ uuu22m2!2D dx1s21k2E

Rn
u¹3A2Heu2 dx, ~2.16!

wheres5(l0 / l )2.

III. FORMULATION OF THE VARIATIONAL PROBLEM WITH NORMAL INCLUSIONS

In this section we discuss the incorporation of normal inclusions into the Ginzburg–La
model. This will be carried out through an appropriate modification of the nondimensional e
~2.13!. We wish to consider three possible geometries for the region occupied by the sup
ductor: that of a thin film, an infinite cylinder and an arbitrary smooth, bounded three-dimens
domain. For the first two, we denote byD,R2 a smooth, bounded, connected open set. In the c
of the film, D will represent the planar region covered by the film. In the case of an infi
cylinder, D represents the 2d cross-section. In all cases, we study the behavior of the super
ductor when exposed to an applied magnetic fieldHe. In the first two cases, we takeHe to be
directed orthogonally toD, that is, He takes the form (0,0,he) for some he :R2→R1, while
He:R3→R3 is at this point taken to be arbitrary in the fully 3d case.

To model the normal inclusions in the sample, we first introduceG5(ø i 51
N G i),D to be a

finite union of nonintersectingC2 curves~surfaces! for D,R2 (,R3). We assume that for eachi ,
eitherG i has no boundary or else that its boundary lies in]D. We shall denote bydG :D→R1 the
Euclidean distance from a point inD to G and we note that under the assumption thatGPC2 we
can conclude thatdGPC2 in a sufficiently small neighborhood ofG. We also note that the~mean!
curvature of G, denoted bykG , is bounded inL`. Then, for d.0 and small, define a
d-neighborhoodDd aroundG by

Dd5$xPD: dG~x!,d%. ~3.1!

In what follows,Dd will represent the region taken up by the normal inclusions.
The impurity is modeled by the potentialVd defined through

Vd5
a

dp xDd
, ~3.2!

wherea is a fixed positive constant,p is a positive parameter that characterizes the ‘‘strength’
the impurity, andxDd

denotes the characteristic function of the setDd .
We begin with the case of a thin film. In this case, to leading order in the film thickness

may ignore the field induced by any supercurrents10 and thereby obtain the following modifie
Ginzburg–Landau model with inclusions:

Ed~u!5E
D

u~ i¹2Ae!uu2dx1E
D

Vd~x!uuu2dx1E
D\Dd

n2

2
~ uuu22m2!2dx. ~3.3!

HereAe :R2→R2 is the magnetic potential associated withHe; that is,

¹3Ae5He. ~3.4!

To simplify the presentation of the asymptotic analysis we takej0 / l 51 in ~2.13!.
For the case of an infinite cylinder with cross-sectionD,R2 and the case whereD,R3, we

may not ignore the induced magnetic field and so the energy includes the total magnetic po
A and takes the form

Gd~u,A!5E
D

u~ i¹2A!uu2dx1E
D

Vd~x!uuu2dx1E
D\Dd

n2

2
~ uuu22m2!2dx1E

Rn
u¹3A2Heu2 dx,

~3.5!
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for n52,3.
We note that the functionalEd is well-defined for Sobolev functionsuPH1(D;C) consisting

of all square-integrable, complex-valued functions having~weak! square-integrable gradients. Th
functional Gd makes sense foruPH1(D;C) and A such thatAPH loc

1 (Rn;Rn) (n52 or 3! and
such that¹3A2HePL2(Rn;Rn). We will denote this space of admissible magnetic potentials
He

1(Rn;Rn).

IV. ASYMPTOTIC LIMITS OF Ed AND Gd

The characterization of the minimizers of the functionalsEd and Gd depends on the value
taken by the parameterp. We investigate the asymptotic limits using the method of gamm
convergence.

To describe these asymptotic limits, we need to recall the notion of the trace of a So
function~cf. Ref. 12!. The trace of a Sobolev function is a measure-theoretic means to describ
restriction of a Sobolev function defined onRn to an (n21)-dimensional set. It is not obvious tha
such a restriction is sensible since Sobolev functions are only defined up to sets ofn-measure zero.
However, for uPH1(D;C), one can define the trace ofu on the smooth curves~surfaces! G
previously introduced, which we denote by trGu. In particular, one has trGuPL2(G;C) and there
exists a positive constantC5C(G,D) such that

E
G
utrGuu2 dHn21~x!<CE

D
uuu21u¹uu2 dx. ~4.1!

Here dHn21 corresponds to (n21)-dimensional Hausdorf measure, that is, essentially d~arc
length! in two dimensions and d~surface area! in three dimensions. Of course,~4.1! in particular
implies that if a sequence of functions defined onD converges inH1(D;C), then necessarily thei
traces converge inL2(G;C). We also record here the fact that theL2(G;C)-norm of the trace can
be approached through integral averages in the sense that for anyuPH1(D;C) one has

E
G
utrGuu2 dHn21~x!5 lim

d→0

1

2d EDd

uuu2 dx. ~4.2!

Throughout the article, we shall generally suppress the notation trGu and write simplyu when
considering the restriction of a Sobolev functionu to the setG. However, it should be interprete
in terms of trace.

We now recall the characterization of gamma-convergence of a sequence of functiona~cf.,
e.g., Ref. 4!. A family of functionals$Fd%, all defined on Banach spaceX and mapping intoR1,
are said to gamma-converge to a functionalF:X→R1 with respect to the topology ofX if

;uPX,'a sequence$ud%,X such thatud→
X

u and lim
d→0

Fd~ud!5F~u!, ~4.3!

and

;uPX, ;$vd%,X such thatvd→
X

u, we have lim infFd~vd!>F~u!. ~4.4!

A useful consequence of this definition is that if a class of functionals$Fd% has a gamma-limitF,
then any limitu of minimizers$ud% of Fd must minimize the limiting functionalF.

We shall apply this machinery to the sequence$Ed% in the topologyX5H1(D;C), to obtain
the following result:

Theorem 4.1: (i) For 0<p,1, the H1(D;C) gamma-limit of the sequence$Ed% as d→0 is
the functional E(0) given by
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E(0)~u!5E
D

u~ i¹2Ae!uu2dx1E
D

n2

2
~ uuu22m2!2dx. ~4.5!

(ii) For p 51, the gamma-limit of the$Ed% as d→0 is E(1) given by

E(1)~u!5E(0)~u!12aE
G
uuu2dH1~x!. ~4.6!

(iii) For p .1, the gamma-limit of the$Ed% as d→0 is E(2) given by

E(2)~u!5H E(0)~u!, if trGu~x!50 for Hn21 a.e. xPG,

1`, otherwise.
~4.7!

In a similar fashion, we shall obtain the gamma-limit of$Gd%. In this case, we take the
H1(D;C) topology foru, and theHe

1 topology forA.
Theorem 4.2:(i) For 0<p,1, the H1(D;C)3He

1(Rn;Rn) gamma-limit of the sequence$Gd%
as d→0 is the functional G(0) given by

G(0)~u,A!5E
D

u~ i¹2A!uu2dx1E
D

n2

2
~ uuu22m2!2dx1E

Rn
u¹3A2Heu2 dx. ~4.8!

(ii) For p 51, the gamma-limit of the$Gd% as d→0 is G(1) given by

G(1)~u,A!5G(0)~u,A!12aE
G
uuu2dHn21~x!. ~4.9!

(iii) For p .1, the gamma-limit of the$Gd% as d→0 is G(2) given by

G(2)~u,A!5H G(0)~u,A!, if trGu~x!50 for Hn21 a.e. xPG,

1`, otherwise.
~4.10!

Proof of Theorems 4.1 and 4.2:Since the two theorems are proved in a similar manner,
shall present both proofs simultaneously.

Case 1:0<p,1.
We begin with the construction required by~4.3!. For bothEd andGd we choose the trivial

sequence. That is, given anyuPH1(D;C) and A such thatA2AePH1(Rn;Rn) we take for the
required construction$ud% simply ud5u and for$Ad% simply Ad5A for all d. Then the properties

lim
d→0

Ed~ud!5E(0)~u! and lim
d→0

Gd~ud ,Ad!5G(0)~u,A!

follow immediately from~4.1! and ~4.2! since

E
D

Vd~x!uudu2dx5
a

dp E
Dd

uuu2 dx5ad12pS 1

d EDd

uuu2 dxD'2ad12pE
G
uuu2 dHn21~x!→0

as d→0.

The convergence of the other terms inEd andGd to the appropriate terms inE(0) andG(0) are
trivial. The lower semi-continuity property~4.4! follows at once since the non-negative term in t
energiesEd andGd involving Vd can be ignored and all other terms are in fact continuous in
H1 topology.

Case 2: p51.
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In light of ~4.2!, one may again take the trivial sequencesud5u and Ad5A in order to
establish the construction~4.3! for Ed andGd .

The lower semi-continuity condition~4.4!—in fact, continuity under in theH1 topology—will
follow from ~4.1! and ~4.2! and the fact that ifud→u in H1(D;C), then

lim
d→0

U1d EDd

uudu2 dx22E
G
uudu2 dHn21~x!U50. ~4.11!

To verify ~4.11!, we use the co-area formula to compute

U1d E$0,dG(x),d%
uudu2 dx2E

G
uudu2 dHn21~x!U

5U1d E0

dE
$dG(x)5h%

uudu2 dHn21~x! dh2E
G
uudu2 dHn21~x!U

5
1

d U E0

d H E
$dG(x)5h%

uudu2 dHn21~x!2E
$dG(x)50

UJ uudu2 dHn21~x! dh.

This last difference is controlled using the divergence theorem, yielding

U1d E$0,dG(x),d%
uudu2 dx2E

G
uudu2 dHn21~x!U

<
1

d U E0

dE
$0,dG(x),h%

div~ uudu2¹dG! dxU
1

1

d U E0

dE
]Dù$0,dG(x),h%

uudu2 ~¹dG•n]D! dHn21~x! dhU
<

1

d E0

dE
$0,dG(x),h%

~ uudu2ikGiL`(G)12uuduu¹udu! dx1E
]Dù$0,dG(x),d%

uudu2 dHn21~x!

<~ ikGiL`(G)11!iudiH1($0,dG(x),d%)
2

1iudiL2(]Dù$0,dG(x),d%)
2 →0 as d→0.

Case 3: p.1.
To establish property~4.3!, fix any uPH1(D;C). If u(x)Þ0 for Hn21 a.e.xPG, then take

the trivial sequenceud5u for the constructive part~4.3!. Using ~4.2!, one finds

E
D

Vduudu2 dx5
a

dp21 S 1

d EDd

uuu2D'
2a

dp21 E
G
uuu2 dHn21~x!→`. ~4.12!

Hence, limd→0 Ed(ud)5E(2)(u)5` and the same reasoning applies toGd .
If, on the other hand,u(x)50, then we introduce a smooth sequencerd :@0,̀ )→@0,̀ ) such

that ~i! rd(s)50 for 0<s<d, ~ii ! rd(s)51 for s>d1/2 and ~iii ! urd8(s)u< 2/d1/2 for all s. Then
define the sequence$ud% through the formula

ud~x!5u~x!rd~dG~x!!.

Clearly ud→u in L2(D;C) and since
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u¹udu2<2S u¹uu21
1

d
uuu2D

one finds that

E
$d,dG(x),d1/2%

u¹udu2 dx<2S E
$d,dG(x),d1/2%

u¹uu2 dx1
1

d E$dG(x),d1/2%
uuu2 dxD . ~4.13!

SinceuPH1(D;C), the first term on the right in~4.13! clearly approaches zero withd. Now since
smooth functions are dense inH1, we may assume thatuPH1(D;C)ùC1(D;C). Then the as-
sumptionu50 implies that for anyh.0 and anyxPD such thatdG(x)5h one has

u~x!5E
0

h d

dt
u~y1tn~y!! dt,

wherey5y(x) is the closest point ofG to x andn(y) is the unit normal ofG at y pointing towards
x. Consequently, we have

uu~x!u2<hE
0

h
u¹u~y1tn~y!!u2 dt for any x such that dG~x!5h. ~4.14!

We then handle the second term in~4.13! again through an appeal to the co-area formula, Fubi
theorem and~4.14! as follows:

1

d E$d,dG(x),d1/2%
uu~x!u2 dx<

1

d Ed

d1/2E
$dG(x)5h%

hE
0

h
u¹u~y1tn~y!!u2 dt dHn21~x! dh

<
1

d E0

d1/2

hE
$dG(x)5h%

E
0

d1/2

u¹u~y1tn~y!!u2 dt dHn21~x! dh

5
1

d E0

d1/2

hE
0

d1/2E
$dG(x)5h%

u¹u~y1tn~y!!u2 dHn21~x! dt dh

<
1

d E0

d1/2

hE
0

d1/2E
$dG(x)5t%

u¹u~x!u2~11C0d (n21)/2! dHn21~x! dt dh,

where the factor ofC0d (n21)/2 appearing in the last integral arises from the difference indHn21

along$dG(x)5h% versus$dG(x)5t% whereut2hu<d1/2. We conclude that

1

d E$d,dG(x),d1/2%
uu~x!u2 dx<CE

$dG(x),d1/2%
u¹uu2 dx→0 as d→0.

It easily follows thatud→u in H1(D;C) as well. Then, since

E
D

Vd~x!uudu2 dx5E
$dG(x),d%

a

dp •0 dx50,

one concludes thatEd(ud)→E(2)(u) andGd(ud ,A)→G(2)(u,A) asd→0, thus establishing~4.3!
in this case.

The lower semi-continuity property~4.4! is clear in the case whereu50 since again one may
simply ignore the non-negative term involving the potentialVd . To establish the lower semi
continuity for the caseuÓ0, we let$ud% be any sequence converging inH1(D;C) to u, and use
~4.1! and ~4.2! to see that
                                                                                                                



rature
bility.
meter
that

eir
its of
olated
the

the

lue

1249J. Math. Phys., Vol. 44, No. 3, March 2003 Ginzburg–Landau model with codimension-one defects

                    
1

dp E
Dd

uudu2 dx5
1

dp21 H S 1

d EDd

uudu2 dx22E
G
uudu2 dHn21~x! D J

1
2

dp21 H S E
G
uudu22uuu2 dHn21~x! D 1E

G
uuu2 dHn21~x!J

5
1

dp21 S 2E
G
uuu2 dHn21~x!1o~1! D→`5E(2)~u!5G(2)~u,A!.

h

V. VARIATIONAL CHARACTERIZATION OF TRANSITION TEMPERATURE WITH
NORMAL INCLUSIONS

One application of the analysis of the previous section concerns the transition tempe
T5T(He) below which the normal state in a superconductor with normal inclusions loses sta
Recall that within Ginzburg–Landau theory, the normal state prevails when the order para
vanishes identically while the applied magnetic field completely penetrates the sample soA
5Ae whereAe is given by~3.4!. Then the loss of stability of the stateu50 in ~3.3! or of the pair
(u,A)5(0,Ae) in ~3.5! for d!1 should be related to the corresponding loss of stability of th
gamma-limits given by Theorems 4.1 and 4.2. This claim is supported by the fact that lim
minimizers of a gamma-converging sequence will minimize the gamma-limit and even an is
local minimizer of a gamma-limit will be a limit point of a sequence of local minimizers of
gamma-converging sequence~see Ref. 8 in this regard!.

Stability or instability of a critical point is most easily classified in terms of the sign of
second variation taken about the point in question. Starting from~4.5! and~4.7!, a straightforward
calculation yields the second variation formula for the gamma-limits ofEd whenp,1 or p.1:

d2E( j )~0;u![
d2E( j )~01«u!

d«2 U
«50

52E
D
$u~ i¹2Ae!uu22n2m2uuu2% dx ~5.1!

for j 50 or 2 where for j 50 (p,1), the variation is taken over arbitrary functions inu
PH1(D;C) while for j 52 (p.1), we additionally requireu50 on G in the sense of traces.

For Ed in the critical casep51, we obtain from~4.6! that

d2E(1)~0;u!52E
D
$u~ i¹2Ae!uu22n2m2uuu2% dx14aE

G
uuu2 dHn21~x! ~5.2!

for any uPH1(D;C).
Now if our goal is to understand the phase transition curveT5T(He), we can capture this

through the parameterm @cf. ~2.15!#. Loss of stability of the normal state corresponds to the va
of m where the second variations calculated above vanish. Hence we can characterizem2(He) and
through~2.15! obtainT(He) via the formulas

m2~He!5 inf
$uPH1(D;C)%

*Du~ i¹2Ae!uu2 dx

n2*Duuu2 dx
for p,1,

m2~He!5 inf
$uPH1(D;C)%

*Du~ i¹2Ae!uu2 dx12a*Guuu2 dHn21~x!

n2*Duuu2 dx
for p51, ~5.3!

m2~He!5 inf
$uPH1(D;C), u50 on G%

*Du~ i¹2Ae!uu2 dx

n2*Duuu2 dx
for p.1.
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A similar set of calculations on the three gamma-limits ofGd given by ~4.8!–~4.10! yield
corresponding formulas

d2G( j )~0,Ae;u,A![
d2G( j )~01«u,Ae1«A!

d«2 U
«50

52E
D
$u~ i¹2Ae!uu22n2m2uuu2% dx12E

Rn
u¹3Au2 dx ~5.4!

for j 50 or 2 where for j 50 (p,1), the variation is taken over arbitrary functionsu
PH1(D;C) andAPHe

1(Rn;Rn) while for j 52 (p.1), we additionally requireu50 onG in the
sense of traces.

For the second variation ofG(1) in the critical casep51 we obtain from~4.9! that

d2G(1)~0,Ae;u,A!52E
D
$u~ i¹2Ae!uu22n2m2uuu2% dx14aE

G
uuu2 dHn21~x!12E

Rn
u¹3Au2 dx

for any uPH1(D;C) andAPHe
1(Rn;Rn).

Since the convex term*Rnu¹3Au2 dx will never lead to instability, the value ofm2(He)
yielding zero second variation will again be achieved by~5.3! for the casesp,1, p51 andp
.1 by takingA50.

We point out that in the absence of any applied field where one can takeAe50, the presence
of the normal junction will still cause a shift down in the critical temperature whenp>1, that is,
when the junction is sufficiently strong. In other words,m2(0).0 in ~5.3! for Ed or Gd for the
casesp51 andp.1. On the other hand, for a weak junction (p,1), one finds thatm2(0)50 so
that to leading order ind, there is no shift in the critical temperature in the absence of app
fields.

VI. SUMMARY

We have calculated several canonical limits of the Ginzburg–Landau energy function
superconducting samples with defects. The defect is centered around a co-dimension-one m
in the domain. The defect is defined through a penalizing potential in a small neighborhood
manifold. The different limits are distinguished by the strength of the defect, which, in tur
controlled by theL1-norm of the penalizing potential.

One of the interesting conclusions we obtain is that when the defect is sufficiently stron
minimizer must vanish along the defect. This result has a number of consequences; in par
it affects the phase transition temperature. It is well known that this temperature is determin
the first eigenvalue of the magnetic Schro¨dinger operator. Typically one considers this spec
problem under Neumann boundary conditions. Our results indicate that in the presence of
defects, one should compute the leading eigenvalue of the magnetic Schro¨dinger operator for
functions that satisfy Dirichlet boundary conditions along the defect and Neumann bou
conditions along the rest of the sample boundary.
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Twisted super-Yangians and their representations
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Starting with the super-YangianY(M uN) based on gl(M uN), we define twisted
super-YangiansY(M uN)6. Only Y1(M u2n) and Y2(2muN) can be defined, and
appear to be isomorphic one with each other. We study their finite-dimensional
irreducible highest weight representations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1542662#

I. INTRODUCTION

Quite recently, a revival of interest has been put on coideal algebras of Hopf algebras
from mathematical and physical points of view. Among these algebras, let us note the tw
YangiansY6(N), introduced by Olshanski1 and widely studied~see, for instance Ref. 2 an
references therein!, or the reflection algebras, introduced by Sklyanin3 and studied in Refs. 4
and 5.

From the mathematical point of view, it seems that such coideal condition is quite restri
leading to a very small class of subalgebras, for a given Hopf algebra.6,7 Indeed, for quantum
algebrasUq(glN), it has been proven that they are natural deformations of symmetric space6

From a physical point of view, such ideals appear to play an important role in integ
systems with boundaries.4,8,9They appear to be the integrals of motion of such systems,4,9 and also
naturally deduced from the boundary condition.8

It thus appears natural to look for such coideals when the underlying algebra is noN

anymore. Such types of algebras have been introduced in Ref. 10 for the case of Yangian
on orthogonal and symplectic algebras, and orthosymplectic superalgebras. They are define
‘‘twist’’ of the ~super!Yangian based on the corresponding Lie~super!algebra.

The aim of the present work is to complete the picture with the case of super-Yangians
on gl(M uN). After recalling the basic definitions and properties of the super-Yang
Y(gl(M uN))[Y(M uN) in Sec. II, we will define the twisted super-YangiansY(M uN)1 in Sec. III.
Their finite-dimensional irreducible representations are studied in Sec. IV. We conclude in S

II. SUPER-YANGIANS Y„MzN…

The super-YangianY(M uN) based on the gl(M uN) superalgebra has been introduced in R
11, and its irreducible finite-dimensional representations studied in Ref. 12. Since it is aZ2-graded
~Hopf! algebra, different conventions can be chosen: the ones we choose are given below. W
rephrase the properties given in Ref. 12 in this context.

A. Graded spaces

We start withK3K matrices acting on the vector spaceCK, and introduce aZ2-grading@.# on
these spaces. We will denote byEi j the usualK3K matrices which have 1 in position (i , j ), and
by ei the basic vectors ofCK which have 1 in positioni :

Ei j ek5d jkei . ~2.1!

a!Author to whom correspondence should be addressed. Electronic mail: ragoucy@lapp.in2p3.fr
b!URA 14-36 du CNRS, associe´e à l’Université de Savoie.
12520022-2488/2003/44(3)/1252/24/$20.00 © 2003 American Institute of Physics
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The Z2-grade is defined by

@Ei j #5@ i #1@ j #; @ei #5@ i # and @ i #P$0,1% ; i , j 51,...,K. ~2.2!

We will call even the matrices and vectors such that

A5Ai j Ei j with @Ai j #5@ i #1@ j #; u5uiei with @ui #5@ i #. ~2.3!

The tensor product of graded matrices is chosen to be graded:

~Ei j ^ Ekl!~Eab^ Ecd!5~21!([k] 1[ l ])([ a] 1[b])~Ei j Eab! ^ ~EklEcd!. ~2.4!

On the tensor product ofCK vector spaces, one has

~Ei j ^ Ekl!~ea^ eb!5~21!([k] 1[ l ])[ a] ~Ei j ea! ^ ~Ekleb!. ~2.5!

We introduce the graded permutation operator:

P125(
i , j

~21! [ j ]Ei j ^ Eji , ~2.6!

which obeysP25I and

P~ei ^ ej !5~21! [ i ][ j ]ej ^ ei , P~Ei j ^ Ekl!P5~21!([ i ] 1[ j ])([ k] 1[ l ])Ekl ^ Ei j . ~2.7!

B. Definition and first properties of Y„MzN…

We setK5M1N and define theZ2-grade by

@ i #50 for 1< i<M ,
~2.8!

@ i #51 for M11< i<M1N.

The super-YangianY(M uN) has generatorsT(n)
ab ~of Z2-grade@a#1@b#), gathered in

T~u!5 (
a,b51

K

(
n>0

u2n T(n)
ab Eab5 (

a,b51

K

Tab~u!Eab5 (
n>0

u2n T(n) with T(0)5IK . ~2.9!

The even matrixT(u)PMK@Y(M uN)# obeys

R12~u2v ! T1~u! T2~v !5T2~v ! T1~u! R12~u2v !, ~2.10!

with R12~u2v !5I^ I2
1

u2v
P12, ~2.11!

or equivalently

@Tab~u! , Tcd~v !%5
~21! [a][ b] 1([a] 1[b])[ c]

u2v
~Tcb~u!Tad~v !2Tcb~v !Tad~u!!, ~2.12!

where the graded commutator is defined by

@A, B%5A B2~21! [A][ B] B A. ~2.13!

It is a Hopf algebra:
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D~Tab~u!!5 (
c51

M1N

Tac~u! ^ Tcb~u!; e~Tab~u!!5dab; S~Tab~u!!5~T21~u!!ab. ~2.14!

Note thatY(M uN) contains several subalgebras:12

Property 2.1 (Subalgebras of Y(M uN)):

(i) The generators Tab(u) with a,b51,...,M ~resp. Tab(u), a,b5M11,...,M1N) define the
algebra inclusion Y(M ),Y(M uN) @resp. Y(N),Y(M uN)].

(ii) The generators T(1)
ab with a,b51,...,M1N form a gl(M uN) Lie sub-superalgebra o

Y(M uN).
(iii) The generators Tab(u) with a,bP$M ,M11% define the algebra inclusion

Y(1u1),Y(M uN).

Remark:The above subalgebras arenot Hopf subalgebras ofY(M uN). Indeed, the coproduc
~2.14! is based on all the generators ofY(M uN), so that it does not induce the coproduct ofY(M )
andY(N).

We have also the following property.
Property 2.2 (Isomorphism between Y(M uN) and Y(NuM )): Let

T̃ab~u!5~21! [ ā]([ b̄] 11)Tb̄ā~u! with ā5K112a,
~2.15!

@a#85@ ā#11.

T̃(u) obey the Hopf algebra relations of Y(NuM ), with D8(x)5PD(x)P. We have thus a Hop
algebra isomorphism between Y(M uN) and Y(NuM ).

Proof: One first proves thatT̃(u) satisfies the commutation relations ofY(NuM ).
To prove that, we need

Tcb~u!Tad~v !2Tcb~v !Tad~u!52~21!([a] 1[d])([ b] 1[c])~Tad~u!Tcb~v !2Tad~v !Tcb~u!!,

which can be proven either by a direct calculation, or by using the graded antisymmetry
commutator,

@Tab~u!, Tcd~v !%52~21!([a] 1[d])([ b] 1[c]) @Tcd~v !, Tab~u!%, ~2.16!

and computing@Tcd(v), Tab(u)% using ~2.12! with the replacements (a,b,u)↔(c,d,v).
With the help of the above calculation one gets

@ T̃ab~u!, T̃cd~v !%5~21! [ ā][ b̄] 1[ c̄][ d̄]@Tb̄ā~u!, Td̄c̄~v !%

5
~21! [ ā][ b̄] 1[ c̄][ d̄] 1[ b̄][ ā] 1([ b̄] 1[ ā])[ d̄]

u2v
~Td̄ā~u!Tb̄c̄~v !2Td̄ā~v !Tb̄c̄~u!!

5
~21!([ ā] 1[ b̄] 1[ c̄])[ d̄] 1([ b̄] 1[ c̄])([ ā] 1[ d̄])

u2v
~Tb̄c̄~u!Td̄ā~v !2Tb̄c̄~v !Td̄ā~u!!

5
~21! [a] 8[b] 81([a] 81[b] 8)[c] 8

u2v
~ T̃cb~u!T̃ad~v !2T̃cb~v !T̃ad~u!!,

which is the correct expression for the commutator inY(NuM ), since@ #8 is the correct gradation
of Y(NuM ).

For the Hopf structure, one has
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DM uN T̃ab~u!5 (
c51

K

~21! [ ā]([ b̄] 11)Tb̄c~u! ^ Tcā~u!

5 (
c51

K

~21! [ ā]([ b̄] 11)1[ c̄]([ b̄] 11)1[ ā]([ c̄] 11)T̃cb~u! ^ T̃ac~u!

5P T̃ac~u! ^ T̃cb~u! P

5DNuM8 T̃ab~u!,

where we have denoted byDM uN ~resp.DNuM) the coproduct onY(M uN) @resp. onY(NuM )].
A simple calculation shows

eM uN~ T̃ab~u!!5eNuM8 ~ T̃ab~u!!, ~2.17!

wheree85e is the counit associated toD8, while for the antipode

SM uN8 ~ T̃ab~u!!5~21! [ ā]([ b̄] 11)uaub~T21~u!! āb̄5SNuM8 ~ T̃ab~u!!5~ T̃218~u!!ab, ~2.18!

where, in the last equality, the inverseT̃218(u) is computed usingm8 instead ofm:

m8~ T̃ab~u! ^ T̃218~u!bc!5~21!([a8] 1[b8])([ b8] 1[c8]) T̃218~u!bc
•T̃ab~u!5dac. ~2.19!

SM uN8 obeys the relations

m8~S8^ id !D85e85m8~ id ^ S8!D8. ~2.20!

j

C. Finite-dimensional irreducible representations of Y„Mz2n …

The finite-dimensional irreducible representations of the super-YangianY(M uN) have been
studied in Ref. 12. We recall here its main results, referring to Ref. 12 for the proofs.

We will specify to the caseN52n, for it is the only case that is needed for twisted sup
Yangians. Moreover, in order to be able to deal with the twisted super-Yangians, we ne
choose a positive root system different from the one chosen in Ref. 12. Indeed, the situa
analogous to the one encountered in the case of simple Lie superalgebras, which admit d
inequivalentsystems of simple roots~see, for instance, Ref. 13!. For our purpose, we define th
following.

Definition 2.3 (Positive roots): LetF6,0,NK
2 , whereNK5NM12n5@1,M12n#ùN, be de-

fined by

F15H ~a,b!PNK
2 , with eitherU 1<a,b<M

M11<a,b<M12n
1<a<M , M1n11<b<M12n

M11<a<M1n, 1<b<M

~2.21!

F25$~a,b!PNM12n
2 , such that~b,a!PF1%, ~2.22!

F05$~a,a!, with aPNM12n%. ~2.23!

We haveNM12n
2 5F21F01F1, and the positive roots will be associated to Tab(u) with

(a,b)PF1.
Once a positive root system is chosen, one can introduce the notion of highest weight v
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Definition 2.4 (Highest weight vectors): LetM be a module of Y(M u2n). A highest weight
vectorjPM is defined by

Taa~u!j5la~u!j, ;a51,...,M12n,
~2.24!

Tab~u!j50, ;~a,b!PF1.

l(u)5(l1(u),...,lM12n(u))PC@@u21## is the highest weight associated toj.
The notion of highest weight vectors grounds in the following properties:
Property 2.5: Any irreducible finite-dimensional representation of Y(M uN) admits a unique

(up to multiplication by scalars) highest weight vector.
Property 2.6: The irreducible representation of Y(M uN) with highest weightl(u) is finite

dimensional if and only if we have

la~u!

la11~u!
5

Pa~u11!

Pa~u!
, 1<a<M1N21, aÞM , ~2.25!

lM~u!

lM11~u!
5

PM~u!

PM1N~u!
, ~2.26!

where Pa(u) are monic polynomials.
Let us remark that some signs differ between our presentation and the presentation g

Ref. 12 because of the definition forT(u): the relation between these two notations is given
T(n)

ab 5(21)[b] tb
a@n#.

Definition 2.7 (Evaluation representations): Let Jab be the generators of thegl(M uN) super-
algebra andpab5p(Jab) a finite-dimensional representation ofgl(M uN). Then, the morphism

ev~T~u!!511
E
u

with E5pabEab ~2.27!

provides a finite-dimensional representation of Y(M uN), called an evaluation representation.
The usefulness of evaluation representations reveals in the following theorem:
Theorem 2.8:Any irreducible finite-dimensional representation of Y(M uN) is isomorphic to

the irreducible part of tensor products of evaluation representations.

III. TWISTED SUPER-YANGIANS

A. Introduction to Y„MzN…

t

We now introduce the notion of twisted super-Yangian, in the same way twisted Yan
have been defined from the YangiansY(N).

We first introduce the transpositiont on matrices:

Eab
t 5~21! [a]([ b] 11)uaub Eb̄ā with ua561,

ā5M112a for 1<a<M , ~3.1!

ā52M1N112a for M11<a<M1N,

which satisfies

~AB! t5Bt At. ~3.2!

Demanding the transposition to be of order 2 leads to the constraint

~21! [a] uau ā5u0561 ; a. ~3.3!
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Note that for superalgebras, one could ask the transposition to be of order 4 only. We w
consider this case in the following.

Let us stress thatā hasnot the same meaning as in Sec. II: from now on, we will use t
notation to denote~3.1!. These newā satisfy @a#5@ ā#.

Let us also note that there is a freedom on the definition of the transpositionua

→(21)[a]ua : this freedom is fixed when imposingIt5I. Remark also the useful identity

~21! [a]([ b] 11)uaub5~21! [ ā]([ b̄] 11)u āu b̄ . ~3.4!

Then, we define onY(M uN)

t@T~u!#5(
a,b

t@Tab~u!# Eab5(
a,b

Tab~2u! Eab
t , ~3.5!

which reads for the super-Yangian generators

t~Tab~u!!5~21! [a]([ b] 11)uaub Tb̄ā~2u!. ~3.6!

Property 3.1:t is an algebra automorphism for Y(M u2n) and Y(2muN) only.
In that case, one must chooseu0511 for Y(M u2n) and u0521 for Y(2muN).
Proof: Considering subalgebras mentioned in Property 2.1, one can see thatt acts as an

automorphism ofY(M ) of the type defined in Ref. 14, withuau ā5u0 , and an automorphism o
Y(N) with uau ā52u0 . Using the results of Ref. 14, where it is proved that whenM is odd, one
must haveu0511 in Y(M ), one immediately concludes that we cannot haveMN odd, and that
the values foru0 are the ones given in the property.

Then, it is a simple matter of calculation to show thatt is an automorphism of the supera
gebraY(M uN):

t~@Tab~u!,Tcd~v !%!5@t~Tab~u!!,t~Tcd~v !!%. ~3.7!

j

One then defines inY(M uN) ~we takeMN even!:

S~u!5T~u! t@T~u!#5 (
a,b51

M1N

Sab~u!Eab5I1 (
a,b51

M1N

(
n.0

u2nS(n)
ab Eab , ~3.8!

S(n)
ab 5 (

c51

M1N

(
p50

n

~21!p~21! [c]([ b] 11)ucubT(n2p)
ac T(p)

b̄c̄ , ~3.9!

Sab~u!5 (
c51

M1N

~21! [c]([ b] 11)ucubTac~u!Tb̄c̄~2u!. ~3.10!

S(u) defines a subalgebra of the super-Yangian:
Theorem 3.2:S(u) obey the following relations:

R12~u2v ! S1~u! R128 ~u1v ! S2~v !5S2~v ! R128 ~u1v ! S1~u! R12~u2v !, ~3.11!

t~S~u!!5S~u!1
u0

2u
~S~u!2S~2u!!, ~3.12!

where R(x) is the super-Yangian R-matrix,
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R8~x!5I1
1

x
Q5Rt1~2x! with Q5Pt1, ~3.13!

and t1 is the transposition (3.1) in the first space. These two relations uniquely define a subal
Y(M uN)t in the super-Yangian.

Proof: One starts with the relation~2.10! and applies the transpositiont1 and the sign opera
tion (u,v)→(2u,2v) to get

t@T1~u!#R128 ~u1v !T2~v !5T2~v !R128 ~u1v !t@T1~u!#. ~3.14!

A direct calculation shows that

P Q5Q P5u0Q; P25I and Q25~M2N!Q. ~3.15!

Thus, applyingP(.)P on ~3.14! leads to~after the exchangeu↔v)

T1~u!R128 ~u1v !t@T2~v !#5t@T2~v !#R128 ~u1v !T1~u!. ~3.16!

Finally, applying once again the transpositiont1 and (u,v)↔(2u,2v), we obtain

R12~u2v !t@T1~u!#t@T2~v !#5t@T2~v !#t@T1~u!#R12~u2v !, ~3.17!

which is another way to prove thatt is an automorphism. A simple calculation using~2.10!, ~3.14!,
~3.16! and ~3.17! shows then that~3.11! is satisfied.

The second relation is also proved directly:

~t@S~u!# !ab5 (
c51

M1N

~21! [a]([ b] 11)1[c]([ a] 11)uaubu āucT
b̄c~2u!Tac̄~u! ~3.18!

5S~u!1 (
c51

M1N

~21! [a]([ b] 1[c])ubuc@Tb̄c~2u!,Tac̄~u!% ~3.19!

5S S~u!1
u0

2u
~S~u!2S~2u!! D ab

, ~3.20!

where, in the last step, we have used the graded commutator~2.12!.
Conversely, let us start with an abstract algebraA whose generatorss (n)

ab obey ~3.11! and
~3.12!. There is an obvious surjective morphismj from A to Y(M uN)t. Thus, it remains to show
that this morphism is injective. We follow the argumentation done in Ref. 15 for the cas
~non-super! twisted Yangians.

We first introduce a filtration onY(M uN) induced by

deg~T(p)
ab !5p and deg~XY!5deg~X!deg~Y!, ;X,YPY~M uN!. ~3.21!

The graded algebragrY(M uN) is defined as usual by

Yp~M uN!5$XPY~M uN!, with deg~X!<p%; p.0, ~3.22!

Y0~M uN!5C; gr0Y~M uN!5C, ~3.23!

grpY~M uN!5Yp~M uN! / Yp21~M uN!; p.0, ~3.24!

grY~M uN!5 % p>0grpY~M uN!. ~3.25!
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Since forXPgrpY(M uN) and YPgrqY(M uN), we have@X,Y%Pgrp1q21Y(M uN), we deduce
thatgrY(M uN) is commutative.~During this proof, and to avoid confusion with the gradation d
we will write commutative and commutator where one should has writtenZ2-graded commutative
andZ2-graded commutator.! The same is true forgrY(M uN)t; here the filtration is induced by th
Y(M uN) one.

Similarly, onA, we introduce a filtration given by

deg~s (n)
ab !5n. ~3.26!

This makesgrA a commutative algebra, for the same reasons as above. Moreover, sin
morphism j preserves the filtration, it is enough to show that the induced morphismj̄ between
graded algebras is injective.

Let T̄(p)
ab and S̄(p)

ab be the image ofT(p)
ab andS(p)

ab in grY(M uN)t. The expression~3.9! is still
valid for the elements ofgrY(M uN)t, so that we deduce

S̄(p)
ab 5T̄(p)

ab 1~21!p~21! [a]([ b] 11)uaubT̄(p)
b̄ā 5~21!p~21! [a]([ b] 11)uaubS̄(p)

b̄ā . ~3.27!

In Ref. 12, it has been proven that the generatorsT̄(p)
ab are independent.@Strictly speaking, the

proof is lacking in Ref. 12, but it can be done following the steps given in Ref. 15 for Yang
Y(N).] Thus, we conclude thatgrY(M uN)t is isomorphic to the algebra of polynomials in th
(Z2-graded! lettersx(p)

ab submitted to the constraints~3.27!.
Finally, the symmetry relation~3.12! in the algebragrA just takes the form~3.27!, so that

grA is also isomorphic to the algebra of polynomials in the (Z2-graded! lettersx(p)
ab submitted to

the constraints~3.27!. Hence,j̄ is injective. j

Corollary 3.3 (PBW basis for Y(M uN)t): Given an arbitrary linear order on the following se
of generators (for p51,2,...),

S(2p)
i j for 1< i , j <M and i1 j <M11,

S(2p11)
i j for 1< i , j <M and i1 j ,M11,

S(2p)
i j for M11< i , j <M12n and i1 j ,2M1212n, ~3.28!

S(2p11)
i j for M11< i , j <M12n and i1 j <2M1212n,

S(2p)
i j for M11< i<M12n and 1< j <M ,

any element of Y(M u2n)t is uniquely written as a linear combination of the ordered monomials
these generators.

The same type of basis exists for Y(2muN)t with an obvious exchange of M and N (and
and n).

Proof: It is a direct consequence of the proof of Theorem 3.2. Indeed, consid
grY(M u2n)t, it is sufficient to find a basis for it, i.e., for the algebra of polynomials in
(Z2-graded! letters x(p)

ab submitted to the constraints~3.27!. From the propertya1b<M

11 ⇔ ā1b̄>M11, ā5b ⇔ a1b5M11 whena,b<M , and a1b<M1n12 ⇔ ā1b̄>M
1n12, ā5b ⇔ a1b5M1n12 whena,b>M11, an analysis of these constraints lead to
above basis. j

Although several automorphismst can be defined~depending upon the choices for theu’s!,
they all lead to the same subalgebraY(M uN)t:

Property 3.4: All theua dependence, but the value ofu0 , can be removed in the commutatio
relations of Y(M uN)t.
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Proof: We prove the property by exhibiting a basis in which theu dependence has disap
peared. We give this basis for the caseY(M u2n)t andu0511, the other case being similar. Whe
restricted to the bosonic part, it is the same basis as the one given in Ref. 14 for~bosonic! twisted
Yangians.

For Y2(2n),

Ji j ~u!5u iu jSi j ~u!; Ki j ~u!5u iSi , j̄ ~u!; K̄ i j ~u!5u jSī , j~u!; i , j 51,...,n. ~3.29!

For Y1(M ), the redefinition is the same as before, plus for the remaining generators which a
whenM52m11 ~we setm̃5m11):

J0~u!5um̃Sm̃m̃~u!; Li~u!5u iSm̃,i~u!; L̄ i~u!5um̃u iSi ,m̃~u!; i 51,...,m. ~3.30!

This proves that the commutation relations among generators ofY2(2n) and those amongY1(M )
are free fromu’s in this basis. Commuting an element ofY2(2n) with one ofY1(M ) provides the
change of basis for the fermionic generators:

Fai~u!5uau iS
ai~u!, F̄ ia~u!5uau iS

ai~u!, i 5M11,...,M1n,

Gai~u!5uaSa ī~u!, Ḡia~u!5u iS
āi~u! a51,...,M , ~3.31!

Hi~u!5u iS
m11,i~u!, H̄ i~u!5um11u iS

i ,m11~u!, if M52m11.

All the Y(M u2n)1-generators are expressible in terms of the generators~3.29!–~3.31! using the
symmetry relation~3.12!. Then, one can check that all the graded commutators in this basi
free fromu. j

Using the isomorphism 2.2, one can focus on either one of the two cases given in Prop
3.1. From now on, we will consider the caseY(M u2n) andu0511. Since it is only the value of
u0 which is relevant for our study, we will use it to label the automorphismt.

Definition 3.5: The twisted super-Yangian Y(M u2n)1[Y(2nuM )2 is the subalgebra gener
ated by S(u)5T(u)t@T(u)#, with t given in (3.6) and

ua51 f or 1<a<M ,
~3.32!

ua5sgS 2M12n11

2
2aD f or M11<a<M12n.

B. Few properties of Y„Mz2n …¿

Proposition 3.6: The relation (3.11) is equivalent to the following commutator:

@S1~u!,S2~v !#5
1

u2v
~P12S1~u!S2~v !2S2~v !S1~u!P12!2

1

u1v
~S1~u!Q12S2~v !

2S2~v !Q12S1~u!!1
1

u22v2 ~P12S1~u!Q12S2~v !2S2~v !Q12S1~u!P12!

~3.33!

and also to
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@Sab~u!,Scd~v !%5
~21!([a] 1[b])[ c]

u2v
~21! [a][ b]~Scb~u!Sad~v !2Scb~v !Sad~u!!

2
~21!([a] 1[b])[ c]

u1v
~~21! [a][ c]ubu c̄S

ac̄~u!Sb̄d~v !

2~21! [b][ d]u āudScā~v !Sd̄b~u!!

1
~21!([a] 1[b])[ c]

u22v2 ~21! [a]uaub~Scā~u!Sb̄d~v !

2Scā~v !Sb̄d~u!!. ~3.34!

Proof: Equation~3.33! follows from a direct calculation using~3.11!, ~2.11! and ~3.13!. j

As an obvious consequence, we get the following.
Corollary 3.7: The twisted super-Yangian Y(M u2n)1 contains osp(M u2n) as Lie sub-

superalgebra. It is generated by

S(1)
ab 5T(1)

ab 2~21! [a]([ b] 11)uaubT(1)
b̄ā a,b51,...,M12n, ~3.35!

which obey

S(1)
ab 52~21! [a]([ b] 11)uaubS(1)

b̄ā , ~3.36!

and defines a morphism of algebraU@osp(M u2n)#→Y(M u2n)1.
The action of theosp(M u2n) generators on the twisted Yangian is given by

@S(1)
ab ,Scd~v !%5~21!([a] 1[b])[ c]$ ~21! [a][ b]~dcbS

ad~v !2dadS
cb~v !!

2u āub~dac̄S
b̄d~v !2d d̄bScā~v !!%. ~3.37!

Proof: Expanding (u6v)215u21(17vu211¯) and taking the coefficient ofu21v21 in
~3.33! leads to

@S1(1) ,S2(1)%5P12S2(1)2S2(1)P122Q12S2(1)1S2(1)Q12, ~3.38!

where the subscript~1! refers to the coefficient ofu21 andv21, while the indices 1,2 label the
auxiliary spaces. The symmetry relation projected on theu21 term reads

S(1)
t 52S(1) . ~3.39!

Equations~3.38! and ~3.39! are just the defining relations of osp(M u2n).
Starting now from~3.34! and taking the coefficient ofu21 gives the relation~3.37!. Note that

taking the coefficient ofv21 in this last relation gives again the commutation relations
osp(M u2n). j

Let us denote the osp(M u2n) generators byJab and gather them in the matrix

F5 (
a,b51

M1N

JabFab with Fab5Eab2~21! [a]([ b] 11)uaubEb̄ā . ~3.40!

It satisfies

Ft52F,
~3.41!

@F1 ,F2%5P12F22F2P121F2Q122Q12F2 ,
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wheret is the transposition~3.1!.
Property 3.8: The following map defines an algebra homomorphism:

Y~M u2n!1→U@osp~M u2n!#,
~3.42!

S~u!→F~u!5I1
1

u1
1

2

F.

Proof: We have to prove thatF obeys to the relations~3.11! and ~3.12!. A direct calculation
shows

Ft~2u!5I1
1

u2 1
2

F5F~u!1
1

2u
~F~u!2F~2u!!.

Moreover, using~3.15!, the commutator~3.41! and the relations

P12F25F1P12⇒Q12F252Q12F1 ,
~3.43!

P12F15F2P12⇒F1Q1252F2Q12,

one proves that we have

@F1~u!,F2~v !%5
1

u2v
~P12F1~u!F2~v !2F2~v !F1~u!P12!2

1

u1v
~F1~u!Q12F2~v !

2F2~v !Q12F1~u!!1
1

u22v2 ~P12F1~u!Q12F2~v !2F2~v !Q12F1~u!P12!.

j

The relation between osp(M u2n) andY(M u2n)1 also reveals in the following.
Property 3.9: Y(M u2n)1 is a deformation ofU(osp(M u2n)@x#), the (positive modes) loop

algebra based onosp(M u2n).
Proof: We start withS(u)5I1s(u), and make a change of basiss̃(u)5\21 s(u/\). In this

basis, the commutation relations read

@ s̃1~u!,s̃2~v !%5
1

u2v
~P12s̃1~u!1P12s̃2~v !2 s̃1~u!P122 s̃2~v !P12!2

1

u1v
~ s̃1~u!Q121Q12s̃2~v !

2Q12s̃1~u!2 s̃2~v !Q12!1
\

u2v
~P12s̃1~u!s̃2~v !2 s̃2~v !s̃1~u!P12!

2
\

u1v
~ s̃1~u!Q12s̃2~v !2 s̃2~v !Q12s̃1~u!!1

\

u22v2 ~P12s̃1~u!Q121P12s̃2~v !

2Q12s̃1~u!P122 s̃2~v !P12!1
\2

u22v2 ~P12s̃1~u!Q12s̃2~v !2 s̃2~v !Q12s̃1~u!P12!.

For \Þ0 all the algebrasY\(M u2n)1 are isomorphic, while in the limit\→0, Y\50(M u2n)1

reduces toU(osp(M u2n)@x#). j

Note also the following isomorphism.
Property 3.10 (Automorphism of Y(M u2n)1): The transformations

S~u!→g~u! S~u! with g~u! evenC-function ~3.44!
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are automorphisms of Y(M u2n)1.
Proof: Multiplying ~3.11! by g(u)g(v) shows that it is invariant under the transformati

~3.44!, for any functiong. The symmetry relation~3.12! is preserved forg(u) even only. j

There is another of type of automorphism that we will need when looking at the repres
tions of twisted super-Yangians:

Definition 3.11 (# involution): For any index i51, . . . ,M1N, we define i8 by

i 85H m̃11 if i 5m,

m if i5m̃11 where m5FM

2 G and m̃5FM11

2 G
i otherwise.

~3.45!

The # involution acts on S(u) by

S#
i j ~u!5Si 8 j 8~u! ~3.46!

and is an order 2 automorphism of Y(M u2n)1.
Proof: Obvious direct calculation from the relations~3.34! and ~3.12!. j

For the Hopf structure, and mimicking again the case of twisted Yangians, one can sho
following.

Property 3.12: Y(M u2n)1 is a left coideal of Y(M u2n):

D~Y~M u2n!1!,Y~M u2n! ^ Y~M u2n!1. ~3.47!

More precisely,

D~S(p)
ab !5 (

y50

p

(
q50

y

(
d,e51

M12n

~21!q~21! [d]([ e] 1[b])ubueT(y2q)
ad T(q)

b̄ē
^ S(y)

de ,

D@Sab~u!#5 (
d,e51

M12n

~21! [d]([ e] 1[b])ubueT
ad~u!Tb̄ē~2u! ^ Sde~u!.

Proof: Direct calculation using~2.14! and ~3.9!. j

C. Subalgebras of Y„Mz2n …¿

Property 3.13: The twisted super-Yangian Y(M uN)1 contains as subalgebras Y(M )1, Y(N)2

and osp(M uN).
Proof: A direct examination on the commutator~2.12! and the symmetry relation~3.12! shows

that Sab(u) with a,b51,...,M ~resp. a,b5M11,...,M1N) generates the twisted Yangia
Y(M )1 @resp.Y(N)2]. The last inclusion has been proved in Corollary 3.7. j

Property 3.14: As algebra embeddings, we have

Y~1u2!1,Y~2m11u2n!1 and Y~2u2!1,Y~2mu2n!1. ~3.48!

Proof: We consider the generatorsSi j (u), with i , j 5m11,2m1n11,2m1n12 in Y(2m
11u2n)1 andSi j (u), with i , j 5m,m11,2m1n,2m1n11 in Y(2mu2n)2: they obey the com-
mutation and symmetry relations ofY(1u2)1 andY(2u2)1, respectively. j

Note that there is no regular embedding ofY(1u2)1 into Y(2mu2n)1. The circumstances ar
here different from both simple superalgebras and non-super twisted Yangians cases: in t
case, it always exists a regular osp(1u2) embedding, and in the second case, one can alw
construct a regularY(2)6 embedding in the twisted YangianY(M )6. It is the symmetry relation
which causes this unusual situation.

Property 3.15: As algebra embedding, we have
                                                                                                                



1264 J. Math. Phys., Vol. 44, No. 3, March 2003 C. Briot and E. Ragoucy

                    
Y~2mu2n!1,Y~2m11u2n!1. ~3.49!

Let us stress, however, that Y(2mu2n)1 is not a Hopf coideal of Y(2m11u2n)1.
The same results apply for Y(2m)1 and Y(2m11)1.
Proof: Let si j (u) be the generators ofY(2m11u2n)1. We setM52m11 and introduce

s i j ~u!5si j ~u! for 1< i , j <m and M11< i , j <M1n11,

s i , j~u!5si 21,j 21~u! for m12< i , j <M and M1n12< i , j <M12n,

s i j ~u!5si 21,j~u! for H1< j <m or M11< j <M1n11,
m12< i<M or M1n12< i<M12n,

s i j ~u!5si , j 21~u! for H1< i<m or M11< i<M1n11,
m12< j <M or M1n12< j <M12n.

We prove that the generatorss i j (u) generateY(2mu2n)1. We denote byx→ x̄ the ‘‘bar’’ operator
introduced in~3.6! for Y(2m11u2n)1, and byx→ x̃ this ‘‘bar’’ operator forY(2mu2n)1. In the
same way, we callt andu ~resp.t̃ and ũ) the corresponding operations inY(2m11u2n)1 @resp.
Y(2mu2n)1]. It is easy to see that

ı̄ 5 ı̃ , u i5 ũ i , for i<m andM11< i<M1n11,

ı215 ı̃ , u i 215 ũ i , for m12< i<M andM1n12< i , j <M12n,

so that the action oft on s(u) is equivalent to the action oft̃ on s(u). It also proves that the
symmetry relation ofs(u) @coming fromY(2m11u2n)1] implies the symmetry relation fors(u)
@asY(2mu2n)1 generator#.

In the same way, one shows, starting with the commutation relations ofs(u), that the com-
mutation relations ofs(u) are those ofY(2mu2n)1.

Finally, computingDs i j (u) as it is induced from theY(2m11u2n)1 coproduct does not lead
to the coproduct formula forY(2mu2n)1. j

IV. FINITE-DIMENSIONAL IRREDUCIBLE REPRESENTATIONS OF Y„Mz2n …¿

We study here the finite-dimensional irreducible representations ofY(M u2n)1 starting from
Y(M u2n) in the same way those ofY(M )6 have been studied starting fromY(M ).16

As a shorthand notation, we note irreps for irreducible representations.

A. Generalities

Definition 4.1 (Highest weight vector): LetM be a module of Y(M u2n)1. A nonzero vector
jPM is called highest weight if it satisfies

Si j ~u!j50 for ~ i , j !PF1, ~4.1!

Sii ~u!j5m i~u!j for i 51,...,M12n, ~4.2!

for some formal seriesm i(u)P11u21C@@u21##. The setm(u)[(m1(u),...,mM12n(u)) is the
highest weight ofM.

Remark 1:Due to the symmetry relation~3.12!, some of the relations~4.1! are redundant, and
one could reduceF1: we keep it as it is to make the comparison with theY(M uN) case.

Note also that, in the basis of Ref. 12, the symmetry relation would have led toSi j (u)j50,
; iÞ j , hence the present choice for the positive root system.

Remark 2:The symmetry relation also implies for the highest weight
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m ā~u!5
1

2u
ma~u!1

2u21

2u
ma~2u!, ~4.3!

so that, in theY(2m11u2n)1 case,mm11(u) is an even function ofu.
Definition 4.2 (Highest weight representations): A representation V of the twisted s

Yangian Y(M u2n)1 is called highest weight if it is generated by a highest weight vectorj. If m(u)
is the highest weight ofj, we will use the notation V@m(u)# for V.

Theorem 4.3:Every finite-dimensional irrep V of Y(M u2n)1 is highest weight. Moreover, V
contains a unique (up to scalar multiples) highest weight vector.

Proof: We define

V15$vPVuS(p)
ab v50, ;~a,b!PF1 and p.0%. ~4.4!

We first prove thatV1 is not empty.
Let m[@M /2#. The generatorsS(1)

11 ,...,S(1)
mm,S(1)

M11,M11 ,...,S(1)
M1n,M1n form a Cartan subal-

gebra of Osp(M u2n), so there exists at least one eigenvectorv common to allS(1)
aa and with

eigenvaluem5(m1
(1) ,...,mM12n

(1) ).
If vPV1 , then we haveV1ÞB. If v¹V1 , by applyingS(p)

ab ,(a,b)PF1, to v we obtain an
other common eigenvector of theS(1)

aa with eigenvaluem1v, wherev is a Z.0-linear combina-
tion of the positive roots. AsV is finite dimensional, repeated applications of generatorsS(n)

ab ,
(a,b)PF1, n.0, will lead to a nonvanishing vectorv1PV such that

S(p)
ab v150;~a,b!PF1, p.0, ~4.5!

S(1)
aa v15l (1)v1 ;a. ~4.6!

So v1PV1 andV1 contains at least one nonzero element.
One defines

T65$Sab~u!,;~a,b!PF6% ~4.7!

and L ~resp.R) the left ~resp. right! ideal generated byT1 ~resp.T2). We also introduce the
subalgebra

Y05$yPY~M u2n!1, such that @S(1)
aa ,y#50 ;a51,...,M12n% ~4.8!

and correspondingly

L05Y0ùL and R05Y0ùR. ~4.9!

Using the PBW Theorem 3.3, one shows thatL05R0[I 0 is a two-sided ideal so thatG5Y0 /I 0 is
an algebra. From the commutation relations~3.34!, one gets that@Saa(u),Sbb(v)#PI 0 , i.e.,G is a
commutative algebra.

By construction,;vPV1 and i PI 0 , one hasiv50, so thatV1 is a G-module. SinceG is
commutative, there exists a nonzero common eigenvectorjPV1 . Now, let V85U(T2)j: it is a
nonzero submodule ofV, and sinceV is supposed irreducible, it must equalV. Thus,j is a highest
weight vector ofV.

Finally, if there is another highest weight vectorj8, the above construction ensures thatV
5U(T2)j5U(T2)j8 which is possible only forj andj8 proportional. j

Theorem 4.4: (Necessary conditions for finite-dimensional irreps) If the irreducible high
weight representation V@m(u)# of Y(M u2n)1 is finite dimensional, then the following relation
hold:

m i~u!

m i 11~u!
5

Pi 11~u11!

Pi 11~u!
for Hm12< i<M21,

M1n11< i<M12n21, ~4.10!
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mM1n11~2u!

mM1n11~u!
5

PM1n11~u11!PM1n11~2u!

PM1n11~u!PM1n11~12u!
. ~4.11!

If M 52m11, we have also the relation

g~u!
mm11~u!

mm12~u!
5

Pm11~u11!

Pm11~u!
, where g~u! is either 1 or

2u

2u11
. ~4.12!

If M 52, we have the additional condition

m2~2u!

m2~u!
5

P~u11!P~2u!

P~u!P~12u!

~u1g!~2u21!

~u2g!~2u11!
, with P~2g!P~g11!Þ0. ~4.13!

Finally, for M52m.2, we have the relations

mm11
o ~u!

mm12~u!
5

Pm12~u11!

Pm12~u!
,

g~u!
mm11

o ~2u!

mm11
o ~u!

5
Pm11~u11!Pm11~2u!

Pm11~u!Pm11~12u!
, ~4.14!

whereg(u) is either 1 or(2u21)/(2u11), and mm11
o (u) is eithermm11(u) or mm11

# (u). We
have introducedmm11

# (u), which is deduced frommm11(u) by the action of the# automorphism
(see Definition 3.11 and Ref. 16 for more details).

Proof: It is a direct consequence of the classification of finite-dimensional irreps for
algebrasY(M )6 done in Ref. 16. SinceY(M )1 and Y(2n)2 are subalgebras ofY(M u2n)1,
starting with anY(M u2n)1-irrep with highest weightj and considering the cyclic span ofj with
each of these subalgebras leads to the result. j

B. Finite-dimensional irreps of Y„1z2…¿

Let V@m(u)# be an irrep ofY(1u2)1 with highest weightm(u)[(m1(u),m2(u),m3(u)).
From the symmetry relation~4.3! we obtain thatm1(u) is an even series inu21 andm2(u) can be
deduced fromm3(u).

Property 4.5: If V@m1(u),m3(u)# is finite dimensional, then there exists a formal even se
c(u) in u21 such that

c~u!m1~u!5~12a1
2u22!¯~12ak

2u22!, ~4.15!

c~u!m3~u!5~12a1u21!¯~12aku
21!~11b1u21!...~11bku

21!. ~4.16!

Proof: Let j be the highest weight vector ofV@m(u)#.
Under (S(1)

22 ,S(1)
33 ), S( l 1)

32
•••S( l s)

32 S(p1)
31

•••S(pr )
31 j has weight (m2

(1)12s1r ,m3
(1)22s2r )

whereasS( i )
31j has weight (m2

(1)11,m3
(1)21). SoS( i )

31j can only be written as a linear combinatio
of vectorsS( j )

31j. Let k be the minimum non-negative integer such thatS(k11)
31 j is a linear combi-

nation of the vectorsj1[S(1)
31 j,...,jk[S(k)

31 j ~such k exists becauseV@m(u)# is finite dimen-
sional!.

We will prove that for any vectorS(r )
31 j with r>k11 we have

S(r )
31 j5a1

(r )j11¯1ak
(r )jk , ~4.17!

where theai
(r ) are complex numbers.

Equation~4.17! is true for r 5k11 by definition ofk. Taking i 5k5 l 53, j 51 in the com-
mutation relation and exchangingu andv, we get
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@S33~u!,S31~v !#52
1

u2v
~S31~v !S33~u!2S31~u!S33~v !!2

1

u1v
S32~u!S21~v !

1
1

u22v2 S32~u!S13~v !1
211u2v

u22v2 S32~v !S13~u!. ~4.18!

We multiply by (u22v2) and take the coefficient atu0v2p (p>1). Using the fact thatS21(u)j
5S13(u)j50 we obtain

S(2)
33 S(p)

31 j52S(p11)
31 j1S(1)

31 S(p)
33 j1S(p)

31 ~S(2)
33 2S(1)

33 !j. ~4.19!

For i 51,...,k21 ~4.19! gives

S(2)
33 j i52j i 111m3

( i )j11~m3
(2)2m3

(1)!j i . ~4.20!

For i 5k, usingS(k11)
31 j5a1

(k11)j11¯1ak
(k11)jk in ~4.19! gives

S(2)
33 jk52~a1

(k11)j11¯1ak
(k11)jk!1m3

(k)j11~m3
(2)2m3

(1)!jk . ~4.21!

So ; i P$1,...,k%, S(2)
33 j i is a linear combination of the$j j% j 51,...,k .

Now suppose that;r P$k11,...,p% ~wherep>k11), Eq. ~4.17! holds. We then have

S(p11)
31 j52S(2)

33 S(p)
31 1m3

(p)j11~m3
(2)2m3

(1)!S(p)
31 j

52(
i 51

k

~ai
(p)S(2)

33 j i !1m3
(p)j11~m3

(2)2m3
(1)!(

i 51

k

~ai
(p)j i !, ~4.22!

so S(p11)
31 j is a linear combination of the$j j% j 51,...,k and Eq.~4.17! is proved by induction onp.

We can therefore write

S31~u!j5a1~u!j11¯1ak~u!jk , ~4.23!

whereai(u)5u2 i1(s5k11
` ai

(s)u2s.
We can rewrite~4.19! as

S(2)
33 S31~v !j52vS31~v !j1m3~v !j11~m3

(2)2m3
(1)!S31~v !j. ~4.24!

On the other hand, applyingS(2)
33 on ~4.23! and using~4.20! and ~4.21! we have

S(2)
33 S31~v !j5(

i 51

k

ai~v !S(2)
33 j i

5S (
i 51

k

~ai~v !m3
( i )!1~m3

(2)2m3
(1)!2ak~v !a1

(k11)D j1

1(
i 52

k

~2ai 21~v !1~m3
(2)2m3

(1)!ai~v !2ak~v !ai
(k11)!j i . ~4.25!

Taking the coefficient atj i for i 52,...,k in ~4.24! and ~4.25! leads to

2ai 21~v !1vai~v !2ai
k11ak~v !50, ~4.26!

so that
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~A27!

for i 51,...,k21. The coefficient atj1 in ~4.24! and ~4.25! leads to

~4.28!

So m3(v)5ak(v)B(v) whereB(v) is a monic polynomial inv of degreek.
For m1(v) we use

@S11~u!,S31~v !#5
u1v11

u22v2 S31~u!S11~v !2
1

u1v
S12~u!S11~v !2

2v11

u22v2 S31~v !S11~u!.

Notice that S11(u) is an even series inu21. Using the same procedure we find thatm1(v)
5ak(v)C(v) whereC(v) is a monic polynomial inv of degreek.

Defining w(u)5(ak(u)uk)21, we have

w~u!m1~u!5~11a1u21!¯~11aku
21!, ~4.29!

w~u!m3~u!5~11b1u21!¯~11bku
21!, ~4.30!

where thea i ’s and theb i ’s are complex numbers.
The formal series

c~u![w~u!~12a1u21!¯~12aku
21!5

~12a1
2u22!¯~12ak

2u22!

m1~u!
. ~4.31!

is an even series inu21. The composition of the automorphismS(u)→c(u)S(u) with V@m(u)#
is an irrep with the following highest weight which we shall again denote bym(u):

m1~u!5~12a1
2u22!¯~12ak

2u22!, ~4.32!

m3~u!5~12a1u21!¯~12aku
21!~11b1u21!¯~11bku

21!. ~4.33!

j

Thus, up to an automorphism ofY(1u2)1, we can assume thatm1(u) and m3(u) are poly-
nomials inu21.

Theorem 4.6: Let V@m1(u),m3(u)# be an irrep of Y(1u2)1. Supposem1(u) and m3(u)
satisfy

m1~u!

m3~u!
5

P~u11!

P~u!

R~u!

Q~u!
, ~4.34!

m3~2u!

m3~u!
5

P~u11!P~2u!

P~u!P~12u!
, ~4.35!

where P(u), Q(u) and R(u) are a monic polynomial, Q(u) and R(u) are even in u and of sam
degree.

Then V is finite-dimensional.
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Proof: We callp ~resp. 2r ) the degree ofP(u) @resp.Q(u) andR(u)]. SinceR(u) andQ(u)
are even, they write

R~u!5R0~u!R0~2u!; Q~u!5Q0~u!Q0~2u! with dg~R0!5dg~Q0!5r . ~4.36!

We introduce

l1~u!5u2s2r P~u11!R0~u!, ~4.37!

l2~u!5u2s2r P~u11!Q0~u!, ~4.38!

l3~u!5u2s2r P~u!Q0~u!. ~4.39!

Let L@l(u)# be the corresponding irreducible highest weight module ofY(1u2). Since
l1(u)/l2(u)5R0(u)/Q0(u) andl2(u)/l3(u)5P(u11)/P(u), according to Ref. 12L@l(u)# is
finite dimensional. The cyclicY(1u2)1-span of its highest weight vector is a finite-dimension
representationV@m8(u)# of Y(1u2)1 with m18(u)5l1(u)l1(2u) andm38(u)5l3(u)l2(2u). By
construction, the polynomialsm i8(u) satisfy ~4.34! and ~4.35!. This implies that

c~u![
m3~u!

m38~u!
5

m3~2u!

m38~2u!
~4.40!

is an even series inu21 and

m1~u!5
m3~u!

m38~u!
m18~u!5c~u!m18~u!. ~4.41!

Thus, there exists an automorphismS(u)→c(u)S(u) of Y(1u2)1 such that its composition
with the representationV@m8(u)# is isomorphic toV@m(u)#:V@m(u)# is therefore finite dimen-
sional. j

Conjecture 1: The sufficient condition (4.34) of Theorem 4.6 for the existence of fi
dimensional irreps of Y(1u2)1 is also a necessary condition.

We remind that the condition~4.35! has been proved to be necessary~see Theorem 4.6!, so
that Conjecture 1 just says that Theorem 4.6 states necessary and sufficient conditions fo
dimensional irreps ofY(1u2)1.

C. The general case Y„2m¿1z2n …¿

Theorem 4.7: Let V5V@mm11(u), . . . ,m2m11(u),mM1n11(u), . . . ,mM12n(u)# be an irrep
of Y(2m11u2n)1. We take m>1 and note M52m11.

Suppose the weightsm i(u) obey

m i~u!

m i 11~u!
5

Pi 11~u11!

Pi 11~u!
for Hm12< i<2m,

M1n11< i<M12n21, ~4.42!

mM1n11~2u!

mM1n11~u!
5

PM1n11~u11!PM1n11~2u!

PM1n11~u!PM1n11~12u!
, ~4.43!

g~u!
mm11~u!

mm12~u!
5

Pm12~u11!

Pm12~u!
, ~4.44!

mm11~u!

mM1n11~u!
5

PM1n11~u11!

PM1n11~u!

R~u!

Q~u!
, ~4.45!
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with R(u) and Q(u) even and of same degree. In the above formulas, g(u) is either 1 or
2u/(2u11).

Then V is finite dimensional.
Under the assumption of Conjecture 1, the above sufficient conditions are also necessar.
Proof: First, letg(u) be 1. We notesi the degree of the polynomialsPi(u), decomposeR(u)

andQ(u) as in ~4.36!, and note

P1~u!5 )
a5m12

M

Pa~u!; P2~u!5 )
a5M1n11

M12n

Pa~u!; s05r 1 (
i 5m11

M

si1 (
i 5M1n11

M12n

si .

~4.46!

We also define

l i~u!5u2s0P1~u11!P2~u11!R0~u!, i 51,...,m11, ~4.47!

l i~u!5u2s0P2~u11!R0~u! )
a5m12

i

Pa~u! )
a5 i 11

2m11

Pa~u11!, i 5m12,...,M , ~4.48!

l i~u!5u2s0P1~u11!P2~u11!Q0~u!, i 5M11,...,M1n, ~4.49!

l i~u!5u2s0P1~u11!Q0~u! )
a5M1n11

i

Pa~u! )
a5 i 11

M12n

Pa~u11!,

i 5M1n11,...,M12n. ~4.50!

We therefore have

l i~u!

l i 11~u!
5

Pi 11~u11!

Pi 11~u!
for H i 5m11,...,M21,

i 5M1n,...,M12n21, ~4.51!

l i~u!

l i 11~u!
51 for H i 51,...,m,

i 5M11,...,M1n21, ~4.52!

lM~u!

lM11~u!
5

R0~u!

Q0~u!

P1~u!

P1~u11!
. ~4.53!

We consider the highest weight irrepL@l(u)# of Y(2m11u2n). According to Property 2.6, the
relations~4.51!–~4.53! ensure thatL@l(u)# is finite dimensional. The cyclicY(2m11u2n)1-span
of its highest weight vector is a finite-dimensional representation with highest weightsm i8(u)
5l i(u)l ī (2u) for i 5m11, . . . ,2m11 andi 5M1n11, . . . ,M12n. Its irreducible quotient
is a finite-dimensional irrepV@m̄(u)# of Y(2mu2n)1.

Moreover, them i8(u) verify

m i8~u!

m i 118 ~u!
5

Pi 11~u11!

Pi 11~u!
5

m i~u!

m i 11~u!
, H i 5m11,...,M21,

i 5M1n11,...,M12n21, ~4.54!

mM1n118 ~2u!

mM1n118 ~u!
5

PM1n11~u11!PM1n11~2u!

PM1n11~u!PM1n11~12u!
5

mM1n11~2u!

mM1n11~u!
, ~4.55!

mm118 ~u!

mM1n118 ~u!
5

PM1n11~u11!

PM1n11~u!

R~u!

Q~u!
5

mm11~u!

mM1n11~u!
. ~4.56!
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The formal series

c~u!5
mM1n11~2u!

mM1n118 ~u!
~4.57!

is an even series inu21 and we have

m i~u!

m i8~u!
5c~u!, ; i . ~4.58!

Hence there exists an automorphismS(u)→c(u)S(u) of Y(2m11u2n)1 such that its composi-
tion with V@m8(u)# is isomorphic toV@m(u)#. The latter is thus finite dimensional.

Now, let g(u)5 2u/(2u11) holds. We introduce the osp(2m11u2n) representationV0 , of
highest weightl i52 1

2 for i 5m12, . . . ,2m11 andl i50 for i 5m11,M1n11, . . . ,M12n and
promote it to aY(2m11u2n)1 representation using the evaluation map. The corresponding h
est weight has componentsl i(u)5 2u/(2u11) for i 5m12, . . . ,2m11, andl i(u)51 for i 5m
11,M1n11, . . . ,M12n.

Moreover, making the same construction as for the caseg(u)51, and considering the tenso
productL@l(u)# ^ V0 , we get a finite-dimensional representationV@m9(u)# obeying the relations
~4.42!–~4.45! with g(u)5 2u/(2u11). Its irreducible subquotient is isomorphic toV@m(u)#,
which is therefore finite dimensional.

Conversely, let us suppose that the irrepV@m(u)# is finite dimensional. From Theorem 4.4
one already knows that the conditions~4.42!–~4.44! must be satisfied.

Suppose also that Conjecture 1 holds. The subalgebra generated by the coefficients ofSi j (u),
i , j 5m11,M1n,M1n11, is isomorphic toY(1u2)1. The cyclic span of the highest weigh
vector of V@m(u)# with respect to this subalgebra is a representation with highest we
(mm11(u),mM1n11(u)). Its irreducible quotient is finite dimensional and, so, we have rela
~4.45!. j

D. Finite-dimensional irreps of Y„2z2…¿

Let V5V@m(u)# be an irrep ofY(2u2)1 with highest weightm(u).
Proposition 4.8: If V@m(u)# is finite dimensional, then there exists a formal even seriesc(u)

in u21 such that

c~u!m2~u!5~12a1u21!¯~12aku
21!, ~4.59!

c~u!m4~u!5~12b1u21!¯~12bku
21!. ~4.60!

Proof: The proof is very similar to the case ofY(1u2)1, and we leave it to the reader. No
that for the calculation being achieved using the fermionic generatorS13(u) @instead of the even
bosonic oneS12(u)], there is no difference in the proof forY(1u2)1 andY(2u2)1, in opposition
with the Y(2)1 andY(2)2 cases.16 j

Theorem 4.9:Let V@m2(u),m4(u)# be an irrep of Y(2u2)1. If m2(u) and m4(u) satisfy

m2~u!

m4~u!
5

u2g

u1 1
2

P4~u11! P2~u!

P4~u! P2~u11!

R~u!

Q~u!
, ~4.61!

m4~2u!

m4~u!
5S u1 1

2

u2 1
2
D 2

P4~u11! P4~2u!

P4~u! P4~12u!
, ~4.62!

then V is finite dimensional.
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In the above formulas, P2(u), P4(u), Q(u) and R(u) are monic polynomials, Q(u) and
R(u) are even in u and of same degree, andgPC.

Proof: We call p2 ~resp.p4 , resp. 2r ) the degree ofP2(u) @resp.P4(u), resp.Q(u) and
R(u)] and decomposeQ(u) and R(u) as in ~4.36!. Let L@l(u)# be the irrep ofY(2u2) with
weights

l1~u!5u2p22p42r P4~u11!P2~u11!R0~u!, ~4.63!

l2~u!5u2p22p42r P4~u11!P2~u!R0~u!, ~4.64!

l3~u!5u2p22p42r P4~u11!P2~u11!Q0~u!, ~4.65!

l4~u!5u2p22p42r P4~u!P2~u11!Q0~u!. ~4.66!

Since we have

l1~u!

l2~u!
5

P2~u11!

P2~u!
,

l2~u!

l3~u!
5

P2~u11!R0~u!

P2~u! Q0~u!
,

l3~u!

l4~u!
5

P4~u11!

P4~u!
, ~4.67!

L@l(u)# is finite dimensional. TheY(2u2)1-cyclic span of its highest weight vector is a finite
dimensionalY(2u2)1-representationV@m8(u)# of weights m28(u)5l2(u)l1(2u) and m48(u)
5l4(u)l3(2u). These weights obey the relations

m28~u!

m48~u!
5

P4~u11! P2~u!

P4~u! P2~u11!

R~u!

Q~u!
, ~4.68!

m48~2u!

m48~u!
5

P4~u11! P4~2u!

P4~u! P4~12u!
. ~4.69!

We now consider the osp~2u2! finite-dimensional irrepV0 with weightsl 252g2 1
2 and l 45

21. Through the evaluation map, its provides a finite-dimensional representation ofY(2u2)1 with
weights

l 2~u!5
u2g

u1 1
2

and l 4~u!5
u2 1

2

u1 1
2

. ~4.70!

The tensor productL@l(u)# ^ V0 is thus a finite-dimensional representation ofY(2u2)1, with
weightsm i9(u)5m i8(u) l i(u), i 52,4. They obey relations~4.61! and~4.62!, so that the irreducible
quotient provide a finite-dimensional irrep isomorphic toV. Thus,V finite dimensional. j

Note that the polynomialP(u)5(u2 1
2)

2 obeys the relationP(12u)5P(u), so that the
condition onm4(u) does not differ from the one obtained forY(2)2.

Conjecture 2: The sufficient condition~4.61! of Theorem 4.9 for the existence of finit
dimensional irreps of Y(2u2)1 is also a necessary condition.

E. The general case Y„2m z2n …¿

Theorem 4.10:(Case of Y(2u2m)1) Let V5V@m2(u),mn13(u), . . . ,m212n(u)# be an irrep
of Y(2u2n)1.

Suppose the weightsm i(u) obey

m i~u!

m i 11~u!
5

Pi 11~u11!

Pi 11~u!
f or n13< i<2n11, ~4.71!
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mn13~2u!

mn13~u!
5S u2 1

2

u1 1
2
D 2

Pn13~u11!Pn13~2u!

Pn13~u!Pn13~12u!
, ~4.72!

m2~u!

mn13~u!
5

u2g

u1 1
2

Pn13~u11! P2~u!

Pn13~u! P2~u11!

R~u!

Q~u!
, ~4.73!

with R(u) and Q(u) even and of same degree, andgPC.
Then V is finite dimensional.
Under the assumption of Conjecture 2, the conditions (4.71)–(4.73) are necessary and suffi

cient conditions for V to be a finite-dimensional irrep.
Proof: The proof is similar to the previous ones. One constructs a finite-dimensional irre

Y(2u2n)1 which fulfills the conditions~4.71!–~4.73!. It takes the formV85L@l(u)# ^ Vg .
L@l(u)# is constructed as in Theorem 4.7. The finite-dimensional osp(2u2n)-irrep Vg has weight

l 252g2 1
2 and l i521, for n13< i<2n. ~4.74!

Looking at the osp(2u2n)-span of the highest weight vector and taking the irreducible subquot
we get a finite-dimensional irrepV8 with highest weight obeying~4.71!–~4.73!. V being isomor-
phic to V8, it is therefore finite dimensional.

Conversely, assuming Conjecture 2, and looking at the subalgebrasY(2u2)1 and Y(2n)2,
one easily proves that the conditions~4.71!–~4.73! are necessary conditions. j

Theorem 4.11: (Case of m.1) Let V5V@mm11(u), . . . ,mM(u),mM1n11(u),
. . . ,mM12n(u)# be an irrep of Y(2mu2n)1. We note M52m and take m.1.

Suppose the weightsm i(u) obey

m i~u!

m i 11~u!
5

Pi 11~u11!

Pi 11~u!
for Hm11< i<2m21,

M1n11< i<M12n21, ~4.75!

mM1n11~2u!

mM1n11~u!
5

PM1n11~u11!PM1n11~2u!

PM1n11~u!PM1n11~12u!
, ~4.76!

g~u!
mm11~u!

mM1n11~u!
5

PM1n11~u11! Pm11~u!

PM1n11~u! Pm11~u11!

R~u!

Q~u!
, ~4.77!

with R(u) and Q(u) even and of same degree, andg(u) is either 1 or(2u21)/(2u11).
Then V is finite dimensional.
Proof: We start with the caseg(u)51, and do the same construction as in Theorem 4.7, to

weightsl i(u) defined as in Eqs.~4.47!–~4.50!, with now M52m. We introduce

l i8~u!5Pm11~u11!l i~u! for H i 51, . . . ,m,
i 5M11, . . . ,M12n, ~4.78!

l i8~u!5Pm11~u!l i~u! for i 5m11, . . . ,M . ~4.79!

For these new weights, the relations~4.51!–~4.53! are still valid wheniÞm,M . In these latter
cases, we get

lm8 ~u!

lm118 ~u!
5

Pm11~u11!

Pm11~u!
, ~4.80!

lM8 ~u!

lM118 ~u!
5

Pm11~u!

Pm11~u11!

P1~u!

P1~u11!

R0~u!

Q0~u!
. ~4.81!
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Thus, theY(2mu2n)-irrep L@l8(u)# is still finite dimensional. The cyclicY(2mu2n)1-span of its
highest weight vector is a representation with highest weightm̄ i(u)5l i8(u)l

ī
8(2u) for i 5m

11,...,2m and i 5M1n11,...,M12n. Its irreducible quotient is a finite-dimensional irre
V@m̄(u)# of Y(2mu2n)1.

Moreover, the weightsm̄ i(u) for i 5m11, . . . ,M21 on the one hand, andi 5M1n
11,..,M12n21 on the other hand, verify the same relations as them i8(u), i.e., the conditions
~4.75! and ~4.76!. For the remaining relation, one computes

m̄m11~u!

m̄M1n11~u!
5

Pm11~u!

Pm11~u11!

mm118 ~u!

mM1n118 ~u!
, ~4.82!

which gives the relation~4.77!.
The weightsm i(u) and m̄ i(u) both obeying the relations~4.75!–~4.77!, there exists an auto

morphismS(u)→c(u)S(u) of Y(2mu2n)1 such that its composition withV@m̄(u)# is isomor-
phic to V@m(u)#. The latter is thus finite dimensional.

If now g(u)5 2u/(2u21), we construct the tensor product of the above representatio
the osp(2mu2n) finite-dimensional irrepV0 with weightsl i52 1

2 for m11< i<2m and l i521
for 2m1n11< i<2m12n. V0 provides a finite-dimensional representation forY(2mu2n)1

with weights l i(u)5 2u/(2u11) for m11< i<2m and l i(u)5 2u/(2u21) for 2m1n11< i
<2m12n. The weights of the tensor product obey the relations~4.75!–~4.77!, and we conclude
as in Theorem 4.7. j

Remark:Conversely, let us suppose that the irrepV@m(u)# is finite dimensional and tha
Conjecture 2 holds. From Theorem 4.4, one already knows that the conditions~4.75! and ~4.76!
must be satisfied~for iÞm11). Moreover, we get also

g~u!
mm11

o ~2u!

mm11
o ~u!

5
Pm~u11!Pm~2u!

Pm~u!Pm~12u!
~4.83!

with g(u) andmm11
o (u) defined as in Theorem 4.4.

We suppose also thatmm11
o (u)5mm11(u), which turns out to suppose that~4.75! is valid for

i 5m11.
The subalgebra generated by the coefficients ofSi j (u), i , j 5m,m11,M1n,M1n11, is

isomorphic toY(2u2)1. The cyclic span of the highest weight vector ofV@m(u)# with respect to
this subalgebra is a representation with highest weight (mm11(u),mM1n11(u)). Its irreducible
quotient is finite dimensional and, so, we have

mm11~u!

mM1n11~u!
5

u2g

u1 1
2

PM1n11~u11! Pm11~u!

PM1n11~u! Pm11~u11!

R~u!

Q~u!
. ~4.84!

We look at the osp(2mu2n) irrep induced by the generatorsS(1)
ab acting on the highest weigh

vector. It is finite dimensional, so we must have

l i 112 l iPZ1 for Hm12< i<2m,
M1n11< i<M12n21, ~4.85!

2~ l m121 l m11!P 1
2Z1 and 2 l M1n11PZ1 , ~4.86!

l m112 l M1n11P 1
2Z1 , ~4.87!

wherem i(u)511u21l i1 ¯ . The above relations@on the weightsm i(u)] imply the following
constraints:
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l i 112 l iPZ1 for Hm12< i<2m,
M1n11< i<M12n21, ~4.88!

2~ l m111 l m12!PZ1 and 2 l M1n11PZ1 , ~4.89!

l m112 l M1n11PZ11~2g2 1
2!. ~4.90!

This implies in particular thatgP2 1
2Z1 , so that we are back to the conditions~4.77!. Thus, we

are led to the following:
Conjecture 3: The sufficient conditions of Theorem 4.11 for the existence of finite-dimen

irreps of Y(2mu2n)1 are also necessary conditions.

V. CONCLUSION

We have defined the notion of twisted Yangians in the context of superalgebra gl(M uN). It
appears that most of the properties of the twisted YangiansY6(N) can be exhibited in the super
algebra case. However, onlyY1(M u2n) andY2(2muN) can be defined, and appear to be isom
phic. We thus concentrate onY1(M u2n). Its finite-dimensional irreducible representations ha
been studied.Y1(M u2n) is also a coideal subalgebra ofY(M u2n), and is a deformation of the
polynomial superalgebraU(osp(M u2n)@x#).

From a mathematical point of view, the center of this algebra remains to be studied, a
particular the notion of Sklyanin determinant~which appears in the context of twisted Yangian!
has to be generalized to this case. Note that the notion of quantum Berezinian, which ge
central elements ofY(M uN), has been introduced in Ref. 11.

From the physical of view, the integrable systems with boundary that could be releva
such an algebra has to be determined. Nonlinear sigma models based on a supergroup se
a good candidate.
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The dynamical Yang–Baxter relation and the minimal
representation of the elliptic quantum group
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In this article, we give the general forms of the minimalL matrix ~the elements of
the L-matrix arec numbers! associated with the Boltzmann weights of theAn21

1

interaction-round-a-face~IRF! model and the minimal representation of theAn21

series elliptic quantum group given by Felder and Varchenko. The explicit depen-
dence of elements ofL-matrices on spectral parameterz are given. They are of five
different forms @A~1-4! and B#. The algebra for the coefficients~which do not
depend onz) are given. The algebra of form A is proved to be trivial, while that of
form B obeys Yang–Baxter equation~YBE!. We also give the PBW base and the
centers for the algebra of form B. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1543635#

I. INTRODUCTION

Recently, many papers have focused on the many-body long-distance integrable dyn
system, such as the Ruijsenaar Schneider model and the Calogero Moser~CM! model.1–3 They are
closely connected with the quantum Hall effect in the condense matter physics and the S
Witten ~SW! theory in the field theory, especially for the equations of the spectral curve in the
theory, namely, the modified eigenvalue equations of the Lax matrices in the above inte
models.4–6 These Lax matrices are the classical limit of theL matrices which is associated wit
the interaction-round-a-face~IRF! model of Lie group7–9 and the modified Yang–Baxter relatio
~NSF equation!.10–13 All these L-matrices are corresponding to the representation of the ell
quantum group which was proposed by Felder and Varchenko.11,12So it is very interesting to study
the general solution of theL-matrices.

In this article, we study the simplest case ofL-matrices which satisfy the dynamical Yang
Baxter relation~DYBR! for the An21 group. The deep study of theAn21 group case can help u
to understand the other Lie group cases because a subset of the other Lie groups can
structed by theAn21 group. We only study the simplest case ofL matrices, that is to say, th
Hilbert space of theL-operator is a scale function space. We find that theL matrices can only have
five possible forms, form A~1!, A~2!, A~3!, A~4! and form B. The form A~1! and B can be
constructed by the factorizedL matrices.14–17And the coefficient part of form B obeys a set
quadratic equations which can be related to the Shibukawa–Ueno operator.18 The algebra of these
quadratic relations have explicit PBW base and satisfy the YBE without spectral parameterz. We
find that all knownL-matrices9,12,16of related problem are equivalent to one representation of
algebra. But it is still an open question as to whether it is the unique one.

The present article is organized as follows. In Sec. II, we study the dependence of th
ments ofL-matrix with spectral parameterz. In Sec. III, we study the dependence of the essen

a!Author to whom correspondence should be addressed. Electronic mail: zhaoshaoyou@sina.com
syzhao2002@yahoo.com
12760022-2488/2003/44(3)/1276/21/$20.00 © 2003 American Institute of Physics
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part of these elements, which are functions of bothz and (a,b), with respect to the indices of th
elements. We prove that there are five possible classes of the minimalL-matrices. We then relate
the elements of adjacent lattice points (a,b) and (a1 î 8,b1 î ) in the end of this section. Sectio
IV is written for the equations of the coefficient part of the elements ofL-matrices, as a necessa
and sufficient condition ofL-matrices to satisfy the DYBR. This leads to two kinds of algebr
The A algebra, which is corresponding to the form A(i ) ( i 51,2,3,4), is trivially commutative and
thus the coefficients of form A(i ) can be determined completely. The algebra for form B coe
cients is studied further in Sec. V, which satisfies YBE, and we establish the PBW base for
also give center elements for this algebra. In the last section, we give a known solution
equations of form B. Throughout this article, we always assume all elements ofL-matrix arec
number functions which are not identically zero andn>4.

II. DYBR AND THE RELATION BETWEEN FACTORIZED L-MATRIX AND MINIMAL
L-MATRIX

It is well known that the Boltzmann weight of theAn21
(1) IRF7–9 model can be written as

R~auz! i i
i i 5

s~z1w!

s~w!
, R~auz! i j

i j 5
s~z!s~ai j 2w!

s~w!s~ai j !
for iÞ j ,

~1!

R~auz! i j
j i 5

s~z1ai j !

s~ai j !
for iÞ j , R~auz! i 8 j 8

i j
50 for other cases,

wherea[(m0 ,m1 ,...,mn21) is an n-vector, andai j 5ai2aj , ai5w(mi2 (1/n) ( lml1wi), mi

( i 50,1,...,n21) are integers which describe the state of model, while$w,wi% are generic
c-numbers which are the parameters of the model, ands(z)[u@1/2

1/2#(z,t), with

u@b
a#~z,t![ (

mPZ
eip(m1a)2t12ip(m1a)(z1b).

We define ann-dimension vectorĵ 5(0,0,...,0,1,0,...), in which the j th component is 1.
We consider a matrix whose elements are linear operators. We denote the elements

matrix asL(b
auz) i

j . TheR-matrix and theL-matrix can also be depicted by Figs. 1 and 2.
The dynamical Yang–Baxter relation~DYBR! is written as~also see Fig. 3!

(
i 8, j 8

R~buz12z2! i j
i 8 j 8L~b

auz1! i 8
i 9L~

b1 î 8

a1 î 9uz2! j 8
j 95 (

i 8, j 8
L~b

auz2! j
j 8L~

b1 ĵ

a1 ĵ 8uz1! i
i 8R~auz12z2! i 8 j 8

i 9 j 9 , ~2!

whereb[(m0
b ,m1

b ,...,mn21
b ), a[(m0

a ,m1
a ,...,mn21

a ). We note that Eq.~2! gives the quadratic
relation of the elements ofL. If we let b5a1h, the form of the equation will be the same as th
given in Refs. 11 and 12, and the relation whichL satisfies is the definition relation of the ellipti
quantum group proposed by Felder and Varchenko. Here, the elements of theL-matrix are opera-
tors, and Eq.~2! is the algebra of these operators. In this article, we only discuss the minimal

FIG. 1. The element ofR-matrix R(auz12z2) i j
i 8 j 8 .
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of the operators, namely, we only consider the simplest case that all elements are c numb
this situation, theL(b

auz) i
j is scalar functions of (a,b,z,i , j ). We will try to find the general form of

suchL-matrix. From Eq.~2!, we have

L~
b1 î

a1 î 8uz1! i
i 8

L~b
auz1! i

i 8
5

L~
b1 î

a1 î 8uz2! i
i 8

L~b
auz2! i

i 8
, ~3!

R~buz12z2! i i
i i 5R~auz12z2! i 8 j 8

i 8 j 8 L~b
auz2! i

j 8

L~
b1 î

a1 î 8uz2! i
j 8

L~
b1 î

a1 ĵ 8uz1! i
i 8

L~b
auz1! i

i 8

1R~auz12z2! j 8 i 8
i 8 j 8 L~b

auz2! i
i 8

L~
b1 î

a1 î 8uz2! i
j 8

L~
b1 î

a1 î 8uz1! i
j 8

L~b
auz1! i

i 8
~ i 8Þ j 8!, ~4!

R~auz12z2! i 8 i 8
i 8 i 85R~buz12z2! i j

i j
L~b

auz1! i
i 8

L~
b1 ĵ

a1 î 8uz1! i
i 8

L~
b1 î

a1 î 8uz2! j
i 8

L~b
auz2! j

i 8

1R~buz12z2! i j
j i

L~b
auz1! j

i 8

L~
b1 ĵ

a1 î 8uz1! i
i 8

L~
b1 ĵ

a1 î 8uz2! i
i 8

L~b
auz2! j

i 8
~ iÞ j !. ~5!

By solving Eqs.~4! and ~5!, we can determineL(b
auz) i

j as the function ofz. Let

L~b
auz2! i

j 8

L~
b1 î

a1 î 8uz2! i
j 8

[g~z2!,
L~

b1 î

a1 ĵ 8uz1! i
i 8

L~b
auz1! i

i 8
[h~z1!,

L~
b1 î

a1 î 8uz! i
j 8

L~b
auz! i

i 8
[ f ~z!, ~6!

FIG. 2. The element ofL-matrix, L(a,huz) i
j[L(b

auz) i
j .

FIG. 3. The dynamical Yang–Baxter relation.
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R~buz12z2! i i
i i

R~auz12z2! i 8 j 8
i 8 j 8

[A~z12z2!, 2
R~auz12z2! j 8 i 8

i 8 j 8

R~auz12z2! i 8 j 8
i 8 j 8

[B~z12z2!. ~7!

We then rewrite Eq.~4! as

g~z2!h~z1!5A~z12z2!1B~z12z2! f ~z1!/ f ~z2![F~z1 ,z2!. ~8!

We find that the left hand side of the above equation is factorized by the functions ofz1 andz2 .
So taking logarithm to the both sides of the above equation and taking the derivative with re
to z1 andz2 , we have

]2

]z1]z2
ln F~z1 ,z2!50. ~9!

Hence the above equation gives

F~z1 ,z2!
]2

]z1]z2
F~z1 ,z2!2

]

]z1
F~z1 ,z2!

]

]z2
F~z1 ,z2!50. ~10!

By using Eqs.~8! and ~10!, we can get an algebraic equation of second order aboutf (z1),

f ~z1!2@d1f 8~z2!1d2f ~z2!#1 f ~z1!@d3f 8~z2!21d4f 8~z2! f ~z2!1d5f ~z2!2#

1d6f 8~z2! f ~z2!21d7f ~z2!350, ~11!

wheredi ( i 51, 2, ..., 7) areknown functions ofz12z2 . Define

y5
f ~z1!

f ~z2!
,

u[
f 8~z2!

f ~z2!
5

]

]z2
lnH L~

b1 î

a1 î 8uz2! i
j 8

L~b
auz2! i

i 8 J .

Then, Eq.~11! can be rewritten as

y2~d1u1d2!1y~d3u21d4u1d5!1~d6u1d7!50. ~12!

Whenz2 is fixed, the coefficients of Eq.~12! are the functions ofz1 . Soy is also a function ofz1 .
Since Eq.~12! is of second order, they can only have two solutionsy1(z1 ,z2) andy2(z1 ,z2) at
most. If we can find two differentL-matricesL1(b

auz) andL2(b
auz) which satisfy the DYBR with

sameu, we must havef (z1)/ f (z2)5 f 1(z1)/ f 1(z2) or f (z1)/ f (z2)5 f 2(z1)/ f 2(z2), where f 1 and
f 2 are obtained by the two differentL ’s. Then, we can obtainf (z1); f 1(z1) or f (z1); f 2(z1),
where ‘‘; ’ ’ implies that, as the function ofz1 , two sides of it can only be different with a
constant respect toz1 . Thus, we can conclude that if there are twoLi(b

auz) ( i 51,2) which satisfy
the DYBR and are not proportional to each other, and whenz5z2 , they have the sameu
5u1(z2)5u2(z2), then everyf (z) related withL(b

auz) satisfyingf 8(z)/ f (z)5u whenz5z2 must
satisfy

f ~z!5 f 1~z!const or f ~z!5 f 2~z!const, ~13!

where the constants do not depend onz.
Now we consider the factorizedL-matrix14–17 which has an adjustable parameterd. We will

show that for the givenz2 and u, there are generally two differentd’s which can give
f d1
8 (z2)/ f d1

(z2)5 f d2
8 (z2)/ f d2

(z2)5u.
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Considering the intertwiner of theZn Belavin model and theAn21
(1) IRF model,19,20 we have

w
a1 î ,a

( j )
~z!5uF 1

2
2

j

n

1

2

G ~z1n~a1 î ! i ,nt![u ( j )~nzi !,

~a1 î ! i5wS mi112
1

n (
l

~ml1d i l !1wi D 5ai1wS 12
1

nD .

Define w̃a1 n̂,a
( j ) (z) which satisfies

(
j 50

n21

w̃a1 n̂,a
( j ) ~z!wa1m̂,a

( j ) ~z!5dmn .

Let

L̄s~b
auz!m

n 5 (
j 50

n21

w̃a1 n̂,a
( j ) ~z!wb1m̂,b

( j ) ~z1s!, ~14!

wheres is an arbitrary parameter. Then by using the correspondence relation between fa
vertex,20 we can prove that theL-matrix above satisfies the DYBR Eq.~2!. After some derivation,
we have17

L̄s~b
auz!m

n 5
s~z1D1~n21!w2 ~n21!/21 s/n 1bm2an!

s~z1D1~n21!w2 ~n21!/2! )
j (Þn)

s~s/n 1bm2aj !

s~an2aj !

with D5w( jwj . Let d5D1(n21)w2(n21)/21s/n5d(s), d85s/n. Since s(z1D1(n
21)w2(n21)/2) is irrelevant witha,b,m,n, from the above formula, we can prove that

Ld~b
auz!m

n 5L̄s~b
auz!m

n sS z1D1~n21!w2
n21

2 D5s~z1d1bm2an!)
j Þn

s~d81bm2aj !

s~an2aj !
~15!

also satisfy the DYBR@Eq. ~2!#.
Considering the definition ofu, we have

u~z!5
f d8~z!

f d~z!
5

s8~z1d1bi2aj 81w!

s~z1d1bi2aj 81w!
2

s8~z1d1bi2ai 8!

s~z1d1bi2ai 8!
. ~16!

By using the properties of theu-function, one can show that for a givenu, there generally exist
two differentd’s satisfying Eq.~16!.

From Eq.~13!, we know that for theL-matrix which satisfies the DYBR,

f ~z!; f d~z! ~17!

must be held for certaind. And from Eq. ~8!, we know thatg(z) and h(z) can be determined
completely byf (z) up to a scale. So we have

g~z!;gd~z!, h~z!;hd~z!. ~18!

Here the parameterd is the same as that in Eq.~17!. Then, from Eqs.~17! and ~18!, we have
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L~
b1 î

a1 î 8uz! i
j 8

L~b
auz! i

i 8
;

s~z1d1bi2aj 81w!

s~z1d1bi2ai 8!
, ~19!

L~
b1 î

a1 ĵ 8uz! i
i 8

L~b
auz! i

i 8
;

s~z1d1bi2ai 81w!

s~z1d1bi2ai 8!
, ~20!

L~b
auz! i

j 8

L~
b1 î

a1 î 8uz! i
j 8

;
s~z1d1bi2aj 8!

s~z1d1bi2aj 81w!
. ~21!

So from Eqs.~19! and ~21!, we can obtain

L~b
auz! i

j 8

L~b
auz! i

i 8
;

s~z1d1bi2aj 8!

s~z1d1bi2ai 8!
. ~22!

In Eqs.~19!–~22!, all d’s are the same. We note here that thed may depend oni ,i 8, j 8,a,b, but it
does not depend onz, i.e., d5d i(abi8 j 8). One sees from Eqs.~19!, ~20! and ~22! d i( i 8 j 8)
>d i( j 8i 8) ~mod Lt).

Similarly, from Eq.~5!, we have

L~
b1 ĵ

a1 î 8uz! i
i 8

L~b
auz! j

i 8
;

s~z1d1bi2ai 82w!

s~z1d1bj2ai 8!
, ~23!

L~
b1 î

a1 î 8uz! j
i 8

L~b
auz! j

i 8
;

s~z1d1bj2ai 82w!

s~z1d1bj2ai 8!
, ~24!

L~
b1 ĵ

a1 î 8uz! i
i 8

L~b
auz! i

i 8
;

s~z1d1bi2ai 82w!

s~z1d1bi2ai 8!
, ~25!

L~b
auz! j

i 8

L~b
auz! i

i 8
;

s~z1d1bj2ai 8!

s~z1d1bi2ai 8!
. ~26!

Here the dependence of thed’s are similar with the former. We also haved5d i 8(abi j) and
d i 8( i j )>d i 8( j i ) ~mod Lt).

III. DEPENDENCE OF ELEMENTS OF L-MATRIX WITH SPECTRAL PARAMETER z

In this section, we study the dependence ofL(b
auz) i

j with respect toz. It is found that there are
only five possible forms ofL-matrices in the whole lattice. We prove this in the following ste

Step 1:AssumeiÞ i 8, j Þ j 8. From Eqs.~22! and ~26!, we have

L~b
auz! i

j

L~b
auz! i 8

j 8
5

L~b
auz! i

jL~b
auz! i

j 8

L~b
auz! i

j 8L~b
auz! i 8

j 8
;

s~z1d i1bi2aj !

s~z1d i1bi2aj 8!

s~z1d j 81bi2aj 8!

s~z1d j 81bi 82aj 8!
, ~27!

L~b
auz! i

j

L~b
auz! i 8

j 8
5

L~b
auz! i

jL~b
auz! i 8

j

L~b
auz! i 8

j L~b
auz! i 8

j 8
;

s~z1d j1bi2aj !

s~z1d j1bi 82aj !

s~z1d i 81bi 82aj !

s~z1d i 81bi 82aj 8!
, ~28!
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giving

s~z1d i1bi2aj !

s~z1d i1bi2aj 8!

s~z1d i 81bi 82aj 8!

s~z1d i 81bi 82aj !

s~z1d j 81bi2aj 8!

s~z1d j 81bi 82aj 8!

s~z1d j1bi 82aj !

s~z1d j1bi2aj !

[
~1! ~2! ~3! ~4!

~18!~28!~38!~48!
;1, ~29!

where

d i5d i~a,b, j , j 8!, d j5d j~a,b,i ,i 8!,

d i 85d i 8~a,b, j , j 8!, d j 85d j 8~a,b,i ,i 8!.

Obviously in Eq.~29!, the zeroes of the numerator must coincide with those of the denomin
From this fact and noticing thataj andaj 8 , bi andbi8 are generic complex numbers, we analy
all cases and obtain

d i2d i 8>K~bi 82bi ! and d j2d j 8>K~aj2aj 8!, K50,1,2, ~30!

whered i5d i( j j 8), d i 85d i 8( j j 8), d j5d j ( i i 8), d j 85d j 8( i i 8) andK5K( i i 8 j j 8). From Eq.
~29!, we also have

d i>d j 8>d i 8>d j , when K50, ~31!

d i~ j j 8!2d j 8~ i i 8!>bi 82bi1aj2aj 8 , when K52. ~32!

Step 2:Since the dimensionn>4, we may choose three differenti 1 ,i 2 ,i 3 and substitute
$ i 1 ,i 2%, $ i 2 ,i 3%, $ i 1 ,i 3% as$ i ,i 8% into Eq.~30!. This leads to the conclusion thatK is independent
of the indicesi ,i 8, j and j 8.

These are the rules for the differences betweend i( j j 8) andd i 8( j j 8) and for the differences
betweend j ( i i 8) andd j 8( i i 8).

Step 3:Now let us study the differences betweend i( j 1 j 2) and d i( j 3 j 4). Consider different
indices j 1 , j 2 , j 3 . We have from Eq.~22!

L~b
auz! i

j 1

L~b
auz! i

j 2

L~b
auz! i

j 2

L~b
auz! i

j 3
;

s~z1d i~ j 1 j 2!1bi2aj 1
!

s~z1d i~ j 1 j 2!1bi2aj 2
!

s~z1d i~ j 2 j 3!1bi2aj 2
!

s~z1d i~ j 2 j 3!1bi2aj 3
!
,

LHS5
L~b

auz! i
j 1

L~b
auz! i

j 3
;

s~z1d i~ j 1 j 3!1bi2aj 1
!

s~z1d i~ j 1 j 3!1bi2aj 3
!
.

This implies

s~z1d i~ j 1 j 2!1bi2aj 1
!

s~z1d i~ j 1 j 2!1bi2aj 2
!

s~z1d i~ j 2 j 3!1bi2aj 2
!

s~z1d i~ j 2 j 3!1bi2aj 3
!

s~z1d i~ j 1 j 3!1bi2aj 3
!

s~z1d i~ j 1 j 3!1bi2aj 1
!

[
~1! ~2! ~3!

~18! ~28! ~38!
;1.

From this equation, we obtain

d i~ j 1 j 2!2k~aj 1
1aj 2

!>d i~ j 2 j 3!2k~aj 2
1aj 3

!>d i~ j 1 j 3!2k~aj 1
1aj 3

!, k50,1, ~33!

wherek5k( i j 1 j 2 j 3).
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Step 4: Consider unequalj a , j b , j c , j d , and substitute$ j a , j b , j c%,$ j b , j c , j d%,$ j a , j c , j d% as
$ j 1 , j 2 , j 3% into Eq. ~33!, we may show thatk is also independent of the indices.

Therefore, from Eqs.~30! and ~33!, we conclude that one can always find a numberC
independent of indicesi j j 8 such that

C>d i~ j j 8!2k0~aj1aj 8!1Kbi . ~34!

Similarly, we also find a numberD satisfying

D>d j~ i i 8!1k0~bi1bi 8!2Kaj , ~35!

whereD,K, k0 , k0 are independent of indices, and are fixed for a given lattice point (a,b).
Step 5:In the following, we discuss the casesK50 and 2. ForK50, one has from Eqs.~30!,

~31!, ~34! and ~35!,

d i~ j j 8!>C1k0~aj1aj 8!>d j~ i i 8!>D2k0~bi1bi 8!⇒D2C5k0~aj1aj 8!1k0~bi1bi 8!.

Thus, thek0 andk0 must be zero sinceC andD are independent of the indices. We have

d>C>D>d i>d j . ~36!

WhenK52, from Eq.~32!, we can find a numberE satisfying

E>C>D and k05k051. ~37!

Step 6:We next study the relations forC,D,K,k0 ,K0 between adjacent lattice point (a,b) and
(a1 î 8,b1 î ). Equations~19! and~23! intertwine two lattice points. Notice that in Eqs.~19!–~22!
@or in Eqs.~23!–~26!# the d’s are the same. By using these equations, we can prove thatk,k0 ,k0

are unchanged for adjacent lattice points while

C~a1 î 8,b1 î !2C~a,b!5C82C>2k0wS 12
2

nD1KwS 12
1

nD , ~38!

D~a1 î 8,b1 î !2D~a,b!5D82D>k0wS 12
2

nD2KwS 12
1

nD . ~39!

These equations imply that Eq.~37! cannot be realized in two adjacent lattice points. ThusK
52 must be discarded.

According to K, k0 , k0, when (a,b) is given, the elements of theL-matrix can take five
forms.

~1! Form A~1!. K51, k05k050, from Eqs.~22!, ~34! and ~35!, we have

L~b
auz! i

j

L~b
auz! i

0 ;
s~z1d i~0 j !1bi2aj !

s~z1d i~0 j !1bi2a0!
;

s~z1C2bi1bi2aj !

s~z1C2bi1bi2a0!
5

s~z1C2aj !

s~z1C2a0!
,

and from Eq.~26!, we have

L~b
auz! i

0

L~b
auz!0

0 ;
s~z1d0~ i0!1bi2a0!

s~z1d0~ i0!1b02a0!
;

s~z1D1a01bi2a0!

s~z1D1a01b02a0!
5

s~z1D1bi !

s~z1D1b0!
.

Therefore, we obtain

L~b
auz! i

j;
s~z1C2aj !

s~z1C2a0!

s~z1D1bi !

s~z1D1b0!
L~b

auz!0
0;s~z1C2aj !s~z1D1bi !F~b

auz!. ~40!
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By using Eqs.~27!, ~34! and ~35!, we can similarly derive other forms as follows.
~2! Form A~2!. K51, k050, k051, we have

L~b
auz! i

j;
s~z1C2aj !

s~z1D2bi !
F~b

auz!. ~41!

~3! Form A~3!. K51, k051, k051, we have

L~b
auz! i

j;
1

s~z1C1aj !s~z1D2bi !
F~b

auz!. ~42!

~4! Form A~4!. K51, k051, k050, we have

L~b
auz! i

j;
s~z1D1bi !

s~z1C1aj !
F~b

auz!. ~43!

~5! Form B. K50, k050, k050; from Eqs.~27! and ~36!, one obtains

L~b
auz! i

j;s~z1d1bi2aj !F~b
auz!. ~44!

The relation ofF(z) between adjacent lattice points (a,b) and (a8,b8) is discussed in Ap-
pendix A.

In conclusion, there can be at most five classes ofL-matrices in the whole lattice. Each o
them is of the same form at all lattice points.

We must check if these inductive relations are integrable in the whole lattice. That is, i
goes from (a,b) to (a95a1 î 81 ĵ 8,b95b1 î 1 ĵ ) via different paths, the resultingC9 D9 F9(z)
should be the same. The conclusion is affirmative.

For a[(m0 ,m1 ,...,mn21), define m[( imi . Thus m(a85a1 î 8,b85b1 î )5m(a,b)11.
We can express five forms as follows, which satisfy all relations of adjacent lattice points,

~1! Form A~1!. Let C5C01mw(121/n), D5D02mw(121/n). Then

L~b
auz!k

l ;sS z1C01mwS 12
1

nD2al DsS z1D02mwS 12
1

nD1bkDF0~z! ~45!

andC0 , D0 , F0(z) are unchanged in the whole lattice.
~2! Form A~2!. Let

C5C01mwS 12
1

nD , D5D02m
w

n
,

F~z!5F0~z!)
j 50

n21

sS z1D02m
w

n
2bj D .

We then have

F8~z!

F~z!
5

s~z1D02~m11! w/n 2bi2w~12 1/n!!

s~z1D02m w/n 2bi !
5

s~z1D2bi2w!

s~z1D2bi !
.

Thus,

L~b
auz!k

l ;sS z1C01mwS 12
1

nD2al D )
j (Þk)

sS z1D02m
w

n
2bj DF0~z! ~46!

andC0 , D0 , F0(z) are unchanged in the whole lattice.
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~3! Form A~3!. Let

C5C01m
w

n
, D5D02m

w

n
,

F~z!5F0~z!)
j 50

n21

sS z1C01m
w

n
1aj DsS z1D02m

w

n
2bj D .

We then have

F8~z!

F~z!
5

s~z1C1ai 81w!

s~z1C1ai 8!

s~z1D2bi2w!

s~z1D2bi !
.

Thus,

L~b
auz!k

l ; )
j (Þ l )

sS z1C01m
w

n
1aj D )

j (Þk)
sS z1D02m

w

n
2bj DF0~z! ~47!

andC0 , D0 , F0(z) are unchanged in the whole lattice.
~4! Form A~4!. Let

C5C01m
w

n
, D5D02mwS 12

1

nD ,

F~z!5F0~z!)
j 50

n21

sS z1C01m
w

n
1aj D .

We then have

L~b
auz!k

l ;sS z1D02mwS 12
1

nD1bkD )
j (Þ l )

sS z1C01m
w

n
1aj DF0~z! ~48!

andC0 , D0 , F0(z) are unchanged in the whole lattice.
~5! Form B.

L~b
auz!k

l ;s~z1d01bk2al !F0~z! ~49!

andd0 , F0(z) are unchanged in the whole lattice.
Thus we can establish theL-matrix in the whole lattice, if we can properly choose t

coefficients of the elements ofL-matrix. We will discuss this problem in the next section.

IV. THE COEFFICIENTS IRRELEVANT WITH z OF THE ELEMENTS OF L-MATRIX

In this section, we study the sufficient condition ofL-matrices for DYBR and derive the
equations satisfied by the coefficients irrelevant withz of the elements ofL-matrix.

As an example, we study the form B which is useful in the later. From Eq.~44! for the form
B, theL-matrix takes the form

L~b
auz! i

j5~b
a! i

js~z1d1bi2aj !F~z!, ~50!

L~
b1 î

a1 î 8uz! j
j 85~

b1 î

a1 î 8
! j

j 8s~z1d1bj82aj 8
8 !F~z!. ~51!

Then, substituting the above equation and Eq.~1! for the R-matrix into the DYBR Eq.~2! and
noticing the fact
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aj 8
8 5aj 81wS d i 8 j 82

1

nD , bj85bj1wS d i j 2
1

nD ~ for a85a1 î 8, b85b1 î !,

we obtain the equations for the coefficients:

S a
bD

i

i 8S a1 î 8

b1 î
D

i

i 8

5S a
bD

i

i 8S a1 î 8

b1 î
D

i

i 8

, ~52!

which is trivially satisfied, and

~b
a! i

i 8~
b1 î

a1 î 8
! i

j 82
s~ai 8 j 82w!

s~ai 8 j 81w!
~b

a! i
j 8~

b1 î

a1 ĵ 8
! i

i 850 ~ i 8Þ j 8!, ~53!

~b
a! i

i 8~
b1 î

a1 î 8
! j

i 82~b
a! j

i 8~
b1 ĵ

a1 î 8
! i

i 850 ~ iÞ j !, ~54!

~b
a! j

i 8~
b1 ĵ

a1 î 8
! i

j 8s~ai 8 j 81bi j !s~w!1~b
a! i

i 8~
b1 î

a1 î 8
! j

j 8s~bi j 2w!s~ai 8 j 8!

2~b
a! j

j 8~
b1 ĵ

a1 ĵ 8
! i

i 8s~ai 8 j 82w!s~bi j !50 ~ iÞ j , i 8Þ j 8!, ~55!

respectively. In the derivation, we have used the addition formula

s~u1x!s~u2x!s~v1y!s~v2y!2s~u1y!s~u2y!s~v1x!s~v2x!

5s~u1v !s~u2v !s~x1y!s~x2y!. ~56!

Define

~b
a! i

i 83 )
l (Þ i 8)

s~al2ai 8!5@b
a# i

i 8 ,

~57!

@b
a# i

i 8@
b1 î

a1 î 8
# j

j 85Yi j
i 8 j 8 .

Then for form B, we rewrite Eqs.~53!–~55! as

Yi i
i 8 j 82Yi i

j 8 i 850 ~ i 8Þ j 8!, ~58!

Yi j
i 8 i 82Yj i

i 8 i 850 ~ iÞ j !, ~59!

s~w!s~ai 8 j 81bi j !Yj i
i 8 j 81s~ai 8 j 8!s~bi j 2w!Yi j

i 8 j 82s~ai 8 j 81w!s~bi j !Yj i
j 8 i 850 ~ iÞ j , i 8Þ j 8!.

~60!

With the same procedure, one can also show that all A forms@forms A~1!–A~4!# share
common coefficient relations

Yi i
i 8 j 82

s~ai 8 j 82w!

s~ai 8 j 81w!
Yi i

j 8 i 850 ~ i 8Þ j 8!, ~61!

Yi j
i 8 i 82Yj i

i 8 i 850 ~ iÞ j !, ~62!

Yj i
i 8 j 85Yi j

i 8 j 85
s~ai 8 j 82w!

s~ai 8 j 81w!
Yj i

j 8 i 8 ~ iÞ j , i 8Þ j 8!. ~63!
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For the coefficients of form A(i ) ( i 51,2,3,4), we can easily find the rule. Consider a funct
G(a,b) on a lattice points (a5( jmj

a ĵ ,b5( imi
bî ). From the lattice (a,b), by using the relation

G(a1 î 8,b1 î )5G(a,b)@b
a# i

i 8 , we can construct the function on the other lattice point. Becaus
Eqs.~61!–~63!, we can obtain the sameG(a1 î 81 ĵ 8,b1 î 1 ĵ ) through different paths from (a,b)
to (a1 î 81 ĵ 8,b1 î 1 ĵ ). So this procedure is integrable. This implies that there must exi

function G(a,b) which can determine@b
a# i

i 8 with

@b
a# i

i 85G~a1 î 8,b1 î !/G~a,b!. ~64!

Hence, we can solve the problem of form A completely. However, to the coefficients of the
B, its rule is more complicated and we will discuss it in the next section.

Obviously, if we take a gauge transformation

@b
a# i

j→@b
a# i

j5@b
a# i

j g~a1 ĵ ,b1 î !

g~a,b!
,

and if @b
a# i

j satisfies Eqs.~61!–~63!, @b
a# i

j also satisfies these equations. In this sense, all form
coefficients are gauge equivalent to a constant.

V. THE ALGEBRA FOR FORM B COEFFICIENTS

A. The PBW base of the algebra

In this section, we give the PBW base of the algebra for form B coefficients. The main r
is Theorem 1. We also give the center of this algebra. Equations~58!–~60! can be regarded as th
algebraic relations which are satisfied by the operators in the lattice (a5( j 50

n21mj
aĵ ,b

5( i 50
n21mi

bî ). We define a new operator

Ai
i 8[@b

a# i
i 8G i

i 8 , ~65!

where

G i
i 8 f ~a,b!5 f ~a1 î 8,b1 î !G i

i 8 . ~66!

Namely, we regard thea,b as operators;G i
i 8 is not commutative with the function ofa,b. In this

way, we have the following exchange relations of the operators$Ai
i 8%

Ai
i 8Ai

j 85Ai
j 8Ai

i 8 ~ i 8Þ j 8!, ~67a!

s~ai 8 j 81w!s~bi j !Aj
j 8Ai

i 85s~ai 8 j 8!s~bi j 2w!Ai
i 8Aj

j 81s~w!s~ai 8 j 81bi j !Aj
i 8Ai

j 8

~ iÞ i 8, j Þ j 8!, ~67b!

Ai
i 8Aj

i 85Aj
i 8Ai

i 8 ~ iÞ j !. ~67c!

These equations are equivalent relations to the Felder and Varchenko elliptic quantum a
under special condition. It is worth noting that in Eq.~67b!, the coefficients should be regarded
the functions of operators and they do not commute withAi

j . These equations are irrelevant wi
the parameterz. This situation is similar to the relation between the Sklyanin algebra21–25and the
YBR of the Belavin model.26–28 In formulation, Eq. ~67b! is also similar to the function
R-matrices given by Shibukawa and Ueno.18

Using the~a! and ~b! of Eq. ~67!, we can exchange the order of the up-indices of a pai

operatorsAi
j 8Aj

i 8 . SoAi
j 8Aj

i 8 can be written as linear combination ofAi
i 8Aj

j 8 andAj
i 8Ai

j 8 . Therefore,
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we can write the product of three operatorsAi
i 8Aj

j 8Ak
k8 as the linear combination ofA

•

k8A
•

j 8A
•

i 8 .
This procedure can be done in two different ways. For the two ways, by using Eqs.~58!–~60!, we
can show that according to the rules~67a! and~67b! @we will simplify it as ~ab!#, if the product of

three operatorsAi
i 8Aj

j 8Ak
k8 is changed to the linear combination ofA

•

k8A
•

j 8A
•

i 8 by two different
paths, their results are equal. The paths are as follows:

~A! i 8 j 8k8→ i 8k8 j 8→k8i 8 j 8→k8 j 8i 8,

~B! i 8 j 8k8→ j 8i 8k8→ j 8k8i 8→k8 j 8i 8.

In the above transformation, we think that the result of the~ab! transformation on two adjacen

operators with the same up-indices does not change the order of them, namely,Ai
i 8Aj

i 8⇒Ai
i 8Aj

i 8 .
And we think the associative and the distributive law are satisfied in the transformation.

Furthermore, if we consider the rule~67c!, the linear expansions of operator produc

Ai
i 8Aj

j 8Ak
j 8 andAi

i 8Ak
j 8Aj

j 8 by A
•

j 8A
•

j 8A
•

i 8 via the ~ab! transformation are equal. Therefore, we al
call this fact the Yang–Baxter equation~YBE!.

Similarly, afterAi
j 8Aj

j 8Ak
i 8 andAj

j 8Ai
j 8Ak

i 8 change to the linear combination of theA
•

i 8A
•

j 8A
•

j 8 by
~ab!, these two expansion are equal via the rule~67c!.

For the coefficient algebra~or Yang–Baxter algebra! which we discussed above, we will giv
it a PBW base in the following. We first give some definitions for establishing the base.

Definition 1: Bunch: A bunch is a polynomial (or monomial) of operator A’ s, in which all
terms have the same number of A’ s and the upper indices of A’ s in all terms are arranged in the
same way.

Example:

B5 (
i 1i 2i 3i 4

Ci 1i 2i 3i 4
Ai 1

j 1Ai 2

j 2Ai 3

j 3Ai 4

j 4

is a bunch. A polynomial is always a bunch.
Definition 2: Inverse order number: To any two integers i8, j 8 with a given order, we say the

inverse order number is 1 if i8. j 8 and it is 0 if i8< j 8. And the inverse order number of

successive product A
•

i 8A
•

j 8A
•

k8
¯ is the sum of the inverse order numbers of all up-index pairs.

Definition 3: Normal order product: The (ab) normal order product is a successive produ
operators in which the up-indices are arranged from smaller to bigger when inspecting from
left to the right, while the arrangement of the down-indices can be arbitrary. The (abc) no
order product is that the up-indices are arranged from the smaller to the bigger and the d
indices of the operators with the same up-indices are also arranged from smaller to bigger.
inverse order numbers are zero.

Example: A2
1A1

1A1
2A3

2A5
3A1

4A3
5A1

5 is an ~ab! normal order product but is not an~abc! normal
order product. By using the rule~67c!, we can change it to the~abc! normal order product
A1

1A2
1A1

2A3
2A5

3A1
4A1

5A3
5.

Definition 4: Normal order expansion: The (ab) normal order expansion of a polynomia
A’ s is a procedure in which we change each term of the polynomial into a bunch of (ab) no
order products by only using rules (67a) and (67b). We also call the final resulting polynomial a
the (ab) normal expansion of the original polynomial.

The (abc) normal order expansion is a procedure, in which we first perform the (ab) no
order expansion and then we rearrange each term of the resulting polynomial into (abc) no
order product by using rule (67c). We also call the final result as an (abc) normal expansion of
original polynomial.

Then, we have a theorem.
Theorem 1: Transforming on a polynomial of operators Ai

j by using the rules (abc) of Eq
(67) does not change its (abc) normal order expansion.
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It is worth noting that the coefficients of the expansions are functions of the parameters$a,b%,
and they do not commute with operatorAi

j .
The detailed proof of the theorem will be given in Appendix B.
Corollary: The (abc) normal order products are linearly independent.
Proof: If there were a linear relation(Cigi50, wheregi are~abc! normal order products, the

LHS must be able to be changed to zero via Eq.~67!. However, each operation does not chan
the ~abc! expansion. Thus it is impossible sinceCi are not all zero. h

Thus the set of all~abc! normal order products is the PBW base of the algebra defined by
~67!.

B. The center of the algebra

By standard procedure, we may obtain the center of elliptic quantum group~the detail will be
given elsewhere!,

I 5
D~a!

D~b!
Det L~b

auz!,

whereD(a)5) i , js(ai j ),D(b)5) i , js(bi j ),

Det L~b
auz!5(

P
~21! [SignP(m0m1¯mn21

0 1¯n21 )] L~b
auz!m0

0 L~b1m̂0

a10̂ uz1w!m1

1
¯L~b1m̂01m̂11¯1m̂n22

a10̂11̂1¯1n2̂2 uz

1~n21!w!mn21

n21 ,

andP’s are permutations of integers 0, 1,..., n21. This agrees with that of Ref. 12 forn52.
In the case of

L~b
auz! i

i 85s~z1d1bi2ai 8!Ai
i 8 ,

the quantum determinant can be written as

I ~b
auz!5(

P
~21! [SignP(m0m1¯mn21

0 1 ¯n21 )]s~z1d1bm0
2a0!s~z1w1d1bm1

2a1!¯

3s~z1~n21!w1d1bmn21
2an21!Am0

0 Am1

1
¯Amn21

n21 .

It is easy to check

F~z!m0¯mn21
[s~z1d1bm0

2a0!¯s~z1~n21!w1d1bmn21
2an21!

is quasi-doubly periodic int and 1:

F~z11!5~21!nF~z!,

F~z1t!5expF22p i S nt

2
1nd1nz1

n~n21!

2
w1

n

2
1(

i
bm i

2(
i

ai D GF~z!

5expF22p i S nt

2
1nd1nz1

n~n21!

2
w1

n

2D GF~z!

for all m0 ,...,mn21 being a permutation of (0,1,...,n21). Therefore, from a theorem of suc
function ~see Ref. 29!, we have
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F~z!m0 , . . . ,mn21
5 (

i 50

n21

Cm0 , . . . ,mn21

i f i~z!, ~68!

where$ f i(z)% are base functions of the space of such quasi-double periodic function. For exa
we may choose

f i~z!5uF 1

2
2

i

n

1

2

G S nz1nd1
n~n21!w

2
1

n21

2
, nt D .

One can obtainCm0 , . . . ,mn21

i by choosingn pointsz1 ,...,zn in the above equation and solve a s

of n linear equations. We then derive then center elements for the algebra. From

I ~b
auz!5(

i
f i~z!H(

P
~21! [SignP(m0m1¯mn21

0 1 ¯n21 )]Cm0 , . . . ,mn21

i Am0

0 Am1

1
¯Amn21

n21 J [(
i

f i~z!Ji ,

we see that@D(a)/D(b)#Ji are the center elements of the algebra.

VI. A KNOWN SOLUTION FOR THE FORM B COEFFICIENTS

The equations@Eqs. ~58!–~60!# of form B coefficients seem simple but they interrelate t

values of the coefficients@b
a# i

i 8 between different lattice points. To our best knowledge, we o
know the analytic solution

@b
a# i

i 85 )
j (Þ i 8)

s~d81bi2aj 8!, ~69!

which can be derived by the factorized operator of Eq.~15!,

Ld~b
auz! i

i 85s~z1d1bi2ai 8! )
j (Þ i 8)

s~d81bi2aj !

s~ai 82aj !
[~21!n21s~z1d1bi2ai 8!~b

a! i
i 8

and

@b
a# i

i 85~b
a! i

i 8 )
j (Þ i 8)

s~aj2ai 8!.

The correspondingYi j
i 8 j 8 is

Yi j
i 8 j 85@b

a# i
i 8@

b1 î

a1 î 8
# j

j 85 )
l (Þ i 8)

s~d81bi2al ! )
m(Þ j 8)

s~d81bj82am8 !. ~70!

By using the addition formula~56!, we can check that the solution satisfies Eqs.~58!–~60!
directly.

This solution can be proved to be equivalent with the results obtained by using the sym
fusion method for theAn21

(1) model in Ref. 9. And it is also equivalent with the evaluation modu
(n52) obtained by Felder and Varchenko in Ref. 12.

Equation~69! is the only known solution for the form B coefficients. We do not know if the
are other analytic solutions. This is still an open question worthy of study.
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APPENDIX A: THE RELATION F„z… BETWEEN ADJACENT LATTICE POINTS

Suppose we go from (a,b) to (a1 î 8,b1 î ). Then we haveaj85aj1w(d i 8 j2 1/n), bj85bj

1w(d i j 2 1/n). From Eqs.~38! and ~39!, we may choose

C82C52k0wS 12
2

nD1KwS 12
1

nD , ~A1!

D82D5k0wS 12
2

nD2KwS 12
1

nD ~A2!

without loss of generality. This is the explicit relation ofCD (d E) between adjacent lattice point
for each form ofL-matrices. From Eq.~19!

L~
b1 î

a1 î 8uz! i
j 8

L~b
auz! i

i 8
;

s~z1d i~ i 8 j 8!1bi2aj 81w!

s~z1d i~ i 8 j 8!1bi2ai 8!

and from Eq.~34!

d i~ i 8 j 8!>C2Kbi1k0~ai 81aj 8!,

we have

L~
b1 î

a1 î 8uz! i
j 8

L~b
auz! i

i 8
;

s~z1C1~12K !bi1k0ai 81~k021!aj 81w!

s~z1C1~12K !bi1~k021!ai 81k0aj 8!
. ~A3!

The relations ofF(z) andF8(z) @the new function at lattice point (a8,b8)] can be obtained by
putting the explicit forms of five forms ofL-matrices@Eqs.~40!–~44!# into Eq.~A3!. For example,
we study the A~1! form.

~1! A(1)→
i i 8

A(1) K51, k05k050.
From Eqs.~A1! and ~A2!, one has

C85C1wS 12
1

nD , D85D2wS 12
1

nD . ~A4!

Then Eqs.~40! and ~A3! yield

L~b8
a8uz! i

j 8

L~b
auz! i

i 8
;

s~z1C82aj 8
8 !s~z1D81bi8!F8~z!

s~z1C2ai 8!s~z1D1bi !F~z!

;
s~z1C2aj 81w!s~z1D1bi !F8~z!

s~z1C2ai 8!s~z1D1bi !F~z!

;
s~z1C2aj 81w!

s~z1C2ai 8!
⇒ F8~z!

F~z!
;1. ~A5!

Other A~i!’s are similar. We list them in the following.

~2! A(2)→
i i 8

A(2) K51, k050, k051.
Equations~A1! and ~A2! give

C85C1wS 12
1

nD , D85D2
w

n
. ~A6!

From Eqs.~41! and ~A3!, we have
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F8~z!

F~z!
;

s~z1D2bi2w!

s~z1D2bi !
.

~3! A(3)→
i i 8

A(3) K51, k05k051.

F8~z!

F~z!
;

s~z1C1ai 81w!s~z1D2bi2w!

s~z1C1ai 8!s~z1D2bi !
. ~A7!

~4! A(4)→
i i 8

A(4) K51, k051, k050.

F8~z!

F~z!
;

s~z1C1ai 81w!

s~z1C1ai 8!
. ~A8!

~5! B→
i i 8

B K50, k05k050.
From Eq.~A1! and notingd>C>D for this class, we haveC8>D8>d8>C>D>d. We may

choosed85d without loss of generality. Equations~44! and ~A3! imply

L~b8
a8uz! i

j 8

L~b
auz! i

i 8
;

s~z1d81bi82aj 8
8 !F8~z!

s~z1d1bi2ai 8!F~z!

5
s~z1d1bi2aj 81w!F8~z!

s~z1d1bi2ai 8!F~z!

;
s~z1d1bi2aj 81w!

s~z1d1bi2ai 8!

⇒ F8~z!

F~z!
;1. ~A9!

APPENDIX B: THE PROOF OF THEOREM 1

To prove the theorem, first, we prove the following lemma.
Lemma 1: To any successive product of operators, if we transform it by using Eqs. (67a

(67b) such that at each step its inverse order number is reduced (the adjacent up-indic
exchanged when the left one is bigger than that of the right one), the final result of the (ab) n
order expansion is unique.

Here we assume that in this transformation, two adjacent operators with the same up-
do not change the order. And we think that in every step of the transformation, the location o
exchanged operators in all terms of the linear combination after the previous step are sam

Proof: We can do the procedure by different paths. For example, if we want to obtain~ab!
normal order expansion ofA

•

4A
•

4A
•

6A
•

5A
•

2A
•

2 , we may do this in following different paths:

~1! A
•

4A
•

4A
•

6A
•

5A
•

2A
•

2[(446522)→
Q4,5

(446252)→
Q3,4

(442652)→
Q5,6

(442625)→
Q4,5

(442265)

→
Q2,3

(424265)→
Q3,4

(422465)→
Q1,2

(242465)→
Q2,3

(224465)→
Q5,6

(224456),

~2! A
•

4A
•

4A
•

6A
•

5A
•

2A
•

2[(446522)→
Q3,4

(445622)→
Q4,5

(445262)→
Q3,4

(442562)→
Q2,3

(424562)

→
Q1,2

(244562)→
Q5,6

(244526)→
Q4,5

(244256)→
Q3,4

(242456)→
Q2,3

(224456), whereQi ,i 11 denotes the ex
change of thei th operatorA andi 11th operatorA by using rules~67a! and~67b!. We may denote
such a procedure by the product of a set of exchange operators$Qi ,i 11% acting on the bunch. Fo
the path~1! in the example, we have

Q5,6Q2,3Q1,2Q3,4Q2,3Q4,5Q5,6Q3,4Q4,5A•

4A
•

4A
•

6A
•

5A
•

2A
•

25( ¯A
•

2A
•

2A
•

4A
•

4A
•

5A
•

6 .

For the path~2!, we have
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Q2,3Q3,4Q4,5Q5,6Q1,2Q2,3Q3,4Q4,5Q3,4A•

4A
•

4A
•

6A
•

5A
•

2A
•

25( ¯A
•

2A
•

2A
•

4A
•

4A
•

5A
•

6 .

In general cases, a path of such procedure is denoted by

Qi 1 ,i 111Qi 2 ,i 111¯Qi s ,i s11~Ak1

j 1Ak2

j 2
¯Akl

j l !5(
j 8k8

c
j 1¯k1¯

t1¯k18¯A
k

18

j t1A
k

28

j t2
¯A

k
l8

j t l ~B1!

with j t1
< j t2

<¯< j t l
. Note that the original arrangement$ j 1 j 2¯ j l% and the final arrangemen

$ j t1
j t2
¯ j t l

% are same for whatever path of the~ab! normal product expansion we choose.
Assume there is another path for~ab! normal product expansion

Qi
18 ,i

1811Qi
28 ,i

1811¯Qi
s8 ,i

s811~Ak1

j 1Ak2

j 2
¯Akl

j l !5(
j 8k8

d
j 1¯k1¯

t1¯k18¯A
k

18

j t1A
k

28

j t2
¯A

k
l8

j t l . ~B2!

Consider the corresponding two products of exchange operators in the permutation group

P(1)5Pi 1 ,i 111Pi 2 ,i 211¯Pi s ,i s11

and

P(2)5Pi
18 ,i

1811Pi
28 ,i

2811¯Pi
s8 ,i

s811 .

They must all be able to permute the arrangement$ j 1¯ j l% into $ j t1
j t2
¯ j t l

%. Although some of

the j ’s may be the same, the permutation$ t1t2¯t l
1 2̄ l % is unique, however. This is due to the rule w

do not exchange adjacent operators with same upper indices. In permutation group, we can
an arbitrary element by product of exchange operators in different ways. However, we can a
make them equal step by step using the following equations:

Pi ,i 11Pi ,i 115 id, ~B3!

Pi ,i 11Pj , j 115Pj , j 11Pi ,i 11 ~ i 11, j !, ~B4!

Pi ,i 11Pi 11,i 12Pi ,i 115Pi 11,i 12Pi ,i 11Pi 11,i 12 . ~B5!

ThusP(1) can be changed toP(2) by using these equations step by step.
On the other hand, the$Qi ,i 11% operators have the same properties. We have checked

Qi ,i 11Qi ,i 115 id ~B6!

for two adjacent operatorsAk1

j 1A
k

28

j 2 ( j 1Þ j 2), and thus it is also valid for all bunches due

distribution law. We also have

Qi ,i 11Qj , j 115Qj , j 11Qi ,i 11 ~ i 11, j ! ~B7!

because of the distribution law. Finally we have

Qi ,i 11Qi 11,i 12Qi ,i 115Qi 11,i 12Qi ,i 11Qi 11,i 12 ~B8!

due to YBE for any polynomialAk1

j 1Ak2

j 2Ak3

j 3 with different indices. Due to distribution law, thi

equation is also true for any bunch. Therefore, we can also changeQ(1)

5Qi 1 ,i 111Qi 2 ,i 211¯Qi s ,i s11 into Q(2)5Qi
18 ,i

1811Qi
28 ,i

2811¯Qi
s8 ,i

s811 in Eqs. ~B1! and ~B2!, re-
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spectively, by using Eqs.~B6!–~B8! step by step sinceP(1) andP(2) can be equaled in such a wa

by using Eqs.~B3!–~B5!, respectively. Thus we havec
j 1¯k1¯

j t1
¯k18¯5d

j 1¯k1¯

j t1
¯k18¯ .

We then conclude that the resulting~ab! normal order expansion of the two paths gives t
same result. Therefore, all paths give the same result. h

Corollaries then follow:

Corollary 1: If in a product of successive product of operators CAi
i 8Aj

j 8D where C,D are all

products of operators, we obtain the combination of CA
•

j 8A
•

i 8D [it is C (aAi
j 8Aj

i 81bAj
j 8Ai

i 8)D] . By
changing [with rule (ab) in Eq. (67)] two adjacent operators whose up-indices are unequa
results of their (ab) normal order expansions are same, if the procedure is done according
rules described in Lemma 1.

Proof: If i 8. j 8, we can regard this changing procedure as the first step of the~ab! normal
order expansion. Thus, we can prove it. Ifi 8, j 8, we can do the~ab! normal order expansion o

C(aAi
j 8Aj

i 81bAj
j 8Ai

i 8)D, and let the first step as the changing ofA
•

j 8A
•

i 8 into A
•

i 8A
•

j 8 . Then, by
using the rule~ab!, we can prove thati 8 j 8→ j 8i 8→ i 8 j 8 is the identical transformation. So with th

distributive law, the~ab! normal order expansion of bunchC(aAi
j 8Aj

i 81bAj
j 8Ai

i 8)D5the ~ab!

normal order expansion ofCAi
i 8Aj

j 8D. Therefore, this corollary is proved. h

Corollary 2: With the rules of Eqs. (67a) and (67b), if a polynomial (a linear combination

products) of operators C can be changed to D(C →
(ab)

D), the (ab) normal order expansions of C
and D are same, if the expansion is done according to the rules described in Lemma 1.

Proof: Because each step of the transformation does not affect the result of the expanh

Thus Eqs.~67a! and~67b! are compatible with the~ab! normal order expansion and the~abc!
normal order expansion.

Here we note that same results of the~ab! normal order expansion give the same results of
~abc! normal order expansion, so the above two corollaries are also true for the~abc! normal order
expansion.

Next, we prove the following lemma.

Lemma 2: The (abc) normal order expansion of the bunch CAj
i 8Ak

i 8D and the bunch

CAk
i 8Aj

i 8D are same.
Proof: We need only to prove this when they are monomials. We prove the following pr

sitions by using the mathematical inductive method:
Proposition (i): This lemma is true when the inverse order number is zero.
Proposition (ii): If the lemma is true when the inverse order number is smaller thanm, it is

also true when the inverse order number is equal tom.

The first proposition is obvious, because in this case,CAj
i 8Ak

i 8D and CAk
i 8Aj

i 8D are all ~ab!
normal order products. To obtain the~abc! normalization, we only need to rearrange the dow
indices of the part of the product where the up-indices are the same from the smaller to the
by rule ~67c!. Both of the bunches have the same sets of the down-indices for up-indicei 8.
Therefore, the~abc! normal order products of them are same.

To the second proposition, we have the following cases:
~a!. If in C or D, we can rearrange the up-indices$ i 8% of them to reduce the inverse orde

number, for example,D →
(ab)

D8, we can obtainCAj
i 8Ak

i 8D8 andCAk
i 8Aj

i 8D8. According to Corollary
2 of Lemma 1, the~ab! normal order expansions of both of them will keep unchanged. Howe
because the inverse order number must be smaller thatm now, according to assumption of propo
sition (i i ), their ~abc! normal order expansions are same. Therefore, the~abc! normal order

expansions of theCAj
i 8Ak

i 8D and theCAk
i 8Aj

i 8D are same.
~b!. If C andD have already been normalized but the inverse order number of the bun

a whole can be reduced, namely, the bunch is not an~ab! normal order product. We can letC

5C1A
i

i c8 ,D5A
i

i d8D1 . Then we must havei c8. i 8 or ~and! i 8. i d8 . Let us assumei c8. i 8. These two

c d
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bunches can be rewritten asT15C1A
i c

i c8Aj
i 8Ak

i 8D andT25C1A
i c

i c8Ak
i 8Aj

i 8D, respectively. According

to the rule ~ab! in Eq. ~67!, we can change them asT1⇒T185C1( rstarstAr
i 8As

i 8A
t

i c8D and

T2⇒T285C1( rstbrstAr
i 8As

i 8A
t

i c8D, wherearst andbrst are some coefficients. With the help of th

YBE which we studied in Sec. V, one can see that these two combinations( rstarstAr
i 8As

i 8A
t

i c8 and

( rstbrstAr
i 8As

i 8A
t

i c8 are the same if we take the rule~67c! into account. Thus we must have

(
rst

arstAr
i 8As

i 8A
t

i c82(
rst

brstAr
i 8As

i 8A
t

i c85(
t

S (
rs

~arst2brst!Ar
i 8As

i 8DA
t

i c8

with ( rs(arst2brst)Ar
i 8As

i 850 if we take the rule~67c! into account. This is to say

arst1asrt5brst1bsrt52crst for eacht. ~B9!

Thus we have

T185(
rst

C1arstAr
i 8As

i 8A
t

i c8D[(
t

(
rs

~C1arstAr
i 8As

i 8Dt!

and

T285(
rst

C1brstAr
i 8As

i 8A
t

i c8D[(
t

(
rs

~C1brstAr
i 8As

i 8Dt!.

From Eq.~B9! and due to the assumption of proposition (i i ), the ~abc! normal order expansion
of T18 andT28 are the same. According to the procedure of the~abc! normal order expansion, we se
that the~abc! normal order expansions ofT1 andT2 are same.

If i 8. i d8 , the proof is similar. So we see that proposition (i i ) is true.
Thus, with the mathematical inductive method, we prove Lemma 2. h

From Corollary 2 of Lemmas 1 and 2, we obtain Theorem 1.
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We show that the braided tensor product algebraA1 Î A2 of two module algebras
A1 ,A2 of a quasitriangular Hopf algebraH is isomorphic to the ordinary tensor
product A1^ A2, provided there exists a realization ofH within A1 . In other
words, under this assumption we construct a transformation of generators which
decouplesA1 ,A2 ~i.e., makes them commuting!. We apply the theorem to the
braided tensor product algebras of two or more quantum group covariant quantum
spaces, deformed Heisenberg algebras andq-deformed fuzzy spheres. ©2003
American Institute of Physics.@DOI: 10.1063/1.1522818#

I. INTRODUCTION AND MAIN THEOREM

As is well known, given two associative unital algebrasA1 ,A2 ~over the fieldC, say!, one can
build a new module algebraA which is as a vector space the tensor productA5A1^ A2 of the
two vector spaces~over the same field! by postulating the product law

~a1^ a2!~b1^ b2!5a1b1^ a2b2 . ~1.1!

The resulting algebra is the ordinary tensor product algebra. Equation~1.1! is equivalent to the se
of relations

~a1^ 12!~b1^ 12!5a1b1^ 12 , ~1.2!

~a1^ 12!~11^ a2!5a1^ a2 , ~1.3!

~11^ a2!~11^ b2!511^ a2b2 , ~1.4!

~11^ a2!~a1^ 12!5~a1^ 12!~11^ a2!. ~1.5!

However, in many cases the same goal can be reached also by replacing~1.5! by some suitable
nontrivial commutation relations. With a standard abuse of notation we shall denote in the
a1^ a2 by a1a2 for any a1PA1 , a2PA2 and omit all units1i when multiplied by non-unit
elements; consequently~1.2!–~1.4! take trivial forms, whereas~1.5! becomes the commutatio
relation

a2a15a1a2 . ~1.6!
12970022-2488/2003/44(3)/1297/25/$20.00 © 2003 American Institute of Physics
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If A1 ,A2 are module algebras of a Lie algebrag, and we requireA to be too, then~1.6! has
essentially no alternative~apart from the case of superalgebras, where a minus sign may app
the right-hand side, according to the Grassman parity ofa1 ,a2), because anygPg acts as a
derivation on the~algebra as well as tensor! product of any two elements or, in Hopf algeb
language, because the coproductD(g)5g(1)^ g(2) @at the right-hand side~rhs! we have used
Sweedler notation# of the Hopf algebraH[Ug is cocommutative. In the main part of this pap
we shall work with right-module algebras~instead of left ones!, and denote byv:(ai ,g)PAi

3H→aivgPAi the right action; the reason is that they are equivalent to left comodule alge
which are used in much of the literature. In Sec. V we shall give the formulas for left mo
algebras. We recall that a right actionv:(a,g)PA3H→avgPA by definition fulfills

av~gg8!5~avg!vg8, ~1.7!

~aa8!vg5~avg(1)!~a8vg(2)!. ~1.8!

If we ‘‘ q-deform’’ this setting by taking as Hopf algebraH the quantum groupUqg, and asAi

the correspondingq-deformed module algebras, then it is also known21,24,25that althoughD(g) is
no longer cocommutative, it is still possible to build the deformed counterpart ofA if one replaces
~1.6! with nontrivial commutation relations of the form

a2a15~a1vR(1)!~a2vR(2)!. ~1.9!

HereR[R (1)
^ R(2)PH1

^ H2 denotes the so-called universalR-matrix of H[Uqg,10 andH6

denote the Hopf positive and negative Borel subalgebras ofH. This yields instead ofA a braided
tensor product algebraA 15A 1 Î 1A2 .25 An alternative oneA 25A 1 Î 2A2 is obtained by
replacing in the previous formulaR by R21

21 :

a2a15~a1vR21(2)!~a2vR21(1)!. ~1.10!

Both A 1 andA 2 go to the ordinary tensor product algebraA in the limit q→1.
This is a particular example of a more general notion, that of acrossed (or twisted) tenso

product3 of two unital associative algebras.
In view of ~1.9! or ~1.10! studying representations ofA 6 is a more difficult task than jus

studying the representations ofA1 ,A2 , taking their tensor products and studying the irreduci
ones there contained. The degrees of freedom ofA1 ,A2 are so to say ‘‘coupled.’’ One might as
whether one can ‘‘decouple’’ them by a transformation of generators.

In this work we present a sufficient condition for the construction of a transformation ma
A 1 isomorphic to the ordinary tensor product algebraA1^ A2, more precisely equal to the
productA1Ã2

1 , with Ã2
1 a subalgebra ofA 1 isomorphic toA2 and commuting@in the sense

~1.6!# with A1 , although—of course—no longer aH-submodule; and similarly forA 2. In a
quantum theory framework one could thus interpret the generators ofA1 ,Ã2

6 as pertaining to
decoupled degrees of freedom, describing, e.g., some composite or ‘‘quasiparticle’’ excita
ReducingA 6 to a formA1Ã2

6 will be called anunbraidingof the braided tensor product algeb
A 65A 1 Î 6A2 . The sufficient condition is that there, respectively, exists an algebra homo
phismw1

1 or an algebra homomorphismw1
2

w1
6 :A1’H6→A1 , ~1.11!

acting as the identity onA1 , namely for anya1PA1 ,

w1
6~a1!5a1 . ~1.12!
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@Note that, as a consequence of~1.12!, w1
6 is idempotent, (w1

6)25w1
6 .] Here A1’H6 denotes

the cross product betweenA1 andH6. In other words, this amounts to assuming thatw1
1(H1)

@respectively,w1
2(H2)] provides arealizationof H1 ~respectively,H2) within A1 . In fact,Ã2 is

found using the main result of this work.
Theorem 1: Let $H,R% be a quasitriangular Hopf algebra and H1,H2 be Hopf subalgebras

of H such thatR PH1
^ H2. Let A1 ,A2 be, respectively, a H1- and a H2-module algebra, so

that we can defineA 1 as in (1.9), andw1
1 be a homomorphism of the type (1.11), (1.12), so t

we can define the‘‘ unbraiding’’ mapx1:A2→A 1 by

x1~a2!ªw1
1~R(1)!~a2vR(2)!. ~1.13!

Alternatively, letA1 ,A2 be, respectively, a H2- and a H1-module algebra, so that we can defin
A 2 as in (1.10), andw1

2 be a homomorphism of the type (1.11), (1.12), so that we can defin
‘‘unbraiding’’ map x2:A2→A 2 by

x2~a2!ªw1
2~R21(2)!~a2vR21(1)!. ~1.14!

In either casex6 are then injective algebra homomorphisms and

@x6~a2!,A1#50, ~1.15!

namely the subalgebrasÃ2
6
ªx6(A2)'A2 commute withA1 . MoreoverA 65A1Ã2

6 .
Proof: We start by recalling the content of the hypotheses stated in the theorem. The a

A1’H6 as a vector space is the tensor product ofA1 andH6, whereas its product law is obtaine
combining the product laws of these two tensor factors with the cross-product law,

a1g5g(1)~a1vg(2)!, ~1.16!

for any a1PA1 and gPH6. w1
6 being an algebra homomorphism means that for anyj,j8

PA1’H6,

w1
6~jj8!5w1

6~j!w1
6~j8!. ~1.17!

For j[aPA1,A1’H6, j8[gPH6,A1’H6 this implies

aw6~g!5w6~g(1)!~avg(2)!. ~1.18!

Hereby we have also used~1.12! and~1.16!. After these preliminaries, note that under the assum
tion ~1.9!, for anya1PA1 anda2PA2

a1x1~a2! 5
~1.13!

a1w1
1~R(1)!~a2vR(2)!

5
~1.18!

w1~R(1)
(1)!~a1vR(2)

(1)!~a2vR(2)!

5
~A3 !

w1~R(1)!~a1vR(18)!~a2vR(2)R(28)!

5
~1.9!

w1~R(1)!~a2vR(2)!a1

5
~1.13!

x1~a2!a1 ,
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which proves~1.15! in this case. Moreover

x1~a2a28! 5
~1.13!

w1
1~R(1)!~a2a28vR(2)!

5
~1.8!

w1~R(1)!~a2vR(1)
(2)!~a28vR(2)

(2)!

5
~A4!

w1~R(18)R(1)!~a2vR(2)!~a28vR(28)!

5
~1.17!

w1~R(18)!w~R(1)!~a2vR(2)!~a28vR(28)!

5
~1.13!

w1~R(18)!x1~a2!~a28vR(28)!

5
~1.15!

x1~a2!w~R(18)!~a28vR(28)!

5
~1.13!

x1~a2!x1~a28!,

proving thatx1 is a homomorphism. To prove injectivity we show thatx1 can be inverted on
x1(A2), and the inverse is given by

~x1!21~ ã2!5V21~@w1~S21R(1)!ã2#vR(2)!, ~1.19!

whereVPA1 is the invertible element defined byVªw1
1(S21R (1))vR (2) (V is invertible be-

causeR is!. In fact,

V21@w1
1~S21R(1)!x1~a2!#vR(2)

5
~1.13!

V21@w1
1~S21R(1)!w1

1~R(18)!~a2vR(28)!#vR(2)

5
~A.1.5!,~1.17!

V21$w1
1@S21~R21(18)R(1)!#~a2vR21(28)!%vR(2)

5
~1.8!

V21w1
1@S21~R21(18)R(1)!#vR(1)

(2)~a2vR21(28)!vR(2)
(2)

5
~A.1.4!

V21w1
1@S21~R21(18)R(1)R(19)!#vR(29)~a2vR21(28)!vR(2))

5
~1.7!

V21w1
1@S21~R(19)!#vR(29)a25V21Va25a2 .

In fact, if w1
1 can be extended to an algebra homomorphismw1 :A1’H→A1 a little calculation

with the help of Eqs.~A32! and~A7! shows thatV5w1(v), wherevPH is the invertible central
element defined by~A8!. We know thatA1Ã2

1,A 1. To prove thatA 15A1Ã2
1 note first that by

~1.9! any element inA 1 can be written as a sum of productsa1a2 , with a1PA1 anda2PA2 . So
we need to show that

a1a25b(1)x1~b(2)! ~1.20!

for someb(1)PA1 , b(2)PA2 ~at the rhs a sum of many terms is implicitly understood!. Now this
can be proved as follows:

a1a25a1w1
1~1H!~a2v1H!5a1w1

1~R21(1)R(18)!@a2v~R21(2)R(28)!#
5
~1.7!

a1w1
1~R21(1)!w1

1~R(18)!~a2vR21(2)!vR(28) 5
~1.13!

a1w1
1~R21(1)!x1~a2vR21(2)!,
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which is of the form~1.20!.
The proof forx2 under the corresponding assumptions is completely analogous. h

In the next section we shall need an alternative expression forx6, which we prove in the
appendix:

Proposition 1:

x1~a2!5~a2vR21(2)!w1
1~SR21(1)!, ~1.21!

x2~a2!5~a2vR(1)!w1
2~SR(2)!. ~1.22!

The rest of the paper is essentially devoted to illustrate the application of Theorem 1 to
algebrasAi for which homomorphismsw1

6 are known. In Ref. 5 algebra homomorphismsw1
6

have been found for~a slightly enlarged versionA1 of! the algebra of functions on th
N-dimensional quantum Euclidean space13 Rq

N , corresponding toH5Uq so(N). The explicit
forms of w1

6 on the Faddeev–Reshetikhin–Takhtadjan~FRT! generatorsL j
6 i of Uq so(N) are

recalled in the third part of the Appendix. The mapsw1
6 for N53 are given also in Refs. 6 and 7

The same maps do the job also on the quotient spaces obtained by settingxixi51 @quantum (N
21)-dimensional spheresSq

N21], and the appropriate maps for theq-deformed fuzzy sphereSq,M
2

have been found in Ref. 20. ThereforeUq so(N) and the quantum Euclidean spaces/sphe
provide nontrivialH andA1 for the application of the above theorem. In fact, the construction
the frame given in Refs. 18 and 5 can be interpreted as an application of the theorem wA1

[Rq
N and A2 the N!-dim exterior algebra generated by the differentialsdxi of the

Uq so(N)-covariant differential calculus~although with a universalR-matrix R slightly modified
by multiplication by the coproductD(L)5L ^ L of a new elementL generating dilatations!;
consequently, in agreement with the philosophy of Ref. 26, the algebra of differential forms oRq

N

can be written asRq
N

^ Ã2 , where Ã2 is the N!-dim exterior algebra generated by the fram
elements. On the other hand, the existence of algebra homomorphismsw:A1’H→A1 , for H
5Uq so(N),Uqsl(N) and A1 , respectively, equal to~a suitable completion of! the
Uq so(N)-covariant Heisenberg algebra or theUq sl(N)-covariant Heisenberg or Clifford algebra
has been known for even a longer time,14,9,22so the theorem also applies if we choose as (H,A1)
one of these pairs of algebras.

Of course the above theorem can be used iteratively to completely unbraid an algeA
obtained by repeated braided tensor product@through prescription~1.9!, or prescription~1.10!# of
an arbitrary number ofH-module algebrasA1 ,A2 , . . . ,AM . We shall explicitly consider the
particular case that the latter beM identical copies of theUq so(N)-covariant quantum space
sphere~Sec. III!, of the Uq so(3)-covariantq-fuzzy sphere~Sec. VI!, or of the Uq so(N)- or
Uq sl(N)-covariant Heisenberg algebra~Sec. IV!. There we shall explicitly write down the gen
erators ofÃ2

6 for the lowestN examples. Also the results appeared in Section 3.3 of Ref. 2 ca
reinterpreted as an application~at the representation level! of the above iterated unbraiding pro
cedure to a particular iterated braided tensor product algebra, namely a lattice current alge
the latter bothH and all theAi are copies of one and the same quasitriangular semisimple H
algebraG.

In the third part of the Appendix we analyze the properties ofw6 under the main real section
of Uq so(N), what was left aside in Ref. 5. In Sec. II we investigate in the context of gen
position the properties ofx6 under the*-structures.

II. THE UNBRAIDING UNDER THE * -STRUCTURES

AssumeH is a Hopf* -algebra, namely the coproductD and counit« are*-homomorphisms,

D~g* ![~g* !(1)^ ~g* !(2)5~g(1)!* ^ ~g(2)!* , ~2.1!

andA1 , A2 areH-module* -algebras, namely for anyaiPAi ,
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~aivg!* 5ai* vS21g* ~2.2!

~here S denotes the antipode ofH); we have used and shall use the same symbol* for the
*-structure on all algebrasH,A1 , etc. Then* is a*-structure also forA1’H. The same statemen
is not automatically true for the braided tensor product algebraA 65A 1 Î 6A2 , because the basi
requirement that the latter be antimultiplicative

~a2a1!* 5a1* a2* ~2.3!

~note that this would makeA 6 also aH-module* -algebra! is not automatically guaranteed. I
fact, applying this would-be* to rhs of ~1.9! one finds

~a2a1!* 5
~1.9!

@~a1vR(1)!~a2vR(2)!#*

5
~2.3!

~a2vR(2)!* ~a1vR(1)!*

5
~2.2!

~a2* vS21R(2)* !~a1* vS21R(1)* !

5
~1.9!

~a1* vS21R(1)* R(18)!~a2* vS21R(2)* R(28)!; ~2.4!

in order that this be equal to the rhs of~2.3! it is necessary that (S21
^ S21)R* 5R21, which

upon use of~A5! is equivalent to

R* 5R21 ~2.5!

~here R* meansR(1)* ^ R(2)* ). This condition is fulfilled only for the standard noncompa
sections~A28! of Uqg, for uqu51; as a consequence,A 15A 1 Î 1A2 becomes aH-module
* -algebra if one extends the*-structures of the tensor factors toA using~2.3!. The same holds for
A 2.

On the contrary, the compact section, which requiresqPR, is characterized by

R* 5R21. ~2.6!

In the latter case the map* introduced through~2.3! makes sense only as an involutive antimu
tiplicative antilinear mapA 1→A 2, if both A 1 andA 2 exist. In fact, in this case the last line i
~2.4! will be replaced by

5
~1.10!,~2.6!

~a1* vS21R(2)R21(28)!~a2* vS21R(1)R21(18)! 5
~A5 !

a1* a2* ,

as required. Alternatively, ifA1 ,A2 are two copies of the same algebra and we denote byc:A1

→A2 the map associating to eacha1PA1 the equivalent element inA2 , one can define an
alternative*-structure! in A 6 by setting

a1
!5c~a1* !, a2

!5c21~a2* !, ~2.7!

since this is instead compatible with~1.9!. In fact, ~2.4! will become
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~a2a1!! 5
~1.9!

@~a1vR(1)!~a2vR(2)!#!

5
~2.3!

~a2vR(2)!!~a1vR(1)!!

5
~2.2!

c21~a2* vS21R(2)* !c~a1* vS21R(1)* !

5
~1.9!

c~a1* vS21R(2)R21(28)!c21~a2* vS21R(1)R21(18)!

5
~A5!

c~a1* !c21~a2* !a1

5
~2.7!

a1
!a2

!. ~2.8!

A similar trick can be used also if one considers an iterated braided tensor product ofM.2 copies
of the same algebra, see next section. However, such!’s have not the standard commutative lim
because of the presence of the mapc.

Inspired by the applications of the next two sections, we now assume thatw1
6 fulfill some

specific conditions relating its action before and after the application of the involution* , and
analyze the identities relating the action ofx6 before and after the application of* which follow
herefrom.

Proposition 2: Assume that the conditions of Theorem 1 for definingx1 or x2 are fulfilled. If
R* 5R 21 and for any g6PH6,

@w1
6~g6!#* 5w1

6~g6* !, ~2.9!

in other wordsw1
6 are * -homomorphisms, then

@x6~a2!#* 5x6~a2* !. ~2.10!

If R* 5R21 and * :H6→H7 fulfills

@w1
6~g!#* 5w1

7~g* !, ~2.11!

then

@x6~a2!#* 5x7~a2* !. ~2.12!

Proof: Under the first assumptions, for anya2PA2 ,

@x1~a2!#* 5
~1.21!

@~a2vR21(2)!w1
1~SR21(1)!#*

5@w1
1~SR21(1)!#* ~a2vR21(2)!*

5
~2.9!,~2.2!

w1
1~S21R21(1)* !~a2* vS21R21(2)* !

5
~2.5!

w1
1~S21R(1)!~a2* vS21R(2)!
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5
~A5!

w1
1~R(1)!~a2* vR(2)!

5
~1.13!

x1~a2* !.

Similarly one proves~2.10! for x2. Under the second assumptions, for anya2PA2 ,

@x1~a2!#* 5
~1.21!

@~a2vR21(2)!w1
1~SR21(1)!#*

5@w1
1~SR21(1)!#* ~a2vR21(2)!*

5
~2.11!,~2.2!

w1
2~S21R21(1)* !~a2* vS21R21(2)* !

5
~2.6!

w1
2~S21R21(2)!~a2* vS21R21(1)!

5
~A5!

w1
2~R21(2)!~a2* vR21(1)!

5
~1.14!

x2~a2* !.

By similar arguments one proves the claim forx2. h

It should be noted that there also exist nonstandard star structures onUqg for uqu51, in
particular the compact formXi

6* 5Xi
7 , Ki* 5Ki

21 in terms of the Cartan–Weyl generators. Th

R* 5R21
21 , ~2.13!

while the coproduct does not fulfill~2.1! as in a standard Hopf* -algebra but becomes flippe
under the star. This nevertheless has the correct classical limit, because the coproduct is
mutative forq51. In certain cases~in particular on the fuzzy quantum sphere20 discussed in Sec
VI, but see also Ref. 31!, it is then possible to define a star structure on eachAi , which takes the
form ai ;k* 56V iai ;kV i

21 on the generatorsai ;k of Ai . HereV i5A4 v i
21v i , wherev i andv i are

the realizations inAi ~using an algebra map fromUqg to Ai as above! of the central elementv
PUqg ~A8! and the ‘‘universal Weyl element’’v in an extension ofUqg.23 All this must be
defined in some representation ofAi ; for more details see Refs. 20 and 31.~Thev in Refs. 20 and
31 is the square root of ourv here.! If moreover there exists an elementV which realizesA4 v21v
in A 15A 1 Î 1A2 or a ‘‘physical’’ subspace thereof, then it follows easily from~2.13! that the
star structureai ;k* 56Vai ;kV

21 on A 1 is consistent with the commutation relations of t
braided tensor product algebraA 1. This star then has the correct classical limit, and the sa
construction also works forA 2.

III. UNBRAIDING CHAINS OF BRAIDED QUANTUM EUCLIDEAN SPACES OR SPHERES

In this section we consider the braided tensor product ofM>2 copiesA1 ,A2 , . . . ,AM of the

quantum Euclidean spaceRq
N ~Ref. 13! @theUq so(N)-covariant quantum space#, i.e., of the unital

associative algebra generated byxi fulfilling the relations

P ahk

i j xhxk50, ~3.1!
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wherePa denotes theq-deformed antisymmetric projector appearing in the decomposition of
braid matrix R̂ of Uq so(N) @given in formula ~A23!#, or of the quotient space of the latte
obtained by settingr 2

ªxixi51 @the quantum (N21)-dimensional sphereSq
N21]. The multiplet

(xi) carries the fundamental vector representationr of Uq so(N): for any gPUq so(N)

xivg5r j
i ~g!xj . ~3.2!

We shall enumerate the different copies of the quantum Euclidean space or sphere by attac
additional greek index to them, e.g.,a51,2,. . . ,M . The prescription~1.10! to glueA1 , . . . ,AM

into a Uq so(N)-module associative algebraA 2 gives the following cross commutation relation
between their respective generators:

xa,ixb, j5R̂hk
i j xa,hxb,k ~3.3!

whenevera,b. Note that prescriptions~1.10! and ~1.9! go into each other under the invers
reordering 1,2,. . . ,M→M , . . . ,2,1. Applying iteratively Theorem 1 we shall be able to co
pletely unbraid this iterated tensor product.

To definew1
6 one actually needs a slightly enlarged version5 of Rq

N ~or Sq
N21). One has to

introduce some new generatorsAr a, with 1<a< N/2, together with their inverses (Ar a)21,
requiring that

r a
25 (

h52a

a

xhxh5 (
h52a

a

ghkx
hxk ~3.4!

~note that, having setnª@N/2#, r n
2 coincides withr 2). Moreover for oddN we add alsoAx0 and

its inverse as new generators. In fact, the commutation relations involving these new gen
can be fixed consistently, and turn out to be simplyq-commutation relations.r plays the role of
deformed Euclidean distance of the generic point of coordinates (xi) of Rq

N from the origin;r a is
the projection ofr on the subspacexi50, u i u.a. In the previous equationghk denotes the metric
matrix of SOq(N):

gi j 5gi j 5q2r id i ,2 j . ~3.5!

It is a SOq(N)-isotropic tensor and is a deformation of the ordinary Euclidean metric. Here a
the sequelnª@N/2# is the rank of so(N), the indices take the valuesi 52n,...,21,0,1,...n for N
odd, andi 52n,...,21,1,...n for N even. Moreover, we have introduced the notation (r i)5(n
2 1

2,...,
1
2,0,2 1

2,...,
1
22n) for N odd, (n21,...,0,0,...,12n) for N even. In the case of evenN one

needs to include also the FRT generatorL 1
21 and its inverseL 1

11 @which are generators o
Uq so(N) belonging to the Cartan subalgebra# among the generators ofA1 . They satisfy the
commutation relations

L 1
21x615q61x61L 1

21 , L 1
21x6 i5x6 iL 1

21 for i .1 ~3.6!

with A1 , and the standard FRT relations with the rest ofUq so(N). One can easily show that th
extension of the action ofUq so(N) to Ar a (Ar a)21 is uniquely determined by the constraints t
latter fulfill; it is a bit complicated and therefore will be omitted, since we will not need its exp
expression. The action ofH on L 1

21 is the standard~right! adjoint action. Note that the mapsw1
6

have no analog in the ‘‘undeformed’’ case (q51), becauseA 1[RN is abelian, whereasH
[Uq so(N) is not.

The unbraiding procedure is recursive. We use the homomorphismw1 found in Ref. 5 and
start by unbraiding the first copy from the others. Following Theorem 1, we perform the follo
change of generators inA 2,

y1,i
ªx1,i ,
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ya,i
ªx2~xa,i ! 5

~1.14!

w1~R21(2)!r j
i ~R21(1)!xa, j5w1~L j

2 i !xa, j , a.1.

In the last equality we have used the definition~A15! of the FRT generators13 of Uq so(N). In the
third part of the Appendix we recall thew6 images of the latter. In view of formula~A36! we thus
find

y1,i
ªx1,i ,

ya,i
ªgih@mh

1 ,x1,k#qgk jx
a, j , a.1. ~3.7!

The suffix 1 inma
1 means that the special elementsma defined in~A37! must be taken as elemen

of the first copy ofRq
N . In view of ~A37! we see thatgih@mh

1 ,x1,k#qgk j are rather simple polyno
mials in xi andr a

21 , homogeneous of total degree 1 in the coordinatesxi andr a . Hence~3.7! is
a transformation of polynomial type and therefore likely to be implemented as a well-de
operator transformation also when representingA 2 as an algebra of operators on some line
space. Using the results~A42! given in the appendix we give now the explicit expression of~3.7!
for N53:

ya,252qhg1

r

x0 xa,2,

ya,05Aq~q11!
1

x0 x1xa,21xa,0, ~3.8!

ya,15
Aq~q11!

hg1rx0 ~x1!2xa,21
q2111

hg1r
x1xa,02

1

qhg1r
x0xa,1

for anya52, . . . ,M . Here we have setxi[x1,i , h[Aq21/Aq, replaced for simplicity the values
21,0,1 of the indices by the ones2,0,1 and denoted byg1PC a free parameter.

As a consequence of the theorem we find the following.
Corollary 1:

@y1,i ,ya, j #50, a.1, ~3.9!

ya,i yb, j5R̂hk
i j ya,hyb,k, 1,a,b, ~3.10!

P ahk

i j ya,hya,k50. ~3.11!

By ~3.9! the subalgebraÃ1
2[A1 of A 2 generated byy1,i[x1,i commutes with the subalgebr

generated byy2,i , . . . ,yM ,i , which we shall callÃ2. This was the first step of the unbraidin
procedure. Now we can reiterate the latter forÃ2, with y2,i playing the role ofx1,i . After M
21 steps, we shall have determinedM independent commuting subalgebras ofA 2 which we
shall callÃa

2 , a51, . . . ,M .
The unbraiding procedure for the alternative braided tensor product stemming from pre

tion ~1.9! arises by iterating the change of generators

y8M ,i
ªxM ,i ,

y8a,i
ªwM~L j

1 i !xa, j5gih@m̄h
M ,xM ,k#q21gk jx

a, j , a,M . ~3.12!
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m̄a
M are the special elements defined in~A40! belonging to theM th copy ofRq

N . Using the results
~A43! given in the appendix we give the explicit expression of~3.12! for N53: for any a
51, . . . ,M21,

y8a,252hḡ1

z0

r z
xa,21

kḡ1

Aqrz

z2xa,01
q22kḡ1

r zz
0 ~z2!2xa,1,

y8a,05xa,01q21/2~q2111!
1

z0 z2xa,1, ~3.13!

y8a,152
r z

hḡ1z0 xa,1.

Here we have setzi[xM ,i , r z
2[xM ,ixi

M , k[q2q21, andḡ1PC is a free parameter.
Again, the subalgebraÃM

1'Rq
N of A 1 generated byyM ,i[xM ,i commutes with the subalgebr

generated byy1,i , . . . ,yM21,i , which we shall callÃ1. This was the first step of the unbraidin
procedure. Now we can reiterate the latter forÃ1, with yM21,i playing the role ofxM ,i . After
M21 steps, we shall have determinedM independent commuting subalgebras ofA 1 which we
shall callÃa

1 .
We summarize the results of this section.
Proposition 3: LetA1 ,A2 , . . . ,AM be M copies of the Uq so(N)-covariant quantum Euclid-

ean space (or sphere). ThenA 1 Î 6A 2 Î 6
¯ Î 6AM5A1Ã2

6
¯ÃM

6 , whereÃ2
6 , . . . ,ÃM

6 are sub-
algebras of the left-hand side (lhs) isomorphic toA1 and commuting with each other.

By a suitable choice ofg1 ,ḡ1 , as well as of the other free parameters appearing in
definitions ofw6 for N.3 ~see Part 3 of the Appendix!, one can makew6 into * -homomorphisms
when uqu51, and make them satisfy the relation

@w6~g!#* 5w7~g* ! ~3.14!

whenqPR1. Since these relations are of the type considered in proposition 2, the claims
latter forx6 and their consequences hold. In particular, whenuqu51 one has a well-defined* on
the braided tensor product ofA1 , . . . ,AM mapping each of the independent, commuting suba
brasÃi

6 into itself. On the contrary for realq one can consider the map* :A 1→A 2 defined by
~2.3! or a *-structure onA 6 defined in a way similar to what we have done in~2.7!,

~xa,i !!5xM2a11,jgj i . ~3.15!

The latter has not the standard classical limit. A short calculation shows that the latter imp

~ya,i !!5y8M2a11,jgj i . ~3.16!

IV. UNBRAIDING CHAINS OF BRAIDED HEISENBERG ALGEBRAS

In this section we consider the braided tensor product ofM>2 copiesA1 ,A2 , . . . ,AM of the

Uqg-covariant deformed Heisenberg algebraDe,g , g5sl(N), so(N),29,32,4i.e., the unital associa
tive algebra generated byxi ,] j fulfilling the relations

P ahk

i j xhxk50,

P ahk

i j ] j] i50, ~4.1!

] ix
j5d j

i 1~qgR̂! ih
e jkxh]k ,
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whereg5q1/N,1 respectively, forg5sl(N), so(N), and the exponente can take either valuee
51,21. R̂ denotes the braid matrix ofUqg @given in formulas~A22! and~A23!#, and againPa the
antisymmetric projector appearing in the decomposition of the latter. The coordinatesxi transform
according to the fundamental vector representation ofUqg, as in~3.2!, whereas the partial deriva
tives trasform according to the contragredient representation,

] ivg5]hr i
h~S21g!. ~4.2!

The indices will take the valuesi 51, . . . ,N if g5sl(N), the same values considered in th
preceding section ifg5so(N). Clearly in the latter caseDe,g has the quantum Euclidean spa
generated byxi as a module subalgebra.

Again, we shall enumerate the different copies by attaching to them an additional greek
e.g., a51,2,. . . ,M . The prescription~1.9! to glue A1 , . . . ,AM into a Uqg-module associative
algebraA 1 ~see also Ref. 15! gives the following cross commutation relations between th
respective generators:

xa,ixb, j5R̂hk
i j xb,hxa,k, ]a,i]b, j5R̂j i

kh]b,h]a,k ,
~4.3!

]a,ix
b, j5R̂ik

21 jh
xb,k]a,h , ]b,ix

a, j5R̂ik
jhxa,k]b,h

when a.b. With respect to Ref. 15 we have called the generatorsxi ,] j instead ofAi ,Aj
1 ,

inverted the order of the product due to covariance with respect to theright ~instead of theleft!
Uqg-action, and for the sake of simplicity we have put equal to one possible factors at the
~4.3!.

In Refs. 14 and 9 algebra homomorphismsw:De,g’H→De,g have been determined forg
5so(n) andg5sl(N),so(N), respectively. This is theq-analog of vector field realization ofg on
the correspondingg-covariant ~undeformed! space, e.g.,w1(Ej

i )5xi] j2 (1/N) d j
i in the g

5sl(N) case. The searched mapsw6 will be simply the restrictions ofw to De,g’H6. In Ref. 14
there are among others thew-images of the Chevalley generators ofUq so(N) @one should take
care of the fact that in Ref. 14 we consideredUq so(N) acting by aleft action, instead of a right
one, what manifests itself in a replacementq→q21, or equivalently in an opposite coproduct; th
rules for passing from right to left are described in Sec. V#, in Ref. 9 there are thew-images of the
generators ofUqg playing the role of ‘‘vector fields’’ onGq . By the change of generators de
scribed in Ref. 13 one can easily pass from the Chevalley to the FRT generatorsL j

6 i ~A15!,
whereas the relation between the latter and the vector fields is recalled in~A52!. The FRT gen-
erators are the ones explicitly needed in writing downx6(xi) and x6(] i). For example, forg
5sl(2) ande51 one finds

w~L1
11!5w~L 2

22!5@w~L 1
21!#215@w~L 2

12!#215aL1/2@11~q221!x2]2#1/2,

w~L 2
11!52akq21L1/2@11~q221!x2]2#21/2x1]2 , ~4.4!

w~L 1
22!5akq3L1/2@11~q221!x2]2#21/2x2]1 ,

wherea is fixed by ~A14! to bea561,6 i and we have set

L22
ª11~q221!xi] i . ~4.5!

Whereas forg5so(3) ande51 one finds on the positive Borel subalgebra

w~L 2
12!52aL@11~q21!x0]01~q221!x1]1#,

w~L 0
12!5akL~x2]02Aqx0]1!,
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w~L 1
12!5

1

11q21 w~L 0
12!w~L 1

10!,

~4.6!
w~L 0

10!51,

w~L 1
10!52q21/2@w~L 2

12!#21w~L 0
12!,

w~L 1
11!5@w~L 2

12!#21,

and on the negative Borel subalgebra

w~L 2
22!52~aL@11~q21!x0]01~q221!x1]1# !21,

w~L 2
20!52aq2kw~L 2

22!L~x0]22Aqx1]0!,

w~L 2
21!5

1

11q
w~L 0

21!w~L 2
20!,

~4.7!
w~L 0

20!51,

w~L 0
21!52aq3/2kL~x0]22Aqx1]0!,

w~L 1
21!5@w~L 2

22!#21.

Here we have set

L22
ªF11~q221!xi] i1

~q221!2

v1
2 ~gi j x

ixj !~ghk]k]h!G , ~4.8!

where

vaª~qra1q2ra!,

and replaced for simplicity the values21,0,1 of the indices by the ones2,0,1. In either case the
w-images ofL j

1 i andL i
2 j for i . j vanish, because the latter do.

We see that strictly speakingw takes values in some appropriate completion ofDe,g, con-
taining at least the square root and inverse square root of the polynomialL22, respectively,
defined in~4.5!, ~4.8!, as well as the square root of@11(q221)x2]2# and its inverse, wheng
5sl(2), and theinverses(4.6)6 , (4.7)6 , wheng5so(3).Apart from this minimal completion,
another possible one is the so-calledh-adic, namely the ring of formal power series inh5 logq
with coefficients inDe,g . Other completions, e.g., in operator norms, can be considered acco
to the needs. One can easily show that the extension of the action ofH to any such completion is
uniquely determined~we omit to write down its explicit expression, since we do not need it!.

According to the main theorem, we set

y1,i[x1,i ,

]y,1,a[]1,a ,
~4.9!

ya,i[x2~xa,i !5w1~L j
21!xa, j , a.1,

]y,a,a[x2~]a,a!5w1~SL a
2d!]a,d , a.1,

and we find the following.
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Corollary 2:

P ahk

i j ya,hya,k50,

Pai j

hk]ya,k]y,a,h50, ~4.10!

]y,a,i y
a, j5d i

j1~qR̂! im
ea j l ya,m]y,a,l

for all a51, . . . ,M , together with

@y1,i ,ya, j #50, @]y,1,i ,ya, j #50,
~4.11!

@]y,a,i ,y1,j #50, @]y,1,i ,]y,a, j #50

whena.1, and

ya,i yb, j5R̂hk
i j yb,hya,k,

]y,a,i]y,b, j5R̂j i
kh]y,b,h]y,a,k ,

~4.12!
]y,a,i y

b, j5R̂ik
21 jh

ybk]y,a,h ,

]y,b,i y
a, j5R̂ik

jhya,k]y,b,h

when1,b,a.
By ~4.11! y1,i[x1,i and ]y,1,i[]1,i commute with the subalgebra generated byy2,i , . . . ,yM ,i

and]y,2,i , . . . ,]y,M ,i which we shall callÃ1. This was the first step of the unbraiding procedu
Now we can reiterate the latter forÃ1, with y2,i ,]y,2,i playing the role ofx1,i ,]1,i . After M21
steps, we shall have determinedM independent commuting subalgebras ofA 1 which we shall
call Ãa

1 .
For the sake of brevity we omit the unbraiding procedure for the alternative braided t

product algebra stemming from prescription~1.10!, which can be found following argument
completely analogous to the ones presented at the end of Sec. III. We summarize the result
section by the following.

Proposition 4: LetA1 ,A2 , . . . ,AM be M copies of the Uqg-covariant Heisenberg algebra

De,g , g5sl(N), so(N). ThenA 1 Î 6A 2 Î 6 . . . Î 6AM5A1Ã2
6
¯ÃM

6 , whereÃ2
6 , . . . ,ÃM

6 are
subalgebras of the lhs isomorphic toDe,g and commuting with each other.

Relations~A28!, ~2.2!, ~3.2!, ~4.2! and ~4.1! fix the *-structure ofA1 to be

~xi !* 5xi , ~] i !* 52] i H q62(N2 i 11) if H5Uq sl~N!,

q6N1r i if H5Uqso~N!,
~4.13!

if uqu51, and

~xh!* 5xkgkh , ~] i !* 52
L62

q6N1q62 @~gjh]h] j !,x
i #, ~4.14!

if H5Uq so(N) and qPR1. The upper or lower sign, respectively, refer to the choicese51,
21 in (4.1)3 , andL62 are, respectively, defined by

L62
ªF11~q6221!xi] i1

~q6221!2

vn
2 r 2~gji ] i] j !G21

. ~4.15!
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The mapw is a * -homomorphism both forq real anduqu51. If we denote byw6 its restrictions
to A’H6, then they are*-homomorphisms whenuqu51 ~see the fourth part of the Appendix!,
and fulfill the relation

@w6~g!#* 5w7~g* ! ~4.16!

whenqPR1.14 Since these relations are of the type considered in proposition 2, the claims
latter forx6 and their consequences hold. In particular, whenuqu51 one has a well-defined* on
the braided tensor product ofA1 , . . . ,AM mapping each of the independent, commuting suba
brasÃa

6 into itself.
Finally, the above results have an important corollary. According to Hochschild cohomo

arguments developed by Gerstenhaber19 and applicable to Heisenberg algebras because of
results found by Du Cloux in Ref. 12, any deformed Heisenberg algebra, in particular the b
tensor products ofA1 , . . . ,AM considered in this section, can be realized simply by a chang
generators in theh-adic completion,h5 logq, of its undeformed counterpart~but in generalnot in
other, e.g.,operator-norm, completions!. However explicit realizations are not provided by the
results. The results presented here, combined to some older ones, allow to determine o
realization. In Ref. 27 Ogievetsky found an explicit realizationf or deforming map of the ele
ments ofDe,g in terms of formal power series inh5 logq with coefficients in the correspondin
undeformed Heisenberg algebra. Another, less explicit, one was found in Ref. 16. The comp
of the unbraiding map found in this section, which allows to decoupleM different copies ofDe,g
from each other, with the mapf provides an explicit realization or deforming map of the larg
Heisenberg algebraA ~what we have called the braided chain of Heisenberg algebras!, in the
h-adic completion of the undeformed (N•M )-dimensional Heisenberg algebra.

V. FORMULAS FOR THE LEFT ACTION

For psychological reasons we often prefer to work with a left action rather than with a
one. In this section we give the analogs for leftH-module algebras of the main results found so
for right H-module algebras. The left action ofgPH on a product fulfills

~gg8!xa5gx~g8xa!, ~5.1!

gx~aa8!5~g(1)xa!~g(2)xa8!. ~5.2!

The product laws in the braided tensor product algebrasÂ1,Â2 are, respectively, given by

a2a15~R21(1)xa1!~R21(2)xa2!, ~5.3!

a2a15~R(2)xa1!~R(1)xa2!. ~5.4!

The analog of Theorem 1 reads as follows.
Theorem 2: Let $H,R% be a quasitriangular Hopf algebra and H1,H2 be Hopf subalgebras

of H such thatRPH1
^ H2. Let Â1 ,Â2 be, respectively, a (left) H1- and a H2-module algebra,

so that we can defineÂ1 as in (5.3), andŵ1
1 :H1

›Â1→Â1 be an algebra homomorphism

fulfilling (1.12), so that we can define a mapx̂1:Â2→Â1 by

x̂1~a2!ª~R(2)xa2!ŵ1
1~R(1)!. ~5.5!

Alternatively, letÂ1 ,Â2 be, respectively, a (left) H2-and a H1-module algebra, so that we ca

defineÂ2 as in (5.4), andŵ1
1 :H1

›Â1→Â1 be an algebra homomorphism fulfilling (1.12), s

that we can define a mapx̂2:Â2→Â2 by

x̂2~a2!ª~R21(1)xa2!ŵ1
2~R21(2)!. ~5.6!
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In either casex̂6 are then injective algebra homomorphisms and

@ x̂6~a2!,Â1#50, ~5.7!

namely the subalgebrasÃ̂2
6
ªx̂6(Â2)'Â2 commute withÂ1 . MoreoverÂ65Â1Ã̂2

6 .
The results of Sec. II apply without modifications~one just has to place âin the appropriate

places!.
To enumerate the generators of the algebras considered in Secs. III and IV we shall ex

lower with upper indices, so the generators will readxa,i ,]a,i . This is necessary if we wish thex’s
to carry what we shall consider the fundamental~vector! representationr of Uqg,

gxxi5xjr i
j~g!, ~5.8!

rather than its contragredientrT+S, because this follows from the row3column multiplication law
rh

i (gg8)5r j
i (g)rh

j (g8). Apart from this replacement, all the commutation relations remain
same, but can be rephrased in an equivalent way exchanging lower with upper indices also
braid matrices and in the projectorsPa , becauseR̂T5R̂, P a

T5Pa . For instance, the analog o
~3.1! will read

Pai j
hk xhxk50. ~5.9!

The analogs of~3.2! and ~4.2! read

gxxi5r i
j~g!xj , ~5.10!

gx] i5]hrh
i ~Sg!. ~5.11!

Algebra homomorphismsŵ1
6 for the algebras considered in Secs. III and IV are immedia

obtained in terms of thew1
6 described there, according to the rule

ŵ1
6~L j

6h!5Ua
21 jw1

7~L b
7a!Uh

b . ~5.12!

Here

Uc
b
ªrc

b~u!, ~5.13!

uPH is a special element as in~A6!, and at the rhs the correct expression in the new notation
lower and upper indices exchanged. IfÂ1 is the quantum Euclidean spaceRq

N one finds, for
instance,

ŵ1
2~L j

2h!5Ua
21 jgac@m̄c,xk#q21gkbUb

h 5
~A30!

gc j@m̄c,xk#qghk, ~5.14!

wheremc is the same asmc @see~A3!#, but in the new notation. For instance, whenucu.1 it reads

m̄c5ḡcr ucu
21r ucu21

21 x2c , ~5.15!

with gc defined as in~A41! and r a (a>0) defined by the condition

r a
25 (

h52a

a

xhxh5 (
h52a

a

ghkxhxk .

The analog of~3.7! is therefore~with a.1)

y1,iªx1,i , ~5.16!
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ya,i
ªx̂2~xa,i !5xa, j ŵ1~L i

2 j !5xa, jghi@m̄1,h,x1,k#q21gjk. ~5.17!

VI. UNBRAIDING CHAINS OF FUZZY QUANTUM SPHERES

As a last example, we consider the braided tensor product ofM copiesA1 , . . . ,AM of the
q-deformed fuzzy sphereŜq,N

2 ~Ref. 20! ~to relate this to our conventions, theq in Ref. 20 should
be replaced byq21/2), which we consider as a leftUq so(3) module algebra. It is generated byxi

fulfilling the relations

«k
i j xixj5LN xk ,

~6.1!
gi j xixj5R2.

HereR.0,

CN5
@N#q@N12#q

@2#q
2 , LN5R

@2#qN11

A@N#q@N12#q

, ~6.2!

where@n#qª(qn/22q2n/2)/(q1/22q21/2), and

«1
105q1/2, «1

0152q21/2,

«0
005q1/22q21/2, «0

1215152«0
211, ~6.3!

«21
0215q1/2, «21

21052q21/2

are the spin-1 Clebsch–Gordan coefficients. The multiplet (xi) carries the fundamental vecto
representationr of H5Uq so(3):

gxxi5xjr i
j~g!. ~6.4!

There is no obvious generalization to higher dimensions, but this algebra appears to be re
e.g., toD-branes on the SU~2! WZW model.1 It has a unique irreducible representation, which
equivalent to Mat(N11). Here we only consider the caseqPR1, where the star structure is give
by xi* 5gi j xj . Then Ŝq,N

2 is simply the ‘‘discrete series’’ of Podles’s spheres.28 It was shown in
Ref. 20 that there is a star-algebra homomorphismŵ:H›Ŝq,N

2 →Ŝq,N
2 , which takes a particularly

simple form

ŵ~E1!5
1

R
Aq21@2#qCNx1 , ŵ~E2!52

1

R
Aq@2#qCNx21 ,

ŵ~qH/2!5
@2#qN11

@2#q
S 12

q1/22q21/2

LN
x0D

whereE65X6qH/4PUq so(3). Note that (12 @(q1/22q21/2)/LN#x0) is invertible since the ei-
genvalues ofqH/2 are positive~assumingq.0), thereforeŵ(q2H/2)PŜq,N

2 is well-defined also.
Hence the algebra homomorphismsŵ is defined on the entire algebraUq so(3). Using the defi-
nition ~A15! and the explicit form for the universalR ~see, e.g., Ref. 8!, one finds

@L j
2 i #5F qH/2, 0, 0

2~12q21!A@2#qE2, 1, 0

q21/2~12q21!2q2H/2~E2!2, 2~12q21!A@2#qq2H/2E2, q2H/2
G ~6.6!
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and

@L j
1 i #5F q2H/2, ~q21!A@2#qq2H/2E1, ~q21!2q2H/2~E1!2,

0, 1, q21/2~q21!A@2#qE1

0, 0, qH/2
G . ~6.7!

The unbraiding procedure then works as in Theorem 2. To be specific, assume that the b
tensor product algebra is as in~5.3!. Then we set

y1,iªx1,i , ~6.8!

ya,iªx̂~xa,i !5xa, j ŵ1~L i
1 j !, a.1, ~6.9!

without spelling out these expressions further. According to Theorem 2, they satisfy
Corollary 3:

«k
i j ya,i ya, j5LNya,k ,

gi j ya,i ya, j5R2

for all a51, . . . ,M , together with

@y1,i ,ya, j #50, ~6.10!

ya,i yb, j5R̂i j
hkyb,hya,k ~6.11!

when1,a and ab.
Iterating this procedure as before, we find the following.
Proposition 5: LetA1 ,A2 , . . . ,AM be M copies of the Uq so(3)-covariant fuzzy quantum

sphere. ThenA 1 Î 6A 2 Î 6
¯ Î 6AM5A1Ã2

6
¯ ÃM

6 , whereÃ2
6 , . . . ,ÃM

6 are subalgebras of
the lhs isomorphic toA1 and commuting with each other.

APPENDIX

1. The universal R-matrix

In this appendix we recall the basics about the universalR-matrix10 of the quantum groups
Uqg, while fixing our conventions. Recall that the universalR-matrix R is a special element

R[R(1)
^ R(2)PUqg^ Uqg ~A1!

intertwining betweenD and opposite coproductDop, and so does alsoR21
21 :

R~g(1)^ g(2)!5~g(2)^ g(1)!R,
~A2!

R21
21~g(1)^ g(2)!5~g(2)^ g(1)!R21

21 .

In ~A1! we have used a Sweedler notation with upper indices: the right-hand side is a shor
notation for a sum( IRI

(1)
^ RI

(2) of infinitely many terms. We recall some useful formulas

~D ^ id!R5R13R23, ~A3!

~ id^ D!R5R13R12, ~A4!

~S^ id!R5R215~ id^ S21!R, ~A5!
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S21~g!5u21S~g!u. ~A6!

Hereu is any of the elementsu1 ,u2 ,...,u8 defined below

u1ª~SR(2)!R(1), u2ª~SR21(1)!R21(2),

u3ªR(2)S21R(1), u4ªR21(1)S21R21(2),

~u5!21
ªR(1)SR(2), ~u6!21

ª~S21R(1)!R(2), ~A7!

~u7!21
ªR21(2)SR21(1), ~u8!21

ª~S21R21(2)!R21(1).

In fact, using the results of Drinfel’d10,11 one can show that

u15u35u75u85vu25vu45vu55vu6 , ~A8!

wherev is a suitable element belonging to the center ofUq so(N).
From ~A2! and ~A3!, ~A4! it follows the universal Yang–Baxter relation

R12R13R235R23R13R12, ~A9!

whence the other two relations follow

R21
12R21

13R21
235R21

23R21
13R21

12, ~A10!

R13R23R21
125R21

12R23R13. ~A11!

As before, letr be the fundamentalN-dimensional representation ofg5sl(N),so(N),sp(N). By
applying id̂ rc

a
^ rd

b to ~A9!, rc
a

^ rd
b

^ id to ~A10! andrc
a

^ id^ rd
b to ~A11! we, respectively, find

the commutation relations

R̂cd
abL f

1dL e
1c5L c

1bL d
1aR̂e f

dc , ~A12!

R̂cd
abL f

2dL e
2c5L c

2bL d
2aR̂e f

dc , ~A13!

R̂cd
abL f

1dL e
2c5L c

2bL d
1aR̂e f

dc , ~A14!

whereL l
6a are the Faddeev–Reshetikin–Takhtadjan generators13 of Uqg, defined by

L l
1a

ªR(1)r l
a~R(2)!, L l

2a
ªr l

a~R21(1)!R21(2). ~A15!

It is known13 that $L j
1 i ,L j

2 i% and the square roots of the elementsL i
6 i provide a~overcom-

plete! set of generators ofUqg. Since in our conventions

RPH1
^ H2, ~A16!

thenL l
1aPH1 andL l

2aPH2. Beside~A12!–~A14! these generators fulfill

L j
1 i50, if i . j , ~A17!

L j
2 i50, if i , j , ~A18!

L i
2 iL i

1 i5L i
1 iL i

2 i51, ; i ~A19!

L 2n
62n

¯ L n
6n51, ~A20!
                                                                                                                



on

raid

1316 J. Math. Phys., Vol. 44, No. 3, March 2003 Fiore, Steinacker, and Wess

                    
and, wheng5so(N),sp(N), some additional relations. Wheng5so(N) the latter read

L j
6 iL k

6hgk j5ghi, L i
6 jL h

6kgk j5ghi , ~A21!

where gi j has been defined in~3.5!. The braid matrixR̂ is related toR by R̂hk
i j [Rhk

ji
ª(rh

j

^ rk
i )R. With the indices’ convention described in Secs. III and IVR̂ is given by

R̂5q21/NFq(
i

ei
i
^ ei

i1(
iÞ j

ei
j
^ ej

i 1k(
i , j

ei
i
^ ej

j G ~A22!

wheng5sl(N), and by

R̂5q(
iÞ0

ei
i
^ ei

i1 (
iÞ j ,2 j

or i 5 j 50

ei
j
^ ej

i 1q21(
iÞ0

ei
2 i

^ e2 i
i 1kS (

i , j
ei

i
^ ej

j2(
i , j

q2r i1r jei
2 j

^ e2 i
j D
~A23!

wheng5so(N). Hereej
i is theN3N matrix with all elements equal to zero except for a 1 in the

i th column andj th row. The braid matrix of sl(N) admits the orthogonal projector decompositi

R̂5qPS2q21Pa , g5sl~N!; ~A24!

Pa , PS are theUq sl(N)-covariant deformed antisymmetric and symmetric projectors. The b
matrix of so(N) admits the orthogonal projector decomposition

R̂5qPs2q21Pa1q12NPt , g5so~N!; ~A25!

Pa , Pt , Ps are theq-deformed antisymmetric, trace, trace-free symmetric projectors.
The compact section ofUqg requiresqPR1 if g5so(N), qPR if g5sl(N) and is character-

ized by the*-structure,

~L j
6 i !* 5SL i

7 j . ~A26!

For g5so(N) this amounts to

~L j
6 i !* 5gihL k

7hgk j. ~A27!

The noncompact sections ofUqg requireuqu51 and are characterized by the*-structure,

~L j
6 i !* 5Ur

21iL s
6rU j

s5uL j
6 iu21. ~A28!

This can be checked using the property (R̂hk
i j )* 5R̂kh

21 j i . Here we have defined

U j
i 5r j

i ~u! ~A29!

with u any of the elements defined in~A7!. For g5so(N) one can take

U j
i
ªgihgjh . ~A30!

From formulas~A3! and ~A4! in the Appendix one finds that the coproducts are given by

D~L j
1 i !5L h

1 i
^ L j

1h , D~L j
2 i !5L h

2 i
^ L j

2h . ~A31!
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2. Proof of proposition 1

We make use of the identity

w6~g6!vh65w6~g6vh6!, ~A32!

for any g6, h6PH6, which we prove in Ref. 17. The right action appearing at the rhs is
~right! adjoint action on itself

hvg5Sg(1)hg(2) , g,hPH; ~A33!

whereS denotes the antipode of the Hopf algebraH. We shall also need the inverse of~1.9!,

a1a25~a2vR21(2)!~a1vR21(1)!. ~A34!

Now,

x1~a2! 5
~1.13!

w1
1~R(1)!~a2vR(2)!

5
~A34!

~a2vR(2)R21(28)!@w1
1~R(1)!vR21(18)#

5
~A32!

~a2vR(2)R21(28)!w1
1~R(1)vR21(18)!

5
~A33!

~a2vR(2)R21(28)!w1
1~SR(1)

21(18)R(1)R(2)
21(18)!

5
~A3 !

~a2vR(2)R21(28)R21(29)!w1
1~SR21(19)R(1)R21(18)!

5~a2vR21(29)!w1
1~SR21(19)!,

which proves~1.21!. Similarly one proves~1.22!.

3. The maps wÁ for the quantum Euclidean spaces or spheres

We introduce the short-hand notation

@A,B#x5AB2xBA. ~A35!

In Ref. 5 we have found algebra homomorphismsw6:Rq
N
’Uq

6 so(N)→Rq
N . The images ofw2 on

the negative FRT generators read

w2~L j
2 i !5gih@mh ,xk#qgk j , ~A36!

where

m05g0~x0!21 for N odd,

m615g61~x61!21L 1
61 for N even, ~A37!

ma5gar uau
21r uau21

21 x2a otherwise,

andgaPC are normalization constants fulfilling the conditions
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g052q21/2h21 for N odd,

g1g215H 2q21h22 for N odd,

k22 for N even,
~A38!

gag2a52q21k22vava21 for a.1.

h, k, va are defined as in Secs. III and IV. On the other hand, the images ofw1 on the positive
FRT generators read

w1~L j
1 i !5gih@m̄h ,xk#q21gk j , ~A39!

where

m̄05ḡ0~x0!21 for N odd,

m̄615ḡ61~x61!21L 1
61 for N even, ~A40!

m̄a5ḡar uau
21r uau21

21 x2a otherwise,

and ḡaPC normalization constants fulfilling the conditions

ḡ05q1/2h21 for N odd,

ḡ1ḡ215H 2qh22 for N odd,

k22 for N even,
~A41!

ḡaḡ2a52qk22vava21 for a.1.

If we requirew15w2 on the Cartan subalgebraHc5H1ùH1 then it must be

ḡ i52g2 i H 1 if i .1, or i 51 and N odd

q2 if i ,21, or i 521 and N odd.

Incidentally, for oddN one can choose the free parametersga ,ḡa in such a way that in addition
w1,w2 can be glued into an algebra homomorphismw:Rq

N
’Uq so(N)→Rq

N :5 It must be
g1

252q22h22, g21
252h22, ga

252q22k22vava21, g2a
252k22vava21 (a.1), and

ḡ i52qg i , i 52n, 12n, . . . ,n.
We give the following explicit expression forw6(L j

6 i) in the caseN53:

@w2~L j
2 i !#5F 2qhg1~x0!21r

q1/2~q11!~x0!21x1 1

q1/2~q11!~hg1rx0!21~x1!2 ~11q21!~hg1r !21 2~qhg1r !21x0
G

~A42!

and

@w1~L j
1 i !#5F 2hḡ1r 21x0 q21/2ḡ1kr21x2 q22kḡ1~rx0!21~x2!2

1 q21/2~q2111!~x0!21x2

2~hḡ1x0!21r
G . ~A43!

WhenqPR1 the real structure ofRq
N is given by

~xi !* 5xjgji . ~A44!

Note that whenN is oddm0 ,m̄0 , which are completely determined by their definitions, are s
that m0* 52q21m̄0 . We fix the otherga ,ḡa so that for anya

ma* 52q21gabm̄b . ~A45!

This was already considered in Ref. 5 and requires
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g61* 52ḡ71 if N even,

ga* 52ḡ2aH 1 if a,0,

q22 if a.0
, otherwise. ~A46!

As a consequence,

@w2~L j
2 i !#* 5

~A36!

~gih@mh ,xk#qgk j!*

5
~A44!

gih@xj ,mh* #q

5
~A45!

@ m̄ i ,xj #q21

5
~A39!

gihw1~L k
1h!gk j

5
~A27!

w1@~L j
i !* #.

In other words

@w6~g!#* 5w7~g* !. ~A47!

When uqu51

~xi !* 5xi . ~A48!

Note that whenN is oddm0 ,m̄0 , which are completely determined by their definitions, are s
that m0* 52qm05m̄0 . We fix the otherga ,ḡa so that for anya

ma* 52qma , m̄a* 52q21m̄a . ~A49!

This requires

g61* 52g61 if N even,
~A50!

ga* 52gaH 1 if a,0

q12 if a.0 otherwise.

As a consequence,

@w2~L j
2 i !#* 5

~A36!

~gih@mh ,xk#qgk j!*

5
~A48!

2q21ghi@mh* ,xk#qgjk

5
~A49!

ghi@mh ,xk#qgjk
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5
~A30!,~A36!

Ur
21iw2~L s

2r !Ur
i

5
~A28!

w2@~L j
2 i !* #.

Similarly one proves that @w2(L j
2 i)#* 5w2@(L j

2 i)* #. In other words, w6 are
* -homomorphisms.

4. The maps w for the deformed Heisenberg algebras

In Ref. 14 we constructed an algebra homomorphismw:Uq so(N)›A1→A1 , whereA1 de-
notes theUq so(N)-covariant~deformed! Heisenberg algebra, such thatw is a * -homomorphism

w~g* !5w~g!* ~A51!

on the compact section ofUq so(N) ~what requiresqPR1). One can easily prove the same res
also for the noncompact section~A28! of g5so(N) as well as the compact and noncompa
sections ofg5sl(N). This can be done maybe most rapidly using as a set of generator
so-called vector fieldsZj

i ,30 which are related to the FRT generators by

Zj
i 5L h

1 iSL j
2h . ~A52!

From ~A26! and ~A28! one immediately finds

~Zj
i !* 5Zi

j if qPR1, ~A53!

~Zj
i !* 5Ua

21i~S21L b
2h!L h

1aU j
b if uqu51; ~A54!

if g5so(N) the second relation reduces to

~Zj
i !* 5Ub

21aZc
bR̂a j

21ci . ~A55!

In Ref. 9 the explicit expression ofw(Zj
i ) in terms of thex’s and]’s is given both forg5sl(N)

andg5so(N), and it is not difficult to show that on these generators~and therefore on all ofUqg)
~A51! is satisfied. In performing the calculations one has to keep in mind that the authors o
9 work with the left action, rather than with the right, so one has to switch to the conven
described in Sec. V, but, as explained there, this wil not modify the result~A51!. As an interme-
diate step, we give the action of the* -structure on the coordinates and derivatives for the c
g5so(N), in the notation used there:

~xh!* 5ghkxk , ~] i !* 52q2N]̂ i if qPR1, ~A56!

~xh!* 5xh , ~] i !* 52qNU j
21i] j , ~ ]̂ i !* 52q2N] i if uqu51. ~A57!
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Spin networks are a natural generalization of Wilson loop functionals. They have
been extensively studied in the case where the gauge group is compact and it has
been shown that they naturally form a basis of gauge invariant observables. Physi-
cally the restriction to compact gauge groups is enough for the study of Yang–Mills
theories, however it is well known that noncompact groups naturally arise as inter-
nal gauge groups for Lorentzian gravity models. In this context, a proper construc-
tion of gauge invariant observables is needed. The purpose of the present work is to
define the notion of spin network states for noncompact groups. We first build, by
a careful gauge fixing procedure, a natural measure and a Hilbert space structure on
the space of gauge invariant graph connections. Spin networks are then defined as
generalized eigenvectors of a complete set of hermitic commuting operators. We
show how the delicate issue of taking the quotient of a space by noncompact groups
can be address in term of algebraic geometry. We finally construct the full Hilbert
space containing all spin network states. Having in mind applications to gravity, we
illustrate our results for the groups SL~2,R! and SL~2,C!. © 2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1521522#

I. INTRODUCTION

The purpose of this paper is to generalize the construction of an Hilbert space of spin ne
states to the case in which the gauge group is noncompact. Spin network states arise natu
many fields of physics since they form a basis of gauge invariant functionals in Yang–Mills
theories.1 In the context of gravity they were introduced by Rovelli and Smolin2,3 and they were
promoted as a basis of an Hilbert space of gauge and diffeomorphism invariant function
works by Ashtekar and Lewandowski4–6 and by Baez.7 This series of works have been focused
the case where the gauge group is compact. Compact gauge groups are natural as sy
groups of gauge theory and Euclidean gravity, however noncompact gauge groups arise a
metry groups of Lorentzian gravity.

For instance, SL~2,C! arises in the original Ashtekar formulation of 311 gravity in terms of
self-dual variables. However, in this context, the lack of properly well-defined spin network s
has forced the community to work with the real SU~2! Barbero8 connection at the price o
introducing a new constant~Immirzi parameter!, a more complicated dynamics9 and the loss of a
natural four-dimensional geometrical interpretation of the phase space variables.10 In the case of
211 Lorentzian gravity, the partition function and the transition amplitudes have been com
in terms of spin networks~recoupling coefficients! of SL~2,R!.11 In this context, geometrica

a!Electronic mail: freidel@ens-lyon.fr
b!UMR 5672 du CNRS.
c!Electronic mail: livine@cpt.univ-mrs.fr
d!Unité propre 7061 du CNRS.
13220022-2488/2003/44(3)/1322/35/$20.00 © 2003 American Institute of Physics
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interpretation of the representation labels has led to the conclusion that space is cont
whereas time is discrete,11,12 in agreement with former results from ’t Hooft.13

In order to put these results on a firmer basis and construct geometrical operators
Lorentzian context, one needs to understand better the nature of noncompact spin netwo
how they form a natural Hilbert space related to the Hilbert space of gauge and diffeomor
invariant connections. This is the purpose of this work.

Several issues concerning noncompact spin network have already been raised in the lit
First, Ashtekar and Lewandowski have already addressed the issue of completeness of t
network functionals14 versus the separability of the space of gauge invariant connections. We
come back to these issues in Sec. III B. There also has been some attempts to define non
spin networks. Marolf15 was the first one to show, in the context of 211 gravity on the torus, tha
the loop transform using finite dimensional representation is ill defined when the group is
compact. He and, Ashtekar and Loll,16 have studied the possibility to overcome this difficulty
the price of introducing additional and non-natural structures.

Our approach shed new lights on this problem, it leads to a different point of view sinc
do not insist on having spin networks labeled by finite dimensional representations. We sho
one should work instead with the infinite dimensional unitary representations of the group
emergence of spin networks labeled by infinite dimensional representation is not new. Th
ready appeared in the context of spin foams models for Lorentzian 3D gravity11,17 and 4D
gravity.18,19

Moreover our formalism is more general since it sets a framework for all noncompact gr
Indeed, our purpose is to give a general account of the construction of noncompact spin ne
and the structure of the stratified space of gauge invariant connections. Our presentation
for any semisimple reductive group. The general exposition is therefore quite mathematical
ing in mind further application to gravity we will illustrate the main problems and results in
context of SL~2,C! and SL~2,R!.

Connection space and cylindrical functions: We choose once for all a manifoldS and P a
locally trivial smooth principalG-bundle overS, with G a semisimple reductive group. We deno
by A the space of gaugeG-connections and byG the gauge group acting on connection byAk

5k21Ak1k21 dk. The theories we are interested in are Yang–Mills type in the sense tha
phase space conjugate variables are given by aG-connectionA ~a magnetic potential! and aa dP
valued densitized vector fieldE, both are anti-Hermitian. This phase space is the cotangent bu
to the space of connectionT* (A). On such a phase space we want to impose the Gauss
~gauge invariance! and eventually the diffeomorphism constraint. The representation of the o
tor algebra is done in the polarization where the wave functionals depend on the connecti
therefore the Hilbert space structure is formallyL2(A/G,dm). The purpose of this work is to stud
the structure of this space. In fact we will first restrict our intention to special gauge inva
functionals of the connections called cylindrical functionals and we will study the possibili
give the space of cylindrical functions an Hilbert space structure. In the gauge invariant co
cylindrical functions are associated with graphs. Given a smoothorientedgraphG composed ofE
oriented edges andV vertices we have the holonomy map:

G: A→G^ E

A→~ge1
,...,geE

!, ~1.1!

wherege(A)PG denotes the holonomy of the connection along the edgee of the graphG, which
associates to any connection the holonomy of this connection along theE edges of the graphG.
The space of cylindrical functionals associated withG is the pullback byG of C`(G^ E) defined by

G* f~A!5f~ge~A!!. ~1.2!

The action of the gauge group onA translates into an action at the vertices of the graphG, if we
denote bys(e) and t(e) the source and target of the edgee the gauge group action is given by
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ge~Ak!5ks(e)
21 ge~A!kt(e) ~1.3!

The space of gauge invariant graph connection is denotedAG5G^ E/G^ V and cylindrical gauge
invariant functionals are functionals onAG . We want to construct a measuredmG on AG which
provides an Hilbert space structure to the space of gauge invariant cylindrical functionaHG

5L2(G,dmG). This Hilbert space structure should give a representation of the Yang–Mills o
tor algebra restricted toG. This operator algebra denotedOG is the quantization of the cotangen
structureT* (G^ E/G^ V) generated by the multiplication by gauge invariant function onG^ E and
by the gauge invariant derivation operators. We will see that this algebra is the operator alge
a system of gauged particles~see Sec. VIII D!. The main constraint which determines~almost but
not totally! the measuredmG is the fact that real classical quantities should be quantized
Hermitian operators. In the case of a compact group, there is a unique solution up to an
factor: the product of normalized Haar measures over each edge group element.

dmG5 )
ePEG

dge . ~1.4!

This measure is then consistently extended to the space of all cylindrical functions and de
measure on the space of generalized connection modulo gauge invariance.4,20 In the noncompact
case, it is no longer possible to integrate gauge invariant functional with~1.4! since the volume of
the group is infinite. In order to construct the correct measure, we need to divide by the in
volume of the gauge group, hence to gauge fix the gauge group action. We will do so
following by showing thatAG is isomorphic toGhG21 wherehG is the genus-handle number of th
surface obtained by blowing up the graphG. To be precise the isomorphism is only between de
subspaces. The measure we are looking for is obtained as the pushforward of the Haar mea
GhG21.

The isomorphism is constructed by a gauge fixing procedure. This gauge fixing proced
done in two steps. First in Sec. II. we choose a maximal tree inG and we show thatAG

;GhG/Ad(G) where Ad(G) denotes the adjoint diagonal action. In Sec. III. we introduce gen
useful facts about noncompact groups and present some important results of algebraic ge
allowing us to understand the geometry of noncompact quotient spaces. Then in Sec.
continue the gauge fixing by showing that there exists an isomorphism between~dense subsets of!
GhG/Ad(G) andGhG21. The isomorphism constructed being far from obvious. We finally sh
that the pull back measure is independent from all gauge choices leading to a well-defin
nonical measuredmG on AG . In Sec. V. we show that AdG-invariant and naively hermitic
differential operators are indeed hermitic operator for the measuredmG , we can define spin
networks states as eigenvectors of a complete basis of such operators. In Sec. VI and V
present explicit results for the rank one groups SU~2!,SL~2,C!,SL~2,R!. Section VI is devoted to
the case wherehG , the genus of the graph, is one. This case is very different from the generic
treated in Sec. VII. Finally in Sec. VIII we discuss the construction of the full Hilbert space o
spin networks and show that it exhibits some interesting Fock substructure.

II. GAUGE FIXING CYLINDRICAL FUNCTIONS

A. Constructing flowers

AG5G^ E/G^ V is the space of graph invariant gauge connections. IfG5ø iG i is a non
connected graph thenAG decomposes as the cross product^ iAG i

. It is therefore enough to
understand the construction for the case of connected graphs and we will restrict in the follo
unless specified otherwise, to connected graphs only.

G is composed ofE oriented edges andV vertices. Each oriented edgee starts at the source
vertex s(e) and ends at the target vertext(e). A function on AG is a function onG^ E which
satisfies gauge invariance at each vertex. More precisely, given group elementskv at each vertex
v, f satisfies:
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f~gei
!5f~ks(ei )

21 gei
kt(ei )

!, i 51, . . . ,E. ~2.1!

Our first goal is to define a measure to integrate such a function. For this purpose, we wou
to identify the ‘‘true’’ degrees of freedom off: we are going to gauge fix the gauge invarian
~2.1!.

There is a very simple and natural gauge fixing for graph connections which consi
eliminating as many variablesge as possible by fixing them to, say, the identity 1. More precis
we choose a maximal treeT on our graphG. T is a subset of edges which touches every ver
without ever forming a loop. The characteristic property of a maximal tree is that there ex
unique path along the treeT which connects any two given vertices ofG. In particular,T is made
up of V21 edges. Given two verticesA and B, we can define the oriented product of grou
elementshAB

T along the path inT connectingA andB. Now, using the gauge invariance~2.1!, we
can fix all the group elements on the edges ofT to 1. To achieve this, we first need to choose
vertexA from which we are going to write our gauge fixing procedure. And we use~2.1! with

kv5hvA
T . ~2.2!

For an arbitrary edgee, the transformation reads

Ge
(T)5hAs(e)

T geht(e)A
T . ~2.3!

Let us consider an edgeePT. There exists an unique path inT linking it to A, else there would
be a loop in the treeT. There are two situations: either the path connectsA to s(e) or it connects
A andt(e). Reversing the orientation ofe, we can choose, for example, that the path connecA
to t(e). Then,hs(e)A

T 5geht(e)A
T andhAs(e)

T 5(hs(e)A
T )21 so that~2.3! readsGe

(T)51. So~2.2! fixes
all the group elements living on the edges of the treeT to 1. This defines a functionfT depending
on thegG5E2V11 group elements living on the edges not inT:

fT~$Ge
(T) ,e¹T%!5f~ge5Ge

(T) if e¹T or 51 else!. ~2.4!

This new function has a simple residual gauge invariance

;kPG,fT~Gf i

(T)!5fT~k21Gf i

(T)k!, i 51, . . . ,gG . ~2.5!

In other word, this gauge fixing procedure is an isomorphism

T: GhG/Ad~G!→AG ~2.6!

andfT is the pull back off by this isomorphism.
The residual gauge invariance corresponds to a graph with a single vertex which we

flower. What happens is that we have contracted the whole treeT to the singleA, which is the
remaining vertex.A priori, this construction and therefore the functionfT depends on the choic
of the pointA. In fact, the whole construction is independent of this choice. Shifting from
vertexA to another vertexB, we can define the product of the group elements along the pa
T going fromA to B; let us note it ash5hAB

T . The gauge fixing procedure carried fromB will
create variables:

G̃e
(T)5hBs(e)

T geht(e)B
T 5h21hAs(e)

T geht(e)A
T h5h21Ge

(T)h. ~2.7!

We will define a new functionf̃T based on these new variables, but it will beequalto fT due to
the gauge invariance~2.5! for k5h.

One important issue for later is the way the functionfT changes when we modify th
maximal treeT on which it is based. Let us therefore choose another maximal treeU. We can
follow the same gauge fixing procedure based on the vertexA to define variablesGe

(U) for each
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edgee not belonging toU and define a function on the flowerfU . To relatefT and fU , we
would like to decompose the variablesGe

(U) onto the variablesGe
(T) . Let us more generally

consider any oriented loopL starting at the pointA and coming back to the pointA and try to
express the oriented product of the group elements along it—sayH—in terms of theGe

(T) . Such
a loop must contain at least an edge not belonging toT; else the treeT would contain a loop,
which is impossible. Then, it is easy to realize thatH is the oriented product—following the
orientation of the loopL—of the variablesGe

(T) for e on L and not belonging toT. For an edge
e¹U, the group elementGe

(U) can be expressed as the holonomy around the loopL (U)@e#
following U from A to s(e) and back fromt(e) to A. We can therefore decomposesGe

(U) into an
oriented product ofGf

(T) . Coming back to the functionfT andfU , this implies that

fT~Ge
(T)!5fUS Ge

(U)5 )
f PL[e] \T

——→
Gf

(T)D . ~2.8!

B. Examples

In the following we give some illustration of all these procedures for the following sim
graph:

The functionf satisfies the following relation for every variableskPG:

f~g1 , . . . ,g9!

5f~kA
21g1kC ,kA

21g2kB ,kA
21g3kB ,kC

21g4kB ,kC
21g5kD ,kE

21g7kF ,kE
21g8kF ,kD

21g9kF!.

~2.9!

We choose the treeT as indicated on the above graph and we write down the gauge
variablesG(T) based on the vertexC,

G1
(T)5g4g2

21g1 , G3
(T)5g4g2

21g3g4
21,

~2.10!

G7
(T)5g5g6

21g7g8
21g6g5

21, G9
(T)5g5g9g8

21g6g5
21,

Then one defines the function on the four petal flower by the following relation:

fT~G1
(T) ,G3

(T) ,G7
(T) ,G9

(T)!5f~G1
(T),1,G3

(T),1,1,1,G7
(T),1,G9

(T)!. ~2.11!
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One can do the same for another treeU:

~2.12!

Still based on the vertexC, we define theG(U) variables,

G2
(U)5g1

21g2g3
21g1 , G4

(U)5g4g3
21g1 ,

~2.13!
G6

(U)5g5g9g7
21g6g5

21, G8
(U)5g5g9g7

21g8g9
21g5

21.

Then, we can also define the functionfU as done above for the treeT. Now, following the
procedure~2.8! of change of tree, we find the decomposition of theG(U) variables in terms of the
G(T) variables

G2
(U)5~G1

(T)!21~G3
(T)!21G1

(T) , G4
(U)5~G3

(T)!21G1
(T) ,

~2.14!
G8

(U)5G9
(T)~G7

(T)!21~G9
(T)!21, G6

(U)5G9
(T)~G7

(T)!21.

If one is skeptical, one can check these relations directly using the initialg variables. Finally, we
get the relation between the two functions on the flower

fT~G1
(T) ,G3

(T) ,G7
(T) ,G9

(T)!

5fU~~G1
(T)!21~G3

(T)!21G1
(T) ,~G3

(T)!21G1
(T) ,G9

(T)~G7
(T)!21,G9

(T)~G7
(T)!21~G9

(T)!21!.

~2.15!

III. REDUCTIVE GROUPS, QUOTIENT SPACE, AND ALGEBRAIC GEOMETRY

We have reduced so far the problem of constructing a measure onAG to the problem of
constructing invariant measures on the spacesAh5G3¯3G/Ad(G), where Ad(G) denotes the
diagonal adjoint action ofG.

g•~g1 ,...,gh!→~gg1g21,...,gghg21!. ~3.1!

The measure we are seeking for should be symmetric and invariant under right and left m
cation,

dm~gs1
,...,gsh

!5dm~g1 ,...,gh!, ~3.2!

dm~kg1h,...,gh!5dm~g1 ,...,gh!, ~3.3!

wheres is a permutation. It should also satisfy reality conditions.
More precisely, supposeP(X1 ,...,Xh) is a real (P†5P) Ad(G)-invariant element of

U(G h)2U(G) being the universal enveloping algebra ofG. P can be realized as a differentia
operator onAh using the correspondence between a Lie algebra elementX and left invariant
derivative operator

]X
i f~g1 ,•,gi ,...,gh![f~g1 ,•,giX,...,gh!. ~3.4!
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This differential operatorP should be Hermitian with respect to the measuredm we are seeking
for. In the case of a compact group, there is only one measure satisfying this conditions;dm is just
the product of normalized Haar measures for each group factor. The symmetry property is o
and the implementation of the reality conditions are equivalent to the right and left invarian
the Haar measure. The integral of a gauge invariant functionf over G^ 2 factorizes

E
G^ 2

dg1 dg2 f~g1 ,g2!5vol~G!E
A2

dm~g1 ,g2!f~g1 ,g2!, ~3.5!

since the volume of a compact group is finite, and we can normalize the Haar measure su
it is one. In the case of a noncompact group, this is no longer possible since one would h
divide by the volume of the gauge group which is obviously infinite. We therefore have to be
cautious in the construction.

Before constructing explicitly the measure onAh , we need to introduce some results conce
ing Lie algebras and Lie groups~all these facts can be studied more thoroughly in, e.g., Ref.!.

A. Reductive Lie group and Cartan subalgebra

The theory we are developing is valid for all, so-called, linear connected reductive semis
groups, i.e., algebraic matrix subgroups which are connected, invariant under conjugate tra
and of finite center. This contains all compact Lie groups but also noncompact ones which w
our main interest. Among these, we distinguish complex groups@SL(N,C), SO(N,C), and
Sp(N,C)] from real noncompact groups@e.g., SL~2,R!, SO(N,1), or SL(N,R),...].

Given a Lie groupG and its Lie algebraG, a Cartan Lie subalgebraH is a maximal abelian
subalgebra ofG stable under the conjugate transpose. A Cartan subgroupH is the centralizer of a
Cartan subalgebraH ~i.e., the subgroup of element ofG commuting with all the elements ofH!.
For each Cartan subgroup, we define the Weyl group asW(H)5N(H)/H, whereN(H) denotes
the normalizer ofH. In the case of compact groups, there is only one Cartan subalgebra, mor
any group element can be conjugated to the Cartan subgroup. In the noncompact case, th
longer true. First, in general, there is a finite number of nonconjugate Cartan subalgebras,
all have the same rank@e.g., 2 for SL~2,R!, 1 for SO(2N11,1), N for SL(N,R)]. Note that for
complex groups@e.g., SL(N,C)] there is only one Cartan subgroup. Second, not all elementsG
can be conjugated to a Cartan subgroup. The elements which can and which commute on
carbon elements are called regular and the corresponding set is denotedG1 . G1 consists of
elementsx such that Adx is diagonalizable and such that 1 is an eigenvalue with multiplic
equal to the rank of the group. It is an open set inG and its complement is of Haar measure
Moreover the action of Ad(G) on G1 is regular, G1 /Ad(G) is equal to the disjoint union
t iHi /W(Hi) of the Cartan subgroups modulo their Weyl group.

Given a Cartan subgroupH of G, we define a measure onG/H as follows:

E
G

f ~g!dg5E
G/H

F E
H

f ~xh!dhGdx, ~3.6!

wheredg,dh are the invariant Haar measures onG,H, andf is a compactly supported function o
G. If we interchange thex andh integration and note thatdx is still invariant under left multi-
plication, therefore, we have the identity

E
G

f ~g!dg5E
H
F E

G/H
f ~h21xh!dxGdh. ~3.7!

Note that we cannot in the RHS of~3.7! innocently interchange thex andh integration as in
~3.6!. G1 can be decomposed in a union of conjugacy classesG15t iGi

H , where Gi
H
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5$ghg21,hPHi ,gPG%, each conjugacy class coversw(Hi)5#W(Hi) times a connected compo
nent of G1 . The integral overG can therefore be re-expressed as an integral over conju
classes, this is the Weyl integration formula

E
G

f ~g!dg5(
i

1

w~Hi !
E

Hi
F E

G/Hi

f ~xhx21!dxG uD i~h!u2 dh, ~3.8!

where

D~eH!5 )
aPD1(Hi )

sinh
a~H !

2
, ~3.9!

for HPH i
C , eHPHi . Contrary to the case of compact groups, not all group elements ca

obtained as an exponentialeX with XPG. However we can realize any group element aseX with
X in the complexified Lie algebraG C.

B. Orbit space invariant theory and algebraic geometry

Ah is defined as a quotient space by the action of a groupG. We know that in general we do
not get as a result a nice Haussdorf manifold. Several types of singularity can arise wh
consider orbit spaces. Let us look for instance at the case ofA25G3G/Ad(G). If ( g1 ,g2) are
generic~noncommuting! elements ofG, the isotropy group of these points is the center ofG
hence a finite subgroup. But, ifg1 and g2 are commuting elements ofG, the isotropy group is
nontrivial. It is the intersection of the centralizer ofg1 andg2 . If say g1 is regular, it is a Cartan
subgroup and in general the dimension of the isotropy subgroup is, at least, the rank of the
wheng1 andg2 commute. These nongeneric points can act like attractors for the action of AdG).
Suppose, for instance, thatG5SL(2,R) and (g1 ,g2)5(1,es3) where s35diag(11,21). The
isotropy group of this point is the groupets3. This point is non-Haussdorf and is an attractor
some neighboring orbits. To see that, lets considergu5(eus1,es3) where s15(0

0
0
1). Then

limt→` e2ts3guets35(1,es3). The orbit Ad(G).(eus1,es3) is not closed since it contains th
point (1,es3). Therefore any neighborhood of the orbit Ad(G)•(eus1,es3) contains (1,es3). So
two different orbits associated withu.0 andu8,0 have nondisjoint neighborhoods which mea
that the quotient space is not Haussdorf. One way to cure this problem is to exclude fro
beginning the set of commuting elements, so that all orbits are closed. However this is not e
Suppose, for instance, thatG5SL(2,R) and denote by (x,y)PR2 the group element
(es3exs1,es3eys2). The action ofets3 translates into the action (x,y)→(etx,e2ty). The exclu-
sion of the commuting elements translates into the condition (x,y)Þ(0,0). In this space, all orbits
are closed. But one can see that any neighborhood of the orbit of (x,0) will intersect a neighbor-
hood of the orbit of (0,y) and the quotient is once again not Haussdorf. The solution is to exc
the points (x,0) or (0,y), then we obtain a nice quotient.

This example illustrates the general problematic in defining quotient spaces. In fact, siG
is an algebraic group~being a subgroup of matrices! and since the Ad(G) action is also algebraic
this problem has received a lot of attention in the mathematical literature when the gro
complex22,23 under the name of invariant theory.

First, one needs to recall general facts from algebraic geometry and then give the defini
a regular orgeometric quotient space. An affine algebraic varietyX overC is defined as being the
set of zeros of a collection of polynomials ofCN, X5ù iV(Pi), where V(P)5$xPCNuP(x)
50%. The topology which is useful in this context is the Zariski topology where the closed se
the algebraic subvariety ofX, generated byX(P)5XùV(P). The open sets are finite union o
standard open setsXP5$xPX,P(x)Þ0%. It is important to note that the open sets in Zaris
topology are much bigger than in the usual topology. For instance any nonempty open setX is
a dense subset ofX and any finite intersection of nonempty open sets is also dense. Given an
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algebraic varietyX, one defines the algebra ofregular functions, denotedC@X#, as the algebra of
polynomials onCN restricted toX, it is clear thatC@X#5C@CN#/I (X), whereI (X) is the ideal of
polynomials which are zero onX.

One of the basic theorems in this context is that any subalgebraA of C@CN# ~or any commu-
tative algebra! which is finitely generated and does not contain nilpotent elements is the algeb
regular functions on an affine varietyX. Such an algebra is called affine.X is called the spectrum
of A and defined as the set of homomorphismA→C. This theorem translates geometry in
algebra.

Given an affine varietyX, we say that it is irreducible if it cannot be decomposed as the un
of two subvarieties. In the algebraic language, this translates into the condition thatC@X# is
integral. GivenC@X#, we can define the field of rational functions and we denote itC(X). We say
that an application between two affine varietiesf:X→Y is a morphism ifff* maps regular
functions ofY onto regular functions ofX.

We are now ready to precise the good notion of a quotient. Roughly a good quotient sp
one for which orbits are separated by rational invariant functions. LetG be an algebraic group
acting on an affine irreducible varietyX. A geometrical quotient ofX by the action ofG is an
affine varietyY together with a surjective morphismp:X→Y such that

~i! p induces an isomorphism betweenC(Y) andC(X)G.
~ii ! The fibers ofp are the orbits ofG in X.

The condition~ii ! tells us thatY is a quotient space since it is an orbit space. The condition~i!
tells us that this quotient space is an algebraic variety where points are separated by r
functions. We saw in the previous examples that such a good quotient space does not e
general. Hopefully there is a fundamental theorem of Rosenlicht22 which states that given a variet
X and an algebraic action ofG on X, it is always possible to choose an open dense setX0 stable
underG such thatX0 /G is a good quotient. The proof of this theorem goes as follows. We
restrict Y such that hypothesis~i! is satisfied. Then, hypothesis~i! implies that the orbit ofx is
dense inp21(x). However, in general, hypothesis~ii ! is not true. What we do next is to restric
ourself to a subsetX0 of X which contains only orbits of maximal dimension. This implies~ii !.
Then the geometric quotientX0 /G exists as an algebraic variety.

In the case the groupG is reductive, there exists a fundamental theorem due to Hilbert
Nagata which states that ifX is irreducible andG reductive thenC@X#G is finitely generated.
Since C@X#G does not contain nilpotent elements, this means that it is an affine algebra
therefore that it is the algebra of regular functions over its spectrum, which is denotedX//G
[spec(C@X#G). It is equipped with a surjective morphismp:X→X//G and called thequotientof
X by G. The quotient ofX by G is universal in the sense that anyG-invariant morphismp:X
→Y can be factorized overX//G, i.e., there exists a morphismq:X//G→Y such thatp5q+p. It
is then possible to show that any fiber ofp contains auniqueclosed orbit. Geometrically this
means thatX//G is the space of closed orbits ofG in X. This is a little bit disappointing since thi
means thatX//G could be a very rough description of the space of orbits. For instanceX//G is
generally not a geometric quotient. For instance LetX5C2 and G5C* acts by multiplication
(x,y)→(tx,ty). The only invariant polynomialsP(x,y) are the constant polynomials, so th
X//G is reduced to a point. In other words, there is one unique closed orbit, the one of (
Fortunately, the following property is true ifG is linear reductive connected andsemisimple. In
this case, the algebra of fractions ofC@X#G @i.e., C(X//G)] is equal toC(X)G. Equivalently this
means thatX//G is the space of closed and dense orbits, i.e., any fiberp:X→X//G contains a
dense closed orbit. Therefore this theorem imply that in the case we consider, e.g., linear re
group we can define the geometrical quotient spaceX/G as the algebraic dual of the space
invariant polynomial.

Coming back to our specific problem we haveG a linear reductive connected semisimple L
group acting onX5Gn by the adjoint action. By the general theory just exposed, we know
in the caseG is complex, the universal orbit spaceGn//Ad G consisting of dense orbits separat
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by invariant polynomials onGn is well defined. Moreover by the Rosenlicht theorem, we kn
that it is always possible to exclude fromGn a closed set such that the universal orbit space is w
defined as a geometric quotient. However the drawbacks of these general methods, desp
beauty and generality, are that they say nothing about the real case in which we are interes
that they are not constructive.

It is therefore still interesting to understand better and explicitly which closed set we ha
exclude fromGn in order to get a geometric quotient space~which is then a well-defined affine
variety!. Moreover we are interested in the measure theoretical property of the quotient a
would like to show that the difference between the geometrical quotient and the quotient
Gn//G is of measure zero.

First we know from Rosenlich theorem that it is possible to obtain a geometrical quotie
excluding a closed~in the Zariski topology! set fromGn.

In the case ofG/Ad(G), this problem is well known. The solution is to exclude fromG the
points at which the Ad(G) action is not regular. The set of regular elements ofG is denoted byG1

and this is the set ofgPG for which Ad(G) is diagonalizable and such that 1 is an eigenva
with multiplicity equal to the rank of the group. The quotient spaceG1/Ad(G) is equal to the
union of the regular elements of Cartan subgroups modulo their Weyl groupt iHi /W(Hi).

In the case ofG3G, the same strategy is working and we need to exclude from it nonreg
points. We therefore consider the action of Ad(G) not onG3G but on a subspace. For a gener
group even if we know the existence of such a maximal subspace we do not have an e
description and this deserves a full mathematical study. We can however give an explicit de
tion in the case of rank 1 groups, in that case we define

G2[$~g1 ,g2!PG3G;g1PG1 or g2PG1 , and det@g1,g2#Þ0%, ~3.10!

where@g1,g2#5g1g22g2g1 is the commutation in the algebra.

We then have the following proposition.
Proposition 1: G2 is a dense subset of G3G, its complement is of Haar measure zero a

G2 /Ad(G) is a geometric quotient when G is of rank one. Therefore, A25G2 /Ad(G) is an
Haussdorff manifold of dimensiondimG which separates rational functions and it is the ba
manifold of a homogeneous fiber bundle whose fiber is G and total space G2'A23G.

This proposal is proved in the Sec. VII where we construct the dual spectrum space
space of invariant polynomials and show that it is isomorphic toG2 /Ad(G). The main point is
that the condition of being inG2 can be implemented as algebraic inequalities.

Note that, in the definition~3.10!, G2 is such that the centralizer of any element ofG2 is
trivial. Supposeg commutes with (g1 ,g2)PG2 , since we can take, e.g.,g1 to be regular henceg
can be diagonalized in the same basis asg1 ~the regularity assumption is essential here!. g cannot
be regular since it commutes withg2 and therefore it would mean thatg2 is also diagonal in the
same basis, hence commutes withg1 , which is impossible. So the definition ofG2 implies thatg
is diagonal and nonregular. If the rank of the group is 1, this means thatg is the identity. In the
case of SL~N,C! it is easy to check that the additional determinant condition is enough to conc
thatg should lie in the center. It is important to understand that the definition ofG2 is not the naive
definition where one just excludes fromG3G the group elements which have a nontrivial ce
tralizer: in order to get a nice quotient, we need to take away more points and this is dicta
the fact that we want the quotient space to be the spectrum of the algebra of invariant funct

In the general case of higher rank group we defineG2 to be the following space:

G2[$~g1 ,g2!PG3G;g1PG1 or g2PG1 , and C~g1 ,g2!5ZG%, ~3.11!

where,C(g1 ,g2) denotes the centralizer ofg1 andg2 andZG denotes the center of the group. W
have seen that for SL~N,C! this can be achieved by implementing an algebraic inequality.
expect this to be true for all groups. We will see in the next section thatG2 admits a quotient by
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Ad(G) and we denote byA2 the quotient. However, contrary to the definition~3.10! valid for rank
1 group, the definition~3.11! is not equivalent to a definition ofG2 as an algebraic dual.

IV. CONSTRUCTION OF THE MEASURE ON A H

This section is central to our paper. In this section we go back to our problem which i
construction of a measure onAh . We show, by a nontrivial gauge fixing procedure, that a de
subset ofGh/Ad(G) can be identified with a dense subset ofGh21 whenh.1. We first consider
A2 , the case of one Cartan subgroup, then the case of several Cartan subgroups, we then
the case ofAh . Finally, setting everything together we show that the measure onAG does not
depend on all the gauge fixing choices, leading to the definition of a canonical measure.

A. Construction of the measure on A 2

1. Case of a unique Cartan subgroup H

Let us consider the following embedding ofG1 into A2 . GivengPG1 , we can conjugate it to
the Cartan subgroupH of G, i.e., there existshPH, xPG/H such thatg5xhx21. We choose a
sections:G/H→G and we define the map

j s : G1→A2

g5xhx21→Ad~G!•~h,s~x!!, ~4.1!

where Ad(G)•(h,s(x)) is the orbit of (h,s(x)) under the conjugation byG. This is a gauge fixing
since given (g1 ,g2)PA2 we can conjugateg1 to the Cartan subgroupH of G, i.e., there exists
hPH, yPG/H such thatg15yhy21. Then Ad(G)•(g1 ,g2)5Ad(G)•(h,y21g2y). This fixes
only partially the gauge sinceH can act ony by y→yk which means that we can still conjuga
g̃25y21g2y by a Cartan group element. Nevertheless, since we are inA2 , the centralizer ofg1

andg2 is trivial, this means that the centralizer ofhPH and g̃2 is trivial. Since the centralizer o
hPHùG1 is H, this implies that the conjugate action ofH on g̃2 has no other fixed point than th
center elements. Let us suppose for the following that the center ofG is trivial. Then, if we
exclude a set of measure zero toG, there exists a sections:G/H→G, such that we can use th
residual symmetry coming from the conjugation byH to impose thatg̃2 belongs to the image o
s. For instance in the case of SL~N,C!, we exclude the points such thatai j 1150, whereai j are
the matrix elements, and we choose the section to be such that) i 51

N21
ai j 1151, for all i

51,...,N21. Finally, the gauge fixing we impose is (g1 ,g2)→(h,s(x))PH3G/H. We just have
argued that every element ofG2 can be brought to this form. Moreover the condition that
centralizer of (g1 ,g2) is trivial is implemented if we askg5s(x)h(s)x21¹H. Indeed,
s(x)h(s)x21PH would mean that eithers(x)PH or thats(x) is a Weyl transformation. The firs
possibility,s(x)PH is impossible sinces(x) andh do not commute. So thatj s gives a map from
G1\H to A2 . The second possibility is related to the Gribov ambiguity, which makes the defin
of j s still ambiguous.

This can be traced back to the fact that a given group elementg can be conjugated to differen
Cartan elements related by the action of the Weyl groupW(H), which is the residual conjugation
action on the Cartan subgroup. There is two ways to solve this problem. First, we can requir
transformations of the sections under the action of the Weyl group

;xPG/H, ;wPW~H !, s~xw!5w21s~x!w. ~4.2!

This rendersj s well defined and this is the hypothesis we will suppose in the following. Or we
imposeh to be in a fixed Weyl chamber. In this case, one must remove all the 1/w(H) factors from
the following proofs.

With this map, we can pullback functions onA2 , or equivalently invariant functions onG2 ,
to functions onG1 by j s* F(xhx21)5F(h,s(x)).

Definition 1: Letm be a measure on A2 defined by
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E
A2

F~g1 ,g2!dm~g1 ,g2![E
G

j s* F~g!dg. ~4.3!

Proposition 2: Let F be a L1 function on G2 with respect to the Haar measure. We al
require that its gauge invariant versionGF is well defined:

GF~g1 ,g2!5E
G

F~gg1g21,gg2g21!dg. ~4.4!

Then we have

E
G3G

F~g1 ,g2!dg1dg25E
A2

GF~g1 ,g2!dm~g1 ,g2!. ~4.5!

In order to prove this, letF(g1 ,g2) be aL1 function onG3G.

E
G3G

F~g1 ,g2!dg1 dg2 ~4.6!

5
1

w~H !
E

G/H3H3G
F~xhx21,g2!D~h!dx dh dg2 ~4.7!

5
1

w~H !
E

G/H3H3G
F~xhx21,xg2x21!D~h!dx dh dg2 , ~4.8!

where we have used the Weyl integration formula~3.8! in the first equality and the invarianc
under right and left translation of the Haar measuredg2 in the second. Using the identity~3.7! for
the integration onG2 the integral can be expanded as

1

w~H !
E

G/H3H3H3H\G
F~xhx21,xkyk21x21!D~h!dx dh dk dy

5
1

w~H !
E

H3H\G
F E

G/H3H
F~xhx21,xky~xk!21!dx dkGD~h!dh dy

5
1

w~H !
E

H3H\G
F E

G/H3H
F~xkh~xk!21,xky~xk!21!dx dkGD~h!dh dy, ~4.9!

where we have used the fact thatH is abelian to derive the last equality. Then using the definit
of the G/H measure~3.6!, we finally get

E
G3G

F~g1 ,g2!dg1 dg25
1

w~H !
E

H3H\G

GF~h,y!D~h!dh dy, ~4.10!

whereGF is the gauge invariant version ofF:

GF~g1 ,g2!5E
G

F~gg1g21,gg2g21!dg. ~4.11!

Theorem 1: m is independent of s, symmetric, invariant under right and left multiplicatio
and invariant under taking the inverse:

dm~g1 ,g2!5dm~g2 ,g1!, ~4.12!
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dm~kg1h,g2!5dm~g1 ,g2!, ~4.13!

dm~g1 ,g2!5dm~g1
21 ,g2!. ~4.14!

Let us prove the above theorem fordm(kg1 ,g2) ~left multiplication!. One will be able to
prove the other properties following the same line of thoughts. The easiest way to prov
theorem is to use a Faddev–Popov gauge fixing procedure using the proposition 2. Let us
an invariant functionF on G2 . We can choose any functionw on G2 such thatGw51 and create
the ~gauge fixed! function F̃5Fw. In the usual Faddeev–Popov procedure one would choosew to
be proportional to ad function of a gauge fixing condition, but this is not necessary. Apply
proposition 2,

E
A2

F~g1 ,g2!dm~g1 ,g2!5E
G3G

F̃~g1 ,g2!dg1 dg2 . ~4.15!

Using the freedom in the choice of the functionw in proposition 2 and the fact that i
w(g1 ,g2) is a gauge fixing so iswk(g1 ,g2)5w(k21g1 ,g2), we get

E
A2

F~g1 ,g2!dm~kg1 ,g2!5E
G3G

F~k21g1 ,g2!w~k21g1 ,g2!dg1 dg2

5E
G3G

F~g1 ,g2!w~g1 ,g2!dg1 dg2

5E
A2

F~g1 ,g2!dm~g1 ,g2!. ~4.16!

So we conclude to the left invariance of the measuredm defined onA2 .

2. The case of many Cartan subgroups

In general, we have many Cartan subgroups and let’s note themH1 ,H2 , . . . ,Hn . G1 can be
decomposed in disconnected componentsG( i )5Ad(G)•Hi , each conjugated to the Cartan su
groupHi . For each of these components, one can choose a sectionsi :G/Hi→G and define a map

j i : G( i ),G1→A2

g5yhy21→Ad~G!•~h,si~y!!. ~4.17!

From this map, one can define a measuredm i on A2 as in the definition~1! by

E
A2

F~g1 ,g2!dm i~g1 ,g2![E
Gi

j i* F~g!dg. ~4.18!

Proposition 3: Given any L1 function F on G2 we have

E
G3G

F~g1 ,g2!dg1 dg25E
A2

GF~g1 ,g2!dm~g1 ,g2!, ~4.19!

where

dm~g1 ,g2!5(
i

1

w~Hi !
dm i~g1 ,g2! ~4.20!

and whereGF is the gauge invariant version of F:
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GF~g1 ,g2!5E
G

F~gg1g21,gg2g21!dg. ~4.21!

Let F(g1 ,g2) be aL1 function onG3G.

E
G3G

F~g1 ,g2!dg1 dg2 ~4.22!

5(
i

1

w~Hi !
E

G/Hi3Hi3G
F~xhx21,g2!D~h!dx dh dg2 ~4.23!

5(
i

1

w~Hi !
E

G/Hi3Hi3G
F~xhx21,xg2x21!D~h!dx dh dg2 , ~4.24!

where we have used the Weyl integration formula~3.8! in the first equality and the invarianc
under right and left translation of the Haar measure in the second. Using the identity~3.7! for the
integration onG2 the integral can be expanded as

(
i

1

w~Hi !
E

G/Hi3Hi3Hi3Hi \G
F~xhx21,xkyk21x21!D~h!dx dh dk dy ~4.25!

5(
i

1

w~Hi !
E

Hi3Hi \G
F E

G/Hi3Hi

F~xhx21,xky~xk!21!dx dkGD~h!dh dy. ~4.26!

Using the fact thatHi is abelian and the definition of theG/Hi measure~3.6! we finally get

E
G3G

F~g1 ,g2!dg1 dg25(
i

1

w~Hi !
E

Hi3Hi \G

GF~h,y!D~h!dh dy

5(
i

1

w~Hi !
E

G( i )
dg ji* ~GF !~g!

5(
i

1

w~Hi !
E

A2

dm i~g1 ,g2!GF~g1 ,g2!. ~4.27!

Using the above proposition, we can generalize theorem 1 to the multi-Cartan case us
same proof as done before.

B. The measure on A h

We are now interested in generalizing the case ofA2 to Ah . Applying the Rosenlich theorem
stated in~Sec. III B!, it is always possible to choose an open dense setGh,Gh such that the
geometric quotientAh5Gh /Ad(G) is well-defined as in proposition 1. Following the choice ma
for the 2-petals case we get the following definition whenG is rank one:

Gh[$~g1 ,...,gh!PG^ hu'~ i , j !P@1,...,h#,~gi ,gj !PG2%. ~4.28!

Definition 2: Note thatGh is such that the centralizer of any element inGh is the identity.
Definition 3: We choose two edges i, j on the n-petal flower. Then, we can define a measure

Ah

m ( i j )@ f ~g1 ,g2 , . . . ,gn!#5E
G2

( i j )
dm~gi ,gj !E )

kÞ i , j
dgk f ~g1 ,g2 , . . . ,gn!, ~4.29!
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where we have taken the measure gauge fixed measure dm(gi ,gj ) on the two chosen edges an
the Haar measure on the other edges.
This measure is well defined since*)kÞ i , jdgk f (g1 ,g2 , . . . ,gn) is an invariant function onG2

( i j )

@and therefore a function onA2 , which we can integrate usingdm(gi ,gj )].
Proposition 4: Given any L1 function F on Gn we have

E
Gn

F~g1 , . . . ,gn!dg1 ¯ dgn5E
An

GF~g1 , . . . ,gn!dm~g1 , . . . ,gn!, ~4.30!

whereGF is the gauge invariant version of F:

GF~g1 , . . . ,gn!5E
G

F~gg1g21, . . . ,ggng21!dg. ~4.31!

This proposition is easily proved using the proposition 2 and the invariance of the Haar me
under right and left multiplication. And its leads to the following theorem:

Theorem 2: The measures dm ( i j ) do not depend on the choice of edges i, j . And one defines
a unique measure dm(g1 ,g2 , . . . ,gn) on Ah . Moreover, this measure is symmetric under perm
tation of g1 , . . . ,gn , under right and left multiplication and under taking the inverse of one of
argument:

dm~gs1
,...,gsn

!5dm~g1 ,...,gn!,

dm~kg1h,...,gn!5dm~g1 ,...,gn!, ~4.32!

dm~g1
21 ,...,gn!5dm~g1 ,...,gn!.

C. Measure on an arbitrary graph

To construct the measure on an arbitrary graphG, we are going to choose a maximal treeT
and carry on the gauge fixing procedure described in the first section in order to reduce the
G to a flower. We then define the measuredmT such that for all gauge invariant functionsf on G,
we have

E dmT~g1 , . . . ,gE!f~g1 , . . . ,gE!5E dm̃~g1 , . . . ,gF!fT~g1 , . . . ,gF!, ~4.33!

wheredm̃ is the measure on theF petal flower.
This definitiona priori depends on the choice of the treeT. We are going to prove that this i

not the case. So we choose two maximal treesT andU. The gauge fixed function are related b
~2.8!:

fT~Ge
(T)!5fUS Ge

(U)5 )
f PL[e] \T

——→
Gf

(T)D
and we want to prove that
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E dm̃~G1
(T) , . . . ,GF

(T)!fT~G1
(T) , . . . ,GF

(T)!

5E dm̃~G1
(U) , . . . ,GF

(U)!fU~G1
(U) , . . . ,GF

(U)! ~4.34!

or equivalently

E dm̃~G1
(U) , . . . ,GF

(U)!fU~G1
(U) , . . . ,GF

(U)!

5E dm̃~G1
(T) , . . . ,GF

(T)!fUS Ge
(U)5 )

f PL[e] \T

——→
Gf

(T)D . ~4.35!

We are going to show this equality by doing some elementary changes of variables which
correspond to elementary moves between the two maximal trees and we will show th
measure is invariant under each such move. Let us first define what we mean by an elem
move.

Definition 4: Given a graphG and a maximal tree T on it, let us choose a vertexv such that
there is at least one edge linked to it which is not in the tree T. Let us pick one and call it f. There
exists an unique path in T linking the other vertex of f tov. This path goes along an unique edg
ePT linked tov. Then an elementary change of tree, or elementary move, is exchanging th
of e and f and considering the maximal tree U5Tø f \e.

The interest in such a definition lies into the following proposition.
Proposision 5: Having chosen two maximal trees T and U on a graphG, there exists a

sequence of elementary moves going from T to U.
Then, as we will see, the change of variable fromG(U) to G(T) is very simple for such a move

since it is implemented either by an inversion or by left multiplication, so that it will simplify
study of change of trees.

Let us first prove the proposition. GivenG and two maximal treesT,U in it we can distinguish
four types of edges: edges belonging to both treesT and U, edges inV5T\U, edges inW
5U\T and edges in neither trees. By elementary moves on either the treeT or the treeU, we
would like to reduce the setsV andW down to nothing. Let us take a closer look at the setV.
First, V might not be connected. In this case, we would carry on the following procedure on
of its connected parts. Let’s denote one of the connected partV1 and work on it.V1 is a tree as part
of the treeT. In particular, it is not closed and has some open ends, i.e., edges connectedV1

only by one vertex. By doing elementary moves, we are going to remove them fromV1 , and then,
by repeating the same operations, one could erase completely the setV1 . And finally, by repeating
the procedure on the other connected parts ofV, one could absorb completely the setT\U.

So let us choose an edgee at an open end ofV1 . It has two vertices:v in the exterior ofV1

andw in the interior ofV1 . There exists an unique pathP alongU which links these two vertices
ande¹U is not in it. In P, there exists at least one edge inU but not inT else there would be a
loop in the treeT.

Let us suppose that such an edgef PU\T touches directly the edgee ~at the vertexv). Then,
we can do an elementary move exchanginge↔ f and create a treeŨ5Uøe\ f closer to the tree
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T than the treeU.

Let us now come back to the general case in which we have to follow a sequence of
f 1 , . . . ,f nPTùU starting from the vertexv along the pathP to an edgef in U\T. Then, we do
the allowed elementary moves on the treeU exchanginge↔ f 1 , . . . ,f n21↔ f n , thus creating the
treesU1 , . . . ,Un . Starting fromv, all the edgese, f 1 , . . . ,f n21 are both inT andUn , f n is in
T\Un , f is in Un\T, and all the other edges on the way back tow are inUn . So that we are in the
same simple case as above and we finally do the movef n↔ f on the treeUn creating a treeŨ such
that the whole loopP from v to v is in both T and Ũ except the edgef which is in neither.
Practically, we had a loop with all the edges inU but one which is inT ~it is e), and by elementary
moves, we move it around until it meets an edge which is not inT and they ‘‘cancel’’ each other

This ends the absorbtion of the edgee: the setT\Ũ contains one edge less thanT\U. And we
now repeat the same procedure using the new treeŨ.

We now are able to prove the following.
Theorem 3: The Jacobian of the change of variables (4.35) is 1, so that the measure dmT is

invariant under changes of tree.
This theorem will assure the existence of a measuredm (G)5dmT independent from the choic

of the treeT and therefore from the whole gauge fixing procedure, which is the measure we
use to integrate our gauge invariant functions and define a space ofL2 gauge invariant functions
This space will in fact be the Hilbert space of spin networks defined on the graphG.

Proposition 5 means that we only have to prove the theorem 3 for elementary moves.
us realize an elementary move on the treeT around the vertexv and define the new maximal tre
U5Tø f \e. For every edgea¹U on theU flower, we define the variablesGa

(U) . And we want to
express them in terms of the variablesGb

(U) . For a¹U and¹T, we want to relateGa
(U) to Ga

(T) .
It can be easily seen that these two variables are equal up to a multiplication on the left or r
on both sides byGf

(T) or its inverse. And for the only other casea5e, we will have Ge
(U)

5(Gf
(T))61. Then using the invariance of the measure of the flower by multiplication or by ta

the inverse of one of its argument~theorem 2!, we can conclude that the above change of variab
has a trivial Jacobian.

V. SPIN NETWORKS STATES

In this section, we are going to define the spin networks as eigenvectors of a set of comm
Laplacian operators, which will be shown to be hermitian.

A. Laplacian operators

Let us consider a graphG and a gauge invariant function defined on it. These functions dep
on E group elementsg1 , . . . ,gE . Let’s denote byX an element of the Lie algebra and by]X

Re

~respectively,]X
Le) the right~respectively, left! invariant derivative acting on thej th group element

associated with the edgee:

]X
R1f ~g1 ,...,gN!5 f ~Xg1 ,...,gN!, ~5.1!
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]X
L1f ~g1 ,...,gN!5 f ~g1~2X!,...,gN!, ~5.2!

The gauge group action acts on derivative operators by conjugation at each vertex :

]X
Re→]

ks(e)Xk
s(e)
21

Re .

We are interested in gauge invariant differential operators. The algebra of such opera
generated by Laplacian operatorsDe

( i ) wheree labels the edges ofG andi runs from 1 to the rank
r of the group. For each edgee, the space of Laplacians is in one to one correspondence with
Casimir operators of the Lie algebra. Therefore this set of Laplacians gives a complete b
commuting operators. Indeed, they are commuting since for a givene two Casimirs commute and
for different edgese’s the differential operators]X

Re commute with each other.
We want to define the spin networks as the basis of eigenstates vectors for this compl

of gauge invariant differential operators. In order to do that, we need to show that these op
are Hermitian with respect to the measuredm (G) that we have just constructed. We are going
give the proof for the quadratic Laplacian operatorDe5( i]Xi

Re]Xi

Re (De5]Re]Re for short!, where

Xi denotes an orthonormal basis of the Lie algebra. The general case is similar, it simply
more cumbersome notations.

Because of the measuredm (G) has being defined on the gauge fixed flower correspondin
G, we have to follow the gauge fixing procedure leading to group variablesGi , . . . ,GF on the
flower and express the operatorsDe in term of the derivatives]̃ i

L,R with respect to these new
variables.

To start with, let us look at an example, the case of the two petal flower coming from e
the Q graph or the eyeglass graph. Let’s first gauge fix theQ graph:

We gauge fix from the pointA. We haveG15g1g3
21 andG25g2g3

21. It is then easy to check tha
]1

R5 ]̃1
R , ]2

R5 ]̃2
R , and]3

R5 ]̃L11 ]̃L2 so thatD15L̃1 , D25L̃2 , andD35D̃11D̃212D̃12, where
D̃125 ]̃1

L .]̃2
L .

In the case of the eyeglass graph

We haveG15g1 andG25g3g2g3
21. ThusD15D̃1 , D25D̃2 as the Laplacian is invariant unde

Ad(G) andD35( ]̃2
R2 ]̃2

L)2.
In the generic case, for a given edgee, if there exists a maximal treeT which does not go

throughe, thene will be on the gauge fixed flower andDe will simply be the LaplacianD̃e with
derivatives with respect to the flower variableGe .

What happens to edges which are in every possible trees, such as the middle edge
eyeglass graph, is slightly more tricky. For such an edgee, we choose to gauge fix from it
departure vertexv. Then]e

R will be equal to the sum of]̃ f
R for all edgesf whose loop starts with

e and ]̃ f
L for all edges whose loop finishes withe.
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In any case, the initial differential operatorsDe can be written as a sum ofD̃ i j
RR5 ]̃ i

R .]̃ j
R and

D̃ i j
LR5 ]̃ i

L .]̃ j
R where i , j 51,...,g. These operators are Ad(G) invariant operators onGh. This is

easily seen since the gauge invariance of a functionfG is equivalent to

S (
eus(e)5v

]Re1 (
eut(e)5v

]LeDf50, ~5.3!

for all verticesv. Choosing a tree amounts to use these equations to express all derivatives
edges belonging to the tree in terms of the other ones that we named]̃ i

L,R . We are then left with
only one relation( i 51

h ( ]̃ i
R1 ]̃ i

L)f50.

B. Spin networks as Laplacian eigenvectors

Theorem 4: The Laplacian operatorsD̃ i j
RR,D̃ i j

LR are Hermitian with respect to the measu
dmh ,h.1.

We will give the proof forD̃ i[D̃ i i
RR. The proof for a general operator is similar.

Let us consider

E
Ah

~wD̃ ic2cD̃ iw!dmh , ~5.4!

wherew,c are gauge invariant functions. And let us introduce a gauge fixing functionf, which is
such that

E
G

gf dg51, ~5.5!

wheregf(g1 ,...,gN)5f(gg1g21,...,ggNg21). The integral~5.4! can be written as

E
Gh

~wD̃ ic2cD̃ iw!f dg1¯dgh . ~5.6!

Using the invariance of the Haar measure under left multiplication we can integrate by pa
right invariant derivatives, this leads to~we take off the tilde for simplicity of the notations!

E
Ah

~wDc2cDw!dm5E
Gh

c]Xj

Ri w]Xj

Ri f2w]Xj

Ri c]Xj

Ri f dg1¯dgh . ~5.7!

Let us look at the first term, we can write it as

E
Gh

dg1¯dgh c]Xj

Ri w]Xj

Ri f5E
Ah

cF E
G

dgg ]Xi

Rkwg]Xi

RlfGdmh , ~5.8!

where we have used the definition of the invariant measure~4! and gc5c. Using the following
identity

g]Xi
f5]Ad(g)21Xi

gf, ~5.9!

and the invariance of the quadratic differential operator

(
i

]Ad(g)•Xi

R
^ ]Ad(g)•Xi

R 5(
i

]Xi

R
^ ]Xi

R ~5.10!

one gets
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E
Ah

cF E
G

dg ]Xi

gw]Xi

gf dgGdmh . ~5.11!

Using thatgw5w sincew is gauge invariant and that the condition~5.5! implies ]Xi
* gf dg50,

we conclude that the integral~5.4! is zero.
Definition 5: Since the operatorsDe form a set of commuting Hermitian operators on t

Hilbert space L2(dm (G)), we can diagonalize them and their eigenvectors form an orthonor
basis of L2(dm (G)). We call these eigenvectorsspin networks.

It should be clear that these vectors should be considered as generalizedd normalizable
vectors if one of the eigenvalues they carry is part of a continuous spectrum: one should co
them as invariant distributions and not invariant functions.

We obtain a basis of functions which are labeled by the eigenvalues of the Laplacians
Casimirs of the group—on each edge of the graphG. In other words, if we calldr(l) the spectral
measure of the Laplacian operator one gets

HG[L2~dm (G)!5 % eE dr~le! ^ vI v~l!, ~5.12!

whereI v(l) is the space of intertwiners between the representations carried by the edges m
at the vertexv.

In the case ofG5SU(2), there is a one-to-one correspondence between the eigenvalues
Casimir and the irreducible unitary representations. And by the previous reasoning, we
totally reconstructed the usual structure of spin networks with representations labeling the ed
the spin networks if the graph is trivalent. In a more general context, one should be careful th
eigenvalues of the Laplacians do not always completely characterize the representations, th
be a degeneracy where several representations carry the same Laplacians. This is the c
instance, of the series of discrete representations of SL~2,R!, where the degeneracy is 2. This is n
the case however for the unitary representations of SL~2,C! which are totally determined by th
values of their two Casimirs. We have presented the spin networks in the particular case of
but as we said in the beginning, all the propositions work the same for a more general gro

C. Unfolding vertices and SU „2… spin networks

Using the gauge fixing procedure, we can unfold all the vertices of a given graphG. By this,
we mean replace each vertex by a~minimal! tree which has only 3-valent vertices. More explicitl
let us consider a vertexv. We can match the edges meeting atv two by two ~if their number is
odd, we leave one edge on its own! and create a 3-valent vertex for each of these pairs. Then
repeat this process until over.

Let us call the unfolded graphG0 . As the flowers corresponding toG and toG0 are the same,
we haveL2(dm (G))5L2(dm (G0)). We can then construct spin networks on the graphG0 , by
labeling all its edges—both the ones already inG and the new ones which areinside the vertices
of G—with representations of the groupG. These spin networks spanL2(dm (G0)) and therefore
also L2(dm (G)). That way, we have unfolded the structure of the vertices of the spin netw
based on the graphG. We have reduced the problem of characterizing nodes to the case of 3-v
ones. One thing which one should be aware of is that for high rank groups, it happens th
space of trivalent interwiners is infinite dimensional, e.g., sl~3,R!.

In the case ofG5SU(2), the3-valent nodes are 3-valent intertwiners intertwining betwe
the representations labeling the three edges. These intertwiners are unique to a normaliza
we have fully characterized SU~2! spin networks—both their edges and nodes—by the ab
unfolding procedure. In the general case, we can have many possible 3-valent intertwine
their space has to be studied in order to fully characterize the nodes of the spin networks.
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VI. THE ONE LOOP CASE

In this section, we restrict ourselves to rank one groups and we deal with the graph m
a single loop with a single bivalent vertex, which describes the quotient spaceG/Ad(G). This
case is essentially different from the cases of flowers with higherh>2 number of petals for which
the quotient spaceGh/Ad(G) can be mapped ontoGh21 as described in the preceding sectio
And both the techniques used and the problems encountered differ from the other cases.
theless, this study is important since the characters of the unitary representations are supp
be orthonormal vectors ofL2(G/Ad(G)), therefore it is interesting as the simplest part of t
gauge invariant connection space and it illustrates the problem of the possible nonconnect
the quotient space and the~super!selection rule issue which comes with it.25

A. SL „2,C…

In this section, we consider the case where the group is SL~2,C! and we are interested in
describing the quotient~SL~2,C!!//Ad~SL~2,C!! as defined in Sec. III B. Letg5(c d

a b)PSL(2,C),
the algebraC@SL(2,C)#SL(2,C) of polynomials invariant under the adjoint action is generated
X(g)5(1/2)tr (g), since such polynomials are linear combination oftr (gn). tr (gn) can be ex-
pressed as a polynomial inX due to the relationg22tr (g)g1150, more preciselytr (gn)
5Tn(X) with Tn the Chebichev’s polynomials of the first kind. Therefore the spectrum of
invariant polynomial affine algebra is justC and the quotient morphism is the trace. Moreov
tr 21(2x),xÞ61 is exactly an orbit of a strictly regular element. tr21(62) contain several orbits
but only the orbit of the identity matrix is closed. One can therefore think of SL~2,C!//
Ad~SL~2,C!! as the geometric quotient ofG1ø6Id. The G-invariant measure~Weyl measure!
induced by the SL~2,C! Haar measure is given by

m~ f !5E
C
uX221u f ~X!dX, ~6.1!

where the integration region is over the complex plane minus the interval@21,11# with the usual
Lebesgue measure onC.

More explicitly, SL~2,C! has only one Cartan subgroupH which is the set of diagonal matri
ces diag(l,l21), lPC. The Weyl group isZ2 and diag(l,l21) is conjugate to diag(l21,l). The
Weyl integration formula reads:

E
SL(2,C)

f ~g!dg5E
H

dh F E
SL(2,C)/H

f ~xhx21!dxG uD~h!u2. ~6.2!

The invariant measure is obtained by removing the redundant integration over SL(2,C)/H and
integration solely onH and one finds back the measure~6.1!.

The unitary principal series of SL~2,C! is a family of unitary irreducible representations
SL~2,C! indexed by pairs (j ,r) with j PZ/2 andrPR. There are realized inL2(C) and the action
Rj ,r of SL~2,C! is given by

Rj ,rS a b

c dD f ~z!5ubz1du2222irS bz1d

ubz1du D
2 j

f S az1c

bz1dD ~6.3!

for zPC and f PL2(C). The characters are

x j ,rS ex1 iu 0

0 e2x2 iuD 5
eirxei j u1e2 irxe2 i j u

uex1 iu2e2x2 iuu2
. ~6.4!

Using the measure~6.1! on X5(ex1 iu1e2x2 iu)/2 and making a change of variables tox,u, it is
straightforward to check that
                                                                                                                



l

le

e

ds to

re left

1343J. Math. Phys., Vol. 44, No. 3, March 2003 Spin networks for noncompact groups

                    
m~x j 1 ,r1
x j 2 ,r2

!5d j 1 j 2
d~r12r2! ~6.5!

so that the above characters form an orthonormal basis of the Hilbert spaceL2(A1)
5L2(SL(2,C)//Ad(SL(2,C))).

B. SU„2…

In the case of SU~2!, there is again a unique Cartan subgroupH, composed of the diagona
matriceshu5diag(eiu,e2iu),uP@2p,p#. The Weyl group isZ2 : hu and h2u are conjugate. The
SU~2!-invariant measure is

mSU(2)~ f !5
2

p E
21

11

dXA12X2f ~X!5
2

p E
0

p

du sin2 u f ~u!, ~6.6!

whereX51/2 tr(g)5cosu.
An orthonormal basis ofL2(SU(2)/Ad(SU(2))) isgiven by the characters of the irreducib

~finite dimensional! representation of SU~2!:

x j~hu!5
sin~ j 11!u

sin~u!
, ~6.7!

where j runs over the non-negative integers~twice the spin!. For making a change of variabl
from X to u, it is easy to check that

mSU(2)~x jxk!5d jk . ~6.8!

C. SL„2,R…

In the case of SL(2,R), we have two Cartans subgroups; a compact one, which correspon
space rotations

H05H ku5S cosu sinu

2sinu cosu D , 0<u<2pJ ~6.9!

and a noncompact one, which corresponds to boosts

H156H at5S et 0

0 e2tD ,tPRJ . ~6.10!

W(H0) is trivial but W(H1)5Z2 andat is conjugate toa2t . A regular element of SL(2,R) can be
conjugated toH0 or to H1 and an Ad(SL(2,R)) invariant functionf will be described by its action
on both Cartan subgroups, i.e., by two functionsf 0(u) and f 1

6(t),t>0.
We would like to divide by the volume ofG/H0 and ofG/H1 . These two volumes are infinite

and the ratio of these two volumes is also infinite. So this leads to an ambiguity and we a
with a one-parameter family~up to normalization! of possible Ad(SL(2,R)) invariant measures

mSL(2,R)~ f !5a0E
0

2p

du sin2 u f 0~u!1a1E
0

1`

dt sinh2 t f 1
6~ t !. ~6.11!

The formal property that we want our measure to satisfy is

m~Gf !5E
G

dg f~g!, ~6.12!
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where Gf denotes the averaging over the gauge groupG of a compact supported noninvaria
function f . The subtle point is that the centralizer of a generic group element under the a
action is~conjugated to! eitherH0 or H1 depending on the group element. So the averaging sh
take this into account. Therefore iff 0 ~respectively,f 1) is supported on the spaceG(0) ~respec-
tively, G(1)) of group elements which can be conjugated toH0 ~respectively,H1), we define

Gf i~g5xhix
21!5E

G/Hi

dxi f ~xihixi
21!. ~6.13!

In this case, we easily prove using~3.8! that ~6.12! is satisfied for the unique choicea i51.
However, this is not the whole story. The natural way to get an invariant measure is to c

a cutoffl andGl a compact subset ofG, with Gl→G whenl grows to infinity. Then we take the
invariant measure to be the limit

m~ f !5 lim
l→`

*Gl
f ~g!dg

*Gl
dg

, ~6.14!

for a G invariant functionf . The resulting measure that it leads to is (a051,a150). And this
measure gives a zero weight to function with support onG(1) .

The way to reconcile these points of view is the following. One needs to define two H
spaces, one~denotedH0) for the functions with support onG(0) which is given by the measur
(a051,a150) and one~denotedH1) for the functions with support onG(1) which is given by the
measure (a050,a151). This would take into account the fact that the space of Ad(G) invariants
is disconnected with incommensurable volume of centralizer. Physically, this means that th
sectors cannot communicate, i.e., we can not find physical operators mapping physical
between the two sectors. This was rigorously shown by Gomberoff and Marolf25 in a similar
context but in the language of group averaging and rigging maps.

SL(2,R) has three series of principal unitary representations: the continuous seriesCs labeled
by a positive real numbers and two discrete seriesD n

6 both labeled by a integern>1 and a sign.
The characters of the continuous series are

xs~ku!50, ~6.15!

xs~6at!5
cosst

usinhtu
~6.16!

and the characters of the discrete seriesD n
6 are

xn
6~ku!57

e6 i (n21)u

2i sinu
, ~6.17!

xn
6~at!5

e2(n21)utu

2usinhtu
with a factor ~21!n for 2at . ~6.18!

It is clear that the characters of the discrete series~respectively, continuous series! are orthonormal
with respect to the Hilbert space structureH0 ~respectively,H1). Moreover both characters ar
eigenvalues of the Laplacian. More explicitly, the Laplacian reads

D5
1

sinu

]2

]u2 sinu1
1

4
on H0 , D52

1

sinht

]2

]t2 sinht1
1

4
on H1 for t>0 ~6.19!

so that the eigenvalue ofxs is s211/4 and the one corresponding toxn
6 is m(12m) with m

5n21/2. Moreover, one could notice that, for a generic measure~6.11! with arbitrary (a0 ,a1),
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the discrete charactersxn
6 are not orthonormal, which would be in contradiction with the fact t

the Laplacian is Hermitian, unless we restrict ourself to the choiceH0 , i.e., (a051,a150) which
appear to be the only self-consistent choice of measure when taking into account the d
series.

The characters of the continuous series are fully characterized as distributions whic
eigenvectors of the Laplacian, invariant under the Weyl group~residual gauge symmetry! and with
full support only onG(1) . However, this is not the case for the discrete series. There are se
distributions which are both eigenvector of the Laplacian and invariant with support inG(0) . The
solution of this puzzle lies in the definition of the Laplacian and more particularly in the spa
functions on which it is defined. Indeed, among all the invariant distributions, one should c
the ones which are not only a distribution onG(0))G(1) but on the full groupG: one asksxn

6 to
be an eigenvalue of the Laplacian as a distribution onG. More precisely, in order to satisfy th
eigenvalue equation*Gx(g)D f (g)dg5l*Gx(g) f (g)dg, one needs to integrate by parts. Iff is a
compact supported function onG(0))G(1) , all the boundary terms vanishes trivially. However,
f is a compact supported function onG, the vanishing of the boundary terms leads to so
boundary conditions onx. The eigen-distributions that can be extended to distributions onG are
called regular. Now it is easy to check that such distributions~normalizable with respect to th
scalar product onH0) are in one-to-one correspondence with unitary representations. This
first shown by Harish–Chandra and was the foundation of his works on harmonic analysis
noncompact group.26

To sum up, the issue is about the domain of definition of the LaplacianD. We make it act on
the Hilbert spacesH0 andH1 for consistency of the group averaging, but the eigenvalue probl
is well defined for distributions on the whole groupG ~taking into account the null elements
which are not regular!. Nevertheless, we can conclude that the discrete charactersxn restricted to
G(0) form a basis ofH0 and the continuous charactersxs form a basis ofH1 . And the tail ofxn

on G(1) is due to nontrivial boundary conditions in the eigenvalue problem.
The case of one petal graph is quite complicated, this is essentially due to the fact th

spaceA1 is not connected, since we have excluded all null rotations and that taking them
account is not straightforward. Fortunately, as we shall now see, the situation for highe
graphs is simpler since the generic centralizer of a point ofGh is G for all elements.

VII. THE TWO PETAL FLOWER: EXAMPLES

A. SL „2,C…

In this section, we consider the case where the group is SL(2,C) and we are interested in
describing the quotient (SL(2,C))2//Ad(SL(2,C)) as defined in Sec. III B. Let (g1 ,g2)
PSL(2,C)2 and denoteX1(g1 ,g2)5(1/2)tr (g1), X2(g1 ,g2)5(1/2)tr (g2), and X3(g1 ,g2

21)
5(1/2)tr(g1g2). This defines an Ad(SL(2,C))-invariant morphismp:SL(2,C)2→C3. We have
the following property.

Proposition 6: p gives an isomorphism between the algebra of invariant polynom
C@SL(2,C)2#SL(2,C) and C@X1 ,X2 ,X3#.

Proof: Let

G2~SL~2,C!!5$~g1 ,g2!PSL~2,C!utr ~g1!2Þ4 or tr ~g2!2Þ4, and tr ~@g1 ,g2#G!Þ2%.

The image of this set byp is the complement inC3 of D, whereD is the closed subset ofC3 such
that the polynomialsX1

221 or X2
221, andQ(X1 ,X2 ,X3)[(X32X1X2)22(X1

221)(X2
221) are

equal to zero (@ ,#G denotes the group commutator!. This is clear sincetr (@g1 ,g2#G)225
2det(g1g22g2g1)54Q(X1 ,X2 ,X3). The key point is that this gives an isomorphism betwe
G2(SL(2,C))/SL(2,C) and C3\D. We can construct explicitly the inverse map, Lets(XW )
5(s1 ,s2) be defined by
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s1~XW !5S X11AX1
221 0

0 X12AX1
221

D , ~7.1!

s2~XW !5S X22
X1X22X3

AX1
221

1

2
Q~XW !

X1
221

X21
X1X22X3

AX1
221

D . ~7.2!

One should be careful sinces needs the definition of a square root, this means that this
multivalued function onC3\D, however any change in the choice of the square root determina
is implemented by a gauge transformation, therefores is well defined as a function valued int
G2(SL(2,C))/SL(2,C). Suppose we defines̃(XW ) the map corresponding to another determinat
of the square root, i.e., the one obtained froms by replacingAX1

221→2AX1
221 we have that

s̃~XW !5AdS 0 i

i 0D •s~XW !. ~7.3!

It is easy to see thatp+s is the identity mapping onC3\D. It is also true thats+p is the identity
mapping onG2(SL(2,C))/SL(2,C). First, given (g1 ,g2)PG2(SL(2,C)) we can diagonalizeg1

since it is regular. This does not fix completely the action of the gauge group since one can s
by a diagonal gauge transformation and a Weyl transformation~i.e., g1→g1

21). Any diagonal

transformation diag(l,l21) is acting on g25(c
a

d
b)→(l22c

a
d
l2b). Now, tr (g1g2g1

21g2
21)22

52(l2l21)2bc. The conditionQÞ0 translates intobcÞ0, so that one can fix the residua
action by askingb51.

Proposition 7: The invariant measurem defined in definition (1) is simply the Lebesg
measure inC3 when translated in terms of X1 , X2 , X3 . More precisely, let F be a function onC3,
p* F is an invariant function and

E
(SL(2,C))2//SL(2,C)

p* F~g1 ,g2!dm~g1 ,g2!5E
C3

F~XW !d2X1 d2X2 d2X3 . ~7.4!

Proof: Let us recall that the Haar measure for SL~2,C! is defined asdg5d2ad2bd2cd2d
d2(ad2bc21) if g5(c d

a b). Let

y5S a 1

c dD , h5S l 0

0 l21D , g5yhy21. ~7.5!

The measure onA2 is defined bydm5dg it is easy to see that

dg5ul2l21u2d2~l1l21!d2ad2d. ~7.6!

MoreoverX15l1l21, X25a1d, andX35la1l21d thusdg5d2X1 d2X2 d2X3 .
Let us define the invariant functionals

F jW,rW~g1 ,g2!5x j 1 ,r1
~g1!x j 2 ,r2

~g2!x j 3 ,r3
~g1g2!. ~7.7!

An explicit computation gives

E F jW,rW dm~g1 ,g2!5)
i 51

3

d~r i !d j i
. ~7.8!
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B. SU„2…

We can deduce the SU~2! case from the previous formalism. We have the constra
XW (g1 ,g2)PI 3 where

I 3[$XiP#21,1@ ,Q~XW !5~X32X1X2!22~X1
221!~X2

221!,0% ~7.9!

and the invariant measure is

E
I 3

dXW . ~7.10!

Writing X5cosu, we can re-express the above constraint in term ofu1,2,3P@0,p#:

cos~u11u2!<cosu3<cos~u12u2! ~7.11!

which is simply the constraint arising when multiplying two elements of SU~2! or equivalently
summing two vectors in a spherical space. Indeed two group elementsg1 ,g2 in SU(2);S3

determine a triangle inS3 with vertices 1,g1 ,g2 . The invariant geometry of this triangle is dete
mined by the three edges length which areu1 , u2 , u3 . In these variables, the measure
sinu1 sinu2 sinu3 du1 du2 du3 and the domain of integration is

u11u2<u3 and cyclic perm, ~7.12!

u11u21u3<2p. ~7.13!

One can also express the invariant geometry of the triangle in terms of two edges: their lengu1 ,
u2 and the angleũ3 they form. This angle is determined by the edges lengths by cou3

5cosu1 cosu22sinu1 sinu2 cosũ3. In these geometric variables, the condition on the variab
readsQ52sin2 u1 sin2 u2 sin2 ũ3Þ0 which means that we exclude degenerate triangles. In t
new variables, the measure is sin2 u1 sin2 u2 du1 du2 sinũ3 dũ3. Now one can easily check that

E
I 3

x j 1
~X1!x j 2

~X2!x j 3
~X3!dXW 5d j 1 , j 2

d j 2 , j 3

1

dj 3

~7.14!

as expected.
Let us note that one gets the measure~7.10! directly by a gauge fixing procedure withou

having to appeal to the general theorem 1. Letgi5(
2b̄i

ai

āi

bi), i 51,2. The gauge conditions we wan

to impose areb1(g1)50 and Im(b2)(g2)50, Im denotes the imaginary part. The Faddeev–Po
determinant is the determinant of the 333 matrix (Re(b1)(@Xi ,g1#);Im(b1)(@Xi ,g1#);
Im(b2)(@Xi ,g2#)), whereXi , i 51,...,3 is abasis of su~2!. This determinant is proportional to (a1

2(a1)21)2b2 , it should multiply the gauge fixed measuredg1 dg2 d2(b1)d(Im(b2)), a direct
computation leads to the results~7.10!.

C. SL„2,R…

In the case of SL~2,R!, the constraint readsXW (g1 ,g2)PJ3 where

J3[$XiPR, Q~XW !Þ0,~X1
2Þ1 or X2

2Þ1!% and $XW ÞI 3%. ~7.15!

The invariant measure is given by

E
J3

dXW . ~7.16!
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This result can be obtain using both previous methods, gauge fixing or application of the g
formulas in the context of SL~2,R!. It is interesting to note thatJ3 correspond to a real section o
C3 which is complementary toI 3 describing SU~2!. As in the case of SU~2!, one can give a
geometrical interpretation of the configuration spaceJ3 and the nondegeneracy condition. Th
will lead to a nice understanding of the singularity properties.

It is well known that SL~2,R! is isomorphic to AdS3 , the anti-de-Sitter space in three dime
sions, which can be described as an hyperboloid in flat four dimension space, AdS35$2(X0)2

1(X1)21(X2)22(X3)2521%, the isomorphism being

g~X!5S X01X1 X21X3

X22X3 X02X1
D . ~7.17!

Ad S3 is a Lorentzian space and SO~2,2! is its isometry group. Then the space of couples of gro
elements (g1 ,g2) corresponds to the space of geodesic triangles in AdS3 with one vertex fixed to
be the identity. The adjoint action of SL~2,R! on (g1 ,g2) translates into the action of the subgrou
of SO~2,2! which fixes the identity, hence into the action of the Lorentz group SO~2,1! which
rotates the triangles. So the space of orbits is the space which describes the intrinsic geom
anti-de-Sitter triangles. Such triangles can be of four types: they can be spacelike, timelike,
degenerate~meaning that the three vertices of the triangle belong to the same geodesic!, depending
on whether they lay in a spacelike, timelike or null plane. The edges of the triangles can a
of four types: they can be timelike, spacelike, null or degenerate~meaning that the two vertices o
the edge coincide!. Unlike the SU~2! case, the invariant geometry cannot be fully characterized
the edge lengths since the length~more precisely the square length! is zero for both a null edge an
a degenerate edge. However, the following proposition 8 shows that if we restrict the sp
triangles to triangles which satisfy the conditionQÞ0 then the geometry of the triangle
uniquely determined by the lengths of its edges. The geometrical meaning of this condition
following:

Proposition 8: The conditionQ(g1 ,g2)50 is equivalent to the condition that the AdS triang
(1,g1 ,g2) is either null or degenerate. MoreoverQ(g1 ,g2),0 [respectivelyQ(g1 ,g2).0] iff the
Ad S triangle(1,g1 ,g2) is spacelike (respectively timelike).

In order to prove this proposition, we need to do some AdS geometry. It is convenient to
consider AdS space as embedded in the projective spaceR1P3, which is the space of half lines
in R4: Ad S35$(X0 :X1 :X2 :X3)PR1P3u2(X0)21(X1)21(X2)22(X3)2,0%. The advantages o
such a representation of the AdS space is to simplify the geodesic geometry of AdS. First the
geodesics of AdS are the straight lines ofR1P3. Moreover the geodesic planes of AdS3 are the
intersection of R1P3 planes with AdS, they are therefore given by linear equatio
P(Y0 :Y1 :Y2 :Y3)5$(X0 :X1 :X2 :X3)PR1P3uXiY

j50% @the indices are raised using a Lorentzi
(2,1,1,2) metric#. Thus the geodesic hyperplanes of AdS are in one to one corresponden
with points ofR1P3. Geometrically this means that all the geodesics orthogonal to a given p
meet in one point. If the planePY is spacelike thenY•Y,0 and the refocusing point is in AdS.
This corresponds to the attractive nature of negative cosmological constant where all tim
geodesics refocus in a finite proper time. If the planePY is timelike thenY•Y.0. And if the plane
PY is null thenY•Y50. Moreover, in this latter case,PY is tangent to the quadricY•Y50.

Next, we identifyR1P3 with the space of 232 matrices modulo multiplication by a positiv
scalar usingYPR1P3→g(Y) as in ~7.17!. Now let us consider the triangle (1,g1 ,g2) and sup-
pose that it is nondegenerate, i.e.,@g1 ,g2#5g1g22g2g1Þ0. Let us denote byY(g1 ,g2) theR1P3

element satisfyingg(Y(g1 ,g2))5@g1 ,g2#. It is clear thatPY(g1 ,g2) is the plane of the triangle
(1,g1 ,g2) since tr (@g1 ,g2#g)50 if g51,g1 or g2 . Then a straightforward computation show
that

Y~g1 ,g2!•Y~g1 ,g2![det~@g1 ,g2# !58Q~g1 ,g2!, ~7.18!

and leads to the conclusion of the proposition 8.
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This proposition tells us that the spaceJ3 is the space of nondegenerate and non-null triang
This space is disconnected, and has two disconnected regions depending on whether the n
the triangle is timelike or spacelike. There is no natural distinction between past and fut
Ad S3 since it is periodic in time and a timelike geodesic will come back to the initial nor
surface. Therefore we can define two Hilbert space structures, one for the functions with s
on spacelike triangles and one for the functions with support on timelike triangles, with the
product defined by the measure~7.16!. The situation is however drastically different from the o
loop case where the invariant space was also disconnected but in that case the centralize
was drastically different in both regions. In the present two petals case, we see that the cen
i.e., the group which fixes a given triangle, is trivial in both sectors. This means that there
superselection rule avoiding to construct invariant operators mapping one sector to another.
one realizes that, even when we extend the spaceJ3 to the spaceJ̃3 of all nondegenerate triangle
~allowing null cases!, the centralizer of any triangle ofJ̃3 is still trivial. Therefore we can extend
the definition of the measure toJ̃3 which is connected and there exists one unique invar
measure on this space. In other words, we see that iff(g1 ,g2) is a function with compact suppor
on J̃3 thenGf(g1 ,g2)5*f(gg1g21,gg2g21)dg is well defined for all (g1 ,g2)P J̃3 . This means
that the invariant distributions onJ3 obtained by group averaging can be extended to invar
distributions onJ̃3 . We expect the spin network functionals to be of this type and therefore
Hilbert space structure to be uniquely fixed in that case.

VIII. THE HILBERT SPACE OF SPIN NETWORKS

A. The compact group case: The Ashtekar–Lewandowski construction

The Ashtekar–Lewandowski approach consists in the use projective techniques in thecom-
pact group case to define the space of generalized connections, a space of continuous fu
upon it ~cylindrical functions! and a measure called the Ashtekar–Lewandowski~AL ! measure20

which endow this space with a Natural and difeomorphism invariant Hilbert space structur
a recent and complete review of this approach, one can look at Ref. 9.

First, we define a space of gauge invariant ‘‘connections’’ for each graphG, embedded in a
spacelike manifold.

AG5G^ E/G^ V5$@~ge1
, . . . ,geE

!#G^ V%5$$~ks(ei )
21 gei

kt(ei )
, i 51, . . .,E!,kvPG%%. ~8.1!

We define a partial ordera over the set of graphs:G1aG2 iff G1 can be obtained fromG2 by
removing edges and bivalent vertices. We then define projectionspG2G1

:AG2
→AG1

for G1aG2 , by
removing the extra edges and contracting the extra bivalents vertices:

removing the edgei ~g1 , . . . ,gi , . . . ,gE!→~g1 , . . . ,gi 21 ,gi 11 , . . . ,gE!

~8.2!
bivalent vertex between 1 and 2~g1 ,g2 , . . . ,gE!→~g1g2

e , . . . ,gE!

with e561 depending on the relative orientation ong1 andg2 .
Let us illustrate these rules with the example of the reduction of theQ graph to a single loop:

~g1 ,g2 ,g3!;~h21g1k,h21g2k,h21g3k!→~g1 ,g3!;~h21g1k,h21g3k!, ~8.3!
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~g1 ,g3!;~h21g1k,h21g3k!→G15g1g3
21;h21G1h.

Then, we can define the projective limitĀ as the set of families of elements ofAG consistent
with the projections:

Ā5$~aG!GgraphP3GAG /;G1,2,G1aG2⇒pG2G1
aG2

5aG1
%. ~8.4!

In the case of a compact groupG, the spacesAG are topological, compact and Haussdorf a
the projections are continuous, thereforeĀ with the Tychonov topology~product topology! is
compact and Haussdorf. We can now construct continuous function onĀ. We start by defining the
spaces:

C0~AG!5$ f PF~AG ,C!, f continuous%. ~8.5!

The projectionsp induce some injections between the spaces of functionsC0(AG1
) andC0(AG2

)
for G1aG2 :

i G1G2
:C0~AG1

!→C0~AG2
! ~8.6!

f~$ge%ePG1
!→f̃~$ge%ePG2

!5f~pG2G1
$ge%ePG2

!. ~8.7!

We define the following equivalence relation:

f G1
PC0~AG1

!; f G2
PC0~AG2

!⇔'G3sG1 ,G2 ,i G1G3
f G1

5 i G2G3
f G2

⇔;G3sG1 ,G2 ,i G1G3
f G1

5 i G2G3
f G2

. ~8.8!

This allows us to define the space of cylindrical functions:

Cyl~Ā!5ø
G

C0~AG!/; ~8.9!

We divide by the previous equivalence relation in order to remove the redundancies due
existence of the injections. On Cyl(Ā), we can define a norm

i@ f G#;i5 sup
xGPAG

u f G~xG!u. ~8.10!

Then the completed space is an abelianC* algebra, to which we can apply the Gelfand–Naima
theorem. It states that it is the algebra of continuous functions on a certain compact Hau
space called the Gelfand spectrum of theC* algebra. In Ref. 20, Ashtekar and Lewandows
prove that its Gelfand spectrum is simplyĀ i.e., that we have the following isomorphism:

Cyl~Ā!'C0~Ā!. ~8.11!

Choosing measuresdm (G)—the Haar measure—on the spaces of discrete connectionsAG and
checking that they are consistent with the injections

;G1aG2 ,i G1G2
dm (G2)5dm (G1) ~8.12!

we can define a measuredm—the Ashtekar–Lewandowskimeasure—onĀ by considering their
projective limit. And our final Hilbert space will beHcyl5L2(Ā,dm).
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B. An alternative: the GNS construction

An elegant way of constructing the Hilbert spaceHcyl is using the GNS~Gelfand–Naimark–
Segal! construction.24,27One considers the algebraA of all cylindrical functionsf G ~on all graphs
G! with the normal multiplication law between functions. One defines the norm sup on this
as in the previous paragraph:

i f Gi5sup
AG

u f Gu. ~8.13!

One can then completeA to a C* algebraĀ. On Ā, we define astate v—a positive linear
form—which is simply the integration:

v~ f G!5E
AG

dm (G) f G5E
SU(2)E

dg1 . . . dgE f G~g1 , . . . ,gE!, ~8.14!

v induced an inner product^ f G1
u f G2

&5v( f G1
* f G2

) remembering that the product of the two cylin

drical functions is a cylindrical function based on any graph bigger than bothG1 andG2 . We then
define the Gelfand ideal

I5$aPĀuv~a* a!50%. ~8.15!

We get a positive definite scalar product on the spaceHgns5Ā/I. And we get the physical Hilber
space by completing this space toHgns. It is straightforward to check that the equivalen
relation; is the same as defined byI so thatHgns5Hcyl .

Let us make this construction explicit using the spacesHG5L2(AG ,dm (G))5L2(AG ,dmE)
5with dm being the Haar measure on SU~2!. HG is the Hilbert space of spin networks based
the graphG. The usual basis is indeed the spin networks basis. These spin networks are labe
irreducible representationsj of SU~2! on each edge and intertwinersi for each vertex. Then, the
function is defined by taking the group elements in the edge representations and contractin
using the intertwiners.

Let us give a decomposition ofHG on which it will be easy to implement the equivalen
relation;. If an edgee of G is labeled by the representationj 50, then the corresponding spi
network function will not depend on the group elementge : it will be equal to the spin network
defined onG85G\$e% with the same labels. So we can decomposeHG into the direct sum of
Hilbert spacesH̃G8 , G8,G, of spin networks based onG8 with no trivial representationsj 50.
Furthermore, if we consider an arbitrary graphG1 ~which is not the single loop with a singl
vertex! and a graphG2 obtained by removing a bivalent vertex fromG1 , the spaceH̃G1

andH̃G2

are isomorphic using the restriction of the injectioni G2G1
to H̃G2

. This means that we can decom

poseHG as the direct sum of spacesHG8 with G8,G containing no bivalent vertex~including
loops with no vertex at all!. To sum up this, we defineG the set of all graphs andG̃ the set of all
graphs which don’t contain bivalent vertices. We have

HG5 %
G8PG̃,G8,G

~ i G8G!H̃G8 . ~8.16!

Using these new notations, we haveHgns5 % GPG̃H̃G which implements in a practical way th
nondirect sum1GPG̃HG[ % GPGHG /;.

C. The noncompact group case

Let us now assume the groupG is noncompact. The obstacle to applying the AL construct
is the noncompactness of theAG spaces. There is no problem defining the projections and in
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tions. However, the spaceĀ is noncompact and therefore we cannot obtain it as Gelfand spec
Moreover, we cannot define a normi f Gi on the spaces of continuous functionsC0(AG) so that
Cyl(Ā) does not have any norm and cannot be completed into aC* algebra. And finally, the
family of measuresdm (G) is not consistent with the partial order on the set of graphs. To s
some results of the AL approach, one could try to compactify the spacesAG or to impose some
cutoff on the group. Nevertheless, this makes it hard to deal with the gauge invariance. One
also change the definition ofC0(AG) by taking the bounded continuous functions in order
define a norm on these spaces. Nevertheless, it is not clear what would be its Gelfand sp

One promising approach would be to use the fact thatAG is an algebraic space. It ca
therefore be recovered not as a Gelfand spectrum but as an algebraic spectrum of the affine
P(AG) of polynomial function. The problem is that the union of all such affine algebras mo
; in no longer finitely generated so the usual theorems of algebraic geometry cannot be a
and it is not clear if one can define an algebraic dual of that space. But we still think that this
is worth pursuing.

Here, we choose to concentrate on defining a Hilbert space—the Hilbert space o
networks—and we do not tackle the problem of constructing it as aL2 space. Our construction
will be based on the results obtained from the GNS approach; in particular, we will not nee
projections/injections structure. The drawback of this approach is that we do not constru
space of generalized connectionsĀ. So we cannot interpret our Hilbert space as aL2 space: we
lose some aspects of the ‘‘wave function’’ interpretation. But for all practical purposes the H
space structure is all of what we need.

So, what is the structure we are left with? In the noncompact group case the trivial rep
tation j 50 is not aL2 representation. Any function not depending on a group element is cle
not normalizable. In other words the trivial representation does not appear in the decompos
L2(AG). This mean that we have built directly the spacesH̃ defined in the previous paragrap
And we build the configuration space as a direct sum of these spaces:

Hconfig5 %
GPG̃

H̃G . ~8.17!

There is a possible normalization ambiguity in the above summation.A priori, we are free to
normalize the differentH̃G spaces as we wish. This relative normalization of the Hilbert spa
can be traced down to an ambiguity in the definition of the Haar measure used to defin
measuredm (G) of each Hilbert space. In the compact case, we fix these measures to be prob
measures7 and we normalize the Haar measure such that the group gets a unit volume. This
the measures consistent with the projection structure of the Ashtekar–Lewandowski constr
In the noncompact group case, it is impossible to define such a normalization. However, lo
at the way the Haar measure comes into the definition of~3! the measures over different graph
it is natural to require that the Haar measure be normalized the same way for all measures
precisely, if we take an integrable function overG(n11)/Ad(G), we can integrate out one of it
variable using the Haar measure, and we would get an integrable function overGn/Ad(G). Then,
it is natural to require that the integrals of the two functions be equal.

This argument fixes the Haar measure up to a constant. And if we rescale the Haar mea
a factora, then the measuresdmn are to be scaled bya (n21). And we can think of the normal-
ization of the Haar measure as the choice of a scale in our physical theory.

Now the spaceHconfig defined in~8.17! does not seem to be aL2 space. Nevertheless, it carrie
some Fock space structure. In that frame, the projection/injection structure of the AL app
would be replaced by creation and annihilation operators. These would act like isometries be
the different Hilbert spacesH̃G5L2(GE/GV)5L2(GhG/Ad(G)) and could fix the normalization
ambiguity. More precisely, let’s consider an infinite graphG` , i.e., a sequence of graph
(G i) i PN ,G iPG̃ such thatG iaG i 11 and the inclusion is strict. Then the space
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FG`
5 %

i

H̃G i
, ~8.18!

looks like a Fock space where the addition of a loop would be a creation operator.
The difficulty of endowingFG`

of a Fock space structure comes from the residual Ad(G)
noncompact gauge symmetry. There exists a natural gauge fixing through the possibility of e
this remaining symmetry by considering cylindrical functions which are gauge invariant bu
single vertex of the graph. Indeed, following the gauge fixing procedure described in Sec. II
at the pointA, the space of such graph connections is simplyG^ hG and the corresponding Hilber
space of states isL2(G^ hG,dg^ hG). It is then possible to pile these spaces into a Fock spac
statesF by carefully summing over graphs. The connection states can be seen as a set o
whose base point isA ~flower around the vertexA). The creation and annihilation operators acti
as usually to go fromL2(GN) to L2(GN61) then create or destroy a loop fromA. Thus, from this
point of view, F represents the fluctuations of the connection around the pointA. Then, what
about the gauge invariance at the pointA? Imposing it directly onF leads to divergence problems
Nevertheless, instead of imposing gauge invariance, we could place ourself at the pointA and
ignore the gauge invariance but instead impose that the considered states transform nicely uG
and belong to a given representation of the groupG. However this means introducing by hand
the theory an observer at the pointA, represented by the chosen representation. And in the pre
work, we prefer to tackle the issue of considering fully gauge invariant functionals and stud
sum of the spacesL2(G^ hG/Ad(G)).

D. Towards a Fock space for the space of connections

We are interested by gluing togetherL2(Gn/Ad(G)) spaces. An useful analogy is interpretin
these spaces as state spaces of particles living on the groupG.28 Indeed,L2(Gn,(dg)n)—dg is the
Haar measure onG—is the space corresponding to a free particle living on the groupGn or
equivalentlyn free particles living on the groupG. Its action evaluated on a functiong(t):R
→Gn is

Sfree5
1

2 E dt Tr~~g21] tg!2!. ~8.19!

One can check this action is invariant under~constant! left and right multiplication inGn. We can
do the Hamiltonian analysis of this system and the phase space is the tangent bundle of th
G. The equation of motion is

] t~g21] tg!50. ~8.20!

We choosep ( l )5g21] tg as momentum~instead of the canonical momentum!, it is the Noether
charge associated to the left invariance. The solutions are then parametrized as

g~ t,g0!5g0 exp~p ( l )t !. ~8.21!

We could also choose the right momentum defined byp (r )52] tgg21 and then the solutions
would be

g~ t,g0!5exp~2p (r )t !g0 ~8.22!

which are the geodesics.
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The Poisson bracket reads

$g,ĝ%50,

$g,pX
( l )%5Xg, ~8.23!

$pX
( l ) ,pY

( l )%5p [X,Y]
( l ) ,

whereg, ĝ are group elements,X, Y are in the Lie algebra, andpX
( l )5Tr(Xp ( l )) is the component

of p ( l ) in the X direction.
One can create a Fock space for the free particles states

F5 %
n>0

L2~Gn!. ~8.24!

We can construct creation operatorsaw
† and annihilation operatorsaw which are adding or remov

ing a one particle state to a~symmetrized! n particle state—let us call itc :

~awc!~g1 ,g2 , . . . ,gn21!5E dgnc~g1 ,g2 , . . . ,gn!w̄~gn!, ~8.25!

~aw
†c!~g1 ,g2 , . . . ,gn11!5(

i
c~g1 , . . . ,gi 21 ,gi 11 , . . . ,gn!w~gi !. ~8.26!

We can also write a~free! field theory corresponding to this Fock space. Indeed, let us de
a field operatorF(g)5adg

, F†(g)5adg

† , wheredg denote the Dirac delta function supported

g. Then, the action of the total impulsion operator on the Hilbert space ofN particles can be
written in terms of the field operators( i 51

N pX
i ( l /r )5*Gdg F†(g)(2 i¹X

( l /r ))F(g), where ¹X
( l /r )

denote the left or right invariant derivative operator in the direction ofX. In the same way the
Hamiltonian operator can be written as

H52E
G

dg F†~g!DF~g!, ~8.27!

and the action governing the quantization and the dynamic of the field is expressed in term
space–time fieldF(t,g):

S@F~ t,g!#5E
R3G

dt dgF†~g!S i
]

]t
1D DF~g!. ~8.28!

We now wish to follow the same steps for gauged particles, i.e., in the case that we gau
global Ad(G) symmetry. This can be achieved by introducing a gauge fieldsA living in the Lie
algebraG, and the action reads~we have slightly modified the action given in Ref. 28!:

Sgauged@g~ t !PGn,A#52
1

2 E dt Tr~~g21] tg!2!

1E dt Tr~~g] tg
21!A1A~g21] tg!1gAg21A2A2!. ~8.29!

This action is invariant under the following Ad(G) gauge invariance for arbitraryG-valuedh(t):

g→hgh21

~8.30!
A→hAh211h] th

21
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The space of states of our system will beL2(Gn/Ad(G)). For these gauged particles, we wou
like to do the same thing as for the free particles, i.e., write down creation and annihi
operators and a corresponding field theory. The problem is the change of symmetry: the sym
in L2(Gn/Ad(G)) is a global symmetry Ad(G) on the system ofn particles and it is hard to hav
a Fock space interpretation. An analogy would be to study a system ofN particles in space–time
which would be invariant under global Poincare´ transformations.

The easiest way to write creation and annihilation operators would be through gauge
Starting from a graphG and going through the gauge fixing procedure, we have seen that the
L2(AG) is naturally isomorphic toL2(Gn). Therefore the space associated with an infinite grap
similar Fock space. And in this context creation and annihilation operators are adding or rem
a loop to the graph. We feel that it will be interesting to have a deeper understanding of this
and of the field theory behind this. Note that the action of the field theory behind the ga
particle is obtain by introducing a gauge fieldA(t) and a term to the action~8.28!:

E dt dg A~ t !~¹ ( l )2¹ (r )!F~g,t !. ~8.31!

IX. CONCLUSION

In this paper, we have defined the notion of Spin network states for noncompact red
groups. We have shown how to construct the quotient space of graph connections as the a
dual of a polynomial algebra. We have also constructed, by a careful gauge fixing proced
canonical measure on this space which turned out to be independent of any gauge fixing c
This measure defines a Hilbert space structure for each graph, and spin networks states are
as generalized eigenvectors of invariant, hermitic differential operators. We have explicitly
ized all these ideas in the context of SL~2,R! and SL~2,C! by a direct analysis of the quotient spa
and measure in the simplest cases. Finally we have discussed the nature of the full Hilber
based on all graphs and we have shown that a natural Fock structure appears in this cont

The work we have done is the first step toward a full comprehension of noncompac
networks, i.e., identical to the one we have for the compact ones. As we have stressed in ou
an understanding of the full Hilbert space as anL2 space is still missing. We expect that th
should come together with an interpretation of the full space of gauged connections as an al
dual. Also, a more detailed and explicit study of the space of spin networks would be inter
to pursue in order to reach a deeper understanding of their analytic properties, in the spirit
work of Harish–Chandra on characters of noncompact groups. Finally, we feel that the Fock
structure which is emerging in our construction is something important that should be p
firmer basis. Nevertheless, this work opens the possibility to study the Hilbert spaces of no
pact spin networks that arises in Lorentzian formulations of gravity and allows us to discu
spectra of geometrical operators in this context.12
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An operator method for finding exact solutions to vector
Korteweg–de Vries equations

Sen-Zhong Huanga)

Fachbereich Mathematik, Universita¨t Rostock,
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We develop an operator method which helps finding exact solutions to nonlinear
evolution equations~NLEs!. Our working schema goes as follows: First we trans-
late the given~NLE! into an appropriate operator version~ONLE!. Second, we look
for solutions to~ONLE! of the form U5(I 1L)21M , where bothL and M are
operator-valued functions of the space–time variables and the range ofM locates in
some appropriate Banach algebras which admits a functionalf that preserves the
squares@i.e., f(A2)5f(A)2]. Finally, a solutionu of the given ~NLE! can be
obtained by settinguªf(U). This method is named by the LM method. Using the
LM method, we have rederived the famous Cole–Hopf transformation which re-
duces the nonlinear Burgers equation into the linear heat equation. The main part of
this article is to use the LM method to study the vector Korteweg–de Vries~KdV!
equationsut5uxxx13(u2)x settled in finite-dimensional unital Banach algebrasJ.
It is shown that these vector KdV equations admit soliton solutions. Specially, we
have carried out a thorough study of the quaternionic KdV equation~i.e., the vector
KdV equation settled in the Hamilton quaternion algebraH! and shown many
interesting and surprising aspects of the quaternionic KdV solitons. Two of them
read as follows.~a! The paradoxical energy symmetry breaking phenomenon: Two
quaternionic KdV solitons with different energies can annihilate each other.~b! The
surprising low-dimensional phenomenon: The interaction of any finitely many
quaternionic KdV solitons which live in a unital three-dimensional subspaceP of
H does not yield any effect to the part outside that subspaceP and thus their
interaction behaves as if it were linear although the interaction between quater-
nionic KdV solitons is really nonlinear. The LM method can be thought as a
complement to the famous bilinear operator method of Hirota. Hirota’s method
works very powerful for solving scalar equation but has difficulty with vector
equations. The LM method helps overcoming this difficulty. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1544414#

I. THE METHODOLOGY AND OVERVIEW OF THE RESULTS

We are given the following nonlinear evolution equation:

~NLE! ut5L~u,ux ,uxx , . . . !1N~u,ux ,uxx , . . . !,xPR,tPR,

whereL(u,ux ,uxx , . . . ) is thelinear part andN(u,ux ,uxx , . . . ) thenonlinear part of the equa
tion. Our working scheme for finding exact solutions of NLE consists of four steps.

~1! First we interpret the NLE in an appropriate operator version, i.e., for an approp
Banach algebraA we will solve the corresponding operator-valued equation

~ONLE! Ut5L~U,Ux , . . . !1N~U,Ux , . . . !,xPR,tPR, U~x,t !PA.

a!Electronic mail: huang@hades.math.uni-rostock.de
13570022-2488/2003/44(3)/1357/32/$20.00 © 2003 American Institute of Physics
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Because of the noncommutativity of operators the product of scalar functions such asuux could be
interpreted asUUx or UxU or the combination (UUx1UxU)/2 as operator product. Hence, th
NLE can be interpreted in general in different ways and thus one should choose carefully
them that is suitable to solve. Moreover, if the absolute valueuuu2 appears in the NLE, then th
Banach algebraA should be also aC* algebra so that the absolute valueuuu2 can be interpreted
as either the productUU* or U* U or combinations of them.

The Banach algebras, that we will use frequently, are thoseL~E! generated by all linear
bounded operators on Banach spacesE.

~2! Let M be an operator-valued function solving the linearized equation of ONLE, i.eM
solves

Mt5L~M !,xPR,tPR, M ~x,t !PA.

~3! We search an operator-valued functionL such thatUª(11L)21M solves the ONLE. The
functionL will be coupled with the functionM and solves sometimes also the linearized equa
of ONLE.

~4! To recover scalar solutions from solutionsU of ONLE, the following trace method~TM!
will be used.

~TM! Assume that there exists ajPE8 and anE-valued functionh such that all of the
operatorsU(x,t) can be written asU(x,t)5j ^ h(x,t). Using the trace functional tr and settin
uªtr(U) we will obtain a solution of the NLE, since the trace functional obeys the follow
elementary but important property.

Lemma 1.1: LetE be a Banach space andjPE8. Denote byj ^ E the set consisting of al
operatorsj ^ a (aPE). Then, j ^ E is a closed subalgebra ofL~E! and the trace functionaltr is an
algebraic homomorphism fromj ^ E into C, i.e.,

tr~j ^ a•j ^ b!5tr~j ^ a!•tr~j ^ b!, a,bPE.

Proof: We havej ^ a•j ^ b5^j,b&j ^ a5tr(j ^ b)•(j ^ a). This implies thatj ^ E is a sub-
algebra ofL~E! as well as the multiplicative property of the trace tr inj ^ E. h

The above lemma implies in particular that for an operator-valued functionU given by U
5j ^ h(x) for some fixedj there holds

tr~~]x
j U !•~]x

kU !!5~ tr~]x
j U !!•~ tr~]x

kU !! ~ j ,k50,1,2, . . .!.

This observation enables one to freely interpret the productuux of functions asUUx or UxU or
the combination (UUx1UxU)/2 in the sense of operator product. Sometimes an approp
choice of the interpretations will make the equation solvable.

It follows from the general theory of linear PDE’s that the generic solutions of the linear
equationPt5L(P) of ONLE are performed by appropriate linear operators, i.e.,Px5AP and
Pt5BP. Therefore, the following observation will be very useful.

Lemma 1.2: Let J be an open interval inR and E be a Banach space. Assume L,M :J
→L(E) to be two C` operator valued functions such that for some fixed closed, densely de
operator A inE there holds

Lx5AL, Mx5AM, xPJ.

Let

Vª$xPJ:I 1L~x! is invertible%

and define onV the function Uª(I 1L)21M . Then,

~ I 1L !Ux5AU, ~ I 1L !Uxx5A~ I 2L !Ux ,
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~ I 1L !Uxxx53AUxx2A2~2I 2L !Ux .

In general, each of the x-derivatives U(n)[]x
nU can be written as a product of some appropria

linear operator Tn with U. More precisely, U (n)5TnU and the class of linear operators(Tn)n>1

obeys the following recursion formula:

T15~ I 1L !21A, Tn115~Tn!x1TnT1 ~n>1!.

Proof: Taking x-derivatives in both sides of the equality (I 1L)U5M and using the Leibniz
rule. h

It is suggested by this observation that if higher order derivatives in the NLE are involved
the similarity

Lx5AL, Mx5AM as well asLt5BL, Mx5BM

should be verified in order to simplify the computation of higher order derivatives of the pro
U5(I 1L)21M . Moreover, the common factorU in the representations of derivatives can
extracted and finally eliminated.

Since the searched solutionsU for ONLE has the representationU5(I 1L)21M , we will
name the above method the LM method. Correspondingly, an NLE which can be solved b
method will be called an LM-solvable equation. As illustrated above, the solutions of an
solvable NLE admit the following very important superposition property: Ifu1 ,u2 are solutions of
the NLE generated by the pair (L1 ,M1) and (L2 ,M2), respectively, then the pair (L11L2 ,M1

1M2) will generate a solutionu for NLE that describes the interaction of the two solutionsu1 and
u2 . Thus, ifu is a solution generated by the pair (L,M ), then the interaction ofu and the solution
û generated by the counterpart (2L,2M ) of (L,M ) is described by the solution generated by t
pair (L2L,M2M )5(0,0) which is just the vacuum solution 0. In other words,û andu annihilate
each other. In particular, ifu is a soliton then the counterpartû should be understood as a
antisoliton.

Certainly, the chance of success in applying the LM method heavily depends on the s
structure of the ONLE. Therefore, in translating a scalar nonlinear evolution equation in
operator nonlinear equation one should measure, as the first thing of all, the degree of nonli
~DNL! of each term involved. Roughly speaking, ifU5(I 1L)21M , then the DNL ofU is 21,
since the only nonlinear term in the product is (I 1L)21. In general, the DNL of thenth order
derivative of U is 2(n11). We note that the DNL ofUt is 22. Therefore, the following
compatibility for the degree of the nonlinearity~C4DNL! should be followed in principle, in orde
to find an appropriate operator version of NLE that is solvable by the LM method.

~C4DNL! The total DNL of the terms in the right-hand side of the OLNE should be22.
Further contents of the paper are organized as follows. In Sec. II we begin to illustrate th

method with the Burgers equation, there the well-known Cole–Hopf transformation will b
derived in a natural way by appealing to the LM method. In Sec. III we show how the LM me
can be used to solve the usual scalar KdV equation. As a by-product, solution formula for op
KdV equation~OKDV! has been found. It reveals what one should do in finding solutions o
KdV equation is to solve the operator equationGL1LG5M . The starting point of Sec. IV is to
translate the vector KdV equation

ut2uxxx23~uu!x50, uPJ ~1.1!

settled in a unital Banach algebraJ into an appropriate operator form. The price paid by the L
method is the solvability of equations~1.1!, i.e., it can be solved by a linearization process. In S
V we concentrate on the concrete caseJ5H, i.e., on the vector KdV equation settled in th
Hamilton quaternionic algebraH. Such a consideration is stimulated by the work ofquaternionic
quantum mechanics.3 Our study of the quaternionic KdV equation provides a prototype for
further study of other quaternionic soliton equations.
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Using the LM method we show that the quaternionic KdV equation is a soliton equa
interaction of two solitary wave solutions has been described in an explicit way. Our result re
that the structure of solitary wave solutions of the quaternionic KdV equation is much richer
the ones for the real and complex KdV equations. In particular, we discover the following
dimensional linear phenomenon of the interaction of the quaternionic KdV solitons: the intera
of any finitely many quaternionic KdV solitons which live in a unital three-dimensional subs
does not yield any effect outside that three-dimensional subspace and thus their interact
haves as if it were linear although the interaction between quaternionic KdV solitons is
nonlinear. We find also, as a by-product, a noncommutative soliton system of three comp
which is the reduction from the quaternionic KdV equation by switching one of the vector
into zero. The remarkable aspect of this new noncommutative soliton system is that it can
derived from a vector KdV equation of the form~1.1! by choosing some appropriate thre
dimensional unital Banach algebraJ, since any three-dimensional unital Banach algebra is c
mutative.

The LM method should be considered as a solution method for general nonlinear equ
although here we have only described its working scheme for nonlinear evolution equatio
Burgers/KdV type. Moreover, the LM method can be thought also as a complement to the fa
bilinear operator method of Hirota.11 Hirota’s method works very powerful for solving scala
equation~cf. Refs. 1, 5, 8, and 17! but has difficulty with vector equations. As seen above, the
method may help to overcome this difficulty.

Related results to the LM method can be found in the works of Aden and Carl,2 Carl and
Huang6 for the scalar KdV equation, and of Schiebold18 for the scalar Toda lattice equation.

We remark that the vector KdV equation~1.1! can be reduced from a symmetry reduction
ordinary self-dual Yang–Mills equations with supergauge groups, see, e.g., Ref. 12. We re
reader to Refs. 21, 16, 14, 15, and 1 for more information on the physical origin and the
ematical studies of the scalar KdV equations and to Ref. 7~cf. also Ref. 8! for a detailed study of
the vector KdV equations in the context of Lie symmetries.

II. THE STARTING POINT: BURGERS EQUATION AND COLE–HOPF TRANSFORMATION

As a first test of the LM method we consider Burgers equation,

~BE! ut2uxx22uux50.

By letting u5vx we obtain the corresponding potential Burgers equation,

~PBE! v t2vxx2vx
250.

However, the DNL of the termvxx1vx
2 is dominated by the DNL of the termvx

2 , which is 24.
According to C4DNL, the PBE cannot be solved by the LM method. On the other hand, the
of the termuxx12uux is the same as that of the termut . Therefore, a successful use of the L
method could be expected.

The operator version of the productuux can be taken as eitherUUx or UxU, i.e., we can
interpret BE in two ways

~OBE! Ut2Uxx22UUx50

and

~OBE8! Ut2Uxx22UxU50.

The solutions of (OBE8) can be obtained by taking adjoints of solutions of OBE, i.e., ifU solves
OBE, thenU8 solvesOBE8, andvice versa.

According to this observation, for a given Banach spaceE we need only to solve OBE
Starting with two smooth operator-valued functionsL andM we considerUª(I 1L)21M . Then
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~ I 1L !Ux5Mx2LxU, ~ I 1L !Uxx5Mxx2LxxU22LxUx .

Similarly,

~ I 1L !Ut5Mt2LtU.

AssumeU solves OBE, i.e.,

~ I 1L !~Ut2Uxx22UUx!50. ~2.1!

Substituting the above relations into~2.1! and rearranging the terms yields

~Mt2Mxx!2~Lt2Lxx!U12~Lx2M !Ux50.

Therefore, the functionsL andM are expected to satisfy the following equations:

Lt2Lxx50, Mt2Mxx50, Lx2M50.

Solving them yieldsM5Lx and thatL satisfies the operator heat equation

Lt2Lxx50. ~2.2!

In conclusion,U5(I 1L)21Lx solves OBE wheneverL solves~2.2!.
To extract scalar solutions for BE we use the trace method. For this purpose we assum

the solutionL of ~2.2! is given by

L~x,t !5j ^ l ~x,t !,

wherejPE8 is fixed and the functionl solves theE valued heat equation

l t2 l xx50. ~2.3!

In this case, the scalar functionuªtr(U)5^j,(I 1j ^ l )21l x& which can be rewritten as

u5fx /f with fª11^j,l &, ~2.4!

solves the Burgers equation~BE!. Note that the scalar functionf solves the heat equation

f t2fxx50. ~2.48!

Summing up, we have just recovered the well-known Cole–Hopf transformation~2.4! which
reduces the viscid Burgers equation to the linear heat equation (2.48). We refer the reader to the
work of Gesztesy and Holden9 for a new review and extensions of the Cole–Hopf transformat

By settling the operator equation~OBE! in appropriate Banach algebras the above proced
will produce solutions to vector equationsut2uxx22uux50 of Burgers type. However, in this
paper we shall concentrate on the vector KdV equations.

III. KdV EQUATION AND OPERATOR EQUATION GL¿LGÄM

The Korteweg–de Vries~KdV! equation which we shall consider has the form

~KdV! ut2uxxx26uux50.

By letting u5vx we obtain the corresponding potential KdV equation,

~PKdV! v t2vxxx23~vx!
250.
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On the one hand, the DNL of the termuxxx16uux is dominated by the DNL of the termuxxx ,
which is 24. According to C4DNL, the KdV cannot be solved directly by the LM method.

On the other hand, the DNL of the termvxxx13vx
2 could be reduced to22 by the interaction

of the linear termvxxx with the nonlinear termvx
2 . Therefore, it is valuable to try to solve PKdV

with the LM method.
The operator version of PKdV is the same one, i.e.,

~OPKdV! Vt2Vxxx23~Vx!
250.

Let L andM be twoL~E!-valued solutions of the linearized equation of OPKdV, i.e.,

Mt2Mxxx50, Lt2Lxxx50. ~3.1!

For Vª(I 1L)21M we have

Mt5~ I 1L !Vt1LtV,

Mxxx5~ I 1L !Vxxx13LxVxx13LxxVx1LxxxV.

It follows that

~ I 1L !~Vt2Vxxx!53~LxVxx1LxxVx!.

Therefore, ifV solves OPKdV, then 3(LxVxx1LxxVx)53(I 1L)Vx
2 , i.e.,

~LxVxx1LxxVx!5~Mx2LxV!Vx , ~3.2!

since (I 1L)Vx5Mx2LxV.
A known fact is that theL~E!-valued solutions of the linear evolution equationNt2Nxxx

50 are performed by operators in the Banach spaceE, i.e., they are given by the relationNx

5GN with some appropriate densely defined, closed operatorsG in the Banach spaceE. For this
reason, we assume

Lx5GL, Mx5GM ~3.3!

with some appropriate densely defined, closed operatorG in the Banach spaceE. Then, ~3.2!
becomes

~GLVxx1G2LVx!5~GM2GLV!Vx .

Killing G yields

~LVxx1GLVx!5~M2LV!Vx .

Multiplying both sides byI 1L and using

~ I 1L !~M2LV!5~ I 1L !V5M ,

~ I 1L !Vxx5Mxx22LxVx2LxxV5G~ I 2L !Vx,

we obtain

@LG~ I 2L !1~ I 1L !GL#Vx5MVx .

Killing Vx yields

M5GL1LG. ~3.4!
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In conclusion, the following result has been established: TheL~E!-valued functionV5(I
1L)21M solves OPKdV wheneverL andM satisfy~3.1! and~3.3! and are coupled by the relatio
~3.4!.

It follows that if M can be written asM (x,t)5j ^ m(x,t) for some fixedjPE8, then a scalar
solutionu of the KdV equation will be extracted throughu5tr(V)x . Furthermore, if the operato
X which solves the operator equationGX1XG5j ^ a belongs to a quasi-Banach idealY that
admits a continuous determinant detl , then the solutionu can be represented by~see Refs. 2 or 6!

u~x,t !52~ ln w~x,t !!xx with w~x,t !5detl~ I 1L !.

As an illustration of this method, we takeG to be anN3N matrix such thatG and2G have
no eigenvalues in common. Then, it is well known~see e.g., Ref. 13, p. 414 or Ref. 6! that for each
N3N matrix C the matrix equationGX1XG5C has a unique solution. In particular, we takeC
to be anN3N matrix of rank 1 and letX be the unique solution of the matrix equationGX
1XG5C. Define

L~x,t !ªexG1tG3
X, MªexG1tG3

C.

Then,L andM are solutions of Eqs.~3.1!, ~3.3!, and~3.4!. By letting

w~x,t !ªdet~ I 1L~x,t !!, ~x,t !PR2

we find from the above result thatu(x,t)ª2(lnw(x,t))xx solves the KdV equation in the domai
wherew(x,t) does not vanish. The usualN-soliton solution can be obtained in this way by takin
a diagonal matrixG. More results can be found in recent work.6

IV. SOLVING VECTOR KdV EQUATIONS BY LM METHOD

In the sequelJ denotes a unital real Banach algebra of finite dimensiondªdim(J),`, with
unit I J . The vector KdV equation inJ has the form

ut2uxxx23~uu!x50, uPJ. ~4.1a!

The solutions

u:R2{~x,t !→u~x,t !PJ ~4.1b!

areJ-valued smooth functions. We call~4.1a! the J-KdV equation.

A. Nonlinear systems equivalent to J-KdV equations

If we choose a basis$e1 , . . . ,ed% of the finite-dimensional algebraJ, then there exist coef-
ficients (ci jk),R such that the products of the base elements are given by

eiej5 (
m51

d

ci jmem ~ i , j 51,2,. . . ,d!. ~4.2a!

Moreover, the associativity (eiej )ek5ei(ejek) yields the following relation of these coefficient

(
m51

d

ci jmcmkl5 (
m51

d

cjkmciml ~ i , j ,k,l 51,2,. . . ,d!. ~4.2b!

We write a solutionu of ~4.1a! in its components form

u5(
j 51

d

ujej ~4.2c!
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and substitute it into~4.1a!, using ~4.2a! to develop the productuu, we obtain the following
nonlinear system:

~uk! t5~uk!xxx13 (
1< i , j <d

ci jk~uiuj !x , k51,2,. . . ,d. ~4.2d!

We remark that the relation~4.2b! for the coefficients is also sufficient for a nonlinear system
the form ~4.2d! being equivalent to a vector KdV equation~4.1a! settled in some appropriat
Banach algebraJ. To see this, we assume~4.2b! and define by~4.2a! the products of the classi
base elements$e1 , . . . ,ed% of the Euclid spaceRd. ThenRd under this product rule becomes to b
an associative algebra and thus a Banach algebra. In this way, the given system~4.2d! is equiva-
lent to the vector KdV equation~4.1a! settled inJ5Rd with the above defined product rule.

Clearly, only those nonlinear systems~4.2d! generated by noncommutative algebrasJ are of
great interest. All noncommutative unital Banach algebras have dimension at least four. Th
two noncommutative four-dimensional unital Banach algebras are the matrix algebraM2(R) and
the Hamilton quaternion algebraH; both of them belong to the class of the so-calledClifford
algebras.19 The four-dimensional vector KdV equation settled onH, called thequaternionic KdV
equation, has many very interesting properties, see Sec. V.

B. J-Banach spaces

A J-banach spaceE is a Banach space over the unital Banach algebraJ, i.e., it is a real
Banach space with the additional property that the product operation

J3E{~a,u!°auPE
has been defined and satisfies the associativity

b~au!5~ba!u ;a,bPJ,uPE.

We say that a mappingS:E→E1 between twoJ-Banach spaces isJ-linear if it is a real-linear
mapping such that

S~au!5a~Su! ;aPJ,uPE.

J-Banach spaces can be constructed from the usual real Banach spaces as follows. We ta
Banach spaceE0 and consider the algebraic tensor productJ^ E0 . SinceJ is of finite dimension
d, J^ E0 is a Banach space isomorphic to the product spaceE 0

d . We define a product rule by

a~b ^ u!ª~ab! ^ u ~a,bPJ,uPE0!.

Then we have aJ-linear spaceJ^ E0 . As examples, we haveJ^ Rn5J n andJ^ Cn5(J n)C the
complexification of the product spaceJ n.

A linear bounded operatorT:E1→E2 between two real Banach spaces can be extended
J-linear bounded operatorT̃:J^ E1→J^ E2 by setting

T̃~b ^ u!ªb ^ ~Tu! ~bPJ,uPE1!.

We call T̃ the J-extensionof T.
The generally used notations for the usual Banach spaces adopt their extensions

J-Banach spaces. For example, the dual spaceE8 of a J-Banach spaceE is theJ-Banach space
consisting of allJ-linear continuous functionals onE. Similarly, L~E! is used to denote the spac
of all J-linear bounded operators on aJ-Banach spaceE. L~E! is also aJ-algebra. As usual, the
tensor productj ^ h with jPE8 andhPE denotes the operator defined by
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j ^ h~u!ª^j,u&h ~uPE!. ~4.3a!

Correspondingly, an operatorSPL(E) is called arank one operatorif S5j ^ h for somejPE8
andhPE.

As seen in Sec. III, the notion ‘‘trace’’ defined for real-linear rank one operators play
important role in finding exact solutions of the scalar KdV equation. Encouraged by this su
in finding exact solutions to theJ-KdV equation~4.1a! we are hoping certainly that analogies
the notion ‘‘trace’’ will work in a similar way. Because we are working in general with a n
commutative Banach algebraJ, it remains a question as to whether the ‘‘trace’’ of aJ-linear
operator could be defined and how. Naively, one might define the trace of a rank one opeS
5j ^ h by trace(S)5^j,h&. However, the following observation reveals that this is not w
defined if we are working in a noncommutative Banach algebraJ. We consider the easiest cas
E5J and letj0PJ8 be the functional given by

j0~u!ªu ~uPJ!.

For two elementsh1 ,h2PJ we consider the operatorS:J→J given by

Suªu~h2h1! ;uPJ.

On the one hand, sinceSu5j0(u)(h2h1), we see thatS is a rank one operator and can b
represented asS5j0^ (h2h1). On the other hand, by considering the functionalj1PJ8 given by
j1(u)ªuh2 (uPJ) we find thatSu5j1(u)h1 and thusS5j1^ h1 . Therefore, the rank one
operatorS admits the following representations:

S5j0^ ~h2h1!5j1^ h1 .

We have

^j0 ,~h2h1!&5h2h1 and ^j1 ,h1&5h1h2 .

Thus, if h1 ,h2 are not commutative, then

^j0 ,~h2h1!&5h2h1Þh1h25^j1 ,h1&.

Consequently, if the Banach algebraJ is noncommutative, then there does not exist a nontri
extension of the notion trace which is defined for all rank one operators over the easiestJ-Banach
spaceE5J!

This nonexistence forces us to correct our goal. For this purpose, We take a fixedjPE8 and
usej ^ E to denote the set of all rank one operators of the formj ^ h with somehPE. It follows
from the propertyS(j ^ h)5j ^ (Sh) that j ^ E is a left ideal of theJ-Banach algebraL~E!. We
consider theJ-linear operator trj :j ^ E→J given by

trj~A!ª^j,h& for A5j ^ hPj ^ E. ~4.3a!

Note that here we have marked trj with the suffixj in order to stress its restriction that it is on
defined on the left idealj ^ E.

Now, since (j ^ h1)(h ^ h2)5j ^ (^j,h2&h1) for all h1 ,h2PE, we find that trj is an antiho-
momorphism, i.e.,

trj~AB!5trj~B!•trj~A! ;A,BPj ^ E. ~4.3b!

In particular,

trj~A2!5trj~A!2 ;APj ^ E. ~4.3c!
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As seen later, all what we need for finding exact solutions of theJ-KdV equation is just only the
property that trj is an antihomomorphism.

C. Solutions of J-KdV equations

Let E be aJ-Banach space and fix an elementjPE8. As seen above, the functional

trj :j ^ E→J
defined by~4.3a! is an antihomomorphism on the left idealj ^ E of L~E!.

In the J-Banach algebraj ^ E, the operator version of~4.1a! in its potential form reads as

Vt2Vxxx23~Vx!
250. ~4.4!

Following the result in Sec. III we assume thatL, M are solutions of the corresponding lineariz
equation which are realized by an operatorGPL(E), i.e.,

Lx5GL, Lt5G3L, LPL~E!, ~4.5a!

Mx5GM, Mt5G3M , MPj ^ E, ~4.5b!

and the couple relation

GL1LG5M . ~4.5c!

Note that the solutions forM are searched in the left idealj ^ E while the solutions forL should
be found in general in the bigger spaceL~E!.

The solution of~4.4! is given by

V5~ I 1L !21M ~4.6a!

and thusUªVx solves the following operator KdV equation:

Ut2Uxxx23~UU !x50. ~4.6b!

Let

uªtrj~U !5trj~V!x . ~4.6c!

Then an application of the antihomomorphism trj to both sides of~4.6b! yields thatu is a solution
of the J-KdV equation~4.1a!.

Again, this approach has also reduced a nonlinear problem~4.1a! of KdV type into a process
of solving linear equations~4.5a!–~4.5c!.

To find a more transparent representation for the solutions given in~4.6c!, we impose the
following spectral condition on the generatorG:

0¹Sp~G!1Sp~G!, ~4.7a!

where Sp(G) denotes the spectrum ofG. It is known~cf. Refs. 4 and 6! that~4.7a! guarantees tha
the operator equationGA1AG5B has a unique solutionAPL(E) for each given operatorB
PL(E).

We take the following solutions ofM :

M ~x,t !5exG1tG3
Y with some YPj ^ E. ~4.7b!

Then the solution of the operator equationGL1LG5M has the form
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L~x,t !5exG1tG3
X, ~4.7c!

whereXPL(E) is uniquely determined by the operator equation

GX1XG5Y. ~4.7d!

As seen before, the solvability of the operator equation~4.7d! is guaranteed by the spectr
condition ~4.7a!. Thus, each elementYPj ^ E has generated a solution of theJ-KdV equation
~4.1a!. We denote this solution asu@G,Y#, i.e.,

u@G,Y#ªtrj~~ I E1exG1tG3
X!21exG1tG3

Y!x , ~4.8a!

in order to indicate its dependence on the generatorG and the given elementYPj ^ E. In the
practical computation we use the following equivalent form of~4.8a!:

u@G,Y#5trj~~e2xG2tG3
1X!21Y!x . ~4.8a8!

According to the above construction, in the following context we shall call the triple

$E,G,j%

a solving process. That is, hereE is a J-Banach space,G a boundedJ-linear operator onE
satisfying the spectral condition~4.7a!, andj an element in the dual spaceE8.

The vacuum solution is obtained by switching the rank one operatorY into zero, i.e.,

u@G,0#[0. ~4.8b!

Sincej ^ E is a Banach space, the sumY1Z of Y,ZPj ^ E belongs again toj ^ E and thus defines
a solutionu@G,Y1Z#. Since the two old solutionsu@G,Y# andu@G,Z# are the result of switching
Z andY into zero, respectively, the new solutionu@G,Y1Z# describes the interaction between t
two old ones and hence it is the result of joining the two old solutions. In notation, we hav

u@G,Y#qu@G,Z#5u@G,Y1Z#, Y,ZPj ^ E ~4.9!

or say that the ‘‘q’’ defines an operation between solutions.
The ‘‘q’’ operation has richer properties. We give some of them.

1. Existence of annihilator

It follows from the definition combining with the property~4.8b! that

u@G,Y#qu@G,2Y#5u@G,Y1~2Y!#5u@G,0#[0.

Equivalently,

u@G,Y#qu@G,2Y#[0.

This means, the solutionsu@G,Y# andu@G,2Y# annihilate each other.

2. Generating new solutions by prolongation

Given are two solving processes$E1 ,H1 ,j1% and $E2 ,H2 ,j2%. Under appropriate additiona
spectral conditions we shall construct a new solving process, namely, the so-called direct

$E1 ,H1 ,j1% % $E2 ,H2 ,j2%[$E1% E2 ,H1% H2 ,j1% j2%.

We set

EªE1% E2 , HªH1% H2PL~E!, jªj1% j2PE8.
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The following identifications

E1>E1% 02 , E2>01% E2

prolongate vectors inE1 andE2 as vectors in the direct sumE. Here,0i is the zero vector ofEi .
More precisely, a vectorh1PE1 is identified with the vectorh1% 02 . Similarly, a vectorh2PE2 is
identified with the vector01% h2 in E. In this way, bothE1 andE2 are identified as subspaces ofE.
Moreover, the antihomomorphism trj :j ^ E→J extends both antihomomorphisms trj j

:j j ^ Ej

→J ( j 51,2) in the sense that

trj~j ^ h j !5^j j ,h j&5trj j
~j j ^ h j ! for all h jPEj .

We have Sp(H1% H2)5Sp(H1)øSp(H2). Therefore, the spectral condition~4.7a! for H
5H1% H2 is equivalent to the following:

0¹$l1m:l,mPSp~H1!øSp~H2!%. ~4.10!

Consequently,

$E,H,j%[$E1% E2 ,H1% H2 ,j1% j2%

gives a solving process whenever the additional spectral condition~4.10! is satisfied.
Now we assume~4.10!. For each pair (h1 ,h2)PE1^ E2 we have two solutionssjªu@H j ,j j

^ h j # ( j 51,2) of the J-KdV equation ~4.1a!. Moreover, for hªh1% h2PE we have also a
solutionsªu@H1% H2 ,j ^ h# which can be rewritten as

u@H1% H2 ,j ^ h#5u@H1% H2 ,Y11Y2#

with

Yjªj ^ h jPj ^ Ej ~ j 51,2!.

Note that each rank one operatorYj generates a solution

Sjªu@H1% H2 ,Yj # ~ j 51,2!.

As interpreted before, the new solutions is just the result of joining the two solutionsS1 andS2

together, i.e.,

S1qS25s. ~4.11a!

We want to show that the solutionsS1 ,S2 are nothing but the old oness1 ,s2 and thuss describes
the interaction of the two old solutions. Hence, we can extend the ‘‘q’’ operation given in~4.9! to
any solutions and denote it by

u@H1 ,j1^ h1#qu@H2 ,j2^ h2#5u@H1% H2 ,~j1% j2! ^ ~h1% h2!#. ~4.11b!

Below we establish the expected equalitiesSj5sj ( j 51,2). For this purpose, we represe
each operatorA on the direct sumE as a 232 operator matrix

A5S A11 A12

A21 A22
D with operatorsAi j :Ej→Ei . ~4.12a!

In the computation of the inverses we will use the following important rule: AssumeA11 to be
invertible. ThenA is invertible if and only if itsSchur complement
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D~A!ªA222A21A11
21A12 ~4.12b!

is invertible as an operator onE2 . In caseA is invertible, its inverse is given by

A215S A11
211A11

21A12D
21A21A11

21 2A11
21A12D

21

2D21A21A11
21 D21 D , ~4.12c!

where D21
ªD(A)21. The matrix representation of the direct sumH is the diagonal onesH

5diag(H1,H2) and thus its exponentialsT5T(x,t)ªexp(2xH2tH3) have the matrix form

T5e2xH2tH3
5diag~T1 ,T2!, Tjªe2xHj 2tH j

3
. ~4.13!

The sumY5Y11Y25(Yi j )232 has entries

Yi jªj j ^ h iPj j ^ Ei ~ i , j 51,2! ~4.14a!

and the entries of the unique solutionX5(Xi j )232 of the operator equationHX1XH5Y are
uniquely determined by the operator equations

H1X111X11H15j1^ h1 , H1X121X12H25j2^ h1 ,
~4.14b!

H2X211X21H15j1^ h2 , H2X221X22H25j2^ h2 .

By definition, we have

s5u@H1% H2 ,Y11Y2#5trj~K21Y!x , ~4.15a!

whereK5(Ki j )232ªT1X has entries

K11ªT11X11, K12ªX12,
~4.15b!

K21ªX21, K22ªT21X22.

Recall that the old solutionss1 ,s2 are given by

sj5trj j
~K j j

21Yj j !x , j 51,2.

Since the restriction of trj in each of the subspacesj j ^ Ej,j ^ E is trj j
, we can rewrite the

solutionssj as

sj5trj~K j j
21Yj j !x , j 51,2.

In caseK11 is invertible we can apply the rule in~4.12c! to find thatK5T1X is invertible if and
only if its Schur complement

D[D~K !5K222K21K11
21K12 ~4.16a!

is invertible and therefore we can compute the inverse ofK by ~4.12c!. It follows that the sum of
the diagonal entries ofK21Y is

K11
21Y111K11

21K12D
21~K21K11

21Y112Y21!2D21K21K11
21Y121D21Y225K11

21Y111K22
21Y221C12,

where

C12ªK11
21K12D

21~K21K11
21Y112Y21!1D21K21K11

21~K22
21Y222Y12!. ~4.16b!
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Consequently, the newly generated solutions5u@H1% H2 ,Y11Y2#, as the spatial derivative o
the trace of the sum of the diagonal entries ofK21Y, is equal to

s5s11s21c12, c12ªtrj~C12!x . ~4.16c!

The cross termc12 reflects the interaction of the two old solutionss1 ands2 .
Now we switchh2 into zero, i.e., we seth250. ThenY2150,Y2250 and thusX2150,X22

50, K215X2150. It yields thatc1250 ands250, hences5s11s21c125s1 . In other words, we
have established the desired equalitys15u@H,Y1#5S1 . The other equalitys25S2 can be proved
in the same spirit.

The above approach yields simultaneously the following criterion for the smoothness
newly generated solutionu@H1 ,j1^ h1#qu@H2 ,j2^ h2#: Assume both of the old solution
u@H1 ,j1^ h1#,u@H2 ,j2^ h2# are smooth, i.e., bothK11(x,t) andK22(x,t) are invertible for each
point (x,t)PR2. Thenu@H1 ,j1^ h1#qu@H2 ,j2^ h2# is a smooth solution whenever the Sch
complementD(K) is invertible everywhere, i.e., for each (x,t)PR2 the operatorD(K)(x,t) is
invertible.

In case the newly generated solutionu@H1 ,j1^ h1#qu@H2 ,j2^ h2#, which describes the
interaction of the old solutionsu@H1 ,j1^ h1# and u@H2 ,j2^ h2#, is smooth, we say tha
u@H1 ,j1^ h1# andu@H2 ,j2^ h2# interactsmoothly; otherwisesingularly.

As it will be seen later, the interaction of two smooth solutions might be singular, i.e.,
might undergo a blow-up by interaction.

D. Solitary wave solutions and their interaction

We shall use the solution program written in Sec. IV C to find solitary wave solutions o
J-KdV equation and to study their interaction.

Fix nPN. The productJ n is a J-Banach space as well as aJ-Banach algebra. We takeE
[J n as the underlying Banach space. Elements inJ n are written as vector columns (b1 , . . . ,bn)T

with b1 , . . . ,bnPJ.
For eachaPJ we defined an elementâPL(J) by

â~b!ªba ~bPJ!. ~4.17a!

The mappingJ{a°âPL(J) is an antihomomorphism:

ab̂5b̂â ~a,bPJ!. ~4.17b!

Below we will identify a real constantr PR with r̂ PL(J).
Let jª(1,1,. . . ,1) be the functional on (J n)8 defined by

j~a!ª(
j 51

n

aj for a5~a1 , . . . ,an!TPJ n.

Let l1 , . . . ,ln be real numbers such that

l i1l jÞ0, ; i , j . ~4.18a!

We call readers’ attention to the fact that all of our calculations below will be carried out with
special functionalj defined by~4.18a!. In particular, the reader should remember that the ant
momorphism trj is only well defined on the left idealj ^ J n.

We consider the generatorGªdiag(l1, . . . ,ln)PL(J n). Then

Tªexp~2xG2tG3!5diag~w1 ,w2 , . . . ,wn! ~4.18b!

has entries
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wj[wj~l j ,x,t !ªe2xl j 2tl j
3
. ~4.18c!

For givenaª(a1 , . . . ,an)TPJ n we seth[h@l,a#ª((2l1)a1 , . . . ,(2ln)an)T.PJ n. Then the
rank one operatorY@l,a#ªj ^ h has the matrix representation

Y@l,a#5S ~2l1!â1 ¯ ~2l1!â1

¯ ¯ ¯

~2ln!ân ¯ ~2ln!ân

D . ~4.19a!

The unique solution of the operator equationGX1XG5Y@l,a#, denoted byX@l,a#, is given by

X@l,a#5S k11â1 ¯ k1nâ1

¯ ¯ ¯

kn1ân ¯ knnân

D , ki jª
2l i

l i1l j
. ~4.19b!

We denote the generated solutionsu@G,j ^ h@l,a## by u@l1 ,a1 , . . . ,ln ,an# in order to indicate
their dependence on the spectral parametersl j8s and the vector rowsa. We have

u@l1 ,a1 , . . . ,ln ,an#5trj~~T1X@l,a# !21Y@l,a# !x ~4.20!

@cf. (4.8a8)]. Sinceu@l1 ,a1 , . . . ,ln ,an# depends on the vectorw5(w1 ,w2 , . . . ,wn) as well as
on the vectorsl5(l1 , . . . ,ln) anda5(a1 , . . . ,an), we represent this solution as

u@l1 ,a1 , . . . ,ln ,an#[u~w,l,a!. ~4.21a!

The annihilator~cf. Sec. IV C 1! of u@l1 ,a1 , . . . ,ln ,an# is the solution

u@l1 ,2a1 , . . . ,ln ,2an#5trj~~T1X@l,2a# !21Y@l,2a# !x .

Note thatY@l,2a#52Y@l,a# andX@l,2a#52X@l,a#. We have

trj~~T1X@l,2a# !21Y@l,2a# !x5trj~~2T1X@l,a# !21Y@l,a# !x .

Therefore, if we have calculated the solutionu@l1 ,a1 , . . . ,ln ,an# and written it in the form
~4.21a!, then its annihilatoru@l1 ,2a1 , . . . ,ln ,2an# is just the result of the replacement ofw by
2w, i.e.,

u@l1 ,2a1 , . . . ,ln ,2an#[u~2w,l,a!. ~4.21b!

Another useful property is that iff is an automorphism onJ, then

u@l1 ,fa1 , . . . ,ln ,fan#5fu@l1 ,a1 , . . . ,ln ,an#. ~4.21c!

We remark ~cf. Refs. 2 or 6 and 10! that the class of scalar solutionsu@l1 ,a1 , . . . ,ln ,an#
PR•I J generated by positive parametersl j.0 andaj5aj I J with aj.0 coincides with the class
of multisoliton solutions of the scalar KdV equation constructed by the Hirota method11 or the
inverse scattering method.1

1. Solitary waves

These solutions will be obtained by switching alla2 ,a3 , . . . ,an into zeros. Therefore, by
setting a25¯5an50 in ~4.20! and then dropping the suffices we obtain the solitary wa
solution with velocityl and a parameteraPJ

u@l,a#ª~2l!•~~e2xl2tl3
1a!21a!x . ~4.22a!
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Here and later, we use the abbreviationc1a[cIJ1a for real numbersc. By writing the product
(e2xl2tl3

1a)21a as the difference 12(11exl1tl3
a)21 we simplify the representation ofu into

u@l,a#~x,t !5~22l!•~~11exl1tl3
a!21!x , ~4.22b!

or equivalently, withw5w(l,x,t)ªe2xl2tl3
,

u@l,a#~x,t !5~2l2!•~wa!~w1a!22. ~4.22c!

This gives the parametrized representation of all nonperiodic solitary wave solutions of~4.1a!,
where the parameter~l, a! runs through the setR3J.

It is easily seen that a solitary wave solutionu@l,a# with lÞ0 is a smooth solution if and
only if the parametera locates in the subsetJs of J:

Jsª$bPJ:b1mI J is invertible for all m>0%. ~4.23!

Note that a smooth solitary wave solutionu@l,a# is also bounded and localized in the sense t

u@l,a#→0 as xl1tl3→6`.

Now the meaning of the solutionu@l1 ,a1 , . . . ,ln ,an# in ~4.20! becomes clear. It just describe
the interaction of the givenn solitary wavesu@l i ,ai # ( i 51,2,. . . ,n). Therefore, using our ‘‘q’’
operation, it can be represented as

q

i 51

k

u@l i ,ai #5u@l1 ,a1 , . . . ,ln ,an#.

2. Interaction of two solitary waves

To study the interaction of two solitary waves, we apply the formula~4.19! with a replacement
of a1 ,a2 by the lettersa, b. We have

u@l1 ,a#qu@l2 ,b#5u@l1 ,a,l2 ,b#5trj~K21j ^ h!x ,

whereK5T1X5(Ki j )232 has entries

K115w11â,K125k1â, K215k2b̂, K225w21b̂,

wj[wj~l j ,x,t !5exp~2xl j2tl j
3!, j 51,2,

kjª~2l j !/~l11l2!, j 51,2,

and

j5~1,1!P~J 2!8, h5~2l1a,2l2b!TPJ 2.

We assume further that botha,bPJ have no real spectra, i.e., for each real numberr both sums
a1r andb1r are invertible. In particular, the sumw11â is invertible and thus the Schur comple
ment ofK is

D~K !5K222K21K11
21K125~w21b̂!2~k2b̂!~w11â!21~k1â!,

which can be rewritten asD(K)5 d̂•(w11â)21 with

d[d@l1 ,a,l2 ,b#ª~w11a!~w21b!2~k1k2!ab. ~4.24!
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Hence,D(K) at the point (x,t)PR2 is invertible if and only if so isd at that point.d is called the
determinantof the matrixK.

Since trj(K
21j ^ h)5trj(j ^ (K21h)), we have

trj~K21j ^ h!52~h11h2!,

whereh1,2PJ are determined by the equationh5K(h1 ,h2)T, or equivalently,

h1~w11a!1k1h2a5l1a,
~4.25a!

k2h1b1h2~w21b!5l2b.

We need to find the sumh11h2 . For this purpose, we seth3ª(h11h2)/2, h4ª(h12h2)/2 and
substitute them into~4.25a!. Then the equations forh3 ,h4 are

h3~w11a1k1a!~w11a2k1a!211h45l1a~w11a2k1a!21,

h3~w21b1k2b!~w21b2k2b!212h45l2b~w21b2k2b!21.

Summing up the two equations, we obtain that

2h35~w11~12k1!a!21
•a•d21

•~w11~12k1!a!,

whered is the determinant given by~4.24a! and

aª~l1a!~w21~12k2!b!1~w11~12k1!a!~l2b!.

Using the definitionkj5l j /(l11l2) ( j 51,2) we rewrite the terma as

2~l11l2!•a52d2~2w1w21k2w2a1k1w1b!.

It follows that 4(l11l2)h3522h38 with

h38ª@w11~12k1!a#21
•~2w1w21k2w2a1k1w1b!•d21

•@w11~12k1!a# ~4.25b!

and thus

u@l1 ,a,l2 ,b#5trj~K21j ^ h!x52~l11l2!21
•~h38!x . ~4.25c!

The above approach yields also the following smoothness criterion: Assume both sol
u@l1 ,a# and u@l2 ,b# are smooth, i.e., bothw1(x,t)1a and w2(x,t)1b are invertible for each
(x,t)PR2. Then the newly generated solutionu@l1 ,a#qu@l2 ,b# is a smooth solution if and only
d@l1 ,a,l2 ,b#(x,t) is invertible for every (x,t)PR2. We note that the first condition in the abov
criterion is equivalent to that botha andb generate localized solitary wave solutions. However,
second ones implies that two localized solitary waves might interact singularly. Such examp
the caseJ5H the Hamilton quaternions will be seen in the next section.

The asymptotic behavior of the interactionu@l1 ,a#qu@l2 ,b# is easily to describe if botha
and b are invertible. The result is that if the interaction is asymptotically smooth then the
effect of the interaction of these two solitary waves is asymptotically a phase shift and thus
two solitary waves interact asymptotically elastic.

To see this, we assume botha,bPJs are invertible and that foruxu,utu sufficiently large the
term d(x,t)[(w1(x,t)1a)(w2(x,t)1b)2(k1k2)ab is always invertible. We consider the traje
tory w15constant, and assumel1.0,l2.0. Then

d;~w11ga!b as t→1`,
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d;~w11a!~w21b! as t→2`,

where

gª12~k1k2!5~l12l2!2/~l11l2!2.0.

This implies by~4.25b! and ~4.25c! that

u@l1 ,a#qu@l2 ,b#;u@l1 ,ga# as t→1`,

u@l1 ,a#qu@l2 ,b#;u@l1 ,a# as t→2`.

Similarly, for fixedw2

u@l1 ,a#qu@l2 ,b#;u@l2 ,gb# as t→1`,

u@l1 ,a#qu@l2 ,b#;u@l2 ,b# as t→2`.

Note that the difference between the two solitary wavesu@l1 ,ga# ~respectively,u@l2 ,gb#) and
u@l1 ,a# ~respectively,u@l1 ,b#) is only a phase shift. In other words, we have proved that
interaction of such two solitary waves is asymptotically elastic.

3. Condition for smoothness of interaction

Let $E,G,j% be a real solution process, i.e.,E is a real Banach space andGPL(E) a generator
satisfying the spectral condition~4.7a!: 0¹Sp(G)1Sp(G). We consider a real valued solution

u@G,j ^ h#5tr~~T1X!21~j ^ h!!x

and assume it is smooth in the sense that

~T1X!~x,t !5exp~2xG2tG3!1X

is invertible for every (x,t)PR2. As seen in Sec. IV B, the algebraic tensor productẼªJ^ E is a
J-Banach space and the operatorsG, X, T, the vectorhPE as well as the functionaljPE8 admit
their J-extensions; denoted byG̃, T̃, X̃, h̃, and j̃.

Let lPR be such that

2l¹$0%øSp~G!. ~4.26!

The generatorHªG̃% l on the direct productẼ% J has spectrum Sp(H)5$l%øSp(G) and thus,
by ~4.26!, satisfies the required spectral condition~4.7a!, i.e., 0¹Sp(H)1Sp(H). Hence, we have
a new solution process$Ẽ% J,H,j̃ % 1% ~cf. Sec. IV C 2!. Moreover, since

u@G̃,j̃ ^ h̃#5u@G,j ^ h#•I J ,

for eachaPJ the solution

sªu@H,~ j̃ % 1! ^ ~ h̃ % a!#5~u@G,j ^ h#•I J!qu@l,a#

describes the interaction of the solutionu@G,j ^ h# of the scalar KdV equation with the solitar
wave solutionu@l,a# of the J-KdV equation. We want to find the condition on the parametea
which ensures the smoothness of this interaction.

For this purpose, we note that

s5trj~K21~ j̃ % 1!!x ,
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and the entries of the 232 operator matrixK5(Ki j )232 are given by

K115T1X̃, K21ª~~l1G̃8!21j̃ ! ^ a, K22ªw1â

(wªe2xl2tl3
) andK12 is determined by the relation

K12bªb~l1G̃!21h̃ ~bPJ!.

Since (T1X̃)(x,t) is everywhere invertible, we can use the results in Sec. IV C 2 to find
K(x,t) is everywhere invertible if and only if so is its Schur complementD(K)5K22

2K21K11
21K12 @see~4.16a!#.

To find a more transparent representation ofD(K), we apply the operatorK21K11
21K12 to an

elementbPJ and obtain

K21K11
21K12b5~~l1G̃8!21j̃ ^ a!~ T̃1X̃!21b~l1G̃!21h̃

5b^~l1G̃8!21j̃,~ T̃1X̃!21~l1G̃!21h̃&a

5b^j,~l1G!21~T1X!21~l1G!21h&a.

Here for the second equality we have used theJ-linearity of all the involved operators. It yield
that

D~K !5w1â2^j,~l1G!21~T1X!21~l1G!21h&â.

We observe that for each (x,t)PR the term^j,(l1G)21(T(x,t)1X)21(l1G)21h& is a real
number. Hence, we have proved the following.

Assertion:If

aPJ0ª$bPJ:b1r is invertible for eachr PR%,

then the interactionu@l,a#qu@G,j ^ h# is smooth.

V. SOLITON SOLUTIONS OF QUATERNIONIC KdV EQUATION

In this section we will apply our general theory to the special caseJ5H, the Hamilton
quaternion algebra. The vector KdV equation settled inJ5H is called thequaternionic KdV
equation.

Why is the quaternionic KdV equation especially interesting? To this question two ans
can be given, one mathematical and one physical. The mathematical answer is based
Frobenius theorem which asserts that there exist exactly three division algebras overR: the real
field R, the complex fieldC and the Hamilton quaternion algebraH. Sometimes, quaternions ar
named also by hypercomplex numbers. The vector KdV equation overC is just the complexifica-
tion of the real KdV equation. However, the complex fieldC, like the base fieldR, is commutative.
Among all noncommutative associative algebras,H is the simplest one and is the unique nonco
mutative associative division algebra. Moreover,H together with the matrix algebraM2(R) are the
two simplest Clifford algebras over the real field. The standard fact of Clifford algebras19 is that
every Clifford algebra overR can be decomposed into disjoint sums ofH and M2(R). These
observations force one to answer the question as to which special features can be expect
the quaternionic KdV equation. The physical consideration is stimulated by the need of the
of the so-calledquaternionic quantum mechanics.3 As pointed out by Adler, one of the physica
reasons which motivates this study is that ‘‘a successful unification of the fundamental force
require a generalization beyond complex quantum mechanics.’’ The quaternionic KdV equ
like the usual real and complex KdV equations for the scalar soliton theory, should serve
model equation in the quaternionic soliton theory.

The noncommutativity ofH makes the study of quaternionic equations being challenging.
example, the classical Hirota formalism in solving scalar soliton equations cannot be used d
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to equations settled inH. Our approach below will show a way to study quaternionic equati
and will reveal that the structure of soliton solutions of the quaternionic KdV equation is m
richer than the ones for the real and complex KdV equations.

A. Basic properties of H

Recall thatH is a four-dimensionalClifford algebrawith a basis

$e151,e25 i,e35 j ,e45k%

which obeys the following product rule:

i25 j25k25 ijk 521.

The usual matrix realization of the basis elements by 232 complex matrices are given bye1

>I 2 the identity matrix and

e2>S i 0

0 2 i D , e3>S 0 1

21 0D , and e4>S 0 i

i 0D .

In this way, we have the identification

a1e11a2i1a3j1a4k>S a11a2i a31a4i

2a31a4i a12a2i D PM2~C!.

This matrix realization ofH helps a lot in the practical calculations using a computer alge
program such asMathematica.

Elements of the linear subspace spanned byi, j , and k are called vectors. The following
convention will be used: We write an elementa5( l 51

4 alelPH as

a5a11ã, ãª(
l 52

4

alel .

a1 is called thescalar partof a and ã the vector partof a.
Each nonzero elementa5a11ã possesses an inverse given bya215uau22ā. Here, uau

ªAa1
21a2

21a3
21a4

2 is thenorm of a and āªa12ã is theconjugationof a. It follows that

H0ª$aPH:~a1r !21PH ;r PR%5$aPH:ãÞ0%. ~5.1!

For our purpose, we need also the following basic property ofH.
Lemma 5.1: Leta, b be two vectors inH such that the four elements1, a, b andab are linearly

dependent, i.e., there exists a nonzero vector(c1 ,c2 ,c3 ,c3)PR4 such that

c11c2a1c3b1c4ab50.

Thena and b are parallel, i.e., the cross producta3b50.
This result means that each unital proper subalgebra ofH has dimension smaller than or equ

to 2.

B. The quaternionic KdV equation

We call the following vector KdV equation

ut5uxxx13~u2!x , uPH, ~5.2a!

the quaternionic KdV equation.
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1. The equivalent nonlinear system

Writing

u5u11u2i1u3j1u4k

and using the product rule in Sec. V A we see that the nonlinear system equivalent to~5.2a! has the
form

u1t2u1xxx23~u1
22u2

22u3
22u4

2!x50,
~5.2b!

ust2usxxx26~u1us!x50, s52,3,4.

2. The first two conserved quantities

Obviously, the momentum

m~u!ªE
2`

`

u~x,• ! dx ~5.2c!

is a conserved quantity. Below we want to show that the second order momentum

m2~u!ªE
2`

`

u~x,• !2 dx ~5.2d!

is also a conserved quantity, i.e.,

m2~u!5E
2`

`

u~x,• !2 dx[const. ~5.2e!

The noncommutativity ofH makes the proof of~5.2e! being a little difficult.
To prove ~5.2e!, we let u be a solution of~5.2a! which vanishes asx→6` and has finite

energy

E~u!ªE
2`

`

uu~x,• !u2 dx,`. ~5.2f!

We have

d

dt
m2~u!5E @uuxxx1uxxxu# dx13E @u~u2!x1~u2!xu# dx.

The first integral is equal to zero, as can be seen by taking part integration. Hence

1

3
•

d

dt
m2~u!5E @u~u2!x1~u2!xu# dxªI .

On the one hand, we use the identity

u~u2!x1~u2!xu5@u~uux!1~uux!u#1@~uux!u1~uux!u#

combining with the fact that the sumab1ba for any a,bPH is real to find thatI is real. On the
other hand, we use the identity

@u~u2!x1~u2!xu#5 4
3 ~u3!x1 1

3 •@u~uux2uxu!2~uux2uxu!u#
                                                                                                                



r

been
lgebra
uan-

KdV

r

n

ave

ary
ss

the

1378 J. Math. Phys., Vol. 44, No. 3, March 2003 Sen-Zhong Huang

                    
combining with the fact that the differenceab2ba for anya,bPH is either zero or a pure vecto
to see thatI is either zero or a pure vector. ButI is real, we conclude thatI 50 and thus
(d/dt) m2(u)[0. This is just the desired result~5.2e!.

The scalar KdV equation possesses infinite number of conservation laws which have
established under the help of the Miura transformation. Since we are in a noncommutative a
H, the Miura transformation works no longer and thus it left an interesting problem which q
tities will be conserved by the quaternionic KdV equation.

As it will be shown later, the energy is not a conserved quantity of the quaternionic
equation.

C. Quaternionic KdV solitons and their interaction

Using ~4.22c!, a general solitary wave solution of the quaternionic KdV equation~5.2a! has
the form

u@l,a#5~2l2!~wa!~w1a!22, w[w~l,x,t !ªe2xl2tl3
, ~5.3a!

which, represented in its coordinates form, reads as

u1@l,a#5~2l2w!~a1w212uau2w1a1uau2!/Q@l,a#,

us@l,a#5~2l2w!~w22uau2!as /Q@l,a#, s52,3,4, ~5.3b!

Q@l,a#ª~w212a1w1uau2!2.

Since the wave velocity of the solitary waveu@l,a# is equal tol2, we call the nonzero real numbe
l the velocity parameter. Correspondingly, we call the nonzero quaterniona the position param-
eter.

The solitary wave solutionu@l,a# is smooth and thus localized if and only if the positio
parametera locates at the subsetHsªH\R2 . Solitary wave solutionsu@l,a# corresponding to
positive parametersaPR1 are nothing but the scalar KdV solitons. Hence, we call a solitary w
solution in the class

SHª$u@l,a#:0ÞlPR,ãÞ0%

a quaternionic soliton. Note that here we have used the name ‘‘soliton’’ instead of ‘‘solit
wave.’’ The reason is, as it will be seen soon in Sec. V C 2, that any two elements in the claSH
interact asymptotically smoothly and elastically.

Let u@l,a# be a quaternionic soliton. Then, its time-independent momentum

m~u@l,a# !5E
2`

`

~22l!~~w1a!21a!x dx52ulu ~5.3c!

is independent from the position parametera. To compute its time-independent energy, we use
solution formula~5.3a! and obtain

E~u@l,a# !5~4l4uau2!•E
2`

` w2

@~w1a1!21uãu2#2 dx

5~4ulu3uau2!•E
0

` w

@~w1a1!21uãu2#2 dw

54ulu3u•~11s2!•E
0

` v
@~v1s!211#2 dv ~with vªw/uãu, sªa1 /uãu!.

Therefore, withsªa1 /uãu,

E~u@l,a# !5ulu3•~11s2!•@21s~2 arctans2p!#. ~5.3d!
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Similarly, we compute the energy distribution in the real part and find

E~u1@l,a# !5
ulu3

3
1

1

2
E~u@l,a# !. ~5.3e!

Equations~5.3d! and ~5.3e! imply that the energy and its distribution in the real part are stric
decreasing functions of the parametersªa1 /uãu and the energy becomes unbounded ass→2`
and converges to the value 2ulu3/3 ass→1`. Note that the value 2ulu2/3 is just equal to the
energy of a scalar KdV soliton with velocityl2. Thus, the energy of a scalar KdV soliton
always smaller than the energy of a quaternionic KdV soliton moving with the same veloci

1. Energy symmetry breaking and energy conservation breaking

On the one hand, the quaternionic KdV solitonsu@l,a# andu@l,2a# annihilate each other
i.e.,

u@l,a#qu@l,2a#5u@l,a1~2a!#5u@l,0#[0.

On the other hand, using~5.3d! and ~5.3e! we find that

E~u@l,a# !2E~u@l,2a# !522ps~11s2!•ulu3

with sªa1 /uãu. Hence, theenergy symmetry is broken: The energy of a quaternionic KdV solito
u@l,a# with positive charge~i.e., a1.0) is smaller than the energy of its counterpartu@l,2a#,
although they annihilate each other.

Using the algorithm which will be given in Sec. V C 4 we compute the two-soliton solu
u@1,i,2,j # and obtain thatu@1,i,2,j #5 f 1 / f 1( f 2 / f ) i1( f 3 / f ) j with

f –1ª2* (4 *vˆ2+324 *uˆ4 *vˆ2+uˆ2 * (1+90 *vˆ2+81 *vˆ4)),

f –2ªu* (−1/729+(22 *vˆ2)/81−vˆ4+uˆ2 * (1/9−(22 *vˆ2)/9+vˆ4)),

f –3ª4*v* (−1+81 *vˆ2+729 *uˆ4 * (−1+vˆ2)+18 *uˆ2 * (−1+9 *vˆ2))/729,

f ª(1/81+uˆ2+vˆ2+uˆ2 *vˆ2)ˆ2, u==Exp[−x−t], v==Exp[−2x−8t].

SetsªExp@26t#. Then we have

energy~ t !ªE
R
uu~x,t !u2 dx5E

0

` ~ f 1
21 f 2

21 f 3
2!

u f2 @u5u,v5s* u2# du.

For each fixeds.0 the integrand is a rational function ofu. We useMathematicato compute this
integral. After that, we draw the energy evolution in time@see Fig. 1~a! the Appendix#. It shows
that the energy is time-dependent and thus the energy is not a conserved quantity of the
nionic KdV equation.

2. Two-points blow-up

Consider two quaternionic soliton solutionsu@l1 ,a# andu@l2 ,b# for which

l1Þ6l2 and a,bPH0 .

It follows from Sec. IV D 2@see~4.24!# that the singularity set of the solution

u@l1 ,a,l2 ,b#5u@l1 ,a#qu@l2 ,b#
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just consists of the points (x,t)PR2 such that

d@l1 ,a,l2 ,b#5~w11a!~w21b!2~k1k2!ab

are not invertible at these points. Since each nonzero element inH possesses an inverse, the abo
is equivalent to say that the singularity set of the solutionu@l1 ,a,l2 ,b# is nothing but the zero se
of d@l2 ,b,l1 ,a#. In notation, we write this fact as

Sing~u@l1 ,a,l2 ,b# !5$~x,t !PR2:d@l1 ,a,l2 ,b#~x,t !50%. ~5.4!

It is left to determine when and at which pointd@l2 ,b,l1 ,a# becomes zero.
To this end, we rewrited[d@l1 ,a,l2 ,b# as

d5~w1w21a1w21b1w11ga1b1!1gãb̃1~w11ga1!b̃1~w21gb1!ã, ~5.5a!

where

gª12~k1k2!5~l12l2!2/~l11l2!2 ~5.5b!

and

wl5wl~l l ,x,t !5e2xl l2tl l
3
, l 51,2. ~5.5c!

Since we have assumedl1Þl2 , the parameterg is positive. Therefore, Lemma 5.1 applies a
yields thatd@l1 ,a,l2 ,b#50 at (x,t) if and only if

ãi b̃ ~5.6a!

and

~w1w21a1w21b1w11ga1b1!1gãb̃50

~w11ga1!b̃1~w21gb1!ã50
at ~x,t !. ~5.6b!

Equation ~5.6a! gives the first condition for the nonemptyness of the singularity
Sing(u@l1 ,a,l2 ,b#). Further conditions will be determined by~5.6b!.

Since bothã and b̃ are nonzero, condition~5.6a! is equivalent to the following more trans
parent ones:

b̃52aã for some 0ÞaPR. ~5.7!

Substituting~5.7! into ~5.6b! we have

~w1w21a1w21b1w11ga1b1!1~ag!•uãu250
~w21gb1!5a~w11ga1!

at ~x,t !. ~5.8!

We solvew2 from the second equation in~5.8!, substitute it into the first equation in~5.8!, and
obtain the following equivalent equations of~5.8!:

w1
21@~11g!a11~12g!b1a21#w11g•uau250,

~5.9!
w25aw11g~aa12b1!.

An elementary manipulation shows that the condition that~5.9! has two pair (w1 ,w2) of positive
solutionsw1.0,w2.0 is equivalent to the following ones:
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~11g!a11~12g!b1a21 <22Ag•uau,
~5.10a!

~11g!b11~12g!a1a,0,

which can be simplified into

a~l1l2!.0, b1<2S a

2l1l2
D •@~l1

21l2
2!a11ul1

22l2
2u•uau#. ~5.10b!

Note that ifa1>0 andb1>0, then the conditions in~5.10b! cannot be satisfied.
We collect these results as follows.
~c1! The singularity set Sing(u@l1 ,a,l2 ,b#) is nonempty if and only if both conditions in

~5.10b! are satisfied. In case the singularity set is nonempty, then it contains at most two po
the space–time plane whose coordinates are determined by the equations

xl11tl1
352 ln w1 ,

xl21tl2
352 ln@a~w11ga1!2gb1#,

w1 are positive solutions of the first equation of~5.9!.

This implies the following smoothing effect of the interaction: If the interactionu@l1 ,a,l2 ,b#
possess a singularity at a space–time point (x1 ,t1), then the singularity will soon vanish as tim
going forward and backward. The singularity will be recovered once again at a certain space
point (x2 ,t2). After or before that time pointt2 , the interaction keeps always smooth. As resu
the interaction of any two quaternionic KdV solitons is asymptotically smooth and elastic.

~c2! The singularity set Sing(u@l1 ,a,l2 ,b#) becomes empty whenever one of the followin
conditions hold true:

Either a1>0,b1>0 or ãi”b̃.

~c3! For any given quaternionic KdV soliton there always exists another quaternionic so
which interacts the former in a singular way. This implies particularly that there exists a so
of the form

u@l1 ,a,l2 ,b#5u@l1 ,a#qu@l2 ,b#

whose initial profile is smooth but which undergoes a blow-up at a finite time.

3. Smooth interaction with scalar solitons

Since the subsetH0 , which consists of all elementsaPH such thata1r is invertible for each
r PR, is just the set$aPH:ãÞ0% @see~5.1!#, we derive the following result immediately from
Sec. IV D 3:

~c4! Assumeu@G,j ^ h# to be a smooth solution of the scalar KdV equation. Then
interactionu@G,j ^ h#qu@l,a# between the scalar solutionu@G,j ^ h# and the quaternionic soli
ton solutionsu@l,a# with parametersl¹2Sp(G) is smooth. In particular, a quaternionic Kd
soliton u@l,a# with positive parameterl.0 interacts smoothly with any scalar multisolito
solutionu@l1 ,a1 , . . . ,ln ,an# ~wherel j.0,aj.0).

4. A practical guide to computing multisoliton solutions

This guide is for the purpose of working with the computer algebra program
Mathematica.20

We recall the formulas~4.19! and ~4.20! for computing a general quaternionicn-soliton
solutions5u@l1 ,a1 ,...,ln ,an#. We have
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s52 trj~j ^ ~K21h!!x

with j5(1,1,...,1)P(J n)8, h5(l1a1 ,l2a2 ,...,lnan)TPJ n, and then3n quaternionic matrix
K5T1X@l,a# with T and X@l,a# given by ~4.18b! and ~4.19b!, respectively. WritingK21h
5(g1 ,...,gn)T, we have

s52 trj~j ^ ~K21h!!x52~g11g21¯1gn!x

and the componentsg j are determined by the equation

~g1 , . . . ,gn!K̂5~l1a1 , . . . ,lnan!5hT,

whereK̂[K̂@l,a# is then3n quaternionic matrix

K̂5S w11a1 k21a2 ¯ kn1an

k12a1 w21a2 ¯ kn2an

¯ ¯

k1na1 k2na2 ¯ wn1an

D [S R1

R2

¯

Rn

D ~5.11!

with constantski jª2l i /l i1l j and functionswj[wj (x,t)5exp(2xlj2tlj
3). We note that the

given row hT and the row (g1 ,...,gn) of the unknowns are understood as 13n quaternionic
matrices and the product (g1 ,...,gn)K̂ is just the product of the quaternionic matrices.

What we should compute is the sumg11g21¯1gn . In the practical performance of th
calculation, we use the following transformation:

g1ªz12z2 ,g2ªz22z3 ,...,gnªzn ,

so thatg11g21¯1gn5z1 . This reduces our need to calculate the single componentz1 . The
equation (g1 ,...,gn)K̂5hT can be rewritten in the new variables (z1 ,...,zn) as follows:

~z1 ,...,zn!A5~l1a1 ,...,lnan!5hT, ~5.12a!

whereA[A@l,a# is then3n quaternionic matrix

A5S R1

R22R1

¯

Rn2Rn21

D . ~5.12b!

That is, the first row ofA is the first row ofK̂, and up to the second row them-row of A is equal
to them-row of K̂ minus the (m21)-row of K̂.

To make the calculation withMathematicabeing possible, we use the following matrix rea
ization of the quaternion algebraH:

a1e11a2i1a3j1a4k>S z1 z2

2 z̄2 z̄1
D PM2~C!

with z1ªa11a2i andz2ªa31a4i . In this way, eachm3n quaternionic matrix is identified with
a (2m)3(2n) complex matrix. In particular, both (z1 , . . . ,zn) and hT are identified as 2
3(2n) complex matrices andA is identified as a (2n)3(2n) matrix.

We set
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~z1 ,...,zn!5S y1 z1

2 z̄1 ȳ1
U¯
¯

U yn zn

2 z̄n ȳn
D

23(2n)

.

Then Eq.~5.12a! is equivalent to the following linear system of 2n unknowns:

~y1 ,z1 ,...,yn ,zn!A5the first row of hT. ~5.12c!

All information of the solutions5u@l1 ,a1 , . . . ,ln ,an# is stored in the componentsy1 ,z1 of z1 .
More precisely, we have

2~Rey1!x5the real part of s,

2~ Im y1!x5the i part of s,
~5.12d!

2~Rez1!x5the j part of s,

2~ Im z1!x5the k part of s.

We use Cramer’s formula13 to solve the linear system~5.12c!. It yields that

y15
det~A1!

det~A!
, z15

det~A2!

det~A!
, ~5.12e!

where A1[A1@l,a# ~respectively,A2[A2@l,a#) is the (2n)3(2n) complex matrix obtained
from the (2n)3(2n) complex matrixA by replacing the first~respectively, second! row of A by
the first row of the 23(2n) complex matrixhT.

Replacing each elementasPH by its conjugationās , we have the following relation for the
involved three matrices:

A@l,ā#5Ā@l,a#, Al@l,ā#5Āl@l,a# ~ l 51,2!.

HereB̄ for a (2n)3(2n) complex matrixB is defined as the matrix obtained fromB by replacing
all of its entries by their complex conjugates. In particular, we have

det~A@l,ā# !5det~A@l,a# !, det~Al@l,ā# !5det~Al@l,a# ! ~ l 51,2!.

Therefore, by the solution formula~5.12e! we obtain the following relation:

u@l1 ,ā1 , . . . ,ln ,ān#5ū@l1 ,a1 , . . . ,ln ,an#[u@l1 ,a1 , . . . ,ln ,an#. ~5.12f!

Consider the special case where allas are pure vectors, i.e.,as5ãs for s51,2,. . . ,n. Then ā̃s

52ãs and thus, by~5.12f!,

u@l1 ,2ã1 , . . . ,ln ,2ãn#5ū@l1 ,ã1 , . . . ,ln ,ãn#. ~5.12g!

In other words, the annihilator of a multisoliton solution generated by pure vectors is just giv
its conjugation.

The above working scheme reduces the calculation of ann-soliton solution into calculating
the determinants of three (2n)3(2n) complex matricesA and A1,2. The number of variables
involved in these matrices are 5n: among them aren spectral parametersl1 , . . . ,ln and 4n
further real parameters for the position parametersa1 , . . . ,an ; each elementaj in H shares four
real parameters. In order to reduce the number of the involved variables, we need simplifyi
situation as follows. First, since the quaternionic KdV equation is invariant under the sc
(x,t,u)→(xl,tl3,l22u), we can setl151. Second, for any given two elementsa1 ,a2PH whose
vector partsã1 and ã2 expand a two-dimensional subspace we can always find an automorp
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g of H such that eithergã15uã1u• i and gã25c1i1c2j for somec2.0 or gã25uã2u• i and ga1

5c3i1c4j for somec4.0. Without loss of generality we assume the first case occurs, i.e.,
exists an automorphismf of H such thatfã15uã1u• i andfã25c1i1c2j for somec2.0. In this
case, we setl151. Then for any givena3 , . . . ,anPH we have

fu@1,a1 ,l2 ,a2 , . . . ,ln ,an#5u@1,r 1uãu i,l2 ,s1c1i1c2j , . . . ,ln ,fan#

with somer ,sPR. Choosing a shift transformationx→x1x0 and t→t1t0 in the space–time
plane, the latter reduces into the following standard onesu@1,r 11 i,l2 ,s11c3i
1 j , . . . ,ln ,fan#. In conclusion, what we need computing is the following standard form of
n-soliton solutionsu@1,r 1 i,l2 ,s1pi1 j , . . . ,ln ,an# with r ,s,pPR. The number of variables
involved in the standard form is 5n26. This reduction of the variables helps the practical perf
mance of the calculation a little.

D. Noncommutative soliton system of three components as reduction of quaternionic
KdV equation

Switching thek componentu4 of a solutionu5u11u2i1u3j1u4k of the quaternionic KdV
equation~5.2a!, ~5.2b! into zero, we have a nonlinear system of three components:

u1t2u1xxx23~u1
22u2

22u3
2!x50,

~5.13!
ust2usxxx26~u1us!x50, s52,3.

Let P~i,j ! be the unital three-dimensional subspace ofH spanned by the base elements1, i, andj .
Then a solutionu of the quaternionic KdV equation is a solution of the system~5.13! if and only
if u lives in P~i,j !, or equivalently, thek part of u vanishes.

All quaternionic KdV solitonsu@l,a# with position parametersa locating atP~i,j ! are solitary
wave solutions to the system~5.13!. However, since the interaction between quaternionic K
solitons is nonlinear, it is certainly not allowed to expect that the result of their interaction

u@l1 ,a1 ,l2 ,a2 , . . . ,ln ,an#5u@l1 ,a1#qu@l2 ,a2#q¯qu@ln ,an#

@with ajPP( i,j )] lives also inP~i,j !; recalling thatij 5k which says thatP~i,j ! is not closed under
multiplication. In other words, it should be wrong if one expects that the system~5.13! is a soliton
system.

Another reason why this should be wrong is that a system of the form~5.13! cannot be derived
from aJ-KdV equation with some appropriate three-dimensional unital Banach algebraJ. This is
because any three-dimensional unital Banach algebraJ is commutative and thus any two solitar
wave solutions of the correspondingJ-KdV equation have commutative position parameters wh
the two solitary wave solutionsu@1,i# andu@1,j # to the system~5.13! do not.

Against all of the above ‘‘wrong’’ thinking, we have the following assertion, which is certa
very surprising.

Assertion:The nonlinear system~5.13! is a soliton system. More precisely, thek parts of the
interactionsu@l1 ,a1 ,l2 ,a2 , . . . ,ln ,an# with position parametersajPP( i,j ) do vanish and thus
all such quaternionic multisoliton solutions are simultaneously multisoliton solutions to~5.13!.

Since any unital three-dimensional subspaceP(v1 ,v2) of H spanned by the unit1 and further
two vectorsv1 ,v2PH can be transformed into the standard onesP~i,j ! by an appropriate auto
morphism ofH, the above assertion implies also the following very interesting low-dimensi
phenomenon of the interaction of quaternionic KdV solitons:

~c5! Let u@l j ,aj # (1< j <n) be any finitely many quaternionic KdV solitons which live in
unital three-dimensional linear subspaceP(v1 ,v2) @i.e., all ajPP(v1 ,v2)]. Then their interaction
u@l1 ,a1 ,l2 ,a2 , . . .ln ,an# lives again inP(v1 ,v2). More precisely, for each (x,t)PR2 the value
u@l1 ,a1 , . . .ln ,an#(x,t) does belong again toP(v1 ,v2).
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This result, roughly speaking, implies that the interaction of any finitely many quatern
KdV solitons with position parameters locating in a unital three-dimensional subspace beha
if the interaction were linear although it is really nonlinear.

The proof of the above Assertion is unbelievable easy and goes as follows. We consid
automorphismc:H→H induced by the elementk, i.e.,

c~u!ªkuk21 ~uPH!. ~5.14a!

We have

c~k!5k, c~u!5ū ;uPP~ i,j !. ~5.14b!

To prove our Assertion, we fixn elementsalPP( i,j ) ( l 51,2,. . . ,n) and set

s5u@l1 ,a1 , . . . ,ln ,an#5u11u2i1u3j1u4k.

Applying ~4.21c! with the above automorphismc, we obtain

cu@l1 ,a1 , . . . ,ln ,an#5u@l1 ,ca1 , . . . ,ln ,can#.

The latter is equal tou@l1 ,ā1 , . . . ,ln ,ān# by ~5.14b! and furthermore, equal to the conjugations̄
by ~5.12f!. Hence, we havec(s)5 s̄, i.e.,

~u11u4k!2~u2i1u3j !5c~s!5 s̄5~u12u4k!2~u2i1u3j !,

yielding the desired resultu4[0.
The discovery of the above low-dimensional phenomenon is as follows. Initialized by

wish of finding the concrete representations of two-soliton solutions in their standard fors
5u@1,r 1 i,l2 ,s1pi1 j #, the author calculated them withMathematica.20 After several seconds
the computer gives an unbelievable result: Thek part of s does vanish, i.e., the nonlinear inte
action between thei part of the solitonu@1,r 1 i# and thej part of the solitonu@l2 ,s1pi1 j # does
not generate any contribution to thek part althoughij 5k! Carefully checking the inputs and
computing it in another computer again, the result keeps unchanged. With very uncertain f
the author tried with three-soliton and then with four-soliton solutions, what the computer to
the above described surprising low-dimensional phenomenon of the interaction. Howeve
trying with five solitons was likely an adventure. The number of variables involved in the c
puting is 535 – 6519, which yielded a very high capacity need and caused a crash o
computer. Giving up computing with computer, the author found by luck, 2 days later, the
proof for the above most wanted result.

E. Properties of quaternionic KdV solitons: a summary

The first componenta1 of the position parametera of a quaternionic solitonu@l,a# should be
considered as thechargeof that soliton. Accordingly, we can decompose the quaternionic K
solitons into three classes,

S1ª$u@l,a#:a1.0, ãÞ0%,

S0ª$u@l,a#:a150, ãÞ0%,

S2ª$u@l,a#:a1,0, ãÞ0%.

A soliton of classS6 is said to bepositivelyandnegativelycharged, respectively, while a solito
of classS0 is said to beneutral. Since the result of the interaction betweenu@l,a# and u@l,
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2a# is the vacuum solution, i.e.,u@l,a#qu@l,2a#[0, each element in the classS1 finds its
annihilator in the classS2 andvice versa. However, the classS0 is closed in the sense that th
annihilator of each element inS0 locates again inS0 .

The main properties of quaternionic KdV solitons are collected as follows.
A positively charged soliton annihilates a negatively charged soliton, although the ene

the former is less than the energy of the latter.
Any two non-negatively charged solitons interact smoothly.
Only under the very restrictive conditions~5.10b! the interaction between two quaternion

KdV solitons undergoes a blow-up, and the blow-up occurs at most at two points of the s
time plane. Hence, the interaction is asymptotically smooth and elastic.

The interaction between a quaternionic KdV soliton and a smooth solution of the scalar
equation is smooth. In particular, a quaternionic soliton interacts smoothly with any smooth
multisoliton solution.

The annihilator of a multisoliton solution generated by pure vectors is just given b
conjugation.

The nonlinear interaction between any finitely many quaternionic solitons which live
unital three-dimensional subspaceP of H does not yield any effect to the part outside th
subspaceP.

APPENDIX

~A! Representation formula for two-solitons. We use the scheme described in Sec. V
compute the typical two-solitons solutions

s[u@1,i,b/~12b!,s1p* i1 j #

under the help of the computer algebra programMathematica.20 It yields @cf. ~5.12d! and~5.12e!#
that

s52S Re@det~A1 !#

det~A!
1

Im@det~A1 !#

det~A!
• i1

det~A2 !

det~A!
• j D

x

,

where

det(A)==−32 *bˆ3 * (1+rˆ2) * (1+pˆ2+sˆ2)+16 *bˆ4 * (1+rˆ2) * (1+pˆ2+sˆ2) +

(1+uˆ2) * (1+pˆ2+vˆ2)−8 *b* (pˆ2 * (1+r *u)−p * (r−u) * (s−u) +

(1+r *u) * (1+s *v))+8 *bˆ2 * (3+2 *sˆ2+2 * rˆ2 * (1+sˆ2) +

pˆ2 * (3+2 * rˆ2+r *u)−p * (r−u) * (s−v)+s *v+r * (u+s *u*v)),

det(A1)==(−I+u) * ((( 21+2*b) * (I+r+4 *bˆ2 * (I+r)+b * (−4 * I−5 * r+u)))/(−1+b) +

(I * (−1+2 *b) *p−2*b*s+v) * ((b * (p−I *s) * (−1+b * (2 2(2 * I) * r) +

(2 * I) * r−I *u))/(−1+b)+(I+r) * (I *p−2*b* (I *p+s)+v))) −

(2 *b* (I−2 * r+2 *b* (−I+r)+u) * (4 *bˆ2 * (I+r) * (1+pˆ2+sˆ2) +

(I+r) * (1+pˆ2+I *p* (s−v)+s *v)−b * (4 * I+(3 * I) *sˆ2+pˆ2 * (4 * I+5 * r−u)

−u−sˆ2 *u+I *p* (I+r) * (s−v)+I *s*v+r * (5+4 *sˆ2+s *v))))/(−1+b),

det(A2)==(b * (I−2 * r+2 *b* (−I+r)+u) * (−I−2 * r+2 *b* (I+r)+u) * (s−v))/(−1+b),

u==r+Exp[−x−t], v==s+Exp[−x *b/(1−b)−t * (b/(1−b))ˆ3].

~B! Some plots for quaternionic KdV solitons.~Figures 1 and 2.!
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FIG. 1. ~a! The time-dependent energy of the solutionu@1,i,2,j #. ~b! The initial profiles of the real parts of the thre
different one-solitonsu@1,11 i#PS1 of positive charge~with the lowest peak!, u@1,i#PS0 of zero charge~with the
moderate peak!, andu@1,211 i#PS2 of negative charge~with the highest peak!.

FIG. 2. The contour plots of the real parts of the interactions of the three different classesS6 andS0 of one-solitons. The
typical X form of the patterns reveals the elasticity of the interaction.~a! For u@1,11 i#qu@2,11 j # ¯ S12S1 interaction.
~b! For u@1,11 i#qu@2,j # ¯ S12S0 interaction. ~c! For u@1,211 i#qu@2,211 j # ¯ S22S2 interaction. ~d! For
u@1,11 i#qu@2,j # ¯ S12S0 interaction. ~e! For u@1,11 i#qu@2,211 j # ¯ S12S2 interaction. ~f! For u@1,i#qu@2,
211 j # ¯ S02S2 interaction.
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17Rogers, C. and Shadwick, W. F.,Bäcklund Transformations and their Applications~Academic, New York, 1982!.
18Schiebold, C., ‘‘An operator theoretic approach to the Toda lattice equation,’’ Physica D122, 37–61~1998!.
19Snygg, J.,Clifford Algebras: A Computational Tool for Physicists~Oxford University Press, Oxford, 1997!.
20Wolfram, S.,Mathematica©: A System for Doing Mathematics by Computer, 2nd ed.~Addison-Wesley, New York,

1991!.
21Zhakarov, V. E. and Shabat, A. B., ‘‘Interaction between solitons in a stable medium,’’ Sov. Phys. JETP37, 823–828

~1973!.
                                                                                                                



s
lated
n-

een

non-
ive CY
roidal

view-

of
com-

rphic
known
has
or-

f the
de-

n the
ations
of K3

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 3 MARCH 2003

                    
N-point deformation of algebraic K3 surfaces
Hoil Kima)

Topology and Geometry Research Center, Kyungpook National University,
Taegu 702-701, Korea

Chang-Yeong Leeb)

Department of Physics, Sejong University, Seoul 143-747, Korea

~Received 2 April 2002; accepted 13 December 2002!

We construct a set of noncommutative geometries by performingN-point deforma-
tion of algebraic K3 surfaces. First, we consider two-point deformation of algebraic
K3 surfaces by performing algebraic deformation of a pair of commutative alge-
braic K3 surfaces. In this case, the moduli space of the noncommutative deforma-
tions is of dimension 19, the same as the moduli dimension of the complex defor-
mations of commutative algebraic K3 surfaces. Then, we extend this method to the
N-point case. In theN-point case, the dimension of deformation moduli space
becomes 19N(N21)/2. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1545163#

I. INTRODUCTION

Ever since the work of Connes, Douglas, and Schwarz1 connecting the noncommutative toru
and the T-duality in the M theory context appeared in the string/M theory arena, the field re
with noncommutaive geometry2 becomes an industry in the string/M theory circle. Notably, no
commutative torus3,4 and its varieties have been studied intensively.5–8 However, noncommutative
versions of the K3 surfaces and the Calabi–Yau~CY! threefolds have been rarely studied9–11 ~see
also Refs. 12–14!. Only recently, noncommutative tori with complex structures have b
studied.15,16

In Ref. 17, Berenstein, Jejjala, and Leigh initiated an algebraic geometry approach to
commutative moduli space. Then in Ref. 9, Berenstein and Leigh discussed noncommutat
threefold from the viewpoint of algebraic geometry. They considered two examples: a to
orbifold T6/Z23Z2 and an orbifold of the quintic inCP4, each with discrete torsion.18–22 There,
they explained the fractionation of branes at singularities from a noncommutative geometric
point under the presence of discrete torsion.

In Ref. 9, Berenstein and Leigh considered theT6/Z23Z2 case and recovered a large slice
the moduli space of complex structures of the CY threefold from the deformation of the non
mutative resolution of the orbifolds via central extension of the local algebra of holomo
functions. In the commutative K3 case, the moduli space for the K3 space itself has been
already~see, for instance, Ref. 23!, and even the moduli space for the bundles on K3 surfaces
been studied.24 In the noncommutative deformation of CY threefolds in Ref. 9, the three holom
phic coordinatesyi anticommute with each other to be compatible withZ2 discrete torsion.

In our previous work,10 we applied this algebraic approach to K3 surfaces in the cases o
orbifolds T4/Z2 . We constructed a family of noncommutative K3 surfaces by algebraically
forming T4/Z2 in both complex and noncommutative directions altogether. In that constructio
dimensions of moduli spaces for the complex structures and the noncommutative deform
were the same 18, which is the dimension of the moduli space of the complex structures
surfaces constructed with two elliptic curves.

a!Electronic mail: hikim@gauss.knu.ac.kr
b!Author to whom correspondence should be addressed. Electronic mail: cylee@sejong.ac.kr
13890022-2488/2003/44(3)/1389/7/$20.00 © 2003 American Institute of Physics
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However, in the commutative case the complete family of complex deformations o
surfaces is of 20 dimension inside which that of the algebraic K3 surfaces is of 19 dimensio23 In
this article, we first construct a 19 dimensional family of the noncommutative moduli of ge
algebraic K3 surfaces by considering algebraic deformation of a pair of K3 surfaces. This
struction apparently looks similar to the Connes–Lott’s ‘‘two-point space’’ construction of
standard model.25 Thus, we will call it ‘‘two-point deformation.’’ Next, we extend this metho
directly to theN-point case by deformingN-tuple of commutative algebraic K3 surfaces embe
ded inP2(x1 ,x2)3P1(t1)3¯3P1(tN).

In Sec. II, we construct a two-point deformation for general algebraic K3 surfaces. In Se
we extend the method to theN-point case. In Sec. IV, we conclude with discussion.

II. TWO-POINT DEFORMATION

In this section, we first consider the ‘‘two-point space’’ version of noncommutative defo
tion for general algebraic K3 surfaces in the direct extension of our previous work on non
mutativeT4/Z2 .10 General algebraic K3 surfaces are given by the following form and with a p
added at infinity:

y25 f ~x1 ,x2!. ~1!

Here f is a function with total degree 6 inx1 ,x2 .
Now, we compare this with the Kummer surface, the orbifold ofT4/Z2 case.10 There we

consideredT4 as the product of two elliptic curves, each given in Weierstrass form

yi
25xi~xi21!~xi2ai !, ~2!

with a point added at infinity fori 51,2. By the following change of variables, the point at infin
is brought to a finite point:

yi→yi85
yi

xi
2 ,

~3!

xi→xi85
1

xi
.

For algebraic K3 surfaces, we first consider a function with total degree 6 in complex
ablesu,v,w, for instance,

F~u,v,w!5u2v3w1u4v2.

In a patch where the point at infinity ofw can be brought to a finite point, this can be written

F

w6 5S u

wD 2S v
wD 3

1S u

wD 4S v
wD 2

and may be denoted as

f ~x1 ,x2!5x1
2x2

31x1
4x2

2,

wherex15u/w ,x25v/w . Then, an algebraic K3 surface is given by

y25 f ~x1 ,x2!5x1
2x2

31x1
4x2

2 . ~4!

Similarly, in a patch where the point at infinity ofu can be brought to a finite point, we consid
a function
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F

u6 5S v
uD 3 w

u
1S v

uD 2

,

and this can be written as

y825 f 8~x18 ,x28!5x18
3x281x18

2, ~5!

wherex185v/u 5 x2 /x1 ,x285w/u 5 1/x1 . This can be also obtained directly from~4! by dividing
it with x1

6:

y2

x1
6 5

x1
2x2

3

x1
6 1

x1
4x2

2

x1
6 5S x2

x1
D 3 1

x1
1S x2

x1
D 2

.

Thus, in the case of the general algebraic K3, a point at infinity in one patch can be broug
finite point in another patch by the following change of variables:

y→y85
y

x1
3 , ~6!

x1→x185
x2

x1
,

~7!

x2→x285
1

x1
.

We now consider a deformation of algebraic K3 surfaces in a noncommutative dire
Following the same reasoning in our previous work,10 we consider two commuting comple
variablesx1 ,x2 and two noncommuting variablest1 ,t2 such that

t1
25h1~x1 ,x2!,

~8!
t2
25h2~x1 ,x2!,

where h1 ,h2 are commuting functions of total degree 6 inx1 ,x2 . To be consistent with the
condition thatt1

2 ,t2
2 belong to the center, one can allow the following deformation fort1 ,t2 :

t1t21t2t15P~x1 ,x2!. ~9!

Here the right hand side should be a polynomial and free of poles in each patch. Thus, un
change of variables~7!,

x1→x185
x2

x1
,

x2→x285
1

x1
,

t i should be changed into

t i→t i85
t i

x1
3 , for i 51,2. ~10!

This is due to the fact thatt ’s transform just likey in ~6!. Therefore,P transforms as
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P~x1 ,x2!→x1
6P8S x2

x1
,

1

x1
D . ~11!

This implies thatP8 should be of total degree 6 inx18 ,x28 , at most. Interchanging the role ofP and
P8 one can see thatP should also be of total degree 6 inx1 ,x2 .

The above structure can be understood in the following manner. If we do not impos
condition~9!, and if we have only one of thet i ’s satisfying the condition~8!, then we have only
one copy of an algebraic K3 surface. If we have botht i ’s without the condition~9!, then we have
two copies of K3 surfaces. If we have botht i ’s and impose the condition~9!, then we have
noncommutatively deformed K3 surfaces in which the above mentioned two K3 surfaces
twined each other everywhere on their surfaces, becoming fuzzy. This seems to be similar
‘‘two-point space’’ version of the Connes–Lott model.25 In the Connes–Lott model, every point o
the space becomes fuzzy due to the 1-to-2 correspondence at each point in the space, w
two corresponding points at each classical location are prefixed. On the other hand, ours ar
or less like positionx and momentump in quantum mechanics at every point in the spa
However, since we started with two copies of the classical space just like the Connes–Lott m
and combined them to become a noncommutative space, we will call our construction ‘‘two
deformation,’’ though our construction is not exactly the same as Connes–Lott’s in its natu

Now, we count the dimension of the moduli space of our deformation. In our previous
for noncommutativeT4/Z2 ,10 t1 for y1y2 andt2 for y2y1 were all invariants of the K3 surface. Th
dimensions of the moduli spaces of these deformations were 18 for both the noncommutati
complex deformation cases, matching the moduli space dimension of the complex deformat
T4/Z2 . In the present case, from Eq.~11! we can see that the dimension of the moduli space
these deformations are 19 for both the noncommutative and complex deformation cases. In
show this we need to count the dimension of the polynomials of degree 6 in three variables
constant modulo projective linear transformations of three variables. We get 195282128, where
28 is the dimension of polynomials of degree 6 in three variables and 1 and 8 correspon
constant andPGL(3,C), respectively.

III. N-POINT DEFORMATION

In this section, we follow the method in the previous section and consider the ‘‘N-point space’’
of the noncommutative deformation of the general algebraic K3 surfaces.

First, we considerN-tuple of commutative algebraic K3 surfaces,

t1
25h1~x1 ,x2!,

A ~12!

tN
2 5hN~x1 ,x2!,

whereh1 ,...,hN are commuting functions of total degree 6 inx1 ,x2 . This can be regarded a
embedding thei th copy of algebraic K3 surfaceXi in P2(x1 ,x2)3P1(t i) as t i

25hi(x1 ,x2) of a
degree 6 polynomial. Locally the algebra representing the functions onXi can be expressed a
C@x1 ,x2 ,t i #/I i , whereI i is a principal ideal generated byt i

22hi(x1 ,x2) andC@x1 ,x2 ,t1 ,...,tN# is
a local polynomial algebra ofP2(x1 ,x2)3P1(t1)3¯3P1(tN). Thus embeddingXi in
P2(x1 ,x2)3P1(t1)3¯3P1(tN) induces a natural quotient map fromC@x1 ,x2 ,t1 ,...,tN# to
C@x1 ,x2 ,t i #/I i by putting t j as 0 for j Þ i .

Now, we consider the deformation of this embedded space in the noncommutative direc
in the two-point case. In order to be consistent with the condition thatt1

2 ,...,tN
2 belong to the

center along withx1 ,x2 , we can allow the following deformation fort1 ,...,tN :

t i t j1t j t i5Pi j ~x1 ,x2!, for i , j 51,...,N, iÞ j . ~13!
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Here the right hand side should be a polynomial and free of poles in each patch. Thus, un
change of variables~7!,

x1→x185
x2

x1
,

x2→x285
1

x1
,

t i ’s should be changed into

t i→t i85
t i

x1
3 , for i 51,...,N. ~14!

This is due to the fact thatt i ’s transform just likey in ~6!. Therefore,Pi j transforms as

Pi j ~x1 ,x2!→x1
6Pi j8 S x2

x1
,

1

x1
D . ~15!

This implies thatPi j8 should be of total degree 6 inx18 ,x28 , at most. Interchanging the role ofPi j

andPi j8 one can see thatPi j should be also of total degree 6 inx1 ,x2 .
If we forget the embeddedN K3 surfaces given by the constraints~12! for the time being, the

above defined$Pi j (x1 ,x2)% given by ~13! define a deformation of the ambient spaceP2(x1 ,x2)
3P1(t1)3¯3P1(tN). So, we can understand that imposing the condition of the change of
~14! and~15! compatible to the complex structures coming from~12! induces a restriction onPi j

being of total degree 6 inx1 ,x2 . We might call this deformation a deformation ofN K3 surfaces.
The choice ofPi j is independent of the choice ofhi , which means that the deformations of th
classical complex structure and of the noncommutative structure are independent of each o
expected. Now, we count the dimension of the moduli space of our deformation. In the two
case of the previous section, the dimension of the moduli space of the deformation was 19.
case, we counted the dimension of the polynomials of degree 6 in three variables up to co
modulo projective linear transformations of three variables. Thus, we got 195282128, where 28
is the dimension of polynomials of degree 6 in three variables and 1 and 8 correspond to a c
andPGL(3,C), respectively. Thus, in theN-point case the dimension of the moduli space of
deformation is the number of independentPi j times the deformation dimension of the two-poi
case. Namely, we have 19N(N21)/2 as the dimension of the deformation moduli for theN-point
deformation case.

IV. DISCUSSION

In this article, we deformedN K3 surfaces in the noncommutative sense and computed
dimension for the moduli space.

In the first part of the article, we constructed the two-point deformation of algebraic
surfaces by considering algebraic deformation of a pair of commutative algebraic K3 sur
Doing this, we used the same method as in the case of the Kummer K3 surface10 which is theZ2

quotient of two elliptic curvesE1 ,E2 whereEi satisfiesyi
25 f i(xi). In Ref. 10, we definedt1

5y1y2 , t25y2y1 and introduced the deformationt1t21t2t15P12(x1 ,x2). In that caset1 , t2 were
functions on the Kummer K3 surface, so that the deformation was a noncommutative deform
of one Kummer K3 surface. However, the moduli dimension of that deformation was of 18,10 not
the same as the moduli dimension of algebraic K3 surfaces. Here, we recovered the same
dimension of deformation, 19 by algebraically deforming a pair of algebraic K3 surfaces
manner similar to the Connes–Lott construction.25

Then we considered the extension of this method to theN-point case. Notice that in the
N-point deformation case,t j in the t i t j1t j t i5Pi j (x1 ,x2) is not a function on thei th copy of
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commutative K3 surfaceXi for iÞ j . Rather, this can be thought of as noncommutative defor
tion of N K3 surfaces or a noncommutative deformation of the ambient spaceP2(x1 ,x2)
3P1(t1)3¯3P1(tN) compatible to the complex structure of each K3 surface. In theN-point
case, we obtained 19N(N21)/2 as the dimension of deformation moduli.

When N53, it is interesting whether we can find an analog of the classical hyperka¨hler
structure of K3 surface. First, we recall the property of the moduli space of Ricci flat metric
a K3 surfaceS. If a given metricg satisfiesg(Jv,Jw)5g(v,w) for any tangent vectorv,w, then
we say that the metricg is compatible with the complex structureJ. If the two form V(•,•)
5g(J•,•) is closed, then it is called a Ka¨hler metric andV is called a Ka¨hler form. Any given
Ricci-flat metricg induces a Hodge* operator onH2(S,R)>R3,19 by which H2(S,R) can be
decomposed as a direct sum of two eigenspaces, self-dual part~eigenvalue 1! of dimension 3 and
anti-self-dual part~eigenvalue21) of dimension 19.

In this setting, for the given Ricci-flat metricg, the self-dual partL1 is a three-dimensiona
real vector space consisting of vectors whose self intersection is positive. Different comp
structuresJ to g correspond to different unit vectors inL1, and they formS2 isomorphic toP1.
Here we choose three orthogonal unit vectorsV1 ,V2 ,V3 in L1 such that corresponding comple
structuresJ1 ,J2 ,J3 satisfy the relationJiJj5e i jkJk for i , j ,k51,2,3. This is called a hyperka¨hler
structure onS. We wonder whether we can see the three-point deformation case as the de
tion of this hyperka¨hler structure onS by relatingt i ’s with Ji ’s.

Fröhlich et al.26,27 defined a spectral triple for this hyperka¨hler case introducing the operato
],]̄,Ti ,T̄i , i 51,2,3, acting on the differential forms. Here,]5 1

2(D2 iD̄ ), whereD is the Dirac
operator andTi , i 51,2,3, are operators coming from the hyperka¨hler structure. Then they ex
tended this definition to the noncommutative case. We also wonder whether we can relatet i

with their Ti .
Finally, we wonder whether we can find a sort of Clifford structures onP2(x1 ,x2) with the

fiber P1(t1)3¯3P1(tN). This may be considered by regardingt i t j1t j t i5Pi j (x1 ,x2), i , j
51,...,N, iÞ j and t i

25hi(x1 ,x2), i 51,...,N, not as constraints giving noncommutative defo
mation and complex structures for K3 surfaces but as the components of a symmetric
giving the metric on the fiber.
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Riccati solutions of discrete Painleve ´ equations
with Weyl group symmetry of type E8

„1…
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We present special solutions of the discrete Painleve´ equations associated with
A0

(1) , A0
(1)* andA0

(1)** -surfaces. These solutions can be expressed by solutions of
linear difference equations. Here theA0

(1)-surface discrete Painleve´ equation is the
most generic difference equation, as all discrete Painleve´ equations can be obtained
by its degeneration limit. These special solutions exist when the parameters of the
discrete Painleve´ equation satisfy a particular constraint. We consider that these
special functions belong to the hypergeometric family although they seem to go
beyond the known discrete andq-discrete hypergeometric functions. We also dis-
cuss the degeneration scheme of these solutions. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1531216#

I. INTRODUCTION

Discrete Painleve´ equations are studied with various views of integrable systems.1,2,6 One of
the authors presented the list of all difference Painleve´ equations from the view point of algebra
geometry. For a rational surface, we can obtain a birational representation of certain affine
groups as its symmetry. We regard a translation part of the symmetry as a difference s
Discrete Painleve´ equations were classified on the basis of the types of rational surfaces, and
new equations were discovered by this classification.8

Let X be a smooth projective surface. We denote byKX the canonical divisor class onX, and
by u2KXu the set of all positive divisors onX such that is linearly equivalent to2KX . We call an
element ofu2KXu an anticanonical divisor. Generalized Halphen surfaces are smooth proje
rational surfaces with an anticanonical divisor of canonical type. Ifu2KXu has a unique divisorD,
then X is classified according to the typeR of D, whereR is in Table II. The list ofR can be
obtained from the list of sublattices ofQ(E8

(1)) which are indecomposable and of affine type~see
Table I!. We call a surfaceX an R-surface.

In this article, we consider the case that the root latticeQ(R)5Zd ~d: null root! especially. It
is the case thatD itself is irreducible. Usually this lattice is not a root lattice, but we assign
symbolA0

(1) to the type of lattice. The divisorD has the three types; a smooth curve, a curve w
a double point, and a curve with a cusp. We assign the symbolsA0

(1) , A0
(1)* andA0

(1)** to each
type, respectively. ThisA0

(1) is the most generic case in this list. These three types of surfaces
Weyl group symmetry of typeE8

(1) .
The types of surfaces are divided into three classes naturally. We call them the elliptic

the multiplicative type and the additive type, respectively. This classification corresponds
types of discrete equation, what we call elliptic-difference equation,q-difference equation and
usual difference equation. See Ref. 8 in detail.

In this list, Dl
(1) , El

(1)-surface can be constructed as a space of initial conditions for Pain´
differential equations~see Table III!.

Each discrete Painleve´ equation is usually named by the form of discrete equation and
differential equation obtained at the limit, for exampleq-PIV , d-PI . But, in view of the list, we
cannot name all equations in this way. Ramaniet al. named these equations from the symme

a!Electronic mail: murata@poisson.ms.u-tokyo.ac.jp
13960022-2488/2003/44(3)/1396/19/$20.00 © 2003 American Institute of Physics
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that the equation has.7 But there is a case that different equations have the same symmetry,
is not trivial whether a discrete system with a given symmetry exists or not. For exam
A3

(1)-surface has Weyl group symmetry of typeD5
(1) but there is no surface with Weyl grou

symmetry of typeD6
(1) . So, in this article, we distinguish each discrete Painleve´ equation by the

rational surface on which the equation is defined, and call, for example, theA0
(1)-surface discrete

Painlevéequation (dP(A0
(1))).

We know many results about special solutions with respect to Painleve´ differential equations
whose parameters satisfy particular conditions~Ref. 5, etc.!. These solutions are divided int
algebraic solutions and what we call Riccati solutions. Riccati solutions are expressed by so
of linear equations of the second order. For example, the sixth Painleve´ equationPVI has special
solutions expressed in terms of the Gauss hypergeometric functions. The discrete Painlev´ equa-
tions also possess Riccati solutions for particular values of the parameter. For examp
A3

(1)-surface discrete Painleve´ equation (q-PVI) has solutions expressed by theq-hypergeometric
functions.3

In Ref. 7, Ramaniet al. presented special solutions of theA1
(1)-surface discrete Painlev´

equation and its degenerations. But they did not mention about the discrete Painleve´ equations
corresponding to the surfaces of typesA0

(1) , A0
(1)* andA0

(1)** .
In this article, we obtain special solutions for these discrete Painleve´ equations. We also

discuss the degeneration scheme of these equations.
The article is organized as follows:
In Sec. II, we show a geometrical construction of theA0

(1)-surface discrete Painleve´ equation
and a Riccati solution of this equation in Theorem 2.

In Sec. III, we obtain theA0
(1)* -surface discrete Painleve´ equation in the geometric approac

and a special solution of this equation. And we show a degeneration scheme of these equa
Theorem 3, 5.

In Sec. IV, we obtain theA0
(1)** -surface discrete Painleve´ equation in the geometric approac

and a special solution of this equation in a similar way. And we show a degeneration sche
these equations in Theorem 8.

TABLE I. The list of indecomposable affine root subsystem ofE8
(1).

The arrows mean inclusions (R→R8⇔Q(R),Q(R8)).

TABLE II. Classification of generalized Halphen surfaces with dimu2KXu
50.

Type R

Elliptic type A0
(1)

Multiplicative type A0
(1)* A1

(1) A2
(1) A3

(1) A4
(1) A5

(1) A6
(1) A7

(1) A7
(1)8 A8

(1)

Additive type A0
(1)** A1

(1)* A2
(1)*

D4
(1) D5

(1) D6
(1) D7

(1) D8
(1)

E6
(1) E7

(1) E8
(1)
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In Sec. V, we show as Theorem 9 a degeneration scheme between a special solution o
A0

(1)* -surface discrete Painleve´ equation in Sec. III and a special solution of theA1
(1)-surface

discrete Painleve´ equation.

II. ELLIPTIC TYPE

A. Discrete Painleve´ equation

We present theA0
(1)-surface discrete Painleve´ equation (dP(A0

(1))). This system is equivalen
to ell.P derived in Ref. 4. In this article, all 232 matrices represent PGL~2!-action onP1, i.e.,
w5(c d

a b)z meansw5 (az1b)/(cz1d).
The A0

(1)-surface discrete Painleve´ equation is the following difference system for unkno
functions f(t), g(t):

ḡ5M S f ,c7 ,c8 ,t2
1

4 (
i 51

6

ci D M S f ,c5 ,c6 ,t2
1

4 (
i 51

4

ci D M S f ,c3 ,c4 ,t2
1

4
~c11c2! D

3M ~ f ,c1 ,c2 ,t !g, ~2.1!

fI5M S g,d7 ,d8 ,t2
1

4 (
i 51

6

di D M S g,d5 ,d6 ,t2
1

4 (
i 51

4

di D M S g,d3 ,d4 ,t2
1

4
~d11d2! D

3M ~g,d1 ,d2 ,t ! f , ~2.2!

where ḡ5g(t1l), fI5 f (t2l) and

M ~h,k1 ,k2 ,s!

5S 2`S 2s2
2k11k2

2 D `S 2s2
k12k2

2 D
21 1

D
3S ~h2`~k2!!~`~2s!2`~2s2k2!!S `S 2s2

k11k2

2 D2`S 2s2
k12k2

2 D D 0

0 ~h2`~k1!!~`~2s!2`~2s2k1!!S `S 2s2
k11k2

2 D2`S 2s2
2k11k2

2 D D D
3S 1 2`~2s2k1!

1 2`~2s2k2!
D . ~2.3!

Here bi ( i 51,...,8)are constant parameters and setl5 1
2( i 51

8 bi ,ci5bi1t,di5t2bi . Note that
we will regard ( f (t),g(t)) as inhomogeneous coordinates ofP13P1.

We derive this discrete equation as a translation ofW(E8
(1)) again.

We construct theA0
(1)-surface by blowing upP13P1 at eight pointspi( i 51,...,8). For generic

eight points there is an elliptic curve which passes through these eight points. We param
these eight points and the curve as follows:

~ f 1g1`~2t !!~4`~2t ! f g2g3!5S f g1`~2t !~ f 1g!1
g2

4 D 2

, ~2.4!

TABLE III. The Painlevédifferential equations.

Type of surface D4
(1) D5

(1) D6
(1) D7

(1) D8
(1) E6

(1) E7
(1) E8

(1)

Painlevéequation PVI PV P
III

D6
(1)

P
III

D7
(1)

P
III

D8
(1)

PIV PII PI
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pi : ~`~bi1t !,`~ t2bi !! ~ i 51,...,8!. ~2.5!

Remark 2.1:We can parametrize an isomorphism class of surfaces by using the period
ping. The period mapping maps the elements of the second homology toC.

Let v be a meromorphic two-form onX with div(v)52D. Then v determines the period
mappingx̂:H2(X2D,Z)→C which sendsGPH2(X2D,Z) to *Gv.

Now, there exists the short exact sequence:

0→H1~D,Z!→H2~X2D,Z!→Q~E8
(1)!→0,

whereQ(E8
(1))5( i 50

8 Za i is the root lattice of typeE8
(1) . So we obtain the mapping

x: Q~E8
(1)!→C mod x̂~H1~D,Z!!

through the period mappingx̂. In the case, the parametrization is the following:

x~a1!524t, x~a2!5b11b212t, x~a i !5bi2bi 21 ~ i 53,...,7!,
~2.6!

x~a8!5b22b1 , x~a0!5b82b7 .

HereQ(E8
(1)) is realized in Pic(X)5H2(X,Z). And a i ’s are represented by the elements

the Picard group as follows:

a15H12H0 , a25H02E12E2 , a i5Ei 212Ei ~ i 53,...,7!,
~2.7!

a85E12E2 , a05E72E8 .

We denote the total transform off 5const~or g5const) onX by H0 ~or H1 , respectively! and the
total transform of the pointpi by Ei . The Picard group Pic(X) and the canonical divisorKX are

Pic~X!5ZH01ZH11(
i 51

8

ZEi , KX522H022H11(
i 51

8

Ei ,

where the intersection numbers of pairs of base elements are

Hi•H j512d i , j , Ei•Ej52d i , j , Hi•Ej50, where d i , j5H 1 i 5 j ,

0 iÞ j .

h

Generators of affine Weyl groupW(E8
(1))5^wi ( i 50,1,...,8)& act on these coordinates an

parameters. We give a representation of these actions in order to constructdP(A0
(1)):

w2: Sb1 b2 b3 b4

b5 b6 b7 b8
, t,gD

°Sb123
2t1b11b2

4
b223

2t1b11b2

4
b31

2t1b11b2

4
b41

2t1b11b2

4

b51
2t1b11b2

4
b61

2t1b11b2

4
b71

2t1b11b2

4
b81

2t1b11b2

4

, t2
2t1b11b2

4
,g̃D,
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w1 : ~ t, f ,g!°~2t,g, f !, wi : ~bi 21 ,bi !°~bi ,bi 21! ~ i 53,...,7!,

w8 : ~b1 ,b2!°~b2 ,b1!, w0 : ~b7 ,b8!°~b8 ,b7!,

whereg̃ is given by

g̃2`~2t2 ~b12b2!/2!

g̃2`~2t2 ~2b11b2!/2!

5
f 2`~b21t !

f 2`~b11t !

`~ t2 ~b11b2!/2!2`~2t2 ~b12b2!/2!

`~ t2 ~b11b2!/2!2`~2t2 ~2b11b2!/2!

`~2t !2`~ t2b2!

`~2t !2`~ t2b1!

g2`~ t2b1!

g2`~ t2b2!
.

Notice that we can rewrite the action ofw2 into the following form:

w2 : ~c1 ,c2 ,t,g!°S 2c2 ,2c1 ,t2
c11c2

4
,M ~ f ,c1 ,c2 ,t !gD ,

where we use the notationci5bi1t andM ( f ,c1 ,c2 ,t) is defined by~2.3!.
By taking a translation ofW(E8

(1)), we obtain a nonlinear difference equation. The translat
can be described by a product of simple reflectionswi ’s:

dP~A0
(1)!5w1+w2+w3+w8+w4+w3+w2+w5+w4+w3+w8+w6+w5+w4

+w3+w2+w7+w6+w5+w4+w3+w8+w0+w7+w6+w5+w4+w3+w2

+w1+w2+w3+w4+w5+w6+w7+w0+w8+w3+w4+w5+w6+w7+w2

+w3+w4+w5+w6+w8+w3+w4+w5+w2+w3+w4+w8+w3+w2 : ~2.8!

~bi ,t, f ,g!°~bi ,t1l, f̄ ,ḡ! ~ i 51,...,8!, l5
1

2 (
i 51

8

bi , ~2.9!

where mappings off ,g are defined by~2.1! and ~2.2!.
Remark 2.2:In Ref. 8, we obtainA0

(1)-surface by blowing upP2 with the centers at nine
points:

y2z54x32g2x2z2g3z3,
~2.10!

pi : ~`~u i !:`8~u i !:1! ~ i 51,...,9!,

x~a i !5u i 112u i ~ i 51,...,7!, x~a8!5u11u21u3 , x~a0!5u92u8 . ~2.11!

Both parameters and coordinates correspond as follows:

b152 3
4 ~u11u2!, bi5u i 111 1

4 ~u11u2! ~ i 52,...,8!, t5 1
4 ~u12u2!, ~2.12!

f 5
~4`~u1/2!323g2`~u1/2!24g3!x22`~u1/2!`8~u1/2!y2~g2`~u1/2!216g3`~u1/2!1 g2

2/4!z

2~12̀ ~u1/2!22g2!x22`8~u1/2!y1~4`~u1/2!31g2`~u1/2!12g3!z
, ~2.13!
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g5
~4`~u2/2!323g2`~u2/2!24g3!x22`~u2/2!`8~u2/2!y2~g2`~u2/2!216g3`~u2/2!1 g2

2/4!z

2~12̀ ~u2/2!22g2!x22`8~u2/2!y1~4`~u2/2!31g2`~u2/2!12g3!z
. ~2.14!

We note that the next formula holds for anyu, w.

`~u1w!

5
~4`~w!323g2`~w!24g3!`~u!22`~w!`8~w!`8~u!2~g2`~w!216g3`~w!1 g2

2/4!

2~12̀ ~w!22g2!`~u!22`8~w!`8~u!1~4`~w!31g2`~w!12g3!
.

~2.15!

This formula is a kind of additive formula of̀-function. h

Note that points on the elliptic curve~2.4! move to points on this elliptic curve.
Proposition 1: dP(A0

(1)) has the following trivial solution:

f 5`~q12t2/l1t !, g5`~2q22t2/l1t !, ~2.16!

where q is a constant determined by initial condition.
Proof: We suppose that the solution’s form isf 5`(p1t), g5`(t2p), wherep5p(t). We

input them into~2.1! and ~2.2!. We note that the following identity holds for arbitraryc,

`~2t2 ~c11c2!/22c!2`~2t2 ~c11c2!/21c2!

`~2t2 ~c11c2!/22c!2`~2t2 ~c11c2!/21c1!

`~c!2`~c1!

`~c!2`~c2!

`~2t2c!2`~2t2c2!

`~2t2c!2`~2t2c1!

5
`~2t2 ~c11c2!/2!2`~2t2 ~c11c2!/21c2!

`~2t2 ~c11c2!/2!2`~2t2 ~c11c2!2 1c1!

`~2t !2`~2t2c2!

`~2t !2`~2t2c1!
, ~2.17!

because both sides equal to

s~2t2 ~c11c2!/21c1!2s~c2!2s~2t2c1!2

s~2t2 ~c11c2!/21c2!2s~c1!2s~2t2c2!2 .

Since~2.17! is equivalent to

`S 2t2
c11c2

2
2cD5M ~`~c!,c1 ,c2 ,t !`~2t2c!, ~2.18!

we obtain

`~ t1l2 p̄!5`~23t2l2p!, ~2.19!

`~ t2l1pI !5`~23t1l1p!. ~2.20!

The compatibility condition of them leads one difference equation,

p̄5p14t12l, ~2.21!

so that

p5q12t2/l, ~2.22!

whereq is a constant determined by initial condition.
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B. Linear equation

We derive the following theorem in this section.
Theorem 2: A solution of the following system of equations is written by a solution of lin

equation:

U f g g f 1

`~b11t !`~ t2b1! `~ t2b1! `~b11t ! 1

`~b31t !`~ t2b3! `~ t2b3! `~b31t ! 1

`~b51t !`~ t2b5! `~ t2b5! `~b51t ! 1

U50, ~2.23!

U f ḡ ḡ f 1

`~b81t !`~ t̄ 2b8! `~ t̄ 2b8! `~b81t ! 1

`~b61t !`~ t̄ 2b6! `~ t̄ 2b6! `~b61t ! 1

`~b41t !`~ t̄ 2b4! `~ t̄ 2b4! `~b41t ! 1

U50, ~2.24!

where t̄5t1l. When b11b31b51b750, a solution of this system is a special solution
dP(A0

(1)) (2.1) and (2.2). h

Transforming these equations,

ḡ5

U`~b81 t̄ !`~ t̄ 2b8! `~ t̄ 2b8! 1

`~b61 t̄ !`~ t̄ 2b6! `~ t̄ 2b6! 1

`~b41 t̄ !`~ t̄ 2b4! `~ t̄ 2b4! 1

U f 1U`~b81 t̄ !`~ t̄ 2b8! `~b81 t̄ ! `~ t̄ 2b8!

`~b61 t̄ !`~ t̄ 2b6! `~b61 t̄ ! `~ t̄ 2b6!

`~b41 t̄ !`~ t̄ 2b4! `~b41 t̄ ! `~ t̄ 2b4!

U
U`~b81 t̄ ! `~ t̄ 2b8! 1

`~b61 t̄ ! `~ t̄ 2b6! 1

`~b41 t̄ ! `~ t̄ 2b4! 1

U f 1U`~b81 t̄ !`~ t̄ 2b8! `~b81 t̄ ! 1

`~b61 t̄ !`~ t̄ 2b6! `~b61 t̄ ! 1

`~b41 t̄ !`~ t̄ 2b4! `~b41 t̄ ! 1

U ,

~2.25!

f 5

U`~b11t !`~ t2b1! `~b11t ! 1

`~b31t !`~ t2b3! `~b31t ! 1

`~b51t !`~ t2b5! `~b51t ! 1
Ug1U`~b11t !`~ t2b1! `~ t2b1! `~b11t !

`~b31t !`~ t2b3! `~ t2b3! `~b31t !

`~b51t !`~ t2b5! `~ t2b5! `~b51t !
U

U`~ t2b1! `~b11t ! 1

`~ t2b3! `~b31t ! 1

`~ t2b5! `~b51t ! 1
Ug1U`~b11t !`~ t2b1! `~ t2b1! 1

`~b31t !`~ t2b3! `~ t2b3! 1

`~b51t !`~ t2b5! `~ t2b5! 1
U .

~2.26!

Eliminating f , we can obtain a difference equation of the first order with respect to the variabg.
Wheng is expressed by homogeneous coordinate (g5 g1 /g2), ḡ5 (Ag1B)/(Cg1D) leads to
ḡ1 /ḡ2 5 (Ag11Bg2)/(Cg11Dg2). The solutiong is represented by solution of linear equatio

S ḡ1

ḡ2
D5S A B

C DD S g1

g2
D .

Now we demonstrate Theorem 2. On the conditionb11b31b51b750, we consider the curve
I 50, where
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I 5U f g g f 1

`~b11t !`~ t2b1! `~ t2b1! `~b11t ! 1

`~b31t !`~ t2b3! `~ t2b3! `~b31t ! 1

`~b51t !`~ t2b5! `~ t2b5! `~b51t ! 1

U
5U f g g f 1

`~c1!`~2t2c1! `~2t2c1! `~c1! 1

`~c3!`~2t2c3! `~2t2c3! `~c3! 1

`~c5!`~2t2c5! `~2t2c5! `~c5! 1

U . ~2.27!

Remark 2.3:On this condition,pi ( i 51,3,5,7) lie onI 50, because the following formula
holds:

U`~b11t !`~ t2b1! `~ t2b1! `~b11t ! 1

`~b31t !`~ t2b3! `~ t2b3! `~b31t ! 1

`~b51t !`~ t2b5! `~ t2b5! `~b51t ! 1

`~b71t !`~ t2b7! `~ t2b7! `~b71t ! 1

U50. ~2.28!

The curveI 50 has the divisor classC5H01H12E12E32E52E7 , and the self-intersection
number ofC is 22. In this case, we can restrict affine Weyl group action on the curveI 50, which
is isomorphic toP1, and the translation is automorphism onP1, namely homographic transforma
tion. h

Calculatingw2 acting I , we setĨ as follows:

Ĩ 5U f g̃ g̃ f 1

`~c2!`~2 t̃ 1c2! `~2 t̃ 1c2! `~c2! 1

`~c3!`~2 t̃ 2c3! `~2 t̃ 2c3! `~c3! 1

`~c5!`~2 t̃ 2c5! `~2 t̃ 2c5! `~c5! 1

U , ~2.29!

where t̃ 5t2 (c11c2)/4. Then

Ĩ 5I S `~2 t̃ !2`~2 t̃ 1c2!

`~2 t̃ !2`~2 t̃ 1c1!

`~2t !2`~2t2c2!

`~2t !2`~2t2c1!
D 2

~ f 2`~c2!!~`~c2!2`~c3!!~`~c2!2`~c5!!

3~`~2t2c1!2`~2t2c2!!~`~2 t̃ 1c2!2`~2 t̃ 1c1!!23S U f g 1

`~c1! `~2t2c1! 1

`~c2! `~2t2c2! 1
U

3U`~c1! `~2t2c1! 1

`~c2! `~2t2c2! 1

`~c3! `~2t2c3! 1
UU`~c1! `~2t2c1! 1

`~c2! `~2t2c2! 1

`~c5! `~2t2c5! 1
U D 21

. ~2.30!

ThereforeI 50⇒ Ĩ 50. Similarly we consider the curveI50,
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I5U f ḡ ḡ f 1

`~b81t !`~ t̄ 2b8! `~ t̄ 2b8! `~b81t ! 1

`~b61t !`~ t̄ 2b6! `~ t̄ 2b6! `~b61t ! 1

`~b41t !`~ t̄ 2b4! `~ t̄ 2b4! `~b41t ! 1

U . ~2.31!

Then I 50⇒I50 holds, and we consider the curveĪ 50,

Ī 5U f̄ ḡ ḡ f̄ 1

`~b11 t̄ !`~ t̄ 2b1! `~ t̄ 2b1! `~b11 t̄ ! 1

`~b31 t̄ !`~ t̄ 2b3! `~ t̄ 2b3! `~b31 t̄ ! 1

`~b51 t̄ !`~ t̄ 2b5! `~ t̄ 2b5! `~b51 t̄ ! 1

U . ~2.32!

Then I 50⇒ Ī 50. This means thatf ,g which satisfyI 50 are a special solution on the conditio
b11b31b51b750.

III. MULTIPLICATIVE TYPE

We can obtain theA0
(1)* -surface from theA0

(1)-surface by degeneration. By the same proc
the A0

(1)* -surface discrete Painleve´ equation and the linear equation also can be obtained.

A. Discrete Painleve´ equation

We discuss the following theorem in this section. The equations obtained by the degene
in the theorem coincide with the equations in Ref. 4.

Put g25 4
3(113«2), g352 8

27(129«2) in the A0
(1)-surface discrete Painleve´ equations~2.1!

and ~2.2! and let « tend to 0. Then we obtain theA0
(1)* -surface discrete Painleve´ equation.

Moreover, the change of the variables and parameterse2t5t1 ,e2l5l1 , f 5 1
3( f 1110)/(f 122) ,g

5 1
3(g1110)/(g122) ,e2bi5b i yields the expression in the following theorem. In the express

we replace againt1 by t and l1 , f 1 , g1 , b i by l, f , g, bi , respectively. For the sake o
simplification of notation, the replacement process will be written as follows:

e2t→t, e2l→l, f→ 1

3

f 110

f 22
, g→ 1

3

g110

g22
, e2bi→bi .

These are summarized as follows:
Theorem 3: Make the substitution: g25 4

3(113«2), g352 8
27(129«2) in dP(A0

(1)) (2.1) and
(2.2). Take the limit«→0. Moreover, by the change of variables and parameters, e2t→t,e2l

→l, f→ 1
3( f 110)/(f 22) ,g→ 1

3(g110)/(g22) ,e2bi→bi , we obtain dP(A0
(1)* ):

~ ḡt2l2 f !~gt22 f !2~ t4l221!~ t421!

~ ḡ/~ t2l!2 f !~g/t22 f !2~121/~ t4l2!!~121/t4!

5l2~ f 42m1t f 31~m2t2232m8t8! f 21~m7t72m3t312m1t ! f 1m8t82m6t61m4t4

2m2t211!3~m8f 42m7f 3/t1~m6 /t223m821/t8! f 21~m1 /t72m5 /t312m7 /t ! f

11/t82m2 /t61m4 /t42m6 /t21m8!21, ~3.1!
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~ fI t2/l2g!~ f t22g!2~ t4/l221!~ t421!

~ fIl/t22g!~ f /t22g!2~12l2/t4!~121/t4!

5
1

l2 ~m8g42m7tg31~m6t223m82t8!g21~m1t72m5t312m7t !g1t82m2t61m4t4

2m6t21m8!3~g42m1g3/t1~m2 /t2232m8 /t8!g21~m7 /t72m3 /t312m1 /t !g

1m8 /t82m6 /t61m4 /t42m2 /t211!21, ~3.2!

where ḡ5g(tl), fI5 f (t/l),l5A) i 51
8 bi , mi is the ith elementary symmetric function of bj ( j

51,...,8). h

The above theorem shows that we can obtaindP(A0
(1)* ) from dP(A0

(1)). But, for readers’
convenience, we describe geometrical construction of this discrete equation similar to the pr
section.

We constructA0
(1)* -surface by blowing upP13P1 at eight points. These eight points and

curve which these points lie on are as follows:

f 21g22S t21
1

t2D f g1S t22
1

t2D 2

50, ~3.3!

pi : S bi t1
1

bit
,

t

bi
1

bi

t D ~ i 51,...,8!, ~3.4!

e2x(a1)5t24, e2x(a2)5b1b2t2, e2x(a i )5bi /bi 21 ~ i 53,...,7!,
~3.5!

e2x(a8)5b2 /b1 , e2x(a0)5b8 /b7 .

Generators of affine Weyl groupW(E8
(1))5^wi ( i 50,1,...,8)& act on these coordinates an

parameters. We give a representation of these actions in order to constructdP(A0
(1)* ):

w2 : S b1 b2 b3 b4

b5 b6 b7 b8
, t,gD

°S b1 /~A4 b1b2t2!3 b2 /~A4 b1b2t2!3 b3A4 b1b2t2 b4A4 b1b2t2

b5A4 b1b2t2 b6A4 b1b2t2 b7A4 b1b2t2 b8A4 b1b2t2,t/A4 b1b2t2,g̃D ,

w1 : ~ t, f ,g!°~1/t,g, f !, wi : ~bi 21 ,bi !°~bi ,bi 21! ~ i 53,...,7!,

w8 : ~b1 ,b2!°~b2 ,b1!, w0 : ~b7 ,b8!°~b8 ,b7!,

whereg̃ is given by

g̃2~Ab2 /b1t21Ab1 /b2 /t2!

g̃2~Ab1 /b2t21Ab2 /b1 /t2!
5

f 2~b2t1 1/~b2t !!

f 2~b1t1 1/~b1t !!

g2~ t/b1 1 b1 /t !

g2~ t/b2 1 b2 /t !
.

Notice that we can rewrite the action ofw2 for ci5bit into the following form:

w2 : ~c1 ,c2 ,t,g!°~1/c2,1/c1 ,t/A4 c1c2 ,g̃.

Here we putG and G̃ as

G5
gt22 f

t421
, G̃5

g̃t2/Ac1c2 2 f

t4/c1c2 21
,
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then the relation betweenG and G̃ can be simply represented as

G̃5
~c1c2f 2c12c2!G2~c1c221!

~c1c221!G1~ f 2c12c2!
. ~3.6!

So this transformation can be represented by PGL~2!-action:

G̃5S c1c2f 2c12c2 2~c1c221!

c1c221 f 2c12c2
DG. ~3.7!

By taking a translation ofW(E8
(1)), we obtain a nonlinear difference equation. The translat

can be described by a product of simple reflectionswi ’s. This representation is the same as t
case ofdP(A0

(1)), that is,~2.8!.
Now we calculateḡ from g and f . PuttingG, Ǵ,

G5
gt22 f

t421
, Ǵ5

ḡt2/A) i 51
8 ci 2 f

t4/) i 51
8 ci 21

5
ḡ/~ t2l! 2 f

1/~ t4l2! 21
,

ḡ can be described as follows:

Ǵ5S c7c8f 2c72c8 2~c7c821!

c7c821 f 2c72c8
D S c5c6f 2c52c6 2~c5c621!

c5c621 f 2c52c6
D

3S c3c4f 2c32c4 2~c3c421!

c3c421 f 2c32c4
D S c1c2f 2c12c2 2~c1c221!

c1c221 f 2c12c2
DG

5S t8D 2~ t8D2N!/ f

~ t8D2N!/ f N DG. ~3.8!

HereN andD are as follows:

N5 f 42m1t f 31~m2t2232m8t8! f 21~m7t72m3t312m1t ! f 1m8t82m6t61m4t42m2t211,
~3.9!

D5m8f 42m7f 3/t1~m6 /t223m821/t8! f 21~m1 /t72m5 /t312m7 /t ! f

11/t82m2 /t61m4 /t42m6 /t21m8 , ~3.10!

wheremi is the i th elementary symmetric function ofbj ’s. This equation can be modified

t8
G~Ǵ2 f !11

Ǵ~G2 f !11
5

N

D
.

This equation is~3.1!.
Similarly puttingF, F́,

F5
f /t2 2g

1/t4 21
, F́5

fI /~ t2A) i 51
8 di ! 2g

1/~ t4) i 51
8 di ! 21

5
fI t2/l 2g

t4/l2 21
,

fI can be described as follows:
                                                                                                                



1407J. Math. Phys., Vol. 44, No. 3, March 2003 Riccati solutions of discrete Painlevé equations

                    
F́5S d7d8g2d72d8 2~d7d821!

d7d821 g2d72d8
D S d5d6g2d52d6 2~d5d621!

d5d621 g2d52d6
D

3S d3d4g2d32d4 2~d3d421!

d3d421 g2d32d4
D S d1d2g2d12d2 2~d1d221!

d1d221 g2d12d2
DF

5S ¹/t8 2~¹/t82D!/g

~¹/t82D!/g D
DF. ~3.11!

Here¹ andD are as follows:

¹5m8g42m7tg31~m6t223m82t8!g21~m1t72m5t312m7t !g1t82m2t61m4t42m6t21m8 ,

~3.12!

D5g42m1g3/t1~m2 /t2232m8 /t8!g21~m7 /t72m3 /t312m1 /t !g

1m8 /t82m6 /t61m4 /t42m2 /t211. ~3.13!

This equation can be modified:

t8
F́~F2g!11

F~F́2g!11
5

¹

D
.

This is ~3.2!.
Remark 3.1:In Ref. 8, we obtain theA0

(1)* -surface by blowing upP2 with the centers at nine
points:

y2z54x2~x1z!,
~3.14!

pi : S 1

sinh2 u i
:

22 coshu i

sinh3 u i
:1D ~ i 51,...,9!,

x~a i !5u i 112u i ~ i 51,...,7!, x~a8!5u11u21u3 , x~a0!5u92u8 . ~3.15!

Both parameters and coordinates correspond as follows:

b15exp~2 3
2 ~u11u2!!, bi5exp~2u i 111 1

2 ~u11u2!! ~ i 52,...,8!,

~3.16!

t5exp~ 1
2 ~u12u2!!,

f 5
22~126e2u11e4u1!x2~12e4u1!y116e2u1z

eu1~2~11e2u1!x2~12e2u1!y!
, ~3.17!

g5
22~126e2u21e4u2!x2~12e4u2!y116e2u2z

eu2~2~11e2u2!x2~12e2u2!y!
. ~3.18!

h

Similar to the case ofA0
(1) , dP(A0

(1)* ) has a trivial solution.
Proposition 4: dP(A0

(1)* ) has the following trivial solution:
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f 5tq expS 2~ log t !2

logl D1
1

tq expS 2~ log t !2

logl D , g5
t

q expS 2~ log t !2

logl D 1

q expS 2~ log t !2

logl D
t

,

~3.19!

where q is determined by initial condition.

B. Linear equation

We present a special solution ofdP(A0
(1)* ) in this section.

Theorem 5: By the limiting process: g25 4
3(113«2), g352 8

27(129«2) («→0) in (2.23),
(2.24), and the change of variables and parameters: e2t→t, e2l→l, f→ 1

3 ( f 110)/(f 22) , g
→ 1

3 (g110)/(g22) , e2bi→bi , we obtain the system of equations:

U f g g f 1

S b1t1
1

b1t D S t

b1
1

b1

t D t

b1
1

b1

t
b1t1

1

b1t
1

S b3t1
1

b3t D S t

b3
1

b3

t D t

b3
1

b3

t
b3t1

1

b3t
1

S b5t1
1

b5t D S t

b5
1

b5

t D t

b5
1

b5

t
b5t1

1

b5t
1

U50, ~3.20!

U f ḡ ḡ f 1

S b8t1
1

b8t
D S t̄

b8

1
b8

t̄
D t̄

b8

1
b8

t̄
b8t1

1

b8t
1

S b6t1
1

b6t
D S t̄

b6

1
b6

t̄
D t̄

b6

1
b6

t̄
b6t1

1

b6t
1

S b4t1
1

b4t
D S t̄

b4

1
b4

t̄
D t̄

b4

1
b4

t̄
b4t1

1

b4t
1

U50, ~3.21!

where t̄5tl.
A solution of this system is a special solution of dP(A0

(1)* ) with b1b3b5b751. h

We can easily check that the equations~3.20! and ~3.21! define a special solution o
dP(A0

(1)* ) similar to the case ofA0
(1) .

Transforming these equations,

ḡ5S f S ~b21b41b61b8!t2S 1

b2

1
1

b4

1
1

b6

1
1

b8
D 1

t
D 2~b2b41b2b61b2b81b4b61b4b8

1b6b8!S t22
1

t̄ 2D 1S t2 t̄ 22
1

t2 t̄ 2D D Y
S f S t t̄ 2

1

t t̄
D 2S S 1

b2
1

1

b4
1

1

b6
1

1

b8
D t̄ 2~b21b41b61b8!

1

t̄
D D , ~3.22!
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f 5S gS S 1

b1
1

1

b3
1

1

b5
1

1

b7
D t2~b11b31b51b7!

1

t D2~b1b31b1b51b1b71b3b51b3b7

1b5b7!S t22
1

t2D1S t42
1

t4D D Y
S gS t22

1

t2D2S ~b11b31b51b7!t2S 1

b1
1

1

b3
1

1

b5
1

1

b7
D 1

t D D . ~3.23!

Eliminating f , we obtain a difference equation of the first order with respect to the variableg.

IV. ADDITIVE TYPE

We can obtain theA0
(1)** -surface from theA0

(1)* -surface by a degeneration process. By t
same process theA0

(1)** -surface discrete Painleve´ equation and linear equation also can be o
tained.

A. Discrete Painleve´ equation

We discuss about the following theorem in this section.
Theorem 6 „ORG4

…: By the limiting process, t→e«t, l→11«l, f→21«2f , g→21«2g,
bi→e«bi, («→0), we obtain the dP(A0

(1)** ) from dP(A0
(1)* ) (3.1) and (3.2):

~ f 2ḡ1~2t1l!2!~ f 2g14t2!14 f ~2t1l!2t

2t~ f 2ḡ1~2t1l!2!1~2t1l!~ f 2g14t2!
52

f 41S2f 31S4f 21S6f 1S8

S1f 31S3f 21S5f 1S7
, ~4.1!

~g2 fI1~2t2l!2!~g2 f 14t2!14g~2t2l!2t

2t~g2 fI1~2t2l!2!1~2t2l!~g2 f 14t2!
52

g41S2g31S4g21S6g1S8

S1g31S3g21S5g1S7
, ~4.2!

where ḡ5g(t1l), fI5 f (t2l), l5 1
2( i 51

8 bi , Si is the ith elementary symmetric function of th
quantities cj5bj1t ( j 51,...,8),andS i is the ith elementary symmetric function of the quantit
dj5t2bj . h

The above theorem shows that we can obtaindP(A0
(1)** ) from dP(A0

(1)* ). But we describe
geometrical construction of this discrete equation similar to the previous section.

We construct theA0
(1)** -surface by blowing upP13P1 at eight points. These eight points an

a curve which these points lie on are as follows:

~ f 2g!228t2~ f 1g!116t450, ~4.3!

pi : ~~bi1t !2,~ t2bi !
2! ~ i 51,...,8!, ~4.4!

x~a1!522t, x~a2!5 1
2 ~b11b2!1t, x~a i !5 1

2 ~bi2bi 21! ~ i 53,...,7!

~4.5!

x~a8!5 1
2 ~b22b1!, x~a0!5 1

2 ~b82b7!.

Generators of affine Weyl groupW(E8
(1))5^wi ( i 50,1,...,8)& act on these coordinates an

parameters. We give a representation of these actions in order to constructdP(A0
(1)** ).
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w2 : S b1 b2 b3 b4

b5 b6 b7 b8
,t,gD

°S b123
2t1b11b2

4
b223

2t1b11b2

4
b31

2t1b11b2

4
b41

2t1b11b2

4

b51
2t1b11b2

4
b61

2t1b11b2

4
b71

2t1b11b2

4
b81

2t1b11b2

4

,t2
2t1b11b2

4
,g̃D ,

w1 : ~ t, f ,g!°~2t,g, f !, wi : ~bi 21 ,bi !°~bi ,bi 21! ~ i 53,...,7!,

w8 : ~b1 ,b2!°~b2 ,b1!, w0 : ~b7 ,b8!°~b8 ,b7!,

whereg̃ is given by

g̃2~2t2 ~b12b2!/2!2

g̃2~2t2 ~2b11b2!/2!2 5
f 2~b21t !2

f 2~b11t !2

g2~ t2b1!2

g2~ t2b2!2 .

Notice that we can rewrite the action ofw2 for ci5bi1t into the following form:

w2 : ~c1 ,c2 ,t,g!°~2c2 ,2c1 ,t2 ~c11c2!/4 ,g̃!.

Here we putG, G̃,

G5
f 2g14t2

4t
, G̃5

f 2g̃1~2t2 ~c11c2!/2!2

4t2c12c2
,

then the relation betweenG and G̃ can be simply represented by PGL~2!-action:

G̃5S f 1c1c2 2~c11c2! f

2~c11c2! f 1c1c2
DG. ~4.6!

By taking a translation ofW(E8
(1)), we obtain a nonlinear difference equation. The translat

can be described by a product of simple reflectionswi ’s. This representation is same as the case
dP(A0

(1)), that is~2.8!.
Now we calculateḡ from g and f . PuttingG, Ǵ,

G5
f 2g14t2

4t
, Ǵ5

f 2ḡ1~ 2t2 1
2 ( i 51

8 ci!2

4t2( i 51
8 ci

5
f 2ḡ1~2t1l!2

24t22l
,

ḡ can be described as follows:
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Ǵ5S f 1c7c8 2~c71c8! f

2~c71c8! f 1c7c8
D S f 1c5c6 2~c51c6! f

2~c51c6! f 1c5c6
D S f 1c3c4 2~c31c4! f

2~c31c4! f 1c3c4
D

3S f 1c1c2 2~c11c2! f

2~c11c2! f 1c1c2
DG

5S f 41S2f 31S4f 21S6f 1S8 2~S1f 31S3f 21S5f 1S7! f

2~S1f 31S3f 21S5f 1S7! f 41S2f 31S4f 21S6f 1S8
DG, ~4.7!

whereSi is the i th elementary symmetric function ofcj ’s. This equation can be modified.

ǴG2 f

Ǵ2G
5

f 41S2f 31S4f 21S6f 1S8

S1f 31S3f 21S5f 1S7

.

This equation is~4.1!.
Similarly puttingF, F́,

F5
g2 f 14t2

24t
, F́5

g2 fI1~22t1 1
2 ( i 51

8 di !
2

24t1( i 51
8 di

5
g2 fI1~2t2l!2

4t22l
,

fI can be described as follows:

F́5S g1d7d8 ~d71d8!g

d71d8 g1d7d8
D S g1d5d6 ~d51d6!g

d51d6 g1d5d6
D S g1d3d4 ~d31d4!g

d31d4 g1d3d4
D

3S g1d1d2 ~d11d2!g

d11d2 g1d1d2
DF

5S g41S2g31S4g21S6g1S8 ~S1g31S3g21S5g1S7!g

S1g31S3g21S5g1S7 g41S2g31S4g21S6g1S8
DF, ~4.8!

wheredi5t2bi ( i 51,...,8), andS i is the i th elementary symmetric function ofdj ’s. This equa-
tion can be modified:

F́F2g

F2F́
5

g41S2g31S4g21S6g1S8

S1g31S3g21S5g1S7
.

This is ~4.2!.
Remark 4.1:In Ref. 8, we obtain theA0

(1)** -surface by blowing upP2 with the centers at nine
points:

y2z54x3,
~4.9!

pi : ~ai :22:ai
3! ~ i 51,...,9!,

x~a i !5~ai 112ai !/l ~ i 51,...,7!, x~a8!5~a11a21a3!/l,
~4.10!

x~a0!5~a92a8!/l, l5(
i 51

9

ai .
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Both parameters and coordinates correspond as follows:

b152 3
2 ~a11a2!, bi52ai 111 1

2 ~a11a2! ~ i 52,...,8!, t5 1
2 ~a12a2!, ~4.11!

f 5
26a1

2x1a1
3y18z

2x1a1y
, g5

26a2
2x1a2

3y18z

2x1a2y
. ~4.12!

h

Proposition 7: dP(A0
(1)** ) has the following trivial solution:

f 5~q12t2/l1t !2, g5~2q22t2/l1t !2, ~4.13!

where q is determined by initial condition.

B. Linear equation

We present a special solution ofdP(A0
(1)** ) in this section.

Theorem 8: By the limiting process, t→e«t, l→11«l, f→21«2f , g→21«2g, bi→e«bi

(«→0) in (3.20), and (3.21), we obtain the system of equations:

U f g g f 1

~b11t !2~ t2b1!2 ~ t2b1!2 ~b11t !2 1

~b31t !2~ t2b3!2 ~ t2b3!2 ~b31t !2 1

~b51t !2~ t2b5!2 ~ t2b5!2 ~b51t !2 1

U50, ~4.14!

U f ḡ ḡ f 1

~b81t !2~ t̄ 2b8!2 ~ t̄ 2b8!2 ~b81t !2 1

~b61t !2~ t̄ 2b6!2 ~ t̄ 2b6!2 ~b61t !2 1

~b41t !2~ t̄ 2b4!2 ~ t̄ 2b4!2 ~b41t !2 1

U50, ~4.15!

where t̄5t1l.
A solution of this system is a special solution of dP(A0

(1)** ) with b11b31b51b750. h

We can easily check that the equations~4.14! and ~4.15! define a special solution o
dP(A0

(1)** ).
Transforming these equations,

ḡ5
2A2468~2 ~ t1 t̄ !/2! f 1B2468~~ t1 t̄ !/2!

128~ t1 t̄ ! f 2A2468~~ t1 t̄ !/2!
, f 5

A1357~ t !g1B1357~ t !

256tg1A1357~2t !
, ~4.16!

where

Ai jkl ~ t !528~bi1bj2bk2bl !~bi2bj1bk2bl !~bi2bj2bk1bl !116~~bi1bj2bk2bl !
2

1~bi2bj1bk2bl !
21~bi2bj2bk1bl !

2!t2256t3,

Bi jkl ~ t !52~3bi2bj2bk2bl !~3bj2bi2bk2bl !~3bk2bi2bj2bl !~3bl2bi2bj2bk!t

232~~bi1bj2bk2bl !
21~bi2bj1bk2bl !

21~bi2bj2bk1bl !
2!t31768t5.

Eliminating f , we obtain a difference equation of the first order with respect to the variableg.
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V. RICCATI SOLUTION OF dP „A 1
„1…

…

We can obtain theA1
(1)-surface from theA0

(1)* -surface by a degeneration process. By the sa
process theA1

(1)-surface discrete Painleve´ equation and linear equation also can be obtained.
Theorem 9: By the limiting process, t→At, l→Al, f→ f p1/4/(«At) , g→ Atp1/4/(«g) , bi

→bip
1/4/«( i 51,...,4), bi→«p1/4/bi( i 55,...,8) («→0) in (3.20) and (3.21), where p

5Ab1b2b3b4 /(b5b6b7b8), we obtain the system of equations:

U f g g f 1

t2 t/b1 b1t 1

t2 t/b3 b3t 1

1 1/b5 b5 1

U50, U f ḡ ḡ f 1

1 1/b8 b8 1

1 1/b6 b6 1

t t̄ t̄ /b4 b4t 1

U50, ~5.1!

where t̄5tl.
A solution of this system is a special solution of dP(A1

(1)) with b5b75b1b3p. h

We introduce this theorem in this section.
By the limiting procedure on theA0

(1)* -surface discrete Painleve´ equations~3.1! and~3.2!, we
obtain theA1

(1)-surface discrete Painleve´ equation:4

~ f ḡ2t t̄ !~ f g2t2!

~ f ḡ21!~ f g21!
5

~ f 2b1t !~ f 2b2t !~ f 2b3t !~ f 2b4t !

~ f 2b5!~ f 2b6!~ f 2b7!~ f 2b8!
, ~5.2!

~ f g2t2!~ fIg2 tIt !

~ f g21!~ fIg21!
5

~g2t/b1!~g2t/b2!~g2t/b3!~g2t/b4!

~g21/b5!~g21/b6!~g21/b7!~g21/b8!
. ~5.3!

We can constructdP(A1
(1)) by geometrical approach similar to the above discussions, bu

only show the construction of surface. HereA1
(1)-surface is obtained by blowing upP13P1 at

eight points. These eight points and a curve which these points lie on are as follows:

~ f g2t2!~ f g21!50,
~5.4!

pi : S bit,
t

bi
D ~ i 51,...,4!, pi : S bi ,

1

bi
D ~ i 55,...,8!.

By the same limiting procedure on the system of equations~3.20! and ~3.21!, we obtain the
system of equations~5.1!, or

ḡ5
f ~12t t̄ !1t~ t̄ ~b61b8!2b22b4!

g~b61b82t~b21b4!!1b6b8~ t t̄ 21!
, ~5.5!

f 5
gb5b7~ t221!1t~b11b32t~b51b7!!

g~ t~b11b3!2b52b7!112t2 . ~5.6!

These equations coincide with the equations in Ref. 7.

VI. DISCUSSION

In the article, we derive the linear equations as the special solutions of discrete Pa´
equations. So that we show that these equations belong to the hypergeometric family, we w
the series solutions of them like theq-hypergeometric series. If there exists the series solution
dP(A0

(1)), it should be called elliptic-hypergeometric series.
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W. Gordon’s integral „1929… and its representations
by means of Appell’s functions F2 , F1 , and F3

V. F. Tarasova)

Department of Mathematics, Technical University of Bryansk, 241035, Russia

~Received 29 October 2002; accepted 29 October 2002!

Exact analytical representations for W. Gordon’s integral by means of Appell’s
functions are given. It is shown, that they correlate between each other. But repre-
sentation of this integral by means of Appell’s functionF2 is more attractive.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1539305#

I. INTRODUCTION

In W. Gordon’s original work,1 the first attempt was given to evaluate the integral of the fo

Jc
jp~a,a8!5E

0

`

e2lzzc1 j 21
1F1~2a;c;kz!1F1~2a8;c8;k8z!dz, ~1.1!

where l5(k1k8)/2, c85c6p, jPZ, Re(c1j).0, Rel.0, p, a, a8>0 are integers,c,
c8Þ0,21,22,... . As the authors of Ref. 2 noted, the general formula for this integral ca
derived, but it is so complex that it cannot be used conveniently; recursion relations w
facilitate the reduction integrals of type~1! to the integral withj 5p50, are more convenient.

In the present paper for this integral, three different representations by means of Ap
functionsF1 , F2 , andF3 ~1880!3 are obtained. The latter are

F1S a
gUb , b

– –
Ux,yD 5 (

m50

`

Amxm
2F1S a1m,b8

g1m UyD ,

F2S aUb,b8
g,g8Ux,yD5 (

m50

`

Amxm
2F1S a1m,b8

g8 UyD ,

F3S –
gUa , a8; b , b8

– – – –
Ux,yD 5 (

m50

`

Amxm
2F1S a8,b8

g1mUyD ,

whereAm5(a)m(b)m /((g)m( l )m).
These double hypergeometric series absolutely converge interior to the domains:

D15D3 :uxu,1,uyu,1 and D2 :uxu1uyu,1.

All the main symbols are standard,4 e.g., we have Pochhammer’s symbol (a)k5G(a1k)/G(a),
(a)051, etc.

a!Electronic mail: mumfordd@mail.ru
14490022-2488/2003/44(3)/1449/4/$20.00 © 2003 American Institute of Physics
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II. SOME ADDITIONAL INFORMATION

It is well-known3–5 that the following formulas are true:

E
0

1

extta21~12t!g2a21dt5
G~a!G~g2a!

G~g! 1F1~a;g;x!, ~2.1!

E
0

`

e2lzza21
1F1~b;g;kz!dz5

G~a!

la 2F1S a,b
g UxD , ~2.2!

2F1S a,b
g UxD5~12x!2a

2F1S a,g2b
g U x

x21D , ~2.3!

E
0

1

ta21~12t !g2a21~12xt!2b~12yt!2b8dt5
G~a!G~g2a!

G~g!
F1S a

gUb , b8

– –
Ux,yD , ~2.4!

F1S a
gUb , b8

– –
Ux,yD 5~12x!2aF1S a

gUg2b2b8,b8

– –
U x

x21
,
x2y

x21D ~2.5!

5~12x!2bF3S 2

g Ua,g2a;b,b8

– – – –
U x

x21
,yD , ~2.6!

5S x

yD b8
F2S b1b8U a,b8

g,b1b8Ux,12
x

yD , ~2.7!

All parameters take values such that the integrals and the series have meaning.

III. REPRESENTATION BY MEANS OF APPELL’S FUNCTION F2

As is seen in Ref. 6, integral~1.1! is a special case of off-diagonal matrix elements^quzkuq8&,
whereq is a set of parameters of Schro¨dinger’s radial function; therefore we have the followin
representation:6

Jc
jp~a,a8!5

G~c1 j !

lc1 j F2S c1 jU2a,2a8
c,c8 Ux,yD , ~R2!

wherex5k/l andy5k8/l.
Many recursion relations, reduction formulas, and special cases for Appell’s functionsF1 ,

F2 , andF3 may be found in Refs. 6 and 7~and references therein!. In particular, for Appell’s
function F2 we have

F2S cU2a,2a8
c,c Ux,yD5~12x!a~12y!a8

2F1S 2a,2a8
c U xy

~12x!~12y! D , xÞyÞ1,

F2S c1 jU2a,2a
c,c U1,1D5F2S c2 j 21U2a,2a

c,c U1,1D5
~1!a

~c!a
3F2S 2a,2 j , j 11

c,1 U1D , j↔2 j 21;

F2S c1 jU a,a8
c,c1pUx,yD5

~c!p

yp~c1 j 2p!p
(

m50

p

~21!mCp
mF2S c1 j 2pUa,a82m

c,c Ux,yD ,

whereCp
m5p!/(m!( p2m)!), Re(c1j2p).0, and
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y~c1s21!F2S c1sUa,b
c,c Ux,yD

5bF2S c1s21Ua,b11
c,c Ux,yD1~c22b!F2S c1s21Ua,b

c,c Ux,yD
1~b2c!F2S c1s21Ua,b21

c,c Ux,yD ,

wheres>1, Re(c1s21).0.

IV. REPRESENTATIONS BY MEANS OF APPELL’S FUNCTIONS F1 AND F3

Considering formulas~2.1!–~2.3!, we get

Jc
jp~a,a8!5

1

lc1 j GF c,c1 j
2a,c1aG E

0

1 t2a21~12t !c1a21

~12xt!c1 j 1a8
~12y2xt!a8

32F1S 2a8,c82c2 j
c8 U y

xt2y21Ddt.

Here, the parameterc82c2 j 5(2 j 6p)PZ, that is why we ‘‘open’’ Gauss’s functiononly with
respect toa8>0 and integrate overt; then taking into consideration the E. Picard integral~2.4!, we
have:

Jc
jp~a,a8!5

G~c1 j !

lc1 j ~12y!a8 (
m50

a8

BmS y

y21D m

F1S 2a
c Uc1 j 1a8,m2a8

– –
Ux,

x

12yD ,

whereBm5(2a8)m(c82c2 j )m /((c8)m(1)m).
From here, using Appell’s transform~2.5!, we have the following representation:

Jc
jp~a,a8!5

G~c1 j !

lc1 j ~12x!a~12y!a8 (
m50

a8

BmS y

y21D m

3F1S 2a
c U2 j 2m,m2a8

– –
U x

x21
,

xy

~12x!~12y! D , ~R1!

wherexÞyÞ1. We rewriteF1 in the form

F1[ (
m50

a82m
~2a!m~2 j 2m!m

~c!m~1!m
S x

x21D m

2 F1S 2a,m2a8
c1m U xy

~12x!~12y! D .

From here, using Appell’s transform~2.6!, we have the following representation:

Jc
jp~a,a8!5

G~c1 j !

lc1 j ~12x!a2 j 2m~12y!a8 (
m50

a8

BmS y

y21D m

3F3S 2

c U2a,c1a;2 j 2m,m2a8

– – – –
Ux,

xy

~12x!~12y! D , ~R3!

wherexÞyÞ1. We rewriteF3 in the form
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F3[ (
m50

a82m
~2a!m~2 j 2m!m

~c!m~1!m
xm

2F1S c1a,m2a8
c1m U xy

~12x!~12y! D .

From expressions~2.7! and ~R1!, we have:

F1S 2a
c U2 j 2m,m2a8

– –
U x

x21
,

xy

~12x!~12y! D 5S y

y21D a82m

F2S 2 j 2a8U2a,m2a8
c,2 j 2a8 U x

x21
,
1

yD ,

~R18!

wherexÞyÞ1. Finally, we rewriteF2 in the form

F2[ (
m50

a82m
~2a!m~2 j 2a8!m

~c!m~1!m
S x

x21D m

2

F1S m2 j 2a8,m2a8
2 j 2a8 U 1

y D .

Note that in Ref. 8 only one special case of~R1! was considered, whenc85c2p, j ,p>0.
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An investigation of entanglement and quasiprobability
distribution in a generalized Jaynes-Cummings model
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In this paper, we consider a unified approach to study the degree of entanglement of
two-level systems interacting with a quantized electromagnetic field. We investi-
gate a range of parameters in a generalized Jaynes–Cummings model~JC-model!
with intensity-dependent, field nonlinearity and nonresonant coupling. In terms of
the density matrix and without the diagonal approximation we derive an explicit
expression for the entanglement degree using a function analogous to mutual en-
tropy. This notion is inspired by the fact that the quantum state may be interpreted
as a measure of information. With the aid of the quasiprobability distribution func-
tion, the statistical properties of the field are analyzed. It is shown that when the
atom is initially in its upper-level and the one-photon at resonance, theQ-function
splits into two peaks and counter rotate in phase space. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1559643#

I. OVERVIEW

Entanglement is arguably the key property distinguishing quantum and classical system
lies at the heart of recent proposals for quantum communication and computation. Re
entanglement as a physical resource has been used in quantum information such as q
teleportation, superdense coding and quantum cryptography.1 Consequently, to understand an
develop the quantum theory of information it is necessary to quantify the entanglemen
research on quantifying entangled states has been considered by several authors~see, e.g., Ref. 2!.
To quantify entangled states, we have to know whether the states are pure or mixed states
if the entangled state is pure, then it is sufficient to use the von Neumann entropy, which is u
in several ways.3 These situations have been considered and the reduced von Neumann e
used to analyze the quantum fluctuations.4–6 In general, the final state is not necessarily pure, a
therefore we need to adopt a new method to measure the degree of entanglement in mixe
Here we may refer to the method which has been adopted in Ref. 7 for using quantum m
entropy to measure the degree of entanglement in the time development of the JC-mod
entanglement for the time development of the JC-model has been investigated,8,9 and we estab-
lished that the entanglement can be controlled by means of squeezing.8

It is well known that the simplest and most fundamental system to study the coupling be
radiation and matter is a single two-level atom interacting with a single mode of an electro
netic field in a cavity. This problem has received a great deal of interest, especially since the
was invented. However, at that time, the problem was of purely academic interest as the
elements describing the radiation–atom interaction are usually so small that the field of a
photon is not sufficient to lead to an atom field evolution time shorter than the other charact
times of the system, such as the excited state lifetime~the time of flight of the atom through th
cavity and the cavity mode damping time!. It was therefore not possible to test experimentally
fundamental theories of radiation–matter interaction, which predicted other effects.10 The well-
known solvable model describing this interaction is the JC-model11 which is the basis for a vas

a!Present address: Institut fur Mathematik und ihre Didaktik, Universitat Flensburg, Flensburg, Germany. Electron
abdelaty@uni-flensburg.de
14570022-2488/2003/44(4)/1457/15/$20.00 © 2003 American Institute of Physics
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array of the current experiments on foundations of quantum mechanics. This involves ent
states,12 new ideas of quantum optics,13 and novel device structures such as a micromaser, sin
atom laser.14 Thus this model contains all the subtle features of quantum entanglement
dependent on the interaction strength.

In this paper, we study the problem of a two-level atom interacting with a single-mode
allowing the nonlinearities of both field and intensity-dependent coupling to be arbitrary in
presence of the Stark shift. However, we shall put no restriction on the derivation of the ent
ment degree ignoring any approximation such as diagonal approximation which has been
earlier studies.7–9 We shall show that as should be expected, the entanglement still exhib
quasi-period which is strongly affected by different parameters of the present system. In cla
information theory, the mutual entropy is a very important quantity to analyze the communic
processes and physical transformations. In handling the present paper we emphasis on a
the quasi-mutual entropy not the quantum mutual entropy. We also aim to analyze the ef
different forms of the nonlinearities on theQ-function as well as the atomic level occupatio
probabilities.

We organize the paper as follows. In Sec. II, we rewrite the dynamics of the Jay
Cummings model from a point of view based on the entangled dressed-state eigenbasis. Se
begins with a derivation of an expression for the entanglement due to quasi-mutual entrop
general two-level system interacting with a coherent state, without the diagonal approximat
Sec. III A, we analyze the role of the different parameters and verify that the strong entangl
will occur for particular choices. We devote Sec. IV to consider the statistical properties o
field with the help of the quasiprobability distribution function (Q-function!. Our conclusions are
summarized in Sec. V.

II. THE MODEL

We devote this section to a brief discussion of the most general class of JC-model
describes the interaction between a single few-level atom and the quantized cavity field. I
the JC-model has been extensively studied by many authors and numerous nonclassica
have been predicted and in some cases verified in the laboratory.10 The Hamiltonian of the JC-
model concerns a two-level atom interacting with a single mode of quantized radiation~boson!
field of a given frequencyv, is described in terms of the usual creationâ†, and annihilationâ
operators of the boson field satisfying@ â,â†#51, the two-level system is represented by t
z-component of the Pauli matrix operator with the energy separation of the two atomic l
v05(Ee2Eg), whereEi is the energy for levelu i &, and their mutual interaction is expressed
the rotating wave approximation which can be represented by the generic formula as

Ĥ

\
5R~Â!1S~Â!~Ĝee2Ĝgg!1Â~b2Ĝee1b1Ĝgg!1l~ÂkĜeg1ĜegÂk

†!, ~1!

where Â is some generalized number operator for the photon field, whileÂk and Âk
† represent

generalized raising~lowering! operators. We denote byl the dipole-interaction strength betwee
the radiation and the atom or in the generic model represents the coupling between the bos
and the pseudo-spin matricesĜi j . The third term ofĤ describes the dynamic Stark shifts of th
ground and excited levels of the atom which depends on the one-photon coupling constan
coupling depends on the mismatchuDu ~the detuning parameterD5v02kv) and the intensity and
statistics of the cavity field.b1 and b2 are parameters describing the intensity-dependent S
shifts (k.1) of the two-level atom which is due to the virtual transitions to the intermediate r
level. Also, l is related tol

1
the coupling constant for the (ue&↔u j & transition! and l

2
for the

(ug&↔u j & transition! by the relation

l5
l1l2

D
, b15

l1
2

D
, b25

l2
2

D
. ~2!
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It is worth noting here that the form of the Hamiltonian~1!, in the absence of Stark shifts (b i

50) and the nonlinearities reduces to~up to constant factors! that of Ref. 15. We assume that th
injected atom is prepared before entering the cavity in the following form:

r5cos2S %

2 D Ĝee1sin2S %

2 D ĜggPSA . ~3!

Also, we suppose that the initial state of the radiation field is a coherent state. Then we may
the initial state of the field as

Ã5uh&^huPSF , uh&5 (
n50

`

bnun&, ~4!

where,bn5exp(21
2n̄) (n̄l/2/An! ), and n̄5uhu2 is the intensity of the initial coherent field. Th

continuous mapEt* describing the time evolution between the atom and the field is defined b
unitary operator generated byĤ such that

Et* :SA→SA^ SF ,

Et* r5Ût~r ^ Ã!Ût* , ~5!

Ût[expS 2 i t
Ĥ

\
D .

The quantity expressed in Eq.~5! is to be calculated using quantum states evolving in time un
the action of HamiltonianĤ.

Entanglement is a feature of the fully-quantized matter–radiation interaction, for exampl
steady states of Eq.~1! are entangled states known as ‘‘dressed states.’’ Before proceeding fu
we give a specific example for the sake of concreteness. We consider the case of thek-photon
JC-model with arbitrary forms of the nonlinearities of both the field and the intensity-depen
coupling in the presence of the Stark shifts. Here, we assume thatÂk5 f (â†â) ^ âk, Â5â†â,
S(Â)5 v0/2 , andR(Â)5vâ†â1R1(â†â). The first term in theR(Â) obviously stands for the
energy of a free photon field, whereasv0/2 stands for the two-level atom, the level splittin
depending on the strength of the photon field. We denote byR1(â†â) the one-mode field nonlin-
earity and l f (â†â) represents an arbitrary intensity-dependent coupling. Switching to
interaction-picture representation for convenience, it can be shown that exact solutions
interacting system are

Ĥus,g&5E0us,g&, 0<s,k,
~6!

ĤuC6
(n)&5E6

(n)uC6
(n)&,

where the eigenvaluesE0 andE6
(n) are given by

E6
(n)5vS n1

k

2D1
v0

2
1

1

2
„R1~n!2R1~n1k!…1

1

2
@nb21b1~n1k!#6mn ,

~7!

E05S sb12
D

2 D ,

and the eigenstatesuC6
(n)& are
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uC1
(n)&5sinunun,e&1cosunun1k,g&,

~8!
uC2

(n)&5cosunun,e&2sinunun1k,g&,

with

mn5Ann
21tn

2,

nn5
D

2
1

1

2
„b2n2b1~n1k!…1

1

2
„R1~n!2R1~n1k!…, ~9!

tn5l f ~n1k!A~n1k!!

n!
,

wheremn is a modified Rabi frequency. The angleun is given by

un5sin21S tn

A~nn2mn!21tn
2D . ~10!

The entangled statesus,g& anduC6
(n)& are orthonormal and complete. Here6 labels the entangled

states which in their bare condition are the groundug& and the excitedue& states, andn, the states
of the boson field. The condition forun5p/4 is yn50 for which it is sufficient thatD5b1

5b25R1(n).
The unitary evolution operatorÛt can be written as

Ût5 (
n50

`

$exp~2 i tE1
(n)!uC1

(n)&^C1
(n)u1exp~2 i tE2

(n)!uC2
(n)&^C2

(n)u%

1 (
s50

k21

exp~2 i tE0!us,g&^g,su. ~11!

Despite being straightforwardly solvable in this way, the JC-model is well-known for the fact
the time-evolution of most expectation values is usually expressible only in series form. H
obtained the explicit forms of the unitary operatorÛt , for the system under consideration then t
eigenvalues and the eigenfunctions can be used to discuss many features concerning the
the atom. Given the impressive technological advances in several experimental areas of q
optics, condensed matter, atomic physics, etc . . . , it is nowadays possible to realize a system
two interacting degrees of freedom and watch the time evolution of the corresponding ent
ment process.16 It is therefore also of importance to understand the entanglement process in s
Hamiltonian systems. Hamiltonian systems with two degrees of freedom often present a ve
dynamics, which in many cases is not yet completely understood from a general point of vi
particular, if the interaction is nonlinear the system may present chaotic behavior in the cla
limit. The consequences of this fact for the quantum dynamics are as yet unsettled. A step
direction was taken a few years ago, as it was conjectured that ‘‘the rate of entropy producti
be used as an intrinsically quantum test of the chaotic versus regular nature of the evoluti17

The idea has been tested in some models.18 In the next section we are going to discuss the deg
of entanglement due to quantum quasi-mutual entropy which is a special case of the qu
relative entropy.

III. DERIVATION OF ENTANGLEMENT DEGREE

Quantum entanglement is one of the paradigmatic ingredients of quantum theory.
following we are interested in studying the entanglement for an initial mixed state of the c
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field, as mixed states are the true representation of the state of the field at a finite tempe
However, it is difficult to define the entanglement for mixed states. This is because we c
easily define an analogu of the Schmidt decomposition for a general mixed state of a com
system. Such a mixed state can be expanded in terms of pure states in infinitely many d
ways and it is not clear which, if any, decomposition should be favored. Mixing two entan
pure states could result in a mixed state with entanglement much less than the average e
ment of the states mixed. Mixed state entanglement is thus a very different entity to
correlations or pure state entanglement. At least three different measures have been
quantify entanglement for a mixed state. One of these measures, the relative entro
entanglement,2 is defined for mixed state of a composite system~such as the atom-field system!
as7,8

Ere~Et* r,Et* s!5Tr Et* r~ logEt* r2 logEt* s!, ~12!

whereEre(Et* r,Et* s) measures the difficulty of distinguishing between the statesEt* r andEt* s.
A stateEt* s of a bipartite systemH5H1^ H2 is called separable ifEt* s is a mixture of product
states, i.e., ifEt* s can be written as19

Et* s5(
k

pksk
A

^ sk
F , ~13!

wheresk
APS(H1), sk

FPS(H2), pk.0, and(kpk51. A separable state can be prepared by lo
means, that is, by performing local quantum operations on a product state. The relative ent
entanglement measure tells us how difficult it is to distinguish the given entangled state fro
closest approximation in the set of separable states. The other measures of entanglem
associated with formation and distillation of entangled states.

In Refs. 7–9, a method using quasi-mutual entropy to measure the degree of entanglem
the time development of a two-level system has been adopted. This measure quantifies ho
the correlated systems know about the state of each other. However, in the present paper,
derive the entanglement degree without the diagonal approximation which has been used i
7–9. The final state is given by

Et* r5Ut~r ^ Ã!Ut* 5cos2S %

2 DUtuh;e&^h;euUt* 1sin2S %

2 DUtuh;g&^h;guUt* . ~14!

Then the von Neumann entropy for the reduced stateEt* r is given by

S~Et* r!5l1
AF~ t !logl1

AF~ t !1l2
AF~ t !logl2

AF~ t !, ~15!

wherel1
AF(t)5cos2(%/2), l2

AF(t)5sin2(%/2).
Taking the partial trace over the atomic system, we obtain

r t
F5trA Et* r5cos2S %

2 D „uc1~ t !&^c1~ t !u1uc2~ t !&^c2~ t !u…

1sin2S %

2 D „uc3~ t !&^c3~ t !u1uc4~ t !&^c4~ t !u…, ~16!

where
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uc1~ t !&5 (
n50

`

bne2 ignt~cosmnt1 i cos 2un sinmnt !un&,

uc2~ t !&52 i (
n50

`

bn2ke
2 ign2kt sin 2un2k sinmn2ktun&,

~17!

uc3~ t !&52 i (
n50

`

bn1ke
2 ignt sin 2un sinmntun&,

uc4~ t !&5 (
n50

`

bne2 ign2kt~cosmn2kt1 i cos 2un2k sinmn2kt !un&,

with

gn5 1
2 „R~n!1R~n1k!…1 1

2 @nb21b1~n1k!#. ~18!

The von Neumann entropy for the reduced stateS(r t
F) is computed by

S~r t
F!52l1

F~ t !logl1
F~ t !2l2

F~ t !logl2
F~ t !2l3

F~ t !logl3
F~ t !2l4

F~ t !logl4
F~ t !, ~19!

wherel i
F(t) are the solutions of the following equation:

det@ r̂~ t !2l~ t !N̂~ t !#50, ~20!

r̂(t) and N̂(t) are 434 matrices having the following elements:

@ r̂~ t !# i j [^c i~ t !ur t
Fuc j~ t !& ~ i , j 51,2,3,4!,

~21!
@N̂~ t !# i j [^c i~ t !uc j~ t !& ~ i , j 51,2,3,4!.

For the reduced stateS(r t
A) we find that the von Neumann entropy takes the form

S~r t
A!52l1

A ~ t !logl1
A ~ t !2l2

A ~ t !logl2
A ~ t !, ~22!

wherel i
A(t) is given by

l6
A ~ t !5 1

2 $16A~2Cee~ t !21!214uCeg~ t !u2%. ~23!

In this case, the probability of finding the atom in its excited or ground states are expressed
diagonal element of the reduced atomic density matrix; thus

Cee~ t !5 (
n,l 50

bn,l H Ẽ11
(nl)FUcosS %

2 D U2

usinunu2usinu l u21
1

4 UsinS %

2 D U2

sin 2un sin 2u l G
1Ẽ12

(nl)FUcosS %

2 D U2

usinunu2ucosu l u22
1

4 UsinS %

2 D U2

sin 2un sin 2u l G
1Ẽ21

(nl)FUcosS %

2 D U2

ucosunu2usinu l u22
1

4 UsinS %

2 D U2

sin 2un sin 2u l G
1Ẽ22

(nl)FUcosS %

2 D U2

ucosunu2ucosu l u21
1

4 UsinS %

2 D U2

sin 2un sin 2u l G J , ~24!

Cee~ t !512Cgg~ t !,

and the off-diagonal elementCeg(t) is given by
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Ceg~ t !5
1

2 (
n,l 50

`

bn,l H Ẽ11
(nl)FUcosS %

2 D U2

usinunu2 sin 2u l1UsinS %

2 D U2

sin 2unucosu l u2G
2Ẽ12

(nl)FUcosS %

2 D U2

usinunu2 sin 2u l2UsinS %

2 D U2

sin 2unusinu l u2G
1Ẽ21

(nl)FUcosS %

2 D U2

ucosunu2 sin 2u l2UsinS %

2 D U2

sin 2unucosu l u2G
2Ẽ22

(nl)FUcosS %

2 D U2

ucosunu2 sin 2u l1UsinS %

2 D U2

sin 2unusinu l u2G J , ~25!

whereẼi j
(nl)5exp@2it(Ei

(n)2Ej
(l))#. Thus we rigorously obtain the entanglement degree in the

tem under consideration in the following form:7,8

DEM~Et* r![tr Et* r„logEt* r2 log~r t
A

^ r t
F!…

5S~r t
A!1S~r t

F!2S~Et* r!

52l1
F~ t !logl1

F~ t !2l2
F~ t !logl2

F~ t !2l3
F~ t !logl3

F~ t !2l4
F~ t !logl4

F~ t !

2l1
A ~ t !logl1

A ~ t !2l2
A ~ t !logl2

A ~ t !1l1
AF~ t !logl1

AF~ t !

1l2
AF~ t !logl2

AF~ t !. ~26!

Note that the tensor product stater t
A

^ r t
F is one of the disentangled states. From the ab

equations and the matrix elements which represent the state of the field, we are able to de
under which conditions we may attain a reasonable entanglement degree. In what follows, w
analyze numerically whether and how it would be possible to increase the amount of entang
of the output state. Therefore, we consider the situation where the initial field state is a co
state.

A. Discussion

In the previous section we have assumed perfect unitary evolution and initial state prepa
for the system. This assumption is partially justified for the following reasons:~1! a very good
control of the quantum dynamics has been achieved for a single atom~or trapped ion!; ~2! they are
well isolated from their environment. In this section we present several results related to a g
definition of entanglement degree, denoted DEM(Et* r). Although it has already been used in th
past in the framework of the diagonal approximation formalism, such an entanglement d
becomes particularly interesting when we consider a general mixed state. It is then poss
show that DEM(Et* r) possesses a number of interesting properties. Comparing to the qua
von Neumann entropy the advantage of this entanglement degree measure, is that for the
state which is a general case one just needs to compute DEM(Et* r). No more knowledge of the
final state is required, neither does it need to be diagonalized, as in the von Neumann entrop

We inspect the time-evolution of the entanglement degree for a two-level system, choosi
initial state of the radiation field to be a coherent state. The importance of studying in deta
entanglement degree in different initial states is twofold. It may be viewed as a key t
understanding of some of the striking differences between the quantum and classical descrip
the world such as the nonexistence at the classical level of the majority of states allow
quantum mechanics. In particular, if the interaction is nonlinear the system may present c
behavior in the classical limit. We should note that if we set the angle%50(p) ~i.e., the atom
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initially in the excited ~ground! state! the final state of the system is a pure entangled st
Therefore it is sufficient to use von Neumann entropy in order to measure the degree of en
ment for the above cases and the entanglement degree is just twice the reduced von N
entropy i.e., DEM(Et* r)52S(r t

A). These situations have been considered and the reduced
Neumann entropy has been applied to analyze the quantum fluctuations.4–6 In a general case~i.e.,
%Þ0 or p!, the final state is not necessarily pure, so that we need to adopt the DEM(Et* r) in order
to measure the degree of entanglement in the present model. In fact, the initial state of the
system was considered as an exited state or a ground state in Ref. 6, however, we start
mixed state, namely Eq.~3! as an initial state of the atomic system. Thus our initial setting ena
us to discuss the variation of the entanglement degree for different values of the angle% of the
initial atomic system.

In order to explore the effects of parameters of the system on the entanglement degree,
the entanglement degree for~i! different values of the angle%, in Fig. 1;~ii ! different values of the
detuning parameterD/l in Fig. 2; ~iii ! different values of the intensity-dependent coupling in F
3; ~iv! different values of Stark shift parametersb1 andb2 , in Fig. 4 and finally, different values
of the field nonlinearity in Fig. 5. One of the interesting phenomenon described by a two
system is the dynamical behavior of the system. When we consider that the atom is initially
upper state~i.e., %50) in the absence of both the detuning and Stark shift, the upper
populationCee(t) is reduced toCee(t)5(nbn

2 cos2 mnt, where the field is initially described by
photon statisticsbn

2 . This shows that the upper state population oscillates periodically at
Rabi-flopping frequency, similar to the case of classical fields. In the vacuum field atn50 and on
resonanceD50, the dressed states are separated by the frequencym052l, generally called
vacuum Rabi splitting. Intuitive pictures of the interaction between a two-level atom an
electric field commonly involve the expectation that the atomic level populations must chan
both systems exchange excitations over the course of time. This is due to the absence of
atomic levels, which precludes the existence of destructive interference between different
transitions. However, in a fully-quantized interaction model such as the Jaynes-Cummings
it is indeed possible to have states in which the atomic populations are completely or
completely trapped. This can be ultimately traced to the fact that the eigenstates of this mo
entangled.

In order to get a deeper insight into modulation effect of the parameter% on the entanglemen

FIG. 1. The entanglement degree DEM(Et* r) in ~a!, ~b! and the atomic populations of the excited and ground states in~c!,
~d! as functions of the scaled timeT5lt. Calculations assume thatb150, b250, f (n)51, (f50) and the field in the
coherent state, the detuning parameterD has zero value,k51 ~one-photon resonance!, the mean-photon numbern̄510 and
for different values of%, where~a!, ~c! %5p/3 and~b!, ~d! %5p/12.
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degree, in Fig. 1, we plot the entanglement degree for different values of the parameter%. It is
remarkable that, the first maximum of the entanglement degree att.0 is achieved at the collaps
time, that is when the average photon number in the cavity mode reaches its steady value
one-half the revival time, the entanglement degree reaches its local minimum. Meanwhil
general feature of the entanglement degree in the case% takes very small values is also almo
identical to that in the previous cases@see Fig. 1~a!#. As %5 p/12'0.08p, we find that the
maximum value of the entanglement degree increases, such as DEM(Et* r)'1.4, @see Fig. 1~b!#.
When we further decrease the angle%'0 we find that our degree of entanglement takes just tw

FIG. 2. The entanglement degree DEM(Et* r) in ~a!, ~b! and the atomic populations of the excited and ground states in~c!,
~d! as functions of the scaled timeT5lt. Calculations assume thatb150, b250, f (n)51, (%5p/3,f50) and the field
in the coherent state,k51 ~one-photon resonance!, the mean-photon numbern̄510 and for different values of the detunin
parameterD, where~a!, ~c! D/l53 and~b!, ~d! D/l56.

FIG. 3. The entanglement degree DEM(Et* r) in ~a!, ~b! and the atomic populations of the excited and ground states in~c!,
~d! as functions of the scaled timeT5lt. Calculations assume thatb150, b250, (%5p/3,f50) and the field in the
coherent state, the detuning parameterD has zero value,k51 ~one-photon resonance!, the mean-photon numbern̄510 and
for different values of the intensity-dependent couplingf (n), where~a!, ~c! f (n)5An, and~b!, ~d! f (n)51/An.
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the value of the von Neumann entropy, i.e., DEM(Et* r)' 2 log 2. It has been shown that th
atomic occupation probability undergoes a collapse followed by a series of revivals.1 The collapse
is due to the destructive interference of quantum Rabi flopping at different frequencies; a s
phenomenon may also occur with a classical field, however, the revivals are a purely qu
mechanical effect that originates in the discreteness of the quantum field. Collapse and r
have been observed in a micromaser experiment.20

As soon as we take the detuning effects into consideration, it is easy to realize the g
behavior is affected by increasing the value of the detuning parameter, where the revival t
elongated to have the valuetR.2pAd21n11, (d5 D/2l); see Fig. 2. However, any change

FIG. 4. The entanglement degree DEM(Et* r) in ~a!, ~b! and the atomic populations of the excited and ground states in~c!,
~d! as functions of the scaled timeT5lt. Calculations assume that (%5p/3,f50) and the field in the coherent state, th
detuning parameterD has zero value,k52 ~two-photon process!, the mean-photon numbern̄510 and for different values
of the Stark shift parameter where~a!, ~c! b151, b252, and~b!, ~d! b151, b257.

FIG. 5. The entanglement degree DEM(Et* r) in ~a!, ~b! and the atomic populations of the excited and ground states in~c!,
~d! as functions of the scaled timeT5lt. Calculations assume that (%5p/3,f50) and the field in the coherent state, th
detuning parameterD has zero value,k51 ~one-photon resonance!, the mean-photon numbern̄510, b150, b250 and for
different values of the Kerr-like medium, where~a!, ~c! x/l50.1, and~b!, ~d! x/l50.5.
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the detuning parameter leads to changes in the entanglement degree and increasing the
parameterD leads the entanglement degree to survive for a long period. It is worthwhile poi
out the availability of the longer period entanglement, meaning that the entanglement is hi
a longer interval of time. The entanglement as a physical resource is available on the co
that the entanglement could keep long enough so that we can accomplish some task. For e
in Ref. 21 to generate the entangled atomic state, the entanglement between the atom
cavity field must survive long enough so that it can be transferred to a next atom via a co
interaction. At this point, the increasingly long period of entanglement has some advan
Although some authors use another method to prepare multiparticle entanglement,22 this method
of lengthening the period of entanglement is available.

Figure 3, is plotted in the setting of the detuning parameterD50, and%5 p/3 and different
values of the intensity-dependent couplingf (n)5An for Fig. 3~a! and f (n)5 1/An for Fig. 3~b!.
We note that the maximum value of the entanglement degree is approximately'1.25. In this case,
we can say that the entanglement degree is a periodical function of time with periodt5 p/l . This
is essentially because of the nonlinear nature of the coupling in this case which results in th
frequency being proportional to the photon number as opposed to its square root, as is the
one-photon JC-model. The situation is completely changed when we considerf (n)5 1/An @see
Fig. 3~b!# where the maximum value of the entanglement degree increases and reaches'1.4, and
the entanglement degree is a periodical function of time with periodt5 p/2l .

Figure 4, shows the basic features of the behavior of the entanglement degree in th
photon case (k52) with different values of the Stark shift parametersb1 andb2 . Except forb1

andb2 , we choose the same values as in Fig. 1~a!. We remark that the entanglement degree h
some kind of periodicity@see Fig. 4~a!#. This behavior is affected if the deviation betweenb1 and
b2 is increased@see Fig. 4~b!#. Note that the behavior of the entanglement degree is complica
reflecting local maxima and minima in wave packet trajectory. The local maxima and minim
due to the field interaction with an atom, corresponding to entanglement and disentangl
Because of the influence of Stark shift on entanglement, the amplitude of local maxim
minima decrease with increasing the deviation ofr 5Ab1 /b2 from the unity (r @1 or r !1).
However, asr takes values close to unity, we return to the same behavior as in the absenceo
shift parameters. Due to the repeated period of entanglement and disentanglement the sta
atom and field lose and gain coherence but the coherence recovered by the atom is ne
which was lost. Obviously, the arbitrariness ofn leads to the fact that the factor1

4@b2n2b1(n
12)#2, which appears inmn , fails to vanish for general single-mode field state, i.e., in m
situations the Stark shifts cannot be ignored, even the two levelsue& and ug& are equally coupled
to the virtual levelu i &. If the final states is free of the Stark effects and is in the case of e
resonance, the system will evolve periodically in the presence of the coherent states. Howe
the phase sensitive averages of the cavity field, the Stark shifts still cannot be ignored in an
Once the Stark shift is taken into account, this interesting feature disappears. Further, it se
Rabi frequency depends on the square root of the product of (n11) and (n12), rather than a
linear dependence on them required for large detuning. It is therefore vital that Stark shif
included in any analysis of a multiphoton effective two-level system.

We see that the evolution of the entanglement degree is almost similar for bothb25b1 and
the absence of Stark shift cases. This may be interpreted as follows, physically, this result
sponds to the fact that the Stark shift creates an effective intensity-dependent detuningDN5b2

2b1 .23 Whenb25b151, DN50, in this case, the Stark shift does not affect the time evolu
of the entanglement degree. As is visible from the figures, the effects of the dynamic Star
are more pronounced whenr deviates from unity. Interestingly, whenr is decreased, the values o
the maximum entanglement are increased, indicating that the Stark shift leads to an increa
the degree of entanglement of the field and atom. A slight change inr , therefore, dramatically
alters the entanglement. Periodic models therefore may be more robust in this sense. Such
may physically consist of, for example, Raman scattering and equal or unequal two-photo
sorption. An appropriate choice of detuning leads to periodicity which in fact is a manifestati
the commensurate Rabi frequencies proportional ton.
                                                                                                                



type

ively
e from

e
r-

ntly the
t retain
of

duced.
of a

oscil-
everal
llapse
s as
onger

he

like
hat the
hese
an be
resent

n we
. Of
means
gh this

we are

ee and
n the
em by
s been
to
he

r
e
s of
ism of

1468 J. Math. Phys., Vol. 44, No. 4, April 2003 Mahmoud Abdel-Aty

                    
Now we turn our attention to see the effect of the nonlinearity of the field with a Kerr-
medium on the entanglement degree, i.e., we takeR(n)5xn(n21), wherex is related to the
third-order nonlinear succeptibility. In fact, the optical Kerr effect is one of the most extens
studied phenomenon in the field of nonlinear optics because of its applications that rang
frequency conversions to quantum nondemolition measurements.24 The optical Kerr effect can be
used to construct a quantum phase gate.25 From Figs. 5~a!, 5~b!, where the effect of the Kerr is
shown for values ofx/l 50.1 andx/l 50.5, it is observed that the Kerr-like medium with th
field mode is very weak when we takex/l 50.01. In fact, this weakness of the nonlinear inte
action leads to increasing the values of the minimum entanglement degree and conseque
sustainment time of the maximum entanglement. In this case, the field and the atom almos
in strong entanglement in the time evolution process. However, as we increase the valuex/l,
we find the value of the maximum entanglement degree begins to decrease@see Fig. 5~b!#. Further
we noticed that the degree of entanglement between the field and the atom is also re
Collapse and revivals in the JC-model have been known for some time. With the addition
Kerr-like medium the revival time decreases along with the peak-to-peak amplitude of the
lations. In the usual model the revivals tend to be irregular and indistinguishable after s
sequences, but with a Kerr-type nonlinear medium included many more distinct revival-co
sequences occur. In the meantime we realize that the amplitude of the oscillations decreasex/l
increases. Here we may mention that if the coupling parameter of a Kerr-like medium is str
than the atom-field coupling one can see the system starts to dominate the dynamics~there is
nearly decoupling of the atom and field! and there is a repetition for some kind of regularity in t
evolution of the system. This is apparent from the regular spikes present in Fig. 5~b!. This result
is in agreement with the fact that in the limit for strong nonlinear interaction of the Kerr-
medium with the field mode, the field and the atom are almost decoupled. Also, we can see t
amplitude of the oscillation becomes smaller but with more revivals in the same time. T
numerical illustrations provide evidence that in cases of physical interest entanglement c
significant and can be reliably estimated for a broad range of field parameters using the p
formalism.

As we see from the above figures the field is initially in a mixed state. As time goes o
note a growth in DEM(Et* r), followed by a sudden decrease, almost at half of the revival time
course, the total atom-field state cannot have its entanglement degree diminished, which
that as the field becomes more pure the atomic state must be closer to a mixed state. Althou
behavior is not obvious, exists a neat explanation from the phase space point of view, as
going to show in the rest of the paper.

IV. PHASE SPACE APPROACH

In the previous section we discussed a particular aspect of the entanglement degr
collapses-revivals phenomenon in the multi-photon model with the initial field prepared i
coherent state. Now we are going to try to understand better the behavior of the syst
focusing our attention on the field dynamics. The representation of fields in phase space ha
providing new insights of the JC field dynamics.26 Perhaps the most convenient quasiprobability
be used in this kind of problem is theQ-function. The first step to be taken is the calculation of t
final state of the systemEt* r @see Eq.~14!#, and then we get theQ-function as

Q~x,y,t !5
1

p
^zurF~ t !uz&, ~27!

whereuz& is a coherent state with amplitudez5x1 iy , andrF(t) is the reduced density operato
for the field. More than just a theoretical curiosity,Q(x,y,t) can be detected in homodyn
experiments.27 The Q-function is not only a convenient tool to calculate expectation value
anti-normally ordered products of operators, but also gives us a new insight into the mechan
interaction in the model under consideration.
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We present the results of this section mainly in graphical form with the initial mean ph
numbern̄55. The splitting and recombination of branches of theQ-function in phase space i
clearly associated with the collapses and revivals phenomenon, when a splitting of theQ-function
occurs, we have a complicated evolution of the field. In this case the field is no longer in a
state at the time when branches in theQ-function occur. In Fig. 6, theQ-function shows a very
clear picture of the field dynamics; in Fig. 6~a! theQ-function shows that the initial coherent sta
at lt50, centered at the point (2p,0), splits into two symmetric peaks in phase space locate
~p,1! and (2p,1), respectively, at one-half of the characteristic timeTR , i.e.,lt5 5p/2 @see Fig.
6~b!#. It is already well-known that for an initial coherent state the collapse is associated to a
of the Q-function in two branches, and that at half the revival time, when the field becomes
close to a pure state, the two branches are most far apart.28

Once the intensity-dependent couplingf (n) is taken into account, the two symmetric peaks
phase space located at~p,0! and (2p,0), where we have chosenf (n)5An, @see Fig. 6~c!#.
However, we see the one-peak structure of theQ-function is recovered at this moment forf (n)
5 1/An , i.e., we have returned to the case in Fig. 6~a!. In Fig. 7, we plot theQ-function of the
cavity field with the initial mean photon numbern̄55, atlt5 5p/2, and for different values of the
field nonlinearity. In Fig. 7~a!, we see that for small values of the Kerr-type nonlinear medium
Q-function of the field mode shows asymmetric splitting@see Fig. 7~a!#. One peak is stationary in
the given rotating frame, while the other moves clockwise around the origin of the phase
Further increasing of the Kerr-type nonlinear medium leads to theQ-function splits into four
rather than two components, as in the case of the absence of the field nonlinearity@compare Figs.
6~b! and 7~b!#. In Fig. 7~c! we consider the intensity-dependent coupling effect in the presenc
the field nonlinearity, we see that theQ-function of the cavity field splits into two peaks whic
move clockwise and anticlockwise around the origin of the phase space.

We can say that the time scaleTR represents the main characteristic of the dynamics in th
particular phase spaces that are not affected by quantum entanglement. Fort.0 the two peaks
split into two sets of counter-rotating peaks during the collapse. At longer times theQ-function is
spread out over an angular region in thexy-plane, as shown in Figs. 6–7. If we combine th

FIG. 6. A plot of Q-function of the cavity field with the initial mean photon numbern̄55, ~a! f (n)51, lt50, ~b! f (n)
51, lt55p/2, ~c! f (n)5An, lt55p/2 and~d! f (n)51/An, lt55p/2.
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observation with the fact that the entanglement degree at this moment is almost maximum
conclude that the cavity field is in a pure state.

V. CONCLUDING REMARKS

Despite the relative simplicity of the generalized JC-model, the full theoretical treatment
dynamics is a nontrivial problem. In the present work we have attempted to delve into a de
analysis of the dynamics of the process of entanglement in a two-level system interacting
coherent state. We have derived a general entanglement degree expression without the d
approximation which has been adopted previously in Refs. 7–9. This represents an atte
establishing a connection between a mixed state of physical systems and the measure of th
of entanglement due to a quasi-mutual entropy between different subsystems. The entang
process of the model is very rich and much more can be learned from specific features
entanglement degree due to the quasi-mutual entropy such as its oscillations~recoherences in time
periodic or not!. We have found an intimate connection between these features and the dif
forms of the nonlinearities of both the field and intensity-dependent coupling. We have show
by exploring numerically in different parameters of the exactly soluble model that impo
changes occur in the generalized quasi-mutual entropy, which measures the degree of e
ment. The significant effect of the Stark shift parameter appears whenr deviates from unity. An
interesting characteristic feature is that the entanglement degree tends to its minimum valu
strong Kerr-type (x@l). In view of the recent advances in single-atom quantum optics, we h
these fully quantum correlated states will be explored experimentally in the near future. F
analysis using the evolution of the fieldQ-function showed us that for a given field cohere
intensity n̄, there is an optimum value of the nonlinear parameters for which the entanglem
a minimum.
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Wigner functions for curved spaces. II. On spheres
Miguel Angel Alonso, George S. Pogosyan,a) and Kurt Bernardo Wolf
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The form of the Wigner distribution function for Hamiltonian systems in spaces of
constant negative curvature~i.e., hyperboloids! proposed in M. A. Alonso, G. S.
Pogosyan, and K. B. Wolf, ‘‘Wigner functions for curved spaces. I. On hyperbo-
loids’’ @J. Math. Phys.43, 5857~2002!#, is extended here to spaces whose curvature
is constant and positive, i.e., spheres. An essential part of this construction is the
use of the functions of Sherman and Volobuyev, which are an overcomplete set of
plane-wave-like solutions of the Laplace–Beltrami equation for this space. Rota-
tions that displace the poles transform these functions with a multiplier factor, and
their momentum direction becomes formally complex; the covariance properties of
the proposed Wigner function are understood in these terms. As an example for the
one-dimensional case, we consider the energy eigenstates of the oscillator on the
circle in a Po¨schl–Teller potential. The standard theory of quantum oscillators is
regained in the contraction limit to the space of zero curvature. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1559644#

I. INTRODUCTION

In the first part of this series1 we proposed a generic form for the Wigner quasiprobabi
distribution function defined in terms of the generalized basis of plane waves; this form m
extended in a natural way to curved configuration spaces, provided that an analogous b
plane-wave-like solutions can be found on those manifolds; the new functions will corres
ingly endow their argument and index with the physical meaning of position and momen
Although one may think to generalize the Wigner function to any manifold, the hyperboloid
the sphere are the two simplest cases to start such a study. In Ref. 1 we considered sp
constant negative curvature, i.e., the upper sheet of a two-sheeted hyperboloid, where th
plane waves were the set of Shapiro functions.2 That Wigner function has the desired margin
projections, and its properties of covariance under rotations and hyperbolic translations
shown to stem from those of the Shapiro functions. The goal of this second part is the study
Wigner function on spaces of positive constant curvature, i.e., on spheres.

As was the case in Ref. 1, the generalization offered in our approach results from recog
that the Wigner function on flat phase space (p,x)PR2D,3 in addition to its usual expression as
single integral, can be written also in the following twofold integral form with a Diracd,

WRD~ f ,gux,p!ª
1

~2p!D E
RD

dDzf ~x2 1
2 z!* e2 ip•zg~x1 1

2 z!

5
1

~2p!D E
RD

dDx8E
RD

dDx9 f ~x8!* g~x9!fp~x8!dD~x2 1
2 ~x81x9!!fp~x9!* ,

~1!

a!Permanent address: Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Russia and
tional Center for Advanced Studies, Yerevan State University, Yerevan, Armenia.
14720022-2488/2003/44(4)/1472/18/$20.00 © 2003 American Institute of Physics
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where the functionfp(x) and its complex conjugatefp(x)* , whose argument and index variable
bind the position and momentum variables, are the plane waves

fp~x!ªexp~ ip•x!, 2Df~x!5p2f~x!, ~2!

where pªupu, and which are solutions of the Helmholtz~Laplace–Beltrami! equation on flat
space. Momentump has units of inverse length when\51; in optics,p is the wave number of
light.

The form ~1! of the Wigner function again suggests its generalization to the sphereS D

through replacing the integration over flat space (*RDdDx) by an integration over the new
D-dimensional manifold (*S Ddx), replacing the plane wavesfp(x) of flat space byplane-wave-
like solutions of the Laplace–Beltrami equation on that manifold, and replacing the Dirac
dD(x2 1

2(x81x9)) in ~1! by an appropriate distribution on the sphere. The new reproducing ke
should guarantee that, ifx8 andx9 are on the manifold, thenx should lie halfway along a geodesic

In flat space, the transformation between the position and momentum representations
from the basis of plane wave functions~2! that defines the Fourier transform; on the hyperbolo
it is a Mellin transform. Here, this transform will relate wave functions on the sphere
functions over a momentum space, through a summation over the discrete values that th
number can have on the sphere, and an integral over the directions of the plane waves. B
hyperboloid and the sphere are characterized by the radiusR ~curvature61/R), which will serve
as the contraction parameter whose limitR→` represents flat space, and where the traditio
phase space and Wigner function are recovered.

Let us stress that, unlike previous studies where the sphere is the symplectic manif
which the Wigner function is drawn, as in the cases for spin4 and finite systems,5,6 or of the Wigner
function defined on the coadjoint orbits of a Lie algebra7 which may have a similar or more
complicated topology, this Wigner function describes wave fields whose configuration space
sphere. Also, we distinguish the present case from other previous definitions describing Hel
wave fields in flat free space, where momentum is constrained to the so-called Descartes sp
ray directions.8

In Sec. II we concentrate the necessary definitions and relevant properties of these
wave-like solutions, and our understanding of the momentum space conjugate to the sph
Sec. III we develop the new Wigner function on the direct product phase space, making expl
covariance properties and its contraction limit. As in Ref. 1, we illustrate some of these res
Sec. IV with an example: the harmonic oscillator analog on the circle (D51) that corresponds to
the bounded-interval Po¨schl–Teller potential. In Sec. V we recapitulate our results in the con
of other approaches in the literature.

II. SPHERICAL SPACES AND MOMENTUM

We follow the plan of Ref. 1 to present the Laplace–Beltrami operator on the curved sp
here a D-dimensional spherical manifold—and its corresponding basis of plane-w
functions.9,10 This is the basis we choose to define the momentum manifold that will appear i
definition of the Wigner function in the next section.

A. Laplace–Beltrami operator on the sphere

Consider theD-dimensional manifold of a sphereS D of radius R.0, embedded in the
ambient spacexPRD11,

uxu2ªx0
21x25R2, x2

ªx1
21x2

21¯1xD
2 . ~3!

The isometry group of the manifold ofx’s is the real orthogonal group inD11 dimensions; for
simplicity we disregard reflections and use the proper rotation group SO(D11). This will replace
the Euclidean isometry ISO(D)1 of flat configuration space. The standard realization of the
algebra so(D11) by generators of rotations of the ambient (D11)-dimensional space~3!, is
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M j ,kªxj]xk
2xk]xj

, j ,k50,1,2,...,D. ~4!

The Laplace–Beltrami operator onS 1
D is (R22 times! the second-order invariant Casim

operator, namely,

DLBª
1

R2 C5
1

R2 (
0< j ,k<D

M j ,k
2 . ~5!

The spectrum of the Casimir operator of so(D11) is well known to be the lower bound, discre
but infinite set of values

S~C!5$,~,1D21!u,PZ 0
1%, Z 0

1
ª$0,1,2,...%. ~6!

Corresponding to each value of, there is a unitary irreducible representation belonging to
most degenerate~also called most symmetric! series, which is of finite dimension@2,11 in so(3)
for D52]. The free wave functions on the sphere are the solutions to the Laplace–Be
equation characterized by those eigenvalues~6!, that we choose to write as

DLB f ~x!52
,~,1D21!

R2 f ~x!52Fp22S D21

2R D 2G f ~x!, ~7!

pª@,1 1
2 ~D21!#/R, ,52 1

2 ~D21!1pRPZ 0
1 . ~8!

B. Sherman–Volobuyev functions on the sphere

In Ref. 1 we used the Shapiro functions, introduced by Gel’fand, Graev, and Shapiro in
2 as Fourier-type plane waves on aD-dimensional space of negative curvature~the upper sheet o
the hyperboloidH 1

D ). Close analogs to these functions on the~compact! space of positive
curvature—the sphereS D,RD11, were given by Sherman in Ref. 9 and were independently u
by Volobuyev in Ref. 10, who wrote his work in the context of a phase space model w
momentum space is the hyperboloid of Kadyshevsky and Mir–Kasimov,11 and translated this to a
spherical case with the Laplace–Beltrami equation on this manifold. In contrast to the den
able basis of spherical harmonics, which are orthonormal and complete onS D, the generalized
basis of Sherman–Volobuyev functions~as is the case with coherent states on flat space! are
neither. Thus, this basis must be complemented by a distinctdual basis. In the following, we keep
the notation in direct correspondence with that used in Ref. 1.

By vertical projection, the upper and lower hemispheres of a sphereS D,RD11 map on the
same open equatorial diskD D,RD ~and the equator on its common closure—a low
dimensionalS D21 manifold!. For convenience, functionsf (x) on the spherexPS D, uxu25R2,
will be sometimes written as functions on@$21,1% ^ D D# % S D21 with colatitude anglex as

f ~x![ f ~x0 ,x![ f s~x!,

x05sAR22x25R cosx, sP$21,1%, 0<x,p, or s50, x5
1

2
p, ~9!

x5Rj sinxPD D,RD, jPS D21.

The s50 submanifold is the equator of the sphere, but its explicit inclusion is not crucial to
work. Integration over the sphere will be written as

E
S D

dx f~x!ªR (
s521,11

E
D D

dx

AR22x2
f s~x!, ~10!
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and thes50 submanifold will be normally ignored.
The Sherman–Volobuyev functions and their duals are complex functions on the sphe

are solutions to the Laplace–Beltrami equation~7!; they are classified according to~6! by the
index,PZ 0

1 of completely symmetric representations in SO(D), or equivalently, by the discrete
wave number pin ~7!, whose values are spaced by 1/R. The functions in the Sherman–Volobuye
generalized basis of plane waves are characterized by a realmomentumvector

pªpn, p5
1

R
@ 1

2 ~D21!1,#, ,PZ 0
1 , nPS D21. ~11!

which has the direction indicated by the unit vector on the sphere in the equatorial subspace
the relations~8! between the representation index, and the absolute value of the momentu
vector,p5upu.0 ~for D.1), these functions and their duals are

Fp
(D)~x!ªS x01 in"x

R D ,

5~cosx1 in"j sinx!,5Fp(2n)
(D) ~x!* , ~12!

F̄p
(D)~x!ª~signn"x!D21S x01 in"x

R D 12D2,

5~signn"x!D21~cosx1 in"x sinx!12D2,

5~signn"x!D21/F ((D21)/R1p)n
(D) ~x!5F̄p(2n)

(D) ~x!* . ~13!

In Fig. 1 we show Sherman–Volobuyev functions for the caseD52, which can be readily plotted
on the sphereS 2. The functions~12! can be equivalently characterized as the highest-weight s
S D-hyperspherical harmonicsY,,...,,(x);(x11 ix2), ~which are solutions of the Laplace equatio
in the ambient space!, rotated so as to bring thex1-x2 plane to the planex0-n, for each equatorial
direction nPS D21. Their dual functions~13! are the second solutions of the Laplace equati
which are obtained by replacing,→12D2,, and formally correspond to the same eigenvalu
~6! of the Casimir operator on the sphere; they are singular on theS D22 submanifold orthogona
to thex0-n plane. In theD52 case, these are the two points at right angles to the wavetrai

C. Properties and limits

The Sherman–Volobuyev functions satisfy the following completeness and orthogonali
lations:

1

~2p!D (
,50

`

N(D)~p!E
S D21

dn Fpn
(D)~x!F̄pn

(D)~x8!5dS D~x,x8!, ~14!

1

~2p!D ES D
dx F̄pn

(D)~x!Fp8n8
(D)

~x!5
1

N(D)~p!
dp,p8dp~n,n8!, ~15!

where the Plancherel weight of the irreducible representations is

N(D)~p!ªpRG~ 1
2 ~D21!1pR!/G~2 1

2 ~D23!1pR!5 1
2 ~D21!! D,

(D) ,

D,
(D)

ªdim irrep , of SO~D11!. ~16!

Writing uS D21u52p
1
2D/G( 1

2D) for the surface of the sphere, thedS D(x,x8) on the ambient
sphereS D, and thedp(n,n8) on the momentum direction spheresn,n8PS D21, are

dS D~x,x8!5ds,s8AR22x2dD~x2x8!, x,x8PD D, ~17!
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dp~n,n8!5
1

uS D21u ~C,
D/2~n"n8!1C,21

D/2 ~n"n8!!, n,n8PS D21, ~18!

wheredD(x2x8) is the D-dimensional Dirac delta on the diskD D, and there is the Kronecke
deltadp,p8ªd,,,8 between spheres of discrete radiip andp8. TheC,

1/2D(k) are the Gegenbaue
polynomials of degree, in k5n"n8, i.e., the cosine of the angle between the two momen
vectors,p andp8. In particular, note that for,50, N(D)5 1

2G(D).
As pointed out by Sherman and by Volobuyev,9,10 the lastdp(n,n8) in ~18! is not a true Dirac

d, but a reproducing kernel in theD,
(D)-dimensional vector space spanned by the functi

$Fpn
(D)(x)%nPS D21 of fixed wave numberp↔,,

E
S D21

dn8 dp~n,n8!Fpn8
(D)

~x!5Fpn
(D)~x!, ~19!

and the same property holds for the duals$F̄pn
(D)(x)%nPS D21. In the limit of large wave numbers

limpR→` dp(n,n8)5dS D21(n,n8).

FIG. 1. Sherman–Volobuyev functions for the caseD52, Fp
(2)(x) on the spherexPS 2. The real part is shown for,

55 and 20, for momentap5p n with p511/2R and 41/2R, in the same directionn(u)PS 1 along 1-axis (u50). White
and black correspond to values11 and21 of the function; the 2, extrema occur along the meridian at thex0-x1 plane;
at the two points on thex2 axis of the sphere the complex functions are zero. The imaginary part is identical to the rea

except for a rotation ofp/2, around thex2 axis, i.e., by a displacement of
1
4 wavelength.
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The Inönu–Wigner contraction limit of the rotation to the Euclidean group SO(D11)
→ISO(D) is the limit R→` in our expressions for vectors withx0'R, x2!R2, andp5p n as
before with discrete values ofp separated by a decreasingR21, i.e.,

lim
R→`

Fp
(D)~x!5 lim

R→`
S x01 in"x

R D 2 1/2(D21)1pR

' lim
R→`

S 11 i
n"x

R D pR

5exp~ ix•p!, ~20!

lim
R→`

F̄p
(D)~x!5exp~2 i x•p!. ~21!

Correspondingly, limR→` N(D)(p)51 anddD(x,x8)→dD(x2x8). Ordinary Fourier analysis and
synthesis are thus recovered in the contraction limit; this justifies the name of plane waves
Sherman–Volobuyev functions, as well as our expectation that they will provide the bridg
tween the position on the sphere and a physically appropriate momentum space.

D. Momentum space for the sphere

The basis of Sherman–Volobuyev functions is nonorthonormal and overcomplete, as c
seen from~15!, ~18!, and~19!, but allows the synthesis of functionsf (x) on the spherexPS D,
with coefficients in a space that we recognize as themomentummanifold,p5pnPZ 0

1
^ S D21 of

the D-dimensional system on configuration spacexPS D.
The Sherman–Volobuyev synthesis of a complex functionf (x) over the spherexPS D, in-

volves a sum of integrals over spheres; the sum ranges over the radiip5 1
2(D21)/R, 1

2(D

11)/R, 1
2(D13)/R,... ~corresponding to,50,1,2,...), and theintegrals overnPS D21, with

both the functions and their duals, as follows:9,10

f ~x!5
1

~2p!D/2 (
,50

`

N(D)~p!E
S D21

dn Fpn
(D)~x! f̃ ~pn!, ~22!

f ~x!* 5
1

~2p!D/2 (
,50

`

N(D)~p!E
S D21

dn F̄pn
(D)~x! f! ~pn!. ~23!

The coefficients are found by

f̃ ~pn!5
1

~2p!D/2 ES D
dx F̄pn

(D)~x! f ~x!, ~24!

f! ~pn!5
1

~2p!D/2 ES D
dx Fpn

(D)~x! f ~x!* . ~25!

This means that there aretwo ~rather than a single! mutually dual momentum representations f
any one wave function on the sphere. That both should be considered on equal footing is in
by the Parseval relation,

~ f ,g!S DªE
S D

dx f~x!* g~x! ~26!

5 (
,50

`

N(D)~p!E
S D21

dn f! ~pn! g̃~pn! ~27!

5 (
,50

`

N(D)~p!E
S D21

dn f̃ ~pn!* g! ~pn!* . ~28!
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It will help intuition to consider again the caseD52 for wave fields on the ordinary two
sphereS 2, wherex0

21x1
21x2

25R2. While in Fig. 1 we show the complex Sherman–Volobuy
functions, Figure 2 schematizes their representation in the momentum spacep5pn of concentric
circles with discrete radiip↔, and directionnPS 1. The length of the momentum vectorp
5upu is associated to the number, of wavelengths around the meridian indicated byn, which is
normal to all wave fronts. There is an evident covariance between the SO~2! rotations of the
circles of momentum and rotations of the configuration-space sphere around itsx0 axis.

E. Covariance properties

Because the basis of Sherman–Volobuyev functions~12! and their duals~13! depends on the
scalar productn"x, they will be covariant inx andn under rotationsRPSO(D) of the sphereS D

within its equatorial diskxPD D, viz.,

T~R!:Fpn
(D)~x0 ,x!ªFpn

(D)~x0 ,R21x!5FpRn
(D) ~x0 ,x!, ~29!

and similarly for the dualF̄pn
(D)(x0 ,x)’s.

We now analyze further the transformation properties of the Sherman–Volobuyev p
wave-like basis under SO(D11) rotationsout of the equatorial diskxPD D ~i.e., mixingx0 and
components ofx!, and the covariant transformations of the sphere of momentum direction
PS D21. Under these transformations, the direction vectorn of momentum may become comple
as we now show. Indeed, the functions~12! can be written as the power, of a scalar product
between one complex and one real (D11)-vectors~Refs. 9 and 10! also indicated by• :

x01 in"x5S 1
inD •S x0

x D5:n•x, n"n51, n•n50, ~30!

To find the transformation of the Sherman–Volobuyev function set under rotations o
ambient-space vectorsxPS D in the plane ofx0 and a unit vectormPS D21 in the equatorial
subspace of the sphere, we decompose the position vectors asx5xim1x'm , into their compo-
nents parallel and perpendicular to the direction ofm. The latter are invariant under all rotation

FIG. 2. Momentum space and the Sherman–Volobuyev functionsFp
(2)(x). The momentum spacep5p n is composed by

concentric circlesn(u)PS 1, of radii pP$
1
2,

3
2,...%/R ~for ,P$0,1,...%). The two functions of Fig. 1 are shown for,55

and 20, with directionn along the 1-axis.
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of thex0-m plane, that we indicate byRmPSO(D11). Then we can writex5(x0 ,xim ,x'm)T and
n5(nim ,n'm)T, so the action of a rotation byaPS 1 on ambient space will be

T~Rm~a!!:S x0

xim

x'm

D 5S cosa 2sina 0

sina cosa 0

0 0 1
D S x0

xim

x'm

D . ~31!

The corresponding transformation of the momentum vectorp5pn will leave the irreducible
representation indexp invariant, and the action on the unit direction vectorsn which characterize
the Sherman–Volobuyev functions can be found from~30!, through the (D11)-dimensional inner
product formn•x85n8•x. This yields the transformation of the complex vectorn5(1,in)T to

n8~a!5S 1
inim

in'm

D •S cosa 2sina 0

sina cosa 0

0 0 1
D 5m~m,a;n!S 1

inim8

in'm8
D , ~32!

with a multiplier function ~which is independent ofx),

m~m,a;n!ªcosa1 im"n sina ~33!

and a new direction vector

n85S nim8

n'm8 D 5
1

m~m,a;n!
S ~m"n cosa1 i sina!m

n'm
D , ~34!

of real normn8•n851.
The action ofRmPSO(D11) on the Sherman–Volobuyev functions of fixed wave num

p↔, @recall ~11!#, and their duals is therefore

T~Rm~a!!:Fpn
(D)~x!5m~m,a;n!,Fpn8

(D)
~x!, ~35!

T~Rm~a!!:F̄pn
(D)~x!5m~m,a;n!12D2,F̄pn8

(D)
~x!. ~36!

The transformations that rotate out of the equatorial subspace thus produce ‘‘complex mom
direction vectors.’’ We use quotes around this phrase because the Sherman–Volobuyev fu
are already an overcomplete set, and those whosen’s are complex are in any case expressible
terms of the real-n set, as we shall note below. But formally, the complexification of the direc
spheren can be a useful tool for intuition. When we separate the real and imaginary pa
n8(a)5r 8(a)1 is8(a), we see that

S r im8

r'm8 D 5
1

um~m,a;n!u2 S n"mm
n'm sina cosa D , ~37!

S sim8

s'm8 D 5
21

um~m,a;n!u2 S ~~m"n!221!m sina cosa
2n"mn'm sina D . ~38!

Here we note thatr 8•s850 for all a, and this impliesur 8u22us8u251; this is the surface of a
hyperboloid, of signature (1,2) in theD real andD imaginary components. This confiness to an
independentS D22-sphere.

In dimensionD, the complex sphereC D21 is a homogeneous space for the action of SO(D),
which is determined by its natural action onS D through~31!–~34!. When we shall discuss in Sec
III C the behavior of the Wigner function under translations~i.e., rotations! of space, the transfor
mations of position and of momentum that are correlated by the map~31!–~34! will define the
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Sherman–Volobuyev covarianceof the proposed Wigner function. The two lowest-dimensio
cases will now be examined to show how the above formalism reduces to the analysis
well-known Fourier series.

F. The cases DÄ1 „circle … and DÄ2 „sphere …

TheD51 case of Sherman–Volobuyev functions~39! on the circlexPS 1 may appear trivial,
but it is important to note that we recover the Fourier series that we use in the example of S
Momentum space is now the set of pointsp5,n/R, ,PZ 0

1 , andnPS 05$21,11% is a sign.
Moreover, the duals are now the complex conjugate functions,

F6,/R
(1) ~x!5e6 i ,x5F̄6,/R

(1) ~x!* . ~39!

The discrete measure over momentum spaceN(1)(p) in ~16! is, in theD51 case,

N(1)~,>1!51, N(1)~,50!5 1
2 . ~40!

In particular the two,50 functionsF60
(1)(x)51 will sum with the factor1

2 from ~40! to provide
a singleei0x51 basis element. This is the full Fourier basiseimx, with m5n,PZ, reproduced
with the correct unit normalization coefficients. The multiplier function in~33! is m(•,a;n)
5eina @n5signmP$21,11%, cf. ~39!#. Under rotations of thex-circle therefore, the functions
eimx are multiplied by the correct phaseein,a, as follows from ~35!–~36!. The Sherman–
Volobuyev synthesis and analysis~22!–~25! in the D51 case on the circle are given by th
well-known Fourier series

f ~x!5
1

A2p
(

mPZ
eimx f̃ ~m!, f̃ ~m!5

1

A2p
E

0

2p

dx e2 imx f ~x!. ~41!

For D>2, the Sherman–Volobuyev basis functions are an overcomplete set. This ove
pleteness is transparent in the caseD52 of the sphereS 2, where the momentum directionn~u! is
parametrized around the circleuPS 1, andn(u)•n(u8)5cos(u2u8)—see Fig. 2. For fixedp↔,,
the dimension of the space of functionsf (p)(u) is D,

(2)52,11, where a better known, orthono
mal and complete basis is that of solid spherical harmonics$Y,,m(x)%m52,

, . In other words,
although the momentum circles in Fig. 2 appear continuous, only 2,11 points on each circle
correspond to independent functions. On these circles, the Gegenbauer polynomials in~18! reduce
to Chebyshev polynomials of the second kind,C,

1(k)5U,(k)5sin@(,11)u#/sinu, and reproduce
the well-known Dirichlet kernel,

dp~n,n8!5
1

2p (
m52,

,

eim(u2u8)5
sin@~,1 1

2!~u2u8!#

2p sin 1
2 ~u2u8!

——→
,→`

d~u!. ~42!

Since the functionsFp
(2)(x) are polynomials of integer degree,5pR2 1

2 in n"x;cosu51
2(e

iu

1e2iu), then any functionf (p)(u) in this space is fully reproduced by~42!, i.e.,

E
S 1

du dp~n~u!,n8~u8!! f (p)~u!5 f (p)~u8!. ~43!

Also visible in theD52 case of Fig. 1 is the covariance of the Sherman–Volobuyev funct
under rotations out of the equatorial plane, Eqs.~31!–~38!, leading to complex direction vector
n5r1 is. The real partrPR2 of n here determines the imaginary parts up to a sign~the two
points of S 0,R). Whenn5r is real, ur u251⇒s50. The vectorn is complex when and only
whenur u2.1, and then its imaginary parts has magnitudeusu25ur u221, and lies at right angles to
r .
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To examine the multiplier function~33!, we consider the Sherman–Volobuyev functio
Fp

(2)(x) on the spherexPS 2 @shown in Fig. 1 and Eq.~12!# whose real momentum directio
vector is along the 1-axis,n5(0

1). When we rotate bya the x-sphere in the 0-1 plane@Eq. ~35!
with min, som"n51], then forp and, related by~8!, the multiplier factor is

m~m,a,m!5eia, ~44!

and the transformed Sherman–Volobuyev function will be

Rm~a!:Fpm
(2)~x!5@~x081 ix18!/R#,5ei ,aFpm

(2)~x!, ~45!

i.e., they eigenfunctions of rotations in the direction of the momentumn5m @cf. the extreme
spherical harmonicsY,,,(x) under rotations aboutx0]. On the other hand, when the rotation
performed in the 0-2 plane, then instead of~45! we use~35!, now with (1

0)5m'n5(0
1), so m"n

50, and the multiplier is

m~m,a,'m!5cosa. ~46!

Thus rotated, the Sherman–Volobuyev functions remain plane-wave-like solutions o
Laplace–Beltrami equation,

Rm~a!:Fp('m)
(2) ~x!5~x0 cosa2x2 sina1 ix1!,5~cosa!,Fpn9(a)

(2)
~x!, n9~a!5S seca

i tana D ,

~47!

whose wave fronts are normal to a maximal circle, which is no longer a sphere meridian, as
in Fig. 1. The real part ofn9 points in the same direction asn, but the imaginary part is responsib
for displacing the wave train laterally, along the 2-axis. We underline again that whenn9 is not
real,Fpn9

(2) (x) does not belong to the Sherman–Volobuyev function basis@which by itself satisfies
~14!–~15!#, but to an analytic continuation of their continuous direction labeln to the complex unit
circle C 1.

G. Oscillators on the sphere

Free fields on the sphere, whose energy is purely kinetic, are ruled by the Laplace–Be
equation~5!–~7!. A second energy term is introduced by adding a functionV(x) of position,

S 21

2m
DLB1R2V~x! D f ~x!5R2E f~x!. ~48!

In Schrödinger quantum mechanics this describes a particle of massm5\2m in a potential
V(x).12–14 In wave optics, the interpretation of the extra term comes from the refractive i
anomaly of the mediumn(x)5m2V(x), with m@V andV2'0.

An SO(D21)-isotropic harmonic oscillator potential on the sphereS D, depending only on
the colatitude anglexP@0,p# of ~9!, can be generalized in many ways. An especially useful mo
is, as in the hyperbolic case,1 the Pöschl–Teller potential inD-dimensional configuration space13

given by

V~x!5
1

2
mv2R2

uxu2

x0
2 5

1

2
mv2R2 tan2 x5

1

2
mv2R2~sec2 x21!. ~49!

The wave functions of this model are also the Wigner~Clebsch–Gordan! coupling coefficients for
the three-dimensional Lorentz algebra so~2,1! between representations belonging to the discr
lower-bound BargmannDk

1 series.15
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III. WIGNER FUNCTION ON THE SPHERE

Here we construct the Wigner function for the sphere in the same way as for the hyper
in Ref. 1, namely generalizing the double-integral form in Eq.~1!, replacing the plane waves ove
RD with the Sherman–Volobuyev functions and their duals overS D.

A. Definition

With the measure~10! and the functions in~12!–~13!, we define the Wigner function on th
sphere as

WS~ f ,gux,p!ª
1

~2p!D ES D
dDx8E

S D
dDx9 f ~x8!* DD~x;x8,x9!g~x9!

3
1

2
@Fp

(D)~x8!F̄p
(D)~x9!1F̄p

(D)~x8!* Fp
(D)~x9!* #. ~50!

We now describe each of the elements of this definition.
We denote the position argumentx5(x0 ,x) of the Wigner function by the ambient vecto

with the understanding that it is the position on the sphere; contrary to the hyperbolic case,
the surface can be mapped 1:1 onx, the sign ofx0 distinguishes between the two hemispheres@and
we prefer not to write~s,x! as in~9!#. As in Ref. 1, theDD(x;x8,x9) which takes the place of the
flat Dirac deltadD(x2 1

2(x81x9)) in Eq. ~1!, should guarantee thatx be the midpoint of the
shortestgeodesicbetweenx8 andx9, and lie on the sphereS D of radiusR. To this end, we choose
any (D11)-vector y5(y0 ,y)PS D which is orthogonal tox5(x0 ,x)PS D, x•y50. Then, we
write

x8ªx cos1
2 a2y sin 1

2 a

x9ªx cos1
2 a1y sin 1

2 a
⇒x5

x81x9

2 cos1
2 a

, ~51!

so uxu5R5uyu⇔ux8u5R5ux9u for all aP@0,p# and anyy on theS D21 sphere orthogonal tox.

From ~51! it also follows thatx•x85R2 cos1
2a5x•x9 and x8•x95R2 cosa, so x indeed lies at

angles 1
2a betweenx8 and x9 on the sphere. When the signs of the 0-components match

binding D in ~50! that enforces~51! on the equatorial projection disksD 6
D , can be written as

DD~x;x8,x9!5
x0

R
dDS x2

x81x9

2 cos1
2 a D . ~52!

More generally, when we denote byv'x the component ofvPRD11 which is orthogonal tox, the
binding D is

DD~x;x8,x9!5dDS ~x81x9!'x

2 cos1
2 a D . ~53!

This distribution has the properties

DD~x;x8,x8!5
x0

R
dD~x2x8!, E

S D
dDxDD~x;x8,x9!51. ~54!

Through complex conjugation, we verify that the Wigner function~50! satisfies the necessar
property

WS~ f ,gux,p!* 5WS~g, f ux,p!. ~55!
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This is the reason for the factor1
2@Fp

(D)(x8) F̄p
(D)(x9)1F̄p

(D)(x8)* Fp
(D)(x9)* #; only this combi-

nation turns into itself withx8 andx9 exchanged, and has the correct contraction limit detaile
Sec. III D. Equation~55! guarantees that, forf 5g, the Wigner function is real.

By means of this bindingD and the change of variables in~51!, the 2D-fold integration in the
Wigner function~50! reduces to theD-fold integral form

WS~ f ,gux,p!5@1/~2p!D#E
0

p

~sina!D21 daE
S'x

D21
dD21y

3 f ~x cos1
2 a2y sin 1

2 a!* g~x cos1
2 a1y sin 1

2 a!

3 1
2 @Fp

(D)~x cos1
2 a2y sin 1

2 a!F̄p
(D)~x cos1

2 a1y sin 1
2 a!

1F̄p
(D)~x cos1

2 a2y sin 1
2 a!* Fp

(D)~x cos1
2 a1y sin 1

2 a!* #. ~56!

B. Marginal projections

The integral of the Wigner functionWS( f ,gux,p) in ~50! over momentum space yields th
cross-probability distribution over configuration space, and conversely, integration over the s
yields a function of momentum shown below. The two marginal distributions derive from
orthogonality and completeness relations of the Sherman–Volobuyev basis and its dua
~15!–~14! and ~54!. They are

MS~ f ,gux!5E
pPRD

dDp

N(D)~p!
WS~ f ,gux,p!

5E
S D

dDx8E
S D

dDx9 f ~x8!* g~x9!DD~x;x8,x9!dD~x8,x9!

5E
S D

dDx8 f ~x8!* g~x8!DD~x;x8,x8!5 f ~x!* g~x!, ~57!

MS~ f ,gup!5E
S D

dDx WS~ f ,gux,p!

5
1

2~2p!D F ES D
dDx8 f ~x8!* Fp

(D)~x8!E
S D

dDx9 g~x9! F̄p
(D)~x9!

1E
S D

dDx8 f ~x8!* F̄p
(D)~x8!* E

S D
dDx9g~x9!Fp

(D)~x9!* G
5

1

2
@ f! ~p!g̃~p!1 f̃ ~p!* g! ~p!* #. ~58!

We note that both the momentum representation and its dual appear on equal footing. The P
relation ~27!–~28! provides the overlap

E
S D

dDx MS~ f ,gux!5~ f , g!S D5E
pPS D

dDp

N(D)~p!
MS~ f ,gup!. ~59!

C. Covariance under SO „D¿1… rotations

Under rotationsRPSO(D11) of the ambient space around thex0 axis, the basis of
Sherman–Volobuyev functions~12!–~13! on theS D-sphere transform as given by~29!. Since the
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integrations and bindingD in ~53! that appear in the definition~50! are invariant@DD( x̄; x̄8,x̄9)
5DD(x;x8,x9) for x̄5R21x, etc.#, it follows that the proposed Wigner function is covariant und
SO(D) rotations, fulfilling

WS~T~R!: f ,T~R!:gux,p!5WS~ f ,gux0 ,R21x,R21p!. ~60!

But now consider the rotations of the sphereS D out of the equatorialxPRD subspace,
Rm(a)PSO(D11), as was done in~35!–~47! for the Sherman–Volobuyev functions and the
duals of directionn, and,↔p characterizing the invariant wave number@SO(D,1) irreducible
representation# as given by~8!, andn8 by ~34!. The Wigner function~50! is bilinear inFp n

(D)(x)
andF̄p n

(D)(x), and so it will transform with a multiplier factor that is extracted from the integral

WS~T@Rm~a!#: f ,T@Rm~a!#:gux,pn!

5Re@~m~m,a,n!!2D11#WS~ f ,guRm~a!21:x,pRm~a!21:n!. ~61!

We call ~61! the Sherman–Volobuyev covariance of Wigner functions on the sphere. This co
is the analog of that introduced for the hyperbolic case in Ref. 1. Since volume elements
momentum direction spherenPS D are not conserved under rotationsRmPSO(D11), the mul-
tiplier for the Wigner function,m~m,a,n! in ~33!, is necessary to offset this change of measure
ensure the total conservation of probability contained in~59!. A new feature that appears in th
sphere, however, is that an analytic continuation of the momentum direction is implied b
covariance.

D. Contraction limit

When the radius of the sphere grows and the functionsf (x) andg(x) in the Wigner function
remain significantly different from zero only within a given area aroundx5(R,0) that becomes
increasingly a flat patch, the Wigner function~56! reduces to the standard Wigner function for fl
space, Eq.~1!. In ~56!, the integrand will be significant only whenS D-norms of the vectors fulfill

ux cos1
2 a6y sin 1

2 au!R⇒H uxucos1
2 a!R ⇒sinx!1,

uyusin 1
2 a!R ⇒sina!1,

~62!

⇒x'R~1,xj!T, y'R~xj"h,h!T, ~63!

where hPS D21 is a unit vector in the direction ofy. The limit ~20! and the approximations

sina'a and cos1
2a'cosx'1, bring the Wigner function~56! to

WS~ f ,gux,p!5
RD

~2p!D E
0

`

aD21 daE
S D21

dD21h

3 f ~x0 ,x2 1
2 Rah!* exp~2 iRah•p!g~x0 ,x1 1

2 Rah!. ~64!

Changing variables toz5Ra h and integrations by*RDdDz5RD *0
`aD21 da3*S D21dD21h,

completes the proof that~64! reduces to~1! in the limit R→`.

IV. PÖSCHL–TELLER OSCILLATOR ON THE CIRCLE

We saw in Eqs.~39!–~41! that in the caseD51, the Sherman–Volobuyev basis coincides w
the Fourier series basis of complex exponential functions on the circle, and that momentum
is a set of equally spaced points on a line,

Fp
(1)~x1!5exp~ ixpR!, x15R sinx, xPS 1, p5m/R, mPZ. ~65!
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A. Wigner function on the circle

The Wigner function of wave functions on the circle, Eq.~56!, has the same structure as th
standard flat-space Wigner function~1! except for the integration ranges. The displaced argum
of the two functionsf andg in ~56!, in the form~65! wherex15R sinx andy15R sinh, are

x cos1
2 a6y sin 1

2 a5RS cos~x6 1
2 ha)

sin~x6 1
2 ha!

D , ~66!

with haP(2p,p). The Wigner function~56!, indicating f (R cosx,Rsinx)5f(x) and p5m/R,
thus becomes

WS~ f ,gux,p!5
R

2p E
2p

p

da f S x2
1

2
a D *

e2 imagS x1
1

2
a D ~67!

5
1

2p (
m8,m952`

`

f̃ ~m8!* sincF1

2
~m81m9!2mGei (m92m8)xg̃~m9!,

~68!

where sincnªsin(pn)/pn is dn,0 when n is integer, and (21)n21/2/pn when n is half-integer;
therefore the double sum in~68! cannot be reduced to a single one except when the coeffic
f̃ (m) vanish for a given parity ofm. Finally, we recall that forD51 the multiplier function~61!
for rotations of the circle is unity.

B. Oscillator on the circle

We now consider the oscillator on the circle which obeys theD51 case of the Schro¨dinger
equation~48! with the Pöschl–Teller potential given in Eq.~49!, and written

V~x!5Ar ~r 21!~sec2 x21!, rª 1
2 1 1

2A~2mvR2!211. ~69!

This potential exhibits two inpenetrable barriers atx56 1
2p on S1 . We thus expect two indepen

dent solutions in the two disconnected open intervalsxP(2 1
2p, 1

2p) andxP( 1
2p, 3

2p).
Changing variables and placing the potential~69! into the Schro¨dinger equation on the circle

~48!, one obtains the Po¨schl–Teller equation,16

d2c

du2 1@4«2r ~r 21!~sec2 u1csc2 u!#c50, uª 1
2x6 1

4pP~0,1
2 p!; «ª2mR2~E1 1

2 mv2R2!.

~70!

Writing x652u7 1
2pP(2 1

2p, 1
2p) andc6(x)5c(x6)5c(u), the solutions to this equation ar

cn
r ,6~x!522rA n! ~n1r !

pG~n12r !
G~r !S 1

2
sin 2u D r

Cn
r ~cos 2u!

5Q~6cosx!A n! ~n1r !

2pG~n12r !
G~r !u2 cosxurCn

r ~sinx!, ~71!

whereQ(x) is the Heaviside function that determines the well in which the particle is confine
thatcn

r ,2(x)5cn
r ,1(x1p). In what follows we assume the particle is in (2 1

2p, 1
2p) and disregard

the index6. The spectrum of values of« is quantized in the quadratic series (n1r )2, so the
energy values are
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En
r 5

~r 1n!2

2mR2 2
1

2
mv2R25

1

2mR2 S n212r S n1
1

2
D D . ~72!

C. Contractions to the square box and oscillator in flat space

It is interesting to consider two limiting cases of the Po¨schl–Teller potential on the two
half-circles in Eqs.~71! and~72!. The first is the limit of weak potentialsv→0 ~sor→1), and the
second is the analog of the previous contraction, now from the circle to the line.

In the limit of weak potential barrier, one couldprima facieexpect that the Po¨schl–Teller
eigenstates~71! may reduce to the free eigenstates~39! on the circle. This is not the case howeve
as can be seen by settingr 51 in Eqs. ~71! and using the property17 that cosx Cn

1(sinx) is
cos@(n11)x# for n even, and sin@(n11)x# for n odd,

cn
1~x!5Q~cosx!A2

p H cos@~n11!x#, n even,

sin@~n11!x#, n odd,
En

15
~n11!2

2mR2 . ~73!

The energies~72! for the limit states form a quadratic sequence characteristic of a square wel
impenetrable barriers atx56p/2. This, rather than the free circle, is the limitr→1 of the
Pöschl–Teller potential.

The second limit of interest is the contractionr→` of the Pöschl–Teller potential on the
circle to the harmonic oscillator on flat space,

r @1⇐r;mvR2,

~12z2!r /2;exp~2rz2/2! for z2,1.

Then, Eq.~71! becomes

cn
r ~x!5Q~cosx!A n! ~n1r !G2~r !

2nApG~r 1 1
2 n!G~r 1 1

2 @n11# !
ucosxurCn

r ~sinx!

;A n!

A2p
~2r !1/42n/2e2

1
2 r sin2 xCn

r ~sinx!

;
1

An!2nAp/r
e2

1
2 r sin2 xHn~Ar sinx!

5
AR

An! 2nAp/mv
e2mvx1

2/2 Hn~Amvx1!. ~74!

In the last expression we replacedz5sinx5x1 /R, and again, these are the energy eigenstate
the harmonic oscillator in flat space. The energies of these limit states, from~72!, now exhibit the
linear harmonic oscillator spectrumEn5v(n1 1

2). TheAR factor compensates the normalizatio
on x1 .

D. Wave functions in momentum representation

The momentum representation of the wave functionscn
r (x) can be found from the Fourie

series coefficientsc̃n
r ,6(m) in ~41! of the functionscn

r ,6(x) in ~71!. It is convenient to expand the
Gegenbauer polynomials as
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Cn
r ~sinx!5

einp/2

@G~r !#2 (
j 50

n

~21! j
G~ j 1r !G~n2 j 1r !

j ! ~n2 j !!
ei (2 j 2n)x. ~75!

The integral can be then performed17 and yields the momentum representation of the wave fu
tions of p5m/R in terms of the hypergeometric3F2 function of unit argument, as

c̃n
r ~m!ª

1

A2p
E

0

2p

dx cn
r ~x!eimx

5
einp/2

A8p
A n1r

n!G~n12r !

G~n1r !G~r 11!

G~ 1
2 ~r 1m1n!11!G~ 1

2 ~r 2m2n!11!

33F2S 2n, 2 1
2 ~r 1m1n!, r

2r 2n11, 1
2 ~r 2m2n!11

U1D . ~76!

Because the wave functionscn
r (x) vanish on one half-circle, it turns out that it is sufficient

determine the coefficients form even; in fact, any periodic functionf (x) vanishing in the interval

( 1
2p, 3

2p) will have its odd-m coefficients determined by the even-m ones through the relation

f̃ ~2m11!5~21!m (
kPZ

~21!k

p~m2k1 1
2!

f̃ ~2k!. ~77!

E. Wigner function for the Po ¨ schl–Teller states

The Wigner function~50! in the caseD51 for two functionsf ,g on the circlexPS1 was
written in Eqs.~67!–~68!. For the energy eigenstatescn

r (x) of the Pöschl–Teller potential given in
~71!, the Wigner functions can be computed numerically; we have not been able to find a c
expression for them. They are plotted in Fig. 3 along with their marginal projections, fn
50,1,5,10.

V. CONCLUDING REMARKS

We have defined the analog of the Wigner function of Ref. 1 for the case of a sph
configuration space. We have observed remarkably different properties between the hyperbo
spherical cases. First, unlike the Shapiro functions of the former, the Sherman–Volobuyev
tions of real momentum are an overcomplete set; a dual basis is thus required and this imp
existence of two dual momentum representations. Further, a coordinate translation which dis
the poles causes the momentum of a Sherman–Volobuyev function to become complex
consequence, the covariance of the momentum representation~s! as well as the that of Wigne
function under this type of translation are meaningful only as an analytic continuation o
momentum direction vector. The appearance of a multiplier is analogous to the hyperbolic c
Ref. 1.

These features derive from the definition of momentum afforded by the Shapiro an
Sherman–Volobuyev plane-wave-like solutions of the Laplace–Beltrami equation on the h
bolic and spherical manifolds, and are reflected by the Wigner function introduced here. In
to fit the definition~50! and the corresponding one for the hyperbolic case in Ref. 1, into
existing plethora of Wigner functions defined in Refs. 3–7, 18 and others found in the liter
it seems increasingly clear that the concept of a Wigner function is not unique. Perhaps a w
definition of such a class of functionsW( f ,gux,p) should include only~cf. Ref. 19! sesquilinearity
in the wave fields (; f (x8)* g(x9)), a symmetric correlation between their argumentsx8,x9 to a
point x in the manifold@determined by a Dirac-typeD(x;x8,x9)], and a complete~or overcom-
plete! basis~or generalized basis! $Fp(x)% which will provide p as conjugate coordinate for
momentum manifold to complete phase space. The minimal properties to be expected o
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Wigner functions should include the correct marginals, a useful form of covariance betwee
wave fields and the phase space coordinates, and a natural contraction limit to flat space re
the traditional Wigner function.

To test Wigner function models, it is also important to have a number of basic systems
as the harmonic or Po¨schl–Teller potentials, or Coulomb systems, that should substantiate
ition and the usefulness of the representation. A practical example could be the descrip
surface waves on sperical bubbles. Let us not forget that the Wigner function does not p

FIG. 3. Wigner functions of the Po¨schl–Teller eigenstatescn
r (x), on rows of moden50,1,2,3, for values of the paramete

r of the sphere@Eq. ~69!#, r 52 ~left! and r 530 ~right!; we show a quadrant of positionx15R sinx, xP@0,
1
2p# and

momentum/angular momentump5m/R @Eqs.~65!#. The quadrants have reflection symmetry across the axes. White i
maximum, black is the minimum; the shade at the upper right corner corresponds to zero. The marginal projectionucn

r (x)u2

is plotted at top, anduc̃n
r (m)u2 is plotted to the right.
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more information than the wave fields do~in fact, overall phases are lost!, but displays this
information in a manner that should be more amenable to our understanding.
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16S. Flügge,Practical Quantum Mechanics~Springer-Verlag, Berlin, 1994!.
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A new asymptotic method is proposed for calculation of spectral series and corre-
sponding asymptotic eigenfunctions for the spinlessN particle Schro¨dinger equa-
tion when N tends to infinitum but the physical parameters and the volume are
fixed ~dense matter case!. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1523640#

I. INTRODUCTION

Let us consider theN particle Schro¨dinger spinless equation with binary potentialaV0(ux
2yur0

21) wherex, yPR3, a is its characteristic value, andr 0 is its characteristic radius. As a
approximation to the real problems, in the statistical physics is considered1 the N particle Schro¨-
dinger operator with periodic conditions at a periodL and with regularized periodic binary po
tential.

Following that approximation, we obtain in the dimensionless coordinatesx5x8/L the spec-
tral problem for theN particle Schro¨dinger operator on the torusM5(R3/Z3)N:

(
i 51

N

2«2Dxi
c1 (

1< i , j <N
V~xi2xj ,d!c5lc, ~1!

considered at the subspaceL2
B(M ) of symmetric functions fromL2(M ). Herexi5(xi1 ,xi2 ,xi3);

d5r 0 /L, «25h2~2ma!21/L2.

The regularized binary potentialV(x2y) is defined in Ref. 1 as

V~xi2xj ,d!5d3 (
uku50

`

nk exp$ i2p~k,~x2y!!%;

~2!

nk5E
R3

exp$ i2pd~z,k!%V0~ uzu!dz; nk5n2k .

It is considered the case whennk are not negative, and as a function of indexk decrease quickly:

0<nk<Cm /~11uku!m; m50,1,. . . ;Cm,`. ~3!

The eigenvalueE of the dimension problem is equal tola wherel is the eigenvalue of operato
~1!. It is well known2 that symmetric operator~1!, denoted byH, with D(H)5C`(M ), is essen-
tially self-adjoint. In the following byH we also define its closure~which is a self-adjoint opera
tor!, and consider the spectral problem

Hc5lc. ~4!

a!Author to whom correspondence should be addressed: Electronic mail: valeri@esfm.ipn.mx
14900022-2488/2003/44(4)/1490/22/$20.00 © 2003 American Institute of Physics
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In that paper the asymptotic method is proposed for the spectral problem~4! in the case when
N→` but the physical parametersd, «, L are fixed~dense matter!.

In the following the abbreviation NSO will be used for the ‘‘N particle Schro¨dinger operator.’’
The presented asymptotical method is based on the approach proposed in Refs. 3–5.

II. ASYMPTOTIC REPRESENTATION FOR THE NSO

It is well known that every periodical symmetrical function inN variablesxi can be expanded
into the Fourier series with respect to the symmetrized harmonicsSexp$i2p((k1,x1)1¯

1(kN ,xN))%, whereS is the operator of symmetrization.
Now let us introduce the simplest symmetrized harmonics:

uk5
1

AN
(
j 51

N

exp$ i2p~k,xj !%; kPZ3. ~5!

In Sec. IV the next lemma is proved.
Lemma 1: Let us consider infinite algebra A generated by the set of functions (5) fo

integer vector-index kPZ3. Then, for all sets of integer vector-index k1 , . . . ,kN the functions
Sexp$i2p(j51

N (ki ,xj)% belong to the algebra A.
Consequently, every symmetric and periodic function can be considered as a composit

tion of infinite number functionsuk , uku>1. This situation resembles the functional method in
second quantization problems.

We shall construct below asymptotic solutions to the problem~1! which expand into a con-
verging series with respect to the functionsuk , uk, uku>1. On such solutionsf ( . . . , uk , ūk , . . . )
we reduce the equationHc5lc to such a one that has derivatives only inuk , uk, uku>1, and its
coefficients also depend only onuk , uk, uku>1. Therefore,uk , uk can be considered as the ne
variables. Asu2k5ūk , we have to exclude dependent variables. Hence, in the following,
divide the infinite set of indexes$1<uku% into a sum of two infinite, nonintersecting subsetsP, P̄
such that every subset does not have two indexes which sum is equal to zero. Evidently,
caseP52 P̄ andPø(2P)5Z3\0.

The eigenfunctions of the operator~1! are approximated by the WKB type functions

P~uk1
, . . . ,ukl

;uk1
, . . . ,ukl

!expH 2
ANd3

«
F~u!J ,

~6!

F~u!5 (
kPP

ubkuukuk, (
kPP

ubku,`,

whereP(uk1
, . . . ,ukl

;uk1
, . . . ,ukl

) are polynomial functions.
The functionsuk with N→` converge to the normally distributed random variables.6 That

will be used in justification of spectral asymptotics.
In what follows we transform the equations~1! and~4! at the composite functions to the ne

variablesuk , ūk , kPP. To that end let us introduce derivatives in variablesuk5uk
11 iuk

2 :

]

]uk
5221S ]

]uk
1 2

i ]

]uk
2D ;

]

]ūk
5221S ]

]uk
1 1

i ]

]uk
2D .

Direct calculations give
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(
j 51

N

Dxj
f ~ ...,uk ,ūk ...!5 (

m,kPP

]2f

]uk]um
(
j 51

N
]uk

]xj

]um

]xj
12 (

m,kPP

]2f

]uk]ūm
(
j 51

N
]uk

]xj

]ūm

]xj

1 (
m,kPP

]2f

]ūk]ūm
(
j 51

N
]ūk

]xj

]ūm

]xj
1 (

kPP

] f

]uk
(
j 51

N

Dxj
uk

1 (
kPP

] f

]ūk
(
j 51

N

Dxj
ūk . ~7!

Now it will be shown that all coefficients in~7! depend only onuk , ūk . To that end one can
easily check that

(
j 51

N
]uk

]xj

]um

]xj
52~k,m!4p2N21/2uk1m , (

j 51

N

Dxj
uk52k24p2uk ,

~8!

(
j 51

N
]uk

]xj

]ūm

]xj
5~k,m!4p2N21/2uk2m , u05N1/2.

Further, let us express the sum of binary potentials throughuk , kPP.
Proposition 2: The sum of binary potentials satisfies the relation

(
1< i , j <N

V~xi2xj ,d!5S 1

2D (
1< i , j <N

V~xi2xj ,d!2
N

2
d3 (

kPZ3
nk5

d3N~N21!

2
n02d3N(

kPP
nk

1d3N(
kPP

nkukūk . ~9!

That formula follows from~3! and ~5! as a consequence of relationsImnk50, nk5n2k .
Let us introduce notations:

L1S ...,
]

]uk
,

]

]uk

,...,uk ,uk,...D 5..22«24p2 (
mPP

m2
]2

]um]um

1Nd3S (
kPP

nkukūkD
1«24p2 (

mPP
m2S um

]

]um
1um

]

]um
D ; ~10!

L2S ...,
]

]uk
,

]

]uk

,...,uk ,uk,...D 5..22«24p2 (
kÞm,k,mPP

~k,m!uk2m

]2

]uk]um

1«24p2 (
k,mPP

~k,m!uk1m

]2

]uk]um

1«24p2 (
k,mPP

~k,m!uk1m

]2

]uk]um

. ~11!

In the following will be used the constant

m5..
d3N~N21!

2
n02d3N(

kPP
nk , ~12!

and notation
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f ~ ...,uk ,ūk ...!+J5..f S ...,
1

AN
(
j 51

N

exp$ i2p~k,xj !%,
1

AN
(
j 51

N

exp$2 i2p~k,xj !%,...D . ~13!

Summing up the above consideration we obtain from formulas~7!–~13! the following lemma.
Lemma 3: The operator (1) at the functions (6) has the form

H~ f +J!5H S L11
1

AN
L21m D f J +J. ~14!

We would like to mention that the binary interaction is completely included in the right-h
side of formula~14!. The impulse is decomposed into two parts, and the second part,L2 , contains
small parameter 1/AN.

Near the operatorL2 on the right-hand side of~14!, there is the small parameter 1/AN;
therefore, it is natural to consider the operatorL1 as the main term in approximation of operat
H. Consider the eigenfunction of the operatorL1 and prove that the second term (1/AN)L2 is
small at that eigenfunction. It means7 that an asymptotics of some spectral series for the oper
~1! is defined by the operatorL1 .

We will follow that scheme, and now the operatorL1 will be studied. The operatorL1 is the
infinite sum of noninteracting~modified! harmonic oscillators and its spectrum and eigenfuncti
can be calculated exactly.

Let

L1,k5..«24p2k2H 22
]2

]uk]uk

1uk

]

]uk
1uk

]

]uk
J 1Nd3nkukūk . ~15!

Evidently, at the functions~6! the equality

L15 (
kPP

L1,k ~16!

is true. Now let us make more precise the coefficientsbk in the functions~6!, such that the
exp$2(ANd3/«)F% is eigenfunction of the operatorL1 .

Proposition 4: Let

bk5
«

2ANd3 S 12A11
2nkd

3N

4p2«2k2D . ~17!

Then

0<2bk<
Ank

puku
, ~18!

the seriesF5..(kPPubkuukūk is convergent and the functionexp$2(ANd3/«)F% is an eigenfunc-
tion of the operator L1 .

In the following the valuesbk from that proposition will be used. Further, commutation of t
operatorL1 with exponential function is considered. Evidently operatorL1 satisfies the commu
tation relation

L1 expHANd3

« (
kPP

bkukūkJ w5expHANd3

« (
kPP

bkukūkJ H (
kPP

L1,k̃wJ , ~19!

where
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L1,k̃5..4p2k2H 22«2
]2

]uk]uk

1akuk

]

]uk
1akuk

]

]uk
J 24p22«ANd3bkk

2,

~20!

ak5«2A11
2nkd

3N

4p2«2k2.

The eigenfuntions of operatorsL1,k̃ , and hence the eigenfuntions of operatorL1 , can be more
easily calculated. Let us introduce a pair of integer non-negative indexesnk

1 , nk
2 such that if

nk
1.0, then nk

250, and, conversely, ifnk
2.0, then nk

150. Define functionsw(nk
1 ,nk

2 ,dk)

5..u
k

nk
1

ū
k

nk
2

(ukūk)
dk, dk>0, dkPZ.

Lemma 5: 1° Let Q be a finite subset of indexes from P and let

c~ ...;nk
1 ,nk

2 ,dk ;...!5..expHANd3

« (
kPP

bkukūkJ )
kPQ

w~nk
1 ,nk

2 ,dk!, ~21!

wherebk are defined by the formulas (17). (a) If dk50 for kPQ, then, for any pair(nk
1 , nk

2),
kPQ, the functions (21) are eigenfuntions of the operator L1 with eigenvalues

l~ . . . ,nk
1 ,nk

2,0, . . .!522«ANd3 (
kPP

4p2bkk
21 (

mPQ
~nm

11nm
2!4p2«2m2A11

2nmd3N

4p2«2m2.

~22!

(b) If dk.0, the eigenfunctions of the operator L1 are

expHANd3

« (
kPP

bkukūkJ )
kPQ

H w~nk
1 ,nk

2 ,dk!1(
l 51

dk

ck,lw~nk
1 ,nk

2 ,dk2 l !J ~23!

with some coefficients ck,l . The correspondent eigenvalues are

l~ . . . ,nk
1 ,nk

2 ,dk , . . . !522«ANd3 (
kPP

bkk
24p21 (

mPQ
~nm

11nm
2

12dm!4p2«2m2A11
2nmd3N

4p2«2m2. ~24!

2° (a) The operator L1,k̃ is symmetric in the space L2(R,rdjkdhk); uk5..jk1 ihk ; r
5..exp$2(ak /«2)ukūk%. (b) The operators of creation and annihilation,

aj
15

«

A2ak
S 2

]

]jk
12

ak

«2 jkD ,

~25!

aj
25

«

A2ak

]

]jk
, @aj

2 ,aj
1#51,

ah
15

«

A2ak
S 2

]

]hk
12

ak

«2 hkD ,

~26!

ah
25

«

A2ak

]

]hk
, @ah

2 ,ah
1#51,
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are formally conjugated in the space L2(R,rdjkdhk). (c) The operator L1,k̃ can be represented in
the form

L1,k̃54p2k2akaj
1aj

214p2k2akah
1ah

224p22«ANd3bkk
2. ~27!

~1! Let us prove at first the statements 2°~b! and 2° ~c!. Evidently,

2
]2

]uk]uk

5
1

2 S ]2

]jk
2 1

]2

]hk
2D ,

uk

]

]uk
1uk

]

]uk

5jk

]

]jk
1hk

]

]hk
.

Therefore, the formula~20! can be rewritten as

L1,k̃5
1

2
«24p2k2S 2

]

]jk
12

ak

«2 jkD ]

]jk
1

1

2
«24p2k2S 2

]

]hk
12

ak

«2 hkD ]

]hk

24p22«ANd3bkk
2.

Now, the formula~27! follows directly from the definitions~25! and~26! of operatorsaj
6 , ah

6 . ~2!
The formula~22! for the operatorL1 spectrum follows directly from the representation~27!. The
statement 1~a! about the eigenfunctions~21! and ~23! of operatorL1 can be checked by direc
calculations.~3! The statement 2~a! can be proved integrating by parts. The lemma is proved

It is useful to find the space where the operatorL1 is symmetric. To that end let us define
topological space with the elementsu5$uk1

,uk2
, . . . ;kiPP% the finite dimension projectionPn :

Pnu5..$Pn8uk1
,Pn8uk2

, . . . ,Pn8ukl
, . . . %, ~28!

wherePn8uk5..0 if uku.n, andPn8uk5..uk if uku<n.
At the functionsf ( . . . ,uk,ūk, . . . ) andg( . . . ,uk,ūk, . . . ) thescalar product is introduced in

Refs. 8 and 9 as

^ f ,g&5.. lim
n→`

~p!2s(n)E
R2s(n)

expH 2 (
kPP

Pn8ukPn8ukJ f ~Pnu!ḡ~Pnu!

3 )
kPP,uku,n

d RePn8ukd Im Pn8uk ; ~29!

here the values(n) is the number of indexes fromP which comply with restrictionuku<n.
Evidently, the scalar product~29! is defined on the functions~6!.
Lemma 6: 1°. The operator L1 is symmetric at the functions (6) with respect to the sca

product (29). 2°. Linear combinations of the functionsc( . . . ;nk
1 ,nk

2 ,dk ; . . . )+J are dense in the
space L2

B(M ).
1°. Let us fix that2112(ANd3/«)bk52(ak /«2). Hence, at the functions type~6! f

5exp$(kPPbkukūk%Pf(u), g5exp$(kPPbkukūk%Pg(u), wherePf(u), Pg(u) are polynomials, the nex
integral formula is accomplished due to the symmetry of the operatorL1,k̃ at the space
L2(R,rdjkdhk) with the weightr5..exp$2(ak /«2)ukūk% ~the item 2° of Lemma 5!, and, due to the
commutation formula~19!,
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lim
n→`

p2s(n)E
R2s(n)

expH 2 (
kPP

Pn8ukPn8ukJ ~L1f !~Pnu!ḡ~Pnu! )
kPP,uku,n

d RePn8ukd Im Pn8uk

5 lim
n→`

p2s(n)E
R2s(n)

expH 2 (
kPP

ak

«2 Pn8ukPn8ukJ
3S (

kPP
L1,k̃Pf D Pg~Pnu! )

kPP,uku,n
d RePn8ukd Im Pn8uk

5 lim
n→`

p2s(n)E
R2s(n)

expH 2 (
kPP

Pn8ukPn8ukJ
3 f ~Pnu!L1g~Pnu! )

kPP,uku,n
d RePn8ukd Im Pn8uk . ~30!

Therefore the item 1° is proved. Item 2° follows directly from Lemma 1. The lemma is pro
The eigenfunctions of the operatorL1,k̃ , and, hence, of the operatorL1 @see~19!# can also be

found from the representation~27!. But the eigenfunctions in the form~21! are useful because the
are also eigenfunctions of complete impulse operator:

(
j 51

N

2 i¹xj
. ~31!

By direct calculations we get

S (
j 51

N

2 i¹xj D uk
n52pknuk

n ,

~32!

(
j 51

N

2 i¹xj
uuku250,

and hence prove the proposition.
Proposition 7: Functions (21) are the eigenfunctions of the complete impulse operator

eigenvalues2p((kPQ(nk
11nk

2)k).
So, it follows from the formula~14! that if the operatorN2(1/2)L2 does not contribute in the

main terms of low energy eigenvalues, then the main terms of low energy asymptotics is d
completely by the spectrum of the operatorL1 @formulas~22! and~24!#. Therefore, we can expec
for the low energy spectral series of NSO~1! and ~4! asymptotic behavior:

l~ . . . ,nk , . . . !5
n0N~N21!d3

2
2

Nd3

2 (
uku51

`

nk1 (
kPP

4p2«2k2SA11
2nkd

3N

4p2«2k221D
1 (

kPG
nkA«416p4k412~4p2«2k2!nkNd3, nk>0; ~33!

hereG is some finite subset ofP. All variation of theL1 spectrum can be taken into considerati
by means of non-negative integersnk .

At first the spectrum~33! was deduced in the physical works10 by N. N. Bogolubov for the
rarefied medium in the statistical limit. In a series of publication11–18it was proved by the method
of second quantization that the formulas~33! provide the spectral asymptotics whend, «, L are
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fixed and the Fourier coefficientsnk are of order 1/N: 0<nk<c(kd)/N andc(kd) quickly tends
to zero asuku→`. The complete theory of quadratic bosons operators and their normal form
in Refs. 1, 16, 17, and 35.

Many scientists thought that the asymptotics~33! are valid only for the weak interaction an
rarefied medium. In some physical papers were stated doubts that formulas~33! are valid in the
statistical limit. In Ref. 19 it was shown by numerical experiments at one dimension (x5x1) for
the caseV(x2y)5ad(x2y) that the minimal eigenvalue from the series~33! is valid for the
NSO if 0,a and less some constant. That result can be considered like a hint that the sp
~33! could not work in the statistical limit for all values of binary potential.

Proposed in that paper was a new asymptotic approach that allows us to construct and
pectedly justify the asymptotics~33! for the strong binary interaction~that is,nk;1) in the case
when the physical parametersd, «, L are fixed andN→` ~strong interaction and dense matte!.
The success was achieved because the new operatorL1 and new WKB type functions~6! are
involved.

In the next paragraph the theorem will be proved.
Theorem 8 „Main …: Let the physical parametersd, «, L be fixed but N→`. 1°. Let us

suppose thatnk→0 as uku→` more quickly than any poweruku:

0<nk<
cm

~11uku!m ; mPZ1 ; ucmu,`. ~34!

Then the valuel( . . . ,0, . . . ) in the formula (33) is the asymptotics of the minimal eigenvaluel0

of the NSO (1) with the precision O(N1/22g) for someg.0:

l05
n0N~N21!d3

2
2

Nd3

2 (
uku>1,kPP

nk1 (
kPP

4p2«2k2SA11
2nkd

3N

4p2«2k221D 1O~N1/22g!.

~35!

2°. Let us suppose that the Fourier coefficientsnk>0 andnk50 for k¹Q where Q is some finite
subset of the set P. Then for every finite subset$nk%5$nk1

, . . . ,nkm
%,kiPQ,P, nkj

.0 there is

eigenvaluel$nk% of the NSO (1) such that

ul$nk%2l~ . . . ,nk , . . . !u<«d3/2CS (
kPQ

nkD ; ~36!

i f (
kPQ

nk→`, then CS (
kPQ

nkD→`, ~37!

wherel( . . . ,nk , . . . ) is the eigenvalue of the series (33).
The main theorem tells that the asymptotic series~33! is started near the minimal eigenvalu

of the NSO at the dense matter case.
It also follows from the item 2°@see~36! and~37!# that there areg(N,g0) points of the NSO

spectrum which have asymptotics~33! with the precisionO(N1/22g0), 0,g0, 1
2, whereg(N,g0)

is some increasing function ofN which tends to infinitum whenN tends to infinitum.
The NSO have many other spectral series which can be described by that approac

example, if the movement of mass center is considered, then eigenfunction approxima
reasonable to look for in a form

f ~ . . . uk ,ūk . . . !expH (
j 51

N

i2p~ l ,xj !J ,l PZ3, ~38!

where f is the function of type~6!.
Evidently,
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(
j 51

N

Dxj
f expH i2p(

j 51

N

~ l ,xj !J 5expH i2p(
j 51

N

~ l ,xj !J H (
j 51

N

Dxj
f 24p2Nl2f 1 i4p(

j 51

N S l ,
] f

]xj
D J .

~39!

Next, let us introduce the operatorL3 :

L35..28p2 (
kPP

~k,l !H uk

]

]uk
2uk

]

]uk
J . ~40!

It is clear thatL3f 5 i4p( j 51
N ( l , ] f /]xj ).

Proposition 9: The NSO operator (1) at the functions (38) has the form

HS f +J expH i2p(
j 51

N

~ l ,xj !J D
5expH i2p(

j 51

N

~ l ,xj !J H S L12«2L31
1

AN
L21m14p2«2Nl2D f J +J. ~41!

Formula~41! is a direct consequence of the formulas~39!, ~40!, and~14!.
It is not difficult to show that new spectral seriesl( l , . . . ,nm , . . . ), corresponding to the

functions~38!, can be calculated through the series~34!:

l~ l , . . . ,nm , . . . !5l~ . . . ,nm , . . . !14p2«2Nl268p2«2 (
mPG

~ l ,m!nm . ~42!

Under the condition 2°~b! of the main theorem the series~42! gives the asymptotics of the
NSO ~1! with the same precisionO(«d3/2).

III. PROOF OF THE MAIN THEOREM

At first we prove the item 2° of the theorem, employing the averaging.6 Then, we divide the
proof of estimate~35! for the minimal eigenvalue into two parts, as estimated from below
from above.

A. Proof of the item 2°

At the eigenfunctionsc( . . . ;nk
1 ,nk

2 ,dk ; . . . ) of theoperatorL1 the NSO operator~1!, due to
the formula~14!, satisfies the relation

Hc~ . . . ;nk
1 ,nk

2 ,dk ; . . . !5~m1l~ . . . ,nk
1 ,nk

2 ,dk , . . . !!c~ . . . ;nk
1 ,nk

2 ,dk ; . . . !

1
1

AN
L2c~ . . . ;nk

1 ,nk
2 ,dk ; . . . !. ~43!

It follows from formula ~43! and Ref. 7 that there is an eigenvaluel of the operatorH such
that

ul2$m1l~ . . . ,nk
1 ,nk

2 ,dk , . . . !%u<N2 1/2iL2c~ . . . ;nk
1 ,nk

2 ,dk ; . . . !iL2(M )

3ic~ . . . ;nk
1 ,nk

2 ,dk ; . . . !iL2(M )
21 . ~44!

The norms on the right-hand side of inequality~44! can be calculated accordance with t
averaging theory.6,20 To that end we consider the vectorsXj5$cos 2p(k1,xj),
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. . . ,cos 2p(kq ,xj);sin 2p(k1,xj), . . .,sin 2p(kq ,xj)%
T; here $k1 , . . . ,kq%5Q,P and all kiÞkj for i

Þ j . The setP does not contain indexesk, 2k simultaneously. Hence, in the subsetQ the indexes
comply with conditions atQ:

6kiÞkj , i f i Þ j , ~45!

which will be used afterwards.
Now, by the Wiener construction a space will be produced at whichXj are identically distrib-

uted independent~idi! random vectors. For simplicity let us describe that Wiener construction
the one-dimensional casexjPR1, j 51, . . . ,N. Consider spaceV with points $x%
5..$x1 , . . . ,xn , . . . %; 0<xk<1. For the open sets in the spaceV are selected cylindrical sets:8,9

V~ai 1
,bi 1

; . . . ;ai n
,bi n

!5..$x:ai a
,xi a

,bi a
,a51, . . . ,n;0<ai a

<bi a
;

if i ¹$ i 1 , . . . ,i n% then xi is any point at @0,1#%.

The measure of open sets is defined as

m$V~ai 1
,bi 1

; . . . ;ai n
,bi n

!%5..)
a51

n

~bi a
2ai a

!, ~46!

and evidently exists its Lebesgue extension8 mL . It is clear that

mL$x:ai<xi<bi ;aj<xj<bj ; iÞ j %5mL$x:ai<xi<bi %mL$x:aj<xj<bj %

5~bi2ai !~bj2aj !, ~47!

andmL(V)51. Therefore, functionsxi andxj , 0, i , j ,`, are independent identically distrib
uted functions at$V,mL%. Consequently,Xj , j 51, . . . , are idirandom vectors at$V,mL%. It is
clear that the vector average ofXj is (1/AN)( j 51

N Xj5$jk1
, . . . ,jkq ;hk1

, . . . ,hkq
%T, where

jk5Reuk ;hk5Im uk . In the same manner we can construct$V,mL% for the three-dimensional cas
xjPR3, j 51, . . . ,N.

The averaging theory6,20 provides

E
M

f ~jk1
, . . . ,jkq

;hk1
, . . . ,hkq

!+Jdx1¯dxN

5p2qE f ~jk1
, . . . ,jkq

;hk1
, . . . ,hkq

!H 11(
r 51

s
1

Nr /2 Pr~j,h!J
3expH 2 (

a51

q

~jka

2 1hka

2 !J )
a51

q

djka
dhka

1oS 1

Ns/2D ~48!

under some conditions on the functionf and random vectorsXj , that is, onjk ,hk . HerePr(j,h)
are some polynomial functions independent onf .

We will use the estimations of the theorem6 20.1. The theorem 20.1 conditions demand th
the random vectorsXj obey the Crame´r’s condition.

Let

f ~ t1 , . . . ,t2q!5..E
T

expH i (
j 51

q

~ t j cos 2p~kj ,x!1t j 1q sin 2p~kj ,x!!J dx,

~49!
6kiÞkj ;1< i , j <q; T5..R3/Z3.

The Crame´r’s condition on the idiXj is
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limutu→`u f ~ t1 , . . . ,t2q!u,1. ~50!

To estimate the norms on the right-hand side of inequality~44!, consider the integral

I ~$Pk%!5..E
M

expH 2ANd3

« (
kPQ

bk~jk
21hk

2!J )
kPQ

~jk
21hk

2!Pk)
l PG

~j l
21h l

2!Pldx1¯dxN ,

~51!

whereQùG5B and the number of elements in the setsQ,G are finite:uQu, uGu,`.
Lemma 10: LetuQu, uGu be finite;d, « andnk are fixed. Then, for N→`, the integral (51) has

asymptotics

I ~$Pk%!5 )
kPQ

S 112ubku
ANd3

« D 2(Pk11)

)
kPQøG

G~Pk11!H 11OS 1

AN
D J . ~52!

Lemma 10 is a direct consequence of the theorem6 20.1 and Lemma 11:
Lemma 11: The function (49) with fixed q obeys the Crame´r’s condition (50).
Consider the function

g~v,x!5..(
j 51

q

~v j cos 2p~kj ,x!1v j 1q sin 2p~kj ,x!!, where v5t/utu and uvu51. ~53!

Evidently,

f ~ t1 , . . . ,t2q!5E
T3

exp$ i utug~v,x!%dx. ~54!

The behavior of the functionf asutu→` can be studied by integration by parts. Lete1 , e2 be the
partition of unity inR such thatsuppe1P@22,2# ande1(t)51 if utu<1. Evidently,

u f ~ t1 , . . . ,t2q!u<E e1~ u¹gu2utu2«!1U E e2~ u¹gu2utu2«!exp$ i utug~v,x!%dxU. ~55!

There is obtained integrating by parts21 for «,1/4 that the second integral on the right-hand s
of ~55! is about utu4«21 and tends to zero asutu→`. Now consider the first integral on th
right-hand side of~55!. Let us suppose opposite, that

limutu→`E
T
e1~ u¹g~v,x!u2utu2«!dx>1. ~56!

The measurem$x:xPT%51, ande(u¹gu2utu2«)<1. Therefore integral on the left-hand side of~56!
is bounded by 1. Therefore, it follows from~56! that the upper limit is equal to 1. Hence, existvk ;
utku→` such that

ak5..E e1~ u¹g~vk ,x!u2utku2«!dx→1. ~57!

The pointsvk are at unit sphere inR2q; hence, some subsequencevk8 converge: limk8→`vk8
5v̄. Now, let us show that fork8.N(b) the next inclusion is true:

Mk85
..H x:u¹g~vk8 ,x!u2,

2

utk8u
2«J ,Mb , ~58!
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hereMb5..$x:u¹g(v̄,x)u2<b%. Indeed,

u¹g~vk8 ,x!u25u¹g~v̄,x!u21~v̄2vk8!
]

]v
u¹g~u,x!u2,

2

utk8u
2« ~59!

at the points of the setMk8 . Hence at the points ofMk8 : u¹g(v̄,x)u2,2/utk8u
2« 1const, uvk

2v̄u,b if k8.N(b). It proves the inclusion~58!. According to the definition of functionse1 ,
e2 , and due to the inclusion~58!, an inequality

E
$x:u¹g(v̄,x)u2,b%

dx>E
$x:u¹g(vk8 ,x)u2,2/utk8u

2«%
dx>ak8 ,k8.N~b!, ~60!

is satisfied. Then, whenk8→`, we obtain that

messMb>1 for all b.0. ~61!

Due to the Lebesgue theorem

messM05 lim
b→10

messMb>1. ~62!

It means that iflimutu→` f (t1 , . . . ,t2q)>1, then there exists the pointv̄ such that

mess$x:u¹g~v̄,x!u250%>1. ~63!

Let us show that for everyv the functionu¹g(vk8 ,x)u2 is not equal to zero almost every whe
on T. Its integral

E
T
u¹g~v,x!u2dx54p2 (

i , j 51

q

v iv j~ki ,kj !E
T

cos 2p~ki ,x!cos 2p~kj ,x!dx

28p2(
j 51

q

(
l 5q

2q

v jv l~kj ,kl !E
T

cos 2p~kl ,x!sin 2p~kj ,x!dx

14p2 (
i 5q11

2q

(
j 5q11

2q

v iv j~ki ,kj !E
T

sin 2p~ki ,x!sin 2p~kj ,x!dx

52p2(
j 51

2q

v j
2kj

2Þ0,

because6kiÞkj andkjÞ0 at Q@see~45!#. Hence, the functionu¹g(v̄,x)u2 is not equal to zero
almost everywhere. It contradicts~63!, which indicates thatu¹g(v̄,x)u50 almost everywhere
The contradiction proves~50!.

Observation:The result of the lemma can be improved on the basis of analytic sets in
form: limutu→` f (t1 , . . . ,t2q)50.

There are many publications on the problem of averaging by probability approach.22–26 But
they do not allow us to consider the caseq5`, though it looks like, in our case, the asymptot
formula of Lemma 10 will be true with some modification and forq5`.

The study of integrals*ukum exp$(ANd3/«)(kPQbkuuku2% is important for the statistical phys
ics and in the caseuQu5` some estimate were obtained in Refs. 27–29. All those estimate
less exact than asymptotic expansion~52! which yet has been known only for the caseuQu,`.

Now let us apply the asymptotic~52! to estimate the right-hand side of the inequality~44!.
Without loss of generality the casek1PQ, nk1

1 .0, nk1

2 50, dk1
50 and nk

650, dk50 for k

P(Q\k1) will be considered.
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It follows from the formula~11! for the operatorL2 that

L2 expHANd3

« (
kPQ

bkukukJ u
k1

nk1

1

5
1

AN
$R1~nk1

1 !1R2~nk1

1 !1R3~nk1

1 !%; ~64!

R1~nk1

1 !5Nd3 expHANd3

« (
kPQ

bkukukJ u
k1

nk1

1 H 28p2 (
kÞm;k,mPQ

~k,m!bkbmukumuk2m

18p2 ReH (
k,mPQ

~k,m!bkbmukumuk1mJ J ; ~65!

R2~nk1

1 !5«ANd3 expHANd3

« (
kPQ

bkukukJ u
k1

nk1

1
21

nk1

1

3H 28p2 (
k1Þm;mPQ

~k1 ,m!bmumuk12m18p2 (
mPQ

~k1 ,m!bmumuk11mJ ; ~66!

R3~nk1

1 !5~24p2k1
2!«2nk1

1 ~nk1

1 21!expHANd3

« (
kPQ

bkukukJ u
k1

nk1

1
22

u2k1
. ~67!

Direct application of the Cauchy inequality and asymptotic formula~52! to the functions
~64!–~67! produces the estimate

1

AN
iL2c~ . . . ,nk

1 ,nk
2 ,dk ; . . . !iL2(M )ic~ . . . ,nk

1 ,nk
2 ,dk ; . . . !iL2(M )

21 <const3«d3/2. ~68!

Therefore, estimate~36! of the item 2° is a consequence of estimates~44! and ~68!.

B. Proof of estimation from below for the minimal eigenvalue of NSO

This section is devoted to the proof of the minimal eigenvalue estimate from below, th

l0>~m1l0!1O~N1/22g!,

whereg is some positive constant, the constantm defined in~12!, and

l05..(
kPP

4p2«2k2HA11
2nkd

3N

k24p2«221J .

To that end let us introduce some approximation of the operatorH which has as minimal eigen
function the exponent from the formula~21!.

It follows from the formulas ~43!, ~64!, and ~65! that the positive functionc0

5..exp$(ANd3/«)(kPPbkukuk%, wherebk are defined by~17!, satisfies the equation

$H2r %c05~m1l0!c0 ,
~69!

r 5..ANd38p2H 2 (
kÞm;k.,mPP

~k,m!bkbmukumuk2m1ReH (
k,mPP

~k,m!bkbmukumuk1mJ J .

Evidently c0 is the minimal eigenfuction, and minimal eigenvaluel ~ . . . ,0, . . .! of the series
~33!, which is equal to (m1l0), is the minimal eigenvalue of the operatorH2r . Otherwise the
positive functionc0 has to be orthogonal and a minimal eigenfunction of the operatorH2r ,
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which is, due to Ref. 30, non-negative. But the two non-negative functions cannot be ortho
The operatorH2r will be used for estimation from below the minimal eigenvaluel0 of the
operatorH.

Let us introduce some partition of unity at the 3N dimensional torusM such thate1
21e2

2

51; ejPC`(M ).
Then31

H5(
j 51

2

ejHej2(
j 51

2

~¹ej !
2,

where¹5..( j 51
N ¹xj

is a complete gradient. Evidently

H5e1~H2r !e11e1re11e2He22~¹e1!22~¹e2!2. ~70!

The functionsej will be chosen so that at the minimal eigenfunctionw0 of the operatorH are
satisfied inequalities:

~e1ur ue1w0 ,w0!<c1

l0

Ng1
~w0 ,w0!, ~71!

~e2He2w0 ,w0!>~m1c2N1/21g2!~e2w0 ,e2w0!, ~72!

(
j 51

2

~~¹ej !
2w0 ,w0!<c3N2g3~w0 ,w0!, ~73!

for some positive valuesg1 , g2 , g3 ; c1 , c2 , c3 .
As the operator (H2r ) has minimal eigenvalue (m1l0), then it follows from the formula

~70!, inequalities~71!–~73!, and propertye1
21e2

251 that

l0~w0 ,w0!5~Hw0 ,w0!>H m1l0S 11
c

Ng1D J ~w0 ,w0!2cN2g3~w0 ,w0!. ~74!

That is,

l0>~m1l0!1O~N1/22g1!, ~75!

which is the desired estimate from below. The construction of the functionsej is based on the
lemma.

Lemma 12:1° Let dp(s)5..(k1m5pubkusubmus, 0,s,1, wherebk is an even function of k.
Then

ur ~x!u<48p2d3ANS (
kPP

k2ubku22suuku2D S (
qPP

dq~s!uuqu2D 1/2

, ~76!

and dq(s) complies with conditions (34).
2°: For 0<s<1 is satisfied inequality

412s/2S Nd3

«2 D 2 s/2

ubku22s<
nk

4p2k2 . ~77!

1° The conditions~34! for the coefficientsdq(s) are a direct consequence of~34! on nk . The
inequality ~76! is a consequence of the Cauchy inequality. 2° Evidently,ubku5(«/ANd3)
3(nkNd3/4p2«2k2)/$11A112nkNd3/4p2«2k2%, and, therefore,
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ubku22s<S 4nk
2/~4p2k2!2

«2/Nd3 1 2nk/4p2k2D 12 s/2 1

412 s/2 . ~78!

To transform the right-hand side~78! the evident inequality will be used:

a2

b1a
5

a2

~b1a!x

1

~b1a!12x <
a22x

b12x ~79!

at a,b.0; 0<x<1. Let us choosex such that (22x)(12s/2)51, which gives x52(1
2s)/(22s). The condition 0<x<1 implies that 0<s<1. Let b5..«2/Nd3; a5..2nk/4p2k2.
Then ~77! follows from ~78! and ~79!. The lemma is proved.

The estimate

ur ~x!u<S 4d3

«2 D s/2

N1/21 s/2H (
kPP

d3nkuuku2J H (
qPP

dq~s!uuqu2J 1/2

~80!

is obtained by application of the inequality~77! to inequality~76!. Consequently, at the setD(s1),

D~s1!5..H x: (
qPP

dq~s!uuqu2,5coN2s1J , ~81!

inequality

ur ~x!u<36S 4d3

«2 D s/2

A5c0N1/21 s/2 1s1H (
kPP

d3nkuuku2J ~82!

is satisfied. The parameterss, s1 will be chosen in the intervals

s1.
1

4
;

s

2
1s1,

1

2
; s.0 ~83!

such that

g15..
1

2
2

s

2
2s1.0. ~84!

Now let us calculate functionse1 , e2 . Let functionse18(t), e28(t)PC`(R1); and (e18(t))
21

(e28(t))
251, suppe28(t)P@ 1

2,1`), suppe18(t)P@21,1#. Definition:

e1~x!5..e18H S (
qPP

dq~s!uuqu2DY5c0N2s1J , ~85!

e2~x!5..e28H S (
qPP

dq~s!uuqu2DY5c0N2s1J , ~86!

wherec0 is some positive constant which will be chosen later in the proof of Lemma 15.
Proposition 13: The functions e1 , r , w0 satisfy inequality (71).
Evidently suppe1(x)#D(s1) and 0<e1<1. Therefore, due to inequality~82!, we obtain

~ ur ue1w0 ,e1w0!<36S 4d3

«2 D s/2

A5c0N12g1E
M
S (

kPP
d3nkuuku2De1

2w0
2dx. ~87!

But the minimal eigenfunctionw0 satisfies the energy equality
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E
M

«2u¹w0u21NE
M
S (

kPP
d3nkuuku2Dw0

2dx5~l02m!E
M

uw0u2dx. ~88!

It follows from relations~87! and ~88! and estimate from above~111! that

~ ur ue1w0 ,e1w0!<36S 4d3

«2 D s/2

A5c0

l0

Ng1
~w0 ,w0!. ~89!

@The estimate from above~111! is proved independent of estimate from below.# The inequality
~89! is exactly equivalent to the inequality~71!.

Proposition 14: The functions e1 , e2 satisfy the inequality (73).
We prove that

u¹ej u2<CN22s1; j 51,2; ~90!

where~90! is a stronger inequality than~73!. Let us prove~90! for j 51; for j 52 the proof is the
same. Direct calculations provide

¹e15
]e18

]t (
qPP

dq~s!~uq¹uq1uq¹uq!/5c0N2s1,

]uk

]xj
5

i2pk

AN
exp$ i2p~k,xj !%.

Hence,

u¹e1u<4pU]e18

]t
U~5c0N2s1!21 (

qPP
uqudq~s!uuqu

<4pU]e18

]t
U~5c0N2s1!21A(

qPP
uqu2dq~s!A(

qPP
dq~s!uuqu2

<4pceN
2s1~5c0!2 1/2A(

qPP
uqu2dq~s!, ~91!

wherece5maxRu ]e18/]t u.
In the last reduction we use that at the set support]e18/]t ((qPPdq(s)uuqu2/c0N2s1) there is

inequalityA(qPPdq(s)uuqu2<A5c0Ns1. So the functionsej satisfy inequality~90! with the con-
stant

c5~5c0!21H (
j 51

2

max
R

U]ej8

]t
UJ 16p2H (

qPP
q2dq~s!J . ~92!

The proof is over.
Now let us consider the inequality~72!. To that end the next lemma will be proved.
Lemma 15: Any functionwPW2

1(M ) with suppw#suppe2 satisfies inequality

E
M

u¹wu2dx>
1

4

N2s1

ln 6N
$11o~1!%E

M
uwu2dx, ~93!

where o(1)→` as N→`.
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Let ck1 . . . kN
be the Fourier coefficients of the functionw with respect to the simple harmonic

exp$i2p(k1x11¯1kNxN)%. Evidently for any positive valued2 there is inequality

E
M

uwu2dx< (
k1

2
1¯1kN

2 <d2
uck1¯kN

u21d22 (
k1

2
1¯1kN

2 >d2
~k1

21¯1kN
2 !uck1¯kN

u2. ~94!

Further,

d22 (
k1

2
1¯1kN

2 >d2
~k1

21¯1kN
2 !uck1¯kN

u2<d22E
M

u¹wu2dx; ~95!

uck1¯kN
u2<mess$suppe2%E

M
uwu2dx. ~96!

To make an advance we have to estimate~a! the number of combinations such that( i 51
N ki

2

<d2, kiPZ3, which will be designate asNa and ~b! estimatemess$suppe2%.
~a! The number of combinations. Evidently Na<2d2

3Na8 , whereNa8 is the number of com-
binations for which( j 51

3N kj
2<d2; kj>0, kjPZ.

The factor 2d
2

is introduced to take into consideration all combinations6k1 , . . . ,6k3N ; kj

PZ1 . As in the succession6k1 , . . . ,6k3N there are not more thend2 terms which are not equa
to zero; therefore the factor 2d2

considers all additional combinations which happened becaus
sign 6 variation nearkj .

The numberNa8 is less than or equal to the number of combinations at which

(
j 51

3N

kj<d2, kj>0, kjPZ, ~97!

becausekj
2>kj for kj>0, kjPZ. The number of combinations~97! is calculated in Ref. 32.

Therefore,

Na<2d2

(
n50

d2

(
r 11¯1r 3N5n

n!

r 1!¯r 3N!
52d2

(
n50

d2

~3N!n<2d211~3N!d2
. ~98!

~b! Estimate formess$suppe2%. The coefficientsdq(s)<cl(d,s)/(11uqu) l , 0< l ,`; and
uuqu<AN. Hence, for a fixed positive constantc0 , there exist valuesf .0 such that

(
q>Nf

dq~s!uuqu2<
c0

8
. ~99!

It means that the set

G~s1!5H x: (
qPP,q<Nf

dq~s!uuqu2>
5

4
c0N2s1J ~100!

includes the setCD(s1) @complement toD(s1), which is defined in~81!#.
Further, let us consider the set

v~s1!5ù uku50
Nf

$x:uuku<Ns1%. ~101!

Evidently, at the setv(s1) the inequality
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H (
qPP,q<Nf

dq~s!uuqu2J U
v(s1)

<H (
qPP,q<Nf

dq~s!J N2s1 ~102!

is satisfied.Let us define the positive constant c0 , which is used in definitons of functions e1 , e2 ,
as

c05 (
qPP

dq~s!. ~103!

Hence, due to inequality~102! the setG(s1), and therefore the setCD(s1), are included into
the complementCv(s1). These inclusions imply inequality

messCD~s1!<messG~s1!<messCv~s1!. ~104!

It is well known that Cv(s1)5ø uku50
Nf

C$x:uuku<Ns1%5ø uku50
Nf

$x:uuku.Ns1% @due to the
formula ~101!# and

messCv~s1!< (
uku50

Nf

mess$x:uuku>Ns1%. ~105!

Employing the large deviations theorem33 for valuess1, 1
2 we obtain from~105! the estimate

messCv~s1!<
4p2

3
~Nf11!3 expH 2

N2s1

2 J . ~106!

The estimates~104! and ~106! prove that

mess$suppe2%<
4p2

3
~Nf11!3 expH 2

N2s1

2 J . ~107!

Now the parameterd2 is chosen so that

mess$suppe2%Na< 1
2 . ~108!

Due to the inequalities~98! and ~107!, for that aim it is sufficient that (4p2/3)(Nf11)3

3exp$2(N2s1/2)%2(6N)d2
5 1

2; namely,

d25
N2s1

2 ln 6N
$11o~1!%. ~109!

With the estimates~108! and ~109! we can prove the main inequality~93!. It follows from
~94!–~96! that

E
M

u¹wu2dx>d2$12Namess$suppe2%%E
M

uwu2dx. ~110!

Now the estimate~93! follows from inequalities~108! and~109! and formula~110!. The lemma is
proved.

So, if the parameterss1 , s are chosen in the interval~83!, the inequality~75! follows from
the inequalities~71!–~73!. Hence, the estimate from below~75! is proved.
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C. Proof of the estimate from above for the minimal eigenvalue of NSO

Here the estimate from above

l0<~m1l0!1O~N1/22g!, ~111!

will be proved.
We use the designation of item 2. It follows from~69! that

Nd3E
M

expH 22
ANd3

«
FJ H u¹Fu21 (

kPP
nkuuku2J dx

<E
M

ur uexpH 22
ANd3

«
FJ dx1l0

3E
M

expH 22
ANd3

«
FJ , ~112!

where the remainder termr is defined in~69! andF5..(kPPubkuuuku2.
The integral fromur u on the right-hand side of~112! can be estimated through a sum

integrals

d3ukuumuubkbmu E
M

uukumuk6muexpH 22
ANd3

«
FJ dx. ~113!

The next lemma is proved following that idea.
Lemma 16: The integral from the residual term satisfies the inequality

E
M

ur uexpH 22
ANd3

«
FJ dx<cS d3

«2D g/2

N1/21s01 g/2H (
kPP

ubkugJ E
M
S (

kPP
d3nkuuku2D

3expH 22
ANd3

«
FJ , ~114!

where parameterss0 , g satisfy conditions1
4,s0, 1

2, 0,g,1; 1
21s01g/2,1.

1°. As was said above, the left-hand side of~114! is estimated by the sum of integrals~113!.
Every integral~113! can be presented as the sum of the integral over the setVk6m5$x:uuk6m

u,Ns0% and the integral over its complementCVk6m5$x:uuk6mu>Ns0%. By the theorem of large
deviation33 messCVk6m<c(s0)exp$2(N2s0/2)% uniform in k,mPZ3. Hence

(
k,mPP

ANd38p2E
M

ukuumuubkbmuuukumuk6muexpH 22
ANd3

«
FJ dx

< (
k,mPP

N1/21s0d38p2ukuumuubkbmu E
M

uukumuexpH 22
ANd3

«
FJ dx

1N28p2c~s0!H (
k,mPP

d3ukuumuubkbmuJ expH 2
N2s0

2 J . ~115!

2°. We would like to neglect the second term on the right-hand side of the formula~115!. To
that end let us estimate from below the integral

I ~k,m!5E
M

uukumuexpH 22
ANd3

«
FJ dx. ~116!

The Jensen inequality for the convex functions produces*Rf (t)dm> f (*Rtdm), where
*Rdm51.
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To apply the Jensen inequality to the integral~116! let us define34,36 measure

dm5~21!dtE
F>t

uukumudx/~21!E
R
dtH E

F>t
uukumudxJ . ~117!

Then, by Jensen inequality, it is obtained that

I ~k,m!>H E
M

uukumudxJ expH 22
ANd3

« E
M

FdmJ , ~118!

because it is clear that by the Fubini theorem34 and by the averaging theory6 one can obtain

E
R
~21!dtH E

F>t
uukumudxJ 5E

M
uukumudx5~p!21H E uhue2h2

dhJ 2

1OS 1

AN
D ; ~119!

E
R
~21!tdtH E

F>t
uukumudxJ 5E

M
Fuukumudx5(

l PP
ub l u E

M
uul u2uukumudx

5H (
l PP

ub l uJ Hp23/2S E h1
2e2h1

2
dh1D S E uhue2h2

dh D 2J 1OS 1

AN
D .

~120!

Inequalities~118!–~120! provide

I ~k,m!>c2 expH 2c1

ANd3

« J dx,

c15..
2

p3/2 H (
l PP

ub l uJ H 11OS 1

AN
D J S E h2e2h2

dh D , ~121!

c25..
1

p3/2H E uhue2h2
dhJ 2H 11OS 1

AN
D J .

3°. Inequality~121! tells that the second term on the right-hand side of inequality~115! is
much less than the first term on the right-hand side of~115! if s0. 1

4 and physical parametersd,
« are fixed. Therefore, it follows from the~121!, ~115!, and~77! that

ANd38p2 (
k,mPP

ukuumuubkbmu E
M

uukumuk6muexpH 22
ANd3

«
FJ dx

<const
1

4p2 S d3

«2D g/2

N1/21s01g/2H (
kPP

ubkugJ E
M
S (

kPP
d3nkuuku2DexpH 2

2ANd3

«
FJ dx

~122!

for any 1.g.0.
We showed above that the left-hand side of inequality~122! estimates the left-hand side o

~114!. Therefore,~114! is a direct consequence of~122!. The lemma is proved.
Now, substituting the estimate~114! into the right-hand side of the inequality~112!, an

estimate is obtained:
                                                                                                                



in-

e

t
ets

s:

ts

1510 J. Math. Phys., Vol. 44, No. 4, April 2003 S. Arellano-Balderas and V. V. Kucherenko

                    
E Nd3 expH 22
ANd3

«
FJ H u¹Fu2dx1 (

kPP
d3nkuuku2J <

l0

11c/Na E
M

expH 22
ANd3

«
FJ dx

~123!

a5..1
22s02g/2.
Due to the variational principle the inequality~123! produces the inequality~111!. So, from

estimation from below~75! and estimation from above~111!, estimate~35! of the main theorem
follows. The theorem is proved.

IV. PROOF OF THE LEMMA 1

Let us consider functionSexp$i2p(j51
N (kj ,xj)% and suppose that in the set of the vector

dexesk1 , . . . ,kN there are onlyl vector indexeskj 1
, . . . ,kj l

different from zero. Without any
restriction we can consider thatkj 1

5k1 , . . . ,kj l
5kl . The numberl is called the lengths of the

vector index set. Evidently 1< l<N. We prove the lemma by induction on the lengthsl at any
fixedN. So, for thel 51, evidently,Sexp$i2p(j51

N (kj ,xj)%5ANuk1
. Now let us suppose that for th

length 1< l<n the symmetrized harmonic, which is defined asSexp$i2p(j51
l (kj ,xj)%

5 (1/N!) (b exp$i2p(m51
l (km,xb21(m))%, can be presented as polynomials in the functionsuk , and

prove that it is true for thel 5n11<N. To that end we consider the product

N~n11!/2uk1
¯ukn11

5 (
m51

n11

(
$ i 1 ,...,i m%

(
$a1%,...,$am%

A$ i 1 ,...,i m ;$a1,...am%%exp~ i2p!

3H S S (
n51

r 1

ka
n
1D ,xi 1D 1¯1S S (

n51

r m

ka
n
mD ,xi mD J , ~124!

wherer k5u$ak%u, A$ . . . % some integer coefficients.
In that sum at fixedm all subsets$ i 1 , . . . ,i m% are ordered:i 1,¯, i m and belong to the se

$1, . . . ,N%. Further, at fixed subset$ i 1 , . . . ,i m% we consider all nonintersecting ordered subs
$a1%, . . . ,$am% of the set$1, . . . ,n11% such that( i 51

m r i5n11. It is clear that the terms of the
sum ~124!, corresponding to the valuesm, are functions depending onm arguments, and the
length of vector index sets corresponding to those functions is equal ton11 only atm5n11. In
the casem5n11 all subsets$a1%, . . . ,$am% in the summa~124! have only one element$a j%
5a j , j 51, . . . ,n11, and$a1 , . . . ,an11% is some permutation of$1, . . . ,n11%. Moreover, in
that case, all coefficientsA$ i 1 , . . . ,i m ;$a1, . . .am%% are the same, and will be denoted byA.
Therefore, subsume from~124!, corresponding to the valuem5n11 can be presented as follow

(
$ i 1,...,i n11

%
(
a

A expH i2p (
j 51

n11

~ka
( j )
21,xi j

!J , ~125!

where the sum is taken over all permutationa of the set$1, . . . ,n11% and over all ordered subse
$ i 1 , . . . ,i n11% of the set$1, . . . ,N%. Evidently, ( j 51

n11(ka
( j )
21,xi j

)5(m51
n11 (km ,xi a(m)

); hence, the

sum~125! can be presented as the sum($ i 1, . . . ,i n11
%(aA exp$i2p(m51

n11 (km,xia(m)
)%, where the second

sum with respect toa is taken over all permutationsa of the set$1, . . . ,n11%. It is clear that

A (
$ i 1 ,...,i n11

%
(
a

expH i2p (
m51

n11

~km ,xi a(m)
!J 5

A

~N2n21!! (b expH i2p (
m51

n11

~km ,xb21(m)!J ,

~126!

where summa with respect tob is taking over all permutationsb of the set$1, . . . ,N%. Evidently
the sum on the right-hand side of~126! is equal to@AN!/(N2n21)!# Sexp$i2p(j51

n11(kj ,xj)%.
Hence, a function
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N(n11)/2uk1
¯ukn11

2
AN!

~N2n21!!
SexpH i2p (

j 51

n11

~kj ,xj !J ~127!

is the symmetrical function which is equal to the sum of symmetrized harmonics, havin
length of the vector index sets not more thann. Therefore, by inductive supposition the functio
~127! and, hence, the functionSexp$i2p(j51

n11(kj ,xj)%, can be presented as a polynomial inuk . The
lemma is proved.
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Duality versus dual flatness in quantum information
geometry

Nihat Aya) and Wilderich Tuschmannb)
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We investigate questions in quantum information geometry which concern the ex-
istence and nonexistence of dual and dually flat structures on stratified sets of
density operators on finite-dimensional Hilbert spaces. We show that the set of
density operators of a given rank admits dually flat connections for which one
connection is complete if and only if this rank is maximal. We prove, moreover,
that there is never a dually flat structure on the set of pure states. Thus any general
theory of quantum information geometry that involves duality concepts must inevi-
tably be based on dual structures which are nonflat. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1556192#

I. INTRODUCTION

The power and strength of classical information geometry and its applications rely in
respects on the fact that in basic situations of interest the spaces under investigation are n
endowed with the structure of a dually flat manifold~cf. Refs. 1 and 3, see also Sec. II!. Of utmost
importance is then that naturally associated with the dually flat structure is a distancelikecanoni-
cal divergence function. This divergence yields a variational characterization of geodesic pro
tions on submanifolds by a minimizing property which is crucial for applications~cf. Refs. 2 and
3!.

In the last years there has also been great progress in generalizing and extending fund
concepts and results from classical information geometry to the quantum setting. One no
poses in particular of quantum analogs and versions of the Fisher metric~cf. Refs. 20, 23, 11, 5,
and 17! and ofa-connections~cf. Refs. 21, 12, 13, and 10!. These advances allow, for example,
extend Crame´r–Rao type inequalities to the information geometry of positive density operato
well as to pure state estimation theory~cf. Refs. 15, 16, 8, 9, and 18!.

On the other hand, for the fundamental spaces of study in quantum information geometr
the sets of density operators of a given rank on a finite-dimensional Hilbert space, projectio
divergence functions which have properties as nice and special as in the classical setting
now only known to exist in the special case where the operators have maximal rank.
existence in the full rank case is a simple consequence of dual flatness, using the well-know
that when equipped with the Boguliobov–Kobu–Mori~BKM ! inner product, the complete expo
nential connection and the~incomplete! mixture connection define a dually flat structure on the
of positive density operators of~cf. Refs. 21 and 3!. On the sets of density operators of a giv
general rank, distinguished dual structures have been constructed by Fujiwara using sym
logarithmic derivatives~cf. Ref. 7!. However, none of the Fujiwara structures is dually flat.

In view of these facts and the importance of the existence of canonical divergence fun
one is therefore naturally led to ask to which extent the concept of dual flatness can be carrie
and put to use on the sets of density operators of a given nonmaximal rank.

By employing general structure theorems for dually flat manifolds which were obtained i

a!Electronic mail: nay@mis.mpg.de
b!Electronic mail: tusch@mis.mpg.de
15120022-2488/2003/44(4)/1512/7/$20.00 © 2003 American Institute of Physics
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previous work,4 the present note sets out to answer this question in a systematic way. Motiva
the fact that for the above-mentioned canonical dually flat structure on the set of positive d
operators, the exponential connection is complete, we also investigate the existence of du
structures with a complete connection. Our main results can be stated as follows:

Theorem A: There is never a dually flat structure on the set of pure states.
Theorem B: The setSr of density operators of a given rank r on a Hilbert space of comp

dimension nPN admits dually flat connections for which one connection is complete if and
if r is maximal, i.e., if and only if r5n.

The remaining parts of the present article are organized as follows: In Sec. II we briefly
some basic definitions and results from Ref. 4. Section III is the heart of the article. It conta
detailed description of our approach, which emphasizes the differences and similarities be
the classical and the quantum setting, and here the proofs of Theorems A and B are given.
IV is the final one, containing further conclusions and a discussion of other points of intere

II. PRELIMINARIES

As described in Refs. 1 and 3, adual structureon a Riemannian manifold (M ,g) is given by
a pair of affine connections¹ and¹* which are dual to each other in the sense that for all vec
fields X,Y,Z on M ,

Xg~Y,Z!5g~¹XY,Z!1g~Y,¹X* Z!.

If in addition both connections¹ and ¹* have vanishing torsion and curvature, the p
(¹,¹* ) is said to define adually flat structureon (M ,g).

In our previous work4 we obtained general obstruction and structure results for dually
manifolds. The ones we will employ in the present note may be stated as follows:

Proposition 2.1:4 Compact manifolds with finite fundamental group never admit dually
structures.

Proposition 2.2:4 Let (M ,g,¹,¹* ) be a dually flat manifold. If one of the two connections
complete in the sense that all of its geodesics are defined on the whole real line, then the ho
groupspk(M ) vanish for2<kPN.

The completeness assumption in Proposition 2.2 guarantees that any two points of the
fold can be joined by a geodesic of the complete connection~cf. Ref. 4!. This latter property is,
e.g., of special interest in dealing with the problem to define geodesic projections onto g
submanifolds.

III. STRATIFICATIONS AND DUALLY FLAT STRUCTURES

To illustrate our results and approach we shall first discuss the following

A. Basic example

Consider the setX5$1,2% of elementary events. The setP̄ of classical probability distributions
on X consists of the disjoint union of the line segmentP25$(p1 ,p2)PP̄ : p1 ,p2.0% and the
two Dirac measuresP15$d1 ,d2%: P̄5P1]P2 . Extending this situation to the quantum settin
leads to the setS̄ of density operators onCX>C2. A concrete realization ofS̄ by matrices, the
Stokes parametrization~compare, for example, Ref. 22!, is given as follows:

S̄ > H 1

2 S 11x y1 iz

y2 iz 12x D : x,y,zPR, x21y21z2<1J .

The setS̄ is diffeomorphic to the closed unit ball inR3. It can be stratified asS̄5S1]S2 ,
whereS2 denotes the set of positive density operators of~maximal! rank two, andS1 denotes the
density operators of rank one. The setsS2 andS1 are diffeomorphic to the open three-ball and t
two-sphere, respectively.
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For r 52, bothPr andSr admit a dually flat structure with one complete connection~compare
Ref. 4!. For r 51, Pr admits a trivial dually flat structure. But according to our first resu
Theorem A, there is no dually flat structure on the stratumS1 .

In what follows, we shall show that the main features of the above example general
states of any rank and all higher dimensions.

As we shall briefly discuss in the following section, the setsPr always admit a dually flat
structure with one complete connection. In contrast to this fact, in Sec. III C we will prove tha
quantum analog ofPr , the setSr of density operators of a given rankr , enjoys this property iff
the rankr is maximal, and that the set of pure statesS1 never admits a dually flat structure.

B. The classical setting

Consider a nonempty finite setX and the closed simplex

P̄ 5 P̄~X! 5 H p5~px!xPXPRX : px>0 for all xPX, (
xPX

px51J .

The support set of a probability distributionpPP̄(X) is defined as supppª$xPX : px.0%. To
each nonempty subsetA of X one may associate the corresponding~open! ‘‘face’’

P~A!ª$pPP̄ : suppp5A%. ~1!

Each open faceP(A) is a differentiable submanifold ofRX of dimensionuAu21. It is well known
that P(A) carries a natural dually flat structure which is given by

~P~A!,gA ,¹A
(e) ,¹A

(m)!, ~2!

wheregA denotes the Fisher metric,¹A
(e) denotes the exponential connection, and¹A

(m) denotes the
mixture connection. The mixture connection is not complete, whereas the exponential conn
is.

We have the stratification

P̄ 5 ]
BÞA,X

P~A!. ~3!

Collecting all facesP(A) with uAu5r for a fixed r , one obtains

Pr ª $pPP̄ : usupppu5r % 5 ]
BÞA,X

uAu5r

P~A!. ~4!

Given a subsetA of X with r elements, the setPr may be considered as the orbit ofP(A) under
the permutation group ofX. This gives rise to a new stratification

P̄ 5 ]
r 51

uXu

Pr , ~5!

which is coarser than the stratification~3!. Obviously, each stratumPr admits the dually flat
structure given by~2!.
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Figure 1 depicts the situation in the case whereX5$1,2,3%.

C. The quantum setting

Let (H,^•,•&) be a complex Hilbert space of finite~complex! dimensionn, and letA denote
the algebra of linear operators onH. A density operatorrPA is characterized by the propertie

r5r* , r>0, trr51.

The set of density operators is denoted byS̄ or S̄(H). This is a compact and convex set of re
dimension

dimR S̄ 5 n221.

In order to extend the definitions ofP(A) andPr to the Hilbert space setting, we have to fin
a generalized version of the mapsp°suppp andA°uAu.

A natural candidate for the ‘‘support’’ of a density operator is given by its image:

im: S̄ → G~H !ª ]
r 51

n

Gr~H !, r° im r.

Here,Gr(H) denotes the Grassmann manifold of~complex! r -dimensional complex subspaces
H, which has real dimension 2r (n2r ).

Considering the ‘‘cardinality’’ of a subspaceA of H to be given by the complex dimension o
A, by making use of an orthonormal basisX5$x1 , . . . ,xn% of H we obtain the following com-
mutative diagram:

Here i is the inclusion map

~px!xPX ° (
xPX

px px ,

where for xPX the symbolpx denotes the orthogonal projection onto the subspaceC•x, and
where ‘‘span’’ assigns to each subsetA of X the linear hull ofA.

As in ~1!, to each subspaceA,H we now associate the~open! A-face of S̄, defined by

S~A! ª $rPS̄ : im r5A%.

FIG. 1. The two stratifications ofP̄5P̄(X) for X5$1,2,3%.
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This is a convex subset ofS̄ of real dimension

dimR S~A!5~dimC A!221,

which can be identified with the set of all positive density operators on the Hilbert spaceA.
It is well known thatS(A) carries a dually flat structure with one complete connecti

Moreover, this structure can be chosen in such a way that for each orthonormal baX
5$x1 , . . . ,xr% of A, the i-pullback of this structure coincides with the structure onP(X) dis-
cussed in Sec. III B~cf. Ref. 3!.

We obtain the following analog to the stratification~3!:

S̄5 ]
APG(H)

S~A!. ~6!

Collecting all facesS(A) with dimA5r for a fixed r yields now the set of density operators
rank r :

Sr ª $rPS̄ : rankr5r % 5 ]
APGr (H)

S~A!.

The setsSr are differentiable manifolds of real dimension 2nr2r 221. Notice also that the
manifold S1 is diffeomorphic toCPn21, the complex projective space of real dimension 2n
21). Its elements are also known as thepure states.

Given a subspaceAPGr , the setSr may be considered as the orbit ofS(A) under the unitary
group onH. This leads to the following stratification:

S̄ 5 ]
r 51

n

Sr . ~7!

The stratification~7! is obviously coarser than the stratification~6!. The natural question is
therefore if there is also in this case a dually flat structure on the individual strataSr . Notice also
that fromSn5S(H) we know that the largest stratum admits a natural dually flat structure.

We first treat the case of pure states~i.e., r 51) which is of special importance in the statistic
estimation theory of pure state models~cf. Refs. 8, 9, and 18!. The quantum analog of the Fishe
metric is here given by the Fubini-Study metric onS1>G1 , and it is clear thatS1 admits a
multitude of dual structures. However, in contrast to this fact one has the following.

Theorem 3.1:There exists no dually flat structure on the setS1 of pure states.
Proof: The stratumS1 is diffeomorphic to a complex projective space so that, in particular

fundamental group is trivial. Proposition 2.1 implies therefore thatS1 does not admit any dually
flat structure. h

To deal with the existence problem for dually flat structures on sets of mixed states, we
employ the following proposition.

Proposition 3.2: The stratumSr and the Grassmann manifoldGr are homotopy equivalent an
therefore have isomorphic homotopy groups.

Proof: Given a complex subspaceA,H of complex dimensionr , define the center of the fac
S(A) as

rA ª

1

dimA
orthogonal projection ontoA.

We will now construct a homotopy equivalence betweenGr andSr as follows~compare Fig.
2 for an illustration!.
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Consider the following maps:

f :Gr→Sr , A°rA ,

g:Sr→Gr , r° im r.

Obviously, the compositiong+ f is equal to the identity onGr . Furthermore, the homotopy

F:@0,1#3Sr→Sr , ~ t,r!°~12t ! r1t r im r ,

which satisfies

F~0,• !5 idSr
, F~1,• !5 f +g,

provides a homotopic deformation of the compositionf +g to the identity onSr . h

Theorem 3.3: The setSr of density operators of a given rank r on a Hilbert space
complex dimension nPN admits dually flat connections for which one connection is comple
and only if r is maximal, i.e., if and only if r5n.

Proof: Notice first that when equipped with the Boguliobov–Kobu-Mori inner product,
exponential and mixture connection define a dually flat structure on the set of density opera
full rank, and that the exponential connection is complete.

Assume now that forr ,n there is a dually flat structure with one complete connection onSr .
According to Proposition 3.2, the manifoldSr and the Grassmann manifoldGr have isomor-

phic homotopy groups.
Using the coset representationGr5SU(n)/( SU(n)ù(U(r )3U(n2r )) ) of the Grassmannian

as a symmetric space~cf., e.g., Ref. 14!, one easily sees thatGr is simply connected. The Hurewic
isomorphism theorem in algebraic topology~cf. Ref. 24! implies therefore thatGr andSr possess
at least one higher-dimensional homotopy group which is nontrivial. This, however, contra
Proposition 2.2.

h

IV. CONCLUSIONS AND FURTHER REMARKS

Any general theory of quantum information geometry must include as a special case a
of density operators on finite-dimensional Hilbert spaces and, in particular, the estimation
of quantum pure state models. An important consequence of our results is therefore that an
general theory that involves duality concepts must inevitably be based on dual structures wh
nonflat.

As we mentioned in the Introduction, for dually flat manifolds there is a natural as we
important variational characterization of geodesic projections by distancelike divergence

FIG. 2. HomotopingSr to Gr .
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tions. We feel that a general theory of dual but not necessarily dually flat structures must e
this divergence concept appropiately. In this regard, special emphasis should be placed
investigation of dual structures for which the associated connections have vanishing tors
fact, for torsion-free dual structures one knows from work of Matumoto~cf. Ref. 19! that any such
structure can—though, however, not in a canonical way—be obtained from divergence fun
in the sense of Eguchi~cf. Ref. 6!.
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Multiresolution analysis generated by a seed function
F. Bagarelloa)

Dipartimento di Matematica ed Applicazioni, Fac. Ingegneria, Universita` di Palermo,
I-90128 Palermo, Italy

~Received 14 October 2002; accepted 17 December 2002!

In this paper we use the equivalence result originally proved by the author, which
relates a multiresolution analysis~MRA! of L 2(R) and an orthonormal set of
single electron wave functions in the lowest Landau level, to build up a procedure
which produces, starting with a certain square-integrable function, a MRA of
L 2(R). © 2003 American Institute of Physics.@DOI: 10.1063/1.1556193#

I. INTRODUCTION

In a series of recent papers,1–3 we have shown the existence of a relation between
multiresolution analysis~MRA! of L 2(R) and an orthonormal~o.n.! set of functions ofL 2(R2)
which ~1! belong to the lowest Landau level~LLL !, ~2! are closed under the action of tw
commuting unitary translation operators, and~3! can be used to produce a normalized trial grou
state for the gas ofN electrons. This method has been used up to now to produce different
ground states for the well-known fractional quantum Hall effect~FQHE!. In our previous papers
we were mainly interested in using known facts from MRA in order to get information a
FQHE. However, already in Refs. 1 and 2, we have also discussed the possibility of revers
construction, in order to get the coefficients of a MRA, in the sense of Refs. 6 and 7, s
starting from a given single electron o.n. basis closed under the action of two~magnetic! transla-
tion operators. To implement this proposal we only need such a set of wave functions: th
immediately have the coefficients of the related MRA.1,2 However, this approach is not really eas
to use, the reason being that there are not many examples of this kind of wave function in th
in the literature.4,5

In this paper we consider a different possibility. We will show how a given function ofL 2(R)
satisfying some extra condition can be used to generate a set of coefficients related to a M
L 2(R).6,7

The paper is organized as follows. In Sec. II we quickly review the method proposed in
1 and 2, without insisting too much on its physical aspects. In Secs. III and IV we show how t
a seed function in order to construct a set of coefficients giving rise to a MRA. In Sec. V
discuss some examples, and we discuss our conclusions in Sec. VI. In the Appendix we
some easy results on the convolution of sequences which are used in the main body of the
results which we were not able to find in the existing literature.

II. THE METHOD

We begin this section with the following remark: in Refs. 2 and 3 the method origin
introduced in Ref. 1 has been generalized. This generalization, which is crucial for con
applications in the analysis of the FQHE, is only an unnecessary complication here and, f
reason, will not be used.

The many-body model of the FQHE consists simply in a two-dimensional electron
~2DEG!—that is a gas of electrons constrained in a two-dimensional layer—in a positive un
background and subjected to a uniform magnetic field alongz, whose Hamiltonian~for N elec-
trons! is1

a!Electronic mail: bagarell@unipa.it
15190022-2488/2003/44(4)/1519/16/$20.00 © 2003 American Institute of Physics
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H (N)5H0
(N)1l~HC

(N)1HB
(N)!, ~2.1!

whereH0
(N) is the sum ofN contributions:

H0
(N)5(

i 51

N

H0~ i !. ~2.2!

HereH0( i ) describes the minimal coupling of thei th electron with the magnetic field:

H05
1

2
~pI 1AI ~r !!25

1

2 S px2
y

2D 2

1
1

2 S py1
x

2D 2

. ~2.3!

HC
(N) is the canonical Coulomb interaction between charged particles,

HC
(N)5

1

2 (
iÞ j

N
1

urI i2rI j u
,

andHB
(N) is the interaction of the charges with the background, Ref. 4.

We now considerl(HC
(N)1HB

(N)) as a perturbation of the free HamiltonianH0
(N) , and we look

for eigenstates ofH0
(N) in the form of Slater determinants built up with single electron wa

functions. The easiest way to approach this problem consists in introducing the new variab

P85px2y/2, Q85py1x/2. ~2.4!

In terms ofP8 andQ8 the single electron Hamiltonian,H0 , can be written as

H05 1
2 ~Q821P82!. ~2.5!

The transformation~2.4! can be seen as a part of a canonical map from (x,y,px ,py) into
(Q,P,Q8,P8) where

P5py2x/2, Q5px1y/2. ~2.6!

These operators satisfy the following commutation relations:

@Q,P#5@Q8,P8#5 i , @Q,P8#5@Q8,P#5@Q,Q8#5@P,P8#50. ~2.7!

It is shown in Refs. 8 and 9 that a wave function in the (x,y) space is related to itsPP8 expression
by

C~x,y!5
eixy/2

2p E
2`

` E
2`

`

ei (xP81yP1PP8)C~P,P8! dP dP8, ~2.8!

which can be easily inverted:

C~P,P8!5
e2 iPP8

2p E
2`

` E
2`

`

e2 i (xP81yP1xy/2)C~x,y! dx dy. ~2.9!

The usefulness of thePP8 representation stems from the expression~2.5! of H0 . Indeed, in this
representation, the single electron Schro¨dinger equation admits eigenvectorsC(P,P8) of H0 of
the formC(P,P8)5 f (P8)h(P). Thus the ground state of~2.5! must have the formf 0(P8)h(P),
where

f 0~P8!5p21/4e2P82/2, ~2.10!
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while the functionh(P) is arbitrary, which manifests the degeneracy of the LLL, and should
fixed by the interaction. Withf 0 as in Eq.~2.10!, formula ~2.8! becomes

c~x,y!5
eixy/2

&p3/4E2`

`

eiyPe2(x1P)2/2h~P! dP, ~2.11!

while, using~2.9!, h(P) can be written in terms ofc(x,y) as

h~P!5
e2 iPP81P82/2

2p3/4 E
2`

` E
2`

`

e2 i (xP81yP1xy/2)C~x,y! dx dy . ~2.12!

Let us now define the so-called magnetic translation operatorsT(aW i) for a square lattice with
basisaW 15a(1,0), aW 25a(0,1), a252p,1 by

T1ªT~aW 1!5eiaQ, T2ªT~aW 2!5eiaP. ~2.13!

We see that, due to~2.7! and to the condition on the cell of the lattice,a252p,

@T~aW 1!,T~aW 2!#5@T~aW 1!,H0#5@T~aW 2!,H0#50. ~2.14!

The action of theT’s on a generic functionf (x,y)PL 2(R2) is the following:

f m,n~x,y!ªT1
mT2

nf ~x,y!5~21!mnei ~a/2!(my2nx) f ~x1ma,y1na!. ~2.15!

This formula shows that, if for instancef (x,y) is localized around the origin, thenf m,n(x,y) is
localized around the sitea(2m,2n) of the square lattice.

Now we have all the ingredients to construct the ground state ofH0
(N) mimicking the classical

procedure. We simply start from the single electron ground state ofH0 given in ~2.11!, c(x,y).
Then we construct a set of copiescm,n(x,y) of c as in ~2.15!, with m,nPZ. All these functions
still belong to the lowest Landau level for any choice of the functionh(P) due to~2.14!. N of
these wave functionscm,n(x,y) are finally used to construct a Slater determinant for the fin
system:

c (N)~rI1 ,rI2 , . . . ,rIN!5
1

AN!U cm1 ,n1
~rI1! cm1 ,n1

~rI2! ••• cm1 ,n1
~rIN!

cm2 ,n2
~rI1! cm2 ,n2

~rI2! ••• cm2 ,n2
~rIN!

. . ••• .

. . ••• .

. . ••• .

cmN ,nN
~rI1! cmN ,nN

~rI2! ••• cmN ,nN
~rIN!

U . ~2.16!

It is known, Ref. 4, that in order to have^c (N),c (N)&51 for all N we need to have

^cmi ,ni
cmj ,nj

&5dmi ,mj
dni ,nj

. ~2.17!

Let c(x,y) be as in~2.11! and cm,n(x,y)5T1
mT2

nc(x,y)5(21)mnei (a/2)(my2nx)c(x1ma,y
1na). After few computations and again using conditiona252p, we get

cm,n~x,y!5
ei ~xy/2! 1 iamy

&p3/4 E
2`

`

dPei (y1na)P2(x1ma1P)2/2h~P!. ~2.18!

We have discussed in Ref. 1 conditions onh(P) such that equality~2.17!, or its equivalent form
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S̃m,nª^c0,0,cm,n&5dm,0dn,0 , ;m,nPZ, ~2.19!

are satisfied. With the above-given definitions we find

S̃l 1 ,l 2
5E

2`

`

dp e2 i l 2aph~p2 l 1a!h~p!, ~2.20!

which restates the problem of the orthonormality of the wave functions in terms ofh(P). In
particular we see that, form5n50, this equation implies thatc00 is normalized inL 2(R2) if and
only if h(P) is normalized inL 2(R). This reflects the unitarity of the transformation~2.8!, which,
more in general, implies that any o.n. set inL 2(R) is mapped into an o.n. set inL 2(R2).

In the above-given construction we are considering a square lattice in which all the lattice
are occupied by an electron. We say that thefilling factor n is equal to 1. We have seen in Ref.
that, in order to construct an o.n. set of functions in the LLL corresponding to a fillingn5 1

2 ~only
half of the lattice sites are occupied!, we have to replace~2.19! and ~2.20! with the following
slightly weaker condition:

Sl 1 ,l 2
5S̃l 1,2l 2

5E
2`

`

dp e22i l 2aph~p2 l 1a!h~p!5E
2`

`

dp eil 1apĥ~p22l 2a!ĥ~p!5d l 1,0d l 2,0 ,

~2.21!

for all l 1 ,l 2PZ, whereĥ(p)5 (1/A2p) *Re2 ipxh(x)dx is the Fourier transform ofh(x). If h(x)
satisfies~2.21!, then, defining

hn5
1

Aa
E

2`

`

dp e2 inxah~x!, ~2.22!

it is easily checked that

(
nPZ

hnhn12l5d l ,0 . ~2.23!

The proof of this claim, contained in Ref. 1, is based on condition~2.21! and on the use of the
Poisson summation formula~PSF!, which we write here as

(
nPZ

einxc5
2p

ucu (
nPZ

dS x2n
2p

c D . ~2.24!

It is well known that the PSF does not always hold, and conditions for its validity are give
several papers and books, see Ref. 10, p. 298, and references therein, for instance. In this p
will always assume its validity, and from time to time we will check it explicitly.

Equation~2.23! shows how a functionh(x), satisfying the orthonormality condition~ONC!
~2.21!, can be used to generate, via~2.22!, a set of coefficients which are related to a MRA.6,7,11

This procedure can be extended in many ways which are not relevant here,1–3 and therefore will
not be considered in this paper. In Ref. 2 is also discussed in some detail the role of th
transform in our procedure, while a detailed summary of our results can be found in Ref. 1

Several problems arise at this point.

~1! Is there any simple way to construct functionsh(x) which solve the ONC~2.21!? Of course,
any o.n. basisCn,m(x,y) arising in the analysis of the FQHE could be used to construct s
a h(x), but the literature is rather poor of these examples.4,5

~2! Equation ~2.23! is not the only condition which should be satisfied by a set of comp
numbers in order to get a MRA ofL 2(R), see Refs. 6, 7, and 11 and the following definitio
What can be said about the other conditions?
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We will consider the first point above in Sec. III. Point~2! will be analyzed in Sec. IV.
We end this section by the following.
Definition: We call relevantany sequenceh5$hn ,nPZ% which satisfies the following prop

erties:

~r1! (
nPZ

hnhn12l5d l ,0 ;

~r2! hn5OS 1

11unu2D , n@1;

~r3! (
nPZ

hn5&;

~r4! H~v!5
1

&
(
nPZ

hne2 ivnÞ0, ;vPF2
p

2
,
p

2 G .
The role of relevant sequences in connection with MRA is explained in Refs. 6, 7, and 1

instance, and will not be discussed here.

III. THE SEED FUNCTION, PART ONE

In this section we will show how to find, under very general assumptions, sequences sat
condition~r1! by making use of the approach outlined in Sec. II. In particular we will show h
starting with a givenseed function hPL 2(R), we can obtain another functionH satisfying the
ONC ~2.21! and, as a consequence, a set of coefficients defined as in~2.22! which satisfies
condition ~r1!. As will appear evident, a crucial role is played by formulas~2.8! and ~2.12!.

Let h(P) be a generic square integrable function. Using formula~2.8! we get a function

Ch~x,y!5
eixy/2

&p3/4E2`

`

eiyPe2(x1P)2/2h~P! dP,

which belongs to the LLL independently of the choice ofh(P). UsingT1 andT2 we define other
functions, still belonging to the LLL, as in~2.15!:

Fh, lI~rI !5T1
l 1T2

2l 2Ch~x,y!5e2 i /2(X̃lIy2ỸlIx)Ch~rI2R̃I lI!, ~3.1!

where we use the notationlI5( l 1 ,l 2), and we have definedR̃I lI5(X̃lI ,ỸlI)52a( l 1,2l 2). Notice
that, since we are considering even powers ofT2 , we obtain a set of normalized wave function
of the LLL corresponding to a fillingn5 1

2 which are mutually orthogonal whenever the se
functionh(P) satisfies the ONC~2.21!,1 and, via~2.22! also a set of coefficientshn satisfying~r1!.
However, in general,h(P) does not satisfy~2.21!. We want to show here the way in which
function H(P) satisfying the ONC can be obtained starting from this originalh. The function
H(P) will be used to define some coefficients as shown in~2.22!.

First of all we use the setIF5$Fh, lI , lIPZ2% to construct another set of functions, still b
longing to the LLL, by considering the following superposition:

xnI ~rI !5 (
lIPZ2

f lIFh, lI1nI ~rI !, ~3.2!

wherenI 5(n1 ,n2). The setIx5$xnI ,nI PZ2% shares withIF the property of being closed under th
action of the magnetic translations:
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xnI ~rI !5T1
n1T2

n2x0I ~rI !. ~3.3!

For this reason we can considerx0I (rI ) as a function in the LLL obtained from aH(P), different
from the seed functionh, via the same transformation~2.8!, x0I (rI )5fH(rI ), so thatH(P) can be
obtained fromx0I (rI ) by considering the inverse transformation~2.12!. The coefficientsf lI will now
be fixed by requiring that the setIx is made of o.n. functions:

^xnI ,x0I &5dnI ,0I 5dn1,0dn2,0 , ~3.4!

for all integersn1 andn2 . Using ~3.2! and the following equality,

SlI1nI
(h) 5^Fh, lI1nI ,Fh,0I &5^Fh, lI ,Fh,2nI &, ~3.5!

which follows from the unitarity ofTi and from~3.3!, the orthonormality constraint~3.4! becomes

(
lI,sIPZ2

f lI f sISlI1nI 2sI
(h) 5dnI ,0I . ~3.6!

Incidentally we recall thatSlI
(h) can be rewritten in terms of the seed function as in~2.21!. We use

hereSlI
(h) instead of the simplestSlI to emphasize the role of the seed functionh. Introducing the

following functions:

F~pI !5 (
nPZ2

f nI e
ipI •nI , S(h)~pI !5 (

nPZ2
SnI

(h)eipI •nI , ~3.7!

Eq. ~3.6! can be rewritten asuF(pI )u2S(h)(pI )51, whose solution is

F~pI !5
eiw(pI )

AS(h)~pI !
, ~3.8!

w(pI ) being a generic real function. To simplify the treatment, we will putw(pI )50 from now on.
We will comment on this choice at the end of Sec. V. Notice that since the coefficientsSnI

(h) satisfy
the relationSnI

(h)5S2nI
(h) , thenS(h)(pI ) is a real function, which is surely non-negative. In order

avoid problems with possible divergences arising whenS(h)(pI )50, we will try to consider in the
following only those seed functions for whichS(h)(pI ) is strictly positive.

Once the functionF(pI ) is known, obtaining the coefficientsf sI is quite straightforward:

f sI5
1

~2p!2 E
0

2pE
0

2p

d2pI
e2 ipI •sI

AS(h)~pI !
. ~3.9!

It is not difficult to explicitly check this result: if we use~3.9! in the expansion~3.2!, we recover
^xnI ,x0I &5dnI ,0I , as expected. In the proof of this statement the PSF has to be used.

The coefficientsf sI and Eq.~3.2! produce a functionx0I (rI ) which, together with its magnetic
translatedxnI 5T1

n1T2
2n2x0I , gives rise to an o.n. set in the LLL, forn5 1

2. By making use of Eq.
~2.12! we obtain a square integrable functionH(P) which, as a consequence of this fact, satisfi
the ONC~2.21!:

H~P!5
e2 iPP81P82/2

2p3/4 (
lIPZ2

f lIE
2`

` E
2`

`

e2 i (xP81yP1xy/2)Fh, lI~x,y! dx dy.

After some minor computation and using the integral expression forFh, lI , we get
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H~P!5 (
lIPZ2

f lIh~P2al1!e22iaPl2. ~3.10!

In other words, we conclude that, given a seed functionh(P), the functionH(P) as defined
earlier, with the coefficientsf lI given in ~3.9!, satisfies the following ONC:

E
2`

`

H~P!H~P2al1!e22iaPl2 dP5E
2`

`

H~P!H~P1X̃lI!e
iPỸlI dP5d l 1,0d l 2,0 . ~3.11!

We can now useH(P) to find the coefficients of the MRA as in~2.22!:

Hn5
1

Aa
E

2`

`

dp e2 inxaH~x!5AaĤ~na!, ~3.12!

whereĤ(p) is the Fourier transform of the functionH(x). These coefficients, for what has bee
discussed in Sec. II, automatically satisfy condition~r1!:

(
nPZ

HnHn12l5d l ,0 , ~3.13!

simply as a consequence of~3.11!. Introducing the Fourier transform of the functionh(x), ĥ(p),
the integral in~3.12! can be written as

Hn5Aa (
lIPZ2

f lIĥ~~n12l 2!a!, ~3.14!

which is the expression of the coefficients in terms of the seed function. Making use of the
this expression can be further simplified. In fact, summing overl 1 , we get

Hn5Aa(
sPZ

csĥ~~n12s!a!, ~3.15!

where we have defined the new coefficientscs as follows:

cs5
1

2p E
0

2p e2 ips dp

AS(h)~0,p!
. ~3.16!

Remark: In the above-mentioned procedure we have made essentially no requireme
h(x). In particular, we have not assumed thath satisfies the ONC~2.21! from the very beginning,
but we have askedS(h)(0,p) to be nonzero in@0,2p@. This is the reason why we had to constru
starting fromh, a new functionH which does satisfythe ONC. It is interesting to remark tha
wheneverh is already a solution of condition~2.21!, H(x) coincides withh(x). In fact, under this
assumption,SlI

(h)5d lI,0I , so thatS(h)(pI )51. Thereforef lI5d lI,0I and, see~3.10!, H(P)5h(P). This
will happen, for instance, in Examples 1 and 2 in the following.

Before going on to consider the other requirements of the relevant sequences, we g
following summation rules, which can be deduced from the above-given definitions and fro
PSF. We have

(
r 1PZ

Sr 1 ,r 2

(h) 5a (
r 1PZ

ĥ~ar1!ĥ~~r 122r 2!a!, for all fixed r 2PZ, ~3.17!
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(
r 2PZ

Sr 1 ,r 2

(h) 5
a

2 (
r 2PZ

hS ar2

2 DhS a

2
(r 222r 1) D , for all fixed r 1PZ, ~3.18!

(
rIPZ2

SrI
(h)5a (

rIPZ2
ĥ~ar1!ĥ~~r 122r 2!a!5

a

2 (
rIPZ2

hS ar2

2 DhS a

2
~r 222r 1! D5S(h)~0I !,

~3.19!

(
sPZ

ucsu25
1

2p E
0

2p dp

uS(h)~0,p!u
, ~3.20!

(
sPZ

cs5
1

AS(h)~0I !
. ~3.21!

The proofs of all these equalities are trivial and will not be given here.

IV. THE SEED FUNCTION, PART TWO

In the following we move our attention to the conditions that a seed functionh(x) must satisfy
in order to produce, via formula~3.15!, a set of coefficients$Hn% which satisfies conditions
~r2!–~r4! of Sec. II. This will conclude the construction of our relevant sequences.

A. On the asymptotic behavior of Hn

We are interested here in finding conditions onh(x) which implies condition~r2!. Before
considering this problem, it may be interesting to observe that, due to definition~3.12!, there exists
an easy way to characterize the situation which produces a finite sequence of coefficienHn :
using the same notations as in Ref. 13 we say thatH5$Hn ,nPZ% belongs tof , the set of all the
complex sequences with only a finite number of nonzero entries, if and only ifĤ(p) is compactly
supported. Unfortunately, the analysis of the support ofĤ(p) could be a hard problem, so that th
result is of little practical use. More useful is to approach this problem within the framewo
convolutions of sequences. We refer to the Appendix for some results on this topic which w
used here. In fact, it is not hard to check that formula~3.15! can be rewritten in terms o
convolutions. Defining two sequences related toĥ(na) as

ĥk
(even)5ĥ~2ka!, ĥk

(odd)5ĥ~~2k11!a!, ~4.1!

which share withĥ the same asymptotic behavior, we can writeHn5Aa(sPZ csĥ((n12s)a) as
follows:

H2n5Aa~ c̄* ĥ(even)!n ,

H2n115Aa~ c̄* ĥ(odd)!n ,
~4.2!

where we have used thatc̄s5c2s and we have defined (a* b)n5(sPZ asbn2s .
We see from~4.2! thatHn has the same behavior for largen as (c̄* ĥ)n , whereĥn5ĥ(na). In

order to get information about the asymptotic behavior ofHn , we therefore have to consider th
behavior of the sequences$cn% and$ĥn%. In particular, the decay features ofĥn are given by the
explicit expression of the seed functionh(x) and of its Fourier transformĥ(p). The situation is
not so simple for the coefficientscn , whose definition~3.16! refers to the function

s~p!5
1

AS(h)~0,p!
,
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and, via ~~2.21!,~3.7!!, to the seed function itself. The asymptotic behavior of thecn can be
deduced using standard techniques in the Fourier series theory: whenevers(p) hasn21 continu-
ous derivatives and thenth derivative has a finite number of discontinuities in@0,2p@, then thecs

goes like 1/usun11. Of course, this hypothesis is satisfied wheneverS(h)(0,p) is n-times differen-
tiable and is strictly positive forpP@0,2p@ . Instead of finding conditions on the seed function
this hypothesis to be satisfied we mention here a class ofgoodexamples which will be discusse
in more detail in the next section, together with many other examples.

Let k be a natural number and letĥk(p) be defined as follows;

ĥk~p!5H 1

A~2k11!a
, pP@0,~2k11!a@

0 otherwise,

~4.3!

then the related coefficientsHn
(k) satisfy condition~r1! for all values ofk and decrease faster tha

any inverse power ofunu, so that they also satisfy condition~r2!. This follows from the compact
support ofĥk(p) and from theC` nature of the functions(p) generated byĥk(p).

B. About the condition (n«Z HnÄ&

Here we want to find conditions on the seed functionh(x) which ensures the validity o
condition~r3!. Again, we will make use several times of the PSF, which will be assumed to h

Under this assumption it is not difficult to prove that
Proposition:The set of coefficients~3.15! satisfies condition~r3! if and only if

(
nPZ

ĥ~na!5A2

a
S(h)~0I !. ~4.4!

Proof: From the definition~3.15! we see that~r3! is satisfied whenever(s,nPZcsĥ((n
12s)a)5A2/a. Introducing the integerm5n12s and using Eq.~3.21!, we get equality~4.4!.
The converse is straightforward.

Another result related to this is the following.
Corollary: Whenever the PSF can be applied, a necessary condition for~r3! to hold is that

(
n,mPZ

ĥ~na!@ ĥ~ma!22ĥ~~n22m!a!#50 ~4.5!

is satisfied. Furthermore, ifĥ(p) has a finite support inR, then the above-given condition read

(
nPN

~21!nĥ~na!50. ~4.6!

Proof: The first statement directly follows from the previous proposition and from Eq.~3.19!.
Formula~4.6! follows from ~4.5! and from a direct computation, assuming thatĥ(p) is equal to
zero outside a given interval@2N1a,N2a@ , for anyN1 ,N250,1,2,3, . . . . Under these condition
it is easy to check that

(
n,mPZ

ĥ~na!@ ĥ~ma!22ĥ~~n22m!a!#52U(
nPZ

~21!nĥ~na!U2

,

so that~4.6! follows.
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C. About the condition H„v…Å0, ;v«†À pÕ2 , pÕ2‡

Let H(v) be defined as in~r4!,

H~v!5
1

&
(
nPZ

Hne2 ivn, ~4.7!

with Hn as in ~3.15!. Then we can rewriteH(v) as follows:

H~v!5Aa

2
K~2v!H~2v!,

where

K~v!5 (
sPZ

cse
ivs, H~v!5 (

sPZ
ĥ~sa! ivs. ~4.8!

Due to the equalityc2s5 c̄s we can check thatK is a real function. Moreover, we can also che
that K(2v)Þ0 for all vP@2 p/2 , p/2# or, equivalently, thatK(n2p)Þ0 for all nP@0,2p#.
The proof of this statement follows again from the PSF. In particular we can check that

K~n2p!55
1

AS(h)~0,n1p!
if 0<n,p

1

AS(h)~0,n2p!
if p<n<2p,

~4.9!

and for this reasonH(v) is different from 0 in @2 p/2 , p/2# if and only if H(v)Þ0 in
@2 p/2 , p/2#, condition which is easier to verify since it is directly linked to the seed func
ĥ(p). In the next section we will discuss examples of seed functions satisfying this conditi

Remarks:~1! One can think that analogous results could be obtained in a completely diff
~and, maybe, more natural! way, that is by starting from a givenseed sequence$hn , nPZ%,
normalized inl 2(Z), and by defining a new sequenceHn5(sPZ cshn1s . The problem should be
now finding conditions oncs such that properties~r1!–~r4! are satisfied. It is not very hard t
check that, even if this approach does not seem to be very different from what we have don
quite difficult to obtain reasonable conditions oncs : what is missing, from our point of view, is
the possibility of mapping the problem into complete different settings, in which the require
(nPZ HnH̄n12l5d l ,0 can be considered simply as an orthonormality requirement between
functions in a certain subspace ofL 2(R2).

~2! It may be useful to remark also that the generic use of the sentencewhenever the PSF
holdsis related to the fact that several inequivalent hypotheses could be checked in order to
the validity of the PSF. For instance, multiplying formula~2.24! for a functionw(x) and integrat-
ing overR, we know that the equality holds for instance~1! if w belongs toS or ~2! if w belongs
to L 1(R) and is continuous and with bounded variation or~3! if w is continuous and if
supxPR(uw(x)u1uŵ(x)u)(11uxu)11e,`. Moreover, we will find in the next section other situ
tions in which none of these conditions are satisfied but, nevertheless, the validity of the PS
be explicitly proved. In conclusion, we find that the most economical way to handle with the
is simply to check its validity whenever it is needed.

V. EXAMPLES

This section is devoted to an analysis of several applications of the construction outlin
Secs. III and IV.

Example 1:Let us consider the following function, defined in the momentum space:
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ĥ~p!5H 1

Aa
, pP@0,a@

0 otherwise.

~5.1!

This is a normalized function inL 2(R), and the coefficientsSlI
(h) , defined as in~2.21!, are all zero

but when l 15 l 250: SlI
(h)5d lI,0I . ThereforeS(h)(pI )51 and, as a consequence of~3.16!, cs

5ds,0 . ThereforeHn5Aaĥ(na)5dn,0 , which clearly satisfies~r1!, ~r2!, and ~r4! but does not
satisfy condition~r3!. Furthermore, it is easy to check that all the sum rules given in Sec. III
satisfied. For instance, it is straightforward to check explicitly Eq.~3.21!. This shows that the PSF
can be applied also for a functions(p)51, which does not fit any of the hypotheses given befo

Example 2:Let us consider the following function, defined again in the momentum spa

ĥ~p!5H 1

A2a
, pP@0,2a@

0 otherwise.

~5.2!

As before we findSlI
(h)5d lI,0I , S(h)(pI )51 andcs5ds,0 . Therefore,Hn5Aaĥ(na)5 (1/&) (dn,0

1dn,1). We have therefore obtained the coefficients of the Haar MRA: all the properties~r1!–~r4!
are obviously satisfied, as well as all the sum rules given before.

We want to remark that in both these examples the ONC~2.21! was already satisfied by th
seed function itself, and for this reason it is not a surprise that the new functionH in ~3.10!
coincides withh.

Example 3:Let us consider

h~x!5H 1

Ada
, pP@0,da@

0 otherwise,

~5.3!

whered51,2,3,... . This time the seed function has compact support in the position space, s
ĥ(p) decayes rather slowly.S(h)(0,p) is, in general, different from 1 but is independent ofp, so
that cs is again proportional tods,0 . Moreover an explicit computation shows thatĥ(na) is
different from zero only ifn50, so thatHn turns out to be nonzero only ifn50. Therefore, even
if the seed function is quite different from that of Example 1, the resulting coefficients essen
coincide with those obtained there. The sum rules again are verified.

Example 4:Let us define now

ĥ~p!5H 1

A3a
, pP@0,3a@

0 otherwise.

~5.4!

We get easilySrI
(h)5d r 1,0@d r 2,01

1
3(d r 2,11d r 2 ,21)#, which implies thatS(h)(pI )511 2

3 cos(p2). We
see thatS(h)(0,p) is always positive in@0,2p# and infinitely differentiable. We can deduce, ther
fore, that thecs’s decay faster than any inverse power ofusu. Sinceĥ(p) is different from zero
only in the finite set@0,3a@ we can use the result of the Proposition given in the Appen
statement~1!, to conclude that the sequenceHn in ~3.15! satisfies conditions~r1! and ~r2!. How-
ever, since~4.4! is not verified, we do not expect condition~r3! to hold. All the sum rules can be
explicitly checked.

Example 5:Let h(x)5 (1/p1/4) e2x2/2. Its Fourier transform isĥ(p)5 (1/p1/4) e2p2/2. Using

formula ~2.21! we find SrI
(h)5e2 (p/2)(r 1

2
14r 2

2), which implies that S(h)(0,p)
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5( r 1PZe2 (p/2) r 1
2
( r 2PZe22pr 2

2
eipr 2. The sum inr 1 can be performed numerically and it give

( r 1PZe2 (p/2) r 1
2
51.4195. Using now the usual techniques outlined earlier and in the Appendi

can easily deduce that, not only condition~r1! but also conditions~r2! and~r4! are automatically
satisfied, the reason being the very fast decay properties of bothcs andĥ. However, condition~r3!
is not verified since equality~4.4! does not hold. On the contrary, all the sum rules deduced in
III are verified.

Let us work out this example in more detail. Since the explicit computation ofS(h)(0,p) is
difficult, we consider here a perturbative computation. We will show that already a very c
approximation gives interesting results, and that a slightly better approximation makes the
almost exact. The main difficulty consists in the computation ofcs in ~3.16!. Using the expansion

1

A11x
512

1

2
x1

3

8
x21¯ ,

and observing that( r 251
` e22pr 2

2
.0.001 86, we can proced as follows:

1

AS(h)~0,p!
5

1

A1.4195

1

A112( r 251
` e22pr 2

2
cos~pr2!

.
1

A1.4195
S 12 (

r 251

`

e22pr 2
2
cos~pr2!D .

1

A1.4195

considering the crudest approximation~the rest is only 2/1000 of the main contribution!!. In this
way we getcs. ds,0 /A1.4195, and thereforeHn. (21/4/A1.4195)e2pn2

. It is clear that both~r2!
and ~r4! are satisfied. As for the~r1!, a numerical computation shows that(nPZ Hn

2.0.999 992,
(nPZ HnHn62.0.001 86, and(nPZHnHn62l is even smaller foru l u larger than 1. We see that thi
is already a good approximation of~2.23!. Better results can be obtained simply considering
next contribution in the previous expansion, which means considering also the term withr 251 in
the above-given sum. In this case we getcs. (1/A1.4195) (ds,02

1
2(ds,11ds,21)), and

Hn.
21/4

A1.4195
Fe2pn2

2
1

2
e22p~e2p(n12)21e2p(n22)2!G .

We find now that(nPZ Hn
2.0.999 992, while(nPZ HnHn62.1028, which is much smaller than

before. As for~r3!, a numerical computation gives(nPZHn.1.0844Þ&, as expected. Again, al
the sum rules are satisfied.

Example 6:This example generalizes Example 2, in the sense that we still requireĥ(p) to be
zero outside@0,2a@ but we do not fix the analytic expression ofĥ inside @0,2a@ . Without going
into all the details we just want to remark that also nowcs is proportional tods,0 , so thatHn is
proportional toĥ(na). More in detail we find

Hn5
1

Auĥ~0!u21uĥ~a!u2
~ ĥ~0!dn,01ĥ~a!dn,1!.

It is clear that conditions~r1!, ~r2!, and~r4! are automatically satisfied, while~r3! holds whenever
ĥ(p) is such that
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ĥ~0!1ĥ~a!

Auĥ~0!u21uĥ~a!u2

5&.

Example 7:This example can be considered as a generalization of Examples 1 and 4 an
already mentioned in Sec. IV. Letk be a fixed natural:k50,1,2,..., and let

ĥk~p!5H 1

A~2k11!a
, pP@0,~2k11!a@

0 otherwise.

~5.5!

Obviously,k50 returns Example 1, whilek51 gives Example 4. Computing the integral in~2.21!
we find

S(hk)~0,p!511~12dk,0!
2

2k11 (
j 50

k21

~2 j 11!cos~p~k2 j !!,

which turns out to be strictly positive for all values ofk. This claim was analytically and numer
cally checked for many values ofk. For k increasing it is possible to see that the functi
S(hk)(0,p) approaches more and more zero, but, at least fork<100, it is always strictly positive.
We guess that this same positivity also holds fork bigger than 100, but an analytical control
quite difficult in this case and it is not very relevant here. Incidentally, this is the reason wh
seed functionĥk(p) is defined on, say, odd intervals. For even ones, in fact, (pP@0,2ka@), it is
easy to check thatS(hk)(0,p) has a zero inside@0,2p@ , and the integral definingcs may diverge.

It is now clear that, for any fixedk, the function 1/S(hk)(0,p) is in C`, so thatcs decays faster
than any inverse power ofusu. Now, sinceĥ(p) is different from zero only in a finite interval, i
is also clear that for the asymptotic behavior of the coefficientsHn5Aa(sPZ csĥ((n12s)a) we
can apply the Proposition given in the Appendix, statement~1!, so that we conclude thatHn

Ps, wheres is defined in the Appendix. Condition~r3! does not hold since Eq.~4.4! is not
verified.

Example 8:Let us fix l PN and define

hl~x!50HA 2

la
, xPF0,

la

2 F
0 otherwise.

~5.6!

This class of seed functions is interesting because it produces, after the usual procedure,
coefficientscs which are always zero but ifs50. Therefore we obtain

Hn5A a

S(hl )~0I !
ĥl~na!.

Wheneverl is even the situation is not very interesting, since we getHn}dn,0 . On the contrary, if
l is odd, l 52k11, we find that

ĥ2k11~na!55
A2k11

2a
, n50

0, n562,64,66, . . .

A 2

inaApa~2k11!
, n561,63,65, . . . .
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We therefore see that, even if~r1! is satisfied,~r2! is not. Also~r3! does not hold since Eq.~4.4!
is not verified.

Example 9:As a final example here we consider the following seed function

ĥ~p!5
2

a~11p2!
,

which produces the following coefficients

SrI
(h)5

e2ur 1ua

112pr 2
2

and the following functionS(h)(pI ):

S(h)~pI !5
11e2a

12e2a
w~p2! with w~p2!5 (

r 2PZ

eip2r 2

112pr 2
2 .

It is an easy estimate to check thatw(p2)Þ0 in @0,2p@ . However, we cannot use the sam
arguments as for Example 5 to conclude thatw(p2) belongs toC`, the reason being that th
Fourier coefficients (1/112pr 2

2) of w do not decay very fast. For this reason it is not difficult
understand that condition~r2! is not satisfied whereas conditions~r1! and ~r3! hold. In particular
this last condition can be controlled by checking directly Eq.~4.4!.

Let us now go back to Eq.~3.8!, where the phasew(pI ) was chosen to be equal to zero. W
want to show here that this is really a very special choice. In fact, the following two sim
examples point out that a different choice ofw(pI ) produces coefficientsHn which can be signifi-
cantly different from the ones we get ifw(pI )50.

First we remark that the expression forcs must be a little bit modified. Instead of~3.16! we
have

cs5
1

2p E
0

2p e2 ips1 iw(0,p) dp

AS(h)~0,p!
. ~5.7!

A first application of this formula consists in choosingw(0,p)5pK0 , K0 being a fixed integer. If
we consider, for instance, Example 2, we see that the only difference, in this case is that,
of havingcs5ds,0 , we find cs5ds,K0

, so thatHn5(1/&) (dn,K0
1dn,K011). More interesting is

the situation ifw is not linear. Let us consider herew(0,p)5gp2, gPR. Restricting ourselves
again to Example 2, for whichS(h)(0I )51, we can still compute analytically the coefficientscs ,
which turn out to be

cs5
21

4p
A p

2 ig
e2 ~ is2/4gS FS i ~4pg2s!

2A2 ig
D 1FS is

2A2 ig
D D ,

whereF is the erf function.14 Using its well-known asymptotic behavior, we find thatcs decays as
usu21, which is a very slow behavior when compared with that obtained forw50.

VI. CONCLUSIONS

We have shown how to use the relation between the FQHE and the MRA recently estab
by the author in order to construct a set of coefficients which produce a MRA ofL 2(R). The
examples given show that while it is essentially automatic to obtain a sequence satisying co
~r1!, more care must be used to find a seed function which produces a relevant sequence.
tions on the seed function for the set$Hn ,nPZ% to be relevant are discussed.
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APPENDIX: CONVOLUTIONS OF SEQUENCES

In this appendix we prove some results concerning the asymptotic behavior of convoluti
view of applications. We wish to stress that these results are given here since, though bein
reasonable, they were not found by the author in the existing literature.

We use here the same notation as in Ref. 13:f , s, andl p are well-known spaces of sequence
the first containing all thefinite sequences, that is, those sequences which are zero outside
finite set of indexes. The other sets are defined as follows:

s5$a: lim
unu,`

unupan50, ;pPN%, l p5H a:iaip5S (
pPZ

uanupD 1/p

,`J . ~A1!

Given two sequencesa,b we define a third sequencec5a* b as cn5(sPZ asbn2s

5(sPZ an2sbs . We have the following.
Proposition:Let a,b, andc be as above. Then the following statements hold:

~1! if aP f then the asymptotic behavior ofc is the same of that ofb;
~2! if aP l 1 andbP l p thencP l p , for all 1<p,`;
~3! if a,bPs thencPs.

Proof:
~1! This is clear becausean50 but for a finite number of indexesn. Of course the same resu

can be obtained simply by exchanging the roles ofa andb.
~2! The proof of this statement follows from well-known properties of the convolutions

functions. We start defining two functions, defined inR, as follows:

a~x!5uasu, xP@s,s11@ , b~x!5ubsu, xP@s,s11@ , sPZ.

It is clear thata(x)PL 1(R), while b(x)PL p(R). Then it is well known thata* bPL p(R),
where (a* b)(x)5*Ra(y)b(x2y)dy. In order to conclude thatcP l p we consider that

c~x!5E
R
a~y!b~x2y!dy5 (

sPZ
E

s

s11

a~y!b~x2y!dy5 (
sPZ

uasu E
s

s11

b~x2y!dy.

Using now the definition ofb(x) it is easy to check that, for all integersl and for 0<a,1, we
have

c~ l 1a!5 (
sPZ

uasu~~12a!ubl 2s21u1aubl 2su!5~12a!dl 211adl , ~A2!

where we have defineddl5(sPZuasbl 2su>0, for all l PZ. The conclusion now follows from the
fact that c(x) belongs toL p(R) and from the inequality (g11g21¯1gn)p>g1

p1g2
p1¯

1gn
p , which holds wheneverg j>0 and for allp>1. In fact we have

`.E
R
uc~x!updx5(

l PZ
E

l

l 11

uc~x!updx5(
l PZ

E
0

1

uc~ l 1x!updx5(
l PZ

E
0

1

~~12a!dl 211adl !
pda

>
2

p11 (
l PZ

dl
p>

2

p11 (
l PZ

cl
p ,
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which proves thatcP l p .
~3! From the definitioncn5(sPZ asbn2s we easily get the following equality between fun

tions: C(p)5A(p)B(p), where A(p)5(sPZase
isp, B(p)5(sPZbse

isp, and C(p)
5(sPZcse

isp. The coefficientscl can now be found simply by

cl5
1

2p E
0

2p

C~p!e2 ipl dp5
1

2p E
0

2p

A~p!B~p!e2 ipl dp, ~A3!

which is the starting point of our asymptotic analysis. In fact, due to the fact thata, bPs, the
functionsA(p) andB(p) belong toC`, and so their product does. This implies, using well-kno
fact about the Fourier series, that the coefficientscl in ~A3! decay faster than every inverse pow
of u l u, so thatcPs.

Remark: It is clear that statement~2! is not enough to ensure validity of~r2!, which is
satisfied, on the contrary, ifa andb are both ins or if, e.g.,a is in f andb decays like 1/n2.
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Continuum quantum systems as limits of discrete
quantum systems. IV. Affine canonical transforms

Laurence Barkera)

Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey
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Affine canonical transforms, complex-order Fourier transforms, and their associ-
ated coherent states appear in two scenarios: finite-discrete and continuum. We
examine the relationship between the two scenarios, making systematic use of
inductive limits, which were developed in the preceding articles in this
series. ©2003 American Institute of Physics.@DOI: 10.1063/1.1557331#

I. INTRODUCTION

Inductive limits provide a clear and precise means whereby objects associated with
tinuum system can be realized as limits of objects associated with a sequence of discrete s
Three preceding papers1–3 discuss inductive limits of vectors and operators. Another work4 con-
cerns inductive limits of representations. In the present article, we illustrate the approa
applying it to a continuum scenario and a discrete scenario that lie in the core of quantum p

Our main results are as follows. Theorem 6.1 realizes Glauber coherent states as in
limits of spin coherent states. A practical version of the result goes back to Radcliffe5 and Arecchi
et al.6 Theorem 5.3 realizes the group of continuum motion canonical transforms as an ind
limit of the group of discrete motion canonical transforms. A practical version was initiated in
6 and considerably developed by Atakishiyevet al.7,8 Theorem 5.1 and Corollary 5.2 realiz
single-parameter groups of continuum affine canonical transforms as inductive limits of s
parameter groups of discrete affine canonical transforms. Practical versions can be found
brevet al.9 Theorem 6.2 realizes continuum complex-order Fourier transforms as inductive
of discrete complex-order Fourier transforms. From a practical point of view, that can be se
a mild generalization of the fractional Fourier transforms in Ref. 10. In Ref. 4, Corollary 5.2
Theorem 5.3 are expressed explicitly as inductive limits of representations but, in the p
article, they are expressed simply as inductive limits of operators.

In using the adjective ‘‘practical,’’ rather than ‘‘heuristic,’’ we have erred towards unders
ment rather than overstatement. There is a vast body of literature on discrete to continuum
spondences that seem to be potential applications of inductive limits; see Sec. VII for a sam
further citations. Sometimes, in those works, the practical versions of the results have inv
expressions of the formO5 limnOn or On→O that do not conform to any evident definition o
limit. Sometimes, comparatively weak results have been stated and proved, yet with an app
suggested meaning that goes beyond the literal interpretation; for instance, parallel discus
continuum and discrete scenarios, the latter implicitly understood to be an approximation
former. Actually, our use of inductive limits does have a practical intention, as we shall expla
Sec. VII.

Let us indicate the nature of the general kind of problem that concerns us. The limit equ
in question are of the formO5 limnOn , whereO is an object~say, a vector, an operator or
representation! associated with Hilbert spaceL, and eachOn is an object associated with a Hilbe
spaceLn . In this article,L5L2(R) and Ln is of finite dimensionn. The problem is to selec
appropriate definitions so as to make such limit equations potentially provable or refutable;
least, true or false. One approach is to embed the spacesLn in the spaceL, and to replace

a!Electronic mail: barker@fen.bilkent.edu.tr
15350022-2488/2003/44(4)/1535/19/$20.00 © 2003 American Institute of Physics
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differential equations with corresponding difference equations. In general form, this is, of co
a numerical approximation technique that has been in widespread use ever since the emerg
statistical analysis in the 18th century. We must be very selective with our citations, since
wise there would be no end to them. The convergence of eigenvectors examined in Ref. 11
applicable to the operators we consider below; this is significant, because convergence of s
measures may be an interesting avenue for research into discrete to continuum limits of re
tations~see Ref. 3, Sec. V!. In Ref. 12, groups acting onLn are embedded in groups acting onL,
and the discrete to continuum correspondence is characterized in terms of module ind
Another approach, proposed by Parthasarathy13,14and Lindsay–Parthasarathy,15 is to collect all the
spacesLn together in a Fock space where limits can be examined without mentioning the spaL.
Arguably, our approach is the most flexible of the three, since the definitions of inductive lim
vectors and operators do not require any constraints on the Hilbert spacesL andLn ~except for
separability!. However, it seems very probable that the particular limit equations in the pre
article can also be realized through the other two approaches.

Although some of the material below is in the nature of a review, this is a side-effect of a
to reformulate known results before presenting our own. We must also point out that alth
some of our limit formulas are unitary versions of accepted heuristic limits of Hermitian opera
the assertions that the formulas now express are new, since the kinds of limit involved h
previously been supplied with definitions.

II. CONTINUUM AFFINE CANONICAL TRANSFORMS

We shall introduce a six-dimensional connected real Lie group HSA5HSA(2,R) and an
action of HSA as unitary operators on the continuum state spaceL2(R). As we shall see in the
next section, HSA is a central extension of the special affine group SA on the plane; SA is a
Schorödinger group with one space dimension and one time dimension. The group HSA, a
representation onL2(R), are discussed by Dobrevet al.,9 and Neiderer;16 for some other
sources—oriented more towards the phase space picture—see Sec. III. Our main target,
section, is to obtain explicit matrix representations for some generators of the Lie algebra of
We shall also examine a subgroup HM of HSA. The group HM is a central extension o
Euclidian motion group.

The real Lie algebra hsa5hsa(2,R) has a basis$ iB,iC,iD ,iP,iQ,i I %. The notation indicates
thatB, C, D, P, Q, I are elements of the complexification. The commutation relations are de
to be such thatI is central,@Q,P#5 i I and, in the universal enveloping algebra,

B5 1
2 P2, C5 1

2 Q2, D5 1
2 ~PQ1QP!.

It is not hard to show that the commutation relations involvingB, C, D are

@B,P#505@C,Q#, @C,P#5 iQ52@D,Q#, @D,P#5 iP52@B,Q#,
~1!

@B,C#52 iD , @B,D#522iB, @C,D#52iC.

For instance,

@B,C#5 1
4 ~P2Q22PQPQ1PQPQ2PQ2P1PQ2P2QPQP1QPQP2Q2P2!

5 1
4 ~P@P,Q#Q1PQ@P,Q#1@P,Q#QP1Q@P,Q#P!52 iD .

Let B̂, Ĉ, D̂, P̂, Q̂, Î be the Hermitian operators onL2(R) such thatÎ is the identity operator
and

~ P̂f!~q!52 i
d

dq
f~q!, ~Q̂f!~q!5qf~q!, ~2!
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B̂5 1
2P̂

2, Ĉ5 1
2Q̂

2, D̂5 1
2 ~ P̂Q̂1Q̂P̂!, ~3!

wheref belongs to the Schwartz spaceS~R!. The operatorsP̂ andQ̂ are sometimes understood
correspond to momentum and position, respectively~or frequency and time, in signal processin
or frequency and position, in optics!.

Let s be the anti-Hermitian representation of hsa onL2(R) such that the elementsB, C, D,
P, Q, I act asB̂, Ĉ, D̂, P̂, Q̂, Î , respectively. We introduce a real Lie group HSA5HSA~2,R! and
a faithful unitary representationr of HSA such that HSA has associated Lie algebra hsa and
that r has differential representations. The elements of the groupr~HSA! are calledcontinuum
affine canonical transforms. Of course, there is no essential difference between the abstrac
group HSA and the group of unitary operatorsr~HSA!. Each is isomorphic to the other via th
isomorphismr. Nevertheless, we do sometimes find it useful to distinguish between the
groups. Given realb, g, d, m, n, k, we write

Ĥ~b,g,d,m,n,k!5bB̂1gĈ1dD̂1m P̂1nQ̂1k Î , ~4!

Û~b,g,d,m,n,k!5exp~2 iĤ ~b,g,d,m,n,k!!. ~5!

The continuum affine canonical transforms are the composites of operators that have th
Û(b, . . . ,k).

Warning: some affine canonical transforms do not have the exponential formÛ(b, . . . ,k).
We shall not be making use of this negative result, but we mention that it can be prov
considering the subquotient SL~2,R! of HSA, and using Eq.~19!.

As an element of the Lie algebra hsa, we define

N5B1C2I /2 .

The corresponding Hermitian operator onL2(R) is

N̂5s~N!5B̂1Ĉ1 Î /2.

Let hm5hm~2,R! be the subalgebra of hsa with basis$ i I ,iN,iP,iQ% and let HM5HM~2,R! be the
subgroup of HSA with associated Lie algebra hm. We call HM the group ofHeisenberg motions,
and we call the elements of the groupr~HM! the continuum motion canonical transforms.
Again, there is no essential difference between the two isomorphic groups HM andr~HM!. The
commutation relations for HM are given by Eq.~1! together with

@N,I #50, @N,P#5 iQ, @N,Q#52 iP. ~6!

The continuum~and discrete! motion canonical transforms will be of particular importance to
and it is worth introducing some special notation for them. Givenk,l,m,nPR, we define

Ê~k,l,m,n!5exp~2 i ~k Î 1lN̂1m P̂1nQ̂!!. ~7!

By passing to the quotient group HM/Z(HM) >EM ~see Sec. III!, it can easily be shown that th
operators having the formÊ(k,l,m,n) are closed under composition. In other words, the c
tinuum motion canonical transforms are precisely the operators having the formÊ(k,l,m,n).

We shall give some explicit matrix equations for the infinitesmal generatorsB̂, Ĉ, D̂, P̂, Q̂,
Î of the continuum affine canonical transforms. For that, we need to specify a complete orth
mal set. Recall that, forsPN, thes-th Hermite polynomial Hs and thes-th Hermite function
hs are the functionsR→C given by
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~21!s exp~q2/2!
ds

dqs exp~2q2!5Hs~q!5As!2sAp exp~q2/2!hs~q!. ~8!

Switching to Dirac notation, we writeus&5hs . Note that the zeroth Hermite functionu0&5h0 is
the Gaussian function

h0~q!5p21/4exp~2q2/2!. ~9!

Recall that$us&:sPN% is a complete orthonormal set inL2(R). Also recall that the annihilation
operatorÂ5(Q̂1 i P̂)/& and its Hermitian conjugate, the creation operatorÂ†5(Q̂2 i P̂)/&, act
by

Âus&5Asus21&, Â†us&5As11us11&. ~10!

By direct calculation using Eq.~10!, we obtain

B̂ us&5
21

4
As~s21!us22&1

2s11

4
us&1

21

4
A~s11!~s12! us12&, ~11!

Ĉ us&5
1

4
As~s21! us22&1

2s11

4
us&1

1

4
A~s11!~s12! us12&, ~12!

D̂ us&5
2 i

2
As~s21! us22&1

i

2
A~s11!~s12! us12&, ~13!

P̂ us&52 iAs

2
us21&1 iAs11

2
us11&, ~14!

Q̂ us&5As

2
us21&1As11

2
us11&, ~15!

Î us&5us&, ~16!

N̂ us&5s us&. ~17!

In Sec. IV, we shall find discrete analogues of these seven matrix equations.
Let us end this section with an example. Recall that the continuum Fourier transform

unitary operatorF̂ on L2(R) such thatF̂ us&5 i s us&. More generally, after Namias,17 the con-
tinuum fractional Fourier transform of ordertPR is the unitary operatorF̂ t on L2(R) such that
F̂ t us&5exp(2pist) us&. In other words,

F̂ t5exp~2p i tN̂ !5e2p i texp~2p i ~B̂1Ĉ!!. ~18!

III. THE CONTINUUM PHASE SPACE PICTURE

This section has two purposes. One of them is to fulfill the promise, made above, to e
how the groups HSA and HM are central extensions of the groups SA and EM, which act o
real plane. The other purpose is to clarify the relationship between the Hermitian operato
their corresponding unitary operators. In Refs. 6–9 and 12, and many other works, limi
described mainly in terms of Hermitian operators. But inductive limits are defined for un
operators; they are not defined for unbounded Hermitian operators. So we do need to be
move freely from Hermitian operators to unitary operators, and in reverse.
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The phase space picture provides much insight into these matters. There is a vast litera
phase space, and much attention has been paid to affine canonical transforms, especially
linear canonical transforms. See, for instance work by Folland,18 Hillery et al.,19 Littlejohn,20

Ozorio de Almeida;21 we also mention two collections of papers edited by Forbeset al.22 ~on
applications to optics! and Mecklenbra¨uker–Hlawatsch23 ~on applications to signal processing!.
The relevant material, though, is not easy to extract from the literature. Let us give a
self-contained account of it.

Thephase space plane, denotedP, is defined to be a copy ofR2. We regardP as a Euclidean
plane equipped with a fixed coordinate system; the vectors are written as coordinate vectorsp,q)
wherep andq are formal variables.

Recall that the group of special linear transforms of the real plane, denoted SL5SL~2,R!, has
Lie algebra sl5sl~2,R! with basis$ iB̄,iC̄,iD̄ % where

B̄5S 0 2 i

0 0 D , C̄5S 0 0

i 0D , D̄5S i 0

0 2 i D .

Thus, SL is generated by the elements having the form

S a b

c dD 5exp~2 i ~bB̄1gC̄1dD̄ !!5expS d 2b

g 2d D ,

whereb,g,dPR. Diagonalizing, a straightforward calculation shows that

S a b

c dD 5S cosa1da21 sina 2ba21 sina

ga21 sina cosa2da21 sina D , ~19!

wherea is the real or imaginary number such thata25bg2d2 and, for imaginarya, we under-
stand that cosa5coshia and sina5i sinhia. Note that, for given reala, b, c, d satisfyingad
2bc51, Eq.~19! has a solution in realsb, g, d if and only if a1d>22. The natural action of SL
on the real plane is given by

exp~2 i ~bB̄1gC̄1dD̄ !!S x
yD5S a b

c dD S x
yD5S ax1by

cx1dyD . ~20!

The Euclidean special affine group SA5SA~2,R! ~which coincides with the Schro¨dinger
group with one space and one time dimension! is generated by SL and the plane translates. T
associated Lie algebra sa5sa~2,R! has basis$ iB̄,iC̄,iD̄ ,i P̄,iQ̄%, where

exp~2 i ~m P̄1nQ̄!!S x
yD5S x1m

y1n D . ~21!

Evidently,@ P̄,Q̄#50. It is easy to check that the 14 other commutation relations are as in Eq~1!.
We allow SA to act onP via the identification (p,q)5(2y,x). Thus

exp~2 i ~bB̄1gC̄1dD̄ !!S p
qD5S d 2c

b a D S p
qD ,

exp~2 i ~m P̄1nQ̄!!S p
qD5S p2n

q1m D .

By comparing commutation relations, we see that there is a Lie algebra epimorphism hs→sa
mapping B, C, D, P, Q, I to B̄, C̄, D̄, P̄, Q̄, 0, respectively. The group epimorphis
HSA→SA has kernel
                                                                                                                



us

e the

the

SL on
be

ry
p to

of the
special
edom
iscrete
l as the
group
eedom

rators
k
the

in

1540 J. Math. Phys., Vol. 44, No. 4, April 2003 Laurence Barker

                    
Ker~HSA→SA!5Z~HSA!5$exp~2 i tpI !:tPR% .

We allow HSA to act onP by inflation from SA. Thus

exp~2 i ~bB1gC1dD !!S p
qD5S d 2c

b a D S p
qD , ~22!

exp~2 i ~mP1nQ1kI !!S p
qD5S p2n

q1m D . ~23!

The state spaceL2(R) and the phase space planeP are related to each other via the continuo
function

v:L2~R!{c°v@c#PLR
2~P!,

v@f#~p,q!5
1

p E
2`

`

dt f~q1t ! f~q2t ! exp~2ipt !.

The functionv is essentially a specialization of the famous Weyl–Wigner correspondence; se
references at the beginning of this section, especially Refs. 19 and 18. GivengPHSA and c
PL2(R), then

v@r~g!c#~g~p,q!!5v@c#~p,q!.

In other words,v is covariant with the actions of HSA on the signal spaceL2(R) and on the phase
spaceP. The result is proved in, for instance, Ref. 20~Equations 6.18, 6.23, 6.27!, and Ref. 18
~Proposition 2.13, Theorem 2.15!. The rationale for our terminology should now be apparent:
‘‘Heisenberg’’ groups HSA and HM are central extensions~or quantized versions! of the groups
SA and EM.

The special linear canonical transforms are usually understood to be unitary actions of
the state spaceL2(R). For an element of SL as in Eq.~19!, the action on state space is taken to
the unitary operator

l~a,b,c,d!Û~b,g,d,0,0,0!5l~a,b,c,d!exp~2 i ~bB̂1gĈ1dD̂ !!,

wherel(a,b,c,d) is a phase. The phasesl(a,b,c,d) cannot be chosen so as to yield a unita
representation of SL. True enough, they can be chosen so as to preserve composition u6
signs, thus determining a unitary representation of the metaplectic group Mp~2,R!, which is the
double cover of SL. But that observation has limited practical use, since the description
metaplectic group is very complicated; see Ref. 18, Chap. 4. For practical purposes, the
linear canonical transforms comprise a four-dimensional group, one of the degrees of fre
being the multiplications by phases. In fact, to establish a clear correspondence with the d
scenario, we have no choice but to include the momentum and position translates, as wel
multiplications by phases. Thus, even if one is primarily concerned with the three-parameter
SL, the connection with the discrete scenario demands that we consider all six degrees of fr
in the group HSA.

IV. DISCRETE AFFINE CANONICAL TRANSFORMS

We shall introduce some discrete affine canonical transforms whose infinitesmal gene
satisfy matrix equations analogous to Eqs.~11!–~17!. First, we need to look at the Kravchu
functions, which are discrete analogs of the Hermite functions. We closely follow
representation-theoretic discussion of the Kravchuk functions in Ref. 24~Chap. 6! and, to a lesser
extent, Ref. 25~Chap. 8!. For parallel discussions of the Kravchuk and Hermite functions
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connection with discrete and continuum oscillator algebras, see Refs. 10 and 26. An alte
approach to the comparison of Kravchuk and Hermite functions, making systematic use o
ation and annihilation operators, can be found in Ref. 27.

All lemmas that we state without proof can be obtained from the earlier lemmas togethe
routine calculations as in Ref. 24. There is only one argument that is not straightforward, na
the proof of Lemma 4.5. For this, Ref. 24 invokes the theory of hypergeometric functions, an
requires some delicate analysis, the Kravchuk functions being specializations of hypergeo
functions at singular points. Our more direct argument is purely algebraic. The results p
below concerning Kravchuk functions and Kravchuk polynomials are summarized in Append

Let n be a positive integer. Writen52,11. Let @n# denote the set ofk such that,1k and
,2k are natural numbers. Thus,@n# consists ofn integers orn halves of odd integers. LetLn be
the n-dimensional Hilbert space of functions@n#→C, the inner product being

^cux&5 (
k52,

,

c~k!x~k!,

wherec,xPLn , and the bar denotes complex conjugation. Letuk&n
Z denote the vector inLn such

that, givencPLn , thenc(k)5^cuk&n
Z . The set$uk&n

Z :kP@n#% is an orthonormal basis forLn .
Via the equation

uk&n
Z 5

u,1kv,2k

A~,1k!! ~,2k!!
~24!

we identify Ln with the space of homogenous polynomials of degree 2, in variablesu andv.
Later, we shall be realizingLn as a representation space of the Lie group U~2!. For the

following three preliminary results, though, we may as well consider, more generally, the
group GL~2,C!. We define a group representationrn of GL~2,C! on Ln such that

~rn~g! F !~u,v !5F~au1cv,bu1dv !, g5S a b

c dD . ~25!

Lemma 4.1: Let j,kP@n#. Put max5max(0,j 1k) and min5min(,1j,,1k). Then, with re-
spect to the orthonormal basis$uk&n

Z :kP@n#%, the ( j ,k) entry of the matrix representingrn(g) is

n
Z^ j urn~g!uk&n

Z 5A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (
r 5max

min S ,1k
r D S ,2k

,1 j 2r Darb,1 j 2rc,1k2rdr 2 j 2k.

Henceforth, we work directly from Lemma 4.1, and we can forget about the characteriz
of Ln as a space of polynomials.

Lemma 4.2: Now suppose that gPSL(2,C), and that the matrix entries b, c, d are nonzero.
Given j,kP@n#, then

n
Z^ j urn~g!uk&n

Z 5
b,1 j c,1k

dj 1k A~,1 j !! ~,1k!!

~,2 j !! ~,2k!! (
r 50

min(,1 j ,,1k)
~2,2r !! ~bc!2r

n! ~,1 j 2r !! ~,1k2r !!
.

Let cr5,(,11)2k21 1
4 for 2kPZ. Thus

ck11/25~,2k!~,1k11!, ck21/25~,1k!~,2k11!.

Let sn be the differential representation ofrn .
Lemma 4.3: Given an element H5(C

A
D
B) of gl~2,C! and an element kP@n#, then

sn~H ! uk&n
Z 5Ack21/2C uk21&n

Z 1~~,1k!A1~,2k!D ! uk&n
Z 1Ack11/2B uk11&n

Z .
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The real Lie algebra u~2! and its subalgebra su~2! have bases$2 iW,2 iX,2 iY,2 iZ% and
$2 iX,2 iY,2 iZ%, respectively, where

W5
1

2 S 1 0

0 1D , X5
1

2 S 0 1

1 0D , Y5
1

2 S 0 2 i

i 0 D , Z5
1

2 S 1 0

0 21D .

Note thatW commutes withX, Y, Z, and the other commutation relations are@X,Y#5 iZ and
@Y,Z#5 iX and @Z,X#5 iY. Let

Ŵn5sn~W!, X̂n5sn~X!, Ŷn5sn~Y!, Ẑn5sn~Zn!.

Given kP@n#, then, by Lemma 4.3,

Ŵn uk&n
Z 5, uk&n

Z , ~26!

X̂n uk&n
Z 5 1

2 ~Ack21/2 uk21&n
Z 1Ack11/2 uk11&n

Z ), ~27!

Ŷn uk&n
Z 5

i

2
~Ack21/2 uk21&n

Z 2Ack11/2 uk11&n
Z ), ~28!

Ẑn uk&n
Z 5kuk&n

Z . ~29!

Thus, the algebra representationsn of gl~2,C! restricts to anti-Hermitian representations
u~2! and isu~2!. In other words, the group representationrn of GL~2,C! restricts to unitary repre-
sentations of U~2! and SU~2!. It is well-known~by an easy ladder argument! that the two restricted
representations are irreducible.

For eachkP@n#, we define a vector

uk&n
X 5exp~2 ipŶn /2! uk&n

Z . ~30!

To rewrite Eqs.~26!–~29! with respect to the orthonormal basis$uk&n
X :kP@n#%, let us first deter-

mine the exponentials ofiW, iX, iY, iZ. By evaluating derivatives att50, or by appealing to Eq
~19! ~with complex values ofb, g, d!, we have

exp~2 i tW!5S e2 i t /2 0

0 e2 i t /2D , exp~2 i tX !5S cost/2 2 i sint/2

2 i sint/2 cost/2 D ,

~31!

exp~2 i tY!5S cost/2 2sint/2

sint/2 cost/2 D , exp~2 i tZ !5S e2 i t /2 0

0 eit /2D .

By direct calculation,e2 i tYZeitY5Z cost1Xsint for all tPR. So

exp~2 ipŶn /2!Ẑnexp~ ipŶn /2!5X̂n , exp~2 ipŶn /2!X̂nexp~ ipŶn /2!52Ẑn .

We can now rewrite Eqs.~26!–~29! as

Ŵn uk&n
X 5,uk&n

X , ~32!

X̂n uk&n
X 5kuk&n

X , ~33!

Ŷn uk&n
X 5

i

2
~Ack21/2 uk21&n

X 2Ack11/2 uk11&n
X ), ~34!
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Ẑn uk&n
X 5

21

2
~Ack21/2 uk21&n

X 1Ack11/2 uk11&n
X ). ~35!

Lemmas 4.1 and 4.2 now yield the following result.
Lemma 4.4: Given j,kP@n#, then

(1) n
Z^ j uk&n

X 5
~21!,1 j

2, A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (r
S ,1k

r D S ,2k
,1 j 2r D ~21!r ,

(2) n
Z^ j uk&n

X 5
~21!,1 j

2, A~,1 j !! ~,1k!!

~,2 j !! ~,2k!! (s

~2,2s!! ~22!s

s! ~,1 j 2n!! ~,1k2s!!
,

where the indices of the sums run over the values for which the terms are defined, n,
max(0,j 1k)<r<min(,1j,,1k) and 0<s<min(,1j,,1k).

Lemma 4.5: Given j,kP@n#, then

n
Z^ku j &n

X 5~21! j 2k
n
Z^ j uk&n

X 5~21!,1k
n
Z^ku2 j &n

X 5~21!,2 j
n
Z^ku j &n

X .

Proof: Throughout the argument, when multiplying powers of21, we must bear in mind tha
j ,k,, are all integers or all halves of odd integers. By Lemma 4.4~2!,

~21!,1 j
n
Z^ j uk&n

X 5~21!,1k
n
Z^ku j &n

X .

The first asserted equality follows.
Since the eigenvalues ofX̂n are distinct, the eigenvector equationsX̂n u j &n

X 5u j &n
X and X̂n u

2 j &n
X 52 j u j &n

X determine the unit vectorsu j &n
X andu2 j &n

X up to phase factors. By Eqs.~27! and
~33!, the matrix entryn

Z^ j uX̂nuk&n
X is zero unlessu j 2ku51. Therefore, fixingj , there is a phasev

such that, for allk, we have

n
Z^ku2 j &n

X 5v~21!,1k
n
Z^ku j &n

X .

~In other words, if we multiply theZ-coordinates ofu j &n
X by an alternating61, then we get a

multiple of u2 j &n
X .) Puttingk52,, and noting that, by Lemma 4.4~1!,

n
Z^2,u2 j &n

X 5
1

2
AS 2,

,1 j D n
Z^2,u j &n

X ,

we deduce thatv51. The second asserted equality follows and, hence, the third. h

Lemma 4.6: Given j,kP@n#, then

(1) Ack21/2 n
Z^k21u j &n

X 22 j n
Z^ku j &n

X 1Ack11/2 n
Z^k11u j &n

X 50,

(2) Acj 21/2 n
Z^ku j 21&n

X 22k n
Z^ku j &n

X 1Acj 11/2 n
Z^ku j 11&n

X 50.

Let Nn denote the set of natural numbers less thann. For eachsPNn , we define theKrav-
chuk polynomial Ks,n :Nn→C and theKravchuk function hs,n :@n#→C such that

~21!,1 j

2, AS 2,
,1 j D S 2,

,1kDK,1 j ,n~,1k!5h,1 j ,n~k!5n
Z^ j uk&n

X

for j ,kP@n#. The formulas in Appendix B are precisely Lemmas 4.4–4.6.
Proposition 4.7: The set of Kravchuk functions$hs,n :sPNn% is an orthonormal basis forLn .
Proof: The values of the Kravchuk functions are the overlaps of two orthonormal basesh

We now rewrite the Kravchuk functions asus&n 5hs,n .
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Proposition 4.8: Given sP@n#, then us&n 5(21)s u,2s&n
X .

Proof: Apply Lemma 4.5. h

Via Proposition 4.8, we can rewrite Eqs.~32!–~35! as

Ŵn us&n 5,us&n , ~36!

X̂n us&n 5~,2s!us&n , ~37!

Ŷn us&n 5
i

2
~2As~2,112s! us21&n 1A~s11!~2,2s! us11&n ), ~38!

Ẑn us&n 5 1
2 ~As~2,112s! us21&n 1A~s11!~2,2s! us11&n ). ~39!

We define Hermitian operators

Î n5X̂n /,, P̂n52Ŷn /A,, Q̂n5Ẑn /A,,

2B̂n5 P̂n
2 , 2Ĉn5Q̂n

2 , 2D̂n5 P̂nQ̂n1Q̂nP̂n .

We can understandP̂n as discrete momentum~or frequency! andQ̂n as discrete position~or time!.
For realb, g, d, m, n, k, we introduce a Hermitian operator

Ĥn~b,g,d,m,n,k!5bB̂n1gĈn1dD̂n1m P̂n1nQ̂n1k Î n . ~40!

We define adiscrete affine canonical transformto be a unitary operator having the form

Ûn~b,g,d,m,n,k!5exp~2 iĤ n~b,g,d,m,n,k!!. ~41!

Recall that, in the continuum scenario, we defined the continuum affine canonical trans
to be the composites of the unitary operators having the formÛ(b, . . . ,k). Our reason for not
defining the discrete affine canonical transforms in the same way is that the infinitesmal gen
Ĥn(b, . . . ,k) do not span a Lie algebra. We can work with single-parameter groups of dis
affine canonical transforms—including fractional Fourier transforms, chirps and dilations—
these single-parameter groups, of course, have the index-additivity propertyÛsÛt5Ûs1t. In gen-
eral, though, we do not retain any tractible closure property if we compose elements of d
single-parameter groups.

However, in the continuum scenario, we defined the motion canonical transforms to b
cisely the unitary operators having the formÊ(k,l,m,n), these operators being closed und
composition. That feature can be retained in the discrete scenario. Let

N̂n5Ŵn2X̂n5,~ 1̂2 Î n!.

The operatorsÎ n , N̂n , P̂n , Q̂n are closed under commutators. We define adiscrete motion
canonical transform to be a unitary operator having the form

Ên~k,l,m,n!5exp~2 i ~k Î n1lN̂n1m P̂n1nQ̂n!!5r~En~k,l,m,n!!, ~42!

wherek,l,m,nPR. Let us put it in the language of representations. The Lie group u~2! has a
basis$I n ,Nn ,Pn ,Qn% where

I n5X/, , Nn5W2X, Pn52Y/A, , Qn5Z/A, .

The commutation relations are
                                                                                                                



r

ogous

r

ffine
uous;

ef. 4.

1545J. Math. Phys., Vol. 44, No. 4, April 2003 Continuum quantum systems as limits

                    
@ I n ,Nn#50, @ I n ,Pn#52 iQn /, , @ I n ,Qn#5 iPn /, ,
~43!

@Nn ,Pn#5 iQn , @Nn ,Qn#52 iPn , @Pn ,Qn#5 i I n .

The algebra representationsn mapsI n , Nn , Pn , Qn to Î n , N̂n , P̂n , Q̂n , respectively. Observe
that, as,→`, the structural constants forI n , Nn , Pn , Qn converge to those given in Sec. 2 fo
the basis elementsI , N, P, Q of hm. The algebra iu~2! and the group U~2! are to serve as the
discrete analogs of the algebra hm and the group HM.

Now let us write down the matrices forB̂n , Ĉn , D̂n , P̂n , Q̂n , N̂n , Î n with respect to the basis
of Kravchuk functions. For 2r 11PN, let

tn~r !5A~2r 11!~4,22r 11!/16,.

Given sPNn , then

tnS s1
1

2D5As11

2 S 12
s

2, D , tnS s2
1

2D5As

2 S 12
s21

2, D .

By Eqs.~36!–~39!,

B̂n us&n 52
1

2
tnS s2

1

2D tnS s2
3

2D us22&n 1S s

2 S 12
s

2, D1
1

4D us&n

2
1

2
tnS s1

1

2D tnS s1
3

2D us12&n , ~44!

Ĉn us&n 5
1

2
tnS s2

1

2D tnS s2
3

2D us22&n 1S s

2 S 12
s

2, D1
1

4D us&n 1
1

2
tnS s1

1

2D tnS s1
3

2D us12&n ,

~45!

D̂n us&n 52 i t n~s2 1
2!tn~s2 3

2! us22&n 1 i t n~s1 1
2!tn~s1 3

2! us12&n , ~46!

P̂n us&n 52 i t n~s2 1
2! us21&n 1 i t n~s1 1

2! us11&n , ~47!

Q̂n us&n 5tn~s2 1
2! us21&n 1tn~s1 1

2! us11&n , ~48!

Î n us&n 5~12s/, ! us&n , ~49!

N̂n us&n 5s us&n . ~50!

Again, we observe a suggestive connection with the continuum scenario. As,→`, the matrix
entries in Eqs.~44!–~50! converge to the matrix entries in Eqs.~11!–~17!.

In Sec. II, we ended with an example. Let us end the present section with the anal
example. The discrete Fourier transform of Atakishiyev–Wolf10 is the unitary operatorF̂n on Ln

such thatF̂n us&n 5 i s us&n . More generally, their discrete fractional Fourier transform of ordet

PR is the unitary operatorF̂n
t on Ln such thatF̂n

t us&n 5exp(2pist) us&n . In other words,

F̂n
t 5exp~2p i tN̂n!. ~51!

V. CONVERGENCE OF UNITARY TRANSFORMS

We wish to say that the continuum affine canonical transforms are limits of discrete a
canonical transforms. The whole problem lies in making the assertion absolutely unambig
then the proof will follow purely by deductive reasoning. Parts of the proof are deferred to R
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Usually, when one writes an equation of the formx5 limn→`xn , the objectx and the objectsxn all
belong to the same space~or category!. Such is not the case in our situation. We need to spe
an interface between the continuum scenario and the discrete scenario. Let us describe th
face in two different ways, the first one clear and precise, the second one more illuminating
a practical perspective.

The clear description of the interface makes use of inductive limits, which are introduc
Refs. 1–3. A summary is given in Ref. 4, Sec. 2. LetS~R! be the Schwartz subspace ofL2(R). For
each positive integern, let resn be the linear mapS(R)→Ln such that, givenfPS(R), and
writing fn5resn(f), then

fn~k!5,21/4f~,21/2k!, ~52!

wherekP@n#. The linear maps resn comprise an inductive resolution ofL2(R). We are now in a
position to realize vectorsc in L2(R) as limits c5 limn cn , where eachcn is a vector in the
n-dimensional spaceLn . We can do the same for bounded operators and, in particular, for un
operators.

The following alternative description is rather more intuitive. Letf be a continuous and
well-behaved complex-valued function with one real variable. For eachn, let fn be a vector in
Ln . We regardfn as a good approximation tof provided

fn~k!',21/4f~,21/2k!

for almost all kP@n#. As the number of sample pointsn52,11 increases, the mesh,21/2

decreases and the width of the sample window 2,1/2 increases. Iffn becomes an arbitrarily good
approximation tof in a certain manner that preserves everything involving inner products,
we say thatfn converges tof, and we writef5 limn fn . Limits of unitary operators are require
to preserve limits of vectors.

For example, Ref. 2, Theorem 5.1, says that

us&5 lim
n

us&n , ~53!

for all natural numberss. In other words, the Hermite functions are the inductive limits of
Kravchuk functions.

Theorem 5.1: Let b5 limn bn , g5 limn gn , d5 limn dn , m5 limn mn , n5 limn nn , k
5 limn kn as limits of real sequences. Then

Û~b,g,d,m,n,k!5 lim
n

Ûn~bn ,gn ,dn ,mn ,nn ,kn!.

Proof: This is part of Ref. 4, Theorem 7.2. h

A comparison of Eqs.~11!–~16! with Eqs. ~44!–~49! provides a heuristic justification fo
Theorem 5.1, but not a proof. Convergence of matrix entries of infinitesmal generators doe
in general, imply convergence of the corresponding unitary operators.

Although arbitrary pairs of discrete affine canonical transforms do not compose in a tra
way, let us draw attention to the index-additivity property of single-parameter groups of dis
affine canonical transforms. Fix realsb, g, d, m, n, k. Theorem 5.1 tells us that

Û~ tb,tg,td,tm,tn,tk!5 lim
n

Ûn~ tbn ,tgn ,tdn ,tmn ,tnn ,tkn! ~54!

for all tPR. SinceB̂n ,Ĉn ,D̂n ,P̂n ,Q̂n , Î n are linearly independent forn>3, we have the follow-
ing.

Corollary 5.2: For fixed n>3, Eq. (54) describes a bijective correspondence between
single-parameter groups of continuum affine canonical transforms and the single-para
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groups of discrete affine canonical transforms onLn . Now let n vary. The elements of a singl
parameter group of continuum affine canonical transforms are inductive limits of sequenc
elements of the corresponding single-parameter groups of discrete affine canonical transfo.

We now turn to motion canonical transforms.
Theorem 5.3: Let k5 limn kn , l5 limn ln , m5 limn mn , n5 limn nn as limits of real se-

quences. Then

Ê~k,l,b,g!5 lim
n

Ên~kn ,ln ,bn ,dn!.

Proof: The limit of representations in Ref. 4, Theorem 10.2, is a stronger result. h

Warning: Theorem 5.3 is not a special case of Theorem 5.1. Not all of the discrete m
canonical transforms are discrete affine canonical transforms.

Comparing Eqs.~18! and~51!, we see that Theorem 5.3 recovers the convergence of fract
Fourier transforms

F̂ t5 lim
n

F̂n
t . ~55!

A more direct proof of Eq.~55! is given in Ref. 3, Example 4.F. The equation~not expressed in the
form of an inductive limit! is due to Atakishiyev–Wolf.10

VI. COMPLEX-ORDER FOURIER TRANSFORMS AND COHERENT STATES

We introduce two more objects to the continuum scenario: the system of Glauber co
states~Gabor functions! and the continuum Hermite semigroup~the semigroup of complex-orde
Fourier transforms!. Then we introduce the analogous objects to the discrete scenario: the s
of spin coherent states and the discrete Hermite semigroup~discrete complex-order Fourier tran
forms!. As in the previous section, the analogy between the discrete and continuum objects i
enough; our purpose is to express the analogy precisely using inductive limits.

For an introduction to the Glauber and spin coherent states, see Ref. 28, Chap. 1 or R
To fix notation, we shall recall the relevant definitions, but we shall not discuss the measu
the label spaces. TheGlauber coherent stateuz&C with label zPC can be defined as

uz&C 5exp~2uzu2/2!exp~zÂ†!u0&5exp~2uzu2/2!(
s50

`
zs

As!
us& . ~56!

Writing gz to denoteuz&C regarded as a~rapidly decreasing! function R→C, we have

p1/4gz~q!5expS 2
q2

2
1&zq2

z2

2
2

uzu2

2 D5expS 2
q2

2
2~u1 iv !q2

u2

2
2

iuv
2 D , ~57!

where&z5u1 iv with u,vPR. We note one other useful characterization:

uz&C 5exp~2 iuP̂1 ivQ̂!)u0& . ~58!

In electrical enginnering and signal processing, Glauber coherent states are usually calledGabor
functions, and are usually expressed in the form of Eq.~57!. The other two equations are mor
normally used in quantum physics. As a gesture of mediation between the two disciplines,
give a quick proof that the three equations are mutually equivalent. From Eq.~58!, rewritten as

gz5exp~2 iuP̂1 ivQ̂!h0 ,

it is easy to obtain Eq.~57! using the identities
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exp~2 i ~uP̂1vQ̂!!5exp~ iuv/2!exp~ ivQ̂!exp~2 iuP̂!,

exp~2 iuP̂!f~q!5f~q2u!, exp~2 ivQ̂!f~q!5exp~ ivq!f~q!,

wherefPS(R). Using the generating function

exp~2qt2t2!5(
s50

`
ts

s!
Hs~q!

together with Eq.~57!, straightforward manipulation yields

(
s50

`
ts

s! E2`

`

dqHs~q!exp~2q2/2!gz~q!5p1/4exp~2uzu2/2!exp~&zt!.

Comparing coefficients of powers oft, we obtain^suz&C 5exp(2uzu2/2)/As!. The equivalence of
Eqs.~56!–~58! is now established.

For zPC with uzu<1, thecontinuum complex-order Fourier transform F̂(z) is defined to be
the bounded operator onL2(R) such that

F̂~z! us&5zs us& . ~59!

The integral kernel forF̂(z) may be found in Ref. 30. An optical realization ofF̂(z) is discussed
in Ref. 31. We have an obvious composition law

F̂~z!F̂~z8!5F̂~zz8!. ~60!

The commutative semigroup$F̂(z):uzu<1%, called thecontinuum Hermite semigroup, is evi-
dently isomorphic to the semigroup$zPC:uzu<1%. Writing

z5exp~2p i t !, ~61!

we say thatF̂(z) hasorder t. Given F̂(z), the real part oft is well-defined up to congruenc
modulo 1. The conditionuzu<1 is precisely the condition thatt lies in the closed upper half of th
complex plane. By Eq.~17!,

F̂~z!5exp~2p i tN̂ !.

The continuum fractional Fourier transforms are precisely the unitary continuum complex-
Fourier transforms. By Eqs.~56! and ~59!, the continuum Hermite semigroup permutes t
Glauber coherent states~up to scalar factors! according to the equation

F̂~z! uz&C 5exp~ uzzu2/22uzu2/2! uzz&C . ~62!

Now let us look at the discrete scenario. Thediscrete annihilation operator Ân and its
Hermitian conjugate, thediscrete creation operator Ân

† , are defined to be

Ân5~Q̂n1 i P̂n!/& , Ân
†5~Q̂n2 i P̂n!/& .

From Eqs.~47! and ~48! we have

Ân us&n 5AsS 12
s21

2, D us21&n , Ân
†us&n 5A~s11!S 12

s

2, D us11&n .
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The spin coherent stateuz&n
C with label zPC is defined by

S 11
uzu2

2, D ,

uz&n
C 5exp~zÂn

†!u0&n 5(
s50

2, AS 2,
s D S z

A2,
D s

us&n . ~63!

We also allow a spin coherent state

u`&n
C 5 lim

z→`

uz&n
C 5u2,&n

C .

For arbitraryzPC, thediscrete complex-order Fourier transform F̂n(z) is defined to be the
operator onL2(R) such that

F̂n~z! us&n 5zs us&n . ~64!

Using Eqs.~30! and ~31!, followed by Lemma 4.1 and Proposition 4.8, it can be shown that

F̂n~z!5rn~K~z!!, K~z!5
1

2 S 11z 12z

12z 11z
D . ~65!

Evidently, we have a composition law

F̂n~z!F̂n~z8!5F̂n~zz8!. ~66!

The semigroup$F̂(z):zPC% is called thediscrete Hermite semigroup. Letting t be as in Eq.
~61!, we say thatF̂n(z) hasorder t. The real part oft is still well-defined only up to congruenc
modulo 1, but there are now no constraints on the range oft. By Eq. ~50!,

F̂n~z!5exp~2p i tN̂n!.

The discrete fractional Fourier transforms are precisely the unitary discrete complex-order F
transforms. By Eqs.~63! and ~59!, the discrete Hermite semigroup permutes the spin cohe
states~up to scalar factors! according to the equation

F̂n~z! uz&n
C 5S 2,1uzzu2

2,1uzu2 D ,

uzz&n
C . ~67!

Theorem 6.1:Given zPC, then uz&C 5 limn uz&n
C .

Proof: Consider a vectorcPL2(R) and vectorscnPLn such that the set$icni :nPN% is
bounded. By Eq.~53! and Ref. 1, Theorem 3.4,c5 limn cn if and only if

^suc&5 lim
n

n^sucn&

for all sPN. These two equivalent conditions hold whenc5uz&C andcn5uz&n
C because

exp~2uzu2/2!

As!
5 lim

,→`
S 11

uzu1

2, D 2,AS 2,
s D S 1

A2,
D s

.

h

Theorem 6.2:GivenzPC with uzu<1, then F̂(z)5 limn F̂n(z).
Proof: Let cPL2(R) andcnPLn such thatc5 limn cn . Using the criterion for limits noted

in the previous argument,
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^suF̂~z!c&5zs^suc&5 lim
n

zs
n^sucn&5 lim

n
n^suF̂n~z!cn&,

and F̂(z)c5 limn F̂n(z)cn . h

VII. CONCLUSIONS

We have used inductive limits to express the way in which the discrete scenario an
continuum scenario are related to each other. From a procedural point of view~oriented, say,
towards implementation of numerical calculations!, the relationships between the two scenar
has two significant aspects:approximationandanalogy. Not only do the discrete objects serve
approximations to their corresponding continuum objects, but they are also analogs in the
that the algebraic structures in the discrete scenario mirror the algebraic structures in th
tinuum scenario. For the purpose of numerical calculation, that feature is important, beca
ensures that errors due to inaccuracy of the approximating formulas are not compounded
repeated composition. Our approach provides some rationale for both of those aspects: in
limits serve as approximations; they also preserve algebraic structures, specifically, they p
inner products, operator-vector compositions, and operator-operator compositions.

We propose inductive limits as a way of providing theoretical justification for discrete
proximations in cases where precise error analysis would be too difficult. As concrete exa
become more complicated, intuition may become unreliable, and a precise criterion for the
may become increasingly useful. Inductive limits of representations, as in Sec. V and R
appears to be applicable to various other limits of representations. See, for instance, Refs
32–35. It is to be expected that, through moderately complicated but routine exercises in e
ics, the limits of operators in those works can be shown to be inductive limits.

However, to plough through such calculations would be to overlook a more interesting li
study. Limits of representations are more subtle than limits of individual operators. The
~Ref. 4, Theorem 9.4! on convergence of structural constants requires, in addition to converg
of individual operators, an analytic convergence hypothesis. The hypothesis is potentially
able, in practice, for concrete examples, but some simplifications may be possible; perh
suffices to check the uniformity condition in Ref. 4, Sec. 8 only for a spanning set of infinite
generators. Thus, at the time of writing, the criterion for inductive limits of representations s
be regarded as subject to simplification or modification.

Besides, in order to be of significant practical use, the theory of inductive limits of repre
tations is in need of general theorems. For a limit of representationsr5 limn rn ~Ref. 4. Proposi-
tion 9! asserts that, ifr is faithful, thenrn is faithful for largen. That result is unlikely to be usefu
in application to concrete examples, since faithfulness is usually obvious to start with. How
the result may point the way forwards: ifr is irreducible, mustrn be irreducible for largen? To
prove theorems, of course, it is sometimes necessary to tinker with definitions. So, aga
conclude that the present criterion for inductive limits of representations should be regard
subject to change.

It appears that inductive limits can also be used to describe a correspondence betw
finite-discrete periodic scenario based on the integers modulopm and a continuous periodic sce
nario based on thep-adic integers. Here,p is a rational prime. For the discrete context, see Re
36 and 37; for the continuous context, see Refs. 38, and 39. In thisp-adic scenario, purely intuitive
arguments are to be distrusted, so the use of some or another precise notion of limit is es

Discrete versus continuum correspondences of operators and representations arise fre
Without attempting to classify the various directions of study, let us list some papers on the
where the termlimit is used explicitly and is probably interpretable asinductive limit:Refs. 40, 6,
7, 8, 32, 10, 41, 42, 5, 43, 44, 35, and 45–47. We have given a broad spread of citations s
provide evidence that an intuitive equivalent of the notion of an inductive limit is in widesp
use. The list could be extended considerably. The author has come across only one paper~citation
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omitted! in which the limits of operators are nonsensical~arbitrary SL~2,R! canonical transforms
written as ‘‘limits’’ of SL(2,p) canonical transforms, wherep runs over the rational primes!.

There are also a great many works where the termlimit is not used for our purpose, bu
inductive limits seem to be involved implicitly. This point pertains, in particular, to many sin
parameter discrete systems used as approximations to continuum systems in signal process
some examples, see Refs. 48 and 49 and references therein.

APPENDIX A: A COUNTER-EXAMPLE

By the definition of inductive limits of operators, Theorem 6.2 can be expressed as foll
Theorem A.1: Given a vectorcPL2(R) and vectorscnPLn such thatc5 limn cn , then, for

all zPC with uzu<1, we have Fˆ (z)c5 limn F̂n(z)cn .
For arbitraryzPC3, we can still defineF̂(z) to be the operator onL2(R) satisfying Eq.~59!.

If uzu.1, thenF̂(z) is unbounded. The domain ofF̂(z), in this case, has been studied by Byun50

Plainly, for arbitraryz, the conclusion of Theorem A.1 still holds whenc is a Glauber cat state
~linear combination of coherent states! in L2(R) andc is the corresponding spin cat state inLn .
However, for arbitraryz and arbitraryc in the domain ofF̂(z), the conclusion of Theorem A.1
can fail. A counter-example isc50 andcn5222, u2,& with z53.

It is difficult to imagine how the mainstream techniques~formal manipulation! could be used
to ‘‘derive’’ Theorem A.1 without also ‘‘deriving’’ the fallacy refuted in the previous paragrap

APPENDIX B: IDENTITIES FOR THE KRAVCHUK FUNCTIONS

Let n be a positive integer. As in Sec. IV, we writen52,11 and @n#5$2,,12,, . . . ,,
21,,% and we defineck11/25(,2k)(,1k11), equivalently,ck21/25(,1k)(,2k11), where
2kPZ. The Kravchuk polynomials K0,n ,K1,n , . . . ,K2,,n are the functions$0,1,. . . ,2,%→C
given by

K,1 j ,n~,1k! 5 S 2,
l 1 j D 21

(
m5max(0,j 1k)

min(,1 j ,,1k) S ,1k
m D S ,2k

,1 j 2m D ~21!m

5 (
n50

min(,1 j ,,1k) S 2,
n D 21S ,1 j

n D S ,1k
n D ~22!n,

where j ,kP@n#. Note that, in each of the two formulas, the indexm or n runs over all values for
which the terms are defined. In Sec. IV, it is shown that the two formulas are equivalent to
other. It is also shown that the Kravchuk polynomials satisfy

K,1k,n~,1 j !5K,1 j ,n~,1k!, ~B1!

K,1 j ,n~,2k!5~21!,1 jK,1 j ,n~,1k!, ~B2!

K,2 j ,n~,1k!5~21!,1kK,1 j ,n~,1k!, ~B3!

~,2k!K,1 j ,n~,1k11!12 jK ,1 j ,n~,1k!1~,1k!K,1 j ,n~,1k21!50, ~B4!

~,2 j !K,1 j 11,n~,1k!12kK,1 j ,n~,1k!1~,1 j !K,1 j 21,n~,1k!50. ~B5!

The Kravchuk functions h0,n ,h1,n , . . . ,h2,,n are the functions@n#→C given by

hs,n~k!5
~21!s

2, AS 2,
s D S 2,

,1kDKs,n~,1k!. ~B6!

In other words,
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h,1 j ,n~k!5
~21!,1 j

2, A~,1 j !! ~,2 j !!

~,1k!! ~,2k!! (m S ,1k
m D S ,2k

,1 j 2m D ~21!m

5
~21!,1 j

2, A~,1 j !! ~,1k!!

~,2 j !! ~,1k!! (n

~2,2n!! ~22!n

n! ~,1 j 2n!! ~,1k2n!!
. ~B7!

Equations~B1–B5! can be rewritten as

h,1k,n~ j !5~21!k2 jh,1 j ,n~k!, ~B8!

h,1 j ,n~2k!5~21!,1 jh,1 j ,n~k!, ~B9!

h,2 j ,n~k!5~21!,2kh,1 j ,n~k!, ~B10!

Ack11/2h,1 j ,n~k11!12 jh,1 j ,n~k!1Ack21/2h,1 j ,n~k21!50, ~B11!

Acj 11/2h,1 j 11,n~k!22kh,1 j ,n~k!1Acj 21/2h,1 j 21,n~k!50. ~B12!

Proposition 4.7 says that Kravchuk functions comprise an orthonormal basis for the spa
functions@n#→C.
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New upper and lower limits are given for the number of S-wave bound states
yielded by an attractive~monotonic! potential in the context of the Schro¨dinger or
Klein–Gordon equation. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1532107#

I. INTRODUCTION AND MAIN RESULTS

The determination in the framework of nonrelativistic quantum mechanics of necessar
sufficient conditions for the existence of bound states in a given potential and, more genera
upper and lower limits for the number of bound states yielded by such a potential, has engag
attention of theoretical and mathematical physicists since the early 1950s, and, notwithstand
fact that, with modern computers, the numerical evaluation of the number of bound states
given potential is an easy task, it continues to be actively pursued: see, for instance, Refs.
7,10–17,19–26, 28–30, as well as the surveys of~some of! these results in Refs. 8 and 32. In th
article we provide new upper and lower limits for the number of S-wave bound states posses
a central potential vanishing at infinity and yielding a nowhere repulsive force and we com
them, for some test potentials, with the exact results and with previously known upper and
limits. These comparisons indicate that these new limits are generally more stringent than h
known results and indeed remarkably cogent, especially for potentials possessing many
states.

Let us briefly review~some of! the previous findings, focusing on those relevant to o
treatment, hence restricting attention to the S-wave case~even when results are also known f
higher partial waves!. Hereafter—except in Sec. IV—we use the standard nonrelativistic quan
mechanical units such that\2/(2m)51, which entail that the potentialV(r ) has the dimension o
an inverse square length, and we indicate withN the number of S-wave bound states. We a
assume throughout that the potentialV(r ) is less singular than the inverse square radius at
origin and that it vanishes asymptotically faster than the inverse square radius, say~for some
positive«!

lim
r→0

br 22«V~r !c50, ~1.1a!

lim
r→`

br 21«V~r !c50. ~1.1b!

Note that these assumptions entail that the square root of the~modulus of the! potential is inte-
grable both at the origin and at infinity.

a!Electronic mail: fabian.brau@umh.ac.be
b!Electronic mail: francesco.calogero@roma1.infn.it, francesco.calogero@uniroma1.it
15540022-2488/2003/44(4)/1554/22/$20.00 © 2003 American Institute of Physics
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Bargmann2 and Schwinger30 obtained the following upper limit forN:

BS: N<E
0

`

dr r uV~r !u. ~1.2!

This result is generally referred to as the Bargmann–Schwinger bound; we hereafter refer
the BS~upper! limit. This result was obtained after Jost and Pais22 had shown that the fact that th
right-hand side of~1.2! exceeds unity is anecessarycondition for the existence of bound stat
~namely, the special case of the BS limit withN51).

Cohn15,16and Calogero6,7 later obtained another upper limit forN, which is valid provided the
force associated with the potentialV(r ) is nowhere repulsive, namely the potentialV(r ) is a
monotonically nondecreasing function of the radiusr ,

dV~r !/dr>0, ~1.3!

entailing of course that the potential is everywhere negative,V(r )52uV(r )u. This upper limit
reads

CC: N<
2

p E
0

`

dr uV~r !u1/2. ~1.4!

This result has been referred to as the Calogero–Cohn bound;11 hereafter we shall refer to it as th
CC ~upper! limit. This CC limit, ~1.4!, in contrast to the BS limit~1.2!, features the correc
dependence on the strength of the potential; indeed it has been shown8 that, for any potentialV(r ),
if a measure of the strength of the potential is introduced via the introduction of a ‘‘coup
constant’’g2 by setting

V~r !5g2 v~r !, ~1.5!

then asg diverges to positive infinity,N grows proportionally tog. But it is also known10 ~see also
Refs. 7, 14, and 19! that asymptotically, asg diverges,g→`,

N'
1

p E
0

`

dr uV~r !u1/25
g

p E
0

`

dr uv~r !u1/2. ~1.6!

Hence for strongly attractive potentials featuring many bound states the CC limit~1.4! tends to
overestimateN by a factor 2. The main merit of the new limits provided in this article is to rem
this defect~see below!.

Some modifications of the inequality~1.4! and of the condition~1.3! on the shape of the
potential have been introduced by Chadanet al.11 These modifications lead to less restricti
inequalities but more flexible conditions on the shape of the potential, allowing for some os
tions.

Another upper bound, which also gives the correct power behavior of the number of b
states when the strength of the potential diverges, has been obtained by Martin:25

M: N<F E
0

`

dr r 2V2~r !E
0

`

dr V2~r !G1/4

, ~1.7!

whereV2(r ) is thenegativepart of V(r ). This limit is applicable even if the potential does n
satisfy the property to yield a nowhere repulsive force, see~1.3!, but it is nontrivial only for
potentials the nonpositive part of which is integrable at the origin. Hereafter we refer to it a
M ~upper! limit.

The known lower limits onN are scarcer and less neat. A result7 states that
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N>
1

p E
0

`

dr min@1/a, 2a V~r !#2
1

2
, ~1.8a!

wherea is an arbitrarypositiveconstant,a.0, and

min@x,y#5x if x<y, min@x,y#5y if y<x. ~1.8b!

By choosinga proportional tog21 @see~1.5!# it is clear that this limit has the correct powe
growth wheng diverges. The most stringent version of this limit obtains by performing first
integration on the right-hand side of~1.8a!, and by then maximizing the result over allpositive
values of the parametera. For everywhere nondecreasing potentials, see~1.3!, the minimum
definition~1.8b! is easily implemented by splitting the integration range in~1.8a! in two parts, and,
thereby, via standard computations, one arrives at the somewhat neater lower limit

C: N>
2

p
ruV~r!u1/22

1

2
, ~1.9a!

wherer is a root of the equation

r V~r!5E
r

`

dr V~r !. ~1.9b!

This limit will be hereafter referred to as the C~lower! limit.
If the potential, besides satisfying the monotonicity condition~1.3!, is finite at the origin, a

more explicit if less cogent result obtains by settinga5uV(0)u21/2 in ~1.8!:

C0 : N>
1

p E
0

`

dr
uV~r !u

uV~0!u1/22
1

2
. ~1.10!

Hereafter we shall refer to this result as the C0 ~lower! limit.
By settingN51 in ~1.8! and ~1.9!, respectively~1.10!, one obtains the following three con

ditions, each of which issufficientto guarantee the existence of~at least! one bound state:

E
0

`

dr min@1/a, 2a V~r !#.
3p

2
, ~1.11a!

ruV~r!u1/2.
3p

4
~1.11b!

with r again a root of~1.9b!,

E
0

`

dr uV~r !u.
3p

2
uV~0!u1/2. ~1.11c!

In the first of these inequalities,~1.11a!, a is an arbitrarypositiveconstant; the most stringen
condition obtains of course by performing first the integration on the left-hand side and by
minimizing the result over allpositivevalues ofa; the other two inequalities,~1.11b! and~1.11c!,
are neater but for their validity it is required that the potential satisfies the monotonicity cond
~1.3! @and of course~1.11c! is only applicable if the potential is finite at the origin#.

In view of future applications~see below! let us also report two other conditions which a
sufficientto guarantee that the potentialV(r ) possesses~at least! one bound state:5,8
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a21E
0

a

dr r 2uV~r !u1aE
a

`

dr uV~r !u.1, ~1.12!

aE
0

`

dr uV~r !u/@11a2uV~r !u#.1. ~1.13!

Both these conditions apply provided the potential is nowhere positive,V(r )52uV(r )u; in both of
them a is an arbitrarypositiveconstant, and of course the most stringent conditions obtain
minimizing the left-hand sides over allpositivevalues ofa. It is easily seen that, in the case
~1.12!, the minimizing value ofa is the root of the equation

E
0

a

dr r 2uV~r !u5a2E
a

`

dr uV~r !u ~1.14!

@entailing that the two terms on the left-hand side of~1.12! yield equal contributions# and in the
case of~1.13! it is the root of the equation

E
0

`

dr uV~r !u~12a2uV~r !u!~11a2uV~r !u!2250. ~1.15!

After this terse survey of previous results let us now report the new upper and lower lim
the numberN of S-wave bound states obtained in this article, in which we restrict for simpl
attention to potentials that satisfy the monotonicity condition~1.3! ~we plan to report results
applicable to more general potentials, as well as to higher partial waves, in a subsequent!.
These limits are of two different types.

The ~new! upper limit of the first type reads as follows:

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~p!

V~q!
U1 1

2
, ~1.16a!

with the two distancesp andq defined by the relations

E
0

p

dr uV~r !u1/25p/2, ~1.16b!

E
q

`

dr uV~r !u1/25p/2. ~1.16c!

Clearly these two formulas,~1.16b!, respectively~1.16c!, provide an unambiguous definition o
the two quantitiesp, respectivelyq, provided the potentialV(r ) possesses at least one bou
state, since it must then satisfy the followingnecessarycondition for the existence of bound state6

@corresponding to~1.4! with N51]:

E
0

`

dr uV~r !u1/2>p/2. ~1.17!

And also note that, due to the assumed monotonicity of the potential, see~1.3!, ~1.16! entails that
a neater albeit less stringent upper limit toN is provided by the formula

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~0!

V~q!
U1 1

2
, ~1.18!
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with q always defined by~1.16c!. This upper limit is, however, nontrivial only for potentials th
are finite at the origin.

The ~new! lower limit of the first type reads~for potentials that are finite at the origin!

N.
1

p E
0

s

dr uV~r !u1/22
1

4p
logUV~0!

V~s!
U2 1

2
, ~1.19!

with s an arbitrary~of coursepositive! radius. The choice ofs that produces the most stringe
bound is the root of the following nondifferential equation ins ~here, and always below, appende
primes denote differentiations!:

V8~s!54uV~s!u3/2. ~1.20!

Indeed, the values ofs which satisfy this last equation maximize the right-hand side of~1.19!. If
this equation possesses more than one positive root, generally the most stringent bound ob
choosing the largest.

A neater, if generally less stringent, lower bound obtains by choosings5q, since via~1.16c!
one then gets

N.
1

p E
0

`

dr uV~r !u1/22
1

4p
logUV~0!

V~q!
U21. ~1.21!

The analogy of this formula,~1.21!, to ~1.18! is remarkable, and of course this lower limit toN is
also nontrivial only if the potentialV(r ) is finite at the origin.

If the potential is singular at the origin, a neat lower bound, analogous to~1.16a!, reads

N>
1

p E
0

`

dr uV~r !u1/22
1

4p
logUV~p!

V~q!
U2 3

2
, ~1.22!

with p andq defined by~1.16b! and ~1.18c!.
A less neat but generally more stringent~albeit only marginally so! lower bound that looks

somewhat analogous to~1.19! and is also applicable to potentials that are singular at the or
reads

N.
1

p E
t

s

dr uV~r !u1/22
1

4p
logUV~p!

V~s!
U, ~1.23a!

with p defined by~1.16b! and s>t but otherwisearbitrary. As for the positive quantity t, a
characterization of it adequate to guarantee validity of this lower limit,~1.23a!, is the requirement
that it be the smallest positive root of the~nondifferential! equation

t5E
0

t

dr r 2uV~r !u. ~1.23b!

Another characterization oft, which leads to a~generally only marginally! more stringent lower
limit, is provided in Sec. III. Note that, as above, the choice ofs in ~1.23a! that yields the most
stringent bound is the root of the nondifferential equation~1.20! ~provided, of course, such
choice ofs is compatible with the conditions>t, as it is certainly the case for strong potentia
possessing many bound states!. And again, as above, a neater, if generally less stringent, lo
bound obtains by choosings5q, since via~1.16c! one then gets, in place of~1.23a!,

N.
1

p E
t

`

dr uV~r !u1/22
1

4p
logUV~p!

V~q!
U2 1

2
, ~1.23c!
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again of course withq, respectivelyt, defined by~1.16b! and~1.23b! ~of course providedq>t, as
it is certainly the case for strong potentials!.

Let us now report a second type of~new! limits on the numberN of S-wave bound states
which are particularly suitable for numerical computations, although there exist also cases
nable to analytic treatment~see Sec. II!.

First we report an upper limit, valid for potentials finite at the origin, to which considera
is, for simplicity, here restricted. Let us define the radiusq via ~1.16c!, and the sequence o
increasingradii r j

(1) via the explicit recursion relation

r j 11
(1) 5r j

(1)1~p/2!uV~r j
(1)!u21/2, r 0

(1)50, ~1.24!

and let the positive integerJ(1) be defined by the condition that the radiusr J(1)11
(1) yielded by this

recursion~be the first one to! exceed or equalq,

r J(1)
(1)

,q<r J(1)11
(1) . ~1.25!

The upper limit is then provided by the inequality

N<$$~J(1)11!/2%%11. ~1.26!

Here and always below the double braces denote the integer part:$$J/2%%5J/2 if J is evenand
$$J/2%%5(J21)/2 if J is odd.

Finally we report an analogous lower limit toN, which does not require thatV(r ) be finite at
the origin to yield a nontrivial result. Again, one first defines the radiusq via ~1.16c!, and then
introduces a series ofdecreasingradii r j

(2) via the explicit recursion relation

r j 11
(2) 5r j

(2)2~p/2!uV~r j
(2)!u21/2, r 0

(2)5q. ~1.27!

Now let the positive integerJ(2) be defined by the condition that the quantityr J(2)
(2) yielded by this

recursion be the last one to bepositive,

r J(2)11
(2) <0,r J(2)

(2) . ~1.28!

The lower limit is then provided by the inequality

N>$$J(2)/2%%. ~1.29!

In Sec. II we provide several tests of the efficacy of our upper and lower limits; in Sec. II
prove them; in Sec. IV we point out that all the results reported herein in the~nonrelativistic!
context of the Schro¨dinger equation can be easily extended to the~kinematically relativistic, if
only first-quantized! Klein–Gordon case.

II. TESTS

Most of the limits on the number of S-wave bound states reported in Sec. I are ‘‘best
sible,’’ namely, it is generally possible to find potentials that saturate them. The shape of
saturating potentials can generally be easily inferred from the very procedure whereby the
were derived; in particular for our new limits the saturating potentials are generally of ladde
~including the simplest such potential, the square-well!, since for such potentials the second te
on the right-hand side of~3.7! tends to vanish~as discussed in some detail in the last part of S
III !. But while the fact that the formula providing a limit has the property to be ‘‘best possi
entails that there can be no hope to make it more stringent by just modifying some co
appearing in it@it is, for instance, impossible to obtain a more stringent upper limit than~1.4! by
just replacing the constant 2/p on the right-hand side by a smaller number#, it does by no means
imply that such a bound provides a stringent limitation for all potentials; far from it~as we will
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presently see!. Indeed, a more interesting question is how different limits behave for a varie
~test! potentials. This section is devoted to such an assessment, for which we use six di
potentials: the square-well potential~hereafter referred to as SW!

SW: V~r !52g2 R22 for r<R, ~2.1a!

SW: V~r !50 for r .R; ~2.1b!

the Pöschl–Teller27 ~or ‘‘single-soliton,’’ see for instance Ref. 9! potential~hereafter referred to a
PT!,

PT: V~r !52g2R22@cosh~r /R!#22; ~2.2!

the exponential potential~hereafter referred to as E!,

E: V~r !52g2R22 exp~2r /R!; ~2.3!

the Hulthén potential~hereafter referred to as H!,

H: V~r !52g2R22@exp~r /R!21#21; ~2.4!

the Yukawa potential~hereafter referred to as Y!,

Y: V~r !52g2~rR!21 exp~2r /R!; ~2.5!

and the following shifted and truncated inverse square potential~hereafter referred to as STIS!,
which has the merit to allow analytic computation of all limits as well as of the exact numb
bound states~see below!:

STIS: V~r !52g2~R1r !22 for 0<r<aR, ~2.6a!

STIS: V~r !50 for r .aR. ~2.6b!

In all these equations, and below,R is an arbitrary~of coursepositive! given radius, andg, as well
asa in the last equation,~2.6!, are arbitrary dimensionlesspositiveconstants.

We only report, for the new limits of the first type, tests of theneatestlimits given in Sec. I,
namely we consider the upper, respectively lower, limits~1.18!, respectively~1.21!, for regular
potentials, and the upper, respectively lower, limits~1.16!, respectively~1.22!, ~only! for singular
potentials; indeed, for regular potentials, the difference between the neater upper limit~1.18! and
the more stringent upper limit~1.16! is generally negligibly small~namely, less than one unit!, and
likewise for the difference between the neater lower limit~1.21! and the more stringent lowe
limits ~1.19! or ~1.23!. ~Let us however emphasize that when one considers potentials with
bound states or searches for constraints on potential parameters necessary or sufficient
existence of one bound state, it is advisable to use the most stringent available limits.! As for the
new limits of the second type, we test the upper, respectively lower, limits~1.26!, respectively
~1.29!, for regular potentials, and the lower limit~1.29! for singular potentials. The tests ar
performed by comparing the new limits with the exact results, and with the previously kn
limits reported~and named! in Sec. I.

The simplest test is provided by the~nonsingular! SW potential~2.1!, for which the exact
number of bound states is given by the formula

N5$$n%%, ~2.7!

with
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n5
g

p
1

1

2
. ~2.8!

In this case the new limits obtained in this article tend to give the exact result~as explained
above!, except for the approximations introduced in order to obtain neater formulas. Indee
upper, respectively lower, limits of the first type~1.18!, respectively~1.21! @with q,R as implied
by ~1.16c!, so that the logarithmic terms in both these formulas vanish#, yield N<n respectively,
N.n2 3

2, while the more stringent lower bound~1.19! with s5R yields N>n21. The upper,
respectively lower, limits of the second type,~1.26!, respectively~1.29!, can as well be computed
analytically for this potential, yieldingN<n1 1

2, respectivelyN>n21. The BS, CC and M uppe
limits do not produce such good results. The BS upper limit yieldsN<g2/2, which gives a very
poor limitation wheng ~hence the number of bound states! grows ~indeed we know that the BS
upper limit is always very poor for strong potentials, see also below!. The CC, respectively M,
upper limits do give the correct linear behavior ing, but with too big a slope, respectivelyN
<2g/p52 (n2 1

2) andN<321/4g5321/4p(n2 1
2)52.387 (n2 1

2). Finally, in this particular case
the C and C0 lower limits coincide and yieldN>n21, namely a slightly more stringent limit tha
~1.21! @indeed, just the same result as~1.19!, see above#.

The second test is performed with the~nonsingular! PT potential~2.2!. For this potential the
exact number of bound states is again given by~2.7! but now with

n5~A114g211!/4, ~2.9a!

which, in the limit of largeg, yields

n5
1

2
g1

1

4
1

1

16g
1O~g23!. ~2.9b!

In this case the new upper and lower limits of the first type,~1.18!, respectively~1.21!, can as well
be computed analytically, and they read

N<
g

2
2

1

2p
logFsinS p

2gD G1
1

2
, ~2.10a!

respectively

N.
g

2
1

1

2p
logFsinS p

2gD G21, ~2.11a!

entailing, in the limit of largeg,

N<
g

2
1

1

2p
logS 2g

p D1
1

2
1

1

12p S p

2gD 2

1O~g24!, ~2.10b!

respectively

N.
g

2
2

1

2p
logS 2g

p D212
1

12p S p

2gD 2

1O~g24!. ~2.11b!

As for the new limits of the second type,~1.26! and~1.29!, in this case they can only be evaluat
numerically. In Fig. 1 we present, for this potential, a comparison between the exact num
bound states, the new limits of the first and of the second type, and the previously known0

lower limits, and BS, CC, M upper limits, all of which can be computed analytically: BSN
< log(2)g2 ~very bad at largeg); CC: N<g; M: N<(p2/12)1/4g'0.95g ~both of which give
roughly twice the correct result at largeg); C: N>(2/p)exp(2x)g21

2'0,336g2 1
2 @wherex is the
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root of 2x511exp(22x)]; C0 : N>g/p2 1
2'0,318g2 1

2 @the C and the C0 lower bounds are less
stringent than the lower bound~2.11! as soon asg exceeds 3.98 and 3.48, respectively#. As it is
clear from Fig. 1, the new bounds are quite cogent. From~2.10b! and~2.11b! one sees that thos
of the first type remain quite stringent as well for rather large values ofg: for instance, when the
exact numberN of bound states is equal to 5000, these upper and lower limits restrict it to
rather small interval@4998,5001#. Likewise, at this value ofg, the new limits of the second type
~1.26!, respectively~1.29!, entail the restrictions 4996<N<5002; while the corresponding valu
of the BS upper limit exceeds 6.93107, the CC upper limit only informs us thatN<104, and the
lower limit C thatN>3360.

The third test is performed with the~regular! E potential~2.3!. In this case the exact numbe
of bound states coincides with the number of zeros of the zeroth-order Bessel functionJ0(x) in the
interval 0,x<2g ~see, for example, Ref. 18, p. 196!. Also in this case the new upper and low
limits of the first type~1.18! and ~1.21! can be computed analytically:

N<
2

p
g1

1

2p
logS 4

p
gD1

1

2
, ~2.12!

N.
2

p
g2

1

2p
logS 4

p
gD21, ~2.13!

while those of the second type must be evaluated numerically. In this case all the prev
known limits can as well be computed analytically: BS:N<g2; CC: N<4/pg; M: N<21/4g; C:
N>2/(pAe)g2 1

2; C0 : N>g/p2 1
2. A comparison between these results is presented in Fig.

is again clear that the new limits are remarkably effective.
The fourth test is performed with the~singular! H potential~2.4!. In this case the exact numbe

of bound states is given simply by the integer part ofg:

N5$$g%%. ~2.14!

The new upper, respectively lower, limits of the first type applicable to singular potentials,~1.16!,
respectively~1.22!, can in this case be computed analytically as well:

FIG. 1. Comparison between the exact number of bound states for the PT potential~2.2! ~ladder curve!, the limits of the
first type~1.18! ~short-dash curve! and~1.21! ~solid curve!, the C~dash-dot curve! and C0 ~dash-double-dot curve! lower
limits, the BS~long-dash curve!, the CC~small-dot curve! and M~sparse-dot curve! upper limits, and the limits of the
second type~1.26! ~black diamond! and ~1.29! ~white diamond!.
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N<g2
1

p
logS tan

p

4gD1
1

2
, ~2.15a!

N.g1
1

p
logS tan

p

4gD2
3

2
, ~2.16a!

yielding asymptotically, for largeg,

N<g2
1

p
logS p

4gD1
1

2
2

p

48g2 1O~g24!, ~2.15b!

N.g1
1

p
logS p

4gD2
3

2
1

p

48g2 1O~g24!. ~2.16b!

The new lower limit of the second type~1.29! must in this case be evaluated numerically, while
the previously known limits~relevant to the case of singular potentials! can be computed analyti
cally: BS: N<(p2/6)g2; CC: N<2g; C: N>(2/p)log(2)g21

2. A comparison between these re
sults is presented in Fig. 3. It is again clear that the new limits are remarkably effective. An
again clear from a comparison of the asymptotic formulas~2.15b! and~2.16b! that the new upper
and lower limits of the first type remain remarkably cogent even at large values ofg: for instance,
when the exact number of bound states is equal toN55000, these limits,~2.15a! and ~2.16a!,
restrictN to the relatively small interval@4996, 5003#. For comparison, the corresponding val
of the BS upper limit exceeds 43107, the CC upper limit is 104, and the lower limit C only
informs us thatN>2207, while the new lower limit of the second type,~1.29!, informs us that
N>4994.

The fifth test is performed with the~singular! Y potential~2.5!. In this case the exact numbe
of bound states must be evaluated numerically: we employed two different methods of calcu
in order to check the numerical results3,4 ~note that these two methods possess a natural link31!.
The new upper and lower limits,~1.16! and~1.22!, respectively, can instead be computed anal
cally:

FIG. 2. Comparison between the exact number of bound states for the E potential~2.3! ~ladder curve!, the limits of the first
type~1.18! ~short-dash curve! and~1.21! ~solid curve!, the C~dash-dot curve! and C0 ~dash-double-dot curve! lower limits,
the BS~long-dash curve!, the CC~small-dot curve! and M~sparse-dot curve! upper limits, and the limits of the second typ
~1.26! ~black diamond! and ~1.29! ~white diamond!.
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N<A2

p
g1

x22y2

2p
1

1

2p
logS x

yD1
1

2
, ~2.17a!

N.A2

p
g2

x22y2

2p
2

1

2p
logS x

yD2
3

2
, ~2.18a!

with

erf~y!5a, erf~x!512a, a5~p/8!1/2g21, ~2.19!

so that asymptotically~asg→`, and keeping only the first correction term!

N<A2

p
g1

1

p
log~g!, ~2.17b!

N.A2

p
g2

1

p
log~g!. ~2.18b!

The new lower bound of the second type must also be evaluated numerically, while the prev
known limits relevant to the singular case can all be evaluated~almost completely! analytically:
BS: N<g2; CC: N<2(2/p)1/2g; C: N>(2/p)x1/2exp(2x/2)g2 1

250.531(2/p)g2 1
2 @wherex is

the root of exp(2x)5*x
`dy y21 exp(2y)]. A comparison between these results is presented in

4. It is again clear that the new limits are remarkably effective. And it is again clear fro
comparison of the asymptotic formulas~2.17b! and~2.18b! that the new upper and lower limits o
the first type remain remarkably cogent even at large values ofg: for instance, when the exac
number of bound states is equal toN550, these limits,~2.17a! and ~2.18a!, restrict N to the
relatively small interval@49,53#. For comparison, the corresponding value of the BS upper l
exceeds 4000, while the CC upper limit and the C lower limit only informs us that 22<N
<103; as for the new lower limit,~1.29!, it entails thatN>48.

Finally, the sixth test is performed with the~regular! STIS potential~2.6!. As already men-
tioned, this test potential is particularly appealing because in this caseall the relevant calculations
can be performed analytically; moreover, in contrast to the five previous cases, this po
features two dimensionless parameters rather than only one.

FIG. 3. Comparison between the exact number of bound states for the H potential~2.4! ~ladder curve!, the limits of the first
type ~1.16! ~short-dash curve! and ~1.22! ~solid curve!, the C lower limit~dash-dot-curve!, the BS~long-dash curve! and
CC ~dot curve! upper limits, and the lower limit of the second type~1.29! ~white diamond!.
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This potential possesses bound states only if the ‘‘coupling constant’’g exceeds1
2, g. 1

2

~irrespective of the value of the other,positive, parameter it features,a.0), and the exact numbe
N of its bound states is then given again by~2.7!, but now with

n5
1

2p
~l log~11a!12 arctan~l!! ~2.20a!

with l5A4g221, entailing at largeg

n5
1

p S g2
1

8gD log~11a!2
1

2pg
1

1

2
1O~g23!, ~2.20b!

and at largea

n5
l

2p F log~a!1
1

aG1
1

p
arctan~l!1O~a22!. ~2.20c!

The new upper and lower limits of the first type,~1.18! and ~1.21!, respectively, yield

$$n lo%%<N<$$nup%% ~2.21a!

with

nup5
1

p S g1
1

2D log~11a!2
1

4g
1

1

2
, ~2.21b!

respectively

n lo5
1

p S g2
1

2D log~11a!1
1

4g
, ~2.21c!

entailing at largeg

FIG. 4. Comparison between the exact number of bound states for the Y potential~2.5! ~black triangle!, the limits of the
first type ~1.16! ~short-dash curve! and ~1.22! ~solid curve!, the C lower limit~dash-dot curve!, the BS~long-dash curve!
and CC~dot curve! upper limits, and the lower limit of the second type~1.29! ~white dimaond!.
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nup2n lo

n
5

1

g F11
p

2 log~11a!G2
1

g2 F p

log~11a!
1

p2

4 log2~11a!G1O~g23!, ~2.21d!

and at largea

nup2n lo

n
5

2

l H 11
p

2 log~a! F12
1

g
2

4

pl
arctan~l!G J 1O~@ log~a!#22!. ~2.21e!

The new upper and lower limits of the second type,~1.26! and ~1.29!, respectively, yield

$$n2%%<N<$$n1%% ~2.22a!

with

n65
1

2 H H 2

p
g6 log~11a!2

g6

g J J 1
363

4
~2.22b!

where

g65
6~p/2!

log@16p/~2g!#
, ~2.22c!

so that, at largeg,

g65g6
p

4
1O~g21! ~2.22d!

entailing

n65
1

2 H H S 2

p
g6

1

2D log~11a!J J 1
163

4
1O~g21!, ~2.22e!

hence

n12n2

n
5O~g21!. ~2.22f!

Note that the formulas for the lower limit are only applicable ifg.p/2 @see~2.22c!#.
The previously known upper and lower limits can also be evaluated in closed form fo

potential:

BS: N<g2F log~11a!2
a

11aG , ~2.23!

CC: N<
2

p
g log~11a!, ~2.24!

M: N<gF S a22 log~11a!1
a

11a D a

11aG1/4

, ~2.25!

C: N>
2

p
gS 12

1

A11a
D 2

1

2
, ~2.26!
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C0: N>
1

p
g

a

11a
2

1

2
. ~2.27!

The merits of the new limits are already apparent from these formulas. Representative ex
are given in Table I.

In conclusion it seems justified to conclude from these tests that the new limits presen
this article are rather cogent and generally superior to those hitherto known. They are parti
effective for strong potentials possessing many bound states, thanks to their capability to ge
reproduce the correct asymptotic~semiclassical! result~1.6! when the coupling constant diverge
Let us also emphasize that, from a computational point of view, the limits of the second
presented herein are particularly convenient, especially in the case of regular potentials.

III. PROOFS

In this section we prove the new results reported in Sec. I. We assume throughout th
potential satisfies the conditions~1.1! as well as~1.3!.

Let u(r ) be the zero-energy S-wave Schro¨dinger wave function, characterized by the seco
order ordinary differential equation

u9~r !2V~r !u~r !50, ~3.1a!

with boundary condition

u~0!50. ~3.1b!

It is well known ~see, for instance, Ref. 8! that the number of zeros of the solution of~3.1a!
with ~3.1b! in the interval 0,r ,` coincides with the numberN of S-wave bound states sup
ported by the potentialV(r ) ~we always exclude, for simplicity, the marginal case of a poten
that features a ‘‘zero-energy bound state or resonance’’!. Let us indicate withzn the successive
zeros ofu(r ), and withbn the successive zeros ofu8(r ) @namely, the locations of the successi
extrema of the wave functionu(r )],

u~zn!50, u8~bn!50. ~3.2!

It is then clear that, since the potentialV(r ) is nowherepositive@as implied by~1.1! with ~1.3!#,

V~r !52uV~r !u, ~3.3!

the zero-energy wave functionu(r ) is an everywhere convex function ofr , entailing the ‘‘inter-
lacing’’ relations

TABLE I. Comparison between the exact number of bound statesN, the bounds of the first type~1.18! and ~1.21!, see
~2.21!, the limits of the second type~1.26! and~1.29!, see~2.22!, the BS, CC and M upper limits, and the C and C0 lower
limits, for the STIS potential~2.6! with a representative set of values ofa andg.

(a,g) N $$n lo%% $$nup%% $$n2%% $$n1%% BS CC M C C0

~1,10! 2 2 2 2 4 19 4 4 2 2
(1,102) 22 21 22 22 24 1931 44 48 19 16
(1,103) 221 220 221 220 222 .105 441 488 186 159
(102,10) 15 13 15 13 17 362 29 30 6 3
(102,102) 147 146 148 146 150 36250 293 308 57 32
(104,10) 29 27 31 27 33 821 58 99 6 3
(104,102) 293 291 295 291 297 82105 586 999 63 32
(106,10) 44 41 46 40 49 1281 87 316 6 3
(106,102) 440 437 442 436 445 .105 879 3162 64 32
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05z0,b1,z1,b2,¯,zN21,bN,zN,`. ~3.4!

Note that these formulas imply thatu8(r ) doesnot vanish in the intervalzN<r ,`, namely a
bN11,` does not exist@otherwise it would be inevitably followed byzN11,`, and this is
excluded sinceN is the number of zeros ofu(r )].

Following Refs. 7 and 8 we now introduce a functionh(r ) defined via the relation

tan@h~r !#5uV~r !u1/2u~r !/u8~r !, ~3.5a!

with

h~0!50, ~3.5b!

and the requirement thath(r ) be a continuous function ofr @to lift the mod~p! ambiguity entailed
by the definition~3.5a!#. It is then clear that the properties~3.4! together with the definition~3.5a!
imply the relations

h~zn!5np, h~bn11!5~2n11!p/2, n50,1,...,N21, ~3.6a!

h~zN!5h~`!5Np, ~3.6b!

and that the value ofh(r ) inside the intervals~3.4! lies between the values taken at the extrem
points of these intervals, namely, forzn<r<bn11 with n50,...,N21, np<h(r )<(2n
11)p/2, and forbn<r<zn with n51,...,N, (2n21)p/2<h(r )<np, except of course for the
last interval,zN<r ,`, whereNp<h(r ),(2N11)p/2. Note that these results also imply tha
for all values ofr ,

0<h~r !,~N1 1
2!p ~3.6c!

~indeed the value at which the second inequality was violated would qualify asbN11 , which, as
already noted, would then inevitably be followed byzN11 , violating the hypothesis that th
number of zeros beN).

Moreover, from~3.1a! we obtain via~3.5a! and ~3.3! the nonlinear first-order differentia
equation

h8~r !5uV~r !u1/22
V8~r !

4uV~r !u
sin@2h~r !#, ~3.7!

which, together with the ‘‘initial condition’’~3.5b!, determines the functionh(r ) and, therefore,
via ~3.6b!, the numberN of S-wave bound states. This equation will be our main tool to de
~upper and lower! limits on N.

It is indeed clear from~3.7! and ~1.3! that

h8~r !<uV~r !u1/21
V8~r !

4uV~r !u
, ~3.8!

h8~r !>uV~r !u1/22
V8~r !

4uV~r !u
. ~3.9!

These inequalities~3.8!, respectively~3.9!, together with~3.5b! and~3.6!, will be our main tool to
derive upper, respectively lower, limits onN. ~Note that more stringent conditions might b
written by considering separately all the intervals of typezn<r<bn11 where sin@2h(r)# is clearly
non-negative, see~3.4! and ~3.6a!, respectively, and all the intervals of typebn<r<zn where
sin@2h(r)# is clearlynonpositive, see~3.4! and~3.6a!; but it does not appear that such a distincti
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might be maintained to the end without having to renounce the goal to obtain reasonably ne
formulas for the limits; we will, however, take advantage of this improvement for certain inter
see below.!

Let us now focus first on the derivation of the upper limit~1.16!. To this end we integrate~3.8!
from b1 to zN21 , and via~3.6a! and ~3.3! we get

S N2
3

2Dp<E
b1

zN21
dr uV~r !u1/21

1

4
logU V~b1!

V~zN21!
U. ~3.10!

On the other hand we know, as already noted above, that in the intervals 0<r<b1 and zN21

<r<bN ~where sin@2h(r)# is non-negative, see~3.4! and~3.6a!# ~3.8! can be replaced by the mor
stringent inequality@see~3.7!#

h8~r !<uV~r !u1/2, ~3.11a!

and the integration of this inequality over these intervals yields@via ~3.6a!#

p

2
<E

0

b1
dr uV~r !u1/2, ~3.11b!

p

2
<E

zN21

bN
dr uV~r !u1/2. ~3.11c!

Hence by summing~3.10!, ~311b! and ~3.11c! ~and dividing byp! we get

N2
1

2
<

1

p E
0

bN
dr uV~r !u1/21

1

4p
logU V~b1!

V~zN21!
U, ~3.12!

and thereforea fortiori @thanks to the monotonicity ofV(r ), see~1.3!#

N<
1

p E
0

`

dr uV~r !u1/21
1

4p
logUV~p!

V~q!
U1 1

2
, ~3.13a!

provided

p<b1 , ~3.13b!

q>zN21 . ~3.13c!

To complete the proof of the first upper limit reported in Sec. I, see~1.16!, we must show that the
radii p, respectivelyq, defined by~1.16b!, respectively~1.16c!, satisfy ~3.13b!, respectively
~3.13c!. For p this is immediately implied by a comparison of~1.16b! and~3.11b!; and, likewise,
indeeda fortiori, this is as well implied forq by a comparison of~1.16c! and ~3.11c!.

Let us now proceed and prove the first lower limit of Sec. I. We treat firstly the case in w
the potential is finite at the origin, see~1.19!. To this end we integrate~3.9! from 0 to an arbitrary
~of coursepositive! radiuss getting thereby the inequality

h~s!>E
0

s

dr uV~r !u1/22
1

4
logUV~0!

V~s!
U, ~3.14!

namelya fortiori, via ~3.6c!,

S N1
1

2Dp.E
0

s

dr uV~r !u1/22
1

4
logUV~0!

V~s!
U, ~3.15!
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which clearly immediately implies~1.19!.
If the potential diverges at the origin, to get the lower bound~1.22! we integrate~3.9! from p

to q and we then get via~1.16b! and ~1.16c!

h~q!2h~p!>E
p

q

dr uV~r !u1/22
1

4
logUV~p!

V~q!
U5E

0

`

dr uV~r !u1/22p2
1

4
logUV~p!

V~q!
U, ~3.16!

and via~3.6c! this clearly yields~1.22!.
A generally more stringent but less explicit bound obtains by integrating~3.9! from b1 to s

getting thereby@see~3.6a!#

h~s!2
p

2
>E

b1

s

dr uV~r !u1/22
1

4
logUV~b1!

V~s!
U, ~3.17a!

hencea fortiori, via ~3.6c!,

Np.E
b1

s

dr uV~r !u1/22
1

4
logUV~b1!

V~s!
U, ~3.17b!

hencea fortiori @see~3.13b! and ~1.3!#

Np.E
b1

s

dr uV~r !u1/22
1

4
logUV~p!

V~s!
U, ~3.18!

hence finally

Np.E
t

s

dr uV~r !u1/22
1

4
logUV~p!

V~s!
U, ~3.19a!

provided there holds the inequality

t>b1 . ~3.19b!

This condition is clearly equivalent to the requirement that the potentialV(r ) amputated of its part
extending beyondt possess at least one bound state.@Since whenV(r ) vanishes,u(r ) is linear,
u(r )5ar 1b, see~3.1a!, hence the condition~3.19b! with V(r ) vanishing beyondt guarantees
the existence ofz1,`.] It is therefore sufficient, to make sure that~3.19b! holds, that this
amputated potential,V(r )u(t2r ) @whereu(x) is the step function,u(x)51 if x>0, u(x)50 if
x,0] satisfy one of thesufficientconditions for the existence of at least one bound state repo
in Sec. I, see~1.11!–~1.13!. Here for simplicity we restrict attention to thesufficientcondition
~1.12!, and we thereby conclude that a formula adequate to guarantee that the inequality~3.19b! be
satisfied is validity, for somepositivevalue ofa of either one of the following two inequalities, se
~1.12! @below we write> in place of., sincet might coincide withb1 , see~3.19b!, which would
correspond to an amputated potential possessing only a zero-energy bound state or reson#:

a21E
0

a

dr r 2uV~r !u1aE
a

t

dr uV~r !u>1 with a<t, ~3.20a!

a21E
0

a

dr r 2uV~r !u>1 with a>t. ~3.20b!

And clearly the choicea5t leads to~1.23b!, thereby completing the proof of the first lower lim
to N for potentials singular at the origin as reported in Sec. I, see~1.23!.
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Let us now proceed and prove the second type of limits toN. For simplicity, in the case of the
upper bound we restrict attention to the case of potentials which are finite at the origin, a
course we always assume the potential to satisfy the monotonicity condition~1.3!.

First of all we introduce the potential amputated of its part beyondq

V̄~r !5V~r ! for 0<r ,q, ~3.21a!

V̄~r !50 for r>q. ~3.21b!

Hereq is defined by~1.16c!, hence it satisfies the condition~3.13c!; therefore, if we indicate with
N̄ the number of bound states possessed by the potentialV̄(r ), either N̄5N21 @if zN21<q

,bN ; indeed the zero-energy wave functionū(r ) corresponding to the potentialV̄(r ) is linear for
r .q, see~3.21b!, hence it has one less zero than the zero-energy wave functionu(r ) correspond-
ing to the potentialV(r ) if the cutoff pointq comes before the point,bN , at whichu(r ) bends
over for the last time, namely where it has its last extremum# or N̄5N @if q>bN ; we include in
the count of the numberN̄ of bound states ofV̄(r ) also a zero-energy one, should it happen t
there be one, namely thatq5bN]. So, in any case,

N̄<N<N̄11. ~3.22!

Our strategy is now to introduce two monotonically increasing ladder-type poten
V(1)(r ), respectivelyV(2)(r ), both vanishing beyondq just asV̄(r ) does@see~3.21b!#, which
minorize, respectively majorize,V̄(r ),

V(1)~r !<V̄~r !<V(2)~r !, ~3.23!

so that the number of bound states,N(1), respectivelyN(2), possessed by them majorize, respe
tively minorize,N̄, yielding, via ~3.22!,

N(2)<N<N(1)11. ~3.24!

And these potentials,V(1)(r ), respectivelyV(2)(r ), shall now be manufactured so that one c
easily compute the numbers of bound states they possess.

Indeed the potentialV(1)(r ) is now defined by the rule

V(1)~r !5V~r j
(1)! for r j

(1)<r ,r j 11
(1) , j 50,1,...,J(1)21, ~3.25a!

V(1)~r !5V~r J(1)
(1)

! for r J(1)
(1) <r ,q, ~3.25b!

V(1)~r !50 for r>q, ~3.25c!

with the increasing radiir j
(1) defined by the recurrence relation~1.24!, and thepositive integer

J(1) defined by the condition that the radiusr J(1)11
(1) yielded by this recursion~be the first one to!

exceed or equalq, see~1.25!. It is plain that this potential minorizes, see~3.23!, the truncated
potentialV̄(r ) for all values ofr ~if in doubt, draw a graph!, and it is moreover easy to compu
the numberN(1) of bound states it possesses, since for this potential

h (1)~r j
(1)!5 j p/2, j 50,1,...,J(1)11. ~3.26!

This result is implied by the differential equation satisfied byh (1)(r ), which reads simply

h8(1)~r !5uV(1)~r !u1/2, ~3.27a!

namely@see~3.25a!#
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h8(1)~r !5uV(1)~r j
(1)!u1/2 for r j

(1)<r ,r j 11
(1) , j 50,1,...,J(1), ~3.27b!

since the second term on the right-hand side of~3.7! vanishes forr j
(1),r ,r j 11

(1) because
V(1)(r )5V(1)(r j

(1)) is constant there hence its derivative vanishes, and atr 5r j
(1) because

sinb2h(1)(r j
(1))c vanishes due to~3.26! and therefore kills the contribution that would otherwi

come from the delta function produced by the derivative of the discontinuity of the pote
occurring there. And the consistency of~3.26! with ~3.27! is of course guaranteed by~3.25b! and
~1.24!.

We now note that, for this potentialV(1)(r ), ~3.26! implies

r j
(1)5zj /2

(1) if j is even, j 50,2,...,J(1)21 or J(1), ~3.28a!

r j
(1)5b( j 11)/2

(1) if j is odd, j 51,3,...,J(1)21 or J(1), ~3.28b!

where the radiizj
(1) , respectivelybj

(1) , are of course the successive zeros, respectively
extrema, of the zero-energy wave functionu(1)(r ) corresponding to the potentialV(1)(r ) @see
~3.4!#. Moreover, for a potential amputated of its part beyondq @as is the case ofV(1)(r )], the
numberN(1) of bound states is characterized by the conditionbN(1)

(1) <q @since the zero-energy
wave function is a straight line forr .q, see~3.1a! and~3.25c!#. Hence after considering the tw
possible parities, even or odd, ofJ(1), we conclude that, in both cases,

N(1)5$$~J(1)11!/2%%, ~3.29!

and via~3.24! this completes our proof of the upper limit~1.26!.
To prove the lower limit~1.29! we introduce the following ladder-type potential:

V(2)~r !5V~r J(2)
(2)

! for 0<r<r J(2)
(2) , ~3.30a!

V(2)~r !5V~r j 21
(2) ! for r j

(2),r<r j 21
(2) , j 5J(2),J(2)21,...,2,1, ~3.30b!

V(2)~r !50 for q5r 0
(2),r ,`, ~3.30c!

with the sequence ofdecreasingradii r j
(2) defined by the recursion relation~1.27!. It is plain that

this potential majorizes, see~3.23!, the truncated potentialV̄(r ) for all values ofr ~if in doubt,
draw a graph!; hence ifN(2) is the number of S-wave bound states possessed by this potentia
~first part of the! inequality ~3.24! holds. As we know, since the potentialV(2)(r ) vanishes
identically beyondq (and bN(2)

(2) <q), see~3.30c!, this numberN(2) is given by

N(2)5$$h (2)~q!/p%%. ~3.31!

Hereh (2)(r ) is of course the solution of the differential equation~3.7! for the potentialV(2)(r ),
namely

h8(2)~r !5uV(2)~r !u1/22
V8(2)~r !

4uV(2)~r !u
sin@2h (2)~r !#, ~3.32!

with the initial condition

h (2)~0!50. ~3.33!

Since the ladder-type potentialV(2)(r ) presents some discontinuities, see~3.30!, the integration of
~3.32! from the initial condition~3.33! onward shall encounter some delta functions, but th
integrable singularities of the right-hand side of~3.32! do not destroy the properties of existenc
uniqueness and continuity of the solutionh (2)(r ) of ~3.32! with ~3.33!.
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Let nowh̃(r ) be another solution of the same differential equation~3.32!, characterized by the
initial condition

h̃~0!52r J(2)
(2) uV~r J(2)

(2)
!u1/2. ~3.34!

Since clearly@see~3.33! and ~1.28!#

h (2)~0!.h̃~0! ~3.35a!

and the two functionsh (2)(r ) andh̃(r ) satisfy the same differential equation, there follows th
for every finite value ofr an analogous inequality holds@indeed, the graph of the continuou
function h̃(r ) as function ofr can never overtake the graph of the continuous functionh (2)(r ) as
function of r , since at the point of crossing their slopes must coincide becauseh̃(r ) satisfies the
same differential equation ash (2)(r ), see~3.32!, hence no crossing can occur#:

h (2)~r !.h̃~r !. ~3.35b!

Hence as well

h (2)~q!.h̃~q!, ~3.35c!

entailinga fortiori, via ~3.31!,

N(2)>$$h̃~q!/p%%. ~3.36!

@Note that, though a strict inequality sign appears in~3.35c!, one must allow for the possibility o
equality in this formula,~3.36!, because twodifferentnumbers may have thesameinteger part#.

But the initial condition~3.34! and the recursion relation~1.27! defining the radiir j
(2) have

been adjusted, as it can be easily verified in analogy to the argument used above,
h̃(r J(2)

(2) )50, h̃(r J(2)21
(2) )5p/2, h̃(r J(2)22

(2) )5p, and so on, entailing@see~1.27!#

h̃~r 0
(2)!5h̃~q!5J(2) p/2. ~3.37!

Via ~3.31! and ~3.24! this implies the lower limit~1.29!, which is thereby proven.

IV. THE KLEIN–GORDON CASE

In the context of first-quantized mechanics with relativistic kinematics, a zero-spin partic
~positive! massm moving in an external potentialW(r ), which is the fourth-component of a
relativistic four-vector, is described~in self-evident notation, and with an appropriate choice
units! by the following Klein–Gordon equation:

~P21m2!c~r !5@E2W~r !#2c~r !. ~4.1!

In the spherically symmetrical case,W(r )5W(r ), the zero-kinetic-energy~namely, E5m)
S-wave radial equation coincides with the corresponding equation for the Schro¨dinger case,~3.1!,
with the following definition ofV(r ) in terms ofW(r ):

V~r !52mW~r !2W2~r !. ~4.2!

Note that, if the potentialW(r ) is monotonically nondecreasing and vanishes at infinity@and is
thereforenonpositive, W(r )52uW(r )u], the same property, see~1.3!, holds as well for the po-
tentialV(r ). And the following conditions on the behavior ofW(r ) at the origin and at infinity are
clearly sufficient to guarantee the validity of~1.1!:

lim
r→0

br 12«W~r !c50, ~4.3a!
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lim
r→`

br 21«W~r !c50. ~4.3b!

All the results reported above in the Schro¨dinger context can therefore be immediately tak
over to the Klein–Gordon case. Note, however, that, as a consequence of the relation~4.2!, if one
introduces a ‘‘coupling constant’’g as a measure of the strength of the potential by set
W(r )5g2w(r ), then one sees that in the Klein–Gordon case asg diverges the number of S-wav
bound states grows proportionally tog2 @rather than proportionally tog as is the case in the
Schrödinger context, see~1.6!#.
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Recently, Go´mez-Ullateet al. @Phys. Lett. B511, 112 ~2001!# have studied an
N-particle quantum problem with elliptic-function potentials. They have shown that
the Hamiltonian operator preserves a finite dimensional space of functions and as
such is quasi-exactly solvable~QES!. In this article we show that other types of
invariant function spaces exist, which are in close relation to the algebraic proper-
ties of the elliptic functions. Accordingly, series of new algebraic eigenfunctions
can be constructed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1557788#

I. INTRODUCTION

The first example of a nontrivial, integrable quantum many-body Hamiltonian was foun
Calogero.1 It describes a system ofN particles in one dimension interacting pairwise by means
an inverse square potential. The similar model endowed with an inverse sine-square pote
also integrable as shown by Sutherland.2 In fact these two potentials are particular cases o
two-parameter family of potentials defined by the Weierstrass function.3,4 A detailed analysis of
these models generalizing the Calogero–Sutherland~CS! quantum models was reported in Ref.
Their classical counterparts are discussed, e.g., in Ref. 6.

While integrable models~classical or quantum! can be studied because of their mathemati
interest, it became apparent in recent years that the CS models can be applied to a large
of fields of physics. These range from condensed matter~quantum Hall liquids, quantum spin
chains,...!7 to gauge theories,8 soliton theory9 as well as recently to questions related to black ho
and ~anti!-deSitter space.10,11 In particular, it was shown in Ref. 11 that the asymptotic dynam
of two-dimensional gravity in anti-deSitter and deSitter space respectively can be describe
generalized two-body CS model.

The property of a model to be integrable~i.e., to have a complete set of commuting consta
of motion! does not necessarily imply that the spectrum and the eigenfunctions of the corres
ing Hamiltonian can be constructed explicitly. The models which have this property are c
solvable. From the beginning the CS models were known to be solvable, while further prop
of their spectrum were obtained only recently, see, e.g., Ref. 12 and 13. However, the explic
of the spectrum is still missing as far as the full Weierstrass-function potential is considere
generic values ofN.

A step forward in the construction of solvableN-body problems interacting via a Weierstra
function was achieved in Ref. 14. The authors indeed showed that, when the Weierstrass p
is supplemented by a suitable external potential, a finite number of eigenvectors can be co
explicitly in terms of special functions. Stated differently, the model is quasi-exactly solv
~QES! according to the definition of Ref. 15. In fact, the kind of interaction considered in Re

a!Electronic mail: yves.brihaye@umh.ac.be
b!Electronic mail: betti.hartmann@durham.ac.uk
15760022-2488/2003/44(4)/1576/8/$20.00 © 2003 American Institute of Physics
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and in the present article generalizes a potential first introduced in Ref. 16.
Following the ideas of Ref. 15, the QES property holds when the Hamiltonian ope

possesses a finite-dimensional invariant vector space of functions. Such a vector space wa
constructed in Ref. 14 for the Hamiltonian considered. The purpose of this article is to de
strate that this Hamiltonian possesses alternative invariant finite-dimensional vector spa
functions. The way these new vector spaces are constructed is very reminiscent to the m
algebraizations of the Lame´ equations~see, e.g., Ref. 17!, which occur due to the properties of th
Jacobi elliptic functions.

The Hamiltonian is presented in Sec. II. In this section we also give the transformation p
the Hamiltonian in a Lie-algebraic form which reveals its QES property. The new invariant v
spaces are constructed in Sec. III and the Hamiltonian is studied for particular values
parameters. The results are summarized in Sec. IV.

II. AN ELLIPTIC CALOGERO–SUTHERLAND MODEL

The quantum Hamiltonian proposed recently by Go´mez-Ullateet al.14 is given by

HN~x!52 (
k51

N
]2

]xk
2 1VN~x! , x5~x1 ,x2 , . . . .,xN!. ~1!

It describesN particles on a line interacting through the potential

VN~x!5cm(
k51

N

P~xk1 ib!14b~b21!(
k51

N

P~2xk!1a~a21! (
j ,k51
j Þk

N

@P~xj1xk!1P~xj2xk!#.

~2!

HereP(z)[P(z;g2 ,g3) denotes the Weierstrass function with invariantsg2 ,g3 . The constantsa,
b are real and positive,cm is real. The term proportional tocm can be interpreted as the potenti
of an external field.

The Hamiltonian~1! was shown to admit an invariant, finite-dimensional vector space
functions.14 Restricting the operator to this vector space, the eigenvalue equationHNc5Ec is
reduced to a matrix equation and, accordingly, a finite number of eigenvectors can be dete
algebraically. Following the definition of Ref. 15 the operatorHN is called quasi-exactly solvabl
~QES!.

To reveal this propertyHN has to be transformed appropriately. The authors of Ref.
introduced the function~called ‘‘gauge factor’’!

m~x!5)
j ,k

@P~xj1 ib!2P~xk1 ib!#a)
k

@P8~xk1 ib!#b ~3!

and the new variables

zk5P~xk1 ib!, k51,...,N. ~4!

Then a HamiltonianH̄N—spectrally equivalent toHN—is constructed according toH̄N(z)
5m21(z)HN(x)m(z). If the coupling constantcm is chosen according to

cm5@2m12a~N21!14b#@2m1112a~N21!12b#, m e N, ~5!

H̄N(z) preserves the finite dimensional polynomial space18

Mm5spanH t1
l 1t2

l 2
¯tN

l N ; (
i 51

N

l i<mJ ~6!
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with the kth elementary symmetric function

tk[ (
i 1, i 2,¯, i k

zi 1
zi 2

¯zi k
, 1<k<N. ~7!

A lengthy calculation leads to

H̄N~z!52 (
k51

N

pk

]2

]zk
2 22a (

k,l 51
kÞ l

N
pk

zk2zl

]

]zk
2S b1

1

2D (
k51

N

pk8
]

]zk
1V̄N~z!, ~8!

wherepk[p(zk) andpk8[p8(zk) with

p~z!54z32g2z2g3 , p8~z![
dp

dz
512z22g2 . ~9!

In the following we will use the roots,ei , i 51,2,3, ofp(z):

p~z!54~z2e1!~z2e2!~z2e3!54z32g2z2g3 . ~10!

These numbers are equal to the values of the Weierstrass function at its half-periods.
The potentialV̄N in ~8! is given by

V̄N~z!5m~12b18a~N21!14m12!t1 , t15 (
k51

N

zk . ~11!

The crucial observation is that the HamiltonianH̄N(z) can be written as a quadratic polynomial
the differential operators

Dk5
]

]tk
, Njk5t j

]

]tk
, Uk5tkS r 2(

i 51

N

t i

]

]t i
D , j ,k51,2,...,N, ~12!

with r 5m. These operators form a representation of the Lie algebra sl(N11) for generic value of
the real parameterr ; for r 5m they preserve the vector spaceMm and the representation is finit
dimensional.

Denoting byH̄N
(1) the part ofH̄N which increases the degree of elements ofMm , we find

H̄N
(1)524t1~N2m!S N1m1

1

2
12a~N21!13bD , N[(

k51

N

Nkk. ~13!

Obviously, the factor (N2m) leads to the annihilation of all the monomials inMm which have
overall degreem. Therefore, we findH̄NMm#Mm . As a consequence, eigenvectors ofH̄N ~and
therefore also ofHN) can be constructed inMm . In the following we will refer to this property as
an ‘‘algebraization’’ ofHN .

III. ADDITIONAL GAUGE FACTORS

Inspired by the construction of the Lame´ polynomials~see, e.g., Ref. 17!, we introduce one
further transformation of the HamiltonianHN :

H̄N→H̃N5m̃21H̄Nm̃ ~14!

with the gauge factorm̃ of the form
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m̃~z!5)
k51

N

~zk2e1!n1~zk2e2!n2~zk2e3!n3. ~15!

The choicen15n25n350 obviously corresponds to Ref. 14. After a calculation, we find t
for each value of the form

n i50 or n i5
1
2 2b, i 51,2,3, ~16!

the HamiltonianH̃N can be expressed as a quadratic combination of the operators~12! with
suitable values~depending on the values ofn i ’s) of the parameterr . We then found eight gauge
factors ~15! leading to algebraizations of the initial operatorHN . Let us now investigate the
relations betweenr and the different parameters involved in the equations.

We find that the degree-increasing part, sayH̃N
(1) , of H̃N is given by

H̃N
(1)524t1~N2~m1bnf2

1
2 nf !!~N1m12a~N21!1~32nf !b1 1

2 ~11nf !!. ~17!

Here,nf denotes the number of nonzero exponentsn i , i 51,2,3, in~15!, i.e., is either 0,1,2 or 3.
Note that fornf51 andnf52 three different algebraizations are available.

If we allow m to be a noninteger and require instead thatm̃ with

m̃[m1bnf2
1
2 nf ~18!

is an integer, we conclude that now

H̃NMm̃#Mm̃ . ~19!

In the special caseb50, we can distinguish two different cases:~1! bothm andm̃ are integers and
~2! only m̃ is an integer. For item~1! we find a quadruple algebraization of the HamiltonianH̃N

~one algebraization fornf50 and three fornf52):

H̃NMm#Mm for nf50 , ~20a!

H̃NMm21#Mm21 for nf52. ~20b!

Similarly, for item ~2! we find

H̃NMm2 1/2#Mm2 1/2 for nf51, ~21a!

H̃NMm2 3/2#Mm2 3/2 for nf53. ~21b!

Now, m̃5m2 1/2 should be an integer. Again, this is a quadruple algebraization of the Ha
tonian H̃N ~one algebraization fornf53 and three fornf51).

A. aÄbÄ0: Relation between the Hamiltonian HN and the Lamé operators

In order to understand the pattern of the algebraic solutions obtained for the model~1! and~2!,
it is useful to study the limita5b50. Using the relation

P~x1 ib!5e31~e22e3!sn2~Ae12e3x,k!, k2[
e22e3

e12e3
, ~22!

it is easy to see that fora5b50 the operator~1! takes the form
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HN~u!5~e12e3!(
j 51

N H 2
]2

]uj
2 12m~2m11!k2sn2~uj ,k!J 12m~2m11!e3N ~23!

with uj[Ae12e3xj . The operator inside the brackets$ % of ~23! constitutesN decoupled copies o
the LaméoperatorL(u):

L~u!52
d2

du2 12m~2m11!k2sn2~u,k!, 0<k<1, ~24!

which admits (4m11) algebraic eigenvalues ifm is an integer or a half integer.
If m is an integer, (m11) eigenvectors ofL(u) are of the formpm(sn2) and (3m) eigenvec-

tors are of the form cn•pm21(sn2), sn•pm21(sn2), dn•pm21(sn2). sn, cn, dn are abbreviations fo
the Jacobi elliptic functions sn(u,k),cn(u,k),dn(u,k) andpn denotes a polynomial of degreen in
its argument. Ifm is a half integer 3(m1 1

2), eigenvectors ofL(u) are of the form sn• cn
•pm11/2(sn2), sn• dn•pm11/2(sn2), cn• dn•pm11/2(sn2) and (m2 1

2) eigenvectors are of the form
sn• cn • dn•pm21/2(sn2).

Therefore, a total number of (4m11)N algebraic eigenvectors of the Hamiltonian~23! can be
constructed. However, not all of them are completely symmetric under the permutations
coordinates. Since the procedure of algebraization is crucially related to the symmetrized va
tk @see~7!#, only the completely symmetric solutions can be hoped to be recovered in the ge
case for whichaÞ0 and/orbÞ0.

Studying the solutions of the operator~23! and the structure of the eigenfunctions of the Lam´
operator, it is not difficult to see that the number of completely symmetric solutions is give

Cm1N
N 13Cm1N21

N ~25a!

if m is an integer and

3Cm81N
N

1Cm81N21
N , m8[m1 1

2, ~25b!

if m is a half integer, respectively.Cq
p denotes the usual combinatoric symbol.

We find that forb50 the number of algebraic solutions available by applying the met
described here agrees nicely with these above numbers. Moreover, we checked for seve
ticular cases that, indeed, the relevant Lame´ solutions are reproduced in the limita→0. Note that
in Ref. 14 onlyCm1N

N solutions were found for integer values ofm. Our supplementary factor
izations therefore complete the pattern.

B. The case NÄmÄ2, bÄ0

For the choice N5m52, ~20a! leads to a 636 matrix with respect to the basi
$1,t1 ,t2 ,t1

2 ,t1t2 ,t2
2%:14

S 0 g2~2a12b11! 22ag3 4g3 0 0

16a124b120 0 g2~b1
1
2! 4g2~a1b11! 2g3~12a! 0

0 8a124b112 0 0 g2~2a12b15! 24g3~a11!

0 8a112b114 0 0 g2~b1
1
2! 2g3

0 0 8a112b114 16~a13b13! 0 g2~2b13!

0 0 0 0 8a124b128 0

D .

~26!

For ~20b! we obtain three different 333 matrices with respect to the basis$1,t1 ,t2%:
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hi5S ~614a!ei g2~2a11!18ei
2 22ag3

1418a ~1014a!ei g2/214ei
2

0 2818a ~1414a!ei

D , i 51,2,3. ~27!

We thus obtain 15 algebraic solutions, i.e., an additional nine to the ones obtained in Ref.
In Figs. 1~a! and 1~b! we show the energy eigenvalues as functions ofe for

e152, e25211e, e35212e ~28!

anda50 anda55.0, respectively. Figure 1~a! corresponds to two decoupled Lame´ operators. The
limit e50 further corresponds to the completely integrable case of two decoupled oscil
@e25e3 , sok50 and the potential vanishes in~22! and~23!#. The eigenvalues of this system a
of the form 3(j 1

21 j 2
2)240 where j 1 , j 2 are integers. The set of algebraic eigenvalues obta

with our factorization~15! represents just the completely symmetric case, i.e.,j 11 j 252n, n
50,1,2,. . . , in this limit. This can be checked in Fig. 1~a!. In Fig. 1~b! the effect of an interaction
potential on the energy eigenvalues is demonstrated fora55.0.

The case for which two of the numberse1 ,e2 ,e3 are equal is in itself special, since the 1
eigenvalues can be expressed as linear functions ofa and the system is highly degenerate
irrespectively ofa. E.g., for e152, e25e3521, three eigenvalues of the 636 matrix are not
degenerate:

28~514a!, 24~712a!, 8~112a!, ~29a!

the other three eigenvalues of the 636 matrix coincide with those of the 333 matrix h1 :

FIG. 1. ~a! The energy eigenvalues of the 636 matrix ~dotted! and of the 333 matriceshi ( i 51 dashed,i 52 solid, i
53 dotted-dashed!, which correspond to the choiceN5m52, are shown fora5b50 as a function ofe, wheree152,
e25211e ande35212e. ~b! Same as~a!, but for a55.0.
                                                                                                                



h
ich

nvalues
r a

etical
ner-
scrib-
stems.

t system
he

nds on

ants:

t

con-
ctions

s
ssume

1582 J. Math. Phys., Vol. 44, No. 4, April 2003 Y. Brihaye and B. Hartmann

                    
28~21a!, 4~514a!, 8~712a!, ~29b!

and finally the eigenvalues of the 333 matricesh2 andh3 coincide and read

22~17110a!, 22~522a!, 2~712a!. ~29c!

This is clearly shown in Figs. 1~a! and 1~b!, where ate50 three of the dotted curves, whic
correspond to three of the eigenvalues of the 636 matrix, and the three dashed curves, wh
correspond to the three eigenvalues ofh1 , cross both fora50 anda55.0, respectively. Similarly,
the three solid lines and the three dotted-dashed lines, which correspond to the three eige
of the matricesh2 and h3 , respectively, cross ate50. How these degeneracies disappear fo
generic choice ofei , i 51,2,3, is also shown in these figures

Finally, in Fig. 2 we demonstrate the dependence of the eigenvalues on the parametera for the
special choicee152, e252 3

2, e352 1
2.

IV. SUMMARY

The construction of integrable models of Calogero–Sutherland~CS! type has recently re-
ceived a lot of attention in relation to new applications related to different domains of theor
physics. The class ofN-body integrable models remains, however, very tiny, and several ge
alizations are worth considering. The construction of quasi-exactly solvable Hamiltonians de
ing N degrees of freedom appears to be a possible extension of the notion of integrable sy
As seen in Refs. 14 and 16, the potential can be more general than those related to the roo
of a Lie algebra~typically of the typeAN for potentials depending on the differences of t
particles’ coordinates!.

In this article, we reconsidered such a QES model proposed recently in Ref. 14. It depe
four parameters: two coupling constantsa,b and the two periods of the Weierstrass functionP,
parametrized byg2 ,g3 . More popular models are recovered for special limits of these const
an Inozemtsev model forb50, a system ofN decoupled Lame´ equations ifa5b50 and a system
of N decoupled oscillators if, in addition,e25e3 ~or equivalentlyg2

3527g3
2). We have seen tha

the caseb50 possesses a particularly rich algebraic spectrum.
By investigation of the spectrum available in these limits, it appears that the solutions

structed in Ref. 14 do not constitute the full set of completely symmetric algebraic eigenfun
of the initial Hamiltonian~1!. Following closely the construction of the Lame´ polynomials we
have found additional algebraizations of the operatorHN . The set of algebraic eigenfunction
obtained in this way coincides exactly with the number of possible algebraic functions. We a
that an extension of the type of Hamiltonian considered here to 232 matrix valued operators19

might be possible, but leave this construction as a future project.20

FIG. 2. The energy eigenvalues of the 636 matrix ~dotted! and of the 333 matriceshi ( i 51 dashed,i 52 solid, i 53

dotted-dashed!, which correspond to the choiceN5m52, are shown forb50 ande152, e252
3
2, e352

1
3 as a function

of a.
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Note added:After this article was finished several papers appeared dealing with the
topic. These are, e.g., K. Takemura, math.QA/0205274 and O. Chalykhet al., math.QA/0212029.
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7F. D. M. Haldane, Phys. Rev. Lett.60, 635 ~1980!; H. Azuma and S. Iso, Phys. Lett. B331, 107 ~1994!.
8A. Gorskii and N. Nekrasov, Nucl. Phys. B414, 317~1994!; J. A. Minahan and A. P. Polychronakos, Phys. Lett. B326,
288 ~1994!.

9A. P. Polychronakos, Phys. Rev. Lett.74, 5153~1995!.
10G. W. Gibbons and P. K. Townsend, Phys. Lett. B454, 187 ~1999!.
11M. Brigante, S. Cacciatori, D. Klemm, and D. Zanon, J. High Energy Phys.0203, 005 ~2002!.
12R. Stanley, Adv. Math.77, 76 ~1988!.
13L. Lapointe and L. Vinet, Commun. Math. Phys.178, 425 ~1996!.
14D. Gomez-Ullate, A. Gonzalez-Lopez, and M. A. Rodriguez, Phys. Lett. B511, 112 ~2001!.
15A. Turbiner, Commun. Math. Phys.118, 467 ~1988!.
16V. I. Inozemtsev, Lett. Math. Phys.17, 11 ~1989!.
17Y. Brihaye and M. Godard, J. Math. Phys.34, 5283~1993!.
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Positive measure spectrum for Schro ¨ dinger operators
with periodic magnetic fields

Michael J. Grubera)

Department of Mathematics, The University of Arizona, Tucson, Arizona 85721

~Received 7 October 2002; accepted 20 December 2002!

We study Schro¨dinger operators with periodic magnetic field inR2, in the case of
irrational magnetic flux. Positive measure Cantor spectrum is generically expected
in the presence of an electric potential. We show that, even without electric poten-
tial, the spectrum has positive measure if the magnetic field is a perturbation of a
constant one. ©2003 American Institute of Physics.@DOI: 10.1063/1.1556551#

I. INTRODUCTION

Magnetic Schro¨dinger operators have been studied in solid state physics, especially in
nection with the quantum Hall effect, as well as in their own right. In a regular crystal ‘‘phys
is periodic, i.e., the electric potential—caused by the background field of the ions—is a pe
function. Magnetic fields—internal as well as external ones—are periodic as well, the latter
typically being constant. Alas, as is well known, magnetic fields enter the Schro¨dinger operator
through a vector potential, so that the resulting operator is not necessarily periodic. Indeed,
only in the simple and well-understood case of ‘‘zero flux,’’ where one has absolutely contin
spectrum and band-structure~Birman and Suslina, 1998; Sobolev, 1999!. Here, the magnetic flux
~in units of flux quanta! is defined by

F5
1

2p E
F
B~x,y! dx dy, ~1!

whereB is the magnetic field andF is a lattice cell~fundamental domain for the action of th
group!. Note that in our units with\5e51, the magnetic flux quantum is just 2p.

For integer or rational flux the spectrum will still consist of bands~possibly degenerating into
points!, but pure point spectrum is possible.

For irrational flux one expects Cantor spectrum~i.e., a nowhere dense set, no isolated poin!.
The question is now: IfB is constant, what ‘‘defines the lattice,’’ thus definingF and the flux? A
potentialV(x,y)5cos(2px)1cos(2py) has periods~1,1!; one might consider any pair (m,n) of
integers as periods ofV, i.e., one can consider any coarser superlattice ofZ3Z as the lattice of
symmetry, but no finer lattice. Indeed, in this case one finds Cantor structure for a certain
irrational values ofF ~Helffer and Sjo¨strand, 1989!.

On the other hand,V(x,y)5cos(2px) has periods (1,c) for any realc; it does not define a
fixed ‘‘minimally coarse’’ lattice. Indeed, the Schro¨dinger operator with constant magnetic fie
and this potentialV has band spectrum. This is still true for every potentialV(x,y)5V0(x) with
reasonably non-degenerateV0 . Now, if we perturb such aV by a periodicV1 we expect Cantor
spectrum, although this is not known. We only know that the Scho¨dinger operator can be approx
mated in norm resolvent sense by operators from a natural algebra which have Cantor
~Gruber, 2001!.

Setting the Cantor issue aside, Dinaburget al. ~1997! showed that what survives under th
kind of perturbation is the positive measure of the bands, although the bands might dissolv
a Cantor set.

a!Electronic mail: mjg@math.arizona.edu
15840022-2488/2003/44(4)/1584/12/$20.00 © 2003 American Institute of Physics
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We ask the same question for Schro¨dinger operators with periodic magnetic fieldB, without
electric potentialV. For constantB the spectrum is pure-point and infinitely degenerate~Landau
levels!. Is a periodic~zero-flux! perturbation ofB enough to cause the same effects as the pote
V?

In the course of giving an affirmative answer, we construct the generalized eigenfunction
give estimates on the measure of the ‘‘bands.’’

II. OUTLINE

In Sec. III we describe the setup and perform a first perturbation by one-dimensional ma
potentials. For the general case, we give the direct integral decomposition and express the o
in an appropriate basis ‘‘moving along the fiber.’’ In Sec. IV we give concise formulations o
main results. The resulting double-infinite matrix problem is reduced in Sec. V to a problem w
is almost diagonal in a sense made precise there. In Sec. VI we prove the main reduction
using estimates on Weber–Hermite functions. Section VII finishes the proof of the main re

III. SETUP AND FIRST PERTURBATION

For simplicity of notation we assume that the lattice isZ3Z. Let B be an arbitrary smooth
periodic magnetic field andF its flux through a fundamental cell of the lattice in units of flu
quanta. Then we can decomposeB as

B5Bc1Bz

with

Bc52pF

and

Bz5B2Bc .

Note thatBz has zero flux! Therefore,Bz has a periodic vector potentialAz , and we can choose i
to be of the form

Az~x,y!5S «0A0~y!

«1A1~x,y! D ~2!

with periodic smoothA0 andA1, where we introduced parameters«0 ,«1 for later convenience.
Bc is obviously constant, and we choose a vector potential

Az~y!5BcS y
0D ~3!

for it. In this gauge, the magnetic Schro¨dinger operator takes on the form

H5
1

2 F S 1

ı

]

]x
2Bcy2«0A0~y! D 2

1S 1

ı

]

]y
2«1A1~x,y! D 2G . ~4!

Note that, in order to emphasize the dependencies, we write out the arguments ofA0 andA1 even
though they are multiplication operators; in the following we will keep sacrificing strictnes
notation for better clarity in cases such as this one.

First we will set«150 and study the effect of switching on«0 . The operator~4! does not
depend onx if «150. Using Fourier transform onL2(Rx), we can decomposeL2(R2) into a direct
integral*R

%L2(Ry) dj such that
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L2~R2!{ f ° f̂ , f̂ j~y!5E
R

f ~x,y!e22pıjx dx, ~5a!

f ~x,y!5E
R

f j~y!e2pıjx dj, ~5b!

H5E
R

%

Ĥj dj, Ĥj5Vj~y!2
1

2

d2

dy2 ~5c!

with

Vj~y!5 1
2~2pj2Bcy2«0A0~y!!2. ~5d!

In the case«05«150 we are dealing with the Landau Hamiltonian. We will go through
analysis since we will use its eigenfunctions later on as a basis.

A. «0Ä0Ä«1

Vj~y!5
1

2
~2pj2Bcy!25

Bc
2

2
~y2bj!2 ~6!

is a harmonic oscillator potential with frequencyBc , shifted bybj with b5 2p/Bc 5 1/F ~we
assumeBcÞ0, or else there is not much to do!. If we denote by

Vm~y!5
~21!m

AAp2mm!
expS y2

2
D dm

dym exp~2y2!, mPZ1 , ~7!

the Weber–Hermite functions, i.e., the standard normalized eigenfunctions of the harmonic
lator with frequency 1, then

Cj,m5A4 Bc Vm~ABc~y2bj!!, mPZ1 , ~8!

are the eigenfunctions ofĤj , and the corresponding eigenvalues areBc(
1
21m). Since the spec-

trum of Ĥj is independent ofj it coincides with the spectrum ofH as a set, and both ar
pure-point. On the other hand, sinceH is invariant inx, it has infinitely degenerate spectrum.

B. «0Å0Ä«1

Introducing the shifted variableỹ5y2bj, we can write the potential~5d! as

Vj~ ỹ!5
Bc

2

2
~ ỹ1«0A0~ ỹ1bj!!2. ~9!

SinceA0 is periodic and smooth~and therefore bounded!, this is just a perturbation of the ha
monic oscillator potential.Vj( ỹ) will still tend to infinity as u ỹu does, so thatĤj has discrete
spectrum. Some simple estimates using test functions show that for small«0 the eigenvalues will
be withinCm«0 maxuA0u of the Landau levels, for some constantsCm ~involving the maximum of
uyVm(y)u) depending onm andBc only; in particular, they are independent ofj. A closer inves-
tigation shows thatCm is indeed bounded with respect tom.

Note that Vj is periodic in j with period Bc/2p 5F. Therefore, the spectrum ofH
5*R

%Ĥj dj consists of bands whose size is bounded by 2Cm«0 maxuA0u. These bands might de
generate into points.
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C. «0Å0Å«1

Now H is not independent ofx anymore. But at least it will be periodic inx with period 1,
sinceA1 is periodic. Using Fourier series onL2(@0,1#x), we can decomposeL2(R2) into a direct
integral* [0,1]

% L2(@0,1#x3Ry) dj such that

L2~R2!{ f ° f̂ , f̂ j~x,y!5(
l PZ

f ~x1 l ,y!e22pıj(x1 l ), ~10a!

f ~x,y!5E
[0,1]

f̂ j~x,y!e2pıjx dj, ~10b!

H5E
[0,1]

%

Ĥj dj, Ĥj5
1

2 F S 1

ı

]

]x
12pj2Bcy2«0A0~y! D 2

1S 1

ı

]

]y
2«1A1~x,y! D 2G

~10c!

acting on functions periodic inx. Note that we keep denoting the fiber operatorĤj for the new
direct integral, in order to avoid an inflation of notation.

If we now choose the basis (e2pınx)nPZ in L2(@0,1#x), defining an isomorphism with,2(Z),
and combine this with the isomorphism defining the direct integral above, we arrive at the
integralL2(R2)5* [0,1]

% ,2(Z) ^ L2(R) dj with

L2~R2!{ f ° f̂ , f̂ j,n~y!5E
[0,1]

(
l PZ

f ~x1 l ,y!e22pı[ j l 1(j1n)x] dx, ~11a!

f ~x,y!5E
[0,1]

(
nPZ

f̂ j,n~y!e2pı(j1n)x dj, ~11b!

H5E
[0,1]

%

Ĥj dj, Ĥj5
1

2 F ~2p~n1j!2Bcy2«0A0~y!!21S 1

ı

d

dy
2«1A1̂~y!! D 2G . ~11c!

Here,n is the operator of multiplication on,2(Z), i.e., (ng)(n)5ng(n), andA1̂(y)! is convo-
lution with the Fourier series ofA1(x,y) in x:

~A1̂~y!!g!~n!5(
l PZ

g~ l !A1̂
n2 l~y!, ~12a!

A1̂
n~y!5E

[0,1]
A1~x,y!e22pınx dx. ~12b!

Note that, of course, our basis functions belong to the domain of the operator.
As a final step, we choose a special basis inL2(R), namely the eigenfunctions (Cj,m)mPZ1

described in Sec. III A, Eq.~8!. Thus we arrive at
Lemma 1: There is a decomposition of L2(R2) into * [0,1]

% ,2(Z3Z1) dj with

L2~R2!{ f ° f̂ , ~13a!

f̂ j,n,m5E
[0,1]3R

(
l PZ

f ~x1 l ,y!e22pı[ j l 1(j1n)x]Cj1n,m~y! dx dy, ~13b!

f ~x,y!5E
[0,1]

(
nPZ

(
mPZ1

f̂ j,n,me2pı(j1n)xCj1n,m~y! dj ~13c!
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such that H decomposes as

H5E
[0,1]

%

Ĥj dj, ~14a!

~Ĥj f̂ j!m,n5Bc~
1
21m! f̂ j,m,n ~14b!

1
1

2
«0

2 (
l PZ1

A0̃
l ,m~b~j1n!! f̂ j,l ,n ~14c!

2«0 (
l PZ1

Al ,m
0 ~b~j1n!! f̂ j,l ,n ~14d!

1
1

2
«1

2 (
l PZ1

(
kPZ

A1̃
l ,m
(n2k)~b~j1n!! f̂ j,l ,k ~14e!

2«1 (
l PZ1

(
kPZ

A1̂
l ,m
(n2k)~b~j1n!! f̂ j,l ,k , ~14f!

where

A0̃
l ,m~p!5ABcE

R
~A0!2~y1p!V l~ABcy!Vm~ABcy! dy, ~15a!

Al ,m
0 ~p!5Bc

3/2E
R
A0~y1p!yV l~ABcy!Vm~ABcy! dy, ~15b!

A1̃
l ,m
(k) ~p!5ABcE

R
~A1! 2̂

k~y1p!V l~ABc~y1bk!!Vm~ABcy! dy, ~15c!

A1̂
l ,m
(k) ~p!5

1

ı
BcE

R
A1̂

k~y1p!@V l8~ABc~y1bk!!Vm~ABcy!2V l~ABc~y1bk!!Vm8 ~ABcy!# dy.

~15d!

As above, A1̂
k denotes the kth Fourier coefficient of A1 with respect to x, and analogously for

(A1)2.
Proof: We have

~Ĥj f̂ j!m,n5 (
l PZ1

(
kPZ

Ĥj,m,n; l ,k f̂ j,l ,k ,

so that we just have to compute the matrix elements in the given basis, for all the terms in~11c!.
~14b! These are just the Landau eigenvalues in the case«0505«1 .
~14c! and ~15a! For the terms with coefficient«0

2 we have to compute the matrix element
the square term (A0)2, which is

ABcE
R
~A0!2~y!Vm~ABc~y2b~j1n!!!V l~ABc~y2b~j1n!!! dy.

~14d! and ~15b! The terms with coefficient«0 in ~11c! give the matrix element of the mixe
term (Bcy22p(n1j))A0, the calculation is the same as above.
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~14e! and~15c! The coefficient«1
2 singles out the square termA1̂!A1̂!5(A1)2̂!, i.e., convo-

lution with the Fourier series of (A1)2. Its matrix element is

ABcE
R
~A1! 2̂

n2k~y!Vm~ABc~y2b~j1n!!!V l~ABc~y2b~j1k!!! dy

so that shiftingy as above gives the desired result.
~14f! and ~15d! The term with coefficient«1 is

ıS d

dy
+A1̂!1A1̂!

d

dyD .

The first part can be written d/dy +A1̂!5A1̂8!1A1̂!d/dy which has matrix element

ABcE
R
@A1̂

n2k8 ~y!Vm~ABc~y2b~j1n!!!V l~ABc~y2b~j1k!!!

1ABcA
1̂

n2k~y!Vm~ABc~y2b~j1n!!!V l8~ABc~y2b~j1k!!!# dy.

On the other hand, we can use partial integration for the matrix element of the second

which is A1̂!d/dy:

BcE
R
A1̂

n2k~y!Vm~ABc~y2b~j1n!!!V l8~ABc~y2b~j1k!!! dy

5ABcE
R
@2A1̂

n2k8 ~y!Vm~ABc~y2b~j1n!!!V l~ABc~y2b~j1k!!!

2ABc A1̂
n2k~y!Vm8 ~ABc~y2b~j1n!!!V l~ABc~y2b~j1k!!!# dy.

These two parts add up to the desired result. h

Remark 1:Note that the functionsA0̃
l ,m(p), Al ,m

0 (p), A1̃
l ,m
(k) (p), A1̂

l ,m
(k) (p) have period 1 inp.

Also, due to the decay of the Weber–Hermite functionsVm(y) in y, the functionsA1̃
l ,m
(k) (p),

A1̂
l ,m
(k) (p) exhibit exponential decay ink.

Remark 2:If A1 depends onx only thenA1̃
l ,m
(k) (p)5dk,0d l ,m(A1)2 with the average(A1)2 of

(A1)2 with respect tox. If we assume thatA150 ~we can always add a constant toA1 to achieve

this, without changing the magnetic field! thenA1̂
l ,m
(k) (p)50.

Remark 3: In the simplest nontrivial caseA0(y)5cos(2py), using parity of the Weber–
Hermite functions we get

A0
l ,m~p!5al ,m cos~2pp!1bl ,m sin~2pp!,

whereal ,m50 if m1 l is even, andbl ,m50 if m1 l is odd. Similarly,

A0̃
l ,m~p!5 1

2d l ,m1cl ,m cos~4pp!1dl ,m sin~4pp!,

wherecl ,m50 if m1 l is odd, anddl ,m50 if m1 l is even.
Remark 4:Creation and annihilation operators on harmonic oscillator functions yield

Vm8 ~y!5Am

2
Vm212Am11

2
Vm11 , ~16a!
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yVm~y!5Am

2
Vm211Am11

2
Vm11 . ~16b!

Using these we can expressA0
l ,m and A1̂

l ,m
(k) solely in terms ofA0, A1 and Weber–Hermite

functions, without referring to their derivatives or multiplication byy.

IV. MAIN RESULTS

Let Pj,m
0 denote the projection on the eigenspace of themth Landau level. Lemma 1 tells u

that the action ofĤj in this eigenspace, i.e., the part ofĤj which is ‘‘diagonal inm, ’’ amounts to

~Pj,m
0 ĤjPj,m

0 ! f̂ j,m,n5~Bc~
1
21m!1 1

2«0
2A0̃

m,m~b~j1n!!2«0Am,m
0 ~b~j1n!!! f̂ j,m,n

1(
kPZ

@ 1
2«1

2A1̃
m,m
(n2k)~b~j1n!!2«1A1̂

m,m
(n2k)~b~j1n!!# f̂ j,m,k . ~17!

For fixedj andm this is a one-dimensional difference operator with quasiperiodic coefficients
exponentially decaying off-diagonal~i.e., kÞ0) terms. If we chooseA1 to be independent ofy as
in Remark 2 there are no off-diagonal terms at all. If we furthermore chooseA0(y)5cos(2py) as
in Remark 3 then~17! will be similar to the almost Matthieu operator, with a slightly mo
complicated potential. Indeed, if we look at terms of order up to«0 only it will be exactly the
almost Matthieu operator. In the case of constant magnetic field this observation goes b
Hofstadter~1976!.

If «0 and«1 are small enough thenH will have invariant subspacesEm which are close to the
eigenspaces of the Landau levels. We will construct a unitary transformation which showsH
is close to an almost Matthieu operator, and that the difference can be controlled.

In the course of this section we will need the following assumptions.
Diophantine: There areC.0, k.0 such thatu$bn%u.C/unuk for all nPZ\0. Here, b

5 2p/Bc 5 1/F as before, and$•% denotes the fractional part.
Smoothness: A0 and A1(x,y) are smooth; furthermore, all derivatives (] jA1/]yj ) (x,y) are

analytic in uIxu,d for some commond.0.
Morse: Am,m

0 is a Morse function onS1 with exactly two critical points.
Theorem 1: Assume that A0 and A1(x,y) are smooth as defined above. Then, for every sm

enough«0 and «1 there is an M(«0 ,«1) such that M(«0 ,«1)→` as both«0 ,«1→`, and such
that for m<M («0 ,«1) the invariant subspace Em of H and the restriction of H to Em have a
direct integral decomposition

Em5E
[0,1]

%

,2~Z! dj, ~18a!

HmªHuEm
5E

[0,1]

%

Hm,j dj. ~18b!

Furthermore, Hm,j acts on gP,2(Z) as a one-dimensional difference operator with exponentia
decaying coefficients close to those of (17):

~Hm,jg!~n!5dm~b~j1n!!g~n!1(
kPZ

am~n2k,b~j1n!!g~k!, ~19a!

idm~• !2@Bc~
1
21m!2«0Am,m

0 ~• !#iC2(S1),C0«0
2 , ~19b!
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(
kPZ\$0%

iam~k,• !edukuiC2(S1),C1«0 ~19c!

for somed.0.
We denote byi•iC2(S1) the sum of the supremum norms of the derivatives of order 0,1,2
As in Dinaburget al. ~1997! we can now make use of the results of Dinaburg~1997! on

ergodic families of operators:
Theorem 2: Let b5 2p/Bc be diophantine and A0, A1 smooth as defined above, and M

.0 such that Am,m
0 is a Morse function with exactly two critical points for all m<M . Then there

are «̃0 ,«̃1.0 depending on M such that for all«0, «̃0 ,«1, «̃1 the following are true for all m
<M .

1. There are 1-periodic measurable functionslm such that for every nPZ and almost every
jP@0,1#, lm(b(j1n)) is an eigenvalue of Hm,j and therefore in the spectrum of Hm . Further-
more,

ilm~• !2@Bc~
1
21m!2«0Am,m

0 ~• !#iL`(S1),const«0
2 . ~20!

2. There are 1-periodic measurable functions fm,l ,k ,l PZ1 ,nPZ, decaying exponentially in n
such that for almost everyjP@0,1#,

(
l PZ1
kPZ

u f m,l ,n~bj!u~ l 211!e2dunu,`, ~21!

and for every kPZ, the series

Fm,j,k~x,y!5 (
l PZ1
nPZ

f m,l ,n2k~b~j1k!!e2pı(j1n)xCj1n,l~y! ~22!

and all its derivatives converge uniformly in x,y. Fm,j,k is an eigenfunction of Hm,j and therefore
a generalized eigenfunction of H, with eigenvaluelm(b(j1k)). Moreover, for every N.0 and
for «0 ,«1 small enough~depending on N),

uFm,j,k~x,y!u<
const

y2N11
~23!

with the constant depending onj,k,m,N.
3. Hm is uniformly«0-close to band structure: Hm is unitarily equivalent to multiplication by

the functionlm(b•). The Lebesgue measure of the spectrum of Hm is «0uranAm,m
0 u1O(«0

2).
Remark 5:One can reduce the smoothness requirements somewhat~to analyticity in x of a

finite number of derivatives iny), thereby weakening the result on decay of the general
eigenfunctions iny.

Remark 6:Of course one can also include an electric potential into the picture; Dinaburget al.
~1997! did so in the case of constant magnetic field, i.e.,A0[A1[0. The point in our work is that
the magnetic field perturbation alone is strong enough to deform the Landau levels into a s
set with positive measure.

V. REDUCTION

Ĥj is a double matrix operator on,2(Z13Z) with indices (m,n)PZ13Z. We decompose it
as Ĥj5D11M11O1 , whereD1 is diagonal inm andn, O1 is off-diagonal inm and contains
only the first row and the first column, andM1 is the remainder. Note that bothO1 andM1 are
of order«0 ~we always assume«1,«0).
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Our goal is to find a unitary transformationU which kills the terms inO ~they represent the
interaction between different Landau levels!. U should leave the rest of the structure basica
untouched. We will show how to accomplish this for the interaction between the 0-th and all
bands; extending this toM off-diagonal terms is a trivial generalization.

The strategy is as follows: We defineU as U5) j PNU j , whereU j eliminates off-diagonal
terms up to~and including! order«0

j . Each transformation is of the formU j5eıWj for a Hermitian
boundedWj whose coefficients are of order«0

j . We use the Baker–Hausdorff formula

e2ıABeıA5 (
r PZ1

ı r

r !
@B,A# r , ~24a!

@B,A#05B, ~24b!

@B,A# r 115@@B,A# r ,A# ~24c!

in order to findWj . In fact, in thej th step we will only have to consider the terms up to order«0
j

in this formula, which are the termsr 50 andr 51. This gives us

O11ı@D1 ,W1#50,

which reads as follows for the coefficients:

W1~m,n; l ,k!50 for m.0, ~25a!

W1~0,n; l ,k!5O1~0,n; l ,k!1ı@D1~0,n;0,n!2D1~ l ,k; l ,k!#W1~0,n; l ,k! for m50. ~25b!

Because of

uD1~0,n;0,n!2D1~ l ,k; l ,k!u.Bcl 2
1
2«0

2~ iA0̃
0,0i`1iA0̃

l ,l i`!2«0~ iA0
0,0i`1iA0

l ,l i`!

2 1
2«1

2~ iA1̃
0,0
(0)i`1iA1̃

l ,l
(0)i`!2«1~ iA1̂

0,0
(0)i`1iA1̂

l ,l
(0)i`!. 1

2Bcl

we can choose«0 small enough so that for alll .0 there is no small denominator problem wh
solving Eq.~25b! for W1 .

Defining H25U1* HU1 and repeating the above-mentioned steps we arrive at the follow
Lemma 2: We define Wj inductively by@Dj ,Wj #5ıOj as in (25a), (25b), and furthermore

U j5eıWj , H j 115U j* H jU j . Then we have the following.
Closeness to diagonal operator:

iDj~m,n;m,n!2@Bc~
1
21m!2«0Am,m

0 #iC2(S1),«0d j . ~26!

Off-diagonal smallness:

(
l PZ1

iOj~0,n; l ,n!iC2(S1)~ l s11!,g j , ~27a!

(
kPZ\$n%

(
l PZ1

iOj~0,n; l ,k!iC2(S1)e
2dun2ku~ l s11!,«1g j . ~27b!

Smallness of mixed terms:

(
l PZ1

iMj~m,n; l ,n!iC2(S1)~ l s11!,~ms1111!d j , ~28a!
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(
kPZ\$n%

(
l PZ1

iMj~m,n; l ,k!iC2(S1)e
2dun2ku~ l s11!,~ms1111!«1d j . ~28b!

Furthermore, we have

g j 115constg jd j , ~29a!

d j 115d j~11constg j !, ~29b!

Wj~0,n; l ,k!;
1

ıBc

Oj~0,n; l ,k!

l
as l→`, ~29c!

where the constants depend on s, and g15d15const«0.
We will prove the induction hypothesis forj 51 in Sec. VI, the inductive step is a standa

exercise.
Remark 7:Note that we keep using the same hypotheses as in Theorem 1.
Remark 8:As a consequence of the recursive relations~29a!, ~29b! one gets inductively

d j,consts «0 ,

g j,~consts «0! j

because

d j 115d j~11constg j !5d j1constg j 115¯5const(
i 51

j 11

g i

,const(
i 51

j 11

~const«0! i,const
const«0

12const«0
,const«0 ,

where the ‘‘const’’ denote possibly different constants.

VI. ESTIMATES

In order to prove Lemma 2 we only need to check the assertion forj 51 where we have the
following nonvanishing matrix elements:

D1~m,n;m,n!5Bc~
1
21m!1 1

2«0
2A0̃

m,m~b~j1n!!2«0Am,m
0 ~b~j1n!!

1 1
2«1

2A1̃
m,m
(0) ~b~j1n!!2«1A1̂

m,m
(0) ~b~j1n!!, ~30a!

M1~m,n; l ,k! 5
nÞk

1
2«1

2A1̃
m,l
(n2k)~b~j1n!!2«1A1̂

m,l
(n2k)~b~j1n!!, ~30b!

M1~m,n; l ,n!5 1
2«0

2A0̃
m,l~b~j1n!!2«0Am,l

0 ~b~j1n!!1 1
2«1

2A1̃
m,l
(0)~b~j1n!!

2«1A1̂
m,l
(0)~b~j1n!!, ~30c!

O1~m,n;0,n!5 1
2«0

2A0̃
m,0~b~j1n!!2«0Am,0

0 ~b~j1n!!1 1
2«1

2A1̃
m,0
(0) ~b~j1n!!

2«1A1̂
m,0
(0) ~b~j1n!!, ~30d!

O1~m,n;0,k! 5
nÞk

1
2«1

2A1̃
m,0
(n2k)~b~j1n!!2«1A1̂

m,0
(n2k)~b~j1n!!. ~30e!
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Note that we may assumeA1̂
m,l
(0)50; we can always achieve this by changingA1 by a function of

y only, this does not changeB. A1̃
m,l
(0)50 cannot be made to disappear in the same way becau

involves the average of (A1)2 instead ofA1.
If we rewrite the induction hypotheses~26!–~29c! in terms of the coefficients of the vecto

potential we get

(
l PZ1

i 1
2«0

2A0̃
m,l~b~j1n!!2«0Am,l

0 ~b~j1n!!1 1
2«1

2A1̃
m,l
(0)~b~j1n!!2«1A1̂

m,l
(0)~b~j1n!!i

,const«0~ms1111!, ~31a!

(
kPZ

(
l PZ1

i 1
2«1

2A1̃
m,l
(n2k)~b~j1n!!2«1A1̂

m,l
(n2k)~b~j1n!!ie2dun2ku,const«1~ms1111!.

~31b!

Since the vector potentialsA0, A1 are periodic iny, inequalities of the type~31a! and ~31b! can
be derived independently for the individual terms appearing there from the smoothness~analytic-
ity! assumption and estimates for

E
R
eıhyVm~y!V l~y! dy

in h. For this we can use the estimates from the case of constant magnetic field~Dinaburget al.,
1997, lemmata 6–8!. Because of our Remark 4 there are no new estimates to prove.

Finally, we note that the asymptotic equation~29c! follows from

uD1~0,n;0,n!2D1~ l ,k; l ,k!1 lBcu,«0 const,

which implies

1

D1~0,n;0,n!2D1~ l ,k; l ,k!
;2

1

Bcl

for l→`.

VII. FINISHING THE PROOF

The columns of the tranformationU define new basis vectorsbj,n,m ,nPZ,mPZ1 . From the
induction hypothesis~27b! we get

ubj,n,mu~mN1111!e2dun2 j u,const. ~32!

This implies that for eachm, we can apply the main results of Dinaburg~1997! to the operator
Hm , which is an ergodic family~in j! of difference operators with exponentially decaying alm
periodic coefficients. As a consequence we get Sec. III and the eigenfunction expansion in S
Eqs.~21! and ~22!, of Theorem 2.

Uniform convergence of~22! and its derivatives follows from~32! and the relation~16a! for
the derivatives. As in~Dinaburget al., 1997!, ~32! also gives the estimate on the rate of decay
y, ~23!.

Finally, from Sec. III we know that, for almost everyj, the spectrum ofHm,j is given by
(lm(b(j1n)))nPZ . If Ej,m,n are the corresponding eigenspaces, thenEm,nª* % Ej,m,n dj are
invariant subspaces such that the restriction ofH to Em,n is unitarily equivalent to multiplication
with the functionj°lm(b(j1n)). On the other hand,Hm5 % nPZEm,n . Therefore, sinceHm

5* %Hm,j dj, the operatorHm is unitarily equivalent to multiplication with the functionlm .
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This together with the quantitive estimate~20! finally gives the assertion in Sec. V about th
measure of the spectrum.
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Wave function confinement via transfer matrix methods
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The exact transfer matrix approach used in studying sectionally constant potentials
in one dimension is generalized to cylindrical and spherical geometries, where the
potential depends only on radius. In each geometry two transfer matrices suffice to
completely describe the wave function: one for handling a discontinuity in potential
and one for handling a delta-function potential barrier. This method is then applied
to the problem of confining a wave function in a cylindrical configuration using
only a series of carefully placed delta function potential barriers. It is found that
confinement can be made to increase nearly exponentially with the number of
barriers if placed correctly, but that this arrangement has an exponentially sharp
dependence on both barrier position and energy. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1554763#

I. INTRODUCTION

It is a well known result in one-dimensional quantum mechanics that a lattice of ev
spaced potential barriers, such as delta functions, can give rise to bands of perfect transmis
particles with energies in allowable ranges, even when that energy is significantly less th
potentials involved in the lattice. This is due to how the boundary conditions imposed o
particle’s wave function by the laws of quantum mechanics give rise to resonances. It seem
it should be possible to exploit this feature of wave mechanics in geometries other than t
planar lattices. For example, can an arrangement of cylindrically symmetric concentric barri
found that amplifies the probability for a particle of a particular energy to be found in the int
region of the barriers? The same question could be asked of an arrangement of spherical
metric barriers. In seeking to answer this question we found that it was necessary to ex
particularly useful method used in studying one-dimensional planar quantum system to cylin
and spherical geometries: namely, the method of transfer matrices.

Transfer matrices have long been used in studying one-dimensional scattering proble
only in quantum mechanics,1–5 but in electrodynamics and optics as well. The primary advant
of using transfer matrices is the systematic manner in which wave functions are match
potential boundaries. This allows for systematic calculation of scattering parameters such a
mittance and reflectance. The ease with which the approach can be implemented on a co
allows calculations with large numbers of barriers that would be otherwise intractable. Walke
Gathright’s article5 provides a thorough survey of the principals and methods involved. It turns
that the basic idea can be extended to cylindrical and spherical systems. This has recent
done for the electromagnetic problem6,7 while the corresponding problem in quantum mechan
has only been briefly covered. One study8 develops the transfer matrices for the spherical ca
while another9 makes some use of cylindrical transfer matrices in investigating a double ba
problem. Neither study presents the general transfer matrix for the planar/cylindrical/sph
problem, nor do either of them derive the transfer matrix for a delta function potential.

a!Electronic mail: jdolson@physics.utexas.edu
b!Author to whom correspondence should be addressed. Electronic mail: jonathan@lanl.gov
15960022-2488/2003/44(4)/1596/29/$20.00 © 2003 American Institute of Physics
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problems are addressed here. It is found that, independent of geometry, two matrices su
completely describe the propagation of the wave function: one for transferring over a discon
in the potential and one for transferring over a delta function barrier. In the general formula
is no longer possible to separate out the propagation matrix from the other two matrices as
for the planar case in Ref. 5. Each matrix is dependent on where the discontinuity or delta fu
is located. Hence we lose some of the power of planar transfer matrices. Nevertheless, the m
developed are fully rigorous and applicable to any quantum system possessing the ne
symmetries.

In the first section of this article we present the derivation of the generalized transfer ma
and highlight some of their important properties. We then consider the question of confinem
a cylindrically symmetric system composed of an array of delta function potentials. We mak
of the transfer matrices developed to find a configuration of barriers that gives near op
confinement. We also develop the analogous problem in a planar system for purposes of co
son. We then provide some numerical results for the confinement problem obtained fro
solution. Finally, in the appendixes we highlight some properties of the algebraic group that
when studying generalized transfer matrices.

II. MATRIX DEVELOPMENT

Consider the dimensionless version of the time independent Schro¨dinger equation

¹2c~r !1r2~e2v !c~r !50. ~1!

Here the constantr is given by

r5
A2mV0

\
a0 ,

whereV0 anda0 are the units of energy and length, respectively. The quantitiesr , e, andv in ~1!
are given by taking their dimensional counterparts and dividing bya0 or V0 as appropriate. We
phrase the problem in dimensionless terms in order to ease computer implementation~for which
the transfer matrix method is particularly well suited!. In a region wherev is constant, Eq.~1! is
simply Helmholtz’s equation withk5rAe2v:

~¹21k2!c~r !50. ~2!

Using separation of variables10 gives the radial equations

F d2

dr2 1k2Gc~r !50, n51, ~3a!

F d2

dr2 1
1

r

d

dr
1k22

n2

r 2Gc~r !50, n52, ~3b!

F d2

dr2 1
2

r

d

dr
1k22

,~,11!

r 2 Gc~r !50, n53, ~3c!

wheren and , are the azimuthal quantum numbers andn indicates whether we are working i
planar (n51), cylindrical (n52), or spherical (n53) coordinates. The general solution to~3!
can be written as

c~r !5Af~r !1Bx~r !, ~4!

wheref(r ) and x(r ) are linearly independent solutions. Of the possible choices forf(r ) and
x(r ) we will use forms that represent outgoing and incoming waves, respectively:
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f~r !5eikr , x~r !5e2 ikr , n51, ~5a!

f~r !5Hn
~1!~kr !, x~r !5Hn

~2!~kr !, n52, ~5b!

f~r !5h,
~1!~kr !, x~r !5h,

~2!~kr !, n53, ~5c!

whereHn andh, are the cylindrical and spherical Hankel functions. We make this choice sim
because scattering problems are best phrased in terms of incoming and outgoing waves. H
the transfer matrices we will derive are independent of the choice made forf(r ) andx(r ).

A. Discontinuity

Suppose we have a discontinuity in the potential atr 5a. Say that it rises fromv1 to v2 . We
demand that the radial wave function and its first derivative be continuous atr 5a:

c1~a!5c2~a!,

c18~a!5c28~a!.

These conditions can be written nicely in a matrix form:

S f1 x1

f18 x18
D S A1

B1
D5S f2 x2

f28 x28
D S A2

B2
D , ~6!

where everything is evaluated atr 5a. Note that the subscripts on the functions refer to
constantk. Thusf i(a) hask5ki5rAe2v i . To simplify we introduce the following notation:

M i~a![S f i~a! x i~a!

f i8~a! x i8~a!
D , Ci[S Ai

Bi
D .

Thus ~6! can be rewritten as

M1~a!C15M2~a!C2 . ~68!

Solving for C2 , we get

C25M2
21~a!M1~a!C1 . ~7!

This gives us the desired transfer matrix for going from region 1 to region 2:

Gn[M2
21~a!M1~a!5

1

f2x282f28x2
S x28 2x2

2f28 f2
D S f1 x1

f18 x18
D

5
1

f2x282f28x2
S f1x282f18x2 x1x282x18x2

f2f182f28f1 f2x182f28x1
D . ~8!

Again, everything is evaluated atr 5a. We can simplify the notation somewhat if we introduce
generalized Wronskian:

m~f i ,x j ![f ix j82f i8x j . ~9!

When i 5 j , this generalized Wronskian is just the normal Wronskian. For the particular form
f(r ) andx(r ) we have chosen, the normal Wronskian is given by
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m~f i ,x i !55
22ik i , n51,

2
4i

ap
, n52,

2
2i

a2ki
, n53.

~10!

Note that none of these are ever zero since we deliberately choosef(r ) andx(r ) to be linearly
independent solutions. With this notation we can rewrite~8! as

Gn5
1

m~f2 ,x2! S m~f1 ,x2! m~x1 ,x2!

m~f2 ,f1! m~f2 ,x1!
D . ~11!

Any solution to~4! can be used in the above expression for the discontinuity transfer m
For reference, the explicit components ofGn for eachn and for thef(r ) andx(r ) that we have
chosen are listed in Appendix B.

B. Delta function barrier

Now suppose we have two shells separated by a delta function barrier atr 5a:

v~r !5
a

cnr n21 d~r 2a!,

where the constantcn is given by

cn5H 1, n51,

2p, n52,

4p, n53,

anda is the strength of the barrier. We still demand that the radial wave function be continuo
the boundary, but the first derivative will suffer a discontinuity due to the delta function. We
calculate the discontinuity by integrating~1! from r 5a2e to r 5a1e:

05cnE
a2e

a1e

dr r n213F d2

dr2 1
n21

r

d

dr
1

gn

r 2 1r2~e2v~r !!Gc~r !,

wheregn is given by

gn5H 0, n51,

n2, n52,

,~,21!, n53.

First, note that the integral over the terms involvinge andgn will vanish due to the continuity of
c. If we rewrite the remaining terms slightly, we get

E
a2e

a1e d

dr S r n21
d

dr
c~r ! Ddr 5E

n2e

a1e

r2v~r !c~r !r n21dr 5
ar2

cn
E

a2e

a1e

c~r !d~r 2a!dr .

Integrating both sides gives us

r n21
d

dr
c~r !U

a2e

a1e

5
ar2

cn
c~a!,
                                                                                                                



ction

ro,

1600 J. Math. Phys., Vol. 44, No. 4, April 2003 J. D. Olson and J. L. Mace

                    
c28~a!2c18~a!5
ar2

cnan21 c~a!,

c28~a!2c18~a!5
ar2

2cnan21 ~c1~a!1c2~a!!,

the last line holding sincec is continuous atr 5a. We rewrite this as

c18~a!1znc1~a!5c28~a!2znc2~a!, ~12!

where

zn5
ar2

2cnan21 . ~13!

Again we can write the boundary conditions onc at r 5a in a convenient matrix form,

S f x

f81znf x81znx
D S A1

B1
D5S f x

f82znf x82znx
D S A2

B2
D , ~14!

where everything is evaluated atr 5a. We introduce the following notation:

N6~a![S f~a! x~a!

f8~a!6znf~a! x8~a!6znx~a!
D .

We can then rewrite~14! as

N1~a!C15N2~a!C2 . ~148!

Solving for C2 we have

C25N2
21~a!N1~a!C1 . ~15!

We now have the desired transfer matrix for going from region 1 to region 2 over a delta fun
barrier:

Dn[N2
21~a!N1~a!5

1

m~f,x! S x82znx 2x

2f81znf f D S f x

f81znf x81znx
D

512
2zn

m~f,x! S fx xx

2ff 2fx
D , ~16!

where again everything is evaluated atr 5a. As we explained above the Wronskian is never ze
so this matrix always exists. For convenience we define the constant

jn52 i
2zn

m~f,x!
, ~17!

and write the delta function transfer matrix as

Dn512 i jnS fx x2

2f2 2fx
D . ~18!

For thef(r ) andx(r ) listed in ~5! the constantjn is given by
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5 r ak

8p
, n53.

Note that whenk is real,jn is also real. Recall thatk will be real ~and positive! when the potential
v is less than the particle energye. When this is truef(r ) andx(r ) will be complex conjugates
and ~18! can be put into a more convenient form:

Dn5S 12 i jnufu2 2 i jn~f* !2

i jnf2 11 i jnufu2 D . ~20!

C. Properties

By exploiting a few simple symmetry and conservation properties, we can make some g
statements about the transfer matrices linking various regions without resorting to ex
calculations.1,11–13Recall that the probability current density in the radial direction is given b

j r52
i\

2m S c*
dc

dr
2c

dc*

dr D . ~21!

When c is of the form ~4! with f(r )5x(r )* (e.v) we can express this current as a sum
incident and reflected current densities~without any interference terms!:

j r52
i\

2m
~ uAu22uBu2!S f*

df

dr
2f

df*

dr D . ~22!

Probability flux conservation requires that the quantityuAu22uBu2 be invariant in regions of the
same potential@so thatf(r ) is the same#. This, in turn, imposes the restriction

M†szM5sz ~23!

on the transfer matrices linking two such regions. In addition, the principle of symmetry u
time reversal requires that the transfer matrixM satisfy

M* 5sxMsx . ~24!

The matricessz andsx in these equations are the usual Pauli spin matrices~though, of course, no
spin is involved here!. Together these two conditions require that the transfer matrix linking
two regions of the same potential~less thane! must belong to the pseudo-unitary group SU~1,1!.
Every matrix in this group can be written in the form

S a b*

b a* D with uau22ubu251. ~25!

Pseudo-unitary matrices are less common, and hence less familiar to physicists, than un
Hermitian matrices. Some of the relevant properties of this group are reviewed in Appendix
well as in Ref. 11.

It happens to be the case that the determinant of a matrix connecting two regions of the
potential is equal to unity regardless of the value of the potentialv. An explicit calculation will
show that the determinants of the transfer matrices given in~11! and ~18! are
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det~Gn!5
m~f1 ,x1!

m~f2 ,x2!
, ~26a!

det~Dn!51. ~26b!

According to Eq.~10! the determinant ofGn depends only on the ratiok1 /k2 . By taking a product
of discontinuity and delta function transfer matrices one can see that the determinant of a
trary transfer matrix linking a region at potentialv1 to a region at potentialv2 depends only on the
ratio k1 /kn .

As a check on the logical consistency of the arguments leading to the expressed forms
transfer matrices one should verify that they give reasonable answers in certain limits. First
one transfers over a discontinuity of zero height or over a delta function barrier of zero str
one would expect to get the identity for a transfer matrix. Inspection of~11! and~18! shows that
this is the case:

Gn~v,v,a!51, ~27a!

Dn~v,0,a!51. ~27b!

Physical intuition also suggests expected inverses for the various transfer matrices. Namely
ing from v2 to v1 should cancel a transfer fromv1 to v2 at the same location, and a transfer ov
a 2a strength delta function should cancel a transfer over ana strength delta function at the sam
location. A slightly longer inspection will reveal this to be the case:

Gn
21~v1 ,v2 ,a!5Gn~v2 ,v1 ,a!, ~28a!

Dn
21~v,a,a!5Dn~v,2a,a!. ~28b!

III. WAVE FUNCTION CONFINEMENT

Consider a cylindrically symmetric potential in two dimensions that is zero everywhere e
in some annular region centered at the origin. One can pose the question of how to config
potential in that region to maximally amplify an incoming matter wave so as to effectively tr
in the center region. Given the infinite number of ways in which one might configure a pote
this could be a very difficult problem. We will consider only a very restricted subcase. Name
will allow our potential to consist of only delta function potential barriers of all the same stren
so that the only free parameters are the number of barriers and their locations. Furthermo
will assume that the incoming matter wave is cylindrically symmetric:n50. In order to attack this
problem we must first make precise what we mean by maximally confining a wave function
internal region.

Let us suppose that our potential hasm delta function barriers. There are thenm11 regions:
the internal region containing the origin, the external region containing infinity andm21 inter-
barrier regions~see Fig. 1!. In each region we will assume thatc(r ) is written in the form~4! with
f andx as given in~5b!. We label the coefficients in the internal regionA0 andB0 , and succes-
sively label the coefficients in each region byAj andBj . The coefficients in the external regio
are thenAm andBm . Since the imaginary parts of the Hankel functions go to infinity at the or
we must have

A05B0 ~29!

to insure that the wave function be physical.
According to~22! the total probability current in the internal region must then be zero. Tha

any probability that enters that region must eventually be reflected back out. By conserva
probability the total current in each successive region must also be zero. This in turn implie
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uAj u5uBj u for eachj in the range@0,m#. Specifically, we must haveuAmu5uBmu. Any incoming
matter wave will eventually be reflected back out. We can then define the confinement coef
as the ratio of internal to external probability amplitudes:

C[
uA0u2

uAmu2
5

uB0u2

uBmu2 . ~30!

It is this quantity that we wish to maximize by choosingm positions at which to place the barrier
We will label these optimal positionsr 0 throughr m21 . At each of these positions there will be
corresponding delta function transfer matrix connecting the coefficients in the adjoining reg

Cj 115DjCj .

Connecting the internal and external regions will be the total transfer matrix

Tm5Dm21¯D1D0

with

Cm5TmC0 . ~31!

Of course, we are free to choose the phase of the wave function at will. Equation~31! together
with ~29! provides a relation between the phase ofAm and that ofBm . Using this relation we can
always choose the phase so thatAm5Bm* ~we already know that their magnitudes are the sam!.
As each of the delta function transfer matricesDj are of the form given in~25!, Eq. ~A12! in
Appendix A guarantees that the coefficients in each region will satisfy

Aj5Bj* .

Thus, from here onward we will denoteCj in each region by

Cj5S cj

cj*
D . ~32!

The confinement coefficient then becomes

C5
uc0u2

ucmu2
. ~33!

FIG. 1. A cylindrical setup withm barriers at radiir i and corresponding wave functionsCi .
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Although we have only been talking about a cylindrical configuration, we can pose a si
problem in planar or spherical configurations. In the planar case we need only put an infi
high barrier at the origin, so that any wave coming in from infinity is reflected back no matter
the energy. The constraint on the internal coefficients in this situation is that the wave funct
exactly zero at the origin. This requires that

A052B0 .

Thus all of our comments on zero total probability current hold in the planar case as well, a
can again choose the phase so thatAj5Bj* . The spherical case is identical to the cylindrical ca
in form, the only real difference being that the transfer matrices have a different dependencr.
We can then summarize the necessary constraints on the internal coefficients in planar, cyl
and spherical configurations:

c0* 52c0 pure imaginary n51,

c0* 5c0 pure real n52,

c0* 5c0 pure real n53.

Before looking specifically at any one particular geometry we will first outline the general s
tion, and only then examine the special cases of the planar and cylindrical configurations.

A. General solution

For m barriers we have the relation

Cm5Tm~r 0 ,r 1 ,...,r m21!C0 ,

where

C05S c0

c0*
D , Cm5S cm

cm*
D .

What we want to do is choose ther j ’s so that the quantity

C5
uc0u2

ucmu2

is maximized. One can either think of this as fixing the magnitude ofcm and maximizing the
internal amplitudec0 or, equivalently, as fixing the magnitude ofc0 and minimizing that ofcm .
Our point of view will typically be the latter.

Strictly speaking, this is an optimization problem inm variables. One obvious approach wou
be to write down the confinement coefficient as a function of ther j ’s, takem partial derivatives
and set them all equal to zero simultaneously. Not only does this approach become q
intractable for more than a small number of barriers but, in general, it does not give the g
minimum, only a local one.

A much simpler approach is to independently attack each successive barrier starting w
first one. That is, chooser 0 to minimize the ratiouc1u/uc0u. Having fixed r 0 , chooser 1 to
minimize the ratiouc2u/uc1u and so on out tor m21 , the rationale being that the product of the
ratios will give a near minimal total ratio:

ucmu
uc0u

5
uc1u
uc0u

uc2u
uc1u

¯

ucmu
ucm21u

.
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This approach fails when choosing a suboptimal ratioucj u/ucj 21u that affects the phase ofcj in
such a way as to make another ratio small enough to more than compensate for the incr
ucj u/ucj 21u. In the planar problem, this turns out not to be possible, so that the above app
does indeed give the optimal solution. The cylindrical and spherical cases are not so well be
However, trial and error suggests that while this approach is not optimal it gives fairly
results.

So now the question becomes how to findr j.r j 21 that minimizes the ratioucj 11u/ucj u as-
suming thatcj andr j 21 are known. We will call this ratio theamplification ratioat thej th barrier.
It turns out that we can place some immediate bounds on the extent to which we can minim~or
maximize! such a ratio. SinceCj is of the form

Cj5S cj

cj*
D ,

Eq. ~A25! of Appendix A tells us thatucj u is proportional to the vector normiCj i , so that the
amplification ratio can be written

ucj 11u
ucj u

5
iCj 11i

iCj i
5

iD~r !Cj i
iCj i

. ~34!

Furthermore, from Eq.~A26! we know that this quantity will always lie between the singu
values ofD(r ):

s2~r !<
iD~r !C0i

iC0i <s1~r !. ~35!

Thus, no matter whatr j we pick we will always have

ucj 11u
ucj u

>s2~r j !.

So before attempting to minimize the amplification ratio, we will take a look at the singular va
of the delta function transfer matrix.

In the long run, the solution of this problem is facilitated by first casting the delta func
transfer matrix in a slightly different form~which may appear more complicated at first!. Since we
are assuming here thate.v50 ~so that the wave function may propagate freely! we start with Eq.
~20! (a.0 is assumed to be given!:

D~r !5S 12 i juf~r !u2 2 i jf2~r !*

i jf2~r ! 11 i juf~r !u2D ,

and make the following definition,

h~r !5tan21~juf~r !u2!. ~36!

Sincejuf(r )u2 is always real and in the range~0,̀ !, h(r ) will be real and in the range~0,p/2!.
Furthermore,h(r ) is either constant or a monotonically decreasing function ofr for thef’s given
in ~5!. From here on out we will assume that ther dependence off andh is understood, and we
will not indicate it expressly.

Using ~36! we proceed to write the elements ofD(r ) in polar form:

11 i jufu25A11j2ufu4ei tan21~jufu2!5A11tan2 heih5secheih ~37!

and
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f25ufu2
f2

f* f
5ufu2

f

f*

so that

i jf25 i jufu2
f

f*
5 i tan~h!

f

f*
. ~38!

Equations~37! and ~38! together with their complex conjugates give us the following form
D(r ):

D~r !5S sec~h!e2 ih
2 i tan~h!

f*

f

i tan~h!
f

f*
sec~h!eih

D . ~39!

In this form it is easy to see that the determinant ofD(r ) is unity:

det~D~r !!5sec2 h2tan2 h51

Utilizing Eq. ~A21! we can easily write down the singular values forD(r ):

s1~r !5sech1tanh, ~40a!

s2~r !5sech2tanh. ~40b!

Moreover, since the determinant ofD(r ) is 1, these singular values are inverses of each othe

s1~r !s2~r !51.

As we remarked earlier our amplification ratio will always lie between these singular va
We can show this explicitly by finding an expression for the amplification ratio. This is facilit
by first calculating the polar decomposition ofD(r ),

D~r !5S e2 ih 0

0 eihD S sec~h! 2 i tan~h!
f*

f
eih

i tan~h!
f

f*
e2 ih sec~h!

D . ~41!

Note that the first matrix in this decomposition is unitary and that the second is Hermitian an
the same singular values asD(r ). This is the nature of the polar decomposition. Unitary matri
only rotate vectors, leaving the Hermitian matrix to do the stretching. Hence, we will focus
If we multiply this matrix on the right by (cj ,cj* )T, we get

S dj 11

dj 11* D5S sec~h! 2 i tan~h!
f*

f
eih

i tan~h!
f

f*
e2 ih sec~h!

D S cj

cj*
D

5S cj sec~h!2 ic j* tan~h!
f*

f
eih

cj* sec~h!1 ic j tan~h!
f

f*
e2 ih

D .
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We have useddj 11 here instead ofcj 11 because we have not yet multiplied by the unitary mat
in ~41!. However, we still haveudj 11u5ucj 11u. Taking the ratio ofdj 11 andcj we get

dj 11

cj
5sec~h!2 i tan~h!

f* cj*

fcj
eih. ~42!

Now define

b~r !52 i
f* cj*

fcj
eih. ~43!

Note thatb is of the form

b~r !5eiu~r !, ubu51.

We can then write~42! as

dj 11

cj
5sech1b tanh. ~44!

The absolute value of this ratio is equal to our amplification ratio,

udj 11u
ucj u

5
ucj 11u
ucj u

5usech1b tanhu.

As ubu51 this quantity clearly lies between the singular valuess2 ands1 :

s2<usech1b tanhu<s1 . ~45!

When b521 the amplification ratio equalss2 and whenb51 the ratio equalss1 . Figure 2
shows a typical plot of Eq.~45!. The solid line is the amplification ratio, while the dashed lines
the bounding singular valuess2 ands1 . The point indicated in the figure is the first point at whi
the amplification ratio is equal tos2 .

A more explicit form for the amplification ratio is

FIG. 2. Bounded amplification ratio.
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ucj 11u
ucj u

5@sec2 h1tan2 h12 sech tanh cosu#1/2. ~46!

Note that choosingb521 (u5p) does not necessarily give the minimum value for the am
fication ratio ash is, in general, a function ofr. However, it should be clear from Fig. 2 that th
true minimum will always occur very nearb521. Figure 3 shows a blowup of the region arou
this point showing the true minimum versus the tangent point.

Instead of choosing the true minimum of the amplification ratio forr j we will use the point at
which the amplification ratio is equal tos2 , the reason being that the equation determining
singular values is simpler in form than the equation determining the amplification ratio.
allows us to write down both the transfer matrix atr j and the overall confinement coefficient in
particularly simple form.

Going back to~43! and settingb521 gives us the following condition onf andh at r j :

f

f*
5 i

cj*

cj
eih. ~47!

This is the critical equation that must be solved forr j . Note that it is recursive in nature. One mu
first solve it forr 0 in order to findc1 , and then solve it forr 1 in order to findc2 , and so on. As
the equation usually permits multiple solutions, it is the first solution larger thanr j 21 that is
chosen, as this will give the smallest ratio.

Applying this to Eq.~41! gives us the form of the transfer matrix atr j :

Dj5S e2 ih 0

0 eihD S sec~h! 2tan~h!
cj

cj*

2tan~h!
cj*

cj

sec~h!
D . ~48!

Knowing Dj , r j andcj we can findcj 11 and repeat the process:

Dj S cj

cj*
D5S e2 ih 0

0 eihD S cj sech2cj tanh
cj* sech2cj* tanh D5S e2 ih 0

0 eihD S s2cj

s2cj*
D5S s2e2 ihcj

s2e1 ihcj*
D5S cj 11

cj 11* D .

~49!

FIG. 3. The tangent point versus the true minimum.
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We now have a recursive function for determining thecj ’s in each region~assuming all of ther j ’s
are known!:

c15s2~r 0!e2 ih~r 0!c0 ,

c25s2~r 1!e2 ih~r 1!c15s2~r 0!s2~r 1!e2 i ~h~r 0!1h~r 1!!c0 ,

]

cm5S )
j 50

m21

s2~r j !e
2 ih~r j !D c0 , ~50!

giving us the ratio

ucmu
uc0u

5 )
j 50

m21

s2~r j ! ~51!

and the confinement coefficient

C5
uc0u2

ucmu2 5S )
j 50

m21

s1~r j !D 2

, ~52!

recalling thats1(r )5s2(r )21. By ~40! we know thats1(r ) is always greater than 1. Ifh happens
to be constant~as in the planar problem!, thens1 will be constant as well and~52! reduces to

C5s1
2m .

Here the confinement coefficient rises exponentially with the number of barriers. Ifh is a decreas-
ing function of r ~as is the case in cylindrical and spherical geometries!, s1(r ) will fall and
eventually approach unity asr→`. Therefore the dependence on the number of barriers is hig
first but tapers as more barriers are added.

Note that Eq.~50! also gives us an expression for thecj /cj* ratio that occurs in thej th transfer
matrix. This will be useful for finding an explicit form for the total transfer matrix:

cj

cj*
5~e22iSk50

j 21h~r k!!
c0

c0*
. ~53!

B. Planar case

As we mentioned earlier, the planar case turns out to be exactly solvable by the method
previous section. This is largely a result of the simple fact that hereh is a constant:

h~r !5tan21 j5const.

This in turn implies that singular values of the transfer matrix are also both constant:

s1~r !5sech1tanh5const,

s2~r !5sech2tanh5const.

At each stage, therefore, we are free to choose anr j that achieves the minimum possible amp
fication ratio no matter what the positions of the other barriers. The only problem remain
whether or not we can find an exact expression for each of theser j ’s. Due to the simplicity of
f(r ) this, too, is possible.
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Starting with~47!,

f

f*
5 i

cj*

cj
eih

and, using the form forf from ~5a!, we get

e2ikr j5 i
cj*

cj
eih.

We can then use Eq.~53!, recalling thath is constant, to write the ratio ofcj* andcj as

cj*

cj
5e2i j h

c0*

c0
52e2i j h, ~54!

leaving us with

e2ikr j52 iei ~112 j !h.

Taking the logarithm of both sides and solving we find that

r j5
1

2k S 3p

2
1~112 j !tan21 j D . ~55!

As one might expect this gives us a constant spacing between barriers:

r j2r j 215
1

k
tan21 j.

Note, however, that the distance between the origin and the first barrier~at r 0) is different than the
interbarrier spacing:

r 05
3p

4k
1

1

2k
tan21 j.

We can write out an explicit form for the transfer matrix at thej th barrier by applying~54! to
the general form~48!:

Dj5S e2 ih 0

0 eihD S sec~h! tan~h!e22i j h

tan~h!e2i j h sec~h!
D 5UH j .

Note here that the unitary matrixU is independent ofj by virtue of the constant nature ofh.
Having an expression for the individual transfer matrices we would also like to write ou
explicit form for the total transfer matrix overm barriers:

Tm5Dm21Dm22¯D1D0 .

Though this may appear complicated at first, a few simple matrix manipulations will ma
possible. The first step is to notice that

H jU5UH j 21 .

Multiplying both sides byU21 on the right gives

H j5UH j 21U215UjH0U2 j .
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Applying this result toDj gives

Dj5Uj 11H0U2 j . ~56!

In this form the product of successive transfer matrices is made easier since the internalU’s all
cancel:

Tm5Dm21Dm22¯D1D05~UmH0U2m11!~Um21H0U2m12!¯~U2H0U21!~UH0!5UmH0
m .
~57!

Due to their simple forms themth powers ofU andH0 are not hard to calculate:

Tm5S e2 ih 0

0 eihD mS sech tanh

tanh sech D m

5
1

2 S e2 imh 0

0 eimhD S s1
m1s2

m s1
m2s2

m

s1
m2s2

m s1
m1s2

mD . ~58!

We have inadvertently given the polar decomposition of the total transfer matrix asUm is unitary
andH0

m is Hermitian~actually symmetric! and positive-definite. Taking this matrix and operati
on C0 we expect to recover the confinement coefficient:

TmS i
2 i D5S is2

me2 imh

2 is2
meimhD

and as expected

C5S 1

s2
mD 2

5s1
2m .

In terms ofj this is

C5~A11j21j!2m.

C. Cylindrical case

The cylindrical case is necessarily more complicated than the planar one ash is no longer
constant, but depends onr. More specifically it is a monotonically decreasing function ofr:

h~r !5tan21~j~Jn~kr !21Yn~kr !2!!.

In order to simplify notation we will denoteh andf at the j th barrier by

h j[h~r j !5tan21~juf~r j !u2!,

f j[f~r j !.

As the ratioc0 /c0* is 1 for the cylindrical case we can write~53! as

cj*

cj
5e2iSk50

j 21hk
c0*

c0
5e2iSk50

j 21hk. ~59!

Our equation for determiningr j is then

f j

f j*
5 i

cj*

cj
eih j5 iei ~h j 12Sk50

j 21hk!. ~60!

Unfortunately this equation is transcendental in form and must be solved numerically for ea
the r j .
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Calculating the explicit forms for the transfer matrices in the cylindrical case is more c
plicated as well, but here the approach used in the planar case is at least generalizable. The
polar decomposed form for thej th transfer matrix is readily found from~59! and ~48!:

Dj5S e2 ih j 0

0 eih j
D S sec~h j ! 2tan~h j !e

22iSk50
j 21hk

2tan~h j !e
2iSk50

j 21hk sec~h j !
D 5UjH j .

Now the unitary part depends onj as expected. We would like to perform some analogous ma
manipulations to those used in the planar case in order to arrive at the total transfer matrix
care must be taken here, though, asU now depends onj. We first define the matrix

Sj5S sech j 2tanh j

2tanh j sech j
D . ~61!

Some algebra will show thatH j can be written as

H j5~Uj 21Uj 22¯U0!Sj~Uj 21Uj 22¯U0!21

with

H05S0 .

To further simplify notation we define the product matrix

~PU! j[Uj 21Uj 22¯U1U0 ,

~PU!0[1,

so that

H j5~PU! jSj~PU! j
21. ~62!

As in the planar case, if we multiply two consecutive transfer matrices together the internal u
matrices cancel:

DjDj 215UjH jUj 21H j 215~PU! j 11Sj~PU! j
21~PU! jSj 21~PU! j 21

21 5~PU! j 11SjSj 21~PU! j 21
21 .

Doing this for the whole sequence of transfer matrices gives us the total transfer matrix:

Tm5~PD!m5~PU!m~PS!m , ~63!

It turns out that it does not matter in which order theUj matrices orSj matrices are multiplied
since they are self-commuting:

@Ui ,Uj #50, ~64a!

@Si ,Sj #50. ~64b!

Again we have inadvertently arrived at a polar decomposition for the total transfer matrix.
time, however, instead of two matrices both raised to themth power we have two products ofm
different matrices. Fortunately the products are not hard to compute, even if they look
complicated:

~PU!m5S e2 i ~h01¯1hm21! 0

0 ei ~h01¯1hm21!D , ~65!
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~PS!m5
1

2 S ) 8 s1 j1) 8 s2 j ) 8 s2 j2) 8 s1 j

) 8 s2 j2) 8 s1 j ) 8 s1 j1) 8 s2 j

D , ~66!

where )8 is shorthand for) j 50
m21. Applying Tm to C0 one obtains the confinement coefficie

given in ~52! as we would hope.

D. Results

Now that we have calculated explicit forms for the barrier positions and the transfer ma
for both the planar and cylindrical configurations, we can run some numerical trials and verif
we indeed have the predicted confinement.

Figures 4~a! and 4~b! show probability densities in a planar configuration. Figures 5~a!, 5~b!,
and 6 show corresponding probability densities in a cylindrical configuration. Note here the s
dependence onr. Figure 7 shows how the confinement coefficient varies with the numbe
barriers in both planar and cylindrical configurations.

One, perhaps unexpected, result found in these numerical trials was how sensitive th
finement coefficient was to both the energy of the particle and the positions of the barriers. F

FIG. 4. A wave function in a planar configuration. Note the even spacing of the barriers.e51, r53.898.
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8~a! and 8~b! show the extremely sharp energy dependence. In general it is found for bot
planar and cylindrical configurations that the higher the spike the sharper it is, much as
sequence of functions approaching a delta function. Figures 9~a! and 9~b! show the dependence o
the barrier positions for a three barrier system. As one might expect, the confinement coeffic
much more sensitive to the position of the first barrier than it is to the last. This is because
of the r j ’s depend only the positions preceding it. If the first barrier position is perturbed, ev
thing is destroyed, but if the last barrier position is perturbed, we are still guaranteed confin
at least as good as in the case ofm21 barriers.

IV. CONCLUSIONS

We have found that we can write down generalized transfer matrices for wave func
propagating in sectionally constant potentials in planar, cylindrical, and spherical geometries
matrices suffice to describe how the wave function propagates across potential boundaries:
moving over a discontinuity in potential and one for moving past a delta function potential ba
The form of these matrices is independent of the geometry. One simply needs to choo
appropriate linear independent solutions to the radial equation and insert these into the t

FIG. 5. A wave function in a cylindrical configuration. Note how the barrier spacing decreases with increasingr. e51,
r53.898.
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matrix expressions. By approximating a real potential with sectionally constant pieces the tr
matrices can be used to find the wave function in any quantum system possessing the ne
symmetries.

In considering the confinement problem we find that it is indeed possible to achiev
extremely large confinement ratio with an arrangement of only a few carefully placed
function barriers. In the planar problem an analytic, closed form expression was found for no
the transfer matrix and confinement coefficient, but the optimal barrier positions as well. The
solution gives a truly exponential dependence for the confinement coefficient on the num
barriers. In the cylindrical arrangement an analytic form was found for the transfer matrix
confinement coefficient when specific near-optimal barrier positions were chosen. However
barrier positions need to be solved for numerically. It was found that this approximate so
gives a decreasing exponential dependence on the number of barriers, while still allow
confinement ratio several orders of magnitude larger than unity. The analysis and argume

FIG. 6. A cylindrical configuration with seven barriers. By doublingr we have increased the confinement coefficient
three orders of magnitude.e51, r57.797 andC56.123105.

FIG. 7. Confinement coefficient as a function of the number of barriers in a cylindrical and planar configurations. Th
line is for a planar configuration withr53.898. The dotted and dashed lines are for a cylindrical configuration wir
53.898 andr57.797 respectively.e51 for all.
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the cylindrical problem apply equally well to the spherical problem. One simply needs to re
the cylindrical Hankel or Bessel functions with the corresponding spherical ones. Independ
geometry, however, it is found that the confinement coefficient is extremely sensitive to bo
barrier positions and the energy of the particle. Without an extreme fine tuning of both of
parameters the confinement disappears.

APPENDIX A: THE TRANSFER MATRIX GROUP SU „1,1…

Flux conservation~FC! together with symmetry under time reversal~T! requires that the
transfer matrix linking any two regions of the same potential in planar, cylindrical, or sphe
geometries belong to the special pseudo-unitary group SU~1,1!. We review some of the propertie
of this group here.

The pseudo-unitary group U~1,1! is defined as group of linear transformations onC2 that
preserves theindefinitesesquilinear form

^u,v&5u1* v12v2* v2 ~A1!

FIG. 8. Dependence of the confinement coefficient on energy in a planar configuration withr53.898.
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or equivalently as the set of nonsingular matrices that preserves the indefinite metricsz ~the usual
Pauli spin matrix!

M†szM5sz . ~A2!

Transformations of this form leave the pseudo-norm

^u,u&5uu1u22uu2u2 ~A3!

invariant and so are flux conserving. The addition of T symmetry requires that the matrices b
to the subgroup of U~1,1! possessing unit determinant, denoted SU~1,1!. This group can be written
as the following set of 232 complex matrices:

SU~1,1!5H S a b*

b a* D Uuau22ubu251J . ~A4!

FIG. 9. Dependence of the confinement coefficient on barrier positions in a planar configuration with three barrm
53, e51 andr53.898
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Unlike unitary and Hermitian matrices, pseudo-unitary matrices are not normal~they do not
commute with their adjoint! but rather pseudo-normal~i.e., normal with respect to the give
indefinite metric!. In particular, ifAPU(1,1), then

A215szA
†sz . ~A5!

For an arbitrary element of SU~1,1! this is

S a b*

b a* D 21

5S a* 2b*

2b a D . ~A6!

1. Isomorphisms

As noted in Ref. 11 there are other realizations of the group SU~1,1! that are sometimes
convenient. In particular, SU~1,1! is isomorphic to both SL~2,R!, the group of 232 real matrices
with unit determinant, and Sp~2,R!, the real symplectic group.

The isomorphism between SU~1,1! and SL~2,R! is suggested by the fact that both the tra
and determinant of elements in SU~1,1! are real. IfAPSU(1,1) is given by

A5S a b*

b a* D ,

then

tr~A!52 Re~a!, ~A7a!

det~A!51, ~A7b!

from which it immediately follows that the eigenvalues ofA are either purely real and inverses
each other or complex conjugates of modulus one. That the same is true of matrices in S~2,R!
suggests that elements in SU~1,1! are related to real matrices by a similarity transformation.
fact, for anyAPSU(1,1),

SAS21PSL~2,R!, ~A8a!

whereS is the unitary matrix

S5
1

&
S 1 1

2 i i D , S†5
1

&
S 1 i

1 2 i D . ~A8b!

Likewise, for anyBPSL(2,R),

S21BSPSU~1,1!. ~A9!

Thus, SU~1,1! and SL~2,R! are conjugate subgroups of GL~2,C! and so isomorphic.
The real symplectic group Sp~2,R! is defined as the group of linear transformations t

preserve an antisymmetric bilinear form onR2, or, equivalently, as the group of real matrices th
satisfy

MTJM5J, ~A10a!

where

J5S 0 1

21 0D . ~A10b!
                                                                                                                



n.

at

e

1619J. Math. Phys., Vol. 44, No. 4, April 2003 Wave function confinement/transfer matrix methods

                    
One can show that a matrixM satisfies this equation if and only ifMPSL(2,R) so that
Sp(2,R)5SL(2,R). Hence, we have the isomorphisms

SU~1,1!>SL~2,R!5Sp~2,R!. ~A11!

2. Action

As a subgroup of GL~2,C!, the group SU~1,1! acts onC2. Due to its relationship with SL~2,R!,
however, it leaves some important subsets ofC2 invariant. In addition, via conjugation byS,
SU~1,1! acts directly onR2.

DefineV5$vPC2uv15v2* %. That is,V consists of all vectors of the form

S c
c* D , cPC.

It is important to note thatV is not a subspace ofC2, as it is not closed under scalar multiplicatio
In fact, the subspace spanned byV is all of C2. However, one may note thatV is a subspace ofC2

when considered as a~four-dimensional! vector space overR. In either case, it is easy to see th
SU~1,1! leavesV invariant: SU(1,1)V5V,

S a b*

b a* D S c
c* D5S ac1b* c*

a* c* 1bcD5S d
d* D . ~A12!

Another way to see this is to first observe that

SV5R2, S21R25V. ~A13!

Indeed, forx,yPR we have

SS x1 iy
x2 iy D5&S x

yD . ~A14!

It is then easy to see that the action of SU~1,1! on V is entirely equivalent to the action of SL~2,R!
on R2:

SU~1,1!V5~S21SL~2,R!S!V5S21SL~2,R!~SV!5S21SL~2,R!R25S21R25V.

Going back to~A12! we note that

d5ac1b* c* 5cS a1b*
c*

c D5c~a1b* sgn~c* !2!, ~A15!

so that the ratiod/c is a complex number depending only ona, b, and/c (sgn(c* )5sgn(c)21

5e2i/c). In particular,

udu
ucu

5@ uau21ubu212uauubucos~/a1/b12/c!#1/2,

/d2/c5/~a1b* sgn~c* !2!.

We noted thatV is not closed under multiplication byC. However, it should be noted that th
set so obtained is also invariant under SU~1,1!:

V85$zvuzPC and vPV%. ~A16!

If we write
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z5reiu, v5sS e1 iw

e2 iw D ,

then we can write an arbitrary member ofV8 as

u5rsS ei ~u1f!

ei ~u2f!D . ~A17!

In this form it should be clear thatV8 consists of all those vectors inC2 whose components hav
equal magnitude:

V85$uPC2uuu1u5uu2u%. ~A18!

It is easy to see that SU~1,1! leavesV8 invariant: Let APSU(1,1), zPC, vPV and u5zv
PV8. Then

Au5A~zv !5z~Av !5zv85u8PV8,

so that

SU~1,1!V85V8. ~A19!

3. Singular value decomposition

The singular value decomposition~SVD! of a matrixA is given by

A5USV†,

whereU andV are unitary matrices andS is a diagonal matrix with decreasing but non-negat
values on the main diagonal. IfA is square and nonsingular, thenS will be positive definite. The
diagonal elements ofS are called the singular values ofA. They are given by the positive squa
roots of the eigenvalues ofA†A. The SVD of a matrix is important because it reveals clearly h
much the matrix can stretch or shrink an arbitrary vector. The singular values ofA are precisely the
~2-norm! lengths of the semi-major axes of the hyperellipsoid defined by$Avuivi51%. ~See Ref.
14 for more information.!

For APSU(1,1) the SVD is straightforward to calculate. The eigenvalues of

A†A5S uau21ubu2 2a* b*

2ab uau21ubu2D ~A20!

are given by

l6~A†A!5l6~AA†!5~ uau6ubu!2,

so that the singular values ofA are

s1,25uau6ubu. ~A21!

We have taken the positive square root in both cases as det(A)51 and souau.ubu. It is then
straightforward to calculate the SVD ofA:

U5
1

&
S sgn~a! sgn~a!

sgn~b! 2sgn~b!
D , ~A22a!
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V5
1

&
S 1 1

sgn~ab! 2sgn~ab!
D , ~A22b!

and

S5S uau1ubu 0

0 uau2ubu D . ~A22c!

Note that this decomposition takes us out of the group SU~1,1! as U and V are unitary not
pseudo-unitary.

4. Polar decomposition

The polar decomposition of a matrixA is the equivalent of the complex number decompo
tion z5reiu. It gives a unitary matrixU times a positive-definite Hermitian matrixR ~or vice
versa!:

A5UR5R8U.

This decomposition is useful for separating the actions of rotation and stretching. The matrixR ~or
R8) will be seen to contain the singular values ofA and is thus responsible for stretching, whileU,
being unitary, only rotates.

The polar decomposition of a matrixA is easily calculated from the SVD. ForAPSU(1,1) we
have

A5UR5~UV†!~VSV†!5S sgn~a! 0

0 sgn~a* !
D S uau b* sgn~a* !

b sgn~a! uau D ~A23a!

or

A5R8U5~USU†!~UV†!5S uau b* sgn~a!

b sgn~a* ! uau D S sgn~a! 0

0 sgn~a* !
D . ~A23b!

Unlike the SVD, the polar decomposition ofA leaves us in SU~1,1! as the matrixU is both unitary
and pseudo-unitary.

5. Norm

An interesting property of SU~1,1! is that p-norm of any matrix in SU~1,1! appears to be
independent ofp. In particular, letAPSU(1,1). Then

iAi15iAi25iAi`5uau1ubu. ~A24!

Recall that thep-norm of a matrixA is defined as

iAip5sup
vÞ0

iAvip

ivip
,

where the vectorp-norm is given by

ivip5~ uv1up1uv2up1¯1uvnup!1/p.

Thus thep-norm of A is the maximal amount thatA will stretch a vector. Note that ifvPV8
~defined in Appendix A, Sec. 2!, then
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ivip521/puv i u. ~A25!

SinceA leavesV8 invariant,iAvip521/puv i8u and the quantity

iAvip

ivip
5

uv i8u
uv i u

is independent ofp. However, such a statement is not generally true forv¹V8.
The 2-norm, or spectral norm, of a matrix is the most important. One can show that it is

by its largest singular value,

iAi[iAi25s1 .

Moreover, one can show that for anyAPGL(2,C) and anyvPC2 that

s2<
iAvi
ivi <s1 . ~A26!

For APSU(1,1) andv5(c,c* )TPV we can write

iAvip

ivip
5@ uau21ubu212uauubucos~/a1/b12/c!#1/2,

which, by varying the cosine, obviously lies between

uau2ubu<
iAvip

ivip
<uau1ubu ~27!

for uau.ubu.

APPENDIX B: TRANSFER MATRIX EXPRESSIONS

For reference, we list here the components of the discontinuity and delta function tra
matrices for the choices forf(r ) andx(r ) made in~5!.

1. Discontinuity

Equation~11! for the discontinuity transfer matrix is

Gn~v1 ,v2 ,a!5
1

m~f2 ,x2! S m~f1 ,x2! m~x1 ,x2!

m~f2 ,f1! m~f2 ,x1!
D .

Using ~9! and ~10! for the generalized Wronskian gives us

G15
1

2k S ~k11k2!eia~k12k2! ~k22k1!e2 ia~k11k2!

~k22k1!eia~k11k2! ~k11k2!e2 ia~k12k2!D ,

G25
iap

8 S m11 m12

m21 m22
D ,

G35
ia2k2

2~2,11! S n11 n12

n21 n22
D ,

where
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m115k2Hn
~1!~ak1!@Hn21

~2! ~ak2!2Hn11
~2! ~ak2!#2k1Hn

~2!~ak2!@Hn21
~1! ~ak1!2Hn11

~1! ~ak1!#,

m125k2Hn
~2!~ak1!@Hn21

~2! ~ak2!2Hn11
~2! ~ak2!#2k1Hn

~2!~ak2!@Hn21
~2! ~ak1!2Hn11

~2! ~ak1!#,

m2152k2Hn
~1!~ak1!@Hn21

~1! ~ak2!2Hn11
~1! ~ak2!#1k1Hn

~1!~ak2!@Hn21
~1! ~ak1!2Hn11

~1! ~ak1!#,

m2252k2Hn
~2!~ak1!@Hn21

~1! ~ak2!2Hn11
~1! ~ak2!#1k1Hn

~1!~ak2!@Hn21
~2! ~ak1!2Hn11

~2! ~ak1!#,

and

n115k2h,
~1!~ak1!@,h,21

~2! ~ ȧk2!2~,11!h,11
~2! ~ak2!#2k1h,

~2!~ak2!@,h,21
~1! ~ak1!

2~,11!h,11
~1! ~ak1!#,

n125k2h,
~2!~ak1!@,h,21

~2! ~ak2!2~,11!h,11
~2! ~ak2!#2k1h,

~2!~ak2!@,h,21
~2! ~ak1!

2~,11!h,11
~2! ~ak1!#,

n2152k2h,
~1!~ak1!@,h,21

~1! ~ak2!2~,11!h,11
~1! ~ak2!#1k1h,

~1!~ak2!@,h,21
~1! ~ak1!

2~,11!h,11
~1! ~ak1!#,

n2252k2h,
~2!~ak1!@,h,21

~1! ~ak2!2~,11!h,11
~1! ~ak2!#1k1h,

~1!~ak2!@,h,21
~2! ~ak1!

2~,11!h,11
~2! ~ak1!#.

2. Delta function

Equation~18! for the delta function transfer matrix is

Dn512 i jnS fx x2

2f2 2fx
D .

Using ~19! for jn we get

D1512 i
r2a

2k S 1 e22iak

2e2iak 21 D ,

D2512 i
r2a

8 S Hn
~1!~ak!Hn

~2!~ak! @Hn
~2!~ak!#2

2@Hn
~1!~ak!#2 2Hn

~1!~ak!Hn
~2!~ak!

D ,

D3512 i
r2ak

8p S h,
~1!~ak!h,

~2!~ak! @h,
~2!~ak!#2

2@h,
~1!~ak!#2 2h,

~1!~ak!h,
~2!~ak!

D .
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Boundary behavior of quantum Green’s functions
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We consider the time-independent Green’s function for the Schro¨dinger operator
with a one-particle potential, defined in ad-dimensional domain. Recently, in one
dimension~1D!, the Green’s function problem was solved explicitly in inverse
form, with diagonal elements of the Green’s function as prescribed variables. In this
article, the 1D inverse solution is used to derive leading behavior of the Green’s
function close to the domain boundary. The emphasis is put onto ‘‘universal’’ ex-
pansion terms which are dominated by the boundary and do not depend on the
particular shape of the applied potential. The inverse formalism is extended to
higher dimensions, especially to 3D, and subsequently the boundary form of the
Green’s function is predicted for an arbitrarily shaped domain boundary. ©2003
American Institute of Physics.@DOI: 10.1063/1.1557330#

I. INTRODUCTION

For a connected finite domain, the eigenvalue spectrum of an operator with a bou
condition depends strongly on the shape of the smooth boundary. A rigorous analysis
eigenvalue density was first done by Weyl1 for the 3D Laplacian in the asymptotic limit of a
infinite volume~at short wavelengths of eigenstates!. The next surface and curvature contributio
to the eigenvalue density were derived for the Dirichlet and Neumann boundary conditions fi
3D,2 and then, by using the path integral method, in 2D.3 In this connection, Kac posed a questio
whether there is a one-to-one correspondence between the boundary shape and the corre
eigenvalue spectrum of the Laplacian. The answer is negative:4 there exist nonisometric pairs o
2D flat shapes which are isospectral.5,6 An important progress in calculations was made within
time-independent Green’s function method in Ref. 7. Here, a multiple reflection expansio
used to get Green’s function for an arbitrary domain, in the limit of small wavelengths.
technique, applied to physical problems like electromagnetic field in a cavity,8 evoked numerous
research activities.9 Its extension to the Schro¨dinger operator10 resulted in semiclassical expan
sions for quantum mechanical system valid for finite domains.11,12 The influence of spatial con
finement on the energy spectra of simple quantum systems, like harmonic oscillator or hyd
atom, was investigated in many other works~see, e.g., Refs. 13–17!.

This article deals with local effects of a domain boundary on the Green’s function
Schrödinger operator. The topic is studied within an ‘‘inverse’’ formulation for Green’s functio
The motivation for this formulation comes from the seemingly unrelated density-functional th

a!Electronic mail: fyzimaes@savba.sk
16250022-2488/2003/44(4)/1625/13/$20.00 © 2003 American Institute of Physics
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The latter is based on the famous Hohenberg–Kohn uniqueness theorem,18 having a practical
realization in the Kohn–Sham separation ansatz.19 In the density-functional theory, the usu
‘‘direct’’ formulation, i.e., the ground-state expectation value of an observable in terms of s
prescribed external fields, is replaced by the ‘‘inverse’’ one, with the particle density a
controlling variable. In a series of works,20–22 we have developed an infinite gradient ser
expansion of the kinetic-energy density functional for 1D noninteracting Fermion systems
ground state by applying the Green’s function method. By definition, the expansion in pot
gradients and correspondingly in density gradients does not allow us to consider discontin
say at hard particles or extended regions. The ‘‘inverse’’ formulation of Green’s functions aris
a natural means for their explicit representation in any situation.

To introduce the inverse format for Green’s functions, let us first specify notation. We con
a d-dimensional domainV of pointsr5(x1 ,x2 ,...,xd), infinite (rPRd) or finite, bounded by hard
walls at the domain boundary]V. Selecting units so that\2/(2m)51 with m being the particle
mass, the general one-particle Hamiltonian formulated within the domainV is given by

Ĥ52D r1u~r !. ~1.1!

Here, u(r ) is an arbitrary external potential, continuous insideV, which does not include the
infinite potential due to the presence of domain walls at]V. The time-independent Schro¨dinger
equation reads

Ĥck~r !5lkck~r ! ~1.2!

with the Dirichlet boundary condition~b.c.! ck(r )50 at the domain boundaryrP]V. ck(r ) and
lk are respectively the eigenstates and the eigenvalues of HamiltonianĤ, and indexk can be
either discrete~localized eigenstates! or continuous~extended eigenstates!. The time-independen
Green’s function is defined by23 Gz5(z2Ĥ)21, wherez is a complex variable with componen
l5Re(z) ands5Im(z). Gz is an analytic function ofz except of those points on the realz-axis
which correspond to the eigenvalues ofĤ: it exhibits simple poles at discrete eigenvalues ofĤ
and a branch cut along fragments of the realz-axis which correspond to the continuous spectr
of Ĥ. In the latter case, the discontinuity of the transverse limitsGl

65 lims→01Gl6 is yields the
density of states atl. In the vector-space representation,

Gz~r ,r 8!5(
k

ck* ~r !ck~r 8!

z2lk
, ~1.3!

the Green’s function satisfies the two-point differential equation

@D r1z2u~r !#Gz~r ,r 8!5d~r2r 8! ~1.4!

with the b.c. at the domain boundary,Gz(r ,r 8)50 at rP]V. We notice that in one dimensio
~1D!, diagonal elements of the Green’s function, denoted by

nz~x!5(
k

ck~x!ck* ~x!

z2lk
, ~1.5!

are well defined finite quantities. This is no longer true in dimensions>2 where the equal-
argument Green’s function diverges. One can avoid this divergence by redefining new one
quantities, whose choice is crucial from the point of view of this work. In 3D, which is of prac
interest, the finite quantity

nz~r !5 lim
r8→r

4p
]

]z
Gz~r ,r 8!, d53, ~1.6!
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will be especially useful. The functionnz remains informative since the differentiation of th
Green’s function with respect toz keeps the poles of the latter. One can reconstruct the orig
Green’s function by using the relation

E
0

z

ds ns~r !54p^r u
1

z2Ĥ
1

1

Ĥ
ur &, d53. ~1.7!

The z-independent term in~1.7!, which subtracts the diverging part of the diagonal Gree
function element, has no effect on the density-functional formalism developed in Refs. 20–

The above format is the direct one: for a given constraining domainV and a given externa
field u(r ), find the corresponding Green’s function. For continuum 1D space20,21 and for simply
connected lattice structures,22 the direct problem was replaced by the inverse one with diago
elements of Green’s function as controlling variables: (i ) the external field in terms of the diagon
elements of Green’s function~the inverse profile relation! and (i i ) off-diagonal Green’s function
elements in terms of the diagonal ones. The 1D inverse profile relation was found explicitly
form

z2u~x!52
1

4

1

nz
2~x!

1
1

4 Fnz8~x!

nz~x!
G2

2
1

2

nz9~x!

nz~x!
, ~1.8!

with the standard b.c.nz(x)50 at xP]V. A prime means the derivative with respect to t
argument. Equation~1.8! with b.c. determinesnz(x) uniquely up to the sign. When compared
the basic equation~1.4! of the direct format, it has the virtue of being a one-point differen
equation without the appearance of ad-function. As concerns the off-diagonal elements of t
Green’s function, they can be expressed in terms of the diagonal ones as follows:

Gz~x,x8!5@nz~x!#1/2@nz~x8!#1/2expFsign~x2x8!E
x8

x ds

2nz~s!G . ~1.9!

As was already mentioned, in this article we use the inverse formalism to study behav
the Green’s function close to the confining domain boundary. In the leading and some
orders of the distance from the boundary, the Green’s function is shown to exhibit ‘‘unive
terms which are dominated by the boundary and do not depend on the applied potential.
boundary terms are derived first in 1D, and subsequently predicted in 3D for an arbitrarily s
domain boundary. The results are exact at all wavelengths.

The article is organized as follows. In Sec. II, we derive in the inverse format the boun
form of the 1D Green’s function. Before extending the inverse formalism to higher dimensio
particular to 3D, we first treat, in the direct format with the zero potential, two special cases w
can be treated exactly as one-dimensional. Systems that are stratified to only one Cartesia
dinate ~Sec. III! justify the choice of the one-point quantitynz ~1.6!. Spherically symmetric
systems~Sec. IV! reveal unexpected logarithmic terms in the boundary expansion of the Gr
function. In the latter case, as a by-product of the formalism, we derive general behavior
Green’s functions close to the center of radial symmetry. A technique for systematic constr
of the inverse profile relation in an arbitrary dimension and for any potential is developed in
V. As a consequence, the~universal! boundary terms in the 3D Green’s function are suggested
an arbitrarily shaped domain boundary.

II. 1D GREEN’S FUNCTION

We start with 1D Green’s functionGz(x,x8) defined in a domainV5(0,X), and look for its
behavior close to a wall, say asx,x8→0. The potentialu(x) is assumed to be regular atx50, and
its Taylor expansion forx.0 is written as
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u~x!5 (
n50

`

unxn, un5
1

n!

dnu~x!

dxn U
x50

. ~2.1!

The first coefficientu0 only shiftsz→z2u0 , so without any loss of generality it is set equal to
Let us suppose that the diagonal element of the Green’s functionnz(x), satisfying the b.c.

nz(0)50, also has the Taylor series expansion aroundx50,

nz~x!5 (
n51

`

cnxn, cn5
1

n!

dnnz~x!

dxn U
x50

, ~2.2!

and insert this expansion into the exact inverse profile relation~1.8!. The requirement of the
vanishing of the prefactors attached tox22,x21,x0, etc., implies the following sequence of equ
tions for the coefficients$cn%:

~c1!22150, ~2.3a!

c2@~c1!221#50, ~2.3b!

2zc113c350, ~2.3c!

etc. Equation~2.3a! tells us that@nz8(0)#251. Actually, we observe in 1D examples with boun
aries, like free particle or harmonic oscillator in bounded well, that

nz8~0!521. ~2.4!

This means thatnz goes to zero at the boundary from below. The universal slope21 depends
neither on details of the applied potential nor on the b.c. at the opposite boundaryX. Relation~2.4!
also tells us that the functional series, which determinesnz(x) via formula~1.5!, is not uniformly
convergent. In the opposite case, we could differentiate this functional series term by term
respect tox, which leads to the contradictionnz8(0)50. Equation~2.3b! is fulfilled identically,
leaving the coefficientc2 unspecified: the value ofc2(z), which depends onz and$un%, is fixed
by the requirement of the vanishing ofnz(x) at the oppositeX-boundary. Equation~2.3c! deter-
mines the coefficientc3 , which, being the function of onlyz ~trivially shifted byu0), is universal
in the same sense asc1 . The next coefficientsc4 ,c5 ,... areanalytic functions of both$un% andc2 ,
which confirms the adequacy of the analyticity assumption~2.2!. We conclude that

nz~x!;2x1c2~z!x21
2z

3
x3 asx→01. ~2.5!

When the two pointsx andx8 are close to the boundary at 0, the leading terms ofGz(x,x8)
can be evaluated by inserting~2.5! into ~1.9!, with the result

Gz~x,x8!;2x,1c2~z!xx81
z

6
x,~x,

2 13x.
2 ! as both x,x8→01. ~2.6!

Here, we have introduced the standard notationx,[min$x,x8% andx.[max$x,x8%.

III. d -DIMENSIONAL GREEN’S FUNCTION WITH A 1D CONFINEMENT TO POTENTIAL

There exists a large family ofd-dimensional models whose Green’s function can be explic
expressed in terms of a related 1D Green’s function. The family is defined by potentials th
stratified in one dimension, i.e., depend on only one Cartesian coordinate ofr5(x1 ,...,xd), say
x15xPVx , u(r )5u(x). For simplicity, the subspace of vectorsr'5(x2 ,...,xd) perpendicular to
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the x-axis will be infinite,V5Vx^ Rd21. Using the separation-of-variables treatment with pla
wavesk'5(k2 ,...,kd) in the perpendicular subspace, thed-dimensional Green’s function is ex
pressible as

Gz~r ,r 8!5E
2`

` dk2

2p
¯E

2`

` dkd

2p
Gz2k

2
22¯2k

d
2

1D
~x,x8!eik'•(r'2r'8 ), ~3.1!

whereG1D is a 1D Green’s function associated with the potentialu(x) and the domainVx . In
d53 dimensions, passing to polar coordinates, formula~3.1! takes form

Gz
3D~r ,r 8!5

1

2p E
0

`

dk kGz2k2
1D

~x,x8!J0~kr'!. ~3.2!

Here,r'5ur'2r'8 u is the perpendicular distance of pointsr ,r 8 andJ0 denotes the Bessel functio
of the first kind.24

Let the 3D domainV be the half-spacê0,̀ ) ^ R2. The corresponding 1D Green’s functio
Gz2k2

1D (x,x8) in ~3.2!, formulated withinVx5^0,̀ ), can be expanded inx andx8 near the recti-
linear hard wall at 0 using the previously derived formula~2.6!. It might be tempting to insert this
expansion directly into~3.2!, but already the leading term;2x, implies a diverging integral ove
k. This indicates that a renormalization procedure is needed for a 1D Green’s function.

We first assume thatr'Þ0, i.e., the two pointsr and r 8 do not lie on the same line perpen
dicular to the surface of the wall.G1D can be split into two parts

Gz
1D~x,x8!5

1

2iAz
@eiAzux2x8u2eiAz(x1x8)#1dGz

1D~x,x8!, x,x8>0, ~3.3!

where one assumes that Im(Az).0 in order to ensure the regularity atux2x8u→`. The first part,
which is nothing but a 1D Green’s function of free particle in the half-spacex>0, contains all
universal terms of the small-x,x8 expansion~2.6!. The remainder does not contain the univer
terms and behaves like

dGz
1D~x,x8!5@c2

1D~z!1 iAz#xx81O@xx8~x21x82!#, ~3.4!

where the model-dependentc2
1D(z) is defined by~2.5! or ~2.6!. Substituting~3.3! and~3.4! in the

basic formula~3.2!, one gets

Gz
3D~r ,r 8!52

1

4p F exp~ iAzur2r 8u!

ur2r 8u
2

exp~ iAzA~x1x8!21r'
2 !

A~x1x8!21r'
2 G1dGz

3D~r ,r 8!, ~3.5a!

where

dGz
3D~r ,r 8!52

z

2p E
1

`

ds s@c2
1D~zs2!1 iAzs#I 0~Azr'As221! xx81O@xx8~x21x82!#.

~3.5b!

It can be easily shown thatc2
1D(z)1 iAz;O(1/z) as uzu→`, so the integral in~3.5b! has the

necessary convergence property. Consequently, the totalGz
3D(x,x8;r'Þ0)}xx8 does not exhibit

universal expansion terms near the boundary, as is intuitively anticipated.
Whenr'50, i.e., the two pointsr andr 8 lie on the same line perpendicular to the surface

the wall, relation~3.2! can be transformed to

Gz
3D~x,x8;r'50!5G0

3D~x,x8;r'50!1
1

4p E
0

z

ds Gs
1D~x,x8!. ~3.6!
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It is straightforward to show that the small-x,x8 expansion ofG0
3D is determined by the free

particle limit plus a model-dependent term;O(xx8). From ~2.6!, Gs
1D(x,x8)52x,1O(xx8).

Substituting this in~3.6!, one observes that

Gz
3D~x,x8;r'50!52

x,

2pux2x8u~x1x8!
2

z

4p
x,1O~xx8!. ~3.7!

The first two leading terms on the rhs of~3.7! are universal, the applied potential contribut
starting from the term of orderO(xx8).

We add that the 3D one-point quantitynz , introduced in~1.6!, equals the diagonal element o
the 1D Green’s function associated with the potentialu(x), and therefore satisfies the invers
relation of type~1.8!,

z2u~x!52
1

4

1

nz
2~x!

1
1

4 Fnz8~x!

nz~x!
G2

2
1

2

nz9~x!

nz~x!
, ~3.8!

and exhibits the small-x expansion~2.5!.

IV. RADIAL GREEN’S FUNCTION

We now consider a 3D quantum system with radial symmetry, confined to the domaV
5$ur u<R% ~radiusR may be either finite or infinite!. The external potentialu(r ) depends only on
the magnituder of r . The radial problem can be reduced to 1D by factoring out the ang
dependence of the Hamiltonian eigenfunctions in terms of the spherical harmonics. Let us
duce for each angular momentum quantum numberl 50,1,2,... the 1D Green’s function associat
with the Hamiltonian

Ĥ( l )52
d2

dr 2 1
l ~ l 11!

r 2 1u~r !, ~4.1!

Gz
( l )5(z2Ĥ( l ))21, with zero b.c. at the originr 50 and at the boundaryr 5R. The total 3D radial

Green’s function is then expressible as

Gz
3D~r ,r 8!5(

l 50

`
~2l 11!

4prr 8
Pl~cosv!Gz

( l )~r ,r 8!, ~4.2!

wherev is the angle betweenr , r 8 and Pl denotes the Legendre polynomial of degreel .24 The
radial analog of the 1D inverse profile Eq.~1.8! for the diagonal elements ofGz

( l ) , nz
( l )(r )

5Gz
( l )(r ,r ), reads

z2u~r !2
l ~ l 11!

r 2 52
1

4

1

nz
( l )~r !2 1

1

4 Fnz
( l )8~r !

nz
( l )~r ! G2

2
1

2

nz
( l )9~r !

nz
( l )~r !

, ~4.3!

with the obvious b.c.nz
( l )(0)5nz

( l )(R)50. According to~1.9!, the off-diagonal elements ofGz
( l )

are expressible in terms of the diagonal ones as follows:

Gz
( l )~r ,r 8!5@nz

( l )~r !#1/2@nz
( l )~r 8!#1/2expFsign~r 2r 8!E

r 8

r ds

2nz
( l )~s!G . ~4.4!

A. Behavior close to the center

Although the additional potential terml ( l 11)/r 2 ( lÞ0) is singular atr 50, ther→0 analysis
of Eq. ~4.3! is similar to that of the 1D inverse profile relation~1.8! close to a boundary~see Sec.
II !. Let us assume that the potentialu(r ) is regular at the origin. Inserting into~4.3! the Taylor
expansion ofnz

( l ) aroundr 50,
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nz
( l )~r !5 (

n51

`

cn
( l )r n, cn

( l )5
1

n!

dnnz
( l )~r !

dr n U
r 50

, ~4.5!

one gets a sequence of equations for the coefficients$cn
( l )% which implies

nz
( l )~r !;2

r

2l 11
1d l ,0c2

(0)~z!r 22
2z

~2l 21!~2l 11!~2l 13!
r 3 as r→0. ~4.6!

The leading terms of the expansion of the Green’s functionGz
( l )(r ,r 8) in r andr 8 can be evaluated

by inserting~4.6! into ~4.4!. The total 3D Green’s function~4.2! can be obtained by applying th
generating formula for Legendre polynomials, with the result

Gz
3D~r ,r 8!;2

1

4pur2r 8u
1

c2
(0)~z!

4p
1

z

8p
ur2r 8u as both r ,r 8→0. ~4.7!

Here, the potentialu(r ) and the presence of the boundary atr 5R are reflected only in the
model-dependent coefficientc2

(0)(z).

B. Behavior close to the boundary

We introduce a new variable, the distance from the wallx5R2r , and redefineu(r )
→u(x), nz

( l )(r )→nz
( l )(x), Gz

( l )(r ,r 8)→Gz
( l )(x,x8). The total 3D Green’s function~4.2! is express-

ible simply as

Gz
3D~x,x8;v!5

1

4p~12x/R!~12x8/R!

1

R (
l 50

`
~2l 11!

R
Pl~cosv!Gz

( l )~x,x8!. ~4.8!

The ‘‘angular momentum’’ potentiall ( l 11)/(R2x)2 is an analytic function ofx close to the
boundary. Provided thatu(x) is also regular atx50, it holds Gz

( l )(x,x8);2x, as x,x8→0.
Inserting this into~4.8!, the 3D Green’s function becomes proportional to the nonconverging s
( l 50

` (2l 11)Pl(cosv) and we face the same problem as in the previous case of the 3D recti
boundary~Sec. III!.

Since we know how to solve the divergence problem for the rectilinear hard wall, our str
is first to reproduce the result~3.2!, valid for the 3D rectilinear wall, as theR→` limit of the
relation~4.8!, and then to get the leading 1/R correction due to the curvature of the wall surfac
We have treated the angular momentum potentiall ( l 11)/(R2x)2 as a perturbative series in 1/R,
then used the standard Green’s function perturbation theory forG( l ) and finally performed a
convenient continualization of the sum on the rhs of~4.8! settingl 5kR21/2 (k fixed! and

Pl~cosv!5J0~kr'!2
kr'~x1x8!

2R
J1~kr'!1OS 1

R2D .

Here, r' , defined byr'
2 5ur2r 8u22(x2x8)2, is the analog of the perpendicular distanceur'

2r'8 u in the case of the rectilinear wall. The final result is

Gz
3D~x,x8;r'!5

1

2p E
0

`

dk kGz2k2
1D

~x,x8!J0~kr'!1
1

R
Gz~x,x8;r'!1OS 1

R2D , ~4.9!

where
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Gz~x,x8;r'!5
~x1x8!

2p E
0

`

dk kGz2k2
1D

~x,x8!J0~kr'!

2
r'~x1x8!

4p E
0

`

dk k2Gz2k2
1D

~x,x8!J1~kr'!

1
1

p E
0

`

dk k3J0~kr'!E
0

`

dy Gz2k2
1D

~x,y!yGz2k2
1D

~y,x8!. ~4.10!

G1D is the 1D Green’s function corresponding to the given potentialu(x), with the zero b.c. at
x50 and the regularity condition atx→`.

The first term in~4.9! is nothing but the exact result~3.2! valid for theR→` rectilinear hard
wall. Its expansion for smallx,x8 coordinates was discussed in Sec. III. The next te
Gz(x,x8;r')/R represents the leading correction due to the curvature of the wall surface. I
particular case of the zero potential, whenG1D is given by~3.3! with dG1D50, the small-x,x8
expansion ofGz reads:

Gz~x,x8;r'Þ0!5
xx8z

4p
K0~2 iAzr'!1O@xx8~x1x8!#, ~4.11!

whereK0 is a modified Bessel function;24

Gz~x,x8;r'50!5
xx8

4p~x1x8!2 2
xx8z

4p
ln@2 iAz~x1x8!#1O~xx8!. ~4.12!

Worked-out examples with nonzero potentials tell us that forr'Þ0 the leading term}xx8 on the
rhs of ~4.11! depends on the applied potential, while there is evidence that forr'50 the first two
leading terms on the rhs of~4.12! are universal~i.e., independent of the applied potential! and the
potential enters into the next term of orderO(xx8). From~4.12!, the one-point quantity of interes
nz has the following short-distance expansion from the wall,

nz~x!52x2
1

R
x2 lnS x

x0
D1O~x2!, ~4.13!

wherex05 i/Az is the length parameter. We see that the nonzero curvature of the sphere s
induces a nonanalyticity, namely, divergence of the second and higher-order derivatives ofnz with
respect tox at the sphere surfacex50. In the following section, we will prove the universality o
the logarithmic term in the expansion~4.13! and derive its general form for an arbitrarily shap
domain boundary.

V. d -DIMENSIONAL GREEN’S FUNCTION

Let us now consider ad-dimensional quantum system with the general Hamiltonian~1.1! and
Green’s function satisfying Eq.~1.5!. Representing thed-function by d(r2r 8)5* exp@ik•(r
2r 8)#dk/(2p)d, k5(k1 ,...,kd), we rewrite~1.5! as follows:

Gz~r ,r 8!5@z2u~r !1D r#
21E dk

~2p!d exp@ ik•~r2r 8!#. ~5.1!

It is easy to derive the commutation rule

@z2u~r !1¹ r
2#21 exp~ ik•r !5exp~ ik•r !@z2u~r !1~¹r1 ik!2#21. ~5.2!

Consequently,
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Gz~r ,r 8!5E dk

~2p!d exp@ ik•~r2r 8!#@z2u~r !1~¹r1 ik!2#21

5E dk

~2p!d exp@ ik•~r2r 8!#F11
¹ r

212ik•¹r

z2u~r !2k2G21 1

z2u~r !2k2 . ~5.3!

The standard expansion of the inverse operator in~5.3! then results in an infinite series

1

z2u~r !2k2 2
1

z2u~r !2k2 ~¹212ik•¹!
1

z2u~r !2k2

1
1

z2u~r !2k2 ~¹212ik•¹!
1

z2u~r !2k2 ~¹212ik•¹!
1

z2u~r !2k2 2¯ , ~5.4!

where we have dropped the subscriptr from ¹. Writing the series~5.4! formally as the sum
(nan(r ,k)/@z2u(r )2k2#n, we have at once

(
n51

`
an~r ,k!

@z2u~r !2k2#n 5
1

z2u~r !2k2 2
1

z2u~r !2k2 ~¹212ik•¹! (
n51

`
an~r ,k!

@z2u~r !2k2#n .

~5.5!

This differential equation implies the following recursion for the coefficients$a(r ,k)%:

an5dn,12@¹2an2112ik•¹an21#2~n22!@2ian22k•¹u12¹an22•¹u1an22¹2u#

2~n22!~n23!an23u¹uu2. ~5.6!

Green’s function~5.3! is expressible in terms of the coefficients$an% as follows:

Gz~r ,r 8!5E dk

~2p!d exp@ ik•~r2r 8!# (
n51

`
an~r ,k!

@z2u~r !2k2#n . ~5.7!

Introducing spherical coordinates ink-space, the integrals on the rhs of~5.7! can be evaluated by
using the residue theorem in the complexk-plane.

It is straightforward to retrieve the 1D profile relation~1.8! by using the above scheme. Th
calculations are more tedious in 3D. Generating the coefficients$an% from the recursion~5.6!,
formula ~5.7! gives, in the direct format,

inz~r !5
1

2

1

Az2u~r !
2

1

16

Du~r !

@z2u~r !#5/22
5

64

u¹u~r !u2

@z2u~r !#7/21
1

64

D2u~r !

@z2u~r !#7/21O~@z2u~r !#29/2!.

~5.8!

The inversion of~5.8! starting from the local-homogeneity referencez2u(r )521/@4nz
2(r )# re-

sults in the inverse profile equation

z2u~r !52
1

4nz
2~r !

@12u¹nzu212nzDnz#2 (
n51

`

wn~r !. ~5.9!

Here, the terms which involves just 2n nz-functions are grouped intown . In particular,

w15
1

6 F ~Dnz!
22 (

i , j 51

3

~] i] jnz!
2G , ~5.10a!
                                                                                                                



e
ed
e

amil-

ior

f the

r-
. To

e
int

1634 J. Math. Phys., Vol. 44, No. 4, April 2003 Šamaj, Percus, and Kalinay

                    
w25
1

6 (
i , j ,k

@3~] i] jnz!
2~]knz!

212~] i]knz!~] j]knz!~] inz!~] jnz!24~]k
2nz!~] i] jnz!~] inz!~] jnz!

2~] i
2nz!~] j

2nz!~]knz!
2#1

1

3
nz(

i , j ,k
@4~]k

2nz!~] i
2] jnz!~] jnz!22~] i

2] jnz!~] j]knz!~]knz!

22~] i] j]knz!~] i] jnz!~]knz!22~] i] jnz!~] j]knz!~] i]knz!1~] i] jnz!
2~]k

2nz!

1~] i
2nz!~] j

2nz!~]k
2nz!#1

1

6
nz

2(
i , j ,k

@2~] i
2] j

2nz!~]k
2nz!22~] i] jnz!~] i] j]k

2nz!

1~] i
2]knz!~] j

2]knz!2~] i] j]knz!
2#, ~5.10b!

etc. Note that the convergence of the direct series~5.8! is restricted to the high-energy part of th
spectrum,z2u(r )@1, and to slowly varying potentialsu(r ). These are the attributes of extend
states, and, indeed,nz given by~5.8! exhibits a branch cut along realz-axis. On the other hand, th
inverse profile relation~5.9!, being supplemented by the appropriate b.c. fornz , holds in the
whole complexz-plane, including simple poles induced by discrete localized states of the H
tonian spectrum. This is an important feature of the inverse format.

As a check, we know from Sec. III that~5.9! must reduce to the 1D profile relation~3.8! when
both u(r ) andnz(r ) are stratified in one dimension. Under these circumstancesw15w25¯50,
and indeed~5.9! becomes identical to~3.8!.

Like in the 1D case, the 3D inverse relation~5.9! is very appropriate to describe the behav
of nz(r ) close to the boundary]V, wherenz→0. Provided thatu(r ) is regular atrP]V, the lhs
of ~5.9! is regular atrP]V and so must be also the corresponding rhs. The cancellation o
leading diverging terms on the rhs of Eq.~5.9! is determined exclusively by the terms}1/nz

2 , i.e.,
by

z2u~r !;2
1

4nz
2~r !

@12u¹nzu212nzDnz#. ~5.11!

This relation implies all universal terms of thenz-expansion around the boundary.
Let us analyze relation~5.11! for the general potentialu(r ) and the general 3D domainV with

a smooth 2D boundary]V of points r0 defined implicitly as follows:

]V: f~r0!5C0 . ~5.12!

The functionf is such thatC0 has the dimension of length@for example,f(r0)5Ax0
21y0

21z0
2

(5R) for the sphere#. The set of points$r0%P]V can be parametrized by two curvilinear coo
dinatesu and w, r05r0(u,w), which are chosen to form an orthogonal coordinate system
every pointrPV, we attach the numberC5f(r ) ~with the dimension of length! and introduce
the coordinatej5C02C. The pointr0P]V adjoint to a givenr results as the intersection of th
surface]V with a curve which passes throughr and simultaneously is perpendicular at every po
r 8 to the surfacef(r 8)5C8. The relationship betweenr and r0 reads

r5r01 (
n51

`

un~r0!jn, ~5.13!

where

u152
¹f~r0!

u¹f~r0!u2
, ~5.14a!
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~u2! i5
1

2u¹f~r0!u4 (
j

] i] jf~r0!] jf~r0!2
] if~r0!

u¹f~r0!u6 (
j ,k

] j]kf~r0!] jf~r0!]kf~r0!,

~5.14b!

etc. The relationship~5.13! determinesr as a function of the curvilinear coordinatesj, u andw,
which are orthogonal by construction. Thus24

u¹nzu25
1

hj
2 S ]nz

]j D 2

1
1

hu
2 S ]nz

]u D 2

1
1

hw
2 S ]nz

]w D 2

, ~5.15a!

Dnz5
1

hj
2 S ]2nz

]j2 D1
1

hjhuhw
S ]

]j

huhw

hj
D ]nz

]j
1F̂u,wnz , ~5.15b!

wherehj , hu andhw are metrical coefficients, andF̂u,w is the operator containing derivatives on
with respect tou and w. It is useful to express the coefficients in~5.15! in terms of Cartesian
coordinates:

1

hj
2 5u¹f~r !u25u¹f~r0!u22

2j

u¹f~r0!u2 (
i , j

] i] jf~r0!] if~r0!] jf~r0!1O~j2!, ~5.16!

and

1

hjhuhw
S ]

]j

huhw

hj
D52Df~r !52Df~r0!1O~j!. ~5.17!

Inspired by our previous result~4.13! valid for the sphere, the functionnz is sought in the limit
j→0 in the form

nz~r !5c1~u,w!j1c2~u,w!j21¯1d1~u,w!j ln~j/j0!1d2~u,w!j2 ln~j/j0!1¯ ,
~5.18!

where the formal parameterj05 i/Az makes the argument of the logarithm dimensionless.
removal of diverging singularities on the rhs of Eq.~5.11!, namely, the vanishing of the coeffi
cients attached to terms ln2 j, ln j, j0, j ln j, j ln2 j andj1 in the square bracket, fixes

c152
1

u¹f~r0!u
, d150, d252

Df~r0!

2u¹f~r0!u3
. ~5.19!

Consequently, one arrives at

nz~r !52
1

u¹f~r0!u
j2

Df~r0!

2u¹f~r0!u3
j2 ln~j/j0!1O~j2!. ~5.20!

We present two examples. For the sphere,f(r0)5Ax0
21y0

21z0
2(5R), one has

¹f~r0!5
r0

ur0u
, Df~r !5

2

ur0u
. ~5.21!

Since ur0u5R and j5R2r , one recovers~4.13! with x[j. For the cylinder infinite in the
z-direction,f(r0)5Ax0

21y0
2(5R), one has

¹f~r0!5
r'

ur'u
, Df~r !5

1

ur'u
, ~5.22!
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wherer'5(x0 ,y0,0). Thus,

nz~r !52j2
1

2R
j2 ln~j/j0!1O~j2!, ~5.23!

with j5R2Ax21y2.
We would like to add that althoughj has the dimension of length, it does not represen

general the metric distancet5ur2r0u. Since one has

t5
1

u¹f~r0!u
j1O~j2!, ~5.24!

Eq. ~5.20! can be expressed in terms oft as follows:

nz~r !52t2
Df~r0!

2u¹f~r0!u
t2 ln~t/t0!1O~t2! ~5.25!

with the obvious definition oft0 .
As was mentionned in the Introduction,nz , used through relation~1.7!, is the crucial one-

point quantity in the density-functional formalism developed in Refs. 20–22. From a general
of view it is desirable to have at one’s disposal also off-diagonal elements of the Green’s fun
The knowledge ofnz is not sufficient to get the complete Green’s function within the pres
method~except of the case of the rectilinear hard wall!. However, the short-distance expansion
nz ~5.25!, derived with the aid of curvilinear coordinates which mimic the global shape of
domain, depends only on the local surface characteristic. Since this one-point quantity is gen
from the Green’s function itself, it is reasonable to expect the local shape dependence of th
as well. This assumption, together with the explicitly worked-out examples of the sphere~Sec. IV!
and of the infinite cylinder, indicates the following boundary behavior of the Green’s function
the considered pair of pointsr ,r 8PV with the respective adjoint pointsr0 ,r08P]V, the perpen-
dicular distance is defined byr'5ur02r08u andt5ur2r0u, t85ur 82r08u. If r'Þ0, the 3D Green’s
function is supposed to exhibit the leading term}tt8 with a potential-dependent prefactor. Ifr'

50, the analog of the sphere result~4.9! reads

Gz
3D~t,t8;r'50!5Gz

3D~t,t8;r'50!uhalf-space

1
Df~r0!

2u¹f~r0!u H tt8

4p~t1t8!
2

tt8z

4p
ln@2 iAz~t1t8!#1O~tt8!J 1¯ .

~5.26!

The first term on the rhs of~5.26! corresponds to the Green’s function evaluated in presence o
rectilinear hard wall tangent to the domain surface at pointr0 . The equation of the tangent plan
is ¹f(r0)•(r2r0)50. The next term is the first correction due to the curvature of the w
surface; the applied potential is supposed to contribute to the term of orderO(tt8). A rigorous
proof of the conjecture~5.26! is a challenge for the future.

In conclusion, we have shown that, close to a hard wall, time-independent Green’s fun
exhibit a short-distance expansion which is to a relatively high order universal, i.e., it doe
depend on the applied potential, only the local shape of the wall is relevant. The universal
are analytic in 1D, and some of them are singular in 3D provided that the boundary curva
nonzero. This information was obtained due to the inverse formalism developed in this articl
cannot be deduced directly from the definition of the Green’s function.
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The Coulomb interaction 1/uxu for the Dirac equation in one space dimension is
singular in the sense that there exists a four-parameter family of self-adjoint exten-
sions of the associated Hamiltonian operator. The purpose of this paper is to rep-
resent the dynamical group generated by some of the self-adjoint extensions as a
path integral. The Feynman–Kac functional we use is constructed by a renormal-
ization process that subtracts divergences as paths cross the isolated singularityx
50 of the interaction. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1555683#

I. INTRODUCTION

In its traditional form, the Feynman–Kac formula gives an expression for the solutionu of the
heat equation

]u

]t
~x,t !5

1

2
Du~x,t !2V~x!u~x,t !, u~x,0!5c~x!, xPRd, t.0, ~1.1!

with a source or sink termVu, in terms of an integral

u~x,t !5E
V

e2*0
t V(v(s)) dsc~v~ t !! dWx~v! ~1.2!

over the spaceV of continuous pathsv:@0,̀ )→Rd. For eachxPRd, Wiener measureWx is
concentrated on those pathsvPV with v(0)5x.

Suppose that the inital valuec belongs to a function spaceX. If 1
2D2V is the generator of

C0-semigroupet(
1
2D2V), t>0 acting onX, then the problem of solving the heat equation~1.1!

may be viewed in terms of the theory of C0-semigroups as finding

u~•,t !5et(
1
2 D2V)c, t>0.

Suppose now thatX5L2(Rd). The C0-semigroupt°et(
1
2D2V) itself may also be expresse

directly in terms of an integral over a space of paths by setting

^Mt~E!f,c&5E
RdS EE

c̄~v~ t !! dWx~v! Df~x! dx, f,cPL2~Rd!, ~1.3!

a!Electronic mail: z.brzezniak@maths.hull.ac.uk
b!Electronic mail: b.jefferies@unsw.edu.au
16380022-2488/2003/44(4)/1638/22/$20.00 © 2003 American Institute of Physics
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with respect to the inner product^ • , •& of L2(Rd). Then for each Borel subsetE of V ~in the
compact-open topology!, the estimateu^Mt(E)f,c&u<ifi2ici2 ensures thatMt(E) is a bounded
linear operator onL2(Rd) and E°Mt(E) is an operator valued measure in the strong oper
topology, so that

et(
1
2 D2V)5E

V
e2*0

t V(v(s))ds dMt~v! ~1.4!

for suitable functionsV:Rd→R. Equation~1.2! may be written as

u~x,t !5~et(
1
2 D2V)c!~x!5S E

V
e2*0

t V(v(s)) dsd~Mt* c!~v! D ~x!, xPRd,

with respect to theL2(Rd)-valued measureMt* c:E°Mt(E)* c.
The advantage of working with the operator valued measuresMt instead of the dual measure

Mt* is apparent when we look at the valueMt gives to a cylinder set

E5$vPV:v~ t1!PB1 ,v~ t2!PB2 , . . . ,v~ tn!PBn% ~1.5!

with 0<t1,•••,tn<t andB1 , . . . ,Bn Borel subsets ofRd. From Eq.~1.3! and the definition of
Wiener measureWx, we have

Mt~E!5e(t2tn)D/2Q~Bn!e(tn2tn21)D/2
¯Q~B2!e(t22t1)D/2Q~B1!et1D/2. ~1.6!

Here Q(B) is the operator of multiplication by the characteristic functionxB of the Borel set
B,Rd acting onL2(Rd). If m is the initial distribution of a diffusing substance, thenMt(E)m may
be interpreted as the distribution of the substance at timet after it has been subjected to
perturbation represented by the eventE.

Equation~1.6! suggests replacing the heat semigroupetD/2, t>0, by a general C0-semigroup
S(t)5e2At, t>0, acting on a function spaceX on which the spectral measureQ of multiplication
by characteristic functions acts as well. The formula

Mt~E!5S~ t2tn!Q~Bn!S~ tn2tn21!¯Q~B2!S~ t22t1!Q~B1!S~ t1! ~1.7!

does define an additive operator valued functionMt on the algebraSt generated by all cylinder
setsE of the form ~1.5!. If Mt is the restriction toSt of an operator valued measure~necessarily
unique! defined on thes-algebras(St) generated bySt , then the analogue

e2t(A1V)5E
V

e2*0
t V(v(s))ds dMt~v! ~1.8!

of Eq. ~1.4! is still valid for a large class of functionV:Rd→R ~Ref. 13, Chap. 3!. We shall also
call ~1.8! a Feynman–Kac formula, although there may be no probability measure associate
the semigroupS of operators.

The present work is concerned with the Dirac equation in one space dimension. We ta
free Dirac equation for a particle of massm>0 to be given by

i\
]

]t
c~x,t !5S 2 i\ca

]

]x
1mc2bDc~x,t !5~H0c!~x,t !

with c(x,t)PC2 for xPR and t>0. The (232) matricesa and b satisfy a25b25Id and ab
1ba50. With an interaction represented by a potentialV:R→R, the Dirac equation becomes

i\
]

]t
c~x,t !5~H01V!c~x,t !, ~1.9!
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so in a coordinate system in which\5c51, solutions of the initial value problem associated w
Eq. ~1.9! define a groupe2 i t (H01V), tPR, of operators for suitable potentialsV. By the usual
abuse of notation, in the expressionH01V the symbolV is interpreted as a multiplication operato
acting inL2(R,C2).

Now suppose thatS(t)5e2 i tH 0 for tPR. Then formula~1.7! defines an additive operato
valued set functionMt on the algebraSt . The set functionMt is actually the restriction toSt of an
operator valued measureM̃ t :s(St)→L(L2(R,C2)) that is s additive for the strong operator to
pology of L(L2(R,C2)). One way to see this is to takea andb to be the Pauli matrices

a5s35S 1 0

0 21D , b52s15S 0 21

21 0 D . ~1.10!

Other possible representations are unitarily equivalent to this choice of matrices~known as the
Chiral representation!. Thenims1 is a bounded perturbation of the operators3 (]/]x), which is
the generator of a direct sum of translations acting onL2(R,C2) and Lp(R,C2), for all 1<p
,`.

It follows that for each 1<p<`, the inequalityiS(t)cip<emutuicip holds for all tPR and
cPLp(R,Cp

2)ùL2(R,C2). HereCp
2 denotesC2 with the,p-norm. The set functions defined by E

~1.7! are therefore bounded on the algebraSt in operator norm byemt for p51 andp5`, and so
for all 1<p<` by the Riesz–Thorin interpolation theorem~Ref. 13, Chap. 2!.

Further analysis shows that the operator valued measuresMt so defined are actually supporte
on the spaceV of all continuous pathsv:@0,̀ )→R with velocity equal to61 and only finitely
many changes of direction in each bounded time interval, see Ref. 11 or Sec. VII below.

A similar argument shows that the operator valued measuresMt , t>0, also act on the spac
M(R,C2) of C2-valued Borel measures equipped with the total variation norm and on the s
L `(R,C2) of bounded Borel measurable functions with the weak topolo
s(L `(R,C2),M(R,C2)) defined by the duality betweenL `(R,C2) andM(R,C2).

Denote the constant function equal to one onR by 1. The space of alln3n matrices overC
is denoted byMn(C). The matrix valued measuresn t,x :s(St)→M2(C) defined by

n t,x~E!v5~Mt~E!~1v !!~x!, EPs~St!, vPC2, xPR, t.0, ~1.11!

were constructed by Ichinose10 using the method of Nelson.16 Representations ofn t,x using a
Poisson process have been obtained by Blanchardet al.4 and Zastawniak,19 see also Ref. 11 for a
survey. The sample space properties mentioned above follow immediately from the Poisso
cess representations, see Proposition 6.1 below.

For suitable functionsV:R→R, we obtain the Feynman–Kac formula

e2 i t (H01V)5E
V

e2 i *0
t V(v(s))ds dMt~v!. ~1.12!

In order that*0
t uV(v(s))u ds,` for all vPV andt.0, the functionV must belocally integrable

on R. The set of paths with no changes in direction and crossing zero has nonzeroMt measure, so
the same conclusion holds if*0

t uV(v(s))u ds,` for Mt almost allvPV and all t.0.
Now suppose thatV is locally integrable onR. BecauseH01V is in the limit point case at

6` ~Ref. 18, Theorem 6.8!, the minimal operator~Ref. 18, p. 41! associated with the differentia
expressionH01V is essentially self-adjoint~Ref. 18, Theorem 5.7!. The functional calculus for
self-adjoint operators makes sense of the left-hand side of Eq.~1.12!. Note that the symbolH0

1V must be interpreted in this special sense, because we are not assuming thatH01V is densely
defined as the sum of two self-adjoint operators or as a quadratic form sum. Finally, the eq
~1.12! follows after approximatingV by cutoff functionsVk5x$uVu<k%V, k51,2, . . . .

We are concerned in this work with the potentialV(x)5 (g/uxu) , xPR\$0%, which is not a
locally integrable function onR. The operatorH01V with domainC0

`(R\$0%,C2) of all smooth
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functionsC2-valued with compact support inR\$0% has a four parameter family of self-adjoin
extensions studied by Benvegnu`.3 For every pathvPV passing through zero,*0

t uV(v(s))u ds
5` and Eq.~1.12! now makes no sense. In particular, there is no uniquely determined self-ad
operatorH01V associated with the left-hand side of~1.12!.

By analogy with the three dimensional case,V is called aCoulomb potentialandH01V is
sometimes called the Hamiltonian of a one dimensional hydrogen atom. Models of this type
in the investigation of quantum wires and in the description of electrons near the surface of
helium, see Ref. 3 for the references.

Another motivation for investigating self-adjoint extensions ofH01V is that it is a particu-
larly simple example of a singular perturbation of the free HamiltonianH0 , in the sense that the
differential expressionH01V does not have an essentially self-adjoint minimal operator~Ref. 18,
p. 41!. Other examples include point interactionsH01cd and H01cd8 which have been the
subject of recent investigations in both the nonrelativistic2 and relativistic settings.8

Singular perturbations also arise in the perturbative approach to quantum field theory
renormalization of the interaction terms involving the subtraction of divergences is necess
order to make sense of the Feynman–Kac formula~1.12! for the Coulomb potentialV, we find an
analogous subtraction of divergences from the expression*0

t V(v(s)) ds. The exponential func-

tional e2 i *0
t V(v(s)) ds is thereby modified in the limit by terms whose modulus is one. By adjus

the subtraction of the divergence, we obtain a two-parameter family of self-adjoint extensio
(H01V)uC0

`(R\$0%,C2). This is the origin of the word renormalization in the title. Our renorm
ization of the interaction is achieved by specifying the behavior of the interaction term for sp
paths that cross the singularity at zero.

The appropriate modification of the Feynman–Kac formula~1.12! is given by

e2 i t (H01GV)5E
V

Ft
G~v!dMt~v!. ~1.13!

Here H01GV is an element of the two-parameter family of self-adjoint extensions ofH0

1VuC0
`(R\$0%,C2) corresponding to certain boundary conditions denoted byG, and Ft

G is a
multiplicative functionalof the modulus one associated withG.

The term multiplicative functional is borrowed from the theory of Markov processes. To
that Ft , t>0 is a multiplicative functional means that for eacht>0, the functionFt :V→C is
measurable with respect to thes-algebras(St) ~or perhaps, an appropriate completion! and
Fs1t5Ft+usFs , Mt1s , a.e., whereus :V→V is the shift map defined byusv5v(s1 • ), for all
s>0 andvPV.

It follows from the properties of the operator valued measuresMt that t°*VFt dMt , t.0, is
necessarily asemigroup of operatorsif Ft is Mt integrable for eacht.0. The point of the
Feynman–Kac formula is to represent the dynamical group of an interacting quantum sys
terms of the integral of such a multiplicative functional with respect to the measures asso
with a free system. More accurately, it is usually the analytic continuation of the dynamical g
to imaginary time for which such a representation is obtained, otherwise, there may be nomeasure
associate with the free system.

The usual example of a multiplicative functional is the Feynman–Kac functionalFt(v)

5e2 i *0
t V(v(s)) ds. The multiplicative functionalFt

G mentioned above is obtained by subtracti
divergences from the expression*0

t V(v(s)) ds in a way prescribed by the boundary conditionsG.
In the case of the nonrelativistic hydrogen atom in one dimension, Fischer, Leschke, and M¨ller7

show that the multiplicative functional

Ft~v!5x$*
0
t uV(v(s))u ds,`%e

2*0
t V(v(s))ds
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is associated with the Dirichlet boundary condition at zero, but they do not investigate the
bility of obtaining semigroups associated with other self-adjoint extensions by multiplicative
tionals.

The paper is organized as follows. Section II sets some terminology and notation conc
vector integration. An explicit formula for the operator valued measures associated with zero
case of the Dirac equation is given in Sec. III. Here the path space consists of all path
constant velocity 1 or21. In Sec. IV the Feynman–Kac formula for a nonsingular perturbatio
calculated explicitly in the zero-mass case of the Dirac equation. Although this is an easy
lation, it sets the stage for the later arguments. The operator valued measures associated w
interactions in the zero-mass case of the Dirac equation can also be calculated explicitly. I
V, we present the formula in Theorem 5.1 and we find that paths reflected at zero are intro
into the path space. The relative weight assigned to these paths is determined by the bo
conditions at zero that give the associated self-adjoint extension of the one dimensional
operator. Next, in Sec. VI, we look at Coulomb potentials in the zero-mass case. An ex
calculation of the Feynman–Kac formula is possible here too, but we must subtract a logar
divergence from the exponent of the Feynman–Kac functional in a manner prescribed b
boundary conditions at zero for those paths which hit the origin. The case of nonzero mass
in Sec. VII is more complicated. The path space consists of continuous paths with velocit61
and finitely many changes of direction in any bounded time interval, but we still obtain
Feynman–Kac formula for Coulomb potentials by subtracting a logarithmic divergence from
exponent of the Feynman–Kac functional in a manner prescribed by the boundary conditi
zero.

II. OPERATOR VALUED MEASURES

Because we shall be dealing with operator valued measures, we make a few remarks
vector integration. Details may be found in Ref. 15. LetX be a Banach space,~S,E! a measurable
space andm:E→X a vector measure, that is, anX-valued set functions-additive for the norm
topology of X. Here s-additive has the same meaning as it does for scalar valued meas
m(ø j 51

` Ej )5( j 51
` m(Ej ) for all pairwise disjoint elementsEj , j 51,2,. . . , of E. The vector

space of all continuous linear functionals onX is denoted byX8
A function f :S→C is said to bem-integrableif for eachjPX8, the functionf is integrable

with respect to the scalar measure^m,j&:E°^m(E),j&, EPE, and for eachEPE, there exists a
vector (f .m)(E) belonging toX such that the equality

^~ f .m!~E!,j&5E
E

f d^m,j&

holds for everyjPX8. It turns out that the mappingE°( f .m)(E), EPE, is necessarily
s-additive for the norm topology ofX, that is, the indefinite integralf .m5 f m of anm-integrable
function f is again a vector measure. We shall also write*Ef dm for the vector (f .m)(E), E
PE.

Let L(X) denote the space of bounded linear operators acting onX, equipped with the strong
operator topology. A similar notion of integrability applies to a functionf :S→C with respect to an
operator valued measureM :E→L(X), that is, anL(X)-valued set functions-additive for the
strong operator topology. For eachxPX andjPX8, the functionf is integrable with respect to
the scalar measurêMx,j&:E°^M (E)x,j&, EPE, and for eachEPE, there exists an operato
( f .M )(E) belonging toL(X) such that the equality

^~ f .M !~E!x,j&5E
E

f d^Mx,j&
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holds for everyxPX andjPX8. The indefinite integralf M :E°( f .M )(E), EPE, is s-additive
for the strong operator topology ofL(X). We shall also write*Ef dM for the bounded linear
operator (f .M )(E), EPE.

With integration understood in the above sense, the usual monotone and dominated c
gence theorems are valid. In particular, bounded measurable functions are integrable.f:S
→J is a measurable map into the measurable space (J,S), thenM +f21 denotes the operato
valued measureS°M (f21(S)), SPS. Notation applied to bounded linear operators will also
adopted for operator valued measures. IfS:X→X andT:X→X are bounded linear operators, the
the operator valued measureE°SM(E)T, EPE, is denoted bySMT. The direct sumM1% M2 of
two operator valued measuresM1 :E→L(H1), M2 :E→L(H2) acting on Hilbert spacesH1 ,H2 is
defined byM1% M2 :E°M1(E) % M2(E), EPE.

An operator valued measureM :E→L(X) is said to beconcentratedon a setA if M (E)50 for
all EPE disjoint from A.

III. THE TRANSLATION MEASURES

The path space measures associated with translation onR are particularly simple. We shal
construct the operator valued measures associated with the one dimensional Dirac equatio
these, so we give the explicit calculation of this special case here.

Let Q:B(R)→L(L2(R)) be the spectral measure of multiplication by characteristic functi
of Borel subsets ofR. Let p be the self-adjoint operator (1/i )(]/]x) acting in L2(R). We can
explicitly calculate the operator valued measures defined by formula~1.7! in the case thatS(t)
5eipt, tPR.

Then forn times 0,t1,¯,tn,t andn Borel subsetsB1 , . . . ,Bn of R,

~eip(t2tn)Q~Bn!eip(tn2tn21)
¯Q~B1!eipt1f !~x!

5xBn
~x1t2tn!~eip(tn2tn21)Q~Bn21!¯Q~B1!eipt1f !~x1t2tn!

5xBn
~x1t2tn!xBn21

~x1t2tn21!¯xB1
~x1t2t1! f ~x1t !

5~eiptQ+g1
21~E! f !~x!. ~3.1!

HereE,V is the cylinder set~1.5! andV is the collection of all pathsv:@0,̀ )→R for which
there existsxPR such that either

~a! v(s)5x1s, for all s>0, or,
~b! v(s)5x2s, for all s>0.
The mappingg1 :R→V is defined byg1(x)(s)5x2s for s>0 and analogously,g2 :R

→V is defined byg2(x)(s)5x1s for x>0 ands>0. The setV has the finest topology fo
which the mapsg6 are continuous. Then

Mt
1
ªeiptQ+g1

21

is anL(L2(R))-valued Borel measure onV. Similarly, set

Mt
2
ªe2 iptQ+g2

21 .

The range ofg6 is the set of characteristic lines of the equation

]u

]t
56 ipu56

]u

]x

defining translations onR.
Remark 3.1:The same argument as above applies to a classical dynamical system wi

mapsg6 replaced by the flow of the system.
Now suppose thatA is the self-adjoint differential operator
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A5s3

1

i

]

]x
5

1

i S 1 0

0 21D ]

]x
~3.2!

acting inL2(R,C2). SetS(t)5e2 iAt for all tPR andQ:B(R)→L(L2(R,C2)) is multiplication by
characteristic functions. For every setE of the form ~1.5!, Mt(E)PL(L2(R,C2)) is the operator
given by formula~1.7!. ThenA5p% (2p) in L2(R,C2) andMt defines anL(L2(R,C2))-valued
Borel measure onV given by

Mt5~e2 iptQ+g2
21! % ~eiptQ+g1

21!5Mt
2

% Mt
1 . ~3.3!

IV. THE FEYNMAN–KAC FORMULA FOR NONSINGULAR POTENTIALS

Let V:R→R be a locally integrable function. In the present context, this is what is mean
a nonsingular interaction. The spectral measureQ:B(R)→L(L2(R,C2)) of multiplication by char-
acteristic functions is the spectral resolution of the position operator for a Dirac particle o
line. Then

Q~V!ªE
R
V dQ

is the self-adjoint operator of multiplication byV acting in L2(R,C2). The symbol*RV dQ is
interpreted literally because

D~Q~V!!5$ f PL2~R,C2!:V is ~Q f ! integrable%

andQ(V) fª*RV d(Q f ) for all f PD(Q(V)).
As mentioned in the Introduction, the operatorA1Q(V) whose domain is the set of a

functions uPL2(R,C2), absolutely continuous on bounded intervals such thatAu1Vu
PL2(R,C2) is self-adjoint. Therefore,e2 i t (A1Q(V)), tPR, is a continuous unitary group of opera
tors. The following Feynman–Kac formula represents the semigroup of operators as a fun
integral. In this special case, both sides of the formula can be calculated explicitly. The
below sets the stage for the more involved calculations later. For eachvPV, set Xs(v)
5v(s), s>0.

According to the notation mentioned above, the value of the operator valued measure

e2 iptQ+g2
21:B~V!→L~L2~R,C2!!

on the Borel subsetE of V is the bounded linear operatore2 iptQ(g2
21(E)).

Proposition 4.1: The functionv°e2 i *0
t V+Xs(v) ds, vPV, exists and is Mt-integrable for each

t>0. Furthermore,

e2 i t (A1Q(V))5E
V

e2 i *0
t V+Xs ds dMt . ~4.1!

Proof: BecauseV is locally integrable,*0
t uV(x2s)u ds,` and*0

t uV(x1s)u ds,` for every

xPR. Hence,*0
t uV(v(s))u ds,` for everyvPV. The measurable functionv°e2 i *0

t V+Xs(v) ds,
vPV, has absolute value one, so it is integrable with respect to the operator valued measuMt .
We calculate its integral from Eq.~3.3! by observing that
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E
V

e2 i *0
t V+Xs ds dMt5E

V
e2 i *0

t V+Xs ds d~Mt
2

% Mt
1!

5S E
V

e2 i *0
t V+Xs ds dMt

2D % S E
V

e2 i *0
t V+Xs ds dMt

1D
5S E

V
e2 i *0

t V+Xs ds d~e2 iptQ+g2
21! D % S E

V
e2 i *0

t V+Xs ds d~eiptQ+g1
21! D

5S e2 iptE
V

e2 i *0
t V+Xs ds d~Q+g2

21! D % S e2 iptE
V

e2 i *0
t V+Xs ds d~Q+g1

21! D
5~e2 iptQ~e2 i *0

t V+Xs+g2 ds!! % ~eiptQ~e2 i *0
t V+Xs+g1 ds!!. ~4.2!

Now let vPL2(R). Then for almost allxPR, we have

~Q~e2 i *0
t V+Xs+g1 ds!v !~x!5e2 i *0

t V+Xs+g1(x) dsv~x!5e2 i *0
t V(x2s) dsv~x!

so we have

~eiptQ~e2 i *0
t V+Xs+g1 ds!v !~x!5e2 i *0

t V+Xs+g1(x1t) dsv~x1t !

5e2 i *0
t V(x1t2s) dsv~x1t !

5e2 i *0
t V(x1s) dsv~x1t !

5e2 i *x
x1tV(s) dsv~x1t !.

Similarly,

~e2 iptQ~e2 i *0
t V+Xs+g2 ds!u!~x!5e2 i *x2t

x V(s) dsu~x2t !.

Integration by parts verifies that forf5(f2

f1)PL2(R,C2), the equality

~e2 i t (A1Q(V))f!~x!5S e2 i *x2t
x V(s) dsf1~x2t !

e2 i *x
x1tV(s) dsf2~x1t !

D
holds for almost allxPR, so now equality~4.1! follows from ~4.2!. h

V. POINT INTERACTIONS: ZERO MASS

Let AG be the operator~3.2! with the boundary condition

S f1~01 !

f2~02 ! D5GS f1~02 !

f2~01 ! D ~5.1!

at zero with respect to the unitary matrix

G5hS a 2b̄

b ā
D ~5.2!

with a,b,hPC satisfyinguau21ubu251 anduhu51.
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In this simple case, a calculation shows that the matrixG corresponds to a unitary map from
one deficiency subspace ofAuC0

`(R\$0%,C2) onto another, soAG is self-adjoint and every self
adjoint extension ofAuC0

`(R\$0%,C2) may be obtained in this way~Ref. 18, Theorem 4.4!; see
also Ref. 5 for further discussion of this point.

A careful analysis of the self-adjoint operatorAG2ms1 ~or rather, a self-adjoint operato
unitarily equivalent to this one! is given in Ref. 9. Certain choices of the boundary conditionG are
associated with point interactions.

The present chiral representation is better adapted to the calculation of functional inte
but the Dirac representation of Refs. 3 and 9 leads to a simpler determination of the bou
conditions that arise from taking the nonrelativistic limit.

For suitablefPL2(R,C2) the function

S u~x,t !
v~x,t ! D5~e2 i tAGf!~x!, xPR, ~5.3!

is a solutionc(x,t)5(v(x,t)
u(x,t)) of the equation

]c

]t
1s3

]c

]x
50, c~ • ,t !PL2~R,C2!

satisfying the initial conditionc(x,0)5f(x), xPR, and satisfying the boundary condition~5.1!.
Let t.0. If x.0 or x,2t, then v(x,t)5f2(x1t) and if x,0 or x.t, then u(x,t)

5f1(x2t). In the region2t,x,0, there exists another functionF such thatv(x,t)5F(x
1t). To ensure that the boundary condition~5.1! is satisfied, we must have

F~ t2 !5h@bf1~~2t !2 !1āf2~ t1 !#

for all t.0. Therefore, iff1 ,f2 are absolutely continuous on subintervals ofR\$0% and satisfy the
boundary condition~5.1!, it follows that

v~x,t !5h@bf1~~2~x1t !!1āf2~x1t !#, 2t,x,0.

Similarly, we have

u~x,t !5h@af1~x2t !2b̄f2~2~x2t !!#, 0,x,t.

It follows that for anyfPL2(R,C2), Eq. ~5.3! holds with

u~x,t !5H f1~x2t ! for all x.t, x,0

h@af1~x2t !2b̄f2~2~x2t !!# for all 0,x,t,
~5.4!

v~x,t !5H f2~x1t ! for all x,2t, x.0

h@bf1~2~x1t !!1āf2~x1t !# for all 2t,x,0.
~5.5!

Let S(t)5e2 i tAG for all t>0 and letMt
G be the additive set function defined by Eq.~1.7! for

cylinder setsE given by formula~1.5!. Define the pathsz6 :R→V which reflect atx50 by the
formulas

z1~x!~s!5sgn~x!ux2su, s>0, xPR, ~5.6!

z2~x!~s!5sgn~x!ux1su, s>0, xPR. ~5.7!

Here we enlargeV so as to include not only the ranges of the characteristic mappingsg6 ,
but also of the reflected pathsz6(x), xPR, that is, set V05g1(R)øg2(R), V1
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5z1((0,̀ ))øz2((2`,0)) andV5V0øV1 . ThenV0 is the set of paths with no reflection a
zero andV1 is the set of paths with a reflection at zero for some positive time.

Theorem 5.1:Let S(t)5e2 iAGt for all t PR and for each t>0 let Mt be the operator valued
measure acting on L2(R,C2) defined by formula (1.5).

Then there exist operator valued measures Mt
0 and Mt

G,1 such that Mt
G5Mt

01Mt
G,1 , where

Mt
0 is concentrated on pathsvPV which do not hit zero in the interval(0,t) and Mt

G,1 is
concentrated on those pathsvPV that do.

More precisely, set(R f )(x)5 f (2x) for f PL2(R,C), xPR. Then

Mt
05x$X0Xt.0% .@~e2 iptQ+g2

21! % ~eiptQ+g1
21!#, ~5.8!

Mt
G,15hS ax$X0Xt,0% .~e2 iptQ+g2

21! 2b̄~x (0,t) .@e2 iptQR# !+z2
21

b~x (2t,0) .@eiptQR# !+z1
21 āx$X0Xt,0} .~eiptQ+g1

21!
D . ~5.9!

The operator valued measure Mt
0 is concentrated on the Borel setV0ù$X0Xt.0% and Mt

G,1 is
concentrated on(V0ù$X0Xt,0%)øz1((0,t))øz2((2t,0)).

Proof: Let E,V be a nonempty cylinder set~1.5! and f PL2(R,C2). Then for almost allx
outside the interval@2t,t#, a calculation similar to~3.1! holds because the formula fore2 iAt

applies, so that

~Mt
G~E! f !~x!5~@~e2 iptQ+g2

21~E!! % ~eiptQ+g1
21~E!!# f !~x!.

Then neither pathg6(x6t) hits zero in the time interval@0,t#. Hence, (Mt
G(E) f )(x) is equal

to

~~x$X0Xt.0% .@~e2 iptQ+g2
21! % ~eiptQ+g1

21!# !~E! f !~x!

1S hS ax$X0Xt,0% .~e2 iptQ+g2
21!~E! 2b̄~x (0,t) .@e2 iptQR# !+z2

21~E!

b~x (2t,0) .@eiptQR# !+z1
21~E! āx$X0Xt,0 .~eiptQ+g1

21!~E!
D f D ~x!

~5.10!

for almost all of thesex because the second term is zero.
Now suppose that2t,x,0 and E is a nonempty cylinder set~1.5!. Then there existsk

50, . . . ,n such thatx1t2tk.0 andx1t2tk11,0, where we have sett050 andtn115t. Then
we have

~Mt
G~E! f !2~x!5~e2 i (t2tn)AGQ~Bn!e2 i (tn2tn21)AG

¯Q~B1!e2 i t 1AG f !2~x!

5xBn
~x1t2tn!~e2 i (tn2tn21)AGQ~Bn21!¯Q~B1!e2 i t 1AG f !2~x1t2tn!

]

5xBn
~x1t2tn!¯xBk11

~x1t2tk11!

3~e2 i (tk112tk)AGQ~Bk!¯Q~B1!e2 i t 1AG f !2~x1t2tk11!

5hxBn
~x1t2tn!¯xBk11

~x1t2tk11!

3@bxBk
~2~x1t2tk!!~e2 i (tk2tk21)AGQ~Bk21!¯Q~B1!e2 i t 1AG f !1~2~x

1t2tk!!1āxBk
~x1t2tk!~e2 i (tk2tk21)AGQ~Bk21!¯Q~B1!e2 i t 1AG f !2~x

1t2tk!#
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@by Eq. ~5.5!#

]

5hxBn
~x1t2tn!¯xBk11

~x1t2tk11!

3@bxBk
~2~x1t2tk!!¯xB1

~2~x1t2t1!! f 1~2~x1t !!

1āxBk
~x1t2tk!¯xB1

~x1t2t1! f 2~x1t !#

5h~beitpQ+z1
21~E!R f11āeitpQ+g1

21~E! f 2!~x!.

These equalities hold true for almost all2(t2tk),x,2(t2tk11).
Becausex,0, we havex2(t2t j ),0 for all j 50, . . . ,n11. It follows that

~Mt
G~E! f !1~x!5~e2 i (t2tn)AGQ~Bn!e2 i (tn2tn21)AG

¯Q~B1!e2 i t 1AG f !1~x!

5xBn
~x2~ t2tn!!~e2 ip(tn2tn21)Q~Bn21!¯Q~B1!e2 ipt1f !1~x2~ t2tn!!

5xBn
~x2~ t2tn!!xBn21

~x2~ t2tn21!!¯xB1
~x2~ t2t1!! f 1~x2t !

5~e2 iptQ+g2
21~E! f 1!~x!.

Hence, the equality

~Mt
G~E! f !~x!5S e2 iptQ+g2

21~E! f 1

h~beitpQ+z1
21~E!R f11āeitpQ+g1

21~E! f 2! D ~x! ~5.11!

holds for almost all2(t2tk),x,2(t2tk11). As k varies from 0 ton, we obtain the represen
tation ~5.11! almost everwhere on the interval (2t,0) for the given cylinder setE. BecauseE is
any cylinder set, the representation~5.11! holds on every cylinder set for almost allxP(2t,0).
We need to check that the right-hand side of Eq.~5.11! is given by the expression~5.10! for almost
all xP(2t,0).

Now the element ((x$X0Xt.0% .@(e2 iptQ+g2
21) % (eiptQ+g1

21)#)(E) f )1 of L2(R) is equal to
e2 iptxg

2
21($X0Xt.0%ùE) f 1 , which, atxP(2t,0) is xg

2
21($X0Xt.0%ùE)(x2t) f 1(x2t). But X0(g2(x

2t))Xt(g2(x2t)).0 for x,0, so this is just

xg
2
21(E)~x2t ! f 1~x2t !5~e2 iptQ+g2

21~E! f 1!~x!,

corresponding to the first element of~5.11!. BecauseX0(g2(x2t))Xt(g2(x2t)).0 for x,0, no
other contribution is made by the first elements of~5.10!.

On the other hand, ((x$X0Xt.0% .@(e2 iptQ+g2
21) % (eiptQ+g1

21)#)(E) f )2(x)50 for 2t,x

,0, because thenX0(g1(x1t))Xt(g1(x1t)),0. It follows that (Mt
G(E) f )(x) is equal to the

expression~5.10!.
A similar argument applies to the interval (0,t), for thenX0(g1(x1t))Xt(g1(x1t)).0.
Let f be an integrableC2-valued simple function. Replacingf by f, the formulas above make

sense foreach xPR. But, for eachxPR and t.0, there is at most one pathvPV such thatv
5g6(x6t) or v5z6(x6t) andX0(v)Xt(v)50.

Then (Mt
G(Eù$X0Xt50%)f)(x)50 for all EPSt and almost allxPR. The image@f# of f

in L2(R,C2) has the property thatMt
G(Eù$X0Xt50%)@f#50 as an element ofL2(R,C2) for

everyEPSt . Integrable simple functions are dense inL2(R,C2), so the cylinder set$X0Xt50% is
anMt

G-null set. This establishes the representationMt
G(E)5Mt

0(E)1Mt
G,1(E) on all cylinder sets

E. Both sides of the equation ares additive, so we have equality on all Borel subsetsE of V.h
Remark 5.2:~a! According to Theorem 5.1, relativistic point interactions in one dimension

also associated withL(L2(R,C2))-valued measures on the path spaceV. Nevertheless, the small
est numberC.0 for which ie2 i tAG f i`<Ci f i` for all tPR and f PL2(R,C2)ùL`(R,C2) is
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uau1ubu. Because

sup$uau1ubu:a,bPC, uau21ubu251%5&,

the groupe2 i tAG need not be similar to a group of contractions onL`(R,C2)—this is the usual
condition for constructing path space measures. In the case of point interactionsd associated with
the LaplacianD in Rd, the positive operatorset(D2d), t.0, are not evenboundedon L`(Rd) for
d51,2,3.6,1

~b! The effect of off-diagonal terms in the unitary matrixG is to introduce pathsz6(x), x
PR, that scatter off the singular interaction at the origin. The off-diagonal terms ofG are the
reflection coefficients and the diagonal terms are the transmission coefficients of the trans
path. An operator valued measureMt

G,1 concentrated on the associated reflected or transm
paths is associated with each of these coefficients via formula~5.9!.

VI. THE FEYNMAN–KAC FORMULA FOR SINGULAR POTENTIALS: ZERO MASS

Let gPR andV(x)5 g/uxu for all xPR with xÞ0. Let G be a (232) unitary matrix—any
such matrix can be expressed in the form~5.2!. Then the operator

1

i S 1 0

0 21D ]

]x
1S 1 0

0 1D g

uxu
~6.1!

satisfying the boundary conditions

S limx→01uxu igu~x!

limx→02uxu igv~x! D5GS limx→02uxu2 igu~x!

limx→01uxu2 igv~x! D ~6.2!

is self-adjoint and written asA1GQ(V). As mentioned above in the caseg50, the collection of
all unitary matricesG is in one-to-one correspondence with isometries from one deficiency
space of (A1Q(V))uC0

`(R\$0%,C2) onto another.
Thene2 i t (A1GQ(V)), tPR, is a continuous unitary group of operators. Calculations simila

those of Sec. V show that forfPL2(R,C2), the function

S u~x,t !
v~x,t ! D5~e2 i t (A1GQ(V))f!~x!, xPR, ~6.3!

is given by

u~x,t !5H e2 i *x2t
x V(s) dsf1~x2t ! for all x.t, x,0

he2 ig(lnuxu1 lnux2tu)@af1~x2t !2b̄f2~2~x2t !# for all 0,x,t,

v~x,t !5H e2 i *x
x1tV(s) dsf2~x1t ! for all x,2t, x.0

he2 ig(lnuxu1 ln(x1t))@bf1~2~x1t !!1āf2~x1t !# for all 2t,x,0.

Suppose thatb50 andha5e2 ik1, hā5e2 ik2 for numbers 0<k j,2p.
For the moment, we takeV to be the collection of all paths that lie in the range of the ma

g6 , that is, there existsxPR such that eitherv(s)5x1s for all s>0, or v(s)5x2s. Suppose
that vPV is a path for whichX0(v)Xt(v),0, which is to say that the pathv hits the origin at
some time in the open interval (0,t). Set

K E
0

t

V+Xs~v! dsL
G

5H g~ lnuv~0!u1 lnuv~ t !u!1k1 if v8~s!51, s.0

g~ lnuv~0!u1 lnuv~ t !u!1k2 if v8~s!521, s.0.
~6.4!

Then the measurable functionFt
G :V→C is defined by
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Ft
G5x$X0Xt.0% .e2 i *0

t V+Xs ds1x$X0Xt,0% .e2 i ^*0
t V+Xs ds&G. ~6.5!

Here Ft
G is a multiplicative functional. The multiplicative property is borrowed from th

theory of Markov processes:

Fs1t
G ~v!5Ft

G~vs!Fs
G~v! a.e., ~6.6!

with vs(r )5v(s1r ). It is natural to view

K E
0

t

V+Xs dsL
G

as a renormalization of the expression*0
t V+Xs ds on the set of all pathsvPV such that

X0(v)Xt(v),0. For example, suppose that 0,x,t andv(s)5x2s. Then

E
[0,t] ù$uv(s)u.e%

V~v~s!! ds5E
x1e

t g

ux2su
ds1E

0

x2e g

ux2su
ds

5g~ lnuv~0!u1 lnuv~ t !u!22g ln e,

as e→01, so we are subtracting a logarithmic divergence. Nevertheless, for eache.0 suffi-

ciently small,e2 i * [0,t] ù$uv(s)u.e%V(v(s)) ds ande2 i ^*0
t V+Xs ds&G differ by a complex factor with modulus

one.
Lemma 6.1: Ft

G is a continuous multiplicative functional, that is, s°Fs
G(v),sP@0,t# is con-

tinuous for Mt almost allvPV.
Proof: We look at the casev8(s)521 for all s.0. The argument is similar for the other typ

of path. We have

Fs
G~v!5e2 i *0

sV(v(r )) drx$Xs.0%ø$Xs,2s%~v!1e2 i ^*0
sV(v(r )) dr&Gx$2s,Xs,0%~v!,

Ft
G~vs!5e2 i *0

t V(vs(r )) drx$Xt.0%ø$Xt,2t%~vs!1e2 i ^*0
t V(vs(r )) dr&Gx$2t,Xt,0%~vs!

5e2 i *s
s1tV(v(r )) drx$Xs1t.0%ø$Xs1t,2t%~v!1e2 i ^*0

t V(vs(r )) dr&Gx$2t,Xs1t,0%~v!

5e2 i *s
s1tV(v(r )) drx$Xs.t%ø$Xs,0%~v!1e2 i ^*0

t V(vs(r )) dr&Gx$0,Xs,t%~v!.

The last line follows from the observationXr(v)5X0(v)2r for all r>0. Then

Ft
G~vs!Fs

G~v!5e2 i *0
s1tV(v(r )) drx$Xs.t%ø$Xs,2s%~v!

1e2 i *s
s1tV(v(r )) dre2 i ^*0

sV(v(r )) dr&Gx$2s,Xs,0%~v!

1e2 i *0
sV(v(r )) dre2 i ^*0

t V(vs(r )) dr&Gx$0,Xs,t%~v!

5e2 i *0
s1tV(v(r )) drx$Xs1t.0%ø$Xs1t,2s2t%~v!

1e2 i *s
s1tV(v(r )) dre2 i ^*0

sV(v(r )) dr&Gx$2s2t,Xs1t,2t%~v!

1e2 i *0
sV(v(r )) dre2 i ^*0

t V(vs(r )) dr&Gx$2t,Xs1t,0%~v!.

But from Eq.~1.9!,
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K E
0

t

V~vs~r !! drL
G

5g~ ln~vs~0!!1 lnuvs~ t !u!1k25g~ ln~v~s!!1 lnuv~s1t !u!1k2

and fors,v(0),s1t, we have*0
sV(v(r )) dr5g(ln(v(0))2ln(v(s)). Hence,

e2 i *0
sV(v(r )) dre2 i ^*0

t V(vs(r )) dr&G5e2 ig(ln(v(0))1 ln(v(s1t)))1 ik25e2 i ^*0
s1tV(v(r )) dr&G.

For 0,v(0),s, we have*s
s1tV(v(r )) dr5g(ln(uv(s1t)u2ln(uv(s)u)). Hence,

e2 i *s
s1tV(v(r )) dre2 i ^*0

sV(v(r )) dr&G5e2 ig(ln(uv(0)u)1 ln(uv(s1t)u)1 ik25e2 i ^*0
s1tV(v(r )) dr&G.

The equalityFs1t
G (v)5Ft

G(vs)Fs
G(v) therefore holds unlessv~0! belongs to the finite se

$0,s,s1t%. However, the set of all suchv hasMt1s measure zero.
Continuity of s°Fs

G(v) at s0P@0,t# follows from formulas~6.4! and ~6.5! and the fact that
the set of allv with v(0)50 or v(s0)50 hasMt measure zero. h

The following result represents the operatore2 i t (A1GQ(V)) as an integral with respect to th
free Dirac measureMt for eacht.0.

Theorem 6.2:The function Ft
G is Mt integrable for each t>0. Furthermore,

e2 i t (A1GQ(V))5E
V

Ft
G dMt . ~6.7!

Proof: As in the proof of Theorem 2.1,

E
V

Ft
G dMt5~e2 iptQ~Ft

G+g2!! % ~eiptQ~Ft
G+g1!!.

Now let f2PL2(R). Then for almost allxPR, we have

~Q~Ft
G+g1!f2!~x!5Ft

G+g1~x!f2~x!

5x$X0Xt.0%~g1~x!!.e2 i *0
t V(x2s) dsf2~x!

1x$X0Xt,0%~g1~x!!.e2 i ^*0
t V+Xs+g1(x) ds&Gf2~x!

5x$x8.t%ø$x8,0%~x!.e2 i *0
t V(x2s) dsf2~x!

1x$0,x8,t%~x!.e2 i ^*0
t V+Xs+g1(x) ds&Gf2~x!,

so we have

~eiptQ~Ft
G+g1!f2!~x!5Ft

G+g1~x1t !f2~x1t !

5x$x8.t%ø$x8,0%~x1t !.e2 i *0
t V(x1t2s) dsf2~x1t !1x$0,x8,t%~x

1t !.e2 i ^*0
t V+Xs+g1(x1t) ds&Gf2~x1t !

5x$x8.0%ø$x8,2t%~x!.e2 i *x
x1tV(s) dsf2~x1t !

1x$2t,x8,0%~x!.e2 i ^*0
t V+Xs+g1(x1t) ds&Gf2~x1t !

5x$x8.0%ø$x8,2t%~x!.e2 i *0
t V(x1s) dsf2~x1t !

1x$2t,x8,0%~x!.e2 ig(lnuxu1 lnux1tu)2 ik2f2~x1t !.
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Similarly,

~e2 iptQ~Ft
G+g2!f1!~x!5x$x8,0%ø$x8.t%~x!.e2 i *x2t

x V(s) dsf1~x2t !

1x$0,x8,t%~x!.e2 ig(lnuxu1 lnux2tu)2 ik1f1~x2t !.

Comparison with formula~6.3! for e2 i t (A1GQ(V))f for fPL2(R,C2) establishes the result. h

Suppose thatG is any (232) unitary matrix. Another representation ofe2 i t (A1GQ(V)) is
possible by using the measuresMt

G associated with point interactions~5.8!. Take the path spaceV
to be the union of the ranges of the functionsg6 and z6 . For eachvPV, set t(v)5 inf$s
>0:v(s)50%, where we allow the possibility thatt(v)5` if v never hits the origin.

The integral*0
t V+Xs ds does not converge on the set$0,t,t% of paths, so we use the

following renormalization or principal value. Let

K E
0

t

V+Xs~v! dsL 5g~ lnuv~0!u1 lnuv~ t !u! ~6.8!

for all vPV for which 0,t(v),t and set

Ft5x$t.t% .e2 i *0
t V+Xs ds1x$0,t,t% .e2 i ^*0

t V+Xs ds&. ~6.9!

Note that according to formula~5.8!, the sets$t50% and $t5t% are Mt
G null. The proof of the

following statement is similar to that above.
Theorem 6.3:Let G be any(232) unitary matrix. The function Ft , t.0, is a multiplicative

functional and Ft is Mt
G integrable for each t>0. Furthermore,

e2 i t (A1GQ(V))5E
V

Ft dMt
G . ~6.10!

VII. THE FEYNMAN–KAC FORMULA FOR SINGULAR POTENTIALS: NONZERO MASS

Let A be the self-adjoint operator~3.2! and letb be the Hermitian matrix (21
0

0
21) and m

.0. ThenA1mb is a self-adjoint operator acting inL2(R,C2). Let S(t)5e2 i t (A1mb) and suppose
that Mt,m is the measure defined by formula~1.7!.

The matrix mb is a bounded perturbation ofA, so the Dyson series expansion~Ref. 14,
Theorem IX.2.1!

S~ t !5e2 i t (A1mb)5e2 i tA1 (
n51

`

~2 im!nRn~ t !,

~7.1!

Rn~ t !5E
0

t

¯E
0

s2
e2 i (t2sn)Abe2 i (sn2sn21)A

¯be2 i (s22s1)Abe2 is1A ds1¯dsn

converges absolutely in the operator norm ofL(L2(R,C2)). SetR0(t)5e2 i tA for t>0.
Denote the algebra generated by cylinder sets~1.5! by Zt(V). For each setE of the form

~1.5!, set

Mt
(n)~E!5 (

n01¯1nk5n
n0 , . . . ,nk>0

Rnk
~ t2tk!Q~Bk!Rnk21

~ tk2tk21!¯Q~B1!Rn0
~ t1!. ~7.2!

The identities
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(
l 1m5n
l ,m>0

Rl~s!Rm~ t !5Rn~s1t !, n50,1,2,. . . , s,t>0,

ensure that~7.2! defines an additive operator valued set functionE°Mt
(n)(E), EPZt(V). Fur-

thermore, the sumMt,m(E)5(n50
` (2 im)nMt

(n)(E) converges uniformly in the operator norm o
L(L2(R,C2)) for eachEPZt(V). For eachn50,1,2 . . . , theoperator valued measureMt

(n) is
supported on the set of those paths belonging toV with exactly n changes in direction in the
interval @0,t#. This follows immediately from the Poisson process representation of Zastawn19

to which we now turn.
As mentioned in the Introduction, the operator valued measuresMt,m and Mt

(n) may be
viewed as acting on the spaceM(R,C2) of C2-valued measures defined on the Borels-algebra
B~R! of R with the total variation norm. We shall identify this action more carefully now.

In the case thatmPM(R,C2) has a densityf :R→C2 with respect to Lebesgue measure onR,
then according to formula~3.2!, we have (e2 iAsf )(x)5( f 1(x2s), f 2(x1s)) for almost all x
PR, because the expression is valid on the dense subspaceL1ùL2(R,C2) of L1(R,C2). For any
continuous functionf:R→C2 with compact support,

^f,e2 iAsf &5E
R
f1~x!~e2 iAsf !1~x! dx1E

R
f2~x!~e2 iAsf !2~x! dx

5E
R
f1~x1s! f 1~x! dx1E

R
f2~x2s! f 2~x! dx5^eiAsf, f &,

with respect to the duality betweenL`(R,C2) andL1(R,C2).
For cylinder sets~1.5!, it is therefore consistent to interpret formulas~1.7! and ~7.1! with

S(s)5e2 iAs acting on a measuremPM(R,C2) for eachsPR by the formula

^f,S~s!m&5E
R
f1~x! d@~S~s!m!1#~x!1E

R
f2~x! d@~S~s!m!2#~x!

5E
R
f1~x1s! dm1~x!1E

R
f2~x2s! dm2~x!5^S~2s!f,m& ~7.3!

for all continuous functionsf:R→C2 with compact support. The embedding ofL1(R,C2) in
M(R,C2) induces the direct sum of translations onL1(R,C2) given above. Note that the groupS
of operators is not actually aC0 group acting onM(R,C2).

Let dx denote the unit point mass atxPR. In the same spirit as above, the opera
eipy:L1(R)→L1(R) defined for all f PL1(R) by (eipyf )(x)5 f (x1y), xPR, is translation by
yPR. Then denoting the induced operator onM~R! by the same symbol, we haveeipydx

5dx2y for all xPR. The standard basis vectors ofC2 are written ase1 ,e2 .
Proposition 7.1 (Zastawniak19): Let (J,E,P,^Nt& t>0) be the standard Poisson process wi

intensity one. Lettk(j)5 inf$t>0:Nt(j)5k% be the kth jump time ofjPJ. For each t>0, j
51,2 and xPR, let Yt

(x, j ) :J→R be the random variable defined by

Yt
(x, j )5x2~21! jE

0

t

~21!Ns ds.

Then for each xPR and j51,2 and cylinder set (1.5), theC2 valued Borel measure
Mt

(n)(Xt1
PB1 , . . . ,Xtk

PBk)(dxej ) equals
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B°et (
n01¯1nk5n
n0 , . . . ,nk>0

E
En0 , . . . ,nk

(t1 , . . . ,tk)
xBk

+Ytk
(x, j )

¯xB1
+Yt1

(x, j )

3@ei (t2tn)Abe2 i (tn2tn21)A
¯be2 i t1A~dxej !#~B! dP, BPB~R!.

Here En0 , . . . ,nk
(t1 , . . . ,tk) is the set ofjPJ with nj 21 jumps at times greater than tj 21 but less

than or equal to tj for each j51, . . . ,k11.
Let Fx, j :J→V denote the map sendingjPJ onto the pathv:@0,̀ )→R defined byv(s)

5Ys
(x, j )(j) for all s>0. Let Pt

(n)5x$Nt5n%P. Now let tk(v), k51, . . . ,K(v) be the consecutive
times wherevPV changes direction in the time interval@0,t#. It follows from Proposition 7.1
that

Mt
(n)~E!~dxej !5etE

E
ei (t2tn)Abe2 i (tn2tn21)A

¯be2 i t1A~dxej ! d~Pt
(n)+Fx, j

21!

for all elementsE of thes-algebras(Zt(V)) generated by the algebraZt(V) of cylinder sets. In
other words, theM(R,C2)-valued measureE°Mt

(n)(E)(dxej ) has anM(R,C2)-valued density

ete2 i (t2tn)Abe2 i (tn2tn21)A
¯be2 i t1A~dxej ! ~7.4!

with respect to the finite measurePt
(n)+Fx, j

21 .
We may takeV5øxPR, j 51,2Fx, j (J). For each vPC2, the M(R,C2)-valued measure

Mt
(n)( • )@dxv# is therefore concentrated on all pathsv with v(0)5x, velocity 61 and exactlyn

changes of direction in the interval@0,t#. Each operatorMt
(n)(E) is also continuous for the wea

topology of the duality betweenM(R,C2) and the spaceL `(R,C2) of bounded Borel measurabl
functions. Because the set of all measuresdxv for xPR and vPC2 separates the vector spac
L `(R,C2), it follows that Mt

(n) is concentrated on all pathsv with velocity 61 and exactlyn
changes of direction in the interval@0,t#, as mentioned above.

Lemma 7.2: Suppose that Gu,v
( j ) , j 50, . . . ,n are bounded random variables such that Gu,v

( j ) is
measurable with respect tos$Xs :u<s<v% for every0<u,v<t. Let v2r(s)5v(s2r ) for all
s>r .

Then G0,t1

(0)
¯Gtn21 ,tn

(n21) Gtn ,t
(n) is Mt

(n) integrable and

E
V

G0,t1

(0)
¯Gtn21 ,tn

(n21) Gtn ,t
(n) dMt

(n)

5E
0

t

¯E
0

s2S E
V

Gsn ,t
(n) ~v2sn

! dMt2sn
~v! D bS E

V
Gsn21 ,sn

(n21) ~v2sn21
! dMsn2sn21

~v! D¯
3bS E

V
Gs1 ,s2

(1) ~v2s1
! dMs22s1

~v! D bS E
V

G0,s1

(0) ~v! dMs1
~v! D ds1¯dsn .

Proof: The density of theM(R,C2)-valued measureMt
(n)( • )(dxej ) with respect to the prob-

ability measurePt
(n)+Fx, j

21 is given by~7.4!. For each 0,s1,¯,sn,t, let js1 , . . . ,sn
PJ be a

sample point withNsk
(js1 , . . . ,sn

)5k and Nsk2(js1 , . . . ,sn
)5k21, k51, . . . ,n. The jump time

corresponding to thekth time tk(v) of changing direction of the sample pathv is written as
tk8(j).

Then we have
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E
V

G0,t1

(0)
¯Gtn21 ,tn

(n21) Gtn ,t
(n) d~Mt

(n)~dxej !!

5etE
V

G0,t1

(0)
¯Gtn21 ,tn

(n21) Gtn ,t
(n) e2 i (t2tn)Abe2 i (tn2tn21)A

¯be2 i t1A~dxej ! dPt
(n)+Fx, j

21

5etE
$Nt5n%

~G0,t1

(0) +Fx, j !¯~Gtn21 ,tn

(n21) +Fx, j !~Gtn ,t
(n) +Fx, j !

3e2 i (t2tn8)Abe2 i (tn82tn218 )A
¯be2 i t18A~dxej ! dP

5E
0

t

¯E
0

s2
~G0,s1

(0) +Fx, j~js1 , . . . ,sn
!!¯~Gsn ,t

(n) +Fx, j~js1 , . . . ,sn
!!

3e2 i (t2sn)Abe2 i (sn2sn21)A
¯be2 is1A~dxej ! ds1¯dsn , ~7.5!

because the joint distribution of (t18 , . . . ,tn8) on $N(t)5n% is the measuree2tds1¯dsn on $s
PRn:0,s1,¯,sn,t % @Ref. 19, Eq.~17!#.

Now Fx, j (js1 , . . . ,sn
)(s)5Ys

(x, j )(js1 , . . . ,sn
)5x2(21) j*0

s(21)Nr (js1 , . . . ,sn
) dr. We can write

this expression as

x2~21! jE
0

sk
~21!Nr (js1 , . . . ,sn

) dr2~21! jE
sk

s

~21!Nr (js1 , . . . ,sn
) dr

5xk, j2~21! jE
sk

s

~21!Nr (js1 , . . . ,sn
) dr

5xk, j2~21! j 1k~s2sk!5g (21) j 1k~xk, j !~s2sk!, sk<s,sk11

5u2sk
~g (21) j 1k~xk, j !!~s!, sk<s,sk11 . ~7.6!

Here we have setuu(j):s→j(u1s) for s1u>0, uPR andjPJ and

xk, j5x2~21! jE
0

sk
~21!Nr (js1 , . . . ,sn

) dr

5Fx, j~js1 , . . . ,sn
!~sk! for k50, . . . ,n, and j 51,2,

with the conventionx0,j5x, s050 andsn115t.
Now from ~3.3!,

E
V

G0,s1

(0) ~v! dMs1
~v!5S E

V
G0,s1

(0) ~v! dMs1

2~v! D % S E
V

G0,s1

(0) ~v! dMs1

1~v! D
5S e2 iptE

V
G0,s1

(0) ~v! d~Q+g2
21!~v! D % S eiptE

V
G0,s1

(0) ~v! d~Q+g1
21!~v! D

5~e2 iptQ~G0,s1

(0) +g2!! % ~eiptQ~G0,s1

(0) +g1!!.

Hence,
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E
V

G0,s1

(0) ~v! Ms1
~dv!~dxej !5e(21) j ips1~@G0,s1

(0) +g (21) j #.dx!ej

5@G0,s1

(0) ~g (21) j~x!!#.~e(21) j ips1dx!ej

5@G0,s1

(0) +Fx, j~js1 , . . . ,sn
!#e2 is1A~dxej !.

Similarly,

S E
V

Gs1 ,s2

(1) ~v2s1
! dMs22s1

~v! DbS E
V

G0,s1

(0) ~v! dMs1
~v! D ~dxej !

5@G0,s1

(0) +Fx, j~js1 , . . . ,sn
!#@~e2 ip(s22s1)Q~Gs1 ,s2

(1) +u2s1
+g2!!

% ~eip(s22s1)Q~Gs1 ,s2

(1) +u2s1
+g1!!#be2 is1A~dxej !. ~7.7!

To see what this expression is, letj 51. Thenbe2 is1A(dxe1)5dx1s1
be1 . Now be152e2 , so

~e2 ip(s22s1)Q~Gs1 ,s2

(1) +~g2!2s1
!! % ~eip(s22s1)Q~Gs1 ,s2

(1) +~g1!2s1
!!be2 is1A~dxe1!

52eip(s22s1)@~Gs1 ,s2

(1) +u2s1
+g1!.dx1s1

#e2

52Gs1 ,s2

(1) ~u2s1
~g1~x1s1!!!@eip(s22s1)dx1s1

#e2

5Gs1 ,s2

(1) ~u2s1
~g1~x1s1!!!e2 i (s22s1)Abe2 is1A~dxe1!.

The sample pathu2s1
(g1(x1s1)) is s°g1(x1s1)(s2s1) for s>s1 . But

g1~x1s1!~s2s1!5x1s12~s2s1!5Fx,1~js1 , . . . ,sn
!~s!

for all s1<s<s2 , as in formula~7.6!. A similar argument works forj 52. The general formula for
the left-hand side of Eq.~7.7! is therefore

@G0,s1

(0) +Fx, j~js1 , . . . ,sn
!#@Gs1 ,s2

(1) ~g (21) j 11~x1,j !2s1
!#e2 i (s22s1)Abe2 is1A~dxej !

5@G0,s1

(0) +Fx, j~js1 , . . . ,sn
!#.@Gs1 ,s2

(1) +Fx, j~js1 , . . . ,sn
!#e2 i (s22s1)Abe2 is1A~dxej !.

Continuing in this way, we obtain

S E
V

Gsn ,t
(n) ~v2sn

! dMt2sn
~v! DbS E

V
Gsn21 ,sn

(n21) ~v2sn21
! dMsn2sn21

~v! D¯
3bS E

V
Gs1 ,s2

(1) ~v2s1
! dMs22s1

~v! DbS E
V

G0,s1

(0) ~v! dMs1
~v! D ~dxej !

5~G0,s1

(0) +Fx, j~js1 , . . . ,sn
!!¯~Gsn ,t

(n) +Fx, j~js1 , . . . ,sn
!!

3e2 i (t2sn)Abe2 i (sn2sn21)A
¯be2 is1A~dxej !. ~7.8!

Combining Eqs.~7.5! and ~7.8! completes the proof. h

Let G be the (232) unitary matrix~5.2!. Suppose thatb50 andha5eik1, hā5eik2 for
numbers 0<k j,2p. As above, denote the consecutive times wherevPV changes direction by
tk(v), k51, . . . ,K(v) with tK11(v)5t. The shift operatoruu maps vPV into the path
uu(v)(s)5v(s1u) defined for alls>2u.
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Lemma 7.3: There is essentially only one right continuous multiplicative functional Ft
G on V

satisfying (6.4) and (6.5) on$t1.t%. It is given Mt almost everywhere by

Ft
G5expF2 i (

k50

n

x$Xtk
Xtk11

.0%S E
tk

tk11
V+Xs dsD 1x$Xtk

Xtk11
,0%K E

tk

tk11
V+Xs dsL

G
G , ~7.9!

on $Nt5n% wheret050 and tn115t. The expression̂*tk

tk11V+Xs ds&G is given by

g~ lnuv~tk!u1 lnuv~tk11!u!1k1 , if v8~s!51, tk~v!,s,tk11~v!,
~7.10!

g~ lnuv~tk!u1 lnuv~tk11!u!1k2 , if v8~s!521, tk~v!,s,tk11~v!.

Furthermore, the multiplicative functional Ft
G satisfies

Ft
G5Ft1

G .~Ft22t1

G +ut1
!¯~Ft2tn

G +utn
!, ~7.11!

Mt almost everywhere on$Nt5n%.
Proof: Suppose first thatFt

G is a multiplicative functional satisfying Eqs.~6.4! and~6.5! on the
set$t1.t% of all paths with no change in direction before timet.

Then for every 0,t1,¯,tn,t,

Ft
G5Ft1

G .~Ft22t1
G +u t1

!¯~Ft2tn
G +u tn

!,

a.e., on$Nt5n%, becauseFt
G is a multiplicative functional. Right continuity ensures that we c

replacet1 , . . . ,tn by the jump timest1 , . . . ,tn so that Eq.~7.11! holds.
Now suppose thatvPV andtk(v)5tk , tk11(v)5tk11 with 0,tk,tk11,t, k50, . . . ,n

21, tn115t. Then on the interval@0,tk112tk#, the sample pathu tk
(v) is equal to the restriction

of an element of$t1.tk112tk% to @0,tk112tk#, so that by Eqs.~6.4! and ~6.5! we have

~Ftk112tk

G +ut1
!~v!5~Ftk112tk

G +u tk
!~v!

5x$X0Xtk112tk
.0%~u tk

~v!!e2 i *
0

tk112tkV+Xs(u tk
(v)) ds

1x$X0Xtk112tk
,0%~u tk

~v!!e2 i ^*
0

tk112tkV+Xs(u tk
(v)) ds&G

5x$Xtk
Xtk11

.0%~v!e2 i *
tk

tk11V+Xs(v) ds1x$Xtk
Xtk11

,0%~v!e2 i ^*
tk

tk11V+Xs(v) ds&G

5x$Xtk
Xtk11

.0%~v!e2 i *
tk

tk11V+Xs(v) ds1x$Xtk
Xtk11

,0%~v!e2 i ^*
tk

tk11V+Xs(v) ds&G.

Hence Eq.~7.9! follows by applying Eq.~7.11!.
On the other hand, Eq.~7.11! follows from the definition~7.9!. To check that~7.9! defines a

multiplicative functional, it is enough to check that Eq.~6.6! holds for almost allvP$Nt1s

5n%, for eachn51,2, . . . and on each set$tk21<s,tk%, k51, . . . ,n.
According to formula~7.9! and Lemma 5.1, we have

Ftk2tk21
+utk

5~Fs2tk21
+utk21

!~Ftk2s+us!,

Ft+us5~Ftk2s+us!~Fs1t2tk
+utk

!

on the set$Nt1s5n,tk21<s,tk%. Then
                                                                                                                



he

eal to

d

1658 J. Math. Phys., Vol. 44, No. 4, April 2003 Z. Brzeźniak and B. Jefferies

                    
Fs1t
G 5Ft1

G ~Ft22t1

G +ut1
!¯~Fs1t2tn

G +utn
!

5Ft1

G ~Ft22t1

G +ut1
!¯~Fs2tk21

+utk21
!~Ftk2s+us!¯~Fs1t2tn

G +utn
!

5Fs ~Ftk2s+us!~Fs1t2tk

G +utk
!5Fs Ft+us .

Hence, formula~7.9! does indeed define a multiplicative functional. h

The operatorH01GQ(V)ªA1GQ(V)1mb is interpreted as a bounded perturbation of t
self-adjoint operatorA1GQ(V), so it is itself self-adjoint. A careful study of the operatorH0

1GQ(V) in the Dirac representation is given in Ref. 3.
Theorem 7.4:For every t>0, the equality

e2 i t (H01GQ(V))5E
V

Ft
G dMt,m ~7.12!

holds.
Proof: It suffices to establish that for eachn51,2,. . . , theequality

E
V

Ft
G dMt

(n)5E
0

t

¯E
0

s2
e2 i (t2sn)(A1GQ(V))be2 i (sn2sn21)(A1GQ(V))

¯

3be2 i (s22s1)(A1GQ(V))be2 is1(A1GQ(V)) ds1¯dsn ~7.13!

is valid, for then the operator coefficients of the Taylor expansion in powers ofm on the right- and
left-hand sides of Eq.~7.12! agree. The equality

E
V

Ft
G dMt

(0)5E
V

Ft
G dMt5e2 i t (A1GQ(V))

corresponding ton50 is proved in Theorem 6.2.
Appealing to Theorem 6.2 again, we can write the right-hand side of Eq.~7.13! as

E
0

t

¯E
0

s2S E
V

Ft2sn

G dMt2snDbS E
V

Fsn2sn21

G dMsn2sn21D¯
3bS E

V
Fs22s1

G dMs22s1DbFs1

G dMs1
ds1¯dsn .

By Eq. ~7.11!, we have

Ft
G5Ft1

G ~Ft22t1

G +ut1
!¯~Ft2tn

G +utn
!,

so Lemma 7.2 shows that Eq.~7.13! holds. h

We also state the following Feynman–Kac formula with respect to the measureMt,m
G associ-

ated with point interactions. The proof is similar to that above, except we replace the app
Theorem 6.2 by Theorem 6.3.

Let G be an arbitrary (232) unitary matrix~5.2!, AG the operator~3.2! with the boundary
condition~5.1!, S(s)5e2 is(AG1mb) for everysPR and suppose thatMt,m

G is the measure define
by formula~1.7!. The multiplicative functionalFt is defined by formulas~7.9! and~7.10!, but with
k15k250.

Theorem 7.5:For every t>0, the equality

e2 i t (H01GQ(V))5E
V

Ft dMt,m
G ~7.14!
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holds.
Remark 7.6:~a! In the case thatG is a unitary diagonal matrix, the equality

Ft
G .Mt,m5Ft .Mt,m

G

holds for all t>0.
~b! The argument of Sec. VII should admit considerable generalization. The operator v

measuresMt,m are obtained from the zero-mass measuresMt by the concatenation of finitely
many paths in any bounded time interval and this result should extend to generators oth
2 iA and other bounded perturbations. The appropriate renormalization for other types of si
potentials should be determined by the boundary conditions at the singularities.

~c! One point of view of Feynmanism is that the evolution of the states of an intera
quantum system can be written as integralst°*VFt dMt , t>0, over path spaceV. The process
of renormalization in perturbative quantum field theory is required to construct the multiplic
functional ^Ft& t>0 , just as it is required to obtain the representations~7.12! and ~7.14! for the
Dirac equation with a Coulomb interaction in one space dimension. Because interactions in
tum field theory are never defined at a point, the process of renormalization is necessarily
involved.12,17
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General relations between radial integrals in nonrelativistic
and relativistic calculation schemes

V. Jonauskasa) and R. Karazija
Institute of Theoretical Physics and Astronomy, A. Gosˇtauto 12, 2600 Vilnius, Lithuania

~Received 27 September 2002; accepted 9 December 2002!

Using the equivalent relativistic operator and the correspondence of its terms to the
operators in the Breit–Pauli approximation the relativistic analogs for the integrals
of Coulomb, spin–contact, spin–orbit, spin–spin and other interactions are ob-
tained. They give the possibility to take into account not only direct but also
indirect relativistic effects by performing the calculations of atomic structure with
existing general programs in a nonrelativistic scheme with relativistic Breit–Pauli
corrections. ©2003 American Institute of Physics.@DOI: 10.1063/1.1557769#

I. INTRODUCTION

The effective relativistic operator can be introduced,1–3 which matrix elements with respect t
nonrelativistic wave functions give the same result as the relativistic Hamiltonian in the ba
relativistic wave functions. The effective operator is expressed in terms of standard ope
acting in the space of spin–angular nonrelativistic wave functions; the relativistic integrals
play the role of coefficients at various parts of such an operator. The separate terms of the e
operator asymptotically turn into the operators of relativistic corrections in the Breit–P
approximation.2,4 The ranks and consequently the spin-angular parts of matrix elements of c
sponding operators are equal; it enables us to establish the general relations between th
integrals in both approximations. The future development of the method of equivalent relat
operator and interpretation of its separate terms in a case of nonequivalent electrons4 gives the
possibility of deriving such general relations. This is our aim in this work.

The relativistic analogs of some nonrelativistic integrals were obtained earlier in works.5,6 For
this purpose the two-electron average energy in nonrelativistic and relativistic approximation
compared.5 In such a way the analogs of single-configuration Slater integralsFk and Gk were
derived. However, several averaged coefficients at the radial integrals vanish, the same al
pens for the spin–orbit constant. In Ref. 6 the method of effective operator was applied f
expression of Coulomb integralsRk in terms of relativistic integrals, but the general formula d
not given. For the spin–orbit constant only the approximate formula in terms of the differenc
average energies for the highest and lowest relativistic configurations was proposed. We i
gate the relativistic analogs of radial integrals for various relativistic corrections in the con
ration interaction approximation.

II. RELATIVISTIC ANALOGS OF INTEGRALS

Let us consider the relativistic Dirac–Breit Hamiltonian:

H rel5Ha1
1Ha2

1Hb1Hg1Hd , ~1!

where

Ha1
5(

i
@~a i pi !1~b i21! mc2#, ~2!

a!Electronic mail: jvaldas@itpa.lt
16600022-2488/2003/44(4)/1660/6/$20.00 © 2003 American Institute of Physics
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Ha2
52(

i

Ze2

r i
, Hb5(

i , j

e2

r i j
,

~3!

Hg52
e2

2 (
i , j

~a i•a j !

r i j
, Hd52

e2

2 (
i , j

~a i•r i j !~a j•r i j !

r i j
3 .

Here the usual notations are employed. The rest mass of electrons is excluded fromHa1
in order

to have the Hamiltonian corresponding to its nonrelativistic analog.
The equivalent operators for one-electron and two-electron terms of the relativistic H

tonian,

H15(
i

hi , H25(
i , j

(
k

~gi
(k)
•gj

(k)!, ~4!

obtain the following expressions in the second quantization form:1,3,4

O15 (
jk

n1l 1n2l 2

~21! l 211/21 j 1k@ j ,k#1/2H l 1 1/2 j

1/2 l 2 kJ ~n1l 1 j ih1in2l 2 j !W(kk0)~n1l 1 ,n2l 2!, ~5!

O25
1

2 (
k

$ni l i j i %

~n1l 1 j 1n2l 2 j 2ig1
(k)g2

(k)in3l 3 j 3n4l 4 j 4!

3H (
¸k1K1k2K2

~21!¸1k21K1@¸,k1 ,K1 ,k2 ,K2 , j 1 , j 2 , j 3 , j 4#1/2

3H k1 K1 k

K2 k2 ¸J H l 1 l 3 k1

1/2 1/2 K1

j 1 j 3 k
J H l 2 l 4 k2

1/2 1/2 K2

j 2 j 4 k
J

3@W(k1K1)~n1l 1 ,n3l 3!3W(k2K2)~n2l 2 ,n4l 4!# (¸¸0)2d~n2 ,n3!d~ l 2 ,l 3!d~ j 2 , j 3!

3d~ j 1 , j 4!(
k1

~21!k11 l 11 j 311/2@k1#1/2H 1/2 1/2 k1

l 1 l 4 j 1
J W(k1k10)~n1l 1 ,n4l 4!J . ~6!

The quantities in braces are 6j and 9j coefficients;@k1 ,k2 , . . . # means (2k111)(2k211) ¯
and $ni l i j i% means all sets of these quantum numbers withi 5124. W(k1k2) is the standard
operator with the orbital rankk1 and spin rankk2 , in W(kk0) the two equal ranks are joined int
the zero rank with respect to the total momentum. The single electron reduced matrix elem
w(k1k2) is defined as follows:

^nal asiw(k1k2)~n1l 1 ,n2l 2!inbl bs&5@k1 ,k2#1/2d~n1 ,na!d~nb ,n2!d~ l 1 ,l a!d~ l b ,l 2!. ~7!

The separate terms of equivalent operators in thea2 limit turn into various Breit–Pauli operators
This correspondence for equivalent electrons was considered in Ref. 2 and for nonequ
electrons in Ref. 4. Since the spin–angular parts of corresponding operators with the same
rial ranks are equal, the relations between the relativistic and nonrelativistic radial integrals
obtained. In order to derive them, it is sufficient to compare the one-electron or two-ele
nondiagonal matrix or reduced matrix elements with respect to nonantisymmetrized wave
tions.
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Expanding the small component of orbital in powers of the fine structure constanta the scalar
part of the relativistic one-electron operatorsOa1

andOa2
turns into various operators: nonrela

tivistic operators of kinetic energy and Coulomb interaction with the nucleus as well as t
operators of electron mass and Darwin relativistic corrections~see Table 1 of Ref. 4!. In order to
obtain the separate relations for the integrals of all these operators it would be necess
separate the matrix elements of single electron operatorsOa1

andOa2
, since they are calculate

jointly as a rule by relativistic programs. It is more useful to include the contributions of Da
and mass corrections into the relations for the nonrelativistic integrals of kinetic energy
Coulomb interaction with nucleus.7 Then the nonrelativistic radial integral,

I ~nl,n8l !52
1

2 E0

`

Pnl~r !F d2

dr2 1
2 Z

r
2

l ~ l 11!

r 2 GPn8 l~r ! dr, ~8!

must be replaced by the average of relativistic integrals,

I ~nl,n8l !5
1

4l 12 (
j

@ j # I ~nl j ,n8l j !, ~9!

where

I ~nl j ,n8l j !5E
0

` H 22c2Qnl̄ j~r !Qn8 l̄ j~r !1cQn l̄ j~r !FdPn8 l j ~r !

dr
1

¸

r
Pn8 l j ~r !G2cPnl j~r !

3FdQn8 l̄ j~r !

dr
2

¸

r
Qn8 l̄ j~r !G2

Z

r
~Pnl j~r !Pn8 l j ~r !1Qnl̄ j~r !Qn8 l̄ j~r !!J dr. ~10!

Pnl j (r ) and Qnl̄ j (r ) are correspondingly the large and small components of a relativistic s
electron wave function.

The terms of operatorOb with spin ranksK15K250 turn into the nonrelativistic operator o
Coulomb interaction as well as to the Darwin two-electron~contact! interaction. Evaluating the
matrix element of equivalent operator~6! the second term cancels out some contribution of
first term.3 The comparison of the matrix elements for the Coulomb interaction operator an
corresponding terms of operator~6! gives the necessary substitution for a general nonrelativ
integral of Coulomb interaction:

Rk~n1l 1n2l 2 ,n3l 3n4l 4!5
1

4 (
j 1 j 2 j 3 j 4

@ j 1 , j 2 , j 3 , j 4#H j 1 j 3 k

l 3 l 1 1/2J
2 H j 2 j 4 k

l 4 l 2 1/2J
2

3@Rk~n1l 1 j 1n2l 2 j 2 ,n3l 3 j 3n4l 4 j 4!1Rk~n1l 1 j 1n2 l̄ 2 j 2 ,n3l 3 j 3n4 l̄ 4 j 4!

1Rk~n l̄ 1 j 1n2l 2 j 2 ,n3 l̄ 3 j 3n4l 4 j 4!1Rk~n1 l̄ 1 j 1n2 l̄ 2 j 2 ,n3 l̄ 3 j 3n4 l̄ 4 j 4!#.

~11!

In the integrals the sets of quantum numbers of electron are indicated in the same orde
a matrix element; setnl j corresponds to the large component andn l̄ j to the small component o
the wave function. The first integral in the brackets of~11! presents the relativistic analog of th
Coulomb interaction integral, the two following take into account the two-electron Darwin
rection. The last one integral is of ordera4. It can be omitted and is only retained for the reas
that the relativistic programs usually present the sum of all four integrals.

The other relativistic correction in the Breit–Pauli approximation having the term-depen
matrix element is the spin–contact term. It is coming from the parts ofOg andOd operators with
the ranksk15k25k, K15K251. In the Breit–Pauli approximation their common matrix elem
is expressed by the single integral:
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R28~n1l 1n2l 2 ,n3l 3n4l 4!5
a2

4 E
0

`

r 22Pn1l 1
~r !Pn2l 2

~r !Pn3l 3
~r !Pn4l 4

~r !dr. ~12!

It can be replaced by the following relativistic form:

R28~n1l 1n2l 2 ,n3l 3n4l 4!5
3

4 (
k

~21!k1k1 (
j 1 j 2 j 3 j 4

@ j 1 , j 2 , j 3 , j 4#1/2H l 1 l 3 k1

1/2 1/2 1

j 1 j 3 k
J

3H l 2 l 4 k1

1/2 1/2 1

j 2 j 4 k
J ~n1l 1 j 1n2l 2 j 2ig1

(k)g2
(k)in3l 3 j 3n4l 4 j 4!g1d

^ l 1iC(k1)i l 3&^ l 2iC(k1)i l 4&
, ~13!

where ^ l 1iC(k)i l 3& is the reduced matrix element of spherical function~relativistic states are
indicated by a rounded ket whereas the nonrelativistic ones by an angular ket!. In this and the
following relations the summary contribution ofg andd operators is taken into account by usin
the expressions for their reduced matrix elements given in Refs. 3 and 4.

Because in the nonrelativistic approximation the spin–contact correction has the same
angular part as the matrix element of Coulomb interaction between electrons,7 this correction is
usually taken into account by adding the term (2k11)R28 to the Slater integralRk. In Eq. ~13!, k1

obtains any value permitted by the triangular condition, thus the relativistic analog of su
correction to various integralsRk1 is obtained different.

Approximately this relatively small relativistic interaction can be taken into account in a m
simple way. In nonrelativistic approximation the matrix elements of Darwin two-electron (HD)
and spin–contact (Hsc) interactions differ only by a constant:7

^n1l 1n2l 2LSJuhDun3l 3n4l 4L8S8J&522^n1l 1n2l 2LSJuhscun3l 3n4l 4L8S8J&. ~14!

Thus the contribution of spin–contact interaction asymptotically correct in order ofa2 can be
introduced in the relation~11! simply changing the sign at the second and third integralsRk.

The spin–spin interaction corresponds to the terms ofOg and Od operators with the ranks
k15k61, k25k71, K15K251. Two-electron spin–spin matrix element is presented in Ref
Its comparison with the matrix element for the corresponding terms ofOg1Od gives the relation

I k~n1l 1n2l 2 ,n3l 3n4l 4!5
a2

4 E
0

`

dr1E
0

r 1
Pn1l 1

~r 1!Pn2l 2
~r 2!

r 2
k

r 1
k13 Pn3l 3

~r 1!Pn4l 4
~r 2!dr2

5
3

2 ~2k13! F ~2k11! ~2k15!

~k11! ~k12! G1/2

3 (
j 1 j 2 j 3 j 4

@ j 1 , j 2 , j 3 , j 4#1/2H l 1 l 3 k12

1/2 1/2 1

j 1 j 3 k11
J H l 2 l 4 k

1/2 1/2 1

j 2 j 4 k11
J

3
~n1l 1 j 1n2l 2 j 2ig1

(k11)g2
(k11)in3l 3 j 3n4l 4 j 4!g1d

^ l 1iC(k12)i l 3&^ l 2iC(k12)i l 4&
. ~15!

In the nonrelativistic approximation the one-electron spin–orbit and the main part of s
other–orbit interactions are taken into account using the spin–orbit constant. In a general c
the configuration mixing this constant can be presented as follows:
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znl,n8 l5znl,n8 l
Z

1(
n9 l 9

znl n9 l 9,n8 l n9 l 91znl,n8 l
8 , ~16!

where the first partznl,n8 l
Z corresponds to the spin–orbit interaction in the field of nucleus,

second part to the spin–other orbit interaction with the various closed shellsn9l 94l 912 and the last
one to this interaction between configurationsnlNn8l N8 and nlN21n8l N811. Equation~16! turns
into a single-configuration case atn85n.

According to Table 1 of Ref. 4,znl,n8 l
Z corresponds to the contribution of operatorOa2

with
the rankk51. It obtains the following relativistic expression:6

znl,n8 l
Z

52Za2 @ l ~ l 11!~2l 11!#21 (
j

~2 j 11! @ j ~ j 11!2 l ~ l 11!23/4# ~nl j ur 21un8l j !.

~17!

In nonrelativistic approximation the other two parts ofznl,n8 l contain the same integralsI k ~15! as
the matrix element of the spin–spin interaction and additional integrals depending on the d
tive of the radial orbital. The simpler way to obtain the relativistic formulas for the second
third parts of~16! is not to derive and substitute expressions for the separate radial integral
to evaluate the matrix element of corresponding equivalent relativistic operator having a fo
the one-electron type. Using the standard formulas of tensorial operators we obtain

znl n9 l 9,n8 ln9 l 95 @ l ~ l 11!~2l 11!#21(
j 1 j 2

@ j 2~ j 211!2 l ~ l 11!23/4#

3H @ j 1 , j 2#1/2~n9l 9 j 1nl j 2ig1
(0)g2

(0)in9l 9 j 1n8l j 2!b1g1d

1~21! j 11 j 2 (
k

~n9l 9 j 1nl j 2ig1
(k)g2

(k)in8l j 2n9l 9 j 1!b1g1dJ , ~18!

znl,n8 l
8 5@ l ~ l 11!~2l 11!#21(

j 1 j 2

@ j 2~ j 211!2 l ~ l 11!23/4#

3H N

4~2l 11!
~11dn,n8! @ j 1 , j 2#1/2~nl j 1nl j 2ig1

(0)g2
(0)inl j 1n8l j 2! b1g1d

1~21! j 11 j 2(
k

~nl j 1nl j 2ig1
(k)g2

(k)in8l j 2nl j 1!b1g1dJ . ~19!

The spin–other–orbit and orbit–orbit operators consist from several terms9,10 and for each term
with different ranks the relativistic analog of the same integral obtains a different expression.
turn to the same integral only asymptotically when the small component of the orbital is exp
by the large component in powers ofa2. These expressions are not presented in this paper s
it is a simpler way to calculate exactly the contributions of these operators by the equiv
operator method.

III. CONCLUSIONS

The nonrelativistic approximation with relativistic corrections in the Breit–Pauli form
widely used due to its simplicity as compared with a relativistic approximation as well as d
the possibility to classify the terms in more realistic manner, even for the rather heavy atom
LS coupling scheme. However, the use of relativistic wave functions becomes necessary n
at high values of effective nuclear charge, but also for the outer shells of heavy atoms du
shrinking of inner shells.
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In this work the general relations between radial integrals in nonrelativistic and relativ
calculation schemes are obtained. They enable us to perform the relativisticCI calculations in the
nonrelativistic scheme using the existing general programmes for the Breit–Pauli approxim
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Moment problems and the causal set approach
to quantum gravity

Avner Asha)

Boston College, Chestnut Hill, Massachusetts 02467

Patrick McDonaldb)

New College of Florida, Sarasota, Florida 34243

~Received 24 May 2002; accepted 6 September 2002!

We study a collection of discrete Markov chains related to the causal set approach
to modeling discrete theories of quantum gravity. The transition probabilities of
these chains satisfy a general covariance principle, a causality principle, and a
renormalizability condition. The corresponding dynamics are completely deter-
mined by a sequence of non-negative real coupling constants. Using techniques
related to the classical moment problem, we give a complete description of any
such sequence of coupling constants. We prove a representation theorem: every
discrete theory of quantum gravity arising from causal set dynamics satisfying
covariance, causality, and renormalizability corresponds to a unique probability
distribution function on the non-negative real numbers, with the coupling constants
defining the theory given by the moments of the distribution. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1519668#

I. INTRODUCTION

There are currently a number of approaches aimed at formulating a successful the
quantum gravity undergoing development, the most familiar being string theory. This a
concerns an alternative to string theory: thecausal setapproach to quantum gravity. In its curre
state of development, the causal set approach provides a classical analog to a true quantum
work focusing on the development of a full quantum analog is currently underway~cf. Sec. II here
and Ref. 1 for basic axioms of the causal set theory, and Refs. 2 and 3 for physical discu
concerning the causal set approach!. We study the causal set approach as a classical precurs
a theory of quantum gravity.

At first glance, the most natural way to combine quantum theory and general relativity w
be to quantize the space–time metric. As is well known, such a direct approach must conten
a number a significant obstructions, including the existence of unrenormalizable diverg
There is currently no clear consensus as to how these divergences are to be addresse
believe that the source of the problem~if not the solution! might lie in the basic assumption
involving the underlying structure of space–time. More precisely, it has been suggeste
treating space–time as a discrete combinatorial object as opposed to a manifold could
insight towards removing the divergences in the quantum field theoretic approach, if no
substitute for such an approach~cf. Refs. 4 and 5 and references therein!.

Discrete approaches to gravity initially arose as an attempt to circumvent many of the
culties arising in classical general relativity~e.g., existence of singularities, the difficulty of sol
ing Einstein’s field equations for general systems!. Roughly speaking, the idea behind early d
cretization procedures involved replacing the space–time continuum with a triangulation
construction being either a triangulation of four-dimensional space–time, or later 311 in nature
~triangulate a three-dimensional hypersurface at a fixed time, triangulate a second hyper

a!Electronic mail: Avner.Ash@bc.edu
b!Author to whom correspondence should be addressed. Electronic mail: ptm@virtu.sar.usf.edu
16660022-2488/2003/44(4)/1666/13/$20.00 © 2003 American Institute of Physics
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considered as a time evolution of the first hypersurface, and connect vertices between trian
hypersurfaces!. In such an approach the vertices are taken to be~discrete! events, the edges
between vertices in different hypersurfaces spacelike or timelike curves, and the salient r
between two such events whether one can cause the other or not.

Over the last two decades, discretization procedures have been further developed and
and their applications in gravity greatly expanded~cf. Ref. 6 for a recent survey of discret
approaches to gravity, both classical and quantum!. One particular line of development, pioneer
by Sorkin and his co-workers,4 deemphasized the role of the metric in favor of focusing on
causal structure of space–time. This approach, the so-called causal set approach, is moti
part by two observations. First, the causal structure of the space–time continuum determin
topological, differentiable, and conformal Lorentzian metric structure of the space–time
tinuum ~cf. Refs. 4, 2, and 5!. Second, the causal structure of the space–time continuum an
corresponding discrete causal structure are very simple mathematical objects:posets~partially
ordered sets!. Taking the primary relationship between two events to be causation, the caus
approach to gravity posits that the deep structure of space–time should be modeled by the
causal structures which arise as natural abstractions of the posets occuring when the caus
ture of the space–time continuum is discretized~in the context of gravity, these posets are cal
causets!. The causal set approach to gravity then seeks ‘‘natural’’ dynamics under which ca
evolve. In Ref. 1, Rideout and Sorkin propose such dynamics~formulated probabilistically! for the
~classical! evolution of causets.

Thus, the search for an appropriate dynamical framework for a quantum theory of gravi
recently led to interest in stochastic dynamical systems taking their values in certain locally
partially ordered sets~causets!. As discussed in Ref. 1, these systems can be realized as Ma
chains whose transition probabilities are required to satisfy a discrete covariance principle
discrete causality principle. We call such Markov chains ‘‘generic’’ if all of the transition pr
abilities which could be nonzero are positive~cf. Definition 2.1!. Given the appropriate math
ematical formalism~cf. Ref. 1, and Sec. II of this work!, it is possible to classify all such gener
chains: there is a 1–1 correspondence between generic chains satisfying covariance and c
and nonnegative sequences of real numbers,T5$tn%n50

` , satisfyingt051 ~the coupling constants
tn are given explicitly in terms of the Markov chain—cf. Ref. 1 and Sec. II of this work!.

It is easy to see that an arbitrary sequenceT is unlikely to have physical significance, an
therefore we want to find additional natural conditions which restrict the collection of seque
under consideration to those sequences which are ‘‘physical.’’ Thus, in addition to covarianc
causality one might expect, as first suggested in Ref. 7, that a discrete theory of quantum
should satisfy a cosmological renormalizability condition under cycles of expansion and co
tion. Given the framework of Ref. 1 such a condition can be formulated as an additional con
on the coupling constants defining the theory. To make this precise, we introduce the re
notation.

We will denote byS the collection of sequences of non-negative real numbers. We will de
elements ofS by upper case roman letters, and, as above, we will use the corresponding
case letter to denote specific elements of a given sequence. We will denote byS1 the subset ofS
consisting of those sequences which begin with 1. We define acosmological renormalization
operatorR:S→S by

~R~T!!n5tn1tn11 . ~1!

The operatorR admits a stable manifold, Stab(R),S, defined by

Stab~R!5H TPS:TPù
k50

`

R k~S!J . ~2!

We call elements of Stab(R) stable sequencesand we note that~cf. Ref. 7 and Sec. II in this work!
there is a 1–1 correspondence between generic chains satisfying causality, covariance and
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logical renormalizability under cycles of expansion and contraction and elementsS
5S1ùStab(R). Our main result, a representation theorem, gives a complete descriptio
Stab(R) in terms of measures onR15@0,̀ ):

Theorem 1.1: Let T be a sequence of non-negative real numbers. Then TPStab(R) if and
only if there is a nondecreasing functiona:R1→R such that

tn5E
0

`

snda~s!. ~3!

For T anda as in Theorem 1.1, we will say thatT is represented bya.
Our theorem is motivated by an observation of Ref. 7:transitive percolation, the theory which

is determined by choosingtPR1 and defining associated coupling constants by

tn5tn, ~4!

defines a stable sequence~by convention 0051). Transitive percolation as given by~4! is repre-
sented by a probability measure onR1; a delta-mass of weight one concentrated attPR1 has
moments which coincide with the sequence. This measure can in turn be represented
probability distribution function, a translate of the Heaviside function. Our theorem can be se
quantifying to what extent transitive percolation is representative of the general behavior of
sequences. Namely, any stable sequence is a ‘‘linear combination’’ of percolation sequenc

As is clear from the statement of Theorem 1.1, our result is closely related to the cla
moment problem of Stieltjes type~cf. Sec. III to follow!. As a consequence, Theorem 1.1 and
proof provide a means of applying the extensive collection of sophisticated mathematica
developed in the context of the moment problem to questions related to quantum gravit
provide a number of straightforward corollaries of our technique. These corollaries includ
explicit representation of the transition probabilities associated to any generic Markov chain
defines a discrete theory satisfying covariance, causality and cosmological renormalizabi
well as a second representation theorem which associates to any such theory a natural sel
non-negative operator acting on a model Hilbert space~cf. Sec. V to follow!.

II. BACKGROUND AND DEFINITIONS FROM DISCRETE QUANTUM GRAVITY

In this section we present the mathematical formulation for a classical precursor of a di
theory of quantum gravity. We follow the development of Refs. 1 and 7.

The fundamental object of study, acauset, is a locally finite partially ordered set. Througho
this article we will denote causets with upper case roman letters and, when needed, indic
partial order relation using the symbol,,,. We assume throughout that,,, is irreflexive.

An isomorphism of causets is a bijection which preserves the partial orders. Isomor
defines an equivalence relation on causets. We will denote byCn the collection of equivalence
classes of causets withn elements indexed by$0,1,. . . ,n21%, with partial order consistent with
indexing. Thus, up to equivalence,

Cn5$C:C a causet,C5$a0 ,...,an21%, ak ,,, al⇒k, l %. ~5!

We write

C5 ø
nPN

Cn ~6!

and we note thatC carries a natural partial order given as follows:CaD if and only if CPCn ,
DPCm with n,m, and there exists an order preserving functionf :C→D such thatf (C) is an
initial segment ofD.

Informally, we can describe the dynamic evolution of causets as follows: Initially, the sta
the system is given by the trivial causet consisting of a single point. At each increment of tim
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element comes into existence as the ‘‘offspring’’ of elements already in existence. That is,
beginning of thenth increment of time we have a causetCPCn which we evolve to a causetD
PCn11 by adding an element toC together with relations between the new element and a su
of elements ofC ~those elements in the past of the new element, i.e., those which bear some
relationship to the new element!. The new relations are determined randomly; the probability
any given collection of relations is added is given by a collection of transition probabilities w
define the theory. We can now proceed to formalize this description.

Given a causetC and an elementxPC, we define the past ofx by

pastC~x!5$yPC:y,,,x%. ~7!

We will regard pastC(x) as a poset with partial order given by the partial order ofC. A link in a
partially ordered set is an irreducible relation~i.e., a relation that contains no other relation!. A
path in a partially ordered set is a sequence of elements of the set, each related to the ne
link.

Given CPCn , we will define the family ofC, denotedF(C), as those elementsDPCn11

such thatCaD, wherea denotes the partial order of elements ofC:

F~C!5$DPCn11 :CaD%. ~8!

GivenCPCn andDPF(C), the precursor set of the transitionC→D, denoted Prec(C,D), is the
past of the elementxPD\C:

Prec~C,D !5pastD~x!,D. ~9!

Note that Prec(C,D) is a poset with partial order given by its description as the past of an ele
xPD. The collection ofmaximal elements associated to the transition C→D is the collection of
elements ofD with links to the elementx:

max~C,D !5$yPD:y linked to x, xPD\C%. ~10!

A special role in the theory will be played by those causets with no relations. We will denot
element ofCn with no relations byAn :

An5~~a0 ,a1 ,...,an21!,B !. ~11!

We note that there is a natural path inC of lengthn from A0 to An .
We define a collection of Markov chains with state spaceC as follows:
Definition 2.1: We say that a Markov chain M with state spaceC belongs to the collectionM

if the transition probabilities of M satisfy the following.
(1) Given CPCn , let Prob(C→D) denote the transition probability corresponding to a

evolution from causet C to causet D. ThenProb(C→D)50 if D ¹F(C) and (DPF(C)Prob(C
→D)51.

(2) (General Covariance) Let CPCn . SupposeP1 and P2 are two paths from A0 to C and
write PI5$ l i1 , . . . ,l in% where the li j are the links defining the pathPi . Then

)
k51

n

Prob~ l 1k!5)
k51

n

Prob~ l 2k!.

(3) (Causality) Suppose that CPCn and for i51, 2, suppose that CiPF(C). Let BPCm , m
<n, be defined by

B5Prec~C,C1!øPrec~C,C2!
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with poset structure induced by that of C. Let BiPCm11 be B with an element added in the sam
manner as in the transitions C→Ci . Then we require

Prob~C→C1!

Prob~C→C2!
5

Prob~B→B1!

Prob~B→B2!
. ~12!

It is a theorem of Rideout and Sorkin that any generic element ofM is completely determined
by a discrete collection of coupling constants given by transitions between causets with n
tions. More precisely, letMPM, and suppose thatAn is given as in~11!. Associate toM a
sequence of positive coupling constants$qn%n50

` defined by

q051, ~13!

qn5Prob~An21→An!, ~14!

where, as above, the expression appearing on the right hand side of~14! denotes the probability o
transition fromAn21 to An . In Ref. 1, Rideout and Sorkin prove that the sequence$qn%n50

`

completely determines the theory associated toM . More precisely, given an elementCPCn , and
DPF(C) @cf. ~8!#, let max(C,D) be the collection of maximal elements associated to the trans
C→D @cf. ~10!# and let Prec(C,D) be the precursor set of the transitionC→D @cf. ~9!#. Suppose
the cardinality of Prec(C,D) is r and that the cardinality of max(C,D) is m. Then the transition
probability for the evolutionC→D is given by~cf. Ref. 1!

Prob~C→D !5qn(
k50

m

~21!kS m
k D 1

qr2k
, ~15!

which indicates that the Markov chainM is completely determined by the sequence ofqn defined
as in ~14!.

Following Ref. 1, we define a sequencetn by

tn5 (
k50

n

~21!n2kS n
kD 1

qk
. ~16!

Then we can recover the coupling constantsqn from the sequence oftn :

1

qn
5 (

k50

n S n
kD tk . ~17!

As in the Introduction, letS1 be defined byS15$TPS:t051%. There is a bijection between
generic elements ofM and elements ofS1 given by associating to each element ofS1 the
associated collection of coupling constants$qn%n50

` given by ~17!.
Amongst additional constraints that one might impose to restrict further the collectio

chains that could serve as classical precursor for a discrete model of quantum gravity, the
natural choice involving cosmological renormalizability under cycles of expansion and con
tion. More precisely, given a causetC, we call an elementgPC a post, if every element ofC is
either in the past ofg or in the future ofg in C @denoted futureC(g)]:

C5pastC~g!ø$g%øfutureC~g!. ~18!

Physically, the occurence of a post corresponds to a collapse of the universe to zero dia
followed by reexpansion.
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Given a causetC and a postg, there is a simple relationship between the coupling const
tn governing the evolution ofC and the coupling constants governing the evolution of the ca
$g%øfutureC(g) ~cf. Ref. 7!: If p5upastC(g)u, then the coupling constants for$g%øfutureC(g)
are given by

t̃ n5 (
k50

p S p
k D tn1k , ~19!

wheren.0. This relationship is concisely described in terms of the cosmological renormaliz
operatorR:S→S defined by

~R~T!!n5tn1tn11 . ~20!

Using the renormalization operator we can write the right hand side of~19! as (R p(T))n . We use
this concise notation to define the collection of Markov chains which we intend to study.

Definition 2.2: We say that a Markov chain M with state spaceC belongs to the collectionM
if

(1) MPM is generic, and
(2) If M is represented by the sequence TPS, then

TPù
n50

`

R n~S!. ~21!

As in the Introduction, we call the right hand side of~21! the stable set of the renormalizatio
operator and we write

Stab~R!5ù
n50

`

R n~S!. ~22!

If we set S5S1ùStab(R), then it is clear from the definition that there is a bijection betwe
elements ofM and elements ofS. It is also clear that Stab(R) is a convex set.

As discussed in Refs. 1 and 7 and our introduction, there are a number of interesting s
cases of processes which satisfy the conditions definingM. Of particular interest from our point o
view are theories oftransitive percolationdefined by fixingtPR1 and setting

tn5tn. ~23!

As mentioned in the Introduction, the sequence defined by~23! can be represented by a probabili
measure onR: a delta-mass of weight 1 concentrated attPR1. This fact, together with the
observed convexity of Stab(R), suggests that we develop a representation of Stab(R) in terms of
the moments of probability measures onR1.

III. MOMENT PROBLEMS

In this section we develop material related to the classical moment problem which we
need in the sequel. References to this material include Refs. 8 and 9.

Let @a,b# be an interval in the real line,a:@a,b#→R a function of bounded variation. Give
tP(a,b), we write

a~ t6 !5 lim
s→t6

a~s!.

We say thata is normalizedif a(a)50 and for alltP(a,b),
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a~ t !5
a~ t2 !1a~ t1 !

2
. ~24!

If f is continuous on@a,b# anda is of bounded variation, we will denote the Stieltjes integral
f with respect toa by *a

b f (s)da(s). Functions of bounded variation behave well with respec
Stieltjes integration: ifa is of bounded variation on@a,b#, if f is continuous, and ifcP@a,b#,
then

b~x!5E
c

x

f ~s!da~s! ~25!

defines a function of bounded variation. Moreover, ifg is continuous, then

E
a

b

g~s!db~s!5E
a

b

g~s! f ~s!da~s!. ~26!

Stieltjes integration behaves as expected under change of coordinates: ifa is of bounded variation
on @a,b#, if f is continuous on@a,b# and if g is continuous and strictly increasing on@a,b#, then

E
a

b

f ~s!da~s!5E
c

d

f ~g~s!!da~g~s!!, ~27!

wherea5g(c) andb5g(d).
Stieltjes integration can be extended to improper integrals. For example, ifa:R1→R is of

bounded variation, andf is continuous on~0,̀ !, we write

E
0

`

f ~s!da~s!5 lim
R→`,e→0

E
e

R

f ~s!da~s!

when the limit exists and is finite. The formulas~26! and ~27! are easily extended to imprope
integrals.

Definition 3.1: Let TPS. We say that a nondecreasing functiona:@0,1#→R is a solution of
the Hausdorff moment problem forT if, for all n,

tn5E
0

1

snda~s!. ~28!

We say that a nondecreasing functiona:R1→R is a solution of theStieltjes moment problem fo
T if, for all n,

tn5E
0

`

snda~s!. ~29!

The solution of the Stieltjes moment problem played a fundamental role in the developm
modern analysis. We recall the material relevant to our purpose.

Definition 3.2: Let T be a sequence of real numbers. Thedifference operator,D, mapping
sequences of real numbers to sequences of real numbers is defined by

~D~T!!n5tn112tn . ~30!

A sequence TPS is said to becompletely monotonicif for all n and for all k,

~Dk~T!!n>0. ~31!
                                                                                                                



a
otonic,

a

y

ich

.1 that

x

e

f

1673J. Math. Phys., Vol. 44, No. 4, April 2003 Moment problems and quantum gravity

                    
We can now state Hausdorff’s solution to the moment problem bearing his name:
Theorem 3.1: (Hausdorff ) Suppose TPS. Then the Hausdorff moment problem for T has

solution if and only if the sequence T is completely monotonic. When T is completely mon
the solution of the moment problem is unique.

The solution of the moment problem associated to Stieltjes is given in the following.
Theorem 3.2: (Stieltjes) Suppose TPS. Then the Stieltjes moment problem for T has

solution if and only if the Hankel determinants

H0,n5U t0 t1 . . . tn

t1 t2 . . . tn11

. . . . . . . . . . . .

tn tn11 . . . t2n

U , ~32!

H1,n5U t1 t2 . . . tn11

t2 t3 . . . tn12

. . . . . . . . . . . .

tn11 tn12 . . . t2n11

U ~33!

are nonnegative for all values of n.

IV. PROOF OF THE MAIN RESULT

We begin with a definition:
Definition 4.1. Let X5(Xi , j ), 0< i , j ,`, be a doubly infinite matrix with real entries. We sa

that X is atableauif we have the following.

~1! Xi , j>0 for all i , j .
~2! If Xk5$Xk, j% j 50

` is the sequence whose terms are given by the kth row of X andR is the
renormalization operator defined by (20), thenR(Xk)5Xk21 for all k.

Given nPN, a partial n-tableauis a matrix of n rows and an infinite number of columns wh
satisfies the two defining conditions of a tableau. IfPn is the collection of partial n-tableau, if
PPPn and m<n, the m-corner operatorOm :Pn→Rm3Rm is the map defined by truncation:

Om~P!5~Pi , j !, 0< i , j <m21. ~34!

Tableaux are closely related to stable sequences: It is clear from Definitions 2.2 and 4
if X is a tableau andX05$X0,n%n50

` is the first row ofX, thenX0PStab(R). Conversely, we have
the following.

Lemma 4.1: Suppose that TPStab(R). Then there is a tableau whose first row is T.
Proof: Let TPStab(R). For eachnPN we can find a partialn-tableau with first rowT. We

will create an infinite sequence,$Ya%a51
` . EachYa is itself an infinite sequence of partial tableau

where the number of rows will tend to infinity asa→`. Then we will use a diagonal trick to
finish the proof.

Define a sequence of partial tableau,Y15$Yn
1%n51

` , where for eachn, Yn
1 is a partialn-tableau

with T as first row. Having chosen subsequencesYm21,Ym22,¯,Y1, choose a subsequenc
Ym of Ym21 which satisfies the following.

~1! Yn
m is a partialkn-tableau withkn>m.

~2! If Om is them-corner operator defined in~34!, thenOm(Yn
m) converges asn→`.

Consider the sequence of matricesZk5Yk
k . ThenZk converges to a doubly infinite matrix with

non-negative entries and first row given byT. ThatZ is a tableau follows from the continuity o
the m-corner operator acting onZk . h
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Lemma 4.2: Suppose that X is a tableau and let$Xk,n%5$Xk,n%k50
` be the sequence whos

terms are given by the nth column of X. Then$Xk,n% is a completely monotonic sequence.
Proof: An explicit computation shows that the diagonal entries ofX are given by

Xk,k5(
l 50

k

~21! l S k
l DXl ,0 . ~35!

By assumption the terms ofX are all non-negative. This proves that the first column ofX is
completely monotonic. To finish the proof, note that tableaux are stable under truncation o
first n columns. Carrying out such a truncation, the argument above establishes that tn
11)th column ofX ~the first column of the truncated matrix! is completely monotonic. h

Lemma 4.3: Suppose$yi% i 51
` is a completely monotonic sequence. Leta:@0,1#→R be the

normalized nondecreasing function such that, for1< i ,

yi5E
0

1

si 21da~s!. ~36!

Then there exists y0 such that$yi% i 50
` is completely monotonic if and only if

E
0

1

s21da~s! converges. ~37!

Moreover, if*0
1s21da(s)5L, then

L5 inf$y0 :$yi% i 50
` is completely monotonic%. ~38!

Proof: Suppose that~37! holds. Defineb:@0,1#→R by

b~ t !5E
0

t

s21da~s!.

Thenb is nondecreasing and fori>1,

E
0

1

sidb~s!5E
0

1

si 21da~s!.

Settingy05*0
1s21da(s), we see that there is a solution to the Hausdorff moment problem fo

augmented sequence$yi% i 50
` . By Hausdorff’s theorem~cf. Theorem 3.1!, the augmented sequenc

is completely monotonic.
Conversely, suppose there is ay0PR such that the augmented sequence$yi% i 50

` is completely
monotonic. Letb:@0,1#→R be the normalized nondecreasing solution of the Hausdorff mom
problem for the augmented sequence. Then, for alli>1,

E
0

1

si 21da~s!5E
0

1

si 21sdb~s!. ~39!

Define continuous linear functionals,La , Lb , on the space of continuous functions on@0,1#:

La~ f !5E
0

1

f ~s!da~s!,

Lb~ f !5E
0

1

f ~s!sdb~s!.
                                                                                                                



and
f

al con-

n

its

otone

1675J. Math. Phys., Vol. 44, No. 4, April 2003 Moment problems and quantum gravity

                    
From ~39! we conclude thatLa and Lb agree on polynomials. By the Weierstrass theorem
continuity of the integral, we conclude thatLa5Lb . Choosef n(s) the increasing sequence o
non-negative continuous functions equal to 1/s on @1/n,1# and equal ton on @0,1/n# so that

lim
n→`

E
0

1

f n~s!sdb~s!5y0 .

Then,

E
1/n

1

f n~s!da~s!<E
0

1

f n~s!sdb~s!. ~40!

Since the right hand side of~40! converges asn→`, we conclude that~37! holds. Since the right
hand side converges toy0 , we conclude thatL5*0

1s21da(s) is a lower bound for anyy0 aug-
menting the original sequence. Since we have already established that when the integr
verges,y05L gives a completely monotonic augmented sequence, we are done. h

Remark:With $yi% i 51
` and L as in Lemma 4.3, anyy0>L gives a completely monotonic

augmented sequence.
Lemma 4.4: Let X be a tableau. Then X is determined by its first column. In fact, if$Xn,0%

5$Xn,0%n50
` is the first column of X anda:@0,1#→R is the normalized nondecreasing functio

representing$Xn,0%,

Xn,05E
0

1

snda~s!, ~41!

then

X0,p5E
0

1

s2p~12s!pda~s!. ~42!

Proof: By Lemma 4.2$Xn,0%5$Xn,0%n50
` is a completely monotonic sequence and thus adm

a representation bya as in ~41!. By definition of a tableau,Xn,01Xn,15Xn21,0 for all n>1, and
thus forn>1,

Xn,15E
0

1

sn21~12s!da~s!.

Since$Xn,1%n51
` is represented as a moment sequence, by Hausdorff’s theorem$Xn,1%n51

` is com-
pletely monotonic. Since$Xn,1%n51

` is part of a column of a tableau,$Xn,1%n51
` extends to a

completely monotonic sequence$Xn,1%n50
` . By Lemma 4.3, we conclude that

E
0

1

s21~12s!da~s!

converges and we set

L5E
0

1

s21~12s!da~s!.

Let b:@0,1#→R be a normalized nondecreasing function representing the completely mon
sequenceL,X1,1,X2,1, . . . . Let e5X0,12L and leth(t) be the Heaviside function:
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h~ t !5H 1 if t.0

0 if t<0.

Defineg:@0,1#→R by

g~ t !5b~ t !1eh~ t !. ~43!

Theng is nondecreasing and for alln>0,

Xn,15E
0

1

sndg~s!.

Let f n(s) be as defined in the proof of Lemma 4.3. Consider the pair of columns$Xn,1% and$Xn,2%.
By the analysis given for the pair$Xn,0% and$Xn,1%, we know that

E
0

1

s21~12s!dg~s!

converges and therefore*0
1f n(s)(12s)dg(s) converges asn→`. But *0

1f n(s)(12s)db(s) is
non-negative and*0

1f n(s)(12s)dh(s) diverges asn→`, from which we conclude thate50.
Thus, X0,15L and the column$Xn,0% determines the column$Xn,1%. The lemma follows by
induction. h

Proof of Theorem 1.1:Suppose thatTPS and suppose thata:R1→R is a normalized non-
decreasing function representingT:

tn5E
0

`

snda~s!.

Fix pPN and defineb:R1→R1 by

b~s!5E
0

s 1

~11u!p da~u!.

Thenb is nondecreasing onR1 and of bounded variation. LetS be the sequence corresponding
the moments ofb:

sn5E
0

`

undb~u!.

A direct computation using~26! gives R p(S)5T. This proves that every moment sequence
stable.

To establish the converse, suppose thatT is a stable sequence. By Lemma 4.1, there i
tableau,X, which hasT as its first row. By Lemma 4.4,X is determined by its first column. By
Lemma 4.3, the first column ofX is completely monotonic and thus, by Hausdorff’s theore
there is a unique normalized nondecreasinga:@0,1#→R which represents$Xn,0%:

Xn,05E
0

1

snda~s!.

Thus,T is determined bya. To complete the proof, we usea to construct a measure onR1 with
moments given byT.

Write u5 (12s)/s and s5 1/(11u) . The functiong:R1→R defined as the compositio
g(u)52a(s) is nondecreasing with total variation bounded by the variation ofa. By Lemma 4.4,

X0,n5E
0

`

undg~u!, ~44!
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which exhibits the first row ofX as a moment sequence and completes our proof. h

V. APPLICATIONS

Theorem 1.1 provides for a representation of the transition probabilities for a Markov
which provides a classical precursor for a discrete theory of quantum gravity satisfying cau
covariance and cosmological renormalizability:

Corollary 5.1: Suppose that MPM is a Markov chain satisfying Definition 2.2. Suppose th
TPS is the sequence of coupling constants defining M and thata:R1→R is a nondecreasing
function representing T. Suppose that$qn%n50

` are the transition probabilities defined in (14
Then

1

qn
5E

0

`

~11s!nda~s!. ~45!

Proof: This follows immediately from~17! and the binomial theorem. h

Using Corollary 5.1 we obtain an attractive representation for general transition probab
Corollary 5.2: Suppose that CPCn and that DPF(C). Suppose that the cardinality o

Prec(C,D) is r and that the cardinality ofmax(C,D) is m. Suppose that MPM is a Markov chain
satisfying Definition 2.2. Suppose that TPS is the sequence of coupling constants defining M a
that a:R1→R is a nondecreasing function representing T. Then

Prob~C→D !5
*0

`sm~11s!r2mda~s!

*0
`~11s!nda~s!

. ~46!

Proof: This follows immediately from Corollary 5.1,~15!, and the binomial theorem applie
to sm5((11s)21)m. h

Our next result establishes thatall positive sequences which grow fast enough are stable
Corollary 5.3: Any monotonic sequence which grows sufficiently quickly defines an elem

Stab(R).
Proof: For a quickly growing sequence, the positivity conditions on the Hankel determin

~32! and~33! are trivially satisfied as the value of the determinant is controlled by the entry in
lower right hand corner. Thus, any monotonic sequence which grows sufficiently quickly
moment sequence and Corollary 5.3 follows from Theorem 1.1. h

Corollaries 5.2 and 5.3 provide a means of quantifying the evolution of causets under d
ics which provide for rapidly increasing coupling constants. We hope to return to this in a f
paper.

Our final result uses Hankel determinants to associate to any stable sequence which
finite linear combination of percolation sequences, a model Hilbert space and a non-ne
self-adjoint operator. Our development follows that of Simon.10

The Hankel determinants appearing in~32! and~33! are associated to quadratic forms whi
arise naturally in the analysis of the Stieltjes moment problem. More precisely, given a seq
TPStab(R), consider the sesquilinear formsHN

i :CN→C defined by

HN
0 ~r,s!5 (

0<n,m<N21
r̄nsmtn1m , ~47!

HN
1 ~r,s!5 (

0<n,m<N21
r̄nsmtn1m11 . ~48!

Let H N
i be the matrices associated to the formsHN

i via the relation

HN
i ~r,s!5^r,H N

i s&, ~49!
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where the pairing is Euclidean. Then the Hankel determinants appearing in Theorem 3.2 are
by det(H N

i )5Hi ,N and the formsHN
i are strictly positive definite if and only if the correspondin

Hankel determinants are positive~cf. Ref. 10!. Following Ref. 10, we use this material to refo
mulate the Stieltjes result in the language of self-adjoint operators.

For the remainder of the article we assume that the sequenceT is not a finite linear combi-
nation of percolation sequences, so that the Hankel determinants are all strictly positive de

Suppose thatC@x# is the algebra of polynomials with complex coefficients. Define a posi
definite inner product onC@x# by

^p,q&5HN
0 ~r,s!, ~50!

wherep(x)5(n50
N21rnxn andq(x)5(n50

N21snxn. Using this inner product, we completeC@x# to a
Hilbert spaceHT , where the subscriptT denotes the dependence on the moment sequenceT.

Let A be the operator with domainD(A)5C@x#,HT defined by

A~p!~x!5xp~x!. ~51!

ThenA is densely defined, symmetric and non-negative. Thus, by the theory of von NeumaA
admits self-adjoint extensions. Amongst the~possibly many! self-adjoint extensions ofA there is
a distinguished extension, theminimal non-negative self-adjoint extension~the Friedrichs exten-
sion! of A to an operatorAF with domain contained inHT .

It is a theorem of Simon that the collection of such extensions ofA parametrizes solutions to
the ~nondegenerate! Stieltjes moment problem.10 We summarize these results in the following.

Theorem 5.1: (Simon) Suppose that TPS is a sequence which is not a finite linear comb
nation of percolation sequences and whose corresponding Stieltjes problem admits a soluti
HT be the corresponding Hilbert space completion of the algebra of polynomials with i
product defined by~50!, and let A:D(A)→C@x# be the operator defined by (51). Then eve
solution to the Stieltjes problem for the sequence T corresponds to a unique non-negativ

adjoint extension of A to an operator A˜ :HT→HT with spectral measurem Ã satisfying

tn5E
0

`

sndm Ã~s!.

With the conventions established above, we have the following corollary:
Corollary 5.4: To every sequence TPS1ùStab(R), which is not a finite linear combination o

percolation sequences, there corresponds a pair(HT ,AF) whereHT is the Hilbert space comple
tion of C@x# defined by inner products (50) and AF is the minimal non-negative self-adjoin
extension of the densely defined operator A:C@x#→C@x# defined in (51). Thus, there is a distin
guished spectral measure whose moments are given by the sequence T.
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We revisit axisymmetric stationary vacuum solutions of the Einstein equations, like
we did for the cylindrical case@J. Math. Phys.41, 7535 ~2000!#. We explicitly
formulate the simplest hypothesis under which the S~A! solutions, or axisymmetric
Lewis solutions can be found and demonstrate that this hypothesis leads to a linear
relation between the potentials. We show that the field equations still can be asso-
ciated to the motion of a classical particle in a central field, where an arbitrary
harmonicx function plays the role of time. Three classes of solutions are obtained
without the need of invoking the Papapetrou class. They depend on two real pa-
rameters, and the potentials are functions ofx only. The new approach exempts the
need of complex parameters. We interpret one of the parameters as related to the
vorticity of the source. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1556191#

I. INTRODUCTION

Axially symmetric stationary vacuum space–times in Einstein’s theory are important be
they can describe the exterior fields of massive rotating astrophysical objects.1,2 Here we reexam-
ine the S~A! class of solutions of these space–times~see Ref. 3, p. 204!.

In a preceding paper4 we have already reexamined the vacuum solutions obtained by Le5

and van Stockum,6 for a stationary cylindrically symmetric space–time. Lewis established
existence of three classes of solutions in terms of four parameters. One of these classes a
by the introduction of complex parameters. Through our approach the three classes arose
the need of complexification. We cannot use the Ernst formalism7,8 in the cylindrical case since th
partial differential equations which link the draggingv to the twist potentialF become ill defined.
Furthermore, we showed that the structure of the field equations can be associated with the
of a classical particle in a central field. This association allowed a kinematical interpretation
parameters, describing the Lewis space–time without the need of specifying a particular
source of the field.

Here we extend our analysis to the axisymmetric case. In order to proceed, we formula
fundamental hypothesis~Sec. III! which allows the employment of our method. By doing this w
obtain directly the S~A! solutions without making use of the Papapetrou class3 as is usually done.
Thus the S~A! solutions arise as a natural extension to the axisymmetric case of the L
solutions. Hence these solutions could be appropriately called the axisymmetric Lewis solu
Then we follow some similar steps of Ref. 4 and show that the classification and mech
interpretation used in the cylindrical case can be extended, also, to the axisymmetric case

a!Electronic mail: gariel@ccr.jussieu.fr
b!Electronic mail: santos@ccr.jussieu.fr and nos@cbpf.br
16790022-2488/2003/44(4)/1679/9/$20.00 © 2003 American Institute of Physics
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The paper is organized as follows. In Sec. II we recall the system of equations to be solv
the axially symmetric stationary vacuum metrics. We introduce in Sec. III the fundamenta
pothesis from which the linear dependence between the potentials is deduced. In Sec.
examine the main consequence of the kinematical role of the arbitrary harmonic functions o
solutions. The solutions and classification are presented in Sec. V and its vorticity is calcu
We end with a brief conclusion.

II. FIELD EQUATIONS

The general line element for a stationary axisymmetric space–time, with signature12, can be
written like

ds252 f dt212k dt df1em~dr 21dz2!1 l df2, ~1!

wheref , l , k, andm are all functions of the Weyl coordinatesr andz. Defining for convenience

f 5rF ~r ,z!, l 5rL ~r ,z!, k5rK ~r ,z!, ~2!

we obtain from Einstein’s vacuum field equations,5,6

DF52FV, ~3!

DL52LV, ~4!

DK52KV, ~5!

m r52
1

2r
@11r 2~FrLr2FzLz1Kr

22Kz
2!#, ~6!

mz52
r

2
~FrLz1FzLr12KrKz!, ~7!

with

FL1K251, ~8!

where the LaplacianD andV are defined by

DF5Frr 1
1

r
Fr1Fzz, ~9!

V5FrLr1Kr
21FzLz1Kz

2 , ~10!

with the indexes standing for differentiation. The functionm is obtained by quadratures and, thu
we have only to determineF, L, andK. Let us note that the field equations~3!–~5! can also be
written in the more symmetric form,

FDL5LDF, ~11!

LDK5KDL, ~12!

KDF5FDK. ~13!
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III. THE FUNDAMENTAL HYPOTHESIS ON THE F, L , AND K FUNCTIONS

In the cylindrically symmetric case, where in~2! F, L, andK, depend only onr , we have
demonstrated the existence of a linear dependence between the potentials.4 However, in the axially
symmetric case, whenF, L, andK are functions ofr andz, such a general demonstration is n
longer possible. Thus, we have to introduce some further hypothesis to solve the field equ

Keeping in mind the method used in the cylindrical case4 we make the hypothesis that the
exists a functional relation, different from~8!, betweenF, L, andK,

F~F,L,K !50. ~14!

Then, from~8! and ~14! we can obtain two general relations that can be expressed, for exa
as

F5F~K !, L5L~K !. ~15!

From ~15! we have the identities,

¹F•¹L1~¹K !2[~11FKLK!~¹K !2, ~16!

DF[FKDK1FKK~¹K !2, ~17!

DL[LKDK1LKK~¹K !2, ~18!

where¹ is the gradient operator. With~15!–~18!, we can rewrite the two first field equations~3!
and ~4! like

~11FKLK!~KFK2F !5FKK , ~19!

~11FKLK!~KLK2L !5LKK , ~20!

which is a system of two differential equations permitting one to determine the functions~15!, as
we shall see~Eq. ~41!!. Hence, the only partial derivative equation to solve is the third fi
equation,~5!, for the functionK(r ,z),

DK52K~11FKLK!~Kr
21Kz

2!. ~21!

A kinematical interpretation can be given from~19! to ~21!. Indeed, considering~19! multi-
plied by L and ~20! by F and subtracting both equations, we obtain

~11FKLK!K5
~LFK2FLK!K

LFK2FLK
. ~22!

Without any loss of generality, we can make an arbitrary change of unknown function by p
K5K(x), wherex(r ,z) is a new unknown function. Then~21! becomes

KxDx5@ f ~K !2Kxx#~¹x!2, ~23!

where

f ~K !52K~11FKLK!. ~24!

Always without loss of generality, we can fix this change of function such thatK(x) satisfies the
differential equation
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Kxx

Kx
2 5 f ~K !, ~25!

implying thatx is an harmonic function.
Let us examine what~25! implies on the two first field equations~19! and ~20!. Substituting

~25! into ~22! and integrating we obtain

LFx2FLx5C1 , ~26!

where C1 is an integration constant. In a similar way, but starting from~4! and ~5! with L
5L(F) andK5K(F), and considering~3! with F(x); and repeating again from~3! and~5! with
F(L) andK(L) and considering~4! with L(x), we obtain

KLx2LKx5C2 , ~27!

FKx2KFx5C3 , ~28!

respectively, whereC2 andC3 are also integration constants.
Equations~26!–~28! express the conservation of anangular momentum CW 5(C1 ,C2 ,C3) in

the space(F,L,K), like in the cylindrical case,4 but here it isx which plays the role oftime,
instead oft5 ln r in Ref. 4. In Sec. IV we study consequences of this fact. Besides, from~26! to
~28!, we can immediately deduce a linear relation between the potentials,

K5aL1bF, ~29!

wherea andb are constants. The relation~29! is the one that we were looking for when we stat
~14!, and it describes a family of two parameter planes in the space (F,L,K). Hence, most of the
interpretation in terms of a classical particle in a central field made in Ref. 4 holds here aga
particular, the discussion about the nature of the conic, which is the intersection of the surfa~8!
and~29! in the (F,L,K) space, followed in Ref. 4 for the cylindrical case, remains the same in
axisymmetric case.

Let us stress that all the results of this section can be obtained in the axisymmetric cas
under the hypothesis~14!, which we call thefundamental hypothesisfor the S~A! class, while in
the cylindrical case they were general, i.e., valid without any hypothesis. A well-known cou
example of an axisymmetric solution that does not satisfy this hypothesis is Kerr solution.

The linear dependence between the potentials~29! allows us to write this relation using th
well-known Papapetrou functionsf P andv giving

f P5r S v21
v

a
2

b

a D 21/2

. ~30!

We recognize from~30! the class S~A! ~see Ref. 3, p. 204! of stationary vacuum solutions, whic
thus presents itself as the most natural generalization of the cylindrical class of Lewis solu
These solutions can also be named the axisymmetric Lewis solutions.

IV. CONSEQUENCES OF THE KINEMATICAL ROLE OF THE HARMONIC FUNCTION x

In order to analyze these consequences we return to the cylindrically symmetric case. W
give an integration method of theK(r ) equation slightly different from the one presented in R
4. By doing this, we want to enlighten the common feature of the two types of Lewis solut
cylindric and axisymmetric, namely the fact that they only depend on a harmonic function.
ever, this function is imposed in the cylindric case, whereas it is arbitrary in the axial case

In the cylindrical case,~21! with ~29! reduces to
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Krr 1
1

r
Kr2

dKKr
2

D
50, ~31!

with

D[dK224ab, d[114ab. ~32!

Changing the unknown functionK5K(x) in ~31! in such a way that

Kxx

Kx
5

dKKx

D
~33!

leads to

x rr

x r
52

1

r
. ~34!

Consequently, after integration of~34!, we obtain

x5k1 lnS r

r 0
D , ~35!

wherek1 and r 0 are integration constants, and, by integration of~33!,

E dK

AD
5k1 ln

r

r 0
1k2 , ~36!

wherek2 is an integration constant. The study of the integral~36! leads to the cylindrical solutions
of Lewis.4 Let us note that all these solutions depend only on the solution of the differe
equation~34!, i.e.,

Dx5x rr 1
1

r
x r50, ~37!

which means thatx is a harmonic function. In this special case of cylindrical symmetry,
differential equation~37! can be explicitly integrated, giving the only solution~35!.

It is no longer the case in the more general axisymmetric situation, for which the corres
ing equation~hereafter~40!! is a partial differential equation, even though the line reason
remains the same. Indeed, coming back to~21!, it can be written as

DK5 f ~K !~¹K !2. ~38!

The standard procedure of changing the unknown functionK5K(x) used in~23!, gives now with
~29!,

Kxx

Kx
2

dKKx

D
50. ~39!

With ~39!, ~38! reduces to

Dx50. ~40!

We have that~39! is ~33! with x(r ,z) arbitrary harmonic functions in place of the particul
harmonic function, lnr, convenient for the cylindrical case.
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So, we can obtain from the functional hypothesis~14! the different classes of the Lewi
solution by an analysis similar to the one used in the cylindric case~Ref. 4!.

V. THREE CLASSES OF AXISYMMETRIC SOLUTIONS OBTAINED FROM „29…

The solutionsK(x) of ~39!, expressed in terms of an arbitrary harmonic functionx(r ,z) can
be classified following the sign ofd, defined in~32!, like in the procedure used in the cylindric
case~Ref. 4!.

The corresponding functionsF(x) andL(x) are deduced from the relations

F5
K7AD

2a
, L5

K6AD

2b
, ~41!

obtained from~8! and ~29!. From ~6! to ~8! and ~41! the potentialm obeys

m r52
1

2r
1e

r

2
~x r

22xz
2!, ~42!

mz5erx rxz , ~43!

with the following values fore,

e5H 11, d.0

0, d50

21, d,0

.

For this axisymmetric space–time we can calculate its vorticity vectorVa given by

Va5
eabgd

2Ag
ub~u[g;d]1u[a;mud]u

m!, ~44!

whereua is a time like vector

ua5
1

A2gtt

d t
a .

Calculating the scalar of~44! for ~1! we obtain

V25gabVaVb5
~KFx2FKx!2

4emF2 ~x r
21xz

2!. ~45!

Some remarks about the vorticity of the S~A! solutions is presented in the conclusion. Finally, w
present the three classes of solutions obtained, which are the following.

A. Class I: d Ì0

1. ab Ì0

K52S ab

d D 1/2

coshx, ~46!

F5S a

b D 1/2S 1

Ad
coshx7sinhx D , ~47!
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L5S b

a D 1/2S 1

Ad
coshx6sinhx D . ~48!

2. abË0 with ÀabË1Õ4

K52S 2
ab

d D 1/2

sinhx, ~49!

F5S 2
a

b D 1/2S 1

Ad
sinhx7coshx D , ~50!

L5S 2
b

a D 1/2S 1

Ad
sinhx6coshx D . ~51!

3. abÄ0

Here we use~8! and ~29!, instead of~41!.
Casea50 andbÞ0:

K5ex, ~52!

F5
1

b
ex, ~53!

L5b~e2x2ex!. ~54!

From ~45! with ~52! and ~53! we haveV250.
CaseaÞ0 andb50:

K5ex, ~55!

F5a~e2x2ex!, ~56!

L5
1

a
ex. ~57!

From ~45! with ~55! and ~56! we haveV2Þ0.
Casea5b50: We use~3!, ~8!, and~29! obtaining the Weyl static metric,

K50, ~58!

F5ex, ~59!

L5e2x. ~60!

This solution, without dragging, is an axisymmetric extension of the cylindrical Levi-Civita s
tion.

B. Class II: dË0

We remark here, as we did in Ref. 4, that there is no need to introduce complex parame
our approach, as is usually done in the corresponding cylindrical case,3,9,10
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K52S ab

d D 1/2

sinx, ~61!

F5S 2
a

b D 1/2S 1

A2d
sinx7cosx D , ~62!

L5S 2
b

a D 1/2S 1

A2d
sinx6cosx D . ~63!

C. Class III: dÄ0 or abÄÀ1Õ4

K5x, ~64!

F5
1

2b
~x71!, ~65!

L5
1

2a
~x61!. ~66!

Here we can integrate~42! and~43! obtainingem5c/Ar wherec is an integration constant. Thi
class corresponds to the van Stockum’s class6 ~see Ref. 3, p. 205!.

VI. CONCLUSION

The general solution of the cylindrically symmetric stationary vacuum Einstein’s field e
tions is the Lewis solution. It is no longer the case for the more general equations with
symmetry. We precised here the most general hypothesis under which we can find the a
metric solutions obtained by Lewis.5,6 This hypothesis~14! is a functional dependence between t
potentialsF, L, andK different from~8!, and allowed us to demonstrate a linear relation betw
the potentials. This fact implied that the field equations can be interpreted as describing the
of a classical particle in a central force field, like in the cylindrical symmetric case.4 We can
recognize the solutions as belonging to the S~A! class~see Ref. 3, p. 204!. We obtained these
solutions without recalling the Papapetrou class, as is usually done. These solutions depen
an arbitrary harmonic function, and its classification in three classes is similar to the cylindr
symmetric case. Here again, as in Ref. 4, we do not need to appeal to complex constants
Refs. 9 and 10. This harmonic function plays the role of time in the motion of the prece
classical particle interpretation.

It is interesting to observe in Sec. V A 3, that fora50 and bÞ0 the vorticity scalarV
vanishes, while foraÞ0 andb50 it does not. This shows a similarity with the correspondi
solutions for the cylindrical case4 where a is associated with the parameter that produces
vorticity of the source, as shown by Refs. 11 and 9. On the other hand,b in spite of also being
associated with the stationarity of the source does not produce vorticity, but topological def
shown in Ref. 11 and topological frame dragging demonstrated in Ref. 12.

For d50, in Sec. V C, we haveem5c/Ar , which has the samer dependence as in th
cylindrical system11,9 with energy density per unit lengths51/4. This class of solutions, like in
the cylindrical case, is in the frontier between the two other corresponding classes.
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We present a discrete total variation calculus in Hamiltonian formalism in this
paper. Using this discrete variation calculus and generating functions for the flows
of Hamiltonian systems, we derive symplectic-energy integrators of any finite order
for Hamiltonian systems from a variational perspective. The relationship between
the symplectic integrators derived directly from the Hamiltonian systems and the
variationally derived symplectic-energy integrators is explored. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1559642#

I. INTRODUCTION

We begin by recalling the ordinary variational principle in Hamiltonian formalism. SupposQ
denotes the configuration space with coordinatesqi , andT* Q the phase space with coordinat
(qi ,pi), i 51,2,...,n. Consider a HamiltonianH: T* Q→R. The corresponding action functiona
is defined by

S~~qi~ t !,pi~ t !!!5E
a

b

~pi q̇i2H~qi ,pi !! dt, ~I.1!

where (qi(t),pi(t)) is a C2 curve in phase spaceT* Q.
The variational principle in Hamiltonian formalism seeks the curves (qi(t),pi(t)) for which

the action functionalS is stationary under variations of (qi(t),pi(t)) with fixed end points. We
first define the variation of (qi(t),pi(t)).

Let

V5(
i 51

n

f i~q,p!
]

]qi 1(
i 51

n

c i~q,p!
]

]pi ~I.2!

be a vector field onT* Q. Hereq5(q1,...,qn), p5(p1,...,pn). For simplicity, we will use Ein-
stein convention and omit the summation notationS in the following.

Denote the flow ofV by Fe: Fe(q,p)5(q̃,p̃), which is written in components as

q̃i5 f i~e,q,p!, ~I.3!

p̃i5gi~e,q,p!, ~I.4!

a!Electronic mail: chenjb@itp.ac.cn
b!Electronic mail: hyguo@itp.ac.cn
c!Electronic mail: wuke@itp.ac.cn
16880022-2488/2003/44(4)/1688/15/$20.00 © 2003 American Institute of Physics

                                                                                                                



-

1689J. Math. Phys., Vol. 44, No. 4, April 2003 Total variation in Hamiltonian formalism

                    
where (q,p)PT* Q and

d

de U
e50

f i~e,q,p!5f i~q,p!,

d

de U
e50

gi~e,q,p!5c i~q,p!.

Let (qi(t),pi(t)) be a curve inT* Q. The transformation~I.3! and ~I.4! transforms (qi(t),pi(t))
into a family of curves

~ q̃i~ t !,p̃i~ t !!5~ f i~e,q~ t !,p~ t !!,gi~e,q~ t !,p~ t !!!.

Now we are ready to define the variation of (qi(t),pi(t)):

d~qi~ t !,pi~ t !!5..
d

de U
e50

~ q̃i~ t !,p̃i~ t !!5~f i~q,p!,c i~q,p!!. ~I.5!

Next, we calculate the variation ofS at (qi(t),pi(t)) as follows:

dS5
d

de U
e50

S~~ q̃i~ t !,p̃i~ t !!!

5
d

de U
e50

S~~ f i~e,q~ t !,p~ t !!,gi~e,q~ t !,p~ t !!!!

5
d

de U
e50

E
a

bS gi~e,q~ t !,p~ t !!
d

dt
f i~e,q~ t !,p~ t !!2H~ f i~e,q~ t !,p~ t !!,gi~e,q~ t !,p~ t !!! Ddt

5E
a

bF S q̇i2
]H

]pi Dc i1S 2 ṗi2
]H

]qi Df i Gdt1pif i ua
b . ~I.6!

If f i(q(a),p(a))5f i(q(b),p(b))50, the requirement ofdS50 yields the Hamilton equa
tion for (qi(t),pi(t)):

q̇i5
]H

]pi ,

~1.7!

ṗi52
]H

]qi .

If we drop the requirement off i(q(a),p(a))5f i(q(b),p(b))50, we can naturally obtain the
canonical one form onT* Q from the second term in~I.6!: u5pidqi . Furthermore, restricting
(q̃i(t),p̃i(t)) to the solution space of~I.7!, we can prove that the solution of~I.7! preserves the
canonical two-formv5duL5dpi∧dqi .

On the other hand, it is not necessary to restrict (q̃i(t),p̃i(t)) to the solution space of~I.7!.
Introducing the Euler–Lagrange one-form

E~qi ,pi !5S q̇i2
]H

]pi Ddpi1S 2 ṗi2
]H

]qi Ddqi , ~I.8!

the nilpotency of d leads to
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dE~qi ,pi !1
d

dt
v50. ~I.9!

Namely, the necessary and sufficient condition for symplectic structure preserving is th
Euler–Lagrange one form is closed.1–3

Based on the above-given variational principle in Hamiltonian formalism and using the
of discrete Lagrange mechanics,4–8 we can develop a natural version of discrete Hamilton m
chanics with fixed time steps and derive symplectic integrators for Hamilton canonical equ
from a variational perspective.3

However the symplectic integrators obtained in this way are not energy-preserving in g
because of its fixed time steps.9,10An energy-preserving symplectic integrator is a more prefera
and natural candidate of approximations for conservative Hamilton equations since the solu
conservative Hamilton equations is not only symplectic but also energy-preserving. To atta
goal, we use variable time steps and a discrete total variation calculus developed in Refs.
The basic idea is to construct a discrete action functional with variable time steps and then
a discrete total variation calculus. In this way, we can derive symplectic integrators and
associated energy conservation laws. These variationally derived symplectic integrators a
step integrators. If we take fixed time steps, the resulting integrators are equivalent to the
plectic integrators derived directly from the Hamiltonian systems in some special cases.

An outline of this paper is as follows. In Sec. II, we present total variation for continu
variational principle in Hamiltonian formalism. Section III is devoted to deriving symplec
energy integrators. In Sec. IV, using generating function methods, we obtain high
symplectic-energy integrators. In Sec. V, we present an example. We finish this paper by m
some conclusions and comments in Sec. VI.

II. TOTAL VARIATION IN HAMILTONIAN FORMALISM

In order to discuss total variation in Hamiltonian formalism, we will work with extend
phase spaceR3T* Q with coordinates (t,qi ,pi). Heret denotes time. For details, see Ref. 16.
total variation, we refer to variations of both (qi ,pi) and t. Consider a vector field onR3T* Q,

V5j~ t,q,p!
]

]t
1f i~ t,q,p!

]

]qi 1c i~ t,q,p!
]

]pi . ~II.1!

Let Fe be the flow ofV. For (t,qi ,pi)PR3T* Q, we haveFe(t,qi ,pi)5( t̃ ,q̃i ,p̃i):

t̃ 5h~e,t,q,p!, ~II.2!

q̃i5 f i~e,t,q,p!, ~II.3!

p̃i5gi~e,t,q,p!, ~II.4!

where

d

de U
e50

h~e,t,q,p!5j~ t,q,p!, ~II.5!

d

de U
e50

f i~e,t,q,p!5f i~ t,q,p!, ~II.6!

d

de U
e50

gi~e,t,q,p!5c i~ t,q,p!. ~II.7!
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The transformation~II.2!–~II.4! transforms a curve (qi(t),pi(t)) into a family of curves
(q̃i(e, t̃ ),p̃i(e, t̃ )) determined by

t̃ 5h~e,t,q~ t !,p~ t !!, ~II.8!

q̃i5 f i~e,t,q~ t !,p~ t !!, ~II.9!

p̃i5gi~e,t,q~ t !,p~ t !!. ~II.10!

Suppose we can solve~II.8! for t: t5h21(e, t̃ ). Then we have

q̃i~e, t̃ !5 f i~e,h21~e, t̃ !,q~h21~e, t̃ !!,p~h21~e, t̃ !!!, ~II.11!

p̃i~e, t̃ !5gi~e,h21~e, t̃ !,q~h21~e, t̃ !!,p~h21~e, t̃ !!!. ~II.12!

Before calculating the variation ofS directly, we first consider the first-order prolongation ofV,

pr1V5j~ t,q,p!
]

]t
1f i~ t,q,p!

]

]qi 1c i~ t,q,p!
]

]pi 1a i~ t,q,p,q̇,ṗ!
]

]q̇i 1b i~ t,q,p,q̇,ṗ!
]

] ṗi ,

~II.13!

where pr1V denote the first-order prolongation ofV and

a i~ t,q,p,q̇,ṗ!5Dtf
i~ t,q,p!2q̇iDtj~ t,q,p!, ~II.14!

b i~ t,q,p,q̇,ṗ!5Dtc
i~ t,q,p!2 ṗiDtj~ t,q,p!, ~II.15!

whereDt denotes the total derivative. For example

Dtf
i~ t,q,p!5f t

i1fqq̇1fpṗ.

For prolongation of vector field and formulas~II.14! and ~II.15!, we refer the reader to Ref. 17
Now we calculate the variation ofS directly as follows:

dS5
d

de
U

e50

SS ~ q̃i~e, t̃ !,p̃i~e, t̃ !!

5
d

de
U

e50

E
ã

b̃
~ p̃i~e, t̃ !!

d

dt̃
q̃i~e, t̃ !2H~ q̃i~e, t̃ !,p̃i~e, t̃ !!D dt̃

5
d

de
U

e50

E
a

b

~ p̃i~e, t̃ !!
d

dt̃
q̃i~e, t̃ !2H~ q̃i~e, t̃ !,p̃i~e, t̃ !!)

dt̃

dt
dt ~ t̃ 5h~e,t,q~ t !,p~ t !!!

5E
a

b d

de
U

e50

~ p̃i~e, t̃ !!
d

dt̃
q̃i~e, t̃ !2H~ q̃i~e, t̃ !,p̃i~e, t̃ !! dt

1E
a

b

~pi~ t !q̇i~ t !2H~qi~ t !,pi~ t !!!Dtj dt ~II.16!

5E
a

bF S d

dt
H~qi~ t !,pi~ t !! D j1S 2 ṗi2

]H

]qi Df i1S q̇i2
]H

]pi Dc i Gdt1@pif i2H~qi ,pi !j#ua
b .

~II.17!
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Here in ~II.16!, we used~II.5! and the fact

d

de U
e50

dt̃

dt
5

d

dt

d

deU
e50

t̃ 5Dtj.

In ~II.17!, we used the prolongation formula~II.14!.
If j(a,q(a),p(a))5j(b,q(b),p(b))50 andf i(a,q(a),p(a))5f i(b,q(b),p(b))50, the re-

quirement ofdS50 yields the Hamilton canonical equation

q̇i5
]H

]pi ,

~II.18!

ṗi52
]H

]qi ,

from the variationf i ,c i and the energy conservation law

d

dt
H~qi ,pi !50 ~II.19!

from the variationj.
Since

d

dt
H~qi ,pi !5

]H

]qi q̇i1
]H

]pi ṗi ,

we can easily see that the energy conservation law~II.19! is a natural consequence of the Hamilto
canonical equation~II.18!.

If we drop the requirement

j~a,q~a!,p~a!!5j~b,q~b!,p~b!!50,

f i~a,q~a!,p~a!!5f i~b,q~b!,p~b!!50,

we can define the extended canonical one form onR3T* Q from the second term in~II.17!

u5pidqi2H~qi ,pi !dt. ~II.20!

Furthermore, restricting (q̃i(t),p̃i(t)) to the solution space of~II.18!, we can prove the solution o
~II.18! preserves the extended canonical two form

v5du5dpi∧dqi2dH~qi ,pi !∧dt, ~II.21!

by using the same method in Ref. 8.

III. A DISCRETE TOTAL VARIATION CALCULUS IN HAMILTONIAN FORMALISM AND
SYMPLECTIC-ENERGY INTEGRATORS

In this section, we develop a discrete version of total variation in Hamiltonian formal
Using this discrete total variation calculus, we will derive symplectic-energy integrators.

Let

L~qi ,pi ,q̇i ,ṗi !5piq̇i2H~qi ,pi !
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be a function fromR3T(T* Q) to R. HereL does not depend ont explicitly.
We useP3P for the discrete version ofR3T(T* Q). Here P is the discrete version ofR

3T* Q. A point (t0 ,q0 ,p0 ;t1 ,q1 ,p1)PP3P corresponds to a tangent vector

S q12q0

t12t0

p12p0

t12t0
D .

For simplicity, the vector symbolsq5(q1,...,qn) andp5(p1,...,pn) are used throughout thi
section. A discreteL is defined to beL: P3P→R and the corresponding discrete action to be

S5 (
k50

N21

L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!~ tk112tk!, ~III.1!

wheret05a,tN5b.
The discrete variational principle in total variation is to extremizeS for variations of both

qk ,pk and tk holding the end points (t0 ,q0 ,p0) and (tN ,qN ,pN) fixed. This discrete variationa
principle determines a discrete flowF: P3P→P3P by

F~ tk21 ,qk21 ,pk21 ,tk ,qk ,pk!5~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!. ~III.2!

Here (tk11 ,qk11 ,pk11) is found from the following discrete Hamilton canonical equation:

~ tk112tk!D2L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!

1~ tk2tk21!D5L~ tk21 ,qk21 ,pk21 ,tk ,qk ,pk!50,
~III.3!

~ tk112tk!D3L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!

1~ tk2tk21!D6L~ tk21 ,qk21 ,pk21 ,tk ,qk ,pk!50,

and the discrete energy conservation law

~ tk112tk!D1L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!1~ tk2tk21!D4L~ tk21 ,qk21 ,pk21 ,tk ,qk ,pk!

2L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!1L~ tk21 ,qk21 ,pk21 ,tk ,qk ,pk!50. ~III.4!

HereDi denotes the partial derivative ofL with respect to thei th argument. Equation~III.3! is the
discrete Hamilton canonical equation~variational integrator!. Equation~III.4! is the discrete en-
ergy conservation law associated with~III.3!. Unlike the continuous case, the variational integra
~III.3! does not satisfy~III.4! for arbitrarily given tk11 in general. Therefore, we need to solv
~III.3! and ~III.4! simultaneously withqk11 , pk11 and tk11 being unknowns.

Now we prove that the discrete flow determined by~III.3! and ~III.4! preserves a discret
version of the extended Lagrange two formv defined in~II.21!. Therefore, we call~III.3! and
~III.4! a symplectic-energy integrator. We do this directly from the variational point of v
consistent with the continuous case.8

As in the continuous case, we calculate dS for variations with varied end points.
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dS~ t0 ,q0 ,p0 ,...,tN ,qN ,pN!•~dt0 ,dq0 ,dp0 ,...,dtN ,dqN ,dpN!

5 (
k50

N21

~D2L~vk!dqk1D5L~vk!dqk111D3L~vk!dpk1D6L~vk!dpk11!~ tk112tk!

1 (
k50

N21

~D1L~vk!dtk1D4L~vk!dtk11!~ tk112tk!1L~vk!~dtk112dtk!

5 (
k51

N21

~D2L~vk!~ tk112tk!1D5L~vk21!~ tk2tk21!!dqk

1 (
k51

N21

~D3L~vk!~ tk112tk!1D6L~vk21!~ tk2tk21!!dpk

1 (
k51

N21

~D1L~vk!~ tk112tk!1D4L~vk21!~ tk2tk21!1L~vk21!2L~vk!!dtk

1D2L~v0!~ t12t0!dq01D3L~v0!~ t12t0!dp01~D1L~v0!~ t12t0!2L~v0!!dt0

1D5L~vN21!~ tN2tN21!dqN1D6L~vN21!~ tN2tN21!dpN

1~D4L~vN21!~ tN2tN21!2L~vN21!!dtN , ~III.5!

wherevk5(tk ,qk ,pk ,tk11 ,qk11 ,pk11), k50,1,...,N21.
We can see that the last six terms in~III.5! come from the boundary variations. Based on

boundary variations, we can define two one forms onP3P,

uL
2~vk!5D2L~vk!~ tk112tk!dqk1D3L~vk!~ tk112tk!dpk

1~D1L~vk!~ tk112tk!2L~vk!!dtk ~III.6!

and

uL
1~vk!5D5L~vk!~ tk112tk!dqk111D6L~vk!~ tk112tk!dpk11

1~D4L~vk!~ tk112tk!1L~vk!!dtk11 . ~III.7!

Here we have used the notation in Ref. 8. We regard the pair (uL
2 ,uL

1) as being the discrete
version of the extended canonical one formu defined in~II.20!.

Now we parametrize the solutions of the discrete variational principle by (t0 ,q0 ,t1 ,q1), and
restrictS to that solution space. Then Eq.~III.5! becomes

dS~ t0 ,q0 ,p0 ,...,tN ,qN ,pN!"~dt0 ,dq0 ,dp0 ,...,dtN ,dqN ,dpN!

5uL
2~ t0 ,q0 ,p0 ,t1 ,q1 ,p1!"~dt0 ,dq0 ,dp0 ,dt1 ,dq1 ,dp1!

1uL
1~ tN21 ,qN21 ,pN21 ,tN ,qN ,pN!"~dtN21 ,dqN21 ,dpN21 ,dtN ,dqN ,dpN!

5uL
2~ t0 ,q0 ,p0 ,t1 ,q1 ,p1!"~dt0 ,dq0 ,dp0 ,dt1 ,dq1 ,dp1!

1~FN21!* uL
1~ t0 ,q0 ,p0 ,t1 ,q1 ,p1!"~dt0 ,dq0 ,dp0 ,dt1 ,dq1 ,dp1!. ~III.8!

From ~III.8!, we can obtain

dS5uL
21~FN21!* uL

1 . ~III.9!

The Eq.~III.9! holds for arbitraryN.1. TakingN52 leads to
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dS5uL
21F* uL

1 . ~III.10!

Taking exterior differentiation of~III.10! reveals that

F* ~duL
1!52duL

2 . ~III.11!

From the definition ofuL
2 anduL

1 , we know that

uL
21uL

15dL. ~III.12!

Taking exterior differentiation of~III.12!, we obtain duL
152duL

2 . Define

vL[duL
152duL

2 . ~III.13!

Finally, we have shown that the discrete flowF preserves the discrete extended canonical
form vL :

F* ~vL!5vL . ~III.14!

We call the coupled difference system~III.3! and~III.4! a symplectic-energy integrator in th
sense that it satisfies the discrete energy conservation law~III.4! and preserves the discrete e
tended canonical two formvL .

To illustrate the above-mentioned discrete total variation calculus, we now present a
ample. We chooseL in ~III.1! as

L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!5pk1 1/2

qk112qk

tk112tk
2H~qk1 1/2,pk1 1/2!, ~III.15!

where

pk11/25
pk1pk11

2
, qk11/25

qk1qk11

2
.

Using ~III.3!, we can obtain the corresponding discrete Hamilton equation

qk112qk21

2
2

1

2 S ~ tk112tk!
]H

]p
~qk1 1/2,pk1 1/2!1~ tk2tk21!

]H

]p
~qk2 1/2,pk2 1/2! D50,

~III.16!
pk112pk21

2
1

1

2 S ~ tk112tk!
]H

]q
~qk1 1/2,pk1 1/2!1~ tk2tk21!

]H

]q
~qk2 1/2,pk2 1/2! D50,

where

pk21/25
pk1pk21

2
, qk21/25

qk1qk21

2
.

Using ~III.4!, we can obtain the corresponding discrete energy conservation law

H~qk1 1/2,pk1 1/2!5H~qk2 1/2,pk2 1/2!. ~III.17!

The symplectic-energy integrator~III.16! and ~III.17! preserves the discrete two form:

1

2
~dpk∧dqk111dpk11∧dqk!2H~qk1 1/2,pk1 1/2!∧S dtk1dtk11

2 D . ~III.18!

If we take fixed time stepstk112tk5h (h is a constant!, then~III.16! becomes
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qk112qk21

2h
5

1

2 S ]H

]p
~qk1 1/2,pk1 1/2!1

]H

]p
~qk2 1/2,pk2 1/2! D ,

~III.19!
pk112pk21

2h
52

1

2 S ]H

]q
~qk1 1/2,pk1 1/2!1

]H

]q
~qk2 1/2,pk2 1/2! D .

Now we explore the relationship between~III.19! and the midpoint integrator for the Hamiltonia
system

q̇5
]H

]p
,

~III.20!

ṗ52
]H

]q
.

The midpoint symplectic integrator for~III.20! is

qk112qk

h
5

]H

]p
~qk1 1/2,pk1 1/2!,

~III.21!
pk112pk

h
52

]H

]q
~qk1 1/2,pk1 1/2!.

In ~III.21!, we replacek by k21 and obtain

qk2qk21

h
5

]H

]p
~qk2 1/2,pk2 1/2!,

~III.22!
pk2pk21

h
52

]H

]q
~qk2 1/2,pk2 1/2!.

Adding ~III.22! to ~III.21! results in~III.19!. Therefore, if we use~III.21! to obtainpk ,qk , the
two-step integrator~III.19! is equivalent to the midpoint integrator~III.21!. However, the equiva-
lence does not hold in general. For example, chooseL in ~III.1! as

L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!5pk

qk112qk

tk112tk
2H~qk1 1/2,pk1 1/2!, ~III.23!

and take fixed time stepstk112tk5h. Then~III.3! becomes

qk112qk

h
5

1

2 S ]H

]p
~qk1 1/2,pk1 1/2!1

]H

]p
~qk2 1/2,pk2 1/2! D ,

~III.24!
pk2pk21

h
52

1

2 S ]H

]q
~qk1 1/2,pk1 1/2!1

]H

]q
~qk2 1/2,pk2 1/2! D .

The integrator~III.24! is a two-step integrator which preserves dpk∧dqk11 . In this case, we
cannot find one-step integrator which is equivalent to~III.24!. In conclusion, using discrete tota
variation calculus, we derive two-step symplectic-energy integrators. When taking fixed
steps, some of them are equivalent to one-step integrators derived directly from the Hami
system while the others do not have this equivalence.
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IV. HIGH ORDER SYMPLECTIC-ENERGY INTEGRATORS BY GENERATING FUNCTIONS

In this section, we develop high order symplectic-energy integrators by using the gene
function of the flow of the Hamiltonian system

ż5J¹H~z!, ~IV.1!

where

z5~p,q!T, J5S 0 2I

I 0 D .

We first recall the generating function with normal Darboux matrix of a symplectic tran
mation. For details, see Refs. 18 and 19.

Supposea is a 4n34n nonsingular matrix with the form

a5S A B

C DD ,

whereA, B, C, andD are both 2n32n matrices.
We denote the inverse ofa by

a215S A1 B1

C1 D1
D ,

whereA1 , B1 , C1 , andD1 are both 2n32n matrices.
We call a 4n34n matrix a a Darboux matrixif

aTJ4na5 J̃4n , ~IV.2!

where

J4n5S 0 2I 2n

I 2n 0 D , J̃4n5S J2n 0

0 2J2n
D , J2n5S 0 2I n

I n 0 D ,

whereI n is ann3n identity matrix andI 2n is a 2n32n identity matrix.
Every Darboux matrix induces afractional transformbetween symplectic and symmetr

matrices

sa : Sp~2n!→Sm~2n!,

sa5~AS1B!~CS1D !215M , for SPSp~2n!, det~CS1D !Þ0

with the inverse transformsa
215sa21

sa
21 : Sm~2n!→Sp~2n!,

sa
215~A1M1B1!~C1M1D1!215S,

where Sp(2n) is the group of symplectic matrices and Sm(2n) the set of symmetric matrices.
We can generalize the above discussions to generally nonlinear transformations onR2n. De-

note by Spnl(2n) the set of symplectic transformations onR2n and Smnl(2n) the set of symmetric
transformations~i.e., transformations with symmetric Jacobian! on R2n. Every f PSmnl(2n) cor-
responds, at least locally, to a real functionf ~unique to a constant! such thatf is the gradient of
f:
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f ~w!5¹f~w!, ~IV.3!

where¹f(w)5(fw1
(w),...,fw2n

(w)) andw5(w1 ,w2 , . . . ,w2n).
Then we have

sa : Spnl~2n!→Smnl~2n!,

sa5~A+g1B!+~C+g1D !215¹f, for gPSpnl~2n!, det~Cgz1D !Þ0

or alternatively

Ag~z!1Bz5~¹f!~Cg~z!1Dz!,

where+ denotes the composition of transformation and the 2n32n constant matricesA, B, C,
andD are regarded as linear transformations.gz denotes the Jacobian of the symplectic transf
mationg.

We call f the generating functionof Darboux typea for the symplectic transformationg.
Conversely, we have

sa : Smnl~2n!→Spnl~2n!,

sa
21~¹f!5~A1+¹f1B1!+~C1+¹f1D1!215g for det~C1fww1D1!Þ0,

or alternatively

A1¹f~w!1B1w5g~C1¹f~w!1D1w!,

whereg is called the symplectic transformation of Darboux typea for the generating functionf.
For the study of integrators, we may restrict ourselves to thenormal Darboux matrices, i.e.,

those satisfyingA1B50, C1D5I 2n . The normal Darboux matrices can be characterized a

a5S J2n 2J2n

E I2n2ED , E5
1

2
~ I 2n1J2nF !, FT5F, ~IV.4!

and

a215S ~E2I 2n!J2n I 2n

EJ2n I 2n
D . ~IV.5!

The fractional transform induced by a normal Darboux matrix establishes a one–one corr
dence between symplectic transformations nearidentity and symmetric transformations nearnul-
lity.

For simplicity, we takeF50, thenE5 1
2I 2n and

a5S J2n 2J2n

1

2
I 2n

1

2
I 2n

D . ~IV.6!

Now we consider the generating function of the flow of~IV.1!. Denote the flow of~IV.1! by eH
t .

The generating functionf(w,t) for the flow eH
t of Darboux type~IV.6! is given by

¹f5~J2n+eH
t 2J2n!+~ 1

2 eH
t 1 1

2 I 2n!21 for small utu, ~IV.7!

wheref(w,t) satisfies the Hamilton–Jacobi equation
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]

]t
f~w,t !52HS w1

1

2
J2n¹f~w,t ! D ~IV.8!

and can be expressed by Taylor series int,

f~w,t !5 (
k51

`

fk~w!tk, for small utu. ~IV.9!

The coefficientsfk(w) can be determined recursively

f1~w!52H~w!,
~IV.10!

fk11~w!5
21

k11 (
m51

k
1

m! (
j l1¯1 j m5k

j l>1

DmHS 1

2
J2n¹f j 1,...,

1

2
J2n¹f j mD ,

wherek>1, and we use the notation of them-linear form

DmHS 1

2
J2n¹f j 1,...,

1

2
J2n¹f j mD

ª (
i 1 ,...,i m51

2n

Hzi 1
¯zi m

~w!S 1

2
J2n¹f j 1~w! D

i 1

¯S 1

2
J2n¹f j m~w! D

i m

.

From ~IV.7!, we can see that the phase flowẑªeH
t z satisfies

J2n~ ẑ2z!5¹fS ẑ2z

2 D5(
j 51

`

t j¹f j S ẑ1z

2 D . ~IV.11!

Now we chooseL in ~III.1! as

L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!5pk1 1/2

qk112qk

tk112tk
2cm~qk1 1/2,pk1 1/2!, ~IV.12!

where

cm~qk1 1/2,pk1 1/2!5(
j 51

m

t jf j~qk1 1/2,pk1 1/2!. ~IV.13!

The corresponding symplectic-energy integrator~III.3! and ~III.4! is

qk112qk21

2
2

1

2 S ~ tk112tk!
]cm

]p
~qk1 1/2,pk1 1/2!1~ tk2tk21!

]cm

]p
~qk2 1/2,pk2 1/2! D50,

pk112pk21

2
1

1

2 S ~ tk112tk!
]cm

]q
~qk1 1/2,pk1 1/2!1~ tk2tk21!

]cm

]q
~qk2 1/2,pk2 1/2! D50,

~IV.14!

cm~qk1 1/2,pk1 1/2!5cm~qk2 1/2,pk2 1/2!,

which satisfies the discrete extended canonical two form
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1

2
~dpk∧dqk111dpk11∧dqk!2cm~qk1 1/2,pk1 1/2!∧S dtk1dtk11

2 D . ~IV.15!

The integrator~IV.14! is a two-step symplectic-energy integrator with 2mth order of accuracy.

V. AN EXAMPLE AND AN OPTIMIZATION METHOD

In this section, we will present an example. We take the Hamiltonian as

H~q,p!5 1
2 p21 1

2 ~q42q2!, ~V.1!

where for clarityq andp are scalars.
Corresponding to~V.1!, the discrete Lagrangian~III.1! is chosen as

L~ tk ,qk ,pk ,tk11 ,qk11 ,pk11!5pk1 1/2

qk112qk

tk112tk
2

1

2
pk1 1/2

2 2
1

2
~qk1 1/2

4 2qk1 1/2
2 !. ~V.2!

The corresponding symplectic-energy integrator~III.3! and ~III.4! becomes

qk112qk21

2
2

1

2
~~ tk112tk!pk1 1/21~ tk2tk21!pk2 1/2!50,

pk112pk21

2
1

1

2
~~ tk112tk!~2qk1 1/2

3 2qk1 1/2!1~ tk2tk21!~2qk2 1/2
3 2qk2 1/2!!50, ~V.3!

1

2
pk1 1/2

2 1
1

2
~qk1 1/2

4 2qk1 1/2
2 !5

1

2
pk2 1/2

2 1
1

2
~qk2 1/2

4 2qk2 1/2
2 !,

wheretk21 , qk21 , pk21 and tk ,qk ,pk are given andtk11 , qk11 , pk11 are unknowns.
In the following numerical experiment, we will use a robust optimization method suggest

Ref. 14 to solve~V.3!. Concretely, let

A5
qk112qk21

2
2

1

2
~~ tk112tk!pk1 1/21~ tk2tk21!pk2 1/2!,

B5
pk112pk21

2
1

1

2
~~ tk112tk!~2qk1 1/2

3 2qk1 1/2!1~ tk2tk21!~2qk2 1/2
3 2qk2 1/2!!,

C5
1

2
pk1 1/2

2 1
1

2
~qk1 1/2

4 2qk1 1/2
2 !2

1

2
pk2 1/2

2 2
1

2
~qk2 1/2

4 2qk2 1/2
2 !.

Then we minimize the quantity

F5A21B21C2 ~V.4!

over qk11 , pk11 , and tk11 under the constrainttk11.tk . This constraint guarantees that n
singularities occur in choosing time steps.

We will compare~V.3! with the following integrator with fixed time steps:

qk112qk21

2h
2

1

2
~pk1 1/21pk2 1/2!50,

~V.5!
pk112pk21

2h
1

1

2
~~2qk1 1/2

3 2qk1 1/2!1~2qk2 1/2
3 2qk2 1/2!!50.
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In our numerical experiment, we use two initial conditionsq050.77, p050, t50 and q0

50.99,p050, t50. To obtainq1 andp1 , we apply the midpoint integrator witht150.1.
In Fig. 1, the orbits calculated by~V.3! and~V.5! are shown for the two initial conditions. Th

two orbits in each initial condition are almost indistinguishable. In Fig. 2, we plot the evolutio
the energyH(qk11/2,pk11/2) for both ~V.3! and ~V.5!. The oscillating curve is for~V.5! and the
lower line for ~V.3!.

For more numerical examples, see Ref. 14 in the Lagrangian setting. In principle, the r
in Ref. 14 apply to the Hamiltonian setting in the present paper as well, noticing that (qk11

2qk)/h 5pk11/2. The purpose of this paper is to develop a discrete total variation calculus i
Hamiltonian setting and obtain the symplectic-energy integrators. The comprehensive impl
tation of the obtained integrators is not the subject of this paper and will be the topic for f
research.

VI. CONCLUDING REMARKS

We develop a discrete total variation calculus in Hamiltonian formalism in this paper.
calculus provides a new method for constructing structure-preserving integrators for Hamil
system from a variational point of view. Using this calculus, we derive energy conservation
associated with the integrators. The coupled integrators are two-step integrators and pre
discrete version of the extended canonical two form. If we take fixed time steps, the res
integrators are equivalent to the symplectic integrators derived directly from the Hamilto
systems only in special cases. Thus, new two-step symplectic integrators are variationa
tained. Using generating function method, we also obtain higher order symplectic-energy in
tors.

In principle, our discussions can be generalized to multisymplectic Hamiltonian system

Mzt1Kzx5¹zH~z!, zPRn, ~VI.1!

FIG. 1. The orbits calculated by~V.3! and ~V.5!. Left-hand plot:q050.77,p050; right-hand plot:q050.99,p050.

FIG. 2. The energy evolution for~V.3! and ~V.5!. Left-hand plot:q050.77,p050; right-hand plot:q050.99,p050.
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whereM andK are skew-symmetric matrices onRn,n>3 andS:Rn→R is a smooth function.20,21

We call the above-mentioned system a multisymplectic Hamiltonian system, since it posse
multisymplectic conservation law

]

]t
v1

]

]x
k50, ~VI.2!

wherev andk are the presymplectic forms

v5 1
2 dz`M dz, k5 1

2 dz`Kdz.

Construct the action functional

S5E S 1

2
zT~Mzt1Kzx!2H~z! Ddx`dt. ~VI.3!

Performing total variation on~VI.3!, we can obtain the multisymplectic Hamiltonian system~VI.1!
and the corresponding local energy conservation law

]

]t S S~z!2
1

2
zTKzxD1

]

]x S 1

2
zTKztD50, ~VI.4!

and the local momentum conservation law

]

]t S 1

2
zTMzxD1

]

]x S S~z!2
1

2
zTMztD50. ~VI.5!

In the same way, we can develop a discrete total variation calculus in the multisymplectic
and obtain multisymplectic-energy-momentum integrators.
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The integrability of a coupled KdV–mKdV system is tested by means of singular-
ity analysis. The true Lax pair associated with this system is obtained by the use of
prolongation technique. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1558903#

I. INTRODUCTION

Very recently, Kersten and Krasil’shchik1 constructed the recursion operator for symmetries
a coupled KdV–mKdV system

ut52uxxx16uux23wwxxx23wxwxx13uxw
216uwwx ,

~1!
wt52wxxx13w2wx13uwx13uxw,

which arises as the classical part of one of the superextensions of the KdV equation. In this
we study the integrability of this system using the Painleve´ test. Then, we use Dodd–Fordy2

algorithm of the Wahlquist–Estabrook3 prolongation technique in order to obtain the Lax pair. W
find a 333 matrix spectral problem for the Kersten–Krasil’shchik system.

II. SINGULARITY ANALYSIS

Let us study the integrability of~1! following the Weiss–Kruskal algorithm of singularit
analysis.4,5 The algorithm is well known and widely used, therefore we omit unessential com
tational details.

First, we find that a hypersurfacef(x,t)50 is noncharacteristic for the system~1! if fxÞ0
and setfx51 without loss of generality. Then we substitute the expansions

u5u0~ t !fa1¯1ur~ t !f r 1a1¯ ,
~2!

w5w0~ t !fb1¯1wr~ t !f r 1b1¯ ,

into ~1!, and find the following branches~i.e., admissible choices ofa, b, u0 , andw0), together
with the positionsr of resonances~where arbitrary functions can enter the expansions!:

a522, b521, u051, w056 i ,
~3!

r 521,1,2,3,4,6,

a!Electronic mail: akarasu@metu.edu.tr
b!Electronic mail: saks@pisem.net
c!Electronic mail: ismety@newton.physics.metu.edu.tr
17030022-2488/2003/44(4)/1703/6/$20.00 © 2003 American Institute of Physics

                                                                                                                



vskaya

ic

f

ency
sistent,
at
to

ntial

1704 J. Math. Phys., Vol. 44, No. 4, April 2003 Kalkanli, Sakovich, and Yurduşen

                    
a522, b521, u052, w0562i ,
~4!

r 522,21,3,3,4,8,

a522, b52, u052, ;w0~ t !,
~5!

r 524,21,0,1,4,6,

a522, b53, u052, ;w0~ t !,

r 525,21,21,0,4,6, ~6!

besides those which correspond to the Taylor expansions governed by the Cauchy–Kovale
theorem.

The branch~3! is generic: the expansions~2! with ~3! describe the behavior of a gener
solution near its singularity. The nongeneric branches~4!, ~5!, and~6! correspond to singularities
of special solutions. The branches~4! and ~5! admit the following interpretation, in the spirit o
Ref. 6: ~4! describes the collision of two generic poles~3! with same sign ofw0 , whereas~5!
describes the collision of two generic poles~3! with opposite signs ofw0 . The branch~6! corre-
sponds to~5! with w0→0.

Next, we find from ~1! the recursion relations for the coefficientsun(t) and wn(t) (n
50,1,2,...) of theexpansions~2!, separately for each of the branches, and check the consist
of those recursion relations at the resonances. The recursion relations turn out to be con
therefore the expansions~2! of solutions of~1! are free from logarithmic terms. We conclude th
the system~1! passes the Painleve´ test for integrability successfully and must be expected
possess a Lax pair.

III. PROLONGATION STRUCTURE

By introducing the variablesp5ux , q5wx , r 5px , s5qx , we assume that there existN
3N matrix functionsF andG, depending uponu,w,p,q,r ,s, such that

yx52yF,
~7!

yt52yG,

wherey is a row matrix with elementsyA, A51,...,N. The system of equations in~1! can be
represented as the compatibility conditions of~7! if

Ft2Gx1@F,G#50, ~8!

where @F,G# is the matrix commutator. This requirement gives the set of partial differe
equations forF andG:

Fp5Fq5Fr5Fs50, Fu52Gr , 3wFu1Fw52Gs ,
~9!

pGu1qGw1rGp1sGq23~2up2qs1pw212uwq!Fu23~w2q1uq1pw!Fw2@F,G#50.

Next, we integrate equations~9! and find

F5S uw2
w3

2 DX11
w2

2
X21uX31wX41X5 , ~10!

whereX1 ,X2 ,X3 ,X4 ,X5 are constant matrices of integration. It is immediately seen thatX1 is in
the center of prolongation algebra.3 Hence, we can take it to be zero and findG as
                                                                                                                



1705J. Math. Phys., Vol. 44, No. 4, April 2003 Kersten–Krasil’shchik coupled KdV–mKdV equations

                    
G5~2r 2ws2q212u22w42w2u!X32~s2w323uw!X42~p1wq!X62uwX72S w2

2
1uDX8

2qX92
w2

2
X102wX111X0 , ~11!

whereX0 is a constant matrix of integration. The remaining elements are

X65@X5 ,X3#, X75@X4 ,X6#, X85@X5 ,X6#,
~12!

X95@X5 ,X4#, X105@X4 ,X9#, X115@X5 ,X9#.

The integrability conditions impose the following restrictions onXi ( i 50,...,11):

@X2 ,X3#50, @X5 ,X0#50, @X3 ,@X3 ,X6##50, @X2 ,@X4 ,X3##50,

@X3 ,@X4 ,X3##50, @X3 ,@X4 ,@X4 ,X3###50, @@X4 ,@X4 ,X3##,@X3 ,X6##50,

2X61@X5 ,X2#50, @X3 ,X0#2@X5 ,X8#50, @X4 ,X2#14@X4 ,X3#50,

@X4 ,X0#2@X5 ,X11#50, 3X62 1
2 @X5 ,@X3 ,X6##2@X3 ,X8#50,

3X223@X4 ,@X4 ,X3##2@X2 ,X6#1@X3 ,X6#50,

X712@X5 ,@X4 ,X3##2@X3 ,X9#50,

@X2 ,X0#22@X4 ,X11#2@X5 ,X8#2@X5 ,X10#50,
~13!

@X2 ,@X5 ,@X4 ,X3###1@X2 ,X7#1 1
2 @X2 ,@X2 ,X9##50,

3X92@X3 ,X11#2@X4 ,X8#2@X5 ,X7#22@X5 ,@X5 ,@X4 ,X3###50,

@X3 ,X7#1 1
2 @X4 ,@X3 ,X6##1@X3 ,@X5 ,@X4 ,X3###50,

X92 1
2 ~@X2 ,X11#1@X4 ,X8#1@X4 ,X10# !2 1

3 ~@X5 ,@X5 ,@X4 ,X3###1@X5 ,X7# !2 1
6 @X5 ,@X2 ,X9##

50,

1
2 @X2 ,X5#1 1

4 ~@X2 ,X8#1@X2 ,X10# !1 1
3 ~@X4 ,X7#1@X4 ,@X5 ,@X4 ,X3### !1 1

6 @X4 ,@X2 ,X9##50,

3X62 1
2 ~@X2 ,X8#1@X3 ,X8#1@X3 ,X10# !2@X4 ,X7#22@X5 ,@X3 ,X6##2@X4 ,@X5 ,@X4 ,X3###

22@X5 ,@X4 ,@ ,X4 ,X3###50,

8@X4 ,X3#1 1
4 @X2 ,@X2 ,X9##22@X4 ,@X4 ,@X4 ,X3###2 1

6 ~@X3 ,@X2 ,X9##111@X4 ,@X3 ,X6## !50..

Together with the Jacobi identities we obtain further relations

@X2 ,X6#12@X3 ,X6#50, @X4 ,X11#2@X5 ,X10#50,

@X5 ,@X3 ,X6##2@X3 ,X8#50, @X2 ,X8#2@X5 ,@X2 ,X6##50,

@X5 ,@X4 ,X3##1@X3 ,X9#2X750,
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24@X5 ,@X4 ,X3##1@X2 ,X9#12X750,

@X2 ,@X5 ,@X4 ,X3###12@@X4 ,X3#,X6#50,

@X3 ,@X5 ,@X4 ,X3###2@@X4 ,X3#,X6#50, ~14!

@X3 ,@X2 ,X9##2@X2 ,@X3 ,X9##50,

@X4 ,X3#50, @X2 ,X7#50, @X3 ,X7#50,

@X3 ,X10#50, @X4 ,X7#50, @X5 ,X7#5X9 ,

@X2 ,@X2 ,X9##50, @X4 ,@X3 ,X6##50,

@X5 ,X8#1@X5 ,X10#50.

In order to find the Lie algebra generated byF and matrix representations of the generat
$Xi%0

11, we follow the strategy of Dodd–Fordy.3 First we reduce the number of elements. By usi
Eqs.~12!–~14!, we getX2522X3 . Next, we locate nilpotent and neutral elements. The Eqs.~12!
and ~13! together withX2522X3 give that@X5 ,X3#5X6 and @X3 ,X6#52X3 , henceX3 is nil-
potent andX6 is the neutral element. Let us note that the system of equations in~1! has the
following scale symmetry:

x→l21x, t→l23t, u→l2u, w→lw, ~15!

which implies that the elementsXi must satisfy

X0→l3X0 , X3→l21X3 , X4→X4 , X5→lX5 ,

X6→X6 , X7→X7 , X8→lX8 , X9→lX9 , ~16!

X10→lX10, X11→l2X11,

wherel is a constant. By using the basis elements, we try to embed the prolongation algeb
sl(n11,c). Starting from the casen51, we found that sl(2,c) cannot be the whole algebra. Th
simplest nontrivial closure is in terms of sl(3,c). We take

X35e2a1
, X65h1 , ~17!

where we use the standart Cartan–Weyl basis7 of A2 . Together with the scale symmetries we fin
that

X0524c2
2l4e2a1

236c1
3l3~h112h2!24c2l2ea1

,

X45d1~h112h2!1d2l21ea2
1d3l2e2a12a2

,

X55ea1
1c1l~h112h2!1c2l2e2a1

,

X75d2l21ea2
1d3l2e2a12a2

,

~18!
X8522ea1

12c2l2e2a1
,

X95d2l21ea11a2
2d3l2e2a2

13c1d2ea2
23c1d3l3e2a12a2

,
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X1052d2d3l~h112h2!26c1d2d3l2e2a1
,

X115~9c1
21c2!d2lea2

16c1d3l3e2a2
16c1d2ea11a2

1~9c1
21c2!d3l4e2a12a2

,

where$ci%1
2 and$di%1

3 are constants with conditions

d1d250, d1d350, d2d356c1 , c259c1
2 . ~19!

We choosed150, c15d251. So that,X75X4 and X05236l2X5 . Then, we obtain the matrix
representations of the generatorsXi as

X35S 0 0 0

0 0 0

1 0 0
D , X45S 0 0 0

2l21 0 0

0 6l2 0
D ,

X55S 2l 0 1

0 2l 0

9l2 0 2l
D , X65S 1 0 0

0 0 0

0 0 21
D ,

~20!

X85S 0 0 22

0 0 0

18l2 0 0
D , X95S 0 6l2 0

23 0 l21

0 218l3 0
D ,

X105S 6l 0 0

0 212l 0

236l2 0 6l
D , X115S 0 236l3 0

218l 0 6

0 108l4 0
D .

By substituting the matrix representations of the generators into Eqs.~10! and ~11! we can con-
struct the Lax pair,Cx5XC, C t5TC, for the system~1!, with the following matricesX andT:

X5S l wl21 w22u29l2

0 22l 26wl2

21 0 l
D , ~21!

T5$$p1wq13lw2236l3,(w312uw2s)l2123q218lw,r 1ws1q222u21w41w2u29l2

w2118l2u1324l4%, $6ql2236l3w,26lw2172l3, 6(s2w322uw)l2 2 18ql31108l4w%,
$2w222u136l2,ql2116w,2p2wq13lw2236l3%%, where the matrixT is written by rows
andX52F†, T52G†, C5y†.

The forms ofX andT are unusual in the sense of the dependence onl. It is possible to obtain
equivalent matrices by the gauge transformation,

X85SXS21, T85STS21, ~22!

where

S5S 1 0 0

0 0 21

0 l21 0
D . ~23!

The result is
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X85S l u2w219l2 w

1 l 0

0 6lw 22l
D , ~24!

T8 5 $$p1wq13lw2236l3, 2r 2ws2q212u22w42w2u19l2w2218l2u2324l4, w3

12uw2s23ql218l2w%, $w212u236l2, 2p2wq13lw2236l3,2q26wl%, $6ql
236l2w,26(s2w322uw)l118ql22108l3w,26lw2172l3%%.

IV. CONCLUDING REMARKS

The matrixX8 gives us exactly the spectral problem for the KdV equation whenw50. ButX8
does not reduce to the one for mKdV equation whenu50. This result should be expected becau
the Kersten–Krasil’shchik system, whenu50, gives not only mKdV equation, as stated in Ref.
but also an ordinary differential equation inw. Finally, we note that the Lax pair obtained from~7!
with ~24! is a true Lax pair since the parameterl cannot be removed fromX8 by a gauge
transformation, as can be proven by a gauge-invariant technique.8
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A revisitation of the Legendre transformation in the context of affine principal
bundles is presented. The argument, merged with the gauge-theoretical consider-
ations developed by Massaet al., provides a unified representation of Lagrangian
and Hamiltonian mechanics, extending to arbitrary nonautonomous systems the
symplectic approach of Tulczyjew. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1555684#

I. INTRODUCTION

In recent papers1–4 a new geometrical framework for analytical mechanics has been de
oped. The formulation automatically embodies the invariance of Lagrange’s equations
gauge transformations of the formL→L1 ḟ , ḟ denoting the total time derivative of an arbitra
smooth function over the configuration manifold. Within this context we shall introduce an
hanced version of the Legendre transformation, and discuss its significance in the represent
the equations of motion. The argument extends to arbitrary dynamical systems the sym
framework originally developed by Tulczyjew in time-independent mechanics.5–9

The mathematical foundations of the method are dealt with in Sec. II. The central point
introduction of an involutory notion of duality between affine principal bundles. On this basis
stated ‘‘enhanced version’’ of the Legendre transformation is established.

The subsequent analysis, in Sec. III, shows that the Lagrangian and Hamiltonian bundle
the cornerstones of the gauge-theoretical formulation of dynamics developed in Ref. 1, sati
duality criterion. A straightforward comparison with the results of Sec. II completes the cons
tion, giving rise to a canonical diffeomorphism between higher jet bundles, essentially equi
to the so-calledTulczyjew triple T* (T* (M ))↔T(T* (M ))↔T* (T(M )). The dynamical implica-
tions of the scheme are discussed.

II. AFFINE SPACES AND AFFINE BUNDLES

A. Algebraic preliminaries

Let Q andX, respectively, denote an (n11)-dimensional affine space and a free vector onQ,
or, what is the same, a constant vector field onQ.

a!Electronic mail: massa@dima.unige.it
b!Electronic mail: pagani@science.unitn.it
c!Electronic mail: vignolo@dima.unige.it
17090022-2488/2003/44(4)/1709/14/$20.00 © 2003 American Institute of Physics
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The quotient ofQ by the one-parameter group of translationswj :x→x1jX generated by
X is then ann-dimensional affine spaceM , while the quotient mapp:Q→M is an affine
surjection, makingQ into a principal fiber bundle overM , with structural group (R,1) and
fundamental vector fieldX.

In what follows, we shall referM to ~global! affine coordinatesx1,...,xn, andQ to fibered
affine coordinatesx1,...,xn,u, with ^X,du&51 ⇔ X5 ]/]u.

Let Q* denote the family ofaffine sectionss:M→Q. In coordinates, everysPQ* admits a
representation of the form

u5v1yi xi . ~2.1!

The coefficientsy1 ,...,yn , v form a global coordinate system onQ* . The following assertions
are entirely straightforward.

Q* is an (n11)-dimensional affine space, modeled on the vector spaceW* formed by the
totality of affine functionsover M ~known in the literature as theextended dualof M ).

The one-parameter group of translationswj :Q→Q acts in an obvious way onQ* , sending
each sections: u5v1yi xi into the sectionwj•s: u5v1j1yi xi . The generator of this action
is a constant vector fieldY on Q* , expressed in coordinates asY5 ]/]v. Viewed as an elemen
of the modeling spaceW* , the vectorY coincides with the constant functionf (x)[1 ; x
PM .

Let M* denote the quotient ofQ* by the actions→wj•s described above. A straightfor
ward argument shows that the variablesy1 ,...,yn form an affine coordinate system onM* , and
that the quotient mapQ* →M* is an affine surjection, makingQ* into a principal fiber bundle
over M* , with structural group (R,1) and fundamental vector fieldY.

For eachsPQ* , let Fs :Q→R denote the associatedtrivialization of the bundleQ→M .
The correspondencez,s→Fs(z) is then a function onQ3Q* , henceforth denoted byF(z,s). In
coordinates, Eq.~2.1! provides the expression

Fs5u2v~s!2yi~s! xi

mathematically equivalent to the representation

F~xi ,u,yi ,v !5u2v2xiyi . ~2.2!

Equation~2.2! establishes abi-affine pairingbetween the spacesQ andQ* , invariant under
the one-parameter group of translations

~z,s!°~wj~z!, wj•s!. ~2.3!

In terms of this pairing, the condition for a pointzPQ to belong to an affine sectionsPQ* , or,
equivalently, for a sectionsPQ* to contain a pointzPQ, is expressed by the relationF(z,s)
50. In this respect, precisely in the same way as an elementsPQ* is an affine section
s:M→Q, a pointzPQ may be viewed as an affine sectionz:M* →Q* , described in coordinate
as

v5u~z!2xi~z! yi ~2.4!

and with image spacez(M* ) identical to the affine subspace ofQ* formed by the totality of
hyperplanes containingz.

The previous arguments allow a simple characterization of the first jet spacesj 1(Q,M ) and
j 1(Q* ,M* ) associated with the fibrationsQ→M andQ* →M* . Recalling the interpretation o
the bi-affine pairing~2.2! we have in fact the following.

Theorem 2.1: Both manifolds j1(Q,M ) and j1(Q* ,M* ) are diffeomorphic to the subman
fold S,Q3Q* described by the equation F(z,s)50.

Proof: By definition, every pair (z,s)PS, meant as a pointzPQ and a hyperplane
s:M→Q throughz is an element ofj 1(Q,M ), while, meant as a pointsPQ* and a hyperplane
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z:M* →Q* containings, it belongs to j 1(Q* ,M* ). A straightforward argument~left to the
reader! shows that both correspondencesS→ j 1(Q,M ) and S→ j 1(Q* ,M* ) obtained in this way
are in fact diffeomorphisms. h

In view of Theorem 2.1, the bundlesj 1(Q,M ) and j 1(Q* ,M* ) may be identified. Depending
on the context, we shall refer them to global coordinatesxi ,u,yi or xi ,v,yi , related to each othe
by the correspondence

u2v2xiyi50. ~2.5!

The content of Theorem 2.1 is completed by the following observations.
~a! Both manifolds j 1(Q,M ) and j 1(Q* ,M* ) are principal fiber bundles, with structural

group (R,1), and group actions obtained as jet extensions of the mapswj :Q→Q andwj :Q*
→Q* described above. With the identifications stated in Theorem 2.1, the resulting bundle
tures are unified into the principal fibrationS→M3M* associated with the one-parameter gro
of translations~2.3!.

Both coordinate systemsxi ,u,yi and xi ,v,yi are fibered overM3M* , with u,v playing the
role of trivializationsof the bundleS→M3M* , and with the fundamental vector field express
indifferently as X̂5 ]/]u 5 ]/]v.

~b! By construction, each manifoldj 1(Q,M ), j 1(Q* ,M* ) carries a distinguished contac
one-form, known as theLiouville 1-form. Once again, with the identification stated in Theore
2.1, both Liouville one-forms are unified into a single geometrical object, expressed in coord
as

q 5 du2yi dxi 5 dv1xi dyi ~2.6!

and playing the role of aconnection one-formover the bundleS→M3M* .
The exterior two-form,

Vª2dq5dyi`dxi , ~2.7!

identical, up to a sign, to thecurvatureof q, endows the manifoldM3M* with a canonical
symplectic structure.

The previous discussion, summarized into the diagram

~2.8!

is the core of the Legendre transformation between affine bundles.
Every sectionw:M→Q may in fact be lifted to a mapj 1(w):M→ j 1(Q,M ), thereby giving

rise, through the diagram~2.8!, to correspondencesLw :M→Q* , lw :M→M* , and kw :M
→M3M* .

The last one is nothing but thegraph kw(x)5(x,lw(x)) of the maplw . As far as the other
two are concerned, expressingw as u5w(x1,...,xn), and recalling Eq.~2.5!, as well as the
definition of j 1(w), we get the coordinate representations

Lw : yi5
]w

]xi , v5w2xi
]w

]xi ; ~2.9a!

lw : yi5
]w

]xi . ~2.9b!
                                                                                                                



g

n

r an

-

ne

1712 J. Math. Phys., Vol. 44, No. 4, April 2003 Massa, Pagani, and Vignolo

                    
In view of Eqs.~2.7! and ~2.9b!, the mapkw satisfies the identity

kw* ~V!5lw* ~dyi !`dxi5dS ]w

]xi dxi D50 ~2.10!

indicating that the graph oflw is a Lagrangian submanifoldof M3M* .
In a perfectly symmetric way, every sectionc:M* →Q* , lifted to a map j 1(c):M*

→ j 1(Q* ,M* ), gives rise, through the diagram~2.8!, to correspondencesLc :M* →Q, lc :M*
→ M , and kc :M* →M3M* , with kc representing the graph oflc . In coordinates, expressin
c as v52c(y1 ,...,yn), we have the representations

Lc : xi5
]c

]yi
, u52c1yi

]c

]yi
; ~2.11a!

lc : xi5
]c

]yi
. ~2.11b!

Once again, in view of Eq.~2.11b!, the graph oflc is easily recognized to be a Lagrangia
submanifold ofM3M* .

A special instance of the previous construction occurs when the maplw associated with the
sectionw:M→Q is adiffeomorphism, i.e., when the graphkw(M ),M3M* projects injectively
onto M* . Under the stated assumption, the correspondencecªLw•lw

21 :M* →Q* is a section
of the bundleQ* →M* , described in coordinates as

v52yi xi1w~x1,...,xn!ª2c~y1 ,...,yn! ~2.12!

with the variablesxi defined implicitly in terms of theyi ’s through Eq.~2.9b!.
From Eqs.~2.9b! and ~2.12!, by elementary computations, we get the identities

]c

]yi
5 xi2yj

]xj

]yi
2

]w

]xj

]xj

]yi
5 xi , w52c1yi

]c

]yi
. ~2.13!

Comparison with Eqs.~2.11a! and ~2.11b! provides the identifications

lc5lw
21 , w5Lc•lw

pointing out the perfectly symmetric role played by the sectionsw andc. Consistently with the
current terminology, every diffeomorphismM↔M* arising from a sectionw:M→Q through the
algorithm indicated above will be called aLegendre transformation.

B. Affine principal fibrations

The construction of Sec. II A is easily extended to the context of affine bundles ove
arbitrary base manifoldN. The basic structure is summarized into the diagram

Q ——→ M
p↓ ↓p

N v N

~2.14!

in which Q→N and M→N are affine fibrations, whileQ→M is both an affine bundle homo
morphism, fibered overN, and a principal fiber bundle, with structural group (R,1). @Basically,
this means thatM is the quotient ofQ by the action of the one-parameter group of affi
translations generated by an everywhere nonzero vector fieldX tangent to the fibers ofQ→N, and
constant along each fiber.#
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We shall refer the manifoldN to local coordinatesj1,...,j r . The bundlesM andQ will be,
respectively, referred to affine fibered coordinatesj1,...,j r ,x1,...,xn and j1,...,j r ,x1,...,xn,u.
The fibers ofM→N and Q→N will be denoted byM j , Qj , jPN.

For eachjPN let us now consider the family of affine sectionssj :M j→Qj . As pointed out
in Sec. II A, these form an affine spaceQj* carrying an affine principal fibrationQj* →M j*
‘‘dual’’ of the fibration Qj→M j in the sense described by Eq.~2.2!.

Introducing the spacesQ*ªøjPN Qj* , M*ªøjPN M j* , the situation is summarized
into the commutative diagram

Q* ——→ M*
p↓ ↓p

N v N

~2.15!

in which all vertical arrows represent affine fibrations, whileQ* →M* is an affine bundle homo
morphism and a principal fibration.

Exactly as in Sec. II A, every coordinate systemja,xi ,u on Q determines coordinate
ja,yi ,v on Q* andja,yi on M* on the basis of the requirement

ja~s!ªja~p~s!!, v~s!1yi~s! xi~x!5u~s~x!! ; xPMp(s) . ~2.16!

Once again, the fibrationsQ→M and Q* →M* aredual of each other under the bi-affine pairin
(z,s)→F(z,s) defined on the fibered productQ3N Q* by

F~z,s!5u~z!2v~s!2yi~s! xi~z!. ~2.17!

In particular, denoting byS the submanifold of Q3N Q* described by the equatio
F(z,s)50 and recalling the proof of Theorem 2.1, we get the identifications

S5ø
jPN

j 1~Qj ,M j!5ø
jPN

j 1~Qj* ,M j* !. ~2.18!

Depending on the context, we shall referS to coordinatesja,xi ,u,yi or ja,xi ,yi ,v, with trans-
formation law

u2v2xi yi50. ~2.19!

The previous arguments help analyzing the relationship between the first jet spacesj 1(Q,M )
and j 1(Q* ,M* ). To this end, prior to any further consideration, we recall that both spaces
natural actions of the group (R,1), respectively, obtained by lifting the group actions
Q→M and on Q* →M* . Introducing the notation Bª j 1(Q,M )/(R,1) ,
B*ª j 1(Q* ,M* )/(R,1), the situation is expressed diagrammatically as

j 1~Q,M ! ——→ Q

↓ ↓
B ——→ M

j 1~Q* ,M* ! ——→ Q*

↓ ↓
B* ——→ M*

~2.20!

the vertical arrows denoting affine principal fibrations.
Using jet coordinatesja,xi ,u,ua ,ui on j 1(Q,M ) and ja,yi ,v,va ,v i on j 1(Q* ,M* ), the

fundamental vector fields overj 1(Q,M )→B and j 1(Q* ,M* )→B* coincide, respectively, with
the fields]/]u and]/]v.

In addition to this, the manifoldsj 1(Q,M ), j 1(Q* ,M* ) are endowed with correspondin
Liouville one-forms, expressed in coordinates as

Q15du2ua dja2ui dxi , ~2.21a!
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Q25dv2va dja2v i dyi , ~2.21b!

and playing the role of connection one-forms with respect to the principal fibrationsj 1(Q,M )
→B and j 1(Q* ,M* )→B* discussed above.

Finally, by definition, for eachzPQ, the elements of the fiberj 1(Q,M ) uz are equivalence
classes of sectionsw:M→Q having a first order contact atz. Settingjªp(z)PN, the restriction
of each suchw to the fiberM j is a sectionwj :M j→Qj . Moreover, if two sectionsw, w8 have a
first order contact atz, the restrictionswj , wj8 also do.

In this way, by varyingz, we obtain a surjectionj 1(Q,M )→øjPN j 1(Qj ,M j). A similar
argument establishes the surjectionj 1(Q* ,M* )→øjPN j 1(Qj* ,M j* ). In view of Eq.~2.18! this
makes bothj 1(Q,M ) and j 1(Q* ,M* ) into fiber bundles over the same base manifoldS. On this
basis, we state the following.

Theorem 2.2: There exists a unique diffeomorphismc: j 1(Q,M )→ j 1(Q* ,M* ) making the
diagram

j 1~Q,M !
——→

c
j 1~Q* ,M* !

↓ ↓
S v S

~2.22!

commutative, and satisfyingc* (Q2)5Q1 .
Proof: In coordinates, on account Eqs.~2.18!, ~2.19!, the requirement of commutativity of th

diagram~2.22! is expressed by the relations

c* ~ja!5ja, c* ~yi !5ui , c* ~v i !52xi , c* ~v !5u2xi c* ~yi !5u2xiui .

Comparison with Eqs.~2.21a! and ~2.21b! provides the evaluation

c* ~Q2!5d~u2xiui !2c* ~va! dja1xi dui5Q1 1 @ua2c* ~va!# dja,

showing that the conditionc* (Q2)5Q1 requires the further identification

c* ~va!5ua .

This establishes at one time the existence and the uniqueness of a diffeomorphismc: j 1(Q,M )
→ j 1(Q* ,M* ) satisfying all stated requirements. h

In view of Theorem 2.2, the bundlesj 1(Q,M )→B and j 1(Q* ,M* )→B* may be regarded a
different copies of the same abstract bundle, henceforth denoted byJ→B. Depending on the
context, we shall refer the latter to fibered coordinatesja,xi ,ha ,yi ,u or ja,xi ,ha ,yi ,v, related
to each other by the transformation law

u2v2xiyi50 ~2.23a!

and to the ordinary jet coordinatesja,xi ,u,ua ,ui on j 1(Q,M ) and ja,yi ,v,va ,v i on
j 1(Q* ,M* ) by the further identifications

ui5yi , v i52xi , ua5va5ha . ~2.23b!

As a result, the fundamental vector fields]/]u and ]/]v get identified. In a similar way, the
Liouville one-forms ~2.21a! and ~2.21b! collapse into a single geometrical object, hencefo
denoted byQ, expressed in coordinates as

Q5du2ha dja2yi dxi5dv2ha dja1xi dyi . ~2.24!

The two-form
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Vª2dQ5dha`dja1dyi`dxi ~2.25!

endows the base manifoldB with a canonical symplectic structure.
The previous arguments, summarized into the diagram

~2.26!

allow the construction of a completely involutoryLegendre transformationbetween the bundles
Q→M and Q* →M* . The line of approach, similar to the one exploited in Sec. II A, may
traced as follows: every sectionw:M→Q may be lifted to a mapj 1(w):M→ j 1(Q,M ), thereby
giving rise, through the diagram~2.26!, to correspondencesLw :M→Q* , lw :M→M* , and
kw :M→B.

In coordinates, expressingw asu5w(j1,...,j r ,x1,...,xn), and recalling Eq.~2.23a!, as well as
the definition ofj 1(w), we get the representations

Lw : yi5
]w

]xi , v5w2xi
]w

]xi ; ~2.27a!

lw : yi5
]w

]xi ; ~2.27b!

kw : yi5
]w

]xi , ha5
]w

]ja . ~2.27c!

In view of Eqs.~2.25! and ~2.27c!, the mapkw satisfies the identity

kw* ~V!5kw* ~dha`dja1dyi`dxi !5dS ]w

]ja dja1
]w

]xi dxi D50 ~2.28!

showing that the imagekw(M ) is a Lagrangian submanifoldof B.
In a perfectly symmetric way, every sectionc:M* →Q* , lifted to a map j 1(c):M*

→ j 1(Q* ,M* ), induces correspondencesLc :M* →Q, lc :M* → M , and kc :M* →B. The
implementation in coordinates is entirely straightforward, and is left to the reader.

Finally, when the maplw associated with the sectionw:M→Q is a diffeomorphism, the
correspondencecªLw•lw

21 :M* →Q* is a sectionof the bundleQ* →M* , described in coor-
dinates as

v52yi xi1w~j1,...,j r ,x1,...,xn!ª2c~j1,...,j r ,y1 ,...,yn! ~2.29!

with the functionsxi(j1,...,j r ,y1 ,...,yn) defined implicitly by Eq.~2.27b!.
From Eqs.~2.27b! and ~2.29!, by elementary computations, we get the identities

]c

]yi
5 xi2yj

]xj

]yi
2

]w

]xj

]xj

]yi
5 xi , w52c1yi

]c

]yi
. ~2.30!

Comparison with Eqs.~2.27a! and ~2.27b! provides the identifications

lc5lw
21 , w5Lc•lw
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pointing out once again the symmetric role played by the sectionsw andc.
The previous arguments extend to jet bundles the classical approach to the Legendre

formation developed by Tulczyjew.5,8 In this connection, see also Ref. 10.

III. CLASSICAL MECHANICS

A. Lagrangian and Hamiltonian bundles

A well-known feature of classical mechanics is the invariance of Lagrange’s equations
gauge transformations of the formL→L1 ḟ involving the total time derivative of an arbitrar
smooth function over the configuration manifold. This fact is conveniently accounted fo
working in an environment in which gauge equivalent Lagrangians may be thought of as dif
representationsof the same geometrical object. The geometrical setup, worked out in det

Refs. 1 and 2, relies on the introduction of a double fibrationP
p→ Vn11

t→ R, in which Vn11 is

the configuration space–time of the dynamical system in study, with the fibrationVn11
t→ R

representingabsolute time; P
p→ Vn11 is a principal fiber bundle, with structural group (R,1),

called the bundle ofaffine scalarsover Vn11 .
In what follows, we shall refer the manifoldVn11 to local coordinatest,qi , andP to fibered

local coordinatest,qi ,u ( i 51,...,n), u denoting any trivialization ofP→Vn11 . The first jet
bundles associated with the fibrationP →p Vn11 and with the composite fibrationP → t•p R,
respectively, denoted byj 1(P,Vn11) and j 1(P,R), will be referred to jet coordinates
t,qi ,u,p0 ,pi and t,qi ,u,q̇i ,u̇.

The manifold j 1(P,R) provides the basic environment for the gauge-invariantLagrangian
formulation of mechanics. As illustrated in Refs. 1 and 2, the latter carries two mutually com
ing actions of the group (R,1), locally generated by the vector fields]/]u and]/]u̇, and giving
rise to corresponding quotient spaces and quotient maps. The situation is summarized i
diagram

j 1~P,R! ——→ L c~Vn11!

↓ ↓
L~Vn11! ——→ j 1~Vn11!

~3.1!

in which all arrows express principal fibrations with structural group (R,1), while j 1(Vn11)
ª j 1(Vn11 ,R) denotes the velocity space of the system.

More specifically, the manifoldL(Vn11), with coordinates t,qi ,q̇i ,u̇, is the quotient of
j 1(P,R) by the action generated by]/]u. The one-parameter group generated by]/]u̇ makes
L(Vn11) into a principal fiber bundle overj 1(Vn11), known as theLagrangian bundle. Every
sectionl : j 1(Vn11)→L(Vn11), expressed locally asu̇5L(t,qi ,q̇i), is called aLagrangian sec-
tion.

In a similar way, the quotient ofj 1(P,R) by the action generated by]/]u̇ is denoted by
L c(Vn11). The principal fiber bundleL c(Vn11)→ j 1(Vn11), with structural group generated b
]/]u, is called theco-Lagrangian bundle.

As pointed out in Ref. 1, the use of Lagrangiansectionsin place of Lagrangianfunctions
automatically embodies the gauge invariance of the theory under arbitrary transform
L→L1 ḟ , and establishes a natural interpretation of the Poincare´–Cartan one-form as a conne
tion one-form over the co-Lagrangian bundle.

The Hamiltonian counterpart of the construction stems from an analysis of the fibr
P→Vn11 . Once again, the first-jet spacej 1(P,Vn11) is endowed with two mutually commuting
actions of the group (R,1), now generated by the vector fields]/]u, ]/]p0 . These give rise to
corresponding quotient spaces and quotient maps, summarized into the diagram
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j 1~P,Vn11! ——→ H c~Vn11!

↓ ↓
H~Vn11! ——→ P~Vn11!

~3.2!

in which all arrows express principal fibrations with structural group (R,1). The double quotient
P(Vn11) is called thephase spaceof the system.

More specifically, the manifoldH(Vn11), with coordinatest,qi ,p0 pi , is the quotient of
j 1(P,Vn11) by the action generated by]/]u. The action generated by]/]p0 makesH(Vn11) into
a principal fiber bundle overP(Vn11), known as theHamiltonian bundle. Every section
h:P(Vn11)→H(Vn11), described in coordinates asp052H(t,qi ,pi) is called aHamiltonian
section.

In a similar way, the quotient ofj 1(P,Vn11) by the action generated by]/]p0 is denoted by
H c(Vn11). The principal fiber bundleH c(Vn11)→P(Vn11), with structural group generated b
]/]u, is called theco-Hamiltonian bundle.

The geometrical environment described by diagram~3.2! provides the starting point for a
gauge-invariant formulation of Hamiltonian mechanics. A thorough analysis of this point ma
found in Refs. 1, 2, 3 and references therein. For the present purposes we simply remind t
Liouville one-form of j 1(P,Vn11), expressed in coordinates as

qªdu2p0 dt2pi dqi ~3.3!

determines aconnectionover the principal fiber bundlej 1(P,Vn11)→H(Vn11). The curvature of
q, described, up to a sign, by the exterior two-form

Vª2dq5dp0`dt1dpi`dqi ~3.4!

endows the base manifoldH(Vn11) with a canonical symplectic structure.

B. Higher jet spaces

The algorithm developed in Sec. II B applies in a natural way to the Lagrangian and H
tonian bundles described in Sec. III A, thereby providing a mathematical environment for a u
formulation of time-dependent Lagrangian and Hamiltonian dynamics.

To start with, let us focus on the commutative diagram

L~Vn11! ——→ j 1~Vn11!

↓ ↓
Vn11 v Vn11

~3.5!

and observe that, by construction, bothj 1(Vn11)→Vn11 andL(Vn11)→Vn11 are affine bundles
@the second one identical to the quotient ofj 1(P,R)→P by the action generated by the vect
field ]/]u], while the mapL(Vn11)→ j 1(Vn11) is at the same time an affine bundle homom
phism, fibered overVn11 , and a principal fiber bundle, with structural group (R,1).

The diagram~3.5! is therefore an example ofaffine principal fibrationin the sense describe
in Sec. II B.

In a perfectly symmetric way, the diagram

H~Vn11! ——→ P~Vn11!

↓ ↓
Vn11 v Vn11

~3.6!

defines another affine principal fibration over the same base spaceVn11 .
More specifically, from the discussion of Sec. III A we can draw the following conclusio
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The bundleH(Vn11)→Vn11 is canonically isomorphic to the space ofconnectionsover the
principal fiber bundleP→Vn11 . At eachxPVn11 , the elements of the fiberH(Vn11) ux are in fact
equivalence classes of sections%:Vn11→P related to each other by the condition@notice that,
consistently with the definition ofH(Vn11), we are not requiring%(x)5%8(x)],

%;%8 ⇔ d~%2%8! ux50

and therefore defining one and the same horizontal distributions along the fiberPx .
Every section%:Vn11→P defined in a neighborhood of a pointx and described in coordinate

asu5% (t,q1,...,qn) may be lifted to a sectionj 1(Vn11)→L(Vn11), denoted symbolically by%̇,
and expressed in coordinates asu̇5 (]%/]t) 1 (]%/]qk) q̇k. The restriction of%̇ to the fiber
j 1(Vn11) ux is an affine section%̇ ux : j 1(Vn11) ux→L(Vn11) ux . Two sections%,%8 satisfy %̇ ux

5%̇8ux if and only if the differentiald(%2%8) vanishes atx.
In view of the stated results, every elementsPH(Vn11) ux is easily seen to determine a

affine sectionu̇5p 0(s)1pi(s) q̇i of the bundleL(Vn11) ux→ j 1(Vn11) ux . With the terminology
of Sec. II B we have thus proved the following.

Proposition 3.1: The affine principal fibrations (3.5), (3.6) areaffine dualof each other under
the bi-affine map F:L(Vn11)3Vn11

H(Vn11)→R expressed in coordinates as

F~ t,qi ,q̇i ,u̇,p0 ,pi !5u̇2p02pi q̇i . ~3.7!

Together with Theorem 2.2, Proposition 3.1 gives rise to a canonical identification betwee
first-jet spacesj 1(L(Vn11), j 1(Vn11)) and j 1(H(Vn11),P(Vn11)) . In the present context, thi
result is further enhanced by considering the fibrationH(Vn11)→R coming from the composition
H(Vn11)→Vn11→R. Denoting by j 1(H(Vn11),R) the associated first jet space, and recalli
that the manifoldH(Vn11) is canonically endowed with the symplectic structure~3.4!, we have in
fact the following.

Theorem 3.1: The manifolds j1(H(Vn11),R), j 1(H(Vn11),P(Vn11)) are canonically dif-
feomorphic.

Proof: By definition, both manifolds may be regarded as affine sub-bundles, respective
the tangent spaceT(H(Vn11)) and of the cotangent spaceT* (H(Vn11)), according to the iden-
tifications

j 1~H~Vn11!,R!5 $ X u XPT~H~Vn11!! , ^X , dt&51%, ~3.8a!

j 1~H~Vn11!,P~Vn11!!5 H v U vPT* ~H~Vn11!! , K ]

]p0
, v L 51J . ~3.8b!

The conclusion then follows from the identity

K ]

]p0
, 2X4V L 5 K 2X`

]

]p0
u dp0`dt1dpi`dqi L 5^X,dt&

showing that the correspondenceX→2X4V determines a diffeomorphism ofj 1(H(Vn11),R)
onto j 1(H(Vn11),P(Vn11)), fibered overH(Vn11). h

In view of the previous results, all spacesj 1(H(Vn11),R), j 1(L(Vn11), j 1(Vn11)), and
j 1(H(Vn11),P(Vn11)) are canonically diffeomorphic, and may be identified. For definiten
and without any loss in generality, we choose to regard all of them as different copies o
manifold j 1(H(Vn11),R). Depending on the context, we shall referj 1(H(Vn11),R) to ordinary
jet coordinatest,qi ,p 0,pi ,q̇i ,ṗ 0,ṗi , or to coordinatest,qi ,u̇,pi ,q̇i ,ṗ 0,ṗi related to the previous
ones by the transformation@analogous to Eq.~2.23a!#

u̇2p02pi q̇i50. ~3.9!
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The relationships with the standard jet coordinatest,qi ,q̇i ,u̇,u̇t ,u̇qi,u̇q̇i on
j 1(L(Vn11), j 1(Vn11)) and t,qi ,pi ,p0 ,p0t ,p0qi ,p0pi

on j 1(H(Vn11),P(Vn11)) are then ex-
pressed by the identifications

ṗ05u̇t5p0t , ṗi5u̇qi5p0qi, pi5u̇q̇i, q̇i52p0pi
~3.10!

summarizing the content of Eqs.~2.23b! and ~3.4!, and of Theorem 3.1.
The quotient ofj 1(H(Vn11),R) by the action of the one-parameter group of diffeomorphis

generated by the vector field]/]u̇ 5 ]/]p0 will be denoted byB, and will be referred to coordi-
nates t,qi ,q̇i ,pi ,ṗ0 ,ṗi . The quotient map makesj 1(H(Vn11),R)→B into a principal fiber
bundle. The Liouville one-forms ofj 1(L(Vn11), j 1(Vn11)) and j 1(H(Vn11),P(Vn11)), unified
into the single expression

Qªdu̇2 ṗ0 dt2 ṗi dqi2pi dq̇i5dp02 ṗ0 dt2 ṗi dqi1q̇i dpi ~3.11!

endow j 1(H(Vn11),R)→B with a canonical connection. The exterior two-form

Yª2d Q5dṗ0`dt1dṗi`dqi1dpi`dq̇i ~3.12!

makes the manifoldB into a symplectic manifold.
The previous discussion, summarized into the commutative diagram,

~3.13!

provides the necessary tool for the application of the Legendre transformation in time depe
analytical mechanics, along the lines discussed in Sec. II. An alternative approach, leadin
construction bearing interesting analogies with diagram~3.13! may be found in Ref. 11.

C. Dynamics

As a final topic, we discuss the Lagrangian and Hamiltonian formulation of dynamics w
the geometrical framework developed so far. The analysis will provide a gauge-invariant exte
to nonautonomous systems of the classical results of Tulczyjew.5–9

Let l : j 1(Vn11)→L(Vn11) denote a Lagrangian section, expressed in coordinates
u̇5L(t,qi ,q̇i). On account of the identifications~3.10!, the first jet extensionj 1( l ): j 1(Vn11)
→ j 1(L(Vn11), j 1(Vn11)) is described by the equations

u̇5L~ t,qi ,q̇i ! , ṗ05u̇t5
]L

]t
, ṗi5u̇qi5

]L

]qi , pi5u̇q̇i5
]L

]q̇i . ~3.14!

The map j 1( l ) carries a complete information on dynamics. Indeed, according to the dia
~3.13!, the image spaceEª j 1( l )( j 1(Vn11)) may be viewed as a submanifold ofj 1(H(Vn11),R).
Switching to coordinatest,qi ,p0,pi ,q̇i ,ṗ0,ṗi through Eq.~3.9!, let us accordingly rephrase Eq
~3.14! in the equivalent form

p01
]L

]q̇i q̇i2L~ t,qi ,q̇i !50 , ṗ05
]L

]t
, pi5

]L

]q̇i , ṗi5
]L

]qi . ~3.15!
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By the very definition ofj 1(H(Vn11),R), Eqs.~3.15! provide a system of ordinary differentia
equations, not in normal form, for the determination of the family of sectionsg:R→H(Vn11)
@⇔g(t)[(t,qi(t),p0(t),pi(t)) # whose jet extensionġª j 1(g) satisfiesġ(t)PE ; t. In the re-
sulting context, the last pair of relations~3.15! reproduce the content of Lagrange’s equations

d

dt S ]L

]q̇i D2
]L

]qi 50, i 51,...,n,

while the first pair describes the evolution of the HamiltonianHª2L1 (]L/]q̇i) q̇i .
Precisely the same state of affairs occurs if one considers a Hamiltonian sectioh:

P(Vn11)→H(Vn11), expressed in coordinates asp 052H(t,qi ,pi). On account of Eqs.~3.10!,
the first jet extensionj 1(h):P(Vn11)→ j 1(H(Vn11),P(Vn11)) is now described by the system

p052H~ t,qi ,pi !, ṗ052
]H

]t
, ṗi52

]H

]qi , q̇i5
]H

]pi
. ~3.16!

Once again, according to the diagram~3.13!, the image spaceEª j 1(h)(P(Vn11)) may be
regarded as a (2n11)-dimensional submanifold ofj 1(H(Vn11),R).

Equations~3.16! play therefore the role of a system of ordinary differential equations, now
normal form, characterizing the totality of sectionsg:R→H(Vn11) whose jet extension satisfie
ġ(t)PE ; t. More specifically, the last pair of equations~3.16! reproduces the content of Hami
ton’s equations, while the first pair describes the evolution of the Hamiltonian.

For completeness, let us also write down theLegendre mapsassociated with the section
l : j 1(Vn11)→L(Vn11) and h:P(Vn11)→H(Vn11) considered above. The argument is a repl
of the one worked out in detail in Sec. II B, so that we shall merely state the results.

~i! Given any sectionl : j 1(Vn11)→L(Vn11), consider the jet extensionj 1( l ). Composing the
latter with the ~significant! vertical arrows of the diagram~3.13! generates three map
L l : j 1(Vn11)→H(Vn11), l l : j 1(Vn11)→P(Vn11) , and k l : j 1(Vn11)→B.

In coordinates, expressingl as u̇5L(t,qi ,q̇i), we have the explicit representations@see Eqs.
~2.27a!–~2.27c!#

L l : pi5
]L

]q̇i , p 05L2q̇i
]L

]q̇i ; ~3.17a!

l l : pi5
]L

]q̇i ; ~3.17b!

k l : pi5
]L

]q̇i , ṗ05
]L

]t
, ṗi5

]L

]qi . ~3.17c!

In view of Eqs.~3.12! and ~3.17c!, the mapk l satisfies the identity

k l* ~Y!5k l* ~dṗ0`dt1dṗi`dqi1dpi`dq̇i !5dS ]L

]t
dt1

]L

]qi dqi1
]L

]q̇i dq̇i D[0 ~3.18!

indicating that the image spacek l( j 1(Vn11)) is a Lagrangian submanifoldof B.
Equations~3.17b! express the familiar Legendre transformation. Under the regularity ass

tion deti ]2L/]q̇i]q̇j iÞ0, the latter may be solved with respect to the variablesq̇i . Substituting the
result into the second equation~3.17a! one then gets the expressionp 052H(t,qi ,pi), describing
the Hamiltonian section h:P(Vn11)→H(Vn11) associated withl .

A perfectly symmetric construction holds starting with a Hamiltonian sectionh:
P(Vn11)→H(Vn11). Once again the jet extensionj 1(h):P(Vn11)→ j 1(H(Vn11),P(Vn11)),
composed with the significant vertical arrows of diagram~3.13!, gives rise to maps
Lh :P(Vn11)→L(Vn11), lh :P(Vn11)→ j 1(Vn11) and kh :P(Vn11)→B, expressed in coordi-
nates as
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Lh : q̇i5
]H

]pi
, u̇52H1

]H

]pi
pi ; ~3.19a!

lh : q̇i5
]H

]pi
; ~3.19b!

kh : q̇i5
]H

]pi
, ṗ052

]H

]t
, ṗi52

]H

]qi . ~3.19c!

H(t,qi ,pi) denoting the Hamiltonian function involved in the local representation ofh. Exactly as
above, Eqs.~3.12! and ~3.17c! provide the identity

kh* ~Y!5kh* ~dṗ0`dt1dṗi`dqi1dpi`dq̇i !5dS 2
]H

]t
dt2

]H

]qi dqi2
]H

]pi
dpi D[0

~3.20!

showing that the image spacekh(H(Vn11)) is a Lagrangian submanifold ofB. Under the further
assumption deti ]2H/]pi]pj iÞ0 Eqs.~3.19b! may be solved with respect to the variablespi , in
which case the second expression~3.19a! provides the representation of the Lagrangian sec
associated withh.

From a geometrical viewpoint, a significant implication of the previous discussion is the
that, in the environmentj 1(H(Vn11),R), the Lagrangian and Hamiltonian approaches to mech
ics are nothing but different representations of the same (2n11)-dimensional submanifold, de
scribed indifferently asE5 j 1( l )( j 1(Vn11))5 j 1(h)(P(Vn11)).

This aspect is further enhanced by observing that, according to Eqs.~3.11!, ~3.14!, and~3.16!,

the embeddingE i→ j 1(H(Vn11),R) satisfies the identity

i * ~Q!50, ~3.21!

showing that the hypersurfaceE is horizontal with respect to the canonical connection
j 1(H(Vn11),R)→B. Now, a straightforward argument indicates thateveryhorizontal submani-
fold i :S→ j 1(H(Vn11),R) has dimension<2n11. @Indeed, by Eq.~3.21!, the projection

j 1(H(Vn11),R)
p→B is locally injective onS, while Eq. ~3.21! itself requires i * (dQ)50.

Therefore, by the nonsingularity of the two-form~3.12! dim(S)5dim(p(S))< 1
2 dim(B)52n

11 .] Regular dynamical systems may therefore be viewed ashorizontal submanifolds of maxima
dimensionin j 1(H(Vn11),R), projecting injectively onto bothj 1(Vn11) andP(Vn11).

The previous conclusion extends to the newer context the results originally establish
Tulczyjew in the autonomous case5–9 ~in this connection see also Refs. 12, 13, and 10!. The

analogies are easily understood by observing that the projectionj 1(H(Vn11),R)
p→B sets up a

1–1 correspondence between horizontalslicings of maximal dimension inj 1(H(Vn11),R) and
Lagrangian submanifolds inB. The details are straightforward, and are left to the reader
coordinates, the previous assertions have their analytical counterpart in Eqs.~3.18! and ~3.20!.
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Asymptotic expansion of the quasiconfluent
hypergeometric function

J. Abad and J. Sesmaa)
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The asymptotic expansion of the hypergeometric function2F1(a,b;c;z/b) in the
case of quasiconfluence, i.e., forubu→`, is revised. A very simple expansion, in
terms of a semiasymptotic sequence of polynomials, is presented. Some properties
of those polynomials are discussed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1560551#

I. INTRODUCTION

In a series of recent papers,1–3 Chidichimo and Thorsley have discussed several procedure
obtaining asymptotic expansions of the electric dipole~E1! differential excitation function in a
treatment of the Coulomb excitation of positive ions by nuclei. As a complementary mathem
result, useful for their treatment of the physical problem, they have obtained the first three
of an asymptotic expansion@Eq. ~2.7! in Ref. 3# of the Gauss hypergeometric functio

2F1(a,b;c;z/b), in power series of 1/b with coefficients closely related to the confluent hype
geometric functions1F1(a1k;c1k;z), k integer. That result is, in fact, a particularization of a
expansion of the generalized hypergeometric functionp11Fq(a1 , . . . ,ap ,b;c1 ,...,cq ;z/b), in the
case of quasiconfluence, i.e.,ubu large, in terms of generalized hypergeometric functionspFq(a1

1k, . . . ,ap1k;c11k,...,cq1k;z). Such expansion, whose first terms can be found in Sec.
Eq. ~21!, of a book by Luke,4 reads~with a different but conventional notation!

p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD5A0~z!1
1

b

1

2
A2~z!1

1

b2 S 1

3
A3~z!1

1

8
A4~z! D

1
1

b3 S 1

4
A4~z!1

1

6
A5~z!1

1

48
A6~z! D

1
1

b4 S 1

5
A5~z!1

13

72
A6~z!1

1

24
A7~z!1

1

384
A8~z! D1¯ , ~1!

where it has been denoted

Ak~z!5zk
dk

dzk pFqS a1 , . . . ,ap

c1 ,...,cq
UzD 5zk

~a1!k ...~ap!k

~c1!k ...~cq!k
pFqS a11k, . . . ,ap1k

c11k,...,cq1k UzD . ~2!

The procedure followed in Refs. 3 and 4 to obtain the reported terms of the mentioned exp
consists in a judicious rearrangement of the series expansion ofp11Fq . Obviously, the derivation
of new terms of the expansion becomes more and more tedious. Here we suggest two alte
methods to complete the expansion~1!. The first one makes use of the Barnes integral repres
tation of the generalized hypergeometric functions and of an asymptotic expansion of the r
gamma functions. The second one, much more efficient, gives directly the result of grouping~1!
terms containing the sameAk(z) and makes use only of the relation between the differen
equations satisfied byp11Fq and pFq .

a!Electronic mail: javier@posta.unizar.es
17230022-2488/2003/44(4)/1723/7/$20.00 © 2003 American Institute of Physics
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II. A PROCEDURE BASED ON INTEGRAL REPRESENTATIONS

The starting point is the Barnes integral representation of the generalized hypergeo
series,

p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD5
) j 51

q G~cj !

2p i ~) j 51
p G~aj !!G~b!

E
2 i`

1 i` ~) j 51
p G~aj1s!!G~b1s!G~2s!

) j 51
q G~cj1s!

3S 2
z

bD s

ds. ~3!

Here the integration path is such that it leaves all poles ofG(aj1s), G(b1s) andG(cj1s) to the
left, and those ofG(2s) to the right.~See figures in Sec. 5.6 of Ref. 5 and in Sec. 8.6 of Re
illustrating the choice of the path in the particular casep5q51.) Now, we can make use of
well-known asymptotic expansion@Eq. ~3.31! of Ref. 5 and also Eq.~12! in Sec. 2.11 of Ref. 4#
of the ratio of gamma functions

G~b1a!

G~b1b!
;ba2b(

k50

`
~2 !kBk

(a2b11)~a! ~b2a!k

k!
b2k, ~4!

whereBk
(g)(x) are the generalized Bernoulli polynomials,4,5 defined by the generating formula

tgext

~et21!g 5 (
k50

`
tk

k!
Bk

(g)~x!, utu,2p. ~5!

To our purposes,~4! can be reduced to

G~b1s!

G~b! bs ;(
k50

`
~2 !kBk

(s11)~s! ~2s!k

k!
b2k. ~6!

The Bk
(s11)(s) turn out to be polynomials of degreek in the variables. They satisfy the relation4

~2 !kBk
(s11)~s!5

s2k

s
Bk

(s) , ~7!

the Bk
(s)[Bk

(s)(0) being obtained directly, by means of

Bk
(s)5

dk

dtk S t

et21D sU
t50

, ~8!

or successively, through the recurrence relation

B0
(s)51,

Bk
(s)

k!
52

s

k S 1

2

Bk21
(s)

~k21!!
1(

j 52

k
Bj

j !

Bk2 j
(s)

~k2 j !! D . ~9!

Here,Bj are the Bernoulli numbers.~Notice that only even values ofj are effective in the sum.!
Obviously, theBk

(s) can be written as linear combination of the polynomials (2s1k11) j in the
form

Bk
(s)

k!
5s(

l 51

k

~2 !k1 l 21ak,l~2s1k11! l 21 , k51,2,... . ~10!
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Comparison of equal powers ofs in the two sides of this equation would allow one to determ
the coefficientsak,l . Nevertheless, we will see in Sec. IV that they can be more trivially obta
by using the recurrence

~k1 l !ak,l5~k211 l !ak21,l1ak21,l 21 , ~11!

understanding that

a0,051, ak,050 for k.0, ~12!

ak,l50 if l .k. ~13!

For l 51 and forl 5k the recurrence~11! reduces to a two-term one and can be easily sol
to give

ak,15
1

k11
, ak,k5

1

2k k!
, k51,2,... . ~14!

Here is a table of the first coefficients:

a0,051,

a1,15
1
2 ,

a2,15
1
3 , a2,25

1
8 ,

a3,15
1
4 , a3,25

1
6 , a3,35

1
48 ,

a4,15
1
5 , a4,25

13
72 , a4,35

1
24 , a4,45

1
384 ,

a5,15
1
6 , a5,25

11
60 , a5,35

17
288 , a5,45

1
144 , a5,55

1
3840.

In view of ~7! and ~10!, the asymptotic expansion~6! can be written in the form

G~b1s!

G~b! bs ;(
k50

`
1

bk (
l 51

k

~2 !k1 lak,l ~2s!k1 l , ~15!

with the convention that, here and in what follows, the empty sum on the indexl ~for k50) is to
be replaced by the expression resulting by takingl 50 anda0,051. By substituting the expansio
~15! in the right-hand side of~3! and interchanging sums and integration, one obtains the fo
expansion

p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD;(
k50

`
1

bk (
l 51

k

~2 !k1 lak,l

) j 51
q G~cj !

2p i ) j 51
p G~aj !

3E
2 i`

1 i` ~) j 51
p G~aj1s!!G~2s1k1 l !

) j 51
q G~cj1s!

~2z!s ds. ~16!

Replacement, in each integral, of the variable of integrations by v5s2(k1 l ) leads to
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p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD;(
k50

`
1

bk (
l 51

k

ak,l

) j 51
q G~cj !

2p i ) j 51
p G~aj !

zk1 l

3E
2 i`

1 i` ~) j 51
p G~aj1k1 l 1v !!G~2v !

) j 51
q G~cj1k1 l 1v !

~2z!v dv. ~17!

Notice that the integration path in the complexv plane leaves the poles ofG(aj1k1 l 1v) and
G(cj1k1 l 1v) to the left and those ofG(2v) to the right. Recalling the Barnes integral repr
sentation of the generalized hypergeometric functions, already used in~3!, and the notation~2!, we
obtain, finally, the expansion

p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD;A0~z!1 (
k51

`
1

bk (
l 51

k

ak,l Ak1 l~z!. ~18!

III. A SEMIASYMPTOTIC EXPANSION

Computational use of the expansion~18! would recommend to rearrange its terms in the fo

p11FqS a1 , . . . ,ap ,b
c1 ,...,cq

U z

bD;(
j 50

`

Pj~1/b! Aj~z!, ~19!

where thePj (1/b) stand for the resulting polynomials in the variable 1/b. Obviously,

P0~1/b!51, P1~1/b!50, Pj~1/b!5 (
k5[ ~ j 11!/2]

j 21

ak, j 2kS 1

bD k

. ~20!

It is not difficult to find those polynomials without need of obtaining and rearranging the ex
sion ~18!. Since they do not depend on the numbersp andq of parameters, we can refer to th
particular casep5q51. Then,~19! becomes

2F1S a,b;c;
z

bD;(
j 50

`

Pj~1/b! Aj~z!, ~21!

where now

Aj~z!5zj
~a! j

~c! j
1F1~a1 j ;c1 j ;z!. ~22!

Since the expansion~21! must obey the hypergeometric equation

S S z

b
2

z2

b2D d2

dS z

bD 2 1S c2~a1b11!
z

bD d

dS z

bD 2abD 2F1S a,b;c;
z

bD50, ~23!

one has the condition

(
n50

`

Pn~1/b!S z~b2z!
d2

dz2 1~bc2~a1b11!z!
d

dz
2abDAn~z!50, ~24!

to be satisfied by the polynomialsPn . From the definition~22! and the relation@Eq. ~13.4.9! of
Ref. 7#
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dk

dzk 1F1~a;c;z!5
~a!k

~c!k
1F1~a1k;c1k;z! ~25!

one obtains immediately

d

dz
An~z!5z21~nAn~z!1An11~z!!, ~26!

d2

dz2 An~z!5z22~n~n21!An~z!12nAn11~z!1An12~z!!. ~27!

Therefore,~24! can be written

(
n50

`

Pn~1/b!S S b

z
21D ~n~n21!An~z!12nAn11~z!1An12~z!!

1S bc

z
2~a1b11! D ~nAn~z!1An11~z!!2abAn~z! D50. ~28!

On the other hand, the confluent hypergeometric equation

S z
d2

dz2 1~c1n2z!
d

dz
2~a1n! D 1F1~a1n;c1n;z!50 ~29!

together with the relation

dk

dzk 1F1~a1n;c1n;z!5
~c!n

~a!n
z2n2kAn1k~z!, ~30!

trivially deduced from~25!, provides us with the recurrence relation

An12~z!1~c1n2z!An11~z!2~a1n!zAn~z!50, ~31!

which allows us to write the condition~28! in the form

(
n50

`

Pn~1/b!~bn~a1n21!An21~z!2n~a1n2b!An~z!2~2n1a11!An11~z!2An12~z!!50

~32!

or, equivalently,

(
n50

`

An~z!~~a1n!~b~n11!Pn11~1/b!2nPn~1/b!2Pn21~1/b!!

1~bnPn~1/b!2~n21!Pn21~1/b!2Pn22~1/b!!!50, ~33!

which obviously is satisfied if the polynomialsPn(1/b) obey the three-term relation

bnPn~1/b!5~n21!Pn21~1/b!1Pn22~1/b!. ~34!

This condition and the starting value ofP0(1/b) allow one to obtain the polynomials ver
easily. The first ones are

P0S 1

bD51,
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P1S 1

bD50,

P2S 1

bD5
1

2

1

b
,

P3S 1

bD5
1

3 S 1

bD 2

,

P4S 1

bD5
1

8 S 1

bD 2

1
1

4 S 1

bD 3

,

P5S 1

bD5
1

6 S 1

bD 3

1
1

5 S 1

bD 4

,

P6S 1

bD5
1

48S 1

bD 3

1
13

72S 1

bD 4

1
1

6 S 1

bD 5

.

The sequence of polynomials$Pn(t)% does not constitute an asymptotic one fort→0, since

P2k~ t !5O~P2k21~ t !!, as t→0.

However, we can say that it is a semiasymptotic sequence to refer to the fact that, fort→0,

Pn11~ t !5 either O~Pn~ t !! or o~Pn~ t !!

whereas

Pn12~ t !5o~Pn~ t !!.

In this sense, the expansion~19! is a semiasymptotic one.

IV. SOME PROPERTIES OF THE POLYNOMIALS Pn„z…

We have seen in Sec. III that the polynomialsPn(z), defined by

P0~z!51, P1~z!50, Pn~z!5 (
k5[ ~n11!/2]

n21

ak,n2k zk, ~35!

can be determined by means of the recurrence

nPn~z!5z~~n21!Pn21~z!1Pn22~z!!. ~36!

This relation allows us to obtain a recurrence for the coefficientsak,l entering in the expansion
~18!. By substituting in~36! the polynomialsP by their definition ~35! and comparing equa
powers ofz, one obtains

nak,n2k5~n21!ak21,n2k1ak21,n2k21 , ~37!

the recurrence anticipated in~11!.
It is not difficult to find a generating function for the polynomialsP. Let us denote

F~z,t ![ (
n50

`

Pn~z! tn. ~38!
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By multiplying both sides of the recurrence~36! by tn21 and summing forn from 1 to `, it
becomes

]

]t
F~z,t !5ztS ]

]t
F~z,t !1F~z,t ! D , ~39!

which, solved, gives

F~z,t !5~12zt!21/ze2t. ~40!

From ~38!, it is immediate to see that

Pn~z!5
1

n!

]n

]tn ~~12zt!21/ze2t!U
t50

, ~41!

or, equivalently,

Pn~z!5
1

2p i E
(01)

~12zt!21/ze2t
dt

tn11 , ~42!

the closed integration contour in the complext plane leaving the point 1/z in the external region.
The representation~41! leads to an explicit expression of the polynomials,

Pn~z!5
1

n! (
j 50

n

~21!n2 j S n
j D S 1

zD
j

zj , ~43!

or, more concisely,

Pn~z!5
~21!n

n! 2F0S 2n,
1

z
;;zD , ~44!

understanding that

2F0S 20,
1

z
;;zD[1. ~45!

Nevertheless, the recurrence~36! is preferable for the computation of thePn(z).
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Noncommutative phase and unitarization of GL p,q„2…
M. Arik and B. T. Kaynaka)

Department of Physics, Bog˘aziçi University, 34342 Bebek, Istanbul, Turkey
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In this article, imposing Hermitian conjugate relations on the two-parameter de-
formed quantum group GLp,q(2) is studied. This results in a noncommutative
phase associated with the unitarization of the quantum group. After the achieve-
ment of the quantum group Up,q(2) with pq real via a noncommutative phase, the
representation of the algebra is built by means of the action of the operators con-
stituting the Up,q(2) matrix on states. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1556552#

I. INTRODUCTION

The mathematical construction of a quantum group Gq pertaining to a given Lie group G is
simply a deformation of a commutative Poisson–Hopf algebra defined over G. The structur
deformation is not only a Hopf algebra but characteristically a noncommutative algebra as
The notion of quantum groups in physics is widely known to be the generalization of the
metry properties of both classical Lie groups and Lie algebras, where two different mathem
blocks, namely deformation and co-multiplication, are simultaneously imposed either on th
lated Lie group or on the related Lie algebra.

A quantum group is defined algebraically as a quasi-triangular Hopf algebra. It can be
noncommutative or commutative. It is fundamentally a bi-algebra with an antipode so as to c
of either the q-deformed universal enveloping algebra of the classical Lie algebra or its
called the matrix quantum group, which can be understood as the q-analog of a classical
group.1 One needs four axioms, namely morphisms, in order to define a bi-algebraic stru
associativity, co-associativity, unit and co-unit. There is an additional structure, called the
necting axiom, which is needed to link the algebra to its dual one.

Although the applications of quantum groups mainly concentrate on the studies of qua
integrable models using the quantum inverse scattering method and noncommutative ge
there have been many phenomenological applications of quantum algebras in nuclear p
condensed matter physics, molecular physics, quantum optics and elementary particle phys
most important and remarkable application arose from the q-deformation of the known qu
mechanical harmonic oscillator algebra. The algebraic approaches to the oscillator algeb
volve the known creation, annihilation and number operators. It is worth emphasizing the i
tance of the algebra possessing Hermitian operators, giving rise to the ability of represent
physical observables. An algebra, therefore, needs to have a* structure to be interpreted as a
algebra of observables. The simplest matrix quantum group with such a structure is SUq(2).2

Let us now review the quantum group GLp,q(2) and then its unitary form Uq,q̄(gl(2)).3 The
representation matrix and the algebra of the two-parameter deformed quantum group GLp,q(2) are
defined in the following way:4,5

A5S a b

c dD , ~1!

ab5q2ba, ac5p2ca, bd5p2db, cd5q2dc, ~2!

a!Author to whom correspondence should be addressed. Electronic mail: kaynakb@boun.edu.tr
17300022-2488/2003/44(4)/1730/5/$20.00 © 2003 American Institute of Physics

                                                                                                                



d
ards

o

these

nts
up
r de-

1731J. Math. Phys., Vol. 44, No. 4, April 2003 Noncommutative phase and the unitarization

                    
ad2da5~q22p22!bc, bc5p2q22cb.

The co-multiplicationD, the co-unit«, and the antipode~matrix inverse! S, whose bi-algebra is
generated by the matrix elementsa, b, c, andd, are given by

D~A!5S a^ a1b^ c a^ b1b^ d

c^ a1d^ c c^ b1d^ dD , ~3!

«~A!5S 1 0

0 1D , ~4!

S~A!5D 21S d 2p22b

2p2c a D 5S d 2q22b

2q2c a DD 21 , ~5!

where the quantum determinant ofA is defined by

D[detp,qA5ad2q2bc5ad2p2cb . ~6!

The co-product and the antipode of the quantum determinant are given by

D~D!5D^ D , ~7!

S~D!5D 21 . ~8!

A unitarized form of GLp,q(2), named Uq̄,q(2), can befound in the work of Jagannathan an
Van der Jeugt.3 It is important to notice that our notation is different from the usual one as reg
the usage of the deformation parametersp andq. The deformation parametersp andq should be
replaced byp1/2 andq1/2 to obtain the usual convention in Ref. 3. The fundamentalA-matrix of the
quantum group is given by

A5S a b

c dD 5S a 2q̄2Dc*

c Da* D 5S a 2q2c* D
c a* D D , ~9!

where the matrix elements satisfy

ac5q̄2ca, aD5Da, ac* 5q2c* a, Dc* 5e4iuc* D, cc* 5c* c ,
~10!

D* D5DD* 51, aa* 1uqu4c* c51, a* a1c* c51 .

Hereq5uqueiu, p5q̄ andu is a phase. The caseD51 which also impliesu50 corresponds to
SUq(2).

In this article an algebra obtained by imposing* relations on the operatorsa, b, c and d
which are the matrix elements of the quantum group GLp,q(2) will be considered. We are able t
do this for pq real. In the limit p5q̄, our algebra coincides with Uq,q̄(2).3 We thus name this
algebra Up,q(2). Representation of this algebra is constructed and the relationships of
representations to q-oscillators and to two-parameter coherent states are discussed.

II. THE UNITARIZATION OF THE QUANTUM GROUP GL p,q„2… WITH pÅq̄

In order to obtain SUq(2), elements of the fundamentalA-matrix, APGLq(2,C), are chosen
in such a way thatA* 5A21 and detq(A)51. This choice brings about a restriction on the eleme
of the matrix such thatb52qc* and d5a* . The procedure applied to the quantum gro
GLp,q(2,C) to carry out the unitarization is similar to the one applied to the one-paramete
formed quantum group in order to transform GLq(2,C) into Uq(2) but it is not completely the
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same. The most important point of the procedure we have studied is that the matrix of the qu
group should be factorized into a product which consists of the square root of the qua
determinant and a new matrix whose determinant is unity:

D5d2 , ~11!

A5dAright . ~12!

The co-product and the antipode ofd are given by

D~d!5d ^ d , ~13!

S~d!5d21 , ~14!

which are consistent with the equations~7! and ~8!. The next step is to impose the unitari
condition on the new matrix, resulting in finding the relation between the elements of this m
as in the Uq(2) case. Therefore, the elements of the matrixAright become the elements of SUr(2)
with r PR,

r 5pq5 p̄q̄ . ~15!

Lastly, the relations between the original matrix elements can be achieved through the re
between the new ones obtained after the unitarization of the matrix with the condition

dd* 5s2d* d , ~16!

wheres is a central element of the resultant unitarized algebra of GLp,q(2). It commutes with all
elements in the algebra and is also Hermitians5s* . The co-product, co-unit and the antipode
the central elements are given by

D~s!5s^ s , ~17!

«~s!51 , ~18!

S~s!5s21 . ~19!

This leads to the matrix elementsb andd being respectively replaced by a combination ofc* and
a* multiplied by inverse ofs and a unitary operatoru. The new fundamentalA-matrix of the
unitary quantum group is given by

A5S a b

c dD 5S a 2q̄2s21uc*

c s21ua* D . ~20!

It can be easily checked that with these relationsa, c and b, d defined by~20! satisfy the
commutation relations~2! of GLp,q(2). Theco-product, the co-unit and the antipode of the unita
operatoru are given by

D~u!5u^ u , ~21!

«~u!51 , ~22!

S~u!5u* . ~23!

The whole algebra of the unitarized two-parameter quantum group, which the matrix ele
obey, is given by
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ac5p2ca, a* c* 5 p̄22c* a* ,

ac* 5q2s2c* a, a* c5q̄22s22ca* ,

aa* 2s2a* a5~12r 2!cc* , cc* 5
qq̄

pp̄
s2c* c,

ua5s2au, u* a* 5s22a* u* ,
~24!

ua* 5s2a* u, u* a5s22au* ,

uc5
pq̄

p̄q
s2cu, u* c* 5

pq̄

p̄q
s22c* u* ,

uc* 5
p̄q

pq̄
s2c* u, u* c5

p̄q

pq̄
s22cu* ,

uu* 5u* u51 .

It can be shown that the commutation relations~24! satisfy the co-product algebra homomorphis
and the antipode algebra anti-homomorphism.

III. THE REPRESENTATION OF THE QUANTUM GROUP Up,q„2…

The operators constituting an SUq(2) matrix which corresponds toD51, q real in ~9! can be
represented by their action on statesun,m& wheren is non-negative integer corresponding to t
particle number associated with the creation operatora* andm is a positive or negative intege
associated with the Fourier transform ofc.6 This serves two purposes. One is that it proves
algebra presented in the previous section is consistent. The second is that it gives physical
on the oscillator properties of the operators. The action of the operatorsa, a* and c, c* of
SUq(2) on the statesun,m& is given by

aun,m&5A12q2nun21,m& , ~25!

a* un,m&5A12q2n12un11,m& , ~26!

cun,m&5qnun,m21& , ~27!

c* un,m&5qnun,m11& . ~28!

Herem is an integer andn is a non-negative integer. Motivated by this, we look for a repres
tation of the algebra~24! on such states. The deformation parametersp andq are reparametrized
in order to achieve a convenient form for the representation

p5Ar

t
eiu/2, q5Arte2 iu/2 , ~29!

wherer , t andu are real independent parameters. The parametersr andt are positive by definition
andu is a phase angle. The representation also depends on a real integer parameterk associated
with the eigenvalue of the central elements. The special case wheret51, u50, k50, and
thereforep5q, corresponds to the SUq(2) algebra for which it is necessary thatqP(0,1) whereas
the casek50, t51 corresponds to Uq,q̄(2) discussed in Sec. I. The operatorsc, c* , a, a* , u, u*
ands act on states
                                                                                                                



asily
the

utative
g

uantum

ator.
hase

can be

Phys.

1734 J. Math. Phys., Vol. 44, No. 4, April 2003 M. Arik and B. T. Kaynak

                    
cun,m&5r n~ te2 iu!m21un,m2~k11!& , ~30!

c* un,m&5r n~ teiu!m1kun,m1~k11!& , ~31!

aun,m&5A12r 2n~ te2 iu!mun21,m2k& , ~32!

a* un,m&5A12r 2n12~ teiu!m1kun11,m1k& , ~33!

uun,m&5ei (k22m)uun,m22k& , ~34!

u* un,m&5ei (2m13k)uun,m12k& , ~35!

sun,m&5tkun,m& , ~36!

which explicitly shows thatu is actually a noncommutative unitary phase operator. It can be e
seen that settingt51, u50, k50 leads top5q. The representation above then reduces to
representation~25!–~28! by the replacement ofp andq by p1/2 andq1/2.

IV. CONCLUSION

The most interesting aspect of our construction is the appearance of the noncomm
phase described by the unitary operatoru. The work of Ref. 6 was motivated by generalizin
SUq(2), resulting in introducing a parameterp and operatord satisfying

dun,m&5p12mun,m21& . ~37!

The action of this operator has some resemblance to the action of the square root of the q
determinantD which can be shown to be given by

dun,m&5~ te2 iu!mun,m2k& . ~38!

Reference 6 claimed that the operatord can be interpreted as a deformation of a phase oper
The work of this article shows that a rigorous foundation for a noncommutative unitary p
operator lies in the two-parameter deformed quantum group.

Whether applications such as the quantum phase operator for a quantized boson
incorporated into this formalism will be the subject of further research.
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In this paper we extend the Balian–Low theorem, which is a version of the uncer-
tainty principle for Gabor~Weyl–Heisenberg! systems, to functions of several vari-
ables. In particular, we first prove the Balian–Low theorem for arbitrary quadratic
forms. Then we generalize further and prove the Balian–Low theorem for differ-
ential operators associated with a symplectic basis for the symplectic form on
R2d. © 2003 American Institute of Physics.@DOI: 10.1063/1.1559415#

I. INTRODUCTION

For a given functiongPL2(Rd) we define the following two unitary operators onL2(Rd):

Mn~g!~x!5e2p in•xg~x!, nPRd

and

Tm~g!~x!5g~x2m!, mPRd,

calledmodulationand translationoperators, respectively. In 1946, Gabor15 proposed to use thes
operators to define the collections of functions

gm,n~x!5e2p in•xg~x2m!, m, nPZ,

to be used in the analysis of information conveyed by communications channels. These s
have been studied extensively in recent years. The edited books by Benedetto and Frazier7 and by
Feichtinger and Strohmer,14 as well as Gro¨chenig’s treatise,17 provide detailed treatments of var
ous issues of the theory. Gabor systems are especially interesting because of their effective
the time-frequency analysis of a wide variety of signals.

Let us now introduce some terms and notation that will be used throughout this paper. W
that a collection$ f k :k51,...%,L2(Rd) of functions is aframe for L2(Rd), with frame bounds A
andB, if

; f PL2~Rd!, Ai f i2
2<(

k
u^ f , f k&u2<Bi f i2

2 .

a!Electronic mail: jjb@math.umd.edu
b!Electronic mail: czaja@math.uni.wroc.pl and wojtek@math.umd.edu
c!Electronic mail: maltsev@itp.ac.ru
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A frame istight if A5B; and a frame isexactif it is no longer a frame after removal of any of it
elements. For any frame$ f k :k51,...% there exists adual frame$ f̃ k :k51,...% such that

; f PL2~Rd!, f 5(
k

^ f , f k& f̃ k5(
k

^ f , f̃ k& f k , ~1.1!

where the series converge inL2(Rd). The choice of coefficients for expressingf in terms of

$ f k :k51,...% or $ f̃ k :k51,...% is not unique, unless the frame is abasis. A frame is a basis if and
only if it is exact, e.g., Ref. 8.

For a frame$ f k :k51,...%,L2(Rd) we define the associatedframe operator Son L2(Rd) by
the rule,

; f PL2~Rd!, S~ f !5(
k

^ f , f k& f k .

S is a bounded and invertible map ofL2(Rd) onto itself. Given a frame$ f k :k51,...%, our
canonical choice of the dual frame$ f̃ k :k51,...% will be defined by f̃ k5S21( f k). If a frame is
exact then$ f k :k51,...% and$ f̃ k :k51,...% arebiorthogonal, that is,

^ f k , f̃ l&5dk,l , k,l 51,... ,

wheredk,l denotes theKronecker delta function, i.e., it is 1 if k5 l and 0 otherwise. It is elemen
tary to show thatS21(gm,n)5(S21(g))m,n for Gabor frames$gm,n%.

TheFourier transformis the unitary transformationF of L2(Rd) onto itself, defined formally
by

f̂ ~j!5F~ f !~j!5E
Rd

f ~x!e2p ix•j dx.

We writeRd for arguments of a functionf PL2(Rd) andR̂d for arguments of its Fourier transform
We employ the standard notation in harmonic analysis, e.g., Ref. 28.
The following result is a version of the uncertainty principle for Gabor systems for the

d51. It was first proved independently by Balian3 and Low.23 Both proofs contained a gap, whic
was corrected; and the result was generalized by Coifman, Daubechies, and Semmes from
systems which form orthonormal bases to Gabor systems which form exact frames,12 see also
Refs. 6 and 8. A different proof of Theorem 1.1 was given by Battle.4 Battle proved also an
analogous result for wavelets.5

Theorem 1.1. Balian–Low theorem „BLT …: Let gPL2(R) have the property that
$gm,n : m,nPZ% is a Gabor orthonormal basis for L2(R). Then

S E
R
ug~x!u2uxu2 dxD S E

R̂
uĝ~j!u2uju2 dj D 5`. ~1.2!

Remark:Our original goal in this paper was to obtain a generalization of Theorem 1.1
functions of several variables. In the process, and after having obtained some of our main
we became aware of the work of Gro¨chenig, Han, Heil, and Kutyniok,18 in which the authors also
extend the Balian–Low theorem tod-dimensions. Two of their fundamental results may be co
pared with our Theorem 2.1 and Theorem 2.5. In fact, Theorem 2.5 is identical with the BL
nonlattices in Ref. 18 and Theorem 2.1 extends the weak BLT for lattices in Ref. 18 to
general position and momentum operators. Further, using techniques from the theory of me
tic representations, the authors in Ref. 18 generalize Theorem 2.5 to a Balian–Low type th
for exact frames on symplectic lattices; for their setting their assertion states that there ei
P$1,...,d% such that~2.8! below holds.
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We follow a different path and prove that the choice of coordinates in~2.8! is not canonical,
i.e., there is no ‘‘preference’’ for the directional derivatives and for multiplications by the stan
basis coordinates. This means that one can work in any representation ofRd, e.g., Theorem 3.6.

In Sec. II we prove the generalization of the Balian–Low theorem tod-dimensions in the
standard coordinate system; this is Theorem 2.1. As a corollary, we prove a Balian–Low th
for arbitrary non-negative quadratic forms~Corollary 2.3!. In Sec. III we state and prove our ma
results, Theorem 3.6 and Theorem 3.7, which assert a Balian–Low phenomenon~3.6! similar to
but more far-reaching than~1.2!. The proof depends on our definition of generalized Fou
transforms which, in turn, allows us to reduce a rather general and comprehensive problem
Balian–Low theorem in the standard coordinates as formulated in Theorem 2.5.

Our approach is both straightforward and natural. This is an essential part of our contrib
It is also based on the quantum mechanical point of view.

II. BALIAN–LOW THEOREM IN STANDARD COORDINATES

Let v,wPRd be nonzero vectors. We define the following operators, wherever they m
sense inL2(Rd):

Pv~ f !~x!5S (
i 51

d

v ixi D f ~x!

and

Mw~ f !~x!5F 21S S (
i 51

d

wij i D f̂ ~j!D ~x!5F 21~Pw~ f̂ !!~x!,

where v5(v1,...,vd)5(v juj , uj5(0,...,0,1,0,...,0) with 1 in the j th coordinate, andv jPR.
These unit vectorsuj define thestandard Euclidean basis$uj : j 51,...,d% of Rd. If the vectorsv
andw in the definitions ofPv andMw are elements of the standard basis, then we shall use
notationPi andMi for the operators induced by thei th basis vectorui .

The following result is our first generalization of the Balian–Low theorem. The techniqu
proof is a well-known method for proving Balian–Low-type theorems.g̃ denotes the canonica
dual defined in Sec. I.

Theorem 2.1: Let $gm,n :m,nPZd% be an exact frame for L2(Rd). If v, wPRd satisfyv•w
Þ0, then

iPv~g!i2iMw~g!i2iPv~ g̃!i2iMw~ g̃!i25`. ~2.1!

Proof: We may assume without loss of generality thatuvu5uwu51, where u u denotes the
Euclidean norm inRd. We shall proceed with a proof by contradiction; and so we assume tha
four functions in~2.1! are elements ofL2(Rd). Because of the biorthogonality relations forg and
g̃ we compute

^Pv~g!,g̃m,n&5^Pv~g!,g̃m,n&2S (
i 51

d

v imi D ^g,g̃m,n&

5E
Rd
S (

i 51

d

v i~xi2mi !D g~x!g̃~x2m!e22p in•x dx

5e22p im•nE
Rd
S (

i 51

d

v ixi D g̃~x!g~x1m!e22p in•x dx

5e22p im•n^g2m,2n ,Pv~ g̃!&. ~2.2!
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From our assumption thatMw(g)PL2(Rd), it follows that the distributional partial derivative
of g, ]wg, belongs toL2(Rd). From a standard result about Sobolev spaces, see, e.g., Re
Theorem 1.1, there exists a functionh such thatg5h, a.e., andh is absolutely continuous on
almost all straight lines parallel to the vectorw. Thus the distributional directional derivative ofg
coincides with the classical directional derivativeDw(g), a.e., and so

Mw~g!~x!5
i

2p
Dw~g!~x!,a.e.

Moreover, our assumptions imply thatDw(g), Dw(g̃)PL2(Rd). Therefore, using integration b
parts, an appropriate change of variables, and the biorthogonality relations betweeng and g̃, we
can compute

^gm,n ,Mw~ g̃!&5
1

2p i ERd
g~x2m!e2p in•xDw~ g̃!~x! dx

5
i

2p E
Rd

Dw~g~x2m!e2p in•x!g̃~x! dx

5
i

2p E
Rd

~Dw~g!~x2m!e2p in•x1~w•n!g~x2m!e2p in•x!g̃~x! dx

5
ie2p im•n

2p E
Rd

~Dw~g!~x!12p i ~w•n!g~x!!e2p in•xg̃~x1m! dx

5e2p im•n~^Mw~g!,g̃2m,2n&1~w•n!dm,0dn,0!

5e2p im•n^Mw~g!,g̃2m,2n&. ~2.3!

Because of~2.2!, ~2.3!, and the frame representation property~1.1!, we have

^Pv~g!,Mw~ g̃!&5 (
m,nPZd

^Pv~g!,g̃m,n&^gm,n ,Mw~ g̃!&

5 (
m,nPZd

^g2m,2n ,Pv~ g̃!&^Mw~g!,g̃2m,2n&

5 (
m,nPZd

^Mw~g!,g̃m,n&^gm,n ,Pv~ g̃!&

5^Mw~g!,Pv~ g̃!&. ~2.4!

It is not difficult to verify that

@Pv ,Mw#5
1

2p i
~v•w! Id, ~2.5!

where the commutator@Pv ,Mw#5PvMw2MwPv and where Id denotes the identity operator, e
Ref. 25 where~2.5! appears for the position and momentum operators associated with the sta
basis vectors; see also the trivial calculation in Ref. 8. Thus, for functionsg, g̃PL2(Rd), such that
Pv(g), Pv(g̃)PL2(Rd) andMw(g), Mw(g̃)PL2(Rd), we have

^Pv~g!,Mw~ g̃!&5^Mw~g!,Pv~ g̃!&1
1

2p i
~v•w!^g,g̃&5^Mw~g!,Pv~ g̃!&1

1

2p i
~v•w!.

Since we have assumed thatv•wÞ0, we obtain a contradiction with our calculation~2.4!.j
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Remark:The claim ~2.1! is true if in Theorem 2.1 we consider the more general sys
$gm,n :(m,n)PL%, whereL is an arbitraty lattice inR2d. For an analogous result for position an
momentum operators associated with the integer latticeZ2d see Theorem 8 in Ref. 18.

Corollary 2.2: Let $gm,n :m,nPZd% be an exact frame for L2(Rd). If v, wPRd satisfyv•w
Þ0, then

iPv~g!i2iMw~g!i25`.

Proof: In view of Theorem 2.1, it is enough to show thatPv(g)PL2(Rd) if and only if
Pv(g̃)PL2(Rd), and thatMw(g)PL2(Rd) if and only if Mw(g̃)PL2(Rd). This, in turn, was
proved by Daubechies and Janssen13 for the position and momentum operators associated with
standard basis vectors, see also Ref. 8, Theorem 7.7. The proof for arbitrary operatorsPv andMw

is analogous, and it uses thed-dimensional Sobolev space argument which we have used in
proof of Theorem 2.1 instead of one-dimensional considerations. j

Example:To show that the conditionv•wÞ0 is necessary considerL2(R2) with the ortho-
normal Gabor basis generated by

g~x,y!5x [0,1]~x! F 21~x [0,1]!~y!

and the vectorsv5(1,0) andw5(0,1). Then

iPv~g!i2
25E

R2
uxg~x,y!u2 dx dy5E

R
uxx [0,1]~x!u2 dxE

R
uF 21~x [0,1]!~y!u2 dy,`

and

iMw~g!i2
25E

R2
uhĝ~j,h!u2 dj dh5E

R
uF~x [0,1]!~j!u2 djE

R
uh~x [0,1]!~h!u2 dh,`.

Corollary 2.3: Letv(x) be any positive quadratic form onRd and let$gm,n :m,nPZd% be an
exact frame for L2(Rd). Then

S E
Rd

v~x!ug~x!u2 dxD S E
R̂d

v~j!uĝ~j!u2 dj D 5`.

Proof: Clearly, for any vectorvÞ0 we havev•vÞ0. Thus, from Corollary 2.2 it follows tha
for any ak>0 andvkPRd, k51,...,d, where someak.0, either

S (
k51

d

akE
Rd
S (

i 51

d

vk
i xi D 2

ug~x!u2 dxD 5`

or

S (
k51

d

akE
R̂d
S (

i 51

d

vk
i j i D 2

uĝ~j!u2 dj D 5`.

The result follows since any quadratic form onRd is of the form

v~x!5 (
k51

d

akS (
i 51

d

vk
i xi D 2

,

where theak’s are non-negative. j
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We now consider a countable collectionL of vectors inR2d. For any pair (m,n)PL, m,n
PRd, we shall associate thetranslation–modulation transformation Tm,n defined onL2(Rd) as
follows:

Tm,n~g!~x!5e2p in•xg~x1m!.

From now on we shall writegm,n5Tm,n(g). The study ofnonuniformGabor systems, i.e., thos
Gabor systems which are associated with a setL which is not a lattice, has increased in rece
years because of applications of such systems to problems in signal processing, e.g., Refs
16, 21. Of course, not allL’s generate orthonormal bases or even frames. In order for a G
system to have good signal representation properties,L must satisfy certain density condition
The most general results so far in this direction were obtained by Ramanathan and Steger26 and by
Christensen, Deng, and Heil.11

Example:One easily constructs examples of uniform orthonormal Gabor bases forL2(Rd).
The most simple example isg(x)5x [0,1]d with the latticeL5Z2d. More interestingly there is the
work of Liu and Wang,22 where the authors provide examples of nonuniform Gabor bases
frames, i.e., examples whereL is not a lattice.

For d51 let V5@0,1#ø@3,4# and

L5$6Z1$21,0,1%%3$ 1
2Z%.

Theng(x)5(1/&)xV(x) forms an orthonormal basis with translations and modulations inL. We
would like to stress that althoughL is a periodic set it is not a lattice, since in general a sum of
vectors inL is not an element ofL. We note thatL52L.

Reference 22 also provides an account of differences between nonuniform Gabor bases
and higher dimensions.

To prove Theorem 2.5 we shall need the following lemma, the proof of which is similar to
proof of analogous statements in Theorem 2.1.

Lemma 2.4: Let gPL2(Rd), and let$gm,n :(m,n)PL% be an orthonormal basis for L2(Rd).
If Pi(g), Mi(g)PL2(Rd), then

^gm,n ,Pi~g!&5e2p im•n^Pi~g!,g2m,2n& ~2.6!

and

^gm,n ,Mi~g!&5e2p im•n^Mi~g!,g2m,2n&. ~2.7!

Proof: SinceL does not posses a lattice structure we cannot use~2.2! and ~2.3!. Indeed, the
fact that a dual to a Gabor frame is also a frame of Gabor type holds only for systems asso
with lattices. However, the assumption that$gm,n :(m,n)PL% is an orthonormal basis forL2(Rd)
compensates for this lack of structure inL,

^gm,n ,Pi~g!&5E
Rd

g~x2m!e2p in•xPi~g!~x! dx

5e2p im•nE
Rd

g~x!e2p in•x~xi1mi !g~x1m! dx

5e2p im•n~^Pi~g!,g2m,2n&1mi^g,g2m,2n&!

5e2p im•n^Pi~g!,g2m,2n&.

The last equality above follows from the orthogonality of$gm,n :(m,n)PL%. Similarly, using
orthogonality and the integration by parts formula, we calculate
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^gm,n ,Mi~g!&52
i

2p E
Rd

g~x2m!e2p in•xDi~g!~x! dx

5
i

2p E
Rd

Di~g~x2m!e2p in•x!g~x! dx

5
ie2p im•n

2p E
Rd

~Di~g!~x!12p imig~x!!e2p in•xg~x1m! dx

5e2p im•n~^Mi~g!,g2m,2n&1mi^g,g2m,2n&!

5e2p im•n^Mi~g!,g2m,2n&.
j

Theorem 2.5: Let L,R2d be a countable sequence of vectors with the property thaL
52L. Let $Tm,n :(m,n)PL% be the associated family of translation-modulation transformatio
and assume$gm,n :(m,n)PL% is an orthonormal basis for L2(Rd) for some gPL2(Rd). For any
i 51,...,d,

iPi~g!i2iMi~g!i25`. ~2.8!

Proof: Because of~2.6! and ~2.7!, the representation property of bases, and the fact thaL
52L, we obtain

^Mi~g!,Pi~g!&5 (
(m,n)PL

^Mi~g!,gm,n&^gm,n ,Pi~g!&

5 (
(m,n)PL

^g2m,2n ,Mi~g!&^Pi~g!,g2m,2n&

5^Pi~g!,Mi~g!&. ~2.9!

On the other hand, again using the classical result from Ref. 24 used in Theorem 2.1, w
that Mi(g)PL2(Rd) implies that]g/]xi exists a.e. Thus, integration by parts yields

^Mi~g!,Pi~g!&5^Pi~g!,Mi~g!&2
1

2p i
,

which, in turn, leads to a contradiction with the calculation~2.9!. j

III. BALIAN–LOW THEOREM AND SYMPLECTIC FORMS

The standardsymplectic formV on R2d is defined as

V~~x,y!,~j,h!!5x•h2y•j,

for any x, y, j, hPRd. Note thatV((x,0),(0,j))5x•j. This observation, when compared
Theorem 2.1, suggests a direction which we are going to follow in this section, and which
our main result, Theorem 3.6.

Definition: ~a! A symplectic basisfor R2d with respect to the symplectic formV is a basis
$aj ,bj : j 51,...,d%,R2d for R2d for which

V~ai ,aj !5V~bi ,bj !50

and

V~ai ,bj !5d i , j ,
                                                                                                                



t

. 1 and
se

lectic

is

milar
in Eq.

1742 J. Math. Phys., Vol. 44, No. 4, April 2003 Benedetto, Czaja, and Maltsev

                    
for all i , j 51,...,d.
~b! If $n i : i 51,...,d%,Rd is any orthonormal basis forRd, then ai5(n i ,0), bi5(0,n i), i

51,...,d, is a symplectic basis forR2d. For a nontrivial example inR4 take the row vectors of the
matrix

1
1 0 2

)

2
2

1

2

&

2
2

A6

2
0 2

&

2

0 1
1

2

)

2

2
A6

2

&

2

&

2
0

2 .

~c! Consider the spaceR2d with coordinates (x1,...,xd,y1,...,yd) and letV be the symplectic
form on R2d. A Lagrangian planeP in R2d is a d-dimensional subspace with the property tha

VuP50.

If P is a Lagrangian plane inR2d and if v1 ,...,vdPP,R2d is a basis forP then, in particular,
we have

V~v i ,v j !50,

for all i , j 51,...,d. For classical treatments of these and other related notions see, e.g., Refs
2. A similar approach is used by Ho¨rmander20 to define Fourier integral operators, a special ca
of which we consider below. A recent exposition of related results in case of Hermitian symp
geometry is due to Harmer.19

We now define the differential operators$Qv j
, j 51,...,d% associated with a given bas

$v j : j 51,...,d% for a given Lagrangian planeP. EachQv j
is defined by its action on a functionh

as follows:

Qv j
~h!~x!5

i

2p
¹j~h!~x!1 f j~x!h~x!, ~3.1!

where

¹j5 (
k51

d

v j
k1d ]

]xk

and

f j~x!5 (
k51

d

v j
kxk.

Recall thatv j
k is thekth coordinate of the vectorv jPR2d and thatx5(k51

d xkukPRd.
The next result serves as the main motivation for our work. It is analogous to a si

observation about commutators of position and momentum operators that was asserted
~2.5!. Its proof is also a straightforward calculation.

Proposition 3.1: For any two vectorsv,wPR2d
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@Qv ,Qw#5
i

2p
V~v,w!Id,

where the commutator@A,B#5AB2BA.
For the purpose of the next definitions we shall make the following assumption: for g

vectorsv1 ,...,vdPR2d, defineBv( j ,k)5v j
k1d , j ,k51,...,d, to be ad3d matrix, and assume tha

it is nondegenerate, i.e.,

detBvÞ0.

As a consequence of Proposition 3.1 we observe that theQv j
’s commute with each other if the

v j ’s form a basis forP. This commutativity implies, in particular, that¹kf j5¹j f k , and so we
deduce thatf j (x)5¹j (xFvx), for some quadratic formFv . Thus the common eigenfunction fo
all the operators$Qv j

% has the form:

cj~x!5
1

AudetBvu
e22p ixtBv

21j12p ixtFvx,

for any jPRd. Moreover, letAv( j ,k)5v j
k , j ,k51,...,d. Then, the commutativity of theQv j

’s
implies that

AvBv
t 2BvAv

t 50, ~3.2!

whereAt is the adjoint ofA. It follows from ~3.2! thatBv
21Av is symmetric. It is also easy to se

that

Fv5 1
2 Bv

21Av .

Let us now define the followinggeneralized Fourier transformsFv on the space of tempere
distributions onRd, through their action on the space of Schwartz functions:

Fv~h!~j!5E
Rd

h~x!cj~x!dx5E
Rd

h~x!
1

AudetBvu
e2p ixtBv

21j2p ixtBv
21Avx dx.

The operatorsFv are unitary when restricted toL2(Rd), since they are combinations of unitar
transformations.

We shall now consider two different representations of functions or even distributions
ciated with two different Lagrangian planes:P with the basisv1 ,...,vd , and G with the basis
w1 ,...,wd . Assume thatPùG5$0%. Moreover, assume thatBv andBw are nondegenerate. De
fine the d3d matrix Yv,w( i , j )5V(v i ,wj ). Note that Yv,w5Id if and only if
$v1 ,...,vd ,w1 ,...,wd% forms a symplectic basis forR2d.

Lemma 3.2:

detYv,wÞ0.

Proof: Indeed, ifPùG5$0%, then$v1 ,...,vd ,w1 ,...,wd% forms a~not necessarily symplec
tic! basis forR2d. In this basis the matrix ofV has the form

S 0 Yv,w

2Yv,w 0 D
and so, (detYv,w)25detVÞ0. j

The matrixYv,w can be represented, with the use of matricesAv , Aw , Bv , Bw , as
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Yv,w5AvBw
t 2BvAw

t .

As a consequence, we derive the following formula, which we shall use in the proof of The
3.6:

Fv2Fw5 1
2 ~Bv

21Av2Bw
21Aw!5 1

2 Bv
21Yv,w~Bw

21! t. ~3.3!

Lemma 3.3: For any tempered distribution h onRd, the relationship between its‘‘ v ’’ and ‘‘ w’’
generalized Fourier transform representations is

Fw~h!~h!5
1

AudetYv,wu
e2p ih tYv,w

21 BvBw
21h1p is/4

3E
Rd

ep i j t(Yv,w
21 ) th1p ih tYv,w

21 j2p i j t(Bv
21) tBw

t Yv,w
21 jFv~h!~j! dj,

where s is the difference between the positive and negative squares of the quadratic forv
2Fw .

Proof: The expression in Lemma 3.3 is to be understood in the sense of distributions, an
it is enough to check its validity on Schwartz functions. Note that the inverse of the gener
Fourier transformFv has the form

h~x!5
1

AudetBvu
E

Rd
e22p ixtBv

21j12p ixtFvxFv~h!~j! dj.

Taking the generalized Fourier transformFw of this expression and using~3.3!, we obtain

Fw~h!~h!5
1

AudetBvBwu
E

Rd
E

Rd
e2p ixt(Bw

21h2Bv
21j)12p ixt(Fv2Fw)xFv~h!~j! dx dj

5
ep is/4

AudetYv,wu
E

Rd
e2p i (Bw

21h2Bv
21j) tBw

t Yv,w
21 Bv(Bw

21h2Bv
21j)Fv~h!~j! dj

5
1

AudetYv,wu
ep is/42p ih tYv,w

21 BvBw
21h

3E
Rd

ep i j t(Bv
21) tBw

t Yv,w
21 BvBw

21h1p ih tYv,w
21 j2p i j t(Bv

21) tBw
t Yv,w

21 jFv~h!~j! dj.

In order to finish the proof, it is now enough to observe that

Bw
t Yv,w

21 Bv5Bv
t ~Yv,w

21 ! tBw ,

due to ~3.3!, and that the above representation ofFw simplifies exactly to the formula in the
statement of Lemma 3.3. j

We shall now introduce two more representations of tempered distributions associated
collection of vectors$v1 ,...,vd ,w1 ,...,wd%:

F̃v~g!~j!5e2p i j t(Bv
21) tBw

t Yv,w
21 jFv~g!~j!

and

F̃w~g!~h!5e2p is/4e2p ih tYv,w
21 BvBw

21hFw~g!~h!.
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Remark:In view of Steger’s observation, these modifications of the generalized Fourier t
forms may be compared to the metaplectic representations of symplectic transformations
send bases of Lagrangian planes into elements of the standard basis forR2d.

Proposition 3.4: If$v1 ,...,vd ,w1 ,...,wd% forms a symplectic basis inR2d, i.e., Yv,w5Id, then

the relation betweenF̃v and F̃w takes the form of the standard Fourier transform:

F̃w~g!~h!5E
Rd

e2p i j•hF̃v~g!~j! dj. ~3.4!

Proof: It follows easily from Lemma 3.3 that

F̃w~g!~h!5
1

AudetYv,wu
E

Rd
ep i [ j t(Yv,w

21 ) th1h tYv,w
21 j]F̃v~g!~j! dj. ~3.5!

Since$v1 ,...,vd ,w1 ,...,wd% is a symplectic basis forR2d, we haveYv,w5Id, and so~3.5! reduces
to ~3.4!. j

We can view~3.4! as a formal and general expression for the usual Fourier transform
distributions. We also note thatF̃v andF̃w are unitary transformations when restricted toL2(Rd).

It is evident that the operatorsFv andFw composed with operatorsQv j
andQwj

, respectively,
become multiplications byj th coordinates. We use this fact to deduce the following lemma, wh
we shall use in the proof of our Theorem 3.6.

Lemma 3.5: For each j51,...,d, the operators Qv j
are multiplications byj j in the F̃v

representation, and all operators Qwj
are multiplications byh j in the F̃w representation, i.e.,

F̃v~Qv j
~g!!~j!5j jF̃v~g!~j!,

F̃w~Qwj
~g!!~h!5h jF̃w~g!~h!.

We can now formulate and prove our main results.
Theorem 3.6:Let L,R2d be a countable sequence of points with the propertyL52L. Let

$Tm,n :(m,n)PL% be the family of associated translation–modulation transformations Tm,n . For
a function gPL2(Rd), assume that$gm,n5Tm,n(g):(m,n)PL% forms an orthonormal basis fo
L2(Rd). For any two vectorsv, wPR2d for which the symplectic form is nonvanishing, i.e.,

V~v,w!Þ0,

we have

iQv~g!i2iQw~g!i25`. ~3.6!

Proof: ~i! Without loss of generality we may assume thatV(v,w)51. There exists a collec
tion of vectors $v2 ,...,vd ,w2 ,...,wd%,R2d such that if we let v15v and w15w, then
$v1 ,...,vd ,w1 ,...,wd% forms a symplectic basis ofR2d. ~This result is a simple algebraic fact; fo
its Hermitian version see Ref. 19.! With these vectors we associate the corresponding differe
operatorsQv1

,...,Qvd
, Qw1

,...,Qwd
, and the inducedd3d matricesAv ,Aw ,Bv ,Bw . For this part

of the proof assume that

detBvÞ0 and detBwÞ0.

Due to the assumption about the basis$v1 ,...,vd ,w1 ,...,wd%, the matrix
                                                                                                                



basis,

, but

g

1746 J. Math. Phys., Vol. 44, No. 4, April 2003 Benedetto, Czaja, and Maltsev

                    
S Av
t Bv

t

Aw
t Bw

t D
is symplectic, i.e.,

AvBv
t 2BvAv

t 50, AwBw
t 2BwAw

t 50 ~3.7!

and

AvBw
t 2BvAw

t 5Id, AwBv
t 2BwAv

t 52Id. ~3.8!

Given a vector (p,q)PR2d, we use translation byx and the symmetry ofBv
21Av to calculate

F̃v~Tp,q~g!!~j!5
1

uAdetBvu
e2p i j t(Bv

21) tBw
t jE

Rd
g~x1p!e2p ixt(Bv

21j1q)2p ixtBv
21Avx dx

5cp,qe2p i j t(Bv
21) tBw

t j22p iptBv
21jFv~g!~j1Bvq1Avp!,

wherecp,q is a complex constant of absolute value equal to 1. Recall that for a symplectic
Yv,w5Id. Because of this and the symmetry ofBwBv

21 , which, in turn, follows from~3.3!, we
obtain

F̃v~Tp,q~g!!~j!5cp,qe2p i (2(Bv
21) tp1Bwq1BwBv

21Avp)•jF̃v~g!~j1Bvq1Avp!.

Therefore we can write

F̃v~Tp,q~g!!~j!5cp,qT(p8,q8)~F̃v~g!!~j!,

where

S p8
q8 D5S Avp1Bvq

2~Bv
21! tp1Bwq1BwBv

21AvpD . ~3.9!

Equation~3.3! yieldsAw52(Bv
21) t1Bw(Bv

21Av) t. Thus, using the symmetry ofBv
21Av , we can

write ~3.9! in a more familar form

S p8
q8 D5S Av Bv

Aw Bw
D S p

qD .

Overall, we obtain that in theF̃v representation, a Gabor system remains a Gabor system
associated with a new setL8:

F̃v~Tm,n~g!!5cm8,n8~F̃v~g!!m8,n8 ,

where the primes indicate the elements of the new sequence. Since we know thatF̃v is unitary on
L2(Rd), if $gm,n :(m,n)PL% is an orthonormal basis for L2(Rd) then so is

$cm8,n8(F̃v(g))m8,n8 :(m8,n8)PL8%, whereL852L8. Thus, using Theorem 2.5 and invokin
Proposition 3.4, we obtain that

ij1F̃v~g!~j!i2ih1F̃w~g!~h!i25`. ~3.10!
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Moreover, because of Lemma 3.5, we know thatQv1
becomes multiplication byv1 in the F̃v

representation, and similarlyQw1
becomes multiplication byw1 in the F̃w representation, both in

the sense of distributions. Thus~3.10! is equivalent to~3.6!, since the generalized Fourier tran
forms are unitary onL2(Rd) and because of Lemma 3.5.

~ii ! First, let us observe that, sinceV(v,w)51, we cannot have both (v11d,...,v2d)50 and
(w11d,...,w2d)50. Therefore, without loss of generality, we assume that (v11d,...,v2d)Þ0.

Recall that according to~3.1! we write Qv5( i /2p) ¹v1 f v . Thus we may always find a
~nonunique! nondegenerate linear transformation ofRd such that the operator (i /2p) ¹v becomes
( i /2p)(]/] x̃1), in the new coordinates. The operatorQv can be then written as

Qv5
i

2p

]

] x̃1 1ãv
1x̃11¯1ãv

dx̃d.

We also note that

ãv
1x̃11¯1ãv

dx̃d5
]

] x̃1 S ãv
1 ~ x̃1!2

2
1ãv

2x̃1x̃21¯1ãv
dx̃1x̃dD5

]

] x̃1 q~ x̃!.

We define a unitary transformationU of L2(Rd) to be

U~g!~ x̃!5e22p iq( x̃)g~ x̃!.

It is easy to verify that the operatorQv takes the form (i /2p)(]/] x̃1) in this new representation
i.e.,

U~Qv~g!!~ x̃!5
i

2p

]

] x̃1 U~g!~ x̃!.

Also, the operatorU+Qw+U21 may be written in an analogous form

b̃w
1 i

2p

]

] x̃1 1¯1b̃w
d i

2p

]

] x̃d 1ãw
1 x̃11¯1ãw

d x̃d.

We shall consider three different possibilities for the differential part of the operatorU+Qw

+U21.
~iia! In caseb̃w5(b̃w

1 ,...,b̃w
d )50, U+Qw+U21 has the form

ãw
1 x̃11¯1ãw

d x̃d.

SinceV(v,w)51, we haveãw
1 51. We make the following nondegenerate linear transformatio

Rd:

z15ãw
1 x̃11¯1ãw

d x̃d, z25 x̃2, ..., zd5 x̃d. ~3.11!

Thus we obtain

U+Qv+U215
i

2p

]

]z1 , U+Qw+U215z1,

and the problem reduces to the standard Balian–Low theorem, Theorem 2.1.
~iib! If b̃w5abv5(a,0,...,0) andaÞ0 then, since we again haveãw

1 51, by making the same
transformation~3.11! as in part~iia!, we obtain
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U+Qv+U215
i

2p

]

]z1 , U+Qw+U215a
i

2p

]

]z1 1z1.

It is again easy to see that our result follows from the standard Balian–Low theorem.
~iic! Finally we consider the caseb̃wÞabv for all a. We can make a linear transformation

Rd such thatU+Qv+U21 remains the differentiation with respect to the first coordinatez1, and the
differential part ofU+Qw+U21 becomes the differentiation with respect to the second coordi
z2, i.e.,

U+Qv+U215
i

2p

]

]z1 , U+Qw+U215
i

2p

]

]z2 1z11cw
2 z21¯1cw

d zd.

We now define the following two families of vectors inR2d:

v15~0,...,0;1,0,...,0!,

v25~0,cw
2 ,cw

3 ,...,cw
d ;0,1,0,...,0!,

v35~0,cw
3 ,0,...,0;0,0,1,0,...,0!,

¯ ,

vd5~0,cw
d ,0,...,0;0,...,0,1!,

and

w15~1,cw
2 ,cw

3 ,...,cw
d ;0,1,0,...,0!,

w25~0,1,0,...,0;1,0,...,0!,

w35~0,cw
3 ,1,0,...,0;0,0,1,0,...,0!,

¯ ,

wd5~0,cw
d ,0,...,0,1;0,...,0,1!,

and associated with them operators

Qv1
5

i

2p

]

]z1 ,

Qv2
5

i

2p

]

]z2 1cw
2 z21cw

3 z31¯1cw
d zd,

Qv3
5

i

2p

]

]z3 1cw
3 z2,

¯ ,

Qvd
5

i

2p

]

]z3 1cw
d z2,

and
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Qw1
5

i

2p

]

]z2 1z11cw
2 z21cw

3 z31¯1cw
d zd,

Qw2
5

i

2p

]

]z1 1z2,

Qw3
5

i

2p

]

]z3 1cw
3 z21z3,

¯ ,

Qwd
5

i

2p

]

]zd 1cw
d z21zd.

It is not difficult to verify that$v1 ,...,vd ;w1 ,...,wd% forms a symplectic basis inR2d and that the
matricesBv and Bw are both nondegenerate. Thus we have reduced this situation to the
described in part~i!. j

Remark:We used the notion of a symplectic matrix in the proof of Theorem 3.6. A matrixM
is symplecticif it preserves the symplectic formV, i.e., V(Mv,Mw)5V(v,w), for all v,w
PR2d. The collection of all such matrices forms a group, the so-calledsymplectic group, which
plays a significant role in the study of Hamiltonian systems. In fact, the symplectic ma
generate invertible transformations which take a Hamiltonian system into another such sys
differential equations, see, e.g., Refs. 1, 2, and 27.

Following Ref. 18 we say that a latticeL,R2d is symplecticif

L5rM ~Z2d!

for some r PR\$0% and M a symplectic matrix. A generalized Fourier transformF̃v maps a
symplectic latticeL into another symplectic latticeL8, according to the formula~3.9!.

Theorem 3.7: Let L,R2d be a lattice. Let$Tm,n :(m,n)PL% be the family of associated
translation–modulation transformations Tm,n . For a function gPL2(Rd), assume that$gm,n

5Tm,n(g):(m,n)PL% forms an exact frame for L2(Rd) and let g̃be the canonical dual to g. For
any two vectorsv, wPR2d for which the symplectic form is nonvanishing, i.e.,

V~v,w!Þ0,

we have

iQv~g!i2iQw~g!i2iQv~ g̃!i2iQw~ g̃!i25`. ~3.12!

Proof: The proof is analogous to the proof of Theorem 3.6. We start with the case w
vectorsv5v1 ,w5w1 allow an extension$v1 ,...,vd ,w1 ,...,wd% which forms a symplectic basi
of R2d and has nondegenerate associated matricesBv andBw . The generalized Fourier transform
F̃v andF̃w change the operatorsQv andQw into position and momentum operators,P1 andM1 ,
in appropriate representations, respectively. Moreover,F̃v maps the latticeL into another lattice
L8,R2d. Since generalized Fourier transforms are unitary inL2(Rd), we finish by using, instead
of Theorem 2.5, a version of Theorem 2.1 for general lattices, see the remark after the pr
Theorem 2.1.

The general case is reduced to the above situation analogously to the general case in T
3.6. j
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8Benedetto, J. J., Heil, C., and Walnut, D., ‘‘Differentiation and the Balian–Low theorem,’’ J. Fourier Anal. Appl.4,
355–402~1995!.

9Benedetto, J. J., Powell, A., and Wu, H.-C., ‘‘MRI signal reconstruction by Fourier frames on interleaving sp
IEEE–ISBI ~in press!.

10Benedetto, J. J. and Teolis, A., ‘‘A wavelet auditory model and data compression,’’Appl. Comput. Harmon. Anal.1, 3–28
~1993!.

11Christensen, O., Deng, B., and Heil, C., ‘‘Density of Gabor frames,’’ Appl. Comput. Harmon. Anal.7, 292–304~1999!.
12Daubechies, I., ‘‘The wavelet transform, time-frequency localization and signal analysis,’’ IEEE Trans. Inf. Theo36,

961–1005~1990!.
13Daubechies, I. and Janssen, A. J. E. M., ‘‘Two theorems on lattice expansions,’’ IEEE Trans. Inf. Theory39, 3–6~1993!.
14Feichtinger, H. G. and Strohmer, T., editors, ‘‘Gabor analysis and algorithms. Theory and applications,’’Applied and

Numerical Harmonic Analysis~Birkhäuser, Boston, MA, 1998!.
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First integrals of a generalized Darboux–Halphen system
S. Chakravartya)
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A third-order system of nonlinear, ordinary differential equations depending on
three arbitrary parameters is analyzed. The system arises in the study of SU~2!-
invariant hypercomplex manifolds and is a dimensional reduction of the self-dual
Yang–Mills equation. The general solution, first integrals, and the Nambu–Poisson
structure of the system are explicitly derived. It is shown that the first integrals are
multi-valued on the phase space even though the general solution of the system is
single-valued for special choices of parameters. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1556194#

I. INTRODUCTION

The study of integrable or solvable nonlinear systems dates back to the fundamental wo
Euler, Liouville, Riemann, Poincare´, and many others. Surprisingly~perhaps!, there is still no
single adequate definition of ‘‘integrability.’’ Certainly, nonlinear systems which can be expli
solved by quadratures in the real domain should be considered as integrable, as should the
tonian systems with action-angle variables~integrability in the Liouville sense!. In contrast, the
notion of integrability in the complex plane is still in its early stages of development. For exam
if the general solution of a nonlinear ordinary differential equation is everywhere single-valu
its domain of existence, then we consider the equation to be integrable in the complex
Fundamental contributions of Kovalevskaya,17 Painlevé,24 and more recent work27,28 have led to
some progress toward the understanding of complex integrability~or nonintegrability!. But the
complex behavior of large classes of physically important nonlinear equations still remains
completely understood. Some of these equations can be ‘‘solved’’ in terms of linear equatio
are not single-valued in the complex plane.

In this article we consider the system of nonlinear ordinary differential equations

Ṁ5~adj M !T1MTM2~Tr M !M , ~1!

for a 333 matrix valued functionM (t) where adjM is the adjoint matrix ofM satisfying
(adj M )M5(detM)I, MT is the transpose ofM and the dot denotes differentiation with respect
t. The system~1! was obtained as a dimensional reduction of the self-dual Yang–Mills~SDYM!
equations corresponding to an infinite-dimensional gauge group of diffeomorphisms Diff(S3) of a
three-sphere.7 These equations were also derived in Ref. 16 where they were shown to rep
an SU~2! invariant hypercomplex four-manifold. Since the Weyl curvature of a hypercom
four-manifold is self-dual, Eq.~1! describes a class of self-dual Weyl Bianchi IX space–times w
Euclidean signature.6

In the next section we will review the fact that Eq.~1! reduces to the system

v̇15v2v32v1~v21v3!1t2,

a!Electronic mail: chuck@math.uccs.edu
17510022-2488/2003/44(4)/1751/12/$20.00 © 2003 American Institute of Physics
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v̇25v3v12v2~v31v1!1t2,
~2!

v̇35v1v22v3~v11v2!1t2,

t25a1
2~v12v2!~v32v1!1a2

2~v22v3!~v12v2!1a3
2~v32v1!~v22v3!,

for the functionsv i(t), i 51,2,3, and wherea1 , a2 , anda3 are constants. We will refer to system
~2! as the generalized Darboux–Halphen~DH! system, which will be the subject of our discussio
for the remainder of this article. Equation~2! with t[0, becomes the classical DH system whi
first appeared in Darboux’s work on triply orthogonal surfaces8 and was later solved by Halphen.15

In subsequent studies, the classical DH system has arisen as the vacuum Einstein equa
hyperkähler Bianchi-IX metrics11,5 and in the similarity reductions of associativity equations o
three-dimensional Frobenius manifold.9 Halphen showed that the general system~2! can be solved
in terms of hypergeometric functions.14 Special solutions have also been given in terms of th
functions and automorphic forms.7,23,1 Special cases of Eq.~2! arise in the study of solvable
models of spherically symmetric shear-free fluids in general relativity13 as well.

As mentioned earlier, it was shown in Ref. 7 that Eq.~1! arises as a reduction of the SDYM
equations. From the Lax pair for SDYM, it is possible to derive a linear problem~see, e.g., Ref.
2! which can be employed to solve the initial value problem for Eq.~1!. This linear problem is
related to the monodromy preserving deformations corresponding to the Riccati reduction
PainlevéVI equation. Analysis of Eq.~1! using the associated linear problem was given in Re
6 and 16.

In Sec. II we outline the reduction of Eq.~1! to the generalized DH system~2! and derive its
general solution. In Sec. III we discuss the first integrals and a set of ‘‘action-angle’’ variable
the DH system in terms of hypergeometric functions. We then analyze the behavior of th
integrals as functions of the dependent variables. In particular we find that the first integra
transcendental and nonmeromorphic even though in certain cases, the general solution is
valued in the complext-plane. Indeed, the nonexistence of meromorphic first integrals for
classical DH equations was proved in Ref. 19. Finally, in Sec. IV we consider the dynamics
DH system as a Nambu–Poisson flow in a three-dimensional manifold and investigate the
braic properties of the underlying Nambu–Poisson structures.

II. SOLUTION OF THE DH SYSTEM

In this section we outline the procedure of constructing the general solution of Eq.~1! fol-
lowing the method discussed in Ref. 3. The matrixM in Eq. ~1! is a complex-valued function o
the ~complex! independent variablet. In this article, we study the case where the symmetric p
Ms of M hasdistincteigenvalues. The degenerate cases corresponding to eigenvalues with
multiplicities have been studied in Ref. 3.

The matrix M is first decomposed into symmetric and skew-symmetric parts and then
symmetric partMs is diagonalized by a complex orthogonal matrix.~This is possible because o
our assumption that the eigenvalues ofMs are distinct.! Thus we have

M5Ms1Ma5P~d1a!P21,

PPSO(3,C), dª diag(v1,v2,v3) where thev i , i 51,2,3, are distinct, and the elements of t
skew-symmetric matrixa are denoted asa12ªt3 , a23ªt1 , anda31ªt2 . Using the above fac-
torization ofM, Eq. ~1! can be transformed into Eq.~2! with t2

ªt1
21t2

21t3
2, together with the

linear equation:Ṗ52Pa for the matrixP. The equations for the skew-symmetric part,

ṫ152t1~v21v3!, ṫ252t2~v31v1!, ṫ352t3~v11v2!,

can be integrated to obtain
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t1
25a1

2~v12v2!~v32v1!, t2
25a2

2~v22v3!~v12v2!, t3
25a3

2~v32v1!~v22v3!,

wherea1 , a2 , anda3 are arbitrary constants. This definest2 in terms of thev i in Eq. ~2!. Once
a solution of the DH system~2! has been found, the matrixM can be reconstructed after solvin
the linear equation (Ṗ52Pa) for P.

In order to solve Eq.~2!, we set

v152
1

2

d

dt
ln

ṡ

s~s21!
, v252

1

2

d

dt
ln

ṡ

s21
, v352

1

2

d

dt
ln

ṡ

s
, ~3!

where the functions(t) is given by the cross-ratio

s5
v12v3

v22v3
, ~4!

v iÞv j when iÞ j . Then it follows from Eq.~2! that s(t) satisfies the Schwarzian equation

d

dt S s̈

ṡD2
1

2 S s̈

ṡD
2

1
ṡ2

2
V~s!50, ~5!

with

V~s!5
12a2

2

s2 1
12a3

2

~s21!2 1
a2

21a3
22a1

221

s~s21!
.

The solutions(t) of Eq. ~5! is obtained implicitly by setting

t~s!5
u1~s!

u2~s!
, ~6!

whereu1(s) andu2(s) are two independent solutions of the Fuchsian differential equation

d2u

ds2 1
1

4
V~s!u50 ~7!

with three regular singular points at 0, 1, and`. The transformation

u~s!5sc/2~12s!~a1b2c11!/2x~s! ~8!

maps Eq.~7! to the Gauss hypergeometric equation

s~12s!
d2x

ds2 1@c2~a1b11!s#
dx

ds
2abx50, ~9!

wherea5(11a12a22a3)/2, b5(12a12a22a3)/2, andc512a2 . Thus we have the fol-
lowing.

Proposition 1: The general solution of the DH system (2) is given by Eq. (3) where
function s(t) is defined by the inverse of the ratio t(s)5x1(s)/x2(s) of two linearly independen
solutions of the hypergeometric equation (9).

Equation~6! describes the conformal mapping of the upper~or lower! half s-plane onto the
interior of a triangular region T bounded by three circular arcs in the complext-plane~see, e.g.,
Ref. 22!. When the parametersa1 , a2 , a3 are non-negative real numbers satisfyinga11a2

1a3,1, the circular arcs of T form anglespa1 , pa2 , pa3 at the vertices which are the image
of the singular pointss50, s51, ands5` of Eq. ~7!. The inverse maps(t), which solves Eq.~5!,
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is analytic in the interior of T and can be analytically extended by inversions across its bou
If the parameters assume the valuesa151/p1 , a251/p2 , a351/p3 , where p1 , p2 , p3 are
positive integers or̀ , thens(t) can be extended to a single-valued, meromorphic function
region D which is the uniform covering of an infinite number of nonoverlapping circular trian
obtained by inversions across the boundaries of T and its images. The boundary]D of D contains
a dense set of essential singularities and forms a movable natural boundary. However, for
values of the parametersa1 , a2 , a3 the functions(t) is densely branched about the movab
singularities at the vertices of T. The solutionsv i(t) to the DH system given by Eq.~3! inherit the
same singularity structure ass(t) and are also branched in the complext-plane for generic choices
of a1 , a2 , a3 .

III. FIRST INTEGRALS AND ACTION-ANGLE VARIABLES

In the previous section we outlined a mechanism for expressing the general solution of t
system via the solutions of a second-order, linear equation~7!. This linearization scheme given b
Eqs. ~3!–~7! is implicit since the Schwarzian functions(t) is the inverse of the ratio of the
solutions of the linear equation. The first integrals of the DH system are determined b
arbitrary constants parametrizing the space of general solutions for the linear equation~7!. How-
ever, these integrals do not have a simple dependence on the DH variablesv i due to the implicit
nature of the linearization process. In this section, we will discuss the properties of the
integrals as functions of the DH variables.

Let u1 and u2 be any two linearly independent solutions of Eq.~7! with Wronskian
W(u1 ,u2)5u1u282u2u1851, where prime denotes differentiation with respect tos. The general
solution of the Schwarzian equation~5! is given implicitly by @cf. Eq. ~6!#

t~s!5
J2u1~s!2J1u2~s!

I 2u1~s!2I 1u2~s!
, ~10!

whereI a andJa , a51,2, are constants satisfyingI 1J22I 2J1Þ0. Only three of the four constant
can be chosen independently because it is evident from Eq.~10! that only their ratios are relate
to s(t) and its first twot-derivatives. Therefore, without loss of generality we take them to sa
I 1J22I 2J151. Differentiating Eq.~10! twice with respect tos we obtain two linear equations fo
I 1 and I 2 :

I 2u12I 1u25 ṡ1/2, I 2u182I 1u285 1
2ṡ

23/2s̈,

whose solutions are

I a5
dfa

dt
, fa5 ṡ21/2ua~s!, a51,2. ~11!

The remaining two constants are then obtained from Eqs.~10! and ~11! and the normalization
I 1J22I 2J151. They are given by

Ja5tI a2fa , a51,2.

Viewed as functions oft, s, ṡ and s̈, the I a andJa are first integrals for the Schwarzian equatio
This fact can be verified directly by differentiating the expressions forI a andJa with respect tot,
and using Eq.~5!. Moreover, by solving the functionss, ṡ ands̈ from Eqs.~3! and~4!, the I a and
Ja can be expressed in terms of the DH variablesv i andt. Hence, they are also integrals of motio
for the DH system. The explicit expressions forfa and I a in terms of the DH variables are a
follows:
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fa5A2r ~v i !ua~s~v i !!, I a5A 2

r ~v i !
ua8 ~s~v i !!2~v12v22v3!Ar ~v i !

2
ua~s~v i !!,

~12!

where r (v i)5A(v22v3)/(v12v2)(v12v3) and s(v i) is given by Eq.~4!. Equation ~12!
@equivalently, Eq.~11!# represents a nonalgebraic, transcendental transformation defined v
solutionua of the Fuchsian equation~7!, between thev i ~or s, ṡ, s̈) and the variables$fa ,I a%. In
terms of these new variables, the nonlinear DH system~2! can be reformulated as a linear Ham
tonian system@cf. Eq. ~11!#

ḟa5
]H

]I a
5I a , İ a52

]H

]fa
50, H5

I 1
21I 2

2

2
, a51,2, ~13!

together with the algebraic constraint

f1I 22f2I 15W~u1 ,u2!51 ~14!

among the coordinatesfa and the canonically conjugate ‘‘momenta’’I a . Since the latter system
~13! can be integrated by quadratures, the canonical coordinates$I a ,fa% can be regarded a
playing the role of the action-angle variables for the DH system. The dynamics in the
dimensional phase space is restricted to the constraint subspace defined by Eq.~14!. This repre-
sents an indefinite quadric which is a connected but noncompact, three-dimensional subm
of the phase space. The flow is determined by a one-dimensional linear subspace:c1f12c2f2

51, obtained as the intersection of the constraint submanifold with the level sets of the
integralsI 15c1 , I 25c2 , wherec1 , c2 are constants determined by the initial conditions in~2!.

The above results lead to the next proposition.
Proposition 2: Letv i , i 51,2,3,be a solution of the generalized DH system (2) and let u1 , u2

be any two solutions of Eq. (7) with unit Wronskian. Then Ia and Ja5tI a2fa , a51,2, are first
integrals of the DH system, wherefa and Ia are given by Eq. (12). Furthermore, the DH syste
are equivalent to a constrained Hamiltonian system given by Eqs. (13) and (14) with$fa ,I a% as
the canonical variables. The associated Hamilton’s equations (13) are linear and can be solv
quadratures.

The first integralsI a , a51,2, are constant functions oft in the domain of analyticity of the
v i(t), and their values are determined by the initial conditions. However, theI a are not single-
valued as functions ofv i ~or equivalently of the Schwarzian variabless, ṡ, s̈). The nonanalytic
behavior is essentially due to the fact that in the complexs-plane, continuation along close
circuits around the branch pointss50, s51, ands5` transforms any two independent solutio
of the Fuchsian equation~7! by the corresponding monodromy matrix. The branching propertie
the I a can be characterized explicitly by expressing them as functions ofs, ṡ, and s̈ and the
fundamental matrix of solutions of the hypergeometric equation~9!. If the ua in Eq. ~11! are
replaced by the solutions of the hypergeometric equation~9! by using the transformation~8!, then
this yields

@ I 1 I 2#5s@l 1#Fx1~s! x2~s!

x18~s! x28~s!
G , ~15!

where

s~s,ṡ!5sc/2~12s!~a1b2c11!/2ṡ1/2 and l~s,ṡ,s̈!5
a1b112cs

2s~12s!
2

s̈

2ṡ2 .

It is clear from Eq.~15! that I a are not branched as functions ofs̈ and that they have square-ro
branch points as a function ofṡ at ṡ50 and ṡ5` ~in fact, I a

2 are single-valued as functions o
both ṡ and s̈). Whenṡ and s̈ are held fixed, the only places where theI a can be branched are a
s50, s51, ands5`. Let g0 andg1 be two closed curves with a common base point in the fin
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complex s-plane enclosing the pointss50 and s51, respectively, and traversed once in t
positive direction. Analytic continuation alongg0 and g1 transforms the fundamental matrix o
solutions of Eq.~9! according to

gm : S x1~s! x2~s!

x18~s! x28~s!
D °S x1~s! x2~s!

x18~s! x28~s!
D Mm , m50,1.

For generic values ofa, b, c and for the choice of basis solutions,x15F(a,b,c;s), x2

5F(a,b,a1b2c11;s) of the hypergeometric equation, the monodromy matricesMm are given
by25

M05S 1 e22p ib2e22p ic

0 e22p ic D and M15S e22p i ~a1b2c! 0

12e22p i ~a2c! 1D .

The only other source of branching in Eq.~15! arises from the analytic continuation ofs alonggm

which yields

g0 : s°eipcs, g1 : s°eip~a1b2c!s.

The branching ats5` can be determined from the branching ats50 ands51. A closed circuit
~defined in a similar way as forg0 andg1 above! around the points5`PCP1 is homotopic to
g0

21+g1
21. The corresponding monodromy matrix is given byM`5(M1M0)21. The monodromy

matrix M for any closed circuitg can be expressed in terms of the fundamental monodro
matricesM0 and M1 associated withg0 and g1 , respectively. Finally, taking all the sources
branching into account in~15!, we obtain the following result.

Proposition 3: The first integrals of the DH system given by (15) are multi-valued functio
s with branch points at s50, s51, and s5`. The multi-valued behavior can be expressed
terms of the fundamental determinations:

g0 : @ I 1 I 2#°@ I 1 I 2#M0eipc, g1 : @ I 1 I 2#°@ I 1 I 2#M1eip~a1b2c!,

where M0 and M1 are the monodromy associated with a fundamental matrix solution of
hypergeometric equation (9) around the closed curvesg0 and g1 , respectively.

Remark 1:The multi-valued behavior of the first integralsI a may also be described in term
of the DH variablesv i . It follows from Eq. ~4! that the branch pointss50, s51, ands5`
correspond to the complex diagonal hyperplanesv i5v j , iÞ j . The monodromy group generate
by M0 andM1 determines a~complex! representation of the fundamental groupp1(M3) on the
complementM35C3\ø$v i5v j ,iÞ j % of the arrangement of the diagonal hyperplanes inC3.
Arnold,4 in his study of pure braid groups, discussed the cohomology of the complementMn of
the diagonal hyperplane arrangement inCn. In particular, he proved that the integral cohomolo
ring H* (Mn ,Z) is isomorphic to the algebra generated by the closed differential one-fo
v jk5(1/2p i )d ln(vj2vk), j Þk which satisfyvkl∧v lm1v lm∧vmk1vmk∧vkl[0. Note that for
n53, there is only one independent relation:v12∧v231v23∧v311v31∧v12[0, which is indeed
satisfied by the parametrization of thev i in Eq. ~3!.

Remark 2:The first integrals in Eq.~15! for the classical DH system (a15a25a350) are
expressed in terms of the special hypergeometric Eq.~9! with a5b5 1

2, c51. In this case, the

monodromy matrices with respect to the basisx15F( 1
2,

1
2,1;s) andx25 iF ( 1

2,
1
2,1;12s), are given

by

M05S 1 2

0 1D and M15S 1 0

22 1D .

The corresponding monodromy group is the subgroupG~2! ~principal congruent subgroup of leve
2! of the modular group SL(2,Z), defined asG(2)ª$gPSL(2,Z)ug[Id(mod 2)%. Whena5b
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5 1
12, c5 1

2 in Eq. ~9!, the associated monodromy group is the full modular group SL(2,Z) which is
isomorphic to the pure braid groupB3 of three colored strands. Similar representations of p
braid groupBn are given by the monodromy group associated with particular Picard–F
equations withn regular singular points which arise in the theory of Frobenius manifolds.9 This is
related to Arnold’s work4 ~see Remark 1! on the presentation of pure braid group as the fun
mental group of the complementMn under the action of the Coxeter groupAn .

It is important to note that the first integralsI a , Ja remain multi-valued independent of th
choice of parameters, even in the particular cases where the general solution is single-value
domain of existence. For instance, the classical DH system@Eq. ~2! with t[0] can be solved in
terms of the elliptic modular function and the general solution is analytic inside a circle D in
complext-plane~see, e.g., Refs. 7 and 1!. It was shown in Ref. 19 that the classical DH syste
does not possess a meromorphic first integral. This is consistent with our results that first in
do indeed exist, but they are nonalgebraic and multi-valued functions of thev i . Thus there is no
natural connection between the analyticity properties of the solution and the first integrals f
DH system. To establish such connection for nonlinear differential equations is a very de
issue. For specific cases of Hamiltonian dynamical systems, it was proved under certain a
tions that if the system admits solutions that are branched, then the system can not possess
first integrals independent of the Hamiltonian.18 Furthermore, Ziglin’s work27,28 reveals that
branching of solutions and the absence of single-valued first integrals in certain Hamilt
systems areboth consequences of the same complex singularity structure of the solution~al-
though one does not necessarily imply the other!. However, it should be noted that these results
not rule out the possibility that multi-valued first integrals may exist. Indeed this is the case f
DH system which serves as an important example of equations that are integrable in the se
the general solutions can be expressed in terms of linear equations, yet the constants of
tions are not single-valued functions of the dependent variables.

IV. POISSON STRUCTURES

The DH equations~2! may be viewed as a complex dynamical system on a manifoldM of
~complex! dimension 3 where the DH variablesv i , i 51,2,3, are local holomorphic coordinates o
M. ~Note: In this section the standard notation for coordinate functionsv i is used instead ofv i to
denote the DH variables.! Solutions of Eq.~2! determine a flow given by the integral curves of
holomorphic vector fieldXPTM expressed in local coordinatesv i as X5Xi] i , Xi

ªv jvk

2v i(v j1vk)1t2, iÞ j Þk, and cyclic. Here] iª]/]v i , and summation over repeated indices
implied. Denote byLp(M) and Lq(M) the respective spaces of~holomorphic! p-forms and
q-vectors~contravariant, skew-symmetricq-tensor fields! on M. Let nPL3(M) be a nondegen-
erate three-form given in terms of local coordinates by

n5
1

D~v1,v2,v3!
dv1∧dv2∧dv3, ~16!

for some functionDPC`(M), DÞ0, which is to be determined later. Using the three-formn we
define the dual mapF:Lq(M)→L32q(M) and its inverseF21:Lp(M)→L32p(M) by the
inner products

F~A!ª i An, F21~b!ª i ñb,

whereAPLq(M), bPLp(M), andñªD]1∧]2∧]3PL3(M) is the inverse of the three-formn.
In particular, note that forb1 , b2PL1(M), the vectorv5F21(b1∧b2) satisfiesi vb15 i vb2

50.
Since the first integralsI 1 and I 2 of Eq. ~2! are constant along the integral curves ofX, it

follows that İ a5 i X(dIa)50, a51,2. The one-formsdI1 and dI2 span a two-dimensional, inte
grable ~in the Frobenius sense! co-distribution ofT* M, dual to the vector fieldX. Hence the
vector field can be expressed asX5GF21(dI1∧dI2)5Gi ñ(dI1∧dI2) for some functionG
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PC`(M). Without any loss of generality, we can setG51 and thus determine the functionD in
Eq. ~16!. A straightforward calculation using the explicit forms of theI a in Eq. ~12! yields

D~v1,v2,v3!54~v22v3!~v32v1!~v12v2!. ~17!

Therefore we have the following characterization of the DH vector fieldX.
Proposition 4: The DH system (2) defines a flow in a three-dimensional, complex manifoM

equipped with a nondegenerate three-formn given in terms of local coordinates by Eqs. (16) a
(17). The flow is an integral submanifold ofM generated by the vector field XPTM which is
dual to the integrable codistribution spanned by the one-forms dI1 and dI2 . That is,

X5F21~dI1∧dI2!5 ñ~•,dI1 ,dI2!. ~18!

Let H denote the union of the complex hyperplanes given byv i5v j , iÞ j . It is evident from
Eqs.~17! and~12! that the three-formn and the one-formsdI1 , dI2 are singular on H. Hence th
manifoldM is prescribed byM5C3\H on which Eq.~18! is valid and defines the holomorphi
vector field X. The flow defined by Eq.~18! on M corresponds to the functionsv i(t) which
remain distinct for allt in the domain of analyticity of the DH solutions. It should be note
however, that the DH flow itself@given by Eq.~2!# is not singular on H, but the correspondin
vector field can no longer be defined via Eq.~18!. In fact, the complex planesv i5v j , iÞ j , are
invariant manifolds of the DH flow. The flow restricted to these planes corresponds to the s
cases of Eq.~2! which are solved either by quadratures or in terms of Bessel’s equation.3

It follows from Proposition 4 that the intersection of the two-dimensional level sets of the
integralsI 1 andI 2 defines~locally! a unique solution curve for Eq.~2! on M. We will next show
thatM is a Poisson manifold with a pair of Poisson structures defined in a natural way via th
integrals I a . Furthermore, the DH vector fieldX is locally Hamiltonian with respect to both
Poisson structures.

A Poisson structure onM is specified by a bi-vectorBPL2(M) whose Nijenhuis–Schoute
bracket with itself, defined by the three-vector@B,B#S50. In terms of the coordinatesv i ,

B5Bi j ] i∧] j , @B,B#S
i jk
ª] l~Bi j !Blk1] l~Bjk!Bli 1] l~Bki!Bl j 50.

The Poisson bracket of functionsf, gPC`(M) is the pairing defined by

$ f ,g%ªB~d f ,dg!,

which is skew-symmetric and satisfies the Leibniz rule$ f g,h%5 f $g,h%1g$ f ,h% and the Jacobi
identity $$ f ,g%,h%1$$g,h%, f %1$$h, f %,g%5@B,B#s(d f ,dg,dh)50, for all f ,g,hPC`(M). A
Hamiltonian vector fieldXH with respect to a Poisson structureB is defined asXHªB(•,dH)
where H(v i) is the Hamiltonian function onM. The Hamiltonian flow given by the integra
curves ofXH corresponds to the solution of the system

v̇ i5XH~v i !5$v i ,H%, i 51,2,3.

In three dimensions it is convenient to introduce the Poisson one-formuPL1(M) ~see, e.g.,
Ref. 12! by u5F(B)5 i Bn, which is the dual of the Poisson bi-vector. The Jacobi identity can
reformulated as the Frobenius integrability condition for the Poisson one-formu. Specifically, we
have the following.

Lemma 1. BPL2(M) is a Poisson bi-vector if and only if the dual one-formF(B)ªu
PL1(M) satisfiesu∧du50.

Proof: If BPL2(M) andnPL3(M), then we have the contraction formula~see, e.g., Ref.
20!

n~@B,B#s!52i BdiBn2 i Bi Bdn.
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Since n is a top-degree holomorphic form,dn50. Furthermore, we haveB5F21(u)5 ñ(u).
Hence

n~@B,B#s!52i Bdu52ñ~u∧du!

and the result follows.
In terms of the functionsI 1 and I 2 , define the bi-vectors

BaªF21~dIa!5 ñ~•,•,dIa!, a51,2, ~19!

on M. The corresponding dual one-formsF(Ba)5dIa are exact. Therefore it follows immedi
ately from Lemma 1 that theBa are Poisson bi-vectors. The DH vector fieldX in Eq. ~18! can be
expressed as

X52B1~•,dI2!5B2~•,dI1!, ~20!

which is a Hamiltonian vector field with respect to both Poisson structuresBa . As a result, the DH
equations~2! satisfy the Poisson bracket formulations

v̇ i5X~v i !5$v i ,I 1%25$v i ,2I 2%1 ,

where $g,h%a5Ba(dg,dh), a51, 2. Moreover,B1 and B2 are compatible Poisson structure
namely, there exist functionsl1 , l2 such that the linear combinationB5l1B11l2B2 is also a
Poisson bi-vector. It is easy to verify that the corresponding dual one-formu5F(B)5l1dI1

1l2dI2 satisfies Lemma 1 whenl1 , l2 are arbitrary differentiable functions ofI 1 andI 2 . For a
given Poisson structureB, it is also possible to find a corresponding Hamiltonian funct
H(I 1 ,I 2) such thatX5B(•,dH)5m21(dH∧u) gives the DH vector field as in Eq.~18!. This is
equivalent to the first-order, linear partial differential equationl2(]H/]I 1)2l1(]H/]I 2)51,
which can be solved by the method of characteristics. ThusX does not have a unique represen
tion as a Hamiltonian vector field; the simplest forms are the ones given in Eq.~20!. A Hamil-
tonian system with compatible Poisson structures is called a bi-Hamiltonian system. Th
vector fieldX in Eq. ~20! is therefore a bi-Hamiltonian vector field with respect to the pair
compatible Hamiltonian structures$(B1 ,2I 2),(B2 ,I 1)%.

Remark 3:SinceM is odd-dimensional@dim(M)53#, the Ba are degenerate~rank 2! bi-
vector fields onM. It follows from Eq.~19! thatB1(•,dI1)5B2(•,dI2)50. Therefore,I 1 andI 2

are the Casimir functions for the Poisson structuresB1 andB2 respectively, and satisfy$g,I a%a

50, a51,2, for anygPC`(M). Furthermore, sinceBa(dI1 ,dI2)5$I 1 ,I 2%a50, the first inte-
grals I 1 and I 2 are in involution.

Remark 4:The flow associated with the vector fieldX preserves the three-formn on M.
Indeed we have

LXn5dF~X!5d@F+F21~dI1∧dI2!#5d~dI1∧dI2!50.

Note that on a three-dimensionalreal phase space,n would be phase volume element that
invariant along the flow ofX. Thus the conditionLXn50 on the DH phase spaceM can be
regarded as the holomorphic extension of the Liouville theorem on an odd-dimensional~complex!
phase space.

We summarize the results discussed above.
Proposition 5: The DH system (2) represents a bi-Hamiltonian flow onM corresponding to

the Poisson structures B15F21(dI1), B25F21(dI2); and Hamiltonians2I 2 , I 1 respectively.
The DH vector field X is Hamiltonian with respect to both Poisson structures as given by Eq.
Furthermore, the first integrals I1 and I2 are in involution with respect to both Poisson structure.

The local expressions for the Poisson structuresBk are considerably simple in terms of th
‘‘action-angle’’ variables$I a ,fa ,a51,2% introduced via Eqs.~13! and~14! in Sec. II. Any three
of the four variables can be taken to form a natural set of local coordinates onM while the
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remaining variable is solved algebraically using the constraint equation~14!. For example, if we
take$f1 ,I 1 ,I 2% as new local coordinates onM and use the relations between thev i and$I a ,fa%
from Eq. ~12!, then in the new coordinates the three-vectorñ @inverse ofn in Eq. ~16!# takes the
form

ñ5I 1

]

]f1
∧

]

]I 1
∧

]

]I 2
.

Furthermore, from Eqs.~19! and~20! we have the following expressions for the Poisson bi-vect
and the DH vector field:

B152I 1

]

]f1
∧

]

]I 2
, B25I 1

]

]f1
∧

]

]I 1
, X5I 1

]

]f1
.

Both Hamiltonian structures (B1 ,2I 2) or (B2 ,I 1) yield the same dynamical equations:ḟ15I 1 ,
İ 15 İ 250 which together with the algebraic constraint@Eq. ~14!# are then equivalent to the DH
dynamics given by Eqs.~13!.

Note that the two sets of fundamental Poisson brackets,

$f1 ,I 1%150, $I 2 ,f1%15I 1 , $I 1 ,I 2%150,
~21!

$f1 ,I 1%25I 1 , $I 2 ,f1%250, $I 1 ,I 2%250,

with respect to the respective Poisson structuresB1 andB2 , arelinear in the coordinateI 1 . Each
set corresponds to a Lie–Poisson bracket onM induced by certain three-dimensional Lie algeb
g. The Lie–Poisson structure can be defined by identifyingM with the dualg* of g, and the linear
coordinate functions$yk ,k51,2,3% on g* with the coordinates$f1 ,I 1 ,I 2%. Then the fundamenta
Lie–Poisson brackets induced byg on M are defined as$yi ,yj%ªci j

kyk , where ci j
k are the

structure constants associated with the Lie algebra bracket@ei ,ej #5ci j
k ek with respect to a basis

$ei ,i 51,2,3% of g. Let g1 andg2 denote the Lie algebras corresponding to the first and secon
of fundamental Poisson brackets, respectively. Then it is evident from Eq.~21! that bothg1 andg2
are solvable Lie algebras with one-dimensional centers corresponding to the respective C
functionsI 1 andI 2 . However,g1 is nilpotent of degree 2, whereasg2 contains a one-dimensiona
ideal generated by the element corresponding toI 1 whose normalizer isg2 itself. In fact, it is easy
to verify that choosingany three of the four ‘‘action-angle’’ variables as local coordinates onM
yields two distinct, canonical Lie–Poisson structures which correspond to solvable Lie alg
moreover, one of the Lie algebras is nilpotent.

The volume formn together with the HamiltoniansI 1 and 2I 2 induce a Nambu–Poisso
structure on the manifoldM. Nambu21 proposed a generalization of the Poisson bracket to st
the dynamics of a ‘‘canonical triplet’’ of variables in a three-dimensional real phase space.
simplest form, the canonical Nambu bracket of functionsgiPC`(R3), i 51,2,3, is given by the
Jacobian

$g1 ,g2 ,g3%5
]~g1 ,g2 ,g3!

]~x1,x2,x3!
5 ẽ~dg1 ,dg2 ,dg3!,
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dg1∧dg2∧¯∧dgnª$g1 ,g2 ,...,gn%nN ,

for functions gjPC`(N), j 51,2,...,n. It can be shown that the bracket defined above i
Nambu–Poisson bracket,10 namely, it is skew-symmetric, a derivation, and satisfies the ‘‘fun
mental identity’’

$ f 1 ,...,f n21 ,$g1 ,...,gn%%5(
i 51

n

$g1 ,...,gi 21 ,$ f 1 ,...,f n21 ,gi%,gi 11 ,...,gn%.

The Nambu formulation of the DH system arises as a special case (n53) of the above example
with a Nambu–Poisson structure onM prescribed by

$g1 ,g2 ,g3%ªF21~dg1∧dg2∧dg3!5 ñ~dg1 ,dg2 ,dg3!. ~22!

Then from Eq.~18!, the vector fieldX is the generator of a Nambu–Hamilton flow on the D
phase spaceM given by the actionġ5X(g)5$g,I 1 ,I 2% on functionsgPC`(M). Therefore, we
have the following.

Proposition 6: The DH system (2) is equivalent to the Nambu–Hamilton equation of motions
v̇ i5$v i ,I 1 ,I 2%, i 51,2,3,with respect to the Nambu–Poisson bracket defined by Eq. (22) togeth
with the ‘‘Hamiltonians’’ I1 and I2 . The vector field X in Eq. (18) is a Nambu–Hamiltonian vector
field.

Remark 5:The essential difference between the DH bracket and the canonical Nambu b
is the ‘‘discriminant’’ functionD(v1 ,v2 ,v3). In the DH case,D is given by Eq.~17!, whereas
D[1 for the canonical Nambu bracket.

Remark 6:It is possible to construct an infinite family of Poisson brackets characterize
functions I PC`(M) as $ f ,g% I5$ f ,g,I %, from the Nambu–Poisson bracket in Eq.~22!. The
brackets defined by the Poisson bi-vectorsBa in Eq. ~19! are in fact induced in this way from Eq
~22! with I 5I a , a51,2. In general, a Nambu bracket of ordern.2 on a manifold of dimension
k>n can induce infinite families of lower order Nambu structures, including families of Poi
brackets.26

Remark 7:The ‘‘fundamental identity’’ for the bracket defined by Eq.~22! is equivalent to the
statement that any Nambu–Hamiltonian vector field is a derivation of the Nambu bracket. In
consider the vector fieldY5 ñ(•,d f1 ,d f2) where f 1 , f 2PC`(M) are the ‘‘Hamiltonians.’’
Clearly from Eq.~22!, Y(g)5$g, f 1 , f 2% for all gPC`(M). Y also preserves the volume form
~and its inverseñ), sinceLYn5diYn5d(d f1∧d f2)50. Now taking the Lie derivative of Eq.~22!
with respect toY and using the Leibniz rule to expand the right-hand side gives the ‘‘fundame
identity’’ for the bracket in Eq.~22!.

V. CONCLUSION

In this article, we studied the general solution and first integrals of the generalized DH s
~2!. We showed that the integral curves of the solution are locally defined by the intersection
level sets of the first integrals in a three-dimensional phase spaceM which is a Nambu–Poisson
manifold. In order to study the global dynamics, it is necessary to consider the phase flow
covering manifolds associated with the multi-valued first integrals. The covering manifold
generally densely branched for the DH system, although it is possible to obtain finite or den
able infinite sheeted covering ofM corresponding to particular choices of the DH parameters
these latter cases, there may be several interesting avenues of investigation including th
logical properties of the DH phase space as well as the conformal class of SU~2!-invariant hyper-
complex manifolds which correspond to these special DH solutions.

It is also worth mentioning that the DH system can be regarded as a gradient flow:X5h
(•,dV) for some flat, indefinite metrich21. The potential functionV is a homogeneous polyno
mial of degree 3 in thev i , invariant under cyclic permutation of (v1 ,v2 ,v3). It is conceivable
                                                                                                                



ering
ulti-

. S.C.
ement

AL/
m the

tions,’’

’’ Stud.

,

sys-

s in

antum

ys.

6

ur

ath.

th.

16

nal.

rigid

1762 J. Math. Phys., Vol. 44, No. 4, April 2003 S. Chakravarty and R. Halburd

                    
that further insights into the complex dynamics of the DH system may be gained by consid
it as a gradient flow with a polynomial potential rather than a Nambu–Poisson flow with m
valued Hamiltonians.
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Lax pairs with operator valued coefficients, which are explicitly connected by
means of an additional condition, are considered. This condition is proved to be
covariant with respect to the Darboux transformation of a general form. Nonlinear
equations arising from the compatibility condition of the Lax pairs in the matrix
case include, in particular, Nahm equations, and Volterra, Bogoyavlenskii and Toda
lattices. The examples of other one-, two- and multi-field lattice equations are also
presented. ©2003 American Institute of Physics.@DOI: 10.1063/1.1554762#

I. INTRODUCTION

In the present article we consider a large class of the integrable systems of nonlinear eq
taking values on an associative ring of noncommutative operators. They are defined as th
patibility condition of Lax pairs characterized by the property that the equation for the
evolution of the wave function is explicitly determined~in a local way! by the coefficients of the
spectral problem. There exist different types of Lax pairs, whose coefficients are connect
plicitly. Lax pairs with coefficients defined on an associative algebra of scalar pseudo-differ
operators were introduced in Refs. 1 and 2~see also Ref. 3 and references therein!. These Lax
pairs play an important role in the Sato theory4 and in constructing the modifications of K
hierarchy.5,6 The case of the shift operators and associated lattice equations were discussed
7. The approach, which is applied below to connect the coefficients of the Lax pairs, differs
known ones. The hierarchy of Darboux covariant nonlinear ‘‘multi-field’’ equations we describ
this article contains, as the simplest case, the ‘‘one-field’’ equations of von Neumann type,

i ṙ5@H~r!,r#, i ṙ5@H, f ~r!#. ~1!

These equations and their solutions were investigated in the context of the density matric
Hamiltonians in Refs. 8–10, where, for instance, the formulas of the Darboux transformation
constructed. In the matrix case, the multi-field equations we derive here admit the redu
leading to known and new integrable nonlinear lattice systems.

The technique exploited in this article combines and develops the approaches of Refs.
12. In Sec. II we show that the relations between the coefficients of the equations forming th

a!Author to whom correspondence should be addressed. Electronic mail: n–ustinov@mail.ru
17630022-2488/2003/44(4)/1763/18/$20.00 © 2003 American Institute of Physics
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pair, i.e., necessary conditions for the Lax pair compatibility, are identically satisfied if an
tional condition on the coefficients is imposed. This condition connects explicitly the coeffic
of the equations of the Lax pair and allows us to write in a closed form the nonlinear equa
which follow the compatibility condition. A theorem establishing the Darboux covariance o
Lax pair with the additional condition and, consequently, of the corresponding nonlinear equ
is proved in Sec. III. This theorem gives an effective tool of producing the infinite hierarchi
solutions, including the multi-soliton solutions, for nonlinear equations and their reductions
equations of von Neumann type and associated lattice equations are considered in Sec.
next two sections are devoted to two- and multi-field generalizations of the von Neumann
equations. The examples presented include known lattice equations as well as some ne
Particular cases of the Darboux transformation satisfying the conditions of the theorem of S
are discussed in the Appendix.

II. LAX PAIR AND MULTI-FIELD EQUATIONS

Let us begin with the overdetermined system of linear equations~Lax pair!

2 i ċ5cA~l!,
~2!

zlc5cH~l!.

Herel andzl are complex numbers,c takes values in a given linear spaceL, A(l) andH(l) are
linear operatorsL°L belonging to an associative ring, and the dot denotes a derivative~i.e., an
operator satisfying the Leibnitz rule!. The compatibility condition of Eqs.~2! is

iḢ ~l!5@A~l!,H~l!#. ~3!

If we assume that the operators entering the Lax pair are rational functions ofl with operator
valued coefficients of the form

A~l!5 (
k50

L

lkBk1 (
k51

M
1

lk Ck , ~4!

H~l!5 (
k50

N

lkHk , ~5!

then Eq.~3! becomes equivalent to the following system of algebraic and differential rela
between operatorsBk , Ck , andHk :

(
k5max$0,m2L%

N

@Bm2k ,Hk#50 ~N,m<L1N!, ~6!

(
k50

min$N,m1M %

@Ck2m ,Hk#50 ~2M<m,0!, ~7!

iḢ m5 (
k5max$0,m2L%

m

@Bm2k ,Hk#1 (
k5m11

min$N,m1M %

@Ck2m ,Hk# ~0<m<N!. ~8!

The connection between operatorsBk , Ck , andHk , which is implied by Eqs.~6! and~7!, is
implicit. It is possible to expressBk and Ck explicitly in terms of the operatorsHk in order to
satisfy Eqs.~6! and ~7! identically. Indeed, let us put
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Bk5
1

~L2k!! S dL2k

d§L2k f ~§NH~§21!,§21! D U
§50

, ~9!

Ck5
1

~M2k!! S dM2k

d«M2k g~H~«!,«! D U
«50

, ~10!

where f (X,l) and g(X,l) are well defined functions of an operatorX and parameterl. We
assume hereafter that for any operatorX(l), which is analytic in the neighborhood of the poi
l5`, the functionf (X(l),l) is also analytic and the condition

@ f ~X~l!,l!,X~l!#50 ~11!

is valid in this neighborhood as well. In the case of the functiong(X,l), analogous properties
have to take place in the neighborhood of the pointl50. In particular we have

@g~X~l!,l!,X~l!#50. ~12!

Equations~6! and~7! are fulfilled for anyBk andCk defined by Eqs.~9! and~10! as a consequenc
of the following identities:

dN1L2m

d§N1L2m @ f ~§NH~§21!,§21!,§NH~§21!#u§50[0 ~N,m<L1N!,

dM1m

d«M1m @g~H~«!,«!,H~«!#u«50[0 ~2M<m,0!.

Using Eqs.~6! and ~7! we can rewrite Eqs.~8! as

2 iḢ m5 (
k5m11

N

@Bm2k ,Hk#1 (
k50

m

@Ck2m ,Hk#, ~13!

where the coefficientsBk and Ck for k,0 are calculated accordingly to Eqs.~9! and ~10!. The
operatorA(l) given by~4!, ~9!, and~10! is conveniently represented in the following equivale
way:

A~l!5@F~H~l!,l!#`1@G~H~l!,l!#0 . ~14!

Here

F~H~l!,l!5lL f ~H~l!/lN,l!, ~15!

G~H~l!,l!5l2Mg~H~l!,l!, ~16!

symbols@•••#` and@•••#0 denote the parts of the power expansions inl that contain non-negative
and negative powers, respectively. These equations establish a connection between the coe
of Lax pair ~2!.

In what follows we restrict our consideration to functionsf (X,l) andg(X,l), which possess
an additional property, namely they are covariant with respect to a similarity transformationT:

f ~T21XT,l!5T21f ~X,l!T, g~T21XT,l!5T21g~X,l!T. ~17!
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Conditions~11!, ~12!, and~17! are not very restrictive and are satisfied, for example, by poly
mials in X and sums of negative powers of polynomials inX with scalar coefficients. IfX is a
self-adjoint operator, then these conditions are valid for allf (X,l) andg(X,l) determined via the
spectral theorem.

III. DARBOUX COVARIANCE

Let us consider the transformation

c@1#5cD~l!, ~18!

where•••@1# denotes the image under the transformation, andD(l) is an invertible linear operato
depending onl. We say that the Lax pair~2! is Darboux covariant with respect to transformati
$c,A(l),H(l)%→$c@1#,A@1#(l),H@1#(l)% if the following equations hold

2 i ċ@1#5c@1#A@1#~l!,
~19!

zlc@1#5c@1#H@1#~l!,

and the structure ofA@1#(l) andH@1#(l) is the same as the structure ofA(l) andH(l). The
notion of ‘‘structure’’ means that the shapes of the coefficients of Lax pairs~2! and ~19! are the
same. The most important point is that the locations of singularities ofA(l) andA@1#(l), H(l)
and H@1#(l) and their types should coincide. The transformations of the form~18! that satisfy
these conditions are called Darboux transformations.13 These transformations allow one to gene
ate the hierarchies of solutions of nonlinear equations admitting the compatibility condition
resentation and of associated Lax pairs. In finite dimensional~matrix! casesD(l) is termed the
Darboux matrix.14

Substituting~18! into ~19! we obtain expressions for the coefficients of the transformed
pair

A@1#~l!52 iD ~l!21Ḋ~l!1D~l!21A~l!D~l!, ~20!

H@1#~l!5D~l!21H~l!D~l!. ~21!

If D(l) andD(l)21 are regular on the plane of parameterl at singular points of the coefficient
of Lax pair, then the sufficient condition forD(l) to define the Darboux transformation com
from the requirement that the right-hand sides in Eqs.~20! and~21! have no the singularities at th
points, which are the singular point ofD(l) andD21(l). We refer the reader to the Appendi
where the examples of such transformation are presented.

The following theorem gives sufficient conditions of covariance of Eq.~14!, which explicitly
connects the coefficients of the Lax pair~2!, with respect to the Darboux transformation~18!, ~20!,
and ~21!.

Theorem: If D (l) and D(l)21 are rational functions inl that have poles at finite point

m1 ,...,ms and ms11 ,...,mS , respectively, mkÞ0 (k51,...,S) and @D(l)21Ḋ(l)#`50, then Eq.
(14) is Darboux covariant.

Proof: Substituting~14! into ~20! yields

A@1#~l!52 iD ~l!21Ḋ1D~l!21@F~H~l!,l!#`D~l!1D~l!21@G~H~l!,l!#0D~l!.
~22!

It is enough to show that

A@1#~l!5@F~H@1#~l!,l!#`1@G~H@1#~l!,l!#0 . ~23!
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The right-hand side of~22! is a rational function ofl with poles at most atm1 ,...,mS and 0,
`. Therefore the following decomposition holds

A@1#~l!5 (
k51

S

@A@1#~l!#mk
1@A@1#~l!#`1@A@1#~l!#0 , ~24!

where @A@1#(l)#mk
is the principal part of the Laurent expansion ofA@1#(l) at the pointl

5mk . Since the first term in formula~22! can have poles at most atm1 ,...,mS and vanishes as
l→`, we obtain

@A@1#~l!#`5@D~l!21@F~H~l!,l!#`D~l!#`1@D~l!21@G~H~l!,l!#0D~l!#` ,

@A@1#~l!#05@D~l!21@F~H~l!,l!#`D~l!#01@D~l!21@G~H~l!,l!#0D~l!#0 .

Using equalities

@D~l!21@F~H~l!,l!#`D~l!#`5@D~l!21F~H~l!,l!D~l!#` ,

@D~l!21@F~H~l!,l!#`D~l!#05@@D~l!21F~H~l!,l!D~l!#`#050,

@D~l!21@G~H~l!,l!#0D~l!#`5@@D~l!21G~H~l!,l!D~l!#0#`50,

@D~l!21@G~H~l!,l!#0D~l!#05@D~l!21G~H~l!,l!D~l!#0 ,

we have

@A@1#~l!#`5@D~l!21F~H~l!,l!D~l!#` , ~25!

@A@1#~l!#05@D~l!21G~H~l!,l!D~l!#0 . ~26!

It follows from the definition of the Darboux transformation that fork51,...,S,

@A@1#~l!#mk
[0. ~27!

Combining~24!–~27! and taking into account~21! and ~15!–~17!, we get~23!. j

It is well known that the conditions~27! can be solved resulting in an explicit expression
D(l) in terms of solutions of the Lax pair~2! and a dual pair, which belong to the kernel of th
operator or its inverse one. For this reason, we prefer to use the name of the Darboux tr
mation technique instead of the dressing method. In the Appendix we give examples
Darboux transformations, which satisfy the conditions of our theorem and can be used to co
the hierarchies of solutions of nonlinear equations~8! under constraints~9! and ~10!. The appli-
cations of the Darboux transformation technique to certain nonlinear equations of von Neu
type, including an equation in the infinite dimensional case, which are of interest in conne
with quantum mechanics and statistical physics, can be found in Refs. 8–10.

If operatorT in Eqs.~17! is independent ofl, then the expressions on the right-hand sides
these formulas correspond to so-called gauge transformations of wave functions,

c→c̃5c T.

The case of the Lax pairs withg(X,l)[0 is gauge equivalent to the casef (X,l)[0 if T solves
the equation

i Ṫ5B0T.
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Some of the lattice equations presented in the next sections are the compatibility condit
gauge equivalent Lax pairs.

IV. EQUATIONS OF VON NEUMANN TYPE „ONE-FIELD EQUATIONS …

In this section we consider the caseN51, i.e.,

H~l!5lH11H0 .

The compatibility condition of the Lax pair gives us the equation

iḢ 05@B0 ,H0#1@C1 ,H1#,
~28!

Ḣ150,

where

B05
1

L! S dL

d§L f ~H11§H0),§21! D U
§50

, ~29!

C15
1

~M21!! S dM21

d«M21 g~«H11H0 ,«! D U
«50

. ~30!

We refer to this case as ‘‘one-field’’ becauseH1 is the constant operator. The right-hand side of E
~28! combines both types of the nonlinearities as in the equations of von Neumann type~1!. The
nonlinear equations corresponding to simplest choices of functionsf (X,l) andg(X,l) are pre-
sented below. We also obtain the equations that follow them if the matrix coefficientsH1 andH0

are defined in a special manner.

A. f „X,l…Ä iX l
„ l«N…, g „X,l…Ä0, LÄ1

The compatibility condition leads to the equation

Ḣ05 (
m51

l

@H1
m21H0H1

l 2m,H0#. ~31!

This equation withl 52 is a multi-dimensional Euler’s top equation.15–17 Darboux covariance of
Eq. ~31! and associated Lax pair was proved in Ref. 9.

Let matricesH1 andH0 have the form

H1,k j5dk, j 21 , H0,k j5rkdk, j 1 l 21 . ~32!

Then Eq.~31! yields

ṙk5rk (
m51

l 21

~rk1m2rk2m!. ~33!

These equations are known as the Bogoyavlenskii lattice.18 In the casel 52 Eqs.~33! coincide
with the Volterra system19

ṙk5rk~rk112rk21!, ~34!

which describes stimulated scattering of plasma oscillations by ions.20
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B. f „X,l…Ä iXÀn
„n«N…, g „X,l…Ä0, LÄ1

In this case Eq.~28! is written as given

Ḣ052 (
m51

n

@H1
2mH0H1

m2n21 ,H0#. ~35!

The Bogoyavlenskii lattice~33! with l 5n11 follows this equation if matricesH1 and H0 are
chosen in the form

H1,k j5dk, j 21 , H0,k j5rkdk, j 2n21 . ~36!

C. f „X,l…Ä0, g „X,l…Ä iX l
„ l«N…, MÄ1

From Eq.~28! we have

Ḣ05@H0
l ,H1#. ~37!

Assuming that matricesH1 andH0 are represented in the following manner,

H1,k j5dk, j 2 l 11 , H0,k j5rkdk, j 11 , ~38!

we obtain the well known lattice18

ṙk5 )
m50

l 21

rk2m2 )
m50

l 21

rk1m . ~39!

These equations withl 52 are obviously reduced to the Volterra system~34!. If we put

rk5exp~uk!,

then Eqs.~39! read as

u̇k5expS (
m51

l 21

uk2mD 2expS (
m51

l 21

uk1mD . ~40!

As it was noted at the end of Sec. III, this case is gauge equivalent to the case in Sec. IV

D. f „X,l…Ä0, g „X,l…Ä iX l
„ l«N…, MÄ2

Equation~28! yields

Ḣ05 (
m50

l 21

@H0
mH1H0

l 2m21 ,H1#. ~41!

Supposing

H1,k j5dk, j 2 l 12 , H0,k j5rkdk, j 12 , ~42!

we have

ṙk5 (
m50

l 21 S )
i 50

m21

rk22i )
i 50

l 2m22

rk12i 2 l 122 )
i 50

m21

rk22i 1 l 22 )
i 50

l 2m22

rk12i D . ~43!

~It is assumed hereafter that) i 50
m . . . i51 if m,0.) In the casel 53 these equations are equiv

lent to the Volterra system~34!.
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E. f „X,l…Ä0, g „X,l…Ä iXÀ l
„ l«N…, MÄ1

Equation~28! takes the form

Ḣ05@H0
2 l ,H1#. ~44!

If matricesH1 andH0 are defined as follows,

H1,k j5dk, j 1 l 11 , H0,k j5rkdk, j 11 , ~45!

then the compatibility condition implies

ṙk5 )
m51

l

rk1m
21 2 )

m51

l

rk2m
21 . ~46!

Introducing two sets of new dependent variables,

rk5exp~2uk!,

vk5rk
21 ,

we obtain equivalent representations of Eqs.~46!:

u̇k5expS (
m50

l

uk2mD 2expS (
m50

l

uk1mD ~47!

and

v̇k5vk
2S )

m51

l

vk2m2 )
m51

l

vk1mD . ~48!

Equations~47! with l 52 were studied in Ref. 21. A Lax pair for Eqs.~48! was found in Ref. 18.
These equations in the casel 51 obey a symmetryvk→2vk and look like a natural generalizatio
of the Volterra system~34!.

F. f „X,l…Ä0, g „X,l…Ä iXÀ l
„ l«N…, MÄ2

In this case Eq.~28! is written in the next manner

Ḣ052 (
m51

l

@H0
2mH1H0

m2 l 21 ,H1#. ~49!

If matricesH1 andH0 are defined as follows,

H1,k j5dk, j 1 l 12 , H0,k j5rkdk, j 12 , ~50!

then we come to equations

ṙk5 (
m51

l S )
i 51

m

rk12i 2 l 22
21 )

i 50

l 2m

rk22i 22
21 2)

i 51

m

rk12i
21 )

i 50

l 2m

rk22i 1 l
21 D . ~51!
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G. f „X,l…Ä0, g „X,l…Äg „X…, MÄ1

Here we have

iḢ 05@g~H0!,H1#. ~52!

By construction,g(H0) commutes withH0 . The Lax representation and Darboux covarian
properties of Eq.~52! with arbitrary well-defined functiong(X) were established in Ref. 10. Th
casesg(X)5 iX3 andg(X)5 iX21 were considered in Ref. 22 in the framework of the symme
approach to the classification problem of integrable equations on free associative rings. T
representation for the equations in these cases seems to be new.

H. f „X,l…ÄX4, g „X,l…Ä0, LÄ2

The compatibility condition~28! becomes

iḢ 05@h~H0!,H0#5@H1 ,F~H0!# ~53!

@compare with Eqs.~1!#, where

h~H0!5H0
2H1

21H0H1H0H11H0H1
2H01H1H0

2H11H1H0H1H01H1
2H0

2 ,

F~H0!5H0
3H11H0

2H1H01H0H1H0
21H1H0

3 .

Let us note that, contrary to the previous example,@F(H0),H0#Þ0. We refer to the maps
H0°F(H0) of such a kind asnon-Abelian functions, or non-Abelian nonlinearities.12 This ex-
ample is a particular case of the equations~41!.

V. TWO-FIELD EQUATIONS

A few examples of systems appearing ifN52 are considered in this section.

A. f „X,l…Ä iX , g „X,l…Ä0, LÄ1

The compatibility condition~8! leads to equations

Ḣ05@H1 ,H0#,

Ḣ15@H2 ,H0#,

Ḣ250.

It is checked immediately that functions

F15~H22sH0!/~2i !,

F25~H21sH0!/2,

F35H1 /~2i !,

wheres is a parameter (sÞ0), satisfy equations

Ḟ15@F2 ,F3#1 i @F3 ,F1#, ~54!

Ḟ25@F3 ,F1#1 i @F3 ,F2#, ~55!

Ḟ35s@F1 ,F2#. ~56!
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In terms of new dependent variables

f k5gFkg
21 ~k51,2,3!,

whereg solves equation

ġ52 igF3 ,

Eqs.~54!–~56! are rewritten as

ḟ 15@ f 2 , f 3#,

ḟ 25@ f 3 , f 1#,

ḟ 35s@ f 1 , f 2#.

If we impose conditionf k
152 f k , thens has to be real. This system withs51 is known as Nahm

equations.23,24 It will be shown in the next subsection that this case is also connected with
lattice equation.

B. f „X,l…Ä iX l
„ l«N…, g „X,l…Ä0, LÄ1

From Eqs.~8! we have

Ḣ05 (
m51

l

@H2
m21H1H2

l 2m,H0#, ~57!

Ḣ15@H2
l ,H0#1 (

m51

l

@H2
m21H1H2

l 2m,H1#, ~58!

Ḣ250.

If we put

H2,k j5dk, j 21 , H1,k j5hkdk, j 1 l 21 , H0,k j5rkdk, j 12l 21 , ~59!

then Eqs.~57! and ~58! read as

ḣk5rk1 l2rk1hk (
m51

l 21

~hk1m2hk2m!,

~60!

ṙk5rk (
m50

l 21

~hk1m2hk2 l 2m!.

Let

hk5ṡk .

If coefficientsrk are chosen as given,

rk5Ce(m50
l 21 (sk1m2sk2 l 2m)

(C is arbitrary constant!, then system~60! is equivalent to the following equations:
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s̈k5C~e(m50
l 21 (sk1m1 l2sk2m)2e(m50

l 21 (sk1m2sk2 l 2m)!1ṡk (
m51

l 21

~ ṡk1m2ṡk2m!. ~61!

Assumingl 51 andC51 we come to the Toda lattice equation25–27

s̈k5esk112sk2esk2sk21. ~62!

Equations~61! can be viewed as a generalization of the Toda lattice on the systems of pa
interacting with a finite number of nearest neighborhoods. Forn3n matrices, these equation
admit additional reductions

sm111k52sm112k if n52m11,

sm1k52sm112k if n52m,

or

sm1k52sm2k if n52m

(k50, . . . ,m). In the casel 51, these reductions lead to generalized periodic Toda lattices, w
connection with the root systems of semisimple Lie algebras was established in Ref. 28.

C. f „X,l…Ä iXÀ l
„ l«N…, g „X,l…Ä0, LÄ1

The compatibility condition in this case yields

Ḣ052 (
m51

l

@H2
2mH1H2

m2 l 21 ,H0#, ~63!

Ḣ15@H2
2 l ,H0#2 (

m51

l

@H2
2mH1H2

m2 l 21 ,H1#, ~64!

Ḣ250.

If H2 , H1 andH0 are defined in the following manner,

H2,k j5dk, j 11 , H1,k j5hkdk, j 1 l 11 , H0,k j5rkdk, j 12l 11 , ~65!

then Eqs.~63! and ~64! are written as

ḣk5rk1 l2rk2hk (
m51

l

~hk1m2hk2m!,

~66!

ṙk5rk (
m51

l

~hk2 l 2m2hk1m!.

In the casel 51 these equations are the so-called Belov–Chaltikian lattice.29 The bilinear ap-
proach was applied to the Belov–Chaltikian lattice in Ref. 30.

Expressing dependent variables in terms of the new ones,

hk5ṡk ,

rk5Ce(m51
l (sk2 l 2m2sk1m)
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(C is a constant!, we reduce Eqs.~66! to the Toda-type lattice equations

s̈k5C~e(m51
l (sk2m2sk1 l 1m)2e(m51

l (sk2 l 2m2sk1m)!2ṡk (
m51

l

~ ṡk1m2ṡk2m!. ~67!

D. f „X,l…Ä0, g „X,l…Ä iX l
„ l«N…, MÄ1

In this case Eqs.~8! are rewritten as given:

Ḣ05@H0
l ,H1#, ~68!

Ḣ15@H0
l ,H2#, ~69!

Ḣ250.

If matricesH2 , H1 andH0 have the form

H2,k j5dk, j 22l 11 , H1,k j5hkdk, j 2 l 11 , H0,k j5rkdk, j 11 , ~70!

then Eqs.~68! and ~69! yield

ḣk5 )
m50

l 21

rk2m2 )
m50

l 21

rk1 l 1m ,

~71!

ṙk5hk2 l )
m50

l 21

rk2m2hk )
m50

l 21

rk1m .

These equations withl 51 are equivalent to the Toda lattice~62!.

E. f „X,l…Ä0, g „X,l…Ä iX l
„ l«N…, MÄ2

From Eqs.~8! we have

Ḣ05@H0
l ,H2#1 (

m50

l 21

@H0
mH1H0

l 2m21 ,H1#, ~72!

Ḣ15 (
m50

l 21

@H0
mH1H0

l 2m21 ,H2#, ~73!

Ḣ250.

Taking matricesH2 , H1 andH0 as given,

H2,k j5dk, j 22l 12 , H1,k j5hkdk, j 2 l 12 , H0,k j5rkdk, j 12 , ~74!

we put compatibility condition into the form
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ḣk5 (
m50

l 21 S hk22m )
i 50

m21

rk22i )
i 50

l 2m22

rk12i 2 l 122hk22m1 l 22 )
i 50

m21

rk22i 1 l 22 )
i 50

l 2m22

rk12i D ,

ṙk5hk2 l (
m50

l 21

hk22m )
i 50

m21

rk22i )
i 50

l 2m22

rk12i 2 l 12

2hk (
m50

l 21

hk22m22 )
i 50

m21

rk22i 22 )
i 50

l 2m22

rk12i 2 l1)
i 50

l 21

rk22i2)
i 50

l 21

rk12i .

~75!

In the casel 52 andhk50 these equations coincide with the Volterra system~34!.

F. f „X,l…Ä0, g „X,l…Ä iXÀ l
„ l«N…, MÄ1

In this case Eqs.~8! yield

Ḣ05@H0
2 l ,H1#, ~76!

Ḣ15@H0
2 l ,H2#, ~77!

Ḣ250.

Let the matricesH2 , H1 , andH0 be represented in the following manner:

H2,k j5dk, j 12l 11 , H1,k j5hkdk, j 1 l 11 , H0,k j5rkdk, j 11 . ~78!

The compatibility condition leads to the system

ḣk5 )
m51

l

rk1m
2 l 2 )

m51

l

rk2 l 2m
2 l ,

~79!

ṙk5hk1 l )
m51

l

rk1m
2 l 2hk )

m51

l

rk2m
2 l .

G. f „X,l…Ä0, g „X,l…Ä iXÀ l
„ l«N…, MÄ2

Equations~8! give

Ḣ05@H0
2 l ,H2#2 (

m51

l

@H0
2mH1H0

m2 l 21 ,H1#, ~80!

Ḣ152 (
m51

l

@H0
2mH1H0

m2 l 21 ,H2#, ~81!

Ḣ250.

Supposing

H2,k j5dk, j 12l 12 , H1,k j5hkdk, j 1 l 12 , H0,k j5rkdk, j 12 , ~82!

we have
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ḣk5 (
m51

l S hk12m22l 22)
i 51

m

rk12i 22l 22
21 )

i 50

l 2m

rk22i 2 l 22
21 2hk12m)

i 51

m

rk12i
21 )

i 50

l 2m

rk22i 1 l
21 D ,

~83!

ṙk5hk (
m51

l

hk12m2 l 22)
i 51

m

rk12i 2 l 22
21 )

i 50

l 2m

rk22i 22
21 2hk1 l (

m51

l

hk12m)
i 51

m

rk12i
21 )

i 50

l 2m

rk22i 1 l
21

1)
i 51

l

rk12i
21 2)

i 51

l

rk22i
21 .

H. f „X,l…Ä iX 2, g „X,l…Ä0, LÄ2

The compatibility condition~8! in this case is written as

Ḣ05@H1
2 ,H0#1@H2 ,H0

2#,

Ḣ15@H2 ,H0H11H1H0#,

Ḣ250.

Taking matricesH2 , H1 , andH0 as follows,

H2,k j5dk, j 21 , H1,k j5hkdk, j , H0,k j5rkdk, j 11 , ~84!

we obtain

ḣk5rk11~hk111hk!2rk~hk1hk21!,
~85!

ṙk5rk~rk112rk211hk
22hk21

2 !.

This system is the first member of the hierarchy of higher Toda lattices.31,32 In the casehk50 this
system is nothing but the Volterra system~34!.

VI. MULTI-FIELD EQUATIONS

In this section we present nonlinear equations that follow Eq.~8! with positive integerN for
special choices of functionsf (X,l) andg(X,l).

A. f „X,l…Ä iX l
„ l«N…, g „X,l…Ä0, LÄ1

The compatibility condition is

Ḣ i5@HN
l ,Hi 21#1 (

m51

l

@HN
m21HN21NN

l 2m ,Hi # ~86!

( i 50, . . . ,N). If we put

Hi ,k j5rk
( i )dk, j 1(N2 i ) l 21 ~87!

(rk
(N)51), then Eqs.~86! give

ṙk
( i )5rk1 l

( i 21)2rk
( i 21)1rk

( i ) (
m50

l 21

~rk1m
(N21)2rk1( i 2N11)l 2m

(N21) !. ~88!
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B. f „X,l…Ä iXÀ l
„ l«N…, g „X,l…Ä0, LÄ1

In this case Eqs.~8! are written in the following way:

Ḣ i5@HN
2 l ,Hi 21#2 (

m51

l

@HN
2mHN21NN

m2 l 21 ,Hi # ~89!

( i 50, . . . ,N). Assuming

Hi ,k j5rk
( i )dk, j 2(N2 i ) l 21 , rk

(N)51, ~90!

we obtain

ṙk
( i )5rk2 l

( i 21)2rk
( i 21)1rk

( i ) (
m51

l

~rk1(N2 i 21)l 1m
(N21) 2rk2m

(N21)!. ~91!

C. f „X,l…Ä0, g „X,l…Ä iX l
„ l«N…, MÄ1

The compatibility condition~8! yields

Ḣ i5@H0
l ,Hi 11# ~92!

( i 50, . . . ,N). Let matricesHi have the form

Hi ,k j5rk
( i )dk, j 2 i l 11 , ~93!

whererk
(N)51. In this case Eqs.~92! lead to the following lattice equations:

ṙk
( i )5rk2 l

( i 11) )
m50

l 21

rk2m
(0) 2rk

( i 11) )
m50

l 21

rk1 i l 1m
(0) . ~94!

The casel 51 was studied in Refs. 33 and 34.

D. f „X,l…Ä0, g „X,l…Ä iXÀ l
„ l«N…, MÄ1

From Eqs.~8! we have

Ḣ i5@H0
2 l ,Hi 11# ~95!

( i 50, . . . ,N). If matricesHi are defined as follows

Hi ,k j5rk
( i )dk, j 1 i l 11 , ~96!

then Eqs.~95! give

ṙk
( i )5rk1 l

( i 11) )
m51

l

rk1m
21 2rk

( i 11) )
m51

l

rk2 i l 2m
21 , ~97!

where we use the notation

rk
(0)5rk .

VII. CONCLUSION

In future we will continue the study of the von Neumann type equations and their gen
zations presented in the previous sections. The integrals and the multi-soliton solutions w
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considered. An investigation of the hierarchies of symmetries and compatible flows for
equations can lead to new hierarchies of integrable equations.22,35–37The results will be of specia
interest in the case of integrable lattice equations. It should be also mentioned that discreti
of the lattice equations have attracted much attention in recent years~see, e.g., Ref. 38 and
references therein!.
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APPENDIX: DARBOUX TRANSFORMATIONS

Here we discuss briefly some particular cases of the Darboux transformation, which satis
conditions of the theorem in Sec. III. Let the operatorD(l) in ~18! be represented as given,

D~l!511
n2m

m2l
P, ~A1!

where

P5
wx

~x,w!
,

x is a solution of the Lax pair~2! with parametern,

2 i ẋ5xA~n!,

znx5xH~n!,

w is a solution of the dual Lax pair with parameterm,

i ẇ5A~m!w,

zmw5H~m!w,

and ~x, w! is a scalar product. It is obvious thatP25P and

2 i Ṗ5PA~n!P'2P'A~m!P

(P'512P). If coefficients of the transformed Lax pair~19! are defined by

A~l!@1#5 (
k50

L

lkBk@1#1 (
k51

M
1

lk Ck@1#,

~A2!

H~l!@1#5 (
k50

N

lkHk@1#,

where

Bk@1#5Bk1~m2n! (
m5k11

L

~mm2k21P'BmP2nm2k21PBmP'!,
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Ck@1#5Ck2~m2n! (
m5k

M

~mk2m21P'CmP2nk2m21PCmP'!,

Hk@1#5Hk1~m2n! (
m5k11

N

~mm2k21P'HmP2nm2k21PHmP'!,

then Eqs.~19! are identically fulfilled. This statement can be proved by direct computation. S

D~l!21511
m2n

n2l
P,

operatorsD(l) andD(l)21 have poles in pointsm andn. It is seen from Eq.~A2! that Eq.~27!
is valid.

The formulas written above form the so-called binary Darboux transformation. The c
sponding Darboux transformation for ann-dimensional matrix case is produced from them if w
assume in~A1! that

P5w~xw!21x,

wherex andw are, respectively,m3n andn3m matrix solutions of direct and dual Lax pairs
Some examples of Darboux transformations in the infinite dimensional case, which are suita
integrable lattice equations, were given in Ref. 13. Very recently a new construction o
Darboux transformation in terms of Clifford numbers was described in Ref. 39.
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In a series of publications we developed ‘‘differential geometry’’ on discrete sets
based on concepts of noncommutative geometry. In particular, it turned out that
first-order differential calculi~over the algebra of functions! on a discrete set are in
bijective correspondence with digraph structures where the vertices are given by
the elements of the set. A particular class of digraphs are Cayley graphs, also
known as group lattices. They are determined by a discrete groupG and a finite
subsetS. There is a distinguished subclass of ‘‘bicovariant’’ Cayley graphs with the
property ad(S)S,S. We explore the properties of differential calculi which arise
from Cayley graphs via the above correspondence. The first-order calculi extend to
higher orders and then allow us to introduce further differential geometric struc-
tures. Furthermore, we explore the properties of ‘‘discrete’’ vector fields which
describe deterministic flows on group lattices. A Lie derivative with respect to a
discrete vector field and an inner product with forms is defined. The Lie–Cartan
identity then holds on all forms for a certain subclass of discrete vector fields. We
develop elements of gauge theory and construct an analog of the lattice gauge
theory ~Yang–Mills! action on an arbitrary group lattice. Also linear connections
are considered and a simple geometric interpretation of the torsion is established.
By taking a quotient with respect to some subgroup of the discrete group, general-
ized differential calculi associated with so-called Schreier diagrams are obtained.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1540713#
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I. INTRODUCTION

In a series of papers1–7 we developed differential geometry on discrete sets~see also Refs.
8–14 for related work!. A key concept is a differential calculus~over the algebraA of functions!
on a set. First-order differential calculi on discrete sets were found to be in bijective corre
dence with digraph structures,3 where the vertices of the digraph are given by the elements o
set and neither multiple arrows nor loops are admitted. In particular, this supplies the eleme
the set with neighborhood relations. An important example is a differential calculus which c
sponds to the hypercubic lattice and which leads to an elegant formulation of lattice gauge th1

A special class of digraphs areCayley graphs15 ~see Refs. 16 and 17, for example!, which are
also known asgroup latticesin the physics literature. These are determined by a discrete groG
and a subsetS. The elements ofG are the vertices of the digraph and the elements ofSdetermine
~via right action! arrows from a vertexg to ‘‘neighboring’’ vertices. Hypercubic lattices, on whic
the usual lattice~gauge! theories are built, are special Cayley graphs. Another example of im
tance for physics is the truncated icosahedron which models theC60 Fullerene.18 Physical models
on group lattices have also been considered in Refs. 19–22, in particular. Furthermore,
graphs play a role in the study of connectivity and routing problems in communication netw
~see Ref. 23 for a review!.

The above-mentioned correspondence between digraphs and first-order differential
suggests to explore those calculi which correspond to Cayley graphs. Moreover, given a firs
differential calculus which corresponds to a Cayley graph, it naturally extends to higher ord
that we have a notion ofr-forms, r .1. This provides the basis for introducing further different
geometric structures, following general recipes of noncommutative geometry.

In Sec. II we introduce first-order differential calculi associated with group lattices.
approach very much parallels standard constructions in ordinary differential geometry. In pa
lar, we first introduce vector fields on a group lattice and then 1-forms as duals of these. S
III concerns maps between group lattices which are ‘‘differentiable’’ in an algebraic sense4 Of
special importance for us are ‘‘bicovariant’’ group lattices~G,S! with the property that the left and
right actions onG with respect to all elements ofS are differentiable.

A first-order differential calculus naturally extends to higher orders, i.e., to a full differe
calculus. The structure of differential calculi obtained from group lattices is the subject of Se

Geometric relations are often more conveniently expressed in terms of vector fields
forms. In Sec. V we introduce a special class of vector fields which we call ‘‘discrete’’ a
subclass of ‘‘basic’’ vector fields and explore their properties. A Lie derivative with respect
discrete vector field and an inner product of discrete vector fields and forms is defined. For
vector fields with differentiable flow the Lie–Cartan formula holds.

Section VI treats connections on~left or right! A-modules over differential calculi associate
with group lattices. In particular, Yang–Mills fields are considered and an analog of the l
gauge theory action on an arbitrary group lattice is constructed.

If the module is the space of 1-forms, we are dealing with linear connections. This i
subject of Sec. VII. In particular, we find that the condition of vanishing torsion of a lin
connection has a simple geometric meaning.
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A differential calculus on a group lattice induces a ‘‘generalized differential calculus’’ o
coset space. The resulting differential calculus is generalized in the sense that the space of
is, in general, larger than theA-bimodule generated by the image of the space of functions u
the action of the exterior derivative. There is a generalized digraph~‘‘Schreier diagram’’16! asso-
ciated with such a first-order differential calculus which in general has multiple links and
loops. Some further remarks are collected in Sec. IX.

Most of the material of Sec. II already appeared in earlier work~see Refs. 2, 6, and 10, i
particular!, but the results in Secs. III–VIII are new to the best of our knowledge.

II. FIRST-ORDER DIFFERENTIAL CALCULUS ASSOCIATED WITH A GROUP LATTICE

Let G be a discrete group andA the algebra of complex-valued functionsf : G→C.24 With
gPG we associateegPA such thateg(g8)5dg,g8 for all g8PG. The set ofeg, gPG, forms a
linear basis ofA over C, since every functionf can be written in the formf 5(gPGf (g)eg. In
particular, we haveegeg85dg,g8eg and(gPGeg51, where1 denotes the constant function whic
is the unit ofA.

The left and right translations by a group elementg, Lg(g8)5gg8 andRg(g8)5g8g, induce
automorphisms of A via the pull-backs (Lg* f )(g8)5 f (Lgg8)5 f (gg8) and (Rg* f )(g8)
5 f (Rgg8)5 f (g8g). In particular, we obtain

Lg* eg85eg21g8, Rg* eg85eg8g21
~2.1!

for all g, g8PG. Introducing25

,gf 5Rg* f 2 f ~2.2!

so that (,gf )(g8)5 f (g8g)2 f (g8), we find the modified Leibniz rule

,g~ f f 8!5~,gf !~Rg* f 8!1 f ~,gf 8!. ~2.3!

The maps,g :A→A, gPG, generate anA-bimodule via

~ f •,g! f 8ª f ,gf 8, ~,g• f ! f 8ª~,gf 8!~Rg* f ! ~2.4!

so that

,g• f 5~Rg* f !•,g . ~2.5!

Indeed, one easily verifies that

~ f f 8!•,g5 f •~ f 8•,g!, ,g•~ f f 8!5~,g• f !• f 8. ~2.6!

The modified Leibniz rule can now be written as

,g~ f f 8!5~,g• f 8! f 1~ f •,g! f 8. ~2.7!

Let S be a finite subset ofG which does not contain the unite of G. From G and S we
construct a directed graph as follows. The vertices of the digraph represent the elements oG and
there is an arrow from the site~vertex! representingg to the one representinggh if and only if
hPS. In other words, there is an arrow fromg to g8 iff g21g8PS. A digraph obtained in this way
is called aCayley graphor a group lattice.26

Lemma 2.1: The connected component of the unit e in the group lattice is the subgrou
generated by S.

Proof: Let H be the subgroup ofG generated by S. Every elementgPH can be written as a
finite productg5h1

k1
¯hr

kr with hiPS andkiP$61%. If kr51, there is an arrow fromh1
k1
¯hr 21

kr 21
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to g. If kr521, there is an arrow fromg to h1
k1
¯hr 21

kr 21. By iteration,g is connected toe. Hence
H is contained in the connected componentCe of e. Because of the group property, every eleme
connected to an element ofH must itself be an element ofH. HenceCe5H. j

It follows that the group lattice~G,S! is connected if and only ifS generatesG ~see also Ref.
27, p. 17!. If the subgroupH generated byS is smaller thanG, the group lattice consists of a se
of disjoint but isomorphic parts corresponding to the set of left cosetsgH, gPG.

For hPS, the maps,h :A→A are naturally associated with the arrows of the digraph si
(,hf )(g)5 f (gh)2 f (g) is the difference of the values of a functionf at two connected ‘‘neigh-
boring’’ points of the digraph. The maps,h generate anA-bimoduleX.28 At eachgPG, they span
a linear space which we call thetangent spaceat g.

Let V1 be theA-bimodule dual toX such that

^ f •X,a&5^X, f a&5 f ^X,a&, ^X• f ,a&5^X,a f & ~2.8!

for all XPX, f PA and aPV1. If $uhuhPS% denotes the set of elements ofV1 dual to $,huh
PS%, so that^,h8 ,uh&5dh8

h , then

^,h8 ,uhf &5^,h8• f ,uh&5^~Rh8
* f !•,h8 ,uh&5Rh8

* f dh8
h

5^,h8 ,~Rh* f !uh& ~2.9!

for all h, h8PS. Hence

uhf 5Rh* f uh. ~2.10!

The space of 1-formsV1 is a freeA-bimodule and$uhuhPS% is a basis. A linear map d:A
→V1 can now be introduced by

df 5 (
hPS

~,hf !uh. ~2.11!

It satisfies the Leibniz rule d(f f 8)5(df ) f 81 f (df 8). In particular, we obtain

deg5 (
hPS

~,heg!uh5 (
hPS

~egh21
2eg!uh. ~2.12!

Now we multiply both sides from the left byegh21
with some fixedhPS. Sinceh is different from

the unit element ofG, we obtainegh21
deg5egh21

uh. From this we find29

uh5 (
gPG

egh21
deg5 (

gPG
egdegh. ~2.13!

Furthermore,

uª(
hPS

uh5 (
gPG,hPS

egdegh ~2.14!

satisfies

df 5u f 2 f u5@u, f #. ~2.15!

Moreover, we obtain

^X,df &5X f . ~2.16!

Let us introduce
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I5$~g,g8!PG3Gug21g8¹Se%, ~2.17!

whereSe5Sø$e%. This is the set of pairs (g,g8) for which egdeg850. Note thategdeg52egu
Þ0.

The first-order differential calculus (A,V1,d) constructed above is also obtained from t
universal first-order differential calculus (A,Vu

1,du) as the quotientV15Vu
1/J 1 with respect to

the submoduleJ1 of Vu
1 generated by all elements of the formegdueg8 with (g,g8)PI. If

pu :Vu
1→V1 denotes the corresponding projection, then we have d5pudu .

Lemma 2.2: If Se is a subgroup of G, the corresponding first-order differential calculus on
component connected to the unit is the universal one.

Proof: According to Lemma 2.1, thee-component isSe . Since for every pair (h,h8)PSe

3Se , hÞh8, there is an elementh9PS such thath5h8h9, there is an arrow fromh8 to h in the
associated digraph. Hence all pairs of different elements ofSe are connected by a pair of antipa
allel arrows. This characterizes the universal differential calculus. j

Example 2.1:One of the simplest examples is obtained as follows. LetG5Z, the additive
group of integers, andS5$1%. Then we have (,1f )(k)5 f (k11)2 f (k) and u1

5(kPZe
kdek11. Introducing the coordinate functiont5(kPZkek, we find u15dt and ,1f

5]1t f with the discrete derivative]1t f (t)5 f (t11)2 f (t). Hence

df 5~]1t f !dt. ~2.18!

This example is important as a model for a discrete parameter space, and in particular as a
for discrete time. A generalization is obtained by taking the additive groupG5Z n and S
5$(1,0,...,0),(0,1,0,...,0),...,(0,...,0,1)%5..$m̂u1<m<n% which generatesG. This leads to an ori-
ented hypercubic lattice digraph. Then (,m̂f )(k)5 f (k1m̂)2 f (k)5..(]1m̂f )(k) and um̂

5(kPZnekdek1m̂. Introducing coordinates viax5(kPZnkek5(x1,...,xn), we find

df 5 (
m51

n

~]1m̂f !dxm, um̂5dxm. ~2.19!

This differential calculus appeared first in Ref. 1~see also Ref. 30! and turned out to be useful, in
particular, in the context of lattice gauge theory31 and completely integrable lattice models.5 j

Example 2.2:Let G5Zm (m52,3,...), the finite additive group of elements 0, 1, 2,. . . , m
21 with composition law addition modulom. The unit element ise50. ChoosingS5$1%, we
have a single basis 1-formu1. In contrast to example 2.1, hereu1 is not exact. Indeed, suppos
that u15df for some functionf. This is equivalent to,1f 51 which leads to the contradiction
m5(g(,1f )(g)50. By taking direct products of this lattice, a group lattice structure forG
5Zm

n is obtained. j

Example 2.3:For G5Z2 , the only group lattice is the complete digraph corresponding to
universal first-order differential calculus on the two elements$0,1%. For G5Z3 , one has to distin-
guish two cases. IfS contains a single element only, the group lattice is a closed linear cha
arrows~cf. example 2.2!. The choiceS5$1,2% leads to the complete digraph on the three eleme
and thus to the universal differential calculus. Less simple structures appear forG5Zm , m.3.
For example, choosingG5Z4 andS5$1,2%, we obtain the group lattice drawn in Fig. 1. j

Example 2.4:The permutation groupS3 has the six elements

e, ~12!,~13!,~23!, ~123!,~132!

grouped into conjugacy classes. ChoosingS5$(12),(13),(23)%, we have three left-invarian
1-forms u (12), u (13), u (23). The corresponding digraph is drawn on the left-hand side of Fig
Here a line represents a double arrow.
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If we chooseS5$(123),(132)%, thenSdoes not generateS3 and the digraph is disconnecte
The two parts are drawn in the middle of Fig. 2. SinceSe is a subgroup, according to Lemma 2
we have the universal first-order differential calculus on the two disjoint parts ofS3 in this case.

Another choice isS5$(12),(123)%. The corresponding digraph is shown on the right-ha
side of Fig. 2~see also Refs. 16 and 17!. j

We call a group latticebicovariant if ad(S)S,S. The significance of this definition will be
made clear in Sec. III. Our previous examples of group lattices are indeed bicovariant, exc
(S3 ,S5$(12),(123)%). SinceS is assumed to be afinite set, we have the following result.

Lemma 2.3:

ad~g!S,S ⇒ ad~g21!S,S. ~2.20!

Proof: By assumption, ad(g) is a mapS→S which is clearly injective. SinceS is a finite set,
it is then also surjective. As a consequence, ad(g21)S5ad(g)21S5S. j

Example 2.5:Let G5A5 , the alternating group consisting of the even permutations of
objects. It is generated by the two permutationsa5(12345) andb5(12)(34) which satisfya5

5e, b25e, and (ab)35e. Let S5$a,a21,b%. Then the group lattice is a truncated icosahedr
obtained from the icosahedron by replacing each of the 12 sites by a pentagon. The res
group lattice structure for theC60 Fullerene.18 This group lattice is not bicovariant. j

In the following we refer to a pair of elementsh1 ,h2PS such thath1h25e as a ‘‘biangle,’’ to
a tripleh0 , h1 , h2PS such thath1h25h0 as a ‘‘triangle,’’ and to a quadruple of elementsh1 , h2 ,
h3 , h4PS such thath1h25h3h4¹Se as a ‘‘quadrangle’’~see Fig. 3!.32 In particular, each pairh1 ,
h2 of commuting elements ofS with h1h2¹Se determines a quadrangle.

FIG. 1. The group lattice ofZ4 with S5$1,2%.

FIG. 2. Digraphs corresponding to the three different choices$~12!,~13!,~23!%, $~123!,~132!%, and$~12!,~123!% of S,S3 .
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III. DIFFERENTIABLE MAPS BETWEEN GROUP LATTICES

Let (Gi ,Si), i 51,2, be two group lattices. A mapf:G1→G2 induces an algebra homomo
phismf* :A2→A1 wheref* f 25 f 2+f. In particular,

f* eg25ef21$g2%, ~3.1!

where we introduced the notation

eK
ª (

gPK
eg ~3.2!

for K,G, andeB
ª0. The following result shows that every homomorphism between algebr

functions on group lattices is realized by a pull-back map~see also Ref. 33!.
Theorem 3.1: If F:A2→A1 in an algebra homomorphism, then there is a mapf:G1

→G2 , such thatF5f* .
Proof: If f PA1 is such that f 25 f , then f 5eK for some K,G1 . In fact, since f

5(g1PG1
f (g1)eg1, we find f (g1)( f (g1)21)50 for all g1PG1 , so that f (g1)P$0,1%. Hence

f 5(g1PKeg1 with K5$g1PG1u f (g1)51%. From eg2eg285dg2 ,g28eg2 in A2 we find

F(eg2)F(eg28)5dg2 ,g28F(eg2). Hence F(eg2)5eKg2 for some Kg2
,G1 . Furthermore, from

F(eg2)F(eg28)50 for g2Þg28 we infer Kg2
ùKg

28
5B and from F(12)511 we obtain

ø g2PG2
Kg2

5G1 . Hence we have a partition ofG1 . Now we definef:G1→G2 by setting
f(g1)5g2 for all g1PKg2

. Thenf is well defined andf* (eg2)5eKg25F(eg2). j

Now we try to extendf* to 1-forms requiring

f* ~ f d2f 8!5~f* f !d1~f* f 8!. ~3.3!

However, this is not well defined unless it is guaranteed that the right side vanishes whene
left side vanishes. By linearity, it is sufficient to consider

f* ~eg2d2eg28!5ef21$g2%d1ef21$g28% ~3.4!

for all g2 , g28PG2 . The consistency condition now takes the formf21I2,I1 , so that
f(g1)21f(g18)¹S2ø$e2% implies g1

21g18¹S1 . Here e1 and e2 are the units ofG1 and G2 ,
respectively. For the corresponding digraphs this implies that if there is no arrow from an i
point f(g1) to a different image pointf(g18), then there is also no arrow fromg1 to g18 . The
above condition is equivalent to

g1
21g18PS1 ⇒ f~g1!21f~g18!PS2ø$e2%, ~3.5!

FIG. 3. Group lattice parts corresponding to a biangle, a triangle, and a quadrangle, respectively.
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which says that if there is an arrow fromg1 to g18 andf(g1)Þf(g18), then there is also an arrow
from f(g1) to f(g18). A map with this property will be calleddifferentiable~see also Ref. 4!. In
this case we have more generallyf* ( f a)5(f* f )(f* a) for f PA2 andaPV2

1.
In order to define a dual off* on vector fields,f has to be differentiable and a bijectio

Then we set

^f* X1 ,a2&5^X1 ,f* a2&+f21, ~3.6!

whereX1PX1 anda2PV2
1. As a consequence, we obtain

f* ~ f •X!5~f21* f !•f* X ~3.7!

and, using~2.16!, we find

f* X5f21* Xf* . ~3.8!

In particular, for eachgPG the left translationLg :G→G is a differentiable map since i
g821g9PS, then also (gg8)21(gg9)PS. The special basis of 1-forms$uhuhPS% and the dual
basis$,huhPS% of vector fields are left-invariant:

Lg* uh5uh, Lg* ,h5,h ~;gPG,hPS!. ~3.9!

Hence the differential calculus of a group lattice isleft covariant.
The condition for the right translationRg :G→G to be differentiable is that forg821g9PS

also (g8g)21(g9g)5g21(g821g9)gPS. This amounts to ad(g21)hPS for all hPS. As a con-
sequence of Lemma 2.3, differentiability ofRg implies differentiability ofRg21 and we obtain

Rg* uh5 (
g8PG

~Rg* eg8!dRg* eg8h5 (
g9PG

eg9deg9ghg21
5uad~g!h. ~3.10!

Furthermore,

Rg* ,h5,ad~g21!h , Rg21
*
,h5,ad~g!h . ~3.11!

If Rg andRg8 are both differentiable, so isRgg8 and we haveRgg8
* 5Rg* +Rg8

* on 1-forms.
If Rg is differentiable for allgPG, then the differential calculus is calledright covariant. A

differential calculus which is both left and right covariant is calledbicovariant.34 Bicovariance of
a group lattice, as defined in Sec. II, is the weaker condition ad(h)S,S @and then also
ad(h21)S,S] for all hPS. This means that for allhPS the mapsRh andRh21 are differentiable.
If S does not generateG, this condition is indeed weaker than bicovariance of the first-or
differential calculus. But then the corresponding digraph is disconnected~cf. Lemma 2.1!. So, if S
generatesG, the bicovariance conditions for the first-order differential calculus and the g
lattice coincide.

IV. HIGHER-ORDER DIFFERENTIAL CALCULUS OF A GROUP LATTICE

Let (Vu ,du) be the ~full ! universal differential calculus overA. Then we haveVu

5 % r 50
` Vu

r with Vu
05A. Let J be the differential ideal ofVu generated byJ1 where V1

5Vu
1/J1. Since J1 is homogeneous of grade 1, the differential idealJ is also graded,J

5 % r 50
` Jr with J05$0%. Then V5Vu /J inherits the grading, i.e.,V5 % r 50

` V r with V0

5A. The projectionpu :Vu→V is a graded algebra homomorphism and we have a differe
map d:V→V such that dpu5pudu . It satisfies d250 and has the graded derivation prope
~Leibniz rule!

d~vv8!5~dv!v81~21!rvdv8 ~4.1!
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for all vPV r andv8PV. In this section we explore for group lattices the structure ofV beyond
1-forms.

For (g,g8)PI we obtain 05pudu(egdueg8)5pu(dueg)pu(dueg8)5degdeg8. Using ~2.12!
and introducingg̃5g21g8, this results in the 2-form relations

(
h,h8PS

dhh8
g̃ uhuh850 ;g̃¹Se . ~4.2!

If Se is a subgroup ofG, there are no such conditions. In this case, the group lattice is disconn
with components the left cosets ofSe in G and with the universal differential calculus on ea
component~see Lemma 2.2!. If Se is not a subgroup, then there are elementsh, h8PS such that
hh8¹Se and therefore nontrivial relations of the form~4.2! appear.

The following well-known result implies that at the level ofr-forms,r .2, no further relations
appear which are not directly taken into account by the 2-form relations.

Lemma 4.1: LetaPVu
1. The two-sided ideal generated bya anddua is a differential ideal in

Vu .
Proof: This is an immediate consequence of the Leibniz rule for du and du

250. j

Remark:If for somehPS alsoh21PS, then the 2-formsuhuh21
, uh21

uh do not vanish. As a
consequence, we have formsuhuh21

uh
¯ of arbitrarily high order. This could be avoided b

settinguhuh21
5uh21

uh50. However, such a restriction may exclude interesting cases. Fo
ample, one can formulate the Connes and Lott two-point space geometry8 using (Z2 ,$1%). The
only nonvanishing 2-form is thenu1u1. If we set this to zero, then every 2-form automatica
vanishes, and thus in particular the curvature of a connection. Moreover, such 2-form re
imposed ‘‘by hand’’ in general induce higher form relations, which have to be elaborated and
into account. The 2-formuhuh21

has the interesting property that it commutes with all functionsj

Applying d to uh5(gPGegdegh, using the Leibniz rule for d and formulas from Sec. II, w
find

duh5uuh1uhu2D~uh!, ~4.3!

where

D~uh!5 (
h8,h9PS

dh8h9
h uh8uh9 ~4.4!

determines anA-bimodule morphism35 D:V1→V2. Using ~2.15!, we obtain36

da5ua1au2D~a! ~4.5!

for an arbitrary 1-forma. A special case of this formula is

du52u22D~u!. ~4.6!

As the sum of all basic 2-forms,u25(h,h8PSuhuh8 comprises all the 2-form relations. SinceD~u!
contains all ‘‘triangular’’ 2-forms, the differenceu22D(u) consists of the sum of all nonzer
2-forms of the formuhuh8 with hh85e. Introducing

De
ª (

hPS~0!

uhuh21
~4.7!

whereS(0)ª$hPSuh21PS%, we obtain

u22D~u!5De ~4.8!
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and thus

du5u21De5D~u!12De. ~4.9!

Let us extend the mapD to V by requiring

D~ f !50 ~4.10!

for all f PA and

D~vv8!5D~v!v81~21!rvD~v8! ~4.11!

for all vPV r andv8PV. This is just the~graded! Leibniz rule, henceD is a graded derivation
Lemma 4.2:

dv5@u,v#2D~v! ;vPV, ~4.12!

where@,# is the graded commutator.
Proof: We use induction on the grader of forms vPV r . For 0-forms the formula is jus

~2.15!, for 1-forms it coincides with~4.5!. Let us now assume that it holds for forms of gra
lower thanr. For cPVk, k,r , andvPV,r we then obtain

d~cv!5~dc!v1~21!rcdv5~@u,c#2D~c!!v1~21!rc ~@u,v#2D~v!!5@u,cv#2D~cv!

using the Leibniz rules for d andD. j

Iterated application of~4.11! leads to

D~uh1
¯uhr !5D~uh1!uh2

¯uhr2uh1D~uh2!uh3
¯uhr1¯1~21!r 21uh1

¯uhr 21D~uhr !.
~4.13!

Furthermore,

05d2v5@u,dv#2D~dv!

5@u,@u,v##2@u,D~v!#2D~@u,v#!1D2~v!

5@u22D~u!,v#1D2~v! ~4.14!

shows that

D2~v!52@De,v#. ~4.15!

Acting with D on ~4.8!, using~4.11! and the last identity, we deduce

D~De!50. ~4.16!

Remark:The cohomology of the universal differential calculus is always trivial. But this d
not hold for its reductions, in general. For example, form.2, the group lattice (Zm ,$1%) has
nontrivial cohomology. There is only a single basis 1-formu1 and the 2-form relations enforc
(u1)250 so that there are no nonvanishing 2-forms. In particular, du150. But we have seen in
example 2.2 thatu1 is not exact. The cohomology of the group lattice (Z4 ,$1,2%), for example, is
trivial. j

A. Action of differentiable maps on forms

According to Sec. III, a mapf:G→G is differentiable~with respect to a group lattice struc
ture determined by a choiceS,G) if the pull-backf* extends fromA to the first-order differ-
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ential calculus, i.e., it also acts onV1 as anA-bimodule homomorphism and satisfiesf* (df )
5d(f* f ). Moreover, we can extend it to the whole ofV as an algebra homomorphism via

f* ~vv8!5~f* v!~f* v8!. ~4.17!

Lemma 4.3: For a differentiable mapf:G→G we have

f* +d5d+f* ~on V!. ~4.18!

Proof: Sincef is differentiable, the formula holds on 0-forms. If it holds onr-forms, then

f* d~ f dv!5f* ~df dv!5~f* df !f* dv5~df* f !df* v5d@~f* f !df* v#5df* ~ f dv!.

Since every (r 11)-form can be written as a sum of terms likef dv with f PA andvPV r , the
formula holds for (r 11)-forms and thus onV by induction. j

By definition, a differentiable mapf:G→G preserves the 1-form relations. Sincef* com-
mutes with d, it also preserves the 2-form relations.

Lemma 4.4: For a mapf:G→G, which is differentiable and a bijection, we have

f* u5u, ~4.19!

D+f* 5f* +D. ~4.20!

Proof: First we note that~2.14! can be written as

u5 (
~g,g8!¹I

egdeg82 (
gPG

egdeg5 (
g,g8PG

egdeg82 (
gPG

egdeg.

Then, usingf* eg5ef21(g), we find

f* u5 (
g,g8PG

ef21~g!def21~g8!2 (
gPG

ef21~g!def21~g!5u

sincef is bijective. The second assertion now follows from

@f* u,f* v#2f* D~v!5f* dv5df* v5@u,f* v#2D~f* v!.
j

B. The structure of the space of 2-forms

Let S(1) denote the subset ofS, the elements of which can be written as products of two ot
elements ofS, i.e., S(1)5S2ùS whereS25$hh8uh,h8PS%. Furthermore, letS(2) be the set of
elements ofG which do not belong toSe , but can be written as a producthh8 for someh, h8
PS. HenceS(2)5S2\Se . Since for every element ofS(2) there is a 2-form relation, the number o
independent 2-forms isuSu22uS(2)u. Now we have a decompositionS3S5$(h,h21)uh
PS(0)%ø$(h,h8)uhh8PS(1)%ø$(h,h8)uhh8PS(2)% which defines a direct sum decomposition
V2. Introducing projections

p~e!~uh1uh2!5dh1h2

e uh1uh2, ~4.21!

p~h!~uh1uh2!5dh1h2

h uh1uh2 ~hPS~1!!, ~4.22!

p~g!~uh1uh2!5dh1h2

g uh1uh2 ~gPS~2!!, ~4.23!
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which extend to leftA-module homomorphismsp(e) ,p(h) ,p(g) :V2→V2, every 2-formcPV2

can be decomposed with the help of the identity

c5S p~e!1 (
hPS~1!

p~h!1 (
gPS~2!

p~g!Dc. ~4.24!

The three parts of this decomposition correspond, respectively, to biangles, triangles, and
rangles, which we introduced in Sec. II.

A relation between elements ofS which leads to a 2-form relation has the formh1h185h2h28
5¯5hkhk8¹Se . The latter then implies the 2-form relation

uh1uh181uh2uh281¯1uhkuhk850. ~4.25!

Let us now assume that~G,S! is bicovariant. Givenh1 ,h2PS with h1h2¹Se , we then obtain a
chain ¯5h0h15h1h25h2h35¯ where h05ad(h1)h2 and h35ad(h2

21)h1 , and so forth.
SinceS is assumed to be finite, only a finite part of the chain contains pairwise different mem
This means that the chain must actually consist of ‘‘cycles,’’ i.e., subchains of the formh1h2

5h2h35¯5hr 21hr5hrh1 . A relation likeuhuh850, consisting of a single term, is only possib
if h85h andh2¹Se .

Example 4.1:For the permutation groupS3 and S5$(12),(13),(23)% ~see example 2.4! we
haveS(0)5S @since (i j )25e], S(1)5B, andS(2)5$(123),(132)%. As a consequence of the cycle
(12)(13)5(13)(23)5(23)(12)5(123) and (12)(23)5(23)(13)5(13)(12)5(132) the three ba-
sic 1-formsu (12),u (13),u (23) have to satisfy the two 2-form relations

u~12!u~13!1u~13!u~23!1u~23!u~12!50, u~12!u~23!1u~23!u~13!1u~13!u~12!50.

Hence there are 322257 independent 2-forms:u (12)u (12), u (13)u (13), u (23)u (23) and, say,
u (13)u (23), u (23)u (12), u (12)u (23), u (23)u (13).

If we chooseS5$(123),(132)%, thenSe is a subgroup and we have the universal calculus
the two cosets ofSe in S3 . Then there are no 2-form relations. j

Example 4.2:The alternating groupA4 has the following elements,

e, ~123!,~243!,~134!,~142!, ~132!,~234!,~143!,~124!, ~12!~34!,~13!~24!,~14!~23!

grouped into conjugacy classes. ChoosingS5$(123),(243),(134),(142)%, the group lattice is
connected. As a consequence of

~123!~134!5~134!~243!5~243!~123!5~124!5~142!2,

~123!~243!5~243!~142!5~142!~123!5~143!5~134!2,

~123!~142!5~142!~134!5~134!~123!5~234!5~243!2,

~134!~142!5~142!~243!5~243!~134!5~132!5~123!2,

we obtain four 2-form relations, so there are 12 independent 2-forms. Note that in this ex
there are two different cycles for each of the elements~124!, ~143!, ~234!, ~132! of S(2) . j

Remark:For a bicovariant differential calculus a bimodule isomorphisms:V1
^AV1→V1

^AV1 exists6,34 such that

s~uh1^Auh2!5uad~h1!h2^Auh15uh0^Auh1 ~4.26!

with inverse

s21~uh1^Auh2!5uh2^Auad~h2
21

!h15uh2^Auh3. ~4.27!
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These formulas show that the 2-form relations, and moreover each cycle, is invariant uns.
Woronowicz34 introduced the wedge product

uh∧uh85 1
2~ id2s!~uh

^Auh8!. ~4.28!

A particular consequence is

uh∧uh50. ~4.29!

Furthermore, for every cycle there is a 2-form relation. For example,

uh1∧uh21¯1uhr∧uh150 ~4.30!

for the cycleh1h25h2h35¯5hrh1 . This means that the Woronowicz wedge product refines
2-form relations by decoupling cycles belonging to the samegPS(2) and imposing a separat
2-form relation for each cycle. In the example of the alternating groupA4 , this yields eight
conditions from the previous four, e.g., instead of

u~123!u~134!1u~134!u~243!1u~243!u~123!1u~142!u~142!50 ~4.31!

we obtain

u~123!∧u~134!1u~134!∧u~243!1u~243!∧u~123!505u~142!∧u~142!. ~4.32!
j

Example 4.3:Besides the unit elemente, the groupS4 of permutations of four objects has th
following 23 elements,

~12!,~13!,~14!,~23!,~24!,~34!,

~123!,~124!,~132!,~134!,~142!,~143!,~234!,~243!,

~12!~34!,~13!~24!,~14!~23!,

~1234!,~1243!,~1324!,~1342!,~1423!,~1432!,

grouped into conjugacy classes. ChoosingS5$(12),(13),(14),(23),(24),(34)%, we find S(0)

5S, S(1)5B and

S~2!5$~123!,~132!,~124!,~142!,~134!,~143!,~234!,~243!,~12!~34!,~13!~24!,~14!~23!%.

Hence there are 11 2-form relations and thus 62211525 independent products of two of th
1-formsuh, hPS. Six of them are of the formu ( i j )u ( i j ), iÞ j . These would vanish if we require
the Woronowicz wedge product. j

Given a 2-form

c5 (
h,h8PS

ch,h8u
huh8 ~4.33!

the biangle and triangle coefficient functionsch,h8 are uniquely determined, but there is an a
biguity in the quadrangle coefficients due to the 2-form relations~4.2!. As a consequence of th
latter, writing

c~g!5p~g!c5 (
h,h8PS

č~g!h,h8u
huh8 ~4.34!
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for gPS(2) , there is a freedom of gauge transformationsč (g)h,h8°č (g)h,h81C (g)dhh8
g with an

arbitrary functionC (g) on G. The differences

c~g!h,h8;ĥ,ĥ8ªč~g!h,h82č~g!ĥ,ĥ8 ~4.35!

are gauge invariant for all pairsh, h8 and ĥ, ĥ8 with ĥĥ85hh85g. As a consequence, th
quadrangle componentsof c ~with hh85g) defined in a symmetric way by

c~g!h,h8ª(
ĥ,ĥ8

d ĥĥ8
g c~g!h,h8;ĥ,ĥ85ugučh,h82 (

ĥ,ĥ8
d ĥĥ8

g č ĥ,ĥ8 ~4.36!

with uguª(h,h8dhh8
g are independent of the choice of the coefficient functionsč (g)h,h8 ~from their

gauge equivalence class!. They satisfy(h,h8dhh8
g c (g)h,h850 and

c~g!5
1

ugu (
h,h8PS

dhh8
g c~g!h,h8u

huh8. ~4.37!

The equationc (g)50 for a 2-form c is equivalent to the vanishing of all the differenc
c (g)h,h8;ĥ,ĥ8 wherehh85ĥĥ85g.

Example 4.4:ConsiderG5S3 with S5$(12),(13),(23)% ~see example 4.1!. A 2-form

c5 (
~ i j !,~kl !PS

c~ i j !,~kl !u
~ i j !u~kl !5 (

~ i j !PS
c~e!~ i j !,~ i j !u

~ i j !u~ i j !1 (
~ i j !,~kl !PS

~ i j !~kl !5~123!

č~~123!!~ i j !,~kl !u
~ i j !u~kl !

1 (
~ i j !,~kl !PS

~ i j !~kl !5~132!

č~~132!!~ i j !,~kl !u
~ i j !u~kl ! ~4.38!

then has biangle componentsc (e)( i j ),(i j ) , (i j )PS. The quadrangle components are

c~~123!!~12!,~13!52č~~123!!~12!,~13!2č~~123!!~13!,~23!2č~~123!!~23!,~12! ,

c~~123!!~13!,~23!52č~~123!!~13!,~23!2č~~123!!~12!,~13!2č~~123!!~23!,~12! , ~4.39!

c~~123!!~23!,~12!52č~~123!!~23!,~12!2č~~123!!~12!,~13!2č~~123!!~13!,~23! ,

and similar expressions forc ((132))(i j ),(kl) . j

V. DISCRETE AND BASIC VECTOR FIELDS

A vector field is by definition an expression of the formX5(hPSXh
•,h with XhPA. In this

section we explore the properties of special classes of vector fields.

A. Discrete vector fields

A vector field will be calleddiscreteif it has the property

X~ f f 8!5~X f ! f 81 f ~X f8!1~X f !~X f8! ; f , f 8PA . ~5.1!

As a consequence, its components satisfy

XhXh85dh,h8Xh ;h,h8PS. ~5.2!
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This implies that, at every siteg, the componentsXh(g) all vanish except for at most one com
ponent which must then be equal to 1. In particular, the vector fields,h satisfy ~5.1! and are
therefore discrete.

Discrete vector fields are precisely those vector fields which describe a deterministic m
on a group lattice in the following way, whereS specifies the possible ‘‘directions.’’ A ‘‘particle’’
moving on a group lattice stops if it reaches a siteg whereXh(g)50 for all hPS. It moves further
to gh if Xh(g)51 for somehPS.

In the following, a visualization is helpful. IfXh(g)51, we assign an ‘‘X-arrow’’ to the siteg
pointing to the sitegh in the group lattice.

Remark:An important generalization of discrete vector fields is given by vector fieldP
5(hPSPh

•,h satisfyingPh>0 and(hPSPh<1. In the context of random walks,Ph(g) may be
interpreted as the probability for a move fromg to gh. Then Pe(g)ª12(hPSPh(g) is the
probability for a rest at the siteg. See also Refs. 33 and 37. j

It is convenient to introduceXe such thatXe(g)51 if Xh(g)50 for all hPS, and Xe(g)
50 otherwise. Then we have the useful formula

~ I 1X! f 5 (
hPSe

XhRh* f ~5.3!

whereI is the identity onA.
Lemma 5.1: If X is a discrete vector field, then I1X is an endomorphism ofA and there is a

mapfX :G→G such that

I 1X5fX* on A. ~5.4!

Proof: Using ~5.1!, it is easily verified thatI 1X is an algebra homomorphismA→A. Then
Theorem 3.1 ensures the existence of a mapfX :G→G with I 1X5fX* . j

A more concrete description of the mapfX is obtained below. Since for eachgPG there is
precisely onehPSe with Xh(g)51, a discrete vector fieldX determines a mapsX :G→Se . Then

X5 (
hPS

Xh
•,h5 (

gPG
eg
•,sX~g!5

..,sX
~5.5!

~where,e50). Conversely, every maps:G→Se defines a discrete vector field via the last fo
mula. In fact, this correspondence between discrete vector fields and mapsG→Se is easily seen to
be bijective.

Let us now define

fX~g!ªgsX~g!. ~5.6!

Then we obtain

~fX* f !~g!5 f ~fX~g!!5 f ~gsX~g!!5 (
hPSe

Xh~g!~Rh* f !~g! ~5.7!

so that

fX* 5 (
hPSe

XhRh* on A. ~5.8!

Now ~5.3! shows thatI 1X5fX* on functions, in accordance with Lemma 5.1.
For a mapf:G→G the expressionf* 2I is in general not a vector field. For example, sin

(X2f )(g) in general also depends on the values off at over-next neighbors,fX
22I 52X1X2 is

not a vector field.
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Lemma 5.2: For a mapf:G→G the expressionf* 2I is a discrete vector field if and only i
(g,f(g))¹I for all gPG.

Proof: If ( g,f(g))¹I, theng21f(g)PSe and thus defines a maps:G→Se such thatf(g)
5gs(g). This map defines a discrete vector fieldX such thatf* 5fX* 5I 1X. The converse is a
simple consequence of~5.6!. j

Discrete vector fields need not generate differentiable maps. In fact, sinceI 1,h5Rh* , the
corresponding condition for the discrete vector fields,h is ad(h21)h8PS for all h8PS ~see Sec.
III !. This condition is also needed for right covariance of the group lattice differential calculus
is weaker than that.

Theorem 5.1:For a discrete vector field X, the following conditions are equivalent.

(1) fX is differentiable.
(2) (gsX(g))21g8sX(g8)PSe for all g, g8 with g21g8PS.
(3) For each discrete vector field Y there is a discrete vector field Z such thatfY* fX* 5fX* fZ* .38

Proof: Using ~5.6!, the equivalence of~1! and ~2! follows from ~3.5!. With X5(hPSe
Xh

•,h , Y5(hPSe
Yh

•,h andZ5(hPSe
Zh

•,h , the formula in~3! reads

(
h1 ,hPSe

Yh~Rh* Xh1!Rhh1
* 5 (

h1 ,h8PSe

Xh1~Rh1
* Zh8!Rh1h8

* .

Hence, for allg, g8PG we obtain

(
h1 ,hPSe

Yh~g!Xh1~gh!dhh1

g8 5 (
h1 ,h8PSe

Xh1~g!Zh8~gh1!dh1h8
g8 .

SinceXh(g)5dsX(g)
h , this becomes

(
h1 ,hPSe

dsY~g!
h dsX~gh!

h1 dhh1

g8 5 (
h1 ,h8PSe

dsX~g!

h1 dsZ~gh1!
h8 dh1h8

g8

and thus

sX~g!21sY~g!sX~gsY~g!!5sZ~gsX~g!!PSe . ~5.9!

Since for allg, g8 with g21g8PS there is a discrete vector fieldY such thatg21g85sY(g), we
have shown that~3! implies ~2!. Conversely, if~2! holds, then we definesZ(gsX(g)) by the
left-hand side of the above formula. This determines a discrete vector fieldZ at all sites except
those which have an outgoingX-arrow but no incoming one. At those sitesg8, we can choose
arbitrary values ofsZ(g8). Then~3! holds. j

Example 5.1:If ad(h21)S,S for all hPS, then a maps:G→Se , with the property that for all
gPG we haves(gh)5s(g) for all hPSe , solves condition~2! of Theorem 5.1 and thus define
a discrete vector fieldX for which fX is differentiable. But thenX50 or X5,h for somehPS ~on
each connected component of the group lattice!.

Another example, which trivially satisfies condition~2!, is given by a map withs(gh)
5h21s(g)h. j

A discrete vector fieldX generates a discrete flow onA via (I 1X)n, n50,1,2,...~see also the
Appendix!. We sometimes refer tofX* 5I 1X as theflow of X. If the flow is differentiable, then it
extends toV. Moreover, iffX is also invertible, it induces a mapfX* on the spaceX of vector
fields via ~3.6!.
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B. Discrete vector fields with invertible flow

The following result characterizes discrete vector fields with invertible flow.
Theorem 5.2: Let X5(hPSXh

•,h be a discrete vector field. The following conditions a
equivalent:

(1) I1X is an automorphism ofA.
(2) For every g with Xh(g)51 for some hPS, there is precisely one h8PS such that

Xh8(gh821)51. If Xh(g)50 for all hPS, then also Xh(gh21)50 for all hPS.39

(3) (hPSe
Xh(gh21)51 for all gPG.

Proof: We already know thatI 1X is a homomorphism~Lemma 5.1!. Hence I 1X is an
automorphism if and only if it is bijective, which means that (I 1X) f 85 f has a unique solutionf 8
for eachf PA. This equation reads

(
h8PSe

Xh8~g! f 8~gh8!5 f ~g! ;gPG. ~5.10!

‘‘(1) ⇒(2)’’: We assume thatI 1X is an automorphism. Letg be such thatXh(g)50 for all h

PS. Suppose thatXh8(gh821)51 for someh8PS. Then ~5.10! implies f 8(g)5 f (g) and also
f 8(g)5 f (gh821) in contradiction toI 1X being surjective. Hence the second part of condition~2!
holds.

Let g be such thatXh(g)51 for somehPS. Suppose thatXh8(gh821)50 for all h8PS. Then
~5.10! places no restrictions onf 8(g) which contradicts thatI 1X is injective. Hence
Xhg(ghg

21)51 for somehgPS. Now suppose that there are two different elementshg , hg8 with
this property. Then~5.10! implies f 8(g)5 f (ghg

21)5 f (ghg8
21) which restrictsf. This contradicts

that I 1X is surjective. Hence the first part of condition~2! holds.
‘‘(2) ⇒(3)’’: This is easily verified.
‘‘(3) ⇒(1)’’: Multiplying ~5.10! with Xh(g), hPSe , and using~5.2! leads toXh(g)( f 8(gh)
2 f (g))50 for all gPG andhPSe . Hence, for everyg8PG such thatg821gPSe we have

Xg821g~g8!@ f 8~g!2 f ~g8!#50.

Condition~3! implies that for eachg there is exactly oneg8 such thatXg821g(g8)51. The above
equation then defines a functionf 8 on G. In fact, the latter is given by

f 8~g!5 (
hPSe

Xh~gh21! f ~gh21!.

HenceI 1X is surjective. Furthermore,f 50 enforcesf 850 so thatI 1X is also injective. j

If I 1X is invertible, according to condition~2! of Theorem 5.2 there is a mapr X :G→Se such
that Xh(gh21)5dh,r X(g), i.e.,

Rh21* Xh5dh,r X. ~5.11!

WhereassX determines the outgoingX-arrow at a siteg with sX(g)Þe, the mapr X determines the
corresponding incomingX-arrow.

Lemma 5.3: The components of a discrete vector field X with invertible flow satisfy

~Rh21* Xh!~Rh821* Xh8!5dh,h8Rh21* Xh ;h,h8PS. ~5.12!

Proof: This follows immediately from~5.11!. j

As a consequence of~5.11!, both maps are related by
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sX~grX~g!21!5r X~g!. ~5.13!

Since the incomingX-arrow atgsX(g) is the outgoingX-arrow atg, also the following relation
holds:

r X~gsX~g!!5sX~g!. ~5.14!

In particular, these relations implyr X(g)5e if and only if sX(g)5e.
Lemma 5.4: Let X be a discrete vector field with invertible flow. Then

fX
21~g!5grX~g!21. ~5.15!

Proof: Using ~5.6!, ~5.13!, and~5.14!, we find

fX~grX~g!21!5grX~g!21sX~grX~g!21!5grX~g!21r X~g!5g,

fX~g!r X~fX~g!!215gsX~g!r X~gsX~g!!215gsX~g!sX~g!215g.
j

As a consequence of~5.15!, on A we have

~fX
21!* 5Rr

X
21* 5 (

hPSe

dh,r XRh21* 5 (
hPSe

~Rh21* Xh!Rh21* . ~5.16!

Lemma 5.5: If I1X with a discrete vector field X is invertible onA, its inverse is I1X̌ with40

X̌5(hPSdh,r X
•,h21.

Proof: This follows immediately from~5.11! and ~5.16!. j

Theorem 5.3:Let X be a discrete vector field with invertible flow. ThenfX is differentiable if
and only iffX*

21YfX* is a discrete vector field for all discrete vector fields Y.
Proof: According to Theorem 5.1,fX is differentiable if and only if for each discrete vecto

field Y there is a discrete vector fieldZ such thatfY* fX* 5fX* fZ* . Using

fX*
21YfX* 5fX*

21~fY* 2I !fX* 5fX*
21fY* fX* 2I

the last condition translates to

fX*
21YfX* 5fZ* 2I 5Z.

j

Corollary: Let X be a discrete vector field with differentiable and invertiblefX . ThenfX*
@defined by~3.6!# maps discrete vector fields to discrete vector fields.

Proof: This follows directly from~3.8! and Theorem 5.3. j

C. Another extension of the flow to forms and vector fields on a bicovariant group
lattice

In this subsection we assume that the group lattice is bicovariant, so thatRh is differentiable
for all hPS ~see Sec. III!. Let X be a discrete vector field. Then

RXvª (
hPSe

XhRh* v ~5.17!

directly extends~5.8! from functions to arbitrary forms.
Remark:Bicovariance does not imply thatfX is differentiable. Even iffX is differentiable,

we have in generalfX* vÞRXv ~see example 5.2 below!. Hence, there are two natural actions
forms,fX* andRX . They coincide on functions, but differ, in general, on forms. j
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Lemma 5.6: If X is a discrete vector field with invertible flow on a bicovariant group latt
then RX is invertible onV with

RX
215 (

hPSe

~Rh21* Xh!Rh21* . ~5.18!

Proof: We have

(
hPSe

~Rh21* Xh!Rh21* RX5 (
h,h8PSe

~Rh21* Xh!Rh21* Xh8Rh8
* 5 (

h,h8PSe

~Rh21* XhXh8!Rh21h8
*

5 (
hPSe

~Rh21* Xh!I 5I

where we used~5.2! and condition~3! of Theorem 5.2 in the last steps. In a similar wa
RX(hPSe

(Rh21* Xh) Rh21* 5I is obtained with the help of~5.12!. j

Assuming thatRX is invertible onA, following ~3.6! we define a mapRX* on vector fields
YPX by

^RX* Y,a&5RX
21^Y,RXa&. ~5.19!

Lemma 5.7: Let X be a discrete vector field with invertible flow on a bicovariant group lat
Then RX* acts onX as follows,

RX* Y5 (
hPSe

~Rh21* Xh!•Rh* Y. ~5.20!

Proof: This is obtained from~5.19! usingRX
215fX

* 21 on functions,~5.16!, ~5.2!, and~3.6!
applied to the mapRh . j

With the help of~3.8!, ~5.11!, and ad(h)21S5S for hPSe , ~5.20! reads

RX* Y5 (
hPSe

~Rh21* Xh!•Rh21* Y Rh* 5 (
h,h8PSe

~Rh21* Xh!~Rh21* Yad~h!h8!•,h8

5 (
h,h8PSe

dh,r X ~Rh21* Yad~h!h8!•,h8 . ~5.21!

If Y is a discrete vector field, further evaluation leads to

RX* Y5 (
h8PSe

dad~r X!h8,sY+Rr X
21
•,h85,ad~r

X
21!~sY+Rr X

21!5 (
gPG

eg
•,ad~r X~g!21!sY~grX~g!21!

~5.22!

wherer X
21(g)ª(r X(g))21.

Lemma 5.8: Let X be a discrete vector field on a bicovariant group lattice. If RX is invertible
on A, then RX* maps discrete vector fields to discrete vector fields.

Proof: This is a simple consequence of~5.22!. j

D. Basic vector fields

A discrete vector fieldX which at every site has exactly one outgoing and one incom
X-arrow will be calledbasic. This means that for eachgPG there is precisely onehPS such that
Xh(g)51 and precisely oneh8PS such thatXh8(gh821)51. As a consequence,(hPSXh(g)51
~and thusXe50) and(hPSXh(gh21)51.
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Lemma 5.9: A discrete vector field X is basic if and only if I1X is invertible onA and sX has
values in S.

Proof: This is an immediate consequence of Theorem 5.2 and the definition of basic v
fields. j

For a basic vector field, the bijectionfX :G→G given byfX(g)5g sX(g) satisfies

fX* f 5 (
hPS

XhRh* f ~; f PA!. ~5.23!

In particular, the vector fields,h , hPS, are basic and we havef,h
5Rh .

A set of basic vector fields$XhuhPS% forms a basis ofX if for all gPG we haveeg
•$Xhuh

PS%5eg
•$,huhPS%. The elements of the dual basis of 1-forms are determined by^Xh ,ah8&

5dh
h8 . The coefficient matrices in

Xh5 (
h8PS

Xh
h8
•,h8 , ah5 (

h8PS

ah8
h uh8, ~5.24!

which mediate the change of basis are inverse to one another. At eachgPG, these matrices act a
permutations onS. The dual basis 1-forms satisfyahf 5(fXh

* f )ah. Furthermore,(hah5u and

df 5 (
hPS

~Xhf !ah. ~5.25!

Example 5.2:Let us considerS3 with S5$(12),(13),(23)% ~see also example 2.4!. Figure 4
shows three vector fields which form a basis ofX. For the basic vector field

X5~ee1e~123!1e~132!!•, ~12!1~e~12!1e~13!1e~23!!•, ~13!

we obtain sX(e)5sX(123)5sX(132)5(12) and sX(12)5sX(13)5sX(23)5(13), and fX is
differentiable.41 Since uh5(gegdegh, we havefX* (uh)5(gfX* (eg)dfX* (egh). In this way we
obtainfX* (u (12))5u (13). On the other hand, with

RX5~ee1e~123!1e~132!!R~12!
* 1~e~12!1e~13!1e~23!!R~13!

* ,

we find

RX~u~12!!5~ee1e~123!1e~132!!u~12!1~e~12!1e~13!1e~23!!u~23!,

FIG. 4. A basis of basic vector fields onS3 with respect toS5$(12),(13),(23)%.
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which is different fromfX* (u (12)). Hence, in general we havefX* ÞRX on forms. j

Example 5.3:Let us chooseG5Z33Z3 with S5$(0,1),(1,0)%. Then

X~0,1!5e~0,0!1e~1,0!1e~0,1!1e~2,1!1e~1,2!1e~2,2!, X~1,0!5e~2,0!1e~1,1!1e~0,2!

are the components of a basic vector field. The corresponding mapfX is not differentiable. Since
(1,0)21(2,0)5(1,0)PS ~using a multiplicative notation for the group operation!, but
sX((1,0))21(1,0)21(2,0)sX((2,0))¹Se , this follows using Theorem 5.1. We can also apply~3.5!
directly: there is an arrow from~1, 0! to ~2, 0! in the group lattice, butfX((1,0))5(1,1) is not
connected withfX((2,0))5(0,0). j

In the following we restrict our considerations to bicovariant group lattices@so that ad(S)S,S
and ad(S)21S,S].

Lemma 5.10: If X is a basic vector field, then RX is invertible onV with

RX
215 (

hPS
~Rh21* Xh!Rh21* . ~5.26!

Furthermore, for YPX we have

RX* Y5 (
hPS

~Rh21* Xh!Rh* Y. ~5.27!

Proof: Since a basic vector field has an invertible flow andXe50, the first equation follows
directly from Lemma 5.6 and the second from Lemma 5.7. j

Two basic vector fieldsX,Y form a biangle if sY•sX5e, which associates with eachgPG a
group lattice biangle.42 Three basic vector fieldsX,Y,Zconstitute atriangle if sY•sX5sZ , which
assigns to eachgPG a group lattice triangle. Furthermore, four basic vector fieldsX,Y,W,Zmake
up aquadrangleif sY•sX5sW•sZ¹Se . This maps a group lattice quadrangle to eachg. Below we
express these conditions more directly in terms of the vector fields with the help of the next

Lemma 5.11: For basic vector fields X and Y the following identity holds,

RXRRX* Y5RsY•sX
* . ~5.28!

Proof:

RXRRX* Y5 (
h,h1 ,h2PS

Xh1~Rh1h21* Xh!~Rh1h21* Yad~h!h2!Rh1h2
*

5 (
h1 ,h2PS

Xh1Yad~h1!h2Rh1h2
*

5 (
gPS2

S (
h1 ,h2PS

dh1h2

g Xh1Yad~h1!h2DRg*

5 (
gPS2

S (
h1 ,h2PS

dh2h1

g Xh1Yh2DRg* 5 (
gPS2

dsY•sX

g Rg* 5RsY•sX
*

using ~5.21! and ~5.12!. j

The above biangle condition is now seen to be equivalent to

RXRRX* Y5I ~5.29!

and the triangle condition can be expressed as
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RXRRX* Y5RZ . ~5.30!

Furthermore, the above quadrangle condition takes the form

RXRRX* Y5RZRRZ* WÞRX8 ~5.31!

for all discrete vector fieldsX8.

E. Lie derivative with respect to a discrete vector field

The notion of the Lie derivative is easily taken over from continuum differential geomet
the discrete framework of group lattices. LetX be a discrete vector field. On functions, the L
derivative with respect toX is given by

£Xf 5fX* f 2 f 5~ I 1X! f 2 f 5X f . ~5.32!

If fX is differentiable, we can extend the Lie derivative to formsvPV via

£Xv5fX* v2v ~5.33!

so that, in particular,

£,h
v5Rh* v2v, £,h

uh85uad~h!h82uh8. ~5.34!

For c, vPV, we also have

£X~cv!5fX* ~cv!2cv5~£Xc!v1c£Xv1~£Xc!£Xv. ~5.35!

AssumingfX to be differentiable and invertible, the Lie derivative acts on vector fields
follows,

£XY5Y2fX* Y5fX
* 21+@X,Y# ~5.36!

using ~3.8!. In particular, withI 1,h5Rh* we obtain

£,h
,h85Rh21* +@Rh* ,Rh8

* #5Rh8
* 2Rad~h21!h8

* . ~5.37!

Since ad(h21)h8PS for differentiableRh , this can be written as

£,h
,h85,h82,ad~h21!h8 ~5.38!

and also in the form

£,h
,h85,h,ad~h21!h82,h8,h ~5.39!

which involves a generalization of the ordinary commutator of vector fields.

F. Inner product of discrete vector fields and forms

In this subsection we extend the inner product~or contraction! ^X,a& of vector fields and
1-forms to forms of higher grade. More precisely, we restrict our considerations todiscretevector
fields X with a differentiableflow, i.e., the associated mapfX is assumed to be differentiable.

For all f PA andaPV1 we require

X4 f 50, X4a5^X,a&. ~5.40!
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Furthermore, for a discrete vector fieldX with differentiable mapfX , we demand

X4~vv8!5~X4v!fX* v81~21!rv~X4v8! ~5.41!

for all vPV r andv8PV.43 In particular, using~2.16! and the Leibniz rule for d, we obtain

X~ f f 8!5X4d~ f f 8!5~X f !fX* f 81 f X f8, ~5.42!

which is a reformulation of~5.1!.
It is easily verified that~5.41! is compatible with theA-bimodule structure ofV, i.e.,

X4@(v f )v8#5X4@v( f v8)#. The consistency with the commutation relations~2.10! follows
from

X4~uhf !5~X4uh!fX* f 5Xh(
h8

Xh8Rh8
* f 5XhRh* f 5~Rh* f !~X4uh!5X4@~Rh* f !uh#

~5.43!

which holds for a discrete vector fieldX.
The definition~5.41! is also consistent with the 2-form relations. Let (g,g8)PI, so that 0

5egdeg852(deg)eg8. The corresponding 2-form relation is degdeg850. Applying X4 to the left
hand side, we obtain

X4~degdeg8!5~X4deg!fX* ~deg8!2degX4deg85~Xeg!d~fX* eg8!2deg~Xeg8!

5~fX* eg2eg!d~fX* eg8!2deg~fX* eg82eg8!

5fX* ~egdeg8!2egd~fX* eg8!2degfX* eg82~deg!eg852d~egfX* eg8!. ~5.44!

But the last expression vanishes since the functionegfX* eg8 vanishes identically. Indeed, it obvi
ously vanishes at elements ofG different from g. Evaluated atg, it yields (fX* eg8)(g)
5eg8(fX(g))5eg8(gs(g)) which vanishes since (g,g8)PI.

Remark:Let h1h25h2h35¯5hrh1 be a cycle of a bicovariant group lattice. Then

,h4~uh1uh21uh2uh31¯ !5dh
h1Rh* uh22dh

h2uh11dh
h2Rh* uh32dh

h3uh21¯ ,

where the second and third terms on the right-hand side cancel since ad(h2)h35h1 , and the same
happens with the remaining terms. In particular, the first term cancels the last one. Sin
2-form relations are sums of cycles, this means that,h4 applied to a 2-form relation automaticall
vanishes. In fact, we have the stronger result that,h-contractions with any cycle vanish~which
perfectly matches the Woronowicz wedge product!. A particular consequence is that the conditi
c50 for a 2-form c5ch1 ,h2

uh1uh2 is stronger than,h4c50 for all hPS. For example, the
vanishing of,h1

4,h2
4c5ch2 ,ad(h

2
-1)h1

2ch1 ,h2
obviously does not imply vanishingc. j

Lemma 5.12: If X is a basic vector field with differentiable flow, then

X4D~v!1D~X4v!50 ~;vPV!. ~5.45!

Proof: For functions the identity is trivially satisfied. Let us prove it first for 1-forms. A ba
vector field satisfiesX4u51 and the flow mapfX is a bijection. SincefX is assumed to be
differentiable, we also havefX* u5u according to~4.19!. As a consequence, we find

X4u25~X4u!fX* u2u~X4u!50.

Using

D~@u, f # !5@D~u!, f #5@u22De, f #5@u2, f #
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for f PA, we thus obtain

X4D~df !1D~X4df !5X4D~df !50.

Since every 1-forma is a sum of terms likef 8df with f, f 8PA, the last identity extends to

X4D~a!1D~X4a!5X4D~a!50.

Let us now assume that our assertion holds for differential forms of grade,k. Then we find

X4D~cv!1D~X4~cv!!5X4~D~c!v1~21!rcD~v!!1D~~X4c!fX* v1~21!rcX4v!

5X4D~c!fX* v2~21!rD~c!X4v1~21!r~X4c!fX* D~v!

1cX4D~v!1D~X4c!fX* v2~21!r~X4c!D~fX* v!

1~21!rD~c!X4v1cD~X4v!50

for cPV r , r ,k, andvPV,k, usingfX* +D5D+fX* @see~4.20!#. By induction on the grade o
the argumentv, the formula~5.45! is proven. j

Theorem 5.4:For a basic vector field X with differentiable flow the following (Lie–Cartan)
identity holds,

LXv5X4dv1d~X4v! ~;vPV!. ~5.46!

Proof: With the help of~4.12! and ~5.41!, ~5.45! can be reformulated as follows,

05X4D~v!1D~X4v!

5X4~@u,v#2dv!1@u,X4v#2d~X4v!

5~X4u!fX* v2~21!r~X4v!fX* u2vX4u2X4dv1~21!r~X4v!u2d~X4v!

5fX* v2v2X4dv2d~X4v!

for vPV r , using in the last stepX4u51 andfX* u5u, which hold for a basic vector field with
differentiable flow. Now~5.46! is obtained recalling the definition~5.33!. j

Lemma 5.13: Iff:G→G is an invertible differentiable map and X a discrete vector field with
differentiable flow, then

f* ~X4v!5~f
*
21X!4f* v ~;vPV!. ~5.47!

Proof: For a 1-forma the formula follows from~3.6! ~even more generally for an arbitrar
vector fieldX!. Furthermore, we have

f* @X4~cv!#5f* @~X4c!fX* v1~21!rcX4v#5f* ~X4c!f* fX* v1~21!r~f* c!f* ~X4v!.

Let us assume that the identity holds for grades lower thank. For cPV r , r ,k, andv of grade
lower thank, we then obtain

f* @X4~cv!#5@~f
*
21X!4f* c#f* fX* f* 21~f* v!1~21!r~f* c!~f

*
21X!4f* v

5~f
*
21X!4f* ~cv!

since

f* fX* f* 215f* ~ I 1X!f* 215I 1f
*
21X5ff

*
21X

*
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using ~3.8!. Now the identity follows by induction. j

Lemma 5.14: A discrete vector field X with differentiable flow satisfies

X4X4v50 ~;vPV!. ~5.48!

Proof: Again, we use induction with respect to the grade ofv. We haveX4X4a50 trivially
for aPV1. Next we calculate

X4X4~cv!5X4@~X4c!fX* v1~21!rcX4v#

5~X4X4c!fX*
2v2~21!r~X4c!X4fX* v

1~21!r~X4c!fX* ~X4v!1c~X4X4v!

with the help of Lemma 5.13 and

fX*
21X5fX* X~fX

21!* 5fX* ~fX* 2I !~fX
21!* 5fX* 2I 5X.

This implies that if the assertion holds forv of grade,r , then it also holds for grader. j

VI. CONNECTIONS AND PARALLEL TRANSPORTS

A connectionon a leftA-moduleC is a linear map¹:C→V1
^AC such that

¹~ f E!5df ^AE1 f ¹~E! ~;EPE!. ~6.1!

If ~V, d! is the differential calculus of a group lattice, we have the following result.
Lemma 6.1: Every connection onC is of the form

¹~E!5u ^AE2V~E! ~;EPE!, ~6.2!

whereV:C→V1
^AC satisfies

V~ f E!5 fV~E!. ~6.3!

Conversely, every linear mapV with this property defines a connection via the above formula.
Proof: This is easily verified using~2.15!. j

Writing

V5 (
hPS

uh
^AV,h

~6.4!

with parallel transport operatorsV,h
in the ,h direction,~6.3! leads to

V,h
~ f E!5~Rh21* f !V,h

~E! ~6.5!

using ~2.10!. In particular,

V,h
~egE!5eghV,h

~E!, ~6.6!

which shows that we have a transport in the forward direction. We generalize it to a tran
along an arbitrary vector fieldX by

VX5 (
hPS

~Rh21* Xh!V,h
. ~6.7!

Lemma 6.2: For a basic vector field X,
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VX~ f E!5~RX
21f !VXE. ~6.8!

Proof: Using ~6.7!, ~6.5!, ~5.12!, and~5.26! we obtain

VX~ f E!5 (
hPS

~Rh21* Xh!~Rh21* f !V,h
E

5 (
h,h8PS

~Rh21* Xh!~Rh21* f !~Rh821* Xh8!V,h8
E5~RX

21f !VXE.

j

A connection can be extended to a map¹:V ^AC→V ^AC via

¹~v ^AE!5dv ^AE1~21!rv¹E ;vPV r ,EPE. ~6.9!

Thecurvatureof the connection¹ is the leftA-module homomorphismR:C→V2
^AC defined by

R~E!52¹2E. ~6.10!

More generally,R52¹2 is defined as a mapV ^AC→V ^AC. It has the property

R~v ^AE!5vR~E! ~6.11!

and satisfies thesecond Bianchi identity

~¹R!~E!ª¹~R~E!!2R~¹E!50. ~6.12!

A. Gauge theory

Let C be a rightA-module. ThenCeg, for fixed gPG, is a complex vector space. LetEi(g),
i 51,...,m(g), be a basis of this vector space. In general, its dimension varies withg. In the
following we assume, for simplicity, thatm(g) is independent ofg and finite.44 Choosing an order
E1(g),...,Em(g) for all gPG, we obtain a right A-module basis ofC by setting Ei

ª(gPGEi(g). ThenC is a free rightA-module.
An elementCPC^AV r can be written asC5Ei ^Ac i ~using the summation convention!

with an r-form field c:G→(V r)m transforming according toc°c85gc under the action of a
gauge groupG, corresponding to changes of the basis ofC. A right A-module connection¹ has to
satisfy¹(E^Av)5¹(E)v1E^Adv for all vPV, so that

¹C5¹~Ej !c
j1Ei ^Adc i5Ei ^A~dc i1Aj

i c j !5Ei ^ADc i . ~6.13!

HereA is a gauge potential 1-form and

Dcªdc1Ac ~6.14!

is theexterior covariant derivativeof c with the transformation law (Dc)85gDc.
Similarly, anr-form field w transforming according tow°w85wg21 under the action of the

gauge group corresponds to an element of aleft A-module. Then

Dwªdw2~21!rwA ~6.15!

defines a covariant exterior derivative, i.e., (Dw)85(Dw)g21. Furthermore, we have

~Dw!c1~21!rwDc5d~wc!. ~6.16!

Introducing
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Wªu1A5 (
hPS

Whuh, ~6.17!

which obeys the transformation law

W→W85gWg21, Wh85gWh~Rh* g21!, ~6.18!

under a gauge transformation, and using~4.12!, we obtain

Dc5Wc2~21!rcu2D~c!, ~6.19!

Dw5uw2~21!rwW2D~w!. ~6.20!

From ¹2C5Ei ^AD2c5..Ei ^AF j
ic j originates the curvature 2-form

F5dA1A25W22D~W!2De5 (
h,h8PS

Fh,h8u
huh8, ~6.21!

which satisfies the Bianchi identity

05DFªdF1@A,F#5@W,F#2D~F !. ~6.22!

The biangle, triangle, and quadrangle parts of the curvature 2-form are, respectively, given

F ~e!h,h85WhRh* Wh82I for a biangle hh85e, ~6.23!

F ~h0!h,h85WhRh* Wh82Wh0
for a triangle hh85h0PS~1! , ~6.24!

F ~g!h,h8;ĥ,ĥ85WhRh* Wh82WĥRĥ
* Wĥ8 for a quadranglehh85ĥĥ85gPS~2! . ~6.25!

For 0-form fieldsc andf we write

Dc5 (
hPS

¹,h
cuh, Dw5 (

hPS
~¹,h

w!Whuh. ~6.26!

Then

¹,h
c5WhRh* c2c. ~6.27!

If the group G is unitary and if Wh
215Wh

† , ~where † denotes Hermitian conjugation!, then
c†°c†g21 and we obtain

¹,h
c†5~Rh* c†!Wh

212c†5~¹,h
c!†. ~6.28!

An example of a Lagrangian for the 0-form fieldc is

Lc5 (
hPS

1

2
¹,h

c†¹,h
c5 (

hPS

1

2
~Rh* ~c†c!1c†c2c†WhRh* c2~Rh* c†!Wh

†c! ~6.29!

with corresponding action

Sc5 (
gPG

Lc~g!5 (
gPG

(
hPS

1

2
~2c†c2c†WhRh* c2c†~Rh21* Wh

†c!!~g!. ~6.30!
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In order to build a Lagrangian fromr-form fields,r .0, we need an inner product ofr-forms.
It should satisfy

~ f v, f 8v8!5 f †f 8~v,v8! ~6.31!

~wheref † is the complex conjugate of the functionf !. A natural choice of inner product of 1-form
is then determined by

~uh,uh8!5dh,h8. ~6.32!

As a consequence, the above Lagrangian for a 0-form fieldc can be written as follows,

Lc5 1
2~Dc†,Dc!. ~6.33!

For a biangle or triangleh1h2PSe , we set

~uh1uh2,uhuh8!5dh1 ,hdh2 ,h8. ~6.34!

For a quadrangleh1h25g¹Se and a 2-formc we define

~uh1uh2,c!5c~g!h1 ,h2
~6.35!

wherec (g)h1 ,h2
are the quadrangle components ofc as defined in~4.36!. In particular,

~uh1uh2,uhuh8!5ugudh1 ,hdh2 ,h82dg
hh8 if h1h25gPS~2! . ~6.36!

As a consequence of these definitions, biangle, triangle, and quadrangle 2-forms are orthog
each other. The Yang–Mills Lagrangian for the gauge potentialA then takes the form

LY Mª
1

2m
trS ~p~e!F,p~e!F !1 (

hPS~1!

~p~h!F,p~h!F !1 (
gPS~2!

1

ugu ~p~g!F,p~g!F ! D ~6.37!

and the corresponding action isSYM5(g8PGLYM(g8). From biangles, triangles, and quadrangl
respectively, the following contributions arise:

tr~p~e!F,p~e!F !5 (
h,h8PS

dhh8
e tr~2I 2Wh~Rh* Wh8!2~Rh* Wh8

†
!Wh

†!, ~6.38!

tr~p~h0!F,p~h0!F !5 (
h,h8PS

d
hh8

h0 tr~2I 2Wh0

† Wh~Rh* Wh8!2~Rh* Wh8
†

!Wh
†Wh0

!, ~6.39!

tr~p~g!F,p~g!F !5trS 3uguI 2 (
h1 ,h2 ,h3 ,h4PS

dh1h2

g dh3h4

g ~Rh1
* Wh2

† !Wh1

† Wh3
~Rh3

* Wh4
! D . ~6.40!

These expressions are indeed gauge invariant and thus alsoLYM . The latter generalizes th
Lagrangian of lattice gauge theory to arbitrary group lattices. It involves parallel transportUP

around the special plaquettesP given by biangles, triangles, and quadrangles. Lattice gauge th
models on group lattices (G,S) with S5S21 have previously been considered in Ref. 20 with
action of the form(PPPtr@UP1UP

21# where the sum is over some choice of setP of plaquettes
~not restricted to biangles, triangles, and quadrangles!. In contrast, we have used the natur
differential geometry of the group lattice in order to determine a direct analog of the Yang–
action.
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VII. LINEAR CONNECTIONS

A connection onV1, regarded as a leftA-module, is called alinear connection. We introduce

matricesVh5(Vh,h8
h9 ) with entries inA via

V,h8
~uh!5 (

h9PS
~Rh821* Vh8,h9

h
!uh9 ~7.1!

so that

¹uh5u ^Auh2 (
h8PS

Vh8
h

^Auh8 ~7.2!

with

Vh8
h
ª (

h9PS

Vh9,h8
h uh9. ~7.3!

From the definition of the curvature we obtain

R~uh!52De
^Auh2 (

h8PS

D~uh8! ^AV,h8
~uh!1 (

h8,h9PS

uh8uh9^AV,h9
V,h8

~uh!, ~7.4!

where we used~4.3!, ~4.9!, ~6.2!, and~6.4!.
The torsion of a linear connection is the leftA-module homomorphismU:V1→V2 defined

by

U~a!5da2p+¹a ;aPV1, ~7.5!

wherep is the canonical projectionV1
^AV1→V2. Then

Uh
ªU~uh!5uhu2D~uh!1pV~uh!

5uhu2D~uh!1 (
h8PS

uh8V,h8
~uh!

5 (
h1 ,h2PS

~dh1

h 2dh1h2

h 1Vh1 ,h2

h !uh1uh2 ~7.6!

using ~4.3!, ~4.4!, ~6.2!, ~6.4!, and~7.1!. The torsion extends to a mapU:V ^AV1→V via

U5d+p2p+¹, ~7.7!

wherep now denotes more generally the canonical projectionV ^AV1→V. It has the property

U~v ^Aa!5~21!rvU~a! ~7.8!

for all aPV1 andvPV r . From ~7.7! we obtain thefirst Bianchi identity

d+U1U+¹5p+R ~7.9!

and thus

dUh2uUh1 (
h8PS

Vh8
h Uh85pR~uh! ~7.10!
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or, using~4.12!,

Uhu1D~Uh!2 (
h8PS

Vh8
h Uh852pR~uh!. ~7.11!

Writing

R~uh!5 (
h8PS

Rh8
h

^Auh8 ~7.12!

with Rh8
h PV2, we find

¹~R~uh!!5 (
h8PS

S uRh8
h

2D~Rh8
h

!2 (
h9PS

Rh9
h Vh8

h9D ^Auh8 ~7.13!

using ~6.9!, ~4.13!, and~7.2!. Furthermore,

R~¹uh!5 (
h8PS

S uRh8
h

2 (
h9PS

Vh9
h Rh8

h9D ^Auh8 ~7.14!

so that the second Bianchi identity~6.12! takes the form

D~Rh8
h

!5 (
h9PS

~Vh9
h Rh8

h92Rh9
h Vh8

h9!. ~7.15!

A. A transport of vector fields

Let ¹:V1→V1
^AV1 be a linear connection with parallel transport operatorVX . Via

^Ṽ,h
Y,a&5Rh* ^Y,V,h

a& ~7.16!

a dual ofV,h
is defined which acts on vector fields. From this definition we obtain

Ṽ,h
~ f •Y!5~Rh* f !•Ṽ,h

Y. ~7.17!

In particular,

Ṽ,h
~eg

•Y!5egh21
•Ṽ,h

Y, ~7.18!

which shows that the transport acts in the backward directiongh21←g. Furthermore,~7.1! leads
to

Ṽ,h
,h85 (

h9PS

Vh,h8
h9

•,h9 . ~7.19!

Defining

ṼXª(
hPS

XhṼ,h
~on X!, ~7.20!

~7.16! and ~7.17! generalize, respectively, to

^ṼX Y,a&5RX^Y,VXa& ~7.21!
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and

ṼX~ f •Y!5~RXf !•ṼXY ~7.22!

for a basic vector fieldX, by use of~5.12! and~6.7!. In Sec. VII C we will see that the inverse o
ṼX , provided it exists, is the parallel transport of a linear connection onX, associated with the
linear connection onV1 in a natural geometric way.

Remark:For a symmetric group lattice we may introduceV̂,h
ªṼ,h21

which satisfies~6.5! and
thus defines a connection onX according to Lemma 6.1. j

B. The geometric meaning of „vanishing … torsion

For a biangleh1h25e the vanishing of the corresponding part of the torsion 2-form~7.6!
means

Vh1 ,h2

h 52dh1

h ~7.23!

and thus

Ṽ,h1
~,h2

!52,h1
. ~7.24!

We conclude that the transportṼ preserves a biangle if the corresponding biangle torsion vanis
For a triangleh1h25h0 , the corresponding part of the torsion 2-form~7.6! vanishes if and

only if

Vh1 ,h2

h 5dh0

h 2dh1

h , ~7.25!

which can be written as

Ṽ,h1
~,h2

!5,h0
2,h1

. ~7.26!

Associated with the latter triangle, there is a triangle composed of the two vectors,h1
and,h0

at

gPG, and the vector,h2
at gh1 . The latter vector is backwards parallel transported byṼ,h1

to the

tangent space atg. The condition of vanishing triangle torsion means that the three vectorsg
then form a triangle. In this sense the transport preserves triangles if the triangle torsion va

A corresponding statement also holds for a quadrangleh1h25ĥ1ĥ25g¹Se . If we consider45

Q
~g!h1 ,h2 ;ĥ1 ,ĥ2

h
5Q̌~g!h1 ,h2

h 2Q̌
~g!ĥ1,ĥ2

h
~7.27!

as the associated quadrangle torsion part, its vanishing means

Vh1 ,h2

h 2Vĥ1 ,ĥ2

h
5d ĥ1

h
2dh1

h , ~7.28!

which is equivalent to

Ṽ,h1
~,h2

!2Ṽ, ĥ1
~, ĥ2

!5, ĥ1
2,h1

. ~7.29!

There is a quadrangle composed of the two vectors,h1
and, ĥ1

at gPG, the vector,h2
at gh1 ,

and the vector, ĥ2
at gĥ1 . The latter two vectors are backwards parallel transported byṼ,h1

and

Ṽ, ĥ1
, respectively, to the tangent space atg. The condition of vanishing quadrangle torsion th

has the effect that the resulting four vectors also form a quadrangle in the tangent space ag.
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The presence of biangle, triangle, and quadrangle torsion thus means that a biangle, t
and quadrangle composed of vectors,h in the group lattice is, in general, not mapped byṼ to a
closed polygon in a tangent space.

C. Linear connections on vector fields

Again, let¹:V1→V1
^AV1 be a linear connection with parallel transport operatorVX . Then

^UXY,VXa&5RX
21^Y,a& ~7.30!

for all basic vector fieldsX associates withVX a linear operatorUX :X→X. This definition means
that parallel transport preserves contractions of vector fields and 1-forms. Writing

U,h
,h85 (

h9PS

Rh21* ~Uh!h8
h9
•,h9 ~7.31!

with matricesUh , we find from~7.30! and ~7.1! that

Uh5Vh
21. ~7.32!

In particular, we need theVh to be invertible. Furthermore, from~6.7! we obtain

UX5 (
hPS

~Rh21* Xh!•U,h
. ~7.33!

Lemma 7.1: For basic vector fields X,

UX~ f •Y!5~RX
21f !•UX~Y!. ~7.34!

Proof: Using ~5.12! and ~5.26! we obtain

^UX~ f •Y!,VXa&5RX
21^ f •Y,a&5~RX

21f !RX
21^Y,a&5~RX

21f !^UXY,VXa&

5^~RX
21f !•UXY,VXa&.

j

In particular,

U,h
~ f •Y!5~Rh21* f !•U,h

Y ~7.35!

so that

¹Yªu ^AY2U~Y!, U~Y!ª(
hPS

uh
^AU,h

Y ~7.36!

defines a connection onX, i.e., a linear map¹:X→V1
^AX with the property¹( f •Y)5df ^AY

1 f ¹Y ~see Sec. VI!. Next we establish the relation with the transportṼX introduced in the
previous subsection.

Lemma 7.2: For basic vector fields X,

UX5ṼX
21. ~7.37!

Proof: With the help of~7.17!, ~7.19!, ~7.31!, and ~7.35! we find U,h
Ṽ,h

Y5Y for all vector
fields Y. Using ~5.12! for an arbitrary basic vector fieldX and(hPSXh51, we obtain
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UXṼX5 (
h,h8PS

~Rh21* Xh!•U,h
~Xh8Ṽ,h8

!

5 (
h,h8PS

~Rh21* Xh!~Rh21* Xh8!•U,h
Ṽ,h8

5 (
hPS

~Rh21* Xh!•U,h
Ṽ,h

5 (
hPS

XhI 5I .

j

Let us also define

¹,h
YªY2U,h

Y, ¹,h
aªa2V,h

a, ~7.38!

which satisfy

¹,h
~ f a!5~ ,̄hf !a1~Rh21* f !¹,h

a, ¹,h
~ f •Y!5~ ,̄hf !•Y1~Rh21* f !•¹,h

Y, ~7.39!

where

,̄h5,hRh21* 5I 2Rh21* ~7.40!

is the backward difference operator onA. Then the following identity holds:

,̄h^Y,a&5^¹,h
Y,a&1^Y,¹,h

a&2^¹,h
Y,¹,h

a&. ~7.41!

In general, the parallel transport of a discrete vector field along a discrete vector field is
discrete vector field. A parallel transport or connection which maps discrete vector fields
discrete vector fields will be called ‘‘discrete.’’ In this case, the matricesVh represent permuta
tions.

VIII. DIFFERENTIAL CALCULI ON COSET SPACES OF DISCRETE GROUPS

Let H be a subgroup ofG and let G/H denote the set of right cosets ofH in G, i.e., K
PG/H has the formK5Hg for somegPG. The algebraAG/H of complex valued functions
F:G/H→C can be naturally identified with a subalgebra of the algebraA5AG of functions onG.
Since the cosets form a partition ofG, using our notation~3.2! we find eKeK85dK,K8eK and
(KPG/HeK51. As a consequence, each elementFPAG/H has a unique decompositionF
5(KPG/HF(K)eK. The right action ofG on G induces a right action onG/H:

Rg* F5 (
KPG/H

F~K !Rg* eK5 (
KPG/H

F~K !eKg21
. ~8.1!

Let ~G,S! be a group lattice. The 1-forms$uhuhPS% then generate anAG/H-bimoduleVG/H
1

such that

uheK5~Rh* eK!uh5eKh21
uh ~8.2!

and

deK5 (
hPS

~eKh21
2eK!uh ~8.3!

defines a linear map d:AG/H→VG/H
1 which satisfies
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d~FF8!5~dF !F81FdF8 ~8.4!

for all F, F8PAG/H , so that (VG/H
1 ,d) is a first-order differential calculus overAG/H . It is

important to note, however, thatVG/H
1 is not, in general, generated byAG/H , i.e.,

AG/H(dAG/H)AG/H is smaller thanVG/H
1 .46 In any case, the first-order differential calculus e

tends to a differential calculus (VG/H ,d) overAG/H . A closer inspection shows that the latter
simply obtained from the group lattice differential calculus~V, d! by restrictingAG to the subal-
gebra of functions corresponding toAG/H .

Drawing an arrow from a point representing a cosetK to a point representing a cosetK8
whenever there is anhPS such thatK85Kh, we obtain a digraph. Thiscoset digraph47 is also
known as theSchreier diagramof the triple~G,S,H! ~see Ref. 16, for example!. In contrast to the
digraphs~group lattices! considered in the previous sections, coset digraphs may have mu
arrows between two sites and even loops~i.e., arrows from a site to itself!. Indeed, whenever we
have differenth, h8PS such thatHh5Hh8, then there are multiple arrows in a coset digraph. T
resulting discrete geometry is therefore more complex than the one determined by~ordinary!
differential calculi on the algebra of functions on the corresponding set of points. Such a g
alization may prove to be relevant for the description of electric circuits, for example.

Example 8.1:Let G5Z25$0,1%, the cyclic group of order 2 with group operation the additi
modulo 2. With S5$1%, we haveS(0)5S, S(1)5S(2)5B. ChoosingH5G, the coset space
consists of a single element only and the algebra of functions on it is thereforeC. The 1-formu1

corresponds to a loop~see Fig. 5!. Then we haveVZ2 /Z2

r 5spanC$(u
1) r% for r .0. According to

~4.3!, the action of d on forms is determined by du152u1u1 together with the Leibniz rule. As a
consequence, du2r50 and du2r 1152(u1)2(r 11). j

Example 8.2:ChoosingZ3 with S5$1,2% and passing to the single point coset spaceZ3 /Z3 ,
one remains with two 1-formsuh, h51,2. According to~4.3!, the exterior derivative then acts a
follows,

du152~u1!22~u2!21u1u21u2u1, ~8.5!

FIG. 5. The symmetric digraph of (Z2 ,$1%) and the corresponding coset graph corresponding to the choiceH5Z2 .

FIG. 6. Group lattice of (Z6 ,$1,2,3%) and the coset digraph forH5$0,2,4%.
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du252~u2!22~u1!21u1u21u2u1. ~8.6!
j

Example 8.3:An example of a coset digraph containing both loops and multiple links is g
by G5Z6 , the cyclic group of order 6 with group operationu, addition modulo 6. WithS
5$1,2,3% we findS(0)5$3%, S(1)5$2,3%, andS(2)5$4,5% which implies that we have two 2-form
relations and consequently seven independent 2-forms. ChoosingH5$0,2,4%, there are only two

cosets,H and 1uH. SinceH↔
1,3

1uH, H↔
2

H and 1uH↔
2

1uH, we obtain the graph in Fig. 6.j

Example 8.4: Let us consider theS3 group lattice of examples 2.4 and 4.1 withS
5$(12),(13),(23)%. The following table expresses the action ofRh , hPS, on G:

~12! ~13! ~23!

e ~12! ~13! ~23!

~12! e ~123! ~132!
~13! ~132! e ~123!
~23! ~123! ~132! e

~123! ~23! ~12! ~13!
~132! ~13! ~23! ~12!

FIG. 7. The right cosets ofS3 with respect to the subgroupH5$e,(12)%.

FIG. 8. Loops in the coset digraph ofS3 with respect to the subgroupH5$e,(12)% andS5$(12),(13),(23)%.
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Choosing the subgroupH5$e,(12)%, the corresponding right cosets areH, H(13)
5$(13),(123)%, andH(23)5$(23),(132)% ~see Fig. 7!.

The action ofRh , hPS, on the cosets is given by the following table:

~12! ~13! ~23!

H H H(13) H(23)
H(13) H(23) H H(13)
H(23) H(13) H(23) H

SinceH °
(12)

H, H(13)°
(23)

H(13) andH(23)°
(13)

H(23), there are loops in the coset digraph~see
Fig. 8!. This has its origin in the fact thatSùH5$(12)% and thusH(12)5H.48 The 1-forms
eHu (12), eH(13)u (23), and eH(23)u (13) are associated with the loops and therefore cannot be
pressed in terms of functions and differentials. In order to eliminate the loops, one could se
1-forms to zero. As a consequence of such additional relations, the resulting bimodule of 1
is no longer free.

As a further example, let us consider the subgroupH85$e,(123),(132)%. The corresponding
cosets areH8 andH8(12)5$(12),(23),(13)%. The table of the right actionRh on these cosets is
then

~12! ~13! ~23!

H8 H8(12) H8(12) H8(12)
H8(12) H8 H8 H8

In this case, we have multiple arrows in the coset digraph~see Fig. 9!. By imposing the relations
u (12)5u (13)5u (23) on the differential calculus, we could eliminate the multiple links. j

Example 8.5:Let G5S4 and S5$(12),(13),(14),(23),(24),(34)%, as in example 4.3. Fur
thermore, we choose a subgroupH of order 3 with eight cosets:

H5$e,~123!,~132!%, H~12!5$~12!,~23!,~13!%,

H~12!~34!5$~12!~34!,~243!,~143!%, H~14!5$~14!,~1234!,~1324!%,

H~13!~24!5$~142!,~234!,~13!~24!%, H~24!5$~24!,~1423!,~1342!%,

H~14!~23!5$~124!,~14!~23!,~134!%, H~34!5$~34!,~1243!,~1432!%.

FIG. 9. An S3 coset digraph with multiple arrows.
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The table of right actions of the elements ofS on G/H is
~12! ~13! ~14! ~23! ~24! ~34!

H H(12) H(12) H(14) H(12) H(24) H(34)
H(12) H H H(14)(23) H H(13)(24) H(12)(34)
H(14) H(13)(24) H(12)(34) H H(14)(23) H(14)(23) H(14)(23)
H(24) H(14)(23) H(13)(24) H(13)(24) H(12)(34) H H(13)(24)
H(34) H(12)(34) H(14)(23) H(12)(34) H(13)(24) H(12)(34) H

H(12)(34) H(34) H(14) H(34) H(24) H(34) H(12)
H(13)(24) H(14) H(24) H(24) H(34) H(12) H(24)
H(14)(23) H(24) H(34) H(12) H(14) H(14) H(14)

and the coset digraph is drawn in Fig. 10. If we impose the relations

eHu~12!5eHu~13!5eHu~23!, eH~12!u~12!5eH~12!u~13!5eH~12!u~23!,

e~12!~34!Hu~12!5eH~12!~34!u~14!5eH~12!~34!u~24!, eH~34!u~12!5eH~34!u~14!5eH~34!u~24!,

e~13!~24!Hu~13!5eH~13!~24!u~14!5eH~13!~24!u~34!, eH~24!u~13!5eH~24!u~24!5eH~24!u~34!,

e~14!~23!Hu~23!5eH~14!~23!u~24!5eH~14!~23!u~34!, eH~14!u~23!5eH~14!u~24!5eH~14!u~34!,

FIG. 10. Coset digraph ofS4 with S5$(12),(13),(14),(23),(24),(34)% andH5$e,(123),(132)%.

FIG. 11. Visualization of the geometry considered in Sec. VIII A.
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then the multiple links are eliminated. The bimodules of differential forms are then no lo
free. j

The relations one has to impose on the 1-forms of a generalized differential calculus
coset space in order to reduce it to an ordinary differential calculus~without loops or multiple
links in the associated digraph! are of the formeKuh50 or eK(uh12uh2)50. Such relations do
not lead to additional higher form relations. For relations eliminating loops this follows from

d~eKuh!5~ueK2eKu!uh1eK~uuh1uhu2D~uh!!52eKD~uh!52D~eKuh!.

A similar calculation applies to relations eliminating multiple links.

A. Higgs field from gauge theory with an internal coset lattice

Let ~V, d! be the usual differential calculus over the algebraA of smooth functions onRn.
Furthermore, let (Ṽ,d̃) denote the ‘‘loop’’ differential calculus over the algebraÃ5C of functions
on the single point spaceZ2 /Z2 , see example 8.1. The skew-tensor product49 V̂5V ^̂ Ṽ of the
two differential calculi then defines a new differential calculus (V̂,d̂) overA. Figure 11 visualizes
the underlying geometry.

Let us introducerª(1/c)u1 with a real constantc, so that d˜r52cr2, d̃r2r50 and d̃r2r 11

52cr2r 12 ~see example 8.1!. Then d̂f 5df and d̂(vr r)5(dv)r r1(21)svd̃r r for vPVs. Let Â

be a gauge potential 1-form. With the decompositionÂ5A1fr, the field strengthF̂5d̂Â1Â2

becomes

F̂5F1Df r1~f212cf!r2, ~8.7!

where we usedAr52rA and introduced the exterior covariant derivativeDf5df1@A,f#. In
terms ofwªf1cI, this reads

F̂5F1Dwr1~w22c2I !r2. ~8.8!

Let us now introduce an inner product onV̂ such that

~vr r ,v8rs!ªd rsl
r~v,v8! ~8.9!

with a positive constantl and the usual sesquilinear inner product50 (v,v8) of differential forms
on Rn with respect to a~pseudo-! Riemannian metric. Then we find

~ F̂,F̂ !5
1

2
Fmn

† Fmn1l~¹mw!†¹mw1l2~w22c2I !†~w22c2I !. ~8.10!

If we set

w5S 0 x†

x 0 D ~8.11!

then

w25S x†x 0

0 xx†D . ~8.12!

Taking the trace of~8.10! results in

tr~ F̂,F̂ !5 1
2tr~Fmn

† Fmn!12ltr~~¹mx!†¹mx!12l2~ ixi22c2I !2. ~8.13!
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The constants can now be chosen in such a way that the usual Yang–Mills–Higgs Lagran
obtained. More complicated examples can be constructed by replacingZ2 with ZN , N.2 ~see also
example 8.2 and Ref. 51!.

IX. CONCLUSIONS

With this work we have started to develop a formalism of differential geometry of gr
lattices, based on elementary concepts of noncommutative geometry. A group lattice~G,S! natu-
rally determines a differential calculus over the algebra of functions on the discrete groupG and
we systematically explored the structure of differential calculi which emerge in this way.

Counterparts of the Yang–Mills action on arbitrary group lattices are obtained. They g
alize the familiar action of lattice gauge theory. In particular, these can be further analyzed
the methods of Ref. 20.

Whereas noncommutative geometry conveniently defines general geometric structu
terms of differential forms, their geometric significance in special cases, like the group la
under consideration, is often easier to understand when expressed in terms of vector fields.
part of this work has therefore been devoted to the properties of a class of vector fields on
lattices, which we called ‘‘discrete vector fields,’’ and the subclass of ‘‘basic vector fields.’’
also introduced an inner product of discrete vector fields~with differentiable flow! and forms. In
particular, this opens the possibility to develop mechanics on group lattices using familiar fo
las of symplectic geometry.

A linear connection~on the space of 1-forms! on a group lattice defines a parallel transport
vector fields along a vector field. We found a very simple geometric picture associated wi
condition of vanishing torsion, which strongly corroborates the formalism.

Continuing this work, in a forthcoming paper we develop ‘‘Riemannian geometry’’ on gr
lattices. More precisely, for making contact with classical geometry, the subclass ofbicovariant
group lattices turns out to be distinguished. We introduced these lattices as those for which
left and right actions,Lh , Rh , hPS, are differentiable maps~in the sense of Sec. III!.

The geometric framework presented in this work may also be helpful for the constructio
analysis of completely integrable models on group lattices. The differential calculus asso
with a linear or quadratic lattice~see example 2.1! has already been applied in this context.5

APPENDIX: INTEGRAL CURVES OF DISCRETE VECTOR FIELDS

Let ~G,S! be a group lattice. A mapg:Z→G which is a solution of the equation

]1t~g* f !5g* ~X f ! ~; f PA! ~A1!

for some discrete vector fieldX5(hPSXh
•,hPX is called anintegral curveof X. More explicitly,

this reads

f ~g~ t11!!2 f ~g~ t !!5 (
hPS

Xh~g~ t !!@ f ~g~ t !h!2 f ~g~ t !!#, ~A2!

or

f ~g~ t11!!5 (
hPS

Xh~g~ t !! f ~g~ t !h!1S 12 (
hPS

Xh~g~ t !! D f ~g~ t !!

5 (
hPSe

Xh~g~ t !! f ~g~ t !h!5~~ I 1X! f !~g~ t !! ~A3!

~whereXe(g)51 iff Xh(g)50 for all hPS). Since precisely one componentXh(g(t)), hPSe , is
different from zero and then equal to 1, we obtainf (g(t11))5 f ((hPSe

Xh(g(t))g(t)h) for all
f PA and thus
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g~ t11!5 (
hPSe

Xh~g~ t !!g~ t !h. ~A4!

The flow f t :G→G generated byX has to satisfy the same equation, so that

f t115 (
hPSe

~XhRh!+f t . ~A5!

Furthermore,f05 id, the identity onG. On functions, we have@cf. ~A3!#

f t11* f 5f t* ~~ I 1X! f ! ~A6!

with the solution

f t* 5~ I 1X! t ~A7!

as expected on the basis of our earlier considerations.
Let us supplyZ with the first-order differential calculus of example 2.1, andG with the

calculus associated with the subsetS,G\$e%. According to the criterium~3.5!, the mapg is
differentiable iffg(t)21g(t11)PSe for all tPZ. But this is automatically satisfied for an integr
curve as a consequence of~A4!. We have already learned, however, that the flow ofX is not in
general differentiable as a mapG→G ~with respect to the differential calculus induced byS!.
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Identities involving cyclic sums of terms composed from Jacobi elliptic functions
evaluated atp equally shifted points on the real axis were recently found. These
identities played a crucial role in discovering linear superposition solutions of a
large number of important nonlinear equations. We derive four master identities,
from which the identities discussed earlier are derivable as special cases. Master
identities are also obtained which lead to cyclic identities with alternating signs. We
discuss an extension of our results to pure imaginary and complex shifts as well as
to the ratio of Jacobi theta functions. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1560856#

I. INTRODUCTION

In a recent paper,1 we have given many new mathematical identities involving the Jac
elliptic functions sn (x,m), cn (x,m), and dn (x,m), wherem is the elliptic modulus paramete
(0<m<1). The functions sn (x,m), cn (x,m), and dn (x,m) are doubly periodic functions with
periods (4K(m),i2K8(m)), (4K(m),i4K8(m)), and (2K(m),i4K8(m)), respectively.2 Here,
K(m) denotes the complete elliptic integral of the first kind, andK8(m)5K(12m). The m50
limit gives K(0)5p/2 and trigonometric functions: sn(x,0)5sinx, cn(x,0)5cosx, and dn(x,0)
51. The m→1 limit gives K(1)→` and hyperbolic functions: sn(x,1)→tanhx, cn(x,1)
→sechx, and dn(x,1)→sechx. For simplicity, from now on we will not explicitly display the
modulus parameterm as an argument of the Jacobi elliptic functions.

The cyclic identities discussed in Ref. 1 play an important role in showing that a kind of l
superposition is valid for many nonlinear differential equations of physical interest.3,4 In all iden-
tities, the arguments of the Jacobi functions in successive terms are separated by either 2K(m)/p
or 4K(m)/p, wherep is an integer. Eachp-point identity of rankr involves a cyclic homogeneou
polynomial of degreer ~in Jacobi elliptic functions withp equally spaced arguments! related to
other cyclic homogeneous polynomials of degreer 22 or smaller. In Ref. 1, explicit algebrai
proofs were given for specific small values ofp and r by using standard properties of Jaco
elliptic functions. However, identities corresponding to higher values ofp andr were only verified
numerically using advanced mathematical software packages. In this article, we present ri
mathematical proofs valid for arbitraryp and r . As a useful byproduct, we determine explic
forms for the constants appearing in various identities. All the identities in Ref. 1 correspond
real shifts of multiples of 2K(m)/p or 4K(m)/p. Here, we discuss how to obtain new identiti
corresponding to pure imaginary shifts by multiples ofi2K8(m)/p or i4K8(m)/p, as well as
identities corresponding to complex shifts by multiples of 2@K(m)1 iK 8(m)#/p or 4@K(m)
1 iK 8(m)#/p. We also discuss the identities for the nine secondary Jacobi elliptic functions
cd (x,m), ns (x,m), and ds (x,m). Also, we give results for several identities involving Weie

a!Author to whom correspondence should be addressed. Electronic mail: arul@prl.ernet.in or arul@iitk.ac.in
18220022-2488/2003/44(4)/1822/20/$20.00 © 2003 American Institute of Physics
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strass elliptic functions and ratios of Jacobi theta functions, both of which are intimately re
with the Jacobi elliptic functions.2 In our proofs, we classify the identities into four types, ea
with its own ‘‘master identity’’ which we prove using a combination of the Poisson summa
formula and the special properties of elliptic functions.

All our identities involve sums of the following generic form:

Sp~x0!5(
j 51

p

f ~xj !, ~1!

wheref (x) is composed from Jacobi elliptic functions with arguments corresponding top equally
spaced points

xj5x01~ j 21!T/p, j 51, . . . ,p ,

whereT is a period off (x) and the base pointx0 is an arbitrary complex number. We define th
quantitiesP,Q by

f ~z12iK 8!5~21!Pf ~z!, f ~z12K !5~21!Qf ~z!, P,Q50,1. ~2!

Note that Q50,1 correspond to real periods 2K(m), 4K(m) and P50,1 correspond to pure
imaginary periodsi2K8(m),i4K8(m), respectively. We denote the four possibilities as (1,1),
(2,1), (1,2) and (2,2), where the first sign refers to the sign of (21)P and the second to
that of (21)Q. We will derive master identities for each of these four possibilities.

For example, one of the simplest identities discussed in Ref. 1 reads

(
j 51

p

dn~xj !dn~xj 11!5A, ~3!

whereA is a constant independent of the base pointx0 , T52K andp is any integer. In this case
we havef (z)5dn(z) dn(z1T/p) which corresponds toP50,Q50, since dn(z12K)5dn(z) and
dn(z12iK 8)52dn(z). Liouville’s theorem can be used to prove the above identity, since dz)
has simple poles within its fundamental region (0,2K,2K14iK 8,4iK 8) at iK 8 and 3iK 8 both of
which we collectively refer to asz* . The identity dn(z* 1u)1dn(z* 2u)50 for arbitrary com-
plex u then implies that every pole in the sum is cancelled exactly by a zero of the same
Thus the sum is an analytic function without any poles in the finite part of the complex plan
by Liouville’s theorem must be a constant.5 This is an explicit illustration of the general principl
underlying the identities, namely that the orders of poles in a higher order polynomial are re
by some zeros leading to simpler sums. However, this method does not yield the constantsA
explicitly. In fact, using the Poisson summation formula and special properties of Jacobi e
functions, we show below that the constantA in Eq. ~3! is given by

A5
p

2K E
0

2K

dn~x!dn~x1T/p! dx5pS dn~2K/p!2
cn~2K/p!Z~b2K!

sn~2K/p! D , ~4!

whereZ is the Jacobi zeta function@Z[Z(bq ,m)# ~Ref. 2! with bq[arcsin(sn(q/p,m)).
Identities analogous to Eq.~3! also hold for sn and cn. For instance,

(
j 51

p

sn~xj ! sn~xj 11!5
pZ~b2K!

m sn~2K/p!
. ~5!

HereT is 2K as this is the periodicity off (z)5sn(z) sn(z1T/p). The expression as given abov
is valid for all integer values ofp.2, with both sides vanishing whenp52.

A further generalization that can be easily treated with the techniques developed below
sums that involver th neighbors. We consider the case whenr and p are coprime integers an
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1<r ,p21, the other cases being included since identities for any choice ofp also include the
identities for the factors ofp. Such a generalization of say Eq.~4! above is

(
j 51

p

dn~xj !dn~xj 1r !5pS dn~2rK /p!2
cn~2rK /p!Z~b2rK !

sn~2rK /p! D . ~6!

Another easy generalization is to identities involving terms consisting of a product of an arb
number of Jacobi elliptic functions.

The plan of this article is as follows. In Sec. II, we derive the master identities which form
basis for obtaining all the identities in this article, and are tabulated in Appendixes A an
Section III contains a derivation of identities involving alternating signs. In Sec. IV, we pres
collection of comments, including some which permit a generalization of all the identitie
incorporate pure imaginary and complex shifts and to present the identities for Weierstrass
tions as well as for ratios of Jacobi theta functions.

II. THE MASTER IDENTITIES

In this section, we derive the four master identities corresponding toQ,P taking on values
0,1, which effectively encompass most of the cyclic identities discussed in Ref. 1. The rem
identities in Ref. 1 correspond to master identities with alternating signs, and these are dis
in the next section.

For completeness we first derive the finite version of the Poisson summation formula6 that
fully exploits the equally spaced nature of the sampling points, and which plays a crucial r
subsequent derivations. Sincef (x) has a periodT, we may expand it in a Fourier series:

f ~x!5
1

T (
k52`

`

ak e~kx/T!, ak5E
0

T

f ~x! e~2kx/T! dx, ~7!

where we have introduced the convenient notatione(x)[exp(2pix). The required sum may the
be written as

Sp~x0!5(
j 51

p

f ~xj !5
1

T (
k52`

`

ak e~kx0 /T! (
j 51

p

e~k j /p!. ~8!

Using the simple identity

(
j 51

p

e~k j /p!5H p if puk

0 otherwise,
~9!

we get

Sp~x0!5
p

T (
k, puk

ak e~kx0 /T!. ~10!

Note that we need to evaluate only those Fourier coefficientsak for which k is a multiple ofp.

A. Cases corresponding to QÄ0

We first derive the two master identities corresponding toQ50 ~or equivalentlyT52K),
allowing P to be either 1 or 0. Consider the rectangleABCD[(2K,K,K12iK 8,2K12iK 8).
We assume thatf (z) has a finite number of poles insideABCD situated at pointszw* 5 iK 8
1wT/p, wherew50,61,62, . . . anduwu,p. Let the principal part off (z) about the polezw* be
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(
l 51

Lw a l
(w)

~z2zw* ! l , ~11!

which makes this a pole of orderLw .
We now use the fact thatf (z) is composed of elliptic functions, and this essentially allo

evaluation ofak . To evaluateak , for kÞ0, consider the integral over the rectangleABCD:

R f ~z! e~2kz/T! dz5ak1E
K12iK 8

2K12iK 8
f ~z! e~2kz/T! dz

5ak1E
K

2K

f ~z12iK 8! e~2k@z12iK 8#/T! dz

5ak1~21!P11q22kE
2K

K

f ~z! e~2kz/T! dz

5ak@11~21!P11q22k#, ~12!

whereq5exp(2pK8/K) is the Jacobian nome.2 The contributions of the vertical segments of t
integration contour are equal and opposite, and cancel each other.

On the other hand, the sum of the residues off (z) e(2kz/T) may also be calculated. Th
residue at the polezw* is

Res@ f ~z! e~2kz/T!#5Res@ f ~z! e~2k@z2~ iK 81wT/p!#/T!q2k e~2kw/p!#

5q2kResF S (
l 51

Lw a l
(w)

~z2zw* ! l D S (
n50

` S 22p ik

T D n ~z2zw* !n

n! D G
5q2k(

l 51

Lw F a l
(w)

~ l 21!! S 22p i

T D l 21

kl 21G . ~13!

For the second equality, we have made use of the fact that only thoseak for which k/p is an
integer need to be evaluated, thanks to the Poisson summation formula Eq.~10!.

DefineL8[Max$L1 ,L2 , . . . ,Lw% andg l5(wa l
(w) , l 51, . . . ,L8, where we set nonexisten

a (w) to be zero. We also setL to be the maximum integer such thatgL is nonzero. IfL50, there
are no nonvanishingg and the function is regular. UsingT52K the sum of the residues at all th
interior poles may be written as

Res5q2k(
l 51

L F g l

~ l 21!! S 22p i

2K D l 21

kl 21G . ~14!

Thus

ak5
2p iq2k

11~21!P11q22k (
l 51

L F g l

~ l 21!! S 22p i

2K D l 21

kl 21G , kÞ0. ~15!

Therefore, Eq.~10! now becomes

Sp~x0!5
p

2K Fa012p i(
l 51

L
g l

~ l 21!! S 22p i

2K D l 21

(
kÞ0, puk

kl 21q2k

11~21!P11q22k eS kx0

2K D G . ~16!

We are in a position to derive two master identities~MI ! corresponding to theP51 andP
50 cases, which we call MI-I and MI-II, respectively. We state for convenience the follow
well-known symmetry properties:
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sn~z12K !52sn~z!, cn~z12K !52cn~z!, dn~z12K !5dn~z!,

sn~z12iK 8!5sn~z!, cn~z12iK 8!52cn~z!, dn~z12iK 8!52dn~z!.

1. MI-I: Case QÄ0, PÄ1

MI-I identities result if there are an odd total number of dn and cn, and an even total nu
of sn and cn functions inf (z), i.e., if one considers terms of the form dna snb cnc, thena1c is
odd andb1c is even. The primitive function of this type is dn(z) and we consider an ‘‘archetypa
sum’’ s1 from which identities in this class can be derived:

s1~x0!5(
j 51

p

dn~xj !, ~17!

wherep is any ~odd or even! integer. We note that in the case of MI-I

a05E
0

T52K

f ~x! dx5 ipg1 , ~18!

as can be seen on integratingf (z) aroundABCD, and making use of the antisymmetry abo
2iK 8, since we are considering the caseP51.

Since dn(z) has a single simple pole atiK 8 interior toABCD with g152 i , using the Poisson
summation formula yields

s1~x0!5
pp

2K F1 1 2 (
kÞ0,puk

q2k

11q22k eS kx0

2K D G . ~19!

The above expression fors1(x0) now allows us to rewriteSp(x0) as given in Eq.~16!, yielding
our first master identity:

Sp~x0!5 i(
l 51

L
~21! l 21g l

~ l 21!!

dl 21

dx0
l 21 s1~x0!. ~20!

Thus all the sums in this class can be written as sums over the higher order derivatives
function dn(z). The highest derivative order is one less than the maximum of the orders o
function f (z) at all the interior poles. We see that the sums involving the Jacobi function
intimately related to their singularity structure in the complex plane.

As an illustration, consider the sum

Sp~x0!5(
j 51

p

dn~xj !dn~xj 11!dn~xj 12!. ~21!

The relevant function isf (z)5dn(z)dn(z12K/p)dn(z14K/p), with poles atiK 8, iK 822K/p,
and iK 824K/p within ABCD. The principal part of the function dn(z)@dn(z12K/p)dn(z
14K/p)1dn(z22K/p)dn(z12K/p)1dn(z24K/p)dn(z22K/p)# around z5 iK 8 determines
the g l . The singularity of dn(z) is simple, thereforeL51. Using the identity dn(z1 iK 8)
52 i cs(z) we get thatg152 i @cs2(2K/p)22cs(2K/p)cs(4K/p)#. Substituting this result in Eq
~20! gives the identity

(
j 51

p

dn~xj !dn~xj 11!dn~xj 12! 5 @cs2~2K/p!22cs~2K/p!cs~4K/p!#(
j 51

p

dn~xj !. ~22!

As another example consider
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Sp~x0!5(
j 51

p

sn~xj ! cn~xj ! dn~xj !@dn~xj 11!1dn~xj 21!#. ~23!

The relevant function now isf (z)5sn(z) cn(z) dn(z)@dn(z12K/p)1dn(z22K/p)#. There are
three poles, one atiK 8 and the others atiK 862K/p. To get the quantitiesg l , it is convenient to
consider the principal part off (z)1 f (z12K/p)1 f (z22K/p) aroundz5 iK 8. At iK 8, while the
product of the three functions sn, cn and dn gives an order three singularity, it is reduced b
due to the vanishing of a constant term in the expansion of dn(z12K/p)1dn(z22K/p) around
the same point. Thus we get that the maximum order off (z) is L52 while g150 and g2

5 (22i /m)ds(2K/p) ns(2K/p). Substitution in Eq.~20! leads to the identity

(
j 51

p

sn~xj ! cn~xj ! dn~xj !@dn~xj 11!1dn~xj 21!# 5 2ds~2K/p! ns~2K/p!(
j 51

p

cn~xj ! sn~xj !.

~24!

Several other identities of this type are given in Appendix A.

2. MI-II: Case QÄ0, PÄ0

This case results when there are an even total number of dn and cn and an even total
of sn and cn, i.e., if one considers terms of the form dna snb cnc, then botha1c andb1c must
be even. In this case the relevant primitive function can be taken as dn2(z) and we define and
evaluate the following archetypal sum:

s2~x0!5(
j 51

p

dn2~xj !5
pE

K
1

pp2

K2 (
kÞ0, puk

kqk

12q2k eS kx0

2K D . ~25!

HereE is the complete elliptic integral of the second kind.2 We note that in this caseg1 is zero,
as the integral off (z) around the rectangleABCD vanishes.

Substituting Eq.~25! in Eq. ~16! yields the second master identity:

Sp~x0!5
p

2K F E
0

2K

f ~x!dx12g2EG 1(
l 52

L
~21! l 21g l

~ l 21!!

dl 22

dx0
l 22 s2~x0!. ~26!

Thus all MI-II identities have derivatives of dn2(z) upto orderL22. This is also the only maste
identity that has a nonvanishing ‘‘constant’’~independent ofx0) term on the right hand side. Th
simplest member of this class has already been discussed in Eq.~3!. We note that the relevan
function for this identity isf (z)5dn(z)dn(z12K/p). There are two poles, one atiK 8 and the
other at iK 822K/p. Thus we can construct dn(z1 iK 8)@dn(z1 iK 812K/p)1dn(z1 iK 8
22K/p)#52cs(z)@cs(z12K/p)1cs(z22K/p)# and its principal part aroundz50 will give us
the g l . The principal part of cs(z) aroundz50 is 1/z. Therefore the only relevant number
g152@cs(2K/p)1cs(22K/p)#50. Anyway we have already observed above that for this c
g150 from the fact thatABCD is a period parallelogram forf (z). Thus the sum of the principa
parts cancel and so do all theg l . Hence using Eq.~26!, we obtain the identity~4!. In fact, we can
easily generalize using the same argument to a cyclic sum of any even number of dn or sn
For instance,

(
j 51

p

dn~xj !dn~xj 1r !dn~xj 1s!dn~xj 1t! 5
p

2K E
0

2K

f ~x!dx, ~27!

where f (x)5dn(x)dn(x1r2K/p)dn(x1s2K/p)dn(x1t2K/p).
As another example, we establish the identity
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(
j 51

p

dn2~xj !dn2~xj 11!5A (
j 51

p

dn2~xj ! 1 B. ~28!

Writing f (z)5dn2(z)dn2(z12K/p), there are two poles of order 2 atiK 8 andiK 822K/p within
ABCD. We find thatL52 andg252cs2(2K/p). Thus applying the master identity leads to

A522cs2~2K/p!, B5
p

2K S E
0

2K

dn2~ t !dn2~ t12K/p! dt14E cs2~2K/p! D . ~29!

For an example of this class withL53, we prove the identity

(
j 51

p

cn~xj ! sn~xj !@dn3~xj 11!1dn3~xj 21!# 5 A(
j 51

p

cn~xj ! sn~xj ! dn~xj !. ~30!

We can derive this using the master identity withf (z)5cn(z) sn(z)@dn3(z12K/p)1dn3(z
22K/p)#, and we find thatL53 with g250 andg3 5 (2/m) ds(2K/p) ns(2K/p). Thus the first
derivative of dn2(z) will appear on the RHS, which indeed leads to the above identity with
constantA522 ns(2K/p) ds(2K/p). Note that

E
0

2K

f ~ t ! dt5E
0

K

@ f ~ t !1 f ~2t !# dt50, ~31!

since f (t) is an odd function oft.

B. Cases corresponding to QÄ1

When Q51, the function f (z) has a real period 4K. We consider the rectangleABCD
[(2e,4K2e,4K2e12iK 8,2e12iK 8), where e is a small positive number, and integra
around this rectangle. Poles occur atiK 81w4K/p and iK 812K1w4K/p inside the rectangle
ABCD. If the principal part aroundiK 81w4K/p is given by the set of coefficients$g l%, the set
aroundiK 812K1w4K/p is $2g l%, since f (z12K)52 f (z). Also note that

a05E
0

4K

f ~x!dx50, ~32!

due to antisymmetry about 2K. Applying the Poisson summation formula and following the sa
procedures as for the previous cases, we get the equivalent of Eq.~16!:

Sp~x0!5
2p i p

4K (
l 51

L
g l

~ l 21!! S 22p i

4K D l 21

(
kÞ0,puk

kl 21@12~21!k#q2k/2

11~21!P11q2k eS kx0

4K D . ~33!

We note thatS2p(x0)50, i.e., the sums in these cases vanish for even values ofp. This is,
however, a trivial identity sincef (xj )52 f (xj 1p/2) for j 51, . . . ,p/2. Thus, forQ51, it is suffi-
cient to only consider identities wherep is odd.

1. MI-III: Case QÄ1, PÄ0

This case applies whenf (z) has an even total number of dn and cn and there are an odd
number of sn and cn, i.e., if one considers terms of the form dna snb cnc, thena1c is even and
b1c is odd. The relevant primitive function here is sn(z) and the archetypal sum is

s3~x0!5(
i 5 j

p

sn~xj !5
2p i p

4KAm
(

kÞ0,puk

@12~21!k#q2k/2

12q2k eS kx0

4K D . ~34!

Therefore, using Eq.~34! in Eq. ~33!, we get the third master identity:
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Sp~x0!5Am(
l 51

L
~21! l 21g l

~ l 21!!

dl 21

dx0
l 21 s3~x0!. ~35!

As an illustration takef (z)5sn2(z)@sn(z14K/p)1sn(z24K/p)#. This givesL51 with
g15(2/m3/2)@ns2(4K/p)2ds(4K/p) cs(4K/p)#. The resulting identity is

(
j 51

p

sn2~xj !@sn~xj 11!1sn~xj 21!#5~2/m!@ns2~4K/p!2ds~4K/p! cs~4K/p!#(
j 51

p

sn~xj !.

~36!

An example withL52 is provided byf (z)5sn(z) dn(z)@sn(z14K/p) cn(z14K/p)1sn(z
24K/p) cn(z24K/p)#. This results in g150 while g252(2/m3/2)ns(4K/p)@cs(4K/p)
1ds(4K/p)#. Therefore the first derivative of sn will appear on the right hand side of the ide
which we write as

(
j 51

p

sn~xj ! dn~xj !@sn~xj 11! cn~xj 11!1sn~xj 21! cn~xj 21!#

5~2/m!ns~4K/p!@cs~4K/p!1ds~4K/p!#(
j 51

p

cn~xj ! dn~xj !. ~37!

2. MI-IV: Case QÄ1, PÄ1

This case applies when there are an odd total number of dn and cn and there are an o
number of sn and cn inf (z), i.e., if one considers terms of the form dna snb cnc, then botha
1c andb1c must be odd. The relevant primitive function here is cn(z) and the archetypal sum
is

s4~x0!5(
i 51

p

cn~xi !5
2p p

4KAm
(

kÞ0, puk

@12~21!k#q2k/2

11q2k eS kx0

4K D . ~38!

Therefore, using Eq.~38! in Eq. ~33!, we get the fourth and final master identity:

Sp~x0!5 iAm(
l 51

L
~21! l 21g l

~ l 21!!

dl 21

dx0
l 21 s4~x0!. ~39!

As an illustration, considerf (z)5cn2(z)@cn(z14K/p)1cn(z24K/p)#. This gives L51
with g15(2i /m3/2)@ds2(4K/p)2ns(4K/p) cs(4K/p)#. The resulting identity is

(
j 51

p

cn2~xj !@cn~xj 11!1cn~xj 21!#5~2/m!@ns~4K/p! cs~4K/p!2ds2~4K/p!#(
j 51

p

cn~xj !.

~40!

For f (z)5cn2(z) dn(z)@sn(z14K/p)1sn(z24K/p)#, we get L52 and g150 while g2

5(22i /m3/2) cs(4K/p) ds(4K/p). The resultant identity therefore involves the first derivative
cn:

(
j 51

p

cn2~xj ! dn~xj !@sn~xj 11!1sn~xj 21!#5~2/m!cs~4K/p!ds~4K/p!(
j 51

p

sn~xj !dn~xj !. ~41!

This completes our enumeration of master identities for ordinary sums. Many addi
examples are given in Appendix A.
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III. MASTER IDENTITIES WITH ALTERNATING SIGNS

Alternating sums provide an immediate and important extension of the master identitie
cussed above. We consider sums of the form

Sp
A~x0!5(

j 51

p

~21! j 21f ~xj !, ~42!

where againf (x) has the properties discussed for the ordinary sums in Eq.~1!. We are, however,
forced to restrictp to beevenin this section and as a result we only have MI-I and MI-II mas
identities with alternating signs. One of the consequences of having an alternating sum, as
see below, is the appearance of the simply periodic Jacobi zeta function7 as an important player

To clarify the differences that arise between ordinary and alternating sums we first wor
an example:

Sp
A~x0!5(

j 51

p

~21! j 21dn2~xj !@dn~xj 1r !1dn~xj 2r !#

52@ds~r2K/p! ns~r2K/p!2~21!rcs2~r2K/p!#(
j 51

p

~21! j 21dn~xj !. ~43!

Here the spacing isr2K/p. Sincer andp are coprimes andp is restricted to be an even intege
hence for alternating sumsr can only take odd integral values.

To prove the above identity, in the caser 51, consider the sumsSp
1 andSp

2 , corresponding to
the positive and negative signed terms inSp

A . We have to takef (z)5dn2(z)@dn(z1T/p)1dn(z
2T/p)# with T52K,

Sp
1~x0!5dn2~x1!@dn~x2!1dn~xp!#1dn2~x3!@dn~x4!1dn~x2!#

1¯1dn2~xp21!@dn~xp!1dn~xp22!#, ~44!

and

Sp
2~x0!5dn2~x2!@dn~x3!1dn~x1!#1dn2~x4!@dn~x5!1dn~x3!#

1¯1dn2~xp!@dn~x1!1dn~xp21!#. ~45!

We see that

Sp
2~x0!5Sp

1~x01T/p!

and

Sp
1~x0!5(

j 51

p̃

dn2@x01 jT/ p̃#@dn~x01 jT/ p̃1T/p!1dn~x01 jT/ p̃2T/p!#, ~46!

where we have definedp̃5p/2. The important point to note is that while the above sum appe
to be in the form of an ordinary sum considered earlier by simply replacingp with p̃, it is not so,
as the functionf (x) ~which usually depends onp) has remained the same, or equivalently t
position of the symmetric poles is still atiK 86T/p, rather thaniK 86T/ p̃.

Applying the Poisson summation formula we get
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Sp
1~x0!5

p̃

2K Fa01 (
kÞ0,p̃uk

ak eS kx0

2K D G . ~47!

Note that we now needak for k that is a multiple ofp̃5p/2 and not merely those that ar
multiples ofp. For suchk we get upon integrating over the same rectangleABCD that is relevant
for type I ordinary identities,

ak54p@ns~2K/p!ds~2K/p!2~21!k/ p̃cs2~2K/p!#
qk

11q2k . ~48!

This is because at the polesiK 862K/p, f (x) e(kx/2K) has a residue of 2ics2(2K/p)q2k

(21)k/ p̃. Now the negative signed sumSp
2 is related to the positive signed one, by merely a s

in the argument by an amount 2K/p. Thus subtracting the two sums leads to a cancellation of
zero mode term involvinga0 and also restrictsk/ p̃ to be odd integers. We then finally get

Sp
A~x0!5

8p

2K
@ns~2K/p!ds~2K/p!1cs2~2K/p!# (

k/ p̃5odd

qk

11q2k eS kx0

2K D . ~49!

A similar evaluation of the archetypal alternating sum can be done withf (z)5dn(z) which is
simpler as there is only one pole atiK 8 within ABCD:

s1
A~x0!5(

j 51

p

~21! j 21dn~xj !5
2p

K (
k/ p̃5odd

qk

11q2k eS kx0

2K D . ~50!

Therefore the stated alternating identity~43! follows.
We can now generalize these arguments and provide master identities for alternating

Consider an elliptic functionf (z) of real periodT satisfying Eq.~1! that has poles atiK 8
1wT/p wherew50,61,62, . . . . anduwu,p. For both MI-I and MI-II classes we have

Sp
A~x0!5

p̃

K (
k/ p̃5odd

ak eS kx0

2K D , ~51!

thus there are no constant terms, even for type II alternating identities.
For type I and II identities we can write theak , the counterpart of Eq.~15!, as

ak5
2p iq2k

11~21!P11q22k (
l 51

L F g̃ l

~ l 21!! S 22p i

2K D l 21

kl 21G . ~52!

The difference between the Eqs.~15! and ~52! that is crucial is thatg̃ l5(w(21)wa l
(w) . Thus at

the polewT/p, the coefficient of the orderl principal part gets weighted by a factor of (21)w, as
the residue calculation is restricted to thosek wherek/ p̃ is an odd integer. Therefore, for instanc
g̃1 does not in generalhave the meaning of sum of residues at all the poles. This in turn imp
that it need not vanish for type II alternating identities.

Defining the first archetypal alternating sum as in Eq.~50!, we then see that for type
identities,

Sp
A~x0!5 i(

l 51

L
~21! l 21g̃ l

~ l 21!!

dl 21

dx0
l 21 s1

A~x0!. ~53!

Some alternating sum identities of type I are

(
j 51

p

~21! j 21sn~xj !@cn~xj 11!1cn~xj 21!#50, ~54!
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(
j 51

p

~21! j 21sn~xj ! cn~xj ! dn~xj !@dn~xj 11!1dn~xj 21!#

52 ns~2K/p!ds~2K/p!(
j 51

p

~21! j 21sn~xj ! cn~xj !. ~55!

Turning to the type II alternating identities, it turns out that the primitive function in this c
is Jacobi zeta functionZ(x) rather than dn2(x). To see this, consider the second archetypal sum

s2
A~x0!5(

j 51

p

~21! j 21Z~xj !. ~56!

On using the Fourier series expansion8,9 and the Poisson summation formula forZ(x) we get

(
j 51

p

~21! j 21Z~xj !5
2p̃p i

K (
k/ p̃5odd

q2k

12q22k eS kx0

2K D . ~57!

Following the steps carried out above then leads to the second master identity:

Sp
A~x0!5(

l 51

L
~21! l 21g̃ l

~ l 21!!

dl 21

dx0
l 21 s2

A~x0!. ~58!

Some alternating sum identities of type II are

(
j 51

p

~21! j 21dn~xj !@cn~xj 11! sn~xj 11!1cn~xj 21! sn~xj 21!#

52~4/m!ds~2K/p! ns~2K/p!(
j 51

p

~21! j 21Z~xj !, ~59!

(
j 51

p

~21! j 21 cn3~xj !@cn~xj 11!1cn~xj 21!#5~2/m2!cs~2K/p! ns~2K/p!(
j 51

p

~21! j 21dn2~xj !,

~60!

(
j 51

p

~21! j 21 cn2~xj ! sn~xj !dn~xj !@cn~xj 11!1cn~xj 21!#

52~4/m2!ds2~2K/p! cs~2K/p! ns~2K/p!(
j 51

p

~21! j 21Z~xj !

1~2/m! cs~2K/p! ns~2K/p!(
j 51

p

~21! j 21 cn~xj ! sn~xj !dn~xj !. ~61!

Summarizing, for functions of the formf (z)5h(z)@g(z1T/p)1g(z2T/p)#, which occur in
ordinary sums, we may use the symmetrized formh(z)@g(z1T/p)1g(z2T/p)#1g(z)@h(z
1T/p)1h(z2T/p)# and evaluate its principal part atiK 8. On the other hand, for alternatin
sums, we may use the antisymmetrized formh(z)@g(z1T/p)1g(z2T/p)#2g(z)@h(z1T/p)
1h(z2T/p)# and consider its principal part atiK 8. Its generalization to more complex forms o
f (z) is straightforward. Using the master identities derived in this and the previous section an
methodology, we have obtained a large number of identities, some of which are given in A
dixes A and B.
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IV. COMMENTS AND DISCUSSION

In this section, we give some general comments and extensions in several new directi
„i… Identities for auxiliary functions: Until now, we have discussed identities for the thr

basic Jacobi elliptic functions sn, cn, and dn. However, nine auxiliary functions are also frequ
found in the literature. They are

ndu[
1

dnu
; cdu[

cnu

dnu
; sdu[

snu

dnu
;

nsu[
1

snu
; csu[

cnu

snu
; dsu[

dnu

snu
; ~62!

ncu[
1

cnu
; dcu[

dnu

cnu
; scu[

snu

cnu
.

Identities for these auxiliary functions are readily obtained via the following relations:2,8

dn~u,m!5A12m nd~u2K,m!52 i cs~u2 iK 8,m!5 iA12m sc~u2K2 iK 8,m!, ~63!

sn~u,m!5 cd~u2K,m!5
1

Am
ns~u2 iK 8,m!5

1

Am
dc~u2K2 iK 8,m!, ~64!

cn~u,m!52A12m sd~u2K,m!5
2 i

Am
ds~u2 iK 8,m!5

2 iA12m

Am
nc~u2K2 iK 8,m!.

~65!

As an example, consider the identity dn(u,m) dn(u1K,m)5A12m. Using Eq. ~63!, we
obtain

nd~x,m! nd~x1K,m!5
1

A12m
,

cs~x,m! cs~x1K,m!52A12m, ~66!

sc~x,m! sc~x1K,m!5
21

A12m
.

„ii … Identities for pure imaginary shifts : So far, we have focused our attention on identit
involving Jacobi elliptic functions evaluated at points separated by real gapsT/p, with realT. As
mentioned in Ref. 1, since Jacobi functions are doubly periodic, we can convert each iden
another one involving points separated by pure imaginary gapsiT8/p, with realT8. The procedure
consists of taking any given identity, writing it for modulus 12m @noting that K(12m)
5K8(m)], using the standard results2,8

sn~x,12m!5
21

A12m
dn~ ix1K~m!1 iK 8~m!,m!,

cn~x,12m!5
iAm

A12m
cn~ ix1K~m!1 iK 8~m!,m!, ~67!

dn~x,12m!5Am sn~ ix1K~m!1 iK 8~m!,m!,

and changing to a new variableu5 ix1K(m)1 iK 8(m).
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For instance, again consider the simple identity dn(x,m) dn(x1K,m)5A12m. Rewriting
with modulus 12m, using Eq.~67!, and changing to the new variableu5 ix1K(m)1 iK 8(m)
gives a simple identity involving a pure imaginary shift

sn~u,m! sn~u1 iK 8~m!,m!51/Am. ~68!

A more nontrivial example consists of identity~42! in Ref. 1:

sn~x,m! sn~x14K~m!/3,m! sn~x18K~m!/3,m!

5
21

12q2 @sn~x,m!1sn~x14K~m!/3,m!1sn~x18K~m!/3,m!#, ~69!

whereq[dn(2K(m)/3,m).
The corresponding identity with pure imaginary shifts is

dn~u,m! dn~u14iK 8~m!/3,m! dn~u18iK 8~m!/3,m!

5
2~12m!

12q82 @dn~u,m!1dn~u14iK 8~m!/3,m!1dn~u18iK 8~m!/3,m!#, ~70!

whereq8[dn(2K8(m)/3,12m).
„iii … Identities for complex shifts: Just as we have derived identities containing pure ima

nary shifts, we can also derive new identities involving complex shifts. Here, the proce
consists of taking any given identity for real shifts, writing it for modulus 1/m ~noting that
K(1/m)5Am@K(m)1 iK 8(m)#,),2 using the standard results

snS x,
1

mD5Am snS x

Am
,mD ; cnS x,

1

mD5dnS x

Am
,mD ; dnS x,

1

mD5cnS x

Am
,mD , ~71!

and changing to a new variableu5x/Am.
As a simple example, let us once more take the simple identity dn(x,m) dn(x1K,m)

5A12m. It now transforms to

cn~u,m! cn~u1K~m!1 iK 8~m!,m!52 i
A12m

Am
. ~72!

As a second example, take identity~45! in Ref. 1:

cn~x,m! sn~x14K/3,m! sn~x18K/3,m!1cn~x14K/3,m! sn~x18K/3,m! sn~x,m!

1cn~x18K/3,m! sn~x,m! sn~x14K/3,m!

5
2~11q!2

m
@cn~x,m!1cn~x14K/3,m!1cn~x18K/3,m!#, ~73!

whereq[dn(2K(m)/3,m).
The corresponding identity with complex shifts is

dn~u,m! sn~u14~K1 iK 8!/3,m! sn~u18~K1 iK 8!/3,m!1 dn~u14~K1 iK 8!/3,m! sn~u18~K

1 iK 8!/3,m! sn~u,m!1 dn~u18~K1 iK 8!/3,m! sn~u,m! sn~u14~K1 iK 8!/3,m!

52~11r !2 @dn~u,m!1dn~u14~K1 iK 8!/3,m!1dn~u18~K1 iK 8!/3,m!#, ~74!

wherer[q(1/m)5cn(2$K(m)1 iK 8(m)%/3,m).
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„iv… Identities for ratios of Jacobi elliptic functions: In applications involving linear super
position of solutions of nonlinear differential equations,3,4 one often needs identities for ratios o
Jacobi elliptic functions like cndn/sn. These can be obtained from the identities derived i
article. For example, noting that

cnx dnx

snx
5

dn 2x 1 cn 2x

sn 2x
5 i @Am cn~2x1 iK 8,m!1dn~2x1 iK 8,m!# ~75!

gives rise to

cn~x12K/3! dn~x12K/3!

sn~x12K/3!

cn~x14K/3! dn~x14K/3!

sn~x14K/3!

1
cn~x14K/3! dn~x14K/3!

sn~x14K/3!

cnx dnx

snx
1

cnx dnx

snx

cn~x12K/3! dn~x12K/3!

sn~x12K/3!

52m@cn~2u! cn~2u14K/3!1cn~2u14K/3! cn~2u18K/3!1cn~2u18K/3! cn~2u!#

2@dn~2u! dn~2u14K/3!1dn~2u14K/3! dn~2u18K/3!1dn~2u18K/3! dn~2u!#,

~76!

whereu5x1 iK 8(m)/2. In the above derivation, the cn dn terms cancel in view of identity~33! in
Ref. 1. Further, the right hand side of Eq.~76! has the constant valueq(21q)@m2(11q)2#/(1
1q)2, q[dn(2K(m)/3,m), due to identities~32! in Ref. 1.

Other identities involving ratios follow from useful equations analogous to Eq.~75!:

snx dnx

cnx
5

12 cn 2x

sn 2x
,

snx cnx

dnx
5

12 dn 2x

m sn 2x
,

cnx

snx dnx
5

11 cn 2x

sn 2x
,

~77!
snx

cnx dnx
5

dn 2x2 cn 2x

~12m! sn 2x
,

dnx

snx cnx
5

11 dn 2x

sn 2x
.

„v… Cyclic identities for Weierstrass functions:Jacobi elliptic functions are closely related wi
the Weierstrass functionP(u),2,7 the relations being

snu5@P~u!2e3#21/2, cnu5FP~u!2e1

P~u!2e3
G1/2

, dnu5FP~u!2e2

P~u!2e3
G1/2

, ~78!

where

e15~22m!/3, e25~2m21!/3, e352~11m!/3. ~79!

P(u) has implicit arguments corresponding to its two periods 2v152K(m) and 2v3

52iK 8(m).7 Using this relationship and identities obtained by us, we can immediately w
down identities for the Weierstrass function for shifts in the units ofv1 /p, v3 /p andv2 /p where
v252(v11v3). For example, using identity~28!, one gets

(
j 51

p

P~u12~ j 21!v1 /p! P~u12 j v1 /p!

5~B1pAe12pe1
2!2~A22e1!(

j 51

p

P~u12~ j 21!v1 /p!, ~80!

whereA,B are the constants appearing in Eq.~28!.
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„vi… Cyclic identities for Jacobi theta functions: The connection between the four Jaco
theta functionsu1(z),u2(z),u3(z),u4(z) and the Jacobi elliptic functions is given by7

snu5
1

m1/4

u1~z!

u4~z!
, cnu5

~12m!1/4

m1/4

u2~z!

u4~z!
, dnu5~12m!1/4

u3~z!

u4~z!
, ~81!

wherez[ up/2K(m). Therefore, any of our cyclic identities for real, imaginary or complex s
can also be rewritten as identities for the ratios of Jacobi elliptic functions for shifts in uni
p/p, pt/p or p(11t)/p, respectively, wheret5 iK 8/K. As an illustration, we consider identit
~A3!. In terms of theta functions, one gets

)
j 51

p
u3~z1~ j 21!p/p!

u4~z1~ j 21!p/p!
5 S )

n51

(p21)/2 u2
2~2nK/p!

u1
2~2nK/p!

D (
j 51

p
u3~z1~ j 21!p/p!

u4~z1~ j 21!p/p!
. ~82!
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APPENDIX A: EXAMPLES USING THE MASTER IDENTITIES

In this appendix, we present a collection of identities involving cyclic combinations of Ja
elliptic functions ~excluding those that are already mentioned in the text!. These identities are
derived by using various choices off (x) in the four master identities@Eqs.~20!, ~26!, ~35!, and
~39!# developed in the text. We use the notationa[r2K/p andb[r4K/p, where 1<r ,p21 and
(r ,p)51. We also usea85s2K/p, a95t2K/p andb85s4K/p, wheres,r ,t are all distinct. Also
we usesj[sn(xj ), etc., wherexj5x01( j 21)T/p. Note thatT52K for the first two master
identities, while it is 4K for the remaining two. It may be noted here that for every identity of cl
MI-I, there are analogous identities of classes MI-III and MI-IV and therefore we give only a
distinct identities of each of these class. In any case, these identities are not exhaustive~as indeed
they cannot be! but are meant to be representative lowL identities. A more exhaustive collectio
of identities can be found in Ref. 10.

1. Examples belonging to the class MI-I

(
j 51

p

sj~cj 1r1cj 2r ! 5 ~p/2K !E
0

2K

f ~x!dx50. ~A1!

(
j 51

p

djdj 1r¯dj 1( l 21)r5F )
k51

( l 21)/2

cs2~ka!12~21!( l 21)/2 (
k51

( l 21)/2

)
n51,nÞk

l

cs~@n2k#a!G(
j 51

p

dj .

~ l<p!. ~A2!

For the special casel 5p, this identity takes the simpler form

)
j 51

p

dj 5 )
n51

(p21)/2

cs2S 2Kn

p D (
j 51

p

dj . ~A3!

(
j 51

p

dj
2~dj 1r1dj 2r ! 5 2@ds~a! ns~a!2cs2~a!# (

j 51

p

dj . ~A4!
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(
j 51

p

cj~cj 1rdj 1r1cj 2rdj 2r !5~22/m!cs~a!@ds~a!2ns~a!#(
j 51

p

dj . ~A5!

(
j 51

p

dj~dj 1sdj 1r1dj 2sdj 2r !522@cs~a!cs~a8!1cs~a2a8!$cs~a!2cs~a8!% # (
j 51

p

dj .

~A6!

(
j 51

p

sj
2~cj 1rcj 1sdj 1t1cj 2rcj 2sdj 2t!

5~2/m2!@cs~a!cs~a9!ds~a8! ns~a!1cs~a8!cs~a9!ds~a! ns~a8!

1ds~a!ds~a8!ds~a9! ns~a9!2cs~a2a9!ds~a2a8! ns2~a!

2cs~a92a8! ds~a2a8! ns2~a8!2ds~a2a9!ds~a82a9! ns2~a8!# (
j 51

p

dj . ~A7!

(
j 51

p

dj
2~cj 1rsj 1r1cj 2rsj 2r !522@cs2~a!1ds~a! ns~a!# (

j 51

p

cjsj . ~A8!

(
j 51

p

sjcj~dj 1rdj 1s1dj 2rdj 2s!522cs~a!cs~a8!(
j 51

p

cjsj . ~A9!

(
j 51

p

djcjsj~dj 1r
3 1dj 2r

3 !522@cs2~a! ns2~a!1ns2~a!ds2~a!

1ds2~a!cs2~a!13cs2~a! ns~a!ds~a!#(
j 51

p

cjsj . ~A10!

(
j 51

p

dj
3~dj 1r

2 1dj 2r
2 !522cs2~a!(

j 51

p

dj
312@cs2~a! ns2~a!1ns2~a!ds2~a!

1ds2~a!cs2~a!23cs2~a! ns~a!ds~a!#(
j 51

p

dj . ~A11!

2. Examples belonging to the class MI-II

(
j 51

p

cjcj 1r5p cn~a!S 12
dn~a!Z~b2rK !

msn~a! cn~a! D . ~A12!

(
j 51

p

djdj 11¯dj 1r 215~p/2K !E
0

2K

)
j 50

r 21

dn~x1~ j 2K/p! dx, ~r even!. ~A13!

d1d2¯dp5~12m!p/4, ~p even!. ~A14!
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(
j 51

p

cjdj~sj 1r1sj 2r !50. ~A15!

(
j 51

p

cjdj~cj 1rdj 1r1cj 2rdj 2r !52g2(
j 51

p

dj
21~p/2K !S E

0

2K

f ~x!dx1 2g2ED ,

f ~x!5cn~x!dn~x!@cn~x1a!dn~x1a!1cn~x2a!dn~x2a!#, g25
4

m
cs~a!ds~a!. ~A16!

(
j 51

p

dj
3~dj 1r1dj 2r !52g2(

j 51

p

dj
21~p/2K !S E

0

2K

f ~x!dx1 2g2ED ,

f ~x!5dn3~x!@dn~x1a!1dn~x2a!#, g2522 ns~a!ds~a!. ~A17!

(
j 51

p

dj
3~dj 1r

3 1dj 2r
3 !52g2(

j 51

p

dj
21~p/2K !S E

0

2K

f ~x!dx1 2g2ED ,

f ~x!5dn3~x!@dn3~x1a!1dn3~x2a!#, g2512cs2~a! ns~a!ds~a!. ~A18!

(
j 51

p

cjsjdj~dj 1r
2 1dj 2r

2 !522cs2~a!(
i 51

p

cjsjdj . ~A19!

(
j 51

p

sjcj
2dj~cj 1r1cj 2r !5~2/m! cs~a! ns~a!(

j 51

p

cjsjdj . ~A20!

(
j 51

p

sjcjdj
2~dj 1r

3 1dj 2r
3 !524 cs2~a! ns~a!ds~a!(

j 51

p

cjsjdj . ~A21!

3. Examples belonging to the class MI-III

(
j 51

p

sjsj 1r¯sj 1( l 21)r5
1

m~ l 21!/2 S )
k51

~ l 21!/2

~2 !ns2~kb!12 (
k51

~ l 21!/2

)
n51,nÞk

l

ns~nb2kb!D (
j 51

p

sj

~A22!

for odd l<p. When l 5p, the resulting identity takes the simpler form

)
j 51

p

sj 5 S )
n51

(p21)/2 S 21

m Dns2S 4Kn

p D D (
j 51

p

sj . ~A23!

(
j 51

p

sj~cj 1scj 1r1cj 2scj 2r !52
2

m
@ds~b!ds~b8!1ds~b2b8!$ns~b!2ns~b8!%#(

j 51

p

sj .

~A24!

(
j 51

p

cjdj~sj 1r
2 1sj 2r

2 !5~2/m!@ns2~b!1ds~b!cs~b!# (
j 51

p

cjdj . ~A25!

(
j 51

p

djcj~sj 1rsj 1s1sj 2rsj 2s!5~2/m! ns~b! ns~b8!(
j 51

p

cjdj . ~A26!
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(
j 51

p

sj
4~sj 1r1sj 2r !52~2/m! cs~b!ds~b! (

j 51

p

sj
3 1 ~2/m2!ns2~b!@ns2~b!2cs~b!ds~b!# (

j 51

p

sj .

~A27!

(
j 51

p

sj
4~dj 1rcj 1s1dj 2rcj 2s!5~2/m!cs~b!ds~b8!(

j 51

p

cjdjsj
21~2/m2!@ns~b!ds~b! ns~b8!cs~b8!

1cs~b!ds~b8!$ns2~b!1ns2~b8!%#(
j 51

p

cjdj . ~A28!

4. Examples belonging to the class MI-IV

(
j 51

p

dj~sj 1r1sj 2r !50. ~A29!

(
j 51

p

cjcj 1r¯cj 1( l 21)r

5
1

m~ l 21!/2 S )
k51

~ l 21!/2

ds2~kb!12~21!~ l 21!/2 (
k51

~ l 21!/2

)
n51,nÞk

l

ds~nb2kb!D (
j 51

p

cj

~A30!

for l odd, andl<p. When l 5p, the resulting identity takes the simpler form

)
j 51

p

cj 5 )
n51

(p21)/2
1

m
ds2S 4Kn

p D (
j 51

p

cj . ~A31!

(
j 51

p

dj~dj 1rcj 1r1dj 2rcj 2r !522ds~b!@cs~b!2ns~b!#(
j 51

p

cj . ~A32!

(
j 51

p

dj~cj 1rdj 1s1cj 2rdj 2s!522@$ds~b!2ds~b2b8!%cs~b8!1cs~b2b8!cs~b!# (
j 51

p

cj .

~A33!

(
j 51

p

cj
2~dj 1rsj 1r1dj 2rsj 2r !5~22/m!@ds2~b!1cs~b!ns~b!#(

j 51

p

sjdj . ~A34!

(
j 51

p

sjdj~cj 1rcj 1s1cj 2rcj 2s!5~22/m!ds~b!ds~b8!(
j 51

p

sjdj . ~A35!

(
j 51

p

sj
2dj

2~cj 1r1cj 2r !522ns~b!cs~b!(
j 51

p

cj
3

1
2

m
cs~b!ns3~b!@msn2~b!1cn2~b!2cn~b!#(

j 51

p

cj . ~A36!

APPENDIX B: EXAMPLES USING MASTER IDENTITIES WITH ALTERNATING SIGNS

The identities in this appendix are only valid whenp is an even integer. Sincer and p are
coprime,r is necessarily odd. We use the notation
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(
j 51

p

~21! j 21[(
A

.

1. Examples belonging to the class MI-I

(
A

djdj 1rdj 12r52@cs2~a!12cs~a!cs~2a!#(
A

dj . ~B1!

(
A

djdj 1rdj 1s52@cs~a!cs~a8!1cs~a!cs~a82a!2cs~a8!cs~a82a!#(
A

dj . ~B2!

(
A

sjdj~cj 1rdj 1r1cj 2rdj 2r !522cs~a!@2ns~a!1ds~a!#(
A

cjsj . ~B3!

2. Examples belonging to the class MI-II

While there are no ordinary identities of this class withL51, alternating identities abound
They are therefore unique and characterized by the appearance of the Jacobian zeta functi
they have helped us in finding identities for the product ofp sn’s as well as ofp cn’s:

(
A

djdj 1r522cs~a!(
A

Zj ~p>4!. ~B4!

(
A

sjsj 1r5~2/m!ns~a!(
A

Zj ~p>4!. ~B5!

(
A

cjcj 1r52~2/m!ds~a!(
A

Zj ~p>4!. ~B6!

(
A

djdj 1rdj 12rdj 13r52@cs~a!cs~2a!cs~3a!1cs2~a!cs~2a!# (
A

Zj . ~B7!

This generalizes for any even numberl ,p to

(
A

djdj 1r¯dj 1( l 21)r52~21! l /2S (
k51

l /2

~21!k21 )
n51,nÞk

l

cs~@n2k#a!D(
A

Zj . ~B8!

Similarly, for any even numberl<p, p>4, we get

(
A

sjsj 1r¯sj 1( l 21)r5~2/ml /2!S (
k51

l /2

~21!k21 )
n51,nÞk

l

ns~@n2k#a!D(
A

Zj . ~B9!

(
A

cjcj 1r¯cj 1( l 21)r52~21/m! l /2S (
k51

l /2

~21!k21 )
n51,nÞk

l

ds~@n2k#a!D(
A

Zj . ~B10!

When l 5p (p>4) the last two identities reduce to

mp/2)
j 51

p

sj5S )
n51

p/221

ns2S 2Kn

p D D(
A

Zj . ~B11!
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mp/2)
j 51

p

cj5A12m~21!p/2S )
n51

p/221

ds2S 2Kn

p D D(
A

Zj . ~B12!

(
A

dj
3~dj 1r1dj 2r !52 ns~a!ds~a!(

A
dj

2 . ~B13!

(
A

dj
3@cj 1rsj 1r1cj 2rsj 2r #52~12/m!cs2~a! ds~a! ns~a!(

A
Zj

22ns~a! ds~a!(
A

cjsjdj . ~B14!
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Lifshitz tails for random acoustic operators
Hatem Najara)

Département de Mathematiques, Institut Preparatoire de Monastir,
Rue Ibn Jazzar 5000 Monastir, Tunisia
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This paper is devoted to the study of Lifshitz tails for random acoustic operators of
the formAv52¹ (1/%v) ¹. We prove that the integrated density of states ofAv

has a Lifshitz behavior at the edges of internal spectral gaps if and only if the
integrated density of states of a well-chosen periodic operator is nondegenerate at
the same edges. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1558902#

I. INTRODUCTION

We considerAv , the self-adjoint operator onL2(Rd) formally defined by

Av5A~%v!52¹
1

%v
¹52(

i 51

d

]xi

1

%v
]xi

, ~1!

where%v is a positive and bounded function.
Av is called the acoustic operator, see Ref. 4 for the physicals interpretations. Let us s

defining the main object of our study, the integrated density of states. For this we consideL a
cube ofRd. We note byAv,L the restriction ofAv to L with self-adjoint boundary conditions. A
Av is elliptic, the resolvent ofAv,L is compact and, consequently, the spectrum ofAv,L is discrete
and is made of isolated eigenvalues of finite multiplicity.21 We define

NL~E!5
1

vol~L!
•#$eigenvalues ofAv,L<E%. ~2!

Here vol~L! is the volume ofL in the Lebesgue sense and #E is the cardinal ofE.
It is shown that the limit ofNL(E) whenL tends toRd exists almost surely and is independe

of the boundary conditions. It is called the integrated density of states ofAv ~IDS for the short
form!. See Ref. 7.

The question we are interested in here regards the behavior ofN at the edges of the spectrum
of Av .

A. The behavior of the IDS

We give a brief history of the subject. In 1964, Lifshitz16 argued that, for a Schro¨dinger
operator of the formHv52D1Vv , there existsc1 ,c2.0 such that N(E) satisfies the
asymptotic:

N~E!.c1 exp~2c2~E2E0!2 d/2!, E→E0 . ~3!

Here E0 is the bottom of the spectrum ofHv . The behavior~3! is known as Lifshitz tails~for
more details see part IV.9.A of Ref. 20!. Lifshitz predicted~3! also at fluctuating edges inside th
spectrum. We refer to this asymptotic by ‘‘internal Lifshitz tails.’’

a!Electronic mail: hatem.najar@ipeim.rnu.tn
18420022-2488/2003/44(4)/1842/26/$20.00 © 2003 American Institute of Physics

                                                                                                                



far.

shitz
s non

oduce

ndom

h

ted

1843J. Math. Phys., Vol. 44, No. 4, April 2003 Lifshitz tails for random acoustic operators

                    
The principal results known on Lifshitz tails are mainly shown for Schro¨dinger operators~for
continuous and discrete cases!. ~See Refs. 6, 8, 12, 18, 19, and 22 and others.13!

Lifshitz tails for an operator of type~1!, to our knowledge, has never been studied so
However, Kozlov in Ref. 11 gives the Weyl asymptotic ofN(E) in the neighborhood of 0.

B. The result

The essential goal of this work is to study internal Lifshitz tails for the operator defined by~1!.
Using the technique of periodic approximation, we prove that the IDS exhibits internal Lif
tails at the edges of the spectral gaps if and only if the IDS of some periodic operator i
degenerate at the same edges.

To present our result let us consider the following plan.
In Sec. II, we define the model to be studied and specify various assumptions. We intr

a periodic reference operatorAv1. We state the principal theorem~Theorem 2.2! which gives the
Lifshitz tails.

To prove Theorem 2.2, we start by locating the integrated density of states of our ra
operator in the neighborhood of an energyE1 . This will be done in Secs. III and IV.

Section V is devoted to the proof of Theorem 2.2.

II. THE MODEL

Let us start this section by giving the expression of%v . We assume that%v is a function
which satisfies the following.

~H.0!

%v5%0S 11 (
gPG

vgugD ,

where

~i! %0 is measurable with real values andZd-periodic function, i.e.,

%0~x!5%0~x1g!, ;xPRd, gPZd.

~ii ! There exists constants%0,1.%0,2.0 such that for almost allxPRd, we have

0,%0,2<%0~x!<%0,1 . ~4!

~iii ! For gPZd, we setug(•)5u(•2g). We suppose thatu is a function with real values suc
that there existsU1.0: such that for almost allxPRd,

0<U~x![ (
gPZd

ug~x!<U1,`. ~5!

~iv! (vg)gPZd is a family of nonconstant and positive, independent identically distribu
random variables whose common probability measure is noted byPv0

. We note the probability
space by~V,F,P!. We assume thatPv0

is compactly supported.
Let A(%v) be the quadratic form defined as follows: foruPH1(Rd)5D(A(%v)),

A~%v!@u,u#5E
Rd

1

%v~x!
¹u~x!¹u~x!dx.

A(%v) is a symmetrical, closed, and positive quadratic form.Av given by~1! is defined to be the
self-adjoint operator associated toA(%v).21
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Assumption ~H.0! ensures thatAv is a measurable family of self-adjoint operators a
ergodic.6,20 Indeed, if tg refers to the translation byg, then (tg)gPZd is a group of unitary
operators onL2(Rd) and forgPZd we have

tgAvt2g5Atgv .

According to Refs. 6 and 20 we know that there existsS, Spp , Sac , andSsc closed and nonran
dom sets ofR such thatS is the spectrum ofAv with probability one and such that ifspp

~respectively,sac andssc) design the pure point spectrum~respectively, the absolutely continuou
and singular continuous spectrum! of Av , thenSpp5spp , Sac5sac , andSsc5ssc with prob-
ability one.

A. Reference operator

It is convenient to considerAv as a perturbation of some periodic operatorAv1. More
precisely, for%v15%0(11v1(gPZdug), wherev15sup(suppPv0

) we write

Av5Av11DAv ,

with

Av15A~%v1!

and

DAv5Av2Av152¹
%v12%v

%v1%v
¹>0.

1. Some Floquet theory

Now we review some standard facts from the Floquet theory for periodic operators.
references for this material are Refs. 15, 21, and 23.

As %v1 is Zd-periodic, for anygPZd, we have

tgAv1tg* 5tgAv1t2g5Av1.

Let T* 5Rd/(2pZd). We defineH by

H5$u~x,u!PLloc
2 ~Rd! ^ L2~T* !;;~x,u,g!PRd3T* 3Zd; u~x1g,u!5eiguu~x,u!%.

There existsU a unitary isometry fromL2(Rd) to H such that Av1 admits the Floquet
decomposition15,23

UAv1U* 5E
T*

%

Av1~u!du.

HereAv1(u) is the operatorAv1 acting onHu , defined by

Hu5$uPLloc
2 ~Rd!;;gPZd,u~x1g!5eiguu~x!%.

As Av1 is elliptic, we know that,Av1(u) has a compact resolvent; hence its spectrum
discrete.21 We denote its eigenvalues, called Floquet eigenvalues ofAv1, by

E0~u!<E1~u!<¯<En~u!<¯ .

The corresponding eigenfunctions are denoted by (w(x,•) j ) j PN . The functions (u→En(u))nPN
are Lipshitz-continuous, and we have
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En~u!→1` as n→1` uniformly in u.

The spectrums(Av1) of Av1 is made of bands@i.e., s(Av1)5ønPNEn(T* )]. The periodic
operatorAv1 has an IDS which will be denoted byn. The behavior ofn at a band edgeE1 , is
said to be nondegenerate if

lim
«→01

logun~E11«!2n~E1!u
log«

5
d

2
. ~6!

Remark 2.1: (1) It is proven in Ref. 12 that (6) is equivalent to say that the floquet eigenv
reaching the band edge E1 has only nondegenerate quadratic extrima at that edge, i.e., ifu0 is
such that En(u0)5E1 thenu0 is a nondegenerate quadratic extrumum of En .

(2) In Ref. 10, (6) is established for the bottom of the spectrum of Schro¨dinger operators. For
acoustic operators we expect (6) at internal edges of the spectrum for d51.21

2. Main assumptions

We assume the following.
~H.1!

There exists E1 and d.0 such that s(Av1)ù@E1 ,E11d)5@E1 ,E11d) and
s(Av1)ù(E12d,E1#5B.

To prove our result, we will need the following assumptions.
~H.2!

There existsg1(x)PLp(C0) with C05$xPRd;;1< j <d;2 1
2,xj<

1
2% and (p52, if d

<3,p.2, if d54 and p.d/2 if d>5) such that for somen.d12, for all gPG and a.e.,x
PC0 we have

0<u~x1g!•~11ugu!n<g1~x!,

and for all 1< i<d,

0<u~]xi
u!~x1g!u•~11ugu!n<g1~x!.

~H.3!

lim sup
«→01

logu logPv0~@v12«,v1# !u
u log«u

50.

As, DAv>0 andv1 is in the support ofPv0
, S contains an interval of the form@E1 ,E1

1a#(a.0) ~see Ref. 9!.
As we are interested in the behavior of the IDS in the neighborhood ofE1 , we require that

E1 remains always the edge of a gap forS, when the perturbation is turned on. More precisely
for all tP@0,1#, we defineAv,t5Av11tDAv andS t is the almost sure spectrum ofAv,t , then one
requires that the following assumption holds.
~H.4!

There existsd8.0 such that for alltP@0,1#, S tù@E12d8,E1)5B.

3. The main result

The main result of this work is as follows.
Theorem 2.2:Let Av be the operator defined by (1), and assume that (H.1), (H.2), (H.3),

(H.4) hold, then E1 is a continuity point for N and we have
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lim inf
«→01

logu log~N~E11«!2N~E1!!u
log«

>2
d

2
,

lim
«→01

logu log~N~E11«!2N~E1!!u
log«

52
d

2
⇔ lim

«→01

log~n~E11«!2n~E1!!

log«
5

d

2
.

Remark 2.3: The result of Theorem 2.2 is stated for lower band edges. Under ade
assumptions the corresponding result can be proved for upper band edges.

Outline of the proof:To prove Theorem 2.2, we use periodic approximations. We prov
lower and an upper bounds onN(E11«)2N(E1). The upper and lower bounds are prov
separately.

To prove the upper bound, we compareN(E11«)2N(E) to the IDS of well chosen Ander
son discrete model. More precisely, we prove that for an energyE close toE1 , N(E)2N(E1)
can be upper bounded byNE0

(E), the IDS of the bounded random operatorAv
0 5P0AvP0 . Here

P0 , is the spectral projection forAv1 on the band starting atE1 . So to study the behavior o
N(E)2N(E1), we study the behavior ofNE0

(E). This represents several advantages: first,Av
0 is

equivalent to a random Jacobi matrix acting onL2(T* ) ^ Cn. The second advantage is that wh
E1 is an interior edge of a gap forAv , it becomes the bottom of the spectrum forAv

0 . We prove
that, whenn, the IDS of the periodic operator is nondegenerate atE1 , Av

0 is lower bounded by
the usual discrete random operator whose behavior of the IDS at the edges of the spectral
already known. This lower bound on the operator immediately yields an upper bound o
density of states. The lower bound is proved by constructing a large enough number of orth
approximate eigenfunctions ofAv,L associated with approximate eigenvalues in@E12«,E1

1«#. This will enable us to lower bound the number of the eigenvalues ofAv,L in the interval
@E12«,E11«#.

Now we make some remarks about our assumptions. Let us start with~H.1!. Figotin and
Kuchment in Ref. 5 studied the existence of open spectral gaps in the spectrum of certain p
acoustic operators ford52 and 3. In assumption~H.1! we asked thatE1.0 which excludes the
spectral gap (2`,0). Lifshitz tails are likely to occur at the neighborhood of the fluctuating ed
See Ref. 20. It should be noted that 0 is not a fluctuating edge of the spectrum. It belongs
spectrum ofAv independently of the choice of%v(x).

If the support ofPv0
is connected, the assumption~H.4! can be replaced by~H.4.bis!. There

existsd8.0 such thatSù@E12d8,E1)5B.
By adding a disorder parameterg in the equation which defines%v , i.e.,

%v5%0S 11g (
gPZd

vgugD ,

we can chooseg small enough so that the spectral gap ins(Av1) will not be closed after the
perturbation.4

Remark 2.4: As it is already mentioned in remark 11 of Ref. 4, one can use the result o
Theorem 2.2 to show either Anderson localization4 or dynamical localization2 under assumptions
on the distribution of the random variables weaker than those required in these references
was done in the Schro¨dinger case by Veselic´.24

III. LOCALIZATION IN ENERGY FOR THE DENSITY OF STATES

The goal of this part is to give an estimate ofN(E)2N(E1) for an energyE close toE1 .
This will be accomplished by means of the IDS of certain reference operators.
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A. Wannier basis

We recall concepts used in Ref. 12. LetE,L2(Rd) a closed subspace invariant by theZd

translations, i.e., such thatPE, the orthogonal projection onE, satisfies

;gPZd, PE5tg* PEtg .

Following the computations done in Sec. 1.2 of Ref. 12, we see that there exists an orthon
system of vectors (w̃n,0)nPN such that forw̃n,g5tg(w̃n,0); (w̃n,g)(nPN;gPZd) is an orthonormal
basis ofE. Such system is calledWannier basisof E. The vectors (w̃n,0)nPN are calledWannier
generatorsof E.
Let E,L2(Rd) be a space which is translation invariant.E is said to be of finite energy forAv if
PEAvPE is a bounded operator. In this case,E admits a finite set of Wannier generators.

Let J0 be the set of indices of the Floquet eigenvalues ofAv1 which take the valueE1 in
certain pointsuPT* . We identify J0 to $1, . . . ,n0%. Let Z be the set ofuPT* for which there
exists j PJ0 such thatEj (u)5E1 . Whenn has a nondegenerate behavior atE1 , Z is a set of
isolated points.11 For j PJ0 we defineZj5$uP T* ;Ej (u)5E1%. The sequence (Zj ) j PJ0

is de-
creasing andZ15Z. For u0PZ, Nu0 is the set of indices such that,Ej (u

0)5E1 . We recall that
the Floquet eigenvector associated with the eigenvalueEj (u) is denoted bywj (•,u).

Lemma 3.1 (Ref. 12): There exists(v j (•,u)) j PJ0
functions inHu such that:

(1) for u0PZ and jPNu0, there exists Vu0 a neighborhood of Vu0 (in T* ) such that,
the mapuPVu0°v j (•,u)PHu is real analytic [i.e.,u→Tu→u0v j (•,u) is analytic of Vu0 in
H u0],
For uPVu0, span̂ ((v j (•,u)) j PNu0)&5span̂ ((wj (•,u)) j PNu0)&.
(2) For uPT* , we have
the system((v j (•,u)) j PNu0) is orthonormal inHu .
span̂ (wj (•,u) j PJ0

)&5span̂ (v j (•,u)) j PJ0
&.

For (u,u8)P(T* )2, we define Tu→u8 :Hu°H u8 by (Tu→u8v)(x)5eix•(u82u)v(x).

B. Reduction to discrete problem

The reduction procedure consists in decomposing the operatorAv according to various
translation-invariants subspaces. The random operators thus obtained are reference op
They will be used for the upper bound on the IDS.

Let
J2 be the set of indices smaller than infJ0 ;
J1 be the set of the indices greater than supJ0 .
We denote byP0(u) @respectively,P2(u) andP1(u)# the orthogonal projections inHu on

the vector space generated by (wj (•,u)) j PJ0
@respectively, by (wj (•,u)) j PJ2

and (wj

(•,u)) j PJ1
]. These three projections are two-by-two orthogonal and their sum is the identit

all uPT* .
One defines

Pa5U21S E
T*

Pa~u!du DU:L2~Rd!→L2~Rd!,

where aP$2,0,1%. Pa is an orthogonal projection onL2(Rd) and for all gPZd, we have
tg* Patg5Pa . Note thatP2 , P0 , and P1 are mutually orthogonal and thatP21P01P1

5IdL2(Rd) . For aP$2,0,1%, we setEa5Pa(L2(Rd)). These spaces are translation invaria
MoreoverE2 andE0 are of finished energies forAv1. We prove the following.

Theorem 3.2:Let Av be defined by (1). We assume that (H.1), (H.2), (H.3), and (H.4) h
There exists E0.E1 and C.1 such that, for E1<E<E0 we have
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0<N~E!2N~E1!<NE0
~C•~E2E1!1E1!, ~7!

where NE0
is the IDS of Av

0 5P0AvP0 .
Theorem 3.2 immediately gives the following corollary.
Corollary 3.3: Under the assumptions of the last theorem, E1 is a continuity point for N.

More precisely, there exists C.1 and E0.E1 such that, for E1<E<E0 we have

0<N~E!2N~E1!<n~C•~E2E1!1E1!2n~E1!.

Proof: As DAv>0, this impliesP0AvP0>P0Av1P0 . Thus, if nE0
is the integrated density

of statesP0Av1P0 , we have

NE0
~E!<nE0

~E!.

As P0 commutes withAv1, if E is close enough toE1 such thatE>E1 , then we have

nE0
~E!5n~E!2n~E1!.

The continuity ofN in E1 is an immediate consequence of the continuity ofn. h

IV. THE PROOF OF THEOREM 3.2

To prove Theorem 3.2, we will approach the density of states ofAv by the density of states o
periodic approximations. In a neighborhood ofE1 , we will control the behavior of the density o
states of periodic approximations via the density of states of periodic approximations o
reference operators. We then compute the limit for the density of states of the reference op
and we obtain the sought for result.

A. The periodic approximations

Let kPN* . We define the following periodic operator:

Av,k52¹
1

%v,k
¹,

where the function%v,k is defined by

%v,k5%0S 11 (
gPCkùZd

vg (
bP(2k11)Zd

ug1bD ,

Ck is the cube

Ck5H xPRd;;1< j <d, 2
2k11

2
,xj<

2k11

2 J .

Av,k is (2k11)Zd-periodic and essentially self-adjoint operator. LetTk* 5(Rd)/@2p/(2k
11)#Zd. We defineNv,k the IDS ofAv,k by

Nv,k~E!5
1

~2p!d (
nPN

E
$uPTk* , Ev,k,n(u)<E%

du. ~8!

Let dNv,k be the derivative ofNv,k in the distribution sense. AsNv,k is increasing,dNv,k is a
positive measure; it is the density of states ofAv,k . We denote bydN the density of states ofAv .
For all wPC0

`(R), dNv,k verifies ~see Refs. 12 and 21!
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^w,dNv,k&5
1

~2p!d E
uPTk*

trHu
~w~Av,k,u!!du5

1

vol~Ck!
tr~xCk

w~Av,k!xCk
!, ~9!

where forL,Rd, xL will design the characteristic function ofL and tr(A) is the trace ofA ~we
index byHu if the trace is taken inHu). The proof of~9! is given in Ref. 12.

Theorem 4.1: (1) For anywPC0
`(R) and for almost allvPV we have

lim
k→`

^w,dNv,k&5^w,dN&.

(2) For anylPR a continuity point for N, we havelimk→`E(Nv,k(l))5N(l).
Remark 4.2: The result of Theorem 4.1 is close to that of Theorem 5.1 of Ref. 12. The p

also similar and is based on functional analysis. The unique difference in the proof comes fro
control of the behavior of the resolvent. In Ref. 12, the perturbation was a potential; in our case
it is a differential operator of the same order as the background operator. We will give a ske
the proof.

Proof: Let wPC0
`(R). From Refs. 1 and 20, we know that

^w,dN&5E
R
w~l!dN5ES 1

vol~C0!
tr~xC0

w~Av!xC0
! D .

By writing xCk
5(gPCkùZdtg(xC0

), we have

E~ tr~xCk
w~Av,k!xCk

!!5 (
gPCkùZd

E@ tr~tg~xC0
!w~Av,k!!#.

As the family of random variables (vg)gPZd is independent and identically distributed, we co
pute

E~ tr~xCk
w~Av,k!xCk

!!5#~CkùZd!E~ tr~xL0
w~Av,k!!!.

So from ~9!, we obtain

E~^w,dNv,k&!5
1

vol~C0!
E~ tr~xC0

w~Av,k!xC0
!!.

The random variables (vg)gPZd and the functions%0 and u are bounded; hence,Av,k is lower
bounded uniformly inv and k. Let l0PR* such thatI<l01Av,k and I<l01Av , for all v
PV andkP N* .

Let wPC0
`(R) and w̃ be an almost analytic extension of (l01x)2qw(x), whereq.2d11.

The Helffer–Sjo¨strand formula14 gives

w~Av,k!5
i

2p E
C

]w̃

] z̄
~z!~l01Av,k!

2q~z2Av,k!
21 dz∧dz̄.

We have the following.
Lemma 4.3 (Ref. 3): For q.d/2 ,xC0

(l01Av,k)
2q(z2Av,k)

21xC0
is trace class.

So, we can write that

tr~xC0
w~Av,k!xC0

!5
i

2p E
C

]w̃

] z̄
~z!tr~xC0

~l01Av,k!
2q~z2Av,k!

21xC0
!dz∧dz̄.

This implies that
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uE~^w,dNv,k&!2^w,dN&u5uE~ tr~xC0
w~Av,k!!!2E~ tr~xC0

w~Av!!!u

<ES 1

p E
C
U]w̃

] z̄
~z!Ui tr@xC0

$~l01Av,k!
2q~z2Av,k!

21

2~l01Av!2q~z2Av!21%#idx dyD . ~10!

Now we state a lemma which will be proven later.
Lemma 4.4: Let I be a relatively compact open interval inR. There exists K.0, such that

;wPC0
`(I ),

~10!<ES KE
R2
U]w̃

] z̄
~z!U• (

b,gPZd,ugu.k

e2uIm(z)uubu/K

uIm~z!u2 itb1gui
L2(C0)

dx dyD .

From Lemma 4.4 and the fact that(gPZditguiLp(C0),`, we obtain that there existsK.0 such

that for anywPC0
`(R) we have

uE~^w,dNv,k&!2^w,dN&u<ES KE
R2
U]w̃

] z̄
~z!U (

b,gdPZd,ugu.k

e2uIm(z)uubu/K

uIm~z!u2 itb1guiLp(C0)dx dyD
,1`.

As for anyMPN; u (]w̃/] z̄) (z)u5O(uIm(z)uM), Lebesgue’s dominated convergence theorem
plied to ~10! implies that

lim
k→`

uE~^w,dNv,k&!2^w,dN&u50.

So the first assertion of Theorem 4.1.
The proof of the second assertion is given in Ref. 12.

B. Localization in energy

In this section we prove a result similar to Theorem 3.2 for the counting functions o
periodic approximations of reference operators.

Let kPN* . We define the operators

Av1,05P0Av1P0

and

Av,k,25P2Av,kP25P2Av1P21P2DAv,kP2 .

In an analogous way, we define,DAv,k,0 , DAv,k,1 , Av,k,1 , Av1,1 , andAv,k,0 . According to the
assumption~H.1! and asDAv>0, we know that there existsa.0 such that, for anykPN, we
have

Av,k,1>Av1,1>~E11a!P1 . ~11!

The projectorP2 is Zd-periodic, hence it is (2k11)Zd-periodic. So, according to the Floque
theory, we decompose it jointly withAv,k :

P25E
Tk*

%

Pk,2~u!du.
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For uPT* k , the operatorPk,2(u) is an orthogonal projection inHu ; the same forPk,1(u) and
Pk,0(u). Finally one defines the operator

Av,k,2~u!5Pk,2~u!Av,k~u!Pk,2~u!,

and in an analogous way, we define the operatorsAv,k,0(u) andAv,k,1(u). From~11!, we get that

Av,k,1~u!>~E11a!Pk,1~u!. ~12!

For an operatorH with a discrete spectrum, we note his counting function by

V~H,E!5#$eigenvalues ofH<E%.

One, then, shows the following lemma.
Lemma 4.5: We assume that (H.1), (H.2), (H.3), and (H.4) hold. There exists E0.E1 and

C.1 such that for E1<E<E0 we have

0<V~Av,k~u!,E!2V~Av,k~u!,E1!<V~Av,k,0~u!,C•~E2E1!1E1!. ~13!

Proof: We defineÃv,k5Av,k2E1 and Ãv15Av12E1 . As we did previously we define
Ãv,k,2(u), Ãv,k,1(u), andÃv,k,0(u), i.e.,

Ãv,k,2~u!5Pk,2~u!Ãv,k~u!Pk,2~u!.

To prove Lemma 4.5, it is enough to prove the following.
Lemma 4.6: We assume that (H.1), (H.2), (H.3), and (H.4) hold. There exists E˜

0.0 and C

.1 such that for0<Ẽ<Ẽ0 , we have

0<V~Ãv,k~u!,Ẽ!2V~Ãv,k~u!,0!<V~Ãv,k,0~u!,CẼ!.

Proof: If ~H.4! holds, then for anytP@0,1# and anykPN* , we have@2d,0)ùs(Ãv,k,t)
5B whereÃv,k,t5Ãv11tDAv,k .9 Thus, for anytP@0,1# and ẼP@2d8,0), we have

V~Ãv,k,t~u!,Ẽ!5V~Ãv,k,t~u!,02!.

Here Ãv,k,t(u)5Pk(u)Ãv1(u)Pk(u)1tDAv,k(u). But the functiont°V(Ãv,k,t(u),Ẽ) is con-
tinuous for tP@0,1# and ẼP@2d8,0@ . It is integer valued and hence, constant. Thus, forẼP
@2d8,0@ , we have

V~Ãv,k~u!,Ẽ!5V~Ãv,k,t~u!,Ẽ!5V~Ãv,k,t50~u!,Ẽ!

5V~Ãv1,k~u!,Ẽ!5~2k11!dV~Ãv1~u!,Ẽ!5~2k11!d#J2 .

HereJ2 is the set of indices of the Floquet eigenvalues ofÃv1(u) smaller than 0.
We decomposeH in the following way:

H5H2 % H 1, H25Pk,2~u!H and H 15Pk
1~u!H5~Pk,0~u!1Pk,1~u!!H.

So we writeÃv,k(u) in the following matrix form:

S Ãv,k,2~u! Ãv,k
2,1~u!

Ãv,k
1,2~u! Ãv,k

1 ~u!
D ,
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where Ãv,k,2(u) 5Pk,2(u)Ãv,kPk,2(u), Ãv,k
1 (u)5Pk

1(u)Ãv,k(u)Pk
1(u), Ãv,k

1,2(u)
5Pk

1(u)Ãv,k(u)Pk,2(u), andÃv,k
2,1(u) is the adjoint ofÃv,k

1,2(u). From~14!, we can see that the
number of the Floquet eigenvalues ofÃv,k(u) less than 0 is equal to the rank ofPk,2(u). Then,
one proves the following.

Lemma 4.7 (Ref. 12): For E˜ >0,

0<V~Ãv,k~u!,Ẽ!2V~Ãv,k~u!,0!<V~Ãv,k
1 ~u!,Ẽ!. ~14!

Proof: The proof of this lemma is based on the min–max principle and is given in Ref. 1h

We recall thatH 1 is decomposed into two orthogonal spaces,H 15H0% H1 ; this gives the
following matrix:

Ãv,k
1 ~u!5S Ãv,k,0~u! Ãv,k,0,1~u!

Ãv,k,1,0~u! Ãv,k,1~u!
D .

Here Ãv,k,0(u)5Pk,0(u)Ãv,k(u)Pk,0(u), Ãv,k,1(u)5Pk,1(u)ÃvPk,1(u), Ãv,k,1,0(u)
5Pk,1(u)Ãv,k(u)Pk,0(u), and Ãv,k,0,1(u) is the adjoint of Ãv,k,1,0(u). As Ãv1,k,1(u)
>aPk,1(u) andDAv,k(u)>0, to prove Lemma 4.6, it is enough to show the following lemm

Lemma 4.8: There exists C.1 such that

S Ãv,k,0~u! Ãv,k,0,1~u!

Ãv,k,1,0~u! Ãv,k,1~u!
D >

1

C S Ãv,k,0~u! 0

0 Ãv,k,1~u!
D .

Proof: Let wPH 1ùD(Ãv
1). We setw5w11w0 . As H0 andH1 are orthogonal and invari

ant by Ãv1, there existsC.1 such that

^Ãv,k,1~u!w1 ,w1&<C^Ãv1,k,1~u!w1 ,w1&<C^Ãv,k
1 ~u!w,w&. ~15!

We know that

^Ãv
1~u!w,w&5^Ãv,k,1~u!w1 ,w1&1^Ãv,k,0~u!w0 ,w0&12 Re~^Ãv,k,1,0~u!w0 ,w1&!.

This leads to

^Ãv,k,1~u!w1 ,w1&1^Ãv,k,0~u!w0 ,w0&<^Ãv
1~u!w,w&12u^Ãv,k,1,0~u!w0 ,w1&u. ~16!

As Ãv
1 is positive we write

u^Ãv,k,1,0~u!w0 ,w1&u<u^~Ãv,k
1 ~u!!1/2w,~Ãv,k

1 !1/2w1&u1u^Ãv,k,1~u!w1 ,w1&u

<i~Ãv,k
1 ~u!!1/2wi•i~Ãv,k

1 ~u!!1/2w1i1u^Ãv,k,1~u!w1 ,w1&u.

Taking ~15! into account, we get that there existsC.1 such that

u^Ãv,k,1,0~u!w0 ,w1&u<C^Ãv,k
1 ~u!w,w&. ~17!

The proof of Lemma 4.8 is ended by taking~16! and ~17! into account. h

To finish the proof of Lemma 4.6 we use~14!. As Ãv,k,1(u)>aP1,k(u) andDAv,k(u).0, in the
neighborhood of 0 the non-negative eigenvalues ofÃv,k

1 (u) are lower bounded by the eigenvalu
of (1/C) (Ãv,k,0(u)); we obtain thus the estimate of Lemma 4.6. h

Now, we have all the necessary tools to prove Theorem 3.2. We note byN(Av,k,0,E) the IDS
of Av,k,0 and byN(Av,k ,E) that of Av,k . By definition we have
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N~Av,k ,E!5
1

~2p!d E
Tk*

V~Av,k~u!,E!du

and

N~Av,k,0 ,E!5
1

~2p!d E
Tk*

V~Av,k,0~u!,E!du.

As in Ref. 12, for anywPC0
`(R), we have

lim
k→`

ES E
R
w~l!dN~Av,k,0 ,l! D 5E

R
w~l!dNE0

~l!. ~18!

HeredNE0
is the density of states ofAv,k,0 . According to this, one can see that to prove Theor

3.2, it is enough to integrate Eq.~13!, use Proposition 4.1 of Ref. 12 and Theorem 4.1. ForE close
to E1 , a continuity point forN(E) andNE0

(C•E), we obtain

0<N~E!2N~E1!<NE0
~C•~E2E1!1E1!.

So the proof of Theorem 3.2. h

V. THE PROOF OF THEOREM 2.2

For vPH 2 one defines the following norm:

sup
uPT*

~ u^v~ .,u!,Av1~u!v~ .,u!&L2(C0)u1iv~ .,u!iL2(C0)
2

!5iviAv1,` .

Let Lunif
2 (Rd) be the space defined by

L loc,unif
p ~Rd!5$u measurable; sup

gPZd

iuiLp(g1C0),`%

endowed with the norm supgPZdiuiLp(g1C0) .

Let 0<VPL loc,unif
p (Rd) wherep is taken as in the assumption~H.2!. We define the operato

OpV,v :L2(T* )→L2(Rd) by

;tPL2~T* !, OpV,v~ t !5AV~x!E
T*

v~x,u!t~u!du.

The following lemma is of use.
Lemma 5.1 (Ref. 12): LetvPH u

2 . If iviAv1,`,1`, then OpV,v is bounded, precisely there

exists C.0 such that,

iOpV,viL(L2(T* ),L2(Rd))<CiviAv1,`AiViL
loc,unif
p .

We setf (x,u)5v1(x,u) @v1(x,u) is one of the vectors constructed in Lemma 3.1#. Let us remark
on the following.

Remark 5.2: For any1< i<d, we havei]xi
f (x,u)iAv1,`,1`.

A. The upper bound

We start this section by recalling that the integrated density of statesn of the background
operatorAv1, is said to be nondegenerate at a band edgeE1 if
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lim
«→01

logun~E11«!2n~E1!u
log«

5
d

2
.

We prove the following theorem.
Theorem 5.3: Let Av the operator defined by (1). We assume that (H.1), (H.2), (H.3),

(H.4) hold and n is nondegenerate at E1 , then

lim sup
«→01

logu log~N~E11«!2N~E1!!u
log«

<2
d

2
.

Proof: To prove the upper bound, it is enough to prove the same upper bound onNE0
~defined

in Theorem 3.2!. To do this, we show that whenn has a nondegenerate behavior at energyE1 ,
thenNE0

~and soN) may be compared to the IDS of some well chosen, discrete Andreson m
~whose behavior of its IDS is already known!.

As DAv>0, if a vector minimizes Av
0 5P0AvP0 , it necessarily minimizesAv1

0

5P0Av1P0 ; hence, it has to be concentrated in the quasimomentumu near the zeros of
(Ej (u)2E1)1< j <n0

. For this we have to take into account all the points where the Floq
eigenvalues reachE1 .

So we begin by isolating the contributions from the various points for whichE1(u) take the
valueE1 .

We recall that the band atE1 is generated by (Ej (u))1< j <n0
. For 1< j <n0 , Zj5$u

P T* ;Ej (u)5E1%. The sequence (Zj )1< j <n0
is decreasing (Zj 11,Zj ). Let u0PZ. We set

j (u0)5supNu0 with Nu05$ j ,1< j <n0 ;Ej (u
0)5E1%. Let m5#Z. We replace the Floquet eigen

vectors (wj (•,u))1< j < j (u0) associated to (Ej (u))1< j < j (u0) by the vectors (v j (•,u))1< j < j (u0) con-
structed in Lemma 3.1. They are analytic in a neighborhoodVu0 of u0. Let u be close tou0. The
operatorAv1

0
5P0Av1P0 is unitarily equivalent to the multiplication by a matrix-valued functio

on T* . This matrix-valued function takes the following block diagonal form:

Av1
0

~u!5S Bj (u0)~u! 0 0 . . . 0

0 Ej (u0)11~u! 0 . . . 0

0 0 � � :

0 0 . . . 0 En0
~u!

D ,

where the matrixBj (u0)(u) is j (u0)3 j (u0) blocks given by

S ^v1~•,u!,Av1~u!v1~•,u!&L2(C0) . . . ^v1~•,u!,Av1~u!v j (u0)~•,u!&L2(C0)

: � :

^v j (u0)~•,u!,Av1~u!v1~•,u!&L2(C0) . . . ^v j (u0)~•,u!,Av1~u!v j (u0)~•,u!&L2(C0)

D .

The matrixBj (u0)(u) have eigenvalues (Ej (u))1< j < j (u0) .
For u0PZ, we define

v̄u0~u!5(
j 51

d

~12cos~u j2u j
0!!.

We recall ~see remark 2.1! that the nondegeneracy ofn implies that the eigenvalue
(Ej (u))1< j < j (u0) are nondegenerate atE1 . So there existsṼu0 ~an open neighborhood ofu0) and
C.1 such that, foruPṼu0 we have the following:

for 1< j < j (u0), C(Ej (u)2E1)>v̄u0(u),
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for j > j (u0), C(Ej (u)2E1)>2.
Remark 5.4: The neighborhood V˜

u0 can be chosen such that Vu0,Ṽu0, where Vu0 was defined
in Lemma 3.1.

Let Av1,u0
b (u) the n03n0 diagonal matrix with identical diagonal entries equal tov̄u0. For

uPṼu0, we have

Av1,u0
b

~u!<C~•Av1
0

~u!2E1I d!. ~19!

Here I d is the identity matrix.
Finally, we note that (Ṽu0)u0PZ can be chosen so that they coverT* ~i.e., øu0PZṼu05T* ,)

and such that each one of them contains only one point ofZ ~i.e., for uPZ,u8PZ such thatu

Þu8, we haveu8¹ V̄̃u). We order the points inZ5$uk;1<k<m%. Let (xk)1<k<m be C0
`(T* )

functions which form a partition of the unity onT* such that
for 1<k<m, supp(xk),Ṽuk,
for 1<k<m, 0<xk<1,
for 1<k<m, xk[1 in a neighborhood ofuk.
So there existsC.1 such that for anyuPT* , we have

1

m
<(

k51

m

xk
2<1 and (

k51

m

Av1,uk
b

~u!xk
2<CAv1

0
~u!. ~20!

For tPL2(T* ) ^ Cn0^ Cm, we notet5(t j ,k)1< j <n0 ;1<k<m . We considert as a system ofm col-
umns denoted by (t .,k)1<k<m . Each component belongs toCn0. We endowL2(T* ) ^ Cn0^ Cm with
the scalar product generating the following Euclidean norm:

i tiL2(T* ) ^ Cn0^ Cm
2

5 (
k51

i t
•,kiL2(T* ) ^ Cn0

2
5 (

1< j <n0,1<k<m
i t j ,kiL2(T* )

2 .

We define the mappingS:L2(T* ) ^ Cn0→L2(T* ) ^ Cn0^ Cm by

S~ t !5~xkt !1<k<m5~xkt j !1< j <n0 ;1<k<m , if t5~ t j !1< j <n0
PL2~T* ! ^ Cn0.

The adjoint ofS, S* :L2(T* ) ^ Cn0^ Cm→L2(T* ) ^ Cn0 is defined by

S* ~ t !5S (
1<k<m

xkt j ,kD
1< j <n0

for t5~ t j ,k!1< j <n0 ;1<k<mPL2~T* ! ^ Cn0^ Cm.

According to Eq.~20! we have (1/m) I d<S* +S<I d @hereI d is the identity inL2(T* ) ^ Cn0], thus
S is one to one. One shows the following lemma.

Lemma 5.5: There exists C.1 such that, for tPL2(T* ) ^ Cn0, we have

^Av
a St,St&L2(T* ) ^ Cn0^ Cm<C^~Av

0 2E1I d!t,t&L2(T* ) ^ Cn0 ,

where the operator Av
a acting on L2(T* ) ^ Cn0^ Cm is defined by

Av
a t5Av1

a t1DAv1,v
a t5~Aj ,k

a t j ,k1DAv
a t j ,k!1< j <n0 ;1<k<m .

Here
Aj ,k

a is the multiplication byÃuk acting as a multiplication on L2(T* ),
DAv

a 5(gPZdvg
1Pg ,

Pg is the orthogonal projection on the vectoru°eigu in L2(T* ).
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Before proving this lemma let us use it to end the proof of Theorem 5.3. By Propositio
of Ref. 12, we know thatAv

a and Av
0 both have an IDS which we will denote, respectively,

Na(E) andNE0
(E). Moreover, forE, a continuity point forNE0

, we have

NE0
~E!5 lim

q→1`

1

Lq
$eigenvalues ofAv,q

0 <E%,

where

Av,q
0 5Pq

0Av
0 Pq

0 ,

and for t5(t j )1< j <n0
PL2(T* ) ^ Cn0,

Pq
0t5S (

gPLq

eiguE
T*

e2 igut j (u)du D
1< j <n0

with Lq5$gPZd;ugu<q%.
Na(E) is given by

Na~E!5 lim
q→1`

1

Lq
$eigenvalues ofAv1,q

a <E%,

where

Av,q
a 5Pq

aAv
a Pq

a

and for t5(t j )1< j <n0
PL2(T* ) ^ Cn0,

Pq
at5S (

gPLq

eiguE
T*

e2 igut j ,k~u!du D
1< j <n0 ;1<k<m

.

Let us compareNE0
andNa.

Lemma 5.6 (Ref. 12): For anyd.0 and any lPN, there exists Cl(d).0 such that, for q
>1,

iP (11d)q
a +S+Pq

02S+Pq
0iL(L2(T* ) ^ Cn0,L2(T* ) ^ Cn0^ Cm)<Cl~d!q2 l .

Let «.0 and tPPq
0(L2(T* ) ^ Cn) ; such that^(Av

0 2E1Id)t,t&<«i ti2. Lemma 5.5 says tha
there existsC.1 such that

^Av
a St,St&<C•«i ti2. ~21!

So by Lemma 5.6, we know that

^Av
a ~P (11d)q

a S!t,~P (11d)q
a S!t&<C•«i ti212u^Av

a ~12P (11d)q
a !St,~P (11d)q

a !St&u

1u^Av
a ~12P (11d)q

a !St,~12P (11d)q
a !St&u<~C•«1Cdq21!i ti2.

~22!

As (1/m) I d<S* +S<I d , we have

i ti2<
m

12Cdq21 i~P (11d)q
a S!ti2. ~23!
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Thus P (11d)q
a S is one to one fromPq

0(L2(T* ) ^ Cn0) to Pq
0(L2(T* ) ^ Cn0^ Cm) and for q large

enough~dependent ond and«!, we have

^Av
a ~P (11d)q

a S!t,~P (11d)q
a S!t&<C•m~11d!«i~P (11d)q

a S!ti2. ~24!

Moreover, we have

#$eigenvalues ofAv,q
0 <~E11«!%5sup$dim~N!,N is a linearsubspace ofPq

0~L2~T* !

^ Cn0! such that for all tPN, ^Av
0 t,t&<~E11«!•i ti2%.

There is a similar characterization for the counting function ofAv
a . Using~21! and~24! for q large

enough, we obtain

#$eigenvalues ofAv,q
0 <E11«%<#$eigenvalues ofAv,(11d)q

a <C•~11d!•m•«%.

We divide by the volume ofLq then we takeq→1`. We get that, for« small such thatE1

1« is a continuity point ofNE0
(E), we have

NE0
~E11«!<~11d!dNa~C~11d!m•«!. ~25!

Using the right continuity ofNE0
(E) and its most denumerable number of discontinuity points,

extend the estimate~25!, to some interval of the form@E1 ,E11E#. Whend goes to 0, we get

NE0
~E11«!<Na~C•m•«!.

To complete the proof of Theorem 5.3, we use Theorem 3.2 and the fact thatNa admits Lifshits
tails at 0. See Ref. 12.

lim sup
«→01

logu log~N~E11«!2N~E1!!u
log«

<2
d

2
.

This ends the proof of the Theorem 5.3. h

The proof of Lemma 5.5:The proof of this lemma is similar to the one given in Ref. 12. F
this we will not give all details. We recall the following notation:

DAv52¹
%v12%v

%v1%v
¹52¹Vv¹,

where Vv5(gPZd(v12vg)(ug /Dv) and Dv5%v1(11(gPZdvgug). Let t5(t j )1< j <n0

PL2(T* ) ^ Cn0; we compute

^DAv
0 t,t&5(

i 51

d I (
1< j <n0 ;1<k<m

OpVv ,]xi
v j (•,u)~xkt j !I

L2(Rd)

2

changingv j (x,uk) in Ref. 12 by ]xi
v j (x,uk), following the same steps and taking~19! into

account we get that there existsC.1 such that

^Av
b St,St&<C^~Av

0 2E1I d!t,t&, ~26!

where
Av

b 5Av1
a

1DAv
b ,

Av1
a is defined in Lemma 5.5,

DAv
b is the operator defined by, fortPL2(T* ) ^ Cn0^ Cm,
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^DAv
b t,t&5 (

gPZd
vg

1^Vg
bt,t&,

whereVg
b is an operator matrix whose coefficients are operators with the following kernels:

E
Rd

ug~x!

Dv~x!
¹v j~x,uk!¹v j 8~x,uk8!ei ((u2uk)2(u82uk8))x dx.

We set

ei (u2uk)x5S ei (u2uk)x21

Avk
D •Avk11

and

gk~x,u!5
ei (u2uk)x21

Av̄k~u!
.

As uk is the single zero ofv̄k(u) and it is nondegenerate, there existsC.0, such that forx
PRd, uPT* and 1<k<m, we have

ugk~x,u!u<C~11uxu!. ~27!

We set

Ag5E
Rd

u~x!U (
1< j <n0 ;1<k<m

¹v j~x,uk!E
T*

e2 iugt j ,k~u!duU
Cd

2

dx

and

Bg5E
Rd

u~x!U (
1< j <n0 ;1<k<m

¹v j~x,uk!E
T*

gk~x,u!e2 iugAv̄k~u!t j ,k~u!duU
Cd

2

dx.

Developing^Vg
bt,t& and using the Cauchy–Schwartz inequality, we get

^Vg
bt,t&>~AAg2ABg!2>~12a!Ag1S 12

1

a DBg ,

for any 0,a,1.
For a, small, we obtain that there existsC.0 such that

Ag<2~Bg1C^Vg
bt,t&!. ~28!

Developing the sum inAg , we get

Ag5 (
1< j , j 8<n0 ;1<k,k8<m

v jk, j 8k8 t̂ j ,k~g! t̂ j 8,k8~g!,

where

t̂ j ,k~g!5E
T*

e2 iugt j ,k~u!du,
                                                                                                                



d

1859J. Math. Phys., Vol. 44, No. 4, April 2003 Lifshitz tails for random acoustic operators

                    
v jk, j 8k85E
Rd

ug~x!¹v j~x,uk!¹v j 8~x,uk8!dx5(
i 51

d E
Rd

ug~x!]xi
v j~x,uk!]xi

v j 8~x,uk8!dx.

By Ref. 17 it is proved that the matrixV5(v jk j 8k8)1< j , j 8<n0 ;1<k,k8<m is defined positive. So we
get that there existsC.0 such that we have

(
1< j <n0 ;1<k<m

U E
T*

e2 iugt j ,k~u!duU2

<CAg . ~29!

We multiply by vg
15v12vg the two members of~29! then we sum ongPZd,

(
gPZd

vg
1 (

1< j <n;1<k<m
U E

T*
e2 iugt j ,k~u!duU2

<CS (
gPZd

vg
1AgD .

By taking ~28! into account and using assumption~H.2!, we get that

(
gPZd

vg
1 (

1< j <n0 ;1<k<m
U E

T*
e2 iugt j ,k~u!duU2

<CS (
1< j <n0 ;1<k<m

E
T*

v̄k~u!ut j ,k~u!u2du1^DAv
b t,t& D .

Using the last inequality and the definition ofAv
a andDAv

a one gets that there existsC.0 such
that, ;tPL2(T* ) ^ Cn0, we have

^DAv
a St,St&<C~^Av1

a St,St&1^DAv
b St,St&!. ~30!

As DAv
b >0, we know that

^Av1
a St,St&<~^Av1

a St,St&1^DAv
b St,St&!. ~31!

From ~26!, ~30!, and~31!, we deduce that;tPL2(T* ) ^ Cn0,

^Av
a St,St&<C•^Av

b St,St&<C•^~Av
0 2E1I d!t,t&.

This ends the proof of Lemma 5.5. h

B. The lower bound

We set
k51/2 ~respectively, 1/3! if n is degenerate~respectively, non degenerate! at E1 .
s5 2/(n2d) ~respectively, 1! if n is degenerate~respectively, nondegenerate! at E1 .
Theorem 5.7: Let Av , the operator defined by~1!. We assume that (H.1), (H.2), (H.3), an

(H.4) hold. Then, we have

lim inf
«→01

logu log~N~E11«!2N~E1!!u
log«

>2s
d

2
. ~32!

The proof of Theorem 5.7:By assumption, there is a spectral gap belowE1 of length at least
d8.0. Thus, for«,d8 we have

N~E11«!2N~E1!5N~E11«!2N~E12«!.
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To prove Theorem 5.7, we will lower boundN(E11«)2N(E12«). Then, forN large, we will
show thatAv,LN

(Av,LN
is Av restricted toLN with Dirichlet boundary conditions! has a large

number of eigenvalues in (E12«,E11«) with large probability. For this we will construct a
family of approximate eigenvectors associated to approximate eigenvalues ofAv,LN

in @E1

2«,E11«#. These functions will be constructed from an eigenvector ofAv1 associated with
E1 . Locating this eigenvector inu and imposing tovg

15v12vg to be small forg in some well
chosen box, one obtains an approximate eigenfunction ofAv,LN

. Locating the eigenfunction inx
in several disjointed places, we get several eigenfunctions two-by-two orthogonal. In ord
simplify the notations, we assume in what follows thatu050 is a point whereE1(u) reachesE1

in nondegenerate~respectively, degenerate! way if n is nondegenerate~respectively, degenerate!.
For the same arguments as in Ref. 12, there existsC.0 such that, we have the following.

If n is nondegenerate atE1 , we setf (•,u)5v1(•,u) (v1 is the vector constructed in Lemm
3.1! one has

i~Av1~u!2E1! f ~•,u!iL2(C0)<Cuuu2. ~33!

If n is degenerate atE1 , in an analogous way as in the Lemma 3.1, one can cons
functions (v j )1< j <q which are analytical inu in a neighborhood ofu0 and which generate the
same vector space as (wj )1< j <q . From Ref. 12 we know that there exits (f j (u))1< j <q such that
for u5(u1 ,u8) the functionfW(•,u)5(1< j <qf j (u)v j (•,u) verifies

uu1u<i fW~•,u!iL2(C0)5i f ~u!iCq

and

i~Av1~u!2E1! fW~•,u!iL2(C0)<C~ uu1u•uu8u21uu8u31uuu4!. ~34!

We set

f ~•,u!5
fW~•,u!

uu1u
. ~35!

Let 0,j,1 be a small constant. LetxPC0
`(R) such that it is positif, supported in@j/2 ,j# and

* [ j/2 ,j]x(t)2 dt52.
For «.0, we define

W«~u!5«2(d2112k)/4x~«2ku1!)
j 52

d

x~«2 1/2u j !PL2~T* !

and

W «
f ~•,u!5W«~u!• f ~•,u!.

Now let us estimatei(Av12E1)W «
f i2; we have

i~Av12E1!W «
f i25

1

vol~T* !
E

T*
i~Av1~u!2E1! f ~•,u!iL2(C0)

2 uW«~u!u2 du.

If n is nondegenerate atE1 , from Eq. ~33!, we get
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i~Av12E1!W «
f iH

2 <C2 E
T*

uuu4uW«~u!u2 du

<C2«2 E
[ j/2 ,j] d

uuu4)
j 51

d

x2~u j !du

<
«2

8
if j is small enough. ~36!

If n is degenerate atE1 , we use Eq.~34! to get that

i~Av12E1!W «
f iH

2 <C2 E
T*

~ uu8u21uu8u3/uu1u1uuu4/uu1u!2uW«~u!u2 du

<C2«2 E
[ j/2 ,j] d

~ uu8u21«1/6uu8u3/uu1u1uuu4/uu1u!2)
j 51

d

x2~u j !du

<
«2

8
if j is small enough. ~37!

For bPZd, we define

W «,b
f ~•,u!5e2 ib•uW «

f ~•,u! and W a,«,b,z
f ~•,u!5e2 ib•u~PLa(z)W «

f !~•,u!,

whereLa(z) is the cube defined by

La~z!5$gPZd; for 1< j <d;ug j u<z2(1/21a)%

andPLa(z) is the orthogonal projection onLa(z).
We set

U «,b
f ~x!5E

T*
W «,b

f ~x,u!du and U a,«,b,z
f ~x!5E

T*
W a,«,b,z

f ~x,u!du.

For N large andb well chosen (vg)gPZd, U a,«,b,z
f will be an approximate eigenfunction ofAv,LN

associated to an approximate eigenvalue in the interval@E12«,E11«#.
We show initially thatiU a,«,b,z

f iL2(Rd).C.0. Note that

~vol~T* !!iU «,b
f iL2(Rd)

2
5iW «,b

f iH
2 5E

T*
i f ~•,u!iL2(C0)

2 uW«~u!u2 du>2d.

As in Ref. 12 we remark thatU a,«,b,z
f andU «,b

f are close to each other. More precisely, for a
nPN andbPZd, there existsCn.0 such that

~vol~T* !!•iU a,«,b,z
f 2U «,b

f iL2(R)5iW a,«,b,z
f 2W «,b

f iH<Cn«2nkzn(1/21a). ~38!

So, if z5«s (s was defined in the beginning of this section!, for « small enough, we get

iU a,«,b,z
f iL2(Rd)>1.

Now we have to look to the conditions under which we have

i~Av2E1!U a,«,b,z
f i2<«2.

Note that
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i~Av,LN
2E1!U a,«,b,z

f i2<i~Av2E1!U a,«,b,z
f i2<2i~Av12E1!U a,«,b,z

f i212iDAvU a,«,b,z
f i2.

~39!

Equations~36! and~37! give the bound on the first member of~39!, it just remains to us to contro
the second term of~39!. We have

i~DAv!U a,«,b,z
f i2<2i~¹Vv!•~¹U a,«,b,z

f !i212iVvDU a,«,b,z
f i2. ~40!

We recall thatvg
15v12vg . To estimate~40!, one needs the following lemmas.

Lemma 5.8: There exists K.0, such that

i~¹Vv!•~¹U a,«,b,«s
f

!i2<«41K~«sa(n2d)
•«1 sup

gPb12La(«s)

vg
1!2. ~41!

Lemma 5.9: There exists K.0, such that

iVvDU a,«,b,«s
f i2<«41K~«sa(n2d)

•«1 sup
gPb12La(«s)

vg
1!2. ~42!

Before showing these two lemmas let us use them to finish the proof of Theorem 5.7.
Combining~41! and ~42! and taking~40! into account we getK.0, such as

i~DAv!U a,«,b,«s
f i2<«31K~«sa(n2d)

•«1 sup
gPb12La(«s)

vg
1!2. ~43!

By ~36!, ~37!, and~43!, it follows that

i~Av2E1!U a,«,b,«s
f i2<

«2

2
1K~«sa(n2d)

•«1 sup
gPb12La(«s)

vg
1!2. ~44!

Now, for N large, we may divideLN into N(«) disjoints cubes of size 2La(«s). For a, 1
2, there

existsC.0 such asN(«) satisfies

N~«!.
~2N!d

«2sd(1/21a) >
~N«s!d

C
. ~45!

We have

ø j 51
N(«)~b j1La~«s!!,LN and for j Þ j 8;~b j12La~«s!!ù~b j 812La~«s!!5B.

This implies that forj Þ j 8, U a,«,b j ,«s
f andU a,«,b j 8 ,«s

f are orthogonal.

We denote the counting function of the eigenvalues ofAv,LN
below E by QLN

(E), then

E~QLN
~E1«!2QLN

~E2«!!5E~#$eigenvalues ofPNAvPN in @E12«,E11«#%!

>E~#$1< j <N~«!;i~Av2E1!U a,«,b j ,«s
f iL2(Rd)<«%!

>ES (
j 51

N(«)

Bj~v!D , ~46!

where
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Bj~v!5H 1 if K~«sa(n2d)
•«1 sup

gPb j 12La(«s)

vg
1!2<

«2

2
,

0 if not.

The (Bj )1< j <N(«) are independent, identically distributed, Bernoulli random variables. So
~46! and ~45!, imply that there existsC.0, such that one has

NLN
~E1«!2NLN

~E2«!5
1

~~2N11!!d E~#$eigenvalues ofPNAvPN in @E12«,E11«#%!

>
N~«!

~2N11!d P~B151!>
1

C
«sdP~B151!.

Hence, taking the limitN→`, we get that, for«.0 small, we obtain

N~E11«!2N~E12«!>
1

C
«sdP~B151!. ~47!

It just remains to estimateP(B151). If for 1< j <N(«), and gPb j12La(«), one hasvg
1

< «/2K, then for« rather small

K~«sa(n2d)
•«1 sup

gPb j 12La(«s)

vg
1!2<«2

•KS «a(n2d)1
1

2K D 2

<
«2

2
.

As the random variables are independent identically distributed, one has the estimate

P~Bj51!>S PS v0
1<

«

2K D D 2#La(«s)

.

Hence, taking the double logarithm of~47!, using assumption~H.3! and the fact that #La(«s)
5«2sd@(1/2)1a#, we get that

lim
«→01

logu log~N~E11«!2N~E1!!u
log«

>2s
d

2
2s da. ~48!

Equation~48! is true for anya.0, by takinga small we end the proof of Theorem 5.7. h

The proof of Lemma 5.8:

i~¹Vv!•~¹U a,«,b,«s
f

!i2<2d (
i 51

d

i~]xi
Vv!~]xi

U a,«,b,«s
f

!i2. ~49!

We recall that

vg
15v12vg and Vv5

%v12%v

%v1•%v
5

1

Dv
(

gPZd
vg

1ug ,

hereDv5%v1•(11(gPZdvgug). We compute

]xi
Vv5

1

Dv
(

gPZd
vg

1]xi
ug2

1

Dv
2 (

gPZd
~v12vg!ug]xi

Dv .

So,
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i~]xi
Vv!~]xi

U a,«,b,«s
f

!i2<2I 1

Dv
(

gPZd
vg

1]xi
ug~U

a,«,b,«s

]xi
f

!I 2

12I S ]xi
Dv

Dv
2 D (

gPZd
vg

1ug~U
a,«,b,«s

]xi
f

!I 2

. ~50!

We study the behavior of the quantity on the right-hand side of Eq.~50!. Using the fact that
iDvi`.1/C.0, we obtain that

I 1

Dv
(

gPZd
vg

1]xi
ug~U

a,«,b,«s

]xi
f

!I 2

<«51E
RdS (

gPZd
vg

1]xi
ug~x!D 2

uU
«,b

]xi
f
~x!u2 dx. ~51!

We used an estimate like~38! to replaceU
a,«,b,«s

]xi
f

with U
«,b

]xi
f
.

We set

Sb,«5E
RdS (

gPZd
vg

1]xi
ugD 2

uU
«,b

]xi
f
~x!u2 dx.

By the use of assumption~H.2!, we get that

Sb,«< (
hPZd S (

gPZd
~11uh2gu!2nvg

1D 2

•E
C0

g1
2 ~x!uU

«,h2b

]xi
f

~x!u2 dx. ~52!

There existsB.0 such that

(
h¹La(«s)

~11uhu!2n<B•«as(n2d)
•«~s/2!(n2d)<B•«as(n2d)

•«.

Using the fact that the random variables (vg)gPZd are bounded, we obtain that there existsB8
.0 such that

Sb,«< (
hPZd S B8«sa(n2d)

•«1 (
gPh1La(«s)

~11uh2gu!2nvg
1D 2

•E
C0

g1
2 ~x!uU

«,h2b

]xi
f

~x!u2 dx.

One splits the sum onhPZd in two parts according to whetherh belongs tob1La(«s) or not.
For the sum onh¹b1La(«s), there existsC.0 such that

(
h¹b1La(«s)

S C«sa(n2d)
•«1 (

gPh1La(«s)
~11uh2gu!2nvg

1D 2

•S E
C0

g1
2 ~x!uU

«,h2b

]xi
f

~x!u2 dxD
<C (

h¹La(«)
E

C0

g1
2 ~x!uU

«,h

]xi
f
~x!u2 dx. ~53!

By the use of the nonstationary phase and following the same computation done in Ref. 1
proves that, forn entire, there existsCn.0 such that

(
h¹La(«s)

S E
C0

g1
2 ~x!uU

«,h

]xi
f
~x!u2 dxD<Cn«asn. ~54!

For the sum onh in b1La(«s), one gets
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(
hPb1La(«s)
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Using the fact that (]xi
f )(x,u) verifies assumptions of Lemma 5.1~see Remark 5.2! andg1(x)

PLp(C0), we see that there existsK.0 such that
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So we use~51!, ~52!, ~53!, ~54!, ~55!, and~56!, to get that
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We can use the same idea to prove that there existsK.0, such that
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By taking the last estimates and Eqs.~49! into account we obtain Lemma 5.8. h

The proof of Lemma 5.9:The proof of Lemma 5.9 is similar to that of Lemma 5.9. Inde
(]xi

2 f )(x,u) verifies the same properties which are useful as (]xi
f )(x,u) and following the same

step as for the proof of~41!, we prove~42!. h

ACKNOWLEDGMENT

The author would like to thank Fre´déric Klopp under whose guidance this research w
undertaken and for valuable comments.

APPENDIX

The proof of Lemma 4.4:The proof is based on Lemma 4.3 and on the Combes–Tho
argument~see Ref. 4! to obtain the exponential decreasing of the resolvent. To estimate
right-hand side of Eq.~10!, we write that
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212~l01Av!2q~z2Av!21!#i tr<A1B
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As the random variables (vg)gPZd are bounded, we get that there existsM.0, such that

A<M (
gPZd,ugu.k

IxC0
~z2Av,k!

21S ¹
1

%v%v,k
ug¹ D ~z2Av!21~l01Av!2qxC0

I
tr

3 (
bPZd,gPZd,ugu.k

IxC0
~z2Av,k!

21S ¹
1

%v~x!%v,k~x!
ug¹ D ~z2Av!21xb1C0

I
L(L2(Rd))

•ixb1C0
~l01Av!2qxC0

i tr .

By the use of Combes–Thomas argument, see Ref. 4, we get that there existsK.0 such that
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thus from Lemma 4.3 we get

A<K (
b,gPZd,ugu.k

e2uIm(z)uubu/K

uIm~z!u2
itb1guiLp(C0) .

We can proceed in the same manner to estimateB. Finally, we obtain
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This ends the proof of Lemma 4.4. h
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N-point and higher-genus osp „1z2… fusion
Jørgen Rasmussena)

Centre de recherches mathe´matiques, Universite´ de Montréal,
Case postale 6128, succursale centre-ville, Montre´al, Québec H3C 3J7, Canada
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We study affine osp~1u2! fusion, the fusion in osp~1u2! conformal field theory, for
example. Higher-point and higher-genus fusion is discussed. The fusion multiplici-
ties are characterized as discretized volumes of certain convex polytopes, and are
written explicitly as multiple sums measuring those volumes. We extend recent
methods developed to treat affine su~2! fusion. They are based on the concept of
generalized Berenstein–Zelevinsky triangles and virtual couplings. Higher-point
tensor products of finite-dimensional irreducible osp~1u2! representations are also
considered. The associated multiplicities are computed and written as multiple
sums. © 2003 American Institute of Physics.@DOI: 10.1063/1.1557913#

I. INTRODUCTION

The representation theory of finite-dimensional irreducible representations of the Lie su
gebra osp~1u2! is well-known.1 That includes the decomposition of ordinary three-point ten
products. However, to the best of our knowledge, the literature does not offer discussio
generalN-point couplings. Here we shall consider those and compute the associated tenso
uct multiplicities. They are characterized as discretized volumes of certain convex polytope~i.e.,
the number of integer points bounded by the polytope!, and are written explicitly as multiple sum
measuring those volumes. The results are obtained by extending recent methods developed
su(N) tensor products, and are based on the concept of generalized Berenstein–Zelevinsk~BZ!
triangles and virtual couplings.2,3

The seminal work by Berenstein and Zelevinsky4 shows how one may represent ordina
su(N) three-point couplings by triangular arrangements of non-negative integers. Their r
were extended in Ref. 3 to higher-point couplings, by gluing such triangles together. Here we
associate two types of triangles to osp~1u2! three-point couplings. We denote them osp~1u2! BZ
triangles, and ‘‘super-triangles,’’ respectively. The gluing method of Ref. 3 is then applied to
higher-point osp~1u2! couplings.

We then turn to our second objective: affine osp~1u2! fusion, the fusion in osp~1u2! conformal
field theory, for example. Ordinary three-point fusion has been studied from various poin
view.5–7 For integer level,k, and associated admissible~or integrable! representations,8,5 we show
that the level dependence of a fusion may be incorporated in the osp~1u2! BZ triangles or super-
triangles. That allows us to discuss higher-point fusion along the lines of Ref. 9 on higher
su~2! fusion. As for the tensor products above, theN-point osp~1u2! fusion multiplicities are
characterized by level-dependent convex polytopes, and written explicitly as multiple sums

Our approach admits also an extension to higher-genus,h, fusion. The associated fusio
multiplicities are characterized as discretized volumes of certain convex polytopes, and are
explicitly as multiple sums. To illustrate and demonstrate consistency, we consider in deta
genus-one one- and two-point fusions.

This work presents the first general results onN-point osp~1u2! tensor products, and on
N-point and higher-genus osp~1u2! fusion. The results are general as they cover all integerN, k
andh. They are also very explicit and should therefore be easy to use in applications. Imple
tation in computer programming is also straightforward.

a!Electronic mail: rasmusse@crm.umontreal.ca
18680022-2488/2003/44(4)/1868/14/$20.00 © 2003 American Institute of Physics

                                                                                                                



r-

nal

tions

er-
.

1869J. Math. Phys., Vol. 44, No. 4, April 2003 N-point and higher-genus osp(1u2) fusion

                    
A. osp „1z2… representation theory

Here we recall some basic facts on the Lie superalgebra osp~1u2! and its irreducible
representations.1 A ‘‘physicist-friendly’’ review may be found in Ref. 10, while general Lie supe
algebra theory is considered in Refs. 11 and 12.

The Lie superalgebra osp~1u2! is a five-dimensional graded extension of the three-dimensio
Lie algebra su~2!:

@J3,J6#56J6, @J3, j 6#56 1
2 j 6, @J1,J2#52J3,

~1!
$ j 1, j 2%52J3, $ j 6, j 6%562J6, @J6, j 7#52 j 6.

All other ~anti-!commutators vanish. The three even generatorsJ1, J2 andJ3 generate an su~2!
subalgebra of osp~1u2!, while j 1 and j 2 are two odd generators. They comprise a spin-1

2 repre-
sentation of the su~2! subalgebra in the adjoint representation.

Every finite-dimensional irreducible representation has an isospinj associated to it, where

2 j PZ> . ~2!

Such a representationRj has dimension 4j 11:

Rj : u j , j &, u j , j 2 1
2&, . . . , u j ,0&, . . . , u j ,2 j 1 1

2&, u j ,2 j &. ~3!

The statesu j ,m& and u j ,m8& have the same parity if and only ifm2m8PZ. The parityp(Rj ) of
the representationRj is defined as the parity of the stateu j , j &. The modem is the eigenvalue of
J3: J3u j ,m&5mu j ,m&. It is observed that the representation~3! splits into two su~2!
representations—one of spinj and one of spinj 2 1

2. The former consists of the statesu j ,m& with
j 2mPZ> , while the latter consists of the states withj 2mPZ>1 1

2. Disregarding the notion of
parity, the osp~1u2! representation space~3! becomes analogous to a single su~2! representation
space of spin 2j . That observation will turn out to be useful in the following.

We shall use the same notationj for an osp~1u2! isospin as for an su~2! spin, but refer to them
as indicated. An su~2! representation of spinj is indicated byR j

su(2).

II. TENSOR PRODUCTS

Decompositions of ordinary tensor products of finite-dimensional irreducible representa
are easily computed:

Rj 1
^ Rj 2

5Ru j 12 j 2u % Ru j 12 j 2u11/2%¯% Rj 11 j 221/2% Rj 11 j 2
. ~4!

Note the resemblance to tensor products of integer-spin su~2! representations:

R2 j 1

su(2)
^ R2 j 2

su(2)5R2u j 12 j 2u
su(2)

% R2u j 12 j 2u11
su(2)

%¯% R2( j 11 j 2)21
su(2)

% R2( j 11 j 2)
su(2) . ~5!

Instead of considering a tensor product of the form

Rj 1
^ Rj 2

.Rj 3
~6!

we may equivalently consider the symmetric three-point coupling to the singlet:

Rj 1
^ Rj 2

^ Rj 3
.R0 . ~7!

Similar couplings of su(N) representations are neatly described by Berenstein–Zelevinsky~BZ!
triangles.4 In the case of su~2! the BZ triangle is trivial but has led to characterizations of high
point and higher-genus couplings and fusions as discretized volumes of certain polytopes9 Here
we shall discuss the generalization to osp~1u2!.
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A. Berenstein–Zelevinsky super-triangle

An su~2! BZ triangle is a triangular arrangement of three non-negative integer entriesa, b and
c:

Rj 1

su(2)
^ Rj 2

su(2)
^ Rj 3

su(2).R 0
su(2) ↔ b

c a ~8!

subject to the spin constraints

a52 j 11 j 21 j 3PZ> , b5 j 12 j 21 j 3PZ> , c5 j 11 j 22 j 3PZ> , ~9!

and hence

2 j 15b1c, 2j 25c1a, 2j 35a1b. ~10!

When all three spins are integer, eithera, b andc must all be even or all be odd. Exploring th
similarity between~4! and ~5! we see that we may describe three-point couplings of osp~1u2!
representations by standard BZ triangles,

Rj 1
^ Rj 2

^ Rj 3
.R0 ↔ B

C A ~11!

with isospins

4 j 15B1C, 4j 25C1A, 4j 35A1B, A, B, CPZ> , ~12!

or equivalently by BZsuper-triangles

Rj 1
^ Rj 2

^ Rj 3
.R0 ↔

b
e

c a
~13!

with isospins

2 j 15b1c1e, 2j 25c1a1e, 2j 35a1b1e, a, b, cPZ> , eP$0,1%.
~14!

The super-entrye measures the ‘‘parity violation’’ of the coupling:

e5p~Rj 1
!1p~Rj 2

!1p~Rj 3
! mod ~2!

52~ j 11 j 21 j 3! mod ~2!. ~15!

Relaxing the isospin-independent constraints on the entries~thereby allowing a, b, c,ePZ),
there are infinitely manygeneralizedsuper-triangles associated to a three-point coupling. They
all related through additions of integer multiples of the~basis! virtual super-triangle

V 5

1

2̄
1 1

~16!

wheren̄[2n. Given an initial generalized super-triangleT0 @see~31! for a choice when extende
to higher-point couplings#, all other generalized super-triangles are of the form

T5T01 (
vPZ

vV. ~17!
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However, due to the constraint one, only one super-triangle in this infinite chain of generaliz
super-triangles will satisfy all the requirements. We shall call it atrue super-triangle. By construc
tion, if a coupling of three isospins (j 1 , j 2 , j 3) to the singlet is not possible, there will be no tru
super-triangle associated to that isospin triplet.

A motivation for introducing super-triangles is that they seem to indicate how one
generalize the representation of su(N) couplings by BZ triangles to a representation of Lie sup
ralgebra couplings by~extended! super-triangles. Even though the osp~1u2! super-triangles are
slightly more complicated to work with than the osp~1u2! BZ triangles, we shall consider them
throughout this article alongside the BZ triangles. They provide us with alternative charact
tions of tensor product couplings and fusions—representations that are more ‘‘supersymm
Furthermore, in Sec. V we will indicate how super-triangles appear natural from the point of
of three-point functions in osp~1u2! conformal field theory.

B. Higher-point couplings

In a decomposition of a higher-point tensor product, the singlet may occur more than
i.e., the associated tensor product multiplicity,Tj 1 , . . . ,j N , may be greater than one:

Rj 1
^¯^ Rj N .Tj 1 , . . . ,j NR0 . ~18!

The similar situation for su~2! couplings is described in Refs. 3 and 9@Ref. 3 covers all su(N) but
does not discuss fusion#. There it is discussed how BZ triangles may be glued together to f
N-sided diagrams representing theTj 1 , . . . ,j N

su(2) different su~2! couplings. Likewise, we can associa

an N-sided diagram to each of theTj 1 , . . . ,j N different osp~1u2! N-point couplings. Due to the
existence of two types of triangles~11! and~13!, we may represent an osp~1u2! N-point coupling
by two different types of diagrams. We shall call the ones based on super-trianglessuper-
diagrams.

The general method for computing higher-point su(N) tensor product multiplicities outlined
in Ref. 3, is based on gluing BZ triangles together usinggluing diagrams~we refer to Ref. 3 for
details!. This idea extends readily to osp~1u2! tensor products~18!. To be explicit, let us conside
the following N-point diagram~in this exampleN is assumed odd!:

~19!

The role of the gluing is to take care of the summation over internal isospins in a tractable
The dual picture of ordinary~Feynman tree-! graphs is shown in thinner lines. Along a gluing, th
opposite isospins must be identified.

Let us begin by considering the diagrams obtained by extending~11!. The starting point in
Ref. 3 and here is to relax the constraint that the entries should benon-negativeintegers. As for the
super-triangles above, a diagram of that kind is called ageneralizeddiagram. Any such general
ized diagram, respecting the gluing constraints and the outer isospin constraints~19!, will suffice
as an initial diagram. All other diagrams that are associated to the same outer isospins may
obtained by adding integer linear combinations of so-calledvirtual diagrams: adding a basi
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virtual diagram changes the value of 4j of a given internal isospin by two, leaving all othe
internal isospins and all outer isospins unchanged. Thus, the basis virtual diagram associa
particular gluing is of the form:

G5

1̄ 1

�

1̄ 1̄

�

1 1̄

. ~20!

Enumerating the gluing diagrams~20! in ~19! from right to left, the associated integer coefficien
in the linear combinations areg1 , . . . ,gN23 . If D0 denotes an initial diagram, all generalize
diagrams will then be of the form

D5D01 (
l 51

N23

(
glPZ

glGl . ~21!

It remains to be accounted for how to write down an initial diagramD0 . However, that is
straightforward:

~22!

with

el54~ j 11 . . . 1 j l !, 1< l<N23,
~23!

A52S14 j N2114 j N , B5S24 j N21 , C5S24 j N ,

and

S[2~ j 11 . . . 1 j N!. ~24!

Reimposing the condition that all the entries inD ~21! must benon-negativeresults in a set of
inequalities defining a convex polytope in the Euclidean spaceRN23:
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0<g1 , 4j 12g1 , 4j 22g1 ,

0<g22g1 , 4j 32g21g1 , 4~ j 11 j 2!2g22g1 ,

] ~25!

0<gN232gN24 , 4j N222gN231gN24 , 4~ j 11 . . . 1 j N23!2gN232gN24 ,

0<S24 j N212gN23 , S24 j N2gN23 , 2S14~ j N211 j N!1gN23 .

By construction, its discretized volume is the tensor product multiplicityTj 1 , . . . ,j N . The volume
may be measured explicitly, expressing the multiplicity as a multiple sum. In order to a
discussing intersection of faces we have to choose an ‘‘appropriate order’’ of summation~see Refs.
2, 3, and 9!. Making such a choice is straightforward, and we find that the osp~1u2! tensor product
multiplicity Tj 1 , . . . ,j N may be written as

Tj 1 , . . . ,j N5 (
gN235S24( j N211 j N)

min$S24 j N21 , S24 j N%

(
gN24524 j N221gN23

min$gN23 , 4(j 11 . . . 1 j N23)2gN23%

3 ¯3 (
g2524 j 41g3

min$g3 , 4(j 11 . . . 1 j 3)2g3%

(
g15max$0, 24 j 31g2%

min$4 j 1 , 4j 2 , g2 , 4(j 11 j 2)2g2%

1. ~26!

This is the first general result for higher-point osp~1u2! tensor product multiplicities.
Following methods discussed in Refs. 2, 3, and 9, it is not difficult to derive necessar

sufficient conditions determining when an osp~1u2! N-point tensor product multiplicity is non
vanishing. The conditions are

2 j l , S24 j lPZ> , l 51, . . . ,N ~27!

with S defined in~24!.
Gluing super-triangles together to represent higher-point couplings is not a lucrative al

tive to the method above. Nevertheless, we give here the associated gluing super-diagram

G5

0 1

� 1̄

0 0

1̄ �

1 0

. ~28!

There is a virtual super-triangle associated to each of the glued super-triangles, i.e., thereN
22 ~basis! virtual super-diagrams associated to anN-point super-diagram. In a self-explainin
notation we then have that any generalized super-diagram may be written

D5D01 (
l 51

N22

(
v lPZ

v lVl1 (
l 51

N23

(
glPZ

glGl . ~29!

Now, recall that the super-entry measures the parity violation as indicated in~15!. ForN-point
couplings it is the sum of theN22 super-entries that measures the parity violation. It is there
natural to introduce theparity parameterh,

2h5S (
l 51

N22

e l Dmod ~2! 5H 0 for SP2Z> ,

1 for SP2Z>11,
~30!
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which of course must depend only on the outer isospins@throughS ~24!#. We may now write down
an initial super-diagram:

~31!

with

el52~ j 11¯1 j l !, 1< l<N23,

a52
S

2
2h12~ j N211 j N!, b5

S

2
2h22 j N21 , c5

S

2
2h22 j N . ~32!

SinceS/22h5@S/2# (@x# denotes the integer value ofx, i.e., the greatest integer less than
equal tox), the entries a, b and c are integers. Imposing the condition that the diagram~29! must
be true leads to a set of inequalities in the parametersv andg defining a convex polytope as~25!.
This polytope is embedded in the Euclidean spaceR2N25. The inequalities are straightforward t
write down, but are not given here.

C. Four-point couplings

To illustrate the results above we shall compute the osp~1u2! four-point tensor product multi-
plicity Tj 1 , j 2 , j 3 , j 4

. We shall do it in two ways: first by reducing the general result~25! and~26! to
N54, and then by gluing super-triangles together.

It follows from ~25! that

0<g, 4j 12g, 4j 22g, S24 j 32g, S24 j 42g, 2S14~ j 31 j 4!1g ~33!

and therefore

Tj 1 , j 2 , j 3 , j 4
5 (

g5max$0, 2(j 11 j 22 j 32 j 4)%

min$2( j 11 j 21 j 32 j 4), 2(j 11 j 22 j 31 j 4), 4j 1 , 4j 2%

1

511min$4 j 1 , . . . , 4j 4 , S24 j 1 , . . . , S24 j 4%, ~34!

provided the conditions~27! are satisfied.
Now we turn to the super-triangle approach. ForN54, the convex polytope defined by~29!

and ~31! becomes

0<v11g, 2j 11v1 , 2j 21v1 ,

0<2g22v1<1,
~35!

0<2FS11

2 G12~ j 31 j 4!1v21g, FS

2G22 j 31v2 , FS

2G22 j 41v2 ,

0<2h2g22v2<1.
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Note that the inequalities 0<e1 ,e2<1 fix v1 andv2 in terms ofg:

v152Fg11

2 G , v252Fg1122h

2 G . ~36!

That means that the set of inequalities ing, v1 andv2 reduces to a set of inequalities in the gluin
coordinateg alone. It is not hard to verify that the associated~one-dimensional! polytope is
identical to~33!. Thus, the two ways of counting the tensor product multiplicityTj 1 , j 2 , j 3 , j 4

are
essentially equivalent. That generalizes toN-point couplings.

III. FUSION

Here we shall extend the above discussion on tensor products to affine fusion, fus
osp~1u2! conformal field theory, for example. To distinguish this consideration from the similar
concerning tensor products, we denote finite-dimensional irreducible affine modules of isoj
by M j . The fusion of three such modules to the singlet is written@cf. the analogous three-poin
coupling ~7!#

M j 1
3M j 2

3M j 3
.Nj 1 , j 2 , j 3

(k) M0 . ~37!

The fusion multiplicityNj 1 , j 2 , j 3

(k) depends on the levelk, wherek characterizes the affine extensio

of osp~1u2! that turns it into a level-k affine Lie superalgebra. We shall consider onlyk a positive
integer, and the so-called admissible~or integrable! representations.8,5 They are~for k a positive
integer! characterized by

2 j PZ> , 2j <k. ~38!

The ordinary fusion multiplicities are well-known in that case:5,6

Nj 1 , j 2 , j 3

(k> j 11 j 21 j 321/2)
5Tj 1 , j 2 , j 3

, Nj 1 , j 2 , j 3

(k, j 11 j 21 j 321/2)
50. ~39!

We recall that a nonvanishing three-point tensor product multiplicity is one. The nonvani
conditions follow immediately from~4!.

The threshold level,t, of a three-point coupling is the minimum level at which the coupl
appears in fusion.13 This means, in particular, thatt is integer and thatt<k for the coupling to
appear. From~39!, it is straightforward to determine the threshold level of an osp~1u2! coupling of
three isospins (j 1 , j 2 , j 3):

t5FS

2G . ~40!

One may also assign a threshold level to an osp~1u2! BZ triangle or super-triangle. It is known how
to do that for su(N<4)14,15 and has been explored further in Ref. 16. To the BZ osp~1u2! triangle
~11! we may assign the threshold level

t5FA1B1C

2 G ~41!

and to the super-triangle~13! we may assign the threshold level

t5a1b1c1e. ~42!

Sincet is integer, the conditiont<k on ~41! is equivalent to

A1B1C21<2k. ~43!
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A higher-point coupling can also be assigned a threshold level.9 It is defined in the same way a
for three-point couplings.

Recently, efforts have been made to characterize fusion multiplicities in terms of polyt
Most results so far pertain to three-point fusion,16,17 but also higher-genus and higher-point su~2!
fusions have been discussed.9 Below we shall extend the latter results to osp~1u2!.

A. Higher-point fusion

We are now in a position to discussN-point fusion. Using osp~1u2! BZ triangles, we see tha
fusion is described by supplementing the set of inequalities~25! by N22 conditions like~43!—a
condition associated to each of theN22 participating triangles. Thus, anN-point fusion is
characterized by the inequalities

0<g1 , 4j 12g1 , 4j 22g1 , 2k24~ j 11 j 2!1g111,

0<g22g1 , 4j 32g21g1 , 4~ j 11 j 2!2g22g1 , 2k24~ j 11 j 21 j 3!1g11g211,

] ~44!

0<gN232gN24 , 4j N222gN231gN24 , 4~ j 11¯1 j N23!

2gN232gN24 , 2k24~ j 11 . . . 1 j N22!1gN231gN2411,

0<S24 j N212gN23 , S24 j N2gN23 , 2S14~ j N211 j N!1gN23 , 2k2S1gN2311,

defining a convex polytope embedded inRN23. Its discretized volume is the fusion multiplicit
Nj 1 , . . . ,j N

(k) . It may be measured explicitly, expressing the multiplicity as a multiple sum:

Nj 1 , . . . ,j N
(k) 5 (

gN235max$S24( j N211 j N), 22k1S21%

min$S24 j N21 , S24 j N%

3 (
gN245max$24 j N221gN23 ,22k14( j 11 . . . 1 j N22)2gN2321%

min$gN23 , 4(j 11 . . . 1 j N23)2gN23%

]

3 (
g25max$24 j 41g3 , 22k14( j 11 . . . 1 j 4)2g321%

min$g3 , 4(j 11 . . . 1 j 3)2g3%

3 (
g15max$0, 24 j 31g2 , 22k14( j 11 j 21 j 3)2g221%

min$4 j 1 , 4j 2 , g2 , 4(j 11 j 2)2g2%

1. ~45!

This is a new result.

IV. HIGHER-GENUS FUSION

Here we will discuss the extension of our results above on genus-zero fusion to generic
h fusion. The results here generalize the similar ones in Ref. 9 on higher-genus su~2! fusion.
Nj 1 , . . . ,j N

(k,h) denotes the genus-h N-point fusion multiplicity.

A simple extension of~19! is the following genus-h N-point diagram~in this exampleN is
assumed even, whileh is arbitrary!:
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~46!

The dual trivalent fusion graph is represented by thinner lines and loops.h is the number of such
loops or handles. The role of the two zeros in~46! will be discussed below. The number of intern
isospins or gluings isN13(h21), while the number of vertices or triangles isN12(h21).

First we consider the tadpole diagram

~47!

In terms of osp~1u2! BZ triangles the basis diagram associated to it is

0
0 2. ~48!

We call ~48! a loop-gluing diagram. Since we are gluing over even integers, the initial tadp
diagram will depend on 2j being even~indicated byp50) or odd~indicated byp51). With l
being the coefficient to~48!, the polytope is defined by

0 < 2j , 2j , p12l , 2k24 j 2p22l 11. ~49!

Thus, the genus-one one-point fusion multiplicity becomes

Nj
(k,1) 5 (

l 5[ 2p11/2]

[2k24 j 2p11/2]

1 5 k22 j 11 ~50!

irrespectiveof 2 j being even or odd. That independence is novel compared to the similar situ
for su~2!.9

The basis loop-gluing super-diagram associated to~47! is

0

0
0 1. ~51!

Let us also describe the basis loop-gluing diagrams associated to the genus-one tw
fusion

~52!

In terms of osp~1u2! BZ diagrams there are two basis loop-gluings associated to this fusion.
may be represented by the diagrams

L 5

1̄

1
1 1

1̄

1
, L8 5

1

1̄
1 1

1

1̄
. ~53!
                                                                                                                



a

n
re of
se an

on in

gluing

fined

for

f

ns

1878 J. Math. Phys., Vol. 44, No. 4, April 2003 Jørgen Rasmussen

                    
They differ significantly from the su~2! basis loop-gluing diagrams,9 as they do not constitute
basis of su~2! loop-gluing diagrams. Similarly, the two loop-gluing super-diagrams are

L 5

1̄

0
1 0 0 1

1̄

0
, L85

0

1̄
1 0 0 1

0

1̄
. ~54!

It is noted that the choice of loop-gluing basis~53! is not a convenient one. Had we only bee
interested in the polytope characterization of the fusion multiplicity and not an explicit measu
its discretized volume, this symmetric basis would suffice. But in order to be able to choo
appropriate order of summation~i.e., avoid discussing intersection of faces!, we can not allow both
diagrams to affect all the entries of the two triangles. A good but less symmetric basis is

L5

1̄

1
1 1

1̄

1
, L15

0

0
2 2

0

0
, ~55!

whereL 15L1L8.
As a nontrivial check of our procedure, we now consider the genus-one two-point fusi

detail using the two different channels

~56!

Consistency requires the associated fusion multiplicities to coincide. To ensure that we are
over even integers, an initial diagram associated to the channel on the left depends on 2j 112 j 2

being even~indicated byp50) or odd~indicated byp51). Using the loop-gluing diagrams~55!,
and writing the inequalities associated to the rightmost triangle first, we find the polytope de
by

0<2 j 12 l , 2j 11 l , 2j 21 l 12l 11p, 2k24 j 122 j 22 l 22l 12p11,
~57!

0<2 j 22 l , 2j 21 l , 2j 11 l 12l 11p, 2k22 j 124 j 22 l 22l 12p11.

It follows that the genus-one two-point fusion multiplicity is in fact independent ofp, and is given
by

Nj 1 , j 2

(k,1) 5 ~k22 max$ j 1 , j 2%11!~4 min$ j 1 , j 2%11!. ~58!

It is straightforward to choose an initial diagram associated to the channel on the right~56! that is
independent ofp. Using the gluing diagram~20! and the loop-gluing diagram~48!, we are led to
consider the polytope defined by

0<2l 1g, 2g, 2g, 2k22l 1g11,
~59!

0<2 j 112 j 21g, 2j 122 j 22g, 22 j 112 j 22g, 2k22 j 122 j 21g11.

Its discretized volume is seen to be~58!, as desired. This result resembles the similar one
su~2!,9 but differs by involving the twodifferent factors 2 and 4.

Note that~58! reduces correctly to~50! for min$j1, j2%50. In fact, it is a general feature o
fusion that theN-point fusion multiplicityNj 1 , . . . ,j N

(k,h) is equal to the (N11)-point fusion multi-

plicity Nj 1 , . . . ,j N,0
(k,h) ~it is further recalled that a fusion multiplicity is symmetric under permutatio
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of its lower indices!. That is not an obvious property of our construction, but will be used be
There we shall restrict toN>3 which accordingly is not a real restriction. The rationale for do
it, though, is that it allows us to make a universal choice of initial diagram associated to the f
~46!. On the other hand, in the case of zero-, one- or two-point fusion it results in unneces
complicated polytopes and multiple sums. For the benefit of the presentation here, we a
including other specific results than~50! and~58! for such lower-point fusions. However, they a
easily obtained following our general procedure.

A. General result

It is now straightforward to write down the inequalities defining the convex polytope as
ated to~46!. Here we focus on the osp~1u2! BZ triangle approach using~20! and~55!, in particular.
Our choice of initial diagram is indicated in~46! by the two zeros: all entries of the higher-gen
part to the right of them are zero, while theN-point part follows the pattern of the initial diagram
~22! ~assumingN>3, see the comments above!. Enumerating the gluings from right to left~and
L 1 before L!, the integer coefficients in the linear combinations are2g1 , . . . ,
2gh ,gh11 , . . . ,gN1h22 ~the sign convention is merely for convenience!, and
l 1

1 ,l 1 , . . . ,l h21
1 ,l h21 , while l is associated to the tadpole at the extreme right. Listing the

equalities associated to the triangles from right to left, we have the following convex poly
~assumingh>1):

0<g1 , g1 , 2l 2g1 , 2k2g122l 11,

0<g12 l 1 , g11 l 1 , 2g112l 1
11 l 1 , 2k2g122l 1

12 l 111,

0<g22 l 1 , g21 l 1 , 2g212l 1
11 l 1 , 2k2g222l 1

12 l 111,

]

0<gh212 l h21 , gh211 l h21 , 2gh2112l h21
1 1 l h21 , 2k2gh2122l h21

1 2 l h2111,

0<gh2 l h21 , gh1 l h21 , 2gh12l h21
1 1 l h21 , 2k2gh22l h21

1 2 l h2111,
~60!

0<gh111gh , 2gh111gh , 4j 12gh112gh , 2k24 j 11gh112gh11,

0<gh122gh11 , 4j 12gh122gh11 , 4j 22gh121gh11 ,2k24~ j 11 j 2!1gh121gh1111,

]

0<gN1h222gN1h23 , 4~ j 11 . . . 1 j N23!2gN1h222gN1h23 , 4j N222gN1h22

1gN1h23 , 2k24~ j 11 . . . 1 j N22!1gN1h221gN1h2311,

0<S24 j N212gN1h22 , S24 j N 2gN1h22 , 2S14~ j N211 j N!

1gN1h22 , 2k2S1gN1h2211.

By construction, its discretized volume is the fusion multiplicityNj 1 , . . . ,j N
(k,h) , which then provides

the first characterization of general osp~1u2! fusion multiplicities. The volume may be measure
explicitly expressingNj 1 , . . . ,j N

(k,h) as a multiple sum:

Nj 1 , . . . ,j N
(k,h) 5 (

gN1h22

. . .(
gh

S (
l h21

(
l h21
1

(
gh21

D . . . S (l 1 (
l 1
1

(
g1

D(l
1 . ~61!

The integer summation variables are bounded according to
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Fg111

2 G< l<F2k2g111

2 G ,
u l 1u<g1<min$2l 1

11 l 1 , 2k22l 1
12 l 111%,

Fg22 l 111

2 G< l 1
1<F2k2g22 l 111

2 G ,
2g2< l 1<g2 ,

]

u l h21u<gh21<min$2l h21
1 1 l h21 , 2k22l h21

1 2 l h2111%,

Fgh2 l h2111

2 G< l h21
1 <F2k2gh2 l h2111

2 G , ~62!

2gh< l h21<gh ,

ugh11u<gh<min$4 j 12gh11 , 2k24 j 11gh1111%

max$24 j 21gh12 , 22k14~ j 11 j 2!2gh1221%<gh11<min$gh12 , 4j 12gh12%

]

max$24 j N221gN1h22 , 22k14~ j 11¯1 j N22!2gN1h2221%

<gN1h23<min$gN1h22 , 4~ j 11¯1 j N23!2gN1h22%

max$S24~ j N211 j N!, 22k1S21%<gN1h22<min$S24 j N21 , S24 j N%.

This constitutes the first explicit result for the general genus-h N-point fusion multiplicities.
An advantage of using super-triangles instead of the osp~1u2! BZ triangles employed above, i

that the variablesv, g and l all appear with unit coefficients in the polytope-defining inequalit
similar to ~60!. However, it is not straightforward to measure the discretized volume of
polytope. The reason is similar to the one excluding the basis~53! as a ‘‘good basis.’’

V. CONCLUSION

We have considered higher-point couplings of finite-dimensional irreducible represent
of osp~1u2!. The associated tensor product multiplicities were characterized as discretized vo
of certain convex polytopes, and written explicitly as multiple sums. The results are genera

We have also considered affine osp~1u2! fusion. By extending the results on tensor produc
we characterized a general genus-h N-point fusion multiplicity as a discretized volume of
certain convex polytope, and wrote down an explicit multiple sum measuring that volume.
result is also general.

It has been demonstrated, though not emphasized explicitly, that a fusion polytope m
embedded in the associated tensor product polytope. The reason is that the set of defining in
ties of a fusion polytope is obtained by supplementing the set of defining inequalities o
associated tensor product polytope by level-dependent inequalities. That offers a geometri
pretation of affine fusion being a truncated tensor product.

In the derivation of our results we have described three-point couplings by triangular arr
ments of non-negative integers similar to the su~2! BZ triangles. We introduced two types. W
based most of our results on a direct adaption of the ordinary su~2! BZ triangle. However, we also
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introduced a super-triangle and discussed some of its alternative features. Here we will in
how it appears natural from the point of view of correlators in osp~1u2! conformal field theory.
Three-point functions in conformal field theory with affine Lie group symmetry have been
sidered in Ref. 18. Their level-dependence was subsequently addressed in Ref. 19. The id
associate so-called elementary polynomials to the elementary couplings appearing in an ex
of a three-point coupling. The three-point functions are then constructed as~linear combinations
of! products of those polynomials. The algebraic relations~syzygies! among the elementary cou
plings complicate the construction. In some cases they may be taken into account at the l
BZ triangles by forbidding certain configurations. In terms of polynomials that amounts to fo
ding certain products, as there is a correspondence between BZ triangles and polynomials
will show elsewhere,7 the situation for osp~1u2! is most easily handled using our super-triangl
The constraint on the super-entrye ~14! is neatly encoded by associating a Grassmann
polynomial to a super-triangle withe51. This also introduces a natural way of implementing t
osp~1u2! syzygy.20,21
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On the asymptotic distribution of the commutator
and anticommutator of random matrices
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We study in the limit of infinite matrix order the normalized eigenvalue counting
measures of the commutator and anticommutator of two Hermitian~or real sym-
metric! matrices rotated independently one respect to another by the random uni-
tary ~or orthogonal! Haar distributed matrix. We establish the convergence with
probability 1 to a limiting nonrandom measure. We obtain and analyze the func-
tional equations for the Stieltjes transforms of the limiting measures. ©2003
American Institute of Physics.@DOI: 10.1063/1.1557329#

I. INTRODUCTION

We consider two ensembles: commutator and anticommutator ofn-dimensional Hermitian~or
real symmetric! random matricesHn of the form

Hn5 i @H1,n ,H2,n#[ i ~H1,nH2,n2H2,nH1,n! ~1.1!

and of the form

H̃n5H1,nH2,n1H2,nH1,n , ~1.2!

where

H1,n5Vn* AnVn , H2,n5Un* BnUn .

We assume thatAn andBn are nonrandom Hermitian~or real symmetric for the second ensemb!
matrices, andVn and Un are unitary~or orthogonal! independent random matrices uniform
distributed over the unitary group U(n) @or over the orthogonal group O(n)] with respect to the
Haar measure. For the sake of definiteness we will restrict ourself to the case of Her
matrices and the group U(n), respectively. The results for symmetric matrices and for the gr
O(n) have the same form, although their proof is more difficult.

We are interested in the asymptotic behavior asn→` of thenormalized eigenvalue countin
measure~NCM! Nn of the ensemble~1.1!, defined for any Borel setD,R by the formula

Nn~D!5
#$l iPD%

n
, ~1.3!

wherel i , i 51, . . . ,n are the eigenvalues ofHn . The NCM Ñn of the ensemble~1.2! is defined
analogously.

a!Electronic mail: vasilchuk@ilt.kharkov.ua
18820022-2488/2003/44(4)/1882/27/$20.00 © 2003 American Institute of Physics
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The ensemble~1.1! was studied recently in Ref. 3 in the context of free~noncommutative!
probability. In particular, it follows from results of Ref. 5 that if the norms of matricesAn andBn

are uniformly inn bounded, i.e., their NCMN1,n andN2,n have uniformly inn compact supports
and if these measures have weak limits asn→`,

N1,n→N1 , N2,n→N2 , ~1.4!

then the NCM~1.3! of random matrix~1.1! converges weakly with probability 1 to a nonrando
measureN. Besides, if

f ~z!5E
2`

` N~dl!

l2z
, Im zÞ0, ~1.5!

is theStieltjes transformof this limiting measure and

f r~z!5E
2`

` Nr~dl!

l2z
, r 51,2, ~1.6!

are the Stieltjes transforms ofNr , r 51,2 of ~1.4! having all moments finite and if

mr
(2)2mr

2.0, mr
(2)5E

2`

1`

l2Nr~dl!, mr5E
2`

1`

lNr~dl!, r 51,2, ~1.7!

then according to Ref. 3f (z) satisfies the following relation~this relation is understood in Ref.
as an equality of formal power series!:

2~11z21f ~z21!!5S 2

w~11 w/2!~11w!2 •@RE,1#
^21&S w

2 D •@RE,2#
^21&S w

2 D D ^21&

~z2!, ~1.8!

where ‘‘h^21&’’ denotes the functional inverse andRE,r(w), r 51,2, denotes the even part of th
corresponding modifiedR-transforms

RE,r~w!5~wRr~w!2wRr~2w!!/2, r 51,2. ~1.9!

Here Rr(w), r 51,2, denote Voiculescu’sR-transforms9,10 of the measuresNr , r 51,2, of ~1.4!
defined by the relations

z52
1

f r~z!
1Rr~2 f r~z!!, r 51,2, ~1.10!

where f r(z), r 51,2, are Stieltjes transforms of the measuresNr , r 51,2.
Here and below the convergence with probability 1 is understood as that in the n

probability space

V5)
n

Vn , ~1.11!

whereVn is the probability space of matrices~1.1! that is the product of two copies of the grou
U(n) for Un andVn .

In this article we obtain the analogous results for ensembles~1.1! and ~1.2! under weaker
assumptions and by using a method that does not involve combinatorics. This is because w
with the Stieltjes transforms of measures~1.3! and ~1.4! and derive directly the functional equa
tions for their limits.

We list below the properties of the Stieltjes transform that we will need~see e.g., Ref. 1!.
Proposition 1.1: Let m be a non-negative and normalized to unity measure and
                                                                                                                



over

us-

ve
asures

nver-

itary

t

al-

) is a

1884 J. Math. Phys., Vol. 44, No. 4, April 2003 V. Vasilchuk

                    
s~z!5E
2`

1` m~dl!

l2z
, Im zÞ0,

be the Stieltjes transform of m (here and below integrals without limits denote the integrals
the whole axis). Then

(i) s(z) is analytic inC\R and
us~z!u<uIm zu21; ~1.12!

(ii)
Im s~z!Im z.0, ImzÞ0; ~1.13!

(iii)
lim
y→`

yus~ iy !u51; ~1.14!

(iv) for any continuous functionw with a compact support we have the inversion (Frobeni
Perron) formula

E
2`

1`

f~l!m~dl!5 lim
«→0

1

p E
2`

1`

f~l!Im s~l1i«!. ~1.15!

(v) Conversely, any function verifying (1.12)–(1.14) is the Stieltjes transform of a non-negati
and normalized to unity measure and this one-to-one correspondence between me
and their Stieltjes transforms is continuous if one will use the topology of weak co
gence for measures and the topology of convergence on compact sets ofC\R for the
Stieltjes transforms.

II. MAIN RESULTS

We formulate now our main results. Since eigenvalues of a Hermitian matrix are un
invariant we can replace matrices~1.1! and ~1.2! by

Hn5 i @An ,Un* BnUn#, H̃n5AnUn* BnUn1Un* BnUnAn , ~2.1!

whereAn , Bn andUn are the same as in~1.1! and~1.2!. However, it is useful to keep in mind tha
the problem is symmetric inAn andBn . We prove the following theorems.

Theorem 2.1:Let Hn be the random n3n matrix of the form (1.1). Assume that the norm
ized eigenvalue counting measures Nr ,n ,r 51,2, of matrices An and Bn converge weakly as n
→` to the non-negative and normalized to 1 measures Nr , r 51,2, satisfying conditions (1.7)
respectively and that

sup
n
E

2`

1`

ulu6Nr ,n~dl!<m6,`, r 51,2.

Let also fr(z), r 51,2, be the Stieltjes transforms of the measures Nr , r 51,2.
Then the normalized eigenvalue counting measure Nn of Hn converges with probability 1 to a

nonrandom non-negative and normalized to 1 measure N whose Stieltjes transform (1.5
unique solution of the system of functional equations

G1~z!5 f 2S D2~z!

f ~z!
2

12z f~z!

2G1~z! D ,

2G1~z!5 f 2S D2~z!

f ~z!
1

12z f~z!

2G1~z! D ,
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f 2~z!
12z2f 2~z!

4
52G1

2~z!G2
2~z!, ~2.2!

G2~z!5 f 1S D1~z!

f ~z!
2

12z f~z!

2G2~z! D ,

2G2~z!5 f 1S D1~z!

f ~z!
1

12z f~z!

2G2~z! D
in the class of functions f(z) satisfying (1.13) and (1.14) and functionsD r(z), G r(z), r 51,2,
analytic for Im zÞ0 and satisfying conditions

zD r~z!52mr1O~ uIm zu22!, r 51,2, uRezu<uIm zu, z→`, ~2.3!

zG r~z!5Amr
(2)2mr

21O~ uIm zu21!, r 51,2, uRezu<uIm zu, z→`. ~2.4!

Theorem 2.2: Let H̃n be the random n3n matrix of the form (1.2) and let the conditions
Theorem 1 be satisfied.

Then the normalized eigenvalue counting measure N˜
n of H̃n converges with probability 1 to a

nonrandom non-negative and normalized to 1 measure N˜ whose Stieltjes transform (1.5) is
unique solution of the system of functional equations

V1~z!1D1~z!5 f 2S D2~z!

f ~z!

V1~z!

V1~z!1D1~z!
2

12z f~z!

2~V1~z!1D1~z!! D ,

2~V1~z!2D1~z!!5 f 2S D2~z!

f ~z!

V1~z!

V1~z!2D1~z!
1

12z f~z!

2~V1~z!2D1~z!! D ,

f 2~z!S 12z2f 2~z!

4
1zD1~z!D2~z! D52~V1

2~z!2D1
2~z!!~V2

2~z!2D2
2~z!!1D1

2~z!D2
2~z!,

~2.5!

V2~z!1D2~z!5 f 1S D1~z!

f ~z!

V2~z!

V2~z!1D2~z!
2

12z f~z!

2~V2~z!1D2~z!! D ,

2~V2~z!2D2~z!!5 f 1S D1~z!

f ~z!

V2~z!

V2~z!2D2~z!
1

12z f~z!

2~V2~z!2D2~z!! D
in the class of functions f(z) satisfying (1.13) and (1.14) and functionsD r(z), V r(z), r 51,2,
analytic for Im zÞ0 and satisfying conditions

zD r~z!52mr1O~ uIm zu21!, r 51,2, uRezu<uIm zu, z→`, ~2.6!

zV r~z!5Amr
(2)1O~ uIm zu21!, r 51,2, uRezu<uIm zu, z→`. ~2.7!

Remark 2.1: Its easy to see that in the case of symmetric limiting measures N1 and N2 one can
reduce the systems (2.2) and (2.5) settingD r(z)[0, r 51,2, to the following system:

G1~z!5 f 2S 2
12z f~z!

2G1~z! D ,
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f 2~z!
12z2f 2~z!

4
52G1

2~z!G2
2~z!, ~2.8!

G2~z!5 f 1S 2
12z f~z!

2G2~z! D .

Moreover, since in this case mr50, r 51,2, the functionsG r(z) and V r(z), r 51,2, will have the
same asymptotics. Hence, the limiting NCM N of ensemble (1.1) will be equal to the limiting

Ñ of ensemble (1.2).
Remark 2.2: The system (2.2) and relation (1.8) are equivalent.
Indeed, suppose that the limiting measuresNr , r 51,2, are symmetric and denote byNr

(2) ,
r 51,2, the probability measures uniquely defined by its Stieltjes transforms:

f r
(2)~z!5E

0

1` Nr
(2)~dl!

l2z
5E

2`

1` Nr~dl!

l22z
, r 51,2. ~2.9!

In this case, according to Remark 2.1 the system~2.2! can be reduced to the system~2.8!. The
measuresNr

(2) , r 51,2, will be supported on the non-negative real semi-axis and its first mom
will be equal to the second moments ofNr , r 51,2,

E
0

1`

lNr
(2)~dl!5mr

(2) , r 51,2. ~2.10!

Consider the functions

w r
(2)~z!52~11z21f r

(2)~z21!!, r 51,2.

Since (w r
(2))8(0)5mr

(2)Þ0, r 51,2, then, according to the local inversion theorem, the functi
w r

(2)(z), r 51,2, also have the unique functional inversesx r
(2)(w), r 51,2, defined and analytic in

a neighborhood of zero and assuming its values in a neighborhood of zero. Denote

Sr
(2)~w!5x r

(2)~w!w21~11w!, r 51,2,

and following Voiculescu8,10,2 call Sr
(2)(w), r 51,2, theS-transform of the probability measure

Nr
(2) , r 51,2, on the real non-negative semi-axis. Besides, using the relation~2.9! and the sym-

metry of measuresNr , r 51,2, we obtain

w r
(2)~z2!5w r~z!,w r~z!52~11z21f r~z21!!, r 51,2.

Using this relation we rewrite the system~2.8! in the following form:

c~z!

2
5w r

(2)S S G32r~z!

11 c~z!/2D
2D , r 51,2,

~2.11!
~11c~z!!2

z2

c~z!

2 S 11
c~z!

2 D5G1
2~z!G2

2~z!,

where

c~z!52~11z f~z!![w~z21!5w (2)~z22!, w (2)~z!52~11z21f (2)~z21!!,

f (2)~z!5E
2`

1` N~dl!

l22z
.
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By using theS-transformsSr
(2)(w), r 51,2, we can rewrite two first equations of the system~2.11!

in the form

G32r
2 ~z!5

c~z!

2 S 11
c~z!

2 DSr
(2)S c~z!

2 D , r 51,2.

Using this relations and the last equation of system~2.11! we obtain

S(2)~c!5
1

2

11 c/2

11c
S1

(2)S c

2 DS2
(2)S c

2 D , ~2.12!

whereS(2)(c) denotesS-transform of probability measureN(2) defined by its Stieltjes transform
f (2)(z). This measure will be also supported on the non-negative real semi-axis and will hav
zero first moment 2m1

(2)m2
(2) . The relation~2.12! was obtained by Nica and Speicher in Ref. 3

the case of measuresNr , r 21,2, having all moments finite and proved to be equivalent to
relation ~1.8!.

As for the general case, we can apply theR-transforms~1.10! of the measuresNr , r 51,2, to
the two first and two last equations of the system~2.2! and obtain the following relations.

1

G32r~z!
1R̂r~G32r~z!!5

12z f~z!

2G32r~z!
, r 51,2, ~2.13!

where

R̂r~w!5
Rr~w!2Rr~2w!

2
, r 51,2. ~2.14!

As was shown in Ref. 3 there exist the probability measuresN̂r , r 51,2, whoseR-transforms are
R̂r(w), r 51,2. According to~2.14! these measures are symmetric and their second moment
equal tomr

(2)2mr , r 51,2. Thus, applying to the relation~2.13! the Stieltjes transformsf̂ r(z) of
measuresN̂r , r 51,2, we obtain the first and last equations of the system~2.8!. As was shown
above, this system will be equivalent to the relation~1.8!, whereRE,r(w)5wR̂r(w), r 51,2.

III. PROOF OF THE THEOREMS

We use the technique introduced in Ref. 4 and developed in Refs. 7 and 6. Let us rec
basic means. First, it is a resolvent identity

G2~z!5G1~z!2G1~z!~M22M1!G2~z!,Im zÞ0, ~3.1!

valid for any HermitianM1 and M2 and their resolventsG1(z) andG2(z). Our main tool as is
follows.

Proposition 3.1:4 Let F:Mn→C be a continuously differentiable function. Then the followi
relation hold for any MPMn and any Hermitian element XPMn :

E
U(n)

F8~U* MU !•@X,U* MU#dU50, ~3.2!

whereF8 is derivative ofF, @M1 ,M2#5M1M22M1M2 and *U(n)¯dU denotes the integration
over U(n) with respect to the normalized Haar measure.

Proof: To prove~3.2! we use the right shift invariance of the Haar measure: dU5d(UU0),
;U0PU(n) according to which the integral
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E
U(n)

F~e2 i«XU* MUei«X!dU

is independent of« for any HermitianXPMn . Thus its derivative with respect to« at «50 is zero.
This derivative is the lhs of~3.2!. j

Remark 3.1: Due to the linearity on X the relation (3.2) is true for arbitrary X, not only
Hermitian ones.

Proposition 3.2: System (2.2) has not two different solutions in the class of functions(z),
D r(z), G r(z), r 51,2, analytic for Im zÞ0 and satisfying conditions (1.13), (1.14) and (2.3), (2..

Proof: Assume that there exist two solutions (f 8, D r8 , G r8 , r 51,2) and (f 9, D r9 , G r9 , r
51,2) of the system. Denoted f 5 f 82 f 9, dD r5D r82D r9 , dG r5G r82G r9 , r 51,2. Then, by using
~2.2! and the following relation,

f r~z!52~z2mr !
211z21~z2mr !

21E
2`

1` l~l2mr !Nr~dl!

l2z
, r 51,2,

we obtain the linear system fordG r , dD r , r 51,2, andd f :

a1~z!dD21b1~z!dG11c1~z!d f 50,

a2~z!dD21b2~z!dG11c2~z!d f 50,

b3~z!dG11c3~z!d f 1d3~z!dG250, ~3.3!

c4~z!d f 1d1~z!)dG21e1~z!dD150,

c5~z!d f 1d2~z!)dG21e2~z!dD150,

where

a15
G8

f 8
2S J2~x28 ,x29 !2

I 2~x28 !

x28
D 1

x29 f 8
, b15s292m22S J2~x28 ,x29 !2

I 2~x28 !

x28
D t19

x29 G18
,

a252
G8

f 8
2S J2~x18 ,x19 !2

I 2~x18 !

x18
D 1

x19 f 8
, b252~s292m2!1S J2~x18 ,x19 !2

I 2~x18 !

x18
D t19

x19 G18
,

c15
z

2
2

G8

f 8
s291S J2~x28 ,x29 !2

I 2~x28 !

x28
D 1

x29
S s29

f 8
1

z

2G18
D ,

c25
z

2
1

G8

f 8
s291S J2~x18 ,x19 !2

I 2~x18 !

x18
D 1

x19
S s29

f 8
2

z

2G18
D ,

b35z3~G181G19!~G28!2, c35z3~ f 81 f 9!
12z~~ f 8!21~ f 9!2!

4
, d35z3~G281G29!~G19!2,

x68
,95s28

,96t18
,9 , s28

,95
D28

,9

f 8,9
,t18

,95
11z f8,9

2G18
,9

, ~3.4!

I 2~z!5E
2`

1` l~l2m2!N2~dl!

l2z
, J2~z8,z9!5E

2`

1` l~l2m2!N2~dl!

~l2z8!~l2z9!
, ~3.5!
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anddr , er , c31r , r 51,2, can be obtained fromar , br , cr , r 51,2, by replacingN2 , D28
,9 and

G18
,9 by N1 , D18

,9 andG28
,9 in above formulas.

For anyy0.0 consider the domain

E~y0!5$zPC:uIm zu>y0 ,uRezu<uIm zu%. ~3.6!

Due to the conditions~2.4! and the third equation of the system~2.2! we have forzPE(y0)

11z f8,9~z!522z22~~m1
(2)2m1

2!~m2
(2)2m2

2!1O~ uIm zu21!!, z→`. ~3.7!

Besides, if

k~z!5E
2`

1` l~l2m1!m~dl!

l2z
, l ~z8,z9!5E

2`

1` l~l2m1!m~dl!

~l2z8!~l2z9!
,

where

m15E
2`

1`

lm~dl!

andm is non-negative and normalized to the 1 measure having finite sixth moment, then we
for z,z8,z9PE(y0),

Uzk~z!1E
2`

1`

l~l2m1!m~dl!U5U E
2`

1` l2~l2m1!m~dl!

l2z U<6y0
21E

2`

1`

ulu3m~dl!,

Uz8z9l ~z8,z9!2E
2`

1`

l~l2m1!m~dl!U5U E
2`

1` l2~l2m1!~z81z92l!m~dl!

~l2z8!~l2z9! U
<6y0

21E
2`

1`

ulu3m~dl!,

i.e.,

zk~z!52E
2`

1`

l~l2m1!m~dl!1O~ uIm zu21!, z→`, zPE~y0!,

z8z9l ~z8,z9!5E
2`

1`

l~l2m1!m~dl!1O~ uIm zu21!, z8,z9→`, z8,z9PE~y0!.

Thus, we obtain from the relation above,~3.4!, ~3.5!, ~3.7! and conditions~2.3!, ~2.4! that for z
→`, zPE(y0)

sr8
,9~z!5mr1o~1!, t r8

,9~z!5z~Amr
(2)2mr

21o~1!!, x68
,9~z!56z~Am1

(2)2m1
21o~1!!, r 51,2,

and, e.g.,

x68 x69 ~z!J2~x68 ,x69 !5m1
(2)2m1

21o~1!.

Hence we have

a1~z!52a1o~1!, a2~z!5a1o~1!, b1,2~z!522z21b2a1o~1!,

cr~z!5z/21o~1!, r 51,2,4,5, c3~z!5z2/21o~1!, b3~z!52b2a1o~1!,
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d3~z!52ba21o~1!, d1,2~z!522z21ba21o~1!, e1~z!52b1o~1!, e2~z!5b1o~1!,

wherea5Am1
(2)2m1

2, b5Am2
(2)2m2

2. Thus the determinant of system~3.3! is equal asymptoti-
cally to 2a4b4.0. We conclude that ify0 in ~3.6! is big enough, then system~3.3! has only trivial
solution, thus solutions (f 8, D r8 , G r8 , r 51,2) and (f 9, D r9 , G r9 , r 51,2) of the system~2.2!
coincide. j

Proof of Theorem 2.1:Because of unitary invariance of eigenvalues of Hermitian matrices
can assume without loss of generality that the unitary matrixV in ~1.1! is set to unity, i.e., we can
work with the random matrix~2.1!. We will omit below the subindexn in all cases when it will
not lead to confusion.C will denote then-independent constant that may be different in differe
bounds.

Write the resolvent identity~3.1! for the pair (H,0):

zG~z!1I 5 i ~H1H2G~z!2H2H1G~z!!. ~3.8!

By using Proposition 3.1 with the matrix elementF(M )5(G(z))ab5(( i @H1 ,M #2z)21)ab as
F(M ), we have

^~GH1@X,H2#G!ab&5^~G@X,H2#H1G!ab&. ~3.9!

Choosing the matrixX with only (a,b)-th nonzero entries, we obtain

2^~G~z!H1!aa~H2G~z!!bb&5^~G~z!H1H2!aaGbb~z!&1^Gaa~z!~H2H1G~z!!bb . ~3.10!

Applying to this quantityn22(a,b51
n and taking into account the identity~3.8! we obtain the

relation

2^d1,n~z!d2,n~z!&5^gn~z!~k1,n~z!1k2,n~z!!&, ~3.11!

where

d r ,n~z!5n21TrG~z!Hr , r 51,2, g~z!5n21TrG~z!5E
2`

1` Nn~dl!

l2z
,

~3.12!
k1,n~z!5n21TrG~z!H1H2 ,k2,n~z!5n21TrG~z!H2H1 .

Introduce now the centralized quantities

gn
o~z!5gn~z!2 f n~z!, d r ,n

o ~z!5d2,n~z!2D2,n~z!, kr ,n
o ~z!5kr ,n~z!2^kr ,n~z!&, r 51,2,

~3.13!

where

f n~z!5^gn~z!&, D2,n~z!5^d2,n~z!&. ~3.14!

With these notations~3.11! becomes

2D1,n~z!D2,n~z!5 f n~z!~^k1,n~z!&1^k2,n~z!&!1r n~z!, ~3.15!

where

r n~z!522^d1,n
o ~z!d2,n~z!&1^gn

o~z!~k1,n~z!1k2,n~z!!&. ~3.16!

Besides, applying to the relation~3.8! the operationn21Tr, we obtain

z fn~z!115 i $^k1,n~z!&2^k2,n~z!&%. ~3.17!
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Using previous relation we obtain from~3.15! and ~3.17!

^k1,n~z!&5
D1,n~z!D2,n~z!

f n~z!
2 i

11z fn~z!

2
2

r n~z!

2 f n~z!
,

~3.18!

^k2,n~z!&5
D1,n~z!D2,n~z!

f n~z!
1 i

11z fn~z!

2
2

r n~z!

2 f n~z!
.

On the other hand, choosing in~3.9! the matrixX with only (a,c)-th nonzero entries and
applyingn21(a51

n , we obtain the following matrix relation:

^$d2,n~z!A2k1,n~z!I %G~z!&2^gn~z!H2H1G~z!&1^d1,n~z!H2G~z!&50.

Using relations~3.8!, ~3.13!, ~3.17! and ~3.18!, we obtain from the previous relation

S 2 i
12z fn~z!

2
I 1D2,n~z!S D1,n~z!

f n~z!
I 2AD D ^G~z!&2~D1,n~z!I 2 f n~z!A!^H2G~z!&

52 i f n~z!I 1R1,n~z!, ~3.19!

where

R1,n~z!5
r n~z!

2 f n~z!
^G~z!&1^d2,n

o ~z!H1G~z!&1^d1,n
o ~z!H2G~z!&

2^gn
o~z!H2H1G~z!&2^k1,n

o ~z!G~z!&. ~3.20!

Multiplying the relation~3.19! by A from the left and applying the operationn21Tr, we obtain

f n~z!^p1,n~z!&2D1,n~z!S i
12z fn~z!

2
1^k1,n~z!& D2D2,n~z!S D1(2),n~z!2

D1,n
2 ~z!

f n~z!
D

52 i f n~z!m1,n1n21TrH1R1,n~z!, ~3.21!

where

p1,n~z!5n21TrH1
2H2G~z!, D1(2),n~z!5^n21TrH1

2G~z!&, m1,n5n21TrH15E
2`

`

N1,n~dl!.

~3.22!

Using relation~3.18!, we obtain from~3.21!

^p1,n~z!&5
D1(2),n~z!D2,n~z!

f n~z!
2 izD1,n~z!2m1,n1 r̂ n~z!, ~3.23!

where

r̂ n~z!52
D1,n~z!r n~z!

2 f n
2~z!

1
n21TrH1R1,n~z!

f n~z!
. ~3.24!

Consider now the matrix

Y1~z!5H2G~z!. ~3.25!

Its clear thatd2,n(z)5n21TrY1(z). On other hand, using to theY1(z) the Proposition 3.1, we
obtain
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^~@X,H2#G!ab&2 i ^~H2GH1@X,H2#G!ab&52 i ^~H2G@X,H2#H1G!ab&. ~3.26!

Choosing in~3.26! the matrixX with only (a,c)-th nonzero entries and applyingn21(a51
n , we

obtain the following matrix relation:

^Y1~z!&2 i ^k1,n~z!Y1~z!&1 i ^d2,n~z!H2H1G~z!&

1^~ i $p2,n~z!I 2d2(2),n~z!A%2m2,nI !G~z!&50, ~3.27!

where

p2,n~z!5n21TrH2
2H1G~z!, d2(2),n~z!5n21TrH2

2G~z!, m2,n5n21TrH25E
2`

`

N2,n~dl!.

~3.28!

Introduce the centralized quantities

p2,n
o ~z!5p2,n~z!2^p2,n~z!&, d2(2),n

o
~z!5d2(2),n~z!2D2(2),n~z!, D2(2),n~z!5^d2(2),n~z!&.

~3.29!

Besides, applying to~3.27! n21Tr and using relations~3.13!, ~3.17! and ~3.29!, we obtain

^p2,n~z!&5
D2(2),n~z!D1,n~z!

f n~z!
2 izD2,n~z!2 im2,n1 r̃ n~z!, ~3.30!

where

r̃ n~z!5 f n
21~z!~^d2,n

o ~z!~k1,n~z!1k2,n~z!!&2^p2,n
o ~z!gn~z!&1^d2(2),n

o
~z!d1,n~z!&!. ~3.31!

On other hand, using relations~3.8!, ~3.13!, ~3.18! and ~3.29!, we obtain from~3.27!

D2(2),n~z!S D1,n~z!

f n~z!
I 2AD ^G~z!&1S 2 i

12z fn~z!

2
I 2D2,n~z!S D1,n~z!

f n~z!
I 2AD D ^Y1~z!&

52 iD2,n~z!I 1R2,n~z!, ~3.32!

where

R2,n~z!52 i
r n~z!

2 f n~z!
^Y1~z!&2 i r̃ n~z!^G~z!&2^k1,n

o ~z!Y1~z!&1^d2,n
o ~z!H2H1G~z!&

2^p2,n
o ~z!G~z!&1^d2(2),n

o
~z!H1G~z!&. ~3.33!

Multiplying the relation~3.32! by A from the left and applying the operationn21Tr, we obtain

D2(2),n~z!S D1,n
2 ~z!

f n~z!
2D1(2),n~z! D 2S i

12z fn~z!

2
1

D1,n~z!D2,n~z!

f n~z! D ^k1,n~z!&1D2,n~z!^p1,n~z!&

52 iD2,n~z!m1,n1n21TrH1R2,n~z!. ~3.34!

Using relations~3.18! and ~3.23! we obtain from~3.34!

f n
2~z!

12z2f n
2~z!

4
52G1,n

2 ~z!G2,n
2 ~z!1 r̂ 2,n~z!, ~3.35!

where
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G r ,n~z!5AD r (2),n~z! f n~z!2D r ,n
2 ~z!, r 51,2, ~3.36!

and

r̂ 2,n~z!52 f n
2~z!S r n~z!

2 f n~z! S ^k1,n~z!&1
r n~z!

2 f n~z! D1D2,n~z! r̃ n~z!1n21TrH1R2,n~z! D . ~3.37!

We show in Theorem 3.1 that there existy0 andC(y0), both positive and independent ofn
and such that the variances of random variablesgn(z), d r ,n(z), d r (2),n(z), kr ,n(z), pr ,n(z), r
51,2, admit the following bounds forzPE(y0):

v15^ugn~z!2^gn~z!&u2&<
C~y0!

n2 ,

v11r5^ud r ,n~z!2^d r ,n~z!&u2&<
C~y0!

n2 , v31r5^ud r (2),n~z!2^d r (2),n~z!&u2&<
C~y0!

n2 ,

~3.38!

v51r5^ukr ,n~z!2^kr ,n~z!&u2&<
C~y0!

n2 , v71r5^upr ,n~z!2^pr ,n~z!&u2&<
C~y0!

n2 , r 51,2.

Besides, using Cauchy–Schwarz and Holder inequalities and conditions of the theore
obtain the following bounds:

ud r ,n~z!u5un21TrHrG~z!u<
~n21TrHr

2!1/2

uIm zu
<

m6
1/6

uIm zu
, r 51,2, ~3.39!

ud r (2),n~z!u5un21TrHr
2G~z!u<

~n21TrHr
4!1/2

uIm zu
<

m6
1/3

uIm zu
, r 51,2, ~3.40!

ukr ,n~z!u5un21TrHrH32rG~z!u

<
~n21TrHr

2H32r
2 !1/2

uIm zu
<

~n21TrHr
4!1/4~n21TrH32r

4 !1/4

uIm zu
<

m6
1/3

uIm zu
, r 51,2. ~3.41!

These inequalities and relation~3.17! imply that uniformly inn

zgn~z!5211O~ uIm zu21!, z fn~z!5211O~ uIm zu21!. ~3.42!

In addition using Proposition 1.1, relation~3.38! and the Cauchy–Schwarz inequality, we obta
e.g.,

u^gn
on21TrH1H2H1G~z!&u<v1

1/2^~n21TrH1
2H2H1

2H2!1/2&
uIm zu

<v1
1/2^n21TrH1

2H2H1
2H2&

1/2

uIm zu
<

2C1/2~y0!m6
1/2

nuIm zu
. ~3.43!

As a result of inequalities~3.39!–~3.41! and ~3.43!, Cauchy–Schwarz inequality, bounds f
corresponding variances~3.38! and relations~3.42!, we obtain that forzPE(y0) the termsr n(z),
r̂ n(z), r̃ n(z) and r̂ 2,n(z) in the previous formulas are of the orderO(n21):

ur n~z!u<
C~y0!

nuIm zu
, r̂ n~z!<

C~y0!

n
, r̃ n~z!<

C~y0!

n
, r̂ 2,n~z!<

C~y0!

nuIm zu
. ~3.44!
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Thus the relation~3.35! implies the third equation of the system~2.2!.
Besides, we have obtained@~3.19! and ~3.32!# the following linear system with matrix coef

ficients of matrix variableŝG(z)& and ^Y1(z)&:

~2 ian~z!I 1D2,n~z!P!^G~z!&2 f n~z!P^Y1~z!&52 i f n~z!I 1R1,n ,
~3.45!

D2(2),n~z!P^G~z!&1~2 ian~z!I 2D2,n~z!P!^Y1~z!&52 iD2,n~z!I 1R2,n ,

where

an~z!5
12z fn~z!

2
, P5

D1,n~z!

f n~z!
I 2A. ~3.46!

The ‘‘determinant’’D of this system is equal to

D52an
2~z!I 1G2,n

2 ~z!P2

5G2,n
2 ~z!S A2S D1,n~z!

f n~z!
2

an~z!

G2,n~z! D I D S A2S D1,n~z!

f n~z!
1

an~z!

G2,n~z! D I D . ~3.47!

Besides, using the resolvent identity~3.8! and the trace property, we obtain

zD r ,n~z!52n21TrHr1z21^n21TrHr@H1 ,H2#2G~z!&, r 51,2,

zD r (2),n~z!52n21TrHr
21^n21TrHr

2@H1 ,H2#G~z!&, r 51,2,

and

11z fn~z!5z21^n21Tr@H1 ,H2#2G~z!&.

In addition, using 1.1, we obtain

u^n21TrHr@H1 ,H2#2G~z!&u<
^n21TrHr@H1 ,H2#4Hr&

1/2

uIm zu
<

Cm6
5/6

uIm zu
, r 51,2,

u^n21TrHr
2@H1 ,H2#G~z!&u<

^n21TrHr
2@H1 ,H2#2Hr

2&1/2

uIm zu
<

Cm6
1/3

uIm zu
, r 51,2,

and

u^n21Tr@H1 ,H2#2G~z!&u<
^n21Tr@H1 ,H2#4&1/2

uIm zu
<

Cm6
2/3

uIm zu
.

As a result of the bounds above we have forz belonging to the domainE(y0) andy0 sufficiently
large uniformly inn

z fn~z!5211O~ uIm zu22!, an~z!511O~ uIm zu22!, ~3.48!

zD r ,n~z!52n21TrHr1O~ uIm zu22!, r 51,2, ~3.49!

zG r ,n~z!5An21TrHr
22~n21TrHr !

21O~ uIm zu21!, r 51,2. ~3.50!

According to the conditions of the theorem there existsn8 sufficiently large and such that for a
n>n8 we have

0,~mr
(2)2mr

2!/2<n21TrHr
22~n21TrHr !

2<2~mr
(2)2mr

2!, r 51,2.
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Thus, the matrixD is uniformly in n invertible for n>n8 andzPE(y0),

iD21i<C, ~3.51!

and its inverse is equal to

D215G2,n
22~z!G1S D1,n~z!

f n~z!
2

an~z!

G2,n~z! DG1S D1,n~z!

f n~z!
1

an~z!

G2,n~z! D , ~3.52!

whereG1(z)5(H12z)215(A2z)21. Hence the system~3.45! has the solution

^G~z!&52an~z! f n~z!D211R̃1,n ,
~3.53!

^Y1~z!&5~2an~z!D2,n~z!I 1 iG2,n
2 ~z!P!D211R̃2,n ,

where

R̃1,n5D21~P~ f n~z!R2,n2D2,n~z!R1,n!2 ian~z!R1,n!,

R̃2,n5D21~P~D2,n~z!R2,n2D2(2),n~z!R1,n!2 ian~z!R2,n!.

Applying to the relations~3.53! the operationn21Tr and using relation~3.52! and the resolvent
identity, we obtain

G2,n~z!5 f 1,nS D1,n~z!

f n~z!
2

an~z!

G2,n~z! D1r 1,n~z!,

~3.54!

2G2,n~z!5 f 1,nS D1,n~z!

f n~z!
1

an~z!

G2,n~z! D1r 2,n~z!,

where

f 1,n~z!5E
2`

1` N1,n~dl!

l2z
, ~3.55!

r 1,n~z!5S G2,n~z!

f n~z!
2 i

D2,n~z!

2G2,n~z! Dn21TrR̃1,n1 in21TrR̃2,n ,

~3.56!

r 2,n~z!52S G2,n~z!

f n~z!
1 i

D2,n~z!

2G2,n~z! Dn21TrR̃1,n1 in21TrR̃2,n .

Besides, using Proposition 1.1, Cauchy–Schwarz and Holder inequalities and the bound~3.51!, we
obtain forzPE(y0) the following bounds:

un21TrD21PG~z!u<
C

uIm zu S m6
1/6

11 m6
1/3/uIm zu

1~n21TrHr
2!1/2D<

Cm6
1/6

uIm zu S 1

11 m6
1/3/uIm zu

11D ,

un21TrD21PH1G~z!u<
Cm6

1/3

uIm zu S 1

11 m6
1/3/uIm zu

11D ,
                                                                                                                



-
orm
of the

etween

a

any
s the

1896 J. Math. Phys., Vol. 44, No. 4, April 2003 V. Vasilchuk

                    
u^~n21TrD21PH2G~z!&u<
C

uIm zu S m6
1/3

11 m6
1/3/uIm zu

1~n21TrH1
2H2

2!1/2D
<

Cm6
1/3

uIm zu S 1

11 m6
1/3/uIm zu

11D .

Using, in addition, Proposition 1.1, we obtain

u^gn
o~n21TrD21PH2H1G~z!&u<

v1
1/2C

uIm zu S m6
1/6^~n21TrH1

2H2
2!1/2&

11 m6
1/3/uIm zu

1^~n21TrH1
2H2H1

2H2!1/2& D
<

2C~y0!m6
1/2

nuIm zu S 1

11 m6
1/3/uIm zu

11D .

These inequalities imply that forzPE(y0) the termsr 1,n(z) andr 2,n(z) are of the orderO(n21).
Using the arguments above in which the roles ofH1 andH2 are interchanged, we obtain

G1,n~z!5 f 2,nS D2,n~z!

f n~z!
2

an~z!

G1,n~z! D1r 1,n8 ~z!,

~3.57!

2G1,n~z!5 f 2,nS D2,n~z!

f n~z!
1

an~z!

G1,n~z! D1r 2,n8 ~z!,

where

f 2,n~z!5E
2`

1` N2,n~dl!

l2z
~3.58!

and where the termsr 1,n(z) and r 2,n(z) are of the orderO(n21). Thus, the relations~3.57! and
~3.54! lead to the first and to the last pairs of equations of the system~2.2!.

Besides, forzPC\R we have the following bounds:

u f n~z!u<uIm zu21, uD r ,n~z!u<m6
1/6uIm zu21, uG r ,n~z!u<4m6

1/6uIm zu21, r 51,2.

These bounds imply that sequences$ f n(z)%, $D r ,n(z)%, $G r ,n(z)%, r 51,2, are analytic and uni
formly in n bounded forzPC\R. Thus the sequences are compact with respect to unif
convergence on any compacts of this domain. In addition, according to the hypothesis
theorem, the normalized counting measuresNr ,n of matricesHr ,n , r 51,2, converge weakly to a
limiting measuresNr , r 51,2. Thus their Stieltjes transforms~3.55! and ~3.58! converge uni-
formly on compacts ofE(y0), y0.uImzu to the Stieltjes transformsf 1,2(z) of N1,2. Hence, ify0 is
large enough, there exist five analytic inE(y0) functions f and D r ,G r , r 51,2 verifying for z
PE(y0) the limiting system~2.5!. Its unique solubility in domain~3.6! wherey0 is large enough
is proved in Proposition 3.2. Besides, all five functionsf n , D r ,n , r 51,2, area priori analytic for
zPC\R. Thus, their limitsf ,D r ,G r , r 51,2, are also analytic forzPC\R. In view of the weak
compactness of probability measures and the continuity of the one-to-one correspondence b
non-negative measures and their Stieltjes transforms@see Proposition 1.1~v!# there exists a unique
non-negative measureN such thatf admits the representation~1.5!. The measureN is a normal-
ized to 1 measure in view of~3.48!.

We conclude that the whole sequence$ f n(z)% converges uniformly on compacts ofzPC\R to
the limiting functionf (z) verifying ~2.5!. This result, Theorem 3.1 and the Borel–Cantelli lemm
imply that the sequence$gn(z)% wheregn(z) is defined in~3.12! converges with probability 1 to
f (z) for any fixedzPE(y0). Since the convergence of a sequence of analytical functions on
countable set having an accumulation point in their common domain of definition implie
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uniform convergence of the sequence on any compact of the domain we obtain the conve
gn(z) to f (z) with probability 1 on any compact ofC\R. Due to the continuity of the one-to-on
correspondence between probability measures and their Stieltjes transforms the normalized
ing measure~NCM! of the eigenvalues of random matrix~1.1! converge weakly with probability
1 to the nonrandom measureN whose Stieltjes transform~1.5! satisfies~2.5!. Theorem 2.1 is
proved. j

Theorem 3.1: Let Hn be the random matrix of the form (1.1) satisfying the conditions
Theorem 2.1. Then there exist y0 and C(y0), both positive and independent of n and such that
variances of random variables gn(z), d r ,n(z), d r (2),n(z), kr ,n(z), pr ,n(z), r 51,2, admit the
bounds for zPE(y0):

v15^ugn~z!2^gn~z!&u2&<
C~y0!

n2 ,

v11r5^ud r ,n~z!2^d r ,n~z!&u2&<
C~y0!

n2 , v31r5^ud r (2),n~z!2^d r (2),n~z!&u2&<
C~y0!

n2 ,

~3.59!

v51r5^ukr ,n~z!2^kr ,n~z!&u2&<
C~y0!

n2 , v71r5^upr ,n~z!2^pr ,n~z!&u2&<
C~y0!

n2 , r 51,2.

Proof: We will obtain the bounds~3.59! following the scheme used in Refs. 4, 7, and 6 for t
estimates of corresponding variances in the cases of additive and multiplicative ense
Namely, using Proposition 3.1 and the resolvent identity we will derive and analyze the syst
inequalities

v i< (
j 51,j Þ i

9

a i j ~y0!v i
1/2v j

1/21
b i~y0!

n2 , i 51, . . . ,9. ~3.60!

After the proper rescaling the coefficientsa i j (y0) andb i(y0), i , j 51, . . . ,9, ofthis system will
admit the following relations for somen.0 andC.0 both independent ofy0 :

ua i j ~y0!u<
C

y0
n , ub i~y0!u<C.

Thus, choosingy0 sufficiently large and then fixing it, we will obtain from the system~3.60! the
bounds~3.59!.

We will use below the notationsg(z), d r(z), d r (2)(z), kr(z), pr(z), r 51,2, for gn(z),
d r ,n(z), d r (2),n(z), kr ,n(z), pr ,n(z), r 51,2, correspondently. Besides, because of the symmetr
the problem with respect toH1 andH2 it suffices to prove only odd relations of the system~3.60!.
The first inequality of the system~3.60! follows from the resolvent identity~3.8!. Indeed, using the
Cauchy–Schwarz inequality, we obtain forzPE(y0) @cf. ~3.17!#

v15^go~ z̄!g~z!&5
i

z
~^go~ z̄!k1~z!&2^go~ z̄!k1~z!&!<

1

y0
~v1

1/2v6
1/21v1

1/2v7
1/2!.

Hence, we have

a1p~y0![
1

y0
, p56,7, a1q~y0![0,q52, . . . ,5,8,9, b1~y0![0. ~3.61!

To get the third inequality of the system~3.60! consider the matrixV15^d2
o( z̄)UGU* &. It is

clear thatn21TrBV1 is the variancev3 :
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^ud2
o~z!u2&5^d2

o~ z̄!n21TrU* BUG&5^d2
o~ z̄!n21TrBUGU* &5n21TrBV1 .

Applying to the functionF(M )5(MUG( z̄)U* )aa
o (UG(z)U* )bd the analog of Proposition 3.1

obtained from the left shift invariance of the Haar measure, we obtain

^$~B@X,UḠU* # !aa2 i ~BUḠ@A,U* @B,X#U#ḠU* !aa%~UGU* !bd&

1^~BUḠU* !aa
o $~@X,UGU* # !bd2 i ~UG@A,U* @B,X#U#GU* !bd%&50.

Choosing the matrixX with only (b,c)-th nonzero entries, applyingn22(a,b51
n and using the

trace property, we obtain the relation

V12^d2
o~ z̄!g~z!&1 i ^d2

o~ z̄!U$d2~z!A2k1~z!I %G~z!U* &2 i ^d2
o~ z̄!g~z!BUAG~z!U* &

1 i ^d2
o~ z̄!d1~z!BUG~z!U* &1n22C50, ~3.62!

where

C5^@UḠU* ,B#UGU* &2 i ^@U@UḠU* BUḠ,A#U* ,B#UGU* &. ~3.63!

Multiplying the relation~3.62! by B from the left and applying the operationn21Tr, we obtain

v35m2,n^d2
o~ z̄!g~z!&2 i ^d2

o~ z̄!d2~z!k2~z!&1 i ^d2
o~ z̄!d2~z!k1~z!&1 i ^d2

o~ z̄!g~z!p2~z!&

2 i ^d2
o~ z̄!d1~z!d2(2)~z!&1n23TrBC. ~3.64!

Using the centralized quantities~3.13! and ~3.29! we can write

^d2
o~ z̄!d2~z!kr~z!&5v3^kr~z!&1^d2

o~ z̄!kr~z!&^d2~z!&, r 51,2,

^d2
o~ z̄!g~z!p2~z!&5^d2

o~ z̄!g~z!&^p2~z!&1^d2
o~ z̄!p2~z!&^g~z!&,

^d2
o~ z̄!d1~z!d2(2)~z!&5^d2

o~ z̄!d1~z!&^d2(2)~z!&1^d2
o~ z̄!d2(2)~z!&^d1~z!&.

Besides, using Proposition 1.1, the Holder inequality and relation~3.63!, we obtain

un21TrBCu<2
n21TrB2

uIm zu2
18

~n21TrB6!1/2~n21TrA2!1/2

uIm zu3
.

Thus, in view of the relations above and the Cauchy–Schwarz inequality, we have the bou

u^d2
o~ z̄!d2~z!kr~z!&u<

m1,nm2,n

y0
v31

m2,n

y0
v3

1/2v51r
1/2 , r 51,2,

u^d2
o~ z̄!g~z!p2~z!&u<

~m1,n
(2)!1/2~n21TrB4!1/2

y0
v3

1/2v1
1/21

1

y0
v3

1/2v9
1/2,

u^d2
o~ z̄!d1~z!d2(2)~z!&u<

m2,n
(2)

y0
v3

1/2v2
1/21

m1,n

y0
v3

1/2v5
1/2.

These bounds and relation~3.64! lead form6
1/3y0

21< 1
2 to the third inequality of the system~3.60!,

in which
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a31~y0![2S m6
1/61

m6
1/2

y0
D , a32~y0![2

m6
1/3

y0
, a35~y0![a3r~y0![2

m6
1/6

y0
, r 56,7,

~3.65!

a39~y0![
2

y0
, b3~y0![

4m6
1/3

y0
2 S 11

4

y0
D .

To get the fives inequality of the system~3.60! consider the matricesV25^d2(2)
o ( z̄)UGU* &

andW25^d2(2)
o ( z̄)UAGU* &. It is clear thatn21TrB2V2 is the variancev5 . Besides, applying to

the functionF(M )5(M2UG( z̄)U* )aa
o (UG(z)U* )bd the analog of Proposition 3.1 obtained fro

the left shift invariance of the Haar measure, we obtain after the procedure similar to tha
above the following relation:

V22^d2(2)
o

~ z̄!g~z!&I 1 i ^d2(2)
o

~ z̄!$d1~z!B2k1~z!I %UG~z!U* &

2 i ^d2(2)
o

~ z̄!~g~z!B2d2~z!!UAG~z!U* &1n22C150, ~3.66!

where

C15^@UḠU* ,B2#UGU* &2 i ^@U@UḠU* B2UḠ,A#U* ,B#UGU* &.

On the other hand, applying the same procedure to the functionF(M )
5(M2UG( z̄)U* )aa

o (UAG(z)U* )bd , we obtain

W22^d2(2)
o

~ z̄!d1~z!&I 1 i ^d2(2)
o

~ z̄!$d1(2)~z!B2~p1~z!2 izd12 im1,n!I %UG~z!U* &

2 i ^d2(2)
o

~ z̄!~d1~z!B2k2~z!I !UAG~z!U* &1n22C250,

~3.67!
C25^@UḠU* ,B2#UAGU* &2 i ^@U@UḠU* B2UḠ,A#U* ,B#UAGU* &.

Multiplying relations~3.66! and ~3.67! by B2 from the left and regrouping terms, we obtain th
following linear system of the matrix variablesQ15B2V2 andQ25B2W2 :

~ I 1 i $D1~z!B2^k1~z!&I %!Q12 i ~ f ~z!B2D2~z!I !Q25P12n22B2C1 ,
~3.68!

i ~D1(2)~z!B2~^p1~z!&2 izD12 im1,n!I !Q11~ I 2 i $D1~z!B2^k2~z!&I %!Q25P22n22B2C2 ,

where

P15^d2(2)
o

~ z̄!g~z!&B22 i ^d2(2)
o

~ z̄!d1
o~z!B3UG~z!U* &1 i ^d2(2)

o
~ z̄!k1

o~z!B2UG~z!U* &

1 i ^d2(2)
o

~ z̄!g°~z!B3UAG~z!U* &2 i ^d2(2)
o

~ z̄!d2
o~z!B2UAG~z!U* &,

P25^d2(2)
o

~ z̄!d1~z!&B22 i ^d2(2)
o

~ z̄!d1(2)
o

~z!B3UG~z!U* &1 i ^d2(2)
o

~ z̄!p1
o~z!B2UG~z!U* &

1 i ^d2(2)
o

~ z̄!d1
o~z!B2UG~z!U* &2z^d2(2)

o
~ z̄!d1

o~z!B3UAG~z!U* &

2 i ^d2(2)
o

~ z̄!k2
o~z!B2UAG~z!U* &.

The ‘‘determinant’’D̂ of the system~3.68! is equal to

D̂52G1~z!~B21a~z!B1c~z!I !52G1~z!~B2b1~z!!~B2b2~z!!,

where

a~z!5G1
21~z!~D1~z!~^k1~z!&1^k2~z!&!2D1(2)~z!D2~z!2 f ~z!~^p1~z!&2 i ~zD1~z!1m1,n!!,
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c~z!52G1
21~z!~12 i ~^k1~z!&2^k2~z!&!1^k1~z!&^k2~z!&2D2~z!~^p1~z!&2 i ~zD1~z!1m1,n!!!,

b6~z!5~2a~z!6Aa2~z!24c~z!!/2.

Besides, using the resolvent identity~3.8!, Proposition 1.1 and the trace property, we obtain

z^kr~z!&52n21TrH1n21TrH21 iz21^n21TrHrH32r@H1 ,H2#G~z!&, r 51,2,

z^p1~z!&52n21TrH1
2n21TrH21 iz21^n21TrH1

2H2@H1 ,H2#G~z!&.

These relations imply that forz belonging to the domainE(y0) andy0 sufficiently large uniformly
in n we have

kr~z!52n21TrH1n21TrH21O~ uIm zu21!, r 51,2,

p1~z!52n21TrH1
2n21TrH21O~ uIm zu21!.

As result of the relations above and~3.48!–~3.50!, we obtain that forz→`, zPE(y0),

a~z!5O~1!, c~z!52z2~~m1,n
(2)2m1,n

2 !211O~ uIm zu21!!

and hence

b656z~~m1,n
(2)2m1,n

2 !21/21O~ uIm zu21!!.

Thus, the matrixD̂ is unifomly in n invertible for alln>n8 and we have fory0 sufficiently large
andzPE(y0)

iD̂21i<C.

Solving the system~3.68!, we obtain

Q15D̂21~~ I 2 i $D1~z!B2^k2~z!&I %!~P12n22B2C1!2 i ~ f ~z!B2D2~z!!~P22n22B2C2!!.

Applying to this relation the operationn21Tr, we obtain on the lhs the variancev5 . Using
Proposition 1.1, we obtain the following bound for the rhs:

(
j 51,j Þ5

8

a i j ~y0!v5
1/2v j

1/21n22b5~y0!,

where

a51~y0![CS m6
1/312

m6
2/3

y0
D , a52~y0![2C

m6
1/6

y0
S m6

1/312m6
2/31

3m6
2/314m614y0

21m6
2/3

y0
D ,

a53~y0![a57~y0![2C
m6

2/3

y0
2 , a34~y0![2

m6
1/6

y0
, a56~y0![

C

y0
S m6

1/312
m6

2/3

y0
D , ~3.69!

a58~y0![2C
m6

1/2

y0
2 , b5~y0![2C

m6
2/3

y0
2 S 11

4m6
1/3

y0
D S 112

m6
1/31m6

1/6

y0
D .

Repeating the procedure analogous to that used above for the matricesV35^k2
o( z̄)UGU* &,

W35^k2
o( z̄)UAGU* & andV45^p2

o( z̄)UGU* &, W45^p2
o( z̄)UAGU* &, we obtain the sevens an

nines inequalities of the system~3.60!, in which
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a72~y0!5O~1!, a92~y0!5O~1!, a7r~y0!5O~y0
21!,

~3.70!
a9q~y0!5O~y0

21!, r 51,3,. . . ,6,8, q51,3,. . . ,7, bs~y0!5O~y0
22!, s57,9.

Using the symmetry of ensemble, we obtain the remaining even inequalities of the system~3.60!.
Let us introduce new variables

u15y0
1/2v1

1/2, u11r5y0
1/4v11r

1/2 , u31r5v31r
1/2 , u51r5v51r

1/2 , u71r5v71r
1/2 , r 51,2.

~3.71!

Then we obtain from~3.60!, ~3.61!, ~3.65!, ~3.69! and ~3.70! the following system,

ui
2< (

j 51,j Þ i

9

ai j uiuj1
g i

n2 , i 51, . . . ,9. ~3.72!

in which the coefficients$ai j , iÞ j % have the formai j 5y0
21/4bi j , wherebi j are bounded iny0

and in n as y0→` and n→`. By choosingy0 sufficiently big ~and then fixing it!, we can
guarantee that 0,ai j ,

1
10, iÞ j . Thus, summing the nine relations~3.72!, we can write the result

in the form (âu,u)<g/n2, where g5g11¯1g9 and (â) i j 5d i j 2(12d i j )/10, i , j 51, . . . ,9.
Since the minimum eigenvalue of matrixâ is 1

5, we obtain from~3.71! bounds~3.59!. j

Proof of Theorem 2.2:The proof of Theorem 2.2 follows the proof of Theorem 2.1 line
line. Indeed, using Proposition 3.1 with the matrix elementF(M )5(G(z))ab5((H1M1MH1

2z)21)ab asF(M ), we obtain@cf. ~3.9!#

^~GH1@X,H2#G!ab&1^~G@X,H2#H1G!ab&50. ~3.73!

Choosing in this relation the matrixX with only (a,b)-th nonzero entries and applying to th
resultn22(a,b51

n , we obtain

^gn~z!~k1,n~z!2k2,n~z!!&50, ~3.74!

whereg(z) andkr(z), r 51,2, are defined in~3.12!. Besides, using the resolvent identity~3.1! for
the pair (H̃,0),

zG~z!1I 5H1H2G~z!1H2H1G~z!, ~3.75!

and centralized quantities~3.13!, we obtain from~3.74! @cf. ~3.18!#

^k1,n~z!&5^k2,n~z!&2
r n~z!

f n~z!
,

~3.76!

11z fn~z!52^k2,n~z!&2
r n~z!

f n~z!
,

where f n(z) is defined in~3.14! and

r n~z!5^gn
o~z!~k1,n~z!2k2,n~z!!&. ~3.77!

On the other hand, choosing in~3.73! the matrixX with only (a,c)-th nonzero entries, applying
n21(a51

n and using relations~3.75!, ~3.13! and~3.76! we obtain the following matrix relation@cf.
~3.19!#:

S 12z fn~z!

2
I 1D2,n~z!AD ^G~z!&2~D1,n~z!I 2 f n~z!A!^H2G~z!&5 f n~z!I 2R1,n~z!,

~3.78!
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whereR1,n(z) is defined in~3.20!. Multiplying the relation~3.78! by A from the left and applying
the operationn21Tr we obtain

f n~z!^p1,n~z!&1D1,n~z!S 12z fn~z!

2
2^k1,n~z!& D1D2,n~z!D1(2),n~z!

5 f n~z!m1,n2n21TrH1R1,n~z!, ~3.79!

wherep1,n(z) andm1,n are defined in~3.22!. Using relation~3.76! we obtain from~3.79!

^p1,n~z!&5
D1(2),n~z!D2,n~z!

f n~z!
1zD1,n~z!1m1,n2 r̂ n~z!, ~3.80!

wherer̂ n(z) is defined in~3.24!. Besides, applying to the matrixY1(z) ~3.25! the Proposition 3.1
and performing a procedure analogous to that used above we obtain the following matrix re
@cf. ~3.27!#:

^Y1~z!&2^k1,n~z!Y1~z!&2^d2,n~z!H2H1G~z!&1^~$p2,n~z!I 1d2(2),n~z!A%2m2,nI !G~z!&50,
~3.81!

wherep2,n(z) andm2,n are defined in~3.28!. Applying to ~3.81! n21Tr, introducing the centralized
quantities~3.29! and using relation~3.13! we obtain@cf. ~3.30!#

^p2,n~z!&5
D2(2),n~z!D1,n~z!

f n~z!
1zD2,n~z!1m2,n1 r̃ n~z!,

where r̃ n(z) is defined in~3.31!. On the other hand, using relations~3.75!, ~3.13!, ~3.76! and
~3.29!, we obtain from~3.81! @cf. ~3.32!#

2D2(2),n~z!S D1,n~z!

f n~z!
I 2AD ^G~z!&1S 12z fn~z!

2
I 1D2,n~z!AD ^Y1~z!&

5D2,n~z!I 2R2,n~z!, ~3.82!

whereR2,n(z) is defined in~3.33!. Multiplying the relation~3.82! by A from the left and then
applying the operationn21Tr, we obtain@cf. ~3.34!#

2D2(2),n~z!S D1,n
2 ~z!

f n~z!
2D1(2),n~z! D 1

12z fn~z!

2
^k1,n~z!&11D2,n~z!^p1,n~z!&

5D2,n~z!m1,n2n21TrH1R2,n~z!. ~3.83!

Using relations~3.76! and ~3.80! we obtain from~3.83! @cf. ~3.35!#

f n
2~z!S 12z2f n

2~z!

4
1zD1,n~z!D2,n~z! D

52~V1,n
2 ~z!2D1,n

2 ~z!!~V2,n
2 ~z!2D2,n

2 ~z!!11D1,n
2 ~z!D2,n

2 ~z!2 r̂ 2,n~z!, ~3.84!

where

V r ,n~z!5AD r (2),n~z! f n~z!, r 51,2 ~3.85!

and r̂ 2,n(z) is defined in~3.37!.
Mimicking the proof of Theorem 3.1 one can obtain that there exists positive constay0

independent ofn and such that the variances of random variablesgn(z), d r ,n(z), d r (2),n(z),
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kr ,n(z), pr ,n(z), r 51,2, admit bounds~3.38! for zPE(y0), i.e., they are of the orderO(n22).
Hence, the termsr n(z), r̂ n(z), r̃ n(z) andr̂ 2,n(z) in the previous formulas are of the orderO(n21).

Thus the relation~3.84! implies the third equation of the system~2.5!.
Besides, we have obtained@~3.78! and ~3.82!# the following linear system with matrix coef

ficients of matrix variableŝG(z)& and ^Y1(z)& @cf. ~3.45!#

~an~z!I 1D2,n~z!A!^G~z!&2 f n~z!P^Y1~z!&5 f n~z!I 2R1,n ,
~3.86!

2D2(2),n~z!P^G~z!&1~an~z!I 1D2,n~z!A!^Y1~z!&5D2,n~z!I 2R2,n ,

wherean(z) and P are defined in~3.46!. The ‘‘determinant’’D̃ of this system is equal to@cf.
~3.47!#

D̃5~an~z!1D2,n~z!A!2I 2V2,n
2 ~z!P2

52~V2,n
2 ~z!2D2,n

2 ~z!!S A2
V2,n~z!D1,n~z! f n

21~z!2an~z!

V2,n~z!1D2,n~z!
I D

3S A2
V2,n~z!D1,n~z! f n

21~z!1an~z!

V2,n~z!2D2,n~z!
I D . ~3.87!

In addition, we have forz belonging to the domainE(y0) andy0 sufficiently large uniformly inn
the followings analogs of the asymptotics~3.48!–~3.50!:

z fn~z!5211O~ uIm zu21!, an~z!511O~ uIm zu21!,

zD r ,n~z!52n21TrHr1O~ uIm zu21!, r 51,2,

zV r ,n~z!5An21TrHr
21O~ uIm zu21!, r 51,2.

Thus, the matrixD is uniformly in n invertible forn>n8 andzPE(y0) and its inverse is equal to
@cf. ~3.52!#

D̃2152~V2,n
2 ~z!2D2,n

2 ~z!!22G1S V2,n~z!D1,n~z! f n
21~z!2an~z!

V2,n~z!1D2,n~z!
D

3G1S V2,n~z!D1,n~z! f n
21~z!1an~z!

V2,n~z!2D2,n~z!
D . ~3.88!

Hence the system~3.45! has the solution

^G~z!&5 f n~z!~an~z!1D2,n~z!A!D211 f n~z!D2,n~z!PD211R̃1,n ,
~3.89!

^Y1~z!&5D2,n~z!~an~z!1D2,n~z!A!D211V2,n
2 ~z!PD211R̃2,n ,

where

R̃1,n52D21~P~D2,n~z!A1an~z!I !R1,n1 f n~z!PR2,n!,
~3.90!

R̃2,n52D21~P~D2,n~z!A1an~z!I !R2,n2D2(2),n~z!PR1,n!.

Applying to the relations~3.89! the operationn21Tr and using relation~3.88! and the resolvent
identity, we obtain
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V2,n~z!1D2,n~z!5 f 1,nS V2,n~z!D1,n~z! f n
21~z!2an~z!

V2,n~z!1D2,n~z!
D 1r 1,n~z!,

~3.91!

2V2,n~z!1D2,n~z!5 f 1,nS V2,n~z!D1,n~z! f n
21~z!1an~z!

V2,n~z!2D2,n~z!
D 1r 2,n~z!,

where

r 1,n~z!5
V2,n~z!

f n~z!
n21TrR̃1,n1n21TrR̃2,n ,

~3.92!

r 2,n~z!52
V2,n~z!

f n~z!
n21TrR̃1,n1n21TrR̃2,n .

The arguments analogous to those used above imply that forzPE(y0) the termsr 1,n(z) and
r 2,n(z) are of the orderO(n21). Thus, the relations~3.91! lead to the last pair of equations of th
system~2.5!. Using the arguments above in which the roles ofH1 andH2 are interchanged, we
obtain the first pair of equations of the system~2.5!.

Thus, to complete the proof we have to use the compactness of the uniformly inn bounded
sequences of analytics functions$ f n(z)%, $D r ,n(z)%, $V r ,n(z)%, r 51,2, and one-to-one correspon
dence between probability measures and their Stieljes transforms. j

IV. EXAMPLES

~1! Consider the case whenN25(d211d1)/2 andN1 is arbitrary.
~a! In the case of measureN1 having all moments finite this example for the commutator w

calculated in Ref. 3. In our case the system~2.2! reduces to

f ~z!5 f 1S z2
11z f~z!22D1~z!

2 f ~z! D ,

~4.1!

f ~z!5 f 21S z2
11z f~z!12D1~z!

2 f ~z! D ,

where

f 21~z!5E
2`

1` N1~dl!

2l2z
.

Setting in~4.1!

D̂1~z!511z f~z!12D1~z!, D̂21~z!511z f~z!22D1~z!,

we rewrite the system~4.1! in the form

f ~z!5 f 1S z2
D̂21~z!

f ~z!
D ,

f ~z!5 f 21S z2
D̂1~z!

f ~z!
D ,

f ~z!5
12D̂1~z!2D̂21~z!

2z
.
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Thus, according to Ref. 4, the limiting measureN of ensemble~1.1! in this case will be equal to
the limiting NCM of the ensembleAn2Un* AnUn .

~b! On other hand, in this case the system~2.5! will have the form

f ~z!1D2~z!5 f 1S z

2
2

1

2~ f ~z!1D2~z!! D ,

~4.2!

f ~z!2D2~z!5 f 21S z

2
2

1

2~ f ~z!2D2~z!! D .

Setting

f 1~z!5 f ~z!1D2~z!, f 2~z!5 f ~z!2D2~z!,

we split the system~4.2! into two equations,

f 1~z!5 f 1S z

2
2

1

2 f 1~z! D ,

f 2~z!5 f 21S z

2
2

1

2 f 2~z! D .

Thus, according to Ref. 4, the limiting measureÑ of ensemble~1.2! in this case will be equal to
Ñ5(N11N2)/2, where the measuresN6 are the limiting NCMs of the ensembles6(An

1Un* AnUn).
~2! Consider the case whenN15ada1bdb , a,b, a1b51, a,b.0 andN2 is semi-circular

distribution

N2~dl!5
A4w22l2

2pw2 dl.

~a! In the special case this example was calculated also in Ref. 3. In our case the syste~2.2!
reduces to the equation

2w2l 2z2f 2~z!1z3f ~z!1z222w2l 2~a2b!250,

wherel 5(b2a)/2. Solving this equation we obtain

N~dl!5ua2bud01
Al2~8w2l 22l2!216w4l 4~a2b!2

4pw2l 2ulu
x [ 2l1 ,2l2] ø[l2 ,l1]~l!dl,

wherel652wlA16A12(a2b)2. In the casea5b, N is semi-circular.
~b! Let us setb52a5 l . In this case the system~2.5! reduces to the equation

~2w2l 2f 2~z!1z f~z!11!~4w2l 2f ~z!1z!212w2l 2~a2b!250.

Solving this equation we obtain

Ñ~dl!5HA8w2l 22l21A~8w2l 22l2!22~a2b!2~8w2l 2!2

4&pw2l 2 x [ 2l2 ,l2]~l!

1
A8w2l 2~11ua2bu!2l2

8pw2l 2 x [ 2l1 ,2l2] ø[l2 ,l1]~l!J dl,
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wherel652wlA2(16ua2bu). In the casea5b, N is semi-circular with parameter 2w2l 2; in
the caseua2bu51, N is semi-circular with parameter 4w2l 2.
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APPENDIX

Let us denote for anyq,r PN, a5(a1 , . . . ,ap), b5(b1 , . . . ,bp), p5(p1 , . . . ,pr),
a i ,b i ,pjPN,

Pq$a,b%[$a1 ,b1%¯$aq ,bq%5An
a1Un* Bn

b1Un¯An
aqUn* Bn

bqUn ,

Mr
(p)~a,b![Mr

(p)~Pp1

(1)$a (1),b (1)%, . . . ,Ppr

(r )$a (r ),b (r )%!

5^n21TrPp1

(1)$a (1),b (1)%¯n21TrPpr

(r )$a (r ),b (r )%&,

whereAn andBn are nonrandomn3n Hermitian matrices,Un is a unitary random random matri
uniformly distributed over the unitary groupU(n) with respect to the Haar measure and^•&
denotes the average over unitary group.

Proposition A.1: For any n, r , pj , a i
( j ) , b i

( j )PN we have the following identity:

Mr
(p)~a,b!5dp1,1m1

(a1
(1))

m
2
(b1

(1))
Mr 21

(p8)~a8,b8!1~12dp1,1!

3S m
1
(a1

(1))
Mr

(p121,p8)
~$a2

(1) ,b2
(1)%¯$ap1

(1) ,bp1

(1)1b1
(1)%,Qr 21

(p8)~a8,b8!!

1m
2

(bp1

(1))
Mr

(p121,p8)
~$a1

(1)1ap1

(1) ,b1
(1)%¯$ap121

(1) ,bp121
(1) %,Qr 21

(p8)~a8,b8!!

1 (
l 52

p121

Mr 11
( l 21,p12 l ,p8)

~$a1
(1)1a l

(1) ,b1
(1)%¯$a l 21

(1) ,b l 21
(1) %, ~A1!

$a l 11
(1) ,b l 11

(1) %¯$ap1

(1) ,bp1

(1)1b l
(1)%,Qr 21

(p8)~a8,b8!)

2 (
m51

p121

Mr 11
(m,p12m,p8)

~Pm
(1)$a (1)8,b (1)8%,Pp12m

(1) $a (1)9,b (1)9%,Qr 21
(p8)~a8,b8!!)

1
12d r ,1

n2 (
l 52

r

(
m51

pl

~Mr 21
( p̂,p11pl21,p̃)

~Ql 22
( p̂) ~ â,b̂ !,$a1

( l ) ,b1
( l )%¯$am

( l )

1a1
(1) ,b1

(1)%¯$ap1

(1) ,bp1

(1)1bm
( l )%¯$apl

( l ) ,bpl

( l )%,Qr 2 l
( p̃) ~ ã,b̃ !!

2Mr 21
( p̂,p11pl ,p̃)

~Ql 22
( p̂) ~ â,b̂ !,Pm

( l )$a ( l )8,b ( l )8%

3Pp1

(1)$a (1),b (1)%Ppl2m
( l ) $a ( l )9,b ( l )9%,Qr 2 l

( p̃) ~ ã,b̃ !!!,

where

m1
(t)5n21TrAn

t , m2
(t)5n21TrBn

t ,

p85~p2 , . . . ,pr !, Qr 21
(p8)~a8,b8!5~Pp2

(2)$a (2),b (2)%, . . . ,Ppr

(r )$a (r ),b (r )%!,
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Mr 21
(p8)~a8,b8!5Mr 21

(p8)~Qr 21
(p8)~a8,b8!!,

Pm
(t)$a (t)8,b (t)8%5$a1

(t) ,b1
(t)%¯$am

(t) ,bm
(t)%, Ppt2m

(t) $a (t)9,b (t)9%5$am11
(t) ,bm11

(t) %¯$ap1

(t) ,bpt

(t)%,

p̂5~p2 , . . . ,pl 21!, p̃5~pl 11 , . . . ,pr !, Ql 22
( p̂) 5~P2

(2)$a (2),b (2)%, . . . ,Ppl 21

( l 21)$a ( l 21),b ( l 21)%!,

Ql 22
( p̃) 5~Ppl 11

( l 11)$a ( l 11),b ( l 11)%, . . . ,Ppr

(r )$a (r ),b (r )%!.

Proof: Consider the function

F~Un* Bn
b1Un!5^~Pp1

(1)$a (1),b (1)%!a,b n21TrPp1

(2)$a (2),b (2)%¯n21TrPpr

(r )$a (r ),b (r )%&.

Using for this function Proposition 3.1, choosing the matrixX with only (a,b)-th nonzero entries
and then applyingn22(a,b51

n we obtain the relation~A1!. j

Corollary: It follows from relation (A1) that any mixed moment Mr
(p)(a,b) can be represented

as follows:

Mr
(p)~a,b!5 (

ai>0,a11•••1auau5uau
(

bi>0,b11•••1bubu5ubu
Cn~r ;a,b!)

i 51

uau

)
j 51

ubu

m1
(ai )m2

(bj ) ,

where a5(a1 , . . . ,auau) and b5(b1 , . . . ,bubu) are multi-indexes,

uau5(
i 51

r

(
j 51

pi

a j
( i ) , ubu5(

i 51

r

(
j 51

pi

b j
( i ) ,

and the coefficients Cn(r ;a,b) are uniformly in n bounded as n→`.
Remark A.1:In this article we deal with unitary and Hermitian matrices, i.e., we assume

the matricesUn andVn in ~1.1! are unitary andAn andBn in ~1.2! are Hermitian. It is natural also
to consider the case of orthogonalUn andWn and real symmetricAn andBn . This case can be
handled by using the analog of formula~3.2! of the orthogonal group O(n). Indeed, it is easy to
see that this analog has the form

E
O(n)

F8~OTMO!•@X,OTMO#dO50,

whereOT is the transposed toO andX is a real antisymmetric matrix. By using this formula, w
obtain, e.g., instead of~3.10!,

2^~G~z!H1!aa~H2G~z!!bb&1^~G~z!H1!ab~H2G~z!!ab&1^~G~z!H2!ab~H1G~z!!ab&

5^~G~z!H1H2!aaGbb~z!&1^Gaa~z!~H2H1G~z!!bb&1^~G~z!H1H2!abGab~z!&

1^Gab~z!~H2H1G~z!!ab&.

The last two terms on both sides of this formula give four additional terms in~3.16!:

^2n22Tr~H1G!TH2G&2^n22Tr~H2G!TH1G&1^n22Tr~H1H2G!TG&1^GTH2H1G&.

These terms, however, produce the asymptotically vanishing contribution to the remainder~3.16!,
because we have
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u^2n22Tr~H1G!TH2G&2^n22Tr~H2G!TH1G&1^n22Tr~H1H2G!TG&1^GTH2H1G&u

<
4

ny0
2 m6

1/3.

Similar, and also negligible asn→`, terms appear in formulas~3.20!, ~3.24!, ~3.56! and~3.92! in
the proofs of Theorems 2.2 and 3.1. As a result, we obtain in this case the same systems~2.2! and
~2.5!, defining the Stieltjes transforms of the limiting eigenvalue counting measures of the an
of ensembles~1.1! and ~1.2! with the real symmetricAn andBn and orthogonal Haar-distribute
Un andVn .
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Erratum: ‘‘ N coupled nonlinear Schro ¨ dinger equations:
Special set and applications to NÄ3’’
†J. Math. Phys. 43, 6325 „2002…‡

F. T. Hioe
Department of Physics, St. John Fisher College, Rochester, New York 14618

@DOI: 10.1063/1.1560857#

1. On page 6326, 3rd line below Eq.~6!, fm(t2z/v)exp$i @t2z/(2v)#/(2v)% should read
fm(t2z/v)exp$6ibm@t2z/(2v)#/(2v)%.
2. On page 6329, 3rd line should read
Cj5$62@(N2 j 11)!#@c122( j 21)2a2#/(N1 j 21)!%1/2, for j .1.
3. On page 6333, 7th line from bottom should read
C15(D1 /D)1/2, C25(D2 /D16b2k4a2)1/2, C35(D3 /D16b3k2a2)1/2.
4. On page 6334,C1 on the 2nd line should be replaced byC1

2.
5. On page 6335:

~i! For N52 interaction type~11!, the following solution should be added after th
solutions (2, 3)2 and (1, 2)1 :

(2, 2)1 C1
21C2

252a2, c15c252a2.
~ii ! For N53, interaction type~222! solution (1, 2, 3)2 , the inequality forc1 should read

c1.8a2.
6. On page 6336, for interaction type~212! solution (1, 1, 2)1 , the first equality should read

2C1
21C2

252c1 .
7. On page 6337, for interaction type~112!:

~i! (2, 2, 3)2 should be replaced by (2, 3, 3)2 .
~ii ! The last equality for solution (1, 2, 2)1 should readc25c3 .
19090022-2488/2003/44(4)/1909/1/$20.00 © 2003 American Institute of Physics
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The discretized harmonic oscillator: Mathieu functions
and a new class of generalized Hermite polynomials

M. Aunolaa)

Department of Physics, University of Jyva¨skylä,
P.O. Box 35 (YFL), FIN-40014 University of Jyva¨skylä, Finland

~Received 5 August 2002; accepted 21 January 2003!

We present a general, asymptotical solution for the discretized harmonic oscillator.
The corresponding Schro¨dinger equation is canonically conjugate to the Mathieu
differential equation, the Schro¨dinger equation of the quantum pendulum. Thus, in
addition to giving an explicit solution for the Hamiltonian of an isolated Josephon
junction or a superconducting single-electron transistor~SSET!, we obtain an as-
ymptotical representation of Mathieu functions. We solve the discretized harmonic
oscillator by transforming the infinite-dimensional matrix-eigenvalue problem into
an infinite set of algebraic equations which are later shown to be satisfied by the
obtained solution. The proposed ansatz defines a new class of generalized Hermite
polynomials which are explicit functions of the coupling parameter and tend to
ordinary Hermite polynomials in the limit of vanishing coupling constant. The
polynomials become orthogonal as parts of the eigenvectors of a Hermitian matrix
and, consequently, the exponential part of the solution can not be excluded. We
have conjectured the general structure of the solution, both with respect to the
quantum number and the order of the expansion. An explicit proof is given for the
three leading orders of the asymptotical solution and we sketch a proof for the
asymptotical convergence of eigenvectors with respect to norm. From a more prac-
tical point of view, we can estimate the required effort for improving the known
solution and the accuracy of the eigenvectors. The applied method can be general-
ized in order to accommodate several variables. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1561156#

I. INTRODUCTION

This paper is closely related to one of the famous eigenvalue problems, namely tha
one-dimensional harmonic oscillator. It is common knowledge that if the eigenvectors are re
to have continuous second-order derivatives, each eigenvector is expressible as a produ
Hermite polynomial and an exponential term. The corresponding eigenvalues are equidi
spaced and bounded from below. Another way to state the problem is given by the annihilatio
creation operators which directly diagonalize the Hamiltonian. In comparison, the quartic a
monic oscillator was solved by Bender and Wu in Ref. 1. A method for finding eigenvalue
anharmonic oscillators was created by Meißner and Steinborn in Ref. 2. A general meth
polynomial potentials was introduced recently by Meurice.3,4

Instead of continuous functions, we consider functions defined only on a disc
equidistantly-spaced and countable set onR. The obvious advantage of this approach is tha
transforms the problem into an eigenvalue problem of an infinite-dimensional, tri-diagonal m
The corresponding Schro¨dinger equation is canonically conjugate to the Mathieu differen
equation.5 Numerical solutions for noninteger orders are naturally obtained by diagonalizin
very same matrix, see Ref. 6 and the references therein for applications.

In physics, the discretized harmonic oscillator is manifestly realized by the Hamiltonian

a!Electronic mail: matias.aunola@phys.jyu.fi
19130022-2488/2003/44(5)/1913/24/$20.00 © 2003 American Institute of Physics
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isolated Josephson junction7,8 and the Hamiltonian of the, slightly misleadingly named, superc
ducting single-electron transistor~SSET!.8,9 Presently, excited states are seldom considered
cause of the radical approximations under which the Hamiltonian is solved. Even if the e
states are numerically obtained, it is not immediately evident, what happens when the coup
changed. In this paper we give an explicit, asymptotical solution for the discretized harm
oscillator which corresponds to strong Josephson coupling in case of the SSET. The same
tonian also describes the so-called quantum pendulum, or a particle in a periodic potentia10,11

The corresponding asymptotical eigenvalues have been available for almost 50 years
the work of Meixner and Scha¨fke on Mathieu functions in Ref. 12. First, by calculating th
determinant of the matrix representation accurately enough, we continue this expansion by
orders in the coupling parameter. Then we propose an ansatz that transforms the matrix e
into an infinite set of algebraic equations and proceed by recursively solving these equation
general properties of the coefficients in the ansatz can be obtained by studying any occ
regularities and reinserting these into the solution. Thus, in addition to the eigenvalues, w
successfully conjuctured the general form of the asymptotical eigenvectors. In each order
expansion, the expressions are quoted in terms of an arbitrary quantum number,n, whenever
possible. The leading terms have been determined and rephrased in terms of an arbitrary om,
too. We find that the eigenvectors are asymptotical solutions of certain differential equa
which enables us to obtain further orders in their expansions.

The only real-valued parameter in the solution is the coupling constant, because all
cients, both in the eigenvalues and in the ansatz are rational numbers. As a practical appl
the rate of convergence of the solution towards numerically obtained, ‘‘exact,’’ solution, ca
reliably estimated. In the asymptotical limit, the dependence in terms ofn andm assumes the form
of a simple monomial, at least down to the limits of numerical precision.

The solutions of orderm<5 are very simple to program and directly apply as numer
solutions of the discretized harmonic oscillator. For sufficiently small values of the cou
constant the eigenvectors are practically exact and thus they facilitate studies which requ
structure of the excited states. We have proven, with the help of recursion relations of He
polynomials, that the first three leading orders of the obtained solution are correct. The calcu
up to the seventh order should be performed in the future. We also outline an explicit
concerning the normwise convergence of the eigenvectors. The asymptotical nature of th
tions must be stressed. A very thorough introduction on the subject has been given been g
Boyd in Ref. 13.

It is justified to ask, is the proposed solution completely new. The answer is, naturally, ye
no. Both discretized and discrete harmonic oscillators have been widely studied before. Both
are related to orthogonal polynomials, so the work of Kravchuk14 and Hahn15 must be mentioned
The discrete harmonic oscillator, where the position coordinate is restricted to a finite num
values, is explicitly solved by Kravchuk polynomials as shown by Lorente in Ref. 16. Se
discretizations of the harmonic oscillator have been previously solved, each giving rise
specific class of generalized Hermite polynomials. Discretization by an exponential la
$2qn,qnunPZ%, where 0,q,1, defines the so-calledq-deformed harmonic oscillator and gen
eralizedq-Hermite polynomials which are rigorously discussed by Berg and Ruffing in Ref
For other applications of theq-deformed harmonic oscillators, see, e.g., Refs. 18 and 19, w
other discretizations are reviewed, too. Borzov, in Ref. 20, considers generalized derivatio
erators as generators of Hermite polynomials and states that the generalized Hermite polyn
either satisfy a second-order differential operator or there is no differential equation of finite
for these polynomials. Many other types of generalizations are also known, see e.g., the m
mensional Hermite polynomials of Ro¨sler,21 Hermite polynomials orthogonal with respect to th
measureujug exp(2j2)dj, whereg.21,22,23 and parabosonic Hermite polynomials.24 In the fu-
ture, it must be established whether the presented class of Hermite polynomials is related
q-Hermite polynomials, if it results from some other discretization or is it an explicit examp
the second group of Borzov’s categorization. Complementary results concerning the introd
of distant boundaries for the continuous problem are also known.25,26Finally, it should be empha-
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sized that instead of deforming the harmonic oscillator, we solve its common-sense discreti
used especially in numerical calculations. The asymptotical effects of the discretization a
plicitly calculated.

We also briefly consider the abruptly changing nature of the solutions when the cou
constant vanishes. This behavior is evident for both versions of the harmonic oscillator a
Mathieu differential equation. The asymptotical nature of the solutions and the eigenval
caused by this divergence. For the Mathieu equation this has been well documented, se
Refs. 5, 12, and 27. A more physically motivated approach is given by Bender, Pelste
Weissbach in Ref. 28, where, e.g., the instanton equation and the Blasius equation are ex
The present methods are closely related to these, although we can not carry the calculatio
in the perturbative expansion. This is explained by the necessity of obtaining the expansion
eigenvalues which makes the present problem technically more demanding.

The present method can be generalized in a fairly obvious manner. Other differential
tions with analytical solutions can be discretized in the same manner if the correct expansio
found for all parts of the solution. An easier generalization is related to multi-dimensional d
ence equations with harmonic~quadratic! potential terms. The existing solution29 for Hamiltonians
of one-dimensional arrays of Josephson junctions become more transparent with the h
present formalism.

The paper is organized as follows. In Sec. II we define the discretized harmonic oscillato
connect it to the Mathieu differential equation as well as the continuous case. The solution
and the resulting set of equations are reviewed. In Sec. III we quote our conjectures for the g
form of the coefficients in the ansatz. We also present the explicit values of the leading c
cients. In Sec. IV we study solving the set of equations which yields the asymptotical eige
tors. Efficient truncations of the set of equations are explained. The effort for improving
obtained results with the present method is estimated. In Sec. V we prove that the solution s
the difference equations, at least for the three leading orders. The rate of convergence a
induced asymptotical orthonormality are also reviewed. Finally, in Sec. VI the conclusion
drawn and an outlook of future possibilities is given.

A final note for those that are only interested in applying these results in numerical a
theoretical analysis. Please review the beginning of Sec. II in order to find the correct para
for the discretized harmonic or Mathieu equation. Then proceed to Sec. III and use the
expressions as approximate solutions in Eq.~30!.

II. THE DISCRETIZED HARMONIC OSCILLATOR

The eigenvalue problem corresponding to the harmonic oscillator is the differential equ
for c(x),

2
1

2

d2c

dx2 1
v2x2

2
c5lc. ~1!

The eigenvectors corresponding to the well-known eigenvalues,

ln5v~n11/2!, ~2!

wheren50,1,2,..., aregiven by

cn~x!5AnHn~j!e2j2/2. ~3!

Herej5Av x, An is a normalization factor, andHn is the Hermite polynomial of ordern. The
Hermite polynomials are solutions of the Hermite differential equation

y922xy812ny50, ~4!
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wheren50,1,2,... . For our convenience, we write the polynomials, given by Rodrigues’ form
as

Hn~j!5~21!n exp~j2!
dn

djn exp~2j2!5 (
k50

k8

hk
(n)jn12(k2k8), ~5!

wherek8ª bn/2c, i.e., k85n/2 if n is even andk85(n21)/2 if n is odd. The quantityk8 proves
to be extremely useful in further analysis. The Hermite polynomials satisfy the recursion re

Hn11~j!52jHn~j!22nHn21~j!. ~6!

Many of the generalizations of the Hermite polynomials boil down to a generalization of
recursion relation.16,17,19,24

The discretized version of Eq.~1! is obtained by restricting the values ofx onto an evenly
spaced, countable subset ofR. This corresponds e.g., to the discretization of charge in case
Josephson junction or a SSET. Only the constant nearest-neighbor coupling is retained
yields a tri-diagonal matrixH(x0) with nonzero matrix elements

H j j ~x0!5 1
2v

2~ j 2x0!2, H j 11,j~x0!5H j , j 11~x0!52 1
2. ~7!

Here the parameterx0P@2 1
2,

1
2# is the displacement of the origin with respect to the mat

element j 50. All eigenvalues ofH(x0) have been translated by21 in order to simplify the
diagonal matrix elements. The standard way to write the Hamiltonian of an inhomogeneous
is obtained from Eqs.~7.36! and~7.39! of Ref. 8 and rephrasing it in terms of the number opera
for Cooper pairs yields the matrix

H j j
(SSET)~N0!5EC~ j 2N0!2, H j 11,j

(SSET)~N0!5H j , j 11
(SSET)~x0!52 1

2EJ~u!, ~8!

whereN0 is the number of Cooper pairs which minimizes the charging energy,EC5(2e)2/2CS is
the unit of charging energy, andEJ(u) is the effective Josephson energy which depends on
total phaseu across the SSET. Consequently, we solve the Hamiltonian of SSET if we find
eigenenergies and eigenvector for the discretized harmonic oscillator withv5(2EC /EJ(u))1/2.

In the following, we are searching for eigenvectors with finite Euclidean norm, i.e.,

ici25 (
j 52`

`

uc j u2,`. ~9!

The existence and uniqueness of such solutions follows from the generalization of the Gers
eigenvalue theory by Shivakumar, Rudraiah, and Williams in Ref. 30. First the number of e
values ofH(x0) on a given interval can be shown to coincide with number of eigenvalues
finite-dimensional truncation of the matrix,H (N)(x0), if the dimensionN is sufficiently large. A
sufficient condition for this is that, in the ordered sequence of diagonal matrix element
difference between two consecutive values exceeds 43u21/2u52. Furthermore, they prove tha
for finite values ofn, the eigenvectorcn

(N) of H (N)(x0) tends to the corresponding eigenvector
H(x0) whenN→`.

We now establish the connection between theH(x0) and the Mathieu differential equation5

d2y

dv2 1~a22q cos~2v !!y50, ~10!

wherea is the eigenvalue, also known as the characteristic value when the solutiony has period
of p or 2p. We follow the derivation of Shirts in Ref. 6 and use Floquet’s theorem to obtain
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y5exp~ inv !P~v !5exp~ inv !(
k

c2k exp~2ikv !, ~11!

where the Fourier expansion ofP(v) has been inserted. This corresponds to the matrix equa
for the coefficientsc2k compactly written as

c2k222V2kc2k1c2k1250, ~12!

whereV2k5@a2(n12k)2#/q. This is identical to the discretized harmonic oscillator Hamilton
H(x0) with an eigenvaluel after identifications

n522x0 , k5 j , q54/v2, a58l/v2, ~13!

where elements are identified according to 2k↔ j . Thus all results obtained for the discretize
harmonic oscillator also hold for Mathieu functions~11! with parameters given in Eq.~13!. For
x050 andx056 1

2 the solutions ofH(x0) can be chosen to be even or odd with respect toj . This
corresponds to writingP(v) in terms of sines and cosines. Special attention must be given to
even solutions ofH(x050), where the resulting equations in the matrix representation read

2c1 /&5l2nc0 , ~14!

2c0 /&1v2c1/22c2/25l2nc1 , ~15!

2c j 21/21v2 j 2c j /22c j 11/25l2nc j , j >2. ~16!

The eigenvalues forx050 correspond to characteristic values$a2n(q),b2n(q)%, while the case
x056 1

2 is linked to$a2n11(q),b2n11(q)% as defined in Ref. 5.
The asymptotical expansion of the eigenvalues corresponding to the limitq→` or v→0 was

obtained by Meixner and Scha¨fke in Ref. 12. The derivation of the eigenvalues is based on
three-term recurrence relations for the Mathieu functions and the requirement that the norm
error in the eigenvalue equation vanishes faster than a specific power ofv. Meixner and Scha¨fke
quote the asymptotical characteristic values of the Mathieu equation up to and including the
v7 in Theorem 7 in Sec. 2.3. Some error estimates for asymptotical expansions of M
functions by Kurz are given in Ref. 27. Because the Mathieu equation is also the Schro¨dinger
equation of the quantum pendulum or a particle in a periodic potential, it has been s
independently in physics, too.10,11,31Especially, the same general expansion for eigenvalues
several further terms for the ground state energy were obtained by Stone and Reeve in R

In this limit, we can write the eigenvalues ofH(x0) as

ln; (
m50

`

ln
(m)vm, ~17!

wherev→0, and

ln
(m)5 (

k50

m8

ln,k
(m)n̂m12(k2m8) ~18!

with n̂ª2n11 andm85 bm/2c. This structure is identical to that of the Hermite polynomials~5!,
if one identifiesn̂ with j. By Ref. 12, the eigenvalues~20! do depend onx0 , but this dependence
decreases exponentially asv→0. The maximal difference is given by12

ln~x056 1
2!2ln~x050!;~21!nB0~12B1v!v2n23/2exp~28/v!, ~19!

whereB0 andB1 depend onn but not onv.
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This allows us to write the eigenvalues ofH(x0) as

ln;211
vn̂

2
2

v2d2

26 2
v3d3

211 2
v4d4

217 2
v5d5

223 2
v6d6

227 2
v7d7

233 2
v8d8

240 2
v9d9

247 2
v10d10

251

2
v11d11

257 2
v12d12

261 2
v13d13

269 2
v14d14

272 2
v15d15

279 2
v16d16

287 1O~v17!, ~20!

where the coefficientsdk read

d25n̂211,

d35n̂313n̂,

d455n̂4134n̂219,

d5533n̂51410n̂31405n̂,

d6563n̂611260n̂412943n̂21486,

d75527n̂7115617n̂5169001n̂3141607n̂,

d859387n̂81388780n̂612845898n̂414021884n̂21506979,

d95175045n̂919702612n̂71107798166n̂51288161796n̂31130610637n̂,

d105422565n̂10130315780n̂81480439190n̂612135766820n̂412249346285n̂21238353840,

d1154194753n̂111379291385n̂918186829426n̂7155529955498n̂51110241863469n̂3

141540033277n̂,

d12510645960n̂1211187264199n̂10133678377895n̂81327725946398n̂611081358909790n̂4

1940077055035n̂2188258370067,

d135440374207n̂13159495737574n̂1112155821044201n̂9128738150160500n̂7

1144821249264769n̂51236410740537606n̂3178243613727607n̂,

d145578183175n̂14193209584104n̂1214215683624295n̂10174269604367684n̂8

1537905750769429n̂611456767306013752n̂411105711550410653n̂2

194839535889532,

d15512308013927n̂1512337227706555n̂131129437253243675n̂1112928506455684095n̂9

129119560960614085n̂71120372998803922241n̂51170921920649402745n̂3

151316344023990085n̂,

d165530039126159n̂161117243302735480n̂1417823093961425652n̂12

1222043810819026856n̂1012924952921130025194n̂8117380315268028265224n̂6

140851669411526600980n̂4127983551470330365784n̂212235152520630714879.
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We obtain the terms for orders 8<m<11 by exploiting Eq.~18! when explicitly evaluating the
determinant of Eq.~7!. As a first step, settingx050 halves the dimension of the tri-diagon
matrix. Next, by translating one of the eigenvalues close to zero by substracting the k
expansion of this eigenvalue, the determinant becomes an essentially linear function of the c
translated eigenvalue. The next unknown term is inserted as a parameter and the determ
calculated for several values ofv, preferably in the form$22kv0%k50

3 – 5. This choice lets us separat
the leading correction and the subsequent corrections. In order to obtain the termsd2k andd2k11 ,
we must correctly determine all eigenvaluesln whenn<k. Sufficient accuracy is guaranteed b
using the high-precision numerics ofMATHEMATICA software. The method for obtaining the orde
m.11 requires explicit knowledge on the properties of the eigenvectors and the discuss
postponed until the end of Sec. III.

The asymptotical nature of the expansion means that for each value ofv andn, there exists
and optimal orderm which minimizes the error in the eigenvalue, i.e., the function

Dl~v,n,m!ªUln2 (
m850

m

ln
(m8)vm8U , ~21!

with respect tom. The exact eigenvalueln exists and is finite for all nonzero values ofv
according to the Sturmian theory of second-order linear differential equations, see e.g., Re
other words, for sufficiently small values ofv the error is dominated by the first omitted term, i.
Dl(v,n,m);uln

(m11)uvm11. Because the asymptotical eigenvalue is divergent, it surely cro
the exact eigenvalue whenv is increased, but this occurs outside the range of asympto
convergence. Similar asymptotical convergence should be observed for the asymptotical
vectors, too. Assumingcn

(m,x0) corresponds to the asymptotical expansion of the eigenvalues
and including ordervm, we expect error in the norm to behave as

icn
(m,x0)

2cn
(x0)i;C~n,m!vm, ~22!

wherev→0 andC(n,m) is a simple function ofn andm. Although this has not been proven, E
~22! appears to be correct and we will ultimately give an approximate expression forC(n,m), too.
Outside the regime of asymptotical convergence the error~22! approaches& as the asymptotica
solution becomes orthogonal to the exact one.

Next we show that the discrete eigenvalue problem Eq.~7! is a meaningful asymptotical limi
of the continuous harmonic oscillator equation~1!. The problems are identical in the leadin
infinitesimal order whenv is infinitesimal, but the limitv→0 is subtle. As long asv.0, both the
eigenvalues and eigenvectors of the discretized problem tend to those of the continuous ha
oscillator with thisv. Forv50 the continuous problem becomes abruptly the free particle Ha
tonian with solutions

cv50~x!5eikx, lv505k2/2, ~23!

where k is the standard name for the wave number. Simultaneously the discretized pr
becomes the well-known nearest-neighbor chain with eigenvectors and eigenvalues,

ck5$eik( j 2x0)% j , lv5052cos~k!. ~24!

For sufficiently small values ofk we havelv50'211k2/2, in agreement with Eq.~23!. In
contrast, we are interested in the bound-state solutions of Eq.~1! and those eigenvectors of th
discretized problem that can be uniquely related to these continuous solutions forv.0.

The harmonic oscillator is discretized by restricting the values ofx onto a countable and
evenly spaced subset ofR. The lowest-order central approximation for a second-order deriva
is simply
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c9~x!5
c~x2h!22c~x!1c~x1h!

h2 @1O~h4!#. ~25!

Assumingc(x) to be real analytic allows us to write the numerator of the right-hand side
Taylor series

c~x1h!22c~x!1c~x2h!5 (
k51

`
2h2k

~2k!!

d2kc~x!

dx2k . ~26!

If h is infinitesimal and as the derivatives ofc are finite in all orders, the only remaining term
h2c9(x). Thus, in the lowest infinitesimal order the discretized eigenvalue problem giv
second-order differential equation

2
1

2

d2cx

dx2 1
v2x2

2h2 cx5h22~211l!cx ~27!

which is identical to Eq.~1! apart from the constant2h22 and the redefinitionsv°v/h and
l°l/h2. The discreteness of the problem can also be varied by rescaling the value ofv. Thus,
instead of decreasing the sizeh of the steps, we seth51 and letv→0. From Eq.~27! we see that
asymptotically the eigenvalues and eigenvectors have the formln;211v(n11/2) and cx

;c(x), as expected.
We have already pointed out that the matrixH(x0) in Eq. ~7! can be derived from the Mathie

equation. The underlying reason for this is that the problems are canonically conjugate. Ins
the full expansion Eq.~26! into Eq.~27! yields an obvious differential equation incx with respect
to x. The canonical transformationid/dx→ ṽ and x→2 id/dṽ preserves the eigenvalues an
produces the differential equation

2
v2

2

d2c ṽ

dṽ2 2S (
k50

`
~21!kṽ2k

~2k!! Dc ṽ5lc ṽ . ~28!

Noticing that the sum is equal to cos(ṽ) and settingvª( ṽ1p)/2, we obtain the canonical form o
the Mathieu equation with parameters given in Eq.~13!.

After these important preliminaries, we are able to proceed towards the actual solution f
discretized harmonic oscillator. In order to treat eigenvectors of all matricesH(x0) on an equal
footing, we replace the indexj by xª j 2x0 . For arbitrary values ofx0 and j the new indexx
becomes a continuous one onR. We thus obtain functionscx

(n) , wheren is the state index. We
propose that these functionscx

(n) are real-analytic and that they give the eigenvectors ofH(x0)
asymptotically, i.e.,

cn
(x0)

;$c j 2x0

(n) % j 52`
` ~29!

whenv→0. The problem tends to the continuous one in the lowest~infinitesimal! approximation
in v. Thus it is reasonable to assume that the lowest-order approximation for the solution fun
is given bycx

(n);cn(x) asv→0.
The general form of the asymptotical solution of the discretized harmonic oscillator now

cx
(n)}expS (

k51

`

(
l 5k

`

akl
(n)v l 21j2kD (

k50

k8

(
l 51

`

~hk
(n)v l 21bkl

(n)jn12(k2k8)!, ~30!

whereakl
(n) and bkl

(n) are constants to be determined. The solution to the continuous case
a1,1

(n)521/2 andbk,1
(n)51. We are free to normalize the solution so we can chooseb0,l

(n)50 for
l .1.
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The main point of introducing the functionscx
(n) is that they transform the difference

equation-type eigenvalue problem corresponding to the discretized harmonic oscillator in
infinite set of algebraic equations for each value ofn. The eigenvalues~20! appear as parameter
and they are required in order to solve the equations for the sets of coefficients$akl

(n)% and$bkl
(n)%.

Fortunately, the equations uniquely determine every single coefficient. Because the expan
the eigenvalues is asymptotical, the meaning of the full solution to these equations m
determined later.

In practice, we need a suitable truncation of Eq.~30! and thus we define an~un-normalized!
approximate eigenvector

cn
(m,x0)

ª$c j 2x0

(n,m)% j 52`
` , ~31!

wherecx
(n,m) contains only those terms withl<m. The definition ofcn

(1,x0) obviously coincides
with the continuous solution atx0 . In numerical calculations, and always for even values ofm, we
must truncate the eigenvector with respect toj , by setting (cn

(m,x0)) j50 for componentsu j u. j 0

with a sufficiently large value ofj 0 .
We now give the infinite set of algebraic equations corresponding to the transformation

difference equation when the solution functionscx
(n) are substituted into the eigenvalue equatio

Rearranging the terms, we find that each equation can be written in the form

cx21
(n) 1cx11

(n)

2
5cx

(n)~2ln1v2x2/2!, ~32!

wherex5 j 2x0 . Inserting the general ansatz~30! into Eq.~32! expresses the equation in terms
j andv. The exponential part of the ansatz on the right-hand side canceled simply by substr
the corresponding exponent from those on the left-hand side. This yields an equation

1

2 FexpS (
k51

`

(
l 5k

`

akl
(n)vk1 l 21@~x21!2k2x2k# D (

k50

k8

(
l 51

`

~hk
(n)v l 21bkl

(n)@Av~x21!#n12(k2k8)!

1expS (
k51

`

(
l 5k

`

akl
(n)vk1 l 21@~x11!2k2x2k# D (

k50

k8

(
l 51

`

~hk
(n)v l 21bkl

(n)@Av~x11!#n12(k2k8)!G
5F2 (

m50

`

ln(m) vm1
v2x2

2 G (
k50

k8

(
l 51

`

~hk
(n)v l 21bkl

(n)@Av x#n12(k2k8)!. ~33!

These equations are then expanded as functions ofx andv as the resulting equations are easier
solve. The equations must hold for all values of the linearly independent variablesx andv so each
equation must be solved separately. For the purposes of generality, it would be prefera
expand with respect toj, but the resulting equations are much more difficult, both to obtain an
solve. Nevertheless, the obtained solution can be inserted into to these equations in order
that the results are correct. This will be done in Sec. V.

In order to obtain the eigenvectorcn
(m,x0) we must solve and satisfy all equations correspo

ing to

$$vm8jn12m822l 8% l 850
m81k8%m850

m . ~34!

This is of course done recursively, by inserting the known part of the solution and solving fo
next level. In order to connect Eq.~34! with the order of the solution, we state that the equatio
corresponding to a fixed value ofm8 uniquely determines the coefficients withl 5m8.

After a while, one starts to see regularities in the coefficients and attempts to express th
a functional form. We have been able to find rather general expressions for the coefficient
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means that the coefficients have been expressed in terms ofn and the order of the expansion
whenever this is possible. We have conjectured the general form of the terms which means
know how far away we are from obtaining further terms.

We have found that the functionscx
(n,m)(j) are asymptotical solutions of the differenti

equation

S 2 (
k50

m
vk

~2k!!

d2k

dj2k 1
vj2

2 Dcx
(n,m)5 (

k50

m

ln
(k)vkcx

(n,m) ~35!

in a specific sense. After all derivatives have been carried out, the terms multiplying the co
exponential factor cancel up to and including the ordervm. If the solutioncx

(n,m21) is known, we
obtain an explicit differential equation for the exponential partvm21f m(j), the correction to the
Hermite polynomialvm21gm(j) and the energy eigenvalueln

(m) . In case of the ground state an
the first excited state (n51), the condition,gm(j)50 for m.1, renders the problem solvable
For n>2 we must insert the ansatz~30! in order to obtain the solution.

The results are, naturally, in complete agreement with those obtained by using the diffe
equation. We are using just another representation of the original problem. Equation~35! enables
us to obtain the solutions for fixed values ofn up to relatively high orders with respect to powe
of v. Thus we can both extend the general expression for the eigenenergies in Eq.~20! and those
for the coefficients in the exponential part of the solutions. For the ground state energy, we fi
terms beyond orderv16 to be

2
363372562420411197v17

279 2
6258692522467212813v18

283 2
227867608383920243815v19

288

2
4372199488222446620121v20

292 2
352807992522448740907163v21

298

2
7465886451386334274097895v22

2102 2
330752735437897260202410959v23

2107

2
7654237307570898665851927581v24

2111 2
1477812451863756884805687589129v25

2118

2
37132718819258763418452357390369v26

2122

2
1939848955425261040700592191917783v27

2128

2
52598573101029275526869814635336865v28

2131

2
5914101566562517015636997146651378649v29

2137

2
172129355454985486683952198830698506149v30

2141

2
10362392343003738344189045786484697182753v31

2146 1O~v32!. ~36!

The corresponding asymptotical eigenvector contains 31(1131)/25496 linearly independen
terms. The coefficient ofv30j2 in the exponential part reads
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2
5207328980459439428858189871778019425519567564728193

2765292404617797269550429065808396826741571584
. ~37!

The general solution is given in the next section.

III. THE GENERAL SOLUTION OF THE DISCRETIZED HARMONIC OSCILLATOR

For reasons of completeness and easy accessibility some of the definitions will be repe
this section. Themth order solution functioncx

(n,m) , corresponds all terms up to and includin
l 5m in Eq. ~30!. The asymptotical expansion of the eigenvaluesln is given in Eq.~20!. The state
index n determines two expansion parameters,

n̂ª2n11 and k8ª bn/2c, ~38!

where k85n/2 if n is even andk85(n21)/2 if n is odd. The gamma functionG(x) is the
generalized factorial with the defining propertyxG(x)5G(x11). We need the values for intege
and half-integer values which read

G~k!5~k21!!, G~k1 1
2!522kAp~2k21!!!, ~39!

where the double factorialk!! for integer values ofk is given byk(k22)3¯3(1 or 2). The
coefficients in the Hermite polynomials simplify to

hk
(n)5

~21!k81k22k1(12(21)n)/2n!

~2k1~12~21!n!/2!! ~k82k!!
. ~40!

A convenient normalization for the eigenvectors is obtained by requiring that

cx
(n);j (12(21)n)/2), x→0, ~41!

i.e., ;1 for even values ofn and;j for odd values ofn. Also bear in mind that

a1,1
(n)521/2, bk,1

(n)51, and b0,l (.1)
(n) 50. ~42!

Under these constraints we have conjectured that the general form of the coefficients.
exponential part,

expS (
k51

`

(
l 5k

`

akl
(n)v l 21j2kD , ~43!

the coefficients can be written as

ak,k1 l
(n) 5 (

l 850

l

ak,k1 l
[ l 8] n̂l 8. ~44!

Please note that if the coefficientakl
(n) are written as polynomials inn instead ofn̂, the signs of the

corresponding expansion coefficientsãk,k1 l
[ l 8] appear to be given by (21)k. An efficient way to

write these coefficients is given by

ak,k1 l
(n) 5~21!k222kS (

l 850

b l /2c G~k11/2!Q~k,l ,2k251 l 8!n̂l 22l 8

G~k1 l !Ap

1 (
b( l 21)/2c

Q̄~k,l ,k221 l 8!n̂l 2122l 8D , ~45!

l 850
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whereQ(k,l ,2k251 l 8) and Q̄(k,l ,k221 l 8) are polynomials ink of orders 2k251 l 8 and k
221 l 8, respectively. An important consequence of Eq.~45! is that regardless of the values ofl
andn we have

lim
k→`

ak11,k111 l
(n) /ak,k1 l

(n) 521/4. ~46!

The explicit expressions for the seven leading coefficients have been obtained and the

akk
(n)5

~21!k2222kG~k11/2!

k~2k21!2G~k!Ap
,

ak,k11
(n) 5~21!k22222kS 1

k
1

G~k11/2!

G~k11!Ap

n̂

kD ,

ak,k12
(n) 5~21!k22422kS n̂1

G~k11/2!

24G~k12!Ap
@~3152k140k2!1~9112k!n̂2# D ,

ak,k13
(n) 5~21!k22922kH ~2117k15k2!1~314k!n̂21

G~k11/2!

24G~k13!Ap
3 @~24311119k

11928k211376k31320k4!n̂1~331101k1104k2132k3!n̂3#J ,

ak,k14
(n) 5~21!k221422kH ~531120k1136k2140k3!n̂1~37172k132k2!n̂3/31

G~k11/2!

48G~k14!Ap

3 @~2261292525292132k110675063k2136766856k3140148416k4121300608k5

15544448k61565760k7!/3151~11070160044k1130810k21142112k3181280k4

123168k512560k6!n̂21~58512288k13585k212696k31960k41128k5!n̂4#J ,

ak,k15
(n) 5~21!k222022kH ~251872672k16580k217684k313164k41452k5!/31~121413744k

14080k211968k31320k4!n̂21~3451808k1576k21128k3!n̂4/31
G~k11/2!

48G~k15!Ap

3@~74089323013944788389k19627147810k2114943869467k3115287941200k4

110116675072k514238798592k611079918592k71152076288k819052160k9!n̂/315

1~1825740111037114k127955236k2137919062k3130169312k4114491648k5

14122880k61 636928k7140960k8!n̂3/31~850501381087k1729798k21752369k3

1447024k41 152576k5127648k612048k7!n̂5/5#J ,
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ak,k16
(n) 5~21!k222622kH ~3780331496368k1786528k21710816k31339904k4179552k5

17232k6!n̂/31~697141241312k1303392k21177696k3149408k415120k5!n̂3/3

1~17217145360k140960k2115360k312048k4!n̂5/151
G~k11/2!

180G~k16!Ap

3@~2246401923868102105728184475128k2155775948330744k2

274654535511116k31 74660144680858k41156803802177352k5

1134434233033760k6170722102090816k71 24590691451392k815680345583616k9

1839668527104k10171921254400k111 2714009600k12!/90091~22093103970

1162201234402k1504160865145k21 882850470198k31986932878421k4

1745434338828k51388089936864k61 138972684672k7133504543744k8

15179637760k91462565376k10118104320k11!n̂2/211~1520410501991922940k

12784482730k214353707520k314203836660k41 2632731680k511088777440k6

1294912320k7150245120k814874240k91204800k10!n̂41~2606310112799746k

127798345k2134245070k3126181505k41 12857468k514055200k61792320k7

187040k814096k9!n̂6#J .

Thus, for an arbitrary orderm, we can obtain the expressions for coefficients correspondin

$vm21j2(m2 l 8)% l 850
6 . Furthermore we find

a1,8
(n)52~505549159n̂1177209155n̂318289645n̂5140329n̂7!/237

2~22741702112248825n̂211518052n̂4126073n̂6!/232,

a1,9
(n)52~284081902094911419128841068n̂21221074444682n̂416195597884n̂6

121259875n̂8!/~33247!2~1318785849n̂1459389255n̂3129718111n̂51335617n̂7!/238,

a2,9
(n)5~131257276187n̂137843099187n̂311323046497n̂514456305n̂7!/244

1~48228434193959845n̂218787700n̂41110661n̂6!/234.

The exponential part~43! is now completely determined up to the ninth order, i.e., known
arbitrary values ofn for terms withl<9.

If we exclude the dependence on 222k and also that given by the gamma functions in t
coefficients, we observe a very distinct regularity. The dependence of the leading powerk in each
polynomial sequence starting fromn̂0 for a fixed valuel in ak,k1 l

(n) and going upwards by one bot
for l and the power ofn̂ is so far always given by

$ã ( l ,l 8)% l 85$ã ( l ,0) /~4l 8~ l 8!! !%. ~47!

The initial values in casesl 8<5 are given by

$ã ( l ,0)% l 50
5 5$1,1/4,5/48,5/512,221/96768,113/786432%. ~48!
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This dependence is by no means proven but it corroborates our choice for the prefactors
~45!. A bit surprisingly, we find that the coefficientsak,k1 l

(n) in Eq. ~44! contain information about
the energy eigenvalues in casesn50 andn51, i.e.,

a21,m
(n50 or 1)52ln50 or 1

(m) . ~49!

The right-hand side is taken from Eq.~20! and it is correctly reproduced form<6.
The coefficients$bkl

(n)% determine a set of new polynomials, where the coefficients multiply
the powers ofj depend onv. In the limit v→0 these polynomials tend to the Hermite polyn
mials. They are, unquestionably, a new class of generalized Hermite polynomials. They a
fined as parts of the eigenvectors of a Hermitian matrix. Because the exponential part is
complicated, the measure, with respect to which they become asymptotically orthogonal,
essarily a complicated one. It depends on both of the eigenvectors, i.e., it is not a measure
classical sense at all. No simple recursion relation for the polynomials is yet known, and we
know, whether they satisfy any differential equation of finite order. This means that they cou
an example of the second category of generalized Hermite polynomials as defined by Bor
Ref. 20. Such discussion is beyond the scope of the present study and we will concentr
simpler properties of the polynomials.

Our generalized Hermite polynomials are defined as

Hn
v~j!ª(

k50

k8

h̃k
(n)jn12(k2k8), ~50!

where the modified coefficients are given by

h̃k
(n)
ªhk

(n)(
l 51

`

~v l 21bkl
(n)!. ~51!

Because the generalized Hermite polynomialsHn
v(j) fix the nodes~zeroes! of the functionscx

(n) ,
it is equally important to obtain correct polynomials as it is to obtain the correct expone
factors.

We conjecture that the general form of the coefficients$bkl
(n)% reads

bkl
(n)5 (

l 850

l 21 S (
l̄ 51

2(l 21)2 l 8

~r
l 8 l̄

( l )
1@~12~21!n!/2#r̄

l 8 l̄

( l )
!kl̄ D ~k8! l 8, ~52!

wherer
l 8 l̄

( l )
and r̄

l 8 l̄

( l )
are constants. Additionally,r̄

l 8 l̄

( l )
50 when l̄ 52(l 21)2 l 8 or l 85 l 21. This

expansion with respect tok and k8 shows that even and odd values ofn should be treated
separately.

Some general properties of the coefficientsr
l 8 l̄

( l )
and r̄

l 8 l̄

( l )
have been gleaned. The recurrin

appearance of the factor (10k82k) is by far the most striking of the observed regularities. T
factor may, in time, explain some properties generalized Hermite polynomials. We conjectur

(
l 850

l 21

~r l 8,2(l 21)2m02 l 8
( l ) k2(l 21)2m02 l 8nl 8!5kl 212m0~10k82k! l 2122m0P~2m0 ,l !, ~53!

where 2m0, l and P(2m0 ,l ) denotes a (2m0)th order polynomial ink and k8. Similarly, the
difference between even and odd values ofn corresponds to

(
l 850

l 22

~ r̄ l 8,2l 232m02 l 8
( l ) k2l 232m02 l 8nl 8!5kl 212m0~10k82k! l 2222m0P̄~2m0 ,l !, ~54!
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where 2m0, l 21 andP̄(2m0 ,l ) again denotes a (2m0)th order polynomial ink andk8.
In the leading and next-to-leading orders the polynomialsP(0,l ), P(2,l ), P̄(0,l ), andP̄(2,l )

have been explicitly evaluated. Thus, we define the quantities

B~ l ,2l 22!ª
kl 21~10k82k! l 21

48l 21~ l 21!!
~55!

and

B~ l ,2l 23!ª
kl 22~10k82k! l 23

5348l 21~ l 22!!
@~ l 22!658~k8!21~4022126l !k8k1~8l 231!k2#, ~56!

which has been confirmed up to the sixth order, i.e.,l 56. Similarly, the leading differences giv
rise to the quantities

B̄~ l ,2l 23!ª
4kl 21~10k82k! l 22

48l 22~ l 22!!
~57!

and

B̄~ l ,2l 24!ª
kl 22~10k82k! l 24

5348l 21~ l 23!!
@~2632l 22576!~k8!21~14702504l !k8k1~32l 2145!k2#.

~58!

The leading terms are very similar, but also the next-to-leading termsB( l ,2l 23) and B̄( l ,2l
24) share several common features. Most importantly, thel -dependence in the polynomial se
tion is identical, apart from a factor of 4.

Below, we give the explicit values of the coefficientsbkl
(n) in cases 2< l<7. It is convenient to

separate the even and odd values ofn, because the correct expansion parameter appears to bk8.
Please note that these expressions automatically yieldb0,l

(n)50 for l .1,

bk,2
(2k8)5@~3k2k2!1~10k!k8#/48,

bk,2
(2k811)5bk,2

(2k8)1k/12,

bk,3
(2k8)5@~855k264k2214k315k4!1~784k148k22100k3!k81~1316k1500k2!~k8!2#/23040,

bk,3
(2k811)5bk,3

(2k8)1@~249k149k2220k3!1~532k1200k2!k8#/11520,

bk,4
(2k8)5B~4,6!1B~4,5!1@~371385k2203498k2212129k311438k4!1~1110698k1102042k2

226252k3!k81~496932k193984k2!~k8!21560200k~k8!3#/23224320,

bk,4
(2k811)5bk,4

(2k8)1B̄~4,5!1B̄~4,4!1@~67680k112347k222602k3!1~108544k133762k2!k8

1114456k~k8!2#/3870720,

bk,5
(2k8)5B~5,8!1B~5,7!1@~278751375k2202014918k2135222268k314026748k4128158k5

29944k6!1~713250468k2281790420k2261452368k32196176k41209856k5!k8

1~1105743252k1198178852k2210630680k32275344k4!~k8!21~319197168k

181282336k2222799744k3!~k8!31~271672512k1148408976k2!~k8!4#/22295347200,
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bk,5
(2k811)5bk,5

(2k8)1B̄~5,7!1B̄~5,6!1@~119817225k223468037k2212060122k32330312k4

1100198k5!1 ~436319556k1103769756k225886336k321921112k4!k8

1~321608148k1118383396k22904080k3!~k8!21~224147856k1120486304k2!

3~k8!3#/11147673600,

bk,6
(2k8)5B~6,10!1B~6,9!1@~134035780725k2166751340588k2139327194883k3

22269605874k42477614210k5219226552k61221782k71484k8!1~413990823078k

2217584747090k2122678956764k318841166604k41479019924k526549884k6

1566984k7!k81~526339688532k2155591533528k2255003198072k323518713436k4

185514000k5224903296k6!~k8!21~556945898088k1131085561976k2

12790556248k32280060176k41424040144k5!~k8!31~116760015552k

134523271136k225865150192k323338174576k4!~k8!41~79966766400k

146102886720k2110162787360k3!~k8!5#/11771943321600,

bk,6
(2k811)5bk,6

(2k8)1B̄~6,9!1B̄~6,8!1@~34460588160k226910050283k2172069996k3

11282383895k41103465570k52948002k62316976k7!1~216801198648k

221671791146k2218471533106k321699322576k4178651584k515865684k6!k8

1~345295895928k196181762100k211478206984k321409258180k4160822872k5!

3~k8!21~160052617776k164547633160k213204992824k321898232512k4!~k8!3

1~83156900448k147130830560k2110276562912k3!~k8!4#/5885971660800,

bk,7
(2k8)5B~7,12!1B~7,11!1@~21167446950775125k234318046368345140k2

113674300462898392k321352901404372446k422843855572731k5

111311875159790k61704407032828k7112949326156k82177366189k9

137677640k10!1~59570630372492640k260644270495554704k2

110066261151648252k31104602336760652k42246415137367020k5

220207362771548k62460168946016k712604105504k822483040560k9!k8

1~99669485611466412k239020273844707836k212200698814542984k3

120707130729546001212428368788100k515622413614220k6182814211480k7

170784553840k8!~k8!21~82488078028378080k218442822328400480k2

29100818756007520k32964844434165920k4224156442527360k523013682511840k6

21116228072960k7!~k8!31~66588038149135200k118345507366303440k2

11191268975557840k3110518809509520k4142474114642960k5

110244315921840k6!~k8!41~10839030004200960k13516288982521792k2

2363895953410496k32304221200739456k4251610667908800k5!~k8!5
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1~6218212960526208k13705496740373376k21898601964676416k3

1110684037464000k4!~k8!6#/1542595452862464000,

bk,7
(2k811)5bk,7

(2k8)1B̄~7,11!1B̄~7,10!1@~2460686821541975k21941941074537755k2

1366877584331212k3141494582964306k429965970910165k521112954021925k6

234972438722k71958101144k813798795k9!1~9145976126266080k

23823250702059872k22191143081971676k31173415983605096k4

124948282593576k51815890000796k6241300603344k711974092120k8!k8

1~19045045703842332k2607795420829248k221422456568355676k3

2195873935369616k422655255816252k51611948653316k6298001423520k7!

3~k8!21~18941405236672032k15863460843089248k21345511721120640k3

255753844615456k42654723253184k511792716525600k6!~k8!3

1~6296099301099168k12692631923242160k21232744611197904k3

259049744898144k4214606140268720k5!~k8!41~2605202959125888k

11525593370591680k21365590616623232k3144670372947200k4!

3~k8!5#/257099242143744000.

In combination with the exponential parts these coefficients determine explicit, analytical ex
sions for solution functioncx

(n,7) for arbitrary values ofn.32

It must be re-emphasized that Eq.~30! is an asymptotical solution. Two partially overlappin
reasons for this behavior must be stated. First, the solution depends on two independent
scales, i.e.,x andv, and second, the coordinate transformationx°j5Avx is singular atv50.
These points are rather extensively covered in Ref. 13. The eigenvalues are asymptoticall
for even values ofn at x050 and, probably, for odd values ofn at x056 1

2. Because the erro
decays exponentially in 1/v, this dependence onx0 vanishes much before the asymptotical b
havior of Eq.~22!, i.e., icn

(m,x0)
2cn

(x0)i;C(n,m)vm, appears.
Comparison against numerically obtained eigenstates allows us to give an approxima

pression for the functionC(n,m). The validity of the calculations is limited by the numeric
precision, i.e., to norms of the order of 10211– 10212. We have employed the reliable diagona
ization routines ofMATLAB software for this purpose. We have studied eigenvectors upn
'40– 50 and the corresponding asymptotical solutionscn

(m,x0) up to the fifth order. A reasonable
order-of-magnitude estimate for the error in the Euclidean norm, whenn<40, is given by

C~n,m!'cmn̂2m, ~59!

where

c150.03, c250.002, c350.0006, c451.531026, and c55331028. ~60!

There is a slight difference between even and odd cases, but this is insignificant in an estim
this. The value ofc5 is set to fit the observed trend in the other coefficients as the asympto
behavior is only glimpsed. In casesm52 andm54, it is vitally important to remember to truncat
the asymptotical eigenvectorcn

(m,x0) correctly.
For larger values ofn, one needs very small values ofv in order to obtain accurate or eve

reasonable results. But for relatively small values ofn, sayn<10, the error is extremely small a
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v'0.01. The strong dependence onn means that the first few states can be obtained to a h
precision even for quite strong couplings in the neighborhood ofv'0.1. We have determined th
ground staten50 up to the 31st order and numerical comparison strongly supports the as
totical behaviorvm for m<13.

In order to make the above discussion more concrete, we explicitly give the second
solutions as functions ofv, j5Av x, n ~not n̂) andk8. For even values ofn we find the solution
function

cx
(n,2)5An,x0

exp~2~ 1
21~312n!v/32!j21~v/96!j4!(

k50

k8

~hk
(n)j2k~11~3k2k2110kk8!v/48!!,

~61!

whereAn,x0
is a normalization factor which ensures thaticn

(2,x0)i51. For odd values ofn the
result is nearly identical, i.e.,

cx
(n,2)5An,x0

exp~2~ 1
21~312n!v/32!j21~v/96!j4!(

k50

k8

~hk
(n)j2k~11~7k2k2110kk8!v/48!!.

~62!

The tiny difference 3k→7k in the generalized Hermite polynomial is very important, beca
otherwise the asymptotical convergenceicn

(m,x0)
2cn

(x0)i;v2 does not appear. The common e
ponential part in the third order solution functioncx

(n,3) reads

exp~2~ 1
21~312n!v/321~53169n121n2!v2/1536!j21~v/961~1116n!v2/1024!j4

2~v2/1280!j6!). ~63!

The explicit solution functioncx
(n,m) solves the asymptotical eigenvalue equation up to the o

vm and yields a normwise convergence of;vm.
When employing these asymptotical solutions, one should first study, how accurate eig

tors are required for the problem at hand. The next step is to choose the order of the soluti
the correct truncation with respect tox. Then, the calculations are performed and the results
obtained, hopefully faster than with the conventional approach of numerical diagonalization6

IV. COMMENTS ON SOLVING THE ANSATZ

In this section we discuss how to solve the set of algebraic equations resulting from Eq~33!
as effectively as possible. First we observe that the zeroth order, i.e., terms proportional t
trary powers ofj are satisfied by the fact exp(0)51. Next, all equations related to terms

$vjn1222l 8% l 850
11k8 ~64!

are identically satisfied because of the recursion relation~6! rewritten in terms of the coefficient
hk

(n) . A careful reader notices that terms proportional tobk,l 52
(n) do appear, but they identically

cancel and thus they are not constrained in this order.
From here on, we proceed by recursively solving the coefficients for the next order an

for sufficiently many values ofn so that all coefficients in the expansions of$akl
(n)% and $bkl

(n)%
have been constrained. In reality, we first obtained the solution functioncx

(n50,m56) and a poorly
formulated expression for arbitrary second-order solution, i.e.,cx

(n,m52) , but let us proceed in the
way this should be done. Because the equation are quite difficult to handle with pen and pap
chose to write and simplify the equations withMATHEMATICA software.33

We first consider the casesn50 andn52 as simple examples. Forn50 we expand Eq.~33!
up to and including orderv3 to find
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H 12
v

2
1v2S a1,2

(0)1
1

8
1

x2

2 D1v3F2
1

48
1

a1,2
(0)

2
1a1,31a2,2

(0)1x2S 2
1

4
22a1,2

(0)16a2,2
(0)D G J

5F12
v

2
1

v2~x211/16!

2
1

v3

512G . ~65!

Immediately, we obtain

a1,2
(0)523/32 anda2,2

(0)51/96. ~66!

Inserting these into Eq.~65! givesa1,3
(0)5253/1536.

In the casen52 and we examine all terms below the order ofv4. The generalized Hermite
polynomial now reads

H2
v~j!52214vx2~11b1,1

(2)v1b1,2
(2)v21b1,3

(2)v3!1O~v5!. ~67!

Expanding all terms and moving them onto the same side yields the equation

05v2S 23

32
1a1,2

(2)22b1,1
(2)D1v3F2

521

1536
2

5a1,2
(2)

2
1a1,3

(2)1a2,2
(2)1b1,1

(2)22b1,2
(2)

1x2S 2
43

16
212a1,2

(2)16a2,2
(2)D G1v4F 341

24576
1

~a1,2
(2)!2

2
2

5a1,3
(2)

2
1a1,4

(2)1a1,2
(2)S 9

8
22b1,1

(2)D
2

b1,1
(2)

4
1b1,2

(2)22b1,3
(2)1x2S 953

768
12~a1,2

(2)!2212a1,3
(2)237a2,2

(2)16a2,3
(2)1a1,2

(2)S 29

2
210b1,1

(2)D
2

39b1,1
(2)

16 D 1x4S 29

24
14a1,2

(2)232a1,3
(2)D G . ~68!

Notice that all terms proportional tov0 and v1 have canceled out, which again shows that
lowest-order approximation for the eigenvalue and eigenstate are already correct and agr
the results for the continuous case. The three coefficients related to thec (2,2) can be solved from
the coefficients ofv2, v3x2, andv4x4 and they read

a1,2
(2)527/32, a2,2

(2)51/96, andb1,1
(2)51/4. ~69!

Substituting these into the set of equations and extending the calculation to orderv6 we find the
subsequent coefficients to be

a1,3
(2)52275/1536, a2,3

(2)523/1024, a3,3
(2)521/1280, andb1,2

(2)537/256. ~70!

After solving a sufficient number of coefficientsakl
(n) and bkl

(n) one should start searching fo
regularities in the solution.

Almost immediately we guessed the polynomial character ofakl
(n) , first in terms ofn and later

noticing that they should be written in terms ofn̂ as in Eq.~44!. This considerably helps solving
the coefficientsbkl

(n) as for larger values ofn the coefficientsakl
(n) appear as constants, not u

knowns.
In the beginning, we tried to solve all possible terms up to a given order inv. First one should

notice that only terms withl<m are required for the solution functioncx
(n,m) . Assuming that the

previous orders have been explicitly obtained, means that only the equations correspon
m85m in Eq. ~34! have to be solved. In addition, generally known coefficientsak,m

(n) identically
satisfy equations corresponding to the highest powers ofj. Explicitly, if we assume that coeffi-
cients$ak,m

(n) %k5k0

m are known, only the equations for
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$vmjn12k022l 8% l 850

k01k8
~71!

are required and the expansion of Eq.~33! has to be carried out up to and including the ord
vm1k01n/2 for coefficientsl<m.

After obtaining a rather complicated expression for the coefficientsbk,l 53
(n) , we happened to

transform it into form equivalent to the present form and conjecture the general form ofbkl
(n) in Eq.

~52!. The most important lesson taught by the discretized harmonic oscillator when solvin
coefficients is that your numbers may be wrong, but the general forms usually are not. On s
occasions, this became painfully obvious when the numbers did not check. Each and eve
the general forms were correct, but the used expansion of Eq.~33! or the numbers inserted into
were not.

Later on, we started to study the regularities in the general expressions. The polyn

structure of the coefficientsakl
[ l 8] that do not contain any gamma functions was relatively e

obtain, but the other set required a real stroke of luck. We managed to write some of

coefficientsakl
[ l 8] as explicit products. After being pointed out, byMATHEMATICA , that the first two

could be written in terms of gamma functions, it was only a question of finding the co
gammas before Eq.~45! was written. In order to appreciate the technical part of obtaining
general form of the coefficients we point out that the coefficientak,k14

(n) was completed by solving
the 12th order solutioncn50

(m512,x0) and confirmed by the casen51. Further terms have bee
obtained by solving the asymptotical differential equations~35!.

The regularities in the coefficients$bkl
(n)% have been found out using by studying the expa

sions with respect tok andk8. By conjecturing the recurring appearance of (10k82k) in Eqs.~53!
and~54! it becomes possible to solve the quantities defined in Eqs.~55!–~58!. In addition to these,
the general expression forrk,l 23

( l ) can be obtained from the known coefficients.
Finally, we will estimate the difficulty of obtaining the explicit asymptotical solutioncn

(m,x0) .
We assume that both the expansion of the eigenvalues up to the required order and the s
cn

(m21,x0) have been obtained in advance. The coefficientsakm
(n) can be determined from the expo

nential parts of the eigenvectors up to and including the casen5m21. The completely genera
expressions in Eq.~45! are finished at much slower a pace. The asymptotically satisfied diffe
tial equations~35! speed up this process considerably.

Obtaining the coefficientsbkm
(n) is more difficult. The general form~52! shows that all states up

to n54m23 must be solved. The explicit expressions for the leading parts, i.e.,B( l ,2l 22),
B( l ,2l 23), B̄( l ,2l 23), andB̄( l ,2l 24) make this task easier by five states. Thus all states u
n54l 28 must be found, unless further general properties are found.

Regardless of these simplifications, the number of required terms and participating equ
grows quite fast. Obviously, the general form of the coefficients in the exponential factor is
easier to obtain and thus they should be applied as early as possible. It is also possib
considerable simplifications or generalizations for the known coefficients lurk just aroun
corner. This has already happened on several occasions so far. We still choose to pause her
given general expressions have been validated rather convincingly and it not obvious, how
all, the next orders in the expansion would improve the results qualitatively. We hope a
foundation has been laid for those striving towards the complete, asymptotical solution fo
discretized harmonic oscillator.

V. PROVING THE SOLUTION AND SOME GENERAL PROPERTIES

Finally, we attack the difficult problem of actually showing that the solution is a general
Thus far we have solved the equations for an increasing number of eigenstates using Eq.~33!. This
formulation is the best if actual numerical values of the coefficientsakl

(n) andbkl
(n) are sought after.

This is explained by symbolic math being most effective when the number of unknowns
symbols is as small as possible. In principle, the process explained below could be us
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obtaining recursion relations between the coefficients of the solution and, subsequently, t
solution. Presently, we only show that the equations corresponding to leading orders up tov3 are
satisfied identically.

We have to solve the equations corresponding to$vmjn1m22l 8% l 850
k81m in order to obtain the

mth order solution. We have now obtained the explicit solution up to the seventh order so w
check if it is correct. For this purpose, we must write Eq.~33! explicitly in terms ofuªAv and
j, although odd powers ofu eventually cancel. Multipliers ofakl

(n) andbkl
(n) now read

u2(l 21)@~j6u!2k2j2k# and ~j6u!n12(k2k8), ~72!

respectively. On the right-hand side the nontrivial term is given byvj2/2. Expanding all terms
multiplying a fixed termhk

(n) up to the order yields terms

hk
(n)F11u2S 2~k2k8!2n̂/21

j2

2
1

~n2112~k2k8!!~n12~k2k8!!

j2 D G
5hk

(n)S 11u2S 2n̂/21
j2

2 D D . ~73!

The terms proportional toj2 cancel and equating each power ofj separately yields an equation

hk
(n)2~k82k!1@2~k11!27~k11!#hk11

(n) 50, ~74!

where the signs1 and 2 corresponds the even and odd values ofn, respectively. The above
equation is identically satisfied by the Hermite polynomials, which proves that the first-
solutioncn

(1,x0) is correct. A careful observer immediately asks about the second order corre
bk,2

(n) which also yield terms proportional tou2. However, these coefficients are not fixed at all
Eq. ~33! in the orderu2. The only term that is easily solvable from this relation in the domin
coefficienta1,1

(n)521/2 which removeshk21
(n) from the recursion relations. Later on, the domina

coefficients$akk
(n)%k51

m cancel the termhk2m
(n) in the ordervm.

In the next orderv2 we insert the solved coefficients and obtain for even values of a recu
relation

6~n1222k!hk21
(n) 1@~2k31k2~42211n!26n23n22k~2619n25n2!#hk

(n)2~11k!~112k!

3~22131k1k225n25kn!hk11
(n) 12~2k14!~2k13!~2k12!~2k11!hk12

(n) 50, ~75!

which is again identically satisfied by the Hermite polynomials. For odd values ofn, we find a
similar recursion relation, once we replacek85n/2 by k85(n21)/2. This completes the proof in
orderv2 and validates the second-order eigenvectorscn

(2,x0) .
In the third order the recursion relation for even values ofn reads

180~2412k2n!hk22
(n) 130~62242k224k214k3174n210kn222k2n117n2110kn2!hk21

(n)

1@2450n2450n2290n3210k51k4~24521105n!1k3~2233212458n2300n2!

1k2~423014912n21204n21125n3!1k~23002585n21258n21179n3!#hk
(n)

1~11k!~112k!~102212705k13684k21326k315k422274n24430kn21726k2n

250k3n1454n21 579kn21125k2n2!hk11
(n) 216~11k!~21k!~112k!~312k!~1101101k

15k2250n225kn!hk12
(n) 1256~11k!~21k!~31k!~112k!~312k!~512k!hk13

(n) 50.

~76!
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Because the Hermite polynomials satisfy this and the corresponding relation for odd valuen
the solutioncn

(3,x0) has been rigorously proven as correct.

The eigenvectorscn
(m,x0) tend to the eigenvectorscn

(x0) of H(x0) at an asymptotical rate
proportional tovm. The exact eigenvectors are orthogonal as eigenvectors of a Hermitian m
and by their closure relation we can write

cn
(m,x0)

;cn
(x0)

1vm(
n8

bn8cn8

(x0)
, ~77!

wherebn8 are finite constants such that(nubnu2,` in the limit v→0. The orthonormality relation
for the asymptotical solutions thus reads

^cn
(m,x0)uc

n8

(m,x0)
&5dnn81O~vm!, ~78!

provided that the sum(nubnu is finite for both states. In other words, the eigenvectorscn
(m,x0)

become orthonormal at the rate ofvm. Numerical checks seem to confirm this, at least
relatively small values ofn.

As a final effort, we outline a plausible ‘‘proof’’ for the asymptotical convergence. As a
step, we show that without loss of generality we can examine a finite truncation of the eigen
cn

(n,x0) , the vectorcn, j 0

(x0)
ª$c j 2x0

(n) % j 52 j 0

j 0 for sufficiently largej 0 . For sufficiently large values o

u j u the eigenvalueln becomes insignificant in Eq.~32! and we write an approximate equation

~cx21
(n) 22cx

(n)1cx11
(n) !/~x2!5v2. ~79!

For sufficiently large values ofx and/orj the sign ofcx
(n) is constant and this equation shows th

the functionc̃x5c j 02x0

(n) exp(2v(x22j0
2)/(21«)), for some small«.0, is a dominant sequence fo

cx
(n) . Now, the limiting sequence of norms

lim
j 0→`

icn
(x0)

2cn, j 0

(x0)i ~80!

vanishes exponentially with respect toj 0 . In other words, we can always find a finitej 0 such that
the error in the norm is sufficiently small.

Next we use the fact that solutioncn
(m,x0) satisfies the eigenvalue equation~32! up to the order

vm when written in terms ofj. Thus we can write

cx21
(n,m)1cx11

(n,m)

2cx
(n,m)~2ln1vj2/2!

511O~vm11!. ~81!

We fix the scales of the eigenvectors by setting (cn
(m,x0)) j5(cn

(x0)) j for an arbitraryj . It would be

very tempting to say that Eq.~81! implies (cn
(m,x0)) j 115(cn

(x0)) j 11(11O(vm11)) and then won-
der why convergence is not asymptotically proportional tovm11. As already explained the solu
tion cn

(m,x0) does not fix the coefficientsbk,m11
(n) which most definitely yield terms proportional t

vm. Thus we obtain a relation

~cn
(m,x0)

! j 115~cn
(x0)

! j 11~11O~vm!!. ~82!

By matching the eigenvectors atj 50, and expanding the components to the finite values6 j 0

shows that the order of error isvm for all components withu j u< j 0 . Becase the error caused by th
truncation is insignificant the result holds for the full eigenvectors and we obtain the desired
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icn
(m,x0)

2cn
(x0)i;vm, ~83!

or at least show that the result is quite plausible.

VI. CONCLUSIONS

We have obtained an explicit, asymptotical solution for the discretized harmonic oscil
Both the eigenvalues and eigenvectors have been obtained and we can choose a prespec
of convergence towards the exact solutions. This is done by truncating the ansatz solution a
ingly. Because the problem can be mapped onto the Mathieu differential equation, we si
neously provide asymptotical expressions for the Mathieu functions. The Schro¨dinger equation of
the quantum pendulum corresponds to the Mathieu equation, which yields immediate applic
for the results.

The method described above can be generalized to accommodate several coordinate
sions with only minor changes. This should make the results of Ref. 29 both more transpare
more rigorous. The tunnelling–charging Hamiltonian of a Cooper pair pump corresponds
modified multidimensional Mathieu equation.

Alternatively, ansatzes similar to Eq.~30! could be constructed in case of difference equatio
that become identical to analytically solvable differential equations in some asymptotical
Initially, the problem assumes the form of an infinite-dimensional, two-parameter~eigenvalue!
problem, where the asymptotical solutions~eigenvalues and eigenvectors! must be obtained. The
ansatz maps the problem onto an infinite set of algebraic equations that must solved. If th
of the ansatz is correct, one may determine some general properties of the exact solution

ACKNOWLEDGMENTS

This work has been supported by the Academy of Finland under the Finnish Center o
cellence Programme 2000–2005~Project No. 44875, Nuclear and Condensed Matter Program
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Perturbative analysis of dynamical localization
J. C. A. Barataa) and D. A. Cortezb)
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~Received 6 January 2003; accepted 25 January 2003!

In this paper we present a mathematical investigation of the phenomenon of dy-
namical localization in a class of quasi-periodically and periodically time-
dependent two-level systems. Our results are based on a sort of ‘‘renormalization’’
procedure, which is developed here in a systematic way in order to adapt it to the
case of dynamical localization. In the quasi-periodic case this procedure leads to a
formal perturbative expansion free of secular terms. In the periodic case a conver-
gent perturbative solution is obtained and, in particular, a convergent perturbative
expansion for the secular frequency is presented. The case of ac–dc fields is dis-
cussed in some detail, leading to the conclusion that the phenomenon of dynamical
localization is not exact in that situation. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1562750#

I. GENERAL DESCRIPTION AND PREVIOUS RESULTS

The study of periodically or quasi-periodically time-dependent two-level systems is of
importance for many physical applications, ranging from condensed matter physics to qu
optics, as in problems of the theory of spin resonance, in problems of quantum tunnelling,
semi-classical theory of the laser and, more recently, in BEC’s, in quantum computatio
spintronics. They can be used to describe the behavior of a spin 1/2 system in a time-dep
magnetic field, in which case the Schro¨dinger equation takes the simplified form~we adopt\
51)

i ] tC5H~ t !C , with H~ t !52
1

2
BW ~ t !•sW , ~1.1!

whereC(t)5(c2(t)
c1(t))PC2, BW (t)5„B1(t), B2(t), B3(t)… andsW 5(s1 , s2 , s3) are the Pauli matri-

ces. These systems have been analyzed in various approximations since the pioneering w
Rabi,1 Bloch and Siegert,2 and Autler and Townes3 ~see also Refs. 4, 5, 6 for more rece
discussions!. Of particular interest is the situation where~1.1! takes the form

i ] tC~ t !5H1~ t !C~ t !, with H1~ t !ªes32 f ~ t !s1 , ~1.2!

where f (t) is a function of timet andePR is constant. By ap/2-rotation around the 2-axis, w
get the equivalent system

i ] tF~ t !5H2~ t !F~ t !, with H2~ t !ªes11 f ~ t !s3 , ~1.3!

whereF(t)ªexp(2ips2/4)C(t) andH2(t)ªexp(2ips2/4) H1(t)exp(ips2/4).
One can either interpret the system~1.2! as describing a spin 1/2 system as~1.1! under a

magnetic fieldBW 5„2 f (t), 0,22e…, or as a system with an unperturbed diagonal Hamilton
H0ªes3 , representing a two-level system with energy levels6e, subjected to a time-depende

a!Electronic mail: jbarata@if.usp.br
b!Electronic mail: dacortez@fma.if.usp.br
19370022-2488/2003/44(5)/1937/24/$20.00 © 2003 American Institute of Physics
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perturbationHI(t)ª2 f (t)s1 , inducing a time-depending transition between the unpertur
eigenstates ofH0 . The equivalent system~1.3!, in turn, represents either a spin 1/2 system as~1.1!

under a magnetic fieldBW 5„22e, 0,22 f (t)…, or a two-level system composed by two uncoupl
~for e50) orthogonal time-dependent states exp(2i*0

t f(t)dt)(0
1) and exp(1i*0

t f(t)dt)(1
0), subjected

to a constant perturbationes1 inducing a transition between them.
Let F15(0

1) and F25(1
0) be two orthogonal states corresponding toC15(1/&) (1

1) and
C25(1/&) (21

1 ). Denoting byU(t)5U(t, 0) the family of unitary operators implementing th
time-evolution associated toH2(t), the probability of transition fromF1 at t50 to F2 at timet
is P(t)ªu(F1 ,U(t)F2)u25uU12(t)u2. For f (t)[0 one has, as well known,P(t)5sin(Vt)2, with
V5e, and the transition probability transits between 0 and the maximal value 1 within a p
p/e. For f (t)5F0 , a nonzero constant~dc-field!, one hasP(t)5(e/V)2 sin(Vt)2, with V
5Ae21F0

2 and the situation changes compared to thef (t)[0 case in that the transition probabi
ity is suppressed by a factore2.

Much more interesting is the situation when the interactionf is periodically varying in time.
For the simplest case of a monochromatic interactionf (t)5w cos(vt) ~ac-field!, it was first shown
in Refs. 7 and 8 that one hasV15eJ0(2w/v) as the first order of approximation ine for the
transition frequency, whereJ0 is the Bessel function of the first kind and order zero. Hence, if
field strengthw and the frequencyv are chosen such thatx152w/v is a zero ofJ0 , then V
'0, which implies long transition times. This phenomenon became known ascoherent destruction
of tunnellingor dynamical localization effect.

The effect of dynamical localization, first pointed in Refs. 7 and 8, indicates the possibil
approximately freezing the initial state of a quantum system through the action of a su
external time-dependent interaction. This effect may play an important role in manipulatio
q-bits, in connection with the so-called Zeno’s effect and in the phenomenon of induced tra
ency. It has been the object of various recent investigations. In Ref. 10, for instance, a rig
general criterion for the occurrence of dynamical localization was established and appl
interesting situations, like the ac–dc field and the bichromatic field. Some of the conclusio
Ref. 10 on the ac–dc field are indirectly reproduced in Sec. V. For an extensive revie
dynamical localization, see Ref. 9. We also refer the reader to Refs. 10, 13, 14, 17, and 18 fo
references on this subject.

For a two-level system witheÞ0 and for arbitraryf , the transition probabilityP(t) cannot be
identically zero, for that would imply that the unitary evolutionU(t) is diagonal, and this contra
dicts the Schro¨dinger equationi ] tU(t)5H2(t)U(t), as one easily checks. Hence, the freez
effect cannot be exact. Therefore, a more detailed analysis of the complete series expansion
transition frequencyV in terms ofe is required.

The aim of this paper is twofold. From one side we intend to systematize the methods o
15 and the convergence proofs of Ref. 16. From the other side, our goal is to develop
mathematically complete way, the perturbation theory required for the analysis of the dyna
localization effect in two-level systems with periodicf .

To explain the purpose, the strategy and the results of the present paper, we have to d
some of our previous results. In Refs. 15 and 16 we studied the system described by~1.2! or ~1.3!
in the situation wheref is a periodic or quasi-periodic function of time ande is ‘‘small.’’ It is well
known that the usual perturbative approach leads to difficulties involving secular terms~i.e.,
polynomials int that appear order by order in perturbation theory and spoil the uniform con
gence~in t) of the perturbative series! and, for quasi-periodic interactions, small denominator

In Refs. 15 and 16, a special perturbative expansion~power series expansion ine! was
developed, whose main virtue is to be free of secular terms. The algorithm employed involv
inductive ‘‘renormalization’’ of a sort of effective field introduced through an exponential An
~the functiong, to be introduced below!. For the sake of the reader we will shortly recall o
method of elimination of secular terms in Sec. II. This method is further developed and sy
atized in Sec. III. The elimination of the secular terms resembles the treatment of ‘‘zero mo
discussed, i.e., in Ref. 11.

In the general case wheref is quasi-periodic, it was established in Ref. 15 that the coefficien
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of the expansion are also well-defined quasi-periodic functions of time but, due mainly t
presence of small denominators, we were not able to prove convergence of oure-expansion.
Actually, a convergent power expansion ine is not expected without further assumptions~for a
detailed analysis of these issues in related systems, see Ref. 12!.

Less problematic is the case whenf is periodic, since small denominators are absent. In R
16, we showed how the difficulties analyzed in Ref. 15 can be circumvented in the ca
periodic f and we were able to establish the convergence of our perturbativee-expansion uni-
formly in tPR. As discussed in Ref. 16, our method not only recovers the Floquet form o
solution of the time-dependent Schro¨dinger equation@see~1.6!–~1.7! below#, but also allows the
computation of the secular frequency and of the Fourier coefficients in terms of explicitconver-
gent e-expansions, which constitutes a feature of our algorithm, compared to other expa
methods.

Due to the technical difficulties involved, we restricted our analysis in Ref. 16 to two cla
of periodic functions, namely those satisfying the conditions~I! or ~II ! presented in Theorem 1.1
below ~see also Ref. 16!. In the present paper we extend the results of Ref. 16 to an addit
class of periodic functions. As we will discuss in detail, it turns out that the situation we treat
is precisely the relevant one for the rigorous discussion of the phenomenon of dynamical
ization. The inclusion of this new class of periodic functions leads to an essentially com
perturbative solution for some simple periodic functions, asf (t)5F01w cos(vt) ~ac–dc fields!,
representing a physically relevant situation.

The main result of Ref. 16 can be captured in the next theorem, for whose statement w
a definition we will repeatedly use in this work: for an almost periodic functionh we denote by
M (h) the ‘‘mean value’’ of h, defined asM (h)ª limT→` (1/2T) *2T

T h(t)dt. The mean value
M (h) equals the constant term in the Fourier expansion ofh.

Theorem 1.1: Let f be a real Tv-periodic function of time(Tvª2p/v with v.0) whose
Fourier decomposition f(t)5(nPZFneinvt, contains only a finite number of terms, i.e., the set
integers$nPZuFnÞ0% is a finite set. LetF(t)5(f2(t)

f1(t))5U(t)F(0)5U(t, 0)F(0) be the solu-

tion of Eq. (1.3). Consider the two following distinct conditions on f: „I … M (Q0)Þ0. „II …
M (Q0)50 but M(Q1)Þ0, where

q~ t ! ª expS i E
0

t

f ~t!dt D , Q0~ t ! ª q~ t !2 5 expS 2i E
0

t

f ~t!dt D ~1.4!

and

Q1~ t ! ª Q0~ t !E
0

t

„Q0~t!212M ~Q 0
21!…dt. ~1.5!

Then, for each f as above, satisfying condition (I) or (II), there exists a constant K.0 ~depending
on the Fourier coefficients$Fn ,nPZ,nÞ0% and onv! so that, for eache with ueu,K, there are
VPR and Tv-periodic functions u11

6 and u12
6 such that the propagator U(t) can be written as

U(t)5S U11(t) U12(t)

U21(t) U22(t)
D 5S U11(t) U12(t)

2U12(t) U11(t)
D ,

with

U11~ t ! 5 e2 iVt u11
2 ~ t !1eiVt u11

1 ~ t !, U12~ t ! 5 e2 iVt u12
2 ~ t !1eiVt u12

1 ~ t !. ~1.6!

The functions u11
6 and u12

6 have absolutely and uniformly converging Fourier expansions,

u11
6 ~ t ! 5 (

nPZ
U 11

6 ~n!einvt, u12
6 ~ t ! 5 (

nPZ
U 12

6 ~n!einvt. ~1.7!

Moreover, under the same assumptions,V and the Fourier coefficientsU 11
6 (n) andU 12

6 (n) can be
expressed in terms of absolutely converging power series one. h
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Let us now discuss the conditions~I! and~II ! of Theorem 1.1. Writing the Fourier decompo
sition of f as f (t)5F01(n51

J @w1
(n) cos(nvt)1w2

(n) sin(nvt)# the setFJ, v of all possible functions
f with a givenJ andv can be identified with the parameter spaceR2J11 of all real coefficients
F0 , w1, 2

(n) , 1<n<J. The ~complex! condition M (Q0)50 determines a (2J)- or
(2J21)-dimensional subset ofFJ, v , where condition~II ! eventually applies. It is also on thi
subset that the more restrictive conditionM (Q0)5M (Q1)50 should hold, restricting the param
eter space off to a (2J21)-, (2J22)- or (2J23)-dimensional subset, if it is nontrivial. On
should, therefore, expect that successive conditions like~I! and ~II ! would eventually exhaus
completely the setFJ, v .

To illustrate all this, let us consider the simplest example, whenf represents a monochromat
interaction:f (t)5w cos(vt). A simple computation shows thatM (Q0)5J0(2w/v). Hence, con-
dition ~I! is satisfied, except whenw5vxa/2, a51, 2,...,wherexa is thea-th zero ofJ0 in R1 .
Condition ~II !, however, is never fulfilled becauseM (Q1) vanishes identically in this case~see
Ref. 16 or below for details!. To achieve a complete solution we have, therefore, to ext
Theorem 1.1 to include further conditions beyond~I! and ~II !, holding whenw5vxa/2.

It is important to note that the conditionM (Q0)5J0(2w/v)50 coincides with the condition
for dynamical localization pointed in Refs. 7 and 8, mentioned above. Hence, at least in this
the situation where~I! and~II ! are violated is precisely the relevant one for the rigorous treatm
of dynamical localization. In fact, due to the general form of thee-expansion for the secula
frequencyV, it turns out that this is true for general quasi-periodicf , not only for the monochro-
matic situation.

In this paper we identify the first condition following~I! and ~II !, which we call condition
~III !, and show that the method of elimination of secular terms holds in this case as wel
highly nontrivial tasks. For periodic interactions, we show that the expansion~2.4! converges for
ueu sufficiently small, uniformly for alltPR. As we will discuss, this leads to a complete pertu
bative solution for the ac–dc field.

Concerning the dynamical localization effect, our results can be summarized as follow
establish for periodicf that the secular frequencyV is an analytic function ofe ~for ueu small! and
express each term of the perturbative series in a closed form. We establish that, in the situa
approximate dynamical localization, not only the first order term of the perturbative expans
V is zero, but also the second order term. We establish in the monochromatic case that th
order term of the perturbative expansion ofV is nonzero. This proves that the effect is a thi
order one, and that the dynamical localization is not exact. In Sec. V we analyze in detail th
of ac–dc fields and point to other situations where approximate dynamical localization c
seen. As far as we know these results are new, since they require a detailed knowledge
expansion series. Note also that our expansion is very general, in the sense that it is not lim
monochromatic interactions, or ac–dc fields.

In this paper,Z1 will denote the set of all non-negative integers~zero included! andZ* the set
of all integers, excluding zero.Z* 1 is the set of all positive integers. These notations are a
applied toZA and to the real lineR. Vectors inZA ~or RA) will be written asvI . The operationvI •uI
will denote the scalar product inZA ~or RA), defined asvI •uIªv1u11¯1vAuA .

For a quasi-periodic functionh:R→C, we write its Fourier decomposition ash(t)
5(mI PZAHmI eimI •vI ht , whereA is some positive integer andvI hPR1

A . The Fourier coefficientH0I

will be denoted simply asH0 . For mPZ we denote bŷ^m&& the following function:

^̂ m&& ª H umu, for mÞ0,

1, for m50.
~1.8!

Beyond the functionsQ0 and Q1 defined in ~1.4!–~1.5! we will often use the following
functions:
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Q2~ t ! ª Q0~ t !E
0

t

„Q0~t!2M ~Q0!…dt, Q3~ t ! ª Q0~ t !E
0

t

„Q1~t!2M ~Q1!…dt.

~1.9!

Note that, by their definitions, the functionsQi , i 50,...,3, arequasi-periodic if f is quasi-
periodic. We will have more to say about their properties below.

II. ELIMINATION OF SECULAR TERMS. THE MAIN RESULTS

We recall in this section some of the methods and techniques developed in the pr
works.15,16A key result for our method is the theorem below, proven in Ref. 15, which present
solution of Eq.~1.3! in terms of particular solutions of a generalized Riccati equation.

Theorem 2.1:Let f:R→R, f PC1(R) andePR and let g:R→C, gPC1(R), be a particular
solution of the generalized Riccati equation,

Ġ2 iG222i f G1 i e2 5 0. ~2.1!

Then, the functionF:R→C2 given byF(t)5(f2(t)
f1(t)

)5U(t)F(0)5U(t, 0)F(0), where

U~ t !ªS R~ t !~11 ig~0!S~ t !! 2 i eR~ t !S~ t !

2 i eR~ t ! S~ t ! R~ t !~12 i g~0! S~ t !
D ,

with R(t)ªexp(2i*0
t
„f (t)1g(t)… dt) and S(t)ª*0

t R(t)22 dt, is a solution of (1.3) with initial
valueF(0)5(f2(0)

f1(0))PC2. h

Let us briefly describe some of the ideas leading to Theorem 2.1 and to other results o
15. As we saw in Ref. 15, the solutions of Eq.~1.3! can be studied in terms of the solutions of
particular complex version of Hill’s equation:

f̈~ t !1„i ḟ ~ t !1e21 f ~ t !2
…f~ t ! 5 0. ~2.2!

In fact, a simple computation shows that the componentsF(t) satisfy f̈61(6 i ḟ 1e21 f 2)f1

50. If we attempt to solve~2.2! using the Ansatz,

f~ t !5expS 2 i E
0

t

„f ~t!1g~t!…dt D , ~2.3!

it follows thatg has to satisfy the generalized Riccati equation~2.1!. We then try to find solutions
for g in terms of a power expansion ine ~vanishing fore50) like

g~ t ! 5 q~ t ! (
n51

`

vn~ t ! en , ~2.4!

where the functionq was defined in~1.4! and is of central importance in this work.
The heuristic idea behind the Ansa¨tze ~2.3! and~2.4! is the following. Fore[0 a solution for

~2.2! is given by exp„2 i *0
t f (t)dt…. Thus, in ~2.3! and ~2.4! we are searching for solutions i

terms of an ‘‘effective external field’’ of the formf 1g, with g given in terms of a convergen
power series expansion ine, vanishing fore50. A solution of the form~2.3! leads to one of the
two independent solutions of~2.2!. The full solution of~1.3! in terms of solutions of Eq.~2.1! is
that described in Theorem 2.1~see the discussion of Ref. 15!.

We proceed inserting~2.4! into ~2.1!. The result is a set of recursive first order linear diffe
ential equations for the functionsvn that can be easily integrated. The solutions are
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v1~ t !5k1q~ t ! , v2~ t ! 5 q~ t !F i E
0

t

„k1
2Q0~t!2Q0~t!21

… dt1k2G , ~2.5!

vn~ t !5q~ t !F i S E
0

t

(
p51

n21

vp~t!vn2p~t! dt D 1knG , for n>3 , ~2.6!

where thekn’s above,n51,2,..., arearbitrary integration constants. Defining

I2~ t ! ª k1
2Q0~ t !2Q0~ t !21, In~ t ! ª(

p51

n21

vp~ t !vn2p~ t !, n>3,

we can write~2.5!–~2.6! asv1(t)5k1q(t), vn(t)5 iq(t)*0
t In(t)dt1knq(t), n>2. Observe that,

in particular, we could just set all thekn’s equal to zero. However, this is not a clever choice, sin
it would result in polynomial terms ont ~the so-calledsecular terms! for the series expansion
~2.4!. This, of course, would restrict the convergence of the series to short times. As notic
Ref. 15, there is a choice of thekn for which one can eliminate all polynomial terms ont. This
procedure, which we call theelimination of secular terms, will be briefly described now.

First of all, assuming thatf :R→R is quasi-periodic, thenq, defined in~2.4!, is also quasi-
periodic and so isv1 in ~2.5!. The same is true for the integrandI2 which appears inv2 , Eq.~2.5!.
Recalling thatI2 depends on the free integration constantk1 , the key idea is to fixk1 in such a
way that the mean value ofI2 is equal to zero, that isM (I2)5M (k1

2Q02Q 0
21)50. SinceQ0 is

a quasi-periodic function, it readily follows from this that

k1
2 5

M ~Q0!

M ~Q0!
. ~2.7!

With this choice ofk1 one guarantees the absence of a constant term in the Fourier expans
I2 . SinceI2 is being integrated in time, this would imply the absence of a linear term ont in the
final expression forv1 . An important remark is that~2.7! will only make sense if we assum
M (Q0)Þ0.

Under this assumption we can now proceed and fix recursively all integration constantskm by
imposing a zero mean value for the integrandsIn’s, n53,4,..., which appear in~2.6!. This
procedure removes, order by order ine, the presence of the secular terms in the series expan
~2.4! for g and recursively implies that all functionsvn are quasi-periodic. Once all secular term
have been removed, we may writevn(t)5(mI PZAVmI

(n)eimI •vI t, provided the sum converges abs
lutely. This was proven as follows:15 first it was shown that the Fourier coefficientsQmI of q satisfy
uQmI u<Qe2xumI u, for somex.0. Then, the method of elimination of secular terms described ab
was applied to fix the integration constantskn , leading to inductive bounds of the formuVmI

(n)u
<K ne2xumI u for all n51,2,..., thus proving convergence of the Fourier expansion. Due to the
behavior ofKn for n→`, it was not possible to prove convergence of thee-expansion~2.4!, and
that might be seen as a formal quasi-periodic power series solution of~2.1!.

The reason for the bad behavior ofKn is the presence ofsmall denominatorsin the recursive
relations for the coefficientsVmI

(n) . A general discussion of these problems is found in Ref.
However, in the case wheref is periodic, stronger results are possible. In Ref. 16, where this c
was studied, it was possible to prove the convergence of the power series~2.4! and uniform
convergence of the Fourier series involved in the computation of the wave functions. More
absolute convergence of thee-expansions leading to thesecular frequencyand to the coefficients
of the Fourier expansion of the wave functions was also proven.

All the work done in Refs. 15 and 16 was restricted to the conditions~I! and~II ! of Theorem
1.1. These conditions are consequences of the method of elimination of secular terms. Cle~I!
is vital for ~2.7!. Both cases were studied in Refs. 15 and 16. In the present work, we study a
restrictive condition than those represented by~I! and~II !. Namely, we are concerned here with th
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situation whereM (Q0)50 and alsoM (Q1)50. In this case, the complexity of the calculatio
needed to find the proper choice of the constantskn grows very much in comparison with th
cases~I! and~II !. The reason is that, due to the hypothesisM (Q0)5M (Q1)50, one needs to work
with higher order terms in the expansion~2.4!. This will become more clear in Sec. IV.

We are ready now to state the two main theorems of this work.
Theorem 2.2:Let f:R→R be a real quasi-periodic function satisfying

~ III ! M ~Q0!5M ~Q1!50, but M~Q3!Þ0.

Then, there are constantskn ,n>1, such that all functionsvn given in (2.5)–(2.6) are quasi-
periodic. The explicit recursive expressions for the constantskn are found in (4.42)–(4.43). h

The proof of this theorem is the content of Sec. IV. This theorem states that the proced
elimination of secular terms outlined above also works under~III !. When f is quasi-periodic this
does not imply, however, that the formal solution~2.4! of ~2.1! converges, since we have the sam
difficulties discussed in detail in Ref. 15.

For periodic f, the situation is different and stronger results can be proven. Letf (t)
5(mPZFmeimvt be a real periodic function with frequencyv. If F05M ( f )50, q andQ05q2 are
also periodic and their spectra of frequencies are subsets of$nv,nPZ%. Following the notation
employed in Ref. 16, we write the Fourier expansions ofq andQ0 as

q~ t ! 5 (
mPZ

Qmeimvt, Q0~ t ! 5 q~ t !2 5 (
mPZ

Qm
(2)eimvt. ~2.8!

By relations ~2.5!–~2.6! and with the choice of constantskn mentioned in Theorem 2.2@see
~4.42!–~4.43!#, the functionsvn are also periodic and their spectra of frequencies are also su
of $nv,nPZ%. We write their Fourier expansions asvn(t)5(mPZVm

(n)eimvt.
In Appendix B we prove the theorem below, which justifies our whole procedure for the

of periodic interactions and establishes the convergence of~2.4!.
Theorem 2.3: Let f(t) be as above with F05M ( f )50 and such that condition (III) of

Theorem 2.2 is satisfied. Moreover, assume that the coefficients Qm and Qm
(2) above satisfy the

following: for anyx.0 there is a positive constantQ[Q(x) such that

uQmu < Q e2xumu

^̂ m&&2 and uQm
(2)u < Q e2xumu

^̂ m&&2 , ~2.9!

for all mPZ, where the symbol̂̂m&& was defined in (1.8). Then, with the constantskn fixed as in
Theorem 2.2, the Fourier coefficients of the functionsvn given in (2.5)–(2.6) satisfy

uVm
(n)u < M0 ~M1!n

e2xumu

^̂ m&&2 , ;mPZ, n>1,

for some positive constants M0 , M1 . As a consequence, the power series expansion (2.4), re
senting a solution of Eq. (2.1), converges uniformly for all tPR, providedueu,1/M1 . h

It follows from this theorem that the main consequences of Theorem 1.1 are valid
condition~III ! as well. In particular, the Floquet form~1.6! holds and the secular frequencyV and
the Fourier coefficients of~1.7! are analytic functions ofe for ueu small enough. We remark tha
~2.9! was established in Ref. 15 forf periodic and represented by afinite Fourier series. The
condition F05M ( f )50 above is not crucial and can be eliminated following the proced
described in Ref. 16.

A. The secular frequency

A feature of our method is that it allows us to present the completee-expansion for the secula
frequencyV ~also known as Rabi frequency! associated to the solutions of~1.2!–~1.3! @see~1.6!#.
One has~see Refs. 15, 16, and 17!
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V 5 M ~ f !1M ~g!5F01 (
n51

`

enM ~qvn! .

By Theorem 2.3 above, this expansion is convergent forueu small enough. The knowledge of th
complete expansion is particularly important for the qualitative investigation of the long-
behavior of the solutions. After some simple calculations using~2.5!–~2.6! one gets

V5F01ek1M ~Q0!1e2@ ik1
2M ~Q2!2 iM ~Q1!1k2M ~Q0!#1 e3@2k1M ~Q3!1k3M ~Q0!#

1O~e4! . ~2.10!

As we will show in Corollary 3.2,M (Q0)50 impliesM (Q2)50. Hence, for case~II !,

V 5 F02 i e2M ~Q1!12k1e3M ~Q3!1O~e4! , ~2.11!

and for case~III !,

V 5 F012k1e3M ~Q3!1O~e4! . ~2.12!

Actually, after fixingk1 in Sec. IV A, we will see thatV5F012e3uM (Q3)u1O(e4).
In this case~III !, if one additionally hasF050, thenV5O(e3), a fact first pointed in Ref. 17

This implies long transition times for certain probability amplitudes, a phenomenon know
dynamical localization~see Ref. 10 and other references therein!. In Sec. V we discuss this
situation for f describing a monochromatic interaction.

III. SPECIAL PROPERTIES. THE RENORMALIZATION OPERATION

Let us now introduce some notations and techniques that will be useful below. Since e
sions asf (j)*0

jdj8g(j8) will often appear throughout our calculations, we define a shorth
notation,

~ f u g!j ª f ~j!E
0

j

dj8 g~j8! . ~3.1!

Moreover, if (f u g) t is quasi-periodic function ont, thenM ( f u g) will denote its mean value. We

also define (f u g u h)jª„f u (g u h)j8…j5 f (j)*0
jdj8g(j8)*0

j8dj9h(j9). Further compositions like
( f 1 u f 2 u ¯ u f n)j are defined in an analogous way, so that, forn.2, (f 1 u f 2 u ¯ u f n)j

ª„f 1 u ( f 2 u ¯ u f n)j8…j .

A. Properties of the mean value

The following general results on the mean value of some quasi-periodic functions will be
for many purposes in the present work.

Proposition 3.1: Let a, b and c:R→C be quasi-periodic functions with Fourier componen
denoted by AmI , BmI and CmI , mI PZA, respectively. We have the following statements:

(1) If M (c)50, then the Fourier components of the function h(t)ª(b u c) t are given by

HnI 5 (
mI Þ0I

i CmI ~BnI 2BnI 2mI !

mI •vI
, ~3.2!

for all nI PZA. Moreover, if M(b)50 and CmI B2mI 5C2mI BmI for all mI Þ0I , then M(h)50.

(2) If M (b)50 and M(c)50, then M(b u c)52M (c u b).
(3) If M (c)50, then M(c u c)50.
(4) If M (a)5M (c)5M (b u c)50, then
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M ~a u b u c! 5 2M Fb~ t !S E
0

t

a~t! dt D S E
0

t

c~t! dt D G . ~3.3!

Moreover, if also M(b u a)50, then M(a u b u c)5M (c u b u a).

~5! If M (a)5M (b)5M (c)50 and M(b u c)5M (c u a)5M (a u b)50, then

M ~a u b u c!1M ~b u c u a!1M ~c u a u b! 5 0 . ~3.4!

(6) If M (a)50, it follows from (3) and (5) that M(a u a u a)50. h

Proof: We can prove~3.2! by explicitly computing the Fourier decomposition ofh(t). Now,
if M (b)5B050 andCmI B2mI 5C2mI BmI for all mI PZ

*
A , then

H0 5 (
mI Þ0

2 i CmI B2mI

mI •vI
5

2 i

2 (
mI Þ0I

~CmI B2mI 2C2mI BmI !

mI •vI
5 0 . ~3.5!

Since M (h)5H0 , we completed the proof of~1!. To demonstrate~2! we simply use the first
equality of ~3.5! to write M (b u c)5(mI Þ0I (2 i CmI B2mI /(mI •vI )) and M (c u b)5(mI Þ0I

(2 i BmI C2mI /(mI •vI )). ChangingmI →2mI the statement follows. Statement~3! is a mere conse-
quence of~2! when we takeb5c. The first statement~4! can be proven using~2!, taking h(t)
ª(b u c) t , noticing thatM (h)5M (b u c)50 andM (a)50 and using~2!. To prove the second
statement in~4!, all we need to do is to interchange the roles ofc and a ~note that since
M (b u a)50, the mean value of (c u b u a) t is well defined!. Finally, statement~5! can be easily
obtained writingb(t)5 (d/dt) *0

t b(t)dt and using integration by parts, together with~3.3!. j

The following trivial corollary is of crucial importance for some of our calculations.
Corollary 3.2: For M(Q0)50 one always has M(Q2)50. h

Proof: If M (Q0)50 then, by~1.9!, Q2(t)5(Q0 u Q0) t . Hence, from statement~3! of Propo-
sition 3.1, it follows thatM (Q2)50. j

B. The Renormalization Operation

For general quasi-periodic functionsa1 ,...,an , the function (a1 u ¯ u an) t is not always quasi-
periodic, since an integration performed on a quasi-periodic function with a nonzero mean
would produce a~linear in t) secular term, which would eventually become a higher deg
polynomial after further integrations. Here we will describe an operation designed to prod
quasi-periodic function out of (a1 u ¯ u an) t through interactive subtractions of the mean value
the functions being integrated, a procedure we call ‘‘renormalization’’ due to some analogy
the procedure of perturbative renormalization in quantum field theory. We will use this proc
of renormalization in the following sections and here we present its definition and basic prop

Let a1 ,...,an be quasi-periodic functions. We define inductively therenormalization opera-
tion Rn acting on (a1 u ¯ u an) by

R1a1~ t !ªa1~ t !,

R2~a1 u a2! tª~a1 u R1~a2!2M „R1~a2!…! t 5 „a1 u a22M ~a2!…t ,

Rn~a1 u ¯ u an! tª~a1 u Rn21~a2 u ¯ u an!2M „Rn21~a2 u ¯ u an!… ! t ,

for n.2. We will now prove some elementary facts onRn which will be used below. The firs
important observation is that ifa1 ,...,an are quasi-periodic functions, thenRn(a1 u ¯ u an) is
also quasi-periodic. This can be easily seen by induction, through the obvious remark th
mean value ofRn21(a2 u ¯ u an)2M „Rn21(a2 u ¯ u an)… is zero. Note also that, trivially,

a0 Rn~a1 u ¯ u an! 5 Rn~a0a1 u ¯ u an! . ~3.6!
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The following proposition is a trivial but useful restatement of the definition of theRn’s
Proposition 3.3: For all n>2 the following statement holds: if a1 ,...,an are quasi-periodic

functions, thenRn(a1 u ¯ u an)5 R2„a1 u Rn21(a2 u ¯ u an)…. Consequently, for n.2,

Rn~a1 u ¯ u an! 5 R2„a1 u R2~a2 u R2~ ¯ u R2~an21 u an!…¯ ! !. ~3.7!
h

Proof: By the definition of R2 ,

R2„a1 u Rn21~a2 u¯u an!…5~a1 uRn21~a2 u ¯ u an!2M „Rn21~a2 u ¯ u an!…!

5 Rn~a1 u ¯ u an!.
j

Relation~3.7! shows that the operationRn can be obtained by iteration of the operationR2 .
One also has the following useful proposition.

Proposition 3.4: For all n>1 the following statement holds: if a1 ,...,an are quasi-periodic
functions and an5 R2(b u c) for quasi-periodic functions b,c, then Rn(a1 u ¯ u an21 u an)
5 Rn11(a1 u ¯ u an21 u b u c). h

Proof: For n51, let a15 R2(b u c). Then R1a15a15 R2(b u c), trivially. For n52, let
a25 R2(b u c). Then, R2(a1 u a2)5„a1 u a22M (a2)…5(a1 u R2(b u c)2M „R2(b u c)…), but,
by definition, R3(a1 u b u c)5(a1 u R2(b u c)2M „R2(b u c)…) and the statement holds agai
For n.2, let an5 R2(b u c). Then, by induction,

Rn11~a1 u¯u an21 u b u c!5~a1 u Rn~a2 u ¯ u an21 u b u c!2M „Rn~a2 u ¯ u an21 u b u c!…!

5~a1 u Rn21~a2 u ¯ u an21 u an!2M „Rn21~a2 u ¯ u an21 u an!…!

5 Rn~a1 u ¯ u an21 u an!.
j

If a and b1 ,...,bm are quasi-periodic, a function like(k51
m (a u bk) may not be a sum of

quasi-periodic functions, even when (a u (k51
m bk)5(k51

m (a u bk) is quasi-periodic, since we ar
not assuming thatM (bk)50 for each individualk. This fact notwithstanding, the following
simple statement holds and will be repeatedly used.

Proposition 3.5: Let a and b1 ,...,bm be quasi-periodic functions. ThenR2(a u (k51
m bk)

5(k51
m

R2(a u bk). Consequently, Rn(a1 u ¯ u an21 u (k51
m bk)5(k51

m
Rn(a1 u ¯ u an21 u bk)

for quasi-periodic functions a1 ,...,an21 and b1 ,...,bm . h

Proof: We have

R2S a U (
k51

m

bkD 5 S a U (
k51

m

bk2M S (
k51

m

bkD D 5 (
k51

m

„a u bk2M ~bk!… 5 (
k51

m

R2~a u bk!.

The general case follows this and from~3.7!. j

The following corollary follows from Propositions 3.4 and 3.5.
Corollary 3.6: Let a1 ,...,an21 , b1 ,...,bm and c1 ,...,cm be quasi-periodic functions. Then,

RnS a1U ¯uan21u(
k51

m

R2~bkuck!D 5 (
k51

m

Rn11~a1u¯uan21ubkuck!.

h

With the shorthand notation introduced in~3.1! and the definition ofQ0 in ~1.4!, we see from
~1.5!, ~1.9! that Q1(t)5 R2(Q0 u Q0) t , Q2(t)5 R2(Q0 u Q0) t , Q3(t)5 R2(Q0 u Q1) t . Below,
we will often use the following compact notation:

~ i u j ! t ª ~Qi u Qj ! t , ~ i u j̄ ! t ª ~Qi u Qj ! t , ~ i u j u k! t ª ~Qi u Qj u Qk! t ,
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etc, for i , j ,k50, ..., 3. In other words, we simply use the indexn of Qn to denoteQn itself.
Moreover, byM ( i u j ) we will denote the mean value of (i u j ) t , etc. Note that forM (Q0)50 one
has with this notationQ1(t)5(0 u 0̄) t and Q2(t)5(0 u 0)t and for M (Q1)50 one hasQ3(t)
5(0 u 1)t . We will often writeQ3 this way. ForM (Q0)50, other identities will also be at hand
For instance, one has

~0 u 0 u 0! t 5 „0 u ~0 u 0! t8…t 5 ~0 u 2! t and ~1 u 0! t 5 ~2 u 0̄! t , ~3.8!

sinceM (0 u 0)50, by item~3! of Proposition 3.1. Relations like these will be often employed

IV. THE CASE M„Q0…Ä0 AND M„Q1…Ä0

In this section we will prove the Theorem 2.2. Our interest is to study the situation com
mentary to cases~I! and ~II !, i.e., the situation where one has the condition

~ III 0!M ~Q0!50 and M ~Q1!50.

To remove the secular terms fromg, applying the method described in the previous section,
will be forced to add a further restriction to (III0), namely the conditionM (0 u 1)Þ0.

Recall that the functionsq andQ1 depend primordially on the interactionf @see the defini-
tions ~1.4!–~1.5!#, so conditions~I!, ~II ! or (III 0) apply upon the properties off . As we already
saw in Sec.~I!, the functionf (t)5w cos(vt) only satisfies condition~I! or (III 0), depending on the
particular choice of the parametersw,v. We will have more to say about this example later on
Sec. V. Now, let us work with the expansion forg in order to remove all of its secular terms.

Again, our Ansatz to solve~2.1! is ~2.4!. The solutions forvn are ~2.5!–~2.6!. One sees
immediately from condition (III0) that v1 andv2 do not suffer from secular terms. Indeed, sin
M (Q 0

21)5M (Q0)50, we conclude that the mean value of the integrandI2 in ~2.5! is zero.
Therefore, the integration occurring in the expression forv2 in ~2.5! does not produce a linear term
in t. These facts imply thatv1 andv2 are quasi-periodic under (III0). From these consideration
we see that the conditionM (In)50, n>3, becomes recursively identical to(p51

n21M (vpvn2p),
n>3, since thevn’s become successively quasi-periodic when the interactive procedure is r

If we succeed in fixingM (In)50 for all n, we may rewrite~2.5!–~2.6! in a ‘‘renormalized’’
form:

v1~ t !5k1q~ t !, v2~ t ! 5 q~ t !21
„ik1

2Q2~ t !2 iQ1~ t !1k2Q0~ t !), ~4.1!

vn~ t !5q~ t !21H i (
p51

n21

R2~0 u vpvn2p! t1knQ0~ t !J , n>3, ~4.2!

whereQ0 , Q1 andQ2 were defined in~1.4!, ~1.5! and ~1.9!, respectively.
Let us move on and analyze the third order term. According to~2.6! the integrandI3 which

appears in the definition ofv3 is given by 2v1v2 . Using ~4.1! we have

v1v2 5 ik1
3Q22 ik1Q11k1k2Q0 . ~4.3!

From Corollary 3.2, we readily see thatM (I3)52M (v1v2)50, implying that v3 is quasi-
periodic.

Until now we have verified the absence of secular terms in the series expansion ofg up to
order three ine. As we shall see next, for the same to be true up to order four, we have to
a special choice for the value of the constantk1 .
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A. The absence of secular terms in v 4 . Fixing k1

As one sees from~2.6!, the integrand inv4 is I4 ª 2v1v31v2
2. Sincev1 ,v2 ,v3 are quasi-

periodic, the mean value ofI4 is well defined. Let us explicitly evaluateI4 . Using~2.5!–~2.6! one
gets

I4524k1
4~0 u 2!14k1

2~0 u 1!16ik1
2k2Q21~2k1k31k2

2!Q0

22ik2Q12k1
4~2 u 0!12k1

2~2 u 0̄!2~1 u 0̄! . ~4.4!

The functions on the r.h.s. of~4.4! are all quasi-periodic, sinceM (Q0)5M (Q1)5M (Q2)
50. Therefore, we are allowed to take the mean value of each individual term above. The
is

M ~I4! 5 24k1
4M ~ 0 u 2 !14k1

2M ~ 0 u 1 !2k1
4M ~ 2 u 0 !12k1

2M ~ 2u 0̄ !2M ~ 1 u 0̄ !.

By statements~2! and ~6! of Proposition 3.1 and by~3.8! we have

M ~2 u 0!52M ~0 u 2! 5 2M ~0 u 0 u 0!50 , ~4.5!

M ~2 u 0̄!5M ~1 u 0! 5 2M ~0 u 1! . ~4.6!

Hence,

M ~I4! 5 2k1
2M ~0 u 1!2M ~1 u 0̄! . ~4.7!

We have the following.
Proposition 4.1: Under M(Q0)5M (Q1)50, one has M( 1 u 0̄ )52M ( 0 u 1 ). h

Proof: By the definition ofQ1 , M (0 u 1)5M (0 u 0 u 0̄) and

M ~1 u 0̄!5M S Q0~ t !S E
0

t

Q0~t!21 dt D S E
0

t

Q0~t!21 dt D D 52M ~ 0̄ u 0 u 0̄! , ~4.8!

where, in the last equality, we have used statement~4! of Proposition 3.1. Now, by statement~5!
of the same proposition, we can write

M ~0 u 0 u 0̄!1M ~0 u 0̄ u 0!1M ~ 0̄ u 0 u 0! 5 0 ~4.9!

@recall thatM (0 u 0̄)5M (0̄ u 0)5M (0 u 0)50]. Once again, by statement~4! of Proposition 3.1,
M (0 u 0 u 0̄)5M (0̄ u 0 u 0). Thus,~4.9! reads as 2M (0 u 0 u 0̄)1M (0 u 0̄ u 0)50. Taking the com-

plex conjugate yields 2M (0 u 0 u 0̄)1M (0̄ u 0 u 0̄)50. Finally, usingM (0 u 1)5M (0 u 0 u 0̄) and
~4.8!, we getM (1 u 0̄)52M (0 u 1). j

We have just proven thatM (I4)52„k1
2 M (0 u 1)2M (0 u 1)…. Now we imposeM (I4)50. Of

course, this will be the case ifM (0 u 1)50 but, in the situation whereM (0 u 1)Þ0 this can be
achieved by fixingk1 as @see~4.7!#

k1 5 S M ~0 u 1!

M ~0 u 1!
D 1/2

5 S M ~Q3!

M ~Q3!
D 1/2

. ~4.10!

Thus,k1 is a phase:uk1u51. It will be henceforth assumed thatM (0 u 1)Þ0. If M (0 u 1)50, k1

has to be fixed byM (I5)50. We shall not treat this more restrictive case here.
So far, we have verified the absence of secular terms in the series expansion~2.4! for g

up to order three ine and we have eliminated them fromv4 by making a special choice for th
value of k1 @given by ~4.10!#. At this point we would like to proceed recursively by imposin
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M (In)50, for all n>5. This would give the correct values for the constantskp , p>2, and
guarantee the absence of secular terms in allvn , n>5. This recursive procedure was used in R
15 to eliminate the secular terms fromg in cases~I! and~II !. Here, we still have to determine th
constantsk2 andk3 explicitly ~not recursively! before running the recursive procedure.

B. The absence of secular terms in v 5 . Fixing k2

Let us begin by calculating the integrandI5 which appears inv5 . Takingn55 in ~2.6! we get
I552v1v412v2v3 . We first evaluatev1v4 explicitly and thenv2v3 .

Since we haveM (I3)50 and since with the choice ofk1 in ~4.10! we imposedM (I4)50, we
have by the recursive relations~4.1!–~4.2!,

v1v352ik1 R2~0 u v1v2!1k1k3Q0 , ~4.11!

v1v452ik1 R2~0 u v1v3!1 ik1 R2~0 u v2
2!1k1k4Q0 . ~4.12!

Inserting~4.3! onto the r.h.s. of~4.11! we get

v1v3 5 22k1
4

R2~0 u 2!12k1
2

R2~0 u 1!12ik1
2k2 R2~0 u 0!1k1k3 Q0 . ~4.13!

Inserting this onto the r.h.s. of~4.12! gives

v1v4524ik1
5

R3~0 u 0 u 2!14ik1
3

R3~0 u 0 u 1!24k1
3k2 R3~0 u 0 u 0!12ik1

2k3 R2~0 u 0!

1 ik1 R2~0 u v2
2!1k1k4Q0 . ~4.14!

Let us now computev2
2. Sincev25k2q1 iq21(k1

2Q22Q1), we have

v2
2 5 k2

2Q012ik1
2k2Q222ik2Q11s , ~4.15!

wheresª2Q 0
21(k1Q22Q1)2 andk1 alone. Now, we insert this into~4.14! and get

v1v4524ik1
5

R3~0 u 0 u 2!14ik1
3

R3~0 u 0 u 1!26k1
3k2 R2~0 u 2!12ik1

2k3 R2~0 u 0!

1 ik1k2
2

R2~0 u 0!12k1k2 R2~0 u 1!1 ik1 R2~0 u s!1k1k4Q0 , ~4.16!

where we used the fact thatR3(0 u 0 u 0)5 R2(0 u 2). Collecting in~4.16! the terms depending
only on k1 , and defining

A1 ª 24k1
4

R3~0 u 0 u 2!14k1
2

R3~0 u 0 u 1!1 R2~0 u s!, ~4.17!

expression~4.16! becomes

v1v4 5 26k1
3k2 R2~0 u 2!12k1k2 R2~0 u 1!1 ik1~2k1k31k2

2! Q21k1k4Q01 ik1A1 .
~4.18!

From definition~4.17!, it is evident thatA1 is quasi-periodic, since it is a sum of quasi-period
functions. Note that~4.17! depends only on the constantk1 . Since we are working under th
conditionM (Q0)5M (Q1)5M (Q2)50, we can drop the symbolR2 above. From this fact and
from relation~4.5!, we conclude thatM (v1v4)52k1k2 M (0 u 1)1 ik1M (A1).

Let us now calculate the second term inI5 , namely,v2v3 . A lengthy computation, analogou
to the one above, gives
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v2v3522ik1
5

R2~2 u 2!12ik1
3

R2~2 u 1!22k1
3k2 R2~2 u 0!12ik1

3
R2~1 u 2!22ik1 R2~1 u 1!

12k1k2 R2~1 u 0!22k1
3k2 R2~0 u 2!12k1k2 R2~0 u 1!1 i ~2k1k2

21k1
2k3!Q22 ik3Q1

1k2k3Q0 . ~4.19!

Clearly the r.h.s. of~4.19! is quasi-periodic. Since we are working under the conditionM (Q0)
5M (Q1)5M (Q2)50, we can drop the symbolR2 above and reorder~4.19! in the form

v2v35 i ~2k1k2
21k1

2k3!Q22 ik3Q11k2k3Q022ik1
5~2 u 2!22ik1~1 u 1!12ik1

3@~2 u 1!

1~1 u 2!#22k1
3k2@~2 u 0!1~0 u 2!#12k1k2@~1 u 0!1~0 u 1!# . ~4.20!

Above, we also usedR2(0 u 0)5Q2 . From ~4.20!, from the fact that M (Q0)5M (Q1)
5M (Q2)50 and from statements~2! and ~3! of Proposition 3.1, we see immediately th
M (v2v3)50.

We are now ready to find the value ofk2 by imposing the conditionM (I5)50, which
guarantees the absence of secular terms inv5 . Since M (I5)52M (v1v4)12M (v2v3)
54k1k2 M (0 u 1)12ik1M (A1), we conclude that

k2 5 2
iM ~A1!

2M ~0 u 1!
. ~4.21!

Note that the r.h.s. of~4.21! depends on the previously fixedk1 .

C. The absence of secular terms in v 6 . Fixing k3

We still have to findk3 in order to fix recursively allkn’s for n>4. k3 will be fixed by
eliminating the secular terms fromv6 , that is, by imposingM (I6)50. First of all, we need to
write I6 . Using relation~2.6! for n56 we find thatI652v1v512v2v41v3

2. Let us calculate
2v1v5 . Another lengthy computation gives

2v1v5 5 A2212k1
3k3 R2~0 u 2!14k1k3 R2~0 u 1!14ik1~k2k31k1k4!Q212k1k5Q0 ,

~4.22!

whereA2 is the quasi-periodic function defined by

A2ª8k1
6

R3~0 u 2 u 2!28ik1
4

R3~0 u 2 u 1!28ik1
4k2 R3~0 u 2 u 0!28k1

4
R3~0 u 1 u 2!

18k1
2

R3~0 u 1 u 1!18ik1
2k2 R3~0 u 1 u 0!116ik1

2k2 R3~0 u 0 u 1!232ik1
4k2 R3~0 u 0 u 2!

212k1
2k2

2
R2~0 u 2!24k1

2
R2~0 u A1! , ~4.23!

which depends only on the constantsk1 and k2 . Since 2v1v5 given above is a sum of quas
periodic functions we can take the mean value of each individual term which appears on th
of ~4.22! and write

2M ~v1v5! 5 M ~A2!14k3k1M ~0 u 1! , ~4.24!

where, once again, we have usedM (Q0)5M (Q1)5M (Q2)50 and the identity~4.5!.
The second term ofI5 , namely 2v2v4 , is given by

2v2v45A324k1
3k3 R2~2 u 0!14k1k3 R2~1 u 0!12i ~k1

2k412k1k2k3!Q222ik4Q1

12k2k4Q0 ~4.25!

whereA3 is given by
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A3ª8k1
6

R3~2 u 0 u 2!28k1
4

R3~2 u 0 u 1!28ik1
4k2 R3~2 u 0 u 0!28k1

4
R3~1 u 0 u 2!

18k1
2

R3~1 u 0 u 1!18ik1
2k2 R3~1 u 0 u 0!28ik1

4k2 R3~0 u 0 u 2!18ik1
2k2 R3~0 u 0 u 1!

28k1
2k2

2
R3~0 u 0 u 0!22k1

2
R2~2 u v2

2!12 R2~1 u v2
2!12ik2 R2~0 u v2

2!, ~4.26!

which is quasi-periodic and depends only on the constantsk1 andk2 .
We can now proceed and take the mean value of 2v2v4 from ~4.25!. Using M (Q0)

5M (Q1)5M (Q2)50 and~4.5!, we get

2M ~v2v4! 5 M ~A3!14k1k3M ~0 u 1! . ~4.27!

We are almost through with the calculation ofI6 . We still needv3
2. Using relations~4.1!–

~4.3!,

v3 5 q21$2i R2~0 u v1v2!1k3Q0%

5 q21$22k1
3

R2~0 u 2!12k1 R2~0 u 1!12ik1k2Q21k3Q0%. ~4.28!

Hence,v3
25k3

2Q014k1k3@2k1
2

R2(0 u 2)1 R2(0 u 1)1 ik2Q2#24A4 , whereA4 and depends
only on the already fixed constantsk1 and k2 : A4ªQ 0

21@ ik1
3

R2(0 u 2)2 ik1 R2(0 u 1)
1k1k2Q2#2. Therefore, using once moreM (Q0)5M (Q2)50 and ~4.5!, we get M (v3

2)
54k3k1M (0 u 1)24M (A4). Finally, imposing M (I6)50, i.e., 2M (v1v5)12M (v2v4)
1M (v3

2)50, we obtain from our previous calculations,

k3 5
4M ~A4!2M ~A3!2M ~A2!

4k1M ~0 u 1!
. ~4.29!

Note that the r.h.s. of~4.29! depends on the previously fixedk1 andk2 .

D. The absence of secular terms in v n , nÐ7. Fixing knÀ3 recursively

So far, we have fixed the constantsk1 , k2 and k3 individually. Now we proceed to fix
recursively all otherkn23 for all n>7. We have to impose

M ~In! 5 0 ⇒ M S (
p51

n21

vpvn2pD 5 0, ~4.30!

for all n>7. Condition~4.30! guarantees the absence of secular terms in allvn , n>7.
The idea now is to use~4.30! to calculate recursively the constantskn23 , for all n>7, that is,

k4 , k5 , ... . Of course, we already havek1 , k2 andk3 and, hence, we completely knowv1 , v2

andv3 . We also know that all functions fromv1 to v6 are quasi-periodic. From now on we wi
work inductively: we assume for eachn>7 that we fixedk1 ,...,kn24 by imposingM (Im)50 for
all m52, ...,n21 and that, as a consequence, all functionsv1 ,...,vn21 are quasi-periodic. This is
already known forn57. By our inductive hypothesis, we are allowed to take the summation
of the mean valueM in ~4.30! and write

2@M ~v1vn21!1M ~v2vn22!1M ~v3vn23!#1 (
p54

n24

M ~vpvn2p! 5 0 , ~4.31!

where, by convention,(p54
n24M (vpvn2p)50 for n57. Let us introduce now the following defini

tion:

l m~ t ! 5 q~ t !„vm~ t !2kmq~ t !… , ~4.32!

for all m>4. Note that, by relation~2.6!, the functionsl m’s above can also be written as
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l m~ t ! 5 i q~ t !2S E
0

t

(
p51

m21

vp~t!vm2p~t! dt D . ~4.33!

For m,n we are allowed to write

l m~ t ! 5 i q~ t !2S E
0

t

(
p51

m21

@vp~t!vm2p~t!2M ~vpvm2p!# dt D 5 i (
p51

m21

R2~0 u vpvm2p! t ,

~4.34!

since we assumedM ((p51
m21vpvm2p)5M (Im)50 for all m,n, by the inductive hypothesis

Hence,l m are quasi-periodic for allm,n, by the inductive hypothesis.
Let us use the definition given in~4.32! and evaluate the first three terms which appear

~4.31!. Beginning with the first one, we have

M ~v1vn21! 5 M „v1~q21l n211kn21q!… 5 k1M ~ l n21! , ~4.35!

where we have used~2.5! and the fact thatM (Q0)50. Using~4.32!, the second term of~4.31! can
be evaluated as

M ~v2vn22! 5 M „v2~q21l n221kn22q!… 5 M ~q21v2l n22! , ~4.36!

where we have used~4.1! to expressqv2 and the fact thatM (Q0)5M (Q1)5M (Q2)50. Finally,
for the third term of~4.31!, we have

M ~v3vn23! 5 M „v3~q21l n231kn23q!… 5 M ~q21v3l n23!1kn23M ~qv3! . ~4.37!

The product qv3 can be obtained from~4.28!, from which we conclude thatM (qv3)
52k1M (0 u 1). Inserting this into~4.37! gives

M ~v3vn23! 5 M ~q21v3l n23!12k1kn23M ~0 u 1! . ~4.38!

The substitution of~4.35!, ~4.36! and ~4.38! into ~4.31!, gives us

~4.39!

Before we proceed, let us make some comments on our strategy. Equation~4.39! is a direct
consequence of~4.30! and, thus, is being imposed for eachn>7, leading to the values ofk4 , k5

and so on. By our induction hypothesis, we have fixed the constantsk1 ,...,kn24 and, hence, we
completely knowv1 ,...,vn24 . For this reason the terms~iii ! and~v! are known by assumption@by
~4.34!, the evaluation ofl n23 requires the knowledge ofv1 ,...,vn24]. Our aim is to use~4.39! as
a condition to fixkn23 and we, therefore, have to isolate the dependence of~4.39! on kn23 . The
function l n22 , in term ~ii !, depends implicitly onvn23 and, hence, onkn23 @see, again, relation
~4.34!#. The term~i!, however, depends implicitly onkn22 andkn23 . This dependence onkn22

could be a problem, since we are still working to fixkn23 . Nevertheless, as will be shown, th
conditionsM (Q1)50 andM (Q2)50 fortunately eliminatekn22 from the final expression, and
we will be led to a condition expressingkn23 in terms of known quantities.

Let us now compute terms~i! and~ii !. After a long computation, found in Appendix A 1, w
get

k1M ~ l n21! 5 2k1kn23M ~0 u 1!1R n
(1) , ~4.40!
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whereR n
(1) is defined in~A6! and depends on constantsk1 , ...,kn24 only. For term~ii ! of ~4.39!

we get, after another long computation presented in Appendix A 2,

M ~q21v2l n22! 5 22k1kn23M ~0 u 1!1R n
(2) , ~4.41!

whereR n
(2) is defined in~A7!. We again stress thatR n

(2) depends onk1 , ...,kn24 only.
We are now ready to give the precise value ofkn23 in order to satisfy~4.30!. Collecting~4.40!

and ~4.41! and inserting them into~4.39!, we obtain

kn23 5
21

4k1M ~0 u 1! H (
p54

n24

M ~vpvn2p!12R n
(1)12R n

(2)12M ~q21v3l n23!J ,

for all n>7. Note thatR n
(1) andR n

(2) can be recursively computed for alln @see Eqs.~A6!–~A7!#.
The functionsl n23 can also be recursively computed for alln by means of~4.34!.

Summarizing our conclusions, under conditions (III0) andM (0 u 1)Þ0, i.e., under condition
~III ! of Theorem 2.2, and with the constantskn recursively chosen as

k15S M ~0 u 1!

M ~0 u 1!
D 1/2

, k2 5 2
iM ~A1!

2M ~0 u 1!
, k3 5

4M ~A4!2M ~A3!2M ~A2!

4k1M ~0 u 1!
,

~4.42!

kn235
21

4k1M ~0 u 1! H (
p54

n24

M ~vpvn2p!12R n
(1)12R n

(2)12M ~q21v3l n23!J , n>7,

~4.43!

all secular terms are eliminated from~2.4!. Note that hypothesisM (0 u 1)Þ0 is theonly additional
restriction needed to~4.42!–~4.43!. The proof of Theorem 2.2 is thus complete. j

V. MONOCHROMATIC FIELDS. Ac–dc FIELDS

We illustrate our method and our results considering the simplest case of monochro
interactions~ac–dc field! f (t)5F01w cos(vt), important in physical applications. We want
show that with conditions~I!–~III ! we obtain with our method convergent perturbative solutions
this problems for all parametersF0 andw, except perhaps for spurious situations. For the ac
field one hasQ0(t)5(nPZJn(x1)ei (n1x2)vt, whereJn are the Bessel function of the first kind an
where we definedx1ª2w/v andx2ª2F0 /v. Hence, condition~I! ~treated in detail in Ref. 16!
holds providedx252m, with m integer, and providedx1 is not a zero ofJm . By ~2.10!,

V 5 2
mv

2
1eJm~x1!1O~e2! .

See also the discussion in Ref. 10. Let us consider the complementary situations.
~i!. Considerx252m, a nonzero integer, andx1 is a zero ofJm . One hasM (Q0)50 and we

have to look first atM (Q1). We get,M (Q1)5(kPZ
*
„Jk1m(x1)2/ ikv…. For integerm one has the

identity

(
kPZ

*

Jk1m~x!2

k
5 Jm~x!F22

]

]n
Jn~x!U

n5m

1pYm~x!G , ~5.1!

wherepYm(x)ª„(]/]n) Jn(x)2(21)m (]/]n) J2n(x)…un5m are Bessel functions of the secon
kind. Becausex1 is bound to be a zero ofJm , one concludes thatM (Q1)50 in this case. A direct
computation shows that M (0 u 1)5 (1/v2)Tm(x1), where Tm(x)ª
2(k, p P Z „Jm1p(x)Jm1p2k(x)Jm1k(x)/k p…. Numerical calculations indicate thatTm(x) does
*
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not vanish at the zeros ofJm . We conclude that condition~III ! holds in casei, except, perhaps, fo
spurious zeros ofJm for whichTm eventually vanishes, and whose existence could not be ruled
numerically. By~2.11!,

V 5 2
mv

2
1

2e3

v2 Tm~x1!1O~e4! .

~ii !. Considerx2 noninteger~see also the discussion in Ref. 10!. One hasM (Q0)50, and we
have to look atM (Q1). We get,M (Q1)5( i /vx2) @J0(x1)212x2

2(k51
`

„Jk(x1)2/(x2
22k2

…#. Gen-
erally, the r.h.s is non-zero and we have condition~II !. Hence, by~2.11!,

V 5 F01
e2

vx2
FJ0~x1!212x2

2(
k51

`
Jk~x1!2

x2
22k2 G1O~e3! . ~5.2!

Note, however, that on each intervalx2P(k,k11), k51, 2,..., thetermsJk(x1)2/(x2
22k2)

1 Jk11(x1)2/„x2
22(k11)2

… vary continuously from1` to 2`. Hence, there is on each interv
(k,k11), k50, 1, 2,..., aspecial valuex2

s of x2 ~depending onx1) for which M (Q1)50, and we
would be out of case~II !. But when 2x2 is a noninteger, one hasM (Q3)50. Hence, except for the
very unlikely case where 2x2

s is an integer, we would be out of condition~III ! as well, andV
5F01O(e4).

Another special situation would occur whenx2 is chosen to satisfyF02 i e2M (Q1)50. By the
argument above, this is possible, butx2 will depend one. It is therefore unclear ifV will be just
O(e4) or ‘‘small’’ @eventually leading to an even stronger dynamical localization than we ha
case~III !#. It is not even clear if we would be in a situation where our series converge, and w
this other special situation without more comments.

It is interesting to compare the expressions for the secular frequencyV in the three situations
above ~for F0Þ0) with the situation wherew50, where the secular frequencyV0 is V0

ªF0A11(e/F0)25F01(e2/2F0) 1O(e4). This reveals the effect of the ac-fieldw cos(vt) on
the secular frequency. Takingx1→0 in ~5.2! we recoverV0 .

~iii ! Considerx250, i.e., F050, and x15xa , the a-th zero of J0 on R1 . This case is
interesting in connection with the issue of dynamical localization, as discussed in Refs. 7, 8,
and 17. HereM (Q0)50 and M (Q1)5 ( i /v) (m51

`
„Jm(x1)22J2m(x1)2

…/m50, since Jk(x)
5(21)kJ2k(x). Thus, condition~II ! does not apply and we have to look atM (0 u 1). We obtain
M (0 u 1)5 (1/v2)T(xa), with T(xa)ª2(n,mPZ

*
@Jn(xa)Jn2m(xa)Jm(xa)/n m#. We conclude

that condition~III ! will be valid, except perhaps for spurious zeros ofJ0 for which T(xa) even-
tually vanishes. Numerical computations, though, indicate that such zeros may not exist.

We conclude that condition~III ! is suitable for studying the monochromatic field whenx1 lies
over the ‘‘resonant’’ pointsxa , leading, together with condition~I!, to a complete solution for the
ac–dc field except, perhaps, for some rather spurious situations. Note, finally, that in case~iii ! we
have V5O(e3) @see~2.12!#. In fact, the first contribution toV is 2(e3/v2)T(xa). This weak
dependence one implies long transition times for certain probability amplitudes.

To test our algorithm and to extract more information from our solutions, we comp
numerically the propagatorU(t) given in ~1.6! for the case~iii ! described above. The results a
excellent and are reported in Ref. 18.

APPENDIX A: SOME SPECIAL RELATIONS

Here we prove some of the relations used in Sec. IV. Since they involve a somewhat
amount of algebraic manipulations we prefer to separate them from the main text. We will,
without explicit mention, make repeated use of the propositions and corollaries of Secs. III
III B.
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1. Obtaining relation „4.40…

Let us explicitly write k1l n21 in term ~i! of ~4.39! using Eq.~4.33!. We havek1l n21(t)
5A(t)1B(t), where

A~ t ! ª 2i k1 R2~0 u v1vn22!, B~ t ! ª ik1 (
p52

n23

R2~0 u vpvn212p! . ~A1!

The above expressions forA(t) andB(t) will now be worked individually. Let us start withA(t).
By the inductive hypothesis, we are allowed to use~4.1!–~4.2!. We write

A~ t !52 i k1
2

R2S 0 U i (
p51

n23

R2~0 u vpvn222p!1kn22Q0D
522 k1

2(
p51

n23

R3~0 u 0 u vpvn222p!12 i k1
2kn22 R2~0 u 0! .

Note thatA(t) is implicitly dependent onkn23 , namely throughvn23 . To make this depen-
dence explicit we have to split the sum containingvn23 and writevn23 with the use of~4.2!:

A~ t !522 k1
2(

p52

n24

R3~0 u 0 u vpvn222p!24 k1
2

R3~0 u 0 u v1vn23!12 i k1
2kn22 R2~0 u 0!

522 k1
2(

p52

n24

R3~0 u 0 u vpvn222p!24i k1
3(

p51

n24

R4~0 u 0 u 0 u vpvn232p!

24 k1
3kn23 R3~0 u 0 u 0!12 i k1

2kn22 R2~0 u 0! . ~A2!

We will now work onB(t), Eq. ~A1!. Using ~4.1!–~4.2!, we have

B~ t !52ik1 R2~0 u v2vn23!1 ik1 (
p53

n24

R2~0 u vpvn212p! . ~A3!

Next, we have to compute separatelyv2vn23 . Using once more~4.1!, ~4.2! and ~3.6! @which
implies Q 0

21Qi R2(0 u a)5 R2( i u a)], we get

v2vn2352k1
2(

p51

n24

R2~2 u vpvn232p!1 (
p51

n24

R2~1 u vpvn232p!1 ik2(
p51

n24

R2~0 u vpvn232p!

1kn23~ ik1
2Q22 iQ11k2Q0! .

This expression forv2vn23 has to be introduced into the first term of~A3!. The result is

B~ t !52ik1(
p51

n24

$2k1
2

R3~0 u 2 u vpvn232p!1 R3~0 u 1 u vpvn232p!1 ik2 R3~0 u 0 u vpvn232p!%

1 ik1 (
p53

n24

R2~0 u vpvn212p!12ik1kn23@ ik1
2

R2~0 u 2!2 i R2~0 u 1!1k2 R2~0 u 0!# .

~A4!

Since bothA and B are quasi-periodic, we can now computek1M ( l n21)5M (A)1M (B).
Using ~A2!, ~A4!, ~4.5! and the already proven fact thatM (0 u 0)50, we get
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k1M ~ l n21! 5 2k1kn23M ~0 u 1!1R n
(1) , ~A5!

where

R n
(1)
ª2ik1(

p51

n24

$22k1
2M „R4~0 u 0 u 0 u vpvn232p!…1M ~ R3„0 u 1 u vpvn232p!…

2k1
2M „R3~0 u 2 u vpvn232p!…1 ik2M „R3~0 u 0 u vpvn232p!…%

22 k1
2(

p52

n24

M „R3~0 u 0 u vpvn222p!…1 ik1 (
p53

n24

M „R2~0 u vpvn212p!… . ~A6!

This is the desired relation~4.40!. By inspection, one verifies thatR n
(1) depends on the constan

k1 , ...,kn24 only. Note that the constantkn22 disappeared completely when we took the me
value ofA(t)1B(t), due to the crucial fact thatM (Q2)50. This is very important, otherwise w
would have in~A5! an equation fortwo unknownskn23 andkn22 .

2. Obtaining relation „4.41…

The main point is to make thekn23 dependence ofl n22(t) explicit. Using~4.34! and~4.2! for
vn23(t), we can write

q21v2l n225 i (
p51

n23

R2~qv2 u vpvn222p! 5 2i R2~qv2 u v1vn23!1 i (
p52

n24

R2~qv2 u vpvn222p!

52ik1 R2S qv2 U i (
p51

n24

R2~0 u vpvn232p!1kn23Q0D 1 i (
p52

n24

R2~qv2 u vpvn222p!

522k1(
p51

n24

R3~qv2 u 0 u vpvn232p!1 i (
p52

n24

R2~qv2 u vpvn222p!

12ik1kn23 R2~qv2 u 0! .

By ~4.1!, R2(qv2 u 0)5 ik1
2

R2(2 u 0)2 i R2(1 u 0)1k2 R2(0 u 0). Hence, M „R2(qv2 u 0)…
5 iM (0 u 1). Therefore,M (q21v2l n22)522k1kn23M (0 u 1)1R n

(2) , where

R n
(2)

ª 22k1(
p51

n24

M „R3~qv2 u 0 u vpvn232p!…1 i (
p52

n24

M „R2~qv2 u vpvn222p!… . ~A7!

This is the desired equation~4.41!. By inspection, one verifies thatR n
(2) depends on the constan

k1 , ...,kn24 only.

APPENDIX B: PROOF OF CONVERGENCE OF THE e EXPANSION

Here we will present the proof of Theorem 2.3, i.e., the proof of convergence of te
expansion of~2.4! for periodic f . It follows the ideas of Ref. 16, but technical adaptations
necessary. For the sake of simplification we shall consider here only the case whereF05M ( f )
50. The general caseF0Þ0 can be treated following the lines described in detail in Ref. 16

In terms of the Fourier coefficientsQm and Qm
(2) , appearing in~2.8!, of the Fourier coeffi-

cientsVm
(n) of vn and in terms of the constantskn , relations~4.1!–~4.2! become

Vm
(1)5k1Qm , Vm

(2) 5 (
n1PZ
n1Þ0

Qm2n1
~k1

2Qn1

(2)2Q2n1

(2) !

n1v
1 k2Qm , ~B1!
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Vm
(n)5 (

n1 , n2PZ
n11n2Þ0

Qm2(n11n2)

~n11n2!v S (
p51

n21

Vn1

(p)Vn2

(n2p)D 1 knQm , for n>3. ~B2!

Of course, due to the choices of the constantskn described before, no secular terms appear.
By ~2.9! and by an inductive argument, we will prove the following statement: for allpPN

and allmPZ there are constantsKp.0 such that

uVm
(p)u < Kp

e2xumu

^̂ m&&2 . ~B3!

To show this, let us first recall the following result, proven in:16

Lemma B.1: For x.0 and mPZ define B(m)[B(m, x)ª(nPZ (e2x(um2nu1unu)/ ^̂ m
2n&&2 ^̂ n&&2. Then one hasB(m)<B0 (e2xumu/ ^̂ m&&2) , for some constant B0[B0(x).0 and for
all mPZ. h

From ~B1! and ~2.9!, we have

uVm
(1)u < Q e2xumu

^̂ m&&2 , uVm
(2)u <

2Q 2

v (
n1PZ

*

e2x(um2n1u1un1u)

^̂ m2n1&&
2^̂ n1&&

2

1

un1u
1 uk2uQ e2xumu

^̂ m&&2 ,

where we useduk1u51. By Lemma B.1, the sum overn1 can be bounded byB0(e2xumu/ ^̂ m&&2).
Hence,uVm

(1)u<K1(e2xumu/ ^̂ m&&2) and uVm
(2)u<K2(e2xumu/ ^̂ m&&2) , for all mPZ, by choosingK1

ªQ andK2ª(2Q 2B0 /v) 1uk2uQ.
To proceed, let us assume~B3! for all p51,...,n21. By ~B2! and ~2.9!, we have

uVm
(n)u<

Q
v S (

n1 , n2PZ
n11n2Þ0

e2x(um2n12n2u1un1u1un2u)

^̂ m2n12n2&&
2^̂ n1&&

2^̂ n2&&
2

1

un11n2u D S (
p51

n21

KpKn2pD
1uknuQ e2xumu

^̂ m&&2 , for n>3.

Applying twice Lemma B.1, the sums overn1 , n2 can be bounded by (B0)2 (e2xumu/ ^̂ m&&2).
Therefore,uVm

(n)u<Kn(e2xumu/ ^̂ m&&2) for all mPZ, by choosing

Kn ª

~B0!2Q
v S (

p51

n21

KpKn2pD 1kn
0Q, ~B4!

wherekn
0 is some suitably chosen upper bound foruknu. We now turn our attention touknu, for

which we have to find estimates using again the inductive hypothesis~B3! for all p51,...,n21.
Now, k1 , k2 andk3 are fixed by~4.42! andkn , n>4, are given by~4.43!, from which we get

~B5!

for n>4. We have to bound each of the termsTi indicated above. Let us start withT1 .
Bound for T1: We haveM (vpvn132p)5(mPZVm

(p)V2m
(n132p) . Hence, by the inductive hypoth

esis~B3!, assumed forp51,...,n21, we get

T1 5 (
p54

n21

uM ~vpvn132p!u < h1(
p54

n21

KpKn132p , ~B6!
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whereh1ª(mPZ (e22xumu/ ^̂ m&&2).
Bound for T2: Eq. ~A6! involves sums of the mean value of functions likeRk(a1 u ¯ u ak).

Let us prove a general statement about such functions.
Proposition B.2: For k>2, let a1 , ...,ak be periodic functions with the same frequencyv, and

such that al(t)5(mPZA
( l )(m)eimvt, where the Fourier coefficients A( l )(m) satisfy

uA( l )~m!u < a l

e2xumu

^̂ m&&2 , ~B7!

for all mPZ and all l51, ...,k, wherea l.0 andx.0. Then, there is a positive constantbk such
that the Fourier coefficientsRk(a1 u ¯ u ak)(m), mPZ, of Rk(a1 u ¯ u ak) t are bounded by

u Rk~a1 u ¯ u ak!~m!u < bk a1¯ak

e2xumu

^̂ m&&2 . ~B8!

h

Proof: Let us first consider the casek52. The Fourier coefficients ofR2(a1 u a2) t are given
by

R2~a1 u a2!~m! 5 (
nPZ

A(1)~m2n!Ã(2)~n!, ~B9!

where

Ã(2)~m! ª H A(2)~m!

imv
, for mÞ0,

2
1

iv (
kPZ

*

A(2)~k!

k
, for m50.

.

From ~B7!, it follows that uAI
(2)(m)u<a2 (D0 /v) (e2xumu/ ^̂ m&&2) , where D0

ª(mPZ (e2xumu/ ^̂ m&&2). Therefore, u R2(a1 u a2)(m)u<a1a2 (B0D0 /v) e2xumu/ ^̂ m&&2), from
~B9!, by ~B7! and by LemmaB.1. This proves the statement fork52. The general case follow
from ~3.7!, by induction. j

As a corollary, one sees from~2.9! that the functionsQ0 , Q1 andQ2 have Fourier coefficients
bounded asuQi(m)u<g i (e2xumu/ ^̂ m&&2) for some positiveg i . Moreover, by the inductive hypoth
esis ~B3! and by Lemma B.1, the Fourier coefficients (vpvq)(m) of product functions like
vp(t)vq(t), with p,q51, ...,n21, are also bounded as

u~vpvq!~m!u < B0 Kp Kq

e2xumu

^̂ m&&2 ~B10!

for all mPZ. The consequence of all this is that fori jP$0,1, 2% andp, q51, ...,n21 one has
u Rk( i 1u i 2u¯u i k21uvpvq)(m)u<g i 1 , i 2 , ¯ , i k21

Kp Kq (e2xumu/ ^̂ m&&2) , ;mPZ, with some posi-
tive constantsg i 1 , i 2 , ¯ , i k21

, depending on the indicesi j . Turning our attention back to~A6!, we
conclude

uR n13
(1) u < h2(

p51

n21

KpKn2p1h3(
p52

n21

KpKn112p1h4(
p53

n21

KpKn122p , ~B11!

for certain positive constantsh2 ,h3 ,h4 .
Bound for T3 : Since qv2 is a linear combination of the functionsQ0 , Q1 and Q2 , we

conclude from~A7! and from the previous arguments that
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uR n13
(2) u < h5(

p51

n21

KpKn2p1h6(
p52

n21

KpKn112p , ~B12!

for certain positive constantsh5 ,h6 .
Bound for T4 : By ~4.34!, one hasM (q21v3l n)5 i (p51

n21M ( R2„qv3 u vpvn2p)…. From ~4.28!
and~B10!, we see that bothqv3 andvpvn2p satisfy the conditions of Proposition B.2. Hence,
~B8!, M „R2(qv3 u vpvn2p)…<h7KpKn2p for some positive constanth7 and

M ~q21v3l n! < h7(
p51

n21

KpKn2p . ~B13!

We are finished with the bounds for the termsTi of ~B5!. If we collect~B6!, ~B11!, ~B12! and
~B13! and return to~B4!, we conclude that we can find positive constantsG such that we can
recursively define

Kn ª GF (
p51

n21

KpKn2p1 (
p52

n21

KpKn112p1 (
p53

n21

KpKn122p1 (
p54

n21

KpKn132pG . ~B14!

for n.4, after fixing the convenient values forK1 , K2 , K3 and K4 . Note that we can choos
K15K25K35K4 taking Ki5max$K1,K2,K3,K4% for all i 51, ..., 4.

Expression~B14! has an analogous one in Ref. 16, with the distinction that only the two
sums above occurred in the corresponding expression forKn . From now on, we follow closely the
steps of Ref. 16. The first one is to show thatKn is a nondecreasingsequence. We have

Kn112Kn ª GF S (
a51

4

KaDKn1S (
a51

3

KaD ~Kn2Kn2a!1 (
p54

n21

Kp~Kn142p2Kn2p!G .

Therefore, assuming inductivelyK15K25K35K4<...<Kn implies Kn<Kn11 , thus proving
that the sequence is nondecreasing. Next, we write~B14! as

Kn 5 GF (
a51

3 S (
b5a

3

KbDKn2a1 (
p54

n21

Kp~Kn2p1Kn112p1Kn122p1Kn132p!G .

Since the sequence is nondecreasing, we haveKn2p1Kn112p1Kn122p1Kn132p<4Kn132p

andKn2a<Kn21 for a51,2,3. Hence, we may say that

Kn < G (
a51

3 S (
b5a

3

KbDKn2114G (
p54

n21

KpKn132p 5 G̃ Kn21K414G (
p54

n21

KpKn132p ,

~B15!

where G̃ª(G/K4) (a51
3 ((b5a

3 Kb) is a positive constant. Adding up the positive quant

G̃(p54
n22KpKn132p to ~B15! and settingLªmax$G̃, 4G%, we getKn<L(p54

n21KpKn132p . Let us
now define another auxiliary sequence byJnªL(p54

n21JpJn132p for n.4, with Jl5Kl for l
51,2,3,4. It is a simple exercise to show thatKn<Jn for all n. Now, let us consider the translate
sequenceLn5Jn12 , n>1. We have

Ln 5 L (
p54

n11

JpJn152p 5 L (
p54

n11

Lp22Ln132p 5 L (
p52

n21

LpLn112p . ~B16!

The sequencecn defined bycn5(p52
n21cpcn2p11 for n>3, with c15c251, defines the so-

called ‘‘Catalan numbers,’’ which can be expressed in a closed form ascn5(2n24)!/(n
21)!(n22)! , n>2. By Stirling’s formula, thecn’s have the following asymptotic behavio
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cn' (1/16Ap)(4n/n3/2), for n large. The existence of a connection between the Catalan num
and the sequenceLn is evident from~B16!. Two distinctions are the factorL appearing in~B16!
and the fact thatL15L25K35K4 are not necessarily equal to 1. One can, however, easily s
that Ln5(K3)n21Ln22cn , n>2. Hence, the following asymptotic behavior can be establishe

Ln '
1

16ApK3L2

~4K3L!n

n3/2 , n large.

SinceKn<Jn5Ln22 , we conclude that forn large Kn<M0(M1)n, for some positive con-
stantsM0 ,M1 . This completes the proof of Theorem 2.3. j
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The increase of binding energy and enhanced binding
in nonrelativistic QED
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We consider a Pauli–Fierz Hamiltonian for a particle coupled to a photon field. We
discuss the effects of the increase of the binding energy and enhanced binding
through coupling to a photon field, and prove that both effects are the results of the
existence of the ground state of the self-energy operator with total momentum
P50. © 2003 American Institute of Physics.@DOI: 10.1063/1.1562007#

I. INTRODUCTION

We consider a charged particle coupled to a photon field that interacts with an ex
potential in nonrelativistic QED. This system will be described by a Pauli–Fierz Hamilton
whereas neglecting the radiation effects, one obtains a corresponding Schro¨dinger operator. In the
present article, we discuss two closely related questions:

~1! Does the interaction with a quantized radiation field increase binding abilities of a pote
~whether the Pauli–Fierz Hamiltonian can have a ground state if the Schro¨dinger operator
with the same potential does not!?

~2! If the corresponding Schro¨dinger operator has discrete spectrum, should the binding en
~the difference between the infimum of the energy with and without potential, measur
units mc2, wherem is the bare electron mass! increase if the interaction with the radiatio
field is considered?

We emphasize here that the asserted increase of binding energy holds with respect to t
electron mass. In physical experiments, the binding energy is usually measured in unitsmphysc

2,
wheremphys is the rest mass of the free infraparticle~comprising the free electron together with
cloud of low-energetic photons that it binds!. In these units, the binding energy decreases.

Physical intuition suggests that the answer to both~1! and~2! should be in the affirmative. The
free infraparticle binds a larger quantity of low-energetic photons than the confined particle
thus possesses a larger effective mass. In order for the particle to leave the potential w
additional energetic effort, proportional to the difference of the two effective masses, is the
necessitated, relative to the situation without coupling to the quantized electromagnetic fie

Recently, problems 1 and 2 were actively studied in the mathematical literature. First,
mention the paper by M. Griesemer, E. Lieb, and M. Loss,7 where the authors proved that th
binding energy cannot be decreased by the photon field. Another~and more important! achieve-
ment in Ref. 7 is a criterion for a Pauli–Fierz Hamiltonian to have a ground state. This crit

a!Electronic mail: chenthom@cims.nyu.edu
b!Electronic mail: vougav@math.mcmaster.ca
c!Electronic mail: wugalter@mathematik.uni-muenchen.de
19610022-2488/2003/44(5)/1961/10/$20.00 © 2003 American Institute of Physics
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will be also used in the present article. The investigation of enhanced binding~problem 1! was
started by F. Hiroshima and H. Spohn,11 who considered the Pauli–Fierz Hamiltonian in the dipo
approximation. In this approximation, the dependence of the magnetic vector potential o
coordinates of the particle is neglected. They proved the existence of enhanced binding fo
ciently large values of the coupling parametera ~which is the fine structure constant,a'1/137 in
nature!.

A different approach was implemented in Ref. 9. The Pauli-Fierz operator without spin
(Aas•B) was studied with a potential, for which the corresponding Schro¨dinger operator does no
have discrete eigenvalues, but which is very close to the appearance of the first eigenvalu
first step was to estimate the self-energy for smalla with an error of the ordero(a2), and then it
was proved that by adding the potential, one gets a shiftCa2 of the infimum of the spectrum
which for smalla implies the existence of the ground state.7 This approach was further develope
in a recent preprint,4 where the case of a particle with spin was considered.

The increase of the binding energy for the Coulomb potentialeuxu21 in a model situation,
where the electron chargee is constant, buta tends to zero, was proved by C. Hainzl,8 by
controlling the expansion of the ground state energy to ordero(a2). To establish the correspond
ing result for the physical casee52Aa by the methods of Ref. 8, one would have to control t
expansion at least up to orderO(a3). On the other hand, simple physical arguments show that
effect is caused by the form of the self-energy operator and does not depend on the coeffic
the potential. For fixeda, the increase of the binding energy should exist for all values ofe,0.

It is necessary to emphasize that the methods of Refs. 9 and 8 are asymptotic ina, and that
they can hardly be generalized in a manner to cover the physical case, wherea is a fixed constant.
Studying this case requires a different strategy, which is not based on asymptotic expansiona.
The work at hand is the first attempt to develop such methods. We prove two very s
theorems, showing that both effects take place if the self-energy operator, restricted to the
with total momentumP50 ~operatorT0), has a ground state. The proof of these two statem
is based on direct variational estimates of the binding energy, and the results are independea.
Establishing the connection between the existence of the ground state of the operatorT0 , and the
existence of enhanced and increased binding is the main achievement of the present artic

The existence of the ground state ofT0 is a problem important for different aspects
nonrelativistic QED, and has been solved in Ref. 5 for smalla. Applying the results of Ref. 5 and
some generalizations thereof stated in the Appendix of the present article, we immediately
a new, very simple proof of enhanced binding for smalla, in both the spin and spinless cases,
well as the proof of the increase of the binding energy for all potentials, for which the corres
ing Schrödinger operator has a ground state. In particular, we prove the increase of binding e
for the Coulomb potential (euxu21), for all e,0.

II. DEFINITIONS AND MAIN THEOREMS

The Hamiltonian for an electron interacting with the quantized radiation field and a g
external potentialV(x), xPR3, is

H5T1V~x!, ~2.1!

where

T5~p1AaA~x!!21gAas•B~x!1H f . ~2.2!

We fix units such that\5c51 and the electron massm51/2, a5e2 is the ‘‘fine structure’’
constant, wheree is the electron charge. The natural value ofa is .1/137, however, as usual1,11

we will think abouta as a parameter in the operatorT. The main results of this paper~Theorems
1 and 2! are true for alla.0. An artificial parameterg, which can attain the values of either 0 o
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1, is introduced to describe both the spin (g51) and the spinless (g50) cases. As usuals
5(s1 , s2 ,s3) is the vector of Pauli matrices,p52 i¹x , B(x)5curlA(x). The magnetic vector
potentialA(x) is given by

A~x!5 (
l51,2

E
R3

x~ uku!
2puku1/2«l@al~k!eikx1al* ~k!e2 ikx#dk , ~2.3!

where the operatorsal , al* satisfy the usual commutation relations

@an~k!, al* ~q!#5d~k2q!dl,n , @al~k!, an~q!#50.

The vectors«l(k)PR3 are the two possible orthonormal polarization vectors perpendicular tk.
The functionx(uku) in ~2.3! describes the ultraviolet cutoff on the wavenumbersuku. The only

restriction onx(uku), which we need at the moment, isx(uku)[0 for uku.L with someL.0.
The photon field energyH f is given by

H f5 (
l51,2

E
R3

ukual* ~k!al~k!dk.

Regarding the potentialV(x) we assume thatV(x)5V(uxu), V(x)PL2,loc(R
3), uV(x)u<C for

uxu>a with some constantsC.0, a.0 anduV(x)u→0 asuxu→`. For g51 the operatorsT and
H are considered on the space

H5L2~R3; C2! ^ F ,

whereF is the Fock space for the photon field.
If g50, the corresponding space is

H5L2~R3! ^ F.

According to Ref. 10, the operatorH is semibounded from below and essentially self-adjoint.
For an arbitrary self-adjoint operatorA, let s(A) and sdisc(A) be the spectrum and th

discrete spectrum ofA and let

E05 inf s~T!, E15 inf s~H ! and DE5E02E1 .

To compare the binding energy in the presence of the photon field (DE) and the binding energy
without photon field let us consider the Schro¨dinger operator

h52D1V~ uxu! ~2.4!

with the same potentialV(uxu) as in~2.1!. Denote by2e0 the lowest eigenvalue of the operatorh
@if sdisc(h)5B, e050]. Obviously e0 is the binding energy for the Schro¨dinger operator. Ac-
cording to Ref. 7

DE>e0 . ~2.5!

In the present article it will be proved that, under some conditions, the strong inequality

DE.e0 ~2.6!

holds.
Suppose now that the potentialV(uxu) is short-range,uV(uxu)u<c(11uxu)222d, d.0, and its

negative part is nontrivial. We can writeV(uxu) as bV0(uxu), where V0(uxu) is a short-range
potential, which we will keep fixed andb.0 is a coupling constant. Denote byb0 the minimal
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value of the coupling constantb, such that forb.b0 , the operatorh with the potentialbV0(uxu)
has nonempty discrete spectrum, and byb1 the minimal value of the coupling constant such th
for all b.b1 operatorH with the same potential has a ground state.

It will be proved that under the same conditions as we need for~2.6!

b1,b0 .

This means that the photon field increases the binding abilities of potentials. To formulate
conditions, we need to introduce some more definitions.

First, notice that the operatorT is translationally invariant. It commutes with the operator
the total momentum

Ptot5pel^ I f1I el^ Pf , ~2.7!

wherepel and Pf5(l51,2*d3k kal* (k)al(k) denote the electron and the photon momentum
erators, respectively.

The Hilbert spaceH can be written as a direct integral

H5E %

d3PHP , ~2.8!

whereHP are the fiber Hilbert spaces associated to the fixed valuesP of the conserved momen
tum, which are invariant under space and time translations. For any fixed valueP of the total
momentum the restriction ofT to the fiber spaceHP is given by the operator

TP5~P2Pf1AaA~0!!21Aags•B~0!1H f . ~2.9!

The operatorTP with P50 ~we will call it T0) plays an especially important role.
The main theorems will be proved under the following assumption.
Condition 1: There is an elementc0PH0 , satisfying

T0c05E0c0 . ~2.10!

We note that Condition 1 contains two parts. For it to be satisfied, we must first have

E05 inf s~T!5 inf s~T0!,

and, second,E0 has to be in the point spectrum of the operatorT0 . These issues will be furthe
addressed after the statements of the theorems.

Theorem 1 „The increase of the binding energy…: Let Condition 1 be satisfied an
sdisc(h)ÞB. Then

DE.e0 . ~2.11!

Theorem 2 „Enhanced binding…: Let Condition 1 be fulfilled, and let V(uxu)5bV0(uxu) be a
short-range potential with the properties described above. Then

b1,b0 . ~2.12!

Remark:~1! Let us first discuss Theorems 1 and 2 for the spinless caseg50. The fact that
inf s(T0)5E0 was proved by J. Fro¨hlich for all a. Recently, it was proved in Ref. 5 that for sma
a, and an ultraviolet cutoffxPC1(R1), E0 is contained in the point spectrum ofT0 . Thus, under
these assumptions, the conditions of Theorems 1 and 2 are clearly fulfilled.

~2! If g51 ~inclusion of particle spin!, both parts of condition 1 remain true for smalla. This
follows from the generalizations of Ref. 5 outlined in the Appendix of the present work.
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~3! It may be useful to briefly comment on the case for models that include an infr
regularization. It follows from Ref. 5 that Condition 1 is satisfied by models that are infr
regularized by an infrared cutoff function inA(0) that vanishes nowhere on~0,L! ~this technical
requirement is used for the Ward-Takahashi identities within the operator-theoretic renorm
tion group scheme of Ref. 5!. Consequently, Theorems 1 and 2 hold for these models. If
infrared cutoff vanishes in an open neighborhood of$0%, or if it is incorporated by adding a sma
photon mass, the methods of Ref. 6 can be applied to verify Condition 1.

Corollary 1: Let the ultraviolet cutoffx(uku) be fixed and have bounded first derivatives. Th
one can find a numbera0 independent of the potential V(uxu), such that for all0,a,a0 the
following two statements hold:

(i) If e0Þ0, thenDE.e0 .
(ii) If V (uxu)5bV0(uxu) is a short-range potential satisfying the same condition as formula

above, thenb1,b0 .

III. PROOF OF THEOREM 1

To prove the theorem, we shall construct a trial functionwPH, such that

~Hw, w!,~E02e0!iwi2. ~3.1!

Let c0 be the ground state of the operatorT0 ,

T0c05E0c0 , ic0iH0
51. ~3.2!

We will need the following fact.
Lemma 1: Assumec0 and E0 as in Condition 1. Then, the relation

i~Pf2AaA~0!!c0iÞ0 ~3.3!

holds. @Notice that (Pf2AaA(0))c0 is a three-component vector with componentsc0iPH0

i 51,2,3. As usuali(Pf2AaA(0))c0i5(( i 51
3 ic0i iH0

2 )1/2.]

Proof: By contradiction. Assume that~3.3! is incorrect. Then,

Pfc05AaA~0!c0 , ~3.4!

and the magnetic term yields

s•Bf~0!c05 is~Pf∧A~0!1A~0!∧Pf !c05 isS 1

Aa
Pf∧Pf1AaA~0!∧A~0!D c050.

Thus,

T0c05H fc05E0c0 .

But this yields a contradiction, since the only eigenvector ofH f is the Fock vacuum, which fails
to satisfy~3.4! if aÞ0. This establishes the lemma.

Thus,

~Pf2AaA~0!!c05(
i 51

3

eic0iÓ0,

whereei is the orthonormal basis inR3. Without loss of generality, we assumec01Ó0. Let c̃01 be
a fixed function inD(T0), such thatic̃01iH0

51 and
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R~ c̃01,c01!H0
> 1

2 ic01iH0
. ~3.5!

For our estimates it is more convenient to consider the functionsc0 andc̃01 in the coordinate~for
photons! representation. Letj iPR3 be the position vectors of photons. A functioncPH0 can be
written as

c5 %

n
cn~s, j1 , ..., jn , l1 , ..., ln!, ~3.6!

wheres is the electron spin andl i are the polarization vectors of photons.
For xPR3 and an arbitrary elementcPH0 we define the operatorSx and the function

cxPH0 by the formula

cx5Sxc5 %

n
cn~s, j12x,..., jn2x, l1 , ..., ln!. ~3.7!

Denote byf 0(uxu) the real normalized eigenfunction of the operatorh corresponding to the lowes
eigenvalue and letf 1(x)PC0

2(R3) be the function with the following properties:
~i! f 1(x) is real.
~ii ! i f 1(x)i51.
~iii ! f 1(x) is symmetric with respect to the reflectionsx2↔2x2 andx3↔2x3 and antisym-

metric with respect to the reflectionx1↔2x1 . @Everywhere in the articlex5(x1 , x2 ,x3)PR3.]
~iv!

S ] f 0~ uxu!
]x1

, f 1~x! D.
1

2 I ] f 0

]x1
I .

Now we are ready to define the trial functionw. Let h be a real valued parameter, which will b
specified later, and let

w5 f 0~x!cx01 ih f 1~x!c̃x01, ~3.8!

where the functionsf 0 , f 1 , c0 , c̃01 are defined above,cx05Sxc0 and c̃x015Sxc̃01. Our next
goal is to prove~3.1! for h small and negative.

Obviously

~Hw, w!5~H f 0~x!cx0 , f 0~x!cx0!2h2~H f 1~x!c̃x01, f 1~x!c̃x01!22hI~H f 0~x!cx0 , f 1~x!c̃x01!.

~3.9!

The second term on the right side of~3.9! can be estimated from above asc0h2 with a constantc0

independent ofh. Let us evaluate the first term. Notice that

p f0~x!cx05~p f0~x!!cx02 f 0~x!Pfcx0 , ~3.10!

which implies

~H f 0~x!cx0 , f 0~x!cx0!5ip f0~x!u2icx0iH0

2 1~ f 0~x!V~ uxu!, f 0~x!!icx0iH0

2

1i f 0~x!i2~Tc0 , c0!H0
5~E02e0!i f 0~x!c0i2. ~3.11!

Here we also used the orthogonality

S ] f 0

]xi
, f 0D50, i 51, 2, 3.
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To estimate the last term in~3.9! recall that because of the symmetry

~ f 0 , f 1!50, ~V~ uxu! f 0 , f 1!50, ~D f 0 , f 1!50, S ] f 0

]xi
, f 1D50, i 52,3.

Hence

22hI~H f 0~x!cx0 , f 1~x!c̃x01!52hS ] f 0

]x1
, f 1DR~c01,c̃01!<

h

2
ic01iH0

I ] f 0

]x1
I 2

~3.12!

for h,0.
Combining~3.12!, ~3.7! and ~3.10! we arrive at

~Hw,w!<~E02e0!i f 0i21c0h21
h

2 I ] f 0

]x1
I 2

ic01iH0
. ~3.13!

To complete the proof of Theorem 1 notice that

iwiH
2 5i f 0~x!i21h2i f 1~x!i25i f 0~x!i21h2

and hence

~Hw,w!<~E02e0!iwiH
2 1h2@ uE02e0u1c0#1

h

6
i¹ f 0i2ic01iH0

, ~3.14!

which for

0.h.2 1
6 i¹ f 0~x!i2ic01iH0

@ uE02e0u1c0#21

yields ~3.1!.

IV. PROOF OF THEOREM 2

We shall prove that forb5b0

inf s~H !,E0 . ~4.1!

The statement of the theorem follows from~4.1!, Ref. 9, and variational arguments.
Let 0<g,1. V0(uxu) satisfies the conditions of the theorem,

hg,b0
52~12g!D1b0V0~ uxu!. ~4.2!

The operatorhg,b0
does not have discrete eigenvalues forg50, but for all 0,g,1 it has at least

one real spherically symmetric eigenfunctionf g(uxu).
Let w be the function defined by~3.8! with f 0(uxu) replaced byf g(uxu) and f 1(uxu) replaced by

f g,1(x)5(]/]x1) f g(uxu). We shall prove that forg.0, uhu sufficiently small (h,0), the inequal-
ity

~Hw,w!,E0iwi2 ~4.3!

is true.
To this end, first let us recall some properties of the functionsf g for smallg ~see, for example,

Ref. 13!.
Let B be the closure of the spaceC0

`(R3) in the normiciB5i¹ci . The equation

2Dc1b0V0~x!c50
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has a unique spherically symmetric solutionc̄PB, ic̄iB51. This solution~which is called the
virtual level or zero-resonance! satisfiesDc̄, V0(uxu)c̄PL 2(R3). Assume that the eigenfunction
f g(x) are normalized by the conditioni¹ f g(x)i51. Then13

iD f g2Dc̄i→0 as g→0 ,

which implies the inequality

iD f gi<2iDc̄ii¹ f gi5C0i¹ f gi ~4.4!

for all g small andC0 independent ofg. Let us turn directly to estimating the quadratic for
(Hw,w).

Similarly to ~3.10! we have

~Hw, w!5~H f g~x!cx0 , f g~x!cx0!2h2~H f g,1~x!c̃x01, f g,1~x!c̃x01!

22hI~H f g~x!cx0 , f g,1~x!c̃x01!. ~4.5!

For the second term on the right side of~4.5! the bound holds:

uh2~H f g,1~x!c̃x01, f g,1~x!c̃x01!u<h2$C1i f g,1i21C2i¹ f g,1i2%<h2@C112C2C0#i¹ f gi2,
~4.6!

where the constantsC1 andC2 depend onc̃01, but do not depend onf g , andC0 is the constant
from ~4.4!.

Analogously to~3.12! and ~4.2!, respectively

~H f g~x!cx0 , f g~x!cx0!5E0i f g~x!i21~h0,b0
f g~x!, f g~x!! ~4.7!

and

22hI~H f g~x!cx0 , f g,1~x!c̃x01!<2
uhu
2 I ] f g

]x1
I 2

ic01iH0
52

uhu
6

ic01iH0
i¹ f gi2, ~4.8!

recalling thatic0iH0
51.

Combining~4.5! with ~4.6!–~4.8! we obtain

~Hw, w!<E0i f g~x!i21~h0,b0
f g~x!, f g~x!!1H h2@C112C2C0#2

uhu
6

ic01iH0J i¹ f g~x!i2

<E0iwi21~12d!i¹ f gi21b0~V0f g~x!, f g~x!!, ~4.9!

where

d5
uhu
6

ic01iH0
2h2F1

3
uE0u1C112C2C0G . ~4.10!

Here we used the relation

iwiH
2 5i f g~x!i21h2i f g,1i2ic̃01iH 0

2 5i f g~x!i21 1
3 h2i¹ f gi2.

Notice that foruhu small, d.0, and to complete the proof of the theorem it suffices to tak
,g<d.
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APPENDIX

In this Appendix, we comment on the following statements that were central for the ap
tions of Theorems 1 and 2 in the caseg51. Fora sufficiently small, we have the following.

~i! The global minimum of inf spec$TP% for PPR3 is attained atP50.
~ii ! There exists a ground statec0PH0 of T0 for g51.

Let us comment on the proof. We recall that

TP5~P2Pf2AaA!21 igAa s•~Pf∧A1A∧Pf !1H f ,

whereA[A(0). Let us tobegin with include an artificial infrared regularization in the quantiz
electromagnetic vector potential, which acts like a momentum cutoff at smallr.0 ~some require-
ments on its precise form are formulated in Ref. 5!, by which we substituteA→A(r) ~under a
slight abuse of notation!, andTP→TP(r). Then, in addition to~i! and~ii !, we claim the following.

~iii ! For all r.0, anduPu>0 anda sufficiently small,

E~P,r!ª inf spec$TP~r!%

is an eigenvalue, whose eigenspace inHP>C2
^ F has dimension 2. AssumecP(r)PC2

^ F is an
eigenvector. Then, ifP50, c0(r) tends to a ground statec0(0)PC2

^ F in the limit r→0. We
note that the last statement is false in the caseuPu.0; if uPu.0, TP(0) fails to have a ground stat
in C2

^ F.
~iv! For somed.0, 0,Pc,1 anda sufficiently small,

u]P
b ~E~P,r!2P2!u<Cad ~A1!

uniformly for r>0, with b50,1,2, and allP, uPu,Pc .
The detailed proof of these results will be published separately. The degeneracy of the g

state energy has recently been proved by F. Hiroshima and H. Spohn,12 for the case where the
photons have a small mass. We will here briefly sketch the strategy, which is an extension o
5. It uses the operator-theoretic renormalization group based on the smooth Feshbach map2,3,5and
its framework can be roughly outlined as follows. One introduces a certain Banach spaceW of
bounded operators acting on the Hilbert space12^ x(H f,1)HP ~more precisely, one considers
particular Banach space of generalized Wick kernels that parametrizes such operators,
simplicity, we do not make this distinction here!, and makes a careful choice of a small polydi
P,W. Furthermore, one introduces a renormalization mapR:P→P, constructed by way of the
isospectral smooth Feshbach map, and a rescaling transformation. The idea then is to focu
dynamical system~P,R!. A key property ofR is that it is contractive on a subspace ofP of finite
codimension. Using the smooth Feshbach map, one associatesTP(r) to an elementH (0)PP, and
considers the orbit (H (n))nPN0

underR that emanates from this initial condition. The elemen
H (n) of this orbit are calledeffective Hamiltonians, wheren is thescale, and, in particular, they are
mutually isospectral in the sense of the Feshbach theorem.2 The fixed point ofR on this orbit
corresponds to the effective Hamiltonian in the scaling limit,H (`), and by isospectrality of the
smooth Feshbach map, its spectral properties are directly related to those ofTP(r).

The main ingredients in this construction are, in addition to the arguments developed in
5, parity invariance, andirrelevanceof theB-field operator in renormalization group terminolog
~TC thanks J. Fro¨hlich for pointing out this key fact.! Indeed, under parity inversion,x→2x, we
have
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P→2P , Pf→2Pf , A~r!→2A~r!,

with respect to whichTP(r) is evidently invariant. The most general form of the effective Ham
tonian in the scaling limit is

H (`)5a (`)~P,r!H f1b (`)~P,r!P•Pf1m (`)~P,r!s•Pf1n (`)~P,r!s•P,

where the coefficientsa (`)(P,r), b (`)(P,r), m (`)(P,r), andn (`)(P,r) transform trivially under
spatial rotations and reflections, and are uniformly bounded inr>0. Uniform boundedness with
respect tor>0 is in part due to the irrelevance of theB-field operator, and absence of interactio
is due to the infrared regularization.

The renormalization mapR is constructed in a manner that it commutes with parity inversi
thus allH (n), nPN0 , andH (`) are parity invariant. However, under parity reversal,s•P ands
•Pf change their signs. Therefore,n(P,r)5m(P,r)50, which implies that the ground stat
energy ofH (`)(P,r), of value 0, is doubly degenerate. Owing to the isospectrality propertie
the smooth Feshbach map, the same statement applies toTP(r). This proves (i i i ).

For the proof of (i ) and (iv), we remark that combining parity invariance with the gener
ized Ward–Takahashi identities of Ref. 5, it can be shown that thes0-component of the interaction
in H (n) is marginal, wherenPN0 , while thes i-components, fori 51,2,3, are irrelevant. Hence
the study of marginal operators in Ref. 5 can be straightforwardly adapted to the current pro
and the corresponding results are valid even forg51. This immediately implies (i ) and (iv).

To prove (i i ), we note that (iv) implies

u]PE~P,r!u>~12Cad!uPu,

which is bounded away from 0 for all 0<uPu<Pc , for C independent ofr>0. Thus,E(P,r) has
no minima away from 0 for 0<uPu<Pc . Furthermore, writingH0ªH f1(P2Pf)

2 and TP

5H01W, we consider

TP5H01~H01a!1/2~~H01a!2 1/2W~H01a!2 1/2!~H01a!1/2.

From Refs. 5 and 7 follows thati(H01a)21/2W(H01a)21/2i<CAa, henceTP>C(H02a) for
C>1/2, anda sufficiently small. Since inf spec$H0%>C1Pc

2 for uPu>Pc with someC1.0, it is
evident that for allr>0, uE(P,r)u has its global minimum atP50, such that (i i ) follows.
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Breit–Wigner formula at barrier tops a…
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For noncritical energies, the asymptotic behavior of the scattering phase and of the
time-delay are known to be described by a Weyl type formula and the Breit–
Wigner formula, respectively. We consider here the case of critical energy levels in
dimension 1. We obtain the semiclassical asymptotics of the scattering phase and of
the time-delay, uniformly with respect to the energy in a neighborhood of a critical
value. © 2003 American Institute of Physics.@DOI: 10.1063/1.1562749#

I. INTRODUCTION

We study the asymptotic behavior in the semiclassical limit of the scattering phase an
time-delay for the one-dimensional Schro¨dinger operator,

P~x,hD!5h2D21V~x!, D5
1

i

]

]x
, ~1!

for energies close to a critical valueV0 of the potentialV(x). We will focus here on the case wher
V0 is a nondegenerate, global maximum of the potential. We shall consider the two cases
V(x) reaches its maximum at one point~case I! and at two points~case II!. In case I, the
underlying classical system presents a saddle point, whereas in case II it presents a hete
orbit between the two saddle points associated to the points of maximum.~See Fig. 1.! The case
whereV0 is a local maximum, more precisely the case of a homoclinic orbit for the assoc
Hamiltonian system, can be treated in the same way, and we also provide results in that c~cf.
the discussion after Theorem 2.2!.

The scattering phaseu(E,h) is a priori a very simple object, namely the argument@up to
normalization; see~30! below# of the determinant of the scattering matrix~which is unitary!
associated toP. The remarkable fact, proved by Birman and Krein~cf. Ref. 1!, is that, under
suitable assumptions on the potentialV, in particular whenV→0 whenx→` fast enough, this
quantity is strongly related to spectral properties ofP. Indeed we have, forE.0,

u~E,h!5ps~E,h! mod pZ, ~2!

wheres(E,h) is the Spectral Shift Function~for short SSF!, defined as a distribution inS8(R) by
s(E,h)50 for E!0, and

^s8, f &5Tr~ f „P~x,hD!…2 f ~h2D2!!. ~3!

The SSF can be seen as an extension to the continuous spectrum of the counting function
eigenvalues ofP since, as one can see easily, forE,0,

N~E,h!5s~E,h!, ~4!

a!Dedicated to Professor Norio Shimakura on the occasion of his 60th birthday.
b!Electronic mail: fujiie@math.tohoku.ac.jp
c!Electronic mail: thierry.ramond@math.u-psud.fr
19710022-2488/2003/44(5)/1971/13/$20.00 © 2003 American Institute of Physics
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whereN(E,h) is the number of eigenvalues ofP(x,hD) not exceedingE.
As for the counting functionN(E,h), the asymptotic behavior ofs(E,h) ash→0 has been

shown to be of Weylian type, but only in certain particular circumstances. Let us be more pr
We denote byscl(E) the classical analog of the spectral shift function defined by

^scl~E!, f 8~E!&52E E
R2n

$ f „p~x,j!…2 f „p0~j!…%dx dj, ~5!

wherep(x,j)5j21V(x) and p0(j)5j2 are the semiclassical symbols ofP and h2D2, respec-
tively. Notice that

scl~E!5tnE
Rn

$„E2V~x!…1
n/22E1

n/2%dx, ~6!

wherea15max(a,0) andtn is the volume of the unit sphere inRn. We recall also that an energ
level E is said to benontrappingfor P if every trajectory of the Hamiltonian fieldHp on p21(E)
escapes to infinity as time goes to both1` and2`. Robert and Tamura~see Ref. 2! have proved
the following.

Theorem 1.1: If each EP@E1 ,E2#,R1 is nontrapping, then s(E,h) has a complete
asymptotic expansion as h→0, uniform with respect to E in@E1 ,E2#. Moreover, at leading order
we have

s~E,h!5~2ph!2nscl~E!1O~h12n!, as h→0. ~7!

When the energy is trapping, however, it is believed that the scattering phase varie
rapidly because of the presence of poles of the scattering matrix calledresonancesclose to the real
axis.

The case of trapping energies which are regular values ofp has already been investigated, a
we would like to mention here two works on the scattering phase in such a situation. In R
Gérard, Martinez and Robert have studied the scattering phase in the presence of shap
nances, that is, resonances generated by the presence of a well in an island~cf. Ref. 4!, which are
known to be exponentially~with respect toh) close to the real axis. They have proved that t
scattering phase increases byp at the real part of such a resonance. More precisely, they obtai
so-called Breit–Wigner formula for the time-delay~the derivative of the scattering phase wi
respect to the energy!. In the same situation, Nakamura5 associates toP two HamiltoniansPint and
Pext, corresponding to the bounded and unbounded component ofp21(E), respectively. He shows
that if E is nontrapping in some interval forPext, the spectral shift function forP is approximated
in that energy interval by the sum of the SSF forPext, the asymptotic behavior of which we know
from Theorem 1.1, and the eigenvalue counting function forPint . These eigenvalues are close
the shape resonances ofP, and cause again rapid variations of the scattering phase.

As we have already said, our concern here is the behavior of the Spectral Shift Functi
energies close to a critical value of the symbolp. We work here in the case of dimension 1, a

FIG. 1. Potentials.
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the methods we use can probably not be easily adapted to higher dimensional situations~see Ref.
6 for recent results concerning the Breit–Wigner formula in then-dimensional, noncritical case!.
But we provide very precise results, which we think to be of interest for the understanding
scattering phase in a general setting. In particular in our case II, the underlying mechanical s
though it is not chaotic, is highly unstable, and it is an important question to understand sca
data in such a situation.

In our settings, the barrier top energyE5V0 is trapping since it takes infinite time for classic
particles to arrive at a barrier top: it generates hyperbolic fixed points for the associated H
tonian flow. Notice also that in case I,EÞV0 is always nontrapping, but in case II,E is nontrap-
ping aboveV0 and trapping belowV0 because of the presence of a potential well.

Roughly speaking, we prove here that the Robert and Tamura formula~7! still holds in our
case I, provided we replacescl(E) by sext(E,h), the real part of a natural regularized classic
actionsreg(E,h) @see~13! for the precise definition#. Indeedscl(E) presents a logarithmic singu
larity at E5V0 ~see Lemma 4.1!, but from our computation emerges a purely quantum contr
tion, closely related to the tunneling phenomenon through the barrier, which cancels the sin
ity. In case II, the same phenomenon takes place, and we recover Nakamura’s result re
scl(E) by its regularization. More precisely,scl(E) is then the sum of two actionssext

cl (E) and
sint

cl (E) associated to the sea and the well, respectively, and these have to be replaced bysext(E,h)
ands int(E,h), respectively, the real part of the corresponding contributions insreg(E,h) ~Theorem
2.1!. Moreover, we are able to describe precisely the behavior ofsreg(E,h) in both cases I and II
in a whole interval ]V02d,V01d@ . In case II, and whenE,V0 , we recover the Breit–Wigne
formula for the time-delay. Therefore we have extended the Breit–Wigner formula to a w
neighborhood ofV0 ~Theorem 2.2!.

Our starting point in this short paper is the asymptotic formulas for the scattering m
obtained in Ref. 7 for the case I and in Ref. 10 for the case II. These formulas were obtained
the so-calledexact WKB analysis~see Ref. 8!, together with microlocal connection formula
obtained through a reduction to a normal form~see Ref. 9!. In Sec. I we state our precise result
We recall briefly in Sec. II the basic facts in 1-dimensional scattering, and we present the r
of Ref. 10. We prove our results in Sec. III.

II. PRELIMINARIES AND RESULTS

We consider the one-dimensional Schro¨dinger equation~1! where the potentialV satisfies the
following assumptions.

~H1! The functionV is real onR and dilation analytic, that is,V is holomorphic in a sector
S5$xPC;uIm xu,tanu0uRexu%ø$uIm xu,d% for some 0,u0,p/2 andd.0.

~H2! The potentialV is short range, that is, there exist positive constantse andC such that
uV(x)u<C(11uxu)212e in S.

Let V0 be the maximum of the potential on the real axis which we assume to be positive
consider the two cases:

~Case I! V21(V0)5$o1%;
~Case II! V21(V0)5$o1 ,o2% (o1,o2).
From now on, we will use the convention that* stands for 1 in case I and 2 in case II.
In both cases, we assume furthermore that the curvature does not vanish at each critica
~H3! V9(oj )52 1/(2rj

2), r j.0, j 51,* .
If E,V0 and is sufficiently close toV0 , sayuE2V0u,d, the equationV(x)2E50 has 2 real

rootsa1(E),b1(E) nearo1 (a1,o1,b1) in both cases and 2 other real rootsa2(E),b2(E) near
o2 (a2,o2,b2) in case II. We then define the action integrals between these turning point
6` as follows:

sj~E!52E
a j (E)

b j (E)
AV~x!2Edx, j 51,* , ~8!
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sext
cl ~E!52S E

2`

a1(E)

1E
b
*

(E)

` D $AE2V~x!2AE%dx22AE„b* ~E!2a1~E!…, ~9!

sint
cl ~E!52E

b1(E)

a2(E)
AE2V~x!dx ~ in case II!. ~10!

Let us remark here that the classical counterpart of the spectral shift functionscl(E) @see~5!# is
related with these actions by

scl~E!5H sext
cl ~E! ~case I!,

sext
cl ~E!1sint

cl ~E! ~case II!.
~11!

In our results will also appear the Jost functionN of the harmonic oscillator~see Remark 4.3!. It
is the analytic function in$zPC\$0%;uargzu,p% defined by

N~z!5
A2p

G~z11/2!
ez log(z/e). ~12!

Instead of the classical actions given by~8!, ~9! and~10!, the relevant quantities are going to be t
regularizedactionssext

reg(E,h) andsint
reg(E,h), defined forE,V0 and uE2V0u,d by

sext,int
reg ~E,h!5sext,int

cl ~E!1 ih logH NS i
s1~E!

2ph DNS i
s* ~E!

2ph D J , ~13!

or their real parts,

sext,int~E,h!5sext,int
cl ~E!2hH argNS i

s1~E!

2ph D1argNS i
s* ~E!

2ph D J , ~14!

where arg„isj (E)/(2ph)…5p/2 for E,V0 . We will see in Proposition 4.4 that these functio
sext,int(E,h) can be extended as holomorphic functions ofE to a whole complex neighborhood o
E5V0 , of course depending onh. It is also important to notice already that, far from the barr
top, the functionssext,int(E,h) coincide withsext,int

cl (E) @see~43!#. More precisely, in the region
uarg„isj (E)/2ph… u,p, we have

sext,int~E,h!→sext,int
cl ~E!, as uE2V0u/h→1`. ~15!

At last, we will need in case II another functiong, which gives the width of the resonance
again forE,V0 and uE2V0u,d, we put

g~E,h!5

UNS i
s1~E!

2ph DNS i
s2~E!

2ph D U21

UNS i
s1~E!

2ph DNS i
s2~E!

2ph D U11

. ~16!

We will also show in Lemma 4.5 that this functiong extends holomorphically to a comple
neighborhood ofE5V0 .

We are now able to state our results. Let us first describe the asymptotic behavior
scattering phase.

Theorem 2.1: There exists C.0 such that if E is real anduE2V0u<Ch; then we have in
case I,
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u~E,h!5
sext~E,h!

2h
1O„h log~1/h!…, ~17!

and in case II,

u~E,h!5
sext~E,h!

2h
1tan21H g~E,h!tan

s int~E,h!

2h J 1O„h log~1/h!…. ~18!

The asymptotic formulas~17! and~18! are analogous, respectively, to the results of Refs. 2 an
The second term in the right hand side of~18! is related to the presence of the potential well a
causes rapid variations. It will be seen more clearly in the next result, describing the asym
behavior of thetime-delay, which is the derivative of the scattering phase with respect to
energyE.

Theorem 2.2: There exists C.0 such that if E is real anduV02Eu<Ch; then we have in
case I,

du

dE
5

r1

h
log

1

h
1OS 1

hD . ~19!

In case II, if E is real anduV02Eu<Ch/ log(1/h), then we have

du

dE
5

r11r2

2h H 11
g

~12g2!cos2~s int/2h!1g2J log
1

h
1OS 1

hD . ~20!

Notice that the energy interval in case II is smaller than in case I because of the prese
resonances closer to the real axis in that case~see Lemma 3.2 and the end of Sec. IV!.

We have proved a similar formula in the homoclinic case~see the end of Sec. II!. For
example, supposeV has exactly two local maxima ato1 ando2 , with V(o1),V(o2). For energies
E close toV05V(o1), and assuming that the turning pointsa2 andb2 are simple, the formula
~18! still holds, but withg defined as

g~E,h!5

UNS i
s1~E!

2ph D U21

UNS i
s1~E!

2ph D U11

. ~21!

Notice that this new definition forg is what could be expected in view of~43!. For the time-delay
we obtain, with this newg,

du

dE
5

r1

2h H 11
g

~12g2!cos2~s int/2h!1g2J log
1

h
1OS 1

hD . ~22!

The reader may notice that, in each of these cases, the leading term is logarithmic with r
to h, hence one gets a non-Weylian asymptotic in these small neighborhoods of the po
maximum.

Let us add some comments about our formula~20!, in particular, on the function

B~E,h!5
g

~12g2!cos2~s int/2h!1g2 , ~23!

which is the contribution from the potential well. Ash→0, the functiong(E,h) tends to 0 for
E,V0 and to 1 forE.V0 . It also equals 1/3 forE5V0 . On the other hand, wheng is small,B
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presents a spike at each zero of cos(sint/2h), whose height is 1/g and widthg ~see Lemma 4.5!.
These zeros of cos(sint/2h) ~the real part of the resonances; see Ref. 10! are given by the Bohr–
Sommerfeld type quantization condition,

s int~E,h!5~2n11!ph, ~24!

and it follows from Proposition 4.4 that the distance between two such successive zero
complex disk centered atV0 of radiusCh/ log(1/h) is 2p(r11r2)21h/ log(1/h).

Thus we have obtained an extension of theBreit–Wigner formulato a complete real neigh
borhood of the potential maximum.

At last, we would like to mention that the configuration of the graph ofB(E,h) ~Fig. 2! can
be understood in a more intuitive way. Let us denote

r ~E,h!5
1

UNS i
s1~E!

2ph DNS i
s2~E!

2ph D U , u~E,h!5
s int

h
2p.

Then

B~E,h!5
12r 2

122r cosu1r 2 ,

which is the Poisson kernel of the unit disk. More precisely, it is the harmonic function in the
disk $z5reiuPC;uzu,1% whose boundary value is the delta function supported atz51. By ~44!,
the functionr (E,h) is in fact

r ~E,h!5
1

A11e2s1(E)/hA11e2s2(E)/h
.

It is a decreasing analytic function with respect toE, satisfying 0,r ,1 nearV0 . As h→0, the
functionr tends to a Heaviside function which equals 1 in the trapping regionE,V0 , and 0 in the
nontrapping regionE.V0 . The functionu(E,h) is also analytic nearV0 , and it increases with
rate (r11r2)log(1/h) ~see Proposition 4.4!. Therefore, the pointz(E,h)5r (E,h)eiu(E,h) spirals in
the unit disk, near the boundary whenE,V0 , and thenB presents a spike each timeu vanishes
because of the delta boundary value. WhenE.V0 , the pointz(E,h)5r (E,h)eiu(E,h) spirals near
the origin, andB varies slowly.

FIG. 2. The time-delay.
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III. THE SCATTERING MATRIX

We recall here the definitions of the phase shift and of the time-delay in our one-dimen
setting. Under the assumptions~H1! and ~H2! on the potentialV(x), and for E in Pu0

5$E

PC\$0%;uargEu,2u0%, there exists exactly one solutionf r
6 and exactly one solutionf l

6 of ~1! such
that

f r
6~x!;e6 iAEx/h, as Rex→1` in S,

~25!
f l

6~x!;e6 iAEx/h, as Rex→2` in S.

These solutions~usually called Jost solutions! are holomorphic in (x,E)PS3Pu0
, and the two

pairs (f l
1 , f l

2) and (f r
1 , f r

2) form two bases of the space of solutions of Eq.~1!. These bases ar
related to each other by a constant matrix~the transmission matrix! T(E,h):

S f l
1

f l
2D 5T~E,h!S f r

1

f r
2D . ~26!

The determinant of this matrix is 1 since@ f l
1 , f l

2#5detT @ f r
1 , f r

2#, and the Wronskians@ f l
1 , f l

2#
and @ f r

1 , f r
2# are both equal to22iAE/h.

For a complex function (x,E,h)° f (x,E,h), we will denote byf * the function given by

f * ~x,E,h!5 f ~ x̄,Ē,h!.

It is easy to see thatf l ,r
2 5( f l ,r

1 )* , so thatT is of the form

T5S a b

b* a* D , aa* 2bb* 51. ~27!

Since the entriesa andb can be written in terms of Jost solutions:

a~E,h!5
ih

2AE
@ f l

1 , f r
2#, b~E,h!52

ih

2AE
@ f l

1 , f r
1#, ~28!

they are holomorphic inEPPu0
, as well asa* (E,h) andb* (E,h).

The scattering matrix is defined as the matrix associated with the change of basis betwe
outgoing pair of solutions (f r

1 , f l
2) and the incoming pair of solutions (f l

1 , f r
2): if

p1 f r
11p2 f l

25q1 f l
11q2 f r

2 ,

then

S p1

p2
D5S~E,h!S q1

q2
D .

In terms ofa andb we immediately have

S5
1

a* S 1 2b*

b 1 D . ~29!

Suppose now thatE is a positive real number. ThenS(E,h) is unitary by~27!, and its determinant
is a complex number of modulus 1. The scattering phaseu(E,h) is defined as half of the argumen
of detS:
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detS~E,h!5e2iu(E,h). ~30!

The functionu is real, and it can be written as

u~E,h!5arga~E,h!52arga* ~E,h!. ~31!

Thus, what we have to do in order to prove our Theorem 2.1 is to examine the asymptotic be
of a* (E,h) obtained in Refs. 7 and 10~see also Ref. 11!. Notice that, even if our results her
concern only real values of the energyE, we shall need estimates in a complex neighborhood
V0 .

Let us recall now these estimates. ForE0PC and r .0 any real number, we denote b
D(E0 ,r ) the set ofEPC such thatuE2E0u,r .

Theorem 3.1: There exists h0.0 and C.0 such that, for all hP]0,h0] and all E
PD(V0 ,Ch), one has in case I:

a* ~E,h!5e„s1(E)2 isext
cl (E)…/2hNS i

s1~E!

2ph D „11O~h logh!…, ~32!

whereas, in case II,

a* ~E,h!5e„s1(E)1s2(E)2 isext
cl (E)…/2hS eisint

cl (E)/2h1NS i
s1~E!

2ph DNS i
s2~E!

2ph De2 isint
cl (E)/2hD

3„11O~h logh!…. ~33!

For later needs, we notice thatu(E,h) can also be defined as a complex-valued function
complexEPPu0

by

u~E,h!5
1

2i
log

a~E,h!

a* ~E,h!
. ~34!

Indeed, sincea anda* are holomorphic inPu0
, u(E,h) is singular only at zeros ofa anda* . The

zeros ofa are complex conjugates of those ofa* , and it is enough to study the asymptot
distribution of zeros ofa* . This was done in Refs. 7 and 10 in cases I and II, respectively, thro
Theorem 3.1, using also Rouche´’s theorem. We obtain the following result.

Lemma 3.2: There exists C.0 such that u(E,h) extends holomorphically to the dis
D(V0 ,Ch) in case I, and to the disk D„V0 ,Ch/ log(1/h)… in case II.

Let us explain briefly how we obtained Theorem 3.1. We use here the notations and co
tions of Ref. 11~in particular for the normalization of the solutions!. We compute a transition
matrix at each maximumTj , j 51, * , the transition matrixTl between2` and a1 , and the
transition matrixTr betweenb* and 1`. In case II, we compute also a transition matrixT12

betweenb1 anda2 . Then the transition matrixT can be written as

T5Tl•T1•Tr , ~35!

in case I, and, in case II as

T5Tl•T1•T12•T2•Tr . ~36!

In Ref. 10 the following result is proved~see also Ref. 11, Proposition 3 for precise definitions
the transition matricesTl , T1 , T12, T2 , Tr and the classical actionsSl , Sr associated to2` and
1`, respectively!.

Proposition 3.3: (1) There exist R.0 and e.0 such that
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Tl5A4 ES eip/4e2 iSl (E)/h
„11O~h!… O~e2e/h!

O~e2e/h! e2 ip/4eiSl (E)/h
„11O~h!…

D , ~37!

Tr5
1

A4 E
S e2 ip/4e2 iSr (E)/h

„11O~h!… O~e2e/h!

O~e2e/h! eip/4eiSr (E)/h
„11O~h!…

D , ~38!

T1,25S eisint(E)/2h
„11O~h!… O~e2e/h!

O~e2e/h! e2 isint(E)/2h
„11O~h!…

D , ~39!

uniformly with respect to E in every compact subset of D(V0 ,R).
(2) For any r.0, one has

Tj5esj (E)/2hS NS 2
isj~E!

2ph D „11O~h logh!… 11O~h!

11O~h! NS isj~E!

2ph D „11O~h logh!…
D , ~40!

uniformly with respect to E in every compact subset of D(V0 ,rh).
Theorem 3.1 follows immediately from this proposition. Notice also that we can obtain

way the scattering matrix in the homoclinic case. Then formula~36! still holds for the scattering
matrix for these energies, butT2 now reads as

T25es2(E)/2hS 11O~h logh! 11O~h!

11O~h! 11O~h logh!
D .

Thus, in this case, we get as in Theorem 3.1,

a* ~E,h!5e„s1(E)1s2(E)2 isext
cl (E)…/2hS eisint

cl (E)/2h1NS i
s1~E!

2ph De2 isint
cl (E)/2hD „11O~h logh!….

~41!

IV. PROOFS

We proceed first to the proof of Theorem 2.1, that is, we calculate the argument ofa* through
~32! and ~33!. For shorter expressions, we put

r j~E,h!5UNS i
sj~E!

2ph D U, f j~E,h!5argNS i
sj~E!

2ph D . ~42!

In case I, we get immediately

u~E,h!5
sext

cl

2h
2f11O~h logh!5

sext

2h
1O~h logh!.

In case II, we have

u~E,h!5
sext

cl

2h
2arg~eisint

cl /2h1r 1r 2ei (f11f2)e2 isint
cl /2h!1O~h logh!

5
sext

2h
2 arg~eis int/2h1r 1r 2e2 is int/2h!1O~h logh!,

and since
                                                                                                                



ies of

e

rhood

nic

1980 J. Math. Phys., Vol. 44, No. 5, May 2003 S. Fujiié and T. Ramond

                    
arg~eis int/2h1r 1r 2e2 is int/2h!5argH ~11r 1r 2!cos
s int

2h
1 i ~12r 1r 2!sin

s int

2h J
5tan21S 12r 1r 2

11r 1r 2
tan

s int

2h D ,

we get~18!. This ends the proof of Theorem 2.1.
In order to prove our second result, we will have to investigate some analyticity propert

terms appearing on the rhs of~32! and~33!. Let us begin with the action integralssj (E), sext
cl (E)

andsint
cl (E): they were defined forE,V0 , uE2V0u,d in Sec. 1. See Ref. 10 for the proof of th

following lemma~with slightly different notations!.
Lemma 4.1: There exist a positive constant R and functions gj , j 51,2, gext and gint holo-

morphic in D(0,R), such that sj (E), sext
cl (E) and sint

cl (E) are all real for 0,V02E,R and

sj~E!52pr j~V02E!„11~V02E!gj~V02E!… ~ j 51,2!,

sext,int
cl ~E!5sext,int

cl ~V0!1
1

2p
„s1~E!1s* ~E!…log~V02E!1~V02E!gext,int~V02E!,

wherelogl.0 whenargl50.
We also recall some properties of the functionN(z).
Lemma 4.2: N(z) is holomorphic in$zPC\$0%;uargzu,p% and in this domain,

lim
uzu→`

N~z!51. ~43!

In particular, on the positive imaginary axis z5 i t , t.0, we have

uN~ i t !u2511e22pt, ~44!

argN~ i t !5t log t1tg~ t !, ~45!

where g is a real and analytic function and extends holomorphically to a complex neighbo
of the origin.

Proof: The formula~43! is nothing else than Stirling formula, and~44! follows easily from the
product formula of the Gamma function:

UGS 1

2
1 i t D U2

5GS 1

2
1 i t DGS 1

2
2 i t D5

p

coshpt
. ~46!

For ~45!, we have

argN~ i t !5t log t2t2argG~1/21 i t !.

Using ~46!, we can rewrite the last term of the right hand side as

argGS 1

2
1 i t D5

i

2
logp2 i logGS 1

2
1 i t D2

i

2
log~coshpt !.

This function can be extended analytically toC\ i (Z11/2) and equals 0 whent50. Hence we can
write argN(it) in the form ~45!. h

Remark 4.3: The function N(z) can be characterized as the Jost function of the harmo
oscillator (see Ref. 12). Letc6(x) be the solutions to (1) with V(x)5x2 and h51 whose
asymptotic behavior at6` is given by
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c6~x!;~x22E!21/4expS 6E
x0

x

~y22E!1/2dyD , as x→7`.

It is possible to define these solutions for arbitrary x0PR when E is negative. Then the Jo
function of the harmonic oscillator, which is defined as the Wronskian of these solution
independent of x0 and given by

1

2
@c1 ,c2#5NS 2

E

2 D .

The following result justifies in particular the terminologyregularizedactions.
Proposition 4.4: There exists C.0 such that the functionssext(E,h) and s int(E,h) can be

extended as holomorphic functions with respect to E in D(V0 ,Ch). Moreover the following
asymptotic formula holds in this domain:

sext,int~E,h!5sext,int
cl ~V0!2~r11r* !~V02E!log

1

h
1O~V02E!, as h→0.

Proof: From Lemmas 4.1 and 4.2, we get

sext,int~E,h!5sext,int
cl ~V0!2~r11r* !~V02E!log

1

h
1G~E,h!,

with

G~E,h!5~V02E!gext,int~V02E!

2 (
j 51,*

F sj

2p H gS sj

2phD1 log~r j„11~V02E!gj…!J 1r j~V02E!2gj log
1

hG .
h

At last, let us observe some properties of the functiong(E,h).
Lemma 4.5: There exist positive C and R such that the function E°g(E,h) is holomorphic in

(V02R,V01R)3 i (2Ch,Ch). Moreover, on(V02R,V01R) in particular, 0,g,1 and the
following:

(i) if l5O(h), there exist0,g0,g1,1 independent ofl and of h such thatg0,g(E,h)
,g1 and in particularg(V0 ,h)51/3;

(ii) if u(V02E)/hu→`,

g~E,h!5H O~e2s1(E)/h1e2s2(E)/h! ~E,V0!,

12O~e„s1(E)1s2(E)…/2h! ~E.V0!.

Proof: With ~44!, one obtains

g~E,h!5
A11e2s1(E)/hA11e2s2(E)/h21

A11e2s1(E)/hA11e2s2(E)/h11
,

and the lemma follows easily. In particular this function has singularities at the points satis
sj (E)5(2n11)p ih ( j 51,2). h

Now we can deduce Theorem 2.2 from Theorem 2.1, making use of the analyticity o
remainder terms. Indeed, letRI(E,h), RII (E,h) be the the remainder terms of~17!, ~18! respec-
tively:
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RI~E,h!5u~E,h!2
sext~E,h!

2h
,

RII ~E,h!5u~E,h!2
sext~E,h!

2h
2tan21H g~E,h!tan

s int~E,h!

2h J .

We have the following key result.
Proposition 4.6: There exists C.0 such that RI(E,h) and RII (E,h) are holomorphic with

respect to E in D(V0 ,Ch) and in D„V0 ,Ch/ log(1/h)…, respectively, for all sufficiently small h.
Proof: The functionsu(E,h) and sext(E,h) are holomorphic in the required domain b

Lemma 3.2 and Proposition 4.4. It remains to show that the last term ofRII is also holomorphic
in D„V0 ,Ch/ log(1/h)…. Let us calculate the derivative:

H tan21S g tan
s int

2h D J 8
5

1

2h

gs int8 12hg8 cos~s int/2h!sin~s int/2h!

~12g2!cos2~s int/2h!1g2 . ~47!

Both g and s int being holomorphic, it suffices to see that the denominatord(E,h)5(1
2g2)cos2(sint/2h)1g2 does not vanish inD„V0 ,Ch/ log(1/h)…. First we see that for realE in this
domain,d(E,h) is real and bounded from below by a positive constant independent of bothE and
h. Next for complexE, we see

g~E,h!→ 1

3
, UIm s int

2h U<C~r11r2!1OS 1

log~1/h! D ,

ash tends to 0. Hence, by continuity,d(E,h) stays away from 0 for sufficiently smallC andh.h
Proposition 4.6 enables us to estimate the derivatives ofRI andRII in terms of themselves by

Cauchy’s integral formula; if a functionR(E) is holomorphic inD(V0 ,r ), then its derivative is
bounded from above inD(V0 ,r /2) by 2supD(V0 ,r )uR(E)u/r . We recall thatRI5O„h log(1/h)… in
D(V0 ,Ch), and thatRII 5O„h log(1/h)… in D„V0 ,Ch/ log(1/h)…. Thus we obtain

dRI

dE
5O„log~1/h!…,

dRII

dE
5O„~ logh!2

….

On the other hand, we know from Proposition 4.4 that

dsext,int

dE
5~r11r* !log

1

h
1O~1!,

and sincehdg/dE5O(1),

h
d

dE H tan21S g tan
s int

2h D J 5~r11r2!
g

~12g2!cos2~s int/2h!1g2 log
1

h
1O~1!.

This completes the proof of Theorem 2.2.
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Given a first order dynamical system possessing a commutative algebra of dynami-
cal symmetries, we show that, under certain conditions, there exists a Poisson
structure on an open neighborhood of its regular~not necessarily compact! invari-
ant manifold which makes this dynamical system into a partially integrable Hamil-
tonian system. This Poisson structure is by no means unique. Bi-Hamiltonian par-
tially integrable systems are described in some detail. As an outcome, we state the
conditions of quasiperiodic stability~the KAM theorem! for partially integrable
Hamiltonian systems. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1566453#

I. INTRODUCTION

Given a smooth real manifoldZ, let we havek mutually commutative vector fields$ql% which

are independent almost everywhere onZ, i.e., the set of points where the multivector field∧
k
ql

vanishes is nowhere dense. We denote byS,C`(Z) theR-subring of smooth real functionsf on
Z whose derivationsqlcd f vanish for allql . Let A be thek-dimensionalS-Lie algebra generated
by the vector fields$ql%. One can think of one of its elements as being a first order dyna
equation onZ and of the other as being the dynamical symmetries. Accordingly, elements ofS are
regarded as integrals of motion. For the sake of brevity, we agree to callA a dynamical algebra

Completely and partially integrable systems on symplectic manifolds1 and broadly integrable
dynamical systems of Bogoyavlenkij2,3 exemplify finite-dimensional commutative dynamical a
gebras. Recall that, given a symplectic manifold (Z,V), we have a partially integrable syste
~henceforth PIS! if there exist 1<k<dimZ/2 smooth real functions$Hl% in involution which are

independent almost everywhere onZ, i.e., the set of points where thek-form ∧
k
dHl vanishes is

nowhere dense. The Hamiltonian vector fieldsql of functions Hl mutually commute and are
independent almost everywhere. They make up a commutative dynamical algebra over the P
subalgebraS of elements ofC`(Z) commuting with all the functionsHl .

An important peculiarity of a finite-dimensional commutative dynamical algebraA is that its
regular invariant manifolds are toroidal cylindersRk2m3Tm. At the same time, no preferabl
Poisson structure is associated to a commutative Lie algebraA because its Lie–Poisson structu
is zero. Therefore, we are free with analyzing different Poisson structures which makeA into a
Hamiltonian system. However, this analysis essentially differs from that of noncommutative
grable systems~see Ref. 4 for a survey!. One has investigated different symplectic structu
around invariant tori of commutative integrable systems.2,3,5,6 For instance, the classica

a!Electronic mail: giovanni.giachetta@unicam.it
b!Electronic mail: luigi.mangiarotti@unicam.it
c!Electronic mail: sard@grav.phys.msu.su
19840022-2488/2003/44(5)/1984/14/$20.00 © 2003 American Institute of Physics
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Liouville–Arnold theorem1,7 and the Nekhoroshev theorem8,9 state that, under certain condition
every symplectic structure making a commutative dynamical algebra into a Hamiltonian s
takes a canonical form around a compact invariant manifold.

Our goal is to describe all Poisson structures bringing a commutative dynamical algebr
a PIS near its regular invariant manifold, which need not be compact.

Definition 1:A k-dimensional commutative dynamical algebra on a regular Poisson man
~Z, w! is said to be a PIS if~a! A is generated by Hamiltonian vector fields ofk almost everywhere
independent integrals of motionHlPC`(Z) in involution; ~b! all elements ofS,C`(Z) are
mutually in involution.

It follows at once from this definition that the Poisson structurew is at least of rank 2k andS
is a commutative Poisson algebra. If 2k5dimZ, we have a completely integrable system on
symplectic manifold.

Theorem 1 below states the following.
~i! Under certain conditions, an open neighborhoodU of a regular invariant manifoldM of the

dynamical systemA is a trivial principal bundle,

U5N3~Rk2m3Tm!→
p

N ~1!

over a domainN,Rdim Z2k with the structure groupRk2m3Tm;
~ii ! The toroidal domain~1! is provided with a Poisson structurew such that (w,A) is a PIS

in accordance with Definition 1.
Note that a trivial fibration in invariant manifolds is a standard property of integra

systems.1–3,8–12However, there exists a well-known obstruction to its global extension in the
of compact invariant manifolds,13 and there is an additional obstruction similar to that in Ref. 3
invariant manifolds are noncompact.

A Poisson structure in Theorem 1 is by no means unique. Let the toroidal domain~1! be
provided with bundle coordinates (r A,yl), where (r A) are coordinates onN and (yl)5(ta,w i) are
standard coordinates on the toroidal cylinderRk2m3Tm. It is readily observed that, if a Poisso
bivector field on the toroidal domainU satisfies Definition 1, it takes the form

w5w11w25wAl~r B!]A∧]l1wmn~r B,yl!]m∧]n . ~2!

The converse also holds~see Theorem 2 below!. For any Poisson bivector fieldw ~2! of rank 2k
on U, there exists a toroidal domainU8,U such that (w,A) is a PIS onU8. Moreover, Theorem
3 in Sec. III states that there is a toroidal domainU8 such that, restricted toU8, this Poisson
bivector field takes the canonical form~16!.

Now, let w and w8 be two different Poisson structures~2! which make a commutative dy
namical algebraA into the different PISs (w,A) and (w8,A).

Definition 2: We agree to call the triple (w,w8,A) a bi-Hamiltonian PIS if any Hamiltonian
vector fieldqPA with respect tow possesses the same Hamilton representation

q52wbd f52w8bd f , f PS, ~3!

relative tow8, andvice versa.
Definition 2 establishes asui generisequivalence between the PISs (w,A) and (w8,A).

Theorem 4 below states that the triple (w,w8,A) is a bi-Hamiltonian PIS in accordance wit
Definition 2 iff. the Poisson bivector fieldsw andw8 ~2! differ only in the second termsw2 and
w28 . Moreover, these Poisson bivector fields admit a recursion operator.

Let nowA be a commutative dynamical algebra associated to a PIS on a symplectic ma
(Z,V). In this case, condition~b! in Definition 1 is not necessarily satisfied, unless it is a co
pletely integrable system. Nevertheless, there exists a Poisson structurew of rank 2k on the
toroidal domain~1! such that, with respect tow, all integrals of motionHl of the original PIS
remain to be in involution, and they possess the same Hamiltonian vector fieldsql ~see Theorem
6 below!.
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Therefore, one can think of the triple (V,w,$Hl%) as being a special bi-Hamiltonian system
though it fails to satisfy Definition 2. Conversely, ifZ is even dimensional, any Poisson bivect
field w ~2! setting a PIS (w,A) is extended to an appropriate symplectic structureV such that~V,
A! is a PIS on the symplectic manifold (Z,V).

There are several reasons in order to make a commutative dynamical algebraA into a Hamil-
tonian one. For instance, one can quantizeA around its invariant manifold by quantizing th
Poisson algebraS.12,14 Of course, quantization ofA with respect to different Poisson structur
need not be equivalent. However, we focus on another result. In Sec. V, we show that, intro
an appropriate Poisson structure and using the methods in Ref. 10, one can extend the well
KAM theorem to PISs.

II. SEMILOCAL GEOMETRY AROUND AN INVARIANT MANIFOLD

Given ak-dimensional commutative dynamical algebraA on a smooth manifoldZ, let V be
the smooth involutive distribution onZ spanned by the vector fields$ql%, and letG be the group
of local diffeomorphisms ofZ generated by the flows of these vector fields~we follow the
terminology of Ref. 15!. Maximal integral manifolds ofV are the orbits ofG, and are invariant

manifolds ofA.15 Let zPZ be a regular point of the distributionV, i.e., ∧
k
ql(z)Þ0. Since the

groupG preserves∧
k
ql , the maximal integral manifoldM of V throughz is also regular. Further-

more, there exists an open neighborhoodU of M such that, restricted toU, the distributionV is
regular and yields a foliationF of U.

Theorem 1: Let us suppose that:~i! the vector fieldsql on U are complete,~ii ! the foliation
F of U admits a transversal manifoldS and its holonomy pseudogroup onS is trivial, ~iii ! the
leaves of this foliation are mutually diffeomorphic. Then the following hold.

~I! There exists an open neighborhood ofM, sayU again, which is the trivial principal bundle
~1! over a domainN,Rdim Z2k with the structure groupRk2m3Tm.

~II ! If 2k<dimZ, there exists a Poisson structurew of rank 2k on U such that (w,A) is a PIS
in accordance with Definition 1.

Let us note the following. Condition~i! states thatG is a group of diffeomorphisms ofU.
Condition ~ii ! is equivalent to the assumption thatU→U/G is a fibered manifold.16 Each fiber
Mr , r PN, of this fibered manifold admits a free transitive action of the groupGr5G/Kr , where
Kr is the isotropy group of an arbitrary point ofMr . In accordance with condition~iii !, all the
groupsGr , r PN, are isomorphic to the toroidal cylinder groupRk2m3Tm for some 0<m<k.
The goal is to define these isomorphisms so that they provide a smooth action ofRk2m3Tm in U.
We follow the proof in Refs. 7 and 17 generalized to noncompact invariant manifolds. We e
lish a particular trivialization~1! such that the generatorsql of the algebraA take the specific
form ~8!. Part~II ! of Theorem 1 is based on this trivialization

Proof: ~I! By virtue of the condition~ii !, the foliationF of U is a fibered manifold

p:U→N, ~4!

admitting a sections such that andS5s(N).16 Since the vector fieldsql on U are complete and
mutually commutative, the groupG of their flows is an additive Lie group of diffeomorphism o
U. Its group space is a vector spaceRk coordinated by parameters (sl) of the flows with respect
to the basis$el5ql%. Since vector fieldsql are independent everywhere onU, the action ofRk

in U is locally free, i.e., isotropy groups of points ofU are discrete subgroups of the groupRk. Its
orbits are fibers of the fibered manifold~4!. Given a pointr PN, the action ofRk in the fiber
Mr5p21(r ) factorizes as

Rk3Mr→Gr3Mr→Mr ~5!

through the free transitive action inMr of the factor groupGr5Rk/Kr , whereKr is the isotropy
group of an arbitrary point ofMr . It is the same group for all points ofMr becauseRk is a
commutative group. Since the fibersMr are mutually diffeomorphic, all isotropy groupsKr are
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isomorphic to the groupZm for some fixed 0<m<k. Accordingly, the groupsGr are isomorphic
to the additive groupRk2m3Tm. Let us bring the fibered manifoldU→N ~4! into a principal
bundle with the structure groupG0 , where we denote$0%5p(M ). For this purpose, let us
determine isomorphismsr r :G0→Gr of the groupG0 to the groupsGr , r PN. Then, a desired
fiberwise action ofG0 in U is defined by the law

G03Mr→r r~G0!3Mr→Mr . ~6!

Generators of each isotropy subgroupKr of Rk are given bym linearly independent vectors of th
group spaceRk. One can show that there exist ordered collections of generators (v1(r ),...,vm(r ))
of the groupsKr such thatr °v i(r ) are smoothRk-valued fields onN. Indeed, given a vecto
v i(0) and a sections of the fibered manifold~4!, each fieldv i(r )5(sa(r )) is the unique smooth
solution of the equation

g~sa!s~r !5s~r !, ~sa~0!!5v i~0!,

on an open neighborhood of$0%. Let us consider the decomposition

v i~0!5Bi
a~0!ea1Ci

j~0!ej , a51,...,k2m, j 51,...,m,

whereCi
j (0) is a nondegenerate matrix. Since the fieldsv i(r ) are smooth, there exists an ope

neighborhood of$0%, sayN again, where the matricesCi
j (r ) are nondegenerate. Then,

Ar5S Id ~B~r !2B~0!!C21~0!

0 C~r !C21~0!
D ~7!

is a unique linear morphism of the vector spaceRk which transforms the framevl(0)
5$ea ,v i(0)% into the framevl(r )5$ea ,v i(r )%. Since it is also an automorphism of the groupRk

sendingK0 ontoKr , we obtain a desired isomorphismr r of the groupG0 to the groupGr . Let an
elementg of the groupG0 be the coset of an elementg(sl) of the groupRk. Then, it acts inMr

by the rule~6! just as the elementg((Ar
21)b

lsb) of the groupRk does. Since entries of the matri
A ~7! are smooth functions onN, this action of the groupG0 in U is smooth. It is free, and
U/G05N. Then, the fibered manifoldU→N is a trivial principal bundle with the structure grou
G0 . Given a sections of the principal bundleU→N, its trivialization U5N3G0 is defined by
assigning the pointsr21(gr) of the group spaceG0 to the pointsgrs(r ), grPGr , of a fiberMr .
Let us endowG0 with the standard coordinate atlas (yl)5(ta,w i) of the groupRk2m3Tm. Then,
we provideU with the trivialization~1! with respect to the coordinates (r A,ta,w i), where (r A),
A51,...,dimZ2k, are coordinates on the baseN. The vector fieldsql on U relative to these
coordinates read

qa5]a , q i52~BC21! i
a~r !]a1~C21! i

k~r !]k . ~8!

Accordingly, the subringS restricted toU is the pull-backp* C`(N) ontoU of the ring of smooth
functions onN.

~II ! Let us split the coordinates (r A) into somek coordinates (I l) and dimZ22k coordinates
(zA). Then, we can provide the toroidal domainU ~1! with the Poisson bivector field

w5]l∧]l ~9!

of rank 2k. The independent complete vector fields]a and] i are Hamiltonian vector fields of the
functionsHa5I a andHi5I i on U which are in involution with respect to the Poisson bracke

$ f , f 8%5]l f ]l f 82]l f ]l f 8 ~10!
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defined by the bivector field~9!. By virtue of the expression~8!, the Hamiltonian vector fields$]l%
generate theS-algebraA.

III. POISSON STRUCTURES AROUND AN INVARIANT MANIFOLD

Theorem 2: For any Poisson bivector fieldw ~2! of rank 2k on U, there exists a toroida
domainU8,U such that (w,A) is a PIS onU8.

It is readily observed that any Poisson bivector fieldw ~2! fulfills condition ~b! in Definition
1, but condition~a! imposes a restriction on the toroidal domainU. The key point is that the
characteristic foliationF of U yielded by the Poisson bivector fieldsw ~2! is the pull-back of a
k-dimensional foliationFN of the baseN, which is defined by the first summandw1 ~2! of w. With
respect to the adapted coordinates (Jl ,zA), l51,...,k, on the foliated manifold (N,FN), the
Poisson bivector fieldw reads

w5wn
m~Jl ,zA!]n∧]m1wmn~Jl ,zA,yl!]m∧]n . ~11!

Then, condition~a! in Definition 1 is satisfied ifN8,N is a domain of a coordinate chart (Jl ,zA)
of the foliation FN . In this case, the dynamical algebraA on the toroidal domainU8
5p21(N8) is generated by the Hamiltonian vector fields

ql52wbdJl5wl
m]m ~12!

of the k independent functionsHl5Jl .
Proof: The characteristic distribution of the Poisson bivector fieldw ~2! is spanned by the

Hamiltonian vector fields

vA52wbdrA5wAm]m ~13!

and the vector fields

wbdyl5wAl]A12wml]m .

Sincew is of rank 2k, the vector fields]m can be expressed into the vector fieldsvA ~13!. Hence,
the characteristic distribution ofw is spanned by the Hamiltonian vector fieldsvA ~13! and the
vector fields

vl5wAl]A . ~14!

The vector fields~14! are projected ontoN. Moreover, one can derive from the relation@w,w#
50 that they generate a Lie algebra and, consequently, span an involutive distributionVN of rank
k on N. Let FN denote the corresponding foliation ofN. We consider the pull-backF5p* FN of
this foliation ontoU by the trivial fibrationp.16 Its leaves are the inverse imagesp21(FN) of
leavesFN of the foliation FN , and so is its characteristic distributionTF5(Tp)21(VN). This
distribution is spanned by the vector fieldsvl ~14! on U and the vertical vector fields onU
→N, namely, the vector fieldsvA ~13! generating the algebraA. Hence,TF is the characteristic
distribution of the Poisson bivector fieldw. Furthermore, sinceU→N is a trivial bundle, each lea
p21(FN) of the pull-back foliationF is the manifold product of a leafFN of N and the toroidal
cylinderRk2m3Tm. It follows that the foliated manifold (U,F) can be provided with an adapte
coordinate atlas

$~U M ,Jl ,zA,yl!%, l51,..,k, A51,...,dimZ22k, ~15!

such that (Jl ,zA) are adapted coordinates on the foliated manifold (N,FN), i.e., transition func-
tions of coordinateszA are independent ofJl , while transition functions of coordinates (yl)
5(ta,wl) on the toroidal cylinderRk2m3Tm are independent of coordinatesJl and zA. With
respect to these coordinates, the Poisson bivector field~2! takes the form~11!. Let N8 be the
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domain of a coordinate chart~15!. Then, the dynamical algebraA on the toroidal domainU8
5p21(N8) is generated by the Hamiltonian vector fieldsql ~12! of functionsHl5Jl .

Note that the coefficientswmn in the expressions~2! and ~11! are affine in coordinatesyl

because of the relation@w,w#50 and, consequently, are constant on tori. Furthermore, one
improve the expression~11! as follows.

Theorem 3: Given a PIS (w,A) on a Poisson manifold (w,U), there exists a toroidal domai
U8,U equipped with partial action-angle coordinates (I a ,I i ,zA,xa,f i) such that, restricted to
U8, a Poisson bivector field takes the canonical form

w5]a∧]a1] i∧] i , ~16!

while the dynamical algebraA is generated by Hamiltonian vector fields of the action coordin
functionsHa5I a , Hi5I i .

Theorem 3 extends the Liouville–Arnold theorem to the case of a Poisson structure
noncompact invariant manifold. To prove it~see Appendix A!, we reformulate the proof of the
Liouville–Arnold theorem for noncompact invariant manifolds in Refs. 11 and 12 in terms
leafwise symplectic structure.

Given a dynamic equationjPA, it may happen that no Poisson bivector field~2! makesj into
a Hamilton equation. Ifj is a nowhere vanishing complete vector field whose trajectories are
located in tori, one can choosej as one of the generators, e.g.,j5q1 in Theorem 1 so thatU can
be provided with a trivialization such thatj5q15]1 in the expression~8!. Then, the Poisson
structure~9! bringsj into a Hamilton equation. This improves the well-known result of Hojma18

that, under certain conditions, a first order dynamic equation can be brought into a Hamilto
with respect to a Poisson structure of rank 2. Moreover, any dynamic equationj on U gives rise
to an equivalent Hamilton equation] t1j of time-dependent mechanics onR23U.11,12

IV. BI-HAMILTONIAN STRUCTURES

Now, let w andw8 be two different Poisson structures~2! on the toroidal domain~1! which
make a commutative dynamical algebraA into two different PISs (w,A) and (w8,A).

Theorem 4: ~I! The triple (w,w8,A) is a bi-Hamiltonian system PIS in accordance w
Definition 2 iff the Poisson bivector fieldsw andw8 ~2! differ only in the second termsw2 and
w28 . ~II ! These Poisson bivector fields admit a recursion operator.

Proof: ~I! It is easily justified that, if Poisson bivector fieldsw ~2! fulfill Definition 2, they are
distinguished only by the second summandw2 . Conversely, as follows from the proof of Theore
2, the characteristic distribution of a Poisson bivector fieldw ~2! is spanned by the vector field
~13! and~14!. Hence, all Poisson bivector fieldsw ~2! distinguished only by the second summa
w2 have the same characteristic distribution, and they bringA into a PIS on the same toroida
domainU8. Then, the condition in Definition 2 is easily justified.

~II ! The result follows from the forthcoming Lemma 5.
Given a smooth real manifoldX, let w andw8 be Poisson bivector fields of rank 2k on X, and

let

w]:T* X→TX, w8]:T* X→TX ~17!

be the corresponding bundle homomorphisms. A tangent-valued one-formR on X yields bundle
endomorphisms

R:TX→TX, R* :T* X→T* X. ~18!

It is called a recursion operator if

w8]5R+w]5w]+R* . ~19!
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Given a Poisson bivector fieldw and a tangent valued one-formR such thatR+w]5w]+R* , the
well-known sufficient condition forR+w] to be a Poisson bivector field is that the Nijenhu
torsion ofR and the Magri–Morosi concomitant ofR andw vanish.19,20 However, as we will see
later, recursion operators between Poisson bivector fields in Theorem 4 need not satisfy
conditions.

Lemma 5:A recursion operator between Poisson structures of the same rank exists iff
characteristic distributions coincide.

Proof: It follows from the equalities~19! that a recursion operatorR sends the characteristi
distribution ofw to that ofw8, and these distributions coincide ifw andw8 are of the same rank
Conversely, let regular Poisson structuresw and w8 possess the same characteristic distribut
TF→TX tangent to a foliationF of X. Let TF* →X be the dual ofTF→X, and let

0→TF→
iF

TX→TX/TF→0, ~20!

0→AnnTF→T* X→
iF*

TF* →0, ~21!

be the corresponding exact sequences. The bundle homomorphismsw] andw8] ~17! factorize in
a unique fashion

w]:T* X→
iF*

TF* →
wF

]

TF→
iF

TX,

w8]:T* X→
iF*

TF* →
wF8

]

TF→
iF

TX

through the bundle isomorphisms

wF
] :TF* →TF, wF8

] :TF* →TF.

Let us consider the inverse isomorphisms

wF
[ :TF→TF* , wF8

[ :TF→TF* , ~22!

and the compositions

RF5wF8
]+wF

[ :TF→TF, RF* 5wF
[+wF8

] :TF* →TF* . ~23!

There is the obvious relation

wF8
]5RF+wF

]5wF
]+RF* .

In order to obtain a recursion operator~19!, it suffices to extend the morphismsRF andRF* ~23!
onto TX andT* X, respectively. For this purpose, let us consider a splitting

z:TX→TF, TX5TF% ~ Id2 i F+z!TX5TF% E,

of the exact sequence~20! and the dual splitting

z* :TF* →T* X, T* X5z* ~TF* ! % ~ Id2z* + i F* !T* X5z* ~TF* ! % E8

of the exact sequence~21!. Then, the desired extensions are

RªRF3Id E, R*ª~z+RF* !3Id E8.
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This recursion operator is invertible, i.e., the morphisms~18! are bundle isomorphisms.
For instance, the Poisson bivector fieldw ~2! and the Poisson bivector field

w05wAl~r !]A∧]l ~24!

admit a recursion operatorw0
]5R+w] whose entries are given by the equalities

RB
A5dB

A , Rn
m5dn

m , Rl
A50, wml5RB

lwBm. ~25!

Its Nijenhuis torsion fails to vanish, unless coefficientswml are independent of coordinatesyl.
Turn now to the case of a commutative dynamical algebraA defined by a PIS on a symplecti

manifold (Z,V). The following generalization of the Nekhoroshev theorem to noncompact in
ant manifolds addresses such a system.

Theorem 6: Let (V,$Hl%,ql) be ak-dimensional PIS on a 2n-dimensional symplectic mani
fold (Z,V). Let the distributionV, its regular integral manifoldM, an open neighborhoodU of M,
and the foliationF of U be as those in Theorem 1. Under conditions~i!–~iii ! of Theorem 1, the
following hold.

~I! There exists an open neighborhood ofM, sayU again, which is the trivial bundle~1! in
toroidal cylindersRk2m3Tm over a domainN,R2n2k.

~II ! It is provided with the partial action-angle coordinates (I l ,zA,yl) such that the functions
Hl depend only on the action coordinatesI l and the symplectic formV on U reads

V5dIl∧dyl1VAB~ I m ,zC!dzA∧dzB1VA
l~ I m ,zC!dIl∧dzA. ~26!

~III ! There exists a Darboux coordinate chartQ3Rk2m3Tm,U, foliated in toroidal cylinders
Rk2m3Tm and provided with coordinates (I l ,ps ,qs,ȳl) such that the symplectic formV ~26! on
this chart takes the canonical form

V5dIl∧dỹl1dps∧dqs. ~27!

This theorem is proved in Appendix B. Part~I! repeats exactly that of Theorem 1, while th
proof of part~II ! follows that of Theorem 3. The proof of part~III ! is a generalization of that o
Proposition 1 in Ref. 21 to noncompact invariant manifolds. As follows from the expression~27!,
the PIS in Theorem 6 can be extended to a completely integrable system on some open ne
hood of M, but Hamiltonian vector field of its additional local integrals of motion fail to
complete.

A glance at the symplectic formV ~26! shows that there exists a Poisson structurew of rank
2k, e.g.,w5]l∧]l on U such that, with respect tow, the integrals of motionHl of the original
PIS remain to be in involution, and they possess the same Hamiltonian vector fieldsql . Hence,
(V,w,$Hl%) is the above-mentioned bi-Hamiltonian system. Conversely, ifZ is even dimensional,
any Poisson bivector fieldw ~11! is extended to an appropriate symplectic structureV as follows.

Proposition 7:The Poisson bivector fieldw ~11! on a toroidal domainU8 in Theorem 2 is
extended to a symplectic structureV on U8 such that integrals of motionHl5Jl remain in
involution and their Hamiltonian vector fields with respect tow andV coincide.

Proof: The Poisson bivector fieldw ~11! on the foliated manifold (U,F) defines a leafwise
symplectic formVF ~A3!. Restricted to the toroidal domainU8 in Theorem 2 where coordinate
Jl have trivial transition functions, the exact sequence~A2! admits the splitting

z* :TF* →T* U8, z* ~ d̄Jm!5dJm , z* ~ d̄ym!5dym

such thatz* +VF is a presymplectic form onU8. Let VZ5VAB(zC)dzA∧dzB be also a presym-
plectic form onU8. It always exists. Then,V5z* +VF1VZ is a desired symplectic form onU8.
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V. KAM THEOREM FOR PARTIALLY INTEGRABLE SYSTEMS

Let $Hi%, i 51,...,k, be a partially integrable system on a 2n-dimensional symplectic manifold
(Z,V). Let M be its regular connected compact invariant manifold which admits an open n
borhood satisfying Theorem 6. In this case, Theorem 6 comes to the above-mentioned Ne
shev theorem. By virtue of this theorem, there exists an open neighborhood ofM which is a trivial
composite bundle

p:U5V3W3Tk→V3W→V ~28!

@cf. ~B2!# over domainsW,R2(n2k) and V,Rk. It is provided with the partial action-angl
coordinates (I i ,zA,f i), i 51,...,k, A51,...,2(n2k), such that the symplectic formV on U reads

V5dIi∧df i1VAB~ I j ,zC!dzA∧dzB1VA
i ~ I j ,zC!dIi∧dzA ~29!

@cf. ~26!#, while integrals of motionHi depend only on the action coordinatesI j .
Note that, in accordance with part~III ! of Theorem 6, one can always restrictU to a Darboux

coordinate chart provided with coordinates (I i ,ps ,qs;w i) such that the symplectic formV ~29!
takes the canonical form

V5dIi∧dw i1dps∧dqs.

Then, the PIS$Hi% on this chart can be extended to a completely integrable system, e.g.,$Hi ,ps%,
but its invariant manifolds fail to be compact. Therefore, this is not the case of the KAM theo

Let H(I j ) be a Hamiltonian of a PIS onU ~28!. Its Hamiltonian vector field

j5] iH~ I J!] i ~30!

with respect to the symplectic formV ~29! yields the Hamilton equation

İ i50, żA50, ḟ i5] iH~ I j ! ~31!

on U. Let us consider perturbations

H85H1H1~ I j ,zA,f j !. ~32!

We assume the following.~i! The HamiltonianH and its perturbations~32! are real analytic,
although generalizations to the case of infinite and finite order of differentiability are possible10,22

~ii ! The HamiltonianH is nondegenerate, i.e., the frequency map

v:V3W{~ I j ,zA!°j i~ I j !PRk

is of rankk.
Note thatv(V3W),Rk is open and bounded. As usual, giveng.0, let

Vy5H v [Rk:uv iai u>gS (
j 51

k

uaj u D 2k21

, ;aPZk\0J
denote the Cantor set of nonresonant frequencies. The complement ofVgùv(V3W) in v(V
3W) is dense and open, but its relative Lebesgue measure tends to zero withg. Let us denote
Gg5v21(Vg), also called the Cantor set.

A problem is that the Hamiltonian vector field of the perturbed Hamiltonian~32! with respect
to the symplectic formV ~29! leads to the Hamilton equationżAÞ0 and, therefore, no torus~31!
persists.

To overcome this difficulty, let us provide the toroidal domainU ~28! with the degenerate
Poisson structure given by the Poisson bivector field
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w5] i∧] i ~33!

of rank 2k. It is readily observed that, relative tow, all integrals of motion of the original PIS
(V,$Hi%) remain in involution and, moreover, they possess the same Hamiltonian vector
q i . In particular, a HamiltonianH with respect to the Poisson structure~33! leads to the same
Hamilton equation~31!. Thus, we can think of the pair (w,$Hi%) as being a PIS on the Poisso
manifold ~U, w!. The key point is that, with respect to the Poisson bivector fieldw ~33!, the
Hamiltonian vector field of the perturbed HamiltonianH8 ~32! is

j85] iH8] i2] iH8] i , ~34!

and the corresponding first order dynamic equation onU reads

İ i52] iH8~ I j ,zB,f j !, żA50, ḟ i5] iH8~ I j ,zB,f j !. ~35!

This is a Hamilton equation with respect to the Poisson structurew ~33!, but is not so relative to
the original symplectic formV. SinceżA50 and the toroidal domainU ~28! is a trivial bundle
over W, one can think of the dynamic equation~35! as being a perturbation of the dynam
equation~31! depending on parameterszA. Furthermore, the Poisson manifold~U, w! is the
product of symplectic manifold (V3Tk,V8) with the symplectic form

V85dIi∧df i ~36!

and the Poisson manifold (W,w50) with the zero Poisson structure. Therefore, the equation~35!
can be seen as a Hamilton equation on the symplectic manifold (V3Tk,V8) depending on pa-
rameters. Then, one can apply the conditions of quasiperiodic stability of symplectic Hamilt
systems depending on parameters10 to the perturbation~35!.

In a more general setting, these conditions can be formulated as follows. Let (w,$Hi%), i
52,...,k, be a PIS on a regular Poisson manifold~Z, w! of rank 2k. Let M be its regular connected
compact invariant manifold, and letU be its toroidal neighborhoodU ~28! in Theorem 3 provided
with the partial action-angle coordinates (I i ,zA,f i) such that the Poisson bivectorw on U takes
the canonical form~33!. The following result is a reformulation of that in Ref. 10~Sec. 5c!, where
P5W is a parameter space ands is the symplectic form~36! on V3Tk.

Theorem 8: Given a torus$0%3Tk, let

j5j i~ I j ,zA!] i ~37!

@cf. ~30!# be a real analytic Hamiltonian vector field whose frequency map

v:V3W{~ I j ,zA!°j i~ I j ,zA!PRk

is of maximal rank at$0%. Then, there exists a neighborhoodN0,V3W of $0% such that, for any
real analytic Hamiltonian vector field

j̃5 j̃ i~ I j ,zA,f j !] i1 j̃ i~ I j ,zA,f j !] i

@cf. ~34!# sufficiently nearj ~37! in the real analytic topology, the following holds. Given th
Cantor setGg,N0 , there exists thej̃-invariant Cantor setG̃,N03Tk which is aC`-near-identity
diffeomorphic image ofGg3Tk.

Theorem 8 is an extension of the KAM theorem to PISs on Poisson manifolds~Z, w!. Given
a PIS (V,$Hi%) on a symplectic manifold (Z,V), Theorem 8 enables one to obtain its perturb
tions ~34! possessing a large number of invariant tori, though these perturbations ar
Hamiltonian.
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APPENDIX A

Proof of Theorem 3:First, let us employ Theorem 2 and restrictU to the toroidal domain, say
U again, equipped with coordinates (Jl ,zA,yl) such that the Poisson bivector fieldw takes the
form ~11! and the algebraA is generated by the Hamiltonian vector fieldsql ~12! of k indepen-
dent functionsHl5Jl in involution. Let us choose these vector fields as new generators o
groupG and return to Theorem 1. In accordance with this theorem, there exists a toroidal d
U8,U provided with another trivializationU8→N8,N in toroidal cylindersRk2m3Tm and
endowed with bundle coordinates (Jl ,zA,y8l) such that the vector fieldsql ~12! take the form
~8!. For the sake of simplicity, letU8, N8, and y8 be denotedU, N, and y5(ta,w i) again.
Herewith, the Poisson bivector fieldw is given by the expression~11! with new coefficients.

Let w]:T* U→TU be the corresponding bundle homomorphism, and letTF* →U denote the
dual of the characteristic distributionTF→U. We have the exact sequences

0→TF→
iF

TU→TU/TF→0, ~A1!

0→AnnTF→T* U→
iF*

TF* →0. ~A2!

The bundle homomorphismw] factorizes in a unique fashion,

w]:T* U→
iF*

TF* →
wF

]

TF→
iF

TU

through the bundle isomorphism

wF
] :TF* →TF, wF

] :a°2w~x!ba.

Then, the inverse isomorphismswF
[ : TF→TF* provides the foliated manifold (U,F) with the

leafwise symplectic form

VF5Vmn~Jl ,zA,ta!d̄Jm∧d̄Jn1Vm
n ~Jl ,zA!d̄Jn∧d̄ym, ~A3!

Vm
awb

m5db
a , Vab52Vm

aVn
bwmn, ~A4!

where$d̄Jm ,d̄ym% is the dual of the basis$]m,]m% for the characteristic distributionTF. Recall
that leafwise~or tangential! exterior forms are defined as sections of the exterior bundle∧TF*
→U, while the leafwise exterior differentiald̄ acts on them by the law

d̄c5d̄Jl∧]lc1d̄yl∧]lc

~see, e.g., Refs. 23 and 24!. The leafwise symplectic formVF is nondegenerate andd̄-closed, i.e.,
d̄VF50. Let us show that it isd̄-exact.

Let F be a leaf of the foliationF of U. There is a homomorphism of the de Rham cohomolo
H* (U) of U to the de Rham cohomology ofH* (F) of F. One can show that this homomorphis
factorizes through the leafwise cohomology24

H* ~U !→HF* ~U !→H* ~F !. ~A5!

SinceN is a domain of an adapted coordinate chart of the foliationFN , the foliationFN of N is
a trivial fiber bundleN5V3W→W. SinceF is the pull-back ontoU of the foliationFN of N, it
is also a trivial fiber bundle

U5V3W3~Rk2m3Tm!→W ~A6!
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over a domainW,Rdim Z22k. It follows that

H* ~U !5H* ~Tm!5HF* ~U !.

Then, the closed leafwise two-formVF ~A3! is exact due to the absence of the te
Vmn dym∧dyn. Moreover,VF5d̄J whereJ reads

J5Ja~Jl ,zA,yl!d̄Ja1J i~Jl ,zA!d̄w i

up to ad̄-exact leafwise form.
The Hamiltonian vector fieldsql5ql

m]m ~8! obey the relation

qlcVF52d̄Jl , Vb
aql

b5dl
a , ~A7!

which falls into the following conditions:

V i
l5]lJ i2] iJ

l, ~A8!

Va
l52]aJl5da

l . ~A9!

The first of the relations~A4! shows thatVb
a is a nondegenerate matrix independent of coordina

yl. Then, the condition~A8! implies that] iJ
l are independent ofw i , and so areJl sincew i are

cyclic coordinates. Hence,

V i
l5]lJ i , ~A10!

] i cVF52d̄J i . ~A11!

Let us introduce new coordinatesI a5Ja , I i5J i(Jl). By virtue of the equalities~A9! and~A10!,
the Jacobian of this coordinate transformation is regular. The relation~A11! shows that] i are
Hamiltonian vector fields of the functionsHi5I i . Consequently, we can choose vector fields]l as
generators of the algebraA. One obtains from the equality~A9! that Ja52ta1Ea(Jl ,zA) and
J i are independent ofta. Then, the leafwise Liouville formJ reads

J5~2ta1Ea~ I l ,zA!!d̄I a1Ei~ I l ,zA!d̄I i1I i d̄w i .

The coordinate shifts

xa52ta1Ea~ I l ,zA!, f i5w i2Ei~ I l ,zA!

bring the leafwise formVF ~A3! into the canonical form

VF5d̄I a∧d̄xa1d̄I i∧d̄f i

which ensures the canonical form~16! of the Poisson bivector fieldw.

APPENDIX B

Proof of Theorem 6:~I!. See the proof of part~I! of Theorem 1.
~II !. One can specify the coordinates on the baseN of the trivial bundleU→N as follows. Let

us consider the morphism

p853
l

Hl :U→V ~B1!
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of U onto a domainV,Rk. It is of constant rank and, consequently, is a fibered manifold.
fibration p8 factorizes as

p8:U→
p

N→
p9

V

through the fiber bundlep. The mapp95p8+s is also a fibered manifold. One can always restr
the domainN to a chart of the fibered manifoldp9. Then,N→p9(N)5V is a trivial bundle, and
so isU→V. Thus, we have the composite fibration

U5V3W3~Rk2m3Tm!→V3W→V. ~B2!

Let us provide its baseV with the coordinates (Jl) such thatJl(u)5Hl(u), uPU. ThenN can
be equipped with the bundle coordinates (Jl ,zA), A51,...,2(n2k), and (Jl ,zA,ta,w i) are coor-
dinates onU ~B2!. Since fibers ofU→N are isotropic, the symplectic formV on U relative to the
coordinates (Jl ,zA,yl) reads

V5Vab dJa∧dJb1Vb
a dJa∧dyb1VAB dzA∧dzB1VA

l dJl∧dzA1VAB dzA∧dyb. ~B3!

The Hamiltonian vector fieldsql5ql
m]m ~8! obey the relationsqlcV52dJl , which give the

coordinate conditions

Vb
aql

b5ll
a , VAbql

b50. ~B4!

The first of them shows thatVb
a is a nondegenerate matrix independent of coordinatesyl. Then,

the second one impliesVAb50.
By virtue of the well-known Ku¨nneth formula for the de Rham cohomology of manifo

products, the closed formV ~B3! is exact, i.e.,V5dJ where the Liouville formJ is

J5Ja~Jl ,zB,yl!dJa1J i~Jl ,zB!dw i1JA~Jl ,zB,yl!dzA.

SinceJa50 andJ i are independent ofw i , it follows from the relations

VAb5]AJb2]bJA50

that JA are independent of coordinatesta and are at most affine inw i . Since w i are cyclic
coordinates,JA are independent ofw i . Hence,J i are independent of coordinateszA, and the
Liouville form reads

J5Ja~Jl ,zB,yl!dJa1J i~Jl!dw i1JA~Jl ,zB!dzA. ~B5!

Because entriesVb
a of dJ5V are independent ofyl, we obtain the following.

~i! V i
l5]lJ i2] iJ

l. Consequently,] iJ
l are independent ofw i , and so areJl sincew i are

cyclic coordinates. Hence,V i
l5]lJ i and] i cV52dJ i . A glance at the last equality shows th

] i are Hamiltonian vector fields. It follows that, from the beginning, one can separatem integrals
of motion, sayHi again, whose Hamiltonian vector fields are tangent to invariant tori. In this c
the matrixB in the expressions~7! and~8! vanishes, and the Hamiltonian vector fieldsql ~8! read

qa5]a , q i5~C21! i
k]k . ~B6!

Moreover, the coordinatesta are exactly the flow parameterssa. Substituting the expressions~B6!
into the first condition~B4!, we obtain

V5Vab dJa∧dJb1dJa∧dsa1Ck
i dJi∧dwk1VAB dzA∧dzB1VA

l dJl∧dzA.

It follows that J i are independent ofJa , and so areCi
k5]kJ i .
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~ii ! Va
l52]aJl5da

l . Hence,Ja52sa1Ea(Jl) andJ i are independent ofsa.
In view of items~i!–~ii !, the Liouville formJ ~B5! reads

J5~2sa1Ea~Jl ,zB!!dJa1Ei~Jl ,zB!dJi1J i~Jj !dw i1JA~Jl ,zB!dzA.

Since the matrix]kJ i is nondegenerate, we can perform the coordinate transformationI a5Ja ,
I i5J i(Jj ) together with the coordinate shifts

xa52sa1Ea~Jl ,zB!, f i5w i2Ej~Jl ,zB!
]Jj

]I i
.

These transformations bringV into the form~26!.
~III ! Since functionsI l are in involution and their Hamiltonian vector fields]l mutually

commute, a pointzPM has an open neighborhoodQ3Oz , OzPRk2m3Tm, endowed with the
Darboux coordinates (I l ,ps ,qs,ỹl) such that the symplectic formV ~26! is given by the expres-
sion ~27!. Here, ỹl(I l ,zA,ya) are local functions whose Hamiltonian vector fields are]l. They
take the form

ỹl5yl1 f l~ I l ,zA!. ~B7!

With the groupG, one can extend these functions to the open neighborhood

Ũ5Q3Rk2m3Tm

of M by the law

ỹl~ I l ,zA,G~y!a!5G~y!l1 f l~ I l ,zA!.

Substituting the functions~B7! on Ũ into the expression~26!, one brings the symplectic formV
into the canonical form~27! on Ũ.
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A normalized positive operator measureX°E(X) has the norm-1-property if
iE(X)i51 wheneverE(X)ÞO. This property reflects the fact that the measure-
ment outcome probabilities for the values of such observables can be made arbi-
trarily close to one with suitable state preparations. Some general implications of
the norm-1-property are investigated. As case studies, localization observables,
phase observables, and phase space observables are considered. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1566454#

I. INTRODUCTION

Spectral measures possess many important properties which have a direct physical m
for the quantum observables represented by such measures. Among them are the followin
erties:~1! the norm of any nonzero operator~projection! in the range of a spectral measure is on
~2! the range of a spectral measure is a Booleans-algebra with respect to the order structure
operators,~3! any coarse-graining of such a measure is a function of that measure. The
property allows one to decide~with probabilistic certainty! on the values of the correspondin
observable and, for instance, to make the variance of such a quantity in a suitable state arb
small. The Boolean structure of the range of a spectral measure allows one to combine, in a
way, statements concerning the values~or measurement outcomes! of such observables. Finally
the third property is intimately related to the possibility of joint measurability of various co
grainings of such observables. In representing a quantum observable as a semispectral m
i.e., a normalized positive operator measure, one loses, in general, the above-mentioned pr
of spectral measures, and thus also the physical interpretation of the relevant measurement
becomes somewhat obscure. In this paper we study these properties and their inter-relat
semispectral measures and we consider their realizations for the approximate localization
and the phase space observables.

II. THE NORM-1-PROPERTY AND e-DECIDABILITY

Let H be a complex separable Hilbert space andL~H! the set of bounded operators on it. L
V be a nonempty set andA a s-algebra of subsets ofV. Consider a normalized positive operat
measureE:A→L(H), for short, POM. Such operator measures represent physical quan
observables, of a physical system described by the Hilbert spaceH. The elementsE(X) in the

a!Electronic mail: teiko.heinonen@utu.fi
b!Electronic mail: pekka.lahti@utu.fi
c!Electronic mail: juhpello@utu.fi
d!Electronic mail: pulman@mau.savba.sk
e!Electronic mail: ylinen@utu.fi
19980022-2488/2003/44(5)/1998/11/$20.00 © 2003 American Institute of Physics
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range ofE, ran(E), are positive operators bounded by the unit operator, that is,O<E(X)<I . Let
E ~H! denote the set of operatorsA with O<A<I . They are called effects. Clearly, for anyA
PE (H), its square rootA1/2 is also an effect withA<A1/2<I . In particular, the square root of a
effect A is self-adjoint implyingiA1/2i25iAi . From this equation one notices thatiAi51 if and
only if iA1/2i51. Also, for anyAPE (H), the spectrum ofA, s(A), is a subset of@0,1#, andA is
a projection operator (A25A) if and only if s(A)#$0,1%.

We say that a POME:A→L(H) has thenorm-1-propertyif the norm of any nonzero effec
E(X) equals one, that is,iE(X)i51, wheneverE(X)ÞO. Clearly, if E is projection valued, that
is, eachE(X) is a projection operator, thenE has the norm-1-property.

Lemma 1: If E has the norm-1-property, then for any OÞE(X)ÞI , the spectrum of E(X)
contains0 and 1.

Proof: The norm of an effectE(X) is equal to its spectral radius,

iE~X!i 5 sup$l : lPs~E~X!!%.

Let X8 denote the complement of a setX,V. If E has the norm-1-property, theniE(X)i51 as
well asiE(X8)i51 for anyOÞE(X)ÞI , so that by the closedness of the spectrum, 1 is conta
both ins(E(X)) and ins(E(X8)). SinceE(X8)5I 2E(X) ands(I 2E(X))512s(E(X)), one
has 0Ps(E(X)). h

We say that a POME:A→L(H) has thee-decidability-property, if for eachE(X)ÞO and for
any e.0 there is a unit vectorw such that̂ w u E(X)w &>12e.

Proposition 1: A POM E:A→L(H) has the norm-1-property if and only if it has th
e-decidability-property.

Proof: For any effectE(X), we haveiE(X)i51 if and only if iE(X)1/2i51. The latter
equation can be written as

sup$^ w u E~X!w &uwPH,iwi51%51.

h

If an observable~POM! E:A→L(H) has thee-decidability-property, then for eachXPA for
which E(X)ÞO and for eache.0 there is a vector statew (iwi51) such that the probability for
a measurement ofE to lead to a result inX in that statew is greater than 12e. Since probability
one and probability almost one are operationally indistinguishable such observables res
sharp observables, that is, projection valued observables. The following result, known to be
for sharp observables~spectral measures!, exhibits this similarity.

Proposition 2: Consider a bounded real POM E:B(R)→L(H) and assume that it has th
norm-1-property. Then for eache.0 there is a vector statewPH such thatVar (E,w),e.

Proof: For anyxPR, xPsupp (E) if and only if for eachh.0, E((x2h,x1h))ÞO. Since
E((x2h,x1h))ÞO implies iE((x2h,x1h))i51, there is a unit vectorwhPH such that
^ wh u E((x2h,x1h))wh &>12h. Since supp (E),@2a,a# for somea.0, we now get

Var ~E,wh!5E
R
x2 dEwh ,wh

~x!2F E
R
x dEwh ,wh

~x!G2

<15ha3,

which tends to zero withh→0. h

III. REGULAR OBSERVABLES AND THEIR COARSE-GRAININGS

For any APE (H) we denoteA8ªI 2A and call it the complement effect ofA. If OÞA
ÞI , we say thatA is regular if neitherA<A8 nor A8<A. A nontrivial effectA (ÞO,I ) is regular

if and only if A<” 1
2I andA>” 1

2I ; equivalently, if and only if its spectrum extends both below a
above1

2. Similarly, an observableE:A→L(H) is regular if any of its nontrivial effectsE(X) is
regular.

Proposition 3: If a POM E has the norm-1-property, then it is regular.
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Proof: Assume thatE:A→L(H) has the norm-1-property. Then for anyXPA, if OÞE(X)
ÞI , we have 0,1Ps(E(X)), showing thatE(X) is regular. h

The converse statement would be false. As a simple example consider a two-valued
defined as follows: fix alÞ 1

2, 0,l,1, fix also two mutually orthogonal unit vectorsw,c and set
AªlP@w#1(12l)P@c#. ThenA and its complementA8ªI 2A constitute a regular POM bu
iAi5max$l,12l%,1.

Assume that a POME:A→L(H) has an effectE(X)ÞO whose norm is strictly less than 1
Then 1 is not in the spectrum ofE(X), that is, 0 is not in the spectrum of its complement effe
E(X8). Therefore,E(X8) is invertible, ran(E(X8))5H, and for any one-dimensional projectio
operatorP, the greatest lower bound ofE(X8) and P exists and equalsE(X8)∧P5lP, where
l5iE(X8)21/2wi22Þ0, with w being a unit vector such thatPw5w.1

Denoting byP(H)1 the set of one-dimensional projections onH we may write any effectA
as a join of the weak atoms contained in it, that is, in the formA5∨PPP(H)1

(A∧P).1 Therefore,
we now have that the set of effectsB which are belowA andE(X8) is different from zero, that is,

lb ~A,E~X8!!ª$BPE ~H! : B<A,B<E~X8!%Þ$O%.

Consider an arbitrary POME:A→L(H). The range ofE is closed under the mappin
E(X)°E(X)8. Also the order of effects~as positive operators! may be restricted to ran(E).
However, the map ran(E){E(X)°E(X)8Pran(E) need not be an orthocomplementation, sin
E(X)∧ ran(E)E(X)8 may fail to exist, and even if it does exist, it need not be the null effectO.
Neither does it need to hold thatE(XùY)5E(X)∧ ran(E)E(Y). In particular, this oddity occurs if
iE(X)i,1 for someE(X)ÞO. However, if E is regular, then ran(E) is a Boolean lattice with
respect to the order and the complement restricted to ran(E). The converse is also true: i
(ran(E),<,8) is Boolean, then E is regular.2 In particular, in that case we hav
E(X)∧ ran(E)E(X)85O for anyXPA. Any ~nonzero! lower bound ofE(X) andE(X)8 @in E ~H!#
is necessarily irregular, and as such cannot be contained in the range ofE, which is Boolean.

Consider next two POMsE and E1 defined on the Borel sigma algebras~V,B~V!! and
(V1 ,B(V1)) of some complete, separable, metric spacesV andV1 . We say thatE1 is a coarse-
graining ofE if ran(E1)#ran(E). If E is regular, then there is a Borel functionf :V→V1 such
that E15Ef , that is,E1(Y)5E( f 21(Y)) for all YPB(V1).3 The converse statement would b
false: there are irregular observables, e.g., observables with the∨-property~or strong observables!
such that their coarse grainings are functions.4

We close this section with a result concerning finite coarse-grainings of an observable h
the norm-1-property.

Proposition 4: Let E:B(V)→E (H) be an observable with the norm-1-property. LetC
5(Ai) i 51

n be a partition of unity in ran(E). Define a mapping uC :E (H)→E (H) by
B°( i 51

n Ai
1/2BAi

1/2. Then for every1< i<n there is a sequence(ck
i )kPN of unit vectors inH such

that

lim
k→`

^ ck
i u uC~B!ck

i &5 lim
k→`

^ ck
i u Ai

1/2BAi
1/2ck

i &

for all BPE (H).
Proof: Owing to the norm-1-property, we can find a sequence of unit vectors (ck

i )kPN such
that ^ ck

i u Aick
i &→1, k→`. Since (Ai) i 51

n is a partition of unity, it follows that
( j Þ i^ ck

i u Ajck
i &→0. From

0<^ ck
i u Aj

1/2BAj
1/2ck

i &<iBiiAj
1/2ck

i i→0, j Þ i ,

the desired statement follows. h
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IV. LOWER BOUNDS FOR PAIRS OF EFFECTS

The norm-1-property of an observableE:A→L(H) is closely related to the set of lowe
bounds of an effect and its complement. Indeed, ifE does not have the norm-1-property, the
lb (E(X),E(X8))Þ$O% for someOÞE(X)ÞI . On the other hand, ifE has the norm-1-property
thenE(X)∧ ran(E)E(X8)5O for anyXPA, and any lower bound ofE(X) andE(X8) @in E ~H!# is
necessarily irregular, and as such cannot be contained in the range ofE. These observations ca
for a further study of the set of lower bounds of an effect and its complement.

Let A,BPE (H), and let A5∨PPP(H)1
l(A,P)P and B5∨PPP(H)1

l(B,P)P. If
ran(A1/2)ùran(B1/2)5$0%, then A∧B5O, and if ran (A1/2)ùran (B1/2)Þ$0%, then lb (A,B)
Þ$O%. In the latter case, the greatest lower boundA∧B may or may not exist. In any case, the
is always a maximal lower bound.

Proposition 5 (Ref. 5): Let A,BPE (H). There is a maximal CPE (H) such that C<A,B.
Proof: The set of lower boundslb (A,B) of A andB is a nonempty partially ordered set i

E ~H!. Let K, lb (A,B) be a chain.K is a directed set, and by indexing its elements by the
selves,K becomes an increasing net inE ~H!. Applying known results~e.g., Ref. 6, Lemma 1!, one
obtainsCPE (H) such that

lim
DPK

^ Dw u w &5^ Cw u w &

for all wPH. It follows that CP lb (A,B) and thatD<C for all DPK. By Zorn’s lemma,
lb (A,B) has a maximal element. h

Corollary 1: Let A,BPE (H). Then every lower bound of A,B lies under a maximal lower
bound.

Proof: For everyD0P lb (A,B), set S(D0)5$DP lb (A,B):D0<D%. Then S(D0) is par-
tially ordered and nonempty, becauseD0PS(D0). By the same arguments as above, there i
maximal element inS(D0). h

For anyAPE (H), let EA denote its spectral measure, so thatA5*0
1l dEA(l). Consider the

reduced operators

ÃªA@ I 2EA~$1%!2EA~$0%!#5E
01

12

l dEA~l!,

I 2Ãª~ I 2A!@ I 2EA~$0%!2EA~$1%!#5E
01

12

~12l! dEA~l!,

where the spectral projectionsEA($0%) and EA($1%) are nonzero exactly when 0 and 1 a
eigenvalues ofA.

Proposition 6 (Ref. 7): The infimum A∧A8 in E ~H! exists if and only if the reduced operato

Ã and I2Ã are comparable. In each case, the infimum coincides with the smaller of the abov
and is equal to

E
0

1

min~l,12l!dEA~l!.

Corollary 2: Let APE (H). If 0,1 are not eigenvalues of A, then A∧A8 exists if and only if A
<I 2A or A>I 2A, that is, A is irregular.

Example 1:Let P0 ,P1 ,P2 ,P3 be four mutually orthogonal projections which sum up to t
unit operator, and let 0,l,m,1,lÞm. Then A50P011P11lP21mP3 is an effect with
0,1,l,m as the eigenvalues. ThenA andI 2A are of norm one, both having 0 and 1 as eigenvalu
and they constitute a simple observable with the range$O,A,I 2A,I %. Now A∧(I 2A) exists in
E ~H! if and only if the reduced operatorsÃ5lP21mP3 and I 2Ã5(12l)P21(12m)P3 are
comparable. This is the case exactly when eitherl< 1

2,m< 1
2 or l> 1

2,m> 1
2. In that caseA∧(I
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2A) is the smaller of the two effectsÃ and I 2Ã. Clearly,A∧(I 2A), when it exists, is irregular
and is therefore not contained in the range of the regular observable in question.

V. EXAMPLES

In this section properties discussed above are considered for the localization observab
phase observables, and the phase space observables together with their polar and Cartes
ginal measures.

A. Approximate localization

Massless relativistic particles are known to be approximately localizable in the sense tha
admit localization observablesE:B(R3)→L(H), that is, POMs which are covariant under Eucli
ean motions and dilations, having the norm-1-property for~nonempty! open setsU,R3, see Refs.
8–10. For any nonempty open setU,R3 there is thus a sequence of unit vectors (cn)nPN such
that

lim
n→`

^ cn u E~U !cn &51. ~1!

Example 2 below shows that there are~non-normalized! positive operator measures which do ha
the norm-1-property for open sets but not for all Borel sets. Therefore, we shall take a close
at the norm-1-property.

Example 2:Let C,@0,1# be a Cantor set with positive Lebesgue measure. It is well-kno
that C is compact and nowhere dense. Define a functionf :R→R with f (x)5 1

2 for xPC and
f (x)51 otherwise, and define a~non-normalized! positive operator measureE:B(R)→L2(R) via
the equation

~E~X!c!~x!5xX~x! f ~x!c~x!.

For any nonempty open setU,R, the intersectionUùC8 is an open set with positive Lebesgu
measure. SinceE(UùC8)<E(U), and, by definition,iE(UùC8)i51, it follows that iE(U)i
51 for all open setU,R. However, it lacks the norm-1-property, sinceiE(C)i5 1

2.
Let now V be a locally compact second countable topological space andB~V! the Borel

s-algebra ofV. In this case every finite Borel measure is a Radon measure.
Proposition 7: A POM E:B(V)→L(H) has the norm-1-property if and only ifiE(K)i51 for

all compact sets K,V such that E(K)ÞO.
Proof: Assume thatE has the norm-1-property for compact setsK for which E(K)ÞO and let

XPB(V). If X contains a compact setK such thatE(K)ÞO, then fromE(K)<E(X) one gets
iE(X)i51. On the other hand, ifE(K)5O for all compact setsK,X, then for any unit vector
wPH,

^ w u E~X!w &5sup$^ w u E~K !w & u K,X,K compact%50,

showing that alsoE(X)5O. h

Compact sets are closed. Therefore, we may replace ‘‘compact’’ with ‘‘closed’’ in the prev
Proposition. This gives us the following formulation, which should be compared with Eq.~1!.

Corollary 3: If for any open set U, E(U)ÞI , there is a sequence(cn)nPN of unit vectors such
that

lim
n→`

^ cn u E~U !cn &50, ~2!

then E has the norm-1-property.
Condition~2! means that with a suitable preparation of the state of the system, the proba

for a measurement result to be in the setU can be made arbitrarily small. It appears reasonabl
expect that an approximate localization observable should fulfill also this condition.
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Let G be a locally compact second countable group,H a closed and normal subgroup, andV
the quotient groupG/H. The Haar measure ofV is denoted bymV . Assume that (U,E) is a
transitive system of covariance, whereU is a unitary representation ofG in a Hilbert spaceH and
E:B(V)→L(H) is a POM such thatU(g)E(X)U(g)* 5E(g•X) for all gPG,XPB(V).

Lemma 2 below is part of Lemma 3.3 in Ref. 11, and Proposition 8 is a slight modificatio
Theorem 1 of Ref. 12. We find it useful to give the proofs of these statements here.

Lemma 2: Leta be a finite nonzero measure onB~V!. Then for all XPB(V),

mV~X!5
1

a~V!
E

V
a~vX21!dmV~v!. ~3!

Proof: Let XPB(V). The setX̃ª$(v,h)PV3Vuh21vPX% is a Borel subset ofV3V.
Clearly,x X̃(v,h)5xX(h21v). Applying the Fubini theorem tox X̃ one gets

E
V
S E

V
xX~h21v!dmV~v! D da~h!5E

V
S E

V
xX~h21v!da~h! D dmV~v!.

By the left invariance of the Haar measuremV , the value of the left-hand side of this equality
just mV(X)a(V). On the right-hand side we can writexX(h21v)5xvX21(h). Now Eq. ~3!
follows. h

Proposition 8: For any XPB(V), E(X)5O if and only ifmV(X)50.
Proof: For anycPH andXPB(V), denotepc(X)5^ c u E(X)c &. By lemma 2, we have

mV~X!5
1

pc~V!
E

V
pc~vX21!dmV~v!. ~4!

Assume thatE(X)5O. Thenpc(X)50 for all cPH. Let vPV. BecauseE is covariant, there is
a gPG such thatpc(vX)5pU(g)* c(X) for all cPH. Hencepc(vX)50 and

mV~X21!5
1

pc~V!
E

V
pc~vX!dmV~v!50.

SincemV is the Haar measure,mV(X)50 if and only if mV(X21)50.
Assume then thatmV(X)50. Using Eq.~4! we see that for anycPH, pc(v21X)50 for

mV-almost allvPV. Let $w j% j PN be an orthonormal basis ofH and letNj be the set of those
vPV for which pw j

(v21X) is not zero. Then everyNj as well asN5ø j PNNj aremV-null sets.
Assume thatv¹N. Then for allk, j PN,

u^ wk u E~v21X!w j &u5u^ E~v21X!1/2wk u E~v21X!1/2w j &u

<iE~v21X!1/2wki•iE~v21X!1/2w j i

5pwk
~v21X!•pwk

~v21X!50.

From this it follows that for eachj PN, E(v21X)w j50, and thusE(v21X)5O. For a fixedv
PN8 we can takegPG such thatE(v21X)5U(g)E(X)U(g)* . This means thatE(X)5O. h

Setting Propositions 7 and 8 together we get the following statement.
Proposition 9: A covariant POM E has the norm-1-property if and only ifiE(K)i51 for any

compact set K with positive Haar measure.
We wish to emphasize that it remains an open question if condition~1! implies the norm-1-

property for covariant observables.
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B. Phase observables

Phase observables are an important class of physical quantities which can be represen
in terms of POMs, since there are no phase shift covariant projection valued measures
observables can be characterized in various equivalent ways, the most direct being as follo
(un&)nPN,H be an orthonormal basis~number basis! of H. Then any sequence of unit vecto
(jn)nPN,H defines a~phase shift covariant! POM E:B(@0,2p))→L(H) through

E~X!5 (
n,mPN

^ jn u jm &
1

2p E
X
ei (n2m)x dx un &^ mu, XPB~@0,2p!!,

with the ~covariance! property

eixNE~X!e2 ixN5E~Xux!,

whereN5(nPNnun &^ nu andu denotes addition modulo 2p. Conversely, any phase observable
of that form for some sequence of unit vectors (jn)nPN,H, see, e.g., Ref. 13. Apart from th
trivial phase@for which (jn)nPN is orthonormal#, the simplest among them are the element
phase observablesEel , defined by sequences (jn)nPN such that^ jn u jm &5dnm , except forn
5s,m5t,sÞt, in which casê js u j t &5z, 0,uzu,1. Such a phase observable has both reg
and irregular elements in its range but none of them, exceptEel(X)5I , has norm one. Indeed, th
eigenvalues of its effectsEel(X) satisfy 0<e2(X)<e0(X)5 ,(X)/2p <e1(X), with

e6~X!5
,~X!

2p
6uzuU 1

2p E
X
ei (s2t)x dxU.

Varying X we get both regular and irregular effects. But alwaysiEel(X)i5e1(X),1. Thus
ran(Eel) is not Boolean andEel does not have thee-decidability property.

The canonical phase observableEcan:B(@0,2p))→L(H) is defined by a constant sequen
jn5j for all n. The Hilbert spaceL2(@0,2p)) has an orthonormal basis$en%nPZ , whereen is the
function x°(1/A2p) einx. Let V:H→L2(@0,2p)# be the isometric linear mapping satisfyin
Vun&5en for all nPN. The Hilbert spaceH can be identified viaV with the Hardy subspaceH2

of L2(@0,2p)#. With this identification,PªVV* is the orthogonal projection ofL2(@0,2p)# onto
H2. Let for XPB(@0,2p)), MxX

be the multiplication operator acting onL2(@0,2p)#, MxX
f

5xXf . It is easy to see that

Ecan~X!5V* MxX
V5V* PMxX

V.

The spectra of the operatorsEcan(X) andPMxX
are therefore the same. On the other hand, by

Hartman–Wintner theorem~Ref. 14, p. 183! the spectrum of the Toeplitz operatorPMxX
is the

closed interval@ess infxX ,ess supxX#. Hence the following proposition is obtained.
Proposition 10: For any XPB(@0,2p)) of nonzero Lebesgue measure the normiEcan(X)i

51. Moreover, if also the complement set X8 has nonzero measure, then the spectrum of Ecan(X)
is the whole interval@0,1#.

The norm-1-property ofEcan implies thatEcan is regular. While 0,1Ps(Ecan(X)) for any O
ÞEcan(X)ÞI , it is well known that they are not eigenvalues ofEcan(X), see e.g., Ref. 15, p. 5929
ThereforeEcan(X)∧Ecan(X8) does not exist inE ~H!. It follows that there exist at least two
incomparable lower bounds ofEcan(X) andEcan(X8) in E ~H!. Apart from that, (ran(Ecan),<,8) is
Boolean andEcan has thee-decidability property.

The norm-1-property of the canonical phase observable has been obtained by elem
methods already in Ref. 15. These methods were needed to study also some properties of th
space observables, see below. For the present purpose we find it useful to give an indep
proof for Proposition 10.
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C. The phase space observable A z0‹

As another physically relevant example, consider the two-dimensional phase space obs
Au0& generated by the ground stateu0& of the number operatorN5(n50

` nun &^ nu. As is well
known, the phase space observableAu0& has the structure

Au0&~Z!5
1

p E
Z
uz &^ zu dl~z!, ZPB~C!,

whereuz&5e2uzu2/2(n50
` (zn/An!) un& is a coherent state~for eachzPC) andl:B(C)→@0,̀ # the

two-dimensional Lebesgue measure. For anyZPB(C) of finite measure one hasAu0&(Z)
< @l(Z)/p# I , showing that there are effectsAu0&(Z) with norm strictly less than one, even les
than 1

2. Therefore, the phase space observableAu0& does not have the norm-1-property and
irregular. Its range is not Boolean.

1. Polar coordinate marginal measures

Using the polar decomposition of complex numbers (z5reiu), consider a set of the formZ
5@0,r )3@0,2p), so thatl(Z)5pr 2 and thusiAu0&(Z)i<r 2. This shows that not only the phas
space observableAu0& but also its number margin

B~@0,̀ !!{R°Au0&~R3@0,2p!!5..Au0&
r ~R!PL~H!

fails to have the norm-1-property and is irregular. On the other hand, if we consider sets
form Z5@0,̀ )3Q, with QPB(@0,2p)), the estimatê w u Au0&(Z)w &<l(Z)/p,wPH,iwi51,
does not help to bound the norm of the effectAu0&(Z). However, it can be shown15 that the angle
margin ofAu0& , that is, the POM,

B~@0,2p!!{Q°Au0&~ @0,̀ !!3Q)5..Au0&
u ~Q!PL~H!

has the norm-1-property: for anyQPB(@0,2p)) of nonzero Lebesgue measure,

iAu0&
u ~Q!i51.

Therefore,Au0&
u is regular and it has thee-decidability property.

2. Cartesian marginal measures

Consider next the norm properties of the Cartesian marginal~with respect toz5x1 iy) mea-
sures

B~R!{X°Au0&~X3R!5..Au0&
x ~X!PL~H!,

B~R!{Y°Au0&~R3Y!5..Au0&
y ~Y!PL~H!.

This is most readily done by using theL2(R)-realization ofAu0& @obtained via the isometryH
{un&° f nPL2(R), where f n is the nth Hermite function#. In that representation the margin
measures are identified, respectively, as unsharp position and unsharp momentum with the
Au0&

x (X)[(u f 0u2* xX)@(1/&) Q# and Au0&
y (Y)[(u f̂ 0u2* xX)@(1/&) P#, where Q and P are the

usual position and momentum operators andf̂ 0 is the Fourier transform off 0 .16 ~We recall that it
is customary to use the coordinatesq5x/&,p5y/& for position and momentum observables!
Using the spectral calculus one gets the norm estimates

iAu0&
x ~X!i5I ~ u f 0u2* xX!S 1

&
QD I <sup

xPR
U~ u f 0u2* xX!S 1

&
xD U ,
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iAu0&
y ~Y!i5I ~ u f̂ 0u2* xY!S 1

&
PD I <sup

yPR
U~ u f̂ 0u2* xY!S 1

&
yD U .

This shows that, e.g.,iAu0&
x ((2e,e))i<2e/Ap, which is less than1

2 whenevere,Ap/4. An
immediate computation also shows that for any boundedXPR, supxPRu(u f 0u2* xX)@(1/&) x#u
,1 and thusiAu0&

x (X)i,1, whereas for complements of bounded setsX one getsiAu0&
x (X8)i

51. Finally, we observe that for any regular effectAu0&
x (X), the meetAu0&

x (X)∧Au0&
x (X)8 does not

exist in E ~H!. On the other hand, ifAu0&
x (X) is irregular, then$O,Au0&

x (X),Au0&
x (X)8,I % is non-

Boolean.

3. Two-photon coherent state probability measures

The fact that the angle marginAu0&
u has the norm-1-property means that for anyQ

PB(@0,2p)) ~of nonzero measure! there is a sequence of unit vectorswnPH such that the
probabilitieŝ wn u Au0&

u (Q)wn & tend to one with growingn. In fact, choosing a coherent stateua&,
aPC, such that argaPQ is a Lebesgue point ofQ, then limuau→`^ a u Au0&

u (Q)ua &51, see Ref.
15. On the other hand, our investigations of Cartesian marginal measures show that
bounded XPB(R), is there a sequence (wn) of unit vectors for which the probabilities
^ wk u Au0&

x (X)wk & would tend to one. We state this obvious fact since one might expect tha
instance, squeezing the vacuum stateu0&, S(r )u0&5era22ra* 2

u0&, and rotating and displacing i
appropriately, the probabilitŷ0 u S(r )* Au0&

x (X)S(r )u0 & would tend to one~with growing squeeze
parameterr ). That this is not the case is seen directly from these probabilities. Instead of co
ering coherent and squeezed states we study directly the more general case of two-photon c
states.17

Let ub;m,n&, b, m, nPC, umu22unu251, be a two-photon coherent state~TCS!, that is, it
satisfies the following eigenvalue equation:

~ma1na* !ub;m,n&5bub;m,n&.

An arbitrary TCSub;m,n& can be written in the form

e2 iu/2R~u!D~z!S~e!u0&,

whereR(u)ªeiuN, uP@0,2p), D(z)ªeza* 2 z̄a, zPC, S(e)ªe1/2ēa221/2ea* 2
, ePC, are the rota-

tion, displacement, and squeezing operators, respectively. Note thatumu22unu251 implies that
umu>1 and un/muP@0,1). We go on to determine the density of the probability meas
Z°^b;m,nuAu0&(Z)ub;m,n&.

Let m, n, andb be fixed. From Ref. 17 Eq.~3.20!, one gets

^zub;m,n&5
1

Am
expS 2

1

2
uzu22

1

2
ubu22

n

2m
z̄21

n̄

2m
b21

1

m
z̄b D

for all z, bPC. Denoteg5m̄b2nb̄. Thenb5gm1ḡn. Definingz8ªz2g one gets

^zub;m,n&5
1

Am
expS 2

1

2
uz8u22

n

2m
z821

1

2
z8g2

1

2
z8ḡ D

and, thus,

u^zub;m,n&u25
1

umu
expF2uz8u22ReS n

m
z82D G5u^z8u0;m,n&u2.

Using the above equation one easily sees that
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^b;m,nuAu0&~Z!ub;m,n&5
1

p E
Z
u^zub;m,n&u2dl~z!5^0;m,nuAu0&~Z2g!u0;m,n&

for all ZPB(C).
Next we calculate the Cartesian margins of the probability measure

Z°^b;m,nuAu0&~Z!ub;m,n&.

Now for all X, YPB(R),

^b;m,nuAu0&
x ~X!ub;m,n&5

1

ApumuA12Re~n/m!
E

X2Reg
expH 2x2F 12un/mu2

12Re~n/m!G J dx,

^b;m,nuAu0&
y ~Y!ub;m,n&5

1

ApumuA11Re~n/m!
E

Y2Im g
expH 2y2F 12un/mu2

11Re~n/m!G J dy,

so that the variances of these probability measures are

Var ~Au0&
x ,ub;m,n&)5

1

2
•

12Re~n/m!

12un/mu2
>

1

2
,

Var ~Au0&
y ,ub;m,n&)5

1

2
•

11Re~n/m!

12un/mu2
>

1

2
.

Thus, there is no sequence of TCS’s for which the limit measure of corresponding Car
marginal probability measures is concentrated on a point. The uncertainty product, the prod
the variances of the marginal measures is

Var ~Au0&
x ,ub;m,n&)•Var ~Au0&

y ,ub;m,n&)5
12~Re~n/m!!2

4~12un/mu2!2 >
1

4

and the lower bound is attained if and only ifn50 (umu51), that is, the corresponding TCS is
coherent state~up to a physically irrelevant phase factor!.

When we denoteb[seiw, sP@0,̀ ), wP@0,2p), umªargm, unªargn, the probability den-
sity of the angle marginAu0&

u in the stateub;m,n& gets the form

gub;m,n&~u!ª
1

p E
0

`

u^reiuuseiw;m,n&u2r dr

5
1

umu
expH 2F12U n

mUcos~2w2um2un!Gs2J 3H 1

2p@11un/mucos~2u2um1un!#

1
s cos~u1um2w!exp$s2 cos2~u1um2w!/@ umu21unmucos~2u2um1un!#%

2Apumu@11un/mucos~2u2um1un!#3/2

3H 11erfF s cos~u1um2w!

umuA11un/mucos~2u2um1un!
G J J .

When ub;m,n& is a coherent stateub& (m51 andn50) then

gub&~u!→d2p~u2w!

whens→`. Also if s is fixed andw5(um1un)/2 then if unu→`,
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gub;m,n&~u!;
1

2p

1

umu1unucos~2u2um1un!
→dp~u2um/21un/21p/2!/2

~p-periodic Dirac delta!. In particular, this holds for a squeezed and rotated vacuum (s50).
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Rigorous proof of isotope effect by
Bardeen–Cooper–Schrieffer theory

Yisong Yanga)

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540
and Department of Mathematics, Polytechnic University, Brooklyn, New York 11201

~Received 27 February 2002; accepted 31 January 2003!

In this article, we present a rigorous proof of the isotope effect within the theory of
Bardeen–Cooper–Schrieffer for isotropic superconductors. We show that, when the
interaction kernel is a positive constant, the isotope effect is exact; when the inter-
action kernel is a positive function depending on the energies of the pairing elec-
trons, the isotope effect is no longer exact but lies within a sharp range determined
by the varying kernel function. Moreover, we show that our method here may be
extended to establish an existence and uniqueness theorem for the transition tem-
perature in the Bogoliubov–Tolmachev–Shirkov model which allows separate pho-
non and Coulomb dominance in their respective energy regimes. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1565831#

I. INTRODUCTION

It is well known that the modern theory of superconductivity is based on a mechanism
allows electrons to form bosonic pairs. In a conductive metal, an electron first polarize
medium by attracting positively charged ions; these excess positive ions in turn attract a
boring electron, giving an effective attractive interaction between the two electrons. If this a
tion is strong enough to override the repulsive screened Coulomb interaction, it gives rise to
attractive interaction, and superconductivity happens.35 Historically, the importance of such a
electron-lattice ion interaction mechanism in explaining superconductivity was first explor
1950 by Fro¨hlich10 and confirmed shortly afterwards by Maxwell22 and Reynoldset al.27 through
their discovery of the isotope effect in mercury. They found that the superconductive-normal
transition temperatureTc depends on the isotope massM of the mercury ions forming the crysta
lattices they had tested according to the law

TcM
1/25C, ~1.1!

whereC is a constant. This discovery indicates through the manifestation of the mass of the
lattice ions that lattice vibrations are indeed essential for electrons to acquire attraction
exchange of virtual phonons through the electron and crystal lattice ion interactions.10,11,4In 1956,
Cooper7 demonstrated that however weak the interelectron attraction may be, two electron
above the Fermi sea could be bound~the Cooper pairing!. In 1957, Bardeen, Cooper, and Sch
effer ~BCS! published their monumental work5 on a microscopic theory of superconductivi
based on the Cooper pairing theory. Therefore, the isotope effect is one of the most imp
physical effects that unveiled to the physicists about 50 years ago the correct way to sol
mystery of superconductivity.

In fact, using the BCS theory, the isotope effect can be established as follows.
Consider the BCS gap equation

a!Electronic mail: yyang@math.poly.edu
20090022-2488/2003/44(5)/2009/17/$20.00 © 2003 American Institute of Physics
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D~x!5E
I
K~x,y!

tanh~~1/2T!Ay21D2~y!!

Ay21D2~y!
D~y! dy, ~1.2!

where I 5@2a,a# is a finite interval,T>0 is the absolute temperature,D(x) is the energy gap
function which is proportional to the Landau order parameter so thatD(x)50 corresponds to the
normal phase andD(x)Þ0 corresponds to the superconducting phase, andK(x,y) is the negative
of the interaction matrix elements for the transition of a pair of electrons, of spin up and
down, with momentum vectorsp and 2p to a pair with momentum vectorsq and 2q, so that
x5upu22«F and y5uqu22«F denote the corresponding energy fluctuations around the F
energy«F . In general,K(x,y) is the sum of two terms. The first term, negative, arises from
repulsive Coulomb force, while the second term, positive, arises from the attractive phonon
Thus, if the phonon interaction is dominant in a band near the Fermi shellupu25«F ,uqu25«F , we
will have K(x,y).0. This idealistic assumption, as well as the assumption thatK(x,y) is con-
tinuous for2a<x,y<a, will be observed throughout the article~except in Sec. VI!. Physicists
expect the existence of a unique transition temperatureTc.0 so that, whenT,Tc , ~1.2! has a
positive solution representing the superconducting phase, but whenT.Tc , the only solution is the
trivial zero solution, representing the normal phase. Besides, asT→Tc , the positive solution goes
to zero.

Therefore, when one takes the BCS over-simplified assumption that the integral kernelK(x,y)
is a constant,K(x,y)5K, one arrives at

152KE
0

a tanh~y/2Tc!

y
dy ~1.3!

in the subcritical limitT→Tc . In this equation, one has by using an integration by parts
relation

152K tanh
a

2Tc
ln

a

Tc
2KE

0

a/Tc
ln x sech2S x

2D dx. ~1.4!

In the weak coupling limit, the ratioa/Tc is assumed to be sufficiently large andK sufficiently
small. Thus

KE
0

a/Tc
ln x sech2S x

2D dx'KE
0

`

ln x sech2S x

2D dx. ~1.5!

The value of the integralJ on the right-hand side of~1.5! is known28 to be related to Euler’s
numberg, J522 ln(2g/p). Since the ratio 2g/p is about 1.13 and tanh(a/2Tc)'1, one obtains in
view of ~1.4! and ~1.5! the well-known BCS formula

Tc'1.13ae21/2K. ~1.6!

However, since the truncation upper limita is normally taken to be\vD ~the Planck constan
times the Debye frequency!, which is proportional toM 21/2 for a single-element solid,28 one has
thus arrived at~1.1! in approximation under the weak coupling limit assumption.

The above approach in proving the isotope effect has been exclusively adopted in lite
and texts.3,5,16,18,25,26,28–30,34–36

The importance of the isotope effect motivates our rigorous study in the present article.
are several mathematical questions involved in the calculation of the transition temperatureTc and
its dependence on other quantities. First, one asks whether there exists a unique transiti
peratureTc for the BCS equation~1.2!. Second, one wonders whether the positive gap solutio
unique and continuously depends onT whenT,Tc and whether the solution really goes to ze
asT→Tc from below. Third, one wants to know whether~1.1! holds exactly or approximately a
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stated in~1.5! when the integral kernelK(x,y) is a constant. Lastly, one hopes to know what o
can say for the isotope effect whenK(x,y) is not a constant. The purpose of this article is
answer these questions.

As an application of our method, we shall also present an existence and uniqueness t
for the transition temperature in the Bogoliubov–Tolmachev–Shirkov model where the intera
kernel may change sign reflecting the phonon attraction and Coulomb repulsion in their resp
energy regimes.

II. EXISTENCE OF TRANSITION TEMPERATURE

We first show that, whenT is sufficiently large, the only solution of~1.2! is the zero solution.
For convenience, we use the notationb51/T and rewrite~1.2! as

D~x!5E
I
K~x,y! f b~AD2~y!1y2!D~y! dy[M~D!~x!, ~2.1!

where

f b~ t !5

tanh
1

2
bt

t
, t.0; f b~0!5 lim

t→01

f b~ t !5
1

2
b. ~2.2!

It is easily checked thatf decreases in the variablet>0. In particular, we have

f b~ t !< 1
2 b, t>0. ~2.3!

Let D be a non-negative fixed point of the operatorM and set

D05sup
xPI

D~x!. ~2.4!

Since the nonlinearity function of the equation~2.1!, namely,

f b~Au21x2!u, ~2.5!

increases whenu>0, we have in view of~2.3!

D0<E
I
K~x,y! f b~AD0

21y2!D0 dy<S 1

2
bE

I
K~x,y! dyDD0 . ~2.6!

Hence, as expected,D050 whenb.0 is sufficiently small.
Next, we show that, whenb is sufficiently large,~2.1! has a positive solution.
As a preparation, we show that there is a constantd0.0 independent ofb.0 such that

d.M~d!, ;d.d0 . ~2.7!

In other words,~2.1! has a family ofb-independent constant supersolutions which may ass
arbitrarily large values.

In fact, since tanh12bt<1, we have

E
I
K~x,y! f b~Ad21y2! dy<E

I
K~x,y!

1

Ad21y2
dy. ~2.8!
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However, as the right-hand side of~2.8! goes to zero uniformly asd→`, we see that we have
arrived at the desired conclusion,~2.7!.

The above simple observation about the supersolutions of~2.1! implies the important conclu-
sion that the existence of a positive solution is equivalent to the existence of a nontrivial s
lution, sayD0 , of the equation~2.1!, satisfying

D0<M~D0!. ~2.9!

To see this, choosed.d0 sufficiently large so that

sup
xPI

D~x!<d. ~2.10!

Then we obtain a pair of sub- and supersolutions,D0 and D05d, satisfyingD0(x)<D0(x), x
PI . Since the nonlinearity function~2.5! is monotone, it is standard that the iterative algorith

Dn5M~Dn21!, n52,3,...; D15D0 or D15D0, ~2.11!

converges to a nontrivial fixed point, sayD, of M. It is clear that this fixed point is a positiv
solution of ~2.1! satisfyingD0<D<D0.

We now show that, whenb is sufficiently large,~2.1! has a nontrivial subsolution.
To see this, we use the factK(x,y).0 for 2a<x,y<0 to observe that there holds th

uniform limit

lim
«→0

E
I
K~x,y!

1

A«21y2
dy5`. ~2.12!

Since for fixed«.0 there also holds the uniform limit

lim
b→`

tanh~ 1
2 bA«21x2!51, ~2.13!

we can combine~2.12! and ~2.13! to obtain

inf
xPI

E
I
K~x,y! f b~A«21y2! dy.1 ~2.14!

whenb.0 is large and«.0 is small. In this situation, we may setD05« and conclude thatD0

is a positive subsolution of~2.1!.
Set

L5$b.0 u ~2.1! has a positive solution%. ~2.15!

We claim thatL is connected. Indeed, we show that wheneverbPL, there holds@b,`),L. For
convenience, we rewrite~2.1! as

D5Mb~D! ~2.16!

to emphasize the dependence of the operatorM on b explicitly.
If Db is a positive solution of~2.16!, thenDb5Mb(Db),Da(Db) for a.b. HenceDb is a

nontrivial subsolution of the equationD5Ma(D). ThereforeaPL as expected.
We already proved thatLÞB. Now define

bc5 inf$b u bPL%. ~2.17!
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We can conclude thatbc.0. Thus, for 0,b,bc , ~2.1! has no positive solution; forb.bc , ~2.1!
has a positive solution. In other words, the existence and uniqueness of a positive tra
temperatureTc51/bc follows.

III. TEMPERATURE DEPENDENCE OF GAP FUNCTION

We first show that~2.1! may have only one positive solution for any givenb.0.
Let D be a positive solution of~2.1!. Choose the numberd in ~2.7! to be sufficiently large so

thatd.D. Then we can invoke the iterative algorithm~2.11! with D15D05d and obtain another
solution, sayD8, satisfyingD8>D. We prove thatD85D.

Suppose otherwise thatD8ÞD. Then define

A5 H a>0 U inf
xPI

~D~x!2aD8~x!!>0J . ~3.1!

SinceD andD8 are positive overI 5@2a,a#, A contains a small interval near the origin. Beside
we claim thatAù@1,̀ )5B. To see this, suppose that there is ana>1 in A. Then D(x)
2aD8(x)>0. In particular,D(x)>D8(x). HenceD5D8, which contradicts our assumption.

Definea05sup$a u aPA%. Then 0,a0<1. Since it is obvious thatA is closed, we see tha
a0 cannot be equal to 1. That is, 0,a0,1.

We record here our observation above,

D~x!>a0D8~x!, xPI . ~3.2!

Since f b(t) decreases int.0, we have

f b~A~D8!21x2!, f b~A~a0D8!21x2!. ~3.3!

In view of the form of the nonlinear function~2.5! and the property~3.3!, we have

M~a0D8!.a0M~D8!. ~3.4!

As a consequence of~3.2! and ~3.4!, we have

D5M~D!>M~a0D8!.a0M~D8!5a0D8 ~3.5!

everywhere inI . Define

«5 inf
xPI

~D~x!2a0D8~x!!/sup
xPI

D8~x!. ~3.6!

Then«.0 anda01«PA. This violates the definition ofa0 . HenceD5D8 and~2.1! may have
only one positive solution.

The above uniqueness result allows us to write the positive solution of~2.1! for given b
PL asDb . For b8,b9PL with b8,b9, since

Db85Mb8~Db8!,Mb9~Db8!,

we see thatDb8 is a subsolution of~2.1! at b5b9. HenceDb8,Db9 .
Let $bn% be a decreasing sequence satisfying

lim
n→`

bn5b0 . ~3.7!
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If b0.bc , thenb0PL andDbn
.Db0

.0. Taking the limit asn→` with b5bn in ~2.1!, we see
that the sequence$Dbn

% converges to a positive solution bounded from below byDb0
. The

uniqueness result atb5b0 indicates that this positive solution can only beDb0
itself.

Similarly, we can show that an increasing~convergent! sequence$bn% leads to the correspond
ing convergence of the solution sequence$Dbn

%.
The above discussion shows that, abovebc , the positive solutionDb depends continuously

and monotonically on its parameterb.
To conclude this section, we study what happens whenb05bc in ~3.6!.
In fact, the monotonicity

Db1
.Db2

.¯.Dbn
.¯>0 ~3.8!

implies that the limit

Dbc
~x!5 lim

n→`

Dbn
~x! ~3.9!

exists and is a non-negative solution of the equation~2.1! for b5bc .
We now prove that the equation~2.1! at b5bc does not have any non-negative soluti

except the zero solution.
Otherwise suppose thatD is a non-negative solution of~2.1! which is positive somewhere

The structure of the equation~2.1! says thatD is positive everywhere becauseb5bc.0 and
K(x,y).0 for 2a<x,y<a. Let aP(0,1) be an arbitrary constant. Then, similar to~3.4!, we
have

Mbc
~aD!.aMbc

~D!5aD. ~3.10!

Using the continuous dependence of the operatorMb on the parameterb.0 in ~3.10!, we see that

Mbc2«~aD!~x!>aD~x!, xPI , ~3.11!

when«.0 is sufficiently small. In other words,D0[aD is a positive subsolution of the equatio
~2.1! at b5bc2«. Hence~2.1! has a positive solution atb5bc2« which contradicts the defi-
nition of bc stated in~2.17!.

In conclusion, we have obtained the desired limit

lim
b→bc

1

Db50. ~3.12!

IV. LIMITING QUOTIENT

In order to formulate a rigorous way to determine the critical numberbc ~namely,Tc), we
need another piece of preparation.

Let us consider the simplest situation when the kernel functionK(x,y)5K in the equation
~2.1! is a constant. Forb.bc , the positive constant solution of~2.1! is now denoted byD~b!. We
have

152KE
0

a tanh~ 1
2 bAD2~b!1x2!

AD2~b!1x2
dx. ~4.1!

Now takingb→bc
1 in ~4.1!, we see in view of the conclusion~3.12! the validity of the equation

152KE
0

a tanh~ 1
2 bcx!

x
dx, ~4.2!
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which determines the critical numberbc implicitly and is the basis for the derivation of the isotop
effect in the BCS theory~see Sec. I!.

When the kernel functionK(x,y) is not constant, one is tempted to go through the sa
procedure and to formulate the equation

15E
I
K~x,y!

tanh~ 1
2 bAD2~b;y!1y2!

AD2~b;y!1y2

D~b;y!

D~b;x!
dy, b.bc , ~4.3!

whereD(b;x)5Db(x) is the unique positive solution of~2.1! already obtained in Secs. 2 and
In order to determinebc , we may take the limitb→bc

1 as before and arrive formally at

15E
I
K~x,y!

tanh~ 1
2 bcuyu!
uyu H lim

b→bc
1

D~b;y!

D~b;x! J dy. ~4.4!

It is clear that the existence of the limit of the quotient ofD(b;y) andD(b,x) asb→bc
1 under

the integral in~4.4! becomes a legitimate question.
For this purpose, define

Q~b;x,y!5
D~b;x!

D~b;y!
, b.bc , x,yPI . ~4.5!

We ask whether the limit

lim
b→b1

Q~b;x,y!, x,yPI , ~4.6!

exists which guarantees the legitimacy of~4.4!. At this time, we may only answer this question
a weak sense, that is, in the sense of subsequences.

To see this, we rewriteQ as

Q~b;x,y!5
* IK~x,j! f b~AD2~j!1j2!D~j! dj

* IK~y,z! f b~AD2~z!1z2!D~z! dz
[

* IK~x,j!w~j! dj

* IK~y,z!w~z! dz
. ~4.7!

Set

q15min$K~x,y! u 2a<x,y<a%, ~4.8!

q25max$K~x,y! u 2a<x,y<a%. ~4.9!

Thenq2>q1.0 and it is clear that the functionQ has the upper and lower bounds

q1

q2
<Q~b;x,y!<

q2

q1
, x,yPI . ~4.10!

Besides, for any«.0, there is ad.0, so that

uK~x,j!2K~x8,j!u,«, uK~y,z!2K~y8,z!u,«

wheneverx,x8,y,y8PI satisfy ux2x8u,d,uy2y8u,d. Hence

uQ~x,y!2Q~x8,y!u<
* I uK~x,j!2K~x8,j!uw~j! dj

* IK~y,z!w~z! dz
,

«

q1
,
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uQ~x,y!2Q~x,y8!u<
~* IK~x,j!w~j! dj!* I uK~y,z!2K~y8,z!uw~z! dz

~* IK~y,z!w~z! dz!~* IK~y8,h!w~h! dh!
,

q2«

q1
2 ,

which implies thatQ(b;x,y) is uniformly continuous forx,yPI with respect to the paramete
b.bc . Consequently, the set$Q(b;x,y)%b.bc

is precompact in the spaceC(I 3I ) and for any
sequence labeled byb.bc with b→bc , there is a convergent subsequence. The limit of any
such convergent sequence lies inC(I 3I ), of course. Therefore, in sense of subsequence con
gence, the limit~4.6! is well defined, although it may not be unique.

Let Q(bc ;x,y) denote any limit of~4.6! ~in the sense of subseqeunce convergence!. Inserting
Q(bc ;x,y) into ~4.4!, we obtain the equation

15E
I
K~x,y!Q~bc ;y,x!

tanh~ 1
2 bcuyu!
uyu

dy, ~4.11!

which determines the critical numberbc implicitly and extends the classic equation~4.2!.
In the next section, we estimatebc .

V. PROOF OF ISOTOPE EFFECT

From ~4.10!, we see that the~subsequential or weak! limit Q(bc ;x,y) of Q(bc ;x,y) as b
→bc

1 satisfies the same bounds,

q1

q2
<Q~bc ;x,y!<

q2

q1
, x,yPI . ~5.1!

Hence, inserting~5.1! into ~4.11!, we have

1

2
>

q1
2

q2
E

0

a tanh~ 1
2 bcy!

y
dy, ~5.2!

1

2
<

q2
2

q1
E

0

a tanh~ 1
2 bcy!

y
dy. ~5.3!

Set the function

F~ t !5E
0

t tanhy

y
dy. ~5.4!

Then F is continuous, strictly increases,F(0)50, andF(`)5`. With this function, we may
rewrite ~5.2! and ~5.3! as

1>
2q1

2

q2
F~ 1

2 bca!, ~5.5!

1<
2q2

2

q1
FS 1

2
bcaD . ~5.6!

Let x1.0 andx2.0 be the unique points such that

F~x1!5
q2

2q1
2 , F~x2!5

q1

2q2
2 .

Then ~5.5! and ~5.6! give us
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x2< 1
2 bca<x1 .

In other words, the critical numberbc lies in the range

2x2

a
<bc<

2x1

a
. ~5.7!

Of course, whenK(x,y) is a constant,q15q2[K0 and x15x2[x0 and ~5.7! becomes an
equality,

bc5
2x0

a
. ~5.8!

Thus we have proved the original isotope effect~1.1! in an exact form~without assuming any
approximation limit!.

In fact, ~5.7! may still be improved in some restrictive situations. For example, an intere
case is thatK(x,y) is separable and symmetric,

K~x,y!5B~x!B~y!, x,yPI . ~5.9!

Denote the~positive! minimum and maximum values ofB over the intervalI by b1 and b2 ,
respectively. Thenb1

25q1 andb2
25q2 . Since the solution of~2.1! is proportional toB(x), letting

b→bc
1 in ~2.1! gives us

15E
I
B2~y!

tanh~ 1
2 bcuyu!
uyu

dy, ~5.10!

which leads to the following improved bounds forbc ,

1

2q2
<FS 1

2
bcaD<

1

2q1
. ~5.11!

VI. APPLICATION TO A MODEL OF BOGOLIUBOV et al.

In the previous sections, we have taken the original BCS assumption that the inter
kernel K(x,y) is positive throughout the cut-off range from the Fermi surface up to a leva
.0 ~the cut-off energy is often taken to be\vD), which implies that the attractive phono
interaction is everywhere dominant. However, this assumption is only a simplified one. In or
make the model more realistic, Bogoliubov, Tolmachev, and Shirkov6,18,28considered a model in
which the interaction kernel functionK(x,y) assumes the form

K~x,y!5Kphonon~x,y!1KCoulomb~x,y!, ~6.1!

where

Kphonon~x,y![
K1

2
.0, uxu,uyu,a; Kphonon~x,y!50 otherwise, ~6.2!

KCoulomb~x,y![2
K2

2
,0, uxu,uyu,b; KCoulomb~x,y!50 otherwise, ~6.3!

K1 ,K2 are constants,a.0 is normally taken to be the Debye energy,a5\vD , as before, and
b.a is a cut-off energy for the range of the screened Coulomb repulsion. With this form o
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interaction kernel reflecting the mixed interaction of the phonon attraction and the Cou
repulsion, one seeks6,18,28a piecewise constant solution of~1.1! of the form

D~x!5D1 , uxu,a; D~x!5D2 , a,uxu,b; D~x!50 otherwise. ~6.4!

Hence, inserting~6.1!–~6.4! into ~1.1!, we arrive at the coupled system

D15~K12K2!Ab~D1!2K2Bb~D2!,
~6.5!

D252K2~Ab~D1!1Bb~D2!!,

whereAb andBb are the nonlinear transformations defined by

Ab~D!5DE
0

a

f b~AD21x2! dx5DE
0

a tanh~ 1
2 bAD21x2!

AD21x2
dx,

~6.6!

Bb~D!5DE
a

b

f b~AD21x2! dx5DE
a

b tanh~ 1
2 bAD21x2!

AD21x2
dx.

The normal phase is characterized by the trivial solution of~6.5!: D150, D250, and the super-
conducting phase is characterized by any nontrivial solution of~6.5! of the form

D1.0, D2,0. ~6.7!

See Ref. 28 for some calculations in the zero temperature limit,b5`. Our purpose of the presen
section is to apply the method in the previous sections to study the system~6.5! at any arbitrary
temperature. Our main result below is a proof of the existence and uniqueness of a p
transition temperature,Tc51/bc , so that whenT,Tc , the system~6.5! has a nontrivial solution
of the form ~6.7!, and, whenT.Tc , the only solution of~6.5! is the trivial solution,D15D2

50. In other words, we shall establish rigorously a superconducting-normal phase tran
theorem for the phonon-Coulomb interaction model of Bogoliubov–Tolmachev–Shirkov6,18,28

within the BCS theory.
For convenience, we introduce the new variablesu5D1 andv52D2 . Then~6.5! becomes

u5~K12K2!Ab~u!1K2Bb~v !,
~6.8!

v5K2Ab~u!2K2Bb~v !.

It is seen that the superconducting phase is given by any positive solution of~6.8!: u.0, v.0.
From ~2.3!, we see thatAb(u)< 1

2bau andBb(v)< 1
2b(b2a)v. Therefore, whenb is small,

the only non-negative solution of~6.8! is the trivial solutionu50, v50.
We now consider the case whenb is large.
There are two cases.
Case 1: K1.K2 . We first show that~6.5! has a positive solution if and only if it has

subsolution (u0 ,v0) satisfyingu0.0, v0>0, and

u0<~K12K2!Ab~u0!1K2Bb~v0!,
~6.9!

v0<K2Ab~u0!2K2Bb~v0!.

To this end, we define the iterative scheme

un115~K12K2!Ab~un11!1K2Bb~vn!,

vn111K2Bb~vn11!5K2Ab~un11!, ~6.10!
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n51,2,...; v15v0 .

We first consider the function

H~u!5u2~K12K2!Ab~u!. ~6.11!

SinceH(0)50 andH(`)5`, the equation

H~u!5s ~6.12!

has at least one positive solution for any numbers.0. We show that, in fact,~6.12! can only have
one positive solution.

In fact, let u1 and u2 be two positive solutions of~6.12! with s.0 and u1,u2 . Then r
5u1 /u2,1. Again, sincef b(A(ru)21x2). f b(Au21x2) for r P(0,1) andu.0, Ab and Bb

satisfy

rAb~u!,Ab~ru !, rBb~v !,Bb~rv !, r P~0,1!, u,v.0. ~6.13!

In view of ~6.13!, we have, forr P(0,1),

u15~K12K2!Ab~u1!1s

5~K12K2!Ab~ru2!1s

.~K12K2!rAb~u2!1s

5r ~u22s!1s

5ru21~12r !s,

which is false. Thus uniqueness follows.
We next show that, wheneveru0.0 is a number so that

H~u0!>s ~6.14!

holds, then the solutionu of ~6.12! satisfiesu<u0. To this end, define the sequence

un115~K12K2!Ab~un!1s, n51,2,...; u15u0. ~6.15!

Then

u25~K12K2!Ab~u0!1s. ~6.16!

Comparing~6.16! with ~6.14!, we haveu2<u0. Assume that

u05u1>u2>¯>uk>0 ~6.17!

at some stepk. It can be shown by the monotonicity ofAb(•) that uk>uk11>0. Hence~6.17! is
valid in general. Since the sequence$un% is non-negative and decreases, we can take then→`
limit in ~6.16! to get the unique solutionu of ~6.12!. In particular,u0>u as claimed.

As a direct corollary of the above observation, it can be seen that the solutionu of ~6.12!
increases ass increases. Indeed, let 0,s1,s2 be two numbers andu1 andu2 be the two corre-
sponding solutions of~6.12! when s5s1 and s5s2 , respectively. ThusH(u2).s1 . Therefore,
u1,u2 .

Similarly, if u0>0 is such that

H~u0!<s, ~6.18!
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then the unique solutionu of ~6.12! satisfiesu0<u. In fact, this fact is trivially true whenu0

50. If u0.0, we define an iterative sequence$un% according to~6.15! with u15u0 . It is straight-
forward to see that there holdsu1<u2<¯<un<¯ . Using~6.15! and the property ofAb(•), we
see that$un% is bounded. Hence$un% converges to the unique positive solutionu of ~6.12!. In
particular,u0<u.

We are now prepared to prove the convergence of the sequence$(un ,vn)% defined by~6.10!.
Since the functionsAb(u) andBb(v) are bounded uniformly with respect to the parameterb,

namely,

Ab~u!<C, Bb~v !<C

for some absolute constantC.0, there is an absolute constantu0.0 so that

H~u0!5u02~K12K2!Ab~u0!>K2Bb~v !, ;v. ~6.19!

In the sequel, we always assume thatu0 is so chosen unless otherwise stated.
In the iterative scheme~6.10!, if v15v0.0, thenu2.0 andu0<u2<u0 by

H~u0!5u02~K12K2!Ab~u0!<K2Bb~v0!

and ~6.19!. Since the function

J~v !5v1K2Bb~v ! ~6.20!

strictly increases withJ(0)50 andJ(`)5`, the equation

J~v !5s ~6.21!

has a unique solution, sayv, in @0,̀ ! for eachsP@0,̀ ) andv increases ass increases. Hence, in
~6.10!, v2.0 is well defined andv2>v15v0 .

Assume that the inequalities

0,u05u1<u2<¯<uk<u0, ~6.22!

0<v05v1<v2<¯<vk ~6.23!

hold at some stepk. Then, in view of~6.22! and ~6.23!, uk andvk satisfy

H~uk!5K2Bb~vk21!<K2Bb~vk!. ~6.24!

Hence we arrive atuk11>uk after comparing~6.24! with ~6.14! and reviewing the definition of
uk11 . Thus

J~vk!5K2Ab~uk!<K2Ab~uk11!. ~6.25!

Obviously, vk11<vk in view of ~6.25! and the definition ofvk11 by ~6.10!. Of course,uk11

<u0 becauseu0 has been chosen to be a~universal! supersolution@see~6.19!#.
Therefore, we have shown that~6.22! and ~6.23! are valid in general.
The boundedness of the sequence$vn% follows from the boundedness of the sequence$un%

and the second equation in~6.10!. In fact, vn<K2Ab(u0), n51,2,... .
Now, taking then→` limit in the scheme~6.10!, we obtain a solution pair (u,v) of the

system~6.8! of Bogoliubov–Tolmachev–Shirkov.6,18,28Sinceu.0 in view of ~6.22!, we see that
v.0 as well.

In order to prove the existence of a positive critical temperatureTc , we claim that the system
~6.8! has a positive solution whenb51/T is sufficiently large.

Indeed, we may start from the simple BCS equation
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u5~K12K2!Ab~u!, ~6.26!

which may be obtained by settingv50 in the first equation in~6.8!. SinceK1.K2 , we may use
our study in Sec. II to see that whenb is large,~6.26! has a positive solution, sayu0 . Let v0

50. Then the pair (u0 ,v0) satisfies~6.9!. Hence, by virtue of the above discussion, the existe
of a positive solution pair of the system~6.8! follows.

As in Sec. III, define

L5$b.0 u ~6.8! has a positive solution pair%. ~6.27!

We can prove thatL is connected. To see this, we show that, ifbPL, thenb1«PL for any
«.0.

In fact, forbPL, let (u,v) be a positive solution pair of the system~6.8!. We rewrite~6.8! as

u5~K12K2!Ab~u!1K2Bb~v !,
~6.28!

v1K2Bb~v !5K2Ab~u!.

Sincev.0, we may chooser P(0,1) so that

Bb1«~rv !5Bb~v !. ~6.29!

However, from~6.28!, we have

u,~K12K2!Ab1«~u!1K2Bb~v !,
~6.30!

rv1K2Bb~v !,K2Ab1«~u!.

Combining~6.29! and ~6.30!, we obtain

u,~K12K2!Ab1«~u!1K2Bb1«~rv !,
~6.31!

rv1K2Bb1«~rv !,K2Ab1«~u!.

In other words, we have recovered~6.9! with u05u, v05rv, and b being replaced byb1«.
Consequently,b1«PL.

Now define bc as in ~2.17!. Then, again,bc.0. We have just established the relatio
(bc ,`),L and @0,bc)ùL5B.

Case 2: K1<K2 . We rewrite~6.8! as

u1~K22K1!Ab~u!5K2Bb~v !,
~6.32!

v1K2Bb~v !5K2Ab~u!,

where 0,b<` with

A`~u!5uE
0

a dx

Au21x2
5u lnS a

u
1AS a

uD 2

11D ,

~6.33!

B`~v !5vE
a

b dx

Av21x2
5v lnS b1Av21b2

a1Av21a2D .

As before, we can show that the system~6.32! has a positive solution pair if and only if ther
exists a nontrivial subsolution, (u0 ,v0), satisfying
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u01~K22K1!Ab~u0!<K2Bb~v0!,
~6.34!

v01K2Bb~v0!<K2Ab~u0!,

where at least one of two numbers,u0 andv0 , is positive, and the other may or may not be ze
In fact, assume thatu0.0 andv0>0 satisfy~6.34!. Define

un111~K22K1!Ab~un11!5K2Bb~vn!,

vn111K2Bb~vn11!5K2Ab~un11!, ~6.35!

n51,2,... ; v15v0 .

Using the monotonicity of the functionsP(u)5u1(K22K1)Ab(u) andQ(v)5v1K2Bb(v), we
see that the sequences$un% and$vn% are well defined and that

u05u1<u2<¯<un<¯, v05v1<v2<¯<vn<¯ . ~6.36!

Since the functionsAb(•) andBb(•) are bounded, it follows from~6.35! that $un% and $vn% are
bounded sequences. Taking the limitn→` in ~6.35!, we see thatu5 limn→` un and v
5 limn→` vn make a solution pair to the system~6.32!. Sinceu0.0, ~6.36! implies thatu.0. It
follows from ~6.32! that v.0 as well.

The case thatu0>0, v0.0 is similar.
In order to obtain a positive transition temperature for the system~6.32!, it is a basic require-

ment that~6.32! has a positive solution pair at the zero temperature,b5`.
Inserting~6.33! into ~6.32! with b5`, we have

u1~K22K1!u lnS a

u
1AS a

uD 2

11D 5K2v lnS b1Av21b2

a1Av21a2D ,

~6.37!

v1K2v lnS b1Av21b2

a1Av21a2D 5K2u lnS a

u
1AS a

uD 2

11D .

We may choose the parametersa,b,K1 ,K2 suitably so that~6.37! has a positive solution. Fo
some of the limiting cases about this existence problem, see Ref. 28. We will not pursue it f
here. Instead, we are interested in the more general problem of the existence of a positive
tion temperatureTc and we need some sufficient conditions under which the system~6.32! admits
a positive solution pair at finite values ofb. It is clear that one of the simplest of such sufficie
conditions is the existence of a subsolution to~6.32! of the form

u05«, v05«, ~6.38!

where«.0 is small enough. However, in order to ensure the existence of such a subsolutio
may impose the condition

11~K22K1!E
0

a tanh~ 1
2 bx!

x
dx,K2E

a

b tanh~ 1
2 bx!

x
dx,

~6.39!

11K2E
a

b tanh~ 1
2 bx!

x
dx,K2E

0

a tanh~ 1
2 bx!

x
dx.

It is seen that, when~6.39! holds, the inequalities

«1~K22K1!Ab~«!,K2Bb~«!,

~6.40!
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«1K2Bb~«!,K2Ab~«!

can be achieved whenever« is sufficiently small. That is, we have arrived at~6.34! with the pair
of subsolution (u0 ,v0) defined in~6.38!. Hence, in this situation,~6.32! has a positive solution. In
other words, under the condition~6.39!, the setL defined in~6.27! is not empty.

We next show thatL is in fact an interval. To this end, assumebPL and«.0. We prove as
before thatb1«PL.

Let (u,v) be a positive solution of~6.32!. We can find a pair of numberss,tP(0,1) such that

Ab1«~su!5Ab~u!, Bb1«~ tv !5Bb~v !. ~6.41!

Inserting~6.41! into ~6.32!, we obtain

u1~K22K1!Ab1«~su!5K2Bb1«~ tv !,
~6.42!

v1K2Bb1«~ tv !5K2Ab1«~su!.

Consequently, we are led to

su1~K22K1!Ab1«~su!,K2Bb1«~ tv !,
~6.43!

tv1K2Bb1«~ tv !,K2Ab1«~su!.

In other words,u05su, v05tv satisfy ~6.34! whenb is replaced byb1«. Henceb1«PL.
Definebc as in~2.17!. Thenbc.0 and the existence and uniqueness of a transition temp

ture Tc are again established as before.

VII. CONCLUSIONS

Returning to the original representation in terms of the absolute temperature,T51/b, we can
summarize our study as follows: For the BCS equation~1.2!, there exists a unique transitio
temperatureTc so that, when 0<T,Tc , the equation has a unique positive solution, sayD(T;x).
However, forT>Tc , the only non-negative solution of the equation is the zero solution. FoT
,Tc the solutionD(T;x) depends onT continuously and decreases asT increases so that

lim
T→Tc

2

D~T;x!50. ~7.1!

In general, the transition temperatureTc51/bc is implicitly determined by the equation~4.11!.
With the numbersq1 andq2 defined in~4.8! and~4.9!, respectively, the transition temperatureTc

has the lower and upper estimates

1

2G~q2/2q1
2!

<
Tc

a
<

1

2G~q1/2q2
2!

, ~7.2!

whereG is the inverse function ofF defined in~5.4!. In particular, when the kernel function is
constant, sayK0 , ~7.2! becomes an exact result,

Tc

a
5

1

2G~1/2K0!
. ~7.3!

If the superconductor is a single-element solid so that the integral upper limita in ~1.2! is such that
a22 is proportional to the isotope mass of the solid lattice ions, then~7.3! expresses exactly th
isotope effect~1.1! but ~7.2! gives us a slightly relaxed one,

C1<TcM
1/2<C2 , ~7.4!
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where the constantsC1 and C2 depend on the range of the kernel functionK(x,y) so thatC1

5C2 whenK(x,y) is a constant. We have seen through a study of the Bogoliubov–Tolmac
Shirkov model that our method also applies to the situation when the kernel function i
positive definite.

As is well known now, the isotope effect in its most general form reads

TcM
a5C, ~7.5!

where the exponenta has the upper bound

a< 1
2 . ~7.6!

The BCS proof of~1.1! through their formula~1.6! is based on a somewhat artificial single cuto
at the energy\vD which leads to an exact value ofa equal to1

2 as seen in the present article.
the work of Swihart,32,33 it is shown that one may obtain values ofa smaller than the BCS value
of 1

2, within the BCS theory, by assuming that the cutoff energy in the Coulomb part o
electron-electron interaction in the same sense of the Bogoliubov–Tolmachev–Shirkov mo
independent of the isotope mass of the lattice ions. See also the works of Morel and Ande24

and Garland.12–14For some calculations involving multiband models, see Refs. 15, 17, 21, an
A more general treatment of the isotope effect may be formulated in the Eliashberg the8,9

See Refs. 1, 3, 17, 19, 20, and 36 for some updated reviews. However, mathematica
Eliashberg equations are rather difficult and a rigorous understanding is yet to be ach
although people have gained some knowledge on various limiting situations. For exa
McMillan23 and Allen and Dynes2 have calculatedTc and confirmed the bound~7.6! in the
real-axis limit of the Eliashberg equations. See also Ref. 36 for an elegant expression fora. Thus,
it will be important to carry out a rigorous study of these equations.
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Distributional Borel summability for vacuum polarization
by an external electric field

Emanuela Calicetia)

Dipartimento di Matematica, Universita` di Bologna, 40127 Bologna, Italy

~Received 9 October 2002; accepted 4 February 2003!

It is proved that the divergent perturbation expansion for the vacuum polarization
by an external constant electric field in the pair production sector is Borel sum-
mable in the distributional sense. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1565833#

I. INTRODUCTION AND STATEMENT OF THE RESULTS

Since 1970 the standard method to deal with divergent perturbation theory in quantum
chanics~QM! and quantum field theory~QFT! has been Borel summability.1 For convenience of
exposition, let us first recall its definition~Ref. 2; a classical reference is Ref. 3; general referen
especially dealing with QM and QFT are, e.g., Refs. 4–6!.

Definition 1.1: Consider the formal power series(n50
` anzn. The series

B~ t !ª(
n50

`
an

n!
tn ~1.1!

is called Borel transform of(n50
` anzn. Assume the following.

(1) B(t) has a positive radius of convergence C.0.
(2) B(t), a priori holomorphic forutu,C, admits analytic continuation at least to a neigh

borhood of the positive real axis.
(3) There is R.0 such that the Laplace–Borel integral

f~z!ªE
0

`

B~zu! e2u du ~1.2!

converges for zPCR and defines an analytic function therein. Here CR is the disk of radius R/2
tangent to the imaginary axis at the origin, defined by CRª$zPC:Rez21.R21%.

Then we say that(n50
` anzn is Borel summable to f(z) for zPCR .

Remarks:

~1! If ~1.1! is inserted into~1.2!, and summation is formally interchanged with integration,
see thatf (z) admits the given formal power series as an asymptotic expansionz
→01 . An expression equivalent to~1.2! is

1

z E0

`

B~t! e2t/zdt. ~1.3!

~2! When the series(n50
` anzn has a positive radius of convergence the Laplace–Borel i

gral converges in the Borel polygon and yields therefore the analytic continuation o
sum f (z) outside the circle of convergence if this is strictly contained in the Bo
polygon;

a!Electronic mail: caliceti@dm.unibo.it
20260022-2488/2003/44(5)/2026/11/$20.00 © 2003 American Institute of Physics
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~3! In most applications, given a formal power series~example: a perturbation expansio!
there is a natural candidate to the sum~example: the physical solution!. A criterion is thus
needed to check whether a formal power series representing the asymptotic expan
a function is actually Borel summable to that function. The standard one is the Wat
Nevanlinna theorem~see Ref. 3, and also Ref. 7 for a new presentation in full gener
of the original paper by Nevanlinna!.

The vacuum polarization by a constant, external~i.e., non quantized! electromagnetic field admits
a well known exact solution~Ref. 8; see also Ref. 5! which generates a divergent power series
expanded in powers of the fine structure constant. Historically, the pure magnetic case ha
the first example where the Borel summability~of order 2! has been proved9 ~see also Ref. 10!
through a direct verification of Properties 1–3 above.~Here also the Stieltjes summability holds;11

it entails the convergence of the Pade´ approximants.! It is interesting to remark that the pur
electric case, which has been recently reconsidered also to discuss this point,10 represents instead
a typical example where Borel summability cannot hold, because the Borel transform has
larities along the positive real axis.

To better clarify this point, consider the formal expansion(n50
` n!zn. Its Borel transform is

B~ t !5 (
n50

`

tn5
1

12t
.

B(t) is analytic on the whole ofC except for the simple pole att51. Consider now the function

F~z!ªE
0

` e2t

12zt
dt, zPC, z¹]0,1`@ . ~1.4!

F(z) is clearly holomorphic in$zPC:0,uzu; 0,argz,2p% and its formal expansion atz50 is
(n50

` n!zn. The nonexistence of the integral~1.4! for zP]0,1`@ is due to the pole of the Bore
transformB(t) at t51. Indeed this phenomenon occurs whenever the coefficientsan have a
constant sign, because in that caseB(t) has a singularity att5C, where C is the radius of
convergence ofB(t) ~see, e.g., Ref. 12!.

If we could perform the change of variable~1.3! for F(z), as we can when the conditions o
Definition 1.1 are satisfied, we could write

F~z!5
1

z E0

` 1

12t
e2(t/z) dt. ~1.5!

However ~1.5! is only a formal writing because the integral on the rhs diverges for allzPC.
Nevertheless,~1.5! could make sense if the Borel transformB(t)5(12t)21 is regarded as an
object more general than a function, for example a distribution. More precisely, in this case w
look at the boundary valuesB(t6 i0)5 1/(12t6 i0) ,t>0, of the holomorphic functionB(t), as
tempered distributions:

B~ t6 i0!5
1

12t6 i0
ª lim

e→01

1

12t6 i e
5PPS 1

12t D6 id~ t21!. ~1.6!

Here PP(1/(12t)) is the Cauchy principal-value distribution supported at 1. Note thatB(t
2 i0)5B(t1 i0). Next remark that the function

F~z!ª
1

z E0

`

B~ t1 i0!e2t/z dt ~1.7!
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exists, is analytic forzPCR ; R.0, i.e., in the half-plane Rez.0, concides withF(z) for z
P$zPC:Im z.0;Rez.0%, and admits(n50

` n!zn as a formal expansion atz50. It is called the
upper sumof the series~see also the remarks after Definition 1.2 below!. Since the divergent serie
is real forzP@0,1`@ , so must be its sum provided it exists in any sense. Therefore the na
candidate for the Borel sum is

f ~z!ª
1

z E0

`

PPS 1

12t De2t/z dt5
1

z E0

` 1

2
$B~ t1 i0!1B~ t1 i0!%e2t/z dt. ~1.8!

In other wordsf (z)5 1
2$F(z)1F( z̄)%; z, Rez.0. In particular,f (z)5ReF(z) for zP@0,1`@ .

This example shows that an extension of the Borel method to the case where the
transform admits singularities along the positive real axis has to allow for Borel transforms
sense of distributions. In turn, distributions are particular cases of the hyperfunctions, defi
boundary values of holomorphic functions. The extension, called distributional Borel summa
has been developed in Ref. 13. Let us recall here the definition and some of the main res

Definition 1.2: Consider again the formal power series(n50
` anzn and its Borel transform

B(t) as in Definition 1.1, with radius of convergence C.0. Assume the following:

(1) B(t) admits analytic continuation to the intersection of some neighborhood ofR1 with
C1ª$tPC: Im t.0%.

(2) The boundary value distribution B(t1i0) exists; t>0.
(3) Let PP(B(t))ª 1

2$B(t1 i0)1B(t1 i0)%, t>0. Then there exists R.0 such that the
Laplace–Borel integral

f~z!ª
1

z E0

`

PP~B~t!!e2t/zdt ~1.9!

converges for zPCR , CR as in Definition 1.1.

Then we say that the formal power series(n50
` anzn is Borel summable in the distributional sens

to f(z) for zPCR . The distribution PP(B(t)):tPR1 is called distributional Borel transform o
(n50

` antn.
Remarks:

~1! The distributionPP(B(t)) coincides with the holomorphic functionB(t), the Borel trans-
form, for 0<t,C.

~2! The Laplace–Borel integrals

F~z!ª
1

z E0

`

B~t1i0!e2t/zdt, ~1.10!

F̄~z̄!ªE
0

`

B~t1i0!e2t/zdt ~1.11!

exist separately inCR as analytic functions and uniquely define the ‘‘upper’’ and ‘‘lowe

sums, respectively. Thenf (z)5$F(z)1F̄( z̄)%/2 for all zPCR . In particular, f (z)
5ReF(z), ; zPCRùR1 .

~3! As the ordinary Borel sum, the distributional Borel one is unique. We note for fur
reference that this method singles out also a unique function with zero asymptotic p
series expansion, the so-called ‘‘discontinuity,’’ uniquely defined by

d~z!ªF~z!2F̄~z̄!5
1

z E0

`

$B~t1i0!2B~t1i0!%e2t/zdt, ; zPCR .

In particulard(z)52i Im F(z), ; zPCRùR1 .
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In the above example we have

d~z!5
1

z E0

`

2id~t21!e2t/zdt, 5
2i

z
e21/z.

~4! The analog of the Watson–Nevanlinna criterion has also been established.13 Its conditions
have been verified to prove the distributional Borel summability in a number of physi
interesting cases which generate constant sign divergent perturbation expansion
amples include the Rayleigh–Schro¨dinger perturbation theory for Stark effect14 and the
odd anharmonic oscillators,15 which are summable to the resonances, and a variant o
bound state perturbation theory for the double well quartic oscillator.16

Let us now proceed to state the result of this article. Its proof is to be described in the next s
The effective action for the vacuum polarization by a uniform electric field can be obtain

a particular case from the Schwinger solution8,5 valid for a general external constant electroma
netic field, and reads

S~a!52
1

8p2 E
0

` e2 is

s3 H ~2Apas!coth~2Apas!212
4pas2

3 J ds. ~1.12!

Herea is the fine structure constant, and without loss the electron massm and the strengthE of
the field are set equal to 1. Notice that~1.12! defines an analytic function ofa for 2p,arga
,p. It can be easily checked~see also Lemma 2.2 below! that S(a) admits the following formal
expansion in power series ofa:

S~a!;2
1

8p2 (
n52

`

~16p!nB2n

~2n23!!

~2n!!
~2a!n5 (

n52

`

anan, ~1.13!

anª2
~21!n

8p2 ~16p!nB2n

~2n23!!

~2n!!
, ~1.14!

where$B2n%, n50,1,..., is thesequence of the Bernoulli numbers. Now~see, e.g., Ref. 17!

B051, B2n52~21!n11
~2n!!

~2p!2n (
m51

`

m22n, n51,2,,... . ~1.15!

Hencean.0 for all nPN and an;(2n)! as n→`. Then we can state the main result of th
article:

Theorem 1.3: The perturbation expansion (1.13) is Borel summable in the distributio

sense to1
2$S(a)1S̄(a)%5ReS(a) for any 0<a,1`. More precisely S(a) and S̄(ā) are the

upper and lower sum of(n50
` anan for Rea.0, respectively.

~1! The effective actionS(a) is complex-valued, while the perturbation expansion is real.
already remarked~and will become evident in the course of the proof! the distributional Borel
sum uniquely determines also the imaginary part ImS(a)52 (i/2) d(a), which has zero
power series expansion ina. This is a point of some importance because the imaginary pa
proportional to the pair creation rate.

~2! The numerical resummation procedure recently introduced by Ref. 18, which also yield
imaginary part, admits a rigorous justification within the present method if the convergen~in
measure! can be proved of the Pade´ approximants for the distributional Borel transform.
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II. PROOF OF THE DISTRIBUTIONAL SUMMABILITY

Consider the effective action~1.12!. First of all notice that for 0,arga,p we can rotate the
integration path in~1.12! and choose the half-lineGª$sPC:s52 i t ,0<t,1`%, i.e., the nega-
tive imaginary axis. Now coth(ix)52i cot(x),; xPAª$xPC:xÞkp ;; kPZ%. Hence,

S~a!5
1

8p2 E
0

` e2t

t3 H 2Apat cot~2Apat !211
4pat2

3 J dt. ~2.1!

The proof of Theorem 1.3 is based on the fundamental criterion for distributional B
summability~see Ref. 13, Theorem 1!. Let us report here the part relevant to our purpose.

Theorem 2.1: Let (n20
` anzn be a formal power series and B(t)5(n20

` (an /n!) tn its Borel
transform. Assume the following.

(1) B(t) is convergent forutu,r for somer.0.
(2) B(t) admits an analytic continuation to the regionVrª$tPC:Im t.0;Ret.2r%.
(3) There are A.0, R.0 such that

uB~t1ih0!u<Ah0
21 exp@t/R#, ; t.0, ;h0P]0,r@ . ~2.2!

Then the boundary value distributions B(t1 i0) and PP(B(t))5 1
2$B(t1 i0)1B(t1 i0)% exist for

all t>0 and the integral

1

z E0

`

PP~B~ t !!e2t/z dt ~2.3!

defines a real-analytic function f(z) in CR . Moreover,

F~z!ª
1

z E0

`

B~ t1 i0!e2t/z dt ~2.4!

is analytic in CR and fulfills the estimates

UF~z!2 (
n50

N21

anznU<C0c~e!NN! uzuN, N51,2,... , ~2.5!

uniformly in CR,eª$zPCR :argz>2p/21e%.
Remarks:

~1! f (z) is the distributional Borel sum, andF(z) the upper sum of(n20
` anzn. They are both

uniquely determined by conditions 1 and 2, together with the imaginary part@F(z)

2F̄( z̄)#/2i .
~2! The estimate~2.2! makes the distributionB(t) locally of order 1. However, it is nota

priori tempered because it might grow faster than any polynomial at infinity.

Let us now proceed to apply this theorem to our case.
Lemma 2.2: For anya such that0,arga,p setb5Aa and

F~b!ªS~b2!5
1

8p2 E
0

` e2t

t3 F2Apbt cot~2Apbt !211
4pb2t2

3 G dt. ~2.6!

ThenF(b) is analytic for0,argb,p/2 and admits the following formal expansion in powers
b:
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F~b!;
1

8p2 (
n52

`

~216p!nB2n

~2n23!!

~2n!!
b2n5 (

n52

`

anb2n, ~2.7!

where$B2n% is the sequence of the Bernoulli numbers defined by (1.15).
Proof: Equation~2.7! corresponds to~1.13! with a5b2. Let us work it out for the sake o

completeness. First recall that

x cotx5 (
n50

`

~21!n
22n

~2n!!
B2nx2n, uxu,p, ~2.8!

whereB051 andB2n is given by the expression~1.15! ~see, e.g., Ref. 17!. Then

2Apbt cot~2Apbt !5 (
n50

`

~21!n
22n

~2n!!
B2n22npnb2nt2n. ~2.9!

SinceB051 andB25 1
6 we have

2Apbt cot~2Apbt !211
4

3
pb2t25 (

n52

`

~21!n
~16p!n

~2n! !
B2nb2nt2n. ~2.10!

Hence

F~b!5
1

8p2 E
0

`

e2t (
n52

`

~21!n
~16p!n

~2n! !
B2nb2nt2n23 dt

5
1

8p2 (
n52

`

~21!n
~16p!n

~2n! !
B2nb2nE

0

`

e2tt2n23 dt

5
1

8p2 (
n52

`

~21!n
~16p!n~2n23!!

~2n! !
B2nb2n,

and this concludes the proof of the lemma.
Lemma 2.3: Let Dª$tPC:tÞkAp/2,; kPZ%, and set

B~ t !ª
2Apt cot~2Apt !2114pt2/3

8p2t3 , ; tPD. ~2.11!

Then B(t) is clearly analytic in D with simple poles at t5kAp/2, kPZ. Moreover,

B~ t !5 (
n52

`
an

~2n23!!
t2n23, ; t:utu,

Ap

2
, ~2.12!

i.e., B(t) is the Borel transform of(n52
` anb2n23.

Proof: To obtain~2.12! we proceed as in the previous lemma using~2.8!. More precisely,

B~ t !5
1

8p2 (
n52

`

~21!n
22n

~2n! !
B2n22npnt2n235 (

n52

`
an

~2n23!!
t2n23, utu,Ap/2.

Proposition 2.4: Let(n52
` anb2n23 be the formal power series whose coefficients an are

defined by (1.13) and (1.14) [see also (2.7)], and let B(t) be its Borel transform (2.11) with
expansion (2.12). Then B(t) satisfies the hypotheses of Theorem 2.1.
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Proof: By Lemma 2.3 Conditions 1 and 2 of Theorem 2.1 are satisfied withr5Ap/2. As far
as Condition 3 is concerned, we will prove it in the following stronger version: for anyR.0 there
is A.0 such that

uB~ t1 ih0!u<Ah0
21 exp~ t/R!, ; t.0, ;h0P]0,Ap/2@ . ~2.13!

To this end first let 0,d,Ap/2 be fixed. Then the functionB(t1 ih0) is continuous on the
compact setKª$z5t1 ih0PC:utu<d;0<h0<Ap/2%. HenceB(t1 ih0) is bounded inK by
some constantc.0 and we can write

uB~ t1 ih0!u<c<c
Ap

2
h0

21 exp~ t/R!,

where the second inequality holds because (Ap/2) h0
21>1 and obviously we can chooseR as

large as we like. Hence it suffices to prove~2.13! for t.d andh0P]0,Ap/2@ . Now for t.d the
term 1/6put1 ih0u, which comes from the third summand in~2.11! where we have replacedt by
t1 ih0 , can be estimated as follows:

1

6put1 ih0u
5

1

6pAt21h0
2
<

1

6pd

for t.d. Thus, this term trivially fulfills~2.13! with R as large as we like. Therefore we ca
restrict our attention to the term

B1~ t1 ih0!ª2Ap~ t1 ih0!cot$2Ap~ t1 ih0!%21 ~2.14!

because the denominator 1/8p2ut1 ih0u3 is bounded by (1/8p2) d23 for t.d. Consider now the
well known expansion~see, e.g., Ref. 17!

x cotx5112x2(
n51

`
1

x22n2p2 . ~2.15!

Then, for anyR.0, we have to findA.0 such that

uB1~ t1 ih0!u54put1 ih0u2U(
n51

`
1

4p~ t1 ih0!22n2p2U<Ah0
21 exp~ t/R! ~2.16!

; t.d, h0P]0,Ap/2@ . First remark that

4put1 ih0u254p~ t21h0
2!<4p~ t211!<C1 exp~ t/R!

for a suitable constantC1. andR.0 arbitrarily large. Moreover, one has

U(
n51

`
1

4~ t1 ih0!2/p2n2U< (
n51

`
1

A$n224~ t22h0
2!/p%2164h0

2t2/p2
. ~2.17!

If t<h0 , the right hand side of Eq.~2.17! can be bounded by(n50
` 1/n2 5p2/6. Thus~2.16! holds

for R.0 arbitrarily large by suitably choosingA.0. We are thus left with the caset.h0 , t
.d, h0P]0,Ap/2@ . In this case, settingQ(t,h0)ª@2At22h0

2#/Ap] 11 (@x#5greatest integer
<x, xPR) we can estimate the rhs of~2.17! as follows:
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(
n51

`
1

A$n224~ t22h0
2!/p%2164h0

2t2/p2

< (
n51

Q(t,h0)
1

A$n224~ t22h0
2!/p%2164h0

2t2/p2

1 (
n5Q(t,h0)11

`
1

A$n224~ t22h0
2!/p%2164h0

2t2/p2

< (
n51

Q(t,h0)
p

8th0
1 (

n5Q(t,h0)11

`
1

n224~ t22h0
2!/p

. ~2.18!

The last inequality is a consequence of the positivity ofn224(t22h0
2)/p for n>Q(t,h0)11.

Now the first summand in~2.18! can be bounded by

p

8th0
S 2

Ap
At22h0

211D <
Ap

4
h0

211
p

8th0
~2.19!

and clearly satisfies~2.13! recalling thatt.d. Concerning the second term in~2.18! we have

(
Q(t,h0)11

`
1

n224~ t22h0
2!/p

<E
Q(t,h0)11

` dx

x224~ t22h0
2!/p

1
1

~Q~ t,h0!11!224~ t22h0
2!/p

,

~2.20!

where the inequality follows by the well known comparison theorem between series with po
terms and generalized integrals. Since@x#<x ; x>0, recalling the definition ofQ(t,h0), we can
write

(
Q(t,h0)11

`
1

n224~ t22h0
2!/p

<E
~2/Ap!At22h0

2
12

` dx

x224~ t22h0
2!/p

1
1

3
~2.21!

because@x#25@x2# and @x#112x.0, ; x.0. Since the additive factor13 can be trivially ab-
sorbed in the constants, it is enough to estimate the integral in~2.21!. One has

E
~2/Ap!At22h0

2
12

` dx

x224~ t22h0
2!/p

5
1

4
A p

t22h0
2 lnS 11

2

Ap
At22h0

2D .

Given R.0 arbitrarily large the existence of a constantA.0 such that

1

4
A p

t22h0
2 lnS 11

2

Ap
At22h0

2D <Ah0
21et/R

; t.d, t.h0 , ; h0P]0,Ap/2@ is now obvious. This concludes the proof of the proposition.
Corollary 2.5: In the notation of Lemmas 2.2 and 2.3 and Proposition 2.4 the boundary v

distributions B(t1 i0) and PP(B(t)) exist for all t>0. Moreover, the integral

1

b E
0

`

B~ t1 i0!e2t/b dt ~2.22!

defines an analytic function on D1ª$bPC:Reb.0%, coinciding with F(b)ªb23F(b) ; b:0
,argb,p/2. Equivalently, (n50

` anb2n23 is Borel summable in the distributional sense; its upp
sum isb23F(b) while the distributional sum is
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f ~b!ª
1

b E
0

`

PP~B~ t !!e2t/b dt ~2.23!

; bPD1 ; moreover,

f ~b!5 1
2 $b23F~b!1~ b̄ !23F̄~b̄ !%, b¹R1 . ~2.24!

Proof: The first assertion follows from Theorem 2.1 in view of Proposition 2.4, which a
guarantees the existence of~2.22! in CR5$bPC:Reb21.R21% ; R.0. By the same results i
suffices now to show that~2.22! coincides withb23F(b) for 0,argb,p/2. Indeed we have

1

b E
0

`

B~ t1 i0!e2t/b dt5
1

b
lim

e→01

E
0

`

B~ t1 i e!e2t/b dt

5
1

8p2b
lim

e→01

E
0

`

e2t/b~ t1 i e!23

3H 2Ap~ t1 i e!cot~2Ap~ t1 i e!!211
4

3
p~ t1 i e!2J dt.

Now, performing the change of variablest5sb, sPG1ª$s:s5 t/b ,0<t,`% we obtain

1

b E
0

`

B~ t1 i0!e2t/b dt5
1

8p2b3 E
G1

s23e2sH ~2Apbs!cot~2Apbs!211
4

3
pb2s2J ds

5
1

8p2b3 E
0

`

t23e2tH ~2Apbt !cot~2Apbt !211
4

3
pb2t2J dt,

~2.25!

where the last equality follows from the analyticity of the integrand~in the variables) in a sector
containingR1 , if b¹R1 . Now by ~2.6! the integral~2.25! is preciselyb23F(b), and this
concludes the proof of the Corollary.

Remark:Notice that in the representations~2.23 and 2.24! we had to excludebPR because
by ~2.6! F(b) is not defined forbPR.

Now, multiplying byb3 the functionsF(b)5b23F(b) and f (b) as well as the formal serie
(n52

` anb2n23 we immediately conclude the following.
Corollary 2.6: The formal power series(n52

` anb2n is Borel summable in the distributiona
sense; b:Reb.0. Its upper sum isF(b), ; b¹R1 , and its distributional sum isb3f (b). For

b¹R1 one hasb3f (b)5 1
2$F(b)1F̄(b̄)%.

Proof of Theorem 1.3:From Corollary 2.6 we obtain

F~b!5b2E
0

`

B~ t1 i0!e2t/b dt, ; b:0,argb,
p

2
, ~2.26!

where the rhs is the upper sum of(n52
` anb2n, ; b:2 p/2,argb,p/2. Now, settingb5Aa and

using ~2.1! to representS(a), we have

S~a!5AaE
0

`

B~ t1 i0!e2t/Aa dt ~2.27!

and
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S̄~ ā !5AaE
0

`

B~ t1 i0!e2t/Aa dt

; a:0,arga,p @notice that ~2.1! actually definesS as a holomorphic function ofa for 0
,arga,p]. On the other hand, the original representation~1.12! for S(a), namely

S~a!52
1

8p2 E
0

` e2 is

s3 H ~2Apas!coth~2Apas!212
4pas2

3 J ds,

definesS as a holomorphic function ofa for 2p,arga,p. Thus, it represents an analyt
continuation of the lhs of~2.27! across the positive real axis becauseS(a) as represented by~2.27!
and ~2.1! coincide for 0,arga,p. Since the rhs of~2.27! is also an analytic function ofa for
2p,arga,p we can write

S~a!52
1

8p2 E
0

` e2 is

s3 H ~2Apas!coth~2Apas!212
4pas2

3 J ds

5AaE
0

`

B~ t1 i0!e2t/Aa dt, ; a:2p,arga,p. ~2.28!

ThusS(a) is the upper sum of(n52
` anan and the distributional Borel sum is given by

1

2
$S~a!1S̄~ ā !%5AaE

0

`

PP~B~ t !!e2t/Aa dt, ; a:2p,arga,p. ~2.29!

In particular, the distributional Borel sum is ReS(a) for a.0. This concludes the proof of Theo
rem 1.3.

Remarks:

~1! It follows by the above theorem that the distributional Borel summability uniquely de
mines also

Im S~a!5
1

2i
@S~a!2S̄~a!#, aPR1 .

Moreover, ImS(a) is proportional to the pair-production rate. Its explicit expression i5

Im S~a!5
1

8p3 (
n51

`
1

n2expS2 np

a D
and has zero asymptotic expansion ina.

~2! Strictly speaking, the representations~2.28! and ~2.29! yield the distributional Borel–
Leroy sum of order 2~see Ref. 13, Theorem 3! of the divergent perturbation expansio
~1.13!. That definition is completely equivalent13 to ordinary summability in the variable
b5Aa. We have preferred to proceed in this last way for convenience of expositio
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Modular localization of massive particles with ‘‘any’’ spin
in dÄ2¿1a…

Jens Mundb)

Institut für Theoretische Physik, Universita¨t Göttingen,
Bunsenstr. 9, 37 073 Go¨ttingen, Germany

~Received 30 August 2002; accepted 23 January 2003!

We discuss a concept of particle localization which is motivated from quantum field
theory, and has been proposed by Brunetti, Guido and Longo and by Schroer. It
endows the single-particle Hilbert space with a family of real subspaces indexed by
the space–time regions, with certain specific properties reflecting the principles of
locality and covariance. We show by construction that such a localization structure
exists also in the case of massive anyons ind5211, i.e., for particles with positive
mass and with arbitrary spinsPR. The construction is completely intrinsic to the
corresponding ray representation of the~proper orthochronous! Poincare´ group.
Our result is of particular interest since there are no free fields for anyons, which
would fix a localization structure in a straightforward way. We present explicit
formulas for the real subspaces, expected to turn out useful for the construction of
a quantum field theory for anyons. In accord with well-known results, only local-
ization in string-like, instead of point-like or bounded, regions is achieved. We also
prove a single-particle PCT theorem, exhibiting a PCT operator which acts geo-
metrically correctly on the family of real subspaces. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1561592#

I. INTRODUCTION

Following Wigner,1 the state space of an elementary relativistic particle corresponds
irreducible ray representation of the Poincare´ group. In three as well as in four dimension
space–time, the physically relevant representations—and hence the conceivable particle
are classified by the massm and the spins which labels a representation of the covering of t
rotation subgroup~if m.0). In three-dimensional space–time the latter is isomorphic to the g
of reals, hence the spin may takeany real value—in contrast to the four-dimensional situati
where it is quantized,sP 1

2N0 . Thus, in three-dimensional space–time there are more par
types; the exotic ones with non-half-integer spin are calledanyons.

By modular localization of particles we mean a concept which has been advocated in
years by Brunetti, Guido and Longo2 and by Schroer:3,4 Suppose there is a quantum field for th
particle type at hand, and consider the single-particle states which are, together with a polar
cloud, created from the vacuum in a given space–time region. Thus the single-particle spa
equipped with a family of subspaces indexed by the space–time regions, with certain s
properties reflecting the localization properties of the underlying quantum field; cf. Definitio
below. This will be a sufficient motivation for us to call a family of subspaces of the single-pa
space with such properties alocalization structurefor the particle type at hand.

The question arises as to whether such a structure can be constructed for any given
type (m,s) intrinsically within the single-particle theory—that is to say, without referring to
quantum field, but using as input only the corresponding ray representation of the Poincare´ group.
This has been achieved for spin zero and positive mass by Ramacher,5 and for all positive energy

a!Dedicated to R. Haag on the occasion of his 80th birthday.
b!Electronic mail: mund@theorie.physik.uni-goettingen.de
20370022-2488/2003/44(5)/2037/21/$20.00 © 2003 American Institute of Physics
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representations of the Poincare´ group by Brunetti, Guido and Longo.2 The latter analysis include
reducible representations, but restricts to proper~not ray! representations, i.e., only the case
bosons and not the case of fermions or anyons is covered.

In the present article, this construction is performed for the case of massive anyonsd
53. The purpose of this construction is twofold: First, it shows that a localization structure in
exists for allm.0,sPR. This is of particular interest because there are no free relativistic fi
for anyons,10 which would of course allow for a straightforward construction of the localizat
structure.~We mean fields creating finitely many copies of the irreducible representation from
vacuum. Grigore has constructed free fields ind5211 for any spin,6 but in contradiction to the
generalized spin statistics connection holding in algebraic quantum field theory7–9 they have
bosonic statistics. Presumably, this is due to the fields having infinitely many components.! Even
worse, none of the hitherto proposed models of relativistic quantum fields for anyons in~continu-
ous! three-dimensional space–time11–17 has been worked out to the extent that the localizat
structure could be readily constructed from them. Second, our analysis is intended to be a
the construction of a model which resembles as closely as possible a free field for anyons
sense of a ‘‘second quantization functor’’ from the single particle theories to field algebras. T
end it is gratifying that we have found explicit formulas for the real subspaces of localized s

The article is organized as follows. In Sec. II, we make precise our definition of a localiz
structure for anyons; cf. Definition 2.1. In Sec. III, we construct a localization structure for
given particle typem.0,sPR, intrinsically within the corresponding Wigner space. The resul
summarized in the main Theorem 3.2, which also contains a PCT theorem. All relevant prop
can be shown, via modular theory along the lines of,2 without reference to the specific irreducib
representation (m,s)—except for the the so-called standard property, which guarantees tha
constructed structure is nontrivial. This is the content of Sec. IV, where we explicitly ex
sufficiently many ‘‘localized states’’~Proposition 4.2!. These are represented as families of fun
tions which transform covariantly under the Poincare´ group~Corollary 4.3!. In Sec. V, we finally
prove that the Bisognano–Wichmann property essentially fixes the localization structure an
implies a single-particle version of the spin-statistics connection.

II. DEFINITION OF A LOCALIZATION STRUCTURE FOR ANYONS

Let H be a Hilbert space describing anyons of the type (m,s). We define a localization
structure as a family of subspaces ofH with certain specific properties reflecting the localizati
properties of a hypothetical underlying quantum field.

Let us first describe the index set for this family. Each subspace is labeled by a space
region belonging to a specific classC, together with some additional information, which is need
to endow the index set with a partial order relation and with a nontrivial action of the 2p-rotation.
In accord with the well-known result7,8 that anyons cannot be localized in point-like, but only
string-like regions, each localization regionCPC must extend to infinity in some space-lik
directione, e2521. More specifically, we say that a space–time regionC contains a space-like
direction e if

C1e,C . ~1!

We takeC to be the set of convex, causally complete regions which contain some spac
direction in this sense.~A regionC is called causally complete if it contains all pointsx such that
every inextendible causal curve throughx passes throughC.) Typical examples of regions inC are
space-like cones andwedgeregions, i.e., Poincare´ transforms of the standard wedge,

W18$ xPR3: ux0u,x1 % . ~2!

Wedges are the largest regions in the classC, in the sense that everyCPC is contained in some
wedge.2
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The additional information indicated above, which has to be specified along with each
ization regionCPC, is a path in the set of space-like directions. We denote the latter by

H8$ePR3:e2521% , ~3!

and consider paths inH starting at a reference directione0 , which we fix, once and for all, to be

e08~0,0,21! . ~4!

Given a regionCPC, we shall say that a pathẽ ends in Cif its endpoint is contained inC in the
sense of Eq.~1!. Two pathsẽ1 andẽ2 starting ate0 and ending inC will be calledequivalent w.r.t.
C iff the path ẽ1

21
* ẽ2 ~the inverse ofẽ1 followed by ẽ2) is fixed-endpoint homotopic to a pat

which is contained inC. Now the index set for our localization structure, denoted byC̃, is the set
of pairs

~C,ẽ! , ~5!

whereCPC andẽ is the equivalence class w.r.t.C of a path inH starting ate0 and ending inC.
For fixed CPC, we shall use the notationC̃ for an element of the form (C,ẽ). To see what is
involved, supposeC is a space-like cone or a wedge. Then the set of directions contained inC is
a connected and simply connected subset ofH ~denotedCH in Fig. 1!, and different elements
(C,ẽ1) and (C,ẽ3) differ just by a winding number; cf. Fig. 1. Consider now two such pa
C̃18(C1 ,ẽ1) and C̃28(C2 ,ẽ2). If C1,C2 and the corresponding pathsẽ1 , ẽ2 are equivalent
w.r.t. C2 , then we shall write

C̃1,C̃2 . ~6!

If C1 andC2 are causally separated, thenC̃1 and C̃2 determine arelative winding number,

N~C̃1 ,C̃2!8winding number of ẽ2
21

* ẽ1* ẽ12, ~7!

where ẽ12 is the ‘‘direct’’ path from e1 to e2 in clockwise direction. Finally, we note that th
universal coveringP̃1

↑ of the Poincare´ group naturally acts onC̃ as explained in Appendix B, cf
Eq. ~B21!, such that a 2p-rotation acts nontrivial—it maps, for example, (C,ẽ3) in Fig. 1 onto
(C,ẽ1).

We now turn to the definition of a localization structure. We admit the case of several pa
species of the same type (m,s), for example, a particle and its anti-particle.

Definition 2.1: Let U be a finite direct sum of copies of the irreducible representation of˜
1
↑

for mass m.0 and spin sPR, acting in a Hilbert spaceH. A family of closed real subspace

K(C̃), C̃P C̃, of H is called alocalization structurefor (m,s) if it has the following properties:

FIG. 1. (C1ẽ1)5(C2ẽ2)Þ(C3ẽ3).
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~1! Isotony:Let C̃1,C̃2 in the sense of Eq. (6). Then

K~C̃1!,K~C̃2! .

~2! Twisted locality: There is a complex number Z of modulus one, such that for any

C̃1 ,C̃2P C̃ with C1 causally separated from C2 ,

Z~C̃1,C̃2! K~C̃2! , K~C̃1!8 . ~8!

Here, Z(C̃1 ,C̃2)8Z2N11, with N5N(C̃1 ,C̃2), cf. (7), and the prime denotes the symplec
complement. ~The relevant notions referring to real subspaces of a Hilbert space are re
in Appendix A.!

~3! Poincare´ covariance:For all C̃P C̃ and g̃P P̃1
↑ ,

U~g̃! K~C̃! 5 K~g̃•C̃! .

~4! Standardness:K(C̃) is standard for all C̃P C̃.

Remark:( i ) Covariance implies thatK„r̃ (2p)•C̃…5e2p isK(C̃), wherer̃ (•) denotes rotation.
ThereforeK( r̃ (2p)•C̃) coincides withK(C̃) if, and only if, sP 1

2Z. HenceK(C̃) is independent
of the pathẽ, but only depends onC, iff sP 1

2Z. Further, it can be shown using the free fie
formalism~or along the same lines as in the present analysis; cf. the remark after Proposition!,
that in this case the localization structure can be extended to bounded regions.

( i i ) In the framework of algebraic quantum field theory, a field algebra for anyons18 is a
family of operator algebras$F(C̃)%C̃P C̃ , indexed by the same classC̃ ~except that in general, eac
C must contain some space-like cone19!. Suppose there are finitely many particle species of
type (m,s) and that$m% is isolated from the rest of the spectrum, and denote byEm,s the
projection onto the corresponding single-particle space. Then

K~C̃!8Em,sF~C̃!saV 2 ~norm closure! , ~9!

C̃P C̃, is a localization structure. This is in fact the motivation for our definition. As an illustrat
we show that twisted locality~8! holds in the case of bosons or fermions. In these cases
operatorsw1 and w2 localized in causally separated regions commute or anti-commute, re
tively. These relations have been shown in Ref. 9, Sec. 2 to survive the projectionEm,s in the sense
that

~ w1V,Em,sw2V !56~ w2* V,Em,sw1* V ! , ~10!

respectively. Hence, puttingZ81 for bosons andZ8 i for fermions, the imaginary part o
( Zw1V,Em,sw2V ) is zero if w1 and w2 are self-adjoint. This is twisted locality. In the gener
case of anyons, analogous considerations hold, withZ being defined as a root of the statisti
phase.

We finally recall the definition of a certain maximality property called twisted Haag dua
Let C̃5(C,ẽ) andC̃85(C8,ẽ8), whereC8 is the causal complement ofC and ẽ8 is the equiva-
lence class of a path ending inC8 in the same sense as in Eq.~1!. If C is not a wedge, then the
regionC8 is not contained in any wedge region. In this case we define a real subspace corre
ing to C̃8 via

K~C̃8!8 ~
C̃0,C̃8,C̃0P C̃

K~C̃0! . ~11!

Definition 2.2: A localization structure is said to satisfytwisted Haag dualityif for every pair

C̃,C̃8 as above the identity
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Z~C̃,C̃8! K~C̃8!5K~C̃!8 ~12!

holds.

III. CONSTRUCTION OF THE LOCALIZATION STRUCTURE

Let U be a finite direct sum of copies of the irreducible representation ofP̃1
↑ for massm

.0 and spinsPR. We now construct a corresponding localization structure along the same
as in Ref. 2.

We start with the definition of the localization space associated with the standard wedgW1 ;
cf. Eq. ~2!. Associated with this wedge are the Lorentz boostsl1(t) leaving W1 invariant and
acting on the coordinatesx0,x1 as

S cosh~ t ! sinh~ t !

sinh~ t ! cosh~ t !
D , ~13!

and the reflectionj about the edge ofW1 ,

j : ~x0,x1,x2!°~2x0,2x1,x2! . ~14!

We defineD to be the unique positive operator satisfying

D i t5U„l̃1~22pt !… , tPR , ~15!

wherel̃1(•) denotes the lift ofl1(•) to the covering groupP̃1
↑ . We further pick an anti-unitary

involution J satisfying

JU~ g̃!J5U~ j̃ g̃ j̃ ! , g̃P P̃1
↑ , ~16!

where j̃ • j̃ denotes the lift of the adjoint action ofj to the covering groupP̃1
↑ @See~B17!#. Lemma

B.3 asserts that such an involution exists. We mention as an aside, that the localization st
which we now construct is independent of the particular choice; cf. Proposition 5.2. We
define a closed operatorS by

S8J D1/2 . ~17!

This operator is densely defined, antilinear and involutive due to the group relationj̃ l̃1(t) j̃

5l̃1(t); cf. Ref. 2. Hence, the eigenspace ofS for the eigenvalue 1 is a standard real subspace
Appendix A. We take this subspace as our localization space for

W̃18~W1 ,ẽW1
! , ~18!

whereẽW1
is the equivalence class of a path starting frome0 and staying withinW1 @in the sense

of ~1!#; in other words, we put

K~W̃1!8$fPdom S: Sf5f% . ~19!

The motivation for this definition will become clear after Definition 5.1. Covariance forces u
define the real subspaces corresponding to arbitrary wedgesW̃5g̃•W̃1 by

K~ g̃•W̃1!8U~ g̃! K~W̃1!, for g̃P P̃1
↑ . ~20!

The following lemma asserts that this is well-defined.
Lemma 3.1: Let g˜P P̃1

↑ satisfy g̃•W̃15W̃1 . Then U(g̃) K(W̃1)5K(W̃1).
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Proof: The set of Poincare´ transformationsg̃P P̃1
↑ which mapW̃1 onto itself is the Abelian

group generated by the one-parameter subgroups of the translations along the 2-axes an
1-boostsl̃1(t). Both of these subgroups commute withj̃ and with the 1-boosts, hence the
representers commute withS, which implies the claim. h

Next we associate real closed subspacesK(C̃) to arbitrary regionsC̃P C̃ by intersections:

K~C̃!8 ù
W̃.C̃

K~W̃! , ~21!

where the intersection goes over all wedge regions which containC̃ in the sense of~6!. If C is a
wedge, this is consistent with~20! as a consequence of the positivity of the energy.2 Note that if
C is not a wedge, then~21! is the maximal subspace one can associate withC in view of locality.

We now state our main result.
Theorem 3.2:The family$K(C̃)%C̃P C̃ constructed above is a localization structure for(m,s),

cf. Definition2.1, with Z5eips. It also satisfies twisted Haag duality; cf. Eq. (12). Further, the

anti-unitary involution U( j̃ ) defined by U( j̃ )8Z21J is a PCT operator, that is, a representer of˜

in the sense of Eq. (16), which acts geometrically correctly on the localization structure:

U~ j̃ ! K~C̃!5K~ j̃ •C̃! , C̃P C̃ . ~22!

@The action ofj̃ on C̃P C̃, denotedj̃ •C̃, is explained in Appendix B, cf.~B22!.# It is noteworthy
that the ‘‘spin-statistics connection’’Z25e2p is necessarily holds as a consequence of the defini
~19!, as we show in Proposition 5.3.

Proof: Isotony and Poincare´ covariance, i.e. properties~1! and ~3! of Definition 2.1, follow
immediately by construction. We next prove Eq.~22!. From the group relationsl̃1(t) j̃ 5 j̃ l̃1(t),
l̃1(t) r̃ (p)5 r̃ (p)l̃1(2t) and r̃ (p) j̃ 5 j̃ r̃ (2p), and the fact thatZ25e2ips5U„r̃ (2p)…, it fol-
lows that the operatorU( r̃ (p))U( j̃ ) commutes withS. But this implies that

U~ j̃ ! K~W̃1!5U~ r̃ ~2p!! K~W̃1!5K~ j̃ •W̃1! , ~23!

where we have used thatj̃ •W̃15 r̃ (2p)•W̃1 . Hence, Eq.~22! holds forC̃5W̃1 . By covariance,
it holds for all wedge regions, and by the intersection property~21! it holds for all C̃P C̃.

We next prove twisted Haag duality~12!. Equation~23! implies thatJK(W̃1)5ZK( j̃ •W̃1).
Now according to a general result about Tomita operators, see, e.g., Ref. 20, Prop. 2
anti-unitary partJ in the polar decomposition ofS mapsK(W̃1) onto its symplectic complement

JK~W̃1!5K~W̃1!8 . ~24!

Further,Z5Z(W̃1 , j̃ •W̃1) since the relative winding numberN(W̃1 , j̃ •W̃1) is zero. We therefore
have

Z~W̃1 , j̃ •W̃1! K~ j̃ •W̃1!5K~W̃1!8 . ~25!

Now any W̃185(W18 ,ẽ) differs from j̃ •W̃1 by a rotation about a multiple of 2p. Replacing j̃

•W̃1 by suchW̃18 , the above equation is still valid becauseZ„W̃1 , r̃ (2pN)• j̃ •W̃1… picks up a
factor e22p isN which is compensated by the factor picked up byK„r̃ (2pN)• j̃ •W̃1…. By covari-
ance and the fact thatZ(g̃•C̃1 ,g̃•C̃2) is independent ofg̃P P̃1

↑ , we get twisted Haag duality fo
wedge regions, i.e., for every pairW̃,W̃8 the identity

Z~W̃,W̃8! K~W̃8!5K~W̃!8, ~26!
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holds. For smaller regions we use a chain of equalities similar to the proof of Corollary 3.4 o
2. Let C̃ and C̃8 be as in Definition 2.2. Then

Z~C̃,C̃8! K~C̃8!5Z~C̃,C̃8! ~
C̃0,C̃8

K~C̃0!5Z~C̃,C̃8! ~
W̃8,C̃8

K~W̃8!5 ~
W̃8,C̃8

Z~C̃,W̃8!K~W̃8!

5 ~
W̃.C̃

K~W̃!85S ù
W̃.C̃

K~W̃! D 85K~C̃!8 . ~27!

In the second equation we have used the fact that for any pair of causally separated r
C,C0PC there is a wedgeW such thatC0,W8,C8, cf. Ref. 2; and also that

K~W̃1!5 ~
C̃,W̃1

K~C̃! . ~28!

This fact is asserted by Takesaki’s theorem because the r.h.s. is a standard space cont
K(W̃1) and is, by Eq.~15! and covariance, invariant under the modular group ofK(W̃1). The
fourth equation follows from Eq.~26!. We have also used the fact thatZ(C̃1 ,C̃2) is insensitive to
making the regionsC1 , C2 smaller. We have thus proved twisted Haag duality, which obviou
implies twisted locality, so we have shown property~2! of Definition 2.1.

It remains to prove property~4! of Definition 2.1, namely thatK(C̃) is standard for eachC̃.
The real subspace associated toW̃1 ~and hence to any other wedge regionW̃) has this property by
construction; cf. Eq.~19! and Appendix A. The property thatK(W̃)ù iK (W̃)5$0% transfers to the
smaller spacesK(C̃). It remains to show thatK(C̃)1 iK (C̃) is dense for allC̃. But this follows
from Corollary 4.3 in the next section, bearing in mind the following consequence of the R
Schlieder theorem for the free scalar massive field: Consider the set of Schwartz function
compact support contained in a fixed open space–time region. The restrictions to the mass
the Fourier transforms of these functions are dense in the space of square-integrable funct
the mass shell. h

IV. STANDARDNESS OF THE REAL SUBSPACES

To prove thatK(C̃)1 iK (C̃) is dense, we will explicitly exhibit sufficiently many elements
K(C̃). This will be the only place in our analysis where we make explicit use of the represen
U of P̃1

↑ . It suffices to considerU to be irreducible. For ifU is reducible, we may take the
involution J, cf. Eq. ~16!, as a direct sum of suitable involutions. We then obviously end up w
a localization structure which is the direct sum of irreducible localization structures.

We recall the relevant irreducible representations, starting with some notational remark
L1

↑ be the Lorentz group ind5211 and L̃1
↑ its universal covering group.~The relevant facts

concerningL̃1
↑ and the coveringL̃1

↑ →L1
↑ are recalled in Appendix B.! We denote elements ofL̃1

↑

generically byl̃, and the covering homomorphismL̃1
↑ →L1

↑ by

l̃°l . ~29!

The groupP̃1
↑ is the semidirect product ofL̃1

↑ with the translation groupR3. Thus, elements of
P̃1

↑ will be denoted byg̃5(a,l̃), and the group multiplication is given by

~a,l̃ !~a8,l̃8!5~a1la8 , l̃l̃8!. ~30!
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We occasionally denote (0,l̃) simply by l̃. The irreducible representation ofP̃1
↑ for m.0 and

sPR, denoted byU in the sequel, is given as follows. LetHm denote the positive mass she
$p•p5m2,p0.0% and dm the Lorentz invariant measure onHm . Then U acts on
H8L2(Hm ,dm) according to

~U~a,l̃ !f!~p!5eisV(l̃,p) eia•p f~l21p! , ~31!

whereV(l̃,p)PR is the Wigner rotation; cf. Eq.~76!. To this representation a unique, up to
phase factor, anti-unitary involutionJ can be adjoined satisfying Eq.~16!, thus extendingU to P̃1

within the same Hilbert space:

~Jf!~p!8eips f~2 jp ! ; ~32!

cf. Lemma B.3. Let$K(C̃)%C̃P C̃ be the resulting localization structure as in Theorem 3.2.
We now calculate elements inK(C̃) for given C̃P C̃. By construction,fPK(C̃) if and only

if for all g̃P P̃1
↑ which mapC̃ into W̃1 , the vectorU(g̃)f is in K(W̃1). @W̃1 has been defined in

Eq. ~18!.# In particular, it must be in the domain ofD1/2. As is well-known,21 this implies that the
map

t°U„l̃1~ t !…U~ g̃! f , tPR, ~33!

is the boundary value of an analyticH-valued function on the stripR1 i (0,p). But a complication
arises from the Wigner rotation factor. Namely, the functiont°exp(isV„l̃1(t)l̃,p…) has singu-
larities in the strip for any fixedpPHm and l̃PL̃1

↑ in a neighborhood of the unit, which ar
branch points ifs is not an integer~see Lemma C.1!. Our strategy is to consider wave function
of the formf5u•c ~point-wise multiplication!, whereu is a fixed nonvanishing function on th
mass shell, suitably chosen as to compensate the singularities of the Wigner rotation fact
action ofU(g̃), according to Eq.~31!, on wave functions of the form (u•c)(p)8u(p)c(p) can
be written as

„U~a,l̃ ! u•c…~p!5u~p! c~ l̃,p! eia•p c~l21p! , ~34!

with

c~ l̃,p!8u~p!21 eisV(l̃,p) u~ l̃21 p! . ~35!

In group theoretical terms, the mapc(•,•):L̃1
↑ 3Hm→C\$0% is a cocycle which is equivalent to

the Wigner rotation factor. As indicated above, our strategy is to chooseu such thatc(l̃,p) has the
desired analyticity properties. This will succeed only for certainl̃PL̃1

↑ or, stated differently, for a
certain C̃P C̃. We shall consider, as a first step,C̃ of the form (C,ẽ0), with C containing the
reference directione0 , cf. Eq.~4!, and whereẽ0 denotes the constant path ate0 . Stated differently,
we consider elementsl̃PL̃1

↑ which satisfy

l̃•ẽ0PW̃1 . ~36!

By this we mean thatW1 contains the directionl•e0 in the sense of Eq.~1!, and that the paths
l̃•ẽ0 and ẽW1

, cf. Eq. ~18!, are equivalent w.r.t.W1 . The following function is suitable for this
purpose, and in the sequel the cocyclec will be defined as in Eq.~35! above with this choice of
u:

u~p!8S p02p1

m
•

p02p11m2 ip2

p02p11m1 ip2
D s

, p08~p1
21p2

21m2!1/2 . ~37!
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Note thatp02p1 is strictly positive for allpPHm , hence the argument in brackets lies in the
complex planeC\R0

2 . Thus, taking it to the power ofsPR can be defined via the branch of th
logarithm onC\R0

2 with ln 150. This will always be understood in the sequel and will be cal
the power ofs within C\R0

2 .
Lemma 4.1: Letl̃ be an element of L˜

1
↑ such thatl̃•ẽ0PW̃1 in the sense of equation (36

Then for all pPHm the function

t°c„l̃1~ t !l̃,p…

has an analytic extension into the stripR1 i (0,p). This extension satisfies the boundary conditi

c„l̃1~ t1 ip!l̃,p…5eips c„l̃1~ t !l̃,2 jp… , tPR. ~38!

Proof: As we show in Lemma B.1,l̃ can be decomposed into boosts and rotations al̃

5l̃1(t) l̃2(t8) r̃ (v) for some uniquet,t8,vPR. We then denotev88v2 p/2. Then l̃•ẽ0

PW̃1 if and only if

l2~ t8! r ~v8! ~0,1,0!PW1
2 and v8P~2p,p! , ~39!

the latter condition singling out the correct leaf of the coveringr̃ (v8)°r (v8). As the vector in
Eq. ~39! is equal to

~sinht8 sinv8,cosv8,cosht8 sinv8!,

condition ~39! is equivalent to

usinht8 sinv8u<cosv8 and v8PF2
p

2
,
p

2 G . ~40!

This implies condition~C8! of Proposition C.2 in Appendix C, which now asserts the claim
analyticity property and the correct boundary value of the cocycle. h

We denote byC0
`(R3) theC`-functions onR3 with compact support, and, forf PC0

`(R3), by
Emf the restriction of the Fourier transform off to the mass shellHm . Our main result is the
following proposition.

Proposition 4.2: Let C be a region inC containing the reference direction e0 in the sense of

Eq. (1), and let C˜ 5(C,ẽ0). Then

K~C̃! . $u•Emf u f PC0
`~C!, real valued% .

Before proving the proposition, we point out that the local subspaces for regions conta
directions other thane0 are obtained via covariance, and can be nicely characterized as fol
Define, for eachl̃PL̃1

↑ , a functionul̃ on the mass shell by

ul̃~p!8u~p! c~ l̃,p! . ~41!

This is an ‘‘intertwiner function’’ for those single-particle vectors which are localized in regi
extending to infinity in the directionl̃•ẽ0 .

Corollary 4.3: (i) Let l̃PL̃1
↑ and C̃P C̃. If C̃ containsl̃•ẽ0 in the sense of Eq. (36), then

K~C̃! . $ul̃•Emf u f PC0
`~C!, real valued% .

( i i ) The wave functions ul̃•Emf transform covariantly in the sense that
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U~a,l̃ ! ul̃8•Emf 5ul̃l̃8•Em~a,l!* f , ~42!

where the star denotes the push-forward, (g* f )(x)8 f (g21x).
Proof: ( i ) is an immediate consequence of Proposition 4.2, and (i i ) follows from the cocycle

relation ~C10! below. h

It is noteworthy that the functionul̃ only depends on the pathl̃•ẽ0 up to a multiplicative
constant. For the stabilizer subgroup ofẽ0 , namely the group of 1-boosts, modifiesul̃ only by a
factor c(l̃1(t),p)5est.

Proof of Proposition 4.2:Let f be a smooth function with compact support inC, and letg̃
5(a,l̃) be such thatg̃C̃,W̃1 . Note that thenl̃ẽ0PW̃1 and suppg* f ,W1 , whereg* f denotes
the push-forward as above. We have to show thatU(g̃) u•Emf PK(W̃1). To this end we prove tha
the H-valued function

t°f~ t !8U„l̃1~ t !…U~ g̃! u•Emf , tPR, ~43!

is the boundary value of an analytic functionf~•! on the stripG8R1 i (0,p) which is continuous
and bounded on its closureG2 and that the boundary values are related by

f~ t1 ip!5J f~ t ! , tPR . ~44!

Using the push-forward to writeeia•p(Emf )(l21p)5„Em(a,l)* f …(p), we have

f~ t !5U„l̃1~ t !a,l̃1~ t !l̃… u•Emf 5v~ t !•c~ t !, ~45!

where we have written

v~ t !~p!8u~p! c„l̃1~ t !l̃,p… , ~46!

c~ t !~p!8„Eml1~ t !* g* f …~p! . ~47!

It follows from Lemma 4.1 that for fixedpPHm , v(•)(p) extends to an analytic functionv
(•,p) on the stripG, continuous on its closure, and that

v~ t1 ip,p!5eipsu~p! c„l̃1~ t !l̃,2 jp… . ~48!

Let us discuss the analyticity properties ofc(t). The matrix-valued functiont°l1(t) extends to
an entire analytic function satisfying

l1~ t1 i t 8!5l1~ t !„j t81 i sin~ t8! s… , ~49!

where j t8 acts as multiplication by cost8 on the coordinatesx0 and x1 and leaves the othe
coordinates unchanged, ands acts as the Pauli matrixs1 on (x0,x1) and as zero onx2.22 Hence
c(•)(p) extends, for fixedpPHm , to a functionc(•,p) on G2 as follows:

c~ t1 i t 8,p!8~2p!23/2E
W1

d3x ei p•l1(t) j t8x e2sin t8 p•l1(t)sx ~g* f !~x! . ~50!

Now for xPW1 , the vectorsx lies in the forward light cone, hencep•l1(t)sx.0 for p
PHm . Thus the second exponential term in Eq.~50! is a damping factor, and for fixedtPG2 the
function (p1 ,p2)°c(t,p) is of fast decrease. Further, due to the damping factor the func
t°c(t,p) is analytic on the stripG for fixed pPHm . Thus our functiont°f(t)5v(t)c(t)
extends, point-wise inp, to a functionf(t,p)8v(t,p)c(t,p) on G2, analytic on the interior,
and in additionf(t,•)PL2(Hm ,dm) for eachtPG2. By Eqs.~48! and ~49! the analytic con-
tinuation satisfies, sincej p5 j ,
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f~ t1 ip,p!5eipsu~p! c„l̃1~ t !l̃,2 jp… ~Emj * g* f !~p! . ~51!

On the other hand, usingu(2 jp)5u(p), one calculates

„J f~ t !…~p!5eipsu~p! c„l̃1~ t !l̃,2 jp… ~Emj * g* f̄ !~p! . ~52!

Thus for real valued f , the Hilbert space valued functiont°f(t) defined by f(t)
3(p)8f(t,p) satisfies the desired equation~44!. It remains to show thatf~t! is in fact analytic
as a Hilbert space-valued function.

To this end let, forxPW1 , tx8arctanh(x0 /x1) . Thensx5usxu l1(tx)(1,0,0) and

p•l1~ t !sx5usxu $cosh~ t1tx!p02sinh~ t1tx!p1% . ~53!

Note that the argument in curly brackets is strictly larger thanup2u and thanup1u3exp(2ut1txu).
Let t1 i t 8 be contained in some compact subsetG0,G of the strip. Then

utu<T and sint8>« for someT.0, «.0 . ~54!

Then the above estimates imply, using that exp(2utxu)5((x11ux0u)/(x12ux0u))1/2, that

sint8 p•l1~ t !sx.a1~x!up1u1a2~x!up2u, ~55!

where

a1~x!8
«

2
e2T~x12ux0u!.0 , ~56!

a2~x!8
«

2
~x1

22x0
2!1/2.0 . ~57!

This estimate implies that

C~p1 ,p2!8E
W1

d3x ug* f ~x!u e2a1(x)up1u2a2(x)up2u ~58!

is a dominating function forc(t,•) for all t in the compact subsetG0 of the strip, in the sense tha
uc(t,p)u,C(p1 ,p2) for all tPG0 . This function is decreasing fast enough such that

E d2p up1unup2um uC~p1 ,p2!u2 ,`, for all n,mPN0 . ~59!

Namely, the integral coincides with 4n!m! times the integral ofug* f (x)g* f (y)u „a1(x)
1a1(y)…2n21

„a2(x)1a2(y)…2m21 overx andy in W1 , which is finite sincea1 ,a2 are strictly
positive functions onW1 and supp(g* f ) is compactly contained inW1 . By similar considerations
one gets a dominating function for (d/dt) c(t,p), which we denote byC8 and which satisfies the
analog of Eq.~59!.

Next, we establish bounds forv(t,p): We claim thatv(t,p) and (d/dt) v(t,p) are bounded,
uniformly in tPG0 , by polynomials inup1u andup2u which we denote byV andV8, respectively.
We demonstrate here the case of non-negative spins, the other case working analogously. One h
the inequality 0,p06p1<2up1u1up2u1m and, using the identity (2p21 im)/(p02p1) 5 i (p0

1p11m1 ip2)/(p02p11m2 ip2), the inequality u(2p21 im)(p02p1)21u<2(up1u
1up2u1m)/m. These imply, fortPG0 , the estimate

v~t,p!<c0~2up1u1up2u1m!n
„c11c2~ up1u1up2u1m!…2n 8V~ up1u,up2u! ,
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wheren is any integer>s, c15ua2bu andc25(2/m) eT2tua1bu with a andb as in Proposition
C.2. Similar considerations hold fors,0, and for (d/dt) v(t,p).

We have now established the following facts:f(t) extends to a familyf(t)PL2(Hm ,dm),
tPG2, such thatf(t)(p) depends analytically ont for eachpPHm . Further, fort in any fixed
compact subset of the stripG, the p-point-wise derivative w.r.t.t is dominated by a functionF
PL2(Hm ,dm):

U d

dt
f~t!~p!U<F~p!8V~p!C8~p!1V8~p!C~p! , p5„v~p!,p… . ~60!

That F is in L2(Hm ,dm) follows from Eq.~59! and the corresponding equation forC8.
These facts imply, by the Lebesgue lemma on dominated convergence, that for arbitx

PL2(Hm ,dm), the function

t°„x,f~t!…

is analytic on the stripG, with a derivative being calculated via thep-point-wise derivative
(d/dt f(t)(p). Since weak and strong analyticity are equivalent, this implies thatt°f(t) is an
analytic Hilbert space-valued function. This concludes the proof. h

V. IMPLICATIONS OF THE BISOGNANO–WICHMANN PROPERTY

In this section we show that the Bisognano–Wichmann property, defined below, esse
fixes the localization structure, and that it implies the spin-statistics connection as mentione
Theorem 3.2.

Given a localization structureK(C̃), C̃P C̃, denote byS the canonical involution correspond
ing to K(W̃1), cf. Appendix A. SinceS is a closed antilinear involution, it has a polar decomp
sition S5..JD1/2 with J being an anti-unitary involution andD a positive operator.

Definition 5.1: A localization structure satisfies theBisognano–Wichmann propertyif D i t and

J satisfy Eqs. (15) and (16), thus representing the boosts and the reflection j˜, respectively.
It is noteworthy that this property in factfollows from Definition 2.1 of a localization struc

ture. This has been established by the author in Ref. 23 in the case of four-dimensional th
and will be published elsewhere for anyons ind53. Because of this fact we have been forced
take Eqs.~15! to ~19! as the starting point of our construction.

We shall now see that the Bisognano–Wichmann property fixes uniquely a certain exte
of the localization structure which is maximal in the sense that it satisfies twisted Haag dual
~12!.

Proposition 5.2: There is up to equivalence only one localization structure which satisfie
Bisognano–Wichmann property and twisted Haag duality.

By equivalent localization structure we mean a familyK̂(C̃), C̃P C̃, of closed real subspace
of a Hilbert spaceĤ such that there is a unitary mapV:H→Ĥ satisfyingK̂(C̃)5V K(C̃) for all
C̃P C̃.

Proof: Let K(C̃), C̃P C̃, be a localization structure as in the proposition. With the sa
argument as in the proof of Theorem 3.2, Eq.~28! must hold forK(W̃1). Hence, the chain of
equations~27! is valid, the last equation of which shows that, under the assumption of tw
Haag duality,K(C̃) is maximal in the sense that it satisfies Eq.~21!. But this implies that the
localization structure is fixed by the real subspaces associated to wedge regions, which in t
fixed, due to the Bisognano–Wichmann property and covariance, by the real subspaceK(W̃1)
associated toW̃1 and the representationU. Hence the localization structure is fixed byK(W̃1) or,
equivalently, by the corresponding involutionS. The positive part of the latter is fixed by th
representationU; cf. Eq. ~15!, hence the only remaining freedom is the anti-unitary partJ. But it
turns out thatJ, and hence the entire localization structure, is fixed up to equivalence. M
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precisely, letK̂(C̃), C̃P C̃, be another localization structure as in the proposition, withĴ the

anti-unitary part of the canonical involution corresponding toK̂(W̃1). Then, as we show in
Lemma B.3, there is a unitaryV commuting with the representationU such thatĴ5VJV21. This
implies thatK̂(C̃)5VK(C̃) for all CP C̃, as claimed. h

We finally prove a single-particle version of the spin-statistics theorem.
Proposition 5.3: Let $K(C̃)%C̃P C̃ be a localization structure for(m,s) satisfying the

Bisognano–Wichmann property. Then the spin-statistics connection holds:

Z25e2p is . ~61!

Proof: We use the one-to-one correspondence between closed real standard subspaceK and
densely defined anti-linear involutive operatorsS; cf. Appendix A. LetS8 be the canonical invo-
lution corresponding toK„r̃ (p)W̃1…. Twisted locality~8! implies that

Z„W̃1 , r̃ ~p!W̃1…S8 Z„W̃1 , r̃ ~p!W̃1…* ,S* .

Now the relative winding numberN„W̃1 , r̃ (p)W̃1… is 21, hence

Z„W̃1 , r̃ ~p!W̃1…5Z21,

and we haveS8,Z2 S* . On the other hand,

S85U„r̃ ~p!…S U„r̃ ~2p!…,

by covariance. But the group relations imply2 that S U„r̃ (2p)…5U„r̃ (p)… S* , hence Z2

5U„r̃ (2p)…[e2p is, which proves the claim. h
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APPENDIX A: BASIC NOTIONS FROM THE TOMITA–TAKESAKI THEORY OF REAL
SPACES

For a review of this theory, the reader is referred to one of the Refs. 2, 20, 24. Here we
the relevant notions.

Let H be a~complex! Hilbert space with scalar product (• ,• ). If K is a real subspace ofH,
then itssymplectic complementis the set of vectorscPH such that the imaginary part of~ f,c !
vanishes for allfPK. It is a closed real subspace and is denoted byK8. If Ka , aPI , is a family
of closed real subspaces, then the closed real span of these subspaces is denoted by∨aPIKa . Its
symplectic complement is given by (∨aPIKa)85ùaPIKa8 .

A real closed subspaceK of H is calledstandardif K1 iK is dense inH andKù iK 5$0%.
Real closed standard subspacesK of H are in one-to-one correspondence with antilinear, den
defined, closed operatorsS acting onH which are involutive~i.e., satisfyS2,1): Given S, let

K8$ fPdomS: Sf5f %. ~A1!

Then every vector in the domain ofS may be uniquely written asc5f11 if2 with f1 ,f2

PK, namelyf18 1
2(c1Sc) andf28 (1/2i ) (c2Sc). HenceK is standard. It is called the rea

space corresponding toS. Conversely, a real closed standard subspaceK defines an antilinear
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densely defined, closed involutionS, by puttingS(f11 if2)8f12 if2 for f1 ,f2PK. S is then
called thecanonical involutioncorresponding toK. If S corresponds toK andU is unitary, then
USU* corresponds toUK, and furtherS* corresponds toK8.

APPENDIX B: THE UNIVERSAL COVERING GROUP OF THE POINCARÉ GROUP

1. Covering of the Lorentz group

The universal covering groupL̃1
↑ of the proper orthochronous Lorentz groupL1

↑ in three
dimensions can be identified with the set

$~g,v!ugPC, ugu,1,vPR% , ~B1!

the group multiplication (g,v)(g8,v8)5(g9,v9) being given by~Ref. 25, p. 594!

g95~g81ge2 iv8!~11gḡ8e2 iv8!21,

v95v1v81
1

i
log$ ~11gḡ8e2 iv8!~c.c.!21 %. ~B2!

Here ~c.c.! denotes the complex conjugate of the preceding factor and log is the branch
logarithm onC\R0

2 with log 150.
The covering homomorphismL̃1

↑ →L1
↑ is conveniently described via the double coveri

SU(1,1) of L1
↑ , which is the subgroup ofSL(2,C) @conjugate toSL(2,R)] consisting of elements

of the form

S a b

b̄ ā D , aā2bb̄51. ~B3!

The covering homomorphismL̃1
↑ →SU(1,1) associates to each~g,v! the SU(1,1)-matrix,

~12ugu2!21/2 S e2 i v/2 ḡe2 i v/2

geiv/2 eiv/2 D . ~B4!

The double coveringSU(1,1)→L1
↑ is given as follows. Fora5(a0,a1,a2)PR3 we set

aI 5S a0 a12 ia2

a11 ia2 a0 D . ~B5!

Then the double coveringSU(1,1)→L1
↑ associates toAPSU(1,1) the uniquelPL1

↑ satisfying

laI5AaI A* , aPR3. ~B6!

Let us determine the lifts of the one-parameter subgroups of boosts and rotations. Den
boosts in thek-direction (k51,2) bylk(•) and the rotations in the 1–2 plane byr (•). Explicitly,
lk(t) acts on the 0- andk-coordinates as the matrix~13!, and r (v) acts on the 1- and
2-coordinates as

S cos~v! 2sin~v!

sin~v! cos~v!
D . ~B7!

We denote byl̃1(•) , l̃2(•) and r̃ (•) the unique lifts of these one-parameter groups toL̃1
↑ .

Lemma B.1: (i) The lifts of the one-parameter groups are given by
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l̃1~ t !5„tanh~ t/2!,0… , l̃2~ t !5„i tanh~ t/2!,0… and r̃~v!5~0,v!. ~B8!

(ii) Every elementl̃PL̃1
↑ has a unique decomposition,

l̃5l̃1~ t ! l̃2~ t8! r̃ ~v!, t,t8,vPR . ~B9!

Proof: ( i ) One verifies that the three one-parameter maps are continuous and have the
images under the covering projection~B4! and ~B6!.

(ii) Consider the action of the Lorentz transformationl, corresponding tol̃, on the point
~1,0,0!. Definet8 as the arcsinh of the 2-component ofl•(1,0,0), andt as the unique real numbe
such that sinh(t)cosh(t8) is the 1-component ofl•(1,0,0). One then checks that the actions ol
andl1(t)l2(t8) on the point~1,0,0! coincide. This implies that there is a uniquevPR such that
Eq. ~B9! holds. h

2. Wigner rotation

Let, for pPHm ,

g~p!8
p11 ip2

p01m
, h̃~p!8„g~p! , 0… , ~B10!

and denote byh(p) the corresponding element inL1
↑ . Then

h~p!:~m,0,0!°p . ~B11!

This implies that for arbitrarypPHm and l̃PL̃3
↑ , the element

t~ l̃,p!8h̃~p!21 l̃ h̃~l21p! ~B12!

leaves (m,0,0) invariant, hence is a rotation and may be written in the form

t~ l̃,p!5„0,V~l̃,p!…, ~B13!

whereV(•,•) is the so-called Wigner rotation. In fact, Eqs.~B12! and ~B2! imply that, for l̃
5(g,v),

V~l̃,p!5v1
1

i
log$~12g~p!ḡe2 iv!~c.c.!21%

1
1

i
logH S 11

g2g~p!e2 iv

12g~p!ḡe2 iv
ḡ~l21p!D ~c.c.!21J . ~B14!

Note thatV„(0,v) , p…5v for all v andp, and thatV satisfies the cocycle condition

V~l̃l̃8,p!5V~l̃,p!1V~l̃8,l21p!, ~B15!

for all l̃,l̃8PL̃1
↑ andpPHm .

3. Proper Poincare´ group

The proper Poincare´ groupP1 can be obtained from the proper orthochronous Poincare´ group
by adjoining the reflectionj at thex2-axis; cf. Eq.~14!, with the appropriate relations:

j 251, j ~a,1! j 5~ j •a,1! ,
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j l1~ t ! j 5l1~ t !, j r ~v! j 5r ~2v!. ~B16!

@Note that the last equations implyj l2(t) j 5l2(2t).] Correspondingly, the universal coverin
groupP̃1 of this ~disconnected! group may be defined by adjoining an elementj̃ to P̃1

↑ satisfying
the relations

j̃ 251 and j̃ „a,~g,v!) j̃ 5„ja,~ ḡ,2v!… . ~B17!

In fact, the mapj̃ ° j , l̃°l is a homomorphism and hence a covering projection. Finally,
prove an important cocycle relation of the Wigner rotation~B13! with respect toj̃ .

Lemma B.2: For alll̃PL̃1
↑ and pPHm the following relation holds:

V~ j̃ l̃ j̃ , p!52V~l̃ ,2 j •p! . ~B18!

Proof: From the definition ofh̃(p) via equation~B10! and the group relations~B17! satisfied
by j̃ we get

h̃~2 j •p!5 j̃ h̃~p! j̃ . ~B19!

This impliest(l̃,2 j •p)5 j̃ t( j̃ l̃ j̃ ,p) j̃ and hence the claim. h

Lemma B.3: (i) Let U be the irreducible representation of P˜
1
↑ for mass m.0 and spin s

PR defined in Eq. (31), and let J be the operator defined in Eq. (32). Then J is an anti-un
involution satisfying the representation property

JU~ g̃!J5U~ j̃ g̃ j̃ ! . ~B20!

(ii) Let U be a finite direct sum of copies of the irreducible representation of P˜
1
↑ for mass m

.0 and spin sPR, acting on a Hilbert spaceH. Then there is a unique, up to equivalenc
extension ofU from P̃1

↑ to P̃1 in H. Uniqueness means that if J and Jˆ are anti-unitary involutions

satisfying the representation property (B20), then there is a unitary V commuting with U( P̃1
↑ ) and

satisfying VJ5 ĴV.
Proof: ( i ) follows immediately from Lemma B.2.(ii) The existence ofJ follows from (i ) by

taking direct sums. To see uniqueness, letC8 ĴJ. It is a unitary operator commuting with th
representationU and satisfyingCJ5JC21. Using spectral calculus in the same way as in
proof of Proposition 3.1 in Ref. 26, we define a unitary rootV of C, V25C, which still commutes
with the representationU and satisfiesVJ5JV21. Then V has the properties claimed in th
lemma. h

4. Action of P̃¿ on C̃

The universal covering groupP̃1 of the proper Poincare´ group acts onC̃ in the following way.
Let C̃5(C,ẽ)P C̃ whereẽ is the equivalence class w.r.t.C of a patht°ẽ(t) in H starting ate0

and ending inC. Identifying L̃1
↑ with the set of homotopy classes of paths inL1

↑ starting at the
unit, an elementg̃5(a,l̃)P P̃1

↑ acts onC̃ as follows. Lett°l̃(t) be any path inL1
↑ which

representsl̃. Then we define

g̃•C̃8~g•C,l̃•ẽ! , ~B21!

wherel̃•ẽ is the equivalence class w.r.t.l•C of the patht°l̃(t)•ẽ(t) in H. Further, the elemen
j̃ P P̃1 acts onC̃ as
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j̃ •C̃8~ j •C, j̃ •ẽ! , ~B22!

where j̃ •ẽ is the equivalence class w.r.t.j •C of the patht° j •ẽ(t). Note that this path also start
at e0 since we have chosen the reference directione0 so as to be invariant underj .

APPENDIX C: PROOF OF ANALYTICITY OF THE COCYCLE

We establish the required analyticity properties of the cocyclec(l̃,p), cf. Eq. ~35!, starting
with the Wigner rotation factor for the 1-boosts. Let

l ~p!8p02p11m2 ip2 ~C1!

and

v~p!8 l ~p! l ~p!21. ~C2!

Note that for allpPHm , the numberv(p) lies in the cut complex planeC\R0
2 , allowing for our

definition of the powerv(p)s given before Lemma 4.1. We have the following lemma.
Lemma C.1: The Wigner rotation factor for the 1-boosts is given by

eisV(l̃1(t),p)5v~p!s v„l̃1~2t !p…2s . ~C3!

As a function of t, it has branch points in the stripR1 i (0,p) for any pPHm if s is not an integer.
Proof: Equation~C3! is verified by direct calculation. But using

„l1~ t !p…02„l1~ t !p…15et~p02p1! , ~C4!

we get

v„l1~2t ! p…5
et~p02p1!1m2 ip2

et~p02p1!1m1 ip2
. ~C5!

For any fixedpPHm , this function has zeros in the strip, which proves the claim. h

In the next proposition, we give an explicit expression for the cocyclec(l̃,p), exhibiting its
analyticity properties.

Proposition C.2: Letl̃5l̃1(t) l̃2(t8) r̃ (v), with t,t8,vPR, and letv88v2 p/2 . Further,
let pPHm be arbitrary.

(i) Denote byv08 the representative ofv812pZ in the interval(22p,0#. Then

c~ l̃,p!522s es(t1t8) eis(v82v08) S a2b1e2t~a1b!
2p21 im

p02p1
D 2s

, ~C6!

where

a8cos
v08

2
and b8e2t8 sin

v08

2
<0 . ~C7!

The power of2s is understood withinC\R0
2 .

(ii) Let s¹ 1
2N0 . The functiont °c„l̃1(t)l̃,p… is analytic in the stripR1 i (0,p) if and only if the

parameters t8 and v8 satisfy the relation

2sinht8 usinv8u< cosv8 . ~C8!

In this case, the upper and lower boundary values are related by
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c„l̃1~t!l̃,p…ut5 ip5eips e4p isn(v8) c~ l̃,2 jp ! , ~C9!

where n(v8) is the unique integer such thatv822pn(v8)P(2p,p#.

(iii) For s P 1
2N0 , the functiont°c(l̃1(t)l̃,p) is analytic in the stripR1 i (0,p) and satisfies the

boundary condition (C9) forall l̃PL̃1
↑ .

Remark:From (iii) it follows that for sP 1
2N0 the localization structure can be nontrivial

extended to bounded regions as in Proposition 4.2. The same can be shown forsP2 1
2N if one

uses, instead of our intertwining functionu5..us the functionus
2(p)ªuusu(p).

Proof: In the following, p denotes an arbitrary point on the mass shell. We will use
cocycle identity

c~ l̃l̃8,p!5c~ l̃,p! c~ l̃8,l21p! , l̃,l̃8PL̃1
↑ , ~C10!

satisfied byc as a consequence of Eq.~B15!. Thus, we first calculatec(l̃,p) if l̃ is a boost in the
1-direction or a rotation, and then use the above cocycle property for a general elementl̃.

The functionv from Lemma C.1 is related tou, defined in Eq.~37!, by

u~p!5S p02p1

m D s

v~p!s.

Hence, in view of the identity~C4!, Lemma C.1 implies that

c„l̃1~ t !,p…5est, for all tPR,pPHm . ~C11!

In order to calculate the cocycle for rotations, let us see how the functionu transforms under
rotations. Writingu as

u~p!5S p02p1

m D s

„l ~p!/ l ~p!…s ,

and using the identity

l ~p!• l ~p! 5 2~p01m!~p02p1! ,

we get

u~p!5„2m~p01m!…2s l ~p!2s .

Here we have used the fact that Rel(p).0 to identify „l (p)2
…

s with l (p)2s. A straightforward
calculation shows thatl transforms under rotations as follows: ForvPR,

l „r ~2v!p…5 l ~p!• l v~p!, ~C12!

where

l v~p!8e2 iv/2S cos
v

2
1sin

v

2

2p21 im

p02p1
D . ~C13!

Note thatl (p) and l v(p) are, as well as the l.h.s. of Eq.~C12!, in C\R0
2 for all v andp. Hence,

we may take them to the power of 2s ~within C\R0
2) separately, i.e.,„l (p) l v(p)…2s

5 l (p)2sl v(p)2s. We thus have
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u„r ~2v!p…5u~p!• l v~p!2s , ~C14!

and hence the cocycle for rotations is given by

c„r̃ ~v!,p…5eisv l v~p!2s . ~C15!

Now our results~C11! and ~C15! imply, by the cocycle relation~C10!, that for all t,vPR,

c„l̃1~ t ! r̃ ~v!,p…5est eisvl v„l1~2t !p…2s . ~C16!

Let us discuss how to takel v(p), see Eq.~C13!, to the power of 2s. As is clear from the
construction, the dependence ofl v on v is 2p-periodic. Choosing a representativev0 of v
12pZ in the interval (22p,0#, we may extract a factore2 isv0 from l v0

(p)2s. That is to say, we
have

l v~p!2s5 l v0
~p!2s5e2 isv0S cos

v0

2
1sin

v0

2

2p21 im

p02p1
D 2s

, v0P~22p,0# . ~C17!

@For v0Þ0 this is so because then the imaginary parts of the two factors on the r.h.s. of Eq.~C13!
have opposite sign, while forv050 both factors equal one.# Using this and Eq.~C4!, we arrive at
the expression

c„l̃1~ t ! r̃ ~v!,p…5est eis(v2v0)H cos
v0

2
1e2t sin

v0

2

2p21 im

p02p1
J 2s

, ~C18!

wherev0 is the representative ofv12pZ in the interval (22p,0#.
We are now prepared to prove Eq.~C6!. Let l̃PL̃1

↑ be as in the proposition. Usingl̃2(t8)
5 r̃ (p/2) l̃1(t8) r̃ (2 p/2), we rewritel̃ as

l̃5l̃1~ t ! r̃ S p

2 D l̃1~ t8! r̃ ~v8! , with v88v2
p

2
. ~C19!

Due to the cocycle relation~C10!, c(l̃,p) consists of two factors of the form calculated in E
~C18!:

c~ l̃,p!5cS l̃1~ t ! r̃ S p

2 D , pD •cXl̃1~ t8! r̃ (v8) , r S 2
p

2 Dl1~2t ! pC
522s est H 11e2t

2p21 im

p02p1
J 2s

•est8eis(v82v08) H a1b
2q21 im

q02q1
J 2s

, ~C20!

wherev08 is the representant ofv812pZ in (22p,0#, and we have writtena andb as in Eq.~C7!
of the proposition andq8r (2 p/2)l1(2t) p. Explicitly, q reads as

q5~cosht p02sinht p1 , p2 , sinht p02cosht p1!,

and we calculate

2q21 im

q02q1
5

2etp21e2tp112im

etp21e2tp122p2
52

etp21p22 im

etp22p21 im
,

wherep68p06p1 . Then the product of the two curly brackets in~C20! yields
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H 11e2t
2p21 im

p02p1
J H a1b

2q21 im

q02q1
J 5a2b1e2t~a1b!

2p21 im

p02p1
. ~C21!

Having chosenv08P(22p,0#, we observe thatb<0, and equality holds only ifv0850. Hence
a1b50 impliesa2b51. Thus the r.h.s. is inC\R0

2 . The same holds for the two factors on th
l.h.s., hence we may take them to the power of 2s ~within C\R0

2) separately. We therefore hav

c~ l̃,p!522s es(t1t8) eis(v82v08) f ~ t,p!2s , ~C22!

where

f ~ t,p!8a2b1e2t ~a1b!
2p21 im

p02p1
. ~C23!

This proves part (i ) of the Proposition.
We now discuss the analyticity properties of the functionc„l̃1(•)l̃,p…. If l̃ is parametrized

by t,t8,vPR as in the proposition, thenl̃1(t)l̃5l̃1(t1t) l̃2(t8) r̃ (v) and we may write

c„l̃1~t!l̃,p…522s es(t1t1t8) eis(v82v08) f ~t1t,p!2s , ~C24!

with f (•,p) as in Eq.~C23!. Note thatf (•,p) is an entire analytic function and satisfies

f ~ t1 ip,p!5 f ~ t,2 jp ! . ~C25!

For sP 1
2N0 ( i i i ), the claimed analyticity and boundary conditions follow. To prove (i i ), let

s¹ 1
2N0 . Then the functiont°c„l̃1(t)l̃,p… has an analytic extension into the stripC1 i (0,p) if

and only if f (•,p) has no zeros in the strip. This can be decided by looking at the definition~C23!,
taking into consideration that (2p21 im)(p02p1)21 takes all values in the upper half planeR
1 iR1 if p runs throughHm .

In the following,z1
2s will denotez to the power of 2s defined via the branch of the logarithm

on C\R0
1 satisfying log(21)5ip, if zPC\R0

1 . For zPC\R0
2 , z to the power of 2s defined via the

branch of the logarithm onC\R0
2 satisfying log(1)50 will now be denoted byz2

2s , instead ofz2s

as before. We will use the following rules:„1… If z is in the upper complex half plane, thenz2
2s

5z1
2s , while for z in the lower half plane,z2

2s5e24p isz1
2s . „2… Complex conjugation commute

with taking powers withinzPC\R0
2 : ( z̄)2

2s5z2
2s. „3… If f (t,p) is contained inC\R0

6 for all t in the
strip R1 i @0,p#, then analytic continuation int commutes with taking powers withinC\R0

6 ,
respectively. That means, in particular,f (t,p)6

2sut5 ip5 f ( ip,p)6
2s , where the l.h.s. denotes th

analytic continuation off (•,p)6
2s from the real line toip.

Case 1:ubu.uau. Then (a1b)(a2b),0, hencea1b anda2b have a different sign. Then

f (•,p) has zeros in the strip and hence the cocycle has, fors¹ 1
2Z, no analytic continuation into

the strip.
Case 2:ubu<uau, i.e., (a1b)(a2b)>0. We observe first thata50 impliesv0852p, hence

b52e2t8,0, contradicting the assumption. HenceaÞ0 in the present case.
Case 2.1:Both a1b and a2b are greater than or equal to zero. SinceaÞ0 ~as observed

above!, this implies thata.0 and consequently,b being nonpositive@cf. ~C7!# that a2b.0.
Hencef (t,p) is contained inC\R0

2 for all t in the strip, and our rules above, together with E
~C25!, imply that f (t,p)2

2sut5 ip5 f (0,2 jp)2
2s. Hence we have

c„l̃1~t!l̃,p…ut5 ip5eips e2is(v82v08) c~ l̃,2 jp ! . ~C26!

In the case at hand,a.0 and consequentlyv08P(2p,0#. Hence (v82v08)/2p is just the integer
n(v8) defined in the proposition, and the above equation coincides with Eq.~C9!.
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Case 2.2:Both a1b anda2b are less than or equal to zero. Similarly as in Case 2.1,
implies thata1b,0. Hencef (t,p) is in the lower half plane for realt, and is contained inC\R0

1

for all t in the strip. Hence our three rules above imply thatf (t,p)2
2sut5 ip5e24p isf (0,2 jp)2

2s.
We thus have

c„l̃1~t!l̃,p…ut5 ip5eips e2is(v82v0822p) c~ l̃,2 jp ! . ~C27!

In the case at hand,a,0 and consequentlyv08P(22p,2p). Hence (v82v0822p)/2p is just
the integern(v8) defined in the proposition, and the above equation again coincides with
~C9!.

We have now shown that the cocycle has an analytic continuation into the strip if and o
ubu<uau, and that the continuation satisfies Eq.~C9!. It remains to show thatubu<uau is equivalent
to the condition~C8!. Both conditions are true forv8P2pZ and false forv8Pp12pZ, hence
they coincide ifv8PpZ. If v8¹pZ, thenubu<uau is equivalent to

e2t82et8<Ucot
v08

2
U2Utan

v08

2
U52 cosv08 usinv08u

2152 cosv8 usinv8u21 ,

hence to condition~C8!. We have thus shown part(ii) of the proposition. h
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Towards Euclidean theory of infrared singular quantum
fields

A. G. Smirnova)

I. E. Tamm Theory Department, P. N. Lebedev Physical Institute,
Leninsky prospect 53, Moscow 119991, Russia

~Received 6 December 2002; accepted 30 January 2003!

A new generalized formulation of the spectral condition is proposed for quantum
fields with highly singular infrared behavior whose vacuum correlation functions
are well defined only under smearing with analytic test functions in momentum
space. The Euclidean formulation of QFT developed by Osterwalder and Schrader
is extended to theories with infrared singular indefinite metric. The corresponding
generalization of the reconstruction theorem is obtained. The fulfilment of the
generalized spectral condition is verified for quantum fields representable by infi-
nite series in the Wick powers of indefinite metric free fields. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1563734#

I. INTRODUCTION

The Euclidean methods are central to the rigorous construction of quantum field model
polynomial interaction in lower dimensions, see Ref. 1. This construction heavily relies on th
of Osterwalder-Schrader reconstruction theorem2,3 which allows to pass from Euclidean Green
functions to quantum field theory in the Minkowski spacetime. However, the results of Refs
in their initial form are inapplicable to models with a singular infrared behavior violating
positivity condition and, in particular, to gauge theories. The problem of the Euclidean formu
of QFT in the case of pseudo-Wightman axioms with an indefinite metric4,5 was considered in Ref
6 within the traditional framework of tempered Schwartz distributions. However, as show
particular, by the example of the Schwinger model in an arbitrarya-gauge,7 the exact operator
solutions of gauge models can be much more singular and, in general, are well defined only
smearing with analytic test functions in momentum space. In this work, we study the possibi
extending the Euclidean theory to the fields whose vacuum expectation values are analyti
tionals in momentum representation.

One of the main difficulties is connected with the adequate generalization of the sp
condition, which determines the analyticity properties of the Wightman functions. In inde
metric field theories, the space-time translations are implemented by pseudo-unitary~in general,
unbounded! operators in the state space and, therefore, the spectral condition can be form
only in the weak form, i.e., as a restriction on then-point Wightman functionswn . Whenwn are
tempered distributions, it is of the same form as in the ordinary Wightman theory:8

suppŴn,V̄1
n , Ŵn~p1 ,...,pn!5E Wn~j1 ,...,jn!eip1j11...1 ipnjndp1 ...dpn , ~1!

whereV̄1 is the closed upper light cone andWn(j) is the Wightman functionwn11 expressed in
terms of the difference variablesj j5xj2xj 11 :

wn11~x1 ,...,xn11!5Wn~x12x2 ,...,xn2xn11!. ~2!

a!Electronic mail: smirnov@lpi.ru
20580022-2488/2003/44(5)/2058/19/$20.00 © 2003 American Institute of Physics
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If Ŵn are analytic functionals, then the condition~1! becomes inapplicable because of the lack
test functions with compact support. The problem of the appropriate generalization of the sp
condition was raised by Moschella and Strocchi.9 In Ref. 10, it was suggested to overcome th
difficulty using the notion of carrier cone which replaces the notion of support for analytic f
tionals and whose existence for a wide class of functionals was proved in Refs. 11 and 1
generalized spectral condition which is obtained from~1! by replacing the support with a carrie
cone is sufficient for deriving the usual analyticity properties of the Wightman functions10 and is
fulfilled for the sums of infinite series in the Wick powers of indefinite metric free field13

Moreover, fields representable by such series satisfy even stronger condition stated in term
notion ofstrong carrier conewhich is introduced by Definition 2 below. The latter arises natura
when one tries to bring the definition of carrier cone into line with the operation of tensor pro
of functionals, which plays an important role in the problem under consideration. The use
generalized spectral condition in such a stronger form yields simple and effective estimates
Schwinger functions which allow developing the Euclidean formulation in complete analogy
the case of tempered fields.3 In this paper, the analysis of the Euclidean formulation of QFT
performed at the level of the Wightman functions of the theory. At the same time, we believ
the developed approach provides a basis for considering more subtle questions connect
finding the Hilbert majorant of an indefinite metric.4

As in Refs. 9–12, we use the Gelfand–Shilov spacesSb
a as the functional domain of definition

of fields in momentum space. The generalized functions belonging toSb8
a ~Ref. 14! grow at

infinity like exp(upu1/b) and their Fourier-transforms like exp(uxu1/a). Thus, the indicesa and b
control, respectively, the possible infrared and ultraviolet singularities. If 0<a,1, then the ele-
ments ofSb

a are entire analytic functions. It is important that our treatment covers the caa
50 which corresponds to an arbitrary singular infrared behavior.

In Sec. II, we introduce the definition of strong carrier cone and prove that the intersect
strong carrier cones of a functional is again its strong carrier cone. Analogous result for c
cones ensuring, in particular, the existence of the smallest carrier cone was established in R
In Sec. III, we prove that the definition of strong carrier cone is compatible with the operati
tensor product of functionals. In Sec. IV, the theory of Laplace transformation is extend
functionals with convex strong carrier cones. In particular, we prove a Paley–Wiener–Sch
type theorem characterizing those analytic functions that are Laplace transforms of such fu
als. In Sec. V, this theorem is applied to derive estimates for the Schwinger functions. In the
section the main result of the paper is presented, namely, the generalized Euclidean recons
theorem which covers field theories with arbitrarily singular infrared behavior. In Sec. VI
check that the generalized spectral condition is satisfied for normally ordered entire functio
indefinite metric free fields. Section VII is devoted to concluding remarks. Some details of p
are given in Appendixes A and B.

II. STRONG CARRIER CONES

The spaceSb
a(Rk) is by definition15 the union~inductive limit! with respect toA, B.0 of the

Banach spaces composed of smooth functions onRk with the finite norm

iu f uiA,B5 sup
pPRk,l,m

upm]l f ~p!u
AuluBumuuluauluumubumu , ~3!

wherel andm run over all multi-indices and the standard multi-index notation is used. The sp
Sb

a are nontrivial ifa1b.1 or if a.0 anda1b51. From now on, we assume that one of the
conditions is satisfied. If 0<a,1, thenSb

a consists of~the restrictions toRk of! entire analytic
functions and an alternative description of these spaces in terms of complex variables is pos15

Namely, an analytic functionf on Ck belongs to the classSb
a if and only if

u f ~w!u<C exp~2up/Bu1/b1uAqu1/~12a!!, w5p1 iqPCk,
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for someA, B.0 depending onf. For definiteness, we assume the normu•u on Rk to be uniform,
i.e., upu5sup1< j <kupj u. The main element of the approach developed in Refs. 11 and 12 i
employment, in addition to the spacesSb

a , of analogous spaces associated with cones.
Definition 1:Let U be a nonempty cone inRk. The Banach spaceSb,B

a,A(U), 0<a,1, consists
of entire analytic functions onCk with the finite norm

i f iU,A,B5 sup
wPCk

u f ~w!uexp~ up/Bu1/b2uAqu1/~12a!2dU~Ap!1/~12a!!, ~4!

where dU(p)5 infp8PUup2p8u. The spaceSb
a(U) is defined to be the inductive limi

lim
→

A,B.0Sb,B
a,A(U).

A nonempty closed coneK is called a carrier cone of the functionaluPSb8
a(Rk) if u extends

continuously to every spaceSb
a(U), whereU is a cone with an open projection16 such thatK,U.

As shown in Refs. 11 and 12, the spaceSb
a(Rk) is dense in each spaceSb

a(U). The space of the
functionals carried by the coneK is therefore identified withsb8

a(K), where sb
a(K)

5 lim
→

USb
a(U).

It should be mentioned that in Refs. 11 and 12, the spacesSb
a(U) are defined for open cone

U and a closed coneK is said to be a carrier cone ofu if this functional has a continuous extensio
to everySb

a(U), whereK\$0%,U. This definition is equivalent to the one given here. It is easy
see that all results of Refs. 11 and 12 concerning the spacesSb

a(U) remain true for any nonempty
coneU. In what follows, we find it convenient to use the spacesSb

a(U) associated with arbitrary
nonempty cones because this allows handling the degenerate cone$0% on the same footing as
nondegenerate closed carrier cones. We also note that in Refs. 11 and 12, the spacesb

a(K) was
denoted bySb

a(K). Here, such notation might lead to confusion because the spacesSb
a(K) and

Sb
a(U) are no longer distinguished by the type of the cone.

The following result established in Ref. 11 shows that every functional of the classSb8
a(Rk)

has a uniquely defined minimal carrier cone.
Theorem 1: If both K1 and K2 are carrier cones of uPSb8

a(Rn), then so is K1ùK2 .
The coneV̄1

n , which enters into the formulation~1! of the spectral condition, has a natur
direct product structure and the following definition turns out to be useful for generalizing
spectral condition.

Definition 2: Let K1 ,...,Kn be nonempty closed cones inRk1,...,Rkn respectively. The cone
K13¯3Kn is called a strong carrier cone of the functionaluPSb8

a(Rk11...1kn) if u allows a
continuous extension to the spacesb

a(K1 ,...,Kn)5 lim
→

U1 ,...,Un
Sb

a(U13¯3Un), where the induc-

tive limit is taken over all conesU1 ,...,Un with open projections such thatK j,U j for all j
51,...,n.

The meaning of the spacessb8
a(K1 ,...,Kn) is clarified by Lemma 5 below. Ifn51, then we

recover the definition of carrier cone. As shown in Ref. 12, the natural embeddingsSb,B
a,A(U)

→Sb,B8
a,A8(U) are compact for A8.A, B8.B sufficiently large. Therefore,Sb

a(U) and
sb

a(K1 ,...,Kn) are DFS spaces~we recall that DFS spaces are, by definition, the inductive limits
injective compact sequences of locally convex spaces!. In particular, they~and their duals! are
reflexive, complete, and Montel spaces.17

Clearly, sb8
a(K1 ,...,Kn),sb8

a(K13¯3Kn), but the following example shows that the co
dition uPsb8

a(K1 ,...,Kn) is, in general, stronger than the conditionuPsb8
a(K13¯3Kn).

Example 1:Let u(p) be the function equal to unity on the set$pPR2up2>2up1u2/3% and zero
outside this set. As a generalized function,u obviously belongs tosb8

a(R3R̄1) for all 0<a,1
and b.12a. Let us show thatu¹s1/282/3(R,R̄1)5S1/282/3(R3R1). Use the test functionf (w)
5exp(2w1

22w2
3) belonging toS1/2

2/3(R3R1) and defineg(w) by the same formula asf but with the
twice less exponent. By the above-mentioned density property, there exists a sequegn

PS1/2
2/3(R2) converging tog in S1/2

2/3(R3R1). Set f n(w)5gn(w)gn(w̄) ~bar means complex conju
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gation!. Obviously, f n(p)>0 and f n→ f in S1/2
2/3(R3R1). Since the integral*u(p) f (p)dp is

divergent, we conclude by the monotonic convergence theorem that*u(p) f n(p)dp→` as n
→`.

The following analogue of Theorem 1 is valid.
Theorem 2: Let K1

(1,2) ,...,Kn
(1,2) be nonempty closed cones inRk1,...,Rkn respectively. If both

K1
(1)3¯3Kn

(1) and K1
(2)3¯3Kn

(2) are strong carrier cones of uPSb8
a(Rk11...1kn), then so is

(K1
(1)ùK1

(2))3¯3(Kn
(1)ùKn

(2)).
Before we pass to the proof, let us set up the notation and recall some facts concerning

in Rk. Let C(Rk) denote the set of all cones inRk containing the origin and letO(Rk) be the subset
of C(Rk) consisting of cones with open projections~or, which is the same, of those cones who
intersection withRk\$0% is open!. We note that the conesU j in Definition 2 belong toO(Rkj).
Obviously, for any~open! subsetO of the unit sphere there is a unique coneUPC(Rk) @respec-
tively, UPO(Rk)] such thatO is the projection ofU. Using this one-to-one correspondence, o
can apply standard compactness arguments to cones inC(Rk) to obtain:

~i! if UPC(Rk), VPO(Rk), andUbV,18 then there existsWPO(Rk) such thatUbWbV;
~ii ! if U1 ,U2PC(Rk) andŪ1ùŪ25$0%, then there existV1 , V2PO(Rk) such thatU1,2bV1,2

and V̄1ùV̄25$0%;
~iii ! if VPC(Rk), UPO(Rk), andVbU, thenV̄ùDU5$0%, whereDU5(Rk\U)ø$0% corre-

sponds to the complement of the projection ofU in the unit sphere.

Proof of Theorem 2:Let u1,2 be the extensions ofu to the spacessb
a(K1

(1,2) ,...,Kn
(1,2)) which

exist by the hypothesis and letf Psb
a(K1

(1) ,...,Kn
(1))ùsb

a(K1
(2) ,...,Kn

(2)). By Definition 2, there are
cones U1

(1,2)PO(Rk1),...,Un
(1,2)PO(Rkn) such that K1

(1,2)3¯3Kn
(1,2),V(1,2)5U1

(1,2)3¯

3Un
(1,2) and f PSb

a(V(1))ùSb
a(V(2))5Sb

a(V(1)øV(2)). The existence of continuous dense embe
dings Sb

a(Rk11...1kn)→Sb
a(V(1)øV(2))→sb

a(K1
(1,2) ,...,Kn

(1,2)) implies thatu1 and u2 coincide on
Sb

a(V(1)øV(2)) and, consequently,

u1~ f !5u2~ f ! for every f Psb
a~K1

~1! ,...,Kn
~1!!ùsb

a~K1
~2! ,...,Kn

~2!!. ~5!

Let us consider the mapping

j : sb
a~K1

~1! ,...,Kn
~1!!3sb

a~K1
~2! ,...,Kn

~2!!→sb
a~K1

~1!ùK1
~2! ,...,Kn

~1!ùKn
~2!!

taking (f 1 , f 2) to f 12 f 2 . If j is subjective, thensb
a(K1

(1)ùK1
(2) ,...,Kn

(1)ùKn
(2)) is topologically

isomorphic to the quotient space@sb
a(K1

(1) ,...,Kn
(1))3sb

a(K1
(2) ,...,Kn

(2))#/kerj by the open map-
ping theorem~see Ref. 19, Theorem IV.8.3!, which is applicable because all spaces under con
eration are DFS. From~5!, it follows that kerj is contained in the kernel of the functiona
( f 1 , f 2)→u1( f 1)1u2( f 2). As a consequence, the latter allows a canonical decomposition o
form ũ+ j , whereũ belongs tosb8

a(K1
(1)ùK1

(2) ,...,Kn
(1)ùKn

(2)) and, as one can easily see, is t
extension ofu. Thus, it remains to prove the subjectivity ofj. It is ensured by the following
decomposition theorem for test functions.

Theorem 3: If f Psb
a(K1

(1)ùK1
(2) ,...,Kn

(1)ùKn
(2)) then f5 f (1)1 f (2) with f (1,2)

Psb
a(K1

(1,2) ,...,Kn
(1,2)).

To prove Theorem 3, we need three lemmas.
Lemma 1: Let UPC(Rk1), VPC(Rk2), and let U1 , U2PC(Rk1) be such that Ū1ùŪ25$0%.

Then for every fPSb
a(U3V) one can find f1,2PSb

a((UøU1,2)3V) such that f5 f 11 f 2 . If U

PO(Rk1), then the condition Ū1ùŪ25$0% can be replaced by U1̄ùŪ2,U.
Proof will be given for 0,a,1, when the spaceS12a

a is nontrivial. The more difficult case
a50 is considered in Appendix A. By~II !, there exist conesQ1 ,Q2PO(Rk1) such thatU1,2bQ1,2
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and Q̄1ùQ̄25$0%, and in view of ~I! one can find conesV1 , V2PO(Rk1) such that

U1,2bV1,2bQ1,2. Set W15Q1 and W25DQ1 . By ~III ! we haveW̄1ùV̄25V̄1ùW̄25$0%. Let
g0PS12a,B0

a,A0 (Rk1) and*Rk1g0(p8)dp851. We set

g1,2~w!5E
W2,1

g0~w82h!dh, w5~w8,w9!PCk13Ck2. ~6!

Obviously, g1 , g2 are entire analytic functions onCk13Ck
2 and g11g251. If hPW1,2, then

up82hu>dW1,2
(p8) and in view of~4! we have

ug1,2~w!u<C expF ~A0uq8u!1/~12a!2dW2,1S p8

2B0
D 1/~12a!G . ~7!

Set f 1,25 f g1,2 and fix A, B.0 such thatf PSb,B
a,A(U3V). If p8¹V1 , thendU1

(p8)>uup8u for
some 0,u,1 and in view of the inequalityup8u>dU(p8) we havedU(p8)<dU1øU(p8/u).
Hence, taking~4!, ~7! and the relationdU3V(p)5max@dU(p8),dV(p9)# into account, we find that

u f 1~w!u<Ci f iA,B exp@~2~A01A!uqu!1/~12a!1d~U1øU !3V~Ap/u!1/~12a!2~ upu/B!1/b# ~8!

for p8¹V1 . Further, there isu1.0 such thatdW2
(p8)>u1up8u for p8PV1 . Therefore, forA

<u1/2B0 , using~4! and ~7!, we obtain

u f 1~w!u<Ci f iA,B exp@~2~A01A!uqu!1/~12a!1dV~Ap9!1/~12a!2~ upu/B!1/b# ~9!

for p8PV1 . Comparing~8! and ~9!, we conclude thatf 1PSb,B
a,A8((UøU1)3V) for A8>2(A0

1A)1A/u. Analogous arguments show thatf 2PSb
a((UøU2)3V) for B0 sufficiently large.

If UPO(Rk1), thenK1ùK25$0% for the nonempty closed conesK1,25Ū1,2ùDU, and ac-
cording to the above we have a decompositionf 5 f 11 f 2 , where f 1,2PSb

a((UøK1,2)3V). To
complete the proof, it remains to note thatK1,2øU.U1,2øU.

Lemma 2: Let U1PO(Rk1), U2PO(Rk2), UPC(Rk), and V1,2PC(Rk1,2) be such that
V1,2bU1,2. Then for every fPSb

a(U13U23U), there is a decomposition f5 f 11 f 2 , where f1
PSb

a(V13Rk23U) and f2PSb
a(Rk13V23U).

Proof: By ~I!, one can findW1,2PO(Rk1,2) such thatV1,2bW1,2bU1,2. Set Q15V̄13DW2

and Q25DW13V̄2 . According to ~III ! we haveQ̄1ùQ̄25$0% and by Lemma 1,f 5 f 11 f 2 ,
where f 1,2PSb

a(@(U13U2)øQ1,2#3U). It remains to note that (U13U2)øQ1.V13Rk2 and
(U13U2)øQ2.Rk13V2 .

Lemma 3: Let V1 , U1 ,...,Vn , Un be cones inRk1,...,Rkn such that VjPC(Rkj), U j

PO(Rkj), and VjbU j for all j 51,...,n. If f PSb
a(U13¯3Un), then f5 f 11¯1 f n with f j

PSb
a(Rk13¯3Rkj 213Vj3Rkj 113¯3Rkn).
Proof: We shall prove the following stronger statement. Let the conesV1 , U1 ,...,Vn , Un

satisfy the conditions of the lemma and letUPC(Rk). Then for everyf PSb
a(U13¯3Un3U)

there exists a decompositionf 5 f 11¯1 f n , where f jPSb
a(Rk13¯3Rkj 213Vj3Rkj 113¯

3Rkn3U). The statement of the lemma corresponds to the particular caseRk5U5$0%. For n
52, the proof is reduced to applying Lemma 2. Forn.2, we proceed by induction onn. Sup-
posing the statement to hold up ton21, we choose the conesW1,2PO(Rk1,2) such that
V1,2bW1,2bU1,2. By Lemma 2,f 5 f̃ 11 f̃ 2 , where f̃ 1PSb

a(W13Rk23U33¯3Un3U) and f̃ 2

PSb
a(Rk13W23U33¯3Un3U), and in view of the natural isomorphismsW13Rk23U3

3¯3Un3U>W13U33¯3Un3(Rk23U) and Rk13W23U33¯3Un3U>W23U33¯

3Un3(Rk13U) we obtain the desired decompositions off̃ 1 and f̃ 2 . The lemma is proved.
We now prove Theorem 3. By Lemma 3, we have a decompositionf 5 f 11¯1 f n , where

f jPsb
a(Rk1,...,Rkj 21,K j

(1)ùK j
(2) ,Rkj 11,...,Rkn), j 51,...,n. Let the cones U j

(1) , U j
(2) , U j
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PO(Rkj) be such that f jPSb
a(Rk1,...,Rkj 21,U j ,Rkj 11,...,Rkn), K j

(1,2)bU j
(1,2) and

Ū j
(1)ùŪ j

(2),U j . By Lemma 1 there is a decompositionf j5 f j
(1)1 f j

(2) , where f j
(1,2)PSb

a(Rk1

3...3Rkj 213U j
(1,2)3Rkj 113...3Rkn). Settingf (1,2)5 f 1

(1,2)1...1 f n
(1,2) , we arrive at the desired

result.

III. TENSOR PRODUCTS

We refer the reader to Ref. 19 for the definition and properties of the inductive topo
~i-topology!, projective topology~p-topology!, and the topology of equicontinuous convergen
~e-topology! on tensor products of locally convex spaces. Recall thatp- ande-topologies coincide
on the tensor products of nuclear spaces, whilei- andp-topologies coincide on the tensor produc
of Fréchet spaces.

Lemma 4: Let L(1) and L(2) beDFS-spaces. Then L(1)
^ iL

(2)5L (1)
^ pL (2). If L (1) is nuclear,

then (L (1)
^̂ iL

(2))85L (1)8 ^̂ iL
(2)8, where the hat means completion and the prime denotes

strong dual space.
The proof is given in Appendix B. In Ref. 20, it was shown that ifL (1), L (2), andL are the

strong duals of reflexive Fre´chet spaces, then every separately continuous bilinear map ofL (1)

3L (2) into L is continuous. From Lemma 4, it follows that ifL (1) andL (2) are DFS spaces, the
an analogous statement holds for any locally convex spaceL.

Let L (1),...,L (n) be locally convex spaces. We denote byL (1)
^̂ i¯ ^̂ iL

(n) the completion of
L (1)

^¯^ L (n) relative toi-topology. If Ln is a barrelled space, then there is the canonical id
tification

L ~1!
^̂ i¯ ^̂ iL

~n!5~L ~1!
^̂ i¯ ^̂ iL

~n21!! ^̂ iL
~n! ~10!

~to construct this isomorphism, one can use Theorems III.5.2 and III.5.4 of Ref. 19!.
Lemma 5: Let K1 ,...,Kn be nonempty closed cones inRk1,...,Rkn, respectively, and let0

<a,1. Then we have the isomorphisms

sgb
a ~K1 ,...,Kn!5sb

a~K1 ,...,Kn21! ^̂ isb
a~Kn!,

sb8
a~K1 ,...,Kn!5sb8

a~K1! ^̂ i¯ ^̂ isb8
a~Kn!.

Proof: As we have already mentioned above, the spaces introduced by Definition 2 are
Moreover, they are nuclear as countable inductive limits of the spacesSb

a(U), whose nuclearity
was established in Ref. 12. Sincesb

a(K1 ,...,Kn) is Hausdorff and complete, the first isomorphis
follows immediately from Definition 2 and the existence of the natural identificationSb

a(U1

3U2)5Sb
a(U1) ^̂ iSb

a(U2) for any nonempty conesU1 , U2 , see Ref. 12, Theorem 3. The seco
isomorphism is obtained by induction from the first one using~10! and Lemma 4.

Lemma 6: Let G1 and G2 be subspaces of locally convex spaces L1 and L2 respectively. Then
the topology of equicontinuous convergence on G1^ G2 coincides with that induced from L1

^ eL2 .
Proof: Let j 1,2 be the natural injections ofG1,2 into L1,2 and let j 5 j 1^ j 2 . We denote by

E1,2 ( Ẽ1,2) the families of equicontinuous subsets ofL1,28 ~respectively, ofG1,28 ). The polar sets of
(S1^ S2)o, S1,2PE1,2 form the basis of neighborhoods of the origin fore-topology onL1^ L2 .
Since j 1,28 (E1,2)5 Ẽ1,2 according to Ref. 19, Theorem IV.4.1, the sets@ j 18(S1) ^ j 28(S2)#o, S1,2

PE1,2, form the basis of neighborhoods of the origin fore-topology onG1^ G2 . It remains to
note that in view of Proposition IV.2.3a of Ref. 19 and the equalityj 85 j 18^ j 28 these sets coincide
with j 21@(S1^ S2)o#.
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IV. LAPLACE TRANSFORMATION

Definition 3: Let b.1, let V1 ,...,Vn be nonempty open connected cones inRk1,...,Rkn,
respectively, and letV5V13¯3Vn . The spaceAa

b(V1 ,...,Vn) with 0,a,1 ~with a50)
consists of analytic functions inTV5Rk13¯3Rkn1 iV that have, for anye.0 ~respectively, for
any R, e.0), the finite norms

ivie,V
18 ,...,V

n8
5 sup

zPTV8

uv~z!u)
j 51

n

exp~2euzj u1/a2euyj u21/~b21!!

S respectively, ivie,R,V
18 ,...,V

n8
5 sup

zPTV8,uzj u<R

uv~z!u)
j 51

n

exp~2euyj u21/~b21!!D , yj5Im zj ,

whereV18 ,...,Vn8 are arbitrary cones compact inV1 ,...,Vn andV85V183¯3Vn8 .
If a nondegenerate bilinear form̂•, •& is fixed onRk, then the Fourier transform of a tes

function f (x)PSa
b(Rk) is defined byf̂ (p)5* f (x)ei ^p,x& dx. The mappingf→ f̂ is a topological

isomorphism ofSa
b(Rk) onto Sb

a(Rk). If b.1, V is an open connected cone inRk, andK5V*
5$p:^p,y&>0;yPV%, then, as one can easily see,ei ^•,z&Psb

a(K) for any zPTV. The Laplace
transformLVu of a functionaluPsb8

a(K) is defined by (LVu)(z)5u(ei ^•,z&), zPTV. As shown in
Ref. 12, the Laplace operatorLV is a topological isomorphism ofsb8

a(K) ontoAa
b(V) and hence

Aa
b(V) is a reflexive Fre´chet space.

For Rk5Rk13¯3Rkn, we assume that̂p,x&5( j 50
n ^pj ,xj& j , where^•,•& j is a nondegen-

erate bilinear form onRkj .
Lemma 7: Letb.1, 0<a,1, and vPAa

b(V1 ,...,Vn), where V1 ,...,Vn are nonempty open
connected cones inRk1,...,Rkn, respectively. Thenv(z1 ,...,zn21 ,•)PAa

b(Vn) for any z1
PTV1,...,zn21PTVn21 and vu(z1 ,...,zn21)5u(v(z1 ,...,zn21 ,•)) belongs toAa

b(V1 ,...,Vn21)
for all uPAa8

b(Vn). The mapping u→vu from Aa8
b(Vn) into Aa

b(V1 ,...,Vn21) is continuous.
Proof: We define the spaceAa

b(V1 ,...,Vn) in the same way asAa
b(V1 ,...,Vn) with the only

difference that the elements ofAa
b need not be analytic functions.Aa

b(V1 ,...,Vn) is a closed
subspace ofAa

b(V1 ,...,Vn). Let 0,a,1, let e.0, and letV18 ,...,Vn8 be closed subcones o
V1 ,...,Vn . SetBe,V

n8
5$uPAa8

b(Vn):uu(w)u<iwie,V
n8
;wPAa

b(Vn)%. Using Definition 3, we ob-

tain

uu~v~z1 ,...,zn21• !!u<iv~z1 ,...,zn21 ,• !ie,V
n8
<ivie,V

18 ,...,V
n8)j 51

n21

exp~euzj u1/a1euyj u21/~b21!!

for every uPBe,V
n8

and everyzjPTVj8, 1< j <n21. Consequently,ivuie,V
18 ,...,V

n-18 <ivie,V
18 ,...,V

n8

for uPBe,V
n8
. Thus,vu belongs to the spaceAa

b(V1 ,...,Vn21) for anyuPAa8
b(Vn) and the image

of Be,V
n8

under the mappingu→vu is bounded in this space. The scalar multiples ofBe,V
n8

form a

fundamental system of bounded subsets in the spaceAa8
b(Vn), which is bornologic as the stron

dual of a Fre´chet space, see Ref. 19, Sec. IV.6.6. Consequently, the mappingu→vu from Aa8
b(Vn)

to Aa
b(V1 ,...,Vn21) is continuous. Letdz , zPTVn, be the functional inAa8

b(Vn) which is equal to
w(z) on the test functionwPAa

b(Vn). SinceAa
b(Vn) is a reflexive space, the linear spanL of such

functionals is dense inAa8
b(Vn). It is clear thatvuPAa

b(V1 ,...,Vn21) for anyuPL and, sinceAa
b

is closed inAa
b , we havevuPAa

b(V1 ,...,Vn21) for any uPL̄5Aa8
b(Vn). The changes in the

proof for the casea50 are obvious. The lemma is proved.
Let V1 ,...,Vn be nonempty open connected cones inRk1,...,Rkn, respectively, and letK j

5Vj* , j 51,...,n. The product Aa
b(V1) ^ i ...^ iAa

b(Vn) is continuously embedded int
Aa

b(V1 ,...,Vn) by of the ordinary identification
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~v1^¯^ vn!~z1 ,...,zn!5v1~z1!¯vn~zn!, vjPAa
b~Vj !.

We define the operatorLV1 ,...,Vn
: sb8

a(K1 ,...,Kn)→Aa
b(V1 ,...,Vn) as the continuous extension o

LV1
^ i¯^ iLVn

to sb8
a(K1 ,...,Kn). By Lemma 5 and in view of the completeness ofAa

b , such an

extension exists and is uniquely defined. For anyuPsb8
a(K1 ,...,Kn), we have

~LV1 ,...,Vnu!~z!5u~ei ^•,z&!, zPTV, ~11!

whereV5V13¯3Vn . Thus,LV1 ,...,Vn
is the restriction of the Laplace operatorLV13...3Vn

to

sb8
a(K1 ,...,Kn). To prove formula~11!, it suffices to note that it holds foruPsb8

a(K1) ^¯

^ sb8
a(Kn) and next to make use of Lemma 5 and the continuity of both sides of the equalityu.
Theorem 4: Let b.1, 0<a,1, let V1 ,...,Vn be nonempty open connected cones

Rk1,...,Rkn, respectively, and let Kj5Vj* , j 51,...,n. The Laplace transformationLV1 ,...,Vn
is a

topological isomorphism of sb8
a(K1 ,...,Kn) onto Aa

b(V1 ,...,Vn). If uPsb8
a(K1 ,...,Kn), then

(LV1 ,...,Vn
u)(•1 iy) tends to the Fourier transform of u in the strong topology of Sa8

b(Rk13¯

3Rkn) as y→0 inside any cone V183¯3Vn8 , where Vj8bVj , j 51,...,n.
Proof: In Ref. 12 the statement was established forn51 and it is sufficient to prove the

theorem supposing it holds for the spaces overn21 cones. The mappingLV1 ,...,Vn
is injective as

the restriction of the injective operatorLV13¯3Vn
. Let vPAa

b(V1 ,...,Vn). We define the bilinear

form bv on Aa8
b(V1 ,...,Vn21)3Aa8

b(Vn) by bv(u1 ,u2)5u1(vu2
). By Lemma 7, the formbv is

separately continuous. LetT1 :sb
a(K1 ,...,Kn21)→Aa8

b(V1 ,...,Vn21) (T2 :sb
a(Kn)→Aa8

b(Vn)) be
the dual21 mapping ofLV1 ,...,Vn21

21 ~respectively, ofLVn

21). By Lemma 5, the separately continuou

bilinear form Bv( f 1 , f 2)5bv(T1f 1 ,T2f 2) on sb
a(K1 ,...,Kn21)3sb

a(Kn) uniquely determines a
functional uPsb8

a(K1 ,...,Kn) such that u( f 1^ f 2)5Bv( f 1 , f 2). If z5(z1 ,...,zn), z̃
5(z1 ,...,zn21), andzjPTVj , j 51,...,n, then

u~e^•,z&!5Bv~e^•,z̃&8,e^•,zn&n!5bv~d z̃ ,dzn
!5v~z!,

where^p,z̃&85( j 51
n21^pj ,zj& j , pPRk13¯3Rkn21. Thus,v is the Laplace transform ofu, i.e., the

operatorLV1 ,...,Vn
is bijective. The open mapping theorem shows thatLV1 ,...,Vn

is a topological

isomorphism. IfuPsb8
a(K1 ,...,Kn) and f PSa

b(Rk11...1kn), then

E ~LV1 ,...,Vn
u!~x1 iy ! f ~x!dx5u~e2^•,y& f̂ !, yPV13¯3Vn . ~12!

Indeed, the formula holds forn51, see Ref. 12, andLV1 ,...,Vn
u coincides withLV13...3Vn

u. The

direct check shows thate2^•,y& f̂→ f̂ in the topology ofsb
a(K1 ,...,Kn) as y→0 inside V183¯

3Vn8 . Therefore, to prove the last statement of the theorem, it suffices to apply~12! and to take
into account that in the Montel spaceSa8

b , weak convergence and strong convergence are equ
lent.

V. EUCLIDEAN RECONSTRUCTION THEOREM

From now on, the Lorentz productp0x02p1x12¯2pd21xd21 of p, xPRd will be denoted
by px.

All requirements of the Wightman formalism except for the spectral condition are formu
in the usual way for the fields of the classSa8

b , 0<a,1, b.1 ~under the conditionb.1, the
local commutativity is formulated as usual!. As we have already noted in Introduction, the spec
condition in standard form~1! is inapplicable in this case because of the lack of test function
compact support inp-space. To obtain an appropriate generalization of the spectral condition
can use the notion of strong carrier cone introduced in Sec. II. As a result, we come
following set of axioms for the Wightman functions:
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W1 ~Growth and singularity! wnPSa8
b(Rdn)0<a,1, b.1;

W2 ~Relativistic invariance! wn(Lx11a,...,Lxn1a)5wn(x1 ,...,xn) for any proper Lorentz
transformationL and vectoraPRd;

W3 ~Generalized spectral condition! V̄1
n is a strong carrier cone ofŴn , i.e., Ŵn

Psb8
a(V̄1 ,...,V̄1);
W4 ~Locality! wn(x1 ,...,xj ,xj 11 ,xn)2wn(x1 ,...,xj 11 ,xj ,...,xn)50 if xj2xj 11 is space-

like.
We do not impose the positivity condition onwn , which corresponds to the case of a

indefinite metric in the state space. Besides, we do not require the fulfillment of the c
property which is not equivalent to the uniqueness of the vacuum in indefinite metric theorie
Ref. 4.

It should be noted that in the indefinite metric case, theory is not determined uniquely
Wightman functions and to obtain its complete operator realization, it is necessary to spec
addition to the sequencewn , the Hilbert majorant of the indefinite metric which determines
convergence in the state space.4 For simplicity, we restrict our consideration to Wightman fun
tions and do not touch here more subtle questions concerning the construction of the H
majorant.

Using Theorem 4 and condition W3, we conclude22 that Wn(j) is the boundary value of the
function Wn(z)5(2p)2dnLV2 ,...,V2

Ŵn holomorphic in the past tubeRdn1 iV2
n . Correspond-

ingly, wn is the boundary value of the functionwn(z1 ,...,zn)5Wn21(z12z2 ,...,zn212zn) holo-
morphic in the domain$z:zj2zj 11PRd1 iV2%. Standard analysis23 based on the relativistic in
variance and locality shows thatwn can be continued analytically to the extended domainOn

ext

which is invariant under the complex Lorentz transformations and the permutations of argum
For x5(x1 ,...,xn)PRdn, we set ix5(ix1 ,...,ixn), where ixj5( ix j

0,xj
1,...,xj

d21). Then ix
POn

ext if and only if xPRÞ
dn5$xPRdn:xiÞxj ,1< i , j <n%, see Refs. 2 and 5. The Schwing

functions sn are defined by the relationsn(x)5wn(ix), xPRÞ
dn . In the same way as in the

ordinary theory,2,5 we establish thatsn are rotationally invariant and symmetric with respect to t
permutations of arguments. LetSn(j) be the Schwinger functionsn11 expressed in terms of th
difference variablesj j5xj2xj 11 , and letR2

dn5$xPRdn:xj
0,0,j 51,...,n%. If jPR2

dn , thenij lies
in the past tube and by Theorem 4, the functionSn(j)5Wn(ij) satisfies, for 0,a,1 ~for a
50), the bound

uSn~j!u<Ce exp@euju1/a1e~min1< j <nuj j
0u!21/~b21!#, jPR2

dn ,
~13!

~respectively, uSn~j!u<Ce,R exp@e~min1< j <nuj j
0u!21/~b21!#, jPR2

dn , uju<R!

for anye.0 ~respectively, for anye, R.0). As shown in Ref. 5~see the proof of Theorem 9.30!,
for any xPRÞ

dn there exist a rotationT and a permutationp of the set@1..n# such that

min1< j <n21@~Txp~ j 11!!
02~Txp~ j !!

0#>c minj Þkuxj2xku, ~14!

wherec is a positive constant depending only onn. In view of the invariance of the Schwinge
functions under rotations and permutations of arguments,~13! and ~14! imply the inequality

usn~x!u<Ce exp@euxu1/a1e~minj Þkuxj2xku!21/~b21!#, xPRÞ
dn ,

~15!

~respectively,usn~x!u<Ce,R exp@e~minj Þkuxj2xku!21/~b21!#, xPRÞ
dn , uxu<R!,

for any e.0 ~respectively, for anye, R.0). The obtained estimates allow interpretingsn as
generalized functions defined under smearing with suitable test functions. The relevant tes
tion spaces are introduced by the following definition:
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Definition 4: Let a>0, b.1 and letO be an open set inRk. We denote bySa
b(O) the

subspace ofSa
b(Rk) consisting of those functions that are identically zero on the complementCO

of O together with all their derivatives.
Sa

b(O) is a closed subspace ofSa
b(Rk). Therefore, by Theorem 78 of Ref. 17, we have

Sa
b(O)5 lim

——→
A,B.0Sa,A

b,B(O), whereSa,A
b,B(O) is the Banach space consisting of the functionf

PSa
b(O) such thatiu f uiB,A,` @see formula~3!#.
Lemma 8: Let O be an open set inRk. If a.0 ~if a50), then for any A, B.0 there is A8

.0 such that for all xPO and fPSa,A
b,B(O) the inequality

u f ~x!u<Ciu f uiB,A exp@2A8uxu1/a2A8~dCO~x!!21/~b21!#

~respectively,u f ~x!u<Ciu f uiB,A exp@2A8~dCO~x!!21/~b21!# and f ~x!50 for uxu<A!,

is valid, wheredCO(x) is the distance from x toCO.
Proof: Let f PSa,A

b,B(O), xPO and x0 be a point inCO such thatux2x0u5dCO(x). By
Taylor’s formula, for everymPN50,1,... we havef (x)5S ulu5m]l f (x01th)hl/l!, where 0,t
,1, h5x2x0 , and the standard multi-index notation is used. From~3! it follows that u]l f (x)u
<iu f uiB,ABuluulubulu. Since uhlu<uhu ulu, we get u f (x)u<iu f uiB,A(Buhu)mmbmS ulu5m1/l!
5iu f uiB,A(Buhuk)mmbm/m! and using the inequalitym!>(m/e)m, we find that u f (x)u
<iu f uiB,AinfmPN(Buhuke)mm(b21)m. As shown in Ref. 15, Sec. IV.2, infmj2mmam

<exp(2a/ej1/a1ae/2) for anyj, a.0. Replacinga andj with b21 and 1/Buhuke, respectively,
we obtain

u f ~x!u<C1iu f uiB,A expS 2
~b21!

e
~BkedCO~x!!21/~b21!D . ~16!

On the other hand, by~3! we haveu f (x)u<iu f uiB,A infmPN(A/uxu)mmam. For a50, this implies
that f (x)50 for uxu.A. If a.0, then an analogous estimation of the infimum shows t
u f (x)u<C2iu f uiB,A exp(2a/e(uxu/A)1/a). Multiplying the last estimate and inequality~16! and tak-
ing the square root of the left- and right-hand sides, we arrive at the statement of the lemm

Since dCR
Þ
dn(x)<minjÞkuxj2xku for xPRÞ

dn , Lemma 8 and the estimate~15! imply that sn

PSa8
b(RÞ

dn). Analogously, from~13! it follows that SnPSa8
b(R2

dn).
For vPAa

b(V2 ,...,V2), we setl v( f )5(2p)2dn*R
2
dnv(ix) f (x)dx, f PSa

b(R2
dn). By Lemma

8, the mappingv→ l v from Aa
b(V2 ,...,V2) into Sa8

b(R2
dn) is continuous. Consequently, for eve

fixed f PSa
b(R2

dn) the functionalu→ l LV2 .....V2u
( f ) is continuous onsb8

a(V̄1 ,...,V̄1) and because

of the reflexivity of the latter space there is an elementf̌ Psb
a(V̄1 ,...,V̄1) such that

~2p!2dnE
R2

dn
~LV2 ,...,V2

u!~ij! f ~j!dj5u~ f̌ !, uPsb8
a~V̄1 ,...,V̄1!. ~17!

Taking u5dp @the value ofdp on a test functiong is equal tog(p)], we find that

f̌ ~p!5~2p!2dnE
R2

dn
f ~j!expF (

j 51

n

~pj
0j j

02 ip j
1j j

12¯2 ip j
d21j j

d21!Gdj. ~18!

The mappingf→ f̌ from Sa
b(R2

dn) to sb
a(V̄1 ,...,V̄1) has the continuous injective mappingu

→ l LV2 .....V2u
as its dual. As a consequence, it is a continuous mapping with dense image.

Lemma 9: The mapping f→ f̌ defined by (18) is a continuous dense embedding ofSa
b(R2

dn)
into Sb

a(R1
dn), whereR1

dn52R2
dn .

To prove the lemma, we need the following auxiliary statement.
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Lemma 10: Let V1 and V2 be nonempty open convex cones inRk1 andRk2, respectively. Then

Sa
b(V13V2)5Sa

b(V1) ^̂ iSa
b(V2).

Proof: Applying Lemma 4 to the nuclear DFS-spacesSa
b(V1,2), we obtain Sa

b(V1)
^ iSa

b(V2)5Sa
b(V1) ^ eSa

b(V2) and by Lemma 6, it suffices to show that the tensor prod
Sa

b(V1) ^ Sa
b(V2) is dense inSa

b(V13V2). In other words, we have to demonstrate that if
functional uPSa8

b(Rk11k2) vanishes onSa
b(V1) ^ Sa

b(V2), then it also vanishes onSa
b(V1

3V2). To this end, we takec1,2PSa
b(2V1,2) such that*Rk1,2c1,2 dx51 and setC«(x1 ,x2)

5«2k12k2c1(x1 /«)c2(x2 /«). If xPV̄13V̄2 , then C«(x2•)PSa
b(V1) ^ Sa

b(V2) and, conse-
quently, (u* C«)(x)50. Hence, for f PSa

b(V13V2), we have u( f )
5 lim«→0 * V̄13V̄2

(u* C«(x) f (x) dx50. The lemma is proved.

Proof of Lemma 9:If f̌ 50, then settingu5dip in ~17!, we see that the Fourier transform o
f vanishes and hencef 50. Thus, the mappingf→ f̌ is injective. For f PSa

b(R2), we set f̃ (p)
5(2p)21*R2

f (j)ejp dj. In the same way as above~see the paragraph preceding the formulat

of Lemma 9!, we establish thatf̃ Psb
a(R1)5Sb

a(R1) and that the mappingP taking f to f̃ is a
continuous dense embedding ofSa

b(R2) into Sb
a(R1). By Lemma 10, we haveSa

b(R2
d )

5Sa
b(R2) ^̂ iSa

b(Rd21) and Theorem 3 of Ref. 12 ensures thatSb
a(R1

d )5Sb
a(R1) ^̂ iSb

a(Rd21).
Let L15P^̂ iF, whereF is the ~inverse! Fourier transformation onRd21:

~Ff !~p1,...,pd21!5~2p!2~d21!E
Rd21

f ~j!e2 i j1p12...2 i jd21pd21
dj.

Obviously, L1 is a continuous operator fromSa
b(R2

d ) to Sb
a(R1

d ) with a dense image. Beside
(L1f )(p)5 f̌ (p) for all f PSa

b(R2
d ). Indeed, this equality holds forf PSa

b(R2) ^ Sa
b(Rd21), and

since both sides of the equality are continuous inf, it is valid everywhere onSa
b(R2

d ). Thus, the
lemma is proved forn51. For n.1, we make use of the representationsSa

b(R2
dn)5Sa

b(R2
d )

^̂ i¯ ^̂ iSa
b(R2

d ) and Sb
a(R1

dn)5Sb
a(R1

d ) ^̂ i¯ ^̂ iSb
a(R1

d ) which follow by induction from~10!,
Lemma 10 and Theorem 3 of Ref. 12. SettingLn5L1^̂ i¯ ^̂ iL1 and arguing as above, we mak
sure thatLn is a continuous operator fromSa

b(R2
dn) to Sb

a(R1
dn) with dense image and such th

(Lnf )(p)5 f̌ (p). The lemma is proved.
Substitutingu5Ŵn in ~17! yields

E
R2

dn
Sn~x! f ~x!dx5Ŵn~ f̌ !, f PSa

b~R2
dn!. ~19!

By condition ~W3!, there is a continuous seminormP on Sb
a(R1

dn) such thatuŴn( f )u<P( f ) for
every test function inSb

a(R1
dn). By Lemma 9 and equality~19!, it hence follows thatuSn( f )u

<P( f̌ ), f PSa
b(R2

dn).
Summarizing the above discussion, we obtain the following set of conditions on

Schwinger functions:
S1 ~Growth and singularity! snPSa8

b(RÞ
dn);

S2 ~Euclidean invariance! sn(Tx11a,...,Txn1a)5sn(x1 ,...,xn) for any rotationT and any
aPRd;

S3 ~Laplace transform condition! There is a continuous seminormP on Sb
a(R1

dn) such that for
every f PSa

b(R2
dn) the inequalityuSn( f )u<P( f̌ ) holds, wheref̌ is the function defined by formula

~18!;
S4 ~Symmetry! sn(xp(1) ,...,xp(n))5sn(x1 ,...,xn) for all permutationsp of the indices.
We now can formulate the main result.
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Theorem 5: For a given sequence of Wightman functions wn satisfying W1–W4, the corre-
sponding sequence of the Schwinger functions sn satisfies S1–S4. Conversely, generalized fun
tions satisfying S1–S4 are the Schwinger functions corresponding to a uniquely determine
quence of Wightman functions satisfying W1–W4.

Proof: The construction of the Schwinger functions corresponding to given Wightman f
tions and the derivation of the properties S1–S4 are given above and we only need to pro
converse statement. Let the sequencesn satisfy S1–S4 and letL denote the image ofR2

dn under the
mappingf→ f̌ . By S3, the linear functionalf̌→Sn( f ) defined onL is continuous in the topology
of Sb

a(R1
dn) and in view of Lemma 9 there is a uniquely determined generalized functionŴn

PSb8
a(R1

dn) such thatŴn( f̌ )5Sn( f ), f PSa
b(R2

dn). The invariance ofŴn under spatial rotations
follows immediately from S2. To prove the invariance ofŴn under pure Lorentz transformation
it suffices to show thatX0l Ŵn50, where l 51, 2, 3, X0l5(k50

n (pk
0]/]pk

l 1pk
l ]/]pk

0) are the
infinitesimal generators of boosts. LetY0l5(k50

n (jk
0]/]jk82jk

l ]/]jk
0) be the infinitesimal genera

tors of Euclidean rotations. It is easy to see thatY0l f is taken toX0l f̌ by the mappingf→ f̌ and
henceX0l Ŵn vanishes onL:

~X0l Ŵn!~ f̌ !52Wn~X0l f̌ !52Sn~Y0l f !5~Y0lSn!~ f !50, f PSa
b~R2

dn!.

Using Lemma 9 and the continuity ofŴn , we conclude thatX0l Ŵn50. By the proven Lorentz
invariance,Ŵn belongs not only toSb8

a(R1
dn), but also to every spaceSb8

a((LR1
d )n), whereL is

a proper Lorentz transformation, and, moreover, to every spacesb8
a(LR̄1

d ,...,LR̄1
d ). Applying

Theorem 2 and using the equalityùLLR̄1
d 5V̄1 , we conclude thatV̄1

n is a strong carrier cone o
Ŵn . We now define the Wightman functionswn by formula ~2! and the second relation in~1!.
Obviously,wn satisfy conditions W1, W2, and W3. Substitutingu5Ŵn in ~17! shows thatsn are
indeed the Schwinger functions corresponding town . The symmetry ofsn implies the symmetry
of the Wightman functionswn in their ordinary analyticity domain, whence property W4 is deriv
by the standard arguments.23 The theorem is proved.

VI. WICK POWER SERIES

In this section, we show that the generalized spectral condition formulated in the prec
section is satisfied for the simplest examples of quantum fields with highly singular inf
behavior, namely, for the fields representable by infinite series in the Wick powers of an inde
metric free fieldf, i.e., by series of the form

(
k50

`

dk :fk:~x!. ~20!

We assume thatf is a tempered operator-valued distribution acting in a Hilbert–Krein state s
H ~see Ref. 4 for the role of this condition!. This means thatH is endowed, in addition to an
indefinite metric^•, •&, by an auxiliary positive scalar product~•, •! connected witĥ•, •& by the
relation ^F,C&5(F,uC), whereF, CPH and u is a bounded self-adjoint operator such th
u251. The scalar product~•, •! determines a distributionwmaj, which is called the majorant of the
two-point vacuum averagew(x2x8)5^C0 ,f(x)f(x8)C0&, by the relation

~f~ f !C0 ,f~g!C0!5E wmaj~x,x8! f̄ ~x!g~x8!dx dx8,

whereC0 is the vacuum andf, g are test functions in the Schwartz spaceS(Rd). The the Krein
structure implies24 thatwmaj(x,x8) is the boundary value of a functionwmaj(z,z8) holomorphic in
the tubular domain$(z,z8)PC2d: y5Im zPV2 , y85Im z8PV1%. As in Ref. 25, we find it conve-
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nient to characterize the infrared and ultraviolet behavior of the majorant by a pair of mon
nonnegative functionswIR and wUV increasing as their arguments tend to infinity and to ze
respectively, and satisfying the estimate

uwmaj~z,z8!u<C~11wIR~ uzu1uz8u!1wUV~ uyu1uy8u!!, ~y,y8!PV3V8, ~21!

for any compact subconesV and V8 of V2 andV1 ~with constantC depending onV and V8).
Formula~21! also allows to estimate the analytic two-point Wightman functionw(z) because

uw~x2x822iy !u2<uwmaj~x2 iy ,x1 iy !uuwmaj~x82 iy ,x81 iy !u ~22!

for all yPV1 . Indeed, asu251, we have

u^f~ f !C0 ,f~g!C0&u<if~ f !C0iif~g!C0i .

Taking f (j)5(n/Ap)de2n2(j2x2 iy)2
andg(j)5(n/Ap)de2n2(j2x82 iy)2

and writing the left- and
right-hand sides in this inequality as integrals over a plane in the analyticity domain and pa
to the limit asn→`, we immediately obtain~22!. ChoosingV852V in ~21! and substituting~21!
in ~22! yield

uw~z!u<C~11wIR~2uzu!1wUV~ uhu!!, h5Im zPV, ~23!

for any compact subconeV of V2 with C depending onV.
The following criterion allows finding the adequate test function space on which the s

~20! is convergent.
Theorem 6: Let f be a free field acting in a Hilbert–Krein spaceH, and let the positive

majorant of its two-point Wightman function satisfy the inequality (21) with monotonic wIR and
wUV . Let the coefficients dk satisfy the condition

udkdl u<Ahk1 l udk1 l u ~24!

with some A, h.0. Then the series (20) is well defined as an operator-valued generalized fun
on every space Sa

b such thata.0, b.1, and the relations

(
k

Lkk! ud2kuwIR~r !k<CL,ee
er 1/a

, (
k

Lkk! ud2kuwUV~ t !k<CL,ee
e l 21/~b21!

~25!

hold for an arbitrarily large L.0 and an arbitrarily smalle.0.
This theorem follows immediately from Theorem 3 of Ref. 25 because~25! implies the

inequality

inf
t.0

est(
k

Lkk! ud2kuwUV~ t !k<CL,e exp@b~e/~b21!!~b21!/bs1/b#.

It is straightforward to verify that in the casea.1, the sum of the series~20! satisfies the usua
Wightman axioms~except positivity!. For 0,a,1, we have the following theorem strengthenin
the results of Ref. 13.

Theorem 7: Under the conditions of Theorem 6, the Wightman functions of the fieldw(x)
5(k50

` dk :fk:(x) satisfy the requirementsW1–W4 including the generalized spectral conditio.
Proof: The only nontrivial point is to check the fulfilment of the generalized spectral co

tion. The expression for then-point vacuum expectation value of the fieldw given by the Wick
theorem is a power series inn(n21)/2 variablesw(xj2xm) and can be written as

^C0 ,w~x1!¯w~xn!C0&5(
K

DKwK,
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whereK is an integer-valued vector with nonnegative componentskjm , 1< j ,m<n, andwK(x)
is the boundary value of the functionwK(z)5P j ,mw(zj2zm)kjm analytic in the tubular domain
$zPCdn:zj2zmPRd1 iV2,1< j ,m<n%. The usual combinatorial analysis related to the W
theorem shows that

DK5
k!

K! )
1< j <n

dk j
,

wherek j5k1 j1¯1kj 21,j1kj , j 111¯1kjn is the total number of pairings in the given term
the series that involve the argumentxj , and we follow the usual convention

K! 5 )
j ,m

kjm! , k! 5 )
1< j <n

k j ! .

Correspondingly, then-point Wightman function expressed in terms of the difference variable
given by

Wn21~j!5(
K

DKWK~j!, ~26!

whereWK(j) is the boundary value of the functionWK(z)5P j ,mw(z j1¯1zm21)kjm analytic
in the domainRd(n21)1 iV2

n21. To prove the theorem, it is sufficient to establish that the se
(KDKWK converges unconditionally inAa

b(V2 ,...,V2). Indeed, in this case, Theorem 4 show
that Ŵn21 , which is the inverse Laplace transform of the sum of this series, belong
sb8

a(V1 ,...,V1), i.e., the generalized spectral condition is satisfied. SinceAa
b is complete, it

suffices to verify that

(
K

uDKuiWKie,V1 ,...,Vn21,` ~27!

for any e.0 and any conesV1 ,...,Vn21 compact inV2 . Let V be the closed convex hull of th
union V1ø¯øVn21 . The coneV is the second dual cone ofV1ø¯øVn21 and, therefore, is a
compact subcone ofV2 ~because ifVbU andU is an open cone, thenU* , int V* ). Obviously,
h j1¯1hm21PV for anyh5(h1 ,...,hn21)PV13¯3Vn21 and for any 1< j ,m<n. Further,
there is al.0 such that

uh j1¯1hm21u>l~ uh j u1¯1uhm21u! ~28!

for all hPV̄2 and j ,m. Indeed, for fixedj andm, ~28! is fulfilled if we take

l5l jm5 inf
~h j ,...,hm21!PV̄2

m2 j ,uh j u1...1uhm21u51

uh j1¯1hm21u.

By the convexity ofV̄2 , we haveh j1¯1hm2150 if and only if h j5¯5hm2150. This
implies that l jm.0 because the infimum is taken over a compact set. So we can sl
5minj,mljm . By ~23!, ~28!, and the monotonicity ofwIR and wUV , for zPRd(n21)1 iV13¯

3Vn21 we have

uWK~z!u<~n11! uKuCuKuS 11wIR~2nuzu! uKu1 (
i 51

n21

wUV~luh i u! uKu D , ~29!

where uKu5( j ,mkjm . The condition~24! and the inequalitiesuKu!/K!<(n(2n21))uKu and k!
<uku!<4uKu(uKu!) 2 following from the well-known properties of polynomial coefficients yield
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uDKu<A8h8uKuuKu! ud2uKuu, ~30!

where the constanth8 depends onn. If wIR and wUV are not both identically zero~which is
assumed!, then~25! implies that for anyL.0, there is aC̃L such that

k! ud2ku<C̃LL2k, k50,1,... . ~31!

Using ~25!, ~29!, ~30!, ~31!, and Definition 3, we obtain

uDKuiWKie,V1 ,...,Vn21
<CL,e8 ~~n11!Ch8/L ! uKu.

This proves~27! because the number of multi-indicesK with fixed uKu depends polynomially on
uKu andL is arbitrarily large. The theorem is proved.

VII. CONCLUSION

We see that the proposed formulation of the spectral condition offers a means for a reas
generalization of a considerable part of the Wightman-type formalism to quantum fields
highly singular infrared behavior. In particular, gauge-dependent quark fields, which were cl
in Ref. 26 to be ill-defined mathematical objects, can be treated in this enlarged axiomatic f
work. This situation is somewhat analagous to that in nonlocal QFT, where the correspo
generalization of local commutativity ensures the preservation of the PCT-symmetry27 and the
spin-statistics relation,28 i.e., those basic physical results that are commonly believed to be
sequences of locality.

In this paper, we have made no attempt to derive an appropriate extension to infrared s
fields of the Osterwalder–Schrader linear growth estimates which also ensure the reconstru
Wightman functions from Schwinger functions and which proved to be effective in constru
QFT. At first glance, there are no obstacles for obtaining such a generalization provide
positivity condition is kept. However, this condition is violated for all relevant examples
infrared singular quantum fields. For this reason, we confined our consideration to the ind
metric case.

We conclude by a remark on how a notion analogous to that of a strong carrier cone
analytic functional can be introduced in the framework of Fourier hyperfunctions~i.e., functionals
defined onS1

1) which is universal for local QFT.29,30 The construction given below is parallel t
that of Sec. II.

Definition 18: Let U be an open set inRk. The Banach spaceS1,B
1,A(U) consists of functions

analytic in the 1/A-neighborhoodU1/A of U in Ck and having the finite norm

i f iU,A,B5 sup
wPU1/A

u f ~w!uexp~ up/Bu!.

The spaceS1
1(U) is defined to be the inductive limit lim

→
A,B.0 S1,B

1,A(U).

Let Rk be the radial compactification ofRk. For U,Rk, we denote byŨ the setUùRk. A
compact setK,Rk is said to be a carrier of a functionaluPS18

1(Rk) if u has a continuous
extension to the spaces1

1(K)5 lim
→

U S1
1(Ũ), whereU runs over all open neighborhoods ofK in Rk.

The following definition is an analogue of Definition 2.
Definition 28: Let K1 ,...,Kn be compact sets inRk1,...,Rkn, respectively. The functionalu

PS18
1(Rk11...1kn) is said to be carried by the family of setsK1 ,...,Kn if u has a continuous

extension to the spaces1
1(K1 ,...,Kn)5 lim

→
U1 ,...,Un

S1
1(Ũ13¯3Ũn), where the inductive limit is

taken over all open neighborhoodsU1 ,...,Un of the setsK1 ,...,Kn , respectively.
                                                                                                                



ce

n

et

an be

m
pe of

arch
d

s

se

l

2073J. Math. Phys., Vol. 44, No. 5, May 2003 Towards Euclidean theory of infrared quantum fields

                    
For K,Rk, we denote byK̂ the closure ofK in Rk. Let K1 ,...Kn be closed sets in
Rk1,...,Rkn, respectively, and letK5K13¯3Kn . The following example shows that the spa
s18

1(K̂) is, in general, different froms18
1(K̂1 ,...,K̂n).

Example 18: Let k15k251, K15R̄1 , K25$0%, and K5R̄13$0%. Clearly,
s18

1(K̂1 ,K̂2),s18
1(K̂). In this case, we can assume thatŨ1,2 in Definition 28 are just the

«-neighborhoods ofR1 and $0%, respectively. If«,1/2, then the sequencegn(p)5p2
ne2p1 con-

verges to zero in every spaceS1,B
1,A(Ũ13Ũ2) with A.2 and B.1 and therefore is bounded i

s18(K̂1 ,K̂2). If the sequencegn were bounded in the DFS-spaces1
1(K̂), then it would be bounded

in some spaceS1,B
1,A(Ũ), whereU is an open neighborhood ofK̂. However, any suchU contains the

ray r l5$(p1 ,p2):p1>0,p25lp1% with some l.0 and, therefore, we haveigni Ũ,A,B

>suppPr l
ugn(p)u5lnnne2n. Thus, the sequencegn is unbounded ins1

1(K̂) and there is anu

Ps18
1(K̂) such that the number sequenceuu(gn)u is unbounded~because any weakly bounded s

in a locally convex space is bounded!. Obviously,u does not belong tos18
1(K̂1 ,K̂2) and so the

latter is different froms18
1(K̂).

This distinction may be essential for hyperfunction QFT, where the spectral condition c
formulated in two alternative ways. One can require either thatŴnPs18

1(V̂1
n ) as in Refs. 29 and

30 or thatŴnPs18
1(V̂1 ,...,V̂1). It would be worthwhile to examine the second condition fro

the viewpoint of the Euclidean formulation of hyperfunction QFT, but this is beyond the sco
the present paper.
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APPENDIX A: PROOF OF LEMMA 1 FOR aÄ0

Lemma 11: Let Q1 , Q2 be nonempty cones inRk and let h1 , h2 be C`-functions onCk such
that f5h11h2 is analytic inCk. If the normsih1iQ1 ,A,B , ih2iQ2 ,A,B , and i]h1 /]w̄j iQ1øQ2 ,A,B

[given by (4) witha50] are finite for some A, B.0, then one can find f1,2PSb
0(Q1,2) such that

f 5 f 11 f 2 .
Let us derive Lemma 1 from Lemma 11. LetxPC0

`(Rk1) satisfy *Rk1x(p8)dp851. We set
g0(w8)5x(Rew8) and defineg1,2 by ~6!. The functionsg1,2(w) as well as their derivatives
]g1,2/]w̄j , j 51,...,k11k2 , satisfy the estimate~7! with a50 for any A0 , B0.0. Therefore,
settingQ1,25(UøU1,2)3V and repeating the proof for nonzeroa, we conclude that the norm
i f g2iQ1 ,A,B , i f g1iQ2 ,A,B , i f ]g2 /]w̄j iQ1 ,A,B , and i f ]g1 /]w̄j iQ2 ,A,B are finite for A, B suffi-
ciently large. Moreover, since g11g251 and ]g1 /]w̄j52]g2 /]w̄j , we have
i f ]g2 /]w̄j iQ1øQ2 ,A,B,`. Thus, h1,25 f g2,1 satisfy the conditions of Lemma 11 becau
]h1 /]w̄j5 f ]g2 /]w̄j in view of the analyticity off. Lemma 1 is proved.

Proof of Lemma 11:Let h be a measurable function onCk andU be a nonempty cone inRk.
For a, b.0 sufficiently large, from Definition~4! it follows that

CihiU,A,B>ihiU,a,b8 5F E
Ck

uh~w!u2exp~2rU,a,b~w!!dl~w!G1/2

, ~A1!

whererU,a,b(p1 iq)52( j 51
k upj /bu1/b1ainfp8PU( j 51

k upj2pj8u1a( j 51
k uqj u, dl is the Lebesgue

measure onCk, andC is a constant independent ofh. If h is analytic, then using Cauchy’s integra
formula, one can prove11 the converse statement, i.e., ifihiU,a,b8 ,` for somea, b.0, thenh
PSb

0(U).
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Suppose there is a locally integrable functionc on Ck which has the finite norm
iciQ1øQ2 ,a1 ,b1

8 for somea1 , b1.0 and satisfies, as a generalized function, the inhomogen

Cauchy-Riemann equations

]c

]w̄j
5h j , j 51,...,k, ~A2!

whereh j5]h1 /]w̄j . Then f 15h12c and f 25h21c satisfy, as generalized functions, the h
mogeneous equations] f 1,2/]w̄j50 and, consequently, are ordinary analytic functions. Moreo
in view of ~A1! we have i f 1,2iQ1,2,a,b8 ,` for a>a1 , b.b1 sufficiently large, i.e., f 1.2

PSb
0(Q1.2). The following lemma allows to apply the Ho¨rmander’sL2-estimates31 to prove of the

existence of a functionc with the specified properties.
Lemma 12: For any a, b.0 and any nonempty cone U,Rk there are a plurisubharmonic

functionr on Ck, positive numbers a8, b8, and a constant H such thatrU,a,b2H<r<rU,a8,b8 .
Supposing Lemma 12 is proved, we finish the derivation of Lemma 11. LetU5Q1øQ2 . By

~A1! and the condition of Lemma 11, there area, b.0 such thatih j iU,a,b8 ,`. According to
Theorem 4.4.2 of Ref. 31 there exists a solutionc of equations~A2! such that

2E
Ck

ucu2e2r~11iwi2!22dl~w!<(
j 51

k E
Ck

uh j u2e2rdl~w!, ~A3!

where iwi5(uw1u21...1uwku2)1/2. By Lemma 12, the integrals in the right-hand side a
bounded byeH(ih j iU,a,b8 )2 and, therefore, are convergent. Estimatinge2r in the left-hand side of
~A3! from below by the functione2rU,a8,b8, we conclude thatic̃iU,a8,b8

8 ,`, where c̃5(1

1iwi2)21c. To complete the proof, it remains to note thaticiU,a1 ,b1
8 <Cic̃iU,a8,b8

8 for a1

.a8, b1.b8.
Proof of Lemma 12 is essentially contained in the derivation of Theorem 5 of Ref. 12

assume 0,a,1/2ek; to pass to the general case, it suffices to make a rescaling of the argum
Let s5eka. By Lemma 4 of Ref. 12, there are a sequencewN(w)PSb

0(R) and constantsA, B
.0 independent ofN such that

uwN~w!u<A exp~ uqu2up/bu1/b!, w5p1 iqPC, ~A4!

lnuwN~ iq !u>suqu, ~A5!

lnuwN~w!u<uqu2N ln1~supu/N!1B, ~A6!

where ln1 r5max(0,lnr). Let a8>2 and let

r̃~w!5 sup
kPRk,N

$FN~w2k!1MN~k!%, MN~k!5 inf
wPCk

$2FN~w2k!1pU,a8,b~w!%, ~A7!

where FN(w)52( j 51
k lnuwN(wj)u. Obviously, we haver̃<rU,a8,b . Since functionsFN are

plurisubharmonic,r(w)5 limw8→w r̃(w) is also a plurisubharmonic function, see Ref. 32, S
II.10.3. In view of the continuity ofrU,a8,b we haver̃<r<rU,a8,b and it remains to show tha
r̃>rU,a,b2H. From ~A4! and the inequalityupj2k j u1/b>upj u1/b2uk j u1/b, it follows that

2FN~w2k!/22(
j

upj /bu1/b1(
j

uqj u>2k ln A2(
j

ukj /bu1/b,

and henceMN(k)>2k ln A2(jukj /bu1/b1LN(k), where

LN~k!5 inf
wPCk

H 2FN~w2k!/21 inf
p8PU

(
j

upj2pj8u1(
j

uqj uJ .
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Therefore, estimating the supermum in~A7! from below by the value of the function atk5p
5Rew and taking~A5! and the inequality 2s.a into account, we find that

p̃~w!>a(
j

uqj u2(
j

upj /bu1/b1sup
N

LN~p!2k ln A.

Thus, it suffices to show that supN LN(p)>a infp8PU( j upj2pj8u2C. Passing to the Euclidea
norm ipi, using the elementary inequalities( j ln1upju>ln1(ipi/Ak) andipi<( j upj u, and estimat-
ing FN by ~A6!, we conclude that

LN~p!>2kB1 inf
lPRk

$N ln1~sili /NAk!1dU~p1l!%,

wheredU(p)5 infp8PUip2p8i . EstimatingdU(p1l) from below by max(dU(p)2ili,0) and cal-
culating the infimum with respect tol yield LN(p)>N ln1(sdU(p)/NAk)2kB. Let dU(p)
>eAk/s and let N0 be the integer part ofsdU(p)/eAk. In view of the inequality( j upj u
<Akipi we find that

sup
N

LN~p!>LN0
>

sdU~p!

eAk
212kB>a inf

p8PU

(
j

upj2pj8u2C.

SinceLN(p)>2k ln A by ~A4!, this inequality holds for allpPRk with a new constantC. The
lemma is proved.

APPENDIX B: PROOF OF LEMMA 4

By Lemma 2 of Ref. 17, the spacesL (1,2) are representable as inductive limits of sequence
Banach spacesLk

(1,2) with injective connecting mappingsukm
(1,2) :Lk

(1,2)→Lm
(1,2) , 1<k<m, which

take unit balls inLk
(1,2) to compact subsets ofLm

(1,2) . Let Mk5Lk
(1)

^ iLk
(2)5Lk

(1)
^ pLk

(2) and M
5 lim

→
k Mk . We denote byuk

(1,2) anduk the canonical embeddings ofLk
(1,2) into L (1,2) and ofMk

into M, respectively. One can identify the spaceM with L (1)
^ iL

(2) using the canonical separate
continuous bilinear mapping fromL (1)3L (2) into M which is uniquely determined by the relation

uk
~1!~x1! ^ uk

~2!~x2!5uk~x1^ x2!, x1,2PLk
~1,2! . ~B1!

To prove the lemma, it suffices to show that this mapping is continuous. LetV be an absolutely
convex neighborhood of the origin inM. Set Vk5uk

21(V). We shall construct sequences
absolutely convex neighborhoodsVk

(1,2) of the origin inLk
(1,2) such that

~i! ukm
(1,2)(Vk

(1,2)),Vm
(1,2) for m.k;

~ii ! Vk
(1)

^ Vk
(2),Vk , k51,2,... ;

~iii ! the setukm
(1,2)(Vk

(1,2)) is compact inLm
(1,2) for m.k.

The setsV(1,2)5øk51
` uk

(1,2)(Vk
(1,2)) are neighborhoods of the origin inL (1,2) because they are

absolutely convex@in view of ~i!# and @uk
(1,2)#21(V(1,2)) containVk

(1,2) . Moreover, by~B1! and
property ~ii !, we haveV(1)

^ V(2),V, i.e., the mapping (x,y)→x^ y from L (1)3L (2) to M is
continuous.

We construct the sequencesVk
(1,2) by induction. LetṼk denote the inverse image ofVk under

the canonical bilinear mapping fromLk
(1)3Lk

(2) to Mk . Let V1
(1,2) be closed balls inL1

(1,2) such that
V1

(1)3V1
(2),Ṽ1 . SupposeV1

(1,2) ,...,Vk
(1,2) satisfying ~i!–~iii ! are constructed. The compactu

uk,k11
(1) (Vk

(1))3uk,k11
(2) (Vk

(2)) is contained in the open neighborhood of the originṼk11 . Hence,
there are closed ballsB(1,2) in Lk11

(1,2) such that @uk,k11
(1) (Vk

(1))1B(1)#3@uk,k11
(2) (Vk

(2))
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1B(2)#,Ṽk11. SetVk11
(1,2)5uk,k11

(1,2) (Vk
(1,2))1B(1,2). Conditions~i! and ~ii ! are obviously satisfied. If

m.k11, thenuk11,m
(1,2) (Vk11

(1,2)) is the sum of the compact setsuk,m
(1,2)(Vk

(1,2)) anduk11,m
(1,2) (B(1,2)) and,

therefore, is also compact.
To prove the second statement of the lemma it suffices to note thati- and p-topologies

coincide on the tensor product of the Fre´chet spacesL (1)8 and L (2)8 and that (L (1)
^̂ pL (2))8

5L (1)8 ^̂ pL (2)8 for arbitrary DF-spacesL (1,2) one of which is nuclear~see Ref. 19, Chap. IV
Problem 32!. The lemma is proved.
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We construct a new framework for the study of multiplane gravitational lensing
from the view point of symplectic geometry. Symplectic relations are used to com-
pose the systems and weaker Lagrangian equivalence is applied for classifying the
caustics of multiplane gravitational lensing. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563042#

I. INTRODUCTION

Recently there appeared several articles considering gravitational lensing systems as a
tions of the theory of singularities for smooth mappings. The gravitational lensing is the defle
of light from a distant source~e.g., quasar! by an intervening matter distribution~e.g., a galaxy or
a cluster of galaxies!. The first gravitational lensed quasar was detected only in 1979. By
gravitational lensing is quite an active field in astrophysics.1–3

On the other hand, singularity theory of Lagrangian varieties4,5 is the best natural setting fo
discussing optical systems. In fact, Petters and his collaborators6,1 pointed out that a single gravi
tational lensing can be described in the framework of symplectic geometry. Especially the ca
in a single gravitational lensing system coincide with caustics in the theory of Lagrangian s
larities. Moreover, they also investigate multiplane gravitational lensing as an application o
gularity theory.7,1 The standard treatment of gravitational lensing uses a notion of equivalenc
yields either folds or cusps as the locally stable caustics for ak-plane lensing map~e.g., in Ref. 1!.
On the other hand, Levine and Petters8 speculated that under a weaker notion of equivalence, s
caustics other than folds and cusps would appear stable for lens systems exposed to
restricted family of perturbations. However, in their framework for multiplane gravitation len
generic caustics are the same as those for the single gravitational lensing. Current observe
systems fit with the standard notion of equivalence used in the lensing literature~where only folds
or cusps appear!. However, as instruments discover more and more lens systems, it ma
possible to find a system that is exposed to more limited family of perturbations and for w
caustics like handkerchief, etc., appear stable possibly for a ‘‘short’’ time period. Note th
cosmic time scales~i.e., of the order billions of years! events that last months or a few years a
quite short, though such time periods are long enough on human time scales for us to ca
observations.

In this paper we propose the symplectic framework for multiplane gravitational lensing b
on the notion of symplectic relation, which is a natural generalization of the notion of symp
transformation~cf. Ref. 9!. The original motivation for the paper was an attempt to desc
expected nonstandard caustics in gravitational lensing using the weaker versions of Lagr
equivalence acting on composite symplectic relations. These composites correspond to im

a!Electronic mail: izumiya@math.sci.hokudai.ac.jp
20770022-2488/2003/44(5)/2077/17/$20.00 © 2003 American Institute of Physics
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systems of gravitational rays by the subsequent gravitational lens, and their generic form
scribed in the paper, reflect the complexity of composition.

In Sec. II we introduce the gravitational lensing problem and in Sec. III the proble
formulated in the language of Lagrangian stability and versality adapted to the product symp
space of incoming and outgoing rays. The precise meaning of the composition of systems an
actions on the subsequent wave fronts represented by generating functions was introduced
IV. In Sec. V the local stability of double lensing systems was investigated and it is continu
Sec. VI by classification of the normal forms of generating pairs with respect to the natural g
of equivalences.

All manifolds and maps considered here are of classC` unless stated otherwise.

II. GRAVITATIONAL LENSING

In this section we give a quick review of the basic concepts from the theory of gravitat
lensing discussed already in Refs. 8, 7, 6, 10, 1, and 3.

(1) Single lensing~cf., Refs. 6, 1, and 3!. Consider the typical single lens plane gravitation
lensing as follows: We assume that the deflector is thin and apply the small angle approxim
~cf., Ref. 6!. The extra time with respect to the unperturbed ray is givingthe time-delay map;
Ts:R2.U→R defined by

Ts~r !5~11zL!FdOLdOS

2dLS
I s

dOS
2

r

dOL
I 2

2C~r !G .
Here,zL is the redshift of the lens plane,dOL ,dOS,dLS are angular diameter distances,r is the
position on the lens plane where the ray hits,s is the position of the source, andC~r ! is the
two-dimensional potential of the deflector on the lens plane.The deflector potentialsC occurring
in the time-delay map are given by

C~r !54E
Rn

s~r 8!lnI r 82r

dOL
I .

They are solutions of two-dimensional Poisson equationDC(r )58ps(r ), where s~r ! is the
surface mass density~cf., Fig. 1!.

FIG. 1. A single lensing diagram. Angles are exaggerated. The distances are significantly larger than the diamet
lens.
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By suitable coordinate transformations, we can express the time-delay map in the conv
form:

Ty~x!5QLF ix2yi2

2
2c~x!G ~x,yPR2!.

Herey corresponds to the point on the sources plane andx corresponds to the point on the len
planer .

Fermat’s principle yields the critical points of the time delay mapTy(x) with respect to
variations inx determining those rays that are real light rays~cf., Ref. 6!. For this reason, a critica
point of Ty(x) relative tox is calledan imageof the point source aty. The magnificationof an
imagex of a source aty is defined by

Ay~x!5
1

idetTxx~x;y!i ,

whereT(x;y)5Ty(x) and Txx(x;y) is the Hessian matrix with respect tox. A caustic pointin
gravitational lensing is a positionyPR2 for which a source aty will have at least one image o
infinite magnification. In other words, caustics are source positionsyPR2 for which the time-
delay mapTy(x) has at least one degenerate critical point~i.e., detTxx(x;y)50). So, we may
consider that the time-delay map isthe generating familyof a certain Lagrangian submanifold i
T* R2 ~cf., Sec. III!.

(2) Multiplane gravitational lensing (cf., Refs. 8, 10, 1, and 3). Although we can consider a
generalk-planes gravitational lensing, we now only consider the case whenk52 ~i.e, a double
plane gravitational lensing! for convenience.

The typical double lens plane gravitational lensing situation is given as follows: There ar
lens planes with ‘‘thin’’ deflectors in each plane. The deflectors are assumed to be indepe
that is, the lens planes are sufficiently spaced so that they do not interact. Furthermore, th
angle approximation is assumed. We also parametrize all rays originating from the point so
s, deflected by two gravitational lens, using the four-dimensional vectors (r1 ,r2). Relative to these
approximations the extra timeTs to reach the indicated observer froms is given by thetime-delay
map. It is the functionTs:U13U2,R4→R with each domainUi,R2 being an open subse
defined by

Ts~r1 ,r2!5(
i 51

2

~11zi !F didi 11

2di ,i 11
I r i 11

di 11
2

r i

di
I 2

2C i~r i !G .
Here,zi is the redshift of thei th lens plane,di j is the angular diameter distance separating thei th
and j th lens planes,di is the angular diameter distance from the observer to thei th lens plane with
dk11[dS the distance to the source plane,r i is the position on thei th plane where the ray hits
r k11[s, andC i(r i) is the two-dimensional potential of the deflector on thei th lens plane~cf.,
Fig. 2!.

FIG. 2. A ray diagram for double plane gravitational lensing.
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By suitable coordinate transformations, the double plane time-delay map can be expresse
veniently as follows:

Ty~x1 ,x2!5Q1F ix22x1i2

2
2b1,2c1~x1!G1Q2F ix22yi2

2
2b2,3c2~x2!G , ~x1 ,x2 ,yPR2!.

In Ref. 10, Fermat’s principle has been adapted exactly in the same way as it was used
for the single lens plane case, so that theimageof a gravitational lensed point like light source
positiony are identified to the critical points ofTy , e.g., the set of images is given as follows

$~x1 ,x2!ugradxi
Ty~x1 ,x2!50, i 51,2%.

If we adapt this principle, then the classification of caustics for single and multiple lens p
is the same, namely, folds and cusps. It is, however, pointed out in Ref. 8 that double fo
handkerchiefs might appear as the stable caustics for double plane lensing under a more re
family of perturbations. These singularities do not appear as generic caustics under the
mentioned construction. Therefore, our opinion is that we need to have another interpreta
Fermat’s principle.

III. A SYMPLECTIC FRAMEWORK FOR SINGLE GRAVITATIONAL LENSING

In Ref. 6 Petters pointed out that single gravitational lensing can be described in the f
work of symplectic geometry~i.e, Lagrangian singularity theory!. In the first place we briefly
review the Lagrangian singularity theory.4 Let p:T* Rn→Rn be the cotangent bundle overRn. We
may consider that T* Rn5R2n and p(q1 , . . . ,qn ;p1 , . . . ,pn)5(q1 , . . . ,qn), where
(q1 , . . . ,qn ;p1 , . . . ,pn) are the canonical coordinates onT* Rn. There exitsthe Liouville one-
form a5( i 51

n pidqi on T* Rn. We call the two-formv5da5( i 51
n dpi∧dqi the canonical sym-

plectic structureon T* Rn. A Lagrangian submanifoldi:L,T* Rn is a submanifold withL5n
and i* v50. We call a mapp+i:L→Rn a Lagrangian map.

There is the notion of generating families for Lagrangian immersion germs as follows: D
an n-parameter family of function germsF:(Rk3Rn,0)→(R,0) to be aMorse familyif the map
germ

]F

]l
:~Rk3Rn,0!→~Rk,0!

is nonsingular, where]F/]l(l,q)5(]F/]l1(l,q), . . . ,]F/]lk(l,q)). It follows that S(F)
5(]F/]l)21(0) is a smooth submanifold germ in (Rk3Rn,0). For a Morse familyF, we define
a map germ

FF :S~F !→T* Rn, FF~l,q!5S q,
]F

]q
~l,q! D .

Then it is easy to see thatFF is a Lagrangian immersion germ. We also have the follow
well-known result:4

Proposition 3.1: All Lagrangian immersion germs are constructed by the above-pres
method.

We call F a generating family ofthe Lagrangian submanifold germFF(S(F)). By Proposi-
tion 3.1, we can interpret the local property of Lagrangian immersions by using the noti
generating family, so that the singularity theory of function germs has been applied.4

There is a natural equivalence among Lagrangian map germs. Letp+i i :(Li ,zi)
→(Rn,p(zi)) ( i 51,2) be Lagrangian map germs. We say thatp+i1 :(L1 ,z1)→(Rn,p(z1)) and
p+i2 :(L2 ,z2)→(Rn,p(z2)) are Lagrangian equivalentif there exists a symplectic diffeomor
phism germF:(T* Rn,z1)→(T* Rn,z2) with the form F(q,p)5(f2(q),f1(q,p)) and a diffeo-
morphism germf:(L1 ,z1)→(L2 ,z2) such thatF+i15i2+f.

We also have natural corresponding equivalences among the Morse families. LetFi :(Rk

3Rn,0)→(R,0) (i 51,2) be two Morse families. We say thatF1 and F2 are R1-equivalent
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~respectively,R-equivalent! if there exists a diffeomorphism germC:(Rk3Rn,0)→(Rk3Rn,0)
with the formC(l,q)5(c1(l,q),c2(q)) and a function germa:(Rn,0)→R such thatF1(l,q)
5F2+C(l,q)1a(q) ~respectively,F1(l,q)5F2+C(l,q), i.e., a is constantly equal to 0!. We
also need the following generalized equivalence relation: For two Morse familiesFi :(Rki

3Rn,0)→(R,0) (i 51,2), we say thatF1 andF2 arestably R1-equivalentif there exist nonde-
generate quadratic formsQ1(l̄),Q2(l̃), (l̄PRk3,l̃PRk4) with k11k35k21k4 such thatF1

1Q1 andF21Q2 areR1-equivalent.
The following theorem is the principal result of the Lagrangian singularity theory:4,5

Theorem 3.2:Let Fi :(Rk3Rn,0)→(R,0) (i 51,2) be two Morse families.

(1) If F1 and F2 induce the same Lagrangian submanifold germ, then F1 and F2 are
R-equivalent.

(2) Lagrangian manifold germsFF1
(S(F1)) and FF2

(S(F2)) are Lagrangian equivalent if and

only if F1 and F2 are stably R1-equivalent.

We define the notion of stability of Lagrangian map germs as follows: A Lagrangian
germ is said to beLagrangian stableif for every map representing the given map-germ there
neighborhoodV in the space of Lagrangian maps~in the C`-topology! and a neighborhoodU of
the source point of the germ, such that for each Lagrangian map belonging toV there is a point in
U at which the germ of Lagrangian map-germ is Lagrangian equivalent to the original germ
corresponding infinitesimal notion for generating family is given as follows: LetF:(Rk3Rn,0)
→(R,0) be a Morse family. We say thatF is infinitesimally R1-versal if

El5 K ] f

]l1
, . . . ,

] f

]lk
L

El

1 K ]F

]q1
URk3$0%, . . . ,

]F

]qn
uRk3$0%,1L

R

,

where f (q)5F(q,0) andEl is the local ring of function germs (Rk,0)→R. Then we have the
following theorem~cf. Ref. 4!.

Theorem 3.3:Let F:(Rk3Rn,0)→(R,0) be a Morse family. Then the Lagrangian map ge
p+FF is Lagrangian stable if and only if F is infinitesimally R1-versal.

Now let us recall the time-delay mapTy(x). If we consider the family of functionsF:R2

3R2→R given by

F~l1 ,l2 ,q1 ,q2!5QF i~l1 ,l2!2~q1 ,q2!i2

2
2c~l1 ,l2!G5Tq~l!,

we can easily verify thatF is a Morse family, soFF :S(F)→T* R2 is a Lagrangian immersion
Here, we have

S~F !5$~x,y!ugradx T50%,

so that the Lagrangian immersion is corresponding to those rays that are actual light rays. T
of critical values of the Lagrangian mapp+FF is the caustic.

On the other hand, we present another symplectic framework for single gravitational le
which is essentially the same as the above-mentioned framework. Our framework will be,
ever, very useful when we try to generalize this framework to the case of multiple planes
tational lensing~cf., Sec. IV!.

We consider theproduct symplectic space

M(x,y)5~T* Mx3T* M y ,vMy
*vMx

!,

wherevMy
and vMx

are the corresponding canonical symplectic forms, andV (x,y)5vMy
*vMx

5pMy
* vMy

2pMx
* vMx

, where pMx
,pMy

are the canonical projections of the produ
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T* Mx3T* M y . The corresponding phase spaces (T* Mx ,vMx
) and (T* M y ,vMy

) are called the
observer spaceand thesource space, respectively. In our two-dimensional caseMx5R2 and
M y5R2. The concrete realized single lensing system is represented~following Ref. 6! by the
Lagrangian submanifold

Lc5$~~x,gradx T!,~y,grady T!! u~x,y!PMx3M y %.

This means that the generating function ofLc is the time-delay map

T~x;y!5QLF ix2yi2

2
2c~x!G ~x,yPR2!.

By the previous arguments, light rays are given by$(x,y)ugradx T50% and the set of point source
for light rays is the Lagrangian submanifold

LS5$~y,grady T!PT* M y u~x,y!PMx3M y ,gradx T50%

of T* M y . Then we have

pMy
~Lcù~~Mx3$0%!3T* M y!!)5LS .

Let us recall the basic notions of the theory of symplectic relations~Ref. 11!. Let X1 ,X2 be
smooth manifolds with the same dimension. We consider the product symplectic manifold

~T* X13T* X2 ,vX2
*vX1

!,

wherevX2
*vX1

5p2* vX2
2p1* vX1

. We define a symplectic relation fromT* X1 to T* X2 as a
Lagrangian submanifoldR of (T* X13T* X2 ,vX2

*vX1
). If the restriction of the projection

pX1
3pX2

:T* X13T* X2→X13X2

to R is always nonsingular, we callR the elementary symplectic relation. Let R be a symplectic
relation in (T* X13T* X2 ,vX2

*vX1
) andS be a subset ofT* X1 , then the symplectic image ofS

by R is defined as

R~S!5$p2PT* X2 :'p1PS~p1 ,p2!PR%.

If S is Lagrangian submanifold in (T* X1 ,vX1
), thenR(S) is a Lagrangian subset in (T* X2 ,vX2

).
Since bothS andR are Lagrangian submanifolds, we have their generating families at

locally. We only consider the local situation here, so that we assume thatX15X25Rn. Let
F1 :(Rk13X1,0)→R be a generating family of a Lagrangian submanifold germS,T* X1 and
F2 :(Rk23(X13X2),0)→R be a generating family of a symplectic relationR,T* X13T* X2 .
Then we have a function germ

F:~~Rk13X13Rk2!3X2,0!→R

defined by

F~~l1 ,q1 ,l2!,q2!5F1~l1 ,q1!1F2~l2 ,q1 ,q2!.

Hence we have the following lemma:
Lemma 3.4: If F is a Morse family, then F is a generating family of the Lagrangian subm

fold R(S),T* X2 .
Proof: By definition, we have
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S5H S q1 ,
]F1

]q1
(l1 ,q1) D U]F1

]l1
50J ,

R5H S q1 ,q2 ,2
]F2

]q1
~l2 ,q1!,

]F2

]q2
~l2 ,q2! D U]F2

]l2
50J .

Therefore we have

R~S!5H S q2 ,
]F2

]q2
~l2 ,q1 ,q2! D U ]F1

]l1
5

]F2

]l2
50

]F1

]q1
52

]F2

]q1
J .

Since ]F/]l15]F1 /]l1 , ]F/]l25]F2 /]l2 , ]F/]q15]F1 /]q11]F2 /]q2 and ]F/]q2

5]F2 /]q2 , we have

R~S!5H S q2 ,
]F

]q2
~~l1 ,q1 ,l2!,q2! D U ]F

]l1
5

]F

]l2
5

]F

]q1
50J ,

so thatF is a generating family ofR(S). Q.E.D.
In the case of single gravitational lensing, ifS0 denotes the observer Lagrangian submanif

of system of gravitational rays then the source Lagrangian submanifold of rays is an imag

Lc~S0!,T* M y .

In the standard setting~cf. Ref. 6 and the previous arguments! S0 is the zero section of the
cotangent bundleT* Mx . Therefore we have

Lc~S0!5$~y,grady T!ugradx T50%,

so that the generating family forLc(S0) is given by

F~l1 ,l2 ,q1 ,q2!5QF i~l1 ,l2!2~q1 ,q2!i2

2
2c~l1 ,l2!G ,

which is the same generating family as that of the source Lagrangian submanifold in the pr
framework in Ref. 6. We call the pair (S,R) a ~single! lensing systemif S is a Lagrangian
submanifold ofT* X1 and R is a symplectic relation fromT* X1 to T* X2 . If the projection
p1uR :R→T* X1 is nonsingular,R is the graph of a symplectomorphismH:T* Mx→T* M y . In this
case we say that (S,R) is regular. Moreover, ifS is the zero section ofT* X1 , we call (S,R) a
special lensing system. Therefore, the single gravitational lensing is a regular special len
system.

IV. A SYMPLECTIC FRAMEWORK FOR MULTIPLANE GRAVITATIONAL LENSING

In this section we will construct the intrinsic framework for the study of gravitational lens
We can summarize the main problem in this paper as follows:
Problem: How can we construct the intrinsic framework for the study of double pla

gravitational lensing?
In order to tackle this problem, we now interpret the Fermat’s principle from another

point. We define

Tb23
~x2 ;y!5Q2F iy2x2i2

2
2b23~x2!G ,
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Tb12
~x1 ;x2!5Q1F ix22x1i2

2
2b12~x1!G .

Then T2(x1 ,x2 ,y)5Tb12
(x1 ,x2)1Tb23

(x2 ,y). We may consider thatTb23
(x1 ,x2) and

Tb12
(x1 ;y) are, respectively, single time-delay maps. It is clear that

gradx1
T2~x1 ,x2 ,y!5gradx1

Tb12
~x1 ;x2!,

gradx2
T2~x1 ,x2 ,y!5gradx2

Tb12
~x1 ;x2!1gradx2

Tb23
~x2 ;y!.

These formulas suggest to us that the Fermat’s principle can be interpreted as

H gradx1
Tb23

(x1 ,x2)50,

gradx2
T2(x1 ,x2 ,y)50.

It follows that we consider the following families of functions:F1(x1 ,x2)5Tb12
(x1 ,x2),

F2(x2 ,y)5Tb23
(x2 ,y) and F(x1 ,x2 ,y)5F1(x1 ,x2)1F2(x2 ,y). By Fermat’s principle, we have

two submanifolds:

S~F1!5$~x1 ,x2!PR4 ugradx1
F1~x1 ,x2!50%,

S~F !5$~x1 ,x2 ,y!PR6ugradx1
F1~x1 ;x2!5gradx2

F~x1 ,x2 ,y!50%.

Dimensions of both submanifolds are two. Moreover, we define the following mappings

FF1
:S~F1!→T* R2

by FF1
(x1 ,x2)5(x2 ,gradx2

F1(x1 ,x2)) and

FF :S~F !→T* R2

by FF(x1 ,x2 ,y)5(y,grady F(x1 ,x2 ,y)). By the previous arguments, images of both mappings
Lagrangian submanifolds. The later Lagrangian submanifold corresponds to the light sourc
first Lagrangian submanifold corresponds to the light ray image on the second lens, sin
distance between the first lens and the second lens is so long that there might be no inter
between these lenses. So we have to consider the stability of light ray under the indep
perturbations of each lens planes.

On the other hand, we might consider thatF2(x2 ,y) is a generating function of the graph o
a certain symplectomorphismH:T* R2→T* R2 ~cf., Ref. 11!. In this case, the Lagrangian sub
manifold FF(S(F)) can be considered as the imageH(FF1

(S(F1))).
Since the single lensing system can be described under the framework of symplectic rel

we might construct the framework for the double gravitation lensing by using the compositi
two symplectic relations.

The composition R2+R1,(T* X13T* X3 ,vX3
*vX1

) of two symplectic relations
R1,(T* X13T* X2 ,vX2

*vX1
), R2,(T* X23T* X3 ,vX3

*vX2
) is defined as follows:

R2+R15$~p1 ,p3!PT* X13T* X3 ;'p2PT* X2
~p1 ,p2!PR1and ~p2 ,p3!PR2%.

If S is Lagrangian submanifold inT* X1 , then we have two symplectic images

R1~S! andR2+R1~S!.
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By the previous arguments, a double gravitational lensing is represented by the pair o
plectic relations (Lb12

,Lb23
),

Lb12
,~T* Mx1

3T* Mx2
,vMr 2

*vMx1
!,

Lb23
,~T* Mx2

3T* M y ,vMy
*vMx2

!.

Now the source Lagrangian subspace of the system is the image by the compositionLb23

+Lb12
(S0), whereS0 is the zero section ofT* Mx1

. SinceTb12
(x1 ,x2) and Tb23

(x2 ,y) are the
corresponding generating functions for the symplectic relations~the graphs of symplectomor
phism! Lb12

andLb23
, then the configurational positions of rays emitted from the source at a p

y are the points ((x1 ,x2),(x2 ,y))PLb12
3Lb23

given by the solutions (x1 ,x2) of the system of
equations

gradx1
T2~x1 ,x2 ,y!50, ~1!

gradx2
T2~x1 ,x2 ,y!50. ~2!

If we now consider a family of functionsF:R23R23M y→R defined by

F~q,l,m!5T2~q,l,m!5Tb12
~q,l!1Tb23

~l,m!,

thenF is a generating family for the image Lagrangian subspace

Lb23
+Lb12

~S0!,T* M y .

According to the above-given arguments, we say that (S,R1 ,R2) is adouble lensing systemif
S is a Lagrangian submanifold ofT* X1 andRi is a symplectic relation fromT* Xi to T* Xi 11 ,
where i 51,2. We also say that the double lensing system (S,R1 ,R2) is regular if both of Ri ( i
51,2) are graphs of symplectomorphisms. Moreover, we say that a double lensing s
(S,R1 ,R2) is specialif S is the zero section ofT* X1 . Therefore, a double gravitation lensing
a regular special double lensing system.

We now define a natural equivalence relation among double lensing system germ
(S,R1 ,R2),(S8,R18 ,R28) be double lensing system germs. We say that (S,R1 ,R2), (S8,R18 ,R28) are
Lagrangian equivalentif there exist a symplectic diffeomorphism germ and

F1 :~T* X1 ,z1!→~T* X1 ,z18!,

Lagrangian equivalence germs~symplectic diffeomorphisms preserving the cotangent bundle
bration!

F2 :~T* X2 ,z2!→~T* X2 ,z28!, F3 :~T* X3 ,z3!→~T* X3 ,z38!

such thatF1(S)5S8, (F13F2)(R1)5R18 and (F23F3)(R2)5R28 .
Since there always exists a symplectic diffeomorphism germF1 :(T* X1 ,z1)→(T* X1 ,z18)

such thatF1(S)5S8, we may assume thatS5S8 are equal to the zero section ofT* X1 . There-
fore, without the loss of generality, we stick to special double lensing. In this case we sa
(S,R1 ,R2), (S,R18 ,R28) are strictly Lagrangian equivalentif there exist Lagrangian equivalenc
germs

F2 :~T* X2 ,z2!→~T* X2 ,z28!, F3 :~T* X3 ,z3!→~T* X3 ,z38!

such that (idT* X1
3F2)(R1)5R18 and (F23F3)(R2)5R28 . This equivalence relation might be

however, too strong to give a classification of double lensing system germs. Therefore, we n
appropriate equivalence relation among special double lensing system germs.
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Now we give a candidate of such a natural equivalence. We say that the special double
system germs (S,R1 ,R2), (S,R18 ,R28) areweakly Lagrangian equivalentif there exist Lagrangian
equivalence germs

F̃3 :~T* X3 ,z3!→~T* X3 ,z38!, F̃:~~T* X23T* X3 ,~z2 ,z3!!→~T* X23T* X3 ,~z28 ,z38!!

such thatpX3
+F̃5F̃3+pX3

andF̃(R1(S)3R2+R1(S))5R18(S)3R28+R18(S).
We have the following proposition.
Proposition 4.1: Suppose that(S,R1 ,R2), (S,R18 ,R28) are weakly Lagrangian equivalent, the

both of the Lagrangian submanifolds R1(S), R18(S) and R2+R1(S), R28+R28(S) are Lagrangian
equivalent.

Proof: By definition we have a diffeomorphism germF:(X23X3 ,(p2(z2),p3(z3)))→(X2

3X3 ,(p2(z28),p3(z38))) of the formF(x2 ,x3)5(f2(x2 ,x3),f3(x3)) and a symplectic diffeomor-

phismF̃:((T* X23T* X3 ,(z2 ,z3))→(T* X23T* X3 ,(z28 ,z38)) of the form

F̃~~x2 ,p2!,~x3 ,p3!!5~~f2~x2 ,x3!,c2~x2 ,x3 ,p2 ,p3!!,f3~x3!,c3~x3 ,p3!!

such that F̃(R1(S)3R2+R3(S))5R18(S)3R28+R18(S). Therefore we haveF̃(R1(S)3$z3%)
5(R18(S)3$z38%). We identify symplectic manifolds:T* X25T* X23$z3%5T* X23$z38%. Under
this identification, the above-mentioned equality means thatR1(S) and R18(S) are Lagrangian
equivalent.

By definition, we haveF̃3(R2+R1(S))5R28+R18(S). This fact means thatR2+R1(S), R28
+R28(S) are Lagrangian equivalent. Q.E.D

By the above-given proposition, the weak Lagrangian equivalence among double le
system germs preserve both caustics of the first and the second deflectors. It is the caustic
lence already introduced in the classification of coisotropic varieties in Ref. 12.

V. GENERATING PAIRS FOR DOUBLE LENSING SYSTEMS

In this section we consider the problem how to construct a kind of the notion of gener
families for double lensing systems. We already have a solution because a double plane g
tional lensing is described by the pair of time-delay maps. We only consider local properti
that we assume thatX15X25X35Rn.

For any double lensing system germ (S,R1 ,R2), we have generating familiesF0 :(Rk0

3X1,0)→R of S, F1 :(Rk13(X13X2),0)→R of R1 andF2 :(Rk23(X23X3),0)→R of R2 .
On the other hand, there always exists a symplectomorphism germF1 :(T* X1 ,z1)

→(T* X1,0) such thatF1(S) is a zero section germ ofT* X1 , so that we might assume thatS is
a zero section germ ofT* X1 under the Lagrangian equivalence among double lensing sy
germs. In other words, it is enough to investigate special double lensing system germs. In th
F0 can be chosen as a constant function. We call (F1 ,F2) a generating pairof the special lensing
system germ (S,R1 ,R2) if Fi is a generating family ofRi ( i 51,2). ThenF1 can be regarded as
generating family ofR1(S),T* X2 and F5F11F2 is a generating family ofR2+R1(S),T* X3

~cf., Ref. 11!.
Since a double gravitation lensing is a regular double lensing system, we now pay atten

regular special double lensing systems here. In this caseF1 :(X13X2,0)→R is a generating
function of R1 andF2 :(X23X3,0)→R is a generating function ofR2 . By the arguments in the
previous paragraph,F1 is a generating family of the Lagrangian submanifold germR1(S),T* X2

and a map germF:((X13X2)3X3,0)→R defined by

F~~x1 ,x2!,x3!5F1~x1 ,x2!1F2~x2 ,x3!
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is a generating family of the Lagrangian submanifold germR2+R1(S),T* X3 . In other words,
(F1 ,F2) is a generating pairof a regular special double lensing system germ (S,R1 ,R2) if
(dF1(X13X2),(z1 ,z2))5(R1 ,(z1 ,z2)) and (dF2(X23X3),(z2 ,z3))5(R2 ,(z2 ,z3)).

Since any elementary symplectic relation has a generating function at least locally, we
the following fundamental proposition:

Proposition 5.1: All regular special double lensing system germs are constructed b
above-mentioned method.

We can translate equivalence relations among double lensing systems into those of
sponding generating pairs. We consider the ambiguity of the choice for generating pair
double lensing system.

Proposition 5.2: Let(F1 ,F2) and (G1 ,G2) be generating pairs of a common regular spec
double lensing system germ. Then F15G11constantand F25G21constant.

For our purpose, we introduce equivalence relations among generating pairs for doubl
ing system germs. LetF1 ,G1 ,(X13X2 ,0)→R andF2 ,G2 ,(X23X3,0)→R be function germs. We
say that (F1 ,F2) and (G1 ,G2) are (R,L)1-equivalent if there exist diffeomorphism germ
F1 :(X13X2,0)→(X13X2,0) of the form F1(x1 ,x2)5(f1(x1 ,x2),f2(x2)), and F2 :(X2

3X3,0)→(X23X3,0) of the formF2(x2 ,x3)5(f2(x2),f3(x3)) and function germsa:(X2,0)
→R, b:(X3,0)→R such that

HF1~x1 ,x2!5G1+F1~x1 ,x2!1a~x2!,
F2~x2 ,x3!5G2+F2~x2 ,x3!1b~x3!.

Proposition 5.3: Let(F1 ,F2) and (G1 ,G2) be, respectively, generating pairs of special reg
lar double lensing system germs(S0 ,R1 ,R2) and (S0 ,R18 ,R28)). Then (S0 ,R1 ,R2) and
(S0 ,R18 ,R28)) are strictly Lagrangian equivalent if and only if(F1 ,F2) and (G1 ,G2) are
(R,L)1-equivalent.

We also say that (F1 ,F2) and (G1 ,G2) are R3L1-equivalentif there exists a diffeomor-
phism germ

F:~X13X23X3,0!→~X13X23X3,0!

of the formF(x1 ,x2 ,x3)5(f1(x1 ,x2 ,x3),f2(x2 ,x3),f(x3)) and a function germa:(X3,0)→R
such that

F1~x1 ,x2!1F2~x2 ,x3!5G1~f1~x1 ,x2 ,x3!,f2~x2 ,x3!!1G2~f2~x2 ,x3!,f~x3!!1a~x3!.

Suppose that (F1 ,F2) and (G1 ,G2) are R3L1-equivalent. If we substitutex350 into the
both sides of the above-given equality, then we have

F1~x1 ,x2!1F2~x2,0!5G1~f1~x1 ,x2,0!,f2~x2,0!!1G2~f2~x2,0!,0!1a~0!.

Therefore,F1 andG1 areR1-equivalent.
By the general theory for Lagrangian singularities~cf., Ref. 4!, we can show the following

proposition:
Proposition 5.4: Let(F1 ,F2) and (G1 ,G2) be, respectively, generating pairs of special reg

lar double lensing system germs(S0 ,R1 ,R2) and (S0 ,R18 ,R28)). Then (S0 ,R1 ,R2) and
(S0 ,R18 ,R28)) are weakly Lagrangian equivalent if and only if(F1 ,F2) and (G1 ,G2) are R
3L1-equivalent.

We say that (F1 ,F2) is infinitesimally R3L1-stableif

E(x1 ,x2)1E(x2 ,x3), K ]F1

]x1
L

E(x1 ,x2 ,x3)

1 K ]~F11F2!

]x2
L

E(x2 ,x3)

1 K ]F2

]x3
,1L

Ex3

.

In this case, forF1 we have
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Ex1
5 K ] f 1

]x1
L

Ex1

1K ]F1

]x2
U

x250

,1L
R

,

where f 1(x1)5F1(x1,0).
Now we have the following proposition:
Proposition 5.5: Let(F1 ,F2) be a generating pair of a special regular double lensing syst

germ (S0 ,R1 ,R2). Then the following are equivalent:
(1) (F1 ,F2) is infinitesimally R3L1-stable.
(2) (F1 ,F2) satisfies the following condition:

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

,

where f2(x2)5F2(x2,0).
(3) (F1 ,F2) satisfies the following condition:

E(x1 ,x2)1E(x2 ,x3)5 K ]F1

]x1
L

E(x1 ,x2 ,x3)

1 K ]~F11F2!

]x2
L

E(x2 ,x3)

1 K ]F2

]x3
,1L

Ex3

.

(4) F1 is infinitesimally R1-versal and

Ex2
, K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

.

Proof: We assume that the condition~4! holds. SinceF1 is infinitesimally R1-versal defor-
mation of f 1 , we can show that

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]F1

]x2
,1L

Ex2

.

We remark that

]F1

]x2
5

]~F11 f 2!

]x2
2

] f 2

]x2
,

so that we have

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

1Ex2
.

It follows from the assumption that

E(x1 ,x2)5 K ]F1

]x1
L

E(x1 ,x2)

1 K ]~F11 f 2!

]x2
L

Ex2

1K ]F2

]x3
U

x350

,1L
R

.

This means that the condition~2! holds. The converse assertion is trivial by definition.
By the Malgrange preparation theorem~cf., Ref. 13!, we can easily show that the condition~3!

is equivalent to the condition~2!. SinceE(x1 ,x2)1Ex2
5E(x1 ,x2) , condition ~1! implies condition

~2!. It follows from the inclusionE(x1 ,x2)1E(x2 ,x3),E(x1 ,x2 ,x3) that condition~3! implies condition
~1!. This completes the proof.14
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VI. CLASSIFICATION OF LENSING SYSTEMS AND CAUSTICS

We recall that the family of functions

F~x1 ,x2 ,x3!5F1~x1 ,x2!1F2~x2 ,x3!

is a generating family for the Lagrangian submanifold-germR2+R1(S),T* X3 with (x1 ,x2) being
the Morse parameters auxiliary in the reduction process~cf. Ref. 15!. A causticof the time-delay
map in the case of the double lensing system is defined to be the set of source positix3

PR2, which are critical values of the projection

T* X3{R2+R1~S!→X3 ,

or the function (x1 ,x2)→F(x1 ,x2 ,x3) has at least one degenerate critical point.
Using theR3L1 equivalency group and infinitesimal stability conditions obtained in Pro

sitions 5.4 and 5.5 we can construct normal and prenormal forms of infinitesimally stable g
ating pairs (F1 ,F2), or equivalently the functionsF(x1 ,x2 ,x3)5F1(x1 ,x2)1F2(x2 ,x3), which
belong to the space of additively composed functions onD5$(x1 ,x2 ,x̃2 ,x3)PX13X23X2

3X3 :x25 x̃2%, i.e.,

F~x1 ,x2 ,x3!5p12* F1~x1 ,x2!1p23* F2~ x̃2 ,x3!uD ,

wherep12,p23 are the canonical projections

p i j :X13X23X23X3→Xi3Xj , ~ i j !5~12!,~23!.

If ( F1 ,F2) is an infinitesimallyR3L1-stable generating pair, then by Proposition 5.5~4! F1

is infinitesimally versal. Now we define the subgroup ofR3L1-equivalency group prescribed t
F1 and acting onF2 . We say thatF2 and G2 are (R3L1)F1

equivalent if there exists
F(x1 ,x2 ,x3)5(f1(x1 ,x2 ,x3),f2(x2 ,x3),f(x3)) and a function-germa:(X3,0)→R such thatF1

is preserved,F1+(f1 ,f2)5F1 and (F1 ,F2) and (F1 ,G2) areR3L1-equivalent byF. Now we
can formulate the following result.

Proposition 6.1: Any infinitesimally R3L1-stable pair is R3L1-equivalent to the pair
(F1 ,F2), where F1 is a versal unfolding of F1(x1,0) and F2 belongs to an open orbit of(R
3L1)F1

-action.
In the two-dimensional case we simplify the notation and write

F~x,u,v !5F1~x,u!1F2~u,v !, x,u,vPR2.

Proposition 6.2: Let us assume that F1 is an infinitesimally R1-versal Morse family. Then the
generic generating pair-germs(F1 ,F2) are R3L1-equivalent to one of the following norma
forms:

~A1A1!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,6u1
26u2

2!,

~A1A2!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,u1
36u2

21v1u1!,

~A1A3!: ~F1~x,u!,F2~u,v !!5~6x1
26x2

2 ,6u1
46u2

21v1u1
21v2u1!,

~A2B2!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,6u1
26u2

21v1u1!,

~A2B3!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1
36u2

21v1u11v2u1
2!,

~A2C2!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1u26u2
21v1u2!,
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~A2C3!: ~F1~x,u!,F2~u,v !!5~x1
36x2

21x1u1 ,u1u21u2
31v1u21v2u2

2!,

~A3X!: ~F1~x,u!,F2~u,v !!5~6x1
46x2

21x1
2u11x1u2 ,j~u,v !!,

wherej is a smooth function-germ.
The first three cases (AA) give the standard plane caustics~i.e., nonsingular, folds and cusps!.
The four cases (AB), (AC) are the composedA, B, andC boundary type caustics. Howeve

only the case (A2C3) has the caustics at the origin as a composition. In this case we can cal
that ~Fig. 3!

R2+R1~s!5$~22xy,y,x,x2! u ~x,y!P~R2,0! %,T* X3 .

Therefore the projection ontoX3 is locally represented byf :(R2,0)→(R2,0); f (x,y)5
(22xy,y) This map-germ is called thepinch map~cf., Fig. 4!. This is a famous example whic
does not admit a Thom stratification~Ref. 16, p. 24!.

The last case gives other possibilities of compositions withA3-caustic. There might appea
several complicated singularities.

An equivalenceR3L1-group acting onX13X23X3 is a subgroup of the (r ,s)-equivalences
introduced in Ref. 17, wherer 5dimX2 ands5dimX3 . We recall that (r ,s)-infinitesimal stability
condition

E(x,u)5 K ]F0

]x L
E(x,u)

1 K ]~F0!

]u L
E(u)

1K ]F

]v U
v50

,1L
R

1F̃0* E(l,m) ,

whereF̃05(F0 ,u), F0(x,u)5F(x,u,0), (l,m)PR3R2, is weaker than theR3L1-infinitesimal
stability condition.

FIG. 3. The standard plane gravitational lensing.

FIG. 4. The vertical lines are mapped onto the lines through the origin by the pinch map.
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If h(x,u,v) is an (r ,s)-infinitesimally stable unfolding off 0(x)5F(x,0,0) then the prenorma
form for infinitesimallyR3L1-stable unfolding off 0 is given in the form

F~x,u,v !5h~x,u,v !1(
i 51

2

uigi~u,v !,

wheregiPE(u,v) .
By (r ,s)-stability theory ~cf. Ref. 17!, if gPE(x,u,v) is an (r ,s)-stable unfolding ofh(x)

5g(x,0,0), theng is (r ,s)-equivalent to the function-germ

F~x,Ts~u,v !!,

whereF is an (r 1s)-stable unfolding ofh andTs(u,v)5T+Ws is a composition of the polyno
mial mappingT:(R23R2,0)→(R23R2,0) and permutation of the variablesWs . Here we have

T~u,v !5S u,v1p~u!1(
i 51

s

v ij i~u!D ,

wherep(u) is a polynomial mappingRr→Rs with zero constant term and degree at mosts11 and
j(u) are polynomial mappingsRr→Rs with zero constant terms and degree at mosts21. The
permutationWs acting onu,v-variables,Ws(w1 ,...,wr 1s)5(ws(1) ,...,ws(r 1s)) is defined as one
of the following permutations; Takingk<min$r,s% and integers 1< i 1,¯, i k<r , 1< j 1,¯

, j k<s we define s as the product of the following transpositions:s5( i 1 ,r 1 j 1)( i 2 ,r
1 j 2)¯( i k ,r 1 j k).

In our ~2,2!-case all stable unfoldings are related to the corresponding strata of the fam
mappings:

T~u,v !5S u1 ,u2 ,v11 (
1< i 1 j <3

ai j u1
i u2

j 1 (
i , j 51

2

bi j v iuj , v21 (
1< i 1 j <3

ci j u1
i u2

j 1 (
i , j 51

2

di j v iuj D .

These unfoldings were classified in Refs. 18 and 19 and we may use them in our classifica
gravitational caustics.

Remark 6.3: By the straightforward application of the classification theorem from Ref. 1
find that the generic perturbations of the composed function-germs F(x,u,v)5F1(x,u)
1F2(u,v), are ~2,2!-equivalent to the following normal forms:

F~x,u,v !5x1
36x2

21x1u1 ,

F~x,u,v !5x1
36x2

21x1~v11u1
216u2

2!,

F~x,u,v !5x1
36x2

21x1~v12u1
22u2

2!,

F~x,u,v !5x1
36x2

21x1~v11u1
316u2

21u1v2!,

F~x,u,v !56x1
46x2

21x1
2u11u2x1 ,

F~x,u,v !56x1
46x2

21x1
2~6u1

21u2!1x1~u21v1!,

F~x,u,v !56x1
46x2

21x1
2~u1

31u1v21u2!1x1~u21v1!,

F~x,u,v !56x1
46x2

21x1
2~6u1

21u2v21v1!1x1u2 ,

F~x,u,v !56x1
46x2

21x1
2u11x1~u1

26u2
21u1v11v2!,
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F~x,u,v !5x1
56x2

21x1
3u11x1

2~u2v21cu21u11v1!1x1u2 ,~cÞ2 2
3!,

F~x,u,v !5x1
31x2

31x1x2u11x1u21x2~u2v21u11cu21v1!,~cÞ0!,

F~x,u,v !5x1
32x1x2

21x1
2~u1v21cu11u21v1!1x1u21x2u1 ,~cPR!,

F~x,u,v !5x1
32x1x2

21x1
2~u2v21u11v1!1x1u21x2u1 .

By definition, ~2,2!-equivalence destroys the exact structure of the composition of cau
However the structure of generic perturbation of the caustics still remained. By the above li
can calculate the discriminant set

DF5H ~v1 ,v2!PX3U ]F

]x1
5

]F

]x2
5

]F

]u1
5

]F

]u2
50J .

Such sets are the perturbed caustics of the original double lensing systems. For the functio
F(x,u,v)56x1

46x2
21x1

2u11x1(u1
26u2

21u1v11v2) we have DF5$(t,0)%ø$(6s262s,
620s3)% which is depicted in Fig. 5. We can observe that two regular curves~i.e., folds! have
order 3 contact at the origin. These two regular curves are the locus of fold points. Therefor
is a double fold at the origin.

ACKNOWLEDGMENTS

S.I. partially supported by Grant-in-Aid for Scientific Research, JSPS, No. 14604003
partially supported by KBN Grant No. 2 P03A 020 17.

1A. O. Petters, H. Levine, and J. Wambsganss,Singularity Theory and Gravitational Lensing~Birkhäuser, Boston, 2001!.
2A. O. Petters and F. J. Wicklin, J. Math. Phys.39, 1011~1998!.
3P. S. Schneider, J. Ehlers, and E. E. Falco,Gravitational Lenses~Springer, Berlin, 1992!.
4V. I. Arnol’d, S. M. Gusein-Zade, and A. N. Varchenko,Singularities of Differentiable Maps~Birkhäuser, Boston, 1986!,
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Generalized forms and Einstein’s equations
D. C. Robinsona)
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Strand, London WC2R 2LS, United Kingdom
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Generalized differential forms of different types are defined and their algebra and
calculus are discussed. Complex generalizedp-forms, a particular class of type two
generalized forms, are considered in detail. It is shown that Einstein’s vacuum field
equations for Lorentzian four-metrics are satisfied if and only if a complex gener-
alized one-form on the bundle of two component spinors is closed. A similar result
for half-flat and anti self-dual holomorphic four-metrics is also presented. ©2003
American Institute of Physics.@DOI: 10.1063/1.1563846#

I. INTRODUCTION

Recently the algebra and calculus of generalized differential forms have been develop
examples of their physical application have been presented.1,2 This paper contains a self-containe
extension of this work and an application of it to Einstein’s vacuum field equations. Earlier
concentrated on the presentation of generalized forms corresponding to ordered pairs of o
p- andp11-forms. In this paper, a broader framework is introduced which includes those f
as a particular case. This new framework is constructed by introducing the concept of gene
p-forms of typeN ~N a non-negative integer! on ann-dimensional manifold M. Ordinaryp-forms
become generalized forms of typeN50, and the generalized forms corresponding to ordered p
become generalized forms of typeN51. Forms of typeN can be represented by 2N-tuples of
ordinary differential forms, where2N<p<n, and satisfy an exterior algebra and calculus wh
is a direct generalization of that satisfied by typeN50 andN51 forms. As in the case of type 1
forms, forms of negative degree are admitted whenN is positive.3,4 The new framework naturally
extends the one presented for typeN51 forms in Refs. 1 and 2. It encompasses the extens
briefly mentioned in Ref. 1.

In Sec. II the algebra and calculus of generalized differential forms of typeN are defined. The
definitions are presented in a recursive fashion so that they are similar, in general form,
definitions previously given for typeN51 generalized forms. Three different representations
generalized forms and their algebra and calculus are presented, including a matrix represe
While each of these representations has its uses, the main representation of typeN forms used
throughout the paper will be in terms of 2N-tuples. Local definitions of generalized connectio
are presented, and on manifolds with metrics the Hodge~star! operator and duality, the codiffer
ential and Laplacian for typeN forms are defined. These definitions are the standard ones fN
50 ~that is ordinary! forms,5 and agree with the ones given in previous papers forN51 forms.1,2

Forms of typeN can always be regarded as special cases of forms of typeŃ whereN<Ń but this
may not always be the most efficient point of view. In Sec. III the basic algebra and calculu
the particular case of typeN52 generalized forms are presented in more detail and in term
ordered quadruples of ordinary forms. The formulas here include results needed in th
section. They also illustrate in detail the difference between results forN52 forms and results for
N51 forms obtained previously. The fourth section is devoted to a discussion of Loren
four-metrics and the condition of Ricci flatness. First the representation of the metric geome
the Cartan structure equations for ordinary forms, including a two component spinor vers

a!Electronic mail: david.c.robinson@kcl.ac.uk
20940022-2488/2003/44(5)/2094/17/$20.00 © 2003 American Institute of Physics
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reviewed. Then, by using that formalism, the condition for a four-metric to be Ricci fla
formulated as the requirement that a generalized one-form, defined on the bundle of two c
nent spinors over a four dimensional manifold, be closed. Although the focus is on Loren
four-metrics it is clear that a similar result hold for four-metrics of all signatures. Half-flat f
metrics are also considered. The condition for a metric to be half-flat is reformulated a
requirement that a generalized one-form to be closed. The holomorphic anti-self-dual c
considered explicitly but Riemannian and ultrahyperbolic four-metrics can be dealt with
similar way. These results can be viewed as giving a geometrical interpretation of Ricci fla
for four-metrics. They also provide an illustration of the relationship between half-flat metrics
Ricci flat, but not necessarily half-flat, metrics.

Most of the considerations in this paper are local in nature. Emphasis is placed on the a
calculus and local geometry rather than the global geometry. The letters over the forms in
the degrees of the forms and whenever these degrees are obvious they will be omitted. By s
convention, ordinaryp-forms ~that is of typeN50) with p negative are zero. Where it is helpfu
a subscript will be used to denote the type of the form. Usually bold roman letters will be use
generalized forms and normal greek letters for ordinary forms.

II. GENERALIZED FORMS OF DIFFERENT TYPES

In this section generalized forms of different types will be defined and their exterior alg
and calculus will be discussed. The properties of generalizedp-forms can be defined recursivel
~on N!, using definitions which are formally similar to those for the special case, whereN51,
discussed in Refs. 1 and 2. Here, using the terminology of Ref. 1, theleft exterior product andleft
generalized derivative will always be used. While a few examples are given in this section a
extensive collection is presented in Sec. III.

The module of generalizedp-forms of typeN50 is defined to be the module of ordinar
p-forms onM, L0

p , with the usual exterior product and exterior derivative. Then the modul
generalizedp-forms of typeN, LN

p , is defined as follows. ForN>1, a generalizedp-form of type

N, a
p

NPLN
p , is defined to be ordered pairs of generalizedp- andp11-forms of typeN21,

a
p

N[~a
p

N21 , a
p11

N21!, ~1!

whereN is any integer greater than or equal to 1.
Hence forms of typeN51 are ordered pairs of ordinaryp- and p11-forms, for example,

a
p

15(a
p

, a
p11

)PL0
p3L0

p11, as in Refs. 1 and 2. Forms of typeN52 are ordered quadruples o

ordinaryp-, p11-, p11- andp12-forms. For example, leta
p

25(a
p

1 , a
p11

1) wherea
p

15(a
p

, a
p11

),

a
p11

15( a”
p11

, a
p12

), thena
p

2PL2
p is given by

a
p

25~a
p

, a
p11

, a”
p11

, a
p12

!PL0
p3L0

p113L0
p113L0

p12. ~2!

More generally, ap-form of typeN will correspond to an ordered set of 2N ordinaryq-forms with
2N<p<q%p1N. Nonzero entries occur in the 2N-tuple only when 0<q<n since, as men-

tioned above, any ordinary form,a
q

, with q negative is zero. Forms of typeN1 are naturally
included in forms of typeN2 whenN1,N2 .
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The exterior product is extended from ordinary forms to forms of typeN>1 as follows. Let

a
p

N[(a
p

N21 , a
p11

N21) andb
q

N[(b
q

N21 , b
q11

N21) be ap-form and aq-form of typeN>1. Then the

exterior product ofa
p

N andb
q

N is thep1q-form of typeN defined~recursively! by

a
p

N∧b
q

N5~a
p

N21∧b
q

N21 ,a
p

N21∧ b
q11

N211~21!q a
p11

N21∧b
q

N21!. ~3!

The exterior product satisfies all the usual rules, in particulara
p

N∧b
q

N5(21)pqb
p

N∧a
q

N . Further-
more, it follows that whenp1q,2N, the exterior product is zero.

The exterior derivative,d:LN
p→LN

p11, is defined in the usual way forN50 forms, and when
N>1 by

da
p

N5~da
p

N211~21!p11kN a
p11

N21 ,d a
p11

N21!, ~4!

wherekN is constant.

When da
p

N is expressed in terms of ordinary forms it contains the constantsk1 ,k2 ,...,kN .
These will all be assumed to be nonzero unless it is stated otherwise. This exterior derivativ

satisfies all the usual rules, in particulard250, andd(a
p

N∧b
q

N)5da
p

N∧b
q

N1(21)pa
p

N∧db
q

N .
The above representation of the algebra and calculus of generalized forms will be the

one used in this paper. However it is appropriate to note here two alternative representations
can be useful. In the first of these typeN forms of degree minus one,z1 ,...,zN , which are required
to satisfy all the usual rules of exterior algebra and calculus, together with the two conditio

z1∧¯∧zNÞ0, dz I5kI , I 51,...,N, ~5!

are introduced.1 Then a generalized form of typeN, a
p

N5(a
p

N21 , a
p11

N21), can be identified with

a
p

N5a
p

N211 a
p11

N21∧zN , ~6!

and it follows that the exterior product and derivative agree with Eqs.~3! and~4!. For example, it
follows from Eq.~5! that

da
p

N5da
p

N211~21!p11kN a
p11

N211d a
p11

N21∧zN . ~7!

The recursive use of this identification can be illustrated by using the example of anN52 form

given above. In this casea
p

25(a
p

, a
p11

, a”
p11

, a
p12

) is identified with a
p

25a
p

1 a
p11

∧z11 a”
p11

∧ z21a
p12

∧z1∧z2 . It should be noted that while the identification continues to be unambigu
whenN>3 the relationship between the ordering of the forms in the two types of representa
is not as simple as it is in theN<2 cases.

The second of the alternative representation is in terms of matrix valued forms and is

defined recursively. Here the generalized forma
p

N5(a
p

N21 , a
p11

N21) is identified with a 232

matrix, @a
p

N#, with entries that are forms of typeN21,
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@a
p

N#5F a
p

N21 a
p11

N21

0
~21!pa

p

N21

G . ~8!

Exterior multiplication of generalized formsa
p

N and b
q

N , as in Eq.~3!, corresponds to matrix

multiplication of@a
p

N# and@b
q

N#. The matrix representation of the exterior derivative, given by
~4!, can be identified by using the 232 matrices

S5F1 0

0 21G , KN5F 0 0

kN 0G ,
and the bracket,$A,B%r , of 232 matrices defined by

$A,B%r5AB1~21!rBA.

Then the matrix corresponding toda
p

N is given by

@da
p

N#5Sd@a
p

N#1$KN ,@a
p

N#%p11 . ~9!

Using the definitions recursively it follows that a generalized form of typeN is identified with

a 2N32N matrix with entries which are ordinary forms. For example, ifa
p

25(a
p

, a
p11

, a”
p11

, a
p12

), as

above, then the 434 matrix representation ofa
p

2 is given by

@a
p

2#53
a
p

a
p11

a”
p11

a
p12

0
~21!pa

p
0

~21!p11 a”
p11

0 0
~21!pa

p

~21!p a
p11

0 0 0
a
p

4 . ~10!

The Poincare´ lemma for generalized forms of typeN^1 can be obtained by straightforwar
calculation.

Theorem 1: Let a
p

N5(a
p

N21 , a
p11

N21), with N^1, be nonzero and closed, so thatda
p

N50.
Then

~a! d a
2N

N50 if and only if kI50 for all I, 1<I<N, and a
2N

N5(0,...,0,c) wherec is the nonzero
constant;

~b! if p>2N11, da
p

N50 if and only if either a
p

N is exactor kI50 for all I, 1<I<N, and all
the ordinary forms in the 2N-tuple are closed.

~c! WhenkN is nonzero,da
p

N50 if and only if a
p

N is exact.
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Furthermore, a
p11

N215(21)pkN
21da

p

N21 and a
p

N5d b
p21

N where b
p21

N5(0,(21)pkN
21a

p

N21)

1 c
p21

N for any closed form c
p21

N .
Hence the de Rham cohomology determined by generalized forms is trivial unlessall the

constantk’s are zero in which case the standard de Rham cohomology applies. These ideas
straightforwardly extended to other differential operators. For example, supposeM is a complex
manifold and] and ]̄ are the usual Dolbeault differential operators on ordinary differential for
These operators can be extended to operators acting on generalized forms by, for example
ing

]z I5 l I , ]̄z I5mI ,
~11!

l I1mI5kI , I 51,...,N,

wherel I andmI are constants, and replacingd andkN in Eq. ~5! by ] and l N ~respectively,]̄ and
mN) in the obvious way. The nature of the Dolbeault cohomology determined by genera
forms, and the cohomology associated with the real operatordc5 i ( ]̄2]) will clearly be deter-
mined by the vanishing or nonvanishing of the constantsmI andmI2 l I .

Let V be a vector field tangent toM. Then the inner product ofV with a generalizedp-form

a
p

N[(a
p

N21 , a
p11

N21) is defined in the usual way forN50 forms. ForN.0 it is defined to be zero
if p52N and if p.2N it is defined to be the generalized (p21)-form,

Vca
p

N[~Vca
p

N21 ,Vc a
p11

N21!. ~12!

The Lie derivative ofa
p

N is defined to be thep-form,

LVa
p

N[Vcda
p

N1d~Vca
p

N!. ~13!

It follows from this definition that

LVa
p

N5~LVa
p

N21 , LV a
p11

N21!. ~14!

Let G be a Lie group and letG the Lie algebra ofG. GeneralizedG-valued connection
one-forms and curvature two-forms of typeN are defined in a similar manner to ordinary conne
tion one-forms and curvature two-forms.1,6 However the ordinary forms are replaced by gener
ized type-N forms. Here only the local definition of curvature is given. The appropriate geom
cal setting for a global formulation needs further investigation. LetAN be a generalized connectio
one-form, of typeN, with values inG. The curvature two-form of this connection is defined by t
usual type of formula to be

FN5dAN1 1
2@AN ,AN#. ~15!

Hence if the commutation relations of the Lie algebraG are given by

@Xj ,Xk#5Cjk
i Xi ,

and if AN5AN
i Xi , whereAN

i are generalized one-forms, then ifFN5FN
i Xi ,

FN
i 5dAN

i 1 1
2Cjk

i AN
j ∧AN

k . ~16!
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A generalized connection,AN , determines a generalized covariant exterior derivative,D. Let

b
p

N be anyG-valued generalizedp-form of typeN, then

Db
p

N5db
p

N1@AN ,b
p

N#. ~17!

As an example of a generalized connection, consideraffine generalized connections wit
structure groupG5IGL(n) and Lie algebraG. The generators,Xa

b , of G satisfy the commutation
relations

@Xa ,Xb#50, @Xb
a ,Xc#5dc

aXb ,@Xb
a ,Xd

c#5~dd
aXb

c2db
cXd

a!.

The generalized connection one-formAN and curvature two-formFN are given by

AN5eN
a Xa1GNb

a Xa
b , FN5TN

a Xa1FNb
a Xa

b , ~18!

whereeN
a is a moving co-frame of generalized one-forms onM, andGNb

a and the pairTN
a , FNb

a are,
respectively, generalized one-forms and two-forms onM. The lower case italic indices range an
sum over 1 ton. Computing the generalized curvature, as above, gives the Cartan stru
equations. The first and second generalized Cartan structure equations are

TN
a 5deN

a 2eN
b ∧GNb

a , FNb
a 5dGNb

a 1GNc
a ∧GNb

c , ~19!

whereTN
a is the generalized torsion andFNb

a is the generalized curvature of the generalized affi
connectionGNb

a .
Next consider an oriented manifoldM with a metric g of signature (r ,n-r ) so that a Hodge

star operator, duality, codifferential and Laplacian, etc., for generalized forms,a
p

N

5(a
p

N21 , a
p11

N21), of typeN can be defined. The sign conventions of Ref. 2 are again used s
definitions and results below agree with the ones in that reference whenN50 andN51. The
definitions are again recursive in nature.

The ~Hodge! star operator,!: LN
p→LN

n2p2N , and dual for generalized forms are defined

follows. For N50, !a0

p

[* a
p

, where* denotes the usual Hodge star operator on ordinary for
and forN>1,

a
p

N°!a
p

N[~@21#n1p1N! a
p11

N21!a
p

N21!. ~20!

This definition gives, as the dual to a type-N generalizedp-form, a generalized (n–p–N)-form. It

follows that if s
p

5(21)np1p1n2r , then

!!a
p

N5s
p

~21!NpaN

p

[lN
2 aN

p

, ~21!

wherelN depends onN and, as usual,n, p and the signature of the metric. The possible eig
values of! are6lN , where in factlN51 or i. This agrees with the standard result for ordina
forms and the previously obtained expression forN51 forms. With the above sign conventions,

generalizedp-form is said to be self-dual if!a
p

N5lNa
p

N , and anti-self-dual if!a
p

N52lNa
p

N . It is
straightforward to see that necessary conditions for a generalizedp-form to be either self-dual or
anti-self-dual are that whenN is zero or an even integer, the dimension ofM, n, must be be even

when N is odd n must be odd, and thatp5(n2N)/2. In fact !a
p

N56lNa
p

N if and only if a
p

N

5( a
(n2N)/2

N21 ,6lN
21! a

(n2N)/2

N21).
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Now

a
p

N∧!b
q

N5~@21#n1q1Na
p

N21∧! b
q11

N21 ,a
p

N21∧!b
q

N211 a
p11

N21∧! b
q11

N21!.

The simplest definition of a symmetric inner product of two generalizedp-forms a
p

N and b
p

N is

given by the usual expression for ordinary forms whenN50, ^a
p

,b
p

, and recursively, whenN
>1, by

^a
p

N ,b
p

N&[^a
p

N21 ,b
p

N21&1^ a
p11

N21 , b
p11

N21&. ~22!

This inner product is positive definite for a Riemannian manifold and can be used in the con
tion of Lagrangians.~As was noted in Ref. 2, alternative definitions may also be useful.!

A codifferential operatord:LN
p→LN

p21, by a
p

N°da
p

N is defined recursively as follows. I
sp5(21)np2r 11, then

da
p

N5~21!N~p11!sp!d!a
p

N . ~23!

This definition agrees with the definition for ordinary forms, and the previously presented d
tion for N51 forms, and implies that

da
p

N5~da
p

N21 ,d a
p11

N211~21!pkNa
p

N21!. ~24!

From these definitions it follows thatd250, andd a
2N

N50. If a
p

N is co-closed, that isda
p

N50, then
in a result analogous to the Poincare´ lemma above, it is co-exact, that is it is the codifferential
a generalized (p11)-form.

Theorem 2: If a
p

N5(a
p

N21 , a
p11

N21), andda
p

N50, then if 2N<p<n21, andkN is nonzero,

a
p

N215(21)p11kN
21d a

p11

N21 anda
p

N5d b
p11

N , where b
p11

N5((21)p11kN
21 a

p11

N21,0)1 c
p11

N , for any

c
p11

N which is co-closed. Furthermore,da
n

N50 if and only if a
n

N50. Any typeN form, with p5
2N, is both co-closed and co-exact.

When M is compact without boundary, the condition,^daN ,bN&5^aN ,dbN&, for this codif-
ferential operator on generalized forms to be the adjoint ofd, holds.

A Laplacian for generalized forms,D:LN
p→LN

p , is defined to beD5dd1dd.
Computation, with the choice of signs made in this paper, gives the simple expressi

agreement with the previously presentedN50 andN51 cases,

Da
p

N5~Da
p

N211kN
2 a

p

N21 ,D a
p11

N211kN
2 a

p11

N21!. ~25!

It follows from this that a
p

N is a harmonic generalized form, that isDa
p

N50, if and only if

Da
p

N211kN
2 a

p

N2150, andD a
p11

N211kN
2 a

p11

N2150. That is, a generalized form is harmonic on
when its constituent ordinary forms satisfy a Klein–Gordon type of equation with a ‘‘m
squared’’ term given bykN

2 .
The choices of signs in the above definitions have been made in order to make gene

forms eigenforms of the operator!!, to give a definition ofd which was simply related to the
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definition for ordinary forms and to ensure that the Laplacian on generalized forms was co
able in terms of the Laplacian, not some other second order differential operator, acti
ordinary forms.

III. GENERALIZED FORMS OF TYPE NÄ2

In this section aspects of the algebra and calculus of generalized forms of type 2 w
considered in more detail and further applications of the results in Sec. II will be prese
Henceforth the generalized forms considered will be mainly of typeN52, so the subscriptN
52 will be omitted in the remainder of the paper. As will be seen there is a loose analogy be
going from real numbers to complex numbers to quaternions and going from ordinary for
forms of type 1 and forms of type 2.

A. Basic algebra and calculus

As was noted in Sec. II, a generalizedp-form of type 2, a
p

(22<p<n), is an ordered

quadruple of ordinaryp-, p11-, p11-, andp12- forms; that is sincea
p

is an ordered pair of the

type 1 formsa
p

15(a
p

, a
p11

) and a
p11

15( a”
p11

, a
p12

)

a
p

[~a
p

, a
p11

, a”
p11

, a
p12

!.

A minus two-form is an ordered quadruplea
22

5(0,0,0,a
0

), wherea
0

is a function onM, and a

minus one-form is an ordered quadruplea
21

5(0,a
0

,a”
0

,a
1

), wherea
1

is an ordinary one-form onM

anda
0

, a”
0

are functions onM. A generalizedp-form of type 2, given by a quadruple (a
p

,0,0,0), will

be identified with the ordinaryp-form a
p

. Consequently a function onM, a
0

, will be identified with

the generalized 0-form (a
0

,0,0,0) while the quadruples (0,a
0

,0,0), (0,0,a
0

,0) and (0,0,0,a
0

), respec-
tively, define two linearly independent generalized minus one-forms and a minus two-form. J

an ordinaryp-form a
p

is naturally included in the generalizedp-forms of type 2 as (a
p

,0,0,0), a

generalizedp-form of type 1, (a
p

, a
p11

), can be naturally included in the generalizedp-forms of

type 2 as (a
p

, a
p11

,0,0).

If a
p

[(a
p

, a
p11

, a”
p11

, a
p12

) and b
q

[(b
q

, b
q11

, b”
q11

, b
q12

), then the generalized exterior product a
the generalized exterior derivative,d, defined in section two, are given in terms of ordinary form
by

a
p

∧b
q

5 c
p1q

[~ g
p1q

, g
p1q11

, g”
p1q11

, g
p1q12

!,

g
p1q

5a
p

∧b
q

,

g
p1q11

5a
p

∧ b
q11

1~21!q a
p11

∧b
q

, ~26!
                                                                                                                



tes

de-

2102 J. Math. Phys., Vol. 44, No. 5, May 2003 D. C. Robinson

                    
g”
p1q11

5a
p

∧ b”
q11

1~21!q a”
p11

∧b
q

,

g
p1q12

5a
p

∧ b
q12

1~21!q11 a
p11

∧ b”
q11

1~21!q a”
p11

∧ b
q11

1~21!q a
p12

∧b
q

,

and

da
p

[ c
p11

[~ g
p11

, g
p12

, g”
p12

, g
p13

!,

g
p11

5da
p

1~21!p11k1 a
p11

1~21!p11k2 a”
p11

,

g
p12

5d a
p11

1~21!p11k2 a
p12

, ~27!

g”
p12

5d a”
p11

1~21!pk1 a
p12

,

g
p13

5d a
p12

.

The ordinary forms~and manifold! may be real or complex and a bar over ordinary forms deno
the usual complex conjugate.

The conjugate ofa
p

, denotedā
p

, is defined to be

~ ā
p

, a”̄
p11

, ā
p11

,2 ā
p12

!. ~28!

The generalized form is said to be self-conjugate,a
p

5ā
p

, when a
p

is real, a”
p11

is the complex

conjugate of a
p11

and a
p12

is a purely imaginary ordinary one-form.

~Hence if a
p

5a
p

1 a
p11

∧z1 a”
p11

∧ z̄1 a
p12

∧z∧ z̄, with dz5k, dz̄5 k̄ the conjugate is just the
obvious complex conjugate.!

The Poincare lemma of Sec. II can be written in the following way for type 2 forms.

Proposition 1:If a
p

5(a
p

, a
p11

, a”
p11

, a
p12

) is closed, so thatda
p

50, then

~a! (21)p da
p

5k1 a
p11

1k2 a”
p11

,

~b! a
p

is exact, and a
p

5d b
p21

5d c
p21

, where b
p21

5(21)pk2
21(0,0,a

p

, a
p11

), and c
p21

5(21)pk1
21(0,a

p

,0,2 a”
p11

).

The second equality in~b! illustrates a consequence of the freedom to add the exterior

rivative of a complex generalized (p-2)-form to b
p21

or c
p21

. If a
p

is self-conjugate thenb
p21

is the

conjugate of c
p21

.
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B. Matrix Lie groups

Next consider Lie groups and Lie algebras, for simplicity matrix Lie groups. In the pre
context, and following Ref. 1, it is natural to associate with a Lie groupG the semidirect produc
of G and Lie algebra-valued forms~viewed as the direct product of additive abelian group!.
Define the~associated! Lie groupG by

G5$aua5a~1,A
1

,A”
1

,A
2

!%,
~29!

a~1,A
1

,A”
1

,A
2

![~a,0,0,0!∧~1,A
1

,A”
1

,A
2

!5~a,aA,aA”
1

,aA
2

!,

wherea is a complex generalized 0-form,a belongs to the Lie groupG, with identity 1, and

A
1

,A”
1

,A
2

are ordinary forms with values in the~matrix! Lie algebra ofG ~or more generallyH,
whereG is a subgroup ofH!.

The product of two elements ofG,a5a(1,A
1

,A”
1

,A
2

)) and b5b(1,B
1

,B”
1

,B
2

) is given by the

above rules for exterior multiplication, and isc5a∧b5ab(1,C
1

,C”
1

,C
2

), where

C
1

5B
1

1b21A
1

b,

C” 15B”
1

1b21A”
1

b,

C
2

5B
2

1b21A
2

b1L
2

, ~30!

where

L
2

5b21A”
1

b∧B
1

2b21A
1

b∧B”
1

.

Here, in order to ensure that the ordinary forms take values in the Lie algebra ofG, it is henceforth

assumed thatA”
1

5cA
1

,B”
1

5cB
1

, wherec equals one if necessary. Hence in the following,L250.

The inverse of a is a215a21(1,2aA
1

a21,2caA
1

a21,2aA
2

a21) and the identity is
~1,0,0,0!. Left fundamental one-forms, denoted1, are formally defined by

l5a21∧da5~l
1

,l
2

,l”
2

,l
3

!,

l
1

5a21 da2~k11ck2!A
1

,

l
2

5dA
1

2~k11ck2!A
1

∧A
1

2k2A
2

1a21 da∧A
1

1A
1

∧a21 da, ~31!

l”
2

5c~dA
1

2~k11ck2!A
1

∧A
1

!1k1A
2

1c~a21 da∧A
1

1A
1

∧a21 da!1dc∧A
1

,

l
3

5dA
2

1~k11ck2!~A
2

∧A
1

2A
1

∧A
2

!1a21 da∧A
2

2A
2

∧a21 da1dc∧A
1

∧A
1

,
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and l satisfies the Maurer–Cartan equation

dl1 l∧ l50. ~32!

In the special case wherea51, k11ck2521, andc is constant,

l5a21∧da5~A
1

,F2k2A
2

,c@F1c21k1A
2

#,DA
2

!, ~33!

where here,

F[dA
1

1A
1

∧A
1

,
~34!

DA
2

[dA
2

1A
1

∧A
2

2A
2

∧A
1

.

C. Connections

The following is an outline of the basic formulas for type 2 connections and curvature. A
Sec. II, a discussion of connections in terms of bundles will be avoided here by working lo
with typeN52 forms onM. Let the generalized connection and curvature forms onM be given by

A i5(a
1

i ,a
2

i ,a”
2

i ,a
3

i), Fi5(F
2

i ,F
3

i ,F/
3

i ,F
4

i). Then it follows from Eqs.~18! and ~19! that

F
2

i5da
1

i1
1

2
Cjk

i a
1

j∧a
1

k1k1a
2

i1k2a”
2

i ,

F
3

i5Da
2

i1k2a
3

i ,

F/
3

i5D a”
2

i2k1a
3

i , ~35!

F
4

i5Da
3

i1Cjk8
ia

2
j∧a”

2
k.

HereD denotes the~formal! covariant exterior derivative of aG-valued ordinary differential form

with respect to the ordinaryG-valued 1-forma
1

i ;

Db
p

i[db
p

i1Cjk
i a

1
j∧b

p
k.

Generalized gauge transformations, following Ref. 1, are determined by generalized 0
on M with values in the Lie groupG, as above. The gauge transformations determined by,a, an
element ofG, as in Eq.~29!, are given by the standard formulas

A→~a21!da1~a21!Aa,
~36!

F→~a21!Fa.

It should be noted, for example, that although it appears in the above expressions as ifa
1

in the
above equations can be regarded as a connection one-form, it does not necessarily tra
under generalized gauge transformations in the same way as an ordinary connection tran
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under ordinary gauge transformations. Consequently the appropriate nonlocal geometrical
lation and application requires further investigation, possibly along lines similar to those re
to and discussed in, for example, Ref. 7.

Any ordinary connectiona
1

can determine flat~zero curvature! generalized connections. I

this flat case it follows from Eq.~35! that the curvature of the connectiona
1

is given by f i

52(k1a
2

i1k2a”
2

i). Further reference to Eq.~35!, in the flat case, shows that the two-formsa
2

i

~respectively,a”
2

i52k2
21( f i2k1a

2
i)) determine the three-formsa

3
i which automatically satisfies

the fourth equation. Eq.~33! gives an alternative representation of a flat generalized connec

D. Metric geometries, the codifferential and Laplacian

WhenM has a metric the dual ofa
p

is then-p-2 form given by

!a
p

[~* a
p12

,~21!n1p* a”
p11

,~21!n1p11* a
p11

,* a
p

!. ~37!

If the dimension ofM is even type 2 forms may be self-dual, or anti-self-dual, whenp
5 1

2(n22). Such forms are given by

a
p

[~a
p

, a
p11

,6l21* a
p11

,6l21* a
p

!,

l
2

5sgn~detg!.

For example,N52 self/anti-self-dual forms on four manifolds are determined by a pai
one-forms and two-forms~or any one-form of typeN51).

The codifferential is given by

da
p

5~da
p

,d a
p11

1~21!pk1a
p

,d a”
p11

1~21!pk2a
p

,d a
p12

1~21!p11k1 a”
p11

1~21!pk2 a
p11

!. ~38!

In the case of generalized forms of type 2, Theorem 2 implies the following.

Proposition 2:Whenk2 is nonzero and the generalized forma
p

is co-closed it must have th
form

a
p

5~~21!p11k2
21d a”

p11

,~21!p11k2
21d a

p12

1k2
21k1 a”

p11

, a”
p11

, a
p12

! ~39!

anda
p

5d c
p11

where c
p11

may be chosen to be

c
p11

5~~21!p11k2
21 a”

p11

,~21!p11k2
21 a

p12

,0,0!. ~40!

From Eq.~22!, the inner product is given by

^a
p

,b
p

&5^a
p

,b
p

&1^ a
p11

, b
p11

&1^ a”
p11

, b”
p11

&1^ a
p12

, b
p12

&.

The Laplacian ofa
p

is given by
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Da
p

5~Da
p

1ca
p

,D a
p11

1c a
p11

,D a”
p11

1c a”
p11

,D a
p12

1c a
p12

!, ~41!

wherec5k1
21k2

2. Hence, unlike the case forN51 forms in Ref. 2, the ‘‘mass’’ termc can be zero
even if both~complex! k1 andk2 are non-zero.

IV. LORENTZIAN METRICS AND EINSTEIN’S EQUATIONS

The aim of this section is to consider Einstein’s vacuum field equations on a four-manifoM.
In order to fix notation, a standard formulation, which includes the use of two-component sp
of the Cartan moving frame approach to four-metrics will be reviewed. Next a complex gen
ized one-form,E, will be constructed onS, the total space of the bundle of two-component spin
over a four-manifoldM with four-metricg. It will be shown thatE is closed if and only ifg is
Ricci flat. Primary attention will be paid to Lorentzian four-metrics although similar results a
straightforwardly to other signatures and holomorphic four-metrics. Once again everyth
local.

First, the Cartan approach to metrics can be summarized as follows. Letua be a basis of
ordinary one-forms, a Cartan co-frame forg, so that the line element forg is given by

ds25habu
a

^ ub, ~42!

where, for 4-metrics

hab5F 0 eAB

2eAB 0 G , and eAB5F 0 1

21 0G ,
so that

ds25u1
^ u41u4

^ u12u2
^ u32u3

^ u2. ~43!

In this section lower case italic indices sum and range over 1–4. Upper case italic indice
and range over 0–1 and, as will be shown below, will be able to be interpreted as two-comp
spinor indices. Conventions include the standard two component spinor conventions.8–10

The orientation is such that, in the case of Lorentzian four-metrics, whereu1 andu4 are real
andu2 is the complex conjugate ofu3, the volume element is given byV5 iu1∧u2∧u3∧u4, and
the structure group is S0~1,3! which is isomorphic to SL(2,C)/Z2 .

The Cartan structure equations are given by

Dua[dua2ub∧vb
a50,

vab1vba50, ~44!

dvb
a1vc

a∧vb
c5Vb

a52 1
2Rbcd

a uc∧ud,

where vb
a denotes the Levi–Civita connection one-form, andRbcd

a are the components of it
curvature two-formVb

a . Here, for any ordinary form the covariant exterior derivative is given

Daa5daa1vb∧
a ab, ~45!

and the second covariant exterior derivative satisfies

D2aa5ab∧Vb
a .

The connection and curvature forms, which take values in the Lie algebra of the stru
group, can be written as the sum of their self-dual and anti-self-dual parts on the algebra in
1vb

a , 2vb
a , 1Vb

a , 2Vb
a , respectively. Here,* 1Vb

a5 i 1Vb
a , * 2Vb

a52 i 2Vb
a . In 434 matrix

form
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1vb
a5F v̄08

081 v̄18
081

v̄08
181 2v̄08

081
G , 2vb

a5FvB
A 0

0 vB
AG , ~46!

where 1 denotes the unit 232 matrix, v̄08
08 , v̄18

08 , v̄08
18 denote the independent components

1vb
a , the trace of the 232 matrix (vB

A) is zero and its entries are the complex conjugates ofv̄B8
A8 .

Other self-dual and anti-self-dual objects can be written similarly, for instance,

2Vb
a5FVB

A 0

0 VB
AG ,

~47!
VB

A5dvB
A1vC

A∧vB
C .

In the case of Lorentzian four-metrics, the self-dual connection and curvature are the co
conjugates of the anti-self-dual connection and curvature and take~complex conjugate! values in
the Lie algebras sl(2,C)R and sl(2,C)L .

The two-component spinor approach to the Cartan equations for 4-metrics can be su
rized, using notation which is compatible with the above, as follows. The line element, give
Eqs.~42! and ~43!, can be written

ds25eABeA8B8u
AA8^ uBB8, ~48!

where the co-frame is represented by a 232 matrix uAA8,

uAA85F u008 u018

u108 u118G5Fu1 u3

u2 u4G . ~49!

For Lorentzian four-metrics this is a Hermitian matrix valued one-form. By using
correspondences

uAA8↔ua,

dB
Av̄B8

A8↔1v̄
a

b ,dB
AV̄B8

A8↔1V̄b
a , ~50!

dB8
A8vB

A↔2vb
a ,dB8

A8VB
A↔2Vb

a ,

the Cartan structure equations, Eq.~44!, can be seen to take the spinorial form

DuAA8[duAA82uAB8∧vB
A2uBA8∧v̄B8

A850,

VB
A[dvB

A1vC
A∧vB

C , ~51!

V̄B8
A8[dv̄B8

A81v̄C8
A8∧v̄B8

C8 .

The anti-self-dual and self-dual components of the Lorentzian Levi–Civita spin connectio

given, respectively, byvB
A and v̄B8

A8 , in agreement with Eq.~46!. Unprimed upper case italic
indices and primed upper case italic indices represent, respectively, transformation pro
under SL(2,C)L and SL(2,C)R . The components of the curvature two-forms are given by
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VB
A5CBCD

A SCD12LSB
A1FBC8D8

A SC8D8,

~52!
V̄B8

A85C̄B8C8D8
A8 S̄C8D812LS̄B8

A81FB8CD
A8 SCD,

whereSB
A51/2uA8

A ∧uB
A8 and S̄B8

A851/2uA
A8∧uB8

A . The anti-self-dual and self-dual components
the Weyl spinor are given, respectively, by the totally symmetric spinors complex conju
spinorsCABCD and C̄A8B8C8D8 , and22FBC8D8

A and 24L correspond, respectively, to the trac
free part of the Ricci tensor and the Ricci scalar.

Einstein’s field equations, with cosmological constantl, are given by

Gab528pTab2lgab , ~53!

and the spinor form of the Einstein tensorGBB8
AA8526(1/3FBB8

AA81LdB
AdB8

A8), is given by the three-
form equation

~1/3FBB8
AA81LdB

AdB8
A8!uBC8∧uCB8∧uCC85VB

A∧uBA852V̄B8
A8∧uAB8. ~54!

Hence the metric is Ricci-flat if and only if

VB
A∧uBA85V̄B8

A8∧uAB850. ~55!

Consider now the two-component spinor bundle overM with fiber coordinatespA and define
on the total space,S, theself-conjugategeneralized one-formE given by the quadruple

E5~pAp̄A8u
AA8,2k21pADp̄A8∧uAA8,2 k̄21DpA∧p̄A8u

AA8,~kk̄!21DpA∧Dp̄A8∧uAA8!,
~56!

whereuAA8 is a Hermitian matrix valued one-form onM, andvB
A andv̄B8

A8 are complex conjugate
sl~2,C! valued connection one-forms onM. Here,D denotes a covariant exterior derivative, f
example,

DpA[dpA2pBvA
B , ~57!

and the choicek15k, k25 k̄ has been made.
By using the results above and the identities for the second derivative, such as

D2pA52pBVA
B , ~58!

it is a straightforward matter to show that

dE5~«
2

,«
3

,«”
3

,«
4

!,

«
2

5pAp̄A8DuAA8,

«
3

5k21@pAp̄A8 ,V̄B8
A8∧uAB81pADp̄A8∧DuAA8#, ~59!

«”
3

5 k̄21@pAp̄A8VB
A∧uBA81DpA∧p̄A8DuAA8#,

«
4

5~kk̄!21@DpA∧Dp̄A8∧DuAA82pADp̄A8∧VB
A∧uBA81DpA∧p̄A8V̄B8

A8∧uAB8#.

This leads immediately to the following theorem.
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Theorem 3: The self-conjugate generalized one-form,E, on S, is closed if and only if

DuAA850,
~60!

VB
A∧uBA85V̄B8

A8∧uAB850.

Consequently, when the four real one-forms defined byuAA8 are linearly independent, an
hence define a Lorentzian four-metric onM @as in Eq.~48!#, the connectionvb

a is the torsion free
Levi-Civita connection, and the metric is Ricci flat, if and only if the complex generalized
form E is closed.

The one formE, which is closed and hence exact when Einstein’s vacuum field equation
satisfied, is not unique. For exampleF∧E, whereF is a zero-form which is either closed o
satisfies the conditionE5dF, is also closed when Einstein’s equations are satisfied. The gen
ized one-formE incorporates both the Witten–Nester two-form and the Sparling three-form w
play an important role in the definitions of conserved quantities in general relativity. For a re
of the latter and references to higher dimensions see, for example, Ref. 9. The generalize
form E presented here effectively encodes the conditions that the one-formsuAA8 must satisfy in
order to determine a Ricci flat, Lorentzian, four-metric. By using Theorem 1, the follow
corollaries may be obtained. The first is a gauge noninvariant form, onM, of the gauge invariant
result in the theorem.

Corollary 1: Einstein’s vacuum field equations are satisfied if and only if

EAA8[~uAA8,2k21uAB8∧v̄B8
A8 ,2 k̄21uBA8∧vB

A ,~kk̄!21uBB8∧vB
A∧v̄B8

A8!, ~61!

is closed. In nonspinorial notation

Ea5~ua,2k21ub∧1vb
a ,2 k̄21ub∧2vb

a ,~kk̄!21uc∧2vb
a∧1vc

b!,

dEa5~e
2

a,e
3

a,e”
3

a,e
4

a!,

e
2

a5Dua,e
3

a5k21@ub∧1Vb
a2Dub∧1vb

a#, ~62!

e”
3

a5 k̄21@ub∧2Vb
a2Dub∧2vb

a#,

e
4

a5~kk̄!21@1vc
a∧2Vb

c∧ub22vc
a∧1Vb

c∧ub12vc
a∧1vb

c∧Dub#.

Corollary 2: ~a! E is closed if and only if

E5dF5dF̄, where

F52~ k̄!21~0,0,pAp̄A8u
AA8,2k21pADp̄A8∧uAA8!, ~63!

F̄52~k!21~0,pAp̄A8u
AA8,0,k̄21pA8DpA∧uAA8!.

~b! If E is closed thenF2F̄ is closed.
~c! Since

F2F̄5~kk̄!21~0,k̄pAp̄A8u
AA8,2kpAp̄A8u

AA8,D~pAp̄A8!∧uAA8!, ~64!
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F2F̄ is closed if and only ifDuAA850, that is the connection is torsion free.
In ~a! use is made of the equation for the exterior derivative of the complex genera

zero-formF,

dF5E2~kk̄!21~0,0,kpAp̄A8DuAA8,pAp̄A8V̄A8
B8∧uAA81pADp̄A8∧DuAA8!.

~An unprimed connection one-formvB
A does not appear inF, but E5dF implies that the connec

tion one-formvB
A appearing in the last equation is the anti-self-dual part of the Levi–Ci

connection defined byuAA8.)
It is a straightforward matter to construct, in a similar way, one-forms which are closed i

only if a 4-metric is half-flat. It suffices to demonstrate this here in the case of anti-self
half-flat holomorphic four-metrics.9–11

Theorem 4: Let g be a holomorphic four-metric on a four-manifoldM given by ds2

5eABeA8B8u
AA8^ uBB8, and letmA8 be any two-component spinor field with constant compone

Consider the generalized one-form on the spin bundle overM given by

E5~pAmA8u
AA8,0,2 k̄21DpA∧mA8u

AA8,0!, ~65!

wherepA are fiber coordinates on the bundle. ThenE is closed if and only ifduAA82uAB8∧vB
A

50; that isE is closed if and only if the self-dual part of the curvature ofg is zero.
The formulation of this corollary emphasizes certain similarities and differences betwee

requirement that a metric be half-flat on the one hand and Ricci flat, but not necessarily ha
on the other. However it can clearly be more economically expressed in terms of the closu
generalized one-form of typeN51 given by (pAmA8u

AA8,2k1
21DpA∧mA8u

AA8).
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Lie point symmetries and first integrals:
The Kowalevski top

M. Marcelli and M. C. Nuccia)

Dipartimento di Matematica e Informatica, Universita` di Perugia, 06123 Perugia, Italy

~Received 29 August 2002; accepted 19 January 2003!

We show how the Lie group analysis method can be used in order to obtain first
integrals of any system of ordinary differential equations. The method of reduction/
increase of order developed by Nucci@J. Math. Phys.37, 1772–1775~1996!# is
essential. Noether’s theorem is neither necessary nor considered. The most striking
example we present is the relationship between Lie group analysis and the famous
first integral of the Kowalevski top. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1561157#

I. INTRODUCTION

In January 2001, the first Whiteman prize for notable exposition on the history of mathem
was awarded to Thomas Hawkins by the American Mathematical Society. In the citation,
lished in the Notices of AMS48, 416–417~2001!, one reads that Thomas Hawkins ‘‘... has writt
extensively on the history of Lie groups. In particular, he has traced their origins to@Lie’s# work
in the 1870s on differential equations ... theidée fixeguiding Lie’s work was the development o
a Galois theory of differential equations ...@Hawkins’s book10# highlights the fascinating interac
tion of geometry, analysis, mathematical physics, algebra, and topology ... .’’

In the Introduction of his book,36 Olver wrote that ‘‘it is impossible to overestimate th
importance of Lie’s contribution to modern science and mathematics. Nevertheless, anyone
already familiar with@it# . . . is perhaps surprised to know that its original inspirational source
the field of differential equations.’’

Lie’s monumental work on transformation groups,20–22 and in particular contac
transformations,23 led him to achieve his goal.24 Lie group analysis is indeed the most powerf
tool to find the general solution of ordinary differential equations. Any known integration t
nique can be shown to be a particular case of a general integration method based on the de
of the continuous group of symmetries admitted by the differential equation, i.e., the Lie sym
algebra. In particular, Bianchi’s theorem2,36 states that if an admittedn-dimensional solvable Lie
symmetry algebra is found, then the general solution of the correspondingn order system of
ordinary differential equations can be obtained by quadratures. The admitted Lie symmetry
bra can be easily derived by a straightforward although lengthy procedure. As computer a
softwares become widely used, the integration of systems of ordinary differential equatio
means of Lie group analysis is getting easier to carry out.

A major drawback of Lie’s method is that it is useless when applied to systems ofn first order
equations, because they admit an infinite number of symmetries, and there is no systematic
find even one-dimensional Lie symmetry algebra, apart from trivial groups like translations in
admitted by autonomous systems. One may try to derive an admittedn-dimensional solvable Lie
symmetry algebra by making an ansatz on the form of its generators.

However, Nucci30 has remarked that any system ofn first order equations could be tran
formed into an equivalent system where at least one of the equations is of second order. Th

a!Author to whom correspondence should be addressed; electronic mail: nucci@unipg.it
21110022-2488/2003/44(5)/2111/22/$20.00 © 2003 American Institute of Physics
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admitted Lie symmetry algebra is no longer infinite dimensional, and nontrivial symmetries o
original system could be retrieved.30 This idea has been successfully applied in seve
instances.30,43,5,40,32,33,35,31

Here we show another striking application of such an idea. If we consider a system o
order equations, and by eliminating one of the dependent variables derive an equivalent
which has one equation of second order, then Lie group analysis applied to that equivalent
yields the first integral~s! of the original system which does not contain the eliminated depen
variable. Of course, if such first integrals exist. The procedure should be repeated on as
times as there are dependent variables in order to find all such first integrals. The first in
correspond to the characteristic curves of determining equations of parabolic type42 which are
constructed by the method of Lie group analysis.

We would like to remark that interactive~not automatic! programs for calculating Lie poin
symmetries such as Refs. 28 and 29 are most appropriate for performing this task.

It is well known that if one finds a transformation which leaves invariant a functional des
ing a variational problem, then Noether’s theorem27 provides a first integral of the correspondin
Euler–Lagrange system. Unfortunately, a general method for finding such a transformatio
not exist. In addition, many equations of physical interest~e.g., Lorenz system in meteorology25!
do not come from a variational problem. On the contrary, our method can be applied to any s
of ordinary differential equations, even if they do not derive from a variational problem,31 and we
do not make any a priori hypothesis on the form of the first integrals, apart missing one
unknowns.

In the next section, we describe the method in detail, in Secs. III and IV, we presen
classical example of the Kowalevski top, and in Sec. V the three-dimensional Kepler probl
Cartesian coordinates. The last section contains some final comments.

II. OUTLINE OF THE METHOD

Let us consider the following autonomous~which could also be nonautonomous! system ofN
first order ordinary differential equations:

ẇ15F1~w1 ,w2 ,...,wN!,

ẇ25F2~w1 ,w2 ,...,wN!,
~1!

¯ ,

ẇN5FN~w1 ,w2 ,...,wN!.

Let

I 5I ~w1 ,w2 ,...,ws21 ,ws11 ,...,wN!, ~2!

be a first integral which does not depend onws , and

X5V~ t,w1 ,...,wN!] t1 (
k51

N

Gk~ t,w1 ,...,wN!]wk
~3!

be a generator of a Lie point symmetry group for~1!. If we derivews from one of the equations
~1!, say the first, then we obtain a system ofN22 equations of first order in
w2 ,...,ws21 ,ws11 ,...,wN and one of second order inw1 . We remark that the method does n
depend on the equation we choose from~1! to derivews . After introducing the new notationuj

( j 51,...,N21), we can write the system we obtain as
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ü15 f 1~u1 ,u2 ,...,uN21 ,u̇1!,

u̇25 f 2~u1 ,u2 ,...,uN21 ,u̇1!,
~4!

¯ ,

u̇N215 f N21~u1 ,u2 ,...,uN21 ,u̇1!.

A generator of a Lie point symmetry group for~4! is

X̄5V̄~ t,u1 ,...,uN21!] t1 (
j 51

N21

Ḡj~ t,u1 ,...,uN21!]uj
. ~5!

If we apply Lie group analysis to system~4! using the interactive REDUCE programs develop
by Nucci,28,29 then we obtain a determining equation of parabolic type forV. Its characteristic
curves will yieldm,N21 transformations, which eliminateu̇1 from all the first order equations
in ~4!. Thus, we have obtained a system ofN22 equations of first order and one equation
second order in the new dependent variablesũ j such thatu15ũ1 and each of the other variable
ũ j are either the originaluj itself, if u̇1 did not appear in thej -equation of system~4!, or the
corresponding characteristic curve. If we apply Lie group analysis to this final system, then
a determining equation of parabolic type will be derived, and its characteristic curve, whe
written in the original variables, will be exactly the first integral~2!.

Now let us consider a system ofM second order ordinary differential equations

ẍi5Hi~x1 ,...,xM ,ẋ1 ,...,ẋM ! ~ i 51,...,M !. ~6!

A generator of a Lie point symmetry group for this system has the form

G5t~ t,x1 ,...,xM !] t1(
i 51

M

h i~ t,x1 ,...,xM !]xi
. ~7!

System~6! can be converted into the following autonomous system of 2M first order ordinary
differential equations:

ẇi5wM1 i ,
~8!

ẇM1 i5Hi~w1 ,...,wM ,wM11 ,...,w2M !.

At this point, we could either proceed as indicated above or choose one of the dependent va
to be the new independent variabley in order to reduce the order of system~8! by one.30 For
example, we could takexM[wM5y. Then, system~8! becomes the following nonautonomou
system of 2M21 first order ordinary differential equations with independent variabley:

d

dy
wh5wM1h /w2M ,

~9!
d

dy
wM1h5Hh~w1 ,...,wM21 ,y,wM11 ,...,w2M !/w2M ,

whereh51,...,M21. Now, our method can be applied to this system as if it was system~1!. The
fact that system~9! is not autonomous does not effect the result, as we will show in the case o
three dimensional Kepler problem in Cartesian coordinates.

The same method can be applied to a single ordinary differential equation of orderN which
can be easily transformed into a system ofN equations of first order. It should be noticed that the
                                                                                                                



t

s of
e,

metrical
y

ed
e to
obi
ilarly
n, but

math-
ize
ase
tions

lysis as

point

r

first

2114 J. Math. Phys., Vol. 44, No. 5, May 2003 M. Marcelli and M. C. Nucci

                    
could be several different ways of transforming an equation of orderN into a system ofN
equations of first order. Then, the just described method may give different results, videlice~viz.!
no first integrals with certain reductions, all the first integrals with different reductions.

III. FINDING THE KOWALEVSKI TOP

The motion of a heavy rigid point about a fixed point is one of the most famous problem
classical mechanics.7 In 1750, Euler6 derived the equations of motion which now bear his nam
and described what is nowadays known as the Euler–Poinsot case because of the geo
description given by Poinsot about 100 years later.38 It was Jacobi13 who integrated this case b
using the elliptic functions which he had developed~along with Legendre, Abel, and Gauss26! and
mastered14 ~we have translated this fundamental text into Italian and extensively comment41!.
Another case was described by Lagrange,19 and it is known as the Lagrange–Poisson case, du
the extensive study done later by Poisson.39 This case can also be integrated by using Jac
elliptic functions.44 At the time, it seemed that other cases could easily be found and sim
integrated. In 1855, the Prussian Academy of Science proposed this topic for a competitio
nobody applied.4 The problem was so elusive that the German mathematicians called it the
ematical mermaid~die mathematische Nixe!.17 More than 30 years elapsed before the Bordin pr
was awarded to Kowalevski for finding and reducing to hyperelliptic quadratures the third c16

which is since known as the Kowalevski top. She solved the problem by looking for solu
which are single-valued meromorphic functions in the entire complex plane of the variablet.7 Her
method became what is now known as the Painleve´–Kowalevski ~or just Painleve´! method.12

Hawkins had established ‘‘the nature and extent of Jacobi’s influence upon Lie.’’9 It is a remark-
able coincidence that the mathematical mermaid can also be found by using Lie group ana
we show in the following.

The Euler–Poisson equations describing the motion of a heavy rigid body about a fixed
are16

ṗ5~~B2C!rq1mg~bzG2gyG!!/A,

q̇5~~C2A!pr1mg~gxG2azG!!/B,

ṙ 5~~A2B!pq1mg~ayG2bxG!!/C,
~10!

ȧ5br 2gq,

ḃ5gp2ar ,

ġ5aq2bp,

with A, B, C the principal moments of inertia,p(t),q(t),r (t) the components of the angula
velocity, m the mass of the body,g the acceleration of gravity,xG ,yG ,zG the coordinates of the
center of mass, anda(t),b(t),g(t) the component of the unit vertical vector. There are three
integrals for system~10!: conservation of energy, i.e.,

I 15 1
2 ~Ap21Bq21cr2!1mg~xGa1yGb1zGg! ~11!

conservation of the vertical component of the angular momentum, i.e.,

I 25Apa1Bqb1Crg ~12!

the length of the unit vertical vector, i.e.,

I 35a21b21g2~51!. ~13!
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If we apply our method to system~10!, then we find only the first integral of the unit vertica
vector which hasp,q,r as missing variables. Kowalevski found that if one imposes the follow
conditions on the parameters:

~1! A5B52C,
~2! zG50, and eitherxGÞ0 or yGÞ0

then there exists a fourth integral, i.e.,

I45Sp22q22mg
xGa2yGb

C D2

1S2pq2mg
xGb1yGa

C D2

. ~14!

We notice thatg andr are missing in~14!. Thanks to our method, we can find the Kowalevs
top by searching for a first integral which does not containg. First we deriveg from the second
equation of system~10!, i.e.,

g5
Bq̇1~A2C!pr1mgzGa

mgxG

which implies thatxG must be different from zero. We obtain the following system of fo
equations of first order, and one of second order:

ü15u̇1~Au1zG1~A2C!u3yG!/AxG2~A2B!~A2C!u1u2
2/BC1~A2C!2yGu2u3

2/ABxG

1~A2C!u1u2u3zG /BxG2~A2C!~B2C!u1u3
2/AB2~Au2xG2Cu3zG!

3~A2C!mgyGu4 /ABCxG1~A~A22C!u2xG1C~C22A!u3zG!mgu5 /ABC

1~xG
2 1zG

2 !mgu1u4 /BxG , ~15!

u̇252u̇1ByG /AxG1u3~~C2A!yGu21~B2C!xGu1!/AxG1mgzG~2u4yG1u5xG!/AxG ,
~16!

u̇35~~A2B!u1u21mg~u4yG2u5xG!!/C, ~17!

u̇452u̇1Bu1 /mgxG1~C2A!u1u2u3 /mgxG1~u3u5xG2u1u4zG!/xG , ~18!

u̇55u̇1Bu2 /mgxG1~A2C!u2
2u3 /mgxG1zGu2u4 /xG2u3u4 ~19!

with

u15q, u25p, u35r , u45a, u55b. ~20!

Now we apply Lie group analysis to system~15!–~19!. An operatorG

G5V~ t,u1 ,u2 ,u3 ,u4 ,u5!] t1 (
k51

5

Gk~ t,u1 ,u2 ,u3 ,u4 ,u5!]uk
~21!

is said to generate a Lie point symmetry group if its second prolongation

G
2

5G1 (
k51

5 S dGk

dt
2u̇k

dV

dt D ] u̇k
1S d

dt S dG1

dt
2u̇1

dV

dt D2ü1

dV

dt D ] ü1

applied to system~15!–~19!, on their solutions, is identically equal to zero, i.e.,

G
2
~15!u(15) – (19)50,

G
2
~16!u(15) – (19)50,
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G
2
~17!u(15) – (19)50, ~22!

G
2
~18!u(15) – (19)50,

G
2
~19!u(15) – (19)50.

The five determining equations~22! constitute an overdetermined system of linear partial diff
ential equations in the unknownsV,Gk(k51,5) In fact, they are polynomials inu̇1 , each coeffi-
cient of which must become identically equal to zero. In particular, the first determining equ
in ~22! is a polynomial of degree three foru̇1 . The coefficient of highest degree yields an equat
of parabolic type forV in four independent variablesu1 ,u2 ,u4 ,u5 , i.e.,

A2mg2xG
2 ]2V

]u1
2 22ABm2g2xGyG

]2V

]u1u2
22A2Bmgu1xG

]2V

]u1u4
12A2Bmgu2xG

]2V

]u1u5

1B2m2g2yG
2 ]2V

]u2
2 12AB2mgu1yG

]2V

]u2u4
22AB2mgu2yG

]2V

]u2u5
1A2B2u1

2 ]2V

]u4
2

22A2B2u1u2

]2V

]u4u5
1A2B2u2

2 ]2V

]u5
2 2A2BmgxG

]V

]u4
2AB2mgyG

]V

]u5
50. ~23!

Its three characteristic curves yield the following transformations:

u25s22
Bu1yG

AxG
viz. p5s22

BqyG

AxG
,

u45s42
Bu1

2

2mgxG
viz. a5s42

Bq2

2mgxG
, ~24!

u55s51Bu1

ByGu112AxGu2

2AmgxG
2 viz. b5s51Bq

ByGq12AxGp

2AmgxG
2

with s2 , s4 , ands5 new unknown functions oft.
As outlined in Sec. II, transformations~24! eliminateu̇1 from all the first order equations in

system~15!–~19!.
In fact, system~15!–~19! becomes

ü15~26A2BCu1ũ2
2xG

2 24A2BCu1xGũ2u3zG22A2Bmgu1xG
2 yGũ522A2C2u3xGu1ũ2zG

12A2Bmgu1xGyG
2 ũ423A2BCu1

2yGu3zG12A2BCu̇1u3xGyG25A2BCu1
2yGũ2xG

13AB3u1
3yG

2 22A2BCu1u3
2yG

2 2A2BCu1
3xG

2 22A2BCu1u3
2xG

2 22AC3u3
2xG

2 u1

12A2CmgxGu1ũ4zG
2 12A2CmgxG

3 u1ũ424A2CmgxG
2 u3zGũ524A2CmgxG

3 ũ2ũ5

12A2CmgxGu3zGũ4yG27A2B2yGu1
2ũ2xG12A2CmgxG

2 ũ2ũ4yG24A2C2u3
2xGũ2yG

23A2B2yG
2 u1

32B2C2yGu1
2u3zG22u1A4ũ2

2xG
2 12A3ũ2xGCu3

2yG12A3ũ2xGCu1u3zG

12A3ũ2
2xG

2 Cu122u1BC3yG
2 u3

215A3ũ2xGBu1
2yG22A3ũ2xG

2 mgũ4yG14A3ũ2
2xG

2 Bu1

14ABCmgu1xG
2 yGũ522ABCmgu1xGyG

2 ũ422ABC2u̇1u3xGyG12ABC2u1xGũ2u3zG

13ABC2u1
2yGu3zG14ABC2u1u3

2yG
2 12ABC2u1u3

2xG
2 12AB2Cu1

2yGu3zG

110AB2Cu1
2yGũ2xG12AC3u3

2xGũ2yG12AC2mgu3xG
2 zGũ524B3CyG

2 u1
3
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22AC2mgu3xGzGũ4yG12A2C2u3
2xG

2 u12A2BCu1
3zG

2 13AB2Cu1
3yG

2

12A2BCu1xGu̇1zG12A3ũ2xG
3 mgũ5!/2A2BCxG

2 , ~25!

u8 25~22A2ũ2u3xGyG1ABu1
2yGzG12ABu1ũ2xGzG12ABu1u3xG

2 12ABu1u3yG
2 22ACu1u3xG

2

12ACũ2u3xGyG22Amgũ4xGyGzG12Amgũ5xG
2 zG22BCu1u3yG

2 !/2A2xG
2 , ~26!

u̇35~2A2u1ũ2xG23ABu1
2yG24Bu1ũ2AxG12Amgũ4xGyG22ũ5xG

2 Amg13B2yGu1
2!/2ACxG ,

~27!

u8 45~22A2u1ũ2u3xG1ABu1
3zG12ABu1

2u3yG12ABu1ũ2u3xG12ACu1ũ2u3xG

22Amgu1ũ4xGzG12Amgu3ũ5xG
2 2B2u1

2u3yG22BCu1
2u3yG!/2AmgxG

2 , ~28!

u8 55~2A2ũ2
2u3xG2ABu1

2ũ2zG1ABu1
2u3xG22ABu1ũ2u3yG22ACũ2

2u3xG12Amgũ2ũ4xGzG

22Amgu3ũ4xG
2 22B2u1

2ũ2zG22B2u1
2u3xG12BCu1

2u3xG12BCu1ũ2u3yG

22Bmgu1ũ5xGzG!/2AmgxG
2 , ~29!

with

ũ25s2 , ũ45s4 , ũ55s5 . ~30!

We now apply Lie group analysis to system~25!–~29!. An operatorG̃

G̃5Ṽ~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] t1G̃1~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!]u1
1G̃2~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ2

1G̃3~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!]u3
1G̃4~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ4

1G̃5~ t,u1 ,ũ2 ,u3 ,ũ4 ,ũ5!] ũ5

~31!

is said to generate a Lie point symmetry group if its second prolongationG̃
2

applied to system

~25!–~29!, on their solutions, is identically equal to zero, i.e.,

G̃
2
~25!u(25) – (29)50,

G̃
2
~26!u(25) – (29)50,

G̃
2
~27!u(25) – (29)50, ~32!

G̃
2
~28!u(25) – (29)50,

G̃
2
~29!u(25) – (29)50.

The five determining equations~32! constitute an overdetermined system of linear par
differential equations in the unknownsṼ, G̃k(k51,5) In fact, they are polynomials inu̇1 , each
coefficient of which must become identically equal to zero. In particular, the fifth determi
equation in~32! is a polynomial of degree one foru̇1 . We call its two coefficientsc5k1 andc5k0.
For the sake of simplicity, we assumeG̃k50,]Ṽ/]t 50. Then, the coefficient of degree one, i.e
c5k1, yields
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]Ṽ

]u1
50.

Now, c5k0 is a polynomial of degree five inu1 . Therefore, its coefficients, call them
c5m5,c5m4,c5m3,c5m2,c5m1,c5m0, must become identically equal to zero. The coefficient
degree five inu1 , i.e., c5m5, yields

]Ṽ

]ũ4
A2B2CzG~2~A12B!ũ2zG1~A22B12C!u3xG!50 ~33!

which gives the condition on the parameter

zG50. ~34!

Then, the coefficient of degree four inu1 , i.e., c5m4, yields

2S 3~A2B!
]Ṽ

]u3
mgyGxG2~A22B12C!

]Ṽ

]ũ5
Cu3xG2~2A2B22C!

]Ṽ

]ũ4
Cu3yGD

3~A22B12C!AB2u3xG50 ~35!

which gives the condition on the parameters

A52B22C. ~36!

Then, the coefficient of degree three inu1 , i.e., c5m3, becomes

12S ]Ṽ

]u3
mgxG2

]Ṽ

]ũ4
Cu3D ~2B23C!~B2C!~B22C!B2ũ2u3yG

2 50 ~37!

which gives the further condition on the parameters

B52C. ~38!

Thus, we have found the Kowalevski top. We also notice that either condition 2B53C or B
5C leads to the Lagrange top. Finally, we are left with two linear first order partial differe
equations inṼ5Ṽ(ũ2 ,u3 ,ũ4 ,ũ5), the coefficient of degree two inu1 , i.e., c5m2,

2S ]Ṽ

]ũ4
xG2

]Ṽ

]ũ5
yGDCu3ũ224

]Ṽ

]u3
mgxG

2 ũ21~xG
21yG

2!
]Ṽ

]ũ2
mgu350 ~39!

and the coefficient of degree one inu1 , i.e., c5m1

2C~Cũ2
22mgũ4xG2mgũ5yG!

]Ṽ

]ũ4
xGu3ũ2

24C~Cũ2
22mgũ4xG!

]Ṽ

]ũ5
yGu3ũ2

~40!

22~2Cũ2
2xG22mgũ4xG

2 1mgũ4yG
2 2mgũ5xGyG!

]Ṽ

]u3
mgxGũ2
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1~Cũ2
2xG

2 12Cũ2
2yG

2 2mgũ4xG
3 2mgũ4xGyG

2 !
]Ṽ

]ũ2
mgu350.

If Ṽ satisfies equations~39! and~40!, then it is easy to prove that the determining equations~32!
are identically satisfied by considering conditions~34!, ~36!, ~38! as well.

From ~39! it is easy to obtain thatṼ5Ṽ(h1 ,h2 ,h3) with

h15u3
21

4xG
2 ũ2

2

xG
2 1yG

2 , h25ũ42
CxGũ2

2

mg~xG
2 1yG

2 !
, h35ũ51

CyGũ2
2

mg~xG
2 1yG

2 !
. ~41!

Then,~40! becomes

2mg~yGh22xGh3!
]Ṽ

]h1
1C

]Ṽ

]h2
h32C

]Ṽ

]h3
h250. ~42!

Its characteristic curves are

j15h11
2mg

C
~yGh31xGh2!, j25h2

21h3
2. ~43!

Finally, we have thatṼ5C(j1 ,j2) with C an arbitrary function ofj1 ,j2 , and consequently
operator

G̃5C~j1 ,j2!] t ~44!

is a generator of a Lie point symmetry for system~25!–~29!. Transforming~43! into the original
unknown functions by using~41!, ~30!, ~24!, and~20! yields

j15
2

C S C

2
~2p212q21r 2!1mg~xGa1yGb! D ,

j25C2
S p22q22mg

xGa2yGb

C D 2

1S 2pq2mg
xGb1yGa

C D 2

m2g2~xG
2 1yG

2 !

which correspond to the first integral of conservation of energy~11!, and that derived by Kowa-
levski ~14!, respectively.

Can other cases of integrability~viz. integration by quadrature! be obtained by using ou
method? We leave the answer to a future paper. In Ref. 43, the application of our method le
integrable case for a nonlinear system of three ordinary differential equations which doe
possess the Painleve´ property.

IV. FIRST INTEGRALS OF THE KOWALEVSKI TOP

We apply our method to the Kowalevski top itself which corresponds to the following
ditions on the parameters:

~1! A5B52C,
~2! yG5zG50, xG.0.

The condition onyG can be added without loss of generality. Then, system~10! become
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ṗ5rq/2,

q̇52pr/21mgxGg/2C,

ṙ 52mgxGb/C,
~45!

ȧ5br 2gq,

ḃ5gp2ar ,

ġ5aq2bp.

The first integrals for the Kowalewski top are

~1! conservation of energy, i.e.,

I15
C

2
~2p212q21r2!1mg xGa; ~46!

~2! conservation of the vertical component of the angular momentum, i.e.,
I25C~2pa12qb1rg!; ~47!

~3! the length of the unit vertical vector, i.e.,
I35a21b21g2~51!; ~48!

~4! the first integral derived by Kowalevski, i.e.,

I45Sp22q22
xGamg

C D2

1S2pq2
xGbmg

C D2

. ~49!

If our method is applied to~45!, then all the first integrals can be obtained, apart from~47!
which has all the unknown variablesp,q,r ,a,b,g appearing in its expression. Let us observe t

b does not appear inI 1 ,
g does not appear in bothI 1 and I 4 ,
p does not appear inI 3 .
In the following, we eliminatea,b,g,p from system~45! one at a time.

A. Eliminating a

First we show a negative result: no first integral obtained. Let us assume that we do not
any of the first integrals. Therefore, we do not knowa priori that none of the first integrals can b
obtained by derivinga. We derivea from the fifth equation of system~45!, i.e.,

a5
pg2ḃ

r

and obtain the following system of four equations of first order, and one of second order:

ü15~22Cu1u3
322Cu1u3u4

222Cu̇1u2u413Cu2u3
2u5

12Cu2u4
2u522mgu1u̇1xG12mgu1u4u5xG!/2Cu3 ,

u̇25~2Cu3u41mgu5xG!/2C,
~50!

u̇35~2mgu1xG!/C,

u̇45~u2u3!/2,

u̇55~2u1u3u42u̇1u21u2u4u5!/u3
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with

u15b, u25q, u35r , u45p, u55g. ~51!

If we apply Lie group analysis to system~50!, then we obtain a determining equation of parabo
type for V in two independent variables. Its characteristic curve is

u5u31u1u2

which yields the following transformation:

u55
s52u2u1

u3
viz. g5

s52qb

r
~52!

with s5 a new unknown function oft. Then, system~50! transforms into

ü15~23Cu1u2
2u3

222Cu1u2
2u4

222Cu1u3
422Cu1u3

2u4
222Cu̇1u2u3u413Cu2u3

2ũ5

12Cu2u4
2ũ522mgu1

2u2u4xG22mgu1u̇1u3xG12mgu1u4ũ5xG!/2Cu3
2,

u̇25~2Cu3
2u42mgu1u2xG1mgũ5xG!/2Cu3 ,

u̇35~2mgu1xG!/C, ~53!

u̇45u2u3/2,

u8 55~22Cu1u2
2u423Cu1u3

2u412Cu2u4ũ51mgu1
2u2xG2mgu1ũ5xG!/2Cu3 ,

with

ũ55s5 . ~54!

If we apply Lie group analysis to system~53!, then we obtain a two dimensional Lie symmet
algebra generated by the following two operators:

G15
]

]t
, ~55!

G252t
]

]t
12u1

]

]u1
1u2

]

]u2
1u3

]

]u3
1u4

]

]u4
13ũ5

]

]ũ5
~56!

which in the original unknown functions correspond to

G15
]

]t
, ~57!

G252t
]

]t
1p

]

]p
1q

]

]q
1r

]

]r
12a

]

]a
12b

]

]b
12g

]

]g
. ~58!

This is a trivial finding.
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B. Eliminating b

We deriveb from the third equation of system~45!, i.e.,

b52
Cṙ

mgxG

and obtain the following system of four equations of first order, and one of second order:

ü15~mgxG~u1u42u3u5!/C,

u̇25~2Cu1u31mgxGu5!/2C,

u̇35u1u2/2, ~59!

u̇45~2Cu1u̇12mgxGu2u5!/mgxG ,

u̇55~Cu̇1u31mgxGu2u4!/mgxG

with

u15r , u25q, u35p, u45a, u55g. ~60!

If we apply Lie group analysis to system~59!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:

u45
s42Cu1

2

2mg xG
viz. a5

s42Cr2

2mg xG
,

~61!

u55
Cu3u11s6

mg xG
viz. g5

Cpr1s6

mg xG

with s4 ands6 new unknown functions oft. Then, system~50! transforms into

ü15~2Cu1
322Cu1u3

21u1ũ422u3ũ5!/2C,

u̇25ũ5/2C,

u̇35u1u2/2, ~62!

u8 4522u2~Cu1u31ũ5!,

u8 55u2~22Cu1
21ũ4!/2

with

ũ45s4 , ũ55s6 . ~63!

If we apply Lie group analysis to system~62!, then we obtain two first order partial differentia
equations forV:

]V

]u3
24Cu3

]V

]ũ4
50, ~64!
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]V

]u2
24Cu2

]V

]ũ4
50, ~65!

with V[V(u2 ,u3 ,ũ4). From ~64! it is easy to obtain thatV[V(h,u2) with

h52Cu3
21ũ4. ~66!

Then,~65! becomes

]V

]u2
24Cu2

]V

]h
50. ~67!

Its characteristic curve is

j152Cu2
21h. ~68!

Finally, we have thatV5c(j1) with c an arbitrary function ofj, and consequently operator

G15c~j1!] t ~69!

is a generator of a Lie point symmetry for system~62!. Transforming~68! into the original
unknown functions by using~66!, ~63!, ~61!, ~60! yields

j15
C

2
~2p212q21r 2!1mg xGa

which is exactly the first integral of conservation of energy~46!. In addition, we have algorith-
mically derived that~69! is a generator of a Lie point symmetry for system~45!.

C. Eliminating g

We deriveg from the second equation of system~45!, i.e.,

g5
C~2q̇1pr !

mgxG

and obtain the following system of four equations of first order, and one of second order:

ü15u1~2Cu3
212mgu4xG!/4C,

u̇25u1u3/2,

u̇352mgu5xG /C, ~70!

u̇45~22Cu1u̇12Cu1u2u31mgu3u5xG!/mgxG ,

u̇55~2Cu̇1u21Cu2
2u32mgu3u4xG!/mgxG

with

u15q, u25p, u35r , u45a, u55b. ~71!

If we apply Lie group analysis to system~70!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:
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u45
s42Cu1

2

mgxG
v iz. a5

s42Cq2

mgxG
,

~72!

u55
2Cu1u21s5

mgxG
v iz. b5

2Cpq1s5

mgxG

with s4 ands5 new unknown functions oft. Then, system~70! transforms into

ü15@u1~22Cu1
22Cu3

212ũ4!#/4C,

u̇25u1u3/2,

u̇35~22Cu1u22ũ5!/C, ~73!

u8 45u3~Cu1u21ũ5!,

u8 55u3~Cu2
22ũ4!

with

ũ45s4 , ũ55s5 . ~74!

If we apply Lie group analysis to system~73!, then we obtain two first order partial differentia
equations forV:

u3

]V

]u2
24u2

]V

]u3
14Cu2u3

]V

]ũ4
50, ~75!

8Cu2ũ5

]V

]u3
2Cu3ũ5

]V

]ũ4
1Cu3~ ũ42Cu2

2!
]V

]ũ5
50 ~76!

with V[V(u2 ,u3 ,ũ4 ,ũ5). From ~75! it is easy to obtain thatV[V(h1 ,h2 ,ũ5) with

h154u2
21u3

2 , h25Cu2
22ũ4 . ~77!

Then, Eq.~76! becomes

2Cu3ũ5

]V

]h1
1Cu3ũ5

]V

]h2
2Cu3~u42Cu2

2!
]V

]ũ5
50. ~78!

Its characteristic curves are

j15Ch122h2 , j25h2
21ũ5

2. ~79!

Finally, we have thatV5C(j1 ,j2) with C an arbitrary function ofj1 , j2 , and consequently
operator

G15C~j1 ,j2!] t ~80!

is a generator of a Lie point symmetry for system~73!. Transforming~79! into the original
unknown functions by using~77!, ~74!, ~72!, ~71! yields

j15
C

2
~2p212q21r 2!1mg xGa,
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j25S p22q22
xGamg

C D 2

1S 2pq2
xGbmg

C D 2

which are exactly the first integral of conservation of energy~46!, and that derived by Kowalevsk
~49!, respectively. In addition, we have algorithmically derived that~80! is a generator of a Lie
point symmetry for system~45!.

D. Eliminating p

We derivep from the second equation of system~45!, i.e.,

p5
mggxG22Cq̇

Cr

and obtain the following system of four equations of first order, and one of second order:

ü15u1~2Cu3
212mgu4xG!/4C,

u̇25~Cu1u3u412Cu̇1u52mgu2u5xG!/Cu3 ,

u̇352mgu5xG /C, ~81!

u̇452u1u21u3u5 ,

u̇55~22Cu̇1u22Cu3
2u41mgu2

2xG!/Cu3

with

u15q, u25g, u35r , u45a, u55b. ~82!

If we apply Lie group analysis to system~81!, then we obtain a determining equation of parabo
type for V in three independent variables. Its two characteristic curves yield the following t
formations:

u25As6 cos~2s522u3! viz. g5As6 cos~2s522r !,
~83!

u55As6 sin~2s522u3! viz. b5As6 sin~2s522r !

with s6 ands5 new unknown functions oft. Then, system~81! transforms into

ü15u1~2Cu3
212mgu4xG!/4C,

u8 252u4Aũ2 cos~2u322ũ5!@ tan~2u322ũ5!u31u1#,

u̇35Aũ2 sin~2u322ũ5!mgxG /C, ~84!

u̇452Aũ2 cos~2u322ũ5!@ tan~2u322ũ5!u31u1#,

u8 55Aũ2 cos~2u322ũ5!@2~Cu3
2u42mgũ2xG!22Cu̇1ũ2

1~Cu1u412mgũ2xG!tan~2u322ũ5!u3#/2Cũ2u3

with

ũ25s6 , ũ55s5 . ~85!
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If we apply Lie group analysis to system~84!, then we obtain a determining equation of parabo
type for V in two independent variables. Its characteristic curve yields the following transfo
tion:

ũ55
ss52u1

u3
v iz.

g5As6 cosS 2
ss52q2r 2

r D
b5As6 sinS 2

ss52q2r 2

r D , ~86!

with ss5 a new unknown function oft. Then, system~84! transforms into

ü15u1~2Cu3
212mgu4xG!/4C,

u8 252u4Aũ2 cos~~2u112u3
222û5!/u3!@u11tan~~2u112u3

222û5!/u3!u3#,

u̇35Aũ2 sin~~2u112u3
222û5!/u3!mgxG /C, ~87!

u̇452Aũ2 cos~~2u112u3
222û5!/u3!@u11tan~~2u112u3

222û5!/u3!u3#,

u̇̂55Aũ2 cos~~2u3
222û512u1!/u3!@@~2u3

212û522u1!mgũ2xG1Cu1u3
2u4#

3tan~~2u3
222û512u1!/u3!1~mgũ2xG2cu3

2u4!u3#/2cũ2u3

with

û55ss5 . ~88!

If we apply Lie group analysis to system~87!, then we obtain one first order partial differenti
equation forV:

]V

]u4
22u4

]V

]ũ2
50 ~89!

with V[V(ũ2 ,u4). Its characteristic curve is

j15ũ21u4
2. ~90!

Finally, we have thatV5c(j1) with c an arbitrary function ofj1 , and consequently operator

G15c~j1!] t ~91!

is a generator of a Lie point symmetry for system~87!. Transforming~90! into the original
unknown functions by using~88!, ~86!, ~85!, ~83!, ~82! yields

j15a21b21g2

which is exactly the first integral of the length of the unit vertical vector~48!. In addition, we have
algorithmically derived that~91! is a generator of a Lie point symmetry for system~45!.

V. KEPLER PROBLEM

In Ref. 33, Nucci’s method30 was used to find symmetries additional to those reported
Krause18 in his study of the complete symmetry group of the Kepler problem. A consequen
the application of Nucci’s method was the demonstration of the group theoretical relatio
between the simple harmonic oscillator and the Kepler problem. In Ref. 33, polar coordinate
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used, and Nucci’s method was not applied to the three-dimensional case with the purp
finding first integrals. We do it here by considering Cartesian coordinates.

The equations of motion of the Kepler problem are given by the following well-known th
equations of second order:

ẍ152mx1 /~~x1
21x2

21x3
2!3/2!,

ẍ252mx2 /~~x1
21x2

21x3
2!3/2!, ~92!

ẍ352mx3 /~~x1
21x2

21x3
2!3/2!.

The first integrals for the Kepler problem are conservation of energyE, conservation of angula
momentumK , the Laplace–Runge–Lenz vectorL . None of the unknownsx1 ,x2 ,x3 ,ẋ1 ,ẋ2 ,ẋ3 are
missing in the expression ofE and the components ofL . This is not true for the three componen
of K , i.e.,

K15x3ẋ22 ẋ3x2 , ~93!

K25x3ẋ12 ẋ3x1 , ~94!

K35x1ẋ22 ẋ1x2 . ~95!

Therefore, we can only obtain the three components ofK using our method. However, neitherE
nor L are needed to reduce system~92! to a linear oscillator, as we show in the following. Let u
transform system~92! into a system of six equations of first order

ẇ15w4 ,

ẇ25w5 ,

ẇ35w6 ,
~96!

ẇ452mw1 /~~w1
21w2

21w3
2!3/2!,

ẇ552mw2 /~~w1
21w2

21w3
2!3/2!,

ẇ652mw3 /~~w1
21w2

21w3
2!3/2!

with

w15x1 , w25x2 , w35x3 , w45 ẋ1 , w55 ẋ2 , w65 ẋ3 . ~97!

Consequently, the components of the angular momentum become

K15w3w52w6w2 , ~98!

K25w3w42w1w6 , ~99!

K35w1w52w4w2 . ~100!

We choose one of the dependent variables to be the new independent variabley in order to reduce
the order of system~96! by one.30 We takew35y. Then, system~96! becomes the following
nonautonomous system of five first order ordinary differential equations:

w185w4 /w6 ,
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w285w5 /w6 ,

w4852mw1 /~w6~w1
21w2

21y2!3/2!, ~101!

w5852mw2 /~w6~w1
21w2

21y2!3/2!,

w6852my/~w6~w1
21w2

21y2!3/2!

with prime denoting differentiation with respect toy. Let us observe that
w4 does not appear inK1 ,
w5 does not appear inK2 ,
w6 does not appear inK3 ,
We should remark that other variables are missing too. For example,w1 is also missing inK1 .

However, our method will yield the result whatever the choice of a missing variable. In
following, we eliminatew4 ,w5 ,w6 from system~101! one at a time.

A. Eliminating w 4

We derivew4 from the first equation of system~101!, i.e.,

w45w18w6

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495m~u48y2u4!/~u3
2~u2

21u4
21y2!3/2!,

u3852my/~u3~u2
21u4

21y2!3/2!,
~102!

u285u1 /u3 ,

u1852mu2 /~u3~u2
21u4

21y2!3/2!

with

u45w1 , u25w2 , u35w6 , u15w5 . ~103!

If we apply Lie group analysis to system~102!, then after several reductions we obtain one fi
order partial differential equations forG3 ,

u1

]G3

]u2
1u3

]G3

]y
50 ~104!

with G3[G3(u1 ,u2 ,u3 ,y). Its solution isG35c(j1) with c an arbitrary function of

j15u3u22yu1 . ~105!

Transforming~105! into the original unknown functions by using~97!, ~103! yields

j15 ẋ3x22 ẋ2x3

which is exactly the first component of the angular momentum~93!.
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B. Eliminating w 5

We derivew5 from the second equation of system~101!, i.e.,

w55w28w6

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495m~2u41u48y!/~u2~u1
21u4

21y2!3/2!,

u3852mu1 /~u2~u1
21u4

21y2!3/2!,
~106!

u2852my/~~u1
21u4

21y2!3/2!,

u185u3 /u2

with

u45w2 , u25w6 , u35w4 , u15w1 . ~107!

If we apply Lie group analysis to system~106!, then after several reductions we obtain one fi
order partial differential equation forG2 ,

u3

]G2

]u1
1u2

]G2

]y
50 ~108!

with G2[G2(u1 ,u2 ,u3 ,y). Its solution isG25f(j2) with f an arbitrary function of

j25yu32u1u2 . ~109!

Transforming~109! into the original unknown functions by using~97!, ~107! yields

j25x3ẋ12 ẋ3x1

which is exactly the second component of the angular momentum~94!.

C. Eliminating w 6

We derivew6 from the first equation of system~101!, i.e.,

w65
w4

w18

and obtain the following nonautonomous system of three equations of first order, and o
second order:

u495mu48
2~2u41u48y!/~u1

2~u2
21u4

21y2!3/2!,

u3852mu2u48/~u1~u2
21u4

21y2!3/2!,
~110!

u285u3u48/u1 ,

u1852mu4u48/~u1~u2
21u4

21y2!3/2!

with
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u45w1 , u25w2 , u35w5 , u15w4 . ~111!

If we apply Lie group analysis to system~110!, then after several reductions we obtain one fi
order partial differential equation forG3 ,

u3

]G3

]u2
1u1

]G3

]u1
50 ~112!

with G3[G3(u1 ,u2 ,u3 ,u4) and withG3[G3(u1 ,u2 ,u3 ,y). Its solution isG35w(j3) with w an
arbitrary function of

j35u1u22u4u3 . ~113!

Transforming~113! into the original unknown functions by using~97!, ~111! yields

j35 ẋ2x12 ẋ1x2

which is exactly the third component of the angular momentum~94!.
Now let us derivew5 , w4 , andw2 from ~98!, ~99! and ~100!, i.e.,

w55
2j3w6y1j2j11j1w1w6

j2y
, ~114!

w45
j21w1w6

y
, ~115!

w25
2j3y1j1w1

j2
~116!

with j1 , j2 , j3 new unknown functions ofy. Substituting~114!, ~115!, ~116! into ~101!, and
deriving w6 from the first equation yields the following system of three equations of first or
and one of second order:

u495~mu2~2u4
313u4

2u48y23u4u48
2y21u48

3y3!!/~~u1
2y222u3u1u4y1u2

2u4
21u2

2y21u3
2u4

2!3/2!,

u3850,
~117!

u2850,

u1850

with

u45w1 , u35j3 , u25j2 , u15j1 .

It is easy to show that system~117! admits an eleven-dimensional Lie symmetry algebra. In fa
the first equation of~117! itself admits a Lie symmetry algebra of dimension eight, which me
that it is is linearizable through a point transformation.24 Thus, we have reduced the equations
motion of the Kepler problem to the harmonic oscillator33,35 by using Lie group analysis.

VI. FINAL COMMENTS

We have found that Lie group analysis yields the first integrals admitted by any syste
ordinary differential equations if the method developed by Nucci30 is applied, the only limitation
being the absence of at least one of the unknowns in each first integral.
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Is it possible to obtain all of the first integrals by means of Lie group analysis? Also, wh
the link between Painleve´ method and Lie group analysis?34 In addition, can Lax pairs be found b
Lie group analysis? So far these are open questions that we hope to address in future wo

Let us conclude by underlining that the application of Nucci’s method to the Kowalevsk
have led us to understand how first integrals can be found by using Lie group analysis. In
Cooke4 wrote ‘‘Kowalevskaya’s work is an ingenious application of mathematics to a syste
equations of great mathematical interest ... but since the case to which it applies is rather s
the details of her arguments are no longer worth troubling about.’’ About the same time, a r
of interest into integrable problems of mechanics has led to numerous papers on the Kow
top. Just to cite a few, see Refs. 37, 11, 8, 1, 3, 15 and the entire No. 11 issue of J. Phys34
~2001!.
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38Poinsot, L., ‘‘Théorie nouvelle de la rotations des corps,’’ J. Math. Pures Appl. Se´r. I, 9-129, 289–336~1851!.
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Wave scattering in waveguides
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The scattering of scalar waves by objects located inside a waveguide or a cavity is
discussed using the method of pseudopotentials. Pseudopotentials were introduced
to simulate short-range potentials in quantum mechanics and proved useful in
many-body problems and in problems involving multicentered potentials. In this
work it is shown that this approach can also be used to describe the scattering of
classical scalar waves by objects confined to the interior of a waveguide or a cavity
in terms of the scattering amplitudes of those objects in an extended medium.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1563847#

I. INTRODUCTION

In many areas of applied physics one encounters the problem of modeling the scatte
wave fields by objects in the interior of a spatially limited domain. For example, in underw
acoustics the active sonar detection of submerged objects depends on detecting the acou
scattered by the object. In general this problem cannot be reduced to just the problem
scattering of a superposition of incident plane waves. One may have to include the scatteri
rescattering of waves reflected from the surface and the bottom. One also would like to e
this scattering process in terms of the plane wave scattering amplitudes computed in
bounded, uniform, medium. These scattering amplitudes can be computed independently a
as inputs in one’s calculations. What makes these problems difficult is the need to satisfy bo
conditions on the boundaries of the medium and on the surface of the scattering object. Eve
relatively simple case of a perfectly reflecting sphere in an uniform medium between two re
ing parallel planes the scattered field does not have a mathematically simple expression a
in the case of the same sphere in an extended medium of similar physical properties.

The pseudopotential introduced by Huang and Yang1 as a generalization of the Fermi pseud
potential, offers a convenient approach to this problem since from the start it separates the
mentation of both sets of boundary conditions. The scattering properties of the object ar
sumed in a series of field-dependent source terms added to the Helmholtz equation, the sol
this equation must then satisfy proper boundary conditions on the medium’s boundaries. B
its original use in obtaining thermodynamic properties of the hard-sphere Bose gas, recen
Huang and Yang pseudopotential has been used to discuss the properties of confined, low-
atomic gases at very low temperature.2

An early application of the pseudopotential method to classical wave scattering can be
in a 1964 article by Chen.3 In that article the pseudopotential of Liu and Wong4 for a Dirichlet
sphere~i.e., a hard sphere in quantum mechanics or a pressure release sphere in acoustics! is used
to study scattering from such a sphere imbedded in a random medium. In this article the L
Wong pseudopotential is also discussed. It is shown that, despite it being formally distinct
the Huang and Yang pseudopotential, it does lead to the same equations for the prob
scattering in confined media.

In Sec. II of this article the pseudopotential of Huang and Yang is introduced and gener
to the case of arbitrary scattering objects. As an example this method is applied to the prob
scattering of waves generated by a point source from a perfectly reflecting sphere where b
21330022-2488/2003/44(5)/2133/16/$20.00 © 2003 American Institute of Physics
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source and the scattering sphere are inside a larger sphere. A particular case of this pro
exactly solvable and can be used as a check on the applicability of the pseudopotential ap
In Sec. III the pseudopotential of Liu and Wong is introduced. Its generalization to arbi
scattering objects is presented and it is applied to the same problem discussed in Sec. II t
that it leads to the same equations for the scattered field. It is shown in Sec. IV how to deri
scattering equations for the case of wave scattering by multiple objects using the Liu and
pseudopotential. In Sec. V the method of Sec. I is applied to the case of an object inside a
planar waveguide. Such waveguide, a uniform medium contained between two parallel pla
an idealized version of the waveguides encountered in ocean acoustics. The physical impli
of the equations obtained for the scattered field are discussed. In Sec. VI the results are s
rized and compared with other works on similar problems.

II. THE GENERALIZED PSEUDOPOTENTIAL OF HUANG AND YANG

In a seminal article in 1957, Huang and Yang1 showed that in the case of a scalar wa
scattered by a Dirichlet sphere~i.e., the full wave field, incident plus scattered wave, vanishes
the surface of the sphere!, the full wave field satisfies the following equation:

@¹21k2#c~r !52(
l 50

`

(
m52 l

l
@~2l 11!!! #2

k2l 11@~2l 11!! #
tan~h l !Ylm~ r̂ !

d~r !

r l 12 S ]

]r D
2l 11

@r l 11c lm~r !#,

~2.1!

c lm~r !5E dr̂ Ylm~ r̂ !* c~r !. ~2.2!

In other words, Huang and Yang showed that the well-known expression for the full wave fi
terms of the partial wave scattering phase shifts,

c~r !5(
l 50

`

(
m52 l

l

Alm@ j l~kr !2tan~h l !nl~kr !#Ylm~ r̂ !, tan~h l !5
j l~ka!

nl~ka!
~2.3!

satisfies Eq.~2.1!, that is, the boundary conditions on the surface of the scattering spher
implicit in the field-dependent source terms on the right-hand side of Eq.~2.1!. In Eqs.~2.1!–~2.3!,
k is the wave number anda is the radius of the sphere. Standard notations are used fo
spherical harmonics and the spherical Bessel and Neumann functions.

The wave equation with the pseudopotential is not a way of solving the problem of scat
by a single target. It is an identity satisfied by the solution to such a problem. Notice tha
scattering phase shifts are inputs and not the final result of the calculation. However this eq
can be used within any volume, bounded or not, as the pseudopotential vanishes away fr
target’s position. In the presence of boundaries this equation provides a way of includin
effects of the volume’s boundaries on the scattering by the target. To solve it the Green fu
for the Helmholtz equation~i.e., the equation without the pseudopotential! that satisfies appropri
ated boundary conditions at the volume’s boundaries is needed.

It is clear from the article by Huang and Yang1 that Eq.~2.1! can be generalized to the case
arbitrary scattering objects. For nonspherical objects one introduces the full wave field in te
the scattering amplitude outside the circumscribing sphere. By circumscribing sphere it is
the sphere with the shortest diameter that fully encases the object. Outside this sphere th
field is a superposition of spherical harmonics and spherical Bessel and Hankel functions:

c~r !5 (
l 850

`

(
m852 l 8

l

a l 8m8F j l 8~kr !Yl 8m8~ r̂ !1 i(
l 50

`

(
m52 l

l

Tlm,l 8m8hl
~1!~kr !Ylm~ r̂ !G , ~2.4!

where
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Tlm,l 8m85
k

4p
i l 2 l 9E dp̂ Ylm* ~ p̂!E dq̂ Yl 8m8~ q̂! f ~ p̂,q̂!. ~2.5!

In Eq. ~2.5! f (p̂,q̂) is the scattering amplitude defined in the usual way in terms of the asymp
limit for r→` of the full wave field created by the scattering of an incident plane wave by
object.5

In order to derive the wave equation with pseudopotential in the case of an arbitrary sca
object it is convenient to express Eq.~2.4! in terms of spherical Bessel and Neumann functio
From Eq.~2.4! one obtains

c~r !5 (
l 8m8

(
lm

Ylm~ r̂ !@ j l~kr !~ I 1 iT ! lm,l 8m82nl~kr !Tlm,l 8m8#a l 8m8 . ~2.6!

Introducing now a new set of coefficients,Alm5( l 8m8(I 1 iT) lm,l 8m8a l 8m8 or, in operator notation,
A5(I 1 iT)a, one obtains a generalization of Eq.~4! in the article by Huang and Yang1

c~r !5(
lm

Ylm~ r̂ !F j l~kr !Alm2nl~kr !S T
I

I 1 iT
AD

lm
G . ~2.7!

The same technique used by Huang and Yang to derive Eq.~2.1! for the sphere can be used
obtain from the expression in Eq.~2.7! the following equation in the case of an arbitrary scatter
object:

@¹21k2#c~r !52(
l 50

`

(
m52 l

l
~2l 11!!!

kl 11 Ylm~ r̂ !
d~r !

r l 12 S T
I

I 1 iT
AD

lm

, ~2.8!

where

Alm5
~2l 11!!!

kl~2l 11!!
] r

2l 11@r l 11c lm~r !# r 50 . ~2.9!

The procedure to obtain equations describing scattering in a general case can be form
without a specific expression for the Green function of the Helmholtz equation. This G
function for the cases of interest in this article, say a uniform fluid contained in a finite volum
a uniform fluid inside an extended waveguide such as the planar one mentioned in the introd
and discussed in Sec. IV, obey the Helmholtz equation plus appropriate boundary conditio

@¹21k2#G0~r ,r0!5d~r2r0!. ~2.10!

In the case of a uniform mediumG0(r ,r0) can be written as

G0~r ,r0!5g~r2r0!1G0
NS~r ,r0!, g~r !52

eikr

4pr
. ~2.11!

That is, the Green function inside a confining volume or in a waveguide can be split into two
a singular one, which is just the Green function in the unbounded medium, and a nonsingul
enforcing the boundary conditions.

In the presence of a scattering object inside the confined spatial region, the Green fu
obeys a wave equation with pseudopotential and satisfies the same boundary conditi
G0(r ,r0):
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@¹21k2#G~r ,r0!5d~r2r0!2(
l 50

`

(
m52 l

l H ~2l 11!!!

kl 11 FYlm~ ŝ!
d~s!

sl 12 S T
I

I 1 iT
AD

lm
G

s5r2rT

J .

~2.12!

In the above equationr is the observation point,r0 is the position of the point source andrT is the
position of the scattering object. TheAlm are given by a generalization of Eq.~2.9!:

Alm5
~2l 11!!!

kl~2l 11!!
]s

2l 11Fsl 11E dt̂ Ylm~ t̂!* G~rT1st̂,r0!G
s50

. ~2.13!

The Green function of the Helmholtz equation,G0(r ,r0), is now used to obtain a Lippmann
Schwinger integral equation:

G~r ,r0!5G0~r ,r0!2(
l 50

`

(
m52 l

l
~2l 11!!!

kl 11 E dr 8 G0~r ,r 8!H Ylm~ ŝ!
d~s!

sl 12 S T
I

I 1 iT
AD

lm
J

s5r82rT

.

~2.14!

The pseudopotential reduces this integral equation to a set of coupled linear algebraic equa
expressing the scattered field in terms of theAlm . The full Green function is expressed in terms
the Alm as follows:

G~r ,r0!5G0~r ,r0!2(
l 50

`

(
m52 l

l
~2l 11!!!

kl 11 S T
I

I 1 iT
AD

lm
H lim

t→0
F1

t l E dr̂ Ylm~ t̂!G0~r ,rT1t!G J .

~2.15!

The linear algebraic equations for theAlm are obtained by inserting the expression forG(r ,r0)
from Eq. ~2.15! into Eq. ~2.13!. In order to obtain explicit expressions for these scattering eq
tions one must compute the following quantities:

Olm~r ,rT!5
i ~2l 11!!!

kl 11 H lim
t→0

F1

t l E dt̂ Ylm~ t̂!G0~r ,rT1t!G J , ~2.16!

Slm~rT ,r0!5
i ~2l 11!!!

kl 11~2l 11!! H lim
s→0

]s
2l 11Fsl 11E dŝYlm~ ŝ!* G0~rT1s,r0!G J . ~2.17!

Klm,l 8m8~rT!5
i ~2l 11!!!

kl 11~2l 11!!

~2l 811!!!

kl 8

3 lim
s→0

]s
2l 11Fsl 11E dŝYlm~ ŝ!* S lim

t→0
F 1

t l 8 E dt̂ Yl 8m8~ t̂!G0
NS~rT1s,rT1t!G D G .

~2.18!

One should also notice that the singular part ofG0(r ,r0), namelyg(r2r0), the Green function of
the Helmholtz equation in a unbounded and uniform fluid, yields the following result:

lim
s→0

]s
2l 11H sl 11E dŝYlm~ ŝ!* lim

t→0
F 1

t l 8 E dt̂ Yl 8m8~ t̂!g~rT1s2rT2t!G J 5
k2l 11~2l 11!!

i @~2l 11!!! #2 d l l 8dmm8 .

~2.19!

Thus for theAlm one obtains the following equation:
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Alm52 ikSlm2 (
l 8m8

~2l 811!!!

kl 811 S T
I

I 1 iT
AD

l 8m8

~2l 11!!!

kl~2l 11!!
3Fk2l 11~2l 11!!

i @~2l 11!!! #2 d l l 8dmm8

1
kl~2l 11!!

~2l 11!!!

kl 811

i ~2l 811!!!
Klm,l 8m8~rT!G . ~2.20!

The above equation can be simplified if one introduces a new variable, namely,

alm5
i

k
@~ I 1 iT !21A# lm . ~2.21!

From Eq.~2.20! one obtains the following equation for the new variable defined in Eq.~2.21!:

alm5Slm1 i (
l 8m8

(
l 9m9

Klm,l 8m8~rT!Tl 8m8,l 9m8al 9m9 . ~2.22!

The equation for the Green function can now be written as

G~r ,r0!5G0~r ,r0!1k(
lm

(
l 8m8

Olm~r ,rT!Tlm,l 8m8al 8m8 . ~2.23!

The resulting equations, Eqs.~2.22!–~2.23!, show that, in the presence of boundaries, there
coupling among the scattered partial waves. One should also notice that the only quantity
to the scattering target that appear in the coupling matrix, Eq.~2.18!, is its position relative to the
boundaries. This indicates that no matter what the nature of the target is, the coupling matrix
by Eq. ~2.18! determines the coupling amongst the partial waves.

In order to illustrate the applicability of this formalism to scattering within a confined spac
example introduced by Huang and Yang1 will be discussed. These authors, in order to demonst
the applicability of perturbation theory to thes-wave pseudopotential, considered the case of
scattering sphere within a larger, confining sphere with Dirichlet boundary conditions bein
isfied on the surface of both spheres~see Fig. 1!.

Thus it is desired to find the scattered field obtained when, for example, acoustic w
generated by a point source are scattered by a small sphere located inside a larger sph
interior surface of the larger sphere reflects both the sound coming directly from the source a

FIG. 1. The geometry of the sphere within a sphere scattering problem.
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as that scattered by the smaller sphere. Thus the total acoustic field inside the larger sphe
the smaller sphere is present is considerably more structurally complex than when that sp
not there. Since this problem can be exactly solved when the spheres are concentric it pro
simple test regarding the use of the pseudopotential for scattering in a confined environm
this case one wants to find the Green function that vanishes on the interior surface of the
sphere and on the exterior surface of the smaller sphere. This Green function satisfies Eq~2.12!
with

Tlm,l 8m85k f ld l ,l 8dm,m8 and f l5
i

k F j l~ka!

hl
~1!~ka!G . ~2.24!

One notices that the scattering amplitudes due to the smaller sphere~of radiusa! appear explicitly
in the equation for the Green function. The Green function in the interior of the larger sphe~of
radiusb!, in the absence of the smaller sphere, is

G0~r ,r0!52 ik(
l 50

`

(
m52 l

l

j l~kr,!Fhl
~1!~kr.!2

hl
~1!~kb!

j l~kb!
j l~kr.!GYlm~ r̂ !Ylm* ~ r̂0!. ~2.25!

The quantities in Eqs.~2.16!–~2.18! can be explicitly computed in this case in terms of Bes
functions and spherical harmonics:

Olm~r ,rT!5hl
~1!~ks!Ylm~ ŝ!us5r2rT

2 (
l 850

`

(
m852 l 8

l 8 hl 8
~1!

~kb!

j l 8~kb!
j l 8~kr !Yl 8m8~ r̂ !Wlm,l 8m8~rT!,

~2.26!

Slm~rT ,r0!5hl
~1!~ks!Ylm* ~ ŝ!us5r02rT

2 (
l 850

`

(
m852 l 8

l 8 hl 8
~1!

~kb!

j l 8~kb!
j l 8~kr0!Yl 8m8

* ~ r̂0!Vlm,l 8m8~rT!,

~2.27!

Klm,l 8m8~rT!52 (
L50

`

(
M52L

L hL
~1!~kb!

j L~kb!
Vlm,LM~rT!Wl 8m8,LM~rT!, ~2.28!

Wlm,l 8m8~rT!54p~21! l 8i l 1 l 8 (
L50

`

(
M52L

L

i LCLM ,l 8m8
lm j L~krT!YLM~ r̂T!, ~2.29!

Vlm,l 8m8~rT!54p~21! l 8i l 1 l 8 (
L50

`

(
M52L

L

i LCLM ,lm
l 8m8 j L~krT!YLM~ r̂T!, ~2.30!

CLMl 8m8
lm

5E dŝYl 8m8~ ŝ!Ylm* ~ ŝ!YLM~ ŝ!,

CLMl 8m8
lm

50

unless

M5m2m8 and u l 2 l 8u<L< l 1 l 8. ~2.31!

The Gaunt numbers, the integral of three spherical harmonics@Eq. ~2.31!#, can be expressed in
terms of the well-known Wigner’s 3-j symbols.6 This coupling among spherical harmonics a
pears because one has three distinct centers for the partial wave expansions, namely, th
position, the center of the target sphere and the center of the enclosing sphere. In the
equations one has an expression for the partial wave expansion of the full Green function~includ-
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ing scattering by the smaller sphere! about the center of the enclosing sphere. In the algeb
manipulations the Gaunt numbers appear in the spherical harmonic expansion of a produ
spherical Bessel function and a spherical harmonic such as7

j l~kt!Ylm~ t̂!u t5rT1s54p~2 i !L (
L8M8

(
L9M9

i L81L9CL8M8,L9M9
LM j L8~krT!YL8M8~ r̂T! j L9~ks!YL9M9~ ŝ!.

~2.32!

Now the caserT50 is considered. The Green function for this case can be expressed e
in terms of Bessel functions and spherical harmonics since it is the Green function for the
holtz equation in the space bounded by two concentric spheres. Thus this case provides a
braic test of the use of the pseudopotential to describe scattering in a confined medium.
expressions forVlm,l 8m8(0) and Wlm,l 8m8(0) only the termL50 survives sincej L(0)50 for L

.0, thenVlm,l 8m8(0)5Wlm,l 8m8(0)5d l l 8dmm8 sinceC00,l 8m8
lm

5C00,lm
l 8m8 5(1/A4p)d l l 8dmm8 . There-

fore Klm,l 8m8(0)52@hl
(1)(kb)/ j l(kb)#d l l 8dmm8 . One finds that

Slm~0,r0!5
i

j l~kb!
@ j l~kb!nl~kr0!2nl~kb! j l~kr0!#Ylm* ~ r̂0!, ~2.33!

Olm~r ,0!5
i

j l~kb!
@ j l~kb!nl~kr !2nl~kb! j l~kr !#Ylm~ r̂ ! ~2.34!

and that

alm5
hl

~1!~ka!@ j l~kb!nl~kr0!2nl~kb! j l~kr0!#Ylm* ~ r̂0!

j l~kb!nl~ka!2 j l~ka!nl~kb!
, ~2.35!

thus

G~r ,r0!52 ik(
l 50

`

(
m52 l

l

j l~kr,!Fhl
~1!~kr.!2

hl
~1!~kb!

j l~kb!
j l~kr.!GYlm~ r̂ !Ylm* ~ r̂0!

2k(
l 50

`

(
m52 l

l
j l~ka!

j l~kb!

@ j l~kb!nl~kr !2nl~kb! j l~kr !#@ j l~kb!nl~kr0!2nl~kb! j l~kr0!#

j l~kb!nl~ka!2 j l~ka!nl~kb!

3Ylm~ r̂ !Ylm* ~ r̂0! ~2.36!

which can be shown to be the correct expression for the Green function in this case. A st
approach, using separation of variables, shows that, in the case of the concentric sphe
Green function inside the larger sphere and outside the smaller one can be written as

G~r ,r0!5k(
l 50

`

(
m52 l

l
@ j l~kr,!nl~ka!2 j l~ka!nl~kr,!#@ j l~kr.!nl~kb!2 j l~kb!nl~kr.!#

@ j l~ka!nl~kb!2 j l~kb!nl~ka!#

3Ylm~ r̂ !Ylm* ~ r̂0!. ~2.37!

It is straightforward to show that the expression in Eq.~2.36! reduces to the one in Eq.~2.37!.

III. THE LIU AND WONG PSEUDOPOTENTIAL

Liu and Wong4 showed that the wave function describing the scattering of a scalar wave
Dirichlet sphere of radiusa satisfies the following wave equation:
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@¹21k2#c~r !5
1

a
d~r 2a!

]

]r
@rc~r !#. ~3.1!

Comparing with the pseudopotential of Huang and Yang, the simplicity of the pseudopoten
Liu and Wong is striking. In the above simple form the pseudopotential of Liu and Wong ca
applied only to the case of scattering by a Dirichlet sphere.

In order to illustrate the applicability of the Liu and Wong pseudopotential to scattering
confining environment it will be shown that using the Liu and Wong pseudopotential one can
for the Green function of the Helmholtz equation in the space between two concentric sp
The equation for the Green function in the interior space is

@¹21k2#G~r ,r0!5d~r2r0!1
1

a
d~r 2a!

]

]r
@rG~r ,r0!#. ~3.2!

The above equation is solved by transforming it into a Lippmann–Schwinger integral equ
using the Green function for the interior of the larger sphere given in Eq.~2.25! which is of the
form

G0~r ,r0!5(
l 50

`

(
m52 l

l

gl
0~r ,r 0!Ylm~ r̂ !Ylm* ~ r̂0!. ~3.3!

Since in the concentric case the confined space has spherical symmetry one can also wri

G~r ,r0!5(
l 50

`

(
m52 l

l

gl~r ,r 0!Ylm~ r̂ !Ylm* ~ r̂0!. ~3.4!

The spherical harmonic expansion simplifies the Lippmann–Schwinger integral resulting
equation:

gl~r ,r 0!5gl
0~r ,r 0!1agl

0~r ,a!
]

]r 8
@r 8gl~r 8,r 0# r 85a . ~3.5!

From the above equation it follows that

] r@rgl~r ,r 0!# r 5a5
] r@rgl

0~r ,r 0!# r 5a

12a] r@rgl
0~r ,a!# r 5a

52
1

a F j l~kr0!nl~kb!2 j l~kb!nl~kr0!

j l~ka!nl~kb!2 j l~kb!nl~ka! G . ~3.6!

Thus one obtains for the radial Green function

gl~r ,r 0!5gl
0~r ,r 0!2

j l~kr0!nl~kb!2 j l~kb!nl~kr0!

j l~ka!nl~kb!2 j l~kb!nl~ka!
gl

0~r ,a!. ~3.7!

It can be easily shown that the expression in Eq.~3.7! reproduces the result presented in E
~2.37!.

The extension to the case of scattering by an arbitrary object is straightforward albeit
algebraically messy. For an arbitrary target one takesa to be the radius of the circumscribin
sphere and use the previously mentioned form of the wave function forr .a, given by Eq.~2.4!,
as a reference. Then it is straightforward to show that the wave function describing the sca
of a scalar wave by an arbitrary target fulfills the following equation:

@¹21k2#c~r !5
1

a
d~r 2a!

]

]r
@rPc~r !#, ~3.8!
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whereP is an operator such that

Pc~r !5(
lm

(
l 8m8

Plm,l 8m8Ylm~ r̂ !E dŝYl 8m8~ ŝ!* c~r ŝ!. ~3.9!

In order to determine the operatorP one must compare the solution of Eq.~3.8! in an extended
medium with an arbitrary incident field with the wave function given by Eq.~2.4!. First one
transforms Eq.~3.8! into an equivalent Lippmann–Schwinger equation:

c~r !5c inc~r !1E dr 8 g~r2r 8!
1

a
d~r 82a!] r 8@r 8Pc~r 8!#

5c inc~r !1a(
lm

(
l 8m8

F E dt̂ Ylm~ t̂!g~r2at̂!GPlm,l 8m8Al 8m8 , ~3.10!

where

Alm5]sFsE dŝYlm* ~ ŝ!c~s!G
s5a

. ~3.11!

Using the multipole expansion ofg(r2r 8) one obtains

c~r !5c inc~r !1a(
lm

(
l 8m8

@2 ik j l~ka!hl
~1!~kr !Ylm~ r̂ !#Plm,l 8m8Al 8m8 . ~3.12!

From the definition ofAlm in Eq. ~3.11! and taking the limit ofr approachinga from outside the
circumscribing sphere one obtains an equation for theAlm :

Alm5Alm
inc2 (

l 8m8
Qlm,l 8m8Al 8,m8 , Alm

inc5]SFsE dŝYlm* ~ ŝ!c inc~s!G
s5a

. ~3.13!

The operatorQ is related to the operatorP through the following relation:

Qlm,l 8m85@ iks jl~ks!]s~shl
~1!~ks!!#s5aPlm,l 8m8 . ~3.14!

Therefore one finds

A5~ I 1Q!21Ainc. ~3.15!

Now let us compare the wave function in Eq.~3.12! with that in Eq.~2.4!, they should be identica
to each other. Using the definition ofAlm in Eq. ~3.11! using the wave function in Eq.~2.4! one
obtains

A5~ I 1U !Ainc, Ulm,l 8m85@ i ]s~shl
~1!~ks!!#s5aTlm,l 8m8

1

@]s~s jl 8~ks!!#s5a
. ~3.16!

Comparing Eqs.~3.15! and ~3.16! one finds that

Q52U~ I 1U !21, Plm,l 8m85
1

@ iks jl~ks!]s~shl
~1!~ks!!#s5a

Qlm,l 8m8 . ~3.17!

Equation~3.17! provides an expression for the operatorP in terms of the transition matrix of the
arbitrary scattering object.

As it was the case for the Huang and Yang pseudopotential one can also write dow
general form of the equations describing scattering in a bounded volume or in a waveguide
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with an uniform fluid using the Liu and Wong pseudopotential. In the case of sound genera
a point source the acoustic field satisfies the following equation forr .a:

@¹21k2#G~r ,r0!5d~r2r0!1
1

a
d~ ur2rTu2a!]S@sPŝG~s1rT ,r0!#s5r2rT

. ~3.18!

Notice that in this formulation it is implicitly assumed that the origin is in the domain exterio
the circumscribing sphere, that is, it will be assumed thatr T.a. In this case the action of the
projection operator can be described by the following equation:

PŝG~s1rT ,r0!5(
lm

(
l 8m8

Plm,l 8m8Ylm~ ŝ!E dt̂ Yl 8m8
* ~ t̂!G~st̂1rT ,r0!. ~3.19!

The above equation extends the definition of the operatorP to the case in which the position of th
scattering center does not coincide with the origin of the coordinate system.

The procedure for deriving the algebraic scattering equations starts with the use ofG0(r ,r0),
the Green function in the absence of the scattering object, to obtain the Lippmann–Sch
equation:

G~r ,r0!5G0~r ,r0!1E dr 8 G0~r ,r 8!
1

a
d~ ur 82rTu2a!]s@sPŝG~s1rT ,r0!#s5r82rT

.

~3.20!

Applying the definition of theP operator, Eq.~3.19!, in the above equation yields

G~r ,r0!5G0~r ,r0!1a(
l 50

`

(
m52 l

l

a lmAlmE dt̂ G0~r ,rT1at̂!Ylm~ t̂!, ~3.21!

Alm5]sFsE dŝYlm* ~ ŝ!G~s1rT ,r0!G
s5a

. ~3.22!

The equations for theAlm are determined by using the expression forG(r ,r0), given by Eq.
~3.21!, into Eq.~3.22!. Evidently the final equations will be just Eqs.~2.22! and~2.23!. The several
quantities appearing on those equations are obtained by evaluating the following expressi

Olm~r ,rT!5
i

k j l~ka!
E dt̂ Ylm~ t̂!G0~r ,rT1at̂!,

Slm~rT ,r0!5
i

k~ka jl8~ka!1 j l~ka!!
]sFsE dŝYlm~ ŝ!* G0~rT1s,r0!G

s5a

, ~3.23!

Klm,l 8m8~rT!5
i

k@ j l 8~u!]u~u j l~u!!#a5ka
]SFsE dŝYlm~ ŝ!* E dt̂ Yl 8m8~ t̂!G0

NS~rT1s,rT1at̂!G
s5a

.

The following result was useful to obtain the final expressions, identical to those in Eqs.~2.22! and
~2.23!, from Eqs.~3.21! and ~3.22!:

]SFsE dŝYlm~ ŝ!* E dt̂ Ylm~ t̂!g~rT1s2~rT1at̂!!G
s5a1

5$@2 ik j l~u!]uhl
~1!~u!#u5ka%d l l 8dmm8 .

~3.24!

The alm are related to theAlm through the following relationship:
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alm5
1

2 ik]s~s jl~ks!!s5a
@~ I 1Q!A# lm . ~3.25!

The following result was used to eliminate theAlm in favor of thealm :

(
l 8m8

Plm,l 8m8Al 8m85
1

ia j l~ka! (
l 8m8

Tlm,l 8m8al 8m8 . ~3.26!

One notices that the expressions obtained using the Huang and Yang pseudopotential are
limit a→0 of the above expressions. This is not surprising as the quantities on the right-han
of Eqs. ~3.21!–~3.23! are independent ofa. This last statement can be proved by noticing th
since the Green functions appearing in Eqs.~3.21!–~3.23! are evaluated away from the boundarie
in regions where the medium is uniform, they can be expressed in terms of multipole expan

G0~r ,r 8!5(
lm

(
l 8m8

G lm,l 8m8hl
~1!~kr.!Ylm~ r̂.! j l 8~kr,!Yl 8m8~ r̂,!. ~3.27!

In the above equationr. is the position vector with the larger magnitude andr, is the position
vector with the smaller magnitude. When eitherr or r 8 is a sum of two other vectors one shou
use either Eq.~2.32! or its equivalent for spherical Hankel functions8 (r ..r ,):

hLM
~1! ~ks!YLM~ ŝ!us5r.1r,

54p~2 i !L (
L8M8

(
L9M9

i L81L9CL8M8,L9M9
LM j L8~kr,!YL8M8~ r̂,!hL9

~1!

3~kr.!YL9M9~ r̂.!. ~3.28!

One finds then that after the angular integration the factors in the denominators cancel
similar factor in the numerators rending the right-hand side of Eqs.~3.21!–~3.23! independent of
a. This also shows that the functions and operators given by these equations are indeed th
ones defined before in Eqs.~2.16!–~2.18!. Thus the equivalence of the Huang and Yang pseu
potential and that of Liu and Wong has been demonstrated in the general case of arbitrar
tering objects in arbitrary, bounded or unbounded, volumes.

IV. SCATTERING BY MULTIPLE OBJECTS

The problem of wave scattering by many objects, that is, the case of multicenter scat
can also be formulated using pseudopotentials. The resulting equations coincide with tho
tained using standard multiple scattering formulations. Nonetheless it is interesting to derive
using the pseudopotential, as there are some similarities with the problem of scattering in co
spaces that shed some light on the physics of this latter problem. In the following the multic
scattering equations will be derived using the Liu and Wong pseudopotential. Of course the
result is obtained using the Huang and Yang pseudopotential as can be seen in a recent a
Baltenkov.9

Thus it is desired to obtain the equations describing the scattering of a scalar wav
homogeneous medium by an assembly of objects. The objects may be all distinct from each
A similar procedure could be applied for the case in which the objects and the medium
confined in a waveguide or in a cavity. The wave field generated by a point source and sc
by the collection of objects obeys the following equation:

@¹21k2#G~r ,r0!5d~r2r0!1(
j 51

n
1

aj
d~ ur2r j u2aj !

]

]s
@sPŝ

j G~s1r j ,r0!#s5r2r j
. ~4.1!

In this case the action of the operatorP, allowing for distinct scattering objects, is given by
                                                                                                                



ns the

e
n the

.

2144 J. Math. Phys., Vol. 44, No. 5, May 2003 D. K. Dacol and D. G. Roy

                    
Pŝ
j G~s1r j ,r0!5(

lm
(
l 8m8

Plm,l 8m8
j Ylm~ ŝ!E dt̂ Yl 8m8

* ~ t̂!G~st̂1r j ,r0!. ~4.2!

Using the Green function for the Helmholtz operator in an extended environment one obtai
following Lippmann–Schwinger equation:

G~r ,r0!5g~r2r0!1(
j 51

n

(
lm

(
l 8m8

F 1

aj
E dr 8 g~r 82r j !d~s2aj !Ylm~ ŝ!us5r82r j GPlm,l 8m8

j Al 8m8
j ,

~4.3!

where

Alm
j 5

]

]s FsE dŝYlm* ~ ŝ!G~s1r j ,r0!G
s5aj

. ~4.4!

Expanding the Green function of the Helmholtz operator in Eq.~4.3! into spherical harmonics on
obtains, after the angular integration, the following expression for the Green function i
multicenter scattering case:

G~r ,r0!5g~r2r0!1(
j 51

n

(
lm

(
l 8m8

@2 ikaj j l~kaj !hl
~1!~ks!Ylm~ ŝ!us5r2r j

#Plm,l 8m8
j Al 8m8

j .

~4.5!

Now one inserts the Green function expression given by Eq.~4.5! into the right-hand side of Eq
~4.4! to obtain an equation for theAlm

i . One has

]sFsE dŝYlm~ ŝ!* g~r i1s2r0!G
s5ai

52 ik@]u~u j l~u!!#u5kaj
@hlm

~1!~ks!Ylm* ~ ŝ!#s5rn2r i
. ~4.6!

For iÞ j the following result holds:

]sFsE dŝYlm~ ŝ!* E dt̂ Yl 8m8~ t̂!g~r i1s2r j2aj t̂!G
s5aj

52 ik j l 8~kaj !@]u~u j l~u!!#u5kai
Klm,l 8m8~r i2r j !, ~4.7!

Klm,l 8m8~r i2r j !54p~2 i ! l 8i l (
l 9m9

i l 9Clm,l 9m9
l 8m8 hl 9

~1!
~kn!Yl 9m9~ v̂!uv5r i2r j

. ~4.8!

Thus one has

Alm
i 5@2 ik]u~u j l~u!!#u5kaj

@hl
~1!~ks!Ylm* ~ ŝ!#s5r02r i

1@2 ik j l~u!]u~uhl
~1!~u!!#u5kai (

l 8m8
Plm,l 8m8

i Al 8m8
i

1(
j Þ i

n

(
l 8m8

(
l 8m8

@2 ikaj j l 8~kaj !]n~u j l~u!!u5kai
#Klm,l 8m8~r i2r j !Pl 8m8,l 8m9

j Al 9m9
j .

~4.9!

Now, using the relationships in Eqs.~3.25! and ~3.26! one finally obtains
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alm
i 5hl

~1!~ks!Ylm* ~ ŝ!us5r02r i
1 i(

j Þ i

n

(
l 8m8

(
l 9m9

Klm,l 8m8~r i2r j !Tl 8m8,l 9m9
j al 9m9

j . ~4.10!

For the Green function one then has the following expression:

G~r ,r0!5g~r2r0!1 ik(
j 51

n

(
lm

(
l 8m8

@hl
~1!~ks!Ylm~ ŝ!#s5r2r j

Tlm,l 8m8
j al 8m8

j . ~4.11!

Equations~4.10!–~4.11! can also be obtained from the usual multiple scattering formalisms
as those of Foldy,10 and of Twersky.11 A recent review of multiple scattering can be found in
article by Tourinet al.,12 where those approaches are discussed in an acoustic context. F
ample, one can compare Eqs.~4.10!–~4.11! with Eqs.~21! and~14! in a recent article by Wang an
Ye13 where the multiple scattering of sound by air bubbles in water is studied. Similar equa
are obtained by Kafesaki and Economou8 in a study of acoustic propagation in periodic compo
ites consisting of solid spheres in a fluid host. As previously pointed out, the same results
be obtained had the Huang and Yang pseudopotential being used. In fact this pseudopoten
been used recently to derive expressions for the amplitudes of elastic electron scatter
multicentered targets in the presence of a background central atomic potential.9 Obviously very
similar equations are obtained in this case too.

V. SCATTERING IN AN IDEAL WAVEGUIDE

In this section the scattering problem in the interior of an ideal waveguide is discussed
waveguide considered consists of two perfectly reflecting parallel planes encompassing a
form fluid with the acoustic field obeying pressure release~Dirichlet! boundary conditions on the
interior surface of one of the planes and acoustically hard~Neumann! boundary conditions on the
interior surface of the other plane. This is an idealization of the type of acoustic waveguide
in ocean acoustics, the pressure release plane representing the air–sea interface and the h
representing the sea bottom. Accordingly thez axis is chosen pointing downwards with the pla
z50 being the air–sea interface and the planez5h being the bottom. The pseudopotential
Huang and Yang is employed to obtain equations describing the scattering of an acoustic fi
an object in the waveguide~see Fig. 2!.

The acoustic field in the waveguide is obtained by solving an equation like Eq.~2.12!, the
Green function solution to this equation, which includes waveguide and scattering effects,
Dirichlet boundary conditions at the planez50 and Neumann boundary conditions at the pla
z5h. In order to solve it one needs the Green function for the Helmholtz equation in the w
guide. It satisfies the same boundary conditions as the solution at the waveguide boundarie
Green function for the waveguide in the absence of the scattering object can be represe
several different ways. For this discussion it is convenient to use the representation obtaine
the image method.14

G0~r ,r0!5 (
n52`

`

~21!n@g~r2r0
122nhêz!2g~r2r0

222nhêz!#. ~5.1!

FIG. 2. Ideal waveguide with sound source and scattering object.
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In the above equation,r0
65R06z0êz , andg(r )52exp(ikr)/4pr is the usual Green function fo

the Helmholtz equation in an extended medium. It is worthwhile to explore a bit the phy
picture provided by the image method by including the scattering object. In the image meth
physical medium is extensive and unbounded, with the boundary conditions at the planes
iting the waveguide being met by an infinite array of image sources with alternating signs.
reflected across a boundary where Dirichlet boundary conditions are to be satisfied the
image has the opposite sign while when reflected across a boundary where Neumann bo
conditions are to be obeyed the source image has the same sign as the source being r
Notice that one must take into account reflections of reflections,ad infinitum. There is also an
infinite array of identical scattering objects as depicted in Fig. 3.

The image method shows that the problem of scattering by an object inside an ideal
guide is equivalent to the problem of scattering by a linear periodic array of identical objects
wave field created by a linear periodic array of sources. Thus the scattering problem
waveguide is akin to a multitarget and multisource scattering problem. Since the source
targets are distributed in a linear periodical array the matrix coupling the different targets
multiscattering formulation can be made diagonal in its dependence on the target position
discrete Fourier transform. Thus one expects the final expression for the scattering field to i
only the coupling of partial waves. The following detailed analysis based on the pseudopo
approach confirms this qualitative argument.

The equations describing scattering in the waveguide have the same form as Eqs.~2.22!–
~2.23!, for the quantities appearing in these equations, one finds

Olm~r ,rT!5 (
n52`

`

~21!n$hl
~1!~kn!Ylm~ v̂!uv5r2r

T
122nhêz

2~21! l 1mhl
~1!~kn!Ylm~ v̂!uv5r2r

T
222nhêz

%, ~5.2!

FIG. 3. Waveguide images with source and target images.
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Slm~rT ,r0!5~21! l 1m (
n52`

`

~21!n$hl
~1!~kn!Ylm~ v̂!uv5rT2r

0
122nhêz

2hl
~1!~kn!Ylm~ v̂!uv5rT2r

0
222nhêz

%, ~5.3!

Klm,l 8m8~rT!5dmm8A4p (
L5u l 2 l 8u

l 1 l 8

~21!L1 l 8i L1 l 1 l 8A2L11CL0lm
l 8m $~11~21!L!RL~0!

2~21! l 81m@~21!LhL
~1!~2kzT!1RL~2zT!1~21!LRL~zT!#%, ~5.4!

RL~z!5 (
n51

`

~21!nhL
~1!~k~2nh12z!!, 2h,z,h. ~5.5!

One should notice thatKlm,l 8m8(rT)50 if umu. l or if umu. l 8. The coupling matrix depends onl
on zT and is diagonal inm andm8 due to the fact that the ideal waveguide has rotational symm
for rotations around thez axis. Another property of the coupling matrix given by Eq.~5.4! is that
it depends onumu. Thus, even if the target has spherical symmetry, the scattered field will not
azimuthal symmetry. This is so because the line from the source to the target and thez axis define
a preferred plane perpendicular to the boundaries of the waveguide. In the case of a point
and a spherically symmetric target the scattered field will have reflection symmetry acro
preferred plane. This fact has an interesting physical consequence that is analogous to th
known Zeeman effect in atomic physics. The scattering amplitudes are given now by the p
f l•alm ; thus even a spherical target will have scattering amplitudes that vary with the azim
index m in the waveguide. Instead of onel th partial wave scattering amplitude there will bel
11 amplitudes. If the target in the unbounded medium happens to exhibit a resonance inl th
partial wave, this resonance will be split intol 11 distinct resonances when the target is inside
waveguide. The shifts with respect to the original resonance frequency depend on the co
matrix and all other partial wave amplitudes. The order of magnitude of any of the elements
coupling matrix is, roughly, inversely proportional to the shortest distance from the target t
waveguide boundaries. Thus the resonance frequency shifts will also be inversely proportio
this distance. The farther the target is from any of the boundaries the more the scattering
tudes will approach those at the unbounded medium.

VI. SUMMARY

The main point of this article is the application of the method of pseudopotentials to stud
scattering of scalar waves in a confined medium. Along the way a generalization of the ps
potential of Liu and Wong to arbitrary types of scattering objects was also developed. An
cation of particular interest deals with scattering in an ideal planar waveguide. This wavegu
an idealization of the waveguides found in ocean acoustics and, in particular, those in s
coastal waters. It is possible to generalize the results of Sec. IV to the case of an inhomog
waveguide where the acoustical properties vary along the vertical direction, that is, are
dependent in the ocean acoustics case.

Results similar to those in Eqs.~2.22!–~2.23! and Eqs.~5.2!–~5.4! were first obtained by the
T-matrix method.15 The T-matrix method is a technique to compute the scattering propertie
objects in an extended medium when the incident field is a plane wave.16 Using theT matrix in a
confined medium involves decomposing the incident field into plane waves and then com
the outgoing spherical waves into a field that satisfies the boundary conditions in the wave
In the article by Sammelmann and Hackman15 the T matrix for scattering in the waveguide i
formally expressed as

TSH52 iT~12 iRT!21, ~6.1!
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whereT is the extended mediumT matrix of the scattering object andR is an operator pertaining
to the waveguide. Further examination shows thatR is essentially theK operator in Eq.~2.22!. It
is clear that Eqs.~2.22!–~2.23! have the same formal structure as that implied in Eq.~6.1!. In fact,
in the notation used in Sec. II one can write

G~r ,r0!5G0~r ,r0!1k(
lm

(
l 8m8

Olm~r ,rT!Tlm,l 8m8
W Sl 8m8~rT ,r0!, TW5T~ I 2 iKT !21. ~6.2!

The pseudopotential approach is very flexible and is well suited for framing the discuss
the scattering in terms of the field generated by a point source, the Green function, wh
confined environments is more useful than using a plane wave as the prototypical inciden
The confined medium does not have to be homogeneous but there must be a finite region
the target where the medium is homogeneous in order for the approach to work. This is so b
the scattering properties of the target in a homogeneous and extended medium are input
calculations. Applications to the cases of layered acoustical waveguides and acoustical wav
with rough boundaries will be published elsewhere.
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On harmonic oscillators on the two-dimensional sphere
S2 and the hyperbolic plane H2. II.
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The properties of several noncentraln52 harmonic oscillators are examined on
spaces of constant curvature. All the mathematical expressions are presented using
the curvaturek as a parameter, in such a way that particularizing fork.0, k50, or
k,0, the corresponding properties are obtained for the system on the sphereS2,
the Euclidean planeE2, or the hyperbolic planeH2, respectively. First, the separa-
bility in severalk-dependent systems of coordinates, as well as the existence of
four families of k-dependent superintegrable potentials related with the harmonic
oscillator, are studied. Then three harmonic oscillators~1:1, 2:1 and1

2:1) are stud-
ied by using two different methods: superseparability and complex factorization.
The second part deals with the problem of the existence of superintegrable but not
superseparable systems. Severalk-dependent superintegrable harmonic oscillators
with higher-order constants of motion are studied. The constants of motion are
obtained by making use of the method of the complex factorization. ©2003
American Institute of Physics.@DOI: 10.1063/1.1560552#

I. INTRODUCTION

The spherical version of the two-dimensional central harmonic oscillator, as well a
spherical Kepler potential, are superintegrable systems with quadratic constants of mot1–3

More recently, the theory of superintegrable systems4–19 have been extended to the case of no
Euclidean configuration spaces and some new noncentral superintegrable potentials on c
curvature spaces have been obtained.20–26

In previous articles we have studied the existence21 of superintegrable systems on two
dimensional~2-D! spaces of constant curvature~sphereS2, Euclidean planeE2, and hyperbolic
planeH2), and then24,25the properties of two particular harmonic oscillators~isotropic and noniso-
tropic 2:1!. From the viewpoint of integrability, these studies were focused on the quad
superintegrability, that is, on the existence of systems that, besides the energy, admit two
independent constants of motion linear or quadratic in the velocities~quadratic superintegrability
is a property closely related with superseparability!. From the geometrical point of view, the ide
was that, in the same way that the Euclidean planeE2 is a ‘‘limiting particular case’’ of constant
curvature spaces, some classical and well known potentials~Kepler problem, harmonic oscillator
etc.! can also be considered as ‘‘limiting particular cases’’ of more general ‘‘curved’’ system
we introduce the curvaturek as a parameter, then the question will be the obtaining
k-dependent functions with appropriate flat limit. Many differentk-dependent potentials will hav
the same flat limit, so we must require that certain fundamental properties of the Euclidean s
continue to hold for the ‘‘curved’’ system. By fundamental properties we mean those related

a!Electronic mail: mfran@posta.unizar.es
b!Electronic mail: santander@fta.uva.es
21490022-2488/2003/44(5)/2149/19/$20.00 © 2003 American Institute of Physics
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superintegrability and, in the case of the harmonic oscillator, with the existence of a com
factorization.

At this point we quote a statement by Fronsdal in Ref. 27: ‘‘A physical theory that treats
space-time as Minkowskian flat must be obtainable as a well-defined limit of a more ge
physical theory, for which the assumption of flatness is not essential.’’ Of course our study is not
a relativistic one, but, in a sense, this statement can be considered as very similar~roughly
speaking, changing Minkowskian by Euclidean and limiting the study ton52 dimensions! to our
assumption of considering the spherical and hyperbolic oscillators ask-deformations of well
known Euclidean systems, or conversely, the Euclidean oscillators as very particular ca
general ‘‘curved’’ systems.

In the following, all the mathematical expressions will depend of the curvaturek as a param-
eter, in such a way that fork.0, k50, or k,0, we will obtain the corresponding propert
particularized for the dynamical system on the sphere, on the Euclidean plane, or on the
bolic plane. In order to present these expressions in a form which holds simultaneously fo
value ofk, we will make use21,28 of the following ‘‘tagged’’ trigonometric functions,

Ck~x!5H cosAk x if k.0,

1 if k50,

coshA2k x if k,0,

Sk~x!55
1

Ak
sinAk x if k.0,

x if k50,

1

A2k
sinhA2k x if k,0,

~1!

and thek-dependent tangent Tk(x) defined in the natural way Tk(x)5Sk(x)/Ck(x).
The main objective of this article is to develop a deeper analysis of thek-dependent spherica

~hyperbolic! oscillators going beyond of the two basic 1:1 and 2:1 cases~studied in Ref. 25!. We
will focus our attention on three fundamental questions: first, thek-dependent versions of the tw
families of superintegrable Euclidean systems related with the harmonic oscillator~they will be
denoted byUa , Ub , Ubb , andUe), second, the existence of two different curved versions of
nonisotropic rational 2:1 oscillator~they will be denoted byU21 and U1/2,1), and, finally, the
existence of other more general superintegrablek-dependent oscillators~in these cases the supe
integrability does not arise from superseparability!.

In more detail, the plan of this article is as follows: In Secs. II and III we study the
question, making use ofk-dependent polar coordinates~this is a prolongation of Ref. 21; here w
introduce some changes, rewrite the results in a different form and fill some gaps!. In Sec. IV we
study the three oscillators~1:1, 2:1, and1

2:1 that is a new one! endowed with quadratic superin
tegrability ~superseparability! making use ofk-dependent parallel coordinates~this section is
partially related to Ref. 25!. In Sec. V we study other more generalk-dependent oscillators; we
discuss two important points: the existence of superintegrability with higher-order integra
motion, and the existence of a complex factorization. Finally, in Sec. VI we discuss the resul
make some final comments.

II. GEODESIC MOTION, NOETHER SYMMETRIES AND CONSTANTS OF MOTION ON
„S2,E2,H2

…

In Ref. 25 we consider it convenient to start with polar (r ,f) coordinates~appropriate for
central potentials! and then move to parallel coordinate systems. So we start with the follo
expression written in polar coordinates (r ,f),

ds25d r21Sk
2~r ! df2, ~2!

that represents the differential element of distance on the spaces (S2,E2,H2) with constant curva-
ture k. It reduces to
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ds1
25d r21~sin2 r ! df2 , ds0

25d r21r 2 df2 , ds21
2 5d r21~sinh2 r ! df2,

in the three particular cases of the unit sphere, Euclidean plane, and ‘‘unit’’ Lobachewski p
The threek-dependent vector fieldsY1 , Y2 , YJ , with coordinate expressions given by

Y1~k!5~cosf!
]

]r
2S Ck~r !

Sk~r !
sinf D ]

]f
,

Y2~k!5~sinf!
]

]r
1S Ck~r !

Sk~r !
cosf D ]

]f
,

YJ5
]

]f
,

are generators of three different one-parameter groups of diffeomorphisms preserving the
ds2 ~isometries of the Riemannian manifold!. In fact they close the following Lie algebra,

@Y1~k! ,Y2~k!#52 k YJ , @Y1~k! ,YJ#52 Y2~k! , @Y2~k! ,YJ#5Y1~k!,

that represents the Lie algebra of the isometries of the spherical~Euclidean, hyperbolic! space.
Notice that only ifk50 ~Euclidean plane!, Y1 andY2 commute. Moreover, the Lagrangian for th
geodesic~free! motion is given by the kinetic term arising from the metric

L~k!5T~k!5~ 1
2! ~ v r

21Sk
2~r !vf

2 !

and is invariant under the actions ofY1(k), Y2(k), andYJ(k),
A general standard Lagrangian~Riemmanian metric minus a potential! has the following

form:

L~k!5~ 1
2! ~ v r

21Sk
2~r !vf

2 !2U~r ,f,k!

in such a way that fork50 we recover a standard Euclidean system

lim
k→0

L~k!5~ 1
2! ~ v r

21r 2 vf
2 !2V~r ,f! , V~r ,f!5U~r ,f,0!.

In three particular cases this Lagrangian system possesses the vector fieldsY1 , Y2 , or YJ as exact
Noether symmetries. If we denote byYs

t , s51,2,J, the natural lift to the tangent bundle~phase
space! of the vector fieldYs , and byuL the Cartan semibasic one-form

uL5v r dr1Sk
2~r !vf df,

then we have the following.

~1! If the potentialU is of the formU5U(z2) with z25Sk(r )sinf, then

P1~k!5 i ~Y1
t ~k!! uL5~cosf! v r2~Ck~r !Sk~r !sinf! vf

is a constant of motion.
~2! If the potentialU is of the formU5U(z1), z15Sk(r )cosf, then

P2~k!5 i ~Y2
t ~k!! uL5~sinf! v r1~Ck~r !Sk~r !cosf! vf

is a constant of motion.
~3! If the potentialU depends only on the coordinater ~central potential!, then
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J~k!5 i ~YJ
t ! uL5Sk

2~r ! vf

is a constant of motion. Notice that the vector fieldYJ is k-independent but the integral o
motion ~angular momentun! J(k) is k-dependent~we will return to this question in Sec. IV!.

In these three very particular cases the corresponding system becomes integrable with a
integral, P1(k), P2(k), or J(k), arising from an exact symmetry. This Noether origin is t
reason why this second integral is linear in the velocities~momenta!.

Other not so simple integrable cases will have constants of motion quadratic, cubic,
higher-order in the momenta. For example, the most general form of a quadratic constant

I 5I 221I 20~r ,f,k! , I 225av r
212bv rvf1cvf

2 ,

wherea, b, andc, arek-dependent functions ofr andf. It can be proved thatI 22 turns out to be
a linear combination of binary products of the above three linear functions

I 22~k!5a0P1
2~k!1b0P1~k!P2~k!1c0P2

2~k!1a1P2~k!J~k!1c1P1~k!J~k!1a2J2~k!

where (a0 ,b0 ,c0 ;a1 ,c1 ;a2) are real constants. A particular case is when the potentialU is
separable in thek-dependent ‘‘polar’’ coordinate system (r ,f). Then it must have the following
expression,

U5F~r !1
G~f!

Sk
2~r !

, ~3!

and be integrable with the following two quadratic integrals of motion:

I 1~k!5P1
2~k!1P2

2~k!12F~r !1
2 G~f!

Tk
2~r !

,

I 2~k!5J2~k!12 G~f!.

@If G50, thenU is a central potential and the functionI 2(k) becomesI 25J2(k).]
Notice that in this separable case, as in other cases to be studied below, the const

motion are nonlinear and arise from nonexact hidden symmetries ofL(k) involving simultaneous
transformations of coordinates and velocities.

III. SUPERINTEGRABILITY ON 2-D SPACES OF CONSTANT CURVATURE: SYSTEMS
RELATED WITH THE HARMONIC OSCILLATOR

Fris, Mandrosovet al.4 studied the Euclideann52 systems which admit separability in tw
different coordinate systems, and obtained four familiesVr , r 5a,b,c,d, of superintegrable po-
tentials with constants of motion linear or quadratic in the momenta. In fact, if we call super
rable to a system that admits Hamilton–Jacobi separation of variables~Schroedinger in the quan
tum case! in more than one coordinate system, then quadratic superintegrability~superintegrability
with linear or quadratic constants of motion! can be considered as a property arising from sup
separability. The two first families,Va andVb , were directly related with the Harmonic oscillato

Va5S 1

2D v0
2~x21y2!1

k2

x2 1
k3

y2 , ~4!

Vb5S 1

2D v0
2~4x21y2!1k2x1

k3

y2 , ~5!
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and can be considered as the more general deformations of the 1:1 and 2:1 oscillators (k2 , k3 ,
representing the intensity of the deformation! preserving quadratic superintegrability~the three-
dimensional generalizations of these potentials have been studied in Ref. 7!.

We can consider everyn52 superintegrable system as described by the triple (I 1 , I 2 , I 3) of
its three integrals. Then, if we identify the corresponding constant of motion by the dominan
in the momenta~i.e., the quadratic term for a quadratic integral!, we have six posibilities in the
Euclidean plane. The following three cases,

~px
2 ,py

2 ,J2! , ~px
2 ,py

2 ,Jpy! , ~px
2 ,py

2 ,Jpx! ,

correspond to the familiesVa ~family of the oscillatorx21y2), Vb ~oscillator 4x21y2), andṼb

~oscillator x214y2), where Ṽb denotes the family obtained fromVb just by the change
(x,y)↔(y,x) that, in geometric terms, is a reflection in the linex5y ~of courseVa is invariant
under this transformation and the pairswith andwithouta tilde must be considered as equivalen!.
The other two families,Vc (Ṽc) andVd , that can be represented by the triples

~px
21py

2 ,Jpy ,J2! , ~px
21py

2 ,Jpx ,J2! , ~px
21py

2 ,Jpx ,Jpy!

are related with the Kepler problem.
Next, in the following two subsections, we will study the spherical and hyperbolic version

potentialsVa andVb .

A. Family Ua

The following spherical~hyperbolic! Lagrangian with curvaturek,

Ua~r ,f,k!5k1Ua
11k2Ua

21k3Ua
31k0 , k15~ 1

2! v0
2 ,

~6!

Ua
15U115Tk

2~r ! , Ua
25

1

~Sk~r !cosf!2 , Ua
35

1

~Sk~r !sinf!2 ,

is a superintegrable system endowed with the following three integrals of motion:

I 1~k!5P1
2~k!1v0

2 ~Tk~r ! cosf!21
2 k2

~Tk~r ! cosf!2 ,

I 2~k!5P2
2~k!1v0

2 ~Tk~r ! sinf!21
2 k3

~Tk~r ! sinf!2 ,

I 3~k!5J2~k!1
2 k2

cos2 f
1

2 k3

sin2 f
.

Thus, this system is characterized by the triple (P1
2 ,P2

2 ,J2), and must be interpreted as represe
ing the spherical~hyperbolic! version of the Euclidean potentialVa .

B. Families Ub , Ubb , Ue , and the contribution of the angular momentum

The Euclidean familyVb admits two differentk-dependent versions that we will denote byUb

andUbb ~we have introduced some changes in the notation with repect to that of Ref. 25!.
(b) Family Ub . The firstk-dependent familyUb is given by

Ub~r ,f,k!5k1Ub
11k2Ub

21k3Ub
31k0 , k15~ 1

2! v0
2 ,

with
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Ub
15U215

1

12k~Sk~r !sinf!2 @ 4Ab
21~Sk~r !sinf!2 # , Ab5

Tk~r !cosf

12k ~Tk~r !cosf!2

~7!

Ub
25

Tk~r !cosf

Ck
2~r !@ 12k ~Tk~r !cosf!2 #2 , Ub

35
1

~Sk~r !sinf!2 .

The total energyI 05T1Ub splits in two independent constants of motion,

2I 0~k!5I 1~k!1I 2~k!,

with I 1(k) and I 2(k) given by

I 1~k!5P1
2~k!14 v0

2 Ab
212k2 Ub

2 ~cos2 r !@11k ~Tk~r !cosf!2# ,

I 2~k!5P2
2~k!1k J2~k!1v0

2 ~11kAb
2!

~Sk~r !sinf!2

12k~Sk~r !sinf!2 1 2k2 Ub
2 ~Sk~r !sinf!2

1
2k3

~Sk~r !sinf!2 .

The additional third integral is given by

I 3~k!5J~k! P2~k!1I 30~k!

with

I 30~k!52v0
2

Tk
3~r !cosf sin2 f

@12k ~Tk~r !cosf!2#2 2
k2 @11k ~Tk~r !cosf!2#~Tk~r !sinf!2

2 @12k ~Tk~r !cosf!2#2 1
2k3 cosf

Tk~r !sin2 f
.

Thus the familyUb is characterized by the triple (P1
2 ,P2

21k J2,JP2) @and the associated
family Ũb by the triple (P1

21k J2,P2
2 ,JP1)] and satisfies the following Euclidean limit

lim
k→0

Ub5S 1

2D v0
2 r 2 ~4 cos2 f1sin2 f!1k2 ~r cosf!1

k3

~r sinf!2 .

(bb) Family Ubb . The secondk-dependent familyUbb is given by

Ubb~r ,f,k!5k1Ubb
1 1k2Ubb

2 1k3Ubb
3 1k0 , k15~ 1

2! v0
2 ,

Ubb
1 5

1

12k ~Sk~r !sinf!2 @ Abb
2 1~Sk~r !sinf!2 # , Abb5

Tk~r !cosf

11A11k ~Tk~r !cosf!2
~8!

Ubb
2 5

Sk~r !sinf

A1 2k ~Sk~r !sinf!2
, Ubb

3 5
1

~Sk~r !cosf!2 .

The total energyI 05T1Ubb also splits as a sum of two independent constants of motion,I 1(k)
and I 2(k), given by

I 1~k!5P1
2~k!12w0

2Abb
2 1

2k3

~Tk~r !cosf!2 ,

I 2~k!5P2
2~k!1k J2~k!12w0

2~11kAbb
2 !

~Sk~r !sinf!2

12k ~Sk~r !sinf!2 12k2Ubb
2 1

2k3

cos2 f
.
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The additional third integral is given by

I 3~k!5J~k! P1~k!1v0
2 I 30~k! ,

I 30~k!52w0
2Abb

2 ~Sk~r !sinf!2

A12k ~Sk~r !sinf!2
2

k2Ck~r !

A12k ~Sk~r !sinf!2
22k3

Tk~r !sinf

cos2 f
.

Thus the familyUbb is characterized by the triple (P1
2 ,P2

21k J2,JP1) @and the associated
family Ũbb by the triple (P1

21k J2,P2
2 ,JP2)] and satisfies the following Euclidean limit

lim
k→0

Ubb5S 1

2D v0
2 r 2 F S 1

4D cos2 f1sin2 fG1k2 ~r sinf!1
k3

~r cosf!2 .

Notice that the Euclidean limit suggests the interpretation ofUbb
1 as a noncentralk-dependent

oscillator with 1
2:1 as ratio of frequencies~but really different from the aboveUb

15U21).
These three families of potentials,Ua , Ub , Ubb , can be considered from two differen

viewpoints; as a vector space or as a deformation. As a vector space because they were ob21

as solution of a system of two partial differential equations~quadratic integrability is related with
a single equation and quadratic superintegrability with a system of two equations! and the solution
of such a system turns out to be vector space of dimension four. As the equations depend
derivatives ofU but not onU itself, the solution is determined up to an additive constantk0 ~as
expected for a potential!; thus any solution can be written as a linear combination of four
ments: three (r ,f)-dependent functions and a constant. We notice that in Ref. 21 the l
combination was given with another functionUbb

4 instead ofUbb
1 ; they are related by

Ubb
1 52Ubb

3 22Ubb
4 21 , Ubb

4 5
cosr

~sinr cosf!2 A12~sinr sinf!2

~here we have particularized fork51 for ease of notation!. By a deformation we mean that th
linear combination is written in such a way that the first functionUr

1 , r 5a,b,bb, is considered as
playing a much more important role that the other two potentials; that is,Ur

1 is important by itself
but Ur

2 and Ur
3 must be interpreted as the only functions introducing a deformation ofUr

1 but
preserving the existence of constants of motion~i.e., preserving the existence of symmetrie!.
Notice that this is not a problem of perturbations sincek2 , k3 , can take arbitrary values.

We close this section with the important question of the existence of thek-dependent family
Ubb different fromUb ~i.e., UbbÞUb). In spaces withkÞ0 the angular momentumJ has a direct
contribution to the energy since the kinetic termT can be written asT5P1

21P2
21kJ2 ~this

contribution vanish in the limitk→0). So if the total energyI 05T1U splits as a sum of two
integrals of motionI 05I 11I 2 , we then have two different ways for the place ofJ. This property
can be considered as the reason for the existence of two differentk-dependent versions,Ub and
Ubb , of Vb . Moreover, this very question is in fact related with the existence of a new familyUe .

(e) Family Ue . In the Euclidean case, there is also another superintegrable family

Ve5~ 1
2! v0

2~x21y2!1k2x1k3y , Ṽe5Ve ~9!

with associated triple (px
2 ,py

2 ,pxpy). It may be considered as a rather simple potential since it
reduces to the isotropic oscillatorV115Va

1 after a translation, i.e., center at an arbitrary point of
plane~in fact, this family was not considered in Ref. 4!. Nevertheless, thek-dependent version
which is given by
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Ue~r ,f,k!5k1Ue
11k2Ue

21k3Ue
31k0 , k15~ 1

2! v0
2 ,

~10!

Ue
15Tk

2~r ! , Ue
25

Tk~r !cosf

Ck~r !A12k @Sk~r !sinf#2
, Ue

35
Sk~r !sinf

A12k @Sk~r !sinf#2
,

and is characterized by the triple (P1
2 ,P2

21k J2,P1P2), illustrates how ‘‘curvature versions’’ of
simple Euclidean potentials can become quite interesting superintegrable functions onS2 or H2.
Notice that, asUe is not invariant under the change cosf↔sinf, it is not self-related forkÞ0.
There exists therefore another associated familyŨe (ŨeÞUe) characterized by the triple (P1

2

1k J2,P2
2 ,P1P2). So, we can say that the deformation introduced byk causes a splitting ofVe

into Ue and Ũe ; that is,Ve→
k

(Ue ,Ũe).
We will see in the next section that the contribution of the angular momentum is a que

closely related with the properties of thek-dependent parallel coordinates.

IV. THREE HARMONIC OSCILLATORS „1:1, 2:1 AND 1
2:1 … ON 2-D CONSTANT

CURVATURE SPACES: PARALLEL COORDINATES

In differential geometric terms, a ‘‘geodesic parallel’’ system of coordinates represent
Riemannian version of the Euclidean (x,y) system of Cartesian coordinates.29 But one important
property is that, when we introduce the curvaturek in the (x,y) system, we obtain not just one bu
two different systems that we denote by (u,y) and (x,v), respectively~a more detailed discussio
of these properties is given in the appendix, see also Refs. 21 and 24!. Moving from geometry to
dynamics the important point is that, as we have two different ‘‘parallel’’ sytems, we then
two different ways of ‘‘parallel’’ Hamilton–Jacobi separability and, consequently, two diffe
ways of obtainingk-dependent integrable potentials.

In order to avoid complications with the use of different notations we will present~as far as
possible! all the results in the (u,y) approach, and we will restrict the use of the (x,v) coordinates
in some particular cases@the translation to the (x,v) notation of some of the results obtained
given in the Appendix#.

A. Parallel coordinates and k-dependent separability

The following expression written in (u,y) parallel coordinates

ds25Ck
2~y!du21dy2 ~11!

represents the differential element of distance on the spaces (S2,E2,H2) with constant curvaturek.
So a standard Lagrangian~kinetic term minus potential function! has the following form:

L~k!5~ 1
2!~ Ck

2~y! vu
21vy

2 !2U~u,y,k!,

in such a way that the Euclidean system is just given by the particular value ofL(k) in k50:

lim
k→0

L~k!5~ 1
2! ~vx

21vy
2!2V~x,y! , V~x,y!5U~x,y,0! .

The threek-dependent vector fields,Y1(k), Y2(k), YJ(k), have now the following expressions i
parallel coordinates:

Y1~k!5
]

]u
,

Y2~k!5k Sk~u!Tk~y!
]

]u
1Ck~u!

]

]y
,
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YJ~k!5Ck~u!Tk~y!
]

]u
2Sk~u!

]

]y
,

and the associated linear constants of motion are given by

P1~k!5Ck
2~y! vu ,

P2~k!5k Sk~u!Ck~y!Sk~y! vu1Ck~u! vy ,

J~k!5Ck~u!Ck~y!Sk~y! vu2Sk~u! vy .

In contrast to the polar coordinates formalism, now thek-dependence is present in both coord
nates,u andy.

The particular expressions obtained for these three vector fields,Ys(k), s51,2,J, lead to a
very interesting geometric question. According to the straightening-out theorem,30 a vector fieldY
on an n-manifold M always admits a local coordinate system$x1 , . . . ,xn% in an appropriate
neighborhood of a regular pointm, Y(m)Þ0, such that then it becomesY5(kck(]/]xk), with
ck0

51, ck50, kÞk0 . We have proven~at the beginning of Sec. II! that in the (r ,f) polar
coordinatesYJ becomesYJ5]/]f. Now we have obtainedY15]/]u. Similarly, in the (x,v)
system, we will haveY25]/]v. So, these three coordinate systems, (r ,f), (u,y), and (x,v), are
the three appropriated systems~via the straightening-out theorem! for obtaining the straight ex-
pressions ofYJ , Y1 , andY2 , respectively.

Next we enumerate different possibilities for separability ofk-dependent potentials:
~i! A k-dependent potentialU, that in (u,y) ‘‘parallel’’ coordinates has an expression of th

form

U5F~y!1
G~u!

Ck
2~y!

, ~12!

is separable. It is therefore integrable with the following two quadratic integrals of motion:

I 1~k!5P1
2~k!12G~u! ,

I 2~k!5P2
2~k!1k J2~k!12F~y!12kG~u! Tk

2~y! .

Integrable potentials in this family are characterized by the pair (P1
2 ,P2

21k J2).
~ii ! A potentialU separable in (x,v) ‘‘parallel’’ coordinates is of the form

U5F~x!1
G~v !

Ck
2~x!

, ~13!

and, when written in (u,y) ‘‘parallel’’ coordinates, it becomes

U5F@Sk~u!Ck~y!#1
G@Tk~y!/Ck~u!#

12k~Sk~u!Ck~y!!2 . ~14!

It is integrable with the following two integrals of motion:

I 1~k!5P1
2~k!1k J2~k!12F@Sk~u!Ck~y!#1k G@Tk~y!/Ck~u!#S ~Sk~u!Ck~y!!2

12k~Sk~u!Ck~y!!2D ,

I 2~k!5P2
2~k!12G@Tk~y!/Ck~u!#.

Integrable potentials in this family are characterized by the pair (P1
21k J2,P2

2).
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At this point we wish to underline two properties directly related with the existence of t
two different parallel systems of coordinates:

~a! The two expressionsz15Sk(r )cosf andz25Sk(r )sinf, arising in the study of the Noethe
theorem in polar (r ,f) coordinates, correspond toz15Sk(x) andz25Sk(y) when written in
parallel coordinates.

~b! In spaces of constant curvature, the curvaturek and the angular momentumJ(k) have a
direct contribution to the energy in the sense that the kinetic termT(k) can be rewritten as
follows:

Ck
2~y! vu

21vy
25P1

2~k!1P2
2~k!1k J2~k!.

In the particular case of the potentialU being separable in ‘‘parallel’’ coordinates, then th
total energy splits in two summands,I 1(k) and I 2(k), and both summands are integrals
motion. Then, ifkÞ0, we have two alternatives for placing the contribution of the ang
momentum: it can be present in the same term thatP2

2(k), as in (i ), or in the same term tha
P1

2(k), as in (i i ) ~an open question is the existence of a coordinate system in which the
kJ2 splits in a different way!.

Next we continue with the separability in otherk-dependent coordinate systems:
~iii ! A potentialU, when written ink-dependent ‘‘parabolic’’ coordinates (r 1x,r 2x), has the

following expression:

U5
1

Sk~r !Ck~x!
@F~r 1x!1G~r 2x!# , ~15!

is separable onS2 ~or H2) with a second integral of motion given by

I 2~k!5JP21W~r 1x,r 2x! ,

~the actual form ofW depends onF andG). Separable potentials of this class are characterize
the pair (P1

21P2
21kJ2,JP2).

( iv) A potentialU, when written ink-dependent ‘‘parabolic’’ coordinates (r 1y,r 2y), has
the following expression:

U5
1

Sk~r !Ck~y!
@F~r 1y!1G~r 2y!# , ~16!

is separable onS2 ~or H2) with a second integral of motion given by

I 2~k!5JP11W~r 1y,r 2y! .

Separable potentials of this class are characterized by the pair (P1
21P2

21kJ2,JP1).
(v) A potential U can also be separable in thek-dependent coordinatesz15x1y and z2

5x2y ~in the Euclidean plane these are just rotated Cartesian coordinates that correspond
so-called light-cone coordinates in the Minkowskian plane!. In this case it must take the form

U5
1

Ck~z1!Ck~z2!
@F~z1!1G~z2!# , ~17!

with the second integral of motion given by

I 2~k!5P1P21W~z1 ,z2! .

So these separable potentials are characterized by the pair (P1
21P2

21kJ2,P1P2). In the spherical
casek.0 the level curves,z15const andz25const, are spherical parabolas with focus in t
equator and the equator as axis~equator relative to the origin!. Notice also that inS2 ~with k
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51) the spherical parabolas can be identified with spherical elipses withp/2 as focal distance~this
coordinate system is also well defined in thek,0 case but then the geometric intepretation is
so simple!.

The four superintegrablek-dependent familiesUa , Ub , Ubb , and Ue have the following
expressions in (u,y) parallel coordinates:

Ua5S 1

2D v0
2 U111

k2

~Sk~u!Ck~y!!2 1
k3

~Sk~y!!2 ,

Ub5S 1

2D v0
2 U211

k2 Sk~2 u!

~Ck~2 u!Ck~y!!2 1
k3

~Sk~y!!2 ,

~18!

Ubb5S 1

2D v0
2 U1/2,11k2Tk~y!1

k3

~Sk~u/2!Ck~y!!2 ,

Ue5S 1

2D v0
2 U111

k2Sk~u!

~Ck~u!Ck~y!!2 1k3Tk~y!,

whereU11(u,y,k), U21(u,y,k), andU1/2,1(u,y,k), are given by

Um15Tk
2~y!1

Tk
2~m u!

Ck
2~y!

, m51,2,12 .

All these systems are clearly separable in (u,y) parallel coordinates. In addition,Ua is separable
in both polar (r ,f) and parallel (x,v) coordinates;Ub is separable in (r 1y,r 2y) ‘‘parabolic’’
coordinates,Ubb is separable in (r 1x,r 2x) ‘‘parabolic’’ coordinates, and, finally,Ue is separable
in (z1 ,z2) ‘‘parabolic’’ coordinates.

Notice that~18! shows a high degree of simplicity sinceUa
15Ue

15U11, Ub
15U21, andUbb

1

5U1/2,1, that in (r ,f) coordinates looked rather different, but now becomes very similar. Ano
remarkable result is the particular form obtained forUbb

1 as the half-integer dependent functio

U1/2,1. Next we will study in detail each one of these threeUm1 , m51,2,12, functions.

B. Isotropic 1:1 and nonisotropic 2:1 oscillators

The two potentialsU11 and U21, that can be considered as representing thek-dependent
versions of the Euclidean oscillators with ratio of frequencies given by 1:1 and 2:1, were st
in Ref. 25. It was proved that the superintegrability of these two systems is related to the exi
of a complex factorization.

Let us first considerU11. If we denote byK1 , K2 the following two functions:

K15P1~k!1 i v0 Tk~u! ,

K25P2~k!1 i v0 S Tk~y!

Ck~u! D ,

then the functionsKi j , i , j 51,2, defined asKi j 5Ki K j* are constants of motion forU11. There-
fore thek-dependent potentialU11 is superintegrable with three integrals of motion given by

I 1~k!5u K1 u2 , I 2~k!5u K2 u2 , I 3~k!5Im~K12!5v0 J~k! .

The potential of the spherical~hyperbolic! 2:1 harmonic oscillator with curvaturek
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U215Tk
2~y!1

Tk
2~2 u!

Ck
2~y!

~19!

is separable in (u,y) coordinates. The two constants of motion

I 1~k!5P1~k!21v0
2 Tk

2~2 u! ,

I 2~k!5P2
2~k!1k J2~k!1v0

2 S Tk~y!

Ck~2 u! D
2

,

as well the additional third integralI 3(k), can also be obtained from a complex factorization
we denote byK1 , K2

1 , K2
2 the following three complex functions,

K15P1~k!1 i v0 Tk~2 u! ,

K2
15@P2~k!1Ak J~k!#1 i v0 ~Ck~u!1Ak Sk~u!!S Tk~y!

Ck~2 u! D ,

K2
25@P2~k!2Ak J~k!#1 i v0 ~Ck~u!2Ak Sk~u!!S Tk~y!

Ck~2 u! D ,

then we have the following. (i ) The modulus ofK1 is the constant of motionI 1(k). (i i ) The sum
of the modulus ofK2

1 andK2
2 is also a constant of motion and coincides withI 2(k). (i i i ) The

complex functionK122, defined asK1225K1 K2
(2)* with K2

(2)5K2
1 K2

2 , is a constant of motion. If
we write K1225I 4(k)1 i I 3(k), then we obtain

I 3~k!5J~k! P2~k!1v0
2 S Sk~u!Ck~u!

Ck
2~2 u! D Tk

2~y! ,

I 4~k!5@P2
2~k!2k J2~k!#P1~k!1v0

2 @2 Tk~2 u! vy2Ck~y!Sk~y! vu#S Tk~y!

Ck~2 u! D .

Therefore, thek-dependent potentialU21 is superintegrable with the following thre quadrat
integrals of motion given by

I 1~k!5u K1 u2 , I 2~k!5u K2
1 u21u K2

2 u2 , I 3~k!5Im~K122! .

C. The nonisotropic 1
2:1 oscillator

The noncentral oscillatorU21 was already considered in Ref. 25 but the function

U1/2,15Tk
2~y!1

Tk
2~u/2!

Ck
2~y!

~20!

is, in fact, a new one. It can be interpreted as representing the potential of thek-dependent
spherical~hyperbolic! version of the1

2:1 harmonic oscillator. In a similar way to the previous 2
case this system possesses two integrals of motion quadratic in the velocities:

I 1~k!5P1
2~k!1v0

2 Tk
2~u/2! ,

I 2~k!5P2
2~k!1k J2~k!1v0

2 S Tk~y!

Ck~u/2! D
2

.
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Two questions immediately arise. First, does there exist a complex factorization for these
grals? Second, which is the relation of this potential withŨ215U12 ~in the Euclidean plane is the
same system!?

The first question means that the additional integralI 3(k) must appear as the imaginary pa
of a certain complex function and that this complex function factors out in a similar way to
previousU11 andU21 cases. For the first functionK1 it is natural to propose

K15P1~k!1 i v0 Tk~u/2! .

Concerning the second factor, we have obtained that ifK2
(1/2) is given by

K2
(1/2)5Re@K2

(1/2)#1 i Im@K2
(1/2)# ,

Re@K2
(1/2)#5P1P21 v0

2 Tk~u/2!tany ,

Im@K2
(1/2)#5v0 @ Sk~y!Ck~y! vu2Tk~u/2!vy # ,

then we have

d

dt
Re@K2

(1/2)#52 S 1

2D S v0

~Ck~u/2!Ck~y!!2D Im@K2
(1/2)# ,

d

dt
Im@K2

(1/2)#5S 1

2D S v0

~Ck~u/2!Ck~y!!2D Re@K2
(1/2)# .

Hence

d

dt
K2

(1/2)5S i

2D S v0

~Ck~u/2!Ck~y!!2D K2
(1/2)

and consequently the functionK1 K2
(1/2)* is a constant of motion. We have obtained that, if w

write K1 K2
(1/2)* 5I 4(k)1 i I 3(k), thenI 3(k) and I 4(k) are given by

I 35Im~K1 K2* !52 v0 @ JP12v0
2 Tk

2~u/2! Tk~y! # ,

I 45Re~K1 K2* !5P1
2P21v0

2 Tk~u/2! @ 2Sk~y!Ck~y! vu2Tk~u/2! vy # .

Concerning the second question, it is clear that, as far askÞ0, we have different potentials
U1/2,1ÞU12, and also different complex factorizations. This is another example in which
deformation introduced byk causes important qualitative changes.

We close this section with the following table that summarizes thisk-dependent situation:

Potential Triple of quadratic constants Euclidean limit

U21 (P1
2 ,P2

21k J2,JP2) 4 x21y2

U1/2,1 (P1
2 ,P2

21k J2,JP1) ( 1
4) x21y2

Ũ215U12 (P1
21k J2,P2

2 ,JP1) x214 y2

Ũ1/2,15U1,1/2 (P1
21k J2,P2

2 ,JP2) x21( 1
4) y2
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V. OTHER k-DEPENDENT OSCILLATORS: SUPERINTEGRABILITY WITH HIGHER-
ORDER CONSTANTS OF MOTION

The following function,

Um15Tk
2~y!1

Tk
2~m u!

Ck
2~y!

5Tk
2~m u!1

Tk
2~y!

Ck
2~m u!

, ~21!

is well defined for any value ofm in the hyperbolic planeH2 and form integer or half-integer in
the sphereS2. As stated in point (i ) of Sec. IV, this potential is separable in (u,y) parallel
coordinates; therefore, it is integrable with quadratic constants of motion

I 1~k!5P1
2~k!1v0

2 @Tk~m u!#2 ,

I 2~k!5@P2
2~k!1k J2~k!#1v0

2 S Tk~y!

Ck~m u! D
2

,

and satisfies the appropriate Euclidean limit

lim
k→0

Um1~k!5~mx!21y2

for representing the general non-isotropicm:1 oscillator on a 2-D manifold of constant curvatu
k. Moreover, the integralI 1(k) is the sum of two squares~as in the Euclidean plane! and can be
considered as the modulus of an appropriate complex function. In fact, it can also be ob
from the following property.

Proposition 1: Let K1 be the following complex function:

K15P1~k!1 i v0 Tk~m u!.

Then the time evolution of K1 is given by

d

dt
K15S i m v0

Ck
2~m u!Ck

2~y! D K1 .

Proof: The proof follows by direct computation. Notice also that the appropriate Euclid
limit is satisfied:

lim
k→0

K15Jx ,
d

dt
Jx5 i m v0Jx , with Jx5vx1 i m v0x .

If we assume that the generalUm1 potential generalizes the two particular supersepara
cases, 2:1 and12:1, then it seems natural to suppose that, also in the generalm case, the superin
tegrability of Um1 must arise from the existence of a certain complex functionK2 satisfying an
appropriate time-evolution.

Next we consider the casesm53 andm54.

A. Nonisotropic 3:1 oscillator

The potential of the 3:1 oscillator is given by

U315Tk
2~y!1

Tk
2~3u!

Ck
2~y!

5 Tk
2~3u!1

Tk
2~y!

Ck
2~3u!

. ~22!

We have obtained~we omit the details! that the following complex functionK2
(3) defined as
                                                                                                                



t

2163J. Math. Phys., Vol. 44, No. 5, May 2003 Harmonic oscillators on the two-dimensional sphere

                    
K2
(3)5Re@K2

(3)#1 i Im@K2
(3)# ,

with Re@K2
(3)# and Im@K2

(3)# given by

Re@K2
(3)#5P2 ~P2

223 k J2!2 v0
2 @3Ck~3u! vy1Sk~3u!Ck~y!Sk~y! vu#S Tk~y!

Ck~3u! D 2

,

Im@K2
(3)#5v0 @3 vy

22~Ck~y!Sk~y! vu!2#S Tk~y!

Ck~3u! D2 v0
3 S Tk~y!

Ck~3u! D 3

,

satisfies the appropriate property

d

dt
K2

(3)5S 3 i v0

Ck
2~3u!Ck

2~y! D K2
(3) .

Consequently, the complex functionK defined as

K5K1 K2
(3)* 5 I 41 i I 3

is a constant of motion. Thus the potentialU31 is superintegrable with the functionI 3 as an
additional constant of motion:

I 3 5 I 331v0
2 I 31 ,

I 33 5 J ~3 P2
22k J2! ,

I 31 5 @3 Sk~3u! vy 2 Ck~3u!~Ck~y!Sk~y! vu!# F Tk~y!

Ck~3u! G2

.

The Euclidean limit is given by

lim
k→0

K2
(3)5Jy

3 , with Jy5vy1 i v0y ,

lim
k→0

I 353~xvy2yvx! vy
2 1 v0

2 ~yvx29xvy! y2 .

We notice that that the cubic character of the integralI 3 means thatU31 is a superintegrable bu
not superseparable potential.

B. Nonisotropic 4:1 oscillator

The potential of the 4:1 oscillator is given by

U415Tk
2~y!1

Tk
2~4u!

Ck
2~y!

5 Tk
2~4u!1

Tk
2~y!

Ck
2~4u!

. ~23!

We have obtained, also in thism54 case, a complex factorization. The functionK2
(4)

K2
(4)5Re@K2

(4)#1 i Im@K2
(4)#,

with Re@K2
(4)# and Im@K2

(4)# given by
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Re@K2
(4)#5P2

41k2J426kP2
2J22 2 v0

2 @3vy
212kTk~4u! ~Ck~y!Sk~y! vu! vy

2 k~Ck~y!Sk~y! vu!2#S Tk
2~y!

Ck~4u!
D 1 v0

4 Tk~y! S Tk~y!

Ck~4u! D 3

,

Im@K2
(4)#54 v0 @ vy

22k ~Ck~y!Sk~y! vu!2 # vyS Tk~y!

Ck~4u! D2 4 v0
3 vy S Tk~y!

Ck~4u! D 3

,

satisfies the appropriate property

d

dt
K2

(4)5S 4 i v0

Ck
2~4u!Ck

2~y! D K2
(4) .

Hence, the functionK5K1 K2
(4)* is a constant of motion for the potentialU41. If we write, as in

previous cases,K5I 41 i I 3 , then the superintegrability is given byI 35Im@K# that is an integral of
fourth order in the momenta

I 3 5 I 341w0
2 I 321w0

4 I 30 ,

I 34 5 J P2 ~P2
22k J2! ,

I 32 5 S 1

2D @3Sk~4u! vy
222Ck~4u!Ck~y!Sk~y! vuvy2k Sk~4u!~Ck~y!Sk~y! vu!2#F Tk~y!

Ck~4u! G2

,

I 3052 S 1

4D Sk~4u! F Tk~y!

Ck~4u! G4

.

Finally, the Euclidean limit is given by

lim
k→0

K2
(4)5Jy

4 , lim
k→0

I 35Im~JxJy
4! ,

Jx5vx1 i 4v0x , Jy5vy1 i v0y .

We summarize the results obtained form53 andm54 in the following table:

Potential Triple of constants of motion Euclidean limit

U31 P1
2 , P2

21k J2, J (3 P2
22k J2) 9 x21y2

U41 P1
2 , P2

21k J2, J P2 (P2
22k J2) 16x21y2

VI. FINAL COMMENTS AND OUTLOOK

We have discussed the properties of the differentk-dependent coordinate systems and
separability ofk-dependent potentialsU(k) on 2-D spaces of constant curvature and then we h
studied the superintegrabilty of thek-dependent harmonic oscillators. We have started with
three quadratic superintegrable systems,U11, U21, andU1/2,1 (U11 andU21 were studied in Refs.
24 and 25! and then we have analyzed the potentialsUm1 with higher order constants of motio
~superintegrable but not superseparable!. Some interesting properties to be remarked are: the d
contribution to the energy of the curvaturek and the angular momentumJ(k), the relation
between the angular momentumJ(k) and the two different separabilities in (u,y) and (x,v)
‘‘parallel’’ coordinates, the existence of ak-dependent potentialU1/2,1 different fromU21, and the
existence of a complex method for obtaining the superintegrability of the the potentials
nonquadratic constants of motion. Concerning this last point, we have proved by direct ca
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the existence of the complex functionsK2
(m) for the valuesm53,4 ~in addition to the previous

quadratic casesm51,2,12), but it seems natural to assume that this procedure will also remain
for other more general values ofm ~integer or half-integer!. Hence, a question that remains op
is the existence of a general algorithm for the complex factorization ofUm1 in the general case~in
the Euclidean case, discussed in Refs. 25 and 31, the functionK2

(m) is just given by themth power
of the functionJy).

We have assumed, as a first step, that most of the fundamental properties of ak-dependent
system are common properties for the three particular cases (k.0, k50, andk,0). Neverthe-
less, it will also be convenient to study separately the spherical (k.0) and the hyperbolic (k
,0) cases. As an example, in the spherical case, asS2 is compact, there is only a small numb
of oscillators (Um1 with m integer or half-integer!, but all of them are superintegrable. In theH2

plane the potentialsUm1 are well defined functions for arbitrary values of the parameterm.
Therefore, the situation inH2 looks rather similar to that of the EuclideanE2 plane, since all the
oscillatorsUm1 are integrable and only in some particular cases do they become superinteg
We have initiated in Ref. 32 a study of some properties that must be considered as intrin
associated to the sphericalk.0 case.

We have proved that the assumption of considering the spherical and hyperbolic oscilla
k-deformations of well known Euclidean systems~or conversely, the Euclidean oscillators as ve
particular cases of general ‘‘curved’’ systems! has been a successful idea when it is carried ou
introducing formula~1! with the curvaturek as a parameter. Moreover, we think that this gene
idea and this particular technique can also be applied to other systems; not only to other s
tegrable systems~e.g., systems related with the Kepler problem! but to integrable~or just sepa-
rable! potentials. As an example, the integrability of ak-dependent nonlinear He´non–Heiles
oscillator can be a matter to be studied from this geometric perspective.
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APPENDIX: GEODESIC PARALLEL COORDINATES

SupposeM is a 2-D Riemannian manifold,O is a point onM andg1 , g2 , are two orthogonal
geodesics byO. Let P be an arbitrary point~in some suitable neighborhood ofO) and denote by
P1 , P2 , the orthogonal projections ofP on g1 , g2 . Then we can characterize the pointP by

~1! the two distances (u,y) of O to P1 ~measured alongg1) and ofP1 to P ~measured along the
geodesic byP andP1), respectively, and

~2! the two distances (x,v) of P2 to P ~measured along the geodesic byP andP2) and ofO to
P2 ~measured alongg2), respectively.

In the first case we have the parallel coordinates ofP relative to (O,g1) and in the second cas
relative to (O,g2). In the (u,y) system the curves ‘‘u5const’’ are geodesics and the curves ‘y
5const’’ meet these geodesics orthogonally. In the (x,v) system the geodesics are the curv
‘‘ v5const.’’ Notice that in the general case we haveuÞx andvÞy.

In the case ofM being a space of costant curvaturek, the (u,y) and (x,v) expressions for the
differential element of distanceds2 are given by29

ds25Ck
2~y! du21dy2 and ds25dx21Ck

2~x! dv2 , ~24!

so that in both cases we getds25dx21dy2 for the particulark50 Euclidean case. These tw
systems, although different forkÞ0, can be related by using formulas of spherical and hyperb
trigonometry fork.0 and fork,0, respectively. Hence, all thek-dependent formulas in this
article, that have been written in the (u,y) language, can be translated into the (x,v) formalism.
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We have made use of the (u,y) notation because it is in this notation in which the potentialsUm1

are separable and become simpler in contrast with the (x,v) notation that becomes appropriate f
the associatedŨm1 potentials.

More concretely~and particularizing fork51 for ease of notation!, the two oscillatorsU21

andU1/2,1 that are separable in the (u,y) coordinate system, and so have rather simple express

U215tan2 y1S tan 2u

cosy D 2

,

U1/2,15tan2 y1S tanu/2

cosy D 2

,

become much more complicated when written in the (x,v) formalism:

U215
1

12~cosx sinv !2 @ 4Ab
21~cosx sinv !2 # , Ab5

cosv tanx

cos2 v2tan2 x
,

U1/2,15
1

12~cosx sinv !2 @ Abb
2 1~cosx sinv !2 # , Abb5

tanx

cosv1Acos2 v1tan2 x
.

Conversely, the two oscillatorsU125Ũ21 andU1,1/25Ũ1/2,1 that are given by

U125
1

12~sinu cosy!2 @ ~sinu cosy!214Bb
2 # , Bb5

cosu tany

cos2 u2tan2 y
,

U1,1/25
1

12~sinu cosy!2 @ ~sinu cosy!21Bbb
2 # , Bbb5

tany

cosu1Acos2 u1tan2 y
,

become

U125Ũ215tan2 x1S tan 2v
cosx D 2

,

U1,1/25Ũ1/2,15tan2 x1S tan~v/2!

cosx D 2

in the (x,v) system. This difference in the form of the potentials, which is clear forU21 andU1/2,1,
becomes much greater forU31, U41, and other more general oscillators.
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24M. F. Rañada and M. Santander, Rep. Math. Phys.49, 335 ~2002!.
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Stability of a special class of flows~which we call Beltrami flows! can be analyzed
by invoking a constant of motion that bounds the energy of perturbations. This
stability condition~a sufficient condition! suppresses any instability including non-
exponential~secular! growth due to non-Hermiticity; it also prohibits nonlinear
evolution to a large amplitude. The key to prove is the ‘‘coerciveness’’ of the
constant of motion in the topology of the energy norm. The theory has been applied
for an ideal ~nondissipative! magnetized plasma. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1567798#

I. INTRODUCTION

Stability of a plasma with a flow constitutes a very challenging problem because the in
tion between the perturbations and the ambient flow cannot generally be cast in an appr
Hamiltonian form. The standard notion of ‘‘energy,’’ then, does not pertain and the energy
cease to be the basic determinant of the stability of the flow. The generators of flow dyn
become ‘‘non-Hermitian’’ due to the fact the energy~conjugate to ‘‘time’’! corresponds to the
frequency of perturbations, and the frequency of perturbations in a flow may assume co
values. Consequently the spectral analysis~dispersion relation! of the generator to find ‘‘mode’’
frequencies does not lead to a complete understanding of stability because the modes
necessarily independent; they compose a nonorthogonal set of elements of a Hilbert space
actions among different modes may bring about a variety of transient phenomena;1 the existence
of an algebraically growing instability in a system where the entire frequency spectrum is r
an example of the ‘‘pathology’’ in the system.

A system is defined to be stable if one can show that a norm of any possible perturba
bounded. In the most familiar case when an appropriate ‘‘energy’’ of the perturbation is a co
of motion, and it consists of well-defined ‘‘kinetic’’ and ‘‘potential’’ parts, stability is insured f
an equilibrium for which the potential energy is a minimum. The linear stability of magnet
drodynamics~MHD! for a stationary~no flow! equilibrium falls in this category.

The stability argument finds a profound expression in the ‘‘nonlinear stability’’ of the so-ca
Taylor relaxed state2 derived for ideal incompressible MHD as the minimizer of the magn
energy for a given magnetic helicity. The ideal dynamics has two constants of motion: the
netic helicity,3 and the ‘‘total energy,’’ the sum of the magnetic and kinetic~flow! energies~the
thermal energy is decoupled because of incompressibility!. Any departure from the Taylor relaxe
state, therefore, must increase the magnetic energy, resulting in a decrease of the remaining
part of the total energy.

We note that the notion of ‘‘relaxed states’’ does not automatically warrant stability.
example the original idea behind Taylor relaxation was the search for a ‘‘minimum energy s
consistent with the helicity constraint. In this search the approximation of the total energ
magnetic energy happens to be rather fortuitous because the minimum magnetic energy sta
21680022-2488/2003/44(5)/2168/11/$20.00 © 2003 American Institute of Physics
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turn out to be demonstrably stable. This happy state does not persist when attempts are m
discover ‘‘relaxed states’’ in plasmas with flows and pressure gradients by the constrained
mization of the total energy including the kinetic and thermal components. If we find a re
state with a flow, we must separate the kinetic energies of the ambient flow and perturbat
study the stability; the criterion for stability, then, is the limit of the perturbation energy. Sin
perturbation can grow by extracting energy from the ambient flow, the constancy of the
energy does not prevent the excitation of an instability. This process may be regarded as a n
energy perturbation in the flow. It is generally difficult to separate the perturbation energy
that of the ambient field, because their interaction is, often, very complicated. Even whe
linearize the evolution equation, the representation of the energy~Hamiltonian! of the linearized
dynamics is pathological as remarked above.

In this paper, we study the stability of a special class of states~with flows! that are derivable
from variational principles, that is, the states obtained by the constrained minimization
suitable target functional. For this special class of flows, we will show the existence of a co
of motion that, under some appropriate conditions, bounds the fluctuation energy~‘‘coerciveness’’
in the topology of the energy norm!.

The plan of the paper is to begin by analyzing a simple particular example@vortex dynamics
in two dimensional space~Sec. II!# and then arrive at a general abstract theorem~Sec. III! for the
stability criterion. Finally we shall apply the general result to study the stability of a relati
more complex physical system~Sec. IV!. We consider an ideal magnetized plasma. The variatio
principle yields a Beltrami field that generalizes the Taylor state~force-free magnetic field! by
endowing it with a flow in the direction parallel to the magnetic field, and a finite pressure
obtain bounds for the flow velocity as well as for the Beltrami parameter—the measure o
shear of both magnetic and flow velocity fields. In Sec. V, we compare the derived sta
condition ~sufficient condition! with several of the previous results.4–7

II. TWO-DIMENSIONAL VORTEX DYNAMICS

A two-dimensional incompressible flow in a bounded domainV obeys the vortex dynamics

] tW1$F,W%50, ~1!

where the stream functionF defined byv5(]yF,2]xF) acts as the effective Hamiltonian,W
(52DF) is the flow vorticity, and the Poisson bracket has the standard form

$a,b%5~]ya!~]xb!2~]xa!~]yb!52~¹a3¹b!•ez ,

with ez5¹x3¹y. The circulation of the flow must be conserved~Kelvin’s theorem!;

R
G
n•¹F dg5K~given constant!, ~2!

wheren is the unit normal vector onto the boundaryG. To confine the flowv5¹F3ez in V we
demand

FuG5C~unknown constant!, ~3!

whereuG denotes the trace to the boundary value.
The general stationary solution~equilibrium flow! of this dynamics is given by$F,W%50

implying W5w(F) with w being a certain smooth function. For the simplest nontrivial choicew
linear in F!, the equilibrium condition yields what is called the ‘‘Beltrami flow,’’

2DF~5W!5mF ~m5real constant!. ~4!
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Remark 1:The Beltrami equation~4! with the circulation and boundary conditions~2! and~3!
is equivalent to an inhomogeneous equation: writingF5w1C (C is a constant!, the transformed
problem reads

~2D2m!w5mC,

wuG50, R
G
n•¹w dg5K.

If m is the eigenvalue of the Laplacian2D with the Dirichlet boundary condition, a solution ma
be obtained by demandingC50. Otherwise, the system leads tow52m(D1m)21C with the
constantC chosen to yield the prescribedK. We, thus, have a nontrivial solution for ever
complex numberm; the point spectrum of the Laplacian operator with the inhomogeneous c
lation and boundary conditions~2! and~3! spans the totality of complex numbers. In what follow
we assume thatm is a real number~thenw is a real function!.

The evolution equation~1!, under the circulation and boundary conditions~2! and~3!, has two
essential integrals~constants of motion!:

H05iWi2[E
V

uWu2 dx ~enstrophy!, ~5!

H15i¹Fi25~W,PF![E
V

W•~PF! dx ~energy!, ~6!

wherePF5F2C (C is chosen so thatPFuG50) is a projection to homogenize the bounda
condition ~3!. It is straightforward to see that the Beltrami equation~4! is reproduced as the
Euler–Lagrange equation of the variational principle

d~H02mH1!50 ~7!

with the circulation and boundary conditions~2! and ~3!.
To study the stability of a Beltrami flow~denote the Hamiltonian byF0), we linearize~1! with

writing F5F01w and2Dw5v ~the circulation*Vv dx must be zero!;

] tv1$F0 ,v%1$w,2DF0%50. ~8!

Using the equilibrium~4!, we can write

] tv1$F0 ,v2mw%50. ~9!

We easily verify that

G~w!5~v,v2mPw!5ivi22mi¹wi2 ~10!

is a constant of motion@dG(w)/dt50# associated with the linearized dynamics~9!. In a bounded
domain, we have the inequality

i2Dwi2>li¹wi2 ~11!

with l being the smallest eigenvalue of the Laplacian2D with the Dirichlet boundary condition
~one easily findsl.0). We, thus, have

G~w!>S 12
m

l D i2Dwi2, ~12!
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or

~l2m!i¹wi2<G~w! ~13!

implying that the energyi¹wi2 remains bounded form,l, becauseG(w) is a constant deter
mined by the initial condition of the perturbationw; the boundm,l on the Beltrami paramete
gives a sufficient condition for the stability of the Beltrami flow.

We can generalize this argument to a variety of second-order nonlinear systems. We fir
the method in an abstract theorem.

III. VARIATIONAL PRINCIPLE AND CONSTANT OF MOTION

Let f (a,b) be a bilinear map. We defineF(u)5 f (u,u), and consider an abstract nonline
evolution equation

] tu5F~u!. ~14!

We further suppose that there are symmetric bilinear formshj (a,b) ( j 51,...,n) such that

hj~u,F~u!!50 ~ j 51,...,n, ;u!. ~15!

It is now easy to show thatH j (u)5hj (u,u) @u is a solution of~14!# is a constant of motion for the
evolution equation~14!;

d

dt
H j~u!52hj~u,] tu!52hj~u,F~u!!50. ~16!

Let u0 be a stationary point~equilibrium! of ~14!, i.e., F(u0)50. We assume thatu0 solves

dF (
j 51

n

m jH j~u!G50 ~17!

with some fixed real numbersm j ( j 51,...,n); cf. ~7!. We call such au0 as a ‘‘Beltrami field.’’
Remark 2:If ~17! has a unique~or isolated! solutionu0 , then thisu0 is an equilibrium of~14!.

Indeed, any departure fromu0 will change the value ofG(u)[( j 51
n m jH j (u), while G(u) is a

constant of motion.
To study the perturbations aroundu0 , the following theorem plays an essential role.
Theorem 1: Suppose that u5u01ũ (u0 is a Beltrami field) satisfies either (14) or its ‘‘lin

earized’’ equation

] tũ5 f ~u0 ,ũ!1 f ~ ũ,u0!. ~18!

Then,

G~ ũ!5(
j 51

n

m jH j~ ũ! ~19!

is a constant of motion.
Proof: Using ~15!, we observe

05( m jhj~u,F~u!!

5( m jhj~u01ũ,F~u01ũ!!

5( m jhj~u0 ,F~u01ũ!!1( m jhj~ ũ,F~u01ũ!!. ~20!
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Since~17! implies (m jhj (u0 ,d)50 (;d), the first sum in~20! vanishes. Hence, ifu solves~14!,
we obtain

d

dt
G~ ũ!52( m jhj~ ũ,] tũ!52( m jhj~ ũ,F~u01ũ!!50. ~21!

We can rewrite~20! as

05( m jhj~ ũ, f ~u0 ,ũ!1 f ~ ũ,u0!!1( m jhj~ ũ,F~ ũ!!. ~22!

By ~15!, the second term of~22! vanishes. Ifũ is a solution of~18!, we obtain

d

dt
G~ ũ!52( m jhj~ ũ, f ~u0 ,ũ!1 f ~ ũ,u0!!50. ~23!

h

We note that although each functionalH j occurring in the sum that definesG is a constant of
motion for the total fieldu, it is only the special linear combination~19! that is conserved for the
perturbation,ũ. The coefficientsm j included inG are the structure~Beltrami! parameters charac
terizing the equilibrium.

If a continuous quadratic formF(v) satisfies~on a Hilbert spaceV)

F~v !>civi2 ~;vPV! ~24!

with some positive constantc (ivi is the norm ofv in V), F(v) is said to be ‘‘coercive.’’ The
functionalG of ~12! for m,l is an example of a coercive form~we considerG as a continuous
form in the topology ofH2 Sobolev space!.

Obviously, we have the following Proposition.
Proposition 1: If G(v)5( j 51

n m jH j (v) with givenm j is a coercive form, then

(1) G(u) has a unique ‘‘minimizer’’ that is given by the variational principle (17),
(2) the minimizer u0 of G(u) is a stationary point (equilibrium) of (14),
(3) the minimizer u0 is ‘‘stable’’; the norm of every perturbation u˜ is bounded by a constant tha

depends upon G(ũu t50).

IV. STABILITY OF MHD FLOW

We shall now put to work the general mathematical framework developed in the last se
We will apply Theorem 1 and Proposition 1 to investigate the stability of a three-dimens
plasma equilibrium with a flow. LetV be a bounded three-dimensional domain with a smo
boundaryG. We assume thatV is multiply connected with cutsS, @,51,...,m ~the first Betti
number!#, i.e., V\ø(S,) is simply connected.

Remark 3:In a multiply connected domainV(,R3), the curl operator has a point spectru
that covers the entire complex plane.8 This is because of the existence of a nonzero harmonic fi
(¹3h50, ¹•h50 in V, andn•h50 on G!, which plays the role of an inhomogeneous term
the eigenvalue problem

¹3u5lu.

We decompose the solenoidal fieldu into the harmonic componenth and its orthogonal comple
mentuS . We can show that the latter component is a member of the Hilbert space

LS
2 ~V!5$¹3aPL2~V!; n3a50 on G%.

The eigenvalue problem now reads as
                                                                                                                



t is

s

e

ortant

d

e
t
el

2173J. Math. Phys., Vol. 44, No. 5, May 2003 Stability of Beltrami flows

                    
¹3uS5l~uS1h!.

If we takeh50, we find a nontrivial solution only forl jPsp , wheresp is a countably infinite set
of real numbers. The setsp constitutes the point spectrum of the self-adjoint curl operator tha
defined in the Hilbert spaceLS

2 (V). For l8¹sp , we must invokehÞ0 and find a solutionuS

5(curl2l8)21l8h, where curl denotes the self-adjoint curl operator.8 When the domainV is
multiply connected, therefore, we can assume that the Beltrami parametersm j @to appear in~33!#
are arbitrary real~and even complex! numbers; see~32!. This fact is in analogy with the previou
example~4!; seeRemark 1.

Ideal MHD description of a plasma is contained in the force equation

] tv1~v•¹!v2~¹3B!3B1¹p50, ~25!

and the induction equation

] tB2¹3~v3B!50, ~26!

whereB is the magnetic field,v is the incompressible flow velocity, andp is the pressure. We hav
normalizedB by its representative valueB* , v by the Alfvén speedcA5B* /Am0r ~ion mass
densityr is assumed to be a constant!, p by B* 2/m0 , andt by the Alfvén transit time,/cA . The
length scale, is arbitrary. We assume boundary conditions

n•v50, n•B50 on G ~27!

and flux conditions

E
S,

n•B ds5K, ~,51,...,m!, ~28!

where the fluxes through the cuts are given constants. The dynamics allows three imp
constants of motion,

H05ivi21iBi2 ~energy!, ~29!

H15~A,B! ~magnetic helicity!, ~30!

H252~v,B! ~cross helicity!, ~31!

whereA is the vector potential.
The variational principle

d~H02m1H12m2H2!50 ~32!

gives Beltrami fields defined by

~12m2
2!¹3B5m1B, ~33!

v5m2B. ~34!

Remark 4:In standard literature, a solenoidal vector field obeying¹3u5au ~with some
scalar functiona! is called a Beltrami field. For constanta, it is sometimes called a Trkal field. A
‘‘force-free’’ magnetic field satisfying¹3B5aB with a constanta is the Taylor relaxed state, an
is derived by a variational principle by minimizing the magnetic energyHm5iBi2 subject to the
constraint of constant magnetic helicityH1 .2 The notion of ‘‘relaxation’’ assumes the selectiv
dissipation ofHm with respect to the rugged invariantH1 in a weakly dissipative turbulen
plasma—the minimizer ofHm for a given~conserved! H1 is the Taylor relaxed state. This mod
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is ‘‘unaware’’ of the flow velocity ~that may, indeed, be small in some laboratory plasm!.
ReplacingHm by H0 in the variational principle, however, one obtainsv50 in the relaxed state
It is through the constraint on the ‘‘cross helicity’’H2 that the relaxed states may acquire a fin
flow. The extended variational principle~32! yields a Beltrami field that generalizes the Tayl
state~force-free stationary equilibrium! imparting it with a field aligned flowv whose magnitude
is scaled bym2 and a finite pressure (p1v2/25constant; a generalized Bernoulli law!. The
conditions for the variational principle to give a ‘‘minimizer’’ is related to the stability of t
predicted state; see the Appendix.

Due to Theorem 1, the integral

G~B̃,ṽ!5i ṽi21iB̃i22m1~Ã,B̃!22m2~ ṽ,B̃! ~35!

is a constant of motion for the perturbationsB̃ and ṽ satisfying the nonlinear equations~25! and
~26!, or their linearized equations. The flux condition~28! demandsB̃PLS

2 (V).
We now prove the inequality

~Ã,B̃!<ulu21iB̃i2, ~36!

whereulu5minjulju @l j ( j 51,2,...) are theeigenvalues of the self-adjoint curl operator#. Invoking
the spectral resolution theorem due to Yoshida–Giga,8 we expand u5((u,cj )cj (;u
PLS

2 (V)), wherecj is the eigenfunction of the self-adjoint curl operator belonging to an eig
valuel j , and write

B̃5( ~B̃,cj !cj

and

PÃ5( ~B̃,cj !cj /l j ,

whereP is the orthogonal projection inL2(V) onto LS
2 (V). We observe

~Ã,B̃!5~PÃ,B̃!

<iPÃi•iB̃i5F( ~B̃,cj !
2/l j

2G21/2F( ~B̃,cj !
2G21/2

<ulu21( ~B̃,cj !
2

5ulu21iB̃i2.

Using

2~ ṽ,B̃!<ai ṽi21a21iB̃i2 ~;a.0!,

we obtain

G~B̃,ṽ!>~12aum2u!i ṽi21S 12
um2u
a

2
um1u
ulu D iB̃i2. ~37!

The choicesa51/um2u, anda5um2u/(12um1u/ulu) convert~37! to

G~B̃,ṽ!>S 12m2
22

um1u
ulu D iB̃i2 ~38!

and
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G~B̃,ṽ!>S 12
m2

2

12um1u/ulu D i ṽi2, ~39!

respectively. If 12m2
22um1u/ulu.0, then~38! and~39! give bounds for the energy associated w

the magnetic (B̃) as well as the velocity (ṽ) fluctuations.
The ‘‘sufficient condition’’ for the stability, therefore, consists of the simultaneous inequal

m2
2,1, ~40!

s[
um1u

12m2
2 ,ulu, ~41!

where s stands for the eigenvalue of the Beltrami equation~33! for m1.0. The first stability
condition requires that the flow velocity must not exceed the local Alfve´n speed@see~34!#, while
the second condition demands thats must not exceed the minimum oful j u (l j is the eigenvalue
of the self-adjoint curl operator!.

V. DISCUSSIONS

Combining a constant of motion and a coerciveness relation, we have derived a bound
energy of perturbations yielding a sufficient condition for stability. The constant of motion~Theo-
rem 1! is closely related to the variational principle characterizing the Beltrami equilibrium. U
appropriate boundary conditions, coerciveness is measured by the highest order of deri
included in the functional, which is a consequence of a Poincare´-type inequality@the constantc in
~24! is determined by the size of the domain#. In the inequalities~11! and ~36!, the constants are
related to the eigenvalues of the self-adjoint operators assuming sufficiently smooth fun
These eigenvalues are compared with the Beltrami parameters to determine the stability.

The method developed here differs from the standard argument for stability based o
second variation of the target functional~constant of motion!.9,10 If an equilibrium is defined by a
variational principle~first variation50), the stability of the stationary point may be examined
analyzing the spectrum of the ‘‘Hessian’’ of the target functional on a function space. In ge
this problem is highly nontrivial because the linearized operator describing the dynamics o
turbations may be non-Hermitian~see Sec. I!. When the target functional of the variational pri
ciple is a symmetric quadratic form, however, the second variation yields a symmetric He
This is an essential characteristic of the ‘‘Beltrami’’ class of equilibria, and it greatly simplifies
stability analysis. Our method does not invoke the second variation. Instead, we have fo
constant of motion that is naturally deduced from the variational principle characterizin
stationary point. The success of this method is also primarily due to the assumption that the
functional (G5 linear combination of constants of motion! is a symmetric quadratic form. The ke
of the stability theory is, then, the coerciveness of the constant of motion; it allows us to
bound on the perturbation norm. The constant of motion of a perturbation is formally equiv
to the target functionalG of the variational principle that determines the stationary point~Theorem
1!. The coerciveness demands that theG is a convex form, and hence, the coerciveness condi
may be related to the index of the Hessian. The former is, however, a more fundamental
that is directly related to the ‘‘topology’’ of the function space. In the Appendix, we examine
relation between the coerciveness and the index of the Hessian.

The constant of motion may be regarded as a ‘‘Lyapunov function.’’ Tasso5 developed a
similar scheme for a dissipative system where the corresponding Lyapunov function may
implying the damping of perturbations; see also Ref. 11. Following his idea, we can exten
stability regime by taking into account the resistive and viscous damping of energy. The
again, is the ‘‘coerciveness’’ relation. We can apply~36! and similar inequalities to quantify th
bound in terms of the eigenvalue of the self-adjoint curl operator.
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If we consider only exponential instabilities~replacing] t by 2 iv and studying the dispersio
relations!, we can develop a more detailed analysis for special geometries. For example, in
slab, the necessary and sufficient condition for stability against exponential growth is that
~40! or ~41! is satisfied~not ‘‘and’’ !.12 In this system the magnetic field curvature that m
destabilize the Alfve´n waves~kink modes! is absent, and only possible instabilities are of t
Kelvin–Helmholtz type. Without the magnetic field, the well-known stability criterion for
Kelvin–Helmholtz mode is precisely our condition~41!. The magnetic field, in this case, has
stabilizing effect~because of the absence of the kink modes!, and hence, the stability conditio
~41! applies for any magnitude (m2) of the magnetic field. Moreover, the stabilization effect of t
sheared magnetic field7 can suppress the Kelvin–Helmholtz instability if the flow velocity
sufficiently small, i.e., the condition~40! is satisfied. We also remark that the stability region giv
by ~40! is consistent to that predicted by assuming exponential growth and examining the
dratic integrals of the vortex dynamics equation.4 Detailed analysis of the necessary and suffici
conditions for purely exponential instabilities will be discussed elsewhere.
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APPENDIX: EIGENFUNCTION EXPANSION OF THE TARGET FUNCTIONAL

The relation between the coerciveness and the second variation of a functional can be c
by resorting to an appropriate eigenfunction expansion. A detailed demonstration of this re
ship will be worked out for MHD flows~Sec. IV!.

We consider the target functional@see~29!–~32!#

G~B,v!5H02m1H12m2H25ivi21iBi22m1~A,B!22m2~v,B!.

The simplest representation of the functionalG and its Hessian operator~second variation ofG)
may be obtained in terms of the eigenfunction of the self-adjoint curl operator.8 The complete
orthogonal setcj (¹3cj5l jcj ) spanningLS

2 (V) allows

B5(
j

bjcj1Bh ,

v5(
j

v jcj1vh ,

whereBh andvh are harmonic fields~see Remark 3!. The flux condition~28! determinesBh , while
vh is an unknown variable. DefiningB2Bh5¹3As (n3As50 onG! andAg5A2As , we may
write Bh5¹3Ag . Using the definition

L j5~cj ,Ag! ~given constants!,

along with the other expansions, we obtain

H05ivi21iBi25(
j

~bj
21v j

2!1iBhi21ivhi2,

H15~A,B!5(
j

~l j
21bj

212bjL j !1~Ag ,Bh!,

H252~v,B!52(
j

v jbj12~vh ,Bh!,
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and

G~B,v!5(
j

~bj
21v j

22m1l j
21bj

222m1bjL j22m2bjv j !

1iBhi21ivhi222m2~Bh ,vh!2m1~Ag ,Bh!.

We can now calculate the variations explicitly. The first variation~underdAg50; gauge invari-
ance!

dG5(
j

@2~bj2m1l j
21bj2m2v j2m1L j !dbj12~v j2m2bj !dv j #12~vh2m2Bh!•dvh

determines the stationary point~equilibrium!;

v0h5m2Bh , v0 j5m2b0 j ,

b0 j5
m1L j

~12m2
22m1l j

21!
,

whereBh andL j are given constants.
Denoting

v j5v0 j1 ṽ j , bj5b0 j1b̃ j ,

and defining the linear-transformed variables

c̃ j5 ṽ j2m2b̃ j ,

we obtain

G5(
j

~ b̃ j
21 ṽ j

22m1l j
21b̃ j

222m2b̃ j ṽ j !1i ṽhi21G0

5(
j

@ c̃ j
21~12m2

22m1l j
21!b̃ j

2#1i ṽhi21G0 ,

where

G05~12m2
2!iBhi22m1~Ag ,Bh!

is the minimum value ofG. This expression ofG gives the ‘‘diagonalized’’ Hessian evaluated
the stationary point. Let us writeṽh5 ṽhh ~h is the normalized harmonic field! and definec̃h

5 ṽh ~the harmonic magnetic fieldBh is fixed by the flux condition!. The independent degrees o
freedom associated with perturbations may be represented by an infinite dimension vector

ũ5~ c̃h ,c̃1 ,c̃2 ,...,b̃1 ,b̃2 ,...!,

which lets us castG in the canonical form

G5ũDũT1G0
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with the diagonalized Hessian

Dj ,k5H d j ,k acting on c̃h ,c̃1 ,c̃2 ,... ,

~12m2
22m1l j

21!d j ,k acting on b̃1 ,b̃2 ,... .
~A1!

The stationary point is stable if the index of the Hessian~the number of the negative eigenvalu
of D! is zero. The sufficient conditions for stability can be directly read off from~A1!, and are

m2
2,1 ~A2!

and

5
m1

12m2
2 ,l1 if m1.0,

um1u
12m2

2 ,ul2u if m1,0,

~A3!

with l15minlj.0 lj andl25maxlj,0 lj @hence,ulu5min(l1 ,ul2u)]. Comparing~A2! and ~A3!

with ~40! and ~41!, we find a slight improvement of the stability bound. This is due to the ex
evaluation of the Hessian.
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Anomalous diffusion: Fractional Fokker–Planck equation
and its solutions
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We analyze a linear fractional Fokker–Planck equation for the case of an external
force F(x)}xuxua21 and diffusion coefficientD(x)}uxu2u (a,uPR). We also
discuss the connection of the solutions found here with the Fox functions and the
nonextensive statistics based on the Tsallis entropy. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1566452#

I. INTRODUCTION

Anomalous diffusion is one of the most ubiquitous phenomena in nature.1 It is present in a
wide variety of physical situations. For instance, surface growth, transport of fluid in po
media,2 two-dimensional rotating flow,3 diffusion at liquid surfaces,4 diffusion of plasma,5 subre-
coil laser cooling,6 or even in multidisciplinary areas such as in analyzing the behavior of CT
micelles dissolved in salted water7 or econophysics.8

In a normal diffusion the second moment is given by^x2&}t. On the other hand, when th
second moment is finite and the diffusion is anomalous, we can have a correlated ano
diffusion.9 In general, this class of anomalous diffusive process is characterized by the pow
pattern^x2&}ta, wherea.1 represents superdiffusion while 0,a,1 represents subdiffusion
Lévy anomalous diffusion,10 in contrast to the correlated diffusion, does not have the sec
moment defined, i.e.,̂x2& diverges. Due to the broadness of the problems involving anoma
diffusion, one needs to apply different kinds of theoretical approaches such as nonlinear Fo
Planck equation~or modified porous media equation!,11,12 fractional Fokker–Planck equation,13

Fokker–Planck equation with spatial dependent diffusion coefficient, and generalized Lan
equations.

The fractional approach has been employed in a rich variety of scenarios such as cont
time random walk models,13 generalized Langevin equations, or the generalized master equa
In particular, it can be used to model a great number of physical and biological system
instance, it can be used to describe relaxation to equilibrium in systems~such as polymers chain
and membranes! with long temporal memory,14 anomalous transport in disordered systems,15 and
to model non-Markovian dynamical processes in protein folding.16 The advantage of the fractiona
model basically lies in the straightforward way of including external force terms and of calcul
boundary value problems.

To investigate anomalous diffusion in a broad context, in general, is desirable since on
interpolate different models in a single scheme. In this direction, it would be useful to stu
fractional ~spatial and temporal! Fokker–Planck equation with a diffusion coefficientD(x)
}uxu2u. An equation of this type interpolates time and spatial~Lévy! fractional Fokker–Planck
equation with diffusion on fractal medium in the sense of O’Shaughnessy and Proc

a!Electronic mail: eklenzi@dfi.uem.br
21790022-2488/2003/44(5)/2179/7/$20.00 © 2003 American Institute of Physics
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(uÞ0).17 A further ingredient to be incorporated in this equation is an external force~drift term!.
In this direction, the present work focuses attention on the discussion of

]

]t
r~x,t !5 0Dt

12gHD ]

]uxu F uxu2u
]m

]uxum
r~x,t !G2

]

]x
@F~x!r~x,t !#J , ~1!

whereg,m,uPR, F(x)[2dV(x)/dx is a dimensionless external force associated with the
tential V(x), 0Dt

12g is the fractional Riemann–Liouville derivative,18 and]m/]uxum is also the
fractional derivative. In particular, depending on the case we consider the fractional spati
rivative in the Riemann–Liouville approach18 or in the Reiz approach.13 For (g,m,u)5(1,1,0),
Eq. ~1! recovers the usual Fokker–Planck equation. Note that Eq.~1! is an integro-differential
equation, and different from the diffusion wave equation19 it is not necessary to use extra bounda
conditions forg.1. It can be verified that*2`

` dx r(x,t) is time independent~hence, ifr is
normalized att50, it will remain so forever!. Indeed, if we write the equation in the form] tr
5]xJ and assume the boundary conditionsJ(6`,t)→0, it can be shown that*2`

` dx r(x,t) is
a constant of motion.

In this work, we intend to investigate Eq.~1! by considering the external forceF(x)
}xuxua21. For this kind of external force one can obtain a new class of exact solutions in se
intervals of the parametersu, g, andm. Note that the external force can have short- or long-ra
behavior depending on the value ofa. In addition, to perform our analysis we consider t
boundary conditionr(x→6`,t)→0. By taking into account this requirement we employ,
particular, the initial conditionr(x,0)5d(x2x0). We start by considering the case characteriz
by an arbitraryu and m51 with a1u1150. In this case, the Rayleigh process20 is included.
Further, we investigate the caseu50, a51 and g, m arbitraries. In this last case, we have
mixing between the anomalous diffusion type correlated generated by the fractional deriva
time and Levy flights obtained with the spatial fractional derivative. We also investigate Eq.~1! by
taking into account the parametersu andm for the following regions:~i! u51 and22,m,0, ~ii !
u52122m with 21,m,0, and~iii ! u,0 for m521 by considering a linear drift (a51).
The remainder of this paper goes as follows. In Sec. II, we obtain the exact solutions fo
previous cases. In Sec. III, we present our conclusion, giving a discussion about our resul

Thus, the results that emerge from Eq.~1! with the previous external force extend seve
cases present in the literature, such as that one obtained in Ref. 17, to discuss diffusion on f
for uÞ0 and (m,g)5(1,1) without external force. The case (g,m)5(1,1), a522 andu523
that has been applied to the fast electrons in a hot plasma in the presence of a dc electric21

turbulent two particle diffusion in configuration space for (a,u)5(1/3,1/3),22 and the caseu
Þ0 andgÞ0 that was addressed in Ref. 23 when the external force is absent.

II. FRACTIONAL FOKKER–PLANCK EQUATION

Let us start to analyze Eq.~1! with m51 andu50 in the presence of a drift force given b
F(x)52K/x, i.e., we considerV(x)522K lnuxu. In this case, applying the Laplace transform
Eq. ~1!, we obtain

sr~x,s!2r~x,0!5s12gHD ]2

]x2 r~x,s!22K ]

]x F1

x
r~x,s!G J , ~2!

where the initial conditionr(x,0)5 r̃(x) andg.0 was used. This equation can be solved by
Green function method.24 By substituting

r~x,s!5E dyG~ ux2yu,s!r̃~y! ~3!

into Eq. ~2! what after some calculations gives
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G~x,s!5
sg(3/41~1/2!~K/D!)21

D 1/2GS K
D 1

1

2D S x2

4DD 1/41K/2D
KK/D21/2S sg/2uxu

AD D , ~4!

whereKn(x) is a modified Bessel function of third kind. Applying the inverse of Laplace tra
form we have that

G~x,t !5
1

GS K
D 1

1

2D S 1

4DtgD 1/2

H1 2
2 0F x2

4Dtg U
(1/2,1), (K/D,1)

(12 g/2 ,g) G , ~5!

where

Hp q
m nFxU~a1 ,A1!,~a2 ,A2!,...,~ap ,Ap!

~b1 ,B1!,~b2 ,B2!,...,~bq ,Bq
G5 1

2p i EL
ds x~s!xs,

x~s!5
) i 51

m G~bi2Bis!) i 51
n G~12ai1Ais!

) i 5m11
q G~12bi1Bis!) i 511n

p G~ai2Ais!
, ~6!

is the Fox function.13,25Thus, we can find the solution by substituting Eq.~4! into Eq. ~3!, which
yields

r~x,t !5
1

GS K
D 1

1

2D S 1

4DtgD 1/2E dx8r̃~x8!H1 2
2 0F ~x2x8!2

4Dtg U
(1/2,1), (K/D,1)

(12 g/2 ,g) G . ~7!

In Fig. 1 we show the behavior of Eq.~7! for typical values ofg for the initial conditionr̃(x)
5d(x). It is interesting to note that the distribution, with the presence of this potential, is null a
origin ~in contrast with the free case! and we do not have stationary solution for this case.

In order to analyze the Rayleigh process,20 characterized byF52k1x1k2 /x, we may em-
ploy the procedure of separation of variables with the use of the following ansatz:

rn~x,t !5fn~ t !cn~x!, ~8!

for a given eigenvalueln . Now, introducing Eq.~8! into Eq.~1! with m51 andu50 one obtains

dfn~ t !

dt
52ln 0Dt

12gfn~ t !,

~9!

D d2cn~x!

dx2 1
d

dx Fk1x2
k2

x Gcn~x!52lncn~x!.

The solution for the temporal equation is given in terms of the Mittag–Leffter function

fn~ t !}Eg~2lntg![(
j 50

`
~2lntg! j

G~11g j !
~10!

and
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r~x,t !5S k1

2DD k2/2D11/2uxuk2 /De2~k1/2D!x2

GS k2

2D 1
1

2D (
n50

` S n

n1
k2

2D 2
1

2
D Ln

(k2/2D21/2)S k1x2

2D D

3Ln
(k2/2D21/2)S k1x0

2

2D DEg~2lntg!, ~11!

with the initial conditionr(x,0)5d(x2x0), ln52nk1 and Ln
(a)(x) is the associated Laguerr

polynomial. Equation~11! contains the usual Ornstein–Uhlenbeck process26 and the usual Ray-
leigh process20 as particular cases, and it extends the result obtained in Ref. 27.

Let us go back to Eq.~1! and consider the forceF(x)}xuxua21, D(x)}uxu2u andm51. In
this case, an analytical solution cannot easily be obtained for a generica andu. However, foru
Þ0 anda1u1150 an exact solution can be obtained and it is given by

r~x,t !5
21u

2GS K
D 1

1

21u D S 1

D~21u!2tgD 1/~21u!

H1 2
2 0F x21u

D~21u!2tg U
(121/~21u!,1) , (K/D,1)

(12 g/~21u!,g) G ,

~12!

where, for simplicity, we are consideringr(x,0)5d(x) and the external force~drift! F(x)5(2
1u)K/x11u. In particular, Eq.~12! extends the results found in Ref. 28. The second momen

FIG. 1. (4Dtg)1/2G(
3
2)r(x,t) vs x2/(4Dtg) is plotted for typical values ofg. The initial condition isr̃(x)5d(x) andK

5D. We notice that the distribution vanishes forx50 in contrast with the case where the external force~drift! is absent.
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given by^x2&}t2g/(21u) which scales with the exponent 2g/(21u) and clearly depends only o
g andu. It also defines if the system exhibits a normal, super- or subdiffusion.

Let us now discuss Eq.~1! by considering a mixing between the spatial and temporal fr
tional derivatives, i.e., the caseu50 with arbitrary values ofg andm. We also employa51, i.e.,
F(x)52Kx to assure a stationary solution. Applying the Fourier transform in Eq.~1! and em-
ploying the Reiz representation for the spatial fractional derivative, we have

]

]t
r~k,t !52 0Dt

12g FDukum̄r~k,t !1Kk
]

]k
r~k,t !G , ~13!

wherem̄511m. The solution for Eq.~13! is given by

r~k,t !5 (
n50

`
1

n! S Dukum̄

m̄K D n

expS 2Dukum̄

Km̄
DEg~2m̄nKtg!, ~14!

This solution recovers the usual one forg51 andm̄52 and it extends form̄Þ2 the result found
in Ref. 27. By using the inverse of Fourier transform, we obtain

r~x,t !5
1

pm̄ (
n, j 50

`
~21! j

n! ~2 j !!
x2 j GS n1

1

m̄
1

2 j

m̄ D S m̄K
D D 1/m̄12 j /m̄

Eg~2m̄nKtg! . ~15!

The stationary solution that emerges from this process is a Levy distribution.
Now, we consider some particular cases of Eq.~1! for g51 and nonzero values ofm andu,

and considering a linear drift, i.e.,a51 andF(x)522Kx, too. For simplicity, we employD
51 and also assume that the functionr has a scaling form given by

r~x,t !5
1

F~ t !
PS x

F~ t ! D . ~16!

Substituting Eq.~16! into Eq. ~1! and considering the driftF522Kx, we obtain

2k
d

dz
@zP~z!#5

d

dz Fz2u
dm

dzmP~z!G ~17!

and

Ḟ~ t !

F~ t !2 12K 1

F~ t !
5kS 1

F~ t ! D
21u1m

, ~18!

wherez5uxu/F(t) andk is an arbitrary constant introduced to decouple Eq.~1! in two ordinary
differential equations, and it is determined by the normalization condition. By solving Eq.~18! we
have that

F~ t !5F (F(0))11u1me22(11u1m)Kt 1
k

2K (12e22(11u1m)KtD 1/~11u1m!

. ~19!

In order to obtain the solutions of Eq.~17!, we perform one integration and the result is

z2u
dm

dzmP~z!52kzP~z!1C, ~20!

whereC is an arbitrary constant. We use the Riemann–Liouville operator18 for the spatial deriva-
tive, and we work with thepositive x axis and, later on, we shall use the symmetry of
differential equation with respect to the spatial coordinate to extend the results to the enti
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axis ~we are working, in other words, with]m/]uxum). A complete analysis of Eq.~20! considering
m,uÞ0 is a hard task, thus, we restrict ourselves to the analysis of some particular situati

We start by consideringu51 and22,m,0. Applying the Laplace transform in Eq.~20! we
obtain

d2

ds̄2 P~ s̄!2
1

k
s̄mP~ s̄!50, ~21!

wheres̄ is the conjugate variable ofz in the Laplace transform. Solving this equation one obta

P~ s̄!5 s̄1/2K1/~21m!S 2s̄~21m/2!

k1/2~21m! D . ~22!

Inverting this expression yields

P~z!

5
1

2
@k3/2~21m!12m#1/~21m!H1 2

2 0F1

z
~k1/2~21m!!22/~21m!U

(1/~21m! , 1/~21m!) , (2/~21m! , 1/~21m!)

(1,1) G .

~23!

Next, we obtain the solution for the case21,m,0 andu52122m. Thus, going back to
Eq. ~20! and employing these last considerations, we have

P~z!5
1

z12m expF2
k̄

z
G , ~24!

wherek̄ is a constant. We notice that Eqs.~5! and~12! present the stretched exponential behav
for uxu→`, in contrast with Eqs.~23! and ~24! which exhibit the power law behavior in thi
asymptotic limit.

The casem521 andu,0 arbitrary lead us to

z2uE
0

z

dz̄P~ z̄!52kzP~z!1C, ~25!

whose solution forC50 is given by

P~z!5
1

z11u expFz2u

ku G . ~26!

Similar distribution has essentially been obtained in stochastic models for the volatility in fina
markets.29

The connection of the results obtained here with the nonextensive statistics11 cannot be estab
lished for the casem51 andu arbitrary, since the asymptotic limit for largex gives a stretched
exponential behavior. For the case in whichm is different from unity, it is possible, for some case
to establish a connection between the solutions obtained here and the nonextensive statist
connection may be done in the asymptotic limituxu→` that gives a power law behavior. Indee
the functional form ofr(x,t) does not coincide for arbitrary value ofx. However, the comparison
of these expressions in the asymptotic limituxu→` enables us to identify the type of tails whic
can be represented by the expression 1/uxu2/(q21) given in Ref. 11 for the entropic problem in thi
asymptotic behavior. For instance, for Eq.~24! we have that

q5
32m

12m
. ~27!
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A similar result was found in Ref. 30 by considering a nonlinear fractional Fokker–Pl
equation.

III. SUMMARY AND CONCLUSIONS

We have analyzed the fractional Fokker–Planck equations by considering an externa
F}xuxua21 and the diffusion coefficientD}uxu2u. By using the Green function method an
normalized scaled functions we were able to find explicit solutions forr(x,t). In particular, we
have extended the Rayleigh process by considering the fractional derivative in time. S
solutions could be established for the halved diffusion equation by incorporating an ade
external force. Whenever appropriate we have also discussed the connection with nonex
statistics, providing~through identification of the exact or at least asymptotic behaviors! the
relation between the entropic indexq and the exponents appearing in the Fokker–Planck equa
Finally, we expect that the results obtained here may be useful to the discussion of the ano
diffusion systems where fractional diffusion equations play an important role.
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Wigner’s theorem in a class of Hilbert C* -modules
Damir Bakića) and Boris Guljaš
Department of Mathematics, University of Zagreb, Croatia

~Received 12 November 2002; accepted 16 December 2002!

Let H be a complex Hilbert space, dimH.1, and letA#B(H) be aC* -algebra
such that the idealK (H) of all compact operators onH is contained inA. Let X be
a HilbertC* -module overA. We prove that any functionF:X→X which preserves
the absolute value of theA-valued inner product onX is of the form F(x)
5w(x)Ux, xPX, wherew is a phase function andU is anA-linear isometry. The
result generalizes Wigner’s classical unitary-antiunitary theorem and its extension
to Hilbert K (H)-modules. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1556553#

I. INTRODUCTION AND STATEMENT OF THE RESULT

Wigner’s unitary-antiunitary theorem states that each bijective functionF:H→H acting on a
complex Hilbert space (H,(•,•)) which satisfiesu(Fx,Fy)u5u(x,y)u, x,yPH, must be of the
form F(x)5w(x)Ux, xPH, whereU:H→H is either unitary or antiunitary operator andw:H
→C is a phase function~i.e., its values are of modulus 1!.

Wigner’s theorem was first published in 1931.16 We refer to Ref. 13~see also reference
therein! for an exposition concerned with various aspects of the theorem.

Recently, Wigner’s theorem has been generalized to HilbertC* -modules over matrix algebra
Md ~Ref. 10! and over the elementaryC* -algebraK (H) of all compact operators on a Hilbe
spaceH of arbitrary dimension.4

In the present article we extend Wigner’s theorem to a broader class of HilbertC* -modules
over concreteC* -algebras of bounded operators on a Hilbert spaceH which contain the elemen
tary algebraK (H). The proof uses extensions of HilbertC* -modules investigated in Ref. 3.

A ~right! Hilbert C* -module over aC* -algebraA is a rightA-moduleV equipped with an
A-valued inner product̂•,•& which is linear overA in the second and conjugate linear in the fi
variable, such thatV is a Banach space with the normivi5i^v,v&i1/2. ~We observe that the
results from Refs. 10 and 4 are stated for left HilbertC* -modules. On the other hand, extensio
of Hilbert C* -modules are discussed in Ref. 3 for right modules. Hence the ‘‘right’’ organiza
of the present article appears as the more convenient one.! Hilbert C* -modules are introduced an
first investigated in Refs. 6, 12 and 14.

A Hilbert A-module V is said to be full if the two sided ideal generated by all produ
^v,w&, v,wPV, is dense inA.

If V andW are HilbertA-modules, we denote byB(V,W) the Banach space of all adjointab
operators fromV to W ~i.e., of all mapsT:V→W such that there existsT* :W→V with the
property^Tv,w&5^v,T* w&, ;v,w). WhenV5W we write B(V) instead ofB(V,V). It is well
known that each adjointable operatorT is necessarily bounded andA-linear in the senseT(va)
5(Tv)a, ;aPA,;vPV. We additionally denote byLb(V) the set of all boundedA-linear op-
erators onV. In general, boundedA-linear operators may fail to possess an adjoint, soB(V) may
properly be contained inLb(V). However, if V is a Hilbert C* -module over the elementar
C* -algebraK (H) of all compact operators on a Hilbert spaceH, then it is known that each
boundedK (H)-linear operator onV is necessarily adjointable; this follows from Theorem 1

a!Electronic mail: bakic@math.hr
21860022-2488/2003/44(5)/2186/6/$20.00 © 2003 American Institute of Physics
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Ref. 8 and Theorem 2.8.6 in Ref. 5~or, alternatively, from Remark 5 in Ref. 1!. We refer the reader
to Refs. 7 or 15 for general facts about HilbertC* -modules.

Before stating the main result we fix the rest of our notation.
Throughout, ifa is an element of aC* -algebra,uau denotes the unique positive square root

a* a.
We shall fix a complex Hilbert spaceH such that dimH.1. TheC* -algebras of all compac

and bounded operators onH will be denoted byK andB, respectively. Let further (ej ) j PJ denote
a fixed approximate unit forK . The field of complex numbers is denoted byC.

Theorem 1: Let X be a full Hilbert C* -module over a C* -algebra A of operators on a
complex Hilbert space H withdimH.1, such thatK#A#B. Let F:X→X be a function satis-
fying

u^F~x!,F~y!&u5u^x,y&u, ;x,yPX. ~1!

Then there exist anA-linear isometry U:X→X and a phase functionw:X→C such that

F~x!5w~x!Ux, ;xPX.

Observe that the corresponding result for the case dimH51 is the classical Wigner’s theorem
In this situation one can not exclude the antilinear alternative from the assertion of the the
On the other hand, if dimH.1, then, as noted in Ref. 9, the nonappearance of antilinear iso
tries is the consequence of the noncommutativity of the underlyingC* -algebra. We further note
that in the caseA5K the above result is proved in Ref. 4; thus Theorem 1 serves as a gen
zation of Theorem 1 from Ref. 4.

Finally, we show by Example 5 below that one can not conclude thatU is an adjointable
operator. However, in either of the two boundary cases, namely ifA5K or if X is strictly
complete with respect to the ideal submoduleXK , the operatorU from Theorem 1 possesses a
adjoint; cf. Corollary 4 below.

II. PROOFS

We first summarize necessary facts about extensions of HilbertC* -modules; for the details
~and a general exposition! we refer to Ref. 3.

Suppose thatX is a full Hilbert A-module withK#A#B. Consider the ideal submoduleV
5XK associated with the essential idealK of A. Denote byVd5B(K ,V) the HilbertC* -module
over the multiplier algebraM (K )5B consisting of all adjointable maps fromK to V with the
inner product̂ r ,s&5r * s. Now observe thatV is embedded inVd via the mapG:V→Vd , G(v)
5r v wherer v :A→V denotes the ‘‘multiplier’’r v(a)5va. In the sequel we shall identifyv in V
with r v in Vd ; in this wayVd becomes an extension ofV containingV as the ideal submodule
V5VdK . Now recall Theorem 1.1 from Ref. 3: sinceX is an essential extension ofV, there exists
an injective morphismL:X→Vd of Hilbert C* -modules acting as the identity operator onV.
Thus, after identifyingX with L(X), we may writeV<X<Vd .

Further, one defines a~variant of! strict topology onVd by the family of seminorms
w°i^v,w&i , vPV andw°iwbi , bPK . It is proved in Ref. 3 thatV is strictly dense inVd : if
(ej ) is an approximate unit forK , then eachw in Vd satisfiesw5(st.)limj wej . Moreover, it turns
out thatVd is the completion ofV with respect to the strict topology.

Note that in the caseV5K the extended moduleVd is nothing else than the multiplier algebr
B5M (K ) with the usual (C* ) strict topology onB.

Finally, sinceV is an ideal submodule, it remains invariant for each adjointable operator oVd

and restriction toV gives an isomorphism ofC* -algebras of adjointable operators onVd and on
V ~cf. Theorem 2.2 from Ref. 3!. It is also noted in Ref. 3 that eachTPB(Vd) is strictly continuous
and serves as the strict continuation of its restriction toV.

Proof of Theorem 1:We assume thatK is properly contained inA, for otherwise the assertion
of the theorem is proved in Ref. 4.
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First observe that the assumed property~1! of F implies

^F~x!,F~x!&5^x,x&, ;xPX. ~2!

SinceV5XK is an ideal submodule we haveV5$vPX:^v,v&PK% ~cf. Ref. 2!. Now the above
equality ~2! shows thatV is invariant forF; thus the generalized Wigner’s theorem for Hilbe
C* -modules overK applies. By Theorem 1 from Ref. 4 there exist a phase functionw0 :V→C and
an isometryU0PB(V) such that

F~v !5w0~v !U0v, ;vPV. ~3!

Using Theorem 2.2 from Ref. 3 we can extendU0 to an isometryUdPB(Vd); remember thatUd

is the strict continuation ofU0 .
Let us now fixxPX andbPK . We would like to conclude thatF(x)b belongs to ImU0. Let

(vl) be an orthonormal basis for a HilbertK -module V. Recall from Ref. 1 that (vl) is an
orthogonal system generating a dense submodule such that each^vl ,vl& is a minimal projection
in K . It is proved in Ref. 1 that eachv in V satisfiesv5(lvl^vl ,v&. In particular, sincexb
PV, we havexb5(lvl^vl ,xb&. Now

^F~x!b,F~x!b&5b* ^F~x!,F~x!&b5b* ^x,x&b5^xb,xb&5(
l

^xb,vl&^vl ,xb&

5(
l

b* ^x,vl&^vl ,x&b

5(
l

b* ^F~x!,F~vl!&^F~vl!,F~x!&b

5(
l

^F~x!b,F~vl!&^F~vl!,F~x!b&

5(
l

^F~x!b,U0vl&w0~vl!w0~vl!^U0vl ,F~x!b&

5(
l

^F~x!b,U0vl&^U0vl ,F~x!b&.

SinceU0 is an isometry~i.e., U0* U05I ), (U0vl) is also an orthonormal system inV. Therefore,
the equality obtained above, namely^F(x)b,F(x)b&5(l^F(x)b,U0vl&^U0vl ,F(x)b&, implies

F~x!b5(
l

U0vl^U0vl ,F~x!b&. ~4!

As an isometryU0 has a closed image, thus~4! showsF(x)bPIm U0.
Further, for arbitraryv in V we find

^U0* ~F~x!b!,v&^v,U0* ~F~x!b!&5^F~x!b,U0v&^U0v,F~x!b&

5^F~x!b,w0~v !U0v&^w0~v !U0v,F~x!b&

5b* ^F~x!,F~v !&^F~v !,F~x!&b

5b* ^x,v&^v,x&b5^xb,v&^v,xb&.

By Lemma 1 from Ref. 4 there existswb(x)PC such thatuwb(x)u51 and
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U0* ~F~x!b!5wb~x!xb. ~5!

Since U0U0* is the orthogonal projection to ImU0 and since this closed submodule conta
F(x)b, the action ofU0 to ~5! gives

F~x!b5wb~x!U0~xb!. ~6!

Observe that the above equality~6! is obtained for arbitraryx in X and b in K . Now takeb
5ej ; note additionally thatU0 is the restriction of the isometryUdPB(Vd). Then, if we denote
wej

5w j , ~6! becomes

F~x!ej5w j~x!Ud~x!ej , ;xPX, ; j . ~7!

We may assume that (w j (x)) is a convergent net with the limitw(x), for otherwise, since
uw j (x)u51, one can replace (w j (x)) with an appropriate subnet (w j (p)(x)). Since eachy in Vd

satisfiesy5(st.)limj yej , we may take strict limits in~7! to obtain

F~x!5w~x!Ud~x!, ;xPX. ~8!

The last equality also shows thatX is invariant forUd . Denoting byU the operator onX induced
by Ud we finally obtain

F~x!5w~x!Ux, ;xPX. ~9!

This concludes the proof, sinceU, as a restriction ofUd , is also anA-linear isometry. h

Remark 2:It should be noted that the operatorU from Theorem 1 is not only an isometry, bu
has a stronger property of preserving the inner products. This is indeed a general prop
operators on HilbertC* -modules: eachA-linear isometry of HilbertA-modulesU:X→Y, ad-
jointable or not, satisfieŝUx1 ,Ux2&5^x1 ,x2&, ;x1 ,x2PX. This is proved exactly as Theorem
3.5 in Ref. 7.

On the other hand, one can not conclude that the operatorU from Theorem 1 possesses a
adjoint; see Example 5 below. However, ifX5Vd , i.e., whenX coincides with the strict comple
tion of V the operatorU must be adjointable. To see this we first prove an independent pro
tion.

Proposition 3: Let V be a full HilbertK -module. Then Lb(Vd)5B(Vd).
Proof: TakeTPLb(Vd) and denote byT0 the restriction ofT to V ~it is already observed tha

V, as an ideal submodule ofVd , remains invariant under eachB-linear operator onVd).
SinceV is a HilbertC* -module overK , T0 has the adjoint operatorT0* on V. Let S be the

extension ofT0* to an operator onVd ; we also know thatS is in fact the strict continuation ofT0*
~cf. Theorem 2.2 from Ref. 3!.

Now we would like to conclude

^x,Ty&5^Sx,y&, ;x,yPVd . ~10!

First observe that the above equality holds true for allx and y in V. Therefore for a fixedx
PVd and arbitraryvPV we have

^xej ,Tv&5^S~xej !,v&, ; j . ~11!

Since (xej ) strictly converges tox, strict continuity ofS implies

^x,Tv&5^Sx,v&, ;xPVd ,;vPV. ~12!

Now take arbitraryyPVd and observe that~12! ensures

^x,T~yej !&5^Sx,yej&, ; j . ~13!
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Passing to the strict limits we obtain~10!. h

Corollary 4: Let X be a full Hilbert C* -module over a C* -algebraA#B of operators on a
complex Hilbert space H withdimH.1, such thatK#A. Assume further that X is strictly
complete with respect to the strict topology induced by the ideal submodule XK . Let F:X→X be
a function satisfying

u^F~x!,F~y!&u5u^x,y&u, ;x,yPX.

Then there exists an isometry UPB(X) and a phase functionw:X→C such that

F~x!5w~x!Ux, ;xPX.

Proof: By assumptionX is strictly complete with respect toXK , thus, by Theorem 1.6 from
Ref. 3, unitarily equivalent to (XK )d . Now the assertion follows from Theorem 1 and the p
ceding proposition. h

Example 5:We provide an example of anA-linear isometryUPLb(X) on a HilbertA-module
X with K#A#B which is not an adjointable operator onX. @It should be observed that example
of nonadjointable operators on HilbertC* -modules are well known from the literature; see, f
instance, Refs. 12 or 7. But in our situation, namelyV5XK and V<X<Vd , the underlying
C* -algebraA containsK . Therefore by the observation from the introduction, Theorem 2.2
Ref. 3 and the above Proposition 3, we knowLb(V)5B(V).B(Vd)5Lb(Vd). Hence it makes
sense to ask whether there are nonadjointable isometries onX.]

First observe the following general remark. Suppose we are given an operatorTPLb(X).
Consider the restrictionT0 of T to V (V is invariant forT) and its extensionTdPB(Vd) to Vd and
note thatTd is the strict continuation ofT0 . Assume that there exists the adjointSPB(X) of T,
that is, an operatorS:X→X satisfying ^S(x),y&5^x,T(y)&, ;x,yPX. From this equality one
concludes thatS(x) must be the strict limit of the net (Td* (x)ej ). SinceTd* is A-linear and strictly
continuous, this impliesS(x)5Td(x). In conclusion,S must coincide with the restriction ofTd* to
X. In other words, an operatorTPLb(X) possesses an adjoint if and only ifX is invariant forTd* .

To provide a concrete example we borrow Example from Ref. 11, p. 54.
Let S be a unilateral shift on a separable Hilbert spaceH of infinite multiplicity. Consider the

*-algebraA05K1SBS* and denote byA the closure ofA0 in the operator norm. Clearly,A is
a C* -algebra such thatK#A#B. We shall regardK , A and B as HilbertC* -modules in the
standard way. Define the left translationLS :T°ST. Observe thatLS is an isometry onB for
which bothK andA are invariant. In particular,LS is anA-linear isometry onA. Now notice that
the adjoint operatorLS* on B is in fact the left translation byS* , namelyLS* :T°S* T. We claim
thatA is not invariant forLS* . Indeed,LS* A#A would imply S* PA, hence alsoSPA. But, as
it is demonstrated in Ref. 11, this is impossible.
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Representations of a symplectic type subalgebra of W`

Carina Boyalliana) and José I. Liberatib)

Ciem-FAMAF, Universidad Nacional de Co´rdoba-(5000) Co´rdoba, Argentina

~Received 25 November 2002; accepted 5 January 2003!

We classify the irreducible quasifinite highest weight modules over the symplectic
Lie subalgebraW` , and realize them in terms of irreducible highest weight repre-
sentations of classical Lie subalgebras of infinite matrices with finitely many non-
zero diagonals. ©2003 American Institute of Physics.@DOI: 10.1063/1.1560553#

I. INTRODUCTION

The W-infinity algebras naturally arise in various physical theories, such as conformal
theory, the theory of the quantum Hall effect, etc. TheW11` algebra, which is the central exten
sion of the Lie algebraD of differential operators on the circle, is the most fundamental am
these algebras.

When we study the representation theory of a Lie algebra of this kind, we encounte
difficulty that although it admits aZ-gradation, each of the graded subspaces is still infi
dimensional, and therefore the study of highest weight modules which satisfy the quasi-fini
condition that its graded subspaces have finite dimension, becomes a nontrivial problem.

The study of representations of the Lie algebraW11` was initiated in Ref. 8, where a cha
acterization of its irreducible quasifinite highest weight representations was given, these m
were constructed in terms of irreducible highest weight representations of the Lie algeb
infinite matrices, and the unitary ones were described. On the basis of this analysis, further
were made in the framework of vertex algebra theory for theW11` algebra,5,9 and for its matrix
version.4 The case of orthogonal subalgebras ofW11` was studied in Ref. 10. The symplect
subalgebra ofW11` was considered in Ref. 2 in relation to number theory.

Reference 1 developed a theory of quasifinite highest weight representation of the suba
W`,p of W11` , whereW`,p (pPC@x#) is the central extension of the Lie algebraDp(t] t) of
differential operators on the circle that are a multiple ofp(t] t). The most important of these
subalgebras isW`5W`,x that is obtained by takingp(x)5x. Its unitary quasifinite representa
tions were studied in Ref. 7. In the present article we classify all irreducible quasifinite hi
weight modules of the symplectic subalgebraDx,u of W` given by the minus fixed points of th
anti-involutionu introduced by Bloch in Ref. 2. This is strongly used in the recent study of fi
growth modules over conformal algebras.3

II. LIE ALGEBRAS g ø̂`
†m ‡ AND c `

†m ‡

Denote byRm5C@u#/(um11) the quotient algebra of the polynomial algebraC@u# by the ideal
generated byum11 (mPZ1). Let 1 be the identity element inRm . Denote byg,`

[m] the complex
Lie algebra of all infinite matrices (ai j ) i , j PZ with only finitely many nonzero diagonals wit
entries inRm . Denote byEi j the infinite matrix with 1 at (i , j )-place and 0 elsewhere. There is
natural automorphismn of g,`

[m] given by

n~Ei , j !5Ei 11,j 11 . ~2.1!

a!Electronic mail: boyallia@mate.uncor.edu
b!Author to whom correspondence should be addressed. Electronic mail: liberati@mate.uncor.edu
21920022-2488/2003/44(5)/2192/14/$20.00 © 2003 American Institute of Physics
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Let the weight ofEi , j be j 2 i . This defines theprincipal Z-gradationg,`
[m]5 % j PZ(g,`

[m] ) j .
Denote byg,̂`

[m]5g,`
[m]

% Rm the cental extension ofg,`
[m] given by the following two-cocycle

with values inRm :

C~A,B!5Tr~@J,A# B!, ~2.2!

where J5( i<0Eii . The Z-gradation of the Lie algebrag,`
[m] extends tog,̂`

[m] by putting the
weight of Rm to be 0. In particular we have thetriangular decomposition

g,̂`
[m]5~g,̂`

[m] !1 % ~g,̂`
[m] !0% ~g,̂`

[m] !2 , ~2.3!

where

~g,̂`
[m] !65 %

j PN

~g,̂`
[m] !6 j and ~g,̂`

[m] !05~g,`
[m] !0% Rm .

Given lP(g,̂`
[m] )0* , we let

ci5l~ui !,

al j
( i )5l~ui Ej , j !, ~2.4!

ahj
( i )5 al j

( i )2 al11 j
( i ) 1d j ,0ci ,

where j PZ and i 50,...,m. Let L(g,̂`
[m] ,l) be the irreducible highest weightg,̂`

[m] -module with
highest weightl. The al j

( i ) are called thelabelsandci are thecentral chargesof L(g,̂`
[m] ,l).

Consider the vector spaceRm@ t,t21#, and take theRm-basisv i5t2 i , i PZ. Now consider the
following C-bilinear form onRm@ t,t21#:

C~umv i ,unv j !5um~2un!d i ,12 j . ~2.5!

Denote byc̄`
[m] the Lie subalgebra ofg,`

[m] which preserves the bilinear formC( , ). We have

c̄`
[m]5$~ai j ~u!! i , j PZPg,`

[m] u ai j ~u!5~21! i 1 j 11a12 j ,12 i~2u! % .

Denote byc`
[m]5 c̄`

[m]
% Rm the central extension ofc̄`

[m] given by the restriction of the two-cocycl
~2.2!, defined ing,`

[m] . This subalgebra inherits fromg,̂`
[m] the principalZ-gradation and the

triangular decomposition~see Refs. 10 and 6 for notation!

c`
[m]5 % j PZ~c`

[m] ! j , c`
[m]5~c`

[m] !1 % ~c`
[m] !0% ~c`

[m] !2 .

In particular, whenm50, we have the usual Lie subalgebra ofg,` , denoted byc` .
GivenlP(c`

[m] )0* , denote byL(c`
[m] ;l) the irreducible highest weight module overc`

[m] with
highest weightl.

For eachlP(c`
[m] )0* , we let

ci5l~ui !,

cl j
( i )5l~ui Ej , j2~2u! i E12 j ,12 j !,

~2.6!
chj

( i )5cl j
( i )2 cl11 j

( i ) ,

ch0
( i )5cl1

( i )1ci ~ i even!,
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where j PN and i 50,...,m. The cl j
( i ) are called thelabels and ci are thecentral chargesof

L(c`
[m] ,l).

III. THE SUBALGEBRA Du,x AND ITS STRUCTURE OF PARABOLIC SUBALGEBRAS

Let D be the Lie algebra of regular differential operators on the circle, i.e., the operato
C@ t,t21# of the form

E5ek~ t !] t
k1ek21~ t !] t

k211¯1e0~ t !, where ei~ t !PC@ t,t21#.

The elementstk(] t)
l ( l PZ1 , kPZ) form its basis, where] t denotesd/dt. Another basis ofD is

tkDl ~ l PZ1 , kPZ!,

whereD5t] t .
We have the following two-cocycle onD, where f (w),g(w)PC@w#:8

C~zr f ~D !,zsg~D !!5H (
2r<m<21

f ~m!g~m1r ! if r 52s>0

0 if r 1sÞ0.

~3.1!

The central extensionD̂ of D by a one-dimensional centerCC, corresponding to the two-cocycl
C, is also denoted byW11` . The bracket inW11` is given by

@ t r f ~D !,tsg~D !#5t r 1s~ f ~D1s!g~D !2 f ~D !g~D1r !!1C~ t r f ~D !,tsg~D !!C. ~3.2!

Consider the following Lie subalgebras ofD:

DxªD D.

Denote byD̂x the central extension ofDx by CC corresponding to the restriction of the two
cocycleC. Observe thatD̂x is the well-knownW` subalgebra ofW11` .

Letting wt tkf (D)D5k, wt C50 defines theprincipal gradationof D̂x :

D̂x5 %
j PZ

~D̂x! j ,

where (D̂x) j5$t j f (D) D u f (w)PC@w#%1d j 0CC.
In Ref. 2, the anti-involutionu in Dx was introduced:

u~ tkDn!52 tk~2D2k!n21D, ~3.3!

wherekPZ andnPN. We denote byDu,x the Lie subalgebra ofDx consisting of its minusu-fixed
points. It inherits the principalZ-gradation ofDx sinceu preserves the principalZ-gradation of
Dx , namelyDu,x5 % kPZ(Du,x)k , where

~Du,x!k5$tk f ~D !D u f PC@x# andu~ tk f ~D !D !52tk f ~D !D%

5$tk g~D1k/2!D u g even polynomial%. ~3.4!

We denote again byC the restriction of the two-cocycle in~3.1! to Du,x ,
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C~zr f ~D1r /2!D,zsg~D1s/2!D !

5H (
2r<m<21

f ~m1r /2! m g~m1r /2!~m1r ! if r 52s>0

0 if r 1sÞ0,

~3.5!

wheref (w) andg(w) are even polynomials. Denote byDu,x̂ the central extension ofDu,x by CC
corresponding to the two-cocycleC.

We define aparabolic subalgebraP of Du,x̂ as a subalgebra of the formP5 % j PZPj where
Pj5(Du,x̂) j if j >0, andPjÞ0 for some j ,0. For each positive integerk we have thatP2k

5$t2k g(D2k/2)D u gPI 2k%, where I 2k is some subspace of the ring of even polynomia
Given g(w) andh(w) even polynomials we have thatt2kh(D2k/2)D andg(D)DPDu,x̂. One
can compute

@g~D !D , t2kh~D2k/2!D#5t2kf ~D2k/2!h~D2k/2!D, ~3.6!

where f (w2k/2)5g(w2k/2)(w2k/2)2g(w1k/2)(w1k/2). As g(w) ranges over all even
polynomials,f (w) ranges over all even polynomials, too. Thus~3.6! implies that ifh(w)PI 2k ,
then h(w) multiplied by any even polynomial, also belongs toI 2k . Let bk(w) (kPN) be the
unique monic even polynomial inI 2k of minimal degree whenI 2kÞ0, and letbk(w)50 when
I 2k50. We callbk(w) (kPN) the characteristic polynomialsof P.

Lemma 3.1: Let$bk , kPN% be the sequence of characteristic polynomials of a parab

subalgebraP of the Lie algebraDu,x̂. Then

(a) bk(z) divides(z1k/211) (22z) bk11(z1 1
2) for all kPN,

(b) bk1 l(w) divides w(w2(k2 l )/2)bk(w1 l /2)bl(w2k/2) for all kPN, and
(c) P2kÞ0 for all kPN.

Proof: It follows from

@ tD , t2k21bk11~D2~k11!/2!D#

5t2k ~~D2k21!bk11~~D2~k11!/2!2bk11~D112~k11!/2!~D11!!D

that bk(w2k/2) divides

~~w2k21! bk11~w2~k11!/2!2bk11~w112~k11!/2! ~w11!! w. ~3.7!

Now, by computing

@ tD,t2k21bk11~D2~k11!/2! ~D2~k11!/2!2 D#

5t2k ~~D2k21! bk11~~D2~k11!/2! ~D2~k11!/2!2

2bk11~D112~k11!/2! ~D112~k11!/2!2 ~D11!!D,

we have thatbk(w2k/2) divides

~~w2k21! ~w2~k11!/2!2bk11~w2~k11!/2!

2~w112~k11!/2!2 bk11~w112~k11!/2! ~w11!! w. ~3.8!

Thus, bk(w2k/2) divides ~3.8! subtracted from~3.7! multiplied by (w2(k11)/2)2, which is
equal to (w11) (22(w2(k11)/2)21) bk11(w112(k11)/2). Therefore, puttingz5w
2k/2, we obtain~a!. This computation shows that ifbk11(z)Þ0, thenbk(z)Þ0.

Part ~b! can be proved in a similar fashion by computing
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@ t2k bk~D2k/2! D , t2 l bl~D2 l /2! D #,

and

@ t2k ~D2k/2!2 bk~D2k/2! D , t2 l bl~D2 l /2! D #.

This computation shows that ifbk(z) andbl(z) are nonzero, thenbk1 l(z)Þ0.
Part ~c! follows from ~a! and ~b!. h

Lemma 3.2:

@~Du,x̂!1 , ~Du,x̂!k#5~Du,x̂!k11 ~k.1!,

and

~Du,x̂!25@~Du,x̂!1 , ~Du,x̂!1# % C t2D.

Proof: Same as Lemma 3.3 in Ref. 10, but computing

@ t ~D11/2! l D , tm ~D1m/2!k D#

with l andk even non-negative integers, instead of formula~3.33! in Ref. 10. h

Denote by (Du,x̂)0(b1 ,b2) the subspace of (Du,x̂)0 spanned by

~g~D2 1
2!b1~D2 1

2! ~D21!2g~D1 1
2! b1~D1 1

2! ~D11!! D

and

~ f ~D21!b2~D21!~D22!2 f ~D11! b2~D11!~D12!! D2 f ~0!b2~0! C,

where f , g are even polynomials.
Proposition 3.3: LetP be a parabolic subalgebra ofDu,x̂ and let b1(z) and b2(z) be its first

and second characteristic polynomials. Then

@P , P#5~Du,x̂!0~b1 ,b2! % ~ % kÞ0Pk!.

Proof: We omit this proof since it is completely analogous to the proof of Proposition 3.
Ref. 10. h

IV. CHARACTERIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF Du, x̂

Now, we begin our study of quasifinite representations overDu,x̂. Let g5 % j PZgj be
a Z-graded Lie algebra overC, and let g15 % j .0gj . A g-module V is called Z-graded if
V5 % j PZVj andgiVj,Vi 1 j . A Z-gradedg-moduleV is calledquasifiniteif dimVj,` for all j .

GivenlPg0* , ahighest weight moduleis aZ-gradedg-moduleV(g,l) generated by a highes
weight vectorvlPV(g,l)0 which satisfies

hvl5l~h!vl ~hPg0!, g1vl50. ~4.1!

A nonzero vectorvPV(g,l) is calledsingular if g1v50.
The Verma moduleover g is defined as usual:

M ~g,l!5U~g! ^ U(g0% g1)Cl , ~4.2!

whereCl is the one-dimensional (g0% g1)-module given byh°l(h) if hPg0 , g1°0, and the
action of g is induced by the left multiplication inU~g!. Here and furtherU~q! stands for the
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universal enveloping algebra of the Lie algebraq. Any highest weight moduleV(g,l) is a quotient
module ofM (g,l). The irreducible moduleL(g,l) is the quotient ofM (g,l) by the maximal
proper graded submodule.

Consider a parabolic subalgebraP5 % j PZPj of g and letlPg0* be such thatlug0ù[P,P]50.
Then the (g0% g1)-moduleCl extends to aP-module by lettingPj act as 0 forj ,0, and we may
construct the highest weight module

M ~g,P,l!5U~g! ^ U(P)Cl

called thegeneralized Verma module. Clearly all these highest weight modules are graded.
From now on we will considerg5Du,x̂ and lP(Du,x̂)0* . Let b1(w) and b2(w) two monic

even polynomials and letlP(Du,x̂)0* be such thatlu(Du,x̂)0(b1 ,b2)50. Consider a parabolic suba

gebraP of Du,x̂ whose first and second characteristic polynomials areb1 and b2 . Denote by
M (Du,x̂); l, b1 , b2) the generalized Verma moduleM (Du,x̂),P, l). The polynomialsb1 andb2

do not determineP uniquely, but, for our need, any corresponding parabolicP will do.
We omit the proof of the following proposition since it is essentially the same as the pro

Proposition 4.1 in Ref. 10, replacing Lemma 3.1 by our Lemma 3.1.
Proposition 4.1: The following conditions onlP(Du,x̂)* are equivalent:

(a) M(Du,x̂; l) contains a singular vector in the first graded subspace.
(b) L(Du,x̂;l) is quasifinite.
(c) There exist monic even polynomials b1 and b2 such that L(Du,x̂;l) is a quotient of a

generalized Verma module M(Du,x̂; l, b1 , b2).

We shall writeM (l) andL(l) in place ofM (Du,x̂,l) andL(Du,x̂,l) if no ambiguity may
arise.

Let L(l) be an irreducible quasifinite highest weight module overDu,x̂. By Proposition 4.1,
there exists a monic even polynomialb(w) such that

~ t21b~D21/2!D !vl50.

We shall call such monic polynomial of minimal degree, uniquely determined by the hig
weight l, thecharacteristicpolynomial ofL(l).

A functional lP(Du,x̂)0* is described by itslabelsD l52l(Dl) with l an odd non-negative
integer, and thecentral charge c5l(C). We shall consider the generating series

Dl~x!5 (
l>0, l odd

`
xl

l !
D l52l~sinh~xD!!. ~4.3!

Recall that aneven quasipolynomialis a solution of a nontrivial linear differential equatio
with constant coefficientsp(] t)50, wherep(x) is an even polynomial. One has the followin
characterization of quasifinite highest weight modules overDu,x̂.

Theorem 4.2:A Du,x̂-module L(l) is quasifinite if and only if there exists an even quasipo
nomial fl(x) with fl(0)50, such that

Dl~x!5S fl~x!

sinh~x/2! D . ~4.4!

Proof: From Propositions 3.3 and 4.1, we have thatL(l) is quasifinite if and only if there
exist two even monic polynomialsb1(w) andb2(w) such that

l~~cosh~D2 1
2!b1~D2 1

2!~D21!2cosh~D1 1
2!b1~D1 1

2!~D11!! D !50 ~4.5!
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and

l~~cosh~D21!b2~D21!~D22!2cosh~D11!b2~D11!~D12!!D2 f ~0!b2~0!C!50.
~4.6!

Using ~4.3! together with the identities

f ~D !exD5 f S d

dxD ~exD!, p~D !ex(D11)5exp~D !exD5expS d

dxDexD,

expS d

dxD f ~x!5pS d

dx
21Dexf ~x!

and the fact thatb1 is even, condition~4.5! can be rewritten as follows:

05l ~cosh~D2 1
2!b1~D2 1

2!~D21!2cosh~D1 1
2!b1~D1 1

2!~D11!! D

5
1

2
lS b1S d

dxD S d2

dx2 2
1

4Dex(D21/2)1b1S 2
d

dxD S 2
d

dx
2

1

2D S 2
d

dx
1

1

2De2x(D21/2)

2b1S d

dxD S d

dx
2

1

2D S d

dx
1

1

2Dex(D11/2)2b1S 2
d

dxD S 2
d

dx
2

1

2D S 2
d

dx
1

1

2De2x(D11/2)D
5

1

2
lS b1S d

dxD S d2

dx2 2
1

4Dex(D21/2)1b1S d

dxD S d2

dx2 2
1

4De2x(D21/2)

2b1S d

dxD S d2

dx2 2
1

4Dex(D11/2)22b1S d

dxD S d2

dx2 2
1

4Dex(D11/2)D
5

1

2
b1S d

dxD S d2

dx2 2
1

4D l ~ex(D21/2)1e2x(D21/2)2ex(D11/2)2e2x(D11/2)!

5
1

2
b1S d

dxD S d2

dx2 2
1

4D l ~e2x/2~exD2e2xD!2ex/2~exD2e2xD!!

5
1

2
b1S d

dxD S d2

dx2 2
1

4D l S 2sinhS x

2D sinh~xD! D . ~4.7!

Then we have

05b1S d

dxD S d2

dx2 2
1

4D sinhS x

2D Dl~x!. ~4.8!

Therefore, we obtain thatF(x)5Dl(x) sinh(x/2) is an even quasipolynomial. Similarly, one ca
show from~4.6! that

05b2S d

dxD S d2

dx2 21D ~sinh~x! Dl~x!2c!. ~4.9!

Taking G(x)5sinh(x) Dl(x)2c and noting that G(x)52F(x)cosh(x/2)2c, we see that
L(Du,x̂;l) is quasifinite if and only ifF(x) is an even quasipolynomial. h

We have the following.
Corollary 4.3: Let L(l) be a quasifinite irreducible highest weight module overDu,x̂, and let

b1(w) be its first characteristic polynomial. Then F(x)5Dl(x)sinh(x/2) is an even quasipolyno
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mial. Let F(m)1am1
F (m21)1¯1a050 be the minimal order linear differential equation wit

constant coefficients satisfied by F(x) with w(m)1am1
w(m21)1¯1a0 an even polynomial. Then

b1(w)(w22 1
4)5w(m)1am1

w(m21)1¯1a0 .
The even quasipolynomialfl(x)1c, wherefl(x) is from ~4.4! andc is the central charge

can be written in the form

(
r

pr~x!cosh~er
1x!1(

s
qs~x!sinh~es

2x!, ~4.10!

wherepr(x) @resp.,qs(x)] are nonzero even~resp., odd! polynomials andei
6 are distinct complex

numbers. Note that( rpr(0)5c. The expression above is unique up to a sign ofer
1 or a simul-

taneous sign changes ofes
2 andqs(x). The numberser

1 ~resp.,ex
2) appearing in~4.10! are called

even exponents~resp.,odd exponents! of the Du,x̂-module L(l) with multiplicity pr(x) @resp.,
qs(x)]. Then the pair (e1,e2) determinesL(l) uniquely. We will denote this module by
L(Du,x̂;e

1,e2).

V. INTERPLAY BETWEEN Du, x̂ AND THE INFINITE RANK CLASSICAL LIE ALGEBRAS
OF TYPE A AND C

Let O denote the algebra of all holomorphic functions onC with the topology of uniform
convergence on compact sets andOeven the set of even holomorphic functions. We consider
vector spaceD O spanned by the differential operators~of infinite order! of the form tkf (D),
where f PO. The bracket inD extends toD O. Similarly, we define a completionD u,x

O of Du,x

consisting of all differential operators of the formtkg(D1k/2)D wheregPOeven.
Then the two-cocycleC on Du,x extends to a two-cocycle onD u,x

O . Let Du,x̂
O5Du,x

O 1CC be
the corresponding central extension.

Given sPC, we will consider the natural action of the Lie algebraDu,x ~resp.,D u,x
O ) on

tsRm@ t,t21#. Taking theRm-basisv j5t2 j 1s ( j PZ) of this space, we obtain a family of homo
morphism of Lie algebrasws

[m] :Du,x→g,`
[m] ~resp.,ws

[m] :D u,x
O →g,`

[m] ):

ws
[m]~ tkf ~D1k/2!D !5(

j PZ
f ~2 j 1k/21s1u!~2 j 1s1u!Ej 2k, j

5(
i 50

m

(
j PZ

~ f ~2 j 1k/21s!~2 j 1s!!( i )

i !
uiEj 2k, j ,

5(
i 50

m

(
j PZ

f ( i )~2 j 1k/21s!

i !
~~2 j 1s!ui1ui 11!Ej 2k, j ,

~5.1!

wheref is even andf ( i ) denotes thei th derivative. Note that this is the restriction toDu,x̂
O of the

homomorphism~3.2.1! in Ref. 8. Let

I s,k
[m]5$ f POeven u ~ f ~2 j 1k/21s!!( i )50 for all nPZ, 0< i<m% ~5.2!

and let

Js
[m]5 % kPZ$t

kf ~D1k/2!D / f PI s,k
[m]%. ~5.3!

Fix sW5(s1 ,...,sN)PCN, such thatsi2sj¹Z if iÞ j and si1sj¹Z for all i , j . Also fix mW
5(m1 ,...,mN)PZ1

N . Let g,`
[mW ]5 % i 51

N g,`
[mi ] and consider the homomorphism

wsW
[mW ]5 % i 51

N wsi

[mi ] : D u,x
O →g,`

[mi ] . ~5.4!
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Proposition 5.1: Given sW and mW as above we have the following exact sequence of
algebras:

0→JsW
[mW ]→D u,x

O ——→
wsW

[mW ]

g,`
[mW ]→0,

where JsW
[mW ]5ù i 51

N Jsi

[mi ] .

Proof: For simplicity we prove this in the caseN51. By the assumptions above we have th
mW 5mPZ1 andsW5s¹Z/2. The general case is similar.

It is clear that kerws
[m]5Js

[m] . For the surjectivity we recall the following well known fact: fo
every discrete sequence of points inC and a non-negative integerm there existsa(w)PO having
the prescribed values of its firstm derivatives at these points. Sinces¹Z/2 the sequences$2 j
1k/21s% j PZ and $ j 2k/12s% j PZ are disjoint, then it is enough to find the preimage
um2 i Ej 2k, jPg,`

[m] for i 51,...,m, j PZ and a fixedkPZ.
Consideri 50. There existsa(w)PO such that~fix r PZ)

a(m)~2 j 1k/21s!5a(m)~ j 2k/22s!5d r j

and

a(m2 i )~2 j 1k/21s!505a(m2 i )~ j 2k/22s! for i 51,...,m.

Taking g(w)5 @a(w)1a(2w)#/2POeven we see that ws
[m] (tkg(D1k/2)D)5(s

2r ) um/m! Er 2k,r . Similarly, taking i .0, inductively one can show thatum2 i Ej 2k, j

PIm ws
[m] . h

Now we want to extend the homomorphism~5.1! to a homomorphism between the centr
extensions of the corresponding Lie algebras. Define

h i~x,s!5
e(s21/2)x2~21! ie2(s21/2)x

2

xi

i !
~ i PZ1 , sPC!. ~5.5!

The homomorphism~5.1! preserves gradation. We have the following.
Proposition 5.2: The homomorphismws

[m] lifts to a Lie algebra homomorphismŵs
[m] of the

corresponding central extensions as follows:

ŵs
[m] u(Du,x̂) j

5ws
[m] u(Du,x) j

if j Þ0, ~5.6!

ŵs
[m]~sinh~xD!!5

1

2(
i 50

m

(
j PZ

h i~x,s2 j 11!2h i~x,s2 j !

sinh~x/2!
uiEj j 2

1

2

cosh~~s2 1
2!x!2cosh~x/2!

sinh~x/2!
c0

2
1

2(
i 51

m
h i~x,s!

sinh~x/2!
ui c0 , ~5.7!

ŵs
[m]~C!51. ~5.8!

Proof: Straightforward using formulas~3.3.3! and ~3.3.4! in Ref. 8 and~5.1! h

The homomorphismws
[m] is defined for anysPC. However, for sPZ/2, it is no longer

surjective. These cases are described by the following.
Proposition 5.3: For s50 and s5 1

2, we have the following exact sequence of Lie algebra

0→Js
[m]→D u,x

O ——→
ws

[m]

C→0,

where C. c̄`
[m] .
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Proof: First considers5 1
2. The homomorphismfs

[m] :Dx→g,`
[m] introduced in Sec. 6 in Ref

7 is surjective. Recall that we defined inDx the anti-involutionu given in ~3.3!. It is easy to see
that it transfers, via thefs

[m] , to an anti-involutionv:g,`
[m]→g,`

[m] as follows:

v~uk1~ 1
22 j !uk21!Ei j )5~~2u!k1~ 1

22 i !~2u!k21!E12 j ,12 i) for k>1. ~5.9!

Therefore, the Lie algebra of2u-fixed points inDx , namelyDu,x , maps surjectively to the
Lie algebra of2v fixed points ing,`

[m] . Then it is enough to show thatv is conjugated by an
automorphismT of g,`

[m] to the anti-involution definingc̄`
[m] .

For this define

T~um Ei ,i 11!5~ i 1 1
2! um Ei ,i 11 ,

T~ul Ei ,i 11!5~ul 112~ i 1 1
2! ul ! Ei ,i 11 for 0< l<m21,

~5.10!

T~um Ei 11,i !5
21

~ i 1 1
2!

~2u!m Ei 11,i ,

T~ul Ei 11,i !5
1

u2~ i 1 1
2!

~2u! l Ei 11,i for 0< l<m21.

It is a straightforward verification that this extends to an automorphism of the associative a
g,`

[m] that conjugatesv to the anti-involution definingc̄` .
Now, consider the cases50. In this case, the homomorphismf0

[m] :Dx→g,`
[m] introduced in

Sec. 6 in Ref. 7 is no longer surjective. However, it is surjective if we restrictf0
[m] :Dx→g[m] ,

whereg[m] is the subalgebra ofg,`
[m] from which we remove both axes. We will call such

homomorphism alsof0
[m] . Now, as above, the anti-involutionu in ~3.3! transfers tog[m] as

follows:

v0~~uk1~2 j !uk21!Ei j !5~~2u!k2 i ~2u!k21!E2 j ,2 i for 1>k. ~5.11!

As above, it is enough to show thatv0 is conjugated by an isomorphismT:g[m]→g,`
[m] to the

anti-involution definingc̄`
[m] .

One should takeT5p+T8, wherep is the natural projection ofg[m] ontog,`
[m] andT8 is the

automorphism ofg[m] defined by

T8~um Ei ,i 11!52~ i 11! ~2u!m Ei ,i 11 ,

T8~ul Ei ,i 11!5~21! l~ul 112~ i 11! ul ! Ei ,i 11 for 0< l<m21,
~5.12!

T8~um Ei 11,i !5
21

~ i 11!
~2u!m Ei 11,i ,

T8~ul Ei 11,i !5
1

u2~ i 11!
~2u! l Ei 11,i for 0< l<m21,

finishing the proof. h

Remark 5.4:~a! For s50 ands5 1
2, in view of the proposition above, by an abuse of notat

we will denote againws
[m] the surjective homomorphismDu,x onto c̄`

[m] given by the oldws
[m]

composed with the isomorphismC. c̄`
[m] .

~b! For sPZ/2 the image ofDu,x under the homomorphismws
[m] is n s̃( c̄`

[m] ), wheren was
defined in~2.1! and s̃5s if sPZ and s̃5s2 1

2 if sPZ1 1
2. Therefore, we will only considers

50, 1
2 throughout the article.
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Given mW 5(m1 ,...,mN)PZ1
N andsW5(s1 ,...,sN) such thatsiPZ implies si50, siPZ1 1

2 im-
plies si5

1
2, andsiÞ6sj modZ for iÞ j , and combining Propositions 5.1–5.3, we obtain a h

momorphism of Lie algebras:

ŵsW
[mW ]5 %

i 51

N

wsi

[mi ] :Du,x̂→g[mW ]
ª% i 51

N g[mi ] , ~5.13!

where

g[m]5H g,̂`
[m] if s¹Z/2

c`
[m] if s50 or s5 1

2.
~5.14!

We can prove the following proposition in the same way as Proposition 5.1.
Proposition 5.5: The homomorphismŵsW

[mW ] extends to a surjective homomorphism of Lie alg

bras which is denoted again byŵsW
[mW ] :

ŵsW
[mW ]5 %

i 51

N

ŵsi

[mi ] :Du,x̂
O→g[mW ] .

VI. REALIZATION OF QUASIFINITE HIGHEST WEIGHT MODULES OF Du, x̂

Let g[m] stand forg,̂`
[m] or c`

[m] . The proof of the following proposition is standard.
Proposition 6.1: Theg[m] -module L(g[m] , l) is quasifinite if and only if all but finitely many

of the* hk
( i ) are zero, where* represents a or c depending on whetherg[m] is g,̂`

[m] or c`
[m] .

Given mW 5(m1 ,...,mN)PZ1
N , take a quasifinitel iP(g[mi ] )0* for each i 51,...,N and let

L(g[mi ] , l i) be the corresponding irreducibleg[mi ] -module. LetlW 5(l1 ,...,lN). Then the tensor
product

L~g[mW ] ,lW !5 ^ i 51
N L~g[mi ] , l i ! ~6.1!

is an irreducibleg[mW ] -module, withg[mW ]5 % i 51
N g[mi ] . The moduleL(g[mW ] ,lW ) can be regarded as

Du,x̂-module via the homomorphismwsW
[mW ] , and will be denoted byLsW

[mW ] (lW ). We shall need the
following proposition. Its proof is analogous to that of Proposition 4.3 in Ref. 8.

Proposition 6.2: Let V be a quasifiniteDu,x̂-module. Then the action ofDu,x̂ on V naturally

extends to the action of(Du,x̂
O)k on V for any kÞ0.

Theorem 6.3:Let V be a quasifiniteg[mW ] -module, which is regarded as aDu,x̂-module via the

homomorphismwsW
[mW ] . Then anyDu,x̂-submodule of V is also ag[mW ] -submodule. In particular, the

Du,x̂-module LsW
[mW ] (lW ) are irreducible if sW5(s1 ,...,sN) is such that siPZ implies si50, siPZ1 1

2

implies si5
1
2, and siÞ6sj modZ for iÞ j .

Proof: Let U be aDu,x̂-submodule ofV. U is a quasifiniteDu,x̂-module as well, hence by
Proposition 6.2 it can be extended to (Du,x̂

O)k for any kÞ0. By Proposition 5.5, the map
wsW

[mW ] :(Du,x̂
O)k→(g[mW ] )k is surjective for anykÞ0. ThusU is invariant with respect to all mem

bers of the principal gradation of (g[mW ] )k with kÞ0. Sinceg[mW ] coincides with its derived algebra
this proves the theorem. h

We will show that in fact all the quasifiniteDu,x̂-modules can be realized as someLsW
[mW ] (lW ).

But first we shall calculate the generating seriesDm,s,l(x) of the highest weight and central charg
c of the Du,x̂-moduleLs

[m] (l).
Let s¹Z/2. Using formula~5.7!, the fact thatD(x)5sinh(xD), and formulas~2.4! we have

that
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Dm,s,l~x!52l~ŵs
[m]~sinh~xD!!!5

1

2(
i 50

m

(
j PZ

h i~x,s2 j !

sinh~x/2!
ahj

( i ) 2
1

2

cosh~x/2!

sinh~x/2!
c0 . ~6.2!

Thus, we have the following proposition.
Proposition 6.4: Consider the embeddingŵs

[m] :Du,x̂→g,̂`
[m] with s¹Z/2. The g,̂`

[m] -module

L(g,̂`
[m] ,l) regarded as aDu,x̂-module is isomorphic to L(Du,x̂,e

1,e2) where e1 and e2 consist
of exponents s2 j 2 1

2 with jPZ with multiplicities

(
0< i<m, i even

ahj
( i ) xi

i !
and (

0< i<m, i odd

ahj
( i ) xi

i !
, ~6.3!

respectively.
Now considers5 1

2. Recall that by Remark 5.4~a!, in this case we have that the embeddi
ŵs

[m] :Du,x̂→c`
[m] is actually the embedding given by formula~5.7! composed withT21, whereT

was introduced in~5.10!. Using this, and alsoD(x)5sinh(xD), formulas~2.6! and the fact that by

definition h i(x,1
2)5(21)ih i(x,1

2), we have that

Dm,s,l~x!52l~ŵs
[m]~sinh~xD!!!

5
1

2(
i 50

m

(
j .0

h i~x, j 1 1
2!

sinh~x/2!
chj

( i )

1
1

2 (
0< i<m, i even

h i~x, 1
2!

sinh~x/2!
ch0

( i )21/2
cosh~x/2!

sinh~x/2!
c0 . ~6.4!

We can establish the following proposition.
Proposition 6.5: Consider the embeddingŵ1/2

[m] :Du,x̂→c`
[m] . The c̀[m] -module L(c`

[m] ,l) re-

garded as aDu,x̂-module is isomorphic to L(Du,x̂,e
1,e2), where e1 and e2 consist of exponents

j with j PZ1 with multiplicities

(
0< i<m, i even

chj
( i ) xi

i !
and (

0< i<m, i odd

chj
( i ) xi

i !
, ~6.5!

respectively, wherech0
( i )50 for i odd.

Finally, considers50. Recall that by Remark 5.4~a!, in this case we have again that th
embeddingŵ0

[m] :Du,x̂→c`
[m] is actually the embedding given by formula~5.7! composed with

T21, where T was introduced right before~5.12!. Using this, and alsoD(x)5sinh(xD) and
formulas~2.6!, we have that

Dm,s,l~x!52l~ŵs
[m]~sinh~xD!!!5

1

2(
i 50

m

(
j .0

~21! ih i~x,2 j !

sinh~x/2!
chj

( i )

1
1

2 (
0< i<m, i even

h i~x,0!

sinh~x/2!
ch0

( i )2
1

2

cosh~x/2!

sinh~x/2!
c0 . ~6.6!

We can establish the following proposition.
Proposition 6.6: Consider the embeddingŵ0

[m] :Du,x̂→c`
[m] . The c̀[m] -module L(c`

[m] ,l) re-

garded as aDu,x̂-module is isomorphic to L(Du,x̂,e
1,e2) where e1 and e2 consist of exponents

2 1
22 j with j PZ1 with multiplicities
                                                                                                                



s

ce

2204 J. Math. Phys., Vol. 44, No. 5, May 2003 C. Boyallian and J. I. Liberati

                    
(
0< i<m, i even

chj
( i ) xi

i !
and (

0< i<m, i odd

chj
( i ) ~2x! i

i !
, ~6.7!

respectively, wherech0
( i )50 for i odd.

Take an irreducible quasifinite highest weightDu,x̂-moduleV with central chargec and

D~x!5
fl~x!

sinh~x/2!

with fl(x) an even quasipolynomial such thatfl(0)50. We will write

fl~x!1c5(
sPC

(
i 51

ms

as,i h i~x,s!, ~6.8!

whereas,iPC andas,iÞ0 for only finitely manysPC. Since, by definition ofh i , we have that
h i(x,2s)5(21)ih i(x,s11), to avoid ambiguities in the expression offl(x) above, we will
choose the parameters following these rules: whensPZ we requires<0; whensPZ1 1

2, we ask
s< 1

2; when s¹Z/2, we require that Ims.0 if Im sÞ0 or s2@s#, 1
2 if sPR, where Ims is the

imaginary part ofs, and@s# denotes the biggest integer smaller thans.
Decompose the set$sPC u as,iÞ0 for somej % into a disjoint union of equivalence classe

under the equivalence relations;s8 if and only if s56s8 ~modZ!. Pick a representatives in an
equivalence classS such thats50 if the equivalence class is inZ ands5 1

2 if the equivalence class
is in Z1 1

2. Let S5$s, s2k1 , s2k2 , . . . % be such an equivalence class and takem5maxsPSms.
Put k050. It is easy to see that ifs50 or 1

2, thenkiPN.
We associate toS the g[m] -module LS

[m] (lS) in the following way: If s¹Z/2, let ahkr

( i )

5as1kr
with i 50,...,ms and r 50,1,2,.... We associate toS the g,̂`

[m] -module LS
[m] (lS) with

central charges and labels

ci5(
kr

ahkr

( i ) , al j
( i )5(

k> j
~ ahk

( i )2cidk0!.

Similarly, if sPZ/2 ~i.e., s50 or s5 1
2), let chkr

( i )5as1kr
with i 50,...,ms and r 50,1,2,.... We

associate toS the c`
[m] -moduleLS

[m] (lS) with central charges and labels

ci5(
kr

chkr

( i ) ~ i even!, ci50 ~ i odd!, cl j
( i )5(

k> j

chk
( i ) ,

where j PN and i 50,...,ms . Denote by$s1 , s2 , ...,sN% a set of representatives of equivalen
classes in the set$sPC u as,iÞ0for somej %. By Theorem 6.3, theDu,x̂-module LsW

[mW ] (lW ) is
irreducible forsW5(s1 , s2 , ...,sN) such thatsiPZ implies si50, siPZ1 1

2 implies si5
1
2, and si

Þ6sj modZ for iÞ j . Then we have

DmW ,sW,lW ~x!5(
i

Dmi ,si ,l i
~x!, c5(

i
c0~ i !.

Using Theorem 6.3 and Propositions 6.4–6.6, we have proved the following.
Theorem 6.7: Let V be an irreducible quasifinite highest weightDu,x̂-module with central

charge c and

D~x!5
fl~x!

sinh~x/2!
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with fl(x) an even quasipolynomial such thatfl(0)50, written in the form (6.8). Then V is
isomorphic to the tensor product of the modules LS

[m] (lS) with distinct equivalence classes S.
Remark 6.8:A different choice of the representatives¹Z/2 in S has the effect of shifting

g,̂`
[m] via the automorphismn i for somei . It is easy to see that any irreducible quasifinite high

weight moduleL(Du,x̂,l) can be obtained as above as a unique way up to the shiftn.
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A bicategorical approach to Morita equivalence
for von Neumann algebras

R. M. Brouwera)

Korteweg-de Vries Instituut, Universiteit van Amsterdam,
Plantage Muidergracht 24, 1018 TV Amsterdam

~Received 12 June 2002; accepted 29 January 2003!

We relate Morita equivalence for von Neumann algebras to the ‘‘Connes fusion’’
tensor product between correspondences. In the purely algebraic setting, it is well
known that rings are Morita equivalent iff they are equivalent objects in a bicat-
egory whose 1-cells are bimodules. We present a similar result for von Neumann
algebras. We show that von Neumann algebras form a bicategory, having Connes’s
correspondences as 1-morphisms, and~bounded! intertwiners as 2-morphisms. Fur-
ther, we prove that two von Neumann algebras are Morita equivalent iff they are
equivalent objects in the bicategory. The proofs make extensive use of the Tomita–
Takesaki modular theory. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563733#

I. INTRODUCTION

A recent trend in the interaction between operator algebras and quantum physics is t
pearance of the notion of Morita equivalence17 in both string theory20 and quantization theory.18,13

Furthermore, the tensor product between so-called correspondences of von Neumann a
constructed by Connes7 and Sauvageot19 has played a useful role in conformal field theory24 as
well as in the theory of constrained quantization.15 This tensor product is defined through th
modular theory of operator algebras due to Tomita and Takesaki,21,11,7whose importance in quan
tum field theory has been particularly emphasized by Borchers.3

The purpose of the present paper is to relate the Connes–Sauvageot tensor product to
equivalence for von Neumann algebras. This will be done in a certain categorical setting,
itself was inspired by quantum field theory.14 Namely, we work in the framework o
bicategories.2,16 Introduced by Be´nabou in 1967,2 bicategories form a generalization of monoid
categories~a monoidal category is a bicategory with one object!. Monoidal categories now form a
standard tool in the analysis of superselection sectors.8 Our main result is that von Neuman
algebras form a bicategory in which the morphisms are correspondences composed by the
mentioned tensor product, and that two von Neumann algebras are Morita equivalent iff th
equivalent objects in this bicategory. This insight should have important applications to all
mentioned.

The notion of Morita equivalence was originally introduced for rings. Two ringsR,S are
called Morita equivalent when their respective categories of right modules,MR and MS , are
equivalent. Rieffel introduced the notion of Morita equivalence for von Neumann algebras.17 He
called two von Neumann algebrasM, N Morita equivalent when their categories of normal uni
* -representations, Rep~M! and Rep~N!, are equivalent, where the equivalence is implemented
a normal* -functor. In this paper we will use an equivalent definition: Two von Neumann alge
M, N are Morita equivalent when a correspondenceM→H←N exists for which the representa
tion of M on H is faithful andM8.Nop holds. The goal of this paper is to show a similari
between Morita equivalence for rings and for von Neumann algebras.1,9

As a tool, we will use bicategories.2,16 Bicategories allow a composition of arrows that

a!Current address: CWI, Kruislaan 413, 1098 SJ, Amsterdam. Electronic mail: rachel.brouwer@cwi.nl
22060022-2488/2003/44(5)/2206/9/$20.00 © 2003 American Institute of Physics
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associative only up to a family of isomorphisms. Strictly associative bicategories are 2-categ
For instance, the class of categories as objects, functors as 1-morphisms and natural tran
tions as 2-morphisms form a 2-category. Another example is the 2-category of topological s
as objects, continuous maps as 1-morphisms, and homotopy classes of continuous m
2-morphisms. Each~relaxed! monoidal categoryM forms a bicategory, which in general is not
2-category. This bicategory consists of one object (M ); the objects of the categoryM form
1-morphisms of the bicategory. A composition functorM3M→M that is associative up to iso
morphism exists, sinceM is monoidal. The arrowsM1 of the categoryM form the 2-morphisms
of the bicategory. The natural isomorphisms that are associated to the monoidal category a
that the coherence axioms for a bicategory are satisfied.

Further instructive examples of bicategories are the bicategory@Rings# and the bicategory
@W* #. The bicategory@Rings# consists of rings as objects, bimodules as 1-morphisms, and b
dule maps as 2-morphisms. Similarly, but adding the appropriate analytical structure, the
egory @W* # consists of von Neumann algebras as objects, correspondences as 1-morphism
bounded intertwiners as 2-morphisms.

Although from a categorical point of view the fact that Morita equivalence for rings
equivalent to equivalence in the bicategory is straightforward2,5,16~and some would say tautolog
cal, see cf. Refs. 22 and 23!, the corresponding situation for von Neumann algebras is hig
nontrivial for analytical reasons. For example, the fact that the coherence axiom in the defi
of a bicategory is satisfied in our case has to be proved with the aid of Tomita–Takesaki m
theory. The same is true for our second main result, which we have already mentioned: tw
Neumann algebras are Morita equivalent iff they are equivalent objects in@W* #.

This paper is an abbreviated version of Ref. 5. All routine calculations may be found t
including a simple account of the bicategorical approach to Morita theory for rings.

Section II discusses the case of von Neumann algebras. First, we will prepare for the
struction of the bicategory@W* # of von Neumann algebras. We will use the concept of ‘‘Conn
fusion’’ 7,19 for the composition functor in this bicategory. This terminology is due
Wasserman.24 Second, we will show that von Neumann algebras indeed form a bicategory. Fi
we will prove that two von Neumann algebras are Morita equivalent iff they are equivalent ob
in the bicategory@W* #.

II. THE BICATEGORY OF VON NEUMANN ALGEBRAS

As a preparation for the main result of this paper, consider the following definition, du
Connes.7

Definition II.1: Let M,N be von Neumann algebras, H a Hilbert space. Supposep l is a
normal unital representation ofM onH andp r is a normal unital representation ofNop onH ~or
equivalently, an antirepresentation ofN! such that the actions ofp l(M) andp r(N) commute. The
triple @p l ,p r ,H# is called a correspondence, denoted byM→H←N. We write xh instead of
p l(x)h and hy instead ofp r(y)h, for xPM,hPH,yPN.

Viewing a von Neumann algebra as a ring, a correspondence may be seen as a bim
Examples of correspondences are not difficult to find. Suppose we have a normal, unital
sentation of a von Neumann algebraM on a Hilbert spaceH. Then we immediately have a
correspondence

M→H←~M8!op. ~1!

We will use the following notation. Letf be a faithful normal semifinite weight on a vo
Neumann algebraM. Let Mf5$xPM u f(x* x),`% and letHf be the Hilbert space, formed b
completion ofMf in the inner product originating fromf. The canonical inclusion will be
denoted byLf :Mf→Hf . The associated modular conjugation and modular operator wil
denoted byJf andDf , respectively. The specific choice off merely affects these data, known a
a standard form ofM, up to unitary equivalence.10
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Definition II.2: An identity correspondenceof a von Neumann algebraM is given by a Hilbert
spaceHf as above, with left representationp l and right representationp r defined on the dens
subspaceLf(Mf),Hf by ~2! and ~3!,

p l :M→B~Hf!,
~2!

p l~x!Lf~h!5Lf~xh!,

and

p r :M→B~Hf!,
~3!

p r~x!Lf~h!5Jfp l~x* !JfLf~h!.

We will subsequently omitLf when no confusion arises.
Note that an identity correspondence is a special case of~1!, since we haveJfMJf>M8 by

Tomita–Takesaki theory. Since the standard form of a von Neumann algebra is unique
unitary equivalence,10 so is an identity correspondence. Hence we will often write

M→L2~M!←M,

for an identity correspondence, suppressing the weightf. The notationL2(M) is chosen in
analogy to measure theory; recall that the latter is considered to be the commutative version
Neumann algebras. ForM5L`(X,m) one hasL2(M).L2(X,m).

As a preparation for the construction of the bicategory@W* #, we will now review the concept
of Connes fusion, or the relative tensor product, see Refs. 6, 7, and 19.

Let M→H←N andN→K←P be two correspondences. Letf be an arbitrary faithful nor-
mal semifinite weight onN. To obtain the relative tensor productM→H�NK←P, one defines a
form ( , )0 on the algebraic tensor productD(H,f) ^ CK, quotients by the null space, and com
pletes. HereD(H,f) is the dense subspace off-bounded vectorsof H, defined by

D~H,f!5$hPH u 'c:;yPNf , ip r~y!hiH<cf~y* y!%.

Equivalently, one can defineD(H,f) as the set ofhPH for which the operatorRh
f :Hf→H, is

bounded, whereRh
f is defined on the dense subspaceNf,N by

Rh
f~JfLf~y* !!5p r~y!h, ;yPNf .

Recall thatHf is a standard Hilbert space ofN.
For later use, we will state some properties ofRh . The proof is easy calculation. For a

h1 ,h2PD(H,f),xPN, we have

Rh1
* Rh2

PN, ~4!

D21/2x* D1/2Rh1
* Rh2

5Rh1x* Rh2
on L2~N!, ~5!

Rh1
* Rh2

D1/2xD21/25Rh1
* Rh2x on L2~N!. ~6!

Further, we need a subspaceN0,N that will be used later~Remark II.4!. N0 is defined as
follows. Let t t(x)5Df

i t xDf
2 i t ,xPN, be the modular automorphism group ofN, let

xn5An/pE dt e2nt2t t~x!, n51,2, . . .

and finally set
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N05Span$xnuxPNf , n51,2, . . .%.

Lemma II.3: In the above notation, xn→x s-weakly. Moreover, N0 is a s-dense and norm-
dense subspace ofNf . Further, for jPN0 ,

D1/2jD21/2PNf .

Proof: Compare Ref. 5 for details. The proof follows from the analyticity of the element
N0 , see Ref. 4, and positivity and modular invariance of the weightf. See also Ref. 21. h

To detail, the sesquilinear form ( , )0 on D(H,f) ^ CK is defined by

~h1^ z1 ,h2^ z2!0ª^z1 ,Rh1
* Rh2

z2&K ,

where^ , &K is the inner product on the Hilbert spaceK. Note that sinceRh1
* Rh2

is an element of

N by ~4!, the second argument of the inner product is indeed an element ofK. It is easy to see tha
( , )0 is a pre-inner product. Hence, if we quotient by the null spaceN and complete, we obtain
a Hilbert space, denoted byH�NK. This Hilbert spaceH�NK is anM→H�NK←P correspon-
dence, so that we may regard the above construction as the fusion of correspondences rat
merely as Hilbert spaces. Namely, we let the representations ofM on H and ofP on K descend
to the quotient. Routine verification will show that the null space is closed under the actionsM
andP.

Remark II.4:The relative tensor product�N has a property analogous to the balancednes
the tensor product of bimodules over rings, but with a crucial and interesting modification.
ancedness for a ringR and bimodulesMR ,RN means we have (mr^ Rn)5(m^ Rrn), for m
PMR ,nPRN,r PR. However, forhPH,nPN0 , andzPK we have

hn�Nz5h�N~D1/2nD21/2!z, ~7!

and

h�Nnz15h~D21/2nD1/2!�Nz. ~8!

Let h2PD(H,f),xPN0 ,z2PK; then

~h1x^ z1 ,h2^ z2!05^z1 ,Rh1x* Rh2
z2&K

5^z1 ,~D21/2x* D1/2!Rh1
* Rh2

z2&K

5^~D1/2xD21/2!z1 ,Rh1
* Rh2

z2&K

5~h1^ ~D1/2xD21/2!z1 ,h2^ z2!0 , ~9!

where the second equality holds because of~5!. This implies that (h1x^ z1)2(h1

^ (D1/2xD21/2)z1) belongs to the null spaceN. SinceN0 is a dense subspace ofNf , ~7! holds for
the completionH�NK. Moreover, forxPN0 , we haveD1/2xD21/2PN so that all expressions in
~9! are defined. The proof of~8! follows by a similar argument.

Now, we will show that the collection of von Neumann algebras forms a bicategory.
result was already stated in Ref. 14 without proof.

Proposition II.5: For any two von Neumann algebra’sM, N, let ~M,N! be the category of
correspondences as objects, and bounded linear bimodule maps as arrows. Then there e
bicategory@W* # with von Neumann algebras as objects and correspondences as1-morphisms.
The composition functor(M,N)3(N,P)→(M,P) is given by the relative tensor product�N ,
and the unit arrow in~M,M! is given by IM5M→L2(M)←M.

Proof: Unlike the case of rings, a nontrivial issue arises in the verification, related to Re
II.4. We will only stress the points at which the verification is not straightforward. The na
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isomorphism to obtain associativity is defined element wise and hence the existence of a
tivity coherence is routine calculation. The difficulty lies in the construction of the left and r
identities and identity coherence.

For each pair of von Neumann algebras~M,N!, the so-called left identityL (M,N) is a natural
isomorphism between the functorsL2(M)�M(2) and the identity functorId(M) from ~MN! to
~M,N!.

More concretely, recall thatLf :Mf→L2(M) denotes the inclusion map. It satisfies

xLf~y!5Lf~xy!,
~10!

Df
1/2Lf~y!5Lf~Df

1/2yDf
21/2!,

for xPM,yPM0 . See Ref. 11.
Let xPM0 ,zPK. Then, we defineL (M,N) on the dense subspaceM0�MK by

L ~M,N!: Lf~x!�Mz°xz. ~11!

We will show that the map~11! is continuous, so that we may extend it toL2(M)�MK.
Consider

iLf~x!�Mzi25^z,RLf(x)* RLf(x)z&K .

Observe that in this case, by definition of the right representation ofM on L2(M), the operator
RLf(x) :L2(M)→L2(M) is given by

RLf(x)JfLf~y* !5p r~y!Lf~x!5Jfy* JfLf~x!,

on the dense subspaceM0 .
The following claims lead to continuity of the map~11!. The proofs are easy calculations.
For x,zPM0 , we haveRLf(x)Lf(z)5Lf(xz).

For xPM0 , the operatorRLf(x)* RLf(x) equalsLf(x* x) as operators onL2(M).

Combining the statements above we obtain

iLf~x!�Mzi25^z,RLf(x)* RLf(x)z&K5ixziK
2 . ~12!

HenceLf(x)�Mz°xz is a continuous map. It remains to show thatL (M,N) is unitary and hence
a natural isomorphism. We know that it is isometric by~12!. Hence it is sufficient to show that th
image ofM0�K is dense inK. Generally,1PM is not an element ofMf . But, sinceM0 is
norm-dense inM, we may find a netEa in M0 , converging in norm to 1. LetzPK. Then

iEaz21ziK < iEa21iM•iziK→0,

where we used the fact that a representation is norm decreasing. Hence,M0K is dense inK.
In contrast to the case of rings, the right identityR(M,N) is defined differently from the left

identity. The right identity should be a natural isomorphism between the functor (2)�NL2(N)
and the identityId(M,N). Let HP(M,N)hPD(H,f),yPN0 . Then we defineR(M,N) on the
dense subspaceD(H,f)�NN0 by

R~M,N!: h�NLf~y!°h~Df
21/2yDf

1/2!. ~13!
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Note thatDf
21/2yDf

1/2PN, for yPN0 , so thath(Df
21/2yDf

1/2) is defined by definition of the righ
representation ofN on H. We will show next that the map~13! is continuous, so that we ma
extend it toH�NL2(N). Consider

ih�NLf~y!i25~Lf~y!,Rh* RhLf~y!!L2(N) .

In this case, the operatorRh :L2(N)→H is defined by

RhJfLf~y* !5p r~y!h5hy,

on the dense subspaceN0 .
We make use of the following fact, proven by Connes~Ref. 6 Lemma 4!. ForzPD(H,f), we

have

f~Rz* Rz!5iziH
2 .

Hence, using~5! and ~6!, we obtain

ih�NLf~y!i25~Lf~y!,Rh* RhLf~y!!L2(N)

5f~y* Rh* Rhy!

5f~Rh(D
f
21/2yD

f
1/2)

* Rh(D
f
21/2yD

f
1/2)!

5ih~Df
21/2yDf

1/2!iH
2 . ~14!

Henceh�NLf(y)°h(Df
1/2yDf

21/2) is a continuous map. It is left to show thatR(M,N) is unitary
and hence a natural isomorphism. As above,~14! shows that it is isometric, hence it is sufficie
to show that the image ofD(H,f)�N0 is dense inH. As before, we have a netEa in N0

converging to1. Consider the netDf
1/2EaDf

21/2. This net is contained inNf , as follows from
Lemma II.3. By the inclusionN0,Nf,L2(N) and the continuity just proven, we have

Df
1/2EaDf

21/2�Nh°hEa ,

for hPD(H,f). The right-hand side converges toh in norm. The observation thatD(H,f),H
is a dense subspace finishes the proof.

Finally, we need to prove identity coherence. LetM, N, P be von Neumann algebras an

MHN and NKP associated correspondences. It will be shown that the following diagram
mutes:

Since the upper arrowb(H,L2(N),K) is the associativity isomorphism, identity coherence bo
down to

~h~Df
21/2nDf

1/2!�Nz!>~h�Nnz!,

for hPH, nPL2(N), zPK. This follows immediately from Remark II.4. h

Note that the bicategory of von Neumann algebras, constructed as above, depends
choice of a faithful normal semifinite weight for each von Neumann algebra, because the
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tion of the composition functor~i.e., the relative tensor product! depends on this choice. Howeve
different weights lead to unitarily equivalent relative tensor products.19 Hence the bicategory
depends on the chosen weights only up to isomorphism.

III. MORITA THEORY FOR VON NEUMANN ALGEBRAS

The notion of Morita equivalence for von Neumann algebras was originally introduce
Rieffel. Two von Neumann algebrasM, N are said to be Morita equivalent if their representati
categories Rep~M! and Rep~N! are equivalent, where the equivalence is implemented by a no
* -functor. Here Rep~M! denotes the category of normal unital* -representations on Hilbert space
as objects, and bounded linear intertwiners as arrows. For our purposes, we will use the fol
~equivalent! definition.

Definition III.1: Two von Neumann algebrasM, N are calledMorita equivalent,if a corre-
spondenceM→H←N exists, where the representation ofM on H is faithful and for which

M8.Nop.

Note that faithfulness ofM directly implies faithfulness forN. Using somewhat differen
notation, Rieffel~Ref. 17, Theorem 8.5! proves equivalence between the definition above and
original definition. In this paper, we will not follow Rieffel’s approach, which involves so-ca
normal N-rigged M-modules, and interior tensor products of these modules. Rieffel prove
Eilenberg–Watts-type theorem~Ref. 17, Theorem 5.5!, which states that all functors of Rep~N! to
Rep~M! are equivalent to taking the tensor product with such a normalN-rigged M-module.
However, these modules are not Hilbert spaces, which is what we would like considerin
definition of the tensor product and the bicategory of von Neumann algebras.

Now we are ready for the main theorem.
Theorem III.2: Two von Neumann algebras are equivalent objects in the bicategory@W* # iff

they are Morita equivalent.
Proof: First, let us reformulate the first property in the theorem. The property that two

Neumann algebrasM,N are equivalent objects in the bicategory means that there must b
arrow in ~M, N!, i.e., a correspondenceM→H←N that is invertible up to isomorphism. In othe
words, there exists an arrowN→H 21←M in ~N, M!, such that

M→H�NH 21←M>M→L2~M!←M in ~M,M!, ~16!

N→H 21�MH←N>N→L2~N!←N in ~N,N!. ~17!

‘‘ ⇐: ’’ Let M,N be Morita equivalent. Then we have a correspondenceM→H←N, where the
representation ofM on H is faithful, andM8.Nop. From M→H←N, we can define a corre
spondenceN→H̄←M by

nh̄mªm* hn* , for nPN,mPM,hPH,

whereH̄ is H as a set, with the addition operator ofH and conjugate scalar multiplication an
inner product. Sauvageot~Ref. 19, Prop. 3.1! proves that the induced representation ofM on the
relative tensor productH�NH̄ is in standard form, hence

M→H�NH̄←M>M→L2~M!←M. ~18!

Applying the same reasoning toN→H̄←M, we obtainM→H% ←N and clearly, we haveH%
5H. Then

N→H̄�MH% ←N5N→H̄�MH←N>N→L2~N!←N. ~19!
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Together,~18! and ~19! prove thatMHN is invertible, its inverse beingNH̄M .
‘‘ ⇒: ’’ Suppose we have an invertible correspondenceM→H←N. We need to show tha

M.(Nop)8, and that the representation ofM is faithful. By definition of a correspondence, w
have

M#~Nop!8, ~20!

so, considering the representation ofM on H�NH 21, one has

M� idH 21#~Nop!8� idH 21. ~21!

Now we will use a result from Sauvageot~Ref. 19, Prop. 3.3!, who shows that for a von Neuman
algebraP and representationsK1←P andP→K2 , one has

~Pop!8�PidK2
5@ idK1

�PP8#8 ~22!

in K1�PK2 . Applying ~22! to ~21! we obtain

M�NidH 21#~Nop!8�NidH 215@ idH�NN8#8,

hence, using the commutant of~22!,

idH�NN8#@M�NidH 21#85 idH�NMop. ~23!

Now ~23! implies thatN8#Mop by the definition of the representation ofN8 on H�NH 21. This,
together with~20!, provesM.(Nop)8. It remains to be shown that the representation ofM on H
is faithful. However, this follows immediately from~16! and the fact that the standard represe
tation of M on L2(M) is faithful. h

It is possible to restate Theorem III.2 in terms of representation categories. In the light
remarks after Definition III.1, the proof follows from Rieffel,17 but we prefer to prove the corol
lary directly.

Corollary III.3: Two von Neumann algebras are equivalent objects in the bicategory@W* # iff
their representation categories are equivalent, where the equivalence is implemented by a
* -functor.

Proof: ‘‘ ⇒: ’’ The construction of the equivalence functor, given the invertible corresp
dence, is completely analogous to the case of rings, cf. Refs. 12 and 14. The fact th
construction yields a* -functor follows from a trivial computation. An application of~Ref. 17,
Prop. 7.3! shows that this functor is normal.

‘‘ ⇐: ’’ SupposeF:Rep(N)→Rep(M) is a normal* -functor, implementing the categorica
equivalence. ConsiderF(L2(M)), which has a leftN-action by definition, and a rightM-action
throughF. Applying the Eilenberg–Watts type theorem stated by Sauvageot~Ref. 19, Prop. 5.3!,
shows thatF(L2(M)) is invertible. Compare also Rieffel~Ref. 17, Prop. 5.4, Theorem 5.5!. h

ACKNOWLEDGMENTS

This paper is based on a conjecture by N.P. Landsman. The author thanks him for his
and helpful suggestions.

1Bass, H.,Algebraic K-theory ~Benjamin, New York, 1968!.
2Bénabou, J., ‘‘Introduction to bicategories,’’ Lect. Notes Math.47, 1–77~1967!.
3Borchers, H. J., ‘‘On revolutionizing quantum field theory with Tomita’s modular theory,’’ J. Math. Phys.41, 3604–3673
~2000!.

4Bratteli, O. and Robinson, D. W.,Operator Algebras and Quantum Statistical Mechanics~Springer-Verlag, New York,
1979!.

5Brouwer, R. M., A bicategorical approach to Morita equivalence for rings and von Neumann algebras,
tront.math.ucdavis.edu/math.OA/030135

6Connes, A., ‘‘On the spatial theory of von Neumann algebras,’’ J. Funct. Anal.35, 153–164~1980!.
                                                                                                                



s

ons of

2214 J. Math. Phys., Vol. 44, No. 5, May 2003 R. M. Brouwer

                    
7Connes, A.,Noncommutative Geometry~Academic, San Diego, 1994!.
8Doplicher, S., ‘‘Abstract compact group duals, operator algebras and quantum field theory,’’Proceedings of the Inter-
national Congress of Mathematicians, Kyoto 1990~Springer-Verlag, Tokyo, 1991!, pp. 1319–1333.

9Faith, C.,Algebra: Rings, Modules and Categories I~Springer-Verlag, Berlin, 1973!.
10Haagerup, U., ‘‘The standard form of von Neumann algebras,’’ Math. Scand.37, 271–283~1975!.
11Kadison, R. V., and Ringrose, J. R.,Fundamentals of the Theory of Operator Algebras II, Advanced Theory~Academic,

New York, 1986!.
12Lam, T. Y., Lectures on Modules and Rings~Springer-Verlag, New York, 1999!.
13Landsman, N. P.,Mathematical Topics Between Classical and Quantum Mechanics~Springer-Verlag, New York, 1998!.
14Landsman, N. P., ‘‘Bicategories of operator algebras and Poisson manifolds,’’ inMathematical Physics in Mathematic

and Physics: Quantum and Operator Algebraic Aspects, edited by R. Longo@Fields Inst. Comm30, 271–286~2001!#.
15Landsman, N. P., ‘‘Quantized reduction as a tensor product,’’ inQuantization of Singular Symplectic Quotients, edited by

N. P. Landsman, M. Pflaum, and M. Schlichenmaier~Birkhäuser, Basel, 2001!, pp. 137–180.
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A new realization for the dÄ2 topological algebra
M. Carvalhoa)

Waseda University, Department of Mathematics,
3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

A. L. Oliveira
Universidade Federal do Rio de Janeiro, Grupo de Fı´sica e Astrofı´sica Relativista,
Observato´rio do Valongo, 20080-090 Rio de Janeiro–RJ, Brazil

~Received 27 September 2002; accepted 31 January 2003!

We derive topological algebras for two-dimensional models admitting ad5@d,b#
decomposition~with b the BRST operator!. In general, the topological algebra we
obtain is not derived from the twisting of anN52 supersymmetry algebra. We
show, for the particular case of an Abelian model described by a ladder of matter,
how to deriveN52 supersymmetry generators from the odd generators of the
topological algebra. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1565832#

I. INTRODUCTION

Topological algebras appeared originally as a by-product of the twisting of two dimens
N52 supersymmetric models,1 a procedure that was employed in the description of topolog
field theories with matter fields. The main characteristic of such algebras lies on the existe
odd generatorsGm ,Q (Q250) satisfying @Q,Gm#5Pm , which is an essential ingredient o
topological quantum field theories~TQFT!.2 Since the generatorsQ and Gm depend on the
supersymmetry chargeQaa (a,aP$1,2%; (1,2)[(1,2)) through the combinationsQªQ12

1Q21 and Gm5(G1 ,G2)ª( 1
2(Q111Q22), i /2 (Q112Q22)), it is then clear that the topo

logical algebras constructed in Refs. 1 and 3 arise as a direct consequence of an underN
52 supersymmetry algebra.

Here, we want to construct topological algebras that are not necessarily related to sup
metry. Our strategy is to use the results of previous work4–7 where we have studied the properti
of models exhibiting the decomposition

d5@d,b# . ~1!

This is the starting point for our discussion of topological algebras. In fact, if we can identif
odd generatorsGm ,Q with d,b, then~1! becomes a natural realization of@Gm ,Q#5Pm . Relation
~1! has appeared in several different contexts. For example, in Ref. 4 it was applied
D-dimensional model described by a generalized gauge ladder with zero curvature conditio
A[( i 50

D w i
12 i

ªc1A1w2
211¯1wD

12D , satisfying

d̃A1 1
2 @A,A#50 . ~2!

In Ref. 6 we have extended this model by introducing a curvature ladderF[( i 50
D h i

22 i
ªf1c

1B1¯1hD
22D satisfying

d̃A1 1
2 @A,A#5F, d̃F1@A,F#50 . ~3!

In both cases we haved̃5b1d andd is defined by the equations

a!Electronic mail: marcelo–carv@hotmail.com
22150022-2488/2003/44(5)/2215/9/$20.00 © 2003 American Institute of Physics
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A5edc, F5edf, ~4!

d̃5edbe2d . ~5!

Here, the space of fields and its derivativesV5$w i
12 i ,h i

22 i ,dw i
12 i ,dh i

22 i% is the ground space
where we will construct a representation for the topological algebra~6!–~10!. In this space we
have automatically fulfilled the relation@d,b#5d @this comes from the expansion of~5!# or its
equivalent@Gm ,b#52]m . We can then proceed to a full realization of the topological algebra
defining systematically onV the action of the other generators and ensuring their remai
algebraic relations are satisfied. In much the same way, we can introduce a matter lad4 H
[( i 50

D hi
2 i with H5edh0

0 and extend the topological algebra to the spaceV defined by the
component fields ofA, F, H and their exterior derivatives. Depending on the way we define
relations among these ladders we will obtain distinct representations for the generators
topological algebra. The introduction of the matter ladderH will allow us to describe topologica
matter in a different way than the one developed in Ref. 3.

In this work we will present a systematic procedure on how to obtain topological algebra
models admitting ad5@d,b# decomposition. In order to relate our construction to the mo
described in Ref. 1 we will consider two-dimensional models defined in a Euclidean spacM.
The fields are then considered as differential forms inM with values in a certain Lie algebra@that
is not restricted to SO~2!#. With respect to the isometries ofM, SO(2)M , the laddersA, F
and H carry no SO(2)M spinor field, therefore all fields inV will transform as SO(2)M
tensors@even thoughM is a Euclidean space, we will use the terminology of Ref. 1 and so
times we will refer to SO(2)M as ‘‘Lorentz’’ SO~2!#. We will see that the choice of a two
dimensional ladder of matterH together with the gauge ladderA will result in a model that
contains all fields of the topological matter of Ref. 1. In this case, we will derive an action th
both BRST andM invariant but it is not included in the formalism of Ref. 1, which are n
included in that formalism.

Our work is organized as follows. In Sec. II we introduce the topological algebra and se
our notation. In Sec. III we realize the topological algebra in the spaceV
5$w i

12 i ,dw i
12 i ,h i

22 i ,dh i
22 i% determined by component fields of gauge and curvature lad

A5c1A1w2
21, F5f1c1B. In Sec. IV we analyze a model defined by a ladder of matteH

[( i 50
2 hi

2 i
ªh1r1x and a zero curvature condition. We restrict the fields to be Abelia

condition that will allow us later on to derive anN52 supersymmetry algebra from a~un!twisting
procedure. We exhibit then an invariant actionS (bS50↔QS50) by solving the descent equa
tions associated tobS50. In Sec. V we redo the same analysis of Sec. IV but relaxing the
curvature condition. Section VI presents a model with zero curvature andd̃-closed gauge and
matter ladders, i.e.,d̃A5d̃H50. In Sec. VII, having in mind the particular cases of Secs. IV a
V, we show how to define supersymmetry generators from the odd generators of the topo
algebra.

II. TOPOLOGICAL ALGEBRAS IN DÄ2

In this work fields and operators carry a bidegree (i , j ). As a field,Xi
j means ani -form with

ghost numberj ; as an operator,Xi
j means a superderivation which acts on a field with bideg

(m,n) producing another field with bidegree (i 1m, j 1n). The total degree ofXi
j is i 1 j . Products

of objects likeXi
jXk

l result in an object with bidegree (i 1k, j 1 l ). We define@Xi
j ,Xk

l #ªXi
jXk

l

2(21)( i 1 j )(k1 l )Xk
l Xi

j .
We deal with a two-dimensional Euclidean space with metricgmn5dmn . The antisymmetric

symbolemn hase1251. The gamma matrices are defined as in Ref. 1.
By a topological algebra we understand the algebra generated by the superderiv

$Pm ,J̃,b,Gm ,M % with bidegrees~0,0!, ~0,0!, ~0,1!, ~0,21!, ~0,1! and satisfying
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@Pm ,Pn#5@Pm ,b#5@Pm ,Gn#5@Pm ,M #5b25M250, ~6!

@ J̃,b#5@ J̃,M #5@b,M #5@Gm ,Gn#50, ~7!

@ J̃,Pm#52 i em
nPn , @ J̃,Gm#52 i em

nGn , ~8!

@Gm ,b#52Pm , ~9!

@M ,Gm#52 i em
nPn . ~10!

Our J̃ generator corresponds in Ref. 1 to the twisting of internal and Lorentz SO~2! generators.
Here, since we are not restricting the fields to be SO~2! valued,J̃ is related only to the generato
of Lorentz SO~2! transformations and it acts on a vector fieldVm as J̃Vmª2 i em

nVn . The
generator of internal symmetry, at this point, does not enter the topological algebra. In
follows we will write Pm5]m .

III. A MODEL WITH A AND F
Let us consider a model defined by ladders

A5c1A1w, F5f1c1B, ~11!

wherec[c0
0 , A[A1

0 , w[w2
21 , f[f0

2 , c[c1
1 , andB[B2

0. The fieldB is an arbitrary two
form independent ofA.

A. Defining Gm , b , M

From ~4! and ~5! we obtain the followingd transformations:

dc5A, dA52w, dw50; df5c, dc52B, dB50, @d,d#50 . ~12!

d[d1
21 being a superderivation of bidegree~1,21! can be written asd5Gm ^ dxm. This together

with @d,d#50 determinesGm as

Gmc52Am , GmAn5wmn , Gmwab50, Gm]n5]nGm , ~13!

Gmf5cm , Gmcn52Bmn , GmBab50 . ~14!

The BRST transformations arise from~3! and assume the form

bc52c21f, ~15!

bAm5]mc2@c,Am#1cm , ~16!

bwmn52Fmn2@c,wmn#1Bmn , ~17!

bf52@c,f#, ~18!

bcm52]mf2@c,cm#2@Am ,f#, ~19!

bBmn5]mcn2]ncm2@c,Bmn#1@Am ,cn#2@An ,cm#2@wmn ,f#, ~20!

with Fmn5]mAn2]nAm1@Am ,An# andb250.
M[M0

1 is a generator with bidegree~0,1!, therefore we start defining it onc andf as Mc
5a1c21a2f and Mf5a3c31a4cf1a5fc with a1 ,...,a5 arbitrary constants. Imposing~10!,
@M ,]m#50 and@M ,b#50, we obtaina15a452a5 , a350 and
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Mc5a1c21a2f, ~21!

MAm5a1@c,Am#1a2cm1 i em
n]nc, ~22!

Mwmn5a1~@Am ,An#1@c,wmn#!1a2Bmn1 i en
a]aAm2 i em

a]aAn , ~23!

Mf5a1@c,f#, ~24!

Mcm5a1~@Am ,f#1@c,cm#!2 i em
n]nf, ~25!

MBmn5a1~@wmn ,f#2@Am ,cn#1@An ,cm#1@c,Bmn#!2 i en
a]acm1 i em

a]acn . ~26!

It is straightforward to verify that the set of generators$]m ,J̃,Gm ,b,M % satisfies the topologica
algebra~6! and ~10!. Since the constants appearing in the definition ofM are not determined by
the topological algebra, we have then established a family of topological algebras indexed
values of (a1 ,a2).

IV. A MODEL WITH A MATTER LADDER AND A ZERO CURVATURE CONDITION „I…

Let us consider an Abelian model defined by ladders

A5c1A1w, H5h1r1x ~27!

with h[h0
0 , r[r1

21 , x[x2
22 . We impose they obey equations

d̃H5A, d̃A50, ~28!

A5edc, H5edh, ~29!

d̃5edbe2d . ~30!

From ~29! we obtain thed-transformation as

dc5A, dA52w, dw50, dh5r, dr52x, dx50, ~31!

which, in addition to~13!, determines

Gmh5rm , Gmrn52xmn , Gmxab50 . ~32!

From ~28! we have the following BRST transformations:

bc50, bAm5]mc, bwmn52Fmn , bh5c, brm52]mh1Am ,
~33!

bxmn5]mrn2]nrm1wmn .

Since we are dealing with an Abelian model subjected to a zero curvature condition we
Mc50 andMh5a c. Then~10! determines theM transformations as

Mc50, MAm5 i em
n]nc, Mwmn5 i en

a]aAm2 i em
a]aAn , Mh5ac,

~34!
Mrm5aAm2 i em

n]nh, Mxmn5awmn2 i en
a]arm1 i em

a]arn .

Gm ,b,M given in ~32!–~34! satisfy the topological algebra~6!–~10!.
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A. An invariant action

Let us considerS5*v2
0 satisfyingbS5*bv2

0. This is equivalent to the system of desce
equations

bv2
01dv1

150, bv1
11dv0

250, bv0
250 . ~35!

In order to solve ~35! let us consider bv0
250 with v0

2PV
5$c,A,w,h,r,x,dc,dA,dw,dh, dr,dx%. Here, since the fields are Abelian, we havev0

2(c,h)
50. One possibility for obtaining a nontrivial solution is to consider a set of ladd
A I , H I , I 51, . . . ,2N, where the indexI splits asI 5( i , î ), i 51, . . . ,N. We assume, for each
value ofI , the same set of equations as before,~32!–~34! for the I th component of the ladders. I
is possible to consider the splitting ofI in such a way that the corresponding ladders are comp

conjugates, i.e.,A î
ªA * i , H î

ªH * i , however, our discussion is not restricted by this choic

Now we can writev0
2 as ~we denotecî[ ĉi , etc.!

v0
25 f i j ~h,ĥ!cicj1 f i ĵ ~h,ĥ!ci ĉj1 f î ĵ~h,ĥ!ĉi ĉ j ~36!

with f i j 52 f j i , f î ĵ52 f ĵ î . Then,bv0
250 determines the following conditions on the functio

f i j , f i ĵ , f î ĵ ,

] f i j

]ĥk
2

1

2

] f ik̂

]hj
1

1

2

] f j k̂

]hi
50,

] f i j

]hk
1

] f jk

]hi
1

] f ki

]hj
50,

~37!
] f î ĵ

]hk
2

1

2

] f k ĵ

]ĥi
1

1

2

] f k î

]ĥ j
50,

] f î ĵ

]ĥk
1

] f ĵ k̂

]ĥi
1

] f k̂î

]ĥ j
50,

which is solved by

f i j 5
]K

]hi]ĥ j
2

]K

]hj]ĥi
, f i ĵ 52l

]K

]hi]hj
22

]K

]ĥi]ĥ j
, f î ĵ52l f i j ~38!

with K an arbitrary function of (h,ĥ) andl an arbitrary constant that should be made equal t
in case we describe our model by a pair of complex fields and their conjugates. Replacing~38! into
~36! we obtain

v0
252Ki ĵ c

icj12Kî ĵ ĉ
icj12lKi j c

i ĉ j12lKî j ĉ
i ĉ j ~39!

with Ki ĵ [ ]K/]hiĥj etc. The use of thed operator allows us to exhibit a particular solution to t
descent equations.4–9 In fact, in the case of@d,d#50 we can write~35! in the form d̃ṽ50 for
ṽ[v0

21v1
11v2

0
ªedv0

2. Then from~39! and the definition ofd we obtain

ṽ52K̃ i ĵ A iA j12K̃ î ĵÂiA j12lK̃ i j A iÂj12lK̃ î jÂiÂj ~40!

with K̃[K(H,Ĥ)ªedK(h,ĥ) and K̃ i ĵ [ ]K̃/]H i]Ĥj etc. Writing H5h1Q, Ĥ5ĥ1Q̂ with
Q[r1x andQ̂[r̂1x̂, we expandK̃(H,Ĥ) in a Taylor series around (h,ĥ),

K̃~H,Ĥ!5K~h,ĥ!1QmKm~h,ĥ!1Q̂mKm̂~h,ĥ!1 1
2 QmQnKmn~h,ĥ!

1QmQ̂nKmn̂~h,ĥ!1 1
2Q̂

mQ̂nKm̂n̂~h,ĥ!,

which gives the decompositions
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K̃ i ĵ u2
225xmKmi ĵ1x̂mKm̂i ĵ 1

1
2 rmrnKmni ĵ1rmr̂nKmn̂i ĵ 1

1
2r̂

mr̂nKm̂n̂i ĵ , ~41!

K̃ i ĵ u1
215rmKmi ĵ1 r̂mKm̂i ĵ , ~42!

K̃ i ĵ u0
05Ki ĵ . ~43!

Herev2
0 is obtained by taking terms with bidegree~2,0! in ṽ. Therefore, replacing~41!–~43! in

~40! we obtain

v2
05ṽu2

0

5Kmni ĵr
mrncicj12Kmnîĵr

mr̂ncicj1Km̂n̂i ĵ r̂
mr̂ncicj1Kmnîĵr

mrnĉicj12Kmn̂î ĵr
mr̂nĉicj

1Km̂n̂î ĵ r̂
mr̂nĉicj12Kmi ĵx

mcicj12Km̂i ĵ x̂
mcicj12Kmî ĵx

mĉicj12Km̂î ĵ x̂
mĉicj

12Kmi ĵr
mciAj12Km̂i ĵ r̂

mciAj22Kmi ĵr
mcjAi22Km̂i ĵ r̂

mcjAi12Kmî ĵr
mĉiAj

12Km̂î ĵ r̂
mĉiAj22Kmî ĵr

mcjÂi22Km̂î ĵ r̂
mcjÂi12Ki ĵ c

iw j22Ki ĵ c
jw i12Kî ĵ ĉ

iw j22Kî ĵc
j ŵ i

12Ki ĵ A
iAj12Kî ĵ Â

iAj1l~Kmni jr
mrnci ĉ j12Kmn̂i j r

mr̂nci ĉ j1Km̂n̂i j r̂
mr̂nci ĉ j

1Kmnîjr
mrnĉi ĉ j12Kmn̂î jr

mr̂nĉi ĉ j1Km̂n̂î j r̂
mr̂nĉi ĉ j12Kmi jx

mci ĉj12Km̂i j x̂
mci ĉj

12Kmî jx
mĉi ĉ j12Km̂î j x̂

mĉi ĉ j12Kmi jr
mciÂj12Km̂i j r̂

mciÂj22Kmi jr
mĉjAi22Km̂i j r̂

mĉjAi

12Kmî jr
mĉi Âj12Km̂î j r̂

mĉi Âj22Kmî jr
mĉj Âi22Km̂î j r̂

mĉj Âi12Ki j c
i ŵ j22Ki j ĉ

jw i

12Kî j ĉ
i ŵ j22Kî j ĉ

j ŵ i12Ki j A
iÂj12Kî j Â

i Â j ! . ~44!

From ~28! we conclude thatd̃ has trivial cohomology onV5$A,H%. Therefore any solution of
d̃ṽ50 implies it existsv̂ such thatṽ5d̃v̂. In particularv2

05ṽu2
05(d̃v̂)u2

0[b v̂u2
211d v̂u1

0.
Explicitly

v2
05b$Kmn ĵr

mrncj12Kmn̂ĵr
mr̂ncj1Km̂n̂ĵ r̂

mr̂ncj12Km ĵr
mAj12Km̂ĵ r̂

mAj12Km ĵx
mcj

12Km̂ĵ x̂
mcj12K ĵw

j1l~Kmn jr
mrnĉj12Kmn̂jr

mr̂nĉj1Km̂n̂j r̂
mr̂nĉj12Km jr

mÂj

12Km̂j r̂
mÂj12Km jx

mĉj12Km̂j x̂
mĉj12K j ŵ

j !%1d$2Km ĵr
mcj12Km̂ĵ r̂

mcj12K ĵA
j

1l~2Km jr
mĉj12Km̂j r̂

mĉj12K jÂ
j !%. ~45!

Then our action writes simply as a BRST variationS5b*v̂u2
21.

We also have @M ,Gm#52 i em
n]n⇒Med5edM2 i em

n]n ^ dxmed. Therefore Mv2
0

5(M ṽ)u2
15(Medv0

2)u2
15 1

2d
2Mv0

22( i em
n]n ^ dxm)v1

15 i em
n]nva

1dxmdxa ~we have Mv0
250

andv1
1[va

1dxa). ThusMS5*dx2(2 i ]mvm
1 )50, i.e., the action isM -invariant.

V. A MODEL WITH MATTER, GAUGE AND CURVATURE LADDERS

Let us consider an Abelian model with laddersA, F, H which satisfy

d̃A5F, d̃F50 and d̃H50 . ~46!

The Gm transformations are given by~13!, ~14!, and~32! and the BRST transformations assum
the form

bc5f, bAm5]mc1cm , bwmn52Fmn1Bmn , bf50, bcm52]mf,

~47!
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bBmn5]mcn2]ncm , bh50, brm52]mh, bxmn5]mrn2]nrm .

In order to determine theM transformation we assume thatMc5a1f, Mf5a2 c f and Mh
5a3 c. The algebraic relation~10! together with@b,M #50 andM250 imposea250, a350 and
fix the M transformations as

Mc5a1f, MAm5a1cm1 i em
n]nc, Mwmn5a1Bmn1 i en

a]aAm2 i em
a]aAn ,

Mf50, Mcm52 i em
n]nf, MBmn52 i en

a]acm1 i em
a]acn , Mh50, ~48!

Mrm52 i em
n]nh, Mxmn52 i en

a]arm1 i em
a]arn .

Let us take laddersA I , F I , H I , I 51, . . . ,2N, I 5( i , î ). Here, we writev0
25Fi j (h,ĥ)cicj

1Fi ĵ (h,ĥ)ci ĉj1Fî ĵ (h,ĥ) ĉi ĉ j1Gi(h,ĥ)f i1Gî (h,ĥ)f̂ i . Thenbv0
250 gives

v0
25Gi~h,ĥ!f i1Gî ~h,ĥ!f̂ i . ~49!

An invariant action is given byS5*v2
0 with

v2
05~edv0

2!u2
0

5 1
2 Gi , jkf ir jrk1Gi , j k̂f ir j r̂k1 1

2 Gi , ĵ k̂f
i r̂ j r̂k1 1

2 Gî , jkf̂ ir jrk

1Gî , j k̂f̂ ir j r̂k1 1
2 Gî , ĵ k̂f̂

i r̂ j r̂k1Gi , jf
ix j1Gi , ĵf

i x̂ j1Gî , jf
îx j

1Gî , ĵ f̂
i x̂ j1Gi , jc

ir j1Gi , ĵc
i r̂ j1Gî , j ĉ

ir j1Gî , ĵ ĉ
i r̂ j1GiB

i1Gî B̂
i ~50!

5b ~ 1
2 Gi , jkcir jrk1Gi , j k̂cir j r̂k1 1

2 Gi , ĵ k̂c
i r̂ j r̂k1 1

2 Gî , jkĉir jrk

1Gî , j k̂ĉir j r̂k1 1
2 Gî , ĵ k̂ĉ

i r̂ j r̂k1Gi , j c
ix j1Gi , ĵ c

i x̂ j1Gî , j ĉ
ix j1Gî , ĵ ĉ

i x̂ j

1Gi , jA
ir j1Gi , ĵA

i r̂ j1Gî , j Â
ir j1Gî , ĵ Â

i r̂ j1Giw
i1Gî ŵ

i !1d ~Gi , j c
ir j

1Gi , ĵ c
i r̂ j1Gî , j ĉ

ir j1Gî , ĵ ĉ
i r̂ j1GiA

i1Gî Â
i ! ~51!

with Gi , Gî arbitrary functions ofh, ĥ andGi , jª]Gi /]hj , etc. The expression given in~51! is
essentially the same one given in~45! if we identify Gi↔2Kî , Gî↔2Ki and takel51. None-
theless, these models differ due to their different BRST transformations. Note thatv0

2 given in
~49! is M -invariant. Then, adopting the same procedure of the last section, we also obtaiMS
50.

This model admits a simpler form which consists in taking laddersA i , F i , H i ,
i 51, . . . ,N. Here the previous form forv2

0 becomes

v2
05 1

2 Gi , jkf ir jrk1Gi , jc
ir j1GiB

i

5b~ 1
2 Gi , jkcir jrk1Gi , j c

ix j1Gi , jA
ir j1Gif

i !1d~Gi , j c
ir j1GiA

i ! . ~52!

In addition to the solution given in~52! we can also include in the action BRST-invariant term
involving derivates, for example,

bE d2xGi , j~2rm
i ]mhj2xmn

i Bj mn!5E d2xGi , j~]mhi]mhj12]mrn
i Bj mn12xmn

i ]mc j n! . ~53!

These terms are not generated by the expansion ofedv0
2. This shows explicitly the particula

character of our solution. The action determined by~52! and ~53!,
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E d2x S emnS 2
1

2
Gi , jkf irm

j rn
k2Gi , jcm

i rn
j 1

1

2
GiBmn

i D
1Gi , j~]mhi]mhj12]mrn

i Bj mn12xmn
i ]mc j n! D ,

contains component fields only from the curvature and matter ladders. It is, by constru
BRST-exact, therefore it determines an energy-momentum tensor BRST-exact. This action
counterpart in the topological matter action found in Ref. 1.

VI. A MODEL WITH A MATTER LADDER AND A ZERO CURVATURE CONDITION „II…

Let us consider the previous model with a zero curvature condition

d̃H50, d̃A50 . ~54!

The set of transformations we obtain is

bc50, bAm5]mc, bwmn52Fmn , bh50, brm52]mh, bxmn5]mrn2]nrm ,
~55!

Mc50, MAm5 i em
n]nc, Mwmn5 i en

a]aAm2 i em
a]aAn , Mh50, ~56!

Mrm52 i em
n]nh, Mxmn52 i en

a]arm1 i em
a]arn . ~57!

Here, a BRST-invariant action writes as the integral of

v2
05Gi j ~2ciw j1AiAj !1Gi j ,k~cicjxk12ciAjrk!1 1

2 Gi j ,klc
icjrkr l ~58!

with Gi j 52Gji . Since we haveMv2
05]a(22iGi j en

aciAm
j 2 iGi j ,ken

acicjrm
k )dxmdxn we ob-

tain M*v2
050. A possible kinetic term is

bE Gi j ~2rm
i ]mhj2rm

i Am j !5E d2xGi j ~]mhi]mhj1]mhiAm j1rm
i ]mcj ! . ~59!

Once again, these previous terms determine an action

E dx2S Gi j ~emnciwmn
j 1emnAm

i An
j !1Gi j ,kS 1

2
emncicjxmn

k 22emnciAm
j rn

kD
2

1

2
Gi j ,kle

mncicjrm
k rn

l 1Gi j ~]mhi]mhj1]mhiAm j1rm
i ]mcj ! D , ~60!

which is BRST-exact.

VII. DERIVING A SUPERSYMMETRY FROM THE TOPOLOGICAL ALGEBRA

Let us now derive a realization of theN52 supersymmetry generators in the space of Abe
fields V5$c,A,w,h,r,x,dc,dA,dw,dh,dr,dx% by following the procedure of Ref. 1. We defin
supersymmetry generators Qaa[(Q11 ,Q12 ,Q21 ,Q22) as Q11ªg11

m Gm , Q22

ªg22
m Gm , Q12ª

1
2(2b1M ), Q21ª

1
2(2b2M ). Note that~9! differs by a minus sign to the

corresponding relation@Q,Gm#5]m of Ref. 1. Then we have to consider here the associa
2b↔Q. The topological algebra~6!–~10! together with these definitions determines
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@Qa1 ,Qb1#50
@Qa2 ,Qb2#50

@Qa1 ,Qb2#5gab
m ]m

J
@Qaa ,Qbb#5Cabgab
m ]m ~61!

that corresponds to the algebra of the generators ofN52 supersymmetry. It should be notice
though that our model differs from the description of topological matter of Ref. 1, first, bec
we have extra fieldsw2

21 ,x2
22 andB that are necessary to guaranteed5@d,b# ~see Ref. 6!, and,

second, because our fields are not components of a pair of chiral and antichiral superfields
the Lagrangians we obtained depend on arbitrary functionsK,Gi ,Gî of (h,ĥ). Contrarily to Ref.
1, the kinetic terms we introduce do not restrictKi ĵ ,Gi ĵ to be a Kähler metric.

VIII. CONCLUSION

All models exhibited here admit the decompositiond5@d,b#, which translates into the fun
damental relation@Gm ,b#5]m of topological algebras. In addition, we also have@d,d#50, which
is equivalent to@Gm ,]n#50. As it was shown in Refs. 5 and 7, there are models where
relation does not hold and, as a result, a new operatorDmn

21 of bidegree~0,21! arises, i.e.,
@Gm ,]n#5Dmn

21 . In these cases there is no natural way to introduce the generatorM in order to
reproduce some of the relations of the topological algebra.

The same ideas presented here in the context of two dimensions also apply to four dime
However, what seems more significant is that they apply to any dimension and to any set
algebra valued fields as far as they are components of ladders satisfyingd5@d,b#. The special
cases of two and four dimensions can be used to formulate anN52 supersymmetric mode
provided we restrict the fields to be respectively SO~2! and SU~2! valued.1,3 It becomes clear tha
thed operator is not only a useful tool in the analysis of the descent equations,4–9 or in the study
of some aspects of topological Yang–Mills theories,10,11 but it also allows us to represent topo
logical algebras for a broader class of models.
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Solving simple quaternionic differential equations
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The renewed interest in investigating quaternionic quantum mechanics, in particu-
lar tunneling effects, and the recent results on quaternionic differential operators
motivate the study of resolution methods for quaternionic differential equations. In
this paper, by using the real matrix representation of left/right acting quaternionic
operators, we prove existence and uniqueness for quaternionic initial value prob-
lems, discuss the reduction of order for quaternionic homogeneous differential
equations and extend to the noncommutative case the method of variation of pa-
rameters. We also show that the standard Wronskian cannot uniquely be extended
to the quaternionic case. Nevertheless, theabsolute valueof the complex Wronsk-
ian admits anoncommutativeextension for quaternionic functions of one real vari-
able. Linear dependence and independence of solutions of homogeneous~right!
H-linear differential equations is then related to thisnewfunctional. Our discussion
is, for simplicity, presented for quaternionic second order differential equations.
This involves no loss of generality. Definitions and results can be readily extended
to then-order case. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563735#

I. INTRODUCTION

Let R, C[span$1,i %, andH[span$1,i , j ,k% be the real, complex, and quaternionic field,3

i 25 j 25k25 i jk 521

and

F : R→R

be the set of real functions of real variable. Through the paper, quaternionic functions o
variable,C(x)PH ^ F, will be denoted by greek letters and constant quaternionic coefficien
Roman letters. To shorten notation the prime and double prime in the quaternionic functions
respectively, indicate the first and second derivative of quaternionic functions with respect
real variablex,

C8ª
dC

dx
and C9ª

d2C

dx2 .

Due to the noncommutative nature of quaternions, it is convenient to distinguish between t
and right action of the quaternionic imaginary unitsi , j , andk by introducing the operatorsLq and
Rp whose action on quaternionic functionsC is given by

a!Electronic mail: deleo@ime.unicamp.br
b!Electronic mail: ducati@mat.ufpr.br
22240022-2488/2003/44(5)/2224/10/$20.00 © 2003 American Institute of Physics
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LqC5q C and RpC5C p, ~1!

These~left/right acting! quaternionic operators satisfy

Lq Lp5Lqp , Rq Rp5Rpq , and @ Lq , Rp #50, ~2!

and admit for

q5q01 i q11 j q21k q3 , p5p01 i p11 j p21k p3 , C5C01 i C11 j C21k C3 ,

the following real matrix representation4–6

Lq↔S q0 2q1 2q2 2q3

q1 q0 2q3 q2

q2 q3 q0 2q1

q3 2q2 q1 q0

D , Rp↔S p0 2p1 2p2 2p3

p1 p0 p3 2p2

p2 2p3 p0 p1

p3 p2 2p1 p0

D , C↔F C0

C1

C2

C3

GPR4
^ F.

~3!

II. EXISTENCE AND UNIQUENESS

In this section we discuss existence and uniqueness for the quaternionic initial value pr

C95a C81b C1r, C~x0!5 f , C8~x0!5g, ~4!

with a(x), b(x), r(x)PH^ F, x0PI :(x2 ,x1) and f ,gPH.
Theorem 1: Let a, b, andr in Eq. ~4! be continuous functions ofx on an open intervalI

containing the pointx5x0 . Then, the initial value problem~4! has a solutionC on this interval
and this solution is unique.

Proof: By using the real matrix representation~3!, we can immediately rewrite the quate
nionic initial value problem~4! in the following vector form:

F C0

C1

C2

C3

G 9

5S a0 2a1 2a2 2a3

a1 a0 2a3 a2

a2 a3 a0 2a1

a3 2a2 a1 a0

D F C0

C1

C2

C3

G 8

1S b0 2b1 2b2 2b3

b1 b0 2b3 b2

b2 b3 b0 2b1

b3 2b2 b1 b0

D F C0

C1

C2

C3

G1F r0

r1

r2

r3

G
~5!

with

F C0~x0!

C1~x0!

C2~x0!

C3~x0!

G5F f 0

f 1

f 2

f 3

G and F C08~x0!

C18~x0!

C2~x0!

C38~x0!

G5F g0

g1

g2

g3

G . ~6!

Equation ~5! represents a~nonhomogeneous! linear system witham ,bm ,rmPR^ F, wherem
50,1,2,3. These functions are~see hypothesis of Theorem 1! continuous~real! functions ofx on
an open intervalI containing the pointx5x0 . Then, by a well-known theorem of analysis, see,
example, Ref. 7, the linear system~5! has a solution

F C0

C1

C2

C3

GPR4
^ F
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on this interval satisfying~6!, and this solution is unique. j

III. LINEAR INDEPENDENCE AND DEPENDENCE OF SOLUTIONS

Let us now analyze the linear independence and dependence of the solutions of secon
homogeneous differential equations

C95a C81b C, ~7!

wherea andb are~quaternionic! continuous functions ofx on an open intervalI . Equation~7! is
linear overH from the right. Consequently, ifw is a solution of Eq.~7! only the function obtained
by right multiplication by constant quaternionic coefficients,w u, still represent a solution of suc
an equation. The general solution of Eq.~7! is given in terms of a pair of linearly independe
solutionsw andj by

C5w u1j v, ~8!

wherew5w01 i w11 j w21k w3 , j5j01 i j11 j j21k j3PH ^ F, andu, vPH.
In the standard complex theory (w5w01 i w1 and j5j01 i j1PC^ F) a useful criterion to

establish linear independence and dependence of two solutions of homogeneous secon
differential equation, uses the concept ofWronskianof these solutions defined by

W5w j82w8 j, WPC^ F. ~9!

This definition cannot be extended to quaternionic functions. Let us consider two linearly d
dent solutions of Eq.~7!,

j5w q, w, jPH^ F, qPH. ~10!

By substitutingj5w q andj85w8 q in the Wronskian~9!, we find

w j82w8 j5w w8 q2w8 w qÞ0.

Observe that a quaternionic function and its first derivative do not, in general, commute. Thu
definition ~9!, and all its possible factor combinations cannot be extended to the quaternionic

Let us now use the linear dependence condition~10! to investigate the possibility to define
quaternionic functional which extends~in a nontrivial way! the standard~complex! Wronskianto
the noncommutative case. From Eq.~10! and its derivative, we get

q5w21j5~w8!21j8,

wherew21[1/w and (w8)21[1/w8. Consequently, for linearly dependent quaternionic solutio
we have

j82w8 w21 j50. ~11!

To recover, in the complex limit, the standard definition~9! we multiply j82w8w21j by w. Due
to the noncommutative nature of quaternions, we have to consider the following possibilitie

WL5w ~ j82w8 w21j ! and WR5~ j82w8 w21j ! w. ~12!

Obviously two othersimilar definitions can be obtained byw↔j,

W̃L52j ~ w82j8 j21w !52WL@w↔j# and W̃R52~ w82j8 j21w ! j52WR@w↔j#.
~13!
                                                                                                                



i-

ic

d

2227J. Math. Phys., Vol. 44, No. 5, May 2003 Solving quaternionic differential equations

                    
The quaternionic functionals~12! and ~13!, which give in the complex limit the standard defin
tion, extend a first important property ofWronskian. Two solutions of Eq.~7! are linearly depen-
dent onI if WL(R) @W̃L(R)# is zero onI . To avoid ambiguity in defining theWronskian, we shall
introduce a~real! functional,

uWu25uWLu25uWRu25uW̃Lu25uW̃Ru2,

which extends thesquared absolute valueof the Wronskian. This uniquefunctional is

uWu25uwu2 uj8u21uj u2 uw8u22w8 wc j jc82j8 jc w wc8 PR^ F, ~14!

wherewc5w02 i w12 j w22k w3 andjc5j02 i j12 j j22k j3 are, respectively, the quaternion
conjugate functions ofw andj.

Observe that Eq.~14! can also be obtained as an application of the Dieudonne´ theory of
quaternionic determinants.8–12 In fact,

uWu25@Det~M !#2
ªdet~M M 1!, ~15!

where

M5S w j

w8 j8
D .

Theorem 2: Let a andb in Eq. ~7! be continuous functions ofx on an open intervalI : (a,b).
Then, two solutionsw andj of Eq. ~7! on I are linearly dependent onI if and only if theabsolute
valueof the Wronskian,uWu, is zero at somex0 in I .

The proof will be divided into three steps:

~a! If w andj are linearly dependent onI then uWu50.
~b! If uWu50 at somex0 in I then uWu50 on I .
~c! If uWu50 at somex0 in I thenw andj are linearly dependent onI .

Proof (a): If w andj are linearly dependent onI , then Eq.~10! holds onI . From Eq.~10!, we
get

uWu25uwu2 uw8u2 uqu21uwu2 uw8u2 uqu22w8wcw uqu2 wc82w8 uqu2 wcwwc850,

then uWu50.
Proof (b): Let us consider Eq.~14!. By calculating the first derivative of the left-hand- an

right-hand-side terms, we obtain

2 uWu uWu85w8wcj8jc81wwc8j8jc81wwcC29jc81wwcj8jc91j8jcw8wc81jjc8w8wc8

1jjcC19wc81jjcw8wc92C19wcjjc82w8wc8jjc82w8wcj8jc82w8wcjjc9

2C29jcwwc82j8jc8wwc82j8jcw8wc82j8jcwwc9

5uwu2~C29jc81j8jc9!1uju2~C19wc81w8wc9!2C19wcjjc82w8wcjjc9

2C29jcwwc82j8jcwwc9

5uwu2~a uj8u21b jjc81h.c.!1uju2~a uw8u21b wwc81h.c.!

2@~a w8wc1b uwu2! jjc81h.c.#2@~a j8jc1b uju2! wwc81h.c.#

52 Re@a# ~ uwu2 uj8u21uju2 uw8u22w8wcjjc82j8jcwwc8!52 Re@a# uWu2.
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By a simple integration, we find

uW~x!u5expF E
x0

x

Re@a~y!# dyG uW~x0!u. ~16!

This proves the statement~b!.
Proof (c): From the statement~b!, we have

uW~x0!u50 ⇒ uW~x!u50, xPI .

This implies that the quaternionic matrix

S w j

w8 j8
D

is not invertible onI .12 Hence the linear system

w q11j q250, w8 q11j8 q250,

in the unknownsq1,2PH, has a solution (q1 ,q2) whereq1 andq2 are not both zero. Recalling tha
w andj are linearly independent on an intervalI if

w~x! q11j~x! q250 ⇒ q15q250,

the fact thatq1 andq2 are not both zero guarantees the linear dependence ofw andj on I . j

Example 1:Show thatw5exp@2ix# andj5exp@(i2j)x# form a basis of solutions of

C91 j C81~12k! C50, ~17!

on any interval.
Solution:Substitution shows that they are solutions,

@211 j ~2 i !112k# exp@2 ix#50,

@221 j ~ i 2 j !112k# exp@~ i 2 j !x#50,

and linear independence follows from Theorem 2, since

uWu5Au i 2 j u21u i u21 i ~ j 2 i !2~ i 2 j !i 5A5.

IV. HOMOGENEOUS EQUATIONS: REDUCTION OF ORDER

Let w be solution of Eq.~7! on some intervalI . Looking for a solution in the form

j5w t

and substitutingj and its derivatives

j85w8 t1w t8 and j95w9 t12 w8 t81w t9

into Eq. ~7!, we obtain

t95~w21a w22 w21w8! t8. ~18!
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It is important to observe that, for quaternionic functions, wecannotgive a formal solution of the
previous equation. Only in particular cases, Eq.~18! can be immediately integrated. For examp
for homogeneous second order equations with constant coefficients,

a~x!→aPH and b~x!→bPH,

at least one solution is in the form of a quaternionic exponential,w5exp@qx#, and consequently
Eq. ~18! reduces to

wt95~a22 q! wt8. ~19!

Let us introduce the quaternionic function

s5wt8.

Observing that

s85w8t81wt95q wt81wt9,

Eq. ~19! can be rewritten as follows:

s85~a2q!s. ~20!

This equation can be immediately integrated, its solution reads

s5exp@~a2q!x#.

Thus, the second solution of the homogeneous second order differential equation with co
coefficients is given by

j5exp@qx#E exp@2qx# exp@~a2q!x# dx. ~21!

In the complex limit (a,qPC) we find the well-known resultsj}exp@(a2q)x# if 2qÞa and j
}x exp@qx# if 2q5a. In the quaternionic case (a,qPC), the integral which appears in~21! must
be treated with care. The solution of this integral will give interesting information about
second solution of quaternionic differential equations with constant coefficients when the a
ated characteristic quadratic equation has a unique solution. To solve the integral in Eq.~21!, we
start by observing that

@eux evx#85u eux evx1eux evx v5~Lu1Rv! eux evx.

If the operatorLu1Rv is invertible the previous equality implies

E eux evx dx5~Lu1Rv!21 eux evx.

This result guarantees that, if the operatorL2q2Ra2q is invertible the second solution can b
written in the form

j5exp@qx# ~L2q1Ra2q!21 exp@2qx# exp@~a2q!x#

5exp@qx# ~Ra2q2Lq!21 exp@2qx# exp@~a2q!x#. ~22!

If the operatorL2q1Ra2q is not invertible, we need to solve the integral which appears in~21! by
using the polar decomposition of quaternions~see example 3! and a term linearly dependent onx
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will appear. In the complex case (a,qPC), the operatorL2q1Ra2q is not invertible if and only
if 2q5a. In the quaternionic (a,qPH), the condition 2qÞa does not guarantee that the opera
is invertible.

Example 2:Knowing thatw5exp@2ix# is solution of the homogeneous second order equa
~17!, find ~by using the method of reduction of order! a second independent solution,j.

Solution:We haveq52 i anda52 j . To use Eq.~22! we have to prove that the operator

L2q1Ra2q5Li1Ri 2 j

is invertible. A simple algebraic calculation shows that

~Li2Ri 2 j !~Li1Ri 2 j !51.

Thus,

~L2q1Ra2q!215Li2Ri 2 j .

We are now ready to calculatej from Eq. ~22!,

j5exp@2 ix# ~Li2Ri 2 j ! exp@ ix# exp@~ i 2 j !x#5~Li2Ri 2 j ! exp@~ i 2 j !x#5exp@~ i 2 j !x# j .

Due to theH linearity ~from the right! of Eq. ~17! the right factorj can be ignored recovering th
solution of example 1.

Example 3:Inspection shows that

C91 i C81
k

2
50 ~23!

hasw5exp$2 @(i1j)/2# x% as a first solution. Find the second linear independent solution.
Solution: We haveq52 ( i 1 j )/2 anda52 i . In this case, the operator

L2q1Ra2q5L ~ i 1 j !/21R~ j 2 i !/2

is not invertible. This is easily seen by using, for example, the real matrix representation~3!. Thus,
the integral in Eq.~21! cannot be expressed in terms of an exponential product. Let us expl
calculatej from Eq. ~21!. We find

j5expF2
i 1 j

2
xG E expF i 1 j

2
xG expF j 2 i

2
xG dx

5expF2
i 1 j

2
xG E S cos

x

&
1

i 1 j

&
sin

x

&
D S cos

x

&
1

j 2 i

&
sin

x

&
D dx

5expF2
i 1 j

2
xG E $12k exp@2~ i 1 j !x#%

11k

2
dx.

Due to theH linearity ~from the right! of Eq. ~23! the right factor (11k)/2 can be removed. After
integration, we find

j5expF2
i 1 j

2
xG H x2k

i 1 j

2
exp@2~ i 1 j !x#J 5S x1

i 2 j

2 D expF2
i 1 j

2
xG .

Observe that the quaternionic factor (i 2 j )/2 appears on the left of the quaternionic exponen
and consequentlycannotbe removed. It is a fundamental part of the solution. Inspection sh
that
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j5x expF2
i 1 j

2
xG

is not the solution of Eq.~23!.

V. NONHOMOGENEOUS EQUATIONS: VARIATION OF PARAMETERS

A general solution of the nonhomogeneous equation~4! is a solution of the form

C5Ch1Cp , ~24!

where

Ch5w q11j q2

is a general solution of the homogeneous equation~7! and Cp is any particular solution of~4!
containing no arbitrary constants. In this section we discuss the so-called method of varia
parameters to find a particular solution for quaternionic nonhomogeneous differential equa

A method to solve a homogeneous second order quaternionic differential equations
constant coefficients has been recently developed.2 Quaternionic differential equations with non
constant coefficients are under investigation. We suppose to know two independent solut
the homogeneous equation associated with Eq.~7!. We wish to investigate if the method o
variation of parameters still works in the quaternionic case.

The method of variation of parameters involves replacing the constantq1 andq2 by quater-
nionic functionsn1(x) andn2(x) to be determined so that the resulting function

Cp5w n11j n2

is a particular solution of Eq.~4!. By differentiatingCp we obtain

Cp85w8n11j8n21w n181j n28 .

The requirement thatCp satisfies Eq.~4! imposes onlyonecondition onn1 andn2 . Hence, we
can impose a second arbitrary condition, that is

w n181j n2850. ~25!

This reducesCp8 to the form

Cp85w8n11j8n2 .

By differentiating this function we have

Cp95w9n11w8n181j9n21j8n28 .

SubstitutingCp , Cp8 , andCp9 in Eq. ~4! we readily obtain

w8n181j8n285r. ~26!

Collecting Eq.~25! and Eq.~26!, we can construct the following matrix system:

S w j

w8 j8
D Fn18

n28
G5F0r G , ~27!

from which (uWuÞ0) we obtain
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Fn18

n28
G5S w j

w8 j8
D 21F0r G5S @w2jj821w8#21 @w82j8j21w#21

@j2ww821j8#21 @j82w8w21j#21D F0r G . ~28!

Then,

n185@w82j8j21w#21r and n285@j82w8w21j#21r. ~29!

To find n1(x) andn2(x) we have to integrate the previous equations.
Example 4:Find a general solution of the nonhomogeneous quaternionic differential equ

C91 j C81~12k! C5 i x. ~30!

Solution:The solution of the associated homogeneous equation~see example 1! is

Ch5exp@2 ix# q11exp@2~ i 1 j !x# q2 .

The particular solution is

Cp5exp@2 ix# n11exp@2~ i 1 j !x# n2 .

Consequently, from Eqs.~29! we find

n185exp@ ix# x k and n2852exp@~ i 1 j !x# x k

which after integration give

n1~x!5~12 ix ! exp@ ix# k and n2~x!52 1
2 @12~ i 1 j !x# exp@~ i 1 j !x# k.

Finally

Cp5 1
2 @~ i 1 j ! x1k#.

A general solution of Eq.~23! is

C5exp@2 ix# q11exp@2~ i 1 j !x# q21 1
2 @~ i 1 j ! x1k#.

VI. CONCLUSIONS AND OUTLOOKS

The recent results on violations of quantum mechanics by quaternionic potentials1 and the
possibility to get a better understanding of CP-violation phenomena within a quaternionic fo
lation of physical theories1,13 stimulated the study of quaternionic differential operators.2 In this
paper, we have proved existence and uniqueness for quaternionic initial value problems and
simple quaternionic differential equations by discussing the reduction of order for quatern
homogeneous equations and by extending to the noncommutative case the method of vari
parameters and the definition of absolute value of the Wronskian functional.

In view of a more complete discussion of quantum dynamical systems using quater
wave packets, our next research~mathematical! interest will be the study of quaternionic integr
transforms. The quaternionic formulation of Fourier transforms could find an immediate
interesting application in the study of delay time modifications of wave packets scattered
quaternionic potential step.

1S. De Leo, G. C. Ducati, and C. C. Nishi, J. Phys. A35, 5411~2002!.
2S. De Leo and G. C. Ducati, J. Math. Phys.42, 2236~2001!.
3W. R. Hamilton,Elements of Quaternions, 3rd ed.~Chelsea Publishing Co., New York, 1969!, Vol. I.
4S. De Leo and G. C. Ducati, Int. J. Theor. Phys.38, 2197~1999!.
5S. De Leo and G. Scolarici, J. Phys. A33, 2971~2000!.
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7E. Kreyszig,Advanced Engineering Mathematics~Wiley, New York, 1993!, p. 165.
8E. Study, Acta Math.42, 1 ~1920!.
9J. Brenner, Linear Algebr. Appl.1, 511 ~1968!.

10F. J. Dyson, Helv. Phys. Acta45, 289 ~1972!.
11H. Aslaksen, Math. Intell.18, 57 ~1996!.
12N. Cohen and S. De Leo, Elec. J. Lin. Alg.7, 100 ~2000!.
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Geometric discretization of the Koenigs nets
Adam Doliwaa)

Instytut Fizyki Teoretycznej, Uniwersytet Warszawski
ul. Hoża 69, 00-681 Warszawa, Poland

~Received 29 July 2002; accepted 28 January 2003!

We introduce the Koenigs lattice, which is a new integrable reduction of the quad-
rilateral lattice ~discrete conjugate net! and provides natural integrable discrete
analog of the Koenigs net. We construct the Darboux-type transformation of the
Koenigs lattice and we show permutability of superpositions of such transforma-
tions, thus proving integrability of the Koenigs lattice. We also investigate the
geometry of the discrete Koenigs transformation. In particular we characterize the
Koenigs transformation in terms of an involution determined by a congruence
conjugate to the lattice. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1563041#

I. INTRODUCTION

In the nineteenth century one of the most favorite subjects of the differential geometry1,2 was
investigation of special classes of surfaces~or, more appropriate, coordinate systems on surfa
and submanifolds! which allow for transformations exhibiting the so-calledpermutability prop-
erty. Such transformations called, depending on the context, the Darboux, Bianchi, Ba¨cklund,
Laplace, Moutard, Koenigs, Combescure, Le´vy, Ribaucour or the fundamental transformation
Jonas, can be also described in terms of certain families of lines called line congruences.3,4 It turns
out that most of the ‘‘interesting’’ submanifolds is provided by reductions of conjugate nets
the transformations between such submanifolds are the corresponding reductions of the fun
tal ~or Jonas! transformation of the conjugate nets.

From the other side such submanifolds are described by solutions of certain nonlinear
differential equations, which turn out to be extensively studied in the modern theory of integ
systems; here also the existence of transformations~called in this context the Darboux transfo
mations! appears to be essential. For example, the conjugate nets, their iso-conjugate deform
and transformations are described5 by the so-called multicomponent Kadomtsev–Petviashv
hierarchy, which is considered often as the basic system of equations of the soliton theory6,7

Recently the integrable discrete~difference! versions of integrable differential equations a
tracted a lot of attention~see, for example, articles in Refs. 8, 9, 10, and 11!. The interest in
discrete integrable systems is stimulated from various directions, like numerical methods,
of special functions, but also from statistical and quantum physics.12,13 The discrete integrable
systems are considered more fundamental then the corresponding differential systems. D
equations include the continuous theory as the result of a limiting procedure, moreover dif
limits may give from one discrete equation various differential ones. Furthermore, discrete
tions reveal some symmetries lost in the continuous limit.

Some recent attempts to quantize the theory of gravity use approach of fluctuating geom
~see recent reviews14,15! based on the concept of discrete manifolds. During last few years
connection between geometry and integrability has been observed also at a discrete lev
present paper is the next one in the series of attempts to construct the integrable d
geometry—the theory of lattice submanifolds described by integrable difference equations

The natural discrete analogs of certain coordinate systems on surfaces were stud

a!Current address: Wydział Matematyki i Informatyki Uniwersytet Warmin´sko–Mazurski ul Zołnierska 14 A, 10-561
Olsztyn, Poland; electronic mail: doliwa@matman.uwm.edu.pl
22340022-2488/2003/44(5)/2234/16/$20.00 © 2003 American Institute of Physics
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Sauer.16 In particular, he introduced the discrete conjugate nets inE3 as lattices with planar
elementary quadrilaterals. The importance of the discrete conjugate nets~the quadrilateral lattices!
in the soliton theory was recognized recently in Refs. 17 and 18. The Darboux-type transf
tions of the quadrilateral lattices have been found in Ref. 19, and the geometry of these tra
mations was investigated in detail in Ref. 20. In the literature21–25 there are known various
integrable reductions of the quadrilateral lattices. We introduce here the discrete analogue
Koenigs reduction of conjugate nets. Let us state briefly the main definitions, ideas and res
this paper.

Consider generic two-dimensional conjugate net26 in M -dimensional projective spacePM.
The homogeneous coordinatesx(u,v)PR

*
M11 of the net satisfy the Laplace equation

x,uv5ax,u1bx,v1cx, ~1!

where comma denotes differentiation~e.g.,x,u5]x/]u), anda, b, c are functions of the conju-
gate parameters (u,v) of the net. Its Laplace transforms

x15x,v2ax, x215x,u2bx, ~2!

are another conjugate nets such that thev tangents ofx coincide with the correspondingu-tangent
lines ofx1 and that theu tangents ofx coincide with the correspondingv-tangent lines ofx21 ~see
Fig. 1!. In the tangent plane at a pointx there is a linear system~pencil! of conics tangent to the
u-coordinate line at the pointx1 and tangent to thev-curve at the pointx21 . When there is one
conic of this pencil with the second order contact with theu curve ofx1 and with the second orde
contact with thev curve of x21 then the net is calledthe net of Koenigs. It turns out that the
Laplace equation~1! of the Koenigs net can be gauged into the form

x,uv5 f x. ~3!

The integrable discrete analog of two-dimensional conjugate net is aZ2-lattice made of planar
quadrilaterals.16,17 One can construct for such lattices17 the analog of the Laplace transformsx1

andx21 . In the plane of the elementary quadrilateral at a pointx(n1 ,n2) there is a pencil of conics
passing through the pointsx1(n1 ,n2) andx1(n111,n2) of the Laplace transformx1 and passing
through the pointsx21(n1 ,n2) and x21(n1 ,n211) of the Laplace transformx21 ; we have re-
placed the tangency to a curve by its natural discrete analog of passing through two neigh
points of the discrete parametric curve. When there is one conic of this pencil passing th
x1(n112,n2) and passing throughx21(n1 ,n212) then we call such a latticethe Koenigs lattice.

The reduction of the fundamental transformation of conjugate nets to the class of the Ko
nets is calledthe transformation of Koenigs. Such transformation is determined only by the half

FIG. 1. The Koenigs net.
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the data of the fundamental transformation: given congruence conjugate to the Koenigs n
the second Koenigs netx8 is the harmonic conjugate ofx with respect to the focal nets of th
congruence. The discrete analogue of this construction is more subtle. One can show thatx8 is the
image of x in an involution on the corresponding line of the congruence. This involutio
uniquely defined by the focal nets of the congruence; in the continuous case the focal poi
the double points of the involution.3,26

We have sketched the main ideas and results of the paper. The detailed presentation w
follows. In Sec. II we define and study in detail the Koenigs lattice. In particular we discus
integrability of the Koenigs lattice from the point of view of the Pascal theorem. In Sec. II
present the discrete analog of the Koenigs transformation and then in Sec. IV we inve
geometric properties of the Koenigs transformation. Finally, in Sec. V we investigate supe
tions of the Koenigs transformation and prove their permutability, thus showing integrability o
Koenigs lattice.

It should be mentioned that the elliptic version of an integrable reduction~called the Bianchi
system27,28! of Eq. ~3! is equivalent to the Ernst equation describing axisymmetric station
vacuum solutions of the Einstein equations29–32as well as the interaction of gravitational waves33

Results presented in this paper will be important34 in geometric interpretation of the discre
version of the Bianchi system found recently in Refs. 35 and 36~see also Ref. 37!.

II. THE KOENIGS LATTICE

Consider a two-dimensional quadrilateral lattice inM -dimensional projective spacePM,
whose points labeled by two-dimensional integer latticeZ2, satisfy the property of planarity o
elementary quadrilaterals.16,17 In terms of the homogeneous coordinates such a lattice is desc
by solution of the discrete Laplace equation

x(12)5A(1)x(1)1B(2)x(2)1Cx, ~4!

where x:Z2→R
*
M11 and subscripts in brackets mean shifts along theZ2 lattice, i.e.,

x(61)(n1 ,n2)5x(n161,n2), x(62)(n1 ,n2)5x(n1 ,n261), and x(6162)(n1 ,n2)5x(n161,n2

61). Here alsoA, B, andC are functions onZ2 which characterize the lattice completely up
initial curvesx(n1,0) andx(0,n2). Notice that multiplication ofx by a nonzero functionr implies
the corresponding change ofA, B, andC but does not change the lattice itself.

As it was shown in Ref. 17 because of the planarity of the elementary quadrilaterals
lattice one can define its Laplace transformsx1 andx21 ~see Fig. 2!

x15x(2)2Ax, x215x(1)2Bx.

FIG. 2. The quadrilateral lattice and its Laplace transforms.
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Remark:Notice that our notation differs from that of Ref. 17 by opposite ordering of
transformations and by shifts in parameters. Moreover in Ref. 17 we used the affine gauge
made some formulas more complicated.

Using the discrete Laplace equation~4! one can show thatx1(1) is collinear withx, x(2) and
x1 ,

x1(1)5B(2)x(2)1Cx5B(2)x11~B(2)A1C!x;

similarly x21(2) is collinear withx, x(1) , andx21 ,

x21(2)5A(1)x(1)1Cx5A(1)x211~A(1)B1C!x.

Remark:Two functionsH andK defined17 as the cross ratios

H5cr~x(1) ,x;x21 ,x21(2)!52
A(1)B

C
,

K5cr~x(2) ,x;x1 ,x1(1)!52
B(2)A

C
,

are gauge invariant and are called the invariants of the latticex. They are natural discrete analog
of the invariants,

h5c1ab2a,u , k5c1ab2b,v ,

of conjugate nets. In the continuous case the Koenigs nets have equal invariants, i.e.,h5k. This
property does not transfer to the discrete case.

It is well known ~see, for example, Ref. 38! that five distinct points in a projective plane, n
four of which are collinear, uniquely determine a conic. Moreover, a pencil of conics~one-
dimensional linear subspace of the five-dimensional space of conics! is uniquely determined by
four points~the base of the pencil! no three of which are collinear.

The four pointsx1 , x1(1) , x21 , andx21(2) belong to the planePxx(1)x(2)
of the elementary

quadrilateral ofx and define a linear system of conics. Let us choose the pointsx, x21(2) , x1(1) as
vertices of the local triangle of reference in that plane, i.e., a pointy1x1y2x21(2)1y3x1(1) has
coordinates proportional to (y1 ,y2 ,y3). Then the equation of a general conic of the pencil is of
form

y1
21~A(1)B1C!y1y21~B(2)A1C!y1y31ly2y350, ~5!

with l being a parameter.
Definition 1: The Koenigs latticeis a two-dimensional quadrilateral lattice such that for ev

point x of the lattice there exist a conic passing through the six pointsx1 , x1(1) , x1(11) , x21 ,
x21(2) , andx21(22) .

Proposition 1: The Laplace equation of the Koenigs lattice can be gauged into the cano
form

x(12)1x5F (1)x(1)1F (2)x(2) . ~6!

Proof: The pointsx1(11) andx21(22) also belong to the planePxx(1)x(2)
5Pxx21(2)x1(1)

and have
the following decompositions:

x1(11)52S CB(12)1
CC(1)

A(1)
D x1S B(12)1

C(1)

A(1)
D x21(2)1B(12)x1(1) ,
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x21(22)52S CA(12)1
CC(2)

B(2)
D x1A(12)x21(2)1S A(12)1

C(2)

B(2)
D x1(1) .

In the pencil~5! there exist a conic passing throughx1(11) andx21(22) if and only if the coefficients
of the Laplace equation~4! of the Koenigs lattice satisfy the constraint

AC(2)

A(12)
5

BC(1)

B(12)
. ~7!

This constraint is the compatibility condition of the linear system for the unknown functionr

r (12)52Cr, ~8!

r (1)A5r (2)B. ~9!

Using solution of this system as the gauge function we obtain new representation

x̃5
1

r
x,

of the Koenigs lattice which satisfies Eq.~6! with

F5
Ar

r (2)
5

Br

r (1)
. ~10!

h

Remark: Equation ~6!, in a gauge equivalent form, appeared first in Refs. 35 and 3
connection with the integrable discretization of the Bianchi–Ernst system.

Usually the integrability of a nonlinear problem is connected with its hidden linear struc
It turns out that, with the help of the celebrated Pascal theorem on six points on a con
discrete Koenigs constraint can be formulated in a linear way.

Proposition 2: The quadrilateral latticex is the Koenigs lattice if and only if the line
Lx21x1(11)

, Lx1x21(22)
and Lxx(12)

intersect in a single point.
Proof: Recall that given six point 1, 2, 3, 4, 5, 6 belong to a conic if and only if the po

i 5L12ùL45, j 5L23ùL56, andk5L34ùL61 are collinear. We apply the Pascal theorem to the
points x21 , x21(2) , x21(22) , x1 , x1(1) , and x1(11) . Because pointx is the intersection of lines
Lx21x21(2)

andLx1x1(1)
and the pointx(12) is the intersection of linesLx21(2)x21(22)

andLx1(1)x1(11)

then there exists a conic passing through the six points if and only if the statement of the p
sition holds. h

III. THE DISCRETE KOENIGS TRANSFORMATION

The Koenigs transformation is the reduction of the fundamental transformation to the cl
the Koenigs nets and lattices. Let us first recall relevant definitions and results from the the
transformations of quadrilateral lattices.20 Then we present the algebraic definition of the Koen
reduction of the fundamental transformation. We postpone to next section the discussion
geometric interpretation of the Koenigs transformation.

A. The fundamental transformation of quadrilateral lattices

We recall the basic results from the theory of transformations of quadrilateral lattices.20 The
novelty here is the description of the theory in the homogeneous formalism~but the geometric
content does not change!. We constrain our presentation to two-dimensional lattices and con
ences only.
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Definition 2: The discrete two-dimensional line congruenceL is a Z2 family of lines in PM

such that any two neighboring lines intersect. The intersectionyi5LùL (2 i ) , i 51,2, is called the
i th focal lattice of the congruence.

Corollary 3: The focal lattices of discrete two-dimensional line congruences are quadrila
lattices.

Definition 3:A two-dimensional quadrilateral latticex and a two-dimensional congruenceL
are called conjugate when points of the lattice belong to the corresponding lines of the congr
i.e., x(n1 ,n2)PL(n1 ,n2) for all (n1 ,n2)PZ2.

Definition 4: The quadrilateral latticex8 is a fundamental transform ofx if there exists a
congruence~called the congruence of the transformation! conjugate to both lattices.

Theorem 4: Two quadrilateral latticesx and x8 are fundamental transforms of each other
and only if there exist solutionsf and f8 of the Laplace equations of the lattices and there ex
functions k and, such that the system

D1S x8

f8D5k(1)D1S x

f D , ~11!

D2S x8

f8D5, (2)D2S x

f D , ~12!

is satisfied.
Corollary 5: The system~11! is compatible if and only if there exist a solutionu of the

equation

Cu (12)52Bu (1)2Au (2)1u, ~13!

called the adjoint of~4!, and the functions k and, are solution of the following system:

k2,5fu,

D1,52~f (1)2Bf!u (1) , ~14!

D2k5~f (2)2Af!u (2) .

Corollary 6: The fundamental transformation of the given latticex can be constructed whe
we are given a solution of its Laplace equation and a solution of its adjoint (both are given
two functions of single variables). The next step is to find the functions k and, (given up to a
constant) by solving the system~14!. Finally, the transformed lattice in the gauge

x̂5
x8

f8
,

is obtained (up to a constant vector) from the system (11). The coefficients of the Laplace eq
of the latticex̂ read

Â5A
k(2)f

kf (2)
, B̂5B

, (1)f

,f (1)
, Ĉ512Â(1)2B̂(2) .

Remark:The corresponding tangent lines ofx andx8 intersect in points of the quadrilatera
lattices

L1~x!5D1S x

f D , L2~x!5D2S x

f D ,

called the Le´vy transforms20 of x.
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Corollary 7: The focal lattices of the congruence of the transformation given by

y15k
x

f
2

x8

f8
, y25,

x

f
2

x8

f8
, ~15!

satisfy equations

y12y25ux,

D1y252~x(1)2Bx!u (1) , ~16!

D2y15~x(2)2Ax!u (2) ,

i.e., they can be found using the solutionu of the adjoint equation (13) only.
Remark:Equations~16! can be used to find congruences conjugate to the latticex. Notice that

the role of the new solutionf of the Laplace equation~4! of the latticex in equations~14! is taken
in ~16! by x itself.

Remark:The latticesy15L1* (x) andy25L2* (x) are also called the adjoint Le´vy transforms20

of x.

B. The algebraic formulation of the discrete Koenigs transformation

Proposition 8: Given the Koenigs latticex satisfying equation (6) and given a scalar solutio
u of its adjoint equation (the Moutard equation)

u (12)1u5F~u (1)1u (2)!, ~17!

then the solutionx8 of the linear system

D1S x8

f8D5~uu (2)!(1)D1S x

f D ,

D2S x8

f8D52~uu (1)!(2)D2S x

f D ,

with

f5u (1)1u (2) , f85
1

u (1)
1

1

u (2)
,

is a new Koenigs lattice satisfying equation (6) with

F85F
u (1)u (2)

uu (12)
. ~18!

Proof: First one should observe35 that if u satisfies the Moutard equation~17! thenf5u (1)

1u (2) is a solution of the Koenigs lattice equation~6!. Then the corresponding solutions of th
system~14! are

k5u (2)u, ,52u (1)u,

and the coefficients of the Laplace equation of the new quadrilateral latticex̂ read

Â5F
u (1)1u (2)

uu (2)
S uu (2)

u (1)1u (2)
D

(2)

,
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B̂5F
u (1)1u (2)

uu (1)
S uu (1)

u (1)1u (2)
D

(1)

,

Ĉ512Â(1)2B̂(2) .

The function

r5
u (1)u (2)

u (1)1u (2)
5

1

f8
,

is a solution of the system~8! and ~9!. This implies that

x85f8x̂,

satisfies the Koenigs lattice equation~6!, and the corresponding potential, according to Eq.~10!,
agrees with that given by~18!. h

Corollary 9: The functionf8 satisfies the Laplace equation of the latticex8.
Remark:The important observation that the adjoint of the Koenigs lattice equation is

Moutard equation is due to Nieszporski.39

IV. THE GEOMETRIC MEANING OF THE KOENIGS TRANSFORMATION

To present the geometric meaning of the discrete Koenigs transformation, introduced
preceding section, we first recall standard results on involutions on a projective lineL ~see Ref.
38!.

Theorem 10: If a projective transformation h:L→L has two distinct fixed pointsp andq then
h is an involution if and only if for any pointuPL its image h(u) is the harmonic conjugate ofu
with respect top and q.

Theorem 11: A projective involution is uniquely determined giving two pairs of homolog
points.

A. The discrete Koenigs transformation as geometric reduction of the fundamental
transformation

Proposition 12: Given Koenigs latticex and its transformx8, denote byy1 and y2 the focal
lattices of the congruence of the transformation. The Koenigs transformx8 is the image ofx in the
unique involution mappingy1 into y1(1) and y2 into y2(2) .

Proof: In the gauge of Proposition 8 and due to Corollary 7 we have

x5
1

u
~y12y2!, x852

1

u (1)u (2)
~u (1)y11u (2)y2!. ~19!

Equations~16! imply that

y1(1)5
1

u
~Fu1y12~Fu12u!y2!,

y2(2)5
1

u
~Fu2y22~Fu22u!y1!.

The unique involution mappingy1 into y1(1) andy2 into y2(2) is the projection of the linear map
which is convenient to choose in the form

y1°2Fy11S F2
u

u1
D y2 ,
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y2°Fy22S F2
u

u2
D y1 .

As one can check directly the image ofx in this mapping isx8. h

Corollary 13: In the continuous limit the points of the focal lattices become the double p
of the involution. This fact and Theorem 10 imply thatx8 becomes, in the limit, the harmoni
conjugate ofx with respect to the pairy1 and y2 .

It turns out that the property of the Koenigs transformation described in Proposition 12
exclusively for the Koenigs lattice and selects it from general quadrilateral lattices.

Proposition 14: Given two quadrilateral latticesx and x8 related by the fundamental trans
formation such that the focal latticesy1 , y2 of the congruence of the transformation do n
degenerate to a single point. Ifx8 is the image ofx in the unique involution mappingy1 into y1(1)

and y2 into y2(2) thenx and x8 are Koenigs lattices related by the Koenigs transformation.
Proof: Notice first that the excluded situation of the degenerated focal lattices correspo

the trivial solutionu50 of the adjoint equation~13! of the latticex.
Formulas~15! and the assumption of the proposition imply the following constraint on

functionsk and,:

k(1)k5, (2),.

This constraint allows to solve the system~14!,

k5
fuu (2)A

Au (2)1Bu (1)
, ,52

fuu (1)B

Au (2)1Bu (1)
, ~20!

and gives the following relation between the coefficientsA andB of the Laplace equation~4!:

kBu (1)1,Au (2)50.

In consequence we have also

k(1)52
fu (1)u (12)BC

Au (2)1Bu (1)
, , (2)5

fu (2)u (12)AC

Au (2)1Bu (1)
. ~21!

The above relations allow to check that the condition~7! holds for the latticex, which implies that
x is the Koenigs lattice~notice that due to the symmetry between both lattices in the definitio
the fundamental transformation and in the notion of the harmonic conjugate the analogou
dition holds for the latticex8).

Assuming therefore that the functionx of the first lattice is in the canonical gaugeA5B
5F, C521, one obtains from Eqs.~20! and ~21! that

k5uu (2)N2~n2!, ,5uu (1)N1~n1!,

whereNi(ni),i 51,2, are functions~still to be determined! of single variables. Then the functio

f5u (1)N1~n1!2u (2)N2~n2!,

obtained using~14!, satisfies equation~6! for genericF only if N152N25const. Without loss of
generality this constant can be put equal to 1. The rest of the proof is the same like the pr
Proposition 8. h

Remark:The above proposition in the continuous case was found by Koenigs.40

Remark:The excluded caseu50 corresponds to the reduction of the fundamental trans
mation to the radial transformation.20
                                                                                                                



onics,
of the

a

of the

mily

h
quad-

2243J. Math. Phys., Vol. 44, No. 5, May 2003 Geometric discretization of Koenigs nets

                    
Corollary 15: For an arbitrary congruence conjugate to a quadrilateral latticex its imagex8
with respect to the unique involution (defined on every line of the congruence) mappingy1 into
y1(1) and y2 into y2(2) is a quadrilateral lattice if and only ifx is a Koenigs lattice.

B. Further geometric properties of the discrete Koenigs transformation

To understand more the relation between the Koenigs lattice, as defined in terms of c
and the geometric description of the Koenigs transformation in terms of involutions on lines
congruence, we will need the following result.

Theorem 16 „Desargues–Sturm…: A pencil of conics of a projective plane determines
projective involution on every line that does not intersect the base of the pencil.

Remark:The results presented in this section are generalization to the discrete level
results of Tzitze´ica41 and Eisenhart.42

It turns out that the Koenigs transformation defines certain family of quadrics. This fa
contains the pencils of conics of the both Koenigs latticesx andx8.

Proposition 17: Given Koenigs latticex and its transformx8 then the pencils of conics of bot
lattices determine the same involution on the intersection line of the planes of elementary
rilaterals of x and x8.

Proof: In the gauge such thatx satisfies Eq.~6!, the equation of the pencil of conics~5! reads

y1
21~F (1)F21!y1y21~F (2)F21!y1y31ly2y350. ~22!

When the parameterl equals

l05
F

F (12)
112F (1)F2F (2)F, ~23!

the conic passes throughx1(11) andx21(22) .
Instead of the basisx, x21(2) , andx1(1) of the plane of the elementary quadrilateral ofx let us

choose pointsx, u1 , andu2 , where

u15D1S x

f D , u25D2S x

f D ,

represent points of intersection of the tangent lines ofx and x8. Moreover the lineLu1u2
is the

intersection of the planes of elementary quadrilaterals ofx andx8. The transition formulas read

x21(2)5F (1)f (1)u11xS F (1)f (1)

f
21D ,

x1(1)5F (2)f (2)u21xS F (2)f (2)

f
21D .

When (t1 ,t2 ,t3) are coordinates of a point

y5t1x1t2u11t3u2 ,

then the equation of the pencil~23! is transformed into

t1
21a1b1t2

21a2b2t3
21t1t2~a11b1!1t1t3~a21b2!1t2t3~a1b21a2b11m!50, ~24!

where

ai5
1

F ( i )f ( i )
2

1

f
, bi5

F

f ( i )
2

1

f
, i 51,2,
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and

m5
l

F (1)F (2)f (1)f (2)
. ~25!

The involution on the linet150 is equivalent to the problem of finding the second root of
quadratic equation

a1b1t2
21a2b2t3

21t2t3~a1b21a2b11m!50,

when the first root is given. The double points of the involution correspond to

m52~a1b21a2b1!62Aa1b1a2b2,

and their coordinates are solutions of the equation

~Aa1b1t26Aa2b2t3!250.

Finally, the double points are given by

Aa1b1u26Aa2b2u1 . ~26!

To find the equation of the second pencil of conics we take the primed version of Eq.~24! with

u185D1S x8

f8D5u (1)u (12)u1 ,

u2852D2S x8

f8D5u (2)u (12)u2 ,

and

ai85
1

F ( i )8 f ( i )8
2

1

f8
52u i

2ai , bi85
F8

f ( i )8
2

1

f8
52

u1u2u12

u
bi i 51,2.

The double points on the linet1850 of the second involution are given by

Aa18b18u286Aa28b28u185
~u (1)u (2)u (12)!

3/2

~u!1/2 ~Aa1b1u26Aa2b2u1!,

and due to Theorem 11, both evolutions are the same. h

Proposition 18: Given Koenigs latticex and its transformx8 then any pair of intersecting
conics of two pencils determines a pencil of quadrics. Such a pencil defines on the line Lxx8 of the
congruence the involution described in Proposition 12.

Proof: Let us choose pointsx, u1 , u2 , and x8 as the vertices of the reference frame, th
(t1 ,t2 ,t3 ,t4) are coordinates of a point

y5t1x1t2u11t3u21t4x8.

Notice the following relation between these coordinates and the coordinatest i8 used in the last par
of the proof above:

t185t4 , t285
t2

u (1)u (12)
, t3852

t3

u (2)u (12)
. ~27!
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The transformation formulas~27! imply that the equation of the second pencil reads

u (1)u (2)

uu (12)
Fa1b1t2

21a2b2t3
22t2t3S u (1)

u (2)
a1b21

u (2)

u (1)
a2b11

m8u

u (1)
2 u (2)

2 u (12)
D G2t2t4S u (1)

u (12)
a11

u (2)

u
b1D

1t3t4S u (2)

u (12)
a21

u (1)

u
b2D1t4

250, ~28!

and, therefore, the relation between parameters of the corresponding conics in the pencils

f

u (2)
a1b21

f

u (1)
a2b11

m8u

u (1)
2 u (2)

2 u (12)
1m50. ~29!

Any two corresponding conics of the pencils~24! and~28! define a pencil of quadrics and, finally
we obtain the following two-parameter linear system of quadrics:

t1
21a1b1t2

21a2b2t3
21t1t2~a11b1!1t1t3~a21b2!1t2t3~a1b21a2b11m!1

uu (12)

u (1)u (2)
t4
21nt1t4

2t2t4S u

u (2)
a11

u (12)

u (1)
b1D1t3t4S u

u (1)
a21

u (12)

u (2)
b2D50. ~30!

Notice that any pair of two conics of the pencils@i.e., an arbitrary fixedm in Eq. ~30!# determines
the same involution on the linet25t350 ~the line of the congruence!

t1
21nt1t41

uu (12)

u (1)u (2)
t4
250.

The fixed points of the involution correspond to

n56A uu (12)

u (1)u (2)
,

and read

6Auu (12)x1Au (1)u (2)x8. ~31!

One can check using Eqs.~31! and~19! that the pairsx andx8, y1 andy1(1) , andy2 andy2(2) are
harmonically conjugate with respect to the fixed points. h

Corollary 19: Equations~23! and ~25!, their primed versions, and Eq. (29) imply that th
distinguished six-point conics of two pencils intersect.

V. THE PERMUTABILITY OF SUPERPOSITIONS OF THE DISCRETE KOENIGS
TRANSFORMATIONS

We show in this section that superpositions of the discrete Koenigs transformations satis
permutability property. We start with the relevant properties of the Moutard equation and the
present the permutability theorem for the discrete Koenigs transformation proving this wa
integrability of the Koenigs lattice.

A. The discrete Moutard transformation and its permutability property

We recall the known material on the Darboux-type transformation for the Mou
equation43,44 and the permutability theorem for this transformation.25,45 The novelty here is the
presentation of the Moutard transformation within the general setting of the fundamental tra
mation of quadrilateral lattices.
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Consider the Moutard lattice, i.e., the quadrilateral lattice whose homogeneous coord
y:Z2→R

*
N11 satisfy ~up to a gauge! the discrete Moutard equation~17!,

y(12)1y5F~y(1)1y(2)!. ~32!

Let u be a scalar solution of this equation, linearly independent of the components ofy. One can
check that the functionc5u (21)1u (22) satisfies the equation

c (12)1c5F (22)c (1)1F (21)c (2) , ~33!

adjoint to the Moutard equation. Notice that, like in the Koenigs lattice case, to construc
fundamental transformation of the Moutard lattice we need only half of the data, but this tim
solution of the Moutard equation gives a solution of its adjoint. The solution of the system~14!
~with the change of notationf→u andu→c) reads then

k5uu (21) , ,52uu (22) ,

and the latticeŷ, the solution of the linear system

D1~ ŷ!5uu (1)D1S y

u D ,

D2~ ŷ!52uu (2)D2S y

u D ,

satisfies the Laplace equation

ŷ(12)5F
u (2)

u
ŷ(1)1F

u (1)

u
ŷ(2)1S 12F

u (2)

u
2F

u (1)

u D ŷ.

Its gauge transformy8 defined by

ŷ5y8u

satisfies the Moutard equation with the potentialF8 given by Eq.~18!.
Finally, we obtain the known44 formulas

D1~uy8!5uu (1)D1S y

u D , ~34!

D2~uy8!52uu (2)D2S y

u D , ~35!

which allow to find the new Moutard latticey8 given the old Moutard latticey and the scalar
solutionu of the Moutard equation ofy. Notice thatu851/u satisfies the Moutard equation ofy8.

Let u1 and u2 be two solutions of the Moutard equation~17!. Denote byy(1) and u2(1) the
transforms ofy andu2 via u1 and denote byy(2) andu1(2) the transforms ofy andu1 via u2. Then
y(1), u2(1), andu1(1)51/u1 satisfy the Moutard equation with the potential

F (1)5F
u (1)

1 u (2)
1

u1u (12)
1 , ~36!

andy(2), u1(2), andu2(2)51/u2 satisfy the Moutard equation with the potential
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F (2)5F
u (1)

2 u (2)
2

u2u (12)
2 . ~37!

Notice25,45 that the transformation formulas~34! give

D1~u1u2(1)!52D1~u2u1(2)!, ~38!

D2~u1u2(1)!52D2~u2u1(2)!, ~39!

which implies that fixing one of the two integration constants we have

u1u2(1)52u2u1(2)5J. ~40!

Then the latticesy(12) of the one parameter family~due to the additive constant inJ! given by

y(12)5y1
u1u2

J
~y(1)2y(2)!, ~41!

are simultaneously transforms ofy(1) via u2(1) and transforms ofy(2) via u1(2).
Remark:To obtain symmetric more form of the superposition formula~41! one can use the

allowed gauge freedom in the transformation formulas.25,45

B. Superposition of the discrete Koenigs transformations

Let us useu1 and u2 to find two transforms of the Koenigs latticex satisfying Eq.~6!.
According to notation of Proposition 8 denote byf15u (1)

1 1u (2)
1 and f25u (1)

2 1u (2)
2 the corre-

sponding solutions of the Koenigs lattice equation. Denote byx(1) andf2(1) the transforms ofx
andf2 with respect tou1, i.e.,

D1S 1

f1(1) S x(1)

f2(1)D D5~u1u (2)
1 !(1)D1S 1

f1 ~xf2
! D , ~42!

D2S 1

f1(1) S x(1)

f2(1)D D52~u1u (1)
1 !(2)D2S 1

f1 S x
f2D D , ~43!

where

f1(1)5
1

u (1)
1 1

1

u (2)
1 .

According to Proposition 8 the functionsx(1), f2(1), andf1(1) satisfy the Koenigs lattice equatio
with the transformed potentialF (1) given by ~36!. Similarly, by x(2) andf1(2) denote the trans-
forms of x andf1 with respect tou2, i.e.,

D1S 1

f2(2) S x(2)

f1(2)D D5 ~u2u (2)
2 !(1)D1S 1

f2 S x
f1D D , ~44!

D2S 1

f2(2) S x(2)

f1(2)D D52~u2u (1)
2 !(2)D2S 1

f2 S x
f1D D , ~45!

where

f2(2)5
1

u (1)
2 1

1

u (2)
2 , ~46!
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andx(2), f1(2), andf2(2) satisfy the Koenigs lattice equation with the transformed potential gi
by ~37!.

Proposition 20: The latticesx(12) of the one parameter family (because of the free param
in the definition ofJ) given by

x(12)52
J (1)J (2)f

1(21)f2(12)

f1f2 x1
f1(21)

f1(1) x(1)1
f2(12)

f2(2) x(2), ~47!

where

f1(21)5
1

u (1)
1(2) 1

1

u (2)
1(2) , f2(12)5

1

u (1)
2(1) 1

1

u (2)
2(1) , ~48!

are simultaneously the Koenigs transforms ofx(1) via u2(1) and the Koenigs transforms ofx(2) via
u1(2).

Proof: We have to check thatx(12)5x(21) defined in~47! satisfies equations

D1S x(12)

f2(12)D5 ~u2(1)u (2)
2(1)!(1)D1S x(1)

f2(1)D , ~49!

D2S x(12)

f2(12)D52~u2(1)u (1)
2(1)!(2)D2S x(1)

f2(1)D , ~50!

which define the transformx(12)5(x(1))(2) of x(1) via u2(1), and satisfies equations

D1S x(21)

f1(21)D5 ~u1(2)u (2)
1(2)!(1)D1S x(2)

f1(2)D , ~51!

D2S x(21)

f1(21)D52~u1(2)u (1)
2(2)!(2)D2S x(2)

f1(2)D , ~52!

which define the transformx(21)5(x(2))(1) of x(2) via u1(2). This can be done by direct verificatio
using Eqs.~38!–~40! and ~42!–~46!. h

Remark:To obtain the superposition formula~47! we assume thatx(21)5x(12) and formulas
~49!–~52! hold.
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Fractional operators and special functions. I. Bessel
functions
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Most of the special functions of mathematical physics are connected with the rep-
resentation of Lie groups. The action of elementsD of the associated Lie algebras
as linear differential operators gives relations among the functions in a class, for
example, their differential recurrence relations. In this paper, we define fractional
generalizationsDm of these operators in the context of Lie theory, determine their
formal properties, and illustrate their use in obtaining interesting relations among
the functions. We restrict our attention here to the Euclidean group E~2! and the
Bessel functions. We show that the two-variable fractional operator relations lead
directly to integral representations for the Bessel functions, reproduce known frac-
tional integrals for those functions when reduced to one variable, and contribute to
a coherent understanding of the connection of many properties of the functions to
the underlying group structure. We extend the analysis to the associated Legendre
functions in a following paper. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1561593#

I. INTRODUCTION

Most of the classical special functions are connected with the representation of Lie grou1–4

and appear as factors in multivariable functions on which the action of an associated Lie a
is realized by linear differential operators. Many of the properties of the special function
easily understood in this context. For example, the differential equations for the special fun
are connected with the Casimir operator of the associated groups. The actions of appr
elementsD of the Lie algebra lead, when reduced to a single variable, to the standard differ
recurrence relations for the functions, while the action of group elementse2tD can be interpreted
in terms of generalized generating functions when expressed using a Taylor series expansio
group parametert. Numerous examples are given in Refs. 1 and 3. In the present paper, w
define fractional generalizationsDm of theD ’s in the context of Lie theory, determine their form
properties, and illustrate their usefulness in obtaining further interesting relations among the
tions, including integral representations for the functions. Most of the specific results have
derived historically in other ways, but are unified here in a group setting.

Two examples of fractional operators in a single variable are provided by the fract
integrals of Riemann and Weyl~Ref. 5, Chap. 13!. These give a useful way of changing the indic
~degree or order! of the classical orthogonal functions~Jacobi, Gegenbauer, Legendre, Laguer
Bessel, and Hermite functions!. An example is Sonine’s first integral for the Bessel function6

12.11.~1!,

xn1mJn1m~x!5
xm

2m21G~m!
E

0

p/2

Jn~x sinu!cos2m21 u sinn11 u du ~1!

5
1

2m21G~m!
E

0

x

tn11Jn~ t !~x22t2!m21 dt. ~2!

a!Electronic mail: ldurand@hep.wisc.edu
22500022-2488/2003/44(5)/2250/16/$20.00 © 2003 American Institute of Physics
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The expression on the second line is equivalent to the Riemann fractional integralRmxn/2Jn(2Ax),
where the integral operatorRm is defined in general~Ref. 5, Chap. 13! as

~Ra f !~x!5
1

G~a!
E

0

x

f ~ t !~x2t !a21 dt. ~3!

Thus, with the replacement oft by 2At andx by 2x, ~2! becomes

x(n1m)/2Jn1m~2Ax!5
1

G~m!
E

0

x

tn/2Jn~2At !~x2t !m21 dt5Rmxn/2Jn~2Ax!. ~4!

A number of similar results are known for other special functions, for example,

2l2m~12x2!2(l2m)/2Pn
l2m~x!5Rm2l~12x2!2l/2Pn

l~x! ~5!

for the associated Legendre functions with Rel,1, Rem.0 @Ref. 5, 13.1~54!#. Askey ~Ref. 7,
Chap. 3! summarizes a number of results and gives some applications.

Other results are known with respect to the Weyl fractional integralWm ~Ref. 5, Chap. 13!
defined by

~Wa f !~x!5
1

G~a!
E

x

`

f ~ t !~ t2x!a21 dt. ~6!

Thus, from Ref. 5, 13.2~59!,

x2(n2m)/2Kn2m~2Ax!5Wmx2nKn~2Ax!, ~7!

whereKn is the hyperbolic Bessel or MacDonald function.
The simplicity of the results noted, and of many similar results,7 is striking. The effect of the

fractional integration is simply to change the indices on the special functions, while retainin
original functional form. There does not appear to be a systematic approach to the deriva
these results in the literature. Their form suggests that they must be associated with fra
generalizations of the stepping operators in the associated Lie algebra. In particular, the d
tial recurrence relations for the special functions are schematically of the formDFa,...

5cFa61,... , whereD is a linear differential operator and the indicesa label the functions in a
realization of the algebra. This suggests that shifts of the indices by arbitrary amounts co
effected using fractional operatorsDm defined in analogy to the single-variable fractional deriv
tives defined in Ref. 5. This is the case, as we will see. The above-given fractional integra
related, and simply give the action of the inverse multivariable operatorsD2m when reduced to a
single variable.

We will define the fractional operatorsDm in the context of Lie theory and explore the
general properties in Sec. II. We will then apply the results in a number of group settings i
and following papers to obtain generalized fractional-integral-type relations of the formFa1m,...

5NDmFa,... for the special functions. Some are apparently new. We find that, with approp
choices for the input functions, the fractional relations lead directly to known integral repres
tions for the special functions, providing a group-theoretical setting for the latter.

In the present paper, we will restrict our attention to the development of our methods, a
applications to the Bessel functions. Our treatment is not exhaustive in either the theory
applications considered.

II. FRACTIONAL OPERATORS

We will suppose that we have a Lie algebra which corresponds to one of the classic
groups, and is realized by the action of a set of linear differential operators$D(w,]w)% in a
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collection of variablesw acting on an appropriate set of functions. The exponentialse2tD defined
by Taylor series expansion in the group parametert are elements of the Lie group taken to act
an appropriate class of functionsF. We will assume that the group actione2tDF can be defined
for all t, and will define a Weyl-type fractional operatorDW

m as an integral over group elements b

DW
m ~w,]w!F~w!5

1

2p i
eipmG~m11!E

CW

dt
e2tD(w,]w)

tm11 F~w!. ~8!

The contourCW5(`,01,`) in the complext plane runs in from infinity, circlest50 in the
positive sense, and runs back to infinity. To define phases, we take the integrand as cut al
positive real axis with the phase oft taken as zero on the upper edge of the cut. The directio
the contour at infinity must be such that the integral converges. The above-given expression
be an identity forD a positive constant. Here, however,D(w,]w) is an operator which acts o
functionsF of the collection of variablesw, and the existence of the integral depends on
functions as well as the contour.

Alternatively,DW
m can be defined as

DW
m F5

1

G~2m1n!
DnE

0

`

dt
e2tD

tm2n11 F, ~9!

where Rem,n and end-point terms are assumed to vanish in the partial integrations which
nect the two expressions.

It is straightforward using this expression to show that the fractional operators hav
expected algebraic properties. Thus, for Rem,0, Ren,0, and Re(m1n),0,

DW
m DW

n F5
1

G~2m!G~2n!
E

0

`

dtE
0

`

du
1

tm11

1

un11 e2(t1u)DF

5
1

G~2m!G~2n!
E

0

`

dvE
0

v
dt

1

tm11

1

~v2t !n11 e2vDF

5
1

G~2m!G~2n!
E

0

`

dv
e2vD

vm1n11 • E
0

1

dt8 t82m21~12t8!2n21

5
1

G~2m2n!
E

0

`

dv
e2vD

vm1n11 5DW
m1nF. ~10!

Exponents therefore add as we would expect, and the fractional operators of different
commute,

DW
m DW

n 5DW
n DW

m 5DW
m1n , @DW

m ,DW
n #50. ~11!

The result extends through~9! to generalm,n for which the fractional operators are defined. B
converting the integral in~10! back to a contour integral before taking the limitn→2m, we find
also thatDW

m DW
2m51 where1 is the unit operator, soDW

2m is the inverse ofDW
m as implied by the

group operations.
The fractional operatorDW

m can also be defined in terms of the action of a generalized W
fractional integralW2m in the parameterx on the group operatore2xD(w,]w). We will defineW2m

for generalm as

W2m f ~x!5
1

2p i
eipmG~m11!E

Cx

dt
f ~ t !

~ t2x!m11 dt, ~12!
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whereCx is the contour (̀ ,x1,`). This definition is equivalent to~8! for Rem,0. The action of
W2m on f is just that of a fractional derivative,

~W2m f !~x!5~2d/dx!m f ~x!, ~13!

a result which is obvious form an integer so that the integration contour can be closed. In gen
W2m gives the inverse ofWm thought of as a repeated integral,W2mWm51.

DW
m can now be defined formally through the action of the fractional derivative (2d/dx)m on

e2xD, (2d/dx)me2Dx5Dme2Dx. Multiplication by exD then givesDW
m F5exD(W2me2xDF ).

This relation is easily checked by usingf (t)5e2tDF in ~12! and changing the integration variab
from t to t2x. We find that

DW
m F5exD~W2me2xD!F5

1

2p i
eipmG~m11!E

CW

dt
e2tD

tm11 F ~14!

in agreement with~8!. That is,DW
m F5exD W2m(e2xDF ) whereW2m acts on the group paramete

x and D(w,]w) acts onF(w). The integrals in~8! and ~14! can also be identified directly as
(2d/dx)me2xDux505DW

m . The inverse of the fractional operatorDW
m F is DW

2mF
5exD Wm(e2xDF ).

We can define a second Riemann-type fractional operator by replacing the Weyl frac
integral by a Riemann fractional integral and noting the correspondence ofR2a to (d/dx)a,
R2a f (x)5(d/dx)a f (x). Thus, takingf (t)5etDF and a5n2Rem.0 in ~3! and following the
above-given construction, we find

DR
mF5e2xDDn~Rn2mexD!F, 0,n2Rem. ~15!

By changing the integration variable fromt to x2t in ~3!, we then obtain the analog of~9!,

~DR
mF !~x!5

1

G~2m1n!
DnE

0

x(w)

dt
e2tD

tm2n11 F, ~16!

where we have noted the dependence of the final result on the valuex(w) of the group paramete
t at the end point of the integration. As indicated, this will depend on the values of the vari
w in F.

By going to a contour integral to handle the possible singularity at the lower limit of inte
tion, we can writeDR

mF in the more general form

DR
mF5

1

2p i
eipmG~m11!E

CR

dt
e2tD

tm11 F, ~17!

whereCR is the contourCR5(x(w),01,x(w)).
As we will see explicitly in later applications, the end pointx(w) of the contour must be

chosen such thatDmF satisfies a differential equation determined by the Casimir operators o
Lie algebra. This will require that a differential expression related toe2tDF vanishes fort
5x(w) for the given values of the variablesw in F @see, for example,~85!#.

The product of two Riemann fractional operators is given in the simple case Rem, Ren,0 by

DR
m~DR

n F !~x!5
1

G~2m!G~2n!
E

0

x

dtE
0

x

du
e2(t1u)D

tm11un11 u~x2t2u!. ~18!

Dm(DnF ) will satisfy the expected differential equation forDmG providedt1u5x on the bound-
ary of the region of integration, a condition is enforced in~18! by the unit step functionu(z),
u(z)51 for z.0 andu(z)50 for z,0. For an explicit example, see Sec. III D 1. The integral c
be evaluated by shifting tov5t1u as a new integration variable and identifying the remain
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integral with a beta function as in~10!. The result is equal toDR
m1nF. We therefore obtain the

multiplication relationDR
mDR

n 5DR
n DR

m5DR
m1n derived earlier for the Weyl fractional operator

This can be generalized to the contour integral representation~17!.
Which expression forDm is appropriate in a particular setting, Weyl or Riemann, will depe

on D andF. We will therefore simply denote the fractional operator asDm for formal purposes,
and only specify the expression to be used in particular applications. The key restrictions w
the existence of a finite value of the group parametert5x(w) such thate2xDF50 in the Riemann
case, and convergence of the integral fort→` in the Weyl case.

III. BESSEL FUNCTIONS AND E „2…

A. Algebraic considerations

As a first application of the fractional operators, we will consider the Bessel functions w
we will denote generically asZn(x). Bessel functions appear naturally in representations of E~2!,
the Euclidean group in two dimensions, and of E~1,1!, the Poincare´ group in two dimensions.1,2

Both groups are real forms of SO(2,C), and the two are related to each other through the W
unitarity trick.8 Since we are not concerned with unitary representations of the groups, it w
sufficient for our purposes to consider only the algebra of E~2!.

The Lie algebra of E~2! is generated by three operatorsP1 , P2 , J3 with the Lie products or
commutation relations

@P1 ,P2#50, @J3 ,P1#5P2 , @J3 ,P2#52P1 . ~19!

There is one invariant operator, namelyP1
21P2

2, which commutes with all the generators.
The algebra can be realized by the action of differential operators on functionsf of the

coordinates (x1 , x2) in the Euclidean plane.P1 andP2 correspond to the translation operators

P15]1 , P25]2 ~20!

andJ3 , to a rotation in the plane,

J352x1]21x2]1 . ~21!

The condition that the invariant operatorP1
21P2

2 be constant on the functionsf gives the
Helmholtz equation (P1

21P2
2) f 52k2f . In polar coordinatesx, f this becomes the differentia

equation

~P1
21P2

21k2! f 5F ]2

]x2 1
1

x

]

]x
1

1

x2

]2

]f2 1k2G f 50. ~22!

We can takek251 by a scaling of the coordinates, and will do so. The rotation operatoJ3

52]f commutes with the Helmholtz operator and may also be taken to have a constant
2 in on the functions. The functionsf in this realization of E~2! are then of the form

f n~x,f!5einfZn~x!, ~P1
21P2

211! f 50, J3f n52 in f n ~23!

and involve Bessel functionsZn of ordern.
It is useful to change from the anti-Hermitian operatorJ3 to the Hermitian operatoriJ3 , and

to introduce operators

P152P12 iP2 , P25P12 iP2 ~24!

with the commutation relations

@P1 ,P2#50, @ iJ3 ,P6#56P6 . ~25!
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The last relations imply that iff n is a solution of the Helmholtz equation with the indexn, then
P6 f n is a solution with indexn61,

iJ3~P6 f n!5P6~ iJ361! f n5~n61!~P6 f n!. ~26!

P6 therefore act as stepping operators on the index.
The operators are given explicitly by

P152eifS ]

]x
1

i

x

]

]f D52t]x1
t2

x
] t , ~27!

P25e2 ifS ]

]x
2

i

x

]

]f D5
1

t
]x1

1

x
] t , ~28!

wheret5eif. In terms of that variable,iJ35t] t . The Helmholtz operator is simplyP1P211.
From ~26!, the action ofP6 on the functionsf n(x,t)5tnZn(x) must give constant multiples

of tn61Zn61(x). The constants of proportionality for the different Bessel functions are ea
determined to be unity by using the behavior of the functions forx→0,̀ . We therefore have the
stepping relations

P6tnZn~x!5tn61Zn61~x!, ~29!

which reduce to

S 7
d

dx
1

n

xDZn~x!5Zn61~x! ~30!

once thet dependence is factored out. The latter are just the differential recurrence relatio
the Bessel functions~Ref. 9, 7.2.8!.

The relations in~29! suggest that

P6
m tnZn~x!5tn6mZn6m~x! ~31!

for P6
m appropriately defined fractional operators such as the Weyl operators

P6
m 5

1

2p i
eipmG~m11!E

CW

du
e2uP6

um11 . ~32!

It is easily established that these operators have the expected properties. First,P6
m commute

with the Helmholtz operatorP1P211, so transform solutions of the Helmholtz equation
solutions. Further, from

@ iJ3 ,P6
n #56nP6

n , ~33!

we find that

@ iJ3 ,e2uP6#56 (
n50

`
~2u!n

n!
nP6

n ~34!

56u
d

du
e2uP6, ~35!

hence, after a partial integration in~32!, that
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@ iJ3 ,P6
m #56mP6

m . ~36!

The action ofP6
m on a solutionf n therefore gives another solution with the indexn changed to

n6m,

iJ3~P6
m f n!5P6

m ~ iJ36m! f n5~n6m!~P6
m f !. ~37!

This relation does not show directly thatP6
m f n5 f n6m , but only thatP6

m f n is at most a linear
combination of the two independent solutions of the Helmholtz equation with ordersn6m. If the
independent solutions are taken as the Hankel functions, the observation that the operatorsP6

m do
not change the distinct asymptotic behaviors of those functions foruxu→` shows, in fact, that
P6

m f n5N(n,m) f n6m . The constant of proportionality will be found later by direct calculation
be unity, as in~52!, establishing the validity of~31!.

We can also define a fractional operator (iJ3)l, and find after a brief calculation using th
analog of~32! that

~ iJ3!l f n5nl f n . ~38!

( iJ3)l again satisfies the multiplication rule, (iJ3)l( iJ3)m5( iJ3)l1m.
The formal algebraic structure is completed by

~ iJ3!lP6
m 5P6

m ~ iJ36m!l, P6
m ~ iJ3!l5~ iJ37m!lP6

m . ~39!

These can be derived using the Baker–Hausdorff expansion ofeABe2A as a series ofn-fold
commutators,

eABe2A5B1 (
n51

`
1

n!
@A,@A,...@A,B#...##. ~40!

Thus, choosingeA as the exponential in the definition of (iJ3)l, eA5e2 i tJ3, B asP6
m , and using

~36! to evaluate the repeated commutators, we find that

e2 i tJ3P6
m 5~e2 i tJ3P6

m eitJ3! e2 i tJ35P6
m 1 (

n51

`
~2t !n

n!
@ iJ3 ,iJ3 ,...@ iJ3 ,P6

m #...#] e2 i tJ3

5P6
m e2t( iJ36m). ~41!

The first of the relations~39! then follows upon integration using the analog of~32!. Application
of this operator to a solutionf n of the Helmholtz equation gives

~ iJ3!lP6
m f n5P6

m ~ iJ36m!l f n5~n6m!lP6
m f n ~42!

The second of the relations~39! can be derived similarly. The complete algebraic struct
defined by (iJ3)l, P6

m , the multiplication rules, and~39! is infinite, and has not been investigate
except as applied to solutions of the Helmholtz equation.

B. Action of the group operators

The action of the exponential operatorse2uP65e6uP11 iuP2) is easily determined and we
known. P1 and P2 commute, and the exponentialseaP1 and eaP2 induce translations of the
coordinatesx1 , x2 with eaP1x15x11a andeaP2x25x21a. Thus, acting on functions analytic i
the neighborhood of (x1 ,x2),

e2uP1F~x1 ,x2!5euP1eiuP2F~x1 ,x2!5F~x11u,x21 iu !. ~43!
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Applying this result to the functionsf n5einfZn(x) written in rectangular coordinates, we find th

e2uP1 f n5eu(P11 iP2)S x11 ix2

x12 ix2
D n/2

Zn~Ax1
21x2

2 !5tnxn~x212uxt!2n/2Zn~Ax212uxt !, ~44!

wherex5Ax1
21x2

2 and t5eif5A(x11 ix2)/x. A similar calculation gives

e2uP2 f n5S t

xD nS x22
2ux

t D n/2

ZnSAx22
2ux

t D . ~45!

We can also calculate directly in polar coordinates, a method which will be useful later.
noting thatP1tnxn5(t/x)(t] t2x]x)t

nxn50 and using~30!, we find that

P1
n tnZn~x!5~22!ntn1nxn1nS d

dx2D n

~x2nZn~x!!. ~46!

The formal Taylor series expansion ofe2uP1 then gives

e2uP1tnZn~x!5 (
n50

`
~2u!n

n!
~xt!n1nS d

dr 2D n

~r 2nZn~r !!ur 5x

5tnxn expS 2uxt
d

dwD ~w2n/2Zn~Aw!!uw5x2

5tnxn~x212uxt!2n/2Zn~Ax212uxt !, ~47!

where we have identified the exponential in the penultimate line as a translation operato
result agrees with~44!. A similar calculation fore2uP2 reproduces~45!.

Direct evaluations ofe2uP6 f n using the Taylor series for the exponentials and the relati
P6

n tnZn(x)5tn6nZn6n(x), ~29!, give the generating functions

tnxn~x212uxt!2n/2Zn~Ax212uxt !5 (
n50

`
~2u!n

n!
tn1nZn1n~x! ~48!

and

S t

xD nS x22
2ux

t D n/2

ZnSAx22
2ux

t D 5 (
n50

`
~2u!n

n!
tn2nZn2n~x!. ~49!

These equations give generalizations of Lommel’s expansions for the Bessel functions~Ref. 6,
Sec. 5.22!. Thus, takingx5Az, ut5h/2x5h/2Az in ~48!, and choosingZn as the ordinary Besse
function Jn , we obtain@Ref. 6, 5.22~1!#

~z1h!2n/2Jn~Az1h!5 (
n50

` ~2 1
2 h!n

n!
z2(n1n)/2Jn1n~Az!. ~50!

Similarly, for x5Az andu/t52h/2Az, ~49! gives @Ref. 6, 5.22~2!#

~z1h!n/2Jn~Az1h!5 (
n50

` ~ 1
2 h!n

n!
z(n2n)/2Jn2n~Az!. ~51!
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The remaining Lommel-type formulas in Ref. 6, Sec. 5.22, follow from~48! and~49! for different
choices ofZn . The present development provides a group-theoretical derivation of these re
See also Weisner.10 Note the series~48! converges foruuu,ux/2tu, and that in~49!, for uuu
,uxt/2u, that is, for sufficiently small values of the group parameteru.

C. Weyl-type relations for Bessel functions

1. Relations using P ¿
m

The action of the Weyl-type operatorsP1
m on the Bessel functions is given by~8! and ~44!,

P1
m tnZn~x!5N~n,m!tn1mZn1m8 ~x!

5
1

2p i
tnxneipmG~m11!E

CW

du

um11 ~x212uxt!2n/2Zn~Ax212uxt !. ~52!

CW is a contour (̀ ,01,`) in the complexu plane with the direction of approach tòto be taken
such that the integral converges. This will depend on the functionZn considered.

Proceeding formally, we can extract the expected factortn1m from the integral by the chang
of variablev52uxt. We will also replacex by Az, with the result

N~n,m!x2(n1m)/2Zn1m8 ~Az!5
1

2p i
2meipmG~m11!E

CW

dv
vm11 ~v1x!2n/2Zn~Av1z !. ~53!

This result can also be obtained directly from the differential recurrence relations~30! by replacing
x by Az, rewriting the resulting relation forP1 in the form

22
d

dz
~z2n/2Zn~Az!!5z2(n11)/2Zn11~Az!, ~54!

and determining the Weyl action of (22 d/dz)m on z2n/2Zn(Az).
The functionz2l/2Zl(Az) satisfies the differential equation~Ref. 11, 9.1.53!

S d2

dz2 1
l11

z

d

dz
1

1

4zD z2l/2Zl~Az!50. ~55!

Applying this operator withl5n1m to the integral in~53!, converting the derivatives with
respect toz to derivatives with respect tov, and using the differential equation forl5n to
eliminate the derivative-free term proportional to 1/4z on the right-hand side, we find that th
result vanishes provided

E
CW

dv
d

dv H 1

vm

d

dv
@~v1z!2n/2Zn~Av1z!#J 50. ~56!

That is, the integral in~53! gives a Bessel function or combination of functions with argumentAz
and ordern1m multiplied byz2(n1m)/2 provided the function in curly braces vanishes at the e
points of the integration.

WhenZn is the Hankel functionHn
(1) , the condition in~56! is satisfied for contours that ru

to ` in the upper half plane, avoiding the possible singularity atv52z on the right. It also holds
for a contour along the positive real axis for Re(m11

2n13
4).0. In either case, an asymptot

argument shows that the Bessel functionZn1m8 given by the integral is in factHn1m
(1) (Az) with

coefficientN(n,m)51 as expected. Thus,
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z2(n1m)/2Hn1m
(1) ~Az!5

1

2p i
2meipmG~m11!E

(`ei e,01,`ei e)

dv
vm11 ~v1z!2n/2Hn

(1)~Av1z !,

~57!

e.0. Tracing the calculation back, we find that the original expression~52! holds for Hn
(1) for

contours with 0<arg (xtu)<2p as uu u→`.
A shift of the integration variable brings~57! to the form of a~generalized! Weyl fractional

integral,

z2(n1m)/2Hn1m
(1) ~Az!5

1

2p i
2meipmG~m11!E

(`,z1,`)

dv
~v2z!m11 v2n/2Hn

(1)~Av !. ~58!

The contour can be collapsed for Rem,0, and~58! reduces to the known fractional integral@Ref.
5, 13.2~45!#. The latter can be written in the present notation asz2(n2m)/2Hn2m

(1) (Az)
5P1

2mz2nHn
(1)(Az), Rem.0.

Similar considerations for the choiceZn5Hn
(2) in ~52! show that that result holds for 0

>arg(xtu).2p, and that

z2(n1m)/2Hn1m
(2) ~Az!5

1

2p i
2meipmG~m11!E

CW

dv
vm11 ~v1z!2n/2Hn

(2)~Av1z !, ~59!

wherev runs to` in the lower half plane, avoiding the possible singularity atv52z on the right.
The result also holds for a contour along the positive real axis for Re(m11

2n13
4).0.

Combinations ofHn
(1) andHn

(2) give the ordinary Bessel functions and the relations

z2(n1m)/2Jn1m~Az!5
1

2p i
2meipmG~m11!E

CW

dv
vm11 ~v1z!2n/2Jn~Av1z !, ~60!

z2(n1m)/2Yn1m~Az!5
1

2p i
2meipmG~m11!E

CW

dv
vm11 ~v1z!2n/2Yn~Av1z ! ~61!

for Re(m11
2n13

4).0. The contours in these cases must be taken parallel to the real axisv
→`. The results reduce to the known fractional integrals@Ref. 5, 13.2~34! and 13.2~40!# for
Rem,0.

If we increase the phase ofz by p and simultaneously rotate the contourCW by p in the
positive sense in expression~57!, the substitutionsz5eipx, v5eipu restore the original contou
while replacingAv1x by eip/2Au1x. The definition of the MacDonald functionKn in terms of
the Hankel functionHn

(1) ,

Kn~x!5
ip

2
eipn/2Hn

(1)~eip/2x!, ~62!

then gives

x2(n1m)/2Kn1m~Ax!5
1

2p i
2meipmG~m11!E

CW

du

um11 ~u1x!2n/2Kn~Au1x!, ~63!

or, for Rem,0,
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x2(n1m)/2Kn1m~Ax!52m
1

G~2m!
E

0

` du

um11 ~u1x!2n/2Kn~Au1x!

52m
1

G~2m!
E

x

` dt

~ t2x!m11 Kn~At ! ~64!

in agreement with~7! or Ref. 5, 13.2~59!.

2. Weyl-type relations from P À
m

The action of the Weyl-type operatorsP2
m on the Bessel functions is given by~8! and ~45!,

P2
m tnZn~x!5tn2mZn2m~x!5

1

2p i S t

xD n

eipmG~m11!E
CW

du

um11 S x22
2ux

t D n/2

ZnSAx22
2ux

t D .

~65!

CW is again a contour (̀ ,01,`) in the complexu plane with the direction of approach tòto be
taken such that the integral converges. We will scale out thet dependence through the substit
tions v52ux/t andx5Az, and work with the reduced expression

z(n2m)/2Zn2m~Az!5
1

2p i
2meipmG~m11!E

CW

dv
vm11 ~z2v !n/2Zn~Az2v !. ~66!

We will suppose initially that argz.0. It is then possible for the choiceZn5Hn
(1) to rotate the

integration contour into the lower halfv plane. Then withv replaced bye2 ipv and z2v by
eip(v1z),

z(n2m)/2Hn2m
(1) ~Az!5

1

2p i
2me2p imG~m11!E

CW

dv
vm11 ~v1z!n/2Hn

(1)~Av1z!, ~67!

where CW is a contour (̀ ,01,`) in the new variablev and 2p,argz,p. By choosingZn

5Hn
(2) and Imz,0 and rotating in the opposite sense, we obtain the second relation

z(n2m)/2Hn2m
(2) ~Az!5

1

2p i
2mG~m11!E

CW

dv
vm11 ~v1z!n/2Hn

(2)~Av1z!, ~68!

also valid for2p,argz,p. These results can also be obtained by consideringP1
2mtnZn .

For Rem,0, the contours can be collapsed, and

z(n2m)/2Hn2m
(1,2)~Az!5

2m

G~2m!
e6 ipmE

0

` dv
vm11 ~v1z!n/2Hn

(1,2)~Av1z!, ~69!

where Imv→6` for H (1) andH (2). By considering the limiting behavior for Imv→0 and com-
bining the two functions, we obtain

2m

G~2m!
E

0

` dv
vm11 ~v1z!n/2Jn~Av1z!5z(n2m)/2@cospmJn2m~Az!1sinpmYn2m~Az!#,

~70!

2m

G~2m!
E

0

` dv
vm11 ~v1z!n/2Yn~Av1z!5z(n2m)/2@cospmYn2m~Az!2sinpmJn2m~Az!#.

~71!
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These are equivalent to@Ref. 5, 13.2~35! and 13.2~39!# and are valid only for12 Ren23
4,Rem

,0, with Imv→0 for Rev→`.

3. Weyl-type integral representations for Bessel functions

We can use the above-given results to obtain integral representations for the Bessel fun
We begin with the observations thattmZm(x)5P1

m21/2t1/2Z1/2(x), and thatH1/2
(1)(x) andH1/2

(2)(x) are
elementary functions,

H1/2
(1)~x!5

1

i S 2

pxD 1/2

eix, H1/2
(2)~x!52

1

i S 2

pxD 1/2

e2 ix. ~72!

The action ofP1
m21/2 can be reduced as above, and we will begin with the expression in~53!. This

gives

x2m/2Hm
(1)~Ax!5

1

2p i
2m2 1/2ei (m2 1/2)pGS m1

1

2D E
CW

dv
vm1 1/2~v1x!21/4H1/2

(1)~Av1x!

52
1

2p i

2m

Ap
eipmGS m1

1

2D E
CW

dv
vm1 1/2~v1x!21/2eiAv1x. ~73!

Replacingx by x2, letting v5x2(t221), and removing a common factor ofx2m, we obtain

Hm
(1)~x!52

1

2p i

2

Ap
S 2

xD m

eipmGS m1
1

2D E
(`,11,`)

dt

~ t221!m1 1/2eixt. ~74!

This holds for general values ofm provided Imxt→` for utu→`, and for xt→1` for Rem
.1

20. The contour can be collapsed for Rem,1
2 giving the generalized Mehler–Sonine integr

representation forH (1)(x) @Ref. 6, 6.13~1!#,

Hm
(1)~x!52

2i

Ap
S 2

xD m 1

G~ 1
2 2m!

E
1

` dt

~ t221!m1 1/2eixt. ~75!

The result satisfies the Bessel equation for Imxt→` for utu→`.
A similar calculation forHm

(2) gives

Hm
(2)~x!52

1

2p i

2

Ap
S 2

xD m

eipmGS m1
1

2D E
(`,11,`)

dt

~ t221!m1 1/2e2 ixt ~76!

or, for Rem,1
2,

Hm
(1)~x!5

2i

Ap
S 2

xD m 1

GS 1

2
2m D E1

` dt

~ t221!m1 1/2e2 ixt. ~77!

For x real and2 1
2,Rem,1

2, ~75! and~77! can be combined to obtain the representations
Jm andYm noted in Ref. 6, 6.13~3! and ~4!,

Jm~x!5
2

Ap
S 2

xD m 1

G~ 1
2 2m!

E
1

`

dt
sinxt

~ t221!m1 1/2, ~78!
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Ym~x!52
2

Ap
S 2

xD m 1

G~ 1
2 2m!

E
1

`

dt
cosxt

~ t221!m1 1/2. ~79!

A different set of integral representations can be obtained by considering the action
inverse operatorP1

2m21/2 on t1/2H1/2
(1,2)(x),

P1
2m2 (1/2) t1/2H1/2

(1,2)~x!5t2mH2m
(1,2)~x!. ~80!

Using

H2m
(1) ~x!5eipmHm

(1)~x!, H2m
(2) ~x!5e2 ipmHm

(2)~x! ~81!

and following the above-presented manipulations, we obtain the integral representations

Hm
(1)~x!5

i

p

2

Ap
S x

2D m

e22p imGS 1

2
2m D E

(`,11,`)
dt ~ t221!m2 (1/2)eixt, ~82!

Hm
(2)~x!5

i

p

2

Ap
S x

2D m

GS 1

2
2m D E

(`,11,`)
dt ~ t221!m2 (1/2)e2 ixt, ~83!

where, for convergence,t must approach̀ on the contours in~82! and~83! with Im xt→1` and
Im xt→2`, respectively. These expressions are equivalent to the representations 6.11~4! and
6.11~5! in Ref. 6 obtained from Hankel’s representation for the Bessel functions.@Watson uses a
different phase convention in his 6.11~4! which is equivalent to replacingt21 in ~82! by e2p i(t
21). Watson’s 6.11~5! is obtained from~83! by the substitutionst21→eip(u11) and t11
→e2 ip(u21).] Other results, for example, Scha¨fli’s integral for Km @Ref. 6, 6.15~4!#, can be
obtained from these. See Watson.6

D. Riemann-type relations for Bessel functions

1. Relations for P Á
m

For Riemann-type fractional operators, the roles ofP1
m andP2

m are essentially reversed, an
the relations apply to different Bessel functions. The action of the Riemann operatorP2

m is given
by ~16! or ~17! and ~45!. We will use the expression in~17! which gives

P2
m tnZn~x!5tn2mZn2m~x!5

1

2p i
eipmG~m11!S t

xD n

3E
CR

du

um11 S x22
2ux

t D n/2

ZnSAx22
2ux

t D , ~84!

whereCR5(u(x,t),01,u(x,t)). The end pointsu(x,t) of the integration must be chosen su
that tm2n times the integral gives a solutionZn2m(x) of the Bessel equation. This requires tha

S x22
2x

t
uD n11 d

du F S x22
2x

t
uD 2n/2

ZnSAx22
2x

t
u D G50 ~85!

at the end points of the integration contour.@The integrand vanishes foru5xt/2, suggesting that
value for u(x,t). With that assumed, the precise condition for a solution of Bessel’s equ
follows by scaling the integration variable as in~86! to eliminatex and t from the limits of
integration, applying the relevant operator, and then undoing the scaling in the resulting
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tion.# This condition can be satisfied for the Bessel functionsZn5Jn , I n for end pointsu(x,t)
5xt/2 in CR5 provided Ren.21. The condition cannot be satisfied for other choices of
Bessel functionZn .

We can easily show that the Riemann operator defined by~84! satisfies the product rule
P2

l P2
m 5P2

l1m provided we choose the end points in the integrations properly. It is convenie
this to assume that Rel,0 and Ren,0, conditions which can be attained using~16!. The contour
integrals can then be converted into ordinary integrals. The action of the group operatore2vP2 on
the integrand in~84! changesx2 to x222vx/t, but does not affectx/t sinceP2(x/t)s50. As a
result, the parametersu andv appear only in the sumu1v as required by the operator relatio
e2uP2e2vP25e2(u1v)P2. It is then straightforward to show that the double integral can
reduced to the product of a beta function and an integral of the form in~84!, and gives a solution
of the Bessel equation equal totn2l2mZn2l2m(z), provided the end points in the successi
integrations are taken asv0(x,t,u)5xt/22u, u0(x,t)5xt/2. The sublety is that the end point o
the first integration depends on the variable in the second. The result gives an example
formal relation in~18! which generalizes the product rule for Riemann fractional integrals.

A change of the integration variable tov52u/xt converts~84! to the simpler form

Zn2m~x!5
1

2p i
eipmG~m11!S 2

xD mE
(1,01,1)

dv
vm11 ~12v !n/2Zn~xA12v !. ~86!

Alternatively, for Rem,0, we can collapse the integration contour in~84! and change to
variablesz5x2, v25x222ux/t to put the result in the form of a standard Riemann fractio
integral,

z(n2m)/2Zn2m~Az!5
2m

G~2m!
E

0

z dv
~z2v !m11 vn/2Zn~Av !, ~87!

Rem,0, Ren.21. This reproduces Ref. 5, 13.1~63! and 13.1~83! for Zn5Jn andZn5I n whenm
is replaced by2m in accord with the convention used there.

For Zn5Yn , Kn , the action of the Bessel operator in the variablex5Az on the function
‘‘ Zn2m’’ defined by ~86! leaves a term proportional tox2n2m. The result is an inhomogeneou
Bessel equation with a solution which involves a sum of a functionJn2m or I n2m and the Lommel
functionss2n2m11,n2m(x) ~Ref. 6, Sec. 10.7!. The fractional integral Ref. 5, 13.1~73! is of this
type.

An analysis similar to that above shows that the integral in~65!, taken on a Riemann-type
contour with end points atu52x/2t satisfies an inhomogeneous rather than homogeneous B
equation of ordern1m. The general solution involves Lommel functions, and there is no R
mann definition forP1

m acting on Bessel functions alone.

2. Riemann-type integral representations for Bessel functions

The operator relationP2
m tnZn(x)5tn2mZn2m(x) immediately gives integral representatio

for Jn and I n . We will start with the functions of ordern52 1
2,

J21/2~x!5
2

Ap

cosx

x1/2 , I 21/2~x!5
2

Ap

coshx

x1/2 . ~88!

Choosingm52l2 1
2, ~86! then gives

Jl~x!5
1

2p i
e2 ip(l1 1/2)GS 2l1

1

2D 2

Ap
S x

2D lE
(1,01,1)

dv vl2 (1/2)~12v !2 1/2cos~xA12v !

~89!

for generall, or, replacingv by 12t2,
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Jl~x!5
G~ 1

2 2l!

ipG~ 1
2!

E
(0,11,0)

dt ~12t2!l2 (1/2) cosxt, ~90!

5
2

ApGS l1
1

2D S x

2D lE
0

1

dt ~12t2!l2 (1/2) cosxt ~91!

for Rel.21
2. The first is a standard Poisson-type integral representation forJl(x) @Ref. 6, 3.3~2!#.

The second gives the generalization of Ref. 6, 6.1~6!.
Similarly, from P2

2l2(1/2)t21/2I 21/2(x)5tlI l(x),

I l~x!5
1

2p i
e2 ip(l1 1/2)GS 2l1

1

2D
3S x

2D lE
(1,01,1)

dv vl2 (1/2)~12v !2 1/2cosh~xA12v !, ~92!

5
G~ 1

2 2l!

ipG~ 1
2!

E
(0,11,0)

dt ~12t2!l2 (1/2) coshxt ~93!

5
2

ApGS l1
1

2D S x

2D lE
0

1

dt ~12t2!l2 (1/2) coshxt, Rel.2
1

2
.

~94!

IV. SUMMARY

Many of the properties of the special functions arise from their connection to Lie group1–3

Their differential recurrence relations, for example, reflect the action of particular multivar
operatorsD in the associated Lie algebra, the so-called stepping operators, on the functions
relevant class. We have given general definitions of fractional operatorsDl in the context of Lie
theory, and explored their formal properties. Our Weyl- and Riemann-type fractional ope
generalize the single-variable Weyl and Riemann fractional integralsW2l andR2l ~Ref. 5, Chap.
13!. The operatorsDl change the indices on the special functions by fractional displacem
related tol, and provide useful connections between functions in different realizations of th
algebra.

We have illustrated the usefulness of the fractional operators in the case of the Euc
group E~2! and the Bessel functions, and find that they contribute to a coherent overall pictu
many relations among the Bessel functions as interpreted in the group context. For examp
formal relationsP6

l tmZm(x)5tm6lZm6l(x) give the integral relations connecting Bessel fun
tions of different orders. When reduced to the single variablex, these generalize known fractiona
integral relations. Used with simple choices ofm andl, with Zm an elementary function, they lea
immediately to the standard integral representations for the various Bessel functions, repr
tions which are derived in Ref. 6 from quite different starting points using different method
addition, the action of the elementse2uP6 on the functionstmZm(x) gives generating functions fo
the Bessel functions~the Lommel expansions!, while the Bessel equation itself is the stateme
that the Casimir operatorP1P2 and the rotation operatoriJ3 have fixed values21 andm.

The applications of the fractional group operators will be extended in a following paper t
associated Legendre functions in the somewhat more complicated case of SO~2,1! and its confor-
mal extension.
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Fractional operators and special functions. II. Legendre
functions

Loyal Duranda)

Department of Physics, University of Wisconsin, Madison, Wisconsin 53706

~Received 6 December 2002; accepted 3 January 2003!

Most of the special functions of mathematical physics are connected with the rep-
resentation of Lie groups. The action of elementsD of the associated Lie algebras
as linear differential operators gives relations among the functions in a class, for
example, their differential recurrence relations. In this paper, we apply the frac-
tional generalizationsDm of these operators developed in an earlier paper in the
context of Lie theory to the group SO~2,1! and its conformal extension. The frac-
tional relations give a variety of interesting relations for the associated Legendre
functions. We show that the two-variable fractional operator relations lead directly
to integral relations among the Legendre functions and to one- and two-variable
integral representations for those functions. Some of the relations reduce to known
fractional integrals for the Legendre functions when reduced to one variable. The
results enlarge the understanding of many properties of the associated Legendre
functions on the basis of the underlying group structure. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1561594#

I. INTRODUCTION

The classical special functions~Jacobi, Gegenbauer, Legendre, Laguerre, Bessel, and He
functions! are all connected with the representation of Lie groups,1–4 or more generally, to the
realization of their Lie algebras by linear differential operatorsD(w,]w) acting on functions of the
variablesw. In particular, the special functions appear as factors in the multivariable function
which the action of the Lie algebra is realized. Many of the properties of the special function
easily understood in this context. For example, the differential equations for the special fun
are connected with the Casimir operators of the associated groups. The actions of appr
elementsD of the Lie algebra lead, when reduced to a single variable, to the standard differ
recurrence relations for the functions, while the action of group elementse2tD can be interpreted
in terms of generalized generating functions when expressed using a Taylor series expansio
group parametert. Numerous examples are given in Refs. 1 and 3.

The differential recurrence relations for the special functions are schematically of the
DFa,...5cFa61,... where thea’s label the realization of the Lie algebra andD is a stepping
operator. In a previous paper,5 we defined fractional generalizationsDm of the D ’s in the context
of Lie theory, determined their formal properties, and illustrated their usefulness in obta
further interesting relations among the functions using the group E~2! and the Bessel functions. W
showed, for example, that shifts of the indexn of a Bessel functionZn by an arbitrary amountm
could be effected usingDm. The resulting relations for the inverse operatorsD2m, when reduced
to a single variable, gave generalizations of known fractional integrals such as the Rie
integral

x(n1m)/2Jn1m~2Ax!5
1

G~m!
E

0

x

tn/2Jn~2At !~x2t !m21 dt ~1!

a!Electronic mail: ldurand@hep.wisc.edu
22660022-2488/2003/44(5)/2266/27/$20.00 © 2003 American Institute of Physics
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and the Weyl integral

x2(n2m)/2Kn2m~2Ax!5
1

G~m!
E

x

`

t2nKn~2At !~ t2x!m21, ~2!

Ref. 6, Chap. 13. Finally, we obtained integral representations for theZ’s as the action of theDm’s
on appropriate input functions. While most of the specific results had been derived historica
other ways, the introduction of the fractional operators allowed them to be unified in a g
setting.

We continue that program here for the associated Legendre functions, working in the c
of the group SO~2,1! and its conformal extension. We find, in particular, fractional operators w
raise or lower the orderm or degreen of a general associated Legendre functionFn

m by arbitrary
amounts, and use the results to unify and extend a number of known results for those fun

We will summarize the definitions and properties of the fractional operators in Sec. II
then apply the theory to derive a number of relations for the associated Legendre functions.
include generating functions, generalizations of known fraction integral relations, and som
integral relations. With appropriate choices for the input functions, the fractional operator rela
give integral representations for the associated Legendre functions, and provide group-the
setting for those representations. We find, in particular, interesting double-integral represent

II. FRACTIONAL OPERATORS

We will suppose that we have a Lie algebra which corresponds to one of the classic
groups, and is realized by the action of a set of linear differential operatorsD(w,]w) in variables
w on an appropriate class of functionsF(w). The exponentialse2tD defined by Taylor series
expansion in the group parametert are elements of the Lie group, and act on the same functi
We will suppose initially thate2tDF exists for allt, and define a Weyl-type fractional operatorDW

m

by an integral over group elements, with

DW
m F~w!5

1

2p i
eipmG~m11!E

CW

dt
e2tD(w)

tm11 F~w!. ~3!

The contourCW5(`,01,`) in the complext plane runs in from infinity, circlest50 in the
positive sense, and runs back to infinity. To define phases, we take the integrand as cut al
positive real axis with the phase oft taken as zero on the upper edge of the cut. The directio
the contour at infinity must be such that the integral converges.

The expression above would be an identity forD a positive constant. Here, howeve
D(w,]w) is an operator which acts on the functionsF(w), and the existence of the integra
depends on the functions as well as the contour.

Alternatively,DW
m can be defined without the contour integral as

DW
m F5

1

G~2m1n!
DnE

0

`

dt
e2tD

tm2n11 F, ~4!

where Rem,n and end point terms are assumed to vanish in the partial integrations which co
the two expressions.

We define a second Riemann-type fractional operatorDR
mF by

DR
mF5

1

2p i
eipmG~m11!E

CR

dt
e2tD

tm11 F, ~5!
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where CR is the contourCR5(x(w),01,x(w)). The end pointx(w) of the contour must be
chosen such thatDmF satisfies a differential equation determined by the Casimir operators o
Lie algebra. This will require that a differential expression related toe2tDF vanish att5x(w) for
the given values ofw ~see, for example, Sec. VII C!.

Which expression forDm is appropriate in a particular setting, Weyl or Riemann, will depe
on D andF. We will therefore simply denote the fractional operator asDm for formal purposes,
and only specify the expression to be used in connection with particular applications. Th
restrictions will be the existence of a finite value of the group parametert5x(w) such that a
differential expression related toe2xDF vanishes in the Riemann case, and the convergence o
integral for t→` in the Weyl case.

As shown in Ref. 5, the fractional operators satisfy the expected product rule for power
commute,

DmDn5DnDm5Dm1n, @Dm,Dn#50. ~6!

The inverse ofDm is just D2m,

~Dm!215D2m, D2mDm51. ~7!

III. LEGENDRE FUNCTIONS, SO„3…, AND SO„2,1…

Legendre functions appear naturally in the representations of the rotation group SO~3! in three
dimensions, the noncompact group SO~2,1!, or of their covering group SU(2,C). See, for ex-
ample, Refs. 1, 7, and 8. The Lie algebras so(3). su(2) are defined by three elementsJ1 , J2 , J3

with Lie products given by the commutator@J1 ,J2 #5J3 and its cyclic permutations. Thus, in
realization in which the Casimir operatorJ1

21J2
21J3

2 has the fixed value2n(n11) and the
commuting operatorJ3 has the value2 im, the action of the so~3! algebra can be described i
terms of coordinatesx15sinu cosf, x25sinu sinf, x35cosu on the unit sphereS2 by the action
of the anti-Hermitian operatorsJ152x2]31x3]1 , J252x3]11x1]3 , J352x1]21x2]1 on the
functionseimfPn

m(cosu). Here Pn
m(cosu) is the associated Legendre function ‘‘on the cut’’21

,cosu,1. This is defined in terms of the associated Legrendre functionPn
m(z) for general

complexz by

Pn
m~cosu!5 1

2 @eipm/2Pn
m~cosu1 i0!1e2 ipm/2Pn

m~cosu2 i0!#, ~8!

wherePn
m(z) is given in terms of the hypergeometric function2F1 by Ref. 9, Chap. 3,

Pn
m~x!5

1

G~12m! S z11

z21D m/2

2F1S 2n,n11;12n ;
12z

2 D , ~9!

and its analytic continuations. The values ofn andm are arbitrary. There is no restriction to th
integer values characteristic of the associated Legendre polynomials unless one insists on a
representation of the group SO~3!. We will not, and will simply be concerned with realizations
the algebra so~3!.

The algebra can also be realized on the functionseimfQn
m(cosu), with Qn

m(cosu) a Legendre
function of the second kind ‘‘on the cut,’’

Qn
m~cosu!5 1

2 e2 ipm@e2 ipm/2Qn
m~cosu1 i0!1e2 ipm/2Qn

m~cosu2 i0!#, ~10!

with Qn
m(z) defined for general complexz by
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Qn
m~z!5eipm22n21

G~ 1
2!G~n1m11!

G~n1 3
2!

z2n2m21~z221!m/2

3 2F1S 11
n

2
1

m

2
,
1

2
1

n

2
1

m

2
;n1

3

2
;

1

z2D . ~11!

The general forms of theP’s andQ’s appear naturally in representations of the noncomp
group SO~2,1! on the unit hyperboloidH2 with x15sinhu cosf, x25sinhu sinf, x35coshu,
through the functionseimfPn

m(coshu) andeimfQn
m(coshu), Ref. 1, Chap. VI. SO~3! and SO~2,1!

are different real forms of the covering group SO(3,C), and the Lie algebras are related.7 It will
be most convenient for our purposes to work with the general forms of the functions, and
realizations of so~2,1!.

The so~2,1! algebra is given in terms of three operators which we will take in the form

M15x3]11x1]3 ,

M25x3]21x2]3 , ~12!

M35x2]12x1]2 .

These have the commutation relations

@M1 ,M2#52M3 , @M2 ,M3#5M1 , @M3 ,M1#5M2 . ~13!

M1 andM1 generate Lorentz transformations in the 1 and 2 directions, equivalent to hype
rotations onH2, while M3 generates rotations in the 1,2 plane.

The operator2M1
22M2

21M3
2 is a Casimir invariant and may be taken to have fixed value

realizations of the algebra. We will also fix the value of the second commuting operatoriM 3 .
When written in terms of the variablesz5coshu and t5eif, the relations (2M1

22M2
21M3

2) f
52n(n11) f , iM 3f 5m f imply that f 5 f n

m(z,t)5tmFn
m(z) whereFn

m is a solution of the associ
ated Legendre equation

F ~12z2!
d2

dz2 22z
d

dz
2

m2

12z2 1n~n11!GFn
m~z!50 ~14!

with degreen and orderm
The so~2,1! algebra can be put in a more useful form for our purposes by introducing op

tors M 6 defined by

M 657M12 iM 2 ~15!

with the commutation relations

@ iM 3 ,M 6#56M 6 , @M 1 ,M 2#522iM 3 . ~16!

In terms of the coordinates onH2,

M 152eif~]u1 i cothu ]f!52tAz221 ]z1
z

Az221
t2 ] t , ~17!

M 25e2 if~]u2 i cothu]f!5
1

t
Az221 ]z1

z

Az221
] t . ~18!
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The commutation relations ofM 6 with M3 imply that M 6tmPn
m(z)}tm61Pn

m61(z) and
M 6tmQn

m(z)}tm61Qn
m61(z). The constants of proportionality are easily determined and are

same forPn
m andQn

m . After the t dependence is extracted, these relations reduce to the sta
differential recurrence relations for the orderm,

2Az221
d

dz
Fn

m~z!1
mz

Az221
Fn

m~z!52Fn
m11~z!, ~19!

Az221
d

dz
Fn

m~z!1
mz

Az221
Fn

m~z!5~n1m!~n2m11!Fn
m21~z!, ~20!

whereFn
m is a general solution of the associated Legendre equation, Ref. 9, Sec. 3.8.

IV. CONFORMAL EXTENSION OF SO „2,1…

We have so far dealt with SO~3! and SO~2,1! considered as the groups of transformations
S2 andH2. These appear as subgroups of the group of Euclidean transformations E~3!, and of the
group of Poincare´ or pseudo-Euclidean transformations E~2,1!, obtained by adding the translatio
operators in 3 or 211 dimensions to the original algebras. We will deal only with E~2,1!. This is
defined by the operatorsMi in ~12! and three translation operatorsPi5] i . We choose the metric
such thatP252P1

22P2
21P3

2, M252M1
22M2

21M3
2, andx252x1

22x2
21x3

3.
The P’s commute,

@Pi ,Pj #50, ~21!

and transform as Lorentz vectors, with the commutation relations

@M1 ,P1#52P3 , @M1 ,P2#50, @M1 ,P3#52P1 ,

@M2 ,P1#50, @M2 ,P2#52P3 , @M2 ,P3#52P2 , ~22!

@M3 ,P1#5P2 , @M3 ,P2#52P1 , @M3 ,P3#50,

with repect to the generatorsM1 , M2 of Lorentz transformations, and the generatorM3 of
rotations. P2 commutes with theM ’s, and the solutions of the Klein–Gordon equationP2f
5m2f can be classified with respect to SO~2,1! by the values ofM2 andM3 .

In the special case thatP250, the symmetry group can be enlarged by the addition of a se
special conformal transformations with generatorsKi and the dilatation operatorD. See, for
example, Ref. 4, Chap. 4. These are given in terms of the coordinatesxi by

K152x1 x•]1x2]11x1 ,

K252x2 x•]1x2]21x2 , ~23!

K3522x3 x•]1x2]32x3 ,

D5x•]1 1
2 5x1]11x2]21x3]31 1

2 . ~24!

The K ’s commute,

@Ki ,K j #50, ~25!

and transform as Lorentz vectors,

@M1 ,K1#52K3 , @M1 ,K2#50, @M1 ,K3#52K1 ,
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@M2 ,K1#50, @M2 ,K2#52K3 , @M2 ,K3#52K2 , ~26!

@M3 ,K1#5K2 , @M3 ,K2#52K1 , @M3 ,K3#50.

In addition,

@P1 ,K1#5@P2 ,K2#52D, @P3 ,K3#522D,
~27!

@P1 ,K2#5@K1 ,P2#52M3 , @P3 ,Ki #5@K3 ,Pi #52Mi , i 51,2.

Finally,

@D,Pi #52Pi , @D,Ki #5Ki , @D,Mi #50, i 51,2,3. ~28!

Using the explicit realization of the above-given operators, we find also that

@Ki ,P2#524x1P2.0, ~29!

@D,P2#52P2.0, ~30!

M21D22 1
4 5x2P2.0, ~31!

where the final weak equivalence in each relation holds for the action of the operator on so
h of the wave equationP2h50.

We will deal with the solutions of the wave equation in terms of the homogeneous func

hn
m5xn f n

m~z,t !5xntmFn
m~z!, ~32!

wheretmFn
m(z) is a solution of the associated Legendre equation onH2 with M252n(n11) and

iM 35m as in ~14!, andx, t, andz are defined as

x5Ax2, z5x3 /x, t5~x11 ix2!/Ax1
21x2

2. ~33!

In accord with the last two equations of~29!, Dhn
m5(n1 1

2)hn
m , a relation which provides a

geometric interpretation of the degreen of the Legendre function.
The operatorsP3 andK3 act as stepping operators inn. Thus, from the first two relations in

~28!,

D~P3hn
m!5P3~D21!hn

m5~n2 1
2!P3hn

m , ~34!

D~K3hn
m!5K3~D11!hn

m5~n1 3
2!K3hn

m , ~35!

so P3hn
m}hn21

m andK3hn
m}hn11

m . In terms of our coordinates onH2,

P352sinh2 u
1

x

]

] coshu
1coshu

]

]x
52~z221!

1

x

]

]z
1z

]

]x
, ~36!

while

K352x sinh2 u
]

] coshu
2x2 coshuS ]

]x
1

1

xD52x~z221!
]

]z
2x2zS ]

]x
1

1

xD . ~37!

Upon applyingP3 andK3 to the functionshn
m defined in~32!, we find that
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P3hn
m~z!5xn21tmF2~z221!

]

]z
1nzGFn

m~z!5xn21tm~n1m!Fn21
m ~z!, ~38!

K3hn
m5xn11tmF2~z221!

]

]z
2~n11!zGFn

m~z!52xn11tm~n2m11!Fn11
m ~z!. ~39!

These relations give the standard differential recurrence relations inn for the associated Legendr
functions Fn

m after the dependence onx and t is removed. The indicated coefficients can
determined using the asymptotic behavior of those functions.

V. ACTION OF THE GROUP OPERATORS AND GENERATING FUNCTIONS

The action of the finite group operatorse2uM6 on the functionsf n
m is easily determined. Thus

writing the stepping operation byM 1 in the form

M 1 f n
m5F2tAz221 ]z1

z

Az221
t2] tG tmFn

m~z!52tm11~z221!(m11)/2
d

dz
@~z221!2m/2Fn

m~z!#,

~40!

and noting that

M 1tm~z221!m/250, ~41!

we can easily show that

e2uM1tmFn
m~z!5tm~z221!m/2eutAz221(d/dr )~r 221!2m/2Fn

m~r !ur 5z

5tm~z221!m/2@~z1utAz221!221#2m/2Fn
m~z1utAz221!. ~42!

@This result is also easily obtained starting with the expressiontmFn
m(z)5(x11 ix2)m3(x3

2

2x2)2m/2Fn
m(x3 /x), writing M 1 as2x3(]11 i ]2)2(x11 ix2)]3 , and determining the action o

e2uM1 directly using the relationsM 1(x11 ix2)50 andM 1x250. See also Ref. 1, Chap. VI.#
Alternatively, by direct expansion of the exponential and the use of~19!,

e2uM1tmFn
m~z!5 (

n50

`
un

n!
tm1nFn

m1n~z!. ~43!

Comparison of the two expressions gives the generating function

tm~z221!m/2 @~z1utAz221!221#2m/2Fn
m~z1utAz221!5 (

n50

`
un

n!
tm1nFn

m1n~z!. ~44!

The series converges foruuu sufficiently small as expected from Lie theory, with absolute conv
gence for eitherPn

m or Qn
m for

uuu,
1

utu
minUAz61

z71
U. ~45!

The generating function forFn
m5Pn

m is known, Ref. 9, 19.10~4!.
A similar calculation usingM 2 gives
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e2uM2tmFn
m~z!5 (

n50

`
~2u!n

n!
tm2n

G~m1n11!G~n2m1n11!

G~m1n2n11!G~n2m11!
Fn

m2n~z!

5tm~z221!2m/2F S z2
u

t
Az221D 2

21Gm/2

Fn
mS z2

u

t
Az221D , ~46!

with absolute convergence of the series for the condition in~45! with 1/t→t.
The action of the finite operatorse2uP3 ande2uK3 in the conformal group on the functionshn

m

is well known,4 but it is useful to determine it directly. In order to use the above-sketched me
for M 6 , we change from the variablez5x3 /x to a new variabley5x3 /(x1

21x2
2)1/25z/Az221

5cothu in terms of which

P35Ay221S 1

x

]

]y
1

y

y221

]

]xD , ~47!

K35Ay221S x
]

]y
2

y

y221
x

]

]x
xD . ~48!

In this form,

P3 xn~y221!n/250, K3 xn~y221!(n11)/250, ~49!

for anyn. Extracting the relevant factors from the respective operands, we find that the actio
P3 andK3 can be written in terms of simple derivatives,

P3 xnFn
mS y

Ay221
D 5P3 xn~y221!2n/2F ~y221!n/2Fn

mS y

Ay221
D G

5xn21~y221!2(n21)/2
d

dy F ~y221!n/2Fn
mS y

Ay221
D G , ~50!

K3 xnFn
mS y

Ay221
D 5K3 xn~y221!(n11)/2F ~y221!2(n11)/2Fn

mS y

Ay221
D G

5xn11~y221!(n12)/2
d

dy F ~y221!2(n11)/2Fn
mS y

Ay221
D G . ~51!

The use ofy or cothu as the preferred variable is in this sense natural.
The above-given relations connect the action ofe2uP3 ande2uK3 to Taylor series iny, and

lead to

e2uP3xnFn
m5xnS Y221

y221 D n/2

Fn
mS Y

AY221
D , Y5y2

u

x
Ay221, ~52!

e2uK3xnFn
m5xnS y221

Y221D (n11)/2

Fn
mS Y

AY221
D , Y5y2uxAy221. ~53!

Equivalently, in terms ofz5coshu and the formal power series expansions of the exponenti
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e2uP3xnFn
m~z!5xn (

n50

`
1

n! S 2
u

xD n G~n1m11!

G~n1m2n11!
Fn2n

m ~z!

5xnS 122z
u

x
1

u2

x2D n/2

Fn
mS z2

u

x

A122z
u

x
1

u2

x2

D , ~54!

e2uK3xnFn
m~z!5xn (

n50

`
~ux!n

n!

G~n2m1n11!

G~n2m11!
Fn1n

m ~z!

5xn~122zux1u2x2!2(n11)/2Fn
mS z2ux

A122zux1u2x2D . ~55!

The series converge foruhu,min uz6Az221u, whereh5u/x for ~54!, andh5ux for ~55!. The
expressions~54! and ~55! reproduce the known generating functions, Ref. 9, 19.10~3! and
19.10~2!, respectively, forFn

m5Pn
m , but hold also for the functionsQn

m .
These relations give generating functions for the Legendre functions in terms of the degn.

Thus, starting withP0
0(z)51 and using~55!, we obtain the standard generating function for t

Legendre polynomials,

e2uK3
•15~122zux1u2x2!21/25 (

n50

`

~ux!nPn~z!. ~56!

The known generating function, Ref. 9, 3.7~34! for the Qn follows from ~55! with Q0
0[Q0

5 1
2 ln(z11)/(z21),

e2uK3
1

2
ln

z11

z21
5~122zux1u2x2!21/2lnS z2uxA122zux1u2x2

Az221
D 5 (

n50

`

~ux!nQn~z!.

~57!

Other simple generating functions can be obtained using different starting points. Thus,

P0
m~z!5

1

G~12m! S z11

z21D m/2

~58!

in ~55! gives

e2uK3P0
m~z!5

1

G~12m!
~122zux1u2x2!21/2S z2ux1A122zux1u2x2

Az221
D m

5 (
n50

`
~ux!n

n!

G~2m1n11!

G~2m11!
Pn

m~z!. ~59!

A similar generating function for the functionsQn
l(z) follows from ~55! and

Q0
m~z!5

1

2
eipmG~m!F S z11

z21D m/2

2S z11

z21D 2m/2G . ~60!

Further results can be obtained using the known closed-form expressions forQn
1/2, Pn

1/2, Pn
2n(z),

andQn
n11(z), Ref. 9, Sec. 3.61.

We can also obtain interesting double series. Thus,
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e2vM1e2uK3
•15@122ux~z1vtAz221!1u2x2#21/25 (

n50

`

~ux!n (
m50

n
~vt !m

m!
Pn

m~z!. ~61!

A series forQn
m with the same coefficients follows from~57! with the replacement ofz by z

1vtAv221 in the function to be expanded. In that case, the sum onm does not terminate.

VI. FRACTIONAL STEPPING OPERATORS FROM SO „2,1…

We can define fractional stepping operatorsM 6
l as in Sec. II, with

M 6
l 5

1

2p i
eiplG~l11!E

C
du

e2uM6

ul11 , ~62!

where C is an appropriately chosen contour in the complexu plane. The operator (iM 3)s is
defined similarly.

The formal properties of the operators are easily determined.@M2,M 6
l #50, soM 6

l transform
solutionsf n

m(z,t)5tmFn
m(z) of the associated Legendre equation@M21n(n11)# f n

m50 into solu-
tions with the same degreen. Further, from

@ iM 3 ,M 6
n #56nM6

n , ~63!

we find that

@ iM 3 ,e2uM6#56 (
n50

`
~2u!n

n!
nM6

n 56u
d

du
e2uM6, ~64!

hence, after a partial integration in~62!, that

@ iM 3 ,M 6
l #56lM 6

l . ~65!

The operatorsM 6
l therefore increase or decrease the orderm by l when applied to f n

m

5tmFn
m(z),

iM 3~M 6
l f n

m!5M 6
l ~ iM 36l! f n

m5~m6l!~M 6
l f n

m!. ~66!

The new functionsM 6
l f n

m may involve a different combination of the fundamental solutions of
associated Legendre equation than appeared originally, with (f 8)n

m6l5tm6l(F8)n
m6l . Further-

more, even whenF85F, the operations only givef 8 up to a constants of proportionality becau
of the sign and numerical factors in the recurrence relations~19! and~20!. We will therefore write
M 6

l f n
m as

M 6
l f n

m5N6~n,m,l!~ f 8!n
m6l , ~67!

where the functional form ofF8 and the constantN are to be determined.
The more general relations

~ iM 3!sM 6
l 5M 6

l ~ iM 36l!s, M 6
l ~ iM 3!s5~ iM 37l!sM 6

l , ~68!

can be derived using the Baker–Hausdorff expansion ofeAeBe2A as a series ofn-fold
commutators.5 The operatorsM 6 are mixed withM3 under commutation as in Eq.~13!, with the
result that there are apparently no simple expressions for commutators of the fractional op
M 1

l andM 2
h for arbitrary values ofl andh. However,

@ iM 3 ,M 1
s M 2

l #5~s2l!M 1
s M 2

l , @ iM 3 ,M 2
l M 1

s #5~s2l!M 2
l M 1

s , ~69!
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so M 1
s M 2

l andM 2
l M 1

s both carry solutionsf n
m to solutions of the type (f 8)n

m1s2l .
We can define fractional operatorsP3

l and K3
l as above. Since@P2,P3

l#50 and @P2,K3
l#

.0, these operators transform solutionshn
m(x,z,t)5xn f n

m(z,t) of P2hn
m50 into solutions. Further-

more,@M3 ,P3
l#5@M3 ,K3

l#50, soP3
l andK3

l do not change the valuem of iM 3 .
Calculations similar to those which lead to~65! show that

@D,P3
l#52lP3

l , @D,K3
l#5lK3

l , ~70!

so these operators decrease or increase the value ofn by l. Given the numerical factors in th
recurrence relations~38! and ~39!, the transformed functionsh8 are determined only up to con
stants of proportionality,

P3
l hn

m5N28 ~n,m,l! h8n2l
m , K3

l hn
m5N18 ~n,m,l! h8n1l

m . ~71!

Because

@M 6 ,P3#56P6 , @M 6 ,K3#56K6 , ~72!

the operatorsM 6
s do not commute withP3

l andK3
l . However, it is easily shown thatM 6

s P3
l and

P3
lM 6

s both carryhn
m to solutions of the type (h8)n2l

m6s . Similarly, M 6
s K3

l andK3
lM 6

s both carry
hn

m to solutions of the type (h8)n1l
m6s .

VII. CHANGE OF THE ORDER OF Fn
m USING MÁ

l

A. Weyl-type relations using M¿
l

The action of the Weyl-type operatorM 1
l on the associated Legendre functions gives

M 1
l tmFn

m~z!5N1~n,m,l! tm1l~F8!n
m1l~z!

5
1

2p i
eiplG~l11!tm~z221!m/2

3E
CW

du

ul11 @~z1utAz221!221#2m/2Fn
m~z1utAz221!, ~73!

where the direction of the contourCW for uuu→` must be chosen to assure convergence of
integral.

It is easily shown that the integral converges and gives a solution of the associated Le
equation for the choiceFn

m5Qn
m provided Re(n1m1l11).0. @It can be established that th

integrals~74! and~79! in the following give solutions of the associated Legendre equation with
indicated indices by a calculation similar to that which leads to the condition~89! for the Riemann
version ofM 1

l . The only change in the final condition is the replacement ofv by 2v in ~89!, and
the restrictions given onn, m, andl follow.# The proportionality of the integral toQn

m1l and the
value of the coefficientN1 can be established using the asymptotic behavior of the two side
~74! for z→`, proportional in both cases toz2n21. We find thatN15e2 ipl, a result consisten
with repeated application of the recurrence relationM 1tmFn

m52tm11Fn
m11 .

After scaling out the variablet, ~73! can be rewritten forFn
m5Qn

m as

e2 ip(m1l)Qn
m1l~z!5

eipl

2p i
G~l11!E

(`,01,`)

du

ul11 S z221

Z221D m/2

e2 ipmQn
m~Z!, ~74!

whereZ5z1uAz221 and Re(n1m1l11).0. That is,
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M 1
l tme2 ipmQn

m~z!5tm1le2 ip(m1l)Qn
m1l~z!. ~75!

The expression in~74! can be put in the form of a generalized Weyl fractional integral
changing toZ as the integration variable

e2 ip(m1l)Qn
m1l~z!5

1

2p i
eiplG~l11!~z221!(n1l)/2

3E
(`,z1,`)

dZ

~Z2z!l11 ~Z221!2m/2e2 ipmQn
m~Z!. ~76!

The contour can be collapsed for Rel,0, and~74! can then reduce to a form equivalent to t
known fractional integral, Ref. 6, 13.2~30!. However, the result in~74! is more general and has
clear connection with the underlying group theory.

The further substitutionsz5coshu, Z5coshu8 convert ~76! to an expression in terms o
hyperbolic angles,

e2 ip(m1l)Qn
m1l~coshu!5

1

2p i
eiplG~l11!sinhm1l uE

(`,u1,`)

du8

~coshu82coshu!l11

3sinh2m11 u8e2 ipmQn
m~u8!. ~77!

A different result holds for the Weyl action ofM 1 on the functionstmPn
m(z) as may be seen

from the relation

Pn
m~z!5

1

p
e2 ipm

1

cospn
@sinp~n1m!Qn

m~z!2sinp~n2m!Q2n21
m ~z!#. ~78!

The operatorM 1
l acts on theQ’s, but does not change the sine factors, with the result t

suppressing the dependence ont,

M 1
l Pn

m~z!5
1

2p i
eiplG~l11!E

(`,01,`)

du

ul11 S z221

Z221D m/2

Pn
m~Z!

5
1

p
e2 ip(m1l)

1

cospn
@sinp~n1m!Qn

m1l~z!2sinp~n2m!Q2n21
m1l ~z!#

5
sinp~n2m!

sinp~n2m2l!
Pn

m1l~z!2
2

p
sinpn sinpl e2 ip(m1l)Qn

m1l~z! ~79!

for Re(6(n11
2)1m1l11

2).0 andZ5z1Az221.
We emphasize that the different behavior of the Weyl-type operatorM 1

l on Qn
m and Pn

m is
associated with the fact that the integration contour runs to`. Qn

m and Q2n21
m have unique

asymptotic limits forz→`, behaving, respectively, asz2n21 andzn multiplied by series in 1/z2.
The operatorM 1

l changesm but does not affectn. Since it carries solutions of the associat
Legendre equation to solutions and, as is evident from~73!, preserves the asymptotic behavior
the integrand forz→`, it can only carryQn

m to a multiple ofQn
m1l andQn21

m to a multiple of
Q2n21

m1l with no mixing of the two functions.Pn
m , in contrast, involves both functions with differ

entm-dependent coefficients, and cannot be reproduced for generaln. It is useful in this respect to
regardQn

m and Q2n21
m as the fundamental solutions of the associated Legendre equation

thanPn
m andQn

m . We will encounter similar situations later.
                                                                                                                



ted

at

se
ri-

e

e two

the

i-

ow

2278 J. Math. Phys., Vol. 44, No. 5, May 2003 Loyal Durand

                    
B. Weyl-type relations using MÀ
l

The action of the Weyl-type operatorsM 2
l on the associated Legendre functions gives

M 2
l tmFn

m~z!5N2~n,m,l!tm2l~F8!n
m2l~z!

5
1

2p i
G~l11!eipltm~z221!2m/2

3E
CW

du

ul11 F S z2
u

t
Az221D 2

21Gm/2

Fn
mS z2

u

t
Az221D . ~80!

It can be established through a calculation equivalent to that which leads to condition~92! ob-
tained later for the Riemann version ofM 2

l that this expression gives a solution of the associa
Legendre equation provided the integral converges foruuu→`.

The contourCW must extend touuu→`, and must avoid the singularities of the integrand
u/t5A(z21)/(z11), A(z11)/(z21). The singularities are always in the right half of theu/t
plane a finite distance from the origin foruz61u finite. For definiteness, we will consider the ca
in which, after scaling out the variablet, the initial contour is taken to run above both singula
ties. This allows us to rotate the contour in~80! counterclockwise byp, and then replaceu by
eipu, effectively returning to the expression in~80! with 2u replaced byu and with the acqui-
sition of an extra phasee2 ipl.

After identifying the constant of proportionality, we find for the choiceFn
m5Qn

m that

e2 ip(m2l)Qn
m2l~z!5

1

2p i
eiplG~l11!

G~n1m2l11!G~n2m11!

G~m1n11!G~n2m1l11!

3E
(`,01,`)

du

ul11 S Z221

z221 D m/2

e2 ipmQn
m~Z!, ~81!

Z5z1uAz221. The integral converges and gives a solutionQn
n2l of the associated Legendr

equation for Re(n2m1l11).0.
The coefficient of the integral can be determined using the asymptotic behavior of th

sides of~81! for z→`. It corresponds to a coefficient

N2~n,m,l!5e2 ipl
G~n1m11!G~n2m1l11!

G~n1m2l11!G~n2m11!
~82!

in the original expression~80!, with the contour taken to run above the singularities of
integrand atu/t5A(z61)/(z71). N2 is just the coefficient of thenth term in the generating
function ~46!, up to the factor 1/n!, but extended from integern to noninteger valuesn→l with
the factor (21)n→e2 ipl. We note that the phase of the constantN2 defined through~80! depends
on the choice of the original contour. The final result does not.@The contour rotation and subst
tution used above replace the factor exp(2uM2) in the definition ofM 2

l by exp(2u eipM2),
effectively replacing2u by u in the series~46!. The resulting expression gives (eipM 2)l when
the integration in~62! is performed on the standard Weyl contour (`,01,`), hence the extra
phase noted above in the expression forM 2

l . Had we started instead with a contour that ran bel
both the singularities of the integrand, rotated the contour clockwise byp, and then replacedu by
e2 ipu, the extra phase would have beeneipl, and the newN2 would bee2ipl times the result in
~82!. The ultimate expression forQn

m2l does not change.# The contour in~81! can be closed for
l5n, one recovers the expression forQn

m2n given by the generating function~46!.
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The above-mentioned results continue to hold forQ2n21
m for Re(2n2m1l).0, and~81! and

~78! can be used to evaluateM 2
l Pn

m . Remarkably, the coefficientsN2(n,m,l) and N2(2n
21,m,l) are such that the sine functions in~78! are reproduced in the final result withm→m
2l, and we find that

Pn
m2l~z!5

1

2p i
eiplG~l11!

G~2n2m!G~n2m11!

G~2n2m1l!G~n2m1l11!

3E
(`,01,`)

du

ul11 S Z221

z221 D m/2

Pn
m~Z!, ~83!

Re(6(n11
2)2m1l11

2).0. This corresponds to a coefficient

Ñ25eipl
sinp~n1m!

sinp~n1m2l!
N2~n,m,l!5

G~2n2m1l!G~n2m1l11!

G~2n2m!G~n2m11!
~84!

in the relationM 2
l Pn

m5Ñ2(n,m,l)Pn
m2l , with M 2

l defined with the original contour in~80!
taken above the singularities of the integrand. The change relative to~82! is in a different con-
tinuation of the alternating sign in the generating function~46!, with the factore2 ipl in N2

replaced by sinp(n1m)/sinp(n1m2l) in Ñ2 . Because of the change in coefficients, it is ag
useful to regardQn

m andQ2n21
m as the fundamental solutions rather thanQn

m andPn
m .

C. Riemann-type relations using MÁ
l

The action of the Riemann-type fractional operatorM 1
l is given by~73! on a finite contour

CR5(u0,01,u0) where the obvious choice of the end pointu0 is the point at which the argumen
of the Legendre function is11,

u05eip
1

t S z21

z11D 1/2

. ~85!

Writing u asu0v and factoring out the dependence ont, we obtain

N1S z21

z11D (m1l)/2

~F8!n
m1l~z!5

1

2p i
G~l11!E

(1,01,1)

dv
vl11

1

~12v !m S V21

V11D m/2

Fn
m~V!,

~86!

whereV5z2(z21)v andF andF8 are possibly different associated Legendre functions. The
factor on the right-hand side has the same form as the function on the left, but withz replaced by
V.

Defining

wn
m~z!5S z21

z11D m/2

Fn
m~z! ~87!

and using the form of the associated Legendre equation satisfied by that function,

~z221!w91~2z22m!w82n~n11!w50, ~88!

with the replacementm→m1l, we find that~86! gives a solution of~88! provided

v2l~12v !12m
d

dv F S V21

V11D m/2

Fn
m~V!G50 ~89!
                                                                                                                



ndre

gendre
l.

e

nter-

2280 J. Math. Phys., Vol. 44, No. 5, May 2003 Loyal Durand

                    
at the end points of the integration contour. This condition is satisfied forPn
m for Rem,1 with the

expected end pointsv51, e2p i . The expression in~89! does not vanish forQn
m , with the result

that the right-hand side of~86! satisfies an inhomogenous version of the associated Lege
equation, so does not giveQn

m1l .
With the choiceFn

m5Pn
m in ~86!, we find thatN15e2 ipl as before, and that

Pn
m1l~z!5

1

2p i
e2iplG~l11!E

(u0,01,u0)

du

ul11 S z221

Z221D m/2

Pn
m~Z!,

5
1

2p i
eiplG~l11!E

(u08,01,u08)

du

ul11 S z221

Z8221D m/2

Pn
m~Z8!, ~90!

where Rem,1, Z85z2uAz221, andu085A(z21)/(z11). Changing toZ8 as the integration
variable, we get the alternative form

Pn
m1l~z!5

1

2p i
G~l11!~z221!(m1l)/2E

(1,z1,1)

dZ8

~Z82z!l11 ~Z8221!2m/2Pn
m~Z8!, ~91!

whereuarg(Z82z)u<p. This result can be reduced in the case of realz with 21,z,1 to a known
fractional integral, Ref. 6, 13.1~54!.

A similar calculation forM 2
l on the Riemann contour starting from~80! leads to the condition

for a solution of the associated Legendre equation that the function

v2l~12v !m11
d

dv F S V11

V21D m/2

Fn
m(V) G ~92!

vanish at the end points. In fact, it has a finite value forv51, e2p i for either Pn
m or Qn

m . The
functions defined by the integral satisfy inhomogeneous versions of the associated Le
equation rather than the equation itself, and the Riemann version ofM 2

l appears not to be usefu

VIII. CHANGE OF THE DEGREE OF Fn
m USING K 3

l AND P3
l

A. Relations for K 3
l

The action of the operatorK3
l on a functionxnFn

m increases the degreen by l as shown
formally by the commutation relation~70!. In particular, using the variabley and the expression in
~53! for the action ofe2uK3, we obtain a Weyl-type relation

K3
lxnFn

mS y

Ay221
D 5N18 ~n,m,l!xn1l~F8!n1l

m S y

Ay221
D

5
1

2p i
eiplG~l11!E

CW

du

ul11 S y221

Y221D (n11)/2

Fn
mS Y

AY221
D , ~93!

whereY5y2xuAy221. The contourCW must be chosen to run touuu→`, avoiding the singu-
larities of the integrand atY561 or xu5A(y61)/(y71). The singularities are both in th
right-half xu plane a finite distance from the origin foruy61u finite.

Following the procedure sketched in Sec. VII B, we change toxu as a new integration
variable, pick an initial contour which runs above both singularities, rotate the contour cou
clockwise byp, and replaceu by eipu to return to the standard contour. This gives
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N18 ~n,m,l!~F8!n1l
m S y

Ay221
D 5

1

2p i
G~l11!E

(`,01,`)

du

ul11 S y221

Y221D (n11)/2

Fn
mS Y

AY221
D ,

~94!

where Y is now given byY5y1uAy221 and we have acquired an extra phasee2 ipl. By
considering the modified Legendre equation

~y221!v91~2y2n2 1
2!v82~m22 1

4!v50 ~95!

satisfied by the function

vn
m~y!5S y21

y11D (n11)/2

~y221!21/4Fn
mS y

Ay221
D , ~96!

we find that the right-hand side of~93! satisfies the associated Legendre equation for degren
1l and orderm provided that the function

u2l~11u!2l1 (1/2)
d

du F S Y21

Y11D (n1 1/2)/2

~Y221!21/4Fn
mS Y

AY221
D G ~97!

vanishes at the end points of the contour. This condition is satisfied forFn
m5Pn

m in ~94! provided
Re(n1l2m11).0, and forFn

m5Qn
m provided Re(n1l6m11).0.

The form of the function in~96! is suggested by the Whipple transformation, Ref.
3.3.2~13,14!

e2 ipmQn
mS y

Ay221
D 5Ap

2
G~n1m11!~y221!1/4P2m2 (1/2)

2n2 (1/2) ~y!

which connects the actions ofK3
l and M 2

l and of P3
l and M 1

l , and can be used to derive Eq
~100! and ~110! in the following from ~83! and ~74!. The Whipple transformation is associate
with the automorphism

D852 iM 3 , iM 3852D, M 18 5P3 , M 28 52K3 ,

P18 52P1 , P28 5K1 , P385M 1 , K18 5P2 , K28 52K2 , K3852M 2

of the abstract conformal algebra. Using the explicit realizations of the operators given in Se
we find that

P825x1
2 P2.0 and M 821D822 1

4 52 1
2 ~P3K31K3P3!2D22M3

22 1
4 5x'

2 P2.0

when acting on solutions of the Laplace equation. These relations are only invariant unde
tions about the 3 axis generated byM3 and not under the full Lorentz group. The transformati
maps realizations of the algebra to realizations, withn852m2 1

2 ( iM 3852D) andm852n2 1
2

(D852 iM 3). In terms of differential equations, the substitutionsz5y/Ay221, Fn
m(z)5(y2

21)1/4Gn8
m8(y) transform the associated Legendre equation satisfied byFn

m(z) into the same equa

tion for Gn8
m8(y). The specific connection of the functions can be established by matching

behavior forz→`, y→1 and forz→1, y→`.
The constant of proportionalityN18 in ~94! can be determined by changing toY as the variable

of integration in that equation, and then determining the asymptotic limits of the two side
y→`. We find that
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N18 ~n,m,l!5e2 ipl
G~n1l2m11!

G~n2m11!
~98!

for both Pn
m and Qn

m . The first can be established easily by identifying the characteristic po
behaviorPn

m(z)}@(z11)/(z21)#m/2 for z→1 on the two sides of the equation. The coefficient
Qn

m follows from

e2 ipmQn
m~z!5

p

2 sinpm FPn
m~z!2

G~n1m11!

G~n2m11!
Pn

2m~z!G . ~99!

Using the result forN18 in ~94!, we find that

Fn1l
m S y

Ay221
D 5

1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11

3E
(`,01,`)

du

ul11 S y221

Y221D (n11)/2

Fn
mS Y

AY221
D , ~100!

where Re(n1l2m11).0 for Pn
m , and Re(n1l6m11).0 for Qn

m . Alternatively, takingY as the
integration variable,

Fn1l
m S y

Ay221
D 5

1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11!
~y221!(n1l11)/2

3E
(`,y1,`)

dY

~Y2y!l11 ~Y221!2(n11)/2Fn
mS Y

AY221
D . ~101!

This expression has the form of a Weyl fractional integral, Ref. 6, Sec. 13.2, but is apparen
known in the general case.

The substitutionsY5cothu8, y5cothu in ~101! give

Fn1l
m ~coshu!52

1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11
~sinhu!n1l11

3E
(0,u1,0)

du8

sinh2 u8

1

~cothu82cothu!l11 ~sinhu8!n11Fn
m~coshu8!

52
1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11

3E
(0,u1,0)

du8

sinhu8 S sinhu8

sinhu D nS sinhu8

sinh~u2u8! D
l11

Fn
m~coshu8!, ~102!

while the substitutionsY5coshf8, y5coshf give

Fn1l
m ~cothf!5

1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11
~sinhf!n1l11

3E
(`,f1,`)

sinhf8 df8

~coshf82coshf!l11 ~sinhf8!2n21Fn
m~cothf8!. ~103!

Finally, with y5z/Az221 andY5(z1u)/Az221 in ~100!,
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Fn1l
m ~z!5

1

2p i
eipl

G~l11!G~n2m11!

G~n1l2m11

3E
(`,01,`)

du

ul11 ~u212uz11!2(n11)/2Fn
mS z1u

Au212zu11
D . ~104!

The foregoing relations forK3
l are of the Weyl type. The natural end point for a Riemann-ty

contour for the original integrand in~93! is at Y51 or xu5A(y21)/(y11). x can again be
scaled out, and the condition that the right-hand side of~93! define a solution of the associate
Legendre equation reduces to the requirement that the function in~97!, with (11u)2l1(1/2)

replaced by (12u)2l1(1/2) andY5y2uAy221, vanish at the end points. It fails to vanish forFn
m

equal to eitherPn
m or Qn

m , and there is no Riemann-type expression forK3
l .

B. Relations for P3
l

The action of the operatorP3
l on xnFn

m decreasesn by l as shown by the commutation relatio
~70!. Thus, using the variabley5z/Az221 and the expression in~52! for the action ofe2uP3, we
obtain the Weyl-type relation

P3
lxnFn

mS y

Ay221
D 5N28 ~n,m,l!xn2l~F8!n2l

m S y

Ay221
D

5
1

2p i
eiplG~l11!E

CW

du

ul11 S Y221

y221 D n/2

Fn
mS Y

AY221
D , ~105!

where Y5y2 u/xAy221. We will again take the initial integration contour to run touuu→`
above the singularities of the integrand atu/x5A(y61)(y71), scale out the dependence onx,
rotate the contour counterclockwise byp, and replaceu by eipu to reach the standard contou
(`,01,`). This gives

N28 ~n,m,l!~F8!n2l
m S y

Ay221
D 5

1

2p i
G~l11!E

(`,01,`)

du

ul11 S Y221

y221 D n/2

Fn
mS Y

AY221
D ,

~106!

where Y is now given byY5y1uAy221 and we have acquired an extra phasee2 ipl. By
considering the modified Legendre equation satisfied by the function4

S y11

y21D (n1 1/2)/2

~y221!21/4Fn
mS y

Ay221
D , ~107!

we find that the right-hand side of~105! satisfies the associated Legendre equation for degren
2l and orderm provided that the function

u2l~11u!n1 (3/2)
d

duF S Y11

Y21D (n1 1/2)/2

~Y221!21/4Fn
mS Y

AY221
D G ~108!

vanishes at the end points of the contour. This condition is satisfied forFn
m5Pn

m in ~106! provided
Re(2n1l2m).0. A comparison of the asymptotic limits of the two sides of~106! for y→` gives

N28 ~n,m,l!5e2 ipl
G~2n1l2m!

G~2n2m!
, ~109!
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and

Pn2l
m S y

Ay221
D 5

1

2p i
eiplG~l11!

G~2n2m!

G~2n1l2m!
E

(`,01,`

du

ul11 S Y221

y221 D n/2

Pn
mS Y

AY221
D .

~110!

The corresponding result forFn
m5Qn

m involves an extra term related through the Whipp
transformation, Ref. 9, 3.3.2~13,14! to that found forM 1

l in Sec. VII A, and a different coefficient
We find that

eipl

2p i
G~l11!

G~n2l1m11!

G~n1m11!
E

(`,01,`)

du

ul11 S Y221

y221 D n/2

e2 ipmQn
mS Y

AY221
D

5e2 ipmQn2l
m S y

Ay221
D 2p

cospm sinpl

sinp~n2l1m!
Pn2l

m S y

Ay221
D , ~111!

Y5y1uAy221, Re(l2n6m).0.
The condition for there to be a Riemann-type representation forP3

l is given by ~108! with
u11 replaced by 12u andY5y2u(y21). The result must vanish foru51. This condition is
satisfied forFn

m5Qn
m for Re(n13

2).0, but is not satisfied forPn
m . The Riemann integral forQn

m is

Qn2l
m S y

Ay221
D 5

1

2p i
eiplG~l11!

G~n2l1m11

G~n1m11!
E

(u0,01,u0)

du

ul11

3S Y221

y221 D n/2

Qn
mS Y

AY221
D , ~112!

whereY5y2uAy221 andu05A(y21)/(y11).

IX. INTEGRAL REPRESENTATIONS FOR ASSOCIATED LEGENDRE FUNCTIONS

A. Representations using MÁ
l

The fractional-operator relatorsM 6
l tmFn

m(z)5N6tm6lFn8
m(z) derived earlier can be con

verted into integral representations for the associated Legendre functions by a choice ofm for
which the initial function is elementary. Thus, usingM 1

l , the choices

e2 ip/2 Qn
1/2~z!5Ap

2
~z221!21/4@z1Az221#2n2 (1/2) ~113!

in ~76! and

e2 ip/2 Qn
1/2~coshu!5Ap

2
sinh21/2u e2(n1 1/2)u ~114!

in ~77! give simple Weyl-type integral representations forQn
l1(1/2) . Choosingl5m2 1

2 in these
expressions, we get, respectively,

~z221!2m/2e2 ipmQn
m~z!5

1

2p i
eip(m2 1/2)GS m1

1

2DAp

2 E
(`,z1,`)

dZ

~Z2z!m1 1/2

3~Z221!21/2~Z1AZ221!2n2~1/2! ~115!

and
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e2 ipmQn
m~coshu!5

1

2p i
eip(m2 1/2)GS m1

1

2DAp

2
sinhm u

3E
(`,u1,`)

du8

~coshu82coshu!m1 (1/2) e
2(n1 1/2)u8, ~116!

for Re(n1m11).0. If Rem,1
2, the contour integrals can be collapsed, and the resulting form

~116! reduces to the standard integral representation, Ref. 9, 3.7~4!. The fractional operator ap
proach provides an interpretation of this result through its connection to the group SO~2,1!.

The result in~116! can be transformed further by distorting the integration contour to`
1 ip,ip,2 ip,`2 ip), with u850 circumvented on the left. The result reduces for Rem,1/2 to
Ref. 9, 3.7~10!. Similar manipulations are possible for the following expressions. For collect
of known representations, see Refs. 9–11.

The use of~116! and

Pn
1/2~coshu!5A2

p
sinh21/2u coshS n1

1

2D u ~117!

in the version of~79! obtained by the substitutionsz5coshu, z1uAz2215coshu8 in the integral
on the first line gives a representation forPn

m(coshu) analogous to~116!.
A second and more natural form ofM 1

l Pn
m is given by the Riemann-type integral~90!. Using

Pn
1/2 as the input function, making the substitutionsz5coshu, Z85coshu8, and choosingl5m

2 1
2, we obtain the integral representation

Pn
m~coshu!5

1

2p i
GS m1

1

2DA2

p
sinhm uE

(0,u1,0)

du8

~coshu82coshu!m1 (1/2) coshS n1
1

2D u8,

~118!

where the denominator is now taken to have its principal phase,2p<arg(coshu82coshu)<p,
andn andm are arbitrary. If Rem,1/2, the contour can be collapsed and~118! reduces to Ref. 9,
3.7~9!.

We can get alternative integral representations forQn
m andPn

m by using

e2 ip(n11)Qn
n11~z!52nG~n11!~z221!2(n11)/2, ~119!

Pn
2n~z!5

22n

G~n11!
~z221!n/2. ~120!

Thus, from the Weyl-type integral~74!,

e2 ip(n1l11)Qn
n1l11~z!5

1

2p i
eipl2nG~n11!G~l11!~z221!(n11)/2

3E
(`,01,`)

du

ul11 ~Z221!2n21, ~121!

Re(2n1l12).0, Z5z1uAz221. The choicel5m2n21 then gives

e2 ipmQn
m~z!5

1

2p i
eip(m2n21)2nG~n11!G~2n1m!~z221!m/2E

(`,01,`)

du

um2n ~Z221!2n21

~122!
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5
1

2p i
eip(m2n21)2nG~n11!G~2n1m!~z221!m/2

3E
(`,z1,`)

dZ

~Z2z!m2n ~Z221!2n21, ~123!

Re(n1m11).0. The substitutionsz5coshu, Z5coshu8 in the second form gives an expressio
for Qn

m(coshu) different from ~116!,

e2 ipmQn
m~coshu!5

1

2p i
eip(m2n21)2nG~n11!G~2n1m!sinhm u

3E
(`,u1 ,`)

du8

~coshu82coshu!m2n sinh22n21 u8, ~124!

Re(n1m11).0.
A similar construction starting from the Riemann-type integral~91! for M 1

l with l5n1m
andPn

2n , ~120!, as the input gives

Pn
m~z!5

1

2p i
22n

G~n1m11!

G~n11!
~z221!m/2E

(1,z1,1)

dZ

~Z2z!n1m11 ~Z221!n, ~125!

uarg(Z2z)u<p, Re(n11).0. With z5coshu, Z5coshu8, this becomes

Pn
m~coshu!5

1

2p i
22n

G~n1m11!

G~n11!
sinhm uE

(0,u1,0)

du8

~coshu82coshu!n1m11 sinh2n11 u8,

~126!

where2p<arg(coshu82coshu)<p.
We can obtain further integral representations forQn

m andPn
m using the Weyl-type integrals fo

M 2
l in ~81! and ~83!, respectively. Thus, using~81! with the input functionQn

1/2, ~113! and l
52m1 1

2, we find that

e2 ipmQn
m~z!5

1

2p i
eip(2m1 1/2)

G~2m1 1
2!

~n1 1
2!

G~n1m11!

G~n2m11!
Ap

2

3~z221!2m/2E
(`,01,`)

dZ

~Z2z!2m1 (3/2) ~Z1AZ221!2n2 (1/2). ~127!

By changing to the angular variablesz5coshu, Z5coshu8 and integrating once by parts, this ca
be rewritten as

e2 ipmQn
m~coshu!5

1

2p i
e2 ip(m1 1/2)

G~2m1 1
2!G~n1m11!

G~n2m11!
Ap

2

3~sinhu!2mE
(`,u1,`)

du8 ~coshu82coshu!m2 (1/2)e2(n1 1/2)u8 ~128!
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5
G~n1m11!

G~m1 1
2!G~n2m11!

Ap

2

3~sinhu!2mE
u

`

du8 ~coshu82coshu!m2 (1/2)e2(n1 1/2)u8. ~129!

The first expression holds for Re(n2m11).0, and the second with the additional constraint t
Rem.21/2. The same results can be obtained without the partial integration by starting
Qn

21/2 andl52m2 1
2.

Note that the integral in expression~128! for Qn
m is the same as that in the expression forQn

2m

obtained from~116! with the replacementm→2m. Comparison of the two results shows that

e2 ipmQn
m~z!5

G~n1m11!

G~n2m11!
eipmQn

2m~z! ~130!

as expected.
A similar calculation using~83! with the input functionPn

1/2 andl5m1 1
2 gives the integral

representation

Pn
2m~coshu!5

1

2p i
eip(m2 1/2)

A2p

cospn

G~m1 1
2!

G~2n1m!G~n1m11!

3sinhm uE
(`,u1,`)

du8

~coshu82coshu!m1 (1/2) sinhS n1
1

2D u8, ~131!

valid for Re(m6(n11
2)1

1
2).0.

In contrast to the case ofM 1
l , the input functionsQn

n11 and Pn
2n , ~119! and ~120!, do not

give useful results forM 2
l because of the appearance of infinite coefficients in~81! and~83!. The

problem arises from the recurrence relation connected with the action ofM 2 . The coefficient of
Fn

m21 in ~20! vanishes form52n or m5n11, and all information aboutFn
m21 is lost for those

values ofm.
There are no Riemann-type relations or corresponding integral representations involvingM 2

l .

B. Representations using K 3
l and P3

l

The fractional operator relationK3
lxnFn

m5N18 xn1lFn1l
m gives integral representations for th

associated Legendre functions when used withP0
m or Q0

m as the input function. Thus, usingP0
m ,

~58!, in ~101! and replacingl by n in the result, we find that

Pn
mS y

Ay221
D 5

1

2p i
eipn

G~n11!

G~n2m11!
~y221!(n11)/2

3E
(`,y1,`)

dY

~Y2y!n11

1

AY221
~Y1AY221!m ~132!

for Re(n2m11).0. A change to the angular variablesy5coshf, Y5coshf8 gives

Pn
m~cothf!5

1

2p i
eipn

G~n11!

G~n2m11!
~sinhf!n11E

(`,f1,`)

df8

~coshf82coshf!n11 emf8.

~133!

Finally, usingP0
m , ~58!, in ~104!,
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Pn
m~z!5

1

2p i
eipn

G~n11!

G~n2m11!
~z221!2m/2

3E
(`,01,`)

du

un11

1

Au212zu11
~z1u1Au212zu11!m, ~134!

which reduces form50 to

Pn~z!5
1

2p i
eipnE

(`,01,`)

du

un11

1

Au212zu11
, ~135!

Re(n11).0.
We get similar integral representations forQn

m by using expression~60! in ~100!–~104!. Thus,
in terms of the angular variablez5cothf,

Qn
m~cothf!5

1

2p i
eipn

G~n11!

G~n2m11!

p

sinpm
~sinhf!n11

3E
(`,f1,`)

df8

~coshf82coshf!n11 sinhmf8, ~136!

Re(n6m11).0.
The Weyl-type relation~110! for P3

lxnPn
m(z) with n50 reduces after the use of the relatio

P0
m(cothf8)5emf8/G(12m), the change of variablesy5coshf, Y5coshf8, and a partial integra-

tion to

P2l
m ~cothf!5

1

2p i
eip(l21)

G~l!

G~l2m!
sinhl fE

(`,f1,`)

df8

~coshf82coshf!l emf8, ~137!

Re(l2m).0. The right-hand side of this expression is the same for the choicel5n11 as that in
expression~133! for Pn

m , and we find thatP2n21
m (cothf)5Pn

m(cothf) as expected. This symme
try relation is a consequence of the relation

@K3
n ,P3

n11#h0
m5@N18 ~2n21,m,n!N28 ~0,m,n11!2N28 ~n,m,n11!N18 ~0,m,n!#h0

m50,
~138!

where the coefficientsN18 andN28 given in ~98! and ~109! follow from the stepping relations in
so~2,1!.

The corresponding Weyl-type relation forP3
lxnQn

m(z) in ~111! involves an extra term, and wil
not be given.

The Riemann-type relation forP3
lxnQn

m obtained by using~60! in ~112! gives the further
integral representation

Q2l
m ~cothf!5

1

2p i
G~l!

G~2l1m11!

G~m!
sinhl fE

(0,f1,0)

df8

~coshf82coshf!l sinhmf8,

~139!

where the phase of the denominator is to be taken between2p and p. While the form of the
integrands in~136! and ~139! is the same for the choicel5n11 in the latter, the integration
contours are different, and the difference between theQn

m and Q2n21
m involves an admixture of

Pn
m .
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C. Double-integral representations

Combinations of the foregoing results give a number of double-integral representations
associated Legendre functions according to the fractional relations

M 6
l8K3

lxntmFn
m~z!5N6~n1l,m,l8!N18 ~n,m,l!xn1ltm6l8Fn1l8m6l8~z!, ~140!

M 6
l8P3

lxntmFn
m~z!5N6~n2l,m,l8!N28 ~n,m,l!xn2ltm6l8Fn2l8m6l8~z!, ~141!

K3
lM 6

l8xntmFn
m~z!5N18 ~n,m6l8,l!N6~n,m,l8!xn1ltm6l8Fn1l8m6l8~z!, ~142!

P3
lM 6

l8xntmFn
m~z!5N18 ~n,m6l8,l!N6~n,m,l8!xn2ltm6l8Fn2l8m6l8~z!, ~143!

and similar relations for other products of the operatorsM 6
l , K3

l , and P3
l . The appropriate

definitions of the operators and the coefficients depend on the input functions. We will give
a few examples.

We first obtain a double integral forPn
m using the operatorM 1

m K3
n . We start with~140! with

P0
051 as the input function. The action ofK3

n gives Pn
0 , ~135!, where we have suppressed th

factor xn in ~140!. Acting a second time withM 1
m and suppressing the resulting factortm gives,

through~91!,

Pn
m~z!5

1

~2p i !2 eipnG~m11!~z221!m/2

3E
(1,z1,1)

dZ

~Z2z!m11 E
(`,01,`)

du

un11

1

Au212Zu11
~144!

5
1

~2p i !2 eipnG~m11!S z11

z21D m/2

3E
(0,11,0)

dt

~ t21!m11 E
(`,01,`)

du

un11

1

A~u11!212tu~z21!
, ~145!

Re(n11).0. The second form follows from the substitutionZ511(z21)t.
Note that the dependence ofPn

m on n and m is separated in the two integrals in~144! and
~145!. This will also be true in the following examples.

A similar calculation starting withQ0
0(z) and using~100! and ~76! gives

Qn
m~z!5

1

~2p i !2 eip(n1m)G~m11!~z221!m/2E
(`,z1,`)

dZ

~Z2z!m11

3E
(`,01,`)

du

un11

1

Au212Zu11
ln

u1Z1Au212Zu11

AZ221
, ~146!

Re(n11).0, Re(n1m11).0.
If we considerM 1

m M 1
n Pn

2n(z), use~120! and~91! to get an expression forPn
0 as in~125!, and

then use~91! again, we find that

Pn
m~z!5

1

~2p i !2 22nG~m11!~z221!m/2

3E
(1,z1,1)

dZ8

~Z82z!m11 E
(1,Z81,1)

dZ

~Z2Z8!n11 ~Z221!n ~147!
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5
1

~2p i !2 22nG~m11!S z11

z21D m/2

3E
(0,11,0)

dt

~ t21!m11 E
(0,11,0)

du

~u21!n11 unS 11tu
z21

2 D n

, ~148!

Re(n11).0. Similarly, the expression forM 1
m M 1

2n21Qn
n11 obtained by using~123! and ~76!

reduces to

e2 ipmQn
m~z!5

1

~2p i !2 eip(m2n)2n
p

sinpn
G~m11!~z221!m/2

3E
(`,z1,`)

dZ

~Z2z!m11 E
(`,Z1,`)

dZ8

~Z8221!n11 ~Z82Z!n ~149!

5
1

2

1

~2p i !2 eip(m2n)
p

sinpn
G~m11!S z11

z21D m/2

3E
(`,11,`)

dt

~ t21!m11 E
(`,11,`)

du

un11 ~u21!nS 11
z21

2
tuD 2n21

~150!

52
1

2

1

~2p i !2 eip(m2n)
p

sinpn
G~m11!S z11

z21D m/2S 2

z21D n11

3E
(0,11,0)

dt
tn1m

~ t21!m11 E
(0,11,0)

du un~u21!nS 11
2

z21
tuD 2n21

, ~151!

Re(n1m11).0. The second expression follows from the first through the substitutionsZ851
1u(Z21), Z511t(z21). The last expression then follows from the replacementsu→1/u, t
→1/t, with a change in the phases so thatuarg(t21)u, uarg(u21)u<p in the final result.

As a final example, we obtain a double integral forQn
m usingK3

nP3
m21 and an input function

Qm21
m , ~119!. Using ~112! and ~101!, we find after some changes of variable that

e2 ipmQn
mS y

Ay221
D 5

1

~2p i !2 eipnAp
p

sinpn

G~n11!G~m11!

G~n2m11!G~m1 1
2!

22n21S 2

y21D 2n

3E
(`,11,`)

dt

~ t21!n11 S 11
y21

2
t D 21/2

3E
(0,11,0)

du

~u21!m um2 1/2S 11
y21

2
tuD m2 1/2

, ~152!

Rem.21
2.

X. REMARKS

The results obtained here demonstrate the utility of fractional operators in deriving rela
for the associated Legendre functionsFn

m . Standard discussions1–3 show that those functions giv
unitary representations of the Lie groups SO~2,1! or SO~3! for special values ofn andm, with the
groups typically acting as symmetry groups in applications where Legendre functions a
naturally. The operatorsM 6 in the Lie algebra of so~2,1! andK3 andP3 in its conformal extension
generate changes inn andm in integer steps when acting on those representations. We have
concerned here only with realizations of the algebras through differential operators, and are
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that context to define fractional operators which changen and m by arbitrary amounts. Thus
general functionsPn

m and Qn
m can be constructed as in~144! and ~146! starting with the trivial

realizationsP0
051, Q0

05 1
2 ln@(z11)/(z21)# or from other special cases.

The results on Bessel functions derived in Ref. 5 using fractional operator methods can a
derived as limiting cases of results here. The connection occurs geometrically through a W
Inönü contraction7 in which we consider infinitesimal transformations in SO~2,1! near the apex of
the hyperboloidH2 at z5coshu51. These are equivalent foru sufficiently small to E~2! trans-
formations in the tangent plane toH2 at u50. If we scale the angles withu→q/n and consider
the limit n→`, the associated Legendre equation~14!, reduces to the hyperbolic Bessel equati

S d2

dq2 1
1

q

d

dq
2

m2

q2 21DZm~q!50, ~153!

and the Bessel functions appear as confluent limits of the Legendre functions,

I m~q!5 lim
n→`

nmPn
2mS cosh

q

n D , Km~q!5 lim
n→`

n2me2 ipmQn
mS cosh

q

n D , ~154!

Ref. 9, 7.8~1,4!. In the same limit, the so~2,1! operatorsM 6 become multiples of the e~2! stepping
operatorsP6 used in Ref. 5,

M 152eif~]u1 i cothu ]f!→nS 2t]q1
t2

q
] tD5nP1 , ~155!

M 25e2 if~]u2 i cothu ]f!→nS 1

t
]u1

1

u
] tD5nP2 , ~156!

whereP5(P1 ,P2) is the translation operator in the plane. The generatorM3 of rotations around
the axis ofH2 is the same as the generatorJ3 of rotations in the tangent plane defined in Ref.
M35J3 . Upon scaling the group parameter or hyperbolic angleu in ~62!, with u→u/n, we find
that the fractional operatorsM 6

l transform as

M 6
l 5

1

2p i
eiplnlE

(`,01,`

du

ul11 e2uM6 /n ——→
n→`

nlP6
l . ~157!

The extra factors ofn are absorbed in the conformal limit, and relations given here for Lege
functions become relations for Bessel functions when the limit exists. As an example, the re
M 1

l tme2 ipmQn
m(coshu)5tm11e2ip(m1lQn

m1l(coshu), which gives~74! for Legendre functions, be
comesP1

l tmKm(q)5tm1lKm1l(q) for u5q/n, n→`, and gives

Kn1l~q!5
1

2p i
eiplG~l11!E

(`,01,`)

du

ul11 S q2

q212uq D m/2

Km~Aq212uq!. ~158!

This is equivalent to Eq. 3.44 of Ref. 5 or, for Rel,0, to the known fractional integral, Ref. 6
13.2~59!.

The methods discussed here can clearly be generalized to other special functions an
associated groups,1 for example, the Gegenbauer functions~this is where our development of th
fractional operators actually started!, Hermite or parabolic cylinder, Whittaker, Laguerre, a
Jacobi functions. There are also intriguing second-order differential operators which hav
properties of stepping operators in Lie algebras4,12–15 and can be exponentiated and integra
formally to obtain fractional operators, but the explicit action of the exponentials is not know
general.
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On certain integrals that appear in conformal field theory
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We consider several types of integrals that arise in the context of quantum field
theory that factor into a holomorphic and antiholomorphic piece. This gives rise to
a conformal block representations for some of the integrals. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1536020#

I. INTRODUCTION

In the framework of perturbative QCD at largeQ2 and lowx, the conformal~global! group of
transformations in the transverse coordinate space plays a crucial role. Indeed Lipatov a
collaborators1 have derived the master equation for the derivative of the gluon structure fun

with respect tox by resuming the leading (as(Q̄
2)log(1/x))n terms at fixedas(Q̄

2). This deriva-
tive is a convolution in the transverse space of the gluon structure function times a conf
invariant kernel~BKKL kernel!. All the relevant observables are then expressed as an expa
over the basisEn,n of the conformal eigenfunctions of this kernel. The integern is the conformal
spin andin corresponds to a continuous imaginary scaling dimension. In particular such e
sions exist for the elastic off mass shell gluon-gluon amplitude corresponding to the excha
the bare QCD hard Pomeron1,2 and the conformal invariant triple Pomeron vertex.3 For this
purpose one is led following Ref. 1 to consider the eigenfunctions in a mixed representation
is obtained by a Fourier transform in two dimensions ofEn,n. To be more specific, these eige
functions in the coordinate space are the product of a holomorphic times an antiholom
function. Recently, it has been shown2 that the answer is a sum of two products of a holomorp
times an antiholomorphic form. This was accomplished by noticing that the Fourier transfo
the solution of a set of two linear differential equations one with respect to the complex va
and the other with respect to the complex conjugate variable. This structure of conformal b
is already present in the computation of correlation functions in two dimensional confo
invariant quantum field theories.4 Various theorems have been established for an integrand
integrable singularities at 0, 1 and̀. In Ref. 2 a similar result seems to apply, as shown by
existence in this case of two differential equations. In the first part of this article we show tha
is not a sheer coincidence but that similar theorems can apply for the bidimensional F
transform. As far as the triple conformal invariant Pomeron is concerned, specific analytic
lations have been done recently.3 It turns out that this quantity is a peculiar case of a more gen
calculation involving a p-tuple conformally invariant integral in the complex space at a parti
complex value ofz ~resp z̄). The triple Pomeron corresponds to the casez51 and p53. Our
second part is the derivation of this very general result. The key point is to find the set o
linear differential equations with respect toz andz̄ of orderp11 which are obeyed by the p-tupl
integral. The final answer will thus be a sum of conformal blocks, as expected, each block
the product of one of thep11 solutions inz of the differential equation times the correspondi
one in z̄, in order to preserve the single valuedness of the solution. In our study, the syst

a!Electronic mail: geronimo@math.uc3m.es
b!Author to whom correspondence should be addressed. Electronic mail: navelet@spht.saclay.cea.fr
22930022-2488/2003/44(5)/2293/27/$20.00 © 2003 American Institute of Physics
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linear equations is the one obeyed by the hypergeometric functionp11Fp(z). The case of degen
eracy which is relevant for the calculation of the triple Pomeron vertex will be treated explicit
a forthcoming paper.

II. BIDIMENSIONAL FOURIER TRANSFORMS

We begin this section with the following,
Lemma 1: For0<x<y< p/2, let

I 15E
0

p/2S E
0

y

e2R(sin y2sin x)dxD dy.

ThenuI 1u<CeR
e21, for any 0,e<1.

Proof: It follows from the mean value theorem and Jordan’s lemma that for 0<x<y
< p/2 , siny2sinx> (2/p) (p/22y)(y2x), consequently,

E
0

y

e2R(sin y2sin x)dx<E
0

y

e2R ~2/p!(p/2 2y)(y2x)dx5
p

2R

12e2 ~2R/p!(p/2 2y)y

~p/22y!
.

Substituting the above result intoI 1 and then integrating by parts yields

I 1<E
0

p/2

lnS p

2
2yDe2 ~2R/p!(p/2 2y)yS p

2
22yDdy.

Sinceu(p/22y)e ln(p/22y)u<Ke,` for 0<y< p/2 , e.0, we see that

I 1<
p

2
KeE

0

p/2S p

2
2yD 2e

e2 ~2R/p!(p/2 2y)ydy

<
p

2
KeS p

4 D 2eE
0

p/4

e2(R/2 y)dy1
p

2
KeE

p/4

p/2S p

2
2yD 2e

e2 ~2R/p!(p/2 2y)ydy.

Thus extending the region of integration in the first integral to the full semi-axis, then doing
thing to the second integral after replacing the secondy in the exponential byp/4 and executing
the change of variablesy15p/22y yields

I 1<
p

2 S p

4 D 2e 2Ke

R
1

p

2
KeS 2

RD 12e

G~12e!,

which gives the result.
With the above lemma we can now factorize certain double integrals. We will con

integrals of the form

I 5E E
C\[0,`)

f ~ t !g~ t !d2t,

whereC\@0,̀ ) is the complex plane cut along the real axis from zero to infinity. We will make
following assumptions aboutf andg.

~i! I converges.
~ii ! f (t)5 f̃ (t)eiqt, g(t)5g̃(t)eiqt, qPR where f̃ (t) and g̃(t) are analytic fortPC\@0,̀ ).
~iii ! kf5u*0

` f (x)dxu,`, kg5u*0
`g(x)dxu,`.
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~iv! limR→` kg̃(R)50, limR→` kf̃(R)50, and for e small enough but positive
limR→` kg̃(R)kf̃(R)R11e50, where kg̃(R)5maxuP[0,2p)ug̃(Reiu)u and kf̃(R)
5maxuP[0,2p] u f̃ (Reiu)u.

~v! Finally, limr→0 kf̃(r )r 505 limr→0 kg̃(r )r .

With the above assumptionsI 5 limR→` I R where

I R5 E E
DR\[0,R)

f ~ t !g~ t !d2t,

with DR being the disk of radiusR. We proceed to cutDR\@0,̀ ) into the components indicated i
Fig. 1. If we choose the pointz1 as the base point, then Stoke’s Theorem implies that

I R5 lim
D→0

i

2 E]D11]D2

f 1~ t !g~ t !dt,

where]Di , i 51,2, indicate the boundary ofDi , i 51,2, respectively,f 1(t)5*G1,t
f (y)dy, G1,t

being the path followed from the pointz1 to t along the contour indicated on]D1 or ]D2 . Note
that the contribution toI R alongG8541 on ]D2 cancels with the contribution ofG1458 on ]D1 . The
integral

U E
G21

f 1~ t !g~ t ! dtU5U E
0

p/2

dfE
f

p/2

du f ~Reiu!g~Reif! ei (u2f)R2U
<kg̃~R!kf̃~R!R2E

0

p/2

dfE
f

p/2

due2qR(sin u2sin f),

which by Lemma 1 is bounded by

<kg̃~R!kf̃~R!R11e, ~1!

e small but positive. Since

FIG. 1. Contour forDR\@0,̀ ).
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E
G18

f 1~ t !g~ t ! dt5E
p/2

3p/2

dfE
p/2

f

du f ~Reiu!g~Reif!ei (u2f)R2,

an argument similar to the one above results in a bound similar to~1!. The integral

U E
G87

f 1~ t !g~ t ! dtU5U E
G87

~ f 71 f 62 f 71 f 32 f 61 f 22 f 31 f 12 f 2!g~ t !dtU,
where f i means that the base point is azi , is bounded by

<ckg̃~R!kf̃~R!R11e12ckfkg̃1crkf̃~r !kg̃~R!1ckf̃~R!kg̃~R!.

The above inequalities also show that

lim
D→0

U E
G63

f 1~ t !g~ t ! dtU50,

U E
G32

~ f 12 f 2!g~ t ! dtU<ckgkf̃~R!,

and

lim
D→0

U E
G76

f 1~ t !g~ t ! dt2~~ f 22 f 3!1~ f 62 f 7!1 f 7~ t !!g~ t ! dtU<ckgkf̃~R!.

This leads to the following.
Lemma 2: Suppose f and g satisfy (i)–(v). Then,

lim
R→`

UI R2 lim
D→0

S i

2 EG76

~~ f 22 f 3!1~ f 62 f 7!!g~ t ! dt1
i

2 EG32

f 2~ t !g~ t ! dt1
i

2 EG76

f 7~ t !g~ t ! dtD D
50.

We now consider the integral,

I 5E E
Ĉ
tg21 t̄ g̃21ei (q̄t1q t̄)d2t,

where Ĉ is the complex plane cut so as to make lnt well defined. By rotating and scaling th
coordinate system we may write

I 5q2g̃q̄2g Î ,

where

Î 5E E
C\[0,`)

tg21 t̄ g̃21ei (t1 t̄ )d2t.

In the above integral the branch of the logarithm selected is such that 0< argt,2p and lnt is
positive for t.1. With t5reiu set

f ~ t !5tg21eir cosu2r sin u,
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and

g~ t !5tgD 21e2 ir cosu1r sin u.

Thus we find

Î 5E
0

`E
0

2p

r g1g̃21ei (g2g̃)ue2ri cosudr du, q.0.

Since by stationary phase~Ref. 5, p. 101! *0
2pei (g2g̃)ue2ir cosudu5O(1/Ar ), we see thatÎ con-

verges uniformly for 0,Re(g1g̃),1
2 and thus defines, by Morera’s theorem, an analytic funct

of g and g̃ for the values of these variables restricted to this domain.
We now consider the integral

I R5 E E
DR\[0,R]

f ~ t !g~ t !d2t,

with 0,Re g,1
2, 0,Reg̃,1

2 and 0,Re(g1g̃),1
2. If f̃ (t)5tg21 andg̃(t)5tgD 21, the conditions

of Lemma 2 are satisfied and, taking into account the increment in the phase due to the c
find

Î 5 lim
R→`

I R5
i

2
~12e2p ig!e22p i g̃E

0

`

xg21eixdxE
0

`

yg̃21eiydy1
i

2
~e2p i (g2g̃)21!I ~g,g̃ !,

where

I ~g,g̃ !5E
0

`

dvE
v

`

duug21v g̃21ei (u1v).

With the first two integrals replaced by their representation@Ref. 6, Formula~33!, p. 12# in terms
of gamma functions we find

Î 5
i

2
~12e2p ig!e22p i g̃ei (g1g̃)p/2G~g!G~g̃ !1

i

2
~e2p i (g2g̃)21!I 1 .

The first term can be analytically extended tog,g̃Þ0,21,22, . . . . Toanalyze the second term w
break it up into three integrals over the following regionsR15$(v,u),0<v,1,v<u,1%, R2

5$(u,v),0<v,1,1<u<`% andR35$(u,v),1<v,`,v<u,`%. It is easy to see thatI 1 can be
analytically extended to gÞ0,21,22, . . . , g1g̃Þ0,21,22, . . . , and I 25*0

1v g̃eiv

3du*1
`ug21eiudu can be extended to the region Reg,1, g̃Þ0,21,22, . . . . For Reg,1,

uI 3u5U E
1

`

v g̃21eivE
v

`

ug21eiududvU<CE
1

`

vRe(g̃1g)22dv,

which converges uniformly for Re(g1g̃),1. ConsequentlyI 3 can be extended to Reg,1, Re(g
1g̃),1. This implies thatÎ can be extended to the region Re(g),1, Re(g1g̃),1, g,g̃Þ0,21,
22, . . . . For Reg.0 we can interchange the order of integration inI (g,g̃); then Reg.0, 0
,Re(g1g̃),1, implies that Reg̃,1 so that the above arguments can be reapplied. Consequ
we have shown the following

Theorem 1: For 0,Re(g1g̃),1, g,g̃Þ0,21,22, . . . , qÞ0,

I 5
i

2
~12e2p ig!e22p i g̃q2g̃q̄2gei (g1g̃)p/2G~g!G~g̃ !1

i

2
~e2p i (g2g̃)21!I ~g,g̃ !.
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In particular, if g̃2g5n, n an integer, the integral becomes

I 5sin~pg!einp/2q2g̃q̄2gG~g!G~g̃ !.

The next integral we will consider arises in the context of QCD and is given by

I 5E E d2z
ei /2(qz̄1q̄z)

~z22 r2/4!u11/2~ z̄22 r̄2/4! û11/2,

whereu52v11 iv2 , û5 v̂11 i v̂2 , and Re(qr̄)Þ0. With an appropriate rotation and scaling th
above integral becomes

I 5
1

~r2/4!u~ r̄2/4! û I 1

with

I 15E E
Ĉ

d2z ei /2(q1z̄1q̄1z)

~z221!u11/2~ z̄221! û11/2,

andq15q r̄/4. With this notationĈ in the above integral is the complex plane cut from@1,̀ eif)
and from (2`e2 if,21# wheref5arg(q1). With the above cuts we use the branch of the log
rithm so that the phase ofz221 is equal to zero forz.1 andp for 21,z,1 ~see Ref. 7, p. 166!.
With z5reiu the argument of the exponential gives (i /2) r uq1ucos(u2f). Thus elementary meth
ods including stationary phase~Ref. 5, p. 101! shows that the above integral is uniformly conve
gent and defines by Morera’s theorem an analytic function in the variablesu and û for 2 1

4

,Re(u1û),1 andq1Þ0. Furthermore, in this region the integral is also continuous inq1 . We
restrictu, û andq1 to the region2 1

2,Re u,Re û,1
2, Req1.0 and consider the integral

I R5E E
D̂R

d2zei /2(q̄1z1q1z̄)

~z221!u11/2~ z̄221! û11/2 .

Using Stoke’s theorem we integrate over]D1 and ]D2 given in Fig. 2 with f̃ 5(z221)2(u11/2)

and g̃5(z221)2( ū̂11/2) to find

I R5
i

2 R
]D11]D2

f 1~z!g~z! dz.

The conditions onu and û are such that hypotheses~i!, ~ii !, ~iv!, and~v! of Lemma 2 follow
almost immediately. To verify~iii ! for the above functions we begin by showing thatu*G45

g(z)dz̄u
wherez511reif is finite. Observe that

U E
0

b

ḡdz̄U,C1E
0

b

r 2Re û2 1/2dr,`, Reû,
1

2
,

and using integration by parts that

U E
b

`

g~z!dz̄U,C2

b2(2Reû11)

uq1u
,`, 2

1

2
,Reû,
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for constantsC1 andC2 independent ofR. Applying the above reasoning tof on G45 shows that
for 2 1

2,Re u, Re û, 1
2, ~iii ! is satisfied on this part of the contour. A similar argument and

fact thatz appears as a single valued function in the exponential shows thatu*G23
g(z)dz̄u and

u*G23
f (z)dzu are also finite. OnG109, with the phase ofz221 given as above, the previou

arguments can be applied to show that the integralsu*G109)
g(z)dz̄u and u*G109

f (z)dzu which are
finite. Similar arguments can be applied to the integrals onG87. Thus Lemma 2 implies that

FIG. 2. Contour for Example 2.

FIG. 3. Contour for Eq.~26!.
                                                                                                                



-

2300 J. Math. Phys., Vol. 44, No. 5, May 2003 J. S. Geronimo and H. Navelet

                    
I 5 lim
R→`

i

2 F E
G54

~ f 22 f 5!g~z!dz̄1E
G54

f 5g~z!dz̄1E
G32

f 2g~z!dz̄G
1 lim

R→`

i

2 F E
G87

~ f 102 f 7!g~z!dz̄1E
G87

f 7g~z!dz̄1E
G109

f 10g~z!dz̄G .
From Ref. 7, p. 167, Eq.~6!, with q̄15uq1ue2 if,

lim
R→`

~ f 52 f 2!5

ipGS 1

2D ~ q̄1/2!u

GS u1
1

2D H2u
(1)~ q̄1!,

and

lim
R→`

~ f 72 f 10!5

ipGS 1

2D ~ q̄1/2!u

GS u1
1

2D H2u
(2)~ q̄1!.

Likewise, since2 1
2,Reu, Reû,1

2,

lim
R→`

E
G45

g~z!dz̄5E
0

` eiq̂1eif(11re2 if)e2 if

~re2 if! û1 1/2~21re2 if! û1 1/2dr

52

e2 i p/2GS 1

2DGS 1

2
2ûD ~q1/2! û

2
Hû

(1)~q1!,

and

lim
R→`

E
G87

g~z!dz̄5

eip/2GS 1

2D ~q1/2! ûGS 1

2
2ûD

2
Hû

(2)~q1!,

so that

I 15
ip

4

G~1/22û!

G~1/21u! S q1

2 D ûS q̄1

2 D u

3@H2u
(1)~ q̄1!Hû

(1)~q1!2H2u
(2)~ q̄1!Hû

(2)~q1!#

14 sinp~ û2u!sin~p~ û2u!22uq1ucosf!eif(û2u)I ~ uq1u!, q1Þ0, ~2!

where

I ~ uq1u!5E
0

`E
y

` ei uq1u(r 1y)

~r ~reif12!u11/2!~y~ye2 if12! û11/2!
dr dy.

Using an argument similar to the one given above but more tedious it can be shown thatI (q̂1) has
an analytic extension2 1

4,Reu1Reû,1, u,ûÞ 1
21n,n50,1,. . . . Thus we have shown the fol

lowing.
Theorem 2: For u52v11 iv2 , û5v11 iv2 , u,ûÞ 1

21n,n50,1,. . . , I 1 is given by Eq. (2).
In particular, if v15n/2, v2Þ0, then
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I 15
ip

4

G~ 1
22û!

G~ 1
21u!

S q1

2 D ûS q̄1

2 D u

@H2u
(1)~ q̄1!Hû

(1)~q1!2H2u
(2)~ q̄1!Hû

(2)~q1!#, q1Þ0. ~3!

III. A p-UPLE CONFORMAL INTEGRAL AND APPLICATIONS

We now consider the integral

I p11~a0 , ai , bi ; ã0 , ãi , b̃i ; z,z̄!

5S 1

2i D
pE )

i 51

p

d2zi ~zi !
ai21~ z̄i !

ãi21~12zi !
bi2ai21~12 z̄i !

b̃i2ãi21

3S 12S )
i 51

p

zi D zD 2a0S 12S )
i 51

p

z̄i D z̄D 2ã0

. ~4!

We will analyze the case whenai ,ãi ,bi and b̃i obey the following conditions:
Condition C:For i 50,...,p and j 51,...,p,

~a! bj ,b̃ j ,ai ,ãi¹Z.
~b! ai2aj ,ãi2ã j ,biÞ02bj ,b̃iÞ02b̃ j , iÞ j ¹Z.
~c! ai2bj ,ãi2b̃ j¹Z.
~d! ai2ãi ,bj2b̃ jPZ.

With aj5(a1 ,...,aj ), bj5(b1 ,...,bj ), ã j5(ã1 ,...,ã j ), b̃ j5(b̃1 ,...,b̃ j ), and I 1(a0 ,ã0 ,z,z̄)
5(12z)2a0(12 z̄)2ã0 the above integral can be recast as the iterated integral,

I p11~a0 , ap, bp; ã0 , ãp, b̃p; z,z̄!

5S 1

2i D E d2zp~zp!ap21~12zp!bp2ap21~ z̄p! ãp21

3~12 z̄p! b̃p2ãp21I p~a0 , ap21, bp21; ã0 , ãp21,b̃p21; z zp ,z̄ zp̄!. ~5!

The computation of this integral has already been done forp50 andp51 by various authors4

in the case whenai5ãi , bi5b̃i anda05ã0 . The result is a sum of a product of hypergeomet
functions ofz with its antiholomorphic part of argumentz̄ exhibiting the conformal block struc
ture. Lipatov1 has given the general form forp51 without the restrictions on theãi , ã0 , b̃i .

We propose to give the exact analytic structure ofI p11 for any positive integer value ofp by
showing thatI p11 obeys two linear differential equations of orderp11, namely,

Oz
p11~a0 , ap, bp!I p11~a0 , ap, bp; ã0 , ãp, b̃p; z, z̄!50,

and

Oz̄
p11~ ã0 , ãp, b̃p!I p11~a0 , ap, bp; ã0 , ãp, b̃p; z, z̄!50,

whereOz
p11 ~resp.Oz̄

p11) is the differential operator of orderp11 defining the hypergeometri

function p11Fp(a0 , ap, bp, z) @~resp.! p11Fp(ã0 , ãp, b̃p, z̄)]. In particular,

Oz
p115

]

]z)
i 51

p S z
]

]z
1bi21D2)

i 50

p S z
]

]z
1ai D , ~6!
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and

Oz̄
p115

]

] z̄)
i 51

p S z̄
]

] z̄
1b̃i21D2)

i 50

p S z̄
]

] z̄
1ãi D . ~7!

The general solution of this system of differential equations is

I p11~z, z̄!5 (
i , j 50

p

l i j
(p11) ui

p11 ~z! ũ j
p11 ~ z̄!,

whereui
p11(a0 , ap, bp, z) @resp.ũ j

p11(ã0 , ãp, b̃p, z̄)] is any of thep11 independent so-
lutions of the differential equation,

Oz
p11w j~z!50, j 50,..., p,

namely,

u0
p11~a0 , ap, bp, z!5p11Fp~a0 , ap, bp, z!,

and

uj
p11~a0 , ap, bp, z!5z12bj

p11Fp~a02bj11, ai2bj11, 11bi2bj , 22bj ; z!. ~8!

Since the solution we are looking for has to be monovalued inzz̄, the l i j ’s have to be
diagonal provided none of the differencesbi2bj is an integer. Thus the general solution reduc
to

I p11~a0 , ap, bp; ã0 , ãp, b̃p; z,z̄!

5(
j 50

p

l j
p11~a0 , ap, bp; ã0 , ãp, b̃p!uj

p11~a0 , ap, bp; z!ũ j
p11~ ã0 , ãp, b̃p; z̄!

~9!

which exhibits a conformal block structure.
The p11 unknown constantsl j (a0 , ap, bp, ã0 , ãp, b̃p) are readily obtained by identi

fying the different behavior of the solutionI p11 nearz50.
At this stage we consider a generalized Euler function,4

Ba, b; ã, b̃5
1

2i E d2t ta21~12t !b21~ t̄ !ã21~12 t̄ !b̃21,

which is defined and analytic for Re(a1ã).0, Re(b1b̃).0, and Re(a1ã1b1b̃),2. Using
arguments similar to those given in the previous section the above integral can be evaluated
for a2ã, b2b̃ integer,

Ba, b; ã, b̃5
G~a!G~b!

G~a1b!

G~ã!G~b̃ !

G~ã1b̃ !

sinpã sinpb̃

sinp~ã1b̃ !
. ~10!

Note that sincea2ã andb2b̃ are integer,

sinpã sinpb̃

sinp~ã1b̃ !
[

sinpa sinpb

sinp~a1b!
.
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To find l0
p11 , setz50 in ~4! in which case the integral is readily obtained since it factoriz

Thus,

l0
p11~a0 , ap, bp, ã0 , ãp, b̃p!5)

i 51

p

Bai , bi2ai ; ãi , b̃i2ãi
, ~11!

which is a0 , ã0 independent.
To find l j

p11 , setzj5@)k51,kÞ j
p zkz#21t and observe that

dzj ~zj !
aj 21~12zj !

bj 2aj 21S 12S )
i 51

p

zi D zD 2a0

5z12bj~dt! taj 21~12t !2a0S S )
k51,kÞ j

p

zkD z2t D bj 2aj 21

)
k51,kÞ j

p

~zk!
12bj .

In a neighborhood ofz50 we find

I p11;z12bj~ z̄!12b̃ j S 1

2i D
pE d2t tbj 22~12t !2a0 t̄ b̃ j 22~12 t̄ !2ã0

3 )
k51,kÞ j

p

d2zk~zk!
ak2bj~12zk!

bk2ak21~ z̄k!
ãk2b̃ j~12 z̄k!

b̃k2ãk21~21!bj 2b̃ j 2aj 1ã j .

Thus,

l j
p11~a0 ,ap,bp,ã0 ,ãp,b̃p!5~21!bj 2b̃ j 2aj 1ã jBbj 21, 2a011;b̃ j 21, 2ã011

3 )
i 51,iÞ j

p

Bai2bj 11, bi2ai ;ãi2b̃ j 11,b̃i2ãi
. ~12!

We now give some lemmas which will help prove thatI p11 has the form indicated above.
Define

H j
p~a0 , ap, bp, z, zp!5~zp!ap21~12zp!bp2ap21uj

p~a0 , ap21, bp21, zzp!,

and

K j
p~a0 , ap, bp, z, zp!5~zp!ap21~12zp!bp2ap11uj

p~a0 , ap21, bp21, zzp!.

Lemma 3: Suppose condition C is satisfied. Then,

Oz
p11 H0

(p)~a0 , ap, bp, z, zp!52 )
i 50

p21

~ai !
]

]zp
K0

p~a011, ap11, bp, z, zp!, ~13!

and for j51,...,p21,

Oz
p11 H j

(p)~a0 , ap, bp, z, zp!52 )
i 50

p21

~ai2bj11!
]

]zp
K j

p~a011, ap11, bp, z, zp!.

~14!

Proof: Since
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S z
]

]z
1ai D p11Fp~ai , bi , z!5ai p11Fp~ai11, bi , z!,

S z
]

]z
1bi21D p11Fp~ai , bi , z!5~bi21! p11Fp~ai , bi21, z!,

and

]

]z p11Fp~ai , bi , z!5a0)
k51

p
ak

bk
p11Fp~ai11, bi11, z!,

Eq. ~12! now follows after some algebra. Equation~13! similarly follows from the identities

S z
]

]z
1ai D z12bj

p11Fp~ai2bj11, 11bi2bj ,22bj z!

5~ai2bj11!z12bj
p11Fp~ai2bj12, 11bi2bj ,22bj , z!,

S z
]

]z
1bi21D z12bj

p11Fp~ai2bj11, 11bi2bj ,22bj , z!

5~bi2bj !z
12bj

p11Fp~ai2bj11, bi2bj ,22bj z!,

S z
]

]z
1bj21D z12bj

p11FpS ~ai2bj11, 11bi2bj ,22bj , z!

5S ~a02bj11!)k51
p ~ai2bj11!

~22bj !)k51
p ~bi2bj11!

D z22bj
p11Fp~ai2bj12, bi2bj12,32bj z!,

and

]

]z
z12bj

p11Fp~ai2bj11, bi2bj11,22bj , z!

5~12bj !z
2bj

p11Fp~ai2bj11, bi2bj11,12bj z!.

h

Let Î p11 be given for 0,uzu,1 by Eqs.~9!, ~11!, and~12! where we assume thatap andbp

satisfy condition C. Since for 0,uzu,1 the hypergeometric functions inÎ p11 are defined by their
series representation we seek a continuation ofÎ p11 to uzu.1. It follows from the Mellin-Barnes
representation forp11Fp(a0 ,ap,bp,z) ~Ref. 8, p. 149! that for 0,arg z,2p

p11Fp~a0 ,ap,bp,z!5
) i 51

p G~bi !

) i 50
p G~ai !

(
j 50

p

G~aj !

)
kÞ j
k50
p

G~ak2aj !

)k51
p G~bk2aj !

S eip

z D aj

3 p11FpS aj ,11aj2bi ,11aj2ai ,
1

zD . ~15!

The following lemma will be useful in what follows:
Lemma 4: Suppose the points xi and yj , i 50,...,p, j 51,...p, are distinct and none are equa

to one. Then,
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Bn,k5)
i 51

p
12xi

12yi
1(

j 51

p
~12xn!~12xk!~x02yj !~yj2xj !

~12yj !~12x0!~yj2xn!~yj2xk!
)
i 51
iÞ j

p
~xi2yj !

~yi2yj !
5

un) i 50
iÞ j

p
~uk2ui !

u0) i 51
p ~uk2zi !

dn,k ,

~16!

where zk5yk21 and ui5xi21.
Proof: Bn,k is equal to

Bn,k5)
i 51

p
ui

zi
1(

j 51

p
unuk~u02zj !~zj2uj !

zju0~zj2un!~zj2uk!
)
i 51
iÞ j

p
~ui2zj !

~zi2zj !
.

Write Bn,k)1
p zi /ui 5Sn,k , where

Sn,k512l(
j 51

p
~zj2u0!~zj2uj !

zj~zj2un!~zj2uk!
)
i 51
iÞ j

p
~ui2zj !

~zi2zj !
,

andl5 (ukun /u0) ) i 51
p zi /ui . The function

f ~z!5l
~z2u0!

z~z2un!~z2uk!
)
i 51

p
~z2ui !

~z2zi !

behaves asz22 for largez, and by hypothesis has simple poles atz5zj andz50. If n5k, then
there is one extra simple pole atz5uk . Cauchy’s theorem says the sum of the residues is zero
the evaluation of the residues gives the result. h

With s(ai)5sinpai we now prove the following.
Lemma 5: Suppose a0 , ã0 , ap, ãp, b̃p and bp satisfy conditionC. Then

Î p11~z,z̄!5(
j 50

p

Jj j e
ip(aj 2ã j )z2aj z̄2ã j

p11FpS aj ,aj2bi11,11aj2alÞ j ,
1

zD
3 p11FpS ã j ,ã j2b̃i11,11ã j2ãlÞ j ,

1

z̄D ,

whereJj j is given by

Jj j 5
s~ b̃ j2ã j !

s~ ã02ã j !
Baj ,a02aj ,ã j ,ã02aj)i 50

iÞ j

p

Bbi2ai ,ai2aj ,b̃i2ãi ,ãi2ã j
, j Þ0 ~17!

and

J005)
i 51

p

Bbi2ai ,ai2a0 ,b̃i2ãi ,ãi2ã0
. ~18!

A heuristic argument for the above formula is given in Appendix A
Proof: From Eq.~15! it follows that
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l0
p11

p11Fp~a0 ,ap,bp,z! p11Fp~ ã0 ,ãp,b̃p; z̄!

5)
i 51

p
s~ ãi !s~ b̃i2ãi !

s~ b̃i !
S (

j 50

p

c0 j
p S eip

z
D aj

p11FpS aj ,11aj2bi ,11aj2alÞ j ;
1

z
D D

3 S (
j 50

p

c̃0 j
p S e2 ip

z̄
D ã j

p11FpS ã j ,11ã j2b̃i ,11ã j2ãlÞ j ;
1

z̄
D D ,

where

c00
p 5)

i 51

p

B~bi2ai ,ai2a0!

and

c0 j
p 5B~aj ,a02aj !)

i 51
iÞ j

p

B~bi2ai ,ai2aj !,

with B(a,b)5 G(a)G(b)/G(a1b). The coefficientc̃0k
p is obtained fromc0k

p by replacinga0 , ap

andbp by ã0 , ãp and b̃p, respectively. Likewise, we find

(
j 51

p

l j
p11z12bJz̄12b̃ j

p11Fp~al2bj11,11bi2bj ,22bj ,z!

3 p11FpS ãl2b̃ j11,11b̃i2b̃ j ,22b̃ j ;
1

z̄D
5(

j 51

p

~21!aj 2ã j
s~ b̃ j21!s~12ã0!

s~ b̃ j2ã0!
3)

i 51
iÞ j

p
s~ ãi2b̃ j11!s~ b̃i2ã j !

s~ b̃i2b̃ j11!

3S (
k50

p

cjk
p S eip

z D ak

p11FpS ak,11ak2bi ,11ak2alÞk ;
1

zD D
3S S (

k50

p

c̃jk
p S e2 ip

z̄ D ãk

p11FpS ãk,11ãk2b̃i11ãk2ãlÞk ;
1

z̄D D ,

with

cj 0
p 5

G~22bj !G~bj21!

G~bj2aj !G~aj2bj11! )i 51

p

B~bi2ai ,ai2a0!,

and

cjk
p 5

G~22bj !G~bj21!

G~bj2a0!G~a02bj11!
B~12a0 ,a02ak!)

i 51
iÞk

p

B~bi2ai ,ai2ak!
s~bj2aj !

s~bj2ak!
.

With the simplifications
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s~ ãi2b̃ j11!

s~ b̃i2b̃ j11!
5

s~ ãi2b̃ j !

s~ b̃i2b̃ j !
,

s~ b̃ j21!G~22b̃ j !G~ b̃ j21!

s~ b̃ j2ã0!G~ b̃ j2ã0!G~ ã02b̃ j11!
51,

s~12ã0!

s~bj21!
52

s~ ã0!

s~bj !
,

and

B~12a0 ,a02al !5B~al ,a02al !
s~al !

s~a0!
,

the coefficientJnk , nÞ0Þk, of

S eip

z D anS e2 ip

z̄ D ãk

p11FpS an ,an2bi11,11an2alÞn

1

zD
3p11FpS ãk ,ãk2b̃i11,11ãk2ãlÞk ;

1

z̄D
becomes

Jnk5)
i 50
iÞn

p

B~bi2ai ,ai2an!)
i 50
iÞk

p

B~ b̃i2ãi ,ãi2ãk!

3)
i 51

p

sinp~ b̃i2ãi !B~an ,a02an!B~ ãk ,ã02ãk!Ĵnk , ~19!

where

J̃nk5)
i 51

p
s~ ãi !

s~ b̃i !
2(

j 51

p

~21!aj 2ã j
s~bj2a0!s~an!s~ ãk!s~bj2aj !

s~bj !s~a0!s~bj2an!s~ b̃ j2ãk!
3 )

p51
iÞ j

p
s~ ãi2b̃ j !

s~ b̃i2b̃ j !
. ~20!

Now from the fact thatai2ãi andbi2b̃i differ by integers we find

~21!aj 2ã j
s~bj2a0!s~an!s~bj2aj !

s~bj !s~a0!s~bj2an!
52

s~ b̃ j2ã0!s~ ã0!s~ ãn!s~ ã j2b̃ j !

s~ b̃ j !s~ ã0!s~ b̃ j2ãn!

so that

J̃nk5)
i 51

p
s~ ãi !

s~ b̃ j !
1(

j 51

p
s~ b̃ j2ã0!s~ ãn!s~ ãk!s~ ã j2b̃ j !

s~ b̃ j !s~ ã0!s~ ãn2b̃ j !s~ ãk2b̃ j !
)
i 51
iÞ j

p
s~ ãi2b̃ j !

s~ b̃i2b̃ j !
. ~21!

For n50Þk the coefficientJ0k of

S eip

z D a0S e2 ip

z̄ D ãk

p11FpS a0,11a02bi ,11a02ai ,
1

zD p11FpS ãk ,11ãk2b̃i ,11ãk2ãlÞk ,
1

zD
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becomes, with the substitutions above,

J0,k5)
i 51

p

B~bi2ai ,ai2a0!)
i 51
iÞk

p

B~ b̃i2ãi ,ãi2ãk!B~ ãk ,ã02ãk!Ĵ0,k ,

whereJ̃0,k is given by~19! above withn5k. For k50 we find

J0,05)
i 51

p

B~bi2ai ,ai2a0!)
i 51

p

B~ b̃i2ãi ,ãi2ã0!)
i 51

p

s~ b̃i2ãi !

3F)i 51

p
s~ ãi !

s~ b̃i !
2(

j 51

p
s~ ã0!s~ b̃ j2ã j !

s~ b̃ j !s~ b̃ j2ã0!
)
i 51
iÞ j

p
s~ ãi2b̃ j !

s~ b̃i2b̃ j !
G . ~22!

With the substitutionsyj5exp22ipbj , ui5exp22ipai and Bn,k5Jn,k) i
p (expipai)/(expipbi) the

result now follows from Lemma 4 and the symmetry betweenJn,0 andJ0,n . h

Define

cp5(
i 51

p

bi2(
i 50

p

ai ,

and c̃p as above withbi andai replaced byb̃i and ãi , respectively.
Lemma 6: Suppose condition C is satisfied, cp21 is not an integer, Re(cp211c̃p21).p21,

Re(ap1ãp),0, Re(bp1b̃p2ap1ãp),0, Re(bj1b̃j2ap2ãp),2, andRe(bp1b̃p2aj2ãj),2. Then for
argzÞ0,

E
G
dz̄pa0)

i 50

p21

ai K0
p~a011,ap11,bp,z,zp!H0

p~ ã0 ,ãp,z̄,z̄p!

1 (
j 51

p21

)
i 50

p21

~ai2bj11! K j
p~a011,ap11,bp,z,zp!H j

p~ ã0 ,ãp,b̃p,z̄,z̄p!50, ~23!

whereG5@0,̀ exp2if)ø@1,̀ ), f5arg(z).
Proof: We useG ~see Fig. 3! as cuts forza and (12z)a choosing the determination for bot

so that both give positive reals when their arguments are large positive real numbers. We be
breaking up the above integral into pieces for whichuzzpu,1 anduzzpu.1. For uzzpu.1 we use
the fact that

)
i 50

p21

ail0
p21~a0 ,ap21,bp21,ã0 ,ãp21,b̃p21!

5 )
i 51

p21

~bi2ai21!l0
p21~a011,ap2111,bp21,ã0 ,ãp21,b̃p21!, ~24!

and

)
i 50

p21

~ai2bj11!l j
p21~a0 ,ap21,bp21,ã0 ,ãp21,b̃p21!

5a0)
i 51

p21

~bi2ai21!l j
p21~a011,ap2111,bp21,ã011,ãp2111,b̃p21!, ~25!
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and Lemma 5 to represent the integrand in~22! for uzzpu.1. The conditions ona0 ,...,ap ,
b1 ,...,ap , ã0 ...,ãp , andb̃1 ,...,b̃p imply that the above integral is convergent forzp in a neigh-
borhood of`,0, and 1. Furthermore, with conditionC and the condition oncp21 the hypergeo-
metric functions in the integrand behave aspFp21(a0 ,ap,bp,z);(12z)cp21 ~Ref. 9! so that the
integral is convergent forzzp;1. The last part of condition C insures that the contributions al
the two sides of each cut cancel out giving the result. h

We now prove our main result.
Theorem 3: Suppose that condition C is satisfied, cp21 is not an integer, Re(cp211c̃p21)

.p21, Re(ap1ãp).0, Re(bp1b̃p2ap2ãp).0, Re(bj1b̃j2ap2ãp),2, and Re(bp1b̃p2aj2ãj),2.
Then Ip11 is given by Eq. (8) withl j

p11 given by (9) and (10). I p11 may be extended using th
above representation so that only condition C is satisfied by the parameters.

Proof: ConsiderI p11 for p51. The result is already known4 and we will recover it. In this
case,

I 25E E
C\G

d2z1

2i
z1

a121
~12z1!b12a121~12zz1!2a0z1̄

ã121~12 z̄1! b̃12ã121~12 z̄z̄1!2ã0

5E E
C\G

d2z1

2i
z1

a121
~12z1!b12a121z1̄

ã121~12 z̄1! b̃12ã121I 1~a0 ,ã0 ,zz1 ,z̄z̄1!, ~26!

whereG5@0,̀ exp2if)ø@1,̀ ), f5arg(z). ~See Fig. 3.! We will use the determination given in
the above lemma forza. We suppose that argzÞ0. If Re(a11ã1).0, Re(b11b̃12a12ã1).0,
Re(a01ã0),0, and Re(b11b̃12a02ã0),2, the above integral converges uniformly and absolut
on compact subsets of thez plane that exclude the real axis and defines an analytic function o
a andb variables. Utilizing the uniform convergence of the above integral and the continui
the integrand it is not difficult to see that the integral is continuous inz. Furthermore, the integra
with the integrand differentiated once and the integral with the integrand differentiated twice
respect toz also converge uniformly and absolutely, and are continuous functions inz. Switching
to polar coordinates we find~suppressing the dependence on the parametersa andb)

I 25S E
0

2f

1E
2f

2p D E
0

` r 1dr1 df1

2i
f ~reif,re2 if,r 1eif1,r 1e2 if1!

5S E
0

2f

1E
2f

2p DF~reif,re2 if,f1!df1 ,

wherez5reif andzi5r 1eif1. Thus

]

]z
I 25

1

2 S ]

]r
2

i

r

]

]f D I 25
i

2r
~F~reif,re2 if,2f2!2F~reif,re2 if,2f1!!

1S E
0

2f

1E
2f

2p D ]

]z
F~z,z̄,f1!df1 . ~27!

Here F(reif,re2 if,2f2)5 limd→0 F(reif,re2 if,2f2d) and F(reif,re2 if,2f1)
5 limd→0 F(reif,re2 if,2f1d) where the limits exist due to the continuity properties discus
above. Part~d! of condition C shows that the first term on the right hand side of the second eq
in ~27! is equal to zero. To justify the interchange of differentiation and integration we note
for f1 restricted so thate<f1<2f2d, and 2f1d<f1<2p2e, e,d.0, and r 1.e,

za121z̄1
2ã121(12 z̄1) b̃12ã121(12z1)b12a121I 1(a0 ,ã0 ,zz1 ,z̄z̄1) is continuous and has a continu

ous partial with respect toz. Furthermore, from the uniform convergence of the integral
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E E
C\G

r 1dr1 df1z1
a121z̄1

ã121
~12 z̄1! b̃12ã121~12z1!b12a121

]I 1

]z
~a0 ,ã0 ,zz1 ,z̄z̄1!

the standard theorem of interchanging integration and differentiation@Titchmarch, p. 59# may be
applied. Thus

]

]z
I 25

1

2i E E
C\G

d2z1z1
a121z̄1

ã121
~12 z̄1! b̃12ã121~12z1!b12a121

]I 1

]z
~a0 ,ã0 ,zz1 ,z̄z̄1!.

The same reasoning may be applied to show that

]2

]z2 I 25
1

2i E E
C\G

d2z1z1
a121z̄1

ā121
~12 z̄1! b̄12ā221

]2

]z2 I 1~a0 ,ā0zz1 ,z̄z̄1!,

and from~12! above we find

Oz
2 I 2~z, z̄!52a0

1

2i E d2z1

]

]z1
K0

(1)~a011, a111, b1 , z, z1!H0
(1)~ ã0 , ã1 , b̃1 , z̄, z̄1!.

Therefore Lemma 3, the Stoke’s theorem and Lemma 6 imply

Oz
2I 25

1

4 EG
K0

(1)~z,z1!H~ z̄,z̄1!dz̄150.

A similar discussion interchangingz,a0 , a1 , andb1 , with z̄, ã0 , ã1 , andb̃1 , respectively, shows
that Oz̄

2I 250 so thatI 2 has the representation,

I 25 (
i 50,j 50

1

b i , jui
2~a0 ,a1 ,b1 ,z!uj

2~ ã0 ,ã1 ,b̃1 ,z̄!,

writing

I 25E E
C\G

uz1u<1

d2z1

2i
z1

a121
~12z1!b12a121~12zz1!2a0z̄1

ã121~12 z̄1! b̃12ã121~12 z̄z̄1!2ã0

1E E
C\G

uz1u.1

d2z1

2i
z1

a121
~12z1!b12a121~12zz1!2a0z̄1

ã121~12 z̄1! b̃12ã121~12 z̄z̄1!2ã05I 1
21I 2

2 .

~28!

With the above constraints on the parameters we see that in a neighborhood ofz50, I 2
1;K where

K is a constant independent ofz and z̄. The change of variablest5zz1 in the second integra
yields
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I 2
25z12b1z̄12b̃1~21!b12b̃12a11ã1 E E

C\[0`)
u t/z u.1

d2t

2i
tb122S 12

z

t
D b12a121

~12t !2a0 t̄ b̃122

3S 12
z̄

t̄
D b̃12ã121

~12 t̄ !2ã0.

Consequently the dominated convergence theorem shows that

lim
z→0

zb121z̄b̃121I 2
25l1

2 .

Since the only constraints onb1 and b̃1 are those given above and in condition C the previo
discussion implies thatb0,1

0 505b1,0
0 andb1,15l1

2 . We also find from the dominated convergen
theorem that limz→0 I 25l0

2. From the previous discussion the solution reads

I 2~a0 , a1 , b1 , ã0 , ã1 , b̃1 , z, z̄!

5l0
(2)~a1 , b1 ; ã1 , b̃1! 2F1~a0 , a1 , b1 ; z! 2F1~ ã0 , ã1 , b̃1 ; z̄!

1l1
(2)~a0 , a1 , b1 , ã0 , ã1 , b̃1!~z!12b1~ z̄!12b̃1

2F1~a02b111, a12b111, 2

2b1 ; z! 2F1~ ã02b̃111, ã12b̃111, 22b̃1 ; z̄!,

l0
(2)~a1 , b1 , ã1 , b̃1!5

G~a1!G~b12a1!

G~b1!

G~ ã1!G~ b̃12ã1!

G~ b̃1!

sinpã1 sinp~ b̃12ã1!

sinpb̃1

and

l1
(2)~a0 , a1 , b1 , ã0 , ã1 , b̃1!

5~21!b12b̃11a12ã1
G~b121!G~2a011!

G~2a01b1!

G~ b̃121!G~2ã011!

G~2ã01b̃1!

sinpb1 sinp~2a0!

sinp~b12a0!

in agreement with previous results. This proves the result forp51 with Re(a11ã1).0, Re(b1

1b̃12a12ã1).0, Re(a01ã0),0, Re(b11b̃12a02ã0),2 and argzÞ0. We may now extendI 2 us-
ing the above representation so that only condition C is satisfied by the parameters.

Suppose now that

I p~a0 , ap21, bp21, ã0 , ãp21, b̃p21, z, z̄!

5 (
j 50

p21

l j
(p)~a0 , ap21, bp21, ã0 , ãp21, b̃p21!uj

p~a0 , ap21, bp21, z!

3 ũ j
p~ ã0 , ãp21 b̃p21, z̄!.

Then
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I p11~a0 , ap, bp, ã0 , ãp, b̃p, z, z̄!

5 (
j 50

p21

l j
(p)~ ã0 , ãp21, b̃p21, ã0 , ãp21, b̃p21!

1

2i

3EE
C\G

d2z1~z1!ap21~12z1!bp2ap21uj
p~a0 , ai , bi , zz1!~ z̄1! ãp21

3~12 z̄1! b̃p2ãp21uj
p~ ã0 , ãp21, b̃p21, z̄z̄1!.

The conditions imposed above, Lemma 5, and the behavior ofuj
p in the neighborhood of 0, 1, an

` imply that the above integrals converge uniformly and absolutely on compact subsets ofC\@0,`).
Thus by Morera’s theoremI p11 is analytic in the parametersa0 ,ap,bp, ã0 ,ãp, and b̃p in the
region specified. The same is true withuj

p replaced by (]/]z) uj
p , ..., (]p11/]zp11) uj

p . Repeating
the argument above used forI 2 and using the last part of condition C yields

] i

]zi

1

2i E E
C\G

d2z1F j
p~z,z̄,z1 ,z̄1 ,a0 , ap, bp,ã0 , ãp, b̃p!

5
1

2i E E
C\G

d2z1

] i

]zi F j
p~z,z̄,z1 ,z̄1 ,a0 , ap, bp,ã0 , ãp, b̃p!,

where

F j
p~z,z̄,z1 ,z̄1 ,a0 , ap, bp,ã0 , ãp, b̃p!

5~z1!ap21~12z1!bp2ap21uj
p~a0 , ai , bi , zz1!

3~ z̄1! ãp21~12 z̄1! b̃p2ãp21uj
p~ ã0 , ãp21, b̃p21, z̄z̄1!.

Applying Lemma 3, Stoke’s theorem, and Lemma 6 shows that

Oz
p11 I p11~ai , bi , ãi , bi , a0 , ã0 , z, z̄!50.

A similar analysis can be applied toOz̄
p11 and we are led to the solution

I p115 (
i , j 50

p

b i , jui
p11~a0 ,ap,bp,z!uj

p11~ ã0 ,ãp,b̃pz̄!,

where condition C insures that theuj
p11 , j 50,...,p are linearly independent. WriteI p11

5( j 50
p I p11

j , where

I p11
j 5

l j
p

2i E E
C\G

uzz1u,1

d2z1z1
ap21z̄1

ãp21~12z1!bp2ap21~12 z̄1! b̃p2ãp21

3uj
p~a0 ,ap21,bp21,zz1!uj

p~ ã0 ,ãp21,b̃p21,z̄z̄1!,

for j 50,...,p21, and
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I p11
p 5 (

j 50

p21
Jj j e

ip(aj 2ã j )

2i E E
C\G

uzz1u.1

d2z1z1
ap21z̄1

ãp21
~12z1!bp2ap21~12 z̄1! b̃p2ãp21~zz1!2aj~ z̄z̄1!2ã j

3pFp21S aj ,aj2bi11,11aj2aiÞ j ,
1

zz1
D

p

Fp21S ã j ,ã j2b̃i11,11ã j2ãiÞ j ,
1

z̄z̄1
D .

From the dominated convergence theorem we see that limz→0 I p11
0 5l0

p11 and

limz→0 zbj 21z̄b̃j 21I p11
j 5l j

p11 . Furthermore, with the change of variablest5zz1 it is not difficult

to see that limz→0 zbp21z̄b̃p21I p11
p 5Kp11, with Kp11 independent ofz. Condition C and the

above discussion shows thatb i , j50,iÞ j andb i ,i5l i
p11 ,i 50,...,p21. In order to computebp,p

split I p11 up into the piecesI p11
a for uz1u<1 andI p11

b for uz1u.1. With the change of variable
t5zz1 the second integral becomes

I p11
b 5z12bpz̄12b̃pE E

C\[0,`)

d2tx utu.uzu~ t !t22bpt̄ 22b̃pS z

t
21D bp2ap21S z̄

t̄
21D b̃p2ãp21

3I p~a0 ,ap21,bp21,ã0 ,ãp21,b̃p21,t, t̄ !.

Using the dominated convergence theorem we see that

~21!bp2b̃p2ap1ãp lim
z→0

zbp21z̄b̃p21I p11
b

5E E
C\[0,`)

d2ttbp22 t̄ b̃p22I p~a0 ,ap21,bp21,ã0 ,ãp21,b̃p21,t, t̄ !.

We now show that the above integral is equal to (21)bp2b̃p2ap1ãplp
p11 . Note that the result

has been shown forp51. Now suppose the result is true up top. With the substitution of~5! for
I p we find

~21!bp2b̃p2ap1ãp lim
z→0

zbp21z̄b̃p21I p11
b

5E E
C\[0,`)

d2ttbp22 t̄ b̃p22E E
C\G

d2zzap2121z̄ãp2121~12z!bp212ap2121

3~12 z̄! b̃p212ãp2121I p21~a0 ,ap22,bp22,ã0 ,ãp22,b̃p22,tz,t z̄!.

Since the above integral converges absolutely we can interchange the order of integration
Fubini’s theorem, then setu5zt to obtain

~21!bp2b̃p2ap1ãp lim
z→0

zbp21z̄b̃p21I p11
b

5E E
C\[0,`)

d2zzap212bpz̄ãp212b̃p~12z!bp212ap2121~12 z̄! b̃p212ãp2121

3E E
C\G

d2uubp22ūb̃p22I p21~a0 ,ap22,bp22,ã0 ,ãp22,b̃p22,u,ū!. ~29!
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The claim now follows by induction. h

An alternative discussion to obtain~31! can be found in Appendix B.
We may now extend the result to the case when Re(cp211c̃p21).22. The above represen

tation may be used to defineI p11 when only condition C is imposed on the parameters wh
completes the proof.

ACKNOWLEDGMENTS

The authors would like to thank R. Peschanski, M. Bauer and R. Guida for useful discus
We would also like to thank Ph. Di Fransesco for discussions leading to the use of Cau
theorem in Lemma 4. J.S.G. would like to thank the Service Physique Theorique at Sacl
their hospitality during his visit, especially P. Moussa. J.S.G. would also like to acknowl
useful discussions with Micheal Loss and Fernando Reitich. J.S.G. was supported in pa
grant from the Fullbright Foundation and NSF.

APPENDIX A

In this section we give a heuristic argument for Lemma 5. We begin by examiningI p11 for
uzu,1 and switching to a new basis namelyp11Gp(ai ;bi ;z), which are nothing but the hyper
geometric functionsp11Fp(ai ;bi ;z) up to a multiplicative factor, namely

p11Gp~ai ;bi ;z!5
)0

pG~ai !

)1
pG~bi !

p11Fp~ai ;bi ;z!.

The basis of the expansion is nowVj (z),Ṽj ( z̄) rather thanU j (z)Ũ j ( z̄) where

Vj~z!5z12bj
p11Gp~ai2bj11;bk2bj11;z!

and

Ṽj~ z̄!5z12b̃ j
p11G̃p~ ãi2b̃ j11;b̃k2b̃ j11;z̄!.

In these formulaskÞ j 50, p where by conventionb05b̃051.
In this basis the solution reads

I p115(
j 50

p

m jVj~z!Ṽ~ z̄!,

where them j are obtained from the corresponding values of thel j .
It turns out that an obvious factorization does occur. Namely, by defining

mp115
1

p2 ~21!a02ã0)
i 50

p

G~bi2ai !G~ b̃i2ãi !S~bi2ai !

we get

m j5mp11

) i 50
p S~bj2ai !

) i 50Þ j
p S~bj2bi !

.

To be more specific
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m05mp11

) i 50
p S~ai !

) i 51
p S~bi !

,

m j52mp11

) i 50
p S~bj2ai !

S~bj !) i 51Þ j
p S~bj2bi !

.

Similarly, for uzu.1 it is useful to expand the integral as a combination of hypergeom
functions which are defined foruzu.1, namely

~z!2aj
p11GpS aj ,aj2bi11;aj2ai11;

1

zD ,

or more specifically

Wj~z!5~z!2aj
p11GpS aj ,aj2bi11;aj2ai11;

1

zD ,

the solution reads now

I p115(
j 50

p

n j Wj~z!W̃j~ z̄!,

where then j have to be determined from the value of the integral forz→`.
We proceed as before and it turns out that the same factorization does occur, namely

n j5~21!s2 s̃mp11

) i 50
p S~bi2ai !

) i 51Þ j
p S~ai2aj !

.

Comparingm j and n j amounts but for a sign to interchangebk and ak as expected with the
interchange ofz→ 1/z. Indeed, if in the integrand ofI p11 we changezi→ 1/zi , the new integrand
J reads

J5~21!s2 s̃z2a0z̄2ã0)
i 51

p

t i
a02bi~12t i !

bi2ai21S 12)
i 51

p

t iz
21D 2a0

3)
i 51

p

t̄ i
ã02b̃i~12 t̄ i !

b̃i2ãi21S 12)
i 51

p

t̄ i z̄
21D 2ã0

.

It is now obvious that the result of the integral foruzu.1 is deduced from the result foruzu,1 by
a simple change of the parameters of the hypergeometric functions of argument 1/z up to the
multiplicative factor

~21!s2 s̃z2a0z̄2ã0,

namely, if we definea i andb i as the parameters, we get by simple identification

a05a0 ,

a i5a02bi11,

b i5a02ai11,

which corresponds to the parameters ofW0(z) and
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a i2b j115aj2bi11,

b i2b j115aj2ai11,

22b j5aj2a011,

which corresponds to the parameters ofWj (z). The above argument can be made rigorous us
~14!.

APPENDIX B

In this appendix we give an alternative method to calculatelp11
p . Besides the conditions

imposed in the hypothesis of Theorem 3 it will assumed thatbp2b̃p2bi1b̃i>0, i 50,...,p21.
We need to calculate

I 5 (
i 50

p21

l i
p21E tbp22Ui~ t ! t̄ b̃p22Ũ i~ t̄ !d2t,

where

Ui~ t !5t12bi
pFp21~aj2bi11; bk2bi11; t !,

where j ,kÞ i 50, p21, andl i
p21 is given in formula~11! and by conventionb051.

We split the domain of integration in two parts, and writeI 5I 11I 2 where I 1 is the contri-
bution for utu,1 andI 2 for utu.1. In the first domain the hypergeometric functions are converg
so that

I 15 (
i 50

p21

l i
p21E E

B/G

tbp22Ui~ t ! t̄ b̃p22Ũ i~ t̄ !d2t,

whereB is the unit disk in the complex plane andG is the contour used in the proof of Theore
3. To calculateI 2 , the other form of the solution which is valid foruzu.1 will be used, namely

I 25 (
i 50

p21

n i
p21E E

Bc/G

tbp22Wi~ t ! t̄ b̃p22W̃i~ t̄ !d2t,

where

Wi~ t !5t2ai
pFp21S ai2bj11;ai2ak11;

1

t D
with the same convention for the indicesj andk.

By definition

l i
p21

) j 50Þ i
p21 G~bj2bi11!G~ b̃ j2b̃i11!

) j 50
p21G~aj2bi11!G~ ã j2b̃i11!

5mp21m i
p21,

n i
p21

) j 50Þ i
p21 G~ai2aj11!G~ ãi2ã j11!

) j 50
p21G~ai2bj11!G~ ãi2b̃ j11!

5~21!s2 s̃mp21r i
p21,
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s5 (
i 51

p21

bi2 (
i 50

p21

ai ,

mp215~21!a02ã0
1

p2 )
i 50

p21

G~bi2ai !G~ b̃i2ãi !S~bi2ai !,

m i
p215

) j 50
p21S~bi2aj !

) j 50Þ i
p21 S~bi2bj !

,

and

r i
p215

) j 50
p21S~bj2ai !

) j 50Þ i
p21 S~aj2ai !

.

For w real anduwu<r ,1 set

I 1
i ~w!5E E

B/G

~wt!bp22Ui~wt!~wt! b̃p22Ũ i~wt!d2t

and expandUi(t) @resp.Ũ i( t̄ )] as a series(n ~resp.(m). The integration on the azimuthal ang
f yields at once

m5n1bp2b̃p2bi1b̃i .

The integral over the modulus oft is also straightforward and yields an additional factor

1

2

G~n1bp2bi !

G~n1bp2bi11!
~w2!n1bp2bi.

Collecting all the pieces we get

I 1
i ~w!5pmp21m i

p21w2(bp2bi21)
2p11G2p

i ~w2!,

where 2p11G2p
i (w2) is the unrenormalized hyper geometric function the upper paramete

which areaj2bi11,ã j2bi111bp2b̃p ,bp2bi and the lower ones readbk2bi11,b̃k2bi11
1bp2b̃p ,bp2bi11,11bp2b̃p2bi1b̃i .

Now define

f R~w!5p2mp21

1

2ip
E

CR

dt)
j 50

p21
G~12bj2t !G~bp2b̃p1ã j1t !

G~12aj2t !G~bp2b̃p1b̃ j1t !

G~ t1bp21!

G~ t1bp!
w2(bp211t),

whereCR is a loop beginning and ending at1` and encircling all poles ofG( ¯ 2t) once in the
negative direction but none of the poles ofG( ¯ 1t). This yields at once

I 1~w!5 f R~w!.

The same method holds forI 2(w), w real and uwu>r .1, with the integration over the
azimuthal angle yieldingn5m1bp2b̃p2ai1ãi while the integration on the modulus oft gives

1

2

G~ ãi2b̃p111m!

G~ ãi2b̃p121m!
~w2!2m211bp̃2aĩ .
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As beforeI 2(w) is a complicated sum ofG functions.
Now define

f L~w!5(21)s2 s̃p2mp21

1

2ip
E

Cl

dt

3 )
j 50

p21
G~12bj2t !G~bp2b̃p1ã j1t !

G~12aj2t !G~bp2b̃p1b̃ j1t !

G~ t1bp21!

G~ t1bp!
w2(bp211t),

whereCL is a loop beginning and ending at2` and encircling all poles ofG( ¯ 1t) once in the
positive direction but none of the poles ofG( ¯ 2t).

It is easy to check that

f L52I 2~w!1residus at t512bp .

Indeed

r i
p215~21!s2 s̃

) j 50
p21S~ b̃ j2ãi !

) j 50Þ i
p21 S~ ã j2ãi !

.

But Cauchy theorem implies that

f L~w!5 f R~w!,

so that in the limitw→1 we find

I 5p2mp21)
j 50

p21
G~bp2bj !G~12b̃p1ã j !

G~bp2aj !G~12b̃p1b̃ j !

or equivalently

I 5mp21)
j 50

p21
S~bp2aj !

S~bp2bj !
)
j 50

p21
G~11aj2bp!G~12b̃p1ã j !

G~12bp1bj !G~11b̃ j2b̃p!
.

At this stage it is worth noticing that

mp5mp21G~bp2ap!G~ b̃p2ãp!S~bp2ap!,

which can be recast as

~21!bp2b̃p2(ap2ãp)mp21p25
mp

G~11ap2bp!G~11ãp2b̃p!S~bp2ap!
.

This yields at once

I 5~21!bp2b̃p2(ap2ãp)lp11
p .

This is the expected result.
As a nice application we may recover the generalized Euler formula, namely calculate

I 5E ta21U0~ t ! t̄ ã21Ũ0~ t̄ !d2t,
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whereU0(t)5(12t)b2151F0(b21,t). If we follow the method presented above we are led
calculate

f R5
1

2ip E
CR

dt
G~2t !G~a2ã112b̃1t !

G~b2t !G~a2ã111t !

G~ t1a!

G~ t1a11!

since by identificationb15a21, a0512b, it is easy to get that

f R5IS~b!G~12b!G~12b̃!p2.

By picking the pole att52a, we get at once

f L5
G~a!G~12ã2b̃!

G~b1a!G~12ã!
.

Collecting all the pieces the final result reads

I 5p
G~a!G~b!G~12ã2b̃!

G~12b̃!G~b1a!G~12ã!
.
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On the uniform asymptotic expansion of the Legendre
functions

Nail R. Khusnutdinova)
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~Received 12 November 2002; accepted 22 November 2002!

A uniform expansion of the Legendre functions of large indices is considered by
using the WKB approach. We obtain the recurrent formula for the coefficients of
uniform expansion and compare them with the uniform expansion of the Bessel
function. © 2003 American Institute of Physics.@DOI: 10.1063/1.1559414#

I. INTRODUCTION

A uniform expansion of special functions is a very useful representation of them which is
in many branches of science. It is well-known; an example is the Debay uniform expansion
Bessel functions.1 To obtain the uniform expansion one usually uses the complicated calcula
which exploit a contour integral representation of the function~see, for example, Ref. 4!. In this
article we use the WKB approach to obtain a uniform expansion for the Legendre func
Previously, this question was analyzed by Thorne in Ref. 8 by using a different approach
Ref. 2 for the particular case of the Legendre equation. We would like to note that this specia
of calculations plays an important role in the so called functional methods which are at prese
most powerful method~see Ref. 7!.

The organization of this article is as follows. First of all, in Sec. II we reobtain the De
formulas for the uniform expansion of the Bessel function by using the WKB approach. In
III, we apply the same method to the Legendre functions and their derivative. The App
contains the list of the first four coefficients in manifest form.

II. UNIFORM EXPANSION OF THE BESSEL FUNCTIONS

In this section we reobtain the well-known1 uniform asymptotic expansion for the Bess
functions of the second kind,I n(nl) andKn(nl) for large value ofn.

These functions obey the following differential equation,

W91
1

l
W85n2S 11

1

l2DW, ~1!

where the prime is the derivative with respectl.
Let us represent the solution of the above equation as a series over small value of 1/n:

W5CenS211S0(
k50

`

n2kvk ~2!

with v051. Using this expression in Eq.~1! we obtain the chain of equations

S218 5«A11
1

l2, ~3a!

a!Electronic mail: nk@dtp.ksu.ras.ru
23200022-2488/2003/44(5)/2320/11/$20.00 © 2003 American Institute of Physics
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S0852
1

2S218 H S219 1
1

l
S218 J , ~3b!

vk118 52
«

2 S lvk8

A11l2D 8
2

«

8

l~l224!

~11l2!5/2vk , ~3c!

where «561 and k50,1, . . . . With the newvariable t51/A11l2, the last equation may be
rewritten in more simple form,

v̇k115
«

2
~ t2~12t2!v̇k!

•1
«

8
~125t2!vk , ~3d!

where the dot denotes the derivative with respect tot.
The first integral of Eqs.~3! has the following form,

S215«~h~l!1C21!,

S052 1
4 ln~11l2!1C0 , ~4!

vk115
«

2
t2~12t2!v̇k1

«

8 E0

t

~125t82!vk~ t8!dt81Ck11 ,

where

h~l!5A11l21 ln
l

11A11l2
. ~5!

To find the set of constantsCk , k521,0,. . . , wetake the limitl→` in our expressions~2!
and ~4! and compare them with well-known asymptotic formulas1

I n~nl!'
1

A2pnl
enlS 11OS 1

l D D , Kn~nl!'A p

2nl
e2nlS 11OS 1

l D D . ~6!

Because the next term of expansion isO(1/l), we have to setCk50 for k>1. Taking this
into account we have the following expression for uniform expansion in the limitl→`:

W'
1

Al
e«nlCe«nC211C0. ~7!

Therefore,«51 corresponds to the uniform expansion ofI n(nl) and«521 to theKn(nl).
For coincidence of the expression~7! with the asymptotic expansions~6! we have to setC21

5C050 andC51/A2pn for «51, andC5Ap/2n for «521.
Therefore, we arrive at the following well-known formulas for uniform expansion of

Bessel functions:

I n~nl!5A t

2pn
enh(l)(

k50

`

n2kvk~ t !,

~8!

Kn~nl!5Apt

2n
e2nh(l)(

k50

`

~2n!2kvk~ t !,
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where

vk115
1

2
t2~12t2!v̇k1

1

8 E0

t

~125t82!vk~ t8!dt8. ~9!

In order to find formulas for the derivative of the Bessel functions we represent them i
following form:

1

n
W85C̃enS̃211S̃0(

k50

`

n2kṽk . ~10!

Comparing the derivative of Eq.~2! with respect tol with the above formula we obtain

S̃215S21 ,

S̃05S01 ln~«S218 !,
~11!

C̃5«C,

ṽk5vk1
«

2
t~ t221!vk211«t2~ t221!v̇k21 .

Therefore, with these expressions we arrive at the well-known formulas for uniform expa
of the derivative of the Bessel functions,

1

n
I n8~nl!5

1

A2pnt

1

l
enh(l)(

k50

`

n2kv̄k~ t !,

~12!
1

n
Kn8~nl!52A p

2nt

1

l
e2nh(l)(

k50

`

~2n!2kv̄k~ t !,

where

v̄k5vk1 1
2 t~ t221!vk211t2~ t221!v̇k21 . ~13!

III. UNIFORM EXPANSION OF THE LEGENDRE FUNCTIONS

In this section we employ the same approach for the Legendre functions. We consid
following equation,

~12x2!C922xC82S n2g21
n2

12x2 12j DC50, ~14!

which has appeared in the context of quantum field theory in curved space–time.5,6 Here
xP(21,1), n,g and j are real numbers, and the prime is the derivative with respect tox. The
particular case of this equation forj51

8 has been considered in Ref. 2.
The solutions of this equation are the Legendre functions of the first and second kinds

Pm
n @x#, Qm

n @x# ~15!

with index

m52 1
2 1 1

2A128j24n2g2. ~16!
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For j51
8 these functions are called the cone functions.1

We assumen.0 and consider the following two independent solutions,

pm
n @x#5Pm

2n@x#,
~17!

qm
n @x#5

~21!n

2
~Qm

n @x#1Q2m21
n @x# !52

p

2 sinpm
Pm

n @2x#.

They are real functions for arbitrarym and obey the following Wronskian condition:

W~pm
n ,qm

n !5
1

12x2 .

To obtain the uniform expansion of functions~17! for large numbern we represent the
solution in the WKB form as follows:

C5CenS21(x)1S0(x)(
k50

`

n2kck~x! ~18!

with c0(x)51. We would like to note the difference of the uniform expansion in form~18!, which
is over inverse degree ofn, with that considered by Thorne in Ref. 8. He obtained an expan
over inverse degree ofm1 1

25A128j24n2g2/2.
Substituting the above expression in Eq.~14! we obtain the chain of equations

S218 5«A 1

~12x2!2 1
g2

12x2,

S0852
1

2 H S219

S218
2

2x

12x2 J ,

~19!

c1852
1

2S218 H S08
21S092

2x

12x2 S082
2j

12x2J ,

ck118 52
«

2 H ~12x2!ck8

A11g2~12x2!
J 8

1c18ck , k>1,

where«561.
The first integral of this chain has the following form:

S21~x!5«Fg arctan
gx

A11g2~12x2!
1

1

2
ln

~11x!~11g2~12x!1A11g2~12x2!!

~12x!~11g2~11x!1A11g2~12x2!!
1C21G ,

S0~x!52 1
4 ln~11g2~12x2!!, ~20!

ck11~x!5Ck11~«!2
«

2

12x2

A11g2~12x2!
ck8~x!1«E

0

xS 2
g2

8 F 22x82

~11g2~12x82!!3/2

2
5x82

~11g2~12x82!!5/2G1
j

~11g2~12x82!!1/2Dck~x8!dx8.

We have already set the constantC050. This leads to redefinition of the constantC only.
The formulas look simpler in terms of the new variable
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v5
x

A11g2~12x2!
, ~21!

instead ofx. This quantity obeys the inequality:uvu<uxu,1. In terms of this variable we have

S21~v !5«H 2
1

2
ln

12v
11v

1g arctangv1C21J , ~22a!

S0~v !5
1

4
ln

11g2v2

11g2 , ~22b!

ck11~v !5Ck112
«

2

~12v2!~11g2v2!

~11g2!
ċk~v !

1
«g2

8~11g2!
E

0

v
dv8H 5v821

1

g2 211~8j21!
11g2

g2~11g2v82! J ck~v8!. ~22c!

In the above formulas the dot denotes the derivative with respect to new variablev.
In order to find constantsCk we have to compare our formulas with exact expressions for

Legendre functions at a fixed point. For this reason we take the limitx→1 in our formulas,

C'CS 12x

2 D 2«n/2

expFn«S C212
1

2
ln~g211!1g arctang D G , ~23!

and compare them with well-known expressions3 for the Legendre functions at pointx51:

pm
n @x#5Pm

2n@x#'
1

n! S 12x

2 D n/2

,

~24!

qm
n @x#5

~21!n

2
~Qm

n @x#1Q2m21
n @x# !'

~n21!!

2 S 12x

2 D 2n/2

.

Therefore, from Eqs.~23! and ~24! we observe that«521 corresponds topm
n @x# with C

51/n!, «511 corresponds toqm
n @x# with C5(n21)!/2, and

C215 1
2 ln~11g2!2g arctang ~25!

for both signs of«. Furthermore, the coefficientsck(v) must obey the following condition:

ck~1!50. ~26!

Taking into account the above formulas we arrive at the following expression for uni
expansion of the Legendre’s functions,

pm
n @x#5

1

n! F11g2v2

11g2 G1/4

enS21(v)(
k50

`

n2kck~v !, ~27a!

qm
n @x#5

~n21!!

2 F11g2v2

11g2 G1/4

e2nS21(v)(
k50

`

~2n!2kck~v !, ~27b!

where
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S21~v !5
1

2
ln

12v
~11v !~11g2!

2g@arctangv2arctang#, ~27c!

ck11~v !5
~12v2!~11g2v2!

2~11g2!
ċk~v !2

g2

8~11g2!

3E
1

v
dv8H 5v821

1

g2 211~8j21!
11g2

g2~11g2v82!J ck~v8!. ~27d!

Taking into account the same procedure as we used above for the derivative of the
functions we obtain the following formulas for uniform expansion of the derivative of funct
pm

n andqm
n :

1

n

d

dx
pm

n @x#52
1

n! F11g2v2

11g2 G3/411g2

12v2 enS21(v)(
k50

`

n2kc̄k~v !, ~28a!

1

n

d

dx
qm

n @x#5
~n21!!

2 F11g2v2

11g2 G3/411g2

12v2 e2nS21(v)(
k50

`

~2n!2kc̄k~v !, ~28b!

c̄k~v !5ck~v !2
g2v~12v2!

2~11g2!
ck21~v !2

~12v2!~11g2v2!

11g2 ċk21~v !. ~28c!

The first four coefficientsck and c̄k are listed in the Appendix.
From the recurrent formula~27d! it is possible to find the value of the coefficientsc(v) for

g→`. Indeed, comparing Eq.~27d! in the limit v→0 and Eq.~9! in the limit t→1 we obtain the
following relation:

ck~0!5~21!k11vk~1!. ~29!

Now we represent formulas obtained in a slightly different form which is close to expan
of the Bessel functions. We setx5cose andg5l/sine and use the asymptotic expansion for t
gamma function from Ref. 4:

ln n! 5S n1
1

2D ln n2n1
1

2
ln 2p1 (

k51

`
B2k

2k~2k21!

1

n2k21 ,

ln~n21!! 5S n2
1

2D ln n2n1
1

2
ln 2p1 (

k51

`
B2k

2k~2k21!

1

n2k21 ,

whereBk are the Bernoulli numbers.
With these notations one has

pm
n @cose#5A t

2pn
enh̃(

k50

`

n2kck
1~v !S sine

ln D n

,

qm
n @cose#5Apt

2n
e2nh̃(

k50

`

~2n!2kck
1~v !S sine

ln D 2n

,

~30!

1

n

dpm
n @x#

dxux5cose
52A 1

2pnt
enh̃(

k51

`

n2kc̄k
1~v !S sine

ln D n 1

sin2 e
,
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1

n

dqm
n @x#

dxux5cose
5A p

2nt
e2nh̃(

k51

`

~2n!2kc̄k
1~v !S sine

ln D n 1

sin2 e
,

where

h̃5 ln
l

A11l21cose
2

l

sine Farctan
sine

l
2arctan

tane

lt G11, ~31a!

t5
1

A11l2
, v5t cose, ~31b!

m52
1

2
1

1

2
A128j2

4n2l2

sin2 e
, ~31c!

and the coefficientsck
1 are found from the relation

(
k50

`

n2kck
1~v !5expS 2 (

k51

`
B2k

2k~2k21!n2k21D (
k50

`

n2kck~v ! ~31d!

by comparing the same degree ofn in the left and right hand sides.

FIG. 1. The plot of the relative errorsDpm5(pm
n 2(pm

n )m)/pm
n versus those ofl for e50.1,j50 andn54. Here (pm

n )m is
the uniform expansion of the Legendre functionpm

n up to degreem.
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The expressions~30! have a form similar to that for the Bessel function expansion given
Eq. ~8!. Furthermore, it is easy to see that in the limite→0 ~the argument of the Legendr
functions tends to unit and the lower index tends to infinity! the uniform expansion obtained i
transformed to the uniform expansion of the Bessel functions below:

lim
e→0

mnpm
n @cose#5 i nI n~nl!, ~32!

lim
e→0

m2nqm
n @cose#5 i 2nKn~nl!,

as it should be according to well-known formulas3

lim
z→`

znPz
2nFcos

x

zG5Jn~x!, ~33!

lim
z→`

znQz
2nFcos

x

zG52
p

2
Yn~x!,

where x5 inl and z5 inl/e. In this limit the function h̃ given by Eq.~31a! coincides with
function h ~5! in the uniform expansion of Bessel functions:

lim
e→0

h̃5 ln
l

A11l211
1A11l2. ~34!

FIG. 2. The plot of the relative errorsDqm5(qm
n 2(qm

n )m)/qm
n versus those ofl for e50.1,j50 andn54. Here (qm

n )m is
the uniform expansion of the Legendre functionqm

n up to degreem.
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The numerical calculation of the relative errorsDpm5(pm
n 2(pm

n )m)/pm
n and Dqm5(qm

n

2(qm
n )m)/qm

n are plotted in Figs. 1 and 2 for differentm50,1,2,3 as a function ofl, where (pm
n )m

and (qm
n )m are the uniform expansions of the Legendre functionspm

n andqm
n up to degreen2m. The

difference is smaller the greaterl.
In conclusion we would like to summarize the results. In this article we obtain the uni

expansion for the Legendre functionspm
n @x# andqm

n @x# given by Eq.~17! for large indicesn and
m52 1

21 1
2A128j24n2g2 as a series over inverse degree onn. These expansions of the func

tions are given by Eq.~27! and by Eq.~28! for their derivatives with respect to argumentx. The
coefficients of expansion may be found from recurrent chain of equations~27d! and ~28c!. The
first four coefficients are listed in the Appendix.
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APPENDIX: MANIFEST FORM OF FIRST FOUR COEFFICIENTS

Below are the expressions for first four coefficientsck and c̄k in which we introduced for
simplicity the following notations:

d5arctan@g#2arctan@gv#, z5j2
1

8
, v5

x

A11g2~12x2!
, ~A1!

c051,

c15
dz

g
1

1

g211
F2g213

24
1

v~g221!

8
2

5v3g2

24 G ,
~A2!

c25
1

2 S dz

g D 2

1
dz

g

1

g211 F2g213

24
1

v~g221!

8
2

5v3g2

24 G1
z~211v2!

2~g211!

1
1

~g211!2 F4g4184g2263

1152
1

v~g221!~2g213!

192
1

v2~9g4258g219!

128

2
5v3g2~2g213!

576
2

77v4g2~g221!

192
1

385v6g4

1152 G ,
c35

1

6 S dz

g D 3

1
1

2 S dz

g D 2 1

g211 F2g213

24
1

v~g221!

8
2

5v3g2

24 G1
dz

g F 1

~g211!2

3H 4g4184g2263

1152
1

v~g221!~2g213!

192
1

v2~9g4258g219!

128
2

5v3g2~2g213!

576

2
77v4g2~g221!

192
1

385v6g4

1152 J 1
z

g211 H 2
2g211

2g2 1
v2

2 J G1
z2~12v !

2g2~g211!

1
z

~g211!2 F2
2g217

48
2

v~3g2211!

16
1

v2~2g213!

48
1

v3~44g2229!

48
2

35v5g2

48 G
1

1

~g211!3 F2
1112g611116g42918g215265

414720
1

v~4g61728g424323g21711!

9216
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1
v2~2g213!~9g4258g219!

3072
1

v3~2005g6237671g4137566g222025!

27648

2
77v4~g221!~2g213!

4608
2

13v5g2~1053g423706g211053!

15360

1
385v6g4~2g213!

27648
1

17017v7g4~g221!

9216
2

85085v9g6

82944 G ;
c0

15c051,

c1
15c12

1

12
,

~A3!

c2
15c22

1

12
c11

1

288
,

c3
15c32

1

12
c21

1

288
c11

139

51840
;

c̄051,

c̄15
dz

g
1

1

g211 F2g213

24
2

v~3g211!

8
1

7v3g2

24 G ,
~A4!

c̄25
1

2 S dz

g D 2

1
dz

g

1

g211 F2g213

24
2

v~3g211!

8
1

7v3g2

24 G1
z~12v2!

2~g211!

1
1

~g211!2 F ~2g2227!~2g223!

1152
2

v~3g211!~2g213!

192
2

v2~15g4262g217!

128

1
7v3g2~2g213!

576
1

v4g2~99g2279!

192
2

455v6g4

1152 G ,
c̄35

1

6 S dz

g D 3

1
1

2 S dz

g D 2 1

g211 F2g213

24
2

v~3g211!

8
1

7v3g2

24 G
1

dz

g F 1

~g211!2 3H ~2g223!~2g2227!

1152
2

v~3g211!~2g213!

192
2

v2~15g4262g217!

128

1
7v3g2~2g213!

576
1

v4g2~99g2279!

192
2

455v6g4

1152 J 2
z

g211 H 1

2g2 1
v2

2 J G1
z2~12v !

2g2~g211!

1
z

~g211!2 F2g221

48
1

v~3g227!

16
2

v2~2g213!

48
2

v3~44g2225!

48
1

35v5g2

48 G
1

1

~g211!3 F2
1112g615436g411242g221215

414720
2

v~12g61904g424281g21585!

9216

2
v2~2g213!~15g4262g217!

3072
2

v3~2807g6242897g4137458g221863!

27648

1
v4~99g2279!~2g213!

4608
1

11v5g2~1521g424762g211241!

15360

2
455v6g4~2g213!

27648
2

385v7g4~51g2247!

9216
1

95095v9g6

82944 G .
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Toward solving the inhomogeneous Bloch equation
M. Kobayashia)

Physics Department, Gifu University, Yanagido, Gifu 501-1193, Japan
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The homogeneous Bloch equation reduces to the Riccati equation. By linearizing
the Riccati equation, a set of three solutions of the homogeneous Bloch equation is
found. The fundamental matrix becomes singular. We clarify the utility and limita-
tion of our approach to solve the homogeneous Bloch equation. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1561155#

I. INTRODUCTION

Since the Bloch equation1 was proposed in 1946, various workers have tried to solv
analytically. As yet few exact solutions are known.2 Very recently, an interesting solution wa
found to the homogeneous Bloch equation.3 This was done by solving the Riccati equation
which the homogeneous Bloch equation reduces. The reason why we persist in solving the
geneous Bloch equation analytically is due to the fact that the inhomogeneous Bloch equa
uniquely solved by finding a fundamental system in terms of a set of three independent so
of the homogeneous Bloch equation.

The homogeneous Bloch equation is the homogeneous system of first-order linear diffe
equations and able to reduce to the Riccati equation.4 The Riccati equation can be cast into th
second-order linear differential equation.5 Thus we provide a set of solutions of the homogene
Bloch equation. We have found a set of three solutions of the homogeneous Bloch equati
using these solutions, we can define the 333 fundamental matrix. If the fundamental matrix
nonsingular, then we find the unique solution of the inhomogeneous Bloch equation. Un
nately, the fundamental matrix becomes singular. This means two of them serve as indep
solutions.

The purpose of this article is to clarify the utility and limitation of our approach to solving
homogeneous Bloch equation.

In Sec. II we show that the homogeneous Bloch equation reduces to the inhomoge
system of four second-order linear differential equations. This has been done by linearizi
Riccati equation. Then in Sec. III we solve those differential equations and find the three sol
with the constraint. By using the three solutions above, we find the fundamental matrix in Se
The final section is devoted to our conclusions.

II. THE LINEARIZED RICCATI EQUATION

The Bloch equation for magnetization with infinite relaxation times is a homogeneous sy
of three first-order linear differential equations, and given by

MẆ 52g ~BW 3MW ! , ~1!

where a dot means differentiation with respect to time. HereMW andBW are the magnetization vecto
and the applied magnetic field, respectively, andg is the gyromagnetic ratio.

It immediately follows from Eq.~1! that the magnitude of the magnetization vector is p
served. Thus we can definemW by

a!Electronic mail: masanori@cc.gifu-u.ac.jp
23310022-2488/2003/44(5)/2331/11/$20.00 © 2003 American Institute of Physics
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mW 5
MW

uMW u
, ~2!

which obeys the Bloch equation, i.e.,

mẆ 52g ~BW 3mW ! , ~3!

with

mW •mW 51 . ~4!

Let us introduce the two variables,j andh, defined by

m11 i m25j~12m3! ~5!

and

m12 i m25
1

h
~m321! . ~6!

Then we find

j5
m11 i m2

12m3
5

11m3

m12 i m2
~7!

and

h52
12m3

m12 i m2
52

m11 i m2

11m3
, ~8!

and the relationships betweenj andh such that

jh* 5j* h521 , ~9!

jj* 5
11m3

12m3
, ~10!

and

h52
12m3

11m3
j . ~11!

Differentiating Eq.~7! with respect to time and substituting Eq.~3! into it, we find the Riccati
equation

j̇5 1
2 g~B21 i B1! j22 i gB3 j1 1

2 g~B22 i B1! . ~12!

Similarly, we also find the same Riccati equation forh. Here use has been made of the relations

B1 m22B2 m152 1
2 ~B21 i B1!~m11 i m2!2 1

2 ~B22 i B1!~m12 i m2! . ~13!

The Riccati equation~12! can be cast in the more convenient form

j̇5 i ẋ e2 icj22 i ẋ3 j2 i ẋ eic , ~14!
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where we have definedx andx3 by

x5
1

2
gE

t0

t

B0~t! dt ~15!

and

x35gE
t0

t

B3~t! dt , ~16!

with

B26 i B156 i B0e7 ic , ~17!

B05AB1
21B2

2 , ~18!

and

c5cos21S B1

B0
D5sin21S B2

B0
D5tan21S B2

B1
D . ~19!

The linearized Riccati equation has the form

ü2F S ẍ

ẋ D2 i ~ ċ1ẋ3!G u̇1~ ẋ !2u50 , ~20!

and an equation of this form results from the substitution

j5 i
1

ẋ S u̇

uDeic ~21!

in the Riccati equation~14!.
The linearized Riccati equation~20! yields

Reü2S ẍ

ẋ DReu̇1~ ẋ !2 Reu5~ ċ1ẋ3! Im u̇ ~22!

and

Im ü2S ẍ

ẋ D Im u̇1~ ẋ !2 Im u52~ ċ1ẋ3! Reu̇ . ~23!

These are the inhomogeneous system of two second-order linear differential equations. T
mogeneous second-order linear differential equations in Eqs.~22! and~23! can be solved and the
general solutions are given by

Reu5C11cosx1C12sinx ~24!

and

Im u5C21cosx1C22sinx , ~25!

whereCi j ( i , j 51, 2) are the constants of integration. By adapting Lagrange’s method of v
tion of constants to the inhomogeneous system of second-order linear differential equation
~22! and ~23!, we find
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C̈112S ẍ

ẋ D Ċ1112ẋ Ċ125~ ċ1ẋ3!~Ċ211ẋ C22! , ~26!

C̈122S ẍ

ẋ D Ċ1222ẋ Ċ115~ ċ1ẋ3!~Ċ222ẋ C21! , ~27!

C̈212S ẍ

ẋ D Ċ2112ẋ Ċ2252~ ċ1ẋ3!~Ċ111ẋ C12! , ~28!

and

C̈222S ẍ

ẋ D Ċ2222ẋ Ċ2152~ ċ1ẋ3!~Ċ122ẋ C11! . ~29!

The linearized Riccati equation thus reduces to the inhomogeneous system of four secon
linear differential equations. These provide us with a set of solutions of the homogeneous
equation. This is the utility of our approach.

III. A SET OF THREE SOLUTIONS

We solve the coupled differential equations~26!–~29! in this section.
From Eq.~26!, we find

C225
1

ẋ~ ċ1ẋ3!
F C̈112S ẍ

ẋ
D Ċ11G1

2

ċ1ẋ3

Ċ122
1

ẋ
Ċ21 . ~30!

Substituting Eq.~30! back into Eqs.~27! and ~28! and manipulating them, we obtain

C2152
1

ẋ~ ċ1ẋ3!
H 3 C̈122F S ẍ

ẋ
D 12S c̈1ẍ3

ċ1ẋ3

D G Ċ121~ ċ1ẋ3!2 C12J
2

1

~ ẋ !2~ ċ1ẋ3!
H C11

(3)2F 2S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G C̈11

2F d

dt
S ẍ

ẋ
D 2S ẍ

ẋ
D 2

2S ẍ

ẋ
D S c̈1ẍ3

ċ1ẋ3

D 12 ~ ẋ !22~ ċ1ẋ3!2G Ċ11J ~31!

and

~ ċ1ẋ3!F C̈212S ẍ

ẋ D Ċ2112~ ẋ !2 C21G 522 ẋF C̈122S ẍ

ẋ D Ċ121
1

2
~ ċ1ẋ3!2 C12G

1@4 ~ ẋ !22~ ċ1ẋ3!2#Ċ11 . ~32!

Again substituting Eqs.~30! and ~31! back into Eq.~29!, we find
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4

ċ1ẋ3

S C12
(3)2

3

2
F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G C̈122
1

2 H d

dt
F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G2F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G 2

2~ ċ1ẋ3!2J Ċ122
1

4
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G ~ ċ1ẋ3!2C12D
52

1

ẋ~ ċ1ẋ3!
S C11

(4)22F 2S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D GC11
(3)

2H 3
d

dt
S ẍ

ẋ
D 25S ẍ

ẋ
D F S ẍ

ẋ
D 1Sc̈1ẍ3

ċ1ẋ3

DG1 d

dt
Sc̈1ẍ3

ċ1ẋ3

D2S c̈1ẍ3

ċ1ẋ3

D 2

14 ~ẋ!22~ċ1ẋ3!
2JC̈11

2H d2

dt2
S ẍ

ẋ
D 24F d

dt
S ẍ

ẋ
D G S ẍ

ẋ
D 12S ẍ

ẋ
D 3

22F d

dt
S ẍ

ẋ
D G S c̈1ẍ3

ċ1ẋ3

D 13S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D
2S ẍ

ẋ
D d

dt
S c̈1ẍ3

ċ1ẋ3

D 1S ẍ

ẋ
D S c̈1ẍ3

ċ1ẋ3

D 2

12S ẍ

ẋ
D ~ ċ1ẋ3!224 ~ ẋ !2S c̈1ẍ3

ċ1ẋ3

D
2~ ċ1ẋ3!2S c̈1ẍ3

ċ1ẋ3

D J Ċ112~ ẋ !2~ ċ1ẋ3!2C11D . ~33!

We thus postulate that

C12
(3)2

3

2
F S ẍ

ẋ
D 1Sc̈1ẍ3

ċ1ẋ3

DGC̈122
1

2H d

dt
FSẍ

ẋ
D1Sc̈1ẍ3

ċ1ẋ3

DG2F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G 2

2~ċ1ẋ3!
2JĊ12

2
1

4
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G ~ ċ1ẋ3!2C1250 ~34!

and

C11
(4)22F 2S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G C11
(3)

2H 3
d

dt
S ẍ

ẋ
D 25Sẍ

ẋ
D F Sẍ

ẋ
D1Sc̈1ẍ3

ċ1ẋ3

DG1
d

dt
Sc̈1ẍ3

ċ1ẋ3

D2Sc̈1ẍ3

ċ1ẋ3

D2

14 ~ẋ!22 ~ċ1ẋ3!
2J C̈11

2H d2

dt2
S ẍ

ẋ
D 24F d

dt
S ẍ

ẋ
D G S ẍ

ẋ
D 12S ẍ

ẋ
D 3

22F d

dt
S ẍ

ẋ
D G S c̈1ẍ3

ċ1ẋ3

D 13S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D
2S ẍ

ẋ
D d

dt
S c̈1ẍ3

ċ1ẋ3

D 1S ẍ

ẋ
D S c̈1ẍ3

ċ1ẋ3

D 2

12S ẍ

ẋ
D ~ ċ1ẋ3!224~ ẋ !2S c̈1ẍ3

ċ1ẋ3

D
2~ ċ1ẋ3!2S c̈1ẍ3

ċ1ẋ3

D J Ċ112~ ẋ !2~ ċ1ẋ3!2 C1150 . ~35!
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Here we have used the notations

C11
(3)5

d3

dt3
C11 , C11

(4)5
d4

dt4
C11 , and C12

(3)5
d3

dt3
C12 . ~36!

It is worth noticing that the general solution of Eq.~34! is given6 by

C125C1 v1
21C2 v1v21C3 v2

2 , ~37!

whereCi ( i 51, 2, 3) are constants of integration andv1 andv2 are linearly independent solution
of

C̈122
1

2 F S ẍ

ẋ D1S c̈1ẍ3

ċ1ẋ3
D G Ċ121

1

8
~ ċ1ẋ3!2C1250 . ~38!

After a rather tedious calculation using Eqs.~34! and ~35! we find

Ċ2152
1

ẋ~ ċ1ẋ3!

1

2
S F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G C̈121H d

dt
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G2F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D G
3F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G2~ ċ1ẋ3!2J Ċ122
1

2
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G ~ ċ1ẋ3!2 C12D
2

2

ċ1ẋ3

F C̈112S c̈1ẍ3

ċ1ẋ3

D Ċ111
1

2
~ ċ1ẋ3!2C11G ~39!

and

C225
1

~ ẋ !2~ ċ1ẋ3!

1

2
S F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G C̈121H d

dt
F S ẍ

ẋ
D 2Sc̈1ẍ3

ċ1ẋ3

DG2FSẍ
ẋ
D1Sc̈1ẍ3

ċ1ẋ3

DG
3FSẍ

ẋ
D2Sc̈1ẍ3

ċ1ẋ3

DG14 ~ẋ!22~ċ1ẋ3!
2JĊ122

1

2
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G ~ ċ1ẋ3!2 C12D
1

1

ẋ~ ċ1ẋ3!
H 3 C̈112F S ẍ

ẋ
D 12S c̈1ẍ3

ċ1ẋ3

D G Ċ111~ ċ1ẋ3!2C11J . ~40!

Having chosen

C̈112S c̈1ẍ3

ċ1ẋ3

D Ċ111
1

2
~ ċ1ẋ3!2 C1150 ~41!

and
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F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G C̈121H d

dt
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G2F S ẍ

ẋ
D 1S c̈1ẍ3

ċ1ẋ3

D GF S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G
14 ~ ẋ !22~ ċ1ẋ3!2J Ċ122

1

2
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G ~ ċ1ẋ3!2 C1250 , ~42!

we find

Ċ215
2 ẋ

ċ1ẋ3

Ċ12 , ~43!

and

C225
1

ẋ~ ċ1ẋ3!
F C̈112S ẍ

ẋ
D Ċ11G . ~44!

Differentiating Eq.~41! with respect to time once and twice and substituting them back
Eq. ~35!, we find the condition that Eq.~35! has the common solutions to Eq.~41!:

H d2

dt2
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G2F d

dt
S ẍ

ẋ
D GF S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G23S ẍ

ẋ
D d

dt
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G
12S ẍ

ẋ
D 2F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G J Ċ112
1

2 H 3
d

dt
F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G2F 5S ẍ

ẋ
D 22S c̈1ẍ3

ċ1ẋ3

D G
3F S ẍ

ẋ
D 2S c̈1ẍ3

ċ1ẋ3

D G1
1

2
@4~ ẋ !22~ ċ1ẋ3!2#J ~ ċ1ẋ3!2 C1150 . ~45!

In order thatC12 andC11 obey the differential equations~34! and~41!, respectively, Eqs.~42!
and ~45! must be identical equations. This requirement creates a constraint. We thus requi

ċ1ẋ35Cẋ , ~46!

with

C562 . ~47!

It immediately follows from Eqs.~46! and ~47! that Eqs.~42! and ~45! are identically zero. Also
from Eqs.~43! and ~44!, we find

Ċ2156Ċ12 ~48!

and

C2257C11 . ~49!

Thus Eqs.~34! and ~41! yield

C12
(3)23S ẍ

ẋ D C̈122F d

dt S ẍ

ẋ D22S ẍ

ẋ D 2

22~ ẋ !2G Ċ1250 ~50!
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and

C̈112S ẍ

ẋ D Ċ1112 ~ ẋ !2 C1150 . ~51!

The general solution of Eq.~50! is easily found from Eqs.~37! and ~38!,

C125C1 cos2S 1

&
x D 1C2 cosS 1

&
x D sinS 1

&
x D 1C3 sin2S 1

&
x D

5
1

2
~C11C3!1

1

2
C2 sin~&x!1

1

2
~C12C2!cos~&x! . ~52!

Thus we have found the linearly independent solutions forC12 andC11;

C12: 1, cos~&x!, and sin~&x! ~53!

and

C11: cos~&x! and sin~&x! . ~54!

The ‘‘solution’’ C1251 is spurious and arises from differentiating Eqs.~26!–~29!. If it is
substituted into the system of equations together with any of the solutions forC11, they are not
satisfied. Thus this solution should be discarded. The Wronskians of the solutions, Eqs.~53! and
~54!, do not vanish.

Using Eqs.~24! and ~25! together with Eqs.~48! and ~49!, we find

u5~C116 i C12! e7 ix . ~55!

Here we have assumed

C2156C12 . ~56!

With this choice there is no loss of generality.
Thus we have found the three types of solutions up to an overall factor:

u15cos~&x! e7 ix , ~57!

u25sin~&x! e7 ix , ~58!

and

u35e7 i (12&)x or e7 i (11&)x . ~59!

They satisfy the differential equation

ü2F S ẍ

ẋ D2 i ~62ẋ !G u̇1~ ẋ !250 . ~60!

In terms ofj defined by Eq.~21! we write out Eqs.~57!–~59! as

j15@612 i& tan~&x!# eic , ~61!

j25@611 i& cot~&x!# eic , ~62!

and
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j356~12& ! eic or 6~11& ! eic . ~63!

We thus have found a set of three solutions of the linearized Riccati equation with
constraint~46!.

IV. THE FUNDAMENTAL MATRIX

A set of three solutions of the homogeneous Bloch equation is obtained from the solutio
the linearized Riccati equation corresponding to Eqs.~61!–~63!.

Let mW ( i ) ( i 51, 2, 3) be

m1
( i )5

j i1j i*

11j i j i*
, ~64!

m2
( i )52 i

j i2j i*

11j i j i*
, ~65!

and

m3
( i )52

12j i j i*

11j i j i*
. ~66!

Then the fundamental matrixK is defined by

Ki j 5~K ! i j 5mi
( j ) ~ i , j 51, 2, 3! . ~67!

Here use has been made of the definitions ofj andh, Eqs.~5! and~6!, respectively, together with
the relationship~9!.

Substituting Eqs.~61!–~63! into Eqs.~64!–~66!, we write out the elements of the fundamen
matrix here:

K115cos~&x!@6cos~&x!cosc1& sin~&x!sinc# , ~68!

K215cos~&x!@6cos~&x!sinc2& sin~&x!cosc# , ~69!

K315sin2~&x! , ~70!

K125sin~&x!@6sin~&x!cosc2& cos~&x!sinc# , ~71!

K225sin~&x!@6sin~&x!sinc1& cos~&x!cosc# , ~72!

K325cos2~&x! , ~73!

K1356
1

&
cosc , ~74!

K2356
1

&
sinc , ~75!

and
K335

1

&
. ~76!

First of all we have to calculate the determinant of the fundamental matrix. The result
out to be
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detK50 . ~77!

This means that the fundamental matrix is singular and the three solutions are not linearly
pendent. It is obvious, because we can easily find the relationship

mW (1)1mW (2)5& mW (3) . ~78!

V. CONCLUSION

The homogeneous Bloch equation~3! can be written in a matrix form:

K̇5A K , ~79!

whereK is the fundamental matrix~the magnetization matrix! defined by Eq.~67! and a matrixA
is given by

A5S 0 gB3 2gB2

2gB3 0 gB1

gB2 2gB1 0
D , ~80!

which is antisymmetric and singular. Moreover, we find

detK̇5tr A detK50 . ~81!

We thus obtain from Eq.~81!

detK5detK~ t0! . ~82!

A key restriction to our treatment is to be imposed Eq.~46!. This works as a constraint:

g B35
Ḃ1B22B1Ḃ2

B1
21B2

2 6gAB1
21B2

2 , ~83!

where the third component of the applied magnetic field is given by the remaining compo
which have no constraints.

We have found a set of three solutions of the homogeneous Bloch equation. These a
linearly independent, only two of them are linearly independent solutions. The first two solu
are unknown so far and the third solution is a generalized solution of the classical precessio
classical precession is given by choosing the applied magnetic field as

BW 5S B0 cosvt, B0 sinvt, 2
v

g
6B0D , ~84!

whereB0 andv are time-independent and then we find

c5vt . ~85!

In each solution the magnitude of the vector is preserved so that two variables are left to det
the system.

The linearized Riccati equation reduces to the inhomogeneous system of four second
linear differential equations, Eqs.~26!–~29!. These provide us with a set of solutions of th
homogeneous Bloch equation. This is the utility of our approach.

The reason why the third independent solution cannot be found in our approach is due
fact that the constant solution ofC12 is a spurious solution arising from differentiating the syste
of equations~26!–~29!. This is a limitation of the method of linearizing the Riccati equation~12!.
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Discrete transformation for three-wave problems is constructed in explicit form.
Generalization of this system on the matrix case in three dimensional space to-
gether with corresponding discrete transformation is presented also. ©2003
American Institute of Physics.@DOI: 10.1063/1.1543636#

I. INTRODUCTION

The problem of three waves in two dimensions arises in different forms in many branch
the mathematical physics. Its application to problems of radiophysics and nonlinear optics
found in Ref. 1. In connection with the inverse scattering method it was investigated in Ref.
considered in detail in numerous further papers.

The goal of the present article is to generalize this system on the space of three dime
while simultaneously exchanging the unknown scalar functions on the operator valued one
last generalization allows us to include into consideration the quantum region with the Heise
operators as unknown functions of the problem.

It is necessary to mention that numerous different~by the form! discrete transformations wer
used up to now with respect to two components hierarchies of integrable systems, whi
connected with so called Darboux–Toda, Lotke–Volterra, and Heisenberg substitutions.
present article we come to the substitutions which connect six independent functions,
corresponds toA2 algebra but not toA1 as it was in the case of the two component systems. T
substitution may be considered as the integrable mapping, connecting six initial functions w
six final ones. Substitutions of the present article do not coincide with those recently introdu
Ref. 3, the so-called ultra-Toda mappings.

The method of this article without any difficulties can be generalized on the case of thnth
wave problem. In this case the number of independent variables of substitution will be (n3(n
11)), which coincides with the number of positive and negative roots ofAn algebra.

The traditional way for obtaining the system of equations for the three-wave problem in~111!
dimensions is theL2A pair formalism

@]x2u,] t2v#50

with

u5S c1l ~c22c1!P ~c32c1!Q

~c12c2!B c2l ~c32c2!A

~c12c3!D ~c22c3!E 2~c11c2!l
D ,

a!Electronic mail: andrey@buzon.uaem.mx
23420022-2488/2003/44(5)/2342/11/$20.00 © 2003 American Institute of Physics
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v5S d1l ~d22d1!P ~d32d1!Q

~d12d2!B d2l ~d32d2!A

~d12d3!D ~d22d3!E 2~d11d2!l
D ,

where c,d are four arbitrary numerical parameters ((ci50,(di50) and (A,B,D,E,P,Q) are
unknown functions of the problem. The system of equations for them has the form

~d22d1!Px2~c22c1!Pt1nEQ50, ~d32d1!Qx2~c32c1!Qt2nPA50,

~d32d2!Ax2~c32c2!At1nQB50, ~d12d2!Bx2~c12c2!Bt2nAD50, ~1!

~d12d3!Dx2~c12c3!Dt1nBE50, ~d22d3!Ex2~c22c3!Et2nDP50,

where n53(c1d22c2d1). Solitonlike solution for the last system of equations may be ea
found with the help of the technique of Ref. 4. From these results the first steps of the di
transformation can be found, with respect to which the last system is invariant. In the presen
the reader has to consider the form of the discrete transformation as a lucky guess.

II. DISCRETE TRANSFORMATION

We can assume~but this is a direct corollary of the results of Ref. 4! that the three ‘‘new’’
functions (Q,A,P), denoted by the bar symbols, connected with the old ones as following,

Q̄5
1

D
, Ā52

B

D
, P̄5

E

D
,

satisfy the system~1!. Then from the first and second equations of the first column it is poss
to determineĒ,B̄ functions with the result

Ē52
1

~c12c3!

E

D
~Dx2~c22c1!BE!1

1

~c22c3!
~Ex1~c22c1!DP!,

B̄5
1

~c12c3!

B

D
~Dx2~c22c1!BE!2

1

~c12c2!
~Bx2~c32c2!AD!.

And in a self-consistent way we determine from the second and first equations of the s
column D̄. We will not present here this somewhat complex expression, because in a few
below we will have an observable expression for this value. Straightforward but tedious ca
tions show that the third equation of the first column is also satisfied (D̄352B̄Ē).

For further consideration it is more suitable to introduce three dependent variables (j1h
1s50),

j5~d22d1!t1~c22c1!x, h5~d32d2!t1~c32c2!x, s5~d12d3!t1~c12c3!x.

In each pair of variables~j,h!,~j,s!,~h,s! the differentiation operators take the form

S ]1[
~d22d1!

n
]x2

~c22c1!

n
] t

]2[
~d32d2!

n
]x2

~c32c2!

n
] t

]3[
~d12d3!

n
]x2

~c12c3!

n
] t

D 5S 2]h ]s ]s2]h

]j ]j2]s 2]s

]h2]s 2]j ]h

D .
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Really the explicit form of the generators of differentiation via~j,h,s! variables will not be
essential. Now the system~1! looks much more attractive:

P152QE, A252BQ, Q352PA,
~2!

B152AD, E252DP, D352EB.

In the last form the system is obviously invariant with respect to permutation of the index
differentiation with the simultaneous corresponding exchanging of unknown functions. The
crete transformation of the beginning of this section may be rewritten in more symmetrical
~we will denote it with the help of the symbolT3):

Q̄5
1

D
, Ā52

B

D
, P̄5

E

D
,

B̄5DS B

D D
2

, Ē52DS E

D D
1

,
D̄

D
5DQ2~ lnD !1,2.

By the permutation indexes~1,3! ~together with corresponding exchanging of unknown functio!
it is possible to obtain theT1 discrete transformation with respect to which the system~2! is also
invariant:

P̄5
1

B
, Q̄5

A

B
, Ē52

D

B
,

D̄5BS D

B D
2

, Ā52BS A

BD
3

,
B̄

B
5BP2~ ln B!2,3.

And at last the discrete transformationT2 has the form

Ā5
1

E
, B̄5

D

E
, Q̄52

P

E
,

D̄52ES D

E D
1

, P̄5ES P

ED
3

,
Ē

E
5EA2~ ln E!1,3.

In the form presented above substitutionsTi may be considered as a mapping, connected
initial ~unbar! functions with six final~bar! ones. From the other side each substitution may
considered as the infinite dimensional chain of equations. For instance, the corresponding c
equations in the case ofT1 substitution has the form

Bn11

Bn 2
Bn

Bn21 52~ ln Bn!2,3, Dn115BnS Dn

Bn D
2

, An1152BnS An

BnD
3

,

~3!

En1152
Dn

Bn , Qn115
An

Bn .

In the first row we have the latticelike system connecting three unknown functions (B,D,A) in
each point of the lattice. The first chain forB functions is exactly the well known two dimension
Toda lattice.
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III. SOME PROPERTIES OF THE DISCRETE TRANSFORMATIONS

All constructed above discrete transformations are invertible. This means that unbarre
known functions may be presented in terms of the bar ones. For instance,T3

21 looks like

D5
1

Q̄
, B52

Ā

Q̄
, E5

P̄

Q̄
,

P52Q̄S P̄

Q̄
D

2

, A5Q̄S Ā

Q̄
D

1

,
Q

Q̄
5D̄Q̄2~ ln Q̄!1,2.

It is not difficult to check by direct computation that discrete transformationsTi are mutual
commutative (TiTj5TjTi) on the solutions of the system~2!.

We present below corresponding calculations to prove thatT1T25T2T15T3 . Indeed, the
result of the action ofT1 on some solution of the system~2! is the following:

P15
1

B
, Q15

A

B
, E152

D

B
,

D15BS D

B D
2

, A152BS A

BD
3

,
B1

B
5BP2~ ln B!2,3.

Action of theT2 transformation on this solution leads to

A215
1

E1 52
B

D
, B215

D1

E1 5DS B

D D ,

Q2152
P1

E1 5
1

D
, D2152E1S D1

E1 D
1

52
D

B
~B~ ln D !22B2!15QD22D~ ln D !12,

P215E1S P1

E1D
3

5
E

D
, E215~E1!2A12E1~ ln E1!1352DS E

D D
1

.

The same calculation repeated in the back direction shows thatW1,25W2,15W3—the result of
application of theT3 transformation to an initial solutionW.

Thus from each given initial solutionW0[(A,P,Q,E,B,D) of the system~2! it is possible to
obtain the chain of solutions labeled by two natural numbers@ l 1 ,l 2 , or (l 3)], the number of
applications of the discrete transformations (T1 ,T2 ,T3) to it ~as it was shown aboveT1T2

5T2T15T3).
The arising chain of equations with respect to (D,B,E) functions are exactly two dimensiona

Toda lattices. Their general solutions in the case of two fixed ends are well known.5 As the reader
will see shortly, this fact allows us to construct the many soliton solutions of the three-
problem in the most straightforward way.

IV. RESOLVING DISCRETE TRANSFORMATION CHAINS

A. Two identities of Jacobi

We begin from the following obvious equalities for determinants ofnth order,

Detn~Tn![DnS Tn21 a

b t D 5Dn21~Tn21!~t2bTn21
21 a![Dn21~Tn21!t̃,
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whereTn21 is an (n21)3(n21) matrix, a,b are (n21) dimensional column~row! vectors,
respectively, andt is a scalar.

By the same reason the following formula takes place:

DnS Tn22 a1 a2

b1 t11 t12

b2 t21 t22

D 5Dn22~Tn22!D2S t112b1Tn22
21 a1 t122b1Tn22

21 a2

t212b2Tn22
21 a1 t112b2Tn22

21 a2D ,

whereai ,bi are (n22) dimensional columns~rows! vectors andt i , j are components of a two
dimensional matrix. It is obvious how relations of these types may be continued.

Now, using results from above, let us transform the following expression:

DnS Tn21 a1

b1 t11
DDnS Tn21 a2

b2 t22
D 2DnS Tn21 a2

b1 t12
DDnS Tn21 a1

b2 t21
D

5Dn21
2 ~Tn21!D2S t112b1Tn21

21 a1 t122b1Tn21
21 a2

t212b2Tn21
21 a1 t112b2Tn21

21 a2D 5Dn21Dn11S Tn21 a1 a2

b1 t11 t12

b2 t21 t22

D .

We will treat the last equality as the first Jacobi identity. By the same technique it is not dif
to show that the following equality takes place:

DnS Tn21 a1

b1 t DDn11S Tn21 a1 a2

d1 n m

b2 r t
D 2DnS Tn21 a1

b2 r
DDn11S Tn21 a1 a2

d1 n m

b1 t s
D

5DnS Tn21 a1

d1 n
DDn11S Tn21 a1 a2

b2 r t

b1 t s
D .

This equality will be used many times in what follows and will be called the second Ja
identity. These identities can be generalized in the case of an arbitrary semi-simple grou
reader can find these results in Ref. 3.

B. Concrete calculations

Let us take an initial solution in the form

Q5A5P50, B[B~2!, E[E~1!. D352BE. ~4!

Application to this solution by each inverse transformationTi
21 means less via arising zeroes

the denominators. The chain of equations under such a boundary condition will be called the
with the fixed end from the left~from one side!.

The result of application to such initial solutionl 3 timesT3 transformation looks like~for the
checking of this fact only two Jacobi identities of the previous subsection are necessary!

Q( l 35~21! l 321
D l 321

D l 3

, D ( l 35~21! l 3
D l 311

D l 3

, D051,

A( l 35~21! l 3
D l 3

B

D l 3

, P( l 35
D l 3

E

D l 3

, D0
B5D0

E50, ~5!
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B( l 35
D l 311

B

D l 3

, E( l 35~21! l 3
D l 311

E

D l 3

, D2150,

whereDn are minors of thenth order of infinite dimensional matrix

D5S D D2 D22 . . .

D1 D12 D122 . . .

D11 D112 D1122 . . .

. . . . . . . . . . . .

D , ~6!

and D l 3
E ,D l 3

B are the minors ofl 3 order in the matrices of which the last column~or row! is

exchanged on the derivatives of the corresponding order on argument 1 ofE function ~on argu-
ment 2 of theB function in the second case!.

In what follows the following notations will be used.Wl 3 ,l 1 (Wl 3 ,l 2) is the result of applica-
tion of discrete transformationTl 3Tl 1 (Tl 3Tl 2) to the corresponding component of the three wa
field. D l 3 ,l 1 (D l 3 ,l 2) is the determinant ofl 31 l 1 ( l 31 l 2) orders, with the following structure of its
determinant matrix. The firstl 3 rows~columns! of it coincide with the matrix of~6! and the lastl 1

( l 2) rows ~columns! constructed from the derivatives ofB (E) functions with respect argument
~1!.

The result of additional application ofl 1 timesT1 transformation to the solution~5! looks like

P( l 3 ,l 15
D l 3 ,l 121

D l 3 ,l 1

, B( l 3 ,l 15
D l 3 ,l 111

D l 3 ,l 1

, D051, D l 3 ,21[D l 3
E ,

Q( l 3 ,l 15~21! l 31 l 121
D l 321,l 1

D l 3 ,l 1

, D ( l 3 ,l 15~21! l 31 l 1
D l 311,l 1

D l 3 ,l 1

, ~7!

E( l 3 ,l 15~21! l 31 l 1
D l 311,l 121

D l 3 ,l 1

, A~ l 3 ,l 15~21! l 31 l 1
D l 321,l 111

D l 3 ,l 1

.

We do not present the explicit form for componentsW(l 3 ,l 2 , which can be obtained without an
difficulties from ~7! by corresponding exchange of the arguments and unknown functions.

V. MANY-SOLITON SOLUTION OF THE SCALAR THREE-WAVE PROBLEM

The system~2! allows the following reduction~under the additional assumption that all o
erators of differentiation are the real ones]a5]a* ):

P5B* , A5E* , Q5D* . ~8!

In this case the system~2! is reduced to three equations,

B152DE* , E252DB* , D352BE, ~9!

for three complex valued unknown functions (E,B,D).
Now we would like to demonstrate how the multi-soliton solutions of the system~9! may be

obtained with the help of the technique of discrete transformation in the most straightforward
With this aim let us consider the action of the direct and inverseTi ,Ti

21 transformations on
the reduced solution of the system~9!. The trick consists in the fact that discrete transformat
does not conserve the condition of the reality~8! and, starting from the solution of the reduce
system, we come back to the solution of the irreducible one and in some cases vice versa.
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denote the three dimensional vector (Q,P,A) by the single symbolQW and by the symbolDW three
dimensional vector (D,B,E). Then the result of actions of direct and inverse transformations
the solution satisfying the condition of realityQW 5DW * is the following:

Ti
n~DW ,DW * !5~ t i !

n~qW ,dW !, Ti
2n~DW ,DW * !5~dW * ,QW * !,

wheret i are pointlike symmetries of the system~2!,

t3~Q,P,A,D,B,E!5~Q,2P,2A,D,2B,2E!,

t2~Q,P,A,D,B,E!5~2Q,2P,A,2D,2B,E!,

t3~Q,P,A,D,B,E!5~2Q,P,2A,2D,B,2E!.

It is obvious thatt i
2. Thus if we apply 2n times discrete transformation to the initial bad~nonre-

duced! solution (0,DW ) and as a result obtain (tnDW * ,0), then in the middle of the chain we wi
have a solution satisfying the condition of reality, which coincides with then soliton solution of
the reduced system~9!.

The solution of the chain with the boundary conditionsQW 50 on the left end of the chain an
DW 50 on the right side we will call the chain with fixed ends. Really conditionDW 50 is the system
of equations from which initial functionsD,B,E @see~9!# may be defined as the solutions
ordinary differential equations~see Appendix B!.

VI. MATRIX THREE-WAVE PROBLEM IN THE SPACE OF THREE DIMENSIONS AND ITS
DISCRETE TRANSFORMATION

In all calculations above we have never used~except for concrete resolving of discrete tran
formation chains! the condition that operators of differentiation are connected by the conditi

]11]21]350,

as it follows from the definition of this operators. So we can consider the system~2! where all
three operators are independent from each other and correspond to differentiation with res
one of the coordinates of three dimensional space. The second generalization consists
possibility to consider the unknown function in~2! as the operator valued ones. Of course in t
case the order of the multiplications is essential and exactly coincides with that fixed b
formula ~2!.

T3 discrete transformation in this case looks like

Q̄5D21, Ā52BD21, P̄5D21E,

B̄52D~BD21!2 , Ē52D~D21E!1 , D21D̄5QD2~D21D2!1 .

By the same technique forT1 we have

P̄5B21, Q̄5B21A, Ē52DB21,

D̄5~DB21!2B, Ā52B~B21A!3 , B̄B215BP2~B3B21!2 .

And at last the discrete transformationT2 looks like

Ā5E21, B̄5E21D, Q̄52PE21,

D̄52E~E21D !1 , P̄5~PE21!3E, E21Ē5AE2~E21E3!1 .
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As in the scalar case the discrete transformations in the case under consideration are m
commutative. The arising chains of equations for the (E,B,D) operator a valued function~the
matrices of the finite dimensions, for instance! coincide with the previously investigated matr
Toda chain. Explicit solutions for this chain of equations with the fixed ends can be found in
6. Uniting these results it is possible to construct multi-soliton solutions of the matrix three-
problem in three dimensions similar to way proposed in Ref. 7 for construction of multi-so
solutions for the matrix Devay–Stewartson equation.

VII. OUTLOOK

The concrete results of the present article are concentrated in explicit formulas for di
transformations for the three-wave problem of Sec. II and their generalization on the matrix
~Sec. VI!.

But no less important is the understanding of how the method of the discrete transform
may be generalized in the case of multi-component systems, connected with the semi-
algebras of the higher rankr . From results of the present article, it is clear that in the case
arbitrary semi-simple algebra there arer independent basis, mutually commutative discrete tra
formations. In what connection these commutative objects are with the main ingredients
representation theory of the group is very interesting and an intriguing question for further i
tigation.

And, finally, the last comment. The chain with two fixed ends cannot be considered a
basis for some finite dimensional representation of the group of the discrete transformation,
at all possible to apply the term group for it in this case. On the function at the end point of
it is impossible to act by direct transformation at the right side and inverse on the left end.
is discrete transformation from the group theoretical point of view in this case? We at this
have no answer on this question.
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APPENDIX A

In this appendix we would like to show how it is possible to construct two dimensi
integrable systems connected withA2 algebra.

Let us consider the following 333 polynomial matrix,

P~l!5S P̃n111
11 Pn2

12 Pn3

13

Pn1

21 P̃n211
22 Pn3

23

Pn1

31 Pn2

32 P̃n311
33

D , ~A1!

wherePk
i j are the polynomials of degreek ~with respect to parameterl and signP̃ means that

coefficient function on the highest degree of the corresponding polynomial equal to unity!.
Let us define the coefficient function of all polynomials from the condition that between

columns of the matrix

P̄5P~l!exp~t1h11t2h2!.

The linear dependence takes place in (n11n21n313) points of thel plane,h1 ,h2 are Cartan
elements ofA2 algebra, andt i5f i(t,l)1 f i(x,l). f i , f i are arbitrary rational functions with
respect to argumentl.

The last condition is equivalent to the following system of linear equations for defining
coefficient function~we present it here for elements of the first row!:
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P̃n111
11 ~ls!1cs exp~t2

s22t1
s!Pn2

12~ls!1ds exp2~t2
s1t1

s!Pn3

13~ls!50,

~A2!

s51,2,. . . ,~n11n21n313!,t i
s[t~ls!.

(n11n21n313) is exactly the number of coefficient functions of polynomials of the first r
Thus ~A2! is the linear system of equations for their determination.

Let us now determine Det(P(l))5Det(P̄(l)). From~A1! it follows that it is the polynomial
of (n11n21n313) degree with unity coefficient before the highest term and from condition~A2!
that it has zeroes in (n11n21n313) pointsls of the l plane. Thus

Det~P~l!!5Det~ P̄~l!!5Pk51
(n11n21n313)

~l2lk!. ~A3!

Now let us calculate the matrixPG P̄21, where ḟ means the differentiation with respect to one
two independent arguments of the problemx,t. From the definition of the inverse matrix it follow
that matrix elements of this matrix are the following ones:

~PG P̄21!a,b5
Det~Pb→ Ṗa1Pa~ ṫ i 112 ṫ i !

Pk51
(n11n21n313)

~l2lk!
, t05t350. ~A4!

This symbolical form means that the determinant matrix of the numerator arises after excha
the b row of theP matrix on thea row of the matrixPG exp2(t1h11t2h2).

It is not difficult to understand that matrixPG P̄21 possesses all the same singularities
functionst by themselves.

Now let us illustrate the situation on the example of three-wave interaction, choosint1

5l(c1t1c2x), t25l(d1t1d2x). Let us calculate in this case, for instance, (P̄tP̄
21)11. In con-

nection with~A4! the numerator determinant has

DetS Ṗ̃n1111 P̃n111c1l Ṗn2
1Pn2

~c22c1!l Ṗn3
2Pn3

c2l

Pn1
P̃n211 Pn3

Pn1
Pn2

P̃n311

D .

It is obvious that between the columns of the matrixPG the linear dependence takes place with t
same coefficients and so the numerator determinant has zeroes in the same points as the
nant in the enumerator. Computation of the degrees of the numerator shows that it is a poly
of the (n11n21n314) order and so the considered matrix element is the linear function of tl
parameter. From~A3! it follows that it equals exactlyc1l. The same nonconversion calculatio
show that matrixP̄tP̄

21 coincides with theu matrix from the introduction after identification,

P5~P12!n2

n2, Q5~P13!n3

n3, B5~P21!n1

n1,

A5~P23!n3

n3, D5~P31!n1

n1, E5~P32!n2

n2,

where the values above are coefficients at the highest degree terms of the corresponding
mial. These terms are known from the solution of the linear system~A2! and so we have explici
solution of the system~1!.
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APPENDIX B

In this appendix we would like to consider the simple example of soliton solution of
three-wave problem. We especially consider this simplest example in detail to give the read
possibility to feel self-consistent of the whole construction of the present article.

In the notation of Sec. V, letl 352,l 150. We also have the condition that vectorD2W,050 is
equivalent to the following system of equations,

D35D3
B5D3

E50. ~B1!

The first of these equations leads uniquely to the explicit form of the initialD function

D5f1~1! f 1~2!1f2~1! f 2~2!, f15f8, f 25 ḟ . ~B2!

Using the initial conditions~4!, D3
E50 may be rewritten consequently as

BD3
E52DetS D D2 D1

D1 D12 D11

D11 D112 D111

D 5~ ḟ 1f 22 ḟ 2f 1!DetS f1 f2 f18 f 11f28 f 2

f18 f28 f19 f 11f29 f 2

f19 f29 f1- f 11f2- f 2

D .

Keeping in mind thatf, f are the functions of the different arguments, we conclude the
equation is equivalent to the zero of the two determinants of third order. The last condition
turn can be rewritten as the system of equations

f185pf11qf2 , f285sf11tf2 ,

f195pf181qf28 , f295sf181tf28 , ~B3!

f1-5pf191qf29 , f2-5sf191tf29 .

From ~B3! it follows immediately that (f2Þcf1) p85q85s85t850 and functionsf1,2 are the
solutions of the first row of~B3!—the linear system of equations with the constant coefficie
Solution of this system is obvious:

f15c1 expl111c2 expl21 , f25c3 expl111c4 expl21 .

From the equationED3
B by the same way we obtain

f 15d1 expm121d2 expm22 , f25d3 expm121d4 expm22 ,

wherec,d,l,m are arbitrary numerical parameters.
The initial conditions

2D35D11D25BE[~b1 expm121b2 expm22!~e1 expl111e2 expl21!

allow using ~B2! to determine parametersb,e and find one relation connected paramet
c,d,l,m. Now let us calculate vectorQ2,0 using explicit expressions forD,B,E functions. The
last two we present in the following formE5pf11qf2 , B5r f 11s f2 :

Q2,052
D

D2

52
f1f 11f2f 2

DS f1 f2

f18 f28
D DS f 1 ḟ 1

f 2 ḟ 2

D ,
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P2,05

DS f 1 p

f 2 q
D

DS f 1 ḟ 1

f 2 ḟ 2

D , A2,05

DS f1 f2

r s
D

DS f1 f2

f18 f28
D .

Conditions of reality lead to other restrictions on the parameters involved. It is clear tha
possibilities in the choice of parametersl andm arel252l1* , l152l1* , andl252l2* , with
the same limitations on parametersm2 . We do not present here explicit form for the other restr
tions. This is pure algebraic manipulation.
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Erratum: A sum rule for associated Legendre
polynomials with spherical triangles
†J. Math. Phys. 44, 849 „2003…‡

Armik V. M. Khachatourian and Anders O. Wistrom
Department of Chemical and Environmental Engineering, University of California,
Riverside, California 92521

@DOI: 10.1063/1.1562012#

We have corrected a few misprints in our article.
Immediately following Eq.~2!, the sentence should read:

where Aj ,m
n 5(21)man

j 12K*0
p*0

2psn(u,f)Pj
2m(cosu)e2imfdf sinudu and where sn(u,f)

is the electronic charge density on the surface of thenth sphere and where the first, second, a
third terms are the contributions stemming from charges on sphere 1, sphere 2, and sp
respectively.

Immediately following Eq.~10!, the sentence should read:

whereP,(cosb8)5(n52,
, (21)nP,

2n(cosb)P,
n(cosl)ein(fl2f) and is the sought-after sum rule fo

the associated Legendre polynomial with complex exponentials.

And Eq. ~11! should read

V1d,8,0dk,05~21!k
A,8,2k

1

a1
,811

1~21!k(
j 50

`
~,81 j !!

~,82k!! ~ j 1k!!

a1
,8

h12
,81 j 11

Aj ,2k
2

1(
j 50

`

~,81 j !!
a1

,8

h13
,81 j 11 (

m52,8

,8 g,8,k
m

~2cosl13!

~,81m!! ~ j 2m!!
~21!m1,81kei (k1m)fl13 Aj ,m

3

for k>0, and

g,8,k
m

~2cosl!5 (
n50

,8 ~21!n~,81n!!

2n~n2m!! ~n2k!! ~,82n!!
~12cosl!~k1m!/2~11cosl!n2~k1m!/2

and, importantly, be generalized to any number of spheres by cyclic permutation.
23530022-2488/2003/44(5)/2353/1/$20.00 © 2003 American Institute of Physics
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Erratum: The Hausdorff entropic moment problem
†J. Math. Phys. 42, 2309 „2001…‡

E. Romera, J. C. Angulo, and J. S. Dehesa
Departamento de Fı´sica Moderna and Instituto Carlos I de Fı´sica Teo´rica y Computacional,
Universidad de Granada, 18071-Granada, Spain

@DOI: 10.1063/1.1555685#

The conditions of theorem 1 are only necessary due to the fact that the proof of sufficie
based upon a wrong application of Hausdorff’s theorem for the ordinary moment problem. T
the corresponding sufficient conditions is an open problem. The validity of the reconstru
method discussed in Sec. III remains because therein we do not use that theorem, altho
assume the existence of the associated density.
23540022-2488/2003/44(5)/2354/1/$20.00 © 2003 American Institute of Physics
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Controllability properties for finite dimensional quantum
Markovian master equations

Claudio Altafinia)

SISSA–ISAS, International School for Advanced Studies,
via Beirut 2-4, 34014 Trieste, Italy

~Received 3 December 2002; accepted 22 February 2003!

Various notions from geometric control theory are used to characterize the behavior
of the Markovian master equation forN-level quantum mechanical systems driven
by unitary control and to describe the structure of the sets of reachable states. It is
shown that the system can be accessible but neither small-time controllable nor
controllable in finite time. In particular, if the generators of quantum dynamical
semigroups are unital, then the reachable sets admit easy characterizations as they
monotonically grow in time. The two level case is treated in detail. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1571221#

I. INTRODUCTION

The main question that we discuss in this work is the following: to which density oper
can we drive the quantum Markovian master equation by means of coherent control? This p
is of relevance whenever one is interested in quantum state manipulation in presence of non
evolution, for example in the context of quantum information processing5,16,18 and of molecular
control.22 The ultimate goal is obviously to know when and how the state of a quantum mec
cal system can be arbitrarily manipulated by means of unitary~reversible! control operations or a
least to what extent this is possible.

The viewpoint we take in this work is that of ‘‘classical’’ geometric control theory wh
provides us the tools to mathematically formalize and answer the questions posed. In cl
control terms, the set of density operators to which we can steer the system is called thereachable
setand the problem of arbitrary manipulability of the state can be formulated as acontrollability
problem.

The infinitesimal structure of the so-called quantum Markovian master equation, i.e
‘‘axiomatic’’ model for an open quantum system, is known since the works of Lindblad15 and
Gorini–Kossakowski–Sudarshan8 and it is a prerequisite for the utilization of the Lie algebra
controllability methods developed below. We use the so-calledvector of coherencesformulation
for the density matrix,3 i.e., the expectation values corresponding to a complete set of Herm
operators, here the Gell–Mann matrices. Such formulation allows to treat the master equa
a control system with affine vector fields or, geometrically, as a system living on a homoge
space of a matrix Lie group and subordinated to an affine group action, plus constraints orig
from the complete positivity of the quantum dynamical semigroup. If we drop these constr
the system falls into a class of systems whose controllability properties were studied in de
the past, see Refs. 10 and 19 for a general overview, and Refs. 6, 7, and 11 for the particu
of affine fields. Including the complete positivity requirements totally alter these results, be
of the relaxation it induces.

The qualitative difference between studying the master equation and its controlled coun
is that the master equation is an ODE whose solution, obtained integrating a single vector fi
a one parameter semigroup; the presence of control parameters in the controlled master e
implies that we have to consider a family of vector fields simultaneously, and therefor

a!Electronic mail: altafini@sissa.it
23570022-2488/2003/44(6)/2357/16/$20.00 © 2003 American Institute of Physics
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admissible flow is a multiparameter semigroup or Lie semigroups.9 Such a semigroup is the
reachable set. When the reachable set is large enough to be a subgroup or at least to act tra
on the homogeneous space, then we have controllability. The problems arise when the re
semigroup is not a group, as in the case of the controlled master equation. A novel eleme
respect to, for example, the control of Schro¨dinger equations4 is that in the master equation on
has to deal with a truedrift term, i.e., a vector field which is both noncontrollable and nonrec
rent. Then it can happen that although it is~often! possible to generate motion in any directio
~i.e., we have the accessibility property!, the system in never controllable in finite time because
flow cannot be reversed. In other terms, the reachable set may be open and dense in the
admissible density operators, but the initial condition of the controlled master equation alwa
on the boundary of such set for any finite time and therefore it is not possible to reach arb
points in its neighborhoods. The vector of coherences representation is very useful in this r
as it allows to explain the lack of controllability in terms of the trace of the dissipation/relaxa
superoperator. In fact, the main reason for noncontrollability lies in the structure of the nonu
operators given by complete positivity. When such infinitesimal generators is unital this is c
visible: for the density operatorr, tr~r! gives the level sets of a quadratic Lyapunov functi
centered in the origin. In this case, the controlled dynamics is stable and the control alone
only to move within one of the level sets, not to pass from one level set to another. Sinc
nonunitary operator is pointing inward, as time passes also the controlled integral curves can
only inward and this establishes a monotonicity relation among the sets reachable at differe
instants. As pointed out, for example, in Ref. 22, the presence of a dissipation~nonunitary!
operator is essential foranymotion not confined to a sphere inRn to be accomplished. Notice tha
this holds regardless of the existence of a thermodynamic equilibrium, i.e., a fixed point fo
original uncontrolled master equation. For affine dissipation operators, the situation is sl
more complicated and controllability may be recovered as a limit process. The atom with
taneous emission is one such case and will be discussed in some detail. In this case, motio
confined to the inward of spheres inRn and ‘‘purification’’ processes are possible.

The organization of the paper is as follows: in Sec. II we review all the relevant no
concerning controllability of bilinear/affine systems on homogeneous spaces of a Lie gro
Sec. III the formalism of the vector of coherences parametrization is recalled and used to d
controllability of Liouville dynamics; in Sec. IV the controllability of the master equation
treated and the main Theorem formulated. Finally, in Sec. V the two-level case is discus
detail, first for general dissipation operators and then for few significant examples.

It is worth remarking that all our considerations make sense for finite dimensional qua
systems.

II. DRIFT AND CONTROLLABILITY FOR BILINEAR CONTROL SYSTEMS

All properties introduced in this section are standard in geometric control and are adeq
surveyed for instance in Refs. 10 and 19. Consider the following bilinear control system:

ẋ5B0x1 (
k51

q

ukBkx,

~1!
x~0!5xi ,

where the controlsu1 ,...,uq are real valued piecewise constant functions defined on@0,̀ !,
B0 ,...,Bq are square matrices andxPM , an analytic manifold of real dimensionn. In this work:
M is R0

n5Rn\$0% or somen-dimensional homogeneous space~like a sphere! contained inRr , r
>n, or some subset ofRn like a solid unit ball. The vector fieldB0x is called the drift and
B1u1x,...,Bquqx are the control vector fields.

Given xiPM , let us callR(xi , T) the reachable set fromxi at timeT.0 for the system~1!:

R~xi , T!5$xPM s.t. x~0!5xi and x~T!5x, T.0, for some admissible controlu1 ,...,uq%.
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If R(xi , <T)5ø0<t<TR(xi , t), then thereachable setfrom xi is R(xi)5ø0<t<`R(xi , t). In
correspondence of a givenTf and of R(xi , <Tf), one can define the notions of finite tim
controllability as follows.

Definition 1: Given Tf.0, system (1) is Tf-controllableif ; xi , xfPM' admissible control
functions u1 ,...,uq such that the flow of (1) satisfies x(0)5xi and x(Tf)5xf .
The existence of aTf finite is important for the application discussed in this work. When, inste
we are interested in controllability for any time inR(xi), then we can use the following.

Definition 2: System (1) iscontrollableif any xfPM is reachable from any xiPM for some
admissible control function u1 ,...,uq .

Unlike the reachable set which accounts only for the positive time evolution of the trajec
of the system, the orbitO(xi) requires to consider complete vector fields, i.e., defined on
whole time axis:

O~xi !5ø tPR$xPM s.t. x~0!5xi and x~ t !5x, tPR, for some admissible controlu1 ,...,uq%.

The difference betweenO(xi) andR(xi) corresponds to the difference between the acce
bility and controllability properties.

Definition 3: System (1) isaccessibleif R(xi , <T) contains nonempty open sets of M for a
T.0.

While accessibility guarantees the existence of open reachable sets, it does not say a
on xi belonging to it.

Definition 4: System (1) issmall-time controllableif x i belongs to the interior of the reachabl
set, intR(xi , T), for all T.0.

The accessibility property admits an algebraic characterization in terms of the Lie al
generated by the vector fieldsB0x,B1x,...,Bqx, call it Lie(B0x,B1x,...,Bqx).

Theorem 1: ~Lie algebraic rank condition (LARC)): System (1) is accessible if and on
dim (Lie(B0x,B1x,...,Bqx))5dim (M ).

For bilinear systems, when accessibility holds there exists a Lie group of transformation
it G, of ~finite! dimension greater or equal thanM acting transitively onM and to which we can
lift the system. Invariance of the vector fields on a Lie group implies that the controllab
conditions are global and independent of the point of application. For example, for bothR(xi) and
O(xi) we haveR(xi)5RGxi and O(xi)5OGxi , with RG5R(I ) and OG5O(I ) reachable set
and orbit of the lifted system, whereI is the identity matrix ofG. Therefore we can work
indifferently with vector fields onM (B0x,B1u1x,...,Bquqx) or with right invariant vector fields
on the Lie groupG ~i.e., the matricesB0 ,B1u1 ,...,Bquq of g, the Lie algebra ofG), to which we
have lifted the system, starting from the identity ofG:

ġ5B0g1(
i 51

q

ui~ t !Big gPG,

~2!

g~0!5I .

In particular, the LARC condition and the so-called orbit theorem guarantee thatOG is the whole
G and thatM is nothing but a homogeneous space ofG expressed in terms of equivalence class
asGx, xPM . The Lie algebrag is therefore equal to Lie(B0 ,...,Bq) and the accessibility con
dition reformulates as transitivity ofG ~or of g, with a common abuse of terminology! on M .

Theorem 2: System (1) is accessible if and only ifg is transitive on M.
The LARC condition is only a necessary condition for controllability, even when it holds

reachable set needs not be the whole Lie groupG. When RG�OG the lifted system is not
controllable, the reason being that the drift is allowed to flow only along the time forward d
tion and may not be reversible by means of the control vector fields. In fact, the control v
fields are ‘‘complete’’ in the sense that, sinceuk can assume both positive and negative valu
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once exponentiated they generate a one parameter subgroup exp(tukBk , t>0). On the contrary, the
drift produces only a subsemigroup exp(tB0, t>0) and thusRG in general only has the structur
of a Lie semigroupof G.9

The case of a compact group is exceptional, since compact Lie groups do not admit
groups: exp(tB, t>0)5exp(tB, tPR). HenceRG collapses inOG and the accessibility propert
collapses into~‘‘long time’’ ! controllability. The LARC condition then becomes necessary
sufficient for controllability:R(xi)5OGxi5Gxi5M , ; xiPM .

In general, however, one has to deal with the case ofRG being only a Lie semigroup. Even i
RG is a proper semigroup,RG�G, it may still happen that the action ofRG on M is transitive.
In the literature, most results are in the form of sufficient conditions for controllability. For sys
~1!, examples are

~1! RG5G andG acts transitively onM ,
~2! RG acts transitively onM ,
~3! xiP int R(xi , T) ; T.0.

For our case, none of these~or similar! conditions hold and ‘‘negative’’ results have to b
established.

Affine vector fields case:The case of affine vector fields generalizes~1! to the following set of
ODEs:

ẋ5B0x1b0x01 (
k51

q

~ukBkx1bkx0!,

~3!
x~0!5xi ,

wherex0 is a real constant. It corresponds to a Lie group of transformations having the stru
of a semidirect productKsV with V typically a n-dimensional real vector space andK a Lie
group acting linearly on it. The dimension ofKsV is dim(K)1n. By choosing the following
homogeneous coordinates for the statex̄5@x0 , xT#T, the system~3! recovers the linear form o
~1!:

xG 5B̄0x̄1 (
k51

q

ukB̄kx̄,

whereB̄k5@bk

0
Bk

0 #. The homogeneous coordinates allow to transform the affine action ofKsV on

x into linear action onx̄. If g5@v
1

k
0#PG5@V

1
K
0 #, the actionF : G3M→M is

F~g!~ x̄!5gx̄5F x0

kx1vx0
G

so that the affine vector fields induced onx̄ by F are

F* ~B̄!~ x̄!5B̄x̄5F 0
Bx1bx0

G
and the Lie bracket is

@Ā, B̄#5F 0 0

Ab2Ba @A, B#
G .

Also for affine systems, special sufficient conditions for accessibility and controllability have
devised, see Refs. 6, 7, and 11 for details.
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III. CONTROLLABILITY OF HAMILTONIAN DYNAMICS

To describe differential equations for density operators, we make use of the so-called ve
coherences formulation. A few essential facts about it are reported below; see, for example,
for a thorough description and further references.

A. Density operators and vectors of coherences

The state of a quantum mechanical system in anN-dimensional Hilbert spaceH N can be
described in terms of a trace 1 positive semidefinite Hermitian operatorr called the density matrix.
If the density operator is entirely characterized by a wave functionuc&, then the system is said t
be in a pure state,r is defined asr(t)5uc&^cu and tr(r2)51. If instead we have a statistica
ensembler(t)5( i 51

N p( i )uc ( i )&^c ( i )u for p( i )>0 and( i 51
N p( i )51, then the system is said to be

a mixed state characterized by the pairs$p( i ), uc ( i )&% and tr(r2)<1. In both cases, the propertie
of Hermitianity r5r† and of unit trace tr(r)51 imply that theN3N matrix representing the
density operator depends onn5N221 real parameters. Up to the imaginary unit,N3N traceless
Hermitian matrices form the Lie algebrasu(N) of dimension exactlyn. If to it we add the
~properly normalized! unit vector, then we obtain a complete basis for the density operator o
N-dimensional quantum mechanical system. In fact, theN-dimensional Pauli matricesl j , see, for
example, Ref. 14 for their explicit expression, and the identity matrixl05N21/2I , form a com-
plete orthonormal set of basis operators forr ~orthonormal in the sense that tr(l jlk)5d jk). In
particular, then,r5( j 50

n tr (rl j )l j5( j 50
n r jl j , with r05N21/2 fixed constant and then real

parametersr j giving the parametrization ofr. Since thelk , k51,...,n, form a compete set o
observable operators, ther j5tr(rl j ) are expectation values ofr. Call r5@r1¯rn#T suchvector
of coherencesof r. Due to the constant component alongl0 , r is living on an affine space
characterized by the extra fixed coordinater05N21/2. Suchn-dimensional Liouville space o
vectorsr̄5@r0 r1¯rn#T5@r0 rT#T has Euclidean inner product given by the trace metric:i r̄i
5A^̂ r̄, r̄&&5Atr(r2). The condition tr(r2)<1 then translates inr̄-space asr̄ belonging to the
solid affine ball of radius 12(1/N) centered at@r0 0 ¯ 0#T, call it B̄n, for all positive times. The
surface of such ball generalizes the idea of Block sphere toN dimension and corresponds to pu
statesi r̄i251. In terms of vector of coherences, the condition tr(r2)<1 becomes the balliri2

<12 (1/N) centered at the origin.

B. Hamiltonian dynamics

If H is a constant finite-dimensional Hamiltonian, for the density operator the Liou
equation is given by

ṙ~ t !52 i @H, r#52 i adH~r!.

If 2 iH Psu(N), then2 i adH is a so-called commutator superoperator, i.e., a linear operator in
n-dimensional Liouville space ofr vectors. In terms ofr, the action of2 i adH is linear,

ṙ52 i adH r, ~4!

H being traceless and Hermitian, in the$l j% basis:H5( l 51
n hll l . The process of passing fromr

to r is mathematically equivalent to passing to the adjoint representation of the Lie algebrasu(N).
In fact, the corresponding basis in the adjoint representation is given by then3n matrices
adl1

,...,adln
of elements (adl l

) jk5 i f l jk with f l jk real fully skew-symmetric~with respect to the

permutation of any pair of indexes! tensor. Thus2 i adH52 i ( l 51
n hl adl l

. The n3n matrices
2 i adl1

,...,2 i adln
are real and skew symmetric and as such they are part of a basis ofso(n).

Since

dim ~so~n!!5
n~n21!

2
5

N423N212

2
,
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for N.2 then matrices2 i adl1
,...,2 i adln

span only a proper subalgebra adsu(N) of so(n). For
example, forN53, n5dim(su(3))58, while dim(so(8))528. In the Liouville equation~4!, the
propagator forr corresponding to the HamiltonianH is an orthogonal matrix,

r~ t !5g~ t !r~0!, g~ t !Pexp~adsu(N)!#SO~n!

such thatġ(t)52 i adH g(t), g(0)5I . The action of anygPSO(n) on r is isometric and as such
it preserves the inner productiri.

C. Coherent control of Hamiltonian dynamics

Assume that the HamiltonianH is composed of a time-invariant partH0 representing the free
evolution of the system plusq time-varying forcing terms representing the interaction withq
external fields, modeled semiclassically,

H~ t !5H01 (
k51

q

uk~ t !Hk , 2 iH 0 ,2 iH kPsu~N!,

with the parametersuk representing the control fields. Consider a pure state of ketuc&PS,HN

~whereS is the sphere inN-dimensional Hilbert space! and its Schro¨dinger equation

i uċ&5H0uc&1 (
k51

q

ukHkuc&, uc~0!&5uc0&. ~5!

The sphereS in H N is a homogeneous space of SU(N). Compactness of SU(N) plus transitivity
of the SU(N) action onS in this case guarantee the following~see Ref. 12 for the origina
formulation, Ref. 4 for a thorough discussion and Ref. 1 for more material on Lie alge
transitive onS!:

Theorem 3: If Lie(2 iH 0 , 2 iH 1 ,...,2 iH q)5su(N) then system (5) is controllable.
By computing the ~real! dimension of such Lie algebra dim(Lie(2 iH 0 ,...,2 iH q))
5dim(su(N))5n5dim(S).

In the following we will always consider the controllable case for the wave functionuc&.
Assumption A1: System (5) is controllable.
Passing to density matrices, for a mixed stater driven by the same HamiltonianH(t) the

corresponding forced Liouville equation written in terms of vector of coherences is

ṙ52 i adH0
r2 i (

k51

q

uk adHk
r. ~6!

The vector fields2 i adH0
,...,2 i adHq

corresponding to the Hamiltonian dynamics lack the tra
lation component and belong to a subalgebra adsu(N) of so(n). Just like the Lie group SU(N) is
acting transitively on the unit sphere onH N, so the orthogonal group SO(n) is acting transitively
on a sphereiri25const<12 (1/N). By dimension counting, exp(adsu(N)) is not acting transitively
on such sphere ifN.2. In fact, it is well known that coherent control cannot modify the eig
values ofr, and so controllability can occur only inside the leaf of the foliation ofr ~determined
by the eigenvalues! that one starts with. See Ref. 20 for a description of the kinematic equival
classes of density matrices in the context of dynamical control, or Ref. 13 for a complete de
tion of the invariants of motion.

IV. CONTROLLABILITY OF MARKOVIAN MASTER EQUATIONS

The requirement of tr(r2)<1 for the density operator is reformulated in the vector of coh
ences parametrization asi r̄i2<1. ThusB̄n has to be made invariant by the quantum dynami
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evolution. The main feature of the master equation is to capture all the possible infinite
generators that fulfill this condition. Obviously, also the driven master equation has to live oB̄n,
and all controllability questions have to be restricted toB̄n.

A. Master equation

Calling LD the superoperator representing the relaxing/dissipating part of the dynamics,
basis$l j% of traceless Hermitian matrices the Markovian master equation is expressed as8

ṙ5LH~r!1LD~r!52 i adH~r!1
1

2 (
j ,k51

n

ajk~@l j , rlk#1@l jr, lk# !

52 i @H, r#1
1

2 (
j ,k51

n

ajk~2l jrlk2$lkl j , r%!, ~7!

where the Hermitian matrixA5(ajk) is positive semidefinite,A>0, and$ • , • % is the anticom-
mutator. For the basis$l j%, unlike a Lie bracket which is linear in the generators, the antico
mutator has an affine structure:$l j , lk%5 (2&/N) d jkl01( l 51

n djkll l , with djkl the real and
fully symmetric tensor. The expression of~7! in terms of vector of coherences is as follows:

ṙ52 i adH r1 (
j ,k51

n

ajk~L jkr1vjkr0! ~8!

with L jk n3n complex matrix of mixed symmetry andvjk imaginaryn vector given by

L jk5~L jk! lr 52
1

4 (
m51

n

~~ f jmr1 id jmr! f kml1~ f kmr2 idkmr! f jml!,

~9!

vjk5
i

AN
@ f jkl¯ f jkn#T.

B. Coherent control of master equations

Under the assumption of weak and high frequency control fields, it is acceptable to a
that no time dependence is induced in theLD term by the external fields. Adding the controls, E
~8! modifies as23

ṙ5LH0
r1 (

k51

q

ukLHk
r1LDr52 i adH0

r2 i (
k51

q

uk adHk
r1 (

j ,k51

n

ajk~L jkr1vjkr0! ~10!

or, in homogeneous coordinates and callingL̄ jk5@vjk

0
L jk

0 #, j ,k51,...,n:

rG5L̄r̄5L̄H0
r̄1 (

k51

q

ukL̄Hk
r̄1L̄Dr̄, r̄PB̄n

5F0 0

0 2 i adH0
G r̄1 (

k51

q

ukF0 0

0 2 i adHk

G r̄1 (
j ,k51

n

ajkL̄ jkr̄. ~11!

The state of~11! is living on Rn11 and is constrained by the positivity ofr requirement to belong
to B̄n. However, the dissipation termLD is not coherent and as such it enlarges the integral gr
of ~11! from exp(adsu(N)) to one of the Lie groups properly containing it. Examples are SO(n, R),
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SL(n, R), GL1(n, R), the connected component of GL(n, R) containing the identity, or their
semidirect extensions SO(n, R)sRn, SL(n, R)sRn, and GL1(n, R)sRn.

SinceA is Hermitian, the number of independent parametersajk is n2. It is convenient to
rearrange then2 degrees of freedom in the following manner. From~9!, it is straightforward to
check that Re@(Lkj)lr#5Re@(Ljk)lr#, Im@(Lkj)lr#52Im@(Ljk)lr# and thereforeLk j5L jk* . If we call
L jk

R5Re@(Ljk)lr# and L jk
I 5Im@(Ljk)lr#, then with respect to index permutationL jk

R is symmetric,

Lk j
R5L jk

R while L jk
I is skew-symmetric,Lk j

I 52L jk
I . Similarly, the Hermitianity ofA implies ak j

5ajk* or, if we write ajk
R5Re@ajk# andajk

I 5Im@ajk#, ak j
R5ajk

R , ak j
I 52ajk

I . Therefore,

ajkL̄ jk1ak jL̄k j5~22d jk!ajk
RF0 0

0 L jk
RG12ajk

I F 0 0

ivjk 2L jk
I G , 1< j <k<n. ~12!

To haveA>0, a number of constraints among theajk must be imposed like, for example,aj j

5aj j
R>0 andaj j akk>(ajk

R)21(ajk
I )2 or uajku<(aj j 1akk)/2.

Our aim here is to draw conclusions about whichr̄ can be reached by means of cohere
control. In~11!, unlike(k51

q ukL̄Hk
, bothL̄H0

andL̄D have integral curves that can flow only alon

the positive semiorbit and, in control terms,L̄H0
plays the role of the drift andL̄D that of a

disturbance. Classically, a disturbance can be treated, for example, as a parametric family o
fields with parameters belonging to admissible intervals~hereajk such thatA>0). However, in
the case ofL̄D parametric the master equation becomes a differential inclusion and little ca
said about its controllability properties. Therefore in this work we will assume to be dealing
with a precisely known value ofA, hence ofL̄D .

Assumption A2: The parameters ajk , j ,k51,...,n are fixed and known exactly.
Consequently we can treatL̄D as a part of the drift term~together withL̄H0

) and use the tools
of Sec. II.

Under the assumption of unitary controllability, the Lie algebrag of interest here is the
smallest Lie algebra of real matrices containing adsu(N) and L̄H0

1L̄D and closed with respect to
the matrix commutation

g5Lie~L̄H0
1L̄D , L̄H1

,...,L̄Hq
!.

Onceg is computed, the system can be lifted toG,

ġ5L̄H0
g1 (

k51

q

ukL̄Hk
g1L̄Dg. ~13!

The following theorem gathers various results about accessibility and controllability for
tem ~11!. Concerning controllability, while forL̄D unital the results are sharp~and negative!, the
case ofL̄D affine is more difficult to treat. In fact, in this case, in spite of the lack of small-ti
controllability it may happen that points that are not reachable in short time are reachableT

large enough and even that cl(R(r̄i))5B̄n asymptotically (cl(• ) means closure!. The atom with
spontaneous emission discussed in the examples of Sec. V is one such case. Essentially
depends on the existence of a fixed point for the master equation and on it being on the bo
of B̄n, ] B̄n. However, even in this case] B̄n is reached only asymptotically and therefore t
system fails to be controllable in finite time.

Theorem 4: Under assumptions A1 and A2, we have the following:
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(1) System (11) is accessible inB̄n if and only if g5gl(n,R) or g5gl(n,R)sRn;

(2) System (11) is never small-time controllable inB̄n for L̄DÞ0;

(3) System (11) is never Tf-controllable in B̄n for any Tf.0 and L̄DÞ0;

(4) the system (11) is never controllable inB̄n for L̄DÞ0 unital.

Proof: The proof of Part~1! follows from Theorem 2. The only transitive Lie algebras onR0
n

~and thus onB̄n) are sl(n, R) and gl(n, R) and their semidirect extensionssl(n, R)sRn and
gl(n, R)sRn. Recall that matrices insl(n, R) are traceless and that, using the decomposit

gl(n, R)5sl(n, R) % span(I n) (I n the n3n identity matrix!, if tr( L̄D)5na and Ī 5@0
0

I n

0 #, L̄D can

be split asL̄D5a Ī 1L̃D , aPR, a,0, L̃DPsl(n, R)sRn. But sinceaj j >0, in order forL̄D to be
traceless it must beaj j 50 ; j 51,...,n and hence, fromuajku<(aj j 1akk)/2 all ajk50. Therefore
only gl(n, R) andgl(n, R)sRn are compatible withA>0.

To prove Part~2!, one needs to show that the initial conditionr̄i does not lie in int(R(r̄i)). It

is quite easy to verify it forL̄D unital. In fact, if the initial stater̄i is such that 0,i r̄i i5d<1, then

for the Hamiltonian part ^̂ (L̄H0
1(k51

q ukL̄Hk
)r̄i , r̄i&&50 while L̄D is pointing inward:

^̂ L̄Dr̄i , r̄i&&,0. Therefore, the ball of radiusd is invariant for the flow of~11! and r̄i lies on the

boundary ofR(r̄i). For L̄D affine, the lack of small-time local controllability is automatical
verified for pure statesi r̄i i51, because the physics of the problem imposes thatr̄ such that
i r̄i5A11e, e.0 is not admissible. Writing the integral curves of the control system asr̄(t)

5F(T exp*0
t L̄(t)dt)(r̄i)5g(t)r̄i with T the Dyson operator, we can lift the dynamics to t

system~13! with initial condition g(0)5I . r̄i¹ int(R(r̄i)) for i r̄i i51 implies that the reachabl
set R(r̄i)5RGr̄i cannot be transitive on any neighborhood ofr̄i and that for the lifted system
I ¹ int(RG). But, due to right invariance, the properties of accessibility, controllability, and t
sitivity have a global character and thereforeRG is not transitive for any neighborhood of an

r̄iPB̄n.
Concerning Part~3!, if a finite timeTf is fixed, the reachable setR(r̄i , <Tf) for the master

equation is always only a Lie semigroup. In fact, if the fixed point ofL̄D ~when it exists! belongs

to int(R(r̄i , <Tf)) then cl(R(r̄i , <Tf))#cl(R(r̄i))�B̄n; if instead it belongs to] B̄n then

cl(R(r̄i , <Tf))�cl(R(r̄i))5B̄n. Even if a fixed point does not exist, we have that the norm or̄i

can grow only if^̂ L̄Dr̄i , r̄i&&.0 and thati r̄(t)i can approach 1 at most ast→`. SinceL̄H0
and

L̄H1
,...,L̄Hq

preserve the length, excluding the trivial cases the control cannot speed up th

vergence to] B̄n from its ‘‘best’’ initial condition. But even in that case convergence is o

asymptotic. Therefore, for any fixedTf the open setR(r̄i , <Tf) cannot be all ofB̄n and neither
can its closure.

Finally, the proof of noncontrollability inB̄n for L̄D unital follows from the same argumen
used above in Part~2!. h

For the system lifted to its integral group, the small-time controllability property collapses
controllability and we have the following.

Corollary 1: The ‘‘lifted’’ system (13) is accessible for G5GL1(n, R) or G

5GL1(n, R)sRn but it is never controllable on G forL̄DÞ0.
Proof: The first part is obvious, since accessibility on the Lie group is a necessary con

for accessibility on the homogeneous space. Concerning controllability, from the proof of T
rem 4, Part~2!, for the system~13!, I ¹ int(RG). But, for Lie groups, such property is a global on
and therefore the system is never controllable. h

Another way to prove the previous corollary is via piecewise constant controls: in this

g(t)5T exp*0
t L̄(t)dt5) j 51

r exp((L̄H0
1L̄D1(k51

q ukj
L̄Hk

)(t j2t j 21)) and using the formula

det(exp(•))5exp(tr(•)) we have det() j51
r exp((L̄H0

1L̄D1(k51
q ukj

L̄Hk
)(t j2t j 21)))

5exp((j51
r tr((L̄H0

1L̄D1(k51
q ukj

L̄Hk
)(t j2t j 21)))5exp(tr(L̄D)t)<1. Therefore, g(t)
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PGL1(n, R) or g(t)PGL1(n, R)sRn ~only in these cases~13! is accessible! must be such tha
det(g(t))<1 and cannot generate the whole Lie group.

Yet another method to show the same thing is to use the necessary condition of Lemma
Ref. 12. Write L̄D5a Ī 1L̃D , aPR, a,0, L̃DPsl(n, R)sRn. Since @ Ī , F̄#50 ; F̄
Pgl(n, R)sRn, under the assumption of accessibility the ideal ing generated by the contro
vector fields coincides with the derived subalgebrag15@g, g# ~and span(Ī ) with the center ofg!

and it is contained insl(n, R)sRn. A necessary condition forRG5G is that exp((L̄H0
1L̄D)t)

Pexp(g1) ~i.e., to SL(n, R) or to SL(n, R)sRn! for somet.0 which is obviously never true.
For L̄D unital, the reachable sets are balls inRn ~centered in 0! and are completely charac

terized by the following monotonicity property.
Corollary 2: If the system (11) is accessible and ifL̄D unital then R(r̄i , <T1)�R(r̄i ,

<T2); 0,T1,T2 and R(r̄i) is the ball of radiusi r̄i i .
Proof: It follows from the observation above thatr̄n of norm i r̄ni lies on the boundary of the

set reachable fromr̄n by the integral curves of~11!. If r̄n5r̄(T1)5F(T exp*0
T1L̄(t)dt)(r̄i), then

R(r̄i , <T2)5R(r̄i , <T1)øR(r̄(T1), <T22T1). Notice that this does not requireL̄D to have a
fixed point. Accessibility of~11!, in fact, guarantees thatr̄(t) can be placed on any point of th
sphere of radiusi r̄(t)i and therefore, ast→`, ~11! can be made to tend to the origin regardle
of the existence of a fixed point forL̄D . HenceR(r̄i) is anything inside the ball of radiusi r̄i i .h

V. TWO LEVEL SYSTEMS

For two level systems,r is the usual Bloch vector. Calllk5(1/&) sk , kP$0,x, y, z% the
rescaled~identity and! Pauli matrices. Then in the$lk% basis

r5Fr00 r01

r10 r11
G5r0l01rxlx1ryly1rzlz5

1

& F 1

&
1rz rx2 iry

rx1 iry
1

&
2rz

G ~14!

and r5@rx ry rz#
T, where rk5tr(rlk), i.e., r05(1/&) , rx5& Re@r01#, ry

52& Im@r01#, and rz5(1/&) (r002r11). In our case, $l0 , lk%5&lk , $l j , lk%
5&d jkl0 , ; j ,kPI5$1, 2, 3%. Similarly to ~14!, the HamiltonianH can be written as

H5(
kPI
&hklk5F hz hx2 ihy

hx1 ihy 2hz
G

and, in the adjoint representation, from2 i adH5(2 i adH)pm5(( l PIhl f lpm)pm ,

2 i adH5F 0 2hz hy

hz 0 2hx

2hy hx 0
G5hxF 0 0 0

0 0 21

0 1 0
G1hyF 0 0 1

0 0 0

21 0 0
G1hzF 0 21 0

1 0 0

0 0 0
G .

~15!

Specifying the coherent controls:hk5(h0k
1uk), k51, 2, 3, whereh0k

are the basis components o
the time-independent free HamiltonianH0 anduk5uk(t), k51, 2, 3, the control parameters~some
of the h0k

or uk may be 0!. In the homogeneous coordinates, the vector field for the Hamilto
acquires only a zero translation, and, from~15!, the infinitesimal generators of the cohere
rotations are
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M̄15F 0 0 0 0

0 0 0 0

0 0 0 21

0 0 1 0

G , M̄25F 0 0 0 0

0 0 0 1

0 0 0 0

0 21 0 0

G , M̄35F 0 0 0 0

0 0 21 0

0 1 0 0

0 0 0 0

G .

HenceL̄H0
5(k51

3 h0k
M̄ k and L̄Hk

5M̄k , k51, 2, 3. In this case~12! simplifies to

ajkL̄ jk1ak jL̄k j5F 0 0

2ia jk
I vjk ~22d jk!ajk

RL jk
G . ~16!

The nine degrees of freedom ofA ~constrained by the positive semidefiniteness requirement! are
captured by the nine real parameters~reindexed cardinally!,

$a4 , a5 , ...,a12%5$axy
R , axy

I , axz
R , axz

I , ayz
R , ayz

I , axx
R , ayy

R , azz
R%.

In terms ofa4 ,...,a12, the matrixA is

A5F a10 a41 ia5 a61 ia7

a42 ia5 a11 a81 ia9

a62 ia7 a82 ia9 a12

G .

In order to impose the positive semidefiniteness ofA, a sufficient condition is that all the principa
minors have nonnegative determinant, i.e.,

a10>0, a11>0, a12>0, ~17!

a10a11>a4
21a5

2 , a10a12>a6
21a7

2 , a11a12>a8
21a9

2, ~18!

a10a11a122a10~a8
21a9

2!2a11~a6
21a7

2!2a12~a4
21a5

2!12a4~a6a81a7a9!22a5~a6a92a7a8!>0.

The infinitesimal generators corresponding to this parametrization are linear combinations
L̄ jk . Numbering in the same fashion as theajk

R ,ajk
I parameters, we obtain the nine linear

independent generators,

M̄45L̄xy1L̄yx5F 0 0 0 0

0 0 1 0

0 1 0 0

0 0 0 0

G , M̄55 i ~ L̄xy2L̄yx!5F 0 0 0 0

0 0 0 0

0 0 0 0

22 0 0 0

G ,

M̄65L̄xz1L̄zx5F 0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

G , M̄75 i ~ L̄xz2L̄zx!5F 0 0 0 0

0 0 0 0

2 0 0 0

0 0 0 0

G ,

M̄85L̄yz1L̄zy5F 0 0 0 0

0 0 0 0

0 0 0 1

0 0 1 0

G , M̄95 i ~ L̄yz2L̄zy!5F 0 0 0 0

22 0 0 0

0 0 0 0

0 0 0 0

G ,
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M̄105L̄xx5F 0 0 0 0

0 0 0 0

0 0 21 0

0 0 0 21

G , M̄115L̄yy5F 0 0 0 0

0 21 0 0

0 0 0 0

0 0 0 21

G ,

M̄125L̄zz5F 0 0 0 0

0 21 0 0

0 0 21 0

0 0 0 0

G .

The above expression of the matrix generators is very convenient for our purposes, bec
splits the affine and linear parts of the action onr. Furthermore, it makes it straightforward t
check that Lie(M̄1 ,...,M̄12)5gl(3,R)sR3 ~recall that dim (gl(3,R)sR3)512!. See Ref. 21 for
a comparison.

In terms of the coherence vector and using homogeneous coordinates, Eq.~11! becomes

rG5 (
k51

3

h0k
M̄ kr̄1 (

k51

3

ukM̄kr̄1 (
k54

12

akM̄kr̄, r̄PB̄3. ~19!

Given L̄D , the corresponding Lie algebra is

g5LieS (
k51

3

h0k
M̄ k1 (

k54

12

akM̄k , (
k51

3

ukM̄kD #gl~3,R!sR3.

In general,g varies with the values ofak . A few prototypes of subalgebras obtained disregard
the assumptionA>0 are reported in Table I. OnceA>0 is imposed,case 1, case 3 andcase 4
are not anymore admissible~the argument is the same as in the proof of Theorem 4, Part~1!!.

The two level version of Theorem 4 is the following.
Theorem 5: For a two-level master equation, under assumptions A1 and A2 we have

(1) System (19) is accessible inB̄3 for L̄DÞa Ī 1(k55,7,9akM̄k , aPR, a,0.
(2) System (19) is never small-time nor finite-time controllable inB̄3 for LDÞ0.

Proof: The assumptionL̄DÞa Ī 1(k55,7,9akM̄k , a,0, rules outcase 6 andcase 7 of Table
I. By exclusion, or by exhaustive computation using the structure constant of the Appendix
nonnull L̄D such thatL̄DÞa Ī 1(k55,7,9akM̄k generates the Lie algebra ofcase 2 or case 5 as
required by Theorem 4. h

TABLE I. Examples of subalgebras ofgl(3,R)sR3 obtained for differentA ~not necessarilyA>0).

Coefficientsajk g

case 1 a55a75a950; a10 , a11 , a12 s.t. tr((k510
12 akM̄k)50 sl~3,R!

case 2 a55a75a950; a10 , a11 , a12 s.t. tr((k510
12 akM̄k)Þ0 gl~3,R!

case 3 a45a65a85a105a115a1250 adsu(2)sR3

case 4 a10 , a11 , a12 s.t. tr((k510
12 akM̄k)50 sl(3,R)sR3

case 5 a10 , a11 , a12 s.t. tr((k510
12 akM̄k)Þ0 gl(3,R)sR3

case 6 a45¯5a950, a105a115a12 adsu(2)% span(Ī )
case 7 a45a65a850, a105a115a12 (adsu(2)% span(Ī ))sR3
                                                                                                                



heory
rs

ore its
lly’’

pure
r

wing

gebra
the

value
,

se
series
actions

o split

2369J. Math. Phys., Vol. 44, No. 6, June 2003 Controllability for Markovian master equations

                    
Examples:In quantum information processing, some of theM̄ k admit well-known physical
interpretations in terms of nonunitary quantum operations on a qubit normally used in the t
of error correction. For exampleM̄10, M̄11, andM̄12 are, respectively, the infinitesimal generato
of the one-parameter semigroups corresponding tobit flip, bit-phase flip, andphase flipchannels
~see Ref. 17, Sec. 8.4! and soa depolarizing channelhasa10, a11, anda12 all nonnull and equal.

~1! Depolarizing channel (L̄D unital): The depolarizing channel is given byL̄D5a Ī , a,0.
SinceL̄D commutes with everything, in this case the system is not accessible and furtherm
integral curves are not at all modified by coherent control. They will be pointing ‘‘isotropica
to the origin inR3.

~2! Phase flip (L̄D unital): The phase flip channel is also known as phase damping or
coherence channel and it is given byL̄D aligned with M̄12. The effect of this one-paramete
semigroup is to ‘‘contract’’ the Bloch sphere along thelx andly directions, leaving it untouched
along lz . As an example, check the accessibility property in correspondence of the follo
simple master equation:

rG5~u1M̄11u2M̄21u3M̄31a12M̄12!r̄,

i.e., controls available along all the three directions and no free Hamiltonian. The Lie al
Lie$M̄1 , M̄2 , M̄3 , M̄12% is computed using the structure constants given in the Appendix and
Jacobi identity to eliminate terms not linearly independent.

First level Lie brackets,

@M̄1 , M̄12#52M̄8 , @M̄2 , M̄12#5M̄6 .

Second level Lie brackets,

@M̄1 , M̄6#52M̄4 , @M̄1 , M̄8#5M̄122M̄11, @M̄2 , M̄6#5M̄102M̄11.

Therefore

g5$M̄1 , M̄2 , M̄3 , M̄4 , M̄6 , M̄8 , M̄102M̄12, M̄122M̄11, M̄12%5gl~3,R!

and the process is accessible. Notice thatM̄102M̄12 andM̄122M̄11 aretraceless, i.e., they belong
to sl(3,R) ~unlike M̄12) and therefore thatg15sl(3,R), as expected.

In this case, as it is easy to check~see also Ref. 3, Part 2, Sec. II.5! L̄D is not uniquely
relaxing, i.e., a fixed point for the uncontrolled system does not exist. Thus the asymptotic
depends from the initial condition and limt→` r̄5@r0 0 0 rz(0)#T. Once the control is added
however, the controlled system can be made to converge to anyr̃z in the interval

@2rz(0), rz(0)#. In particular, if r̃z50 thenR(r̄(0))5$r̄PB̄n s.t. i r̄i<i r̄(0)i%.
A Lie algebraic methodper seis normally not constructive. However, what it tells in this ca

is that full accessibility is achieved only at the second level of brackets. Therefore a
expansion cannot be truncated before that, if one wants to assure the generation of group
in arbitrary directions.

To understand what is happening to the integral curves of the system, it is convenient t
L̄D into part in sl~3! and part ingl~3!\sl~3! as in the proof of Theorem 4:L̄D5a Ī 1L̃D , a,0,
L̃DPsl(3). For L̄D5a12M̄12,

L̄D5a12M̄125a Ī 1L̃D52
2a12

3
Ī 1

a12

3 F 0 0 0 0

0 21 0 0

0 0 21 0

0 0 0 2

G .
                                                                                                                



r-

on of

ing
em, the
us

sion

orre-

2370 J. Math. Phys., Vol. 44, No. 6, June 2003 Claudio Altafini

                    
If F(t)5L̃D1(k51
3 (h0k

1uk(t))M̄ k , since@ Ī , F#50 ;FPgl(3,R), the flow of the system can
be written as the exponential

g~ t !5T expE
0

t

~a Ī 1F~t!!dt5exp~ ta Ī ! T expE
0

t

F~t!dt

and its action onr̄ as r̄(t)5exp(taĪ)T exp(*0
t F(t)dt)r̄(0). The ‘‘isotropic’’ contraction exp(taĪ)

corresponds to the depolarizing channela/2(M̄101M̄111M̄12) and cannot be reversed. Furthe
more, the complete positivity constraintA>0 imposes that thea Ī part must be dominant with
respect to theF(t) part. Thus, regardless of the control action, the overall result is a contracti
the flow in B̄3.

~3! Amplitude damping (L̄D affine): In terms of the master equation, the amplitude damp
channel corresponds to an atomic system with spontaneous emission. In a two-level syst
excited stateu1& can decay to ground stateu0& while emitting a photon. The process of spontaneo
emission is characterized in terms of the atomic ladder operatorss65sx6 isy and of the damp-
ing coefficientg↓ (g↓.0) as~see, e.g., the survey in Refs. 2 and 17, Sec. 8.4.1!

ṙ52 i adH~r!2
g↓
2

~2s2rs12s1s2r2rs1s2!. ~20!

If, for example,H5&(h03
l31(k51

3 uklk) then

rG5F 0 0 0 0

0 0 2h03
2u3 u2

0 h03
1u3 0 2u1

0 2u2 u1 0

G r̄1g↓3
0 0 0 0

0 2
1

2
0 0

0 0 2
1

2
0

1 0 0 21

4 r̄

5h03
M̄3r̄1 (

k51

3

ukM̄kr̄1
g↓
2

~M̄101M̄112M̄5!r̄. ~21!

Since the unital part ofL̄D is not proportional to the identity, by Theorem 5 spontaneous emis
is an accessible process. From~16!, the relaxation matrix is

A5
g↓
2 F 1 2 i 0

i 1 0

0 0 0
G .

As the unital part ofL̄D is invertible,~21! has a fixed point. SinceA>0 but notA.0, L̄D lies on
an exposed face of the coneA>0 and in correspondence the fixed point lies on]B̄3, i.e., it is a
pure state. Thus, asymptotically,L̄D admits a reachable set such that cl(R(r̄(0)))5B̄3. As men-
tioned in the proof of Theorem 4, coherent control can speed up the ‘‘purification’’ ofr̄ only for
certain values of the initial condition. In fact, from

1

2

di r̄i2

dt
5 ^̂ rG , r̄&&5 ^̂ h03

M̄3r̄, r̄&&1KK (
k51

3

ukM̄kr̄, r̄LL 1
g↓
2

^̂ ~M̄101M̄112M̄5!r̄, r̄&&

only the last term gives a nontrivial contribution and can become positive, for example, in c
spondence ofrz positive andrx , ry small enough,
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g↓
2

^̂ ~M̄101M̄112M̄5!r̄, r̄&&5
g↓
2

~2r0rz2~rx
21ry

21rz
2!2rz

2!5
g↓
2

~2r0rz2iri22rz
2!.

However, the purification process remains an asymptotic process since as soon as coheren
has broughtr to @0 0 1urzu#, then purification can occur only because ofL̄D . Once again, notice
how the role ofL̄D is essential in moving around in the reachable set.

VI. CONCLUSION

The aim of this work is to shed light on the possibility and limits of coherent contro
Markovian master equations using standard tools from geometric control theory. It turns ou
there is a remarkable complementarity between admissible quantum dynamical semigrou
controllability: in the vector of coherences representation an admissibleL̄D has to have a nonnul
component along the nonzero-trace one-dimensional vector subspace of the Lie algebra on3n
matrices~or its semidirect extensions!. A component in that direction guarantees noncontrollabi
in small and finite time. In the simple cases of unital dissipation operators, the fact tha
‘‘uncontrollable’’ direction has dimension 1 allows to obtain an order relation among the
reachable at different times by means of arbitrary coherent controls.

APPENDIX: STRUCTURE CONSTANTS OF gl„3,R…sR3

For the real Lie algebragl(3,R) in the basisM̄1 ,...,M̄12, the structure constants, call the
cjk

l , are real but not totally skew symmetric,

c1,2
3 5c1,4

6 5c1,5
7 5c1,8

125c1,11
8 5c2,3

1 5c2,6
105c2,8

4 5c2,12
6 5c3,4

115c3,6
8 5c3,7

9 5c3,10
4 5c4,8

2 51,

c4,10
3 5c5,8

7 5c5,10
5 5c5,11

5 5c6,9
5 5c6,12

2 5c7,8
5 5c7,10

7 5c7,12
7 5c8,11

1 5c9,11
9 5c9,12

9 51,

c1,3
2 5c1,6

4 5c1,7
5 5c1,8

115c1,12
8 5c2,4

8 5c2,5
9 5c2,6

115c2,9
5 5c2,10

6 5c3,4
105c3,8

6 521,

c3,9
7 5c3,11

4 5c4,6
1 5c4,7

9 5c4,9
7 5c4,11

3 5c5,6
9 5c6,8

3 5c6,10
2 5c8,12

1 521.
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Dissipative Schro ¨ dinger-type operators as a model
for generation and recombination

M. Baroa) and H. Neidhardtb)

Weierstrass Institute for Applied Analysis and Stochastics,
Mohrenstr. 39, D-10117 Berlin, Germany

~Received 15 April 2002; accepted 15 January 2003!

Non-self-adjoint operators play an important role in the modeling of open quantum
systems. We consider a one-dimensional Schro¨dinger-type operator of the form
2 (1/2)(d/dx)(1/m)(d/dx) 1V2(k jd(•2xj ), Im(kj).0, with dissipative
boundary conditions. An explicit description of the characteristic function, the
minimal dilation and the generalized eigenfunctions of the dilation is given. The
quantities of carrier and current densities are rigorously defined. Furthermore, we
will show that the current is not constant and that the variation of the current
depend essentially on the chosen density matrix and the imaginary parts of the delta
potentials, i.e., Im(kj). This correspondence can be used to model a recombination-
generation rate in the open quantum system. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1562748#

I. INTRODUCTION

To embed a quantum mechanically described structure into a macroscopic flow, one
replace self-adjoint boundary conditions by non-self-adjoint ones@Ben Abdallah~1997, 1998!;
Frensley~1990!; Kaiser~2001a!#. This leads to so-called open quantum systems. One-dimens
Schrödinger-type operators with dissipative boundary conditions have been intensely stud
Kaiser~2001b!. We extend the model used there by adding dissipative delta perturbations, i.
consider an operator formally given by

H52
1

2

d

dx

1

m

d

dx
1Ṽ, ~1.1!

where

Ṽ~• !5V~• !2(
j 51

N

k jd~•2xj !, ~1.2!

xjP(a,b), xjÞxi for iÞ j , and k jPC1ª$zPCuIm(z).0%. The potentialV is assumed to be a
real-valuedL2(a,b)-function and the effective massm.0 satisfiesm, (1/m) PL`(a,b). Point
interactions of this kind are extensively studied in the literature for self-adjoint boundary c
tions and real coupling constantsk j , cf. Albeverio ~1988!, Albeverio ~2000! and references
therein. Since the boundary conditions are not self-adjoint and the coupling constant are co
the expression~1.1!–~1.2! generates a maximal dissipative operator, see below. Such ope
naturally arise if one is interested in mathematical models for semiconductor devices with r
bination and generation processes of carriers which are embedded in a macrostructure. T
is not treated in Albeverio~1988! and Albeverio~2000!. To analyze such operators it is fruitful t
use the dilation theory for maximal dissipative operators@Foias~1970!, Davies~1980!#. To Schrö-
dinger operators this approach was specified in Pavlov~1977, 1981, 1984, 1996, 1999!, see also
Allakhverdiev~1987, 1988, 1989, 1990, 1993, 1997!. In Kaiser~2002! this approach was used t

a!Electronic mail: baro@wias-berlin.de
b!Electronic mail: neidhard@wias-berlin.de
23730022-2488/2003/44(6)/2373/29/$20.00 © 2003 American Institute of Physics
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define quantities such as steady states, carrier and current density for devices without reco
tion and generation. In the present article we modified this approach to fit our situation, i.e.,
recombination and generation processes are included.

In a one-dimensional drift-diffusion model cf. Selberherr~1984!, Markowich ~1986!,
Markowich ~1990!, Jüngel ~2001!, the macroscopic flow is modeled by the continuity equatio

]

]t
n~x,t !2

]

]x
Jn~x,t !52R~n,p!,

~1.3!
]

]t
p~x,t !1

]

]x
Jp~x,t !52R~n,p!,

wheren,p denote the electron and hole densities,Jn ,Jp the corresponding currents andR(n,p)
the recombination-generation rate. The stationary continuity equation is given by Eq.~1.3!, where
(]/]t) n(x,t)5(]/]t) p(x,t)50 andJk(x,t)5Jk(x), k5n,p. Replacing carrier densitesn,p and
current densitiesJn ,Jp by quantum mechanical expressions like Kaiser~2002! we are able to
include recombination-generation effects into the open quantum system determined by~1.1! and
~1.2! and to preserve the form of the continuity equations~1.3! for the quantum mechanically
described structure. However, this implies that one has to choose the imaginary parts
coupling constantsk j in an appropriate manner. We outline how the imaginary parts have t
chosen. In forthcoming papers we have the aim to consider a dissipative Schro¨dinger–Poisson
@Baro ~2002!# system with recombination and generation effects.

The paper is organized as follows: In Sec. II we rigorously define the dissipative Schro¨dinger-
type operator and show that the operatorH is maximal dissipative. We use the well-known dilatio
theory as a main tool for our investigations. Therefore, the characteristic function and the m
dilation corresponding to the maximal dissipative operator are the main objective in Secs. I
IV. Section V is devoted to the generalized eigenfunctions of the dilation operator. In Secs. V
VII we give a definition of the density matrix and define the quantities of carrier and cu
densities in terms of the generalized eigenfunctions of the dilation@cf. Kaiser~2002!#. The moti-
vation for this definition is, that the self-adjoint dilation is regarded as the Hamiltonian of a la
closed system which contains the open system given by the dissipative operatorH. In Sec. VIII
we show that, depending on the density matrix, loss and/or gain effect of the open system
achieved. We close with some remarks and a discussion on how the imaginary parts of th
potentials have to be chosen in order to include recombination-generation processes wit
open quantum model.

II. DISSIPATIVE SCHRÖDINGER OPERATORS

Let xj , j 51,...,N, be numbers contained in the bounded intervalVª(a,b),R, such that
a,x1,x2,¯,xN,b. Furthermore, letVPL2(a,b) be real-valued, andmPL`(a,b), with m
.0 and 1/mPL`(a,b). In accordance with Kaiser~2001b! we define the sesquilinear form

t@u,v#ªE
a

b 1

2

1

m~x!
u8~x!v8~x!1V~x!u~x!v~x!dx2kau~a!v~a!

2(
j 51

N

k ju~xj !v~xj !2kbu~b!v~b!,

for u,vPD(t)5W1,2(a,b) andka ,k1 ,...,kN ,kbPC1ª$zPCuIm(z).0%. Mimicking the proof of
Theorem 2.20 in Kaiser~2001a!, we get that the formt is closed onH5L2(a,b) and sectorial.
Thus we get the existence of a maximal sectorial operatorH, such that (H f ,v)5t@ f ,v# for all
f PD(H) andvPD(t). It can be shown that the operatorH is given by
                                                                                                                



D~H !55 f PW1,2~a,b!U 1

m
f 8PW1,2~a,x1! % % j 51

N21
W1,2~xj ,xj 11! % W1,2~xN ,b!,

1

2m~a!
f 8~a!52kaf ~a!,

1

2m~b!
f 8~b!5kbf ~b!

1
f 8~xj10!2

1
f 8~xj20!52k j f ~xj !,6 ,

ative

x

y
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2m~xj10! 2m~xj20!

; j 51,...,N

and

~H f !~x!5„l ~ f !…~x!, f PD~H !,

where

„l ~ f !…~x!ª2
1

2

d

dx

1

m~x!

d

dx
f ~x!1V~x! f ~x!.

Sinceka ,k1 ,...,kN ,kbPC1 , the operatorH is dissipative, i.e., Im(H f,f )<0, f PD(H). This
can be seen by

Im~H f , f !5Im t@ f , f #52
aa

2

2
u f ~a!u22

ab
2

2
u f ~b!u22(

j 51

N a j
2

2
u f ~xj !u2,

whereka5qa1 ( iaa
2/2 ),...,kb5qb1 ( iab

2/2), for someqa ,...,qb ,aa ,...,abPR, aa ,...,ab.0.
A dissipative operator is called maximal dissipative, if it does not admit any proper dissip
extension. SinceH is maximal sectorial it is also maximal dissipative. Furthermore,H is purely
maximal dissipative@cf. Kaiser ~2001a!#, i.e., it has no self-adjoint part@Foias ~1970!#. This
implies thatH has no real eigenvalues.

Let us introduce some notions. For simplicity we will occasional writea5x0 , ka5k0 , aa

5a0 , b5xN11 , kb5kN11 , andab5aN11 . We set

D~g, f !~x!ª
1

2m~x10!
g8~x10!2

1

2m~x20!
f 8~x20!, D~g!~x!ªD~g,g!~x!.

For a matrixA5(ai j ), with ai j PC, Ā will denote the matrix in which every element is comple
conjugated, i.e.,Ā5(āi j ).

In order to get an explicit description of the resolvent ofH we introduce the elementar
solutionsva(x,z) andvb(x,z) defined by

l „va~•,z!…~x!2zva~x,z!50, va~a,z!51,
1

2m~a!
va8~a,z!52ka ,

D„va~•,z!…~xj !52k jva~xj ,z!, ; j 51,...,N,

l „vb~•,z!…~x!2zvb~x,z!50, vb~b,z!51,
1

2m~b!
vb8~b,z!5kb ,

D„vb~•,z!…~xj !52k jvb~xj ,z!, ; j 51,...,N.

The existence of these solutions can be proven as in Kaiser~2001b!.
The Wronskian ofva(x,z) andvb(x,z) is defined by
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W„va~•,z!,vb~•,z!…~x!ªva~x,z!
1

2m~x!
vb8~x,z!2vb~x,z!

1

2m~x!
va8~x,z!.

We note thatW„va(•,z),vb(•,z)…(x) is constant forxP(xi ,xi 11). Furthermore, one easily check
that

W„va~•,z!,vb~•,z!…~xi20!5W„va~•,z!,vb~•,z!…~xi10!.

Thus we writeW(z)ªW„va(•,z),vb(•,z)…(x).
The functions defined by

v* a~x,z!ªva~x,z̄!, and v* b~x,z!ªvb~x,z̄!,

are solutions of

l „v* a~•,z!…~x!2zv* a~x,z!50, v* a~a,z!51,
1

2m~a!
v

* a8 ~a,z!52ka,

D„v* a~•,z!…~xj !52k jv* a~xj ,z!, ; j 51,...,N,

l „v* b~•,z!…~x!2zv* b~x,z!50, v* b~b,z!51,
1

2m~b!
v

* b8 ~b,z!5kb,

D„v* b~•,z!…~xj…52k jv* b~xj ,z!, ; j 51,...,N.

Obviously, the WronskianW* (z)ªW„v* a(•,z),v* b(•,z)…(x) satisfiesW* (z)5W( z̄).
We are now able to write the resolvents ofH andH* as integral operators, where the kerne

are given in terms of the elementary solutions~see also Kato~1980!!.
Theorem 2.1:Let VPL2(a,b) be real valued andka ,k1 ,...,kN ,kbPC1 . Then the resolven

of the maximal dissipative operator H is given by

„~H2z!21f …~x!52
vb~x,z!

W~z!
E

a

x

va~y,z! f ~y! dy2
va~x,z!

W~z!
E

x

b

vb~y,z! f ~y! dy, ~2.1!

for f PH andzP%(H).
The resolvent of the adjoint operator H* admits the representation

„~H* 2z!21f …~x!52
v* b~x,z!

W* ~z!
E

a

x

v* a~y,z! f ~y! dy2
v* a~x,z!

W* ~z!
E

x

b

v* b~y,z! f ~y! dy,

~2.2!

for f PH andzP%(H* ).
We omit the proof, but note thatW(z)50⇔zPs(H) and W* (z)50⇔zPs(H* ), where

s(•) denotes the spectrum of the corresponding operator.

III. THE CHARACTERISTIC FUNCTION

We define the unclosed operatora:H→CN12 by

a f 5S abf ~b!

2aNf ~xN!

]

2a1f ~x1!

2aaf ~a!

D , D~a!5C~a,b!.
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Let us introduce the operator-valued functionT(z):H→CN12 given by

T~z! fªa~H2z!21f , ~3.1!

for f PH andzP%(H). Using the expression~2.1! we get

T~z! f 5
1

W~z! 1
2abE

a

b

va~y,z! f ~y! dy

aNvb~xN ,z!E
a

xN
va~y,z! f ~y! dy1aNva~xN ,z!E

xN

b

vb~y,z! dy

]

a1vb~x1 ,z!E
a

x1
va~y,z! f ~y! dy1a1va~x1 ,z!E

x1

b

vb~y,z! dy

aaE
a

b

vb~y,z! f ~y! dy

2 .

The adjoint operatorT(z)* is given by

„T~z!* j…~x!5
1

W* ~ z̄!
$2abv* a~x,z̄!jb1aN~v* b~xN ,z̄!v* a~x,z̄!x [a,x1)~x!

1v* a~xN ,z̄!v* b~x,z̄!x [xN ,b] !j
N

]

1a1~v* b~x1 ,z̄!v* a~x,z̄!x [a,x1)~x!1v* a~x1 ,z̄!v* b~x,z̄!x [x1 ,b] !j
1

1aav* b~x,z̄!ja%,

for xP@a,b#, where

j5S jb

jN

]

j1

ja

D PCN12. ~3.2!

Similarly, we defineT* (z):H→CN12 by

T* ~z! fªa~H* 2z!21f ,

for f PH andzP%(H). Using Eq.~2.2! one gets

T* ~z! f 5
1

W~z! 1
2abE

a

b

v* a~y,z! f ~y! dy

aNv* b~xN ,z!E
a

xN
v* a~y,z! f ~y! dy1aNv* a~xN ,z!E

xN

b

v* b~y,z! dy

]

a1v* b~x1 ,z!E
a

x1
v* a~y,z! f ~y! dy1a1v* a~x1 ,z!E

x1

b

v* b~y,z! dy

aaE
a

b

v* b~y,z! f ~y! dy

2 .
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The adjoint operator has the representation

~T* ~z!* j!~x!5
1

W~ z̄!
$2abva~x,z̄!jb1aN„vb~xN ,z̄!va~x,z̄!x [a,xN)~x!

1va~xN ,z̄!vb~x,z̄!x [xN ,b]…j
N

]

1a1„vb~x1 ,z̄!va~x,z̄!x [a,x1)~x!1va~x1 ,z̄!vb~x,z̄!x [x1 ,b]…j
11aavb~x,z̄!ja%,

for xP@a,b#.
Let us collect some properties of the above operators.
Lemma 3.1: Let VPL2(a,b) be real-valued, andka ,k1 ,...,kN ,kbPC1 . Then we have

~H* 2z!212~H2z!2152 iT* ~ z̄!* T* ~z!52 iT~ z̄!* T~z!, ~3.3!

for zP%(H)ù%(H* ).
Proof: A straightforward calculation shows that

~H* f ,g!2~ f ,H* g!5 i (
j 50

N11

a i
2f ~xj !g~xj !,

for f ,gPD(H* ). Setting f 5(H* 2z)21h and g5(H* 2 z̄)21k with h,kPH, z,z̄P%(H* ), we
obtain

„~H* 2z!21h,k…2„h,~H* 2 z̄!21k…52 i ^T* ~z!h,T* ~ z̄!k&CN12,

and the first equality in~3.3! is proven. The second relation can be proven in the same fashioh

The characteristic functionQH(•) is a crucial element in the study of completely non-se
adjoint operators. It is a purely contractive valued and analytic function onC2, whereC2ª$z
PCuIm(z),0%; cf. Foias ~1970!. The characteristic functionQH(•) of the maximal dissipative
operatorH is a (N12)3(N12) matrix-valued function satisfying the relation

QH~z!T~z! f 5T* ~z! f , zP%~H !ù%~H* !, f PH. ~3.4!

Let us compute the characteristic functionQH(•) of H.
Theorem 3.2:Let VPL2(a,b) be real-valued andka ,k1 ,...,kN ,kbPC2 . Then the charac-

teristic function of H is given by

QH~z!5I CN122
i

W* ~z!

3S 2ab
2v* a~b,z! abaNv* a~xN ,z! ¯ aba1v* a~x1 ,z! abaa

aNabv* a~xN ,z! 2aN
2 v* a~xN ,z!v* b~xN ,z! ¯ 2aNa1v* a~x1 ,z!v* b~xN ,z! 2aNaav* b~xN ,z!

] ] ] ¯

a1abv* a~x1 ,z! 2a1aNv* a~x1 ,z!v* b~xN ,z! ¯ 2a1
2v* a~x1 ,z!v* b~x1 ,z! 2a1aav* b~x1 ,z!

aaab 2aaaNv* b~xN ,z! ¯ 2aaa1v* b~x1 ,z! 2aa
2v* b~a,z!

D ,

~3.5!

for zP%(H)ù%(H* ).
Proof: It remains to verify thatQH(•) given by ~3.5! satisfies~3.4!.
One easily checks, that Eq.~3.5! can be written as

QH~z!5I CN122 iaT~ z̄!* . ~3.6!
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Using Eq.~3.3! we get

QH~z!T~z!5T~z!2 iaT~ z̄!* T~z!5a~H* 2z!215T* ~z!.

Thus Eq.~3.4! is verified.
Since

T~z!* T~z!2T* ~z!* T* ~z!522 Im~z!T~z!* T~ z̄!T~ z̄!* T~z!, for zP%~H !ù%~H* !,

we have forzPC2ù%(H) that

iQH~z!T~z! f i25iT* ~z! f i2<iT~z! f i2, f PH.

ThusQH(z) is a contraction forzPC2ù%(H). Since the spectrum ofH consists of only isolated
eigenvalues inC2 , we get that the characteristic functionQH(z) admits a unique continuation t
all zPC2; cf. ~3.6!. h

IV. DILATIONS

SinceH is a maximal dissipative operator, there exists a larger Hilbert spaceK containingH,
i.e. H#K, and a self-adjoint operatorK on K such that

PH
K~K2z! uH

215~H2z!21, zPC1 , ~4.1!

@see Foias~1970!#. The operatorK is called a dilation ofH. K is said to be a minimal self-adjoin
dilation, if

clospan
zPC\R

~K2z!21H5K. ~4.2!

All minimal self-adjoint dilation of a maximal dissipative operator are isomorphic. In particu
all minimal self-adjoint dilation are unitarily equivalent.

The next step in our investigations is to obtain an explicit description of the self-ad
dilation of H. Let us introduce the Hilbert spaceK defined by

KªD2 % H% D1 ,

with D6ªL2(R6 ,CN12). Introducing the domainV̂,

we getK5L2(V̂). For gW PK we write

gWªg2 % g% g1 ,

where
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g25S g2
b ~x!

g2
N ~x!

]

g2
1 ~x!

g2
a ~x!

D and g15S g1
b ~x!

g1
N ~x!

]

g1
1 ~x!

g1
a ~x!

D ,

for xPR2 and xPR1 , respectively. Furthermore we will need the (N12)3(N12)-matrices
K6

b , K6
a , andK6

j , j 51,...,N, defined by

K2
b
ª

1

ab S 1 0 ¯ 0 2kb

0 ¯ 0

] ]

0 ¯ 0

D , K2
a
ª

1

aa S 0 ¯ 0

] ]

0 ¯ 0

1 0 ¯ 0 ka

D ,

K2
j
ª

1

a j S 0 ¯ 0

] ]

1 0 ¯ 0 k j

] ]

0 ¯ 0

D ←~ j 11!-th row,

andK1
b
ªK2

b , K1
a
ªK2

a , K1
j
ªK2

j , as well as

E5S 0 ¯ ¯ 0 1

0 ¯ ¯ 0 0

] ]

0 0 ¯ ¯ 0

21 0 ¯ ¯ 0

D .

We set

ga5S 1

2m~a!
g8~a!

0

]

0

g~a!

D , gb5S 1

2m~b!
g8~b!

0

]

0

g~b!

D , and gj5S D~g!~xj !

0

]

0

g~xj !

D .
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Theorem 4.1: Let VPL2(a,b), Im(V)50, ka ,k1 ,...,kN ,kbPC1 , and x1 ,...,xNP(a,b),
such that x1,x2,¯,xN . Then the operator K defined by

D~K !ª5 gW PKU g6PW1,2~R6 ,CN12!,gPW1,2~a,b!,

1

m
g8PW1,2~a,x1! % % j 51

N
W1,2~xj ,xj 11! % W1,2~xN ,b!

K2
a ga1(

j 51

N

K2
j gj1K2

b gb5g2~0!,

K1
a ga1(

j 51

N

K1
j gj1K1

b gb5g1~0!

6 ~4.3!

and

KgWª2 i
d

dx
g2 % l ~g! % 2 i

d

dx
g1 , gW PD~K !,

is self-adjoint.
The proof is essentially the same as in Kaiser~2001b!, so we omit it.

Figure 1 shows the boundary conditions of the operatorK with respect to the domainV̂.

FIG. 1. Boundary conditions of the dilationK.
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To show thatK is the minimal dilation corresponding toH, let us compute the resolvent ofK.
Theorem 4.2: Assume that VPL2(a,b) is real-valued andka ,k1 ,...,kN ,kbPC1 . Then the

resolvent of K admits the representation

~K2z!21~ f 2 % f % f 1!~x!5 i E
2`

x

ei (x2y)zf 2~y! dy% „~H2z!21f …~x!

1 i S T* ~ z̄!* E
2`

0

e2 iyzf 2~y! dyD ~x! % i E
0

x

ei (x2y)zf 1~y! dy

1 ieizxT~z! f 1 iQH~ z̄!* E
2`

0

ei (x2y)zf 2~y! dy, ~4.4!

for Im(z).0 and

~K2z!21~ f 2 % f % f 1!~x!52 i E
x

0

ei (x2y)zf 2~y! dy2 ieizxT* ~z! f 2 iQH~z!E
0

`

ei (x2y)zf 1~y! dy

% „~H* 2z!21f …~x!2 i S T~ z̄!* E
0

`

e2 iyzf 1~y! dyD ~x!

% 2 i E
x

`

ei (x2y)zf 1~y! dy, ~4.5!

for Im(z),0, where fW5 f 2 % f % f 1PK.
Proof: We will only prove Eq.~4.4! since the equality of~4.5! can be shown in the sam

fashion. Let Im(z).0, fWPK. We set

g2~x!ª i E
2`

x

ei (x2y)zf 2~y! dy,

g~x!ª„~H2z!21f …~x!1 i S T* ~ z̄!* E
2`

0

e2 iyzf 2~y! dyD ~x!, ~4.6!

g1~x!ª i E
0

x

ei (x2y)zf 1~y! dy1 ieizxT~z! f 1 iQH~ z̄!* E
2`

0

ei (x2y)zf 2~y! dy.

One easily verifies that

~K2z!~g2 % g% g1!5 f 2 % f % f 1 .

Thus it remains to show thatgW satisfies the boundary conditions~4.3!. We seth5(H2z)21f and
get

ga5ha1Gag2~0!, gj5hj1Gjg2~0!, gb5hb1Gbg2~0!, ; j 51,...,N, ~4.7!

where

GaªS 2ka„T* ~ z̄!* eb…~a! ¯ 2ka„T* ~ z̄!* e1…~a!
1

2m~a!
„T* ~ z̄!* ea…~a!

0 ¯ 0 0

] ] ]

0 ¯ 0 0

„T ~ z̄!* eb…~a! ¯ „T ~ z̄!* e1…~a! „T ~ z̄!* ea…~a!

D ,
* * *

                                                                                                                



GbªS 1

2m~b!
„T* ~ z̄!* eb…8~b! kb„T* ~ z̄!* eN…~b! ¯ kb„T* ~ z̄!* ea…~b!

0 0 ¯ 0

] ] ] D ,
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0 0 ¯ 0

~T* ~ z̄!* eb…~b! „T* ~ z̄!* eN…~b! ¯ „T* ~ z̄!* ea…~b!

and

GjªS 2k j„T* ~ z̄!* eb…~xj ! ¯ D„T* ~ z̄!* ej…~xj ! ¯ 2k j„T* ~ z̄!* ea…~xj !

0 ¯ 0 ¯ 0

] ] ]

0 ¯ 0 ¯ 0

„T* ~ z̄!* eb…~xj ! ¯ ~T* ~ z̄!* ej !~xj ! ¯ „T* ~ z̄!* ea…~xj !

D ,

whereea ,ej ,ebPCN12 are given by

eb5S 1
0
]

0
D , ea5S 0

]

0
1
D , ej5S 0

]

1
]

0

D .

SincehPD(H),

K2
a ha5K2

j hj5K2
b hb50, ; j 51,...,N. ~4.8!

A straightforward calculation shows that

K2
a Gaj5jaea , K2

b Gbj5jbeb , K2
j Gjj5j jej , ; j 51,...,N,

wherejPCN12 @see~3.2!#. Therefore we get by~4.7! and ~4.8!,

K2
a ga1(

j 51

N

K2
j gj1K2

b gb5g2~0!.

Using ~4.6! we get

g1~0!5 iT~z! f 1QH~ z̄!* g2~0!.

Since

K1
a ha52 iaah~a!ea , K1

b hb5 iabh~b!eb , K1
j hj52 ia jh~xj !ej , ; j 51,...,N,

we find by Eq.~3.1!,

K1
a ha1(

j 51

N

K1
j hj1K1

b hb5 iT~z! f .

Note that

QH~ z̄!* 511aT* ~ z̄!* . ~4.9!
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We have

K1
a Ga5S 0 ¯ 0

] ]

0 ¯ 0

2 iaa„T* ~ z̄!* eb…~a! ¯ 12 iaa„T* ~ z̄!* ea…~a!

D
5S 0 ¯ 0

] ]

0 ¯ 0

i ^aT* ~ z̄!* eb ,ea&CN12 ¯ 11 i ^aT* ~ z̄!* ea ,ea&CN12

D ,

and similar

K1
b Gb5S 11 i ^aT* ~ z̄!* eb ,eb&CN12 ¯ i ^aT* ~ z̄!* ea ,eb&CN12

0 ¯ 0

] ]

0 ¯ 0

D ,

K1
j Gj5

5S 0 ¯ 0 ¯ 0

] ] ]

0 ¯ 0 ¯ 0

i ^aT* ~ z̄!* eb ,ej&CN12 ¯ 11 i ^aT* ~ z̄!* ej ,ej&CN12 ¯ i ^aT* ~ z̄!* ea ,ej&CN12

0 ¯ 0 ¯ 0

] ] ]

0 ¯ 0 ¯ 0

D ,

for all j 51,...,N. Hence, we get by~4.9!,

K1
a Ga1(

j 51

N

K1Gj1K1Gb5QH~ z̄!*

and, finally,

K1ga1(
j 51

N

K1gj1K1
b gb5g1~0!,

which completes the proof. h

Using the expressions~4.4! and~4.5! for the resolvent ofK, one easily verifies~4.1! and~4.2!.

V. EIGENFUNCTION EXPANSION

The self-adjoint operatorK is absolutely continuous ands(K)5sac(K)5R, i.e., the spectrum
of K coincides with the real line. Its multiplicity isN12. We are now going to compute th
generalized eigenfunctionfW (•,l), lPR, of K. We set

fW ~x,l!5f2~x,l! % f~x,l! % f1~x,l!,
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for xPV̂, where

f2~x,l!5S f2
b ~x,l!

f2
N ~x,l!

]

f2
1 ~x,l!

f2
a ~x,l!

D , xPR2 , f1~x,l!5S f1
b ~x,l!

f1
N ~x,l!

]

f1
1 ~x,l!

f1
a ~x,l!

D , xPR1 .

From

~KfW !~x,l!52 i
d

dx
f2~x,l! % l „f~•,l!…~x! % 2 i

d

dx
f1~x,l!

5l„f2~x,l! % f~x,l! % f1~x,l!…,

xPV̂, we find the equations

2 i
d

dxS f2
b ~x,l!

f2
N ~x,l!

]

f2
1 ~x,l!

f2
a ~x,l!

D 5lS f2
b ~x,l!

f2
N ~x,l!

]

f2
1 ~x,l!

f2
a ~x,l!

D , xPR2 , ~5.1!

l „f~•,l!…~x!5lf~x,l!, xP@a,b#, ~5.2!

and

2 i
d

dxS f1
b ~x,l!

f1
N ~x,l!

]

f1
1 ~x,l!

f1
a ~x,l!

D 5lS f2
b ~x,l!

f2
N ~x,l!

]

f2
1 ~x,l!

f2
a ~x,l!

D , xPR1 . ~5.3!

The equations~5.1! and ~5.3! have the solutions

f2~x,l!5C2eixl, C2PCN12, xPR2 ,

and

f1~x,l!5C1eixl, C1PCN12, xPR1 .

The solution of~5.2! is given by a linear combination of the elementary solutionsva(x,l) and
vb(x,l) on each interval@xj ,xj 11), i.e.,

f~x,l!5(
j 50

N

„ca
j va~x,l!1cb

j vb~x,l!,…x [xj ,xj 11)~x!. ~5.4!

The eigenfunctions have to satisfy the boundary conditions, i.e.,

K2
a fa~l!1(

j 51

N

K2
j f j~l!1K2

b fb~l!5f2~0,l!, ~5.5!

and
                                                                                                                



2386 J. Math. Phys., Vol. 44, No. 6, June 2003 M. Baro and H. Neidhardt

                    
K1
a fa~l!1(

j 51

N

K1
j f j~l!1K1

b fb~l!5f1~0,l!. ~5.6!

Furthermore, the condition

~ca
j 112ca

j !va~xj ,l!1~cb
j 112cb

j !vb~xj ,l!50, ; j 50,...,N11,

has to be satisfied. A straightforward calculation shows that

ca
N1152

ab

W~z!
C2

b , ca
j 5ca

j 111
a jvb~xj ,l!

W~l!
C2

j , j 50,...,N, ~5.7!

as well as

cb
05

aa

W~z!
C2

a , cb
j 5cb

j 112
a jva~xj ,l!

W~l!
C2

j , j 51,...,N11. ~5.8!

Inserting Eqs.~5.7! and ~5.8! in ~5.4! finally yields

f~x,l!5~T* ~l!* C2!~x!. ~5.9!

By inserting~5.9! in ~5.6! we find

C15QH~l!* C2 , lPR.

Therefore we get

fW C2~x,l!ªeixlC2 % „T* ~l!* C2…~x! % eixlQH~l!* C2 ,

xPV̂, lPR.
A calculation as in Kaiser~2001b! shows that

S 1

A2p
fW C2~•,l!,

1

A2p
fW C28 ~•,l8!D

K
5d~l2l8!^C2 ,C28 &.

Introducing the notions

fW ~•,l, j !ª
1

A2p
fW ej~•,l!, j 50,...,N11, ~5.10!

where we have setea5e0 andeb5eN11 , we get the following theorem.
Theorem 5.1: Assume VPL2(a,b), Im(V)50, and ka ,k1 ,...,kN ,kbPC1 . Then the func-

tions

$fW ~•,l,a!,fW ~•,l,1!,...,fW ~•,l,N!,fW ~•,l,b!%lPR ,

perform a complete orthonormal system of generalized eigenfunctions of K, i.e.,

„fW ~•,l,t!,fW ~•,l8,t8!…K5d~l2l8!dtt8 , l,l8PR, t,t85a,1,...,N,b,

and their linear span, i.e., elements of the form

f ~x!5E
R

(
t5a,1,...,N,b

fW ~x,l,t!gt~l! dl,
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where gt, t5a,1,...,N,b, are smooth functions with compact support, is dense inK.
We say that$ea(l),e1(l),...,eN(l),eb(l)%lPR is a measurable family of orthogonal bases

CN12, if the components of the vectorset(l), t5a,1,...,N,b, are Lebesgue measurable functio
such that̂ et(l),ej(l)&5dt,j for a.e.lPR. Thus we get the following.

Corollary 5.2: Suppose that VPL2(a,b), Im(V)50, ka ,k1 ,...,kN ,kbPC1 , and x1 ,...,xN

P(a,b) with x1,x2,¯,xN . If $ea(l),e1(l),...,eN(l),eb(l)%lPR is a measurable family o
orthogonal bases inCN12, then the system of eigenfunctions,

$fW „•,l,ea~l!…,fW „•,l,e1~l!…,...,fW „•,l,eN~l!…,fW „•,l,eb~l!…%lPR ,

where

fW „•,l,et~l!…ª
1

A2p
fW ej (l)~•,l!, t5a,...,b,

performs a complete orthonormal system of generalized eigenfunctions of K.
The generalized eigenfunctionsf(•,l,t) are usually called the incoming eigenfunctions. B

the use of the incoming eigenfunctions, one defines a transformF:K→K̂ªL2(R,CN12) by

~FgW !~l!5..ĝ~l!5S ĝb~l!

ĝN~l!

]

ĝ1~l!

ĝa~l!

D ,

where

ĝt~l!ªE
V̂

gW ~x!,fW ~x,l,t!dx .

F is a unitary operator and called the incomi ng Fourier transform. The inverse inco
Fourier transformF 21 is given by

~F 21ĝ!~x!5E
R

(
t5a,1,...,N,b

fW ~•,l,t!ĝt~l! dl, ĝPK̂.

We note that

FKF 215M , ~5.11!

whereM is the multiplication operator onK̂ given by

D~M !ª$ĝPK̂ u lĝ~l!PK̂%,

~Mĝ!~l!ªlĝ~l!, ĝPD~M !.

VI. CARRIER DENSITY

According to Kaiser~2002! we call%:K→K a density matrix, if% is a bounded, non-negativ
operator. A density matrix% is called a steady state, if it commutes withK. For steady states%
there exists a function%(•)PL`

„R,B(CN12)… such that the multiplication operator%̂, defined by

D~ %̂ !ª$ĝPK̂ u %~l!ĝ~l!PK̂%,
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~ %̂ĝ!~l!ª%~l!ĝ~l!, ĝPD~ %̂ !,

is unitarily equivalent to%, i.e.,

%5F 21%̂F.

Since%>0 we get%(l)>0 for a.e.lPR.
The time evolution of a given density matrix% is given by

%~ t !ªe2 i tK%eitK , tPR;

cf. Landau~1971!. If % commutes withK, we have%(t)5% for all tPR. This justifies the
definition of steady states.

Definition 6.1:A bounded self-adjoint operatorA on a Hilbert spaceK is called an observable
We say that the observableA

~1! is admissible with respect to% if %A is a trace class operator, i.e.,%APB1(K);
~2! is admissible with respect toK, if EK(D)APB1(K) for each bounded intervalD,R, where

EK(D) denotes the spectral projection ofK on D.

If the observableA is admissible with respect to%, then its expectation valueE%(A) with
respect to the density matrix% is defined by

E%~A!ªtr~%A!.

To calculate the carrier density we consider the observableU(v) given by

„U~v! fW …~x!50% xv~x! f ~x! % 0, fW5 f 2 % f % f 1PK,

for any Borel subsetv#@a,b#. We remark thatU(v) is a projection onK with ran„U(v)…#H.
Let us introduce some more notions: We set

F~x,l!5S f~x,l,N11!

]

f~x,l,0!
D ,

andF(x,l) denotes the vectorF(x,l) with each element complex conjugated.
As in Kaiser~2002!, one proves the following lemma.
Lemma 6.2: Assume that m1 (1/m) PL`(a,b), VPL2(a,b), Im(V)50, ka ,k1 ,...,kN ,kb

PC1 , and x1 ,...,xnP(a,b) such that x1,x2,¯,xN .

(1) The observable U(v) is admissible with respect to the minimal self-adjoint dilation K of t
maximal dissipative operator H for any Borel setv#@a,b#. Furthermore, we get the rep
resentation

tr„%U~v!EK~D!…5E
D
tr„%~l!U~v!~l!… dl,

for any bounded Borel setD,R and any steady state%, where

U~v!~l!ªE
v
D~x,l! dx,

with

D~x,l!ªF~x,l! F~x,l!T.
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(2) If the steady state% satisfies the condition

C%̂ªsup
lPR

Al211i%~l!iB(CN12),`, ~6.1!

then the observable U(v) is admissible with respect to% for any Borel setv#@a,b#.
Furthermore, we have

tr„%U~v!…5E
R
tr„%~l!U~v!~l!… dl.

We set

u%~x,l!ªtr„%~l!D~x,l!…,

for xP@a,b# andlPR. Note that

u%~x,l!5^%~l!TF~x,l!,F~x,l!&, ~6.2!

where%(l)T denotes the transposed matrix of%~l!. Since%~l! is non-negative, we get by th
representation~6.2! thatu%(x,l)>0 for xP@a,b# anda.e.lPR. If the condition~6.1! is satisfied,
we get by Lemma 6.2,

E%„U~v!…5E
R
E

v
u%~x,l! dx dl,

for any Borel setv#@a,b#. Hence, by Fubini’s Theorem we get

E%„U~v!…5E
v
u%~x! dx, ~6.3!

where

u%~x!ªE
R
u%~x,l! dl>0, xP@a,b#; ~6.4!

thus u%PL1(a,b). Clearly E%„U(•)… defines a measure which is absolutely continuous w
respect to the Lebesgue measure. SinceE%„U(v)… can be interpreted as the number of carriers
v#@a,b#, its Radon–Nikodym derivative can be viewed as the carrier density of the sy
described byK. SinceK is the dilation corresponding to the maximal dissipative operatorH and
U(v) acts only onH, we identifyu% with the carrier density of the system described byH.

Note that

u%~x,l!5E%(l)„D~x,l!…, ~6.5!

for xP@a,b# andlPR. We call the matrixD(x,l) the carrier density observable andu%(x,l) the
carrier density of the system described byH at pointxP@a,b# and energylPR. This is justified
since~6.5! can be seen as the expectation value of the carrier density observable.

Furthermore, we have

u%~x!5E
R
E%(l)„D~x,l!…, xP@a,b#,

i.e., the carrier density for each pointx is the sum of the expectation values of the carrier den
observable for the pointx over all energies.

For real-valuedhPL`(a,b) we define the multiplication operatorM (h) on the Hilbert space
K by
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„M ~h! fW …~x!50% h~x! f ~x! % 0, fW5 f 2 % f % f 1PK.

We note thatM (xv)5U(v), in particularM (xV)5U(V)5PH
K . Since

%M ~h!5%U~V!M ~h!, hPL`~a,b!,

we get that the observableM (h) is admissible with respect to%.
Lemma 6.3: Assume that m1 (1/m) PL`, VPL2(a,b) real-valued, andka ,k1 ,...,kN ,kb

PC1 . If the steady state% satisfies the condition~6.1!, then the carrier density u% defined by~6.4!
is a non-negativeL1-function such that

tr„%M ~h!…5E
a

b

u%~x!h~x! dx, ~6.6!

for any real-valued function hPL`(a,b). In particular one has

iu%iL1(v)5tr„%U~v!…<C%̂i~K2 i !21PH
KiB1

, ~6.7!

for each Borel setv#@a,b#.
Proof: By ~6.3! we get that~6.6! holds for h5xV . By linearity ~6.6! can be extended fo

arbitrary step functionsh. Sinceu% is from L1(a,b) and%U(V) is of trace class,~6.6! admits a
continuation to allL`-functionsh, which proves the first part of the lemma.

Since (K2 i )21PH
K is a trace class operator and since%(K2 i ) is a bounded operator whos

norm can be estimated byC%̂ , we obtain

tr„%~K2 i !~K2 i !21U~v!…<C%̂i~K2 i !21PK
H iB1

.

This verifies~6.7!. h

Suppose that$%(l)%lPR is a measurable family of non-negative selfadjoint operators
CN12. We can find a family of unitary operators$V(l)%lPR on CN12 such that

%~l!5V~l!S mb~l! 0 ¯ ¯ 0

0 mN~l! 0 ¯ 0

] � ]

0 ¯ 0 m1~l! 0

0 ¯ ¯ 0 ma~l!

D V~l!* ,

for a.e.lPR, wheremt(l), t5a,1,...,N,b, are the non-negative eigenvalues of the matrix%~l!.
Hence from Eq.~6.2! we obtain

u%~x,l!5K S mb~l! ¯ 0

] � ]

0 ¯ ma~l!
D V~l!TF~x,l!,V~l!TF~x,l!L .

Introducing the measurable family of orthogonal bases$ea(l),...,eb(l)%lPR , where et(l)
ªV(l)et , we find

u%~x,l!5 (
t5a,...,b

mt~l!uf„x,l,et~l!…u2,

for xP@a,b# andlPR, where we used the fact that
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VT~l!F~x,l!5S f„x,l,eb~l!…

]

f„x,l,ea~l!…
D . ~6.8!

VII. CURRENT DENSITY

We define the current densityj %(x,l) at pointx and energylPR of the system described b
the dissipative operatorH by

j %~x,l!ª (
t50

N11

mt~l!ImS 1

m~x!
f„x,l,et~l!…8f„x,l,et~l!…D . ~7.1!

See Landau~1971! for the motivation of this definition. We note thatf„x,l,et(l)…8 exists only
for xÞxj , j 51,...,N. Therefore, the definition~7.1! only makes sense forxPø j 50

N (xj ,xj 11).
Equation~7.1! can be rewritten as

j %~x,l!5ImS K %~l!T
1

m~x!
F~x,l!8,F~x,l!L D . ~7.2!

Finally this can be expressed as

j %~x,l!5tr„%~l!C~x,l!…,

where

C~x,l!ªImS 1

m~x!
f~x,l,N11!8f~x,l,N11! ¯

1

m~x!
f~x,l,0!8f~x,l,N11!

1

m~x!
f~x,l,N11!8f~x,l,N! ¯

1

m~x!
f~x,l,0!8f~x,l,N!

] ]

1

m~x!
f~x,l,N11!8f~x,l,0! ¯

1

m~x!
f~x,l,0!8f~x,l,0!

D .

~7.3!

The current density is strongly related to the characteristic function of the operatorH. This is
shown in the next theorem.

Theorem 7.1: Assume that m1 (1/m) PL`(a,b), VPL2(a,b), with Im(V)50, and
ka ,k1 ,..., kN ,kbPC1 as well as x1 ,...,xNP(a,b) such that x1,x2,¯,xN . Let % be a steady
state. Then the current density j%(x,l), xP@a,b#, xÞxj , lPR, is independent of x for x
P(xj ,xj 11) and admits the representation

j %~x,l!5tr„%~l!C~x,l!…, ~7.4!

where

C~x,l!ª(
j 50

N

Ej~l!QH~l!* x (xj ,xj 11)~x! ~7.5!

and

Ej~l!ª
1

2p
„P2

j QH~l!P1
j 2P1

j QH~l!P2
j
…, ~7.6!
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with

P2
j
ª(

z50

j

Pz , P1
j
ª (

z5 j 11

N11

Pz , Pzª^•,ez&ez .

Moreover, iftr„%(•)…PL1(R), then the total current j%(x) at point xP(xj ,xj 11),

j %~x!ªE
R

j %~x,l! dl,

is finite and can be estimated by

u j %~x!u<
1

2p E
R
tr„%~l!… dl. ~7.7!

Proof: We have

j %~x,l!5tr„%~l!C~x,l!…, ~7.8!

whereC(x,l) is given by~7.3!. C(x,l) can be rewritten as

C~x,l!5
1

i S W„f~•,l,N11!,f~•,l,N11!…~x! ¯ W„f~•,l,N11,f~•,l,0!…~x!

W„f~•,l,N!,f~•,l,N11!…~x! ¯ W„f~•,l,N!,f~•,l,0!…~x!

] ]

W„f~•,l,0!,f~•,l,N11!…~x! ¯ W„f~•,l,0!,f~•,l,0!…~x!

D .

~7.9!

Clearly, W„f(•,l,l ),f(•,l,m)…(x) is constant for everyx in each subinterval (xj ,xj 11), for
every l ,m50,...,N11. Hence,j %(x,l) u(xj ,xj 11) is constant.

Let us computeC(x,l) u(xj ,xj 11) . Sincef(x,l,k) has to fulfill the boundary conditions~5.5!
and ~5.6! ~see also Fig. 1!, we get

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)5W„f~•,l,l !,f~•,l,m!…~xj10!

5W„f~•,l,l !,f~•,l,m!…~xj20!

2 ia j
2f~xj ,l,l !f~xj ,l,m!1d jm

am

A2p
f~xm ,l,l !

5W„f~•,l,l !,f~•,l,m!…~xj 2110!

2 ia j
2f~xj ,l,l !f~xj ,l,m!1d jm

am

A2p
f~xm ,l,l !

]

5 (
t50

j H 2 iat
2f~xt ,l,l !f~xt ,l,m!1dt,m

at

A2p
f~xt ,l,l !J ,

for l ,m50,...,N11 and l . j , wheredt,m5^et ,em&. Similarly, we obtain for alll ,m50,...,N
11, l< j ,
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W~f~•,l,l !,f~•,l,m!!~x! u(xj ,xj 11)5W„f~x,l,l !,f~x,l,m!…~xj 1120!

5W„f~•,l,l !,f~•,l,m!…~xj 1110!

1 ia j 11f~xj 11 ,l,l !f~xj 11 ,l,m!

2d j 11,m

am

A2p
f~xj 11 ,l,l !

5W„f~•,l,l !,f~•,l,m!…~xj 1220!

1 ia j 11f~xj 11 ,l,l !f~xj 11 ,l,m!

2d j 11,m

am

A2p
f~xj 11 ,l,l !

]

5 (
t5 j 11

N11 H iat
2f~xt ,l,l !f~xt ,l,m!2dt,m

at

A2p
f~xt ,l,l !J .

Note that

1

A2p
^aT* ~l!* ej ,et&52atf~xt ,l,j!,

for all t,j50,...,N11. Hence, we find

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)5
1

A2p
(
t50

j

$2 iA2patf~xt ,l,m!1dt,m%atf~xt ,l,l !

52
1

2p (
t50

j

$ i ^aT* ~l!* em ,et&1^em ,et&%^aT* ~l!* el ,et&,

~7.10!

for l . j . Using Eq.~4.9! we get

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)52
1

2p (
t50

j

^QH~l!* em ,et&^aT* ~l!* el ,et&

52
1

2p
^P2

j QH~l!* em ,aT* ~l!* el& ~7.11!

or

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)52
i

2p
^P2

j QH~l!* em ,QH~l!* P1
j el&, ~7.12!

for l . j . If l< j , then
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W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)5
1

A2p
(

t5 j 11

N11

$ iA2patf~xt ,l,m!2dt,m%atf~xt ,l,l !

5
1

2p (
t5 j 11

N11

$ i ^T* ~l!* em ,et&1^em ,et&%^aT* ~l!* el ,et&.

~7.13!

Using again~4.9! we obtain

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)5
1

2p (
t5 j 11

N11

^QH~l!* em ,et&^aT* ~l!* el ,et&

5
i

2p
^P1

j QH~l!* em ,QH~l!* el&, ~7.14!

which yields

W„f~•,l,l !,f~•,l,m!…~x! u(xj ,xj 11)5
i

2p
^P1

j QH~l!* em ,QH~l!* P2
j el&, ~7.15!

for l< j . Taking into account~7.9!, ~7.12! and ~7.15! we find

^C~x,l!em ,el !& u(xj ,xj 11)5
1

2p
^$P2

j QH~l!P1
j 2P1

j QH~l!P2
j %QH~l!* em ,el&, ~7.16!

for m,l 50,1,...,N11. Using notation~7.5! and ~7.6! we immediately obtain~7.4!.
From the above calculations we get for the total currentj %(x), xP(xj ,xj 11),

u j %~x!u<i%~l!C~x,l!iB1(CN12)<
1

2p
i%~l!iB1(CN12)iEj~l!iB(CN12) .

By ~7.6! one gets

Ej~l!* Ej~l!5P1
j QH~l!* P2

j QH~l!P1
j 1P2

j QH~l!* P1
j QH~l!P2

j ,

which yields

Ej~l!* Ej~l!<I .

Hence,iEj (l)iB(CN12)<1 which verifies~7.7!. h

Let us show that piecewise constant matrix-valued functionC(x,l) is self-adjoint for each
xÞxj . If xP(xj ,xj 11), then one gets

C~x,l!* 5QH~l!Ej~l!* 5
1

2p
QH~l!$P2

j QH~l!* P1
j 2P1

j QH~l!* P2
j %.

One has

C~x,l!* 5
1

2p
$P1

j QH~l!P1
j QH~l!* P2

j 1P2
j QH~l!P1

j QH~l!* P2
j

2P1
j QH~l!P2

j QH~l!* P1
j 2P2

j QH~l!P2
j QH~l!* P1

j %.

SinceP1
j 1P2

j 5I andQH(l)QH(l)* 5I we find
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C~x,l!* 5
1

2p
$2P1

j QH~l!P2
j QH~l!* P2

j 1P2
j QH~l!P1

j QH~l!* P2
j

2P1
j QH~l!P2

j QH~l!* P1
j 1P2

j QH~l!P1
j QH~l!* P1

j %,

which yields

C~x,l!* 5
1

2p
$P2

j QH~l!P1
j 2P1

j QH~l!P2
j %QH~l!* 5C~x,l!.

SinceC(x,l) is self-adjoint it is useful, in correspondence to the carrier density, to make
following definition.

Definition 7.2:The piecewise constant matrixC(•,l) defined by~7.5! is called the current
density observable, and the piecewise constant function,

j %~x,l!5tr„%~l!C~x,l!…,

is called the current density at pointxP@a,b#, xÞxj , and energylPR.
The definition is justified by the fact that the current density is the expectation value o

current density observable at energylPR and pointxPR, i.e., j %(x,l)5E%(l)„C(x,l)…. Using
this notion we get

j %~x!5E
R
E%(l)„C~x,l!… dl.

Let us consider the special case, where the steady state% is a function ofK, i.e.,%5 f (K), for
somef PL`(R), f >0. In this case% belong to the bicommutant ofK. As in Kaiser~2002! we get
that in this case the current density is zero. This fact is proven by the following corollary.

Corollary 7.3: Suppose that m1 (1/m) PL`(a,b), VPL2(a,b), such that Im(V)50,
ka ,k1 ,...,kN ,kbPC1 , as well as x1 ,...,xNP(a,b), with x1,x2,¯,xN . Furthermore, assume
that the steady state% is of the form%5 f (K), where fPL1(R) is non-negative. Then j%(x,l)
50 for xÞxt , t5a,x1 ,...,xN ,b, and a.e.lPR.

Proof: Clearly we have%(l)5 f (l)I CN12, lPR. Thus we get forxP(xj ,xj 11),

j %~x,l!5 f ~l!trCN12„C~x,l!….

Using ~7.5! and ~7.6! we obtain

j %~x,l!5 f ~l!tr„Ej~x,l!QH~l!* …5 f ~l!tr~„P2
j QH~l!P1

j 2P1
j QH~l!P2

j
…QH~l!* !.

Since

tr„P1
j QH~l!P2

j QH~l!* …5tr„P1
j QH~l!P2

j QH~l!* P1
j
…5tr„P2

j QH~l!* P1
j QH~l!P2

j
…

and

tr„P2
j QH~l!P1

j QH~l!* …5tr„P2
j QH~l!P1

j QH~l!* P2
j
…

we have

tr~„P2
j QH~l!P1

j 2P1
j QH~l!p2

J
…QH~l!* !50,

which provesj %(x,l)50. h
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VIII. CURRENT VARIATIONS

In Theorem 7.1 we showed that the current densityj %(x,l) is piecewise constant inx. Let us
calculate the current difference for someãP(xj ,xj 11) and b̃P(xj 11 ,xj 12):

j %~ b̃,l!2 j %~ ã,l!5
1

2p
tr„%~l!$Cj 11~l!2Cj~l!%…

5
1

2p
tr„%~l!$P2

j 11QH~l!P2
j 112P2

j QH~l!P2
j %QH* ~l!…

5
1

2p
tr„%~l!$Pj 11QH~l!2QH~l!Pj 11%QH* ~l!…

5
1

2p
tr~Pj 11$%~l!2QH* ~l!%~l!QH~l!%Pj 11!. ~8.1!

More general, we get forâP(xj ,xj 11) and b̂P(xj 1k11 ,xj 1k12)

j %~ b̂,l!2 j %~ â,l!5
1

2p
tr„Q$%~l!2QH~l!%~l!QH* ~l!%Q…, ~8.2!

whereQ5(t5 j
j 1kPt .

From Eq.~8.2! we see that the current difference depends essentially on the density m
%~l!. For example, if%~l! commutes withQH(l) we get that the difference is zero. Hence, t
current is constant. In the case that the difference in~8.2! is positive; the system is ‘‘losing’’
electrons between the pointsã and b̃. If the difference in~8.2! is negative, the system ‘‘gains
electrons. The effect of losing and gaining electrons is closely related to a recombina
generation process.

In the following we are going to construct a density matrix%~•!, such that the r.h.s. of~8.2! is
expressed in terms of the densityu%(xj ,l) and thea j ’s.

Let Rl0
,Gl0

#$1,...,N%ªT such thatRl0
ùGl0

5B, Rl0
øGl0

5T, andu(l0)PCN12 with

^u~l0!,et&50, ;tPRl0
, and^u~l0!,QH~l0!et&50, ;tPGl0

, ~8.3!

wherel0PR is fixed. We define the operator%(l0) by

%~l0!T
ªu~l0!u~l0!T.

The functionf (x,l0) given by

S 0
]

0
f ~x,l0!

D 5u~l0!TF~x,l!,

satisfies the following boundary conditions:

D„f ~•,l0!…~xt!52kt f ~xt ,l0!, ;tPRl0
, ~8.4!

D„f ~•,l0!…~xj!52kj f ~xj ,l0!, ;jPGl0
. ~8.5!

Let v5@ ã,b̃##V be a given interval andTvª$ j PT u xjPv%. The current difference is then
given by
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j %~ b̃,l0!2 j %~ ã,l0!5ImS K u~l0!T
1

m~ b̃!
F~ b̃,l0!8,u~l0!TF~ b̃,l0!L D

2ImS K u~l0!T
1

m~ ã!
F~ ã,l0!8,u~l0!TF~ ã,l0!L D

5
1

i
(

tPTv

$W„f ~•,l0!, f ~•,l0!…~xt10!2W„f ~•,l0!, f ~•,l0!…~xt20!%.

Using the boundary conditions~8.4! and ~8.5! we obtain

j %~ b̃,l0!2 j %~ ã,l0!5 (
tPTvùGl0

at
2u f ~xt ,l0!u22 (

jPTvùRl0

aj
2u f ~xj ,l0!u2

5 (
tPTvùGl0

at
2^V~l0!F~xt ,l0!,V~l0!F~xt ,l0!&

2 (
jPTvùRl0

aj
2^V~l0!F~xj ,l0!,V~l0!F~xj ,l0!&

5 (
tPTvùGl0

at
2u%~xt ,l0!2 (

jPTvùRl0

aj
2u%~xj ,l0!.

Clearly a vectoru(l0) with the properties~8.3! always exists. In the following we will
construct a vectoru(l0) for almost everyl0PR, such thatu(l0) is determined up to two given
parameters. Letua(l0),ub(l0)PC be arbitrary. We are now going to construct the vectoru(l0)
5„ua(l0),...,ub(l0)…T.

We setPGl0
ª( j PGl0

Pj andmGl0
ª#Gl0

, i.e., the number of elements inGl0
.

The first condition in~8.3! implies thatuj (l0)50 for j PRl0
. Furthermore we setua(l0)

5ua(l0) andub(l0)5ub(l0). The second condition in~8.3! can be rewritten as

PGl0
QH~l0!* PGl0

u52„ub~l0!PGl0
QH~l0!* eb1ua~l0!PGl0

QH~l0!* ea…. ~8.6!

SincePGl0
QH(l0)* PGl0

can be seen as amGl0
3mGl0

-matrix, the equation~8.6! has a solution

for a.e.l0 if

detmGl0

„PGl0
QH~l0!* PGl0

…Þ0,

where detmGl0

(•) denotes the determinant in the vector spaceCmGl0.

Since ^QH(•)ej ,ek& is a bounded analytic function onC2 @cf. Foias ~1970!#, we get that
detmGl0

(•) is also a bounded analytic function onC2. Hence detmGl0

„QH(l)…Þ0 for a.e.l0 .

The remaining components ofu, i.e., uj , j PGl0
, are then determined as the solution of t

linear equation~8.6!.
Thus we proved that we can construct a density matrix%(l0) for a.e.l0 , such that we obtain

a loss and gain effect at predefined pointsxj . Furthermore, we showed that one has two degr
of freedom in the choice of%(l0), namelyub(l0) andua(l0).

By repeating the above procedure for everylPR we can construct a density matrix%~l! for
everylPR. It can easily be seen that the condition~6.1! is satisfied ifua(l) andub(l) decay
sufficiently fast, e.g.,ua(l),ub(l) have compact support.
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We will give some examples: Assume thatub(l0),ua(l0)PC are given and letRl0

5$1,...,N%, Gl0
5B. Clearly the vector

uR~l0!ª„ub~l0!,0,̄ ,0,ua~l0!…T

satisfies equation~8.3!. Introducing the density matrix by

%R~l0!T
ªuR~l0!uR~l0!T,

we get

j %R
~ b̃,l0!2 j %R

~ ã,l0!52 (
t51

N

at
2u%R

~xt ,l0!,

i.e., the density matrix%R(l0) is purely recombinative.
To obtain a density matrix which is purely generative we introduce the vector

uG~l0!ªQH~l0!uR~l0!,

which satisfies Eq.~8.3! with Rl0
5B andGl0

5$1,...,N%. As above we define the density matr

by %G(l0)T
ªuG(l0)uG(l0)T and get

j %G
~ b̃,l0!2 j %G

~ ã,l0!5 (
t51

N

at
2u%G

~xt ,l0!.

Thus%G(l0) is purely generative. We note that

%G~l0!5QH~l0!%R~l0!QH~l0!* . ~8.7!

IX. REMARKS

The definition of carrier and current density was formulated in terms of the complete o
normal system of eigenfunctions$fW (•,l,a),...,fW (•,l,b)%lPR . Since the eigenfunctions behav
on R2 like a free wave, they are called the incoming eigenfunctions. By Eq.~5.10! we can define
another system of orthogonal eigenfunctions by

fW out~•,l, j !ª
1

A2p
fW Q(l)ej~•,l!, j 50,...,N11,

which are called the outgoing eigenfunctions. By Eq.~6.8! the following relation holds:

QH~l!F in~x,l!5S fout~x,l,b!

]

fout~x,l,a!
DªFout~x,l!, ~9.1!

where we have setF in(x,l)5F(x,l).
Using the outgoing eigenfunction we define the ‘‘outgoing’’ carrier and current density b

u%
out~x,l!ª^%~l!TFout~x,l!,Fout~x,l!&,

j %
out~x,l!ªImK %~l!T

1

m~x!
Fout~x,l!8,Fout~x,l!L .

Using ~9.1! we get
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u%
out~x,l!5u

QH%Q
H*

in
~x,l!, j %

out~x,l!5 j
QH%Q

H*
in

~x,l!,

whereu%
in(x,l), j %

in(x,l) denotes the carrier, respectively current, density defined in the prev
sections.

The incoming and the outgoing carrier and current densities coincide, if%~l! commutes with
the characteristic functionQH(l). As already mentioned above in this case neither loss nor
effects will occur.

In the previous section we gave an example for a purely recombinative density matrix%R(l)
and an example for a strict generative matrix%G(l). Using the relations~9.1! and ~8.7! we get

j %G

in ~x,l!5 j %R

out~x,l!,

i.e., the generative matrix%G in the incoming representation becomes a recombinative matr
the outgoing representation.

Introducing the notionsPj
in5^•,ej&ej and Pj

out5^•,Ej&Ej , where Ej5QH* (l)ej , we can
rewrite ~8.1! as follows:

j %~ b̃,l!2 j %~ ã,l!5
1

2p
tr~%~l!$Pj

in2Pj
out%!.

Let us consider two different dissipative Schro¨dinger operatorHn andHp for the two different
species of particles~electron and holes!, with mn , mp , Vn , Vp , k j ,n , k j ,p , j 51,...,N, and letxj ,
j 51,...,N, be numbers within the interval (a,b) such thata,x1,¯,xN,b. We denote by
u%k

(x,l), respectivelyj %k
(x,l), the carrier density, respectively current density, correspondin

the density matrix%k and the operatorHk , k5n,p.
Assume that the setsGl5G and Rl5R are given. Let%n(l) and %p(l) density matrices

satisfying Eq.~6.1! such that

j %n
~ b̃,l!2 j %n

~ ã,l!5 (
tPRùTv

at,n
2 u%n

~xt ,l!2 (
jPGùTv

aj,n
2 u%n

~xj ,l!, for a.e. lPR;

~9.2!

j %p
~ b̃,l!2 j %p

~ ã,l!52S (
tPRùTv

at,p
2 u%p

~xt ,l!2 (
jPGùTv

aj,p
2 u%p

~xj ,l! D , for a.e. lPR.

~9.3!

By the consideration of Sec. VIII, such density matrices exists. Integrating~9.2! and ~9.3! with
respect tol yields

j %n
~ b̃!2 j %n

~ ã!5 (
tPRùTv

at,n
2 u%n

~xt!2 (
jPGùTv

aj,n
2 u%n

~xj ,!, ~9.4!

j %p
~ b̃!2 j %p

~ ã!52S (
tPRùTv

at,p
2 u%p

~xt!2 (
jPGùTv

aj,p
2 u%p

~xj! D . ~9.5!

Integrating the stationary continuity equation@cf. ~1.3!# over v gives

j %n
~ b̃!2 j %n

~ ã!52„j %p
~ b̃!2 j %p

~ ã!…. ~9.6!

Matching Eq.~9.6! with ~9.4! and ~9.5! leads to a condition on thea j ,n
2 ’s anda j ,p

2 ’s, i.e.,

a j ,n
2 5u%p

~xj ,l! and a j ,p
2 5u%n

~xj ,l!, j 51,...,N. ~9.7!
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The equations~9.4!, ~9.5! can now be viewed as a stationary continuity equation with
recombination–generation term given by

E
v
R„u%n

~x!,u%p
~x!… dx5 (

j PTvùR
u%n

~xj !u%p
~xj !2 (

j PTvùG
u%n

~xj !u%p
~xj !.

To solve the nonlinear equation given by~9.7! we introduce the operatorsNk :R1
N →R1

N ,
given by

Nk~a1,k
2 ,...,aN,k

2 !5„u%k
~x1!,...,u%k

~xN!…,

wherek5n,p.
A solution of ~9.7! is thus given by a fixed point of the operatorE defined by

E~a1,n
2 ,...,aN,n

2 !ªNp„Nn~a1,n
2 ,...,aN,n

2 !….

As in Kaiser~2002! and Baro~2002! one can set up a dissipative Schro¨dinger–Poisson system
using the definition of carrier densities introduced in this article. In addition to the Schro¨dinger–
Poisson system considered in Baro~2002! the current is not constant. This system will be d
cussed in a forthcoming paper.

In Sec. VIII we constructed explicitly a density matrix%~•! such that loss and gain effec
occur at predefined points. Furthermore, we showed that one has two free parameters in the
of %~•!, i.e., ub(l) andua(l). These two parameters give the possibility to couple~for example!
a drift diffusion model to the open quantum system. We intend to investigate this coupled s
in a forthcoming paper.

For simplicity we considered imaginary potentials of the form2 (a2/2) d(•2xj ). A further
step in order to include recombination and generation into the model is to allow complex p
tials, i.e., Im(V)52 a2/2, wherea5a(x)PLp for somep.1. This would give the possibility of
modeling recombination–generation rates on the whole intervalV.
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We compare some recent computations of the entanglement of formation in quan-
tum information theory and of the entropy of a subalgebra in quantum ergodic
theory. Both notions require optimization over decompositions of quantum states.
We show that both functionals are strongly related for some highly symmetric
density matrices. Indeed, for certain interesting regions the entanglement of forma-
tion can be expressed by the entropy of a commuting subalgebra, and the corre-
sponding optimal decompositions can be obtained one from the other. We discuss
the presence of broken symmetries in relation with the structure of the optimal
decompositions. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1570509#

I. INTRODUCTION

Entanglement, always one of the most intriguing among quantum marvels, has lately b
a powerful resource in prospective quantum information technologies;1 measuring the entangle
ment content of states of multipartite quantum systems is thus of great practical importanc
bipartite systemA1B is described by a density matrixrAB , the so-called entanglement o
formation2 is measured by

E~rAB!ª infH(
j

l jS~TrB p j ! : rAB5(
j

l jp j J . ~1!

In the above expression,S(r)ª2Tr r logr denotes the von Neumann entropy of the state
tained by partial trace overB and the infimum is computed over all possible decompositionsr
as convexly linear combinations, that isl j.0, (l j51, of one-dimensional projectionsp j of A
1B. In the following we call such decompositionsextremal convex decompositions ofr to be
distinguished from generic convex decompositions into mixed states.

WhenrAB5uCAB&^CABu, the entanglement of formation gives the asymptotic ratio betw
the number of singlet states necessary to constructN@1 copies ofrAB .3 In the following, we will
compare the entanglement of formation with a particular case of a more general quanti
‘‘entanglement with respect to a subalgebra’’ or ‘‘entanglement,’’ for short. This latter conce
related to the so-called ‘‘entropy of a subalgebra’’A contained in a reference algebraM, relative
to a stater on M,4

Hr~A!ªS~r�A! 2 infH(
j

l jS~r j�A! : r5(
j

l jr j J . ~2!

a!Electronic mail: Benatti@Trieste.infn.it
b!Electronic mail: narnh@ap.univie.ac.at
c!Electronic mail: Armin.Uhlmann@itp.uni-leipzig.de
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In the above expression,S~r jA! is the von Neumann entropy of the stater j restricted to the
subalgebraA and the infimum is calculated over all convexly linear decompositions ofr into other
states onM. It plays a key role in extending the classical dynamical entropy of Kolmogoro
quantum systems.5–7 The entanglement of formation~1! can be considered a special case of~3!, as
explained in Remark 2.1.ii below.

We shall call ‘‘optimal’’ those decompositions achieving the extremum in~1! and~2!. Calcu-
lating eitherE(rAB) or Hr(A) is particularly complicated. The problem has been comple
solved for the entanglement of formation ifHA5HB5C2,8 and for the entropy of a subalgebra
M5M2(C).17,9,10 So far, all other available results concern statesrAB and r that are highly
symmetric, isotropic in Ref. 11, respectively, permutation-invariant in Ref. 13.

In this paper we will discuss the previously mentioned results by comparing the two no
of entanglement sketched above. We show, that some of them are one-to-one related. To do
shall focus on the structure of optimal decompositions in relation to the symmetries existing
problem and show possible ways of breaking them. These symmetries form a groupG and leave
invariant both the stater and, as a set, the subalgebraA. Given extremal optimal decomposition
the G-orbits of each of their pure states consist of optimal decomposers, too. We will stud
dependence of either entanglements upon the number of different orbits.12

II. ENTANGLEMENT

In the following, we shall consider quantum systems described by algebras of operatorM,
acting on finite or infinite dimensional Hilbert spacesH, with states,M{X°Tr(r X), repre-
sented by density matrices which we shall denote by greek letters.

Definition 2.1:Given a finite dimensional subalgebraA#M, we define the entanglement o
the stater with respect toA by

E~r;M,A!ª infH(
j

l jS~r j�A! : r5(
j

l jr j J , ~3!

wherer5( jl jr j runs through all convexly linear decompositions ofr with states ofM, and
S(r j�A) is the von Neumann entropy of the stater j restricted to the subalgebraA.

Remarks 2.1:
~i! The entanglement~3! is a convex functional over the states,

ES (
j

m jr j ;M,AD<(
j

m jE~r j ;M,A!, (
j

m j51, m j>0. ~4!

This follows by choosing optimal decompositions for ther j ’s, which together provide a decom
position, not necessarily optimal, for( jm jr j .

~ii ! The entanglement of formation in equation~1! can be obtained from equation~3! as
follows: setM5A^ B, whereA andB are the algebras of observables of the systemsA andB.
With r5rAB it turns out thatrABA5TrB rAB .

~iii ! The entanglement~3! is related with the entropy of a subalgebra~2! by

E~rAB!5S~rAB�A^ 1B! 2 HrAB
~A^ 1B!. ~5!

Indeed, as we shall see below in Proposition 2.1, the infimum is achieved at decomposition
pure states ofM only, and it enjoys some further remarkable properties.

The quantity in~5! and some techniques13,14 that were developed for computing~2!, have
recently been used to attack the question whether the entanglement of formation is add15

Among them, a useful result is contained in the following proposition. The idea is in Ref. 13
slightly extended, in Ref. 19. We include a proof for the benefit of the reader.

Proposition 2.1: If the algebraM is finite dimensional, then
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~1! the entanglementE(r;M,A) is achieved at certain extremal convex decompositionsr
5( jl jp j , l j.0 which saturate~3!. Such decompositions are calledoptimal. Every pure
state,p, which appears in at least one optimal decomposition ofr is calledr-optimal or an
optimal decomposerof r.

~2! For everyr there is an optimal decomposition with a length not exceeding the linear dim
sion of M.

~3! The functionalE( . ;M,A) is convexly linear on the convex hullR~r! of all r-optimal pure
states: Letv5( ia ip i , a i.0, ( ia i51 be any extremal convex decomposition where thep j

are some optimal decomposers ofr. Then,

E~v;M,A!5(
i

a iS~p i�A!. ~6!

Proof: Any mixed stater can be decomposed and, since the von Neumann entropy is con
on convex combinations, mixed states cannot improve~3! with respect to pure states. IfM is d
dimensional, compactness of the state space, extremality and compactness of the set of pu
ensure by a theorem of Caratheodory that we need not less thand and not more thand2

decomposers.10,16 Because of convexity~4!, the functionalE( . ;M,A) is the supremum ove
affine functionals. Thus, for everyr there are functionals, such thatE(r;M,A)5,(r), while, on
generic statess, E(s;M,A)>,(s). Given an optimal decompositionr5( jl jp j it follows

E~r;M,A!5(
j

l jE~p j ;M,A!>(
j

l j,~p j !5,~r!5E~r;M,A!. ~7!

Since equality must hold in~7! and becausel j.0, while E(p j ;M,A)>,(r) by assumption, we
concludeE(p j ;M,A)5,(p j ) for all j . With vPR(r), let us now fix this affine functional,
and consider the extremal decompositionv5(akpk8 such that all thep i8 are optimal decomposer
of r. By convexity and the preceding argument we deduce

E~v;M,A!<(
k

akE~pk8 ;M,A!5(
k

ak,~pk8!5,~v!. ~8!

However,,(v)<E(v;M,A) by our choice of,, and equality holds in~8!. Thus,E(•;M,A) is
convexly linear onR~r!. j

Definition 2.2:We shall call the convex hullR~r! of the optimal decomposers ofr a leaf with
respect to the entanglementE(r;M,A). Then, the state space appears as covered by leaves
the entanglement itself is convexly linear above every leaf. That effect is referred to as throof
propertyof E( • ;M,A),10 i.e., E( • ;M,A) is a convex roof.

Definition 2.3:Given r on M, we shall call a groupG a symmetry group with respect t
E(r;M,A), if for all gPG there exists a linear mapgg :M°M such that the state and th
subalgebraA ~as a set! are left invariant by gg , namely, gg* @r#5r, where gg* @r#(m)
5Tr(rgg(m)).

Proposition 2.2: If G is a symmetry group with respect toE(r;M,A), the leafR~r! is
G-invariant as a set. In particular, the action ofG permutes the optimal decomposers ofr.

Proof: Let r5( j PJl jr j be an optimal decomposition with respect toE(r;M,A). Then,
sincegg* @r#5r and g(A)5A for gPG, the decompositionr5( j PJl jgg* (r j ) is also optimal.
Therefore, its leafR~r! must contain both ther j ’s and thegg* (r j )’s. j

Based on the previous two propositions, the entropyHr(A) has explicitly been computed in
the following cases:

Case 1:~Refs. 17, 9, 10! Let M be the full 232 matrix algebraM 2(C), A the subalgebra of
all 232 matrices diagonal with respect to a given basisu1&, u2&, andr5(b*

a
12a
b ), 0<a<1, ubu2

<a(12a), any density matrix.
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Case 2: ~Ref. 13! Let M5M3(C), A the subalgebra of all 333 diagonal matrices with
respect to the basisu1&, u2&, u3& and

r~x!5
1

3 S 1 x x

x 1 x

x x 1
D , 21/2<x<1, ~9!

any density matrix invariant under the group of permutations of$1,2,3%.
For future comparison with the entanglement of formation of isotropic states ofd-dimensional

bipartite systems studied in Ref. 11, we fix an orthonormal basisu j &PCd and consider the group
G of permutations of$1,2,...,d%. It turns out that anyG-invariant density matrixr(x) over M
5Md(C) can be written as

rF5
12F

d21
~12uc&^cu! 1 Fuc&^cu, ~10!

whereuc&5 (1/Ad) ( j 51
d u j & andF is the fidelity parameter

0<Fª^cur~x!uc&5
~d21!x11

d21
<1. ~11!

Settings(t)ª2t log t, we have
Case 1:For all r, the optimal decompositions are

r5luw1&^w1u1~12l!uw2&^w2u, ~12!

uw1&5S z1

z2
D , uw2&5S z2*

z1*
D , b5z1z2* , ~13!

uz1u25~11A124ubu2!/2512uz2u2, l5
1

2 S 11
2a21

A124ubu2
D . ~14!

The corresponding entanglement isE(r;M2(C),A)5s(uz1u2)1s(uz2u2).
If r5rF is permutation-invariant, that is, ifa51/2, b5x/2 F5(11x)/2, the entanglemen

reads

E~rF ;M2~C!,A!5sS 112AF~12F !

2 D 1sS 122AF~12F !

2 D . ~15!

Case 2:Given the groupG of permutations of$1,2,3%, let V, V2 implement unitarily the
subgroupG0 of cyclic permutations. Then, anyG-invariant staterF can be written

rF5 1
3 uw&^wu1 1

3 Vuw&^wuV211 1
3 V2uw&^wuV22, ~16!

where

uw&5
1

3 S a12b cosu
a22b cos~u2p/3!

a22b cos~u1p/3!
D , a5A3F, b5A3

2
~12F !. ~17!

The structure of optimal decompositions depends on the convexity of
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S~F !ª min
uP[0,2p]

(
j 51

3

s~ uwj~F;u!u2!. ~18!

For F>F*ª(2x* 11)/3, x* 520.415 023 4, the minimum is achieved at a single extrem
G0-orbit generated by the vectors

uw&5
1

3 S a12b
a2b
a2b

D 5
1

) S AF1A2~12F !

AF2A~12F !/2
AF2A~12F !/2

D . ~19!

For each 0,F,F* , there are two different orbit-generating vectors,uw6(F)&, whoseG0-orbits
provide different optimal decomposers for~18!, and which form together one orbit of the fu
permutation groupG. They are

uw6~F !&5
1

3 S a12b cosaF

a22b cos~p/37aF!

a22b cos~p/36aF!
D , ~20!

where the angleaF varies with 0,F,F* .
Finally, for F50, aF52p/6, the minimum is achieved again at a singleG-orbit containing

the vector,uw0&5 (1/&) (1,0,21). As the 6 vectors coincide pairwise up to a sign, the states f
a single optimal decomposition of length 3.

In Ref. 13, it is shown that the above vectors give optimal decompositions as long a
functionS(F) is convex. Numerically, this is the case for allF<8/9. The corresponding entangle
ment is

E~rF ;M3~C!,A!5sS 22F12A2F~12F !

3 D 12 sS 11F22A2F~12F !

6 D ~21!

for fidelities F* <F<8/9. For F50 the entanglement equals log 2. We have only numer
results within the interval 0,F,F* ,14 reflecting that the exact dependence of the angleaF in
~20! as a function ofF is unknown.

Remark 2.2:Permutation-invariant states as in~10! can be written as averages over t
unitariesUp implementing the permutation groupG,

rF5
1

d! (p Up
21uf&^fuUp, ~22!

if and only if u^cuf&u25F, where uc& is the vector in~11!. Necessity comes from the fact tha
Upuc&5uc&. Sufficiency: The identity1 and uc&^cu form a basis for all possible contributions t
the averages~22!.

In view of the structure of the optimal decomposers discussed above, we introduce a no
regularity with respect to a subgroup of a symmetry group, as follows:

Definition 2.4:Given a symmetry groupG with respect toE(r;M,A), we shall call a leaf
R~r! regular of ordern with respect to a subgroupH,G, if there existsn pure statesr̄ j

PR(r) such thatgh* @ r̄ j #5 r̄ j for all hPH, whereas the convex span of the orbits$gg* @ r̄ j #%gPG is
the whole ofR~r!.

We illustrate the previous definitions with some examples.
Example 2.1:Let M be a fulld3d matrix algebra onCd andA,M diagonal with respect to

a chosen orthonormal basis$u j &% j 51
d in Cd. Let r be a symmetric density matrix,̂j uruk&

5^kuru j &. Then, with respect to the chosen representation, the transpositionT respects both the
state and the subalgebraA. Also, R~r! is regular with respect toG5H5$ id,T %, the order of
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regularity depending on the stater. In fact, letp5uc&^cuPR(r), then, because of Propositio
2.2, T(p)5p85uc8&^c8uPR(r), too. If pÞp8, we may consider the statev5p/21p8/2.
which, by Proposition 2.1, is already optimally decomposed. Also,

E~v;M,A!5S~p�A!5S~v�A!. ~23!

Instead, the decomposition

v5
11Re~^cuc8&!

2
p1 1

12Re~^cuc8&!

2
p2, ~24!

where

p65
uc6c8&^c6c8u
2~16Re~^cuc8&!

~25!

need not be optimal. However, the concavity of the von Neumann entropy yields

E~v;M,A!<
11Re~^cuc8&!

2
S~p1�A!1

12Re~^cuc8&!

2
S~p2�A!<~S~v�A!. ~26!

It thus follows from~23! that p�A5p6�A, whence the componentsc( i ), c8( i ) of c and c8
must coincide apart from an overall phase. Thus,p5p8 and theT-symmetry cannot be broken

Example 2.2:Let M5A^ B, with A andB isomorphic ands:A°B the algebraic exchang
of the two of them. Ifr is a state onM such thatr+(s21

^ s)5r, in general,s21
^ s does not

belong to any subgroup of regularity ofr; indeed, ifA ~and thusB! is a d-dimensional matrix
algebra and$u,&% is an orthonormal basis in the corresponding Hilbert spaceHA ~and thus also in
HB), the density matrix

rABª
1
2 u1&^1u ^ u2&^2u1 1

2 u2&^2u ^ u1&^1u, ~27!

is such that Tr(r(s21
^ s)(X^ Y))5Tr(r(X^ Y)). Also, rAB is already optimally decomposed

E(rAB ;A,M)50 is achieved with the decomposersu1&^1u ^ u2&^2u and u2&^2u ^ u1&^1u, which,
however, are not invariant unders21

^ s.
Example 2.3:Let M5A^ B, with A andB both d3d full matrix algebras. We fix the sam

orthonormal basis$u,&% in both Hilbert spacesHA,B and consider the one-parameter groupU of
unitaries

Utª(
j ,k

ei t (hj 2hk)u j &^ j u ^ uk&^ku. ~28!

The density matrixrABª( j ,kRjk u j &^ku ^ u j &^ku, , R5@Rjk#>0, TrR51, is U-invariant; more-
over, ArAB5( j ,k(AR) jku u j &^ku ^ u j &^ku, so that the operatorsArABMArAB, MPM, have the
same matrix structure asrAB . Choosing positiveM j>0, j PJ, such that( j PJM j51, rAB decom-
poses into

rAB5(
j PJ

~Tr~rAB M j !!
ArABM jArAB

Tr~rAB M j !
. ~29!

Since it is also true that every mixed stater on M can be written as in~29! by means of a suitable
positiveM j , ~29! indeed exhausts all possible decompositions ofrAB . Thus, the decomposersp j

of rAB which are optimal with respect toE(rAB ;M,A), have the same structure ofrAB and are
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thenU-invariant. Hence, the groupU is a group of symmetries ofrAB with respect to entangle
ment and the leafR(rAB) is regular with respect toH[U, its order depending on which furthe
symmetries are enjoyed byrAB .

Example 2.4:Let M5M2(C),A as in Case 1, andrF a permutation-invariant state. The le
R(rF) is the orbit of the groupG of permutations of$1,2%. This follows from the form of the
optimal vectors~12! in such a case:uw1&5(z2

z1), uw2&5(z1

z2), with z1,25A1/2(162AF(12F)). It

is regular of order 1 with respect to rotations with elements fromA.
Example 2.5:Let M5M3(C) andrF a permutation-invariant state. Then, forF* <F andF

belonging to the convexity region ofS(F) in ~18!, the structure of the optimal vectors~19! ensures
that the leafR(rF) is regular of order 1 for the subgroupH of permutations$2,3%°$3,2%.
However, at the pointF5F* such aH-invariant vector bifurcates into the two optimal ones~20!.
Thus regularity with respect to the subgroupH is broken and remains broken for 0,F,F* . At
F50 optimal vector states of differentG0 orbits degenerate pairwise into a single one, and on
them isH-invariant, while the corresponding vector changes its sign.

In the last two examples, for allF whend52, and forF greater than the bifurcation value
F* in the convexity region ofS(F) in ~18!, whend53, the leafR(rF) of a permutation-invariant
rF is generated by the orbit under the subgroupG0 of cyclic permutationsVj uw&, j 50,1,2. The
vector uw& is invariant under a unique transposition out ofG. This structure is indeed mor
general as will be shown in the next two propositions.

Proposition 2.3:Let A,M5Md(C) be chosen as in Example 2.1 and the density matrixrF

be invariant with respect to the permutation groupG. If the leaf R(rF) with respect toA is
generated by exactly oneG0-orbit of a normalized vector stateuw&PCd, with G0,G the sub-
group of cyclic permutations, then the entanglement is

E~rF ;Md~C,A!!5s~pF!1~d21!sS 12pF

d21 D , ~30!

pFª
uAF1A~d21!~12F !u2

d
. ~31!

Remarks 2.3:
~i! The assumption of the previous proposition amounts to askR(rF) to be regular of order 1 with
respect to the subgroupH,G of permutations on$2,3,...,d%. Indeed, the leaf isG-invariant, so
that thed statesuf j&5Vj uw&, j 50,1,...,d21, obtained via cyclic permutations, must be invaria
under the remaining (d21)! permutations This is possible only ifd21 of thed components of
the optimal vectoruw& are equal.
~ii ! If uw& has three different components, then the decompositions~22! contain at leastd(d
21) different terms.
~iii ! In Sec. III we will show that, upon identification ofpF with the quantityg(F) in Ref. 11, the
entanglement of formation calculated there is given by~31! and ~30! in a rangeF** >F.1/d.
The upper limitF** is a particular bifurcation point which was discovered in Ref. 11 and that
be reinterpreted accordingly within the framework of this work.

Proof: By hypothesis,rF51/d ( j 50
d21Vj uw&^wuV2 j is an optimal decomposition with entangle

ment

E~rF ;Md~C!,A!5(
j 51

d

s~ u^ j uw&u2!. ~32!

Also, taking into account Remarks 2.2 and 2.3, and decomposing

uw&5AFuc&1«A12Fuw1
'&5au1&1b(

j 52

d

u j &,
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where« is a pure phase, it follows thatuw1
'&5(Adu1&2uc&)/Ad21 and

uw&5
1

Ad
F ~AF1«A~12F !~d21!!u1&1SAF2«A12F

d21 D (
j 52

d

u j &G .

With jª2 Re(«), the right-hand side of~32! reads

S~j!5s~p~j!!1~d21!sS 12p~j!

d21 D ,

p~j!5
F1~12F !~d21!1jAF~12F !~d21!

d
.

It achieves its minimum at the maximum value ofp that is for «51, from which the result
follows. Indeed, as we show below,uw& must be real. If remark 2.3~i! applies we always get a
local extremum. Either by direct calculation or relying on Ref. 13 one concludese51. j

We now relax the hypothesis of the previous proposition and allow for more than oneG0-orbit
to be optimal for the entanglement ofrF with respect to the subalgebraA, that is we allow the leaf
R(rF) to be generated by more than oneG0-orbit.

Proposition 2.4:Let A,M5Md(C) be chosen as in Example 2.1. If the density matrixrF is
invariant with respect to the permutation groupG and its entanglement with respect toA can be
achieved at an optimal decomposition consisting of oneG0-orbit of normalized vector state
uw&PCd, with G0,G the subgroup of cyclic permutations, then we have three possibilities

~1! uw&5 1/Ad (k51
d uk& in which caseF51 andrF5uc&^cu;

~2! uw& is real with 1 component equal toa1 andd21 real components all equal toa2Þa1 ;
~3! uw& is real with 2 componentsa1Þa3 and d22 components all equal toa3 different from

both a1 anda2 .

To prove the result we need a preliminary
Lemma 2.1:The vectoruw& whoseG0-orbit is optimal can be chosen real.
Proof: Let vk , k51,2,...,d, be the components ofuw& with respect to the chosen orthonorm

basis$uk&% and uc&5 (1/Ad) (k51
d uk&. The assumption is thatrF51/d ( j 50

d21Vj uw&^wuV2 j ; from
normalization it follows that the components ofuw& must satisfy

(
k51

d

uwku251 , U(
k51

d

wkU2

512 (
,Þk51

d

w,* wj5dF. ~33!

Further, in order to implement optimality and achieveE(rF ;M,A), we minimize

S~w,l,m!ª2 (
k51

d

uwku2 loguwku21l(
k51

d

uwku21m(
,Þk

w,wk* , ~34!

with Lagrange multipliersl, m. Settingvª(k51
d wk5AdFeiu, equating to zero the derivative o

~34! with respect towj and multiplying bywj we get

2uwj u2 loguwj u21~l21!uwku21m~v* wj2uwj u2!50.

Therefore, the quantityv* wjm and thus, after summing overj , also m, must be real, whence
necessarilywj5eiuv j , with v jPR, for all j . The result follows by eliminating the overall phase.j

Proof: ~Proposition 2.4! According to the previous Lemma, we chooseuw& real and proceed to
minimize
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S~w,l,m!ª2 (
k51

d

wk
2 logwk

21l(
k51

d

wk
21m(

k51

d

wk. ~35!

Because of convexity, the functiong(x)ª2x logx2 intersects the straight linef (x)ª2(12l)x
2m in at most three points on@21,1#. Therefore, thed solutions to

22wk logwk
222wk12lwk1m50,

can have at most three different real values,ai , i 51,2,3. We denote byni the number of times
they appear among the components and consider the functional

S~aW ;nW ;l,m,n!ª2(
i 51

3

niai
2 logai

21l(
i 51

3

niai
21m(

i 51

3

niai , ~36!

where we treat theni ’s as continuous variables constrained byn11n21n35d. Minimizing ~36!
yields the following equations:

ni~ai logai
21ai2lai2m!50, i 51,2,3, ~37!

2ai
2 logai

21lai
21mai1n, i 51,2,3. ~38!

It follows that, if ni.0, i 51,2,3, then( i 51
3 (mai12n12ai

2)50, i 51,2,3, and thusa5b5c. This
case corresponds torF515uc&^cu, a pure state, with null entanglement with respect toA. There-
fore, if there are three different intersections, the minimum entanglement is reached at the
ary values ofni , i 51,2,3, that is, without loss of generality, atn15n251 andn35d22. If there
are two intersections, that is, if, without loss of generality,n350 anda1Þa25a3 , then, from~37!
and ~38!, we calculatem522(a11a2), m5a1a2 and deduce the equality

a1
22a2

21a1a2 log
a2

2

a1
2 50 .

For fixed a1 , because of their convexity properties, the two functionsf (x)ª log (a1
2/x2) and

g(x)ª(a1 /x) 2 (x/a1) intersect atx5a1 , but, at no other points. Therefore, the entanglemen
again minimal at the boundary, that is at, sayn151 andn25d21. j

Remark 2.4:Lagrange multipliers have been used in Ref. 11 in order to calculate the enta
ment of formation of isotropic states of bipartite quantum systems, where it is shown that,
F.1/d, the optimal decomposers have only two different components. We shall relate
results to ours in the following section, where we also discuss the fact, discovered in Re
stating there is a bifurcation pointF** such that the entanglement of formation is linear inF
betweenF** andF51.

Proposition 2.4 shows that when the vectoruw& has only two different components, then w
reduce to the case discussed in Proposition 2.3. Instead, whenuw& has three different component
which is possible in a range of values ofF, then we have more than one optimal decompositi
If d53 one gets at least two. Notice that these results are obtained under the hypothes
G0-orbits of vectorsuw& provide optimal decompositions for the entanglement ofrF with respect
to the subalgebraA.

This fact is linked to the convexity of the function~18!, which, as observed in the discussio
of Case 2, fails in a neighborhood ofF51: If F>F** one needs two orbits: the optimal orbit fo
F5F** and the singlet forF51, just as observed in Ref. 11. Consequently, forF** ,F,1 no
G0-orbits can be optimal.
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III. ENTANGLEMENT AND ENTANGLEMENT OF FORMATION

In this section we establish a one-to-one correspondence between the results of the p
section, in particular proposition 2.3, and the entanglement of formation of highly symm
states as examined in Ref. 11. This concerns mainly the region (1/d)<F. From Ref. 11 we learned
the existence of the bifurcation pointF** . On the other hand, our results in the region (1/d)
,F<F** can be converted into those found by Terhal and Volbrecht. Indeed, the value o
entanglement of formation will be proved to be just~30!.

To this end we consider the tensor productMªA^ B of the full d3d matrix algebra,
denoted byA, with a copy,B, of itself. We fix an orthonormal basis$u j &% of Cd and given any
density matrix, that is a state onA,

rA5(
j ,k

Rjku j &^ku, R5@Rjk#>0, TrR51, ~39!

we embed it asD@rA# into the state space ofM according to the following:
Definition 3.1:Let D be the linear map associating matrix unitsu j &^ku of A with matrix units

$u j &^ku ^ u j &^ku% of M. We shall refer to it as thedoubling map. It transforms statesrA on A into
states onM5A^ B of the form

rA°D@rA#ª(
j ,k

Rjku j &^ku ^ u j &^ku. ~40!

Remark 3.1:This yields the class of density matrices in Example 2.3, which we shall ref
as diagonal class~with respect to the chosen basis!. On the given diagonal class the doubling m
can be inverted

D21:rAB5(
j ,k

Rj ,ku j &^ku ^ u j &^ku°rA5(
j ,k

Rj ,ku j &^ku. ~41!

The argument developed in Example 2.3 ensures that decompositions ofrA can be mapped onto
decompositions ofD@rA#. Vice versa, decompositions ofrAB provide decompositions for the
diagonal class ofrA by applyingD21. Moreover, ifA0,A denotes the subalgebra of diagon
matrices in the given, fixed representation, thenS(r�A0)5S(D@rA#�A). Therefore:The en-
tanglement is preserved by D, in the sense that

E~rA ;A,A0!5E~D@rA#;A^ B,A!. ~42!

In Ref. 11 the entanglement of formation has been calculated for the isotropic states

vF5
12F

d221
~1AB2uC&^Cu!1FuC&^Cu. ~43!

In the above expression1AB is the identity for the algebraA^ B and

uC&5
1

Ad
(
j 51

u j & ^ u j &. ~44!

Remark 3.2:The isotropic states are invariant under the groupG of all unitaries of the form
U ^ Ũ where^auUub&5^auŨub&* ,

U ^ ŨvFU21
^ Ũ215vF . ~45!
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As in Remark 2.2, it follows thatvF can be expressed as the following average with respect to
Haar measure dGU,

vF5E
G
dGU U ^ ŨuF&^FuU21

^ Ũ21, ~46!

if and only if F5^CuvFuC&5u^CuF&u2.
We compare the isotropic statevF with the doubling ofrF in ~10!,

D@rF#5
12F

d21
~D@1A#2D@ uc&^c#u! 1 FD@ uc&^cu#

5
12F

d21 S (
j 51

d

u j &^ j u ^ u j &^ j u2uC&^C#u D 1 FuC&^Cu. ~47!

Proposition 3.1:Let F.1/d and consider the decomposition

vF5
1

d! (p Up
21

^ Up
21uF&^FuUp ^ Up

by means of the unitariesUp that implement the permutation groupG. If the latter is optimal for
the entanglement of formationE(vF) with uF&^Fu in the diagonal space, thenE(vF)
5E(rF ,A,A0).

Proof: The d! unitariesUp form a subgroupG^ G of the group of unitaries in Remark 3.2
they implement the permutation of the chosen basis$u j & ^ u j &% of the diagonal space. Then
^CuvFuC&5^CuD@rF#uC&5F and

D@rF#5
1

d! (p Up
21

^ Up
21uF&^FuUp ^ Up.

If uF&^Fu is optimal for vF , it turns out from Proposition 2.2 that the decomposeresU

^ ŨuF&^FuU21
^ Ũ21 are optimal, too. Thus the result follows from Proposition 2.1. j

Remarks 3.3:

~i! If F.1/d the isotropic statevF is entangled. WhenF<1/d it becomes separable. Ther
exist several proofs of this fact, e.g., Ref. 18.

~ii ! In view of Remark 2.3~ii !, the previous proposition establishes a link between our res
and those of Ref. 11. In Ref. 11 a new symmetry breaking bifurcation point was obs
at F58/9 whend53. The doubling map makes it correspond to a bifurcation point wit
case 2 of the previous section at the same value ofF. The numerical analysis in Ref. 1
missed it, the needed accuracy being of the order of 1024. In both cases the leavesR(vF),
respectively,R(rF), are identical for allF within F** 58/9,F,1. This unique leaf is
generated by the optimal decompositions ofv8/9 which form one orbit, and by the pur
statev1 given by ~44!. The same is true ofr8/9 andr1 . The latter orbits are singlets.

~iii ! The entanglement ofr1 andr8/9 that generate the leaf discussed in the previous remar
not coincide,19

E~r1 ;M,A!5 ln 3, E~r8/9;M,A!5 ln 32 1
3 ln 2. ~48!

We shall now relate the remark above to another observation which again relates entang
of different algebras with one another.

From Case 1 in Sec. II, we know that vectors of the form (y
x) and (x

y), with x21y251
generate the leaf of some stater2 on M2(C). These two-dimensional vectors can be embedde
C3 as follows:
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uw1&5S x
y/&
y/&

D , uw2&5S y
x/&
x/&

D . ~49!

With them we construct the density matrix inM3(C) of the form

r̃35luw1&^w1u1~12l!uw2&^w2u5S a b b

b c c

b c c
D . ~50!

It is easy to check that powers ofr̃3 have the same structure which is thus inherited byAr̃3. It
thus follows that

Ar̃3uf&5S u
v
v
D

for any uf&. The discussion of Example 2.3 assures that the optimal decomposers ofr̃3 with
respect to the entanglementE( r̃;M3(C),A3), with A3 the maximally Abelian subalgebra in th
chosen representation, have again the same form. But then, (y

x) and (x
y) being optimal with respec

to E(r2 ;M2(C),A2), ~50! is itself an optimal decomposition ofr̃3 with respect to
E( r̃3 ;M3(C),A3).

According to the discussion at the beginning of this section, it also follows that the dou
map,

uw1&°uW1&5xu1& ^ u1&1
y

&
~ u2& ^ u2&1u3& ^ u3&), ~51!

uw2&°uW2&5yu1& ^ u1&1
x

&
~ u2& ^ u2&1u3& ^ u3&), ~52!

provides optimal decomposers, too. In particular, for givenx,y on the unit circle the pure state
uWj&^Wj u, j 51,2, generate a leaf of the entanglement of formation functional on which
convexly linear.

Moreover, forx51/) andy5A2/3, we getuW1&5uC&, with fidelity F5u^CuW1&u251, and
uW2&5uF8/9& with fidelity F5u^CuW2&u258/9, indicating a reason for the bifurcation valueF
58/9.

One observes that~51! and ~52! become identical forx5y51/& so that the doubling map
gets the vector,

uW3&5
1

&
u1& ^ u1&1

1

2
~ u2& ^ u2&1u3& ^ u3&), ~53!

which has fidelity

F5u^CuW3&u25 1
2 1A 2

35p1~12p! 8
9 , 0,p53A62 7

2,1. ~54!

Let us now consider the state

rF5puC&^Cu1~12p!uF8/9&^F8/9u. ~55!

By using ~48!, it can be shown that its entanglementE(rF) is larger thanpE(r(1))1(1
2p)E(r(8/9)) for 0,p,1. This implies that convexity ofS(F) in ~32! is lost for F.F** in
accordance with the discussion above.

We finally note that one can extend~49! to all dimensions larger than two. Indeed, letz1 ,z2

denote the components of a unit vector in two dimensions. By similar arguments one prove
the leaves of case 1 of the previous section are mapped onto certain leaves belonging
entanglement of formation ind11 dimensions by the embeddings
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S z1

z2
D → z1u00&1~z2 /Ad! (

j 52

d11

u j j &. ~56!

In particular, the embeddings of$z1 ,z2% and $z2* ,z1* % form an optimal pair with respect to th
entanglement of formation. One further observes in the special casez151/Ad11 the embeddings
~56! are the totally symmetric vectorC in d11 dimensions and

A d

d11
u11&1A 1

d~d11! (
j 52

d11

u j j &. ~57!

Its fidelity readsF54d/(11d)2, and we see as above

Fd11** 54d~d11!22, ~58!

i.e., the bifurcation value given in Ref. 11 ford11.2.

IV. CONCLUSIONS

We have studied in several examples the entanglement defined by a maximal comm
subalgebra of a full matrix algebra, and its relation to the entanglement of formation. Apart
its actual numerical value, what is interesting is the structure of both entanglement funct
upon the space of states, and their separation into different leaves. To some extent these le
be found by applying group theoretical considerations. They show a rich structure with va
stability under the groups under consideration. Since the same group appears in different al
contexts, it can be shown that the decompositions of states on different algebras can be
This helps to control the optimal decompositions and to understand their variety. This new
nique is shown at work in several examples: The doubling map relates two quite different lin
research which had been considered almost independently up to now. In particular we
further proof of the entanglement of formation results for isotropic states of Terhal and Volb
in the region (1/n)<F<F** .11 Another embedding map verifies their bifurcation pointF**
close toF51 as a footprint of a symmetry-breaking in two dimensions. It belongs to a clas
maps which change entanglement but not the leaves. The leaves are respected because
tanglements differ just by a convexly linear function.

We have provided some examples of embedding procedures which allow to connect v
entanglement problems not only with each other, but also with problems involving other qua
based on convex or concave roofs, for example general entanglement monotones or
~1-shot! capacities.
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Lower bound for the superheating field in the weak- k
limit: The general case

Pierre Del Castilloa)

UMR 8628 CNRS-De´partement de Mathe´matiques, Universite´ Paris-Sud,
91405 0rsay, France

~Received 30 July 2002; accepted 23 February 2003!

We have constructed asymptotic matched solutions for the one dimensionnal
Ginzburg–Landau system whenk is small@Math. Model. Num. Anal.36, 971–993
~2002!#. We have deduced an expansion in powers ofk1/2 at all orders for the
superheating field. In this paper, using these constructions, we propose to show that
the superheating field admits for lower bound the expansion of the formal super-
heating field truncated at ordern, for all nPN. We generalize the proof given in
Eur. J. Appl. Math.13, 519–547~2002!, where this result is obtained forn51.
Then, we construct solutions of the Ginzburg–Landau system when the exterior
magnetic field is near to the superheating field, and we give a localization of these
solutions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1570944#

I. INTRODUCTION

The states of a superconducting material in an exterior magnetic field are described
Ginzburg–Landau theory which introduces a functional« depending in particular on a comple
wave function and on the magnetic potentialA. When the sample is a film and the exteri
magnetic field is parallel to the surface, the Ginzburg–Landau model reduces to a one-dime
problem where the wave function is real~and denoted byf ! and where the functional is th
following:

«d~ f ,A;h!5E
2d/2

d/2 F1

2
~12 f ~x!2!22

1

2
1k22 f 8~x!21 f ~x!2 A~x!21~A8~x!2h!2Gdx, ~1.1!

with ( f ,A)P(H1(#2d/2 , d/2@))2. Here, d is proportional to the thickness of the film,h is
proportional to the exterior magnetic field andk is the Ginzburg–Landau parameter. We restr
ourselves to the study of symmetric solutions (f even andA odd! and consider a new normaliza
tion of the functional where«d is replaced by («d2(h22 1

2)d). We then restrict the problem to th
interval ]2 d/2,0], and translate it to ]0,d/2@ . We get formally, by taking the limitd51`, the
second functional

«`~ f ,A!5E
0

1`F1

2
~12 f ~x!2!21k22 f 8~x!21 f ~x!2 A~x!21A8~x!2G dx12 h A~0!, ~1.2!

defined for (f ,A)PE`5$( f ,A); (12 f )PH1(#0,1`@), APH1(#0,1`@)%. If we introduce the
new variableH5A8, the corresponding Ginzburg–Landau equations expressing the nece
conditions for minima are then

~GL!` H 2k22f 92 f 1 f 31 f A250 on ]0,1`@ ,
2A91A f 250 on 0,1`@ ,
H5A8 on 0,1`@

~1.3!

a!Electronic mail: pierre.castillo@math.u-psud.fr
24160022-2488/2003/44(6)/2416/35/$20.00 © 2003 American Institute of Physics
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with the boundary conditions

f 8~0!50, H~0!5h. ~1.4!

The problem (GL)̀ is called the half-space model and was studied in Refs. 12 and 13 w
computational solutions are given.

We consider the setH`,R1 of theh’s such that there exist solutions of the~GL! system with
f .0. We know thatH` is a bounded interval@0,h1) ~see Ref. 3, Proposition 2.1! and we then
introduce the following definition.

Definition 1.1: The superheating field hsh(k) is defined as the supremum of the intervalH` .
In Ref. 7 ~see also Ref. 5!, extending a work due to Dorsey, Dolgert, and Di Bartolo,10 we

have constructed a formal solution of the Ginzburg–Landau system, defined as a pair com
by a formal outer solution and a formal inner solution, matched in the Kaplun’s sense14 ~see also
Refs. 11 and 16!. Then, as consequence of this construction, we have proved the existenc
formal expansion in powers ofk1/2 at all orders for the superheating field denoted byhsh, f(k)
ªk21/2( i 50

1` hik
i . We have shown how to compute the coefficients of this expansion in Pro

tion 4.6. in Ref. 7. Let us recall that the first coefficient is given byh05223/4 and the second

coefficient byh15221/415
32.

In an other hand, in Ref. 6, we have proved that there existk0.0 andC such that, for all
k<k0 , we have the inequality

k1/2hsh~k!>22 3/4~11 15
32&k1Ck2!. ~1.5!

In this paper, using the construction of a matched asymptotic solution of the Ginzburg–L
system obtained in Ref. 7, we propose to establish the following theorem.

Theorem 1.2: Let nPN. There exist C andk0.0 such that, for allk<k0 , we have the
inequality

k1/2hsh~k!>(
i 50

n

hik
i1Ckn11. ~1.6!

The plan is the following. In Sec. II, we expose the construction of formal solutions of (G`

obtained by a matching procedure in Ref. 7. We recall the procedure that we have used t
formal expansion in powers ofk1/2 for the superheating field. In Sec. III, we construct
asymptotic matched solution for the Ginzburg–Landau system at ordern. In Sec. IV, we present
the construction of the subsolution (f ,A). As in Ref. 6, the wave functionf is obtained by
modifying some coefficients of orderO~k! in the sense of Ref. 4 in the matched solution and
adding an exponential polynomial to control the sign of the remaining coefficients. This fun
only depends on two parameters,a andb. The potentialA is obtained as the exact solution of th
second equation of the Ginzburg–Landau system~1.3!. To control the remaining coefficients in th
region @2 ln k,1`@, we make a good choice for the parameterb to get a negative sign for the
expression2k22f 92 f 1 f 31A2f for all value ofa. Then, the pair (f ,A) only depends ona and
we denote it by (f a ,Aa). In some region@0,k2r#, r.0, we follow Ref. 6. Using a maximum
principle, we get a lower bound forAa by comparison with the formal solution presented in S
II. In Sec. V, we show under the condition~1.4! on Aa8 (0)5h that (f a ,Aa) is a subsolution of
(GL)` for a good choice ofa. This implies the existence of a solution of (GL)` , and we deduce
the proof of Theorem 1.2. In Sec. VI, following the previous method, we construct a superso
at ordern of the ~GL! equations. We deduce a localization of solutions of (GL)` for h near to the
superheating field.
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II. FORMAL SOLUTION OF „GL…`

In the following sections, fori 5( i 0 ,...,i n)PNn11, we set

u i u0,n5 i 01 i 11¯1 i n , u i u1,n5 i 11 i 21¯1 i n , u i u2,n5 i 112i 21¯1nin . ~2.1!

Recall that in Ref. 7, we have constructed a formal solution of (GL)` as a pair composed by
formal outer solution, and a formal inner solution, matched in the Kaplun sense.14

An outer formal solution is a triplet of formal series (Fe,Ae,He), where

Fe~x;k!5F̃e~kx;k!, Ae~x;k!5Ãe~kx;k!, He~x;k!5H̃e~kx;k!,

with

F̃e~x8;k!5(
0

`

f̃ i~x8!k i , Ãe~x8;k!5(
0

`

Ãi~x8!k i , H̃e~x8;k!5(
0

`

H̃ i~x8!k i ,

satisfying the~GL! obtained after the scalingx85kx in ~1.3!. Let us introduceC(k) the formal
series defined by

C~k!; (
n50

`

Cnkn, CjPR. ~2.2!

We denote byf̃ 0
(m) the derivative at orderm of the functionf̃ 0 . We have shown in Ref. 5~see also

Ref. 10! that the outer solution is described in the following way.
Proposition 2.1: All formal outer solutions are equal to

F̃e~x8,k!;tanhS x81C~k!

&
D ,

Ãe~x8,k!;0, ~2.3!

H̃e~x8,k!;0.

Furthermore, for all n>1,

f̃ n5 (
m51

n

(
u i u2,n5n
u i u1,n5m

m!

i 1! ¯ i n! )
k51

n

~Ck!
i k f̃ 0

(m) , ~2.4!

u i u2,n5n,

u i u1,n5m,

where f̃0 is defined by

f̃ 0~x8!5tanhS x81C0

&
D . ~2.5!

Let (A(k),B(k),D(k)) three formal series in powers ofk. A formal inner solution, with
initial data at zero (A(k),B(k),D(k)) is a triplet (Fi ,Qi ,Hi) such that

Fi~ .,k!5(
0

`

Fk~ .! kk, Qi~ .,k!5(
0

`

Qk~ .! kk, Hi~ .,k!5k21/2(
0

`

Hk~ .! kk, ~2.6!
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is a formal solution of the~GL! and satisfies the boundary conditions at zero

Fi~0,k!5A~k!, Qi~0,k!5B~k!, Hi~0,k!5D~k!, ~Fi !8~0,k!50, ~Qi !8~0,k!5k1/2h.
~2.7!

We set

Ān5~A0 ,...,An!, B̄n5~B0 ,...,Bn!, and C̄n5~C0 ,...,Cn!. ~2.8!

We have described in Ref. 7~see Proposition 2.5! all the inner solutions in the following propo
sition.

Proposition 2.2: For all n>2, the function Fn defined in (2.6) is equal to a sum of exponent
polynomials. More precisely,

Fn5Fn
pol1c~ .!Pn~ .,c~ .!!, ~2.9!

where Fn
pol is a polynomial of degree n, PnPR@X,Y# and c(x)ªexp(22A0x), A0P]0,1@ . Fur-

thermore, for n>2, Un(x)ªPn(x,0) is of degree2n22.
For all nPN, the function Qn , defined in (2.6) satisfies

Qn5f~ .!Rn~ .,f~ .!!, ~2.10!

where RnPR@X,Y# and f(x)5exp(2A0 x).
Moreover, the polynomial Vn(x)ªRn(x,0) is of degree2n.
Remark 2.3: In Ref. 7, we make explicit the dependency of the functions Fn , Qn and Hn with

respect to the constants An̄ , B̄n . In this paper, we have shown in Proposition 2.6 that for n>1, Fn

depends on2n11 parameters Ān and B̄n21 . More precisely,

Fn
pol~ .;Ān ;B̄n21!5An1 P̃n~ .;Ān21 ;B̄n21!, P̃nPC`~R3#0, 1@3R2n21!,

and Pn defined in (2.9), depends only on An̄21 ;B̄n21 . Moreover,

Qn~ .;Ān ;B̄n!5f~ .!~Bn1R̃n~ .,f~ .!;Ān ,B̄n21!, R̃nPC`~R23#0, 1@3R2n!.

Let us introduce the following definition.
Definition 2.4: Let nPN* . The truncated inner solution at order n is defined

((0
nFik

i ,(0
nQik

i) and denoted by(Fi ,(n),Qi ,(n)). The truncated outer solution at order n i

defined by((0
nf̃ i(x8)k i ,(0

nq̃i(x8)k i) and denoted by(F̃e,(n),Q̃e,(n)). We introduce Fe,(n)(x;k)
5F̃e,(n)(kx) and Qe,(n)(x;k)5Q̃e,(n)(kx). We denote by Fpol,(n) the polynomial part of Fi ,(n).

In order to clarify a more formal matching condition proposed by Van Dyke in Ref. 16
have introduced in Ref. 7 the following definition.

Definition 2.5: Let nPN, (Fi ,(n),Qi ,(n)) and(Fe,(n),Qe,(n)) the triplets of functions introduced
in Definition 2.4. We say that the inner and outer solutions are matched at order n on the in
I n(d1 ,d2 ,k)ª@d1k2 1/(n11),d2k2 1/(n11)# if and only if

Fi ,(n)~x,k!2Fe,(n21)~x,k!5O~kn!,
~2.11!

Qi ,(n)~x,k!2Qe,(n21)~kx,k!5O~kn!.

Let us write, for anyj PN,

F j
pol~x!5(

i 50

j

a i , j x
i , ~2.12!

and let
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b i , j5
f̃ j 2 i

( i ) ~0!

i !
, ~2.13!

where f̃ i is defined in~2.4! and ~2.5!. The conditions of matching moduloO(kn) for outer and
inner solutions are given by the following proposition~see Ref. 7 for a proof!.

Proposition 2.6: Let nPN. The inner and outer solution are matched moduloO(kn) if and
only if

a i , j5b i , j , ; ~ i , j ! such that 0< i< j <n ~ i , j !Þ~0,n!. ~2.14!

Moreover, for all C̄nPRn11 such that C0.0, the system of2n12 equations with2n12 un-

knowns Ān and B̄n (2.14) admits a unique solution with B0, 0 and A0P]0,1@ .
In all the following sections, we assume that~2.14! is satisfied for allnPN. Using Proposition

2.6, we suppose that the functionsFn(x,Ān ,B̄n21), Qn(x,Ān ,B̄n), and Hn(x,Ān ,B̄n) are ex-
pressed in terms of the parametersCi , for i P$0,...,n%.

We introduce then the following notations:

F̌n~x;C̄n!ªFn~x;Ān~C̄n!, B̄n21~C̄n21!!, Q̌n~x;C̄n!ªQn~x;Ān~C̄n!, B̄n~C̄n!!,
~2.15!

Ȟn~x;C̄n!ªHn~x;Ān~C̄n!, B̄n~C̄n!!.

III. CONSTRUCTION OF ASYMPTOTIC MATCHED SOLUTIONS

A. Presentation of asymptotic matched solutions

Let us recall that in Ref. 7, we have introduced matched asymptotic solutions.
Definition 3.1: Let nPN* , Fe,(n)(x;k), Fi ,(n11)(x;k), Fpol,(n11)(x;k) and Qi ,(n) be the func-

tions introduced in Definition 2.4. We call asymptotic matched solution of(GL)` at order n, a pair
( f vd,(n),Avd,(n)) defined by

f vd,(n)~x;k!5Fe,(n)~x;k!1Fi ,(n11)~x;k!2Fpol,(n11)~x;k! ~3.1!

and

Avd,(n)~x,k!5k2 1/2Qi ,(n). ~3.2!

Remark 3.2: From Propositions 2.1, 2.2, and 2.6, let us remark that( f vd,(n),Avd,(n)) is com-

pletely defined by the data of Cn̄PRn11, C0.0 and (2.14).
We have proved in Lemma 3.8 in Ref. 7 thatf vd,(n) satisfies the Neumann condition at zer

In the following lemmas, we show that in the region@0,k2r#, r.0, the functionf vd,(n) is equal
to Fi ,(n11)(x;k) modulo O(kn11), and in the region@k2r,1`@ , equal toFe,(n)(x;k) modulo
O(kn11). First, let us estimate the differenceFi ,(n11)(x;k)2Fpol,(n11)(x;k).

Lemma 3.3: Let nPN, Fi ,(n) and Fpol,(n) be the functions introduced in Definition 2.4.
For xPR1, we have the estimate

Fi ,(n11)~x;k!2Fpol,(n11)~x;k!5O~k!~x2n11!exp~22A0 x!.

Proof: From Proposition 2.2@see~2.9!#, we have the equality

Fi ,(n11)~x;k!2Fpol,(n11)~x;k!5exp~22A0 x! (
i 51

n11

Pi~x,exp~22A0 x!!k i , ~3.3!

wherePi is a polynomial with degx Pi(X,0)52i 22. The proof of Lemma 3.3 follows.
                                                                                                                



e

2421J. Math. Phys., Vol. 44, No. 6, June 2003 Lower bound for the superheating field

                    
In the same way, following Ref. 6~see also Ref. 5!, one can estimate the differenc
Fe,(n)(x;k)2Fpol,(n11)(x;k) in the interval@0,k21/(n12)# and prove the following proposition.

Lemma 3.4: Let Fe,(n) and Fpol,(n11) be introduced in Definition 2.4. For all x
P @0,k2 1/(n12)#, we have the estimates

2k22~Fe,(n)~x;k!2Fpol,(n11)~x;k!!95 (
2< j 2n< i< j
n12< j <n13

i ~ i 21!b i , jk
j 22xi 221O~kn11!, ~3.4!

and

Fe,(n)~x;k!2Fpol,(n11)~x;k!5O~kn11!. ~3.5!

B. Properties of the function f vd ,„n …

In all the following, we use the lemma~see Ref. 5 for a proof!.
Lemma 3.5: Let(r,g)PN2, and dPR. Let g1 and g2 be the functions defined onR1 by

g1~x!ªexp~2dkx!, g2~x!ªk2r~xg11!exp~2&x!.

Then there existk0.0, and c.0, such that, for allk<k0 , for all xP@2c ln k,1`@,

g2~x!<g1~x!.

Let us first analyze the decay of the functionsf̃ i , i PN* .
Lemma 3.6: For iPN* , let f̃ i be the function defined in (2.4). For x8P@k2 1/(n12),1`@ , we

have the estimate

f̃ i~x8;k!5O~exp~2&x8!!. ~3.6!

Proof: From Proposition 2.1, fori>1, the functionf̃ i is equal to

f̃ i5P~ f̃ 08 ,...,f̃ 0
( i )!,

where f̃ 0 is defined in~2.5! andP is a polynomial. Asf̃ 085(1/&) (12 f̃ 0
2), it results that

f̃ i5 f̃ 08 P̃~ f̃ 0 , f̃ 08!, ~3.7!

whereP̃ is a polynomial. Moreover, from~2.5!, we get

f̃ 08~x8!5
1

&

1

cosh2S x81C0

&
D 5O~exp~2&x8!!.

Then, from~3.7!, the proof of Lemma 3.6 follows.
Let us recall~see Ref. 6 and Ref. 10! that, at the ‘‘formal’’ superheating field,A0 , B0 , A1 ,

B1 , andC1 are equal to

A05
1

&
, B05222 1/4, A152

7

32
, B152

9

16
221/4, C152

15

16
22 1/2. ~3.8!

We assume that~3.8! is satisfied in the following sections.
Proposition 3.7: Let fvd,(n) be the function introduced in (3.1). There existsk0.0 such that,

for all k<k0 , for all xPR1, we have the inequality
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0, f vd,(n)~x!<1. ~3.9!

Proof: The function f̃ 1(x8), equal to

C1

&

1

cosh2S x81C0

&
D

is negative becauseC1,0 @see~3.8!#. Consequently, from Lemma 3.6 and the fact that the sign
f̃ 1(x8) is negative, we get the inequality

(
1

n

k i f̃ i~kx;k!,0,

for k small enough. From~3.1!, we deduce the inequality

f vd,(n)~x;k!<tanhS kx1C0

&
D 1 (

i 50

n11

k i F̂ i~x!, ; xPR1, ~3.10!

where

F̂ iªFi2Fi
pol . ~3.11!

From Proposition 2.2@see~2.9!#, we have the inequality

(
i 50

n11

k i F̂ i~x!<k expS 2
1

&
xD S B0

2

4A0
expS 2

1

&
xD 1kPFx, expS 2

1

&
xD , kGexpS 2

1

&
xD D ,

whereP is a polynomial. On the other hand, from~3.8!, B0
2/4A0 5 1

4; then, fork small enough and
for all xPR1, we have the inequality

B0
2

4A0
expS 2

1

&
xD 1k expS 2

1

&
xD PFx, expS 2

1

&
xD , kG<

1

2
.

We deduce the inequality

(
i 50

n11

k i F̂ i~x!<
k

2
expS 2

1

&
xD . ~3.12!

According to~3.10! and ~3.12!, for all xPR1, we get the inequality

f vd,(n)~x;k!<tanhS kx1C0

&
D 1

k

2
expS 2

1

&
xD .

From Lemma 8.3 in Ref. 3, we get

tanhS kx1C0

&
D 1

k

2
expS 2

1

&
xD <1.

The proof of Proposition 3.7 follows.
                                                                                                                



tained
g

).

oly-

2423J. Math. Phys., Vol. 44, No. 6, June 2003 Lower bound for the superheating field

                    
C. Estimate of the remaining term

To generalize the proof of Theorem 1.3 in Ref. 6, we must estimate the remainder ob
substitutingf and A by f vd,(n) and Avd,(n) in the ~GL! equations. First, we show the followin
proposition.

Proposition 3.8: Let n>2. Let fvd,(n) and Avd,(n) be the functions defined in (3.1) and (3.2
We get the estimate

2~Avd,(n)!91~ f vd,(n)!2Avd,(n)5O~kn1 1/2!~x2n1111!exp~2A0x!, ;xP@0,k2 1/~n12!#.

~3.13!

Proof: In this proof, we denotef vd,(n) and Avd,(n) simply by f and A. In the interval
@0,k2 1/(n12)#, in order to use Lemma 3.4, we can writef in the form of

f ~x!5Fi ,(n11)~x!1@Fe,(n)~x!2Fpol,(n11)~x!#. ~3.14!

By construction of the formal inner solution, we have the equality

2A91A~Fi ,(n11)!25k21/2 (
m5n11

3n12

km (
,1u i u1,n115m, ,<n

u i u0,n1152

2!

i 0!¯ i n11!
Q, )

k50

n11

Fk
i k . ~3.15!

Let mP$n11,...,3n12%, and let (,,i )P$0,...,n%3Nn11 be a pair such that,1u i u1,n115 m.
From Proposition 2.2, the polynomial associated with the functionQ,)k50

n11Fk
i k is of degree 2,

1u i u1,n11 . The pairs (,,i )P$0,...,n%3Nn11 such that,1u i u1,n115m and 2,1u i u1,n11 is maxi-
mum are such that,5n and u i u1,n115m2n. For these pairs, the degree of the associated p
nomial is equal tom1n. Then, we get the estimate

(
,1u i u1,n115m, ,<n

u i u0,n1152

2!

i 0!¯ i n11!
Q, )

k50

n11

Fk
i k5O~xm1n11!expS 2

1

&
xD . ~3.16!

For m.n11, for xP@0,k2 1/(n12)#, we have the estimate

km~xm1n11!5O~kn11!~x2n1111!.

From ~3.14!, ~3.15!, and~3.16!, we get then

~2A91 f 2A!~x!5A~~Fe,(n)~x!2Fpol,(n11)~x!!212Fi ,(n11)~x!~Fe,(n)~x!2Fpol,(n11)!!~x!

1O~kn11/2!~x2n1111!exp~2A0x!. ~3.17!

From Lemma 3.4 and the fact thatFi ,(n) is bounded independently ofk on R1, we deduce the
estimate

~Fe,(n)~x!2Fpol,(n)~x!!212Fi ,(n11)~x!~Fe,(n)~x!2Fpol,(n)~x!!5O~kn11!. ~3.18!

From Proposition 2.2, more precisely the expression~2.10! and the fact thatVn has for degree 2n,
we have the estimate

A~x!5O~k2 1/2!exp~2A0x!. ~3.19!

Thus, from Lemma 3.4, the fact thatFi ,(n) is bounded independently ofk on R1 and from~3.19!,
we deduce the estimate
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A~~Fe,(n)~x!2Fpol,(n11)~x!!212Fi ,(n)~x!~Fe,(n)~x!2Fpol,(n11)~x!!!5O~kn11/2!exp~2A0x!.

~3.20!

Then, using~3.17! and ~3.20!, the proof of Proposition 3.8 follows.
To simplify the notations, we set

f i~x;k!5 f̃ i~kx!, ; i P N. ~3.21!

In the goal to control the sign of the remainder, we establish the following proposition.
Proposition 3.9: Let n>2 and fvd,(n) be the function defined in (3.1).

For xP@2c ln k,1`@, c.0, we have the estimate

2k22~ f vd,(n)!9~x!2 f vd,(n)~x!1~ f vd,(n)~x!!35kn11R̃n1O~kn12!exp~22&kx!, ~3.22!

where

R̃n5 (
u i u0,n53

u i u1,n5n11

3!

i 0!.. i n! )
k50

n

f k
i k . ~3.23!

Proof: We denotef vd,(n) simply by f . In the outer region, we may write, using Lemma 3.3f
in the form of

f 5@Fi ,(n11)2Fpol,(n11)#1Fe,(n). ~3.24!

By construction of the outer solution, we have the equality

2k22~Fe,(n)!92Fe,(n)1~Fe,(n)!35R̄n , ~3.25!

whereR̄n is defined by

R̄n5 (
u i u0,n53

n11<u i u1,n<3n

3!

i 0! i 1!¯ i n! )
k50

n

f k
i kk u i u1,n.

Using ~3.24! and ~3.25!, we can write

2k22f 92 f 1 f 352k22~Fi ,(n11)2Fpol,(n11)!92Fi ,(n11)1Fpol,(n11)

1~Fe,(n)1~Fi ,(n11)2Fpol,(n11)!!32~Fe,(n)!31R̄n . ~3.26!

For i P$1,...,n11%, we get from Proposition 2.2@see~2.9!# the estimate

~Fi2Fi
pol!~x!5O~x2i 2211!exp~22A0x!. ~3.27!

From Proposition 2.2, we have the estimates

2k22~Fi ,(n11)2Fpol,(n11)!95O~k21!~x2n11!exp~22A0x! ~3.28!

and

f 3~x!2~Fe,(n)~x!!353~Fe,(n)~x!!2~Fi ,(n11)~x!2Fpol,(n11)~x!!13Fe,(n)~x!~Fi ,(n11)~x!

2Fpol,(n11)~x!!21~Fi ,(n11)~x!2Fpol,(n11)~x!!3

5O~k!~x2n11!exp~22A0x!, ~3.29!
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whereFi ,(n11) is introduced in Definition 2.4. According to~3.27!, ~3.28!, and~3.29!, and from
Lemma 3.5, we get the estimate, forxP@2c ln k,1`@, c.0,

2k22~Fi ,(n11)2Fpol,(n11)!92Fi ,(n11)1Fpol,(n11)1 f 3~x!2~Fe,(n)~x!!3

5O~kn12!exp~22&kx!. ~3.30!

Let i 5( i 0 ,...,i n)PNn11, such that u i u0,n53 and n12<u i u1,n . Then, either there existsk
P$0,...,n% such thati k52, or there exists (i j ,i k), j Þ0, kÞ0, and j Þk, such thati jÞ0 and i k

Þ0. Then, from Lemma 3.6, we get the estimate

R̄n5kn11R̃n1O~kn12!exp~22&kx!, ~3.31!

whereR̃n is defined by

R̃n5 (
u i u0,n53

u i u1,n5n11

3!

i 0! ••• i n! )
k50

n

f k
i k .

According to~3.26! and ~3.30!, the proof of Proposition 3.9 follows.
Now, we can show the following proposition which generalizes Lemma 6.2 in Ref. 6,

a50.
Proposition 3.10: Let n>2. We have the estimate

2k22~ f vd,(n)!92 f vd,(n)1~ f vd,(n)!31~Avd,(n)!2f vd,(n)

5O~kn11!1O~kn!~x2n1111!exp~22A0x!, ;xP@0,k21/~n12!#. ~3.32!

To simplify the notation, we introduce the following functions:

B̃n5 (
,1u i u1,n<n

u i u0,n52

2!

i 0!¯ i n!
F,)

k50

n

Qk
i kk,1u i u1,n, ~3.33!

C̃n5 (
u i u0,n53
u i u1,n<n

3!

i 0!¯ i n! )
k50

n

Fk
i kk u i u1,n, ~3.34!

H̃n,m5 (
,1u i u1,n5m

u i u0,n52

2!

i 0!¯ i n!
F,)

k50

n

Qk
i kk,1u i u1,n, ~3.35!

Ẽn,m5 (
u i u0,n53
u i u1,n5m

3!

i 0!¯ i n! )
k50

n

Fk
i kk u i u1,n. ~3.36!

To prove Proposition 3.10, we establish the following lemma.
Lemma 3.11: Let n>2. Let Ẽn,m be the function defined in (3.36) andb i , j defined in (2.13). We

have the estimates

2Fn1k2nẼn,n1 (
i 52

n12

i ~ i 21!b i ,n12xi 225O~x2n2211!exp~22A0x! ~3.37!

and
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2Fn111k2(n11)Ẽn11,n111 (
i 53

n13

i ~ i 21!b i ,n13xi 225O~1!1O~x2n11!exp~22A0x!.

~3.38!

Proof: From Proposition 2.6@see~2.14!#,

~Fn12
pol !95 (

i 52

n12

i ~ i 21!a i ,n12xi 225 (
i 52

n12

i ~ i 21!b i ,n12xi 22.

By construction of the inner solution we have (Fn12)952Fn1k2nẼn,n , modulo a sum of
exponential polynomials. Consequently, the expression

2Fn1k2nẼn,n2 (
i 52

n12

i ~ i 21!b i ,n12xi 22

is a sum of exponential polynomials, and more precisely, using Proposition 2.2, is equ
O(uPu)exp(22A0x) whereP is a polynomial. We want to show that the degree ofP is equal to
2n22. Let us consideri 5( i 0 ,...,i n)PNn11 such thatu i u0,n53 andu i u1,n5n.

There are three cases to consider.
~1! There exists (i k ,i ,)PN2, such that (i k ,i ,)5(2,1), and theni j50 for all j Þk and j

Þ,, j P$0,...,n%.
Let us determine the degree of the polynomial in the polynomial exponential part of 3F,Fk

2

with 2k1,5n.
From Proposition 2.2, we have the equality

F,Fk
25~F,

pol1exp~22A0x!P,~x,exp~22A0x!!!~Fk
pol1exp~22A0x!Pk~x,exp~22A0x!!!2.

From Proposition 2.2, the degree of the polynomial 2F,
polFk

polPk(x,0) is equal to,1k12k
225n1k22,2n22.

The degree of (Fk
pol)2P,(x,0) is equal to 2k12,225n1,22<2n22.

~2! There existsi ,PN, such thati ,53, and theni j50 for j Þ,, j P$0,...,n%. Let us consider
F,

3. The dominant term of (F,)3 is (F,
pol)2P,(x,exp(22A0x)). The degree of its polynomial par

is equal to 4,22,2n22.
~3! There exists (i j ,i k ,i ,)PN3, such thati j5 i k5 i ,51, and theni m50 for mÞ j , mÞk, m

Þ,, mP$0,...,n%.
Let us consider the termF jFkF, with j 1k1,5n. The degree of the polynomial in th

polynomial exponential part ofF jFkF, is equal to,1k12(n2,2k)2252n2,2k22,2n
22. The proof of~3.37! follows.

Moreover,

~Fn13
pol !95 (

i 52

n13

i ~ i 21!a i ,n13xi 225 (
i 52

n13

i ~ i 21!b i ,n13xi 22.

By construction of the inner solution we have (Fn13)952Fn111k2(n11)Ẽn11,n11 , modulo a
sum of exponential polynomials. Consequently, the expression

2Fn111k2(n11)Ẽn11,n112 (
i 53

n13

i ~ i 21!b i ,n13xi 22

is equal to 2b2,n131O(uPu)exp(22A0x) where P is a polynomial. Then we can conclude a
previously. The proof of Lemma 3.11 follows.
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Proof of Proposition 3.10:We continue to denotef vd,(n) andAvd,(n) by f andA. By construc-
tion of the inner solution, we have the equality

2k22~Fi ,(n11)!92 (
0

n21

Fik
i1C̃n1k21B̃n50, ~3.39!

whereB̃n and C̃n are defined in~3.33! and ~3.34!.
With the aim to use Lemma 3.4, we writef in the form of

f 5@Fe,(n)~x;k!2Fpol,(n11)~x;k!#1Fi ,(n11)~x;k!. ~3.40!

Using ~3.39! and ~3.40!, we get the equality

2k22f 92 f 1 f 31A2f 52k22~Fe,(n)2Fpol,(n11)!92knFn2kn11Fn11

2~Fe,(n)2Fpol,(n11)!1 f 32C̃n211A2f 2k21B̃n . ~3.41!

Estimate for the expression A2f 2k21B̃n : From Lemma 3.4@see~3.5!# and~3.2!, we get the
equality

A2f 5S k21/2(
0

n

Qik
i D 2

~Fi ,(n11)1O~kn11!!. ~3.42!

Let us evaluate the differenceA2Fi ,(n11)2k21B̃n . We have the equalityA2Fi ,(n11)5A2Fi ,(n)

1A2kn11Fn11 .
Now, from Proposition 2.2@see~2.9!#, for xP@0,k21/(n12)#, we have the estimates

Fn115 O~xn1111! and A25O~k21!exp~22A0x!.

We deduce the estimate

A2kn11Fn115O~kn!~xn1111!exp~22A0x!.

The termA2Fi ,(n11)2k21B̃n consequently satisfies

A2Fi ,(n11)2k21B̃n5A2Fi ,(n)2k21B̃n1O~kn!~xn1111!exp~22A0x!

5k21 (
k5n11

3n11

H̃n,k1O~kn!~x2n1111!exp~22A0x!, ~3.43!

whereH̃n,k is defined in~3.35!.
The dominant term of the expression(k5n11

3n11 H̃n,k is obtained for the values,51, i 051 and
i n51. Its expression is 2knF1Q0Qn . From the structure ofF1 andQn @see~2.9! and~2.10!#, we
get the estimate

2knF1Q0Qn5O~kn!~x2n1111!exp~22A0x!.

From ~3.43!, we deduce the estimate

A2Fi ,(n11)2k21B̃n5O~kn!~x2n1111!exp~22A0x!. ~3.44!

From ~3.42! and ~3.44!, we get the estimate

A2f 2k21B̃n5O~kn!~x2n1111!exp~22A0x!. ~3.45!
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Estimate of the expression f32C̃n21 : We have the equality

f 32C̃n215~Fi ,(n11)!313~Fi ,(n11)!2~Fe,(n)~x;k!2Fpol,(n11)~x!!13Fi ,(n11)~Fe,(n)~x;k!

2Fpol,(n11)~x!!21~Fe,(n)~x;k!2Fpol,(n11)~x!!32C̃n21 . ~3.46!

Moreover, using~3.34!, we get

~Fi ,(n11)!35C̃n111 (
k5n12

3n13

Ẽn11,k

Now, for xP@0,k2 1/(n12)#, we have the estimate(k5n12
3n13 Ẽn11,k5O(kn11). Moreover, we have

the equality

C̃n115Ẽn11,n111Ẽn,n1C̃n21 . ~3.47!

From ~3.47!, we get the estimate

~Fi ,(n11)!32C̃n215Ẽn,n1Ẽn11,n111O~kn11!. ~3.48!

Otherwise, from~2.9!, and precisely from the fact thatFn
pol is of degreen, in the inner region, we

have forkP$0,...,n11% the estimatekkFk5O(1).
This implies

Fi ,(n11)5O~1!. ~3.49!

From ~3.49! and Lemma 3.4, we obtain that

3Fi ,(n11)2~Fe,(n)~kx;k!2Fpol,(n)~x!!13Fi ,(n11)~Fe,(n)~kx;k!2Fpol,(n11)~x!!2

1~Fe,(n)~kx;k!2Fpol,(n11)~x!!35O~kn11!. ~3.50!

From ~3.46!, ~3.48!, and~3.50!, we deduce the equality

f 32C̃n215Ẽn,n1Ẽn11,n111O~kn11!. ~3.51!

Simplifications of (3.41):From Lemma 3.4,~3.45! and~3.51!, we can write~3.41! in the form
of

2k22f 92 f 1 f 31A2f 5 (
2< j 2n< i< j
n12< j <n13

i ~ i 21!b i , jk
j 22xi 221O~kn11!2knFn2kn11Fn111Ẽn,n

1Ẽn11,n111O~kn11!1O~kn!~x2n1111!exp~22A0x!. ~3.52!

From Lemma 3.11@see~3.37! and ~3.38!#, we deduce the estimates

2knFn1Ẽn,n1kn(
i 52

n12

i ~ i 21!b i ,n12xi 225O~kn!~x2n2211!exp~22A0x!

and
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2kn11Fn111Ẽn11,n111kn11(
i 53

n13

i ~ i 21!b i ,n13xi 22

5O~kn11!1O~kn11!~x2n11!exp~22A0x!.

These estimates and~3.52! complete the proof of Proposition 3.10.

IV. CONSTRUCTION OF A SUBSOLUTION

A. Presentation of a subsolution

We first recall the definition of a subsolution.
Definition 4.1: A triplet( f ,A,h) is a subsolution of(GL)` if

2k22f 91 f ~211 f 21A2!<0, ; xPR1,
~4.1!

~12 f !PH2~ #0,̀ @ !, f 8~0!50,

where A is the unique solution in H2(#0,1`@) of

2A91 f 2A50,
~4.2!

A8~0!5h.

However, we shall say more briefly that f is a subsolution for(GL)` . Similarly, we say that
( f ,A;h) is a supersolution if it satisfies the inverse inequality in (4.1).

To construct a subsolution, we proceed as in Ref. 10. The parameterAn11 is determined by
the equality

Fn11
pol ~0!50, ~4.3!

whereFn11
pol is defined in Proposition 2.2. From Proposition 2.6, forkP$0,...,n%, we have chosen

to expressAk andBk as functions ofC0 ,...,Ck . It results from Proposition 2.2 and~4.3! thatAn11

is a function ofC̄n . In the next sections, forn>1, we assume that the constantsĀn21 , B̄n21 , and
C̄n21 are computed following the procedure exposed in Proposition 4.6 in Ref. 7, at orden
22. Then, the functionf vd,(n) only depends on the parameterCn which remains ‘‘free’’ for the
moment. In the following sections, we denote it byb. To get a negative sign of the expressio
2k22f 91 f (211 f 21A2) in the region@2 ln k,1`@, we modify moduloO~k! some coefficients
in the outer solution, and more precisely in the functionf̃ n . From ~2.4!, for n>2, the functionf̃ n

is equal to

f̃ n5b f̃ 081D̃n , ~4.4!

where

D̃n5 (
m52

n

(
u i u2,n215n
u i u1,n215m

m!

i 1!¯ i n21! )
k51

n21

~Ck!
i k f̃ 0

(m) . ~4.5!

From ~4.4! and~4.5!, let us remark that the realsf̃ n8(0) and f̃ n9(0) are affine functions ofb. In the
following, for i P$0,...,n%, the functionf̄ i is defined by

x8° f̄ i~x8!5 f̃ i~~11ak!x8!, ~4.6!

wherea is a parameter, which is assumed to satisfy
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a,0. ~4.7!

Remark 4.2: When we prove Theorem 1.2 in the case n51 (see Ref. 6), we know the sign

the function f˜1 on R1, of f̃18(0) and f̃19(0) which play an important role in the proof of thi

theorem. In the general case(n>1), we do not know a priori the sign of f˜
n on R1, and the signs

of f̃n8(0) and f̃n9(0). To get a suitable sign of the function f˜
n on R1 and f̃n8(0) and f̃n9(0), we use

the parameterb appearing in (4.4). Precisely, we will show thatb can be chosen such that f˜
n

,0 on R1, f̃ n8(0).0 and f̃n9(0),0.
For i P$0,...,n%, we denote by

f̂ i~x;k!5 f̄ i~kx! and D̂ i~x!5D̃ i~~11ak!kx!. ~4.8!

For i PN, we have an analogous conclusion to~3.6! replacing the functionf̃ i by the functionf̂ i .
Lemma 4.3: For iPN* , let f̂ i be the function defined in (4.8). For alla,0, for k small

enough, we have the estimate, for xP@2 ln k,1`@,

f̂ i~x;k!5O~exp~2&~11ak!kx!!. ~4.9!

By construction of the outer solution and expanding in powers ofk the first equation in~1.3!, we
get that the functionf̃ n satisfies the equation

2 f̃ n92 f̃ n1 (
u i u0,n53
u i u1,n5n

3!

i 0!¯ i n! )
k50

n

f̃ k
i k50, on R1.

From ~4.4! and ~4.8!, for n>2, it results that the functionf̂ n satisfies the equation

2k22 f̂ n92 f̂ n1 (
u i u0,n53
u i u1,n5n

3!

i 0!¯ i n! )
k50

n

f̂ k
i k5ka~21ka!~ f̂ n~123 f̂ 0

2!1R̂n21!, ~4.10!

where the functionR̂n21 is defined by

R̂n215 (
u i u0,n2153
u i u1,n215n

3!

i 0!¯ i n21! )
k50

n21

f̂ k
i k. ~4.11!

The functionR̂n does not depend on the parameterb, and moreover, from Lemma 4.3, for alla,
there existsk0 such that, for allk<k0 , we have the estimates

D̂n5O~exp~2&~11ak!kx!!, R̂n215O~exp~22&~11ak!kx!!, ; n>2. ~4.12!

Now, we can choose the parameterb as announced in Remark 4.2.
Lemma 4.4: For n>2, let f̃n , f̂ n and R̂n21 be the functions defined respectively in (4.4), (4.

and (4.11). There exist C˜
1,0 and C̃2.0, such that, for allb,C̃1 , for all a,0, we have the

following properties:

(a) f̂n<0, ;xPR1,

(b) f̃n8~0!.0, f̃ n9~0!,0, ~4.13!

(c) f̂n~123 f̂ 0
3!1R̂n21>2C̃2 f̂ n , ;xPR1.
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Proof: We have from~2.5! the inequalities

f̃ 09~0!,0 and f̃ 0
(3)~0!.0. ~4.14!

According to~4.5!, the realsD̃n8(0) andD̃n9(0) do not depend onb, becauseD̃n is independent of
b. From ~4.4! and ~4.14!, there existsc,0, such that, for allb,c, we have

f̃ n9~0!5b f̃ 0-~0!1D̃n9~0!.0, f̃ n8~0!5b f̃ 09~0!1D̃n8~0!,0.

We deduce (4.13)b .
According to~4.4!, ~4.8!, the hypothesisb,0 and the fact thatf̃ 08.12tanh2(C0 /&)>1

2 on
R1, we have the inequality, for alla and for ubu large enough

f̂ n<b min
xPR1

f̃ 081 max
xPR1

D̂.

It results that, forubu large enough and for alla,0, we get

f̂ n<0, ; xPR1.

Property (4.13)a follows.
For xPR1, as f̂ 0(0)5 f̃ 0(0)5 1/&, we get the inequality

3 f̂ 0
221>3 f̂ 0

2~0!21. 1
4 .

From Lemma 4.3, we have the estimate

f̂ n5O~exp~2&~11ak!kx!!.

Using then~4.12!, we deduce that there existsc̃.0 such that, for allxPR1,

f̂ n>2 c̃uR̂n21u.

We deduce that forC̃25 1
41 (1/c̃), we have for allxPR1,

2 f̂ n~2113 f̂ 0
3!1R̂n21>2C̃2 f̂ n .

We get Inequality (4.13)c . The proof of Lemma 4.4 follows.
In the following sections, we assume that the conclusion of Lemma 4.4 is verified.
Now, we follow Ref. 6. We denote byF̃e,(n),m the outer solution modified

F̃e,(n),m5 (
0

n21

f̃ ik
i1knf̄ n . ~4.15!

In order to obtain the Neumann condition and control the sign in the interval@0,k2r#, r. 0, we
add to f vd,(n) modified a functionkn12G. The functionG is assumed to have the form

G~x!5P~x!exp~22A0x!, ~4.16!

where P is a polynomial function, of degree 2n12 and whereA051/&. This choice ofP is
motived by the structure of the formal solution. We look for a functionP in the form of

P~x!5a~x2n121x!, ~4.17!
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wherea is a parameter. In the following sections, the functionf vdm,(n) represents the function
obtained after the modifications of the functionf vd,(n) defined in~3.1!. Precisely, it is given by

f vdm,(n)~x;k!5F̃e,(n),m~kx;k!1Fi ,(n11)~x;k!2Fpol,(n11)~x;k!1kn12G. ~4.18!

Let us express the condition (f vdm,(n))8(0;k)50. By construction, we get

~ f vdm,(n)!8~0;k!5(
j 50

n

f̃ j8~0!k j 111akn12 f̃ n8~0!2 (
j 51

n11

a1,jk
j1akn12.

Using the matching conditions~2.14! for i 51, we get

~ f vdm,(n)!8~0;k!5 (
j 51

n11

~b1,j2a1,j !k
j1akn12 f̃ n8~0!1akn125kn12~a f̃ n8~0!1a!.

Finally, we obtain

a52a f̃ n8~0!. ~4.19!

Using the relation~4.19!, the parametera becomes a function of the parametersa andb. As in
Ref. 6, we use the following conventions. Letg be a function defined onR3R1, (a,k)
→g(a,k). We will write g(a,k)5O a

un(kn), if there existsC, such that, for alla, there exists
k0(a) such that, for allk<k0(a), ug(a,k)u<Ckn. Similarly, we will write g(a,k)5O(kn), if
there existC andk0 , such that, for alla, for all k<k0 , ug(a,k)u<Ckn.

We can show thatf vdm,(n) satisfies the following property.
Proposition 4.5: Let fvdm,(n) be the function defined in (4.18). For alla,0, there existsk0

.0 such that, for allk<k0 , for all xPR1, we have the inequalities

0, f vdm,(n)~x!<1. ~4.20!

Proof: From Proposition 3.7, whenk is small enough,

f vd,(n)<1, ; xPR1.

According to~4.19!, asa,0 and f̃ n8(0).0, we geta.0. Then, from~4.16! and ~4.17!, we get
G>0 for all xPR1. Moreover, asa,0, we havef̂ 0(x)< f̃ 0(kx).

From ~3.1! and ~4.18!, it results that there existsk0 such that, for allk<k0 , we have the
inequalities, for alla,0, for all xPR1,

f vdm,(n)~x!< f vd,(n)~x!<1.

Moreover, from~4.18!, there existk0 andĉ.0 such that, for alla,0, for all k<k0 , we have the
inequalities

f vdm,(n)~x!> f̃ 0~0!2 ĉk.0, ; xPR1.

The proof of Proposition 4.5 follows.
The proof of Theorem 1.2 is a direct consequence of the following theorem:
Theorem 4.6:Let n>2. There exist C˜ , a,0 and k0.0 such that, fork<k0 and for h,

k1/2h5(
0

n

hik
i1C̃kn11, ~4.21!

the function fvdm,(n) satisfies
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~ f vdm,(n)!8~0!50,

and

2k22~ f vdm,(n)!91 f vdm,(n)~211~ f vdm,(n)!21~Avdm,(n)!2!<0,
~4.22!

~12 f vdm,(n)!PH2~ #0,1`@!,

where Avdm,(n) is the unique solution in H2(#0,1`@) of

2~Avdm,(n)!91~ f vdm,(n)!2Avdm,(n)50,
~4.23!

~Avdm,(n)!8~0!5h.

In the next sections, we will prove Theorem 4.6. We set

R(n)
ª2k22~ f vdm,(n)!91 f vdm,(n)~211~ f vdm,(n)!21~Avdm,(n)!2!. ~4.24!

B. Control of the sign of R „n … in the outer region

In this section, we control the sign ofR(n) in the interval@2 ln k,1`@.
Proposition 4.7: There exista0,0 and Ĉ.0, such that, for alla,a0 , for all b<2Ĉ, there

existsk0 such that, for allk<k0 , for all xP@2 ln k,1`@, we have the inequality

R(n)~x!<0, ;xP@2 ln k,1`@ . ~4.25!

Proof: Using ~4.18!, we write f vdm,(n) in the form of

f vdm,(n)5 f vd,(n21)1knf̂ n1kn11~Fn112Fn11
pol !1kn12G. ~4.26!

From Proposition 3.7, we have 0, f vdm,(n)<1. Then, as in Ref. 6~Proposition 6.4!, we get the
upper bound, for allxPR1, for anydP]0,1/& @

~Avdm,(n)!2~x! f vdm,(n)~x!<
h2

d2 exp~22dx!. ~4.27!

From Lemma 4.3, we have

f̂ n5O~exp~2&~11ak!kx!!. ~4.28!

From ~4.26!, and by construction of the inner solution, we get

2k22~ f vdm,(n)!91 f vdm,(n)~211~ f vdm,(n)!21~Avdm,(n)!2!

52k22~ f vd,(n21)!92kn22 f̂ n92kn21~Fn112Fn11
pol !92knG92 f vd,(n21)

2knf̂ n2kn11~Fn112Fn11
pol !2kn12G1~ f vdm,(n)!31~Avdm,(n)!2f vdm,(n).

Using ~4.16!, ~4.17!, and~4.19!, we express the functionG in the form of

G~x!52a f̃ n8~0!~x2n121x!exp~2&x!.

From ~4.27!, ~4.28!, Proposition 2.2 and using Lemma 3.5, we deduce that there exists fora
,0 a realk0 , such that, for allk<k0 , for xP@2 ln k,1`@, we have the estimates

2kn21~Fn112Fn11
pol !92knG95O a

un~kn11!u f̂ nu, ~Avdm,(n)!2f vdm,(n)5O~kn11!u f̂ nu
~4.29!
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and

2kn11~Fn112Fn11
pol !2kn12G5O a

un~kn11!u f̂ nu. ~4.30!

According to~4.29! and~4.30!, Proposition 3.9@see~3.22!#, and using the equation satisfied byf̂ n

in ~4.10!, we get the equality, forxP@2c ln k,1`@,

2k22~ f vdm,(n)!91 f vdm,(n)~211~ f vdm,(n)!21~Avdm,(n)!2!

5 f vdm,(n)32~ f vd,(n21)!31kn11a~21ak!~ f̂ n~123 f̂ 0
2!1R̂n21!1knR̃n21

2kn~3 f̂ 0
2 f̂ n1R̂n21!1O a

un~kn11!u f̂ nu. ~4.31!

Moreover, using~4.26!, we get

f vdm,(n)32~ f vd,(n21)!353~ f vd,(n21)!2Kn13 f vd,(n21)Kn
21Kn

3 , ~4.32!

where

Knªknf̂ n1kn11~Fn112Fn11
pol !1kn12G.

We have the estimates

3~ f vd,(n21)!2Kn53knf̂ nf 0
21O a

un~kn11!u f̂ nu, 3~ f vd,(n21)!Kn
25O a

un~k2n! f̂ n
2 ,

Kn
35O a

un~k3n!u f̂ nu3.

We deduce the estimate

~ f vdm,(n)!32~ f vd,(n21)!353knf̂ nf 0
21O a

un~kn11!u f̂ nu. ~4.33!

From Lemmas 3.6 and 4.3~4.12!, there existsk0 such that, for alla,0, for all k<k0 , we get the
estimate

R̂n212R̃n215O~exp~22&~11ak!kx!!. ~4.34!

From Lemma 4.4@see (4.13)c], for all a,0, there existsk0 such that, for allk<k0 , we get the
inequality,

a~21ak!~ f̂ n~123 f̂ 0
2!1R̂n21!<2C̄a f̂ n , C̄.0. ~4.35!

Using ~4.33! and ~4.35!, Inequality~4.31! becomes

R(n)<3~ f 0
22 f̂ 0

2!knf̂ n1kn~R̂n212R̃n21!1O a
un~kn11!u f̂ nu2C̄akn11 f̂ n . ~4.36!

Moreover, we have the estimate

f 0
22 f̂ 0

25tanhS kx1x0

&
D 2tanhS ~11ak!kx1x0

&
D 5O~exp~2&~11ak!kx!!.

As a,0, we havef 0
22 f̂ 0

2.0. Otherwise, from~4.28! and the fact thatf̂ n,0, we have the inequal
ity

~ f 0
22 f̂ 0

2! f̂ n<0, ; xPR1.
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According to~4.4!, ~4.8!, and~4.34!, it results that there existsĈ.0 such that, for allb<2Ĉ, for
all a,0, we get

3~ f 0
22 f̂ 0

2! f̂ n1R̂n212R̃n21,0, ; xPR1. ~4.37!

Then, from~4.36! and ~4.37!, for xP@2c ln k,1`@, we get

R(n)<~O a
un~kn11!2C̄akn11! f̂ n . ~4.38!

There existsa0,0 such that, for alla<a0 , we have the inequality

O a
un~kn11!2C̄akn11.0.

As f̂ n,0, we deduce that, there existsa0,0 such that, for alla,a0 , there existsk0.0 such
that, for allk<k0 , for all xP@2c ln k,1`@, c.0, the right-hand side of~4.38! is negative. The
proof of Proposition 4.7 follows.

Remark 4.8: In the following sections, we choice the parameterb in such a way that Propo-
sition 4.7 is satisfied. Now, the pair( f vdm,(n),Avdm,(n)) only depends on the parametera. We
express the dependency ona of the functions G, f vdm,(n), Avdm,(n), and R(n) by writing Ga , f a

(n) ,
Aa

(n) , and Ra
(n) .

C. Lower bound for A a
„n …

1. Presentation of the problem

In order to construct a subsolution, we must obtain a lower bound for the functionAa
(n) . We

first show that the functionAvd,(n) defined in~3.2! is a good approximation for the functionAa
(n)

in the interval@0,k2r#, r.0. In the same spirit of Ref. 6, we establish the following propositi
Proposition 4.9: There exists rj ( j P$1,...,2n12%) , such that, for all r0PR, there exists a constan

C̃(r 0) and a function J(x) defined onR1, by

J~x!5R~x!expS 2
1

&
xD , ~4.39!

where

R~x!5 (
j 51

2n12

r jx
j1r 0 ,

such that, for alla, there existsk0.0, such that, for allk<k0 and with

k1/2h5(
i 50

n

hik
i1C̃~r 0!kn11, ~4.40!

the solution of (4.23) satisfies the inequality

Avd,(n)~x!1kn11/2J~x!<Aa
(n)~x!,0, ; xPR1, ~4.41!

where Avd,(n) is defined in (3.1).

2. Approximation in the inner region

The proof of Proposition 4.9 is similar to the proof of Proposition 5.1 in Ref. 6. Let
introduce the functionZa defined by
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Za~x!5~Avd,(n)2Aa
(n)!~x!. ~4.42!

First, we establish the following lemma.
Lemma 4.10: There exists a polynomial of degree2n11, R1(x), such that, for alla,0, there

existsk0.0 such that, for allk<k0 , we have on the interval@0,k2 1/(n12)#, the inequality

2Za91 f a
(n)2Za<kn11/2R1~x!expS 2

1

&
xD . ~4.43!

To establish Lemma 4.10, we evaluate the differenceF̃e,(n),m(kx)2Fpol,(n11)(x;k) on the
interval @0,k21/(n12)#. Using Lemma 3.4 and the proof of Lemma 5.5 in Ref. 6, we can prove
following lemma.

Lemma 4.11: For alla,0, there existsk0.0 such that, for all k<k0 , for all x
P @0,k2 1/(n12)#, we have the estimate

F̃e,(n),m~kx;k!2Fpol,(n11)~x;k!5O a
un~kn11!. ~4.44!

Proof of Lemma 4.10:We have the equality

2Za91 f a
(n)2Za52~Avd,(n)~x!!91~Fi ,(n)1kn12Ga!2Avd,(n)~x!

12~Fi ,n111kn12Ga!~ F̃e,(n),m~kx;k!2Fpol,(n11)~x;k!!Avd,(n)~x!

1Avd,(n)~x!~ F̃e,(n),m~kx;k!2Fpol,(n11)~x;k!!2. ~4.45!

As in Ref. 6, let us introduce

B~x!52~Avd,(n)~x!!91~Fi ,(n11)1kn12Ga!2~x!Avd,(n)~x!, ~4.46!

C~x!52~Fi ,n111kn12Ga!~x!~ F̃e,(n),m~kx;k!2Fpol,(n11)~x;k!!Avd,(n)~x!, ~4.47!

and

D~x!5Avd,(n)~x!~ F̃e,(n),m~kx;k!2Fpol,(n11)~x;k!!2. ~4.48!

From ~4.16!, ~4.17!, and~4.19!, we get, fork small enough

kn12Ga5O a
un~kn11!~x2n1111!expS 2

1

&
xD .

From Proposition 3.8, we get then the estimate

B~x!5O a
un~kn11/2!~x2n1111!expS 2

1

&
xD . ~4.49!

We deduce, using~4.49!, the existence ofk0.0 and p̄, such that, for allk<k0 , for x
P@0,k2 1/(n12)#

B~x!<kn11/2p̄~x2n1111!expS 2
1

&
xD . ~4.50!

From Lemma 4.11, for alla,0, there existsk0 such that, fork<k0 , for xP@0,k2 1/(n12)#, we
have the estimates
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Fi ,(n11)1kn12Ga5F01O a
un~k~n11!/~n12!!, Avd,(n)5~k2 1/2B01O~k1/2!!expS 2

1

&
xD .

~4.51!

Using ~4.47!, ~4.48!, and~4.51!, and following Ref. 6, we deduce that there exist some const
p̄ and q̄ such that

C~x!<kn11/2p̃expS 2
1

&
xD and D~x!<kn11/2q̄ expS 2

1

&
xD . ~4.52!

From ~4.36!, ~4.50!, and~4.52!, there exists a polynomialR1 of degree 2n11 andk0 such that,
for k<k0 , we get the inequality

2Za91~ f a
(n)!2Za<kn11/2R1~x!expS 2

1

&
xD . ~4.53!

We can choose

R1~x!5 p̄x2n111 r̄ ,

where

r̄ 5 p̄1 p̃1q̄. ~4.54!

The proof of Lemma 4.10 follows.
Using Lemmas 4.10 and 4.11, and following Ref. 6, we can state the following lemma.
Lemma 4.12: For R2(x)5(1

2n12r ix
i , let J2(x)5R2(x)exp@2 (1/&) x#. For r 0PR, let J be

the function defined by

J5J21r 0 expS 2
1

&
xD . ~4.55!

There exists a polynomial R2 such that, for all r0 , for all a,0, there existsk0.0 such that, for
all k<k0 , for all xP@0,k2 1/(n12)#, we have the inequality

2~Za91~ f a
(n)!2Za!2kn11/2~J92~ f a

(n)!2J!<2kn11/2expS 2
1

&
xD . ~4.56!

Proof: From the conclusion of Lemma 4.10, we get the inequality

2Za91 f a
2Za2kn11/2~J92 f a

2J!<kn11/2S R12R291&R281S f a
22

1

2D ~R21r 0! DexpS 2
1

&
xD .

~4.57!

For xPR, we have

Fi ,(n11)2Fpol,(n11)1kn11Ga5O a
un~k!. ~4.58!

For xP@0,k2 1/(n12)#, we have the estimate

f̃ 0~kx!5 f̃ 0~0!1O~kx!. ~4.59!

From ~4.15! and ~4.59!, we get
                                                                                                                



se

2438 J. Math. Phys., Vol. 44, No. 6, June 2003 Pierre Del Castillo

                    
F̃e,(1),m~kx;k!5 f̃ 0~0!1Oa~k~n11!/~n12!!, ; xP@0,k21/~n12!#. ~4.60!

From ~4.18!, ~4.58!, and~4.60!, we get

f a~x!22 1
2 5O a

un~k~n11!/~n12!!. ~4.61!

Using ~4.61!, we have

R12R291&R281~ f a
22 1

2!R2

5~&~2n12!r 2,2n121 p̄1O a
un~k~n11!/~n12!!r 2,2n12x!x2n11

1(
i 51

2n

~2 i ~ i 11!r 2,i 111& ir 2,i1O a
un~k~n11!/~n12!!r 2,ix!xi

1&r 2,122r 2,21 r̄ 1O a
un~k~n11!/~n12!!r 2,1x1O a

un~k~n11!/~n12!!r 0 . ~4.62!

To get a negative sign for the expressionR12R291&R281( f a
22 1

2)R2 , we impose that

&~2n12!r 2,2n121 p̄,22,

; i P$1,...,2n%, i ~ i 11!r 2,i 111& i r 2,i,22, ~4.63!

22r 2,21 r̄ 1&r 2,1,22,

where p̄ and r̄ are defined in~4.54!. The system~4.63! admits solutions. We can indeed choo
successively the constantsr 2,2n12 , r 2,2n11 , ...,r 2,1 in ~4.63!. For all a,0, there exists
k0(a,r 0).0 such that, for allk<k0 , and for allxP@0,k2 1/(n12)#,

O a
un~k~n11!/~n12!!r 2,ix<1, for all i P$1,...,2n12% and O a

un~k~n11!/~n12!!r 0,1.
~4.64!

According to ~4.63! and ~4.64!, we deduce that, for alla,0, there existsk0 such that, fork
<k0 and for allxP@0,k2 1/(n12)#,

R12R291&R281S f a
22

1

2DR2<2kn11/2S (
0

2n11

xi D . ~4.65!

Using ~4.65!, the inequality~4.57! becomes

2Za91 f a
2Za2kn11/2~J292 f a

2J2!<2kn11/2S (
0

2n11

xi D expS 2
1

&
xD <2kn11/2expS 2

1

&
xD .

The proof of Lemma 4.12 follows.

3. Approximation in the outer region

Lemma 4.13: For(r 3,j ) j P$0,...,2n12%PR2n13, let R3 be a polynomial of degree2n12, defined
by

R3~x!5 (
j 50

2n12

r 3,j x
j . ~4.66!

Let J3 be the function defined by
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J3~x!5R3~x!expS 2
1

&
xD .

Then, for all r3,j ( j 50,...,2n11), there exists C˜ 3,0 such that, for all r3,2n12,C̃3 , for all a
,0, there existsk0.0 such that, for allk<k0 , we have

2~Za1kn11/2J3!91 f a
2~Za1kn11/2J3!,0, ; xP@k2 1/~n12!,1`@ . ~4.67!

Proof: Step 1.Control in the interval@k2 1/(n12),k21/2#. In this region, we writef a
(n) in the

form of

f a
(n)~x!5Fe,(n),m~x;k!1@Fi ,(n11)~x;k!2Fpol,(n11)~x;k!#1kn12Ga .

In the interval@k2 1/(n12),k21/2@ , from the structure ofFi andGa , we get the estimate

(
i 50

n11

Fik
i1kn12Ga2Fpol,(n11)5O a

un~k!~x2n1111!exp~2&x!.

For ,P$0,...,n21%, we have, for allxP@k21/(n12),k21/2#,

k, f̃ ,~x!5 (
k50

n122,
f̃ ,

(k)~0!

k!
kk1,xk1O a

un~kn11!. ~4.68!

Furthermore, for allxP@k2 1/(n12),k21/2#,

knf̄ n~x!5 (
k50

2
f̃ n

(k)~0!

k!
kk1nxk1O a

un~kn11!. ~4.69!

For xP@k2 1/(n12),k21/2#, from ~4.18!, ~4.68!, and~4.69!, we can write

f a
(n)~x!5 (

j 2n< i< j <n11
b i , jk

j xi1
f̃ 0

(n12)~0!

~n12!!
kn12xn121o~kn12xn12!1O a

un~kn11!.

From Proposition 2.2, Proposition 2.6@see~2.14!#, and the fact thatFn11
pol (0)50, we can write this

equality in the form of

f a
(n)~x!5 (

k50

n11

kkFk
pol1

f̃ 0
(n12)~0!

~n12!!
kn12xn121o~kn12xn12!1O a

un~kn11!. ~4.70!

Using this expression to represent the functionf a
(n) , we get

2Za91~ f a
(n)!2Za52~Avd,(n)!9

1Avd,(n)S (
k50

n11

kkFk
pol1

f̃ 0
(n12)~0!

~n12!!
kn12xn121o~kn12xn12!1Oa~kn11!D 2

.

~4.71!

Using the equation verified byQj for j P$1,...,n% and Proposition 2.2, we get the estimate
@k2 1/(n12),k21/2#
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Qj92 (
,1u i u1,j 5 j , ,PN

u i u0,j 52

2!

i 0! •• i j !
Q, )

k50

j

~Fk
pol! i k5O~x2 j 22!expS 2

1

&
xD .

For j P$1,...,n%, using the previous equality and from~4.71!, we get

2Za91 f a
(n)2Za5kn11W Avd,(n), ~4.72!

where

Wª (
u i u1,n115n11

u i u0,n1152

)
k50

n11

~Fk
pol! i k12

F0

~n12!!
f̃ 0

(n12)~0!kxn12. ~4.73!

From ~4.72!, it results the equality

2~Za1kn11/2J3!91~ f a
(n)!2~Za1kn11/2J3!

5kn11W.Avd,(n)1kn11/2~~ f a
(n)22 1/2!R32R391&R38!expS 2

1

&
xD . ~4.74!

As in Ref. 6 Lemma 5.7, we can prove that (f a
(n))22 1

2.0 on @k2 1/(n11),k21/2@ and (f a
(n))22 1

2

5 O a
un(k1/2).

Let us assume that

r 3,2n12,0. ~4.75!

Then, from ~4.66! and ~4.75!, we deduce the upper bound, for someC, for x
P@k2 1/(n11),k21/2@ and fork small enough

~ f a
(n)22 1

2!R32R391&R38)<2R391&R38<Cr3,2n12 x2n11. ~4.76!

Furthermore, asAvd,(n)5O(k21/2)exp(2 (1/&) x) and degFn
pol5n ~see Proposition 2.2!, and

from ~3.48!, there existd.0 andk0 such that, for allk<k0 , for all xP@k2 1/(n12),k21/2@ , we
have the inequality

W Avd,(n)<dk2 1/2xn11 expS 2
1

&
xD . ~4.77!

Consequently, from~4.76! and ~4.77!, whenk is small enough, the right-hand side of~4.74! is
negative on@k2 1/(n12),k21/2@ .

Step 2.Control in the interval@k21/2,1`@ . In this region, from the structure ofQi @see
Proposition 2.2,~2.10!#, we get fori P$0,...,n%, the estimate

Qi5S P̃i1OS xmi expS 2
1

&
xD D D expS 2

1

&
xD , miPN,

whereP̃i is the polynomial part ofRn in the variablex. Let us recall that the degree ofP̃i is equal
to 2i . We have the equality

2Qi91 f a
(n)2Qi5S S ~ f a

(n)!22
1

2D P̃i2& P̃i81 P̃i91OS expS 2
1

&
xD D D expS 2

1

&
xD .
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Then, we can write

2~Za1kn11/2J3!91 f a
(n)2~Za1kn11/2J3!

5F S f a
(n)22

1

2Dk21/2S (
i 50

n

~k i P̃i !1kn11R3D
1k1/2S (

i 51

n

~& P̃i82 P̃i9!k i 211kn~&R382R39!1OS expS 2
1

&
xD D GexpS 2

1

&
xD .

~4.78!

Let us denote bydi , the coefficient of the monom of highest degree ofP̃i .
We set

g i50 if di,0, g i52di if di.0.

As r 3,2n12,0 and degP̃i52i , we have the inequality, fork small enough and forxP@k21/2,
1`@ ,

(
i 50

n

k i P̃i1kn11R3<(
i 50

n

g ik
ix2i1

kn11

2
r 3,2n12x2n12.

The polynomial

(
i 50

n

g ik
ix2i1

kn11

2
r 3,2n12x2n12

is negative on@k21/2,1`@ under the condition

r 3,2n12,22(
i 50

n

g i . ~4.79!

Let us control the term( i 51
n (& P̃i82 P̃i9)k

i 211kn(&R382R39). We have the inequality, for som
C

(
i 51

n

~& P̃i82 P̃i9!k i 211kn~&R382R39!<CS (
i 51

n

& ig ik
i 21x2i 211kn~2n12!r 3,2n12x2n11D .

The polynomial( i 51
n & ig ik

i 21x2i 211kn(2n12)r 3,2n12x2n11 is negative on@k21/2,1`@ under
the condition

r 3,2n12,2
1

2n12 (
i 51

n

i .g i . ~4.80!

In conclusion, Inequality~4.67! is verified under conditions~4.75!, ~4.79!, and~4.80!, then under
the unique condition

r 3,2n12,C̃3 , ~4.81!

whereC̃3 is defined in the following way:
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C̃3, infH 22(
i 51

n

g i ,2
1

2n12 (
i 51

n

ig i ,0J . ~4.82!

D. Proof of Proposition 4.9

This proof is similar to the proof of Proposition 5.1 in Ref. 6. We apply the maxim
principle~see Lemma 5.2 in Ref. 6! to the functionZa1kn11/2J. From Lemmas 4.12 and 4.13, w
get for someR(x)

2~Za1kn11/2J!91 f a
(n)2~Za1kn11/2!J<0, ; xPR1.

According to~3.2! and ~4.23!, the condition (Za1kn11/2J)8(0)> 0 is satisfied if

C̃<J28~0!2
r 0

&
. ~4.83!

If we assume~4.83!, the proof of Proposition 4.9 follows.

V. THE FUNCTION f a
„n … IS A SUBSOLUTION

Control of the sign of the function Ra
(n) in the inner region:We want to get an analogou

estimate to~3.32! replacing the pair (f vd,(n),Avd,(n)) by the pair (f a
(n) ,Aa

(n)).
Lemma 5.1: There exist some constants p0 and p1 , and for all r0.0, a constant C(r 0) such

that, for all a,0, there existsk0.0, such that, for allk<k0 and for h.0 such that

k1/2h5(
i 50

n

hik
i1C̃kn11, ~5.1!

the pair ( f a
(n) ,Aa

(n)) satisfies, for all xP@0,k2 1/(n12)#, the estimate

Ra
(n)<~22a f̃ n9~0!1p0!kn111kn~p1 ~11x2n12!2r 0!exp~2&x!2knGa9 . ~5.2!

Proof: In view to use Proposition 3.10, we writef a
(n) in the form

f a
(n)5 f vd,(n21)1knf̄ n~kx!1kn11~Fn112Fn11

pol !1kn12Ga . ~5.3!

For all xP@0,k2 1/(n12)#, we have the equality

f̄ n~kx!5 f̃ n~~11ak!kx!5 f̃ n~kx!1ak2xE
0

1

f̃ n8~kx1ak2x t! dt. ~5.4!

Using ~5.3! and ~5.4!, we get the equality

f a
(n)5 f vd,(n)1akn12xE

0

1

f̃ n8~kx1ak2x t! dt1kn12Ga . ~5.5!

According to~4.16! and~4.19!, for all a,0, there existsk0 such that, for allk<k0 , we have for
xP@0,k21/(n12)#, the estimate

akn12xE
0

1

f̃ n8~kx1ak2x t! dt1kn12Ga5O a
un~kn11!. ~5.6!

From ~5.5!, we get the estimate

2k22~ f a
(n)!952k22~ f vd,(n)!922kn11a f̃ n9~0!2knGa91O a

un~kn11!. ~5.7!
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According to~5.5! and ~5.6!, we deduce the equality

2 f a
(n)52 f vd,(n)1O a

un~kn11!. ~5.8!

From Proposition 4.9, we get

Aa
(n)2f a

(n)<~Avd,(n)1kn11/2J!2f a
(n) . ~5.9!

From ~3.1!, ~3.2!, ~4.18!, and ~4.39!, for xP@0,k2 1/(n12)#, for k small enough, we have th
estimates

f a
(n)5F01O a

un~k~n11!/~n12!!, f vd,(n)5F01O~k~n11!/~n12!!,
~5.10!

Avd,(n)5~k2 1/2B01O~k1/2!!expS 2
1

&
xD , J5~O~x2n1211!1r 0!expS 2

1

&
xD .

From ~5.5!, we have

~ f a
(n)!35~ f vd,(n)!31O a

un~kn11!. ~5.11!

Moreover from~3.8!, we have 2F0B05221/4. Then, following Ref. 6~see Lemma 6.2!, and from
~5.7!, ~5.8!, ~5.10!, and~5.11!, we obtain that for alla,0 andr 0.0, there existsk0 such that, for
all k<k0 , we have the inequality

Ra
(n)<2k22~ f vd,(n)!92 f vd,(n)1~ f vd,(n)!31~Avd,(n)!2f vd,(n)22kn11a f̃ n9~0!2knGa92kn12Ga

221/4r 0kn exp~2&x!1Or 0

un~kn!~x2n1211!exp~2&x!. ~5.12!

Then, using Proposition 3.10@see~3.32!#, Inequality~5.12! becomes

Ra
(n)<22kn11a f̃ n9~0!2knGa92knr 0 exp~2&x!1Or 0

un~kn!~x2n1111!exp~2&x!

1O a
un~kn11!.

The proof of Lemma 5.1 follows.
Then, we can express the following proposition, which can be proven as Proposition

Ref. 10
Proposition 5.2: There exist C˜ and u.0, such that, for allaP] 2`,2u], there existk0

.0 and r0 , such that, for allk<k0 and for h.0 such that

k1/2h5(
i 50

n

hik
i1C̄kn11, ~5.13!

the pair ( f a
(n) ,Aa

(n)) satisfies for all xP@0,k2 1/(n12)#, the inequality

Ra
(n)<0. ~5.14!

Proof of Theorems 4.6 and 1.2:Theorem 4.6 follows immediately from Propositions 4.7 a
5.2. The proof of Theorem 1.2 is similar to the proof of Theorem 1.2 in Ref. 6 replacing
condition

k1/2h5h01h1k1Ck2 with the formula k1/2h5(
i 50

n

hik
i1C̃kn11.
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VI. CONSTRUCTION OF A SOLUTION OF „GL…`

A. Construction of a supersolution

In this section, in order to construct a supersolution, we start with the function defin
~4.18!. Let us recall that this function depends on two parameters that we denote byā and b̄.
Here, we suppose that

ā.0.

We prove the following theorem.
Theorem 6.1:Let n>2. There exist Cˆ , ā.0 and k0.0 such that, fork<k0 and for

k1/2h5(
0

n

hik
i1Ĉkn11, ~6.1!

the function fvdm,(n) defined in (4.18) is a supersolution of(GL)` .
Proof: Let us remark that some relations like~4.12! and (4.13)(a,b) are still true whenā

.0.
Step 1. Estimate in the region@2 ln k,1`@. As f vdm,(n).0, (Avdm,(n))2f vdm,(n)>0. Then,

following the proof of Proposition 4.7, we get the inequality

2k22~ f vdm,(n)!91 f vdm,(n)~211~ f vdm,(n)!21~Avdm,(n)!2!

> f vdm,(n)32~ f vd,(n21)!31kn11ā~21āk!~ f̂ n~123 f̂ 0
2!1R̂n21!

1knR̃n2123knf̂ 0
2 f̂ n1knR̂n211Oā

un~kn11!u f̂ nu. ~6.2!

As 3f̂ 0
221> 1

4, there exists a constantC̃3.0 such that, fork small enough

ā~21āk!~ f̂ n~123 f̂ 0
2!1R̂n21!>2C̃3ā f̂ n .

As ā.0, we havef 0
22 f̂ 0

2,0. Otherwise, from~4.28! and the fact thatf̂ n,0, we get the inequality

~ f 0
22 f̂ 0

2! f̂ n>0, ; xPR1.

According to ~4.4!, ~4.8!, and ~4.34!, it results that there existsC4.0 such that, for allb̄
<2C4 , for all ā.0, we get

3~ f 0
22 f̂ 0

2! f̂ n1R̂n212R̃n21.0.

Then, according to~4.33! and ~6.2!, it results that

R(n)>~O ā
un~kn11!2Cākn11! f̂ n . ~6.3!

The right-hand side of~6.3! is positive forā large enough.
Step 2. Estimate in the region@0,k2 1/(n12)#. Following the proof of Proposition 4.9, and mor

precisely, replacing the functionZa defined in~4.42! by the function2Za , one can prove tha
there existsr̄ j , ( j P$1,...,2n12%), such that, for allr̄ 0PR, there exists a constantĈ( r̄ 0) and a
function J̃ defined onR1, by

J̃~x!5R~x!expS 2
1

&
xD , ~6.4!
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where R(x)5( j 51
2n12r̄ j x

j1 r̄ 0 , such that, for allā.0, there existsk0.0, such that, for allk
<k0 and with

k1/2h5(
i 50

n

hik
i1Ĉ~ r̄ 0!kn11, ~6.5!

the solution of~4.23! satisfies the inequality

Avd,(n)1kn11/2J̃>Aa
(n) , ; xPR1. ~6.6!

The condition onĈ is given by

Ĉ> J̃8~0!. ~6.7!

As B0,0, let us remark that, from Proposition 2.2 (degVn52n), we haveAvd,(n)1kn11J<0, for
xP@0,k2 1/(n12)# andk small enough. Then, following the proof of Lemma 5.1, one can get
inequality

Rā
(n)>22kn11~ ā f̃ n9~0!1p0!2knGā91kn~p1~11x2n12!221/4r̄ 0!exp~2&x!. ~6.8!

As f̃ n9(0),0, for ā large enough, we have the inequality

22ā f̃ n9~0!22p0.0.

In another hand, according to~4.16! and ~4.17!, there existsr.0 such that

Gā9< f̃ n8~0!ā~11x2n122r!exp~2&x!.

If we assumer̄ 0<221/4r f̃ n8(0)ā and if we chooseā large enough, we get

Gā9<~p1~11x2n12!221/4r̄ 0!exp~2&x!.

Thus, the right-hand side of inequality~6.8! is positive. The proof of Theorem 6.1 follows.
We denote by (f sup,Asup) the supersolution obtained in Theorem 6.1.

B. Construction of solutions of „GL…`

In this section, in order to simplify the computations, we setn52 and we considerf vd,(2) and
Avd,(2) introduced in Definition 3.1. These two functions only depend on the parametersC0 , C1 ,
andC2 which are computed following Proposition 4.6 in Ref. 7. Let us recall that~see Ref. 5, p.
87 and Ref. 10!

C05&arctanhS 1

&
D , C152 15

16&, C25 429
512 . ~6.9!

Using the construction of the subsolution and the supersolution exposed in the preceding se
we get a localization of solutions of (GL)` .

Theorem 6.2: There exist C, C̃1.0, C̃2.0 and k0.0 such that, for allk<k0 and h.0
such that

k1/2h5(
i 50

2

hik
i1Ck3, ~6.10!

there exists a pair( f ,A) solution of(GL)` and satisfying the inequalities, for xP@0,1`@
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u f 2 f vd,(2)u<C̃1k3/2expS 2
&

2
kxD , ~6.11!

and

uA2Avd,(2)u<C̃2kP~x!expS 2
&

2
xD , ~6.12!

where P is a positive polynomial of degree6.
Proof: Step 1.Construction of a solution. First, following Sects. IV and V, we construc

subsolution (f sub,Asub) such thatAsub8 (0)5 h whereh satisfies~6.10! for someC. To express that
the functionsf subandAsub

vd,(2) defined in~3.2! and~4.18! depend on the parametersa andb, we set

f sub~x;k!5 (
k50

1

f̃ k
sub~kx!kk1k2 f̂ 2

sub~x!1 (
k50

3

F̂k
sub~x!kk1k4Ga~x! ~6.13!

and

Asub
vd,(2)5k2 1/2~Q0

sub1kQ1
sub1k2Q2

sub!. ~6.14!

The parameterb should satisfy the conditionb<2Ĉ introduced in the proof of Proposition 4.
andC should satisfy~4.83!. Let us remark that we can chooseubu arbitrarily large.

Now, in the same way, we want to construct a pair (f sup,Asup) supersolution of (GL̀) such
that Asup8 (0)5h. In this goal, we modify the parameterC1 , and more precisely, we replac
(C0 ,C1 ,b̄) with (C0 ,C11ḡke,b̄) in ~2.14! ~see Remark 3.2!. e andḡ are parameters which wil
be determined later. Then, we introduce (f sup,Asup

vd,(2)), the pair defined in~3.2! and ~4.18! with
this choice. To express that the functionsf sup andAsup

vd,(2) depend on the parametersā and b̄, we
set

f sup~x;k!5 (
k50

1

f̃ k
sup~kx!kk1k2 f̂ 2

sup~x!1 (
k50

3

F̂k
sup~x!kk1k4Gā~x! ~6.15!

and

Asup
vd,(2)5k2 1/2~Q0

sup1kQ1
sup1k2Q2

sup!. ~6.16!

From Ref. 5, p. 62, we haveA12 (B0
2/4A0) 5 f̃ 08(0)C1 . Otherwise, from Ref. 5, p. 86, forC0

satisfying~6.9! and for all (C1 ,b)PR2, we get

Ȟ2~0;C0 ,C1 ,b!5225/4~ f̃ 08~0!C11 1
4!

22 7
82

1/4~ f̃ 08~0!C11 1
4!2 521

20482
1/4. ~6.17!

From Ref. 7~see Proposition 4.8 and Theorem 4.9!, for C0 andC1 satisfying~6.9!, we have

]Ȟ2

]C1
~0;C0 ,C1 ,b̄ !50,

whereȞ2 is introduced in~2.15!. For C0 andC1 satisfying~6.9!, and for all (b̄,ḡ)PR2, we have

Ȟ2~0;C0 ,C11ḡke,b̄ !5Ȟ2~0;C0 ,C1 ,b̄ !1E
0

1 ]2Ȟ2

]C1
2 ~0;C0 ,C11uḡke,b̄ !du ḡ2k2e.

~6.18!
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From Theorem 4.9 in Ref. 7~see also Ref. 5!, for C0 andC1 satisfying~6.9! and for all (b̄,ḡ)
PR2 andk.0, we have

Ȟ1~0;C0 ,C11ḡke!5h1 , Ȟ2~0;C0 ,C1 ,b̄ !5h2 . ~6.19!

From ~6.17!, we get the equality

]2Ȟ2

]C1
2 ~0;C0 ,C11uḡke,b̄ !5229/4f̃ 08~0!2. ~6.20!

We remark that all the propositions in the preceding sections are still true when we re
(C0 ,C1 ,b̄) with (C0 ,C11ḡke,b̄). It results that Theorem 6.1 is still true under two conditio
satisfied byb̄ andḡ. First, b̄ should satisfy the conditionb̄,2C4 which appears in the proof o
Theorem 6.1. In order to satisfy the condition (Asub2Asub

vd,(2))8(0)> 0 @which corresponds to the
condition ~6.7!#, from ~6.10!, ~6.18!, ~6.19!, and ~6.20!, we takee5 1

2. Then, this condition is
satisfied if we assume

C> J̃8~0!229/4f̃ 08~0!2ḡ2. ~6.21!

As the choice ofb is independent of the choice ofb̄ and as we can chooseb arbitrarly large, we
chooseb and b̄ such that

4b̄2b22&C1
2.0. ~6.22!

This condition is introduced in order to get the inequalityf sub< f sup. From~6.21!, we remark that
we can chooseḡ.0.

Now, we comparef sub and f sup. From Proposition 2.1, we have

f̃ 15C1 f̃ 08 , ~6.23!

where

f̃ 08~x8!5cosh22S x81C0

&
D . ~6.24!

According to~4.4!, ~4.5!, and~4.8!, we have

f̂ 25C2 f̂ 081D̂2 , with D̂25
C1

2

2
f̂ 09 . ~6.25!

As f̃ 0
sup5 f̃ 0

sub, from ~6.13!, ~6.15!, and~6.23!, we have

(
k50

1

~ f̃ i
sup2 f̃ i

sub!k i5k3/2ḡ f̃ 08 . ~6.26!

Moreover, from~6.13!, ~6.15!, and~6.25!, we have

f̂ 2
sup2 f̂ 2

sub5b̄ f̂ 08
sup2b f̂ 08

sub1D̂2
sup2D̂2

sub. ~6.27!

According to~6.13!,~6.15!, ~6.26!, and~6.27!, it results that
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f sup2 f sub5k2~ b̄ f̂ 08
sup2b f̂ 08

sub1D̂2
sup2D̂2

sub!1k3/2ḡ f 08
sup1 (

k51

3

~ F̂k
sup2F̂k

sub!kk1k4~Gā2Ga!.

~6.28!

Let us consider the term(k51
3 (F̂k

sup2F̂k
sub)kk1k4(Gā2Ga). In this sum, from Ref. 5, p. 52, the

unique term depending onb̄ andb is F̂3
sup2F̂3

sub. Moreover, we have

F̂1
sup2F̂1

sub50, ~6.29!

and

F̂2
sup2F̂2

sub5O~k1/2!~x11!exp~2&x!. ~6.30!

According to~2.10! and ~4.16!, for xPR1, we deduce that there existsC̄b̄,b such that

k3~ F̂3
sup2F̂3

sub!1k4~Gā2Ga!>C̄b̄,bk3~x611!exp~2&x!. ~6.31!

As e2x<cosh21(x)<2e2x, from ~4.8! and ~6.24!, we get the inequalities

b̄ f̂ 08
sup>4b̄exp~2&~~11āk!kx1C0!!, 2b f̂ 08

sub>2bexp~2&~~11ak!kx1C0!!,
~6.32!

and

D̂2
sup2D̂2

sub>22&C1
2exp~2&~~11ak!kx1C0!!. ~6.33!

According to ~6.24!, ~6.25!, ~6.32!, and ~6.33!, and asḡ f 08.0, we get forxPR1 and for Ĉb̄,b

ª(4b̄2b22&C1
2)exp(2&C0)

b̄ f̂ 08
sup2b f̂ 08

sub1D̂2
sup2D̂2

sub>Ĉb̄,bexp~2&~11ak!kx!. ~6.34!

From ~6.22!, it results thatCb̄,b.0. According to~6.28!, ~6.29!, ~6.30!, ~6.31!, ~6.34! and as
ḡ f 08

sup.0, we deduce that there existsC̃ such that

f sup2 f sub>Ĉb̄,bk2 exp~2&~11ak!kx!1~k5/2C̃~x11!1C̃b̄,bk3~x611!!exp~2&x!.

It results that, for allxPR1 andk small enough,f sup2 f sub.0. Then, using Proposition 6.5 in Re
3, we deduce that there exists a pair (f ,A) solution of (GL)̀ , such that

f sub< f < f sup. ~6.35!

Step 2.Estimates forf 2 f vd,(2) andA2Avd,(2). By definition of f sup and f vd,(2), we have

f sup2 f vd,(2)5k2~ b̄ f̂ 08
sup2C2f 081D̂2

sup2D2!1k3/2ḡ f 08
sup1 (

k51

3

~ F̂k
sup2F̂k!k

k1k4Gā .

~6.36!

Following the step 1, asā.0, we get

f sup2 f vd,(2)5O~k3/2!exp~2&kx!.

As a,0, from ~6.36! ~replacingf sup with f sub), we obtain

f sub2 f vd,(2)5O~k3/2!exp~2&~11ak!kx!.
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According to~6.35!, we deduce that there existC̃1.0 andk0 , such that, for allk<k0 , we get

u f 2 f vd,(2)u<C̃1k3/2expS 2
&

2
kxD , ; xPR1.

Moreover, using Lemma 6.6 in Ref. 3, we know that the map defined onC0(R1) by f °A( f ),
whereA( f ) is the unique solution inH2(R1) of

2A91 f 2A50, A8~0!5h

is increasing. Asf sub< f < f sup, it results that

Asub<A<Asup.

From Proposition 4.9 and~6.6!, we get

Asub
vd,(2)1k5/2J<Asub<A<Asup<Asup

vd,(2)1k5/2J̃. ~6.37!

As Q0
sub5Q0 andQ1

sub5Q1 , from ~6.14!, we get

Asub
vd,(2)2Avd,(2)5k3/2~Q2

sub2Q2!.

From Proposition 2.2, we have the estimate

uQ2
sub2Q2u5O~x411!expS 2

1

&
xD .

Then, it results that

Asub
vd,(2)2Avd,(2)5O~k3/2!~x411!expS 2

1

&
xD . ~6.38!

From Ref. 5, p. 52, we obtainuQ1
sup2Q1u5O(k1/2)(x11)exp@2 (1/&) x#. As uQ2

sup2Q2u
5O(x411)exp@2 (1/&) x#, we deduce that

Asup
vd,(2)2Avd,(2)5O~k!~x411!expS 2

1

&
xD . ~6.39!

Moreover, according to~4.39! and ~6.4!, we have the estimates

J5O~x611!expS 2
1

&
xD , J̃5O~x611!expS 2

1

&
xD .

From ~6.37!, ~6.38!, and~6.39!, it results that inequality~6.12! follows and this achieves the proo
of Theorem 6.2.

VII. CONCLUSION

Theorem 1.2 leads one to express the following conjecture.
Conjecture 7.1: Let hsh(k) be the superheating field, introduced in Definition 1.1 a

hsh, f(k)ªk21/2( i 50
1` hik

i be the formal superheating field.
For all nPN, there exist C andk0 such that, for allk<k0 we have the inequality
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k1/2hsh~k!<(
i 50

n

hik
i1Ckn11.

Let us recall that in Ref. 2, to get the DeGennes formula,9 Bolley and Helffer have proved that

kh2<
&

4
1O~k1/2!,

for all hPH` and fork small enough. In Ref. 8, we improve this estimate and get

kh2<
&

4
1

15

32
k1O~k11r!

for somer.0 and for allhPH` . Taking account the lower bound forhsh(k) obtained in Ref. 6,
we deduce the Parr formula.15 So, Conjecture 7.1 is an open problem forn>2.

A second point is the study of the stability of the solutions of the~GL! equations constructed
in Theorem 6.2. The goal is to prove that these solutions are stable.1
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We investigate the essential spectrum of the Pauli operators~and the Dirac and the
Schrödinger operators! with magnetic fields on the Poincare´ upper-half plane. The
magnetic fields under consideration are asymptotically constant~which may be
equal to zero!, or diverge at infinity. Moreover, the Aharonov–Casher type result is
also considered. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1573742#

I. INTRODUCTION AND RESULT

In this article we study the spectral properties of the Pauli operator on the Poincare´ upper-half
planeH5$(x,y)uxPR, y.0% endowed with the measuredx dy/y2. The Pauli operatorP(a) is
defined as the square of the Dirac operatorD(a) and has the physical interpretation as t
Hamiltonian which governs a nonrelativistic spin 1/2 particle moving onH. The following results
~i!–~iii ! are proved.

~i! The essential spectrum ofP(a) consists of the two parts; the continuous one and
~possibly empty! discrete Landau levels, if the magnetic field is asymptotically cons
~Theorem 1.1 below!.

~ii ! If the magnetic field diverges at ‘‘infinity,’’P(a) has discrete spectrum~i.e., isolated eigen-
values of finite multiplicity!, except for the ground state energy 0 which is an isola
eigenvalue of infinite multiplicity~Theorem 1.3 below!.

~iii ! For any compactly supported magnetic field, unlike the Euclidean case@Aharanov and
Casher~1979!#, the number of the zero-energy eigenstates ofP(a) is generically infinite
~Theorem 1.6 below!.

In the Euclidean case, Shigekawa~1991! studied the relation between the spectral proper
of the Pauli operators and the asymptotic property of the magnetic fields in arbitrary space d
sion @see also Ogurisu~1993!#.

Fix some notation. For smooth manifoldsV, we denote byC0
`(V) the set of all complex

valued, smooth functions onV with compact support and denote byC(V) the set of all complex
valued, continuous functions onV. We denote byCk(V;Rn) the set of allk-times continuously
differentiable maps fromV to Rn and denote byC(V;Rn) the set of all continuous maps fromV
to Rn. We denote]/]x , (1/i )(]/]x) by ]x , Dx , respectively. We denoteL2-norms on any
function spaces byi•i.

For a densely defined, closable linear operatorA acting in a Hilbert space, we denote th
domain of A by D(A) and denote the operator closure ofA by Ā. The notations ker(A) and
ran(A) denote the kernel and the range ofA, respectively. For any self-adjoint operatorA, we
denote the spectrum ofA by s(A) and denote the essential spectrum ofA by sess(A) @e.g., Reed
and Simon~1978!, Vol. I#.

a!Electronic mail: inahama@kusm.kyoto-u.ac.jp
24510022-2488/2003/44(6)/2451/12/$20.00 © 2003 American Institute of Physics
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For a subsetS of R and for a real numbera, we denote byS1a the set$x1auxPS%. If S is
contained in the set of all positive real numbers, we denote byAS the set$AxuxPS%. If S5B, we
set S1a5B and AS5B. For any family of sets$Sj% j 50

N with N>0, we setø j 50
k Sj5B if k

,0.
Throughout this article we always assume:
~B.0! The vector potentiala5(a1 ,a2) belongs toC`(H;R2).
We introduce the differential operatorsA(a) andA†(a) with domainC0

`(H) as

A~a!5y„Dx2a1~x,y!…1 iy„Dy2a2~x,y!…,

A†~a!5y„Dx2a1~x,y!…2 iy„Dy2a2~x,y!…11,

respectively. Note thatA†(a) is a formal adjoint operator ofA(a) with respect to the measur
dx dy/y2 and A(a) is closable. The Dirac and the Pauli operators acting inL2(H) % L2(H) are
defined by

D~a!5S 0 A†~a!

A~a! 0 D , ~1.1!

and

P~a!5D~a!25S A†~a!A~a! 0

0 A~a!A†~a!
D , ~1.2!

respectively. Under the condition~B.0!, P(a) is essentially self-adjoint onC0
`(H) % C0

`(H) ~see
Lemma 2.1 in the next section!. Hence, due to~1.1!, so is D~a! @see Shubin~1976!; see also
Thaller ~1992!, Lemma 5.7#. The reason why we callD~a! by the name ‘‘Dirac operator’’ is
explained in the Appendix. In what follows, for any closable operatorT, we use the same symbo
T for its closure, if there is no fear of confusion.

For any vector potentiala, we introduce the corresponding magnetic fieldB as

da~5]xa22]ya1!5B/y2.

In order to formulate our results, we introduce the following conditions for the magnetic fie
~B.1! In addition to~B.0!, there is a real numberB0 such that the perturbation

B15B2B0 ~1.3!

decays at infinity, i.e., for any«.0, there exists a compact subsetK of H such that
uB1(x,y)u,« holds outsideK.

~B.2! In addition to~B.0!, the magnetic fieldB diverges at infinity, i.e., for anyN.0 there
exists a compact subsetK of H such thatB(x,y)>N holds outsideK.

Theorem 1.1:Assume (B.1). Then we have

sess„P~a!…5L~B0!ø@ uB021/2u2, `!,

where

L~B0!5H ø l 50
N(uB021/2u)

$ l ~ u2B021u2 l !%, if B0Þ1/2,

B, if B051/2,
~1.4!

and N(x) denotes the largest integer less than x.
In particular, the ground state energy0 belongs tosess„P(a)… for all B0 and, moreover, if

B0Þ1/2, it is an isolated eigenvalue of infinite multiplicity.
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Remark 1.2: Let V belong to C(H;R) and decay at infinity. Then, using Lemma 2.1 in the n
section, one can show the conclusion in Theorem 1.1 is still valid if we replace the operator(a)
by P(a)1V.

Theorem 1.3:Assume (B.2). Then we havesess„P(a)…5$0% and, moreover, 0 is an isolated
eigenvalue of infinite multiplicity.

Remark 1.4: Using the unitary transform f(x,y)° f (2x,y), one can show that the conclu
sion as in Theorem 1.3 is still valid in the case where B tends to2` at infinity, instead of (B.2).

The spectrum of the Dirac operator is known from the one ofP(a) because of the relation
~1.2!. In fact, if we introduce a slightly generalized form of the Dirac operator with non-nega
constant massm as

Dm~a!5D~a!1mt, t5S Id 0

0 2IdD , ~1.5!

~the proof of! Proposition 2.5 in Shikegawa~1991! states that

s„Dm~a!…5As„A~a!* A~a!…1m2ø~2As„A~a!A~a!* …1m2!, ~1.6!

and the same equality replaceds by sess is valid. Here ‘‘Id’’ denotes the identity operator o
L2(H).

For example, Theorem 1.1 yields the following
Corollary 1.5: Assume (B.1). Then we have

sess„Dm~a!…5H ~s2\$2m%!øs1øsc , if B0.1/2,

sc , if B051/2,

s2ø~s1\$m%!øsc , if B0,1/2,

where we set

s252AL~B0!1m2,

s15AL~B0!1m2,

sc5~2`,2AuB021/2u21m2#ø@AuB021/2u21m2, `!.

Here L(B0) is the set as in Theorem 1.1.
Let T be a densely defined, closed operator acting in a Hilbert space. We sayT is semi-

Fredholmif the space ran(T) is closed and at least one of the dimensions of ker(T) and ker(T* )
is finite. Note thatT is semi-Fredholm if and only ifT* is @Kato ~1966!, Chap. IV, Sec. 5,
Corollary 5.14#. For any operatorT, we define the index ofT by

ind~T!5dim ker~T!2dim ker~T* !,

which may take value6`, when either dim ker(T) is finite or dim ker(T* ) is.
Theorem 1.6: Assume (B.1) and assume that the support of B1 is compact. Then A(a) is

semi-Fredholm if and only if B0Þ1/2. Moreover, the index is given by

ind~A~a!!5H 1`, if B0.1/2,

0, if B051/2,

2`, if B0,1/2.

Remark 1.7: We recall the Aharonov–Casher (1979) theorem in the Euclidean setting, wh
corresponds to the case B051/2 in Theorem 1.6. Leta5(a1 ,a2)PC`(R2;R2) and assume tha
B15da is compactly supported. Then the two-dimensional Pauli operator onR2 takes the form
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p~a!5S a~a!* a~a! 0

0 a~a!a~a!* D 5S ( j 51
2 ~Dxj

2aj !
21B1 0

0 ( j 51
2 ~Dxj

2aj !
22B1

D ,

where a(a)* and a(a) are the corresponding creation and annihilation operators. Then
zero-eigenspace of p(a) is finite dimensional and the index can be described by the magnetic
F5 (1/2p) *R2B1(z)dz. Precisely,

ind„a~a!…5H sgn~F ! uN~F !u, if FÞ0,

0, if F50.

As for the proof [see Aharanov and Casher (1979) and the proof of Lemma 5.2 in Sec. V
difference between the hyperbolic and Euclidean case is caused by the following two facts:

(1) There are many bounded, holomorphic functions onH, unlike the Euclidean case.
(2) Given fPC0

`(H), there is a bounded solution to the Poisson–Dirichlét problem (]x
21]y

2)g
5 f on (any compact domain of)H. In the Euclidean case, these solutions have logarithm
asymptotics at infinity.

This article is organized as follows: In Sec. II, we introduce the auxiliary Schro¨dinger operator
H(a) and present some basic properties ofH(a). We prove Theorem 1.1 in Sec. III and prov
Theorem 1.3 in Sec. IV. In Sec. V, we give a proof of Theorem 1.6. In the Appendix, we ex
briefly thatD~a! is a special case of the Dirac operator on a Clifford bundle overH.

II. THE SCHRÖDINGER OPERATOR ON THE UPPER-HALF PLANE

In this section we concern with the Schro¨dinger operator

H~a!5A†~a!A~a!1B5y2~Dx2a1!21y2~Dy2a2!2

acting inL2(H). Initially we set the domain ofH(a) asC0
`(H).

Lemma 2.1: Assume (B.1) or (B.2). Then we have the following:

(i) The operator A†(a)A(a) is essentially self-adjoint and its closure coincides w
A(a)* A(a).

(ii) The operator A(a)A†(a) is essentially self-adjoint and its closure coincides w
A(a)A(a)* .

(iii) H (a) is essentially self-adjoint and, if (B.1) holds, then the operator equality,

H~a!5A~a!* ~a!A~a!1B,
holds.

(iv) Set b5(a121/y, a2), where a5(a1 , a2). Then the operator H(b)1B21 is essentially
self-adjoint and the operator equality,

A~a!A~a!* 5H~b!1B21,
holds.

(v) Both P(a) and D(a) are essentially self-adjoint.
(vi) Any VPC(H) which decays at infinity is relatively compact with respect toH(a).

Proof: We first consider the case of~B.1!. The assertions~i!–~iv! and~vi! are known@Inahama
and Shirai~2003!, Lemmas 3.2 and 3.10#. Then ~i! and ~ii ! imply that P(a) is essentially self-
adjoint, so isD~a! @Shubin ~1976!, Theorem 4.1; see also Thaller~1992!, Lemma 5.7#. The
essential self-adjointness ofH(a) is due to Shubin~1976!.

Next we consider the case of~B.2!. The proof of~vi! in Inahama and Shirai~2003! is still
valid in this case. A direct calculation shows that
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A~a!A†~a!5H~b!1B21 ~2.1!

holds. It follows from the general result in Shubin~2001! thatH(a), H(b) and the rhs of~2.1! are
essentially self-adjoint, from which~iii ! follows. Then~ii ! and ~iv! follows since the lhs of~2.1!
has an extensionA(a)A(a)* , which is self-adjoint~Reed and Simon, Vol. 2, Theorem X.25!. We
show ~i!. Set (V f )(x,y)5 f (2x,y) for any f PL2(H). Then V is a unitary operator and map
C0

`(H) to C0
`(H) surjectively. A direct calculation shows that

H~a!5A†~a!A~a!1B, ~2.2!

V21A~a!V52A†~ ã!, V21A†~a!V52A~ ã! ~2.3!

hold, where we set

ã~x,y!5„2a1~2x,y!11/y,a2~2x,y!….

Then, by~2.3!, we see thatV21A†(a)A(a)V5A(ã)A†(ã), so the assertion~i! follows from ~ii !
replacedA†(a) andA(a) by A†(ã) andA(ã), respectively. The rest of the assertion follows as
the case of~B.1!. j

The following result is due to Inahama and Shirai~2003!:
Theorem 2.2:Assume (B.1). Then we have

sess„H~a!…5sL~B0!ø@1/41B0
2 ,`!,

where

sL~B0!5H ø l 50
N(uB0u21/2)

$~2l 11!uB0u2 l ~ l 11!%, if uB0u.1/2,

B, if uB0u<1/2,

and N(x) denotes the largest integer less than x.

III. ASYMPTOTICALLY CONSTANT MAGNETIC FIELD CASE

In this section we give a proof of Theorem 1.1, which is essentially due to Theorem 2.
Lemma 3.1: Let N(x) be the function as in Theorem 1.1. Then we have

~ i ! N~ uB0u21/2!5H N~ uB021/2u!, if B0.1/2,

21, if 21/2<B0<1/2,

N~ uB021/2u!21, if B0,21/2,

~ i i ! N~ uB021u21/2!5H N~ uB021/2u!21, if B0.3/2,

21, if 1/2<B0<3/2,

N~ uB021/2u!, if B0,1/2.

Proof: It is easy to see that

N~ uxu21!115N~ uxu! ~3.1!

holds for allxPR. First we show the assertion~i!. If B0.1/2, thenN(uB0u21/2)5N(B021/2)
5N(uB021/2u). If 21/2<B0<1/2, then21/2<uB0u21/2<0, so we haveN(uB0u21/2)521. If
B0,21/2, then uB0u21/252B021/252(B021/2)215uB021/2u21, so we haveN(uB0u
21/2)5N(uB021/2u21)5N(uB021/2u)21 by ~3.1!.

Next we show~ii !. If B0.3/2, then uB021u21/25B023/25uB021/2u21, so we have
N(uB021u21/2)5N(uB021/2u21)5N(uB021/2u)21 by ~3.1!. If 1/2<B0<3/2, then 21/2
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<uB021u21/2<0, so we haveN(uB021u21/2)521. If B0,1/2, then N(uB021u21/2)
5N„2(B021/2)…5N(uB021/2u). j

Lemma 3.2: Let L(B0) be as in Theorem 1.1. Assume (B.1). Then it follows that

sess„A~a!* A~a!…5H L~B0!ø@ uB021/2u2, `!, if B0>1/2,

~L~B0!\$0%!ø@ uB021/2u2, `!, if B0,1/2,

and

sess„A~a!A~a!* …5H „L~B0!\$0%…ø@ uB021/2u2, `!, if B0.1/2,

L~B0!ø@ uB021/2u2, `!, if B0<1/2.

Proof: It follows from Lemma 2.1~iii ! that

sess„A~a!* A~a!…5sess„H~a!2B…

5sess„H~a!2B0…

5„sL~B0!2B0)ø@B0
211/42B0 ,`…

5„sL~B0!2B0!ø@ uB021/2u2, `…, ~3.2!

where we used Lemma 2.1~vi! in the second equality and Theorem 2.2 in the third equality.
~2.4!, we have

sL~B0!2B05 ø
l 50

N(uB0u21/2)

$~2l 11!uB0u2 l ~ l 11!2B0%. ~3.3!

By Lemma 3.1~i!, if B0.1/2, we have

the rhs of ~3.3!5 ø
l 50

N(uB021/2u)

$~2l 11!B02 l ~ l 11!2B0%

5 ø
l 50

N(uB021/2u)

$ l ~~2B021!2 l !%5L~B0!. ~3.4!

Similarly, if 21/2<B0<1/2, we have

the rhs of ~3.3!5B5L~B0!\$0%, ~3.5!

and, if B0,21/2, we have

the rhs of ~3.3!5 ø
l 50

N(uB021/2u21)

$~2l 11!~2B0!2 l ~ l 11!2B0%

5 ø
l 50

N(uB021/2u21)

$22~ l 11!B02 l ~ l 11!%

5 ø
k51

N(uB021/2u)

$k~~22B011!2k!%5L~B0!\$0%, ~3.6!
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where we changed the variablel 5k21 in the second equality. Then the first assertion in
lemma follows from~3.2!–~3.6!.

As for the second assertion, using Lemma 2.1~iv!, we have

sess„A~a!A~a!* …5sess„H~b!1B021…

5 ø
l 50

N(uB021u21/2)

$~2l 11!uB021u2 l ~ l 11!1B021%ø@ uB021/2u2, `!,

whereb is as in Lemma 2.1. Then the result follows from Lemma 3.1~ii ! in a similar way. j

Now, by Lemma 3.2, we complete the proof of Theorem 1.1, since the form~1.2! implies that
sess„P(a)…5sess„A(a)* A(a)…øsess„A(a)A(a)* …. Due to ~1.6!, Corollary 1.5 follows immedi-
ately.

IV. DIVERGING MAGNETIC FIELD CASE

In this section we give a proof of Theorem 1.3 following the same line of the argument
Shikegawa~1991!, Example 4.1. We assume~B.2! to the end of this section.

Lemma 4.1: Let A be a densely defined, closed operator acting in a separable Hilbert s
Then we have the following:

(i) A* A and AA* have the same essential spectrum except perhaps at the point 0.
(ii) In addition, if 0 belongs tosess(A* A) but not tosess(AA* ), the ground state energy 0 mu

be an isolated eigenvalue of A* A of infinite multiplicity.

Proof: The assertion~i! is well known as the spectral supersymmetry@see, e.g., Cyconet al.
~1987!, Theorem 6.3, Thaller~1992!, Corollary 5.6#. The assertion~ii ! immediately follows from
~i!. j

The essential spectrum ofA(a)A(a)* 5H(b)1B21 is empty @Kondrat’ev and Shubin
~2002!#, hence Lemma 4.1~i! implies thatsess„A(a)* A(a)…,$0%. Then it follows that

sess„P~a!…5sess„A~a!* A~a!…øsess„A~a!A~a!* …5sess„A~a!* A~a!…,$0%.

This shows the discreteness of the spectrum ofP(a), except for 0.
Next, we complete the proof of Theorem 1.3 by showing that 0 is an isolated eigenva

A(a)* A(a) of infinite multiplicity. Let D denote the Poincare´ disk $w5reiu5u1 ivu0<r ,1,0
<u,2p% endowed with the canonical measuredmD54rdrdu/(12r 2)2 and let E denote the
Cayley transform fromH to D defined byEz5(z2 i )(z1 i )21. In what follows, for any function
f on H, we denote the functionf (E21

•) on D by f̃ for simplicity. For notational convenience
when we denote a function onD by f̃ , we always assume that the inverse image off̃ by E is some
function f on H. Note thatE induces a unitary equivalence betweenL2(H) and L2(D): and
transforms the hyperbolic Laplaciany2(]x

21]y
2) to 1

4(12r 2)2(]u
21]v

2).
Lemma 4.2: Assume (B.2). Thendim ker„A(a)…5`.
Proof: We writeB5B11B2 so that inf B1.1, BjPC2(H;R) for j 51,2 andB2 is compactly

supported. Then we can find aC2-solutiongj which solves the equationy2(]x
21]y

2)gj5Bj on H
for j 51,2 @see, Hormander~1963!, Theorem 3.6.4 and Corollary 3.7.1#. Owing to the compact-
ness of the support ofB2 , we may assume thatg2 is bounded onH. In fact, we can takeg2 as the
solution to the Dirichlet problem (]u

21]v
2)g1̃54B̃2 /(12r 2)2 on ~the closure of! D. We setg

5g11g2 .
Owing to the gauge transform, we may assume thata5(2]yg,]xg) sinceg satisfiesy2(]x

2

1]y
2)g5B. Then, using the form

A~a!522iy ]̄z2y~a11 ia2!, ]̄z5
1
2~]x1 i ]y!, ~4.1!
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we can find thathe2g belongs to ker„A(a)… for any holomorphic functionh, provided thathe2g

belongs toL2(H).
We introduce the weight function onD as w̃52g̃112 log(12r2). Then (]u

21]v
2)w̃5(B1

21)/(12r 2)2>0, sow̃ is sub-harmonic onD. Using Lemma 4.4.4 in Hormander~1966!, we can
deduce that the space

A5$h̃uh̃e2w̃/2PL2~D !, h̃ is holomorphic onD%

has infinite dimension. Then, by the boundedness ofg2 , we conclude that the map

A{h̃°he2gPker„A~a!…

is well-defined, from which the lemma follows. j

Remark 4.3: The above proof shows that the conclusion in Lemma 4.2 is still valid whe

lim inf $B~x,y!udH„~x,y!,~0,1!…→`%.1.

Here, dH is the distance function onH induced by the standard metric. Explicitly,

coshdH~z1 ,z2!5
~x12x2!21y1

21y2
2

2y1y2

for any z15(x1 ,y1), z25(x2 ,y2)PH.
The condition~B.2! implies that 0 is an eigenvalue ofA(a), so of A(a)* A(a), of infinite

multiplicity. We deduce that 0 is an isolated point ofs(P(a)) by Lemma 4.1~ii !. This completes
the proof.

V. AHARONOV–CASHER TYPE ARGUMENT

In this section we give a proof of Theorem 1.6. To the end of this section, in addition to~B.1!,
we assume thatB1 is compactly supported onH. We use the same notationf̃ for the function
f (E21

•) on the Poincare´ disk D as in the previous section.
Lemma 5.1: There exists g˜PC2(D;R) which solves the equation

1
4~12r 2!2~]u

21]v
2!g̃5B̃

on D. Moreover, the function

g̃15g̃1B0 log~12r 2!

is bounded on D.
Proof: Due to the compactness of the support ofB1 , we can find the solutiong̃1 which solves

the equation

1
4~12r 2!2~]x

21]y
2!g̃15B̃1

with the Dirichlét boundary condition on~the closure of! D. Then the lemma follows from the fac
that (]u

21]v
2)log(12r2)524(12r2)22. j

Lemma 5.2: Let g˜ be as in Lemma 5.1. Introduce the space

Ã~ g̃!5$h̃uh̃e2g̃PL2~D !, h̃ is holomorphic onD%.

Then we have
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dim Ã~ g̃!5H `, if B0.1/2,

0, if B0<1/2.

Proof: Sethn(w)5wn for each non-negative integern. Then it follows from Lemma 5.1 tha

ihne2g̃iL2(D)
2

5E
D

uhnu2e22g̃dmD

54E
0

2p

duE
0

1

e22g̃1~12r 2!2(B021)r 2n11 dr

<E
0

2p

du4E
0

1

e22g̃1~12r 2!2(B021)r dr<CE
0

1

~12r 2!2(B021)r dr , ~5.1!

holds for someC.0 and the rhs of~5.1! is finite if 2(B021).21, i.e.,B0.1/2. This shows that
Ã(g̃) has infinite dimension.

Next, we show the latter half of the assertion. For eachh̃PÃ(g̃)\$0%, we set

H~r !5E
0

2p

uh̃~reiu!u2 du. ~5.2!

It is easy to see thatH is increasing inr sinceh̃ is holomorphic. Then, by~5.2! and the second line
of ~5.1! replacinghn by h̃, there existC, C8.0 such that

i h̃e2g̃iL2(D)
2 >CE

0

1

H~r !~12r 2!2(B021)r dr>C8E
0

1

~12r 2!2(B021)r dr , ~5.3!

where we used the boundedness ofg̃1 in the first inequality. The assertion~ii ! follows since the rhs
of ~5.3! diverges ifB0<1/2. j

Lemma 5.3: We have

dim ker„A~a!…5H `, if B0.1/2,

0, if B0<1/2,

and

dim ker„A~a!* …5H 0, if B0>1/2,

`, if B0,1/2.

Proof: We first show that dim ker„A(a)…5dim Ã(g̃). Let A(g) denote the space$huh̃
PÃ(g̃)%. Owing to the gauge transform, we may assume thata5(2]yg,]xg) without loss of
generality. By ~4.1!, we see that if hPA(g) then he2gPker„A(a)…. This shows that
dim ker„A(a)…>dim A(g).

We show the converse inequality. LetgPC2(H;R) be any solution which solves the equatio

y2~]x
21]y

2!g5B

on H. Assume thatf Pker„A(a)…. Then f eg satisfies (]x1 i ]y)( f eg)50, so is holomorphic onH,
hencef PA(g). This shows that dim ker„A(a)…<dim A(g). Then the statements forA(a) follow
immediately from Lemma 5.2.

As for A(a)* , taking the form

A~a!* 52 iy„~]x2 i ]y!2 i ~a12 ia2!1 i /y…
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into account, we can show, as in the case ofA(a), that

ker „A~a!* …>$huhe2g8PL2~H!,h is anti-holomorphic onH%,

whereg8 solvesy2(]x
21]y

2)g8512B. Then the result follows from the argument above and
proof of Lemma 5.2 replaced ‘‘B0’’ and ‘‘holomorphic’’ by ‘‘1 2B0’’ and ‘‘anti-holomorphic,’’
respectively. j

Lemma 5.4: Let T be a densely defined, closed operator acting in a Hilbert space. Th
following two conditions are equivalent:

(i) The subspaceran(T) is closed anddim ker(T) is finite.
(ii) The infimum of the setsess(T* T) is positive.
In particular, the condition (ii) implies that T is semi-Fredholm.
Proof: This basic fact follows immediately from the closed graph theorem@see Kato~1966!,

Chap. IV, Theorem 5.2.#. j

If B0,1/2, Lemma 3.2 implies that infsess„A(a)* A(a)….0. Then we deduce from Lemm
5.4 thatA(a) is semi-Fredholm and so isA(a)* . If B0,1/2, replacingA(a) by A(a)* , we have
the same conclusion.

If B051/2, Lemma 3.2 implies that infsess„A(a)* A(a)…50. Then we deduce from Lemm
5.3 that ran„A(a)… is not closed since dim ker„A(a)…50 by Lemma 5.3~ii !. Thus A(a) is not
semi-Fredholm. This completes the proof of Theorem 1.6.

Let t be the operator as in~1.5!. The argument above also shows that ker„P(a)… is contained
in the ‘‘spin-up’’ subspace$ f PL2(H) % L2(H)ut f 5 f % if B0.1/2, and contained in the ‘‘spin
down’’ subspace$ f PL2(H) % L2(H)ut f 52 f % if B0,1/2.

APPENDIX: DIRAC OPERATORS ON CLIFFORD BUNDLES

In this appendix it is briefly explained that the operatorD~a! is a special case of the geometr
Dirac operators on a Clifford bundle. However, there is nothing new. As for a physical poi
view, see Pnueli~1994!, Pnueli~1994! and Pnueli~1995!.

As for the language of Riemannian geometry, we refer to Roe~1988!. Let M be an
n-dimensional Riemannian manifold. We denote the~complexified! tangent and cotangent bundle
over M by TM and T* M , respectively, and denote by Cl(TM) the ~bundle of complexified!
Clifford algebra generated byTM. Let ¹LC denote the Levi-Civita connection onTM. Let S be
a Hermitian vector bundle of rankr over M . We denote the Hermitian metric onS by (•,•), the
fiber of S at mPM by Sm and the space of all smooth sections with compact support byG0(S).
A connection¹ on S is defined as a linear map fromG0(S) to G0(T* M ^ S) which satisfies the
Leibniz rule ¹( f s)5d f ^ s1 f ¹s for all f PC`(M ) and for all sPG0(S). We assume that the
connection¹ is compatible with the metric, i.e., the conditiond(s1 ,s2)5(¹s1 ,s2)1(s1 ,¹s2)
holds for alls1 , s2PG0(S), whered is the exterior derivative.

We sayS is a Clifford bundle over Mif it is a bundle of Clifford modules overM satisfying
the following two conditions:

~i! The Clifford action of each vector inTmM on Sm is skew-adjoint with respect to th
Hermitian metric,

~ii ! The connection¹ is compatible with the Levi-Civita connection¹LC in the sense tha
¹X(Ys)5(¹X

LCY)s1Y¹Xs holds for all vector fieldsX,Y and for allsPG0(S).
For any local orthonormal frame$ej% j 51

n of TM, the Dirac operatorD over S is defined
locally by ( j 51

n ej¹ej
. Note that the definition is independent of a choice of such frame and of

coordinate system ofM .
In our case, setM5H andS5H3C2, the trivial Hermitian vector bundle of rank two overH.

In what follows we fix the standard~global! coordinate (x,y) of H. Let f 1 and f 2 denote the
standard orthonormal frame overH, i.e.,

f 15S 1
0D , f 25S 0

1D .
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If we choosee15y]x , e25y]y , then$ej% j 51
2 is an orthonormal frame overTH with respect to the

Riemannian metric

g5~gjk! j ,k51
2 5S y22 0

0 y22D .

Let $v i j
k % i , j ,k51

2 be the Christoffel symbol with respect to$ej% j 51
2 and$ f j% j 51

2 , i.e., $v i j
k % satisfies

¹ei
f j5 (

k51

2

v i j
k f k

for all i , j 51,2. If we choose

g15S 0 2 i

2 i 0 D , g25S 0 21

1 0 D ,

then we can find that the Clifford relationsg jgk1gkg j522d jk holds for all j ,k51,2, whered jk

denotes the Kronecker delta. Hence$g j% j 51
2 generates the matrix Clifford algebra. We can defi

the representationc of the Clifford algebra Cl(TH) uniquely by associatingc(ej ) to g j for j
51,2. This representationc defines a Clifford module structure overS.

We derive the expression of the Dirac operator in this case. By a long but straightfo
calculation, we can find that the condition~i! in the definition of the Clifford bundle above i
equivalent to the conditionsv i j

k 5v ik
j for all i , j ,k51,2, where•̄ denotes the complex conjuga

and that the condition~ii ! is equivalent to the conditionsv12
1 5v11

2 5v22
1 5v21

2 50, iv11
1 51

1 iv12
2 andv21

1 5v22
2 . Then, by the definition ofD, we see that

D5(
j 51

2

c~ej !¹ej

5(
j 51

2

g j¹ej

5S 0 ~yDx2 iv11
1 !2 i ~yDy2 iv21

1 !11

~yDx2 iv11
1 !1 i ~yDy2 iv21

1 ! 0
D ,

holds onG0(S)>C0
`(H) % C0

`(H). Thus D coincides with the operatorD~a! if we set v11
1 5

2 iya1 and v21
1 52 iya2 , i.e., the admissible Dirac operators are of the form~1.1! in our case.

This is the reason why we callD~a! by the name ‘‘Dirac operator.’’
Next, we clarify the relation between the Pauli operatorP(a) and the Clifford curvature onS.

Let R(X,Y)5@¹X
LC ,¹Y

LC#2¹ [X,Y]
LC be the Riemann curvature operator andK(X,Y)5@¹X ,¹Y#

2¹[X,Y] the curvature operator ofS. We introduce the Clifford contraction ofK and the Riemann
endomorphism as

K5(
j ,k

g jgkK~ej ,ek!,

R S~X,Y!5
1

4 (
j ,k51

2

g jgkg„R~X,Y!ej ,ek…,

respectively, whereg(•,•) is the Riemannian metric onTH. We define the twisting curvature o
S by FS5K2R S and set
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F S5(
j ,k

g jgkF
S~ej ,ek!.

Then we have

R S~e1 ,e2!5S 2 i /2 0

0 i /2D , K~e1 ,e2!5S 2 iB 0

0 2 i ~B21!
D ,

K5S 2B 0

0 B21D ,

whereB5y2(]xa22]ya1). Thus the Lichnerowicz formula reads as

P~a!5D~a!25S A* ~a!A~a! 0

0 A~a!A* ~a!
D 5S H~a! 0

0 H~b!
D 1S 2B 0

0 B21D
5¹* ¹1K5¹* ¹1F S1~22!/4, ~A1!

whereb5a1(21/y,0) be as in Lemma 2.1~iv! and¹* denotes the adjoint operator of¹ from
G0(T* H ^ S) to G0(S). Here the factor22 on the rhs of~6.1! is the scalar curvature ofH.
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Geometrical phases for the G„4,2… Grassmannian
manifold

Regina Karle
Ludwig-Maximilians-Universita¨t, München, Germany

Jiannis Pachosa)

Max-Planck-Institut fu¨r Quantenoptik, D-85748 Garching, Germany
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We generalize the usual Abelian Berry phase generated for example in a system
with two nondegenerate states to the case of a system with two doubly degenerate
energy eigenspaces. The parametric manifold describing the space of states of the
first case is formally given by theG(2,1) Grassmannian manifold, while for the
generalized system it is given by theG(4,2) one. For the latter manifold which
exhibits a much richer structure than its Abelian counterpart we calculate the con-
nection components, the field strength and the associated geometrical phases that
evolve nontrivially both of the degenerate eigenspaces. A simple atomic model is
proposed for their physical implementation. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1572551#

I. INTRODUCTION

Geometrical phases have attracted much interest since the seminal work by Berry.1 The simple
example of the Abelian Berry phase produced, e.g., by the adiabatic transition of a sp
particle that follows a rotating magnetic field, has found many applications in quantum o
molecular physics and so on. Theoretically, it was extended to non-Abelian phases by Wilcz
Zee2 by additionally employing to the setup of the usual Berry phase a degenerate structu
allows geometrical unitary evolutions of higher dimensionality describing transitions of popul
within the degenerate eigenspace. There are different applications of geometrical evolutions
literature3 and in particular related to quantum information. Special attention has been given
evolutions that are parametrized by then-dimensional complex projective manifold,CPn. It
corresponds to the parametric manifoldM of a physical model wheren states out ofn11 are
preserved degenerate at all times.4 For this case the parametric spaceM is given by

CPn'
U~n11!

U~n!3U~1!
,

where the dictated control transformations are between the nondegenerate state and eac
erate one. By performing adiabatically closed paths in this parametric space geometrical
operators are generated, called holonomies,G, acting solely on the degenerate states. Their
evance for performing quantum computation was first demonstrated in Ref. 5. Since the
enjoyed theoretical applications in quantum optical models with laser beams,6 trapped ions,7

optical cavities8 or quantum dots.9

A further generalization of the parametric control space is realized by employing the G
mannian manifolds. They are given by the coset space structure,

a!Present address: Optics Section, Blackett Laboratory, Imperial College London, London SW7 2BZ, United Kin
Electronic mail: jiannis.pachos@imperial.ac.uk
24630022-2488/2003/44(6)/2463/8/$20.00 © 2003 American Institute of Physics
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G~m,n!'
U~m!

U~n!3U~m2n!
.

The complex projective manifolds can be considered as a special case of the Grassmannia
In particular, form52 andn51 we obtain theCP1 space where the Berry phases are defin
while for m5n11 we have the identityG(n11,n)'CPn. There are two degenerate eigenspa
corresponding to theG(m,n) model that aren andm2n dimensional. With the same adiabat
control procedure in the parametric spaceM5G(m,n) nontrivial holonomies are generated
both of them, contrary to all previously studied examples. Here, we shall restrict to theG(4,2)
case, where the connection components, the corresponding field strengths and a set of holo
will be explicitly given.

II. HOLONOMIES AND PHYSICAL MODELS

A. Berry phases

The well known Berry phase can be produced by performing loops in theG(2,1)'CP1

parametric space of external control parameters that determine the unitary evolution of two
system as sketched in Fig. 1~a!. Let us present one possible Berry phase implementation in ato
physics.

Consider the case of an atom with two nondegenerate ground levelsu1& and u2&, with
corresponding eigenvaluesE15v/2 andE252v/2, and an excited oneue&. By performing a
Raman adiabatic transfer10 between levelsu1&, u2& with the help of two detuned laser fields wit
Rabi frequenciesV1 and V2 and common detuningD it is possible to adiabatically eliminat
level ue& and create in the basis$u1&,u2&% the following unitary transformation:

U~u,f!5S cos
u

2
ieif sin

u

2

ie2 if sin
u

2
cos

u

2

D ,

whereu52uVeffut, f5arg$Veff% andVeff5V1V2* /(4D). In the above evolution we have neglect
the Stark shift effect which can be compensated with properly detuned lasers. In accordan
initial free Hamiltonian of theu1& and u2& states, given byH05(v/2) sz , is transformed as

H5
v

2
U~u,f!szU †~u,f!.

Assume that at timet50 we haveu5f50 and the initial state of the system is given b
uC6(0)&5u6&. Let us consider the evolution resulting when a closed pathC is spanned very
slowly in the parametric plane~u, f! in time interval T. Due to cyclicity and adiabaticity no
population has moved from one state to the other at the end of the loop, that is, the energy

FIG. 1. Schematic state-structure and interactions parametrized by~a! the G(2,1) and for~b! the G(4,2) Grassmannian
manifolds. The arrows representU(2) transformations between the connected states implemented e.g., by Raman
tions, while due to the coset structure there are no transformations between the degenerate states of~b!.
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system has not changed. Still the states are allowed to obtain a geometrical phase factor at
of this evolution, which can be calculated from the time evolution operator of the system giv
the Schro¨dinger equation. A dynamical phase does not appear due to the geodesic chara
Raman evolutions. In particular, we obtain thatuC1(T)&5GA

1(C)u1& and uC2(T)&
5GA

2(C)u2&, that is, the states acquire a geometrical phase factor that depend on the sp
loop C, and a connectionA. The components of the latter are defined, and analytically given
this case, by

Au
65^6uU †

]

]u
U u6&50 and Af

65^6uU †
]

]f
U u6&56 i sin2 u.

In terms of the connectionA the phase factorsGA
6(C)[eiw6 are given by

GA
6~C!5exp R

C
A65expE E

S(C)
du df Fuf

6 ~u,f!, ~1!

whereFuf
6 (u,f)5]uAf

62]fAu
656 i sin 2u is the nonzero component of the field strength as

ciated withA andS(C) is the surface on the plane~u, f! bounded by the loopC. The second step
in ~1! is due to Stokes’ theorem. For anyC we obtain the relation w152w2

5**S(C)du df sin 2u between the two Berry phases. Note thatw15V/2 whereV is the solid
angle spanned by the circulation of a unit vector with directions given by the~u, f! angles. The
half factor reflects the spin-1/2 transformation properties of the employed two atomic levels
physical evolution produces a measurable Abelian Berry phase. Their generalization to u
matrices~holonomies! with the employment of degenerate structures is given in the following
the case of the Grassmannian manifoldG(4,2).

B. Holonomies for the Grassmannian manifold G„4,2…

The Grassmannian manifoldG(4,2) corresponds to the parametric space of the Hamilton
H5UH0U † where H05v/2 diag(1,1,21,21) andU are U(4) unitary transformations that ac
nontrivially on the HamiltonianH0 . Clearly, H0 has the following eigenvectors:u11&[u1&
5(1,0,0,0),u12&[u2&5(0,1,0,0),u21&[u3&5(0,0,1,0) andu22&[u4&5(0,0,0,1). The first two
states span the degenerate eigenspaceS1 with eigenvalueE15v/2, while the last two span the
eigenspaceS2 with eigenvalueE252v/2. The schematic representation of this model is giv
in Fig. 1~b!, where the eligible transformations are depicted by arrows. Each arrow correspo
a U(2) transformationU(zi j ) parametrized by a complex numberzi j 5u i j expifij for i 51,2 and
j 53,4. Hence, the real decomposition of the parametric spaceG(4,2) is given by M
[$u i j ,f i j %[$s i j %. Here we adopt the following ordering for the general unitary transformat
U(s)5U(z13)U(z14)U(z23)U(z24).

Now we can define the connection components for each degenerate eigenspace. T
given from the following equation:

~As
6!ab[^auU †~s!

]

]s
U~s!ub&, ~2!

where the basis vectorua& and ub& belong in the same degenerate eigenspace ofH0 . From ~2! we
see that the matrixAs

6 is anti-Hermitian. For$a,b%5$1,2% we obtain the elements of the 232
matrix A1, while for $a,b%5$3,4% we obtain the elements ofA2. The holonomic unitary opera
tor, generated when a closed path,C, is spanned adiabatically in the space of the control par
etersM, is defined by

GA
6~C![Pexp R

C
A6.
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The path ordering symbol does not allow us to calculate the path integral first and th
exponentiate the result as the different components of the connectionA do not commute in
general. For those cases the simple form of Stokes theorem does not apply.11 Still it is possible to
analytically calculate the holonomies which result from the commuting components of the
nectionA in the same way as we did for the Abelian case. Alternatively, the non-Abelian ve
of Stokes’ theorem can be employed as in Refs. 6 and 12.

Before moving to the analytic calculation of the holonomies, let us see how the transfo
tionsU~s! can be physically realized, for example, by an atomic system. According to Fig. 1~b! we
can generalize the model of the two level atom with four levels, pair-wise degenerate and
laser beams connecting these states via additional exciting states by Raman adiabatic trans
in the case of the two-level system presented in the previous subsection, aU(2) unitary transfor-
mation results from each Raman transition. Successive applications of those unitaries are
construct the general unitary transformationU~s! parametrized by theG(4,2) manifold. A detailed
study of the generation of the Berry phases withM5CP2 control manifold with an atomic
system manipulated by Raman transitions is given in Refs. 13–15.

III. CONNECTION AND FIELD STRENGTH COMPONENTS

A. Connection A

In this subsection we shall present the connection components related to the parametri
G(4,2) by employing definition~2!. In particular, they are 232 matrices paired in the following
with respect to theS1 andS2 degenerate eigenspaces they act on. Thus, we obtain

Au13

1 5sinu23cosu14cosu24S 0 2ei (f132f23)

e2 i (f132f23) 2i sin~f132f141f242f23!tanu14sinu24
D ,

Au13

2 5sinu14cosu23cosu24S 0 2ei (f142f13)

e2 i (f142f13) 2i sin~f141f232f132f24!tanu23sinu24
D ,

Au14

1 5sinu24S 0 2ei (f142f24)

e2 i (f142f24) 0 D , Au14

2 5S 0 0

0 0D ,

Au23

1 5S 0 0

0 0D , Au23

2 5sinu24S 0 2ei (f242f23)

e2 i (f242f23) 0 D ,

Au24

1 5S 0 0

0 0D , Au24

2 5S 0 0

0 0D .

The matrix elements ofAf13
are given by

~Af13

1 !1152 i sin2 u13cos2 u14,

~Af13

1 !1252 1
2 iei (f132f23) sin 2u13sinu23cosu14cosu241

1
2 ie2 i (f142f24) sin2 u13sin 2u14sinu24,

~Af13

1 !215~Af13

1 !12* ,

~Af13

1 !225 i sin2 u13sin2 u23cos2 u242 i sin2 u13sin2 u24sin2 u14

1 1
2 i cos~f232f131f142f24!sin 2u13sinu14sinu23sin 2u24,

~Af13

2 !115 i sin2 u13cos2 u23,
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~Af13

2 !1252 1
2 ie2 i (f232f24) sin2 u13sin 2u23sinu24

1 1
2 ie2 i (f132f14) sin 2u13sinu14cosu23cosu24,

~Af13

2 !215~Af13

2 !12* ,

~Af13

2 !225 i sin2 u13sin2 u23sin2 u242 i sin2 u13sin2 u14cos2 u24

2 1
2 i cos~2f141f131f242f23!sin 2u13sinu14sinu23sin 2u24,

Af14

1 5 i sin2 u14S 21 2ei (f142f24)cotanu14sinu24

2e2 i (f142f24)cotanu14sinu24 sin2 u24
D ,

Af14

2 5 i sin2 u14cos2 u24S 0 0

0 1D ,

Af23

1 5 i sin2 u23cos2 u24S 0 0

0 21D ,

Af23

2 5 i sin2 u23S 1 ei (f242f23)cotanu23sinu24

e2 i (f242f23)cotanu23sinu24 2sin2 u24
D ,

Af24

1 5 i sin2 u24S 0 0

0 21D , Af24

2 5 i sin2 u24S 0 0

0 1D .

B. Field strength F

In this subsection we shall calculate the field strengthF associated with the previous conne
tionsA. Its components are given byFmn5]mAn2]nAm1@Am ,An#. Here, we shall restrict on the
field strength components for which the commutator part@Am ,An# is zero for all values of the
parametersu i j andf i j . For them the computation of their holonomies is straightforward, as
shall see in the following subsection. Let us present first the~u, f! field strength components. Th
ones that are obtained from commuting connection components acting on theS1 andS2 eigens-
paces are given by

~Fu24f13

1 !1150,

~Fu24f13

1 !125
i

2
ei (f132f23) sin 2u13sinu23cosu14sinu241

i

2
e2 i (f142f24) sin 2u14sin2 u13cosu24,

~Fu24f13

1 !215~Fu24f13

1 !12* ,

~Fu24f13

1 !2252 i sinu13sin 2u24~sin2 u141sin2 u23!

1 i cos~f232f131f142f24!sin 2u13sinu14sinu23cos 2u24,

~Fu24f13

2 !1150,

~Fu24f13

2 !1252
i

2
ei (f232f24) sin2 u13sin 2u23cosu242

i

2
ei (f132f14) sin 2u13sinu14cosu23sinu24,
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~Fu24f13

2 !215~Fu24f13

2 !12* ,

~Fu24f13

2 !225 i sin2 u13sin 2u24~sin2 u231sin2 u14!2 i cos~f132f141f242f23!

3sin 2u13sinu14sinu23cos 2u24,

Fu24f14

1 5S 0 2 1
2 iei (f142f24) sin 2u14cosu24

2 1
2 ie2 i (f142f24) sin 2u14cosu24 i sin2 u14sin 2u24

D,

Fu24f14

2 52 i sin2 u14sin 2u24S 0 0

0 1D ,

Fu24f23

1 5 i sin2 u23sin 2u24S 0 0

0 1D ,

Fu24f23

2 5S 0 1
2 iei (f242f23) sin 2u23cosu24

1
2 iei (2f241f23) sin 2u23cosu24 2 i sin2 u23sin 2u24

D,

Fu24f24

1 52 i sin 2u24S 0 0

0 1D , Fu24f24

2 5 i sin 2u24S 0 0

0 1D .

From the connection components where only the ones that act onS1 commute we obtain the
following field strength components:

Fu23f13

1

5
i

2
cosu24cosu23sin 2u13

3S 0 2ei (f132f23) cosu14

2e2 i (f132f23) cosu14 2 tanu13sinu2312 cos~f232f131f142f24!sinu14sinu24
D ,

Fu23f23

1 52 i cos2 u24sin 2u23S 0 0

0 1D ,

while Fu23f14

1 5Fu23f24

1 50. From the connection components where only the ones that act oS2

commute, we obtain the following field strength components:

Fu14f13

2 52
i

2
sin 2u13 cosu14 cosu24

3S 0 2e2 i (f132f14) cosu23

2ei (f132f14) cosu23 2 tanu13 sinu14 cosu2412 cos~f132f141f242f23!sinu23 sinu24
D ,

Fu14f14

2 5 i cos2 u24sin 2u14S 0 0

0 1D ,

while Fu14f23

2 5Fu14f24

2 50. Finally, the~u, u! field strength components are given by
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Fu13u24

1 5sinu23cosu14S 0 2ei (f132f23) sinu24

e2 i (f132f23) sinu24 22i sin~f132f141f242f23!tanu14cos 2u24
D ,

Fu13u24

2 5sinu14cosu23S 0 2ei (f142f13) sinu24

e2 i (f142f13) sinu24 22i sin~f141f232f132f24!tanu23cos 2u24
D ,

Fu14u23

1 5Fu14u23

2 50,

Fu14u24

1 52cosu24S 0 2ei (f142f24)

e2 i (f142f24) 0 D , Fu14u13

2 50,

Fu23u24

1 50 Fu23u24

2 52cosu24S 0 2ei (f242f23)

e2 i (f242f23) 0 D ,

Fu13u23

1 52cosu23cosu14cosu24S 0 2ei (f132f23)

e2 i (f132f23) 2i sin~f132f141f242f23!tanu14sinu24
D ,

Fu13u14

2 52cosu14cosu23cosu24S 0 2ei (f142f13)

e2 i (f142f13) 2i sin~f141f232f132f24!tanu23sinu24
D .

C. Holonomies G

In general, the explicit calculation of the Holonomies of matrix connectionsA is nonstraight-
forward as they involve the path ordering procedure when exponentiating their loop integra
the other hand, it is possible to restrict our cyclic evolutions to specific planes (s,s8) that
correspond to commuting componentsAs and As8 . For those loops we can employ Stok
theorem for the Abelian theories and obtain

GA
6~C![Pexp R

C
A65exp R

C
A65expE E

S(C)
ds ds8 Fss8

6
~s,s8! , ~3!

where the rest of the variables are considered constant. The path ordering symbol has bee
out at the second step as the connection components on the (s,s8) commute with each other
Hence, Stokes theorem can be applied straightforwardly as presented in the previous sec
the Abelian Berry phase. An analytic expression for the holonomies can be obtained by exp
tiating the 232 matrices resulting from the surface integral of the field strength compon
presented in the previous subsection.

IV. DISCUSSION

A theoretical model has been presented for the construction of non-Abelian holonomi
theG(4,2) Grassmannian manifold. This is the generalization of the usual Abelian Berry pha
the case of a quantum system consisting of a doubly degenerate energy eigenspace. The e
of both degenerate spaces has been presented that are produced from the same cyclic
evolution. The main difference with the Abelian case is that it is possible to have manipulatio
state population in each degenerate space rather than just the generation of overall phase
This can be achieved, for example, by spanning loopsC on the (u24,f13) plane where the
population can be interchanged in a well defined way between the statesu1& and u2& as well as
betweenu3& andu4&. In contrast, loops on the (u24,f24) plane contribute only Berry-like phases o
the conjugate statesu2& andu4& ~see Fig. 1!. It is worth noticing that the holonomic evolution is no
producing any correlations between the two different eigenspacesS1 andS2 due to the cyclicity
of the adiabatic procedure. Even though it is possible to have each degenerate eigenspace
with a different holonomy there is a correspondence between the evolutions as can be eas
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in the previous section facilitating eventually their detection in a physical system and the v
cation of the above results. Indeed, the componentsF1 andF2 of the field strength have a simila
functional dependence on the variables (u i j ,f i j ) and their surface integral in~3! bears a common
dependence in the areaS(C). These holonomic characteristics can be verified in the labora
with present technology by employing an atomic cloud and manipulating the atomic state
external laser beams.
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Contextual viewpoint to quantum stochastics
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We study the role of context, complex of physical conditions, in quantum as well as
classical experiments. It is shown that by taking into account contextual depen-
dence of experimental probabilities we can derive the quantum rule for the addition
of probabilities of alternatives. Thus we obtain quantum interference without ap-
plying the wave or Hilbert space approach. The Hilbert space representation of
contextual probabilities is obtained as a consequence of the elementary geometric
fact: cos-theorem. By using another fact from elementary algebra we obtain
complex-amplitude representation of probabilities. Finally, we found contextual
origin of noncommutativity of incompatible observables. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1570952#

I. INTRODUCTION

It is well known that the classical rule for the addition of probabilistic alternatives:

P5P11P2 ~1!

does not work in experiments with elementary particles. Instead of this rule, we have t
quantum rule:

P5P11P212AP1P2 cosu. ~2!

The classical rule for the addition of probabilistic alternatives is perturbed by the so-c
interference term. The difference between ‘‘classical’’ and ‘‘quantum’’ rules was~and is! the
source of permanent discussions as well as various misunderstandings and mystifications, s
Refs. 1–23. We just note that the appearance of the interference term was the source
wave-viewpoint to the theory of elementary particles. At least the notion ofsuperpositionof
quantum states was proposed as an attempt to explain the appearance of a new prob
calculus in the two slit experiment, see, for example, Dirac’s book1 on historical analysis of the
origin of quantum formalism. We also mention that Feynman interpreted~2! as evidence of the
violation of the additivity postulate for ‘‘quantum probabilities,’’ see Ref. 5:

‘‘From about the beginning of the twentieth century experimental physics amassed an
impressive array of strange phenomena which demonstrated the inadequacy of classic
physics. . . . The new theory asserts that there are experiments for which the exac
outcome is fundamentally unpredictable and that in these cases one has to be satisfi
with computing probabilities of various outcomes. But far more fundamental was the
discovery that in nature the laws of combining probabilities werenot those of classical
probability theory of Laplace. The quantum mechanical laws of the physical world
approach very closely the laws of Laplace as the size of the objects involved in the
experiments increases. Therefore the laws of probabilities which are conventionally
applied are quite satisfactory in analyzing the behavior of the roulette wheel but not the
behavior of a single electron or a photon of light.’’

a!Electronic mail: andrei.khrennikov@msi.vxu.se
24710022-2488/2003/44(6)/2471/8/$20.00 © 2003 American Institute of Physics
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We underline that the detailed analysis of the origin of ‘‘quantum probabilities’’ was
formed by Accardi in Ref. 10. In those papers there was investigated the role ofBayes’ formulafor
conditional probabilities. This formula was automatically incorporated in conventional proba
theory ~Kolmogorov, 1933, see Ref. 24!. It was pointed out that the use of this formula f
statistical data obtained in quantum experiments is not really justified. It was proposed to m
Kolmogorov’s axiomatics and consider non-Kolmogorovian probabilistic models without Ba
formula. There was also introduced the notion ofstatistical invariant. By using statistical invari-
ants there was investigated the problem of the existence of a Kolmogorov model describing
statistical data.

Recently the author demonstrated, see Refs. 22 and 23, that taking into account depend
probabilities on complexes of physical conditions it is possible to obtain quantum rule fo
addition of probabilistic alternatives~2! without having to apply to the Hilbert space formalism
Derivation of~2! in Refs. 22 and 23 was based on the use of the frequency theory of proba
~von Mises, 1919, see, e.g., Ref. 24!. That frequency derivation had two main disadvantages:~a!
the frequency approach to probability was strongly criticized in mathematical literature;~b! fre-
quency calculations obscured physical roots of the appearance of the intereference term in~2!. In
the present paper we are not rigidly coupled to some special approach to probability~frequency,
measure-theoretical, axiomatic!. Primary attention is paid to dependence of probability on
complex of experimental physical conditions—context, see Ref. 25. We demonstrated that
taking into account context-dependence of probabilities we can derive quantum rule for the
tion of probabilistic alternatives~2!. In this derivation we do not use linear algebra or comp
numbers.

We also mention other fundamental investigations on the role of conditional probabiliti
quantum theory: Gudder15—theory of probability manifolds and Ballentine19—axiomatic ap-
proach to conditional probability and quantum mechanics.

II. THE ROLE OF A COMPLEX OF PHYSICAL CONDITIONS

In fact, probabilities in~2! in quantum experiments are determined by at least three diffe
contexts,S,S1 ,S2 . We illustrate this situation by the following fundamental example.

Example (two slit experiment):In the two slit experiment rule~2! is induced by combining of
statistical data obtained in three different experiments: both slits are open; only thej th slit is open,
j 51,2. The main distinguishing feature of statistical data obtained in these three experimen
follows. By combining by~1! data obtained in experiments in which only one of the slits is o
we do not get the probability distribution for data obtained in the experiment in which both
are open. On the other hand, we never observe a particle that passes through bo
simultaneously—it would be observed passing the first or second slit. There is no direct ob
tion of particle splitting. As each particle passes only one of the slits, we have the standard c
alternatives. Thus we should use the conventional rule~1! for the addition of probabilities of
alternatives. This disagreement between experimental statistical data and the rule of conve
probability theory looks like a kind of paradox. The traditional solution of this paradox is the
of the wave model for elementary particles.

We now perform detailed contextual analysis for the two slit experiment. We conside
following complexes of physical conditions, contexts:

S5both slits are open,Sj5only j th slit is open,j 51,2.
In fact, probabilities in~2! are related to these three contexts~see Accardi10 or Ballentine19!.

ThusP5PS(A) andPj5PSj /SPSj
(A), j 51,2.

Here we use various context-indexes. ThePS(A),PSj
(A) denote probabilities of an eventA

with respect to various contexts. The coefficientsPSj /S , j 51,2, have another meaning. In gene
these are not probabilities ofSj with respect to the contextS ~besides some very special, ‘‘clas
sical,’’ situations!, because the contextSj in general is not an event for the contextS. ThePSj /S ,
j 51,2, are kinds ofbalance probabilities. These are proportion coefficients for filtrations induc
by contextsS andSj .
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We explain how we can find balance probabilities in the frequency framework. LetO be a
source of particles. Suppose thatO producedM particles. They interacted with the contextS and
on the registration screen there were foundN dots. Suppose thatO again producedM particles.
They interacted with the contextS1 and on the registration screen there were foundN1 dots. In the
same way we find the numberN2 . We set

PSj /S5
Nj

N
. ~3!

Of course,~3! is just frequencies and to define probabilities we should consider the limit w
M→`, see Refs. 22 and 23 for detail.

However, we need not use only the frequency approach to define balance probabilit
many cases these probabilities could be defineda priori by taking into account the geometry of th
experiment, namely the location of the source of particles with respect to the screen with two

We remark~and it is important for our further considerations! that we have the following
balance condition:

PS1 /S1PS2 /S51. ~4!

The balance condition has the following meaning: the total number of particles that arrives
registration screen when both slits are open equals~on average! the sum of the correspondin
numbers when only one of the slits is open. So by closing, for example, the first slit we d
change the number of particles that pass the second slit~on average!. In fact, ~4! gives the right
description of the alternative situation in the two slit experiment. It is not related to altern
passing of slits by a particle in the experiment when both slits are open. This equation des
alternative sharing of particles between two preparation procedures:j th slit is open,j 51,2.

However, the balance probabilitiesPSj /S would not play so important a role in our conside
ations. The crucial role will be played by contextual probabilitiesPS(A),PSj

(A).
In many considerations~including works by the fathers of quantum mechanics, see e

Dirac,1 see also Feynman5! people setP5P(A) and Pj5PSj /SPSj
(A). Finally, they get the

contradiction between conventional probabilistic rule~1! and statistical data obtained in the inte
ference experiments and described by quantum rule~2!, see Refs. 10 and 13 for the detaile
analysis of this ‘‘contradiction.’’

In Sec. III we derive quantum rule~2! in the contextual probabilistic framework.

III. INTERFERENCE TERM AS THE MEASURE OF STATISTICAL DEVIATIONS DUE TO
THE CONTEXT TRANSITION

The following simple considerations give us the derivation of quantum probabilistic tran
mation ~2! in the classical probabilistic framework.

Let S andSj , j 51,2, be three different complexes of conditions. We consider the tran
mation of probabilities induced by transitions from one complex of conditions to others:

S→S1 , S→S2 . ~5!

We start by introducing balance probabilities,PSj /S . These are proportional coefficients fo
numbers of physical systems obtained after preparations under the complexes of physical
tions S andSj . If ~starting with the same number of particles! we getN andNj systems afterS
andSj preparations, respectively, thenPSj /S are defined by~3!. We assume that balance probabi
ties satisfy the balance equation~4!. This is a quite natural condition: splitting~5! of the context
S induces just sharing of physical systems produced by a source. We have already discus
balance in the two slit experiment. We have the same situation in neutron interferometry f
balance between the number of particles coming to detectors when both paths are open an
just one of the paths is open.
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We introduce themeasure of statistical perturbationsd induced by context transitions:

d~A;S;Sj !5PS1 /S @PS~A!2PS1
~A!#1PS2 /S @PS~A!2PS2

~A!#.

This quantity describes the deformation of probability distributionPS due to context transi-
tions.

By using balance equation~4! we get

PS~A!5PS~A!PS1 /S1PS~A!PS2 /S .

Thus we get

PS~A!5PS1 /SPS1
~A!1PS2 /SPS2

~A!1d~A;S,Sj !. ~6!

Transformation~6! is the most general form of probabilistic transformations due to con
transitions.

There is the correspondence principlebetween context unstable and~‘‘classical’’! context
stable transformations: IfSj→S, j 51,2, i.e.,d(A;S,Sj )→0, then contextual probabilistic trans
formation ~6! coincides~in the limit! with the conventional formula of total probability, see Re
25.

The perturbation termd(A;S,Sj ) depends on absolute magnitudes of probabilities. It wo
be natural to introduce normalized coefficient of the context transition

l~A;S,Sj !5
d~A;S,Sj !

2APS1 /SPS1
~A!PS2 /SPS2

~A!
,

which gives the relative measure of statistical deviations due to the transition from one comp
conditions,S, to others,Sj . Transformation~6! can be written in the following form:

PS~A!5 (
j 51,2

PSj /SPSj
~A!12APS1 /SPS1

~A!PS2 /SPS2
~A!l~A;S,Sj !. ~7!

In fact, there are two possibilities:
~1! ul(A;S,Sj )u<1;
~2! ul(A;S,Sj )u>1.
In both cases it is convenient to introduce a new context transition parameteru5u(A;S,Sj )

and represent the context transition coefficient in the form:

l~A;S,Sj !5cosu~A;S,Sj !,uP@0,p#;

and

l~A;S,Sj !56coshu~A;S,Sj !,uP@0,̀ !,

respectively.
We have two types of probabilistic transformations induced by the transition from one

plex of conditions to another:

PS~A!5 (
j 51,2

PSj /SPSj
~A!12APS1 /SPS1

~A!PS2 /SPS2
~A! cosu~A;S,Sj !, ~8!

PS~A!5 (
j 51,2

PSj /SPSj
~A!62APS1 /SPS1

~A!PS2 /SPS2
~A! coshu~A;S,Sj !. ~9!
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We derived quantum probabilistic rule~2! in the classical probabilistic framework~in particu-
lar, without any reference to superposition of states! by taking into account the context dependen
of probabilities.

Remark:Reference 10 was the first publication in which violation of the classical rule for
addition of probabilistic alternatives in the two slit experiment was coupled with the violatio
Bayes’ formula for conditional probabilities. The present paper undertakes the next imp
step—deriving the quantum rule for the addition of probabilistic alternatives in the two sli
periment by using the contextual approach to probability. One of the main differences betwe
contextual probabilistic approach used here and Accardi’s conditional probability approach
here the measure of statistical perturbationsd ~or corresponding coefficientl! is used instead of
statistical invariants. Finally, we remark that, in fact, we studied the case that is trivial from
viewpoint of the theory of statistical invariants—two dichotomic variables. There always e
~under very natural restrictions of symmetry of matrixes of transition probabilities, see Re!
Kolmogorovian model reproducing transition probabilities. However, in our approach even
models could demonstrate ‘‘interference’’ of probabilities, i.e., violation of the classical formu
total probability, cf. Refs. 24, 26, 27.

Relatively large statistical deviations are described by transformation~9!. Such transforma-
tions do not appear in the conventional formalism of quantum mechanics. In principle, they
be described by so-calledhyperbolic quantum mechanics, Refs. 28, 29.

Conclusion:For each fixed context~experimental arrangement!, we haveclassical statistics.
Context transitioninduces interference perturbation of the conventional rule for the additio
probabilistic alternatives.

IV. LINEAR ALGEBRA FOR PROBABILITIES, COMPLEX AMPLITUDES

One of the main distinguishing features of quantum theory is the Hilbert space calculu
probabilistic amplitudes. As we have already discussed, this calculus is typically associate
wavelike ~superposition! features of quantum particles. We shall show that, in fact, the Hil
space representation of probabilities was merely a mathematical discovery. Of course, this
ery simplifies essential calculations. However, this is pure mathematics; physics is related
to the derivation of quantum interference rule~2!.

The crucial point was the derivation~at the beginning purely experimental! of transformation
~2! connecting probabilities with respect to three different contexts. In fact, linear algebra c
easily derived from this transformation. Everybody familiar with the elementary geometry wil
that ~2! is just the well known cos-theorem. This is the rule to find the third side in a triangle i
know the lengths of two other sides and the angleu between them:

c25a21b222ab cosu

or if we want to have ‘‘1 ’’ before cos we use the so-calledparallelogram law:

c25a21b212ab cosu. ~10!

Herec is the diagonal of the parallelogram with sidesa andb and the angleu between these sides
Of course, the parallelogram law is just the law of linear~two-dimensional Hilbert space! algebra:
for finding the lengthc of the sumc of vectorsa andb having lengthsa andb and the angleu
between them.

We also can introduce complex waves by using the following elementary formula:

a21b212ab cosu5ua1beiuu2. ~11!

Thus the context transitionsS→Sj can be described by the wave:

w5APS1 /SPS1
~A!1APS2 /SPS2

~A!eiu(A;S,Sj ).
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V. ‘‘CLASSICAL’’ PROBABILISTIC DERIVATION OF THE SUPERPOSITION PRINCIPLE
FOR WAVE FUNCTIONS IN THE TWO SLIT EXPERIMENT

We shall study in more detail the possibility of contextual~purely classical! derivation of the
superposition principle for complex probability amplitudes, ‘‘waves,’’ in the two slit experim
We consider a one-dimensional model. It could be obtained by considering the distributi
particles on one fixed straight line, very thin strip. It is supposed that the source of partic
symmetric with respect to slits and the straight line~on the registration screen! passes through the
center of the screen. This geometry implies thatPSj /S51/2, j 51,2. The symbolAx ,xPR, denotes
the event of the registration of a particle at the pointx of the straight line. We set:

p~x!5PS~Ax!, pj~x!5PSj
~Ax!, j 51,2,

where contextsS andSj were defined in Example 1. By using~8! we get

p~x!5 1
2@p1~x!1p2~x!12Ap1~x!p2~x! cosu~x!#.

By using ~11! we represent this probability as the square of a complex amplitude,p(x)
5uf(x)u2,

where

f~x!5
1

&
~eiu1(x)Ap1~x!1eiu2(x)Ap2~x!! ~12!

and phasesu j (x) are chosen in such a way that the phase shiftu1(x)2u2(x)5u(x). We also
introduce complex amplitudes for probabilitiespj (x): f j (x)5 (1/&) eiu j (x)Apj (x). Here pj (x)
5uf j (x)u2. The complex amplitudes are said to bewave functions: f(x) is the wave function on
~the straight line of! the registration screen when both slits are open;f j (x) is the wave function
on ~the straight line of! the registration screen whenj th slit is open.

Let us setj(x)5 (u(x)/h) , whereh.0 is some scaling factor. We have

f~x!5
1

&
S expS i j1(x)

h DAp1~x!1expS i j2(x)

h DAp2~x! D , f j~x!5
1

&
expS i j j (x)

h DApj~x!.

By choosingh as the Planck constant we get a quantum-like representation of probabilitie
recall that we did not use any kind of wave argument. Superposition rule~12! was obtained in a
purely classical probabilistic~but contextual!! framework.

Suppose now thatj depends linearly onx:j j (x)5 pj x/h ,j(x)5 px/h ,p5p12p2 . Under
such an assumption we shall get interference of two ‘‘free-waves’’ corresponding to mome
p1 andp2 . Of course, this linearity could not be extracted from our general probabilistic con
erations. This is a consequence of the concrete geometry of the experiment.29

VI. THE COEFFICIENT OF CONTEXT TRANSITION AS THE MEASURE OF
INCOMPATIBILITY OF PHYSICAL OBSERVABLES

We now consider the relation between the coefficient of context transition~the measure of
statistical deviations due to the change of complex of physical conditions! and incompatibility of
physical observables in quantum mechanics~noncommutativity of corresponding operators!. As
everywhere in this paper, we consider dichotomic observables. Each eventA generates the di-
chotomic variablea: a5a1 if A occurs anda5a2 if A does not occur. Valuesa1 anda2 do not
play any role in our considerations; in principle, we can consider the casea150 anda251.

Definition: A physical observable a is incompatible with a pairS1 ,S2 of contexts if there
exists a contextS such thatd(a5ai ;S;Sj )Þ0.
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In such a case a transition from the complex of physical conditionsS to complexesSj induces
non-negligible statistical deviations fora-measurements. It is not the same to measurea under the
complex of conditionsS or Sj .

In fact, we need to consider two complexesS1 andS2 , because we would like to conside
another dichotomic variableb connected to these contexts.

We shall demonstrate that the incompatibility of physical observables in quantum mech
is just a particular case of contextual incompatibility.

Let H be the two-dimensional Hilbert space. Rays of this space represent some cl
complexes of physical conditions. Let the dichotomic variablea be represented by a self-adjoin
operator~symmetric matrix! â. We remark that we can associate with any physical observaba
two complexes of conditionsS 1

a ,S 2
a , namely contexts corresponding to eigenvectorsf1

a ,f2
a of â.

The S j
a describes the filter with respect to the valuea5aj .

Let us consider an other dichotomic physical observableb5b1 ,b2 . It is represented by a
self-adjoint operatorb̂ with eigenvectorsf1

b ,f2
b . These eigenvectors represent contextsS 1

b ,S 2
b

~filtrations corresponding tob5b1 andb5b2 , respectively!.
Theorem: Quantum physical observables a and b are incompatible (i.e., corresponding

erators do not commute) iff the observable a is incompatible with the contextsS j
b or vice versa:

d~a5ai ;S;S j
b!Þ0 or d~b5bi ;S;Sj

a!Þ0.

Proof: Let S be an arbitrary quantum context. Thus it can be represented by a norma
vectorfPH. We have:

d~a5ai ;S;Sj
b!5PS1 /S @PS~a5ai !2PS1

~a5ai !#1PS2 /S @PS~a5ai !2PS2
~a5ai !#

5u~f,f1
b!u2~ u~f,f i

a!u22u~f i
a ,f1

b!u2!1u~f,f2
b!u2~ u~f,f i

a!u22u~f i
a ,f2

b!u2!.

We have (f,f j
b)5kje

i j j ,(f j
b ,f i

a)5kji e
i j j i , wherekj ,ki j >0. We get

d~a5ai ;S;S j
b!52k1k2k1ik2i cosu i ,

whereu i5j22j11j2i2j1i .
~a! Let @ â,b̂#50. Thenk125k2150. Henced(a5ai ;S;S j

b)50.
~b! Let @ â,b̂#Þ50. Thenk12,k21Þ0. Let k1 ,k2.0 be arbitrary constants such thatk1

21k2
2

51. We choose a contextS that is described by the state:

f5Ak1ei j21f1
b1Ak2ei j11f2

b .

Hereu50 and, hence,

d~a5ai ;S;S j
b!52k1k2ki1ki2.0.

Remark:Mathematically a fixed context can be described by, e.g., a Kolmogorov proba
space. Acontextual probability modelis mathematically represented by a family of Kolmogor
probability spaces and transformations connecting probabilities belonging to different Kol
orov spaces. We remark that families of Kolmogorov probability spaces are usually conside
mathematical statistics. However, in statistics people are interested in a totally different pro
They are interested in finding a parameter describing a probability space on the basis of re
measurement of some random variables. Statisticians have never tried to investigate tran
tions of probabilities corresponding to different values of the statistical parameter. In parti
interference of probabilities was not discovered in ordinary mathematical statistics. Anothe
sibility is to describe contexts by using von Mises collectives. The corresponding conte
model is given by a family of collectives and transformations connecting probabilities corres
ing to different collectives.
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Conclusion: We demonstrated that a few elements of quantum formalismism which
commonly considered as essentially ‘‘quantum’’ can, in fact, be reproduced by using the cont
approach22,23 to theory of statistical measurement. In particular, we obtain intereference of p
abilities, complex probability amplitudes, Born’s rule, Hilbert space structure, and noncomm
tive observables without having to refer to special quantum behavior of physical systems (se
Ref. 28), but only to context dependence of probabilities.
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We consider the problem of existence of the diagonal representation for operators
in the space of a family of generalized coherent states associated with a unitary
irreducible representation of a~compact! Lie group. We show that necessary and
sufficient conditions for the possibility of such a representation can be obtained by
combining Clebsch–Gordan theory and the reciprocity theorem associated with
induced unitary group representations. Applications to several examples involving
SU~2!, SU~3!, and the Heisenberg–Weyl group are presented, showing that there
are simple examples of generalized coherent states which do not meet these con-
ditions. Our results are relevant for phase–space description of quantum mechanics
and quantum state reconstruction problems. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1559416#

I. INTRODUCTION

There is a long history of attempts to express the basic structure of quantum mechanic
kinematics and dynamics, in thec-number phase space language of classical mechanics. The
major step in this direction was taken by Wigner1 very early in the development of quantu
mechanics, during a study of quantum corrections to classical statistical mechanics. This led
definition of a real phase space distribution2—now called the Wigner distribution—faithfully
representing any pure or mixed state of a quantum system whose kinematics is gover
Heisenberg commutation relations for any number of Cartesian degrees of freedom. It wa
realized that this construction is dual to a rule proposed earlier by Weyl3 to map classical dynami
cal variables onto quantum mechanical operators in an unambiguous way, in the sense
expectation value of any quantum operator in any quantum state can be rewritten in a com
c-number form on the corresponding classical phase space.

The general possibilities of expressing quantum mechanical operators in classicalc-number
forms were later examined by Dirac4 while developing the analogies between classical and qu
tum mechanics. The specific case of the Weyl–Wigner correspondence was carried fur
important work by Groenewold and by Moyal.5
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Inspired by the needs of quantum optics, the general problem of setting up different cla
variable–quantum operator correspondences has received enormous attention.6 It has thus been
appreciated that the Weyl–Wigner choice is just one of many possibilities, two other impo
ones being~in the language of photon annihilation and creation operators! the normal ordering7

and the antinormal ordering8 choices.
While the harmonic oscillator coherent states, with their remarkable properties, have pla

crucial role in all these developments, the idea of coherent states itself has been extended
slightly different ways, by Klauder9 and by Perelomov,10 to the notion ofgeneralized coheren
states. A very interesting case is the family of coherent states in the context of an unitary irre
ible representation~UIR! of any Lie groupG on a Hilbert spaceH. In particular, the generalized
coherent states associated with the group SU~2!—the atomic coherent states11—have received
enormous attention. A satisfactory generalization of the concept of Wigner distribution ha
been achieved for the irreducible representations of SU~2!.12

For the purpose of the present worktwo different levels of completenessexhibited by the
harmonic oscillator coherent states should be highlighted:

~i! Completeness at the state vector level:This refers to the fact that every state vector can
written as a linear combination of the coherent states. In terms of the~rank-one! operators corre-
sponding to projections onto the coherent states, this property is expressed by saying t
identity operator can be expressed as a linear combination of these one-dimensional pro
operators. This aspect is sometimes known asresolution of unity.

~ii ! Completeness at the operator level:This refers to the remarkable fact that every opera
can be realized as a linear combination of projections onto coherent states. This property i
known as thediagonal representation theorem.7 ~The accompanying coefficient function of th
linear expansion can in general be a very singular distribution.13! This diagonal representation o
operators is dual to the normal ordering rule in the same sense as the Wigner and Weyl ru
dual to one another. We may note in passing that the diagonal representation has been ce
many developments in quantum optics and laser physics. It also plays an important role in d
what is known as the* -product for operators.14

In view of the interest in generalized coherent states, it is important to know if these
levels of completeness apply to a given system of generalized coherent states or not. The~over!
completeness property of the generalized coherent states at the state vector level usually~but not
always! follows as a direct consequence of Schur’s lemma: completeness at this level depe
whether the group representation under consideration possesses the square integrability
or not.

Completeness at the operator level—namely the question of whether the diagonal repr
tion theorem applies to a given system of generalized coherent states—turns out to be consi
more subtle. In our opinion this question has hitherto not received the direct attention t
deserves~we should, however, invite the reader’s attention to some very insightful remark
Klauder and Skagerstam on this question15!.

In an important recent work, Brif and Mann16 have carried out extensive harmonic analysis
the space of rank-one projections onto a system of generalized coherent states. However,
not study the question of which systems of generalized coherent states admit a diagonal re
tation for operators and which do not. Indeed, they give no indication that there can be
simple systems of generalized coherent states for which the diagonal representation theore
not apply—in the sense that there exist operators which cannot be written as linear combin
of rank-one projection operators over these coherent states.

The main aim of the present paper is to examine in detail the question of completeness
operator level and to develop necessary and sufficient conditions which will ensure that a
erators on the~relevant! Hilbert space can indeed be expanded in terms of projections onto
generalized coherent states. The non-triviality of this question renders some amount of care
delicate analysis indispensable, but we would like to assure the reader that the effort is so r
ing as to give a complete answer to an issue of considerable physical importance.

For definiteness we deal with the situation where the groupG is compact, so that its chose
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UIR acts on a Hilbert spaceH of finite dimension.~However in some of the examples we formal
extend our methods to certain noncompactG.) The important tools in our analysis are the we
known reciprocity theorem when one examines an induced representation ofG17 arising from
some UIR of a subgroupH,G and asks for the occurrence and multiplicity of various UIR’s
G itself; and the structure of the Clebsch–Gordan series and coefficients for direct produ
UIR’s of G, in a form adapted toH. We will show that while the necessary and sufficie
conditions mentioned above are met in certain cases of SU~2! and the Heisenberg–Weyl~HW!
group, there are quite simple examples in the cases of SU~2! and SU~3! where they are not
satisfied. This will attest to the necessity and significance of the conditions that we develo

The contents of this paper are organized as follows. In Sec. II we set up the basic no
and definitions of generalized coherent states within a UIR of a general compact Lie groupG, the
two associated stability groups and coset spaces, and carry out the harmonic analysis at th
level. The two distinct kinds of relationships between the stability groups are also car
defined. Section III discusses the detailed properties of the projection operators onto the g
ized coherent states, and performs the corresponding harmonic analysis. Using these an
results pertaining to the Clebsch–Gordan problem, we are able to obtain explicit necessa
sufficient conditions for existence of the diagonal representation in any given situation. In S
we consider applications to both SU~2! and SU~3!, taking three examples in each case. The aim
to show how to check our conditions in practical cases, and to exhibit some simple situ
where the diagonal representation exists, and other equally simple ones where it does not.
V analyzes the Heisenberg–Weyl group in a heuristic way, to display how our conditions
and lead to expected results. Section VI contains concluding remarks. Appendixes A and B
material on general Clebsch–Gordan series and coefficients, unit tensor operators, induce
sentation theory and the reciprocity theorem, for the convenience of the reader and to
notations.

II. HARMONIC ANALYSIS ON COSET SPACES—THE VECTOR LEVEL

Let G be ann-dimensional compact Lie group. As described in Appendix A, we denote
various UIR’s~upto equivalence! of G by a symbolJ; within a UIR we denote a complete set o
orthonormal basis labels~magnetic quantum numbers! by M . Both J andM stand in general for
sets of several independent indices. Certain specific choices of the latter will be indicated

Let the Hilbert spaceH (J0) carry theNJ0
-dimensional UIRD (J0)(•) of G. Choose and keep

fixed some fiducial unit vectorc0 P H (J0). The orbit of c0 is the collection of vectors—
generalized coherent states—c(g) P H (J0) obtained by acting onc0 with all g P G:

q~c0!5$c~g!5D (J0)~g!c0 u g P G%,H (J0) . ~2.1!

Similarly, if r05c0c0
† is the pure state density matrix corresponding toc0 , its orbit in the space

of all density matrices is

q~r0!5$r~g!5D (J0)~g!r0 D (J0)~g!†5c~g!c~g!† u g P G% . ~2.2!

Two important subgroupsH0 ,H in G are now defined

H05$g P G u D (J0)~g!c05c0%,G,
~2.3!

H5$g P G u D (J0)~g!c05~phase! c0%,G .

The dependences ofH0 ,H on c0 are left implicit. The subgroupH0 is the stability group ofc0 in
the strict sense, whileH is the stability group ofc0 upto phase factors. On the other hand,H is the
stability group ofr0 in the strict sense:

H5$g P G u r~g!5r0%,G . ~2.4!
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By standard arguments one has the identifications of the two orbits with corresponding
spaces ofG:

q~c0!.G/H05S0,
~2.5!

q~r0!.G/H5S.

For definiteness we always take coset spaces to be made up of right cosetsgH0 ,gH in the two
cases.

It is evident thatH0 is an invariant subgroup ofH, and we can distinguish two qualitativel
different situations depending on the nature of the quotientH/H0 :

case A: H/H05trivial or discrete ,
~2.6!

case B: H/H05U~1! .

These two possibilities can be pictured as follows: There is an obvious and natural projectio
p:q(c0)→q(r0) or p:S0→S. ~SinceH0 is a subgroup ofH, everyH0-coset lies within some
H-coset.! With respect to this projection map, in case A for eachr P q(r0), there is just one or
a discrete set of vectorsc P p21(r),q(c0); while in case Bp21(r) consists of all vectors
$eiac% for some fixedc and 0<a,2p. Stated in yet another manner: in case A with the help
action by elements inG the phase ofc0 @and so of anyc(g)] can be altered in only a discrete s
of ways or not at all; and in case B these phases can be altered in a continuous manner,
eachp21(r) contains a ‘‘U~1!-worth of vectors.’’

We now wish to exploit the results of harmonic analysis arising from the natural UR’sG
acting on square integrable functions on the two coset spacesS0 ,S in order to extract theG
representation contents ofc(g),r(g), respectively. The key point is that while bothc(g) and
r(g) have already known dependences ong, since they are obtained fromc0 and r0 , respec-
tively, by actions via the given UIRD (J0) of G @and in particularc(g) for differentg may not be
orthogonal,r(g) for different g may not be trace orthogonal#, they are linear quantities. Namel
each of them belongs to a corresponding linear space. Therefore natural complete orthonorm
of functions onS0 ,S can be profitably used to project out the irreducible Fourier componen
c(g),r(g), respectively, with well defined irreducible behaviors underG, and then to resynthe
size them. In the remainder of this section we look at the case ofc(g), i.e., we consider the
situation at the vector level. In the following section we take up the case ofr(g) at the operator
level.

We have seen that the two distinct possibilities for the quotientH/H0 are given by Eq.~2.6!.
For simplicity in case A we limit ourselves toH5H0 , i.e., we will hereafter consider just tw
possibilities:

case „a…: H5H0 ;
~2.7!

case „b…: H/H05U~1! .

In case~b! we haveH.H03U(1) apart possibly for some global identification rules. The int
mediate case ofH/H0 discrete nontrivial can be handled by straightforward modifications of
analysis to follow. In case~a! the coset spacesS0 ,S coincide; and the harmonic analysis to b
now developed for functions onS to studyc(g) can later be used to studyr(g). In case~b!, since
H is larger thanH0 by exactly one U~1! angle, the coset spaceS0 is also larger thanS by ~locally!
one angle variable in the range~0,2p!. Whereas forc(g) we can use the results of harmon
analysis arising from appropriate UR’s ofG on S0 or onS, for r(g) we have to use the results o
S alone. At this point, focusing onc(g) we divide the discussion into cases~a! and ~b!.
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A. Harmonic analysis in case „a…: HÄH0

With respect toH,G the significant information available about the properties of the ge
alized coherent state vectorsc(g) P q(c0) can be summarized as follows:

h P H: D (J0)~h!c05c0 ,

c~g!5D (J0)~g!c0 ,
~2.8!

c~gh!5c~g! ,

D (J0)~g8!c~g!5c~g8g! .

Let us denote a general point onS, a generalH-coset, byq5gH. The identity coseteH5H is the
distinguished originq0 P S. A generalg8 P G mapsq to q85g8q. Also denote by,(q) P G a
~local! choice of coset representativesS→G:

q P S→,~q! P G: ,~q!q05q . ~2.9!

~In general, considering thatG is a principal fiber bundle overS as base andH as fiber and
structure group, such coset representatives are definable only locally, and not in a globally s
way; however these aspects involving domains of definition and overlap transition function
be taken care of suitably.! Then the independent information contained in the vectorsc(g) can be
reexpressed as follows:

c0~q!5c~,~q!! , c0~q0!5c0 ,
~2.10!

D (J0)~g!c0~q!5c~g ,~q!!5c~,~gq!!5c0~gq! .

Based on these relationships we set up a UR ofG on functions onS in this manner. The Hilbert
space of the UR is

L2~S,C!5H f ~q! P C U E
S
dm~q!u f ~q!u2,`J . ~2.11!

Heredm(q) is theG-invariant integration volume element onS,dm(gq)5dm(q); in the case of
compactG andH we assume it is normalized to unit total volume forS. On these~scalar valued!
functions f (q) we define the action ofG by unitary operatorsU(g):

~U~g! f !~q!5 f ~g21q! . ~2.12!

It is now recognized that we have here the URD (ind,0) of G induced from the identity or trivial
one-dimensional UIR ofH, as described in Appendix B, Eq.~B4!. ~The superscript 0 is a reminde
that the induction is from the trivial representation ofH.) As explained there, by the well-know
reciprocity theorem this URD (ind,0) of G contains a general UIRD (J) of G as many times as the
latter contains the trivial one-dimensional UIR ofH. To make this quite explicit, at this point w
choose the magnetic quantum numberM within UIR’s of G to consist of a tripleM5m j m:
herem is a multiplicity label for UIR’s ofH, j is a label for UIR’s ofH, andm is a magnetic
quantum number within thej th UIR of H. ~As with J andM , here tooj andm in general stand
for sets of several quantum numbers each.! Then the general matrix element within theJth UIR of
G appears, adapted toH, as

D MM8
(J)

~g!5D m jm,m8 j 8m8
(J)

~g! . ~2.13!

With this information we have the result that a complete orthonormal basis for the Hilbert s
L2(S,C) is given by
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Ym jm
(Jl)~q!5NJ

1/2D m jm,l00
(J) ~,~q!!,

~2.14!
Ym jm

(Jl)~q0!5NJ
1/2dlmd j 0dm0.

~Here againj 5m50 corresponds to the identity UIR ofH.) We can say that there are as ma
independent spherical harmonics onS of representation typeJ asD (J) containsH-scalar states,
andl counts this multiplicity. The basic properties of these functions are

Ym jm
(Jl)~gq!5 (

m8 j 8m8
D m jm,m8 j 8m8

(J)
~g!Ym8 j 8m8

(Jl)
~q!,

E
S
dm~q!Ym8 j 8m8

(J8l8)
~q!* Ym jm

(Jl)~q!5dJ8Jdl8ldm8md j 8 jdm8m, ~2.15!

(
Jlm jm

Ym jm
(Jl)~q!Ym jm

(Jl)~q8!* 5d~q8,q! .

In the last completeness relation we have the Dirac delta function onS with respect to the volume
elementdm(q).

Now we use the above tools to perform the harmonic analysis ofc0(q). The results, as may
be expected, will be simple, but the pattern for the later treatment ofr(g) will be set. Let us
denote an orthonormal basis forH (J0), adapted toH, by Cm jm

(J0) ,

D (J0)~g!Cm jm
(J0)

5 (
m8 j 8m8

D
m8 j 8m8,m jm

(J0)
~g!C

m8 j 8m8

(J0)
,

~2.16!

C
m8 j 8m8

(J0)†
Cm jm

(J0)
5dm8md j 8 jdm8m.

Sincec0 is anH-invariant vector inH (J0), it follows that the UIRD (J0) of G contains at least one
H-scalar state. Let us for simplicity choosec0 to be the one corresponding to the multiplicity lab
m having the value unity

c05C100
(J0) . ~2.17!

Then the generalized coherent statesc(g), and hencec0(q), can be written out in explicit detail

c~g!5D (J0)~g!c05(
m jm

D m jm,100
(J0)

~g!Cm jm
(J0) ,

~2.18!

c0~q!5c~,~q!!5NJ0

21/2(
m jm

Ym jm
(J0,1)

~q!Cm jm
(J0) .

We see that the Fourier coefficients ofc0(q) are very simple:

E
S
dm~q!Ym jm

(Jl)~q!* c0~q!5NJ0

21/2dJJ0
dl,1Cm jm

(J0) . ~2.19!

This is as expected, and the expansion ofc0(q) in the complete set$Ym jm
(Jl)(q)% gives back the

second of Eq.~2.18!.
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B. Harmonic analysis in case „b…: H¶H0ÃU„1…

Now H0 andH are distinct. The results expressed in Eqs.~2.18! and~2.19! remain valid and
adequate as far as the harmonic analysis ofc(g) or c0(q) is concerned; we must just imagineH
and S replaced throughout byH0 and S0 in the case~a! analysis. However since the large
subgroupH is now available, we outline the kind of induced UR ofG we would have to set up on
functions on the smaller coset spaceS5G/H, suitable for the harmonic analysis ofc(g) if one so
wished.

With respect toH.H03U(1),G, in contrast to the previous Eq.~2.8!, we can now say the
following about the family of generalized coherent states:

h P H: D (0)~h!c05eiw(h)c0,

w~h21!52w~h!,

w~h!50 for h P H0 , ~2.20!

c~gh!5eiw(h)c~g!,

D (J0)~g8!c~g!5c~g8g!.

~The last statement here is the same as before.! Now let us denote a generalH-coset, a point ofS,
by r 5gH. ~SinceH0ÞH, the symbolq has been used up to label points ofS0 .) The identity
coseteH5H is the distinguished originr 0 P S; andg8 P G mapsr to r 85g8r . In local coor-
dinates, the pointq P S0 ~the larger coset space! is a pair, q5(r ,a) where r P S and a
P @0,2p) is the U~1! angle. Now let,(r ) P G be a choice of~local! coset representativesS
→G:

r P S→,~r ! P G: ,~r !r 05r . ~2.21!

Then the information~2.20! about the generalized coherent statesc(g) gets expressed in this way

c̃0~r !5c~,~r !! , c̃0~r 0!5c0,
~2.22!

D (J0)~g!c̃0~r !5D (J0)~g,~r !!c05D (J0)~,~gr !,~gr !21g,~r !!c05eiw(,(gr)21g,(r ))c̃0~gr !.

The characteristic difference compared to Eq.~2.10!, namely the presence of the nontrivial pha
factor, is to be noted. This means that for analyzingc(g) in this setting we must construct a U
of G on square integrable functions overS involving a nontrivial multiplier. The Hilbert space of
this representation is@for simplicity we use the same symbolf as in Eq.~2.11!#:

L2~S,C!5H f ~r ! P C U E
S
dn~r !u f ~r !u2,`J , ~2.23!

wheredn(r )5dn(gr) is the G-invariant normalized volume element onS. @Therefore locally
dm(q)5 (1/2p) dn(r )da.] On suchf (r ) we set up a URŨ(g) of G as follows:

~ Ũ~g! f !~r !5eiw(,(r )21g ,(g21r )) f ~g21r ! . ~2.24!

This is recognized to be the UR ofG induced from the nontrivial one-dimensional UIReiw(h) of
H, in which H0 is represented trivially. One can now proceed with the harmonic analysis ofc(g)
in which the subgroupH plays the key role, by starting from an orthonormal basis forH (J0)

adapted toH rather than merely toH0 . However as we have already performed the harmo
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analysis ofc(g) with respect to its strict stability subgroupH0 , we do not pursue case~b! for
c(g) any further; these additional details will become relevant in the next section, and w
spelt out there.

III. HARMONIC ANALYSIS FOR THE PROJECTIONS

When we turn to an analysis of the projection operatorsr(g)5c(g)c(g)† we see that in both
cases~a! and ~b! the analysis must be based on the strict stability groupH of r0 , and therefore
with the appropriate induced UR ofG on functions overS. ~Thus uniformly the vector leve
analysis is better done usingH0 , and the operator level analysis usingH, whatever the relation-
ship betweenH0 andH may be.! The results of the harmonic analysis are now not as simple a
c(g) in Eqs.~2.18! and ~2.19!. We now treat the details as far as possible parallel to the dis
sions in the preceding section, first for case~a! and then for case~b!.

A. Projection operators in case „a…

The basic facts about the family of projection operatorsr(g) are, in the pattern of Eqs.~2.8!
and ~2.20!,

h P H: D (J0)~h!r0D (J0)~h!†5r0,

r~g!5D (J0)~g!r0D (J0)~g!†,
~3.1!

r~gh!5r~g!,

D (J0)~g8!r~g!D (J0)~g8!†5r~g8g!.

Using the notations for the coset spaceS5G/H already introduced in the preceding section und
case~a!, and the coset representatives,(q) in Eq. ~2.9!, we can express the content of Eqs.~3.1!
as follows:

r0~q!5r~,~q!! , r0~q0!5r0,
~3.2!

D (J0)~g!r0~q!D (J0)~g!†5r~g,~q!!5r~,~gq!!5r0~gq! .

For the harmonic analysis ofr(g) or r0(q) we therefore set up onL2(S,C), by Eq. ~2.12!, the
induced URD (ind,0)(g)5U(g) of G just as was done forc(g) in case~a!. The UIR contents of
this UR are as described in the preceding section. A complete orthonormal basis is provid
Eqs.~2.14! with the properties~2.15!; so the UIRD (J) of G is present as many times as it contai
H-scalar states, and the indexl counts this multiplicity.

We can now project out the Fourier coefficientsrm jm
Jl of r(g) as operators acting onH (J0):

rm jm
Jl 5E

S
dm~q!Ym jm

(Jl)~q!* r0~q! . ~3.3!

On the one hand, combined use of Eqs.~2.15! and~3.2! and unitarity ofD (J) leads to the expected
tensor operator behavior:

D (J0)~g!rm jm
Jl D (J0)~g!†5 (

m8 j 8m8
D m8 j 8m8,m jm

(J)
~g!rm8 j 8m8

Jl . ~3.4!

On the other hand, the completeness relation in Eq.~2.15! gives

r0~q!5 (
Jlm jm

Ym jm
(Jl)~q!rm jm

Jl , ~3.5!
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while of courser(g) for generalg is obtained by going to theH coset ofg:

g5,~q!h, q P S , h P H: r~g!5r0~q! . ~3.6!

However all this by no means implies that all the operatorsrm jm
Jl are nonvanishing. What is clea

is that the UIR’sJ of G that appear as tensor operators in the harmonic analysis ofr(g) ~and their
corresponding multiplicities! must be some subset of the spectrum of UIR’s ofG that are known
to be contained in the induced URD (ind,0)[U(•), as dictated by the reciprocity theorem. Inde
one can see immediately that, whenG andH are both compact andG/H is nontrivial, H (J0) is
finite dimensional whereasD (ind,0) is infinite dimensional; therefore only a finite subset of t
rm jm

Jl can be nonzero.
To pin down further the tensor operatorsrm jm

Jl we relate them directly to the fiducial vecto
c0 P H (J0) and to the generalized coherent statesc(g). We have introduced in Eq.~2.16! the
orthonormal basisCm jm

(J0) for H (J0) adapted toH, and in Eq.~2.17! we have identifiedc0 to be

C100
(J0) . This has given the explicit expressions~2.18! for c(g) and c0(q). Combining these

various results and also using Eq.~2.14! we see that the integrand on the right-hand side in
~3.3! is

Ym jm
(Jl)~q!* r0~q!5NJ

1/2 (
m8 j 8m8
m9 j 9m9

C
m8 j 8m8

(J0)
C

m9 j 9m9

(J0)†

3 D
m8 j 8m8,100

(J0)
~,~q!! D

m9 j 9m9,100

(J0)
~,~q!!* D m jm,l00

(J) ~,~q!!* . ~3.7!

For the product of the twoD* matrix elements we have the Clebsch–Gordan decomposition g
in Eq. ~A7! involving the Clebsch–Gordan coefficients ofG adapted toH:

D
m9 j 9m9,100

(J0)
~,~q!!* D m jm,l00

(J) ~,~q!!*

5 (
J8L
nkn

n8k8n8

D n8k8n8,nkn
(J8)

~,~q!!* C
m9 j 9m9

J0
m jm
J

n8k8n8
J8L * C100

J0
l00
J

nkn
J8L

5 (
J8Ln

n8k8n8

NJ8
21/2 C

m9 j 9m9

J0
m jm
J

n8k8n8
J8L * C100

J0
l00
J

n00
J8L Yn8k8n8

(J8n)
~q!* , ~3.8!

since the second Clebsch–Gordan coefficient shows that in the sums overk and n only k5n
50 survives. Putting~3.8! into ~3.3! and carrying out the integration we get the result

rm jm
Jl 5

NJ
1/2

NJ0

(
L

C100
J0

l00
J

100
J0L (

m8 j 8m8
m9 j 9m9

C
m9 j 9m9

J0
m jm
J

m8 j 8m8

J0L * C
m8 j 8m8

(J0)
C

m9 j 9m9

(J0)†

. ~3.9!

The sum over the outer products of the elements of the basis forH (J0) reproduces exactly theLth
unit tensor of rankJ on H (J0), as given in Eq.~A.12!. Thus we have the final result

rm jm
Jl 5

NJ
1/2

NJ0

(
L

C100
J0

l00
J

100
J0L Um jm

JL . ~3.10!

We immediately see that a necessary condition forrm jm
Jl to be nonzero is that the UIRD (J) must

occur in the direct productD J03D (J0)* , which is of course reasonable.
It is also evident that a certain rectangular matrix for eachJ, made up of specific Clebsch

Gordan coefficients, plays an important role here. We may write~3.10! as
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rm jm
Jl 5(

L
plL

(J) Um jm
JL ,

~3.11!

plL
(J) 5

NJ
1/2

NJ0

C100
J0

l00
J

100
J0L .

The row indexl gives the multiplicity of occurrence ofH-scalar states within the UIRD (J) of G,
while the column indexL ~which has no reference toH) gives the multiplicity of occurrence o
D (J0) in the decomposition of the productD (J0)3D (J). The necessary and sufficient conditions,
case~a!, for being able to express every operatorA on H (J0) as an integral over the projection
r(g) or r0(q), namely, as

A5E
S
dm~q! a~q! r0~q! , ~3.12!

for somec-number functiona(q) depending linearly onA, are now clear. We know in advanc
that the set of unit tensor operatorsUm jm

JL , with spectrum ofJL values completely and directly
determined byD (J0) with no reference to the subgroupH, form a complete trace orthogonal set
operators onH (J0). Given the relations~3.11! for eachJ expressing the Fourier coefficients o
r0(q) in terms of these unit tensors, we must be able to invert these relations and expres
Um jm

JL as aL-dependent linear combination overl of therm jm
Jl . Thus the necessary and sufficie

conditions are as follows.
~i! Each UIRD (J) of G contained in the product URD (J0)3D (J0)* with some multiplicity

must also occur in the URD (ind,0) of G induced from the identity UIR ofH, with the same or
higher multiplicity.

~ii ! For each suchD (J), the rectangular matrixp (J) in ~3.11! must have at least as many row
as it has columns, and it must be of maximal rank, namely equal to the number of column

B. Projection operators in case „b…

The main complication now is thatc0 and r0 have different strict stability groups. W
therefore have to unavoidably introduce extra quantum numbers in the state labels to take a
of the structureH.U(1)3H0 . Further in carrying out harmonic analyses overS5G/H, we must
use two different sets of complete orthonormal spherical harmonics, one appropriate forc(g) and
another~simpler! one forr(g). The increase in index structure inD-functions,Y-functions, and
Clebsch–Gordan coefficients are all inevitable.

A general elementh P H is a pair h5(eia,h0) where a P@0,2p) and h0 P H0 ~subject
possibly to some global identification rules!. The labelj for a general UIR ofH is also a pairj
5(y, j 0) wherey P Z is the U~1! quantum number andj 0 labels a UIR ofH0 ~again herey and
j 0 may be constrained in some way!. Within the UIR j 0 of H0 we have as before an interna
magnetic quantum numberm. Therefore in a basis adapted toH the matrix elements in the UIR
D (J) of G look like

D MM8
(J)

~g!5D my j0m,m8y8 j
08m8

(J)
~g! , ~3.13!

with the indexm counting the number of times the UIRj [(y, j 0) of H is present, etc. Corre
spondingly we have an orthonormal basisCmy j0m

(J0) for H (J0) with the transformation law

D (J0)~g!Cmy j0m
(J0)

5 (
m8y8 j 08m8

D
m8y8 j

08m8,my j0m

(J0)
~g! C

m8y8 j
08m8

(J0)
. ~3.14!
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With no loss of generality we can assume that the fiducial vectorc0 , invariant underH0 but
changing under the U~1! part of H, carries the U~1! quantum numbery51, and is the first such
state in the case of multiplicity,

c05C1100
(J0) . ~3.15!

This replaces Eq.~2.17!. For the generalized coherent state we have from Eq.~3.14! and~3.15!, as
replacement for Eq.~2.18!:

c~g!5D (J0)~g!C1100
(J0)

5 (
my j0m

D my j0m,1100
(J0)

~g! Cmy j0m
(J0) . ~3.16!

For points of the coset spaceS and coset representatives we use the notationsr ,,(r ) already
introduced in Sec. II under case~b!. Now as was mentioned earlier, onS we have to employ two
different complete orthonormal sets of functions, one to handlec0(r ) and the other to handle
r0(r ). This is because two different induced UR’s ofG are involved—in thec case it is the UR
D (ind,10) induced from the nontrivial one-dimensional UIRj 5(1,0) of H as described in Eq
~2.24!; in the r case it is the URD (ind,00) induced from the trivial one-dimensional UIRj
5(00) of H, analogous to Eq.~2.12!. The two systems of complete orthonormal spherical h
monics onS are

D (ind,10): Ỹmy j0m
(J,l) ~r !5NJ

1/2 D my j0m,l100
(J) ~,~r !! , ~3.17a!

D (ind,00): Ymy j0m
(J,l) ~r !5NJ

1/2 D my j0m,l000
(J) ~,~r !! . ~3.17b!

We must appreciate that the spectrum of (J,l) values present in the two cases may be differe
even though each set by itself is orthonormal and complete overS with respect to the measur
d n(r ). The transformation properties underG action, orthonormality and completeness relatio
in each case are analogous to Eq.~2.15! and need not be repeated.

Equations~3.1! continue to hold, while we replace Eq.~3.2! and the second of Eq.~2.18! by

r0~r !5r~,~r !!5c̃0~r !c̃0~r !†,

r0~r 0!5r0 ,
~3.18!

D (J0)~g!r0~r !D (J0)~g!†5r0~gr ! ,

c̃0~r !5c~,~r !!5 (
my j0m

D my j0m,1100
(J0)

~,~r !! Cmy j0m
(J0)

5NJ0

21/2 (
my j0m

Ỹmy j0m
(J0,1)

~r !Cmy j0m
(J0) .

The pattern of calculations from here onwards is similar to case~a!. We define the Fourier
coefficients of the projection operatorsr0(r ) with respect to the basis~3.17b! as

rmy j0m
Jl 5E

S
dn~r ! Ymy j0m

(J,l) ~r !* r0~r ! ,

r0~r !5 (
Jlmy j0m

Ymy j0m
(J,l) ~r ! rmy j0m

Jl , ~3.19!

D (J0)~g! rmy j0m
Jl D (J0)~g!†5 (

m8y8 j 08m8
D m8y8 j

08m8,my j0m
(J)

~g! rm8y8 j
08m8

Jl
.
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We then use Eq.~3.18! to directly relatermy j0m
Jl to outer products of the basis vectors ofH (J0), and

then to the complete set of unit tensors onH (J0). Skipping the intermediate steps, the final res
replacing Eq.~3.11! in case~a! is

rmy j0m
Jl 5(

L
plL

(J) Umy j0m
JL ,

plL
(J) 5

NJ
1/2

NJ0

C1100
J0

l000
J

1100
J0L , ~3.20!

Umy j0m
JL 5 (

m8y8 j 08m8

m9y9 j 09m9

C
m9y9 j

09m9

J0
my j0m
J

m8y8 j
08m8

J0L
* C

m8y8 j
08m8

(J0)
C

m9y9 j
09m9

(J0)†

.

@For simplicity we have used the same symbolsp,U here as in case~a!#. The necessary and
sufficient conditions to be able to express any operatorA on H (J0) as an integral over the
projectionsr(g)5c(g)c(g)† are now seen to read the same as in case~a!, except that the family
of rectangular matricesp (J) is specified in a different manner, and in condition~i! we have to read
D (ind,00) in place ofD (ind,0). For complete clarity, we state the two conditions explicitly:~i! Each
UIR D (J) of G contained in the product URD (J0)3D (J0)* of G with some multiplicity must also
occur in the URD (ind,00) of G induced from the identity UIR ofH.U(1)3H0 , with the same or
higher multiplicity.~ii ! For each suchD (J), the rectangular matrixp (J) in ~3.20! must have at leas
as many rows as it has columns, and it must be of maximal rank, namely equal to the num
columns.

In concluding this section we point out that we have made convenient choices of the vecc0

in terms of a basis inH (J0), and this must be kept in mind since expressions for stand
Clebsch–Gordan coefficients where available may differ from the ones needed in~3.11! and
~3.20!.

IV. APPLICATIONS TO SU „2… AND SU„3…

As examples of the criteria developed in the last section for the existence of the dia
coherent state representation for operators~in short, diagonal representation!, we consider here
some illustrative instances involving the simplest compact groups SU~2! and SU~3!. Since the
representation theory of these groups, their Clebsch–Gordan series and@at least for SU~2!# the
Clebsch–Gordan coefficients are all well known, we describe very briefly the main featur
each case considered. One point worth repeating is that the Clebsch–Gordan coefficients
appear in the criteria for existence of the diagonal representation through the matricesp (J) are
generally noncanonical. We must bear in mind the use of bases for UIR’s ofG adapted to the
subgroupH determined byc0 , and the identifications ofc0 in Eqs.~3.15! and~2.17!. We look at
three SU~2! cases and three SU~3! cases to illustrate the ideas.

A. SU„2… Examples

With G5SU(2), theClebsch–Gordan series multiplicity labelL is absent, so we can setL
51 everywhere. The UIR labelJ has values 0,1/2,1,... withH (J) being of dimensionNJ5(2J
11). We denote the generators byT1 ,T2 ,T3 . In discussing stability subgroups we pay attenti
only to the components continuously connected to the identity.

Example 1:AssumeJ0>1, and takec0 to be a generic vector inH (J0), not an eigenvector of
n̂•T for any n̂ P S2. Independently ofc0 , the spectrum of unit tensor operators onH (J0) is J
50,1,2,...,2J0 , once each. The stability groups areH05H5$e%, so we have case~a!. The orbits
q(c0),q(r0) and the two coset spacesS0 ,S all coincide with SU~2! @or may be S0~3!# and are
all three dimensional. SinceH is trivial, it has only the trivial one-dimensional UIR, so th
induced representationD (ind,0) of SU~2! is the regular representationD (reg). The spectrum and
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multiplicity of UIR’s present here isJ50,1/2,1,...,`, D (J) occurring (2J11) times. Therefore
condition~i! for case~a! is obeyed. Turning to condition~ii !, any basisCm

(J) ,m51,2,...,2J11, in
H (J) is anH-adapted basis andm is a multiplicity label. We takec05C1

(J0) in H (J), assuming for
definiteness that in eachH (J) we have a noncanonical basis~not eigenvectors ofT3). The matrices
plL

(J) of Eq. ~3.11! are column vectors with (2J11) rows:

pl1
(J)5

A2J11

2J011
C1

J0
l
J

1
J0 , l51,2,...,2J11. ~4.1!

~We emphasize these are not the usual Clebsch–Gordan coefficients.! For eachJ50,1,...,2J0 in
the generic case we can expect this to be nonzero at least for one value ofl, as no particular
symmetries or selection rules are operative. So condition~ii ! also holds, and the diagonal repr
sentation exists.

Example 2:AssumeJ0 is an integer>1, and takec0 to be the eigenvector ofT3 with
eigenvalueM050, i.e., in the canonical basis,c05C0

(J0) . Again the spectrum of unit tenso
operators onH (J0) is J50,1,2,...,2J0 , once each. The stability groups areH05H5U(1) gener-
ated byT3 , so we have case~a! again. Now we use the canonical basisCM

(J) in everyH (J), as it
is adapted toH; the multiplicity labelsl, m are not needed, and can all be set equal to unity.
orbits q(c0),q(r0) and the coset spacesS0 ,S all coincide with SU(2)/U(1)5S2, and are all
two dimensional. The induced URD (ind,0) of SU~2! is the helicity zero UR acting on functions o
S2, and this contains the UIR’sJ50,1,2,...,`, once each; thus condition~i! is obeyed. Turning to
condition ~ii !, for eachJ50,1,...,2J0 we have a single numberp11

(J) to examine, and it is the
canonical Clebsch–Gordan coefficient

p11
(J)5

A2J11

2J011
C0

J0
0
J

0
J0 . ~4.2!

But it is known that this vanishes forJ51,3,...,2J021, hence condition~ii ! is not obeyed, and the
diagonal representation does not exist. This interesting situation was indeed noted by Klaud
Skagerstam a long time ago,15 for the caseJ051.

Example 3:Take anyJ0>1/2, andc0 to be an eigenvector ofT3 in H (J0) with eigenvalue
M0Þ0. Thus in the canonical basis we havec05CM0

(J0) , uM0u.0. The spectrum of unit tensors o

H (J0) is J50,1,...,2J0 ; while the stability subgroups areH05$e%,H5U(1) generated byT3 ,
leading to case~b!. In eachH (J) we can use the canonical basis, and the labelsl, m, are not
needed. The orbitq(c0) and the coset spaceS0 are three dimensional, whileq(r0) andS areS2

as in example 2. The induced UR of SU~2! to be used forr(g),D (ind,00) is again the helicity zero
UR on functions onS2, with the UIR spectrumJ50,1,2,...,`, once each. So condition~i! of case
~b! is obeyed. ForJ50,1,...,2J0 we have to now examine the canonical Clebsch-Gordan co
cient @see Eq.~3.20!#,

p11
(J)5

A2J11

2J011
CM0 0 M0

J0 J J0 , ~4.3!

and as this is nonzero ifM0Þ0, condition~ii ! is obeyed and the diagonal representation exis
In these three SU~2! examples, condition~i! was always obeyed; while in example 2 alo

condition~ii ! was violated. Now we look at three SU~3! examples, in one of which even conditio
~i! fails.

B. SU„3… Examples

With G5SU(3), theClebsch–Gordan series multiplicity labelL is generally necessary. Th
UIR’s are labeled by a pair of independent integers,J5(p,q), with H (p,q), having dimension
N(p,q)5

1
2(p11)(q11)(p1q12). We will throughout use the canonical basis within ea
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H (p,q), labeled by the quantum numbersI ,I 3 ,Y of the isospin SU~2! and hypercharge U~1!
subgroups of SU~3!. We will be using two subgroups, namely U(1)3U(1) and U~2!. The corre-
sponding induced UIR’s of SU~3!, arising from the trivial UIR’s of these subgroups, have t
following contents as deduced from the reciprocity theorem:

D U(1)3U(1)
(ind,0) 5 (

p,q50
p5q mod 3

`

% np,q D (p,q),

np,q5~p11,q11!,; ~4.4a!

D U(2)
(ind,0)5 (

p50

`

% D (p,p) . ~4.4b!

We takeJ05(1,1) corresponding to the eight-dimensional octet or adjoint representation fo
first two examples. The spectrum of unit tensor operators onH (1,1) is known to be

~p,q!5~0,0!, ~1,1!, ~1,1!, ~3,0!, ~0,3!, ~2,2! . ~4.5!

We look at two choices ofc0 .
Example 4:Take c05C100

(1,1) . ThenH05H5U(1)3U(1) and we have case~a!. In the ca-
nonical basisC I I 3Y

(p,q) for UIR’s of SU~3!, I 3 andY determine a~one-dimensional! UIR of H, so I

is the multiplicity labell, m,... of the general formalism. From Eq.~4.4a! we see thatD U(1)3U(1)
(ind,0)

contains~0,0! once,~1,1! twice, ~3,0! and ~0,3! once each, and~2,2! three times. Condition~i! is
then obeyed. Turning to condition~ii !, for each of the (p,q) pairs listed in Eq.~4.5! we must
examine the matrixplL

(J) 5p IL
(p,q) . These involve quite simple Clebsch–Gordan coefficients

SU~3!, which in turn are Clebsch–Gordan coefficients of SU~2! times so-called isoscalar factor
We have the following results:

~p,q!5~0,0!: p0,1
(0,0)51/8, ~4.6a!

~p,q!5~1,1!: p (1,1)5
1

A8
S C100

8
000
8

100
8,1 C100

8
000
8

100
8,2

C100
8

100
8

100
8,1 C100

8
100
8

100
8,2 D 5

1

A8
S 1/A5 0

0 0
D , ~4.6b!

~p,q!5~3,0! or ~0,3!: p1,1
(3,0) or (0,3)5

A10

8
C100

8
100
10 or 10*

100
8 5

A10

8

A30

15
C0 0 0

1 1 150,

~4.6c!

~p,q!5~2,2!: p (2,2)5~p I ,1
(2,2)!5

A27

8 S C100
8

000
27

100
8

C100
8

100
27

100
8

C100
8

200
27

100
8
D 5

A27

8 S 2A5/45

0

2A10

9
C0 0 0

1 2 1D . ~4.6d!

We see that condition~ii ! fails for (p,q)5(1,1),(3,0),(0,3), so the diagonal representation d
not exist. It is noteworthy that in some cases we have the vanishing of the iso-scalar factor,
other cases of the multiplying SU~2! coefficient.

Example 5:Takec05C000
(1,1) . Again, asH05H5U(2), wehave case~a!. But now when we

examine the contents ofD U(2)
(ind,0) in Eq. ~4.4b!, we see that the UIR~1,1! occurs just once, while

~3,0! and ~0,3! are both absent. This means that even condition~i! is not satisfied, and so th
diagonal representation does not exist.
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Example 6:For the final SU~3! example, we choose the UIRJ05(3,0) with NJ0
510. The

fiducial statec0 is taken to be the SU~2! scalar state with canonical quantum numbersI I 3 Y
50,0,22:

c05C0022
(3,0) . ~4.7!

@This is equivalent via an SU~3! transformation to choosing the highest weight stateC3/2 3/2 1
(3,0) .]

The corresponding stability groups are

H0 5 SU~2! , H 5 U~2!, ~4.8!

so this is an instance of case~b!. The spectrum of unit tensors onH (3,0) is determined by the
Clebsch–Gordan series for the product (3,0)3(0,3):

~p,p!5~0,0!, ~1,1!, ~2,2!, ~3,3!, ~4.9!

of dimensions 1, 8, 27, and 64, respectively. Combining this with Eq.~4.4b! we see that in this
example both kinds of multiplicity labelsm, l, . . . andL are not needed, so all the releva
matrices (plL

(J) ) reduce to single numbers. Comparing Eq.~4.9! with Eq. ~4.4b! we see that
condition ~i! for existence of the diagonal representation is satisfied. Furthermore, sinceI 5I 3

50 for the fiducial vectorc0 in Eq. ~4.7!, the relevant Clebsch–Gordan coefficients reduce to
the isoscalar factors. The necessary coefficients are tabulated in closed form in Ref. 18 a
read off the values needed,

p (3,3)5
8

10
C0022

10
000
64

0022
10 5

&

5A7
,

p (2,2)5
3)

10
C0022

10
000
27

0022
10 5

3)

10A7
,

~4.10!

p (1,1)5
2&

10
C0022

10
000
8

0022
10 5

1

5
,

p (0,0)5
1

10
C0022

10
000
1

0022
10 5

1

10
.

@For simplicity, as in Eq.~4.6!, we have again indicated the relevant SU~3! UIR’s by their dimen-
sionalities, the 10 referring to~3,0!#. As these are all nonzero, condition~ii ! is also satisfied, so we
conclude that in this example the diagonal representation exists.

V. THE HEISENBERG–WEYL GROUP

The last application of our formalism is to the noncompact Heisenberg–Weyl~HW! group,
denoted in this section byG. This will be somewhat heuristic as we shall often use Hilbert sp
vectors subject to delta-function normalization, induced representations whose reductio
UIR’s involves continuous integrals, etc. The main aim is to show the relevance of the nec
and sufficient conditions of Sec. III for existence of the diagonal representation in this situ
which underlies the very important case of ordinary coherent states. While the structureG
~recalled below! is quite simple, its UIR’s and the various Clebsch–Gordan series have
delicate properties. We give a brief account of all these aspects.

Topologically G has the structure ofR 3. Its Lie algebraGI is spanned by three elemen
t j , j 51,2,3, with the Lie bracket relations

@ t1 ,t2#5t3 , @ t1 or t2 ,t3#50 . ~5.1!
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Finite group elements and the composition law and inverses are

aI ,bI PR 3: g~aI !5exp~a2t12a1t21a3t3! ,

g~aI !215g~2aI ! , ~5.2!

g~aI !g~bI !5g~a11b1 ,a21b2 ,a31b31 1
2 ~a1b22a2b1!!.

In a UR or UIR we will write2 iT j ,Tj Hermitian, fort j , so the generator commutation relatio
and unitary operators for finite group elements are

@T1 ,T2#5 i T3 , @T1 or T2 , T3#50 , ~5.3a!

g~aI !→D~aI !5exp~ i ~a1T22a2T12a3T3!! . ~5.3b!

The adjoint action on the generators is

D~aI ! ~T1 ,T2 ,T3! D~aI !215~T11a1T3 ,T21a2T3 ,T3! . ~5.4!

The UIR’s of G are of two types, depending on whetherT3 ~which in any case is a scalar i
a UIR! is zero or nonzero. IfT350, the UIR is one dimensional and is determined by choice
numerical values forT1 , T2 :

D (q0 ,p0), ~q0 ,p0!PR 2: T1
(q0 ,p0)

5q0 , T2
(q0 ,p0)

5p0 , T3
(q0 ,p0)

50 . ~5.5!

On the other hand, forT35cÞ0, by the Stone–von Neumann theorem we have an infin
dimensional UIR onL2(R), acting on Schro¨dinger wave functionsc(q) of a real variableq
PR as follows:

D (c), cÞ0: H (c)5L2~R! ,
~5.6!

T1
(c)5q̂5q , T2

(c)5 p̂52 i c
]

]q
, T3

(c)5c .

Thus there is an R 2-worth collection of inequivalent one-dimensional UIR
D (q0 ,p0), dimH (q0 ,p0)51; and anR-$0%-worth collection of inequivalent infinite-dimensiona
UIR’s D (c), dimH (c)5`. Every UIR is nonfaithful.

In the sequel, whenever there is no danger of confusion, we omit the UIR labels (q0 ,p0) or c
on the generatorsTj .

Turning to the Clebsch–Gordan problem, this is easily analyzed by examining the sums
individual generators of any two UIR’s. There are three cases to consider. The following
results are obvious:

D (q0 ,p0)3D (q08 ,p08)5D (q01q08 ,p01p08), ~5.7a!

D (q0 ,p0)3D (c)5D (c). ~5.7b!

@In the latter case we may in fact appeal to Eq.~5.4!#. In the case ofD (c)3D (c8) we must
distinguish betweenc1c850 andc1c8Þ0. In either case the generators of the product, acting
L2(R 2), are

T15q1q8 , T252 i c
]

]q
2 i c8

]

]q8
, T35c1c8 . ~5.8!

For c1c8Þ0 we switch to the independent variablesQ5q1q8, Q85cq82c8q, so
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T15Q , T252 i ~c1c8!
]

]Q
, T35c1c8 . ~5.9!

We see thatQ8 is totally absent and commutes with all theTj . In casec1c850 we have

T15q1q8 , T252 i cS ]

]q
2

]

]q8D , T350 , ~5.10!

~reminiscent of the EPR situation!, andT1 andT2 form a complete commuting set. From all the
results we see that

D (c)3D (2c)5
**

R 2% dq0 dp0 D (q0 ,p0), ~5.11a!

D (c)3D (c8)5
*

R% dQ8•D (c1c8) , c1c8Þ0. ~5.11b!

In ~5.11a! each one-dimensional UIRD (q0 ,p0) appears once in a continuous fashion; while
~5.11b! the single infinite-dimensional UIRD (c1c8) appears infinitely often in a continuous sens
with Q8 being a continuous multiplicity label. The full set of results for the Clebsch–Gor
problem is thus contained in Eqs.~5.7! and ~5.11!.

Now let us work within a particular UIRD (c) acting onH (c). From the results of the
Clebsch–Gordan problem we see that the spectrum of irreducible unit tensors definable oH (c)

consists only of tensors belonging to the one-dimensional UIR’sD (q0 ,p0), once each in a continu
ous sense for every (q0 ,p0)PR 2. This is becauseD (c)3D (c8) never containsD (c), andD (c)

3D (q0 ,p0) is exactlyD (c). These unit tensors are the familiar HW displacement operators w
are a subset of the unitaryD (c)(aI ) themselves. The displacement operators are

D (c)~a'!5D (c)~a',0!5exp~ i a1p̂2 i a2q̂!, ~5.12!

and for them the~finite form of the! adjoint action is

D (c)~bI !D (c)~a'!D (c)~bI !215eic(a1b22a2b1)D (c)~aI '! . ~5.13!

Therefore for each (q0 ,p0)PR 2 we define the~unitary! unit tensor operator

U (q0 ,p0)5D (c)S q0

c
,
p0

c D . ~5.14!

~For simplicity we avoid the labelc on these operators.! Then from~5.13! we see that they have
the correct transformation property, i.e., they belong to the one-dimensional UIR’sD (q0 ,p0):

D (c)~aI !U (q0 ,p0)D (c)~aI !215ei (a1p02a2q0) U (q0 ,p0)5D (q0 ,p0)~aI ! U (q0 ,p0). ~5.15!

Moreover by familiar calculations, say in a basis of eigenvectors ofq̂, we can verify the trace
orthonormality property in the delta function sense:

Tr~U (q08 ,p08)†
U (q0 ,p0)!52 p c d~q082q0!d~p082p0!. ~5.16!

A general Hilbert–Schmidt operatorA onH (c) can then be expanded as an integral over these
tensors:

A5
**

R 2 dq0 dp0 a~q0 ,p0! U (q0 ,p0),
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a~q0 ,p0!5
1

2pc
Tr ~U (q0 ,p0)†

A!, ~5.17!

Tr~A†A!52pc
**

R 2 dq0 dp0ua~q0 ,p0!u2 .

This is the Weyl representation for operators, and Eqs.~5.15!–~5.17! are the analogs in the prese
case for Eqs.~A13!–~A15! of the compact group case. All these results are available in advan
the choice of a fiducial vector, construction of its generalized coherent states, etc.

Now choose a fiducial unit vectorc0PH (c). From elementary quantum mechanics it
known that every real linear combination ofq̂ and p̂ has a continuous spectrum and hence
normalizable eigenvectors. Therefore the stability groupH0 of c0 is trivial. On the other hand,H
is R @but effectively just U~1!# with generatorT3 ,

c0PH (c) , ic0i51: H05$e% , H5$e2 ia3c, a3PR% . ~5.18!

Thus for anyc0 we have case~b!, and we have to examine the UIR content of the URD (ind,00) of
G induced from the trivial one-dimensional UIR ofH ~namely,T350). To apply the reciprocity
theorem, we have to ask how often each UIR ofG contains the trivial UIR ofH. Clearly each
D (q0 ,p0) contains it once, while eachD (c) does not contain it at all. In other words,

D (ind,00)5
**

R 2% dq0 dp0 D (q0 ,p0), ~5.19!

which matches exactly with the spectrum and multiplicity of irreducible tensor operatorsU (q0 ,p0)

definable onH (c), so condition ~i! is satisfied. As for condition~ii !, since D (c)3D (q0 ,p0)

5D (c), the quantityp (q0 ,p0) of Eq. ~3.20! is just one number~disregarding theNJ0
in the de-

nominator!, and the question is whether it is always nonvanishing—we examine this more di
as follows.

The generalized coherent states and projection operators arising fromc0 are

c~aI !5D (c)~aI !c05e2 ica3D (c)~a'!c0,

r~a'!5c~aI !c~aI !†5D (c)~a'!r0D (c)~a'!† , ~5.20!

r05c0 c0
†.

Under adjoint action we have

D (c)~bI ! r~a'! D (c)~bI !215r~a'1b'!, ~5.21!

andb3 is absent on the right. If we denote the Fourier transform ofr(a') by

r̃~q0 ,p0!5
1

2p

**

R 2 d2a e2 i (a1p02a2q0)r~a'!, ~5.22!

then ~5.21! becomes

D (c)~bI ! r̃~q0 ,p0!D (c)~bI !215ei (b1p02b2q0) r̃~q0 ,p0!5D (q0 ,p0)~bI ! r̃~q0 ,p0!. ~5.23!

Thus eachr̃(q0 ,p0) is a tensor operator of typeD (q0 ,p0), consisting of just one component, so
must be a scalar multiple of the unit tensorU (q0 ,p0). This factor is easily computed by a trac
calculation since by~5.17! the unit tensors are a complete orthonormal~in the continuous sense!
set. An elementary calculation shows that
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Tr~U (q08 ,p08)†
r̃~q0 ,p0!!52p~c0 ,U (q0 ,p0)c0!* d~q02q08!d~p02p08!, ~5.24!

which gives the result

r̃~q0 ,p0!5
1

c
~c0 ,U (q0 ,p0)c0!* U (q0 ,p0). ~5.25!

The necessary and sufficient condition for the existence of the diagonal representation in te
the projectionsr(a') of Eq. ~5.20! is now clear: the fiducial vectorc0 must be chosen so that fo
all (q0 ,p0)PR 2,

~c0 ,U (q0 ,p0)c0!5S c0 ,D (c)S q0

c
,
p0

c Dc0DÞ0,

~5.26!
~c0 ,D (c)~q0 ,p0!c0!5~c0 ,ei (q0p̂2p0q̂)c0!Þ0.

Assuming this condition is satisfied, we can start from the Weyl representation~5.17! for any
~Hilbert–Schmidt! operatorA and obtain from it a diagonal coherent state representation:

A5
**

R 2 dq0 dp0 a~q0 ,p0! U (q0 ,p0)5
**

R 2 dq0 dp0 a~q0 ,p0! c~c0 ,U (q0 ,p0)†
c0!21 r̃~q0 ,p0!

5
**

R 2 d2a f~a'!r~a'!,

~5.27!

f~a'!5
c

2p

**

R 2 dq0 dp0 ei (a2q02a1p0) a~q0 ,p0!/~c0 ,U (q0 ,p0)c0!* .

From Eq.~5.17! we know that for Hilbert–SchmidtA, the functiona(q0 ,p0) is square integrable
overR 2; in relation to this, the nature of the weight functionf(a') in the diagonal representatio
is determined by the factor (c0 ,U (q0 ,p0)c0)* in the denominator.

As an application we consider the case of the usual coherent states obtained when the
vectorc0 is the Fock vacuum or the harmonic oscillator ground state.~Further, for simplicity we
now setc51.) The wave function is

c0~q!5p21/4 e2q2/2, ~5.28!

and a simple calculation gives the displacement operator expectation value needed in Eqs~5.26!
and ~5.27!,

~c0 ,U (q0 ,p0)c0!5~c0 ,ei (q0p̂2p0q̂)c0!5e2
1
4~q0

2
1p0

2
!. ~5.29!

This is indeed everywhere nonzero overR 2, so the condition~5.26! for existence of the diagona
representation is, as expected, obeyed. The decaying exponential factor here means that th
operatorsr̃ (q0 ,p0) provided by the projection operatorsr(a') differ from the normalized unit
tensorsU (q0 ,p0) by similarly decaying factors:

r̃~q0 ,p0!5e2
1
4~q0

2
1p0

2
!U (q0 ,p0). ~5.30!

It is to compensate for this diminishing norm ofr̃(q0 ,p0) as one goes towards infinity in th
(q0 ,p0) phase plane that one finds that the weight functionf(a'), Eq. ~5.27!, has in general the
character of a very singular distribution: the Fourier transform off(a') is ~essentially! the square

integrable amplitudea(q0 ,p0) times the exploding Gaussiane
1
4(q0

2
1q0

2).
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Another interesting choice of fiducial state for diagonal representation has been conside
Haake and Wilkens,19 namely the squeezed vacuum. The family of generalized coherent sta
this case consists of Gaussian pure states squeezed by a fixed amount in a fixed direction
space, the center (q0 ,p0) of the Gaussian being allowed to be located at an arbitrary point in p
space. It is easy to see that in this case^c0uD(q0 ,p0)uc0& is nonvanishing, and the diagon
representation once again exists:

uc0&5S~h!u0&, S~h!5expS h

2
â† 22

h*

2
â2D ,

~5.31!

^c0uD~q0 ,p0!uc0&5^0uS~h!21D~q0 ,p0!S~h!u0&

5^0uD~ehq0 ,e2hp0!u0&5exp~2 1
4 ~e2hq0

21e22hp0
2!! .

Returning to the general result~5.27! wheneverc0 is an acceptable fiducial vector, we ca
appeal to the fact that the Stone–von Neumann UIR of the HW group is square integrab
conclude that (c0 ,U (q0 ,p0)c0) is a square integrable function of (q0 ,p0). Thus this amplitude
must approach zero as we move far away from the origin inR 2. This has the consequence tha
whatever the choice ofc0 @provided ~5.26! holds#, the weight functionf(a') is in general a
distribution, since in its Fourier representation~5.27! the square integrable amplitudea(q0 ,p0) is
dividedby another square integrable amplitude.

We now make a series of statements which help in conveying the content of the con
~5.26! and in forming some~admittedly incomplete! idea of the set of fiducial vectorsc0 whose
generalized coherent states are rich enough to allow for the diagonal representation:

~i! If c0(q) is any Gaussian wave function, then (c0 ,D (c)(q0 ,p0)c0) is clearly a complex
Gaussian in (q0 ,p0), so condition~5.26! is satisfied.

~ii ! If c0 does/does not obey condition~5.26!, then the transform ofc0 by the unitary operator
representing any element of the metaplectic groupMp(2) also does/does not obey conditio
~5.26!. This is because under conjugation by such a unitary operator,D (c)(q0 ,p0) just becomes
D (c)(q08 ,p08) for (q08 ,p08) some linear combinations of (q0 ,p0).

~iii ! If either c0(q) or its Fourier transformc̃0(p) is a function of compact support, the
condition ~5.26! is definitely not obeyed, so the diagonal representation will not exist. Th
because for suchc0 , the quantity (c0 ,D (c)(q0 ,p0)c0) vanishes outside a finite strip parallel
thep0 or to theq0 axis. We can also see that as Fourier transforms of functions of compact su
are entire functions of a certain class, wave functionsc0(q) of this class violate condition~5.26!
quite strongly—indeed their Fourier transformsc̃0(p) are of compact support.

In a purely qualitative manner we can appreciate now that Gaussianc0(q) and compact-
supportedc0(q) @or c̃0(p)] are in some ways diametrically opposite from the point of view
condition ~5.26!. To conclude this section we consider a set of fiducial vector choices w
condition ~5.26! is violated, though only on a set of measure zero in theq0–p0 plane. This will
then mean that in these cases for Hilbert–Schmidt operatorsA we do not have available th
diagonal representation.

Consider the choiceun& for the fiducial vectorc0 , this being thenth excited state of the
harmonic oscillator, forn>1. The resulting generalized coherent states are thedisplaced Fock
states.20 It is known that the matrix element~or better expectation value! needed in condition
~5.26! is essentially a Laguerre polynomial, thus

uc0&5un&:

^c0uD (c)~q0 ,p0!uc0&5e2
1
4~q0

2
1p0

2
!LnS q0

21p0
2

2 D . ~5.32!
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Now, as is well known, the polynomialLn(x) has exactlyn distinct real zeroes in the semi-infinit
interval 0,x,`, hence the condition~5.26! is satisfied except on a discrete infinite sequence
circles in theq0–p0 plane. However, these singularities which are in the finite part of the (q0 ,p0)
plane are not integrable. Therefore we do not have the possibility of the diagonal represe
for the above choices ofc0 .

Recalling condition~5.26! for the existence of the diagonal representation, and the var
examples discussed above, we are led in the Heisenberg–Weyl case to theconjecturethat condi-
tion ~5.26! is obeyed if and only if the fiducial statec0 has Gaussian Schro¨dinger wave function.
This will then mean that apart from the traditional diagonal representation and the Haake–W
diagonal representation there are no other ones for the Heisenberg–Weyl group.

VI. CONCLUDING REMARKS

We have developed necessary and sufficient conditions for a set of generalized coheren
arising from a UIR of a compact Lie group to possess the property that a diagonal represe
in terms of projections onto these states can be set up for any operator on the Hilbert spac
UIR. This has required combining several structures and properties—harmonic analysis on
spaces, the theory of induced representations, the associated reciprocity theorem, a
Clebsch–Gordan problem and coefficients for the UIR’s of the group under consideration. E
these plays a crucial role in arriving at the complete set of conditions. The explicit exam
involving SU~2!, SU~3! and even the Heisenberg–Weyl group show how our conditions opera
practice, and how we cannot do without any of the ingredients mentioned above. In particul
important to appreciate that the examples where the diagonal representation fails to exist
particularly exotic or contrived; and we can often see in advance those cases where it is bo
be absent.

The comprehensive work of Brif and Mann16 attempts also to exploit the methods of harmon
analysis on coset spaces to tackle the general closely related problems of Wigner distributio
state reconstruction problems. However, in the absence of detailed knowledge of the irred
representation contents of various induced representations ofG, it is easy to miss the fact tha
there are quite stringent conditions to be met before a diagonal representation can exi
particular qualitative points to be made in connection with our approach are: for a given UIRG,
the complete set of irreducible unit tensor operators on the Hilbert space is immediately
prior to construction of any set of generalized coherent states. As one then considers v
choices of the fiducial vectorc0 , one can see that forlarger stability groupsH0 and H, the
corresponding coset spacesS0 andS aresmaller, with the consequence that the set of project
operators onto the generalized coherent states also becomessmaller, and so the diagonal repre
sentation is less likely to exist.

Finally we may mention that the issue of reproducing various marginal probability dist
tions out of a Wigner-type distribution description of density operators has played no role i
considerations. This, the application of our methods to phase space description of quantu
tems, quantum state reconstruction~tomography!, and other aspects of Wigner distributions f
quantum mechanics on Lie groups will be systematically studied elsewhere.

APPENDIX A: NOTATIONS FOR GROUP REPRESENTATIONS, CLEBSCH–GORDAN
COEFFICIENTS, AND UNIT TENSORS

In this Appendix we collect some items of notation and familiar facts concerning the re
sentation theory of compact groups, their Clebsch–Gordan series and coefficients in a gene
involving multiplicity, and the definition and properties of unit tensors. All these are used in
main body of the paper.

We shall deal with a general compact semisimple Lie groupG of dimensionn @except that
U~1! factors will be allowed#, and a generic compact Lie subgroupH of dimensionk,n. The
various inequivalent UIR’s ofG will be labeled by a symbolJ which in general comprises
collection of independent quantum numbers. The space of theJth UIR, and its dimension, will be
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written asH (J) andNJ , respectively. Within the UIR we use the labelM for a complete set of
state labels for an orthonormal basis, denoting again several independent quantum numbe
matrix elements of the UIR matricesD (J) are written asD MM8

(J) (g),g P G. We have

D (J)~g!† D (J)~g!51 on H (J),
~A1!

D (J)~g1! D (J)~g2!5D (J)~g1g2!.

The Peter–Weyl theorem gives us the orthogonality and completeness of these matrix el
taken from all UIR’s ofG. With respect to the translation invariant integration measuredg on G,
normalized to unit total volume, these statements are expressed by

E
G

dgD M9M-
(J8)

~g!* D MM8
(J)

~g!5dJ8JdM9MdM-M8 /NJ,

~A2!

(
JMM8

NJ D MM8
(J)

~g!D MM8
(J)

~g8* 5d~g21g8!,

whered(g) is the invariant Dirac delta function onG with respect todg.
When we consider similarly the complete family of UIR’s of the subgroupH,G, we replace

the above symbols with the following:

g→h , J→ j , M→m , D(J)→D ( j ) , H (J)→H ( j ) , NJ→Nj .

The relations~A2! corresponding toH hold with a normalized integration measuredh, and of
coursej ,m are again in general sets of quantum numbers. In particular one may ask for the
of G in a form, or in a basis, adapted to the reduction with respect toH. In that case, for each
given UIRJ of G, one has to ask which UIR’sD ( j ) of H are contained withinD (J), and each one
with what multiplicity. Then the state labelM within D (J) becomes a triplem jm: j andm are the
UIR and internal state labels forH, while m is an ~orthonormal! multiplicity label which distin-
guishes the several occurrences ofD ( j ) within D (J). If in a particular case the multiplicity is unity
we just setm51. Expressed in such a basis, the representation matrices ofG appear as
D m jm,m8 j 8m8

(J) (g), and wheng P H we have

D m jm,m8 j 8m8
(J)

~h!5dm8m d j 8 j Dmm8
( j )

~h! . ~A3!

Incidentally for the trivial or identity representations ofG or of H we write J50,j 50 respec-
tively, with M5m50 as well.

Now we set up a notation for Clebsch–Gordan coefficients and unit tensor operators, all
for the possibility of multiplicity in the Clebsch–Gordan series, and for the coefficients t
complex in general. Considering the direct productD (J1)3D (J2) of two UIR’s of G, let the UIR
D (J3) be present upon reduction, possibly several times, and introduce an orthonormal labeL to
distinguish its several occurrences. Then, ifCM1

(J1) ,CM2

(J2) are orthonormal bases forH (J1),H (J2),

respectively, for eachL the product vectors

CM3

(J3 ,L)
5 (

M1 ,M2

CM1

J1
M2

J2
M3

J3L
CM1

(J1)
CM2

(J2)
~A4!

transform by the UIRJ3 of G, and for differentL they are orthogonal. Thus the orthonormality
unitarity and completeness relations for the Clebsch–Gordan coefficients are:
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(
M1 ,M2

CM1

J1
M2

J2
M3

J3L CM1

J1
M2

J2

M
38

J38L8*
5dL8L dJ

38J3
dM

38M3
,

~A5!

(
LJ3 ,M3

CM1

J1
M2

J2
M3

J3L C
M

18

J1

M
28

J2
M3

J3L*
5dM

18M1
dM

28M2
.

The statement that for eachL,CM3

(J3L) transforms according to the UIRD (J3) of G leads to

(
M1 ,M2

CM1

J1
M2

J2
M3

J3L D
M

18M1

(J1)
~g! D

M
28M2

(J2)
~g!5(

M38
C

M
18

J1

M
28

J2

M
38

J3L D
M

38 M3

(J3)
~g!, ~A6!

from which follows, using~A5!, the result for the product of any twoD matrices:

D
M

18M1

(J1)
~g! D

M
28M2

(J2)
~g!5 (

LJ3M38M3

C
M

18

J1

M
28

J2

M
38

J3L
CM1

J1
M2

J2
M3

J3L* D
M

38M3

(J3)
~g! . ~A7!

Lastly we consider the Wigner–Eckart theorem, and the definition and properties o
tensor operators within a UIR. A tensor operator of typeJ2 connecting the two UIR’sJ1 andJ3 is
a collection of operators

T M2

J2 :H (J1)→H (J3), ~A8!

obeying the transformation rule

D (J3)~g! T M2

J2 D (J1)~g!215(
M28

D
M

28M2

(J2)
~g! T

M
28

J2 . ~A9!

The matrix elements of such a set of operators between the two sets of basis states in
collection of reduced matrix elements labeled by the Clebsch2Gordan multiplicity labelL and
accompanied by corresponding Clebsch2Gordan coefficients:

~CM3

(J3) , T M2

J2 CM1

(J1)
!5(

L
CM1

J1
M2

J2
M3

J3L* ^J3iTJ2iJ1&L. ~A10!

The occurrence of the complex conjugate of the Clebsch–Gordan coefficients is to be note
can then expressTM2

J2 explicitly as

T M2

J2 5 (
LM1M3

CM1

J1
M2

J2
M3

J3L* ^J3iTJ2iJ1&L CM3

(J3)
CM1

(J1)†
. ~A11!

Within a given UIRD (J0) of G on H (J0), Eq. ~A11! leads to the definition of a complete s
of unit tensor operatorsUM

JL as follows:

UM
JL5 (

M0M08
CM0

J0
M
J

M
08

J0L*
C

M
08

(J0)
CM0

(J0)† , ~A12!

where we have chosen specially simple values for the reduced matrix elements. These unit
obey, as a particular case of~A9!:

D (J0)~g! UM
JL D (J0)~g!215(

M8
D M8M

(J)
~g! UM8

JL . ~A13!
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One can also easily establish their trace orthogonality:

Tr~UM8
J8L8†

UM
JL!5

NJ0

NJ
dL8L dJ8J dM8M . ~A14!

Therefore any operatorA on H (J0) is uniquely expressible in the form

A5 (
LJM

aM
JL UM

JL,

~A15!

aM
JL5

NJ

NJ0

Tr~UM
JL†A! .

In Sec. III we have used such formulas in a basis adapted toH.

APPENDIX B: INDUCED REPRESENTATIONS ON COSET SPACES AND RECIPROCITY
THEOREM

Here we outline the construction of induced UR’s ofG starting from UIR’s ofH, and the
reciprocity theorem which tells us in detail the irreducible contents of such UR’s ofG. A direct
construction of a class of UR’s of a semidirect product ofG by a certain A´ belian group~similar
to the Euclidean and Poincare´ groups! proves practically useful in this context.

1. The inducing construction

The UIR D ( j )(h) of H is defined on the Hilbert spaceH ( j ) of dimensionNj . Consider
functionsf:G→H ( j ) satisfying the following~right! covariance law underH:

g P G→f~g!PH ( j ) ,

f~gh!5D ( j )~h21! f~g!, ~B1!

fm~gh!5(
m8

Dm8m
( j )

~h!* fm8~g! .

~We avoid using lettersc, C for these vector valued functions onG since they have been used
the main text with specific meanings.! We now define an~left! action byG on suchf:

~U~g!f!~g8!5f~g21g8! . ~B2!

The representation property is obvious, and so also the compatibility of the condition~B1! and the
action ~B2!, i.e., the latter respects the former. LetS5G/H be ~as in the text! the space of right
cosets inG with respect toH, and let,(q) be a choice of~local! coset representativesS→G.
Then it is clear that the independent information in af obeying~B1! is contained in its values a
coset representatives:

q P S: f0~q!5f~,~q!! . ~B3!

On these the action byG is easily computed

U~g!f5f8:
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f08~q!5f8~,~q!!5f~g21,~q!!5f~,~g21q! ,~g21q!21 g21,~q!!

5D ( j )~,~q!21g ,~g21q!! f0~g21q!,

f0,m8 ~q!5(
m8

Dmm8
( j )

~,~q!21 g,~g21q!! f0,m8~g21q!. ~B4!

We can now formally define the Hilbert space for these wave functions, in such a way th
operatorsU(g) are unitary. We use the following notation:

L2~S,H ( j )!5H f0~q! P H ( j ) U q P S, if0i25E
S
dm~q!~f0~q!, f0~q!!H ( j ),`J .

~B5!

Heredm(q) is theG-invariant normalized volume element onS, and it is obvious that unitarity of
D ( j ) leads to unitarity ofU(g). This UR ofG is said to be induced from the UIRD ( j ) of H, and
we will denote it asD (ind,j ) ~the dependence onH being left implicit!. Combining Eqs.~B4! and
~B5! we see that we can introduce an~ideal! orthonormal basisuq,m& for L2(S,H ( j )) with these
properties:

f0,m~q!5^q,muf0& ,

^q8,m8uq,m&5d~q8,q!dm8m, ~B6!

U~g!uq,m&5(
m8

D m8m
( j )

~,~gq!21g,~q!!ugq,m8& .

This can be viewed as a standard Wigner form for the URD (ind,j ) of G.
Now the main question is: how often does the UIRD (J) of G occur in the URD (ind,j ) of G,

and in case there is nontrivial multiplicity is there a natural way to choose a multiplicity lab
an orthonormal manner? To answer these, we turn to a convenient construction of a Master
a certain semidirect product groupG involving G, originally studied in the context of stron
coupling theory.21,22

2. The group G and the CGS construction

Choose some UIRD (J0) of G ~obeying a condition to be given later! and consider a groupG
defined as the semidirect product ofG by an Ábelian partP(J0) whose generators belong toD (J0).
It is convenient to express the structure ofG partly in finite form~the G part! and partly in terms
of infinitesimal generators~the Ábelian part!. Thus we look for unitary operatorsŪ(g),g P G,
and additional~possibly non-Hermitian! operatorsPM0

(J0) obeying the relations

Ū~g8!Ū~g!5Ū~g8g!,

Ū~g!PM0

(J0)Ū~g!215(
M08

D
M

08M0

(J0)
~g!P

M
08

(J0)
, ~B7!

@PM0

(J0) , P
M

08

(J0)
or P

M
08

(J0)†

#50.

These relations defineG, and the analogy to the structures ofE(3) or the Poincare´ group is
evident; therefore we can refer to thePM

(J0) as momenta.

0
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We now set up a solution to these relations on the spaceH (reg)5L2(G,C) of the regular
representationD (reg) of G. We introduce ideal basis vectorsug& obeying

^g8ug&5d~g21g8! . ~B8!

Choose now some numerical~possibly complex! valuespM0

(J0) as possible eigenvalues of thePM0

(J0) ,

and defineŪ(g),PM0

(J0) on the basis ketsug& P H (reg) by

Ū~g!ug8&5ugg8&,
~B9!

PM0

(J0)ug8&5~D (J0)~g8!* p(J0)!M0
ug8&.

One can verify thatŪ(g) are unitary, and that all the relations~B7! are obeyed, so we have he
a certain master UR ofG uniquely specified by the choice ofp(J0). The basisug& is one in which
the momenta are all simultaneously diagonal, and this is the essence of theCGSconstruction.

This UR ofG can be analyzed in two interesting ways by using two separate bases forH (reg).
On the one hand, we can exploit the orthogonality and completeness of the UIR’s ofG as
expressed by Eq.~A2!, and so introduce a basisuJMN& defined and behaving as follows:

uJMN&5NJ
1/2E

G
dg D MN

(J) ~g!* ug&,

^J8M 8N8uJMN&5dJ8JdM8MdN8N, ~B10!

Ū~g!uJMN&5(
M8

D M8M
(J)

~g!uJM8N&.

In this basis in which the regular representation ofG is fully reduced, we can exploit the infor
mation given in Appendix A to show that the matrix elements of the momentaPM0

(J0) have the

following form:

^J8M 8N8u PM0

(J0) uJMN&5ANJ

NJ8
(
LN0

pN0

(J0)CM
J

M0

J0
M8
J8L* CN

J
N0

J0
N8
J8L. ~B11!

This means that the reduced matrix element ofP(J0) with multiplicity label L is @see Eq.~A10!#.

^J8N8iP(J0)iJN&L5ANJ

NJ8
(
N0

pN0

(J0) CN
J

N0

J0
N8
J8L . ~B12!

We will use this in a moment.
The other way to exploit the CGS construction~B9! is to pass to a description in terms of

coset space. At this point we assume that the stability group of the numerical momentumpM0

(J0) is

the subgroupH,G:

h P H: D (J0)~h!* p(J0)5p(J0) . ~B13!

Thus the condition on the choice of the UIRJ0 of G while constructingG is that H (J0) must
contain ~at least! one H-scalar state. We then express a generalg8 P G as the productg8
5,(q)h of a coset representative and a subgroup element:
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ug8&5uq,h) ,
~B14!

~q8,h8uq,h!5d~q8,q! d~h21h8! .

Then Eq.~B9! appears as

Ū~g!uq,h)5ug,~q!h&5u,~gq!,~gq!21g,~q!h&5ugq,,~gq!21g,~q!h),
~B15!

PM0

(J0)uq,h)5~D (J0)~,~q!!* p(J0)!M0
uq,h).

The key point is that in the last relation the eigenvalues of the momenta are independenh,
precisely because of Eq.~B13!. To arrive at basic states behaving in the Wigner form~B6! under
Ū(g) we just have to exploit the regular representation ofH in the same way as we did forG in
Eq. ~B10!. So fromuq,h) we pass touq, jmn&,

uq, jmn&5Nj
1/2E

H
dh Dmn

( j ) ~h!* uq,h),

~B16!
^q8, j 8m8n8uq, jmn&5d~q8,q!d j 8 jdm8mdn8n.

In this basis we find

Ū~g!uq, jmn&5(
m8

Dm8m
( j )

~,~gq!21g,~q!!ugq, jm8n&,

~B17!
PM0

(J0)uq, jmn&5~D ( j 0)~,~q!!* p(J0)!M0
uq, jmn&.

All the operators ofG, both Ū(g) andPM0

(J0) , conserve the quantum numbersj andn. So if these

are kept fixed, and onlyq andm are allowed to vary, we see that we have exactly recovered
~B6!. This shows that theCGS UR of G corresponding to apM0

(J0) with stability groupH,G

contains each induced URD (ind,j ) of G exactlyNj times.
On the other hand, we can link up now to the results~B10! in the basisuJMN& by adapting the

choice of labelsM ,N,... to reduction with respect to the subgroupH. As described in Appendix
A, this makesM ,N... into triplesmkm,n jn,..., andthen Eq.~B10! and ~B12! become

Ū~g!uJ mkm n jn&5 (
m8k8m8

D m8k8m8,mkm
(J)

~g!uJ m8k8m8 n jn&,

~B18!

^J8 n8 j 8n8iP(J0)iJ n jn&L5d j 8 jdn8nANJ

NJ8
(
n0

pn000
(J0) Cn jn

J
n000
J0

n8 jn
J8L .

There are as many independent components top(J0) as there areH-scalar states inD (J0). So while
Ū(g) conserven jn,PM0

(J0) conserve onlyj andn, but not the multiplicity labelsn8 andn. Real-

izing that from the original basisug& for H (reg) we have arrived in two ways, via the sequenc
ug&→uJMN&→uJ mkm n jn& and ug&→uq,h)→uq, jmn&, at two alternative bases for the sam
UR of G, in which the actions byŪ(g) and PM0

(J0) are, respectively, given by Eq.~B18! and Eq.

~B17!, we come to the following conclusions:

Sp~ uJ mkm n jn&uJ mkmn varying, jn fixed)5Sp~ uq, jmn&uq,m varying, jn fixed) ,
~B19!
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and the corresponding subspace ofH (reg) carries exactly once the induced URD (ind,j ) of G.
Comparing this with the reduced matrix element result~B18! we then see that this UR ofG
contains the UIRD (J) of G as often asD (J) contains the UIRD ( j ) of H, which is the reciprocity
theorem; the indexn catalog~in an orthonormal way! these several occurrences ofD (J).

We appreciate that in the final statement of the reciprocity theorem the representationD (J0)

and the momentaPM0

(J0) have disappeared; they play only an intermediate role in the CGS

struction and in recognizing that we have two equally good bases for the Hilbert space carry
UR D (ind,j ) of G.
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Using the algebraic geometry method of Berenstein and Leigh for the construction
of the toroidal orbifold (T23T23T2)/(Z23Z2) with discrete torsion and consid-
ering local K3 surfaces, we present noncommutative aspects of the orbifolds of
product of K3 surfaces. In this way, the ordinary complex deformation of K3 can be
identified with the resolution of stringy singularities by noncommutative algebras
using crossed products. We give representations and make some comments regard-
ing the fractionation of branes. Illustrating examples are presented. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1572550#

I. INTRODUCTION

It has been known for a long time that noncommutative~NC! geometry plays an interestin
role in the context of string theory1 and, more recently, in certain compactifications of the ma
formulation of M -theory on NC torii,2 which has opened new lines of research devoted,
example, to the study of solitons in connection with NC quantum field theories.3

In the context of superstring theory, NC geometry is involved whenever aB field is turned on.
For example, in the study ofD(p24)/Dp brane systems (p.3) where, in particular, one ca
consider the ADHM construction of theD0/D4 system,4 the NC version of the Nahm constructio
for monopoles,5–7 the determination of the vacuum field solutions of the Higgs branch of su
symmetric gauge theories with eight supercharges8–10 or in the study of tachyon condensatio
using the so-called GMS approach.11

However, most of the NC spaces considered in all these studies involve mainly NCRu
d ~Ref.

11!, NC torii Tu
d ~Ref. 12!, few cases of orbifolds of NC torii and some generalizations to

higher dimensional cycles such as the NC Hizerbruch complex surfaceF0 used in Ref. 13.
Recently some efforts have been devoted to go beyond these geometric spaces. In pa

a special interest has been given to build NC Calabi–Yau~NCCY! manifolds containing the
commutative ones as subalgebras and, in the case of orbifolds of Calabi–Yau~CY! threefolds, an
explicit construction has been given by means of the so-called the NC algebraic geo
method.14 In that work, Berenstein and Leigh~BL! gave a realization of two NCCY three-fold
with discrete torsion.

~1! The toroidal orbifoldsT6/(Z23Z2), whereT6 is viewed as the product of three elliptic curve
as T23T23T2. This construction involves noncommuting variables satisfying the t
dimensional Clifford algebra.

~2! The orbifold of the quintic in theCP4 projective space,

a!Electronic mail: ufrhep@fsr.ac.ma
b!Electronic mail: juanjose.manjarin@uam.es
c!Electronic mail: juanpedro.resco@uam.es
d!Unidad de Investigacio´n Asociada al Centro de Fı´sica Miguel Catala´n ~C.S.I.C.!.
25070022-2488/2003/44(6)/2507/14/$20.00 © 2003 American Institute of Physics
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P5~zj!5z1
51z2

51¯1z5
51l)

i51

5

zi50, ~1!

by theZ5
3 discrete torsion symmetry group. The quintic algebraAu(5) reads as

z1z25az2z1, z1z35a21bz3z1,

z1z45b21z4z1, z2z35agz3z2,
~2!z2z45g21z4z2, z3z45bgz4z3,

ziz55z5zi , i51,2,3,4,
wherea, b, andg are fifth roots of the unity generating theZ5

3 discrete group and where th
zi ’s are now the generators of the quintic algebra.

In this context, thinking of D-branes as coherent sheaves with support on a NC subv
they also explained the fractionation of branes by using a limit where the rank of the sheaf
jump at the singularity, leading to reducible matrix representations of the algebra.

Such formulation has been extended to higher dimensional orbifolds, understood as ho
neous hypersurfacesPn12(z1 ,z2 , . . . ,zn12) in CPn¿1 with some discrete group of isometrie
Zn¿2

n„n¿1…Õ2.15 In all these works, the CY algebra has a typical form which reminds quantum gr
and the Yang–Baxter equations.16,17

zizj5R i j
abzazb , ~3!

where the four rank tensorR i j
ab was determined by the discrete torsion and the CY conditio

As we will see in this work, theseR i j
ab can take the following form

R i j
ab5d i

bd j
aw, i j , ~4!

wherew is an element of the discrete groupG, which leaves invariant the CY algebraic equatio
and, i j is an antisymmetric matrix satisfying the identity( i, i j 50 wich can be interpreted as th
CY condition.

This analysis can also be adapted for lower dimensional CY manifolds.18 In particular, we are
interested in the case of the K3 surface. This is a very special surface because it is th
two-dimensional CY manifold. It can be represented in different ways depending on which
erty one is willing to study.

It can be easily seen to be related to the superconformal model corresponding to the p
mial constraint in WCP1,1,1,1

3 plus deformations19,20and so can be seen as a complex surface in
space. This representation makes very clear the complex structure of the surface. Another d
tion is a local one in terms of the ADE classification of singularities near the singular loci o
orbifold T4/Z2 . A third description is in terms of an elliptic fibration, which means that locally
surface could be seen as a two torus times a complex plane.

All along the paper we will be dealing with the two first descriptions, although the last
could be used to find a proper interpretation of the results we will find, as will be explained i
conclusions.

The aim of this work is to extend the results found in the case of the orbifoldT6/(Z23Z2) to
higher CY manifolds in terms of product of K3 surfaces and, as we are consideringZ23Z2

orbifolds, which haveH2(Z23Z2 ,U(1)).Z2 , we can include the effect of discrete torsion.
It is known that when the discrete torsion is considered, the twisted sector modes areH2,1

and so act in the deformation of the complex structure of the orbifold.20 However, there are no
enough deformations available to resolve the singularities, because the discrete torsion
ported at them. In these cases, the only known way to resolve the singularities of the spac
NC geometry.

The outline of the paper is as follows. In Sec. II we review the basic facts of the constru
of the K3 surfaces in terms of the ADE classification of singularities and study the deforma
which can be made to the equations which define them. In Sec. III we will study how to con
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the NC algebra associated to the orbifolds of CY manifolds. In Sec. IV we specialize to the
of orbifolding the product of three K3 and construct the realization of the associated algeb
Sec. V we extend the study to higher dimensional cases. We finish in Sec. VI with a discussi
some conclusions.

II. K3 SURFACES, WITH ADE SINGULARITIES, IN STRING THEORY
COMPACTIFICATIONS

In this section we give certain essential aspects of K3 surfaces as well as methods
resolution of ADE singularities. This study is based on the results of the geometric engineer
D54 N52 quantum field theory embedded in superstring theory compatifications.21–23

Roughly speaking, K3 is a two complex dimensional compact Ka¨hler CY manifold with
SU~2! holonomy group. It has many types of realizations, the simplest one is to conside
orbifold T4/G, whereT4 is defined by the following complex identification equations:

zj[zj11,
~5!

zj[zj1 i , j 51,2,

and whereG is a discrete subgroup of SU~2!. For instance, if we considerG5Z2 , the K3 surface
is obtained by imposing a extra constraint equations onT4, namely

zj[2zj , j 51,2. ~6!

This symmetry has 16 singular fixed points. Near such points (z1 ,z2)[(2z1 ,2z2), the K3
surface looks likeC2/Z2 and can be determined algebraically in terms of theZ2 invariant coordi-
nates onC2, which are given by

x5z1
2,

y5z2
2, ~7!

z5z1z2 ,

and give a map fromC2/Z2 to C3.
Locally, K3 can be viewed as a hypersurface inC3 defined by

z25xy. ~8!

The equation~8!, which is known byA1 singularity, can be extended to the so-calledAn21

singularity having the following form:

An21 :zn5xy. ~9!

Other singularities of local K3 surfaces are classified by the following equations:

Dn : x21y2z1zn2150,

E6 : x21y31z450,
~10!

E7 : x21y31yz350,

E8 : x21y31z550.

Basically there are two ways for smoothing out the ADE singularities, either by deformin
Kähler or its complex structure. For later use we shall focus our attention on the resolution
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An21 singularity, where the complex deformation deals with the left-hand side of Eq.~9!, while
the Kähler deformation, which consists in blowing up the singular point with the help ofn
21) intersecting realS2, treats the right-hand side of Eq.~9!. In the case of K3 seen as anA1

singularity these two operations are related, because theA1 singularity can be seen as a vanishi
2-sphere, so either deforming the complex structure or making a blow-up consists in giving
volume to it.

This method has a very nice interpretation in terms of the toric geometry realization of
K3 surfaces, where the Mori vectors are intimately related to theAn21 Cartan subalgebra charge
of the gauge symmetry involved in the geometric engineering method. Moreover, the corres
ing toric graph looks similar to theAn21 Dynkin diagram.

Since this method of doing is mirror to the complex deformation and, for latter use, we
only give the complex deformation of theAn21 singularity. Indeed, Eq.~9! admits a discreteZn

symmetry acting as follows:

z→wz, wn51,

x→x, ~11!

y→y,

leaving x and y invariants. The deformation of the complex structure of theAn21 singularity
introduces extra terms breaking theZn symmetry as follows:

xy5zn1P~z!. ~12!

In this equation, the extra polynomial is given by

P~z!5 (
i 51

n21

aiz
n2 i 21, ~13!

where theai ’s are complex parameters carrying the complex deformation of theAn21 singularity.
Their number is (n21) which is the rank of theAn21 Lie algebra. These results have been us
in many directions in string theory andF-theory compactifications, in particular, in the study
the quantum field theory using the geometric engineering method.

It should be interesting to note the following points for theAn21 geometry:

~1! Since K3 is a self-mirror, Eq.~13! means that each monomialzk is associated to a divisor o
K3 explaining the monomial/divisor map involved in the mirror symmetry application in
toric geometry framework.

~2! The complex deformation acts only on thez variable, by introducing terms breaking theZn

symmetry. The restoration of this symmetry leads to a limit where K3 develops theAn21

singularity.
~3! The complex deformation ofAn21 singularity is similar to the resolution of stringy singular

ties by a NC algebra involved in the study of the orbifoldC2/Z2 using the crossed produc
algebra.24 Indeed, identifying the role of theZn symmetry involved in the complex deforma
tion with the Zn discrete torsion of the crossed product ofC2/Z2 , one can identify the
complex deformation and the resolution of the stringy singularity of the orbifoldC2/Z2 .
This link can be understood by the fact the center of the algebras, being the singular geo
is invariant under theZn symmetry corresponding toP(z)50 in the commutative deforma
tion. Taking into account this fact, one can see that the terms of the deformation, in th
sense, must not be in the center of the algebra. By this argument, one can see that the c
deformation ofC2/Z2 , in the commutative sense, is similar to the stringy singularities by
algebra involved in the study of the orbifoldC2/Z2 using NC algebraic geometry method an
the crossed product algebra.
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III. NC ALGEBRAIC GEOMETRY METHOD

In this section, we will briefily review the NC algebraic geometry approach, introduced fir
Ref. 14, for treating the NC aspects of orbifolds of the CY manifolds. In this method, the~singu-
lar! orbifold with discrete torsion can be viewed as a NC algebra. In other words, the alge
realization of a commutative orbifold space with discrete torsion has a nice interpretation
NC algebra.

In this method ones proceeds following the next steps. First, one takes ad-dimensional
~singular! complex CY manifoldMd defined by an equation of the form

f j~ui !50, i 2 j 5d, ~14!

where theui are complex local coordinates. One looks for a discrete symmetryG,

G: ui→gui , gPG, ~15!

leaving f j (ui) invariant

G: f j~ui !→ f j~ui !, ~16!

and preserving the CY condition. After that, one considers the orbifoldMd/G which is constructed
by identifying the points which are in the same orbit under the action of the group, i.eui

→gui . The resulting space is smooth every where, except at the fixed points, which are inv
under nontrivial group elements.

Following Refs. 14, 15, 18, 24–26 and using the discrete symmetry groupG, one can build
the NC extensions of the above orbifold (M d/G)nc . This procedure may be summarized
follows: the NC extension of this orbifold is obtained, as usual, by extending the commu
algebraAc of functions onMd/G to a NC oneAnc;(M d/G)nc . In this algebra, the coordinat
functionsui on the deformed geometry will obey the following constraint equations:

uiuj5u i j ujui , ~17!

whereu i j are the NC parameters constrained by

u i j PG, u i j u j i 51. ~18!

As we will see, the solution of these equations can take the following form:

u i j 5g, i j , ~19!

whereg are the generators ofG and, i j is an antisymmetric tensor. An explicit solution is obtain
with the help of extra constraints on theu i j ’s which can be easily specified once we know t
elements of the center of the NC version of the orbifold,Z(Anc).

The elements ofZ(Anc), which yield the commutative algebra, are the quantities invar
under the action ofG. In this way, the algebraic geometry ofZ(Au) is identified with the
algebraic realization~13!, which may be singular, while the algebraic geometry of the NC alge
will resolve the singularities. In other words, the commutative singularity can be deformed
NC algebraic realization sense.

Since the deformation part is not invariant underG, one may say that this part resolving th
singularity must be inAu /Z(Au) which may be a NC subspace algebra ofAnc . By this argument,
we think that the same feature appears in the ordinary complex deformation ofAn21 singularity of
K3 surfaces where the extra terms solving the singularity are not invariant under theZn symmetry.

This important link between the complex deformations and the resolution of stringy s
larities by the NC algebras push us to think about the extension of the result of BL concerni
orbifold of the torusT6/(Z23Z2) in terms of K3 surfaces using NC algebraic geometry meth
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Before doing this, let us first recall the BL work forT6/(Z23Z2). In this work,T6 is viewed as the
product of three elliptic curves asT23T23T2, each given in the Weierstrass form

yi
25xi~xi21!~xi2ai !, i 51,2,3, ~20!

for i 51,2,3, with a point added at infinity. The latter can be brought to a finite point by a ch
of variables

yi→yi85
yi

xi
2 ,

~21!

xi→xi85
1

xi
.

The Z23Z2 discrete symmetry acts byyi→6yi and xi→xi so that the holomorphic thre
form dy1∧dy2∧dy3 is invariant under the orbifold action satisfying the CY condition. After
troducing the discrete torsion, the constraints of the NC reads

yiyj52yjyi for iÞ j ,

xixj5xjxi for i , j 51,2,3, ~22!

xiyj5yjxi .

and can be solved by

yi5ais i ,
~23!

xi5bi I 2 .

By this approach, the orbifoldT6/(Z23Z2) with torsion defines a NCCY threefold, where th
NC is carried by the discrete torsion phases and having a remarkable interpretation in te
closed string states. On the fixed planes, the branes fractionate and local deformations are
trivial. In what follows, we want to extend this result to higher dimensional CY manifolds
particular we will consider CY’s realized as orbifolds of K3 surfaces with discrete torsion. In o
words, instead of having products of theT2 elliptic curves, we will have products of K3 surface

IV. NC ORBIFOLDS OF THE K3 SURFACES

In this section, we start by consider a general K3.27 The latter are given by the following
general form and with a point added at infinity:

z25 f ~x,y!, ~24!

where f is obtained from a homogeneous functionF with total degree 6 in complex variable
u,v,w as follows:

F~u,v,w!5F6~u,v,w!. ~25!

Note that a special form which has been used in Ref. 27 for studyingN-point deformation of
algebraic K3 surfaces is given by

F~u,v,w!5u2v3w1u4v2. ~26!

However, in order to connect the algebraic geometry~24! to ones described in Sec. II, we wi
take here a special form of~25! as follows:
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F~u,v,w!5u4vw. ~27!

By this form, it is not difficult to see that~24! leads to the algebraic equation describing t
A1 singularity ofK3 surfaces. Indeed, dividing Eq.~27! by u6, one obtains

F~u,v,w!

u6 5S v
uD S w

u D , ~28!

and sof is given by

f ~x,y!5xy, ~29!

where

x5
v
u

, y5
w

u
. ~30!

In this case,~24! looks like as the ALE space withA1 singularity given by~7!, and the
analogue of the equations~21! reads now as

z→z85
z

x3 ,

x→x85
y

x
, ~31!

y→y85
1

x
.

By these equations, now we are in position to extend the results of the orbifoldT6/(Z2
3Z2) with discrete torsion. To start, we consider the following geometric realization of K3^ 3/G,
that is, K3^ 3 is represented by the product of three K3 as follows:

zi
25xiyi , i 51,2,3, ~32!

with an orbifold groupG specified later on.A priori there are different symmetries leaving the
equations invariant, but in order to keep the same analysis of Ref. 14, we will takeG asZ2

2 acting
only on thezi variables as follows:

zi→6zi , xi→xi , yi→yi . ~33!

The reason behind choosing this symmetry is that the complex deformation of K3 su
acts only on the eachz variable of K3 surfaces. The CY condition of this orbifold requires that
holomorphic six form,

V65dz1∧dz2∧dz3∧
dx1

y1
∧

dx2

y2
∧

dx3

y3
, ~34!

should be invariant under~33!. Furthermore, since theZ23Z2 symmetry acts only onzi , it
follows that the invarianceV6 is reduced to the invariance of dz1∧dz2∧dz3 . Having introduced
these data, now we would like to introduce the discrete torsion. The orbifold (K33K3
3K3)/Z2

2 with discrete torsion can be viewed as a NC hyper-Kahler CY manifold, where
Z23Z2 invariant terms are elements of the center of the algebra. Using this feature and th
condition, the NC version of the orbifoldK33/Z2

2 is obtained by taking the coordinates functio
as follows:
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zizj52zjzi ,

zixj5xjzi ,

yizj5zjyi ,
~35!

xixj5xjxi ,

yiyj5yjyi ,

yixj5xjyi ,

with

zi
2zj5zjzi

2 ,
~36!

Fzi , )
i 51

3

zi G50,

which means that thexi , yi , zi
2, and) izi are all in the center of the algebra. To find the points

the NC geometry, the algebra~35! and ~36! can be represented in terms of the Pauli matrices
follows:

zi5ais i , xi5biI 2 , yi5ci I 2 , ~37!

where theai ,bi ,ci are complex scalars andI 2 is the two-dimensional identity matrix. Since th
algebra~35! and~36! is very similar to the one describing the NC version of the orbifold torus
follows that one should have the same interpretation in terms of resolution of singularitie
reducibility of representations.

We can make the following remarks about the analysis made: the first one, which w
given in this section, is that we may find a Clifford algebra, in particular the Dirac alg
involved in the quantum field theory on Euclidean space. Another point is to consider the h
order of the discrete symmetries appearing in the geometry of ALE space, which will be trea
the next section.

Before going ahead, let us recall some useful properties of the Dirac algebra. The latter,
is involved in the study of fermions, is given by

$g i ,g j%5d i j , ~38!

whereg i are complex matrices satisfying

g0
†5g0 , g i

†52g i , g5
†5g5 . ~39!

Note that the minus sign in~39! can be absorbed by transformingg i→ ig i , giving Hermitian
Dirac matrices which will be useful for discussing the brane fractionation in this context.

As an illustrating application, we can consider the product of five K3 surfaces withZ2
5 discrete

symmetry. The latter acts onzi , xi , andyi as

zi→zi85ziv
qi

a
, a51,2,3,4

xi→xi85xi , ~40!

yi→yi85yi ,

wherev561 andqi
a are integer vectors satisfying the CY condition
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(
i 51

5

qi
a50, mod 2; a51, . . . ,4. ~41!

Using the constraints on theu parameters and the CY condition, one can write

u i j 5~21!, i j ,
~42!

(
i 51

5

, i j 50, mod 2,

where, i j is an antisymmetric matrix of the following form:

, i j 5Vabqi
aqj

b , ~43!

whereVab52Vba andVab51 for a,b.
Now, if we take, i j 51 that is

u i j 521 ; iÞ j ~44!

the NC algebra reduces to

zizj52zjzi , for iÞ j for i , j 51,...,5, ~45!

with all others commutations relations. Using the Dirac matrices, a four-dimensional realizat
the algebra~45! can be written as follows:

zi5aig i , xi5biI 4 , yi5ci I 4 , ~46!

where nowg i are given by

g15S I 2 0

0 2I 2
D , g i 115S 0 s i

2s i 0 D , i 51,2,3, g552 i S 0 I 2

I 2 0 D , ~47!

and where thes i are the Pauli matrices. At fixed locus, this representation becomes reducib
four out of the five variableszi act by zero. Thus we get four distinct NC points, and so there f
different irreducibles representations corresponding to the four eigenvalues of the nonzerozi .

V. MORE ON THE ORBIFOLDS OF K3 SURFACES

As we have mentioned, the above geometry can be extended to ones with higher dime
discrete symmetries. In this case, the analogue of Eq.~32! is

zi
n5xiyi , i 51, . . . ,m, ~48!

wherem is an integer, which will be fixed later on. As in the previous examples, Eqs.~48! have
a Zn

m21 discrete group symmetry acting on the variables as follows:

zi→zi85vqi
a
zi , a51, . . . ,m21,

xi→xi85xi , ~49!

yi→yi85yi ,

so that dz1∧dz2∧¯∧dzm is invariant. This satisfies the CY condition on the quotient space. In
~45!, v is an element of the discrete groupZn

m21 and whereqi
a are integers satisfying the follow
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ing condition: ( i 51
n11qi

a50, modm which is also interpreted as the CY condition. Using t
previous analysis, the NC version of the orbifoldK3^

m/Z2
m21 is obtained by substituting the

usual commutative algebra of the functions by the NC one. In this way, the coordinate fun
xi , yi , andzi on the deformed NC manifold obey the following identities:

zizj5u i j zjzi ,

zixj5xjzi ,

yizj5zjyi ,
~50!

xixj5xjxi ,

yiyj5yjyi ,

yixj5xjyi ,

with

zi
nzj5zjzi

n ,
~51!

Fzi , )
i 51

m

zi G50,

which means thatzi
n and) i 51

m zi belong to the center of the NC algebra. Using all these identit
one can easily see that theu i j parameters must satisfy the following constraint equations:

u i j
n 51, ~52!

)
i 51

m

u i j 51, ; i , ~53!

u i j u j i 51. ~54!

These constraints can be solved as follows: First, Eqs.~52! show that

u i j 5v, i j , v5exp
2ip

n
, ~55!

where, i j is a m3m matrix. Second, putting this equation back into~52!, one finds that, i j must
satisfy

, i j 52, j i ,
~56!

(
i 51

m

, i j 50, modn.

Next we will build the irreducible representations of the NCCY algebra for a regular re
sentation. Then we will give the representation for the fixed points~where becomes reducible!. It
turns out that thed dimension of the finite matrix representations of the orbifolds geom
algebra is a multiple ofn. To see this property it is enough to take the determinant of both s
of NC variables, namely,

det~zizj !5~u i j !
d det~zjzi !5det~zjzi ! ~57!
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which constraint the dimensiond of the representation to be such that

u i j
d 51. ~58!

Using the identity~52!, one discovers thatd is a multiple ofn.
We return to Eq.~48!, the change of variables~31! takes now the following form:

zi→
zi

xi
6/n ,

xi→xi85
yi

xi
, ~59!

yi→yi85
1

xi
.

If we require that 6/n must be integer, therefore one has onlyn52,3,6.
(1) Case of n52: we get the geometry related toA1 singularity, described in Sec. IV.
(2) Case of n53: Instead of being general, we give a concrete example correspondingm

53. In this case the Eq.~48! reduces to

zi
35xiyi , i 51,2,3, ~60!

being theA2 singularity. Of course the NC version of this geometry is obtained from the one g
in ~50!. In this case, the Eqs.~52! can be solved as follows:

u i j 5v, i j , ~61!

wherev is a phase so thatv351 and, i j is 333 antisymmetric matrix

, i j 5S 0 k 2k

2k 0 k

k 2k 0
D ~62!

associated to the following commutations relations amongzi :

z1z25wkz2z1 , z1z35w2kz3z1 , z2z35wkz3z2 . ~63!

Note that fork51, this algebra has the same structures of the nonquartic K3 studied in Ref. 2
with v451. It is simple to see that there are three-dimensional representations. Indeed, we
duce the two following matrices:

P5S 1 0 0

0 v 0

0 0 v2
D , Q5S 0 0 1

1 0 0

0 1 0
D ~64!

and so the algebra~50!, for k51, can be solved by taking thezi variables matrices as

z15aP, z25bQ, z35cP21Q21. ~65!

Note that the only singularity in the commutative space happens when we takeb5c50. The
representation theory on the NC algebra becomes reducible at that point. Therefore, we
three distinct irreducible representations.
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(3) Case of n56: Taking m56, we have the algebraic geometry corresponding to theA5

singularity,

zi
65xiyi , i 51, . . . ,6. ~66!

This equation hasZ6
5 discrete symmetry, where in this case we have( i 51

6 qi
a50, a51, . . . ,6. The

NC extension~57! is given by the following algebra:

zizj5v, i j zjzi , ~67!

wherev is a phase such that,v651, and, i j is 636 antisymmetric matrix given by

, i j 5S 0 ,12 ,13 ,14 ,15 ,16

2,12 0 k1 k2 k3 k4

2,13 2k1 0 k5 k6 k7

2,14 2k2 2k5 0 k8 k9

2,15 2k3 2k6 2k8 0 k10

2,16 2k4 2k7 2k9 2k10 0

D , ~68!

where

,125k11k21k31k4 ,

,1352k11k51k61k7 ,

,1452k22k51k81k9 , ~69!

,1552k32k62k81k10,

,1652k42k72k92k10.

In what follows we consider the fundamental 636 matrix representation obtained by using t
following two matrices setQ, Phab

;ab51, . . . ,6 asfollows:

Phab
5diag~1,hab ,hab

2 , . . . ,hab
5 !, Q5S 0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

D , ~70!

wherehab5wmab satisfyinghab
6 51. From these expressions, it is not difficult to see that

above matrices satisfy

PaPb5Pab , Pa
651, Q651. ~71!

Using these identities and the CY condition, one can check that thezi variables can be presente
as

zi5ai )
a,b51

6

~Phab

qi
a

Qqi
b
!, xi5bi I6 , yi5ci I6 . ~72!
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In the end of this section we would like to give a comment regarding the reducible represent
for A5 geometry. We will focus our attention on giving a particular solution. In this solution
will consider an algebra described byZ6

2 orbifold with Z6
3 discrete torsions and more gener

solutions can be given using similar analysis; more details can be found in Ref. 15. In this
there exists situations where the representations are reducible. To see this, we start by r
that the representation~72! corresponds to regular points of NC orbifolds of K3 CY surfac
These solutions are irreducibles. However similar solutions may be worked out as well for
fold points with theZ6

3 discrete torsions. Indeed, choosing matrix coordinatesz5 and z6 in the
center of the algebra by setting

k35k45k65k75k85k95k1050, ~73!

the algebra reduces to

z1z25wk11k2z2z1 ,

z1z35w2k11k5z3z1 ,

z1z45w2k21k5z4z1 ,
~74!

z2z35wk1z3z2 ,

z2z45wk2z4z2 ,

z3z45wk5z4z3 ,

and all remaining other relations are commuting. In this equation, thew are such thatw651; these
are the phases of theZ6

3 discrete torsions. In the singularity where thez1 , z2 , z3 , andz4 moduli
of Eq. ~35! act by zero, the representation becomes reducible atz15z25z35z450.

VI. CONCLUSION AND DISCUSSIONS

In this paper we have studied the NC version of orbifolds of product of K3 surfaces usin
algebraic geometry approach of Refs. 14 and 25. In particular we have used a local descrip
K3 in terms of An21 geometry to extend the analysis on the NC orbifold torus with disc
torsion initiated in Ref. 14 and exposed explicitly the relation between NC data and th
charges. Among our results, we have worked out several representations of the correspond
algebra by using generic CY charges and given comments regarding the fractionation of b

In this context, the ordinary complex deformation of K3 surfaces near anAn21 singularity can
be identified with the resolution of stringy singularities by NC algebras using crossed produ
theC2/Zn orbifold space. This analysis can be generalized toD andE geometries by replacing th
Zn discrete symmetry by the corresponding ones.

On general grounds, it could be said that the appearance of NC geometry when cons
discrete torsion is a natural thing. The first appearance of discrete torsion was related to
B-flux on a 2-cycle,28 and a relation between the discrete torsion and the torsion part o
homology of the target space was carried in Ref. 29.

The implementation in the presence ofD-branes30,31 makes use of projective representatio
of the orbifold group, which are classified byH2(G,U(1)), in perfect correspondence with th
previous arguments.

So there is an intimate relation between discrete torsion and theB-field and, in this way, with
NC geometry. Even more interesting is the fact that is precisely the presence of this NC geo
which desingularizes the space.

This is important because could be applied to the resolution of singularities not only fr
space–time point of view, but in the moduli space of certain theories. For example, a very
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case to the ones studied in this paper is that of aD2 brane wrappedn times over the fiber of an
elliptic K3, which can be easily seen to have as moduli space the symmetric product32

M1,n5Sym~K3 !5
K3 ^ n

Sn
, ~75!

whereM1,n denotes the moduli space of aD2-brane with charges (1,n) andSn is the group of
permutation ofn elements.

On the other hand, the fact that it can be found a reducibility property in the represent
of the algebras have lead previously, as we have already mentioned, to an interpretation in
of the fractionation of branes. However, as we would interpret this configuration as arising
moduli space of certain configurations, the precise meaning of this result is still not clear f
However, all these facts will be explored in a future work.
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An algebraic method for solving the SU „3… Gauss law
Antti Salmelaa)

Theoretical Physics Division, Department of Physical Sciences,
P.O. Box 64, 00014 University of Helsinki, Finland

~Received 8 August 2002; accepted 7 March 2003!

A generalization of existing SU~2! results is obtained. In particular, the source-free
Gauss law for SU~3!-valued gauge fields is solved using a non-Abelian analog of
the Poincare´ lemma. When sources are present, the color-electric field is divided
into two parts in a way similar to the Hodge decomposition. Singularities due to
coinciding eigenvalues of the color-magnetic field are also analyzed. ©2003
American Institute of Physics.@DOI: 10.1063/1.1572198#

I. INTRODUCTION

Gaining knowledge about the solutions of Gauss’s law is important in view of the centra
that the law plays in quantizing Yang–Mills theory. Usually the Gauss law is ignored in
classical Hamiltonian formalism and then reintroduced at the quantum level as a condition
physical states. Yet in order to remove the redundant degrees of freedom from the Hamilton
need a different approach. One way of addressing this problem is to search for a met
parametrize the dynamical variables of the theory so that Gauss’s law is satisfied identicall
unconstrained variables thus obtained will then describe the physical degrees of freedom of
Mills theory. In Refs. 1–12 a number of methods for working out parametrizations of this kin
presented, but yet another approach was proposed some years ago by Majumdar and Sha
dra in Ref. 13. They parametrized the solutions of the SU~2! Gauss law

(
k51

3

¹k~A!Ek50,

~1!

¹k~A!5]k1 ig@Ak~x!,•#

by expressingEk as a sum of a covariant curl and a gradient thus obtaining an SU~2! generaliza-
tion of the Poincare´ lemma. In order to make use of this decomposition in QCD we nee
generalize the results of Ref. 13 to SU~3!, and it is the purpose of this paper to provide such
extension. Hopefully, the parametrization could then serve as a starting point for deve
Hamiltonian formalism according to the lines sketched above. Besides Gauss’s law, the d
position might also be useful in parametrizing the non-Abelian generalization of the Cou
gauge

(
k51

3

¹k~A!Ȧk50

proposed by Cronstro¨m.14

a!Electronic mail: Antti.Salmela@Helsinki.Fi
25210022-2488/2003/44(6)/2521/13/$20.00 © 2003 American Institute of Physics
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II. SU„3… ALGEBRA

Write every element of the SU~3! algebra in the form

A5 1
2A

ala ,

where thela’s stand for the Gell–Mann matrices

lalb5 2
3 dab13331~dab

c1 i f ab
c!lc .

Summation over repeated indices is implied. An inner product between two algebra elem
given by the Killing form

~A,B!5habA
aBb56 Tr~AB!,

hab52 f ac
df bd

c53dab .

We have chosen the convention where the inner product is positive definite. This inner p
defines a norm, which will be denoted byu•u. Thed tensor can be used to define a matrix-valu
product

A* B5 1
2dab

cAaBblc5$A,B%2 1
9~A,B!1333 .

In addition to the Jacobi identity there exist several other identities involving the structure
stants of the algebra. They were worked out in Ref. 15,

f ea
ddbc

e1 f eb
ddca

e1 f ec
ddab

e50, ~2a!

f ea
bf cd

e5 2
3 ~dacd

b
d2dadd

b
c!1dac

eded
b2dec

bdad
e , ~2b!

dad
edeb

c1dbd
edea

c1ded
cdab

e5 1
3~dabd

c
d1db

cdad1da
cdbd!, ~2c!

3dea
bdcd

e5dacd
b

d1dadd
b

c2da
bdcd1 f ac

ef de
b1 f ad

ef ce
b . ~2d!

These relations correspond to the matrix identities

@A* B,C#1@B* C,A#1@C* A,B#50, ~3a!

A* @B,C#1B* @A,C#1@C,A* B#50, ~3b!

@A,@B,C##5 2
9~A,B!C2 2

9~A,C!B1C* ~A* B!2B* ~A* C!, ~3c!

A* ~B* C!1B* ~C* A!1C* ~A* B!5 1
9~A,B!C1 1

9~B,C!A1 1
9~A,C!B, ~3d!

3A* ~B* C!5 1
3~A,C!B1 1

3~A,B!C2 1
3~B,C!A1@@A,C#,B#1@@A,B#,C#, ~3e!

Eq. ~2a! giving rise to both of the relations~3a! and~3b!. Modifying the conventions of Ref. 15 by
some numerical factors, define two invariants of the algebra

I 2~A!5uAu2, ~4a!

I 3~A!5~A,A* A!536 detA. ~4b!

They remain unchanged under the adjoint action of the group

A→V†AV, VPSU~3!. ~5!

Given a matrixA one can define, following Ref. 15, another matrixÂ
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Â5I 3~A!A2I 2~A!A* A ~6!

with the properties

@A,Â#50, ~A,Â!50.

This suggests that we should define a third invariant by

I 8~A!5uÂu25I 2~A!~ 1
9I 2~A!32I 3~A!2!. ~7!

DiagonalizingA with a transformation of the form~5! one can see thatI 8 vanishes if and only if
A has two coinciding eigenvalues. In the generic caseI 8 is strictly positive, though.

III. OUTLINE OF SOLUTION

In order to solve the Gauss law with sources

(
k51

3

¹k~A!Ek5J0 , ~8!

take an ansatz of the form

Ek5 (
l ,m51

3

eklm¹l~A!Cm1¹k~A!f, ~9!

with the covariant derivative¹k(A) defined in Eq.~1!. Analogously with the ordinary Hodge
decomposition, definef as a solution to the covariant Poisson equation

(
k51

3

¹k
2~A!f5J0 . ~10!

This equation has been analyzed in detail in Ref. 16 and it proves to be solvable forf under
certain fairly general conditions. Moreover, iff is assumed to vanish sufficiently rapidly
infinity, the solution is also unique. Incidentally, Majumdar and Sharatchandra also includ
covariant gradient term in their ansatz for the source-free Gauss law,13 but their subsequen
calculations17 indicate that the gradient degrees of freedom are generically redundant. I
Appendix, the question whether the ansatz~9! contains enough degrees of freedom to cover
space of color-electric fields is discussed, however, for the moment take the ansatz~9! for granted.
Combining now Gauss’s law with the covariant divergence of Eq.~9! yields

(
k51

3

ig@Bk ,Ck#50, ~11!

whereBk is the color-magnetic field

Bk5 (
l ,m51

3

eklmS ] lAm1
1

2
ig@Al ,Am# D .

Equation~11! could be solved by converting it into a system of real-valued equations and app
standard tools of linear algebra such as the Gauss elimination method. However, the elim
procedure would give very little insight into the algebraic nature of Eq.~11! and the solution
obtained in this way would be complicated and formal. For this reason a less straightfo
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method is preferred, which gives simpler solutions and makes algebraic features more trans
To begin with, let us parametrize the images of the commutators appearing in Eq.~11!. More
precisely, each commutator takes a matrix value

ig@Bk ,Ck#5Fk , ~12!

where Fk must satisfy certain consistency conditions so that Eq.~12! can be solved forCk .
Making use of the following property of the inner product,

~X,i @Bk ,Ck# !52~ i @Bk ,X#,Ck!,

we see thatFk must be orthogonal to all matrices that commute withBk . Equation~12! is properly
solved in the next section, and it will turn out that in the generic case the solvability cond
read

~Fk ,Bk!50, ~Fk ,B̂k!50, ~13!

whereB̂k is defined according to Eq.~6!. The geometric content of Eqs.~11!–~13! becomes cleare
if we start regarding each matrix of the SU~3! algebra as an octet vector. The problem of para
etrizing the solutions of Eq.~11! is then reduced to parametrizing all possible sets of three vec
Fk which satisfy the equation

(
k51

3

Fk50 ~14!

and the orthogonality conditions~13!. This task is simplified by a suitable choice of a basis for
SU~3! algebra. Generically, the following set of vectors will serve as a basis:

i @Bk ,Bl #, k, l ,

i @Bk ,B̂l #1 i @B̂k ,Bl #, k, l , ~15!

x1 , x2 .

Herex1 andx2 are some vectors which are orthogonal to all of the six vectorsBk andB̂k . We can
define them as determinants

x j5
1
2ea1¯a6b

cB1
a1B̂1

a2B2
a3B̂2

a4B3
a5B̂3

a6h j
blc , j 51,2

where theh j ’s are some constant octet vectors. Takingh j parallel to some Gell–Mann matrixla

would reducex j to a 737 determinant. To see the linear independence of the set~15! let us
consider the equation

i (
k,1

akl@Bk ,Bl #1 i (
k,1

âkl~@Bk ,B̂l #1@B̂k ,Bl # !1b1x11b2x250. ~16!

Taking the inner product with respect toBm and B̂m leads to the following pair of equations:

akl~Bm ,i @Bk ,Bl # !1âkl~Bm ,i @Bk ,B̂l #1 i @B̂k ,Bl # !50,

akl~B̂m ,i @Bk ,Bl # !1âkl~B̂m ,i @Bk ,B̂l #1 i @B̂k ,Bl # !50,

with mÞkÞ l . These equations have no nontrivial solutions if
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~~Bm ,i @Bk ,Bl # !~B̂m ,i @Bk ,B̂l #1 i @B̂k ,Bl # !2~B̂m ,i @Bk ,Bl # !~Bm ,i @Bk ,B̂l #1 i @B̂k ,Bl # !!Þ0.
~17!

Generically this condition is satisfied, since none of the identities~3! implies that the expression
inside the parentheses should vanish. It is also possible to verify numerically, that is by ass
some test values to the vectorsBk , that this expression does not vanish identically. In the sa
way we see that the remaining coefficientsb1 andb2 in Eq. ~16! vanish if

~x1 ,x1!~x2 ,x2!2@~x1 ,x2!#2Þ0. ~18!

As before, this is generically satisfied because the left-hand side does not vanish identical
linear independence of the set~15! thus proven in the generic case, we use it as a basis for
vectorsFk ,

Fk5 i(
l 51
lÞk

3

~akl@Bk ,Bl #1âkl~@Bk ,B̂l #1@B̂k ,Bl # !!1b1,kx11b2,kx2 . ~19!

It should be noted that only six basis vectors are needed due to the orthogonality condition~13!.
Substituting now these expansions into Eq.~14! gives the following relations:

akl2a lk50, âkl2â lk50,
~20!

(
k51

3

b1,k50, (
k51

3

b2,k50.

Let us finally count the number of degrees of freedom. Equation~20! states that the matricesa and
â are symmetric. Since four of the six coefficientsb i ,k are independent, the total number of fre
variables is 2331232510. This is the number of coordinates needed to parametrize three
dimensional vectorsFk satisfying the eight-component equation~14!. We have thus found al
solutions to Eqs.~13! and ~14! in the generic case, expressed in the form of expansion~19!
satisfying the relations~20!. Naturally there are nongeneric cases when either of the condi
~17! and~18! fails and the set~15! becomes linearly dependent. In those cases we must cho
different basis for the SU~3! algebra or at least replace the ill-behaved vectors of the set~15! with
linearly independent ones. The method of solving Eq.~14! remains the same even if the basis
modified.

IV. INVERSE OF THE COMMUTATOR

The vectorsFk now known, it remains to solve Eq.~12! for the Ck’s. Since the indicesk are
fixed at this stage, omit them for a moment and consider the equation

ig@B,C#5F. ~21!

To obtain the solvability conditions forF we must determine the zero modes of the commuta
For that purpose, let us express the left-hand side of Eq.~21! using octet vector notation

@B,C#a5 iM a
cC

c,

where

Ma
c5 f bc

aBb.

The characteristic polynomial ofM becomes simpler to evaluate if we diagonalizeB by a suitable
unitary transformation of the form~5!,
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V†BV5 1
2b

3l31 1
2b

8l8 , VPSU~3!. ~22!

On the other hand, this transformation can equivalently be implemented by an orthogona38
matrix O

~V†BV!a5Oa
bBb.

Since the structure constantsf ab
c transform as a tensor, we have

Ma
c5Ob

aOd
cO

e
f f ed

b~O3
fb31O8

fb8!5Ob
aM̃b

dOd
c ,

M̃b
d5b3f 3d

b1b8f 8d
b .

A straightforward calculation now gives

det~M2x1838!5det~M̃2x1838!5x2$x61 3
2@~b3!21~b8!2#x41 9

16@~b3!21~b8!2#2x2

1 1
16~b3!2@~b3!223~b8!2#2%.

With the help of the invariants~4a! and ~7!,

I 2~B!53@~b3!21~b8!2#,

I 8~B!59~b3!2@~b3!21~b8!2#@~b3!223~b8!2#2,

the characteristic polynomial can be written as

det~M2x1838!5x2Fx2S x21
1

4
I 2D 2

1
1

48

I 8

I 2
G .

The commutators thus fall into three classes according to the number of zero modes:

~1! I 2.0, I 8.0. This is the generic case, when all eigenvalues ofB are distinct. The zero mode
are given byB itself and the matrixB̂ defined in Eq.~6!.

~2! I 2.0, I 850. In this caseB is nonvanishing but has two coinciding eigenvalues. One
conjugateB into the direction ofl8 ,

B5V~ 1
2b

8l8!V†. ~23!

There are four zero modes, which are obtained by conjugating all the Gell–Mann matrice
commute withl8 , i.e., they have the form

V~ 1
2la!V†, a51,2,3,8.

~3! I 250, I 850. This case is trivial, becauseB vanishes.
Let us now solve Eq.~21! in the generic case. There are solutions only ifF is orthogonal to

the zero modes of the commutator, i.e.,

~F,B!50, ~F,B̂!50.

Introducing a projection operator

P~F !5F2
1

I 2~B!
~B,F !B2

1

I 8~B!
~B̂,F !B̂, ~24!

the conditions onF can also be expressed as a single equation
                                                                                                                



s

es

ssion

2527J. Math. Phys., Vol. 44, No. 6, June 2003 An algebraic method for solving the SU(3) Gauss law

                    
F5P~F !.

Equation~21! can thus be replaced by

ig@B,C#5P~F !. ~25!

The general form of the solutionC is

Ca5ta
bFb, ~26!

where the tensort depends only onB, becauseC must be linear inF. The basis for all such tensor
was given in Ref. 15, and substituting it into Eq.~26! yields the following ansatz:

C5a1F1a2B* F1a3B̂* F1a4@B,F#1a5@B̂,F#1a6B* @B̂,F#1a7B1a8B̂.

Using identities~3! the commutator of this expression becomes

@B,C#5S I 2

6
a42

I 8

12I 2
a6DF1S 3I 3

2I 2
a42

3I 8

2I 2
2

a5D B* F2S 3

2I 2
a41

3I 3

2I 2
a51

I 2

12
a6D B̂* F

1S a11
I 3

2I 2
a22

I 8

I 2
2

a3D @B,F#2S 1

2I 2
a21

I 3

I 2
a3D @B̂,F#2a3B* @B̂,F#

2
1

3
a4~B,F !B1

1

6I 2
a6~B̂,F !B̂2S 1

6
a51

I 3

12I 2
a6D ~~B̂,F !B1~B,F !B̂!. ~27!

Inserting expansions~27! and~24! into Eq. ~25! and equating terms of the same form determin
six of the coefficientsai ,

a150, a250, a350,

a452
i

g

3

I 2
, a552

i

g

3I 3

I 8
, a65

i

g

6I 2

I 8
.

Hence, the solution to Eq.~25! is

C52
3i

g S 1

I 2
@B,F#1

I 3

I 8
@B̂,F#2

2I 2

I 8
B* @B̂,F# D1a7B1a8B̂. ~28!

This formula becomes singular whenI 8 tends to zero. In this limitB can be written in the form
~23!. The orthogonality conditions onF are

~V~ 1
2la!V†,F !50, a51,2,3,8. ~29!

When these requirements are fullfilled, it is straightforward to see that the following expre
satisfies Eq.~21!:

C52
4i

g

1

I 2
@B,F#1VS 1

2
a1l11

1

2
a2l21

1

2
a3l31

1

2
a8l8DV†. ~30!

Formulas~28! and ~30! thus solve the commutator equation~21! in the two nontrivial cases.
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V. RESULTS

We are now ready to write down the general solution to Eq.~11!. In the generic case the
expansions~19! parametrize all possible values for the commutators~12!. Substituting these ex
pansions into Eq.~28! and simplifying the result with the identities~3! yields the solution

Ck5
1

g (
l 51
lÞk

3

@~akl1I 3
~k!âkl!Bl1âkl~B̂l22I 2

~k!Bk* Bl !#1
1

g (
j 51

2

b j ,kc j ,k1gkBk1ĝkB̂k , ~31!

where

Pk~c j ,k!523i S 1

I 2
~k!

@Bk ,x j #1
I 3

~k!

I 8
~k!

@B̂k ,x j #2
2I 2

~k!

I 8
~k!

Bk* @B̂k ,x j # D ,

~32!
I i

~k![I i~Bk!,

and Pk stands for the projection operator of Eq.~24!. The symmetry relations~20! must hold,
while the zero mode coefficientsgk andĝk are arbitrary. Those parts of the solution correspond
to the two vectorsx j have been left unsimplified. Of course, simplifications can be perform
using the results of Ref. 18. In particular, it is shown there how the eighth rank permu
symbol can be expressed in a form involving only the structure constantsf ab

c and dab
c . Con-

structing all possible sixth rank tensors that are antisymmetric in five indices and contracting
with the vectorsBl , B̂l ( lÞk), andh j would give us the vectors needed to reduce the expres
~32!. Unfortunately there is such a large number of these tensors that the resulting formula
be unduly long. The unsimplified formula~32! seems to be the shortest expression that can
obtained. Still there is a relatively simple formula at hand if we diagonalizeBk with a transfor-
mation of the form~22!. Making use of the fact that the eighth rank permutation symbol tra
forms as a tensor under the adjoint action~5! leads to

Pk~c j ,k!5
1

A3
I 2

~k!ck
abD38b

~ j ,k!VkS 1

2
laDVk

† , ~33!

where

Dabc
~ j ,k!5eabd1¯d5c~Vk

†BlVk!
d1~Vk

†B̂lVk!
d2~Vk

†BmVk!
d3~Vk

†B̂mVk!
d4~Vk

†h jVk!
d5,

lÞmÞk,

ck
1252ck

215 1
3@~bk

3!223~bk
8!2#,

ck
4552ck

545 2
3bk

3~bk
32A3bk

8!,

ck
6752ck

7652 2
3bk

3~bk
31A3bk

8!,

and all the other components of the matrixck vanish.
In order to avoid singularities in the limit when two eigenvalues ofBk coincide we must find

a way to regularize the vectorsc j ,k . This singularity is present in Eq.~28!, but it does not mean
that the solution~31! would have to be singular. Actually, even the first six vectors of the b
~15!, when inserted into Eq.~28!, produced singular terms, but these terms were proportiona
the zero modesBk andB̂k . The singularities could then be removed by redefining the zero m
coefficientsgk and ĝk , and the same procedure can also be applied to the vectorsc j ,k . Specifi-
cally, let us define
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c j ,k52
1

2A3
I 2

~k!c̃ j ,k
a VkS 1

2
laDVk

† , ~34!

with

c̃ j ,k
a 5

1

3
@~bk

3!223~bk
8!2#«123

abcDb8c
~ j ,k!2

2

3
bk

3~bk
32A3bk

8!S 1

2
«453

abc1
A3

2
«458

abcD SA3

2
Db3c

~ j ,k!2
1

2
Db8c

~ j ,k!D
2

2

3
bk

3~bk
31A3bk

8!S 2
1

2
«673

abc1
A3

2
«678

abcD S 2
A3

2
Db3c

~ j ,k!2
1

2
Db8c

~ j ,k!D ,

where« i jk
abc stands for the three-dimensional permutation symbol with indices taking the valui,

j, andk. Equations~34! and~33! are equivalent apart from terms which are proportional to the z
modes. We can now pass to the limit when two eigenvalues ofBk coincide. Let us assume that th
eigenvalues are ordered so that

bk
31

1

A3
bk

8>2bk
31

1

A3
bk

8>2
2

A3
bk

8,

which means that the largest eigenvalues coincide in the limitbk
3→0. In this limit the vectorsc j ,k

are reduced to

c j ,k→
1

6A3
~ I 2

~k!!2«123
abcDb8c

~ j ,k!VkS 1

2
laDVk

† . ~35!

In order to show that this expression is single-valued we must verify that it is invariant u
transformations which also leaveBk invariant. AsBk now takes the form~23!, the transformations
in question are the SU~2!3U~1! reparametrizations of the matrixVk defined by

Vk→Vkv,
~36!

v5expF i

2
~u1l11u2l21u3l31u8l8!G .

These transformations take

la→Pa
a8la8

Db8c
~ j ,k!→Pb

b8Pc
c8Db88c8

~ j ,k! ,

Pa
a85FvS 1

2
laDv†Ga8

,

and as a result

c j ,k→~ det
333

P!c j ,k ,

det
333

P5«123
abcPa

1Pb
2Pc

3.

Since det333 P51 for transformations of the form~36!, the solution~35! is invariant. Although this
result was derived in the case when the largest eigenvalues ofBk coincide, the form of the solution
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~34! makes it evident thatc j ,k is really single-valued regardless of which SU~2! subgroup survives
in the limit of coinciding eigenvalues. So there will be no singularities in the fieldsCk in Eq. ~31!.

So far we have found out that Eq.~11! possesses solutions which are regular everywher
space. Yet it is possible that there might be some physically relevant degrees of freedom r
at points where two eigenvalues ofBk coincide and that we should search for singular solution
Eq. ~11! in order to detect these degrees of freedom. In fact, it is widely believed that ther
singularities with local monopole-like behavior in the vicinity of points where two eigenva
coincide. Usually these singularities arise as a result of gauge fixing,19 but here they could emerg
in connection with special solutions to Eq.~11!. To determine such solutions we need to mod
the basis~15! slightly. Consider the case when one component of the color-magnetic field, saB3 ,
has coinciding eigenvalues.B3 takes the form~23! and in particularB̂350. ~The eigenvalues of
B3 need not be ordered this time.! Yet the first six vectors of the set~15! remain generically
independent whilex1 andx2 vanish. SinceF3 in Eq. ~12! now has to satisfy four orthogonalit
conditions according to Eq.~29!, we see that the vectorsx j should be replaced by two vectorsx̃ j

which are orthogonal to the space spanned by the set$B1 ,B̂1 ,B2 ,B̂2%. We can take

x̃15 i @B̂1 ,B̂2#,

x̃25@B1 ,B2#* @B̂1 ,B̂2#2@B1 ,B̂2#* @B̂1 ,B2#.

The expansion forFk now takes the form of Eq.~19! satisfying the relations~20! with the obvious
substitutions

x j→x̃ j ,

b j ,k→b̃ j ,k , k51,2,

b j ,3→0.

Inserting these expansions into Eqs.~28! and ~30! leads to the solution

Ck5
1

g (
l 51
lÞk

3

@~akl1I 3
~k!âkl!Bl1âkl~B̂l22I 2

~k!Bk* Bl !#1
1

g (
j 51

2

b̃ j ,kc̃ j ,k1gkBk1ĝkB̂k , k51,2,

~37!

C35
1

g (
l 51

2

~a3lBl1â3l B̂l !1V3S 1

2
g̃3

1l11
1

2
g̃3

2l21
1

2
g̃3

3l31
1

2
g̃3

8l8DV3
† .

Here the coefficientsg̃3
a are arbitrary andV3 is a matrix which diagonalizesB3 . The vectorsc̃ j ,k

are defined as in Eq.~32!, replacing onlyx j→x̃ j . Let us now compare the two solutions~31! and
~37! at points where two eigenvalues ofB3 coincide. As ’t Hooft mentioned in Ref. 19, this take
place at isolated points in three-dimensional space for generic magnetic fields. At such poi
vectorsc j ,1 and c j ,2 vanish, which corresponds to settingb̃ j ,k50 in Eq. ~37!. Equating theC3

components of formulas~31! and~37! with the help of Eq.~35! determines the coefficientsg̃3
a as

functions ofb j ,3 , g3 , andâ3l . However, sinceâ3l already appears in the first term of Eq.~37!,
there are effectively only three arbitrary parameters determining four unknown coefficient
accordingly, there is one more degree of freedom in the solution~37! which is not present in the
formula ~31!. In all, there are thus three degrees of freedom in the exceptional solution~37! which
cannot be obtained by taking the limit of Eq.~31!. This leaves the door open for accepting singu
solutions to Eq.~11!. In that case, though, Eq.~10! should be replaced by
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(
k51

3

¹k
2~A!f5J02 (

k,l ,m51

3

«klm]k] lCm

to compensate for the possibility that the second weak derivatives ofCm do not commute.

VI. CONCLUSIONS

This paper presents a method by which the Gauss law~8! can be solved in the case of th
SU~3! algebra using the ansatz~9!. The fact that the left-hand side of the consistency equation~11!
depends on the commutator properties of the color-magnetic field divides the solutions in
ferent classes. This paper shows the source-free part of the solution explicitly in the gener
when the set~15! is linearly independent and in the case when one component of the c
magnetic field has coinciding eigenvalues. Although the SU~2! solution of Ref. 13 was simple, its
SU~3! generalization~31! is much more complicated. The vectorsx j of the basis~15! are mostly
responsible for the complexity, and unfortunately we see no way out of this problem. We
replace thex j ’s by vectors which would be easier to invert with the formula~28!, e.g., by

i @B̂1 ,B̂2#,i @B̂1 ,B̂3#,

but then the orthogonality conditions~13! for F2 and F3 would lead to complicated relation
between the expansion coefficients. So there seems to be some kind of ‘‘conservation of tr
inherent in this problem. Anyway, it is interesting that the fieldsCk may have singularities a
points where one component of the color-magnetic field possesses two coinciding eigenvalu
explicit gauge fixing is needed to detect this singularity as it becomes apparent whenever on
to solve Eq.~11!. The method of solving this equation could also be generalized to higher di
sional SU~N! algebras in a straightforward manner, but the results would undoubtedly be
more complicated.
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APPENDIX: MOTIVATION FOR THE GENERALIZED HODGE DECOMPOSITION

In order to prove that the space of color-electric fields can be parametrized with the ans~9!
it is sufficient to show that the equations

Ek5(
l 51

3

~¹ l
2~A!Fk2 ig@Gkl ,F l # !,

~A1!

Gkl5] lAk2]kAl2 ig@Ak ,Al #52 (
m51

3

«klmBm

can be solved for the fieldFk . Making use of the identity

(
l 51

3

~¹ l
2~A!Fk2 ig@Gkl ,F l # !52 (

l ,m51

3

«klm¹l~A! (
p,q51

3

«mpq¹p~A!Fq1¹k~A!(
l 51

3

¹l~A!F l ,

we see that Eq.~A1! then takes the form of Eq.~9! with

Cm52 (
p,q51

3

«mpq¹p~A!Fq , f5(
l 51

3

¹l~A!F l . ~A2!
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This paper does not attempt to solve Eq.~A1!, but it seems fairly obvious that a solution exists.
a finite volume this equation can be converted into an integral equation after choosing su
boundary conditions so that the ordinary Laplacian

D5(
l 51

3

] l
2

has a unique inverse. The resulting integral equation can then be set into the form of a Fre
equation and solved, at least formally, using the well-known Fredholm formulas. In infinite s
this procedure would require that the fieldsEk and the gauge potentialsAk decay sufficiently
rapidly at infinity.

Equation~A1! shows that the ansatz~9! contains one redundant SU~3! algebra-valued field,
because in general there are no relations like Eqs.~A2! amongCk and f. This gives rise to a
heuristic argument in favor of the choice~10! for the fieldf, since we seem to be free to fix on
field component at will. In order to be more exact we should investigate whether the spa
color-electric fields with vanishing covariant divergences can be parametrized with the cov
curl ansatz

Ẽk5 (
l ,m51

3

«klm¹l~A!Cm , ~A3!

where

(
k51

3

¹k~A!Ẽk50,

Ẽk5Ek2¹k~A!f.

In Ref. 17 Majumdar and Sharatchandra considered an SU~2! equation of the form~A3! with
Ẽk50 and presented a method for obtaining a formal solution. Using the consistency con
~11! they eliminatedC3 and converted the remaining equations into the form of a Cauchy prob
with initial data given on the planex350. They showed that a formal solution to the Cauc
problem can be constructed in a certain generic case as a power series near the initial px3

50. Unfortunately there is an error in their reasoning concerning the convergence of the
series. Namely, they try to apply the Cauchy–Kovalevskaya theorem to equations of the fo

]3Cj5G@C1 ,C2 ,$Ak%#, j 51,2,

where the functionalG depends on second order derivatives ofC1 andC2 with respect tox1 and
x2 . In this case the Cauchy–Kovalevskaya theorem is not valid and the formal solution do
necessarily converge. The method of Ref. 17 would be easy to generalize to the case of Eq~A3!,
but the formal solution might be mathematically meaningless. Anyway, this method hints tha
~A3! can generically be solved for theCk’s and accordingly, that the space of sufficiently regu
color-electric fields with vanishing covariant divergences can be parametrized with the a
~A3!. From the mathematical point of view this problem is still open.
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An invariant action for noncommutative gravity
in four dimensions

A. H. Chamseddinea)

Center for Advanced Mathematical Sciences (CAMS) and Physics Department,
American University of Beirut, Beirut, Lebanon
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Two main problems face the construction of noncommutative actions for gravity
with star products: the complex metric and finding an invariant measure. The only
gauge groups that could be used with star products are the unitary groups. I propose
an invariant gravitational action inD54 dimensions based on the constrained
gauge group U~2,2! broken to U~1,1!3U~1,1!. No metric is used, thus giving a
naturally invariant measure. This action is generalized to the noncommutative case
by replacing ordinary products with star products. The four-dimensional noncom-
mutative action is studied and the deformed action to first order in deformation
parameter is computed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1572199#

In noncommutative field theory based on the Moyal star product1,2 the only gauge theories
that can be used are based on unitary algebras. The presence of a constant background B
open or closed strings with D-branes lead to the noncommutativity of space–time coordinate
Einstein–Hilbert action can be constructed either by insuring diffeomorphism invariance or
Lorentz invariance.3,4 This program faces difficulties when ordinary products are replaced
star products. In this case, it is not an easy matter to define a generalization of Riem
geometry. Noncommutative Riemannian geometry has been developed for noncommutative
based on the spectral triple.5,6 The difficult part in applying this formalism is to determine th
deformed spectral triple. In particular, the deformed Dirac operator is needed in order to app
formalism to noncommutative spaces where the algebra is deformed with the star produc
must also find an invariant measure. There is, however, some recent progress on
formulation.7 Recently, the effective action for gravity on noncommutative branes in presen
constant background B-field was derived and found to be noncovariant.8 This conforms to the
expectation that in this case space–time coordinates do not commute.

The approach based on gauging the Lorentz algebra also have problems, mainly th
metric becomes complex, and the antisymmetric part of the metric may have nonphysical
gating modes.9 Finding an invariant measure is also problematic in this approach. One wa
avoid the problem of finding an invariant measure is to require the action to be an inv
D-form in a D-dimensional space.10,11Experience with building gauge invariant actions which a
also D-forms in a D-dimensional space tells us that these actions are usually topologica
therefore cannot describe gravity in dimensions of four or higher.12 This is usually avoided by
imposing constraints on some components of the gauge field strengths which, in some c
equivalent to a torsion free metric theory.13 Constraints insure that the action, although me
independent, is not topological. The metric is then identified with some components of the
fields. Such constraints usually break the gauge group into a subgroup. In the noncomm
field theoretic approach to gravity this works after the constraints are imposed, provided tha
the gauge group and the remaining subgroup are of the unitary type. There is a formula
noncommutative gauge theories where the gauge group could also be of the orthogonal o
plectic type, but it turned out that there are problems associated with this formulation.14–16There

a!Electronic mail: chams@aub.edu.lb
25340022-2488/2003/44(6)/2534/8/$20.00 © 2003 American Institute of Physics
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is an alternative interpretation in the case where the constraints could be solved for some
gauge fields in terms of the others. In this case one can insist on preserving gauge invarian
nonlinear fashion, while changing the gauge transformations of those gauge fields that a
dependent in such a way as to preserve the constraints.13 In this paper we give an invarian
four-dimensional gravitational action and then generalize it to the noncommutative case
action is based on gauging the group U~2,2! broken by constraints to U(1,1)3U(1,1). One
obtains, depending on the constraints, topological gravity, Einstein gravity or conformal gr
This construction can be extended to the noncommutative case by replacing ordinary pr
with star products. We derive the deformed curvatures, the deformed action and compute
tions to first order in the deformation parameteru using the Seiberg–Witten map. We show that
this approach it is only possible to deform Gauss–Bonnet topological gravity, or conformal g
but not Einstein gravity.

The noncommutative gravitational action was derived in dimensions two and three.17–19 In
four dimensions the smallest unitary group that contains both the spin-connection and the v
which spans the group SO~1,4! or SO~2,3! is U~2,2! or U~1,3!. For definiteness we will conside
the group U~2,2!. The constraints should keep the SO~1,3! subgroup invariant. The appropriat
subgroup is U(1,1)3U(1,1). To be precise we define the U~2,2! algebra as the set of 434
matricesM satisfying20

g†G4g5G4 ,

where the 434 gamma matricesGa , a51,2,3,4 are the basis of a Clifford algebra

$Ga ,Gb%52dab ,

and where we have adopted the notationG45 iG0 andx45 ix0. The gauge fieldsAm satisfy

Am
† 52G4AmG4

and transform according to

Am
g 5g21Amg1g21]mg.

We can write

A5~ iam1bmG51em
a Ga1 f m

a GaG51 1
4 vm

abGab!dxm,

where

G55G1G2G3G4 , Gab5 1
2 ~GaGb2GbGa!.

Let

D5d1A,

D25F5~dA1A2!,

so thatF transforms covariantlyFg5g21Fg. Decomposing the field strength in terms of th
Clifford algebra generators

Fmn5 iF mn
1 1Fmn

5 G51Fmn
a Ga1Fmn

a5 GaG51 1
4 Fmn

abGab ,

whereF5 1
2Fmn dxm∧dxn, then the components are given by

Fmn
1 5]man2]nam ,
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Fmn
5 5]mbn2]nbm12em

a f na22en
af ma ,

Fmn
a 5]men

a2]nem
a 1vm

abenb2vn
abemb12 f m

a bn22 f n
abm ,

Fmn
a5 5]m f n

a2]n f m
a 1vm

abf nb2vn
abf mb12em

a bn22en
abm ,

Fmn
ab5]mvn

ab1vm
acvnc

b14~em
a en

b2 f m
a f n

b!2m↔n.

We can impose the constraints

Fmn
a 1Fmn

a5 50, or Fmn
a 2Fmn

a5 50,

which break the gauge group U~2,2! to U(1,1)3U(1,1) with generators

~16G5!$1,Gab%.

One can solve the above constraints to determinevm
ab in terms ofem

a65em
a 6 f m

a andbm . We can
rewrite the constraints in the form

]men
a12]nem

a11vm b
a en

b12vn b
a em

b112em
a1bn22en

a1bm50

or

]men
a22]nem

a21vm b
a en

b22vn b
a em

b222em
a2bn12en

a2bm50,

which imply thatvm
ab5vm

ab(em
a1 ,bm) or vm

ab5vm
ab(em

a2 ,2bm). The solutions which recover th
Einstein action are obtained by imposing both sets of constraints simultaneously as these

f m
a 5aem

a , bm50,

wherea is an arbitrary parameter.
The action which is invariant under the remaining U(1,1)3U(1,1) group is given by,21,22

I 5 i E
M

Tr~G5F∧F !,

whereF5 1
2Fmn dxm∧dxn. Notice thatG5 commutes with the generators$1,G5 ,Gab% of U(1,1)

3U(1,1) thus insuring the invariance of the action. This action is metric independent, an
expects the space–time metric to be generated from the gauge fieldsem

a and f m
a . To see this we

write the action when both sets of constraints are imposed simultaneously and the only in
dent field isem

a . The action reduces to

I 5
i

4 EM
d4x emnrseabcd~Rmn

ab18~12a2!em
a en

b!~Rrs
cd18~12a2!er

ces
d !.

There are three possibilitiesuau,1, uau51 and uau.1. The caseuau51 gives only the Gauss–
Bonnet term and is topological. The cases withuau,1 anduau.1 give also the scalar curvature an
cosmological constants with opposite signs. The Abelian gauge fieldam decouples. This theory is
different from the usual gauge formulations in that it has more vacua, and it allows for solu
with arbitrary cosmological constant. We could have restricted ourselves to SU~2,2! instead of
U~2,2! as the gauge fieldam decouples, but we did not do so because such a choice is not all
in the noncommutative case. When only one of the constraints is imposed, then the form
action does not change, whereem

a1 is taken to be the independent field, we should solve forem
a2

from its equation of motion. It is known that the action in this case gives conformal supergrav20
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We are now ready to deal with formulating an action for gravity which is invariant unde
star product. One of the main difficulties we mentioned in previous work is that the metric de
by gmn5em

a
* ena is complex9 and one has to obtain the correct action for the nonsymmetric

~or the complex part! of the metric.23,24 The other problem is related to finding an invaria
measure with respect to the star product.25 Both of these problems could be solved by adopting
formalism given above. We shall show that the deformed vierbeinêm

a remains real. Gauge invari
ance with constraints eliminates some of the superfluous degrees of freedom. The constrai
make it possible to have nontopological actions with the advantage of not introducing a m
The vierbeins are gauge fields corresponding to the broken generators. The action being a 4 form
in D54 dimensions is automatically invariant under the star product. The gauge fields tran
according to

Ãg5g̃
*
21

* Ã* g̃1g̃
*
21

* dg̃,

whereg̃ satisfies

g̃
*
21

* g̃51, g̃†* G4* g̃5G4 ,

and the gauge field strength is

F̃5~dÃ1Ã* Ã!,

where

Ã5Ãm dxm, F̃5 1
2F̃mn dxm∧dxn,

and the coordinatesxm satisfy

@xm,xn#5 iumn, @]m ,]n#50, dxm∧dxn52dxn∧dxm,

which insures thatd250. We use the property

Ã* Ã5Ãm
I
* Ãn

JTITJ dxm∧dxn5 1
2 ~Ãm

I
* sÃn

J@TI ,TJ#1Ãm
I
* aÃn

J$TI ,TJ%!dxm∧dxn,

where we have defined both the symmetric and antisymmetric star products by

f * sg[
1

2
~ f * g1g* f !5 f g1S i

2D 2

umnukl]m]k f ]n]lg1O~u4!,

f * ag[
1

2
~ f * g2g* f !5S i

2D umn]m f ]ng1S i

2D 3

umnukluab]m]k]a f ]n]l]bg1O~u5!,

andTI are the Lie algebra generators. Notice that both commutators and anticommutators
in the products, making it necessary to consider only the unitary groups. The advantage in
the Dirac matrix representation is that all the generators corresponding to an even num
gamma matrices form the subgroup U(1,1)3U(1,1) of U~2,2! while the generators correspondin
to an odd number of gamma matrices belong to the coset space U(2,2)/U(1,1)3U(1,1). There-
fore one can constrain some of the field strengths corresponding to the generators with
number of gamma matrices to zero thus breaking the symmetry. It is more difficult to solv
constraints in the noncommutative case. We shall make use of the Seiberg–Witten map to
The SW map is defined by the relation2

g̃
*
21

* Ã~A!* g̃1g̃
*
21

* dg̃5Ã~g21Ag1g21 dg!,

and whose solution is equivalent to2
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dÃm~u!52
i

4
dunr$Ãn ,~]rÃm1F̃rm!%* ,

dl̃~u!5
i

4
dunr$]nl,Ar%* ,

where we have definedg̃5el̃ andg5el. These transformations do not preserve the constra
To make these transformations compatible with the constraints one can follow the same pro
as in the commutative case. This is done by first solving the constraints and determinin
dependent fields in terms of the independent ones and then modifying the transformations o
dependent fields in such a way as to preserve the constraints.

The constraints are given by

F̃mn
a 1F̃mn

a5 50 or F̃mn
a 2F̃mn

a5 50,

and the action invariant under U(1,1)3U(1,1) is

I 5 i E
M

Tr~GD11F̃* F̃ !.

Notice that we can write F̃51
2F̃mn dxm∧dxn and F̃* F̃5 (1/22)F̃m1m2* F̃m3m4

dxm1∧dxm2

∧dxm3∧dxm4. The gauge fieldsÃm are decomposed as in the commutative case. The field stren
are given by

F̃mn~1!5 i ~]mãn2]nãm!12~2ãm* aãn1b̃m* ab̃n1ẽm
a
* aẽna2 f̃ m

a
* af̃ na2 1

4ṽm
ab

* aṽyab!,

F̃mn~G5!5]mb̃n2]nb̃m12~ ẽm
a
* sf̃ na2 f̃ m

a
* sẽna!12~ b̃m* aãn1ãm* ab̃n!1 1

8 eabcdṽm
ab

* aṽn
cd ,

F̃mn~Gab!5
1

4
~]mṽn

ab2]nṽm
ab1ṽm

ac
* sṽnc

b2ṽm
bc

* sṽnc
a!1

i

2
~ ãm* aṽn

ab1ṽm
ab

* aãn!

2 1
4 e cd

ab ~ b̃m* aṽn
cd1ṽm

cd
* ab̃n!24e cd

ab ~ ẽm
c
* af̃ n

d1 f̃ m
d
* aẽn

c!

1~ ẽm
a
* sẽn

b2ẽn
a
* sẽm

b 2 f̃ m
a
* sf̃ n

b1 f̃ n
a
* sf̃ m

b !,

for the generators with an even number of gamma matrices, and by

F̃mn~Ga!5]mẽn
a2]nẽm

a 1ṽm
ac

* sẽnc1ẽm
c
* sṽnc

a22~ b̃m* sf̃ v
a2 f̃ m

a
* sb̃n!

12i ~ ãm* aẽn
a1ẽm

a
* aãn!1 1

2 e bcd
a ~ f̃ m

b
* aṽn

cd1ṽm
cd

* af̃ n
b!,

F̃mn~GaG5!5]m f̃ n
a2]n f̃ m

a 1ṽm
ac

* sf̃ nc1 f̃ m
c
* sṽnc

a22~ b̃m* sẽv
a2ẽm

a
* sb̃n!

12i ~ ãm* af̃ n
a1 f̃ m

a
* aãn!1 1

2 e bcd
a ~ ẽm

b
* aṽn

cd1ṽm
cd

* aẽn
b!,

for the generators with an odd number of gamma matrices. In four dimensions, the action

I 5 i E
M

Tr~G5F̃* F̃ !5 i E
M

d4x emnrsTr~G5F̃mn* F̃rs!

5 i E
M

d4x emnrs~2F̃mn
1

* sF̃rs
5 1eabcdF̃mn

ab
* sF̃rs

cd !.
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Notice that although only the symmetric star product appears there are linear correctionsu to
the commutative action. As in the commutative case, the constraints have to be solved forṽm

ab in
terms ofẽm

a1 or ẽm
a2 , b̃m , and ãm . However, unlike the commutative case, it is not possible

impose both constraints simultaneously after settingb̃m50 because of the presence of the6e6v

term in F̃mn
a 6F̃mn

a5 . These two constraints become incompatible except in the special case
ẽm

a250, which corresponds to deforming the Gauss–Bonnet action. If only one constra
imposed andṽm

ab is determined from the constraint, the independent fields areẽm
a1 , ẽm

a2 , b̃m , and
ãm resulting in deformed conformal supergravity. It is not possible to obtain a deformatio
Einstein gravity as the constraints could not be imposed simultaneously.

One can expand this action perturbatively in powers ofu. This can be done by using th
Seiberg–Witten map forẽm

a1 ẽm
a2 , b̃m and ãm . These expressions are then used in the ab

constraint to determineṽm
ab . It is instructive to carry this procedure to first order inu. Applying

the Seiberg–Witten map, one gets

ẽm
a65em

a61
1

2
ukrS ak]rem

a61ek
a6~2]ram2]mar!7

i

4
eabcd~ek

b6~]rvm
cd1Frm

cd !1vk
cd]rem

b6! D
1O~u2![em

a61
1

2
ukremkr

a6 1O~u2!,

ãm5am1 1
2 ukr~ak~2]ram2]mar!2bk~]rbm1Frm

5 !2ek
a~]rem

a 1Frm
a !1 f k

a~]r f m
a 1Frm

a5 !

1 1
8 vk

ab~]rvm
ab1Frm

ab !!1O~u2![am1 1
2 ukramkr1O~u2!,

b̃m5bm1 1
2 ukrS bk~2]ram2]mar!1ak~]rbm1Frm

5 !2
i

8
eabcdvk

ab~]rvm
cd1Frm

cd ! D1O~u2!

[bm1 1
2 ukrbmkr1O~u2!.

We do not takeṽm
ab as given by the SW map, but instead substitute the above expressio

the constraint equation to determine its value. First we write

ṽm
ab5vm

ab1 1
2 ukrvmkr

ab 1O~u2!

then the constraint becomes

F̃mn
a15Fmn

a11 1
2 ukr~]menkr

a1 2]nemkr
a1 1vm

acenkr
c1 2vn

acemkr
c1 1vmkr

ac en
c12vnkr

ac em
c1

72~bmkren
a12bnkrem

a1!22~]kam]ren
a12]kan]rem

a1!!1O~u2!.

SubstitutingF̃mn
a150, andFmn

a150, we can solve forvmkr
ab to obtain

vmkr
ab 5 1

2 ~enb1Cmnkr
a 2ena1Cmnkr

b 1esa1enb1emc
1 Csnkr!,

where

Cmnkr
a 52~]menkr

a1 2]nemkr
a1 1vm

acenkr
c1 2vn

acemkr
c1 22~]kam]ren

a12]kan]rem
a1!!.

To find the deformed action we first calculate

F̃mn
1 5Fmn

1 1 1
2 ukr~]mankr2]namkr2]kam]ran1]kbm]rbn1 1

2 ~]kem
a1]ren

a22]ken
a1]rem

a2!

2 1
4 ]kvm

ab]rvn
ab!1O~u2![Fmn

1 1 1
2 ukrFmnkr

1 1O~u2!,
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F̃mn
ab5Fmn

ab1 1
2 ukr~]mvnkr

ab 2]mvnkr
ab 1vm

acvnkr
cb 2vn

acvmkr
cb 2vm

bcvnkr
ca 1vn

bcvmkr
ca

14~em
a1enkr

a2 2en
a1emkr

a2 2em
a2enkr

a1 1en
a2emkr

a1 !28i eabcd~]kem
c1]ren

d22]ken
c1]rem

d2!

22~]kam]rvn
ab2]kan]rvm

ab!2 i eabcd~]kbm]rvn
cd2]kbn]rvm

cd!!1O~u2!

[Fmn
ab1 1

2 ukrFmnkr
ab 1O~u2!.

Notice that all the above expressions are real. The appearance ofi eabcd is due to the convention
x45 ix0 so thati e12345e123051. Therefore the conformal gravity action to first order inu is given
by

I 5 i E d4x emnls~eabcdFmn
abFls

cd 1ukr~2em
a1en

a2Flskr
1 1eabcdFmn

abFlskr
cd !!1O~u2!,

where we have dropped total derivative terms. The deformation to the Gauss–Bonnet ac
obtained from the above expression by settingem

a250. It would be instructive to compare thi
action with the one obtained from the Born–Infeld effective action in String theory where the
Bmn has a constant background.8 One can also compare these results by following the result
Jackiw–Pi26 by defining covariant coordinate transformations on noncommutative spaces.
importantly is to compare this result with the spectral action for a deformed spectral
(Ã,H̃,D̃) whereÃ5 l (A), l is the left twist operator.27 The difficult part is to obtain the deforme
operatorD̃ and it is hoped that the above formulation will give some hints on how to find
appropriate Dirac operator.

To summarize, we have proposed a four-dimensional gravitational action valid for both
mutative and noncommutative field theories. This action differs from the familiar gravitat
action in that it allows for other vacua besides those of the metric theory. The noncommut
is obtained by replacing ordinary products with star products. The action is gauge invariant a
not involve explicit use of the metric. Only conformal gravity or Gauss–Bonnet topolog
gravity could be generalized to the noncommutative case as the constraints imposed on th
field strengths should be self-consistent. For some of the vacuum solutions, one of the gaug
is identified with the vierbein, and the theory becomes metric. It will be interesting to study
to generalize this proposal to higher dimensions. There are no fundamental obstacles
approach in even dimensions. In odd dimensions, however, it is not possible to impose con
in such a way as to preserve a smaller unitary group including the spin-connection genera
SO(2n11). It appears that in odd dimensions the only gravitational actions which are gen
izable to the noncommutative case are of the Chern–Simons type,28,29 and therefore must be
topological. Finally, one can study the supersymmetric version of the four-dimensional gr
tional action by considering the graded Lie-algebra U(2,2u1).

The author would like to thank the Alexander von Humboldt Foundation for support thro
a research award.
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Cubic algebraic equations in gravity theory,
parametrization with the Weierstrass function
and nonarithmetic theory of algebraic equations

Bogdan G. Dimitrova)

Bogoliubov Laboratory for Theoretical Physics, Joint Institute for Nuclear Research,
Dubna 141980, Russia

~Received 2 October 2001; accepted 20 January 2003!

A cubic algebraic equation for the effective parametrizations of the standard gravi-
tational Lagrangian has been obtained without applying any variational principle. It
was suggested that such an equation may find application in gravity theory, brane,
string and Rundall–Sundrum theories. The obtained algebraic equation was
brought by means of a linear-fractional transformation to a parametrizable form,
expressed through the elliptic Weierstrass function, which was proved to satisfy the
standard parametrizable form, but withg2 andg3 functions of a complex variable
instead of the definite complex numbers@known from the usual~arithmetic! theory
of elliptic functions and curves#. The generally divergent~two! infinite sums of the
inverse first and second powers of the poles in the complex plane were shown to be
convergent in the investigated particular case. Some relations were found, which
ensure the parametrization of the cubic equation in its general form with the Weier-
strass function. ©2003 American Institute of Physics.@DOI: 10.1063/1.1560855#

I. INTRODUCTION

The synthesis of algebraic geometry and physics has been known for a long time, beg
from the chiral Potts model, the algebraic Bethe ansatz~for a review of these aspects see Ref.!
and ending up with orbifold models of string compactification.2 In the context of string theories
the application of algebraic curves, related to Fermat’s theorem, has also been pointed ou3

Concerning gravitational physics, which is an inherent constituent of any string, brane or
theories, any applications of the theory of algebraic curves are almost absent. In this
perhaps one of the most serious attempts was undertaken in the recent paper by Kranio
Whitehouse.4 Based on a suitably chosen metric of an inhomogeneous cosmological mode
introducing a pair of complex variables, the authors have succeeded in obtaining anonlinear
partial differential equation, parametrized by the well-knownWeierstrass function~for a classical
introduction in the theory of elliptic and Weierstrass functions, see Refs. 5–7!. This convenient
representation enabled the authors to express important physical quantities such as the
constant and the scale factor through the Weierstrass and the Jacobi theta functions. In
analogy has been used with the motion of a body in the field of a central force, depending
inverse powers of the radial distancer . Then the solution of the trajectory equation is expresse
terms of elliptic and Weierstrass functions.8

Some important conclusions immediately follow from the paper by Kraniotis
Whitehouse,4 and they provide an impetus towards further investigations. The first two con
sions are correctly noted by the authors themselves:~1! Other cases may exist, when solutions
nonlinear equations of general relativity might be expressed in terms of Weierstrass or
functions,9 associated with Riemann surfaces.~2! The differential equations of general relativity i
a much broader context might be related to the mathematical theory ofelliptic curves and modular
forms ~for an introduction, see Refs. 10–12! and even to the famous Taniyama–Shimura conj

a!Electronic mail: bogdan@thsun1.jinr.ru
25420022-2488/2003/44(6)/2542/37/$20.00 © 2003 American Institute of Physics
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ture, stating that every elliptic curve over the field of rational numbers is a modular one.
short review of some of the recent developments in thearithmetic theory of elliptic curves, the
interested reader may consult also Ref. 13.

In this article an essential algebraic ‘‘feature’’ of the gravitational Lagrangian will be pro
which is inherent in its structure, mostly in its partial derivatives. This ‘‘algebraically inherent
structure’’ represents the third conclusion, which in a sense may be related to the prob
discussed in Ref. 4.

However, this algebraic feature will become evident under some special assumptions.
in standard gravitational theory it is usually assumed that the metric tensor has an inverse
the so called theories of spaces with covariant and contravariant metrics (and af
connections)14 instead of an inverse metric tensor one may have another contravariant tensoḡ jk,
satisfying the relationgi j ḡ

jk[ l i
kÞd i

k . But then, sincel i
k cannot be determined from any physic

considerations and at the same time the important mathematical structure from a physical p
view is the gravitational Lagrangian, a natural question arises:Is it possible that in such a theor
with a more general assumption with respect to the contravariant metric tensor, the gravita
Lagrangian is the same (scalar density) as in the usual case, provided also that the usua
nection and the Ricci tensor are also given? From a physical point of view, this is the ce
problem, treated in this article, and the answer, which is given, is affirmative. Namely, it has been
shown that ifei are the components of the covariant basic vectors, anddXj are the components o
a contravariant vector field~which, however,are not contravariant basic vectors and therefo

eidXk[ l̄ i
kÞd i

k), thenthey satisfy a cubic algebraic equation. Of course, ifdXi are to be found
from this equation, then it can be shown thatḡ jk will also be known because of the relationḡ jk

5dXjdXk.
The obtainedcubic algebraic equationcan be expressed in a very simple form, but unfor

nately it is not easy at all to solve it. That is why a mathematical approach for dealing with
an equation has been developed, on which any further physical application will be base
equation has been derived in two cases—whend2Xi[0 and whend2XiÞ0. As will be shown, the
first assumption means thatdX haszero-vorticity components~and nonzero divergency, however!,
and in physical considerations this restriction can be imposed. The second assumption woul
that dX has bothnonzero divergency and nonzero vorticitycomponents. From the mathematic
theory of cubic equations, the investigation of the two cases will not be different, because
second case only the algebraic variety from the first case~with dXi) will be supplemented with the
componentsd2Xi . The algebraic equation may enable one to make a kind of classification~from
an algebraic point of view! of the contravariant tensors, satisfying the same gravitational Lagr
ian.

So far, the problem investigated here may seem to be of pure ‘‘mathematical’’ interest,
may also have numerous physical applications. In supergravity theories, ADS/CFT,
dimensional and brane theories,15–17 one deals with an action, consisting of a gravitational p
added to a~for example! string action of the kindSstr.[2 T/2*d2jA2hhab]aXm]bXm , where
Xm are the string coordinates,hab is the world sheet metric tensor,T is the string tension and th
partial derivatives]a are taken with respect to the world sheet coordinatesja5(t,s). One can
easily guess that the above described methodology can easily be applied to the string par
action. More concretely,hab may be expressed ashab5djadjb, the gravitational metric tenso
may be assumed to depend on the string coordinates and the derivatives of the string coo
will be taken with respect to the world sheet coordinatesja. Also, the partial derivatives in the
gravitational part of the action may also be taken with respect to the coordinatesja. As a result,
taking the gravitational and the string part of the action together and without applying any
tional principle, one would get the same kind of cubic algebraic equation as the one which w
proposed in this article. In a sense, this dependence ofgi j on the string coordinates is a sort o
coupling between the gravitational part of the action and the string one, and the resulting
equation may be called ‘‘an algebraic equation for the effective parametrization of the to
Lagrangian in terms of the string coordinates.’’ Provided that the gravitational Lagrangian d
pends also on thefirst and second differentialsof the metric tensor, the first variation of th
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Lagrangian can be regarded also as a cubic algebraic equation with respect to the differen
the vector field.18

There is also another interesting problem, which is related to the current trends in ADS
correspondence19 and the WZW theory of strings on a curved background.20,21 For example, in
WZW theory it is not clear how to relate the two-dimensional string worldsheet symmetries t
global symmetries~global coordinates! of the three-dimensional ADS space–time, in terms
which the parametrization of the group element is presented. If one has the ADS metric~and the
ADS hyperboloid equation!, then usually some parametrization of the global ADS coordinate
performed~usually from the viewpoint of maximum simplicity and convenience!, which satisfies
the hyperboloid equation. The formalism, developed in this article on the base of cubic alg
equations, gives a possibility to find some other parametrizations. For example, the~three-
dimensional! ADS space–time has a boundary which can be found when one of the~global!
coordinates tends to infinity~for exampler→`), and thus a two-dimensional space is obtain
which can be identified with the one, on which the world-sheet coordinates are define
‘‘identification’’ one may mean that not the two-dimensional coordinates, but only the R
tensors and the Christoffel connections of the two space–times can be identified. Then, and
further be shown in the general case, the obtained in this article cubic algebraic equation w
an opportunity to relate one of the differentials with the Weierstrass function. In such a way
obtains a system of two equations in partial derivatives, from where the parametrizations
found. In principle, 211 dimensional gravity and the WZW model of strings on an ADS ba
ground are very convenient for application of the algebro-geometric approach. Another inter
moment in these theories is that very often one has to deal with the ADS metric, writt
different coordinates~including the two-dimensional coordinates of the world-sheet!, and it may
be supposed that the transition from one system of coordinates to another can probably b
by a linear-fractional transformation, which will be invesigated in this article. From this algeb
point of view, it is interesting to investigate the coordinate transformations in Ref. 22 and in
23.

Now some basic facts about the mathematical theory of cubic hypersurfaces24 will be men-
tioned, which puts the emphasis especially on the classification of points on the cubic hyp
face, minimal cubic surfaces, two-dimensional birational geometry and quasi-groups. But n
crete applications of cubic curves are given. In well-known monographs,25 the general theory of
affine and projective varieties and algebraic and projective plane curves is exposed, and
examples are considered, too, but the theory of cubic forms is restricted only with Pa
theorem. A more comprehensive introduction to the algebraic theory of second- and third
curves, their normal forms, turning points~where the second derivatives of the curve’s equat
equal zero!, rational transformations, etc. are given in the book by Walker.26 Of particular relev-
ence to the present research will be the theorem26 that if f (x,y)50 is a nondegenerate cub
curve, then by introducing an affine set of coordinatesx15x/z , y15y/z and choosing the turning
point at ~0,0,1!, the curve can be brought to the formy25g(x), where g(x) is a third-rank
polynomial with different roots. However, the situation is much more interesting in the com
plane, where one may define the latticeL5$mv11nv2um,nPZ; v1 ,v2PC,Imv1 /v2.0%. Let a
mappingf : C/L→CP2 be factorized along the points of the lattice part of the complex plane
the two-dimensional complex projective spaceCP2. If under this mapping the complex coord
natesz are mapped asz→(r(z),r8(z),1) whenzÞ0 and z→(0,1,0) whenz50 @r(z) is the
Weierstrass elliptic function#, then the mappingf maps the torusC/L into the following affine
curve y254x32g2x2g3 , whereg2 and g3 are complex numbers.13 The important meaning o
this statement is that by excluding the points on the lattice which may be mapped into one
of the torus ~where the Weierstrass function has real values!, the mapping z→(x,y)
5(r(z),r8(z)) parametrizes the cubic curve. The consequence from that is also essential sin
solution of the resulting differential equation can be obtained in terms of elliptic functions.5,13,27

The parametrization is inherently connected to basic notions from algebraic geometry su
divisors and the Riemann–Roch theorem,28 which reveals the dimension of the vector space
meromorphic functions, having a pole of order at mostn at the pointz50. In the present article
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a more general parametrization of a cubic curve is considered, wheng2 andg3 are not complex
numbers ~the so called Eisenstein series g2560(v,G 1/v4 5(n,m 1/(n1mt)4 ; g3

5140(v,G 1/v6 5(n,m 1/(n1mt)6), but complex functions.It has been proved that if the Weie
strass function parametrizes again the cubic curve, then the infinite sums (in pole number
(v,G 1/vn for n51 and n52 turn out to be finite (convergent) ones, in spite of the fact that in
general case they might be infinite ones (divergent). The explanation of this fact from the point o
view of algebraic geometry remains an open problem, but it can be supposed that st
arithmetical theoryof elliptic functions and algebraic equations is contained in some other, m
general theory, which may be callednonarithmetical theory, and from this theory the standar
parametrization should also follow. The considered case of parametrization of a cubic curv
coefficient functions of a complex variable, although performed in this article in a trivial alge
manner, is the first step towards constructing such a theory. At least, a certain motivation
physical point of view is evident for constructing such a theory.

The above-presented outlook on standard parametrization implied the use of affine c
nates, which unfortunately exclude from consideration the infinity point. But the infinity p
cannot be ruled out not only from mathematical grounds, but also from physical considera
For example, in the five-dimensional Randall–Sundrum model,29,30 one has to assume a compa
tification into a four-dimensional universe from an infinite extra dimension, containing also
infinity point. From this point of view, the more convenient transformation, chosen in the pr
article, which brings the cubic curve into a parametrizable form, is thelinear-fractional transfor-
mation. This transformation allows one to parametrize with the Weierstrass function the ra
two of the parameters entering the linear-fractional transformation and, in this case, the para
in this transformation represent complex functions. Of course, the other parameters rema
fixed, leaving the opportunity to determine them in an appropriate way. In a sense, from
general grounds the appearance of the Weierstrass function in the linear-fractional transfor
might be expected, since, according to a theorem in the well-known monograph of Coura
Hurwitz,31 an algebraic curve of the kindw25a0v41a1v31a2v21a1v1a4 can be parametrized
asv5 @ar(z)1b#/@cr(z)1d# 5w(z) andw5w8(z) by means of the transformationsv5 (av1

1b)/(cv11d) andw5w1 (ad2bc)/(cv11d)2. In the casea050 ~which is the present case o
a third-rank polynomial!, w(z) will be a linear function ofr(z).

In the present article, however, the situation is quite different, since the linear-fract
transformation is applied only with respect to one of the variables (v), and in order to get the
standard parametrizable formw254v32g2v2g3 ~with g2 and g3-complex functions!, an addi-
tional quadratic algebraic equation has to be satisfied. What is more interesting is that af
parametrization is performed, the linear-fractional transformation turns out to be of a more g
kind v5 @A(z)r(z)1 (b/c) 1B(z). (d/dt) (r2(z))#/@C(z)r8(z)1D(z)1 d/c#, whereA,B,C,D
are functions ofz, and the expression forv represents arational transformation of the kind
v(z)5 P(z)/Q(z). Now from another point of view it can also be understood why it is justifia
to apply the rational transformation only with respect tov and not with respect tow. The reason
is in a well-known theorem13 from algebraic geometry that ‘‘each nondegenerate cubic curve do
not admit a rational parametrization.’’ Since each nondegenerate cubic curve can be brough
the formw25v(v21)(v2l) (lÞ0,1), the essence of the above theorem is that this~algebraic!
form cannot be satisfied by a rational parametrization ofboth v5 P(z)/Q(z) and w
5 T(z)/R(z).

The present article is organized as follows:
Section II gives some basic formulas about the so called gravitational theory with contr

ant and covariant metric tensors. In Sec. III the third-rank algebraic equation has been d
starting from the standard gravitational Lagrangian. Also, the effective parametrization pro
has been formulated in an algebraic language. In Sec. IV the general mathematical se
parametrization of the cubic equation has been discussed, and some physical motivation
application of the linear-fractional transformation from the point of view of Randall–Sund
theory has been presented. Section V shows how the cubic algebraic equation transforms u
action of the linear-fractional transformation. Section VI shows how from the transformed
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equation one can get the standard parametrizable form of the cubic equation~with g2 and
g3-complex numbers! and also thequadratic algebraic equationis derived, which has to be
fulfilled if the parametrizable form holds. The approach is valid also wheng2(z) andg3(z) are
complex functions. In Sec. VII it was proved that the nonlinear and nonpolynomial transform
from the ‘‘unbar’’ to the ‘‘bar’’ variables is also invertible, thus giving the opportunity to wr
down two of the additionally imposed equations in terms of the new ‘‘bar’’ variables. In Sec.
the Loran decomposition has been performed for the functions on both sides of the alg
equation (dr/dz)25M (z)r31N(z)r21P(z)r1E(z), where r(z) is the Weierstrass function
andM ,N,P,E are functions of the complex variablez. A system of three iterative~depending on
n) algebraic equations has been obtained, representing a necessary~but not sufficient!! condition
for parametrization of a cubic equation of a general form with the Weierstrass function. It i
occasional that the condition is called ‘‘a necessary, but not sufficient one,’’ because in pri
more algebraic equations have to be solved in order to prove the existence of such a par
zation. In Sec. IX the possible parametrization of the more simplified cubic equation@r8(z)#2

54r32g2(z)r2g3(z) has been considered, and of course the main motivation for consid
such a case is the close analogy with the well-known case, wheng2 andg3 are complex numbers
By calculating the coefficients in the negative power Loran expansion and combining them,
been proved that the sums( 1/v and ( 1/v2 represent finite~convergent! quantities. The other
equations for the other values ofm523,21 have been presented in Appendix A; those for valu
of m52k are in Appendix B and those form52k11 and m52k are in Appendix C. The
equations in these appendices in fact complete the proof that all the Loran coefficient fun
can be uniquely expressed through a combination of the finite sumsGn . The calculations are
purely technical, but they serve as a strict mathematical motivation and a proof of the ne
basic qualitative fact that the Weierstrass function can parametrize the simplified form of the
equation with coefficient functionsg2(z) andg3(z). This fact probably might represent one of th
starting points in the creation of the so callednonarithmetical theory of algebraic equations. In a
future publication it will be shown also that in the case of poles at infinity~v→`! the convergence
of the infinite sums( 1/v and( 1/v2 @when the sum( 1/vn tends to the Riemann zeta functio
j(n) Ref. 40# can be proved after applying the Tauber theorem.41

II. COVARIANT AND CONTRAVARIANT METRIC TENSOR

Usually in gravitational theory it is assumed that a local coordinate system can be defin
that to each metric tensorgi j an inverse onegjk can be defined,

gi j g
jk[d i

k5$0 if iÞk and 1 if i 5k%. ~1!

However, the notion of a reference frame can be defined in different ways in Ref. 32—coord
tetrad and monad. In the last case the contravariant vector fielddxi of an observer, moving along
a space–time trajectory, represents a reference system. In such a case one may have inste~1!

eidxj[ f i
jÞd i

j5S~ei ,dxj !. ~2!

In the context of the so called dual algebraic spaces in Ref. 33,S(ei ,dxj ) is called acontraction
operator. Assuming that an inverse operator of contractionf j

i exists, it can easily be obtained, a
in Ref. 14:

ej[ f i
jdxi . ~3!

Therefore, the metric tensor fieldg can be decomposed with respect to the contravariant b
eigenvectors in the following way:

g[gi j ~ei
^ ej ![gi j f k

i f l
jdxkdxl~ek^ el ![~dxkdxl !~ek^ el !, ~4!
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and the contravariant componentsg̃i j of the tensor fieldg are represented as a contraction of t
two vector fieldsdxi anddxj :

g̃i j [dxidxj . ~5!

It is important to realize that this definition of a contravariant tensor field is not related to
notion of infinitesimality. In order to understand this, consider a set of global coordinatesXm,
defined on the given manifold and depending also on some other~local! coordinates. Then the se
of global coordinates, regarded as functions of the local ones, can be considered as a sy
equations, defining some algebraic surface. Provided that the partial derivatives of the
coordinates with respect to the local ones are nonzero,at each point of this surfacethe corre-
spondingtangent spacecan be determined, and the differentials of the global coordinates
defined on this tangent space. If one assumes that the global differentials are infinitesimally
then either the~partial! derivatives of the global coordinates or the ‘‘local’’ differentials should
small. However, the parial derivatives cannot be small, because one considers arbitrary glo
local coordinates on the manifold. Also, if the local differentials are assumed to be small, the
will not be allowed to take arbitrary values. But this will mean that a large variety of inte
curves on the manifold should be excluded from consideration. This will be unacceptable
one would like to define integral curves through each point of the manifold and, moreov
would contradict our initial assumption about the existence of a tangent space at each poin
surface~or manifold!. Therefore, as a partial case, each of the local differentials should be all
to take arbitrary numerical values and, of course, they may be equal also to an arbitrary fu
of the local coordinates.

It might be concluded, therefore, that since the partial derivatives and the local differe
cannot be infinitesimally small, then the global differentials cannot also be infinitesimally s

Apart from the definition~5! of a contravariant tensor field, we have also the definition o
length interval in Riemannian geometry

ds2[ l 2~ r̄ ![gi j dxidxj . ~6!

If we would like to ‘‘incorporate’’ in this definition the standard definition of an inverse me
tensor asgi j g

jk[d i
k , we can set up for the ordinary inverse metric tensor

gi j [
1

l 2 dxidxj . ~7!

Therefore, in terms of the differentials, the ordinary inverse tensorgi j can be represented in th
same way as in~5!, but divided by the length interval. However, usually the length interval is
known, so from a physical point of view the definition~7! is undesirable and this is the motivatio
to deal further with the definition~5! of a contravariant tensor field. In order to distinguish t
‘‘newly’’ defined tensor in~5!, a ‘‘tilda’’ sign has been placed.

From ~3! and ~7! it follows

F 1

l 2 2gkl f i
kf j

l Gdxidxj[0. ~8!

Clearly, the requirement for existence of an inverse contraction operator is equivalent to p
l 51, i.e., assuming that there is a unit length interval, which is again physically unacceptabl
it is more natural to assume that the length interval is varying. Let us assume thatl 2 and f k

i are
known in advance. Then it can be investigated which is the algebraic variety of values odxi ,
satisfying this quadratic form. The main difficulty in this approach is thatf k

i cannot be determined
from physical considerations. That is why the aim in the next section will be to derive an alge
equation, in which known physical quantities will enter—the metric tensorgi j , the Christoffel
connectionG i j

k and the Ricci tensorRi j .
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III. CUBIC ALGEBRAIC EQUATION NOT FOLLOWING FROM A VARIATIONAL
PRINCIPLE

Further in this article it shall be assumed that ifXi are some generalized coordinates, defin
on ann-dimensional manifold with coordinates on it (x1,x2, . . . ,xn), then the differentialdXi is
defined in the corresponding tangent spaceTX of the generalized coordinatesXi

[Xi(x1,x2,x3, . . . ,xn). Even if written with a small letter, it shall be understood thatxi represent
generalized coordinates.

Our starting point for the derivation of the cubic equation will be the assumption thatin spite
of the choice for the contravariant metric tensor, the gravitational Lagrangian L52A2gR
should be the same, provided also that the Ricci tensor does not change under the definition
contravariant metric tensor. The meaning of this statement is the following.

Essentially, the gravitational Lagrangian will have two representations. Thefirst representa-
tion is based on the standardly defined Christoffell connectionG ik

l ,

G ik
l [ 1

2 gls~gks,i1gis,k2gik,s!, ~9!

and the Ricci tensor,

Rik5
]G ik

l

]xl 2
]G i l

l

]xk 1G ik
l G lm

m 2G i l
mGkm

l . ~10!

The second representationof the gravitational Lagrangian will be based on the definition~5! of
the contravariant metric tensorg̃jk5dxjdxk. Therefore, the Christoffell connection and the Ric
tensor will be different from the previous ones and will be denoted respectively byG̃ ik

l andR̃ik :

G̃ ik
l [ 1

2g̃
ls~gks,i1gis,k2gik,s!5 1

2 dxldxsgks,i1
1
2 dxldxsgis,k2 1

2 dxldgik , ~11!

R̃ik5
]G̃ ik

l

]xl 2
]G̃ i l

l

]xk 1G̃ ik
l G̃ lm

m 2G̃ i l
mG̃km

l . ~12!

The gravitational Lagrangian in thissecond representationis

L2[2A2gR52A2gg̃ikR̃ik52A2gdxidxkS ]G̃ ik
l

]xl 2
]G̃ i l

l

]xk D 2A2gdxidxk~ G̃ ik
l G̃ lm

m 2G̃ i l
mG̃km

l !.

~13!

Note that physical meaning of this Lagrangian will depend not only on the properties o
~covariant! metric tensor, but also on the first and the second differentialsdxl andd2xl . It should
be mentioned also that the notion of a metric tensor, depending on generalized coord
understood in the sense of a hypersurface~an infinite-dimensional manifold of all spacelike hy
persurfaces, embedded in a given Riemannian space–time!, has been introduced a long time ag
by Kuchar in Ref. 34. In such an approach, the description of the gravitational field esse
depends on thetangential and normal deformationsof the embedded hypersurface. In our case,
do not restrict to spacelike hypersurfaces, but the notion of the differentials begins to p
self-consistent role, similar to the dynamics and the deformations of the hypersurface in Ku
approach. Yet, the standard gravitational physics with the usual inverse metric tensor is con
in the approach proposed in this article, because one can identify the components of the
known inverse metric tensor with the components of the contravariant metric tensor, defin
terms of the differentials. Thus one can obtain asystem of first-order nonlinear differential equa
tions in partial derivatives. The solution of this system may enable one to choose such gl
~generalized! coordinates, in terms of which the usual inverse tensor will be equivalent to
contravariant one in terms of the differentials.
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Let us now use expressions~5! for the contravariant metric tensorg̃i j and~11! for the Christ-

offel connectionG̃ i j
k in order to rewrite the gravitational Lagrangian in the second representa

The first two terms in~13! can be calculated to be

2A2gdxidxkS ]G̃ ik
l

]xl 2
]G̃ i l

l

]xk D 5A2gdxidxkdxl H gis,l

]~dxs!

]xk 2
1

2
pgik,l1

1

2
gil ,s

]~dxs!

]xk J
52A2gdxidxl$pG i l

r gkrdxk2G ik
r glr d

2xk2G l ( i
r gk)rd

2xk%,

~14!

wherep is the scalar quantity

p[div~dx![
]~dxl !

]xl , ~15!

which ‘‘measures’’ the divergency of the vector fielddx. It will be more interesting to calculate
the contribution of the second term in~12!,

2A2gdxidxk~ G̃ ik
l G̃ lm

m 2G̃ i l
mG̃km

l !52 1
2A2gdxidxkdxldxm~2dglmdxsgks,i2dgikdxrgmr,l

1dgil dxrgmr,k1dgkmdxsgls,i !

2A2gdxidxkdxldxmdxsdxr@gks,igmr,l2gls,igmr,k#50,

~16!

and thefirst differential dgi j is represented asdgi j [ (]gi j /]xs) dxs[Gs( i
r gj )rdxs and Gsi

r is the
standard Christoffell connection. Therefore, the second two terms in~13! give no contribution to
the gravitational Lagrangian. This is not surprising, since the ‘‘factorization’’ of the contrava
metric tensor asdxidxj introduces an additional ‘‘symmetry,’’ due to which all the terms in~16!
cancel. That is why thesecond representationof the gravitational Lagrangian will be given onl

by the first two terms2A2gdxidxk(]G̃ ik
l /]xl 2 ]G̃ i l

l /]xk) in expression~13!.
Concerning thefirst representation of the gravitational Lagrangian, it was based on t

standard Christoffell connectionG i j
k , the Ricci tensorRik and the usual inverse metric tensorgi j .

The basic assumption at the beginning concerned the gravitational Lagrangian and the
tensor, which means that together with the inverse metric tensorgi j , another contravariant
tensor g̃i j 5dxidxj exists, which enters the expression for thefirst representation of the gravi-
tational Lagrangian

L152A2gg̃ikRik52A2gdxidxkRik . ~17!

Comparing this representation with thesecondone, given by expression~13!,

L252A2gg̃il R̃il 52A2gdxidxl$pG i l
r gkrdxk2G ik

r glr d
2xk2G l ( i

r gk)rd
2xk%, ~18!

and remembering the initial assumption, acccording to which the Lagrangian should beone and
the same in both the representations„i.e., L15L2…, one arrives at the following algebrai
equation with respect to the first differentialdxk and the second differentiald2xk:

dxidxl~pG i l
r gkrdxk2G ik

r glr d
2xk2G l ( i

r gk)rd
2xk!2dxidxlRil 50. ~19!

In the limit d2xk50 this equation assumes the form of amanifestly cubic with respect todxi

algebraic equation

dxidxjdxkpG j ( i
r gk)r2Ri j dxidxj50. ~20!
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Equation ~20! is the basic equation, which shall be investigated further in this article. M
importantly, it is manifestly cubic in the differentialsdxi . Due to this reason, one qualitativ
argument can be given in favor of such a Lagrangian. In 1988, Witten derived the Lagrangi
211-dimensional gravity in Ref. 35, which is also manifestly cubic in the chosen gauge vari
Am . The Lagrangian was obtained under the assumption that there is an isomorphism betw
abstractly introduced (d-dimensional! vector bundle with a structure group SO(d21,d) and the
tangent bundle of the given manifold, on which the metric is the induced one from the met
the vector bundle. Besides, the verbein was assumed to be invertible, but as Witten re
‘‘permitting the verbein to not be invertible seems like a minor change.’’ In the present case,
not have at all any symmetry on the tangent bundle, nor is anything supposed about the
sionality of space–time or even about the existence of the usual inverse tensor, but y
Lagrangian exibits the same cubic structure. Therefore, it may be concluded that the cubic
ture of Chern–Simons theory35 is inherent in the structure of the gravitational Lagrangian its
and not in the additional assumptions in Ref. 35, which affect the choice of the gauge variab
view of this, it might be interesting to investigate whether there is a transition from the Lagra
in our case to the Lagrangian for 211-dimensional gravity, presented in Ref. 35.

Of course, one might slightly modify the basic assumption, concerning the first represen
of the gravitational Lagrangian. For example, instead of assuming that the Ricci tensor will b
same in both representations, one might instead assume that theRicci tensor should not change
In such a case again in the limitd2xk50 the cubic algebraic equation will be in a form without th
quadratic indxi term,

dxidxjdxkpG j ( i
r gk)r2R50. ~21!

One can write down also the vacuum Einstein equations when the contravariant tensor is d
as g̃i j 5dxidxj :

05R̃i j 2
1
2 gi j R̃5R̃i j 2

1
2 gi j dxmdxnR̃mn

52 1
2 pgi j Gmn

r gkrdxkdxmdxn1 1
2 gi j ~Gkm

r gnr1Gn(m
r gk)r !d

2xkdxmdxn

1pG i j
r gkrdxk2~G ik

r gjr 1G j ( i
r gk)r !d

2xk. ~22!

Note the following subtle moment: since we have an expression equal to zero, this timeit is not
necessaryto assume that the above algebraic equation is valid under the assumption that th
tensor does not change. Therefore, Eq.~22! provides the interesting possibility for classification
all solutions of the vacuum Einsteins equations with a given metric tensorgi j and unknown
contravariant tensorg̃i j 5dxidxj . In spite of the presence of the second differentialsd2xk, Eq.~22!
can be treated on an equal footing as an algebraic equation simply by ‘‘extending’’ the alg
variety for the$dxk% variables with the new variabledyk5d2xk. However, if additionally it is
assumed that the Ricci tensor does not change under the definition of the contravariant tens~i.e.,
R̃i j 5Ri j ), then one has

~G ik
r gjr 1G j ( i

r gk)r !d
2xk5pG i j

r gkrdxk2Ri j , ~23!

and consequently all the terms withd2xk in the Einstein vacuum equations~22! drop out and the
algebraic equation becomes a cubic one with respect to the variablesdxk only. The above analyse
have the purpose to demonstrate that depending on the initial assumptions about the Ricc
or scalar curvature, the structure of the algebraic equation also changes.

In an algebraic language,25,36,37the investigated problem can be formulated in the followi
way:

Proposition 1: Let the differentials dxi( i 51, . . . ,n;n is the space–time dimension) represen

elements of an algebraic variety X5̄(dx1,dx2 . . . ,dxn). For different metric tensors (and there
fore different connectionsG i j

k and Riemannian tensors Rik), a set of polynomials (cubic algebrai
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equations) F(X̄)[0 may be obtained, which are defined on the algebraic variety X¯and belong to
the ring R@dx1,dx2, . . . ,dxn# of all third-rank polynomials. Then finding all the possible param
etrizations of some introduced generalized coordinates Xi(x1,x2,x3,...,xn) is equivalent to the

following. (1) Finding all the elements dXi of the algebraic variety X̄, satisfying the equation

F(X̄)[0. These elements will be represented in the following way:

dxi5F i~x1, . . . ,xn,gi j ~x1,x2, . . . ,xn!,G i j
k ~x1,x2, . . . ,xn!,Ri j ~x1,x2,..,xn!!. ~24!

(2) Finding all the solutions of the above system of partial differential equations.
In the present case, the algebraic equation is obtainedbefore performingthe variation of the

Lagrangian, unlike that considered in Ref. 18, when again a cubic algebraic equation ha
obtainedafter performinga variation.

Let us comment briefly on the important from a physical point of view assumptiond2xi[0,
under which the cubic equation~20! was derived. Suppose that for the set of generalized coo
natesXi[Xi(x1,x2, . . . ,xn) one has

dX[aidxi , ~25!

and let us assume that the Poincare theorem is fulfilled in respect todxi , i.e., d2xi50. Then

d2X5daidxi1aid
2xi5

]ai

]xj dxj∧dxi5S ]ai

]xj 2
]aj

]xi Ddxidxj . ~26!

Clearly,d2X50 only in the following two cases:~1! ai5const, i.e.,dXi is a full differential, and

~2! ~rota! i j [ ]ai /]x j 2 ]aj /]xi [0.

The last means that ifdxi are considered to be basic eigenvectors, thendXi havezero-vorticity
components. Throughout the whole articledXi shall be considered as a vector field component
the tangent spaceTX .

Note also that the algebraic equation~19! with first and second differentialsdxi andd2xi takes
into accounttwo important physical characteristics of the vector field dxi—the divergency p and
the vorticity (through the term d2xi). It might be required that these characteristics vanish,
p5d2xi50. In such a case one is left only with the equation

Rikdxidxk[0. ~27!

If additionally the requirement for the existence of the~usual! inverse metric tensor is imposed
then the intersection variety of the quadratic form~27! with the quadratic forms~one whend i

j

50 and the other whend i
i51)

gikdxkdxj[d i
j ~28!

has to be found. From the two last equations one easily obtains

~Rik2 1
2 gikR!dxkdxj[2 1

2 Rd i
j , ~29!

in which the left-hand side is identically zero for everydxi in view of the Einstein equations
Rik2 1

2gikR[0, but the right-hand side is zero only foriÞ j , but not also wheni 5 j . Therefore,
the Einstein equations are obtained only in one case and not in the other case. In fact, it sho
be surprising that the Einstein equations cannot be obtained for both the casesiÞ j andi 5 j . One
should remember that the usual variational procedure in general relativity takes into accou
the variation of the volume factorA2g, while in our purely algebraic treatment and without a
variation this volume factor was not subjected to any changes at all. Moreover, it is one sta
procedure to perform the variational procedure with the usual gravitational Lagrangian an
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inverse metric tensor~when the Einstein equations are obtained! and it is quite a different proce
dure to start from the other representation of the gravitational Lagrangian@where the variables to
be variated aregi j ,G i j

k ~or gi j ,k) anddxi andd2xi ] and afterwards to impose the requirement f
identification of the contravariant metric tensor with the inverse one in the form of ano
additional equation. So one should not even hope to obtain anything similar to the Ei
equations. However, as already shown, if one has the Einstein equations, one may still a
question are they satisfied under the new definition of the contravariant tensor.

IV. PARAMETRIZATION OF THE CUBIC ALGEBRAIC EQUATION „20…—A GENERAL
MATHEMATICAL SETUP

The aim of this section will be to provide some basic mathematical knowledge about p
etrization of a cubic algebraic equation with the Weierstrass function. Also, some differenc
the approach applied in this article from the standard one will be outlined.

In order to parametrize the obtained cubic algebraic equation~20!, written in its most genera
form, one has to bring it to the so called parametrizable form, which in terms of the two vari
dx̃4 anddx̃5 should be written as

~dx̃5!2[4~dx̃4!32g2~dx̃4!2g3 , ~30!

where g2 and g3 are the complex numbersg2560G4560(v 1/v4 and g35140G65(v 1/v6.
Note that the variables in~30! are different from the original variablesdx4 anddx5, since Eq.~30!
has been obtained after applying thelinear-fractional transformation

dx5[
adx̃51b

cdx̃51d
, ~31!

where a, b, c and d will be chosen to be functions of the complex variablez. This complex
variable appears as a result of the parametrization of the algebraic equation with theWeierstrass
function, which is the following complex meromorphic function:

r~z![
1

z2 1(
Ã

F 1

~z2Ã!2 2
1

Ã2G . ~32!

By parametrization it should be understood that if the variablesdx̃4 and dx̃5 in Eq. ~30! are
identified with the Weierstrass functionr(z) and it derivativer8(z), respectively,

dx̃4[r~z!, dx̃5[r8~z!, ~33!

then these two functions satisfy the algebraic equation,13 i.e.,

~r8~z!!2[4~r~z!!32g2~r~z!!2g3 . ~34!

Therefore, in terms of the algebro-geometric language, the Weierstrass function and its der
should be considered asuniformization functionsof the algebraic equation~30! and the complex
variablesz, on which they depend—a ‘‘uniformization variable.’’ The properties ofz are deter-
mined by the properties of theelliptic Weierstrass function. By definition a functionf is an
elliptic13 if it is a meromorphic and adouble-periodic one, which means the following.

~1! In a finite area of the complex plane there are no other points different from poles.
~2! For every numberm andn there exist periodsv1 andv2 of a two-dimensional lattice on

the complex plane so that the values of the functionf at the pointsz andz1mv11nv2 can be
identified,

f ~z!5 f ~z1mv11nv2!, ~35!
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where also Im(v1 /v2).0 andv5mv11nv2 is called the period of the lattice, based on the t
elementary periodsv1 andv2 . The inequality means that the rotation fromv1 to v2 should be
performed in a clockwise direction. Therefore, the summation in formulas~32! for the Weierstrass
function should be performed over all non-null elements of the two-dimensional lattice

Ã,L5$~mÃ11nÃ2!um,n,Z~ integer numbers!, Ã1 ,Ã2 ,C,Im.0%.

If the identification of the points on the lattice is performed along one direction~or axis!, and
moreoverm51, then this has the effect of rolling up the complex plane into a cylinder. If, furt
an identification is performed along the points of the other direction~axis! andv25t, then the
cylinder is rolled up to a torus.

The identification of the points on the complex plane in the definition of an elliptic functio
similar to the identification of the complex coordinates of a cosmological space–time, wh
frequently appplied in models of string null orbifold singularities and also the Randall–Sun
~R-S! model.29,30 The basic idea of the R-S model is that the process of compactification o
five-dimensional universe to our present four-dimensional universe is related to the existen
large extra dimension. In the original R-S scenario the metric was chosen to be

ds25e22krcr 5hmndxmdxn1r c
2dx5

2 , ~36!

where r c is a compactification radius,hmn is the ordinary Minkowski metric,x5,@0,p# is a
periodic coordinate,mn are four-dimensional indices andk is a scale of order of the Planck scal
Instead of the coordinatex5 , one may chose for example a fifth coordinateX55krcx5 , which in
view of the largeness of the scale factork may be assumed to range to infinity.But the infinity
point, from a purely mathematical point of view, may be treated on an equal footing with all o
points in the framework of projective geometry.7,26,38,39In the present case the infinity point sha
be realized atdX5[2 d/c after performing thelinear-fractional transformation

dX5[
adX̃51b

cdX̃51d
. ~37!

Also, the remaining four-dimensional space–time with coordinates (x1,x2,x3,x4) may be
complexified in the following way:

z15x11 ix2 ; z25x31 ix4 . ~38!

The identification of points both in the definition of an elliptic function and in one of
space–time coordinates of the investigated cosmological space–time prompts the following
tion: is the complex~uniformization! variablez in the Weierstrass function an independent one
it is inherently related to the space–time coordinates? Further, in this article it will be show
the parametrization will be performed with respect to the ratiosa/c of the complex functions in
the linear-fractional transformation~37! and also the differentialdX̃5, i.e.,

a

c
[r~z! ; dX̃5[r8~z!. ~39!

Since the variablez in the Weierstrass function is double periodic, it could be identified only w
the complex periodic variableZ3 , obtained after the space–time complexification and contain
X5 as a real part. Taking into account~39! and assuming also that the complex functionsb andd
also depend onZ3 , one obtains the following differential equation forZ3 from the expression~37!
for the linear-fractional transformation~provided that it is the same for the complex different
dZ3):
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dZ35
r~Z3!r8~Z3!1 b/c

r~Z3!1 d/c
[F~Z3!. ~40!

If we assume thatZ3 depends on some~real or complex! variablel and also that the ratiosb/c and
d/c are known, then after solving the differential equation~40!

l5E dZ3

F~Z3!
1const5 f ~Z3!1const. ~41!

Therefore, if l represents another complex variablev, then all possible complex coordinat
transformationsZ3→l5v5 f (Z3) will be fixed ~up to a numerical constant! by the requirement
for identification of the complex variable in the Weierstrass function with one of the varia
describing the cosmological space–time. However, in this article the more general case
independent variablez will be investigated.

Since further in the text the parametrization~33! will be repeatedly used, it is instructive t
give just an idea of how in classical textbooks it is proved that the parametrization~33! satisfies
Eq. ~34!. Let us take, for example, the proof, given in Ref. 13, where the basic idea is to com
the Loran expansions for the nonpositive degrees ofz for the function @r8(z)#2 and for the
polynomialar3(z)1br2(z)1cr(z)1d, wherea, b, c andd are complex numbers. If the cor
responding coefficients in the Loran expansion of these two expressions are equal, this
mean that the expressions themselves are equal. Also, it should be accounted that the f
@r8(z)#2 is aneven one, and consequently only the even~nonpositive! powers ofz in the Loran
decomposition of the two expressions should be taken into account. After performing the
decomposition, it becomes evident that equality of the two expressions is possible only ifa54,
b50, c5260G4 , andd52140G6 . Since these coefficients give exactly the algebraic equa
~34!, it follows that the Weierstrass function and its derivative~33! satisfy Eq.~34!.

It is important to stress that the ‘‘tilda’’ differentialsdx̃4 anddx̃5, which are related through
the algebraic relation~30! and the parametrization~33! with the Weierstrass function, do not resu
in any dependence between the original differentialsdx4 anddx5, which should remain indepen
dent since they are related to the independent coordinates in the gravitational Lagrangia
reason for this independence between the tilda and the nontilda differentials is that the
fractional transformation~31!, which relatesdx̃5 anddx5, introduces an additional arbitrariness
the nontilda differentials due to the arbitrary complex functionsa, b, c andd.

In the present case, however, there are some specific facts about the parametrization
obtained cubic equation. After performing the transformation~31! with the purpose of choosinga,
b, c and d to eliminate the highest~third! power of dx̃5, the obtained equation will be like Eq
~34!, but with g2 and g3 functions and not complex numbers. On the other hand, the stan
parametrization~33! with the Weierstrass function and its derivatives is validonly for g2 andg3

complex numbers. So basically there are two approaches to this problem. The first one
assume that the obtained coefficient functions should equal the complex numbersg2 andg3 . Then
the standard parametrization is applied but there are additional equations that should be s
This approach is worked out in Secs. V–VII. The second approach will be developed in Sec
and IX and it is based again on the parametrizable form of the cubic algebraic equation b
time a Loran decomposition of the coefficient functionsg2(z) andg3(z) is performed and subse
quently the obtained system of linear equations is solved with respect to the coefficients
Loran decomposition.

V. TRANSFORMED CUBIC EQUATION WITH THE HELP OF THE LINEAR-FRACTIONAL
TRANSFORMATION

In order to derive this equation, all the terms withdx5 in Eq. ~20! shall be singled out and i
can be written in the following way:

A~dx5!31B~dx5!21C~dx5!1G(4)~dx4, . . .,dx1,gi j ,G i j
k ,Rik![0, ~42!
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whereA, B andC are the following functions, depending ongi j , G i j
k , Ri j and the differentials

dxa, dxb; the indicesa,b51,2,3,4;r 51,2, . . ., 5.

A[2pG55
r g5r , ~43!

B[6pGa5
r g5rdxa, ~44!

and

C[22Ra5dxa12p~2Gab
r g5r1G5a

r gbr !dxadxb. ~45!

The functionG(4)( . . . ) is of thefollowing form:

G(4)~dx4, . . .,dx1,gi j ,G i j
k ,Rik![2Rabdxadxb1pdxgdxadxbGg(a

r gb)r . ~46!

In ~46! the indiceg51,2,3,4 and~a,b! means symmetrization with respect to the two indic
Further, after performing the linear-fractional transformation~31!, one easily obtains the new
cubic algebraic equation, written in terms of the new variablesdx̃5:

~G(4)c31aQ!~dx̃5!31~bQ1aT13c2dG(4))~dx̃5!21~aS1bT13cd2G(4)!~dx̃5!

1~bS1G(4)d3![0, ~47!

whereQ,T,S denote the following expressions:

Q[Aa21Cc21Bac12cdC, ~48!

T[2Aab1Bbc1Bad12cdC, ~49!

S[Ab21Bbd1Cd2. ~50!

In fact, the linear-fractional transformation is performed with the purpose of setting up to ze
expression before (dx̃5)3, from whereG(4) is expressed as

G(4)52
aQ

c3 . ~51!

This equation is thefirst additional equation, which is imposed in order to receive the param
zable form of the cubic equation. Let us write down in more detail Eq.~51!, in order to understand
its meaning. Making use of the expressions forG(4) andQ, it can be written in the form again o
a cubic algebraic equationwith respect to the remaining four differentials

pGg(a
r gb)rdxgdxadxb1Kab

(1)dxadxb1Ka
(2)dxa12pS a

cD 3

G55
r g5r50, ~52!

whereKab
(1) andKa

(2) are the corresponding quantities

Kab
(1)[2Rab12p

a

c S 112
d

cD ~2Gab
r g5r1G5a

r gbr ! ~53!

and

Ka
(2)[2

a

c F3p
a

c
Ga5

r g5r2S 112
d

cDRa5G . ~54!
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The indicesa,b,g51,2,3,4~but r 51,2,. . . ,5) and~a,b! mean symmetrization with respect t
the two indices. In other words, the imposed~‘‘by hand’’ ! Eq. ~51! simply fixes the cubic algebrai
equation with respect to the remaining four differentials, if one would like to parametrize
differential of the fifth coordinate with the Weierstrass function. No ratios a/c andd/c are to be
determined from this equation—later on from the equation with respect to the fifth coordinate
will be determined.

Using expression~51!, the functions standing before (dx̃5)2, dx̃5 in ~47! and also the free
term in the same equation can be written in a form of an algebraic expression with resp
a/c , b/c andb/d:

bQ1aT13c2dG(4)5d3H 23A
a

c S a

dD 2

1C
b

d S c

dD 2

12C
b

d

c

d
26C

a

d
13A

b

d S a

dD 2

1B
a

d

b

d

c

d

22BS a

dD 2

2C
a

d

c

d J , ~55!

aS1bT13cd2G(4)5d3H 23AS a

cD 2 a

d
1B

c

d S b

dD 2

12C
c

d

b

d
23B

a

c

a

d
26C

a

c
12B

a

d

b

d

13A
a

d S b

dD 2

2C
a

d J , ~56!

and

bS1G(4)d35d3H 2AS a

cD 3

1AS b

dD 3

1BS b

dD 2

2BS a

cD 2

1C
b

d
2C

a

c
22C

a

c

d

c J . ~57!

Let us now introduce the notations

a

c
[m, dx̃5[n. ~58!

Equations~55!–~57! shall be rewritten in such a way so that the terms with powers ofm will be
singled out. The rest of the terms will be denoted byF̄, M̄ andN̄ and they will contain powers o
c/d andb/d only. The transformed equations~55!–~57!, if substituted back in Eq.~47!, allow one
to write the equation in the following form:

23AS c

dD 2

m3n223AS c

dDm3n1F3AS c

dD 2 b

d
22BS c

dD 2Gm2n223B
c

d
m2n

1F26C
c

d
1B

b

d S c

dD 2

2CS c

dD 2Gmn21F26C12B
c

d

b

d
13A

c

d S b

dD 2

2C
c

dGmn1F̄n21N̄n

1F M̄2Am32Bm22Cm22
d

c
CmG[0. ~59!

The termsF̄, M̄ and N̄ have the following forms:

F̄[C
b

d S c

dD 2

12C
b

d

c

d
, ~60!

M̄5AS b

dD 3

1BS b

dD 2

1C
b

d
, ~61!
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N̄5B
c

d S b

dD 2

12C
c

d

b

d
, ~62!

In other words, we have transformed the original third-rank algebraic equation of five vari
dx1,dx2,dx3,dx4,dx5 into an algebraic equation of two variables only (m and n), but with a
higher rank~in the case it is five!.

VI. A PROPOSAL FOR STANDARD PARAMETRIZATION OF THE CUBIC ALGEBRAIC
EQUATION WITH THE WEIERSTRASS FUNCTION

By standard parametrization it shall be meant that the cubic algebraic equation sho
brought to its standard parametrizable form

ñ254m32g2m2g3 , ~63!

whereg2 andg3 are the already known complex numbers. Then one has the right to set up

ñ5r8~z!5
dr

dz
. m5r~z!. ~64!

In order to obtain the parametrizable form~63!, it is instructive to write down the obtaine
algebraic equation in the form of a third-rank polynomial ofm with coefficient functionsP1(n),
P2(n), P3(n) andP4(n), representing quadratic forms ofn and at the same time cubic algebra
expressions with respect toc/d andb/d :

P1~n!m31P2~n!m21P3~n!m1P4~n![0, ~65!

where

P1~n![r 1n21r 2n1r 3523AS c

dD 2

n223A
c

d
n2A, ~66!

P2~n![q1n21q2n1q35F3AS c

dD 2 b

d
22BS c

dD 2Gn223B
c

d
n2B, ~67!

P3~n![p1n21p2n1p3

5F26C
c

d
1B

b

d

c

d
2CS c

dD 2Gn21F26C12B
c

d

b

d
13A

c

d S b

dD 2

2C
c

dGn2C22
d

c
C,

~68!

P4~n![F̄n21N̄n1M̄ . ~69!

Let us write down the last expression in the following form,

P4~n![F̄F S n1
N̄

2F̄
D 2

1
M̄

F̄
2S N̄

2F̄
D 2G[ñ21M̄2

N̄2

4F̄
, ~70!

whereñ denotes

ñ[AF̄S n1
N̄

2F̄
D . ~71!
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In terms ofñ, the transformed equation~65! can be written as

ñ25 P̄1~ ñ! m31 P̄2~ ñ! m21 P̄3~ ñ! m1 P̄4~ ñ!, ~72!

where the coefficient functionP̄1(ñ) is

P̄1~ ñ![ r̄ 1 ñ21 r̄ 2 ñ1 r̄ 352
r 1

F̄
ñ21F N̄

F̄3/2
r 12

r 2

F̄1/2G ñ1F2r 1

N̄2

4F̄2
1r 2

N̄

2F̄
2r 3G ~73!

and

P̄4~ ñ![
N̄2

4F̄
2M̄ . ~74!

The other coefficient functionsP̄2(ñ) andP̄3(ñ) can be written analogously, but with (q1 ,q2 ,q3)
and (p1 ,p2 ,p3) in ~73! instead of (r 1 ,r 2 ,r 3). Note that unlike the expressions forr, q and p,
representing cubic algebraic expressions with respect tob/d and c/d, the corresponding ‘‘bar’’
quantities represent more complicated expressions, which are no longer polynomials. It is a
correct to consider the transformation from (p,q,r ) to (p̄,q̄, r̄ ) as a linear affine transformation
The expressionsN̄ and F̄ entering the coefficient functons of the transformation depend als
b/d andc/d , so presumably they could also be expressed through (p,q,r ). The above transfor-
mation shall be investigated further.

Our purpose will be to identify the investigated Eq. „72… ñ25 P̄1(ñ)m31 P̄2(ñ)m2

1 P̄3(ñ)m1 P̄4(ñ) with Eq. „63… ñ254m32g2m2g3 , for which we already know that the
substitution „64… can be performed. In order to obtain the standard parametrizable form of
cubic equation, one has to require that the two equations are to be made equal, which me
the polynomialsP̄1(ñ), P̄2(ñ), P̄3(ñ) and P̄4(ñ) ~depending on the variableñ) are to be made
equal to the numerical coefficients 4, 0,2g2 , and2g3 , respectively. Therefore, the following
system of equations should be fulfilled:

45 r̄ 1 ñ21 r̄ 2 ñ1 r̄ 3 , ~75!

05q̄1 ñ21q̄2 ñ1q̄3 , ~76!

2g25 p̄1 ñ21 p̄2 ñ1 p̄3 , ~77!

2g35
N̄2

4F̄
2M̄ . ~78!

The last equation~78! represents thesecondadditional equation, imposed in order to obtain t
parametrizable form of the cubic equation. Note that this equation has an extremely comp
structure: sinceN̄, F̄ and M̄ are third-rank polynomials with respect to b/d and c/d, the
equation will be ofsixth order! This causes inconvenience in investigating such equations, th
fore it is appropriate to search other variables, in terms of which the algebraic treatment w
comparatively more convenient.

Let us try to find such variables. From the first and the second equations~75! and ~76! the
terms withñ2 can be excluded, and also from the second and the third equations~76! and ~77!.
The obtained equations are

4q̄15~ r̄ 2q̄12 r̄ 1q̄2!ñ1~ r̄ 3q̄12 r̄ 1q̄3!, ~79!
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2g2q̄15~ p̄2q̄12 p̄1q̄2!ñ1~ p̄3q̄12 p̄1q̄3!. ~80!

From the last two equations the terms withñ can also be excluded and a fourth-rank algebr
equation is obtained with respect topi , qi and r i ( i 51,2,3):

~ p̄2q̄12 p̄1q̄2!~4q̄12 r̄ 3q̄11 r̄ 1q̄3!1~ r̄ 2q̄12 r̄ 1q̄2!~g2q̄11 p̄3q̄12 p̄1q̄3!50. ~81!

The above equation represents thethird additional equation, imposed in order to obtain t
parametrizable form of the cubic equation. This equation is difficult to deal with, but there
way to rewrite it in a more convenient and simple form. Let us introduce the‘‘angular’’ type
variablesl and f with the corresponding components:

l 5~ l 1,l 2,l 3!5~ l 12,l 23,l 31!5~ p̄1q̄22 p̄2q̄1 ,p̄2q̄32 p̄3q̄2 ,p̄3q̄12 p̄1q̄3!, ~82!

f 5~ f 1, f 2, f 3!5~ f 12, f 23, f 31!5~ r̄ 1q̄22 r̄ 2q̄1 , r̄ 2q̄32 r̄ 3q̄2 , r̄ 3q̄12 r̄ 1q̄3!. ~83!

In terms of these variables, the fourth-rank algebraic equation~81! will be reduced to the follow-
ing quadratic equation:

4q̄1l 11g2f 1q̄11 l 1f 31 f 1l 350. ~84!

Having found the algebraic variety for (q̄1 ,l 1,l 3, f 1, f 3), one can go back to find the algebra
variety for (p̄,q̄, r̄ ). From there by means of the inverse transformation of~73!,

r 152F̄ r̄ 1 , r 252F̄1/2r̄ 22N̄r̄ 1 , ~85!

r 352
N̄2

4F̄
r̄ 12

N̄

2F̄1/2
r̄ 22 r̄ 3 ~86!

@the same for (p,q)], one can obtain the ‘‘nonbar’’ variables (p,q,r ). As already mentioned, the
coefficient functions of the above transformation depend in a complicated way onN̄ and F̄ and
therefore onb/d andc/d. Therefore, if the dependence ofb/d andc/d on the ‘‘bar’’ variables is
known, one would have a well-determined transformation~although it is a nonpolynomial and
nonlinear one! from the ‘‘nonbar’’ variables to the ‘‘bar’’ variables (p̄,q̄, r̄ ). That is why the
purpose in the next section will be to find this nonpolynomial transformation.

Finally, it may be noted that if the parametrization of~63! with the Weierstrass function is
performed andñ5r8(z)5 dr/dz and m5r(z), then the parametrized cubic equation can
written in an integral form:

E dr~z!

A4r32g2r2g3r
5E dz. ~87!

The variablez is a complex one and it may be different from the variablesz1 andz2 , ‘‘perform-
ing’’ the complexification of the four-dimensional manifold (a51,...,4), and the integration i
performed along some contour in the complex plane.

VII. FINDING THE NONLINEAR AND NONPOLYNOMIAL INVERTIBLE
TRANSFORMATION

We shall start from expressions~66!–~68!, from where one can find

r 352A, r 253
c

d
r 3 , r 15

r 2
2

3r 3
, ~88!
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q352B, q253
c

d
q3 , q152r 2

q2

3q3

b

d
12

q2
2

9q3
, ~89!

where it has been used thatq2/q3 5 r 2 /r 3 . If expressions~89! for q5(q1 ,q2 ,q3) are substituted
into the expressions defined by~73! for q̄1 , it can be obtained

q̄152
q1

F̄
52

1

F̄
S c

d
D 2F223r 3

b

d
G , ~90!

q̄25
N̄

F̄3/2
q12

q2

F̄1/2
5

N̄

F̄3/2
S c

d
D 2F223r 3

b

d
G23q3

c

d

1

F̄1/2
, ~91!

q̄352q1

N̄2

4F̄2
1q2

N̄

2F̄
2q35q3F 3N̄

2F̄

c

d
21G1r 3F 3N̄2

4F̄2
S c

d
D 2

b

d
G2

N̄2

F̄2
S c

d
D 2

. ~92!

The corresponding equations forr 5( r̄ 1 , r̄ 2 , r̄ 3) are

r̄ 152
3r 3

F̄
S c

d
D 2

, ~93!

r̄ 25
N̄

F̄3/2
3r 3S c

d
D 2

2
3r 3 ~c/d!

F̄1/2
, ~94!

r̄ 35 r̄ 1F2
N̄

2~c/d!
1

N̄2

4F̄
1

F̄

3~c/d!2G . ~95!

From the first and second two equations it can be obtained respectively

N̄5
1

r̄ 1
F2 r̄ 2F̄1/21F̄

1

c/dG ~96!

and

~314r̄ 1
226r̄ 1!

12r̄ 1
Y21

~ r̄ 121! r̄ 2

2r̄ 1
Y1S r̄ 2

2

4r̄ 1
2 2 r̄ 3D 50, ~97!

where Y[ F̄1/2/(c/d). It is important to note thatY can be found as a solution of the abo
quadratic equation with coefficient functions, which consist only ofr̄ . Therefore

c

d
5

1

Y
F̄1/25ZF̄1/2, N̄5OF̄1/25F 1

r̄ 1
S 2 r̄ 21

1

YD G F̄1/2. ~98!

Now let us write down the corresponding equations forp from ~68!:

p1526C
c

d
1B

b

d

c

d
2CS c

dD 2

, ~99!

p2526C1S c

dD F2B
b

d
13AS b

dD 2

2CG , ~100!
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p3522C
d

c
2C. ~101!

If from the last expressionC is expressed and is substituted into~99!, an expression forb/d can
be obtained in the form

b

d
52

p1

q3F̄1/2Z
1

p3ZF̄1/2@61ZF̄1/2#

q3@21ZF̄1/2#
, ~102!

where the derived expressions~98! have also been used. In order to obtain an expression forb/d
in terms of the ‘‘bar’’ variablesp̄5(p1 ,p2 ,p3), the ‘‘nonbar’’ variablesp1 , p2 andp3 should be
expressed from the system of equations forp̄:

p̄152
p1

F̄
, p̄25

N̄

F̄3/2
p12

p2

F̄1/2
, ~103!

p̄352p1

N̄2

4F̄2
1p2

N̄

2F̄
2p3 , ~104!

and substituted into~102!. The result is

b

d
5

1

q3
F F̄1/2

Z
p̄12

~61ZF̄1/2!

~21ZF̄1/2!
S O2F̄1/2

4
Zp̄11

OF̄1/2Z

2
p̄21ZF̄1/2p̄3D G . ~105!

The only ‘‘unbar’’ variableq3 can be expressed from the first two equations~90! and~91! for q̄1

and q̄2 :

q352
Oq̄11q̄2

3Z
. ~106!

Also, from the third equation~92! for q̄3 it can be obtained

3r 3

b

d
5

8@6Zq̄313O2Z31~3OZ22!~Oq̄11q̄2!#

3O2Z3 , ~107!

and from the first equation~90! the same expression can be found to be

3r 3

b

d
5

2Z21q̄1

Z2 . ~108!

From the equality of the above two formulas one relation between the ‘‘bar’’ variables ca
found. More concretely, sinceO andZ depend only onr̄ , the relation will concern howq̄3 can be
expressed throughO,Z and q̄1 ,q̄2 . This will not be used further in the text, since our ma
purpose will be to find the ratior 3F̄/q3

2, which is to be used in the subsequent formulas

r 3F̄

q3
2 52

F̄1/2~2Z21q̄1!~21ZF̄1/2!

~Oq̄11q̄2!K1
, ~109!

whereK1 is the expression
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K1[ p̄1~21ZF̄1/2!2Z2~61ZF̄1/2!S O2p̄1

4
1

O

2
p̄21 p̄3D . ~110!

At this moment the only equation not yet used is the one which can be derived from~99!–~101!
for p2

p25
2p3 ~c/d! ~61 c/d!

21 ~c/d! S 2
c

d
1

r 3

q3
2 3p11

1

2D 1S 2p12
r 3

q3
2

3p1
2

c/d D 2
r 3

q3
2

3p3
2~c/d!3~61 c/d!2

~21 c/d!2 .

~111!

If the p variables are expressed from~103! and ~104! through their ‘‘bar’’ counterparts and al
preceeding expressions are used, the followingcubic algebraic equation with respect toF̄1/2

[T is obtained,

N1T31N2T21N3T1N450, ~112!

where N1 , N2 , N3 and N4 are complicated expressions of the ‘‘bar’’ quantities only. The
expressions will be presented in Appendix D. Therefore, the roots of this cubic equation
respect toT can be found and, consequently, the quantitiesN̄,F̄,M̄ entering the second additiona
equation~78! also can be expressed in terms of the ‘‘bar’’ variables. This in fact proves
following. ~1! The two additional equations~78! and~84!, imposed in order to obtain the param
etrizable form of the cubic equation, can be expressed in terms of the ‘‘bar’’ variables only.~2! The
nonlinear and nonpolynomial transformation from the (r ,q,p) to the (r̄ ,q̄,p̄) variables is an
invertible one. This is an important fact, since one first may study the properties of the alg
equations, given by~78! and~84!, and then choose the most convenient form for the ratiosb/d and
c/d .

VIII. PARAMETRIZATION OF A GENERAL CUBIC CURVE WITH COEFFICIENT
FUNCTIONS OF A COMPLEX VARIABLE

In this section an attempt will be made to deal with a cubic curve of a more general ki

ñ25M ~z!m31N~z!m21P~z!m1E~z!, ~113!

whereM, N, P andE are functions of the complex variablez and thereforenot complex numbers,
as usually accepted in standard complex analyses5 and algebraic geometry.13 In other words, the
main problem is whether it is possible to parametrize with the Weierstrass function the
equation, i.e., when does the Weierstrass function satisfy the equation

S dr

dzD
2

5M ~z!r31N~z!r21P~z!r1E~z!? ~114!

As already briefly discussed in Sec. IV for the standard and usually investigated case ofM ,N,P,
E constants, the Weierstrass function parametrizes the cubic equation~113! only if M54, N50,
P5260G4 andQ52140G6 , but evidently in the present case offunctions, the situation will be
quite different.

Let us first decomposer(z) into an infinite sum, assuming thatuÃu is a large number and
therefore

r~z!5
1

z2 1( F 1

Ã2~z/Ã 21!2 2
1

Ã2G5
1

z2 1(
1

Ã2 S 2
z

Ã
13S z

Ã D 2

1¯1~n11!
zn

Ãn 1¯ D .

~115!

The first derivative of the Weierstrass function is
                                                                                                                



double

tation in
mind,

ion of
n

rk of
t
x

in
m

(in

2563J. Math. Phys., Vol. 44, No. 6, June 2003 Cubic algebraic equations in gravity theory

                    
r8~z!5
dr

dz
52

2

z3 1(
n~n11!

Ã21n zn21 ~116!

and its square degree is

@r8~z!#25
4

z6 24(
n51

`
n~n11!

Ã21n zn241 (
n51

`
n2~n11!2

Ã2(n12) z2(n21). ~117!

Note that in the strict mathematical sense, the second sum in the last expression is in fact a
sum overm andn,

(
m51

`

(
n51

`
mn~m11!~n11!

Ãm1n zm1n22,

obtained as a result of the multiplication of the two infinite sums~116! for r8(z) with different
summation indices. Of course, since the two sums are equal and infinite ones, the represen
the form of a single sum is also correct. The appearence of the double sum should be kept in
since the idea further will be to compare the coefficient functions in the Loran power expans
the functions on the left- and right-hand sides of~114!, and naturally a double sum will appear o
the R.H.S. of~114!.

In reference to this, an important remark follows. Suppose one works in the framewo
standard arithmetical theory of elliptic functions, whenM , N, P and E are assumed to be jus
number coefficients. Since the Weierstrass functionsr(z) is an even function of the comple
variable z ~see Refs. 5 and 7!, the whole expression on the right-hand side~R.H.S.! of ~114! will
be anevenone, too. On the other hand, the functionr8(z) on the left-hand side~L.H.S.! of ~114!
is anoddone, but its square again gives aneven function. Therefore, comparing the coefficients
front of the powers inz means that only theevenpowers should be included in the infinite su
decomposition,

@r8~z!#25
4

z6 276G6224G4

1

z2 1 . . . , ~118!

whereGn will denote the following infinite sum of the complex pole numbers:

Gn5(
1

Ãn . ~119!

Note also another very important fact, the proof of which is given in Ref. 5: the infinite
numbers ofÃ! sum (119) is always convergent (i.e., finite) when n.2, but for n<2 the finiteness
is not guaranteed! In the presently investigated case ofM ,N,P,E complex functions, no infor-
mation is available whether the R.H.S. of~114! is an even or an odd function inz. Consequently,
one should not use formulas~118!, but just start with the more general expression~117! for
@r8(z)#2.

In order to find the Loran decomposition of the functions on the right-hand side of~114!, one
should first find second and the third powers ofr(z), which may be written as

r2~z!5
1

z4 12(
n51

`

~n11!
zn22

Ãn 1 (
n51

`

~n11!2
z2n

Ã2n , ~120!
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r3~z!5
1

z4 12(
n51

`

~n11!
zn24

Ãn 1 (
n51

`

~n11!2
z2n22

Ã2n 1 (
n51

`

~n11!
zn22

Ãn

12(
n51

`

~n11!
z2n22

Ã2n 1 (
n51

`

~n11!2
z3n

Ã3n . ~121!

Since these two expressions are to be multiplied by another infinite sums, here in~120! and~121!
we have retained the single-sum representaion.

The functionE(z) has the following Loran expansion around the zero point

E~z!5 (
m52`

`

cm
(0)zm5 (

m50

`

am
(0)zm1 (

m51

` bm
(0)

zm , ~122!

wheream
(0) andbm

(0) can be represented as integrals along some contour in the complex plaw
is a complex integration variable!

am
(0)5

1

2p i E E~w!

wm21dw
, bm

(0)5
1

2p i E E~w!wm21dw. ~123!

The coefficient functions in the Loran expansion of the functionsN(z), P(z) and Q(z) will be
denoted respectively bycm

(1) , cm
(2) andcm

(3) . Each term of the expression for the right-hand side
~114! is a product of two infinite sums, and the final result is

M ~z!r31N~z!r21P~z!r1E~z!

5 (
m52`

`

(
n51

`

$cm14
(3) 12~n11!Gncm142n

(3) 1~n11!2G2ncm1222n
(3)

1~n11!Gncm122n
(3) 12~n11!2G2ncm1222n

(3)

1~n11!3G3ncm23n
(3) 1cm14

(2) 12~n11!Gncm2n12
(2)

1~n11!2G2ncm22n
(2) 1cm12

(1) 1cm2n
(1) Gn1cm

(0)%zm. ~124!

In principle, the general case for an arbitrarym may also be considered. Then the above expr
sion should be put equal to formulas~117! for @r8(z)#2, where in the first sum one should set u
2(n21)5m and in the second sumn245m. In the first sum in~117! the summation will be over
values ofm50,2,4,6, . . ., 2k, . . . , and in thesecond sum overm523,22,21,0,1,2, . . . . In
such a case and for a givenn, one would have to consider a recurrent~in n) set ofseven algebraic
equationswith respect to thefour Loran expansion coefficients cn

(0) ,cn
(1) ,cn

(2) ,cn
(3) and for the

seven values ofm526,23,22,21,0,2k,2k11 (k51,2,. . . ). Therefore, the system of equation
is predetermined, which enables one to find not only the unknown variables~the coefficient
functions!, but also certain relations about the ‘‘coefficient’’ expressions, represented in the
by the sumsGn . This is an important moment, which shall be worked out further in this arti
and indeed certain interesting relations will be found. Moreover, since the summation overm on
the R.H.S. of~124! ranges from2` to 1`, terms with values ofm, different from the above
written, shall be present also on the R.H.S. of~124!, but not on the L.H.S. of~117!. Therefore,two
additional algebraic equationsmay be obtained by puttingm522k (kÞ0,1,3) and thenm
52(2k11) (kÞ0,1) on the R.H.S. of~124! and then setting the whole expression equal to ze
In fact, effectively instead of two additional equations one may have just one additional equ
by puttingm52k (k.3 andkÞ6), so the total number of equations will beeight. This compli-
cated calculation for the general case has not been performed in the present article, becaus
considerable technical difficulties it would be impossible to reconstruct analytically the who
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of Loran coefficients cn
(0) ,cn

(1) ,cn
(2) ,cn

(3) as solutions of the above system ofeight algebraic equa-
tions. However, the calculation will be performed in Appendix A for the simplified case, wh
will be described also below.

In this section we shall restrict ourselves to the case of negative-power expansion terms
decomposition of@r8(z)#2, obtained for values ofm526,22,0, and the main motivation for thi
is the analogy with the standard parametrization of the cubic curve. In the next sections th
of positive-power expansion will be considered, too. Unfortunately, even under this addi
assumption it is impossible to resolve analytically the corresponding system of algebraic
tions, if some other simplifying assumption is not added. This assumption will be given in the
section.

The first recurrent relation form526 is

45c22
(3)12~n11!Gnc2n22

(3) 1~n11!2G2nc2422n
(3) 1~n11!Gnc242n

(3)

12~n11!2G2nc2422n
(3) 1~n11!3G3nc2623n

(3) 1c22
(2)12~n11!Gnc2n24

(2)

1~n11!2G2nc2622n
(2) 1c24

(1)1c262n
(1) Gn1c26

(0) . ~125!

For m522 the relation is

276G65c4
(3)12~n11!Gnc42n

(3) 1~n11!2G2nc222n
(3) 1~n11!Gnc22n

(3)

12~n11!2G2nc222n
(3) 1~n11!3G3nc23n

(3) 1c24
(2)12~n11!Gnc2n12

(2)

1~n11!2G2nc22n
(2) 1c2

(1)1c2n
(1)Gn1c0

(0) . ~126!

The last relation form50 is

224G45c2
(3)12~n11!Gnc22n

(3) 1~n11!2G2nc22n
(3) 1~n11!Gnc2n

(3)

12~n11!2G2nc22n
(3) 1~n11!3G3nc2223n

(3) 1c2
(2)12~n11!Gnc2n

(2)

1~n11!2G2nc2222n
(2) 1c0

(1)1c222n
(1) Gn1c22

(0) . ~127!

To avoid the possible confusion whyn appears on the R.H.S of~125!–~127! but not on the L.H.S.,
let us remind the reader that the left-hand sides for@r8(z)#2 in these three equations have be
obtained by fixing both summation indicesn (n5m) and alsom (m526,22,0), while on the
right-hand sides only the indicem is fixed andthe indice n is left unfixed! What will be performed
in the next section will be for each value ofm526,22,0 to fix in an appropriate way the possib
values ofn. Therefore, more than three algebraic equations will be obtained, in which there
be no summation left.

From the above system ofthree recurrent algebraic equations~125!–~127!, the infinite se-
quence of coefficient functionscn

(0) , cn
(1) , cn

(2) andcn
(3) should be found and, moreover, it shou

be proved that this sequence is convergent in the limitn→6`. Still, because of the restriction t
three values ofm only, even if it is possible to findcn

(0) , cn
(1) , cn

(2), cn
(3) , it would not be correct

to assert that the Weierstrass function parametrizes an arbitrary cubic curve with coefficien
tions of a complex variable. This problem probably may be resolved by means of com
simulations only.

In the next section the system of equations~125!–~127! shall be used for parametrizing a mo
simplified cubic curve@without the quadratic inr(z) term#.

IX. PARAMETRIZATION WITH THE WEIERSTRASS FUNCTION OF THE CUBIC CURVE
†r8„z…‡2Ä4r3Àg 2„z…rÀg 3„z…

The form of the cubic curve is the same as the parametrizable cubic curve in sta
algebraic geometry,5,10,11,13,31but here it will be withg2 andg3 functions of a complex variable
The key problem which can be raised isdoes there exist an algorithm for finding out the seque
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of coefficient functions in the Loran decomposition of g2(z) and g3(z), satisfying the above
algebraic equation, provided that its more simple form will result in the following restrictions
the coefficient functions of the already considered general cubic equation (114),

M ~z!545 (
m52`

m51`

cm
(3)zm, N~z!5 (

m52`

m51`

cm
(2)zm50, ~128!

N~z!52g2~z!52 (
m52`

m51`

cm
(1)zm, E~z!5 2g3~z!52 (

m52`

m51`

cm
(0)zm. ~129!

From the first sequence of equations one obtains for the coefficientscm
(3) andcm

(2) ,

c0
(3)54, cm

(2)50 for all m, ~130!

cm
(3)50 for all mÞ0. ~131!

Taking the above relations into consideration, Eq.~126! for m522 can be written as

224G452~n11!Gnc22n
(3) 2c0

(1)2Gnc222n
(1) 2c22

(0) . ~132!

For values ofn52 andn51 from the above equation the following equations are obtained:

224G4524G22c0
(1)2c0

(1)2c24
(1)G22c22

(0) , ~133!

24G45c0
(1)1G1c23

(1)1c22
(0) . ~134!

From the above two equationsc24
(1) andc23

(1) can be found:

c24
(1)5

1

G2
@24G4124G22c0

(1)2c22
(0)#, ~135!

c23
(1)5

1

G1
@c0

(1)1c22
(0)224G4#. ~136!

From ~132!, the general recurrent relation forn5p.2 can be obtained:

c222p
(1) 5

1

Gp
@24G42c0

(1)2c22
(0)#. ~137!

It is clear that for the determination ofc24
(1) ,c23

(1) andc222p
(1) one has to knowc22

(0) andc0
(1) . There

is, however, one exception—in~135! G25( 1/Ã2 may be a divergent sum, so then one h
c24

(1)524 ~sinceG2 is in the denominator, whenG2→`, the corresponding part of the expressi
will tend to zero!.

Further, form50 and keeping in mind~130! and ~131!, Eq. ~127! will give

276G652~n11!Gnc42n
(3) 1~n11!2G2nc222n

(3) 1~n11!Gnc22n
(3)

12~n11!2G2nc222n
(3) 2c2

(1)2c2n
(1)Gn2c0

(0) . ~138!

For values ofn54,2,1, when there are nonvanishing values among the coefficientscm
(3) , the

corresponding equations are

276G6540G42c2
(1)2c24

(1)G42c0
(0) , ~139!
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276G6512G22c2
(1)2c22

(1)G22c0
(0) , ~140!

276G6548G22c2
(1)2c21

(1)G12c0
(0) . ~141!

The above linear algebraic equations can be solved trivially to find the coefficientsc24
(1) , c22

(1) and
c2

(1) , which depend onc21
(1) andc0

(0) :

c24
(1)5

1

G4
@c21

(1)G1248G2140G4#, ~142!

c22
(1)52361

G1

G2
c21

(1) , ~143!

c2
(1)576G6148G22c0

(0)2c21
(1)G1 . ~144!

Note that these coefficients can be divergent ifG2 andG1 are divergent. Taking into account Eq
~144! and also~138! for the casem50, but for a general value ofn5pÞ1,2,4, an expression fo
c2k

(1) can easily be found:

c2k
(1)5

1

Gk
~248G21c21

(1)G1!. ~145!

This formula should be compared to the previously derived formula~137!, setting up222p
52k. From the two expressionsc22

(0) can be expressed

c22
(0)524G42c0

(1)2
Gk22

Gk
~248G21c21

(1)G1!. ~146!

However,c22
(0) can be expressed also from the two formulas~135! and ~142! for c24

(1) :

c22
(0)524G4124G22c0

(1)1
G2

G4
~48G22c21

(1)G1240G4!. ~147!

Comparing~146! and ~147!, an expression forc21
(1) can be found,which does not depend on an

Loran coefficient functions:

c21
(1)5

16G2

G1

@3G2Gk2G4Gk23G4Gk22]

@G2Gk2G4Gk22#
. ~148!

Substituting this expression into the formula~145! for c2k
(1) , one obtains the convergent expressi

(k.2,kÞ4):

c2k
(1)52

16G4

Gk2 ~G4 /G2! Gk22
. ~149!

The obtained expression~148! for c21
(1) can be substituted into~146! to find a formula forc22

(0) ,
which will depend onGk and only on the Loran coeffficient functionc0

(1) .

c22
(0)52c0

(1)124G41
16Gk22

~Gk /G4! 2 Gk22 /G2
. ~150!

The above expression is well defined also whenG2→`. It shall be proved subsequently that su
a case will turn out to be impossible.

Further, from~150! and expression~136! for c23
(1) it follows
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c23
(1)5

G4

G2

16Gk22

@Gk2 ~G4 /G2! Gk22#
. ~151!

But sincek in expression~149! can take a valuek53, it follows also

c23
(1)52

16G4

G32 ~G4 /G2! G1
. ~152!

The comparison of the two expressions gives the following formulas for the infinite sumGk :

Gk5gGk225gsGk22s5¯5g~2p21/2!G1 for k52p5gpG1 for k52p11, ~153!

where

g52
G4

G2
2

G3

G1
. ~154!

Another recurrent relation forGk can be found also from~151!:

Gk5
~Gk22!2

Gk24
5

~Gk24!3

~Gk26!2 5 . . . 5
~Gk22s!

s11

~Gk22s22)2
. ~155!

This formula for values ofk52p and k52p11, combined with the previous formula~153!,
allows one to find an expression forG1 :

G15
G3

~2p21/2p23!

G2p
2/~2p23! 5

G3
p/~p21!

G2p11
1/~p21! . ~156!

The last formula is interesting, because it shows that the divergent in the general case quan1

in the present case is expressed through convergent quantities only—G3 and G2p11 (p is of
course a finite number!!. Substituting~156! into ~155!, one can get expressions forG2p and
G2p11 :

G2p5G3S G4

G2
D ~2p23!/2

; G2p115G3S G4

G2
D p21

. ~157!

It is seen thatG2 is also expressed through convergent quantities.
From Eq.~125! for m526 one obtains

45c24
(1)1c262n

(1) Gn1c26
(0) ~158!

(n51, . . . . ,̀ ). Sincec24
(1) andc262n

(1) can be found,c26
(0) can also be determined. It is clear th

among the coefficientscm
(0) two of them,c26

(0) andc22
(0) , can be determined from~158! and~150!.

The other coefficients will be determined in the Appendices.
Let us summarize the obtained results in this section and in Appendices A, B and

formulating the following.
Proposition 2: Let g2(z) and g3(z) be functions of a complex variable, which have a Lor

function decomposition g2(z)5(m52`
` cm

(1)zm and g3(z)5(m52`
` cm

(0)zm and satisfy the algebraic
equation@r8(z)#254r32g2(z)r2g3(z), wherer(z) is the Weierstrass (elliptic) function. The
the following statements represent (only) necessary conditions for the fulfillment of the
equation:

(1) The poles of the Weierstrass function (even if they are infinite in number) must be situa
such a way so that the sums G15( 1/Ã and G25( 1/Ã2 are convergent (i.e., finite). The su
G1 can be expressed through formula (156).
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(2) All the coefficients cm
(1) and cm

(0) in the Loran positive- and negative-power expansion can
expressed uniquely from the finite sums Gn .

(3) The sum G1 is proportional to the sum G3 with a coefficient of proportionality, equal to th
ratio of the sums G2 and G4 , i.e., G15(G3 /G4) G2 [from (A22)]. This formula follows also
from the more general one G2p115G3(G4 /G2)p21 (157) for p50.

(4) As a consequence from the above relation and formulas (153) and (154), the sum G2 can be
uniquely expressed as G25AG1G3.

(5) All the even-number sums G6 ,G8 ,G10 , . . . are equal to zero.
(6) The following relation is fulfilled, Gk

25202 (Gk22Gk12)/G2(k11) , which can be obtained
from (B15) and (B16). In order for this relation to comply with statement 5, additionally
should have that G5 ,G7 ,G13,G15,G21,G23,... should be zero. However, G9 ,G11,G17,G19

are different from zero.

Finally, with the help of~158!, a check can also be made for the consistency of the obta
results. Substracting the two equations~158! for values ofn andn1 l , one obtains

Gn

Gn162 ~G4 /G2! Gn14
2

Gn1 l

Gn161 l2 ~G4 /G2! Gn141 l
50 ~159!

~it is more appropriate to divide everywhere byGn). From ~157! for values ofn52p and l
52q, for example, it can be found

Gn1 l

Gn
5S G4

G2
D 2q

. ~160!

For other combinations~even and odd! of n and l the calculation is similar. Using the abov
formulas, it can easily be verified that Eq.~159! is identically satisfied. This confirms that the
system of equations investigated in this paragraph gives consistent and noncontradictory r

X. CONCLUSION

Let us summarize the obtained results.
In this article a cubic algebraic equation has been obtained with respect to the differentiadXi

of some generalized coordinatesXi . The derivation of the equation was possible due to
representation of the contravariant metric tensor in terms of a contraction of two differen
Also, in Sec. III the equation was derived upon assuming thatdXi is either an exact differential
or thatdXi arezero-helicity vector field components.

The derived equation~20! clearly reflects the structure of the gravitational Lagrangian,
can be regarded as an equation for all its possible coordinate transformations~admissable param
etrizations!, provided that the Christoffell connectionG i j

k or the Ricci tensorRi j is given.
The main problems, which one encounters when investigating such algebraic equatio

several, and in this article only one of them is resolved in more detail.
The first and most serious problem is that the equation is defined on an algebraic vari

several variables, since in gravity theory one usually deals with at least four-dimensiona~and
higher-dimensional also! manifolds. At the same time, the standard and known methods f
algebraic geometry for parametrizing algebraic curves by means of the Weierstrass functio
cern only algebraic curves of two variables. That is why in the article one of the variables,dx5,
has been singled out on the basis of the physical consideration of the Randall–Sundrum m
and the other variable for convenience is chosen to be the ratioa/c of the functionsa(z) andc(z),
which enter in thelinear-fractional transformation of dx5. The rest of the variablesdx1,dx2,
dx3,dx4 enter the cubic equation in scalar quantities~functions!. Of course, if a two-dimensiona
manifold is considered, then the algebraic equation will contain two variables only. Suc
analysis of a two-dimensional algebraic equation and its parametrization may find applicat
string and brane theory~also in gravity theory!.
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For the purpose of higher-dimensional algebraic varieties and equations, probably m
from the theory of Abelian varieties and hyper-elliptical~Weierstrass! functions have to be
applied.42

The second problemconcerns the methods for bringing the algebraic equation to a pa
etrizable form. The standard approach of applying alinear-fractional transformation has been
chosen for the purpose.

The advantages of thelinear-fractional transformation are the following:~1! It contains
more parameters~in the case, functionsa,b,c,d of a complex variable! and it makes it possible to
take account of thepoint at infinity . ~2! In Sec. VI it was proved that by means of a suitab
change of variables it is possible to derive asecond-order„quadratic… algebraic equation in
terms of ‘‘angular’’-type variables from the initial cubic algebraic equation. Since a quad
equation is easier to deal with, this simplifies the analysis and, moreover, a transition
original variables can also be performed.

The third problem , investigated in more detail in the present article, is theform of the
parametrizable cubic curve. This was discussed in the Introduction, and evidently a conc
physical problem from gravity theory has shown the necessity to investigate the case wheng2 and
g3 are complex functions and not complex numbers, as it is in the standard theory of e
functions. In regard to this, in Secs. VIII and IX two mutually related problems for resolving
being stated:~1! Can the Weierstrass functionr(z) parametrize anarbitrary cubic curve with
coefficient functions of acomplex variable? ~2! Can the Weierstrass function parametrize t
well-known parametrizable form of the cubic equation, but again with coefficient functions
pending on a complex variable? Although the explicit form of the equations for the Loran
ficient functions are presented in Sec. VIII, the first question still remains unanswered, an
haps computer simulations only can help for its resolution. As for the second question, the a
is affirmative, and after solving a system of algebraic equations for various values ofm andn, the
explicit form of all the Loran coefficient functionscm

(1) , cm
(0) was found, both from the negative

power and the positive-power expansion. A confirmation of the consistency of the derived
tions is Eq. ~159! for a value ofm526, which is being satisfied by the previously derive
equations. However, the values of the coefficient functions are perhaps not so important
result, which follows from this calculation, namely:The infinite sums G1 and G2 , which in the
general case might be divergent, in the particular case of the ‘‘parametrizable’’ form of the c
algebraic equation with g25g2(z) and g35g3(z), should be convergent!This fact, although of
pure mathematical nature, probably deserves more attention and further elaboration from a
point of view and by applying different mathematical approaches. The finiteness ofG1 andG2 is
not imposed ‘‘by hand,’’ but is obtained as a consequence of the fulfillment of the above
tioned equation, which is satisfied by the Weierstrass function.
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APPENDIX A: ADDITIONAL SYSTEM OF EQUATIONS FOR mÄÀ3, À1

In this Appendix the system of equations form523,21 will be presented, which were no
investigated in Sec. IX. However, the method for their derivation is completely the same, but
new interesting consequences will appear.
                                                                                                                



ike

e

sion.

2571J. Math. Phys., Vol. 44, No. 6, June 2003 Cubic algebraic equations in gravity theory

                    
For the purpose, let us first rewrite the two sums in expression~117! for @r8(z)#2, putting in
the first sum 2(n21)5m and in the second termn245m. Then expression~117! acquires the
form

@r8~z!#25
4

z6 1
1

16 (
m50,2,4, . . .

`

Gm16~m12!2~m14!2zm

24 (
m523,22,21,0,1,..

Gm16~m14!~m15!zm. ~A1!

For m523 only the term from the second sum in~A1! will contribute. Putting alsom523 in the
R.H.S. of expression~124! for M (z)r31N(z)r21P(z)r1E(z) for the case ofM54, N50,
P(z)[2g2(z) and E(z)[2g3(z) ~i.e., cm

(2)50 for all m, c0
(3)[4 andcm

(3)[0 for mÞ0), one
has to take into account that terms with a ‘‘negative-valued’’ indice l
c2122n

(3) ,c212n
(3) ,c2323n

(3) (n51,2,. . . .) arezero.
The obtained equation form523 is

28G352~n11!Gnc12n
(3) 1c21

(1)1c232n
(1) Gn1c23

(0) . ~A2!

For n51, when the first term on the R.H.S. is nonzero, the equation is

28G3516G11c21
(1)1c24

(1)G11c23
(0) . ~A3!

Since from expressions~151! and~142! from Sec. VIIc23
(1) andc24

(1) can be found, from the abov
Eq. ~A3! c23

(0) can be expressed.
For n5p.1 Eq. ~A2! is

28G35c21
(1)1c232p

(1) Gp1c23
(0) . ~A4!

Substracting the two equations~A3! and~A4!, one can find the following expression forc232p
(1) :

c232p
(1) 5

G1

Gp
~161c24

(1) !516
G1

Gp

@~G2 /G4! Gp13~G2 /G4!2Gp2~3~G2 /G4! 121!Gp22#

~G2 /G4! Gp2Gp22
.

~A5!

An expression forc232p
(1) can also be found from formulas~149! for k5p13:

c232p
(1) 52

16G4

Gp132 ~G4 /G3! Gp11
. ~A6!

From the equality of the two expressions,G1 can again be expressed as a convergent expres
Note also that the formulasG2p5G3(G4 /G2)(2p23)/2 and G2p115G3(G4 /G2)p21 from ~157!
satisfy the equality expression since then the denominators in~A5! and ~A6! will be zero. This
precludes the investigation of the system of equations form523.

For m521, the general equation can be written as

248G552~n11!Gnc32n
(3) 1~n11!Gnc12n

(3) 1Gnc212n
(1) 1c1

(1)1c21
(0) , ~A7!

and forn51 andn52 the corresponding equations are

248G558G11c22
(1)G11c1

(1)1c21
(0) , ~A8!

248G55G2c23
(1)1c1

(1)1c21
(0) . ~A9!

The coefficientc23
(1) can also be found from~149! for k53:
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c23
(1)52

16G4

G32 ~G4 /G2! G1
. ~A10!

Substituting~A10! into ~A9! gives an opportunity to expressc1
(1)1c21

(0) as

c1
(1)1c21

(0)5248G51
16G2G4

G32 ~G4 /G2! G1
. ~A11!

This expression, together with formulas~143! for c22
(1) and ~148! for c21

(1) , represented asc21
(1)

5F/G1 , can be substituted into the first equation~A8! to obtain the following quadratic equatio
for G1 :

S G32
G4

G2
G1D S G1

G2
F224G1D116G2G450. ~A12!

In a similar way, one can write down the equation forn53:

248G5532G31c24
(1)G31c1

(1)1c21
(0) . ~A13!

Substitutingc24
(1) andc1

(1)1c21
(0) from ~142! and ~A11!, one can derive

2L5
G2

G3G4

Gk

Gk22
2

1

G3
, ~A14!

where

L5
G32 ~G4 /G2! G1

7G3~G32 ~G4 /G2!!12G2G4
. ~A15!

From the above two equations a relation, similar to~153!, can be obtained,

Gk5bGk225b~2p21!/2G1 for k52p 5bpG1 for k52p11, ~A16!

where

b5
G3G4

G2
S 2L1

1

G3
D . ~A17!

Of course, in order to have a unique determination ofGk , one has to requireb5g, where from
~154! b52(G4 /G2) 2 G3 /G1 . This will result again in a quadratic equation forG1 .

Much more important and informative in the investigated case,m521 turns out to be the
equation for a generaln.3:

248G55c212n
(1) Gn1c1

(1)1c21
(0) . ~A18!

Let us remind the reader that an expression forc212n
(1) can be written from~149!:

c2n21
(1) 52

16

Gn112 ~G4 /G2! Gn21
. ~A19!

Also, from ~A11! one has an expression forc1
(1)1c21

(0) . These two expressions can be substitu
into Eq. ~A18!, which acquires the form

GnS G32
G4

G2
G1D5G2G4S Gn112

G2

G4
Gn21D . ~A20!
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Now it is interesting to note that using the formulas

Gn115G2p115G3S G4

G2
D p21

, Gn215G2p215G3S G4

G2
D p22

~A21!

from ~157!, it can easily be checked that the R.H.S. of~A20! is equal to zero for the casen
52p. The other case,n52p11, gives the same result. Therefore, from~A20! the following
concise relation is obtained, expressing the proportionality ofG1 and G2 with a coefficient of
proportionality, the ratioG3 /G4 .

G15
G3

G4
G2 . ~A22!

APPENDIX B: ADDITIONAL SYSTEM OF EQUATIONS FOR mÄ2k

This appendix will preclude the proof, started in Sec. IX, that all the coefficient function
the Loran function decomposition of the equation@r8(z)#254r32g2(z)r2g3(z) can be
uniquely expressed, and especially those from the positive-power decomposition.

For m52k.0, the corresponding equation is

~k12!@~k11!2~k12!28~2k15!#G2k1652~n11!Gnc2(k12)2n
(3) 1~n11!2G2nc2(k11)22n

(3)

1~n11!Gnc2(k11)2n
(3) 12~n11!2G2nc2(k11)22n

(3)

1~n11!3G3nc2k23n
(3) 1c2(k11)

(1) 1c2k2n
(1) Gn1c2k

(0) .

~B1!

Additionally, fixing the value ofn5k11, one can obtain from~B1!

~k12!@~k11!2~k12!28~2k15!#G2k16

512~k12!2G2(k11)1c2(k11)
(1) 1Gk11ck21

(1) 1c2k
(0) . ~B2!

For n52(k12) the equation is

~k12!@~k11!2~k12!28~2k15!#G2k16

58~2k15!G2(k12)1c2(k11)
(1) 1c24

(1)G2(k12)1c2k
(0) . ~B3!

Subtracting the two equations, one can expressck21
(1) as

ck21
(1) 5

1

Gk21
@212~k12!2G2(k11)18~2k15!G2(k12)1c24

(1)G2(k12)#. ~B4!

Sincek>1, from this formula it is clear that all the Loran coefficientscm
(1) in the positive-power

decomposition can be expressed, including the coefficientc0
(1) , through which the coefficients

from the negative-power decomposition in Sec. IX were expressed. Also, from~B4! c2(k11)
(1) can be

expressed~by performing the indice changek21→2(k11).] If c2(k11)
(1) is substituted back into

Eq. ~B3!, one can express also theeven positive-power coefficients c2k
(0) as

c2k
(0)5~k12!@~k11!2~k12!216~k13!#G2k162@c24

(1)18~2k15!#G2(k12)

1
1

G2(k12)
@12~2k15!2G4(k12)2~32k1881c24

(1) !G2(2k15)#. ~B5!

Now let us write down Eq.~B1! for another possible value ofn52(k11):
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~k12!@~k11!2~k12!28~2k15!#G2k1654~2k13!G2(k11)1c2(k11)
(1) 1c2k

(0)1c22
(1)G2(k11) .

~B6!

Combining~B3! and ~B6!, c22
(1) can be expressed as

c22
(1)5

1

G2(k11)
@24~2k13!G2(k11)18~2k15!G2(k12)1c24

(1)G2(k12)#. ~B7!

The coefficientc24
(1) can easily be calculated from~142! and ~148! to be

c24
(1)5

16@3~G2 /G4! ~G2Gk2G4Gk22!220G4Gk22#

G2Gk2G4Gk22
. ~B8!

On the other hand, it is important to observe thatc22
(1) can be calculated independently also fro

Eq. ~143! and ~148!:

c22
(1)5

12~G2Gk2G4Gk22!216G4Gk

G2Gk2G4Gk22
. ~B9!

Note also that from relations~157! for G2p andG2p11 it follows

Gk22

Gk
5

G2

G4
for k52p and k52p11 ~B10!

or, written in another way,G2Gk2G4Gk2250.
Setting up equal the two expressions~B7! and~B9! for c22

(1) , canceling the equal denominato
andsubsequentlytaking into account~B10!, one can obtain the following concise recurrent re
tion,

Gk5a~k!Gk22 , ~B11!

wherea(k) denotes

a~k!520
G2(k12)

G2(k11)
. ~B12!

Continuing further the recurrent relation~B11!, one can derive

Gk5a~k!a~k22!¯a~k2~k23!!Gk2(k21)5coeff•
G2(k12)

G2(k11)

G2k

G2(k21)

G2(k22)

G2(k23)
¯

G2.5

G2.4
G1 .

~B13!

If k52p, the numerical coefficient in~B13! will be 20p.
A similar relation can be obtained by fixingn52(k11). Then the corresponding equation

~k12!@~k11!2~k12!28~2k15!#G2k1654~2k13!G2(k11)1c21
(1)G2(k11)1c2(k11)

(1) 1c2k
(0) .
~B14!

Substracting this equation from~B6! for n52(k11) and taking into account expression~B4! for
ck21

(1) , one can obtain

Gk11

Gk21
@c24

(1)18~2k15!#G2(k12)5G2(k11)@c22
(1)14~2k13!112~k12!2 #

~Gk112Gk21!

Gk21
,

~B15!
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wherec24
(1) is given by~B8! andc22

(1) by ~B9!. Substituting the above expressions into~B15! and
again taking into account thatG2Gk2G4Gk2250, one derives the following recurrent relation

G2(k11)520
Gk21

Gk11
. ~B16!

If this relation is substituted into~B11!, then it can be derived that

Gk
2Gk11520Gk21Gk22Gk12 . ~B17!

This equality is valid fork>3. Fork53,5,7,9 the above relation may be written as

G3
2G8520G1G5 , G5

2G125G3G7 , ~B18!

G7
2G165G5G9 , G9

2G205G7G11. ~B19!

Since on the L.H.S. of~B18! and~B19! G8 , G12, G16 andG20 are zero, the R.H.S. should also b
zero. If G1Þ0,G3Þ0, the R.H.S. of the first pair of equations~B18! equals zero ifG55G750.
But sinceG5 andG7 appear also on the R.H.S. of the second pair of equations~B19!, the R.H.S.
will be zero and thereforeG9 andG11 may be different from zero. The treatment of the subsequ
equations is analogous. That is why one may conclude that a pair of even sumsG2l 11 , G2l 13

( l>2) is zero, but the next pairG2l 15 ,G2l 17 may be different from zero.
The last fixing of the value ofn5 2k/3 for the casem52k gives the equation

~k12!@~k11!2~k12!28~2k15!#G2k1654S 11
2k

3 D 3

G2k1c2(k11)
(1) 1c4k/3

(1) G2k/31c2k
(0) .

~B20!

Substracting from~B20! Eq. ~B6! for n52(k11) and setting up 2k/35p, one can derive

@12~p11!1c22
(1)#G3p1224~11p!3G3p2c2p

(1)Gp50. ~B21!

Similarly, substracting from~B20! Eq. ~B3! for n52(k12), one obtains

4~11p!3G3p1c2p
(1)Gp28~3p15!G3p142c24

(1)G3p1450. ~B22!

From the two equations it follows

@12~p11!1c22
(1)#G3p125@8~3p15!1c24

(1)#G3p14 . ~B23!

Again taking into account~B7! for c22
(1) and~B8! for c24

(1) for the value ofk53p, one can obtain

G3p14520
G3p12

G3p22
G3p . ~B24!

However, in view of the relations~B18! and ~B19! and the consequences from them, the l
relation will make sense only wheneachof the indices 3p14,3p12, 3p22,3p equals one of the
indices 2l 15,2l 17 (l>2) and then the relation~B24! will be nonzero.

APPENDIX C: ADDITIONAL SYSTEM OF EQUATIONS FOR mÄ2k¿1 AND mÄÀk

For m52k11 the corresponding equation is
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28~2k15!~k13!G2k175c2k15
(3) 12~n11!Gnc2k152n

(3) 1~n11!2G2nc2k1322n
(3)

1~n11!Gnc2k132n
(3) 12~n11!2G2nc2k1322n

(3)

1~n11!3G3nc2k1123n
(3) 1c2k13

(1) 1c2k112n
(1) Gn1c2k11

(0) . ~C1!

The important conclusion, which can be made from this equation, is the following:if c2k13
(1) is

calculated from (B4) for value of k82152k13, then the odd number coefficients c2k11
(0) can also

be found!Remember also that in Appendix B only the even number coefficientsc2k
(0) were found

@formula ~B5!#. In order to expressc2k11
(0) , it is enough to set upn52k13 in ~C1!, when from all

the coefficientscm
(3) only the second term on the R.H.S. will be nonzero. Then

c2k11
(0) 52c2k13

(1) 2c24
(1)G2k1528~k13!~2k15!G2k17216~k13!G2k15 . ~C2!

For another value ofn5 (2k13)/2, Eq.~C1! acquires the following form:

28~~k13!~2k15!G2k17!53~2k15!2G2k131c2k13
(1) 1c~2k21!/2

(1) G~2k13!/21c2k11
(0) . ~C3!

But sincec(2k21)/2
(1) andG(2k13)/2 have to be integers, this will be possible if for example 2k21

52p. For this value ofk, one can expressc2p12
(0) from ~C3!:

c2p12
(0) 52c2p14

(1) 2cp
(1)Gp12212~p13!2G2p1428~p13!~2p17!G2p18 . ~C4!

However,c2p14
(0) can be expressed also from Eq.~B2! for values ofm52k, n5k11 andk5p

12:

c2p12
(0) 52c2p14

(1) 2cp
(1)Gp12212~p13!2G2p14

1~p13!@~p13!~p12!228~2p17!#G2p18 . ~C5!

From the two equations~C4! and ~C5!, one easily obtains

16~p13!~2p17!G2p1850. ~C6!

Since the coefficient in front ofG2p18 is a positive one,~C6! will be fulfilled if

G2p185G2k1650. ~C7!

The last means thatthe even-number sums G6 ,G8 ,G10, . . . are zero!
Again fixing the value ofn52k13, one derives from~C1! the equation

28~k13!~2k15!G2k175@8~k12!1c22
(1)#G2k131c2k13

(1) 1c2k11
(0) . ~C8!

Combining this equation with~C3!, setting 2k2152p, one can expresscp
(1) ,

cp
(1)52

~A~p!2c22
(1) !G2p14

Gp12
, ~C9!

where

A~p!53~2p11!2126~2p11!159. ~C10!

Comparing this expression with formulas~B4! for cp
(1) and taking into account~B8! and~B9!, one

derives the following relation:

G2(p13)5
1

20

G2(p12)

G2(p22)
. ~C11!
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Expressing by means of~B15! G2(p12) andG2(p22) and substituting into~C11!, one can obtain
the relation also in another form,

G2(p13)5
1

20

Gp12

Gp

Gp24

Gp22
. ~C12!

and from the two expressions one can obtain also the ratioG2(p12) /G2(p22) without any numeri-
cal coefficients. Note also that~C11! and ~C12! refer to nonzero even numbers ofGm since we
have 2p52k21, and the relations should be written in respect tok and notp.

The corresponding equation is

28~k13!~2k15!G2k175 4
27 ~2k14!3G2k111c2k13

(1) 1G~2k11!/3c~4k12!/3
(1) 1c2k11

(0) . ~C13!

Setting 2k1153p and keeping in mind thatc2p
(1) and c3p12

(1) can be found from~B4!, one can
expressc3p

(0) as

c3p
(0)52 4

3 ~3p14!~3p15!G3p1624~p11!3G3p2c3p12
(1) 2Gpc2p

(1) . ~C14!

The equation for the last case ofm52k (k.3, kÞ6) is

c42k
(3) 12~n11!Gnc2k142n

(3) 1~n11!2G2nc2k1222n
(3) 1~n11!Gnc2k122n

(3)

12~n11!2G2nc2k1222n
(3) 1~n11!3G3nc2k23n

(3) 1c2k12
(1) 1c2k2n

(1) Gn1c2k
(0)50.

~C15!

Since it has been shown already how all the Loran coefficient functions can be expressed
treatment of this equation is completely analogous to the preceeding ones, Eq.~C15! shall not be
considered.

APPENDIX D: COEFFICIENT FUNCTIONS N1 , N2 , N3 AND N4 DEPENDING ON THE
‘‘BAR’’ VARIABLES

The coefficient functionsN1 , N2 , N3 andN4 in the cubic algebraic equation~112! for T in
Sec. VII are the following:

N1[2 p̄1
2Z222Z4p̄1S O2p̄1

4
1

O

2
p̄21 p̄3D2Z4p̄1~O2p̄11Op̄212p̄3!

1Z6~O2p̄11Op̄212p̄3!S O2p̄1

4
1

Op̄2

2
1 p̄3D , ~D1!

N2[8Zp̄1
22Z2p̄1~ p̄21Op̄1!1@Z4~ p̄21Op̄1!216Z3p̄1#S O2

4
p̄11

O

2
p̄21 p̄3D

1~O2p̄11Op̄212p̄3!F2
15

2
Z3p̄11

23

2
Z5S O2

4
p̄11

O

2
p̄21 p̄3D G , ~D2!

N3[S O2

4
p̄11

O

2
p̄21 p̄3D @30Z4~O2p̄11Op̄212p̄3!18Z3~ p̄21Op̄1!224p̄1Z2#18p̄1

2

24Zp̄1~ p̄21Op̄1!28Z2p̄1~O2p̄11Op̄212p̄3!, ~D3!
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N4[24p̄1~ p̄21Op̄1!16Zp̄1~O2p̄11Op̄212p̄3!1@218Z3~O2p̄11Op̄212p̄3!

112Z2~ p̄21Op̄1!#S O2

4
p̄11

O

2
p̄21 p̄3D . ~D4!
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Application of Poisson maps on coadjoint orbits
of Sp „6,R… group to many body dynamics

M. Cerkaskia)

Henryk Niewodniczanski Institute of Nuclear Physics, Department of Theoretical Physics,
Ul. Radzikowskiego 152, 31–342, Kraków, Poland

~Received 11 December 2002; accepted 20 February 2003!

The canonical transformation approach generated by the semisimple subgroup
GCM(3),Sp(6,R) is applied to reduction of the Lie–Poisson bracket on coadjoint
orbits of the Sp(6,R) group and the Poisson coalgebra spO* (6) is determined. In-
vestigating the construction of theN-particle phase, induced by this reduction, we
identify the Poisson coalgebra spO* (6) as the algebra of quadratic O(K), K[N
21 invariant forms on symplectic 6K212 dimensional phase spaceT* @O(K
23)\O(K)#, K>3. The general classification scheme of Poisson orbits for spO* (6)
is found and applied to the classification of coadjoint orbits of the Sp(6,R) group
occurring in the decomposition ofN-particle phase spaces. We show that the
spO* (k), k54,6 Poisson action on some class of surfaces determined by Casimir
invariants is not transitive. The Poisson maps for all classes of orbits spO* (4) and
spO* (6) are found. The quantum unitary irreducible representations of spO* (4) are
obtained. ©2003 American Institute of Physics.@DOI: 10.1063/1.1571222#

I. INTRODUCTION

As follows from the previous study to be presented in Secs. II and III, the total kinetic en
of a many-particle system can be separated into two terms. The microscopic formulation
problem of extracting collective energy, by using the group theory method based on the
simple GCM~3! subgroup of Sp(6,R) group, has been studied in Refs. 1 and 2. The theore
motivation for realization of this program was the Bohr–Mottelson unified model.3,4 The micro-
scopic group theoretical model based on GCM~3! with constrained kinetic energy5 restates the
classical fluid dynamics of Dedekind–Riemann ellipsoids.6

The Sp(6,R) group was recognized as an appropriate group for the many-body theo
nuclear collective motion,7–9 which establishes an important link between the collective dynam
and nuclear shell model. The mathematical methods have been developed for calculat
discrete infinite-dimensional unitary representations of sp(6,R) algebra. In the cycle of paper
~Refs. 10–12! the authors investigate the collective nuclear dynamics based on the sp* (4) dy-
namical coalgebra. Generalized vector coherent state theory,13–17 the boson approach,18 and the
fermion realization19 have been employed. The procedure for evaluating the matrix elemen
general two-body interaction of the types used in the standard treatments of the nuclear
body system20,21 have been found.

A different approach,22 closer to the original ideas,1–5 as well to the theoretical method
developed on the basis of generalized hyperspherical coordinates,23–25 which includes both parts
of the kinetic energy and in which the role of the nuclear shell structure follows via effe
cranked deformed harmonic potential obtained in the explicit form and depending on the sp* (6,R)
Casimirs invariants, has been proposed. In this approach, the second term of the kinetic en
described with the help of the six components of the symmetric three-dimensional matrixY which
augmented by an antisymmetric part, namely, the Kelvin circulationJ, generates the nine

a!Current address: Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980
Russia; electronic mail: cerkaski@thsun1.jinr.dubna.su
25790022-2488/2003/44(6)/2579/17/$20.00 © 2003 American Institute of Physics
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dimensional nonlinear Poisson coalgebra here denoted by spO* (6). Themain aim of the paper is to
obtain the classification scheme for the Poisson orbits of spO* (2 p) in the casesp52 andp53 and
to find Poisson maps for all classes of orbits of these structures.

In Secs. II and III we present the approach based on our earlier investigations,22 which, via the
theory of coadjoint transformations, separate the collective and the reduced single-particle
energy and which give the physically important reduction for the Poisson brackets on coa
orbits of the Sp(6,R) group. The spO* (6) coalgebra is obtained, in the natural way, by introduc
the symplectic spaceT* @SO(N24)\SO(N21)#, N>4 essential for construction of many
particle phase spaces.

In Sec. IV we construct the Poisson representation for spO* (4) orbits. The classification
scheme for the orbits of spO* (6) is presented in Sec. V and is applied for the Sp(6,R) group
classification of many-particle phase spaces. Poisson maps for orbits of spO* (6) are found in Sec.
VI. The singular classes of orbits, important for the introduced classification, are obtained in
VII. The unitary irreducible finite dimensional representations of spO* (4) are found in Sec. VIII.

We hope that the result of this paper might also be useful as applied to few-particle dyna
However, the presented material aims at application to the collective body dynamics (N@7).

II. LIE–POISSON BRACKETS ON THE COADJOINT ORBITS OF THE Sp „6,R… GROUP

The physics interpretation of elements of the sp* (6,R) coalgebra can be obtained by consi
ering the 2N-dimensional symplectic space. Let us introduce the points of this space with the
of the rectangular 63N-dimensional matrixr(rW1 ,...,rWN)5(rW1 ,...,rWN) (rW i)a5mi

1/2 (xWa i2XW a),
(rW i)31a5mi

21/2 (pW i2mi M 21 PW a) where i is the particle number,xW i , pW i are the spatial and the
momentum coordinates of thei th particle obeying the canonical Poisson bracket relatio
$xa i ,xb j%5$pa i ,pb j%50, $xa i ,pb j%5dab d i j , mi are the masses of particles,M is the total mass,
(XW ,PW )5((mi xW i ,M 21 (pW i) are the vectors of coordinates and momenta of the center of m
motion.

Consider the following mapping:

r°x5r• tr•K65S U 2Q

P 2 tUD , K65S 0 21

1 0 D , ~1!

Uab5(
i

xa i pb i2Xa Pb , Qab5(
i

mi xa i xb i2M Xa Xb , ~2!

Pab5(
i

mi
21 pa i pb i2M 21 Pa Pb . ~3!

The elements of the matrices~U, Q, P! form a natural system of collective coordinates. T
Poisson brackets for them follow from the canonical rules of particle coordinates and mom
$Xab ,Xgd8 %x(r)

can , XP$U,Q,P%. The components of~U,Q,P! are scalars of the left translations ge
erated by the coordinates of the center of mass motion:$Xab ,Yg%50 for YW P$XW ,PW %.

There is another way of introducing the Poisson structure.26–30Using the standard notation fo
gl(3,R) generatorsEi j :(Ei j )kl5d ik d j l , we introduce the base for theg5sp(6,R) algebra
sp(6,R)5$xPgl(6,R): x•K1K•

tx50636%:

Ûab5Eba2Ea13b13 , a,b51,2,3, ~4!

Q̂ab52Ea13b2Eb13a , P̂ab5Eab131Eba13 , 1<a<b<3. ~5!

With the help ofx we define the mapping sp(6,R) algebra ontoR, more precisely,
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g* 3g°R: ^x,Ŷ&5 1
2 trace x•Ŷ, Xab5^x,X̂ab&, X5U,Q,P. ~6!

Then, the Lie–Poisson bracket31 is defined as

$Xab ,Xgd8 %x
LP5^x,@X̂ab ,X̂gd8 #&. ~7!

The matricesx are identified with the points of dual space sp* (6,R). In the case considered w
have sp* (6,R) 5sp(6,R). Both the brackets coincide:$.,.%can5$.,.%LP5$.,.%.

The Sp(6,R) group acts on the algebra by adjoint transformationsX̂°Adg(X̂)5g •X̂•g21.
The coadjoint representation is the action of the groupG on the real vector spaceg* ,
Ad* : G°End(g* ), Adg* (x)5x+Adg21; hence (Adg* (x))(X̂ab)5 1

2 tracex•g21
•X̂•g5 1

2 traceg•x

•g21
•X̂, and we get: Adg* (x)5g•x•g21. The Lie–Poisson bracket is nondegenerated on co

joint orbits.32

Taking into account thatQ andP are positive definite let us decompose the matrices~U, Q, P!
in the following way:

U5d"l" tv, Q5^m& d"l2" td, P5^m&21 d"@ v" tv1l21"Y"l21#" td, ~8!

where ^m&5N21 M , dPSO(3) and l is a diagonal matrixl5diag(lA ,lB ,lC), lX>0, v
Pgl(3,R), Y is a positive definite and symmetric matrix. The representation in Eq.~8! results
from the coadjoint transformation

spO* ~6!{a~ j ,m!°x~d,l,v,Y!5Adg(A^m& d"l, X)
* ~a~ j ,m!!, ~9!

where

spO* ~6!5H a~ j ,m!5S 2 1
2 j 21333

m 2 1
2 j

D , tj52t, tm5mJ , ~10!

under the substitutions

j5l"v2 tv"l, m5Y2 1
4 j "j , X5 1

2 ~l"v1 tv"l!, ~11!

and where g(a,u) are the elements of the fifteen–dimensional semidirect subgroup2 G

5GCM(3),Sp(6,R), g(h,X)5h̄(h)•ū(u), hPGL1(3,R), u5 tu. We denoted

h̄~h!5S h 0

0 th21D , ū~u!5S 1 0

u 1D . ~12!

The group CM(3),GCM(3) obtained by the reduction: GL1(3,R)↘SL(3,R) has been applied
to the collective nuclear dynamics in Ref. 1. The elementsG obey the following rule of compo-
sition: g(h,u)•g(h8,u8)5g(h•h8, th8•u•h81u8), henceg21(h,u)5g(h21,2 tg21

•u•g21).
The matrixd transforms the rest frame of references to the body frame. The solution t

matrix v5v( l,l,pl ,j ) which regards the first relation in~11!, suspended by the conditionl" tv
2v"l5 l, wherel is the antisymmetric angular momentum matrix, takes the following form:

v5pl1 l̂"l1l"ĵ where ~ x̂!mn5H 0 if m5n

~lm
2 2ln

2!21 xmn if mÞn,
~13!

and then

X5l"pl1l"l̂"l1 1
2~l2"ĵ1 ĵ "l2!, ~14!
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where the indicesX5$A,B,C% label the components of the matrices:~l,l,j ,Y! and the right–hand
side indices of the matrixd.

If lAÞlBÞlC @see Eq.~13!#, i.e., if the eigenvalues of the matrixQ are nondegenerated, th
formulas presented define the transformationt:W{w5(d,l,l,pl ,j ,Y)°(U,Q,P)Psp* (6,R)
wherepl5diag(p A

l ,p B
l ,p C

l ).
The transformationt21 is well definite as the mapping sp* (6,R) {U°W/Hoct where setU

does not contain surfaceslX5lY . HereHoct,SO(3) is the octahedral symmetry group consist
of 24 elements. The groupHoct, sometimes called the gauge symmetry group or the unambig
group, is generated by the eigenvalue system:Q"d5d"l2 whose solutions tod are given modulo
to the group transformationsHoct: d°dh5d"h. This induces the action onW: (Hoct,W)
{(h,w)°wh5(d"h, Adh21( l),...,Adh21(Y)) and then the coset spaceW/Hoct is obtained from
the formula

W/Hoct5$wPW, w[w8⇔w85wh , hPHoct%, ~15!

then sp* (6,R) [W/H, which solves the problem of unique parametrization of orbit spaces.
Application of the transformation rules for the Poisson brackets$Xab ,Xgd8 %t(w)5(]atab)

3(w)Ã(]btgd8 )(w)Ã$wa ,wb%w , (X,X8)P(U,Q,P) lead to reduction of the Poisson structur
This reduction separates the orbit space into three commuting subspaces~see also the text in Sec
III !:

sp* ~6,R! [~rot* ~3!, shape* ~3!, spO* ~6!!. ~16!

For the spaceW we can rewrite the latter in the formW5rot* (3)3shape* (3)3spO* (6). Here
rot* (3)5(d,l) and shape* (3)5(l,pl,1)[H(3) –is the Heisenberg algebra. The coordinateslX

give the length of the principal axes for the ellipsoids of the density of the mass distribution
Poisson brackets for nine elements of the spO* (6) coalgebra read22

$JX ,JY%52eXYZJZ , $JX ,YYZ%52eXYTYTZ2eXZT YYT , ~17a!

$YXY ,YZT%52 j XZ YYT2 j XT YYZ2 j YZ YXT2 j YT YXZ , ~17b!

whereJ5(JA ,JB ,JC), JC5 j AB , cycl C,A,B is the Kelvin circulation.
The traces of powers of matricesa( j ,m)5ā(J,Y) determine three independent invariants

the spO* (6) coalgebra. It is convenient to present the result by using the following invariants

C2~ ā!5(
X

~YXX1JX
2!, C̄4~ ā!5 (

X.Y
~YXX YYY2YXY

2!1(
X,Y

JX YXY JY , ~18!

C̄6~ ā!5detY, ~19!

whose values at the pointāf5ā(J50,Y5diag(f1
2,f2

2,f3
2)) reads

C2~ āf!5(
i

f i
2 , C̄4~ āf!5(

i . j
f i

2 f j
2 , C̄6~ āf!5~ f 1 f 2 f 3!2. ~20!

The families of surfaces

^ f 1 , f 2 , f 3&85H ā~J,Y!: C2~ ā!5(
i

f i
2 , C̄4~ ā!5(

i . j
f i

2 f j
2 , C̄6~ ā!5~ f 1 f 2 f 3!2 J

~21!

are symplectic manifolds. However, as we will discuss further, in the casesf 350, they are not
transitive spO* (6) spaces, i.e., they are not single orbits.
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The definition of the orbit, which should be applied here, can be obtained with the help o
Poisson bracket: Ac* :h* °h* , h* {w°Ac* (w)(x)5(exp+ad* c)(w)(x) where (ad* c(w))(x)
5$w,c%x , w and c are functions on symplectic space^ f 1 , f 2 , f 3&8{x°c(x)PR. If ui(x)5xi ,
i 51,...,n, n>dim ^ f 1 , f 2 , f 3&8 is some coordinates system, for example~J,Y!, we can define:
O(x)5$(y1,...,yn), yi5Ac* (ui)(x), i 51,...,n%. For such orbits we have

dimO~x!5rank uK ~x!u, K ~x!5$ui ,uj%x . ~22!

As will be discussed in Secs. V and VII, the six-dimensional surfaces^ f 1 , f 2,0&8 contain two
four-dimensional spO* (6) orbits.

III. REDUCTION OF N-PARTICLE PHASE SPACE

The expression for momentum of theith particle which is consistent with the formula in~8!
for the elements of matrixP has the form

pW i5
mi

M
PW 1PW ~xW !1pW i8 , PW ~xW i !5mi VW ~xW !, (

i
pW i8[0, (

i
PW ~xW i !• pW i850, ~23!

where

VW ~xW !5^m&21 d"v"l21" td" ~xW2XW ! ~24!

defines the linear velocity field.
The Jacobi orthogonalN-dimensional matricesJ5J(m):JNi5Ami /M define the symplectic

mapping of the ‘‘Jacobi1center of mass’’ space onto the original phase spa
( x̄,XW ,p̄,PW )°(x,p)5(Xa1( x̄"J)a i mi

21/2, M 21 mi Pa1(p̄"J)a i mi
1/2). We have: (U,Q,P)

5( x̄" tp̄, x̄" tx̄, p̄" tp̄). Taking into account the formulas in Eq.~23! we can write

x̄5d"l"r , p̄5d"~v"r1l21 "p!, ~25a!

13335r " tr , 03335p" tr , ~25b!

where r and p are the rectangular 33N21-dimensional matrices for which the constrainin
conditions result from the last relations in Eq.~23!. The expression for the total kinetic energ
takes the form

T5TCM1TVW 1Trsp, Trsp5~2 ^m&!21 (
X

lX
22 YXX , ~26!

Y5p" tp, TVW 5
1

2 (
i

mi
tVW ~xW i !•VW ~xW i !5~2 ^m&!21 trace v" tv, ~27!

whereTCM is the energy of center of mass motion,TVW is the energy of the Dedekind–Rieman
model of ellipsoids. We will callTrsp the reduced single-particle kinetic energy.

Interesting interpretation of coordinates~r ,j ,p! is obtained by calculation of the pull back o
the symplectic canonical two-formv( x̄,p̄)5(a idx̄a i∧dp̄a i . Applying the notationv r5

td"d d,
where dx is the matrix: (dx)mn5d xmn , dxmn are one-forms,x∧"y denote the outer produc
contracted according to the rules of matrix multiplication, we find (N>4) the following formula:

V5V rot* (3)1Vshape* (3)1VM (3,N21)
, ~28a!

V rot5
1
2 tracevr∧" ~dl2 l"vr!, Vshape5(

a
dla∧dpa , ~28b!

VM(3,N21)
5tracedr∧" d tt, t5p1 1

2 j "r . ~28c!
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Taking into consideration the constraints on (r ,t) in Eq. ~25b! and the fact thatj is antisym-
metric, we get:r " tt1t"tr50333 . It is helpful to use the second formula in Eq.~28c! as a coordi-
nate transformations:(r ,j ,p)°(r ,t5p1 1

2 j "r ) and to define thep (2 K2p21)-dimensional
symplectic manifoldM (2 p,K), p<K,

M ~2 p,K !5H r̂~r ,t!5S r
t DPM2 p,K , r "tr51, r " tt1t"tr50, V~r ,t!5(

a,k
drak∧dtakJ ,

~29!

equivalent toT* @O(K2p)\O(K)# ( tr̂PT* @O(K)/O(K2p)#). If K5N21>3, the calculation
of inversion fors gives

s21: j ~r ,t!5t"tr2 r " tt, p~r ,t!5t"P~r !, ~30a!

P~r !51N213N212 tr "r . ~30b!

Defining the mappingr̂(r ,t)° x̂ in the same way asr°x in Eq. ~1! i.e., x̂(r ,t)5 r̂• tr̂•K6 and
noticing the identities:r " tt52 1

2 j , t" tt5Y2 1
4 j "j , we get

M ~6,N21!{ r̂~r ,t!° x̂5S 2 1
2 j 21

t" tt 2 1
2 j

D 5ā~ j ,Y!. ~31!

Hence,r̂(r , t)5 r̂(r "g,t"g), gPO(N21) and the symplectic spaceM (6,N21), in a natural way,
defines the space spO* (6)5$ā( j ,Y)%;M (6,N21)/O(N21)[T* @O(N24)\O(N21)#/O(N21)
as an algebra of the quadratic O(N21) invariant forms onM (6,N21). The results of Sec. II give

gj : @rot* ~3!,shape* ~3!#{@~d,l!,~l,pl!#5w°gj~w!PGCM~3!, ~32!

where the mappinggj(w)5ḡ(w,X(w,j )) is defined by Eqs.~9! and ~13! which enable one to
rewrite the formulas in Eq.~25a! in the following form:

G: @rot* ~3!,shape* ~3!,M ~6,N21!#{@w,r̂~r ,t!#°S x
pD5gj~w!"S r

t DPJ ~3,N21!, ~33!

whereJ (3,N21) denotes the JacobiN-particle phase space. It establishes the physical role o
6 N218-dimensional manifoldM (6,N21) which physically can be identified withHc.m.(3)
3rot* (3)3shape* (3) reduced phase space. Here,Hc.m.(3) denotes the Heisenberg coalgebra
the center of mass motion.

In the casesN52,3,4, the matrixP(r ) is the projection onto the null vector space: hen
Y50.

The obvious modification should be done in order to include the casesN52 andN53. Then,
(r ,t)PM (2 N22,N21).

In the caseN52, (dimM (2,1)50), l5(lA) and the scheme leads to the spherical coo
nates: xa5xa(u,w,lA)5daA(u,w) lA , pa5Sqxa,q(u,w,lA) pq , qP$u,w,lA%, d5d(u,w)
PSO(3)/SO(2). Theambiguity groupH5Hoct→ id.

For N53, d→d8PM332 , td8"d851232 , (d8,l8)[T* SO(3), L85diag (LA ,LB) for L

5l,pl , then X8PM232 and g(w)5d̄8(d8)"l̄8(l8)"X̄8(w)PM634 . The spaceM (4,2) is two
dimensional:

M ~4,2!5H S r
t D , r5r ~w!5S cosw 2sinw

sinw cosw
D , t5

1

2
r ,w p, V~w,p!5dw∧dpJ , j5p K2 .

~34!
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The three-dimensional representation of the groupHoct reduces to the two-dimensional represe
tation of the group:H85$r (0),r (p/2),r (p),r (3 p/2)%.

The case of four particles is determined by the representation ofM (6,3):

M ~6,3!5H S r
t D , r5eu3 L̂3

•eu2 L̂2
•eu1 L̂3, t5

1

2
j "r , V5( du i∧dpi J . ~35!

Here j5(XJX(u,p) L̂X"r , (L̂Z)XY52eZXY and (JA6 i JB)(u,p)52(sin21 u2 p11i p2

2cotu3 p3) e6i u3, JC(u,p)52p3 is the Poisson representation of the Kelvin circulation.
In all cases, we should extend the action of the transformation groupHoct (H8) on the

elements of M (6,N21). It is given by the left group translations: (Hoct,M (6,N21))
{@h,r̂(r ,t)#° r̂(h "r ,h "t)PM (6,N21). This extension solves the problem of reversibility22 of
mapping G. Namely, the transformationG21 should be considered as:J 8(3,N
21)°@rot* (3),shape* (3),M (6,N21)#/H whereH5Hoct,H8 or H5 id, according to the par-
ticle numberN. On J 8(3,N21),J(3,N21) the eigenvalues of tensorQ have to be nondegen
erated.

Taking into account these modifications we find the dimensions of phase spaces:

dim rot* ~3!1dim shape* ~3!5H 616 if N>4

614 if N53

412 if N52.

~36!

Two representations of so* (N21) obtained by considering the mapping%°o(%)52 t%•K6•%

Pso* (N21), (a) for %5 r̄ and (b) for %5 r̂ are equal and we have:ō[ô5 x̄Wn• p̄W m2 x̄Wm• p̄W n . The
direct calculation gives:ô5 tr "t2 tt"r and ō5 tr "p2 tp"r1 tr "j "r5ô(s(r ,j ,p)). The Poisson
bracket onM (6,K) has been obtained in Ref. 22 using, as the basis, the coordinates (r ,j ,p).

IV. POISSON MAPS FOR sp O* „4,R…

The coadjoint transformation forg5eip ĴC is the involution of spO* (6) which separates thei
elements into two classes, the even and the odd signature parity elements: Adg(X)56 X accord-
ing to the sign. The even part consists of the four elements spO* (4):spO* (4)
5(JC ,YAA ,YBB ,YAB) and YCC . The system of Poisson brackets for spO* (4) can be rewritten
using the complex system of coordinates

$J0 ,Y62* %57 i 2 Y62* , $Y0 ,Y62* %56 i 4 J0 Y62* , $Y2* ,Y22* %52 i 8J0 Y0 , ~37a!

where

J05JC , Y05YAA1YBB , Y62* 5YAA2YBB62 i YAB . ~37b!

The Poisson rules in formula~37! are restated by considering the two-dimensional phase sp
pA.pB>0,

^pA ,pB&85$~ei wC,pC!PS13@2pA1pB ,pA2pB#, $wC ,pC%51 %, ~38!

and by performing the following mapping:

J05pC , Y0~p!5pA
21pB

22pC
2 , Y62* 5AW~p! e6 iwC, ~39a!

where

AW~p!5a21,A~p! a11,A~p!5a21,B~p! a11,B~p!, ~39b!
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am,m~p!5ApA1pB1m pC ApA2pB1m em pC, m561, eA52eB51, ~39c!

and wherepm , m5A,B are some new momenta which commute with all elements of spO* (4).
The domains of the given maps are open sets which we find noticing that the functionY62*

are differentiable ifupCu<pA2pB only. The momentapA ,pB are the Poisson invariants. It i
convenient to consider the following two invariant functions~Casimirs!:

c2~J,Y!5Y01J0
2 , c4~J,Y!5YAA YBB2YAB

2 5 1
4 ~Y0

21Y2 Y22!. ~40!

On ^pA ,pB&8 they take the following values:

c2~pA ,pB!5pA
21pB

2 , c4~pA ,pB!5pA
2 pB

2 . ~41!

In the casespB.0 the values of Casimirs identify the orbits in a unique way; hence^pA ,pB&
5^pA ,pB&8 where^pA ,pB& denotes the orbit space.

In the casespB50 it is not true. Namely, for two pointsJC56pA , using the relations given
in Eqs. ~40! and ~41! we find: Y625Y050. Hence, all Poisson brackets in Eq.~37! vanish. Let
P(X) denote the projection ofX onto the momentum space. We have

P~^p,0&8!5P~^p,0&!1 (
s56

P~^ f ,0”&6!, ^ f ,0&5$~ei wC,pC!PS13~2 f , f ! %, ~42!

where ^pA ,0”&6 are two zero-dimensional orbits represented by two single pointsJC5pC

56pA , respectively. The class of zero-dimensional orbits include also the point:^0,0&[^0,0”&6

[(Ym50,J050). The expressionsYm ,m562,0 are even functions of momentap. It means that
the conditionspA>pB>0 wear out of all nonequivalent solutions.

The functionW(pA ,pB ,pC) is positive if: (a) upA2pBu<pC as well if (b) J0>pA .
The additional family of solutions could not be applied to the considered coalgebra. It re

from the assumption spO* (4),spO* (6). The three-dimensional Kelvin circulation algebr
so* J(3),spO* (6) is compact. Through the relationJ25ḠXY JX JX , the Kelvin circulation defines
the metricḠ which is EuclidianḠ5 td"E"d51,E51. The signature of the metricE has been
established by the choice of the inertia tensor, and consequently, by the choice of the grG
5GCM(3).

V. CLASSIFICATION SCHEME FOR sp O* „6,R… ORBITS

In the next section we investigate the spO* (6) orbits considering the families of six
dimensional symplectic mapsM ( f 1 , f 2 , f 3) , f 1. f 2. f 3.0:

Pf5$~pA ,pB ,pC!P~ f 1 , f 2!3~ f 2 , f 3!3~pA ,pB!%, ~43!

M f5H ~q,p!, q5~wA ,wB ,wC!~mod 2p!, pPPf , V~q,p!5(
X

dwX∧dpXJ , ~44!

and two four-dimensional onesM ( f , f , f 3) andM ( f 1 , f 3 , f 3) , obtained by removing the canonical pai
(wA ,pA) and (wB ,pB), respectively.

The material of Sec. IV exhibits an important feature of the orbits spO* (4). There are surfaces
distinguished by the spO* (4) values of Casimir functions which are not transitive subspaces: he
Casimir functions do not specify the orbits uniquely. A similar effect of splitting out of or
occurs for the coalgebra spO* (6) if f 350.
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Theorem 1: spO* (6) Poisson action on the df 1f 2
5622d f 1f 2

22 d f 20-dimensional manifold

M ( f 1 , f 2 ,0) , f 1.0 splits out M( f 1 , f 2,0) onto the df 1f 2
-dimensional orbit^ f 1 , f 2,0& and onto two

df 1f 2
22 dimensional orbitŝ f 1 , f 2 ,0”&6 . The orbits^ f 10,0”&6 are equivalent. For all orbits: f3

50 the following formula holds

rank Y522d~ f 2 ,0!2d~r ,0”!, r P$0,0”%. ~45!

The model of additional orbitŝf 1 , f 2 ,0”&6 , is easily obtained by considering the orbits of t
SO~4! group. LetO( f ,6g)5$(J,K ), J21K25 f 21g2, J"K56 f g%, 0<g< f . Then, via the defini-
tion of the Poisson brackets:$JX , JY%52eXYZJZ , $JX , KY%52eXYZKZ , $KX , KY%
52eXYZJZ and via the mapping:YXY°KX KY we get the 422 (d f g1dg0)-dimensional models
of the spO* (6) orbits

O( f ,6g);^ f ,g,0”&6 , O( f ,0);^ f ,0,0”&, rankY512dg0 , ~46!

for which pA[0 andpB[0 if g50. The proof of the features of the classification scheme res
from Eq. ~46! and the formulas presented in Sec. VII.

The verification of these results can be examined in a simpler way. To this aim we ca
formula ~22!. More precisely, let us consider the secular equation for the matricesKi j (a)
5$xi ,xj%a , i , j ,<9,xlPspO* (6) choosing the following four-dimensional set of pointsaf6(q):

Jf6~q!5~0,0,6 f ac hq!, Yf6~q!5diag~a1b,a2b, f 2
2!, a5 f a f c2 1

2 ~ f ac hq!2, ~47!

where f ac5 f a2 f c , hq5(12q2)1/2, b5q fac @( f a1 f c)
22( f ac hq)2#1/2 and let (f a , f b , f c), f a

> f c be received by a permutation of componentsf i , i<3. We have:c2(x)5 f a
21 f c

2 , c4(x)
5( f a f c)

2; hence, they belong to one spO* (4) orbit: ^pA ,pB&5^ f a , f c&. We find

W~l!5det~K2l1!52l3 w(2)3w(4), ~48a!

w(2)52 f ac
2 @28 f a

2 f c
224 f a f c ~114 f a

2210 f a f c14 f c
2! q2

2 f ac
2 ~114 ~ f a

226 f a f c1 f c
2!! q414 f ac

4 q6#1x2, ~48b!

w(4)5~ f a
22 f b

2!2 ~ f b
22 f c

2!21@ f c
222 f a ~11 f b

2!2 f c1 f b
4 ~21 f c

2!1 f a
2 ~11 f b

412 f c
2!

1 f ac
2 @4 f a f c2~11 f b

2!2# q21 f ac
4 q4 # l21l4, ~48c!

wheref ac5 f a2 f c . The dimension of the orbit is equal to the number of nonvanishing roots o
polynomialW(l):n5n11n2 . Taking into account the relationf a5 f c⇒q50 we get the formu-
las: n15222 max(dfc 0 dq 0,dfa fc

), n25422dfbfc
22dfb fa

from which we can deduce the rules o
dimensional space reduction. In particular, iffÞ( f , f , f ), then the first polynomial leads to add
tional degeneracy iff c5q50, i.e., if a5b50⇒rank Y512d f b 0 .

Taking into account Eq.~36! we can classify the coadjoint orbits of the group Sp(6,R) with
the help of the spO* (6) orbits. The following formulas hold:

dim ^ f 1 , f 2 , f 3&
sp* (6,R) 51822 d f 1f 2

22 d f 2f 3
28 d f 1f 3

, ~49!

dim ^ f 1 , f 2 ,B&q
sp* (6,R) 51622 d f 1f 2

22 d f 2026 d f 1f 2
d f 20 . ~50!

Using the above list it is interesting to construct the table presenting the sp* (6,R) orbit classifi-
cation ofN-particle phase spaces
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N: 2 3 4 5 6 >7

^f&: ^0,0,0& ^ f ,0,0”& ^ f ,0,0& ^ f 1 , f 2 ,0”&6 ^ f 1 , f 2 ,0& ^ f 1 , f 2 , f 3&
Sdi : 6101010 10121222 121412 12141414 12161418 181616 (N25)

In the third row of the table we display the dimensions of symplectic spaces that are import
the scheme considered:d15dim rot* (3)1dim shape* (3), d25dim spO* (6), d352 q, whereq is
the number of nonvanishing components of the vectorf andd4 suspend the result, so thatS idi is
the total dimension of JacobiN-body phase space.

The valuesd1 are valid only if all nonvanishing components of the weight vectorf are
different.

The caseN53 has been discussed earlier at the end of Sec. III. Two coordinates: (w f , f ),
f 25(JX

2 are not physical in this case, soq52 should by replaced byq50, which improves the
result.

The physics role of the dimensiond4 is elementary for the physics interpretation. Namely,d4

is the dimension of the coadjoint orbits of groupḠ5SO(N21); henced45dim Ḡ2dimHx0

where Ḡ5SO(N21) andHx0
,Ḡ is the stability subgroup of a pointx0POx0

whereOx̄0
5$o

Pso* (N21), o5Adg* ( x̄0)5g• x̄0•g21,gPḠ%. It results from the natural action of SO(N21) on
M (6,N21): (Ḡ,M (6,N21)){(g,(r ,t))°(r " g21,t"g21). Since traceo2 p5tracea2 p( j ,m), so
we can put:x̄05(k<3f k (E2k21,2k2E2k,2k21). For the casesf 1. f 2. f 3.0; hence, if N>7, the
stability group H̄x̄0

is equal to: SO(2)3SO(2)3SO(2)3SO(N27): thus, d45(N21) (N
22)/22(N27) (N28)/22356 (N25).

The assignation of the orbits in the two cases, forN55 and forN56, follows from the natural
hierarchy of orbits determined by the rank of the matrixY. An independent proof of that result wil
not be presented here.

The above-presented discussion and the result of Sec. III enable us to assert that many
phase spaces can be parametrized with the help of the maps

~ x̄,p̄!5~ x̄,p̄!~qrot3shape,~wA ,wB ,wC ,pA ,pB ,pC!,~ f 1 , f 2 , f 3 ,c1 ,c2 ,c3!,q
so* (N21)

( f 1 , f 2 , f 3)
!, ~51!

wheref, c obey the canonical Poisson rules$c i , f j%5d i j . Such maps have to be singular on t
surfacesf i5 f j andlX5lY .

VI. POISSON MAPS FOR sp O* „6,R… ORBITS

In Sec. IV the orbits spO* (4) have been parametrized by a single canonical pair (wC ,pC) and
two cyclic momentapA ,pB . Let c(q)5c8(pA

2 ,pB
2 ,pA pB ,wC ,pC) denote the even signatur

parity function,w5(wA ,wB ,wC), p5(pA ,pB ,pC), f5( f 1 , f 2 , f 3) is the weight vector labeling
the subspaceŝf 1 , f 2 , f 3&8 @see Eqs.~18!, ~20!# andz5(JA ,JB ,JBC ,YAC) denote the vector of the
odd parity signature coordinates. We will search for a Poisson map:G:(w,p,f)°z by assuming the
validity of the canonical rules:

$wm ,wn%5$pm ,pn%50, $wm ,pn%5dnm , ~m,n!P$A,B%. ~52!

Each Poisson bracket between a signature even and a signature odd parity elements of sO* (6) is
linear function of the signature odd elements or it vanishes. Thus, forH5H(q): $zn ,H%q,z

5(m zm Hmn(q)) and all coordinatesq are constants of motion. The most important example
obtained for the following Hamiltonian function:H(q)5pA

21pB
25JC

2 1YAA1YBB . We get
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H ~pA
21pB

2 ! 52 S 0 2JC YBB YAB

JC 0 2YAB 2YAA

21 0 0 0

0 1 0 0

D . ~53!

The eigensystem for this matrix determines two complex functionsbm , m5A,B,

bm5Um ~pm JA1 i YBC!1 i Vm ~pm JB2 i YCA!, ~54a!

Um5~pC YAA1 i pm YAB!, Vm5~pm p̄m
2 2pm YAA2 i pC YAB!, ~54b!

where we used the notation:p̄A5pB , p̄B5pA . They obey the following Poisson relations:

$bm ,H~p!%5 i 2 pm bm , $bm* ,H~p!%52 i 2 pm bm* , ~55a!

$bm , YAA YBB2YAB
2 %5 i 2 pm p̄m

2 , ~55b!

~bm! ,w5b̂m , ~ b̂m! ,w52bm , b̂m5gm bm5gm5S Vm

Um
D *

, ~55c!

valid for m equal toA andB. Above, for brevity, we used the notation:wC[w, f ,w5$ f ,pC%. For
the functionsgm we find the following expressions:

gm5
2~pm

2 2pC
2 !AW~p! cos 2w1 i pm p̄m

2 pC

h~pm!
, ~55d!

h~x!5~x22JC
2 ! YAA2YAA YBB1YAB

2 ~55e!

52pA
2 pB

21 1
2 ~x22pC

2 ! ~pA
21pB

22pC
2 1AW~p! cos 2w!. ~55f!

Equations in~55c! say that in the Fourier decomposition of the complex functionsbm(w) there
occur only components proportional toe6 i w. Taking into account Eqs.~55a!–~55c! we write the
expressions for the functions of canonical coordinatesbm8 (w,p)5bm8 : bm8 5bm+G,

bm8 ~w,p!5ei wm (
m561

Rmm~p! ei m w. ~56!

In order to find the functionsRmm we use the relations~55c!. The calculations give

R1m

R2m
5e2 i2w

i 1gm

i 2gm
52em e2 i2w

~pm2pC! @a11,m
2 2ei2w AW~p!#

~pm1pC! @a21,m
2 2e2 i2w AW~p!#

5em

~pm2pC! a11,m

~pm1pC! a21,m
,

~57!

whereAW(p) and the functionsam,m have been defined in Eqs.~39b! and ~39c!. The result says
that these ratios are real numbers. Using the previous result one also finds

ubm8 u25uR1mu21uR2mu21~R1m R2m* 1R1m* R2m! cos 2w5
4 em h~pm! uR2u2

a21,m
2 ~pm1pC!2 . ~58!

It means that the functionsem h(pm) are non-negative. Performing the calculations of the modu
of the functionsbm with the help of~54! one finds
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bm bm* 5h~pm! G~pm!, ~59!

G~x!5@YBC
2 1YCA

2 2JA
2 YAA2JB

2 YBB22 JB YBC JC22 JA ~JB YAB1JC YCA!# x2

1~JA
21JB

2 ! x42YAA YBC
2 12 YAB YBC YCA2YBB YCA

2 .

Considering the function defined by the Casimir invariants

Ḡ~x!5C̄62C̄4 x21C2 x42x6, ~60!

one can show thatG2Ḡ vanishes atpm , m5A, B; hence, using the relations in Eq.~20!

G~pm!5Gf~pm!, Gf~x!5)
i 51

3

~ f i
22x2!, m5A,B, ~61!

and if we request that (pA ,pB)PVf(pA ,pB), whereVf(x,y), (V̄f(x,y)) is an open set~closed!,

Vf~x,y!: f 3,y, f 2 , f 2,x, f 1 , ~62!

then, the factorsg1(pm)5em g(pm), g5(h,Gf), eA52eB51 are non-negative. Comparing th
result in Eq.~58! with the result in Eqs.~59! and ~61! we getRmm . The simplest choice of the
phases leads to

Rmm~p!5
Smm

2
~pm2m pC! am,m~p! Nf~pm!, SmA51, SmB5m, ~63!

Nf~pm!5Aem Gf~pm!5Apm1 f 2 Aem ~pm2 f 2! )
m

Af 11mpm Apm1m f 3, ~64!

which lead to the final result on the functionsbm8 :

bm8 ~w, p!5ei wm Hm~w,p! Nf~pm!, ~65!

where

Hm~w,p!5
1

2 (
m

Smm ~pm2m pC! am,m~p! ei m w, Hm Hm* 5em hm~pm!. ~66!

Let us introduce a transformation to complex variables

Qmm~J,Y!5pm Jm1m Ym , Jm5JA1 i m JB , Ym5YCA1 i m YBC . ~67!

The application of the above to the functionsbm @see, Eq.~54!# leads to

bm5Hm (
m

Umm Qmm , Umm52 1
2 m Smm a2m,m ei m x, ~68!

whereĀ5B, B̄5A. Comparingbm with bm8 and removing the common factorHm which follows
from normalization, we get the linear system of equations for (Jm ,Ym),

(
m

Umm Qmm~J,Y!2ei wm Nf~pm!50, (
m

Umm* Qmm* ~J,Y!2e2 i wm Nf~pm!50, ~69!

and that the solutionXm8 , X5(J,Y) defines mappingG. The solution takes the following form:
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Jm8 ~w, f, p!5(
nm

j mnmS f
pD e2 i (m wC1n wm), Ym8 ~w, f, p!5(

nm
ymnmS f

pD e2 i (m wC1n wm),

~70a!

where

j mnmS f
pD52m Smm S2nm̄ anm,m~p!

Nf~pm!

2 pm ~pA
22pB

2 !
, ~70b!

ymnmS f
pD52Smm S2nm anm,m~p! ~pm2m n pC!

Nf~pm!

2 pm ~pA
22pB

2 !
. ~70c!

An elementary calculation gives

J18 J28 5@2 ~pA
22pB

2 !2#21 S (
m

~pA
22pB

21em ~pC
2 2AW~p! cos 2wm!! S Nf~pm!

pm
D 2

22 pC @A~pA2pB!22pC
2 C21A~pA1pB!22pC

2 C1#
Nf~pA! Nf~pB!

pA pB
D , ~71!

where we denotedC65cos(wA6wB). Rewriting relation~18! for invariantC2 and using Eq.~20!
we find the expression for the elementYCC ,

YCC8 ~w, p!5(
i 51

3

f i
22pA

22pB
22J28 J18 . ~72!

The functionsj andy in Eq. ~70! are regular in all domainVf . The singularity of the expression
on the surfacepB50 is not essential. Indeed, the factorpB

21 cancels with the numerator if th
parameterf 3 is equal to zero.

VII. SINGULAR CASES OF sp O* „6,R… ORBITS

The formulas obtained in Sec. VI are much simpler in two cases: (a) f 15 f 25pA5 f and (b)
f 25 f 35pB5 f . In case (a), the functionNf f 2f 2

(pm) vanishes atpm5 f 5pA while in the case (b),
Nf 1f f(pm) vanishes atpm5 f 5pB . Thus, in both the cases we get the reduction of dimensio
orbits by two units.

Let us, for example, consider case (b). For f5( f 1 , f , f ), pB[ f , and we get

Jm8 5
m e2 i m wC

2 pA
Af 1

22pA
2 (

n561
n am n,A~pA , f ,pC! e2 i n wA, ~73a!

Ym8 52
e2 i m wC

2 pA
Af 1

22pA
2 (

n561
a m n,A ~pA , f ,pC! ~pA2m n pC! e2 i n wA, ~73b!

YCC8 5
1

2 pA
2 @ f 2 ~ f 1

21pA
2 !1~ f 1

22pA
2 ! ~pA

22pC
2 1AW~pA , f ,pC! cos 2wA!#, ~73c!

wherem561 and theAW(p) is given in Eqs.~39b! and ~39c!. The components proportional t
ei wB vanish. This decreases the number of modes and decreases the dimension of orbits^ f 1 , f , f &.

If for f 50 we putpC56pA and let f 1→ f , then

Ym8 50, YCC50, Jm8 upC56pA
57e2 i m (wC7wA) Af 22pC

2 , ~74!
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which leads to two equivalent, two-dimensional, orbits^ f ,0,0”&.
It is interesting to consider a more general type of configuration forming the su

S f 1f 2
:^ f 1 , f 2,0&upB50 . Then,upCu<pA , pAP@ f 2 , f 1# and we get the following expressions:

Xm8 upB505
e2 i m wC

pA
2 ~h um~X!2 f 1 f 2 pAC coswB vm~X!!, ~75a!

@um~X!, vm~X!#5H @pC coswA2 impA sinwA,1# if X5J,

@2pAC
2 coswA ,pC# if X5Y,

~75b!

YAB52 1
2 pAC

2 sin 2wC , Ymm5 1
2 pAC

2 ~11em cos 2wC!, m5A,B, ~75c!

YCC5 f 1
21 f 2

22pA
22pA

24 @~h pC coswA2 f 1 f 2 pAC coswB!21pA
2 h2 sin2 wA#, ~75d!

whereh5Af 1
22pA

2 ApA
22 f 2

2 andpAC5ApA
22pC

2 , for which we find

mXY~Y!5UYXX YXY

YXY YXX
U5pA

22 f 1
2 f 2

2 pAC
2 sin2 wB 3H sin2 wC if X5B, Y5C

cos2 wC if X5C, Y5A

0 if X5A, Y5B.

~76!

The latter formulas establish the following rules:

^ f 1 , f 2 ,0”&65$~q, p!PM ( f 1 , f 2,0) , pB50, ei wB561 %. ~77!

All the presented equations provide the rules the reductions of the orbit dimensions, and th
in agreement with the material presented in Sec. V.

In Eq. ~75! the dependence onwB occurs through the factorf 1 f 2 coswB only: thus, in
accordance with the so~4! model, we can fix the phasewB50 and extend the rangef 2 : u f 2u
< f 1 .

VIII. FINITE DIMENSIONAL UIR OF sp O„4… ALGEBRA

The quantum form of the Poisson rules in Eq.~37! results from the relations

@ Ĵ0 ,Ŷm* #5m Ŷm* , @Ŷ2* ,Ŷ22* #58 Ĵ0 Ŷ0 , @Ŷ0 ,Ŷ62* #572 ~ Ĵ0 Ŷ62* 1Ŷ62* Ĵ0!. ~78!

For discussion of the above, let us introduce the following basis of the states:

up&5upA ,pB ,pC&, ^wup&5~2 p!23/2expS i \21 ( wX pXD . ~79!

and consider the mapping

Y0°Ŷ05
1

2 (
r 561

Y0~ p̂A2q̂,p̂B2q̂2E,p̂C1r E !5~ p̂A2q!21~ p̂B2q21!22 p̂C
2 2E,

~80a!

Ŷ62* 5e6 i 2 ŵC AW~ p̂A2q̂,p̂B2q̂2E,p̂C6E!, ~Ŷ62* !†5Ŷ72* , ~80b!

J05pC° p̂C . ~80c!

Here,E is the unit operator,q̂5q E, and the parameterq fixes the beginning of the momentum
scale. The functionAW is given in Eqs.~39b! and ~39c!. The application of the Schro¨dinger
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quantization of coordinate and momentum operators:ŵX5wX , p̂X52 i \ ]wX
to the given formu-

las restates the set of rules for the operator algebra in Eq.~78!. Consider the action of the
above-mentioned operators on the set of states:u pC&5u pA ,pB ,pC&,

Ĵ0 upC&5pC u pC&, Ŷ62* upC&5AW~pA2q,pB2q21,pC61! u pC62&. ~81!

We find

05Ŷ12* upA2pB&5Ŷ22* u2pA1pB&, ~82!

so, if pA2pB is an integer number, whilepB is integer or half-integer number, thenupC&
5u6(pA2pB)& are the highest and lowest states, respectively. It is convenient to rewrite the
using the Biedenharn pattern for carrier space of the algebrau(2). Let pA5p21, pB5p22, and
p115

1
2 (pA1pB1pC), then the set of states

^p12,p22&5 H up&5Up21 p22

p11
L , p115p21,p2121,...,p22J , p11Þ11q, p22Þq, ~83!

spans thep122p2211 dimensional representation of the operators spO* (4). Theconditions on the
right-hand side of this formula will be discussed in the following.

Let us choose the value of the scale parameterq: q51. Then, the explicit form of the
expression forY62 is obtained from

H62~p!5W~pA21,pB22,pC61!5~pA2pB7pC! ~pA1pB6pC22!

3~pA2pB6pC12! 3~pA1pB7pC24!. ~84!

Hence,H2upC5pA2pB
5H1upC52pA1pB

524 (pA2pB) (pA22) (pB21) from which we conclude
that the statespA5m, pB51, pC56(pA2pB), as well aspA52, pB5m, pC56(pA2pB), are
~additional! one-dimensional families of IUR,

um, 1&65Um 1
p6

L 5U2 32m
p6

L ,
Ym um, 1&650, m50,62,

Ĵ0 um, 1&656~m21! um,1&6 ,
~85!

wherep15m21 andp251, andm is an odd integer number greater or equal to 2~since, for
m51, dim51 also results from the formula given below Eq.~83!, this case is a regular one!. In
Eq. ~85!, we used the formula:pC5(2 p112p212p22). These specific one-dimensional IUR r
sults from the existence of the zero-dimensional orbits^p,0”&6 , p.0 for which Y50.

For the casep2251 we should modify the result in Eq.~83!,

^p12,1&5 H up&5Up21 1
p11

L , p115p2121,...,p2221J . ~86!

The consistence of the choice of the scale parameterq with the sp(6,R) IUR algebra classification
should be proven. The coadjoint transformation in Eq.~9!: spO* (6)Pa°xPsp* (6,R) does not
change the values of CasimirsC2 , C̄4 , C̄6 . Since the matrixX @see Eq.~14!# depends onj , in the
quantum theory we can conclude that they have to be mutually dependent, only. It is obviou
the same condition holds for the Casimirs of the sp(4,R) and spO* (4). We will prove that such
relations exist and just the valueq51 leads to the correct scaling of the components of wei
vectorpW 5(pA ,pB).

The quantum spO* (4) algebra has two independent Casimir operators:

ĉ2 up&52 ~Ŷ01 Ĵ0
2! up&5c2~pA ,pB! up&, c2~pA ,pB!5812 pA ~pA22!12 pB ~pB24!.

~87!
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The second invariant is slightly different than in the classic theory

ĉ48 up&5@ 1
8~2 Ŷ0

22Ŷ2 Ŷ222Ŷ22 Ŷ2!1\2 Ĵ0
2# up&5c48 up&, c485~pA21!2 ~pB22!2. ~88!

The eigenvalues of Casimir operators for the discrete series IUR of sp(2m,R) are labeled by the
lowest IUR of u(m) algebra@p1 ,...,pm# and we denote them byc̄m(p1 ,...,pm). In general, these
eigenvalues can be obtained from the formula:c̄k(p1 ,...,pm)5( c̄k)h(2pm ,..., 2p1), h
5sp(2m), i.e., by modifying in this way the expressions for the compact sp(2m) algebras.
Taking into account the validity of the general formula:32,33

~ c̄k!h~p!5 (
1<a<m

@~m2va!k Da1~m1va!kD2a# D0
21 , ~89!

where va5pa1m112a, D6a5dim ^p1 ,...,pa21 ,pa61,pa11 ,...,pm&h , D0

5dim ^p1 ,..., pm&h , and noticing thatĉ485 1
8 ĉ2

22 ĉ4 we find:

c2~pA ,pB!5 c̄2~pA ,pB!18, c48~pA ,pB!5 c̄481 13
4 c̄214. ~90!

This closes the proof of consistence for the scale parameterq. The meaning of the relations in Eq
~90! can be explained with the help of the Weil symmetry group@W,$p%#. It consists of four
elementsW5$EW ,w1 ,w2 ,w3%, wi+wi5E, w1+w25w3 where

pw1
5~2pA12,2pB14,pC!, pw2

5~pB21,pA11,pC!,

~91!
~p!w3

5~2pB13,2pA13,pC!,

which are the symmetries of algebra. In particular, we haveHm(pwi
)5Hm . Both pairs of the

functions (c2 ,c48) and (c̄2 ,c̄48) have the common Weil symmetry group.
The Weil symmetries reduce the number of nonequivalent UIR. The setP of nonequivalent

finite dimensional UIR reads

P5$^ 3
2,

3
2&, ^1,1&, ^21m,1&6 , ^21m,11n&, m50,1

2,..., n5m11,m,...,0 or 1
2%. ~92!

The dimensions of these representations follow from the expression: dim^p21,p22&5p222p11

1122 dp221
while ^p21,1&6 are one-dimensional. The symmetryw2 constrains the setP to two

subsets: (a) ^p21/2,p11/2& for which the finite dimensional representations do not exist, an
the set (b) pA2pB50,1,... which we reduce with the help of the symmetryw3 and using the
unitarity conditionHm>0⇒(pA22) (pB21)>0.

Let us notice a few examples of application of the symmetryw3 important for application to
many-particle dynamics:̂1/2,1/2&w3

5^5/2,5/2&, ^3/2,1/2&w3
5^5/2,3/2&, ^1,1&w3

5^2,2&. As was

discussed at the end of Sec. IV, spO* (4) also have noncompact orbits; hence for spO(4) ~operator!
algebra exists a discrete series of infinite dimensional UIR. We will not discuss them here.

Summarizing the result, the finite dimensional IUR are obtained ifp112p22>0 are integer
positive number, whilep22 are integer or half-integer positive numbers. The eigenvalues of
operatorĴ0 are integer numbers for all states.
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On the convergence to statistical equilibrium
for harmonic crystals

T. V. Dudnikovaa)

M.V. Keldysh Institute of Applied Mathematics RAS, Moscow 125047, Russia

A. I. Komechb)

Institute of Mathematics, Vienna University, Vienna A-1090, Austria

H. Spohnc)

Zentrum Mathematik, Technische Universita¨t, München D-80290, Germany

~Received 29 October 2002; accepted 2 January 2003!

We consider the dynamics of a harmonic crystal ind dimensions withn compo-
nents,d,n arbitrary,d,n>1, and study the distributionm t of the solution at time
tPR. The initial measurem0 has a translation-invariant correlation matrix, zero
mean, and finite mean energy density. It also satisfies a Rosenblatt—resp.
Ibragimov–Linnik type mixing condition. The main result is the convergence ofm t

to a Gaussian measure ast→`. The proof is based on the long time asymptotics of
the Green’s function and on Bernstein’s ‘‘room-corridors’’ method. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1571658#

I. INTRODUCTION

Despite considerable efforts, the convergence to equilibrium for a mechanical syste
remained as an extremely difficult problem. It has been recognized early on that for an infi
extended system, possibly on top of local hyperbolicity, the flow of statistical informatio
infinity serves as a mechanism for relaxation. The two prime examples are the ideal gas a
harmonic crystal. We consider here the latter case. In the harmonic approximation the cry
characterized by the displacement fieldu(x), where xPG, G is a regular lattice inRd, and
u(x)PRn with n depending on the number of atoms in the unit cell. The fieldu(x) is governed by
a discrete wave equation. We will consider arbitraryd,n and for notational simplicity setG
5Zd.

Our motivation to return to a well studied model is to a much wider class of initial meas
than before. This project requires novel mathematical techniques. They have been develo
the wave and Klein–Gordon equation onRd in Refs. 6–8, but the discrete structure poses ex
difficulties.

Let us briefly comment on previous work. In Ref. 14 a general criterion is given w
ensures mixing and Bernoulliness of the corresponding mechanical flow. Thereby the conve
to equilibrium is established for initial measures which are absolutely continuous with resp
the canonical Gaussian measure. In Ref. 14 moments of the displacement field are studie
allows us to reduce the spectral analysis of the Liouvillian flow to the spectral properties o
dynamical group defined on solutions of finite energy. Since the crystal is assumed to be
geneous, these spectral properties are determined by the dispersion relationsvk(u), k
51, . . . ,n. The Liouvillian flow is mixing and even Bernoulli, if, except for crossing points, ea
vk(u) is a real-analytic function which is not identically constant. In particular, the Lebes
measure of the set$uPTd: “vk(u)50% is equal to zero. In Ref. 20, for the cased5n51, initial

a!Electronic mail: dudnik@elsite.ru, dudnik@mat.univie.ac.at
b!On leave Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia. Ele

mail: komech@mat.univie.ac.at
c!Electronic mail: spohn@mathematik.tu-muenchen.de
25960022-2488/2003/44(6)/2596/25/$20.00 © 2003 American Institute of Physics
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measures are considered which have distinct temperatures to the left and to the right. In
again d5n51, the convergence to equilibrium is proved for a more general class of in
measures characterized by a mixing condition of Rosenblatt—resp. Ibragimov–Linnik typ
which are asymptotically translation-invariant to the left and to the right.

The detailed stationary phase analysis of Ref. 2 does not directly generalize tod>2. Rather,
we have to develop a novel ‘‘cutoff strategy’’ which more carefully exploits the mixing condi
in Fourier space. This approach allows us to alld within essence the same conditions for t
dispersion relations as in Ref. 14. Our extension requires the technique of holomorphic fun
of several complex variables.

In parentheses we remark that, for the ideal gas, Dobrushin and Suhov3 first realized the
importance of a mixing condition on the initial measure. In Ref. 9 it is replaced by the cond
of finite entropy per unit volume thus establishing convergence whenever the specific p
number, energy, and entropy are finite. No such general result seems to be available
harmonic crystal.

We outline our main result and strategy of proof. The displacement fieldu(x) is the deviation
of the configuration of crystal atoms from their equilibrium positions. Assuming them to be s
and expanding the forces to linear order yields the discrete linear wave equation,

ü~x,t !52( yPZdV~x2y!u~y,t !; uu t505u0~x!, u̇u t505v0~x!, xPZd. ~1.1!

Here u(x,t)5„u1(x,t), . . . ,un(x,t)…,u05(u01, . . . ,u0n)PRn and correspondingly forv0 . V(x)
is the interaction~or force! matrix, „Vkl(x)…, k,l 51, . . . ,n. The dynamics~1.1! is invariant under
lattice translations.

Let us denote byY(t)5„Y0(t),Y1(t)…[„u(•,t),u̇(•,t)…, Y05(Y0
0 ,Y0

1)[„u0(•),v0(•)…. Then
~1.1! takes the form of an evolution equation,

Ẏ~ t !5AY~ t !, tPR; Y~0!5Y0 . ~1.2!

Formally, this is the Hamiltonian system since

AY5JS V 0

0 1DY5J ¹H~Y!, J5S 0 1

21 0D . ~1.3!

HereV is a convolution operator with the matrix kernelV andH is the Hamiltonian functional,

H~Y!5 1
2 ^v,v&1 1

2 ^Vu,u&, Y5~u,v !, ~1.4!

where^v,v&5(xPZduv(x)u2 and^Vu,u&5(x,yPZd„V(x2y)u(y),u(x)…,(• ,•) being the real sca-
lar product in the Euclidean spaceRn.

We assume that the initial datumY0 is a random element of the Hilbert spaceHa of real
sequences; see Definition 2.1.Y0 is distributed according to the probability measurem0 of mean
zero and satisfying the conditionsS1–S3 below. GiventPR, denote bym t the probability mea-
sure forY(t), the solution to~1.2! with random initial dataY0 . We study the asymptotics ofm t as
t→6`.

The correlation matrices of the initial data are supposed to be translation-invariant, i.e
i , j 50,1,

Q0
i j ~x,y!ªE„Y0

i ~x! ^ Y0
j ~y!…5q0

i j ~x2y!, x,yPZd, ~1.5!

though our methods require in fact much weaker conditions. We also assume that the initia
‘‘energy’’ density is finite,

e0ªE@ uu0~x!u21uv0~x!u2#5tr q0
00~0!1tr q0

11~0!,`, xPZd. ~1.6!
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Finally, it is assumed that the measurem0 satisfies a mixing condition of a Rosenblatt—res
Ibragimov–Linnik type, which means that

Y0~x! and Y0~y! are asymptotically independent asux2yu→`. ~1.7!

Our main result is the~weak! convergence of the measuresm t on the Hilbert spaceHa with a
,2d/2,

m t⇁m` as t→`. ~1.8!

m` is a Gaussian measure onHa . A similar convergence result holds fort→2`. Explicit
formulas for the correlation functions of the limit measurem` are given in~2.18!–~2.22!. As an
application of the results, we show that the initial ‘‘white noise’’-correlations provide the l
measurem` which coincides with the Gibbs canonical measure with the temperature;e0 . Re-
spectively,m` is close to the canonical measure if the initial correlations are close to the w
noise.

To prove the convergence~1.8! we follow general strategy.2,4,6,7There are three steps.

I. The family of measuresm t , t>0, is weakly compact inHa with a,2d/2.

II. The correlation functions converge to a limit, fori , j 50,1,

Qt
ij~x,y!5EYi~x!^Yj~y! mt~dY!→Q`

ij ~x,y! as t→`. ~1.9!

III. The characteristic functionals converge to a Gaussian one,

m̂ t~C!ªE exp~ i ^Y,C&!m t~dY!→expH 2
1

2
Q`~C,C!J as t→`. ~1.10!

Here C5(C0,C1)PD5D % D, D5C0(Zd) ^ Rn, whereC0(Zd) denotes the space of the re
sequences with finite support,^Y,C&5( i 50,1(xPZd„Yi(x),C i(x)… andQ` is the quadratic form
with the matrix kernel„Q`

i j (x,y)…i , j 50,1,

Q`~C,C!5 (
i , j 50,1

(
x,yPZd

„Q`
i j ~x,y!,C i~x! ^ C j~y!…. ~1.11!

Note that~1.1! is the translation-invariant convolution equation and admits a simple structu
the Fourier space. As a consequence, Fourier representation plays a central role in our pr
propertiesI and II . On the other hand, Fourier transform alone does not suffice in provingIII ,
since our main condition~1.7! is stated in the coordinate space and its equivalent interpretatio
Fourier space is obscure.

PropertyI follows by the method:22 we prove a uniform bound for the covariance ofm t and
refer to the Prokhorov Theorem. PropertyII is deduced from an analysis of the oscillatory integ
representation of the correlation function in Fourier space. An important role is attribute
Lemma 3.1 reflecting the properties of the Fourier transformed correlation functions wh
derived from the mixing condition. To proveIII we exploit the dispersive properties of th
dynamics~1.1! in coordinate space. The dispersion follows from a stationary phase metho
plied to the oscillatory integral representation of the Green’s function in Fourier space
dispersion allows us to represent the solution as a sum of weakly dependent random varia
the Bernstein-type ‘‘room-corridor’’ partition.

Let us explain in more detail the main idea for the proof ofIII . First let us consider the cas
n51 and the nearest neighbor crystal for which the potential energy has the form
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1

2 (
x,yPZd

„V~x2y!u~y!,u~x!…5
1

2 (
xPZd

S (
i 51

d

uu~x1ei !2u~x!u21m2uu~x!u2D , ~1.12!

where m>0 and ei5(d i1 , . . . ,d id). The solution is represented through the Green’s funct
G(t,x),

Y~x,t !5 (
yPZd

G~ t,x2y!Y0~y!. ~1.13!

The long-time asymptotics of the Green’s function is analyzed by the stationary phase m
based on the dispersion relation

v~u!ªV̂1/2~u!5S 2(
j 51

d

~12cosu j !1m2D 1/2

, uPTd, ~1.14!

whereTd is the reald-torus andV̂(u) stands for the Fourier transform ofV(x). The main features
of v for m.0 are

~ i! v~u!Þ0, uPTd , and ~ ii ! mesC50, ~1.15!

whereC is thecritical set$uPTd:det Hessv(u)50% and ‘‘mes’’ stands for the Lebesgue measu
in Td. The Green’s function has distinct asymptotic behavior in three zones of (x,t)-space: inside,
resp., outside the light cone and in the ‘‘buffer zone,’’ which is a small conical neighborhood o
boundary of the light cone. The light cone is determined by the group velocities¹v~u! of the
phonons, and its boundary is determined by the group velocities¹v~u! with ‘‘critical’’ uPC, since
they correspond to the maximal values ofu¹v(u)u with a fixed direction of¹v(u) @cf. ~1.16!#.
Therefore, the buffer zone is determined by the velocities¹v~u! with the u from a small neigh-
borhood of the critical setC. The Green’s function decays rapidly outside the light cone, ast2d/2

inside the light cone except for the buffer zone, and more slowly in the buffer zone; cf.~1.18!.
Now let us discuss the general case whenn>1. For n.1 an additional important featur

occurs. In this case we haven dispersion relationsvk(u), k51, . . . ,n, which are the eigenvalue
of the matrixV̂1/2(u). Thus there can be ‘‘crossing points’’ where two or more dispersion relat
vk(u) coincide which implies that they are not differentiable, in general. In this case the dec
the Green’s function generally is slower thant2d/2 everywhere in (x,t)-space. We estimate th
decay by the stationary phase method, hence we need smooth branches of the dispersion
vk(u) at least locally inu. We establish the existence of the branches outside a set of the Leb
measure zero inTd ~see Lemma 2.2!. For the proof we use the advanced variant of the Weierst
Preparation Theorem from Ref. 15 and the analytic stratification of analytic sets.12

For n>1 we define the critical setC as the subset ofTd which is the union overk
51, . . . ,n of all the pointsu either with a nondifferentiablevk(u), or with a degenerate Hessia
of vk(u), or with vk(u)50. Lemmas 2.2, 2.3 imply that mesC50 which plays the central role in
all proofs in the paper. The critical set is never empty. For example, let us fixk51, . . . ,n and
consider the pointuPTd with the maximal group velocityu¹vk(u)u.0. Then det Hessvk(u)
50 since Hessvk(u) ¹vk(u)50:

„Hessvk~u! ¹vk~u!…i5(
j

]2vk~u!

]u i ]u j

]vk~u!

]u j
5

1

2

]

]u i
(

j
U]vk~u!

]u j
U2

50, i 51, . . . ,d,

~1.16!

provided the derivatives exist. Thus even ford5n51 theuniform in xPR decay of the Green’s
function is slower thant21/2 sincev9(u) vanishes in some points. To overcome this difficulty,
Ref. 2 it is required thatv-(u)Þ0 at points withv9(u)50. Then the uniform decay of the
Green’s function ist21/3 which suffices in the cased51 together with an additional assumption o
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the higher moments of the initial measure. In contrast, the critical set and the slow decay
Green’s function do not occur for the Klein–Gordon equation analyzed in Refs. 4, 6.

For d,n>1 Suhov and Shuhov have proved in Ref. 19 the convergence of the covar
~1.9!, for a simple singularityof vk(u) ~in Arnold’s terminology1! in the pointsuPC with the
degenerate Hessian. However, a similar detailed analysis of all degenerate points ford,n>1
seems to be impossible. We avoid it by a novel ‘‘cutoff’’ strategy which allows us to cover
general case when the Lebesgue measure of the critical setC is zero. Namely, we choose an«
.0 and split the Fourier transform of the solution in two componentsŶ(u,t)5Ŷf(u,t)
1Ŷg(u,t) where Ŷf(u,t)50 outside the«-neighborhood of the critical setC while Ŷg(u,t)50
inside the«/2-neighborhood ofC. First, we use the mixing condition to estimate the contribut
from the ‘‘critical’’ componentŶf : we prove that it is small in the mean, i.e., its dispersion
negligible uniformly int>0, if «.0 is sufficiently small. This follows from the identity mesC
50 since the Fourier transforms of the initial correlation functions are absolutely continuou
to the mixing condition. A further step is to develop a Bernstein type argument to prov
Gaussian limit for the main ‘‘noncritical’’ componentYg . We write it in the form~1.13!:

Yg~x,t !5 (
yPZd

Gg~ t,x2y!Y0~y!, ~1.17!

whereGg(t,x2y) is the ‘‘truncated’’ Green’s function which is defined similarly toYg(x,t): its
Fourier transformĜg(t,u) is zero inside the«/2-neighborhood ofC. Then all the dispersion rela
tionsvk(u) are smooth and nondegenerate on the support ofĜg(t,u), hence the truncated Green
function has the standard decay,

Gg~ t,x2y!<H Ct2d/2, uy2xu<ct,

Cp~ utu1ux2yu11!2p, uy2xu>ct,
~1.18!

with somec.0 and anyp.0; cf. ~5.2!, ~5.3!. Therefore, the representation~1.17! demonstrates
that for a fixedxPZd, the main contribution toYg(x,t) comes from the sectionBt(x)5$y
PZd: uy2xu<ct% of the light cone at timet. The ‘‘volume’’ of the section@i.e., the number of the
pointsyPZdùBt(x)] is uBt(x)u;td. Therefore,~1.17! becomes, roughly speaking,

Yg~x,t !;
(yPBt(x)Y0~y!

AuBtu
, t→`. ~1.19!

This implies the Gaussian limit by the Ibragimov–Linnik Central Limit Theorem,13 since the
random valuesY0(y) are weakly dependent because of the mixing condition~1.7!.

Remarks 1.1:~i! Physically, the asymptotics~1.18! reflects the isotropic propagation o
phonons in the noncritical spectrum. The isotropy provides a ‘‘dynamical mixing’’ which lead
the Gaussian behavior by the statistical mixing condition~1.7!. So the convergence to the stati
tical equilibrium ~1.8! is provided by both kinds of the mixing simultaneously: the statisti
mixing condition~1.7! and the dynamical mixing~1.18!.

~ii ! The degree2d/2 in ~1.18! is related to the energy conservation since the Hamilton
~1.4! is a quadratic form. Roughly speaking,~1.18! means the ‘‘energy diffusion,’’ and the degre
2d/2 resembles the diffusion kernel.

Finally, let us comment on our conditions concerning the interaction matrixV(x). We assume
the conditionsE1–E4 below which in a similar form appear also in Refs. 2, 14.E1 means the
exponential space-decay of the interaction in the crystal.E2, resp.E3, means that the potentia
energy is real, resp. non-negative.E4 eliminates the constant part of the spectrum and ensures
mesC50 @cf. ~1.15!#. We also introduce a new simple conditionE5 for the casen.1 which
eliminates thediscretepart of the spectrum for the covariance dynamics. It can be conside
weakened to the conditionE58 from Remark 2.10 (i i i ). For example, the conditionE58 holds for
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the canonical Gaussian measures which are considered in Ref. 14. We show that the conditE4
andE5 hold for ‘‘almost all’’ matrix-functionsV(•) with the finite range of the interaction.

Furthermore, we do not require thatvk(u)Þ0, uPTd: note thatv(0)50 for the elastic lattice
~1.14! in the casem50. Our results hold whenever mes$uPTd:vk(u)50%50. To cover this case
we impose the new conditionES which is roughly speaking necessary and sufficient for
uniform bounds of the covariance. It can be simplified to the stronger condition

iV̂21~u!iPL1~Td!, ~1.20!

from Ref. 14, which holds for the elastic lattice~1.14! if either d>3 or m.0. The condition~1.20!
is equivalent toES for the canonical Gibbs measures considered in Ref. 14. However,~1.20! does
not hold in some particular interesting cases: for instance, for the elastic lattice~1.14! in the case
d51,2 andm50, as it is pointed out in Ref. 14.

The main results of our paper are stated in Sec. II: TheoremA in Sec. II D, and its application
in Sec. II E 4. The convergence~1.9! and the compactnessI are established in Sec. III, and th
convergence~1.10! in Secs. IV–VIII. Section IX concerns the ergodicity and the mixing proper
of the limit measure. In the Appendix we analyze the crossing points of the dispersion rela

II. MAIN RESULTS

A. Dynamics

We assume that the initial dateY0 belongs to the phase spaceHa , aPR, defined below.
Definition 2.1:Ha is the Hilbert space of pairs Y5„u(x),v(x)… of Rn-valued functions of

xPZd endowed with the norm

iYia
25 (

xPZd
„uu~x!u21uv~x!u2

…~11uxu2!a,`. ~2.1!

We impose the following conditionsE1–E5 on the matrixV.
E1 There exist constantsC,a.0 such that uVkl(z)u<Ce2auzu, k,l PInª$1, . . . ,n%, z

PZd.
Let us denote byV̂(u)ª„V̂kl(u)…k, l PIn

, where V̂kl(u)[(zPZdVkl(z)eizu, uPTd, and Td

denotes thed-torusTd5Rd/2pZd.
E2 V is real and symmetric, i.e.,Vlk(2z)5Vkl(z)PR, k,l PIn , zPZd.
The condition implies thatV̂(u) is a real-analytic Hermitian matrix-function inuPTd.
E3 The matrixV̂(u) is non-negative definite for eachuPTd.
The condition means that Eq.~1.1! is a hyperbolic like wave and Klein–Gordon equatio

considered in Refs. 6–8. Let us define the Hermitian non-negative definite matrix,

V~u!ª„V̂~u!…1/2>0, ~2.2!

with the eigenvaluesvk(u)>0, kPIn , the dispersion relations. For eachuPTd the Hermitian
matrix V~u! has the diagonal form in the basis of the orthogonal eigenvectors$ek(u):kPIn%:

V~u!5B~u!S v1~u! ¯ 0

0 � 0

0 ¯ vn~u!
D B* ~u!, ~2.3!

whereB(u) is a unitary matrix. It is well known that the functionsvk(u) and B(u) are real-
analytic outside the set of the ‘‘crossing’’ pointsu* : vk(u* )5v l(u* ) for somelÞk. However,
generally the functions are not smooth at the crossing points ifvk(u)Óv l(u). Therefore, we need
the following lemma which we prove in the Appendix~cf. Ref. 21, Lemma 1.1!.
                                                                                                                



e

2602 J. Math. Phys., Vol. 44, No. 6, June 2003 Dudnikova, Komech, and Spohn

                    
Lemma 2.2: Let the conditionsE1, E2 hold. Then there exists a closed subsetC* ,Td such
that we have the following:

(i) the Lebesgue measure ofC* is zero:

mesC* 50. ~2.4!

(ii) For any point QPTd\C* there exists a neighborhoodO(Q) such that each dispersion
relation vk(u) and the matrix B(u) can be chosen as the real-analytic functions inO(Q).

(iii) The eigenvaluesvk(u) have constant multiplicity inTd\C* , i.e., it is possible to enumerat
them so that we have foruPTd\C* ,

v1~u![¯[vr1
~u!, vr111~u![¯[vr2

~u!, . . . , vrs11~u![¯[vn~u!, ~2.5!

vrs
~u!Óvrn

~u! if sÞn, 1<r s ,r n<r s11ªn. ~2.6!

(iv) The spectral decomposition holds,

V~u!5(
1

s11

vrs
~u!Ps~u!, uPTd\C* , ~2.7!

wherePs(u) is the orthogonal projection inRn which is real-analytic function ofuPTd\C* .
Below we denote byvk(u) the local real-analytic functions from Lemma 2.2 (i i ). Our next
condition is the following:

E4 Dk(u)Ó0, ;kPIn , whereDk(u)ªdet(]2vk(u)/]ui ]uj)i,j51
d , uPTd\C* .

Let us denoteC0ª$uPTd:detV̂(u)50% and Ckª$uPTd\C* : Dk(u)50%, kPIn . The following
lemma is also proved in the Appendix.

Lemma 2.3: Let the conditionsE1–E4 hold. ThenmesCk50 for k50,1,. . . ,n.
Our last condition onV is the following:

E5 For eachkÞ l the identityvk(u)2v l(u)[const2 , uPTd does not hold with const2Þ0,
and the identityvk(u)1v l(u)[const1 does not hold with const1Þ0.

This condition holds trivially in the casen51.
We show that the conditionsE4 and E5 hold for ‘‘almost all’’ functions V satisfying the

conditionsE1, E2. More precisely, let us fix an arbitraryN>1 and denote byRN the set of the
‘‘finite range’’ interaction matricesV with V(x)50 for maxiuxiu.N, and satisfying the condition
E2. In the Appendix we prove the following lemma.

Lemma 2.4: For any N>1 the conditionsE4 andE5 hold for the matrix-functions V from an
open and dense subset ofRN .

The following proposition is proved in Ref. 14, p. 150 and Ref. 2, p. 128.
Proposition 2.5: LetE1 and E2 hold, andaPR. Then

(i) for any Y0PHa there exists a unique solution Y(t)PC(R,Ha) to the Cauchy problem
(1.2).

(ii) The operator U(t):Y0°Y(t) is continuous inHa .

Proof: Applying the Fourier transform to~1.2!, we obtain

Ẏ̂~u,t !5Â~u!Ŷ~u,t !, tPR, Ŷ~0!5Ŷ0 , ~2.8!

where

Â~u!5S 0 1

2V̂~u! 0D , uPTd. ~2.9!
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Note that Ŷ(•,t)PD8(Td) for tPR. On the other hand,V̂(u) is a smooth function byE1.
Therefore, the solutionŶ(u,t) of ~2.8! exists, is unique and admits the representationŶ(u,t)
5exp„Â(u)t…Ŷ0(u). It becomes~1.13! in the coordinate space, where the Green’s functionG(t,z)
admits the Fourier representation

G~ t,z!ªFu→z
21 @exp„Â~u!t…#5~2p!2dE

Td
e2 izu exp„Â~u!t…du. ~2.10!

Hence, by the partial integration,G(t,z);uzu2p as uzu→` for any p.0 and boundedutu since
Â(u) is the smooth function ofuPTd. Therefore, the convolution representation~1.13! implies
Y(t)PHa . h

B. The convergence to statistical equilibrium

Let (V,S,P) be a probability space with expectationE and let B(Ha) denote the Borel
s-algebra inHa . We assume thatY05Y0(v,•) in ~1.2! is a measurable random function wit
values in„Ha , B(Ha)…. In other words, for eachxPZd the mapv°Y0(v,x) is a measurable
mapV→R2n with respect to the~completed! s-algebrasS andB(R2n). ThenY(t)5U(t)Y0 is
again a measurable random function with values in„Ha ,B(Ha)… owing to Proposition 2.5. We
denote bym0(dY0) a Borel probability measure onHa giving the distribution of theY0 . Without
loss of generality, we assume (V,S,P)5„Ha ,B(Ha),m0… and Y0(v,x)5v(x) for
m0(dv)—almost allvPHa and eachxPZd.

Definition 2.6:m t is a Borel probability measure inHa which gives the distribution of Y(t):

m t~B!5m0~U~2t !B!, ;BPB~Ha!, tPR. ~2.11!

Our main goal is to derive the convergence of the measuresm t as t→`. We establish the
weak convergence ofm t in the Hilbert spacesHa with a,2d/2:

m t⇁Ha

m` as t→`, ~2.12!

wherem` is a limit measure on the spaceHa , a,2d/2. This means the convergence

E f ~Y!m t~dY!→E f ~Y!m`~dY!, t→`, ~2.13!

for any bounded continuous functionalf on Ha .
Definition 2.7: The correlation functions of the measurem t are defined by

Qt
i j ~x,y!5E„Yi~x,t ! ^ Yj~y,t !…, i , j 50,1, x,yPZd, ~2.14!

if the expectations on the rhs are finite. Here Yi(x,t) are the components of the random soluti
Y(t)5„Y0(•,t),Y1(•,t)….

For a probability measurem on Ha we denote bym̂ the characteristic functional~Fourier
transform!,

m̂~C!5E exp~ i ^Y,C&! m~dY!, CPD.

A measurem is called Gaussian~of zero mean! if its characteristic functional has the form

m̂~C!5exp$2 1
2Q~C,C!%, CPD, ~2.15!

whereQ is a real non-negative quadratic form inD. A measurem is called translation-invariant if
m(ThB)5m(B), BPB(Ha), hPZd, whereThY(x)5Y(x2h), xPZd.
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C. The mixing condition

Let O(r ) denote the set of all pairs of the subsetsA, B,Zd at distance dist(A, B)>r and
s(A) be thes-algebra inHa generated byY(x) with xPA. Define the Ibragimov–Linnik mixing
coefficient of a probability measurem0 on Ha by ~cf. Ref. 13, Definition 17.2.2!

w~r !ª sup
(A,B)PO(r )

sup
APs(A),BPs(B)

m0(B).0

um0~AùB!2m0~A!m0~B!u
m0~B!

. ~2.16!

Definition 2.8: The measurem0 satisfies a strong, uniform Ibragimov–Linnik mixing condition
if w(r )→0 as r→`.

Below, we specify the rate of decay ofw ~see conditionS3!.

D. Statistical conditions and results

We assume that the initial measurem0 satisfies the following conditionsS0–S3:
S0 m0 has zero expectation value,EY0(x)[0, xPZd.
S1 m0 has translation-invariant correlation matrices, i.e., Eq.~1.5! holds forx,yPZd.
S2 m0 has a finite mean energy density, i.e., Eq.~1.6! holds.
S3 m0 satisfies the strong uniform Ibragimov–Linnik mixing condition with

w̄ªE
0

1`

r d21w1/2~r ! dr,`. ~2.17!

We will deduce fromS0–S3 that q̂0
i j PC(Td), i , j 50,1 ~see Lemma 3.1!. This makes sense of ou

last conditionES concerning the initial covariance and the matrixV~u!. We need it only in the
case whenC0Þ0” , i.e., detV(u)50 for some pointsuPTd:
ES iV2 i(u)q̂0

i j (u)V2 j (u)iPL1(Td) for i , j 50,1.
This condition follows fromS0–S3 if i 5 j 50 or C050” .

Next introduce the correlation matrix of the limit measurem` . It is translation-invariant@cf.
~1.5!#:

Q`~x,y!5„q`
i j ~x2y!…i , j 50,1. ~2.18!

In the Fourier transform we have locally outside the critical setC* ~see Lemma 2.2!,

q̂`
i j ~u!5B~u!M`

i j ~u!B* ~u!, i , j 50,1, ~2.19!

whereB(u) is the smooth unitary matrix from Lemma 2.2 (i i ) andM`
i j (u) is ann3n-matrix with

the smooth entries„M`
i j (u)…kl5xkl„B* (u)M0

i j (u)B(u)…kl . Here we set@see~2.5!#

xkl5H 1, if k,l P~r s21 ,r s#, s51, . . . ,s11,

0, otherwise,
~2.20!

with r 0ª0, r s11ªn, and

M0~u!ª
1

2 S q̂0
00~u!1V21~u! q̂0

11~u! V21~u! q̂0
01~u!2V21~u! q̂0

10~u! V~u!

q̂0
10~u!2V q̂0

01~u! V21~u! q̂0
11~u!1V~u! q̂0

00~u! V~u!
D . ~2.21!

The local representation~2.19! can be expressed globally as

q̂`
i j ~u!5 (

s51

s11

Ps~u!M0
i j ~u!Ps~u!, uPTd\C* , i , j 50,1, ~2.22!
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wherePs(u) is the spectral projection from~2.7!.
Remark 2.9:The conditionES implies that (M0

i j )klPL1(Td), k,l PIn . Therefore,~2.22! and
~2.4! imply that also (q̂`

i j )klPL1(Td), k,l PIn .
Theorem A: Let d,n>1, a,2d/2 and assume that the conditionsE1–E5, S0–S3 hold. If

C0Þ0” , then we assume also thatES holds. Then

(i) the convergence in (2.12) holds.
(ii) The limit measurem` is a Gaussian translation-invariant measure onHa .
(iii) The characteristic functional ofm` is the Gaussian,

m̂`~C!5exp$2 1
2 Q`~C, C!%, CPD, ~2.23!

whereQ` is the quadratic form defined in (1.11).
(iv) The measurem` is invariant, i.e.,@U(t)#* m`5m` , tPR.

Remarks 2.10:~i! In the casen51, the formulas~2.21!, ~2.22! become

q̂`5M05
1

2 S q̂0
001v22 q̂0

11 q̂0
012q̂0

10

q̂0
102q̂0

01 q̂0
111v2 q̂0

00D .

~ii ! TheuniformRosenblatt mixing condition18 also suffices, together with a higher power.2
in the bound~1.6!: there existsd.0 such that

E„uu0~x!u21d1uv0~x!u21d
…,`.

Then ~2.17! requires a modification:*0
1`r d21ap(r )dr,`, with p5min(d/(21d),1/2), where

a(r ) is the Rosenblatt mixing coefficient defined as in~2.16! but withoutm0(B) in the denomi-
nator. With these modifications, the statements of TheoremA and their proofs remain essential
unchanged.

~iii ! The arguments with conditionE5 in Proposition 3.2@see~3.7!–~3.13! below# demonstrate
that the condition could be considerably weakened. Namely, it suffices to assumeE58. If for some
kÞ l we have eithervk(u)1v l(u)[const1Þ0 or vk(u)2v l(u)[const2Þ0, then

„B* ~u!q̂0
i j ~u!B~u!…kl50, uPTd, i , j 50,1. ~2.24!

The assertions~i!–~iii ! of TheoremA follow from Propositions 2.11 and 2.12.
Proposition 2.11: The family of the measures$m t , tPR% is weakly compact inHa with any

a,2d/2, and the bounds hold:

sup
t>0

EiU~ t !Y0ia
2,`. ~2.25!

Proposition 2.12: For everyCPD, the convergence (1.10) holds.
Proposition 2.11 ensures the existence of the limit measures of the family$m t , tPR%, while

Proposition 2.12 provides the uniqueness. Propositions 2.11 and 2.12 are proved in Secs.
IV–VIII, respectively.

Theorem A (iv) follows from ~2.12! since the groupU(t) is continuous inHa by Proposition
2.5 (i i ).

E. Examples and applications

Let us give the examples of the equations~1.1! and measuresm0 which satisfy all conditions
E1–E5, S0–S3, andES.
                                                                                                                



form

he

s

and

er the

s

2606 J. Math. Phys., Vol. 44, No. 6, June 2003 Dudnikova, Komech, and Spohn

                    
1. Harmonic crystals

All conditionsE1–E5 hold for a one-dimensional~1-D! crystal withn51 considered in Ref.
2. For anyd>1 andn51 consider the simple elastic lattice corresponding to the quadratic
~1.12! with mÞ0. ThenV(x)5Fu→x

21 v2(u) with v~u! defined by~1.14!, satisfiesE1–E4 with
C* 50” . In these examples the setC0 is empty, hence the conditionES is superfluous. ConditionE5
holds trivially sincen51.

2. Gaussian measures

We considern51 and construct Gaussian initial measuresm0 satisfying S0–S3. We will
definem0 by the correlation functionsq0

i j (x2y) which are zero foriÞ j , while for i 50,1,

q̂0
i i ~u!ªFz→uq0

i i ~z!PL1~Td!, q̂0
i i ~u!>0. ~2.26!

Then by the Minlos theorem11 there exists a unique Borel Gaussian measurem0 on Ha , a,
2d/2, with the correlation functionsq0

i j (x2y). The measurem0 satisfiesS0–S2. Further, let us
provide, in addition to~2.26!, that

q0
i i ~z!50, uzu>r 0 . ~2.27!

Then the mixing conditionS3 follows with w(r )50, r>r 0 , since for Gaussian random values t
orthogonality implies the independence. For example,~2.26! and ~2.27! hold if we setq0

i i (z)
5 f (z1) f (z2)• ¯ • f (zd), where f (z)5n02uzu for uzu<n0 and f (z)50 for uzu>n0 with n0

ª@r 0 /Ad# ~the integer part!. Then by the direct calculation we obtainf̂ (u)5(12cosn0u)/(1
2cosu), uPT1, and ~2.26! holds. The measurem0 is nontrivial if r 0>Ad: otherwisen050, so
q0

i j (z)[0, and the measurem0(dY0) is concentrated at the pointY050.

3. Non-Gaussian measures

Let us choose some odd bounded nonconstant functionsf 0, f 1PC(R) and consider a random
function „Y0(x),Y1(x)… with the Gaussian distributionm0 from the previous example. Let u
definem0* as the distribution of the random function (f 0

„Y0(x)…, f 1
„Y1(x)…. ThenS0–S3hold for

m0* with corresponding mixing coefficientsw* (r )50 for r>r 0 . The measurem0* is not Gaussian
if the functionsf 0, f 1 are bounded and nonconstant.

4. From statistical chaos to the Gibbs measure

Let us consider the initial measures which satisfyS0–S3, and with the correlation functions

~q0
i j !kl~x2y!ªE„Yk

i ~x,0!Yl
j~y,0!…5Tid i j dkldxy , i , j 50,1, k,l PIn , x,yPZd, ~2.28!

whereT0,1>0. These correlations correspond to the ‘‘chaos’’ with the zero correlation radius
uncorrelated components. Such measures exist onHa with a,2d/2 by the Minlos Theorem:11

for example, the ‘‘white noise’’ which is the corresponding Gaussian measure. Let us consid
crystal satisfying the conditionsE1–E4 and ~1.20!. Then also the conditionsE58, ES hold, so
TheoremA is applicable@see Remark 2.10~iii !#: it implies the convergence~2.12! to the Gaussian
measurem` with the covariance~2.21!, ~2.22!.

Additionally, let us assume thatT050 which physically means that only the initial velocitie
contribute, and initial deviations are adjusted to zero. Then the formulas~2.21!, ~2.22! become

q̂`~u!5M0~u!5
T1

2 S V̂21~u! 0

0 ~dkl!k,l PIn
D . ~2.29!
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According to ~1.3!, this means that the limit measurem` coincides with theGibbs canonical
measurecorresponding to the temperature;T1 . In a more general framework, the limit measu
is close to the Gibbs measure if the radius of the initial correlations is small in a suitable s
limit ~cf. Ref. 6, Proposition 4.2!.

III. CONVERGENCE OF COVARIANCE AND COMPACTNESS

A. Mixing condition in terms of spectral density

The next Lemma reflects the mixing property in the Fourier transformsq̂0
i j of initial correla-

tion functionsq0
i j . ConditionS2 implies thatq0

i j (z) is a bounded function. Therefore, its Fouri
transform generally belongs to the Schwartz space of tempered distributions.

Lemma 3.1: Let the conditionsS0–S3 hold. Then qˆ 0
i j PC(Td), i , j 50,1.

Proof: It suffices to prove that

q0
i j ~z!P l 1~Zd!. ~3.1!

ConditionsS0–S3 imply by Ref. 13, Lemma 17.2.3@or Lemma 8.2 (i ) below#:

uq0
i j ~z!u<Ce0w1/2~ uzu!, zPZd, ~3.2!

wheree0 is defined by~1.6!. Therefore,~2.17! implies ~3.1!:

(
zPZd

uq0
i j ~z!u<Ce0 (

zPZd
w1/2~ uzu!,`.

h

B. Oscillatory integral arguments

In this section we uniformly estimate and check the convergence of the correlation matri
measuresm t with the help of the Fourier transform. The conditionS1and the translation-invarian
dynamics~1.1! imply that

Qt
i j ~x,y![E Yi~x! ^ Yj~y!m t~dY!5qt

i j ~x2y!, x,yPZd. ~3.3!

Proposition 3.2: (i) The correlation matrices qt
i j (z), i , j 50,1, are uniformly bounded,

sup
t>0

sup
zPZd

uqt
i j ~z!u,`. ~3.4!

(ii) The correlation matrices qt
i j (z), i , j 50,1, converge for each zPZd, and

qt
i j ~z!→q`

i j ~z!, t→`, ~3.5!

where the functions q̀i j (z) are defined above.
Proof: For brevity, we prove~3.4! and ~3.5! for i 5 j 50. In all other cases the proof of~3.5!

is similar. The solution to the Cauchy problem~1.1! is

u~x,t !5~2p!2dE
Td

e2 ix•u
„cosVt Ŷ0

0~u!1sinVt V21Ŷ0
1~u!…du,

whereV[V(u) is the non-negative definite Hermitian matrix defined by~2.2!. Furthermore, the
translation invariance~1.5! implies that

E„Ŷ0
i ~u! ^ Ŷ0

j ~u8!…5~2p!dd~u1u8!q̂0
i j ~u!, i , j 50,1. ~3.6!
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Hence,

qt
00~x2y!ªE„u~x,t ! ^ u~y,t !…

5~2p!2dE
Td

e2 iu(x2y)@cosVt q̂0
00~u!cosVt

1sinVt V21q̂0
10~u!cosVt1cosVt q̂0

01~u!V21 sinVt

1sinVt V21q̂0
11~u!V21 sinVt#du. ~3.7!

Therefore, the bound~3.4! with i 5 j 50 follows from Lemma 3.1 or conditionES if C0Þ0” .
Let us check that the convergence~3.5! with i 5 j 50 also follows since the oscillatory inte

grals in~3.7! tend to zero. Consider for example the last term in the integrand of~3.7!. We rewrite
it using ~2.3!, in the form

L0
11~u,t !ªsinVt V21q̂0

11~u! V21 sinVt5B~u!„sinvkt Akl
11~u!sinv l t…k,l PIn

B* ~u!,
~3.8!

whereA11(u)ªB* (u)V21q̂0
11(u)V21B(u). However, at this moment we have to choose cert

smooth branches of the functionsB(u) andvk(u) since we are going to apply the stationary pha
arguments which require a smoothness inu. To make it correctly, we cut off all singularities. Firs
we define the combinedcritical set,

CªøkCkøC* øC0 . ~3.9!

Then Lemmas 2.2, 2.3 imply the following lemma.
Lemma 3.3: Let conditionsE1–E4 hold. ThenmesC50.
Second, fix an«.0 and choose a finite partition of unity,

f ~u!1g~u!51, g~u!5 (
m51

M

gm~u!, uPTd, ~3.10!

wheref ,gm are non-negative functions fromC0
`(Td), the supports ofgm are sufficiently small and

supp f ,$uPTd: dist~u,C!,«%, suppgm,$uPTd: dist~u,C!>«/2%. ~3.11!

Now ~3.8! can be rewritten as

L0
11~u,t !5 f ~u!L0

11~u,t !1
1

2 (
m

gm~u!B~u!~„cos~vk2v l !t

2cos~vk1v l !t…Akl
11~u!!k,l PIn

B* ~u!. ~3.12!

By Lemma 2.2 and the compactness arguments, we can choose the supports ofgm so small that the
eigenvaluesvk(u) and the matrixB(u) are real-analytic functions inside the suppgm for everym:
we do not mark the functions by the indexm to not overburden the notations.

Let us substitute~3.12! into the last term of~3.7! and analyze the Fourier integrals withf and
gm separately. The integral withf converges to zero uniformly int>0, as «→0. Indeed, by
Lemma 3.3 we have

U E
Td

e2 iu(x2y) f ~u!L0
11~u,t ! duU<CE

dist(u,C),«
iV21~u!q̂0

11~u!V21~u!i du→0, «→0,

since the integrand is summable by Lemma 3.1 or conditionES if C0Þ0” .
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Below we will prove the convergence for the integrals withgm . We will deduce the conver-
gence from the fact that the identitiesvk(u)6v l(u)[const6 with the const6Þ0 are impossible
by the conditionE5. Furthermore, the oscillatory integrals withvk(u)6v l(u)Óconst vanish as
t→`. Hence, only the integrals withvk(u)2v l(u)[0 contribute to the limit sincevk(u)
1v l(u)[0 would imply vk(u)[v l(u)[0 which is impossible byE4. A similar analysis of the
three remaining terms in the integrand of~3.7! gives

qt
00~x2y!5~2p!2dE

Td
e2 iu(x2y) f ~u!L0

11~u,t ! du1~2p!2d(
m

E
Td

gm~u!

3e2 iu(x2y)F1

2
B~u!~xkl„Akl

00~u!1Akl
11~u!…!k,l PIn

B* ~u!1¯G du

5~2p!2dE
Td

e2 iu(x2y) f ~u!L0
11~u,t ! du1~2p!2dE

Td
g~u!e2 iu(x2y)q̂`

00~u! du1¯ ,

~3.13!

according to the notations~2.18!–~2.21!. HereA00(u)ªB* (u)q̂0
00(u)B(u) and ‘‘¯’’ stands for

the oscillatory integrals which contain cos„vk(u)6v l(u)…t and sin„vk(u)6v l(u)…t with vk(u)
6v l(u)Óconst.

The oscillatory integrals converge to zero by the Lebesgue–Riemann Theorem since
integrands in ‘‘̄ ’’ are summable and“„vk(u)6v l(u)…50 only on the set of the Lebesgu
measure zero. The summability follows from Lemma 3.1 or the conditionES since the matrices
B* (u) are unitary. The zero measure follows similarly to~2.4! sincevk(u)6v l(u)Óconst.

At last, let us prove the convergence~3.5! with i 5 j 50. From the last line of~3.13! we know
that qt

00(x2y) is close to the integral withg if « is small andt is large. Therefore, the limit of
qt

00(x2y) as t→` coincides with the limit of the integral as«→0. Finally, this limit coincides
with q`

00(x2y) sinceq̂`
00PL1(Td) by Remark 2.9. h

C. Compactness of measures family

Proof of Proposition 2.11:The compactness of the measures family$m t , tPR% will follow
from the bounds~2.25! by the Prokhorov Theorem~Ref. 22, Lemma II.3.1! using the method of
Ref. 22, Theorem XII.5.2 since the embeddingHa,Hb is compact ifa.b.

First, the translation invariance~3.3! and Proposition 3.2 (i ) imply that for xPZd we have

etªE @ uu0~x!u21uv0~x!u2# m t~dY0!5tr qt
00~0!1tr qt

11~0!<ē,`, t>0. ~3.14!

Hence by the definition~2.1! we get for anya,2d/2:

EiU~ t !Y0ia
25et (

xPZd
~11uxu2!a5C~a!et<C~a!ē,`, t>0.

h

IV. DUALITY ARGUMENT

To prove Theorem A, it remains to check Proposition 2.12. Let us rewrite~1.10! as follows:

E exp$ i ^Y~ t !,C&%→m̂`~C!, t→`. ~4.1!

We will prove it in Secs. V–VIII. In this section we evaluate^Y(t),C& by using the following
duality arguments. Remember thatY0PHa with a,2d/2. FortPR introduce a ‘‘formal adjoint’’
operatorU8(t) from spaceD to H2a :
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^Y,U8~ t !C&5^U~ t !Y,C&, CPD, YPHa . ~4.2!

Let us denote byF(•,t)5U8(t)C. Then~4.2! can be rewritten as

^Y~ t !,C&5^Y0 ,F~•,t !&, tPR. ~4.3!

The adjoint groupU8(t) admits the following convenient description. Lemma 4.1 below disp
that the action of groupU8(t) coincides with the action ofU(t), up to the order of the compo
nents.

Lemma 4.1: ForC5(C0,C1)PD we have

F~•,t !ªU8~ t !C5„ċ~•,t !,c~•,t !…, ~4.4!

wherec(x,t) is the solution of Eq. (1.1) with the initial data(u0 ,v0)5(C1,C0).
Proof: Differentiating~4.2! in t with Y,CPD, we obtain that̂Y,U̇8(t)C&5^U̇(t)Y,C&. The

groupU(t) has the generatorA from ~1.3!. The generator ofU8(t) is the conjugate operator toA:

A85S 0 2V
1 0 D . ~4.5!

Hence, the representation~4.4! holds with c̈(x,t)52(yPZdV(x2y)c(y,t). h

The lemma allows us to construct the oscillatory integral representation forF(x,t). Namely,
~4.4!, ~4.5! imply that in the Fourier representation forF(•,t)5U8(t)C we have

F̂
˙
~u,t !5Â* ~u!F̂~u,t !, F̂~u,t !5Ĝ* ~ t,u!Ĉ~u!.

Here we denote@see~2.9!#

Â* ~u!5S 0 2V̂~u!

1 0
D , Ĝ* ~ t,u!5eÂ* (u)t5S cosVt 2V sinVt

V21 sinVt cosVt D , ~4.6!

with V[V(u)5V* (u). Therefore,

F~x,t !5~2p!2dE
Td

e2 iuxĜ* ~ t,u!Ĉ~u!du, xPZd. ~4.7!

Since f (u)1g(u)[1 by ~3.10!, we can splitF in two components:

F~x,t !5~2p!2dE
Td

e2 iuxĜ* ~ t,u! f ~u!Ĉ~u!du1~2p!2dE
Td

e2 iuxĜ* ~ t,u!g~u!Ĉ~u!du

5F f~x,t !1Fg~x,t !, xPZd, ~4.8!

where each functionF f(x,t) andFg(x,t) admits the representation of type~4.4!. By ~3.11!, the
Fourier spectrum ofF f is concentrated near the critical setC, while the spectrum ofFg is
separated fromC.

V. STANDARD DECAY IN THE NONCRITICAL SPECTRUM

We prove the decay of type~1.18! for the ‘‘noncritical’’ componentFg . The functionFg can
be expanded similarly to~3.12!, in the form

Fg~x,t !5(
m

(
6, kPIn

E
Td

gm~u!e2 i (ux6vk(u)t)ak
6~u!Ĉ~u!du. ~5.1!
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By Lemma 2.2 and the compactness arguments, we can choose the eigenvaluesvk(u) and the
matricesak

6(u) as real-analytic functions inside the suppgm for every m: we do not mark the
functions by the indexm to not overburden the notations.

Lemma 4.1 means that each componentFg
i (x,t), i 50,1, is a solution to Eq.~1.1!. To prove

~4.1!, we analyze the radiative properties ofFg(x,t) in all directions. For this purpose, we app
the stationary phase method to the oscillatory integral~5.1! along the raysx5vt, t.0. Then the
phase becomes„uv6vk(u)…t, and its stationary points are the solutions to the equationv
57¹vk(u). We collect all necessary asymptotics in the following lemma@cf. ~1.18!#.

Lemma 5.1: For any fixedCPD and g(u)PC0
`(Td\C) the following bounds hold:

(i) sup
xPZd

uFg~x,t !u<Ct2d/2. ~5.2!

(ii) or any p.0 there exist Cp ,gg.0 such that

uFg~x,t !u<Cp~ utu1uxu11!2p, uxu>ggt. ~5.3!

Proof: ConsiderFg(x,t) along each rayx5vt with arbitraryvPRd. Substituting to~5.1!, we
get

Fg~vt,t !5(
m

(
6, kPIn

E
Td

gm~u!e2 i „uv6vk(u)…tak
6~u!Ĉ~u!du. ~5.4!

This is a sum of oscillatory integrals with the phase functionsfk
6(u)5uv6vk(u) and the am-

plitudes ak
6(u) which are real-analytic functions of theu inside the suppgm . Since vk(u) is

real-analytic, each functionfk
6 has no more than a finite number of stationary pointsu

Psuppgm , solutions to the equationv57¹vk(u). The stationary points are nondegenerate
uPsuppgm by ~3.11!, ~3.9!, andE4 since

detS ]2fk
6

]u i ]u j
D 56Dk~u!Þ0, uPsuppgm . ~5.5!

At last, Ĉ(u) is smooth sinceCPD. Therefore,Fg(vt,t)5O(t2d/2) according to the standar
stationary phase method.10,17This implies the bounds~5.2! in each coneuxu<ct with any finitec.

Further, denote byv̄gªmaxmmaxkPIn
maxuPsuppgm

u¹vk(u)u. Then for uvu. v̄g the stationary
points do not exist on the suppg. Hence, the integration by parts as in Ref. 17 yieldsFg(vt,t)
5O(t2p) for any p.0. On the other hand, the integration by parts in~5.1! implies similar bound
Fg(x,t)5O„(t/uxu) l

… for any l .0. Therefore,~5.3! follows with any gg. v̄g . Now the bounds
~5.2! follow everywhere. h

VI. CONTRIBUTION OF CRITICAL SET

We are going to prove~4.1!. Rewrite it using~4.3!:

E exp$ i ^Y0 ,F~•,t !&%2m̂`~C!→0, t→`. ~6.1!

The splitting~4.8! gives^Y0 ,F(•,t)&5^Y0 ,F f(•,t)&1^Y0 ,Fg(•,t)&. Our main argument is tha
the contribution of̂ Y0 ,F f(•,t)& to ~6.1! has a small dispersion. We will deduce this from Le
mas 3.1, 3.3. At first, let us estimate the difference in~6.1! by the triangle inequality:

uE exp$ i ^Y0 ,F~•,t !&%2m̂`~C!u<uE exp$ i ^U~ t !Y0 ,C&%2E exp$ i ^Y0 ,Fg~•,t !&%u1um̂`~Cg!

2m̂`~C!u1uE exp$ i ^Y0 ,Fg~•,t !&%2m̂`~Cg!u5I 1II 1III ,

~6.2!

whereCgªF21@g(u)Ĉ(u)#5Fg(•,0). Let us consider each of the three terms separately.
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I. The first termI 5I («,t) represents the contribution of the neighborhood of the critical
$uPTd: dist(u,C),«% and tends to zero as«→0 uniformly in t>0. Namely, by the
Cauchy–Schwartz inequality,

I5uEei^Y0,F(•,t)&2Eei^Y0,Fg(•,t)&u<Euei^Y0,Ff(•,t)&21u<C„Eu^Y0 ,F f~•,t !&u2…1/2. ~6.3!

Using the Parseval identity and~4.8!, we get

Eu^Y0,Ff~•,t!&u25~2p!22dEu^Ŷ0~u!,f~u!F̂~u,t!&u2

5~2p!22d^E„Ŷ0~u! ^ Ŷ0~u8!…, f ~u! f ~u8! Ĝ* ~ t,u!Ĉ~u! ^ Ĝ* ~ t,u8! Ĉ~u8! &.

~6.4!

Now take into account thatE„Ŷ0(u) ^ Ŷ0(u8)…5(2p)dd(u2u8)q̂0(u) similarly to ~3.6!.
Then ~6.4!, ~4.6!, ~3.11! and the bounds 0< f (u)<1 imply

Eu^Y0,Ff~•,t!&u2<C1 (
i,j50,1

E
dist(u,C),«

iV2 i~u!q̂0
i j ~u!V2 j~u!i du→0, «→0,

owing to Lemma 3.3 since the integrand is summable. The summability follows
Lemma 3.1 or conditionES if C0Þ0” .

II. The second termII 5II («) tends to zero as«→0. Indeed,

Q`~Cg ,Cg!5~2p!22d (
i , j 50

1 E
Td
„q̂`

i j ~u!,g~u!Ĉ i~u! ^ g~u!Ĉ j~u!… du→Q`~C,C!,

«→0,

by the Lebesgue Dominated Convergence Theorem since 0<g(u)<1 andq̂`
i j PL1(Td) by

Remark 2.9. Hence for the Gaussian measurem` , we get by~2.23!,

um̂`~Cg!2m̂`~C!u5uexp$2 1
2 Q`~Cg ,Cg!%2exp$2 1

2 Q`~C,C!%u→0, «→0.

III. To prove Proposition 2.12, it remains to check that for any fixed«.0, we have

III ~«,t!5uEexp$i^Y0,Fg~•,t!&%2m̂`~Cg!u→0, t→`. ~6.5!

We prove~6.5! in Sec. VIII using the Bernstein arguments of the next section.

VII. BERNSTEIN’S ‘‘ROOMS-CORRIDORS’’ PARTITION

Our proof of~6.5! is similar to the case of the continuous Klein–Gordon equation inRd:6 all
the integrals overRd become the series overZd, etc. Another novelty in the proofs is the follow
ing: in the case of the Klein–Gordon equation we haveF(x,t)50 for uxu>t1c(C), while for the
discrete crystal we have~5.3! instead.

Let us introduce a ‘‘room-corridor’’ partition of the ball$xPZd: uxu<ggt% with gg from ~5.3!.
For t.0 we choose belowD t ,r tPN ~we will specify the asymptotic relations betweent, D t , and
r t). Let us setht5D t1r t and

aj5 jht , bj5aj1D t , j PZ, Nt5@~ggt !/ht#. ~7.1!

We call the slabsRt
j5$xPZd:uxu<Ntht , aj<xd,bj% the ‘‘rooms,’’ Ct

j5$xPZd:uxu<Ntht , bj

<xd,aj 11% the ‘‘corridors’’ andLt5$xPZd:uxu.Ntht% the ‘‘tails.’’ Here x5(x1 , . . . ,xd), D t is
the width of a room, andr t is that of a corridor. Let us denote byx t

j the indicator of the roomRt
j ,

j t
j that of the corridorCt

j , andh t that of the tailLt . Then
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(
t

@x t
j~x!1j t

j~x!#1h t~x!51, xPZd, ~7.2!

where the sum( t stands for( j 52Nt

Nt21 . Hence we get the following Bernstein’s type representati

^Y0 ,Fg~•,t !&5(
t

@^Y0 ,x t
jFg~•,t !&1^Y0 ,j t

jFg~•,t !&#1^Y0 ,h tFg~•,t !&. ~7.3!

Let us introduce the random variablesr t
j , ct

j , l t by

r t
j5^Y0 ,x t

jFg~•,t !&, ct
j5^Y0 ,j t

jFg~•,t !&, l t5^Y0 ,h tFg~•,t !&. ~7.4!

Then ~7.3! becomes

^Y0 ,Fg~•,t !&5(
t

~r t
j1ct

j !1 l t . ~7.5!

Lemma 7.1: LetS0–S3 hold. The following bounds hold for t.1:

Eur t
j u2<C~Cg! D t /t, ; j , ~7.6!

Euct
j u2<C~Cg! r t /t, ; j , ~7.7!

Eu l tu2<Cp~Cg!~11t !2p, ;p.0. ~7.8!

Proof: We discuss~7.6!, and ~7.7!, ~7.8! can be done in a similar way@the proof of ~7.8!
additionally uses~5.3!#. ExpressEur t

j u2 in the correlation matrices. Definition~7.4! implies that

Eur t
j u25^x t

j~x!x t
j~y!q0~x2y!,Fg~x,t ! ^ Fg~y,t !&. ~7.9!

According to~5.2!, Eq. ~7.9! implies that

Eur t
j u2<Ct2d(

x,y
x t

j~x!iq0~x2y!i5Ct2d(
x

x t
j~x! (

z
iq0~z!i<CD t /t, ~7.10!

where iq0(z)i stands for the norm of a matrix (q0
i j (z)). Therefore,~7.10! follows as iq0(•)i

P l 1(Zd) by ~3.1!. h

VIII. IBRAGIMOV–LINNIK CENTRAL LIMIT THEOREM

In this section we prove the convergence~6.5!. As was said, we use a version of the Cent
Limit Theorem developed by Ibragimov and Linnik.13 If Q`(Cg ,Cg)50, ~6.5! is obvious. In-
deed, uE exp„i ^Y0 ,Fg(•,t)&…21u<Eu^Y0 ,Fg(•,t)&u<„E^Y0 ,Fg(•,t)&2

…

1/25„Qt(Cg ,Cg)…1/2,
whereQt(Cg ,Cg)→Q`(Cg ,Cg)50, ast→`. Thus, we may assume that for a givenCPD,

Q`~Cg ,Cg!Þ0. ~8.1!

Let us choose 0,d,1 and

r t;t12d, D t;
t

log t
, t→`. ~8.2!

Lemma 8.1: The following limit holds true:
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NtS w~r t!1S r t

t D 1/2D1Nt
2S w1/2~r t!1

r t

t D→0, t→`. ~8.3!

Proof: The functionw(r ) is nonincreasing; hence by~2.17!,

r dw1/2~r !5dE
0

r

sd21w1/2~r ! ds<dE
0

r

sd21w1/2~s! ds<Cw̄,`. ~8.4!

Furthermore,~8.2! implies thatht5D t1r t;t/ log t, t→`. Therefore,Nt;t/ht; log t. Then~8.3!
follows by ~8.4! and ~8.2!. h

Proof of (6.5):By the triangle inequality,

uE exp$ i ^Y0 ,Fg~•,t !&%2m̂`~Cg!u<UE exp$ i ^Y0 ,Fg~•,t !&%2E expH i(
t

r t
j J U

1UexpH 2
1

2 (
t

Eur t
j u2J 2expH 2

1

2
Q`~Cg ,Cg!J U

1UE expH i(
t

r t
j J 2expH 2

1

2 (
t

Eur t
j u2J U

[I 11I 21I 3 . ~8.5!

We are going to show that all the summandsI 1 , I 2 , I 3 tend to zero ast→`.
Step~i!: Equation~7.5! implies

I 15UE expH i(
t

r t
j J S expH i(

t
ct

j1 i l tJ 21D U<C(
t

Euct
j u1Eu l tu<C(

t
~Euct

j u2!1/21~Eu l tu2!1/2.

~8.6!

From ~8.6!, ~7.7!, ~7.8!, and~8.3! we obtain that

I 1<Cpt2p1CNt~r t /t !1/2→0, t→`. ~8.7!

Step~ii !: By the triangle inequality,

I 2<
1

2 U(t
Eur t

j u22Q`~Cg ,Cg!U
<

1

2
uQt~Cg ,Cg!2Q`~Cg ,Cg!u

1
1

2 UES (
t

r t
j D 2

2(
t

Eur t
j u2U1 1

2 UES (
t

r t
j D 2

2Qt~Cg ,Cg!U
[I 211I 221I 23, ~8.8!

whereQt is the quadratic form with the matrix kernel„Qt
i j (x,y)…. ~3.5! implies thatI 21→0. As for

I 22, we first obtain that

I 22< (
j Þk

u j u,uku<Nt

uErt
j r t

ku. ~8.9!

The next lemma is the corollary of Ref. 13, Lemma 17.2.3.
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Lemma 8.2: LetA, B be the subsets ofZd with the distancedist(A,B)>r .0, and letj, h be
random variables on the probability space„Ha ,B(Ha),m0…. Let j be measurable with respect t
the s-algebras~A!, and h with respect to thes-algebras~B!. Then

~i! uEjh2EjEhu<Cab w1/2(r ) if (Euju2)1/2<a and (Euhu2)1/2<b;
~ii ! uEjh2EjEhu<Cab w(r ) if uju<a and uhu<b, a.s.
We apply Lemma 8.2 to deduce thatI 22→0 ast→`. Note thatr t

j5^Y0(x),x t
j (x)Fg(•,t)& is

measurable with respect to thes-algebras(Rt
j ). The distance between the different roomsRt

j is
greater or equal tor t according to~7.1!. Then~8.9! and ~7.6!, S3 imply by Lemma 8.2 (i ), that

I 22<CNt
2w1/2~r t!, ~8.10!

which tends to 0 ast→` by ~8.3!. Finally, it remains to check thatI 23→0, t→`. We have

Qt~Cg ,Cg!5E^Y0 ,Fg~•,t !&25ES (
t

~r t
j1ct

j !1 l tD 2

,

according to~7.5!. Therefore, by the Cauchy–Schwartz inequality,

I 23<UES (
t

r t
j D 2

2ES (
t

r t
j1(

t
ct

j1 l tD 2U
<CNt(

t
Euct

j u21C1S ES (
t

r t
j D 2D 1/2

3S Nt(
t

Euct
j u21Eu l tu2D 1/2

1CEu l tu2. ~8.11!

Then ~7.6!, ~8.9!, and~8.10! imply

ES (
t

r t
j D 2

<(
t

Eur t
j u21 (

j Þk

u j u,uku<Nt

uErt
j r t

ku<CNtD t /t1C1Nt
2w1/2~r t!<C2,`.

Now ~7.7!, ~7.8!, ~8.11!, and~8.3! yield

I 23<C1Nt
2r t /t1C2Nt~r t /t !1/21C3t2p→0, t→`. ~8.12!

So, all the termsI 21, I 22, I 23 in ~8.8! tend to zero. Then~8.8! implies that

I 2<
1

2 U(t
Eur t

j u22Q`~Cg ,Cg!U→0, t→`. ~8.13!

Step~iii !: It remains to verify that

I 35UE expH i(
t

r t
j J 2expH 2

1

2
ES (

t
r t

j D 2J U→0, t→`. ~8.14!

Lemma 8.2,~ii ! with a5b51 yields
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UE expH i(
t

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U

<UE exp$ ir t
2Nt%expH i (

2Nt11

Nt21

r t
j J 2E exp$ ir t

2Nt%E expH i (
2Nt11

Nt21

r t
j J U

1UE exp$ ir t
2Nt%E expH i (

2Nt11

Nt21

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U

<Cw~r t!1UE expH i (
2Nt11

Nt21

r t
j J 2 )

2Nt11

Nt21

E exp$ ir t
j%U.

Then we apply Lemma 8.2, (i i ) recursively and get, according to Lemma 8.1,

UE expH i(
t

r t
j J 2 )

2Nt

Nt21

E exp$ ir t
j%U<CNtw~r t!→0, t→`. ~8.15!

It remains to check that

U )
2Nt

Nt21

E exp$ ir t
j%2expH 2

1

2 (
t

Eur t
j u2J U→0, t→`. ~8.16!

According to the standard statement of the Lindeberg Central Limit Theorem~see, e.g., Ref. 16
Theorem 4.7! it suffices to verify the Lindeberg condition:;d.0,

1

s t
(

t
EdAs t

ur t
j u2→0, t→`.

Heres t[( tEur t
j u2, andEafªE(Xaf ), whereXa is the indicator of the eventu f u.a2. Note that

~8.13! and ~8.1! imply that s t→Q`(Cg ,Cg)Þ0, t→`. Hence it remains to verify that

(
t

Eaur t
j u2→0, t→`, for any a.0.

This follows from the bounds for the fourth order moments as in Ref. 6, Sec. IX. This comp
the proof of Proposition 2.12. h

IX. ERGODICITY AND MIXING FOR THE LIMIT MEASURES

The limit measurem` is invariant by Theorem A~iv!. Let E` denote the integral overm` .
Theorem 9.1: Let all assumptions of Theorem A hold for the equation (1.1) and the in

measurem0 . Then U(t) is mixing with respect to the corresponding limit measurem` , i.e.,
; f ,gPL2(Ha ,m`),

lim
t→`

E` f „U~ t !Y…g~Y!5E` f ~Y!E`g~Y!. ~9.1!

In particular, the group U(t) is ergodic with respect to the measurem` :

lim
T→`

1

T E
0

T

f „U~ t !Y…dt5E` f ~Y! ~mod m`!. ~9.2!
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Proof: Sincem` is Gaussian, the proof of~9.1! reduces to the proof of the following conve
gence:;C1 ,C2PD,

lim
t→`

E`^U~ t !Y,C1&^Y,C2&50. ~9.3!

Using the Parseval identity and~4.8! we obtain similarly to~6.4! that

E`^U~ t !Y,C1&^Y,C2&5~2p!22dE
Td
„Ĝ~ t,u!q̂`~u!, f ~u!Ĉ1~u! ^ Ĉ2~u!… du

1~2p!22dE
Td
„Ĝ~ t,u!q̂`~u!,g~u!Ĉ1~u! ^ Ĉ2~u!… du

5I f~ t !1I g~ t !. ~9.4!

Lemma 9.2: The uniform bound holds:iĜ(t,u)q̂`(u)i<G(u), t>0, where G(u)PL1(Td).
Proof: ~4.6! implies that

Ĝ~ t,u!q̂`~u!5S cosVt sinVt

2sinVt•V cosVt•V
D S q̂`

00 q̂`
01

V21q̂`
10 V21q̂`

11D . ~9.5!

Therefore,

iĜ~ t,u!q̂`~u!i<C (
i , j 50,1

iV2 i q̂`
i j ~u!i . ~9.6!

It remains to prove thatV2 i q̂`
i j (u)PL1(Td). Sinceq̂`(u)PL1(Td) by Remark 2.9, it suffices to

verify that V21(u)q̂`
1 j (u)PL1(Td), j 50,1. This also follows from Remark 2.9 ifC050” . Other-

wise, we will use the conditionES. Namely, owing to~2.22!, we have

V21~u!q̂`
i j ~u!5 (

s51

s11

Ps~u!V21~u!M0
i j ~u!Ps~u!, ~9.7!

sinceV21(u) commutes with its spectral projectionPs(u). At last, ~2.21! andES imply

V21M0
105 1

2 ~V21q̂0
102q̂0

01V21!PL1~Td!,

V21M0
115 1

2~V21q̂0
111q̂0

00V!PL1~Td!.
h

The Lemma 9.2 together with~3.11! and Lemma 3.3 imply that;d.0 '«.0 such that

uI f~ t !u<d, t>0. ~9.8!

It remains to study the oscillatory integralI g(t). Rewrite it using~5.1!, in the form

I g~ t !5(
m

(
6, kPIn

E
Td

gm~u!e6 ivk(u)tak
6~u!„q̂`~u!,Ĉ1~u! ^ Ĉ2~u!… du. ~9.9!

Here all phase functionsvk(u) and the amplitudesak
6(u) are smooth functions in the suppgm .

Furthermore,¹vk(u)50 only on the set of the Lebesgue measure zero. This follows similar
~2.4! since¹vk(u)Óconst by the conditionE4. Hence,

I g~ t !→0 as t→`, ~9.10!
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by the Lebesgue–Riemann Theorem sinceq̂`PL1(Td). Finally, ~9.4!–~9.10! imply ~9.3! since
d.0 is arbitrary. h

Remark:A similar result for wave and Klein–Gordon equations has been proved in Refs.
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APPENDIX: CROSSING POINTS

1. Proof of Lemmas 2.2 and 2.3

Step 1:By the conditionE1 the matrix V̂(u) is an analytic function in a connected ope
~complex! neighborhoodOc(T

d) of Td in Tc
d
ªTd

% iRd. Consider the analytic functiond(u,v)
ªdet„V̂(u)2v2

… in Oc(T
d)ÃC and the analytic subset defined by the equationd(u,v)50 in

Oc(T
d)ÃC. The subset consists of the points„u,6vk(u)…, kPIn . It is important thatd(u,v)Ó0

for any fixed uPOc(T
d), hence the functiond satisfies theWeierstrass conditionof Ref. 15,

Section 2.1.1. Therefore, by the Weierstrass Preparation Theorem in Ref. 15, Thm 2.1, there
a proper analyticdiscriminant subsetD,Oc(T

d) s.t.: for QPOc(T
d)\D there exists a~complex!

neighborhoodOc(Q) of Q in Oc(T
d) where each ofvk(u) can be chosen as a holomorph

function. More precisely, this is established in the proof of Ref. 15, Proposition 2.1 which i
main step to the proof of the Weierstrass Theorem. We setC*ªDùTd andO(Q)5Oc(Q)ùTd

for QPTd\C* . Then Lemma 2.2 (i i ) follows for vk(u).
Step 2:The identity~2.4! will follow from the next general Proposition.
Proposition 10.1: LetM be a proper analytic subset ofOc(T

d). Then the Lebesgue measu
of the intersection M5MùTd is zero.

Proof: Let us use the analytic stratification of the analytic sets which is constructed in Re
Thm 19 of Chapter II.E and Thm 10 of Chapter III.A. Namely, for eachQPM there exists a
complex neighborhoodOc(Q) s.t. MùOc(Q)5ø0<d<d21Md , where eachMd is an analytic
submanifold of the complex dimensiond<d21: here we use thatM is the proper analytic subse
in Oc(Q). Now

MùOc~Q!5ø0<d<d21~MdùTd!.

Lemma 10.2: LetQPM andd50, . . . ,d21. Then there exists a (real) neighborhoodO~Q! of
Q in Td such that the intersectionMdùO(Q) is contained in a smooth submanifold ofTd of the
real dimension d21.

Proof: We may assume that~i! Md is defined by the equationshj (u)50, j 51, . . . ,d2d, with
the holomorphic functionshj in Oc(Q); and~ii ! ¹c hj (u)Þ0, uPOc(Q), where¹c stands for the
complex gradient. It is important thatd2d>1 so we have at least one functionh1(u). Then
h1(u)5 f 1(u)1 ig1(u) with the real smooth functionsf 1 ,g1 , and f 1(u)5g1(u)50, u
PM dùOc(Q). However,¹c hj (u)5¹r f 1(u)1 i¹r g1(u)Þ0, where¹r stands for the real gradi
ent. Therefore, either¹r f 1(Q)Þ0 or ¹rg1(Q)Þ0. h

Now Proposition 10.1 obviously follows. h

This proposition implies~2.4! sinceD is a proper analytic subset ofOc(T
d). Lemma 2.3 also

follows from Proposition 10.1 sinceE4 implies that detV̂(u)Ó0 in Td andDk(u)Ó0 in Td\C* .
Step 3:Lemma 2.2~iii ! follows from the construction in Ref. 15, Sec. 2.1. Lemma 2.2 (iv)

follows from ~2.6! since the projectionPs(u) can be expressed by the Cauchy integral over
contour surrounding the isolated eigenvaluev r s

(u).
Step 4:It remains to prove Lemma 2.2 (i i ). Let O~Q! denote a small real neighborhood of

point QPTd\C* and Es(u)5Ps(u)Rn. It suffices to construct an orthonormal basis$ek(u):k
P(r s21 ,r s#% in Es(u) which depends real-analytically onuPO(Q).
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Let us choose an arbitrary basis$bk(Q):kP(r s21 ,r s#% in Es(Q). ThenPs(u)bk(Q) depend
real-analytically onuPO(Q), and$Ps(u)bk(Q):kP(r s21 ,r s#% is a basis ofEs(u) for u from a
reduced neighborhoodO8(Q). Finally, construct the orthonormal basis$ek(u):kP(r s21 ,r s#% by
the standard Hilbert–Schmidt orthogonalization process applied to$Ps(u)bk(Q):k
P(r s21 ,r s#% for eachuPO8(Q). h

Remark 10.3:Lemma 2.2~iii ! also follows from Ref. 15, Sec. 2.1 since the enumeration~2.5!,
~2.6! corresponds to the factorization of the type in Ref. 15, Eq.~2.5! for the functiond(u,v), into
the product of the irreducible factors, with the multiplicitiesr s2r s21 , which is constructed in
Ref. 15, Thm 2.1.

2. Proof of Lemma 2.4

Step 1:Let us fix arbitraryk,l PIn and considervk(u) as the functions ofVPRN and ofu
PTd. It suffices to prove thatDk(u) and ¹„vk(u)6v l(u)… are analytic and are not zero in a
open dense subset inRNÃTd.

Let us considerVk8 l 8(x), k8,l 8PIn , uxi u<N, as the coordinates of the matrix-functionV in
the regionRN . ConditionE2 allows us to considerVk8 l 8(x) as independent real variables for an
k8,l 8PIn and the pointsx with eitherx1.0, orx150 andx2.0, orx15x250 andx3.0, etc. Let
us identifyRN with corresponding rangeRM of the independent real variablesVk8 l 8(x).

Step 2:Considervk(u) as the functions of$Vk8 l 8(x)% and u in CMÃTc
d . As above, each

vk(u) can be chosen as a holomorphic function outside a proper analytic discriminant s
D,CMÃTc

d . Lemma 10.2 implies that the regionOª(RMÃTd)\D is an open dense subset
RMÃTd. Therefore, it suffices to prove that the functionsDk and“(vk6v l) are not identically
zero in each connected open component ofO. However, the region of analyticityO
ª(CMÃTc

d)\D is connected. Hence, it remains to construct a point ofCMÃTc
d such that the

functionsDk and“(vk6v l) are holomorphic and nonidentically zero in a neighborhood of
point. It is easy to construct such point for anyn>1: we can choose an arbitraryuPTd and the
nearest neighbor crystal~1.12! repeatedn times with distinct massesmk , kPIn . h

1Arnol’d, V. I., Gussejn-Zade, S. M., and Varchenko, A. N.,Singularities of Differentiable Maps~Birkhäuser-Verlag,
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Hierarchy of equations for reduced density matrices
at thermodynamic equilibrium with account taken
of the spin of particles

V. A. Golovko
Moscow State Evening Metallurgical Institute, Lefortovsky Val 26, Moscow 111250, Russia

~Received 5 June 2002; accepted 17 January 2003!

The new approach in quantum statistical mechanics proposed by the author in
previous publications is extended to systems of nonzero-spin particles. It is shown
that properties of particles relevant to their spin can well be incorporated into the
approach proposed. In so doing the principal ideas of the approach undergo no
changes and lead to a hierarchy of equations for reduced density matrices at ther-
modynamic equilibrium that generalizes the hierarchy obtained earlier for spinless
particles. Thermodynamics based on the hierarchy is worked out as well. The
hierarchy and relevant thermodynamics enable one to calculate both thermody-
namical properties of a system of particles and structural ones. With the help of
perturbation expansions it is shown that the hierarchy has a solution and the solu-
tion is unique at least in the case of a weakly interacting system. Using the example
of a hard-sphere system wherein triplet correlations are disregarded it is demon-
strated that the hierarchy may serve as basis for deriving various results. Compari-
son of these results with results of other theoretical treatments evidences complete
agreement within the limits allowed by the approximation used. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1562006#

I. INTRODUCTION

In a previous paper1 ~hereafter referred to as paper I! a new approach in equilibrium quantum
statistical mechanics was proposed. The basic idea of the approach lies in obtaining a hiera
equations fors-particle reduced density matrices that corresponds to thermodynamic equilib
on the basis of most general assumptions by proceeding from the known fundamental equa
the time evolution of a density matrix. It turns out that, to this end, it is sufficient to make u
only one assumption according to which at thermodynamic equilibrium the reduced densit
trices satisfy the principle of maximum statistical independence between quantities that det
the matrices. Moreover, in the course of deriving the hierarchy one is able to express all th
dynamic quantities in terms of functions that figure only in first equations of the hierarchy. T
it suffices to find those functions in order to attain a full thermodynamical and structural de
tion of a system provided the interparticle potential is specified.

If \→0, the hierarchy obtained goes over into the well-known equilibrium BBGKY hierar
This, on the one hand, enables one, when studying quantum systems, to employ metho
approximations that are developed for solution of the classical BBGKY hierarchy, and on the
hand this affords a possibility to elucidate the influence of quantum effects upon a system
high-temperature behavior is described with the help of the BBGKY hierarchy. It shoul
emphasized that until the publication of paper I one did not succeed in obtaining a qua
analogue of the equilibrium BBGKY hierarchy~see the discussion in paper I of relevant difficu
ties, in particular, when one tries to use the Gibbs canonical or other similar ensembles!, and the
derivation of this analogue is due to the approach of paper I. To avoid any misunderstandin
to be noted that in statistical mechanics there are different hierarchies. In order that a qu
hierarchy be an analogue of the classical BBGKY hierarchy the former must go over into the
as\→0.
26210022-2488/2003/44(6)/2621/18/$20.00 © 2003 American Institute of Physics
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In the event of a Bose system, special investigation is needed for the case of low tempe
when there appears a condensate analogous with that which forms at Bose condensatio
ideal gas. Extension of the above approach to this case was considered in a subsequen2

~hereafter referred to as paper II!. The condensate phase can be superfluid, and the phenomen
superfluidity does not require, for its explanation, any additional hypotheses other than that u
paper I. It is worth adding that recently the hierarchy obtained in paper I was utilized for
retical treatment of a quantum solid.3

However, solely spinless particles were implied in both the papers, I and II. Our aim in
paper is, by extending the approach proposed in paper I to systems containing particle
nonzero spin, to derive the corresponding hierarchy of equations fors-particle reduced density
matrices. It will be shown that properties of particles relevant to their spin can, quite natura
incorporated into the approach proposed in paper I without any changes in the principal id
the approach. Thermodynamics based on the hierarchy will be constructed as well. All o
provides a means for calculating both thermodynamical properties of a system of nonzer
particles and structural ones, for example, spatial correlations. We shall also prove that th
archy has a solution and the solution is unique at least in the case of a weakly interacting s

In the present paper we do not confine ourselves to obtaining general results but a
consider a method for solving the equations derived using, as an example, a system o
spheres in which triplet correlations are neglected for the sake of simplicity. This simple exa
alleviates the problem of working out the method of solution while on the other hand the exa
makes it possible to elucidate whether the present theory reproduces well-established
seeing that hard-sphere systems are the objective of a great number of studies. We shall
comparison of results given by the hierarchy with the results of other theoretical treatm
evidences complete agreement within the limits allowed by the approximation used, name
the neglect of triplet correlations.

As mentioned above, in paper II it was demonstrated that the present approach permits
treat the Bose condensation and, on this basis, superfluidity in Bose systems. At the sam
from the results of paper II it follows that superfluidity cannot exist in systems of spinless fe
ons. Incorporation of the spin into the framework of the approach made in the present paper
up possibilities of considering superfluidity in fermionic systems and thereupon supercondu
~in the case of charged fermions!, which will provide a new method for studying these pheno
ena. Application of the results of the present paper together with, the ideas of paper II to trea
of superfluidity in fermionic systems will be the subject of a separate publication.

In the present paper for convenience sake, when referring to an equation of paper I, w
place I in front; so we shall write, e.g.,~I.2.7! implying Eq. ~2.7! of paper I.

II. HIERARCHY OF EQUATIONS FOR REDUCED DENSITY MATRICES

We consider a system ofN identical particles enclosed in a volumeV. For convenience spin
variables will be written as arguments of functions, and not as indices. So, the wave funct
the system will be written in the formC5C(r1 ,s1 ,r2 ,s2 ,...,rN ,sN ;t) where r j are space
coordinates ands j the spin variables. One may presume that each spin variables j runs from 1 to
k upon setting, for instance, a correspondence of the type↑→1 and↓→2; herek52S11 andS
is the spin of a particle. The following abbreviated notation will be used:

xs5r1,...,r s , ms5p1,...,ps , dxs5dr1¯dr s , dms5dp1¯dps ,
~2.1!

Xs5r1 ,s1,...,r s ,ss , Ss5s1,...,ss , Gs5g1,...,gs .

In the present paper we shall consider pure states alone because the use of mixed stat
problem under study but complicates the notation without giving any advantage as it follows
paper I, and we defines-particle reduced density matrices by
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Rs~Xs ,Xs8 ,t !5
N!

~N2s!! (
ss11,...,sN51

k E C~Xs ,r s11 ,ss11 ,... ,rN ,sN ;t !

3C* ~Xs8 ,r s11 ,ss11,...,rN ,sN ;t !dr s11¯drN . ~2.2!

SinceC is assumed to be normalized to unity the normalization ofRs is

(
Ss

E Rs~Xs ,Xs ,t !dxs5
N!

~N2s!!
. ~2.3!

Here and henceforth,Ss ~or Gs) under the summation sign means summation over alls1,...,ss ~or
g1,...,gs) from 1 tok. According to~2.2! the density matricesRs andRn with n.s are interrelated
by

Rs~Xs ,Xs8 ,t !5
~N2n!!

~N2s!! (
ss11,...,sn51

k E Rn~Xs ,r s11 ,ss11 ,... ,rn ,sn ,

Xs8 ,r s11 ,ss11 ,... ,rn ,sn ,t !dr s11¯drn . ~2.4!

Note that~2.3! follows from ~2.4! if one setss50 and assumes thatR051.
We introduce also diagonal elements of the density matrices summed up over the spin

dinates:

rs~xs ,t !5(
Ss

Rs~Xs ,Xs ,t !. ~2.5!

The quantityr1(r ) is the spatial density of particles with the normalization as in paper I,

E
V
r1~r ,t !dr5N. ~2.6!

From ~2.4! it follows the relation

~N2s!rs~xs ,t !5E
V
rs11~xs11 ,t !dr s11 . ~2.7!

In this paper, studying symmetry or exchange effects we neglect direct interactions due
spin of particles~such interactions are usually weak owing to their relativistic character4 and are
disregarded as a rule in statistical mechanics! and presume also that the external field does not
on the spins. For this reason we shall use a Hamiltonian of the form

H52
\2

2m (
j 51

N

¹ j
21(

j ,k

N

K~ ur j2r ku!1(
j 51

N

V~e!~r j !, ~2.8!

upon assuming that the particles of massm interact via a two-body potentialK(ur j2r ku) and are
placed in an external fieldV(e)(r ). Here and henceforth¹j5]/]r j .

In a standard way5,6 we get the hierarchy of equations for nonequilibrium density matrices@cf.
Eq. ~I.2.5!#
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i\
]

]t
Rs~Xs ,Xs8 ,t !52

\2

2m (
j 51

s

@¹ j
2Rs~Xs ,Xs8 ,t !2¹ j8

2Rs~Xs ,xs8 ,t !#1(
j ,k

s

@K~ ur j2r ku!

2K~ ur j82r k8u!#Rs~Xs ,Xs8 ,t !1(
j 51

s

@V~e!~r j !2V~e!~r j8!#Rs~Xs ,Xs8 ,t !

1(
j 51

s

(
ss1151

k E @K~ ur j2r s11u!2K~ ur j82r s11u!#

3Rs11~Xs ,r s11 ,ss11 ,Xs8 ,r s11 ,ss11 ,t !dr s11 . ~2.9!

In a state of thermodynamic equilibrium the density matrices should have a form analog
~I.2.7!, so that

Rs5Rs~Xs ,Xs8!1Rs
~ t !~Xs ,Xs8 ,t;N!. ~2.10!

Here the time-dependent termRs
(t) is relevant to fluctuations. Henceforth we shall deal only w

the termRs(Xs ,Xs8) that describes equilibrium properties. Following the procedure of paper
introduce a complete orthonormal set of functionscn(xs) defined by

H~s!cn~xs!5«n
~s!cn~xs!, H~s!52

\2

2m (
j 51

s

¹ j
21Us~xs!. ~2.11!

Note that the, yet to be determined, potentialsUs(xs) supposed to be symmetric inxs and real
do not depend on the spins as long as we neglect direct spin-dependent interactions. The b
conditions for the functionscn(xs) are the same as in paper I: the functions vanish at the boun
of the volumeV. We do not presume any symmetry ofcn(xs) ~symmetric and antisymmetric
functions will be set up below!.

Inasmuch as the density matrices depend upon spin variables besidesr j , it is necessary to
introduce also an orthonormal basis relevant to the spin variables. For this purpose we can
functions7

xGs
~Ss![xg1 ,...,gs

~s1,...,ss!5dg1s1
¯dgsss

. ~2.12!

Properties of these functions necessary for us are presented in Appendix A.
By analogy with~A9! the density matrices can always be expanded in a double series o

form

Rs~Xs ,Xs8!5 (
n,Gs ;m,Ds

anGsmDs

~s! CnGs
~Xs!CmDs

* ~Xs8!. ~2.13!

Since, by~2.2!,

Rs* ~Xs ,Xs8!5Rs~Xs8 ,Xs!, ~2.14!

one has

anGsmDs

~s!* 5amDsnGs

~s! . ~2.15!

According to the principal idea of paper I we assume that at thermodynamic equilibrium
density matrices obey the principle of maximum statistical independence, that is to say, inst
the general form~2.13! they have the form
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Rs~Xs ,Xs8!5 (
n,Gs

ns~«n
~s!!CnGs

~Xs!CnGs
* ~Xs8!. ~2.16!

In order to avoid any misunderstanding a comment needs to be made as to Eq.~2.16! and the
corresponding Eq.~I.2.11!. Upon carrying out a linear transformation and introducing new fu
tionsCnGs

8 (Xs) instead ofCnGs
(Xs) the matricesanGsmDs

(s) can always be diagonalized because th

are Hermitian according to~2.15!. The relevant representation of the density matrices are o
used in studies on reduced density matrices.8,9 Equations~2.16! and~I.2.11! imply another thing.
The new functionsCnGs

8 (Xs) will involve functionscn(xs) pertinent to different eigenvalues«n
(s)

and thereby the functionsCnGs
8 (Xs) will not satisfy equations of the type~2.11!. We suppose tha

in a state of thermodynamic equilibrium the diagonalization as implied in~2.16! occurs if use is
made of the functionscn(xs) which obey the Schro¨dinger-type equation of~2.11!, and that the
diagonal elements ofanGsmDs

(s) denoted byns depend on«n
(s) alone. In this case all the terms i

~2.16! will be independent of one another as long as each of them will be relevant to only
eigenvalue«n

(s) . This corresponds with the principle of maximum statistical independence
which the approach of paper I is based.

It should be emphasized that the quantity«n
(s) does not mean energy of a group of particles

there is no such energy independent of time in the case of interacting particles, and there
quantityns(«n

(s)) cannot be regarded as the occupation number of thenth state~see also paper I!.
It should be added that we assumens(«n

(s)) to be independent ofGs , that is, of the direction of the
spin. It is worthy of note that introducing this last assumption excludes ferromagnetism fro
present study.

As a matter of fact we look for a solution of the hierarchy~2.9! in the form~2.16!, which will
lead to equations for the potentialsUs(xs) that determinecn(xs). We proceed in the same fashio
as in paper I. By~2.11!, from ~2.16! it follows the equations

\2

2m (
j 51

s

¹ j
2Rs~Xs ,Xs8!5Us~xs!Rs~Xs ,Xs8!2 (

n,Gs

«n
~s!ns~«n

~s!!CnGs
~Xs!CnGs

* ~Xs8!, ~2.17!

\2

2m (
j 51

s

¹ j8
2Rs~Xs ,Xs8!5Us~xs8!Rs~Xs ,Xs8!2 (

n,Gs

«n
~s!ns~«n

~s!!CnGs
~Xs!CnGs

* ~Xs8!. ~2.18!

We insert~2.10! into ~2.9! and neglect the time-dependent termRs
(t) . Taking~2.17! and~2.18!

into account then yields

H Us~xs!2Us~xs8!2(
j ,k

s

@K~ ur j2r ku!2K~ ur j82r k8u!#2(
j 51

s

@V~e!~r j !2V~e!~r j8!#J Rs~Xs ,Xs8!

5(
j 51

s

(
ss1151

k E @K~ ur j2r s11u!2K~ ur j82r s11u!#Rs11~Xs ,r s11 ,ss11 ,Xs8 ,r s11 ,ss11!dr s11 .

~2.19!

Equation ~2.19! represents a hierarchy of equations for the potentialsUs(xs) because
Rs(Xs ,Xs8) are already determined by Eq.~2.16! according to which they are certain combinatio
of the functionscn(xs) while these last functions depend functionally onUs(xs) by virtue of
~2.11!. It should be observed that the last term in~2.17! and ~2.18! that cannot be expressed
terms ofUs(xs) and Rs(Xs ,Xs8) has disappeared from~2.19!. The equality of the last terms o
~2.17! and~2.18! is due to the fact that the functionscn(xs) obey~2.11! @cf. the above commen
upon ~2.16!#.

In contrast to~I.2.14!, at a givens in ~2.19! we have several equations because the argum
Xs and Xs8 contain extra variablesSs and Ss8 that do not figure inUs(xs). Consequently the
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number of equations exceeds the number of unknowns. By rather a lengthy manipulation w
help of~A10! one can show that the left-hand side of~2.19! as well as the right-hand side have th
structure

(
P

~s!

~6 !pd~Ss ,PSs8!F~xs ,Pxs8!. ~2.20!

Here and in what follows the permutation operatorP acts on the arguments in front of which it
placed, other symbols are defined in Appendix A. For this reason, in order that Eq.~2.19! be
fulfilled at a givens it is sufficient to equate the corresponding functionsF(xs ,Pxs8) on the left and
on the right, which will give only one equation for eachs.

There is a more simple method of demonstrating that the equations of~2.19! with differentSs

andSs8 are equivalent to one another at a givens. To this end we first expandRs(Xs ,Xs8) in terms
of the functions of~A8! without taking account of the symmetry ofRs(Xs ,Xs8). Then we shall see
at once that the left-hand side of~2.19! and the right-hand side contain a factord(Ss ,Ss8) that
cancels out, which gives an equation withoutSs andSs8 . If one symmetrizes or antisymmetrize
the functions that enter into~2.19!, this signifies that one forms combinations of the type~A10!.
Once corresponding terms of the combinations are equal to one another the whole combi
will be equal to each other as well.

Inasmuch as the equations of~2.19! with differentSs andSs8 are equivalent to one another
a givens, we may take only one of them. Instead of this it is convenient to take an equation
follows from ~2.19! if one setsSs85Ss and sums up overSs . In order to write down the resulting
equation let us introduce auxiliary functions defined by

R̄s~xs ,xs8!5(
Sx

Rs~xs ,Ss ,xs8 ,Ss!, ~2.21!

wherein we writexs , Ss in place ofXs . According to~2.5!,

rs~xs!5R̄s~xs ,xs!. ~2.22!

In terms of~2.21!, Eq. ~2.19! becomes

H Us~xs!2Us~xs8!2(
j ,k

s

@K~ ur j2r ku!2K~ ur j82r k8u!#2(
j 51

s

@V~e!~r j !2V~e!~r j8!#J R̄s~xs ,xs8!

5(
j 51

s E @K~ ur j2r s11u!2K~ ur j82r s11u!#R̄s11~xs ,r s11 ,xs8 ,r s11!dr s11 . ~2.23!

This hierarchy of equations forUs(xs) completely coincides with~I.2.14! if Rs(xs ,xs8) is replaced
by R̄s(xs ,xs8). The question as to the solvability of the resultant hierarchy is equivalent to the
question concerning~I.2.14!, and is discussed in paper I.

In fact we need not solve the hierarchy of~2.23! because in the approach used, only t
limiting form of the hierarchy, asxs8→xs , is required. Since Eq.~2.23! coincides with~I.2.14!, and
~2.22! is analogous with~I.2.2!, we arrive at an equation wholly identical with~I.3.1!, namely,

rs~xs!¹1Us~xs!5rs~xs!¹1F (
j 52

s

K~ ur12r j u!1V~e!~r1!G1E rs11~xs11!¹1K~ ur12r s11u!dr s11 .

~2.24!

Thus, the last equation is of the same form as in the case of spinless particles. It is appare
this result stems from the fact that we discard direct spin interactions.
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Let us now transform the expression of~2.16!. We recast it in a form analogous to~I.2.16!
upon introducing an operatorns(H

(s)) for which we take a representation of the type~I.2.19!. Next
we substitute~A10!, expandcn(xs) in a Fourier integral, and make use of~A2! to ~A4!. As a result
we get, in complete analogy with~I.2.20!, that

Rs~Xs ,Xs8!5
1

2p i ~2p\!3ss! E dmsE
C
dz ns~z!ys~xs ,ms ,z!

3(
P

~s!

~6 !pd~PSs ,Ss8!expF i

\ (
k51

s

~pkr k2r k8Ppk!G ~2.25!

with symbols defined in~2.1! and~2.20!. The contour of integrationC in the complex plane ofz
encloses all singularities ofys(xs ,ms ,z) ~a possible form ofC is shown in Fig. 1 of paper I!. For
the functionys(xs ,ms ,z) we shall obtain an equation identical to~I.2.22!, namely,

\2

2m (
j 51

s

¹ j
2ys1

i\

m (
i 51

s

pl¹jys1Fz2
1

2m (
k51

s

pj
22Us~xs!Gys51. ~2.26!

It is worth remarking that~2.25! allows one to show, following the procedure of Appendix B
paper I, that the hierarchy of~2.23! is satisfied identically in the case of a spatially unifor
medium if s51.

From ~2.25! we find the diagonal elements of the density matrices summed up over the
projections defined in~2.5!:

rs~xs!5
1

2p i ~2p\!3ss! E dmsE
C
dz ns~z!ys~xs ,ms ,z!(

P

~s!

~6 !pk~P!expF i

\ (
k51

s

r k~pk2Ppk!G ,

~2.27!

wherein

k~P!5(
Ss

d~PSs ,Ss!. ~2.28!

It may be proven thatk(P)5kn wheren is the number of cycles pertaining to the permutationP.
Thus, just as in paper I we have obtained a hierarchy of equations forrs(xs), Us(xs), and

ys(xs ,ms ,z) given by~2.24!, ~2.26!, and~2.27!. Equations~2.24! and~2.26! are identical with the
ones for spinless particles, and are discussed in paper I. The spin manifests itself only
~2.27!.

We turn now to the functionsns(z). In order to deduce a relationship between them we
~2.4! with n5s11 upon substituting~2.25! there@the relation~2.4! will be satisfied for alln if it
is satisfied forn5s11]. By reasoning in the same way as in Sec. 4 of paper I with additio
summation over the spin projections one will, instead of~I.4.12!, arrive at

ns~z!5
4p&s\3r

km3/2

d2

dz2 E
0

`

ns21~z1x2!dx, ~2.29!

wherer5N/V. Here again in order to calculate allns(z)’s it is sufficient to known1(z) or to
resort to some argumentation. One may invoke the same argument as in Sec. 4 of paper I
leads to~I.4.14!. As a consequence, by making use of~2.29! one will, in complete parallel with
~I.4.15! and ~I.4.17!, obtain

ns~z!5Ase
2z/t, As5s! S r

k D s21S 2p\2

mt D 3~s21!/2

A. ~2.30!
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In particular, forn1(z)[n(z) one has

n~z!5Ae2z/t. ~2.31!

Thus, the functionsns(z) depend upon two parametersA andt, just as in the case of spinles
particles. These parameters are connected by the normalization condition~2.6!. In order to obtain
a second equation for them it is necessary first to treat thermodynamics.

III. THERMODYNAMICS

Let us recall, in brief, the ideas of paper I as to constructing thermodynamics consistentl
the equations for density matrices. At this stage of the theory it is possible to find the in
energyE and the pressurep. Leaning uponE, p and the second law of thermodynamics f
quasistatic processes one is able to construct thermodynamics as a whole.

The energy of the system is given by the quantum mechanical formula

E5(
Ss

E C* ~XN ,t !HC~XN ,t !dxN . ~3.1!

Henceforth we assume that the external fieldV(e)(r ) is absent. By~2.2!, ~2.5!, and~2.8! this last
expression is reduced to

E52
\2

2m (
s51

k E @¹2R1~r ,s,r 8,s!# r85rdr1
1

2 E K~ ur12r2u!r2~r1 ,r2!dr1 dr2 . ~3.2!

Then we take into account that, according to~2.25!,

R1~r ,s,r 8,s8!5
dss8

2p i ~2p\!3 E dpE
C
dz n1~z!y1~r ,p,z!expF i

\
p~r2r 8!G . ~3.3!

We restrict ourselves to consideration of spatially uniform systems, that is, of fluids.
r2(r1 ,r2)5r2(ur12r2u), and substituting~3.3! into ~3.2! gives

E5
k

~2p!4i\3 E dr dp
p2

2m E
C
dz n1~z!y1~r ,p,z!1

V

2 E K~ ur u!r2~ ur u!dr . ~3.4!

The pressurep can be calculated with the help of the virial theorem, which gives, similarl
~I.3.7!,

p5
k

~2p!4i\3V E dr dp
p2

3m E
C
dz n1~z!y1~r ,p,z!2

1

6 E r2~ ur u!r¹K~ ur u!dr . ~3.5!

Further calculations are analogous with those of Sec. 5 of paper I, and the dissimilari
comparison with Sec. 5 of paper I come down to the appearance of an extra factork in some
formulas. Equation~2.27! at s51 with use made of~2.6!, ~2.31! and the average densityr
5N/V leads to

r5
Ap

2
Akvt3/2 with v5

m3/2

&p2\3
. ~3.6!

The first term in Eqs.~3.4! and ~3.5! can readily be computed in the case of fluids to yield

E5
3

2
tN12pNrE

0

`

r 2K~r !g~r !dr, p5rt2
2p

3
r2E

0

`

r 3
dK

dr
g~r !dr. ~3.7!
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Here we have introduced the pair correlation functiong(r ) according to the usual relatio
r2(r )5r2g(r ) wherer 5ur u. Note thatE andp of ~3.7! completely coincide withE andp as given
by Eqs.~I.5.16! and ~I.5.17! ~the factork cancels out!.

Next, we resort to the second law of thermodynamics for quasistatic processes embod
the equationu dS5dE1p dV, u being the temperature in units of energy (u5kBT). The condi-
tion that the entropyS exists, namely the equality of the second derivatives]2S/]V]u
5]2S/]u]V, entails

r2

N S ]E

]r D
u

5p2uS ]p

]u D
p

, ~3.8!

where we differentiate with respect tor5N/V instead ofV, i.e., the arguments are taken to beu
and r, so thatE5E(u,r) and p5p(u,r). We substitute~3.7! into ~3.8! implying that g(r )
depends also onu andr, that is,g5g(r ,u,r). There results

2u
]t

]u
13r

]t

]r
22t5

4pr

3 E
0

`

dr r 2S ru
dK

dr

]g

]u
23rK

]g

]r
1rK

]g

]r D . ~3.9!

Thus, we have two equations,~3.6! and~3.9!, for the parametersA andt that determinens(z) of
~2.30! and ~2.31!. It is worth remarking that the hierarchy~2.24!, ~2.26!, and ~2.27! does not
contain the temperatureu explicitly. The hierarchy yieldsg5g(r ,t,r). The derivative]g/]u that
figures in~3.9! is to be understood as]g/]u5(]g/]t)•(]t/]u).

It remains to find conditions that should be imposed on solutions of the differential equ
of ~3.9!. By proceeding from known properties of an ideal gas composed of particles with
one sees that the limiting condition atK(r )[0 now takes the parametric form, instead of~I.5.25!,

t5
2

3 S r

kv D 2/3 G1~a!

G0
5/3~a!

, r5kvu3/2G0~a!, ~3.10!

in which a is the parameter and

Gk~a!5E
0

` xk11/2dx

ex2a71
.

According to Appendix A the upper sign refers to bosons and the lower one to fermions.
In order to accomplish the construction of thermodynamics it is still necessary to fin

Helmholtz free energyF5E2uS, for example. This can be done with the aid of the equatio

E52u2S ]

]u

F

u D
r

, p52S ]F

]VD
u

5
r2

N S ]F

]r D
u

. ~3.11!

It is important to note that these two simultaneous equations forF are compatible owing to the
fulfilment of ~3.8!. Different forms forF obtained on the basis of~3.11! are adduced in Appendix
B.

The above formulas show that to compute thermodynamic quantities one needs th
correlation function. The formula forg(r ) follows from Eq.~2.27! at s52 that can, analogously
with ~I.5.7!, be reduced to the form

g~r !5
1

2p i ~2&p\!3r
E dqE

C
dz n~z!y~r ,q,z!Fk6expS i

\
qr D G , ~3.12!

the functiony(r ,q,z) being determined by Eq.~I.5.6!, namely,
                                                                                                                



at the

red in

reated

the
ations

ter

2630 J. Math. Phys., Vol. 44, No. 6, June 2003 V. A. Golovko

                    
\2

m
¹2v~r ,q,z!1

i\

m
q¹y~r ,q,z!1Fz2

q2

4m
2U2~ ur u!Gy~r ,q,z!51. ~3.13!

Let us derive another formula forg(r ). Instead ofy(r ,q,s) one may introducew(r ,q,s) of
~I.D.1!, and moreovercn(r ) as solutions of~I.D.3!. Then the expression of~3.12! becomes

g~r !5
1

r
2&(

n
n~«n!cn~r !@kcn* ~r !6cn* ~2r !# ~3.14!

with cn(r ) and«n found from the Schro¨dinger-type equation

\2

m
¹2cn~r !1@«n2U2~ ur u!#cn~r !50. ~3.15!

For use later we need~3.14! and~3.15! for the case in which the potentialU2(ur u) is such that
the spectrum is continuous. Following the procedure of Appendix D of paper I we transform~3.14!
into the form

g~r !5
1

p&r
(
l 50

`

@k6~21! l #~2l 11!E
0

`

nS \2k2

m DRkl
2 ~r !dk. ~3.16!

The functionRkl obeys Eq.~I.D.8! in which «kl5\2k2/m, namely,

1

r 2

d

dr S r 2
dRkl

dr D2
l ~ l 11!

r 2 Rkl1Fk22
m

\2 U2~r !GRkl50 ~3.17!

with the following boundary condition asr→` @see~I.D.11!#

Rkl→
C1

r
sinkr1

C2

r
coskr, C1

21C2
25

2

p
. ~3.18!

The formulas of the present section show that the spin affects the value ofk alone, the
quantityk being even absent from a number of formulas. However, one should not think th
existence of the spin manifests itself only in a trivial manner. Ifk.1, Eq.~3.14! will contain the
functionscn(r ) of both parities. This will have an appreciable effect on the properties ofg(r ) and
thereupon on thermodynamic properties, which will be confirmed by an example conside
Sec. V.

IV. PERTURBATION EXPANSIONS

As shown in paper I the equations that determine the pair correlation function can be t
with the help of expansion in powers of the Fourier transform of the potentialU2(r ). The first
term in the square brackets of the relevant equations of~I.5.14! and~I.5.15! will contain the factor
k now. HoweverU2(r ) itself is an unknown function determined by other equations of
hierarchy. In this section we shall show that one can look for a solution of the hierarchy equ
directly in terms of expansions in powers of the interaction potentialK(r ), which will permit us
to answer some general questions. For convenience we introduce a dimensionless paramel, so
that K(r )5lK̃(r ), and shall speak of expansions in powers ofl.

We shall assume that the external potentialV(e)50. By making use of~2.7! we recast~2.24!
in the form
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¹1Us~xs!5¹1(
j 52

s

K~ ur12r j u!1
*rs11~xs11!¹1K~ ur12r s11u!dr s11

1

N2s
*rs11~xs11!dr s11

. ~4.1!

Let us choose a value ofs and findrs11 upon settingUs1150. In the latter case, on accoun
of the limiting condition of~I.2.23!, Eq ~2.26! yields

ys11~xs11 ,ms11 ,z!5S z2
1

2m (
j 51

s11

pj
2D 21

.

Now by ~2.27! we computers11(xs11) in this case, which allows us to calculate the term ofUs

proportional tol with the aid of~4.1!. It is to be emphasized that this term will be known exac
Next we rewrite~2.26! as

\2

2m (
j 51

s

¹ j
2ys1

i\

m (
j 51

s

pj¹jys1S z2
1

2m (
j 51

s

pj
2D ys511Us~xs!ys . ~4.2!

Let us representys in terms of the Fourier integral

ys~xs ,ms ,z!5E gs~q1 ,...,qs ;ms ,z!expS i

\ (
k51

s

qkr kD dq~s! , ~4.3!

wheredq(s)5dq1 ...dqs . We substitute~4.3! into the left-hand side of~4.2! and findgs by using
the inverse Fourier transform. Inserting thisgs back into~4.3! yields

ys~xs ,ms ,z!5
1

z2
1

2m (
j 51

s

pj
2

1
1

~2p\!3s E dq~s!

z2
1

2m (
j 51

s

~pj1qj !
2

expS i

\ (
k51

s

qkr kD

3E dxs8 Us~xs8!ys~xs8 ,ms ,z!expS 2
i

\ (
k51

s

qkr k8D . ~4.4!

Once the term of orderl in Us is known Eq.~4.4! permits us to find terms of orders 1 andl
in ys . Therefore we are able to calculaters(xs), too, by ~2.27! to the same order inl.

We substitute the expression obtained forrs(xs) into ~4.1! written for Us21 and calculate
terms of ordersl andl2 in Us21 , which will give terms of orders 1,l, andl2 in ys21 andrs21

by ~4.4! and~2.27!. Proceeding in the same manner we shall finally arrive atg(r )5r2(r )/r2 for
which we shall know terms in 1,l,...,ls21. As to thermodynamic quantities we shall know term
in 1, l,...,ls. according to~3.7! because Eq.~3.9! too can be solved by expanding in powers
l analogously with Sec. 7 of paper I. It is important to stress that all those terms will be kn
exactly. Hence by starting from Eq.~4.1! with an appropriate numbers we are able to calculate
any term in the perturbation expansion of any quantity.

The method considered proves the existence of a solution to the hierarchy of the presen
as well as to the hierarchy of paper I. Of course, it is yet necessary to prove that the relevan
converge, which is not a simple matter. As is usual with perturbation expansions we suppo
they converge~perhaps asymptotically! at least for not too largel, i.e., in the case of a wea
coupling.

The result obtained shows also that the hierarchy of equations can be solved witho
approximation introduced usually, when one deals with a hierarchy, to cut it off. An analo
result exists for the classical equilibrium BBGKY hierarchy as well~see, e.g., Ref. 10 and refe
ences therein!. It is worthy of remark that the classical BBGKY hierarchy is equivalent to Eq.~4.1!
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together with the relationr(xs)5As exp@2U(xs)/u# instead of~2.26! and~2.27! ~see paper I!. In
practice however one is obliged to introduce some approximation or other inasmuch as the
ing series prove to be too cumbersome for practical use.

The method presented enables one also to demonstrate the uniqueness of solution. Th
tions rs and Us are determined uniquely by Eqs.~2.27! and ~4.1! since the constant appearin
when integrating~4.1! is found from the condition thatUs50 at infinity ~see paper I!. So we need
consider only~4.4!. SinceUs always contains a factorl in view of ~4.1!, terms of orderl l in ys

when placed in the right-hand side of~4.4! permit one to calculate terms of orderl l 11. The term
of orderl051 is given by~4.4! explicitly. Hence all terms of the expansions in powers ofl will
be found uniquely.

V. HARD SPHERES UNDER THE NEGLECT OF TRIPLET CORRELATIONS

Having considered a weak interaction potentialK(r ) we turn to the opposite case of a
extremely singular potential, namely, the potential of hard spheres. This example will perm
on the one hand, to verify the equations obtained by comparing results yielded by them
established results while on the other hand this simple example will enable us to work
method for solving the equations and extracting concrete physical results from them.

In the case of hard spheresK(r )5` if r ,a andK(r )50 if r .a. To simplify the problem we
shall disregard triplet correlations, in which caseU2(r )5K(r ) according to paper I@this may also
be seen from~4.1! upon settings52 and taking into account that the last term vanishes ifr3

5constant]. Note that the same example was considered in paper I as well, which will per
to make a direct comparison of results for spinless particles and for particles with nonzer
given by the present approach.

To begin with, let us examine the pair correlation functiong(r ). It is apparent thatg(r )50 if
r ,a. If r .a we setU25K50 in Eq. ~3.17!, in which case the solution of the equation can
obtained in terms of Bessel functions. The constants of integration are found from the cond
Rkl50 at r 5a and~3.18!. Upon inserting the result into~3.16! we shall arrive at an expression o
the type~I.6.3!:

g~r !5
1

p&rr
(
l 50

`

@k6~21! l #~2l 11!E
0

`

knS \2k2

m D @Nn~ka!Jn~kr !2Jn~ka!Nn~kr !#2

Jn
2~ka!1Nn

2~ka!
dk,

~5.1!

Jn(x) andNn(x) being the Bessel and Neumann functions, respectively, withn5 l 1 1
2. The func-

tion n(z) is given by~2.31! with A from ~3.6!. The overall properties ofg(r ) will be analogous
with the ones presented in paper I when discussing~I.6.3!.

We turn now to Eq.~3.9! that determinest~u,r!. The integrals in~3.9! that contain derivatives
with respect tor require special treatment as long as the potentialK(r ) of hard spheres has a
infinite jump atr 5a. One may resort to the procedure described when deriving~I.6.5!,11 which
will yield the following result, on account of~5.1!:

E
0

`

dr r 3K~r !
]g

]r
5

a\2

m
Hk~ t̄ ! ~5.2!

with t̄5a2mt/\2 and

Hk~j!5
k61

2k
H ~1 !~j !1

k71

2k
H ~2 !~j !, ~5.3!

wherein
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H ~6 !~j !5
8

~pj!3/2(
l 50

`

@16~21! l #~2l 11!E
0

` exp~2x2/j!x dx

Jl 11/2
2 ~x!1Nl 11/2

2 ~x!
. ~5.4!

It is not a simple matter to find out analytically the behavior ofHk(j) when j→`. A
numerical calculation permits one to suggest that, asj→`,

Hk~j!5j1Apj12/31O~1/j!. ~5.5!

Note that the terms written down in~5.5! do not containk, which amounts to saying tha
H (1)(j) and H (2)(j) are also given by~5.5! in this approximation. Ifj→0, H (1)(j) is deter-
mined by the series of~I.6.7! while H (2)(j) by the series of~I.6.8!. The most interesting case i
that of spin-half fermions@k52 with the lower sign in~5.3!#. Then

H2~j!5 1
4H

~1 !~j !1 3
4H

~2 !~j !, ~5.6!

and, asj→0,

H2~j!5
1

2 S 11
27

2
j2

95

3
j21

42 091

360
j32

1 491 327

2800
j41¯ D . ~5.7!

With Eq. ~5.2! at our disposal we can reduce Eq.~3.9! to a form analogous with~I.6.9!:

2F11
2

3
nHk8~ t̄ !Gu ]t̄

]u
13n

]t̄

]n
22t̄2

4

3
nHk~ t̄ !50, ~5.8!

wheren5pa3r and the prime overHk8( t̄) denotes differentiation with respect to the argume
Referring to paper I for details let us outline key steps in integrating Eq.~5.8!. At first, it is
necessary to solve the ordinary differential equation

dt

dn
5

4

9n2/3Hk~n2/3t ! ~5.9!

with t5 t̄/n2/3. Let the general solution of this equation bet5 f 1(n,t0) wheret0 is the value oft
at n50. Then the solution of~5.8! satisfying the condition of~3.10! can be represented paramet
cally as@cf. ~I.6.16! and ~I.6.17!#

t5S r

p&v
D 2/3

f 1~n,g!, g5
~4p!2/3G1~a!

3k2/3G0
5/3~a!

, ~5.10!

u5S r

kvG0~a! D
2/3

expH 4

9 E0

n

Hk8@x2/3f 1~x,g!#dxJ , ~5.11!

wherea is the parameter andg5g(a) is an auxiliary function.
For high temperatures we have again the expressions of~I.6.19! with the results that follow

from them. Disparity with paper I reveals itself only in the low-temperature region. This is na
for the spin is manifested only at low temperatures. In the following we shall consider ferm
alone. Atu50, ~5.10! and ~5.11! yield, analogously to~I.6.32!,

t~0!5S r

p&v
D 2/3

f 1Fn,
1

5 S 6p

k D 2/3G , ~5.12!

while the derivative]t/]u asu→0 is
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]t

]u
5

p2

3 S 2kv

3r D 2/3

u expH 2
4

9 E0

n

Hk8Fx2/3f 1S x,
1

5 S 6p

k D 2/3D GdxJ . ~5.13!

As a consequence, thet~u! dependence is again represented schematically by curve 2 in Fig
paper I as in the case of spinless fermions.

Henceforth we confine ourselves to the case of spin-half fermions whenk52. If n5pa3r is
small we introduce~5.7! into ~5.9! and look for a solution in terms of a series in powers ofn1/3.
As a result, instead of~I.6.34! and ~I.6.35! we have

t5S r

p&v
D 2/3Fg1

2

3
n1/313gn1

3

2
n4/32

38

9
g2n5/32

31

162
gn21

1

54S 667

21
1

6013

10
g3Dn7/32¯G ,

~5.14!

u5S r

2vG0~a! D
2/3S 113n2

76

9
gn5/32

31

162
n21

6013

180
g2n7/32¯ D . ~5.15!

Here againa is the parameter, andg~a! is defined in~5.10!.
The expressions of~3.7! for the internal energyE and the pressurep assume the form

E5 3
2tN, p5rt1

2pa\2

3m
r2Hk~ t̄ !, ~5.16!

when use is made of~5.2!. The free energyF and the chemical potentialm5(F1pV)/N can be
found in complete parallel with~I.6.36! and ~I.6.37!:

F5NuH a2
2G1~a!

3G0~a!
1n1/3S G0~a!

2p D 2/3F22
3

2
n1

38

3
g2n4/31

152

9
gn5/3

1S 3769

567
2

6013

90
g3Dn21¯G J , ~5.17!

m5uH a1n1/3S G0~a!

2p D 2/3F419gn2/31
3

2
n1

152

27
gn5/31S 3769

1134
2

6013

180
g3Dn21¯ G J .

~5.18!

These formulas together with~5.15! give parametric dependence ofF andm uponu andr.
For low temperatures one may obtain expressions similar to~I.6.38! and ~I.6.39!, namely,

t5
2

5
«0H 11

10n1/3

3~3p!2/313n1
15n4/3

2~3p!2/32
38

45
~3p!2/3n5/32

31

162
n21¯

1
5p2u2

12«0
2 F123n1

76

45
~3p!2/3n5/31

1489

162
n21¯G J , ~5.19!

m5«0F11
4n1/3

~3p!2/31
24

5
n1

27n4/3

2~3p!2/32
76

45
~3p!2/3n5/32¯G , ~5.20!

where«05(3r/4v)2/3 is the Fermi energy of the corresponding ideal gas atu50.
Comparison of the above formulas with the corresponding formulas of paper I indicates

owing to the spin, terms depending onn change the order of magnitude. For example, the lead
correction toF andm is now of the ordern1/3;a, while in I it was of the ordern5/3;a5 for F and
of the ordern;a3 for m.
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Let us compare our results with the ones of numerous studies on hard-sphere Fermi s
In our formulas it is easy to obtain explicitly the correction of ordera;n1/3 to different quantities
since, upon dropping terms of ordera3;n and higher in~5.15!, one is able to expressG0(a) in
terms ofu while the term of ordern1/3 in ~5.14! does not depend ona. Let us write down the
resulting corrections to the quantitiesEid , pid , m id of an ideal gas:

E5Eid1
pa\2r

m
N, p5pid1

pa\2r2

m
, m5m id1

2pa\2r

m
. ~5.21!

These expressions coincide exactly with the ones given by the method of pseudopotent
spin-half fermions in the same approximation.12

In order to compare higher terms ina we consider virial coefficients. The coefficients a
defined by~I.6.29!, and the procedure of calculating them is described in paper I. Making us
~5.14!, ~5.15!, ~5.16!, and~5.7! entails

a25
1

8&
1

a

2l
1

9p

2 S a

l D 3

2
38

3
p2S a

l D 5

1
6013

90
p3S a

l D 7

1OF S a

l D 9G , ~5.22!

a35
1

32
2

1

18)
1

9p

8&
S a

l D 3

1
9p

4 S a

l D 4

2
19

3&
p2S a

l D 5

2
380

27
p2S a

l D 6

1OF S a

l D 7G . ~5.23!

In Refs. 12 and 13 and other papers only virial coefficients for spinless particles are
Provided, however, one knows the second virial coefficienta2F

(0) for spinless fermions and th
second virial coefficienta2B

(0) for spinless bosons, then for fermions of spinS,12,14

a2F
~S!5

S11

2S11
a2F

~0!1
S

2S11
a2B

~0! . ~5.24!

If one setsS51/2 here and substitutesa2F
(0) anda2B

(0) given in Refs. 12 and 13, one will get a
exact coincidence with the first four terms in~5.22!. Terms of order (a/l)7 are not cited in Refs.
12 and 13. However, in case one takes such terms from~I.6.30! and ~I.6.40!, one will obtain the
fifth term in ~5.22!. Terms of order (a/l)7 are cited in Ref. 14, but they do not coincide with tho
of ~I.6.30! and ~I.6.40!. The formulas of Ref. 14 may however contain errors as was rema
when discussing~I.6.40!. The first correction toa3 is written down in Ref. 15. AtS51/2 it is
a2/2l2, whereas in~5.23! it is of the order (a/l)3 although the sign is the same. This discrepan
is not unexpected because the third virial coefficient is affected essentially by triplet correl
that were ignored.

Let us make a remark as to formula~5.24!. The formula may readily be proven on conditio
one uses the canonical ensemble.12,14 In our approach the formula is not at all trivial becauset is
different for Bose and Fermi systems.

We may also make a comparison with known results atu50. If, in ~5.19! and ~5.20!, one
discards all terms of higher order than the first ina one will again arrive at~5.21!. The same result
is given, atu50, by other methods;12 however the next term is of the ordera2 whereas on the
grounds of~5.19! and~5.20! the corrections to~5.21! are of the ordera3. This points to the rather
evident fact that the triplet correlations play a more essential role atu50 ~cf. the above discrep-
ancies concerninga3). At the same time the first corrections ina are given correctly by the
approximation used in the present section even atu50.

In conclusion, we see that the present theory reproduces the known results for hard s
adequately although we have resorted to a rather simple approximation in order to facilita
problem. At the same time the discrepancies that occur are physically understandable.
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APPENDIX A: PROPERTIES OF THE FUNCTIONS xGs
„Ss…

We shall use the following abbreviated notation for products of Kronecker’sd-symbols:

dg1s1
dg2s2

¯dgsss
5d~Gs ,Ss!. ~A1!

From this we get the evident property

d~P1Gs ,P2Ss!5d~Gs ,P2P1
21Ss!5d~P1P2

21Gs ,Ss!, ~A2!

whereP1 andP2 are operators that permute the quantitiesg1 ,...,gs or s1 ,...,ss . In the notation
~A1! the functions of~2.12! take the form

xGs
~Ss!5d~Gs ,Ss!. ~A3!

These functions satisfy the orthogonality and completeness relations

(
Ss

xGs
~Ss!xG

s8
~Ss!5d~Gs ,Gs8!, (

Gs

xGs
~Ss!xGs

~Ss8!5d~Ss ,Ss8!. ~A4!

Any function w(Ss) in a space ofs1 ,...,ss can be expanded in terms ofxGs
(Ss),

w~Ss!5(
Gs

aGs
xGs

~Ss!, ~A5!

in which the coefficientsaGs
are given by

aGs
[ag1 ,...,gs

5(
Ss

w~Ss!xGs
~Ss!. ~A6!

Now any functionf (Xs)[ f (r1 ,s1 ,...,r j ,s j ,...,r s ,ss) can be expanded as

f ~Xs!5 (
n,Gs

anGs
C̃nGs

~Xs! ~A7!

in terms of the orthonormal functions

C̃nGs
~Xs!5xGs

~Ss!cn~xs!, ~A8!

wherein we imply that the functionscn(xs) are defined by~2.11!. If the function f (Xs) is sym-
metric ~for bosons! or antisymmetric~for fermions! under the interchange of any two out of th
pairs r j ,s j ( j 51,...,s), the expression~A7! can be reformulated as

f ~Xs!5 (
n,Gs

anGs
CnGs

~Xs!, ~A9!

where

CnGs
~Xs!5

1

s! (Prs

~s!

~6 !pPrsxGs
~Ss!cn~xs!. ~A10!

Here Prs is an operator that permutes the pairsr j ,s j ; the summation is over all permutation
Prs ; the number of quantities permuted is parenthesized over the summation sign; the upp
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refers to bosons and the lower one to fermions; andp is the parity of the permutation. As distinc
from ~A7!, the expansion~A9! takes account of the symmetry off (Xs) explicitly.

APPENDIX B: FREE ENERGY

The free energy can be calculated similarly to~I.5.28!. Let us obtain a general formula
Integrating the first equation of~3.11! gives

F~u,r!52uE
u0

u

E~x,r!
dx

x22uNs0~r! ~B1!

with an arbitrary constantu0 . In order to find the functions0(r) we differentiate~B1! with respect
to r and take account of the second equation of~3.11! and also of~3.8! written as

r2

N S ]E

]r D
u

52u2S ]

]u

p

u D
r

. ~B2!

Then the integral containing]E/]r is readily evaluated and we get

ds0

dr
52

1

u0r2 p~u0 ,r!, s0~r!52
1

u0
E

r0

r

p~u0 ,y!
dy

y2 1 s̄0 , ~B3!

wherer0 and s̄0 are arbitrary constants. The first equation of~B3! corresponds to~I.5.30! with
reference to~I.5.17!. The constants̄0 is expressed viaF(u,r) at u5u0 andr5r0 , which gives a
formula for calculatingF,

F~u,r!52uE
u0

u

E~x,r!
dx

x2 1
u

u0
NE

r0

r

p~u0 ,y!
dy

y2 1
u

u0
F~u0 ,r0!. ~B4!

By integrating first the second equation of~3.11!, likewise one can obtain another formula,

F~u,r!5NE
r0

r

p~u,y!
dy

y22uE
u0

u

E~x,r0!
dx

x2 1
u

u0
F~u0 ,r0!. ~B5!

Note that this last formula may be also derived from~B4! if one interchangesr andr0 as well as
u andu0 .

Let us obtain still another formula for the free energy. To this end we eliminatet between the
equations of~3.7! with the result

2

N
E2

3

r
p52prE

0

`

dr r 2F2K~r !1r
dK

dr Gg~r ,u,r!. ~B6!

Substituting~3.11! leads to an equation forF, namely,

2u
]F

]u
13r

]F

]r
22F522prNE

0

`

dr r 2F2K~r !1r
dK

dr Gg~r ,u,r!. ~B7!

We integrate this quasilinear partial differential equation with the aid of the method of
acteristics. IfI (u,r) denotes the integral in~B7! the characteristic equations may be written a

du

2u
5

dr

3r
5

dF

2F22prNI~u,r!
. ~B8!
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Upon presumingu to be an independent variable we solve these equations, which allows
write the general solution of Eq.~B7! in the form

F~u,r!52pN
r

Au
E

u0

u

I S y,r
y3/2

u3/2D dy

Ay
1uFS r

u3/2D . ~B9!

HereF(x) is an arbitrary function andu0 is an arbitrary constant. Settingu5u0 in ~B9! yields

F~u0 ,r!5u0FS r

u0
3/2D ,

which permits one to findF(x). Inserting thisF(x) and the integralI (u,r) of ~B7! into ~B9! and
making the replacementy5uj2 leads to

F~u,r!52prNE
0

`

dr r 2S 2K1r
dK

dr D E
1

Au0/u
dj g~r ,uj2,rj3!1

u

u0
FFu0 ,rS u0

u D 3/2G .
~B10!

Note that Eq.~3.14! of paper II may be reduced to a form similar to~B10! if use is made of the
second equation of~3.11!.

If one presumesr to be the independent variable in~B8!, another formula results,

F~u,r!52prNE
0

`

dr r 2S 2K1r
dK

dr D E
1

~r0 /r!1/3

dj g~r ,uj2,rj3!1
r2/3

r0
2/3FFuS r0

r D 2/3

,r0G .
~B11!

The last formulas express the free energy in terms of the pair correlation function if the
energy is known atu5u0 or at r5r0 . If one follows the liner5r0(u/u0)3/2 in the r–u plane,
Eqs.~B10! and~B11! coincide in form and the last terms will containF(u0 ,r0). In this case it is
sufficient to knowF(u0 ,r0) and g(r ,u,r) in order to computeF(u,r). In particular, the tem-
peratureu0 and the densityr0 may be chosen such that formulas of classical physics will
applicable for calculatingF(u0 ,r0).

1V. A. Golovko, Physica A230, 658 ~1996!.
2V. A. Golovko, Physica A246, 275 ~1997!.
3V. A. Golovko, Physica A310, 39 ~2002!.
4L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Pergamon, Oxford, 1991!.
5N. N. Bogolyubov and K. P. Gurov, Zh. Eksp. Teor. Fiz.17, 614 ~1947!.
6L. E. Reichl,A Modern Course in Statistical Physics~Wiley, New York, 1997!.
7E. P. Wigner,Group Theory~Academic, New York, 1959!. Wigner, Chap. 13, considers only the casek52; however
generalization to arbitraryk is straightforward.

8A. J. Coleman, Rev. Mod. Phys.35, 668 ~1963!.
9T. Ando, Rev. Mod. Phys.35, 690 ~1963!.

10G. A. Martynov, Mol. Phys.42, 329 ~1981!.
11The line just above~I.6.4! contains an evident misprint: 0 should reada on the right of the inequalities.
12R. K. Pathria,Statistical Mechanics~Butterworth-Heinemann, Oxford, 1996!.
13K. Huang,Statistical Mechanics~Wiley, New York, 1987!.
14J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird,Molecular Theory of Gases and Liquids~Wiley, New York, 1964!.
15A. Pais and G. E. Uhlenbeck, Phys. Rev.116, 250 ~1959!.
                                                                                                                



plex-

rs are

s

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 6 JUNE 2003

                    
Superconductivity near critical temperature
Xing-Bin Pana)

Department of Mathematics, National University of Singapore,
Singapore 119260, Singapore, and Department of Mathematics, Zhejiang University,
Hangzhou 310027, People’s Republic of China

~Received 29 March 2002; accepted 21 February 2003!

In this paper we study the superconductivity for a sample subjected to an applied
magnetic field and slightly below the critical temperatureTc . We use the
Ginzburg–Landau functional to estimate the value of the critical fieldHc , and
examine the superconductivity when temperature is close toTc and the applied
field is belowHc . © 2003 American Institute of Physics.
@DOI: 10.1063/1.1570508#

I. INTRODUCTION

According to the Ginzburg–Landau theory, superconductivity is described by a com
valued functionc ~called an order parameter! and a real-valued vector fieldA ~called a magnetic
potential!. ~c,A! is a minimizer of the energy functional~see Refs. 1–6!:

G@c,A#5E
V

$uj¹c2 iglAcu21 1
2~12ucu2!2%dx1g2E

R3
ucurlA2Happlu2 dx,

whereHappl is the applied field;l ~the penetration depth!, j ~the coherence length!, and g are
positive parameters depending on materials and temperature. The following two numbe
important. The first one ism,

m5
1

j2
5

4ma2l 2~Tc2T!

\2Tc

, ~1.1!

hereT is the temperature,Tc is the critical temperature in zero field,\ is the Planck’s constant,l
is a typical scale for the sample,m is the electron mass, anda is a material constant which i
independent of temperature. Note that in~1.1! T,Tc , hencem.0. Another one is the Ginzburg–
Landau parameterk5l/j. k.1/& for type II superconductors, and 0,k,1/& for type I super-
conductors. Note that

k5lAm. ~1.2!

Let

A5
gl

j
A, Happl5

gl

j
Happl.

Then we can write (1/j2)G@c,A# as

E
V

$u¹c2 iAcu21~m/2!~12ucu2!2%dx1
k2

m E
R3

ucurlA2Happlu2 dx. ~1.3!

a!Electronic mail: matpanxb@nus.edu.sg
26390022-2488/2003/44(6)/2639/40/$20.00 © 2003 American Institute of Physics
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Throughout this paper we assume thatV is a bounded, smooth and simply connected domain
R3. We use the following notations:

¹Ac5¹c2 icA, ¹A
2 c5~¹2 iA!2c5Dc2 i @2A•¹c1c div A#2uAu2c.

Our interest in this paper is the superconductivity under temperatureT slightly below the
critical temperatureTc . So we are led to investigate the minimizers of the Ginzburg–Lan
functional where the value ofm is small. To understand the behavior of the minimizers un
applied fields, let us consider an applied field of the formHappl5sh, whereh is a unit vector, and
s.0 is a parameter. Letting

A5sA,

the associated energy can be written as

G@c,A#5E
V

$u¹sAcu21~m/2!~12ucu2!2%dx1
k2s2

m E
R3

ucurlA2hu2 dx. ~1.4!

The ~global! minimizers of the functionalG @in the spaceW~V!, see Sec. III# satisfy the following
Euler equations~called Ginzburg–Landau system!:

2¹sA
2 c5m~12ucu2!c in V,

curl2 A5
m

sk2
I$c̄¹sAc%xV in R3,

~1.5!
~¹sAc!•n50, @n•A#50, @n3curlA#50 on ]V,

curlA→h as uxu→`.

Heren is the unit outer-normal vector at the boundary ofV, @•# denotes the jump in the enclose
quantity across]V, andxV is the characteristic function ofV, namely,xV(x)51 if xPV, and
xV(x)50 if x¹V. In this paper, the minimizers ofG are called theminimal solutionsof ~1.5!.

It is well known that, when the applied field is strong, the sample is in the normal s
namely,c50. For a given unit vectorh, let Fh be a smooth vector field such that

curlFh5h, div Fh50 in R3. ~1.6!

(0,Fh) is a solution of~1.5! ~which corresponds with the normal state! and is called atrivial
solution. Note that (0,Fh) is the only minimizer ifs is sufficiently large. We are interested in th
existence of nontrivial minimizers and their behavior. Thus, with respect to the functionalG, we
define a critical field by

Hc~h,m,k!5 inf$s.0: ~0,Fh! is a global minimizer ofG%. ~1.7!

If we fix k andm, and let the strength of the applied magnetic field increase toHc(h,m,k), then
the applied field completely penetrates the sample and destroys superconductivity. In Ref
gave a definition of the upper critical fieldHC3

in the same manner. However, the scaling here
different to those used in Ref. 7.

Our first result is the estimate of the value ofHc(h,m,k) for a superconductor with smallm.
Theorem 1: For any unit vectorh there exist two positive constants a(h) andl~h! depending

only onh and V such that, for smallm.0 and k>l(h)Am,

Hc~h,k,m!5a~h!Am1o~Am!. ~1.8!
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The numbersa(h) andl~h! will be given in ~2.4! and~3.10!, respectively. Theorem 1 show
that, close to the critical temperatureTc , samples lose superconductivity under a very we
applied field.

Next we examine the behavior of the minimizers ofG with m tends to zero, which describe
the superconductivity of a sample subjected to the applied field belowHc(h,m,k) and with
temperature slightly belowTc . We shall see that the asymptotic behavior of the minimizers
small m depends on the scale ofk.

Theorem 2: Consider the applied fieldHappl5aAmh, whereh is a unit vector, and a is a fixed
number, 0,a,a(h). Let (cm ,Am) be a minimal solution of (1.5).

(i) If k5lAm with l>l(h) being fixed, then we have, asm→0,

cm5cm@11 iaAmwa1a2m~ma1 ibava!1o~m!#,

Am5Aa1abaBaAm1o~Am!, ~1.9!

ucmu25ca
21abam1o~m!,

where the constants ba and ca , the vector fieldsAa andBa , and the functions wa , ua andva are
determined byh, a andV. caÞ0 and AaÞFh for 0,a,a(h), and

ca→0 and Aa→Fh in Cloc
11a~R3! as a→a~h!.

(ii) If k.0 is fixed, then we have, asm→0,

cm5Cm@11 iaAmwh1a2mch1O~m3/2!#,

Am5Fh1
muCmu2

k2
Uh1O~m3/2!, ~1.10!

uCmu5A12S a

a~h! D
2

1O~Am!,

where the functions wh and ch and the vector fieldUh are determined byh and V.
Remark 1.1:Theorem 1 and conclusion~i! of Theorem 2 together give a description

superconductivity near the critical temperatureTc for type I superconductors of size comparab
with the penetration depth. When the temperature increases toTc ~som tends to zero!, a very weak
~but fixed! applied field penetrates the sample and destroys superconductivity. However,
applied field is kept below fromHc(h,m,k) by a gap of scaleO(Am), it partially penetrates the
sample, and superconductivity persists.

Remark 1.2:Conclusion~ii ! of Theorem 2 needs a careful explanation. It describes the
havior of a sample of size much smaller than the penetration depth, and subjected to the
field below Hc(h,m,k). When the temperature increases toTc , the applied field penetrates th
sample almost completely~more precisely, the leading order magnetic field is the applied fie!,
however, superconductivity may persist. We would like to mention that a similar phenomen
thin films has been found by Chapman, Du, and Gunzburger in Ref. 8~Sec. 2!: For a very thin
film, the applied field will penetrate the film almost completely but superconductivity may pe

The expansions~1.10! also imply that, near the critical temperatureTc , type I behavior may
be observed in a type II superconductor at certain scale. It will be interesting to compar
phenomenon with the observations in Refs. 8 and 9, where Chapman, Du, and Gunzburg
served that for any value ofk which can be small, a very thin film will behave as a type
superconductor@see Ref. 8~Sec. 2!#; and Richardson and Rubinstein found that a material
exhibit both types of behavior depending upon its geometry@see Ref. 9~p. 1288!#.
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Remark 1.3:Theorem 2 shows that, ifm is small, the minimizers have no vortices. A simil
phenomenon on small samples has been found by Aftalion and Dancer10 and Aftalion and Du:11 A
superconductor of very small size does not allow vortices to exist, no matter what the valuk
is. Let us remark that, the value ofm is small for a sample of small size, see~1.1!.

Remark 1.4:The numbersa(h) and l~h! are determined in terms of the solutions of som
elliptic equations, see Secs. II and III. Our approach relies on understanding of these probl
seems to us thatk5l(h)Am is a critical value, and it is interesting to investigate the behavio
superconductivity for 0,k,l(h)Am.

Remark 1.5:It is well known that, the minimizers of the Ginzburg–Landau functional exh
various phenomena for parameters of different scales. Therefore, to address different qu
people use different scaling and reach the energy functionals in different forms. Especially
choose the penetration lengthl as the length unit, then we may takel51 andm5k2. In a rescaled
domain~also denoted byV! we can rewrite the functional~1.3! in the following form~see Ref. 6,
p. 562!:

E
V

$u¹c2 iAcu21~k2/2!~12ucu2!2%dx1E
R3

ucurlA2Happlu2 dx. ~1.11!

In recent years many authors have used the functional~1.11! to study the behavior of supercon
ductors of largek when the applied fields are close to the upper critical fieldHC3

~see for instance
Refs. 3, 7, and 12–25!, or close to the first critical fieldHC1

~see Refs. 26–28!. Especially, the
estimate ofHC3

for a superconducting cylinder with infinite height and constant cross sectionV0

was carried out by Bauman–Phillips–Tang,15 Bernoff–Sternberg,16 Giorgi–Phillips,17

Lu–Pan,7,18,19 del Pino–Felmer–Sternberg,20 Helffer–Morame,21 and it was finally proved by
Helffer–Pan23 that, if k is large,

HC3
~k!5

k

b0
1

C1

b0
3/2

kmax1O~k21/3!,

whereb0 is the lowest eigenvalue of the Schro¨dinger operator with a unit magnetic field on th
half plane and 0.5,b0,0.76~see Refs. 7 and 18!, kmax is the maximum value of the curvature o
the boundary ofV0 , andC1.0 is a universal constant; moreover, as the applied field decre
from HC3

(k), superconductivity nucleates at the maximum points of the curvature. Comp
these results with our Theorems 1 and 2 in this paper, we see that the behavior of the min
for small m are quite different to those with largem.

This paper is organized as follows. In Sec. II we study the eigenvalue problem of2¹eFh

2 with

e being small. The proof is standard and lengthy, and is hence given in Appendix A.@Note that the
study of the upper critical fieldHC3

(k) for largek has led to the estimate of the lowest eigenva

of 2¹bFh

2 for large value ofb, see the references quoted above.# In Sec. III we discuss the

solutions of several elliptic equations inR3 which are needed to describe the behavior of
minimizers of the functional~1.4!. In Sec. IV we estimate the value ofHc(h,m,k) for smallm, and
study the behavior of the minimizers under an applied field belowHc(h,m,k). Theorem 4.1
concerns the case wherek5lAm with l>l~h!, and Theorem 4.2 concerns the case wherek is
fixed. The proof of Theorem 4.1 is lengthy, and therefore some technical details will be giv
Appendix B. Theorem 4.2 can be proved following the line of the proof of Theorem 4.1. How
since the conclusions are somewhat unexpected, we present the main part of the proof in S
and include some technical details in Appendix C. Theorems 1 and 2 are consequences o
rems 4.1 and 4.2.
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II. ESTIMATE OF EIGENVALUE m„eFh… FOR SMALL PARAMETER e

Given a unit vectorh, let Fh be the vector field satisfying~1.6!, and fore.0 let m(eFh) be the
lowest eigenvalue of the equation

2¹eFh

2 f5mf in V, ~¹eFh
f!•n50 on ]V. ~2.1!

We shall estimate the valuem(eFh) for small e. Let

v~h!5 inf
fPW1.2~V!

«V
u¹f2Fhu2 dx, ~2.2!

whereWVf dx5(1/uVu)*Vf dx. v~h! is achieved by the unique~real! solutionwh of the equation

Dwh50 in V,
]wh

]n
5Fh•n on ]V, E

V
wh dx50. ~2.3!

Up to an additive constant, the minimizer is unique. Note that divFh50. So

E
V

u¹whu2 dx5E
]V

wh

]wh

]n
dS5E

]V
whFh•n dS5E

V
¹wh"Fh dx.

Thus

v~h!5«V
u¹wh2Fhu2 dx5«V

~ uFhu22u¹whu2! dx.

We define

a~h!5
1

Av~h!
. ~2.4!

Lemma 2.1: Letm(eFh) be the lowest eigenvalue of (2.1). Ase→0 we have

m~eFh!5v~h!e21O~e3!. ~2.5!

Let fe be the eigenfunction of (2.1) associated withm(eFh) such thatifeiL`(V)51. fe has the
expansion

fe5ae1 i ebewh1e2f21o~e2!, ~2.6!

whereae and be are constants, uaeu and be converge to1 as e→0, and f2 is a smooth function
depending onh.

The proof of Lemma 2.1 is standard, and will be given in Appendix A for the read
convenience.

III. SOME ELLIPTIC PROBLEMS IN THE SPACE W1,2
„V…ÃD1,2

„R3,div …

In the first part of this section we derive the elliptic estimates of the minimal solution
Ginzburg–Landau system~1.5!, and in the second part we discuss the properties of the solu
of some elliptic equations inR3, which are needed in the description of the minimal solutions
~1.5! in Sec. IV.

Let us recall the definition of the minimizers of the Ginzburg–Landau functionalG. Let

D1,2~R3!5$fPL loc
1 ~R3!: u¹fuPL2~R3!%.
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Define ifi1,25i¹fiL2(R3) . After identifying two functions that differ by a constan
(D1,2(R3),i•i1,2) is a Hilbert space~Ref. 29, Lemma II.5.1!. Let D1,2(R3) denote the correspond
ing space of vector fields. It follows from Theorem II.6.2 in Ref. 29 that for anyBPD1,2(R3),
there exists a unique constant vectorB0 such thatB2B0 can be approximated in the norm
i•i1,2 by C0

` vector fields. It is well known that, for anyBPD1,2(R3),

iBi1,2
2 [E

R3
u¹Bu2 dx5E

R3
$ucurlBu21udiv Bu2%dx, ~3.1!

see Ref. 30, also see Ref. 17@~3.2!#. The following subspace ofD1,2(R3) is useful to us:

D1,2~R3,div!5$APD1,2~R3!: div A50 in R3%.

Let W1,2(V,C) be the Sobolev space of all complex-valued functions defined onV̄, and

W~V!5$~c,A!: cPW1,2~V,C!, A2FhPD1,2~R3!%.

We consider the variational problem for the functionalG on W~V!. Let

C~h,m,k,s!5 inf
~c,A!PW~V!

G@c,A#.

It is easy to show that the~global! minimizers exist, and satisfy the Euler equations~1.5!.
Remark 3.1:~i! Giorgi and Phillips17 considered the solutions~c,A! of ~1.5! such thatc

PW1,2(V) andA2FhPĤ1(R3), whereĤ1(R3) is the completion ofC0
`(R3,R3) with respect to

the norm iAi5i¹AiL2(R3) . Our setting is equivalent to theirs. In fact, for any soluti
~c,A!PW~V! of ~1.5!, there exists a unique constant vectorB0 such thatA2Fh2B0PĤ1(R3);
and due to the gange invariance of~1.5! (e2 iB0•xc,A2B0) is also a solution of~1.5!. We choose
the spaceD1,2(R3) instead ofĤ1(R3) so that we are free to add a constant vector to the magn
potentialA. It will be clear that such freedom is useful in our study.

Due to the gauge invariance ofG, we can replaceA by Â that satisfies curlÂ5curlA and
div Â50 in R3, see Ref. 17~Lemma 3.1!. So we can restrict the functionalG on a subspace

W~V,div!5$~c,A!PW~V!: div A50 in R3%.

In the following we always assume that the solutions of~1.5! satisfy divA50 in R3.
~ii ! In ~1.5! the boundary condition@A•n#50 on ]V is a consequence of the fact thatA

PW1,2(R3), and the boundary condition@curlA3n#50 on ]V is a consequence of the fact th
~c,A! is a weak solution of the Euler equations, see Ref. 30~Chap. 5, Sec. 4!. Therefore when we
consider the minimal solutions of~1.5! ~they are weak solutions!, we may write~1.5! as follows:

2¹sA
2 c5m~12ucu2!c in V,

curl2 A5
m

sk2
I$c̄¹sAc%xV in R3, A2FhPD1,2~R3,div!,

~¹sAc!•n50 on ]V.

~iii ! It has been proved by many authors that the solutions~c,A! of ~1.5! satisfy iciL`(V)

<1.
Now we can give a simple lower bound estimate onHc(h,m,k) for small m. The proof

follows from Ref. 7~Lemma 2.1!.
Theorem 3.2:Given a unit vectorh we have, for smallm.0 and for anyk.0,

Hc~h,k,m!>a~h!Am1o~Am!. ~3.2!
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Proof: If m(sFh),m andfs is the associated eigenfunction of~2.1!, we take (tfs ,Fh) as a
test field, where

t5
Am2m~sFh!ifsiL2~V!

AmifsiL4~V!
2 .

We have

inf
~c,A!PW~V!

G@c,A#<G@ tfs ,Fh#<
m

2
uVu2

1

2m
@m2m~sFh!#

ifsiL2~V!
4

ifsiL4~V!
4 ,

m

2
uVu.

So the minimizers are nontrivial. In order to obtain~3.2!, we use Lemma 2.1 to estimate the large
value ofs such thatm(sFh)<m. h

Now we consider the regularity of a minimal solution~c,A! of ~1.5!. Obviouslyc is smooth
in V and A is smooth inR3\]V. We shall discuss the regularity ofc and A on ]V. In the
following we always letC denote a generic positive constant that is independent ofe but may vary
from line to line. LetBr denote the open ball centered at the origin and with radiusr.

Lemma 3.3: Let~c,A!PW~V,div! be a minimal solution of (1.5). We have

i¹~A2Fh!iL2~R3!5icurlA2hiL2~R3!<
m

A2ks
iciL4~V!

2 . ~3.3!

For any 0,a,1, cPC21a(V̄) and APC11a(V̄); and for any R.0 such thatV̄,BR , there
exist C(a,R).0 and q53/(12a) such that, for all positive numbersm, k, and s,

i¹~A2Fh!iCa~RR!<C~a,R!H m

sk
iciL4~V!

2
1

m

sk2
ic̄¹sAciLq~V!J . ~3.4!

Proof: Step 1. We prove~3.3!. From the first equation in~1.5! we have

E
V

u¹sAcu2 dx5mE
V

~12ucu2!ucu2 dx.

So

G@c,A#5
m

2
uVu2

m

2 E
V

ucu4 dx1
k2s2

m E
R3

ucurlA2hu2 dx.

SinceC(h,m,k,s)<muVu/2, we have

k2s2

m E
R3

ucurlA2hu2 dx5C~h,m,k,s!2
m

2
uVu1

m

2 E
V

ucu4 dx<
m

2 E
V

ucu4 dx.

So ~3.3! is true.
Step 2. We prove~3.4!. Let

f5
m

sk2
I$c̄¹sAc%xV .

ObviouslyfPL2(R3). Let U5A2Fh. Since@curlA3n#50 on ]V, and from the second equatio
in ~1.5!, U is a weak solution of the equation curl2 U5f in R3. Since divU50 in R3, this equation
can be written as follows:
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2DU5f in R3. ~3.5!

Applying the De GiorgiL` estimate~Ref. 31, Theorem 8.18! to each component of~3.5!, we find
that, there existsC.0 such that, for any 0,r ,R,

iUiL`~Br !<C$~R2r !23/2iUiL2~BR!1R1/2i fiL2~BR!%.

In order to prove~3.4!, let us chooser5maxxPVuxu and fix R.r. From the above inequality, fo
any r,r ,R we can find a constantC(r ,R).0 such that

iUiL`~Br !<C~r ,R!$iUiL2~BR!1i fiL2~BR!%. ~3.6!

Applying the Hölder estimate for weak solutions~Ref. 31, Theorem 8.24! to ~3.5! we find that, for
some 0,a0,1 andr,r ,R,

iUiCa0~Br !<C~r ,R!$iUiL2~BR!1i fiL2~BR!%. ~3.7!

HenceAPCa0(V̄). Next, since divA50, we write the first and third equalities in~1.5! as follows:

2Dc12isA•¹c1s2uAu2c5m~12ucu2!c in V,
~3.8!

]c

]n
5 isA•nc on ]V.

From the fact thatAPCa0(V̄), and applying the Ho¨lder gradient estimate~see for instance Ref
31, Theorem 8.33! to ~3.8!, we find thatcPC11a0(V̄). Therefore,fPCa0(V̄), and hencef
PL`(R3). Now we apply the Ho¨lder gradient estimate to~3.5! again and find that, for any
0,a,1, UPC11a(BR), and

i¹UiCa~Br !<C~r ,R,a!$i fiLq~BR!1i¹UiL2~BR!1iUiL2~BR!%,

whereq53/(12a). HenceAPC11a(BR). Since divU50, from ~3.1! we have

i¹UiL2~BR!<i¹UiL2~R3!5icurlUiL2~R3! ,

iUiL2~BR!<C8RiUiL6~BR!<C8RiUiL6~R3!<CRi¹UiL2~R3!5CRicurlUiL2~R3! .

Using these inequalities together with~3.3!, ~3.6!, and~3.7! we get~3.4!.
For any 0,a,1, sinceAPC11a(V̄), we apply the Ho¨lder estimate to~3.8! again to conclude

that cPC21a(V̄). h

The rest of this section is devoted to the discussions of some elliptic equations inR3. We
begin with the equation

curl2 U5~¹wh2Fh!xV in R3, UPD1,2~R3,div!, ~3.9!

whereh is a unit vector,Fh andwh were given in~1.6! and~2.3!, respectively. Now we chooseFh
such that*VFh dx50. If UPD1,2(R3,div) is a weak solution of~3.9!, then U is called a finite
energy solution.

Lemma 3.4: (3.9) has a finite energy solutionUh, and UhPCloc
11a(R3) for any 0,a,1.

Moreover, the finite energy solutions of (3.9) are unique up to an additive constant vector.
Proof : Consider a functional
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J@A#5E
R3

ucurlAu2 dx22E
V

~¹wh2Fh!•A dx.

J is a convex functional on the space

X5H APD1,2~R3,div!: E
V

A dx50J .

Using ~3.1! and the Poincare´ inequality we check

lim
APX,iAi1,2→`

J@A#51`.

Thus J has a minimizerUh in X, which is a finite energy solution of~3.9!. As in the proof
of Lemma 3.3 we can show thatUhPCloc

11a(R3). If ~3.9! has another finite energy solutionU,
we let B5Uh2U. Then BPD1,2(R3,div) and B is a harmonic vector field. SoB is a constant
vector. h

In the following we always chooseUh such that*VUh dx50. Now we can define

l~h!5A 2

v~h!uVu
icurlUhiL2~R3! . ~3.10!

Next, given a unit vectorh and constantsl.0 andr>0, we consider

Dw50 in V,

l2 curl2 A5r~¹w2A!xV in R3, A2FhPD1,2~R3,div!, ~3.11!

]w

]n
5A•n on ]V.

The weak solutions of~3.11! are critical points of the functional

Jr@w,A#5l2E
R3

ucurlA2hu2 dx1rE
V

u¹w2Au2 dx.

A solution (w,A) of ~3.11! is called a finite energy solution ifwPW1,2(V) and A2Fh
PD1,2(R3,div). Let us define

Y5H ~w,A!: wPW1,2~V!, A2FhPD1,2~R3,div!, E
V

w dx50, E
V

A dx50J .

We can show thatY contains exactly one finite energy solution of~3.11!. In fact, as in Lemma 3.4
we can show that~3.11! has a finite energy solution. If (w1 ,A1) and (w2 ,A2) are finite energy
solutions of~3.11!, and letv5w12w2 andB5A12A2 , then we have

Dv50 in V,

l2 curl2 B5r~¹v2B!xV in R3, BPD1,2~R3,div!,

]v
]n

5B•n on ]V.

As in Lemma 3.3 we can show thatBPCloc
11a(R3). D5curlB is a weak solution of
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l2 curl2 D52rDxV
in R3,

and hence curlB50. Since BPD1.2(R3,div), B5b, a constant vector. Using the equations f
(v,B) again we find that¹v5b. Hencev is a linear function,v5b•x1c, and (w1 ,A1)5(w2

1b•x1c,A21b).
Let (wr,Ar) denote the unique finite energy solution of~3.9! in Y. Then

Jr@wr,Ar#5 inf
~w,A!PY

Jr@w,A#.

Note that (w0,A0)5(wh ,Fh).
Now we consider the following question: Givena.0, look for all positiver’s such that

a2
«V

u¹wr2Aru2 dx1r51. ~3.12!

Lemma 3.5: (i) For anyl.0 and 0,a,a(h), there exists a unique positive numberr
5r(a) such that (3.12) holds. r(a) is strictly decreasing in a, andlima→01 r(a)51.

(ii) If l>l~h!, then

~3.12! hasH a unique positive solutionr~a! if 0,a,a~h!,

a unique non-negative solutionr50 if a5a~h!,

no non-negative solutions if a.a~h!,

~3.13!

and lima→a(h)2 r(a)50.
(iii) If 0,l,l(h), then there exists C(l).0 such that,

~3.12! has5
a unique positive solutionr~a! if 0,a,a~h!,

a unique positive solutionr~a~h!! and r50 if a5a~h!,

exactly two positive solutionsr* ~a!,r~a! if a~h!,a,C~l!,

exactly one positive solution if a5C~l!,

no non-negative solutions if a.C~l!,

~3.14!

and lima→a(h) r(a)5r(a(h)).
Proof: Step 1. Fix l.0. Fora>0 andr>0, we define a function

f ~a,r!5a2
«V

u¹wr2Aru2 dx1r.

Using the uniqueness of the finite energy solutions of~3.11! in the setY, we find thatf (a,r) is
continuous forr>0 anda>0. We can show thatf is twice differentiable fora.0, r.0. To prove
this, we fixa.0 andr.0. Then, for smalltÞ0, we define

vr,t5
wr1t2wr

t
, Br,t5

Ar1t2Ar

t
.

We can show that, there exists (vr,Br)PY such thatvr,t→vr in C21a(V̄) and Br,t→Br in
Cloc

11a(R3) as t→0, and (vr,Br) satisfies

Dvr50 in V,

l2 curl2 Br5$~¹wr2Ar!1r~¹vr2Br!%xV in R3, BrPD1,2~R3,div!, ~3.15!
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]vr

]n
5Br

•n on ]V.

Similarly we define

zr,t5
vr1t2vr

t
, Dr,t5

Br1t2Br

t
.

We can show that, there exists (zr,Dr)PY such thatzr,t→zr in C21a(V̄) and Dr,t→Dr in
Cloc

11a(R3) as t→0, and (zr,Dr) satisfies

Dzr50 in V,

l2 curl2 Dr5$2~¹vr2Br!1r~¹zr2Dr!%xV in R3, DrPD1,2~R3,div!, ~3.16!

]zr

]n
5Dr

•n on ]V.

We compute

] f

]r
~a,r!5112a2

«V
~¹wr2Ar!•~¹vr2Br!dx,

]2f

]r2
~a,r!52a2

«V
$u¹vr2Bru21~¹wr2Ar!•~¹zr2Dr!%dx.

Multiplying ~3.15! and ~3.16! by Dr andBr, respectively, and integrating, we find

05E
V

$Dr@~¹wr2Ar!1r~¹vr2Br!#2Br@2~¹vr2Br!1r~¹zr2Dr!#%dx

5E
V

$2~¹wr2Ar!•~¹zr2Dr!12u¹vr2Bru21r~Dr
•¹vr2Br

•¹zr!%dx.

Here we have used the fact

E
V

¹zr
•~¹wr2Ar!dx50, E

V
¹vr

•~¹vr2Br!dx50.

Now, sinceDvr50, Dzr50, divBr50 and divDr50 in V, ]vr/]n5Br
•n and]zr/]n5Dr

•n
on ]V, we have

E
V

~Dr
•¹vr2Br

•¹zr!dx5E
V

div~vrDr2zrBr!dx

5E
]V

~vrDr2zrBr!•n dS

5E
]V

S vr
]zr

]n
2zr

]vr

]n DdS

5E
V

div~vr¹zr2zr¹vr!dx50.
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Thus

E
V

~¹wr2Ar!•~¹zr2Dr!dx52E
V

u¹vr2Bru2 dx.

Also note that

E
V

¹vr
•~¹wr2Ar!dx50.

Hencef (a,r) is a C2 function for a.0 andr.0, and

] f

]r
~a,r!5122a2

«V
~¹wr2Ar!•Br dx,

~3.17!
]2f

]r2
~a,r!56a2

«V
u¹vr2Bru2 dx.0.

Recall thatA05Fh and w05wh . We can define (v0,B0) and (z0,D0) using the equations
~3.15! and ~3.16! for r50. Then we haveB05(1/l2)Uh. We computef (a,0) and the one-sided
derivatives atr50,

f ~a,0!5a2
«V

u¹wh2Fhu2 dx5a2v~h!,

] f

]r
~a,01!512a2v~h!

l~h!2

l2
, ~3.18!

]2f

]r2
~a,01!56a2

«V
u¹v02B0u2 dx.0.

In fact,

] f

]r
~a,01!5112a2

«V
~¹w02A0!•~¹v02B0!dx

512
2a2

l2uVu
E

V
~¹wh2Fh!•Uh dx

512
2a2

l2uVu
icurlUhiL2~R3!

2
512a2v~h!

l~h!2

l2
.

Step 2. We show that, for anyl.0 and 0,a,a(h), there exists a uniquer, 0,r,1, such
that~3.12! holds. Note thatf (a,1).1 for all a.0, andf (a,0)5a2v(h),1 for 0,a,a(h). Thus
there existsr5r(a), 0,r(a),1, such thatf (a,r(a))51. Suppose that for some 0,a,a(h),
the equationf (a,r)51 has two positive roots. Sincef (a,0),1 andf (a,1`)51`, the equation
must have one more root. Thusf (a,•) must have a local maximum point. But this is impossib
since (]2f /]r2)(a,r).0 for all r.0. Thus~3.12! has exactly one positive rootr5r(a).

Obviously lima→01 r(a)51. We prove

] f

]r
~a,r~a!!.0. ~3.19!
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Since f (a,0),1 and f (a,`)5`, the uniqueness ofr(a) implies that (] f /]r)(a,r(a))>0. Sup-
pose (] f /]r)(a,r(a))50. Then~3.17! implies thatr(a) is a strictly local minimum point. So
there exists a positive numberr1,r(a) such thatf (a,r1). f (a,r(a))51. Sincef (a,0),1, there
must exist another positive numberr2,r1 such thatf (a,r2)51, which contradicts the unique
ness ofr(a). So ~3.19! is true.

Applying the implicit function theorem to the equationf (a,r)50, we conclude thatr(a) is a
differentiable function for 0,a,a(h), and

] f

]a
~a,r~a!!1

] f

]r
~a,r~a!!r8~a!50,

namely

2a«V u¹wr~a!2Ar~a!u2 dx1
] f

]r
~a,r~a!!r8~a!50.

From this and~3.19! we see thatr8(a),0. Thusr(a) is strictly decreasing foraP(0,a(h)).
Step 3. Assumel>l~h!. We prove~3.13!.
Case 3.1:0,a,a(h). The couclusion has been proved in step 2.
Case 3.2: a5a(h). From ~3.8!, f (a(h),0)51, (] f /]r)(a(h),01)>0 and (]2f /]r2)

3(a(h),r).0. Hence~3.12! has no positive solutions, and lima→a(h)2r(a)5r(a(h))50. We
definer(a(h))50.

Case 3.3:l.l~h! and a(h),a<@l/l(h)#a(h). Then f (a,0).1, (] f /]r)(a,01)>0 and
(]2f /]r2)(a,r).0. Hence~3.12! has no non-negative solutions.

Case 3.4: a.@l/l(h)#a(h). Then f (a,0).1, (] f /]r)(a,01),0, (]2f /]r2)(a,r).0. To
show that~3.12! has no non-negative solutions, we prove that

min
r>0

f ~a,r!.1.

Suppose the minimum is less than 1. Sincef (a,1`)51`, the minimum is achieved atr0>0,
f (a,r0)<1. Thenr0,1. For 0,a8,a we havef (a8,r0), f (a,r0)<1. Especiallyf (a(h),r0)
, f (a,r0)<1, which is impossible.~3.13! is proved.

Step 4. Assume 0,l,l~h!. We shall show that there existsC(l).0 such that~3.14! holds.
Case 4.1:0,a,a(h). The conclusion has been proved in step 2.
Case 4.2: a5a(h). From ~3.18!, f (a(h),0)51, (] f /]r)(a(h),01),0 and (]2f /]r2)

3(a(h),r).0. Hence, beside the zero solution,~3.12! has a unique positive solutionr(a(h))
.0.

Case 4.3: a.a(h). Then f (a,0).1 and (] f /]r)(a,01)512a2v(h)@l(h)2/l2#. There ex-
ists d.0 sufficiently small such that, fora(h),a,a(h)1d and 0,r,d:

f ~a,r!5 f ~a,0!1
] f

]r
~a,01!r1O~r2!5a2v~h!1S 12a2v~h!

l~h!2

l2 D r1O~r2!.

For smallr.0, if we choosear such thatar
2v(h)511cr, where 0,c,@l(h)2/l2#21, then

f ~ar ,r!2152S lh
2

l2
212cD r1O~r2!,0.

Hence if a is sufficiently close toa(h), we have minr>0 f(a,r),1; and sincef (a,0).1 and
(]2f /]r2)(a,r).0, ~3.12! has exactly two positive solutions.

Note that if minr>0 f(a0,r),1 for somea0.0, then minr>0 f(a,r),1 for all 0,a,a0 . Also
note that
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min
r>0

f ~a,r!>min$1, a2m0%, where m05 min
0<r<1

«V
u¹wr2Aru2 dx.0.

Thus there existsC(l), a(h),C(l),1`, such that

min
r>0

f ~a,r!H ,1 if a~h!,a,C~l!,

51 if a5C~l!,

.1 if a.C~l!.

So ~3.14! is true. h

Remark 3.6:Whenl>l~h! and 0,a,a(h), we write

Aa5Ar~a!, Ba5Br~a!, ca5Ar~a!, va5vr~a!, wa5wr~a!. ~3.20!

(wa ,Aa ,ca) satisfies

Dwa50 in V,

l2 curl2 Aa5ca
2~¹wa2Aa!xV in R3, Aa2FhPD1,2~R3,div!,

~3.21!
]wa

]n
5Aa•n on ]V,

a2
«V

u¹wa2Aau2 dx1ca
251,

and (va ,Ba) satisfies

Dva50 in V,

l2 curl2 Ba5$~¹wa2Aa!1ca
2~¹va2Ba!%xV in R3, BaPD1,2~R3,div!, ~3.22!

]va

]n
5Ba•n on ]V.

Using ~3.17! and ~3.19! we find

E
V

~¹wa2Aa!•Ba dx5l2E
R3

ucurlBau2 dx1ca
2E

V
u¹va2Bau2 dx,

uVu

2a2
. ~3.23!

Lemma 3.7: (i) Fixl.l~h!. We have, as a→a(h)2,

ca
25

l2

l22l~h!2
~12a2v~h!!1O~~12a2v~h!!2!. ~3.24!

(ii) If l5l~h!, we have, as a→a(h)2,

ca
25H Av~h!uVu

A3I¹v02
1

l2
UhI

L2~V!

1o~1!J A12a2v~h!. ~3.25!
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Proof : From Lemma 3.5, for any 0,r,1, ~3.12! determines a unique numbera such that
r5ca

2. Recall thatB05(1/l2)Uh. As in the proof of Lemma 3.5~Step 1!, we compute the
one-sided derivatives atr50:

d

drU
r501

E
V

u¹wr2Aru2 dx52
l~h!2

l2
v~h!uVu,

~3.26!
d2

dr2U
r501

E
V

u¹wr2Aru2 dx56E
V
U¹v02

1

l2
UhU2

dx.

Thus forr.0 small,

E
V

u¹wr2Aru2 dx5v~h!uVu2
l~h!2

l2
v~h!uVur13r2E

V
U¹v02

1

l2
UhU2

dx1o~r2!.

Recall that, whenl>l~h!, r(a)→0 asa→a(h)2. Letting r5r(a) and plugging it into~3.12!
yields

r~a!512a2v~h!1
a2v~h!r~a!l~h!2

l2
2

3a2r~a!2

uVu I¹v02
1

l2
UhI

L2~V!

2

1o~r~a!2!.

~3.27!

Whenl.l~h!, ~3.24! follows from ~3.27!. Whenl5l~h!, ~3.27! reads

~12r~a!!~12a2v~h!!5
3a2r~a!2

uVu I¹v02
1

l2
UhI

L2~V!

2

1o~r~a!2!.

So

r~a!5
Av~h!uVu

A3I¹v02
1

l2
UhI

L2~V!

~11o~1!!A12a2v~h!.

h

Remark 3.8:For the functionalJr defined above, we have

d

dr
Jr@wr,Ar#5E

V
u¹wr2Aru2 dx12l2E

R3
~curlAr2h!•curlBr dx

12rE
V

~¹wr2Ar!•~¹vr2Br!dx

5E
V

u¹wr2Aru2 dx.

We compute the one-sided derivatives ofJr@wr,Ar# at r50,

d

drU
r501

Jr@wr,Ar#5E
V

u¹w02A0u2 dx5v~h!uVu,
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d2

dr2U
r501

Jr@wr,Ar#522E
V

~¹w02A0!•B0 dx52
l~h!2

l2
v~h!uVu, ~3.28!

d3

dr3U
r501

Jr@wr,Ar#56E
V
U¹v02

1

l2
UhU2

dx.

These results will be needed in Sec. IV.

IV. ASYMPTOTIC BEHAVIOR OF MINIMIZERS FOR SMALL m

In this section we consider a superconductor with smallm, and subjected to an applied fiel
H5sh, whereh is a unit vector. We shall estimate the value ofHc(h,m,k), and examine the
behavior of the minimal solutions of~1.5!.

We first consider the case wherek5lAm. To describe the behavior of the minimizers w
needAa , wa , ca @see~3.21!#, Ba , va @see~3.22!#, andua which is the unique solution of the
equation

Du5uAau222Aa•¹wa2
1

a2
~12ca

2! in V,

~4.1!
]u

]n
52waAa•n on ]V, E

V
u dx50.

Let

ba52a2ca
2 WVwaAa•~¹va2Ba!dx

122a2
WV~¹wa2Aa!•Ba dx

.

Theorem 4.1:Let h be a unit vector, l>l~h!, and k5lAm.
(i) As m→0,

Hc~h,m,lAm!5a~h!Am1H O~m3/2! if l.l~h!,

o~Am! if l5l~h!.

(ii) Assumes5aAm, where a is fixed and0,a,a(h). Let (cm ,Am) be a minimal solution
of (1.5) fork5lAm. Then we have, asm→0,

cm5cm@11 iaAmwa1a2m~ua1 ibava!1o~m!#,

Am5Aa1abaAmBa1o~Am!, ~4.2!

ucmu25ca
21abam1o~m!.

(iii) Assumes5amAm,Hc(h,m,lAm), where am→a(h) as m→0. The minimizer(cm ,Am)
has the expansions

cm5 l m@11 iamAmwh1am
2 m~um1 ivm!#,

~4.3!

Am5Fh1
u l mu2

l2
@Uh1o~1!#,
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where um and vm are real-valued functions, iumiC21a(V̄) is bounded, and lm→0 as m→0. More-
over, if l.l~h!, there exists a constant c(l).0 such that, for all smallm,

c~l!u l mu21mi¹vmiL2~V!
2 <Cm1F12S am

a~h! D
2G . ~4.4!

Proof : Write e5Am andk5le. Let s5aAm5ae. The functionalG is written as

G@c,A#5E
V

$u¹aeAcu21~e2/2!~12ucu2!2%dx1a2l2e2E
R3

ucurlA2hu2 dx.

Rewrite ~1.5! as follows:

2¹aeA
2 c5e2~12ucu2!c in V,

ael2 curl2 A5I$c̄¹aeAc%xV in R3,
~4.5!

~¹aeAc!•n50, @n•A#50, @n3curlA#50 on ]V,

curlA→h as uxu→`.

Step 1. We shall show that there existsL.0 independent ofh such that

Hc~h,e2,le!>a~h!e2Le2. ~4.6!

We shall also look for an estimate for the energy of the minimal solutions@see~4.9! below#, which
is useful in the proof of~4.2!.

Step 1.1. Let a be fixed, 0,a,a(h). ThenAa , wa , ca , Ba , ua , va are well defined. Let us
choose a test field (fe,Ae) by

fe5ca@11 iaewa1a2e2~ua1 ibava!#, Ae5Aa1abaeBa ,

whereba is the number given in the beginning of this section. Computations show that

G@fe,Ae#<I ae21Mae41O~e5!,

where

I a5
uVu
2

~12ca
2!21a2$ca

2i¹wa2AaiL2~V!
2

1l2icurlAa2hiL2~R3!

2
%,

Ma5a4ca
2@ i¹uaiL2~V!

2
1iwaAaiL2~V!

2
#22a2ca

2~12ca
2!iwaiL2~V!

2

22a6ca
4uVu

@WVwaAa•~¹va2Ba!dx#2

122a2
WV~¹wa2Aa!•Ba dx

.

We claim that

I a,
uVu
2

if l>l~h! and 0,a,a~h!. ~4.7!

To prove~4.7!, we introduce

F~a,r!5
uVu
2

~12r!21a2Jr@wr,Ar#.
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Note thatI a5F(a,r(a)). When l>l~h!, 0,a,a(h), and 0,r,r(a), from Remark 3.8 we
have

]F

]r
~a,r!5uVu H r211a2

«V
u¹wr2Aru2 dxJ 5uVu@ f ~a,r!21#,0.

HenceI a5F(a,r(a)),F(a,0)5uVu/2, and~4.7! is true.
From ~4.7! we find that, for fixed 0,a,a(h), G@fe,Ae#,uVue2/2 for all smalle, and hence

the minimizers ofG are nontrivial.
Step 1.2. Next we assumea depends one,

a5a~h!2Le2, ~4.8!

whereL.0 is independent ofe. Then

12a2v~h!52LAv~h!e21O~e4!.

Case 1:l.l~h!. For the functionF(a,r) given above, we compute the one-side derivativ
and use~3.18!, ~3.28! to get

]F

]a
~a,r!52aJr@wr,Ap#,

]F

]r
~a,r!5uVu@ f ~a,r!21#,

]F

]a
~a~h!,01!50,

]F

]r
~a~h!,01!50,

]2F

]a2
~a~h!,01!50,

]2F

]a]r
~a~h!,01!52uVuAv~h!,

]2F

]r2
~a~h!,01!5uVuF12S l~h!

l D 2G .
From ~2.4! and ~3.24! we have

r~a!5
l2

l22l~h!2 S 12
a2

a~h!2D 1O~~a~h!2a!2!5
2l2Av~h!~a~h!2a!

l22l~h!2
1O~~a~h!2a!2!.

Using the Taylor expansion we find that, fora slightly less thata(h),

I a2
uVu
2

5F~a,r~a!!2F~a~h!,0!

5
uVu
2

r~a!H 4Av~h!~a2a~h!!1F12S l~h!

l D 2Gr~a!J 1o~~a~h!2a!21r~a!2!

52uVuAv~h!r~a!~a~h!2a!1o~~a~h!2a!2!.

Using this and~4.8!, and noting thatMa<M0ca
25M0r(a), we find

I a1Mae2<
uVu
2

2r~a!e2$uVuAv~h!L2M0%1o~e2!.

ChooseL so thatuVuAv(h)L.3M0. Then for all smalle.0 we have

G@fe,Ae#<
uVu
2

e22
uVu
2

Av~h!Lr~a!e4.
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So the minimizers ofG are nontrivial. Equation~4.6! is proved forl.l~h!.
Case 2:l5l~h!. From ~3.28! we have, for smallr.0,

Jp@wr,Ar#5v~h!uVur2
1

2
v~h!uVur21I¹v02

1

l~h!2
UhI

L2~V!

2

r31o~r3!.

From this,~3.25! and ~4.8!,

I a5
uVu
2

~12r~a!!21a2Jr~a!@wr~a!,Ar~a!#

5uVu H 1

2
2~12a2v~h!!r~a!1

r~a!2

2
~12a2v~h!!

1
a2v~h!r~a!

3
~12a2v~h!!J 1o~r~a!3!,

I a1Mae22
uVu
2

uVur~a!
<2~12a2v~h!!S 12

r~a!

2 D1
1

3
~12a2v~h!!1

M0

uVu
e21o~12a2v~h!!

52S 2

3
1o~1! D ~12a2v~h!!1

M0

uVu
e252S 4

3
LAv~h!2

M0

uVu
1o~1! D e2.

ChoosingL large we find

I a1Mae2<
uVu
2

2
uVu
2

LAv~h!r~a!e2.

ThusG@fe,Ae#,uVue2/2 for all smalle, and hence the minimizers are nontrivial. Equation~4.6!
is proved forl5l~h!.

Step 2. Proof of conclusion (ii):Fix a such that 0,a,a(h), and lets5ae. From step 1 we
know that ~4.5! has a nontrivial minimal solution (ce ,Ae) satisfying divAe50 in R3 and
*VAe dx50, and we have an energy upper bound for smalle.0:

C~h,e2,le,ae!<I ae21Mae41Ce5, ~4.9!

whereC is independent ofe. We shall show thatce andAe have expansions as described in~4.2!.
Step 2.1. Proof of the leading order terms:The energy estimate shows that$Ae% is bounded in

D1,2(R3,div), and¹ce→0 ase→0. Let ce5WVce dx. Up to a gauge transform, we may assum
that ce→c* as e→0. Computing the energyG@ce ,Ae# and comparing it with the energy uppe
bound given in~4.9!, we can show thatc* Þ0. HenceceÞ0 for all smalle, and thus we can write

ce5ce~11aec1,e!, E
V

c1,e dx50.

From ~4.5! we derive the equations for (c1,e ,Ae),

2Dc1,e12iaeAe•¹c1,e1aeuAeu2~11aec1,e!5
e

a
~12uce~11aec1,e!u2!~11aec1,e! in V,

l2 curl2 Ae5uceu2I$¹c1,e2 iAe1e@ac̄1,e~¹c1,e2 iAe!2 iac1,eAe#%xV in R3,
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]c1,e

]n
5 i ~11aec1,e!Ae•n on ]V.

The equations are understood in the weak sense. As in Lemma 3.3 we can sho
ic1,eiC21a(V̄)<C, iAeiC11a(V̄)<C, and$Ae% is bounded inCloc

21a(R3\]V). Thus we can pass to
a subsequence and assume that

c1,e→c* in C21a~V̄!, Ae→A* in Cloc
21a~R3\]V!ùC11a~V̄! as e→0,

and (c* ,A* ,c* ) satisfies the equations

Dc* 50 in V,

l2 curl2 A* 5uc* u2I$¹c* 2 iA* %xV in R3, A* 2FhPD1,2~R3,div!, ~4.10!

]c*

]n
5 iA* •n on ]V.

Note that*Vc* dx50. The uniqueness of the finite energy solutions of~4.10! implies thatc*
5 iw* for some real-valued functionw* .

Introducec2,e andA1,e by

c1,e5 iw* 1aec2,e , Ae5A* 1aeA1,e .

The equations for (c2,e ,A1,e) are

Dc2,e5uA* u222A* ¹w* 2
1

a2
~12uceu2!1pe in V,

l2curl2 A1,e5$be~¹w* 2A* !1uceu2I~¹c2,e2 iA2,e1qe!%xV in R3, ~4.11!

]c2,e

]n
5 iA1,e•n2w* A* •n1r e on ]V,

where

be5
uceu22uc* u2

ae
, ~4.12!

and we have

ipeiC11a~V̄!1iqeiC11a~V̄!1ir eiC11a~]V!<Ce@11ic2,eiC11a~V̄!1iA1,eiC11a~V̄!#5o~1!.

Using the equation forw* we have

E
]V

w* A* •n dS5E
]V

w*
]w*

]n
dS5E

V
div~w* ¹w* !dx5E

V
u¹w* u2 dx.

Integrating the first equation in~4.11! yields

E
V
H uA* u222A* •¹w* 2

1

a2
~12uceu2!1peJ dx5E

]V
$ iA1,e•n2w* A* •n1r e%dS.

Taking the real part of the equality we find
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12uceu25a2
«V

u¹w* 2A* u2 dx1o~1!.

Sendinge to zero we get

uc* u2512a2
«V

u¹w* 2A* u2 dx.

Comparing this and~4.10! with ~3.21! we find that

w* 5wa , A* 5Aa , uc* u5ca . ~4.13!

Step 2.2. Proof of the correction terms. We need
Claim 1: $be% is bounded.
The proof will be given in Appendix B. So we can pass to a subsequence and assum

lime→0 be5b. Now write

ce5ce~11 iaewa1a2e2c2,e!, Ae5Aa1aeA1,e . ~4.14!

Applying the elliptic estimates to~4.11!, we can pass to a subsequence again and assume t

c2,e→c25ua1bva in C21a~V̄!, A1,e→bBa in Cloc
11a~R3! as e→0. ~4.15!

In order to showb5ba , we compute the energy of (ce ,Ae),

G@ce ,Ae#5I ae21
e2

2
~ uceu22ca

2!2uVu22a3e3~ uceu22ca
2!E

V
~¹wa2Aa!•A1,e dx

1a4e4H uceu2iR~¹c2,e!iL2~V!
2

1uceu2iI~¹c2,e!2waAa2A1,eiL2~V!
2

1l2icurlA1,eiL2~R3!

2
2

2

a2
uceu2~12uceu2!iwaiL2~V!

2 J 1O~e5!

5I ae21a4b2e4H uVu

2a2
22E

V
~¹wa2Aa!•A1,e dx

1l2icurlA1,eiL2~R3!

2
1ca

2i¹va2BaiL2~V!
2 iJ

1a4ca
2e4H i¹uaiL2~V!

2
1iwaAaiL2~V!

2
22bE

V
waAa•~¹va2Ba!dxJ

22a2ca
2~12ca

2!e4iwaiL2~V!
2

1o~e4!

5I ae21a4b2e4H uVu

2a2
2E

V
~¹wa2Aa!•Ba dxJ

1a4ca
2e4H i¹uaiL2~V!

2
1iwaAaiL2~V!

2
22bE

V
waAa•~¹va2Ba!dxJ

22a2ca
2~12ca

2!e4iwaiL2~V!
2

1o~e4!

5I ae21a4e4~ab222bb!1ge41o~e4!
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5I ae21e4S g2
a4b2

a D1a4e4aS b2
b

a D 2

1o~e4!,

where

a5
uVu

2a2
2E

V
~¹wa2Aa!•Ba dx.0,

b5ca
2E

V
waAa•~¹va2Ba!dx,

g5a4ca
2@ i¹uaiL2~V!

2
1iwaAaiL2~V!

2
#22a2ca

2~12ca
2!iwaiL2~V!

2 .

Comparing it with the energy upper bound estimate~4.9! we find b5b/a5ba , hence

lim
e→0

uceu22ca
2

e
5aba .

From this,~4.14! and ~4.15!, we get the expansion formulas in~4.2!. Conclusion~ii ! is proved.
Moreover, we have

G@ce ,Ae#5I ae21e4S g2
a4b2

a D1o~e4!5I ae21Mae41o~e4!.

Step 3. We show that, ifl>l~h!,

Hc~h,e2,le!<a~h!e1o~e!. ~4.16!

Let us choose a sequence$ae% such thats5eae,Hc(h,e2,le), ae→a ase→0, where

a>a~h!. ~4.17!

So the functionalG has a nontrivial minimizer (fe ,Ae). We shall show that we must havea
5a(h). Then~4.16! follows. We shall also show that (fe ,Ae) has expansions as given in~4.3!.

Step 3.1. As in step 2, we have¹fe→0 ase→0. Let l e5WVfe dx. At moment we do not
know yet whetherl eÞ0, and hence we cannot writefe in the form l e(11aew1,e) as in step 2.
Instead, let us write

fe5 l e1eaemef1,e , where E
V

f1,e dx50, if1,eiL`~V!51, me.0. ~4.18!

From ~4.5! we get the following equations for (f1,e ,Ae):

2Df1,e12i eaeAe•¹f1,e1eaeuAeu2S l e

me
1eaef1,eD

5e~12u l e1eaemef1,eu2!S l e

aeme
1ef1,eD in V,

l2 curl2 Ae5meI$ l̄ e1eaemef̄1,e%F¹f1,e2 iAeS l e

me
1eaef1,eD GxV in R3, ~4.19!
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]f1,e

]n
5 i S l e

me
1eaef1,eDAe•n on ]V.

As in step 2 we find thatiAeiC11a(V̄) is bounded. Making gauge transforms and passing t
subsequence if necessary, we may assume that

l e→ l 0 , Ae→A* in Cloc
11a~R3! as e→0, A* 2FhPD1,2~R3,div!. ~4.20!

Step 3.2. We show thatl 050. We need the following conclusion.
Claim 2: $ l e /me% is bounded.
The proof of claim 2 will be given in Appendix B. From claim 2, passing to a subsequenc

may assume that

lim
e→0

l e

me
5b* . ~4.21!

Applying the elliptic estimate to~4.19! we may assume thatf1,e→f* in C21a(V̄) as e→0,
if* iL`(V)51, *Vf* dx50, and (f* ,A* ) satisfies

Df* 50 in V,

l2 curlA* 5u l 0u2I$¹f* 2 ib* A* %xV in R3, ~4.22!

]f*
]n

5 ib* A* •n on ]V.

Sincef* Ó0 we find thatb* Þ0. Let f* 5 ib* w* . Thenw* is a real-valued function.
Now we rewrite

fe5 l e~11 i eaew* 1e2ae
2f2,e!.

Thenef2,e→0 in C21a(V̄). From ~4.5! we derive the equation off2,e ,

Df2,e5uA* u222A* ¹w* 2
1

a2
~12u l 0u2!1 p̃e in V,

~4.23!
]f2,e

]n
5

i

eae
@Ae•n2A* •n#2w* A* •n1 r̃ e on ]V,

wherep̃e→0 in C21a(V̄) and r̃ e→0 in C11a(]V) ase→0. Integrating this equation, then takin
the real part, and using the fact that*]Vw* A* •n dS5*Vu¹w* u2 dx, we find

12 l 0
25a2

«V
u¹w* 2A* u2 dx. ~4.24!

Supposer5u l 0u2.0. From~4.22!, ~3.21! and Lemma 3.5 we find that (w* ,A* )5(wr,Ar),
and

f ~a,r!51, ~4.25!

where the functionf was defined in the proof of Lemma 3.5. However, sincel>l~h! and a
>a(h), ~4.25! holds only whena5a(h) andr50. This contradiction shows that we must ha
l 050.

Step 3.3. Pluggingl 050 into ~4.22! we find thatA* 5Fh andw* 5wh . From ~4.24! we find
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15a2
«V

u¹wh2Fhu2 dx5a2v~h!.

Hencea5a(h) andae5a(h)1o(1). So~4.17! and hence~4.16! are proved.
Write

Ae5Fh1u l eu2Be , c2,e5ue1 ive , ue and ve are real. ~4.26!

From ~4.5! and ~4.23! we have

Due5uFhu222Fh¹wh2
1

a2
1p1,e , Dve5p2,e in V,

l2 curl2 Be5~¹wh2Fh1q̃e!xV in R3,

]ue

]n
52whFh•n1r 1,e ,

]ve

]n
5

u l eu2

eae
Be•n1r 2,e on ]V.

Herep1,e , p2,e→0 in C21a(V̄), q̃e→0 in C11a(V̄), r 1,e , r 2,e→0 in C11a(]V) ase→0. We find
thatBe→B05(1/l2)Uh in Cloc

11a(R3), andiueiC21a(V̄) is bounded. Recall thatl e→0. So (fe ,Ae)
has the expansions given in~4.3!.

Step 3.4. Now assumel.l~h! and prove~4.4!. We shall use the energy estimate to obta
~4.4!. Note that*Vf2,e dx50, *V(¹wh2Fh)•¹f2,e dx50, and$¹ue% is bounded. As in step 2.2
we compute

G@fe ,Ae#5e2ae
2u l eu2H i¹wh2FhiL2~V!

2
22u l eu2E

V
~¹wh2Fh!•Be dx

22eaeu l eu2E
V

Be•I$¹f2,e%dx

1u l eu4iBeiL2~V!
2

1e2ae
2i¹f2,e1whFh1u l eu2whBeiL2~V!

2 J
1

e2

2
~12u l eu2!2uVu1e2ae

2l2u l eu4icurlBeiL2~R3!

2
1O~e4u l eu2!

5e2ae
2u l eu2H v~h!uVu1u l eu2Fl2icurlBeiL2~R3!

2
22E

V
~¹wh2Fh!•Be dxG

1ieae¹ve2u l eu2BeiL2~V!
2 J 1

e2

2
~12u l eu2!2uVu1O~e4u l eu2!

5
uVue2

2
1e2u l eu2H uVu@ae

2v~h!21#1ae
2u l eu2F uVu

2ae
2

1l2icurlBeiL2~R3!

2
22E

V
~¹wh2Fh!•Be dxG1ae

2ieae¹ve2u l eu2BeiL2~V!
2

1O~e2!J .

SinceG@fe ,Ae#,uVue2/2, from the above computations we find

uVu@ae
2v~h!21#1ae

2u l eu2F uVu

2ae
2

1l2icurlBeiL2~R3!

2
22E

V
~¹wh2Fh!•Be dxG

1ae
2ieae¹ve2u l eu2BeiL2~V!

2
5O~e2!.
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Sinceae→a5a(h) andBe→B05(1/l2)Uh weakly in D1,2(R3,div) ase→0, we have

uVu

2ae
2

1l2icurlBeiL2~R3!

2
22E

V
~¹wh2Fh!•Be dx

>
uVu

2a2
1l2icurlB0iL2~R3!

2
22E

V
~¹wh2Fh!•B0 dx1o~1!

5
uVuv~h!

2
2

1

l2
icurlUhiL2~R3!

2
1o~1!

5
uVuv~h!

2 S 12
l~h!2

l2 D 1o~1!.

Thus

ae
2v~h!211

1

2
ae

2u l eu2v~h!S 12
l~h!2

l2
1o~1!D 1

ae
2

uVu
ieae¹ve2u l eu2BeiL2~V!

2
5O~e2!.

Whenl.l~h!, we can find a constantc(l).0 such that

ae
2v~h!211c~l!u l eu21

ae
2

uVu
ieae¹ve2u l eu2BeiL2~V!

2
5O~e2!.

Thus

ae
2v~h!21

e2
1c~l!

u l eu2

e2
1i¹veiL2~V!

2 <C. ~4.27!

Equation~4.4! and hence conclusion~iii ! are proved.
Step 3.5. Proof of conclusion (i):Whenl5l~h!, the conclusion follows from~4.6! and~4.16!.

Whenl.l~h!, ~4.27! implies ae<a(h)1O(e2), from which we conclude

Hc~h,e2,le!<a~h!e1O~e3!. ~4.28!

From ~4.6! and ~4.28! we get conclusion~i!. h

We next consider the case wherek is fixed. To describe the minimal solutions we need t
vector fieldFh @see~1.6!#, the functionwh @see~2.3!#, and the functionch which is the unique
solution of the following equation:

2Dc52Fh•¹wh2uFhu21v~h! in V,
~4.29!

]c

]n
52whFh•n on ]V, E

V
c dx50.

Note thatch can be represented by

ch5
wh

2

2
1

1

2 «V
wh

2 dx1fh ,

wherefh satisfies

2Dfh5v~h!2uFh2¹whu2 in V,
~4.30!

]fh

]n
50 on ]V, E

V
fh dx50.
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Theorem 4.2:Let h be a unit vector andk.0 be fixed.

(i) As m→0,

Hc~h,m,k!5a~h!Am1O~m3/2!. ~4.31!

(ii) Assumes5aAm, where a is fixed and0,a,a(h). Let (cm ,Am) be a minimal solution
of (1.5). Then we have, asm→0,

cm5cm@11 iaAmwh1a2mch1O~m3/2!#,

Am5Fh1
mucmu2

k2
Uh1O~m3/2!, ~4.32!

ucmu5A12S a

a~h! D
2

1O~Am!.

(iii) Assumes5amAm,Hc(h,m,k), where am→a(h) asm→0. The minimizer(cm ,Am) has
the expansions

cm5 l m~11 iamAmwh1mvm!,

Am5Fh1
mu l mu2

k2
Uh1O~m3/2u l mu2!, ~4.33!

u l mu21m«V u¹vmu2 dx<Cm12F12S am

a~h! D
2G .

Proof: Write e5Am ands5aAm5ae. Then

G@c,A#5E
V
H u¹aeAcu21

e2

2
~12ucu2!2J dx1a2k2E

R3
ucurlA2hu2 dx,

and ~1.5! is written as

2¹aeA
2 c5e2~12ucu2!c in V,

curl2 A5
e

ak2
I$c̄¹aeAc%xV in R3,

~4.34!
~¹aeAc!•n50, @n•A#50, @n3curlA#50 on ]V,

curlA→h as uxu→`.

Step 1. We show that there existsL.0 independent ofh such that

Hc~h,e2,k!>a~h!e2Le2. ~4.35!

Let ae5a(h)2Le2, and choose a test field (fe,Ae) by

fe5c~e!~11 iaeewh1ae
2e2ch!,

Ae5Fh1
e2uc~e!u2

k2
Uh,

uc~e!u5A12ae
2v~h!.
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Computations show that

G@fe,Ae#5e2uVuF1

2
~12uc~e!u2!21ae

2v~h!uc~e!u2G1O~e4!

5
e2uVu

2
@12~12ae

2v~h!!2#1O~e4!.

ChooseL sufficiently large and we findC(h,e2,k,aee)<G@fe,Ae#,uVue2/2 for smalle. So the
minimizers are nontrivial. Therefore~4.35! holds.

Step 2. Proof of conclusion (ii):Fix a such that

0,a,a~h!. ~4.36!

Let s5ae. From step 1 we know that~4.34! has a nontrivial minimal solution (ce ,Ae) satisfying
div Ae50 in R3, *VAe dx50, and for smalle.0 we have

G@ce ,Ae#5C~h,e2,k,ae!<
e2uVu

2
@12~12a2v~h!!2#1O~e4!. ~4.37!

We shall show thatce andAe have expansions as described in~4.32!.
Step 2.1. Proof of the leading terms:The energy estimate~4.37! yields

Ae→Fh strongly in D1,2~R3! and ¹ce→0 in L2~V! as e→0.

Recall thatuceu<1. Replacingce becee
ic(e) if necessary, we may assume that, for some cons

c0 , ce→c0 in W1,2(V) ase→0.
SetA1,e5(1/e)(Ae2Fh). We claim that

A1,e→0 in Cloc
11a~R3! and weakly in D1,2~R3! as e→0. ~4.38!

To prove~4.38!, note thatA1,e is a weak solution of

curl2 A1,e5f0,e and divA1,e50 in R3,

where f0,e5(1/ak2)I$c̄e¹aeAe
ce%xV . Since i f0,eiL2(R3)→0 as e→0 and $A1,e% is bounded in

D1,2(R3,div), as in the proof of Lemma 3.3 we can show that,$A1,e% is bounded inCloc
11a(R3).

Passing to a subsequence we haveA1,e→A1 in Cloc
11a(R3) and weakly inD1,2(R3) ase→0, andA1

satisfies

DA150, A1PD1,2~R3,div!, E
V

A1 dx50.

Since the only harmonic functions onR3 with their gradients inL2(R3) are constant, we mus
haveA150. Thus~4.38! is true.

Now we use~4.38! to compute the energyG@ce ,Ae#, and compare it with the energy uppe
bound~4.37! to conclude thatc0Þ0. Let ce5WVce dx. ce→c0 as e→0, and thusceÞ0 for all
small e. So we can write

ce5ce~11aec1,e!, where E
V

c1,e dx50.

From the first equation in~4.34! we find an equation forc1,e ,
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2Dc1,e12iaeAe•¹c1,e1aeuAeu2~11aec1,e!5e~12uceu2u11aec1,eu2!~11aec1,e! in V,
~4.39!

]c1,e

]n
5 i ~11aec1,e!Ae•n on ]V.

Applying the elliptic estimate to~4.39!, we can pass to a subsequence and findc1,e→c1 in
C21a(V̄) ase→0, wherec1 satisfies

Dc150 in V,
]c1

]n
5 iFh•n on ]V, E

V
c1 dx50.

Thusc15 iwh . Soc1,e→ iwh in C21a(V̄) ase→0.
Step 2.2. Proof of the correction terms:Write c1,e5 iwh1ec2,e , A1,e5(e/k2)uceu2A2,e . Then

ce5ce~11 iaewh1ae2c2,e!, Ae5Fh1
e2

k2
uceu2A2,e . ~4.40!

We can show

iA2,e2UhiL`~R3!<Ce,

ic2,e2achiC21a~V̄!<Ce, ~4.41!

uceu2512a2v~h!1O~e!.

Then~4.32! follows. The proof of~4.41! is lengthy and is in the same sprint as in step 2.2 of
proof of Theorem 4.1, and hence will be given in Appendix C. From~4.41! we get conclusion~ii !.

Step 3. Proof of conclusions (i) and (iii):We first show that

Hc~h,e2,k!<a~h!e1o~e!. ~4.42!

Let us choose a sequence$ae% such thats5eae,Hc(h,e2,k) and ae→a as e→0, wherea
>a(h). So the functionalG has a nontrivial minimizer (fe ,Ae). We shall show thata5a(h).
The proof is similar to step 3 in the proof of Theorem 4.1.

First we show thatfe→0 in C21a(V̄) andAe→Fh in Cloc
11a(R3) ase→0. Write

fe5 l e1emef1,e , Ae5Fh1eA1,e ,

wherel e andme are constants,

l e→0 as e→0, me.0, E
V

f1,e dx50, if1,eiL`~V!51. ~4.43!

As in step 2 we can show thatA1,e→0 in Cloc
11a(R3) ase→0.

We claim that

U l e

meU<C. ~4.44!

The proof of~4.44! will be given in Appendix C. From~4.44! and passing to a subsequence
necessary, we may assume lime→0( l e/me)5b. From ~4.34! we get an equation off1,e ,
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2Df1,e12i eae~Fh1eA1,e!•¹f1,e1ae
2euFh1eA1,eu2S l e

me
1ef1,eD

5e~12u l e1emef1,eu2!S l e

me
1ef1,eD in V,

~4.45!

]f1,e

]n
5 iaeS l e

me
1ef1,eD ~Fh1eA1,e!•n on ]V.

Using~4.44! and applying the elliptic estimate to~4.55! we know that$f1,e% is uniformly bounded
in C21a(V̄). Passing to a subsequence again we may assume thatf1,e→f1 in C21a(V̄) ase→0,
if1iL`(V)51, *Vf1 dx50, andf1 satisfies

Df50 in V,
]f

]n
5 iabFh•n on ]V.

Thereforef15 iabwh , which impliesbÞ0 sincef1Ó0. So we have

me5
l e

b
1o~ l e! and f1,e2 iaebwh→0 in C21a~V̄! as e→0.

Thus we can write

fe5 l e~11 i eaewh1e2ve!, Ae5Fh1e2Be , ~4.46!

whereve satisfies*Vve dx50 andeiveiC21a(V̄)5o(1). We canapply the elliptic estimate to the
equation ofBe to show that$Be% is bounded inC11a(V̄). Using this and~4.46! we compute

E
V

u¹eaeAe
feu2 dx5ae

2e2u l eu2H E
V
F u¹wh2Fhu21ae

2e2uwhFhu21
e2

ae
2

u¹ve1O~1!u2Gdx

1
2e

ae
IE

V
~¹wh2Fh1 i eaewhFh!•¹ve dx1O~e2!J .

Note that*V(¹wh2Fh)•¹ve dx50. We use Cauchy inequality to control the last term on
right-hand side~see step C2 in Appendix C for a similar computation! and get

E
V

u¹eaeAe
feu2 dx>ae

2e2u l eu2E
V
H U¹wh2FhU21

e2

2ae
2 U¹veU2J dx2Ce4u l eu2.

On the other hand, since

~ ufeu221!25~12u l eu2!224e3u l eu2~12u l eu2!R~ve!1O~e2u l eu2!

and*Vve dx50, we find

E
V

~ ufeu221!2 dx5~12u l eu2!2uVu1O~e2u l eu2!.

Thus
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e2

2
uVu>G@fe ,Ae#

>E
V
H U¹eaeAe

feu21
e2

2
~ ufeu221!2J dx

>ae
2e2u l eu2E

V
H u¹wh2Fhu21

e2

2ae
2

u¹veu2J dx1
e2

2
~12u l eu2!2uVu2Ce4u l eu2.

From these inequalities we find

ae
2v~h!211

u l eu2

2
1

e2

2 «V
u¹veu2 dx<Ce2.

Comparing this with the conditiona>a(h) we find a5a(h). So ~4.42! is proved.
Moreover, from the above inequality we get

«V
u¹veu21

u l eu2

e2
<2C12v~h!

a22ae
2

e2
. ~4.47!

On the other hand, we can show that

Ae5Fh1
e2

k2
u l eu2Uh1O~e3u l eu2!, ~4.48!

see step C2 in Appendix C for more details of the argument. From~4.46!, ~4.47!, and~4.48! we get
~4.33!. Conclusion~iii ! is proved.

Plugginga5a(h) into ~4.47! we also getae<a(h)A11Ce2, which implies that, the func-
tional G has nontrivial minimizers only if

usu<a~h!e1Me3.

We can show thatM can be chosen independent ofh. Thus we find

Hc~h,e2,k!<a~h!e1Me3.

This and~4.35! together give~4.31!. Conclusion~i! is proved. h

Proof of Theorems 1 and 2:Theorem 2 is a direct consequence of Theorems 4.1 and 4.2
obtain Theorem 1 we need to show that the estimate~1.8! holds uniformly for allk>l(h)Am.
Note that Theorem 3.2 gives a lower bound forHc(h,m,k) uniformly for all k.0. Also note that
the functionalG is increasing ink and henceHc(h,m,k) is decreasing ink. Thus the first
conclusion of Theorem 4.1 gives a uniform upper bound ofHc(h,m,k) for all k>l(h)Am. h

Note added in proof:During proofreading we learned from Professor B. Helffer that, the re
of Lemma 2.1 can also be proved and improved by using the Kato’s perturbation theory, s
Kato, Perturbation Theory of Linear Operators~Springer-Verlag, New York, 1966!. For super-
conductivity in one dimensional slabs, various limiting casesk→0 or size to the film tending to
zero have been analyzed by C. Bolley and B. Helffer in their papers: Rigorous resul
Ginzburg-Landau models in a film submitted to an exterior parallel magnetic field, I, II, Nonli
Stud.3, 1–29, 121–152~1996!. We would like to thank Professor Helffer for giving the inform
tion.
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APPENDIX A: PROOF OF LEMMA 2.1

Without loss of generality we may assume thath5~0,0,1! and chooseFh5(0,x3,0). For
convenience, we writem(e)5m(eFh). From the variational characteristic of the lowest eige
value,

m~e!5 inf
fPW1,2~V!

*Vu¹eFh
fu2 dx

*Vufu2 dx
.

Taking a test functionf511 i ewh , wherewh is the solution of~2.3!, we have

m~e!<
*Vu¹eFh

fu2 dx

*Vufu2 dx
5e2

*V~ u¹wh2Fhu21e2uwhFhu2!dx

*V~11e2uwhu2!dx
5v~h!e21O~e4!.

So we can writem(e)5e2le , where$le% is bounded. Passing to a subsequence if necessary
may assume that lime20 le5l0 . We shall prove thatl05v(h).

Let fe be a normalized eigenfunction of~2.1!, ifeiL`(V)51. From the elliptic estimate we
have ifeiC21a(V)<C(a) for all small e. After passing to a subsequence we havefe→f0 in
C21a(V) ase→0, if0iL`(V)51, Df050 in V and]f0 /]n50 on ]V. Thusf0[constant. We
may assumef051. Sofe→1 in C21a(V) ase→0.

Let us write

ae5«V
fe dx, ce5fe2ae .

Using ~2.1! we find

Dce22i ex3]x2
ce2e2x3

2ce1e2lece5e2ae~x3
22le! in V,

]ce

]n
2 i eFh•nce5 i eaeFh•n on ]V.

Recall thati¹eFh
feiL2(V)

2
5e2leifeiL2(V)

2 . We have

iceiL2~V!5ife2aeiL2~V!

<Ci¹feiL2~V!

5Ci¹eFh
fe1 i eFhfeiL2~V!

<Ci¹eFh
feiL2~V!1CeiFhfeiL2~V!

<Ce.

We apply the elliptic estimate to geticeiWk.2(V)<C(k)e, and then use the Sobolev imbeddin
theorem to findiceiL`(V)<Ce. Let

f1
e5

ce

e
5

fe2ae

e
.

We haveif1
e iL`(V)<C, *Vf1

e dx50, and

Df1
e22i ex3]x2

f1
e2e2x3

2f1
e1e2lef1

e5eae~x3
22le! in V,

~A1!
]f1

e

]n
2 i eFh•nf1

e5 iaeFh•n on ]V.
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Applying the elliptic estimate we findif1
e iC21a(V)<C(a). After passing to a subsequence w

havef1
e→f1 in C21a(V) ase→0. *Vf1 dx50, Df150 in V and]f1 /]n5 iFh•n on ]V. Let

f15 iw, thenw solves~2.3!. Thusf15 iwh .
Let us write

f1
e5 ibewh1ef2

e , be52 i
*Vwhf1

e dx

*Vuwhu2 dx
.

Note that*Vwhf2
e dx50. Since*Vf1

e dx50 and*Vwh dx50, we have*Vf2
e dx50. From~A1!

we find

Df2
e22i ex3]x2

f2
e2e2x3

2f2
e1e2lef2

e5 f e in V,

~A2!
]f2

e

]n
2 i eFh•nf2

e5~ ide2bewh!Fh•n on ]V,

where

f e522bex3]x2
wh1 i ebewh~x3

22le!1ae~x3
22le!, de5

ae2be

e
.

Sincef1
e→ iwh in C21a(V), we havebe→1 ase→0. Recall that we have chosen a subseque

such thatle→l0 . Thus f e→22x3]x2
wh1x3

22l0 uniformly ase→0.
Now we show that

udeu<C for all small e. ~A3!

Suppose~A3! were not true. Passing to a subsequence we may assume thatde→`. Let je

5f2
e /de . Then we have

E
V

je dx50, E
V

whje dx50. ~A4!

From ~A2! we have

2¹eFh

2 je2e2leje52
f e

de
in V,

¹eFh
je•n5S i 2

be

de
whDFh•n on ]V.

Case 1:ijeiL2(V)<C for all small e. Applying the elliptic estimate we find thatijeiWk.2(V)

<C(k) and ijeiC21a(V)<C(a). So we can find a subsequence, still denoted byje , such that
je→j0 in C21a(V) as e→0. *Vj0 dx50, Dj050 in V and ]j0 /]n5 iFh•n on ]V. Hencej0

5 iwh . But this is impossible since, from the second equality of~A4!, we have*Vwhj0 dx50. So
case 1 cannot happen.

Case 2: ijeiL2(V) is not bounded. Passing to a subsequence we may assume thce

5ijeiL2(V)→`. Let j̃ e5je /ce . Then j̃ e satisfies the following equation:

2¹eFh

2 j̃ e2e2lej̃e52
f e

cede
in V,
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¹eFh
j̃ e•n5S i

ce
2

be

cede
whDFh•n on ]V.

Again we can find a subsequence, still denoted byj̃ e , such thatj̃ e→ j̃0 in C21a(V), i j̃0iL2(V)

51, *Vj̃0 dx50, Dj̃050 in V and]j̃0 /]n50 on]V. Thusj̃050. This contradicts the condition
i j̃0iL2(V)51. Case 2 cannot happen.

We have proved that~A3! is true. We may assume that lime→0 de5d0 . Now we return to
~A2!. Repeating the argument used in case 2, we can show thatif2

e iL2(V)<C. Then we apply the
elliptic estimate to show thatif2

e iC21a(V) is bounded. Thus we can find a subsequence,
denoted byf2

e , such thatf2
e→f2 in C21a(V) ase→0. f2 satisfies

2Df252x3]x2
wh2x3

21l0 in V,

~A5!
]f2

]n
5~ id02wh!Fh•n on ]V.

Integrating the equation we find

l0uVu5E
V

$x3
222x3]x2

wh2Df2%dx

5E
V

x3
2 dx2E

]V
H 2x3whe2•n1

]f2

]n J dS

5E
V

uFhu2 dx2E
]V

~wh1 id0!Fh•n ds

5E
V

uFhu2 dx2E
]V

whFh•n dS

5E
V

~ uFhu22u¹whu2!dx

5v~h!uVu.

Thusl05v(h), namely,le→v(h) ase→0.
Furthermore, following the same spirit we can examine the higher order terms and sho

le2v(h)5O(e). Thus we have proved that, ase→0,

m~e!5v~h!e21O~e3!, fe5ae1 i ebewh1e2f21o~e2!, ~A6!

whereae→1, be→1, wh is the unique real solution of~2.3!, andf2 is a solution of~A5!. Thus
~2.5! and ~2.6! are proved. h

APPENDIX B: PROOF OF CLAIMS 1 AND 2

In this section we keep the notations in the proof of Theorem 4.1.
Proof of claim 1: Step B1. We first show the following
Subclaim 1:If the condition lime20ubeu51` holds, then there exists a constantC indepen-

dent ofe such that, for all smalle,

ic2,eiL`~V!<Cubeu. ~B1!

Suppose~B1! were not true. We pass to a subsequence if necessary and assume that
                                                                                                                



-

2672 J. Math. Phys., Vol. 44, No. 6, June 2003 Xing-Bin Pan

                    
de5
ic2,eiL`~V!

ubeu
→` as e→0.

Set

fe5
ce

bede
, De5

A1,e

bede
.

(fe ,De) satisfies

Dfe5OS 1

bede
D in V,

l2 curl2 De5H 1

de
~¹wa2Aa!1uceu2IS ¹fe2 iDe1

qe

bede
D J xV in R3,

]fe

]n
5 iD1,e•n2

1

bede
waAa•n1OS r e

bede
D on ]V.

Recall that*Vfe dx50, *VDe dx50, andDePD1.2(R3,div). From the second equation we get

l2E
R3

ucurlDeu2 dx1uceu2E
V

u¹fe2 iDeu2 dx5E
V
H 1

de
~¹wa2Aa!•De1

uceu2

bede
qe"DeJ dx.

Thus we can pass to a subsequence again and assume thatfe→f in C21a(V̄) and De→D in
Cloc

11a(R3) ase→0, DPD1,2(R3,div), *Vf dx50, ifiL`(V)51, and~f,D! satisfies

Df50 in V,

l2 curl2 D5ca
2I$¹f2 iD%xV in R3, ~B2!

]f

]n
5 iD•n on ]V.

From the proof of Lemma 3.4 we know that the only finite energy solution of~B2! is f5constant
andD5constant vector. The condition*Vf dx50 implies thatf50, which contradicts the con
dition ifiL`(V)51. Hence~B1! is true.

Step B2. Now we show that$be% is bounded. Suppose not. We may assume that lime→0ubeu
5`. Let

we5
c1,e

be
, Be5

A1,e

be
.

Then (we ,Be) satisfies

Dwe5OS 1

be
D in V,

l2 curl2 Be5H ~¹wa2Aa!1uceu2IS ¹we2 iBe1
qe

be
D J xV in R3,

]we

]n
5 iB1,e•n2

1

be
waAa•n1OS r e

be
D on ]V.
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Using subclaim 1, we can pass to a subsequence and assume thatwe→w in C21a(V̄) and Be

→B in Cloc
11a(R3) ase→0, BPD1,2(R3,div), *Vw dx50, and~w,B! satisfies

Dw50 in V,

l2 curl2 B5$¹wa2Aa1ca
2I~¹w2 iB!%xV in R3,

]w

]n
5 iB•n2waAa•n on ]V.

Comparing this with~3.22! and ~4.1! we find that

w5ua1 iva , B5Ba .

Next, to derive a contradiction we compute the energyG@ce ,Ae#. Write

ce5ce~11 iaewa1a2e2bewe!, Ae5Aa1aebeBe .

Under the condition lime→0ubeu5` we have,

G@ce ,Ae#5~ I 1,e1I 2,e1I 3,e!e
2,

where

I 1,e5a2uceu2i¹wa2AaiL2~V!
2

1a2l2icurlAa2hiL2~R3!

2
1

uVu
2

~12uceu2!2,

I 2,e52a2ebeH l2E
R3

~curlAa2h!•curlBe dx2uceu2E
V

~¹wa2Aa!•Be dxJ ,

I 3,e5a4e2be
2$uceu2i¹we2 iBeiL2~V!

2
1l2icurlBeiL2~R3!

2
%

2a2e2uceu2~12uceu2!iwaiL2~V!
2

1O~e2be!.

Using the last equality in~3.21! we find

I 1,e5I a1
uVu
2

~ uceu22ca
2!2,

whereI a was given in step 1.1 of the proof of Theorem 4.1. Using~3.22! we find

I 2,e52a3ebe~ca
22uceu2!E

V
~¹wa2Aa!•Be dx

522a2~ uceu22ca
2!2H E

V
~¹wa2Aa!•Ba dx1o~1!J .

We have assumedubeu→`, hence (uceu22ca
2)2@e2. Using ~3.22! we have

I 3,e5a2~ uceu22ca
2!2$l2icurlBaiL2~R3!

2
1ca

2i¹va2BaiL2~V!
2

1o~1!%

5a2~ uceu22ca
2!2H E

V
~¹wa2Aa!•Ba dx1o~1!J .

From these and~3.23!, we can find a positive constantC such that
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G@ce ,Ae#

e2
2I a5a2~ uceu22ca

2!2H uVu

2a2
2E

V
~¹wa2Aa!•Ba dx1o~1!J .C~ uceu22ca

2!2@e2,

which contradicts~4.9!. Thus$be% is bounded. h

Proof of claim 2: Suppose$ l e /me% were not bounded. Passing to a subsequence we
assumeme!u l eu. Then we use~4.18! to get

G@fe ,Ae#5e2H ae
2u l eu2iAe2¹zeiL2~V!

2
1ae

2l2icurlAe2hiL2~R3!

2
1

uVu
2

~12u l eu2!21o~eu l eu2!J ,

~B3!

whereze52( ime / l e)f1,e .
Case 1: l0Þ0. Sinceae→a ase→0, from ~B3! we have

G@fe ,Ae#5e2H a2l 0
2iAe2¹zeiL2~V!

2
1a2l2icurlAe2hiL2~R3!

2
1

uVu
2

~12 l 0
2!21o~1!J .

On the other hand, if we letr5 l 0
2 and choose a test field~c,A!, wherec5 l 0(11eaew

r) and
A5Ar, we find an energy upper bound

G@c,A#5e2H a2l 0
2iAr2¹wriL2~V!

2
1a2l2icurlAr2hiL2~R3!

2
1

uVu
2

~12 l 0
2!21o~1!J .

Since (fe ,Ae) is a minimizer, we haveG@fe ,Ae#<G@c,A#, from which we derive

Jr@ze ,Ae#5 l 0
2iAe2¹zeiL2~V!

2
1l2icurlAe2hiL2~R3!

2

< l 0
2iAr2¹wriL2~V!

2
1l2icurlAr2hiL2~R3!

2
1o~1!

5Jr@wr,Ar#1o~1!.

Thus $(ze ,Ae)% is a minimizing sequence of the functionalJr , hence contains a subsequen
which converges to the minimizer (wr,Ar). However,uzeu5u(me / l e)f1,eu→0 ase→0. This con-
tradiction shows that case 1 cannot happen.

Case 2: l050. Thenl e→0 andizeiL`(V)→0 ase→0. SinceG@fe ,Ae#<uVue2/2, we have

ae
2u l eu2iAe2¹zeiL2~V!

2
1ae

2l2icurlAe2hiL2~R3!

2
1

uVu
2

~12u l eu2!21o~eu l eu2!<
uVu
2

,

so

ae
2iAe2¹zeiL2~V!

2
1

ae
2l2

u l eu2
icurlAe2hiL2~R3!

2
<uVu2

uVu
2

u l eu21o~e!. ~B4!

Especially we haveicurlAe2hiL2(R3)
2

<Cu l eu2→0. ThusAe→Fh in L2(V) as e→0. Plugging it
back to~B4! and using the minimality ofwh , we have

a2iFh2¹whiL2~V!
2 <a2iFh2¹zeiL2~V!<uVu1o~1!.

Hence a2iFh2¹whiL2(V)
2 <uVu. From this and~4.17! we conclude thata5a(h), and ¹ze

→¹wh ase→0. Then we apply the elliptic estimate to the equation ofze @which can be derived
from ~4.19!#, and use the condition*Vze dx50 to conclude thatze→wh ase→0, which contra-
dicts the factizeiL`(V)→0 ase→0. Case 2 cannot happen. Now claim 2 is proved. h
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APPENDIX C: PROOF OF „4.41… AND „4.44…

In this section we keep the notations in the proof of Theorem 4.2.
Proof of (4.41): Step C1. Using ~4.40! we compute

¹aeAe
ce5aeceF i ~¹wh2Fh!1e~¹c2,e1awhFh!2 i e2S ac2,eFh1

uceu2

k2
A2,eD

1ae3
uceu2

k2
A2,e~ iwh2ec2,e!G . ~C1!

From step 2.1 of the proof of Theorem 4.2 we haveec2,e→0 in C21a(V̄) and eA2,e→0 in
C11a(V̄) ase→0. So we can write

I$c̄e¹aeAe
ce%5aeuceu2~¹wh2Fh1eI$¹c2,e%1eq̂e!,

wherei q̂eiC11a(V̄)<C for someC independent ofe. A2,ePD1,2(R3,div) and satisfies the equatio

curl2 A2,e5~¹wh2Fh1eI$¹c2,e%1eq̂e!xV in R3,

and*VA2,e dx50. Let

Be5A2,e2Uh, f1,e5e~I$¹c2,e%1q̂e!xV .

Then*VBe dx50, and

curl2 Be5f1,e in R3. ~C2!

As e→0 we haveec2,e→0 in C21a(V̄) and hencei f1,eiC11a(V̄)→0. Althoughf1,e depends onA2,e

and hence depends onBe , we treat it as a given vector field, and treatBe as a solution of a linear
system. Recall thatBePD1,2(R3,div), and henceBe is a finite energy solution of~C2!. Write ~C2!
as

2DBe5f1,e in R3. ~C3!

Using Newton potential we can show that~C3! has a finite energy solutionue which decays to0
as uxu→`, and

iueiL`~R3!<C8i feiL`~R3!5C8eiI$¹c2,e%1q̂eiL`~V! ,

whereC8 is independent ofe. On the other hand, as in the proof of Lemma 3.4 we can show
up to an additive constant vector,Be is the only solution of~C3! in D1,2(R3,div). ThereforeBe

5ue2ce , wherece5WVue dx. Hence we conclude that

A2,e5Uh1Be , iBeiL`~R3!<CeiI$¹c2,e%1q̂eiL`~V! , ~C4!

whereC is independent ofe.
Step C2. Now we use the energy estimate to show that

uceu2512a2v~h!1O~e!, E
V

u¹c2,eu2 dx<C. ~C5!

Note that at moment we do not know yet whetherc2,e is bounded inW1,2(V), but we know that
ec2,e→0 in C21a(V̄) ase→0. Using~C1! and ~C4! we find
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E
V

u¹aeAe
ceu2 dx5a2e2uceu2E

V
$u¹wh2Fhu21e2u¹c2,e1awhFh2 iaec2,eFh1O~e!u2

12e~¹wh2Fh!•I@¹c2,e1awhFh2 iaec2,eFh1O~e!#%dx.

Recall that

E
V

~¹wh2Fh!•¹c2,e dx50.

Note that we always have

E
V

$u¹c2,e1awhFh2 iaec2,eFh1O~e!u212a~¹wh2Fh!•I@2 ic2,eFh1O~1!#%dx

>
1

2 EV
u¹c2,eu2 dx2C, ~C6!

whereC is independent ofe. In fact, since*Vc1,e dx50, ~C6! is obviously true whenic2,eiL2(V)

is uniformly bounded. Ific2,eiL2(V)→`, we have

E
V

u¹c2,e1awhFh2 iaec2,eFh1O~e!u2 dx5~11o~1!!E
V

u¹c2,eu2 dx>CE
V

uc2,eu2 dx

@4aE
V

u~¹wh2Fh!•I@ ic2,eFh1O~1!#udx.

So ~C6! is true. Using~C6! we find

E
V

u¹aeAe
ceu2 dx>a2e2uceu2H v~h!uVu1

e2

2 E
V

u¹c2,eu2 dx2Ce2J . ~C7!

From ~4.40! we have

uceu25uceu2~11a2e2ge!,

where

ge5wh
21

2

a
R~c2,e!12ewhI~c2,e!1e2uc2,eu2.

So

E
V

~ uceu221!2 dx5~ uceu221!2uVu12a2e2uceu2~ uceu221!E
V

ge dx1a4e4uceu4E
V

ge
2 dx.

*Vge dx5O(1) since*Vc2,e dx50, ande2ge
25o(1) sinceec2,e5o(1). So

E
V

~ uceu221!2 dx5~ uceu221!2uVu1O~e2!. ~C8!

From ~C7! and ~C8! we get
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E
V
H u¹aeAe

ceu21
e2

2
~ uceu221!2J dx

>
e2uVu

2 H2a2uceu2v~h!1e2
«V

u¹c2,eu2 dx1~ uceu221!22Ce2J .

Comparing this with~4.37! we find

a2uceu2v~h!1
1

2
~ uceu221!21

e2

2 «V
u¹c2,eu2 dx<a2v~h!2

1

2
a4v~h!21Ce2.

Thus

@ uceu2211a2v~h!#21e2
«V

u¹c2,eu2 dx<Ce2.

~C5! is proved.
Step C3. Pluggingc1,e5 iwh1ec2,e into ~4.39! we find

2Dc2,e12ia~Fh1eA1,e!•~ i¹wh1e¹c2,e!1auFh1eA1,eu2~11 iaewh1ae2c2,e!

5~12uce
2uu11ae~ iwh1ec2,e!u2!S 1

a
1 i ewh1e2c2,eD in V,

~C9!

]c2,e

]n
52awhFh•n1 i e@ac2,eFh•n1~11ae~ iwh1ec2,e!!A1,e•n# on ]V.

Recall thatiA1,eiC11a(V)5O(e) and*Vc2,e dx50. Using~C5! and applying the elliptic estimate
to ~C9! we see that$c2,e% is bounded inC21a(V̄). Passing to a subsequence we find thatc2,e

→c2 in C21a(V̄) ase→0, andc2 satisfies

2Dc222aFh•¹wh1auFhu25av~h! in V,

]c2

]n
52awhFh•n on ]V.

Moreover *Vc2 dx50. Comparing this equation with~4.29! we find thatc25ach . Since the
limit is independent of the choice of subsequences, we must havec2,e→ach in C21a(V̄) ase→0.
From this and~C4! we find iBeiL`(R3)<Ce. This verifies the first inequality in~4.41!. Using this,
and applying the elliptic estimate to the equation ofc2,e2ach derived from~C9!, we get the
second inequality in~4.41!. The third inequality in~4.41! has been proved in~C5!. h

Proof of (4.44): Suppose~4.44! were not true. Passing to a subsequence we assumme

!u l eu. Let

ze52
ime

ael
e
f1,e .

SinceuA1,eu5o(e) andme/ l e5o(1), wehave
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e2

2
uVu>G@fe ,Ae#>E

V
H u¹eaeAe

feu21
e2

2
~12ufeu2!2J dx

5e2H ae
2u l eu2E

V
uFh2¹zeu2 dx1

1

2
~12u l eu2!2uVu1o~eu l eu2!J

5e2uVu H 1

2
1ae

2u l eu2«V uFh2¹zeu2 dx2u l eu21
1

2
u l eu41o~eu l eu2!J .

Therefore

ae
2
«V

uFh2¹zeu2 dx<11o~e!.

From ~4.17!, ae>a(h)1o(1). So we find

«V
uFh2¹zeu2 dx<v~h!1o~1!.

It implies that$ze% is a minimizing sequence ofv~h!. Note that*Vze dx50. We can pass to a
subsequence and assume thatze→wh weakly in W1,2(V) and strongly inL2(V) ase→0. How-
ever, using~4.43! we find

izeiL2~V!5 I me

ael
e f1,eI

L2~V!

→0 as e→0.

This contradiction shows that~4.44! is true. h
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Tensor operators and constructing indecomposable
representations of semidirect product groups
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Consider a semidirect product groupG5H›V, whereH is reductive andV is a
vector group. Two irrepsp1 andp2 of H can be ‘‘assembled’’ into a representation
of G if it is possible to construct an indecomposable representationP of G whose
restriction toH is p1% p2 . It is shown that this is equivalent to the existence of a
tensor operator fromp2 to p1 carrying a representation ofH which is equivalent to
a nontrivial quotient of the representation which defines the semidirect product.
This provides a systematic method for deciding whether two irreps can be as-
sembled, and, if so, in how many inequivalent ways. The method is applied in
many of the standard examples that arise in physical questions. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1571659#

I. INTRODUCTION

Cantoni1 considered semidirect product groupsG5H›V, whereH is reductive andV is
Abelian. Supposep1 andp2 are finite-dimensional irreps ofH. He asked whether it is possible t
‘‘assemble’’ them into an indecomposable representation ofG, that is, to construct an indecom
posable representationP of G whose restriction toH is p1% p2 . By explicit calculation, he
answered this question in a number of cases.

In the present work, we consider the special case in whichV is a vector group, a case whic
includes many groups that are important in physics. From Proposition 3.1 below, it follows
any finite-dimensional irreducible representation ofG is obtained by taking an irrep ofH and
extending it toG by letting V act trivially. The interest in indecomposable representations of
sort described above is that they show how the action of the Abelian subgroupV can couple
different irreps of the reductive subgroupH.

After some preliminaries about the structure of an ‘‘assembled’’ representation, we show
the construction of such a representationP amounts to specifying a ‘‘tensor operator’’ in the sen
of Rowe and Repka.3 This leads to a systematic approach which makes it possible to describ
only when such a construction is possible, but also to describe the number of mutually ine
lent constructions there are. For a given groupG, the theory provides a straightforward method f
deciding whether particular irrepspl and pm of H can be assembled into an indecomposa
representation ofG. For many of the groups of interest in physics, the representation ofH which
defines the semidirect product is sufficiently simple that it is possible to give an explicit des
tion of all pairspl andpm which can be assembled into indecomposable representations oG.

A number of examples are given, including the semidirect product of each of the g
SU(n), Sp(n), and SO(n) with its standard representation. In particular, we recover and ex
most of the examples of Cantoni, with additional information about multiplicities.

II. PRELIMINARIES AND NOTATION

Let H be a reductive group, andp0 a representation ofH on a finite dimensional vector spac
V. Construct a semidirect product group,G5H›V, with the following multiplication:
; (g1 ,v1), (g2 ,v2)PG,(g1 ,v1)(g2 ,v2)5(g1g2 ,p0(g2

21)v11v2). We will consider the prob-
lem of constructing representations ofG given representations ofH.
26790022-2488/2003/44(6)/2679/13/$20.00 © 2003 American Institute of Physics
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For convenience, we will assumeH is connected, as it usually is in the examples of intere
Also assume thatp0 does not contain the trivial representation ofH. If V is a complex vector
space, we will nonetheless consider it as a real vector space~i.e., by restricting to real scalars!. We
write p0

c for the complexification ofp0 .
We write $a% for the positive roots ofH, $b i% for the simple roots, and$b i* % for the corre-

sponding fundamental weights. Though we will define the$b i% and$b i* % as elements of the dua
and co-dual spaces of the root space~respectively!, we will also treat them as elements of the ro
space under the standard identification. As usual,d5 1

2(as0a. If l is a dominant integral weigh
andpl is a representation ofG on a finite dimensional vector space with highest weightl, then
the dimension ofpl is given by the Weyl dimension formula~cf., Humphreys2!,

dim~pl!5
)as0~l1d,a!

)as0~d,a!
. ~1!

III. INDECOMPOSABLE REPRESENTATIONS

A. Structure of indecomposable representations

Proposition 3.1: SupposeP is a representation of G on a finite-dimensional (complex) Hilb
spaceH. ThenH contains a nonzero G-invariant subspaceH8 on which V acts trivially.

Proof: SinceV is Abelian, it is in particular solvable, so Lie’s Theorem says that there ex
a nonzerowPH which is a simultaneous eigenvector for the restriction ofP to V, i.e., for every
vPV, P(v)w5aw(v)w, for someaw(v)PC.

Now, for anyvPV, hPH, we have

P~v !P~h!w5P~h!P~h21vh!w5P~h!P~vh21
!w5P~h!aw~vh21

!w5aw~vh21
!P~h!w,

showing that not onlyw, but alsoP(h)w, for anyhPH, is an eigenvector forP(v).
Let H8 be theH-invariant subspace generated byw. Since it is spanned by eigenvectors forV,

it is in fact G-invariant. For fixedvPV, note that the eigenvalueaw(vh21
) is a continuous

function of hPH. Since there can be only finitely many distinct eigenvalues in a fin
dimensional space, the connectedness ofH implies that it must be a constant function. In oth
words, for eachvPV, P(v) acts onH8 as a scalara(v)•I . In particular, onH8, P(v) commutes
with P(h), for all vPV, hPH.

The charactera of V can be written asa(v)5eA(v), for someAPV* ^ C, whereV* means
the real dual ofV, with V regarded as a real vector space. The action ofhPH is given by
a(vh)5eA(vh)5eA(p0(h)(v))5e(p0(h21)(A))(v), where p0 is the contragredient top0 , acting on
V* ^ C. But sincea(vh)5a(v), for all vPV, hPH, we see thatA is fixed byp0. Sincep0 is
assumed not to contain the trivial representation ofH, this is possible only ifA50. This shows
that V acts trivially onH8, completing the proof. d

Theorem 3.2: SupposeP is an indecomposable representation of G on a finite-dimensio
Hilbert spaceH, which, when restricted to H, is the direct sum of two irreps. Then it is possib
to find an H-decompositionH5H1% H2 , such thatH1 and H2 carry irreps of H andH1 is
G-invariant. Moreover, the action of V is trivial onH1 and onH/H1 .

Proof: Let H1 be the subspaceH8 defined in proposition 3.1. Applying the proposition aga
to H/H1 shows thatV acts trivially there~in this case,H8 is the whole space!. DefineH2 as an
H-complementary subspace toH1 . d

B. Assembling irreps

SupposeP is an indecomposable representation ofG and defineHi , i 51,2, as in theorem
3.2. Letp i be the representation ofH on Hi , i 51,2. In this situation, we will say that ‘‘p1 and
p2 are assembled into the representationP of G. ’’ Note that the first irrep mentioned,p1 , occurs
as aG-subrepresentation ofP.
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If a basis is chosen forH which consists of a basis forH1 followed by a basis forH2 , then for
anyhPH, vPV, the corresponding operators have block upper triangular matrices of the fo
ing forms:

P~h!5S p1~h! 0

0 p2~h!
D , P~v !5S I T~v !

0 I D . ~2!

The indecomposability ofP implies thatT(v) is not identically zero.

IV. TENSOR OPERATORS

SupposeP is an indecomposable representation ofG on a finite-dimensional Hilbert spaceH,
which, when restricted toH, is the direct sum of two irreps. Define subspacesH1 andH2 as in
theorem 3.2 and, for eachvPV, defineT(v)Phom(H2 ,H1) as in ~2!. Then $T(v):vPV% is a
tensor operator in the sense of Rowe and Repka.3 It can be written as a sum of tensor operato
each of which has rank equal to the rank of one of the irreducible constituents ofp0

c . Specifically,
for vPV, hPH, cPH2 , p1(h)T(v)c5p1(h)T(v)p2(h21)p2(h)c5Th(v)p2(h)c, where

Th~v !5T~vh!; ~3!

i.e., under the actionh:T°Th5p1(h)Tp2(h21), the matrices$T(v):vPV% carry a representa
tion of H which is isomorphic to a nontrivial quotient ofp0

c .
Conversely, suppose we are given such a tensor operator, i.e., a~nonzero! collection of linear

maps T(v)Phom(H2 ,H1) which satisfy ~3! and which carry a representation ofH which is
isomorphic to a nontrivial quotient ofp0

c . Then Eq.~2! gives an indecomposable representationP
of G whose restriction toH is p1% p2 , with p1 acting on aG-invariant subspace.

Let us consider possible equivalences between such representations. Any operator
commutes with the action ofG must be block upper triangular because of the invariance ofH1 .
Because of the irreducibility of bothp1 andp2 , the diagonal blocks must be scalars. Ifp1 andp2

are inequivalent representations ofH, then the top right block must be zero. Ifp1 and p2 are
equivalent, then, choosing compatible bases forH1 andH2 , we find that the top right block mus
be a scalar. In either case, the only representations equivalent to the representationP constructed
above are those constructed in the same way using scalar multiples of the tensor operatoT.

We have proven the following:
Theorem 4.1:Let p1 andp2 be irreducible finite-dimensional representations of H. Then, in

the language of Cantoni,1 p1 andp2 can be ‘‘assembled’’ into an indecomposable representat
of G if and only if there is a tensor operator T fromp2 into p1 , with T carrying a representation
of H which is isomorphic to some nontrivial quotient ofp0

c .
Moreover, if, up to scalar multiples, there is only one such tensor operator T fromp2 into p1 ,

then there is only one such assemblage, up to equivalence. If there are more than one such
operator, then there are infinitely many inequivalent assemblages, indexed by tensor ope
modulo nonzero scalar multiples.

One of the main results of Rowe and Repka3 is that the existence of a tensor operator fromp2

into p1 having the same rank as an irrepp is equivalent to the occurrence ofp1 in the tensor
productp2^ p. Combining this result with theorem 4.1, we obtain the following theorem:

Theorem 4.2: With p1 and p2 as above, p1 and p2 can be ‘‘assembled’’ into an indecom
posable representation of G if and only if the tensor productp0

c
^ p2 containsp1 . Moreover, the

number of inequivalent such assemblages is determined by the multiplicity with whichp1 occurs
in p0

c
^ p2 : if it occurs only once, then there is only one assemblage, up to equivalence. O

wise, there are infinitely many inequivalent assemblages.
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V. EXAMPLE: THE EUCLIDEAN GROUP E „2…

The two-dimensional Euclidean group E~2! is the semidirect product of SO~2! and R2, the
groups of rotations and translations of the plane, respectively. We writexn for the character of
SO~2! given by

xnS S cosu sinu

2sinu cosu D D 5einu.

It is also possible to express E~2! as the semidirect product of the unit circleS15$eiu% andC,
using the matrix realization,

E~2!5H S eiu z

0 1D :uPR, zPCJ . ~4!

Here we could think ofV5C as a one-dimensional complex vector space carrying the irrex1

of S1>SO(2), but asdescribed above, it is necessary for present purposes to regard it
two-dimensional real vector space on whichS1>SO(2) acts by rotations. In particular, the com
plexificationC^ V is the direct sumx1% x21 .

In this context, theorem 4.2 says that an irrepxn of H5SO(2) can be assembled into a
indecomposable representation ofG with eitherxn11 or xn21 , reproducing the result of Cantoni1

Explicitly, these representations are given as follows:

S eiu z

0 1D °S ein u ei (n11)uz̄

0 ei (n11)u D , S eiu z

0 1D °S einu ei (n21)uz

0 ei (n21)u D .

If we had worked withV as a complex vector space, we would have missed the first possib

VI. EXAMPLE: SU „N¿1…

Let H5SU(n11); then the simple roots ofH are b1 ,...,bn , given by b i(u0 ,...,un)
5ui 212ui . The fundamental weights areb1* ,...,bn* , given byb i* (u0 ,...,un)5( j 50

i 21uj . It fol-
lows thatd5 1

2(as0a5(k51
n bk* . Let e05b1* ,ei5b i* 2b i 21* (2< i<n21), anden52bn* .

We shall consider the case wherep0 is the ‘‘standard’’ (n11)-dimensional~complex! repre-
sentation of SU(n11); its highest weight ise0 , and its weightsei all have multiplicity one. The
complexification of this 2(n11)-dimensional real vector space carries two irreps,p0

1, which is
the irrep just mentioned, with highest weighte0 , and its contragredientp0

2, which has weights
2ei , i 50, . . . ,n, and highest weight2en .

We note that forn51, i.e., forH5SU(2), these irrepsp0
1 andp0

2 are equivalent, but forn
.1, they are inequivalent, and the difference between their highest weights ise01en , which is
not in the root lattice.

For any dominant integral weightl, we writepl for the irrep with highest weightl.
Proposition 6.1: For any dominant integral weightl,

(
,50

n

)
as0

~e,1d1l,a!5~n11! )
as0

~d1l,a!. ~* !

Proof: Write l5(k51
n ckbk* ; thenl1d5(k51

n (ck11)bk* 5(k51
n xkbk* , wherexk5ck11.

Fix i and j with 1< i< j <n; note that the right side of~* ! is a product of factors of the form
Xi j 5(k5 i

j xk . Assume thatXi j 50; it follows that all products in~* ! are zero except for
)as0(ei 211d1l,a) and )as0(ej1d1l,a), since, for each of the other products, the fac
corresponding toa5(k5 i

j bk5Yi j is zero. Now, we shall show that)as0(ei 211d1l,a)
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52)as0(ej1d1l,a). To do this, still under the assumption thatXi j 50, we shall consider both o
the remaining products as polynomials inx1 ,...,xn , show that they have the same roots, a
finally conclude that they differ by a sign.

Define a real-valued functionm on the root space as follows: ifa5(k51
n pkbk , let m(a)

5pj 112pj2pi1pi 21 . Let g5(k51
n akbk be a fixed positive root ofH, and for convenience, le

a05an1150 and m5m(g). Now, (ei 211d1l,g)5(d1l,g)1ai2ai 215(d1l,g)1ai

2ai 211mXi j 5(d1l,g)1aj 112aj2m1mXi j 5(d1l,g) 1 (ej ,g) 1 (ej1d 1 l,mYi j ) 5(ej

1d1l,g1mYi j ). The mapT:a→a1m(a)Yi j is the reflection in the hyperplane perpendicu
to Yi j , and thusg1mYi j is a root of H. So, if (ei 211d1l,g)50, then (ej1d1l,6(g
1mYi j ))50, and sinceT is one-to-one, the two polynomials have exactly the same roots.
thermore, as an element of the Weyl group,T has an odd length, soT maps an odd number o
positive roots to negative roots. Hence the products differ by a minus sign.

Since each factor of)as0(d1l,a) is equal toXi j for somei and j , we have shown that the
roots of the right side of~* ! are contained within the roots of the left side of~* !. Since the right
side of~* ! is a product of distinct linear factors~in thexi), then the left side of~* ! is divisible by
each of these factors. But both sides of~* ! are of the same degree, hence it follows that they di
by a multiplicative constant. Substitutingl50 shows that the constant must ben11. d

Proposition 6.2: Fix jP$1,...,n% and consider a dominant integral weightl5(k51
n ckbk* with

cj50; then

)
as0

~ej1d1l,a!50.

Proof: Let a5b js0. Then, if j Þn, (ej1d1l,a)5(b j 11* 2b j* 1(k51
n bk*

1(k51
n ckbk* ,b j )521111cj50, so the product is zero. The proof is similar forj 5n. d

In the tensor productpl
^ p0

1, any irreducible representation that occurs must have hig
weight l1ei , for somei P$0,...,n%, and cannot occur more than once. By the Weyl dimens
formula ~1!, the sum of the dimensions of the irreducible representations with highest weigl
1ei is (,50

n )as0(e,1d1l,a)/)as0(d,a), and dim(pl
^ p0

1)5dim(p0
1)dim(pl)5(n11)

3@)as0(d1l,a)/)as0(d,a)#. Now, we would like to show that the sum of the dimensions
the pl1ei ( i 50,...,n) is equal to the dimension of the tensor productpl

^ p0
1; this follows

immediately from proposition 6.1 if all thel1ei are dominant integral weights.
Now m5( i 51

n zib i* is not a dominant integral weight if and only ifzi,0, for some i
P$1,...,n%. Sincel5(k51

n cib i is the highest weight ofpl, the one and only way thatl1ei

would not be a dominant integral weight is ifci50. Thus, proposition 6.2 implies that ifl1ei is
not a dominant integral weight, then the dimension formula gives a value of zero. Taken tog
propositions 6.1 and 6.2 imply that the irreducible representations that occur in the tensor p
pl

^ p0
1 are exactly thepl1ei for which l1ei is a dominant integral weight. Taking contragr

dients, we also see that the irreducible representations that occur in the tensor productpl
^ p0

2 are
exactly thepl2ei for which l2ei is a dominant integral weight. Noting thatl1ei is never equal
to l2ej , we have proved the following.

Theorem 6.3:The irreducible representationspl andpm of H5SU(n11) can be assembled
into an indecomposable representation of G5SU(n11)›Cn11 if and only ifm5l6ei , for some
i P$0,...,n%.

For n51, i.e., for H5SU(2), each such assemblage can be constructed in infinitely m
inequivalent ways. If n.1, for each of the possible pairs of representations, the assemblag
unique.

VII. EXAMPLE: SU „3…)R8

Let H5SU(3) and letp0 be the eight-dimensional real~adjoint! representation ofH; it has
weights: e15b1* 1b2* , e252b1* 2b2* , e352b2* 2b1* , e452b1* 2b2* , e5522b1* 2b2* , e6
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522b2*2b1* , e750, ande850. Now we will consider the case whereG5SU(3)›R8. If the

highest weight of a representationpl of H is l5c1b1* 1c2b2* , then the dimension ofpl is given
by ~1!; it is dim(pl)5 (c111)(c211)(c11c212)/2.

Lemma 7.1:(k51
8 dim(pl1ek)58 dim(pl).

Proof: A direct calculation gives the result. d

In the tensor productpl
^ p0 , any irreducible representation that occurs must have hig

weightl1ei , for somei P$1,...,8% and cannot occur more than once unless it has highest we
l, in which case it cannot occur more than twice. We would like to show that the irredu
representation with highest weightl1ei ,i P$1,...,6% occurs exactly once in the tensor produ
provided thatl1ei is a dominant integral weight, and that there are two copies of the irredu
representation with highest weightl in the tensor product. This is easy to show if neitherc1 nor
c2 is equal to zero; the proof is as follows.

If l5c1b1* 1c2b2* is the highest weight of an irreducible representationpl of H, andc1 and
c2 are both not zero, then the weightl1e1 occurs in the tensor productpl

^ p0 with multiplicity
one;l1e2 occurs with multiplicity two, as doesl1e3 ; andl occurs with multiplicity six. This
implies that the irreducible representations with highest weightsl1e1 ,l1e2, andl1e3 occur in
the tensor product with multiplicity one, and the irreducible representation with highest weil
occurs with multiplicity 2. This result, along with lemma 7.1 and the fact that ifl1ei is not a
dominant integral weight and is substituted into~1!, a value of zero is obtained~this can be
verified by direct computation!, shows that the irreducible representations with highest wei
l1ei for somei P$1,...,6% appear exactly once in the tensor product, and the irreducible re
sentation with highest weightl occurs twice.

Now, suppose thatl5c1b1* 1c2b2* is the highest weight of an irreducible representationpl

of H, with c1.1 andc250. Then the only possible irreducible representations that may occ
the tensor product are those with highest weightl1e1 , l1e3 , l1e5 , or l, since these are the
only l1ei that are dominant integral weights. In the tensor productpl

^ p0 , the weightl1e1

occurs with multiplicity one;l1e3 occurs with multiplicity two;l1e5 occurs with multiplicity
six; andl occurs with multiplicity four. This implies that the irreducible representations that o
in the tensor product occur only once and are those with highest weightsl1e1 , l1e3 , l
1e5 , andl. If c151 andc250 then one can check that the irreducible representations that o
in the tensor productpl

^ p0 all have multiplicity one and are those with highest weightsl
1e1 , l1e3 , and l. Similarly, one can show that ifc150 and c2.1, then the irreducible
representations that occur in the tensor product all have multiplicity one and are those with h
weightsl1e1 , l1e2 , l1e6 , andl. Also, if c150 andc251 then the irreducible representa
tions that occur in the tensor product all have multiplicity one and are those with highest we
l1e1 , l1e2 , and l. If c15c250 then all that appears in the tensor product is the adj
representation, which has highest weightl1e1501e15e1 .

Thus, we have proven the following theorem:
Theorem 7.2: The representations of H5SU(3) that may be assembled withpl into a

representation of G5SU(3)›R8 are those that have highest weightl1ei , for some i
P$1,...,8%. Furthermore, if l5c1b1* 1c2b2* and neither c1 nor c2 are zero, then there are
infinitely many inequivalent ways of assemblingpl with itself and exactly one way of assemblin
pl andpl1ei, i P$1,...,6%. If either c150 or c250 andl1ei is a dominant integral weight, then
there is exactly one way of assemblingpl and pl1ei.

VIII. EXAMPLE: Sp „N…

Let H5Sp(n); then the simple roots ofH are b1 ,...,bn , given by b i(u1 ,...,un)5ui

2ui 11 for i 51,...,n21, andbn(u1 ,...,un)52un . The fundamental weights areb i* ,...,bn* given
by b i* (u1 ,...,un)5(k51

i uk . It follows that d5 1
2(as0a5(k51

n bk* . Let e15b1* , ei5b i*
2b i 21* (2< i<n), and en1 j52ej for j 51,...,n. We shall consider the case wherep0 is the
‘‘standard’’ 2n-dimensional~real! representation of Sp(n); its highest weight ise1 , and all its
weights have multiplicity one.
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Proposition 8.1: For any dominant integral weightl,

(
,51

2n

)
as0

~e,1d1l,a!52n)
as0

~d1l,a!. ~* !

Proof: Let l5(k51
n ckbk* ; thenl1d5(k51

n (ck11)bk* 5(k51
n xkbk* , wherexk5ck11.

Fix i and j with 1< i< j <n.
Case A:Suppose thatXi j 5(k5 i

j xk50. It follows that all products in~* ! are zero except for:
)as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d1l,a), and )as0(en1 j 111d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

j bk5Yi j is zero.
The proof that )as0(ei1d1l,a)52)as0(ej 111d1l,a) is the same as that given fo
SU(n11) if one changesei 21 to ei and ej to ej 11 . The proof that)as0(en1 i1d1l,a)
52)as0(en1 j 111d1l,a) can be obtained by making the following changes:ei 21 to en1 i , ej

to en1 j 11 , andak to 2ak , for k5 i 21,i , j , j 11.
Case B:Suppose thatXi j 5((k5 i

j xk)1((k5 j 11
n21 2xk)1xn50. It follows that all products in~* !

are zero except for:)as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d1l,a), and
)as0(en1 j 111d1l,a), since, for each of the other products, the factor corresponding ta
5((k5 i

j bk)1((k5 j 11
n21 2bk)1bn5Yi j is zero. The proof that )as0(ei1d1l,a)

52)as0(en1 j 111d1l,a) is similar to the one given for SU(n11); it may be obtained by
making the following changes:ei 21 to ei , ej to en1 j 11 , aj 11 to 2aj 11 , andaj to 2aj . The
proof that )as0(ej 111d1l,a)52)as0(en1 i1d1l,a) can be obtained from the proof fo
SU(n11) by making the following changes:ei 21 to en1 i , ej to ej 11 , ai 21 to 2ai 21 , ai to 2ai .

Case C:Suppose thatXi j 5(2(k5 i
n21xk)1xn50, (i ,n). Then all products in~* ! are zero

except for)as0(ei1d1l,a), and)as0(en1 i1d1l,a), since, for each of the other product
the factor corresponding toa52(k5 i

n21bk1bn5Yi j is zero. Now, we will show that)as0(ei

1d1l,a)52)as0(en1 i1d1l,a) by considering the two products as polynomials
x1 ,...,xn , showing that they have the same roots, and then concluding that they must diffe
factor of 21.

Let g be as in the proof for SU(n11), and letm5m(g)5ai2ai 21 . Now, (ei1d1l,g)
5(d1l,g)1ai2ai 215(d1l,g) 1ai2ai 21 1mXi j 5(d1l,g) 1 ai 212ai22m1 mXi j 5 (d
1l,g)1(en1 i ,g)1(en1 i1d1l,mYi j )5(en1 i1d1l,g1mYi j ). Hence, by the same line o
reasoning as in the proof for SU(n11), the products must differ by a sign.

Since each factor of)as0(d1l,a) is covered by one of the above cases for somei and j , we
have shown that the roots of the right side of~* ! are contained within the roots of the left side
~* !. By comparing degrees and substitutingl50, we obtain the result. d

Proposition 8.2: Fix jP$1,...,n% and consider a dominant integral weightl5(k51
n ckbk* with

cj50; then

)
as0

~ej 111d1l,a!50, if j Þn,

and

)
as0

~en1 j1d1l,a!50.

Proof: If j P$1,...,n21%, then (ej 111d1l,b j )521111cj50 and (en1 j1d1l,b j )
521111cj50. If j 5n, then (e2n1d1l,b j )522121cj50. Thus, the proposition has bee
proven. d

In the tensor productpl
^ p0 , any irreducible representation that occurs must have hig

weight l1ei , for somei P$1,...,2n%, and cannot occur more than once. By~1!, the sum of the
dimensions of the irreducible representations with highest weightsl1ei ( i 51,...,2n) is
(,51

2n )as0(e,1d1l,a)/)as0(d,a), and dim(pl
^ p0)5dim(p0)dim(pl)5(2n)@)as0(d
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1l,a)/)as0(d,a)#. We would like to show that the sum of the dimensions of thepl1ei ( i
51,...,2n) is equal to the dimension of the tensor productpl

^ p0 ; we can infer this from
proposition 8.1 if we know that all thel1ei are dominant integral weights.

Now m5( i 51
n zib i* is not a dominant integral weight if and only ifzi,0, for some i

P$1,...,n%. Sincel5(k51
n cib i is the highest weight ofpl, the one and only way thatl1ei i

P$1,...,n% would not be a dominant integral weight is ifiÞ1 andci 2150. The only way that
l1en1 j , j P$1,...,n%, would not be a dominant integral weight is ifcj50. So, proposition 8.2
implies that ifl1ei is not a possible highest weight vector, then the dimension formula giv
value of zero. Taken together, propositions 8.1 and 8.2 imply that the irreducible represen
that occur in the tensor productpl

^ p0 are exactly thosepl1ei for which l1ei is a dominant
integral weight. Therefore, we have proven the following.

Theorem 8.3: The representations of H5Sp(n)5Sp(n,R) that may be assembled withpl

into a representation of G5Sp(n)›R2n are those that have highest weightl1ei , for some i
P$1,...,2n%. For all of the possible representations this assemblage is unique.

IX. EXAMPLE: SO „2N…

Let H5SO(2n); then the simple roots ofH are b1 ,...,bn , given by b i(u1 ,...,un)5ui

2ui 11 for i 51,...,n21, andbn(u1 ,...,un)5un211un . The fundamental weights areb i* ,...,bn*
given by b i* (u1 ,...,un)5(k51

i uk for i P$1,...,n22%, bn21* (u1 ,...,un)5 1
2((k51

n21uk2un), and
bn* (u1 ,...,un)5 1

2(k51
n uk . It follows that d5 1

2(as0a5(k51
n bk* . Let e15b1* , ei5b i*

2b i 21* (2< i<n22), en215bn* 1bn21* 2bn22* , en5bn* 2bn21* , and en1 j52ej for j
51,...,n. As in the previous examples, we shall consider the case wherep0 is the ‘‘standard’’
2n-dimensional~real! representation of SO(2n); its highest weight ise1 , and all its weights have
multiplicity one.

Proposition 9.1: For any dominant integral weightl,

(
,51

2n

)
as0

~e,1d1l,a!52n)
as0

~d1l,a!. ~* !

Proof: Let l5(k51
n ckbk* ; thenl1d5(k51

n (ck11)bk* 5(k51
n xkbk* , wherexk5ck11.

Case A:Fix i and j with 1< i< j ,n22.
Subcase A1:Suppose thatXi j 5(k5 i

j xk50. It follows that all products in~* ! are zero except
for: )as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d1l,a), and )as0(en1 j 111d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

j bk5Yi j is zero.
The proof that )as0(ei1d1l,a)52)as0(ej 111d1l,a) is the same as that given fo
SU(n11). The proof that)as0(en1 i1d1l,a)52)as0(en1 j 111d1l,a) can be obtained by
making the following changes:ei 21 to en1 i , ej to en1 j 11 , and ak to 2ak , for k5 i 21,i , j , j
11.

Subcase A2:Suppose thatXi j 5((k5 i
j xk)1((k5 j 11

n22 2xk)1xn211xn50. It follows that all
products in~* ! are zero except for:)as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d
1l,a), and)as0(en1 j 111d1l,a), since, for each of the other products, the factor correspo
ing to a5((k5 i

j bk)1((k5 j 11
n22 2bk)1bn211bn5Yi j is zero. The proof that)as0(ei1d

1l,a)52)as0(en1 j 111d1l,a) is similar to the one given for SU(n11); it may be obtained
by making the following changes:ei 21 to ei , ej to en1 j 11 , aj 11 to 2aj 11 , andaj to 2aj . The
proof that )as0(ej 111d1l,a)52)as0(en1 i1d1l,a) can be obtained from the proof fo
SU(n11) by making the following changes:ei 21 to en1 i , ej to ej 11 , ai 21 to 2ai 21 , ai to 2ai .

Case B:Fix i and j with 1< i< j 5n22 and suppose thatXi j 5(k5 i
j xk50. Then all products

in ~* ! are zero except for:)as0(ei1d1l,a), )as0(en211d1l,a), )as0(en1 i1d1l,a),
and)as0(e2n211d1l,a), since, for each of the other products, the factor correspondinga
5(k5 i

n21bk5Yi j is zero. Now, we shall show that)as0(ei1d1l,a)52)as0(en211d
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1l,a). To do this, still under the assumption thatXi j 50, we shall consider both products a
polynomials inx1 ,...,xn , show that they have the same roots, and finally conclude that they d
by a sign.

Let g5(k51
n akbk be a fixed positive root ofH. Let m5m(g)5an1an212an222ai

1ai 21 . Now, (ei 211d1l,g)5(d1l,g)1ai2ai 215(d1l,g)1ai2ai 211mXi j 5(d1l,g)
1an1an212an222m1mXi j 5 (d 1l,g) 1(en21 ,g) 1(en21 1d 1l,mYi j )5(en211d1l,g
1mYi j ). Hence, by the same line of reasoning as in the proof for SU(n11), the products differ
by a minus sign. The proof that)as0(en1 i1d1l,a)52)as0(e2n211d1l,a) can be ob-
tained by making the following changes:ei to en1 i , en21 to e2n21 , and ak to 2ak , for k5 i
21,i ,n22,n21,n.

Case C:Fix i and j with 1< i< j 5n21.
Subcase C1:Suppose thatXi j 5(k5 i

n21xk50,(i ,n21). Then all products in~* ! are zero
except for:)as0(ei1d1l,a), )as0(en1d1l,a), )as0(en1 i1d1l,a), and )as0(e2n1d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

n21bk5Yi j is
zero. The proof that)as0(ei1d1l,a)52)as0(en1d1l,a) is similar to that given for
SU(n11); it may be obtained by making the following changes:ei 21 to ei , ej to en , aj 11 to an ,
and aj to an21 . The proof that)as0(en1 i1d1l,a)52)as0(e2n1d1l,a) can be obtained
from the proof for SU(n11) by making the following changes:ei 21 to en1 i , ej to e2n , ai 21 to
2ai 21 , ai to 2ai , aj to 2an21 , andaj 11 to 2an .

Subcase C2:Suppose thatXi j 5xn2150. Then all products in~* ! are zero except for
)as0(en211d1l,a), )as0(en1d1l,a), )as0(e2n211d1l,a), and )as0(e2n1d1l,a),
since, for each of the other products, the factor corresponding toa5bn215Yi j is zero. Now, we
will show that)as0(en211d1l,a)52)as0(en1d1l,a) by considering the two products a
polynomials inx1 ,...,xn , showing that they have the same roots, and then concluding that
must differ by a factor of21.

Let g be as for SU(n11), and letm5m(g)5an2222an21 . Then, (en211d1l,g)5(d
1l,g) 1an 1an21 2an22 5 (d1l,g) 1 an 1an21 2an22 1mXi j 5 (d1l,g) 1an2an212m
1mXi j 5(d1l,g)1(en ,g)1(en1d1l,mYi j )5(en1d1l,g1mYi j ). Hence, by the same line
of reasoning as in the proof for SU(n11), the products differ by a sign. The proof th
)as0(e2n211d1l,a)52)as0(e2n1d1l,a) is similar; it may be obtained by making th
following changes:en21 to e2n21 , en to e2n , an22 to 2an22 , an21 to 2an21 , andan to 2an .

Case D:Fix i and j with 1< i< j 5n.
Subcase D1:Suppose thatXi j 5(k5 i

n xk50(i ,n). Then all products in~* ! are zero except
for: )as0(ei1d1l,a), )as0(en211d1l,a), )as0(en1 i1d1l,a), and )as0(e2n211d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

n21bk5Yi j is
zero. The proof that)as0(ei1d1l,a)52)as0(e2n211d1l,a) is similar to that given in
case B; it can be obtained by making the following changes:en to e2n21 , an22 to 2an22 , and
an21 to 2an21 . The proof that)as0(en1 i1d1l,a)52)as0(e2n1d1l,a) can be obtained
from the one given in case B, if one makes the following changes:ei to en1 i , andak to 2ak ,
k5 i 21,i ,n.

Subcase D2:Suppose thatXi j 5(k5 i
n22xk1xn50 (i<n22). Then all products in~* ! are zero

except for:)as0(ei1d1l,a), )as0(en1d1l,a), )as0(en1 i1d1l,a), and )as0(e2n1d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

n22bk1bn5Yi j is
zero. The proof that)as0(ei1d1l,a)52)as0(e2n1d1l,a) is similar to the one given for
SU(n11); it may be obtained by making the following changes:ei 21 to ei , ej to e2n , aj 11 to
2an , and aj to 2an21 . The proof that)as0(en1 i1d1l,a)52)as0(en1d1l,a) can be
obtained from the proof for SU(n11) by making the following changes:ei 21 to en1 i , ej to en ,
aj to an , aj to an21 , ai to 2ai , andai 21 to 2ai 21 .

Subcase D3:Suppose thatXi j 5xn50. Then all products in~* ! are zero except for:
)as0(en211d1l,a), )as0(en1d1l,a), )as0(e2n211d1l,a), and )as0(e2n1d1l,a),
since, for each of the other products, the factor corresponding toa5bn5Yi j is zero. We will now
prove that)as0(en211d1l,a)52)as0(e2n1d1l,a) by considering both products as poly
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nomials inx1 ,...,xn , showing that they have the same roots, and finally concluding that they
differ by a sign.

Let g and $ai% be as for SU(n11), and letm5m(g)5an2222an . Then, (en211d1l,g)
5(d1l,g)1an1an212an225(d1l,g)1an1an212an221mXi j 5(d1l,g)1an212an2m
1mXi j 5(d1l,g)1(e2n ,g)1(e2n1d1l,mYi j )5(e2n1d1l,g1mYi j ). Hence, by the same
line of reasoning as in the proof for SU(n11), the products must differ by a sign. The proof th
)as0(e2n211d1l,a)52)as0(en1d1l,a) is similar; it may be obtained by making the fo
lowing changes:en21 to e2n21 , e2n to en , an22 to 2an22 , an21 to 2an21 , andan to 2an .

Since each factor of)as0(d1l,a) is equal toXi j for somei , j , and some case or subca
above, we have shown that the roots of the right-hand side of~* ! are contained within the roots o
the left-hand side of~* !. By comparing degrees and substitutingl50, we obtain the result. d

Proposition 9.2: Fix jP$1,...,n% and consider a dominant integral weightl5(k51
n ckbk* with

cj50; then, if jÞn,

)
as0

~ej 111d1l,a!50,

and

)
as0

~en1 j1d1l,a!50.

If j 5n, then

)
as0

~e2n211d1l,a!50,

and

)
as0

~e2n1d1l,a!50.

Proof: If j P$1,...,n21%, then (ej 111d1l,b j )521111cj50, and (en1 j1d1l,b j )5
21111cj50. If j 5n, then (e2n211d1l,b j )521111cj50, and (e2n1d1l,b j )521
111cj50. d

In the tensor productpl
^ p0 , any irreducible representation that occurs must have hig

weight l1ei , for somei P$1,...,2n%, and cannot occur more than once. By~1!, the sum of the
dimensions of the irreducible representations with highest weightsl1ei ( i 51,...,2n) is
(,51

2n )as0(e,1d1l,a)/)as0(d,a), and dim(pl
^ p0)5dim(p0)dim(pl)5(2n)@)as0(d

1l,a)/)as0(d,a)#. We would like to show that the sum of the dimensions of thepl1ei ( i
51,...,2n) is equal to the dimension of the tensor productpl

^ p0 ; this follows from proposition
9.1 if all thel1ei are dominant integral weights.

Now m5( i 51
n zib i* is not a dominant integral weight if and only ifzi,0, for some i

P$1,...,n%. Sincel5(k51
n cib i is the highest weight ofpl, the one and only way thatl1ei i

P$1,...,n% would not be a possible highest weight is ifiÞ1 andci 2150. The only way thatl
1en1 j , j P$1,...,n%, would not be a dominant integral weight is ifcj50, or if j 5n21 andcn

50. So, proposition 9.2 implies that ifl1ei is not a possible highest weight, then the dimens
formula gives a value of zero. Thus, propositions 9.1 and 9.2 imply that the irreducible repr
tations that occur in the tensor productpl

^ p0 are exactly thosepl1ei for which l1ei is a
dominant integral weight. Therefore, we have proven the following:

Theorem 9.3: The representations of H5SO(2n) that may be assembled withpl into a
representation of G5SO(2n)3R2n are those that have highest weightl1ei , for some i
P$1,...,2n%. For each of the possible representations this assemblage is unique.
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X. EXAMPLE: SO „2n¿1…

Let H5SO(2n11); then the simple roots ofH are b1 ,...,bn , given byb i(u1 ,...,un)5ui

2ui 11 for i 51,...,n21, andbn(u1 ,...,un)5un . The fundamental weights areb1* ,...,bn* given
by b i* (u1 ,...,un)5(k51

i uk for i 51,...,n21 and bn* (u1 ,...,un)5 1
2(k51

n uk . It follows that d
5 1

2(as0a5(k51
n bk* . Let e15b1* , ei5b i* 2b i 21* (2< i<n21), en52bn* 2bn21* , en1 j52ej

for j 51,...,n, ande050. As in the previous examples, we shall consider the case wherep0 is the
‘‘standard’’ (2n11)-dimensional~real! representation of SO(2n11); its highest weight ise1 ,
and all its weightsei have multiplicity one.

Proposition 10.1: For any dominant integral weightl,

(
,50

2n

)
as0

~e,1d1l,a!5~2n11! )
as0

~d1l,a!.

This is equivalent to

(
,51

2n

)
as0

~e,1d1l,a!5~2n! )
as0

~d1l,a!. ~* !

Proof: Write l5(k51
n ckbk* ; thenl1d5(k51

n (ck11)bk* 5(k51
n xkbk* , wherexk5ck11.

Fix i and j with 1< i< j <n.
Case A:Suppose thatXi j 5(k5 i

j xk50. It follows that all products in~* ! are zero except for:
)as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d1l,a), and )as0(en1 j 111d
1l,a), since, for each of the other products, the factor corresponding toa5(k5 i

j bk5Yi j is zero.
The proof that )as0(ei1d1l,a)52)as0(ej 111d1l,a) is the same as that given fo
SU(n11). The proof that)as0(en1 i1d1l,a)52)as0(en1 j 111d1l,a) can be obtained by
making the following changes:ei 21 to en1 i , ej to en1 j 11 , and ak to 2ak , for k5 i 21,i , j , j
11.

Case B:Suppose thatXi j 5((k5 i
j xk)1((k5 j 11

n22 2xk)1xn211xn50. It follows that all prod-
ucts in ~* ! are zero except for:)as0(ei1d1l,a), )as0(ej 111d1l,a), )as0(en1 i1d
1l,a), and)as0(en1 j 111d1l,a), since, for each of the other products, the factor correspo
ing to a5(k5 i

j bk1(k5 j 11
n22 2bk1bn211bn5Yi j is zero. The proof that)as0(ei1d1l,a)

52)as0(en1 j 111d1l,a) is similar to the one given for SU(n11); it may be obtained by
making the following changes:ei 21 to ei , ej to en1 j 11 , aj 11 to 2aj 11 , andaj to 2aj . The
proof that )as0(ej 111d1l,a)52)as0(en1 i1d1l,a) can be obtained from the proof fo
SU(n11) by making the following changes:ei 21 to en1 i , ej to ej 11 , ai 21 to 2ai 21 , ai to 2ai .

Since each factor of)as0(d1l,a) is equal toXi j for somei , j , and some case above, w
have shown that the roots of the right-hand side of~* ! are contained within the roots of th
left-hand side of~* !. By comparing degrees and substitutingl50, we obtain the result. d

Proposition 10.2: Fix jP$1,...,n21% and consider a dominant integral weightl
5(k51

n ckbk* with cj50; then,

)
as0

~ej 111d1l,a!50,

and

)
as0

~en1 j1d1l,a!50.

Proof: (ej 111d1l,b j )521111cj50 and (en1 j1d1l,b j )521111cj50. d

Proposition 10.3: Ifl5( i 51
n21cib i* , then)as0(e2n1d1l,a)52)as0(d1l,a).
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Proof: As in proposition 10.1, consider both products as polynomials inx1 ,...,xn and fix g
5(k51

n akbks0. Now, (e2n1d1l,g)5(d1l,g)1an212an5(d1l,g12(an212an)bn).
Therefore, by the same line of reasoning as in the proof for SU(n11), the products differ by a
sign. d

Proposition 10.4: If the highest weight ofpl is l5(k5 i
n21cib i* , with i,n and ci.0, thenpl

is not contained inpl
^ p0 .

Proof: If l5(k5 i
n21ckbk* with i ,n andci.0, then (l,(k5 i

n bk).0, sol2(k5 i
n bk5l2ei is

a weight of the irreducible representation with highest weightl; l2en is not a weight, since, if it
was, the highest weight would bel1en and notl. For the same reason none of thel2en1 i are
weights. Sincel has multiplicity one in the weight diagram ofpl, then it follows thatl has
multiplicity n in the weight diagram of the tensor productpl

^ p0 , one for each of the irreps with
highest weightse0 ,...,en21 and no more. Ifj ,kP$1,...,n%, j Þk, then the weightl1ek is not
contained in the irreducible representation with highest weightl1ej , sincel is a weight of the
irreducible representation with highest weightl1ej and (l,ek).0; so the irreducible represen
tations with highest weightsl1ej , j 51,...,n must all occur in the tensor productpl

^ p0 . Now,
sincel is a weight~of multiplicity one! of the irreducible representations with highest weighl
1ej , j 51,...,n, and these representations must all occur inpl

^ p0 , then it follows thatpl does
not occur inpl

^ p0 . d

In the tensor productpl
^ p0 , any irreducible representation that occurs must have hig

weight l1ei , for somei P$0,...,2n%, and cannot occur more than once. By~1!, the sum of the
dimensions of the irreducible representations with highest weightsl1ei ( i 50,...,2n) is
(,50

2n )as0(e,1d1l,a)/)as0(d,a), and dim(pl
^ p0)5dim(p0)dim(pl)5(2n11)@)as0(d

1l,a)/)as0(d,a)#. We would like to show that the sum of the dimensions of thepl1ei ( i
50,...,2n) is equal to the dimension of the tensor productpl

^ p0 ; this follows from proposition
10.1 if all thel1ei are dominant integral weights.

Now m5( i 51
n zib i* is not a dominant integral weight if and only ifzi,0, for some i

P$1,...,n%. Sincel5(k51
n cib i is the highest weight ofpl, the one and only way thatl1ei i

P$1,...,n% would not be a dominant integral weight is ifiÞ1 andci 2150. The only way that
l1en1 j , j P$1,...,n%, would not be a dominant integral weight is ifcj50. So, proposition 10.2
implies that ifl1ei ( iÞ2n) is not a possible highest weight vector, then the dimension form
gives a value of zero. Together, propositions 10.3 and 10.4 show that ifcn50, thenpl is not
contained inpl

^ p0 , and if dl and dl1e2n
are the values obtained by substitutingl and l

1e2n into ~1!, thendl1dl1e2n
50. This expresses the fact that neitherpl nor pl1e2n occurs in

the tensor product. Taken together, propositions 10.1, 10.2, 10.3, and 10.4 imply that the ir
ible representations that occur in the tensor productpl

^ p0 are exactly thosepl1ei for which
l1ei is a dominant integral weight, except in the case wherecn50, in which casepl does not
occur. Therefore, we have proven the following.

Theorem 10.5: If l5(k51
n ckbk* with ci>0 and cn.0, the representations of H5SO(2n

11) that may be assembled withpl into a representation of G5SO(2n11)›R2n11 are those
that have highest weightl1ei , for some iP$0,...,2n%. If cn50, the representations of H tha
may be assembled withpl into a representation of G are those that have highest weighl
1ei , for some iP$1,...,2n21%. For all of the possible representations this assemblage is uniq.

XI. EXAMPLE: SO „3…)R5

Let H5SO(3) and letp0 be the five-dimensional representation ofH; it has weightse1

52b1 , e25b1 , e350, e452b1 , ande5522b1 ~all weights have multiplicity one!. Now we
will consider the case whereG5SO(3)›R5. For this groupH, we have thatb1* (u1)5 1

2u1 . If the
highest weight of a representationpl of H is l5c1b1* , then the dimension ofpl is given by~1!;
it is c111.

Lemma 11.1:(k51
5 (c112k25)55(c111).

Proof: A direct calculation gives the result. d
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In the tensor productpl
^ p0 , any irreducible representation that occurs must have hig

weightl1ei , for somei P$1,...,5%, and cannot occur more than once. By the dimension form
the sum of the dimensions of the irreducible representations with highest weightsl1ei ( i
51,...,5) is(k51

5 (2(c11k)25), and dim(pl
^ p0)5dim(p0)dim(pl)55(2c111). We would

like to show that the sum of the dimensions of thepl1ei( i 51,...,5) is equal to the dimension o
the tensor productpl

^ p0 ; we can infer this from lemma 11.1 if all thel1ei are dominant
integral weights, that is, ifc1¹$0,1,2,3%; if this is the case, then it follows that the irreducib
representations that occur in the tensor productpl

^ p0 are exactly thosepl1ei for which l
1ei is a dominant integral weight. By explicit calculation, the same result can be shown
c1P$0,1,2,3%. Therefore, we have proven the following:

Theorem 11.2: The representations of H5SO(3) that may be assembled withpl into a
representation of G5SO(3)›R5 are those that have highest weightl1ei , for some i
P$1,...,5%. For each of the possible representations this assemblage is unique.

XII. CONCLUSIONS

The possibility of assembling two irreps ofH into an indecomposable representation of t
semidirect productG5H›V is shown to be equivalent to the existence of a certain type of te
operator between the two irreps. This in turn is shown to be equivalent to the occurrence
irrep in the tensor product of the other withV.

This theory yields a systematic method for evaluating which irreps can be assemble
indecomposable representations. It is applied to various examples, and the results extend
Cantoni,1 also giving information about the number of inequivalent indecomposable repres
tions built from any pair of irreps.

Given a specific semidirect product groupG5H›V and a particular irreppl of H, it is
straightforward to use the theory developed here to identify all irrepspm for which is it possible
to assemblepl andpm into an indecomposable representation ofG. In the examples given above
for various groupsG of interest in physics, a description is given of all pairspl andpm which can
be assembled into an indecomposable representation.

Although it is not pursued here, this type of analysis could also be modified for applicati
infinite-dimensional representations.
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Extra dimensions and nonlinear equations
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Solutions of nonlinear multi-component Euler–Monge partial differential equations
are constructed inn spatial dimensions bydimension-doubling, a method that com-
pletely linearizes the problem. Nonlocal structures are an essential feature of the
method. The Euler–Monge equations may be interpreted as a boundary theory
arising from a linearized bulk system such that all boundary solutions follow from
simple limits of those for the bulk. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1543227#

I. INTRODUCTION

For any theory22 with an infinite number of conservation laws, we may always assemble
conserved currents into a generating function involving a spectral parametera. If that spectral
parameter is independent of any other space–time dimensions in the theory, as is possibl
simplest cases, then effectively the theory possesses anextra dimension.23 Moreover, it is always
possible to openly include this extra dimension in some of the dynamical equations, and n
leave it as adimension sub rosa.

For example, suppose a theory is originally expressed in terms of coordinates (x,t) with an
infinite number of conserved currents:] tr

(n)(x,t)5]xJ
(n)(x,t), nPN. Then by defining

r(x,t,a)[(n(n11)anr (n)(x,t), as opposed to(nanr (n)(x,t), andJ(x,t,a)[(nan11J(n)(x,t),
as opposed to(nanJ(n)(x,t), we have rendered all the conservation laws as a single second-
higher-dimensional partial differential equation~PDE!: ] tr(x,t,a)5]x]aJ(x,t,a), as opposed to
the first-order] tr(x,t,a)5]xJ(x,t,a). Hence our choice for the current generating functions
fully exposed an extra dimension in the PDEs satisfied by those generating functions. The
dimension here does not just ride along as a suppressible label for the currents but it a
explicitly, perhaps even unavoidably, in the dynamical equations. Of course this immed
raises issues about whether the theory requiresa to appear explicitly forall dynamical equations
to be cogently expressed in terms of the original plus extra dimensions, and about cova
properties for the theory in the complete set of dimensions.

In this article we address these issues for a simple but very generally applicable cl
nonlinear PDE’s:10,17The first order Euler–Monge~E-M! equations] tu5(u•¹)u. We find the full
dynamics of thesenonlineartheories are elegantly encoded into a higher dimensional set oflinear
‘‘heat’’ equations obtained through dimension doubling (x)→(x,a), where for each spatial coor
dinatexi there is anassociated coordinategiven by spectral parameterai . The original dynamical
variables are obtained as spectral parameter boundary limits, lima→0Ui(x,t,a)5 ui(x,t,a). The
fact that the higher dimensional theory is linearized strongly argues that this is the right app
to take. In the linearized theory, the pairs (xi ,ai) act like ‘‘light-cone’’ variables in the enlarged se
of dimensions such that the heat equations for all the dynamical variables are of the form]/]t
2( j 51

n ]2/]aj]xj )Ui(x,t,a)50. Thus the extra dimensions appear explicitly and, indeed,
avoidably in these linearized dynamical equations.

a!Electronic mail: curtright@physics.miami.edu
b!Electronic mail: david.fairlie@durham.ac.uk
26920022-2488/2003/44(6)/2692/12/$20.00 © 2003 American Institute of Physics

                                                                                                                



a
mple

ith two

-M
s of
ence of
olutions

fluid
t of
-
ms,
equa-
review
ayed

simple
s par-
tions
dy of

is
by

of

physics
s at as
itrary
of the

nsfor-

but
re

with

2693J. Math. Phys., Vol. 44, No. 6, June 2003 Extra dimensions and nonlinear equations

                    
We also find Nambu brackets18 of the fields, of all orders up to the full Jacobian, as
remarkable feature of the linearizing maps. We know of only one other field theoretic exa3

where these brackets appear so naturally. Moreover, the linearizing maps arenonlocal in all but
the simplest, one component case. The nonlocal structures appropriate for E-M equations w
components in two spatial dimensions are evocative of phase factors in Wilson loops~cf. strings!,
and when the E-M equations describen component fields in the originaln spatial dimensions
these structures extend to higher dimensional constructions involving integrals overn21 dimen-
sional submanifolds@cf. (n21)-branes#. In the one dimensional, one component case, the E
solution is obtained algebraically from the dimensionally-doubled ‘‘bulk’’ solution for all value
the single spectral parameter. In higher dimensional or multi-component cases the depend
the solutions on the spectral parameters is more involved. Nevertheless, in all cases the s
of the E-M equations may be obtained from simple limits of those for the bulk.

II. HISTORICAL OVERVIEW AND OBJECTIVES

The Euler–Monge equations first appeared in 18th and 19th century studies of
dynamics10 and analytic geometry.17 Riemann took up a study of the equations in the contex
gas dynamics, discussing the equations as a theory of invariants20 ~for a modern textbook treat
ment, see Ref. 8!. His approach is widely applicable to almost all nonlinear flow proble
although it does not triumph over turbulence. A systematic modern discussion of the E-M
tions that synthesizes ideas from both geometry and invariance theory can be found in the
by Dubrovin and Novikov.9 Most contemporary texts and reviews stress the universal role pl
by these nonlinear transport equations in accordance with Whitham’s theory.21 Essentially all
nonlinear waves, even those in dispersive and dissipative media, involve E-M equations, or
variants of them, if the nonlinear wavetrains are slowly varying. This makes the equation
ticularly useful for analyzing the asymptotic behavior of nonlinear solutions. The E-M equa
and their conservation laws also serve as a useful starting point in Polyakov’s stu
turbulence19 but without yet leading to a general solution of the Navier–Stokes equations.

The first order E-M equation]u/]t 5u ]u/]x also gives rise to the Bateman equation4 upon
substituting u5 (]f/]t)/(]f/]x). The resulting second order nonlinear PDE
05fx

2f tt22fxf tf tx1f t
2fxx, and is well known to possess a general implicit solution given

solving tS0(f)1xS1(f)5const, whereS0 andS1 are arbitrary differentiable functions off(x,t).
The structure of this solution incorporates the covariance properties of the PDE: Iff is a solution,
so is any function off. In fact, curiously, the generalization of this solution ton11 functions
S0(f),Si(f) of f(x,t), xÄ(x1 ,...,xn), subject to a single constrainttS0(f)1(xi Si(f)50, is a
‘‘universal solution’’14 to any equation derived from a Lagrangian which is homogeneous
weight one in the first derivatives off.

Thus the Euler–Monge equations appear widespread across a very broad landscape of
and applied mathematics problems, and therefore it is important to understand their solution
many levels as possible. To that end we shall map all solutions of the E-M equations in arb
dimensions into solutions of second-order linear equations. This type of map is reminiscent
Cole–Hopf6,15 transformation~thoroughly reviewed in Ref. 16! used to linearize the Burgers5,15

nonlinear diffusion equation, but there are important differences here. The Cole–Hopf tra
mation only works for curl-freeu, does not use extra dimensions, and fails for 05k ~the diffu-
sivity!. The map to follow works for allu, curl-free or otherwise, does use extra dimensions,
works only fork50. ~We hope to extend the method tokÞ0 and to include the effects of pressu
in subsequent studies.!

III. METHOD AND ELEMENTARY RESULTS

We believe it is best to present our results summarily for the simplest examples of fields
one, two, and three components, and then to extend these results to the general case ofn compo-
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nents. We leave out most details but we do sketch the salient features of the derivations.
following, Mn is the n dimensional nonlinear Euler–Monge operator andHn is an associated
hyperbolic heat operator~introduced in Ref. 19!,

Mn[
]

]t
2(

j 51

n

uj

]

]xj

~1!

Hn[
]

]t
2(

j 51

n
]2

]xj]aj
.

To begin, however, we will generalize these two definitions to allow for an arbitrary functionF in
the mostelementaryresults in one spatial dimension. We find that

]

]t
U~x,t,a!5FS ]

]aD ]

]x
U~x,t,a! ~2!

if and only if

]

]t
u~x,t !5F~u~x,t !!

]

]x
u~x,t ! ~3!

where

U~x,t,a![
eau(x,t)21

a
~4!

u~x,t !5
1

a
ln~11aU~x,t,a!!

and F is any function with a formal power series. This simple result follows by direct calcula

S ]

]t
2FS ]

]aD ]

]xD eau(x,t)21

a
5eau(x,t)S ]

]t
u~x,t !2F~u~x,t !!

]

]x
u~x,t ! D . ~5!

The formal solution forU(x,t,a) in terms ofU(x,t50,a) is now obviously given by

~eau(x,t)21!/a5et F(]/]a) ]/]x~~eau(x)21!/a! ~6!

with u(x,t50)5u(x).
The bulk solutionU(x,t,a) may also be viewed as a simple one-parameter deformation o

boundary datau(x,t), with the extra dimension serving as the deformation parameter. In
exceptional one-component case, we may easily extractu(x,t) from U(x,t,a) for any value of the
extra dimensiona as given by the logarithmic expression above. But, in particular, we may ex
u(x,t) as a limit of the bulk solutionu(x,t)5 lima→0U(x,t,a). This immediately yields the time
series solution12 to the previous E-M equation as a limit:

u~x,t !5 lim
a→0

et F(]/]a) ]/]xS eau(x)21

a D5F21F (
j 50

`
t j

~11 j !!

dj

dxj ~F@u~x!# !11 j G , ~7!

where we assumeF ~locally! invertible in the last step.24 While this time series is an immediat
consequence of the previous results, we believe it is neither trivial nor obvious. Similar time
solutions are immediate consequences of all our results. For example, one independent fieu in
spatial dimensions (x,y1 ,...,yn) with dependent ‘‘velocity fields’’ (u,v1(u),...,vn(u)) leads to
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]

]t
u~x,y,t !5u~x,y,t !

]

]x
u~x,y,t !1(

i 51

n

v i~u~x,y,t !!
]

]yi
u~x,y,t ! ~8!

if and only if

E
0

u(x,y,t)

du expS au1(
i 51

n

biv i~u!D 5et~]2/]x]a1( i 51
n ]2/]yi]bi ! E

0

u(x,y)

du expS au1(
i 51

n

biv i~u!D .

~9!

Again, this follows by direct calculation, with

U~x,y,t,a,b![E
0

u(x,y,t)

du expS au1(
i 51

n

biv i~u!D ~10!

since

S ]

]t
2

]2

]x]a
2(

i 51

n
]2

]yi]bi
DU~x,y,t,a,b!

5S ]

]t
u~x,y,t !2u~x,y,t !

]

]x
u~x,y,t !2(

i 51

n

v i~u~x,y,t !!
]

]yi
u~x,y,t !D

3expS au~x,y,t !1(
i 51

n

biv i~u~x,y,t !!D . ~11!

So, as given, the higher dimensional heat equation is satisfied by the integral formU(x,y,t,a,b)
if and only if the given one-component generalization of the E-M equations holds. The rhs o
~10! is then just the formal solution of the heat equation.25

The last result does not allow for a simple extraction ofu(x,y,t) from the integral form of
U(x,y,t,a,b) for nonvanishing a,b. However, it does have the simple lim
lima,b→0U(x,y,t,a,b)5u(x,y,t), so extraction is trivial on the boundarya,b→0. This is true of
all the other heat equation solutions to follow. Also note,U(x,y,t,a,b) in this one-component cas
is an integral over the field value. NeverthelessU is still local in all the dimensions, no matter ho
many.

IV. MULTIPLE COMPONENTS AND NONLOCALITY

Locality in the original spatial dimensions willnot hold, however, for maps of multi-
component fields in higher dimensions. This is first illustrated by the next result,

H2U5H2V50, ~12!

if and only if

M2u5M2v50, ~13!

where@«(s)[6 1
2 for s:0]

U~x,y,t,a,b![E
2`

`

dr«~y2r !eau(x,r ,t)1bv(x,r ,t)
]u~x,r ,t !

]r

V~x,y,t,a,b![E
2`

`

dq«~x2q!eau(q,y,t)1bv(q,y,t)
]v~q,y,t !

]q
. ~14!
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Once again this is established by direct calculation, assumingu, v, and their derivatives vanish
asymptotically inx,y,

H2U~x,y,t,a,b!5eau(x,y,t)1bv(x,y,t)M2u~x,y,t !1bE
2`

`

dr «~y2r !

3eau(x,r ,t)1bv(x,r ,t)S ]u~x,r ,t !

]r
M2v~x,r ,t !2

]v~x,r ,t !

]r
M2u~x,r ,t ! D

~15!

H2V~x,y,t,a,b!5eau(x,y,t)1bv(x,y,t)M2v~x,y,t !1aE
2`

`

dq «~x2q!

3eau(q,y,t)1bv(q,y,t)S ]v~q,y,t !

]q
M2u~q,y,t !2

]u~q,y,t !

]q
M2v~q,y,t ! D .

~16!

The converse result then follows by also using the obvious pair of lim
lima,b→0H2U(x,y,t,a,b)5M2u(x,y,t) and lima,b→0H2V(x,y,t,a,b)5M2v(x,y,t).

As advertised, the two-component map in two spatial dimensions involves a nonlocal
formation between E-M and heat equation solutions: It features line integrals over the or
spatial variables. The map is still local in the extra dimensions, however. This nonlocality i
original dimensions persists and is even extended when more components and more sp
mensions are considered. As a further illustration before giving the generalization to an ar
number of dimensions, we have

H3U5H3V5H3W50, ~17!

if and only if

M3u5M3v5M3w50, ~18!

where

U~x,y,z,t,a,b,c![E dr «~y2r ! eau1bv1cw
]u~x,r ,z,t !

]r

2cE E drds«~y2r ! «~z2s! eau1bv1cw$u,w%rs~x,r ,s,t !,

V~x,y,z,t,a,b,c![E ds«~z2s! eau1bv1cw
]v~x,y,s,t !

]s

2aE E dqds«~x2q! «~z2s! eau1bv1cw$v,u%sq~q,y,s,t !,

W~x,y,z,t,a,b,c![E dq «~x2q! eau1bv1cw
]w~q,y,z,t !

]q

2bE E dqdr «~x2q! «~y2r ! eau1bv1cw$w,v%qr~q,r ,z,t !. ~19!

There are a few essential new ingredients needed to complete the argument by direct calc
in this case. Define Poisson brackets as usual by
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$u,v%rs5
]u

]r

]v
]s

2
]u

]s

]v
]r

, ~20!

whereu andv are any two functions of the independent variablesr ands. Then it is straightfor-
ward to show

]

]t
$u,v%zy2

]

]x
~u$u,v%zy!2

]

]y
~v$u,v%zy!2

]

]z
~w$u,v%zy!5$M3u,v%zy1$u,M3v%zy ,

~21!
]

]t
$u,v%xy2

]

]x
~u$u,v%xy!2

]

]y
~v$u,v%xy!2

]

]z
~w$u,v%xy!

5$M3u,v%xy1$u,M3v%xy2$u,v,w%xyz,

as well as similar relations obtained by permutation of dependent and independent variables
last relation we have introduced the totally antisymmetric Nambu triple bracket~i.e., Jacobian, in
this three-dimensional case!

$u,v,w%xyz5
]u

]x
$v,w%yz1

]u

]y
$v,w%zx1

]u

]z
$v,w%xy5

]u

]x
$v,w%yz1

]v
]x

$w,u%yz1
]w

]x
$u,v%yz .

~22!

Once equipped with such relations, the complete derivation of the heat equation and E-M e
lence is tedious, perhaps, but not subtle.~See the generalization to follow for additional details!

The nonlocality appearing in our map for three components in three spatial dimensio
two-dimensional: It features surface integrals over pairs of the original spatial dimensions, p
evocative of membrane-based phase factors. Nonetheless, the map is still local in the extra
sions and the E-M solutions are again trivially given by boundary limits of the bulk construct

V. GENERAL RESULTS

The nonlocality is extended to (n21)-dimensional integrals when n-component linearizi
maps are constructed inn spatial dimensions. This is explicit in the following equations.

HnUk~x,t,a!50 ~23!

if and only if

Mnui~x,t !50 ~24!

for i ,kP$1,...,n% where

Uk~x,t,a![E ¯E dq1¯dqn d~qk2xk!S eakuk21

ak
D

3detS ]

]q1
~«~q12x1!ea1u1! ¯

]

]qn
~«~q12x1!ea1u1!

] � ]

]

]q1
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D
excludekth row
andkth column

. ~25!

The equivalence is shown as follows. Consider only the first component~et sic de similibus!.
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U1~x,t,a!5E ¯E dq1¯dqn d~q12x1!S ea1u121

a1
D

3detS ]

]q2
~«~q22x2!ea2u2! ¯

]

]qn
~«~q22x2!ea2u2!

] � ]

]

]q2
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D
5E ¯E dq2¯dqn S ea1u121

a1
D

3detS ]

]q2
~«~q22x2!ea2u2! ¯

]

]qn
~«~q22x2!ea2u2!

] � ]

]

]q2
~«~qn2xn!eanun! ¯

]

]qn
~«~qn2xn!eanun!

D ~x1 ,q2 ,¯ ,qn ,t !

5E ¯E dq2¯dqn S ea1u121

a1
D

3« i 2¯ i n

]

]qi 2

~«~q22x2!ea2u2!
]

]qi 3

~«~q32x3!ea3u3!¯
]

]qi n

~«~qn2xn!eanun!,

where in the last expression thei k dummy indices,kP$2,...,n%, are summed from 2 ton, i.e., 1
is excluded. Now we integrate by parts assuming all fields and their derivatives vanishx
→`. To do this, there are clearlyn21 equivalent choices. We elect to integrate]/]qi 2

by parts
to obtain

U1~x,t,a!52« i 2¯ i nE ¯E dq2¯dqn «~q22x2!ea2u2
]

]qi 2
S ea1u121

a1
D

3
]

]qi 3

~«~q32x3!ea3u3!¯
]

]qi n

~«~qn2xn!eanun!

52« i 2¯ i nE ¯E dq2¯dqn «~q22x2!
]u1

]qi 2

3S d i 33d~q32x3!1a3«~q32x3!
]u3

]qi 3
D¯S d i nnd~qn2xn!1an«~qn2xn!

]un

]qi n
D ea"u.

Expanding out the products of the various paired terms in parentheses in the last line give
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U1~x,t,a!52« i 2¯ i n
a3¯anE ¯E dq2dq3¯dqn «~q22x2!

3«~q32x3!¯«~qn2xn!
]u1

]qi 2

]u3

]qi 3

¯

]un

]qi n

ea"u

2« i 2¯ i n(j 53

n E dq2 «~q22x2! d j i j

3S )
k53
kÞ j

n S akE dqk «~qk2xk!
]uk

]qi k
D D ]u1

]qi 2

ea"u

2« i 2¯ i n(j 53

n

(
k54
k. j

n E dq2 «~q22x2! d j i j
dkik

3S )
m53

mÞ j ,k

n S amE dqm «~qm2xm!
]um

]qi m
D D ]u1

]qi 2

ea"u2¯

2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! S ]u1

]q2

]uj

]qj
2

]u1

]qj

]uj

]q2
D ea"u

2E dq2 «~q22x2!
]u1

]q2
ea"u.

That is to say, the result is given in terms of Nambu brackets18 of all ranks fromn21 down to 2
~i.e., Poisson!, as well as a final single derivative term. Thus

U1~x,t,a!52a3¯anE ¯E dq2dq3¯dqn «~q22x2! «~q32x3!¯«~qn2xn!

3$u1 ,u3 ,...,un%23̄ n ea"u

2(
j 53

n E dq2 «~q22x2!S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u

2¯2(
j 53

n

(
k54
k. j

n

ajakE dq2 «~q22x2! E dqj «~qj2xj ! E dqk «~qk2xk!

3$u1 ,uj ,uk%2 jk ea"u

2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! $u1 ,uj%2 j ea"u

2E dq2 «~q22x2!
]u1

]q2
ea"u.

In the preceding equation, it is to be understood that the sum( j 53
n in the second term begins at it

lower limit with

2a4¯anE ¯E dq2dq4¯dqn «~q22x2! «~q42x4!¯«~qn2xn! $u1 ,u4 ,...,un%24̄ n ea"u
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and terminates at its upper limit with

2a3¯an21E ¯E dq2dq3¯dqn21 «~q22x2! «~q32x3!¯«~qn212xn21!

3$u1 ,u3 ,¯ ,un21%23̄ n21 ea"u.

Next we act with the heat operator onU1(x,t,a). The «’s permit the appropriate ‘‘outside’
~i.e., x) partials to be converted, through integration by parts, into ‘‘inside’’~i.e., q) partials. Also,
factors ofai outside the exponentials produce some extra terms from the cross-partials]2/]xi]ai

in Hn . We obtain

HnU1~x,t,a!52a3¯anE ¯E dq2dq3¯dqn «~q22x2! «~q32x3!¯«~qn2xn!

3Hn~$u1 ,u3 ,...,un%23̄ n ea"u!

1(
i 53

n
]

]ai
~a3¯an!E ¯E dq2dq3¯dqn

]

]xi
@«~q22x2! «~q32x3!¯«~qn2xn!#

3$u1 ,u3 ,...,un%23̄ n ea"u

2(
j 53

n E dq2 «~q22x2!S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3Hn~$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u!

1(
j 53

n E dq2 «~q22x2!(
i 53

n
]

]ai

]

]xi S )
k53
kÞ j

n S akE dqk «~qk2xk! D D
3$u1 ,u3 ,...,uj 21 ,uj 11 ,...,un%23̄ j 21 j 11¯n ea"u

21¯2(
j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj ! Hn~$u1 ,uj%2 j ea"u!

1(
i 53

n
]

]ai

]

]xi
S (

j 53

n

ajE dq2 «~q22x2! E dqj «~qj2xj !D $u1 ,uj%2 j ea"u

2E dq2 «~q22x2! HnS ]u1

]q2
ea"uD .

The first term~first two lines! on the rhs ofHnU1 reduces to terms linear in the E-M equations f
the u’s. The second term~third and fourth lines! and third term~fifth and sixth lines! on the rhs
combine to give similar terms linear in the E-M equations. And so it goes with subsequent pa
terms on the rhs ofHnU1, until finally the last two terms~last two lines! on the rhs combine to
give terms linear in the E-M equations.

To establish these statements, one needs to use several identities involving the action
heat operator on exponentially weighted derivatives of the component fields, in particul
so-weighted Nambu brackets. For example, these identities range from the simplest for t
Jacobian

Hn~ea"u$u1 ,u2 ,...,un%12̄ n!5ea"u~a•Mnu!$u1 ,u2 ,...,un%12̄ n1ea"u~$Mnu1 ,u2 ,...,un%12̄ n

1$u1 ,Mnu2 ,...,un%12̄ n1¯1$u1 ,u2 ,¯ ,Mnun%12̄ n!

to those involving lower rank Nambu brackets such as
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Hn~ea"u$u2 ,u3 ,...,un%23̄ n!5ea"u~2$u1 ,u2 ,u3 ,...,un%123̄ n1~a•Mnu!$u2 ,u3 ,...,un%23̄ n!

1ea"u~$Mnu2 ,u3 ,...,un%23̄ n1$u2 ,Mnu3 ,...,un%23̄ n1¯

1$u2 ,u3 ,...,Mnun%23̄ n!

including that needed to deal with the first rhs line ofHnU1

Hn~ea"u$u1 ,u3 ,...,un%23̄ n!5ea"u~a•Mnu!$u1 ,u3 ,...,un%23̄ n1ea"u~$Mnu1 ,u3 ,...,un%23̄ n

1$u1 ,Mnu3 ,...,un%23̄ n1¯1$u1 ,u3 ,...,Mnun%23̄ n!

as well as other relations obtained by permutations of the indices of these, etc., all the way
to the final

Hn~ea"u] juk~x,t !!5ea"uS ] j~Mnuk!1~a•Mnu!] juk2(
i

$uk ,ui% j i D
as needed to deal with the last two rhs lines inHnU1 . All such identities are straightforward t
substantiate by direct calculation.

Thus, given the E-M equations for theu’s, the heat equation forU1 follows. Moreover, the
only terms on the rhs ofHnU1 which survive in the limit of vanishing spectral parameters are
last two lines, which give

lim
a→0

HnU1~x,t,a!5Mnu1~x,t !. ~26!

Thus, given the heat equation forU1 , the E-M equation foru1 follows. Similar results obtain for
all the other components, so thatHnUk50 iff Mnuj50.

Formally, time evolution in the bulk is once more given by a simple exponentiation

U~x,t,a!5et( j 51
n ]2/]xj]ajU~x,t50,a!. ~27!

This gives a time-series solution on the boundary upon taking the limita→0.

u~x,t !5 lim
a→0

et( j 51
n ]2/]xj]ajU~x,t50,a! ~28!

with initial boundary datau(x)5 lima→0U(x,t50,a). Moreover, then-fold infinite sequences o
conservation laws for the E-M equations inn spatial dimensions are directly encoded into the b
solutions.

]

]t
Uk~x,t,a!5¹•Jk~x,t,a!, Jk~x,t,a!5¹aUk~x,t,a!, kP$1,2,...,n% . ~29!

Explicit sequences of charge and current densities on the boundary follow immediately
power series expansions in theaj . These conservation laws are elementary consequences o
heat equation obeyed byU.

VI. CONCLUSION

This is as far as we have completed the application of the extra dimensional approa
classical nonlinear PDEs. It remains to apply this approach to other types of nonlinear PD
particular to those higher-order extensions of the E-M equations involving dispersion, such
Korteweg–deVries equation, and to those involving diffusion, such as the Burgers and Na
Stokes equations. Another immediately obvious challenge is to carry the method over to qu
field theories~QFTs!. This will not be done here. However, we suspect that the implementatio
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these ideas in QFT will involve the use of quantum Nambu brackets~QNBs!, given that the
classical versions of these appear above. QNBs have a long-standing notoriety, but recently7 it has
been shown that theirs is an undeserved bad reputation. QNBs can be defined in terms of o
~or in terms of noncommutative geometry! so as to fulfill their expected roles in the quantu
evolution of dynamical systems. Perhaps these developments will be useful to meet the ch
of quantizing the E-M equations as well as their higher-order generalizations.

As emphasized previously, the Euler-Monge equations appear widespread throughout p
and the mathematics of nonlinear partial differential equations. Based on the maps we
presented to linearize these equations, we have come to the conclusion that extra dimensi
nonlocal structures are ubiquitous features to be found upon analyzing solutions of such no
partial differential equations, and are quite natural constructs in many physical theories.
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5 f (x), ]f(x,0)/]t5g(x), the time series solution of the Bateman equation isf(x,t)5 f (x)1tg(x)1( j 51
` t11 j /(1

1 j )!dj /dxj (g(x)11 j /(d f(x)/dx) j ).
25As is true for the Bateman equation and the one-component Monge equation in one spatial dimension, th

corresponding second order equation for the case of one component inn11 spatial dimensions which our solutio
satisfies. It is the so-called ‘‘Universal Field Equation’’ which may be obtained by elimination ofu from the first order
equations.11,12
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Weak transversality and partially invariant solutions
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C. P. 6128, succ. Centre-ville, Montre´al, Québec H3C 3J7, Canada
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New exact solutions are obtained for several nonlinear physical equations, namely
the Navier–Stokes and Euler systems, an isentropic compressible fluid system and
a vector nonlinear Schro¨dinger equation. The solution method makes use of the
symmetry group of the system in situations when the standard Lie method of
symmetry reduction is not applicable. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1567799#

I. INTRODUCTION

Lie group theory provides very general and efficient methods for obtaining exact an
solutions of systems of partial differential equations, specially nonlinear ones.1–9 The different
methods have in common that they provide a reduction of the original system. This red
usually means the reduction of the number of independent variables occurring, possibly a
tion of the number of dependent ones too.

The ‘‘standard,’’ or ‘‘classical’’ reduction method goes back to the original work of Sop
Lie and is explained in many modern texts.1–9 Essentially, it amounts to requiring that a solutio
of the equation should be invariant under some subgroupG0#G, whereG is the symmetry group
of the considered system of equations. The subgroupG0 must satisfy certain criteria, in order t
provide such group invariant solutions~see below!.

The purpose of this article is to further develop, compare and apply alternative redu
methods. They have in common the fact that they provide solutions not obtainable by a st
application of Lie’s classical method. We shall survey the ‘‘tool kit’’ available for obtain
particular solutions of systems of partial differential equations, and further refine some o
tools. In the process we shall obtain new solutions of some physically important equations s
the Navier–Stokes equations, the Euler equations, the equations describing an isentrop
pressible fluid model and the vector nonlinear Schro¨dinger equation.

We shall consider a system ofm partial differential equations of ordern, involving p inde-
pendent variables (x1 ,x2 , . . . ,xp) andq dependent variables (u1 ,u2 , . . . ,uq),

Dn~x,u(n)!50, n51, . . . ,m, ~1!

whereu(n) denotes all partial derivatives ofua , up to ordern.
Lie’s classical method of symmetry reduction consists of several steps.
~1! Find the local Lie groupG of local point transformations taking solutions into solution

Realize its Lie algebrag in terms of vector fields and identify it as an abstract Lie algebra.
basis vector fields will have the form

va 5(
i 51

p

ja
i ~x,u!

]

]xi 1 (
a51

q

wa
a~x,u!

]

]ua , a51,...,r 5dimG. ~2!

a!Electronic mail: grundlan@CRM.UMontreal.ca
b!Electronic mail: tempesta@CRM.UMontreal.ca
c!Electronic mail: wintern@CRM.UMontreal.ca
27040022-2488/2003/44(6)/2704/19/$20.00 © 2003 American Institute of Physics
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~2! Classify the subalgebrasgi,g into conjugacy classes under the action of the largest gr
G̃ leaving the system of equations invariant~we haveG#G̃). Choose a representative of ea
class.

~3! For each representative subalgebragi find the invariantsI g(x1 , . . . ,xp ,u1 , . . . ,uq) of the
action of the groupGi5^expgi& in the spaceM;X3U of independent and dependent variable
Let us assume thatp1q2s functionally independent invariantsI g exist, at least locally (s is the
dimension of the generic orbits ofGi).

~4! Divide ~if possible! the invariantsI g into two sets:$F1 , . . . ,Fq% and $j1 , . . . ,jk%, k
5p2s in such a manner that the Jacobian relatingFm andua (a,m51, . . . ,q) has maximal rank

J5
]~F1 , . . . ,Fq!

]~u1 , . . . ,uq!
, rankJ5q. ~3!

Then considerFm to be functions of the other invariants$j i% which serve as the new independe
variables and use condition~3! to express the dependent variablesua in terms of the invariants.

~5! Substitute the obtained expressions forua into the original system and obtain the reduc
system, involving only invariants. The reduced system will involve onlyk5p2s, s>1 indepen-
dent variables.

~6! Solve the reduced system. If the variablesj i depend onx1 , . . . ,xp only, this will yield
explicit solutions of system~1!. Otherwise, ifj i depend also on the original dependent variab
ua , we obtain implicit solutions.

~7! Apply a general symmetry group transformation to these solutions.
This procedure provides a family of particular solutions that can be used to satisfy part

boundary or initial conditions. The classification of subgroupsGi can be viewed as a classificatio
of conditions that can be imposed on the obtained solutions.

We mention that the dimensionr 5dimG of the symmetry group may be infinite. Howeve
we shall always consider reductions by finite-dimensional subgroups ofG.

Steps 3, 4, and 5 of Lie’s method can be reformulated as follows. Take the vector field$va%
forming a basis of the considered Lie subalgebragi,g and set their characteristics equal to ze

Qa
a5wa

a~x,u!2(
i 51

p

ja
i ~x,u! uxi

a 50, a51, . . . ,q, a51, . . . ,r i5dimgi . ~4!

Solve the systems~1! and ~4! simultaneously.
Several alternative reduction procedures have been proposed, going beyond Lie’s cl

method and providing further solutions. They all have in common that they add some syst
equations to the original system~1! and that the extended system is solved simultaneously. T
additional equations replace the characteristic system~4!.

In its generality, this was proposed as the method of ‘‘differential constraints,’’10 and inde-
pendently as the method of ‘‘side conditions.’’11,12 Different methods differ by the choice of thi
system of side conditions.

Basically two different approaches exist in the literature. The first makes further use o
symmetry groupG of system~1!, the second approach goes beyond this group of point tran
mations, or even gives up group theory altogether. Let us briefly discuss some of these m

~1! ‘‘Group invariant solutions without transversality.’’ This method was proposed by An
sonet al.13 quite recently and deals with the situation when the rank condition~3! is not satisfied.
It was shown13 that under certain conditions on the subgroupGi,G one can still obtainGi

invariant solutions. We recall that a group invariant solution, with or without transversalit
transformed into itself by the subgroupGi,G.

~2! The method of partially invariant solutions. A solutionu(x) is ‘‘partially invariant,’’ 3,14,15

under a subgroupGi,G of the invariance group, ifGi , when acting onu(x) sweeps out a
manifold of a dimension that is larger than that of the graph of the solution, but less tha
dimension of the entire spaceM . A group Gi may provide both invariant and partially invarian
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solutions ~see below in Sec. IV!. However, if the rank condition~3! for the Jacobian is no
satisfied, at least on a set of solutions, thenGi will not provide invariant solutions, but may
provide partially invariant ones. If the rank of the JacobianJ is q8, with q8,q, then we can
expressu1 , . . . ,uq8 in terms of invariants and letuq811 , . . . ,uq depend on all of the origina
variablesx1 , . . . ,xp . We then substitute the dependent variables back into the original system
obtain a ‘‘partial reduction.’’ Solving this system, we obtain the partially invariant solutio
Irreducible partially invariant solutions are partially invariant solutions that are not invariant u
the subgroupGi , nor under any other subgroupGi8 of the symmetry group of the considere
equations. Such solutions were constructed for certain nonlinear Klein–Gordon and Schro¨dinger
equations, in Refs. 16 and 17, and for some equations of hydrodynamics in Refs. 18–20.

The theory of partially invariant solutions was further developed by Ondich21,22 who formu-
lated irreducibility criteria for certain classes of equations. For other applications, see Refs. 2

In terms of Eqs.~4!, the method described above boils down to taking onlyq8,q of Eqs.~4!.
As we shall show, it is possible to obtain further partially invariant solutions by different meth

Among methods that go beyond the use of the symmetry groupG we mention the following.
~3! The Clarkson–Kruskal direct reduction method27,28 does not make explicit use of grou

theory. It is postulated that the dependent variables should be expressed in terms of new de
variables that depend on fewer independent ones. The corresponding Ansatz is substituted
original equation, which must then be solved. It has been shown that the direct method i
mately related to the method of conditional symmetries,29–31 to the ‘‘nonclassical method’’ pro-
posed by Bluman and Cole,32,33and to potential symmetries.34 This method can also be interprete
in terms of side conditions.11,12 The differential constraints added to system~1! in this case have
the form of first order quasilinear partial differential equations of the form~4!. However the
coefficientswa

a andja
i are not related to a Lie point symmetry of Eq.~1!.

~4! The group foliation method. The method goes back to Lie, is described by Ovsiann3

and has recently been applied to obtain solutions of self-dual Einstein equations.35,36 In terms of
differential constraints this method amounts to embedding the system~1! into a larger system,
consisting of all equations up to some definite order, invariant under the same Lie point sym
group as~1! ~and involving the same variables!.

~5! The method of ‘‘partial Lie-point symmetries,’’ proposed by Cicogna and Gaeta.37 This is
a modification of the method of conditional symmetries. The method is in some cases easier
and may provide solutions in cases when the equations of the conditional symmetry method
to be untractable.

~6! For integrable equations38 generalized symmetries can be used to generate side condi
These will be higher order equations, rather than first order ones.

~7! The method of nonlocal symmetries. This consists in extending the space of depe
variables by adding some auxiliary variables, which can be potentials or pseudopotentials
ated to the system of equations under analysis.8,39–41A nonlocal symmetry will be then a symme
try of the original system augmented with the equations defining the new nonlocal variable

This article is organized as follows. In Sec. II we introduce the concept of ‘‘weak trans
sality’’ allowing us to formulate the method of ‘‘group invariant solutions witho
transversality’’13 in terms of local coordinates~the dependent and independent variables in
equation!. We then relate the rank of the matrix of invariants~3! to that of the coefficients of
vector fields. This makes the application of the method quite simple, as we shall show in Se
Moreover, the requirement that the transformations be projectable is not needed. The me
weak transversality is applied in Sec. III to obtain new invariant solutions of the Navier–S
equations and of the isentropic compressible fluid model. In Sec. IV we establish a re
between partially invariant solutions and the transversality condition. This is then applied to o
new irreducible partially invariant solutions of the vector nonlinear Schro¨dinger equation, of the
Euler equations, of the Navier–Stokes equations and of the isentropic compressible fluid m
(311) dimensions. The concept of the irreducibility of partially invariant solutions is discus
Some conclusions are presented in the final Sec. V.
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II. GROUP INVARIANT SOLUTIONS, STRONG AND WEAK TRANSVERSALITY

Lie’s classical method of symmetry reduction was outlined in the Introduction. The first
steps are entirely algorithmic and we shall assume that they have already been performed
we are given a system of equations~1! and have found its Lie point symmetry groupG, the Lie
algebra of which is the symmetry algebrag. The symmetry algebra has dimensionr and has a
basis realized by vector fields of the form~2!. Each vector field has the property that itsnth
prolongation annihilates the system~1! on its solution set

pr~n! v DnuDm5050, n, m51, . . . ,m. ~5!

The functionsja
i (x,u) andwa

i (x,u) are thus explicitly known.
Let us now consider a subgroupG0,G and its Lie algebrag0 . A solution u5 f (x) of the

system~1! is G0 invariant if its graphG f;$x, f (x)% is a G0 invariant set

g•G f5G f , gPG0 . ~6!

The basis vector fields~2! can be written in evolutionary form1 as

vE,a5 (
a51

q S wa
a~x,u!2(

i 51

p

ja
i ~x,u!uxi

a D ]ua
, a51, . . . ,r . ~7!

A G0-invariant solution will satisfy theq3r 0 characteristic equations~4! associated with the
basis elements of the Lie algebrag0 (dimg05r 0).

The following matrices play an essential role in symmetry reduction using the symm
group of the considered system of equations.

~1! The matricesJ1 andJ2 of the coefficients of the vector fieldsva spanning the algebrag,
or its subalgebrag0 , and defined as follows:

J15$ja
i ~x,u!%, J1PRr 3p,

~8!
J25$ja

i ~x,u!,wa
a~x,u!%, J2PRr 3(p1q),

wherea51, . . . ,r labels the rows,i anda label the columns.
~2! The matrix of characteristics of the vector fields~2! @or ~7!# spanning the considere

algebrag ~or its subalgebrag0),

Qa
a5$va

Eua%, a51, . . . ,r , a51, . . . ,q. ~9!

~3! The Jacobian matrixJ of the transformation relating the dependent variablesua and the
invariants of the action ofG0 on the spaceM;X3U of independent and dependent variables

Let us now consider a specific subalgebrag0,g and use it to obtain group invariant solution
via symmetry reduction. If the groupG0 acts regularly and transversally onM;X3U then

rank$ja
i ~x,u!%5rank$ja

i ~x,u!,wa
a~x,u!%. ~10!

This rank is equal to the dimension of the generic orbits ofG0 on M . If the transversality
condition~10! is satisfied, at least locally, for all$x,u%PM , then Lie’s classical reduction metho
is directly applicable. Indeed, if~10! is satisfied then the rank of the matrixJ of Eq. ~3! is
maximal, rankJ5q ~for a proof, see, e.g., Ref. 1, Chap. 3.5!. It follows that all dependent
variables can be expressed in terms of invariants and a reduction is immediate~to a system with
q dependent variables andp2s independent ones, wheres is the dimension of the orbit of a
generic point under the action ofG0 .
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If the action ofG0 on M is fiber preserving~i.e., the new independent variables only depe
on the old independent ones!, Lie’s method provides explicit solutions. This happens because
new invariant independent variableszi can be chosen to depend only on the original independ
variables

zi5zi~x1 , . . . ,xp!, i 51, . . . ,p2s. ~11!

More generally, if we havezi5zi(x,u), we obtain implicit solutions.
We shall call the rank condition~10! ‘‘strong transversality.’’ Quite recently13 a method was

proposed for obtaining group invariant solutions when equation~10! is not satisfied. The method
of Ref. 13 can actually be modified and made easier to apply by introducing the concept of ‘
transversality.’’

The local transversality condition will be said to be satisfied in the weak sense if it holds
on a subsetM̃,M , rather than on the entire spaceM :

rank$ja
i ~x,u!%uM̃5rank$ja

i ~x,u!,wa
a~x,u!%uM̃ . ~12!

In other words, even if the transversality condition is not in general satisfied, there may
a classS of functionsu5 f (x) such that for them the condition~12! holds.

The ‘‘weak transversality’’ method is quite simple, when applicable. It consists of sev
steps.

~1! Determine the conditions on the functionsu5 f (x) under which Eq.~12! is satisfied.
Solve these conditions to obtain the general form of these functions.

~2! Substitute the obtained expressions into the matrix of characteristics~9! and require that
the condition rankQ50 be satisfied. This further constrains the functionsf (x).

~3! Substitute the obtained expressions into the system~1!. By construction, the solutions, i
they exist, will beG0 invariant.

This method can only be applied if the matrix elements in the matrixJ2 depend explicitly on
the variablesua . This poses strong restrictions on the considered algebrag0 . Step 1 of this
method amounts to restricting to a domain where the original Lie method can be applied. S
and 3 are as in Lie’s method. The ‘‘weak transversality method’’ is from this point of view a d
extension of Lie’s classical method. Note that this method can be applied both to ordinar
partially differential equations. We shall give some examples of the method in Sec. III.

III. EXAMPLES OF INVARIANT SOLUTIONS OBTAINED BY THE WEAK
TRANSVERSALITY METHOD

A. The Navier–Stokes equations

The Navier–Stokes equations in (311) dimensions describing the flow of an incompressi
viscuous fluid are

utW1uW •¹uW 1¹p2n¹2uW 50, ~13!

¹•uW 50, ~14!

where uW 5(u1(x,y,z,t),u2(x,y,z,t),u3(x,y,z,t)) is the velocity field,p5p(x,y,z,t) the fluid
pressure andn the viscosity coefficient.

The symmetry properties of these equations have been intensively investigated by
authors from different points of view~see, for instance, Ref. 42 and references therein!. It is well
known43 that Eqs.~13! and ~14! are invariant under the flow generated by the following vec
fields:

B15a ]x1ȧ]u1
2äx ]p , ~15!
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B25b ]y1ḃ]u2
2b̈y ]p , ~16!

B35g ]z1ġ]u3
2g̈z ]p , ~17!

T5] t , ~18!

Q5]p , ~19!

D5x]x1y]y1z]z12t] t2u1]u1
2u2]u2

2u3]u3
22p]p , ~20!

L15z]y2y]z1u3]u2
2u2]u3 , ~21!

L25x]z2z]x1u1]u3
2u3]u1

, ~22!

L35y]x2x]y1u2]u1
2u1]u2

, ~23!

wherea,b,g, andd are arbitrary functions of time. The operatorsBj generate symmetry transfor
mations that can be interpreted as boosts to frames moving with arbitrary velocitiesv(t)W

5l(ȧ,ḃ,ġ), wherel is a constant. Space translations and Galilei boosts are obtained ifa,b, and
g are linear int. The operatorsT andQ express the invariance of the Eqs.~13! and ~14! under
translations of time and pressure,D generates scaling transformations, andL1 ,L2 , andL3 are the
generators of the group of the rotations of the Euclidean space.

Example 1:Let us consider the subalgebra generated byL1 , L2 , andL3 . Here we apply the
ideas discussed in Sec. II to determine rotationally invariant solutions for the Navier–S
equations.

The matrices of the coefficientsJ15(ja
i (x,u)) andJ25(ja

i (x,u),fa
a(x,u)) are represented

by

J15S 0 z 2y

2z 0 x

y 2x 0
D , J25S 0 z 2y 0 u3 2u2

2z 0 x 2u3 0 u1

y 2x 0 u2 2u1 0
D . ~24!

We observe that the matrixJ1 has rank 2, whereas the matrixJ2 has rank 3. In this situation
the transversality condition is violated in the strong sense. In other words, it is not true th
every function uW 5(u1 ,u2 ,u3) the ranks of the matricesJ1 and J2 coincide. In general, the
system of characteristics is not compatible, the Jacobian matrixJ will not have maximal rank, and
it is not possible to use the classical symmetry reduction approach. To overcome these diffic
let us force the matrixJ2 to be of rank 2. This requirement is equivalent to a system of algeb
equations foruW , obtained imposing that the determinants of all 333 matrices constructed usin
the rows and the columns ofJ2 be equal to zero. Once this algebraic system is solved, we ge
classS of functionsuW 5(u1 ,u2 ,u3) on which transversality is weakly restored. The classS in this
case is characterized by the conditions:

u15 f ~x,y,z,t !x, u25 f ~x,y,z,t !y, u35 f ~x,y,z,t !z, p5p~x,y,z,t !. ~25!

The second step consists in solving the characteristic systemQk
a(x,u(1))50 for the classS of Eqs.

~25!. This forces the functionsf andp to have the form

f 5 f ~r ,t !, p5p~r ,t !, ~26!
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wherer 5Ax21y21z2. Relations~26! represent the most general form for the functionuW andp to
be rotationally invariant in the Euclidean space. Substituting these expressions foruW and p into
Eqs.~13! and ~14!, we find the solution

uW 5
a~ t !

r 3 xW , p5
ȧ

r
2

a2

2r 4 1b. ~27!

The same vector fieldsL1 ,L2 , andL3 provide also a subalgebra of the symmetry algebra
the Euler equations. Andersonet al.13 obtained a class of rotationally invariant solutions of t
Euler equations by means of their technique of reduction diagrams. In Ref. 18 partially inv
solutions related to the subalgebra$L1 ,L2 ,L3% for the equations describing a nonstationary a
isentropic flow for an ideal and compressible fluid in (311) dimensions have been construct
using the transformation~25!. A similar situation is also observed in magnetohydrodynamic19

Our solutions of the Navier–Stokes equations coincide with the solutions of the Euler equ
found in Ref. 13. Physically that means that the solutions~27! describe a laminar flow for which
viscosity plays no role. This phenomenon occurs because the components of the vectoruW in Eq.
~27! are all harmonic functions, i.e., they satisfy the Laplace equation, in addition to the Na
Stokes equations.

Example 2:Now, let us analyze the subalgebra defined by the operators

D5x]x1y]y1z]z12t] t2u1]u1
2u2]u2

2u3]u3
22p]p ,

L35y]x2x]y1u2]u1
2u1]u2

,

~28!
X5tk ]x1k tk21]u1

2k ~k21! tk22x ]p ,

Y5tk ]y1k tk21]u2
2k ~k21! tk22y ]p ,

which is a subalgebra of the Galilei–similitude algebra for a givenkPR. It is immediate to check
that the local transversality is violated for this subalgebra in the strong sense. The matrixJ2 is
now represented by

S x y z 2t 2u1 2u2 2u3 22p

y 2x 0 0 u2 2u1 0 0

tk 0 0 0 k tk21 0 0 2k ~k21! tk22x

0 tk 0 0 0 k tk21 0 2k ~k21! tk22y

D .

If we impose that the matrixJ2 should have rank 3~that is weak transversality!, we get

u15k
x

t
, u25k

y

t
,

u35u3~x,y,z,t !, p5p~x,y,z,t !.

As a second step, let us solve the characteristic systemQa
a(x,u(1))50, which consists of 16

linear differential equations of first order in the derivatives of the velocity componentsuj and the
pressurep. The most general function living in the space of the dependent variables and inv
under the flow associated to the generators~28! is

u15k
x

t
, u25k

y

t
, u35

aS t

z2D
z2 , ~29!
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p52
k~k21!~x21y2!

2t2 1

bS t

z2D
z2 , ~30!

with a andb arbitrary functions oft z22. Substituting into the Navier–Stokes equations~13! and
~14!, we obtain the following three parameter set of solutions:

u15k
x

t
, u25k

y

t
, u35

c1

At
22

kz

t
, ~31!

p5
1

2t2 $c1Atz1k~x21y214c1Atz22z2!2k2~x21y214z2!12c2t%, ~32!

with c1 ,c2 ,kPR. This solution is invariant under the group generated by the algebra~28! and
satisfies weak~but not strong! transversality.

B. The isentropic compressible fluid model

The equations describing the nonstationary isentropic flow of a compressible ideal fluid44

utW1uW •¹uW 1k a ¹a50, ~33!

at1uW •¹a1k21a ¹•uW 50, ~34!

whereuW 5u1(x,y,z,t), u2(x,y,z,t), u3(x,y,z,t) is the velocity field,a5a(x,y,z,t) is the velocity
of sound, related to the pressurep and the densityr by the formulaa5(g p/r)1/2, g is the
adiabatic exponent andk52/(g21). The symmetry groupG of Eqs.~33! and~34! was derived in
Ref. 20. ForkÞ3, G it is generated by the following vector fields:

P05] t , P15]x , P25]y , P35]z , ~35!

K15t]x1]u1
, K25t]y1]u2

, K35t]z1]u3
, ~36!

L15z]y2y]z1u3]u2
2u2]u3 , , ~37!

L25x]z2z]x1u1]u3
2u3]u1

, ~38!

L35y]x2x]y1u2]u1
2u1]u2

, ~39!

F5x]x1y]y1z]z1t] t , G52t] t1u1]u1
1u2]u2

1u3]u3
1a ]a . ~40!

We mention that fork53 the symmetry algebra contains an additional element genera
projective transformations. The operatorsPi ,Ki , andLi are the infinitesimal generators of spa
translations, Galilei boosts and rotations, respectively. The operatorsF and G generate scaling
transformations.

Example 3:Let us consider the subalgebra$L3 ,F1G,K1 ,K2%. The matrixJ2 is given by

S y 2x 0 0 u2 2u1 0 0

x y z 0 u1 u2 u3 a

t 0 0 0 1 0 0 0

0 t 0 0 0 1 0 0

D ~41!
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and the transversality is again violated in the strong sense, because rankJ153 and rankJ254. If
we force the matrixJ2 to be of rank 3, then we get the following constraints:

u15
x

t
, u25

y

t
, u35u3~x,y,z,t !, a5a~x,y,z,t !. ~42!

From the characteristic systemQa
a(x,u(1))50 we deduce

u35z W~ t !, a5z A~ t !, ~43!

whereW andA are arbitrary functions of time. Now, substituting relations~42! and~43! into the
system~33! and ~34! we obtain the relation

A~ t !5A2
1

k
~W21W8! ~44!

and a second order ODE forW

W912S 21
1

kDWW812S 11
1

kDW31
4

k t
~W81W2!50. ~45!

In general, Eq.~45! does not have the Painleve´ property. For special values of the parame
k, namelyk521 andk522, it does. In these cases it can be reduced to a canonical form~see
Ref. 45, p.334! via a linear transformation of the type

W5a~ t ! U~z~ t !!1b~ t !. ~46!

~1! For k521 we have

W9522WW81p~ t ! ~W81W2!, ~47!

wherep(t)54/t. This equation can be integrated and its solution, which is regular, is

W5

c1t2S I 2 5/6S c1t3

3 D1c2I 5/6S c1t3

3 D D
I 1/6S c1t3

3 D1c2I 2 1/6S c1t3

3 D , ~48!

wherec1 andc2 are constants andI n(x) is the modified Bessel function of the first kind. Corr
spondingly we find

A5c1t2 ~49!

in Eq. ~44!.
~2! For k522 we have

W9523WW82W31q~ t !~W81W2!, ~50!

whereq(t)52/t. In this case, we can integrate and the general solution is

W5
4 t31c1

t41c1 t1c2
. ~51!

The solution of Eq.~44! is
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A52)A t2

t41c1t1c2
, ~52!

where c1 , and c2 are constants. The solutions fork521 and k522 represent nonscatterin
waves.

IV. PARTIALLY INVARIANT SOLUTIONS OF SYSTEMS OF DIFFERENTIAL EQUATIONS
AND THE TRANSVERSALITY CONDITION

A useful tool applicable to the study of systems of differential equations, and intim
related to the standard Lie approach, is the theory of partially invariant solutions. The re
notion in this context is the defectd of a k-dimensional manifoldM with respect to a Lie group
G. When the group acts on ap-dimensional submanifoldG#M , it sweeps out an orbitG(G). The
manifold G will be identified with the graphG f of a function u5 f (x), so its dimension will
coincide with the number of independent variables~also denotedp). As we already said, the cas
G(G f)5G f corresponds to theG-invariance of the manifold. Otherwise,G(G f) will be a more
generic subset ofM . There is no guarantee that this subset will be a submanifold. However, i
intersection between an orbitO of G andG f has a dimension which is constant in a neighborho
N of a point ofG f , then there exists a neighborhoodG̃ of the identity ofG such that the subse
G̃ (NùG f) is a submanifold.21 In the subsequent considerations,G(G f) will be considered as a
submanifold.

Let G be a group, acting regularly withs-dimensional orbits. We call the number

d5dimG~G f !2dimG f ~53!

the defectd of the functionf with respect toG. The usualG-invariant functions correspond to th
cased50. A function will be said to be itgenericif d5m05min $s,k2p%. The more interesting
situation is when 0,d,m0 , which is the case we will dealing with. In this case, the functionf
will be said to be partially invariant.3

Let us consider the system~1! of partial differential equations, whose symmetry groupG acts
on thep1q-dimensional spaceM5X3U. Let g be a subalgebra of the symmetry algebra ofD,
andQ the characteristic matrix associated to the set of its generators. Thenu5 f (x) is a partially
invariant solution ofD with defectd with respect tog if and only if3,21,46

rank~Q~x,u(1)!!5d. ~54!

The condition~54! provides a system of differential equations involving the dependent v
ablesu5(u1 , . . . ,uq). In order to determine partially invariant solutions, we can extend
original systemD by adding the set of differential constraints given by the condition~54!. We must
then solve the extended system consisting of Eqs.~1! and ~54!. The equations given by the
prescription~54! are less constraining than those required to obtainG-invariance, as in formulas
~4!. Indeed, condition~4! requires that the rank ofQ be zero@compatible with~54! but stronger#.

In this section we will study the role of the local transversality condition~and in particular of
the notion of weak transversality! in the theory of partially invariant solutions and propose
strategy to find them.

Let us start by noticing that a partially invariant solution of a system of differential equa
can be naturally related to the violation of the transversality condition. Indeed, letD(x,u(n))50 be
a system of differential equations defined overM,X3U andu05u0(x0) be a solution ofD. Let
G be anr -dimensional subgroup of the symmetry group ofD, acting regularly onM , whose
generators are given by~2!. If the condition

rank~ja
i ~x0 ,u0!!,rank~ja

i ~x0 ,u0!,fa
a~x0 ,u0!! ~55!

is satisfied, thenu05 f (x0) is a partially invariant solution ofD ~or possibly a generic one!.
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Example 4:The vector nonlinear Schro¨dinger equation

ic t1Dc5~ c̄c!c, ~56!

wherecPCN andD is the Laplace operator inn dimensions, plays an important role in many are
of physics. For instance, in nonlinear optics it describes the interaction of electromagnetic
propagating with different polarizations in nonlinear media.47,48 In hydrodynamics, it furnishes a
model for the description of the interactions ofN water waves in a deep fluid.49–51For these and
other applications of the vector nonlinear Schro¨dinger equation, see also Ref. 52.

Let us consider the case of three components (N53) and two spatial dimensions (n52). The
symmetry algebra has been computed in Ref. 53. In terms of amplitude and phase, the com
of the wave function will be written ascm5rmeivm. The symmetry algebra of Eq.~56! for N
53 andn52 has the form

g5sch~2! % su~3!. ~57!

The Schro¨dinger algebra sch~2! has a basis realized by the vector fields

P15]x , P25]y , K15t]x1
1

2
x(

m
]vm , ~58!

K25t]y1
1

2
y(

m
]vm , ~59!

L125y]x2x]y , M5(
m

]vm , ~60!

D52t] t1x]x1y]y2~x21y2!(
m

]vm , ~61!

C5t2] t1tFx]x1y]y2(
m

rm]rmG1
1

4
~x21y2!(

m
]vm . ~62!

We shall not need the algebra su~3! ~given in Ref. 53!, only its Cartan subalgebra

T15]v12]v2 , T25]v22]v3 . ~63!

Let us consider the subalgebra

$]x , ]y , y ]x2x ]y1a1]v11a2]v21a3]v3%, ~64!

generated by the two translations in the plane and a rotation combined with a transformation
phases. The matrix of the coefficientsJ2 , given by

S 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

y 2x a1 a2 a3 0 0 0
D

has rank 3, unless (a1 ,a2 ,a3)5(0,0,0). Let us consider the casea25a350, a1Þ0. We obtain
r i5r i(t) ( i 51,2,3), v15v1(t), v25v2(t), but v3 is not an invariant, so we keepv3

5v3(x,y,z,t). Substituting into Eq.~56!, we obtain
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r15
g1

At~ t2t0!
, r25g2 , r35g3 , ~65!

v15
x2

4~ t2t0!
1

y2

4 t
1

g1
2

t0
ln

t

t2t0
2~g2

21g3
2! t, ~66!

v25v35
g1

2

t0
ln

t

t2t0
2~g2

21g3
2! t. ~67!

This solution is partially invariant with respect to the subgroup corresponding to the subal
~64! with a1Þ0, a25a350. Using the expressions~58!–~62! we can check that this solution is i
general not invariant under any subgroup of the Schro¨dinger group Sch~2!. The one exception is
the limit t0→0 when the solution is invariant under rotations generated byL12. Thus this partially
invariant solution is in general irreducible and becomes reducible fort0→0.

Example 5:Let us consider again the isentropic compressible model@formulas~33! and~34!#.
For the subalgebrag5$K1 ,K2 ,K3 ,P3% the matrixJ2 is given by

S t 0 0 0 1 0 0 0

0 t 0 0 0 1 0 0

0 0 t 0 0 0 1 0

0 0 1 0 0 0 0 0

D .

Here transversality is violated also in the weak sense. The invariants of the correspondi
group areF5u1t2x,G5u2 t2y, a andt. The matrixJ of ~3! is not invertible, but we can write

u15
F~ t !1x

t
, u25

G~ t !1y

t
, a5A~ t !, ~68!

but leaveu3 general, i.e.,u35u3(x,y,z,t). Substituting Eqs.~68! into ~33!, ~34! we obtain the
solution18

u15
x

t
, u25

y

t
, u35

z1l~j1 ,j2!

t1t0
, a5cS 1

t2~ t1t0! D
1/k

, ~69!

wherej15x/t , j25y/t , l is an arbitrary function ofj1 andj2 , c andt0 are constants. The ran
of the matrixQa

a of the characteristics associated to~69! is equal to 1, and therefore this solutio
is partially invariant with respect to the subalgebrag, with d51. Now let us check if it is reducible
under any other subalgebra of the full symmetry algebra~35!–~40!. To do this, it is useful to study
the kernelK of the characteristic matrixQ for the full symmetry algebra~35!–~40! associated to
the solution~69! and to determine its generators$k1 , . . . ,k l%. It is clear that if at least a subspac
of K can be generated by constant vectors, then the solution will be reducible with respect
subalgebra identified by these vectors.

In the case of the solution~69!, the kernel is generated by eight vectors, each having
components. It is possible to show that there exists only one constant generator, namely

k5~0,0,0,t0,0,0,0,0,0,1,0,0!.

This implies that the solution~69! is reducible with respect to the one-dimensional subalge
$K31t0P3%.

The concept of ‘‘irreducibility’’ of a partially invariant solutions needs further clarificatio
Once a solutionu5 f (x), partially invariant underGi is found, it is of course possible to verif
whether it is invariant under some other subgroupGi8,G. Let this be the case, letGi8 satisfy the
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strong transversality condition, and have generic orbits of dimensionr i8 . The standard Lie method
using the subgroupGi8 would then reduce system~1! to a system withq2r i8 variables. In general
specially for q2r i8.1, we may not be able to solve this system and the methods of pa
invariance for the original subgroupGi may be more tractable. We have already seen an exam
of this situation, namely, Example 4 above. Solution~65!–~67! is invariant under rotations in the
limit t0→0. If we look for such an invariant solution directly, we must setr i5r i(r ,t), v i

5v i(r ,t) with r 5Ax21y2. This reduces Eq.~56! to a system of PDE’s in two variables. Th
system is very hard to solve and solution~65!–~67! would be very hard to obtain~without
knowing it in advance!. If the invariance subgroupGi8 does not satisfy the weak transversal
condition, it may not help us at all.

We observe that the violation of the transversality condition isnot a necessary condition fo
the existence of partially invariant solutions of a systemD(x,u(n))50. In fact, there could be
solutions ofD which are not solutions of the characteristic system, even if it is compatible a
algebraic system.

Example 6:As a matter of fact, a counterexample was provided by Ondich,21 namely the two
variable Laplace equation, expressed in the following form:

v5ux , vy5wx , w5uy , vx52wy . ~70!

This system is clearly invariant with respect to the translations in the plane, generated
vector fields$]x ,]y%. The characteristic matrixQ has the form

S 2ux 2vx 2wx

2uy 2vy 2wy
D . ~71!

Invariant solutions are obtained if and only if the rank of this matrix is equal to zero. This im
that u, v, andw are constants:

u5k, v5l, w5m, k, l, mPR.

Let us impose that the rank ofQ is equal to 1. This means that the two rows in Eq.~71! are
proportional. Then solving the corresponding equations and replacing the result into Eqs.~70!, we
get the following solution:

~u,v,w!5~a x1b y1c, a, b!, a, bPR. ~72!

By construction, this solution is partially invariant with respect to the group of translations in
plane, with defectd51. Nevertheless, the transversality condition is satisfied. More generally
transversality condition is always satisfied if we have rank(ja

i (x,u))5dimg.
We mention that the previous solution~72! can be also obtained starting from the symme

subalgebra$]x ,]y ,]u% for which both the weak and strong transversality conditions are viola
In this case, the invariants areI 15v5a, I 25w5b, wherea andb are arbitrary constants. Th
functionu remains arbitrary. Putting these constraints into Eqs.~70!, we recover immediately the
solution ~72!. However, it should be noticed that the analysis of the rank of the characte
matrix furnishes a complete characterization of the invariant and partially invariant solution
system of differential equations, and provides a more general procedure than the use
invariants. For instance, this second approach does not allow to recognize the solution~72! as a
partially invariant one with respect to the subalgebra$]x ,]y%.

Example 7:To show that a symmetry group satisfying the strong transversality can pro
both invariant and partially invariant solutions, let us consider the Euler equations for an in
pressible nonviscuous fluid in (311) dimensions:
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utW1uW •¹uW 1¹p50, ~73!

¹•uW 50, ~74!

The symmetry group of the Euler equations is well known.1,5 It coincides with the symmetry
group of the Navier–Stokes equations, except that it contains an additional dilation. ThusD of
Eq. ~20! is replaced by

D15x]x1y]y1z]z1t] t , ~75!

D25t ] t2u1]u1
2u2]u2

2u3]u3
22p ]p . ~76!

We consider here the subgroup of Galilei transformations. Its Lie algebra is given by

K15t]x1]u1
, K25t]y1]u2

, K35t]z1]u3
. ~77!

Here the transversality holds in the strong sense and indeed an invariant solution will ha
form

u15
x

t
1F1~ t !, u25

y

t
1F2~ t !, u35

z

t
1F3~ t !, p5P~ t !. ~78!

Let us now look for partially invariant solutions of the system~73! and ~74! with respect to the
same subgroup and impose that the defect bed52. Writing down the characteristic system ass
ciated to~77! and imposing that rankQ52, we get the following constraints onu1 andu2 :

u15
x

t
2m l

z

t
1m lu31h1~ t !, ~79!

u25m u31
y

t
2m

z

t
1h2~ t ! ~80!

but u35u3(x,y,z,t) andp5p(x,y,z,t) remain arbitrary.
Substituting the relations~79! and ~80! into the Euler equations, and choosing for simplic

h15h250, we obtain the solution

u15
1

t @m2~11l2!11#
$x @m2~122l2!11#23lm ~my1z!%1l m t2FS ly2x

t
,
l m z2x

t D ,

~81!

u25
1

t @m2~11l2!11#
$y @m2~l222!11#23m ~lmx1z!%1m t2FS ly2x

t
,
l m z2x

t D ,

~82!

u35
1

t @m2~11l2!11#
$z @m2~11l2!22#23~lx1y!%1t2FS ly2x

t
,
l m z2x

t D , ~83!

p52
3m2

t2~l2m21m211! S lx1y1
z

m D 2

1p~ t !, ~84!

wherel, m are constants,F is an arbitrary function of its arguments andp is an arbitrary function
of t. We have checked explicitly that, ifF is kept arbitrary, this solution is not invariant under a
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subgroup of the symmetry group. Thus, it represents an irreducible partially invariant solut
the Euler equations of defectd52, with respect to a subgroup satisfying the strong transvers
condition. If

F5S ly2x

t D ~3a12b!/a

FS ly2x

l m z2xD , a,bPR,

whereF is an arbitrary function of its argument, then the solution~81!–~84! is invariant under the
subgroup generated byaD11bD2 , whereD1 andD2 are defined in Eqs.~75! and ~76!.

However, this subgroup provides a reduced system with three independent variable
would be very difficult to solve.

Particularly interesting is the case when partially invariant solutions can be found that s
weak but not strong transversality. Indeed, imposing weak transversality basically means
class of functionsu5 f (x) is chosen in such a way that the characteristic system is algebrai
compatible. This condition is of course not sufficient to guarantee the invariance of these fun
under the action of the considered groupG. Indeed, if we compute the rank of the matrixQa

a on
this class of functions, in general it will be not equal to zero. Then, once weak transversa
satisfied, we can choose either to have group invariant solutions, using the method outlined
III, or to use the class of functionsu5 f (x) to get partially invariant solutions.

In the next two examples, we will see how this approach can be used to obtain in a simp
straightforward way new classes of solutions of hydrodynamic systems.

Example 8:In Example 2 we studied the algebra~28! which is a subalgebra of the symmet
algebra of both the Euler and the Navier–Stokes equations. We showed that the requirem
weak transversality implies

u15k
x

t
, u25k

y

t
, ~85!

u35u3~x,y,z,t !, p5p~x,y,z,t !. ~86!

These formulas define a class of functions which is partially invariant with defectd52 with
respect to the subalgebra~28!. At this stage, we can choose either to have group invariant solut
or partially invariant ones. Indeed, in Example 2 we forced the class of functions~85! and~86! to
be a solution of the characteristic system, and then substituting the obtained expressions~29! and
~30! into the system~13! and ~14! we constructed the group invariant solutions~31! and ~32!.

Another possibility is to substitute formulas~85! and ~86! directly into the Euler equations
~73! and ~74! or the Navier–Stokes equations~13! and ~14! without requiring further invariance
properties. For the case of the Euler equations we get the constraints

t2px1k ~k21! x50, ~87!

t2py1k ~k21! y50, ~88!

u3z1
2k

t
50, ~89!

u3t1u3u3z1
k

t
~x u3x1y u3y!1pz50. ~90!

We solve this system and obtain the following partially invariant solution of the Euler equat
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u15k
x

t
, u25k

y

t
, ~91!

u352
2kz

t
1x2F S tx2 1/k,

y

xD , ~92!

p52
k ~k21! ~x21y2!

2 t2 2
k ~2k11! z2

t2 1 f ~ t !, ~93!

where j5tx2 1/k, h5 y/x and f (t) and F (j,h) are arbitrary functions of their arguments. A
always, the question of the irreducibility of this solution arises. To answer it we must invok
entire symmetry algebrag of the Euler equations, namely the algebra~15! and ~23! with the
dilation D replaced by the two dilations~75! and~76!. The result is that solution~91!–~93! is not
invariant under any subgroup of the symmetry group, unless the functionF(j,h) satisfies the
following linear PDE:

F S c1

k21

k
1c2D j2c3

jh

k
2

c4

k
jk111c5jkGFj1@2c3~h211!2c4jkh1c5jk#Fh

1~2c11c212c3h!F2c6~4k11!j2k50. ~94!

If this equation is satisfied, the solution is invariant under the subgroup generated by

X5c1D11c2D21c3L31c4B11c5B21c3B3 , ~95!

wherec1 , . . . ,c6 are real constants,D1 andD2 are the dilations given by Eqs.~75! and~76!, L3

is the generator~23!, and the functions appearing in the boosts~15!–~17! are now monomials int,
namely

a5tk, b5tk, g5t2k11. ~96!

For any other functionF(j,h) the solution is irreducible. The same procedure can be app
to the Navier–Stokes equations. Repeating the previous steps, we obtain the following so

u15k
x

t
, u25k

y

t
, ~97!

u352
2 k z

t
1a~x,y,t !, ~98!

p52
k ~k21! ~x21y2!

2 t2 2
k ~2k11! z2

t2 1 f ~ t !, ~99!

wherea(x,y,t) satisfies the following equation:

a t1
k

t
~x ax1y ay22a!2n ~axx1ayy!50. ~100!

We thus obtain a large class of partially invariant solutions of the Navier–Stokes equation
rametrized by the solutions of thelinear partial differential equation~100!.

Example 9:Partially invariant solutions with weak transversality can be also found for
case of the compressible fluid model~33! and ~34!. Let us again consider the subalgebra$L3 ,F
1G,K1 ,K2% and the corresponding weak transversality condition~42!. Substituting into Eqs.~33!
and ~34! we obtain a coupled system of quasilinear first order PDE’s, namely,
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ax50, ay50,

u3t1u3 u3z1
x

t
u3x1

y

t
u3y1k a az50, ~101!

at1u3 az1
a

k S 2

t
1u3zD50.

In particular, if we assumeaz50, we reobtain the solution~69!. However, the system~101!
allows much more general solutions.

V. CONCLUSIONS

A brief comparison of the results of this article and Ref. 13 is in order. In Sec. III we add
the same question, as Andersonet al. in Ref. 13 do, namely how to obtain ‘‘Group Invarian
Solutions Without Transversality’’~their title!. The main difference between us is one of outloo
They prove rigorous theorems under well-defined assumptions, in particular that the local
action is projectable. They make efficient use of the geometric theory of differential equation
further develop this theory by introducing the concept of the ‘‘kinematic bundle’’ and u
kinematic and dynamic reduction diagrams. They use this concept to impose transversality a
of the original fiber bundle.

Our approach is a pragmatic one, aimed at producing new solutions. We use simp
well-known mathematical concepts~though we do not sacrifice mathematical rigour!. From the
results of Ref. 13 we know that transversality is not always a necessary requirement. We w
obtain particular solutions when transversality~which we call ‘‘strong transversality’’! is not
satisfied. From the geometric point of view we restrict to local coordinates (x,u). From the point
of view of differential equations these coordinates are the original independent and dep
variables (x,u). The kinematic bundle concepts are then replaced by an equivalent require
namely weak transversality. This is formulated in a ‘‘user friendly’’ way as the requirement~12!
that two matrices should have the same rank. The subtleties of Ref. 13 are then avoi
applications. In particular, we do not require that the group action be projectable~fiber preserving!.
As an example, consider a system of two first order PDE’s with two dependent and two ind
dent variables$u1 ,u2 ,x1 ,x2%,

x1u1x1
1x2u1x2

2u15x2u1x1
F1~x2 ,u1!, ~102!

u1x2
u2x1

2u1x1
u2x2

1u1x1
5u2x1

F2~x2 ,u1!, ~103!

whereF1 andF2 are arbitrary. This system is invariant under a group generated by

v15u1]x1
, v25x2]x1

1~u22x2!]u2
. ~104!

Clearly the action is neither transversal, nor projectable. Weak transversality is impos
putting u25x2 . An invariant solution will have the formu25x2 , u15f(x2). Substituting into
~102! and ~103! we obtain the group invariant solution

u25x2 , u15cx2 . ~105!

Notice that the system~102! and~103! is linear if F1 andF2 depend onx2 alone. To see tha
‘‘weak transversality without projectability’’ is not limited to first order equations, consider
system of two second order PDE’s,
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u1x1
u2x1x1

2u2x1
u1x1x1

5~u1x1
!2u2x1x2

2u1x1
u2x1

u1x1x2
1u2x1

u1x2
u1x1x1

2u1x1
u1x2

u2x1x1
,
~106!

u1x1x1
5u1x1

u1x1x2
2u1x2

u1x1x1
. ~107!

This system is invariant under the group generated by the algebra~104!. The invariant solution
with weak transversality is

u25x2 , u15f~x2!, ~108!

wheref(x2) is an arbitrary function. The solutions~105! and ~108! are not ‘‘irreducible’’ and
~104! is only a subalgebra of the symmetry algebra of these equations. The point we are m
is that the ‘‘weak transversality’’ method works for this algebra, even though the correspo
group action~for v1) is not projectable.

The main conclusion of this article is that one can do considerably more with the symm
groupG of a system of partial differential equations than apply the standard method for fin
group invariant solutions.

Indeed, let us assume that the largest groupG ~of local Lie point transformations! leaving the
system~1! invariant has been found and its subgroups classified. For each subgroupG0 , or its Lie
algebrag0 we should proceed as follows.

~1! Obtain invariant solutions. First check whether the transversality condition~10! is satisfied
~in the strong sense!. If it is, we apply Lie’s classical method. This is always possible sin
transversality assures that the rank condition~3! is satisfied. If the~strong! transversality condition
is not satisfied, we may still be able to obtain solutions invariant underG0 ,13 by imposing ‘‘weak
transversality’’ on solutions, as described in Sec. II above. This is illustrated in Sec. III by
amples 1, 2, and 3.

~2! Obtain partially invariant solutions. These can be obtained by~at least! three complemen-
tary methods. If the transversality condition~10! is not satisfied and weak transversality cannot
imposed, then the characteristic system~4! is not consistent and the rank condition~3! for the
invariants is not satisfied. We then choose a subset ofq8,q invariants such that we can expre
q8 dependent variables in terms of invariants. The remainingq2q8 variablesua are considered as
functions of all the original variablesx1 , . . . ,xp . Examples 4 and 5 of Sec. IV are of this type,
are those of Refs. 16 and 17.

If the transversality condition is satisfied forG0 we may still be able to obtain partially
invariant solutions, in addition to the invariant ones. Instead of imposing that the matr
characteristics~4! have rank zero@i.e., that all Eqs.~4! be satisfied# we require that on solutions w
have rankQ5d, with d51,2,. . . , as thecase may be. This rank condition must be solv
explicitly for ua and the result substituted into Eq.~1! ~see Examples 6 and 7!. The third possi-
bility is to impose weak transversality~if possible!, but still to impose rankQ5d>1 ~see Ex-
amples 8 and 9!.

~3! Go beyond invariant and partially invariant solutions, either by the method of g
foliation,3,35,36or by other methods not using the symmetry groupG.27–34

We emphasize that the weak transversality method is algorithmic and can be implemen
a computer package. It provides both invariant and partially invariant solutions and is w
applicable. Missing at this stage are clear criteria that tell us which approach will be fru
Furthermore, the same solution may be obtained by different methods and it is not clear wh
these methods will lead to the least amount of calculations. For instance, solutions pa
invariant under some subgroupG1,G have been called ‘‘reducible,’’16–22 if they are actually
invariant under some other subgroupG2,G. However, it may be more difficult to useG2 , than
G1 , specially if the dimension ofG2 is small with respect to the number of independent variab
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Eq. ~3.7! of the paper defines the functionP(m) so that the formulas for$s,h̄(s)% yield e(m)
exactly, via Eq.~3.5!. However, with the scaling parameters$b,g,l% included, the ‘‘running’’P
which guarantees that Eq.~3.11! of the paper is exact isnot simply P(m), as claimed, but rathe

P5P~m!, where m5mS b

gl D 1/3

.

With this correction, the expression forP is now consistent with the energy scaling formula giv
in Eq. ~3.12! of the paper. In the application to theN-body problem, the expressionP(m) in Eq.
~1.4! of Theorem 1 must be replaced by

P~m!, where m5m~N/~g~N21!2!!1/3.

The result is then consistent with the explicitN-body lower bound formula given in Eq.~5.7! of
the paper. Figures 2 and 3 in the paper should be replaced by the revised Fig. 2 and 3 show
The upper and new lower bounds in Fig. 3 converge to the exactN-body energies in the Schro¨-
dinger limit m→`.
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FIG. 2. Upper~full lines! and lower~dashed lines! bounds to the lowest energyE(m) of the N-relativistic harmonic-
oscillator problem forN52,3, . . . ,8obtained by employing the constant valuesP51.376 andP51.5, respectively, in Eq.
~1.4! of Theorem 1.

FIG. 3. Upper~full lines! and lower~dashed lines! bounds to the lowest energyE(m) of the N-relativistic harmonic-
oscillator problem forN52,3,. . . ,8 obtained by employing the valuesP5P(m), m5m(N/(g(N21)2))1/3, and P
51.5, respectively, in Eq.~1.4! of Theorem 1. ForN52, the lower bound is exact.
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We address the classical and quantum marginal problems, namely the question of
simultaneous realizability through a common probability density in phase space of
a given set of compatible probability distributions. We consider only distributions
authorized by quantum mechanics, i.e., those corresponding to complete commut-
ing sets of observables. For four-dimensional phase space with position variablesqW
and momentum variablespW , we establish the two following points:~i! given four
compatible probabilities for (q1 ,q2), (q1 ,p2), (p1 ,q2), and (p1 ,p2), there does
not always exist a positive phase space densityr(qW ,pW ) reproducing them as mar-
ginals; this settles a long standing conjecture; it is achieved by first deriving Bell-
type inequalities in phase space which have their own theoretical and experimental
interest.~ii ! Given instead at mostthreecompatible probabilities, there always exist
an associated phase space densityr(qW ,pW ); the solution is not unique and its general
form is worked out. These two points constitute our ‘‘three marginal
theorem.’’ © 2003 American Institute of Physics.@DOI: 10.1063/1.1578532#

I. INTRODUCTION

In classical mechanics, position and momentum can be simultaneously specified. Hence
space density has a well-defined meaning in classical statistical mechanics. In quantum the
probability density for observing eigenvalues of a complete commuting set~CCS! of observables
is specific to the experimental context for measuring that CCS. Joint probabilities for diff
CCS which contain mutually noncommuting operators are not defined. For example, for a
dimensional configuration space, withqW ,pW denoting position and momentum, probability densit
of anyone of the four CCS (q1 ,q2), (q1 ,p2), (p1 ,q2) or (p1 ,p2) are defined, but not their join
probabilities. The question one may raise is can one define such joint probabilities, e.g., a
space probability densityr(qW ,pW ) such that all its marginals~in agreement with common termino
ogy, by ‘‘marginal’’ of a distribution over several variables, we denote integrals of the distribu
over a subset of its variables! coincide with the quantum mechanical probabilities for the differ
individual CCS? This general question was first raised by Martin and Roy.1

The Martin–Roy contextuality theorem demonstrates the impossibility of realizing qua
probability densities of all possible choices of the CCS of observables as marginals of one p
definite phase space density. For example, consider a two-dimensional configuration spa

a!Electronic mail: auberson@lpm.univ-montp2.fr
b!Electronic mail: mahoux@spht.saclay.cea.fr
c!Electronic mail: shasanka@theory.tifr.res.in
d!Electronic mail: vsingh@theory.tifr.res.in
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coordinatesq1a , q2a be obtained fromq1 ,q2 by a rotation of arbitrary anglea, and momenta
p1a , p2a be related similarly top1 ,p2

S q1a

q2a
D5VS q1

q2
D , S p1a

p2a
D5VS p1

p2
D , ~1.1!

where

V5S cosa sina

2sina cosa D . ~1.2!

Does there exist for every quantum state~with density operatorr̂) a positive definite phase spac
densityr(qW ,pW ) such that its marginals agree with the corresponding quantum probabilities,

E dp1a dq2a r~qW ,pW !5^q1a ,p2au r̂ uq1a ,p2a& ~1.3!

for all a ranging from 0 to 2p? They answered this question in the negative by finding a star̂
for which Eq.~1.3! for all a are inconsistent with positivity ofr. Since differenta correspond to
different experimental contexts, the Martin–Roy theorem is a new Gleason–Kochen–Sp
type contextuality theorem.2 The positivity of the phase space densityr(qW ,pW ) is absolutely crucial
for this theorem; otherwise the Wigner distribution function3 would be a solution of~1.3!.

Equations~1.3! constitute conditions on an infinite set of marginals ofr(qW ,pW ) ~corresponding
to the continuously infinite choices fora! to agree with corresponding quantum probability de
sities. Their inconsistency still leaves open the question of consistency of a finite number o
marginal conditions.

Indeed, the consistency of two marginal conditions where the marginals involve only n
tersecting sets of variables has been known for some time. Cohen and Zaparovanny4 constructed
the most general positiver(qW ,pW ) obeying

E dpW r~qW ,pW !5^qW ur̂uqW &, E dqW r~qW ,pW !5^pW ur̂upW &.

Their solutions generalize the obvious simple uncorrelated solution for pure statesc,

r~qW ,pW !5uc~qW !u2 uc̃~pW !u2,

where tilde denotes Fourier transform. Based on generalized phase space densities ex
position momentum correlations, Roy and Singh5 constructed a causal quantum mechanics rep
ducing quantum position and momentum probability densities, thus improving on De Bro
Bohm mechanics6 which only reproduced the quantum position probability densities. Later, g
much further than the nonintersecting marginals of Cohenet al.,4 Roy and Singh7 constructed a
causal quantum mechanics based on a positiver(qW ,pW ) whose marginals reproduce the quantu
probability densities of a chain ofN11 different CCS, e.g.,

~Q1 ,Q2 ,...,QN!, ~P1 ,Q2 ,...,QN!, ~P1 ,P2 ,Q3 ,...,QN!,...~P1 ,P2 ,...,PN!.

HereN is the dimension of the configuration space, and each CCS in the chain is obtained
the preceding one by replacing one of the position operatorsQi by the conjugate momentum
operatorPi .

Roy and Singh proposed the following definition: amaximally realistic causal quantum
mechanicsis a causal mechanics which simultaneously reproduces the quantum probability
sities of the maximum number of different~mutually noncommuting! CCS of observables a
marginals of the same positive definite phase space density. They also conjectured t
N-dimensional configuration space this maximum number isN11.
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A proof of this long standing conjecture is important for quantum mechanics where it q
tifies the extent of simultaneous realizability of noncommuting CCS.

In this paper, we restrict ourselves to the case ofN52 degrees of freedom. The general ca
(N.2) will be dealt with in a forthcoming paper. In Sec. II below, we first state the classica
quantum marginal problems and second, show that, given four classical compatible two-va
probability distributions, there does not always exist a positive phase space distribution rep
ing them as marginals. In Sec. III, we develop a new tool, ‘‘the phase space Bell inequal
which are the phase space analogues of the standard Bell inequalities8 for a system of two
spin-half particles. We use them in Sec. IV to prove the conjecture for four-dimensional p
space (N52), namely the impossibility of simultaneous realization of quantum probabilitie
more than three CCS as marginals. In Sec. V, we explicitly construct the most general phas
distribution which reproduces probabilities of three CCS as marginals. These results, the
marginal theorem, are relevant for the construction of maximally realistic quantum mechan

As our results are essentially new theorems for multidimensional Fourier transforms, th
also expected to be useful for classical signal and image processing.9 The theorems of the presen
paper and their generalizations to arbitraryN ~Ref. 10! considerably advance previous results
the field, which have only dealt with nonintersecting sets of marginals~e.g., time and frequency!.
A summary of the results of this paper without detailed proofs is being reported separately11

II. FOUR MARGINAL PROBLEM

Let us consider a physical system with two-dimensional configuration space. Let (q1 ,p1) and
(q2 ,p2) be a set of canonical variables in the corresponding phase space. We look for a~normal-
ized! probability distributionr(q1 ,q2 ,p1 ,p2) such that

r~q1 ,q2 ,p1 ,p2!>0 , ~2.1!

E dp1 dp2 r~q1 ,q2 ,p1 ,p2!5R~q1 ,q2! , ~2.2!

E dp1 dq2 r~q1 ,q2 ,p1 ,p2!5S~q1 ,p2! , ~2.3!

E dq1 dp2 r~q1 ,q2 ,p1 ,p2!5T~p1 ,q2! , ~2.4!

E dq1 dq2 r~q1 ,q2 ,p1 ,p2!5U~p1 ,p2! , ~2.5!

where the four marginalsR(q1 ,q2), S(q1 ,p2), T(p1 ,q2), and U(p1 ,p2), the respective joint
probabilities, are given. For consistency we must have

R,S,T,U>0, ~2.6!

and
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E dq2 R~q1 ,q2!5E dp2 S~q1 ,p2! ,

E dq1 R~q1 ,q2!5E dp1 T~p1 ,q2! ,

~2.7!

E dq1 S~q1 ,p2!5E dp1 U~p1 ,p2! ,

E dq2 T~p1 ,q2!5E dp2 U~p1 ,p2! .

We shall refer to the following problem as the Classical four marginal problem:Given four
distributions R, S, T, and U, satisfying the consistency conditions, does there always ex
positiver(q1 ,q2 ,p1 ,p2) with these distributions as marginals?

When the system is quantum mechanical and is described by a state vectoruC&, each of the
four marginals involves a pair of compatible observables and we have

R~q1 ,q2!5u^q1 ,q2ur̂uq1 ,q2&u2 ,

S~q1 ,p2!5u^q1 ,p2ur̂uq1 ,p2&u2 ,
~2.8!

T~p1 ,q2!5u^p1 ,q2ur̂up1 ,q2&u2 ,

U~p1 ,p2!5u^p1 ,p2ur̂up1 ,p2&u2 .

In this case, the above consistency conditions are automatically satisfied. We then refer
problem as thequantum four marginal problem. A positive answer to it for all statesr̂ would mean
that a realistic interpretation of the quantum results is possible~to the extent that only measure
ments connected to the four marginals are involved!.

We shall see that the answer to both problems is negative.
Let us first show that the classical four marginal problem does not always admit a solutio

this end, consider the following set of marginals:

R~q1 ,q2!5 1
2 @d~q12a1!d~q22a2!1d~q12a18!d~q22a28!# , ~2.9!

S~q1 ,p2!5 1
2 @d~q12a1!d~p22b2!1d~q12a18!d~p22b28!# , ~2.10!

T~p1 ,q2!5 1
2 @d~p12b1!d~q22a2!1d~p12b18!d~q22a28!# , ~2.11!

U~p1 ,p2!5 1
2 @d~p12b1!d~p22b28!1d~p12b18!d~p22b2!# , ~2.12!

which obviously satisfy the consistency conditions~2.6! and ~2.7!. They possess two essenti
features. First, their nonfactorized form. Second, in view of the expressions ofR, S, andT, the
positions of the factorsd(p22b2) and d(p22b28) in the expression ofU are not the ‘‘natural
ones.’’

Equation~2.9! means that the support of the distributionR in the plane (q1 ,q2) consists in the
two points (a1 ,a2) and (a18 ,a28). As a consequence, any positiver satisfying~2.2! should have
support from the projection of which on the plane (q1 ,q2) would also consist in those two points
That is

r5d~q12a1!d~q22a2!a~p1 ,p2!1d~q12a18!d~q22a28!a8~p1 ,p2! , ~2.13!
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wherea anda8 are some positive distributions. Similarly, from Eqs.~2.3! to ~2.5!

r5d~q12a1!d~p22b2!b~p1 ,q2!1d~q12a18!d~p22b28!b8~p1 ,q2! ~2.14!

5d~p12b1!d~q22a2!g~q1 ,p2!1d~p12b18!d~q22a28!g8~q1 ,p2! ~2.15!

5d~p12b1!d~p22b28!h~q1 ,q2!1d~p12b18!d~p22b2!h8~q1 ,q2! . ~2.16!

According to Eqs.~2.13!–~2.15!

r5v d~q12a1!d~q22a2!d~p12b1!d~p22b2!1v8d~q12a18!d~q22a28!d~p12b18!d~p22b28! ,
~2.17!

with v>0, v8>0, (v1v851). Clearly, Eqs.~2.16! and~2.17! are incompatible, which establishe
the nonexistence ofr, and settles the classical four marginal problem.

This however does not settle the quantum problem. Actually, the above example obv
cannot be strictly realized through a wave function in accordance with Eqs.~2.8!. More than that,
this example is so ‘‘twisted’’ that, even after smoothing out thed measures in Eqs.~2.9!–~2.12!,
approaching it close enough through a wave function appears as very difficult~if not impossible!.
Instead, we develop a new mathematical tool.

III. PHASE SPACE BELL INEQUALITIES

Consider any choice of functionsr (q1 ,q2), s(q1 ,p2), t(p1 ,q2), andu(p1 ,p2), obeying

A<r ~q1 ,q2!1s~q1 ,p2!1t~p1 ,q2!1u~p1 ,p2!<B ~;q1 ,q2 ,p1 ,p2!. ~3.1!

Multiply by r(qW ,pW ), integrate over phase space and use positivity and normalization ofr(qW ,pW ).
We deduce that the~classical as well as quantum! four marginal problem cannot have a solutio
unless

A<E dq1 dq2 r ~q1 ,q2!R~q1 ,q2!1E dq1 dp2 s~q1 ,p2!S~q1 ,p2!

1E dp1 dq2 t~p1 ,q2!T~p1 ,q2!1E dp1 dp2 u~p1 ,p2!U~p1 ,p2!<B . ~3.2!

HereR, S, T, andU are defined by Eqs.~2.8! in the quantum case. It turns out that a particula
interesting choice is

r ~q1 ,q2!5sgnF1~q1! sgnF2~q2! ,

s~q1 ,p2!5sgnF1~q1! sgnG2~p2! ,
~3.3!

t~p1 ,q2!5sgnG1~p1! sgnF2~q2! ,

u~p1 ,p2!52sgnG1~p1! sgnG2~p2! ,

with A522, B512 and withF1 , F2 , G1 , andG2 arbitrary nonvanishing functions.~Note that,
with this choice, the sumr 1s1t1u assumes only its two extremal valuesA522 and B
512, which makes it in a sense optimal.! Then the inequalities~3.2! become a phase spac
analogue of the Bell inequalities for spin variables.

The necessary conditions~3.2! provide us with an alternative proof that the classical probl
does not always admit a solution. Indeed, it is readily seen that they are violated for the ma
~2.9!–~2.12! and functionsF ’s andG’s such that
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F1~a1!,F2~a2!,G1~b1!,G2~b2!.0 ,

F1~a18!,F2~a28!,G1~b18!,G2~b28!,0 .

We shall see in the next section that the necessary conditions~3.2! can be violated also in the
quantum case. There, the analogy between our correlation inequalities~3.2! @with the choice~3.3!#
and Bell inequalities will become more apparent, especially as regards to their implications

IV. SOLVING THE FOUR MARGINAL QUANTUM PROBLEM

This section is divided into four parts. In the first one, we prove the existence of w
functions which violate the correlation inequalities~3.2!. Strictly speaking, this already settles th
problem. However, the explicit construction of such wave functions, which we present in
IV B and IV C, is worthwhile in that it exhibits the physical implications of our inequalities.
Sec. IV D, we elaborate on the formal analogy with Bell inequalities.

A. Nonconstructive proof

One first notices thatx1(q1)[ 1
2 @11sgnF1(q1)# is the characteristic function of some s

S1,R, and similarly forF2 , G1 , andG2 , so that Eqs.~3.3! read

r ~q1 ,q2!5~2x121!~2x221! ,

s~q1 ,p2!5~2x121!~2x2821! ,
~4.1!

t~p1 ,q2!5~2x1821!~2x221! ,

u~p1 ,p2!52~2x1821!~2x2821! ,

wherex i stands forx i(qi) andx i8 for x i8(pi), (i 51,2). Inequalities~3.1! then become

0<P<1 , ~4.2!

and in factP(12P)50, whereP(q1 ,q2 ,p1 ,p2) is given by

P5x11x21x18x282x1x22x1x282x18x2 . ~4.3!

Let us define a corresponding quantum operatorP̂ by

P̂5x̂11x̂21x̂18x̂282x̂1x̂22x̂1x̂282x̂18x̂2 , ~4.4!

where

x̂15E
S1

dq1 uq1&^q1u ^ 12 ,

x̂2511 ^ E
S2

dq2 uq2&^q2u ,

~4.5!

x̂185E
S18

dp1 up1&^p1u ^ 12 ,

x̂28511 ^ E
S28

dp2 up2&^p2u .
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The x̂ ’s are orthogonal projectors (x̂†5x̂, x̂25x̂) acting onH[L2(R,dq1) ^ L2(R,dq2). @In
Eqs.~4.5!, S1 , S2 , S18 , S28 are the supports ofx̂1 , x̂2 , x̂18 , x̂28 , respectively. Also,*S1

dq1 uq1&^q1u
is, in standard Dirac notation, the orthogonal projectionc(q1)→x1(q1)c(q1), whereas
*S

18
dp1 up1&^p1u is the orthogonal projectionc̃(p1)→x18(p1)c̃(p1), c̃(p1) being the Fourier

transform ofc(q1), and so on.# The product of two of them involving different indices commute
so thatP̂ is a ~bounded! self-adjoint operator.

The inequalities~3.2! to be tested in the quantum context then become, for pure statr̂
5uC&^Cu,

0<^CuP̂uC&<1 ; uC&PH with ^CuC&51 , ~4.6!

or, equivalently,

P̂>0 and 12P̂>0 in the operator sense. ~4.7!

Becausex̂ j fails to commute withx̂ j8 ( j 51,2), P̂ is not an orthogonal projector~see below!,
in contrast to the classical equalityP 25P. Exploiting this fact leads to the following.

Proposition 1: The operatorsP̂ and (12P̂) cannot be both positive. As a consequence, ther
is at least oneuC&Þ0 such that the inequalitieŝCuP̂uC&>0 and^Cu(12P̂)uC&>0 cannot be
simultaneously true. This just means that one of the two inequalities~4.6! is violated for thatuC&,
which settles the question.

Proof of proposition 1:Assume thatP̂ and (12P̂) are both positive. This would imply

P̂~12P̂!>0 ~4.8!

~remember that the product of two positivecommutingoperators is positive!.
Now, a straightforward calculation ofP̂2 from Eq. ~4.4! yields

P̂25P̂2@ x̂1 ,x̂18#@ x̂2 ,x̂28# , ~4.9!

and Eq.~4.8! would mean that@ x̂1 ,x̂18#@ x̂2 ,x̂28# is a positive operator. That this is wrong is n
surprising. Let us show it. Take a factorizeduC&, namelyuC&5uF1& ^ uF2&, so that

^CuP̂~12P̂!uC&52^F1u i @ x̂1 ,x̂18#uF1&^F2u i @ x̂2 ,x̂28#uF2& .

It is enough to show that, for a given choice of the characteristic functionsx and x8, the real
number

R@F#[^Fu i @ x̂,x̂8#uF& ~4.10!

can assume both signs whenuF& is varied.
Let us define

uF1&5x̂ uF& , uF2&5~12x̂ !uF& .

Using the identity

@ x̂,x̂8#5x̂x̂8~12x̂ !2~12x̂ !x̂8x̂

givesR@F# the form

R@F#5 i ^F1ux̂8uF2&2 i ^F2ux̂8uF1& .

Obviously, foruF̃&5uF1&2uF2&, one hasR@F̃#52R@F#.
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This concludes the proof.
Remarks:~1! When the wave functionuC& factorizes, i.e.,C(q1 ,q2)5F1(q1)F2(q2), a

corresponding probability distributionr always exists, namely

r~q1 ,q2 ,p1 ,p2!5uF1~q1!u2 uF2~q2!u2 uF̃1~p1!u2 uF̃2~p2!u2 , ~4.11!

where theF̃ i ’s are the Fourier transforms

F̃ i~pi !5
1

A2p
E

2`

1`

dqi e2 ipiqi F i~qi ! , ~ i 51,2!. ~4.12!

Of course, this implies that Eqs.~4.6! are automatically satisfied for such factorizeduC& ’s @which
can also be checked from Eq.~4.4!#.

~2! The fact ~used in the proof! that ^CuP̂(12P̂)uC&,0 for some factorizeduC& ’s is not

inconsistent with the inequalities 0<^CuP̂uC&<1 which are satisfied for thoseuC& ’s.

B. Construction

We want to find wave functionsuC& violating the inequalities~4.6!. According to the first of
the above remarks, one has to depart from the class of factorizeduC& ’s. The simplest way to do it
is to take just a sum of two such products.

Choose first

S15S2[S and S185S28[S8 ,

so that

P̂5x̂ ^ 12111^ x̂1x̂8^ x̂82x̂ ^ x̂2x̂ ^ x̂82x̂8^ x̂ . ~4.13!

Take next

uC&5
1

A11ulu2
~ uf&1luw&! ~lPC! ,

~4.14!

with H uf&5uf1& ^ uf2& , uw&5uw1& ^ uw2& ,

^f1uf1&5^f2uf2&5^w1uw1&5^w2uw2&51, ^f1uw1&50 ,

so thatuC& is properly normalized.
For the moment, choose also

f15f2[ f and w15w2[g , ~4.15!

with

^ f u f &5^gug&51 , ^ f ug&50 . ~4.16!

Then

^CuP̂uC&5
1

11ulu2 @^fuP̂uf&1~l^fuP̂uw&1c.c.!1ulu2^wuP̂uw&# , ~4.17!

with
                                                                                                                



2737J. Math. Phys., Vol. 44, No. 7, July 2003 Bell inequalities in four dimensional phase space

                    
^fuP̂uf&52^ f ux̂u f &1^ f ux̂8u f &22^ f ux̂u f &222^ f ux̂u f &^ f ux̂8u f & ,

^wuP̂uw&52^gux̂ug&1^gux̂8ug&22^gux̂ug&222^gux̂ug&^gux̂8ug& , ~4.18!

^fuP̂uw&5^ f ux̂8ug&22^ f ux̂ug&222^ f ux̂ug&^ f ux̂8ug& .

We already know that 0<^fuP̂uf&<1 and 0<^wuP̂uw&<1 . Clearly, in view of~4.17!, our goal
will be reached~namely^CuP̂uC&,0 or ^CuP̂uC&.1) if one can findf andg such that

u^fuP̂uw&u2.^fuP̂uf&^wuP̂uw& . ~4.19!

We claim that this can be achieved withS5S85(0,̀ ), f (q)[^qu f & an even, normalized function
in L2(2`,`), and

g~q![^qug&5sgn~q! f ~q! . ~4.20!

With this choice, Eqs.~4.16! are automatically satisfied and

^ f ux̂u f &5^gux̂ug&5^ f ux̂ug&5 1
2 . ~4.21!

Also, since the Fourier transformsf̃ (p) and g̃(p) are, respectively, even and odd functions

^ f ux̂8u f &5^gux̂8ug&5 1
2 . ~4.22!

As for the nontrivial interference term̂f ux̂8ug&, it is given by~see Appendix A!

^ f ux̂8ug&52
i

p E
0

`

dqE
0

`

dq8 f * ~q! f ~q8!S 1

q1q8
2

P

q2q8D . ~4.23!

At this stage, it is advantageous to takef as areal function, so that by symmetry

^ f ux̂8ug&52
i

p E
0

`

dqE
0

`

dq8
f ~q! f ~q8!

q1q8
.

Let us set

h~q!5& f ~q! , ~4.24!

K~q,q8!5
1

p

1

q1q8
. ~4.25!

Then

^ f ux̂8ug&52
i

2
g , ~gPR! ~4.26!

with

g5E
0

`

dqE
0

`

dq8 h~q! K~q,q8! h~q8! , ~4.27!

and

ihiL2(0,̀ )51 . ~4.28!
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The insertion of Eqs.~4.21!, ~4.22!, and~4.26! in ~4.18! gives

^fuP̂uf&5^wuP̂uw&5 1
2 ,

^fuP̂uw&52
1

4
~11g2!1

i

2
g ,

so that Eq.~4.19! reads

~g211!214g2.4 ,

which is satisfied provided that

ugu.A2)23 > 0.6813. ~4.29!

Moreover, withl5r eiu, Eq. ~4.17! becomes

^CuP̂uC&5
1

2
2

r

2~11r2!
@~11g2!cosu12g sinu# . ~4.30!

We already know thatugu cannot exceed 1, becauseu^ f ux̂8ug&u2<^ f ux̂8u f &^gux̂8ug&5 1
4. Are there

however someh’s @subjected to~4.28!# such thatg @given by Eq.~4.27!# fulfils ~4.29!? If this
occurs we have reached our goal and it only remains to maximizeugu in order to obtain the
extremal values of̂CuP̂uC& ~within the present scheme! through Eq.~4.30!. In other words, one
has to solve the problem

g0[ sup
ihiL2(0,̀ )51

h5h*

u^huKuh&u5 ?

In Appendix B, it is shown that the~bounded! integral operatorK with kernel~4.25! on L2(0,̀ )
is positive and has the purely continuous spectrum@0,1#. This immediately entailsg051, and we
get

^CuP̂uC&ug515
1

2
2

r

11r2 ~cosu1sinu! ,

inf
l

^CuP̂uC&ug515^CuP̂uC&ug5r51,u5 p/45
12&

2
>20.2071,

~4.31!

sup
l

^CuP̂uC&ug515^CuP̂uC&ug5r51,u523p/45
11&

2
>1.2071.

Actually, as discussed in Appendix B, due to the continuous spectrum ofK, these extremal value
cannot be strictly reached, but only approached arbitrarily close via a family of normalized
tions h, e.g.,

hL~q!5
u~L2q!

Aln~L11!

1

Aq11
, L→`

or smoothed forms of this. Of course, other functionsh will also do the job~although less
perfectly!, that is meet the crucial requirement~4.29!. Taking, for example,h(q)5 1/(q11)
@which is normalized inL2(0,̀ )], one gets
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g5
p

4
>0.7854.

Finally, collecting the equations~4.14!, ~4.15!, ~4.20!, and ~4.24!, together with l5 p/4 ,
2 3p/4, one obtains the wave functions leading to the maximal violations~4.31!,

C6~q1 ,q2!5
1

2&
@16ei ~p/4! sgn~q1!sgn~q2!#h~ uq1u!h~ uq2u! , ~4.32!

whereh(q) stands for some regularized form of 1/Aq, with *0
`dq h(q)251.

C. Introducing Einstein locality and relative motion

Let us now interpretq1 and q2 as the coordinates of two particles~rather than thex and y
coordinates of the same particle!. Then the wave functions~4.32! describe states of two particle
not spatially separated and with zero relative momentum. These two restrictions can be
disposed of.

First, it can be checked that nothing is essentially changed in the previous derivation
keeps

S15S185~0,̀ ! , f1~q1!5 f ~q1! , w1~q1!5sgn~q1! f ~q1! , ~4.33!

but replaces

S25S285~0,̀ ! , f2~q2!5 f ~q2! , w2~q2!5sgn~q2! f ~q2! , ~4.34!

by

S25~a,`! , S285~0,̀ ! , f2~q2!5 f ~q22a! , w2~q2!5sgn~q22a! f ~q22a! .

Then Eq.~4.32! becomes

C6~q1 ,q2!5
1

2&
@16ei ~p/4! sgn~q1!sgn~q22a!#h~ uq1u!h~ uq22au! ,

with a arbitrary.
This allows us to let Einstein locality enter the game.
Similarly, nothing is essentially changed if one keeps Eqs.~4.33! but replaces Eqs.~4.34! by

S25~0,̀ ! , S285~P,`! , f2~q2!5eiPq2f ~q2! , w2~q2!5eiPq2 sgn~q2! f ~q2! .

Then Eq.~4.32! becomes

C6~q1 ,q2!5
1

2&
@16ei ~p/4! sgn~q1!sgn~q2!#eiPq2h~ uq1u!h~ uq2u! ,

with P arbitrary.
This allows us to put the two particles in relative motion.

D. Analogy with Bell spin- 1
2 correlation inequalities

Let us denote byu1& a normalized functionf close to the~symmetrized! eigenfunction of the
operatorK with ‘‘eigenvalue’’ l051 @i.e., g>1 in Eq. ~4.26!#, and byu2& the orthogonal func-
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tion g @as given by Eq.~4.20!#. Consider the subspaceV5span(u1&,u2&) of the full one-particle
Hilbert space, together with the orthogonal projectorP onto V. Call G ~respectively,G8) the
restriction ofx̂ ~respectively,x̂8) to the two-dimensional spaceV

G5P x̂ P , G85P x̂8 P .

Then Eqs.~4.21!, ~4.22!, and~4.26! tell us thatG andG8 are represented in the orthonormal ba
$u1&,u2&% by the matrices

G5S 1
2

1
2

1
2

1
2

D 5
1

2
~11sx! ,

G85S 1

2

i

2
g

2
i

2
g

1

2

D 5
1

2
~12gsy! .

In the idealized limitg→1 ~and only in this limit!, one observes thatG and G8 are themselves
orthogonal projectionsV→V

G5G† , G25G ,

G85G8† , G825G8 .

This implies that both operatorsx̂ and x̂8 leave the subspaceV invariant

@P,x̂ #5@P,x̂8#50 .

Indeed, a straightforward calculation shows that

@~12P!x̂P#†@~12P!x̂P#50 ,

which entails (12P)x̂P50 andx̂P5Px̂. The same forx̂8.
Hence, in the two-particle Hilbert space, the operator~4.13! also leaves invariantV^ V, and

P̄ªP̂P assumes the simple form

P̄5 1
2 1 1

4 ~sy
(1)sy

(2)2sx
(1)sx

(2)1sx
(1)sy

(2)1sy
(1)sx

(2)! , ~4.35!

whereas the maximally violating wave functions~4.32! read

uC6&5
1

&
~ u1& (1)u1& (2)6eip/4u2& (1)u2& (2)) . ~4.36!

From Eq.~4.35! one can check that

P̄~12P̄!52 1
4 sz

(1)sz
(2) , ~4.37!

which is just the projected form ofP̂(12P̂)5@ x̂1 ,x̂18# @ x̂2 ,x̂28#, and the expectation value of th
operator~4.37! is

^C6uP̄~12P̄!uC6&52 1
4

for the wave functions~4.36!.
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The result~4.31! is also directly recovered from Eqs.~4.35! and ~4.36!,

^C6uP̄uC6&5
17&

2
.

Then one sees that, in the idealized limitg→1, the original phase space setting up of t
problem is formally equivalent to the standard EPR setting up for a two spin-1

2 system, together
with its classical Bell inequalities.

V. GENERAL SOLUTION OF THE THREE MARGINAL PROBLEM

We have proved here the impossibility of reproducing quantum probabilities of four CC
marginals. Roy and Singh7 have given examples to show that reproducing three CCS is poss
In this section, we construct the most general non-negative phase space density which rep
three different~noncommuting! CCS as marginals. Our results encapsulate the extent to w
noncommuting CCS can be simultaneously realized in quantum mechanics.

Among the four marginalsR,S,T,U obeying the compatibility conditions~2.7! which are at
our disposal, the particular choice of three of them is completely irrelevant. For definitenes
chooseR, T, andU, which we renames0(q1 ,q2), s1(p1 ,q2), ands2(p1 ,p2).

We assume that these marginals are probability densities in the full mathematical sense
they are true~integrable and non-negative! functions. This means that we restrict our margin
probability distributions toabsolutely continuousmeasures~with respect to Lebesgue measure! in
R2. Notice that such a restriction is automatic in the quantum case, due to Eqs.~2.8!.

Likewise, we look for the general solution of the three marginal problem in the clas
absolutely continuous measures in the phase spaceR4. This means that we want to describe all t
solutionsr of the equations

s0~q1 ,q2!5E dp1 dp2 r~qW ,pW ! ,

s1~p1 ,q2!5E dq1 dp2 r~qW ,pW ! , ~5.1!

s2~p1 ,p2!5E dq1 dq2 r~qW ,pW ! ,

which belong toL1(R4,d2q d2p).
Notice that this is a restricted problem even in the quantum case, since nothing prev

probability measure containing a singular part to project on marginals which areL1 functions. To
some extent, the above restrictions can be removed, allowing us to include, e.g., prob
measures partly concentrated on submanifolds of the phase space. However, dealing wi
extensions at some degree of generality requires painful manipulations, and we shall ignor
here.~Special cases are treated in Refs. 5 and 7!. As for the full inclusion of singular measures,
appears as both delicate and of little practical interest.

Let us introduce the one variable marginals

s01~q2!5E dq1 s0~q1 ,q2! ,

s12~p1!5E dq2 s1~p1 ,q2! . ~5.2!

Owing to the compatibility conditions~2.7!, these definitions are equivalent to
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s01~q2!5E dp1 s1~p1 ,q2! ,

~5.3!

s12~p1!5E dp2 s2~p1 ,p2! .

As the support properties of the functionss j ~which are allowed to vanish on some parts
R2) are not innocent in the forthcoming construction, we need to pay attention to them
S j,R2 ( j 50,1,2) be the essential support ofs j . The above compatibility conditions, togeth
with the positivity conditionss j>0, clearly yield two constraints on the supportsS j , namely,

$q2PR u ' q1PR such that ~q1 ,q2!PS0%5$q2PR u ' p1PR such that ~p1 ,q2!PS1% ,
~5.4!

$p1PR u ' q2PR such that ~p1 ,q2!PS1%5$p1PR u ' p2PR such that ~p1 ,p2!PS2% .

To theS j ’s we associate the subsetsEj ’s of the phase space defined by

E05$qW ,pW u ~q1 ,q2!PS0 ,~p1 ,p2!PR2% ,

E15$qW ,pW u ~p1 ,q2!PS1 ,~q1 ,p2!PR2% , ~5.5!

E25$qW ,pW u ~p1 ,p2!PS2 ,~q1 ,q2!PR2% .

Finally, we denote byE the intersection of theEj ’s,

E5E0ùE1ùE2 . ~5.6!

Again, due to positivity, any solutionr of Eqs.~5.1! must have its essential support contained
E.

The three marginal problem in the precise form stated above is then completely solved
following.

Theorem 1: (1) The Lebesgue measure of E is not zero and the functionr0 defined (a.e.) by

r0~qW ,pW !5H s0~q1 ,q2!
1

s01~q2!
s1~p1 ,q2!

1

s12~p1!
s2~p1 ,p2! if ~qW ,pW !PE ,

0 otherwise,

~5.7!

is a non-negative solution of the problem (5.1) in L1(R4,d2q d2p).
(2) The general solutionr of (5.1) in L1(R4,d2q d2p) is given by

r~qW ,pW !5r0~qW ,pW !1l D~qW ,pW ! , ~5.8!

where

lPF2
1

m1
,

1

m2
G ~5.9!

and
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D~qW ,pW !5F~qW ,pW !2r0~qW ,pW !F 1

s0~q1 ,q2!
E dp18 dp28 F~q1 ,q2 ,p18 ,p28!

1
1

s1~p1 ,q2!
E dq18 dp28 F~q18 ,q2 ,p1 ,p28!1

1

s2~p1 ,p2!
E dq18 dq28 F~q18 ,q28 ,p1 ,p2!

2
1

s01~q2!
E dq18 dp18 dp28 F~q18 ,q2 ,p18 ,p28!

2
1

s12~p1!
E dq18 dq28 dp28 F~q18 ,q28 ,p1 ,p28!G , ~5.10!

F being an arbitrary L1(R4,d2q d2p) function with essential support contained in E. The
(F-dependent) constants m6 in (5.9) are defined as

m15ess sup
(qW ,pW )PE

D~qW ,pW !

r0~qW ,pW !
, m252 ess inf

(qW ,pW )PE

D~qW ,pW !

r0~qW ,pW !
, ~5.11!

and are both positive ifDÞ0 (m15` or/and m25` are not excluded!.
Proof: ~1! To begin with,r0 given by ~5.7! is well defined and non-negative. Indeed, due

~5.2! @or ~5.3!# and the positivity of thes j ’s, s01(q2), and s12(p1) are a.e. nonzero for (qW ,pW )
PE0 and E1 ~or E1 and E2), so that the denominators in Eq.~5.7! do not vanish onE ~except
maybe on sets of Lebesgue measure 0!.

Next, in order to check thatr0 obeys the first equation~5.1!, we consider the integral

E dp1E dp2 r0~qW ,pW ! ~5.12!

with this specific order of thep integrations. According to the relations~5.4! and the definition of
E, one observes first that the projection ofE on the (p1 ,p2) plane is the setS2 , so that the
integration overp2 removes the factors2 /s12 in r0 ; and second, that the projections ofS1 and
S2 on p1 coincide, so that the integration overp1 removes the factors1 /s01 in r0 , and one is left
with the expected results0(q1 ,q2). We can now write

E dp1 dp2 r0~qW ,pW !5s0~q1 ,q2!, ~5.13!

where thanks to Fubini theorem, the integration order is completely irrelevant. The othe
equations~5.1! are derived in a similar way.

This calculation shows at once that the Lebesgue measure ofE is not zero and thatr0

PL1(R4,d2q d2p).
~2! That any non-negative solutionr of Eqs. ~5.1! admits the representation~5.8!–~5.10! is

easy to establish. Indeed, since the essential support ofr is necessarily contained inE, we are
allowed to takeF5r in Eq. ~5.10!, which gives@using ~5.1!#

D~qW ,pW !5r~qW ,pW !2r0~qW ,pW ! . ~5.14!

Then, from~5.11!

m252 ess inf
(qW ,pW )PE

S r

r0
21D<1 .

As 1/m2>1 in ~5.9!, we can choosel51, which makes Eq.~5.14! equivalent to the representa
tion ~5.8!.
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It remains to show that any functionr defined by~5.8!–~5.11! ~and thus with essential suppo
E) is a non-negative solution of Eqs.~5.1! in L1(R4,d2q d2p). In order to prove thatr satisfies the
first equation~5.1!, we rearrange pairwise the right-hand side of~5.10! as follows:

D5FF2
r0

s0
E dp18 dp28 F G2F r0

s1
E dq18 dp28 F2

r0

s01
E dq18 dp18 dp28 F G

2F r0

s2
E dq18 dq28 F2

r0

s12
E dq18 dq28 dp28 F G . ~5.15!

Then, integrating the right-hand side overp1 andp2 , one finds, by an extensive use of Eqs.~5.2!
to ~5.4! as in part~1!, that the two terms coming from each square bracket cancel each o
leading to

E dp1 dp2 D~qW ,pW !50 .

This, with ~5.8! and~5.13!, implies thatr satisfies the first equation~5.1!. That it satisfies the othe
two equations~5.1! is proved in a similar way.

This calculation also shows thatrPL1(R4,d2q d2p).
Finally

E
E
d2q d2p D~qW ,pW !50 ,

which implies thatm6 in Eqs.~5.11! are both strictly positive ifD does not vanish, a.e. onR4. The
positivity of r is then a trivial consequence of Eqs.~5.8!, ~5.9!, and~5.11!.

The proof is complete.
Remark:Theorem 1, as it is stated above, deals withL1 functions, and thus excludes th

occurrence of Dirac measures. We insist on the fact that this is unnecessarily restrictive.
Dirac measures can be easily accommodated and the theorem suitably rephrased, to th
however of cumbersome mathematical intricacies which we do not want to enter into.

An immediate corollary of Proposition 1 and Theorem 1 is the following.
Theorem 2 „Three marginal theorem…: Let R, S, T, and U be probability distributions for

(q1 ,q2), (q1 ,p2), (p1 ,q2), and (p1 ,p2) obeying the consistency conditions (2.7). Given n ar
trary distributions among$R,S,T,U%, a necessary and sufficient condition for them to be m
ginals of a probability density in the four-dimensional phase space is n<3.

VI. CONCLUSIONS

We have solved the four marginal problem in four-dimensional phase space thus pro
long standing conjecture7 and vastly improving the first results of Martin and Roy1 which dealt
with infinite number of marginals. To achieve this, we first derived ‘‘phase space Bell inequal
which have their own interest. Actually they allow, at least in principle, direct ‘‘experimen
tests of the orthodox-versus-hidden variable interpretations of quantum mechanics with
position-momentum sector, analogous to those performed within the spin sector.

The technique of phase space Bell inequalities established here has applications to q
information processing. Generalizing the example~4.11!, one can show that for any separab
density operatorr̂ one can construct a phase space density obeying the four marginal cond
Hence, the Bell inequalities~3.2!, with R, S, T, and U given by ~2.8! must hold for every
separable quantum state, irrespective of any physical interpretation of the associated phas
density. Their violation by a quantum state is a signature and even a quantitative meas
entanglement of this state.
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We have also constructed the most general positive definite phase space density which
maximum number of marginals~three! coinciding with corresponding quantum probabilities
three different~noncommuting! CCS. These results should be useful in the construction of m
mally realistic quantum theories.
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APPENDIX A: PROOF OF EQ. „4.23…

SinceS85(0,̀ ), one has

x̂8~p!g̃~p!5u~p!g̃~p! .

Assuming first thatg belongs toS ~the Schwartz space of infinitely differentiable functions onR
with fast decrease at infinity!, one can write

~ x̂8g!~q!5E
2`

`

dq8 ũ~q2q8!g~q8! ,

whereũ is the Fourier transform ofu in the distribution-theoretic sense

ũ~q![
1

2p E
2`

`

dp eipq u~p!5
i

2p

P

q
1

1

2
d~q! .

Then, if f also belongs toS

^ f ux̂8ug&5
i

2p E
2`

`

dq f* ~q!E
2`

`

dq8
P

q2q8
g~q8!1

1

2
^ f ug& .

In particular, for evenf and oddg, ^ f ug& vanishes, and

^ f ux̂8ug&52
i

p E
0

`

dq f* ~q!E
0

`

dq8 S 1

q1q8
2

P

q2q8Dg~q8! ,

which gives Eq.~4.23! if g coincides withf on ~0, `!. The continuation fromS to L2(2`,`) is
performed as usual by continuity, using the fact thatS is a dense subspace inL2(2`,`).

APPENDIX B: STUDY OF THE OPERATOR K

From the very definition ofK through the integral kernel~4.25!, one has

~Kh!~q!5
1

p E
0

`

dq8
h~q8!

q1q8
.

Let us set

h̄~u!5eu/2h~eu! .

Since *2`
` du uh̄(u)u25*0

`dq uh(q)u2, the correspondenceh°h̄ defines a unitary mapping
L2(0,̀ )→L2(2`,`) and
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Kh ~u!5E
2`

`

dv K̄~u2v !h̄~v ! , ~B1!

where

K̄~u!5
1

2p cosh
u

2

.

Then, another unitary mappingL2(2`,`)→L2(2`,`), namely the Fourier transform

h! ~k!5
1

A2p
E

2`

`

du eiku h̄~u! ,

reduces the convolution product in~B1! to an ordinary product

Kh! ~k!5K! ~k! h! ~k! ,

where

K! ~k![E
2`

`

du eiku K̄~u!5
1

coshpk
. ~B2!

Therefore, the operatorK on L2(0,̀ ) is unitarily equivalent to the multiplicative operator~B2! on
L2(2`,`). The latter is evidently a positive operator with purely continuous spectrum@0, 1#. Its
generalized~non-normalizable! ‘‘eigenfunctions’’ are

h! s~k!5d~k2s! ~sPR! ,

with ‘‘eigenvalues’’ls51/coshps, and their preimage inL2(0,̀ ) are

hs~q!5
1

A2pq
e2 is ln q .

Of particular interest for us is the extremal one, with ‘‘eigenvalue’’l051,

h0~q!5
1

A2pq
.

Of course, the corresponding maximal valueg051 of g5^huKuh& cannot be attained, but onl
approached arbitrarily close through a family of normalizable functions mimicking 1/Aq. For
instance, introducing two cutoffs,« at smallq andL at largeq, and setting

h«,L~q!5
1

Aln
L

«

x («,L)~q!
1

Aq
~ ih«,Li51! ,

one gets

^h«,LuKuh«,L&512
4

p ln
L

«

E
A«/L

1

dx
arctanx

x
512OS 1

ln
L

«
D ,
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so that

lim
«→0
L→`

^h«,LuKuh«,L&51 .

Notice that one can keep« fixed ~e.g., «51) and letL alone go to` without changing
anything~this is in fact a consequence of the scale invariance of the operatorK), or even choose
a family of less singular functionsh, like

hL~q!5
1

Aln~L11!
u~L2q!

1

Aq11
.
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Higher order trace formulas of the Buslaev–Faddeev-type
for the half-line Schro ¨ dinger operator
with long-range potentials

S. M. Belova) and A. V. Rybkinb)

Department of Mathematical Sciences, University of Alaska Fairbanks,
P.O. Box 756660, Fairbanks, Alaska 99775

~Received 23 January 2003; accepted 4 April 2003!

We deal with trace formulas for half-line Schro¨dinger operators with long-range
potentials. We generalize the Buslaev–Faddeev trace formulas to the case of square
integrable potentials. The exact relation between the number of the trace formulas
and the number of integrable derivatives of the potential is also given. The main
results are optimal. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1579549#

I. INTRODUCTION

The present paper continues to study trace formulas for half-line Schro¨dinger operators with
long-range potentials started previously by one of the authors in Ref. 20. The type of formul
are concerned with was discovered 50 years ago by Gel’fand–Levitan in their remarkable5

where it was shown that for the eigenvalues$ln% of the regular Sturm–Liouville problem (0
<x<p),

H 2u91q~x!u5lu,
u~0!505u~p!,

the following holds:

(
n>1

H ln2n22
1

2p E
0

p

q~x!dxJ 52
q~0!1q~p!

4
1

1

2p E
0

p

q~x!dx. ~1.1!

Relation~1.1!, commonly referred to as a trace formula, links a properly regularized trace o
Sturm–Liouville operator with some information on the potentialq. Back in 1953 it was a
completely new type of formula and its explicit nature originated an intensive search for si
relations eventually in all areas of mathematics dealing with operators. The literature with th
word trace formula(s)is enormous and we will not even make an attempt to review it here.
restrict ourselves to just mentioning some of the important stages of its development pertin
our work.

The original Gel’fand–Levitan trace formula~1.1! belongs to the setting of operators wi
discrete spectrum~see also Dikii3 and Podol’skii–Sadovnichii16 for a recent account!. In 1960
Buslaev–Faddeev2 extended~1.1! to the case of a singular Sturm–Liouville problem,

H 2u91q~x!u5lu,x>0,
u~0!50, ~1.2!

a!Electronic mail: ftsmb@uaf.edu
b!Electronic mail: ffavr@uaf.edu
27480022-2488/2003/44(7)/2748/14/$20.00 © 2003 American Institute of Physics
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with a short-range real potentialq @i.e., integrable on~0,̀ ! with the first moment#. In this case, the
Schrödinger operatorH associated with~1.2! has an absolutely continuous spectrum filling~0,̀ !
and only a finite number of eigenvalues$ln% which are all negative. The direct analog of~1.1!
reads

2 (
n>1

ln1
2

p E
0

`

tS u~ t !2
1

2t E0

`

q~x!dxD dt52
1

4
q~0!. ~1.3!

The functionu in ~1.3!, called the limiting phase, characterizes the absolutely continuous spec
of H and has a scattering theoretical nature.

In 1971 Faddeev–Zakharov4 discovered an amazing connection between trace formulas
the conservation laws for the Korteweg–de Vries equation~see also Ref. 8 for a more rece
account!. The natural Schro¨dinger operator in this setting isH52d2/dx21q(x), defined on the
whole line with a smooth, fast decaying potentialq. The spectral situation here is similar to th
of the half-line case and the first Faddeev–Zakharov trace formula reads

(
n>1

~2ln!1/21
1

2p E
0

`

lnuT~ t !udt5 2
1

4 E2`

`

q~x!dx, ~1.4!

whereT is the transmission coefficient.
In 1993 Gesztesy–Holden–Simon–Zhao6 put forward and consistently studied~see, e.g., Ref.

7! local versions of trace formulas which are valid eventually for any real potential. Their
trace relation is

E1 lim
«→0

E
E

`

e2«t$122j~x,t !%dt5q~x!, ~1.5!

whereE is the low bound of the spectrum ofH52d2/dx21q(x) and j(x,t) is the so-called
xi-function ~see Ref. 7 for details!. In the literature, formulas of type~1.5! are related to the trace
approach to the inverse scattering problem~see, e.g., Ref. 21, and the literature cited therein!.

There is also quite extensive literature on trace formulas in the three-space. We refer
recent paper13 by Korotyaev–Pushnitski and further literature cited there.

The list of trace formulas given above is not nearly complete. We mention only one r
development which can be regarded as a breakthrough. In Ref. 10, Killip–Simon introduced
type of trace formula for Jacobi matrices that yields an exhaustive description of the spectr
all Hilbert–Schmidt perturbations of the free discrete Schro¨dinger operator, which answered som
open problems on orthogonal polynomials~see, also Ref. 22!.

Note that the very termtrace formulasis due to the fact that they are all related to comput
regularized spectral traces of some operators. Moreover, each of~1.1!, ~1.3!–~1.5! actually repre-
sents the first formula in some infinite chain of higher order trace relations representing re
ized moments of certain spectral characteristics. The full chain of trace formulas correspond
~1.3! will be given below@formulas~4.6! and ~4.7!#.

The present paper deals with trace formulas for long-range potentials@i.e., nonintegrable on
~0,̀ !#. In the context of the Coulomb potential, such formulas were studied in 1972 by Yaf23

and by Kvitsinsky in 1987.14 For three-dimensional Schro¨dinger operators, a variant of trac
formulas serving long-range potentials was put forward in 1991 by Melin15 and recently by
Bouclet.1 Our goal is to derive a series of relations which are direct analogs to the Busl
Faddeev trace formulas@with the first formula~1.3!#. In 1999 one of the authors20 proved that

2 (
n>1

ln
212E

0

`S h~ t !1
1

4pAt
E

0

`

q2~x!dxD dt5
1

4
q2~0!, ~1.6!
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where h is the so-called modified spectral shift function that appears in the Koplienko
formula11 (Im lÞ0),

tr$~H2l!212~H02l!212~H02l!21V~H02l!21%52E
2`

` H d2

dt2
~ t2l!21J h~ t !dt,

~1.7!

whereH0 , H5H01V are self-adjoint operators such thatVuH02 i u21/2 is Hilbert–Schmidt. In the
current paper we use a simpler approach which does not rely on~1.7!. We obtain our trace
formulas directly from Buslaev–Faddeev’s ones using a certain limiting procedure. This wa
also improve on Ref. 20 by imposing in~1.6! weaker conditions onq.

Notation: We will adhere standard notation:N5$1,2,3, . . .%, R15(0,̀ ), C15$zPC:Im z

.0%, andC̄15C1øR. All functions are assumed to be measurable and we will use the follow
Lebesgue classes:

LpªH f :i f ip
p[E

R1

u f ~x!updx,`J , 1<p,`,

L`ª H f :i f i`[ess sup
xPR1

u f ~x!u,` J ,

and Sobolev classes,

W1
n
ªH f : (

m50

n E
R1

u f (m)~x!udx,`J , f (m)~x!ª~dm/dxm! f ~x!.

Furthermore, for a linear operatorA we denotes(A) the spectrum ofA, $ln(A)% are its
eigenvalues. BySp ,p>1, as usual, we denote the ideal of compact operatorsA, for which

iAip
p
ª(

n
ln

p~ uAu!,`,uAuªAA* A.

The most important particular cases:S1 is the space of trace class operators, andS2 is the
Hilbert–Schmidt class.

II. SOME KEY ASYMPTOTICS

In this section we obtain a suitable representation of the solution to the Schro¨dinger equation
satisfying the WKB-type asymptotics at infinity. Such representations are well-known but we
a relation between the number of exact terms and the smoothness of the potentialq. The propo-
sition below is a long-range generalization of an analogous statement forL1-potentials.19

Proposition 1: If qPL2 ,q8PW1
N21(R1) with some NPN, then the problem

H 2u91q~x!u5k2u,

lim
x→`

u~x,k!expS 2 ikx2
1

2ik E0

x

q~s!dsD 51
~2.1!

has a unique bounded solution u(x,k) for all kPR,kÞ0. Moreover, for M(k)ªu(0,k) the
representation
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M ~k!5 11 (
j 52

N11
mj

~22ik ! j 1
1

~22ik !N11

3E
0

`

expS 2ikx1
1

ik E0

x

q~s!dsD q(N)~x!dx1OS 1

kN12D , k→`, ~2.2!

holds with some coefficients$mj% depending only on q.
Proof: It is enough to consider only the casekPR1 . Set

Q~x,k!ªexpS ikx1
1

2ik E0

x

q~s!dsD
and observe thatQ(x,k) satisfies the equation

2Q91$q~x!2q1~x,k!2k2%Q50, ~2.3!

where

q1~x,k!5
q8~x!

22ik
1

q2~x!

4k2 . ~2.4!

Rewrite ~2.1! in the form

2u91$q~x!2q1~x,k!2k2%u52q1~x,k!u ~2.5!

and note that ~2.3! is the homogeneous equation for~2.5!. Taking Q(x,k) and
Q(x,k)*0

xQ22(s,k)ds as fundamental solutions to~2.3!, by variation of parameters, Eq.~2.1! can
be represented as

u~x,k!5Q~x,k!H 11E
x

`

q1~s,k!Q~s,k!S E
x

s

Q22~ t,k!dtD u~s,k!dsJ . ~2.6!

Settingy5Q21u and introducing the kernel

K~x,s,k!5q1~s,k!•Q2~s,k!E
x

s

Q22~ t,k!dt, ~2.7!

Eq. ~2.6! reads

y~x,k!511E
x

`

K~x,s,k!y~s,k!ds511~Ky!~x,k!, ~2.8!

whereK stands for the Volterra integral operator with the kernelK(x,s) ~2.7!. We show thatK
mapsL` to L` and then~2.8! can be solved by iteration. Let us estimate

E
x

s

Q22~ t,k!dt5E
x

s

e22ikt
• expS 2

1

ik E0

t

q~z!dzD dt. ~2.9!

Integrating by parts twice in~2.9! yields

E
x

s

Q22~ t,k!dt5H Q22~ t,k!

22ik
1

q~ t !Q22~ t,k!

24ik3 J U
t5x

t5s

1
1

4ik3 E
x

s

Q22~ t,k!S q8~ t !2
q2~ t !

ik Ddt.

~2.10!
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Sinceq8PL1 implies qPL` , it follows from ~2.10! that

U E
x

s

Q22~ t,k!dtU< 1

k
1

2iqi`1iq8i1

4k3 1
iqi2

4k4 . ~2.11!

Due to ~2.11! and our conditions onq,

E
x

`

uK~x,s,k!uds<E
x

`

uq1~s,k!uU E
x

s

Q22~ t,k!dtUds

<
1

k2 S 11
2iqi`1iq8i1

4k2 1
iqi2

4k3 D S 1

2 Ex

`

uq8~s!uds1
1

4k Ex

`

uq~s!u2dsD
~2.12!

and we have

iKi5 sup
i f i`51

iKf i`< I E
x

`

uK~x,s,k!udsI
`

<
1

k2 S iq8i1

2
1

iqi2

4k D S 11
2iqi`1iq8i1

4k2 1
iqi2

4k3 D .

~2.13!

Estimating~2.13! implies that for some positive constantr q dependent only onq,

iKi<1/2 for k>r q , ~2.14!

Eq. ~2.8! can then be solved by iteration,

y~x,k!511 (
n51

`

V j~x,k!, k>r q , ~2.15!

whereV j (x,k)5(Kj1)(x,k), and

iyi`<2 for k>r q . ~2.16!

This proves the existence.
Now we establish~2.2!. To this end, introduce the differential operation

Dª

d

dx
1

q~x!

ik
.

It is clear that ifqPL2 , q8PW1
m21(R1) and f PW1

m(R1), for somem>1, then

D j f PL1 , ; 1< j <m. ~2.17!

Denote

G~x,s,k!5Q2~s,k!E
x

s

Q22~ t,k!dt.

Integrating by part, one can easily verify that

E
x

`

G~x,s,k! f ~s!ds52
1

2ik Ex

`

f ~s!ds2
1

2ik Ex

`

G~x,s,k!D f ~s!ds. ~2.18!
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Equation ~2.18! is an integration by parts type formula. Sinceq1PW1
N21, by ~2.17!, all

Dq1 ,D2q1 ,...,DN21q1 are fromL1 , ~2.18! can be appliedN21 times and the remaining integra
will still be absolutely convergent. Setting in~2.15! x50 we have

M ~k!511(
j 51

`

V j~k!, ~2.19!

whereV j (k)5V j (0,k)5(Kj1)(0,k). Let us now evaluate each term in~2.19!. ConsiderV1 first.
Apply ~2.18! N21 times to

V1~x,k!5E
x

`

G~x,s,k!q1~s,k!ds

52 (
j 51

N21
1

~22ik ! j E
x

`

D jq1~s,k!ds1
1

~22ik !N21 E
x

`

G~x,s,k!DN21q1~s,k!ds

5(
j 52

N v j
(1)~x!

~22ik ! j 1
1

~22ik !N21 E
x

`

G~x,s,k!DN21q1~s,k!ds1OS 1

kN12D , ~2.20!

wherev j
(1)(x) are some continuous functions whose expressions are inessential. By~2.10! one has

that

G~x,s,k!5
12Q2~s,k!Q22~x,k!

22ik
1OS 1

k2D
and ~2.20! reads

V1~x,k!5 (
j 52

N11 v j
(1)~x!

~22ik ! j 1
Q22~x,k!

~22ik !N11 E
x

`

q(N)~s!ds1
Q22~x,k!

~22ik !N11 E
x

`

Q2~s,k!q(N)~s!ds

1OS 1

kN12D
5 (

j 52

N11 v j
(1)~x!

~22ik ! j 2
q(N21)~x!Q22~x,k!

~22ik !N11 1
Q22~x,k!

~22ik !N11 E
x

`

Q2~s,k!q(N)~s!ds1OS 1

kN12D .

~2.21!

Setting in~2.21! x50 we finally have

V1~k!5 (
j 52

N11 v j
(1)

~22ik ! j 1
1

~22ik !N11 E
0

`

Q2~s,k!q(N)~s!ds1OS 1

kN12D . ~2.22!

Similarly,

V2~k!5 (
j 54

N11 v j
(2)

~22ik ! j 1OS 1

kN12D , k→`. ~2.23!

For the general 1<n<@(N11)/2#, where@x# is the greatest integern<x, we get

Vn~k!5 (
j 52n

N11 v j
(n)

~22ik ! j 1OS 1

kN12D , k→` ~2.24!

and
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V [ ~N11/2!] 11~k!5OS 1

kN12D , k→`.

Since in V j , j .1, all terms containing*x
`Q2(s,k)q(N)(s)ds are included in the error term

o(1/kN11), we can get theN12 term if and only if*0
`Q2(x,k)q(N)(x)dx5O(1/k), k→`. From

~2.13! and ~2.14! is easy to see that

U (
n>[ ~N11!/2]11

Vn~k!U< (
n>[ ~N11!/2]11

iKin<2iKi [ ~N11!/2]11<
Cq

kN12 ,

whereCq is a constant dependant only onq. Thus,

(
n>[ ~N11!/2]11

Vn~k!5OS 1

kN12D , k→`, ~2.25!

and combining~2.22!–~2.25! we arrive at

M ~k!511 (
n>1

Vn~k!

511 (
j 52

N11
mj

~22ik ! j 1
1

~22ik !N11 E
0

`

Q2~s,k!q(N)~s!ds1OS 1

kN12D , k→`,

that completes the proof. h

Remark 1: Since, by condition, q(N)PL1 we conclude that

E
0

`

expS 2ikx1
1

ik E0

x

q~s!dsD q(N)~x!dx5o~1!, k→`

~the proof is parallel to that of the Riemann–Lebesgue lemma) and hence the integral term in (2
is o(k2N21). The fact that we were able to extract an explicit ‘‘intermediate’’ term between
exact terms( j 52

N11(22ik)2 jmj and O(k2N22) will be important in Sec. IV. Proposition 1 actuall
relates the number of exact terms in (2.2) with the smoothness of q but does not provide a
to evaluate coefficients$mj%. Explicit formulas for$mj% can be derived, e.g., from Ref. 2.

III. THE MODIFIED JOST FUNCTION

Introduce the half-line Schro¨dinger operatorH52d2/dx21q(x) with a Dirichlet boundary
condition u(0)50. It is well-known that ifqPL1 then for anyk.0 the equation2u91q(x)u
5k2u has the so-called Jost solutionu0(x,k), i.e., a solution subject to the condition th
limx→` e2 ikxu0(x,k)51. The functionM0(k)ªu0(0,k) is commonly referred to as the Jost fun
tion. It is continuous onR\$0% and analytic inC1 except for isolated poles atiA2ln, where$ln%
are~necessarily negative! eigenvalues ofH accumulating only at 0. The functionM (k), defined in
Proposition 1, can then be calledthe modified Jost function. Note that ifqPL1 ; then

M ~k!5M0~k!expH 1

2ik E0

`

q~x!dxJ . ~3.1!

Given potentialq, let q̃ be its smooth cut-off approximation defined by

q̃~x,a!5q~x!xa~x!, ~3.2!

wherexa is smooth such thatxa(x)51,0<x<a, andxa(x)50,x.a11.
It is clear that
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q̃~x,a!→q~x!, a→`,

which we agree to write just asq̃→q. In the sequel, we will dropa in q̃(x,a) and put ~ on top of
every object related toq̃.

The following lemma will be a key ingredient in our consideration:
Lemma 1: Let q be real and qPL2 , q8PL1 and q̃ be defined by (3.2), then

(i) for every kPC̄1 , uku.r q , with some rq.0 dependent only on q,

M̃~k!→M~k!, q̃→q;

(ii) for any p>3/2;

(
n

ul̃nup→(
n

ulnup, q̃→q.

Proof: ~i! Assume for the time being thatk.0. In the notation of Proposition 1, by represe
tation ~2.15! we have: for any natural numberN,

uM ~k!2M̃ ~k!u5uu~0,k!2ũ~0,k!u

5uy~0,k!2 ỹ~0,k!u

< (
n51

N

u~Kn1!~0,k!2~K̃n1!~0,k!u1u~KN11y!~0,k!2~K̃N11ỹ!~0,k!u

<(
j 51

N

iKn2K̃ni1iKN112K̃N11iiyi1iKN11~y2 ỹ!i . ~3.3!

Observing that for anynPN;

Kn2K̃n5 (
m50

n21

K̃m~K2K̃!Kn2m21,

and by~2.16!, estimate~3.3! for k>r q can be continued,

uM ~k!2M̃ ~k!u< (
n51

N

(
m50

n21

iK̃imiK2K̃iiKin2m211iyi (
n50

N

iK̃iniK2K̃iiKiN2n

1iKiN11~ iyi1i ỹi !. ~3.4!

But for k.max$rq ,rq̃%5rq , by ~2.14! and ~2.16!, iK̃i ,iKi<1/2 andiyi ,i ỹi<2 and~3.4! finally
yields

uM ~k!2M̃ ~k!u< (
n51

N21

n22n
•iK2K̃i1N22N11

•iK2K̃i122N11

<2~11N22N11!iK2K̃i122N11. ~3.5!

Letting in ~3.5! N→`, we have

uM ~k!2M̃ ~k!u<2iK2K̃i . ~3.6!

Show now thatiK2K̃i→0 asa→`. It follows from ~2.4! and ~2.7! that

K̃~x,s,k!5K~x,s,k! for x<s<a
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and hence by~2.12! one obtains

iK2K̃i<sup
x>a

E
x

`

uK~x,s,k!2K̃~x,s,k!uds<sup
x>a

E
x

`

$uK~x,s,k!u1uK̃~x,s,k!u%ds→0, a→`.

~3.7!

Combining ~3.6! and ~3.7! we prove ~i! with real k and then using Phragme´n–Lindelöf-type
arguments we arrive at~i!.

~ii ! Let H052d2/dx2 with u(0)50. For the Green’s functionG(x,s,l) of H0 one has

G~x,y,l!5
1

iAl
~eiAl(x1y)2eiAlux2yu!,

and hence for ImlÞ0;

i~q2q̃!~H02lI !21i2
25

1

ulu E0

`E
0

`

uq~x!2q̃~x!u2ueiAl(x1y)2eiAlux2yuu2dxdy

<
5

uluIm Al
iq2q̃i2

2→0, q̃→q. ~3.8!

Due to

~H02l!215~H̃2l!21~ I 1q̃~H02l!21!,

we have

i~H2l!212~H̃2l!21i25i~H2l!21~H̃2H !~H̃2l!21i2

<i~H2l!21i•i~q2q̃!~H̃2l!21i2

5i~H2l!21i•i~q2q̃!~H02l!21~ I 1q̃~H02l!21!21i2

<i~H2l!21ii~ I 1q̃~H02l!21!21i•i~q2q̃!~H02l!21i2 .

~3.9!

Since for ImlÞ0 the first two norms on the right-hand side of~3.9! are finite and, by~3.8!, the
third one goes to zero and we conclude that

i~H2l!212~H̃2l!21i<i~H2l!212~H̃2l!21i2→0, q̃→q. ~3.10!

One can now employ some arguments from Ref. 8. LetD5@a,b#,(2`,0):a
, inf$s(H),s(H̃)%,21,bÞs(H),s(H̃), andED be the spectral projection corresponding toD.
It follows from ~3.10! that17 in the weak sense,

ẼD→ED ,

which implies that

(
l̃nPD

ul̃nup→ (
lnPD

ulnup, p.0. ~3.11!

Consider (p>3/2),
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U(
n

~ ul̃nup2ulnup!U<U (
l̃n ,ln,b

~ ul̃nup2ulnup!U1 (
l̃n.b

ul̃nup1 (
ln.b

ulnup. ~3.12!

Denote byq25 1
2(q2uqu) the negative part ofq. Sinceq2(x)<q̃(x) we haveH252d2/dx2

1q2(x)#H̃. Hence, by the standard fact of perturbation theory,ln(H2)<l̃n and ~all eigenval-
ues are negative!

(
n

ul̃nup<(
n

uln~H2!up. ~3.13!

From the Lieb–Thirring bounds~see, e.g., Ref. 9!,

(
n

uln~H2!u3/2, (
n

uln~H !u3/2< 3
16 iq2i2

2< 3
16 iqi2

2 , ~3.14!

and hence forp>3/2 by ~3.13! and taking into account thatubu,1, we get

(
l̃n.b

ul̃nup< (
l̃n.b

ul̃nu3/2<(
n

ul̃nu3/2<(
n

uln~H2!u3/2< 3
16 iqi2

2,`. ~3.15!

Due to~3.11!, ~3.14!, and~3.15!, by the standard«/3 argument~3.12! yields ~ii ! and the lemma is
proved. h

Remark 2: Since M(k) is analytic inC1 , (i ) of Lemma 1 actually holds inC̄1\$0%.
Remark 3: Lemma 1 improves on one result by Koplienko.11 Namely, if (H,H0): H0

52d2/dx2 with u(0)50 and H5H01q with qPL2 ,q8PL1 , then the modified spectral shi
functionh(t) for (H,H0) appearing in (1.7) is differentiable and

h8~ t !5p21 Im ln M ~At !, t.0. ~3.16!

In Ref. 11, relation (3.16) was proven under stronger conditions involving q9.

IV. TRACE FORMULAS

This section contains the main results of the paper, the Buslaev–Faddeev trace formu
certain long-range potentials. Relation~3.1!, Proposition 1, Lemma 1, and some limiting arg
ments will let us not only adjust the original Buslaev–Faddeev trace formulas2 to the long-range
setting but also provide sharp conditions on potentials.

Set in~3.1! M05A0eiu0, whereA05uM0u is the scattering amplitude andu0 is the scattering
phase. Similarly,M5Aeiu, whereA5uM u can be calledthe modified scattering amplitudeandu0

the modified scattering phase. Relation~3.1! then implies that forqPL1 andk.0,

u~k!5u0~k!2
1

2k E0

`

q~ t !dt, A~k!5A0~k!. ~4.1!

Following Ref. 2, introduce the sequence$Qn%n>1 :

Qn5 lim
x→`

S Vn21~x!1 (
j 51

n22
j

n
Vn2 j 21~x!Qj D , ~4.2!

where

Vn~x!5q(n21)~0!1 (
m51

n21 S l 21
m D E

0

x

Vm~s!q(n2m21)~s!ds,V0~x!50. ~4.3!
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The following statement is our main result.
Theorem 1: Suppose that for qPL2(0,̀ ) and q8PW1

N21(0,̀ ),NPN. Then for the modified
scattering phaseu(k) and modified scattering amplitude A(k) the following trace formulas are
valid:

~21!n(
l 51

`

~2l l !
n1

2n

p E
0

`

k2n21H u~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q2l 11J dk5~21!n
n

22n Q2n ,

2<n<
N

2
; ~4.4!

~21!n(
l 51

`

~2l l !
n11/22

2n11

p E
0

`

k2nH ln A~k!2(
l 51

n
~21! l 11

~2k!2l Q2lJ dk

5~21!n
2n11

22n11 Q2n11 , 1<n<
N21

2
; ~4.5!

where coefficients$Qn% are computed by (4.2) and all integrals are absolutely convergent
order to extract one additional formula in (4.4)–(4.5) with the absolutely convergent integral it
necessary and sufficient that

1

k E0

`

sinS 2kx2
1

k E0

x

q~s!dsD q(N)~x!dxPL1~r ,`!,

for some r.0.
Proof: Introduce q̃(x) by ~3.2!. Since q̃PL1((11x)dx,R1), then Faddeev–Buslaev trac

formulas2 for ũ0(k) and Ã0(k) apply

~21!n(
l 51

`

~2l̃ l !
n1

2n

p E
0

`

k2n21F ũ0~k!2 (
l 50

n21
~21! l 11

~2k!2l 11 Q̃2l 11Gdk5~21!n
n

22n Q̃2n ,

1<n<
N

2
; ~4.6!

~21!n(
l 51

`

~2l̃ l !
n11/22

2n11

p E
0

`

k2nF ln Ã0~k!2(
l 51

n
~21! l 11

~2k!2l Q̃2l Gdk

5~21!n
2n11

22n11 Q̃2n11 , 1<n<
N21

2
. ~4.7!

In view of ~4.1!, relations~4.6! and ~4.7! transform into

~21!n(
l 51

`

~2l̃ l !
n1

2n

p E
0

`

k2n21F ũ~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q̃2l 11Gdk5~21!n
n

22n Q̃2n ,

2<n<
N

2
; ~4.8!
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~21!n(
l 51

`

~2l̃ l !
n11/22

2n11

p E
0

`

k2nF ln Ã~k!2(
l 51

n
~21! l 11

~2k!2l Q̃2l Gdk

5~21!n
2n11

22n11 Q̃2n11 , 1<n<
N21

2
. ~4.9!

Since~4.8! and~4.9! are similar we treat only~4.8!. Let now in~4.8! q̃→q. Due to~4.2! and~4.3!
one easily has thatQ̃j→Qj , j <N. It follows from Lemma 1 that( l(2l̃ l)

n→( l(2l l)
n and~4.8!

becomes

~21!n(
l 51

`

~2l l !
n1

2n

p
lim

q̃→q
E

0

`

k2n21F ũ~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q̃2l 11Gdk5~21!n
n

22n Q2n ,

2<n<
N

2
. ~4.10!

It is only left to pass to the limit under the integral sign in~4.10!. To this end, represent thi
integral as the sum of the integrals over (0,r ) and (r ,`) with anyr>r q , wherer q is as in Lemma
1. It can be derived from Ref. 12 that*0

kũ(t)dt→*0
ku(t)dt in L1(0,r ) and hence kũ(k)

→ku(k) in L1(0,r )-sense. Thus,

lim
q̃→q

E
0

r

k2n21H ũ~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q̃2l 11J dk5E
0

r

k2n21H u~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q2l 11J dk,

~4.11!

sincek50 is not a singularity of the integrands in~4.11!. Consider now the integral over (r ,`).
Using the elementary fact

f ~x!5 (
m>1

amxm⇒ ln$11 f ~x!%5 (
m>1

bmxm,

b15a1 ,bm5am2 (
j 51

m21
j

m
am2 jbj ,m>2,

it follows form Proposition 1 that fork>r q the function

g̃~k!ªk2n21H ũ~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q̃2l 11J 2
~21!n

22n •

1

k E0

`

sinS 2kx2
1

k E0

x

q̃~s!dsD q̃(N)~x!dx

has a majorant fromL1(r ,`) and by the dominated convergence theorem

g~k!5 lim
q̃→q

g̃~k!5k2n21H u~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q2l 11J
2

~21!n

22n •

1

k E0

`

sinS 2kx2
1

k E0

x

q~s!dsD q(N)~x!dx

PL1~r ,`!.

The latter means that
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lim
q̃→q

E
r

`

k2n21H ũ~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q̃2l 11J dk5E
r

`

k2n21H u~k!2 (
l 51

n21
~21! l 11

~2k!2l 11 Q2l 11J dk,

~4.12!

and the integral on the right-hand side of~4.12! converges absolutely if and only if

1

k E0

`

sinS 2kx2
1

k E0

x

q~s!dsD q(N)~x!dxPL1~r ,`!

with some positiver . Plug ~4.11! and ~4.12! into ~4.10! and the theorem is proved. h

Corollary 1: If qPL2(0,̀ ), q8,q9PL1(0,̀ ), and

1

k E0

`

sinS 2kx2
1

k E0

x

q~s!dsD q9~x!dxPL1~r ,`!, r .0, ~4.13!

then

(
l>1

~2l l !
3/21

3

p E
0

` H k2 ln A~k!2
1

4
q~0!J dk5

3

8
q8~0!1

3

8 E0

`

q2~x!dx. ~4.14!

If also q-PL1(0,̀ ) and

1

k E0

`

sinS 2kx2
1

k E0

x

q~s!dsD q-~x!dxPL1~r ,`!, r .0, ~4.15!

then

(
l 51

`

l l
21

4

p E
0

` H k3u~k!2
1

8 S q8~0!1E
0

`

q2~x!dxD J dk5
1

8
q9~0!2

1

4
q2~0!. ~4.16!

Conditions (4.13) and (4.15) are necessary for absolute convergence of the integrals in (4.1
(4.16), respectively.

Remark 4: It is easy to verify that the functionh defined by

h~ t !5
1

p E
0

tS u~k!1
1

2k E0

`

q~x!cos 2kxdxD dk

is actually the modified spectral shift function [see (1.6) and Remark 3] and formula (4
transforms into (1.6). Relation (1.6) was previously proven in Ref. 20 by different methods
slightly stronger conditions on q. Note that Corollary 1 gives optimal conditions on q for (1.6)
hold with the absolutely convergent integral. In the short-range setting necessary and suf
conditions for absolute summability of trace relations are recently given in Ref. 18.

Remark 5: When it comes to long-range potentials there is a certain flexibility in choosin
limiting phaseu. With a proper choice ofu some of the formulas (4.4) may actually simplify.
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The scattering matrix for the Schro ¨ dinger operator
with a long-range electromagnetic potential

Ph. Rouxa) and D. Yafaevb)

Department of Mathematics, University of Rennes,
Campus Beaulieu, 35042, Rennes, France

~Received 11 November 2002; accepted 17 March 2003!

We consider the Schro¨dinger operatorH5( i¹1A)21V in the spaceL2(Rd) with
long-range electrostaticV(x) and magneticA(x) potentials. Using the scheme of
smooth perturbations, we give an elementary proof of the existence and complete-
ness of modified wave operators for the pairH052D, H. Our main goal is to
study spectral properties of the corresponding scattering matrixS(l). We obtain its
stationary representation and show that its singular part~up to compact terms! is a
pseudodifferential operator with an oscillating amplitude which is an explicit func-
tion of V and A. Finally, we deduce from this result that, in general, for eachl
.0 the spectrum ofS(l) covers the whole unit circle. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1576494#

I. INTRODUCTION

Let the Schro¨dinger operatorH be defined by differential expression

H5H~V,A!5~ i¹1A~x!!21V~x!, ~1.1!

where the scalar functionV(x) and the vector-valued functionA(x)5(A1(x),...,Ad(x)) are real
valued and called the electrostatic and magnetic potentials, respectively. We assume t
potentials areC`-functions satisfying the assumption

u]x
aA~x!u1u]x

aV~x!u<Ca~11uxu!2r2uau, r.0, ~1.2!

for all multi-indices a. Then H is a self-adjoint operator in the spaceH5L2(Rd) on domain
D(H)5D(H0) of the ‘‘free’’ operatorH052D. Our approach to the scattering theory for the p
H0 , H relies on wave operators with non-trivial identificationsJ6 ~depending on the sign oft)

W65W6~H,H0 ;J6!5s2 lim
t→6`

eiHtJ6e2 iH 0t. ~1.3!

We constructJ6 as pseudodifferential operators~PDO!. Such wave operators were first introduc
by Isozaki and Kitada in Ref. 3, where the Enss method was used for the proof of their exis
and completeness~the method of Ref. 3 was extended to long-range magnetic potentials in
13!. We show that the long-range scattering fits into the theory of smooth perturbations~in the
sense of Kato!. This yields, in particular, the stationary~in terms of the resolvent! representation
for the corresponding scattering matrixS(l) which allows us to study its structure and spect
properties. Actually, we follow closely Ref. 20, where the caser.1/2 ~andA50) was considered
However consideration of the general caser.0 is technically much more involved.

The operatorsJ6 emerge naturally as PDO with symbols constructed in terms of approxim
eigenfunctionsC6(x,j)5eiw6(x,j) of the operatorH. SubstitutingC5eiw in the Schro¨dinger
equationHC5uju2C and neglecting imaginary terms, we obtain the eikonal equation

a!Electronic mail: rouxph@maths.univ-rennes1.fr
b!Electronic mail: yafaev@univ-rennes1.fr
27620022-2488/2003/44(7)/2762/25/$20.00 © 2003 American Institute of Physics
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u¹wu222^A,¹w&1V~x!1uA~x!u22uju250, ¹5¹x , ~1.4!

for the phase functionw5w6 . We seek approximate solutions of this equation in the form

w6~x,j!5^j,x&1F6~x,j! ~1.5!

whereF6(x,j)5o(uxu) as uxu→`. Such solutions can be constructed by an explicit proced
described in Sec. IV. Then the Schro¨dinger equation forC65eiw6 is satisfied up to short-rang
terms ~that is, satisfying an estimate of the type~1.2! with r.1) off any neighborhood of the
direction x̂57 ĵ. To get rid of the ‘‘bad’’ directionx̂57 ĵ, we introduce in the symbolj 6(x,j)
suitable cutoff functionsz6(x,j), such thatz6 are asymptotically homogeneous inx of degree 0,
z6(x,j)50 in a conical neighborhood~in R2d) of the setx̂57 ĵ andz6(x,j)51 off somewhat
larger neighborhood of this set. At the same time we localize our considerations on a co
energy subinterval ofR15(0,̀ ). The symbol of the PDOJ6 can be defined by the equality

j 6~x,j!5eiF6(x,j)z6~x,j!. ~1.6!

As in Ref. 20, from analytical point of view our approach relies on the limiting absorp
principle and the radiation estimates. The first of these results means that the operator^x&2p, p
.1/2, is locallyH-smooth on any bounded interval disjoint from zero~see Definition 3.1!. The
second, pertaining to the critical casep51/2, ensures localH-smoothness of the operatorsGj

5^x&21/2¹ j
' , j 51, . . . ,d, where

¹ j
'u5] ju2uxu22^¹u,x&xj , j 51,...,d. ~1.7!

Let T65HJ62J6H0 be the ‘‘effective perturbation.’’ It follows from definition~1.6! that
both operatorsT5T6 factorize into a sum of products of locallyH0- andH-smooth operators

T5^x&2pB(r )^x&2p1(
j 51

d

Gj* B(s)Gj , p.1/2, ~1.8!

where the operatorsB(r )5B6
(r ) , B(s)5B6

(s) are bounded. This implies the existence of all wa
operators W6(H,H0 ,Jg),W6(H0 ,H,Jg* ), both for g5‘‘ 1’’ and g5‘‘ 2.’’ The operators
W6(H,H0 ,J6) are isometric sinceJ6* J6e2 iH 0t f ;e2 iH 0t f ast→6`. For the proof of complete-
ness ofW6(H,H0 ,J6), we use that, for a suitable choice of the cut-off functionsz1 andz2 , the
operatorJ1J1* 1J2J2* 2I is essentially compact. Finally, we check that wave operators~1.3!
coincide with wave operators obtained by a time-dependent modification of the free dynam
the coordinate representation~see Ref. 22!. In the special case whereV50 andA satisfies as-
sumption~1.2! with r.1/2 and the additional condition of transversal gauge

^A~x!,x&50 ~1.9!

~for xPRd large enough!, the identificationsJ6 can be replaced in~1.3! by the identity operator,
that is the usual wave operatorsW6(H,H0) exist. Thus, we recover the well known result9 of Loss
and Thaller about long-range magnetic scattering.

Since the scattering operatorS5W1* W2 commutes withH0 , it reduces in the spectral repre
sentation ofH0 to the multiplication by the operator-functionS(l), l.0, acting in the space
N5L2(Sd21) and known as the scattering matrix~SM!. Our study ofS(l) relies on its stationary
representation in terms of the resolventR(z)5(H2z)21 of the operatorH. To describe it, we
need to introduce the auxiliary wave operatorW1(H0 ,H0 ;J1* J2). It commutes withH0 and
hence acts in the spectral representation ofH0 as multiplication by the operator-functio
W(l):N→N. Then~see Refs. 4, 20, 22!

S~l!5W~l!22p iG0~l!~J1* T22T1* R~l1 i0!T2!G0* ~l!, ~1.10!
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where

~G0~l! f !~v!5221/2k(d22)/2f̂ ~kv!, k5l1/2.0, vPSd21, ~1.11!

is, up to the numerical factor, the restriction of the Fourier transformf̂ 5Ff to the sphere of radius
k. Formula~1.10! is actually of abstract nature and, roughly speaking, is valid always whe
right-hand side is well defined.

In our particular caseW(l)50 for all l.0. Then, using the resolvent estimates cal
usually propagation estimates~see Refs. 6, 7, 11!, we show that the part ofS(l) containing in
~1.10! the resolvent ofH is a compact operator. Thus, the essential spectrum ofS(l) is determined
by the explicit operator22p iG0(l)J1* T2G0* (l) which we consider as a PDO on the unit sphe
In the general caser.0 this PDO is determined by its amplitudea(y,v,v8;l) where v,v8
PSd21 are close to some pointv0 andy belongs to the hyperplane orthogonal tov0 . It turns out
that, essentially,a(y,v,v8;l)5exp(iu (y,v,v8;l)) whereu(y,v,v;l)→` as uyu→`. Actually,
the asymptotics ofu(y,v,v;l) asuyu→` is determined by the asymptotics ofV(x) andA(x) as
uxu→`. For homogeneous potentials of degree2r, rP(0,1), the functionu is asymptotically
homogeneous of degree 12r and it has, generically, a logarithmic growth ifr51. In particular,
this implies21 that the spectrum of the SM covers the whole unit circleT. This situation is
completely different from the short-range case where the principal symbol of PDOS(l) equals 1
which corresponds to the Dirac function in its kernel. In this case the spectrum ofS(l) consists of
eigenvalues accumulating at the point 1 only. Thus, in the long- and short-range cases the
larities and the spectral structure ofS(l) are of qualitatively different nature.

A detailed analysis of singularities~as well as asymptotic expansion asl→`) of the SM
S(l) can be found in Ref. 23 where a method, somewhat different from this paper, was us

Technically, our paper relies on the PDO calculus. Thus, we treat the operatorsJ6 andT6 as
PDO. For anyrP(0,1), they belong to the Ho¨rmander classesS r,12r

0 andS r,12r
21 , respectively. In

these classes a convenient PDO calculus can be developed forr.1/2 only. This creates new
difficulties for potentials satisfying~1.2! for rP(0,1/2#. Fortunately, the operatorsJ6 andT6 fit
into the framework of PDO with oscillating symbols developed in Ref. 21. Auxiliary res
concerning PDO calculus are discussed in Sec. II.

II. PSEUDODIFFERENTIAL OPERATORS

2.1. We need some elementary facts about PDO defined by the equality

~A f !~x!5~2p!2d/2E
Rd

ei ^j,x&a~x,j! f̂ ~j!dj, ~2.1!

where

f̂ ~j!5~Ff !~j!5~2p!2d/2E
Rd

e2 i ^j,x& f ~x!dx

is the Fourier transform off from the Schwartz classS5S(Rd). We denote byS r,d
m the class of

symbolsaPC`(Rd3Rd) satisfying, for all multi-indicesa andb, the estimates

u]x
a]j

ba~x,j!u<Ca,b~11uxu!m2ruau1dubu. ~2.2!

Here and belowC,c are different positive constants, whose precise values are of no import
Moreover, we assume thata(x,j)50 for sufficiently largeuju. We always suppose thatr.0, d
,1 and setS m5S 1,0

m . The operatorsA and A* are well defined as mappings of the Schwa
classS into itself. The calculus of PDO can be conveniently developed~see, e.g., Ref. 2 or Ref
17! in the classesS r,d

m if r.1/2.d, but it fails in the general case.
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To treat the caser<1/2, we need a more special class of PDO with oscillating symb
introduced in Ref. 21. Let us denote byC m(F) the class of symbols admitting the representat

a~x,j!5eiF(x,j)b~x,j!, FPS r , bPS m, r P@0,1!. ~2.3!

SinceC m(F),S 12r ,r
m , only the caser>1/2 requires a special study. Occasionally we use

notationS r,d
m andC m(F) for PDO ~2.1! with symbols from these classes. The operator of mu

plication by (11uxu2)1/2 is denoted bŷ x&.
Let us collect a necessary information on the calculus of PDO. Note that compared

standard definition of PDO the roles of the variablesx andj in ~2.1! are interchanged. Howeve
the operatorFA* F* satisfies the usual assumptions. This allows us to recover all results of
theory for operators~2.1!. We start with an elementary assertion, which can be proven by
standard technique~see, e.g., Ref. 2 or Ref. 17!.

Proposition 2.1: Suppose that a1PC m1(F) for some FPS r , r P@0,1), a2PS m2 and
a0(x,j)5a1(x,j)a2(x,j). Let Aj be the PDO with symbol aj , j 50,1,2.Then A1A2 and A2A1 are
PDO from the classC m(F) where m5m11m2 and the PDO A1A22A0 and A2A12A0 belong to
the classC m1r 21(F).

The following two assertions are borrowed directly from Ref. 21.
Proposition 2.2: Let APC m(F). Then the operator A is bounded in the space L2(Rd) if m

50, and it is compact if m,0.
Proposition 2.3: Let Aj , j 51,2,be PDO with symbols ajPC 0(F) and let A be the PDO with

symbol a1(x,j)a2(x,j). Then both operators A2A1A2* and A2A2* A1 are compact in the space
L2(Rd).

To formulate further results on PDO, we need the following technical lemma.
Lemma 2.4: LetV0PC0

`(Rd), V0(j)51 for uju<R021 andV0(j)50 for uju>R0 (for some
R0.1). Let V1PC`(Rd), V1(j)50 for uju<R1 and V1(j)51 for uju>R111. Assume that
R1.R0 . We denote byV j , j 50,1, the multiplication operators (in the momentum representati
by the functionsV j (j). Let g be the multiplication operator by a function gPC`(Rd) such that
]ag(x)5O(uxun2uau) as uxu→` for some n and alla. Then the operatorV0gV15V0g0V1 where
g0PS.

Proof: In the momentum representationg acts as the convolution with the functionĝ(j)
whereĝPC` except the point zero and decays at infinity, together with all its derivatives, fa
that any power ofuju21. ThereforeV0gV1 is the integral operator with kernel

~2p!2d/2V0~j!ĝ~j2j8!V1~j8!, ~2.4!

which equals 0 ifuj2j8u<R12R0 . Let vPC`(Rd), v(j)50 for uju<(R12R0)/2 andv(j)
51 for uju>R12R0 . Then kernel~2.4! is not changed if we replaceĝ(j2j8) by ĝ0(j2j8)
whereĝ0(j)5ĝ(j)v(j) belongs toS. h

Lemma 2.5: Let A be a PDO with symbol a from the classS r,d
m wherer.0, d,1 and m are

arbitrary and a(x,j)50 if uju>R. Let g andV1 be the same as in Lemma 2.4 and R1.R. Then
for any p the operator AgV1^x&p is bounded in L2(Rd).

Proof: Assuming thatp is an even integer and commuting the operatorsV1 and ^x&p, we
reduce the problem to the casep50. LetV0 be the same as in Lemma 2.4 withR0P(R,R1). Then
AgV15AV0gV1 , so that, by Lemma 2.4, we may suppose thatgPS. In the coordinate repre
sentation, the operatorAg has kernel

~2p!2dE
Rd

ei ^j,x2x8&a~x,j!dj g~x8!. ~2.5!

Using the formulâ x&2k^Dj&
kei ^j,x&5ei ^j,x& and integrating by parts, we estimate the kernel~2.5!

by ^x&m2(12d)k^x8&kug(x8)u. For sufficiently largek, both functions ofx andx8 belong toL2(Rd),
and hence the operatorAg belongs to the Hilbert–Schmidt class. h

Now it easy to check the following two assertions.
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Proposition 2.6: Let APC m(F) for some m. Then the operator Âx&2m is bounded in the
space L2(Rd).

Proof: Assume thata(x,j)50 for uju>R. Let V1 be the same operator as in Lemma 2.4 w
R1.R andV25I 2V1 . Clearly, ^x&2mV2 is a PDO from the classS 2m. Therefore, by Propo-
sition 2.1, the PDOA(^x&2mV2) belongs to the classC 0(F) and hence, by Proposition 2.2, it
bounded. The operatorA^x&2mV1 is bounded according to Lemma 2.5. h

Proposition 2.7: Suppose that A is a PDO with symbol aPC m(F), for someFPS r with r
P@0,1), and G is a PDO (actually, a differential operator) with symbol g(x,j)
5( usu<s0

gs(x)js, where gsPC`(Rd) and ]ags(x)5O(uxun2uau) as uxu→` for some n and alla.

Let T be the PDO with symbol t(x,j)5ug(x,j)u2a(x,j). Then the operator̂ x&p(G* AG2T)
3^x&p is bounded if2p52m22n112r .

Proof: Let a1(x,j) be the symbol of the PDOA15G* A. By direct calculation we show tha

a1~x,j!2g~x,j!a~x,j!PCm1n1r 21~F!.

Assuming thata(x,j)50 for uju>R, we introduce the same operatorsV1 ,V2 as in Proposition
2.6. Proposition 2.1 implies that, up to terms from the classCm12n1r 21(F), the operatorA1GV2

has symbolt(x,j). Therefore the operator̂x&p(G* AGV22T)^x&p is bounded by Proposition
2.6. It remains to take into account that the operator^x&pA1GV1^x&p is bounded for anyp
according to Lemma 2.5. h

For the study of the SM we need to consider PDO defined by their amplitudes. We define
operators in terms of the corresponding sesquilinear forms onS3S,

~A f 1 , f 2!5~2p!2dE
Rd
E

Rd
E

Rd
ei ^j82j,x&a~x,j,j8! f̂ 1~j8! f̂ 2~j!dx djdj8. ~2.6!

We suppose that the amplitudea(x,j,j8) belongs to the classS r,d,d
m defined quite similarly toS r,d

m

with j replaced by (j,j8) in ~2.2! and thata(x,j,j8) is compactly supported inj andj8. Again
we denoteS m5S 1,0,0

m .
Let us consider@cf. ~2.3!# a special classC m(Q) of amplitudes admitting the representatio

a~x,j,j8!5eiQ(x,j,j8)b~x,j,j8!, QPS r , r P@0,1!, bPS m. ~2.7!

Such operators reduce to PDO with oscillating symbols.
Proposition 2.8: LetA be defined by (2.6) with amplitude (2.7). ThenA5A where A is a PDO

(2.1) with symbol (2.3) and

F~x,j!5Q~x,j,j!1Q1~x,j!, Q1PS 2r 21,

b~x,j!5b~x,j,j!1b1~x,j!, b1PS m1r 21.

In particular, if b(x,j,j)50, then A belongs to the classC m1r 21(F).
This result~its proof can be found in Ref. 21! allows us to extend Propositions 2.2 and 2.6

operatorsA defined by~2.6!.
Proposition 2.9: LetAPC m(Q). Then the operatorA is bounded in the space L2(Rd) if m

50, and it is compact if m,0. Moreover, the operatorA^x&2m is also bounded.
2.2. The spectral representation ofH052D can be constructed in terms of the operatorG0(l)

defined by~1.11!. Let N5L2(Sd21) and (Uf )(l)5G0(l) f , f PS(Rd), l.0. Then the operatorU
extends by continuity to a unitary operatorU:L2(Rd)→L2(R1 ;N), and the operatorH0 is diago-
nalized byU, that is (UH0f )(l)5l(Uf )(l) for f PD(H0).

The operatorG0(l) is directly related to the spectral familyE0(l) of the operatorH0 and to
its resolventR0(z)5(H02z)21. Set

d«~H02l!5~2p i !21~R0~l1 i«!2R0~l2 i«!!.
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For any f 1 , f 2PS the limit and the derivative below exist and satisfy~see, e.g., Ref. 19!

lim
«→0

~d«~H02l! f 1 , f 2!5d~E0~l! f 1 , f 2!/dl5~G0~l! f 1 ,G0~l! f 2!R .

We recall the Sobolev trace theorem.
Proposition 2.10: For p.1/2 the operator-functionG0(l)^x&2p :H→N is compact and

Hölder continuous in norm with respect to the parameterl.0.
For construction of the SM, we have to give a precise definition of the operatorA[(l)

ªG0(l)AG0* (l) appearing in~1.10! which imposes rather stringent conditions onA. Practically
we consider only PDOA defined by~2.6!, although the definition below is of abstract nature. No
that, for a PDOA, the operatorA[(l) is also defined as a PDO on the unit sphereSd21. It is
convenient to define the operatorA[(l) in terms of its sesquilinear form (A[(l)g1 ,g2).

Definition 2.11: Let g1 ,g2PC`(Sd21), and letc1 ,c2PC0
`(R1) be such thatc1(k)5c2(k)

51. Set fˆ j (j)5gj ( ĵ)c j (uju), j 51,2. Then

~A[~l!g1 ,g2!Nª2k22d lim
«→0

~Ad«~H02l! f 1 ,d«~H02l! f 2!, ~2.8!

provided this limit exists for all g1 ,g2PC`(Sd21).
By definition ~1.11!, if gPC`(Sd21),cPC0

`(R1) and f̂ (j)5g( ĵ)c(uju), then

~G0~l! f !~v!5221/2k(d22)/2c~k!g~v!, k5l1/2.

The operatorG0* (l) formally adjoint toG0(l) is defined, e.g., forgPC`(Sd21) by the equality

~G0* ~l!g!~x!5221/2k(d22)/2~2p!2d/2E
Sd21

eik^v,x&g~v!dv, k5l1/2.0. ~2.9!

Therefore Definition 2.11 gives an exact meaning to the formal expressionG0(l)AG0* (l).
If B5FAF* is an integral operator with kernelB(j,j8) which is continuous near the surfac

uju5uj8u5k, then, by~1.11! and ~2.9!, A[(l) is also an integral operator with kernel

b~v,v8;l!5221kd22B~kv,kv8!.

If A is a PDO~2.6! with amplitudeaPS r,d,d
m , then the kernel

B~j,j8!5~2p!2dE
Rd

ei ^j82j,x&a~x,j,j8!dx

~understood as an oscillatory integral! of the operatorB5FAF* is well defined and infinitely
differentiable off the diagonalj5j8.

Thus, we have the following obvious assertion.
Proposition 2.12: LetaPS r,d,d

m for somer.0, d,1, and let x1 and x2 be multiplication
operators by C`(Sd21)-functions with disjoint supports. Then(x1Ax2)[(l) is an integral opera-
tor with C`-kernel of variablesv, v8 ~and l.0).

However due to a possible strong singularity of the functionB(j,j8) at j5j8, the operator
A[(l) exists only under special assumptions ona(x,j,j8). In the caseaPC m(Q), m,21, the
diagonal singularity ofB(j,j8) is weak, so no additional restrictions are required.

Proposition 2.13: LetA belong to the classC m(Q) where m,21. ThenA[(l) is well defined
for all l.0 and is a compact operator inN. Moreover, A[(l) depends norm continuously onl.

Proof: Indeed,

A[~l!5~G0~l!^x&2p!~^x&pA^x&p!~^x&2pG0* ~l!!, p5m/2.
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Sincep.1/2, Proposition 2.10 applies to the first and third factors. The second factor is bou
in H by Proposition 2.9. h

Let us now consider the general caseaPS r,d,d
m wherem is arbitrary. It turns out~see Refs. 8

and 21! that for m>21 the operatorA[(l) exists if a(x,j,j8)50 for (x,j) belonging to a
neighborhood of the conormal bundle of the sphereuju5k andj8 close toj. In view of Proposi-
tion 2.12, we may suppose thatj andj8 are close to each other or, to put it differently, we can ta
in Definition 2.11 functionsg1 and g2 supported in a neighborhood of the same pointv0

PSd21. Let Pv0
be the hyperplane orthogonal tov0 , and letV5V(v0 ,g),Sd21 be determined

by the condition̂ v,v0&.g.0. The numberg can be chosen arbitrary close to 1. We denote
z5¸(v) the orthogonal projection ofv on Pv0

; in particular, we assume thaţ(v0)50. We
denote byS the orthogonal projection ofV on the hyperplanePv0

and identify pointsvPV and
z5¸(v). The hyperplanePv0

can be identified withRd21. Let us also consider the unitar
mappingZ5Z¸ :L2(V)→L2(S) defined by

~Zu!~z!5~12uzu2!21/4u~v!, z5¸~v!. ~2.10!

The next result~borrowed from Ref. 21! gives conditions of the existence of the opera
A[(l).

Proposition 2.14: LetaPS r,d,d
m for somer.0, d,1 with r1d<1. Suppose that there exist

«.0 such thata(x,j,j8)50 if the following two estimates

uj2j8u,«, u^x̂,ĵ&u.12« ~2.11!

are satisfied. Then the operatorA[(l) is well-defined in the sense of Definition 2.11 for alll
.0. Moreover, the operatorA¸

[(l)5Z¸A[(l)Z*̧ is the PDO with sesquilinear form

~A¸
[~l!u1 ,u2!5~2p!2d11E

Rd21
E

S
E

S
ei ^z2z8,y&a¸

[~y,z,z8;l!u1~z8!u2~z!dz dz8 dy

~2.12!

for all u1 ,u2PC 0
`(S). The amplitudea¸

[PS r,d,d
m11(Rd213S3S) is given by the formula

a¸
[~y,z,z8;l!5~2pk!21a~z,z8!E

2`

`

a~~v1v8!z2y/k,kv,kv8!dz ~2.13!

[this integral is taken over a finite interval due to condition (2.11)], where k5l1/2, z
5¸(v), z85¸(v8), and

a~z,z8!5221S S 12uzu2

12uz8u2D
1/4

1S 12uz8u2

12uzu2 D 1/4D . ~2.14!

Consequently, (2.12) is a smooth function ofl.0 for all u1 ,u2PC 0
`(S).

Definition 2.15: The functiona¸
[(y,z,z8;l) is called the amplitude of the operatorA[(l) in

the chart coordinates(v0 ,¸).
We emphasize that, from the point of view of PDO theory, in the formula~2.12! z plays the

role of the space variable andy is the dual one.
A spectral information on PDO with oscillating amplitudes is given in the following asser

~see Ref. 21!.
Proposition 2.16: LetA:C0

`(S)→C`(S), S,Rd21, be a PDO with amplitude

a~y,z,z8!5eiQ(y,z,z8)b~y,z,z8!, ~2.15!

whereQPS r , r P(0,1), bPS 0. Suppose that for some points y0Þ0,z0PS,
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uQ~ty0 ,z0 ,z0!u>ct r , u¹yQ~ty0 ,z0 ,z0!u>ct r 21, c.0, ~2.16!

for sufficiently larget.0 and that

lim
t→`

b~ty0 ,z0 ,z0!51. ~2.17!

Then for eachmPT and arbitrary small neighborhoodS0 of z0 there exists a (Weyl) sequence
functions unPC0

`(S0) such that

iuni51, w2 lim
n→`

un50, lim
n→`

iAun2muni50.

In particular, the essential spectrum of the operatorA in the space L2(S) covers the unit circleT.
Remark 2.17:A simple version of Proposition 2.16 was proven and used in Ref. 20. Nam

let aPS r,d,d
0 with r.1/2.d, and let representation~2.15! hold. Then the conclusion of Propos

tion 2.16 remains true if, for somey0Þ0,z0PS, the condition~2.17! is satisfied and

lim
t→`

supQ~ty0 ,z0 ,z0!5` or lim
t→`

inf Q~ty0 ,z0 ,z0!52`. ~2.18!

III. LIMITING ABSORPTION PRINCIPLE AND RADIATIONS ESTIMATES

3.1. Let us recall some basic notions of the theory of smooth perturbations~see, e.g., Refs. 15
and 19!.

Definition 3.1: Let H be a self-adjoint operator in a Hilbert spaceH, R(z)5(H2z)21 be the
resolvent of H and K be an H-bounded operator. The operator K is called H-smooth (in the sense
of Kato) if one of the two equivalent conditions is satisfied

sup
f PD(H),i f i51

E
2`

`

iKe2 i tH f i2 dt,`, ~3.1!

sup
lPR,«.0

iK~R~l1 i«!2R~l2 i«!!K* i,`. ~3.2!

The following definition is essentially more flexible.
Definition 3.2: Let E(•) be the spectral measure of H. Suppose that, for an H-bounded

operator K, and intervalsLn such thatR\øn51
` Ln has the Lebesgue measure zero, the opera

KE(Ln) are H-smooth. Then we say that K is locally H-smooth.
Note that condition~3.2!, satisfied forlPL only, implies that the operatorKE(L) is

H-smooth.
The theory ofH-smooth perturbations gives a sufficient condition for the existence of w

operators@which can easily be obtained from~3.1!#.
Proposition 3.3: Let H0 , H be a couple of self-adjoint operators, and let J be a bound

operator. Suppose that T5HJ2JH0 admits the factorization

T5(
j 51

N

K j* K0,j ,

where all operators K0,j are locally H0-smooth and Kj are locally H-smooth. Denote by P0 and
P the orthogonal projections on the absolutely continuous subspaces of the operators H0 and H,
respectively. Then the wave operators

W6~H,H0 ;J!5s2 lim
t→6`

eitHJ* e2 i tH 0P0
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and

W6~H0 ,H;J* !5s2 lim
t→6`

eiH 0tJ* e2 iHt P

exist.
Note, finally, that for an arbitrary self-adjoint operatorH and a compact operatorK,

s2 lim
utu→`

Ke2 iHt P50. ~3.3!

3.2. Let us return to the Schro¨dinger operator~1.1!. Recall first of all that, although it is really
unimportant for our results, under assumption~1.2! the operatorH does not have positive eigen
values~see Refs. 5 and 18 where the proof of Ref. 15 was extended to magnetic potentials!. The
following well-known result~the limiting absorption principle; see Refs. 1, 10, and 14! can be
easily obtained by the Mourre method.

Proposition 3.4: Let assumption (1.2) hold, and let p.1/2. Then the operator function
^x&2pR(z)^x&2p is continuous in norm with respect to the parameter z in the closed com
plane cut along@0,̀ ) with exception of the point 0. In particular, the operator^x&2pE(L) is
H-smooth for any compact intervalL,(0,̀ ). The positive spectrum of H is absolutely contin
ous.

The following resolvent estimates borrowed from Ref. 22 are called radiation estimates
Proposition 3.5: Let assumption (1.2) hold, and let the operators¹ j

' be defined by (1.7). Se
Gj5^x&21/2¹ j

' . Then for all j51, . . . ,d the operators GjE(L) are H-smooth for any compac
interval L,(0,̀ ).

Propositions 3.4 and 3.5 are sufficient for the proof of existence and completeness of
operators. However, our study of the SM requires additional resolvent estimates called u
propagation estimates.

Proposition 3.6: Let assumption (1.2) be fulfilled. Let Q6 be the PDO with symbol q6(x,j)
PC m(F6) for someF6PS r with rP@0,1). Suppose that q6(x,j)50 for uju<«, uxu<« and that
the support of q6(x,j) is contained in the cone

7^ĵ,x̂&>«, ĵ5j/uju, x̂5x/uxu,

for some«P(0,1). Then the operator-functions

^x&p2sQ1* R~z!^x&2p, ^x&2pR~z!Q2^x&p2s, p.1/2, s.m11,

are bounded and continuous in norm with respect to the parameter z in the regionRez
P(l0,`), l0.0, Imz>0.

Proposition 3.7: Under the assumptions of Proposition 3.6 the operator function

^x& lQ1* R~z!Q2^x& l , ; l ,

is bounded and continuous in norm with respect to the parameter z in the regionRez
P(l0,`), l0.0, Imz>0.

These two assertions were proven in Refs. 6, 7, and 11 for PDOQ6PS m. In the caseQ6

PC m(F6) the proofs are quite similar. In particular, they rely on the Mourre estimate.10

IV. THE EIKONAL EQUATION

In this section our goal is to construct approximate eigenfunctions of the Schro¨dinger operator
with long-range electric and magnetic potentials. It is natural to seek these eigenfunctions
form C5eiw with a real functionw. A simple calculation shows that
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~~ i¹1A!21V2uju2!C5eiw~ u¹wu222^A,¹w&2 iDw1V1uAu21 i div A2uju2!, ~4.1!

where¹5¹x . Neglecting here the imaginary terms, which turn out to be short-range, we se
the Schro¨dinger equation reduces to the eikonal equation~1.4! for w5w6 . Considering this
equation, we always remove a conical neighborhood of the directionx̂57 ĵ and require that its
right-hand side be short-range~not necessarily zero!. We assume thatw6 has the form~1.5! where
F65o(uxu) as uxu→`. Then Eq.~1.4! for w6 yields the equation

2^j,¹F6~x,j!&1u¹F6~x,j!u222^A~x!,j1¹F6~x,j!&1V~x!1uA~x!u25q6~x,j!
~4.2!

for F6 with a short-range termq6 . Thus, according to~4.1!,

~~ i¹1A!21V2uju2!~eiw6!5eiw6q6 , ~4.3!

where

q65q61 i div A2 iDF6 ~4.4!

is again a short-range term.
Equation ~4.2! can be easily solved by iterations. Let us first consider an auxiliary lin

equation

^j,¹f~x,j!&1F~x,j!50. ~4.5!

All estimates below are uniform inj if l0<uju<l1 for some 0,l0,l1,`.
Lemma 4.1: Suppose that F5F6 satisfies for all multi-indicesa,b the estimates

u]x
a]j

bF6~x,j!u<Ca,b~k!~11uxu!2r2uau, 6^ x̂,ĵ&>k,

for somerP(0,1) and anyk.21. Then the function

f6~x,j!56E
0

`

~F6~x6tj,j!2F6~6tj,j!!dt ~4.6!

is a solution of equation (4.5) which satisfies for alla,b and k.21 the estimates

u]x
a]j

bf6~x,j!u<Ca,b~k!~11uxu!12r2uau, 6^x̂,ĵ&>k.

The proof can be obtained by a direct differentiation of~4.6!, see Ref. 20 for details.
Let us seekF65F6

(N) in the form

F6~x,j!5 (
n51

N

f6
(n)~x,j!, ~4.7!

where the functionsf6
(n) are solutions of equations

2^j,¹f6
(1)&1V22^A,j&50, ~4.8!

2^j,¹f6
(2)&1u¹f6

(1)u222^A,¹f6
(1)&1uAu250, ~4.9!

2^j,¹f6
(n)&1 (

m1p5n
^¹f6

(m) ,¹f6
(p)&22^A,¹f6

(n21)&50, n>3. ~4.10!
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Then the remainderq6(x,j)5q6
(N)(x,j) defined by~4.2! satisfies the equations

q6
(1)5u¹f6

(1)u222^A,¹f6
(1)&1uAu2,

~4.11!

q6
(N)5 (

m1p>N11
^¹f6

(m) ,¹f6
(p)&22^A,¹f6

(N)&, N>2.

Using Lemma 4.1, we derive inductively estimates for functionsf6
(n) , which gives also estimate

for F6 andq6 .
Proposition 4.2: Let assumption (1.2) hold for somerP(0,1) such thatr21 is not integer and

set N5@r21#. Then for all multi-indicesa,b we have in the region6^x̂,ĵ&>k ~for any k
.21),

u]x
a]j

bf6
(n)~x,j!u<Ca,b~k!~11uxu!12nr2uau, ~4.12!

u]x
a]j

bF6~x,j!u<Ca,b~k!~11uxu!12r2uau, ~4.13!

u]x
a]j

bq6~x,j!u<Ca,b~k!~11uxu!212e2uau, e.0. ~4.14!

Equality ~4.4! and estimates~4.13! imply that the function q6 on the right-hand side of~4.3!
obeys the same bound~4.14! asq6 .

We note that all assertions of Proposition 4.2 remain true forr51, except that in this case th
function F6(x,j)5f6

(1)(x,j) may have a logarithmic growth asuxu→`. Similarly, if r21 is
integer, thenN5r21 and the functionf6

(N)(x,j) has a logarithmic growth. The assumption th
r21 is not integer does not of course reduce the generality.

Let us finally give an explicit expression forF65f6
(1) in the caser.1/2,

F6~x,j!56221E
0

`

~V~x6tj!2V~6tj!22^A~x6tj!2A~6tj!,j&!dt. ~4.15!

V. WAVE OPERATORS

5.1. Here we consider wave operators for the pair of HamiltoniansH052D, H5( i¹
1A)21V, acting in the spaceH5L2(Rd). We always assume condition~1.2! on A andV. Below
we fix a spectral intervalL5@l0 ,l1#,R15(0,̀ ). Let F6 be the function constructed in Propo
sition 4.2. We define the identificationJ6 by the formula

~J6 f !~x!5~2p!2d/2E
Rd

ei ^x,j&1 iF6(x,j)z6~x,j! f̂ ~j!dj, ~5.1!

where the cutoff function

z6~x,j!5s6~^ĵ,x̂&!h~x!c~ uju2!, ĵ5j/uju, x̂5x/uxu. ~5.2!

Heres6PC` is such thats6(t)51 near61 ands6(t)50 near71, so that it ‘‘kills’’ a conical
neighborhood of the bad directionx̂57 ĵ where estimates~4.13! are violated. The functionh
PC`(Rd), such thath(x)50 near zero andh(x)51 for largeuxu, is introduced only to get rid of
the singularity of the functionx̂ at the pointx50. Finally, cPC0

`(R1) andc(l)51 for lPL.
Thus, our considerations are localized on a bounded disjoint from zero energy interval. Sin
function F6 satisfies estimates~4.13! on the support ofz6 , the operatorJ6 fits into the frame-
work of PDO with oscillating symbols~see 2.1 in Sec. II!. In particular, by Proposition 2.2,J6 is
a bounded operator onH. Abusing somewhat notation, we writeJ6PC 0(F6).
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Our first goal in this section is to show that the pairH0 ,H, with identificationsJ1 andJ2 , fits
into the framework of the theory of smooth perturbations, so the wave operatorsW6(H,H0 ;Jg)
and W6(H0 ,H;Jg* ) exist both forg5 ‘ ‘ 1 ’ ’ and g5 ‘ ‘ 2 ’ ’ . The structure of the operatorsT6

5HJ62J6H0 is described in the following.
Lemma 5.1: The operator T6 admits the decomposition T65T6

(s)1T6
(r ) where T6

(s) ,T6
(r ) are,

respectively, PDO with symbols

t6
(s)~x,j!522ih~x!eiF6(x,j)^j,¹s6~^ĵ,x̂&!&c~ uju2!

522ih~x!uxu21eiF6(x,j)~12^ĵ,x̂&2!s68 ~^ĵ,x̂&!ujuc~ uju2!PC 21~F6! ~5.3!

and t6
(r )PC 212e(F6) for somee.0.

Proof: According to~4.3! and ~5.1!, we have that

~T6 f !~x!5~2p!2d/2E
Rd

ei ^x,j&1 iF6(x,j)t6~x,j! f̂ ~j!dj,

where

t6~x,j!5q6~x,j!z6~x,j!22i ^j1¹F6~x,j!2A~x!,¹z6~x,j!&2Dz6~x,j!. ~5.4!

We single out here the term

t6
(s)~x,j!522ih~x!^j,¹s6~^ĵ,x̂&!&c~ uju2!

decaying asuxu21. According to ~1.2!, ~4.13!, and ~4.14! all other terms belong to the clas
S 212e. Thus, we definet6

(s) and t6
(r ) by the equalities

t6
(s)~x,j!5eiF6(x,j)t6

(s)~x,j!, t6
(r )~x,j!5t6~x,j!2t6

(s)~x,j!, t6
(r )~x,j!5eiF6(x,j)t6

(r )~x,j!.

Then t65t6
(s)1t6

(r ) . h

Our study of the singular partT6
(s) relies on

Lemma 5.2: Let T be a PDO with symbol

t~x,j!5g~x,j!w~^x̂,ĵ& !h~x!c~ uju2!,

where gPC 21(F),FPS 12r, r.0, wPC` and w(61)50. Let Gj , j 51, . . . ,d, be the opera-
tors defined in Proposition 3.5. Then T admits the representation (1.8), where p5(11r)/2 and
the operators B(s),B(r ) are bounded.

Proof: Let B(s) andTj , j 51, . . . ,d, be the PDO with symbols

b(s)~x,j!5^x& uju22~12^ĵ,x̂&2!21t~x,j!,

t j~x,j!5^x&21~j j2uxu22xj^j,x&!2b(s)~x,j!.

The function (12t2)21w(t) is C`, so thatb(s)PC 0(F) and hence, by Proposition 2.2, th
operatorB(s) is bounded. SinceGj is the PDO with symbol

gj~x,j!5 i ^x&21/2~j j2uxu22xj^j,x&!

and t j5ugj u2b(s), we get, by Proposition 2.7 wherem50, n521/2, r 512r, that the operator

B(r )5(
j 51

d

^x&p~Gj* B(s)Gj2Tj !^x&p
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is bounded for 2p5r11. It remains to remark thatt5( j 51
d t j . h

Now it is easy to obtain representation~1.8!.
Proposition 5.3: The operators T6 admit representation (1.8) for p.1/2 and some bounded

operators B6
(r ) ,B6

(s) .
Proof: Let us proceed from Lemma 5.1. Sincet6

(s)PC 21(F6) and s68 (t)50 in neighbor-
hoods of the points21 and 1, Lemma 5.2 can be directly applied to the operatorsT6

(s) for ps

5(11r)/2. Sincet6
(r )PC 212e(F6), the operator̂ x&pT6

(r )^x&p is bounded forpr5(11e)/2 by
Proposition 2.6. This leads to~1.8! with p5min$ps,pr%.1/2. h

It follows from Propositions 3.4 and 3.5 that the triples$H0 ,H,J1% and $H0 ,H,J2% satisfy
the assumptions of Proposition 3.3. This yields

Theorem 5.4:Suppose that A and V satisfy (1.2). Let J65J6(z6) be defined by (5.1). The
all wave operators

W6~H,H0 ;J6!, W6~H0 ,H;J6* ! ~5.5!

and

W6~H,H0 ;J7!, W6~H0 ,H;J7* ! ~5.6!

exist. Operators (5.5) as well as (5.6) are adjoint to each other.
Corollary 5.5: The wave operators satisfy the intertwining property, that is

W6~H,H0 ;Jg!E0~X!5E~X!W6~H,H0 ;Jg!

for all Borel sets X,R and both signs ofg. In particular,

Ran~W6~H,H0 ;Jg!E0~X!!,E~X!H. ~5.7!

5.2. Now we are able to prove the isometricity and completeness of the wave ope
W6(H,H0 ;J6).

Lemma 5.6: Let A be a PDO with symbol aPS 0 such that a(x,j)50 in some conical

neighborhood of the direction xˆ 56 ĵ at least for sufficiently largeuxu. Then

s2 lim
t→6`

Ae2 iH 0t50.

Proof: The stationary pointj5x/(2t) of the integral

~Ae2 iH 0t f !~x!5~2p!2d/2E
Rd

ei ^j,x&2 i uju2ta~x,j!c2~ uju2!) f̂ ~j!dj ~5.8!

does not belong to the support of the functiona(x,j) if t→6`. Here we have taken into accoun
that according to~3.3! values ofa(x,j) for boundedx can be neglected. Therefore supposing t
f̂ PC0

`(Rd) and integrating by parts, we estimate integral~5.8! by CN(11uxu1utu)2N for arbitrary
N. h

Lemma 5.7: The following relations hold:

s2 lim
t→6`

~J6* J62c2~H0!!e2 iH 0t50, ~5.9!

s2 lim
t→6`

J7* J7e2 iH 0t50. ~5.10!

Proof: By Proposition 2.3, up to compact terms@which are negligible according to~3.3!#,
A15J6* J62c2(H0) and A25J7* J7 are PDO with symbolsz6

2 (x,j)2c2(uju2) and z7
2 (x,j),

respectively. Therefore Lemma 5.6 can be applied to both operatorsA1 andA2 . h
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Proposition 5.8: Under the assumptions of Theorem 5.4, the operators W6(H,H0 ;J6) are
isometric on the subspace E0(L)H and

W6~H,H0 ;J7!50, W6~H0 ,H;J7* !50. ~5.11!

Proof: The results on the operatorsW6(H,H0 ;J6) andW6(H,H0 ;J7) are immediate con-
sequences of~5.9! and~5.10!, respectively. The second equality~5.11! is a consequence of the firs
becauseW6(H0 ,H;J7* )5W6* (H,H0 ;J7). h

Proposition 5.9: The operators W6(H,H0 ;J6(z6)) do not depend on the choice of functio
s6 andh in the definition (5.2) provided they satisfy the assumptions formulated at the begi
of this section.

Proof: Let s6 ,h ands̃6 ,h̃ be a couple of such functions, and letz6 ,z̃ be defined by~5.2!.
SetL65J6(z6)2J6( z̃6). It suffices to check thatL6e2H0t→0 strongly ast→6` or that

s2 lim
t→6`

L6* L6e2 iH 0t50.

By Proposition 2.3, up to a compact term,A65L6* L6 is the PDO with symbol (z6(x,j)
2 z̃6(x,j))2, and hence Lemma 5.6 can be applied to both operatorsA6 . h

Our main result in this section is the following.
Theorem 5.10:Under the assumptions of Theorem 5.4, the asymptotic completeness h,

Ran~W6~H,H0 ;J6!E0~L!!5E~L!H.

Proof: By virtue of ~5.7! for X5L, it suffices to check that for anyf PE(L)H there exists
f 0

(6)PE0(L)H such thatf 5W6(H,H0 ;J6) f 0
(6) or, to put it differently, that

lim
t→6`

ie2 iHt f 2J6e2 iH 0t f 0
(6)i50. ~5.12!

Let us setf 0
(6)5W6(H0 ,H;J6* ) f . Then, by the definition of this wave operator,

lim
t→6`

iJ6* e2 iHt f 2e2 iH 0t f 0
(6)i50,

and hence

lim
t→6`

iJ6J6* e2 iHt f 2J6e2 iH 0t f 0
(6)i50. ~5.13!

The second equality~5.11! implies that limt→6`iJ7* e2 iHt f i50 and, consequently,

lim
t→6`

iJ7J7* e2 iHt f i50. ~5.14!

By Proposition 2.3, up to a compact term,J6J6* 1J7J7* is the PDO with symbolz6
2 (x,j)

1z7
2 (x,j). According to Proposition 5.9, we may assume that the functionss6 in ~5.2! satisfy the

conditions1
2 (t)1s2

2 (t)51. Then it follows from~5.13! and ~5.14! that

lim
t→6`

ic2~H0!e2 iHt f 2J6e2 iH 0t f 0
(6)i50.

Since the operatorc2(H)2c2(H0) is compact andc2(H) f 5 f , this yields~5.12!. h

5.3. Here we find the asymptotics of the function
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~J6e2 iH 0t f !~x!5~2p!2d/2E
Rd

ei ^x,j&1 iF6(x,j)2 i uju2tz6~x,j! f̂ ~j!dj, f PS~Rd!, ~5.15!

ast→6`. This will allow us to show thatW6(H,H0 ;J6) coincide with wave operators define
~see Ref. 22! in terms of a time-dependent modification of the free dynamicse2 iH 0t.

Stationary pointsv(x,t) of the phase function in~5.15! are determined by the equation

x1~¹jF6!~x,v~x,t !!22v~x,t !t50, 6t.0. ~5.16!

Due to the functionz6(x,j) we are interested only in pointsv5v(x,t) such thatuvu2Psuppc
and 6^v̂,x̂&>k for somek.21. Using estimate~4.13! on ¹jF6 , we see that for largeutu
equation~5.16! has a unique solutionv(x,t) and

v~x,t !5~2t !21x1O~ utu2r! ~5.17!

uniformly in x such that

c1utu<uxu<c2utu, 0,c1,c2,`. ~5.18!

Let us set

J~x,t !5^v~x,t !,x&1F6~x,v~x,t !!2uv~x,t !u2t, 6t.0. ~5.19!

Applying the stationary phase method to integral~5.15! and taking into account the equalit
s6(^v̂(x,t),x̂&)51 for sufficiently large6t, we find that

~J6e2 iH 0t f !~x!5e7p id/4eiJ(x,t)~2utu!2d/2c~ uv~x,t !u2! f̂ ~v~x,t !!1r 6~x,t !, ~5.20!

wherer 6(x,t) tends to zero inL2(Rd) as t→6`. Using Eq.~5.16!, we can rewrite expression
~5.19! as

J~x,t !5uxu2/~4t !1V~x,t !, ~5.21!

where

V~x,t !5F6~x,v~x,t !!2~4t !21u~¹jF6!~x,v~x,t !!u2, 6t.0. ~5.22!

It follows from ~5.17! that in Eq. ~5.20! v(x,t) can be replaced byx/(2t). This gives us the
following lemma.

Lemma 5.11: Suppose thatutu is sufficiently large. Letv(x,t) satisfy equation (5.16), and le
J(x,t) be defined by formulas (5.21), (5.22). Define a family of unitary operators by the equ

~U0~ t ! f !~x!5e7pdi/4eiJ(x,t)~2utu!2d/2f̂ ~~2t !21x!, 6t.0. ~5.23!

Then for any functionz6 defined by (5.2)

lim
t→6`

iJ6~z6!e2 iH 0t f 2U0~ t !c~H0! f i .50, ; f PL2~Rd!.

Lemma 5.11 allows us to reformulate the results of Theorems 5.4 and 5.10 as follows.
Proposition 5.12: Suppose that A and V satisfy (1.2). Define U0(t) by equality (5.23) for

sufficiently largeutu. Then the wave operators

W65s2 lim
t→6`

eiHtU0~ t ! ~5.24!
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exist, are isometric andRanW65PH. Furthermore, for any function (5.2) satisfying the assum
tions formulated at the beginning of this section

W6c~H0!5W6~H,H0 ;J6~z6!!.

Proposition 5.12 shows again that the operatorsW6(H,H0 ;J6(z6)) do not depend on the
choice of functionss6 andh in the definition~5.2!.

Remark 5.13: IfJ(x,t)5uxu2/(4t) in ~5.23!, then

lim
t→6`

ie2 iH 0t f 2U0~ t ! f i50, ; f PL2~Rd!,

and hence the wave operators~5.24! coincide with

W6~H,H0!5s2 lim
t→6`

eiHte2 iH 0t.

If r.1/2 then the function~5.22! can be replaced by a simpler expression. Recall first of
that in this caseF6 is defined by formula~4.15!. It follows from ~4.13! and ~5.17! that in the
region ~5.18! the functions

~4t !21u¹jF6~x,v~x,t !!u25O~ utu122r!, F6~x,v~x,t !!2F6~x,x/~2t !!5O~ utu122r!

tend to zero asutu→`. Thus, in place of~5.22! we can setV(x,t)5F6(x,x/(2t)) which, ac-
cording to~4.15!, yields the expression

V~x,t !52tE
0

1

V~sx!ds1E
0

1

^A~sx!,x&ds.

This allows us to simplify considerably the expression for the operatorsJ6 in the caseV50.
Proposition 5.14: Suppose that V50 and A satisfies assumption~1.2! with r.1/2. Set

~J f !~x!5expS i E
0

1

^A~sx!,x&dsD f ~x!.

Then the wave operators W6(H,H0 ;J) exist and coincide [up to the factorc(H0)] with operators
(1.3). If additionally the transversal gauge condition (1.9) is satisfied, then J5I , so that the same
conclusions hold for the usual wave operators W6(H,H0).

Remark 5.15:All the results of this section remain true ifV5V01V1 andA5A01A1 where
V0 andA0 satisfy assumption~1.2! and

uV1~x!u<C~11uxu!2r1,
~5.25!

uA1~x!u1udiv A1~x!u<C~11uxu!2r1

for somer1.1. In this case the identificationsJ6 can be constructed in terms of the functionsV0

andA0 only.
Indeed, by multiplication theorem for wave operators, it suffices to check that the usual

operators for the pairH(V0 ,A0), H(V,A) exist and are complete. Under condition~5.25! this
follows from the limiting absorption principle~Proposition 3.4! satisfied by both operator
H(V0 ,A0) andH(V,A).

5.4. The direct definition of wave operators~5.24! in Ref. 22 used the function~5.21! with
V(x,t) such that
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V t~x,t !1t21^x,~¹V!~x,t !&1u~¹V!~x,t !u22^A~x!,x/t12¹V~x,t !&1V~x!1uA~x!u2

5O~ utu212«!, «.0, ~5.26!

and

]x
aV~x,t !5O~ utu12«2uau!, uau51,2, ~5.27!

in the region~5.18!. These conditions allow to verify with the help of the Cook method
existence of wave operators~5.24!. Of course, it is natural to expect that the functionsV(x,t)
defined in the previous subsection and in Ref. 22 coincide. Let us check it by a direct calcu

Proposition 5.16: Letv(x,t) satisfy equation (5.16) and letV(x,t) be defined by formula
(5.22). ThenV(x,t) satisfies the conditions (5.26) and (5.27).

Proof: To simplify notation, we omit variables (x,t) and indices ‘‘6.’’ Differentiating ~5.22!,
we find that

V t5~2t !22u¹jFu21(
j

Fj jS ]v j /]t2~2t !21(
k

Fj jjk
]vk /]t D , ~5.28!

Vxi
5Fxi

1(
j

Fj jS ]v j /]xi2~2t !21S Fj j xi
1(

k
Fj jjk

]vk /]xi D D . ~5.29!

Differentiating Eq.~5.16!, we see that

]v j /]t2~2t !21(
k

Fj jjk
]vk /]t52221t22xj2221t22Fj j

~5.30!

and

]v j /]xi2~2t !21S Fj j xi
1(

k
Fj jjk

]vk /]xi D 5~2t !21d i j , ~5.31!

whered i i 51 andd i j 50 if iÞ j . Comparing~5.28! and ~5.30! we obtain that

V t52221t22^x,¹jF&2~2t !22u¹jFu2.

Similarly, comparing~5.29! and ~5.31!, we obtain that

¹xV5¹xF1~2t !21¹jF. ~5.32!

These equalities imply that

V t1t21^x,¹xV&1u¹xVu25t21^x1¹jF,¹xF&1u¹xFu252^v,¹xF&1u¹xFu2,

where at the last step we have again used Eq.~5.16!. Comparing~5.16! and~5.32!, we see also tha

~2t !21x1¹xV5v1¹xF.

Thus, the sum~5.26! can be written as

2^v,¹xF&1u¹xFu222^A,v1¹xF&1V1uAu2.

It follows from Eq. ~4.2! that this expression equalsq(x,v(x,t)) which, by estimate~4.14!, is of
order utu212e in the region considered. The condition~5.27! is a consequence of estimates~4.13!
and ~5.17!. h
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VI. THE SCATTERING MATRIX

6.1. It follows from Theorems 5.4, 5.10 and Proposition 5.8 that the scattering operato

S5W1* ~H,H0 ;J1!W2~H,H0 ;J2!

commutes withH0 and is unitary on the subspaceE0(L)H. Thus, in the diagonal representatio
of H0 ~discussed in 2.2 of Sec. II! S reduces to the operator of multiplication by the opera
functionS(l):N→N called the SM. It is defined for almost alllP(0,̀ ) and is unitary for almost
all lPL. We suppose thatlPL.

We need a stationary formula for the SM in the case when identificationsJ1 and J2 for t
→1` and t→2` are different. Below we always assume that the functionss6 in definition
~5.1! of the operatorsJ6 obey the conditions

s1~t!51 for tP@2«,1#, s1~t!50 for tP@21,22«# and s2~t!5s1~2t!
~6.1!

for some«P(0,1/2). Formally, the SM admits~see, e.g., Ref. 22! the representation~1.10! with
T65HJ62J6H0 . According to Lemma 5.1,T65T6

(s)1T6
(r ) , whereT6

(s) has symbolt6
(s) defined

by ~5.3! and T6
(r )PC 212e(F6), e.0. It follows from ~5.10! that in our case

W1(H0 ,H0 ;J1* J2)50 and henceW(l)50. We shall show that other terms in~1.10! satisfy
Definition 2.11. Let us set

S0~l!522p iG0~l!J1* T2
(s)G0* ~l!,

S1~l!522p iG0~l!J1* T2
(r )G0* ~l!, ~6.2!

S2~l!52p iG0~l!T1* R~l1 i0!T2G0* ~l!.

ThenS(l)5S0(l)1S1(l)1S2(l). We emphasize that these operators depend on the choi
the cutoff functionss6 andh in the definition ofJ6 , but their sum does not depend on it~see
Proposition 5.9!.

For the study of the operatorS2(l), we have to consider previously the operator function

B~z!5^x& lT1* R~z!T2^x& l , l ,~11e!/2.

Lemma 6.1: The operator function B(z):H→H is bounded and continuous in norm wit
respect to z in the regionRezP(l0,`),l0.0, Imz>0.

Proof: Setp511e2 l . Thenp. l andp.1/2. Clearly,B5B11B21B3 , where

B1~z!5~^x&pT1
(r )^x& l !* ~^x&2pR~z!^x&2p!~^x&pT2

(r )^x& l !,

B2~z!5~^x&pT1
(r )^x& l !* ~^x&2pR~z!T2

(s)^x& l !1~^x& lT1
(s)* R~z!^x&2p!~^x&pT2

(r )^x& l !, ~6.3!

B3~z!5^x& lT1
(s)* R~z!T2

(s)^x& l .

Since T6
(r )PC 212e(F6), it follows from Proposition 2.6 that the operators^x&pT6

(r )^x& l are
bounded. The second factor in~6.3! satisfies the assumptions of Proposition 3.4. According
~5.3! and ~6.1!, the operatorT6

(s)PC 21(F6) and its symbol is contained in the cone7^x̂,ĵ&
>«.0. Therefore we can apply Proposition 3.6 to the operators

^x&2pR~z!T2
(s)^x& l , ^x& lT1

(s)* R~z!^x&2p

and Proposition 3.7 to the operatorB3(z). h

Now it is easy to check the following.
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Proposition 6.2: The operators S1(l) and S2(l) are compact and norm continuous inl
.0.

Proof: Let l P(1/2,(11e)/2). The operatorS1(l) factorizes as

S1~l!52p i ~G0~l!^x&2 l !~^x&2 lJ1^x& l !* ~^x& lT2
(r )^x& l !~G0~l!^x&2 l !* ,

where the operatorŝx&2 lJ1^x& l and ^x& lT2
(r )^x& l are bounded according to Proposition 2.6 a

the operatorsG0(l)^x&2 l are compact and norm continuous according to Proposition 2.10.
operator

S2~l!52p i ~G0~l!^x&2 l !B~l1 i0!~G0~l!^x&2 l !*

is well defined, compact and norm continuous according to Proposition 2.10 and Lemma 6
h

6.2. Let us now consider the singular term~6.2!. The PDOA0522p iJ1* T2
(s) is defined by

formula ~2.6! with amplitude

a0~x,j,j8!522p i j 1~x,j!t2
(s)~x,j8!.

Therefore, by Eqs.~5.1!–~5.3!,

a0~x,j,j8!524peiQ(x,j,j8)s1~^ x̂,ĵ& !^j8,¹s2~^x̂,ĵ8&!&h2~x!c~ uju2!c~ uj8u2!, ~6.4!

where

Q~x,j,j8!5F2~x,j8!2F1~x,j! ~6.5!

and the functionsF6 are defined in Proposition 4.2. Estimates~4.13! imply the following.
Lemma 6.3: The functionQ(x,j,j8) satisfies the estimates

u]x
a]j,j8

b Q~x,j,j8!u<Ca,b~k!~11uxu!12r2uau ~6.6!

in the region^ x̂,ĵ&>k, 2, x̂,ĵ8&>k for any k.21 and all a,b.
SinceQ satisfies the estimates of the classS 12r on the support ofa0 , ~6.4! has the form~2.7!

and hence the operatorA0 fits into the framework of PDO with oscillating amplitudes~see 2.1 in
Sec. II!. Abusing somewhat notation, we say thatA0 belongs to the classC 21(Q). Moreover, due
to the function¹s2(^x̂,ĵ8&), the operatorA0 satisfies the assumptions of Proposition 2.14. Bel
we use the notation and the chart coordinates (v0 ,¸) introduced in 2.2 in Sec. II. Thus, we hav
the following.

Proposition 6.4: The operator S0(l)5A0
[(l) is well defined in the sense of Definition 2.11 f

all l.0. Moreover, in the chart coordinates(v0 ,¸), A0
[(l) is the PDO with amplitude

a0
[~y,z,z8;l!5~2pk!21a~z,z8!E

2`

`

a0~x,kv,kv8!dz,

wherea is the function (2.14), z5¸(v),z85¸(v8) and

x5~v1v8!z2y/k, ^y,v0&50. ~6.7!

It follows from Propositions 2.12 and 2.14 that (S0(l)g1 ,g2) is a smooth function ofl for
gjPC`(Sd21). Below we shall see that the operatorS0(l) is bounded in the spaceN.

Our next goal is to find a simple expression for a genuinely noncompact part of the op
S0(l). First, we transform expression~6.4! for a0 to a more convenient form.

Proposition 6.5: LetA1 be the PDO with amplitude
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a1~x,j,j8!522peiQ(x,j,j8)s1~^ x̂,ĵ& !^j1j8,¹s2~^x̂,ĵ8&!&h2~x!c~ uju2!c~ uj8u2!, ~6.8!

whereQ is given by (6.5). Then the operatorA1
[(l) exists and the operator S0(l)2A1

[(l) is
compact onN. Moreover, in the chart coordinates(v0 ,¸), A1

[(l) is the PDO with amplitude

a1
[~y,z,z8;l!52a~z,z8!E

0

`

eiQ(x,kv,kv8)^v1v8,¹s2~^x̂,v8&!&h2~x!dz, ~6.9!

where x and y,z are related by formula (6.7).
Proof: Comparing~6.4! and ~6.8!, we see that the differenceB5A02A1 is a PDO with

amplitude

b~x,j,j8!522peiQ(x,j,j8)s1~^x̂,ĵ& !^j82j,¹s2~^x̂,ĵ8&!&h2~x!c~ uju2!c~ uj8u2!.

Since b(x,j,j)50, it follows from Proposition 2.8 that the operatorB belongs to the class
C 212r(Q̃) for someQ̃PS 12r. Thus, by Proposition 2.13,B[(l) is a compact operator onN.

It follows from conditions~6.1! that for v8 sufficiently close tov the functions1(^x̂,v&)
51 on the support of¹s2(^x̂,v8&). Hences1 may be omitted in~6.8!. We also take into
account that, due to¹s2(^x̂,v8&), the functiona1((v1v8)z2y/k,kv,kv8) is supported in the
regionz>0 andc(l)51 for lPL. Thus, applying Proposition 2.14 to the PDOA1 , we obtain
formula ~6.9!. h

An obvious drawback of this assertion is that the amplitudea1
[ contains the cutoff functions2

although the SM does not depend on it.
6.3. Let us show that, up to a compact term, the operatorA1

[(l) does not actually depend o
s2 . Below we always work in fixed chart coordinates (v0 ,¸) and denote byx a function from
the classC0(V). Recall, that for fixedv,v8PV(v0 ,g), we always use inRd the coordinates
(y,z)PRd213R defined by~6.7!. Then

k^v82v,x&5^v2v8,y&5^z2z8,y&, ~6.10!

dx5k2d11^v1v8,v0&dz dy ~6.11!

and

^v1v8,¹ f ~x!&5]zf ~x!

for any differentiable functionf .
Integrating by parts in~6.9! and taking into account thats2(^x̂,v8&) varies from 1 to 0 asz

varies from 0 tò , we get that

a1
[~y,z,z8;l!5a~z,z8!eiQ(2y/k,kv,kv8)h2~2y/k!1b~y,z,z8;l!, ~6.12!

where

b~y,z,z8;l!5a~z,z8!E
0

`

eiQ(x,kv,kv8)~ i ]zQ~x,kv,kv8!h2~x!1]zh
2~x!!s2~^ x̂,v8&!dz.

~6.13!

By Lemma 6.3 and Proposition 2.9, the first term in the right-hand side of~6.12! is the amplitude
of a bounded operator inL2(Sd21). We shall show thatb is the amplitude of a compact operat
B. This is obvious for the part ofb which contains]zh

2 since it is compactly supported iny. To
consider the part ofb which contains]zQ, we use the following.

Lemma 6.6: The function (6.5) satisfies the equality

^j1j8,¹Q~x,j,j8!&5^¹G~x,j,j8!,F~x,j,j8!&1q0~x,j,j8!, ~6.14!
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where the functions G,F and q0 are defined by

G~x,j,j8!5^j82j,x&1Q~x,j,j8!,

F~x,j,j8!52A~x!2¹~F2~x,j8!1F1~x,j!!, ~6.15!

q0~x,j,j8!5q2~x,j8!2q1~x,j!

and q6 are functions (4.2). The functions F and q0 satisfy in the region̂ x̂,ĵ&>k, 2^x̂,ĵ8&
>k, for any k.21 and all a,b, the estimates

u]x
a]j,j8

b F~x,j,j8!u<Ca,b~k!~11uxu!2r2uau, ~6.16!

u]x
a]j,j8

b q0~x,j,j8!u<Ca,b~k!~11uxu!212e2uau, e.0. ~6.17!

Proof: One proceeds from eikonal equation~4.2! for F1(x,j) andF2(x,j8) and takes their
difference. This yields the equality~6.14!. Estimates~6.16! and~6.17! are direct consequences o
~4.13! and ~4.14!, respectively. h

Let us set expression~6.14! into ~6.13! and consider the amplitude

b0~y,z,z8;l!5 ia~z,z8!k21E
0

`

eiQ(x,kv,kv8)^¹G~x,kv,kv8!,F~x,kv,kv8!&h2~x!dz

~6.18!

corresponding to the first term on the right-hand side of~6.14!.
Lemma 6.7: The PDOB0 with amplitude (6.18) admits the representationB05B11B2 where

B1 , B2 are PDO with amplitudes

b1~y,z,z8;l!52k21a1~z,z8!eiQ(2y/k,kv,kv8)^v0 ,F~2y/k,kv,kv8!&h2~2y/k!, ~6.19!

b2~y,z,z8;l!5a~z,z8!E
0

`

eiQ(x,kv,kv8)q~x,kv,kv8!dz. ~6.20!

Here

a1~z,z8!5^v1v8,v0&
21a~z,z8!

and

q~x,j,j8!52k21 divx~F~x,j,j8!s2~^x̂,ĵ8&!h2~x!!. ~6.21!

Proof: According to~6.10!, ~6.11!, the PDOB0 has integral kernel

p0~z,z8;l!5~2p!2d11E
Rd21

ei ^z2z8,y&b0~y,z,z8;l!dy

5 i ~2p!2d11kd22a1~z,z8! Ê
x,v0&>0

exp~ iG~x,kv,kv8!!

3^¹G~x,kv,kv8!,F~x,kv,kv8!&s2~^ x̂,v8&!h2~x!dx.

Integrating here by parts, we find thatp05p11p2 where
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p1~z,z8;l!52a1~z,z8!~2p!2d11k21E
Rd21

eiG(2y/k,kv,kv8)

3^v0 ,F~2y/k,kv,kv8!&h2~2y/k!dy,

p2~z,z8;l!5a1~z,z8!~2p!2d11kd21 Ê
x,v0&>0

eiG(x,kv,kv8)q~x,kv,kv8!dx.

The amplitudes of PDO with kernelsp1 ,p2 equalb1 ,b2 , respectively. h

Let us consider the operatorsB1 andB2 separately.
Lemma 6.8: The PDOB1 with amplitude (6.19) belongs to the classC 2r(Q0), where

Q0~y,z,z8;l!5Q0~2k21y,k¸~z!,k¸~z8!!

is given by (6.5). In particular, xB1x is a compact operator in L2(S).
Proof: Since ^y,v0&50, we have thatu^ ŷ,v&u<«,1 and u^ ŷ,v8&u<«,1 for v,v8PV.

According to ~6.6!, ~6.16! this implies that functionsQ and F in ~6.19! belong to the classe
S 12r(Rd21) andS 2r(Rd21), respectively. Thus,b1 belongs to the classC 2r(Q0), and henceB1

is a compact operator by Proposition 2.9. h

Lemma 6.9: Suppose that a function q(x,j,j8) equals zero in a conical neighborhood of th

set x̂5 ĵ8 and q(x,j,j8) satisfies the estimates (6.17) for^x̂,ĵ&>k.21 and all a,b. Let B2 be
PDO with amplitude (6.20). Then the operatorxB2x is compact in L2(S).

Proof: Let q0PC`(R) be such thatq0(z)50 for z<1/2 andq0(z)51 for z>1 and q1

512q0 . We first consider the operatorB2,0 with amplitude

b2,0~y,z,z8;l!5a~z,z8!E
2`

`

eiQ(x,kv,kv8)q~x,kv,kv8!q0~^v1v8,v0&z!dz. ~6.22!

Let f PC`(Rd), f (j)51 for jPV and f (j)50 off a small neighborhood ofV. We introduce an
auxiliary PDOG with amplitude

g~x,j,j8!5 f ~j! f ~j8!exp~ iQ~x,j,j8!!q~x,j,j8!q0~^x,v0&!.

The functionqq0 equals zero in conical neighborhoods of the setsx̂5 ĵ8 and x̂52 ĵ, so that, by
Lemma 6.3,Q satisfies estimates~6.6! on the support ofqq0 . Thus,gPC212e(Q). Comparing
~2.13! and ~6.22!, we see thatB2,0(l)52pkG[(l). Therefore the operatorB2,0 is compact by
Proposition 2.13.

Next we consider the PDOB2,1 with amplitude

b2,1~y,z,z8;l!5a~z,z8!eiQ(2y/k,kv,kv8)E
0

`

ei (Q(x,kv,kv8)2Q(2y/k,kv,kv8))q~x,kv,kv8!

3q1~^v1v8,v0&z!dz,

where, due to the functionq1 , the integral is actually taken over a finite interval. Therefore
follows from Lemma 6.3 that forv,v8PV and sufficiently largeuyu,

u]y
a]z,z8

b ei (Q(x,kv,kv8)2Q(2y/k,kv,kv8))u5O~^y&2r2uau!.

Taking also into account thatqq1 satisfies estimates~6.17!, we obtain thatb2,1PC 212r2e(Q0).
Hence the operatorxB2,1x is also compact. h

Since the function~6.21! satisfies the assumptions of this lemma, it applies directly to
operator with amplitude~6.20!. Moreover, the same conclusion is true if the role ofq(x,j,j8) is
played by the functionq0(x,j,j8)s2(^x̂,v8&), whereq0 is defined by~6.15!. This yields
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Proposition 6.10: The PDOB with amplitude (6.13) is compact in L2(S).
Thus, we have verified that all terms in the right-hand side of~1.10! are well defined as

bounded operators in the spaceN. As shown in Ref. 22, this justifies the representation~1.10! for
the SM S(l). Since (S(l)g1 ,g2) is a smooth function ofl for gjPC`(Sd21), it follows from
unitarity of S(l) that actuallyS(l) is a strongly continuous operator-function ofl.0. Moreover,
comparing Propositions 6.5 and 6.10, we see that, modulo compact operators, the SMS(l) can be
considered as a PDO with amplitude given by the first term on the right-hand side of~6.12!.
Finally, neglecting again compact operators, we can omit in this terma(z,z8) becausea(z,z)
51 andh2(2y/k) because it is 1 for sufficiently largeuyu.

Let us summarize the results obtained in the following theorem.
Theorem 6.11:Let condition (1.2) hold and let J6 be defined by (5.1) where the function (5.

satisfies the assumption (6.1). Then the SM S(l) for the pair H0 , H with identifications J6
admits representation (1.10) whereW(l)50. The function S(l):N→N is strongly continuous in
l.0. If x1 and x2 are multiplications by C`(Sd21) functions with disjoint supports, then th
operator x1S(l)x2 is compact. Finally, up to a compact term, S(l) is the PDO onSd21 with
amplitude given in arbitrary chart coordinates(v0 ,¸) by the formula

s~y,z,z8;l!5exp~ iQ~2l21/2y,l1/2v,l1/2v8!!. ~6.23!

6.4. Using Theorem 6.11, we can now describe the spectrum of the SM. Recall th
functionQ(x,j,j8) is defined by formula~6.5! whereF6 are constructed in Proposition 4.2. L
us consider the first approximationV(x,j)5f2

(1)(x,j)2f1
(1)(x,j) to the functionQ(x,j,j). Ac-

cording to~4.15!

V~x,j!5221E
2`

`

~V~ tj!2V~x1tj!12^A~x1tj!2A~ tj!,j&!dt. ~6.24!

Note that the functionV does not depend on the projection ofx on the direction ofj. Typically, for
asymptotically homogeneous functionsV(x) and A(x) of order 2r, the functionV(x,j) is as-
ymptotically homogeneous function ofx as uxu→` of order 12r if rP(0,1) and it has a loga-
rithmic growth if r51.

Theorem 6.12: Let condition (1.2) hold and suppose that for some x0Þ0, v0PSd21,
^x0 ,v0&50, and k.0 the function (6.24) satisfies the conditions

lim
t→`

supV~tx0 ,kv0!5` or lim
t→`

inf V~tx0 ,kv0!52` ~6.25!

if r.1/2 or

uV~tx0 ,kv0!)u>ct12r, u¹V~tx0 ,kv0!)u>ct2r, c.0, ~6.26!

for sufficiently larget.0 if rP(0,1/2#. Then the spectrum of the SM S(l) coincides forl5k2

with the unit circleT.
Proof: It follows from definition ~4.7! and estimates~4.12! for n>2 that

u]x
a~Q~x,j,j!2V~x,j!!u<Ca~11uxu!122r2uau, ^x,j&50, uau50,1.

Thus, the functionQ(tx0 ,kv0 ,kv0) where^x0 ,v0&50 also satisfies conditions~6.25! or ~6.26!.
Let us consider the chart diffeomormism (v0 ,¸) and the PDOS0

¸(l) with amplitude~6.23!. We
apply Proposition 2.16 to the operatorx0

¸S0
¸(l)x0

¸ wherex0
¸PC0

`(S) andx0
¸(z)51 in a neigh-

borhood of the pointz050. Conditions~2.16! @or ~2.18!# for z050 andy052x0 are satisfied
according to~6.26! @or ~6.25!#. Therefore for eachmPT there exists a Weyl sequenceun such that
iuni51, un→0 weakly and

x0
¸S0

¸~l!x0
¸un2mun→0
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~strongly asn→`. Moreover, we may assume that supports ofun are contained in an arbitrar
neighborhood of the point 0PPv0

. Let the operatorZ be defined by formula~2.10! andx0(v)

5x0
¸(z). It follows from Theorem 6.11 thatf n5Z* un is a Weyl sequence for the operat

x0S(l)x0 . Let x1PC`(Sd21) be supported on the set wherex0(v)51. Then supp (1
2x0)ùsuppx15B and hence, by Theorem 6.11, the operator (12x0)S(l)x1 is compact. With-
out losing generality, we assume thatx0f n5x1f n5 f n . Since both terms on the right-hand side
the estimate

iS~l! f n2m f ni<ix0S~l!x0f n2m f ni1i~12x0!S~l!x1f ni

tend to zero asn→`, the spectrum of the SMS(l) covers the unit circle. Finally, we take int
account thatS(l) is unitary, so that its spectrum actually coincides withT. h

We emphasize that, at least in the casesV50 or A50, the conditions~6.25! and ~6.26! are
fulfilled for all points k at the same time.

According to Proposition 5.14 and Theorem 6.12, the following result is true for the
defined in terms of the usual wave operators.

Proposition 6.13: Let V50 and let A satisfy estimates (1.2) forrP(1/2,1) and the transver-
sal condition (1.9) (at least for largeuxu). Suppose that the corresponding function

V~x,j!5E
2`

`

^A~x1tj!,j&dt

satisfies condition (6.25) for some point(x0 ,v0), v0PSd21, ^x0 ,v0&50. Then the spectrum o
the SM S(l) covers the unit circleT for all l.0.

As an example of a potential satisfying the assumptions of Proposition 6.13 we note~for d
52) the potentialA(x)5guxu212r(2x2 ,x1), uxu>R, rP(1/2,1),gÞ0. In this case for any
(x,j)PR2d, ^x,j&50, uxu>R,

V~x,j!56gv0uxu12r, v05E
2`

`

^u&212rdu.0,

if ĵ is obtained fromx̂ by rotation at the angle6p/2. Thus, condition~6.25! is satisfied.
Of course, Proposition 6.13 remains true for allr.0, but, if r<1/2, then the SM is defined

in terms of modified wave operators and condition~6.25! should be replaced by~6.26!. On the
contrary, if r51, then under transversal condition~1.9! V(x,j) has typically the finite limits as
uxu→`, so that the essential spectrum ofS(l) might be a subset ofT. This is the case for the
Aharonov–Bohm potentialA(x)5guxu22(2x2 ,x1); for more general potentials of this type, se
Ref. 16.

Proposition 6.13 contradicts a preceding result of Nicoleau. It is claimed in Ref. 12 that
the assumptions of Proposition 6.13 the operatorS(l)2I is compact. This is incompatible with
the assertion that the essential spectrum ofS(l) covers the unit circle.
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Based upon the general supercharges which involve not only generatorsCj of the
Clifford algebra C~4,0! with positive metric, but also operators of third order,
CjCkCl , the general form ofN54 supersymmetric quantum mechanics~SSQM!,
which brings out the richer structures, is realized. Then from them, a one-
dimensional physical realization and a new multidimensional physical realization
of N54 SSQM are respectively obtained by solving the constraint conditions. As
applications,N54 dynamical superconformal symmetries, which possess both the
N54 supersymmetries and the usual dynamical conformal symmetries, are studied
in detail by considering two simple superpotentialsk/x and vx, and their corre-
sponding superalgebraic structures, which are spanned by eight fermionic genera-
tors and six bosonic generators, are established as well. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1578531#

I. INTRODUCTION

Since the idea of supersymmetry was applied to quantum mechanical systems1,2 to discover
dynamical supersymmetry in ordinary quantum mechanics in order to explain the degenera
energy spectra extensively studies have been undertaken over the last twenty years in
aspects such as atomic physics,3–5 nuclear physics,6 many-body systems,7,8 and so on. According
to Witten,2 a supersymmetric quantum mechanical system is characterized by the existencN
Hermitian superchargesQa which, together with the supersymmetric HamiltonianH of this sys-
tem, satisfy the following superalgebraic structure:

$Qa, Qb%52da bH, a, b51, 2, ... ,N,
~1!

~Qa!†5Qa, @H, Qa#50,

where$ , % and @ , # denote an anticommutator and a commutator, respectively. We call Eq.~1! a
supersymmetric quantum mechanical algebra, denoted by SS(N). WhenN52, the simplest non-
trivial realization of SS~2! was first given by Witten,2

Q15 1
2 $ps11U~x!s2%,

Q25 1
2 $ps22U~x!s1%, ~2!

a!Electronic mail: dongruan@tsinghua.edu.cn
27870022-2488/2003/44(7)/2787/19/$20.00 © 2003 American Institute of Physics
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HW5 1
2 $p21@U~x!#21U8~x!s3%,

where p52 i (d/dx) , U8(x)[ (d/dx) U(x), U(x) is generally called a superpotential, ands i

( i 51, 2, 3! are the usual Pauli matrices.9 This supersymmetric HamiltonianHW describes a
quantum mechanical system of a spin-1

2 particle moving on a line (x axis!.
While N52 supersymmetric quantum mechanics~SSQM! has drawn much attention10,11 due

to its simpler mathematical structure, however, there were only a few attempts at studyN
54 SSQM,12–20 which possesses the higher degeneracies than theN52 SSQM. For example, in
one dimension, fourfold degeneracies of energy spectrum may typically occur in theN54 SSQM,
whereas double degeneracies in theN52 SSQM. All the supercharges considered in many pap
have the following form:

Qa5
1

&
(
j 51

r

Aj
aCj , a51, 2, . . . ,N54, ~3!

whereAj
a are first-order differential operators with respect to, bosonic degrees of freedom

Cartesian coordinates$xnun51, 2, . . . , d% and the corresponding momentum operators$pn

52 i (]/]xn) [2 i ]nun51, 2, . . . ,d% in d-dimensional space, andCj , fermionic degrees of free
doms, are generators of the Clifford algebra C(r ,0) with positive metric inr -dimensional flat
carrier space.21,22 They satisfy

@xn , pm#5 idnm , n, m51, 2, . . . ,d,

$Cj , Cl%52d j l , Cj
†5Cj , j , l 51, 2, . . . ,r , ~4!

@xn , Cj #5@pn , Cj #50.

Obviously, for arbitraryN, the supercharges~3!, being linear combinations of the fermioni
operatorsCj multiplied by the bosonic operatorsAj

a , are natural generalizations of the supe
charges in Witten’s realization~2! of N52 SSQM.

In fact, whenr>4, the Clifford algebra C(r ,0), after a graded structure introduced, may yie
a superalgebra.23,24The generatorsCj of C(r ,0), together with operators of odd orders inCj , span
the odd space of this superalgebra, in which anticommuting operations among all thes
elements are allowed. For example, the odd space of the superalgebra associated with C~4,0! is
spanned by the odd elementsCj ( j 51, 2, 3, 4! andCjCkCl (1< j ,k, l<4). The purpose of this
paper is to realize the general form ofN54 SSQM in arbitrary dimension starting from th
general supercharges in which the fermionic degrees of freedoms include all the odd elem
the superalgebra associated with C~4,0!. As we shall see below, this realization brings out t
richer structures.

This paper is arranged as follows. In Sec. II, the general form ofN54 SSQM is studied in
detail by means of the Clifford algebras C~4,0! and C~0,3!. In Sec. III, a one-dimensional physica
realization and a new multidimensional physical realization for theN54 SSQM are, respectively
obtained by solving the constraint conditions. In Sec. IV, as applications,N54 superconformal
quantum mechanics in one dimension, which is expanded from the one-dimensional realiza
N54 SSQM obtained in Sec. III, is discussed in detail by considering two simple superpote
k/x andvx, and their corresponding superalgebraic structures are established. A simple su
is given in the final section.

Throughout this paper we shall adopt units wherein\5m51, the symbol@x# means taking an
integer part of the real numberx, andT in the expressionAT is referred to as transpose of th
matrix A.
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II. GENERAL FORM OF NÄ4 SSQM

For N54, the four supercharges take the following general form:

Qa5
1

&
S (

j
Aj

aCj1
i

3! (
jklm

e jklmD j
aCkClCmD ,

~5!
a, j , k, l , m51, 2, 3, 4,

wheree jklm is a four-dimensional Levi-Civita symbol,Cj are the generators of the Clifford algeb
C~4,0!, Aj

a andD j
a are the Hermitian first-order differential operators of thed-dimensional coor-

dinates$xn% and momentum operators$pn%. Clearly, the supercharges~3! are the special cases o
those given by Eq.~5! with settingD j

a50.
Substituting Eq.~5! into the first equation of Eq.~1!, we may obtain the correspondin

supersymmetric Hamiltonian

H5
1

2
~U1VC1C2C3C4!1

1

2 (
l

q

(
j k

` jk
l BlG jk , ~6!

where

~1! U5(
j

@~Aj
a!21~D j

a!2#, for any a;

~2! V5 i(
j

@Aj
a , D j

a#, for any a;

~3! i @Aj
a , Ak

a#1 i @D j
a , Dk

a#1
1

2 (
mn

e jkmn~$Am
a , Dn

a%2$An
a , Dm

a %!

52(
l 51

q

` jk
l Bl , for any a;

~4! (
j

~$Aj
a , Aj

b%1$D j
a , D j

b%!50, aÞb; ~7!

~5! @Aj
a , Ak

b#2@Ak
a , Aj

b#1@D j
a , Dk

b#2@Dk
a , D j

b#52 i(
mn

e jkmn~$An
a , Dm

b %1$An
b , Dm

a %!,

aÞb;

~6! (
j

~@Aj
a , D j

b#1@Aj
b , D j

a#!50, aÞb;

~7! G jk[
i

4
@Cj , Ck#.

In Eq. ~6!, q antisymmetric matrices̀ l (` jk
l 52`k j

l ) and Hermitian operatorsBl have to be
determined by the third equation in Eq.~7!.

Now introduce the following linear transformations:
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Ai
ā5J i j

ā Aj
4 , Aj

4[Aj , ā51, 2, 3,

Di
ā5J i j

ā D j
4 , D j

4[D j . ~8!

In order to satisfy the first, second, fourth, and sixth equations in Eq.~7!, Jā should be real
antisymmetric,

~Jā!T5~Jā!2152Jā, ~9!

and satisfy

$Jā, Jb̄%522dā b̄ , ~10!

that is,Jā constitute the Clifford algebra C~0,3! with negative metric. The third and fifth equa
tions in Eq.~7! require further thatJā and` l satisfy

J jk
ā e jkmn522Jmn

ā , ~11!

@Jā, ` l #50. ~12!

Equation~12! shows that the number of antisymmetric matrices` l is three, i.e.,l 51, 2, 3. It
follows that matrix representations ofJā and` l that satisfy Eqs.~9!, ~10!, and~12! may be taken
as12,22

J15S is2 0

0 is2
D , J25S 0 s3

2s3 0 D , J35S 0 s1

2s1 0 D , ~13!

`15S 0 is2

is2 0 D , `25S 0 I

2I 0D , `35S 2 is2 0

0 is2
D . ~14!

With the help of Eqs.~8! and~13!, the four supercharges~5!, in which the differential opera-
tors Aj andD j now are independent of the indexa, read

Q15
1

&
@A2C12A1C21A4C32A3C4

1 i ~D2C2C3C41D1C3C4C11D4C1C2C41D3C1C2C3!#,

Q25
1

&
@A3C12A4C22A1C31A2C4

1 i ~D3C2C3C41D4C3C4C12D1C1C2C42D2C1C2C3!#,
~15!

Q35
1

&
@A4C11A3C22A2C32A1C4

1 i ~D4C2C3C42D3C3C4C12D2C1C2C41D1C1C2C3!#,

Q45
1

&
@A1C11A2C21A3C31A4C4

1 i ~D1C2C3C42D2C3C4C11D3C1C2C42D4C1C2C3!#.
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By making use of Eqs.~8!, ~13!, and ~14!, we can obtain from the third equation in Eq.~7!
constraint conditions thatAj andD j need satisfying

B152 i @A1 , A4#2 i @D1 , D4#2$A2 , D3%1$A3 , D2%

51 i @A2 , A3#1 i @D2 , D3#1$A1 , D4%2$A4 , D1%,

B252 i @A2 , A4#2 i @D2 , D4#1$A1 , D3%2$A3 , D1%

52 i @A1 , A3#2 i @D1 , D3#1$A2 , D4%2$A4 , D2%, ~16!

B352 i @A3 , A4#2 i @D3 , D4#2$A1 , D2%1$A2 , D1%

51 i @A1 , A2#1 i @D1 , D2#1$A3 , D4%2$A4 , D3%.

Correspondingly, the supersymmetric Hamiltonian~6! becomes

H5
1

2 (
j 51

4

@Aj
21D j

2#1@B1~G141G32!1B2~G241G13!1B3~G341G21!#

1
i

2 (
j 51

4

@Aj , D j #C1C2C3C4 . ~17!

Similar to N52 SSQM,10 we may further rewrite the four supercharges~15! in the raising/
lowering form, which are closely related to the factorization method,25

Q1
65

1

&
~Q47 iQ1!, Q2

65
1

&
~Q27 iQ3!, ~18!

and satisfyQm
75(Qm

6)† (m51, 2), after redefining the four generatorsCj ( j 51, 2, 3, 4) of
C~4,0! as

C1
65 1

2 ~C16 iC2!, C2
65 1

2 ~C36 iC4!. ~19!

Thus, the four supercharges~15! and the supersymmetric Hamiltonian~17! can be written, respec
tively, in the forms

Q1
15~A12 iA2!C1

11~A32 iA4!C2
12 i ~D12 iD 2!@C2

1 , C2
2#C1

11 i ~D32 iD 4!@C1
1 , C1

2#C2
1 ,

Q1
25~A11 iA2!C1

21~A31 iA4!C2
21 i ~D11 iD 2!@C2

1 , C2
2#C1

22 i ~D31 iD 4!@C1
1 , C1

2#C2
2 ,

Q2
15~A32 iA4!C1

22~A12 iA2!C2
22 i ~D32 iD 4!@C2

1 , C2
2#C1

21 i ~D12 iD 2!@C1
1 , C1

2#C2
2 ,

Q2
25~A31 iA4!C1

12~A11 iA2!C2
11 i ~D31 iD 4!@C2

1 , C2
2#C1

12 i ~D11 iD 2!@C1
1 , C1

2#C2
1 ,

~20!

and

H5
1

2 (
j 51

4

@Aj
21D j

2#1H 2B1~C1
1C2

22C1
2C2

1!1 iB2~C1
1C2

21C1
2C2

1!1
1

2
B3~@C1

1 , C1
2#

2@C2
1 , C2

2# !J 2
i

2 (
j 51

4

@Aj , D j #@C1
1 , C1

2#@C2
1 , C2

2#. ~21!

It is easy to check that Eqs.~20! and ~21! satisfy SS~4! @see Eq.~1!#, which now becomes
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$Qm
1 , Qn

2%52dmnH, m,n51, 2,

$Qm
6 , Qn

6%50, @H, Qm
6#50. ~22!

III. PHYSICAL REALIZATIONS OF NÄ4 SSQM

By virtue of the results obtained in Sec. II, we shall discuss in this section two phy
realizations ofN54 SSQM through choosing the concrete forms forAj andD j in Eqs.~20! and
~21! to ensure the kinetic energy and potential energy terms appear in the correspondingN54
supersymmetric Hamiltonian.

A. One-dimensional realization

Take

A45p52 i
d

dx
, Dn̄50, n̄51, 2, 3, ~23!

and the other componentsAn̄ andD4 are real functions ofx. Substituting them into the constrain
conditions~16! gives rise to

D45
A18

2A1
5

A28

2A2
5

A38

2A3
, ~24!

where the prime means derivation with respect tox. In order to satisfy Eq.~24!, we may choose
for simplicity

An̄5kn̄W, ~25!

wherekn̄ are constants, andW, here referred to as a superpotential, is an arbitrary real functio
x. Accordingly, we have

D45
W8

2W
. ~26!

It follows by inserting Eqs.~25! and ~26! into Eqs.~20! and ~21! that the four supercharges an
N54 supersymmetric Hamiltonian in one dimension have, respectively, the following form

Q1
15~2 ip1k3W!C2

11k2WC1
11

W8

2W
@C1

1 , C1
2#C2

1 ,

Q1
25~1 ip1k3W!C2

21k1WC1
21

W8

2W
@C1

1 , C1
2#C2

2 ,

~27!

Q2
15~2 ip1k3W!C1

22k2WC2
22

W8

2W
@C2

1 , C2
2#C1

2 ,

Q2
25~1 ip1k3W!C1

12k1WC2
12

W8

2W
@C2

1 , C2
2#C1

1 ,

wherek6[k16 ik2 , and
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H5
1

2
p21

1

2
k2W21

1

2 S W8

2WD 2

1H 2k1W8~C1
1C2

22C1
2C2

1!1 ik2W8~C1
1C2

21C1
2C2

1!

1
1

2
k3W8~@C1

1 , C1
2#2@C2

1 , C2
2# !J 2

1

2
@C1

1 , C1
2#@C2

1 , C2
2# S W8

2WD 8
[

1

2
p21V~x;Cj !,

~28!

with k25k1
21k2

21k3
2. Obviously, the Hamiltonian~28! possesses a usual kinetic energy term1

2 p2

and a potential functionV(x;Cj ), so this resulting realization, Eqs.~27! and~28!, may be applied
to the real quantum mechanical systems provided thatW andCj are appropriately taken.

For the sake of convenient applications, let us further discuss the explicit matrix form fo
one-dimensionalN54 SSQM given by Eqs.~27! and ~28!. In fact the Clifford algebra C~4,0! is
isomorphic to the well-known Dirac algebra in the relativistic quantum mechanics,26 here we may
take the following matrix representation forCj :

Cm̄5S 0 ism̄

2 ism̄ 0 D , m̄51, 2, 3, C45S 0 I 232

I 232 0 D , ~29!

whereI 232 is a 232 unit matrix, then the four supercharges~27! and the supersymmetric Hami
tonian ~28! read, respectively,

Q1
15S 0 0 h1 «2

0 0 0 0

0 2«2 0 0

0 z1 0 0

D , Q2
15S 0 0 0 0

0 0 h1 «2

«2 0 0 0

2z1 0 0 0

D , ~30!

whereh6[p6 i @k3W1 (W8/2W)#, z6[p6 i @k3W2 (W8/2W)#, «6[7 ik6W, and

H5
1

2
p21

1

2
k2W21

1

2 S W8

2WD 2

1
1

2S 2S W8

2WD 8

2S W8

2WD 8

S W8

2WD 8
12k3W8 2k2W8

2k1W8 S W8

2WD 8
22k3W8

D . ~31!

A comparison between Eq.~31! and the third equation in Eq.~2! shows that in one dimension th
matrix form of N54 supersymmetric Hamiltonian is quasidiagonal, whereas the one ofN52
supersymmetric Hamiltonian is completely diagonal.~The quasidiagonal form ofN52 supersym-
metric Hamiltonian appear in multidimension only, for example, see Ref. 27.!

Especially, whenk650, it follows from Eq.~31! that we may obtain a completely diagon
N54 supersymmetric Hamiltonian
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Ḧ5
1

2
p21

1

2
k3

2W21
1

2 S W8

2WD 2

1
1

2S 2S W8

2WD 8

2S W8

2WD 8

S W8

2WD 8
12k3W8

S W8

2WD 8
22k3W8

D
[diag@Ḧ1 , Ḧ2 , Ḧ3 , Ḧ4#. ~32!

Note that in Eq.~32! the first and second diagonal component HamiltoniansḦ1 and Ḧ2 are
identical, but neither of them can be abandoned because of requirement of SS~4!. The correspond-
ing superchargesQ̈m

6 (m51, 2) may be directly obtained by settingk650 in Eq. ~30!. SinceḦ

commutes withQ̈m
6 , the energy spectra ofḦ i ( i 51, 2, 3, 4) are identical except for the groun

state, which is also an elementary property of SSQM. Consequently,Ḧ i are called superpartne
Hamiltonians.

Let four-component spinor eigenfunction ofḦ be c̈5@c̈1 , c̈2 , c̈3 , c̈4#T, in which c̈ i ( i
51, 2, 3, 4) are, respectively, eigenfunctions ofḦ i belonging to energy eigenvaluesËi . In terms
of the third equation in Eq.~22!, the four eigenfunctionsc̈1 , c̈2 , c̈3 , c̈4 may be related by the
four superchargesQ̈m

6 , or, more concretely, by the four first-order differential operatorsh6 and
z6 given in Eq.~30!

c̈3→
h1

c̈15c̈2→
z1

c̈4 and c̈3←
h2

c̈15c̈2←
z2

c̈4 . ~33!

Similar to N52 case,10 the N54 supersymmtery of someN54 supersymmetric quantum me
chanical system is broken if this system has no zero-energy ground state, and is unbroken
system has a zero-energy ground state. A typical structure of the fourfold degenerate
spectrum ofḦ is illustratively depicted in Fig. 1, whichN54 supersymmetry is broken.

Furthermore, introduce

X35
1

2 (
m

@Cm
1 , Cm

2#, X657C1
6C2

6 , ~34!

which satisfy

@X3 , X6#562X6, @X1, X2#5X3 , ~35!

that is,X3 andX6 span an internal SO~3! algebra. Due to the fact@Ḧ, X3#50, we may use the
values ofX3 to label the energy spectra ofḦ i ( i 51, 2, 3, 4). With the help of Eq.~29!, the matrix
representation ofX3 is

X35S 1

21

0

0

D . ~36!
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Denoting the values ofX3 by b51, 21, 0 and 0, then the energy spectrum ofḦ1 belongs to the
b51 sector, that ofḦ2 to the b521 sector and so on. Hence, though the first and sec
superpartner HamiltoniansḦ1 and Ḧ2 are identical, their energy spectra belong to the differ
sectors, respectively; though the third and fourth superpartner HamiltoniansḦ3 and Ḧ4 are dif-
ferent, their energy spectra belong to the sameb50 sector.

B. New multidimensional realization

TheN54 SSQM obtained in Sec. II itself is valid for the arbitrary dimensions. In this sec
we shall put forward a new multidimensional physical realization ofN54 SSQM by taking the
following matrix forms for the Hermitian operatorsA4 andD4 in Eq. ~20!:

A45(
j 51

d

~pj1L j !t j , D45(
j 51

d

F jt j , ~37!

and the other components,Dn̄50 (n̄51, 2, 3), An̄ , together withL j andF j in Eq. ~37!, are the
real functions of the coordinates$xn% in d-dimensional space. Here,t j are a set of Hermitian
matrices which we assume to commute withpj , L j , F j , andCj . The fact thatt j commute with
Cj implies that they should be, respectively, considered as

t j;I 434^ t j , Cj;Cj ^ I t3t , ~38!

where the subscript 4 is the dimension of the matrix representation of C~4,0!, and the subscriptt
stands for the order of the matricest j . Note that in the present realization the number of matri
t j is equal to the dimensions of space. In order to produce the usual kinetic energy term, w
after substituting Eq.~37! into Eq. ~21!, taket j ( j 51, 2, . . . ,d) so that

$t j , t l%52d j l , ~39!

that is,t j constitute the Clifford algebra C(d,0) as well.
The constraint conditions~16! require that

FIG. 1. Typical structure of the fourfold degenerate energy spectrum ofḦ given by Eq.~32!. The energy spectra ofH1 ,
H2 , H3 , H4 correspond to theb51, 21, 0, 0 sectors, respectively. The eigenstate belonging to some energy level~dot!

may be connected with its left or right eigenstate by the superchargesQ̈m
6 (m51, 2), or, concretely, by the first-orde

differential operatorsh6 andz6 along the horizontal line.
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2An̄F j5] jAn̄ , n̄51,2,3, j 51,2,. . . ,d. ~40!

Similar to the one-dimensional case@see Eq.~25!#, a simple choice for Eq.~40! is

An̄5kn̄W, ~41!

wherekn̄ are constants, the superpotentialW is a real function of$xn%. In consequence, we hav

F j5
] jW

2W
. ~42!

It follows by substituting Eqs.~37!, ~41!, and ~42! into Eq. ~21! that we have theN54
supersymmetric Hamiltonian ind-dimensional space,

H5
1

2 (
j

d

~2 i ] j1L j !
21

1

2
k2W21

1

2 (
j

d S ] jW

2W D 2

2
1

2 (
k, l

d

Fkltkl1(
j

d

t j~] jW!

3H 2k1~C1
1C2

22C1
2C2

1!1 ik2~C1
1C2

21C1
2C2

1!1
1

2
k3~@C1

1 , C1
2#2@C2

1 , C2
2# !J

2
1

2
@C1

1 , C1
2#@C2

1 , C2
2#H(

j

d S ] j

] jW

2W D1(
k, l

d S H 2 i ]k ,
] lW

2W J 12Lk

] lW

2W D tklJ , ~43!

where tkl[ ( i /2) @tk , t l #, and Fkl[]kLl2] lLk . The vector potentialLi naturally generates a
gauge field interaction structure ind-dimensional space so thatFkl may be seen as the strength
vector field. The termsFkltkl and $2 i ]k , ] lW/2W %tkl generalize the Pauli coupling and th
orbit-spin coupling interactions, respectively. For the simple three-dimensional case, these
pretations are more distinct. We take convenientlyt j as the Pauli matrices

t15S 0 1

1 0D , t25S 0 i

2 i 0D , t35S 1 0

0 21D , ~44!

then the supersymmetric Hamiltonian~43! becomes

H5
1

2
~pW 1LW !21

1

2
k2W21

1

2 S ¹W

2WD 2

1
1

2
¹•S ¹W

2WD S 2I 434 0

0 I 434
D

1
1

2
BW •tW2

1

2 S ¹W

2WD3~2 i¹1LW !•tW , ~45!

where¹ is a three-dimensional gradient operator,BW •tW[¹3LW •tW and (¹W/2W) 3(2 i¹)•tW are
the usual Pauli coupling term and the orbit-spin coupling interaction, respectively.9 It can be seen
that in three dimension the new realizedN54 supersymmetric Hamiltonian~45! is an 838
matrix, whereas the original one~17! or ~21!, in which Aj andD j are taken as some appropria
first-order differential operator functions of the three-dimensional coordinates and mome
operators, is a 434 matrix.

Of course, in Eq.~37!, we may also takeA45( j ( ip j1L̃ j ) t̃ j , D45( j F̃ j t̃ j , andAn̄ , L̃ j and
F̃ j are the functions of$xn% as well. Thus, the Hermiticities of the superchargesQa

6 require thatL̃ j

and F̃ j should be pure imaginary, andt̃ i should be anti-Hermitian. The convenient choicesL̃ i

5 iL j , F̃ j5 iF j , andt̃ j5 i t j @i.e., t̃ j constitute the Clifford algebra C(0,d) with negative metric#
will lead to the same results as Eq.~43!.
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IV. APPLICATIONS

In this section, using the diagonal matrix realization~32! of N54 SSQM in one dimension
we shall study in detailN54 SCQM, which, discussed first by Fubiniet al.,28 is a generalization
of N54 SSQM, by considering two simple superpotentialsk/x andvx. Here the main task is to
find a set of special exactly solvable potentials which can be brought into the frameworkN
54 SCQM and the corresponding superalgebraic structures.

~1! The first example is a one-dimensional superpotential

W~x!5
k

x
, ~46!

wherek is a real constant, andxP(2`, `). Substituting Eq.~46! into Eq. ~30! combined with
k650 andk351 and Eq.~32!, we may obtain, respectively, the supercharges

Q̄1
15S 0 0 h̄1 0

0 0 0 0

0 0 0 0

0 z̄1 0 0
D , Q̄2

15S 0 0 0 0

0 0 h̄1 0

0 0 0 0

2 z̄1 0 0 0
D , ~47!

whereh̄65p6 i (k2 1
2) (1/x) , z̄65p6 i (k1 1

2) (1/x), and the supersymmetric Hamiltonian

Hsc5
1

2
p21

1

2x2 S k22 1
4

k22 1
4

k222k1 3
4

k212k1 3
4

D [diag@H1
c , H2

c , H3
c , H4

c#.

~48!

It may be further verified thatHsc, together with the dilatation generatorD and the conformal
generatorK, which are given explicitly by

D52 1
4 $p, x%, K5 1

2 x2 ~49!

fulfills the same commutation relations of the conformal algebra SO~2,1!29–31

@D, Hsc#52 iH sc, @D, K#5 iK , @Hsc, K#52iD , ~50!

as its four superpartner HamiltoniansHi
c ( i 51, 2, 3, 4!. Hence,Hsc given by Eq.~48! is the

so-called superconformal Hamiltonian,28 which possesses not only theN54 supersymmetry bu
also the dynamical conformal symmetry. Different from the results of Fubiniet al.,28 here we
realize successfully aN54 superconformal quantum mechanics~SCQM! in one dimension.33–35

However, the realization ofN54 SCQM obtained in Ref. 28, holding uniquely in two dimensio
can not be reduced to the one-dimensional or extended to more than two-dimensional
Furthermore, in the quartet structure ofHsc, three superpartner HamiltoniansH1

c(5H2
c), H3

c , H4
c

are different, whereas in the quartet structure in Ref. 28 only two different superpartner Ha
nians,H1

c(5H2
c) andH3

c(5H4
c), appear.

Let the four-component spinor eigenfunction ofHsc be csc5@c1
c , c2

c , c3
c , c4

c#T, wherec i
c

( i 51, 2, 3, 4! are, respectively, the eigenfunctions ofHi
c belonging to the energy eigenvaluesEi

c .
According to the transformation property~33!, c i

c are related byh̄6 and z̄6 given in Eq.~47!. In
order to look for the eigenfunctions and energy eigenvalues ofHsc, we check first whether or no
a zero-energy ground state exists by solving the following four first-order differential equat
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Q̄m
6 c0

sc50, m51, 2, ~51!

where c0
sc[@c0,1

c , c0,2
c , c0,3

c , c0,4
c #T stands for a zero-energy eigenfunction. It is clear t

neither of the four solutions to Eq.~51!,

c0,1
c ;x2(2k21)/2,

c0,2
c ;x1(2k11)/2,

c0,3
c ;x1(2k21)/2,

c0,4
c ;x2(2k11)/2 ~52!

is normalizable on (2`, `) so that neither ofHi
c has zero-energy level. Hence, the supersy

metry of theN54 superconformal quantum mechanical system described byHsc is broken. From
the SSQM point of view, we know that either ofHi

c ( i 51, 2, 3, 4! has the same energy spectru
as the other three superpartner Hamiltonians, withEi

c being larger than zero. Consider the spec
case ofk51/2, it follows immediately from Eq.~48! that the conformal HamiltonianH̆4

c5 1
2 p2

1 (1/x2) is the superpartner of the HamiltonianH̆15 1
2 p2 (5H̆25H̆3) of a free particle. There-

fore, the normalizable eigenfunctions ofHi
c in Eq. ~48! corresponding to some positive defini

energyEi
c.0 are the normalizable wave plane eigenfunctions,37 i.e., the Bessel functions,c i

c

5AxJl i
(xA2Ei) ( i 51, 2, 3, 4!, with l i5k1(2) i@ i /3#.

Now let us establish a superalgebra that governs the aboveN54 superconformal quantum
mechanical system described byHsc, in which both SS~4! and SO~2,1! should be contained. Direc
calculations show that the five generators of SS~4! and three generators of SO~2,1! are not closed
under the anticommutation and commutation relations, for example, commuting the gene
Q̄m

6 of SS~4! and the generatorK of SO~2,1! yields new operators

Sm
65xCm

6 , m51, 2. ~53!

Thus, we obtain the following closed~anti!commutation relations:

~1! $Q̄m
1 , Q̄n

2%52dmnHsc, $Q̄m
6 , Q̄n

6%50, m, n51, 2;

~2! $Sm
1 , Sn

2%52dmnK, $Sm
6 , Sn

6%50;

~3! $Q̄m
6 , Sn

7%5dmn~k1~2 !mX362iD !12~dmn21!~dm1X61dm2X7!,

$Q̄m
6 , Sn

6%50;

~4! @D, Hsc#52 iH sc, @D, K#5 iK , @Hsc, K#52iD ;

~5! @X3 , X6#562X6, @X1, X2#5X3 ;

~6! @Hsc, Q̄m
6#50, @D, Q̄m

6#52 1
2 iQ̄m

6 , @K, Q̄m
6#562Sm

6 ; ~54!

@Hsc, Sm
6#562Q̄m

6 , @D, Sm
6#5 1

2 iSm
6 , @K, Sm

6#50;

~7! @Hsc, X3#50, @D, X3#50, @K, X3#50;

@Hsc, X6#50, @D, X6#50, @K, X6#50;
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~8! @X3 , Q̄m
6#56~2 !m11Q̄m

6 , @X6, Q̄m
6#56~12dm1!Q̄1

6 ,

@X6, Q̄m
7#57~12dm2!Q̄2

7 , @X3 , Sm
6#56~2 !m11Sm

6 ,

@X6, Sm
6#56~12dm1!S̄1

6 , @X6, Sm
7#57~12dm2!S̄2

7 .

In practice the eight fermionic generatorsSm
6 , Q̄m

6 (m51, 2! and six bosonic generatorsHsc, D,
K, X3 , andX6 span a superalgebra SU~1,1u2!.34,35The first equation in the second set of equatio
in Eq. ~54! indicates that the fermionic generatorsSm

6 may be seen as square roots of the conf
mal generatorK, which is similar as the supercharges are the square roots of the supersym
Hamiltonian. Similar to SO~2,1!, the superconformal symmetry described by SU~1,1u2! is dynami-
cal sinceHsc does not commute withSm

6 , D andK. It is obvious that besides SS~4!, SO~2,1!, and
SO~3! @see the fifth set of equations in Eq.~54!#, SU~1,1u2! contains a Lie superalgebra OSp~2,1!
as its subalgebra,23 which, spanned by either$S1

6 , Q̄1
6 , Hsc, D, K, X3% or $S2

6 , Q̄2
6 , Hsc, D, K,

X3%, has been used to studyN52 SCQM.28,32Since the generators of SO~2,1! commute with those
of SO~3! @see the seventh set of equations in Eq.~54!#, SU~1,1u2! contains a maximum Lie
subalgebra SO(3)3SO(2,1). Consequently, we have the following two group chains:

SU~1,1u2!. HOSp~2,1!.SO~2!3SO~2,1!

SO~3!3SO~2,1! J .SO~2!
X3

3SO~2!
Hsc

. ~55!

~2! The second example is a linear superpotential on the half-line,

W~x!5vx, ~56!

wherev is a real constant, andxP(0, `). Substitution into Eq.~30! combined withk650 and
k351 and Eq.~32! gives, respectively, the supercharges

Q̃1
15S 0 0 h̃1 0

0 0 0 0

0 0 0 0

0 z̃1 0 0
D , Q̃2

15S 0 0 0 0

0 0 h̃1 0

0 0 0 0

2 z̃1 0 0 0
D , ~57!

whereh̃6[p6 i @vx1 (1/2x)#, z̃6[p6 i @vx2 (1/2x)#, and the corresponding supersymmet
Hamiltonian

H̃5
1

2
p21

1

2
v2x21S 3

8x2

3

8x2

2
1

8x2 1v

2
1

8x2 2v

D [diag@H̃1 , H̃2 , H̃3 , H̃4#.

~58!

Note that the set of potential functionsṼi ( i 51, 2, 3, 4! corresponding to the four superpartn
HamiltoniansH̃ i is different from the well-known radial harmonic oscillator potentialVho( l )

5 1
2 v2x21 @ l ( l 11)/2x2#,9 in which the angular momentum quantum numberl must be positive

integer, though, from the point of view of mathematics,Ṽi in Eq. ~58! are the special cases o
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Vho( l ) for l taking some special values:Ṽ15Ṽ25Vho( l 5
1
2), Ṽ35Vho( l 52 1

2)1v, and Ṽ4

5Vho( l 52 1
2)2v. It may be easily inferred by using Theorem X.7 in Ref. 36 that allH̃ i are

Hermitian on the half-line~0, `! since either ofṼi is in the limit point case in both zero an
infinity. Let the four-component spinor eigenfunction ofH̃ be c̃5@c̃1 , c̃2 , c̃3 , c̃4#T, wherec̃ i

( i 51, 2, 3, 4! are, respectively, the eigenfunctions ofH̃ i belonging to the energy eigenvaluesẼi ,
and are related by the four first-order differential operatorsh̃6 and z̃6 given in Eq.~57!,

c̃3→
h̃1

c̃15c̃2→
z̃1

c̃4 and c̃3←
h̃2

c̃15c̃2←
z̃2

c̃4 . ~59!

We notice that the quantum mechanical system described byH̃ has no additional symmetry
that can be, together with theN54 supersymmetry, embedded in a larger supersymmetry~for
example, the superconformal symmetry!. If we rewrite H̃ as

H̃5Ḣ0
sc1v2K1vY3 , ~60!

whereḢ0
sc is the supersymmetric Hamiltonian given by Eq.~31! combined withk35k650 and

W(x)5vx, andY3 is a constant matrix,

Ḣ0
sc5

1

2
p21S 3

8x2

3

8x2

2
1

8x2

2
1

8x2

D , Y35S 0

0

1

21

D , ~61!

then using the same analysis employed in the last example, it is easy to find thatḢ0
sc is a

superconformal Hamiltonian since it satisfies not only SO~2,1!, with the dilatation generatorD

52 1
4 $p, x% and the conformal generatorK5 1

2 x2, but also SS~4!, with the four superchargesQ̇m
6

(m51, 2!

Q̇1
15S 0 0 p1

i

2x
0

0 0 0 0

0 0 0 0

0 p2
i

2x
0 0

D , Q̇2
15S 0 0 0 0

0 0 p1
i

2x
0

0 0 0 0

2p1
i

2x
0 0 0

D . ~62!

Introducing extra three operators

Y35
1

2 (
m

~21!m11@Cm
1 , Cm

2#, Y656C2
7C1

6 , ~63!

which constitute SO~3! as well@see the fifth set of equations in Eq.~64!#, it follows thatQ̇m
6 , Sm

6 ,
Ḣ0

sc, D, K, Y3 , andY6 satisfy the following closed superalgebraic structure:
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~1! $Q̇m
1 , Q̇n

2%52dmnḢ0
sc, $Q̇m

6 , Q̇n
6%50, m, n51, 2;

~2! $Sm
1 , Sn

2%52dmnK, $Sm
6 , Sn

6%50;

~3! $Q̇m
6 , Sn

7%5dmn~62iD 1Y3!, $Q̇m
6 , Sn

6%5~2 !m~12dmn!2Y7;

~4! @D, Ḣ0
sc#52 iḢ 0

sc, @D, K#5 iK , @Ḣ0
sc, K#52iD ;

~5! @Y3 , Y6#562Y6, @Y1, Y2#5Y3 ;

~6! @Ḣ0
sc, Q̇m

6#50, @D, Q̇m
6#52 1

2 iQ̇m
6 , @K, Q̇m

6#56Sm
6 ; ~64!

@Ḣ0
sc, Sm

6#56Q̇m
6 , @D, Sm

6#5 1
2 iSm

6 , @K, Sm
6#50;

~7! @Ḣ0
sc, Y3#50, @D, Y3#50, @K, Y3#50;

@Ḣ0
sc, Y6#50, @D, Y6#50, @K, Y6#50;

~8! @Y3 , Q̇m
6#57Q̇m

6 , @Y6, Q̇m
6#56~2 !m11Q̇n

7 , @Y6, Q̇m
7#50;

@Y3 , Sm
6#57Sm

6 , @Y6, Sm
6#56~2 !mSn

7 , @Y6, Sm
7#50;

where Sm
6 has been given by Eq.~53!. We denote the above superalgebra by SC~4!, which,

different from SU~1,1u2! defined by Eq.~54!, has the same subgroup structure as SU~1,1u2!, i.e.,

SC~4!. HOSp~2,1!.SO~2!3SO~2,1!

SO~3!3SO~2,1! J .SO~2!
Y3

3SO~2!
Ḣ0

sc

. ~65!

To determine the eigenfunctions and energy eigenvalues ofH̃ by algebraic method, it is
convenient to regroup the previous operatorsḢ0

sc, D, K, Q̇m
6 , andSm

6 as

T35
1

2v
Ḣ0

sc1
v

2
K, T65

1

2v
Ḣ0

sc2
v

2
K7 iD ,

~66!

Lm
65

1

2Av
Q̇m

62
Av

2
Sm

6 , Rm
65

1

2Av
Q̇m

61
Av

2
Sm

6 .

Note thatRm
6 (m51, 2! are up to normalization constants the superchargesQ̃m

6 associated withH̃,

i.e., Rm
65(1/2Av)Q̃m

6 . Owing to the factH̃52v(T31 1
2 Y3), there exists a simple relation be

tween the energy eigenvaluesẼi ( i 51, 2, 3, 4! of H̃ i and the energy eigenvaluesei ( i 51, 2, 3, 4!
of Ti ,3 , the i th diagonal component ofT3 ,

Ẽi5ei1D i , D i5~2 ! i 11
1

2 F i

3G , ~67!

and their corresponding eigenfunctions are identical. Therefore, the eigenfunctions and
eigenvalues ofH̃ may be directly obtained provided that those ofT3 are known. With the help of
Eq. ~64!, the closed anticommutation and commutation relations satisfied by the six bo
operatorsT3 , T6, Y3 , Y6 and eight fermionic operatorsLm

6 , Rm
6 , read
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~1! @T3 , T6#56T6, @T1, T2#522T3 ;

~2! @Y3 , Y6#562Y6, @Y1, Y2#5Y3 ;

~3! $Lm
1 , Lm

2%5T32 1
2 Y3 , $Lm

6 , Ln
6%5$Lm

6 , Ln
7%50;

~4! $Rm
1 , Rm

2%5T31 1
2 Y3 , $Rm

6 , Rn
6%5$Rm

6 , Rn
7%50;

~5! $Lm
6 , Rn

7%5dmnT7, $Lm
6 , Rn

6%5~21!n~12dmn!Y7;

~6! @T3 , Y6#50, @T3 , Y3#50, @T6, Y6#50, ~68!

@T6, Y3#50, @T6, Y7#50;

~7! @T3 , Lm
6#56 1

2 Lm
6 , @T6, Lm

7#50, @T6, Lm
6#56Lm

7 ;

@T3 , Rm
6#56 1

2 Rm
6 , @T6, Rm

6#50, @T6, Rm
7#57Lm

7 ;

~8! @Y3 , Lm
6#57Lm

6 , @Y6, Lm
7#50, @Y6, Lm

6#56~21!m11Ln
7 ;

@Y3 , Rm
6#57Rm

6 , @Y6, Rm
7#50, @Y6, Rm

6#56~21!m11Ln
7 ,

wherem, n51, 2. We observe from Eq.~68! that~1! the first set of equations indicates thatT3 , T6

constitute SO~2,1! also, whereT3 is a compact operator with a discrete spectrum, andT1 (T2)
raises~lowers! the energy eigenvalues ofT3 by 1 unit. ~2! Similar to SU~1,1u2!, the superalgebra
determined by Eq.~68! contains SO(2,1)3SO(3) as its maximum Lie subalgebra as well, mo
over, the values ofY3 @see Eq.~61!# may be used to label the energy eigenvaluese of T3 or Ẽ of
H̃. ~3! T3 andRm

6 ~or T3 andLm
6 , m51, 2! do not form SS~4!, therefore, the energy spectrum

T3 is not fourfold degenerate.~4! The first column of equations in the seventh and eighth set
equations show thatRm

1 andLm
1 raise the energy eigenvalues ofT3 by 1

2 unit meanwhile lower the
values of Y3 by 1 unit, whereasRm

2 and Lm
2 lower the energy eigenvalues ofT3 by 1

2 unit
meanwhile raise the values ofY3 by 1 unit.

Now turn to the eigenfunctions and energy eigenvalues ofH̃ by means of the similar approac
as used in the last example. Solving the following four equations:

Q̃m
6 c̃050, m51, 2, ~69!

wherec̃0[@c̃0,1, c̃0,2, c̃0,3, c̃0,4#
T stands for the zero-energy eigenfunction, gives rise to

c̃0,1;
1

Ax
exp~2vx2/2!,

c̃0,2;
1

Ax
exp~1vx2/2!,

c̃0,3;Ax exp~1vx2/2!,

c̃0,4;Ax exp~2vx2/2!. ~70!

It is not difficult to find by simple calculations that of the four eigenfunctionsc̃0,i ( i 51, 2, 3, 4!,
only c̃0,4 is square-integrable on the interval~0, `!, whose normalized form is
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c̃0,45Avx exp~2vx2/2!, ~71!

that is, onlyH̃4 has a normalizable zero-energy ground state, whereas the other three super
HamiltoniansH̃1 , H̃2 , H̃3 do not have. Of course,c̃0,4 is also the normalizable ground sta
eigenfunction of the fourth diagonal componentT4,3 of T3 , with its corresponding energy bein
larger than zero. With the help of the superalgebraic relations~68!, the eigenfunctionsc̃n8,i (n8

51, 2, . . . ;i 51, 2, 3, 4! for arbitrary excited states may be obtained fromc̃0,4 through two steps:
first applyingn times the raising operatorT1 to c̃0,4 produces all the excited statesc̃n8,4 (n8

51, 2, . . .! of T4,3, and then acting, respectively, once and twice onc̃n8,4 with Q̃m
2 or Rm

2 or Lm
2

gives the other excited statesc̃n,i 8 (n50, 1, . . . ;i 851, 2, 3!, i.e., all the eigenfunctions ofH̃ i 8 or
Ti 8,3 . With the help of Rodrigus’ formula for the generalized Laguerre polynomialLn

a(x) of
positive integern and real parametera in argumentx, we can finally obtain by induction

c̃n,15A2vx exp~2vx2/2!Ln
0~vx2!,

c̃n,25A2vx exp~2vx2/2!Ln
0~vx2!,

c̃n,35A 2x

n11
~vx!exp~2vx2/2!Ln

1~vx2!, ~72!

c̃n,45A 2x

n11
~vx!exp~2vx2/2!Ln

1~vx2!,

n50, 1, 2,... .

Thus, the energy eigenvalues,Ẽi andei ( i 51, 2, 3, 4! related by Eq.~67!, that correspond to the
same normalized eigenfunctions~72!, of H̃ i andTi ,3 are, respectively,

Ẽ152v~e11D1!52v~n11!, e15n11,

Ẽ252v~e21D2!52v~n11!, e25n11,

Ẽ352v~e31D3!52v~n11!, e35n11/2, ~73!

Ẽ452v~e41D4!52vn, e45n11/2,

n50, 1, 2,... .

Equation~73! shows clearly that theN54 supersymmetry of the quantum mechanical syst
described byH̃ is unbroken since its ground state energy is zero, and the fourfold degene
may be observed above the second level. However, the quartet energy spectrum structureT3 ,
which is not fourfold degenerate, involves two sets of double degenerate spectra, moreov
corresponding supersymmetry is broken since its ground state energy is1

2. The energy spectrum
structures ofH̃ and T3 are depicted in Fig. 2 and Fig. 3, respectively. The solutions to
Schrödinger equations with the potentialsax21 (b/x2) for differenta’s andb’s may be obtained
by different approaches, see Refs. 28, 29, 37–39.

V. SUMMARY

In this paper, we obtained the general form ofN54 SSQM in arbitrary dimension, startin
from the general form of four supercharges, in which the fermionic degrees of freedoms in
                                                                                                                



bra
ultidi-
di-
n, two

lished
erators

d
q.

ts

ry being

2804 J. Math. Phys., Vol. 44, No. 7, July 2003 D. Ruan and W. Huang

                    
all the odd elements,Cj and CjCkCl , of the superalgebra associated with the Clifford alge
C~4,0!. Then, from them, we gave the one-dimensional physical realization and the new m
mensional physical realization for theN54 SSQM by solving their respective constraint con
tions. As applications, we studied in detail, on the base of the one-dimensional realizatio
superconformal quantum mechanical systems with their superpotentials beingk/x andvx, which
possess both theN54 supersymmetries and the dynamical conformal symmetries, and estab
their corresponding superalgebraic structures, which are spanned by the eight fermionic gen
and six bosonic generators. Our next work is to apply the general realizations ofN54 SSQM
obtained in this paper to the other possible~quasi-! exactly solvable potentials, for example, liste
in Refs. 10 and 40, and to discussing the nonlinearN54 SSQM based on the deformations of E

FIG. 2. Fourfold degenerate energy spectrum ofH̃ given by Eq.~73!, which N54 supersymmetry is unbroken since i
ground state energy is zero. Each eigenstate~dot! is connected with its surrounding eigenstates~dots! by the supercharges

Q̃m
6 (m51, 2) along the horizontal line, and by the raising/lowering operatorsT6 along the vertical line.

FIG. 3. Quartet structure of the energy spectrum ofT3 related tightly toH̃ @see Eq.~73!#. Different from that ofH̃
exhibited in Fig. 2,T3 possesses two sets of double degenerate spectra with the corresponding supersymmet
broken. Each eigenstate~dot! is connected with its surrounding eigenstates~dots! by the fermionic operatorsRm

6 , Lm
6

(m51, 2) along the slanting line, and by the raising/lowering operatorsT6 along the vertical line.
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~22!,41 which is similar to the deformations of angular momentum algebra.42,43 From the point of
view of mathematics, it is also of interest to investigate the representations of SU~1,1u2! and SC~4!
and their relations to the classical Lie superalgebras.23,44,45
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Exponentially accurate error estimates of quasiclassical
eigenvalues. II. Several dimensions

J. H. Tolozaa)

Department of Physics and Center for Statistical Mechanics and Mathematical Physics,
Virginia Polytechnic Institute and State University,
Blacksburg, Virginia 24061-0435
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We study the behavior of truncated Rayleigh–Schro¨dinger series for low-lying
eigenvalues of the time-independent Schro¨dinger equation, in the semiclassical
limit \↘0. In particular we prove that if the potential energy satisfies certain
conditions, there is an optimal truncation of the series for the eigenvalues, in the
sense that this truncation is exponentially close to the exact eigenvalue. These
results were already discussed for the one-dimensional case in a previous article.
This time we consider the multi-dimensional problem, where degeneracy plays a
central role. ©2003 American Institute of Physics.@DOI: 10.1063/1.1581353#

I. INTRODUCTION

Perhaps one of the most elementary facts in quantum physics is that, for a sufficiently
potential well, the eigenvalue problem defined by the time-independent Schro¨dinger equation
admits normalizable solutions. Equivalently, if one considers Planck’s constant as a parame
equation

H~\!C̃~\;x!ªF2
\2

2
Dx1V~x!GC̃~x!5E~\!C̃~\;x! ~1!

is expected to have eigenvalues near the bottom of the potential well, in the semiclassica
\↘0.

Along with the problem of existence of low-lying eigenvalues, one is also interested in
behavior of the corresponding perturbation series in powers of\, the so-called Rayleigh–
Schrödinger ~R-S! series. It is well known that, in general, the R-S series are not convergen
only asymptotic to the solutions of Eq.~1!. However, one often wants to consider truncations
these series as good approximations to the actual eigenvalues/eigenvectors. This raises th
question of whether or not one can find an optimal truncation that minimizes the differ
between the exact eigenvalues/eigenvectors and the corresponding truncated R-S series.

In this article we aim to find exponentially accurate asymptotics to the solutions of~1!. We
shall assume that the potential energyV(x) satisfies the following conditions:
H1 V(x) is a C` real function onRd such that lim infuxu→`V(x)5..V`.0.
H2 V(x) has a unique global minimumV(0)50 at x50.
H3 The global minimum ofV(x) is nondegenerate in the sense that

HessV~0!5diag@v1
2 ,...,vd

2#

has only strictly positive eigenfrequenciesv1 ,...,vd .
H4 V(x) has an analytic extension to a neighborhood of the regionSd5$z:uIm ziu<d1e% for some

a!Partially supported by National Science Foundation Grant DMS-0071692. Current address: Centro de Investiga´n en
Matemáticas, Universidad Auto´noma del Estado de Hidalgo, Ciudad Universitaria, Carretera Pachuca-Tulancingo
4.5, Pachuca de Soto, Hidalgo, CP 42074, Me´xico. Electronic mail: htoloza@uaeh.reduaeh.mx
28060022-2488/2003/44(7)/2806/33/$20.00 © 2003 American Institute of Physics
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d.0 ande.0 arbitrarily small. Without loss we may assume thatd<1.
H5 V(z) satisfiesuV(z)u<M exp(tuzu2) uniformly in Sd , for some positive constantsM.0 and
v0/4>t.0 wherev0 denotes the lowest eigenfrequency of HessV(0).

We shall prove that one can truncate the R-S series so that the difference between th
cated series and the actual eigenvalue/eigenvector can be made smaller thanL exp(2G/\) where
the positive constantsL and G are explicitly calculated. Our construction is based entirely o
straighforward application of the formal R-S perturbation theory. These results extend tho
Ref. 19, where we discussed optimal truncation for the one-dimensional problem. We follo
method explained in that article, which indeed is related with one developed by Hagedor
Joye to study approximate solutions to the time-dependent Schro¨dinger equation.4 Roughly speak-
ing, we calculate upper bounds for each term in the R-S series for both eigenvalues and
fuctions. Then we combine these to obtain a recursion relation that yields an estimate f
growth of these terms. From that we compute an estimate of the difference of the two sides~1!
after truncation at orderN; this estimate behaves likeabN\N/2(N!) 1/2. For each\ we chooseN to
minimize this quantity. This and some standard results of functional analysis yield our result
main change with respect to Ref. 19 comes from the fact that, in several dimensions, we n
consider degenerate perturbation theory. There are also several technical nuissances which
special treatment.

The study of this problem is not new, of course. The first proof of existence of low-l
eigenvalues and asymptotic R-S series was presented by Combeset al. in 1983. Their proof,
which involves Dirichlet–Newmann bracketing techniques, only considers the one-dimen
problem. Shortly after, Simon gave another proof, based on geometric arguments, that is v
several dimensions.16 This problem was also studied by Helffer and Sjo¨strand in the broade
framework of microlocal analysis of self-adjoint pseudodifferential operators.6 From these works,
it is known that eigenvalues/eigenfunctions near the bottom of the potential well admit asym
expansions in half-powers of\, where the leading orders are given by the correspond
eigenvalues/eigenfunctions of the harmonic oscillator aproximation. These results require o
assume that the potential energy satisfies H1–H3, although further information has been o
in Ref. 6 for potentials with analytic continuation in a neighborhood of the minimum. In partic
it is proved in Theorem 4.6 of Ref. 6 that the low-lying eigenvalues/eigenfunctions can be
nentially approximated by truncated series.

The last result mentioned above is based on the rather involved theory of analytic pse
ifferential operators.18 On the other hand, the work by Hagedorn and Joye4 suggests that a muc
simpler method, involving only formal R-S series, may be used to contruct exponentially acc
aproximations to the eigenvalues/eigenfunctions of~1!. Indeed, the constructive method develop
in this work relies upon only some elementary notions on complex and functional ana
Moreover, we obtain explicit upper bounds to the growth of the R-S coefficients. Our constru
might be used for numerical computation, although the many constants that we define alo
way have not been optimized for that purpose. However, there is a tradeoff in our approach
consists on the need of somewhat stronger assumptions about the potential energy, nam
pothesis H5. We finally would like to point out that our technique could be used to stud
time-independent Born–Oppenheimer approximation.

Results analogous to those discussed in this work have also been obtained for a classC`

potentials. Bambusiet al.1 have studied exponentially accurate quasimodes up to an error of
exp(2const/\1/r) with r.1, when the potential energy is Gevrey of orderm.1. Furthermore,
their estimate on the error is uniform in\ for all eigenvalues in@0,\d# with 0,d,1. The
construction of those quasimodes is based upon quantization of the Birkhorff normal forms f
classical Hamiltonian associated to~1!. Since their proof relies on the KAM theorem,3 the authors
assume that the eigenfrequenciesv1 ,...,vd satisfy the nonresonant conditionu( iv iki u21

<C(( i uki u)a, for C.0, a.0, and for every nontrivial set of integers (k1 ,...,kd). Under similar
assumptions, Popov12,13 has proved more general results by quantization of the KAM theory.

This article is organized as follows. In Sec. II we make a transformation of Eq.~1!, and some
technical results are proven. In Sec. III we construct some operators through recursion re
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which allow us to calculate the several correction terms involved in the formal series for e
values and eigenvectors. In particular, this construction allows us to consider the cases
degeneracy occurs. Because of the tranformation done in Sec. II, we obtain a manageabl
sion relation for thenth term of the R-S series. Then we state and prove an estimate of the g
of these terms. In Sec. IV we define a residual error function for Eq.~1! and prove an estimate fo
it. The main results are stated precisely in Sec. V. The Appendix is devoted to a compu
needed in Sec. IV.

II. PRELIMINARIES

In this work we shall use the standard multi-index notation: fora5(a1 ,...,ad)PZ1
d and x

5(x1 ,...,xd)PRd, we denoteuauªa11¯1ad , a!ªa1! • ••• •ad!, xa
ªx1

a1
• ¯ •xd

ad , Da

ª]x1

a1
• ¯ •]xd

ad, and x2
ªx1

21¯1xd
2 . For z5(z1 ,...,zd)PCd, we denote uzu2ªz1z1* 1¯

1zdzd* .
We first transform~1! by scalingx→\1/2x and then dividing the whole equation by\. This

unitary transformation scales the eigenvalues and eigenfunctions asE→\21E and C̃(x)
→C̃(A\x), respectively. The transformed equation may be written as

@2 1
2 Dx1V~\;x!#C̃~\;x!5E~\!C̃~\;x!. ~2!

Because of hypothesis H3,V(x) admits a Taylor expansion up to any ordern. Thus we can write

V~\;x!5
1

2 (
i , j 51

d

Ai j xixj1W~\;x!,

where the functionW(\;x) can be asymptotically approximated by

W~\;x!5(
l 53

n

\~ l 22!/2 (
uau5 l

DaV~0!

a!
xa1O~\~n21!/2xuau5n11!. ~3!

Hypothesis H4 implies furthermore that the Taylor series~3! is convergent inside the open poly
disc$zPCd:uzi u<d%. Upper bounds on the derivatives ofV(x) can be easily obtained by using th
Cauchy integral formula. They are stated and proved below in Lemma 2.

Now we can rewrite~2! as

@H01W~\;x!#C̃~\;x!5E~\!C̃~\;x!, ~4!

where, in suitable Cartesian coordinates,

H052
1

2
Dx1

1

2 (
i 51

d

v i
2xi

2

is a harmonic oscillator Hamiltonian with eigenfrequenciesv1 ,...,vd . The eigenfunctions ofH0

are therefore

Fa~x!5S p2d)
i 51

d

v i D 1/4

~2uaua! !2 1/2expS 2
1

2 (
i 51

d

v ixi
2D)

i 51

d

ha i
~Av ixi !, ~5!

wherehj (y) denotes the Hermite polynomial of degreej . The corresponding eigenvalues areea

5( i 51
d v ia i1d/2.
In the semiclassical limit we want to considerW(\,x) as a perturbation ofH0 . Then we can

propose formal Rayleigh–Schro¨dinger series for bothE(\) andC̃(\;x):
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C̃~x!;c̃0~x!1\1/2c̃1~x!1\2/2c̃2~x!1\3/2c̃3~x!1\4/2c̃4~x!1¯ , ~6!

E~\!;E01\1/2E11\2/2E21\3/2E31\4/2E41¯ . ~7!

In this work we essentially follow the standard, formal method to compute the R-S coeffic
~see, e.g., Ref. 11, Chap. XVI!, although alternatively we could use the technique developed
Kato ~Ref. 10 Chaps. VII and VIII!. However, this last approach seems rather difficult to imp
ment here, in particular when degeneracy occurs. Concerning asymptotics in degenerate p
tion theory, we must mention the approach developed by Hunziker–Pillet.8,9

We now insert~6! and~7! into ~2! and equate powers of\1/2. The zeroth-order equation yield
H0c05E0c0 . ThenE05e andc0PG, wheree is some eigenvalue ofH0 with multiplicity g and
associated eigenspaceG. For n51,2,..., wehave

~H02e!c̃n1(
l 51

n

T̃( l 12)c̃n2 l5(
l 51

n

El c̃n2 l , ~8!

where we define

T̃( l )
ª (

uau5 l

1

a!
DaV~0!xa.

Existence of solutions to the set of equations~8! can be shown by explicit construction, as the o
we shall develop in Sec. III. Also, the correction termsc̃n satisfies the following property:

Lemma 1: Let Puau< l be the projection onto the subspace spanned by$ Fa : uau< l % and a

5ae be the smallest non-negative integer such that G#Ran(Puau<a). Then, for each n>1, c̃n

PRan(Puau<a13n)
Proof: First, decomposec̃n5Puau<ac̃n1(12Puau<a)c̃n5..c̃n

(1)1c̃n
(2) . We have to prove the

assertion only forc̃n
(2) . Equation~8! yields

c̃n
(2)5~H02e!r

21~12Puau<a!F(
l 51

n

El c̃n2 l2(
l 51

n

T̃( l 12)c̃n2 l G ,

where (H02e) r
21 is the inverse of the restriction ofH02e onto Ran(12Puau<a). Since

Ran~~H02e!r
21~12Puau<a!Puau<a13n!,Ran~Puau<a13n!,

it is sufficient to show that

S (
l 51

n

El c̃n2 l2(
l 51

n

T̃( l 12)c̃n2 l D PPuau<a13n . ~9!

Now use mathematical induction. Forn51, the assertionT̃(3)c̃0PPuau<a13 follows from the fact
that T̃(3) contains terms that are at most proportional to the third power of creation operator
that c̃0PG,Puau<a . Assuming that statement is true fors51,...,n21, then it is trivially true for
the first term in ~9!. Also, a simple calculation with ladder operators shows thatxaw
PRan(Pubu<a13(n2 l )1uau) wheneverwPRan(Pubu<a13(n2 l )). Finally, we have 3(n2 l )121 l
53n12(12 l )<3n for l 51,...,n. h

The set of recursive equations~8! is not suitable for the purpose of finding the sharp up
bounds for the R-S coefficients that we shall need later. It turns out to be convenient to tran
the problem in the following way: Let$Fa(x)% be a basis of eigenvectors ofH0 . For a given
eigenvaluee of H0 , let us define a new operatorAe by
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AeFa~x! 5 H Fa~x!, if Fa~x!PG,

ue2eau2 1/2Fa~x!, otherwise,

whereea is the eigenvalue associated toFa(x). Then extendAe to the whole Hilbert spaceH by
linearity. So defined,Ae is a bounded operator with unit norm but unbounded inverse. Howe
Ran(Puau<a13n) is clearly in the domain ofAe

21 for eachnPN. This fact allows us to consider th
equivalent set of equations

Hecn1(
l 51

n

T( l 12)cn2 l5(
l 51

n

ElAe
2cn2 l , ~10!

whereHeªAe(H02e)Ae , T(m)
ªAeT̃

(m)Ae , andcm5Ae
21c̃m . The operatorHe satisfies

HeFa~x! 5 H 0, if Fa~x!PG,

e2ea

ue2eau
Fa~x!, otherwise.

Therefore the norm ofHe is equal to 1. In Sec. III we shall prove that bothuEnu and icni
essentially grow asbnAn! for large n.

We conclude this section with an assortment of technical lemmas. Lemma 2 states
estimates on the derivatives of the potential energy. In Lemma 3 we show a key upper bound
norm of the operatorsT( l )Puau<n . Finally, in Lemma 4 we state results about certain express
involving factorials that we shall use extensively in the sequel.

Lemma 2: Assume V(x) satisfies H4. Then there are constants C1 and C2 such that, for l
>1,

(
uau5 l

uDaV~0!u
a!

d uau<C1C2
l .

If V(x) also satisfies H5, then there exists a constant C0 such that

d uau

a!
uDaV~x!u<C0 exp~2tx2!. ~11!

Proof: Let G i be a circle of radiusd in the complex plane, centered atxi . Then the Cauchy
integral formula applied toV(x), which makes sense because of hypothesis H4, states tha
each multi-indexa5(a1 ,...,ad)

DaV~x!5
a!

~2p i !d E
G1

dz1 ¯E
Gd

dzd

V~z!

) i 51
d ~zi2xi !

a i11 ,

which implies

uDaV~x!u<
a!

d uau max
ziPG i

uV~z!u. ~12!

Let us prove~11! first. Because of H5,

max
ziPG i

uV~z!u<M)
i 51

d

max
ziPG i

exp~tuzi u2!<M)
i 51

d

exp~tuxi1du2!<M exp~2dtd2!exp~2tx2!,
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so~12! implies~11!, after definingC05M exp(2dtd2). If now theG i ’s are circles centered at zero
we have~without assuming H5!

uDaV~0!u
a!

d uau< max
ziPG i

uV~z!u5..c,`.

Then

(
uau5 l

uDaV~0!u
a!

d uau<c (
uau5 l

1

for all l . The last summation is the number of different ways to sumd non-negative integers suc
as the result is equal tol . That is,

(
uau5 l

15
~ l 1d21!!

l ! ~d21!!
<

1

~d21!!
~ l 1d21!d21.

Therefore, we have

(
uau5 l

uDaV~0!u
a!

d uau<
c

~d21!!
~ l 1d21!d21<C1C2

l

with obvious definition ofC1 , andC2 being either equal to (d21)maxl>1 log(l1d21)/l ~when
d.1) or equal to 1~whend51). h

Lemma 3: Foruau>2, n>0 and some constantg.0,

iAex
aAePubu<ni<g2S 2

v0
D ~ uau22!/2F ~n1uau21!!

~n11!! G1/2

.

As a consequence,

iT( l )Pubu<ni<C3k~ l 22!/2F ~n1 l 21!!

~n11!! G1/2

for some C3.0 and k>2.
Proof: For a single coordinatexi , we have

xi5
1

A2v i

~ai1ai* ! ~13!

whereai andai* are the associated ladder operators. Consider anyw5(bdbFbPH. DefineJG

ª$multi-indicesb:FbPG%. Then

ai* Aew5 (
bPJG

dbai* Fb1 (
b¹JG

dbue2ebu2 1/2ai* Fb

5 (
bPJG

dbAb i11Fb11i
1 (

b¹JG

dbue2ebu2 1/2Ab i11Fb11i

whereb11iª(b1 ,...,b i11,...,bd). Thus,
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iai* Aewi25 (
bPJG

udbu2~b i11!1 (
b¹JG

udbu2ue2ebu21~b i11!

<~11a! (
bPJG

udbu21 (
b¹JG

udbu2ue2ebu21~b i11!

becausebPJG implies b i<ubu<a. Moreover,

b i11

ue2ebu
5

1

v i

v i~b i1
1
2!

ue2ebu
1

1
2

ue2ebu
<

1

v i

eb

ue2ebu
1

1
2

ue2ebu
.

Sinces(H0) has no accumulation points andebÞe for all b¹JG , infb¹JG
ue2ebu.0. Further-

more, since limubu→`ebue2ebu2151, supb¹JG
ebue2ebu21,`. Thus,

ue2ebu21~b i11!<
1

v i
sup

b¹JG

ebue2ebu211
1

2
sup

b¹JG

ue2ebu215..K1,`,

which implies

iai* Aei2<max$~11a!,K1%<max
$v i %

max$~11a!,K1%. ~14!

A similar calculation yields

iaiAei2<max$u12au,K2%<max
$v i %

max$u12au,K2% ~15!

for someK2,`. Therefore,

ixiAei<
1

A2v i

iaiAei1
1

A2v i

iai* Aei<
1

A2v0

~ iaiAei1iai* Aei !<g,

wherev0 is the lowest eigenfrequency ofH0 , and we use the sum of the right-hand sides of~14!
and ~15! to defineg. Taking the adjoint yields

iAexi i<g.

Sinceuau>2, we can writexa5xi xa8xj for somexi , xj , with ua8u5uau22. Then

iAex
aAePubu<ni<iAexix

a8Pubu<n11xjAePubu<ni

<iAexi iixjAeiixa8Pubu<n11i

<g2S 2

v0
D ua8u/2F ~n1ua8u11!!

~n11!! G1/2

5g2S 2

v0
D ~ uau22!/2F ~n1uau21!!

~n11!! G1/2

, ~16!

where we use Lemma 5.1 of Ref. 4 to boundixa8Pubu<n11i . The last statement follows from th
definition of T( l ) and the first part of Lemma 2, along with the definitionsC35C1g2d22C2

2 and
k5max$2,2v0

21d22C2
2%. h

Lemma 4: Letk>2 be the number defined in Lemma 3. Then we have the following.
(1) For each integer a>0 there is a constant C45C4(a) so that, for all m>0,
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(
l 50

m F ~11a1m2 l !! ~11a1 l !!

~11a1m!! G1/2

<C4 .

(2) For all a>21 there is a constant C5 so that, for all m>0,

(
l 50

m

k2 5l /2F ~11a13m22l !! ~11a1m2 l !!

~11a13m23l !! ~11a1m!! G1/2

<C5 .

(3) For each a>0 there is a constant C65C6(a) so that, for all m>0,

(
l 51

m

k2 5l /2F ~11a1m2 l !! ~11a1 l !!

~11a!! ~a1m!! G1/2

<C6 .

Proof: Statements~1! and~2! are shown in Lemma 2 of Ref. 19. To prove~3!, notice that for
1< l<m21 we have

~11a1 l !! ~11a1m2 l !!

~a1m!! ~11a!!
5~11a1 l !

)s51
m2 l~11a1s!

)s5 l
m21~11a1s!

5~11a1 l !)
s51

m2 l
11a1s

l 1a1s
<11a1 l .

Therefore

(
l 51

m

k2 5l /2F ~11a1 l !! ~11a1m2 l !!

~a1m!! ~11a!! G1/2

<(
l 51

m

k2 5l /2~11a1 l !1/2,

where the right-hand side converges to some constantC6(a),`. h

III. COMPUTATION OF THE R-S COEFFICIENTS

Let us assume that the zeroth-order eigenvaluee is g-fold degenerate, with associated eigen
paceG. We allow g to be equal to 1. LetP be the projector ontoG and Qª12P. Up to
zeroth-order,c0 can be any vector inG, which we may require to be normalized,ic0i51. Two
cases may arise from solving~10! at higher order. Either the zeroth-order degeneracy is prese
at all orders, or it is removed to some extent at higher order. Let us start by discussing the
case, which trivially includes the nondegenerate one.

A. Degeneracy is preserved

Fix c0PG, with ic0i51. The first-order equation is

Hec11T(3)c05E1Ae
2c0 . ~17!

Let us multiply byP. Noting thatPHe50 andPAe
2c05c0 , we obtain

PT(3)Pc05E1c0 .

This is the secular equation for the finite-dimensional, self-adjoint operatorL (1)
ªPT(3)P. Since

we assume that the zeroth-order degeneracy is not broken at any order,L (1) must have only one
eigenvalue. Let us call itl1 . ThenE15l1 . Now multiply ~17! by Q. We obtain

HeQc152QT(3)c0 .

Let us introduce more notation. For any vectorcPH, definec i
ªPc and c'

ªQc. Also, let
(He)' be the restriction ofHe to Ran(Q). So defined, (He)' is invertible. Then we have

c1
'5J (1,')c0 ,
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whereJ (1,')
ª(He)'

21(2QT(3)). So farc1
i remains undefined.

The second-order equation is

Hec21T(3)c11T(4)c05E2Ae
2c01l1Ae

2c1 . ~18!

Multiply ~18! by P. After some algebra involving the definitions ofL (1) andJ (1,'), we obtain

~PT(3)J (1,')P1PT(4)P!c05E2c0 .

ThenE2 has to be equal to the unique eigenvalue of

L (2)
ªP~T(3)J (1,')1T(4)!P.

That is,E25l2 . Now multiply ~18! by Q to obtain

Hec2
'1QT(3)~c1

i
1c1

'!1QT(4)c05l1Ae
2c1

' ,

which yields

c2
'5J (2,')c01J (1,')c1

i ,

where we define

J (2,')
ª~He!'

21@~l1Ae
22QT(3)!J (1,')1QT(4)#

and no requirement is imposed on eitherc2
i or c1

i .
The third-order equation is

Hec31T(3)c21T(4)c11T(5)c05E3Ae
2c01l2Ae

2c11l1Ae
2c2 .

Following the procedure already described, we obtain

L (3)c05E3c0 ,

where

L (3)
ªP~T(3)J (2')1T(4)J (1,')1T(5)!P

has only one eigenvaluel3 . ThusE35l3 . Also

c3
'5J (3,')c01J (2,')c1

i
1J (1,')c2

i ,

where

J (3,')
ª~He!'

21@~l1Ae
22QT(3)!J (2,')1~l2Ae

22QT(4)!J (1,')2QT(5)#

and nothing is said aboutc3
i , c2

i or c1
i .

As one can see,En andcn
' can be calculated through recursive definition of certain opera

The form of these operators is now easy to guess:
Proposition 1: For n51,2,..., recursively define

J (1,')
ª2~He!'

21QT(3),

J (n,')
ª~He!'

21F2QT(n12)1 (
p51

n21

~ln2pAe
22QT(n122p)!J (p,')G ,

wherel l is, by assumption, the unique eigenvalue of
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L ( l )
ªPT( l 12)P1 (

p51

n21

PT( l 122p)J (p,')P.

Then, givenc0PG, En5ln and

cn5J (n,')c01 (
p51

n21

J (n2p,')cp
i
1cn

i ,

wherec1
i ,...,cn

i are vectors arbitrarily chosen from G.
This construction will be generalized in Proposition 2, from which the proof of Propositio

can be easily read out. To rule out arbitrariness, we setcn
i
50 for all n>1, which is equivalent to

absorbing those vectors intoc0 and renormalizing.
The recursive expressions for the operatorsL (n) andJ (n,') can be translated into recursiv

expressions forEn andcn . The result is

En5 (
p50

n21

^T(n122p)Puau<ac0 ,cp&,

cn5~He!'
21F2QT(n12)c01 (

p51

n21

~En2pAe
22QT(n122p)!cpG .

Furthermore, we can easily obtain the following inequalities:

uEnu<(
l 51

n

iT( l 12)Pu j u<aiicn2 l i ,

icni< (
l 51

n21

uEl uicn2 l i1(
l 51

n

iT( l 12)Pu j u<a13(n2 l )iicn2 l i .

By resorting to Lemma 3, we finally obtain

uEnu<C3(
l 51

n

k l /2F ~11a1 l !!

~11a!! G1/2

icn2 l i ,

icni< (
l 51

n21

uEl uicn2 l i1C3(
l 51

n

k l /2F ~11a13n22l !!

~11a13n23l !! G
1/2

icn2 l i .

As an immediate consequence, we have the following.
Theorem 1: For each a>0, there is b.0 so that

uE nu<k3nbn@~11a1n!! #1/2,

icni<k3nbn@~11a1n!! #1/2,

for all n>1.
A proof of this theorem is in Ref. 19, where the somewhat simpler one-dimensional pro

is discussed. Alternatively, one can modify the proof of Theorem 3.2 below to get some
tighter bounds.
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B. Degeneracy is removed

Let us examine the case where the zeroth-order degeneracy is partially removed only
order.

First-order: Now the operatorL (1)5PT(3)P hask>2 distinct eigenvaluesl1,1,...,l1,k . Let
G1 ,...,Gk be the corresponding eigenspaces, and letP(1),...,P(k) be their orthogonal projections
Set E15l1,i . Then c0 must lie in Gi . As before, c1

'5J (1,')c0 with J~1,'!
ª(He)'21(2QT(3)).

Second-order:Because of the choice forE1 we have

Hec21T(3)c11T(4)c05E2Ae
2c01l1,iAe

2c1 . ~19!

Multiply ~19! by P( j )

P( j )T(3)c11P( j )T(4)c05E 2P( j )c01l1,i P
( j )c1 . ~20!

Note thatP5( j 51
k P( j ). Then, for any vectorc, we havec i5( j 51

k c ( j ). On the other hand,

P( j )T(3)c i5(
l 51

k

P( j )PT(3)PP( l )c i5(
l 51

k

P( j )L (1)P( l )c i5(
l 51

k

l1,l P
( j )P( l )c i5l1,jc

( j ). ~21!

Therefore,( lÞ i P
( i )T(3)cn

( l )50. The identity~21! yields

P( j )T(3)c15P( j )T(3)c1
i
1P( j )T(3)c1

'5l1,jc1
( j )1P( j )T(3)c1

' . ~22!

Now insert~22! into ~20!. For j 5 i we have

P( i )T(4)c01P( i )T(3)c1
'5E2c0 .

Define

L (2,i )
ªP( i )~T(4)1T(3)J (1,')!P( i ).

Then we obtainL (2,i )c05E2c0 . By assumptionL (2,i ) has only one eigenvaluel2,i . Therefore
E25l2,i .

For j Þ i we have

P( j )T(4)c01P( j )T(3)c1
'1l1,jc1

( j )5l1,i P
( j )c1

becauseP( j )c050 wheneverj Þ i . Rearranging terms we finally obtainc1
( j )5J (1,j )c0 , where we

define

J (1,j )
ª~l1,i2l1,j !

21P( j )~T(4)1T(3)J (1,')!P( i ). ~23!

So far no requirement is imposed toc1
( i ) .

Now multiply ~19! by Q,

Hec2
'1QT(4)c01QT(3)c15l1,iAe

2c1
' . ~24!

Since

QT(3)c15QT(3)c1
'1(

lÞ i
QT(3)c1

( l )1QT(3)c1
( i )

5QT(3)J (1,')c01(
lÞ i

QT(3)J (1,l )c01QT(3)c1
( i ) ,
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~24! yields

Hec2
'52QT(4)c01l1,iAe

2J (1,')c02QT(3)J (1,')c02(
lÞ i

QT(3)J (1,l )c02QT(3)c1
( i ) .

From there we obtain

c2
'5J (2,')c01J (1,')c1

( i ) ,

where

J (2,')
ª~He!'

21Fl1,iJ
(1,')Ae

22QT(3)S J (1,')1(
lÞ i

J (1,l )D 2QT(4)G .
Third-order:

Hec31T(3)c21T(4)c11T(5)c05E3Ae
2c01l2,iAe

2c11l1,iAe
2c2 . ~25!

Multiply by P( j ), rearrange terms, and use~21! to obtain

E 3P( j )c05P( j )T(3)c21P( j )T(4)c11P( j )T(5)c02l2,ic1
( j )2l1,ic2

( j )

5P( j )T(3)~c2
'1c2

i
!1P( j )T(4)S c1

'1(
lÞ i

c1
( l )1c1

( i )D
1P( j )T(5)c02l2,ic1

( j )2l1,ic2
( j )

5P( j )T(3)c2
'1P( j )T(4)S c1

'1(
lÞ i

c1
( i )1c1

( i )D
1P( j )T(5)c02~l1,i2l1,j !c2

( j )2l2,ic1
( j ) . ~26!

For j 5 i we have

E3c05P( i )T(3)J (2,')c01P( i )T(4)S J (1,')1(
lÞ i

J (1,l )Dc0

1P( i )T(5)c01P( i )T(3)J (1,')c1
( i )1P( i )T(4)c1

( i )2l2,ic1
( i ) .

Let us note that

P( i )T(4)c ( i )1P( i )T(3)J (1,')c ( i )5L (2,i )c ( i )5l2,ic
( i ).

Thus we obtainE3c05L (3,i )c0 , where

L (3,i )
ªP( i )FT(5)1T(4)S J (1,')1(

lÞ i
J (1,l )D 1T(3)J (2,')GP( i ).

By assumptionL (3,i ) has only one eigenvaluel3,i so E35l3,i .
Now for j Þ i we can rewrite~26! as

~l1,i2l1,j !c2
( j )5P( j )T(5)c01P( j )T(4)S J (1,')1(

lÞ i
J (1,l )Dc01P( j )T(3)J (2,')c02l2,iJ

(1,j )c0

1P( j )T(3)J (1,')c1
( i )1P( j )T(4)c1

( i ) .

Now use~23! and define
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J (2,j )
ª~l1,i2l1,j !

21P( j )FT(5)1T(4)S J (1,')1(
lÞ i

J (1,l )D 1T(3)J (2,')2l2,iJ
(1,j )GP( i )

to obtain

c2
( j )5J (2,j )c01J (1,j )c1

( i ) .

The last step is to multiply~25! by Q,

Hec3
'5Q~l1,iAe

22T(3)!c21Q~l2,iAe
22T(4)!c12QT(5)c0 . ~27!

We have

Q~l1,iAe
22T(3)!c25Q~l1,iAe

22T(3)!c2
'1l1,iAe

2Qc2
i
2QT(3)(

lÞ i
c2

( l )2QT(3)c2
( i )

5Q~l1,iAe
22T(3)!J (2,')c01Q~l1,iAe

22T(3)!J (1,i )c1
( i )

2 QT(3)(
lÞ i

J (2,l )c02QT(3)(
lÞ i

J (1,l )c1
( i )2QT(3)c2

( i )

52 QT(3)c2
( i )1QF ~l1,iAe

22T(3)!J (1,')2(
lÞ i

T(3)J (1,l )Gc1
(1)

1 QF ~l1,iAe
22T(3)!J (2,')2(

lÞ i
T(3)J (2,l )Gc0 , ~28!

and similarly

Q~l2,iAe
22T(4)!c15QF ~l2,iAe

22T(4)!J (1,')2(
lÞ i

T(4)J (1,l )Gc02QT(4)c1
( i ) . ~29!

Insert ~28! and ~29! in ~27! and multiply the whole equation by (He)'
21 to obtain

c3
'5J (3,')c01J (2,')c1

( i )1J (1,')c2
( i )

with

J (3,')
ª~He!'

21F ~l1,iJ
(2,')1l2,iJ

(1,')!Ae
22QT(5)2QT(4)S J (1,')1(

lÞ i
J (1,l )D

2QT(5)S J (2,')1(
lÞ i

J (2,l )D G .
As before, one can guess the solution for arbitraryn. Let us summarize hypotheses an

results:
Proposition 2: Define

L (1)
ªPT(3)P,

J (1,')
ª2~He!'

21QT(3).

Suppose thatL (1) has k distinct eigenvaluesl1,1,...,l1,k with eigenspaces G1 ,...,Gk . Let
P(1),...,P(k) be the associated projection operators. Given1< i<k and jÞ i , set

L (2,i )
ªP( i )~T(4)1T(3)J (1,')!P( i ),
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J (1,j )
ª~l1,i2l1,j !

21P( j )~T(4)1T(3)J (1,')!P( i ),

J (2,')
ª~He!'

21Fl1,iJ
(1,')Ae

22QT(4)2QT(3)S J (1,')1(
lÞ i

J (1,l )D G .
And then recursively define

L (n,i )
ªP( i )S T(n12)1 (

s51

n21

T(n122s)J (s,')1 (
s51

n22

(
lÞ i

T(n122s)J (s,l )D P( i ),

J (n21,j )
ª~l1,i2l1,j !

21P( j )S T(n12)1 (
s51

n21

T(n122s)J (s,')1 (
s51

n22

(
lÞ i

T(n122s)J (s,l )

2 (
s52

n21

ls,iJ
(n2s, j )D P( i ),

J (n,')
ª~He!'

21F (
s51

n21

ls,iJ
(n2s,')Ae

22QT(n12)2 (
s51

n21

QT(s12)S J (n2s,')1(
lÞ i

J (n2s,l )D G ,

wherels,i is, by assumption, the unique eigenvalue ofL (s,i ) when s>2.
Let En ,cn be the R-S coefficients. ThenE1 has to be equal to one of the eigenvalues ofL (1),

let us sayE15l1,i . Consequently, c0PGi and

En5ln,i , ~30!

cn21
( j ) 5J (n21,j )c01 (

s51

n21

J (n2s21,j )cs
( i ) , ~31!

cn
'5J (n,')c01 (

s51

n21

J (n2s,')cs
( i ) , ~32!

cn5cn
'1(

j Þ i
cn

( j )1cn
( i ) .

The vectorsc1
( i ) , ...,cn

( i ) are arbitrarily chosen from Gi .
Proof: Use mathematical induction. Because of the discussion above, we only have to

the inductive step. Thus, let us assume thatEm , cm21
( j ) and cm

' are given by~30!–~32!, for m
52,...,n. Let us computeEn11 , cn

( j ) andcn11
' . The (n11)-st-order equation is

Hecn111 (
p50

n

T(n132p)cp5(
s50

n

En112sAe
2cs . ~33!

We have
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(
p50

n

T(n132p)cp5T(n13)c01 (
p51

n

T(n132p)cp
'1 (

p51

n

T(n132p)(
lÞ i

cp
( l )1 (

p51

n

T(n132p)cp
( i )

5T(n13)c01T(n12)J (1,')c01 (
p52

n

T(n132p)S J (p,')c01 (
s51

p21

J (p2s,')cs
( i )D

1d(
lÞ i

T(n12)J (1,l )c01 (
p52

n21

(
lÞ i

T(n132p)S J (p,l )c01 (
s51

p21

J (p2s,l )cs
( i )D

1(
lÞ i

T(3)cn
( l )1 (

p51

n

T(n132p)cp
( i )

5S T(n13)1 (
p51

n

T(n132p)J (p,')1 (
p51

n21

(
lÞ i

T(n132p)J (p,l )Dc0

1 (
s51

n21

(
p5s11

n

T(n132p)J (p2s,')cs
( i )

1 (
s51

n22

(
p5s11

n21

(
lÞ i

T(n132p)J (p2s,l )cs
( i )1(

lÞ i
T(3)cn

( l )1(
s51

n

T(n132s)cs
( i )

5S T(n13)1 (
p51

n

T(n132p)J (p,')1 (
p51

n21

(
lÞ i

T(n132p)J (p,l )Dc0

1 (
s51

n21

(
m51

n2s

T(n132s2m)J (m,')cs
( i )1 (

s51

n22

(
m51

n212s

(
lÞ i

T(n132s2m)J (m,l )cs
( i )

1(
lÞ i

T(3)cn
( l )1(

s51

n

T(n132s)cs
( i )

where we use that(p51
r (s51

p21Fsp5(s51
r 21(p5s11

r Fsp and then we change indexp→m5p2s. Let
us multiply ~33! by P( i ). SinceP( i )He50 andP( i )Ae

25Ae
2P( i )5P( i ), we obtain

(
p50

n

P( i )T(n132p)cp5En11c01(
s51

n

ln112s,ics
( i ) . ~34!

The left-hand side can be written as

(
p50

n

P( i )T(n132p)cp5P( i )S T(n13)1 (
p51

n

T(n132p)J (p,')1 (
p51

n21

(
lÞ i

T(n132p)J (p,l )Dc0

1 (
s51

n22

P( i )S T(n132s)1 (
m51

n2s

T(n132s2m)J (m,')

1 (
m51

n212s

(
lÞ i

T(n132s2m)J (m,l )Dcs
( i )1P( i )~T(3)J (1,')1T(4)!cn21

( i )

1(
lÞ i

P( i )T(3)cn
( l )1P( i )T(3)cn

( i ) .

By the argument that leads to~21!, we know that( lÞ i P
( i )T(3)cn

( l )50. Also cs
( i )5P( i )cs

( i ) . Then
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(
p50

n

P( i )T(n132p)cp5L (n11,i )c01(
s51

n

L (n112s,i )cs
( i ) . ~35!

Inserting~35! into ~34! we conclude

L (n11,i )c05En11c0 .

Now let us multiply~33! by P( j ) for j Þ i . SinceP( j )c050, we have

l1,icn
( j )5 (

p50

n

P( j )T(n132p)cp2 (
s51

n21

ln112s,ics
( j ) . ~36!

The right-hand side can be manipulated in the same way as before. The result is

(
p50

n

P( i )T(n132p)cp2 (
s51

n21

ln112s,ics
( j )5~l1,i2l1,j !J

(n, j )c01 (
s51

n21

~l1,i2l1,j !J
(n2s, j )cs

( i )

1(
l 51

k

P( j )T(3)cn
( l ) .

As proven in~21!, the last term above is equal tol1,jcn
( j ) . Thus~36! leads to

cn
( j )5J (n, j )c01 (

s51

n21

J (n2s, j )cs
( i ) .

Finally, multiply ~33! by Q,

Hecn11
' 5 (

p51

n

ln112p,iAe
2cp

'2 (
p50

n

QT(n132p)cp . ~37!

For the first term we have

(
p51

n

ln112p,iAe
2cp

'5(
s51

n

ln112s,iAe
2J (s,')c01 (

p52

n

(
s51

p21

ln112p,iAe
2J (p2s,')cs

( i )

5(
s51

n

ln112s,iAe
2J (s,')c01 (

s51

n21

(
m51

n2s

ln112s2m,iAe
2J (m,')cs

( i ) ,

and for the second one

(
p50

n

QT(n132p)cp5QS T(n13)1 (
p51

n

T(n132p)J (p,')1 (
p51

n21

(
lÞ i

T(n132p)J (p,l )Dc0

1 (
s51

n22

QS T(n132s)1 (
m51

n2s

T(n132s2m)J (m,')

1 (
m51

n212s

(
lÞ i

T(n132s2m)J (m,l )Dcs
( i )1 Q~T(3)J (1,')1T(4)!cn21

( i )

1(
lÞ i

QT(3)cn
( l )1QT(3)cn

( i ) .
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Then insert these expressions into~37!. After multiplying the whole equation by (He)'
21 we obtain

the desired result. h

As before, we setcn
( i )50 for all n51,2,.... Consequently,cn will be orthogonal toc0 and

cn5S J (n,')1(
lÞ i

J (n,l )Dc0 .

The following expressions will be useful later:

L (n,i )c05P( i )T(n12)c01 (
s51

n22

P( i )T(n122s)cs1P( i )T(3)cn21
' , ~38!

cn
'5~He!'

21F (
s51

n21

EsAe
2cn2s

' 2QT(n12)c02 (
s51

n21

QT(s12)cn2sG , ~39!

cn21
( j ) 5~l1,i2l1,j !

21S P( j )T(n12)c01 (
s51

n22

P( j )T(n122s)cs1 P( j )T(3)Pu j u<a13(n21)cn21
'

2 (
s52

n21

Escn2s
( j ) D . ~40!

Next, let us estimate the growth of these coefficients. SinceEnc05L (n,i )c0 ,

uEnu5u^c0 ,L (n,i )c0&u

<u^c0 ,P( i )T(n12)c0&u1 (
s51

n22

u^c0 ,P( i )T(n122s)cs&u1u^c0 ,P( i )T(3)cn21
' &u

<iT(n12)Puau<ai1 (
s51

n22

u^T(n122s)c0 ,cs&u1u^T(3)c0 ,cn21
' &u

<iT(n12)Puau<ai1 (
s51

n22

iT(n122s)Puau<aiicsi1iT(3)Puau<aiicn21
' i

5(
s52

n

iT(s12)Puau<aiicn2si1iT(3)Puau<aiicn21
' i . ~41!

This calculation follows from~38!, the self-adjointness ofT( l ), and Lemma 1.
From the definition ofHe , it is straightforward to see thati(He)'

21i51. Also, iAei51. Thus,
from ~39! we have

icn
'i< (

s51

n21

uEsuicn2s
' i1iT(n12)Puau<aiic0i1 (

s51

n21

iT(s12)Puau<a13(n2s)iicn2si

5 (
s51

n21

uEsuicn2s
' i1(

s51

n

iT(s12)Puau<a13(n2s)iicn2si . ~42!

Finally let us consider~40!:
                                                                                                                



n the

e b

2823J. Math. Phys., Vol. 44, No. 7, July 2003 Error estimates of quasiclassical eigenvalues. II

                    
icn21
( j ) i<ul1,i2l1,j u21S iT(n12)Puau<aiic0i1 (

s51

n22

iP( j )T(n122s)iicsi

1 iP( j )T(3)iicn21
' i1 (

s52

n21

uEsuicn2s
( j ) i D .

Set C7ªminjÞiul1,i2l1,j u21. Also, let us notice that iP( j )T(n122s)i5iT(n122s)P( j )i
5iT(n122s)Puau<aP( j )i<iT(n122s)Puau<ai . Thus,

icn21
( j ) i<C7(

s52

n21

uEsuicn2s
( j ) i1C7(

s52

n

iT(s12)Puau<aiicn2si1C7iT(3)Puau<aiicn21
' i . ~43!

These inequalities will allow us to obtain upper bounds for the growth of R-S coefficients. I
following theorem we make use of Lemmas 3 and 4.

Theorem 2: Let k be the number of subspaces as defined in Proposition 3.2. Defin1

ªC3@kC61(21a)1/2#, b2ª8C7@b1C41C3(21a)1/21kC3C6# and b3ªb1C41C3C5@1
1b2(k21)#. Then for any b>max$b1,b2,b3,1% and for n51,2,...,

uEnu<b1k3nbn22@~a1n!! #1/2, ~44!

icn21
( l ) i<b2k3(n21)bn22@~a1n!! #1/2, ~45!

icn
'i<b3k3nbn22@~11a1n!! #1/2. ~46!

Proof: Assume the estimates are true fors51,...,n21. This implies that

icsi<@b31b2~k21!#k3sbs21@~11a1s!! #1/2<k3skbs@~11a1s!! #1/2 ~47!

for s<n22. We shall use the second inequality in~47! to prove~44! and~45!, and the first one to
prove ~46!.

Let us start showing~44!. Applying Lemmas 3 and 4, statement 2, we obtain

(
s52

n

iT(s12)Puau<aiicn2si<C3k(
s52

n

ks/2F ~11a1s!!

~11a!! G1/2

k3(n2s)bn2s@~11a1n2s!! #1/2

<C3kk3nbn22@~a1n!! #1/2(
s52

n

k2 5s/2F ~11a1s!! ~11a1n2s!!

~11a!! ~a1n!! G1/2

<kC3C6k3nbn22@~a1n!! #1/2.

Thus,~41! yields

uEnu<kC3C6k3nbn22@~a1n!! #1/21C3k3(n21)b3bn23k1/2~21a!1/2@~a1n!! #1/2

<kC3C6k3nbn22@~a1n!! #1/21C3~21a!1/2k3nbn22@~a1n!! #1/2

<b1k3nbn22@~a1n!! #1/2,

which completes the proof of~44!.
To prove~45! we start from~43! and proceed in the same fashion:
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icn21
( j ) i<C7k3nb1b2bn23(

s52

n21

@~a1s!! ~11a1n2s!! #1/21C3C7k3nb3bn23~21a!1/2

3@~a1n!! #1/21C3C7kk3nbn22(
s52

n

k2 5s/2F ~11a1s!! ~11a1n2s!!

~11a!! G1/2

<C7b1k3nbn22@~a1n!! #1/2(
m51

n22 F ~11a1m!! ~a1n2m!!

~a1n!! G1/2

1C3C7~21a!1/2k3nbn22@~a1n!! #1/2

1C3C7kk3nbn22@~a1n!! #1/2(
s52

n

k2 5s/2F ~11a1s!! ~11a1n2s!!

~11a!! ~a1n!! G1/2

,

where we have changed indexs→m5s21 in the first term. From this and statements 1 and 3
Lemma 4, we obtain

icn21
( j ) i<8C7@b1C41C3~21a!1/21kC3C6#k3(n21)bn22@~a1n!! #1/2

5b2k3(n21)bn22@~a1n!! #1/2,

so ~45! is done. Consequently,~47! must be valid fors5n21.
Finally, let us show~46!. Note that the first term of~42! is bounded like the first term of~43!.

Applying statement 2 of Lemma 4, it follows that

icn
'i<b1b3k3nbn23C6@~a1n!! #1/21C3@11b2~k21!#k3nbn22@~11a

1n!! #1/2(
s51

n

k2 5s/2F ~11a13n22s!! ~11a1n2s!!

~11a13n23s!! ~11a1n!! G1/2

<b1C6k3nbn22@~11a1n!! #1/21C3@11b2~k21!#C5k3nbn22@~11a1n!! #1/2

5b3k3nbn22@~11a1n!! #1/2 .
h

Corollary 1:

uE nu<k3nbn21@~a1n!! #1/2,

icni<k3nkbn@~11a1n!! #1/2.

For the case where degeneracy is partly broken only up to second order, one needs to
certain operatorsL (n,i 1 ,i 2), J (n22,i 1 ,i 2), J (n,') for n>3, in addition to those already defined in th
last subsection. Nowc0 would be required to lie in a certain subspaceGi 1,12

,Gi 1
,G, and one

would be able to determinecn module an arbitrary component inGi 1,12
. This scheme may be

extended to the general case. But the complexity of the set of equations that recursively
those operators rapidly becomes wild. For that reason, we do not go further. We assume
that, in general,

uE nu<k3nbn1w@~11a1n!! #1/2,

icni<k3nbn1w@~11a1n!! #1/2,

for some positive integerw, which may depend on where degeneracy splits.
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IV. THE TWO-SIDE ERROR FUNCTION

The upper bounds foruEnu and icni will allow us to estimate the error made in the Schr¨-
dinger equation when truncated series are inserted on it. Here we basically follow the tec
developed by Hagedorn and Joye in Ref. 4. Concretely, forN>1 define

ENªe1 (
n51

N21

\n/2En , CN~x!ªc0~x!1 (
n51

N21

\n/2cn~x!.

These are the truncations at orderN of the R-S series. We define

jN~x!ªAe@H01W~\;x!2EN#AeCN~x!5FHe1AeW~\;x!Ae2 (
j 51

N21

\ j /2EjAe
2G (

m50

N21

\m/2cm~x!.

~48!

We call jN(x) the two-side error function since it is the difference between both sides o
Schrödinger equation when exact eigenvalues and eigenfunctions are replaced by truncated
It can be portrayed in a more suitable way through a number of cancellations. The calcula
outlined in the Appendix. The result is

jN~x!5 (
n50

N21

\n/2AeW
[N2n11]~\;x!Aecn~x!2 (

n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cm2 j~x!.

HereW[ j ] (\;x) is the tail of the Taylor series ofV(\;x):

W[ j ]~\;x!5V~\;x!2(
l 52

j

\~ l 22!/2 (
uau5 l

DaV~0!

a!
xa5\~ j 21!/2 (

uau5 j 11

DaV~z j !

a!
xa,

wherez j5z j (x)5Q j x with Q jP(0,1), as the Taylor theorem states. So we have

jN~x!5\N/2(
n50

N21

(
uau5N2n12

DaV~zn!

a!
Aex

aAecn~x!2 (
n5N

2N22

\n/2 (
l 5n2N11

N21

ElAe
2cn2 l~x!. ~49!

Our main result in the next section relies on an upper bound of theL2-norm of (H2EN)AecN

5Ae
21jN . Note that, for eachN>2, jN is in the domain of the unbounded operatorAe

21 . This
estimate on the two-side error function is stated as follows:

Theorem 3: There are positive constants A, B and N0 so that

iAe
21jN~x!i< (

n5N

2N

ABN\N/2@~21a1n!! #1/2

whenever N0<N and\<1.
To estimate the norm ofAe

21jN , we first set a suitable closed region around the bottom of
potential well. Then we compute that norm inside and outside of that region. Most of the w
involved in the outside estimate, which requires control on the growth of derivatives ofV(x) far
away from the minimum ofV(x). For that reason we shall summarize it as a separate lemma.
the hypothesis H5 becomes crucial.

For R.0, let us define

xR~x!5H 1 if (
i

d

v ixi
2<R2,

0 otherwise.
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Lemma 5: Set R5A6N12a1d24. Given a multi-index a, with uau>2, and
n50,...,N21, there exists certain constants C8 and C9 such that

I d uau

a!
DaV~zn!xa8~12xR!Pubu<a13n11I

<C8C9
~3n121a!/2 ~3n1a1d!~d21!/2

S 12
t

v0
D uau/2 F ~3n1uau1vd/2b1a!!

~3n1a!! G1/2

,

whereua8u5uau21, v05min$v1,...,vd%, and vJb stands for the largest integer less than or equ
to J.

Proof: Sinceuznu<uxu, the first part of Lemma 3 implies

d uau

a!
uDaV~zn!u<C0 exp~2tx2!. ~50!

Let us consider an eigenfunctionFb(x) of H0 . We have

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

5E
Rd
Ud uau

a!
DaV~z!U2

x2a8uFb~x!u2@12xR~x!#ddx

<C0
2E

Rd
e4tx2

x2a8uFb~x!u2@12xR~x!#ddx,

where we have dropped the indexn in zn . Now change variablesxi→yi5Av ixi to get

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

<C0
2S )

i 51

d

v
i

2a i82 1/2D E
Rd

e( i4~t/v i ! yi
2
y2a8uFb~y!u2@12xR~y!#ddy

<C0
2S )

i 51

d

v
i

2a i82 1/2D E
Rd

e4~t/v0! y2
y2a8uFb~y!u2@12xR~y!#ddy

5D1
2ie2~t/v0! y2

ya8~12xR!Fb~y!i 2, ~51!

whereD1 is defined in the obvious way. In the new variables

xR~y!5H 1 if y2<R2,

0 otherwise.

Using the new variables in~5!, we see thatFb(y) is an eigenfunction of the normalized harmon
oscillator operator

H0852 1
2 Dy1 1

2 y2

with energyeb5ubu1d/2. Ford>2 this operator is equal to

H085
1

2 S 2
]2

]r 2 2
d21

r

]

]r
1

L 2

r 2 1r 2D
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in spherical coordinates, whereL 2 is the angular momentum operator defined onSd21. The
eigenvalues now reade52n1q1d/2 and the eigenfunctions are

Ck,q,n~r ,v!5F 2k!

G~k1q1 d/2!G
1/2

r qLk
q1 d/2 21~r 2!expS 2

r 2

2 DYq,n~v!.

HereYq,n(v) are the normalized eigenfunctions ofL 2, with quantum numbersq,n. For eachq
50,1,... there arenq values ofn. Although the explicit formula fornq is rather clumsy, there is a
simple bound for it, namelynq<Cdemdq. This bound suffices for the purpose of our proof.Lk

j (x)
denotes the Laguerre polynomial. By Lemma 6.2 of Ref. 4, this polynomial sati
uLk

q1 d/221 (x)u< xk/k! for all x.4k12q1d. Finally, by equating the expressions for the ener
we obtainubu52k1q.

Now Fb(y) is certain linear combination ofCk,q,n(r ,v),

Fb~y!5 (
k,q,n:

2k1q5ubu

ck,q,nCk,q,n~r ,v!

with (uck,q,nu251. From~51!, it follows that

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

<D1
2 (

k,q,n:
2k1q5ubu

ie2~t/v0! y2
ya8~12xR!Ck,q,n~y!i 2

<D1
2 (

k,q,n:
2k1q5ubu

2k!Ad21

G~k1q1 d/2!
E

R

`

e2(12 4t/v0)r 2
r 2(uau211q)

3uLk
q1 d/221 ~r 2!u2r d21dr,

where Ad21 is the area of the (d21) dimensional unit sphere. We also have used thaty2ua8u

<r 2ua8u5r 2(uau21). SinceR>A2uau1d, Lemma 6.2 of Ref. 4 applies so

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

<D1
2 (

k,q,n:
2k1q5ubu

2Ad21

k!G~k1q1 d/2!
E

R

`

e2(12 4t/v0)r 2
r 2uau12q14k1d23dr

5D1
2 (

k,q,n:
2k1q5ubu

2Ad21

k!G~k1q1 d/2!

G~ uau1q12k1 d/221!

2~12 4t/v0! uau1q12k1 d/2 21

5D1
2Ad21

G~ uau1ubu1 d/221!

~12 4t/v0! uau1ubu1 d/2 21 (
k,q:

2k1q5ubu

nq

k!G~k1q1 d/2!

5D1
2Ad21

G~ uau1ubu1 d/221!

~12 4t/v0! uau1ubu1 d/2 21 (
k50

v ubu/2b
n ubu22k

k!G~ ubu2k1 d/2!

<D1
2Ad21Cdemdubu G~ uau1ubu1 d/221!

~12 4t/v0! uau1ubu1 d/2 21 (
k50

v ubu/2b
e22mdk

k!G~ ubu2k1 d/2!
. ~52!

For ubu>1, ubu2k1d/2>11d/2>2 for all 0<k<v ubu/2b . SinceG(x) is an increasing function
for x>2, we have
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(
k50

v ubu/2b
e22mdk

k!G~ ubu2k2 d/2!
< (

k50

v ubu/2b
1

k! ~ ubu2k!!
<

1

ubu! (
k50

ubu S ubu
k D5

1

ubu!
2ubu.

For ubu50, the sum above is smaller than 2/Ap. Therefore

(
k50

v ubu/2b
e22mdk

k!G~ ubu2k2 d/2!
<

2

Apubu!
2ubu

for all ubu>0. Thus~52! becomes

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

<D2
22ubuemdubu G~ uau1ubu1 d/221!

ubu! ~124t/v0! uau1ubu1 d/2 21

with D2
2
ª2D1

2Ad21Cdp21/2.
Now consider anywPRan(Pubu<3n1a11) so w5( ubu<3n1a11cbFb(x). Then the Ho¨lder in-

equality implies that

I d uau

a!
DaV~z!xa8~12xR!Pubu<a13n11w I 2

<iwi2 (
ubu<3n1a11

I d uau

a!
DaV~z!xa8~12xR!Fb~x!I 2

.

Therefore

I d uau

a!
DaV~z!xa8~12xR!Pubu<a13n11I 2

<D2
2 23n1a11emd(3n1a11)

S 12
4t

v0
D 3n1uau1a1 d/2 (

ubu<3n1a11

G~ uau1ubu1 d/221!

ubu!

<D2
2 23n1a11emd(3n1a11)

~12 4t/v0!3n1uau1a1 d/2 (
ubu<3n1a11

~ uau1ubu1vd/2b21!!

ubu!

where we use that 0,(124t/v0),1. The terms under the summation sign are increasing inubu.
Also,

(
ubu<3n1a11

15 (
s50

3n1a11

#$b:ubu5s%

5 (
s50

3n1a11
~s1d21!!

s! ~d21!!

< (
s50

3n1a11
~s1d21!d21

~d21!!

<
~3n1a1d!d21

~d21!!
~3n1a12!,

and, moreover, (3n121a)/(3n111a)<2. Thus,

I d uau

a!
DaV~z!xa8~12xR!Pubu<a13n11I 2

<D2
2 23n1a12emd(3n1a11)

~12 4t/v0!3n1uau1a1 d/2 ~3n1a1d!d21
~3n1uau1vd/2b1a!!

~3n1a!!
.

Now defineC8ªD2e2md/2(124t/v0)12d/4 andC9ª@2emd/(124t/v0)#1/2. h
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Proof of Theorem 3:Recall that we assume thatd<1. We already know, from Theorem 2, tha
b>1. From the proof of Lemma 3, we also know thatixiAei<g. Now, from ~49!, it follows that

iAe
21jN~x!i<\N/2(

n50

N21

(
uau5N2n12

IDaV~zn!

a!
~12xR~x!!xaAecn~x!I

1 \N/2(
n50

N21

(
uau5N2n12

IDaV~zn!

a!
xR~x!xaAecn~x!I

1 (
n5N

2N22

\n/2 (
l 5n2N11

N21

iElAecn2 l~x!i

<\N/2(
n50

N21

(
uau5N2n12

IDaV~zn!

a!
~12xR~x!!xa8Pubu<3n1a11I ixiAeiicn~x!i

1 \N/2(
n50

N21

(
uau5N2n12

IDaV~zn!

a!
xR~x!xa8Pubu<3n1a11I ixiAeiicn~x!i

1 (
n5N

2N22

\n/2 (
l 5n2N11

N21

uEl uicn2 l~x!i , ~53!

where we splitxa into xa8xi , which is possible for some coordinatexi becauseuau>2. Then
ua8u5uau21. Let us estimate each term on the right hand side of~53! individually. Applying
Lemma 5 and the estimates forixaAei and icni , we obtain

first term<\N/2(
n50

N21

(
uau5N122n

d uauC8C9
~3n1a12!/2S 12

4t

v0
D 2 uau/2

~3n1a1d!~d21!/2

3 F ~3n1uau1vd/2b1a!!

~3n1a!! G1/2

gk3nbn1w@~11a1n!! #1/2

<C8g\N/2bN1wd2(N12)C9
~3N1a1d11!/2S 12

4t

v0
D 2 ~N12!/2

~3N1a1d23!~d21!/2

3 (
n50

N21

k3nF ~2n1N1vd/2b1a12!! ~n1a11!!

~3n1a!! G1/2

(
uau5N122n

1.

From the proof of Lemma 2, we know that( uau5N122n1<@(d21)!#21(N1d11)d21. Let us
define A1ªgd22bwC8C9

(a1d11)/2@(d21)!(124t/v0)#21 and B1ªd21C9
3/2b(124t/v0)21.

Then

first term<A1B1
N\N/2~N1d11!d21~3N1a1d23!~d21!/2

3 (
n50

N21

k3nF ~2n1N1vd/2b1a12!! ~n1a11!!

~3n1a!! G1/2

.

Note that (2n1N1vd/2b1a12)!<(2n1N1a12)!(2n1N1vd/2b1a12)vd/2b. Then
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first term<A1B1
N\N/2~3N1a1d23!~d21!/2~N1d11!d21~3N1a1vd/2b !vd/2b /2

3@~21a1N!! #1/2(
n50

N21

k3nF ~21a1N12n!! ~11a1n!!

~a13n!! ~21a1N!! G1/2

<A1B1
Nk3N\N/2~3N1a1d23!~d21!/2~N1d11!d21~3N1a1vd/2b !vd/2b /2

3@~21a1N!! #1/2 max
1< l<N

F ~3N23l 1a11!~3N23l 1a12!

~N2 l 1a12! G1/2

3(
l 51

N

k2 5l /2F ~21a13N12l !! ~21a1N2 l !!

~21a13N23l !! ~21a1N!! G1/2

.

The change of indexn→ l 5N2n was performed in the last sumation above. Now we need
apply Lemma 4, statement 2, to obtain

first term<C5A1B1
Nk3N\N/2~3N1a1d23!~d21!/2~N1d11!d21~3N1a1vd/2b !vd/2b /2

3@3~3N1a12!#1/2@~21a1N!! #1/2.

Finally, defineN1 as the smallest integer such that the inequality

~3N1a1vd/2b !vd/2b /2~3N1a1d23!~d21!/2~N1d11!d21@3~3N1a12!#1/2<kN

holds for allN>N1 . Then, wheneverN>N1 ,

first term<C5A1B1
Nk4N\N/2@~21a1N!! #1/2.

Statement 2 of Lemma 2 yields

d uau

a!
uDaV~z~x!!u<C0 expS 2td

v0
2 R2D 5C0 expF2td

v0
2 ~2a1d24!GexpS 12td

v0
2 ND

on the support ofxR(x). Thus, the second term of~53! satisfies

second term<\N/2gd2(N12)C0 expF2td

v0
2 ~2a1d24!GexpS 12td

v0
2 ND

3 (
n50

N21

(
uau5N2n12

ixa8Pubu<3n1a11iicn~x!i

<\N/2gd2(N12)C0 expF2td

v0
2 ~2a1d24!GexpS 12td

v0
2 ND

3 (
n50

N21

(
uau5N2n12

k~ uau21!/2F ~a1uau13n!!

~11a13n!! G1/2

k3nbn1w@~11a1n!! #1/2

<\N/2gd2(N12)C0 expF2td

v0
2 ~2a1d24!GexpS 12td

v0
2 NDbN1wk~N11!/2

3 (
n50

N21

k5n/2F ~21a1N12n!! ~11a1n!!

~11a13n!! G1/2

(
uau5N2n12

1.

Define A2ªgd22k1/2C0bw exp@2td(2a1d24)#@(d21)!#21 and B2ªd21k1/2b exp(12td/v0
2).

Then, following the argument we have used to estimate the first term, we obtain
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second term<A2B2
N\N/2~N1d11!d21 (

n50

N21

k3nF ~21a1N12n!! ~11a1n!!

~11a13n!! G1/2

<A2B2
Nk3N\N/2~N1d11!d21@~21a1N!! #1/2

3 max
1< l<N

F21a13N23l

21a1N2 l G1/2

(
l 51

N

k2 5l /2F ~21a13N12l !! ~21a1N2 l !!

~21a13N23l !! ~21a1N!! G1/2

<31/2C5A2B2
Nk3N\N/2~N1d11!d21@~21a1N!! #1/2.

Now defineN2 such that (N1d11)d21<kN for everyN>N2 . Then

second term<31/2C5A2B2
Nk4N\N/2@~21a1N!! #1/2.

For the third term of~53!, we only need to use the first statement of Lemma 4. The result is

third term< (
n5N

2N

C4k3nbn12w\N/2@~11a1n!! #1/2.

To complete the proof defineN05max$N1,N2%, A5max$C5A1,3
1/2C5A2 ,C4b2w% and B

5max$k4B1,k3B2,k3b%. h

V. OPTIMAL TRUNCATION

In this section we shall prove that exact eigenvalues and eigenfunctions ofH(\)ª2 1
2Dx

1V(\,x) can be approximated by truncated R-S series, up to an exponentially small error. T
end, we shall use our estimate of the normAe

21jN(x). We shall also need a couple of results. T
first is a lower bound for the distance between perturbed eigenvalues that degenerate at\50. The
second is a ‘‘reverse’’ definition of asymptoticness.

Let us consider two distinct eigenvalues ofH(\), E(\) and E8(\), which converge to the
same eigenvalue ofH0 as\ goes to 0. Also, let us assume that their asymptotic series have
a finite number of common R-S coefficients. That is,

E~\!;e1E 1\1/21...1EM21\~M21!/21E M\M /21EM11\~M11!/21...,

E8~\!;e1E 1\1/21...1EM21\~M21!/21E M8 \M /21EM118 \~M11!/21...,

with EMÞE M8 . Then,

E~\!2E8~\!;~EM2E M8 !\M /21~EM112EM118 !\~M11!/21...,

so we expect that the difference between these exact eigenvalues be bounded below byO(\M /2).
Since the series above is asymptotic, there areCM.0 and\a(M ).0 so that

uE~\!2E8~\!2~EM2E M8 !\M /2u<CM\~M11!/2,

whenever\<\a(M ). Then

uE~\!2E8~\!u>uEM2E M8 u\M /22CM\~M11!/2.

Set\b(M )5uEM2E M8 u/2CM . Then for\<\b(M ),

CM\~M11!/2< 1
2 uEM2E M8 u\M /2.

Thus for\<\1ªmin$\a(M),\b(M)% we have
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uE~\!2E8~\!u> 1
2 uEM2E M8 u\M /2.

Let us denoteEM2E M8 asDEM . Therefore, so far we know the following.
Lemma 6: Let E(\) and E8(\) be distinct eigenvalues of H(\), which degenerate at\50.

Then either
(1) uE(\)2E8(\)u<O(\N/2) for all non-negative integers N, or
(2) there exists M and\15\1(M ) such that

uE~\!2E8~\!u> 1
2 uDEMu\M /2

whenever\<\1 .
Remark:It is clear that Lemma 6 is also valid when several eigenvalues ofH(\) converge to

the same eigenvalue ofH0 . As a shorthand, we will say thatE(\) is quasi-degenerateif the
condition 1 in the lemma above occurs.

Lemma 7: Suppose(n50f nbn is asymptotic to f(b) in the sense that given N>N0>M , there
exists CN and b(N) such that for allb<b(N)

U f ~b! 2 (
n50

N21

f n bn U,CN bN.

Then givene.0, there existsb(e).0, such that for eachb<b(e) there is an N(b)>N0 (maybe
equal to`), so that

U f ~b! 2 (
n50

N21

f n bn U< ebM ~54!

whenever N0<N,N(b).
Proof: Fix e.0. Defineb1(N0)5(e CN0

21)1/(N02M ). Then forN.N0 , recursively choose posi

tive numbersb1(N) that satisfy

b1~N!,min$~e CN
21!1/~N2M !, b1~N21!%.

Then

U f ~b! 2 (
n50

N21

f n bn U<~CNbN2M !bM<~CNb1~N!N2M !bM<ebM

wheneverb,b1(N).
Defineb(e)5b1(N0), and define

N~b! 5 H N11 if b1~N11!,b<b1~N!,

` if b,b1~N! for all N.

Then ~54! holds wheneverN0<N<N(b). h

Let $eI% I 50
` be an arrangement in increasing order of the eigenvalues ofH0 , counting multi-

plicities. Theorem 1.1 of Ref. 16 states that given a non-negative integerJ, we can choose\0 so
that for each\<\0 there are at leastJ1K eigenvalues ofH(\), counting multiplicities. Further-
more, each one of them converges to one of the firstJ1K eigenvalues ofH0 . In the following
proposition, we study the behavior of truncations of the R-S series ofEJ(\), theJth eigenvalue of
H(\). We setK so thateJ1K.eJ .
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Proposition 3: Let E(\)5EJ(\) be a non-quasi-degenerate eigenvalue of H(\), which con-
verges to e5eJ . Let EN(\) be the associated R-S series, truncated at order N. Let N0 be as
defined in Theorem 3. Then there exists\e.0 and, for each\<\e there is an Ne(\)>N0 such
that

uEN~\!2E~\!u< (
n5N

2N

ABn\n/2@~21a1n!! #1/2

for all N0<N<Ne(\).
Proof: We shall consider the case where there exists another eigenvalue ofH(\) that con-

verges toe. The proof can be easily simplified to accomodate the opposite situation, whi
studied in Proposition 3 of Ref. 19. So said, letE8(\) be another eigenvalue ofH(\) converging
to e as \↘0. By Lemma 6, there areM and \1 so that uE(\)2E8(\)u> 1

2uDE Mu\M /2 for \
<\1 . Without loss we may assume thatN0>M . To simplify the proof, we furthermore assum
that no other eigenvalue ofH(\) converges toe. Let Ge be the eigenspace associated toe.

Now setN1(\) as the largestN>N0 such that

(
n5N1(\)

2N1(\)

ABn\~n2M !/2@~21a1n!! #1/2<
1

4
uDEMu.

Then, from Theorem 3 it follows that

i@H~\!2EN~\!#AeCN~\;x!i< (
n5N

2N

ABn\n/2@~21a1n!! #1/2<
1

4
uDE Mu\M /2

whenever\<\0ªmin$1,uDE Mu22/M% and N0<N<N1(\). On the other hand, note thatCN

5c01wN , wherewN is orthogonal toc0PGe because of the normalization we chose for t
correction termscn . SinceAec05c0 , we conclude thatiAkCN(\;x)i>1. So Theorem 3 implies
that

i@H~\!2EN~\!#AeCN~\;x!i< (
n5N

2N

ABn\n/2@~21a1n!! #1/2 iAeCN~\;x!i . ~55!

We may assume thatEN(\)¹s(H(\)), so @H(\)2EN(\)# is invertible. It follows that

H (
n5N

2N

ABn\n/2@~21a1n!! #1/2J 21

<i@H~\!2EN~\!#21i .

BecauseH is self-adjoint,i(H2E)21i5dist$E,s(H)%21 by the spectral theorem. Thus,

dist$EN~\!,s~H !%< (
n5N

2N

ABn\n/2@~21a1n!! #1/2<
1

4
uDE Mu\M /2 ~56!

for \<\0 andN0<N<N1(\). Let D be the minimum nonzero distance between the firstJ1K
eigenvalues ofH0 . SinceEI(\)→eI , we can set\D.0 so that for 0<I<J1K, uEI(\)2eI u
< 1

4D if \<\D . That implies that, for\<\D andE9(\)Ps(H(\))\$E(\),E8(\)%,

uE#~\!2E9~\!u> 1
2 D

where E# denotes eitherE or E8. Now set\25(D/uDEMu)2/M. Then for \<\2 we have 1
2D

> 1
2uDE Mu\M /2. As a consequence,

uE~\!2E9~\!u> 1
2 uDE Mu\M /2,
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uE~\!2E8~\!u> 1
2 uDE Mu\M /2,

which ultimately implies that

dist$E~\!,s~H !\E~\!%> 1
2 uDE Mu\M /2 ~57!

whenever\<min$\0,\1,\D ,\2%. SinceEN(\) is asymptotic toE(\), we may apply Lemma 7
Then there is\3.0 such that for each\<\3 we can fixN2(\)>N0 so that

uE~\!2EN~\!u< 1
4 uDE Mu\M /2 ~58!

for N0<N<N2(\).
Now ~57!, ~58! and the second inequality of~56! imply that

dist$EN~\!,s~H !%5uE~\!2EN~\!u

whenever\<min$\0,\1,\2,\3,\D%5:\e andN0<N<min$N1(\),N2(\)%5:Ne(\). h

Remark:The numberNe(\) defined in the proof must indeed be equal toN1(\). Assume that
Ne(\),N1(\), and considerNe(\)<N<N1(\). Then EN(\) has to be near some eigenvalu
E9(\) different toE(\). By reducing\, EN(\) approaches toE(\) while keeping itself close to
E9(\), which leads to a contradiction.

Remark: Ne(\) grows likeg/\, as one can see from the proof of Theorem 4 below.
The requirement ofE(\) to be non-quasi-degenerate can be relaxed, and we formulat

following weaker version of Proposition 3. The proof is a straighforward variation of it.
Proposition 4: Let E(\)5EJ(\) be an eigenvalue of H(\), which converges to e5eJ . Let

EN(\) be the associated R-S series, truncated at order N. Also let E#(\) be any eigenvalue o
H(\) that satisfies the condition 1 of Lemma 6 [including E(\) itself.] Then there exists\e.0 so
that for each\<\e there is an Ne(\)>N0 such that

uEN~\!2E#~\!u< (
n5N

2N

ABn\n/2@~21a1n!! #1/2

for all \<\e , N0<N<Ne(\), and E#(\).
In the following theorem we assume the hypotheses of Proposition 3. An analogous

follows from the hypotheses of Proposition 4.
Theorem 4: Assume the hypotheses of Proposition 3. Then for each0,g,B22, there is

\g.0 such that for each\<\g there exists N(\) such that

uEN(\)~\!2E~\!u<L expS 2
G

\ D
for someL.0 and G.0 independent of\.

Proof: Fix 0,g,B22. Then 0,B2g,1; consequently there isV.0 such thatB2g
5exp(2V). Consider the function

f ~\!ªAg expS 2
V~11a!

4 D\2 ~41a1M !/2 expS 2
Vg

4\ D .

It is clear thatf (\).0 on ~0,̀ ! has a single maximum, andf (\)→0 as\→0 or \→`. Now set

\45sup$\: f ~\! is increasing andf ~\!< 1
4 uDEMu%.

Then set
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\̂g5supH \:\<min$\e ,\4% and V g

\B>21a12N0J .

Now for \<\̂g define N(\) by 21a12N(\)5vg/\ b . So defined,N(\)>N0 . On the other
hand, since we can assumeB>1 and 21a1n<g/\ for N(\)<n<2N(\) we have

(
n5N(\)

2N(\)

ABn\n/2@~21a1n!! #1/2< (
n5N(\)

2N(\)

ABn\n/2~21a1n!~21a1n!/2

<A\2 ~21a!/2 (
n5N(\)

2N(\)

@B2\~21a1n!#~21a1n!/2

<A\2 ~21a!/2 (
n5N(\)

2N(\)

~B2g!~21a1n!/2.

Now use thatB2g5exp(2V),1 and the fact thatxn>xn11 if x<1 to obtain

(
n5N(\)

2N(\)

ABn\n/2@~21a1n!! #1/2<A\2 ~21a!/2 (
n5N(\)

2N(\)

expH 2
V

2
@21a1N~\!#J

5A\2 ~21a!/2e2 ~V/4!(21a)@11N~\!#expH 2
V

4
@21a12N~\!#J

<A\2 ~21a!/2e2 ~V/4!(21a)@21a12N~\!#expF2
V

4 S g

\
21D G

<Age2 ~V/4!(11a)\2 ~41a1M !/2 expS 2
Vg

4\ D\M /2

< f ~\4!\M /2 ~59!

< 1
4 uDE Mu\M /2. ~60!

Thus,N(\)<Ne(\). Therefore, Proposition 3 holds for\,\̂g , which along with~59! implies

uEN(\)~\!2E~\!u <Age2 ~V/4!(11a)\2 ~41a!/2 expS 2
Vg

4\ D ,

for all \<\̂g . Finally, define

\g5maxH \<\̂g :\2 ~41a!/2 expS 2
vg

8\ D<1J .

Then the assertion is true for all\<\g with GªVg/8 andLªAg exp(2V(11a)/4). h

Proposition 5: Let E(\) be a non-quasi-degenerate eigenvalue of H(\), with eigenspace GE .
Let PE be the (orthogonal) projector onto GE . Let C̃N(\;x) be the Nth truncation of the R-S
series (6). Let\e and Ne(\) be defined as in Proposition 3. Then for each\<\e and N0<N
<Ne(\),

I C̃N~\;x!

iC̃N~\;x!i
2

PEC̃N~\;x!

iPEC̃N~\;x!i
I<16uDE Mu21 (

n5N

2N

ABn\~n2M !/2@~21a1n!! #1/2

for some M<N0 .
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Proof: Notice that~55! means that

i@H~\!2EN~\!#iC̃N~\;x!i21C̃N~\;x!i< (
n5N

2N

ABn\n/2@~21a1n!! #1/2.

On the other hand, we can write

iC̃N~\;x!i21C̃N~\;x!5wNiPEC̃N~\;x!i21PEC̃N~\;x!1VN~\;x!,

where VN(\;x) is orthogonal toGE , and uwNu21iVN(\;x)i251. Since these functions ar
defined up to a global phase, we can assume that indeed 0,wn<1. Then the normalization
condition implies

iVN~\;x!i > iVN~\;x!i2 5 12uwNu2 5 ~11wN!~12wN! > 12wN .

So we have

iiC̃N~\;x!i21C̃N~\;x!2iPEC̃N~\;x!i21PEC̃N~\;x!i<2iVN~\;x!i . ~61!

Since

@H~\!2EN~\!#VN~\;x!5@H~\!2EN~\!#
C̃N~\;x!

iC̃N~\;x!i
2wN@E~\!2EN~\!#

PEC̃N~\;x!

iPEC̃N~\;x!i
,

it follows from Proposition 3 that

i@H~\!2EN~\!#VN~\;x!i<2 (
n5N

2N

ABn\n/2@~21a1n!! #1/2 ~62!

for \<\e andN0<N<Ne(\).
Recall thatEN(\)¹s(H(\)). From the fact that@H(\)2EN(\)#VN(\;x) is orthogonal to

GE , it follows that

iVN~\;x!i<i@H~\!2EN~\!#'
21ii@H~\!2EN~\!#VN~\;x!i , ~63!

where@H(\)2EN(\)#' is the restriction of@H(\)2EN(\)# to the subspace orthogonal toGE .
For simplicity, let us assume that there is only one distinct eigenvalueE8(\) that converges to the
same eigenvalue ofH0 asE(\). Since

dist$EN~\!,s~H !\E~\!%> 1
2dist$E~\!,s~H !\E~\!%,

the spectral theorem along with~57! implies that

i@H~\!2EN~\!#'
21i<4uDE Mu21\2 M /2. ~64!

The assertion now follows from~61!–~64!. h

Remark:The assumption of non-quasi-degeneracy ofE(\) is critical, as one can see in th
argument that leads to~64!.

The last result of this section concerns the optimal truncation for the eigenfunctions ofH(\).
It follows from Proposition 5 in the same way as Theorem 4 does from Proposition 3:

Theorem 5: Fix 0<g<B22. Let L and G be defined as in Theorem 4. Then there ex
\g8.0 such that for each\<\g8 there is N(\) so that
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I C̃N(\)~\;x!

iC̃N(\)~\;x!i
2

PEC̃N(\)~\;x!

iPEC̃N(\)~\;x!i
I<16uDEMuL expS 2

G

\
D .

Proof: Define

f 8~\!ªAg expS 2
V~11a!

4 D\2 ~41a12M !/2 expS 2
Vg

4\ D ,

\48ªsup$\: f 8~\! is increasing andf ~\!< 1
4 uDEMu%,

\̂g8ªsupH \:\<min$\e ,\48% and V g

\B>21a12N0J .

\g8ªmaxH \<\̂g8 :\2 ~41a1M !/2 expS 2
vg

8\ D<1J .

Now proceed as in the proof of Theorem 4. h
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APPENDIX: COMPUTATION OF jN

Here we simplify the formula~48! by using the identity~10!. This calculation is formally
identical the one done in Ref. 19, with some notational change. We reproduce it here for a s
convenience:

jN5FHe1AeWAe2 (
j 51

N21

\ j /2EjAe
2G (

m50

N21

\m/2cm

5 (
m50

N21

\m/2Hecm1 (
m50

N21

\m/2AeWAecm2 (
j 51

N21

(
m50

N21

\~ j 1m!/2EjAe
2cm .

We use AeWAe5( j 53
N12\ ( j 22)/2T( j )1AeW

[N12]Ae and change the index byj→ j 22. Using
Hec050, we then obtain

jN5 (
m51

N21

\m/2Hecm1 (
m50

N21

(
j 51

N

\~m1 j !/2T( j 12)cm1 (
m50

N21

\m/2AeW
[N12]Aecm

2 (
m50

N21

(
j 51

N21

\~ j 1m!/2EjAe
2cm5 (

n51

N21

\n/2Hecn1 (
n51

N21

\n/2(
j 51

n

T( j 12)cn2 j

1 (
n5N

2N21

\n/2 (
j 5n2N11

N

T( j 12)cn2 j1 (
m50

N21

\m/2AeW
[N12]Aecm2 (

n51

N21

\n/2(
j 51

n

EjAe
2cn2 j

2 (
n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cn2 j .

The first, second and fifth terms of last equation cancel because of~10!. In the third term define
m5n2 j and thenp5n2N. This yields
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jN5 (
n5N

2N21

\n/2 (
m5n2N

N21

T(n2m12)cm1 (
m50

N21

\m/2AeW
[N12]Aecm2 (

n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cn2 j

5 (
p50

N21

(
m5p

N21

\~p1N!/2T(p1N2m12)cm1 (
m50

N21

\m/2AeW
[N12]Aecm

2 (
n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cn2 j

5 (
m50

N21

\m/2(
p50

m

\~p1N2m!/2T(p1N2m12)cm

1 (
m50

N21

\m/2AeW
[N12]Aecm2 (

n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cn2 j

5 (
m50

N21

\m/2F (
i 52

m12

\~ i 1N2m22!/2T( i 1N2m)1AeW
[N12]AeGcm2 (

n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cn2 j .

Finally, note that\ ( j 22/2)T( j )1AeW
[ j 11]Ae5AeW

[ j ]Ae . Therefore, it follows that

jN5 (
m50

N21

\m/2AeW
[N2m11]Aecm2 (

n5N

2N22

\n/2 (
j 5n2N11

N21

EjAe
2cm2 j .
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We analyze the group-theoretical ramifications of the Nambu–Goldstone~NG!
theorem in the self-consistent relativistic variational Gaussian wave functional ap-
proximation to spinless field theories. In an illustrative example we show how the
Nambu–Goldstone theorem would work in the O(N) symmetricf4 scalar field
theory, if the residual symmetry of the vacuum were lesser than O(N21), e.g., if
the vacuum were O(N22), or O(N23), . . . symmetric.~This does not imply that
any of the ‘‘lesser’’ vacua is actually the absolute energy minimum: stability analy-
sis has not been done.! The requisite number of NG bosons would be (2N23), or
(3N26), . . . , respectively, which may exceedN, the number of elementary fields
in the Lagrangian. We show how the requisite new NG bosons would appear even
in channels that do not carry the same quantum numbers as one ofN ‘‘elementary
particles’’ @scalar field quanta, or Castillejo–Dalitz–Dyson~CDD! poles# in the
Lagrangian, i.e., in those ‘‘flavor’’ channels that have no CDD poles. The corre-
sponding Nambu–Goldstone bosons are composites~bound states! of pairs of mas-
sive elementary~CDD! scalar fields excitations. As a nontrivial example of this
method we apply it to the physically more interesting ’t Hoofts model ~an ex-
tendedNf52 bosonic linears model with four scalar and four pseudoscalar fields!,
with spontaneously and explicitly broken chiral O(4)3O(2).SUR(2)3SUL(2)
3UA(1) symmetry. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1576907#

I. INTRODUCTION

The proof of the Nambu–Goldstone~NG! theorem1–5 in the Gaussian wave functiona
approximation6–13 used to be an open problem for over 30 years, see Refs. 14–17. The first
was given in the O~2! symmetricf4 theory,17 and then straightforwardly extended to O~4! in Ref.
18; the crucial assumption was that the ground state be O(N21) symmetric, i.e., that only one
~scalar! field develops a vacuum expectation value~VEV!. @That assumption is justified when th
remainingN21 fields are pseudoscalars, as in the Gell-Mann–Levy model, otherwise CP
metry is ~spontaneously! broken.# By the standard NG boson counting methods,3,4 for every
spontaneously broken symmetry Lie group generator there is one NG boson. As the Lie a
O(N) hasN(N21)/2 generators, for a ground state~vacuum! with an O(N21) residual symme-
try the number of NG bosons ought to beN(N21)/22(N21)(N22)/25N21. That is exactly
the number of available fields in the Lagrangian. What happens when the residual symmetry
ground state is ‘‘smaller’’ than O(N21) and there should be more thanN21 NG bosons?

In this paper we shall extend our proof of the NG theorem in the Gaussian approximatio17,18

to the O(N) symmetricf4 theory when the symmetry of the ground state is dynamically bro
to some~proper! subgroup of O(N21), in this specific case to one of the following symmetrie
O(N22)3O(2), O(N23)3O(3), . . . , O(N/2)3O(N/2) for N even, or O((N21)/2)3O((N

a!
Present address: Nomura Research Institute, Shoken System 7-bu, 3-4-12-202 Higashi-Oi, Sinagawa-ku, Tokyo 1
Japan.
28390022-2488/2003/44(7)/2839/14/$20.00 © 2003 American Institute of Physics
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11)/2) for N odd. As we shall show, the residual symmetry pattern is dictated by the abs
minimum of the O(N) f4 model’s ground state energy, which in turn depends on the dyna
~gap equation! in the Gaussian approximation, as well as the free parameters. Absolute m
zation of the vacuum energy will not been done in this paper, only a search for the extremal
saddle points. In a different model or approximation, or for different values of the free param
the residual symmetry might be different. In any case, with such an asymmetric ground sta
number of NG bosons must exceedN21, the largest number of ‘‘elementary’’ scalar fields ava
able in the Lagrangian~at least one field must develop the vacuum expectation value and
cannot create or destroy single NG bosons!. Nevertheless the canonical number of massl
spinless excitations appears in the spectrum.4 Our proof should leave no doubt as to the compos
nature of the NG bosons in the Gaussian approximation.

This paper falls into five sections and two Appendixes. First, in Sec. II we define the O(N) f4

model and the Gaussian approximation. In Sec. III we show exactly how the requisite num
massless NG~bosonic bound! states appear and that all the ‘‘broken symmetry’’ No¨ther currents
remain conserved, as the symmetry of the vacuum is reduced. NG bosons invariably appea
Gaussian approximation to the O(N) f4 model in those channels that also contain CDD poles
in Sec. IV we extend our proof to the ’t Hooftf4 model which does not have this property. The
we show how various bound NG states appear, or disappear as the symmetries of the grou
and/or the Lagrangian change. Finally, in Sec. V we draw our conclusions and set them in a
context. In the Appendixes we present some technical details omitted in the main part of the

II. PRELIMINARIES

A. The O „N… symmetric scalar f4 model

At first we confine ourselves to the O(N) symmetric scalarf4 theory for the sake of simplic-
ity. All scalar field theories with other spontaneously broken internal symmetries can be redu
some subgroup of O(N). Of course, in such cases there will be interaction terms other than
simplef4 one shown below. The Lagrangian density of this theory is

L5 1
2 ~]mf!22V~f2!, ~1!

where

f5~f0 ,f1 ,f2 , . . . ,fN21!5~s,p!,

is a column vector and

V~f2!52
1

2
m0

2f21
l0

4
~f2!2.

We assume here thatl0 and m0
2 are not only positive, but such that spontaneous symm

breakdown~SSB! occurs in the Gaussian approximation~GA! introduced below.

B. The Gaussian variational method

1. The Gaussian ground state (‘‘vacuum’’)

The Rayleigh–Ritz variational approximation to quantum field theories is based on the~‘‘el-
liptical’’ ! Gaussian ground state~vacuum! functional Ansatz, Refs. 9–11, 13,

C0@fW #5N expS 2
1

4\ E dxE dy@f i~x!2^f i~x!&#Gi j
21~x,y!@f j~y!2^f j~y!&# D , ~2!

whereN is the normalization constant, and one sums all repeated~roman lettered! indices from 0
to N21. ^f i(x)& is the vacuum expectation value~VEV! of the i th spinless field which hencefort
we will assume to be translationally invariant^f i(x)&5^f i(0)&[^f i& and
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Gi j ~x,y!5
1

2
d i j E dk

~2p!3

1

Ak21mi
2

eik•(x2y).

We have explicitly kept\ ~while setting the velocity of lightc51) to keep track of quantum
corrections and count the number of ‘‘loops’’ in our calculation. Then the ‘‘vacuum’’~ground
state! energy density becomes

E~mi ,^f i&!52
1

2
m0

2^f&21
l0

4
@^f&2#21\ (

i 50

N21 F I 1~mi !2
1

2
~m0

21mi
2!I 0~mi !G

1
l0

4 H 6\ (
i 50

N21

^f i&
2I 0~mi !12\ (

iÞ j 50

N21

^f i&
2I 0~mj !1\2 (

i 50

N21

I 0
2~mi !

1\2 (
iÞ j 50

N21

I 0~mi !I 0~mj !J , ~3!

where

I 0~mi !5
1

2 E dk

~2p!3

1

Ak21mi
2

5 i E d4k

~2p!4

1

k22mi
21 i e

5Gii ~x,x!, ~4!

I 1~mi !5
1

2 E dk

~2p!3 Ak21mi
252

i

2 E d4k

~2p!4 log~k22mi
21 i e!1const. ~5!

We may identify\I 1(mi) with the familiar ‘‘zero-point’’ energy density of a free scalar field
massmi .

The divergent integralsI 0,1(mi) are understood to be regularized via an UV momentum cu
L. Thus we have introduced a new free parameter into the calculation. This was bound to h
in one form or another, since even in the renormalized perturbation theory one must introd
new dimensional quantity~the ‘‘renormalization scale/point’’! at the one loop level. We treat thi
model as an effective theory and thus keep the cutoff without renormalization.~There are severa
renormalization schemes for the Gaussian approximation, but they show signs of instabili
ultimately seem to lead to ‘‘triviality.’’12!

2. The vacuum energy minimization equations

We vary the energy density with respect to the field vacuum expectation values^f i& and the
‘‘dressed’’ massesmi . The extremization condition with respect to the field vacuum expecta
values reads

S ]E~mi ,^f i&!

]^f j&
D

min

50, j P0,1,...,N21; ~6!

or explicitly

^f j&F2m0
21l0S ^f&213\I 0~mj !1\ (

j Þ i 50

N21

I 0~mi !D G
min

50. ~7!

The second set of energy extremization equations reads

S ]E~mi ,^f i&!

]mj
D

min

50, j P0,1,...,N21, ~8!
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or

mj
21m0

25l0S 3^f j
2&1\ (

j Þk50

N21

^fk
2&13\I 0~mj !1\ (

j Þk50

N21

\I 0~mk!D
min

. ~9!

Equations~7! and~9! can be identified with the~truncated! Schwinger–Dyson~SD! equation13,19

for the one- and two-point Green functions, see Refs. 17 and 18. The solutions to these eq
plus the additional minimization requirements~positive-definite second derivatives matrix, i.e., t
positive definiteness of its principal minors, which will not be discussed here! determine the
symmetry of the ground state~vacuum!.

3. The vacuum symmetry

Now one ordinarily assumes that only one of the scalar fieldsf i ~by convention thei 50 one!
develops a nonzero VEV, i.e.,^f0&Þ0 and then one proceeds with the proof of the NG theor
@The validity of this assumption, of course, depends on the values of the bare parameters
Lagrangian and the cutoffL, or the values of the renormalized parameters, if one insists
renormalization. One may also have an unbroken symmetry: with all the fields having a zero
^f i&50, i P0,1,. . . ,N21, the gap equations~7! and~9! lead to all the massesmi being equal. In
other words theN fields form an O(N) multiplet, so we may say that the symmetry of the vacu
is O(N), i.e., not broken.#

In the conventional case the scalar field masses arem05M ;m15m25m35 ¯5m, i.e., the
(N21) fieldsf i ; i P1,2,. . . ,N21, of massmi5m, form an (N21)-plet and the residual sym
metry of the vacuum is O(N21). That, however, is not the only logical possibility: one m
assume that more than one field develops VEV. This, of course, means that the~residual! symme-
try of the vacuum is ‘‘lesser’’ than the one in the~‘‘canonical’’! case with only one VEV.@In the
Born approximation such a vacuum might be reducible to the ‘‘one VEV’’ vacuum by means
O(N) transformation~if it lies in the same ‘‘orbit’’ of the symmetry group20!, but in the Gaussian
approximation dynamical symmetry breaking may lead to an irreducibly different ground st#

The decision which of these possibilities actually takes place can be made on the ba
comparing their respective ground state energies. In the case with an O(N21) symmetric ground
state, the vacuum energy, or effective potential is

E~M ,m,^f0&!min

52
1

2
m0

2^f0&
21

l0

4
^f0&

41\F I 1~M !2
1

2
~m0

21M2!I 0~M !G
1~N21!\F I 1~m!2

1

2
~m0

21m2!I 0~m!G1
l0

4
$2\^f0&

2@3I 0~M !1~N21!I 0~m!#

13\2I 0
2~M !1~N21!\2I 0~m!@2I 0~M !1~N11!I 0~m!#%. ~10!

Similar expressions for ground states with lesser symmetries than O(N21) can be derived by
applying the corresponding gap equations~7! and ~9! to Eq. ~3!. The question of theabsolute
energy minimum will not be pursued in this paper, however. For the purpose of argument we
assume that alternative ground states exist and are stable, i.e., energetically favorable
standard one.

If two ~or more! scalar fields’ VEV are simultaneously nonzero, e.g., if^f0&5v1Þ0 and
^f j&5v2Þ0; j P1,2,. . . ,N21 ^f i&50; i P1,2,. . . ,j 21,j 22, . . . ,N21, we may change the
scalar field labels such that the fields with nonzero VEVs are labeled successively 0,1,. . . ,k
without loss of generality. In such a case the massesmi may also take on different values.

For simplicity’s sake we assume that only two fields have nonvanishing vacuum expec
values~extension to three, or more VEVs follows by straightforward analogy!, f0 ,f1Þ0 ~we
label their massesm05M , m15m1). The remaining (N22) fieldsf i ; i P2, . . . ,(N21), with
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massmi5m2 , form an (N22)-plet. In that case, it is clear that the residual symmetry of
ground state is~at least! O(N22), i.e., that the O(N) symmetry has been dynamically~sponta-
neously! broken to ~at least! O(N22). We say ‘‘at least’’ because, when the massesm05M
5m15m1 are equal there is additional O~2! symmetry of the vacuum. Similar comments are va
in the case when more than two fields develop VEVs. Of course, the residual symmetry
vacuum determines the number of the NG bosons. Next we turn to the case of two fields with
as worked out in Appendix A. We have shown in Appendix A that there are only two distinct
solutions M5m1 ,Þm2 to Eqs. ~A12!–~A15!. Thus the residual symmetry of the vacuum
O(N22)3O(2), and thecorresponding number of NG bosons must be (2N24). In the follow-
ing we shall see how all these NG bosons come about.

III. THE NAMBU–GOLDSTONE THEOREM

A. The two-body equation

In Refs. 17 and 18 it was shown that in the Gaussian approximation to the O~2! and O~4! f4

model, the Nambu–Goldstone particles appear in thetwo-particle spectra, i.e., that they are
massless bound states of two different massive elementary excitations with an admixture
~massive elementary! one-body state with the same quantum numbers~the CDD pole!. This
admixture of the one-body state is crucial for the masslessness of the NG state~it also proved to
be a source of confusion!. As there are at most (N21) such elementary particles/CDD poles~one
field adopts a VEV so it cannot create or destroy single NG bosons!, it appears that there can b
at most (N21) NG bosons in this theory. There areN(N21)/2 ~distinct! pairs of elementary
particles in this model, however, and an equal number of distinct~potentially bound! two-body
states. Thus there can be at mostN(N21)/2 NG bosons, precisely the maximum number allow
by the O(N) Lie group generator counting. Next we must show that the number of ‘‘bro
symmetry generators’’ corresponds precisely to the number of massless bound states and
corresponding No¨ther currents are conserved.

The two-body equation of motion in the Gaussian approximation is equivalent to the
point Schwinger–Dyson~or Bethe–Salpeter! equation~for proof of this equivalence, see Refs.
and 21!. All the NG channels obey a generic four-point SD equation that reads

Di j ,i j ~s!5Vi j ,i j ~s!1Vi j ,kl~s!Pkl,mn~s!Dmn,i j ~s!, ~11!

whereD(s) is the four-point Green function (N3N) matrix ~scattering amplitude!, P(s) is the
polarization function matrix andV(s) is the potential matrix;i j denote the O(N) indices of the
two constituents, with the generic solution

D~s!5V~s!@12V~s!P~s!#21, ~12!

where s5(p11p2)2[P2 is the center-of-mass~CM! energy. These matrices may reduce to
direct sum of submatrices depending on the residual symmetry of the system. Such ef
two-body propagators can also be written in the following form~see Ref. 22!:

Da~s!.
ga

2

s2ma
2 , ~13!

where ma is the effective mass in channela. The difference between various O(N) ‘‘flavor’’
sectors appears in the polarization functionsP(s) and potentialsV(s): more specifically in (N
22) channels@( i 50, j ,2, . . .N21)[Mm2# the said matrices are diagonal and have the fo

PMm2
~s!5I Mm2

~s!5 i\E d4k

~2p!4

1

@k22M21 i e#@~k2P!22m2
21 i e#

, ~14!
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VMm2
~s!52l0F11S 2l0^f0&

2

s2m2
2 D G52l0F11

M2

s2m2
2G , ~15!

and another (N22) channels@( i 51, j ,2, . . . ,N21)[m1m2 have the form

Pm1m2
~s!5I m1m2

~s!5 i\E d4k

~2p!4

1

@k22m2
21 i e#@~k2P!22m1

21 i e#
, ~16!

Vm1m2
~s!52l0F11S 2l0^f1&

2

s2m2
2 D G52l0F11

m1
2

s2m2
2G . ~17!

The poles 1/(s2m1,2
2 ) in Eqs.~15! and ~17! are called the Castillejo–Dalitz-Dyson~CDD! poles

and correspond to one-particle states in the theory. Now due to Eqs.~A12!–~A15! these two
channels happen to be equivalent in this case, but that degeneracy is accidental~for a different
example see Sec. IV!.

B. Massless „Nambu–Goldstone … two-body states

With an O(N22)3O(2) residual symmetry there should be (2N24)5(N22)1(N22) NG
bosons. This number of NG bosons quickly exceeds the number of available fields in the La
ian: 2(N22).(N21) for N.3. Thus, there are not enough scalar fields to provide for all the
bosons in case of nonstandard symmetry breaking. Does this mean that the NG theorem
down in such a case?

As in Ref. 17, we shall prove that at zero CM energyP50, the matrix @1
2VMm2

(0)PMm2
(0)# vanishes. We use Eq.~A6! to write

VMm2
~0!52l0F12

M2

m2
2 G ,

~18!

PMm2
~0!5\S I 0~M !2I 0~m2!

M22m2
2 D

then use Eq.~33! to obtain the final result

VMm2
~0!PMm2

~0!51. ~19!

Thus the inverse propagator Eq.~12! evaluated at zero momentum vanishes,

DMm2

21 ~0!5@12VMm2
~0!PMm2

~0!#VMm2
~0!2150, ~20!

which is equivalent to the resultmMm2

2 50. Similarly for the remaining (N22) m1m2 chan-

nels. Q.E.D.
Note that the proof in no way depended on the fact thatm15M . In other words, if the gap

Eqs.~A12!–~A15! allowed a solution such thatm1ÞM and^f1&50, the NG theorem would still
hold. But, then the CDD poles would decouple in the latter (N22) channels, i.e., there would b
no CDD poles in these channels. This shows that, at least in principle, (N22) NG bosons could
be pure bound states with no single particle admixtures. In Sec. IV we shall give an examp
model with a gap equation that allows such solutions.

C. Conservation of No ¨ ther currents

There areN22@a,2, . . . ,N21# dynamically broken O(N) symmetry No¨ther current matrix
elements corresponding to
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Jm5
a ~p8,p!5^fa~p8!uJm~0!uf0~p!&5~p81p!m1qmS M2

q22m2
2D 2Gm5

Mm2~q!DMm2
~q!, ~21!

whereGm5
Mm2(q) is

Gm5
Mm2~q!5 i E d4k

~2p!4 F ~2k1q!m1qmS M2

q22m2
2D G 1

@k22M2#@~k1q!22m2
2#

5
qm

q2 F m2
2

2l0
~VMm2

~0!PMm2
~0!2VMm2

~q2!PMm2
~q2!!G . ~22!

Inserting the vertexGm5
Mm2(q), Eq.~22! together with the two-body propagatorDMm2

(q2), Eq.~12!

into Eq. ~21! one finds

Jm5
a ~p8,p!5~p81p!m1qmS M2

q22m2
2D 2

qm

q2 F m2
2

2l0
GVMm2

~q2!5~p81p!m1qmS M22m2
2

q2 D ,

~23!

whereqn5(p82p)n. This current is manifestly devoid of a pole atq25m2
2. The composite state

plays precisely the role of the Nambu–Goldstone boson in the conservation of the dynam
broken O(N) symmetry No¨ther currents,1 i.e., in the basic O(N) symmetry Ward–Takahash
identity, cf. Refs. 23 and 24,

qnJn5
a ~p8,p!5~p822m2

2!2~p22M2!, ~24!

that follows directly from Eq.~23!. Similarly for the remainingN22 @a,2, . . . ,N21# dynami-
cally broken O(N) symmetry No¨ther current matrix elements corresponding to

Jm5
a ~p8,p!5^fa~p8!uJm~0!uf1~p!&5~p81p!m1qmS m1

2

q22m2
2D 2Gm5

m1m2~q!Dm1m2
~q!. ~25!

The identity of the two ‘‘gap,’’ or CDD massesm15M and the concomitant ‘‘excess’’ O~2!
vacuum symmetry are consequences of the simplicity of the vacuum equation~7! that only de-
pends on one O(N) algebraic invariant.4,20 That, in turn, is a consequence of the fact that we
dealing with fields in the fundamental irrep. of O(N) and the requirement that the Lagrangian~1!
be renormalizable, i.e., at most of the fourth power in the fields. The assumption of a second
^f3&5^p0&Þ0 is particularly unrealistic in the Gell-Mann–Levy model@O(N54) f4 model#,25

because of the negative parity of thep fields: their nonzero VEV would imply spontaneou
breaking of P and CP ‘‘parities.’’ In Sec. IV we give an example of af4 model with an internal
symmetry that leads to a gap equation with distinct mass solutions and potentially exoti
bound states.

IV. THE ’t HOOFT MODEL

A. Definition of the model

’t Hooft’s26 extension of the linear sigma model Lagrangian reads

LtH5tr@~]mM]mM†!1m2MM†#2 1
2 ~l12l2!@ tr~MM†!#2

2l2 tr@~MM†!2#12k@eiu detM1c.c.#, ~26!

where
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M5
1

&
~S1 iP!,

S5
1

&
~s1a"t!, ~27!

P5
1

&
~h1p"t!.

Equation~26! is equivalent to the following:

LtH5
1

2
@~]ms!21~]mp!21~]mh!21~]ma!2#1

m2

2
@s21p21h21a2#

12k cosu@s21p22h22a2#24k sinu@sh2p"a#2
l1

8
@s21p21h21a2#2

2
l2

2
@~sa1hp!21~p3a!2# ~28!

which describes the dynamics of the two chiral meson quartets,~s,p! and ~a,h!, in this model,
and l1 , l2 , k, u are the bare coupling constants. Nonvanishing angleu leads to the explicit
~not spontaneous! CP violation in this model, so we set it equal to zero. Thus we see that t
Hooft model consists of two coupled Gell-Mann–Le´vy ~GML! linear sigma models,25 one with a
light and the other with a heavy quartet of mesons.

Note that the symmetries of various parts of the interaction Lagrangian also vary, see A
dix B: ~i!

l1Þ0, l25k5u50 ~29!

implies O~8! symmetry.~ii !

l1Þ0Þl2 , k5u50 ~30!

implies O(4)3O(2) symmetry.~iii !

l1Þ0Þl2 , kÞ05u ~31!

implies O~4! symmetry. And the number of NG bosons must change accordingly.

B. The gap equations

The first set of energy minimization equations~7! reads

052v~m0
214k!1

l1

2
v@v213I 0~ms!13I 0~ma!13I 0~mp!1I 0~mh!#13l2vI 0~ma!,

~32!

ms
252m0

224k1
l1

2
v@v213I 0~ms!13I 0~ma!13I 0~mp!1I 0~mh!#13l2I 0~ma!, ~33!
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ma
252m0

224k1S l1

2
1l2D v21

l1

2
@ I 0~ms!15I 0~ma!13I 0~mp!1I 0~mh!#

1l2@ I 0~ms!12I 0~mp!#, ~34!

mp
2 52m0

224k1
l1

2
v21

l1

2
@v21I 0~ms!13I 0~ma!15I 0~mp!1I 0~mh!#

1l2@ I 0~mh!12I 0~ma!#, ~35!

mh
252m0

224k1
l1

2
v21

l1

2
@v213I 0~ms!13I 0~ma!13I 0~mp!1I 0~mh!#13l2I 0~mp!,

~36!

where the divergent integralI 0(mi) is given by Eq.~4!. For simplicity in the following we use the
following short-hand notationa5ma

2 ;h5mh
2 ;s5ms

2 ;p5mp
2 . Equations ~32!–~36! can be

solved for

Pah~0!5
I 0~a!2I 0~h!

a2h
5

1

~l1
22l2

2!
S l11l2S p2s

a2h D D ,

Pps~0!5
I 0~a!2I 0~h!

a2h
5

21

~l1
22l2

2!
S l1

p

s2p
1l2

S a2h2
l2

l1
s D

s2p
D ,

~37!

Ppa~0!5
I 0~a!2I 0~p!

a2p
5

1

~l1
222l1l223l2

2!
S l1 S 12

8k

a2p D1l2

h28k

a2p D ,

Psh~0!5
I 0~s!2I 0~h!

s2h

5
1

~l1
222l1l223l2

2!
S ~l122l2! S 8k2h

s2h D23l2

a2p28k2
l2

l1
s

s2h
D ,

whence follows

Pph~0!5
I 0~p!2I 0~h!

p2h
5

1

l1~p2h!
~8k1p2h1l2~a2h!Pha~0!23l2~a2p!Ppa~0!!,

~38!

Pas~0!5
I 0~s!2I 0~a!

s2a

5
1

l1~s2a! S 8k1
l2

l1
s2a1l2~s2p!Pps~0!23l2~a2p!Ppa~0! D .

C. The Nambu–Goldstone theorem in the isotensor pseudoscalar sector

Note that there are 838564 possible initial or final two-body states here. Thus there
6436454096 possible channels, but only 437528 distinct pairs of particles, or equivalently a
most 28 possible NG bosons. The last statement holds under the proviso of exact O~8! symmetry
being broken to a discrete~non-Lie! symmetry, however. Otherwise there are fewer than 28
bosons, and when O~8! is explicitly broken down to O(4)3O(2), or O~4! by one of the terms in
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the Lagrangian equation~26!, there are even fewer than that. This fact tells us that many chan
must be coupled and that the residual symmetry plays a crucial role in this coupling. We sh
look at every possible channel in this paper, but rather concentrate only on the exotic ones,
case the isotensor, so as to show the existence of pure bound state NG bosons withou
admixtures.

We may use the residual vacuum symmetry, e.g., the O~3! isospin invariance to split this 64
364 matrix equation into six invariant subspaces: three flavor channels@~a! isoscalar;~b! isovec-
tor; and~c! isotensor# of either parity. In the two-body, or Bethe–Salpeter~BS! equation for the
four-point Green functionsDi j (s), the indicesi , j denote the isospin of the two-body initial an
final states, respectively.

The negative parity~pseudoscalar! isotensor two-body equation is a single-channel one
straightforward to solve, see Eq.~12!. We look at the zero CM energyP50 function
Vpa(0)Ppa(0); we use

Vpa
(I 52)5l11l2 ~39!

and Eq.~37! to obtain the final result

Vpa
(I 52)~0!Ppa~0!52S l11l2

l1
222l1l223l2

2D S l1 S 12
8k

a2p D1l2

h28k

a2p D . ~40!

Now setl25k→0 and find

lim
l25k→0

Vpa
(I 52)~0!Ppa~0!51. ~41!

The propagator Eq.~12! evaluated at zero momentum can be written as

Dpa
(I 52)~0!5

gpa
2

2mpa
2 5

Vpa~0!

12Vpa~0!Ppa~0!
, ~42!

whence it follows that

mpa
2 5F 1

l11l2
2S 1

l1
222l1l223l2

2D S l1 S 12
8k

a2p D1l2

h28k

a2p D G S a2p

v D 2

5O~l2!1O~k!. ~43!

Thus we see that the effective~pseudo! NG boson mass in this channel is proportional tol2 ,
and/ork, the two O~8! symmetry breaking parameters.

Q.E.D.

V. SUMMARY AND CONCLUSIONS

In summary, we have~1! proven the NG theorem in the variational Gaussian wave functio
approximation to the O(N) symmetricf4 model when the symmetry of the ground state is
proper subgroup of O(N21); ~2! proven conservation of No¨ther currents corresponding to th
dynamically broken symmetries;~3! proven the same NG theorem in the exotic isotensor cha
of the ’t Hooft model in the limitl25k→0. The NG bosons are massless bound states of
massive constituents. We emphasize that our proofs do not depend on the specific value
bare parameters, or of the cutoff in the theory, so long as the system is in the spontaneously
phase with appropriate symmetry.

We should like to put these results into their proper logical and chronological setting
variational method in quantum field theory~QFT! is based on the Schro¨dinger representation an
goes by the name of Gaussian approximation to the ground state wave functional. This met
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its various guises, was pioneered by Schiff, Rosen, and Kuti6–8 in the 1960s and 1970s, and lat
revived and elaborated in the 1980s by Barnes and Ghandour,9,13 and by Symanzik10 and by
Consoli, Stevenson and collaborators.11,12,16Related formalisms based on effective potentials a
other functional methods were discussed in Refs. 8, 16, 12 and references cited therein. M
these studies addressed thef4 scalar field theory that is also the prime example of the Namb
Goldstone~NG! theorem,1–5 an exact result in the O(N) symmetricf4 scalar theory with spon-
taneous internal symmetry breaking.

The NG theorem was first shownnot to be satisfied by the solutions to the mass, or ‘‘ga
equations in the Gaussian approximation by Kamefuchi and Umezawa in 1964,14 practically
simultaneously with the general proofs of the NG theorem.3–5 This fact was subsequently redis
covered several times15,16 and this unsatisfactory situation persisted until 1994.17 Various conjec-
tures as to the reasons for this failure and as to potential remedies were advanced dur
period of time. It was first shown in Ref. 17 that this apparent breakdown of the NG theorem
an intrinsic shortcoming of the Gaussian wave functional approximation, but rather a conseq
of incomplete previous analyses. In other words, the NG theorem is satisfied, but the NG b
are not excitations of the elementary scalar fields, as initially expected. Rather, they are m
bound states of two massive elementary scalar excitations, in close analogy with Nambu’s1 proof
of the NG theorem in a self-interacting fermion theory. NG bosons are solutions to the two
@or Bethe–Salpeter~BS!# equation in the Gaussian approximation. That equation was only ra
considered in the literature,7,9 and never before Ref. 17 in the context of spontaneous symm
breaking of purely bosonic models.

In this light the result is simple enough to understand, yet it drew strong, albeit unpubl
criticism and affirmation.27 Perhaps the underlying reason for the misunderstanding by some
the implication of the proof that thef4 scalar field theory could have bound states, which,
‘‘everybody knew,’’ ~Georgi in Ref. 27! disagrees with various ‘‘rigorous no-go’’ and ‘‘triviality’’
theorems in the same theory.28 ~For more recent results comparing constructive QFT to the Ga
ian approximation in 111 dimensional field theories, see Ref. 29.! The said theorems hold only in
the limit of an infinite cutoff, however, in which the Gaussian approximation also beco
trivial.11 For finite cutoffs, on the other hand, this is a nontrivial theory that may contain bo
states.

Soon after the first proof in Ref. 17 it was also shown along the lines of Ref. 3 that the
theorem also follows from the Gaussian effective potential, Ref. 30, but that proof did not
much light on the mechanisms that made the NG bosons come about. Only later, in Refs.
32, it was explicitly shown how this formal proof relates to the Gaussian two-body equatio
motion. Another source of confusion was the apparent doubling of degrees of freedom, at l
some ‘‘flavor’’ ~internal symmetry! channels,viz. the existence of massive ‘‘elementary’’ an
massless bound states in the same channel. This problem was resolved in Ref. 31, whe
Källen–Lehmann spectral function was calculated in appropriate channels of the model
spectral function clearly shows the presence of massless NG states and the absence of the
single-particle excitations. That also constitutes a proof of the NG theorem along Gilbert’s
Ref. 5, within the Gaussian wave functional approximation. Thus we have confirmed a
well-known proofs of the NG theorem in the Gaussian approximation.

The NG theorem is the simplest example of a Ward–Takahashi identity, which follows
the underlying internal symmetry of thef4 model. Ward–Takahashi identities typically rela
(n21)-point Green functions ton-point functions and/or matrix elements of No¨ther currents.
These identities were developed by Lee in the linear sigma model at the perturbative on
level,23 and by Symanzik for arbitrary orders of perturbation theory,24 so we shall call them the
Lee–Symanzik~LS! identities.

The exact, i.e., nonperturbative Green functions satisfy an infinite set of coupled inte
differential equations called the Schwinger–Dyson equations.19 The iterative/perturbative solu
tions to the SD equations form~infinite/finite! sets of Feynman diagrams. If one decouples the
equations for higher order Green functions from the lower order ones~in popular jargon, if one
truncates the SD equations!, one may obtain tractable equations and find their solutions that
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infinite, albeit incomplete sets of Feynman diagrams. It has been known at least since 198
9, that the Gaussian approximation to the unbroken symmetryf4 theory corresponds to one suc
truncation of the SD equations. But, truncated SD equations need not obey the conservatio
of the original SD equations of motion, i.e., LS identities may be violated by the truncation. T
knowledge, no proof of LS identities had been given for truncated SD equations, i.e., for in
classes of diagrams in the bosonic linear sigma model prior to Ref. 17, although a similar
had been given by Nambu and Jona-Lasinio in their fermionic model some 30 years before.1 Thus
we have shown that the Gaussian functional approximation constitutes a closed, self-con
symmetry-preserving approximation to the Schwinger–Dyson equations.
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APPENDIX A: THE GAP EQUATIONS WITH TWO VEVs

The first set of energy minimization equations~7! read

m0
25l0@v213\I 0~M !1\I 0~m1!1~N22!\I 0~m2!#, ~A1!

m0
25l0@v21\I 0~M !13\I 0~m1!1~N22!\I 0~m2!#, ~A2!

v25^f0&
21^f1&

25^f&2, ~A3!

^f i&50 i 52,...,N21, ~A4!

where the divergent integralI 0(mi), Eq. ~4! is understood to be regularized via an UV momentu
cutoff L, either three-, or four dimensional. The second set of gap equations~7! read

M252m0
21l0@2^f0&

21^f&213\I 0~M !1\I 0~m1!1~N22!\I 0~m2!#, ~A5!

m1
252m0

21l0@2^f1&
21^f&21\I 0~M !13\I 0~m1!1~N22!\I 0~m2!#, ~A6!

m2
252m0

21l0@^f&21\I 0~M !1\I 0~m1!1N\I 0~m2!#. ~A7!

Upon inserting Eq.~A1! into Eq. ~A5!, the following coupled ‘‘gap’’ equations emerge:

M252l0^f0&
212l0\@ I 0~M !2I 0~m1!#52l0^f0&

2, ~A8!

m1
252l0^f1&

222l0\@ I 0~M !2I 0~m1!#52l0^f1&
2, ~A9!

M22m1
252l0~^f0&

22^f1&
212l01\@ I 0~M !2I 0~m1!# !, ~A10!

m2
252l0\@ I 0~m2!2I 0~M !#52l0\@ I 0~m2!2I 0~m1!#. ~A11!

Note that these equations lead to

I 0~M !2I 0~m1!50, ~A12!

M22m1
252l0~^f0&

22^f1&
2!50, ~A13!

which, in turn have at least one solution,m15M and^f0&
25^f1&

2, that are solutions to a singl
nontrivial gap equation
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M252l0^f1&
2, ~A14!

m2
252l0\@ I 0~m2!2I 0~M !#, ~A15!

with two unknowns one of which is kept fixed, cf. Ref. 18. This gap equation has been s
numerically in Ref. 18: it admits only massive solutionsM.m.0, however, for real, positive
values ofl0 ,m0

2 and real ultraviolet cutoffL in the momentum integralsI 0(mi). In other words,
the ‘‘would be NG boson fields’’ (f1,2, . . . ,N21) excitations are all massive (m.0) in the MFA.
This looks like a breakdown of the NG theorem in this approximation, but, as discussed in
17 and 18, there is a solution by way of the two-body~Bethe–Salpeter! equation.

APPENDIX B: SYMMETRIES OF THE ’t HOOFT MODEL

The two field quartets,~s,p! and ~a,h!, have different ‘‘chiral’’ O(4)5O(3)3O(3)
.SUL(2)3SUR(2),

d5s5b•p, ~B1!

d5h52b•a, ~B2!

d5a5bh, ~B3!

d5p52bs, ~B4!

isospin

ds50, ~B5!

dh50, ~B6!

da52«3a, ~B7!

dp52«3p, ~B8!

and UA(1).O(2) transformation properties

d5
0s5bh, ~B9!

d5
0h52bs, ~B10!

d5
0a5bp, ~B11!

d5
0p52ba. ~B12!

The Lie algebra O~4! has two Casimir operators, but there is only one invariant in the (1
2 , 1

2)
representation with one meson quartet,viz. ~i! @s21p2#, whereas with two quartets one has thr
invariants:~i! above,~ii ! @h21a2#, and~iii ! @hs2a•p#. Any odd power of the third invarian
~iii ! violates CP. Even without the third invariant the algebraic structure of the Lagrangian is
enough to allow for multiple vacua@solutions to the energy minimization equations~6!# even in
the ~first! Born approximation. For example, Eq.~6! applied directly to the ’t Hooft interaction
~26! in the Born approximation allow two nonzero VEVs@^s&0B5v0BÞ0 and ^a3&0B5v1B

Þ0],

2m0
224k1

l1

2
@v0B

2 1v1B
2 #1l2v1B

2 50, ~B13!
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2m0
214k1

l1

2
@v0B

2 1v1B
2 #1l2v1B

2 50. ~B14!

Their solutions are

^s&0B5v0B5
m0

2

l11l2
24

k

l2
, ~B15!

^a3&0B5v1B5
m0

2

l11l2
14

k

l2
, ~B16!

leading to a nontrivially broken ground state. Note, however, that~i! l2→0 is a singular limit
point, i.e., these vacua are not continuously connected with the more conventional vacual2

50, and~ii ! the two kinds of vacua/energy minima coincide wheneverk50 andl2Þ0. Hence it
is possible for the system to be in an unconventional vacuum even with infinitesimally smal2

andk when they vanish with a fixed nonzero ratio. This makes it plausible that unusual vacu
also appear in this model when the symmetry is broken dynamically, i.e., by ‘‘loop’’ effects.
doubling of vacua is a consequence of multiple~two! independent algebraic invariants in th
Lagrangian~26! which in turn led to multiple~two! VEVs, in agreement with the genera
theory.4,20
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A ‘‘periodic table’’ for supersymmetric M-theory
compactifications
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We develop a systematic method for classifying supersymmetric orbifold compac-
tifications of M -theory. By restricting our attention to Abelian orbifolds with low
order, in the special cases where elements do not include coordinate shifts, we
construct a ‘‘periodic table’’ of such compactifications, organized according to the
orbifolding group~order<12) and dimension~up to 7!. An intriguing connection
between supersymmetric orbifolds andG2 structures is explored. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1581972#

I. INTRODUCTION

Manifolds with SU(N) holonomy have been a source of significant interest for mathem
cians and physicists alike. Indeed, the importance ofK3 manifolds and Calabi–Yau threefolds
the arena of consistent superstring background geometries could hardly be overstated. Asi
their undisputed beauty, compactification on these spaces allows for important control of
symmetry which, in turn, permits ready access to potentially testable phenomenological
quences of string theory itself. It is for such reasons that understanding the geometry of
objects, including the classification of associated gauge bundles,1–3 has been such a relevant an
fruitful endeavor. It is nowadays accepted, however, that there exists a more fundamen
dimensional underpinning, code-namedM -theory, which appropriately describes nonperturbat
aspects of fundamental physics. In contrast to the situation in perturbative string theory, with
context of M -theory the most important geometric compactification spaces have sp
holonomy.4–6

The connection betweenM -theory and four-dimensionalN51 supersymmetric models o
particle physics is provided by 11-dimensional supergravity on compact seven manifolds wG2

holonomy. Considerably less is known about these objects as compared to the case of Cala
manifolds. In light of the above discussion, however, it is important to develop a useful cla
cation of the relevant supersymmetricM -theory models. The rudiments of a mathematical clas
fication scheme forG2 holonomy seven manifolds, each a resolution of an orbifold of a se
torus, has been provided by Joyce.7 The purpose of this paper is to describe a complemen
scheme, based on physics, of a class of seven-dimensional orbifold constructions which m
criterion of N51 supersymmetry preservation.

In previous papers8–11 we described various technical aspects of the extraction of effec
physics fromM -theory. Generally, our techniques apply to global orbifold compactifications,
rely on significant constraints which follow from the requirement of chiral anomaly cancella
pointwise in 11 dimensions, most notably on distinguished even-dimensional subman
Recently,12 we have described how to obtain a pair of particular four-dimensionalN51 super
Yang–Mills theories with chiral matter content from anM -theoretic intersecting brane-worl
scenario. In that paper we included a scan of multiplicities of supersymmetricM -theory orbifold
28530022-2488/2003/44(7)/2853/21/$20.00 © 2003 American Institute of Physics
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models of a particular class. In this paper we derive this scan, explaining in more deta
physical and mathematical criteria involved in finding such models.

Presupposing an ultimate connection betweenM -theory and standard model four-dimension
physics, a seven-dimensional compactification space must be Ricci-flat and admit singular13

For these reasons, the class of toroidal orbifoldsT7/G, for a finite groupG, holds special interest
The necessary geometrical singularities are of finite quotient type, and hence readily permit
ematical analysis. Each is modelled on (M1)72n3Rn/G for some subgroupG,G, whereM1

5S1 or the unit intervalI 15S1/Z2 . Moreover, as we shall see in this paper, under the r
conditions one can explicitly describe a well-defined lift of the action ofG to the 11-dimensiona
spinorial supercharge. This allows us to determine how much supersymmetry is preserved
various fixed-point loci~‘‘fixed-planes’’! of spacetimeT7/G3R3,1.

The mathematical problem of identifying candidate compactification spaces with supe
metric fixed-planes is quite elegant, and divides neatly into four parts. First of all, we must d
on a class of tori to orbifold. A torusT7 is determined by a choice of a rank seven latticeL,R7.
Throughout this paper we will assume that the lattice has the formLªA1% A2

3, i.e., the direct sum
of three copies of the usual hexagonal lattice in the complex plane with one copy ofZ. More
generally, our analysis applies to compactification on toriTn modelled on latticesA1

a
% A2

b with
a12 b5n, 1<n<7. These are by no means the only lattices from which we could construc
tori. In fact, a particularly interesting case, especially as regards the discussion in Sec. V
paper, is that of the irreducible latticeA7,R7, whose automorphism group is one of the maxim
finite subgroups of the groupG2 . We choose to restrict attention to our particular class of dec
posable lattices simply because it is both sufficiently general to subsume the orbifolds s
previously, and easy in this setting to describe the action on the 11-dimensional supercharg
Clifford algebra.

The second step in identifying the desired supersymmetric orbifolds is to choose a par
class of groupsG acting onT7. An action on the torus is an action onR7 that preserves the lattic
L. We will consider only group actions which respect the decomposition ofL into direct sum-

mands. Thus, an elementgPG acts as exp( 2p i fW ), where fW5( f 1 , f 2 , f 3 , f 4), with f 1,2,3PZ/6
and f 4PZ/2. In this way we define a class of representations in which each element ac
rotations in two-dimensional subplanes plus the possibility of a parity reversal on one real
dinate. We call such actions ‘‘pseudoplanar representations,’’ and groups which admit such
sentations ‘‘pseudoplanar groups.’’ This eliminates, for the time being, orbifolds constructed
non-Abelian orbifolding groups, an omission we hope to rectify in future work.

Having restricted ourselves to pseudoplanar groups, next we need to enumerate all p
actions. For organizational purposes we wish to index the candidate orbifolds ofTn by their
orbifolding groupsG. For reasons of bounding complexity, in this paper we restrict attentio
finite Abelian groupsG of order<12. The method we use, explained in detail in Sec. II, cons
of classifying theL-compatible representations ofG on R7, using the decomposition into irreduc
ible characters to determine equivalence classes of group actions. Properly taking into acco
automorphisms of the groupG allows us to distinguish inequivalent group actions, and a ma
formalism makes quick work of computing the dimensions of the fixed-planes correspond
each element ofG, and provides for a concise accounting of various geometric data assoc
with each orbifold.

Finally, given this data, we must have a criterion for determining the exact amount of s
symmetry preserved on each fixed-plane. This fourth and final ingredient is provided by
tematic analysis of lifts ofG to actions on 11-dimensional spinors. The necessary propertie
Clifford algebra are reviewed in Sec. III A, and the criterion, our supersymmetric restri
theorem, is summarized in Table VI. We apply this criterion to the full class of groupsG acting
compatibly on our latticeL. In this way, we identify and classify the relatively small number
orbifolds Tn/G which maintain some supersymmetry at all points, constructions we refer
supersymmetric orbifolds.

In the language of Ref. 12, the orbifolds considered here are allhard orbifolds, i.e., there are
no fixed-point-free coordinate ‘‘shifts’’ in theG action, since we act directly through a represe
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tation on the spaceR7 overT75R7/L. By contrast, Joyce’s examples of orbifolds ofT7 admitting
a resolution as aG2 manifold7 are all soft orbifolds. In Sec. V we use the first class ofG2

resolvable examples studied by Joyce14,15 as a launching point for a discussion of the relations
between supersymmetric orbifolds ofT7 and the notion of aG2-structure~a weaker, necessar
condition for the orbifold to admit aG2 holonomy resolution!.

We have collected the results of our search, accounting for all pseudoplanar orbifold g
with low order, into a so-called periodic table of orbifolds, which we include in this introduc
as Table I. In Table I we exhibit each supersymmetric orbifoldTn/G, with rows corresponding to
distinct pseudoplanar groupsG, listed by increasing group order, and columns corresponding to
representation dimensions 1<n<7. In each block of this table are listed the complete set of h
supersymmetric orbifolds corresponding to associatedn-dimensional representations ofG compat-
ible with our lattices. Each orbifold is indicated by a particularlabel, which codifies the group
action ofG on Tn in a manner explained in detail in Sec. II. For a subset of the supersymm
orbifolds, the corresponding orbifold label has an asterix appended. These models are thos
split off a separateS1/Z2 factor. Such models are the only ones which have 10-dimensi
fixed-planes. Owing to this distinction, there is a more direct connection between this cla
supersymmetric orbifolds and perturbative heterotic string models than is the case for the or
listed without stars.

There are two natural extensions of our work in this paper which we plan to investigate
near future. First, we would like to remove the pseudoplanar and abelian restrictions onG
action, allowing instead anyG,Aut(L). In particular this will allow many non-Abelian group
actions, which in turn will require a generalization of the supersymmetric restriction proof of
III C. An important step towards such a formulation is described in Sec. IV. It would also be
valuable to reformulate both the analysis herein and the anomaly cancellation compatibility c
in Refs. 11 and 12 using the theory of principal bundles on orbifolds. In this setting bot
supersymmetric restriction criterion and anomaly cancellation mechanism should find expr
in the language of characteristic classes of such bundles.

II. HARD ORBIFOLDS, SUPERSYMMETRY, AND CHARACTERS

Each distinct representationR, with real dimensionn<7, of any finite groupG,Aut(Tn),
can be used to define an orbifoldTn/G, and a corresponding compactification scheme inM -theory.

TABLE I. The ‘‘periodic table’’ listing all supersymmetric, hard, pseudoplanar Abelian orbifoldsTn/G of M -theory, for
casesuGu<12. The labeling system is explained in Sec. II.

G 1 2 3 4 5 6 7

Z2 (1)* ~4! ~5!
Z3 ~4!
Z4 ~04! ~14! ~24! ~34!

Z23Z2 (014)* ~222! ~223!
Z23Z3 ~004! (140)* ~222! ~322!

~104!
Z23Z4 (00104)* (10104)* (20104)*

~00222! ~00322!
~01122! ~01222!

~10222!
~11122!

(Z2)3 (2220001)*
~1111111!

(Z3)2

(Z2)23Z3 (1000004)* ~0020220! (0122022)*
~0122020!
~0030220!

Z33Z4
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In this section we describe some useful tools for efficiently accounting for large numbers o
constructions, and explain how these feed naturally into an algorithm for selecting those
satisfy a particular criterion: that the 11-dimensional superchargeQ have nonvanishing compo
nents at all points inM11. This is done in two steps. First we review some standard res
pertaining to representations of finite groups. Then we explain some original technology
adapts these results to the special purpose of sifting through all possible representatio
finding those which satisfy our criterion.

A. Representations of finite Abelian groups

Let G be an Abelian~commutative! group, andr:G→GLn(C) an n-dimensional complex
matrix representation ofG, i.e., r is a homomophism of groups. SinceG is Abelian, g1 g2

5g2 g1 for all giPG, and each elementgPG equals its own conjugacy class. A basic result in t
theory of representations of finite groups states that for a group of orderq, with s conjugacy
classes, there are, up to equivalence,s distinct irreducible representationsR1 ,...,Rs overC. More-
over, if Ri has dimensionni , then

qª(
i 51

s

~ ni !2 ~2.1!

~Ref. 16, Theorem 2.3!. When applied to an Abelian groupG, this shows that eachni51, i.e., that
each of the irreducible representations ofG is itself acharacter~one-dimensional representation!
of the group.

In fact, it is a simple matter to describe all the characters of a finite Abelian group. Any
Abelian groupG can be written as a direct product ofm cyclic groups of ordersq1 ,...,qm ,
respectively, so that

q5uGu5q1 q2¯qm . ~2.2!

A typical element ofG can be represented by them-tuple aWª(a1 ,a2 ,...,am), where 0<ai

,qi , with composition of elements given by componentwise addition followed by reductio
the i th component to its least non-negative remainder modulor i , i 51,...,m. Then corresponding
to eachm-tuple cWª@c1 ,c2 ,...,cm#, where 0<ci,r i , there exists a character

GcW~aW !ªexpS 2pi(
i 51

m S aici

r i
D D ~2.3!

of G, and all q characters arise in this way~Ref. 16, Theorem 2.4!. The identity element ofG
corresponds to the trivial character.

The obvious correspondence between the characterscW and elementsaW of G is not canonical.
Even though they are each composed ofm-tuples of integers moduloqi , i 51,...,m, the isomor-
phism between these is only well-defined up to an automorphism of the groupG.

Any n dimensional representation of an Abelian groupG can be written as a direct sum ofn

of its charactersGcW , i.e., by the data of ann-tuple $cW1,...,cWn% of m-tuplescW j
ª@c1

j ,...,cm
j #, for

j 51,...,n. Two such representations are consideredequivalentif thesen-tuples agree as unor
dered lists.

B. Character tables and C-matrices

The set of hard orbifoldsTn/G is equivalent to the set of distinctn-dimensional representa
tions of G consistent with the lattice that definesTn. If G is a finite Abelian group, then these, i
turn, are equivalent to the possible ways to order sets with elements chosen freely from amo
characters ofG, allowing for repetition. It is, therefore, a straightforward exercise, in principle
construct comprehensive lists of hard orbifoldsTn/G. This is so because it is also straightforwa
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to determine the characters for any finite Abelian group, using the following simple algorithm~As
described above, we shall limit our discussion to the case of pseudoplanar groups.!

Each pseudoplanar group is given by the direct product of some number each ofZ2 , Z3 , and
Z4 factors. For each of these three ‘‘elemental’’ groups, the list of characters are contained
character tables exhibited in Table II. In these tables, the elements of the group are enum
rowwise, while each column corresponds to a distinct character.~Our convention differs from tha
used in the mathematical literature, wherein character tables typically list group eleme
columns and characters as rows. Our choice of convention is more suited to the particular
cation to physics described in this paper.! For the case ofZ2 the characters are real, i.e., ea
describes a group action on one real coordinate; in our case this corresponds to an action oA1

lattice; a plus sign in the table indicates a trivial action, while a minus sign indicates a sign c
x→2x on the associated coordinate. For the groupsZ3 and Z4 the nontrivial characters ar
complex; i.e., each describes a group action on a pair of real coordinates; in our case this
sponds to an action on anA2 lattice; a plus sign indicates a trivial action, other rational numb
indicate the fraction of a complete counterclockwise rotation in the plane spanned by the re
A2 lattice. Such entries are defined modulo 1.

It is useful to assemble the entries of a given character table for a groupG into a ‘‘character
matrix’’ s~G!. The data in Table II can be written as

s~Z2!5S 0 0

0 1/2D , s~Z3!5S 0 0 0

0 1/3 21/3

0 21/3 1/3
D , s~Z4!5S 0 0 0 0

0 1/4 1/2 21/4

0 1/2 0 1/2

0 21/4 1/2 1/4

D .

We adopt the convention that trivial actions~plus signs in the character tables! are represented in
the character matrix with zeros, and parity reversals~minus signs in the character tables! are
represented with the fraction 1/2. The character matrix for a generic pseudoplanar group wm
elemental factorsG5G13 ¯ 3Gm , is obtained by combining the character matricess(Gi) as
an outer sum. For instance, the character matrixs(Z23Z3) can be written as a a two-by-two array
of three-by-three block matrices, wherein the upper left block is computed by adding the upp
entry in s(Z2) to the entire matrixs(Z3), the second block in the first row of blocks ins(Z2

3Z3) is given by adding the entrys(Z2)12 to the entire matrixs(Z3), and so forth. The matrix
s(Z23Z3) formed in this way can be usefully re-expressed in terms of a character table, wi
result shown in Table III. In Table III, all rational entries are defined modulo 1. Furthermo
trivial action, denoted by a zero in the corresponding character matrix, is represented
character table by a plus sign. Finally, on complex characters an entry 1/2, describing a 180
rotation, is represented in the table by a minus sign. Upon reconstituting the character
s(Z23Z3) into Table III we have inserted a useful naming convention for the group element
characters; we have named the order-two generating elementa and the order-three generatin
elementb. Similarly, we have named the trivial characterV, the order two characterL, the

order-three charactersS and S̄ and the order-six charactersC andC̄.
By repeating the operation of combining character matrices as outer sums, in the m

described above, the character matrix and, equivalently, the character table for any pseud

TABLE II. The ‘‘elemental’’ character tables for the groupsZ2 , Z3 , andZ4 .

Z2 V G Z3 V S S̄ Z4 V C S C̄

1 1 1 1 1 1 1 1 1 1 1 1

a 1 2 b 1 1/3 21/3 g 1 1/4 1/2 21/4
b2 1 21/3 1/3 g2 1 1/2 1 1/2

g3 1 21/4 1/2 1/4
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group can be generated readily from the three elemental character matricess(Z2), s(Z3), and
s(Z4). For an illustration in the caseG5(Z2)3, see Table VII. HereVªG [0,0,0] is the trivial
character, and the group elements down the left-hand side are indexed in the usual binary o

1ª~0,0,0! , gª~0,0,1! , bª~0,1,0! , ... ,abgª~1,1,1!.

In general, however, there is quite a lot of physically irrelevant redundancy in the full c
acter table for a given orbifolding groupG. For instance, in the case ofG5Z23Z3 , the characters
which we have namedS andC describe group actions on a complex coordinatez. However, if we
describe these same characters in terms of their actions on the complex conjugatez̄, these same

characters would appear to act precisely as doS̄ and C̄ on the original coordinatez. Thus,
complex characters are physically indistinguishable from their conjugates. Since conjugate p
characters can be can be mapped into each other by a merely semantical renaming of the
nates, we can more efficiently describe the relevant representation theory of this group by c
ering a restricted set of essential nontrivial characters. For the case ofG5Z23Z3 , these would be
L, S and C. At the same time, elements with order greater than two have nontrivial inve
These inverse elements have precisely the same locus of fixed-points in the physical spacTn/G
as do the original elements. So we can characterize the geometry of a given orbifold in te
a representative set of essential nontrivial elements, thereby removing this second, physi
dundancy.

The number of nontrivial representative elements of any finite Abelian group is equivale
the number of essential nontrivial characters. This number provides a ‘‘physical rank’’r of the
group. By including only the essential nontrivial elements and characters, we can replace t
character table with an ‘‘abbreviated character table.’’ For the case ofG5Z23Z3 , we would
thereby replace Table III with the abbreviated character table shown in Table IV. Notice th
may choose at will the ordering of the elements~rows! and, independently, the ordering of th
characters~columns! when we construct a character table; there is noa priori canonical ordering.
Notice, as well, that no information is sacrificed by replacing a full character table with
abbreviated character table.

By multiplying the abbreviated character table by the order of the group we define an in
valued, squarer 3r matrix, which we denoteC(G). For the case ofG5Z23Z3 , this is easily
obtained from Table IV by multiplying the entries by 6, which is the order ofZ23Z3 . In this way
we determine

TABLE III. The character table for the groupZ23Z3 .

Z23Z3 V S S̄ L C C̄

1 1 1 1 1 1 1

b 1 1/3 21/3 1 1/3 21/3
b2 1 21/3 1/3 1 21/3 1/3

a 1 1 1 2 2 2

ab 1 1/3 21/3 2 21/6 1/6
ab2 1 21/3 1/3 2 1/6 21/6

TABLE IV. The abbreviated character table for the groupZ23Z3 .

Z23Z3 G S C

a 1/2 0 1/2
b 0 1/3 1/3

ab 1/2 1/3 21/6
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C~Z23Z3!5S 3 0 3

0 2 2

3 2 21
D . ~2.4!

Of course, owing to the freedom to independently rearrange the rows and the columns
abbreviated character matrix, the corresponding matrixC(G) is defined only up to similar reor
derings. However, such flexibility can always be used to render theC-matrix symmetrical. We
deem this canonical. It is also possible, while keepingC(G) symmetrical, to arrange the rows an
columns so that the corresponding elements and characters have monotonically increasin
This too, we deem canonical.

All the information described by Table III is also contained in the matrixC(Z23Z3) shown in
~2.4!. It is interesting that quite a lot of information pertaining to properties of any finite Abe
group, including the complete representation theory can be codified in a symmetric maC
PGL( r , Z ). As it turns out, the matricesC(G) are valuable tools in the search for supersy
metric orbifolds. The matricesC(G) for each of the pseudoplanar groups with group order<12
are listed in the Appendix.

C. The enumeration of distinct orbifolds

A representation ofG is designated by choosing a set of real and complex characters, in
ing the possibility of degeneracy, from the list of essential nontrivial characters. Generally, o
two characters are real, while characters with higher order are complex. Therefore, if we sea
order-two characters andb higher-order characters, the corresponding representation will ac
n5a12 b real dimensions, 2b of which are complexified. Since the set of essential nontriv
characters correlates with the columns of the matrixC(G), we can unambiguously designate
representation by an ordered list ofr multiplicities, each indicating the number of real coordina
transforming according to a corresponding character. The ordering of the multiplicities c
sponds to the ordering of the characters described by the rows of theC matrix. Of course, the
multiplicities corresponding to complex characters are necessarily even, while those corre
ing to order-two characters may be even or odd.

As an example, in the case of the groupG5Z23Z3 , the physical rank is 3, and the corre
spondingC-matrix is given by~2.4!. In this case, each representation is given by a 3-tupleR
5( a1 , a2 , a3 ), wherea1 , a2 anda3 are the number of real coordinates transforming accord
to the charactersL, S, andC, respectively. In this case,a1PN since the characterG is real, and
a2,3P2 N since the charactersS and C are complex. To be quite specific, the representation
Z23Z3 described by the three-tupleR5( 3 2 2 ) is arepresentation which acts on 3121257
real coordinates. In this case, however, four of the real coordinates are complexified a
complex coordinates. The first multiplicity~3! in the label~322! indicates that three real coord
nates, sayx1,2,3 transform according to the characterL, the second multiplicity~2! indicates that
two real coordinates, combined into one complex coordinate, sayz1 , transform according to the
characterS, and the third multiplicity~2! indicates that one more complex coordinate, sayz2 ,
transforms according to the characterC. The corresponding group actions are shown in Table

The particular orbifoldTn/G which corresponds to a given representationR generically in-
cludes a locus of special points which remain invariant under elements ofG. These generically
constitute hyperplanes of various dimensionalities which intersect, forming an intricate net

TABLE V. The representationR5(322) of the groupZ23Z3 .

Z23Z3 x1 x2 x3 z1 z2

a 2 2 2 1 2

b 1 1 1 1/3 1/3
ab 2 2 2 1/3 21/6
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One of our primary concerns is to decide what sorts of physics, in the form of localized state
described by these planes and their intersections. In the next section we will describe in deta
one studies the issue of how many supercharges are retained on these. A primary consider
this regard is, of course, to describe the number of dimensions which are spanned by the
planes associated with each group element.

There is a simple formula which allows one to compute the set of dimensions correspo
to the r representative nontrivial elements. This formula is most easily described in term
another useful matrix, which we callM (G), obtained fromC(G) by replacing all zero entries with
ones, and all nonzero entries by zeros. By way of illustration, we focus again on the examG
5Z23Z3 . In this case, this prescription, applied toC(Z23Z3), as given in~2.4!, yields

M ~Z23Z3!5S 0 1 0

1 0 0

0 0 0
D . ~2.5!

For a given orbifold, described by the representationR of a groupG, the dimensionality of the
fixed-planes of each representative element is described by anotherr -tuple,d(R), given by

d~R!5~ 112n ! 11R M , ~2.6!

where1 is the row vector with ones in each entry andn5R•15( iai . As an example, for the
particular orbifold described byR5(322), we computen57 and

d~122!5~1127! ~1 1 1!1~3 2 2! S 0 1 0

1 0 0

0 0 0
D 5~6 7 4! . ~2.7!

Thus, the respective fixed-planes associated with the elementsa, b, andab have dimensionality
6, 7, and 4. This result can be verified from the precise group actions in Table V.

Now we have all the information we need to form comprehensive lists of all pseudop
orbifolds, including all the data pertaining to the group actions. First we choose a groupG. Then,
we form lists of orbifoldsTn/G, for each value of 1<n<7 by sequencing through the ordere
partitions of n into r non-negative integers, in the manner described above. For the ca
T7/(Z23Z3) orbifolds, for example, we create the sequence of 3-tuples (a1 , a2 , a3 ) which
describe ordered partitions ofn57 into sums ofr 53 nonnegative integers, subject to the co
straints thata1PN anda2,3P2 N. The complete list of such 3-tuples is given in the usual asce
ing order in mod 7 arithmetic, as~106!, ~124!, ~142!, ~160!, ~304!, ~322!, ~340!, ~502!, ~520!,
~700!. We describe these ordered sets of multiplicities as orbifoldlabels. In each case the corre
sponding group actions can be determined by dividing theC-matrix by the group order and the
selecting rows from this dividedC-matrix with the appropriate multiplicity indicated by th
corresponding label. The group actions for the orbifoldT7/(Z23Z3)(322) , described above, wer
obtained in precisely this way, and stand as an example of this methodology.

D. The periodic table

We use the algorithm described in the previous paragraph to systematically cycle throug
orbifold label of each pseudoplanar group, obtaining all of the relevant group actions in each
In each instance, each element ofG can be represented, by arranging the coordinates judiciou
by a set of three fractional rotations (f 1 , f 2 , f 3 ) describing counterclockwise rotations in respe
tive planes spanned by threeA2 lattices, plus possibility of a parity reversal in one real coordina
which we codify as the binary choicePP$0,1%, describing the respective absence or presenc
a parity reversal.
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As it turns out, the values of (f 1 , f 2 , f 3 u P ) for each element ofG corresponding to a given
orbifold label provide all the data necessary to resolve the amount of supersymmetry o
corresponding orbifold plane. The precise corrrespondence is derived in the next section, w
is presented as a supersymmetric restriction theorem. This result says that an orbifold p
supersymmetric if and only if there is at least one way to add or subtract the three corresp
fractionsf i to obtain, in the caseP50, an even integer, or, in the caseP51, any integer~even or
odd!.

For our restricted class of lattices, a given element is compatible only if the threef i are each
elements of the set$ 0 , 1/2 ,61/3 ,61/4 ,61/6% mod 1.~There are, therefore 73325686 pos-
sibilities for each element.! It is possible to have compatible elements which do not have c
patible products. For example, in the caseG5Z33Z4 , there are several models which pass t
criteria of the supersymmetric restriction theorem, except that the representations in qu
involve order-twelve rotations in at least one plane. These would be acceptable as supersym
orbifolds ofRn, but not ofTn, because there is no lattice inC compatible with such a rotation. Th
number of global orbifoldsTn/G is therefore much smaller than the number of orbifold singula
ties which can be modelled locally asRn/G.

The search for supersymmetric orbifolds consists of four steps. First, for a given choiceG
andn, we generate the complete list of compatible orbifold labels. Second, for each orbifold
we use the matrixC(G) to determine the data (f 1 , f 2 , f 3 u P ) for each of ther repressentative
elements. Third, we apply the supersymmetric restriction theorem to remove each orbifold
has any element whose data does not meet the restriction criterion. Fourth, we examine th
orbifolds which satisfy these restrictions, and we remove cases which are redundant. W
created a number of Mathematica functions which fully automate this process, and have us
to generate Table I which appears in the introduction. In this way, we can easily generaliz
periodic table to arbitrary group order.

Our periodic table includes all of the hard globalM -theory orbifolds described previously b
other authors as well as by ourselves. For instance theS1/Z2 model corresponds to the origina
M -theory model described in Refs. 17 and 18. The fourT4/G models correspond to the four glob
orbifold limits of K3. TheT5/Z2 model was discussed in Refs. 19 and 20.~It was the study of that
simple model which first implicated wandering five-branes as a means of unifying osten
unique vacua into classes linked by phase transitions.! The four starred modelsT5/G correspond to
the four global orbifold limits ofK33S1/Z2 and were studied in Refs. 8–10 and 21. TheT7/(Z2)3

model with label ~2220001! was described in Ref. 11 and theT7/(Z23Z23Z3) with label
~0122022! was described in Ref. 12. Finally, resolutions of the softenings of theT7/(Z2)3 model
with label ~1111111! were presented by Joyce in Refs. 14, 15, and 7 as prototypeG2 manifolds,
and studied by Acharya as candidateM -theory compactification spaces22,23 ~see also Sec. V!.

III. A SUPERSYMMETRIC RESTRICTION THEOREM

In the bulk of M11 ~i.e., at all points not within the locus of orbifold fixed-planes! the
11-dimensional supercharge is completely preserved. It is within the locus of fixed-planes,
fore, that the issue of supercharge preservation becomes important. Since the supercharg
forms nontrivially under elements ofG, only those components ofQ which remain invariant are
not projected to zero on those spacetime points inert under those same elements. The in
components ofQ typically resolve as ad-dimensional spinor, whered is the total dimension of the
invariant locus associated with that element near a given point. Precisely how many irred
SO(d21,1)-spinors are included in this set determines the amount of local sypersymmetr
served on that fixed plane. For the sorts of pseudoplanar orbifolds defined above, it is poss
delineate a concise criterion for selecting those which, in this way, retain supersymmetry.
section, which is relatively technical, we derive this supersymmetric restriction theorem. We
by establishing notational conventions and stating the result, and then prove it by analyzi
question of how the spinorial supercharge is influenced by lifts of various elements of
subgroups of SO~10,1!.
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A. Notations

We use space–time coordinatesxI[$ x0 , xi %, wherei 51, . . . ,3,5,. . . 11, and gamma matri
cesG I , which satisfy the Clifford algebra$G I ,GJ%52 h IJ , whereh IJ5diag(21¯1) is the flat
metric. The gamma matrices are chosen such thatG0 is anti-Hermitian,G0

†52G0 , and G i are
Hermitian, G i

†5G i . It is sometimes useful to defineG45 i G0 . Another useful identity isG11

5 i G1¯G10. The matricesG IJ5 1
2 @ G I , GJ # are the generators of spin~11!. We define a complex

structure by writing the six real coordinatesx5, . . . ,10 in terms of three complex coordinate
according toz1,2,3[x5,7,91 i x6,8,10.

Consider an element which acts as simultaneous rotations in three complex planes
coordinatesz1 , z2 , andz3 , and possibly a parity flip on one real coordinatex11,

a:~ z1 , z2 , z3 ; x11 !→~ ei u1 z1 , ei u2 z2 , ei u3 z3 ; ~2 !Px11 ! , ~3.1!

with u i52 p f i . The three rational numbersf i describe the fraction of a complete rotation im
parted, respectively, on the three complex planes. The parameterPP$0,1% indicates whether or
not the element includes a parity flip. The order ofa is given by the least common positive integ
multiple of the denominators of the reduced form of the threef i ’s and also (1/2)P.

For a given choice of (f 1 , f 2 , f 3 u P ), Eq. ~3.1! describes a particular global SO~10,1! trans-
formation plus the possibility of a parity transformation. On spinors this inducesc→V c, where

V5exp~ 1
4 u IJ G IJ ! ~ G11 !P ~3.2!

and whereu IJ are the parameters of the SO~10,1! transformation. From~3.1! we read off the
nonvanishing parameters asu5,652u6,5[u1 , u7,852u8,7[u2 , andu9,1052u10,9[u3 . Thus we
can rewrite~3.2! as

V5exp~ 1
2 u1 G5,6 ! exp~ 1

2 u2 G7,8 ! exp~ 1
2 u3 G9,10!~ G11 !P . ~3.3!

The superchargeQ is an 11-dimensional Majorana spinor, which transforms precisely aQ
→V Q. It is useful to append subscripts to spinors, and to spinorial operators, to indicate d
sionality. We thus write the 11-dimensional superchargeQ asQ(11) to indicate that this field takes
its values in spin~11!. Similarly, we write the operatorV, defined in~3.3!, asV (11) to indicate that
this object operates on 11-dimensional spinors.

If the fixed-point locus associated with an element~3.1! has dimensionalityd, then, in the
neighborhood of this locus, the structure group is broken from SO~10,1! down to SO(d21,1)
3SO(112d). Accordingly, we write the supercharge as a tensor product of an SO(d21,1)
fixed-plane spinor and an SO(112d) ‘‘normal’’ spinor, asQ(11)5Q(d) ^ Q(112d) . Similarly, the
operatorV decomposes asV (11)5V (d) ^ V (112d) . In order to resolve the amount of unbroke
fixed-plane supersymmetry, we solve the equationQ(11)5V (11) Q(11) , and then count the degree
of freedom which describe the most general solution.

The analysis described below is completely general, modulo irrelevant reordering of c
nates. Thus, in this section we consider the element( 0 , 0 , f u 0 ) equivalent to ( 0 ,f , 0 u 0 ), for
instance.

B. Statement of the theorem

The conclusions which we draw in each of the seven cases discussed in Sec. III C c
easily summarized as follows. The condition for supersymmetry on a fixed-plane associate
any elementaPG, of the special sort characterized by~3.1!, is

f 16 f 26 f 3PH 2 Z, P50

Z, P51
~3.4!
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for any one of the four possible choices of unspecified signs. If condition~3.4! is satisfied, then
supersymmetry is generically reduced to the minimal amount possible in the dimensionality
fixed plane. Exceptions occur in cases whereP51, when one of the sums in~3.4! gives an even
integer and another gives an odd integer. In such cases, the fixed-plane supersymmetry is tw
minimal amount. These results are reflected in Table VI.

Note that this result applies to orbifoldsR7/G as well as to orbifoldsT7/G. In the former case,
there is no restriction on the choices of thef i ’s other than that they should be rational. In the lat
case, there are additional constraints which follow from the requirement thatG,Aut( T7 ). For the
cases described in Sec. III C, this requirement amounts to the restriction thatf 1,2,3 must be chosen
from the set$ 0 , 1/2 ,61/3 ,61/4 ,61/6% mod 1.

C. Proof of the theorem

The result is established by explicitly analyzing how the spinorial supercharge is influenc
lifts of various elements of finite subgroups of SO~10,1!.

Ten-dimensional fixed-planes:The only transformation~3.1! which has 10-dimensional fixed
planes is an order-two element acting as (f 1 , f 2 , f 3 u P)5(0,0,0u 1 ). In this case, the supercharg
transforms asQ(11)→G11Q(11) . We decomposeQ(11) according toQ(11)5Q(10)R% Q(10)L , where
Q(10)R,L56G11Q(10)R,L are 10-dimensional Majorana–Weyl projections ofQ(11) . The fixed-
plane condition,Q(11)5V (11) Q(11) can now be written

Q(10) R,L56Q(10) R,L . ~3.5!

This equation is easy to solve. On the fixed-plane we haveQ(11)→Q(10)R . Thus, the bulk super-
symmetry ishalvedon the fixed-planes.

Nine-dimensional fixed-planes:Nine-dimensional fixed-planes correspond to eleme
( f 1 , f 2 , f 3 u P)5(0,0,f u 0 ), wheref Þ0 mod 1. In this case, the supercharge transforms asQ(11)

→V (11) Q(11) , where

V (11)5exp~ p f G9G10 ! . ~3.6!

We write Q(11) as a tensor product of a nine-dimensional fixed-plane spinor with an SO~2! ‘‘nor-
mal’’ spinor, according toQ(11)5Q(9)^ Q(2) . Similarly, we use the following representation fo
the gamma matrices,

TABLE VI. The seven sorts of elements, listed along with the associated
fixed-plane dimensionality and the generic amount of supersymmetry re-
tained when the conditions listed in~3.4! are satisfied. Thed56 and the
d54 cases have exceptions. In thed56 case, iff 51/2 then the supersym-
metry is merely halved, not quartered. In thed54 case ifu f 1u, u f 2u, andu f 3u
are drawn, one each, from either set~1/2, 1/3, 1/6! or ~1/2, 1/4, 1/4! then
supersymmetry is merely quartered, not eighthed.

( f 1 , f 2 , f 3 u (2)P ) dfixed SUSY

~ 0 , 0 , 0u 2 ! 10 1/2
( 0 , 0,f u 1 ) 9 NONE

( 0 , 0 , f u 2 ) 8 NONE
( 0 , f , 6 f u 1 ) 7 1/2
( 0 , f , 6 f u 2 ) 6 1/4*
( f 1 , f 2 , f 3 u 1 ) 5 1/4
( f 1 , f 2 , f 3 u 2 ) 4 1/8*
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Gm5Ĝm ^ 1, m51, . . . ,8,

G81 i5Ĝ9^ s i , i 51,2 , ~3.7!

G115Ĝ9^ s3 ,

where$ Ĝm , Ĝ9 % are nine-dimensional gamma matrices ands i are the Pauli matrices. In addition
we decompose the normal spinors according toQ(2)5Q(2)R1Q(2)L where Q(2)R,L

56 s3 Q(2)R,L . Using these conventions, and also the identitys1s25 i s3 , we can write

Q(11)5Q(9)^ ~ Q(2)R1Q(2)L !,
~3.8!

V (11)5exp~ i p f 1^ s3 ! .

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written as

Q(9)^ Q(2)R,L5e6 i p f Q(9)^ Q(2)R,L . ~3.9!

Because there are no nontrivial solutions to either of these equations, subject to the restrict
f Þ0 mod 1, we conclude that, as we approach a fixed-nine-plane,Q(11)→0. Thus supersymmetry
is broken completely on any nine-dimensional fixed-plane associated with an element~3.1!.

Eight-dimensional fixed-planes:Eight-dimensional fixed-planes correspond to eleme
( f 1 , f 2 , f 3 u P )5( 0 , 0 , f u 1 ), where f Þ0 mod 1. In this case, the supercharge transforms
Q(11)→V (11) Q(11) , where

V (11)5exp~ p f G9 G10 ! G11 . ~3.10!

We write Q(11) as a tensor product of an eight-dimensional fixed-plane spinor with an S~3!
‘‘normal’’ spinor, according toQ(11)5Q(8)^ Q(3) , and we represent the gamma matrices precis
as in ~3.7!. In addition we decompose the SO~7,1! spinors via Q(8)5Q(8) R1Q(8) L where

Q(8)R,L56 Ĝ9 Q(8)R,L , and write the normal spinors asQ(3)5Q(2) R1Q(2) L , where Q(2) R,L

56 s3 Q(2) R,L . We introduce a useful shorthand notation wherebyL[Q(2) L and R[Q(2) R .
Using these conventions, and also the identitys1 s25 i s3 , we can write

Q(11)5~ Q(8) R1Q(8) L ! ^ ~ R1L !,
~3.11!

V (11)5exp~ i p f 1^ s3! Ĝ9^ s3 .

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written

Q(8) R,L ^ R56ei p f Q(8) R,L ^ R,
~3.12!

Q(8) R,L ^ L57e2 i p f Q(8) R,L ^ L .

Because there are no nontrivial solutions to any of these four equations, subject to the res
that f Þ0 mod 1, we conclude that, as we approach an eight-dimensional fixed-plane,Q(11)→0.
Thus, supersymmetry is broken completely on any eight-dimensional fixed-plane associate
an element~3.1!.

Seven-dimensional fixed-planes:Seven-dimensional fixed-planes correspond to elem
( f 1 , f 2 , f 3 u P )5( 0 , f , f 8 u 0 ), where f Þ0 mod 1 andf 8Þ0 mod 1. In this case, the supe
charge transforms asQ(11)→V (11) Q(11) , where

V (11)5exp~ p f G7 G8 ! exp~ p f 8 G9 G10 ! . ~3.13!
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We write Q(11) as a tensor product of a seven-dimensional fixed-plane spinor with an S~4!
‘‘normal’’ spinor according toQ(11)5Q(7)^ Q(4) . Similarly, we use the following representatio
for the gamma matrices,

Gm5Ĝm ^ 1, m51, . . . ,6,

G61 i5Ĝ7^ g i , i 51, . . . ,4 , ~3.14!

G115Ĝ7^ g5 ,

where$ Ĝm , Ĝ7 % are the seven-dimensional Gamma matrices andg i are four-dimensional gamm
matrices. In addition, we decompose the normal SO~4! SO(4)→SO(2)3SO(2), where SO(2)
3SO(2) is a convenient maximal subgroup of SO~4!. Thus, we write the ‘‘normal’’ spinor as
Q(4)5Q(2)^ Q(2) , and the four-dimensional gamma matrices asg1,25s1,2^ 1 and g3,45s3

^ s1,2, wheres i are Pauli matrices. Also, using the identitiesg55g1g2g3g4 ands1s25 i s3 , we
deriveg552s3^ s3 . This allows us to rewrite~3.14! as

G1, . . . ,65Ĝ1, . . . ,6^ 1^ 1,

G7,85Ĝ7^ s1,2^ 1,
~3.15!

G9,105Ĝ7^ s3^ s1,2,

G1152Ĝ7^ s3^ s3 .

Note that the normal spinor can be decomposed asQ(4)5Q(4) R1Q(4) L where Q(4) R,L

56g5 Q(4) R,L . In terms of SO(2)3SO(2),SO(4),however, these same objects can be writ
as

Q(4)R5Q(2)R^ Q(2)L1Q(2)L ^ Q(2)R ,
~3.16!

Q(4)L5Q(2)R^ Q(2)R1Q(2)L ^ Q(2)L ,

whereQ(2) R,L56s3 Q(2) R,L . Using these results we can decompose the 11-dimensional s
charge in two steps. First, we writeQ(11)5Q(7)^ ( Q(4) R1Q(4) L ) and then we rewrite the term
Q(4) R,L using~3.16!. We now defineLL[Q(2)L ^ Q(2)L , and similar expressions forLR, RL, and
RR. Using these definitions, and also the conventions introduced above, we can write

Q(11)5Q(7)^ ~ LL1LR1RL1RR!,
~3.17!

V (11)5exp~ i p f 1^ s3^ 11 i p f 8 1^ 1^ s3 ! .

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written as

Q(7)^ LL5e2 i p ( f 1 f 8) Q(7)^ LL,

Q(7)^ LR5e2 i p ( f 2 f 8) Q(7)^ LR,
~3.18!

Q(7)^ RL5e1 i p ( f 2 f 8) Q(7)^ RL,

Q(7)^ RR5e1 i p ( f 1 f 8) Q(7)^ RR.

Therefore, as we approach a fixed-seven-plane, the bulk supercharge is projected accordi
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Q(11)→H Q(7)^ ~ LL1RR!, f 1 f 8P2 Z,

Q(7)^ ~ LR1RL !, f 2 f 8P2 Z,
~3.19!

and is projected to zero if neither of these conditions are met. Thus we retain some supersym
on a fixed-seven-plane if and only if one of the two sumsf 6 f 8 is an even integer. This is the cas
only if f 56 f 8 mod 1. In such cases, the bulk supersymmetry ishalved on the fixed-plane in
question.

Six-dimensional fixed-planes:Six-dimensional fixed-planes correspond to eleme
( f 1 , f 2 , f 3 u P)5(0,f , f 8 u 1 ), where f Þ0 mod 1 andf 8Þ0 mod 1. In this case the superchar
transforms asQ(11)→V (11) Q(11) , where

V (11)5exp~ p f G7 G8 ! exp~ p f 8 G9 G10 ! G11 . ~3.20!

We write Q(11) as a tensor product of a six-dimensional fixed-plane spinor with an SO~5! ‘‘nor-
mal’’ spinor according toQ(11)5Q(6)^ Q(5) , and we represent the Gamma matrices precisel
in ~3.15!. In addition, we decompose the SO~5,1! spinors via Q(6)5Q(6) R1Q(6) L , where

5Q(6) R,L56Ĝ7 Q(6) R,L , and write the normal SO~5! spinors asQ(5)5Q(4) R% Q(4) L , where
Q(4) R,L are given by~3.16!. Now, using the notation introduced above, we can write

Q(11)5~ Q(6)R1Q(6)L ! ^ ~ LL1LR1RL1RR!,
~3.21!

V (11)52exp~ i p f 1^ s3^ 11 i p f 8 1^ 1^ s3 ! Ĝ7^ s3^ s3 .

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written as

rQ (6) R,L ^ LL57e2 i p ( f 1 f 8) Q(7)^ LL,

Q(6) R,L ^ LR56e2 i p ( f 2 f 8) Q(7)^ LR,
~3.22!

Q(6) R,L ^ RL56e1 i p ( f 2 f 8) Q(7)^ RL,

Q(6) R,L ^ RR57e1 i p ( f 1 f 8) Q(7)^ RR.

Therefore, as we approach a fixed-six-plane, the bulk supercharge is projected according

Q(11)→5
Q(6)L ^ ~ LL1RR!, f 1 f 8P2 Z,

Q(6)R^ ~ LR1RL !, f 2 f 8P2 Z,

Q(6)R^ ~ LL1RR!, f 1 f 8P2 Z11,

Q(6)L ^ ~ LR1RL !, f 2 f 8P2 Z11 .

~3.23!

and is projected to zero if none of these conditions is met. Thus, we retain some supersym
on a fixed-six-plane if and only if one of the two sumsf 6 f 8 is integer~even or odd!. In generic
cases of this sort, the bulk supersymmetry isquarteredon the fixed-plane in question.@A special
case is when (f , f 8 )5( 1/2 , 1/2 ), in which case supersymmetry is merelyhalved. In that special
case the differencef 2 f 850 is an even integer, while the sumf 1 f 851 is an odd integer;
therefore, on the fixed-plane,Q(11) retains nonvanishing components of both the first and also
third case in~3.23!.# Note that in the cases where the supersymmetry is quartered the elema
necessarily has even orderN. In those cases there is necessarily an order-two element iG,
namelyaN/2, for which (f 1 , f 2 , f 3 u P)5(0,0,0u 1). The fixed-plane associated withaN/2 is 10-
dimensional, while the six-plane associated witha is a submanifold of this ten-plane.

Five-dimensional fixed-planes:Five-dimensional fixed-planes correspond to eleme
( f 1 , f 2 , f 3 u P)5( f 1 , f 2 , f 3 u 0 ), wheref 1,2,3Þ0 mod 1. In this case, the supercharge transform
Q(11)→V (11) Q(11) , where
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V (11)5exp~ p f 1 G5G6 ! exp~ p f 2 G7G8 ! exp~ p f 3 G9G10 !. ~3.24!

We write Q(11) as a tensor product of a five-dimensional fixed-plane spinor with a normal sp
according toQ(11)5Q(5)^ Q(6) . Similarly, we use the following representation for the gam
matrices,

Gm5gm ^ 1, m51, . . . ,4,

G41 i5g5^ Ĝ i , i 51, . . . ,6 , ~3.25!

G115g5^ Ĝ7 .

where$ gm , g5 % are five-dimensional gamma matrices andĜ i are six-dimensional gamma matr
ces. In addition, we decompose the normal SO~6! spinors using the decomposition SO(6
→SO(2)3SO(2)3SO(2),where SO(2)3SO(2)3SO(2) is a convenient maximal subgroup
SO~6!. Thus, we write the normal spinor asQ(6)5Q(2)^ Q(2)^ Q(2) , and the six-dimensiona

gamma matrices asĜ1,25s1,2^ 1^ 1 and Ĝ3,45s3^ s1,2^ 1, and Ĝ5,65s3^ s3^ s1,2, where

s1,2,3 are Pauli matrices. Now, using the relationĜ75 i Ĝ1¯Ĝ6 we then deriveĜ75s3^ s3

^ s3 . Using these expressions, it is possible to rewrite~3.25! as

G1, . . . ,45g1, . . . ,4^ 1^ 1^ 1,

G5,65g5^ s1,2^ 1^ 1,

G7,85g5^ s3^ s1,2^ 1, ~3.26!

G9,105g5^ s3^ s3^ s1,2,

G115g5^ s3^ s3^ s3 .

We now defineLLL[Q(2) L ^ Q(2) L ^ Q(2) L , and similar expressions forLLR, LRL, LRR,
RRR, RRL, RLR, and RLL, whereQ(2) R,L56s3 Q(2) R,L . In terms of these definitions an
conventions, we can write

Q(11)5Q(5)^ ~ RRR1RLL1LRL1LLR1LLL1LRR1RLR1RRL!,

V (11)5exp~ i p f 1 1^ s3^ 1^ 11 i p f 2 1^ 1 ^ s3^ 11 i p f 3 1^ 1 ^ 1^ s3 ! . ~3.27!

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written as

Q(5)^ LLL5e2 ip ( f 11 f 21 f 3) LLL, Q(5)^ RRR5e1 ip ( f 11 f 21 f 3) RRR

Q(5)^ LLR5e2 ip ( f 11 f 22 f 3) LLR, Q(5)^ RRL5e1 ip ( f 11 f 22 f 3) RRL

Q(5)^ LRL5e2 ip ( f 12 f 21 f 3) LRL, Q(5)^ RLR5e1 ip ( f 12 f 21 f 3) RLR

Q(5)^ LRR5e2 ip ( f 12 f 22 f 3) RLL, Q(5)^ RLL5e1 ip ( f 12 f 22 f 3) LRR.

Therefore, as we approach a fixed-five-plane, the bulk supercharge is projected according

Q(11)→5
Q(5)^ ~ RRR1LLL !, f 11 f 21 f 3P2 Z,

Q(5)^ ~ RLL1LRR!, f 12 f 22 f 3P2 Z,

Q(5)^ ~ LRL1RLR!, f 12 f 21 f 3P2 Z,

Q(5)^ ~ LLR1RRL!, f 11 f 22 f 3P2 Z,

~3.28!
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and is projected to zero if none of these conditions are met. Thus, we retain some supersym
on a fixed-five-plane if and only if at least one of the four sumsf 16 f 26 f 3 is an even integer. In
generic cases of this sort, the bulk supersymmetry isquarteredon the fixed-plane in question.

Four-dimensional fixed-planes:Four-dimensional fixed-planes correspond to eleme
( f 1 , f 2 , f 3 u P )5( f 1 , f 2 , f 3 u 1 ), wheref 1,2,3Þ0 mod 1. In this case the supercharge transfor
asQ(11)→V (11) Q(11) , where

V (11)5exp~ p f 1 G5 G6 ! exp~ p f 2 G7 G8 ! exp~ p f 3 G9 G10 ! G11 . ~3.29!

We write Q(11) as a tensor product of a four-dimensional fixed-plane spinor with a normal sp
according toQ(11)5Q(4)^ Q(7) , and we represent the gamma matrices precisely as in~3.25!.
Furthermore, we decompose the four-dimensional spinors asQ(4)5Q(4) R1Q(4) L where
Q(4) R,L56g5 Q(4) R,L . We also write the SO~7! normal spinor asQ(7)5Q(6)R% Q(6)L . Finally,
we can decompose the chiral six-dimensional spinorsQ(6)R,L into two-dimensional chiral spinors
as descried above. Using these conventions, we can write

Q(11)5~ Q(4) R1Q(4) L ! ^ ~ RRR1RLL1LRL1LLR1LLL1LRR1RLR1RRL!,
~3.30!

V (11)5exp~ i p f 1 1^ s3^ 1 ^ 11 i p f 2 1^ 1 ^ s3^ 11 i p f 3 1^ 1 ^ 1 ^ s3 ! g5

^ s3^ s3^ s3 .

The fixed-plane conditionQ(11)5V (11) Q(11) can now be written as

Q(4) R,L ^ LLL57e2 ip ( f 11 f 21 f 3) LLL,Q(4) R,L ^ RRR56e1 ip ( f 11 f 21 f 3) RRR,

Q(4) R,L ^ LLR56e2 ip ( f 11 f 22 f 3) LLR, Q(4) R,L ^ RRL57e1 ip ( f 11 f 22 f 3) RRL,

Q(4) R,L ^ LRL56e2 ip ( f 12 f 21 f 3) LRL, Q(4) R,L ^ RLR57e1 ip ( f 12 f 21 f 3) RLR,

Q(4) R,L ^ LRR57e2 ip ( f 12 f 22 f 3) RLL, Q(4) R,L ^ RLL56e1 ip ( f 12 f 22 f 3) LRR.

Therefore, as we approach a fixed-four-plane, the bulk supercharge is projected according

Q(11)→
¦

Q(4)L ^ LLL 1 Q(4)R^ RRR, f 11 f 21 f 3P2 Z,

Q(4)R^ LRL 1 Q(4)L ^ RLR, f 12 f 21 f 3P2 Z,

Q(4)R^ RRL1 Q(4)L ^ LLR, f 11 f 22 f 3P2 Z,

Q(4)L ^ RLL 1 Q(4)R^ LRR, f 12 f 22 f 3P2 Z,

Q(4)R^ LLL 1 Q(4)L ^ RRR, f 11 f 21 f 3P2 Z11,

Q(4)L ^ LRL 1 Q(4)R^ RLR, f 12 f 21 f 3P2 Z11,

Q(4)L ^ RRL1 Q(4)R^ LLR, f 11 f 22 f 3P2 Z11,

Q(4)R^ RLL 1 Q(4)L ^ LRR, f 12 f 22 f 3P2 Z11,

~3.31!

and is projected to zero if none of these conditions are met. Thus, we retain some supersym
on a fixed-four-plane if and only if any one of the four sumsf 16 f 26 f 3 is an integer~even or
odd!. In generic cases of this sort, supersymmetry iseighthedon the fixed-plane in question.

There are special cases, however. For instance, for each of the two cases where (f 1 , f 2 , f 3 )
are given by~1/2 , 1/3 , 1/6! and by ~1/2 , 1/4 , 1/4!, one sumf 12 f 22 f 350 is an even integer
while another sumf 11 f 21 f 351 is an odd integer. Therefore, on the fixed-plane,Q(11) retains
nonvanishing components of both the fourth and the also the fifth case in~3.31!. Thus, supersym-
metry is merely quartered toD54,N52, rather than eighthed toD54,N51, in these cases.~If the
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fixed-four-plane in question is a submanifold of the fixed-plane of another element ofG, one needs
to account for the action of this other element as well before drawing conclusions as to the a
of fixed-plane supersymmetry.!

Note that the pairs of summands indicated in~3.31! have correlations owing to the Majoran
constraint onQ(11) . As a result, the two apparent summands in each of these expressions a
describe the same degrees of freedom. In terms of the choices we have made, this gives
Majorana spinor supercharge in four dimensions. The pairs which appear in~3.31! represent left-
and right-handed chiral projections of this four-dimensional Majorana supercharge. As is
known, in four dimensions spinor fields which are Majorana may be equally well represen
terms of either chiral projection.

IV. GENERALIZATION TO NON-ABELIAN ORBIFOLD GROUPS

One obvious extension of our criterion, still for orbifolds of tori of our class, is to consideall
the automorphisms of the underlying lattices. In addition to the rotations and flips we have a
considered, the only new type of ‘‘generating’’ automorphism to deal with is the permutatio
the coordinatesxi . In fact, one can easily lift these permutation actions to spinors. Here ar
details.

The lattices of our class are all of the form

L5~A1!a
% ~A2!b , ~4.1!

with a12b5n, the dimension of the orbifold. Such a lattice has an automorphism group of o
2a
•a! •b! •12b, a product of four factors. Let’s check where these two pairs of factors come f

The first pair, 2a•a!, keeps track of the sign flips on each ofa possiblexi ~the 2a), and
permutations of the samea xi ’s ~the a!). We have already described a way to lift the flips
spinors, viaG i , so we only need to lift the permutations. The second pair,b! •12b, keeps track of
the permutations of theb different copies ofA2 , i.e., of corresponding ordered pairs (xi ,xi 11)
~giving the b!), and automorphisms internal to each of theb A2’s ~giving the 12b, as the auto-
morphism group of theA2 lattice is the dihedral groupD6 of order 12!. Consider a singleA2

lattice in the ‘‘(x,y)-plane.’’ The dihedral automorphism groupD6 consists entirely of the identity
rotations byr k

ª2pk/6, k51,2,3,4,5, and flips (s,sr,sr2,sr3,sr4,sr5) across lines through oppo
site vertices or opposite edge centers of the period hexagon~we can assume thats is the flip across
thex-axis sendingy°2y). In particular,D6 is generated by a rotationr and a flips, for each of
which we have already described a lift to spinors. What remains is again to describe the ef
the permutation automorphisms on spinors.

Since every permutation of thexi can be expressed as a product of simple transposit
xi↔xj , iÞ j , it suffices to write out the lift of such a transposition. Imagine the (xi ,xj )-plane.
Rotation counterclockwise byp/2 radians sendsxi°xj andxj°2xi . This is represented in the
Clifford algebra by

expS p

4
G i j D5cos~ p/4 !1sin~ p/4 ! G iG j5S&2 1

&

2
G iG j D . ~4.2!

Now compose this with the flip sendingxi°2xi given byG i , yielding

G i•S&2 1
&

2
G iG j D5

&

2
~ G i1G j ! . ~4.3!

We can build any permutation we like out of a product of these, and in particular all o
remaining automorphisms come from mixing these with the rotations and flips as abov
adding such permutations, we can obtain a complete supersymmetric restriction criterion
orbifolds modelled on lattices of type~4.1!. In particular, this allows one to check the supersy
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metry constraints for a large class ofnon-Abelianorbifold groups. The generalized supersymm
ric restriction theorem, including the extension to non-Abelian orbifold groups, will be discu
in a forthcoming paper.

V. SOFT ORBIFOLDS AND G2-STRUCTURES

Consider the supersymmetric orbifold ofG5(Z2)3 labeled~1111111! in Table I. The corre-
sponding representation ofG on R7 is given by the direct sum of the seven nontrivial charact
G [ i , j ,k] , each with multiplicity one. The character table forG5^a,b,g& is given in Table VII, and,
by following the prescription given in Sec. II C, we see that the action of these generators
coordinate 7-tuple (x1 ,...,x7) is given by

a: ~x1 ,x2 ,x3 ,2x4 ,2x5 ,2x6 ,2x7!, ~5.1!

b: ~x1 ,2x2 ,2x3 ,x4 ,x5 ,2x6 ,2x7!, ~5.2!

g: ~2x1 ,x2 ,2x3 ,x4 ,2x5 ,x6 ,2x7!. ~5.3!

Note that thisG-action preserves theG2-invariant differential 3-formw0 on R7,

w0ªdx1231dx1451dx1671dx2462dx2572dx3472dx356,

where dxi jkªdxi∧dxj∧dxk . Such an action defines aG2-structureon the orbifoldT7/G.
Our supersymmetric hard orbifold~1111111! is one of a family of orbifolds considered b

Joyce.@In fact, in the notation of Ref. 15 Eqs.~23!–~25!, ours corresponds tob15b25c15c3

5c550. We will refer to notation and examples from Ref. 7 instead.# It was his goal to construc
compact manifolds with holonomy groupG2 . To this end he developed in Refs. 14, 15, and
machinery which, starting with a sufficiently simple orbifold admitting aG2-structure, establishe
the existence of such a metric on a ‘‘resolution’’ of the orbifold. Joyce’s method depends o
existence of certainR-data ~‘‘ R’’ for resolution! which, for a given orbifold withG2-structure,
may yield a large number of topologically distinctG2 holonomy manifolds as resolutions.

In Ref. 7 Secs. 12.2, 3, and 5 three paricular softenings are considered. The actions
generators ofG take the form

a: ~x1 ,x2 ,x3 ,2x4 ,2x5 ,2x6 ,2x7!, ~5.4!

b: ~x1 ,2x2 ,2x3 ,x4 ,x5 ,b2x6 ,2x7!, ~5.5!

g: ~2x1 ,x2 ,2x3 ,x4 ,c2x5 ,x6 , 1
2 2x7! , ~5.6!

with b,cP$0,1
2%. In fact, Joyce considers the three cases

TABLE VII. Character table for the group (Z2)3.

(Z2)3 V G [0,0,1] G [0,1,0] G [0,1,1] G [1,0,0] G [1,0,1] G [1,1,0] G [1,1,1]

1 1 1 1 1 1 1 1 1

g 1 2 1 2 1 2 1 2

b 1 1 2 2 1 1 2 2

bg 1 2 2 1 1 2 2 1

a 1 1 1 1 2 2 2 2

ag 1 2 1 2 2 1 2 1

ab 1 1 2 2 2 2 1 1

abg 1 2 2 1 2 1 1 2
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~b,c!5~0,1
2! , ~ 1

2 ,0! , and ~ 1
2 , 1

2! ,

and shows that each of these admits a set ofR-data defining aG2 holonomy resolution. In each
case the generatorsa, b, andg act with fixed-points as before, but some other elements, like

bg: ~2x1 ,2x2 ,x3 ,x4 ,c2x5 ,b1x6 , 1
2 1x7! , ~5.7!

act freely. Thus softening an orbifold has the effect of simplifying the singularities. The singu
ties of the orbifold~1111111! are too complicated to visibly admit a compatible set ofR-data,
hence his interest in various softenings with simpler singularities. Furthermore, at least for
simplest examples, the set of fixed-plane dimensions associated to a hard orbifold cont
subsets those of all of its softenings. For this reason, one expects that much of the supersym
restriction analysis of Sec. III can be usefully adapted to the case of soft orbifolds.

It is clear that having aG2-structure on a hard orbifold implies such a structure on all of
softenings. This raises the intriguing question of the relationship between our supersym
condition and suchG2-structures: Do all supersymmetric hard orbifolds~and hence all of their
softenings! carry aG2-structure? What about the converse: Do all orbifolds with aG2-structure
arise via softening from supersymmetric hard orbifolds? What about the more subtle iss
resolvability as aG2-manifold ~i.e., existence of compatibleR-data!? These are all questions to b
addressed in future work.

VI. CONCLUSIONS

We have described a systematic method for classifying supersymmetric orbifold comp
cations ofM -theory, specifically hard orbifolds defined by pseudo-planar representations of
lian groups of order<12. Although we stopped our ‘‘periodic table’’~Table I! at order 12, the
methods developed here apply to groups of arbitrary order, and the algorithmics are such th
an extension~using Mathematica! is computationally feasible.

It is physically relevant that we demand orbifold actions be compatible with particular latt
By doing this we are able to keep control over two separate problems. On the one hand
studying aspects of supersymmetric singularities. On the other hand, however, we are at th
time learning something about which sets of such singularities, and their neighborhoods,
assembled together to create a global supersymmetric compactification space. Elucidat
relationship between our own supersymmetric configurations of singularities and those of
secting branes as studied by other groups24–35 seems an important direction for further investig
tion.

Furthermore, we touch upon the interesting mathematical problem of classifyingG2 mani-
folds. The vast majority of known compactG2 holonomy manifolds arise by Joyce’s resolution
singularities from orbifolds ofT7. Physically one expects that seven-dimensional supersymm
compactification spaces of the sort we are studying should admit suchG2 resolutions. In order to
compare in general Joyce’s ‘‘resolution data’’ to the constraints arising from our global supe
metric restriction, it seems necessary to formulate the restriction for the soft orbifolds o
introduction, as all of Joyce’s examples are of this sort.
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APPENDIX: THE C-MATRICES FOR SELECTED GROUPS

By applying the simple algorithm described in Sec. II B, we are able to derive theC-matrix
for any pseudoplanar groupG5G13 ¯ 3Gn , whereGiP$ Z2 , Z3 , Z4 % for 1< i<n. In Tables
VIII and IX we exhibit these for all cases for whichu G u<12.

TABLE VIII. The C-matrices for pseudoplanar Abelian groups of order<8.

TABLE IX. The C-matrices for pseudoplanar Abelian groups of orders 9
and 12.
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In this paper we present a method of constructing explicit classes of solutions of the
Chaplygin and Born–Infeld systems of equations in 111 dimensions. The ap-
proach adopted here is based on the symmetry reduction method for PDE’s. A
systematic use of the subgroup structure of the invariance group is made to gener-
ate symmetry variables. We concentrate only on the case when the symmetry vari-
ables are invariants of the subgroups having dimension one. The set of symmetry
variables enables us to reduce, after some transformation, the original equations to
many possible ODE’s. We describe in detail how a composition of Lie subalgebras
and singularity analysis applied to these systems provides us with classes of ana-
lytic solutions. Several new types of algebraic, rational and solitonlike solutions
~among them kinks, bumps and multiple wave solutions! have been obtained in
explicit form. We discuss also the existence of several classes of separable solutions
admitted by the Chaplygin and Born–Infeld equations. Some physical interpreta-
tion of these results in the areas of fluid dynamics and field theory are given.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1576496#

I. INTRODUCTION

The motion of ad-brane in (d11) spatial dimensions moving in (d11,1)-dimensional
space–time is described by the Nambu–Goto~NG! action as given by Jackiw.1 If Xm

5(X0,X1,...,Xd,Xd11) describes the target space–time~in which thed-brane moves!, and fa

5(f0,f1,...,fd) are world-volume variables which parametrize thed-dimensional extended ob
ject evolving inf0, then the Nambu–Goto action reads

I NG 5 E df0 df1
¯ dfdA~21!d detS ]Xm

]fa

]Xm

]fb D . ~1!

This action is parametrization invariant, and in particular two different choices of the param
zation lead, respectively, to a nonrelativistic fluid dynamical model~the Chaplygin gas! and a
relativistic fluid ~the Born–Infeld model!. In both cases, we choose (X1,X2,...,Xd) to coincide
with (f1,f2,...,fd) and rename them as the spatial vectorr in d dimensions. The remaining
variablesX0, Xd11, andf0 are treated separately.

A. The Chaplygin gas

We now discuss the two distinct parametrizations, beginning with the nonrelativistic fluid
define

a!Electronic mail: grundlan@crm.umontreal.ca
b!Electronic mail: hariton@dms.umontreal.ca
c!Electronic mail: hussin@dms.umontreal.ca
28740022-2488/2003/44(7)/2874/17/$20.00 © 2003 American Institute of Physics
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X1 5
1

&
~X01Xd11! 5 t, X2 5

1

&
~X02Xd11! 5 u~r ,t ! ~2!

and then identifyt with A2l f0, wherel>0 is a constant. This is called the light-cone para
etrization. The Nambu–Goto action~1! then reduces to the Chaplygin action1

I l 5 22Al E dt dr Au t 1 1
2 ~¹u!2. ~3!

This action leads to the Euler–Lagrange equations of the form

]

]t S 1

Au t 1 1
2 ~¹u!2D 1 ¹ • S ¹u

Au t 1 1
2 ~¹u!2D 5 0, ~4!

which is known as the Chaplygin equation.2 It should be noted that this equation is equivalent
the following system of differential equations for the densityr(r ,t) and velocity potentialu(r ,t)
of a fluid in the interactive case (l Þ 0)

r t 1 ~¹r!•~¹u! 1 r ~¹2u! 5 0, ~5!

u t 1
1

2
~¹u!2 5

l

r2 . ~6!

These equations~5! and ~6! correspond, respectively, to the equation of continuity and Eul
force equation for an ideal nonrelativistic fluid of zero vorticity, in which the pressureP is related
to the densityr by the equation1

P 5
22l

r
. ~7!

The velocityv of the fluid is simply the gradient of the potentialv5¹u. It is possible to eliminate
the variabler by using Eq.~6! to express it in terms ofu. In this way the system~5! and ~6!
reduces to Eq.~4!.

In the free case (l50) the variabler becomes completely independent, and the equations~5!
and ~6! are decoupled. Equation~6! can be solved foru, and then equation~5! solved forr. A
detailed discussion of the symmetry group in one spatial dimension can be found in Ref. 3
case is not derived from the Nambu–Gotod-brane.

B. The Born–Infeld model

For the relativistic model, the variableX0 is renamedct, wherec is the speed of light, and is
also identified withcf0. The remaining target space variableXd11 is renamedu(r ,t)/c, a func-
tion of r and t. This is called the Cartesian parametrization. The Nambu–Goto action~1! then
reduces to the Born–Infeld action1

I a 5 2a E dt dr Ac2 2 ~]mu!2. ~8!

The corresponding Euler–Lagrange equation is found to be

]nS 1

Ac2 2 ~]mu!2
]nu D 5 0, ~9!
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which in turn corresponds to the Born–Infeld equations

r t 1 ¹ • S ¹uA r2c21a2

c21~¹u!2D 5 0, ~10!

u t 1 rc2Ac21~¹u!2

r2c21a2 5 0. ~11!

It should be noted that at the limit wherec → ` the relativistic Born–Infeld model reduces to th
nonrelativistic Chaplygin model discussed previously, wherel is identified witha2/2.1 A solution
uNR(r ,t) of the Chaplygin equation~4! is thus related to its relativistic counterpartuR(r ,t) for the
Born–Infeld equations~9!. This will be discussed in further detail in Sec. III C.

C. Objective and organization

The objective of this paper is to use the method of symmetry reduction~MSR! to determine
group-invariant solutions of the Chaplygin and Born–Infeld equations. For simplicity, we
restrict ourselves to the interactive one-dimensional case~that is in one spatial dimensionx and
time t). In future work, it will be our objective to extend this analysis to two-dimensional
supersymmetric generalizations1,4,5 of this theory.

In Sec. II we begin by describing the structure of the six-dimensional Lie algebra w
generates the symmetries of the system of Eqs.~5! and~6! of the Chaplygin gas. We also classi
the associated one-parameter subalgebras in terms of conjugacy classes. Indeed, since th
differential equations involved have only two independent variables, a one-dimensional su
bra ~which generates a one-dimensional orbit! will be sufficient to reduce the system to ordina
differential equations of the second order. In Sec. III we proceed to use MSR to dete
solutions which are invariant under the various subalgebras, and compare the resulting solu
those determined by Jackiw with the Legendre method of Riemann coordinates.1 We use the link
between the Chaplygin and Born–Infeld models to generate solutions of the Born–Infeld m
In Sec. IV we discuss the separation of variables admitted by the Chaplygin and Born–
equations, which enables us to construct the families of solitonlike solutions. Finally, Se
summarizes the results and contains a future outlook concerning the possible extension
classical Lie approach to partially invariant solutions~of defect d51) for the Chaplygin and
Born–Infeld equations.

II. THE SYMMETRY GROUP AND CLASSIFICATION OF SUBALGEBRAS

Let us now investigate the group of symmetries of the interactive Chaplygin gas in one s
dimension. This fluid is now governed by the system of equations

u t 1
1

2
~ux!

2 5
l

r2 , r t 1 rxux 1 r uxx 5 0, ~12!

obtained from Eqs.~5! and~6! by takingr5x. Following the standard method for determining t
symmetry algebra of a system of differential equations,6 we find that the symmetry algebraG of
the system~12! is spanned by the six independent vector fields

P15]x, P05] t, B5t]x1x]u, Z5]u,
~13!

D15x]x12t] t1r]r , D25x]x12u]u2r]r .

The commutation relations of the Lie algebraG are given in Table I.
The vector fieldsP1 and P0 generate translations in space and time, respectively, whiZ

generates a translation in the dependent variableu(r ,t). The elementB corresponds to a Galilea
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boost so that$P0 ,P1 ,B% generate the Galilean algebra in one spatial dimension. The fieldsD1 and
D2 correspond to two different types of dilatation. The groupG of symmetries is obtained by
integrating the vector fields inG and it acts on the independent and dependent variables as

x̃ 5 ed11d2~~x2x0!1b~ t2t0!!,

t̃ 5 e2d1~ t2t0!,
~14!

ũ 5 e2d2~u1b~x2x0!1 1
2 b2~ t2t0!1z!,

r̃ 5 ed12d2r,

whereg5(d1 ,d2 ,b,x0 ,t0 ,z) is an arbitrary element ofG, all the parameters being real numbe
The Levi decomposition of the algebraG is given by

G 5 $D1 ,D2 ,B% œ $P1 ,P0 ,Z% 5 Lœ N, ~15!

whereL5$D1 ,D2 ,B% andN5$P1 ,P0 ,Z% is an Abelian ideal, so that we can directly apply t
method of subalgebra classification7 to give the nonequivalent one-dimensional splitting and n
splitting subalgebras ofG. The splitting subalgebras are given by

L15$D1%, L25$D2%, L35$B%, L4,a5$D11aD2 , aPR/$0%%,

L5,«5$D11D21«B, «561%,

as subalgebras ofL, and by

N15$P0%, N25$P1%, N35$Z%, N4,«5$Z1«P0 ,«561%, ~16!

as subalgebras ofN. The nonsplitting subalgebras inG are given by

K1,«5$D11«Z, «561%, K2,«5$D12D21«P1 , «561%,
~17!

K3,«5$D21«P0 , «561%, K4,«5$B1«P0 , «561%.

All of these subalgebras, exceptN3 which does not contain any derivative with respect to
independent variablesx and t, will give rise to a reduction process and to invariant solutions

III. SYMMETRY REDUCTION AND GROUP-INVARIANT SOLUTIONS

In this section, we use the method of characteristics to determine the invariants and re
differential equations corresponding to each subalgebra listed in Sec. II. In particular for OD
second order it is possible to determine whether they are of Painleve´ type ~i.e., whether all their

TABLE I. Commutation table for the Lie algebraG.

X\Y D1 D2 B Z P1 P0

D1 0 0 B 0 2P1 22P0

D2 0 0 2B 22Z 2P1 0
B 2B B 0 0 2Z 2P1

Z 0 2Z 0 0 0 0
P1 P1 P1 Z 0 0 0
P0 2P0 0 P1 0 0 0
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critical points are independent of the initial data!. When it is possible, we determine explic
solutions of the Chaplygin and Born–Infeld equations, and compare the former to the ones
mined by Jackiw.1

A. Reduction of the system

Passing systematically through all subgroups ofG with orbits of codimension one, we obtai
all symmetry variables. Substituting each of these into the equations~12! we reduce them to a
system of ODE’s. The result of this analysis can be summarized as follows, wherej is the
symmetry variable,F(j) and G(j) are invariant functions related tou and r, respectively, and
have to be determined using the reduced differential equations. The different classes of sym
reductions are summarized in Tables II and III. They lead us to 14 different types of solutio

B. Group-invariant solutions of the Chaplygin model

Let us now discuss certain classes of solutions to the Chaplygin equations obtained fro
solutions to the reduced equations determined in Sec. III A. We perform a singularity analy
determine which of these reduced ODE’s can be transformed to the standard Painleve´ form.

For the caseL1 , we get

u~x,t ! 5
1

4Aa0

lnS Aa0x21t

Aa0x22t
D 1 c0 , r~x,t ! 5 A2l

a0
S t22a0x4

x3 D , ~18!

wherea0 andc0 are real constants, anda0Þ0. The velocity is given by

TABLE II. Invariants of the subalgebras of the Lie algebraG.

Subalgebra Symmetry variable Functionu Functionr

L15$D1% j5
At

x
u5F(j) r5AtG(j)

L25$D2% j5t u5x2F(j) r5
1

x
G~j!

L35$B% j5t u5F~j!1
1

2j
x2 r5G(j)

L4,215$D12D2% j5x u5
1

t
F~j! r5tG(j)

L4,15$D11D2% j5A t

x
u5tF(j) r5G(j)

L4,a5$D11aD2 , aÞ61,0% j5t1/2x2[1/(11a)] u5taF(j) r5t [(12a)/2]G(j)

L5,«5$D11D21«B, «561% j5
2x

t
2« ln t u5

1
2tF~j!1

«

4
jt ln t1

1
8t~ln t!2 r5G(j)

N15$P0% j5x u5F(j) r5G(j)
N25$P1% j5t u5F(j) r5G(j)

N4,«5$Z1«P0 , «561% j5x u5F(j)1«t r5G(j)

K1,«5$D11«Z, «561% j5
At

x
u5F(j)1« ln x r5xG(j)

K2,«5$D12D21«P1 , «561% j5x2
1
2« ln t u5

1

t
F~j! r5tG(j)

K3,«5$D21«P0 , «561% j5xe2«t u5x2F(j) r5
1

x
G~j!

K4,«5$B1«P0 , «561% j5«x2
1
2t2 u5F(j)1jt1

1
6t3 r5G(j)
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v~x,t ! 5
xt

t22a0x4 . ~19!

This solution is defined forAa0x2.utu. It is noticeable that att50 this solution reduces to
u5c0 , r5A2la0x. Thus, we have a zero velocity and linear density of the fluid.

In an analysis performed on the Chaplygin gas in one spatial dimension, Jackiw1 considered
the following method in order to determine solutions of the Chaplygin gas equations. A Leg
transform is used to exchange the independent variables (x,t) with the dependent ones~u,r!. In
fact, the new independent variables used are

s 5 A2l/r, p 5
]u

]x
5 ux , ~20!

wherep is exactly the velocityv(x,t). The following function ofs andp is then defined:

C~p,s! 5 u~x,t ! 2 tu t 2 xux . ~21!

From the equations~12! it is easily shown that

C~p,s! 5 u~x,t ! 1 1
2 t~p22s2! 2 xp ~22!

and so

]C

]p
5 tp 2 x,

]C

]s
5 2ts. ~23!

The equations~12! can then be rewritten as the linear equation

TABLE III. Reduced equations of the subalgebras of the Lie algebraG.

Subalge-
bra Equation inG Equation inF

L1 G 5 Al(
1
2jFj 1

1
2j4(Fj)

2)21/2 j2Fjj 5 jFj 1 4j4(Fj)
2

L2 G 5 Al(Fj 1 2F2)21/2 Fjj 1 4FFj 5 0
L3 G 5 Al(Fj)

21/2 jFjj 2 2Fj 5 0
L4,21 G 5 Al(

1
2(Fj)

2 2 F)21/2 FFjj 2 (Fj)
2 1 F 5 0

L4,1 G 5 Al(F 1
1
2jFj 1

1
8j6(Fj)

2)21/2 2
3
8jFj 1

3
4j5FFj 2

1
8j2Fjj 1

1
4j6FFjj 5 0

L4,a G 5 AlS aF 1
1
2jFj 1

1

2~a11!2 j2a14~Fj!
2D 21/2

1
2a~12a!F 1 ~

1
82

1
2a!jFj 1

~12a!

2~11a!2 j2a14~Fj!
2

1
a~a12!

~a11!2 j2a13FFj

2
1
8j2Fjj 1

a

~a11!2 j2a14FFjj 5 0

L5,« G 5 Al(
1
2F 2

1
2«Fj 1

1
2(Fj)

2 2
1
2jFj 1

1
4«j)21/2 2«Fj 1 2j2Fjj 2 «j 1 2Fjj 2 1 2 8FFjj 5 0

N1 G 5 Al(
1
2(Fj)

2)21/2 0 5 0

N2 G 5 Al(Fj)
21/2 Fjj 5 0

N4,« G 5 Al(« 1
1
2(Fj)

2)21/2 Fjj 5 0

K1,« G 5 AlS 1

2j
Fj 1

1
2j2~Fj!

2 2 «jFj 1
1
2D 21/2

Fj 2 jFjj 1 4«j3Fjj 1 4j3(Fj)
2 5 0

K2,« G 5 Al(2F 2
1
2«Fj 1

1
2(Fj)

2)21/2 F 1
3
4«Fj 1 FFjj 1

1
8Fjj 2 (Fj)

2 5 0
K3,« G 5 Al(2«jFj 1 2F2 1 2jFFj 1

1
2j2(Fj)

2)21/2 Fj 1 jFjj 2 8«FFj 1 2j«(Fj)
2 2 4«jFFjj 5 0

K4,« G 5 Al(j 1
1
2(Fj)

2)21/2 jFjj 2
1
2Fj 5 0
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]2C

]p2 2
]2C

]s2 1
2

s

]C

]s
5 0. ~24!

The general solution of~24! is given in terms of two arbitrary functionsf 5 f (p1s) and
g5g(p2s) ~wherep6s are called Riemann coordinates!,

C~p,s! 5 f ~p1s! 2 s f8~p1s! 1 g~p2s! 1 sg8~p2s!. ~25!

It is easy to show that the solution~18! corresponds to Jackiw’s solution where

C~p,s! 5
1

4Aa0

lnS s1p

s2pD 1 c0 1
1

2Aa0

sp

~s2p!~s1p!
, ~26!

and

f ~z! 5
1

4Aa0

ln z 1
1

2
c0 , g~2z! 5 2

1

4Aa0

ln z 1
1

2
c0 .

where, for each of the functionsf andg, the variablez represents the corresponding argument
described in Eq.~25!.

For L2 , we have

u~x,t ! 5 2a0x2S 11e4a0(t2t0)

12e4a0(t2t0)D , r~x,t ! 5A l

2a0
2

1

x
, ~27!

v~x,t ! 5 22a0xS 11e4a0(t2t0)

12e4a0(t2t0)D , ~28!

wherea0 and t0 are real constants, anda0Þ0. This solution has a singularity at linet5t0 which
seems to indicate that it does not correspond to a physical theory at timet0 . As t→ 1`, u
approaches the functionf 1(x)5ax2, and ast→ 2` it approachesf 2(x)52ax2. The densityr
has a pole atx50 and is constant in time. This solution corresponds to the function~25! given
explicitly by

C~p,s! 5 2
sp

4a0
1

1

8a0
~p22s2!lnS p1s

p2sD 1
1

2
t0~p22s2!,

where

f ~z! 5
t0

4
z2 1

1

8a0
z2 ln z, g~z! 5

t0

4
z2 2

1

8a0
z2 ln z. ~29!

For L3 , we have

u~x,t ! 5
x2

2t
1

lt3

3a0
2 1 c0 , r~x,t ! 5

a0

t
, ~30!

so that the velocity is now

v~x,t ! 5
x

t
, ~31!
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wherea0 andc0 are real constants, anda0Þ0. There is a pole singularity att50. As t→ `, the
velocity potentialu becomes unbounded and the densityr approaches zero. The velocity~31! is
linear in x, but also approaches zero ast→ `. This solution corresponds to the case

C~p,s! 5 c0 2
a0s3

3A2l
, ~32!

where f andg in ~25! are given by

f ~z! 5
1

2 S c01
1

6A2l
a0z3D , g~z! 5

1

2 S c02
1

6A2l
a0z3D .

It is interesting to note that the solution~32! of the equation~24! is invariant under translation by
the variablep. This means that invariance under Galilean boost of the original set~12! implies a
p-invariant solution for~24!.

For L4,21 , we have

u~x,t ! 5
2

kt
sinh2S 1

2
Ak~x1c0! D , r~x,t ! 5 Akl

2

t

sinh2~ 1
2Ak~x1c0!!

, ~33!

wherek andc0 are real constants. It is possible to rewrite this solution in a more familiar form
we takec05 ip/Ak and definea05 1

2Ak, we obtain the solution

u~x,t ! 5 2
1

2a0
2t

cosh2~a0x!, r~x,t ! 5 A2l
a0t

cosh2~a0x!
, ~34!

v~x,t ! 5 2
1

a0t
cosh~a0x! sinh~a0x!, ~35!

which is exactly the soliton solution given by Jackiw.1 This solution is not singular inx. The
densityr is zero at timet50 and becomes unbounded ast→ `. This solution corresponds to th
case

C~p,s! 5
p

2a0
lnS s1p

s2pD 2
s

a0
, ~36!

whereC(p,s)5 ~25! with

f ~z! 5 g~2z! 5
z

2a0
ln z.

For L4,1, we get

u~x,t ! 5 a0t 2
a1

2
x, r~x,t ! 5A l

1
8 a1

21a0

. ~37!

Herer andv are constant. In this case, the variablesp ands defined in Eq.~20! are both constant
and so the change of variable (x,t)→ (s,p) is noninvertible. This singular solution therefor
cannot be found from the general solution proposed by Jackiw in the sense that we cann
corresponding functionsC(p,s), f (z), andg(z).
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For the caseL4,a with aÞ61,0, we have to solve the equation forF listed in Table III. The
analysis of this equation gives rise to a family of ODE’s which do not enter the classificatio
Painlevé–Gambier8,9 since they do not possess the Painleve´ property.10

For L5,« , the method of symmetry reduction on ODE’s can be used to reduce the order
equation forF listed in Table III. Using the infinitesimal symmetry generator 2]x1x]F , we make
the following change of variable:6

y 5 4F 2 x2, w 5 1
2 x, ~38!

which allows us to rewrite the equation as

2~y21!wyy 1 16~12y!~wy!3 1 4«~wy!2 5 0. ~39!

Settingz(y)5wy , we obtain the first-order ODE

2~y21!zy 1 16~12y!z3 1 4«z2 5 0, ~40!

which is Abel’s equation of the first kind, and therefore does not possess explicit anal
solutions.11 In the literature12 one can find existence theorems for solutions of~40! with property
zy(0)50 and limu→` z(u)50. For some solutions their Taylor expansions were found and ot
are given in the tables.12

For N1 , u5u(x) is an arbitrary function ofx and we have

r 5
A2l

ux
, ~41!

v~x,t ! 5 ux Þ 0. ~42!

Thus, any static velocity potential will satisfy the system of equations~12! provided that the
density is also static and is related tou through equation~41!. Such a solution cannot be obtaine
from the general solution~25! since the change of variables (x,t)→ (s,p) is again singular.
Indeed, we haves5p5ux .

For N2 , we have

u~x,t ! 5
l

a0
2 t 1 c0 , r~x,t ! 5 a0 . ~43!

Here we obtain uniform~in x) solutions where the potentialu evolves in time in a linear manne
Thus, the velocity is zero and the density constant in both time and space.

For N4,« , we have

u~x,t ! 5 a0x 1 «t 1 a1 , r~x,t ! 5A l
1
2 a0

21«
, ~44!

and

v~x,t ! 5 a0 , ~45!

wherea0 anda1 are constants. Again, we have a trivial constant solution.
For K1,« , we get

u~x,t ! 5 1
2 « ln~x222«t ! 1 c0 , r~x,t ! 5

A2l~x222«t !

A4«t2x2
, ~46!
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v~x,t ! 5
«x

x222«t
. ~47!

The two cases«51 and«521 are qualitatively different. When«51 we require 2t,x2,4t for
the solution to be defined. When«521 the condition becomes22t,x2,24t, which implies
that the densityr is real-valued only for negative values oft. Thus, it does not correspond to
physical density. The solution~46! corresponds to the case

C~p,s! 5
1

2
«

~s223p2!

~p22s2!
2

1

2
« ln~p22s2! 1

1

2
« ln 2 1 c0 , ~48!

whereC(p,s)5 ~25! with

f ~z! 5 g~z! 5
1

2
« lnSA2

z D 2
3

4
« 1

1

2
c0 .

For K2,« , we get

u~x,t ! 5 te4«(x02x), r~x,t ! 5
Al

e2«(x02x)A118t2e4«(x02x)
, ~49!

v~x,t ! 5 24«te4«(x02x). ~50!

Thusr is always a finite, nonzero and positive function, whileu becomes infinite asx→ 2` or
utu→`. This solution corresponds to the case

C~p,s! 5 1
4 «p ln~ 1

2 ~s22p2!! 2 x0p, ~51!

whereC(p,s)5 ~25! with

f ~z! 5 2g~2z! 5 1
4 «z lnz 2 ~ 1

2 x01 1
8 « ln 2!z.

For K3,« , we have

u~x,t ! 5 1
2 ~ea012«t1«x2!, r~x,t ! 5

Al

A«ea012«t1 1
2 x2

, ~52!

v~x,t ! 5 «x. ~53!

Hereu andr are always nonzero, finite and positive. Ast→ ` or uxu→ `, u becomes unbounde
andr approaches zero. This solution corresponds to the case

C~p,s! 5 1
4 «~s21p2! 2 1

4 «~s22p2!ln~ 1
2 «~s22p2!! 1 1

4 «~s22p2!a0 2 «p2, ~54!

whereC(p,s)5 ~25! with

f ~z! 5 g~2z! 5 2 3
8 «z2 2 1

8 «a0z2 1 1
8 «z2 ln~z2/2!.

For K4,« , we have

u~x,t ! 5 «xt 2
1

3
t3 1

2

3
a0«

~«x2 1
2 t2!3/2

Al2a0
2/2

1 c0 , r~x,t ! 5Al2a0
2/2

«x2 1
2 t2

, ~55!
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v~x,t ! 5 «t 1
a0

Al2a0
2/2

S «x2
1

2
t2D 1/2

, ~56!

wherex. 1
2t

2 ~in the case where«51) or x,2 1
2t

2 ~in the case where«521). This solution
corresponds to the case

C~p,s! 5
1

6
«p3 1

1

3
«

a0
3

~2l!3/2s3 2
1

2
«ps2 1

2

3
«

a0

~2l!3/2Al2a0
2/2 s3, ~57!

whereC(p,s)5 ~25! with

f ~z! 5
1

12
«z3 2

1

12
«

a0
3

~2l!3/2z3 2
1

6
«

a0

~2l!3/2Al2a0
2/2 z3,

g~z! 5
1

12
«z3 1

1

12
«

a0
3

~2l!3/2z3 1
1

6
«

a0

~2l!3/2Al2a0
2/2 z3.

It has therefore been demonstrated that for the subalgebras of types$L1 ,L2 ,L3 ,L4,21% and
$K1,« ,K2,« ,K3,« ,K4,«%, the invariant solutions fall into the general solution~25! given by Jackiw.
However, for the subalgebras$L4,1,N1 ,N2 ,N4,«%, the transformations (x,t)→(s,p) are nonin-
vertible and so the invariant solutions are not included in the general solution~25!.

C. Solutions of the Born–Infeld model

Each solution of the Chaplygin equations~12! can be used to obtain an equivalent solution
the relativistic Born–Infeld equations~10! and~11! in one spatial dimension. Since the Chaplyg
and Born–Infeld models involve two distinct parametrizations of the Nambu–Goto target
variablesX0 and Xd11, we equate these variables to both their relativistic and nonrelativ
representations:

X0 5 ctR 5
1

&
~ tNR1uNR~ tNR ,r !!, ~58!

Xd11 5
1

c
u~ tR ,r ! 5

1

&
~ tNR2uNR~ tNR ,r !!. ~59!

Renaming the time variablesT5 (1/c) tNR andt5tR , we obtain the following method of solution
transformation described by Jackiw.1 If uNR(r ,t) is a solution of the Chaplygin equation~4!, then
a solutionuR(r ,t) of the Born–Infeld equation can be determined as follows. First, determine
function T(r ,t) from the equation

T 1
1

c2 uNR~r ,T! 5&t, ~60!

then

uR~r ,T! 5
1

&
c2T 2

1

&
uNR~r ,T! 5 c2~&T2t ! ~61!

is an associated Born–Infeld solution. Since the equation~60! cannot always be solved explicitl
for T(r ,t) it follows that explicit Born–Infeld solutions cannot always be found in this man
For instance, in the case ofL1 , the Born–Infeld solution is
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uR~x,t ! 5
1

&
c2T 2

1

4A2a0

lnS Aa0x21T

Aa0x22T
D 2

c2

&
a1 , ~62!

whereT(x,t) satisfies the equation

T 1
1

c2 S 1

4Aa0

lnS Aa0x21T

Aa0x22T
D D 1 a1 5&t ~63!

and the density~for any general solutionuR) is

rR~x,t ! 5
a~uR! t

c2Ac22]m~uR!]m~uR!
. ~64!

However, for the subalgebrasL4,1, N1 , N2 , N4,« , andK2,« , we do obtain explicit Born–Infeld
solutions equivalent to the corresponding Chaplygin solutions.

For L4,1, we have

uR~x,t ! 5

1

&
a0x1S 12

a1

c2D c2t

11
a1

c2

,

~65!

rR~x,t ! 5

aS 12
a1

c2D
S 11

a1

c2DAc21
a0

2

2~11a1 /c2!2

.

This represents a travelling wave solution.
For N1 , we have

uR~x,t ! 5 c2t 2& f ~x!, rR~x,t ! 5 2
a

&S d f

dxD
, ~66!

where f 5 f (x) is an arbitrary function, and is in fact the nonrelativistic solutionuNR5 f (x). This
is a generalized travelling wave~i.e., Riemann wave!. The gradient catastrophe occurs whe
d f /dx50, which allows a shock wave.

For N2 , we have

uR~x,t ! 5 a0t 1 c0 , rR~x,t ! 5
2aa0

cAc42a0
2

, ~67!

whereua0u,c2. This is a trivial solution since using the invariance with respect tot leads us to a
constant solution.

For N4,« , we have

uR~x,t ! 5
1

11
«

c2

~~c22«!t1a0x1a1!, rR~x,t ! 5
2a~c22«!

c2A4«1a0
2

, ~68!
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where if «521 thenua0u.2. This represents a travelling wave.
For K2,« , we have

uR~x,t ! 5
c2t~c22e4«(x02x)!

~c21e4«(x02x)!
,

~69!

rR~x,t ! 5
2a~c42e8«(x02x)!

A4c4e4«(x02x)~c21e4«(x02x)!2164c8t2e4«(x02x)
.

This is a kink-type solution.

IV. THE METHOD OF DIFFERENTIAL CONSTRAINTS

We determined in Sec. III that the group-invariant solutions of the Chaplygin system~12!
were either singular or derivable from the general solution of the second-order partial differ
equation~24!. A further generalization of the classical symmetry reduction is the introductio
the general ‘‘side conditions’’ method.13 This method includes all known methods for determini
special classes of solutions of PDE’s~among others group-invariant solutions, nonclassical
weak symmetries, partially invariant solutions, separation of variables, and many others!. Differ-
ential constraints possess a group interpretation as ‘‘conditional symmetries.’’14–16 It consists
basically in modifying the original system by adding to it certain compatible differential c
straints. The overdetermined system of equations obtained in this way admits, in some c
larger class of Lie point symmetry groups, and consequently can provide new classes of so
of the original system. In this section our choice of differential constraints is motivated by
main aim which is the construction of multiplicative separation of dependent variables

ui~x,t ! 5 f i~x!gi~ t !, i 51,2, ~70!

for some functionsf i and gi of one variable. Here,u1 and u2 stand forr and u, respectively.
Ansatz~70! corresponds to the following second-order differential constraints:

]x] t ln ui 5 0, i 51,2. ~71!

Note that the differential constraints~71! are no longer restricted to be first-order PDE’s provid
by the characteristics of symmetries generated by~13!. Hence, according to Ref. 6 solutions of th
overdetermined system composed of the Chaplygin equations~12! @or Born–Infeld equations~10!,
~11!# subjected to~71! are no longer group-invariant solutions.

We now show that these forms of constraints are compatible with the Chaplygin system~12!
and enable us to construct several families of solitonlike solutions. Indeed, substituting~70! into
~12! we obtain a system of differential equations

g2,t f 2 1
1

2
g2

2~ f 2,x!
2 5

l

f 1
2g1

2 ,

~72!
g1,t f 1 1 g1g2f 1,xf 2,x 1 g1g2f 1f 2,xx 5 0.

Eliminating functionf 1g1 from ~72! we obtain

2 1
2 g2,tt f 2 2 g2g2,t~ f 2,x!

2 1 g2g2,t f 2f 2,xx 5 0. ~73!

Integrating with respect tot and relabeling the functionsf 2 andg2 as f andg, respectively, we
obtain

2 1
2 gt f 2 1

2 g2~ f x!
2 1 1

2 g2f f xx 5 g~x!. ~74!
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Let us consider separately three cases, namely~a! the case in whichg(x) vanishes everywhere
~b! the case whereg(x)5 f and f f xx2( f x)

25 f , and ~c! the case whereg(x)5 f and f f xx

2( f x)
252 f . It is easy to show that in case~a!, wheng(x)50 identically, the solution of the

system~74! takes the form

u~x,t ! 5
2K2

K3~K2t1K1!
sinh2S 1

2
AK3~x1x0! D ,

~75!

r~x,t ! 5 AK3l

2

K2t1K1

K2 sinh2~ 1
2AK3~x1x0!!

.

For K3Þ 0 andtÞ 2 K1 /K2 , the expressions~75! represent a bump-type solution. Making use
the transformations~60! and ~61!, we get a solution of the Born–Infeld equation~9!,

uR~x,t ! 5 2
c2K1

&K2

6
c2

&K2

A2K2
2t212&K1K2t1K1

22
8K2

2

c2K3
sinh2S 1

2
AK3~x1x0! D . ~76!

This is a bump-type solution, called in literature a Gaussian solution.17

In the cases~b! and ~c!, the equation~74! can be integrated to give the solutions

u~x,t ! 5 2
2A2

K3
sinh2S 1

2
AK3~x1x0! D S 11e2&~ t1K1!

12e2&(t1K1)D ,

r~x,t ! 5 AlH 4

K3

sinh2~ 1
2AK3~x1x0!!

~12e2&(t1K1)!2 S 24e2&(t1K1)1cosh2S 1

2
AK3~x1x0! D

3~11e2&(t1K1)!2D J 21/2

~77!

and

u~x,t ! 5
2&

K3
sinh2S 1

2
AK3~x1x0! D tan~&~ t02t !!,

r~x,t ! 5 AlH 4

K3
sinh2S 1

2
AK3~x1x0! D

3S cosh2S 1

2
AK3~x1x0! D tan2~&~ t02t !!2sec2~&~ t02t !! D J 21/2

, ~78!

respectively. ForK3Þ 0 and tÞ(&/4) ln 12K1, the solution~77! represents a bump-type solu
tion. With a specific choice of the constantsK1 , K3 , andx0 such that the densityr is nonsingular
at x50, we get for the solution~77! the functions

u~x,t ! 5
1

&
cosh2 xS 11e2&t

12e2&tD ,

~79!

r~x,t ! 5
Al

coshx S ~12e2&t!2

4e2&t1(11e2&t)2 sinh2 xD 1/2

.

These functions are represented in Figs. 1 and 2. For the solution~78!, the same choice for the
constantsK1 , K3 , andx0 , along witht050, lead to
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u~x,t ! 5
1

&
cosh2 x tan~&t !,

~80!

r~x,t ! 5
Al

coshx S 1

sec2~&t !1sinh2 x tan2~&t !
D 1/2

.

These functions are represented in Figs. 3 and 4. For this solution~78!, the functionu(x,t)
includes discontinuities att5t01n (&p/4), wheren is an integer. The densityr(x,t) is defined
and continuous everywhere and is a multibump solution.

Once again, we obtain the Born–Infeld solutions,

uR~x,t ! 5 c2~&T2t !, ~81!

whereT(x,t) satisfies the equations

FIG. 1. The functionu(x,t) in Eq. ~79!.

FIG. 2. The functionr(x,t) in Eq. ~79!.
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T 1
1

c2 S 2
2&

K3
sinh2S 1

2
AK3~x1x0! D S 11e2&~T1K1!

12e2&(T1K1)D D 5&t ~82!

and

T 1
1

c2 S 2&

K3
sinh2S 1

2
AK3~x1x0! D tan~&~ t02T!! D 5&t, ~83!

respectively.
It is manifest that the solution~75!, corresponding to case~a! is simply a generalization of the

solution~33!, found in Sec. III for the caseL4,21 . In fact, solution~33! is the special case wher
K251, K150. By the simple change of variablet→ (1/K2) (t2K1), ~33! can be transformed to
its generalized counterpart~75!. For each of the solutions~77! and~78!, corresponding to cases~b!
and ~c!, respectively, the Jacobian of the transformation

FIG. 3. The functionu(x,t) in Eq. ~80!.

FIG. 4. The functionr(x,t) in Eq. ~80!.
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J 5
]~p,s!

]~x,t !
~84!

is nonzero. This would indicate that the change of variables is invertible. However, attem
invert the transformation lead to transcendental trigonometric equations for the variablesx andt in
both cases, so it is not possible to determine equivalent functionsC(p,s). Therefore, we canno
determine whether or not the solutions~77! and~78! correspond to the general solution of Jackiw1

V. CONCLUDING REMARKS

Group-invariant solutions of the Chaplygin gas equations have been determined for th
dimensional subalgebras of the general Chaplygin Lie algebra. In addition, based on thes
tions, a number of explicit solutions of the Born–Infeld relativistic model have been determ
The nonsingular solutions@where the transformation (x,t)→ (s,p) is invertible# were found to be
linked to special cases of the general solution described by Jackiw’s approach.1 Certain classes o
solutions were found in which the densityr of the fluid is constant in both time and space. The
solutions were found not to be included in the classification presented in Ref. 1. In some cas
reduced equations for the subalgebrasL2 , N2 , and N4,« satisfy the first and fifth Painleve´
equations.10 In summary, we can state that the symmetry reduction method in the version
sented here proved to be a useful tool in the sense that in the cases of Chaplygin and Born
it led to many new interesting solutions, among them kinks, bumps, and multiwave solutio

A question arises as to whether our approach can be extended to obtain partially inv
solutions18 with defect structured51. Further, can it provide new classes of solutions which w
describe more diverse types of solutions than those found in group-invariant cases. This
discussed in more detail in a future work.
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Exact duality transformations for sigma models
and gauge theories
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We present an exact duality transformation in the framework of statistical mechan-
ics for various lattice models with non-Abelian global or local symmetries. The
transformation applies to sigma models with variables in a compact Lie groupG
with global G3G-symmetry~the chiral model! and with variables in coset spaces
G/H and a globalG-symmetry@for example, the nonlinear O(N) or RPN models#
in any dimensiond>1. It is also available for lattice gauge theories with local
gauge symmetry in dimensionsd>2 and for the models obtained from minimally
coupling a sigma model of the type mentioned above to a gauge theory. The duality
transformation maps the strong coupling regime of the original model to the weak
coupling regime of the dual model. Transformations are available for the partition
function, for expectation values of fundamental variables~correlators and general-
ized Wilson loops! and for expectation values in the dual model which correspond
in the original formulation to certain ratios of partition functions~free energies of
dislocations, vortices or monopoles!. Whereas the original models are formulated in
terms of compact Lie groupsG andH, coset spacesG/H and integrals over them,
the configurations of the dual model are given in terms of representations and
intertwiners ofG and H. They are spin networks and spin foams. The partition
function of the dual model describes the group theoretic aspects of the strong
coupling expansion in a closed form. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1580071#

I. INTRODUCTION

The most prominent example of an exact duality transformation in statistical mechanics
transformation for the two-dimensional Ising model.1 It is an exact transformation which chang
the variables of the full partition function of the model and maps the high temperature regim
the original model to the low temperature regime of the dual model and conversely~for the Ising
model, the original and the dual model coincide!.

In the following, we make use of the correspondence of quantum field theory in the Eucl
~imaginary time! formulation ind space dimensions plus time with equilibrium statistical mech
ics in d11 dimensions and often use the wordspath integral, action, andcoupling for partition
function, energy, andtemperature, respectively.

The duality transformation of the Ising model was subsequently generalized to more g
lattice systems withZ2 symmetries,2 namely systems ind-dimensions whose variables a
Z2-valuedk-forms, 0<k<d, i.e., spin models with globalZ2 symmetry, pure lattice gauge theo
ries with localZ2 gauge symmetry, theories forZ2-valued antisymmetric tensor fields, and so o
and to their counterparts with U~1!-symmetries,3 in particular to theXY-model and pure U~1!
gauge theory on the lattice.3,4 For lattice models with Abelian symmetries, there exists an es
tially complete picture,5 and the systems to which the duality transformation applies include e

a!Electronic mail: H.Pfeiffer@damtp.cam.ac.uk
28910022-2488/2003/44(7)/2891/48/$20.00 © 2003 American Institute of Physics
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some Higgs models,6 namely U~1!-lattice gauge theory minimally coupled to a U~1!-valued scalar
field, i.e., a Higgs field with frozen radial component.

All these examples of the Abelian duality transformation have some features in com
They map the strong coupling regime of the original model to the weak coupling regime o
dual model. This is a consequence of the change of variables employed in the transfor
which essentially involves the Fourier decomposition of the interaction termse2S for some action
S. For example, this replaces U~1!-variables by integersZ and maps Boltzmann weights wit
narrow peaks to weights with wide peaks and conversely. The structure of the dual model
sketched as follows. If, say in a sigma model, the variables are originally associated wi
points of the lattice and the interaction terms with the bonds, then the variables of the dual
which are introduced by the Fourier expansion are located at the bonds. In a second st
removes the old variables by performing the relevant sums or integrals which yields add
Boltzmann weights, often constraints, for each point.

As a consequence of the strong–weak nature of the duality transformation, the dual pa
function contains essential information on the strong coupling expansion of the original mod
fact, if one understands how the Fourier coefficients of the Boltzmann weight depend o
coupling, the summands of the dual partition function are precisely the terms of the strong
pling expansion and can be sorted by the magnitude of their contribution at strong couplin

A systematic generalization of these transformations to systems with non-Abelian symm
proved to be difficult. The calculation of strong coupling expansions of pure non-Abelian la
gauge theory~see, for example Ref. 7! already exhibits some features of the dual model which
wishes to construct. Fourier expansion is generalized to character decomposition, and th
variables are irreducible representations of the symmetry group, generalizing the wave num
the Fourier series. The main technical difficulties are first to solve the integrals over the var
of the original model in a systematic way, and second to disentangle the lattice combinato
order to make the structure of the dual model transparent. Both problems can be overcome
deals with the non-Abelian group variables at a sufficiently abstract level and if one us
efficient diagrammatic notation.

The first examples of non-Abelian generalizations were an explicit calculation for pure S~2!
lattice gauge theory ind53 dimensions8 and, much less obviously, the equivalence of latt
BF-theory ~similar to pure lattice Yang–Mills theory, but withd-functions as the Boltzmann
weights! to certain topological state sum models.9 This correspondence was developed in a n
perturbative approach to quantum gravity. For review articles, see, for example, Refs. 10 a
The approach to quantum gravity by quantizing a discrete version of the gauge theory formu
of general relativity has lead to the definition of spin foams.12–14 A spin foam is an abstrac
two-complex, consisting of vertices, edges, and faces whose faces are labeled with irred
representations of some symmetry group while the edges are labeled with compatible intert
Spin foams can be understood as a higher dimensional analog of spin networks. A spin net
a graph whose edges are labeled with representations and whose vertices are labeled w
patible intertwiners~precise definitions of spin networks and spin foams are given below in
III B !.

Spin foams provide the appropriate language for a generalization of the exact duality
formation to pure non-Abelian lattice gauge theory in arbitrary dimensiond>2 whose gauge
group is a generic compact Lie groupG. See Refs. 15 and 16 for lattice gauge theory on hyp
cubic lattices and Refs. 17 and 18 for the generalization to more general lattices and qu
groups rather than Lie groups.

In this article, we extend the non-Abelian duality transformation to a large class of s
models whose variables take values inG or G/H, G a compact Lie group andH a Lie subgroup,
and which have certain global or local symmetries.~The author is grateful to Alan Sokal wh
suggested to study this generalization.! This includes, for example, the chiral, the O(N) andRPN

models, and the models that are obtained from minimally coupling such a sigma mode
non-Abelian lattice gauge theory, for example, some generalized Higgs models with frozen
degree of freedom.
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The duality transformation retains its key properties, namely that it provides a strong–
relation, that it yields a closed form of the strong coupling expansion of the original model
that it maps expectation values of the dual model to ratios of partition functions~free energies of
dislocations, vortices, or monopoles! in the original formulation and conversely. It therefore r
lates the fundamental variables of one formulation with some topological defects~collective prop-
erties! in the other.

The transformation maps the original model which is formulated in terms of compac
groupsG andH, functions onG and integrals overG or G/H, to the dual model which is given
in terms of the irreducible representations and intertwiners ofG andH. The transformation can be
understood as a particular application of a Tannaka-Kreiˇn-type duality relating groups to thei
representation categories. That these categories will appear in the dual formulation had
been proposed in Ref. 19. The dual model can be formulated using merely the langua
category theory. In the simplest case, it uses the category of finite-dimensional representa
the symmetry groupG. This can be extended to more general categories that do not arise a
representation categories of compact Lie groups. The generalization of lattice gauge the
quantum groups17,18 is one example. For more details on the relation of groups and qua
groups with certain tensor categories, see, for example, Ref. 20. In this article, we do not exp
use the language of category theory, but rather present diagrams in addition to the explicit
las so that one can easily infer the categorial formulation from these diagrams.

While the configurations of the model dual to lattice gauge theory are spin foams,15 one
obtains spin networks as the configurations of the model dual to a sigma model. We thus c
dual modelsspin foam modelsand spin network models, respectively. As the notions of spi
networks and spin foams have been developed in an approach to quantum gravity, but mi
be familiar to the reader working on statistical mechanics, we try to make this article
contained and therefore review all relevant definitions and also some background material
representation theory of compact Lie groups.

The present article is organized as follows. In Sec. II, we summarize some backg
material on the representation theory of compact Lie groups and introduce a convenient dia
matical notation. In Sec. III, we present our notation for the lattices we use, namely graph
abstract two-complexes, and we recall the definitions of spin networks and spin foams. In S
we present the duality transformation for the lattice chiral model with symmetry groupG. This is
generalized in Sec. V to the nonlinear sigma model with variables in coset spacesG/H and in Sec.
VI to the nonlinear sigma model forG/H coupled to a lattice gauge theory with gauge groupG.
We conclude in Sec. VII where we discuss applications, directions for future research, and
questions.

II. MATHEMATICAL BACKGROUND

In this section, we review some basic concepts and results from the representation the
compact Lie groups. The material presented here is largely textbook knowledge,~see, for example,
Refs. 21 and 22 where most of the proofs can be found!. The purely algebraic evaluation of th
group integrals was first given in Ref. 15; our diagrammatic language follows Refs. 17 and

A. Representation functions

Let G be a compact Lie group. This notion includes in particular any finite group~with the
discrete topology!. We denote finite-dimensional complex vector spaces on whichG is represented
by Vr and by r:G→Aut Vr the corresponding group homomorphisms. Since each fin
dimensional complex representation ofG is equivalent to a unitary representation, we select a
R̃G containing one unitary representation ofG for each equivalence class of finite-dimension
representations. The tensor product, the direct sum, and taking the dual are supposed to b
operations on this set. This amounts to a particular choice of representation isomorphisr1

^ r2↔r3 etc.,r jPR̃G , which is implicit in our formulas. We furthermore denote byRG#R̃G the
subset of irreducible representations.
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For a representationrPR̃G , the dual representation is denoted byr* , and the dual vector
space ofVr by Vr* . The dual representation is given byr* :G°Aut Vr* , where

r* ~g!:Vr* →Vr* , h°h +r~g21!, ~2.1!

i.e., (r* (g)h)(v)5h(r(g21)v) for all vPVr . There exists a one-dimensional ‘‘trivial’’ repre
sentation ofG which is isomorphic toC.

For the unitary representationsVr , rPR̃G , we have standard~sesquilinear! scalar products
^•;•& and orthonormal bases$ej% j . Therefore, we can define a bijective antilinear m
* :Vr→Vr* induced by the scalar product,

* ~v !ª~w°^v;w&!, vPVr , ~2.2!

and construct the dual bases$h j% j by h j
ª* (ej ). Identifying (Vr* )* 5Vr , this yields ^ej ;ek&

5h j (ek)5d jk and furthermore induces a scalar product onVr* , namely ^h j ;hk&5hk(ej ), 1
< j , k<dimVr .

The matrix elements of the representation matricesr(g) define complex-valued functions,

t jk
~r! :G→C, g°t jk

~r!~g!ªh j~r~g!ek!5~r~g!! jk , ~2.3!

where rPR̃G , 1< j , k<dimVr . They are calledrepresentation functionsof G and form a
commutative and associative unital algebra overC,

Calg~G!ª$t jk
~r! : rPR̃G,1< j ,k<dimVr%, ~2.4!

whose product is given by the matrix elements of the tensor product of representations,

~ t jk
~r!
•t,m

~s!!~g!ªt j ,,km
~r ^ s!~g!, ~2.5!

wherer,sPR̃G , 1< j , k<dimVr and 1<,, m<dimVs .
We find the following expressions involving the group unitePG,

t jk
~r!~e!5d jk , ~2.6!

products of group elements,

t jk
~r!~g•h!5 (

,51

dim Vr

t j ,
~r!~g!•t,k

~r!~h!, ~2.7!

and inverse group elements,

t jk
~r!~g21!5~r~g!21! jk5~r~g!!k j5tk j

~r!~g!, ~2.8!

as well as

t jk
~r!~g21!5h j~r~g!21ek!5~r* ~g!h j !~ek!5^hk;r* ~g!h j&5tk j

~r* !~g!, ~2.9!

so that for unitary representations, the dual representation is just the conjugate one. T
denotes complex conjugation.

B. Peter–Weyl decomposition and theorem

The structure of the algebraCalg(G) can be understood ifCalg(G) is considered as a repre
sentation ofG3G by combined left and right translation of the function argument,
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~G3G!3Calg~G!→Calg~G!, ~~g1 ,g2!, f !°~h° f ~g1
21hg2!!. ~2.10!

It can then be decomposed into its irreducible components as a representation ofG3G.
Theorem 2.1„Peter–Weyl decomposition…: Let G be a compact Lie group.
~1! There is an isomorphism

Calg~G!> %
rPRG

~Vr ^ Vr* ! ~2.11!

of representations ofG3G. Here the direct sum runs over the equivalence classes of fi
dimensional irreducible representations ofG. The direct summandsVr ^ Vr* are irreducible as
representations ofG3G.

~2! The direct sum in~2.11! is orthogonal with respect to theL2-scalar product onCalg(G)
which is formed using the Haar measure ofG on the left-hand side, and using the standard sc
products on the right-hand side,

^t jk
~r! ;t,m

~s!&L2ªE
G

t jk
~r!~g!•t,m

~s!~g!dg5
1

dimVr
drsd j ,dkm , ~2.12!

where r, sPRG are irreducible. The Haar measure is denoted by*G and normalized so tha
*Gdg51.

If G is finite, the Haar measure coincides with the normalized summation over all g
elements. The decomposition~2.11! directly corresponds to our notation of the representat
functionst jk

(r) for irreduciblerPRG .
Corollary 2.2: Each representation functionf PCalg(G) can be decomposed according

~2.11!,

f ~g!5 (
rPRG

(
j ,k51

dim Vr

f̂ jk
~r!t jk

~r!~g!, where f̂ jk
~r!5dimVrE

G
t jk
~r!~g! f ~g!dg. ~2.13!

For any algebraicf PCalg(G), all except finitely many coefficientsf jk
(r) are zero. The analyti-

cal aspects ofCalg(G) are given by the Peter–Weyl theorem.
Theorem 2.3„Peter–Weyl theorem…: Let G be a compact Lie group. ThenCalg(G) is dense

in L2(G) with respect to theL2-norm.
We use the Peter–Weyl theorem in order to completeCalg(G) with respect to theL2-norm to

L2(G). Functionsf PL2(G) then correspond to square summable series in~2.13!. These series are
invariant under a reordering of summands, and their limits commute with group integration
make use of these invariances in the duality transformation. IfG is a finite group,Calg(G) is a
finite-dimensional vector space so that the corresponding results hold trivially.

We can summarize these ideas and state that the algebraic structure ofCalg(G) is sufficient to
determine the structure of the larger function spaceL2(G).

C. Character decomposition

The charactersof G are the algebraic class functions, i.e., those functionsf PCalg(G) that
satisfy f (hgh21)5 f (g) for all g, hPG.

Proposition 2.4:For class functionsf PCalg(G), the Peter–Weyl decomposition~2.13! spe-
cializes to thecharacter decomposition

f ~g!5 (
rPRG

f̂ rx~r!~g!, where f̂ r5E
G

x~r!~g! f ~g!dg. ~2.14!

Here
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x~r!
ª (

j 51

dim Vr

t j j
~r! ~2.15!

denotes the character of the representationrPR̃G . For irreducibler, sPRG , the orthogonality
relation ~2.12! implies

^x~r!;x~s!&L25E
G

x~r!~g!x~s!~g!dg5dps . ~2.16!

D. Algebraic evaluation of group integrals

For the duality transformation, it is important to understand the Haar measure ofG in the
picture of the Peter–Weyl decomposition~2.11!. First we decompose a generic representat
function into representation functions of irreducible representations.

Proposition 2.5:Let G be a compact Lie group andrPR̃G be a finite-dimensional unitary
representation ofG with the complete decomposition

Vr> %
j 51

k

Vt j
, t jPRG ,kPN, ~2.17!

into irreducible componentst j . Let P( j ):Vr→Vt j
#Vr be theG-invariant orthogonal projectors

associated with the above decomposition. Then

tmn
~r!~g!5(

j 51

k

(
p,q51

dim Vt j

Ppm
~ j ! tpq

~t j !~g!Pqn
~ j ! , ~2.18!

wherePqn
( j )5^wq

( j ) ;vn&. Here$v i% i denotes an orthonormal basis ofVp and$wi
( j )% i an orthonormal

basis ofVt j
#Vr .

Proof: The representation function is Peter–Weyl decomposed by inserting15( j 51
k P( j ) twice

into the right-hand side oftmn
(r)(g)5^vm ;r(g)vn&. We useG-invariance@P( j ),r(g)#50 and trans-

versalityP( i )P( j )5d i j P
( j ) in order to obtain

tmn
~r!~g!5(

j 51

k

^vm ;P~ j !r~g!P~ j !vn&. ~2.19!

Herer(g)P( j )5t j (g)P( j ) and

P~ j !5 (
p51

dim Vt j

wp
~ j !
•q~ j !p, ~2.20!

where$q ( j ) i% i denotes a basis dual to$wi
( j )% i . Inserting~2.20! into ~2.19!, we obtain~2.18!. h

For representation functions of an irreducible representationrPRG , the Haar measure is

E
G

t jk
~r!~g!dg5H 1, if r is trivial,

0, otherwise,
~2.21!

as a consequence of its left–right translation invariance. This can be applied to~2.18! in order to
derive an entirely algebraic expression for the Haar measure.
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Corollary 2.6: Let G be a compact Lie group andrPR̃G be a finite-dimensional unitary
representation ofG with the decomposition~2.17!. Assume that precisely the first, components
t1 ,...,t, , 0<,<k, are equivalent to the trivial representation. Then the Haar measure
representation functiontmn

(r) , 1<m, n<dimVr , is given by

E
G

tmn
~r!~g!dg5(

j 51

,

Pm
~ j !Pn

~ j ! . ~2.22!

Here we have omitted the vector indices corresponding to the one-dimensional representa
In our calculations, we will refer to Corollary 2.6 in a context in which the integrand

product of representation functions of irreducible representations. This motivates the follo
definition.

Definition 2.7:Let G be a compact Lie group andr1 ,...,r rPRG , r PN, be finite-dimensional
irreducible representations ofG. TheHaar intertwiner,

T: ^
,51

r

Vr,
→ ^

,51

r

Vr,
, ~2.23a!

is the linear map defined by its matrix elements

Tm1m2 ...mr ;n1n2 ...nr
ªE

G
tm1n1

~r1!
~g!tm2n2

~r2!
~g!¯tmrnr

~rr !
~g!dg. ~2.23b!

Proposition 2.8:The Haar intertwinerT of ~2.23! satisfies

Tm1m2 ...mr ;n1n2 ...nr
5(

j
Pm1m2 ...mr

~ j ! Pn1n2 ...nr

~ j ! , ~2.24!

for the projectors

Pn1n2 ...nr

~ j !
ª^w~ j !;en1

~r1!
^ en2

~r2!
^¯^ enr

~rr !
&, ~2.25!

with the definitions of Proposition 2.5, as well as for allhPG,

T5~r1~h! ^¯^ r r~h!!+T5T+~r1~h! ^¯^ r r~h!!, ~2.26!

T+T5T. ~2.27!

The first equation~2.24! is a consequence of Corollary 2.6 while~2.26! and~2.27! follow from the
translation invariance of the Haar measure. In particular,T forms a morphism of representation
~intertwiner! of G. The mapT has been studied in a more general context in Ref. 18.

In the subsequent sections, we will apply Corollary 2.6 in rather complicated calculatio
is therefore convenient to introduce diagrams which visualize the structure of the indices in
formulas~Fig. 1!.

The diagrams are read from top to bottom. We draw directed lines which are labeled
representationsrPR̃G of G. If the arrow points down, the line denotes the identity map ofVp

@Fig. 1~a!#. If the arrow points up, it refers to the identity map of the dual representationVr* . A
representation functiontmn

(r) is denoted by a box with an incoming and an outgoing line~b!, and a
product of representation functions by boxes placed next to each other~c!. The Haar intertwiner is
visualized by the box labeledT in ~d!, and the calculation ofT given by ~2.23b! is shown in
diagram~e! where the full dots represent the projectors, and the dotted line indicates the sim
neous summation over them.
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E. Coset spaces and spherical functions

In the study of coset spacesG/H, we allow H to be any Lie subgroup ofG. First we recall
some basic definitions.

Definition 2.9:Let G be a compact Lie group andH<G be a Lie subgroup.
~1! A finite-dimensional irreducible representationVr of G is said to be ofclass-1 with

respect to Hif Vr contains anH-invariant vector 0Þv0PVr , i.e.,r(h)v05v0 for all hPH. The
subsetRH

G#RG denotes the set of class-1 representations ofG with respect toH.
~2! H is called amassivesubgroup ofG if for each class-1 representationrPRH

G , the
subspace ofH-invariant vectors,

InvH
~r!5$vPVr : r~h!v5v for all hPH%, ~2.28!

is one-dimensional.
Proposition 2.10:Let G be a compact Lie group,H<G a Lie subgroup, andrPRG a

finite-dimensional irreducible representation ofG. The subspace ofH-invariant vectors inVr is
spanned by the~not necessarily linearly independent! vectors

v ~k!
ª (

j 51

dim Vr

v j
~k!ej : where v j

~k!
ªE

H
t jk
~r!~h!dh. ~2.29!

Here$ej% j denotes the standard orthonormal basis ofVr , and 1<k<dimVr .
The motivation for studyingH-invariant vectors is given by the following result which allow

us to construct functions on the spaceG/H of left cosets, i.e., functions onG that are constant on
the cosetsgH.

Proposition 2.11:Let 0Þv (k)PVr be anH-invariant vector. Then thegeneralized spherica
functions

H jk
~r!~g!ª (

,51

dim Vr

t j ,
~r!~g!v,

~k! , ~2.30!

1< j <dimVr , are constant on the cosetsgHPG/H and therefore induce functionsH jk
(r) :G/H

→C, x°H jk
(r)(x)ªH jk

(r)(gx), wheregxPG is a representative of the cosetx5gxHPG/H.
Combining the Peter–Weyl decomposition~2.13! of Calg(G) with the above ideas, we ca

construct the algebraic functionsCalg(G/H) on the coset space.
Corollary 2.12: Let G be a compact Lie group andH<G be a Lie subgroup. Denote th

dimensions of theH-invariant subspaces bykrªdim InvH
(r) and choose the orthonormal bas

$ej% j of eachVr so that preciselye1 ,...,ekr
areH-invariant. Then the functions

FIG. 1. Diagrams to visualize the index structure in the calculation of group integrals.~a! The identity map ofVr ; ~b! a

representation functiontmn
(r) ; ~c! a product of representation functionstm1n1

(r1)
¯tmrnr

(rr ) ; ~d! the Haar intertwiner; and~e! the

calculation of the Haar intertwiner~2.23b!.
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H jk
~r! :G/H→C, x°H jk

~r!~x!ªt jk
~r!~gx!, ~2.31!

rPRH
G , 1< j <dimVr , 1<k<kr , form a basis ofCalg(G/H). These functions satisfy the or

thogonality relation,

^H jk
~r! ;H,m

~s!&L25E
G/H

H jk
~r!~x!H,m

~s!~x!dx5
1

dimVr
drsd j ,dkm . ~2.32!

Remark 2.13:~1! Spherical functions exist only for class-1 representations askrÞ0 only
there.

~2! In the case of a massive subgroupH, there iskr51 for all class-1 representationsr
PRH

G . The second index of the spherical functions can thus be omitted, i.e.,

H j
~r! :G/H→C, x°H j

~r!~x!ªt j 1
~r!~gx!, ~2.33!

where 1< j <dimVr .
~3! If HvI G is a normal subgroup, there iskr5dimVr for all class-1 representations. In oth

words, for a given irreducible representationrPRG of G, either all representation functionst jk
(r) ,

1< j , k<dimVr , are spherical functions, or none of them is.
Example 2.14:~1! The spheresSN>SO(N11)/SO(N) or SN>O(N11)/O(N) are formed

using massive subgroups.
~2! Odd spheres can alternatively be obtained fromS2N11>SU(N11)/SU(N) or S2N11

>U(N11)/U(N), in particular S3>SU (2). Thespherical functions ofS3 can thus be con-
structed either as functions on SO~4!/SO~3! using the construction sketched above or from
identificationS3>SU (2). For thelatter approach, see the introductory part of Ref. 23.

~3! Other coset spaces which are of interest in the context of sigma models areRPN21

>O(N)/(O(N21)3O(1)) as a special case of the GrassmanianGkN
R >O(N)/(O(N2k)

3O (k)) and their complex counterpartsCPN21>U(N)/(U(N21)3U(1)) and GkN
C

>U(N)/(U(N2k)3U (k)).
Remark 2.15:Any function f :G/H→C naturally extends to a functionf̃ :G→C which is

constant on the cosets, i.e.,f̃ (gh)5 f̃ (g) for all gPG, hPH. Obviously f (x)5 f̃ (gx) for all x
PG/H and an arbitrary representativegxPG of x. Integrals overG/H can thus be evaluated usin
integrals overG,

E
G/H

f ~x!dx5E
G

f̃ ~g!dg. ~2.34!

As the context is usually clear, we omit the tilde~̃ ! from now on.
The analog of the Haar intertwiner~2.23! for coset spaces can be defined as follows.
Definition 2.16: Let G be a compact Lie group,H<G be a Lie subgroup, andr1 ,...,r r

PRH
G , r PN, be of class-1 with respect toH. Thecoset space Haar map,

I : ^
,51

r

Vr,
→ ^

,51

r

Vr,
, ~2.35a!

is the linear map defined by its matrix elements

I m1m2 ...mr ;n1n2 ...nr
ªE

G/H
Hm1n1

~r1!
~x!Hm2n2

~r2!
~x!¯Hmrnr

~rr !
~x!dx, ~2.35b!

where 1<m,<dimVr,
and 1<n,<kr,

.
Proposition 2.17:The coset space Haar map~2.35! satisfies
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I m1m2 ...mr ;n1n2 ...nr
5(

j
Pm1m2 ...mr

~ j ! Pn1n2 ...nr

~ j ! , ~2.36!

with the notation of Proposition 2.8, as well as for allhPG,

I 5~r1~h! ^¯^ r r~h!!+I , ~2.37!

which makes use of the left action ofG on G/H. If in addition HvI G is a normal subgroup, then
I satisfies for allyPG/H,

I 5I +~r1~y! ^¯^ r r~y!!, ~2.38!

using the notationr,(y)ªr,(gy) for any representativegy of y.
Proof: Equations~2.36! and~2.37! follow from Proposition 2.8 and Remark 2.15. The same

true for ~2.38! if we write it for a representative of the cosetyPG/H. h

Observe that the coset space Haar map is in general not an intertwiner ofG. However, for any
fixed choice of indicesn,P$1,...,kr,

%, it defines aG-invariant vectorĨ n1n2 ...nr
P ^ ,51

r Vr,
.

We visualize spherical functionsHmn
(r)(x) and the coset space Haar map as in Fig. 2. T

contraction of indices whose range is restricted to$1,...,kr% is represented by dashed lines. Th
do not correspond to representations ofG and are therefore not labeled with any symbol such
r. A thick line in the box forHmn

(r) and in the coset space Haar mapI indicates that the indices o
this side are special. Figure 2~c! shows the calculation~2.36!.

If HvI G is a normal subgroup,kr5dimVr for all class-1 representations so that the das
lines become solid again as they do correspond to representations ofG. In particular Definition
2.16 and Proposition 2.17 restrict to Definition 2.7 and Proposition 2.8, respectively, ifH5$e% is
the trivial group. The special case whenH is a massive subgroup is also of interest.

Corollary 2.18: If H<G is a massive subgroup, thenkr51 for the class-1 representation
Therefore all indicesn, can be omitted from the expressions so that the Haar map reduces
map

I :C→ ^
,51

r

Vr,
, ~2.39!

defined by its matrix elements

I m1m2 ...mr
ªE

G/H
Hm1

~r1!
~x!Hm2

~r2!
~x!¯Hmr

~rr !
~x!dx. ~2.40!

Equation~2.36! specializes to

FIG. 2. ~a! A spherical functionHmn
(r)(x); ~b! the coset space Haar map; and~c! its calculation in terms ofG-invariant

projectors~2.36!, see Proposition 2.17.
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I m1m2 ...mr
5(

j
Pm1m2 ...mr

~ j ! , ~2.41!

and ~2.37! indicates thatI defines aG-invariant vectorI P ^ ,51
r Vr,

.
The situation for massive subgroups is illustrated in Fig. 3. Further properties of the diag

used in Fig. 3 can be deduced as in the introductory section of Ref. 23.

F. The center of the group

If representation functions are restricted to the centerZ(G), we obtain representation func
tious of the Abelian groupZ(G).

Lemma 2.19:Let G be a compact Lie group andXPZ(G). Then for any irreducible unitary
representationr of G and 1< i , j <dimVr ,

t i j
~r!~X!5d i j • t̃ ~r!~X!, ~2.42!

where t̃ (r):Z(G)→C is a representation of the centerZ(G) which is induced byr.
Proof: By Schur’s lemma, the center is mapped to multiples of the unit matrix. h

G. Special properties of some groups

For G5U(1), all finite-dimensional irreducible representations are one-dimensional. T
are denoted byVk>C and characterized by integerskPZ ~wave numbers of the Fourier series!. In
the unitary case, their representation functions are given byt (k)(g)5gk, gPU(1), andtheir duals
by t (k* )(g)5g2k. All representation functions are characters,x (k)(g)5t (k)(g)5eikw, where we
write g5eiwPU(1).

From the representation functions and the definition~2.5!, we can calculate the tensor produ
which is again one-dimensional,

Vk1
^¯^ Vkn

>V(
,51
n k,

. ~2.43!

It is isomorphic to the trivial representation if and only if

(
,51

n

k,50. ~2.44!

Since all irreducible representations are one-dimensional, the Haar intertwiner~2.23!,

T: ^
,51

r

Vk,
→ ^

,51

r

Vk,
, ~2.45!

is just multiplication by a number. We haveT51 if ~2.44! holds andT50 otherwise. The sum
over projectors~2.24! is either empty or contains a single unique term.

FIG. 3. The specialization of Fig. 2 to the case of a massive subgroupH<G, see Corollary 2.18.
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We write the elements of the cyclic groupsG5ZN as roots of unity,e2p i ,/N, ,P$0,...,N
21%, and parametrize their finite-dimensional irreducible unitary representationsVk>C by k

P$0,...,N21%. Representation functions and characters aret (k)(g)5gk, t (k* )(g)5g2k, x (k)

5t (k), and~2.43! and ~2.44! still hold if the sums are taken moduloN.
For G5SU(2), we characterize the finite-dimensional irreducible representationsVj ,

dimVj52 j 11, by non-negative half-integersj P1/2N0 . Parametrizing elements of SU~2! by

g~q,nI !51 cos
q

2
1 isI •nI sin

q

2
, ~2.46!

whereqP@0,4p!, nI PS2#R3 andsI 5(s1 ,s2 ,s3) are the Pauli matrices, the characters are giv
by

x~ j !~g!5
sin~~2 j 11!q/2!

sinq/2
, ~2.47!

in particular for the fundamental representationx (1/2)(g)5cosq/2.
Since for SU~2! there are no higher multiplicities in the decomposition ofVj 1

^ Vj 2
, the space

of invariant projectorsVj 1
^ Vj 2

^ Vj 3
→C has a dimension of at most one. For three irreduci

representations, we can therefore omit the summation over projectors from~2.24! as is illustrated
in Fig. 4~a! and impose the conditionsu j 12 j 2u< j 3< j 11 j 2 , etc. instead. This provides a substa
tial simplification. However, the three-valent vertex that appears there has in general only a
but not a full symmetry@Figs. 4~b!–4~d!# so that one still has to take the ordering of the ten
factors into account. Neglecting this subtlety is a common mistake.

H. Some character decompositions

For the duality transformation, we will apply the character decomposition to the Boltzm
weight f (g)5exp(2s(g)) whose local actions:G→R is an L2-integrable class function that i
bounded below. The most common example is theWilson action,

s~g!52
b

2 dimVr
~x~r!~g!1x~r!~g!!, ~2.48!

wherer denotes the fundamental representation ofG andb is the inverse temperature or invers
coupling constant.

For G5U(1), the Wilson action readss(g)52b cosw, g5eiw. The character decompositio
coincides with the Fourier series,

FIG. 4. ~a! Simplification of~2.24! for G5SU(2) in the case of three tensor factors;~b!–~d! Even if we do not write the
dotted line anymore, this does not mean that any conceivable symmetry holds.
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f ~g!5 (
k52`

`

f̂ ke
ikw, f̂ k5

1

2p E
u

2p

e2 ikw exp~2s~eiw!!dw5I k~b!, ~2.49!

whereI k(b) denote modified Bessel functions.
For G5ZN , g5e2p i ,/N, we write this decomposition as

f ~g!5 (
k51

N21

f̂ ke
2p ik,/N, f̂ k5

1

N (
,50

N21

e22p ik,/N exp~2s~e2p i ,/N!!. ~2.50!

For G5SU(2), wehave the Wilson actions(g)52b cosq/2, and the character expansion
f (g)5exp(2s(g)) is given by

f ~g!5 (
j P~1/n!N0

f̂ j

sin~~2 j 11!q/2!

sinq/2
, f̂ j5

2 j 11

b
I 2 j 11~b!. ~2.51!

Another common action is theheat kernelor generalized Villain actionwhich is given for any
compact Lie group in terms of the character decomposition of the corresponding Boltz
weight,

f ~g!5 (
rPRG

f̂ rx~r!~g!, f̂ r5dimVr•expS 2
Cr

2b D , ~2.52!

where Cr denotes the eigenvalue of a quadratic Casimir operator in the representationr. For
example, we have forG5U(1),

f̂ k5expS 2
k2

2b D , ~2.53!

and forG5SU(2),

f̂ j5~2 j 11!expS 2
j ~ j 11!

2b D . ~2.54!

In all these cases, the Boltzmann weightf (g)5exp(2s(g)) has a sharp peak at the group un
if b is large~weak coupling, low temperature! which facilitates a perturbative treatment where
the peak is very wide for smallb ~strong coupling, high temperature!. For smallb, however, the
dominant contribution to the character expansions listed above originates from the ‘‘small’
resentations ofG. An expansion in terms of irreducible representations ofG therefore provides us
with a strong coupling expansion. This is most obvious for the heat kernel action where at
b the representations with small Casimir eigenvalue dominate.

More details on strong coupling expansion techniques can be found in Ref. 7. For sph
functions, see Ref. 22 and in particular forSN also Ref. 24.

III. NOTATION AND DEFINITIONS

A. Graphs and abstract two-complexes

In order to formulate sigma models and gauge theories on very general lattices, it is suf
to focus on the combinatorial structure of the lattices rather than on the details of their embe
into some space or space–time manifold. Therefore we employ the notions of graphs and a
two-complexes. Sigma models are defined on graphs so that we obtain the same express
their partition function in any dimensiond>1. Similarly, gauge theories are defined on abstr
two-complexes, and we obtain a uniform description of gauge theories valid in any dimensd
>2.
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The following definitions differ slightly from what is standard, but will prove most conven
for the purpose of the duality transformation.

Definition 3.1:An oriented~or directed! graph (V,E) consists of finite setsV ~vertices! andE
~edges! together with maps

]1 :E→V ~end point of an edge!, ~3.1a!

]2 :E→V ~starting point of an edge!. ~3.1b!

The notion of an abstract two-complex extends this definition and also includes faces
boundary consists of a sequence of edges.

Definition 3.2:An oriented two-complex(V,E,F) is an oriented graph (V,E) together with a
finite setF ~faces! and maps

N:F→N ~number of edges in the boundary of a face!, ~3.2a!

] j :F→E ~ the j th edge in the boundary of a face!, ~3.2b!

e j :F→$21,11% ~ its orientation!, ~3.2c!

such that

]2e j f
] j f 5]e j 11f] j 11f , 1< j <N~ f !21, ~3.3a!

]2eN~ f ! f
]N~ f ! f 5]e1f]1f , ~3.3b!

for all f PF.
The conditions~3.3! state that the edges in the boundary of a facef PF are in cyclic ordering

from ]N( f ) f to ]1f where one encounters the edges with the orientation given bye j f ~see Fig. 5!.
Observe that~3.3! contains combinatorial information similar to the condition]+]50 on the
boundary operator] in Abelian simplicial homology.

In the subsequent calculations, it is convenient to use the following abbreviations.
Definition 3.3:Let (V,E,F) denote an oriented two-complex. For a given edgeePE, the sets

e1ª$ f PF: e5] j f , e j f 5~11! for some j , 1< j <N~ f !%, ~3.4a!

e2ª$ f PF: e5] j f , e j f 5~21! for some j , 1< j <N~ f !%, ~3.4b!

contain all faces that have the edgee in their boundary with positive~1! or negative~2! orien-
tation, and we writedeªe1øe2 for the coboundary of an edgeePE. For a given facef PF, the
set

f 0ª$vPV: v5]2] j f for some j , 1< j <N~ f !% ~3.5!

denotes all vertices that belong to the boundary of the facef. Finally, the sets

FIG. 5. The maps]6 , ] j ande j and the conditions~3.3!. HereN( f )53, e1f 511, e2f 511 ande3f 5(21).
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f 1ª$ePE: e5] j f , e j f 5~11! for some j , 1< j <N~ f !%, ~3.6a!

f 2ª$ePE: e5] j f , e j f 5~21! for some j , 1< j <N~ f !%, ~3.6b!

contain all edges in the boundary of the facef that occur with positive~1! or negative~2!
orientation, and] fª f 1ø f 2 denotes the full boundary off PF.

We have formulated our definitions of graphs and two-complexes so that they have o
finite number of vertices, edges, and faces. This condition ensures that our partition functio
well defined. The collections of points, links, and plaquettes of standard hyper-cubic lattices
a special case of oriented two-complexes in the obvious manner.

B. Spin networks and spin foams

Spin networks were introduced by Penrose25 in the context of a quantization of space–tim
geometry. A spin network with symmetry groupG is a graph together with a coloring of its edg
with irreducible representations ofG and a coloring of its vertices with compatible intertwine
~representation morphisms!. For the subsequent calculations it is most convenient to separat
notions of graph and coloring and to speak of aspin networkthat lives on a graph.

Definition 3.4:Let G be a compact Lie group and (V,E) be an oriented graph. Aspin network
(t,Q) with symmetry groupG on (V,E) is a coloring of the edges with irreducible representatio
of G,

t:E→RG , e°te , ~3.7a!

together with a coloring of the verticesvPV with compatible intertwiners,

Q~v !PHomGS ^
ePE:

v5]1e

Vte
, ^

ePE:
v5]2e

VteD . ~3.7b!

The tensor product in the domain is over the ‘‘incoming’’ edges and that in the image ove
‘‘outgoing’’ edges.

Spin networks appeared first in the context of quantum gravity. There they define, fo
ample, the physical states in the loop formulation of gauge theories and the kinematical st
loop quantum gravity.26 The observables of non-Abelian lattice gange theory can also be
structed from spin networks.15,16 They are given by thespin network functions~Definition 6.3
below!.

The concept of a spin network can be generalized by introducing additional representat
the vertices, calledcharges, and by modifying the compatibility condition~3.7b! accordingly.

Definition 3.5: Let G be a compact Lie group, (V,E) an oriented graph, andr:V→RG ,
v°rv assign an irreducible representation ofG to each vertex. Aspin network(t,Q,r) with
chargesr is a coloring of the edges with irreducible representations,

t:E→RG , e°te , ~3.8a!

together with a coloring of the verticesvPV with compatible intertwiners,

Q~v !PHomGS S ^
ePE:

v5]1e

VteD ^ Vrv
, ^

ePE:
v5]2e

VteD . ~3.8b!

We show in this article that spin networks with charges appear as the configurations
dual expression for correlators in sigma models, and that they characterize the observa
generalized Higgs models.

A higher dimensional analog of spin networks is the concept of spin foams. Spin foam
appeared first in the context of quantum gravity.12–14
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Definition 3.6:Let G be a compact Lie group and (V,E,F) be an oriented two-complex. A
spin foam(r,P) with symmetry groupG on (V,E,F) is a coloring of the faces with finite
dimensional irreducible representations ofG,

r:F→RG , f °r f , ~3.9a!

together with a coloring of the edgesePE with compatible intertwiners,

P~e!PHomGS ^
f Pe1

r f , ^
f Pe2

r f D . ~3.9b!

The tensor product in the domain is over the representations at the ‘‘incoming’’ faces, that
image over the ‘‘outgoing’’ ones. Incoming and outgoing are here defined by the relative or
tions of the edges and faces.

These spin foams are often calledclosed spin foamsas opposed toopen spin foamswhich are
bounded by a spin network. Open spin foams can be understood as the higher dimensiona
of spin networks with charges and are defined as follows.

Definition 3.7:Let G be a compact Lie group, (V,E,F) define an oriented two-complex, an
(t,Q) be a spin network on (V,E). A spin foam(r,P,t,Q) bounded bythe spin network (t,Q)
is a coloring of the faces with finite-dimensional irreducible representations,

r:F→RG , f °r f , ~3.10a!

together with a coloring of the edgesePE with compatible intertwiners,

P~e!PHomGS S ^
f Pe1

Vr f D ^ Vte
, ^
f Pe2

Vr f D . ~3.10b!

IV. THE CHIRAL MODEL

In this section, we develop the duality transformation for the chiral model with a symm
group G that is a compact Lie group. This model forms the basis for the generalizations t
nonlinear sigma model with variables in a coset spaceG/H and to the generalized Higgs mode
in which the chiral model or the nonlinear sigma model is coupled to a lattice gauge theor

A. Partition function

Definition 4.1:Let G be a compact Lie group and (V,E) be an oriented graph. Lets:G→R be
anL2-integrable and bounded class function that satisfiess(g21)5s(g). The lattice chiral model
with actions is defined by the partition function

Z5S )
vPV

E
G

dgvD )
ePE

w~g]1e•g]2e
21 !, ~4.1!

whoseBoltzmann weightis given byw(g)5exp(2s(g)).
Remark 4.2:~1! The set of configurations is the productGV

ªG3¯3G of one copy ofG per
vertexvPV. The partition sum is just the Haar measure ofGV. There is an interaction term fo
each edgeePE relating the variables at the two end points,g]1e andg]2e .

~2! It is possible to choose different actionsse :G→R for each edgeePE so that one obtains
Boltzmann weightswe(g)5exp(2se(g)). This is useful, for example, if one wishes to stud
inhomogeneous or anisotropic systems or nonregular lattices for which one would introduc
metric factors in order to compensate for the different lengths of the various edges. All ca
tions presented below generalize to this case, too, but we try to keep the notation simple
not write down the additional indexe in the following sections.
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Lemma 4.3:Orientation reversal of any edgeePE is a symmetry of the lattice chiral mode
The model therefore depends only on the unoriented graph. Orientation reversal of an ee
PE mapsg]2e°g]1e and conversely, which leaves the action invariant sinces(g21)5s(g).

Our subsequent calculations are most transparent for the generic case in which the p
function can depend on the orientations even though this generality is not required for the co
examples.

Proposition 4.4:The lattice chiral model~4.1! has got a global left–rightG3G-symmetry.
Let h, h̃PG. Then the transformation

gv°h•gv•h̃21, ~4.2!

for all vPV, is a symmetry of the actions(g]1e•g]2e
21 ) for each edgeePE becauses is a class

function.

B. Expectation values

The observables of the lattice chiral model are all possible expectation values of fun
GV→C that are compatible with the symmetries. With the help of the Peter–Weyl decompos
it is possible to calculate the generic form of these observables. For the chiral model, one o
the well-knownn-point functions. We present the full calculation here because it illustrates
method and this method generalizes to the more complicated models for which we deriv
results in the subsequent sections.

Theorem 4.5: Each algebraic functionf :GV→C that is compatible with the globa
G3G-symmetry~4.2! is a linear combination of functions~observables! of the following type,

~4.3!

Here

r:V→RG , v°rv ~4.4!

associates an irreducible representation ofG with each vertex, and

P: ^
vPV

Vrv
→C, Q: ^

vPV

Vrv
* →C, ~4.5!

are intertwiners ofG.
Remark 4.6:~1! By the notation

~4.6!

we mean that there is one sum over,v andmv for each vertexvPV. Similarly,

~4.7!
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indicates that the symbolP has got one index,v for eachvPV. It is also understood that th
ordering of tensor factors in~4.5! corresponds to the ordering of indices ofP andQ in ~4.3!. We
use this notation frequently in the subsequent calculations.

~2! The structure of the observable~4.3! is illustrated in Fig. 6~b!.
~3! The irreducible representationsrv describe the charges that are located at the verticev

PV. If there are preciselyk vertices whoserv is nontrivial, the normalized expectation value
the observable is ak-point function. For eachvPV, there is a representation functiont,vmv

(rv) that

describes theG-dependence of the observable, and the intertwinersP andQ involve its indices,v
and mv and are used in order to obtain a globallyG3G-invariant expression. The well-know
two-point function for two verticesv, wPV is the normalized expectation value of

x~r!~gv•gw
21!5 (

,v ,mv51

dim Vr

t,vmv

~r! ~gv!•t,wmw

~r* ! ~gw!•d,v,w
dmvmw

~4.8!

@Fig. 6~c!#. It forms a special case of~4.3! in which the only nontrivial representations are a cha
r at v and an anti-charger* at w, and the intertwiners are trivial,P,v,w

5d,v,w
, etc.

~4! As a consequence of the Peter–Weyl theorem, theL2-integrable functions that are com
patible with the globalG3G-symmetry are in the closure of the set of all algebraicf r,P,Q , i.e.,
they can be obtained as limits of square summable series of functionsf r,P,Q .

Proof of Theorem 4.5:Algebraic functionsf :GV→C are elementsf P ^ vPVCalg(G) and there-
fore have the Peter–Weyl decomposition

f ~$gv%vPV!5S )
vPV

(
rvPRG

D S )
vPV

(
j v ,kv51

dim Vrv D f̂ j v ...,kv ...
~rv ,...! )

vPV
t j vkv

~rv!
~gv!. ~4.9!

If f satisfies the globalG3G-symmetry, we can apply~4.2! for each vertex, and as this holds fo
arbitraryh, h̃PG, we can integrate the result overh and h̃,

f ~$gv%vPV!5E
G3G

dhdh̃S )
vPV

(
rvPRG

D S )
vPV

(
j v ,kv51

dim Vrv D f̂ j v ...,kv ...
~rv ,...!

3 )
vPV

(
,v ,mv51

dim Vrv

t j v,v

~rv!
~h!t,vmv

~rv!
~gv!tmvkv

~rv!
~ h̃21!. ~4.10!

FIG. 6. ~a! An oriented graph with verticesu, v, w and edgese, f, h. ~b! The structure of the observable~4.3! of the lattice
chiral model on that graph.~c! The two-point function~4.8!.
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We apply ~2.9!, writing tmvkv

(rv) (h̃21)5t
kvmv

(rv* )
(h̃), and move all summations to the front of th

expression. Then we sort the products by the argumentsgv , h, andh̃,

f ~$gv%vPV!5S )
vPV

(
rvPRG

D S )
vPV

(
j v ,kv ,,v ,mv51

dim Vrv D f̂ j v ...,kv ...
~rv ,...! S )

vPV
t,vmv

~rv!
~gv! D

3S E
G
)
vPV

t j v,v

~rv!
~h!dhD S E

G
)
vPV

t
kvmv

~rv* !
~ h̃!dh̃D . ~4.11!

The integrals overG can be evaluated using~2.24! so that

~4.12!

where

~4.13!

HereP denotes a basis of the space ofG-invariant projectors

^
vPV

Vrv
→C, ~4.14!

whose elementsPPP are normalized so thatP25P where the trivial representation is embedd
asC# ^ vPVVrv

. Similarly, Q denotes a basis ofG-invariant projectors

^
vPV

Vrv
* →C, ~4.15!

with the analogous normalization. The expression~4.12! is a linear combination of observables
the form ~4.3!. h

Remark 4.7:The globalG3G-symmetry can be realized as the translation symmetry of
multiple Haar measure because for eachvPV, h, h̃PG and any functionuPCalg(G),

E
G

u~gv!dgv5E
G

u~h•gv•h̃21!dgv . ~4.16!

As the Boltzmann weight is invariant, the expectation value of any non-invariant fun
f 8:GV→C under the partition function vanishes. Note that this holds for any finite graph (V,E).

Similarly, the expectation value vanishes for any function that is not invariant under sim
neous orientation reversal of all edges which corresponds to taking the dual of all represen
and which is realized by the inversion symmetry of the Haar measure,

E
G

u~gv!dgv5E
G

u~gv
21!dgv . ~4.17!

Therefore all interesting observables are functionsGV→R.
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C. Duality transformation

The duality transformation consists of two steps. First, we character expand the Boltz
weight of the original partition function~4.1! of the lattice chiral model. This introduces sums ov
all irreducible representations ofG for each edge as the new dual variables. Furthermore, this
is responsible for the strong–weak or high temperature–low temperature relation of the d
transformation as we have explained in Sec. II H.

The second step is to employ the methods outlined in Sec. II D in order to solve all inte
over G and therefore to remove the old variables from the partition function.

We start with the partition function~4.1! and insert the character expansion~2.14! of the
Boltzmann weight for each edgeePE,

Z5S )
vPV

E
G

dgvD )
ePE

(
tePRG

ŵte
x~te!~g]1e•g]2e

21 !. ~4.18!

The character can be simplified using~2.7! and ~2.9!,

x~te!~g]1e•g]2e
21 !5 (

pe ,qe51

dim Vte

tpeqe

~te!
~g]1e!tpeqe

~te* !
~g]2e!. ~4.19!

The sums are moved to the front of the expression, and we sort the product of represe
functions by the vertexvPV of their argumentsgv :

Z5S )
ePE

(
tePRG

D S )
ePE

ŵteD S )
ePE

(
pe ,qe51

dim Vte D )
vPV

E
G

dgvS )
ePE:

v5]1e

tpeqe

~te!
~gv!D S )

ePE:
v5]2e

t
peqe

~te* !
~gv!D .

~4.20!

Here the last two products are over all edgesePE that havev5]6e. The integrals overG can be
evaluated using~2.24!,

~4.21!

whereS(v), vPV, denotes a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D→C, ~4.22!

which are normalized so thatS(v)2
5S(v) if the trivial representationC is embedded in the big

tensor product. We obtain the following result.
Theorem 4.8„Dual partition function …: Let G be a compact Lie group and (V,E) denote an

oriented graph. The partition function of the lattice chiral model~4.1! is equal to

~4.23!

whereS(v) is a basis ofG-invariant projectors~4.22!.
                                                                                                                



he
-

the
es

s
of

e

over
s

nd

tical
n the

r

f

2911J. Math. Phys., Vol. 44, No. 7, July 2003 Exact duality transformations for sigma models

                    
Remark 4.9:~1! This dual partition function can be described in words as follows. T
partition sum consists of a sum over all colorings of the edgesePE with irreducible representa
tions te of G and over all colorings of the verticesvPV with compatible intertwinersS(v).
Compatible here means that eachS(v) corresponds to a map from the tensor product of
representations at the incoming edgesePE:v5]1e to the tensor product of the outgoing edg
ePE:v5]2e,

S~v !:S ^
ePE:

v5]1e

VteD→S ^
ePE:

v5]2e

VteD . ~4.24!

Indeed, such anS(v) is related to the one appearing in~4.22! by the canonical isomorphism
HomG(V^ W* ,C)>HomG(V,W). The Boltzmann weight of the dual partition function consists
the character expansion coefficientsŵte

for each edgeePE and of a spin network given by th
S(v) whose indices are contracted by the summations overpe andqe . This is illustrated in Fig.
7~a!.

~2! The dual partition function of the lattice chiral model is therefore given by a sum
spin networks. We call such a modela spin network modelin analogy to the spin foam model
which arise as the dual formulation of lattice gauge theory. The two layers of Fig. 7~a! reflect the
chiral structure given by the twofold globalG-symmetry. The fact that the spin networks exte
over the entire graph is a consequence of the global nature of the symmetry.

~3! We comment on the Abelian special case below in Sec. IV D.
~4! There is an alternative form of the dual partition function which uses a diagramma

formulation similar to that developed in Ref. 18 for lattice gauge theory. This result is given i
following corollary and illustrated in Fig. 7~b!.

Corollary 4.10: From the intermediate step~4.20! of the proof, we obtain the following
slightly different expression which involves the Haar intertwiner~2.23! instead of the sum ove
projectorsS(v):

FIG. 7. ~a! The spin network that appears in the dual partition function~4.23! of the lattice chiral model on the graph o
Fig. 6~a!. ~b! The alternative expression~4.25! for the same graph.
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~4.25!

where for eachvPV, the Haar intertwinerT(v) is a map

T~v !:S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D→S ^

ePE:
v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D . ~4.26!

The next step is the generalization of Theorem 4.8 to the expectation value of the obse
~4.3!,

~4.27!

Again, we character expand the Boltzmann weight, simplify the characters that occur
expression and reorganize everything. The step that generalizes~4.20! then reads

~4.28!

Compared with~4.20!, there is an additional factort,vmv

(rv) for eachvPV under the integral. Solving

the integrals, we obtain the following result.
Theorem 4.11 „Dual observable…: Let G be a compact Lie group, (V,E) be an oriented

graph, andf r,P,Q denote an observable of the form~4.3!. Then the expectation value~4.27! of
f r,P,Q in the lattice chiral model is equal to

~4.29!

For each vertexvPV, S̃(v) denotes a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D ^ Vrv

→C ~4.30!

with the usual normalization.
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Remark 4.12:~1! Compared with the dual partition function~4.23!, the new features are th
sums over the,v andmv and the matrix elements ofP andQ from the definition of the observabl
~4.3!. The remainder of the expression has the same structure as the dual partition function
for the fact that the intertwinersS(v) have changed. They now include the chargesrv , vPV, of
the observable in the compatibility condition~4.30!, and the spin networks of the dual partitio
function are coupled to these charges—the,v andmv appear as additional indices of theS(v). The
numerator of the dual expression is therefore given by a sum over spin networks with ch
~Definition 3.5!. This is illustrated in Fig. 8~a!.

~2! Equation~4.29! shows that an expectation value of an observable is mapped to a ra
partition functions in the dual picture, say^ f r,P,Q&5Z(r)/Z. The numeratorZ(r) is similar to the
partition function, but the spin networks appearing there are now coupled to the charges
observable, i.e., the numerator corresponds to the partition function in the presence of
ground charges.’’

~3! Again there exists an alternative formulation based on the intermediate step~4.28! and
involving the Haar intertwiner. This is stated in the following corollary and shown in Fig. 8~b!.

Corollary 4.13:From the intermediate step~4.28! of the proof, we obtain,

~4.31!

where the Haar intertwinerT(v) for any givenvPV is a map

FIG. 8. ~a! The dual expression~4.29! for the expectation value of the observable shown in Fig. 6~b!, cf. the dual partition
function in Fig. 7~a!. ~b! The alternative formulation~4.31!.
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T~v !:S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D ^ Vrv

→S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D ^ Vrv

. ~4.32!

D. The Abelian special case

In this section, we illustrate the specialization to the Abelian case in detail.
For G5U(1), thepartition function reads

Z5S )
vPV

1

2p E
0

2p

dwvD )
ePE

exp~2s~ei ~w]1e2w]2e!!! ~4.33!

for some actions:U(1)→R. For G5ZN we have

Z5S )
vPV

1

N (
,v50

N21 D )
ePE

exp~2s~e2p i ~,]1e2,v2e!/N!!, ~4.34!

i.e., the chiral model restricts to theXY-model if G5U(1), to theZN-vector Potts model ifG
5ZN , and in particular to the Ising model ifG5Z2 . The dual partition function~4.23! contains a
sum over irreducible representations for each edge which becomes in the Abelian case a su
Z or ZN ~Sec. II G!.

As all irreducible representations are one-dimensional, the indices ofS(v) in ~4.23! are absent,
and the sum over projectors restricts to the constraint~2.44!, therefore forG5U(1),

Z5S )
ePE

(
ke52`

` D S )
vPV

dS (
ePE:

v5]1e

ke2 (
ePE:

v5]2e

keD D S )
ePE

ŵkeD , ~4.35!

where we writed(x) for the constraint thatx50. For G5ZN , the sum over theke is over
$0,...,N21% and all arithmetic involving theke is moduloN. The coefficientsŵk are the characte
expansion coefficients of the Boltzmann weight@see~2.49! and ~2.50!#.

Equation~4.35! is the well-known dual expression of the partition function at a stage be
the constraints are solved~see, for example, Refs. 3 and 5!. The solution of these constraints the
depends on the dimension and on the topology of the lattice. ForG5U(1) one obtains the
solid-on-solid model ind52 andZ-lattice gauge theory ind53 ~Ref. 3! whereas forG5ZN , one
finds again theZN-vector Potts model ind52 with the self-duality of the Ising model1 as a special
case forN52, and aZN-lattice gauge theory ind53 whoseN52 case was studied in Ref. 2.

In the Abelian situation, the dual partition function~4.35! contains only a coloring at one
level, namely the sum over all colorings of edges with irreducible representations~wave numbers!.
The generalization to non-Abelian symmetry groups introduces as a second level the sum o
colorings of the vertices with compatible intertwiners. This second coloring restricts to the fam
constraint of the form~2.44! if G is Abelian.

The symmetry compatible functions~4.3! read in the Abelian caseG5U(1) @or G5ZN]

~4.36!

where the,vPZ @or ,vP$0,...,N21%] specify the charges located at the vertices. The dual of
expectation value~4.29! is then given by
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~4.37!

for G5U(1) and the obvious aualog forG5ZN .
Already in the Abelian case, the duality transformation maps the expectation value to a

of partition functions whose numerator is a modification of the partition function in which
presence of background charges has modified the constraints or compatibility conditions.

E. Expectation values of the dual model

As Theorem 4.11 shows, the dual expression for the expectation value of an observ
given by a ratio of partition functions. In particular, this dual expression does not coincide
any expectation value under the dual partition function.

It is therefore an interesting problem to study the natural observables of the dual pa
function and to transform these expressions back to the original formulation. From the Ab
special case it is familiar that the transformation maps expectation values to ratios of pa
functions and therefore correlators constructed from fundamental variables to free energ
collective excitations and conversely~see, for example, Refs. 5 and 27!.

For lattice gauge theory with gauge groupG5U(1) in d54 dimensions, for example, ther
exist particular expectation values of the dual partition function which describe the correlat
world-lines of magnetic monopoles.27 If one transforms these expressions back to the orig
picture, one obtains ratios of partition functionsZ(X)/Z. The numerator can be understood as
partition function of the model in the presence of a background magnetic field probing mono
and the ratioZ(X)/Z5e2F is related to the free energyF of this monopole configuration. A firs
natural generalization to the non-Abelian case was given by the correlation functions of
monopoles in Ref. 16, expressions which have been studied in lattice gauge theory for som
but which have not been seen in the context of the duality transformation.

In the Abelian sigma models, the analog of the magnetic monopoles is given by disloca
vortices, or world lines of vortices, depending on the dimension and on the precise model.
following, we present the analogous definition for the lattice chiral model with non-Abe
symmetry groupG which we callcenter dislocationas it uses the centerZ(G) of the symmetry
groupG similarly to the center monopoles in order to parametrize the observables and bec
specializes to thedislocationsstudied in Ref. 2 in the caseG5Z2 .

Definition 4.14: Let G be a compact Lie group, (V,E) be an oriented graph, andX:E
→Z(G),e°Xe assign an element of the centerZ(G) to each edgeePE. Thecenter dislocation
is the following functionOX :(RG)V→C of the configurations of the dual partition function~4.23!,

OX~$te%ePE!ª)
ePE

t̃ ~te!~Xe!, ~4.38!

where t̃ (te) denotes the representation functions ofZ(G) induced from the representationte

PRG ~Lemma 2.19!.
We can now employ the techniques of Sec. IV C in order to transform the expectation va

the center dislocation back to the original picture.
Theorem 4.15:The normalized expectation value of the center dislocation~4.38! under the

dual partition function~4.23! is equal to

^OX&dual5
1

Z S )
vPV

E
G

dgvD )
ePE

w~g]1e•g]2e
21

•Xe!. ~4.39!
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Proof: Start from~4.39!, insert the expansion ofw(g) and apply Lemma 2.19. The proof i
entirely analogous to that of Theorem 4.8 with one additional factort̃ (te)(Xe) for each edgee
PE in the integrand. h

Remark 4.16:The expectation value of the dual observable takes the form of a rati
partition functions in the original formulation. This is essentially the converse of Theorem
The numerator can again be viewed as the partition function in the presence of a backgroun
X.

In the Abelian case, we haveZ(G)5G. The possible choices for fieldsX depend on the
particular group and on the dimension and topology of the lattice. They have been car
studied for several models.

~1! If G5U(1) and (V,E) is a two-dimensional cubic lattice, then the disorder parameter of
XY-model, which is related to the free energy of a vortex–antivortex pair, is of the f
~4.39!. In higher dimensions, this generalizes to vortex strings, vortex sheets, etc.

~2! For G5Z2 we obtain the dislocations of Ref. 2 as the simplest dual observables.
expectation value is again related to their free energies.

There are more general functions (RG)V→C whose expectation value under the dual partiti
function can be calculated. Lete0PE be an edge andsPRG be an irreducible representation o
G. Then we can study the indicator function,

Oe0 ,s~$te%ePE!5dte0
s , ~4.40!

which probes whether the representations is assigned to the edgee0 . The center dislocations ca
be expressed as linear combinations of these indicator functions,

OX~$te%ePE!5S )
ePE

(
sePRG

D )
ePE

Oe,se
t̃ ~se!~Xe!. ~4.41!

The expectation value of an indicator function~4.40! under the dual partition function~4.23! is
then equal to

^Oe0 ,s&dual5
1

Z S )
vPV

E
G

dgvD )
ePE

w̃e
~e0 ,s!

~g]1e•g]2e
21 !, ~4.42!

where the Boltzmann weightw(g) is modified at the edgee0 ,

w̃e
~e0 ,s!

~g!5H w~g!, if eÞe0 ,

(
rPRG

dr,sŵrx~r!~g!, if e5e0 ,
~4.43!

In general, a function involving the indicator functions in the dual formulation leads to a co
lution of the Boltzmann weight in the original picture.

Remark 4.17:~1! The definition of dual expectation values presented here is restricte
functions of the irreducible representations at the edges. It is also conceivable to make
functions of the intertwiners at the vertices.

~2! Indicator functions similar to~4.40! have been used to construct geometrical observa
in the spin foam model of three-dimensional quantum gravity.28
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F. The strong–weak relation

The dual partition function~4.23! of the lattice chiral model is strong–weak dual to t
original formulation ~4.1!. This follows from the properties of the character expansion of
Boltzmann weight and is most transparent for the heat kernel action~2.52!. The onlyb-dependent
term of the dual partition function is the product

)
ePE

ŵte
5expS 2

1

2b (
ePE

Cte

~2!D , ~4.44!

where the inverse temperatureb appears in the denominator! The result for the Wilson action
G5U(1) or G5SU(2) looks more complicated and involves modified Bessel functions, but
qualitatively quite similar. In all these cases, the term corresponding to~4.44! has a sharp peak a
a function of theCt

(2) if b is small.
The b-dependence~4.44! of the dual partition function also encodes essential information

the strong coupling expansion of the lattice chiral model. For smallb, the dominant contribution
to ~4.44! comes from spin networks~assignments of representations to the edges of the gr!
whose sum of the quadratic Casimir eigenvalues over all edges is very small. It is now poss
sort them by the value of this sum so that the configurations of the dual partition functio
precisely the terms of the strong coupling expansion!

V. THE NONLINEAR SIGMA MODEL

We construct the lattice nonlinear sigma model with variables in some coset spaceG/H,
where H<G is a Lie subgroup ofG, starting from the chiral model. One half of th
G3G-symmetry of the chiral model is used to couple elementshPH to the action term. Integra
tion overh then makes sure that the action is constant on the cosetsgH and therefore defines
model with variables inG/H.

A. Partition function

Lemma 5.1:Let G be a compact Lie group andH<G be a Lie subgroup. Letf PL2(G) be a
class function ofG with character expansion

f ~g!5 (
rPRG

f̂ rx~r!~g!. ~5.1!

~1! For anyg1 , g2PG,

E
H

f ~g1•h•g2
21!dh5 (

rPRH
G

f̂ r (
j 51

dim Vr

(
k51

kr

H jk
~r!~g1!H jk

~r* !~g2!, ~5.2!

using the conventions of Sec. II E.
~2! The functionf defines a mapf̃ :G/H3G/H→C,

f̃ ~x,y!ªE
H

f ~gx•h•gy
21!dh, ~5.3!

wheregx , gyPG denote representatives of the cosetsx, yPG/H.
~3! The function f̃ (x,y) has a global leftG-symmetry, i.e., for anygPG, x, yPG/H,

f̃ ~g•x,g•y!5 f̃ ~x,y!. ~5.4!

~4! If in addition f (g21)5 f (g), then f̃ (x,y)5 f̃ (y,x).
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Remark 5.2:If H is a massive subgroup ofG, thenkr51 for the class-1 representations.
this case, anyL2-function G/H3G/H→C with the symmetry~5.4! is of the form ~5.2!. This
statement does, however, not extend to the case of generic Lie subgroupsH<G. We define the
lattice nonlinear sigma model for Boltzmann weights of the special form~5.2!.

Definition 5.3:Let G be a compact Lie group,H<G be a Lie subgroup, and (V,E) denote an
oriented graph. Lets:G→R be an L2-integrable and bounded class function that satis
s(g21)5s(g). Constructw̃:G/H3G/H→R from w(g)5exp(2s(g)) as in Lemma 5.1. Thelat-
tice nonlinear sigma modelis defined by the partition function

Z5S )
vPV

E
G/H

dxvD )
ePE

w̃~x]1e ,x]2e!. ~5.5!

Proposition 5.4:The lattice nonlinear sigma model has got a global left-G symmetry. For any
fixed gPG, the transformation

xv°g•xv , ~5.6!

for all vPV, is a symmetry of the weightw̃(x]1e ,x]2e). In the special case in whichHvI G is a
normal subgroup, there is also a global right-G/H symmetry. LetyPG/H. Then the transforma-
tion

xv°xv•y21, ~5.7!

for all vPV, is also a symmetry of the weight.
Example 5.5:The Boltzmann weightsw̃(x,y)ªexp(2s̃(x,y)) of the latticeN-vector model

@the O(N) nonlinear sigma model# and of theRPN21-model are of the type of Lemma 5.1. For th
N-vector model,G5O(N), H5O(N21), and

s̃~xI ,yI !52bxI •yI , ~5.8!

wherexI , yI PSN21#RN, and the dot denotes the standard scalar product. For theRPN21-model,
G5O(N), H5O(N21)3Z2 , and

s̃~xI ,yI !52
b

2
~xI •yI !2, ~5.9!

for representativesxI , yI of classes inRPN21>SN21/Z2 . On cubic lattices, there exists in bot
cases a suitable naı¨ve continuum~or weak field! limit in which the lattice constant tends to zer
and the lattice action towards the action of the corresponding continuum model.

Remark 5.6:~1! The partition function again depends only on the unoriented graph.
~2! If H5$e% is the trivial group, then any representation function is a generalized sphe

function. The nonlinear sigma model forG/H coincides in this case with the chiral model forG,
and the globalG3G-symmetry is restored.

B. Expectation values

The observables of the lattice nonlinear sigma model can be found by the same method
the chiral model~Sec. IV B!. The calculation is very similar so that we just state the results.

Theorem 5.7:Each algebraic function (G/H)V→C that is compatible with the global left-G
symmetry~5.6! is a linear combination of observables of the following type,
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~5.10!

where

r:V→RH
G , v°rv , ~5.11!

assigns a class-1 representation ofG with respect toH to each vertex;kvP$1,...,krv
% for all v

PV, and

P: ^
vPV

Vrv
→C ~5.12!

is an intertwiner ofG.
Remark 5.8:~1! The structure of the function~5.10! is illustrated in Fig. 9~a!.
~2! The well-known two-point function for a charge-anticharge pairr, r* at v,wPV is a

special case,

f kv ,kv
~xv ,xw!5 (

j v51

dim Vr

H j vkv

~r! ~xv!H j wkw

~r* ! ~xw!d j v j w
, ~5.13!

for fixed kv , kwP$1,...,kr%.
~3! If H is a massive subgroup ofG, we havekr51 for the class-1 representations so that

indiceskv can be omitted from all expressions@Fig. 9~b!#.
Theorem 5.9: If in addition HvI G is a normal subgroup, then the algebraic functio

(G/H)V→C that are compatible with both the global left-G and the global right-G/H symmetry
are linear combinations of observables of the following form,

~5.14!

Here

FIG. 9. ~a! The observable~5.10! of the lattice nonlinear sigma model on the graph of Fig. 6.~b! The same function for
the case of a massive subgroupH<G. ~c! The observable~5.14! if HvI G is a normal subgroup.
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r:V→RH
G , v°rv , ~5.15!

assigns a class-1 representation ofG with respect toH to each vertex and

P: ^
vPV

Vrv
→C, Q: ^

vPV

Vrv
* →C, ~5.16!

are intertwiners ofG.
Remark 5.10:~1! Figure 9~c! illustrates the structure of the observables~5.14! if HvI G is a

normal subgroup. Here the indiceskv of ~5.10! are no longer independent, but rather exhibi
G/H-symmetry under which invariance is required. Therefore we need the second intertwinQ.
Furthermore,kr5dimVr for all class-1 representations so that the dashed lines have be
solid.

~2! In particular forH5$e%, we recover the observable~4.3! of the chiral model.
~3! In order to have nonvanishing expectation values, the observable not only has

invariant under the symmetries~5.6! and ~5.7! ~if applicable!, but also under orientation revers
~Remark 4.7!.

C. Duality transformation

The duality transformation for the nonlinear sigma model is very similar to that of the c
model. We summarize the main steps which differ from the calculation for the chiral mode
focus directly on the most general case, the dual of an expectation value, from which the
formation of the partition function can be easily inferred.

We start with an observablef r,P,Q of the form~5.14!. If HvI G is a normal subgroup, thenQ
is an intertwiner ofG. Otherwise,Q is arbitrary so that we obtain the function~5.10! for geueric
kvP$1,...,krv

%, vPV.
We start with the expectation value of the observable~5.14! under the partition function~5.5!,

~5.17!

and insert for eachePE the expansion of Lemma 5.1,

w̃~x]1e ,x]2e!5 (
tePRH

G
ŵte (

j e51

dim Vte

(
me51

kte

H j eme

~te!
~x]1e!H j eme

~te* !
~x]2e!, ~5.18!

where theŵt are the character expansion coefficients of the functionw(g)5exp(2s(g)) of Defi-
nition 5.3. The reorganized expression then reads

~5.19!
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so that we can evaluate the integrals overG/H using ~2.36!,

~5.20!

Here S̃(v), vPV, denotes a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D ^ Vrv

→C ~5.21!

with the usual normalization. We obtain the following result.
Theorem 5.11„Dual observable…: Let G be a compact Lie group,H<G be a Lie subgroup,

and (V,E) denote an oriented graph. The expectation value~5.17! of the observable of the lattice
nonlinear sigma model is equal to the expressions

~5.22!

~5.23!

Here S̃(v), vPV, denotes a basis ofG-invariant projectors~5.21!, and theŵt are the characte
expansion coefficients of the functionw(g)5exp(2s(g)) where s(g) is the class function of
Definition 5.3. The coset space Haar mapI (v), vPV, in ~5.22! is a map

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

VteD ^ Vrv
→S ^

ePE:
v5]1e

VteD ^ S ^
ePE:

v5]2e

VteD ^ Vrv
. ~5.24!

Remark 5.12:~1! The dual expression~5.22! for the observable of the nonlinear sigma mod
is very similar to the dual observable of the chiral model in Theorem 4.11. The differences a
ranges of the indices which follow from the choice of the subgroupH<G. The structure of the
dual observable is illustrated in Fig. 10~a! if H<G is a generic, non-normal subgroup, in Fi
10~b! if H is a massive subgroup, and in Fig. 10~c! for the case of a normal subgroupHvI G.
Figures 10~a!–10~c! correspond to~5.22!. The diagrams for the other formulation~5.23! are
obtained by the replacements shown in Figs. 2~c! or 3~c!.

~2! Again, the dual expression for the observable of the chiral model can be obtained
~5.23! for a trivial subgroupH5$e%.
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~3! If one seeks a purely categorial picture of the dual nonlinear sigma model, one s
generally view all representations as representations ofH. Otherwise the integrals overH, which
are still implicitly present in the spherical functions, would not be honest intertwiners. The da
lines with open ends labeledkv then enumerate different trivial representations ofH. The special
cases of massive and normal subgroups, however, are easier and can be handled alread
context of the representations ofG.

The dual expression for the partition function can be calculated by specializing the num
of ~5.22! to the trivial observable. This result is given in the following corollary and visualize
Fig. 11.

Corollary 5.13 (Dual partition function):Let G be a compact Lie group with a Lie subgrou
H<G and (V,E) be an oriented graph. The partition function~5.5! of the lattice nonlinear sigma
model is equal to

~5.25!

~5.26!

FIG. 10. ~a! The structure of the dual form~5.22! for the expectation value of an observable of the lattice nonlinear sig
model on the graph of Fig. 6~a!. ~b! The special case of a massive subgroupH<G. ~c! The situation for a normal subgroup
HvI G.
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HereS(v), vPV, denotes a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

Vte
* D→C ~5.27!

with the usual normalization, and the coset space Haar mapI (v) is a linear map

S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

VteD→S ^
ePE:

v5]1e

VteD ^ S ^
ePE:

v5]2e

VteD . ~5.28!

D. Expectation values of the dual model

If the natural observables of the dual partition function are again constructed from the
ling of the edges with representations, the result is the same as for the lattice chiral model
IV E, restricted to the class-1 representations. The analog of~4.39! is then

^OX&dual5
1

Z S )
vPV

E
G/H

dxvD )
ePE

w̃~Xe•x]1e ;x]2e!. ~5.29!

VI. THE GENERALIZED HIGGS MODELS

In this section, we couple the chiral model and the nonlinear sigma model to lattice g
theory. In some particular cases, this yields certain Higgs models with frozen radial comp
which motivates the title of this section. Before we study the coupled models, it is usef
summarize the results of the duality transformation for lattice gauge theory15–17in the language of
the present article.

A. Lattice gauge theory

Definition 6.1: Let G be a compact Lie group, (V,E,F) be an oriented two-complex, an
s:G→R be anL2-integrable class function ofG that is bounded below and satisfiess(g21)
5s(g) for all gPG. The partition function oflattice gauge theorywith gauge groupG is defined
by

FIG. 11. ~a! The structure of the dual partition function~5.25! of the lattice nonlinear sigma model on the graph of Fig.
~b! The special case of a massive subgroupH<G.
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Z5S )
ePE

E
G

dgeD )
f PF

u~gf !, gfªg]1f
e1f

¯g]N~ f ! f
eN~ f ! f , ~6.1!

whereu(g)5exp(2s(g)).
The set of configurations of lattice gauge theory is the productGE of one copy ofG for each

edgeePE. The ordered product of group elements attached to the edges in the boundary
face f PF is denoted bygf . The Boltzmann weight exhibits a local gauge symmetry.

Proposition 6.2:Let h:V→G, v°hv , associate a group element with each vertex. T
Boltzmann weightu(gf)5exp(2s(gf)) in ~6.1! is invariant under the local gauge transformatio

ge°h]1e•ge•h]2e
21 , ~6.2!

for all ePE.
This definition of lattice gauge theory is motivated by the fact that on regular hyperc

lattices, the Wilson action tends towards the continuum Yang–Mills action in the weak field
of vanishing lattice constant. The group elementsge attached to the edges of the lattice correspo
to the parallel transports of the gauge connection along these edges. For more details on
gauge theory, see, for example, Refs. 29 and 30.

The most general observable of lattice gauge theory whose expectation value under t
tition function ~6.1! can be calculated is constructed from spin networks. Each algebraic fun
GE→C that is invariant under the transformation~6.2! is a linear combination ofspin network
functions. They generalize the notion of Wilson loops and are defined as follows.

Definition 6.3: Let G be a compact Lie group, (V,E,F) be an oriented two-complex, an
(s,Q) be a spin network~Definition 3.4!. The spin network functionof (s,Q) associates with
each configuration a complex number,

~6.3!

Remark 6.4:~1! The above definition uses the spin network (s,Q) to label edges with
representations and vertices with intertwiners, and then employs a representation function f
edge in order to obtain a functionGE→C.

~2! All edgesePE for which Vse
>C is the trivial representation contribute only a factor 1

the expression~6.3!. For an ordinary Wilson loop, for example, all edges are labeled with
trivial representation except for those edges that are part of the loop. These are labeled w
fundamental representation ofG. The intertwinersQ(v) ~if nonvanishing! are in this case uniquely
determined up to normalization.

~3! The spin network function~6.3! can beevaluatedby putting ge5e ~group unit! for all
edgesePE. The result is an invariant ofG which is often called thevalueof the spin network
(s,Q).

~4! If G is Abelian, then the setRG of irreducible representations forms an additive gro
and all irreducible representations are one-dimensional. ThusWs,Q can be decomposed into a su
of products of ordinary Wilson loops.

We have the following dual expressions for the partition function and the expectation va
a spin network function.15,17

Theorem 6.5„Dual partition function …: Let G be a compact Lie group. The partition fun
tion ~6.1! of lattice gauge theory is equal to the expression

Z5S )
f PF

(
t PR D S )

ePE
(

~e! ~e!
D S )f PF

ût f D S )
vPV

C~v ! D . ~6.4!

f G U PU
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HereU(e), ePE, denotes a basis ofG-invariant projectors

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D→C. ~6.5!

The ût are the coefficients of the character expansion of the Boltzmann weightu(g). The weights
per vertexC(v) are given by a trace involving representations and projectors in the neighbor
of the vertexvPV,

~6.6!

Here the rangef PF:vP f 0 of the first product refers to all facesf PF that contain the vertexv in
their boundary. The second product is over the rangeePE:v5]1e of all edges that havev as
their endpoint, etc.~see Sec. III A!.

Remark 6.6:~1! For each edgeePE, the projectors~6.5! are related by natural isomorphism
to intertwiners

^
f Pe1

Vt f
→ ^

f Pe2

Vt f
, ~6.7!

from the tensor product of the representations at the ‘‘incoming’’ faces to the tensor product
‘‘outgoing’’ ones.

~2! The dual partition function~6.4! labels the faces with irreducible representations ofG and
the edges with compatible intertwiners in the sense of~6.7!. The configurations of the dua
partition function are therefore spin foams~Definition 3.6! so that the dual model is a spin foa
model. Compared with the situation for the sigma models, all the labels appear one level ‘‘hig
i.e., at the faces rather than at the edges, and at the edges rather than the vertices.

~3! The expressionC(v) for given projectorsU (e) is itself a spin network. Figure 12~b!
visualizes it for a vertex with four edges attached. In particular, forG5SU(2), theC(v) are the
6 j -symbols of SU~2!. The collection of allC(v) in a two-complex is illustrated in Fig. 13~a!.

~4! The spin networks of the dual partition function for lattice gauge theory decompose
one independentC(v) for each vertex. This is a consequence of the localG-symmetry and is in
contrast to the chiral model whose dual partition function involves two spin networks that e
over the entire graph, reflecting the two-fold globalG-symmetry. For the nonlinear sigma mod

FIG. 12. ~a! A two-complex with a vertexv attached to four edges. There are six faces, one between each pair of e
~b! The spin networkC(v) of ~6.6! that appears in the dual partition function of lattice gauge theory and~c! the spin
network ~6.14! from the dual of an expectation value.
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with a massive subgroupH<G, the dual partition function still contains one spin network th
extends over the entire graph which corresponds to a single globalG-symmetry.

~5! Again there exists an alternative formulation using the Haar intertwiner rather tha
sum over projectors which is stated in the following corollary. This result agrees with the p
diagrammatical picture of Ref. 18 and is illustrated in Fig. 13~b!. Upon use of~2.24!, we recover
~6.4! and Fig. 13~a!.

Corollary 6.7: Let G be a compact Lie group and (V,E,F) denote an oriented two-complex
The partition function of lattice gauge theory~6.4! is equal to

~6.8!

whereT(e), ePE, denotes the Haar intertwiner~2.23! for the following representations:

T~e!: S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D→ S ^

f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D . ~6.9!

Finally, the analogous statements are available for expectation values of spin network
tions.

Theorem 6.8 „Dual observable…: Let G be a compact Lie group, (V,E,F) be an oriented
two-complex, andZ denote the partition function~6.1! of lattice gauge theory. The expectatio
value of the spin network function~6.3!,

~6.10!

is equal to the following expressions:

FIG. 13. An edgeePE in the boundary of three faces, two triangles and one quadrilateral.~a! The structure of the spin
networksC(v) in the dual partition function of lattice gauge theory~6.4!. ~b! The alternative formulation~6.8! using the
Haar intertwiner. We have omitted labels and arrows in both diagrams.
                                                                                                                



the

e is
tion,
re

dual

expec-

resent

d

n

2927J. Math. Phys., Vol. 44, No. 7, July 2003 Exact duality transformations for sigma models

                    
~6.11!

~6.12!

Here Ũ(e), ePE, denotes a basis ofG-invariant projectors

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vse

→C. ~6.13!

The weights per vertexC̃(v) are given by a trace involving representations and projectors in
neighborhood of the vertexvPV,

~6.14!

The Haar intertwinerT(e), ePE, in ~6.11! is a map

T~e!: S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vse

→ S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vse

. ~6.15!

Remark 6.9:~1! The general pattern is already familiar: The dual of the expectation valu
given by a ratio of partition functions whose numerator is a modification of the partition func
here given by the background spin network (s,Q) to which the spin foams couple. The structu
remains unchanged, just the compatibility condition is modified so that the numerator of the
expectation value is given by a sum over all spin foams bounded by the spin network (s,Q)
~Definition 3.7!.

~2! The spin networksC̃(v) of ~6.14! are shown in Fig. 12~c!. Compared with~b!, there is in
addition a piece of the spin network (s,Q) in the middle of the diagram.

Similarly to the sigma models, we can again ask what are the natural functions whose
tation value under the dual partition function we can study. A construction using the centerZ(G),
which is essentially analogous to Sec. IV E, was given in Ref. 16. In the language of the p
article, it reads as follows.

Definition 6.10:Let G be a compact Lie group, (V,E,F) be an oriented two-complex, an
X:F→Z(G), f °Xf assign an element of the center to each facef PF. The center monopole
correlator is the following functionOX :(RG)E→C of the configurations of the dual partitio
function ~6.4!,

OX~$t f% f PF!ª)
f PF

t̃ ~t f !~Xf !, ~6.16!
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where t̃ (t f ) denotes the representation functions ofZ(G) of Lemma 2.19.
Theorem 6.11:The expectation value of the center monopole correlator under the dual

tion function ~6.4! reads in the original formulation

^OX&dual5
1

Z S )
ePE

E
G

dgeD )
f PF

u~g f•Xf !. ~6.17!

For a deliberate choice ofX, this expression restricts to the monopole correlator27 of U~1!-
lattice gauge theory ind54 and coincides with theZN center monopoles and vortices which a
being studied in SU(N)-lattice gauge theory.

A construction using indicator functions in the dual formulation, which probe wheth
particular facef PF is assigned a given representationt fPRG , results in a convolution of the
Boltzmann weight in the original formulation. This construction proceeds in complete analo
Sec. IV E.

B. The generalized Higgs model

In this section, we study the models that can be obtained by coupling a nonlinear sigma
with variables inG/H to a lattice gauge theory with gauge groupG. When we study these model
we keep a particular Abelian special case in mind, namely the U~1!-Higgs model with frozen
radial component for which Einhorn and Savit6 have developed a duality transformation. In all t
following steps, the lattice chiral model will be contained as a special case of the nonlinear
model for the choiceH5$e%.

If we wish to couple a lattice gauge theory to the nonlinear sigma model, we have to mak
of the left-action ofG on G/H. A similar coupling has already been performed when we pas
from the chiral model to the nonlinear sigma model. In Lemma 5.1, we have used the actionH
by right-multiplication onG in order to couple one variablehPH for each edge to the variable
of the chiral model. The collection of all the integrals overH for each edge just describes a latti
gauge theory with gauge groupH and zero action for the gauge fields. Therefore we have cou
the chiral model with symmetry groupG to a lattice gauge theory with gauge groupH. The result
of this ‘‘nondynamical’’ gauge field is merely to average over the cosets and therefore to giv
to a model with variables inG/H.

In this section, we couple a ‘‘second’’ gauge field with gauge groupG to the chiral model
which is dynamical and which realizes a lattice gauge theory as described in the previous s

Definition 6.12:Let G be a compact Lie group,H<G be a Lie subgroup, and (V,E,F) denote
an oriented two-complex. Letss ,sg :G→R be L2-integrable class functions that are bound
below and satisfyss(g

21)5ss(g), sg(g21)5sg(g). The functionsg is called thegauge action
and ss is the sigma model action. Define furthermore the Boltzmann weightu(g)5exp(2sg(g))
and, using Lemma 5.1, a functionw̃:G/H3G/H→R from w(g)5exp(2ss(g)). Then the gener-
alized lattice Higgs model is given by the partition function

Z5S )
ePE

E
G

dgeD S )
vPV

E
G/H

dxvD S )
f PF

u~g]1f
e1f

¯g]N~ f ! f
eN~ f ! f ! D S )

ePE
w̃~ge

21
•x]1e ,x]2e! D .

~6.18!

Remark 6.13:~1! This definition combines the partition sum of gauge theory, integration o
G for each edge, with that of the nonlinear sigma model, integration overG/H for each vertex.
The configurations of the partition function are elements ofGE3(G/H)V. The Boltzmann weight
u(gf) of lattice gauge theory is unchanged whereas the Boltzmann weight of the nonlinear
model w̃(x,y) is modified tow̃(g21

•x,y) in order to implement the minimal coupling. We us
g21 rather thang here so that the subsequent results are consistent with the left-cosets whi
have chosen for the nonlinear sigma model and with the notation established in the pr
section for gauge theory.
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~2! The expression does again not depend on the orientations asw̃(g21
•x,y)5w̃(x,g•y).

Also we could choose different Boltzmann weightsuf(g) for each facef PF andw̃e(x,y) for each
edgeePE.

~3! Many Higgs models with frozen radial modes appear as special cases of Definition
~see, for example, Ref. 7!.

Proposition 6.14:The total Boltzmann weight of the generalized lattice Higgs model~6.18!
has got a local left-G symmetry. For each functionh:V→G, v°hv , which assigns a group
element to each vertex, the Boltzmann weight is invariant under the transformations

xv°hv•xv ,
~6.19!

ge°h]1e•ge•h]2e
21 ,

for all vPV andePE. If in additionHvI G is a normal subgroup, there is also a global right-G/H
symmetry. Then the Boltzmann weight is invariant for eachyPG/H under the transformation

xv°xv•y21, ~6.20!

for all vPV.

C. Expectation values

Using similar methods as in the previous sections, one can calculate all functionGE

3(G/H)V→C that are compatible with these symmetries and therefore determine all observ
whose expectation values under the partition function can be calculated.

Theorem 6.15:Any algebraic functionGE3(G/H)V→C that is invariant under the transfor
mations~6.19! is a linear combination of functions of the form

~6.21!

Heres:E→RG , e°se assigns an irreducible representation ofG to each edgeePE, andr:V
→RH

G , v°rv assigns a class-1 representation to each vertexvPV. There are intertwiners ofG,

P~v !PHomGS S ^
ePE:

v5]1e

VseD ^ S ^
ePE:

v5]2e

Vse
* D ^ Vrv

,CD , ~6.22!

for each vertex, and the indiceskv are arbitrary,kvP$1,...,krv
%. If in addition HvI G is a normal

subgroup, then the invariant functions are of the form

~6.23!
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wheres, r, andP are as above, andQ is an intertwiner ofG,

^
vPV

Vrv
* →C. ~6.24!

Remark 6.16:~1! These functions combine a spin network function of the type~6.3! given by
the spin network (s,P) with an observable of the type~5.10! specified byr and by thekv or by
r andQ, respectively. They are characterized by a spin network with charges (s,P,r) ~Definition
3.5!. The fact that the local gauge transformation~6.19! also affects the variablesxv of the sigma
model does not only fix the structure of the minimal coupling term, but also enforces the
patibility condition ~6.22! between the spin network function and the sigma model observa
The structure of the functions~6.21! and ~6.23! is illustrated in Figs. 14~a!–14~c! for the generic
case, for a massive and for a normal subgroup.

~2! The chiral model coupled to a lattice gauge theory is contained as the special ca
H5$e%. In this case, all dashed lines in Fig. 14~b! become solid.

D. Duality transformation

The duality transformation for the partition function~6.18! and for the expectation values o
the functions~6.21! and~6.23! are straightforward using the methods established in the prece
sections. Since the expressions become very long, we only quote the results. As the very
of sum and product signs is probably deterring at first sight, we carefully comment on the me
of the various terms and refer to the figures for illustration.

Theorem 6.17„Dual partition function …: Let G be a compact Lie group,H<G be a Lie
subgroup, and (V,E,F) denote an oriented two-complex. The partition function of the general
lattice Higgs model~6.18! is equal to the following expressions,

FIG. 14. The structure of the observables of the generalized Higgs model on the graph of Fig. 6~a!. ~a! The case~6.21! of
a generic subgroupH<G. ~b! The special case of a massive subgroupH<G and ~c! the situation~6.23! for a normal
subgroupHvI G.
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~6.25!

~6.26!

where for eachvPV,

~6.27!

Here ût and ŵh denote the character expansion coefficients of the functionsu(g) and w(g) of
Definition 6.12. For each edgeePE, U(e) is a basis ofG-invariant projectors

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* →C, ~6.28!

and for each vertexvPV, S(v) denotes a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D→C. ~6.29!

The coset space Haar mapI (v), vPV, in ~6.25! is a map

S ^
ePE:

v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D→S ^

ePE:
v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D , ~6.30!

while the Haar intertwinerT(e), ePE, maps

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* → S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* . ~6.31!

Remark 6.18:~1! We first comment on the dual partition function in the form~6.26!. The dual
partition sum comprises the partition sums of both the nonlinear sigma model and of lattice
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theory. For the nonlinear sigma model, we have a sum over all colorings of the edges with c
representationshe and a sum over all colorings of the vertices with compatible intertwinersS(v)

where the compatibility condition~6.29! is the same as for the nonlinear sigma model. For lat
gauge theory, there are additional sums over all colorings of the faces with irreducible rep
tationst f and of the edges with compatible intertwinersU (e). This compatibility condition~6.28!
is, however, not the same as in lattice gauge theory. The minimal coupling term has modifie
condition so that each spin foam appearing in the dual of the gauge theory sector is bounded
spin network that occurs in the dual of the nonlinear sigma model. In other words, the
network diagrams of the high temperature expansion of the nonlinear sigma model appear
network functions whose expectation value is calculated under the partition function of g
theory. The minimal coupling term of the generalized Higgs model could have been found
this entirely dual point of view.

~2! In addition to the character expansion coefficients, we find under the dual partition
several spin networks. There is one would-be spin network from the nonlinear sigma model,
by the representationsVhc

and by the intertwinersS(v) which extends over the entire graph. It do

not form a proper spin network because the summation over the indicesme extends only over
1,...,kre

, i.e., over theH-invariant subspaces of the representations. This is the same typ

network that is usually denoted by dashed lines and has already appeared in the dual p
function of the nonlinear sigma model@see the top layer of Fig. 11~a!#.

~3! Under the partition sum, there are furthermore the spin networks denoted byD(v) for
each vertex. They are similar to the spin networksC(v) from the dual partition function of lattice
gauge theory~6.6!, but include in addition a part of the spin network given by the representa
Vhe

and the intertwinersS̄(v). The difference between theC(v) of lattice gauge theory and th

D(v) appearing here is essentially the same as that of theC(v) and theC̃(v), cf. Figs. 12~b! and
12~c!. The neighborhood of a vertex with the spin networkD(v) and the dashed lines of th
would-be spin network is shown in Fig. 15~a!.

~4! The structure of the dual partition function~6.26! of the generalized Higgs model can b
explained in other words starting from the corresponding expression of the chiral model@Fig.
7~a!#. First, we are concerned with the nonlinear sigma model rather than with the chiral m
This was implemented by coupling elementshPH to one chiral half of the model which corre
sponds to the top layer in Fig. 7~a!, and then by averaging over the subgroup in Lemma 5.1. T
averaging is the reason why the top layer of Fig. 11~a! consists of dashed lines~‘‘would-be spin
network’’!. Then we have minimally coupled lattice gauge theory to the other chiral half w
corresponds to the spin network in the bottom layer of Fig. 7~a!. The effect of the minimal
coupling term is that lattice gauge theory just considers this spin network as an observa
which it couples its spin foams. The bottom layer of Fig. 7~a! is therefore treated as the sp
network function in the expectation value of lattice gauge theory, and becomes disconn
leading to Fig. 12~c! for lattice gauge theory and to Fig. 15~a! for the generalized Higgs model

~5! As usual, there is an alternative formulation of the dual partition function which use
Haar intertwiners and Haar maps rather than sums over projectors. This version is given in t
equation~6.25!.

~6! As G acts transitively onG/H, one can easily fix a ‘‘unitary’’ gauge by choosinghv
ªgxv

21 in ~6.19! where gxv
is a representative ofxv . This step is often convenient because

removes the scalar degrees of freedom from the model. For the duality transformation
however, pointless because the corresponding symmetry is already manifest in the dual p

Finally, the duality transformation is also available for the expectation value of the obser
~6.23!. The result is stated in the following theorem which contains the most complicated form
we are going to present. We formulate the result for the correlator in the form~6.23!. If H<G is
a non-normal subgroup, then the requirement thatQ is G-invariant can be dropped so that on
recovers the expression~6.21! for generickvP$1,...,krv

%.

Theorem 6.19„Dual observable…: Let G be a compact Lie group,H<G be a Lie subgroup,
                                                                                                                



pin
le

2933J. Math. Phys., Vol. 44, No. 7, July 2003 Exact duality transformations for sigma models

                    
and (V,E,F) denote an oriented two-complex. The expectation value of the function~6.23! under
the partition function of the generalized Higgs model is equal to

~6.32!

~6.33!

FIG. 15. ~a! The dual partition function~6.26! of the generalized Higgs model in the neighborhood of a vertex with a s
networkD(v) of ~6.27!. ~b! The analogous diagram for the dual expression~6.33! of the expectation value of an observab
~6.21!.
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where

~6.34!

For each edgeePE, Ũ(e) denotes a basis ofG-invariant projectors

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* ^ Vse
→C, ~6.35!

and for each vertexvPV, S̃(v) is a basis ofG-invariant projectors

S ^
ePE:

v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D ^ Vrv

→C. ~6.36!

The coset space Haar mapI (v), vPV, in ~6.32! is a map

S ^
ePE:

v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D ^ Vrv

→S ^
ePE:

v5]1e

VheD ^ S ^
ePE:

v5]2e

Vhe
* D ^ Vrv

, ~6.37!

while the Haar intertwinerT(e), ePE, maps

S ^
f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* ^ Vsc
→ S ^

f Pe1

Vt f D ^ S ^
f Pe2

Vt f
* D ^ Vhe

* ^ Vse . ~6.38!

Remark 6.20:~1! The features that are new in the dual expectation value~6.32! compared with
the dual partition function~6.25! are first the sums and intertwiners from the definition~6.23!. The
presence of the spherical functionsH j vkv

(rv) for each vertexvPV has lead to an additional represe

tation Vrv
in the coset space Haar map~6.37! and thus to a modification of the compatibilit

condition ~6.36!. The presence of the representation functiontpeqc

(se) has resulted in an additiona

representationVse
of the Haar intertwiner~6.38! and thus in a modification of the compatibilit

condition ~6.35!. The correlator~6.23!, which is given by a spin network with charges, h
modified the numerator of~6.23! so that the configurations of the dual picture, spin foams boun
by spin networks, are now themselves bounded by the given spin network with charge
structure of~6.33! is illustrated in Fig. 15~b! which shows the spin networkD̃(v) in the neigh-
borhood of a vertex.

~2! For the special cases in whichH is normal or massive, the situation is completely ana
gous to the nonlinear sigma model. The only changes in these cases apply to the open end
dashed lines labeledkv .
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E. Expectation values of the dual model

It is possible to construct natural observables for the dual partition function of the gener
Higgs model in the same way as for the nonlinear sigma model and for lattice gauge the
these observables only probe the representationshe assigned to the edges andt f assigned to the
faces, the result is the product of a dual observable of the nonlinear sigma model and one o
gauge theory, both independent of each other.

F. The Abelian special case

In analogy to Sec. IV D, we show the Abelian special case of the generalized Higgs mod
G5U(1), H5$e%, in greater detail.

We writeeiwePU(1), ePE, for the variables of lattice gauge theory andeiqn, vPV, for the
sigma model. The partition function~6.18! then reads

Z5S )
vPV

1

2p E
0

2p

dqvD S )
ePE

1

2p E
0

2p

dweD S )
f PF

exp~2sg~ei ( j 51
N~ f !

~e j f !•w] j f !! D
3S )

ePE
exp~2ss~ei ~q]1e2q]2e1we!!! D . ~6.39!

This is the U~1!-Higgs model studied by Einhorn and Savit.6 The dual expression for the partitio
function, Eq.~6.26!, specializes to

Z5S )
ePE

(
,e52`

` D S )
f PF

(
kf52`

` D S )
ePE

ŵ,eD S )f PF
ûkf D

3S )
vPV

dS (
ePE:

v5]1e

,e2 (
ePE:

v5]2e

,eD D S )
ePE

dS (
f Pe1

kf2 (
f Pe2

kf1,eD D , ~6.40!

where ŵ, and ûk are the Fourier coefficients ofw(g)5exp(2ss(g)) and u(g)5exp(2sg(g)), g
PU(1), respectively. This expression combines the dual partition function~4.35! of theXY-model
with that of U~1!-lattice gauge theory and implements the minimal coupling by the compatib
condition encoded in the constraint. It agrees with the result of Ref. 6 before the constra
integrated.

Since the labellings of the edges with integers,e and of the faces with integerskf are Abelian,
we can visualize~6.40! as a sum over all closed lines living on the edges together with a sum
all closed surfaces living on the faces where each surface is either closed or bounded by on
lines.

If we use the Villain action for both the sigma model and gauge theory, i.e.,ŵ,5e2,2/2b1 and
ûk5e2k2/2b2, then the total exponent of the dual Boltzmann weight is the length of the
weighted with 1/b1 plus the area of the surfaces weighted with 1/b2 . This is the effective~open!
string model for the strong coupling regime of the U~1!-Higgs model.

The observables~6.23! reduce to functions

f pv ...,qe ...~$qv%vPV:$we%ePE!ªS )
vPV

eipvqvD S )
ePE

eiqeweD , ~6.41!

which describe chargespvPZ at the verticesvPV and Wilson loopsqePZ at the edgesePE
provided that for eachvPV, the following compatibility condition holds:

(
ePE:

v5]1e

qe2 (
ePE:

v5]2e

qe1pv50. ~6.42!
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The dual of the expectation value then reads

^ f pv ...,qe ...&5
1

Z S )
ePE

(
,e52`

` D S )
f PF

(
kf52`

` D S )
ePE

ŵ,eD S )f PF
ûkf D

3S )
vPV

dS (
ePE:

v5]1e

,e2 (
ePE:

v5]2e

,e1pvD D S )
ePE

dS (
f Pe1

kf2 (
f Pe2

kf1,e1qeD D ,

~6.43!

i.e., the closed lines of~6.40! now couple to the chargespv , vPV, and can thus end at one o
these charges while the surfaces are either closed or bounded by the lines or by the back
Wilson loopqe , ePE.

This is the picture which is generalized to sums over spin networks and spin foams
non-Abelian case.

VII. DISCUSSION

We have presented an exact duality transformation for the partition functions and expec
values of observables of the lattice chiral model, of the lattice nonlinear sigma model, an
class of generalized Higgs models. We conclude with various miscellaneous comments on
cations, limitations, and open questions.

Throughout the present article, we have chosenultra-local actions, i.e., the action is a sum
over all edges~or faces! and can be calculated independently for each edge~or face!. A generali-
zation to more complicated, less local, actions is straightforward. Observe that the cha
expansion of the Boltzmann weight is always a series of charges~or spin network functions! and
that we can perform the duality transformation for generic expectation values of these charg~or
spin network functions!.

The dual form of the partition function can be used for numerical studies. From the Ab
special case it is familiar~see, for example, Ref. 31! that for some observables the original mod
is much easier to simulate whereas for others the simulations are much more efficient in th
model. At present, algorithms are being developed for pure SU~2!-lattice gauge theory in three
dimensions32 and for a technically closely related model33 in the context of quantum gravity.

If one wishes to implement Monte Carlo algorithms for the dual model, one has to make
that the importance sampling is applied to a positive measure. While the character exp
coefficients of the common Boltzmann weights are positive, the situation is less clear for th
networks@such as theC(v) of ~6.6!# which appear under the dual partition sum. At least for
O~4!-symmetric nonlinear sigma model and for the SU~2!-symmetric chiral model, these spi
networks have non-negative real values.34 Should there be alternating signs in other models,
has to associate the sign with the observable which is measured while the modulus can b
with by the importance sampling. This is familiar, for example, from the sign problems in
simulation of fermionic systems.

It might finally be more than a mere coincidence that the dual partition function resemb
cluster decomposition. The lack of efficient cluster algorithms for gauge theories may h
natural explanation in the dual picture where the weightsC(v) of lattice gauge theory are loca
ized at the vertices as opposed to the spin network which appears in the dual sigma mod
which extends over the entire lattice.

We emphasize that there are intermediate steps in the duality transformation, for ex
~4.20! and~5.19!, in which both the old and the new variables are present and which resemb
extended ‘‘phase space’’ path integral whose weight, however, does not have any obviou
tivity properties. Upon solving all sums, one recovers the original partition function with pos
Boltzmann weights, while performing the integrals, one obtains the dual expression, agai
positive weights~at least in some cases which we have listed above!.
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In the Abelian case, there are higher level generalizations of sigma models and gauge t
in which the fundamental variables are located not at vertices or edges, but rather at highe
e.g., at cubes, hypercubes etc., and described by discretizedk-forms.2,3 This construction does no
have any obvious generalization to the non-Abelian case. Any such model would make us
suitable definition of non-Abelian cohomology.

We also stress that the non-Abelian generalization of the duality transformation paralle
Abelian special case only up to the point where one solves the constraints. In the non-A
situation, there are no longer just constraints, but rather sums over compatible intertwiners
there exists no obvious step which generalizes the integration of the constraints. This rest
to the original lattice as opposed to the Abelian case in which one usually passes to a s
‘‘dual’’ lattice. This can, however, also be seen as an advantage because our generaliza
therefore independent of the topology of the lattice. The case of nontrivial topology in Ab
systems was studied in Ref. 35.

An interesting generalization of lattice gauge theory is available ind<4 dimensions in the
dual formulation where one can replace the gauge group by a quantum group.17,18This includes in
particular supergroups as the gauge groups. Similar constructions in which the category of
sentations of a compact Lie group in the dual formulation is replaced by more general cate
have already been known from the definition of topological invariants and from topological q
tum field theory,~see, for example, Refs. 36 and 37!. From the formulas stated in the prese
article, one obtains at least a formal topological invariant from the partition functions if
Boltzmann weights, say,w(g), are replaced byd-functions w(g)5d(g) and similarly ŵr

5dimVr in the dual picture. Noncompact Lie groups have recently attracted attention i
context of quantum gravity,~see, for example, Ref. 38!.

What has been missing so far is, first, a generalization which includes fermions~this is mainly
due to the still rather limited understanding of fermions in a non perturbative formulation! and,
second, an analog of the vortex–spin wave decomposition of Refs. 39 and 40.

The present article is entirely written in the Lagrangian language of path integrals and e
tation values. All results are in one-to-one correspondence to the analogous statements
Hamiltonian formulation which involves the quantum statistical operatore2H. Matrix elements of
this operator can be calculated in the dual picture from sums over spin networks and spin
~A detailed study is in preparation.!

As far as the strong–weak relation of the duality transformation is concerned, we stres
the dual partition function provides a closed form for the strong coupling expansion which m
it possible to separate the group combinatorics from the lattice combinatorics. This has
advocated in the context of high-order strong coupling expansions~see, for example, Refs. 7 an
41!. The key to the duality transformation was to abstract from a particular group and to foc
the structures that are common to all compact Lie groups. It remains a considerable challe
evaluate the dual expressions for particular groups, Boltzmann weights, and shapes of the

As far as the construction of strong coupling expansions in gauge theories is concerne
interesting to note that there exists an effective string model which describes the strong co
regime of Abelian lattice gauge theories. In the non-Abelian case, however, mere string
insufficient, and the world-sheets of the strings should rather be allowed to branch according
combinatorics of the representation theory. A familiar example is the strong coupling calcu
of the static three-quark potential in QCD. The lack of branchings of the world-sheets caus
string picture to break down when spin foams appear as the fundamental nonperturbative st
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Entropic repulsion for a Gaussian lattice field with certain
finite range interaction
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Consider the centered Gaussian field onZd, d>2l 11, with covariance matrix
given by (( j 5 l

K qj (2D) j )21 whereD is the discrete Laplacian onZd, 1< l<K and
qjPR,l< j <K are constants satisfying( j 5 l

K qj r
j.0 for r P(0,2# and a certain

additional condition. We show the probability that all spins are positive in a box of
volume Nd decays exponentially at a rate of orderNd22l logN and under this
hard-wall condition, the local sample mean of the field is repelled to a height of
orderAlogN. This extends the previously known result for the case that the cova-
riance is given by the Green function of simple random walk onZd ~i.e., K5 l
51,q151). © 2003 American Institute of Physics.@DOI: 10.1063/1.1581354#

I. INTRODUCTION

We consider the continuous spin lattice models with massless interaction which c
thought of as an effective modelization of the random interface. The configurationf5$fx%xPZd

PRZd
is interpreted as a~discretized! interface embedded in thed11-dimensional space and th

spin fx at the sitexPZd denotes the height of the interface. Formally speaking, for the Ha
tonianH(f), the corresponding Gibbs measure is defined by

P~df!5
1

Z
exp$2H~f!% )

xPZd
dfx ,

wheredfx is Lebesgue measure onR andZ is a normalization factor. When the~formal! Hamil-
tonian is given byH0(f)5(^x,y&V(fx2fy) for appropriate potentialV where the summation is
taken over all nearest neighbor sitesx andy, this model is called the massless fields model a
recently the study of this model has been rapidly developing from both dynamical and s
aspects~cf. Ref. 14!.

One of the problems related to the interfaces is the study of the effect of a hard wall. I
article we consider the problem of the entropic repulsion, that is, to examine the asym
behavior of the lattice massless fields under the condition that the height variables are all p
in a large finite box~cf. Ref. 20!. To consider such asymptotics plays an important role in
construction of droplets on a hard wall~cf. Refs. 1 and 3! and also it is closely related to th
problem of the wetting transition~cf. Refs. 6 and 8!. For Gaussian case~harmonic crystal! it has
been studied in Refs. 4, 5, 9, and 10 with several boundary conditions and a non-Gaussia
~anharmonic crystal! was studied in Ref. 11. But these results treated the HamiltonianH0(f), the
so-called¹f models.

The purpose of this article is to investigate the entropic repulsion for a much more wide
of interactions determined by certain quadratic potentials. Namely, we consider the follo
~formal! HamiltonianH1(f) instead ofH0(f):

a!Electronic mail: sakagawa@math.keio.ac.jp
29390022-2488/2003/44(7)/2939/13/$20.00 © 2003 American Institute of Physics
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H1~f!5(
j 51

K

qj (
xPZd

V~~2D! j /2fx! with V~r !5r 2, ~1!

whereKPN, q5$qj%1< j <KPRK andD is the discrete Laplacian onZd. If j is odd, we consider
(xPZd((2D) j /2fx)

2 as( i 51
d (xPZd((2D) [ j /2]¹ifx)

2 where@ j /2# is an integral part ofj /2 and¹i is
the discrete gradient onZd for i th direction. Similarly to the¹f case, this Hamiltonian has
continuum symmetry, i.e., changing the value of heights by adding a constant at each site d
change the Hamiltonian. Whend>2l 11 for l 5min$j;qjÞ0%, a corresponding infinite volume
Gibbs measure actually exists and is characterized by DLR equations. It determines a G
field on Zd; see Sec. II for more details.

The HamiltonianH1(f) is related to several physical and mathematical models. For exam
in the model of the membrane such as a lipid bilayer, the energy of the interface separati
water phase and the lipid phase is given by

H~f!5 (
xPZd

~k1~¹fx!
21k2~Dfx!

2!,

wherek1 andk2 are called lateral tension and bending rigidity, respectively~cf. Refs. 23 and 26!.
And also whend51, K52 andq150,q2.0, this model corresponds to the integration of rand
walks which was studied in Ref. 25~see Ref. 16 for the continuum version!.

In Sec. II, we give a precise formulation of our model and state the results. The proof w
given in Secs. III and IV. Finally, in Sec. V we show the asymptotics of the Green function an
convergence of the capacity which are used in the proof. The strategy of the proof is sim
those for¹f models. However, in our case, since we do not have the random walk represen
of conditional expectation and covariance as¹f models~cf. Refs. 2 and 5!, we need to conside
another conditioning argument which depends on the Markov property of thef field and the range
of the interaction.

II. MODEL AND RESULTS

Let q(r )5( j 51
K qj r

j , q5$qj%1< j <KPRK, be a polynomial of degreeKPN. DefineJ«(x,y)
5q(«I 2D)(x,y) for «>0 and x,yPZd, where I is an identity matrix andD is the discrete
Laplacian onZd determined by

~2D!~x,y!5H 2
1

2d
if ux2yu51,

1 if ux2yu50,

0 otherwise,

and for j >2

~2D! j~x,y!5 (
ziPZd ; i 51,2,...,j 21

~2D!~x,z1!~2D!~z1 ,z2!¯~2D!~zj 21 ,y!.

We will denoteJ0(x,y) by J(x,y). At first we assume the following:
Assumption 1:

~i! d>2l 11 wherel 5min$j;qjÞ0%,
~ii ! ( j 5 l

K qj r
j.0 for every 0,r<2.

For any absolutely summable functionf :Zd→R, we will denote its Fourier transform by
f̂ (u)5(xPZdeiu•xf (x), uP@2p, p#d. It is easy to see thatJ« is translation invariant andĴ«(u)
5(xPZdeiu•xJ«(0,x)5( j 5 l

K qj («1m(u)) j where m(u)5 (1/d) ( i 51
d (12cosui) is the Fourier
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transform of2D. From Assumption 1 and the fact thatm(u)5 (1/2d) uuu21o(uuu2) as uuu→0,
Ĵ«(u)>0 and Ĵ«(u)21 is integrable over@2p, p#d for any «>0 small enough. Hence, in thi
case,J« is positive definite, i.e.,(x,yPZdJ«(x,y)jxjy>0 for everyj5$jx%xPZd of finite range and
the equality holds only whenj[0. Therefore,J«

21 exists and it is also positive definite~cf. Chap.
13 of Ref. 13!. Thus the centered Gaussian field onZd with covariance matrixG5J21 exists. We
will denote its law onV[RZd

by P. The infinite volume measureP is characterized by the
following DLR equation as an infinite Gibbs distribution~cf. Ref. 13!:

P~•uF $x%c!5NS 2J~0,0!21(
yÞx

J~x,y!fy , J~0,0!21D P-a.s. f,

where F $x%c5s(fy ;yÞx) is the s-field generated by$fy ;yÞx% and N(m,s2) denotes the
normal distribution with meanm and variances2. Positivity of the varianceJ(0,0)21 follows
from the positive definiteness ofJ.

Remark 2.1: Formally speaking, by summation by parts the measure P is represented

P~df!5
1

Z
expH 2(

j 51

K S 1

2dD aj

qj (
xPZd

~~2D! j /2fx!
2J )

xPZd
dfx ,

where aj51 if j is odd and aj50 if j is even. Hence P corresponds to the Gibbs measure w
Hamiltonian H1(f) defined by (1).

Remark 2.2: By Lemma 5.1 below, we have

Cov~fx ,fy!;
C

ux2yud22l as ux2yu→`,

for some constant C when d>2l 11. This implies that the field has a long range correlatio
similar to the¹f interface model.

The following second assumption impliesG(x,y)5J21(x,y)>0 for all x,yPZd which en-
sures that we can use a FKG inequality for the measureP ~cf. Ref. 24!.

Assumption 2:There exists a sequence of positive small numbers$«k%k>1 such that«k↓0 as
k→` andJ«k

21(x,y)>0 for all x,yPZd andk>1.

We have the following example which satisfies our two assumptions.
Example: q(r )5a0r l) j 51

K2 l(a j r 1b j ), wherea j ,b j.0 for every 0< j <K2 l and 1< l<K.
Proof: Assumption 1 is obvious. We will check Assumption 2. For thisq(r ), J«

21 is given by

1

a0
~~«I 2D!21! l )

j 51

K2 l

~a j~«I 2D!1b j I !21.

However, (2D)21 is the Green function of thed-dimensional simple random walk onZd and
(a(«I 2D)1bI )21 is the Green function of the random walk with killing rate («a1b)/@a(«
11)1b# and killing starting at time 0 ifa,b.0 for any «>0. Thus all components of («I
2D)21,(a j («I 2D)1b j I )

21 are positive and accordinglyJ«
21(x,y).0 for all x,yPZd and «

>0. h

Our attention will be focused on the following entropic repulsion event,

VN
15$fPV;fx>0 for all xPVN%,

whereVN5NVùZd,NPN andV5@21, 1#d.
The first result is on the asymptotics of the probability of the eventVN

1 . We always assume
Assumptions 1 and 2.

Theorem 2.1:There exist C1 ,C2.0 such that
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2C1< lim inf
N→`

1

Nd22l logN
log P~VN

1!< lim sup
N→`

1

Nd22l logN
log P~VN

1!<2C2 .

Remark 2.3: This theorem implies that in our model, the order of the decay of P(VN
1) depends

on the minimum degree l of the polynomial q(r ) and not on the maximum degree K of q(r ),
namely the maximum range of the interaction of the (formal) Hamiltonian H1(f) defined by (1).
This is because the asymptotics of the correlation of the field depends on l and not on K, and also
formally speaking, if(xPZd((2D) l /2fx)

2 is small, then(xPZd((2D) j /2fx)
2 becomes small for

every l11< j <K and so the energy H1(f) becomes small.
By using these bounds, we obtain the asymptotics of the local sample mean of the

variables under the conditional probabilityP(•uVN
1) as N→`. This implies that the field is

repelled to the height of orderAlogN by a hard-wall at least under average.
Theorem 2.2:Let 12 2l /d,g<1 be fixed. Then for every a,2G(0,0)$(211g)d12l %, we

have

lim
N→`

sup
zPVN ,r .0
VrNg(z),VN

P~f̄z,rNg<Aa logNuVN
1!50, ~2!

and there exists some b.0 such that

lim
N→`

sup
zPVN ,r .0
VrN(z),VN

P~f̄z,rN>Ab logNuVN
1!50, ~3!

where VR(z)5z1VR is a box with side-length2R and centered at z andf̄z,R

5(1/uVR(z)u)(xPVR(z)fx denotes the local sample mean of the height variables on VR(z).
Remark 2.4: The case that K5 l 51 and ql51 was studied in Ref. 5. In this case, it is prove

that the constants C1 and C2 in Theorem 2.1 coincide with each other. In our case, by the pr
of Theorem 2.1 below, we can see that the constant C1 of the lower bound is given by C1
52lqlClG(0,0) whereCl5Capl(V)[ inf$(1/2d) l(c,(2Dc)

lc)L2(Rd) ;cPH0
l (Rd),c>1V%, Dc is

the continuous Laplacian onRd, (•,•)L2(Rd) denotes L2(Rd)-scalar product and H0
l denotes the

usual Sobolev space with norm(c,(2Dc)
lc)L2(Rd)

1/2 . If K 5 l 51 and ql51, this constant coincides
with that in Ref. 5. To obtain the same constant (or good upper bound), the technique of s
conditioning argument was used in Ref 5. When considering such kind of conditioning argu
conditional expectation of height variable can be represented as the linear sum of the h
variables of conditioned sites. In the¹f case, each coefficient is given by the hitting probabi
of the simple random walk onZd and this is non-negative. But in our case, both positive coeffic
and negative coefficient appear and we cannot obtain the estimate of the conditional expec
from below or above under the eventVN

1 at all. By this reason, we have not been able to prove
upper and lower bounds with the same constant.

Also in Ref. 5, Theorem 2.2 is proved for each height variablefx instead of the local sample

mean of the heightf̄z,rNg. In our model, since the well-known FKG criterion (cf. Corollary 1.7
Ref. 15) does not hold, we cannot use FKG inequality for the conditioned measure P(•uVN

1). This
causes the great difficulty to estimate the several expectations with respect to the mea
(•uVN

1). That is why we can prove Theorem 2.2 only for the local sample mean of the h
variables.

Remark 2.5: We have restricted our discussion to the infinite volume Gaussian field P
d>2l 11. It might be natural and interesting to consider the finite volume measure PN with zero
boundary condition outside VN and investigate the behavior of PN(VdN

1 ) and PN(•uVdN
1 ) for 0

,d<1 in arbitrary dimensions. When0,d,1 and d>2l 11, we can modify our proof and
obtain similar results to Theorems 2.1 and 2.2. But when0,d,1 and d<2l , since we do not
have the estimate of the covariance given as in Proposition 1.6.7 of Ref. 19 for the¹f case, we
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have not obtained the corresponding results. Also, because of the same reason as Remar
seems much more difficult to consider the boundary effect (i.e., the case whered51) even if d
>2l 11.

III. PROOF OF THEOREM 2.1

A. Proof of the lower bound

We will use two-scale decomposition originally introduced in the proof of Proposition 4.
Ref. 10.

Step 1:Let f05$fx
0%xPZd and f15$fx

1%xPZd be two independent centered Gaussian fie
with covariances

E@fx
0fy

0#5J21~x,y!2J«
21~x,y![G«

(0)~x,y!,

E@fx
1fy

1#5J«
21~x,y![G«

(1)~x,y!,

respectively. We will choose a parameter«.0 along the sequence$«k%k>1 of Assumption 2 and

for convenience omit the subscriptk. Note that G«
(0)̂(u)5(( j 5 l

K qj (m(u)) j )212(( j 5 l
K qj («

1m(u)) j )21, G«
(1)̂(u)5(( j 5 l

K qj («1m(u)) j )21 and by Assumptions 1 and 2, the fieldsf0,f1

exist for any«.0 small enough. The original fieldf5$fx%xPZd is represented as the sum of the
two fields:f5f01f1. We will keep the notationP for the joint law off0 andf1. By using the
inversion formula and Lebesgue’s dominated convergence theorem, it is easy to se
lim«→0 G«

(0)(x,y)50 for everyx,yPZd. We denote byPa,N(a.0) the law of the random field
$fx

01Aa logN,fx
1%xPZd, which is still a Gaussian field with the same covariance as$f0,f1% under

P, but the mean of thef0-field is shifted.
For F 05s(fx

0 ;xPZd), we have

P~VN
1!>E@P~fx

01fx
1>0 for all xPVNuF 0!I ~fx

0>Aa logN for all xPVN!#.

Sincef0 andf1 are independent, on$fx
0>Aa logN for all xPVN% we have

P~fx
01fx

1>0 for all xPVNuF 0!>P~fx
1>2Aa logN for all xPVN!.

Thus, we obtain logP(VN
1)>T01T1 where

T05 log P~fx
0>Aa logN for all xPVN!,

T15 log P~fx
1>2Aa logN for all xPVN!.

We will estimateT0 in Steps 2 and 3 andT1 in Step 4.
Step 2:Since lim«→0 G«

(0)(0,0)50, in a completely analogous manner to the proof of~4.13!
of Ref. 10 we can prove that for everya8.a there exists«8.0 such that for all«<«8

lim
N→`

Pa8,N~fx
0>Aa logN for all xPVN!51. ~4!

Moreover, we have

lim
N→`

1

Nd22l logN
HN~Pa8,NuP!5

1

2
a8qlCl , ~5!

whereHN(Pa8,NuP)5EPa8,N@ logdPa8,N /dPuFVN
#, FVN

5s(fx ;xPVN). We will prove this equal-

ity later. Combining~4! and~5! with entropy inequality~cf. Lemma 5.4.21 of Ref. 12!, we obtain
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lim inf
N→`

1

Nd22l logN
T0>2

1

2
aqlCl , ~6!

for everya.0 and«.0 small enough.
Step 3:It is easy to see thatHN(Pa8,NuP)5 1

2a8 logN^1VN
,(G«,(N)

(0) )211VN
&VN

whereG«,(N)
(0) is a

restriction ofG«
(0) to VN3VN and ^•,•&VN

denotes thel 2(VN)-scalar product. So all we need t
prove ~5! is

lim
N→`

1

Nd22l ^1VN
,~G«,(N)

(0) !211VN
&VN

5qlCl , ~7!

for fixed «.0 small enough. By the variational formula, we have for anycPL2(V),

^cN ,~G«,(N)
(0) !21cN&VN

5 sup
f PL2~VN!

$2^cN , f &VN
2^ f ,G«,(N)

(0) f &VN
%, ~8!

where cN(x)5c(x/N). By Assumption 2 and the definition off0-field, we haveG«
(0)(x,y)

<G(x,y) for everyx,yPZd. The lower bound of~7! is an easy consequence of this fact,~8! and
Lemma 5.2.

Next, we will prove the upper bound. By~8! we have

^1VN
,~G«,(N)

(0) !211VN
&VN

< sup
f PL2(Zd)

$2^hN , f &VN
2^ f ,G«

(0)f &VN
%5^hN ,~G«

(0)!21hN&Zd,

where hPC0
`(Rd) with h51 on V and hN(x)5h(x/N). It is easy to see that (G«

(0))21̂(u)

2G21̂(u)<C(( j 5 l
K qj (m(u)) j )2 for someC5C(«).0 and everyuP@2p,p#d. Hence by Parse-

val identity we know that

^hN ,~~G«
(0)!212G21!hN&Zd<

C

~2p!d E
[ 2p,p] d

uhN̂~u!u2S (
j 5 l

K

qj~m~u!! j D 2

du5C^hN ,J2hN&Zd.

Thus

1

Nd22l ^1VN
,~G«,(N)

(0) !211VN
&VN

<
1

Nd22l ~^hN ,JhN&Zd1C^hN ,J2hN&Zd!

5S 1

2dD l

ql~h,~2Dc!
lh!L2(Rd)~11o~1!!,

asN→`, where the last equality follows from the fact that

1

Nd22 j ^cN ,~2D! jcN&Zd5S 1

2dD j

~c,~2Dc!
jc!L2(Rd)~11o~1!!, ~9!

as N→`, for every cPC0
`(Rd) and j >1. Finally, taking lim infN→` and infimum overh we

obtain the upper bound.
Step 4:By Assumption 2, we can use FKG inequality forf1-field ~cf. Ref. 24!. Therefore,

elementary Gaussian estimate yields

lim inf
N→`

1

Nd22l logN
T150 if a>4lG~0,0!. ~10!

By ~10! and ~6!, we can complete the proof. h
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B. Proof of the upper bound

We consider the conditioning argument which corresponds to the even-odd procedure¹f
case~cf. Ref. 11!.

Step 1:Let AN5VNù(K11)Zd, ÃN5$xPAN ;dist(x,AN
c ).K% and BN5VN2ÃN . Define

FBN
5s(fx ;xPBN). Then by the Gibbsian description ofP, $fx%xPÃN

are independent Gaussia
random variables with meanmx52J(0,0)21(yÞxJ(x,y)fy and variances25J(0,0)21 under
P(•uFBN

). Define CN5$xPÃN ;mx<aN% for aN5Aa logN,a.0. Note that CN is an
FBN

-measurable random set and different from the¹f case;mx contains the sum fory with
J(x,y),0. For 0,«,1, we have

P~VN
1!5EF )

xPÃN

P~fx>0uFBN
!I ~V1~BN!!G

<EF )
xPÃN

P~fx>0uFBN
!I ~ uCNu>«uÃNu!G1P~V1~BN!ù$uCNu<«uÃNu%!

[T01T1 ,

whereV1(D)5$fPV;f(x)>0 for all xPD% for everyD,Zd.
Step 2:Since $fx2mx%xPÃN

are centered Gaussian random variables underP(•uFBN
), by

following the argument of the proof of~2.16! of Ref. 11, we obtain

lim sup
N→`

1

Nd22l logN
logT052` if a,4ls2.

Step 3:Let h(x,y)52J(0,0)21J(x,y). Thenmx can be represented as

mx5 (
yÞx

h(x,y).0

h~x,y!fy1 (
yÞx

h(x,y),0

h~x,y!fy[mx
11mx

2 .

Now on V1(BN),mx
1>0 andmx

2<0. Especially on (CN)c,mx
1>aN sincemx5mx

11mx
2>aN .

Thus onV1(BN)ù$uCNu<«uÃNu%, we have

SN
1[

1

uÃNu
(

xPÃN

mx
1>~12«!aN .

SinceSN
1 is a linear sum of$fx%xPBN

this is a centered Gaussian, hence

T1<P~SN
1>~12«!aN!<expH 2

~12«!2aN
2

2Var~SN
1! J .

By using the fact thath(x,y) is independent ofN andG(x,y)>0 for all x,yPZd,

Var~SN
1!5EF S 1

uÃNu
(

xPÃN

(
yÞx

h(x,y).0

h~x,y!fyD 2G
<

C

uVNu2
EF S (

xPVN

fxD 2G
<

C

N2d
^1VN

,G(N)1VN
&VN

5O~N2d12l !,
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as N→`, where C.0 is a constant independent ofN and G(N) is a restriction ofG to VN

3VN . The last equality follows from Lemma 5.2.
Finally, we obtain

lim sup
N→`

1

Nd22l logN
logT1 < 2C2 ,

for some constantC2.0 and complete the proof. h

IV. PROOF OF THEOREM 2.2

A. Proof of „2…

We will use the modified version of the conditioning argument which was used in Refs. 5
11. To obtain the independent field under conditioning, we consider thicker walls.

For fixed LP2N large enough, define ML5(LZ3Z3¯3Z)ø(Z3LZ3Z3¯

3Z)ø¯ø(Z3¯3Z3LZ), AL5(ø j 52[K/2]
[K/2] (ML1 j 1))1(L/2) 1, AL

c5Zd\AL , VrNg(z)5z
1VrNg, LN5VNùLZd andL rNg(z)5VrNg(z)ùLZd, wherezPZd, r .0, 0,g<1, @a# denotes
the integral part ofa and 15(1,1, . . . ,1). AL

c consists of separatedd-dimensional cells with
centered atLZd and side-lengthL22@K/2#22. We will denote a cell with centered at the orig
and side-length L22@K/2#22 by BL and the matrix inverse of (J(x,y))x,yPBL

by

(GL(x,y))x,yPBL
. Next letFAL

5s(fx ;xPAL) andf̃x5E@fxuFAL
#. UnderP(•uFAL

), $fx%xPLN

are independent Gaussian random variables with mean$f̃x%xPLN
and by the Gibbsian descriptio

of P we have Cov(fx ,fyuFAL
)5Cov(fx ,fyuFB

L
c) for x,yPBL , whereFB

L
c5s(fx ;x¹BL). The

following lemma follows from this fact and Theorems~1.5! and~1.6! of Ref. 18~see also Sec. 4
of Ref. 17!.

Lemma 4.1: (i)Cov(fx ,fyuFAL
)5GL(x,y) for every x,yPBL .

(ii) For each fixed x,yPBL , GL(x,y)→G(x,y) as L→`.
By the translation invariance and the Gibbsian description ofP, Cov(fx ,fyuFAL

)

5GL(x,y) if x,y¹AL belong to the same cell ofAL
c and Cov(fx ,fyuFAL

)50 if x,y¹AL belong

to the different cells ofAL
c . Also, we haveGL(0,0).0 for anyLP2N large enough. The crucia

step in the proof of~2! is the following:
Lemma 4.2: Let12 2l /d,g<1 be fixed and take a,2GL(0,0)$(211g)d12l %. Then for

everyd.0

lim
N→`

sup
zPVN ,r .0

LrNg(z),VN

P~RLrNg(z)@0,Aa logN#>duVN
1!50,

where RD5(1/uDu) (xPDdfx
for each D,Zd.

We will prove this lemma at the end. Once we have shown Lemma 4.2, in the similar w
the proof of~4.2! of Ref. 5 we can prove the following.

Lemma 4.3: Let12 2l /d,g<1 be fixed and take a,2G(0,0)$(211g)d12l %. Then for
everyd.0

lim
N→`

sup
zPVN ,r .0
VrNg(z),VN

P~RVrNg(z)@0,Aa logN#>duVN
1!50.

By using Lemma 4.3, we first prove~2!.
Proof of (2): Let a,2G(0,0)$(211g)d12l % be fixed. For everya,a8,2G(0,0)$(21

1g)d12l %, d.0 andzPVN , r .0 with VrNg(z),VN , we have
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P~f̄z,rNg<Aa logNuVN
1!5P~$f̄z,rNg<Aa logN%ù$RVrNg(z)@0,Aa8 logN#>d%uVN

1!

1P~$f̄z,rNg<Aa logN%ù$RVrNg(z)@Aa8 logN,`!>12d%uVN
1!.

By Lemma 4.3, the first term goes to 0 asN→`. Next, on$RVrNg(z)@Aa8 logN,`)>12d%ùVN
1 ,

we have f̄z,rNg>(12d)Aa8 logN. Hence the second term is less thanP((12d)Aa8 logN

<f̄z,rNg<Aa logNuVN
1) which equals 0 ford.0 small enough. h

Proof of Lemma 4.2:
Step 1:We will denoteLNg(0) by LN

g . Set

I N~a!5$xPLN
g ;fx<Aa logN%,

Ĩ N~a!5$xPLN
g ;f̃x<Aa logN%, Ĩ N~a!c5$xPLN

g ;f̃x.Aa logN%.

As the proof of Lemma 4.4 of Ref. 5, onVN
1 we have

$RL
N
g @0,Aa logN#>d%#$u Ĩ N~a8!u>d8uLN

g u%ø$uI N~a!ù Ĩ N~a8!cu>~d2d8!uLN
g u%[J0øJ1 ,

for each 0,d8,d anda8.a.
Step 2:Since$fx%xPL

N
g are independent Gaussian random variables underP(•uFAL

), we have

P~J0ùVN
1!<ENF )

xPLN
g

P~fx>0uFAL
!I ~ u Ĩ N~a8!u>d8uLN

g u!G .

Note thatuLN
g u5CNgd for someC.0 independent ofN. Then in the same way as in Step 2 of th

proof of Theorem 2.1 upper bound, we can obtain

P~J0ùVN
1!<expH 2C

AGL

AlogN
Ngd2 a8/2GLJ ,

for some constantC.0, whereGL5GL(0,0). Hence for everya,a8,2GL$(211g)d12l %,
we know that

P~J0ùVN
1!<exp$2CNd22l 1«%, ~11!

for some C,«.0. By this inequality and Theorem 2.1 lower bound, we obtain t
limN→` P(J0uVN

1)50.
Step 3:Define

CN5$u$xPLN
g ;fx2f̃x<2~Aa82Aa!AlogN%u>~d2d8!uLN

g u%,

Dx5$fx2f̃x<2~Aa82Aa!AlogN%.

If xPI N(a)ù Ĩ N(a8)c, then the eventDx occurs, so we haveP(J1ùVN
1)<P(CN). For xPLN

g ,

P~DxuFAL
!<expH 2

~Aa82Aa!2 logN

2GL J . ~12!

Next, for everybPR,
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T1[EFexpH Nb
1

uLN
g u (

xPLN
g

I ~fx2f̃x<2~Aa82Aa!AlogN!J G
>EFexpH Nb

1

uLN
g u (

xPLN
g

I ~fx2f̃x<2~Aa82Aa!AlogN!J I ~CN!G
>exp$~d2d8!Nb%P~CN!.

Using the independence of$fx2f̃x%xPL
N
g underP(•uFAL

) and ~12!,

T15EF )
xPLN

g
EFexpH Nb

1

uLN
g u

I ~fx2f̃x<2~Aa82Aa!AlogN!J UFALG G
5EF )

xPLN
g
H S expH Nb

1

uLN
g uJ 21D P~DxuFAL

!11J G
<H S expH Nb

1

uLN
g uJ 21DexpH 2

~Aa82Aa!2 logN

2GL J 11J uLN
g u

<expH ULN
gUS expH Nb

1

uLN
g uJ 21DexpH 2

~Aa82Aa!2 logN

2GL J J .

Hence we obtain

P~J1ùVN
1!<exp$2~d2d8!Nb%exp$CNgd2 (Aa82Aa)2/2GL

~exp$CNb2gd%21!%,

for someC.0. Now takingb5gd2 (Aa82Aa)2/2GL, we know that

lim sup
N→`

1

Nb log P~J1ùVN
1!<2~d2d8!. ~13!

Sinceb.d22l for a,a8,2GL$(211g)d12l %, by ~13! and Theorem 2.1 lower bound w
obtain limN→` P(J1uVN

1)50.
Completely the same way, we can obtain the estimates~11! and ~13! independent ofz

PVN , r .0 with L rNg(z),VN for L rNg(z) instead ofLN
g and complete the proof. h

B. Proof of „3…

Take zPVN , r .0 so thatVrN(z),VN . By Chebyshev inequality and the Brascamp–Li
inequality ~cf. Ref. 7!, which can be applied to the conditioned measureP(•uVN

1) ~cf. Appendix
of Ref. 11!, we have

P~f̄z,rN>Ab logNuVN
1!<expH 2

uVrN~z!u2

2^1VrN(z) ,G1VrN(z)&VN

~~Ab logN2E@f̄z,rNuVN
1# !∨0!2J .

Hence, by Lemma 5.2, we have only to prove that

lim sup
N→`

1

AlogN
E@f̄z,rNuVN

1#<C,

for some constantC.0 and this estimate follows from the same argument as in the proo
Lemma 4.7 of Ref. 5. h
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V. SOME TECHNICAL LEMMAS

In this section we show the asymptotics of the Green function and the convergence
capacity which are used in Secs. III and IV.

Lemma 5.1: Let d>2l 11. Then, it holds that

lim
uxu→`

G~0,x!

uxu2d12l 5
1

ql
g.

g is given by

g5
1

~2p!d E
0

`E
Rd

expH i z•v2S 1

2dD l

uvu2l tJ dvdt,

wherezPSd21 and the right hand side is independent of the choice ofzPSd21.
Proof: We follow the argument of Sec. 3 of Ref. 21~see also Sec. 5 of Ref. 22!. By the

inversion formula we know that

G~0,x!5
1

~2p!d E
[ 2p,p] d

Ĝ~u!eix•udu.

Since we can writeqlĜ(u)5*0
` exp$2 @1/qlĜ(u)# u%du, we have

~2p!dqlG~0,x!5E
0

`E
[ 2p,p] d

expH ix•u2
1

ql
Ĝ~u!21uJ dudu

5uxu2d12lE
0

`E
[ 2puxu,puxu] d

expH i
x

uxu
•v2

1

ql
ĜS v

uxu D
21

uxu2l tJ dvdt,

where the last equality follows from the change of variablesu5uxu2l t, u5 v/uxu. Define

G~ t,x!5E
[ 2puxu,puxu] d

expH i
x

uxu
•v2

1

ql
ĜS v

uxu D
21

uxu2l tJ dv.

Since Ĝ(u)215 Ĵ(u)5( j 5 l
K qj (m(u)) j ,m(u)5(1/2d) uuu2(11o(1)) and (]/]u i) m(u)

5(1/d) u i(11o(1)) asuuu→0, in the similar way to the proof of Lemma 3.1 of Ref. 21, we c
prove thatuG(t,x)u<C(t2 1/2l`t2 d/2l) for someC.0 independent ofxPZd\$0% and the rhs is
integrable with respect to*0

`
• dt whend>2l 11. Hence by Lebesgue’s dominated converge

theorem, we have

lim
uxu→`

~2p!dqlG~0,x!

uxu2d12l 5E
0

`

lim
uxu→`

G~ t,x! dt.

Now by using the asymptotics ofĜ(u)21 asuuu→0 and Assumption 1, the absolute value
the integrand ofG(t,x) is bounded by exp$2Cuvu2lt% for someC.0 which is integrable with
respect to*Rd• dv and 1/ql Ĝ(v/uxu)21uxu2l t converges to (1/2d) l uvu2l t as uxu→`. Hence by
Lebesgue’s dominated convergence theorem again, we obtain
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lim
uxu→`

G~ t,x!5E
Rd

lim
uxu→`

expH i
x

uxu
•v2

1

ql
ĜS v

uxu D
21

uxu2l tJ dv

5E
Rd

expH i z•v2S 1

2dD l

uvu2l tJ dv,

wherezPSd21 and the right hand side is independent ofzPSd21. h

Let gl(x)5guxu2d12l and define the integral operatorKV
l on L2(V) by

KV
l f ~x!5E

V
gl~x2y! f ~y!dy, xPV.

Using Lemma 5.1 and~9!, in a way similar to Sec. 2 of Ref. 2 and the Appendix of Ref. 5, we c
obtain the following lemma.

Lemma 5.2: Let d>2l 11, f PC(V;R) and (G(N))
21 be a matrix inverse of G(N) . Set

f N(x)5 f (x/N). Then

lim
N→`

N2d22l^ f N ,G(N) f N&VN
5

1

ql
^ f ,KV

l f &V ,

lim
N→`

N2d12l^1VN
,~G(N)!

211VN
&VN

5qlCapl~V!.
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Foldy–Wouthuysen transformation for relativistic particles
in external fields
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Bobruiskaya str., 11, 220080 Minsk, Belarus
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A method of Foldy–Wouthuysen transformation for relativistic spin-1/2 particles in
external fields is proposed. It permits the determination of the Hamilton operator in
the Foldy–Wouthuysen representation with any accuracy. Interactions between a
particle having an anomalous magnetic moment and nonstationary electromagnetic
and electroweak fields are investigated. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1579991#

I. INTRODUCTION

The Foldy–Wouthuysen~FW! representation1 occupies a special place in the quantum theo
This is mainly due to the fact that the Hamiltonian and all operators in this representatio
block-diagonal~diagonal in two spinors!. For relativistic particles in external fields, operators ha
the same form as in the nonrelativistic quantum theory. Therefore, the FW representation
relativistic quantum theory is similar to the nonrelativistic quantum theory. The basic advan
of the FW representation are described in Refs. 1 and 2~see also below!.

The transformation to the FW representation~FW transformation! holds only in the one-
particle approximation where the radiative corrections are not calculated in a consistent w
are phenomenologically taken into account by including extra terms in the Dirac equation~see
Ref. 3!. The one-particle description is feasible even for ultrarelativistic particles if the exte
field is so weak that the probability of pair production or bremsstrahlung losses can be neg
for a given interaction energy of a particle. The range of applicability of this description is f
wide and includes, in particular, the relativistic particle scattering and the interaction of relati
particles with matter and external fields.

In the nonrelativistic case, there exist a lot of good methods of FW transformation with ta
into account relativistic corrections.1,4–6However, they are not useful for relativistic particles. T
known methods of solving this problem9–12 either lead to cumbersome calculations or the field
their use is limited by the first approximation in field parameters. None of these methods p
an exact FW transformation for the particular cases described in Refs. 5, 7, and 8. Therefo
FW representation does not take the right stand in the relativistic quantum theory. The Dira
Melosh13 representations are mostly used.

FW transformation can also be performed for particles with spins.1/2.7,14

In the present work, a method of FW transformation for relativistic particles in external fi
is proposed. This method permits obtaining a Hamiltonian of any accuracy by successive ap
mations, as a power series in the external field potentials and their derivatives. In some cas
method permits performing an exact FW transformation.

The relativistic system of units\5c51 is used.

II. GENERAL PROPERTIES OF THE FOLDY–WOUTHUYSEN REPRESENTATION

The basic advantages of the FW representation are due to its specific properties.

a!Electronic mail: silenko@inp.minsk.by
29520022-2488/2003/44(7)/2952/15/$20.00 © 2003 American Institute of Physics
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The relations between the operators in the FW representation are similar to those betw
respective classical quantities. In this representation, the operators have the same form a
nonrelativistic quantum theory. Only the FW representation possesses these properties co
ably simplifying the transition to the semiclassical description. The FW representation pro
the best possibility of obtaining a meaningful classical limit of the relativistic quantum theo

For example, the Hamiltonian for a free particle fully agrees with that of classical phys

HFW5bAm21p2, p52 i“, ~1!

in contrast with the Hamiltonian in the Dirac representation.1,15 The position operator in the Dira
representation is the radius-vector,r .15 It corresponds to the mean position operator for the f
particle in the FW representation,1

rD5r1
iba

2e
2

ib~a"p!p1@SÃp#p

2e~e1m!p
, p[upu, e5Am21p2.

Here and below the following designations for the matrices are used:

g5S 0 s

2s 0 D , b[g05S 1 0

0 21D , a5bg5S 0 s

s 0 D ,

S5S s 0

0 s
D , P5bS5S s 0

0 2s
D ,

where 0,1,21 mean the corresponding 232 matrices ands is the Pauli matrix.
In the FW representation, the problem of ‘‘zitterbewegung’’ motion never arises.2,15 The op-

eratorsl5rÃp andS/2 define the angular momentum and the spin for the free particle, res
tively. In this representation, unlike the Dirac one, each of them is a constant of motion~see Ref.
1!. The corresponding operators conserving in the Dirac representation are

lD5rDÃp,

SD

2
5

S

2
2

ib@aÃp#

2e
2

†pÃ@SÃp#‡

2e~e1m!
.

The total angular momentum operator,j , is a constant of motion in both representation
because

jD5 lD1
SD

2
5 l1

S

2
5 j .

The FW representation is very convenient for describing the particle polarization. In
representation, polarization operators have simple forms. For example, the three-dimensio
larization operator equals the matrixP.16,17 In the Dirac representation, this operator depends
the particle momentum:16,17

O[PD5P2g5
p

e
2

p~P"p!

e~e1m!
.

For particles interacting with external fields, it also depends on the external field paramete17

Thus, in the Dirac representation all operators corresponding to the basic classical qua
are defined by cumbersome expressions. These operators should also depend on the exte
parameters for particles interacting with external fields.
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The FW representation helps one to prove that the particle position can be measured u
Compton wavelength.1,15 However, this property is valid only for a particle not strongly intera
ing with external fields if the one-particle approximation is attainable. Otherwise, the effect o
production prevents the use of both the Dirac equation~even with some corrections! and the
‘‘traditional’’ Hamilton approach. Obviously, in this case the FW transformation cannot be
either.

The FW transformation possesses another important property. The relativistic wave equ
and all operators are block-diagonal~diagonal in two spinors!. This property permits separatin
positive and negative energy states.1 Of course, extraction of even parts of operators becom
unnecessary.

The detailed analysis performed in Ref. 18 shows that the wave functions in both the
and FW representations are equal to each other only approximately, and they do not coinc
these papers, the nonrelativistic case was considered and relativistic corrections were tak
account.

An analogous conclusion follows from the results obtained in Ref. 11. In this work, a m
general situation has been investigated for the relativistic particle not strongly interacting w
electromagnetic field. It has been found that the upper spinors in the Dirac and FW represen
are approximately proportional to each other, but this property is not exact.

Thus, the preferable employment of the FW representation is evident, although the rela
wave equations are more complicated in this representation.

III. METHODS OF THE FOLDY–WOUTHUYSEN TRANSFORMATION

In the classical work by Foldy and Wouthuysen,1 two different transformations, for free
relativistic particles and for nonrelativistic particles in electromagnetic fields have been c
out. In the general case, transformation to a new representation described by the wave funcC8
is performed with the unitary operatorU:

C85UC5eiSC,

whereC5(x
f) is the wave function~bispinor! in the Dirac representation. As

C5U21C8, i
]

]t
C5HC, i

]

]t
C85H8C8,

the following transformation can be carried out:

i
]

]t
C5HU21C8,

i
]

]t
C5 i

]

]t
~U21C8!5 i

]U21

]t
C81 iU 21

]C8

]t
5S i

]U21

]t
1U21H8DC8,

UHU21C85S iU
]U21

]t
1H8DC8.

Hence, the Hamilton operator in the new representation takes the form1,19

H85UHU212 iU
]U21

]t
, ~2!

or

H85US H2 i
]

]t DU211 i
]

]t
.
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There is an error in this transformation in Ref. 20.
The Hamiltonian can be split into operators commuting and noncommuting with the ope

b:

H5bm1E1O, bE5Eb, bO52Ob. ~3!

The HamiltonianH is Hermitian. We assume that both operatorsE andO are also Hermitian.
For free Dirac particlesE50, O5a"p, and the operatorS has the form

S52 iba"pu~p!, ~4!

whereu is a function of the momentum operator. If we choose

u~p!5
1

2p
arctanS p

mD ,

the transformed HamiltonianH8 contains no odd operators1,20 and we obtain Eq.~1!,

H85bAm21p2.

For nonrelativistic particles in an electromagnetic field, the FW transformation can be
formed with the operator1,20

S52
i

2m
bO. ~5!

The transformed Hamiltonian can be written in the form

H85H1 i @S,H#1
i 2

2!
†S,@S,H#‡1

i 3

3!
@S,†S,@S,H#‡#1¯2Ṡ2

i

2!
@S,Ṡ#2

i 2

3!
†S,@S,Ṡ#‡2¯ ,

~6!

where@¯ ,¯# means a commutator. As a result of this transformation, we find

H85be1E81O8, bE85E8b, bO852O8b, ~7!

where the odd operatorO8 is nowO(1/m). This procedure can be repeated to obtain the requ
accuracy. Another form of the nonrelativistic FW transformation was given by Ericksen5 ~see also
Ref. 21!.

There are also other methods for obtaining the block-diagonal form of the Hamiltonian o
Lagrangian. The so-called elimination method of Pauli22 permits us excluding the lower spino
from relativistic wave equations. As a result, the wave function of the final Pauli equation i
upper Dirac spinor,f. This means that the upper Dirac spinor is also an eigenfunction of
transformed Hamiltonian. However, this property is not exact. The Pauli method was analy
detail in Refs. 18 and 21. It was shown that this method gives the right first approxima
Nevertheless, relativistic corrections of higher orders are incorrect. It is quite natural beca
direct Pauli’s reduction leads to a neglect of the contribution of the lower spinor.18 The relation
between the exact wave function in the FW representation and the upper Dirac spinor ha
found in Ref. 11 in the relativistic case.

A more exact variant of the elimination method had been proposed earlier by Berestetsk
Landau23 ~see also Refs. 4 and 24!. They showed that it was possible to find a nonunitary opera
V for which

c5Vf ~8!
                                                                                                                



e

dity
tskii–

r and
od is
of odd

he FW

lutive
onians
adi-
tion

The
riant of
elimi-
pinor

zer–

e

the
igher

18.
eeds
e latter
ther,
from

in Ref.
rs
al

2956 J. Math. Phys., Vol. 44, No. 7, July 2003 Alexander J. Silenko

                    
is a two-component wave function with a correct norm. An appropriate form of the operatorV can
be obtained from the condition

E c†c dV5E ~f†f1x†x!dV51.

The relation between the Dirac spinors can be expressed in the general formx5Qf. Therefore,

V†V511Q†Q.

If we additionally assume that the operatorV is Hermitian, then both this operator and th
Hamiltonian can be found by successive approximations.4,23–25

Of course, the elimination method is much simpler. However, it is mostly intuitive. Its vali
is proved only by the coincidence of the results obtained by the FW and Akhiezer–Bereste
Landau methods.21

Another method of diagonalization of relativistic wave equations was proposed by Korne
Thompson.6 In this work, the Lagrangian approach was used. The Korner–Thompson meth
similar to the FW method. It also includes a successive decrease in the maximum order
terms. The results obtained by the FW and Korner–Thompson methods agree~see Ref. 12!.

Thus, several nonrelativistic transformation methods give the same results. However, t
transformation method has been justified in the best way.

In several cases, FW transformation can be performed exactly.5,7,8 An exact FW transforma-
tion has also been performed for a wide class of external fields in Ref. 26. In this work, invo
symmetries of relativistic wave equations have been used. However, the transformed Hamilt
contain ‘‘nontraditional’’ space reflection operators. The reduction of Hamiltonians to the ‘‘tr
tional’’ form is a difficult problem. It has not been investigated in Ref. 26. However, this reduc
is necessary to do for solving many problems~e.g., finding particle and spin motion equations!.

Generally, FW transformation for relativistic particles in external fields is complicated.
transformation methods explained in Refs. 9 and 10 require cumbersome calculations. A va
the elimination method useful for relativistic particles has been developed in Ref. 11. On
nating the lower spinor from the relativistic wave equations, the final equation for the upper s
takes the form11

i
]f

]t
5FS r ,p,i

]

]t Df, ~9!

whereF is the operator function. Further calculations are analogous to those in the Akhie
Berestetskii–Landau method. A new wave function with a correct norm,c, expressed by Eq.~8!
is introduced. Substituting it forf into Eq. ~9!, one can find the Hamilton operator for th
relativistic particle.

The relativistic wave equation for an upper spinor similar to Eq.~9! is found by the Lagrang-
ian approach.12

However, it is difficult to find a second approximation by using the relativistic variant of
elimination method proposed in Ref. 11. It is easier to determine relativistic corrections of h
orders.12

The right two-component wave function in the FW representation,c, does not coincide with
the upper Dirac spinor,f.11 This conclusion is in agreement with the results obtained in Ref.

There are other difficult problems. The diagonalization of relativistic wave equations n
carefulness, especially in the time-dependent case. As mentioned in Refs. 19 and 27, in th
caseH8 is not equivalent toH since these operators have different matrix elements. Ra
UHU21 is. There is a danger that one can arrive at a block-diagonal representation differing
the FW one even in the time-independent case. For example, the transformation performed
8 ~this is the Melosh transformation indeed28! leads to a block-diagonal Hamiltonian that diffe
from the Hamiltonian in the FW representation.29 Therefore, the application of noncanonic
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transformation methods is restricted by the necessity of verifying the results by comparing
with the corresponding results obtained by the canonical transformation method in some pa
cases. Of course, other transformation methods may be simpler or less cumbersome. Neve
the FW method is safer and substantiated very well.

In the present work, a relativistic extension to the FW method is proposed.

IV. EXACT FOLDY–WOUTHUYSEN TRANSFORMATION

Consider some cases of the exact FW transformation.
In Eq. ~3!, the operatorsb andO 2 commute (bO 252ObO5O 2b). Therefore, the operato

O 2 is even.
The operatorS can be defined by an expression similar to Eq.~4!:

S52 i
bO
C

u, ~10!

whereC andu are the functions ofO 2 and the operatorC satisfies the following conditions:

C25O 2, @b,C#50. ~11!

It follows from conditions~11! that the operatorC is also even.
It is possible to use the following formal definition of this operator:

C5AO 2. ~12!

Relations~11! and ~12! define the square root of matrix operators. To unambiguously de
the square root, these relations should be complemented by the condition that the square
the unit matrixI is equal to the unit matrix. This definition of the square root coincides with th
of Refs. 1, 20, and 26. For example, for free particles,

O5a"p, O 25Ip2, C5IAp2[Iupu.

Further, the symbol of the unit matrixI will be omitted.
Since

O 252bObO, C5A2bObO, f ~O 2!5 f ~C2!,

the operatorsbO,C,O 2, andu commute with each other. The operatoru is the angle of rotation
of the basic vector set in the spinor space.

The unitary transformation operator,U, can be written in the form

U5cosu1
bO
C

sinu. ~13!

A FW transformation is exact if the external field is stationary and the operatorsE and O
commute:

@E,O#50. ~14!

In this particular case,

@E,bO#5b@E,O#50.

Condition ~14! is a sufficient but not necessary condition of the exact transformation.
The Hamilton operator in the new representation takes the form
                                                                                                                



if

n.

losh

fined

in

of

ee
s

2958 J. Math. Phys., Vol. 44, No. 7, July 2003 Alexander J. Silenko

                    
H85S cosu1
bO
C

sinu DHS cosu2
bO
C

sinu D
5~bm1O!S cosu2

bO
C

sinu D 2

1E

5~bm1O!S cos 2u2
bO
C

sin 2u D1E

5b~m cos 2u1C sin 2u!1OS cos 2u2
m

C
sin 2u D1E.

The HamiltonianH8 is even if the odd term~proportional toO! vanishes. This takes place

tan 2u5
C

m
. ~15!

This equation has two solutions,u1 andu2 , differing in p/2. Since

tan 2u5
2 tanu

12tan2 u
, tanu5

tan 2u

16A11tan2 2u
,

they are defined by the relations

tanu15
C

e1m
, tanu252

C

e2m
, e5Am21C25Am21O 2. ~16!

Thus, there are two unitary transformations of the operatorH to an even form. They are
characterized by the anglesu1 andu2 , where the angleu1 corresponds to the FW transformatio

As a result of both transformations, one of the spinors~lower for u1 and upper foru2)
becomes zero as for free particles.

Note that the transformation under consideration is also similar to the Me
transformation.13

If condition ~14! is satisfied, then the Hamilton operator in the FW representation is de
exactly:

H85be1E. ~17!

Unlike Refs. 9, 10, and 11, Eq.~17! contains exact expressions for the Hamiltonian derived
Refs. 5, 7, and 8 as particular cases.

The transformation operatorU can be written in nonexponential form. After the calculation
sinu1 and cosu1 with formulas~16!,

sinu15
C

A2e~e1m!
, cosu15Ae1m

2e
,

we obtain the following expression:

U65
e1m6bO
A2e~e1m!

, ~18!

where U1[U, U2[U21. This expression agrees with the well-known formula for fr
particles.1 Since (bO)†5Ob52bO, the operatorU is unitary. A simultaneous change of sign
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of sinu1 and cosu1 does not affect the final result because the wave functionsC,C8 are deter-
mined up to a sign. The direct calculation of the Hamilton operator in the FW representatio
leads to Eq.~17! in accordance with formulas~2!, ~3!, ~14!, and~18!.

Another class of Hamiltonians permitting exact FW transformation has been investiga
Ref. 26.

V. EXACT TRANSFORMATION FOR PARTICLES IN ELECTROWEAK FIELDS

Let us consider the interaction of a relativistic spin-1/2 particle, possessing an anom
magnetic moment~AMM !, with stationary electromagnetic and electroweak fields. The Ha
tonian of the electromagnetic interaction is defined by the Dirac–Pauli equation:30

HDP5a"p1bm1eF1m8~2P"H1 i g"E!, p5p2eA, ~19!

wherem8 is AMM, F, A andE, H are the potentials and the strengths of an electromagnetic fi
This equation is derived in the one-particle approximation and is useful when an electroma
field is not extremely strong~see Ref. 11!.

The weak interaction Hamiltonian should be added to the Hamiltonian of Eq.~19!. The weak
interaction does not conserve the spatial parity. For the interaction transferred by neutral cu
the standard model gives the following expression for the parity-nonconserving weak inter
Hamiltonian in the approximation of a small transferred momentum:31

HPNC52
G

&
~C1g51C2a"s8!n~r !, g55S 0 21

21 0 D , ~20!

whereG is the Fermi constant,s8 is the Pauli matrix for matter particles, andn(r ) is the density
of matter particles. For the interactions with nuclei,n(r ) characterizes the density of nucleons
a certain kind, ands8 should be replaced by the nucleus spin. Formulas~19! and ~20! do not
change if the external fields are nonstationary. The matter particles are considered to be a

The coefficientsC1 ,C2 are different for different pairs of interacting particles. The Hamil
nians corresponding to the interactions with different matter particles should be summed-u
signs in formula~20! depend on the definition of the coefficientsC1 ,C2 and matrixg5. The total
Hamiltonian equals

H5HDP1HPNC. ~21!

In this case, in formulas~3!, ~16!–~18! we have

E5eF2m8P"H,

O5a"p1 im8g"E2
G

&
~C1g51C2a"s8!n~r !

5bFg"p1 im8a"E2
G

&
~C1bg51C2g"s8!n~r !G . ~22!

Let us consider some particular cases where Hamiltonian~21! satisfies condition~14!. For
these cases the FW transformation is exact. The general case will be analyzed in the next

The exact Hamiltonian in the FW representation is given by Eq.~17!, whereE is defined by
Eq. ~22!, and
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e5H m22Fg"p1 im8a"E2
G

&
~C1bg51C2g"s8!n~r !G J 1/2

5H m21p21bm8~S•@pÃE#2S•@EÃp#2“"E!1m82E22eS"H

1
G

&
„C1$S"p,n~r !%12C2$s8•p,n~r !%11C2@SÃs8#•“n~r !22bm8C2@SÃs8#•En~r !…

1
G2

2
n2~r !@C1

213C2
222C2~C11C2!S"s8#J 1/2

. ~23!

Hence, the operatorU6 is expressed by formulas~18!, ~22!, and ~23!. Although Eq.~23! is
formally exact, the small terms proportional toC1

2 , C1C2 , C2
2 are wittingly negligible in the

approximation of a small transferred momentum.
Formulas~17!, ~22!, and~23! describe the exact Hamilton operator in the FW representa

in the following particular cases:

~a! in the presence of only weak interaction (F50,A50,E50,H50);
~b! for Dirac particles (m850) in magnetic and weak fields (F50,E50);
~c! for uncharged particles with AMM in electric and weak fields (e50,A50,H50);
~d! for particles with AMM moving in the plane orthogonal to a static uniform magnetic fi

(F50,E50,Pz50,C15C250);
~e! for uncharged particles with AMM moving in the plane orthogonal to a static unifo

magnetic field. A static electric field~possibly nonuniform! is also orthogonal to the mag
netic field (e50,E'H,Pz50,C15C250).

In two cases@~d! and ~e!#, H5Hez , and in the case~e!, the electric field strength does no
depend onz. Otherwise, rotEÞ0 and the magnetic field is not constant (]H/]tÞ0). Therefore, in
these cases the operatorpz52 i (]/]z) commutes with the Hamilton operator and has eigenval
Pz5const. Consequently, the consideration of the particular casePz50 is quite reasonable. Al
these cases satisfy condition~14!.

Formulas~17!, ~22!, and~23! agree with all exact expressions of the operatorH8 derived for
uncharged particles with AMM in an electrostatic field, Dirac particles in a static magnetic
and particles with AMM moving in the plane orthogonal to a static uniform magnetic field in R
5, 7, 8. The weak interaction is not considered in these works.

VI. GENERAL CASE

In the general case, relativistic particles interact with external fields. We suggest perfo
the FW transformation in two stages. First, a transformation similar to the FW transformatio
free particles is performed for particles in external fields. Second, a transformation similar
FW transformation for nonrelativistic particles is carried out.

We assume that the external fields are not extremely strong and the transformed Hami
can be expressed as a power series in the field potentials and their derivatives. The extern
can be nonstationary.

In the general case, formula~17! is not exact becauseE depends on the coordinates an
contains Dirac matrices. We should calculate the commutator of the operatorsU and E
2 i (]/]t):

US E2 i
]

]t DU215E2 i
]

]t
1FU,E2 i

]

]t GU21.
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In this case, it is necessary to compute some commutators containing inverse operato
square roots of the operators. These commutators can be calculated using the following
formulas which are valid for arbitrary operatorsA andB:32

@A21,B#5A21@B,A#A21, ~24!

@A,B#5 1
4 $A21,@A2,B#%12 1

4 @†A,@A,B#‡,A21#, ~25!

whereA21[1/A and $ . . . , . . .%1 stands for the anticommutator. IfA is the square root of the
operators and the commutator of the operators is small compared to their product, i.e.,

u@A,B#u!uABu,

formulas~24! and~25! allow us to obtain the quantity@A,B# with any accuracy by the method o
successive approximations~see Ref. 32!. As a rule, this condition is satisfied since it is equivale
to the inequality

\c

E
! l c , ~26!

where E is the total energy including the rest energy andl c is the characteristic size of th
nonuniformity region of the external field. For the nonrelativistic particle, the quantity\c/E is
equal to the Compton wavelength.

First, it is necessary to perform a unitary transformation with operator~18!. After this opera-
tion, the HamiltonianH8 still contains odd terms proportional to the derivatives of the potent
Let us write the operatorH8 as

H85be1E81O8, bE85E8b, bO852O8b, ~27!

where

e5Am21O 2,

E85 i
]

]t
1

e1m

A2e~e1m!
S E2 i

]

]t D e1m

A2e~e1m!
2

bO
A2e~e1m!

S E2 i
]

]t D bO
A2e~e1m!

, ~28!

O85
bO

A2e~e1m!
S E2 i

]

]t D e1m

A2e~e1m!
2

e1m

A2e~e1m!
S E2 i

]

]t D bO
A2e~e1m!

.

Since

ABA5 1
2 ~$A2,B%12†A,@A,B#‡!,

relation ~28! for the operatorE8 takes the form

E85E2
1

4 F e1m

Ae~e1m!
,F e1m

Ae~e1m!
,S E2 i

]

]t D G G1
1

4 F bO
Ae~e1m!

,F bO
Ae~e1m!

,S E2 i
]

]t D G G .

~29!

The odd terms are small compared to bothe and the initial HamiltonianH. This circumstance
allows us to apply the usual scheme of the nonrelativistic FW transformation.1,20

Second, the transformation should be performed with the following operator:
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U85exp~ iS8!, S852
i

4
bHO8,

1

e J
1

52
i

4 Fbe ,O8G . ~30!

The further calculations are similar to those given in Ref. 20. The particle mass shou
replaced by the operatore noncommuting with the operatorsE8,O8. If only major corrections are
taken into account, then the transformed Hamiltonian equals

H95be1E81
1

4
bHO82,

1

e J
1

. ~31!

This is the Hamiltonian in the FW representation.
To obtain the desired accuracy, the calculation procedure with the transformation operat~30!

(S8 is replaced byS9,S-, etc.! should be repeated multiply.
Let us calculate the Hamiltonian in the FW representation for the relativistic particle

AMM interacting with a nonstationary electroweak field. The Hamiltonian in the Dirac repre
tation is defined by formulas~19!–~21!. The transformed Hamiltonian is defined by Eq.~30!,
where the operatorO8 contains the field strengths and does not contain the field potentials. L
deduce the Hamiltonian to within first-order terms in the field strengths and their first deriva
and second-order terms in the field potentials. The terms of the second order and higher in t
strengths and their derivatives and the first-order terms containing derivatives of the secon
and higher of the field strengths will be omitted.

Since we neglect the second-order quantities inO8, the operatorO8 does not make any
contribution to the HamiltonianH9 at the second stage of transformation defined by formula~31!.
As a result, we obtain the following equation for the Hamiltonian in the FW representation

H95be1E8,

E85eF1
e

8 H 1

e~e1m!
,~S•@pÃE#2S•@EÃp#2“"E!J

1

1
e

32H 2e212em1m2

e4~e1m!2
,p"“~p"E1E"p!J

1

2m8P"H1b
m8

4 H 1

e~e1m!
,@~H"p!~S"p!1~S"p!~p"H!12p~p"j1 j "p!#J

1

, ~32!

wherej5“ÃH2 (1/4p)(]E/]t) is the external current density, ande is determined by formulas
~23! and ~27!. It is important that the operatorse,E8 are found at the first stage, i.e., at th
transformation with operator~18!.

In the weak field approximation,

e5e81b
m8

4 H 1

e8
,~S•@pÃE#2S•@EÃp#2“"E!J

1

2
e

4 H 1

e8
,S"HJ

1

1
G

4&
H 1

e8
,WJ

1

and
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H95be81eF1
1

4 H S m0m

e81m
1m8D 1

e8
,~S•@pÃE#2S•@EÃp#2“"E!J

1

1
m0m

16 H 2e8212e8m1m2

e84~e81m!2 ,p"“~p"E1E"p!J
1

2
1

2 H S m0m

e8
1m8D ,P"HJ

1

1
m8

4 H 1

e8~e81m!
,@~H"p!~P"p!1~P"p!~p"H!12p~p"j1 j "p!#J

1

1
G

4&
H 1

e8
,WJ

1

,

~33!

where

e85Am21p2, W5C1$S"p,n~r !%12C2$s8•p,n~r !%11C2@SÃs8#•“n~r !, ~34!

andm05e/(2m) is the Dirac magnetic moment.
Unlike works,9–11 formula ~33! includes, as particular cases, the exact expressions for

Hamiltonian in the FW representation obtained in Refs. 5, 7, and 8. Formulas~32!–~34! also
agree with the results obtained in Refs. 9, 10, 11, 33, and 34. A detailed analysis shows t
method of FW transformation used in Ref. 11 does not allow one to take into conside
the terms proportional to the double commutators ofe with eF and
m8P"H (e†e,@e,F#‡ andm8†e,@e,P"H#‡). The terms proportional toE andH in the Hamiltonian
obtained in Ref. 11 coincide with those in Refs. 9 and 10 and Eq.~33!. However, only the Dirac
particles were considered in Ref. 9, the derivatives of the field strengths were neglected in R
and the nonrelativistic Hamiltonian with relativistic corrections was found in Ref. 33.

VII. PARTICLE AND SPIN MOTION EQUATIONS

Thus, the FW representation is very convenient for describing the particle and spin m
owing to the simple forms of operators. In order to derive corresponding quantum equation
necessary to compute the commutators of the Hamiltonian with the same operators as
nonrelativistic theory. The kinetic momentum operator of particles in an electromagnetic
equalsp5p2eA.35 The equation of particle motion in the electromagnetic field is defined
terms of the commutator of the Hamiltonian with this operator:

dp

dt
5 i @H9,p#2e

]A

dt
.

To determine the quantum equation of particle motion, we take into account Eq.~33! for the
Hamiltonian,

dp

dt
5eE1b

e

4 H 1

e8
,~@pÃH#2@HÃp# !J

1

1
1

4 H S m0m

e81m
1m8D 1

e8
,@“~S•@EÃp# !2“~S•@pÃE# !1DE#J

1

2
m0m

16 H 2e8212e8m1m2

e84~e81m!2 ,~p"“ !“~p"E1E"p!J
1

1
1

2 H S m0m

e8
1m8D ,“~P"H!J

1

2
m8

4 H 1

e8~e81m!
,@~P"p!“~p"H!1~“~H"p!!~P"p!12p“~p"j1 j "p!#J

1

. ~35!

The equation of spin motion is defined by the formula
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dP

dt
5 i @H9,P#.

For particles in a nonstationary electroweak field, it takes the form

dP

dt
5H S m0m

e81m
1m8D 1

e8
,†PÃ@EÃp#‡J

1

1H S m0m

e8
1m8D ,@SÃH#J

1

2
m8

2 H 1

e8~e81m!
,~@SÃp#~p"H!1~H"p!@SÃp# !J

1

2
G

2&
H 1

e8
,~C1$@SÃp#,n~r !%11C2†SÃ@s8Ã“n~r !#‡!J

1

. ~36!

The corresponding equation for stationary electroweak fields was derived in Ref. 34.
The transition to the semiclassical description is also simple. For free particles, the

spinor is equal to zero in the FW representation. For particles in external fields, the maximum
of the lower and upper spinors is of the first order ofWint /E, whereWint is the energy of the
particle interaction with external fields. Thus, we obtain (x†x)/(f†f);(Wint /E)2. Therefore, the
contribution of the lower spinor is negligible and the transition to the semiclassical equatio
performed by averaging the operators in the equations for the upper spinor. It is usually po
to neglect the commutators between the coordinate and kinetic momentum operators and b
different components of the kinetic momentum operator~see Ref. 36!. As a result, the operator
s,s8, andp should be substituted by the corresponding classical quantities: the average sj
(j8 for matter particles!, and the kinetic momentum. For the latter quantity we retain the de
nationp. The semiclassical equations of particle and spin motion are

dp

dt
5eE1

e

e8
@pÃH#2

1

2 S m0m

e81m
1m8D 1

e8
@2“~j•@pÃE# !2DE#

2
m0m

4
•

2e8212e8m1m2

e84~e81m!2 ~p"“ !“~p"E!1S m0m

e8
1m8D“~j"H!

2
m8

e8~e81m!
@~j"p!“~H"p!12p“~ j "p!#, ~37!

dj

dt
52S m0m

e81m
1m8D 1

e8
†jÃ†EÃp] ‡12S m0m

e8
1m8D @jÃH#

2
2m8

e8~e81m!
~H"p!@jÃp#2

G

&e8
„2C1@jÃp#n~r !1C2†j3@j8Ã“n~r !#‡). ~38!

Equation~37! shows that the particle motion depends on the spin orientation. The corres
ing term determines the Stern–Gerlach force.

It is not as convenient to use the Dirac representation to derive quantum equations of p
and spin motion in a similar manner. In this case, it is necessary to extract the polari
operator,O, from the obtained equations. This problem is rather difficult because the operaO
in the Dirac representation is defined by the cumbersome expression given in Ref. 17.

For particles in external fields, the FW transformation also changes the form of the k
momentum operator. In particular, the equation of spin motion in the Dirac representation de
on the operatorpD5U21pU just as the corresponding equation in the FW representation dep
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on the operatorp. However, these two equations differ in their functional dependence onp. The
use of the FW representation protects from both an error in derived equations of particle an
motion and an incorrect interpretation of these equations.

Another method of transition to the semiclassical description is based on the traje
coherent solution of the Dirac equation.37

VIII. DISCUSSION

As mentioned above, the proposed method permits obtaining a transformed Hamilton
within first-order terms in the field parameters after the first transformation. In this case, a
other canonical methods need several transformations.1,5,6,10,12,20,21Therefore, the method de
scribed above can be successfully used even for solving nonrelativistic problems. For this pu
the transformation operator,U, can be expanded in a series of 1/m. Of course, such an expansio
is helpful only in the case of transformation of the operatorE2 i (]/]t). The transformation of
other operators leads to the appearance of the termbe in Eq. ~31!.

Consider the classical example of the FW transformation for a nonrelativistic Dirac partic
an electromagnetic field. We calculate the Hamiltonian to within terms of orders of (p/m)4 and
p2W/m3, whereW meanseF, eA ~see Refs. 1 and 20!. In this approximation, the first doubl
commutator in Eq.~29! is negligible and the second one is equal to

1

4 F bO
A2e~e1m!

,F bO
A2e~e1m!

,S E2 i
]

]t D G G5
1

2m2 Fg"p,Fg"p,S E2 i
]

]t D G G
5

e

2m2 @S•~EÃp!2S•~pÃE!2“"E#. ~39!

As

e5Am21~a"p!25Am21p22eS"H5m1
p2

2m
2

p4

8m3 2
e

2m
S"H,

the transformed Hamiltonian is expressed by the well-known formula1,20

H95bS m1
p2

2m
2

p4

8m3D1eF2
e

2m
P"H1

e

8m2 @S•~EÃp!2S•~pÃE!2“"E#. ~40!

Thus, the proposed method permits obtaining this formula after the computation of onl
double commutator. All the other canonical methods require cumbersome calculations.1,5,12,20,21

For example, the classical method of Foldy and Wouthuysen require three successive tran
tions and a calculation of numerous commutators. The noncanonical methods~the Pauli’s elimi-
nation method and others!4,11,21–25permit deriving Hamiltonian~40! in an easier way. Neverthe
less, the proposed method is very simple even compared to them. Moreover, it giv
opportunity to find a transformed Hamiltonian with any accuracy even for relativistic particle
external fields.

IX. SUMMARY

In this work, a method of FW transformation for relativistic particles in external field
proposed. This method is simple and reliable. It performs the exact FW transformation
known particular cases,5,7,8as in others. This property distinguishes the proposed method from
other methods developed for relativistic particles.9–11 The method is based on the well-know
elaborations.1,20 First, a transformation similar to the FW transformation for free particles
performed for particles in external fields. Second, a transformation similar to the FW transf
tion for nonrelativistic particles is carried out. In the general case, the FW transformati
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approximate. As an example, the Hamilton operator in the FW representation for relat
particles with AMM interacting with nonstationary electroweak fields is found to within sec
derivatives of potentials.
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Resolvent convergence in norm for Dirac operator
with Aharonov–Bohm field
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Department of Mathematics, Okayama University, Okayama 700-8530, Japan
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We consider the Hamiltonian for relativistic particles moving in the Aharonov–
Bohm magnetic field in two dimensions. The field hasd-like singularity at the
origin, and the Hamiltonian is not necessarily essentially self-adjoint. The self-
adjoint realization requires one parameter family of boundary conditions at the
origin. We approximate the point-like field by smooth ones and study the problem
of norm resolvent convergence to see which boundary condition is physically rea-
sonable among admissible boundary conditions. We also study the effect of pertur-
bations by scalar potentials. Roughly speaking, the obtained result is that the limit
self-adjoint realization is different even for small perturbation of scalar potentials
according to the values of magnetic fluxes. It changes at half-integer fluxes. The
method is based on the resolvent analysis at low energy on magnetic Schro¨dinger
operators with resonance at zero energy and the resonance plays an important role
from a mathematical point of view. However it has been neglected in earlier physi-
cal works. The emphasis here is placed on this natural aspect. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1580200#

I. INTRODUCTION

The relativistic Hamiltonian of massless particle moving in the Aharonov–Bohm fiel
formally defined as the operator

HD5s1p11s2p2 ~1.1!

acting on the space@L2#25@L2(R2)#2, where

s15S 0 1

1 0D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D
are the Pauli spin matrices and

p j52 i ] j2aj a , A0a5~a1a ,a2a!5a~2x2 /uxu2,x1 /uxu2!, ] j5]/]xj ,

for j 51,2. For notational brevity, we here confine ourselves to the massless HamiltoniaHD

throughout the entire discussion. However, the obtained results easily extend to the Hami
s1p11s2p21mb, b5s3 , with massm.0. Since the vector potentialA0a :R2→R2 is written
as

A0a5a~2]2 log uxu,]1 log uxu!,

it has the point-like magnetic field

¹3A0a5]1a2a2]2a1a5aD log uxu52pad~x!

a!Electronic mail: tamura@math.okayama-u.ac.jp
29670022-2488/2003/44(7)/2967/27/$20.00 © 2003 American Institute of Physics
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with flux a. Let u5u(x) be the azimuth angle from the positivex1 axis. ThenA0a takes the form
A0a5a¹u, and hence

HD5eiau~2 is1]12 is2]2!e2 iau

in a formal way. Whena¹Z is not an integer,eiau is a multivalued function, and the magnet
effect comes from the multivaluedness. We always assume that

0,a,1. ~1.2!

If we replaceA0a(x) by 2A0a(x), it is easily seen that a similar argument applies to the c
21,a,0 under a natural modification. However, ifuau.1, then the norm resolvent convergen
cannot be in general expected. We will later make a brief comment on the matter@Remarks 3.2 and
5.1 ~3!#. According to Ref. 12@see also~Refs. 7–9 and 19!#, we know thatHD is not essentially
self-adjoint in @C0

`(R22$0%)#2 and it has the deficiency indices~1,1!. If uP@L2#2 is in the
domain of some self-adjoint extension, then it behaves like

u5S ~u211o~1!!r 2a

~u221o~1!!eiur 2(12a) D1o~1!, r 5uxu→0, ~1.3!

for some pair (u21 ,u22) in the polar coordinate system (r ,u) under assumption~1.2!. The ratio
k5 iu21 /u22 can be shown to be a real number independent ofu, and the self-adjoint extensio
Hk has the domain

D~Hk!5$uP@L2#2:HDuP@L2#2, u211 ik u2250% ~1.4!

parametrized byk, 2`,k<`, where

u215 lim
uxu→0

uxuau1~x!, u225 lim
uxu→0

uxu12ae2 iuu2~x!

for u5 t(u1 ,u2)P@L2#2, and HDu is understood in the distribution sense. Ifk5`, then u22

50 and the lower component has a weak singularity near the origin foruPD(H`), while the
singularity of upper component is weak in the casek50. It is impossible to impose the bounda
condition in which both components of wave functions remain bounded near the origin.

We approximate 2pad(x) by a smooth field with compact support. LetbPC0
`(R2→R) be

given field with fluxa5*b(x) dx/2p and set

b«~x!5«22b~x/«!

for «.0 small enough, where the integration without domain is taken over the whole space.
b« preserves the flux*b«(x) dx52pa and it approximatesb«→2pad(x) as«→0 in the distri-
bution sense. We define the potentialAPC`(R2→R2) associated with fieldb by

A~x!5~2]2w~x!,]1w~x!! ~1.5!

and setA«(x)5«21A(x/«), where

w~x!5~2p!21E log ux2yu b~y! dy. ~1.6!

As is easily seen,A andA« satisfy¹3A5Dw5b and¹3A«5b« . We further define

H«
D5s1n1«1s2n2« ~1.7!
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as the Hamiltonian approximatingHD, where (n1« ,n2«)52 i¹2A« . This Hamiltonian admits a
unique self-adjoint realization with domainD (H«

D)5@H1(R2)#2, Hs(R2) being the Sobolev spac
of orders. As the first main theorem~Theorem 3.1!, we obtain thatH«

D is convergent toH` in the
sense~norm resolvent sense! that

~H«
D1 i !21→~H`1 i !21, «→0,

in norm. The attempt of approximation to point-like fields has been often done in physical l
tures. For example, the approximation by the bounded potential

Ã~x!5a~2x2 /uxu2,x1 /uxu2! on $uxu.1%, Ã~x!50 on $uxu,1%

has been studied in a series of works~Refs. 15, 16, and 18!. A similar problem has been studie
for the nonrelativistic particles. We writeL(p,q)5(2 i¹2p)21q for the Schro¨dinger operator
with vector and scalar potentialsp:R2→R2 and q:R2→R. Let A0a , A, and A« be as above.
According to Refs. 1 and 11,L(A0a,0) is known to have the deficiency indices~2,2! as a sym-
metric operator overC0

`(R22$0%), and one of possible self-adjoint extensions has the doma

D5$uPL2:L~A0a,0!uPL2, lim
uxu→0

uu~x!u,`%. ~1.8!

If uPD, then the wave functionu remains bounded around the origin. This is not the case for
relativistic particles, as stated above. The self-adjoint operator with domainD is often called the
Aharonov–Bohm Hamiltonian~Ref. 3! and we denote it byLAB . We have proved in Ref. 22 tha
L(A«,0) converges toLAB in the norm resolvent sense. The difference between the nonrelativ
and relativistic cases can be explained as follows. Since the spin matrices satisfy the antic
tator relations jsk1sks j52d jk and sinces1s25 is3 and

@n1« ,n2«#5n1«n2«2n2«n1«5 ib« ,

we take the square to obtain the Pauli operator

~H«
D!25S n1«

2 1n2«
2 2b« 0

0 n1«
2 1n2«

2 1b«
D 5S L~A« ,2b«! 0

0 L~A« ,b«!
D .

Then L(A« ,7b«) have additionald-like potentials7b«;72pad(x) for «.0 small enough.
The repulsive potentialb« makes the lower component vanish near the origin, but the attra
one2b« makes the upper component singular.

We define the unitary operatorJ« :L2→L2 or @L2#2→@L2#2 by

~J« f !~x!5«21f ~x/«!. ~1.9!

Then we haveL(A« ,7b«)5«22J«L(A,7b)J«* and

~L~A« ,7b«!11!215«2J«~L~A,7b!1«2!21J«* .

Thus the proof of Theorem 3.1 is reduced to the analysis on the behavior of resolventL(A,
7b)1«2)21 as«→0. In particular, it is significant thatL(A,2b) has a resonance state at ze
energy. We can representL(A,6b) as

L~A,6b!5n6n75n7* n7 , ~1.10!

so that the operators are both non-negative, wheren65n16 in2 with (n1 ,n2)52 i¹2A. A
simple calculation yields the relation

n152 ie2w~ ]11 i ]2!ew ~1.11!
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for w defined by~1.6!. Hence the equationL(A,2b)u50 has a bounded solution behaving lik

r̃5e2w(x)5uxu2a~11O~ uxu21!!, uxu→`.

Such a solution is called a resonance state. On the other hand,L(A,b) can be shown to have n
resonance state at zero energy. Thus the two operatorsL(A,6b) have the different spectra
property at zero energy. It seems that this essential aspect has not been recognized in
physical literatures.

We discuss the effect of perturbations by scalar potentials in the latter sections. The ob
result~Theorem 5.1! strongly depends on fluxa, and the limit self-adjoint extensionHk changes
at a51/2. What is interesting is that it occurs even for small perturbation of scalar potential
set

V«~x!5«21V~x/«!

for VPC0
`(R2→R), and we defineH«(V«) by

H«~V«!5H«
D1V«5s1n1«1s2n2«1V« . ~1.12!

Roughly speaking, the operatorH1V5s1n11s2n21V is said to have a resonance state at z
energy, if the equation (H1V)u50 admits a bounded but not square integrable solution.
precise definition is formulated in Sec. V~Definition 5.1!. If H1V do not have a resonance sta
at zero energy, thenH«(V«) is proved to converge toH` for 0,a,1/2 and toH0 for 1/2,a
,1 in the norm resolvent sense. Ifa51/2, thenH«(V«) is convergent toHk for somek deter-
mined from the above resonance stater̃ of L(A,2b). If, on the other hand,H1V has a resonance
state at zero energy, then the situation is completely reversed. We obtain thatH«(V«) is convergent
to H0 for 0,a<1/2 and toH` for 1/2,a,1.

Our motivation of the study on the convergence to point-like fields comes from an applic
to the scattering of Dirac particles by magnetic fields~Refs. 2, 7, and 14!. For example, the
asymptotic behavior of the amplitude in the scattering by the small disk has been calculated
a certain impenetrable boundary condition in the book@Ref. 2 ~Sec.7.10!#. The behavior change
discontinuously at half-integer fluxes. Another motivation is to study the scattering of D
particles by electromagnetic fields with small support in the interaction of cosmic string
matter~Ref. 7!. The amplitude there has been also explicitly calculated for the electric potent
characteristic function of the small disk, and its asymptotic behavior has been shown to
different form at half-integer fluxes as the support of electromagntic field shrinks. This phe
enon also seems to be closely related to the resonance at zero energy of magnetic Sch¨dinger
operators. However, such a discontinuity at half-integer fluxes in the asymptotic form is
pletely hidden behind this explicit calculation using the Bessel functions. The argument deve
here seems to account for this phenomenon partly. The present work is the first step
analyzing this problem from a mathematical point of view.

The spectral problems for Dirac Hamiltonians with Aharonov–Bohm fields in two dimens
has been recently discussed from various aspects by several authors. For example, Siten~Ref.
21! has studied the vacuum polarization effects in the background of singular magnetic vort
all self-adjoint extensions, and Falomir and Pisani~Ref. 13! have determined the spectrum in th
presence of a uniform magnetic field.

II. KREIN THEORY ON SELF-ADJOINT EXTENSION

In this section we discuss the self-adjointness of the symmetric operatorHD defined by~1.1!.
This is defined as an operator acting on@C0

`(R22$0%)#2. We write

HD5S 0 p2

p1 0 D , p65p16 i p2 ,
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and denote byH̄D and (HD)* the closure and adjoint ofHD in @L2#2. Let

S65Ker ~~HD!* 7 i !5$uP@L2#2:~~HD!* 7 i !u50%.

The pair (n1 ,n2), n65dimS6 , is called the deficiency indices ofHD. As is well known,HD

has self-adjoint extensions if and only ifn15n2 .
We shall show thatn15n251. Suppose that

~~HD!* 2 i !u50, u5 t~u1 ,u2!P@L2#2. ~2.1!

Thenu2 satisfies

~p1p211!u25~p1
21p2

211!u250

in R2\$0%, andu1 is given byu152 ip2u2 . The operatorp6 has the representation

p15eiu~2 i ] r1r 21~]u2 ia!!, p25e2 iu~2 i ] r2r 21~]u2 ia!!

in terms of the polar coordinates (r ,u), and

p1
21p2

25~2 i ¹2A0a!252] r
22r 21] r1r 22~2 i ]u2a!2.

We writeHn(z)5Hn
(1)(z) for the Hankel function of first kind. All Hankel functions are throug

out understood to be of the first kind. Since

~znHn~az!!85aznHn21~az! ~2.2!

by formula, it follows that

~H12a~ ir !eiu!5H12a8 ~ ir !2 i ~12a!r 21H12a~ ir !5H2a~ ir !.

If we make use of this relation, then the solutionuP@L2#2 to ~2.1! takes the form

u25cH12a~ ir !eiu, u152 icH2a~ ir !52 iceiapHa~ ir !

with constantc. This is the solution corresponding to angular momentuml 50. The solutions with
momentuml>1 are obtained by

u25cHl 112a~ ir !ei ( l 11)u, u152 icHl 2a~ ir !eil u,

but these are not in@L2#2 because of the strong singularity near the origin. The same reaso
applies to solutions with momentuml ,0. Thus we see thatS15$uP@L2#2:u5cc1% is the
one-dimensional space spanned by

c15NaS 2 i 112aHa~ ir !

H12a~ ir !eiu D , ic1iL251, ~2.3!

where

Na5~sinap!1/2/2. ~2.4!

The normalization constantNa is calculated by use of the formula

2pE
0

`

r uHa~ ir !u2 dr 54a/~sinap!.

Similarly S25$uP@L2#2:u5cc2% is spanned by
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c25NaS i 112aHa~ ir !

H12a~ ir !eiu D , ic2iL251, ~2.5!

with the same constantNa .
The Krein theory determines a family of all possible self-adjoint extensions. Accordin

Theorem X.2 and its Corollary of Ref. 20 there is a one-to-one correspondence betwe
unitary mappingU:S1→S2 and the self-adjoint extensionHU , which acts as

HUu5H̄Dv1 iv12 iUv1

on the domainD(HU)5$uP@L2#2:u5v1v11Uv1 , vPD(H̄D), v1PS1%.
Lemma 2.1: Let J be the isometry operator defined by

J52~H̄D2 i !~H̄D1 i !21:S1
' →S2

'

whereS6
' 5Ran (H̄D 6 i ) is the orthogonal complement ofS6 . Then the resolvent(HU1 i )21 is

represented as

~HU1 i !215~1/2i !~11~U % J!!:@L2#25S1 % S1
' →@L2#25S2 % S2

' .

Proof: Let f P@L2#2 and setu5(1/2i )(11(U % J)) f . We decomposef into f 5h1g, where
hPS1 andgPS1

' . Then

u5~1/2i !~~11J!g1~11U !h!.

Since gPS1
' 5Ran(H̄D1 i ), we can writeg5(H̄D1 i )g̃ for some g̃PD(H̄D). Thus (11J)g

52i g̃PD(H̄D), and henceuPD(HU). We calculate

~HU1 i !u5~1/2i !~~H̄D1 i !~11J!g1~HU1 i !~11U !h!.

Then we obtain (HU1 i )u5g1h5 f , so thatu5(HU1 i )21f . This proves the lemma. h

We examine what boundary conditionHU satisfies at the origin. Whenn.0 is not an integer,
Hn(z) is represented as

Hn~z!5Jn~z!1 iNn~z!5~ i /sinnp!~e2 inpJn~z!2J2n~z!!

in terms of Bessel functions, and it obeys

Hn~z!52~ i /sinnp!~1/G~12n!!~z/2!2n~11O~ uzu2n!1O~ uzu2!!, uzu→0.

We now use the abstract lemma in Ref. 20~p.138!. According to the notation there, we have

D~~HD!* !5D~H̄D! % H̄DS1 % H̄DS2 .

This implies thatv5 t(v1 ,v2)PD(H̄D) obeys

E
0

2p

v1~r ,u! du5o~r 2a!, E
0

2p

v2~r ,u!e2 iu du5o~r 2(12a)!

as r 5uxu→0. The other Fourier coefficients vanish at the origin. Henceu5 t(u1 ,u2)PD(HU)
satisfies

E
0

2p

u1~r ,u! du52p~u211o~1!!r 2a, E
0

2p

u2~r ,u!e2 iu du52p~u221o~1!!r 2(12a)
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for some pair (u21 ,u22) as in ~1.3!. The unitary mappingU acts as the multiplicationei z3 for
somez, 2p,z<p, between the one-dimensional spacesS6 . If we take account of the abov
behavior of Hankel functions, then the ratiok5 iu21 /u22 is calculated as the real number

k5~22a21G~a!/G~12a!!tan~z/2! ~2.6!

independent ofuPD(HU). Thus we can obtain the family$Hk% of self-adjoint extensions with
domainD(Hk) parametrized as in~1.4!. If z5p and hencek5`, then

D~H`!5$u5 t~u1 ,u2!P@L2#2:HDuP@L2#2, lim
uxu→0

uxu12ae2 iuu2~x!50%,

and if z50 and hencek50, then

D~H0!5$u5 t~u1 ,u2!P@L2#2:HDuP@L2#2, lim
uxu→0

uxuau1~x!50%.

Roughly speaking, only one component of Dirac wave functions has a weak singularity ne
origin in the two special casesk5` andk50, while both the components have in general stro
singularities in the other cases. Thus it is not allowed as a boundary condition that bo
components remain bounded near the origin.

We denote by ( , )L2 the scalar product inL2 or @L2#2. We write

f ^ g5~ • ,g!L2f :L2→L2

for the integral operator with kernelf (x) ḡ(y), and use a similar notation for the operatoru
^ v:@L2#2→@L2#2 defined by (u^ v)w5(w,v)L2u. This operator is represented in the matr
form

u^ v5~uj ^ vk!1< j ,k<2 , uj ^ vk :L2→L2,

for u5 t(u1 ,u2) andv5 t(v1 ,v2) in @L2#2.
We end the section by deriving the relation between the two resolvents (Hk1 i )21 and (H`

1 i )21. SinceU:S1→S2 takes the formU5ei z(c2 ^ c1), it follows from Lemma 2.1 that

~Hk1 i !212~Hk81 i !215~1/2i !~ei z2ei z8!~c2 ^ c1!,

wherek andk8 are related toz andz8 through~2.6!, respectively. If, in particular,z85p, then we
obtain

~Hk1 i !215~H`1 i !211~1/2i !~ei z11!~c2 ^ c1!. ~2.7!

This relation plays a basic role in the future argument. This is a special case of the Krein fo
between resolvents. We refer to Ref. 5~Chap. VII! for the general Krein theory for self-adjoin
extensions.

III. NORM RESOLVENT CONVERGENCE

We consider the problem as to which self-adjoint extension is realized as a norm res
limit of Hamiltonians with smooth magnetic fields having small support when the suppo
shrinking. LetH«

D be defined by~1.7!. The aim here is to prove the following theorem.
Theorem 3.1: Assume (1.2). Then H«

D is convergent to H̀ in the norm resolvent sense a
«→0.

Remark 3.1:The potential associated with given fieldbPC0
`(R2→R) is not uniquely deter-

mined. LetÃPC`(R2→R2) be another potential havingb as a field. Then it takes the formÃ
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5A1¹g with somegPC`(R2→R). If g(x)→0 at infinity, we can prove the norm resolve

convergence forÃ«5«21Ã(x/«) also. This can be shown in the course of the proof of
theorem.

Before going into the proof, we fix the notation and introduce several auxiliary operators
assume for brevity that the fieldbPC0

`(R2→R) has support in the unit disk. According to Ref. 2
~Lemma 2.1! @see~2.2! there#, we can construct a potentialaPC`(R2→R2) associated with field
b such that

a~x!5~a1~x!,a2~x!!5A0a~x!5a~2x2 /uxu2,x1 /uxu2! ~3.1!

for uxu.2. Then we define

pj52 i ] j2aj , pj «52 i ] j2aj «

for j 51,2, and

K5s1p11s2p2 , K«5s1p1«1s2p2« ,

wherea«(x)5«21a(x/«)5(a1«(x),a2«(x)). Both K andK« are self-adjoint operators with do
main @H1(R2)#2.

We again denote byL(p,q)5(2 i¹2p)21q the Schro¨dinger operator with vector potentialp
and scalar oneq. According to this notation, we further define

L5L~a,0!5p1
21p2

2 , L«5L~a«,0!5p1«
2 1p2«

2 ~3.2!

and

L65L~a,6b!5p1
21p2

26b, L6«5L~a« ,6b«!.

These are self-adjoint operators with domainH2(R2). If we set

p65p16 ip2 , p6«5p1«6 ip2« ,

thenL65p6p75p7* p7 andL6«5p6«p7« as in ~1.10!. We can easily show

p1«~L2«11!215~L1«11!21p1« , p2«~L1«11!215~L2«11!21p2« ~3.3!

and the resolvent (K«1 i )21 is calculated as

~K«1 i !215S 2 i ~L2«11!21 p2«~L1«11!21

~L1«11!21p1« 2 i ~L1«11!21 D . ~3.4!

We now assert that

~K«1 i !21→~H`1 i !21, «→0, ~3.5!

in norm. To prove the assertion, we analyze the behavior as«→0 of (L6«11)21. By ~3.1!,
a«(x)→A0a(x) as«→0 for xÞ0, and hence we have

L6«→L~A0a,0!5~2 i¹2A0a!2

on C0
`(R22$0%). As stated in Sec. I, the limit operatorL(A0a,0) has the deficiency indices~2,2!.

The Krein theory yields a family$LU% of all possible self-adjoint extensions which is parametriz
by 232 unitary mappingU from one deficiency subspace to the other one. The operatorLU is
realized as a differential operator with some boundary conditions at the origin. Ifw belongs to
D(LU), thenw behaves like
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w5~w20r 2a1w10r a1o~r a!!1~w21r 2(12a)1w11r 12a1o~r 12a!!eiu1o~r !

near the origin for some coefficientsw6 l , l 50,1, and there exist 232 matricesB6 for which the
boundary condition is described as the relation

B2S w20

w21
D1B1S w10

w11
D50

between these four coefficients. For later references, we distinguish the two special op
among the family of self-adjoint extensions. One is the Aharonov–Bohm HamiltonianLAB with
domain

D~LAB!5$wPL2:L~A0a,0!wPL2, w205w2150%

and the other isLZ with domain

D~LZ!5$wPL2:L~A0a,0!wPL2, w105w2150%.

Let J« :L2→L2 be the unitary operator defined by~1.9!. Then we have

~L6«11!215«2J«~L61«2!21J«* ,

so that the behavior as«→0 of resolvents (L6«11)21 strongly depends on the spectral structu
of L6 at low energy. We explain the resonance state at zero energy in some details. W
assumed in~1.2! that 0,a,1. Hence it follows from the Aharonov–Casher theorem~Ref. 4! that
L65p7* p7 has no bound states at zero energy. It should be noted thatL2 has bound states in th
case thata.1, even ifL2>0 is non-negative. The resonance spaceE6 at zero energy ofL6 is
defined by

E65$uPC`~R2!:L6u50, u is bounded%.

We look at the structure of the resonance spaces. We considerE2 only. A similar reasoning applies
to E1 also. We recall the facts obtained in Ref. 22~Sec. V!: ~1! dimE2<2. ~2! If dim E252, then
E2 is spanned by the linearly independent pair

el~x!5r 2neil u1gl , n5u l 2au, l 50,1,

where the remainder termglPL2ùC` falls off like ]bgl5O(uxu2n212ubu). ~3! If dim E251,
thenE2 is spanned by the linear combination

e~x!5clr
2a1c2r 211aeiu1g, uc1u1uc2uÞ0,

wheregPL2ùC` obeys the bound as above at infinity. IfuPE2 , then

L2u5p1* p1u5p1
2u1p2

2u2bu50, bPC0
`~R2!,

by definition, and we have by Lemma 4.3 in Ref. 22~or by the argument used for its proof! that
p1u andp2u are inL2. This implies thatp6u are also inL2 and hence it follows by use of partia
integration thatp1u50 for uPE2 . Let w be defined by~1.6!. The functionw behaves like
w(x)5a log uxu1O(uxu21) at infinity, so thatew(x)5uxua(11O(uxu21)). Recall thataPC`(R2

→R2) has the property~3.1!. The potentiala takes the form

a5~2]2w~x!,]1w~x!!1¹h5A1¹h ~3.6!

for somehPC`(R2→R), whereh obeysh5O(uxu21) at infinity. We can write

p152 ieihe2w~ ]11 i ]2!ewe2 ih ~3.7!
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as in ~1.11! and similarly for p25p1* . Thus we see thatewe2 ihu is an entire function foru
PE2 . This implies thatE25$cr% is the one-dimensional space spanned byr5eihe2w, and the
resonance stater behaves like

r~x!5uxu2a~11O~ uxu21!!, uxu→`. ~3.8!

On the other hand, we can show in a similar way that dimE150. If we take account of these
facts, then Theorem 6.1 in Ref. 22 implies the following lemma.

Lemma 3.1: As«→0, one has

~L1«1 i !21→~LAB1 i !21, ~L2«1 i !21→~LZ1 i !21,

in norm.
Remark 3.2:If a.1, then it follows from the Aharonov–Casher theorem in Ref. 4 thatL2 has

the zero eigenvalue with multiplicity@a#, @a# being the greatest integer not exceedinga. Hence
L2«5«22J«L2J«* has also eigenstates at zero energy. ButLZ never has an eigenstate at ze
energy. ThusL2« is not convergent toLZ in norm resolvent sense. It seems that (L2«1 i )21 is
strongly convergent to (LZ1 i )21, so that Theorem 3.1 remains true in the strong sense eve
a.1. We do not go into the details here.

We calculate the resolvent (H`1 i )21. Consider the equation (H`1 i )u5 f for f 5 t( f 1 , f 2)
P@C0

`(R22$0%)#2. Thenu5 t(u1 ,u2) satisfies

~L~A0a,0!11!u25p1 f 12 i f 2 , u15 ip2u22 i f 1

for the Aharonov–Bohm potentialA0a(x). We see thatuPD(H`) implies u2PD(LAB). Thus
u25(LAB11)21(p1 f 12 i f 2) and

u152 i ~12p2~LAB11!21p1! f 11p2~LAB11!21f 2 ,

so that we have

~H`1 i !215S ip2~LAB11!21p12 i p2~LAB11!21

~LAB11!21p1 2 i ~LAB11!21 D . ~3.9!

Lemma 3.2: One has the relation

12p2~LAB11!21p15~LZ11!21.

Proof: We note that the operator on the left-hand side of the relation is bounded. Letf , g
PC0

`(R22$0%). By ~3.1!, there existsd.0 such thatp6 f 5p6« f and p6g5p6«g for 0,«
,d. Since

~p2~LAB11!21p1 f ,g!L25 lim
«→0

~~L1«11!21p1« f ,p1«g!L2

by Lemma 3.1, it follows from~3.3! that

~~12p2~LAB11!21p1! f ,g!L25 lim
«→0

~~L2«11!21f ,g!L2.

This, together with Lemma 3.1 again, proves the lemma. h

We denote byOp(«n) andop(«n) the classes of bounded operatorsB« acting onL2 or @L2#2

such that the operator norm ofB« obeys the boundiB«i5O(«n) and iB«i5o(«n), respectively,
as«→0. We now prove Theorem 3.1, accepting the three lemmas below as proved. The pr
the lemmas is done in the next section.

Lemma 3.3:x(L11«2)21x5Op(«0) for xPC0
`(R2→R).
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Lemma 3.4: p6«(L1«11)21→p6(LAB11)21 in norm as«→0.
Lemma 3.5:x(L21«2)21x5Op(«22a) for xPC0

`(R2→R).
Proof of Theorem 3.1:We first prove~3.5!. The two resolvents (K«1 i )21 and (H`1 i )21 are

represented by~3.4! and ~3.9!, respectively. If we use Lemma 3.2, then

~H`1 i !215S 2 i ~LZ11!21 p2~LAB11!21

~LAB11!21p1 2 i ~LAB11!21 D .

By Lemma 3.4, we havep2«(L1«11)21→p2(LAB11)21 and

~L1«11!21p1«5~p2«~L1«11!21!* →~p2~LAB11!21!* 5~LAB11!21p1 .

Hence Lemma 3.1 implies~3.5!. Next we prove the norm resolvent convergence for the oper
H«

D in question. LetAPC`(R2→R2) be defined by~1.5!. ThenA5a2¹h by ~3.6!, and

~H«
D1 i !215exp~2 ih«!~K«1 i !21 exp~ ih«!,

whereh«(x)5h(x/«). By definition,K5«J«* K«J« is independent of«. We have

~K1 i«!215S 2 i«~L21«2!21 p2~L11«2!21

~L1«1«2!21p1 2 i«~L11«2!21D ~3.10!

and (K«1 i )215«J«(K1 i«)21J«* . For anyd.0 small enough, we can takeM.0 so large that
uh«(x)u,d for uxu>«M , and henceuexp(6ih«)21u,2d for x as above. On the other hand, we c
prove that

«ixM~K1 i«!21xMi5O~«!1O~«2(12a)!

for the characteristic functionxM of $uxu,M %. In fact, Lemma 3.3 yields

ixM~L11 i«2!21p1xMi1ixMp2~L11 i«2!21xMi5O~1!, «→0,

by elliptic estimate. Note thatx«M5J«xMJ«* for x«M(x)5xM(x/«). Hence

i~K«1 i !21x«Mi25i~K«1 i !21J«xMi2

5ixMJ«* ~K«2 i !21~K«1 i !21J«xMi

5O~«! ixM~~K1 i«!212~K2 i«!21!xMi→0

by Lemmas 3.3 and 3.5, and alsoi(H«
D1 i )21x«Mi→0 by gauge transformation. Thus we obta

i~H«
D1 i !212~K«1 i !21i→0.

This, together with~3.5!, completes the proof. h

IV. RESOLVENT ANALYSIS AT LOW ENERGY ON SCHRÖ DINGER OPERATORS I

We shall prove Lemmas 3.3, 3.4, and 3.5 which remain unproved. Throughout the sectio
denote byxPC0

`(R2→R) a real function such that suppx,BM andx51 on BM /2 , whereBM

5$uxu,M % for M@1 fixed arbitrarily. We further denote bykPC a small complex number with
Im k.0.

Let L5L(a,0) be as in~3.2!. We first make a brief review on the spectral property ofL from
Ref. 22. LetLc

25$uPL2:suppu,BM% be the space ofL2 functions with support inBM . Then we
know that there exists a limit
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G05 lim
k→0

~L2k2!21

and the limit operator G0 :Lc
2→L21

2 is bounded into the weightedL2 space L21
2

5L2(R2;^x&22 dx), where^x&5(11uxu2)1/2. By ~3.1!, L coincides with

L5L~A0a,0!52] r
22r 21] r1r 22~2 i ]u2a!2

on $uxu.2%, and henceul(x)5r neil u, n5u l 2au, satisfiesLul50 there. If we definev l by

v l5cl~12x!ul1clG0@L,x#ul , cl5~ l 1n!1/2/2n, ~4.1!

for l 50,1, thenv l behaves like

v l5clr
neil u1O~1! ~4.2!

asr 5uxu→`, and it solvesLv l50. Such a solution is shown to be unique@see Ref. 22~Lemma
4.3!#. The argument here is based on the proposition below, which has been proved as Prop
4.2 in Ref. 22.

Proposition 4.1: Let the notation be as above and letn5u l 2au again. Then

x~L2k2!21x5xG0x1 (
l 50,1

g l~k!i 22nk2n~xv l ^ xv l !1Op~ uku2!, uku→0,

for some coefficientsg l(k), and g l(k) behaves like

g l~k!5g l1o~1! ~4.3!

as uku→0, where

g l52~2122nG~12n!!/~~ l 1n!G~n!!. ~4.4!

The precise value ofg l is not required to prove the lemmas, but it is important in studying
effect of perturbation by scalar potentials in the latter sections.

Next we consider the operatorL15L(a,b)5L1b. We shall show that (L12k2)21 admits
an expansion similar to that in Proposition 4.1. We have the relation

~L12k2!215~L2k2!21~11b~L2k2!21!21 ~4.5!

by the resolvent identity. SinceL1 has neither bound states nor resonance states at zero en
11bG0 :Lc

2→Lc
2 has the bounded inverse

T5~11bG0!21:Lc
2→Lc

2 .

We see that there exists a limit

G15 lim
k→0

~L12k2!21

and the limit operatorG15G0T:Lc
2→L21

2 is bounded. The inverseT is represented as

T5LG1512bG1 :Lc
2→Lc

2 ~4.6!

and it follows that the adjoint operatorT* 512G1b:L loc
2 →L loc

2 is well defined as an operato
from the spaceL loc

2 of locally square integrable functions into itself. If we define

v1 l5T* v l5v l2G1bv l ~4.7!
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for l 50,1, thenv1 l solvesL1v1 l50 and obeys~4.2! at infinity.
Proposition 4.2: Let the notation be as above. Then

x~L12k2!21x5xG1x1 (
l 50,1

g1 l~k!i 22nk2n~xv1 l ^ xv1 l !1Op~ uku2!

for some coefficientsg1 l(k) obeyingg1 l(k)5g l1o(1) as in Proposition 4.1.
Proof: We start with the relation

x~L12k2!21x5x~L2k2!21~11b~L2k2!21!21x

obtained from~4.5!. Set

E~k!5 (
l 50,1

g l~k!i 22nk2n~v l ^ v l !:Lc
2→L loc

2 .

Then we have

~11b~L2k2!21!215~11TbE~k!!21T1Op~ uku2!

by Proposition 4.1, and hence (L12k2)21 is expanded as

x~L12k2!21x5G11G2~k!1Op~ uku2!,

whereG15xG0Tx5xG1x and

G2~k!5xE~k!~11TbE~k!!21Tx1xG0~~11TbE~k!!2121!Tx.

We can calculateG2(k) as

G2~k!5x~12G0Tb!E~k!~11TbE~k!!21Tx5xT* E~k!S (
j 50

`

~21! j~TbE~k!! j DTx.

Hence it follows from~4.7! that

G2~k!5 (
0< l ,m<1

g lm~k!~xv1 l ^ xv1m!

for some 232 matrix (g lm(k))0< l ,m<1 . The components obeyg lm(k)5O(uku2) for lÞm, and
g l l (k)5g l i

22nk2n(11o(1)). This completes the proof. h

Proof of Lemma 3.3:The lemma follows from Proposition 4.2. h

Proof of Lemma 3.4:We have

x~~L11 i«2!212~L12 i«2!21!x5Op~«2a!1Op~«2(12a)!

by Proposition 4.2. SinceJ«* (L1«1 i )21J«5«2(L11 i«2)21, it follows that

ix«~L1«1 i !21i25ixJ«* ~L1«1 i !21~L1«2 i !21J«xi5O~«212a!1O~«212(12a)!,

wherex«(x)5x(x/«). Hence

ix«~L1«11!21i5O~«11a!1O~«11(12a)!.

If we setu«5(L1«11)21f for f PL2, thenu« satisfies the equation

~L1«11!u«5~p1«
2 1p2«

2 !u«1b«u«1u«5 f
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and obeys the bound

ix«u«iL25~O~«11a!1O~«11(12a)!!i f iL2. ~4.8!

Thus we have

ix«pj «u«iL25~O~«a!1O~«12a!!i f iL2 ~4.9!

by elliptic estimate. A similar argument applies tov5(LAB11)21f . Note that

J«* ~LAB11!21J«5«2~LAB1«2!21.

The Green kernel of (LAB2k2)21 is explicitly represented in terms of the Bessel functions a
separation into the polar coordinates, and it admits an expansion similar to (L12k2)21. Thus we
obtain

ix«viL25~O~«11a!1O~«11(12a)!!i f iL2 ~4.10!

and

ix«p jviL25~O~«a!1O~«12a!!i f iL2. ~4.11!

By ~3.1!, pj5p j on $uxu.2%, so that (12x«)(p j2pj «)50. Sincex«51 on suppb« , w«5u«

2v satisfies

~12x«!~p1«
2 1p2«

2 11!w«50

and it follows from~4.8! and ~4.10! that

i~12x«!pj «w«iL25~O~«a!1O~«12a!!i f iL2.

This, together with~4.9! and ~4.11!, yields

ipj «~L1«11!212p j~LAB11!21i5O~«a!1O~«12a!

and the proof is complete. h

We move to the proof of Lemma 3.5. We analyze the behavior asuku→0 of (L22k2)21.
Decomposeb into the productb5b1/2ubu1/2, whereb1/25ubu1/2sgnb with sgnb5b/ubu. Then we
have

~L22k2!215~L2k2!211~L2k2!21ubu1/2Z~k!21b1/2~L2k2!21 ~4.12!

by repeated use of the resolvent identity, where

Z~k!512b1/2~L2k2!21ubu1/2.

SinceL2 has a resonance state at zero energy, 12b1/2G0ubu1/2:L2→L2 is not invertible. Let

X5$vPL2:v5b1/2G0ubu1/2v%.

According to Ref. 22, dimX51, andvPX, vÞ0, satisfies (v,ubu1/2v0)L2Þ0 and (v,ubu1/2v1)L2

50 for v l defined by~4.1!. We normalizeh0PX as

~h0 ,ubu1/2v0!L251, ~h0 ,ubu1/2v1!L250 ~4.13!

and define

r05G0ubu1/2h0 . ~4.14!
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Thenr0 solvesL2r050 and behaves like

r0~x!5~2pa!21/2r 2a1g, r→`, ~4.15!

with somegPL2 @see~5.8! and~5.9! in Ref. 22#. Thusr0 spans the resonance spaceE2 of L2 at
zero energy, because dimE251 as shown already in Sec. III.

Proposition 4.3: Letr0PE2 be the resonance state defined above. Then

x~L22k2!21x5g2~k!i 2ak22a~xr0^ xr0!1Op~ uku0!, uku→0,

for some coefficientg2(k) obeyingg2(k)521/g01o(1), g0 being as in (4.4).
Proof: For brevity, we prove the lemma whenb(x)>0. If b(x) is not non-negative,

b1/2G0ubu1/2 is not necessarily self-adjoint. The argument below undergoes a slight change,
is not serious. We skip the detail. LetQ0 and Q be the orthogonal projections defined byQ0

5h1^ h1 andQ512Q0 , whereh15h0 /ih0iL2. Since 12b1/2G0b1/2:RanQ→RanQ is invert-
ible and since

Q0~~b1/2v1! ^ ~b1/2v1!!5~~b1/2v1! ^ ~b1/2v1!!Q050

by ~4.13!, it follows from Proposition 4.1 that the inverseZ(k)21 takes the form

Z~k!215g~k!i 2ak22a~h0^ h0!1Op~ uku0!

for some coefficientg(k) having the property in the proposition. This yields the relation. h

Proof of Lemma 3.5:The lemma follows from Proposition 4.3. h

Remark 4.1:Proposition 4.1 remains true forx¹(L2k2)21x. For example, we have

x¹~L2k2!21x5x¹G0x1 (
l 50,1

g l~k!i 22nk2n~x¹v l ^ xv l !1Op~ uku2!.

This follows by elliptic estimate. A similar relation is true for (L12k2)21 in Proposition 4.2.
We end the section by making a brief comment on the limit as«→0 of the resolvent (K

6 i«)21 calculated in~3.10!. We formally write (K6 i0)21 for the limit lim«→0(K6 i«)21. If we
combine~3.10! with Propositions 4.2, 4.3 and Remark 4.1, then we see that these limits hav
different properties according as 0,a,1/2, a51/2 or 1/2,a,1:

if 0 ,a,1/2, ~K6 i0!21 exists and ~K1 i0!215~K2 i0!21,

if a51/2, ~K6 i0!21 exists but ~K1 i0!21Þ~K2 i0!21,

if 1/2,a,1, ~K6 i0!21 does not exist.

It is obvious by gauge transformation thatH5s1n11s2n2 preserves the same property as abo
This means thatH has a property similar to the three dimensional Laplacian for the case 0,a
,1/2 and to the one- or two-dimensional Laplacian for the case 1/2,a,1.

V. EFFECT OF SCALAR POTENTIALS AND RESONANCE STATE

The remaining three sections are devoted to the study on the effect of perturbation by
potentials. We assume thatVPC0

`(R2→R) satisfies

l05~Vr0 ,r0!L2Þ0 ~5.1!

for r0 spanning the resonance space ofL2 at zero energy. We setV«(x)5«21V(x/«) and define
K«(V«) by
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K«~V«!5K«1V«5s1p1«1s2p2«1V« ,

which is self-adjoint with domainD(K«(V«))5@H1(R2)#2. We study the norm resolvent conve
gence for this Hamiltonian. The obtained result is invariant under gauge transformation
particular, it remains true for the HamiltonianH«

D1V« .
We define the resonance state at zero energy of the operator

K1V5s1p11s2p21V5(
j 51

2

s j~2 i ] j2aj !1V

before formulating the result. The definition is different according as 0,a<1/2 or 1/2,a,1. By
~3.7!, we havep1522i eihe2w]̄ewe2 ih, where ]̄5(1/2)( ]11 i ]2). The Cauchy–Riemann op
erator ]̄ has the fundamental solution (1/p)(x11 ix2)21. We denote by]̄21 the convolution
operator

]̄215~1/p! ~x11 ix2!21* .

According to this notation, we define

p1
2152~2i !21eihe2w]̄21ewe2 ih

andp2
215(p1

21)* . By definition, we havep6p6
2151.

Lemma 5.1: One has the relations

p2G15p1
21 , G1p15p2

21

on bounded functions with compact support.
Proof: We prove only the first relation. The second one follows by taking the adjoint. We

w15p1
21f for a functionf as in the lemma. Thenw1PL2 and it solvesp1w15 f . If, on the other

hand, we setw25p2G1 f PL21
2 , thenw2 satisfies

p1w25p1p2G1 f 5L1G1 f 5 f

and w2PL2. In fact, we haveip2G1 f iL2,` by a simple use of partial integration. Setw
5ewe2 ih(w12w2). Then w is an entire function. Note thatew5O(uxua) at infinity for 0,a
,1. Sincew12w2PL2, we can easily show thatw50, and hencew15w2 . Thus the lemma is
obtained. h

We now recall thatG1 :Lc
2→L21

2 is bounded. Hence

uVu1/2p1
21uVu1/25uVu1/2p2G1uVu1/2:L2→L2

is bounded by elliptic estimate, and also it follows by adjoint that

uVu1/2p2
21uVu1/25uVu1/2G1p1uVu1/2:L2→L2

is bounded.
We first consider the case 0,a<1/2. We write V1/25uVu1/2/V and define F5$u

P@L2#2:Z0u52u%, where

Z05V1/2F0uVu1/2, F05S 0 p2G1

G1p1 0 D . ~5.2!
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SinceZ0 :@L2#2→@L2#2 is a compact operator, it follows that dimF,`. As is easily seen from
Lemma 5.1,v5F0uVu1/2u with uPF belongs toL23L` and it solves (K1V)v50. We further
defineF05$uPF:(u,uVu1/2r̃0)L250% with r̃05(r0,0). By definition, we have dimF/F0<1.

Lemma 5.2: If uPF0 , then v5F0uVu1/2u is in @L2#2 and hencev becomes a bound stat
associated with zero eigenvalue. If, conversely, v is a bound state, then u52V1/2v belongs to
F0 .

Proof: Let u5 t(u1 ,u2)PF0 andv5 t(v1 ,v2)5F0uVu1/2u. Then (u1 ,uVu1/2r0)50 by assump-
tion, and it is easy to see thatv1PL2. Since r05ce2weih for some cÞ0, v25p2

21uVu1/2u1

behaves like

v2~x!5c ~u1 ,uVu1/2r0!L2ewe2 ih~x12 ix2!211O~ uxu221a!, uxu→`, ~5.3!

for anothercÞ0. Hence it follows that

~u1 ,uVu1/2r0!L250⇔vP@L2#2. ~5.4!

This proves the first statement. The second one is also easy to prove. IfvP@L2#2 satisfies (K
1V)v50, thenv52F0Vv. Hence we have

u52V1/2v5V1/2F0Vv5Z0V1/2v52Z0u,

which, together with~5.4!, implies thatuPF0 . h

If dim F/F051, then the above lemma implies that (K1V)v50 has a solutionv
5 t(v1 ,v2)PL23L` with (v,Vr̃0)L2Þ0, and hence it follows from~5.3! that v2 behaves like

v2~x!5cr211aeiu~11o~1!!, r 5uxu→`,

for cÞ0. The converse is also true.
We move to the case 1/2,a,1. Recall thatl0Þ0 by assumption~5.1!. This enables us to

define the projection

P5l0
21~V1/2r̃0^ uVu1/2r̃0!:@L2#2→@L2#2. ~5.5!

Let Q512P. We further define

C5$uP@L2#2:QZ0Qu52u%, C05$uPC:~u,Z0* uVu1/2r̃0!L250%.

We again have dimC/C0<1.
Lemma 5.3: If uPC0 , thenv5F0uVu1/2u becomes a bound state associated with zero eig

value. If, conversely, v is a bound state, then u52V1/2v belongs toC0 .
Proof: If uPC0 , thenPZ0u50 and it follows that

u52QZ0Qu52Z0u52V1/2F0uVu1/2u52V1/2v.

This shows that uVu1/2u52Vv and hence (K1V)v50. If we write v5F0uVu1/2u
52F0uVu1/2Z0u, then the first statement follows from~5.4!. To prove the second one, we repe
the same computation as in the proof of Lemma 5.2 to obtain the relationu52Z0u. Sincev
52F0VvP@L2#2, it again follows from~5.4! that

~u,uVu1/2r̃0!L252~v,Vr̃0!L250.

This implies thatPu50 and we obtainuPC0 . h

Lemma 5.4: IfdimC/C0 5 1, then (K1V)v50 has a solution such thatv5 t(v1 ,v2)
PL`3L2 and

v1~x!5cr2a~11o~1!!, uxu→`,
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for cÞ0. The converse is also true.
Proof: Let uPC be a representative ofC/C0 . We setv5F0uVu1/2u2dr̃0 , where

d5l0
21~u,Z0* uVu1/2r̃0!L2Þ0.

Then (Vv,r̃0)L250, andv1(x)52dr0(x)(11o(1)) at infinity. We show that (K1V)v50. To
see this, we calculate

V1/2v5Z0u2PZ0u5QZ0u52u.

SinceK r̃050, we obtainKv5uVu1/2u52Vv. We claim thatv2PL2. This follows from ~5.4!,
because (u,uVu1/2r̃0)L252(Vv,r̃0)L250. Thus the first statement is established. We shall pr
the converse. LetvPL`3L2 be a solution to (K1V)v50 with the properties in the lemma. W
assert thatv takes the formv52F0Vv1c0r̃0 for some c0Þ0. To see this, we setw5v
1F0Vv. ThenKw50 and the first componentw1 behaves likew15cr2a(11o(1)) for cÞ0 in
the lemma, becausev1¹L2 behaves in a similar way by assumption. Thusw5c0r̃0 . The constant
c0Þ0 is determined as

c05l0
21~F0Vv,Vr̃0!L25l0

21~V1/2v,Z0* uVu1/2r̃0!L2

by use of~5.4!. In fact, we have

~2F0Vv1c0r̃0 ,Vr̃0!L25~Vv,r̃0!L25~Vv1 ,r0!L250

becausev2PL2. If we set u52V1/2v, then uP@L2#2 satisfies the relationu52Z0u1PZ0u
52QZ0u. Hence we haveuPC, and also it follows that

~u,Z0* uVu1/2r̃0!L252~V1/2v,Z0* uVu1/2r̃0!L252l0c0Þ0.

This implies the second statement, and the proof is complete. h

We combine Lemmas 5.2, 5.3, and 5.4 to formulate the precise definition of resonance s
zero energy.

Definition 5.1:The operatorK1V is said to admit a resonance state at zero energy, if
following condition is fulfilled.

~1! Assume that 0,a<1/2. The equation (K1V)v50 has a solution such thatv
5 t(v1 ,v2)PL23L` and

v2~x!5r 211aeiu~11o~1!!, uxu→`.

~2! Assume that 1/2,a,1 and that~5.1! is fulfilled. (K1V)v50 has a solution such tha
v5 t(v1 ,v2)PL`3L2 and

v1~x!5r 2a~11o~1!!, uxu→`.

We note that the definition is invariant under gauge transformations. We are now in a po
to state the second main theorem.

Theorem 5.1:Assume that the fluxa satisfies (1.2) and that K1V has no bound states at zer
energy. Then one has the following three statements.

(1) Let 0,a,1/2. If K 1V does not have a resonance state at zero energy, then K«(V«)
converges to H̀ in the norm resolvent sense, and if K1V has a resonance state, then K«(V«)
converges to H0 .

(2) Let a51/2. Assume that K1V does not have a resonance state at zero energy, so
(11Z0)21:@L2#2→@L2#2 exists as a bounded operator. Define the real numberl2 by

l25~~11Z0!21V1/2r̃0 ,uVu1/2r̃0!L2
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with r̃05 t(r0,0)P@L2#2. Then K«(V«) converges to Hk with k5tan(z/2) determined through
(2.6) with

z5arg~~ il22g0!/~ il21g0!!,

whereg0522 is as in Proposition 4.1. If K1V has a resonance state, then K«(V«) converges to
H0 .

(3) Let 1/2,a,1. Assume that (5.1) is fulfilled. If K1V does not have a resonance state
zero energy, then K«(V«) converges to H0 , and if K1V has a resonance state, then K«(V«)
converges to H̀ .

The theorem is proved in the next section. We follow the argument used in the pro
Theorem 1.2.5 in Ref. 6 and of Theorem 3.3 in Ref. 10. The major part of the argument is
occupied by the resolvent analysis at low energy of magnetic Schro¨dinger operator with resonanc
state at zero energy. We end the section by making some brief comments on the theorem

Remark 5.1:~1! If V(x)>0 or V(x)<0 and if it is sufficiently small but not identically zero
thenK1V has neither bound state nor resonance state at zero energy. The theorem asserts
limit Hamiltonian changes ata51/2 even for small perturbations of scalar potentials, and als
is interesting that the situation is completely reversed whenK1V has a resonance state.~2! The
same reason as in Remark 3.2 applies toK«(V«)5«21J«(K1V)J«* . The norm convergence is no
true without assuming thatK1V has no bound states at zero energy.~3! The restriction~1.2! is
technical. The same results as in the theorem seem to remain true even fora.1 in the strong
convergence sense, so that the limit Hamiltonian changes at half-integer fluxes.~4! The assump-
tion ~5.1! also seems to be technical. This is used for proving the third statement only, a
similar assumption has been used in Ref. 10 for the analysis on resolvents at low ene
Schrödinger operators in two dimensions. However the idea in the recent work~Ref. 17! may
make it possible to remove the assumption.

VI. PROOF OF THEOREM 5.1

We prove Theorem 5.1 in this section. The proof requires several new lemmas on the be
at low energy of resolvents of magnetic Schro¨dinger operators besides the propositions in Sec.
In formulating these lemmas, we usexPC0

`(R2→R) with the same meaning as ascribed in S
IV and denote byo2(«s) remainder terms withL2 norm obeying the boundo(«s). We further
definej l(x) by

j l~x!5Hn~ ir !eil u, n5u l 2au, ~6.1!

for l 50,1. According to this notation, we have

c15NaS 2 i 112aj0

j1
D , c25NaS i 112aj0

j1
D

by ~2.3! and ~2.5!.
Lemma 6.1: Letv1 l be defined by (4.7). Then

~L1«11!21J«x5 (
l 50,1

b1 l~«!i n«11n~j l ^ xv1 l !1Op~«2!

for some coefficientb1 l(«), and b1 l(«) behaves likeb1 l(«)5b l1o(1) as «→0, where

b l5 i ~2p!21/2~22nG~12n!/~ l 1n!1/2!sinnp. ~6.2!

Lemma 6.2: Letb0 be as above and letg0 be as in Proposition 4.1. Letr0 be the resonance
state defined by (4.14). Then
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~L2«11!21J«x52 i a~b0 /g0!«12a~~j01o2~1!! ^ xr0!1Op~«!.

Lemma 6.3: One has

p2«~L1«11!21J«x5Op~«!.

Lemma 6.4: One has

p1«~L2«11!21J«x5 i 2a~b0 /g0!«12a~~j11o2~1!! ^ xr0!1Op~«!.

We proceed to proving Theorem 5.1, accepting the above lemmas as proved. The p
these lemmas is done in Sec. VII.

Proof of Theorem 5.1:For brevity, we assume throughout the proof thatV(x)>0, so that the
operatorZ0 defined by~5.2! becomes self-adjoint. We writeR«5(K«(V«)1 i )21. Then we obtain

R«5~K«1 i !212~K«1 i !21V«
1/2X«

21V«
1/2~K«1 i !21

from the resolvent identity, whereX«511V«
1/2(K«1 i )21V«

1/2. We defineY« by

Y«5J«* X«J«511V1/2~K1 i«!21V1/2.

ThenR« is rewritten as

R«5~K«1 i !212«21~~K«1 i !21J«V1/2!Y«
21~~K«2 i !21J«V1/2!* .

We analyze the behavior as«→0 of operators on the right-hand side. By Theorem 3.1, (K«

1 i )21→(H`1 i )21. If we make use of relation~3.3!, then we can obtain

~K«6 i !215S 7 i ~L2«11!21 p2«~L1«11!21

p1«~L2«11!21 7 i ~L1«11!21 D
from ~3.4!. By Lemmas 6.1–6.4, we have

~K«1 i !21J«V1/25~b0 /g0!Na
21i 2a«12a~~c21o2~1!! ^ q0!1Op~«!, ~6.3!

whereq05 t(V1/2r0,0). Similarly ((K«2 i )21J«V1/2)* takes the form

~~K«2 i !21J«V1/2!* 5~b0/g0!Na
21i a«12a~q0^ ~c11o2~1!!!1Op~«!. ~6.4!

The operator (K1 i«)21 also has been calculated as

~K1 i«!215S 2 i«~L21«2!21 p2~L11«2!21

~L11«2!21p1 2 i«~L11«2!21D
in ~3.10!. By ~4.2! and ~4.7!, v10 obeysv105(1/2)a21/2r a1g for somegPL21

2 , and it solves
L1v1050 uniquely~see Lemma 4.3 of Ref. 22!. SinceL15p1p2 with

p25p1* 5 ieihew~2]11 i ]2!e2we2 ih,

we see thatp2v1050. In fact,v10 is given byv105ceihew for some constantcÞ0. Thus we
have

V1/2p2~L11«2!21V1/25V1/2~p2G11«2(12a)g11~ i«!~p2v11^ v11!!V1/21Op~«2!

by Proposition 4.2~see Remark 4.1! and similarly forV1/2(L11«2)21p1V1/2. Hence it follows
from Proposition 4.3 that
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Y«511Z02 ig2~ i«!«122a~q0^ q0!1«2(12a)Z1~«!1Op~«!,

whereg2( i«)521/g01o(1) as«→0 and

Z1~«!5g11~ i«!V1/2S 0 p2v11^ v11

v11^ p2v11 0 DV1/2. ~6.5!

Note thatp25p2 on $uxu.2%, and recall the form of operatorp2 ~see Sec. II!. Then it follows
from ~4.7! that p2v115cr2a1g for somecÞ0. We see by Lemma 5.1~or by the argument in
the proof! that the remainder termg is in L2. Sincep2v11 satisfiesp1p2v115L1v1150, we
havep2v115cr0 for anothercÞ0, and hence

Z1~«!5cg11~ i«!~q0^ q1q^ q0! ~6.6!

with q5 t(0,V1/2v11). The argument is different from now on according as 0,a,1/2, a51/2 or
1/2,a,1.

~1! Assume that 0,a,1/2. If K1V has neither bound nor resonance state at zero ene
then the bounded inverse (11Z0)21:@L2#2→@L2#2 exists, and henceY« has an inverse bounde
uniformly in «. Thus it follows thatR«→(H`1 i )21 in norm. Next we consider the case whe
K1V has a resonance state. SinceK1V has no bound states by assumption, dimF51 and
dimF050. Let F be spanned byq1P@L2#2 with iq1iL251. Thenl15(q1 ,q0)L2Þ0 by defini-
tion. We denote byP15q1^ q1 the projection onF and writeP512P1 for the projection on the
orthogonal complementF'. Then P(11Z0)P:F'→F' has an bounded inverse andP1(q0

^ q0)P15ul1u2P1 . ThusY«
21 takes the form

Y«
2152 i ~g0 /ul1u2!«2a21~q1^ q1!1op~«2a21!. ~6.7!

SinceG(12a)G(a)5p/(sinap) by formula, a direct calculation yields

ub0u2/g052sinap/452Na
2 ~6.8!

by ~2.4!. We combine~6.3!, ~6.4!, ~6.7!, and~6.8! to obtain that

R«5~H`1 i !212 i ~c2 ^ c1!1op~«0!.

This determinesz50 by ~2.7! and hencek50 by ~2.6!. Thus we obtain thatR«→(H01 i )21.
~2! If a51/2, thenY« takes the form

Y«511Z01~ i /g0!~q0^ q0!1op~«0!

andg0522. Assume that zero is not a resonance energy. If we setq25(11Z0)21q0 , then the
real numberl2 in the theorem is represented asl25(q2 ,q0)L2, andY«

21 is calculated as

Y«
215~11~ i /g0!~q2^ q0!!21~11Z0!211op~«0!

5~12~ i /~g01 il2!!~q2^ q0!!~11Z0!211op~«0!.

Thus we obtain

R«5~H`1 i !211c2~c2 ^ c1!1op~«0!

with c25l2 /(g01 il2), and

ei z52ic2215~ il22g0!/~ il21g0!.

This determinesk5tan(z/2) through~2.6!. If K1V has a resonance state, the lemma below yie
the desired relation
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R«5~H`1 i !212 i ~c2 ^ c1!1op~«0!5~H01 i !211op~«0!.

Lemma 6.5: Under the above situation, one has

~q0 ,Y«
21q0!L25 ig01o~1!, «→0.

Proof: If we again denote byP1 andP512P1 the projections onF andF', respectively,
then

Y115P1~11Z0!P150, Y015P~11Z0!P150, Y105P1~11Z0!P50,

andY005P(11Z0)P:F'→F' is invertible. We write

q05Pq01P1q05r 01r 1 .

We setD5( i /g0)(q0^ q0) and decompose it into the sum

D5 (
0< j ,k<1

D jk , D jk5~ i /g0!~r j ^ r k!.

We representY«511Z01D1op(«0) in the matrix form

Y«5S Y001D00 D01

D10 D11
D 1op~«0!:S F'

F D→S F'

F D .

By ~5.4!, r 1Þ0, and henceD11:F→F is invertible. We have

D11
2152 ig0ir 1iL2

24
~r 1^ r 1!

andD002D01D11
21D1050. If we make use of this relation, then

Y«
215S Y00

21 2Y00
21D01D11

21

2D11
21D10Y00

21 D11
21~11D10Y00

21D01D11
21!

D 1op~«0!.

We compute

~r 0 ,Y00
21D01D11

21r 1!L25~r 0 ,Y00
21r 0!L2, ~r 1 ,D11

21D10Y00
21r 0!L25~Y00

21r 0 ,r 0!L2

and

~r 1 ,D11
21~11D10Y00

21D01D11
21!r 1!L25 ig01~Y00

21r 0 ,r 0!L2.

This completes the proof of the lemma. h

~3! The final case is 1/2,a,1. The projectionP5l0
21(q0^ q0):@L2#2→@L2#2 is defined by

~5.5!. SetQ512P again. Then

Y«5t~«!P1Q1Z01«2(12a)Z1~«!1Op~«!,

where

t~«!512 il0g2~ i«!«122a5«122a~ il0 /g01o~1!!.

We can easily prove that

~t~«!P1Q!215d~«!P1Q, ~11QZ0P!21512QZ0P,
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whered(«)51/t(«)5«2a21(2 ig0 /l01o(1)). The tworelations yield

Y«5~t~«!P1Q!~11QZ0P!T«

and hence we have

Y«
215T«

21~d~«!~P2QZ0P!1Q!, ~6.9!

where

T«511QZ0Q1d~«!~12QZ0!PZ01«2(12a)QZ1~«!1Op~«!.

By ~6.6!, we see thatQZ1(«)Q50. Let S05RanP and S5RanQ. The second factor on the
right-hand side of~6.9! has the matrix representation

d~«!~P2QZ0P!1Q5S d~«!P 0

2d~«!QZ0P QD :S S0

S D→S S0

S D , ~6.10!

while T« takes the formT«5(Tjk(«))0< j ,k<1 , where

T005P~11Op~«2a21!!P, T015P~d~«!Z01Op~«!!Q,

T105Q~Op~«2a21!1Op~«2(12a)!!P, T115Q~11Z02d~«!Z0PZ01Op~«!!Q.

The inverseT«
21 can be calculated asT«

215(Sjk(«))0< j ,k<1 , where

S005~T002T01T11
21T10!

21, S0152T00
21T01~T112T10T00

21T01!
21,

S1052T11
21T10~T002T01T11

21T10!
21, S115~T112T10T00

21T01!
21.

We now analyze the behavior as«→0 of inverseY«
21 . We first deal with the resonance case. W

claim thatY«
21 takes the form

Y«
215S Pop~«2a21!P POp~«0!Q

QOp~«0!P QOp~«122a!Q
D . ~6.11!

Note that

~ f ^ q0!Q50, Q~q0^ f !50

for f P@L2#2. Hence we combine~6.11! with ~6.3! and~6.4! to obtain thatR«→(H`1 i )21. When
K1V has a resonance state at zero energy,

dimC5dim Ker~Q1QZ0Q!51

and dimC050. Let C be spanned byq3P@L2#2 with iq3iL251. We denote byQ35q3^ q3 the
projection on C and decomposeQ5Q31Q(12Q3)5Q31Q4 . Since dimC050, l3

5(Z0q3 ,q0)L2Þ0. The operatorT11 is represented in the form

T115Q4~11Z01Op~«2a21!!Q42~d~«!ul3u2/l0!Q31Q4Op~«2a21!Q31Q3Op~«2a21!Q4 .

Hence

T11
2152~t~«!l0 /ul3u2!Q31QOp~«0!Q.

As is easily seen,T00
215P(11op(«0))P. Similarly we have
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~T112T10T00
21T01!

2152~t~«!l0 /ul3u2!Q31QOp~«0!Q

and (T002T01T11
21T10)

215P(11op(«0))P. Thus we obtain

T«
215S P~11op~«0!!P ~l0 /ul3u2!PZ0Q31Pop~«0!Q

Q~Op~«0!1Op~«324a!!P QOp~«122a!Q
D .

This, together with~6.9! and ~6.10!, implies that

Y«
215S d~«!P~12~l0 /ul3u2!Z0Q3Z01op~«0!!P POp~«0!Q

QOp~«0!P QOp~«122a!Q
D .

SincePZ0Q3Z0P5(ul3u2/l0)P, ~6.11! follows at once. IfK1V does not have a resonance sta
then dimC50, andT11(«):S→S admits an inverse bounded uniformly in«. We repeat the same
argument as above to obtain that

Y«
215S d~«!P~11op~«0!!P POp~«0!Q

QOp~«0!P QOp~«122a!Q
D ,

so thatY«
21;2 i (g0 /l0

2)«2a21(q0^ q0). Hence we have

R«5~H`1 i !212 i ~c2 ^ c1!1op~«0!5~H01 i !211op~«0!

in the same way as in case~1!. Thus the proof of the theorem is now complete. h

VII. RESOLVENT ANALYSIS AT LOW ENERGY ON SCHRÖ DINGER OPERATORS II

The last section is devoted to proving Lemmas 6.1–6.4 which remain unproved. The
ment here is based on the following proposition obtained as Proposition 7.1 in Ref. 22
proposition has been proved for (L«2 i )21, but the argument there applies to (L«2s2)21, Im s
.0, without any serious modification.

Proposition 7.1: Let L« be defined by (3.2) and letsPC be as above. Then

~L«2s2!21J«x5 (
l 50,1

b l~«!sn«11n~m l ^ xv l !1Op~«2!

for some coefficientsb l(«), wherem l(x)5Hn(sr )eil u andb l(«) behaves in the same manner
in Lemma 6.1.

Proof of Lemma 6.1:We use the relationsJ«* (L1«11)21J«5«2(L11«2)21 and b«J«

5«22J«b. Then we have

~L1«11!21J«x5~L«11!21J«x2~L«11!21J«b~L11«2!21x

by the resolvent identity. We apply Proposition 7.1 withs5 i to (L«11)21J«b and Proposition
4.2 with k5 i« to x(L11«2)21x. Sincev1 l5v l2G1bv l by ~4.7! and sincem l5j l for s5 i ,
the desired relation is obtained. h

Proof of Lemma 6.2:We have

~L2«11!21J«x5~L«11!21J«x1~L«11!21J«b~L21«2!21x

by the resolvent identity. The first operator on the right-hand side is of classOp(«) by Proposition
7.1. We apply Proposition 4.3 tox(L21«2)21x in the second operator. Since

~br0 ,v0!L25~b1/2G0ubu1/2h0 ,ubu1/2v0!L25~h0 ,ubu1/2v0!L251
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and since (br0 ,v1)L25(h0 ,ubu1/2v1)L250 by ~4.13!, the desired relation again follows from
Proposition 7.1 withs5 i . h

Proof of Lemma 6.3:Sincep2«* p2«5p1«p2«5L1« , we have

~p2«~L1«11!21!* p2«~L1«11!215~L1«11!212~L1«11!22

and hence

ip2«~L1«11!21J«xi25ix~«2~L11«2!212«4~L11«2!22!xi .

By Proposition 4.2,ix(L11«2)21xi5O(1) as«→0. This implies that

ix~L11«2!21/2i5O~1!.

Thus the bound in the lemma is obtained. h

Proof of Lemma 6.4:We prove the lemma only in the simple case thatb(x)>0. We assert that

p1«~L2«2 i !21J«x52 i (32a)/2~b0 /g0!«12a~~t11o2~1!! ^ xr0!1Op~«!, ~7.1!

wheret1(x)5H12a( i 1/2r )eiu. This implies the lemma. In fact, we use~3.3! to obtain

p1«~L2«11!215~12~11 i !~L1«11!21!p1«~L2«2 i !21

and it follows from Lemma 3.1 that

~12~11 i !~L1«11!21!t1→ f 15~12~11 i !~LAB11!21!t1

strongly inL2. The functionf 1PL2 satisfies (p1
21p2

211) f 150. Hence it takes the formf 1(x)
5g(r )eiu, whereg solves

2g92r 21g81~~12a!2r 2211!g50.

Thus f 15cH12a( ir )eiu5cj1 for some coefficientc. SinceuPD(LAB) vanishes at the origin
f 12t1 also vanishes, so thatc is determined asc5 i (12a)/2. Hence we see that~7.1! implies the
relation of the lemma.

We shall show~7.1!. We make use of the relation

~L2«2 i !21J«x5~L«2 i !21J«x1~L«2 i !21J«b~L22 i«2!21x

to decompose

p1«~L2«2 i !21J«x5I 1~«!1I 2~«!,

whereI 1(«)5p1«(L«2 i )21J«x and

I 2~«!5p1«~L«2 i !21J«b~L22 i«2!21x.

Sincep2«p1«5L2«5L«2b« , it follows from Proposition 4.1 that

i I 1~«!i25ixJ«* ~L«1 i !21~L«2b«!~L«2 i !21J«xi5O~«2!.

To evaluateI 2(«), we use Proposition 4.3 withk5 i 1/2« for b(L22 i«2)21x. Then

I 2~«!5p1«~L«2 i !21J«x~g2~k!i a«22a~br0^ xr0!1Op~«0!!,

whereg2(k) obeysg2(k)521/g01o(1). Sincep1«(L«2 i )21J«x5Op(«) as is seen from the
proof of Lemma 6.3,~7.1! follows from the lemma below at once. h

Lemma 7.1: One has the relation
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p1«~L«2 i !21J«br05 i 3(12a)/2b0«11at11o2~«11a!.

Proof: Sinceb1/2G0b1/2h05h0 , it follows from ~4.14! that br05b1/2h0 . We write

g«5«2(11a)p1«~L«2 i !21J«br05«2(11a)L~«!h0 ,

whereL(«)5p1«(L«2 i )21J«b1/2. To prove the lemma, it suffices to show that

g«→g05 i 3(12a)/2b0t1

strongly in L2. We first show thatig«iL2→ig0iL2. If we make use of the relationp1«* p1«

5L2«5L«2b« , then a simple calculation yields

L~«!* L~«!5~«2/2!~P~«!1P~«!* !2«2P~«!* P~«!,

whereP(«)5b1/2(L2 i«2)21b1/2. We apply Proposition 4.1 withk5 i 1/2« to P~«!. Then

P~«!5b1/2G0b1/21 (
l 50,1

g l~k!i 2n«2n~b1/2v l ^ b1/2v l !1Op~«2!.

Since (h0 ,b1/2v0)L251 and (h0 ,b1/2v1)L250 by ~4.13!, we have

P~«!h05h01g0~k!i 2a«2ab1/2v01o2~«11a!

and similarly forP(«)* h0 with coefficientg0(k) i 2a replaced byg0(k) i a. Thus

ig«iL2
2

5«22(11a)iL~«!h0iL2
2

52g0 cos~ap/2!1o~1!.

On the other hand, we use the formula

it1iL2
2

52pE
0

`

r uH12a~ i 1/2r !u2 dr 52/sin~ap/2!

to obtain that

ig0iL2
2

5ub0u2it1iL2
2

52ub0u2/sin~ap/2!.

Since 2ub0u2/sin(ap/2)52g0 cos(ap/2) by ~6.8!, it follows that ig«iL2→ig0iL2. Next we shall
show thatg«→g0 is weak. Letf PC0

`(R22$0%). Thenp2« f 5p2 f for «.0 small enough, and

~g« , f !L25«2(11a)~~L«2 i !21J«b1/2h0 ,p2 f !L2.

We have

~L«2 i !21J«b1/2h05 i a/2b0«11at01o2~«11a!

by Proposition 7.1 withs5 i 1/2, wheret05Ha( i 1/2r ). Hence it follows that

~g« , f !L2→ i a/2b0~p1t0 , f !L2.

By ~2.2!, we can calculate

p1t052 i 3/2Ha21~ i 1/2r !eiu52 i 3/2ei (12a)pt15 i 3/222at1 .

This shows thatg«→g0 is weak, and the proof is complete. h
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Regularity for Lorentz metrics under curvature bounds
Michael T. Andersona)

Department of Mathematics, S.U.N.Y. at Stony Brook, Stony Brook, New York 11794-3651

~Received 27 January 2003; accepted 11 April 2003!

Let ~M , g! be an (n11)-dimensional space–time, with bounded curvature, with
respect to a bounded framing. If~M , g! is vacuum, or satisfies a weak condition on
the stress-energy tensor, then it is shown that~M , g! locally admits coordinate
systems in which the Lorentz metricg is well-controlled in the~space–time! Sobo-
lev spaceL2,p, for any p,`. This result is essentially optimal. The result allows
one to control the regularity of limits of sequences of space–times, with uniformly
bounded curvature, and has applications to the structure of boundaries and exten-
sions of space–times. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1580199#

I. INTRODUCTION

A well-known issue in the geometry of space–times is to understand the regularity of m
with given bounds on the curvature tensor. This issue is closely connected to the diffeomor
invariance of general relativity and the problem of choosing a good gauge, i.e., local coor
system, in which the metric has optimal regularity. It is not at all clear if the most commonly
local coordinates, namely harmonic or wave coordinates, have such optimal regularity; i
case, this has not been addressed in the literature. The regularity issue also arises frequent
analysis and discussions of the behavior at the boundary and definitions of singularities for s
times. For instance, if the curvature remains bounded on approach to a possible bound
singularity of space–time, it is important to understand how smooth the metric remains.
metric remains sufficiently smooth~in some local coordinates!, it may then be possible to exten
the space–time through the boundary or the singularity to a larger space–time, essential
removing the purported boundary or singularity; see Refs. 1–4 for further discussion.

More specifically, it has been an open problem for some time, cf. Refs. 2 and 5–7 for ins
whether a space–time~M , g! which has curvature bounded inL` in a suitable sense has coord
nate charts in which the metric componentsgab are inC1,gùL2,p, for anyg,1, p,`. HereCk,g

is the Hölder space of functions whosekth derivatives are Ho¨lder continuous of orderg, while
Lk,p is the Sobolev space of functions withk weak derivatives inLp. Previous work~see the
references above! only gives bounds on the metric components inC0,g, so that one has a loss o
one derivative.

The first purpose of this article is to provide an affirmative solution to this problem, at lea
vacuum space–times or space–times satisfying a weak condition on the stress-energy
Second, this result is applied to examine the regularity of limits of sequences of space–tim
that of space–times with curvature defined only distributionally inL`. Also included is a prelimi-
nary discussion of behavior at the boundary, and the related extension problem, for space–t
any dimension.

The solution of the corresponding regularity problem in Riemannian geometry has
known for some time, and it is useful to state the exact result in this context before consideri
Lorentzian analog. Thus, let (M ,g) be a Riemanniann-manifold, with sayC` smooth metricg.
Suppose there exists a pointpPM such that

distg~p,]M !>1. ~1.1!

a!Electronic mail: anderson@math.sunsyb.edu
29940022-2488/2003/44(7)/2994/19/$20.00 © 2003 American Institute of Physics
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Let R5Ri jkl denote the Riemann curvature tensor of (M ,g), and letBp(r ) denote the geodesi
ball of radiusr aboutp in (M ,g). Suppose one has bounds

uRuL`(Bp(1))<C, volgBp~ 1
2!>vo , ~1.2!

for arbitrary constantsC,`, vo.0. Then there exists a constantr o.0, depending only onC, vo

and n, such that the ballBp(r o) admits a coordinate chartU5$uk%, in which the metricg is
C1,gùL2,p, for anyg,1, p,`. Further, there exists a constantRo , depending only onC, vo , n
andp, such that

igi j iL2,p<Ro , ~1.3!

where the norm is taken over the ballBp(r o). A proof of this result may be found in Ref. 8, fo
instance. By Sobolev embeddingC1,g,L2,p, for g512 n/p, so that~1.3! also gives a bound on
gi j in C1,g.

This degree of regularity under the bound~1.2! is almost optimal. There are examples
metrics satifying~1.2! which are notC1,1 in any coordinate system. Using somewhat more
phisticated analytic techniques, one can show thatgi j is in the Zygmund spaceC

*
2 , cf. Ref. 9

~Prop. III.10.2!.
The point here is that the estimate~1.3! applies toall metrics satisfying the bound~1.2!. Thus,

while ~1.3! may be obvious for a given, possibly explicit, smooth metric,~1.3! applies to the space
of all sufficiently smooth metrics, as well as their limits, provided~1.2! holds. In addition, one has
an a priori bound on the size of the region where~1.3! holds.

A direct analog of this result for Lorentzian metrics is false, due to the existence of
families of nonflat space–times for which the curvature normuRu25Ri jkl R

i jkl vanishes identically.
Thus, consider, for instance, the class of vacuum plane-fronted gravitational waves onR4, with
metric of the form

g52dudv2h~x,y,u!du21~dx21dy2!, ~1.4!

D (x,y)h50. ~1.5!

For such metrics, the two possible scalar invariants in the curvature tensor, namely

uRu25^R,R&5Ri jkl R
i jkl and ^R,* R&5Ri jkl ~* R! i jkl ,

vanish identically. The vacuum Einstein equations impose only the condition~1.5!, i.e., thath is
harmonic as a function of (x,y). Thus, the functionh may be an arbitrary function ofu, and so is
not controlled in any Ho¨lder or Sobolev space. It is thus clear that there is no coordinate sy
in which a general metricg of the form ~1.4! is controlled inL2,p, or evenC0.

To deal with this situation, one imposes bounds on the components ofR in a fixed coordinate
system or framing. An efficient way to do this is to choose a future-directed unit timelike v
T5e0 and extend it to an orthonormal frameea , 0<a<n, where the space–time dimension
n11. Since the spaceT' orthogonal toT is spacelike andO(n) is compact, the particular choic
of framing for T' is unimportant. The norm ofR w.r.t. T is then defined as

uRuT
25( ~Ri jkl !

2, ~1.6!

where the components are w.r.t. the framingea .
Observe that if, at a pointpPM , the vectorT5Tp is contained in a compact subsetW of the

future interior null coneTp
1M , then the norms~1.6! are all equivalent, with constant dependin

only onW. Hence, ifK is a compact subset of the space–time~M , g! andT is a continuous vector
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field onK, thenT ~or more precisely, ImT, whereT is viewed as a section of the tangent bundl!,
lies within a compact subset ofT1M , whereT1M is the bundle of future interior null cones in th
tangent bundleTM .

To state the main result, we need the following definition, which is essentially just a no
ization on the size of the region to be considered in~M , g!, as is~1.1!.

Definition 1: Let V be a domain in a smooth Lorentz manifold~M , g!. ThenV satisfies the
size conditions if the following holds: The domainV admits a smooth time functiont, with
co

21<i¹ti<co , for an arbitrary but fixed constantco,`. Further, one has

C15Bp~1!3@21,1#,,V, ~1.7!

i.e., the one-cylinderC1 has compact closure strictly contained inV. HereBp(r ) is the geodesic
r -ball about a pointp in S, whereS5S05t21(0) and the metricg on S is that induced fromg.
The productBp(1)3@21,1# is identified with a subset ofV by the flow of ¹t, i.e., (q,s)
→gq(s), wheregq(s) is the flow line of¹t, starting atq and terminating on thes-level setSs

5t21(s).
Let T5¹t/i¹ti be the corresponding future-directed unit timelike vector field, and set

D5Im TuC1
,,T1V. ~1.8!

The size conditions represent a Lorentzian analog of the condition~1.1!. They can always be
realized by choosingV to be a sufficiently small open set in~M , g! and rescaling the metric up
sufficiently. Essentially, they just serve to normalize the data.

The main result of the article is then the following:
Theorem 2: Let V be a domain in a vacuum(n11)-dimensional space–time ~M , g!, n>2,

satisfying the size conditions. Suppose that there are constants C,` and vo.0 such that

uRuT<C, volgBp~ 1
2!>vo . ~1.9!

Then there exists a constant ro.0, depending only on C, vo , co , D, (and n), and a coordi-
nate system(t,xi), 1< i<n, on the ro-cylinder

Cr o
5Dp~r o!3@2r o ,r o#,C1 , ~1.10!

such that the components of the metricgab are in C1,gùL2,p, for anyg,1, p,`. Here Dp(r ) is
the geodesic r-ball about p in the level sett50 and the product structure is that induced by th
flow of ¹t.

Further, there exists a constant Ro,`, depending only on C, vo , co , D and the exponent p,
such that, on Cr o

,

igabiL2,p<Ro . ~1.11!

More precisely, for any k<2, and 0<a,b<n,

i]m
k gabiL

x
22k,p<Ro , ~1.12!

where]m
k denotes any k-fold space–time partial derivative and the spatial Lx

22k,p norm is taken
over any spatial slice$t5const% in Cr o

. The constant Ro is independent oft in @2r o ,r o#.
The coordinates in Theorem 2 are geometrically natural; the time coordinatet is a Gaussian

~equidistant! coordinate, while the spatial coordinates are chosen to be harmonic on the s
slices $t5const%. It is not clear if there exist space–time harmonic~or wave! coordinates, in
which g has this degree of regularity.

The condition that~M , g! is vacuum, i.e.,Ricg50, is used in only in minor way. It is used, vi
the Bianchi identity, only to obtainLp bounds on the second time derivatives]t]tg0a of the
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componentsg0a . This is equivalent to bounds on the second time derivatives on the compo
of the shift vector of the coordinates, i.e., a bound on the acceleration of the shift. Such ac
tion components do not appear in any component of the curvature tensorR. All other estimates on
]g

kgab are independent of the Einstein equations.
The vacuum condition can be weakened to an assumption on the stress-energy tensorT in the

Einstein equations, of the form

i¹TT iL
x
21,p<C. ~1.13!

Here Lx
21,p is the dual space ofLo

1,q , the space ofLx
1,q functions of compact support on spati

slices$t5const% within Cr o
, p211q2151.

The condition~1.13! will be satisfied automatically for many physically natural matter fiel
cf. Remark 4.

Theorem 2 is formulated in such a way that it is easy to pass to limits. Thus, suppose (M i ,gi)
is a sequence of smooth space–times satisfying the hypotheses of the theorem. There ex
domainsV i,(M i ,gi), pointspiPV i such that the size conditions~1.7! and ~1.8! hold, with Di

uniformly compact inT1V i , ~i.e., T does not become arbitrarily close to null cones!. If ~1.9! and
~1.13! hold uniformly onV i , then there is a subsequence which converges to a limitC1,gùL2,p

space–time~M , g!, defined at least on anr o-cylinderCr o
. Further, the convergence to the limit

C1,g and weakL2,p, and the bound~1.12! holds on the limit.
Define a Lorentz manifold~M , g! to beweakly regular if g is a continuous Lorentz metric

with gPLloc
1,2(M ). It is well-known, cf. Refs. 1 and 10, for example, that such metrics hav

well-defined curvature tensorR in the sense of distributions. This leads to the following corolla
Corollary 3: Let ~M , g! be a weakly regular Lorentz manifold, and letV,,M be a domain

with compact closure inM . Suppose the size conditions hold locally onV, in that the constant12
is replaced by a small constantdo so that Bp(do),,M , for any pPV. Suppose also the bound
(1.9) hold locally and uniformly ondo cylinders as in (1.7), centered at any pPV.

ThenV may be covered by a finite atlas of charts in which the metricg5gab satisfies all the
bounds in (1.12), except for the Lx

p bound on]t]tg0a . The bounds in (1.12) depend, near]V, on
the distance of]V to ]M .

If in addition the bound (1.13) holds distributionally onM [e.g., (M , g) is a weak solution of
the vacuum equations], then all bounds in (1.12) hold locally on~V,g!.

We refer to the proof of Corollary 3 below for the precise meaning that~1.13! holds distri-
butionally.

The proof of Theorem 2 and Corollary 3 follow in Sec. II, while Sec. III concludes the ar
with several remarks and extensions of these results, together with some open problems.

II. PROOFS OF THE RESULTS

In this section, we prove Theorem 2 and Corollary 3. For clarity, the proof of Theorem
divided into several steps, each treating basically separate issues. In the following, as a
above, space–time quantities are generally denoted in boldface while spatial quantities are
boldface.

A. Step I „Initial choice of domain …

Let Bp(r ) be the intrinsic geodesic ball aboutp in S. SinceS is achronal in the cylinderC1

from ~1.7!, the extrinsic radius ofBp(r ) is bounded below forr small. Thus, ifg is any spacelike
curve in ~M , g! from p to xP]Bp(r 1),S, for r 1 small, then the lengthL(g) satisfiesL(g)
> l or 1 ; the constantsl o and r 1 depend only onco andD in Definition 1.

Let Dr 1
be the domain of dependence ofBp(r 1) in the manifold~M , g!. Thus, by choosingr 1

sufficiently small, again depending only onco , D, one has

Dr 1
,,V, ~2.1!
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i.e., Dr 1
has compact closure inV.

The regionDr 1
is globally hyperbolic and hence any pair of time-related points inDr 1

may be
joined by a timelike maximizing geodesic inDr 1

. Recall from Definition 1 that the curvesgx are
the flow lines of¹t throughx. For r 2. 0 small ~to be determined below!, let

q5gp~2r 2!, ~2.2!

so q!p, i.e., q is to the past ofp. For x to the future ofp, x@p, let

t~x!5distg~x,q!2distg~p,q!, ~2.3!

so thatt(p)50 andt(x).0, for x@p. The distancet(x) is realized by a maximizing timelike
geodesic sv(t)5expq(t1to)v from q to x; here vPTq

1M , with g(v,v)521, and to

5distg(p,q). This normalization givesp5svo
(0), for somevoPTq

1M . Let

N5¹t

be the corresponding unit timelike vector field, so thatN is the tangent vector to geodesicss
issuing fromq. AlthoughN is well-defined and smooth along the individual geodesicssv(t) @for
anyt until one reaches the boundary of~M , g!#, at points where the exponential map expq has cut
or conjugate points,N is not uniquely defined. Of course, past such cut or conjugate points
geodesicssv(t) are no longer maximal. Thus, in general,t is merely Lipschitz andN, as a vector
field, is defined only almost everywhere to the future ofq. At the end of step I~via the work in
step V!, it will be seen that in factt andN are smooth, in suitable domains of a definite size.
the following, unless stated otherwise, all geodesics are assumed to be maximal, i.e., they
continued past the conjugate or cut points ofq.

Next, let S5S05t21(0) and similarly letSt be the t-level set of t in Dr 1
. Since the

geodesics are maximal,sv(t)PSt , andpPS5S0 . Again, in general,St is only Lipschitz. For
r 2<r 1 , consider the intrinsic geodesic ballBp(r 2),S and let

C5$xPDr 1
:x5s~t!, t<r 2 , and s~t!ùBp~r 2!ÞB%,Dr 1

. ~2.4!

This is the ‘‘cone’’ of maximal geodesicss starting atq, hitting S within Bp(r 2), and terminating
at timet5r 2 .

Observe that the vector fieldN restricted toC stays within a compact subset ofT1M . In fact,
sinceN is parallel along its geodesic flow lines, this needs to be verified only at the base poq,
where it holds by construction. It then follows from the curvature bound~1.9! and the remarks
following ~1.6! that

uRuN<C15C1~C,D !. ~2.5!

Now the curvature bound~2.5! and the Rauch comparison theorem~cf. Ref. 11, for instance!
imply that if r 2 is sufficiently small, depending~explicitly! only onC1 , then the exponential map
expq restricted to the interior future null cone inTq

1 , has no conjugate points inC. Thus, expq is
of maximal rank, and so a local diffeomorphism onC. In fact, for r 1 is sufficiently small, again
depending only onC andco , no timelike or null geodesic withinDr 1

has conjugate points, and s
expx is of maximal rank on timelike geodesics inDr 1

, ;xPDr 1
.

SinceDr 1
is globally hyperbolic and without timelike conjugate points, it follows then fro

Ref. 11~Thm. 11.16, for instance! that any pair of pointsx,yPDr 1
with y@x, may be joined by

a uniquemaximizing timelike geodesic inDr 1
, providedDr 1

is future one-connected~i.e., any pair
of timelike curves joiningx andy are homotopic through timelike curves!.

In general,Dr 1
need not be future one-connected. Consider, for example, the past null co

two-dimensional Minkowski space in hyperbolic coordinatestP(2`,0), fP(2`,`),
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2dt21t2df2.

If f is identified periodically, with any period, then the resulting space–time is globally hyper
but not future one-connected. The future exponential map based at any pointq has cut points; if
the period off is sufficiently small, or ifq is sufficiently close to$0%, then cut points occur
arbitrarily close toq.

However,Dr 1
is future one-connected if it has a simply connected Cauchy surfaceS, i.e., S

[Sr 1
5SùDr 1

, for S as in ~1.7! ff. To see this, letg1 , g2 be two timelike curves with common
endpoints inDr 1

. The flow of the timelike vector field¹t gives a strong deformation retraction o
g1øg2 onto a closed loopl1øl2 in S. If S is simply connected, thenl1 may be deformed into
l2 within S. These two homotopies, timelike along¹t and spacelike along the Cauchy surfac
St , may be performed simultaneously, but with the latter at a larger speed than the form
produce a timelike homotopy fromg1 to g2 .

We will prove later thatS ~or more precisely, a domain inS of a definite size! is simply
connected. However, in order not to overburden the arguments that follow with such fu
issues, we assume in the following, through step IV, that the Cauchy surfaceS,Dr 1

is simply
connected. This hypothesis will be removed in step V, using the results obtained in the pr
steps.

It follows then that the exponential map expq is a diffeomorphism ontoC, when restricted to
a suitable domain inTq

1M . The time functiont is smooth inC \$q%, as are the level setsStùC,
and there is a unique maximizing geodesic fromq to any point inC.

From now on, we considerSt,C, and so letSt denote the priorSt intersected withC. The
level setsSt form a foliation ofC by equidistant spacelike hypersurfaces, with unit normalN.

B. Step II „Initial curvature and volume estimates …

The geodesic congruences on ~C,g! satisfies the Riccati or transport equation

K81K21RN50. ~2.6!

HereK5D2t is the second fundamental form or extrinsic curvature of the leavesSt , RN is the
symmetric bilinear form given byRN(X)5^R(N,X)X,N& and8 is the covariant derivative in the
directionN. Hence, the bound~2.5! gives

uK81K2u<C1 .

This estimate holds onSt , for all tP@2r 2 ,r 2#. It then follows by standard comparison theory f
the Riccati ODE~2.6! that if r 2 is sufficiently small, depending only onco , D, andC1 , then

uKuL`<C2 , –uK8uL`<C2 , ~2.7!

on all St , tP@2 r 2/2 ,r 2#. The constantC2 depends only onr 2 and C1 . The Gauss equation
relating the curvatureR of the ambient manifold~M , g! with that of the spatial slicesSt reads

Ri jkl 5Ri jkl 1KikK jl 2Kil K jk , ~2.8!

for spatial components (i jkl ). This, together with the bounds~2.5! and~2.7!, thus gives the bound

uRguL`<C3 , ~2.9!

on St , tP@2 r 2/2 ,r 2#. Let dK be the exterior derivative~w.r.t. the connection induced byg) of
K, when K is viewed as a one-form with values inTSt , i.e., dK(X,Y,Z)5(¹XK)(Y,Z)
2(¹YK)(X,Z). The Gauss–Codazzi equations are

dK5RN,
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whereRN(X,Y,Z)5^R(N,X),Y,Z&. Hence,~2.5! also implies

udKuL`<C3 . ~2.10!

We record also the well-known constraint equations:

dK52dH2Ric~N!,
~2.11!

R2uKu21H252Ric~N,N!1R,

whereH5 tr K is the mean curvature and the operatorsd andd are taken onSt .
Next, we use the bounds above to obtain a lower volume bound on the spatial slicesSt , t

P@2 r 2/2 ,r 2#, from that on the sliceS5S0 in ~1.9!. To do this, letŜ5SùC. The domainŜ may
be written as a graph overS5S0,C via the time coordinatet in the usual way. Thus, eac
geodesics5sv intersectsS and Ŝ in exactly two pointss(t1), s(t2), with ut i u<r 2 . For x

5sv(t1)PS, let u(x)5t22t1 , so thatsv(t2)PŜ. This gives a diffeomorphismf:S→Ŝ, and
hence

vol Ŝ5E
Ŝ
dVŜ5E

S
f* ~dVŜ!5E

S
JdVS ,

where J5detDf is the Jacobian off. Since bothŜ and S are spacelike, the functionu is a
Lipschitz function~cf. Ref. 1! whose~weak! derivative is uniformly bounded, since both norm
vectorsN and T lie in compact subsets of interior null cones. In addition, the~uniform! time t
exponential map, mappingS to St , has Jacobian uniformly bounded above and below
@2 r 2/2 ,r 2#, by the bound~2.7!. ~Recall thatH5tr K measures the infinitesimal volume expa
sion or contraction.! It follows that the JacobianJ is uniformly bounded below~depending only on
C, D). Hence,

vol S>v1•vol Ŝ. ~2.12!

Now the lower bound on volBp( 1
2),S in ~1.9! does not immediately imply a lower bound o

vol Ŝ ~it could a priori happen that most all of the volume ofBp( 1
2) occurs outsideŜ). However,

in this case one can repeat all the estimates~2.6!–~2.9! when the construction ofC is based at other

center pointsq8 in place ofq. Thus, forp8PBp( 1
2),S, defineq8 as in~2.2! and letC8 be then as

in ~2.4!. The same estimates as above then hold inC8. The corresponding domainsŜ85SùC8 give

a covering ofBp( 1
2),S. Hence the volume bound in~1.9! and the estimates above now do gi

the existence of pointspoPBp( 1
2),S such that

vol Spo
>v2.0, ~2.13!

whereSpo
is the level set oft ~i.e., to) containingpo andv25v2(vo ,D,C1). @The local estimate

~2.12! does not in fact depend on the absence of future cut points of expq , cf. the discussion
concerning~2.59! below.#

Recall the standard volume comparison theorem in Riemannian geometry: if (N,g) is a
Riemanniann-manifold, with Ricg>2(n21)k, then the ratio

vol D~r !

vol Dk~r !
,
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is monotone nonincreasing inr . HereD(r ) denotes the volume of a geodesicr -ball at any fixed
point, whileDk(r ) is the geodesicr -ball in then-dimensional space form of constant curvaturek.
It then follows from the curvature bound~2.9!, together with~2.13!, that the geodesic balls
Dpo

(r ),(Spo
,g) satisfy

vol Dpo
~r !>v3r n,

for all r<r 2 , wherev3 depends only onv2 andC3 .
Observe that a similar estimate also holds for geodesic balls on other spatial slicesSt , with

S05Spo
, for tP@2 r 2/2 ,r 2#. Namely, theL` bound onK in ~2.7! bounds the infinitesima

distortion in the spatial metrics, and hence distances and volumes, under the flow ofN. It follows
that within the cylinderCo centered atpo , the volume estimate above holds for ballsDpt

(r ),St ;
thus, forpt5svo

(t), wherepo5svo
(0), and forr<r 2 , one has

vol Dpt
~r !>v4r n, ~2.14!

v45v4(vo ,C,D). An upper bound on the volume of volDpt
(r ) of the form ~2.14! follows

immediately from the curvature bound~2.9!.
In the construction above, we have shifted the original base pointp to a new base pointpo .

However, one may now use these estimates to obtain equivalent volume bounds for the slSt

within the original cylinderC centered atp. This may be done by constructing a suitable chain
bounded cardinality, of overlapping cylindersCi from Co to C. One then uses the arguments abo
on eachCi , together with the fact that upper and lower volume bounds of spatial slices
equivalent to upper and lower volume bounds of each cylinderCi .

Thus, in the following, we work on the original cylinderC from ~2.4! centered atp; the bound
~2.14! holds withp in place ofpo .

C. Step III „Local coordinates …

In this step, we define the cylinderCr o
and the local coordinate system on it, and obtain

addition some initial estimates ongab . The local coordinates are Gaussian in time and harmo
in space~Gaussian-harmonic coordinate system!.

Thus, the functiont from ~2.3! is chosen as the time coordinate onC. To construct spatial
harmonic coordinates, start with the sliceS5S0 within C. By ~2.9! and~2.14!, one has the bound

uRgu<C3 ,volgDp~r 2!>v4 . ~2.15!

It then follows, for instance from the discussion in Sec. I, that there existsr o. 0, depending only
on C3 andv4 , such that the geodesic ballDp(r o),S admits a harmonic coordinate system$xi%,
1< i<n, in which the spatial metricg5guS is controlled inL2,p, i.e.,

igi j iL2,p<Ro , ~2.16!

where theL2,p norm is taken onDp(r o), andRo5Ro(C3 ,v4 ,p). The harmonic functionsxi are
solutions to the Dirichlet problem

Dgxi50, xi u]D5f i , ~2.17!

whereD5Dp(r o) andf i are suitably chosen boundary values~approximating linear-type func
tions, cf. Ref. 8!.

Let f i ,t5f i+ct , wherect is the timet flow from St to S0 along the integral curves ofN.
Thus, ct maps a domainDt,St diffeomorphically ontoD and f i ,t are functions defined on
]Dt . It follows that
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N~f i ,t!51 at ]Dt . ~2.18!

Define the functionsxi on Dt to be solutions to the Dirichlet problem

Dgt
xi50, xi u]Dt

5f i ,t . ~2.19!

By ~2.9! and ~2.14!, the estimate~2.15! holds uniformly onDt , for tP@2 r 2/2 ,r 2#. Hence,
as withS0 , r o.0 may be chosen, depending only onC3 andv4 , such that the functions$xi% form
a harmonic coordinate system onDt,St , on which one has the bounds

igi j iL2,p<Ro , ~2.20!

where theL2,p norm is taken onDt andg5gt . The estimate~2.20! holds for all utu<r o .
This construction gives the local coordinate system (t,xi), 1< i<n, on ther o-cylinder

Cr o
5Dp~r o!3@2r o ,r o# ~2.21!

aboutp, where the product structure is defined by the flow of¹t. For the remainder of the proof
St is now redefined to be its intersection withCr o

, i.e., St[Dt .
The metricg in these coordinates has the form

g5~211uju2!~dt!21gi j ~dxi1j idt!~dxj1j jdt!, ~2.22!

wherej5$j i% is the shift vector. Thus,

]/]t5N1j,

with N5¹t. The lapse functiona of this foliation satisfiesa[1.
On each sliceSt,Cr o

, one has good spatial control, namely forgi j 5gi j 5guSt , ~2.20! holds.
As usual, Latin indicesi , j , denote spatial variables, i.e., 1< i , j <n, while Greek indicesa, b
denote space–time variables, 0<a,b<n.

In the following, all Sobolev normsLk,p are understood to be spatial norms, i.e., the deri
tives and norms are taken on spatial leavesSt . Thus, for emphasis or clarity, we sometimes wr
Lx

k,p in place ofLk,p. All estimates will be independent oft, for t<r o .

D. Step IV „L 2,p estimates of g ab…

In this next step, we extend the estimate~2.20! to include the remaining termsg0a , 0<a
<n, and also obtain estimates on the time derivatives ofgab .

Before beginning, we first improve the estimate~2.7! on the second fundamental form. Reca
the Simons~or Bochner-Weitzenbock! formula ~cf. Ref. 12, Chap. 1I!:

D* DK5ddK1ddK2R~K !

on (St ,gt), where the termR(K) is linear in the curvature andK; the exact form ofR(K) plays
no role in the argument, but for completeness is given byR(K)5Ric+K1K+Ric22R+K, where
R+K is the action of the curvature tensorR on symmetric bilinear forms. The elliptic operato
D* D52trD 2 is the so-called rough Laplacian.

In the following, we frequently writef PLk,p or f PLx
k,p as shorthand forf is uniformly

bounded inLk,p along the spatial slicesSt , utu<r o .
By ~2.10!, dKPL`, and henceddKPLx

21,p , for all p,`; recall that these spaces are defin
as following ~1.13!. Similarly, by ~2.11!, sincedd50,

ddK5d~RicN!PLx
21,p ; ~2.23!
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here we recall that the operatorsd andd are spatial. The termR(K) is also bounded inL`. Hence,
one has

D* DK5Q1 , ~2.24!

whereQ1 is uniformly bounded inLx
21,p , for anyp,`, while K is uniformly bounded inL`. By

~2.20!, the coefficients ofD* D in the local coordinates$xi% are controlled inL2,p,C1,g. It then
follows from standard elliptic regularity theory, cf. Ref. 13, that

uKuL
x
1,p<C2 , ~2.25!

whereC25C2(C,vo ,co ,D,p), on all spatial slicesSt , utu<r o .

E. Spatial estimates

Here, we prove that the componentsg0a also satisfy theL2,p5Lx
2,p estimate~2.20! uniformly

on St . One hasN5g0a]a , ¹xi5gia]a . Hence,N(xi)5^N,¹xi&5g0agibgab5g0i .
To obtain estimates onN(xi), differentiate the harmonic coordinate condition~2.17!, in the

normal ~i.e., N) direction. Letxi85N(xi). SinceDxi50, a standard computation@cf. Ref. 12,
~1.184! for example# gives

Dxi852D8xi5^D2xi ,K&2^dxi ,dK1 1
2dH&. ~2.26!

Here, as above and in the following, all metric quantities in~2.26! are on spatial slicesSt .
By ~2.25!, K is uniformly bounded inL1,p. The termD2xi is also uniformly bounded inL1,p,

since by~2.20! the spatial metric is uniformly bounded inL2,p and hence the coordinate function
are uniformly bounded inL3,p. Further, bothdK anddH are uniformly bounded inLp. Thus,

Dxi85Q2 ,

whereQ2 is uniformly bounded inLp, utu<r o . As before, the coefficients ofD are controlled in
L2,p. Further, by construction, cf.~2.18!, xi85 1 on]St . Hence, standard elliptic regularity aga
gives

ixi8iL2,p5ig0i iL2,p<C4 , ~2.27!

whereC45C4(C,vo ,co ,D,p). Observe also that

g00521 ~2.28!

~since the lapse functiona[1). Henceg0aPL2,p, i.e., theL2,p norm ofg0a is uniformly bounded,
0<a<n.

From this and~2.20!, it is then an elementary exercise in linear algebra to see that

igabiL2,p<C5 . ~2.29!

Briefly, g0g5(detgab)21A0g , whereA0g is the~0,g! cofactor in the matrixgab . The cofactorA00

involves onlygi j , and hence by~2.20!, A00PL2,p. Thus detgabPL2,p. The same reasoning ong0a

then givesA0aPL2,p, for all a. Each determinantA0k may be expanded along the first column
obtain a linear form in the variablesg0i , with coefficients (n21)3(n21) determinants. Thus
one has a linear system ofn equations inn unknownsg0i . The matrix of this system is the (n
21)-compoundGn21 of the matrix@gi j #, i.e., (Gn21)kl5detAkl , whereAkl is the (k,l ) cofactor
of @gi j #. Since@gi j # is nonsingular, and since@gi j # nonsingular implies thatGn21 is nonsingular
~cf. Ref. 14, §1.4 for instance!, it follows that this linear system is invertible.
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The componentsg0i are rational expressions in$gi j % and $A0k%, each of which is now
bounded inL2,p. Henceg0i is bounded inL2,p. Finally, since 15g0aga05g00g001g0igi0 , it
follows from ~2.28! that g00 is also bounded inL2,p. This establishes the bound~2.29!.

Recall that]t5N1j, while ^N,] i&50, i .0, by construction. Sincê] i ,]t&5gi0 is bounded
in L2,p, it follows that^j,] i& is bounded inL2,p. Hence the shift vectorj5$j i% is bounded inL2,p,

ijiL2,p<C6 . ~2.30!

This completes theL2,p estimates ofgab in spatial directions.

F. First time derivatives

Next we turn to estimates on the time derivatives ofgab , i.e., L1,p estimates for]tgab . To
begin, using the Leibniz rule, and the fact that@]a ,]t#50, it suffices to estimate

^¹]a
]t ,]b&5^¹]a

N,]b&1^¹]a
j,]b&. ~2.31!

Suppose firsta.0, b.0, so (a,b)5( i , j ). The first term in~2.31! is thenKi j , which is bounded
in L1,p by ~2.25!, while the second term is also bounded inL1,p by ~2.30! @and theL2,p spatial
bounds ongab in ~2.29!#. This gives uniformL1,p bounds on]tgi j , i.e.,

i]tgi j iL
x
1,p<C7 . ~2.32!

It follows of course that also

i]xk
]tgi j iL

x
p<C7 .

The bounds on]tg0a require more work. Writing]t5N1j as above, theL2,p spatial esti-
mates above imply thatj(g0a) is bounded inL1,p, so one needs to obtainL1,p bounds onN(g0a).

Recall thatxi85N(xi)5g0i . HenceN(g0i)5NN(xi)5xi9 . To obtain estimates onxi9 , differ-
entiate the equation~2.17! in the N direction twice. This gives

Dxi952~2D8xi81D9xi !. ~2.33!

Here, as before, all metric quantities are on the spatial slicesSt . It has already been proved tha
xi8PL2,p. From the form ofD8 in ~2.26!, one then easily sees that

D8xi8PLp.

Next, one has

D9xi5N^D2xi ,K&2N^dxi ,dK1 1
2dH&. ~2.34!

To estimate these terms, letea be a local orthonormal basis onSt , with ¹ea
eb50 at any fixed

point in St . Then the first term in~2.34! may be written

N^D2xi ,K&5N~D2xi~ea ,eb!!•K~ea ,eb!1D2xi~ea ,eb!•N~K~ea ,eb!!.

By ~2.25! and ~2.7!, KabPL1,p andNKabPLp, while by ~2.20!, D2xiPL1,p. Thus

D2xi~ea ,eb!•N~K~ea ,eb!!PLp. ~2.35!

FurtherN(D2xi(ea ,eb))5N^¹ea
dxi ,eb&5^¹N¹ea

dxi ,eb&, so that

N~D2xi~ea ,eb!!5^¹ea
¹Ndxi ,eb&1^R~N,ea!dxi ,eb&2^¹eb

dxi ,¹ea
N&. ~2.36!
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The curvature term in~2.36! is bounded inL`, while the last term equalŝD2xi(eb),K(ea)&,
which is bounded inL`. For the first term, one has

^¹ea
¹Ndxi ,eb&5ea^¹Ndxi ,eb&5ea^¹eb

dxi ,N&52ea~K~dxi ,eb!!. ~2.37!

SinceKPL1,p, this term is bounded inLp. Combining these estimates, it follows that the first te
in ~2.34! is bounded inLp.

For the next term in ~2.34!, N^dxi ,dH&5^¹Ndxi ,dH&1^dxi ,¹NdH&5^¹dHdxi ,N&
1^N,¹dxi

dH&, so that

N^dxi ,dH&522K~dH,dxi !, ~2.38!

which is bounded inLp.
Finally, 2N^dxi ,dK&5NeaK(dxi ,ea)2NK(¹ea

ea ,dxi)2NK(ea ,¹ea
dxi). By ~2.7!, the lat-

ter two terms are inL`. For the first term,NeaK(dxi ,ea)5eaNK(dxi ,ea)2(¹ea
N)(K(dxi ,eb)).

The latter term here is2@K(ea)#(K(dxi ,eb)), which is bounded inLp by ~2.25!. For the first
term, sinceNK(dxi ,ea) is bounded inL`, eaNK(dxi ,ea)5div(N(K(dxi))) is bounded inL21,p,
since the derivativesea are spatial. This shows that

N^dxi ,dK&PL21,p. ~2.39!

Thus, combining these estimates on~2.33! gives a uniform bound onDxi9 in L21,p. On the
boundary]St , one hasxi950. It then follows from elliptic regularity as before@as in~2.24!# that

N~g0i !5xi9PL1,p.

Of course, by~2.28!, N(g00)5 0. As above,g0i is a rational expression in$gi j % and $A0k%. The
bound~2.32! implies that each of these hasN-derivative inL1,p and hence, by the same argumen
as before,N(g0a)PL1,p. This gives uniform bounds

i]tgabiL
x
1,p<C8 . ~2.40!

This completes the estimates for the first time derivatives on spatial slices. In particul
Christoffel symbols are bounded inLx

1,p .

G. Second time derivatives

Finally, we obtainLp estimates on the second time derivatives]t]tgab . To do this, take]t of
the term^¹]a

]t ,]b& in ~2.31!. One then obtains

^¹]a
¹]t

]t ,]b&1^R~]t ,]a!]t ,]b&.

The curvature term is bounded inLp, in fact L`. ~This uses the fact thatj is controlled, so the
framing is controlled.!

Write ¹]t
]t5G00

g ]g . Hence

^¹]a
¹]t

]t ,]b&5G00
g ^¹]a

]g ,]b&1]a~G00
g !^]g ,]b&.

By the first derivative estimates above, the Christoffel symbols are bounded inLx
1,p . The first term

is a product of Christoffel symbols, and hence is bounded inLx
1,p/2,Lnp/(2n2p), by Sobolev

embedding. Forp.n ~recall thatp is arbitrarily large!, Lnp/(2n2p),Lp. Thus the first term is
bounded inLp.

For the second term, ifa.0, then]a(G00
g ) is bounded inLp by ~2.40!. Hence, this gives

i]t]tgi j iLp<C9 , ~2.41!
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uniformly in t. It remains to estimate the second time derivatives ofg0a . These correspond to th
second order time behavior of the shift vectorj.

These estimates are the most involved, and are the only estimates dependent on the
equations. To obtain these estimates, one needs to differentiate~2.17! three times in the normalN
direction. Thus, from~2.17! again,

Dxi-523D8xi923D9xi82D-xi . ~2.42!

Recallxi85g0i is bounded inL2,p, while xi95N(g0i) is bounded inL1,p. From previous work, it is
then straightforward to bound the first two terms on the left in~2.42!.

To see this, one has

D8xi95^D2xi9 ,K&2^dxi9 ,dK1 1
2dH&,

which is bounded inLx
21,p , sincexi9PLx

1,p . To estimate the termD9xi8 , one just replacesxi in the
estimates~2.34!–~2.39! by N(xi). Using the fact thatN(xi)PL2,p, one sees by checking term b
term that this is bounded inL21,p.

It remains to analyze

D-xi5NN^D2xi ,K&2NN^dxi ,dK1 1
2dH&. ~2.43!

To begin,

NN^D2xi ,K&5^¹N¹ND2xi ,K&12^¹ND2xi ,¹NK&1^D2xi ,¹N¹NK&. ~2.44!

By the Riccati equation~2.6!, ¹NK is bounded inL`, while by the estimate on~2.36!, ¹ND2xi is
bounded inLp. Hence, the middle term in~2.44! is bounded inLp. For the last term, taking the
N-derivative of the Riccati equation~2.6! gives

^D2xi ,¹N¹NK&522^D2xi ,~¹NK !K&2^D2xi ,¹NRN&. ~2.45!

The first term in~2.45! is bounded inL`. The second~curvature! term in ~2.45! will be analyzed
below.

For the first term in~2.44!, one needs to takeN-derivatives of all terms following~2.35! to
~2.37!. The only one which is not bounded inL21,p by previous estimates is the term

N^R~N,ea!dxi ,eb&5~¹NR!~N,ea ,dxi ,eb!1 lower order. ~2.46!

We return again to this curvature term below, and proceed with the second term in~2.43!.
Again, to estimate this, one takesN-derivatives of the estimates in~2.38! to ~2.39!. This gives

first

NK~dH,dxi !PLp,

sinceNK is bounded. For thedK term, modulo lower order terms, this is of the form

N^¹N¹ea
K~dxi !,ea&5N^¹ea

¹NK~dxi !,ea&1N^R~N,ea!K~dxi !,ea&

5^¹N¹ea
¹NK~dxi !,ea&1~¹NR!~N,ea ,K~dxi !,ea!

5^¹ea
¹N¹NK~dxi !,ea&1~¹NR!~N,ea ,K~dxi !,ea!

1^R~N,ea!¹NK~dxi !,ea&;

the equalities here are understood to be modulo lower order terms. Modulo terms boundedLp,
this may be rewritten as
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¹ea
~¹NR!~N,K~dxi !,N,ea!1~¹NR!~N,ea ,K~dxi !,ea!. ~2.47!

Combining these estimates gives then uniformLx
21,p bounds on all terms in~2.43!, except for

the four curvature terms of the form (¹NR)N.
We obtain bounds on the curvature terms via the contracted second Bianchi identity on~M , g!:

dR52dRic,

or more precisely, cf. Ref. 12,~16.3!,

dR~X,Y,Z!52dRic~Y,Z,X!. ~2.48!

Write, onM ,

~¹NR!N52dR1dR5dRic1dR, ~2.49!

where the divergencesd, d are the space–time and spacelike divergences onSt , respectively.
Now the space–time curvatureR is bounded inL` ~in bounded framings!. Hence the spatia

divergencedR is bounded inLx
21,p , for any p,`. Thus, the curvature term~2.46! may be

rewritten, moduloLx
21,p , as

~¹NR!~N,ea ,dxi ,eb!5dRic~dxi ,eb ,ea!PLx
21,p ,

where the last estimate follows since all derivatives ofRic are taken in spatial directions. Sim
larly, for the second curvature term in~2.47!, one has, for the same reasons, moduloLx

21,p ,

~¹NR!~N,ea ,K~dxi !,ea!5dRic~K~dxi !,eb ,ea!PLx
21,p .

This leaves left the two curvature terms:

^D2xi ,¹NRN& and ¹ea
~¹NR!~N,K~dxi !,N,ea!. ~2.50!

The second term is of formddRic(N,K(dxi)) ~to leading order!, which cannot be controlled
without the Einstein equation, since it involves differentiation in theN direction. Similarly,

¹NRN5dRic~N,•,• !, modulo Lx
21,p , ~2.51!

is not controlled without the Einstein equations.
Dropping the usual constants, the Einstein equations on~M , g! are

Ric2
R

2
g5T, ~2.52!

whereT is the stress-energy tensor. Suppose~M , g! is vacuum, or more generally, suppose t
stress-energy tensorT satisfies

dT~N,ea ,eb!PLx
21,p , ~2.53!

where ea ,eb are spatial. Since the Einstein equations and the bound~2.5! imply that ¹ea
T(N)

PLx
21,p , ~2.53! is equivalent to

¹NTPLx
21,p , or LNTPLx

21,p , ~2.54!

whereLN denotes the Lie derivative in the directionN.
Combining the bound~2.53! with the estimates obtained above on the terms in~2.42! then

gives
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Dxi-5DNN~g0i !PLx
22,p , ~2.55!

sinceddRic(N,K(dxi))PLx
22,p , not Lx

21.p . As before, since the coefficients of the Laplacian a
well-controlled ~i.e., bounded inL2,p), and the functionsxi- have 0 boundary values, ellipti
regularity gives

NN~g0i !PLp.

~One sees this from duality in the standard way, using the fact thatD:Lo
2,p→Lp is an isomorphism,

cf. also Ref. 15.!
Applying the linear algebra argument as before then gives the bound

]t]tg0aPLp. ~2.56!

This completes all of the estimates ongab . We refer to Remark 4 below for further discussio
on use of the Einstein equations. Finally, the assumptions~2.53! or ~2.54! are equivalent to~1.13!.
To see this, bothT andN lie within a compact subset ofT1V. Since the covariant derivative w.r.
T or N involves only the pointwise behavior of these vector fields, one may replaceT by N in
~1.13!, which then corresponds to~2.54!.

H. Step V „Issue of cut points …

In this final step, we show that by passing to a smaller cylinder if necessary, of definite
within Cr o

, the exponential map expq8 at a suitable base pointq8 has no future cut points. By the
work above, this will complete the proof.

To begin, return to the ‘‘cone’’C in ~2.4!. Let V be the collection of timelike unit vectors in
Tq

1Dr 1
for which there is a maximal geodesicsv issuing fromq and terminating inC. Let

C̃5$sv:vPV,s<r 1%,Tq
1Dr 1

, ~2.57!

so that in particular expqC̃ containsC. Here, as in step I,r 1 is chosen so that no geodesicsv(s),
for vPV, has conjugate points withs<r 1 . Of course the geodesicssv(s) now are no longer
necessarily maximal. Since expq is of maximal rank onC̃, we work on the pullback (C̃,g̃), where

g̃5~expq!* g. ~2.58!

The domainC̃ is a compact connected cone inTqM , w.r.t. the vector space structure. By th
Gauss lemma, the straightline generators of this cone are geodesics in theg̃ metric. Let t̃ denote
the distance to the origin$0% w.r.t. g̃, within C̃. This is now a smooth function onC̃ \$0%, and
serves as the parameter for the geodesics from$0%. Inside the cutlocus of expq on C̃ ~i.e., where
expq is a diffeomorphism!, t̃ is just the lift of the functiont from ~2.3!, up to an additive constant

The level setsS̃ t̃, C̃ of t are smooth, and hence the images expqS̃t̃ are smoothly immersed
submanifolds inC. The original Lipschitz level surfaceSt is just the part of expqS̃t̃ contained in
the domainUt5$x:t(x)>t%ùC. Observe that the timelike exponential map exp0 of ( C̃,g̃) based
at 0 is a diffeomorphism ontoC̃; this map has no conjugate or cut points withinC̃.

Thus, we are now in exactly the same situation as at the end of step I, with (C̃,g̃) in place of
~C,g!. SetS̃5(expq)

21(C), C̃, so thatS̃ is an embedded hypersurface inC̃. Since expq is a local
isometry ofS̃ onto Ŝ, one has

volg̃S̃>volgŜ. ~2.59!

Hence, by the same reasoning as in step II, the volume estimate~2.14! holds on the smooth
hypersurfacesS̃ t̃ .
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We may thus apply the work in steps II–IV to conclude that there is anr o.0, depending only

on C, D, co , vo , and anr o-cylinderC̃r o
, C̃, centered onp̃, on which there are coordinates (t̃,x̃i)

in which the metricg̃ is controlled inL2,p in the sense that~1.12! holds.
It remains to prove the existence of a suitable cylinderC8 ‘‘downstairs,’’ i.e., within ~V,g!,

with these properties. Thus, letS̃ t̃ now denote the part ofS̃ t̃ contained inC̃r o
. EachS̃ t̃ is an

n-ball, topologically. Recall, as in step II, thatS̃ùC̃r o
is a graph overS̃ t̃o

, for somet̃o . Hence,

S̃ùC̃r o
is also ann-ball topologically. By construction, bothS̃ t̃o

andS̃ùC̃r o
have a uniform lower

bound on their volume and size, i.e., distg̃( p̃,](S̃ùC̃r o
))>r 3.0 ~and similarly forS̃ t̃o

). These

bounds depend only on the initial bounds onC, vo andD, co .
Let U be the interior of the cutlocus of expquC̃ . The domainU is starshaped w.r.t. the origin$0%

in Tq
1Dr 1

. Further, again by construction,S̃ùC̃r o
is contained in the closureŪ of U. If

(S̃ùC̃r o
)ù]UÞB, one may perturb it slightly, along the geodesic straight lines to$0%, to obtain

ann-ball S̃8,C̃r o
with S̃8,U. As before, the ballS̃8 has a definite lower bound on its volume an

its size.

The exponential map expq now gives a diffeomorphism, in fact an isometry, from (S̃8,g̃) to

(S8,g), S85expqS̃8. Let D8 be the domain of dependence ofS8 in ~M , g!. This gives a globally
hyperbolic regionD8,(M,g), with a simply connected Cauchy surface of definite size and
ume. The work of steps I–IV may now be applied to this situation within~M , g! to produce a new
cylinder C8, centered atp, satisfying the bounds~1.12!.

This completes the proof of Theorem 2. j

It is an open question whether Theorem 2 holds without an assumption of the form~1.13!, i.e.,
whether there exist coordinate systems in which~1.12! holds under only the bounds~1.9!.

Remark 4:From the physical point of view, most stress-energy tensorsT derive from matter
fields satisfying a hyperbolic system of PDE, of first or second order. In such a situation,
equations can frequently be used to interchange a time derivative¹NT on spatial slices, with a
spatial derivative¹XT, modulo lower order terms, e.g., (¹NT )(X);(¹XT )(N), modulo lower
order terms. This is exactly the process used via the second Bianchi identity above. For in
this is easily seen to be the case for electromagnetic fields, via use of the Maxwell equatidF
50.

When the matter equations allow for such time–space replacement, modulo lower order
the condition~1.13! is of course not necessary in Theorem 2.

Next we turn to the proof of Corollary 3.
Let ~M , g! be a weakly regular space–time, satisfying the size conditions, and satisfyin

bound~1.9! distributionally. Thus, the components ofR, well-defined as distributions, are in fac
bounded inL`.

Any such space–time~M , g! is a limit of a sequence of (C`) smooth space–times (M,gk), cf.
Ref. 10 ~Theorem 4!, for instance. The metricsgk are obtained in the usual way by taking th
convolution ofg with a sequence of smooth mollifiers. The local size conditions and local vol
bound in~1.9!, with do in place of 1

2, depend only on theC0 behavior of the metric. Since th
convergence to the limit isC0, it follows that local size conditions and local volume bounds h
uniformly on the sequence (M ,gk). Similarly, the fact thatuRuT is bounded on (M ,gk) implies that
the curvatureuRgk

uTk
of (M ,gk) is uniformly bounded, for unit timelike vector fieldsTk→T, as

k→`.
It then follows from Theorem 2 that for anypPV, there are r o-cylinders

((Cr o
)k ,pk),,(M ,gk), with pk→p, and coordinates on (Cr o

)k in which the metricgk is con-

trolled: this in the sense that the bounds~1.12! hold, with the exception of the bound on]0]0g0a .
Since the bounds onC, vo and D, co , hold uniformly on (M ,gk), and pk remains a bounded
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distance away from]M , it follows that there is a limit cylinder (Cr o
,p),(M,g) on which~1.12!

holds, again except for the bound on]0]0g0a .
This proves the first part of Corollary 1.3. For the second part, one needs to make sense

condition~1.13! on ~M , g!. It suffices to do this locally, i.e., on cylindersCr o
,(M,g). Of course

¹NRic, or equivalently¹NT, is well-defined inL21,p(V), ~sinceRicPL`), but one needs to defin
it in L21,p(St).

To do this, from the above, we know thatgt5guSt
is in Lx

2,p(St), for anySt,Cr o
. Let h be

a symmetric bilinear form inL1,q(St), of compact support, for a givent. Extendh into Cr o
by the

flow of N, so thatLNh50. Hence,h is defined on allSt,Cr o
. Formally, or alternately on the

smooth approximations (M ,gk) of ~M , g!, one has

E
St

^h,¹NRic&dV5E
St

N^h,Ric&dV2E
St

^¹Nh,Ric&dV. ~2.60!

Observe that ¹Nh5LNh1h(¹]a
N,]b)1h(]a ,¹]b

N)5h(K(]a),]b)1h(K(]b),]a). Since K

PL1,p(St) andp is large, it follows¹Nh is well-defined inLq(St), for anyt. Hence, the second
term in ~2.60! is well-defined~sinceRic is bounded inL`).

For the first term on the right in~2.60!, one has

E
St

N^h,Ric&dV5
d

dt ESt

^h,Ric&dV2E
St

^h,Ric&HdV. ~2.61!

The second term in~2.61! is well-defined, since againHPL1,p,Ca. Thus, to define~1.13! on
Cr o

, we require that the derivative

d

dt ESt

^h,Ric&dV, or equivalently,
d

dt ESt

^h,T &dV ~2.62!

exist for all tP@2r o ,r o#, for any h as above. Under this condition, the bound~1.13! on Cr o
is

then equivalent to a uniform bound on~2.62!, for all tP@2r o ,r o#.
Given this definition of the condition~1.13! on the limit Cr o

, it follows from the same proof
as in Theorem 2 that]0]0g0a is uniformly bounded inLp(St), utu<r o . This completes the proo
of Corollary 3. j

III. DISCUSSION AND CONCLUDING REMARKS

We conclude the paper with several remarks extending the validity of Theorem 2, tog
with some open problems.

Theorem 2 gives the existence of cylindersC of a definite size in the interior ofM , and a
definite distance away from any boundary]M , on which there exist coordinates in which th
metric is controlled inL2,p. Of course, by rescaling up suitably to realize the size conditio
applying Theorem 2, and then rescaling back down, the cylindersC may be chosen to be arb
trarily close to]M . ~This is already implicit in Corollary 3.! However, the coordinates may chang
in the ~smaller and smaller! cylinders as one approaches]M .

The main reason it is necessary to stay a definite distance away from]M in the proof is that
one needs to work in globally hyperbolic regions, as in~2.1!, which are future one-connected.
M is globally hyperbolic and future one-connected to begin with, then it is no longer necess
stay a given distance away from]M . We describe an alternate version of Theorem 2 in t
context.

Thus, suppose~M , g! is globally hyperbolic and future one-connected;@for instance,~M , g!
has a simply connected Cauchy surface#. Choose any pointqPM and timelike unit vectorNo

PTq
1M . Let V,Tq

1M be the compact cone of unit vectors forming a fixed angleu with No , and
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let C5expqtv, vPV, be the corresponding ‘‘cone’’ in~M , g!. Also, let N be the corresponding
vector field tangent to the geodesicssv(t)5expq(tv), and letSt be the level sets oft in C. We
make the following assumptions: there exist constantsC,` andvo.0 such that

uRuN<C, within C, ~3.1!

vol St>vo•~diam St!
n. ~3.2!

Although~3.2! is understood to hold for allt<r 1 , for a fixedr 1 , the methods used in step II sho
that it suffices to assume~3.2! holds for a fixedto.0, where the sizeto depends only onC in
~3.1!. The bound~3.2! is of course scale-invariant.

We then have the following result, valid at least up to a point in]M .
Corollary 5: Let ~M , g! be a globally hyperbolic, future one-connected space–time satisfying

the assumptions (3.1) and (3.2). Suppose also (M , g) is vacuum, or more generally, satisfies (1.13
Then there exist small constants do.0, and ro.0, depending only on C, vo , No andu, such that
if

sNo
~t!PM , ;t,do ,

then there exist coordinates(t,xi) on the cylinder

Cr o
~d1!5Dp~r odo!3@d1/2,d1#,M , ~3.3!

in which the metric satisfies the bounds (1.12). Here d1 is the largest value such that d1<do and
Cr o

(d1) is contained inM .
The proof of this result is exactly the same as that of Theorem 2. In fact, it is simpler,

the issues of global hyperbolicity and future one-connected are assumed, and one works wiN in
place of the vector fieldT from Definition 1. Thus, fordo small as above, and forC(V) the cone
on V in TqM , the exponential map expq restricted to (C(V)\$q%)ùB0(d1) is a diffeomorphism
onto (CùBq(d1)), whereBq(d1)5expq(B0(d1)). The domainCùBq(d1) plays exactly the same
role asC in step I. All the estimates of steps II–IV then proceed just as before and are unifor
tP@d1/2 ,d1#. j

Remark 6:One may also derive a version of Theorem 2,~or Corollary 3!, without the lower
volume bound in~1.9!. Thus, one has a uniform spatial curvature bound~2.9!, either on the slices
St,C downstairs, or on the slicesS̃ t̃, C̃ upstairs inTqM . @The bound~2.9! does not require any
a priori volume bound.# If the volumeSt or S̃ t̃ is very small, then the injectivity radius ofgt is
very small, i.e., the spatial metricgt is highly collapsed in the sense of Cheeger-Gromov. Howe
~as before!, the Rauch comparison theorem implies that the intrinsic exponential map onSt or S̃ t̃

is still of maximal rank on geodesic balls of a definite size~depending only on the curvatur
bound!. Suppose first one works in the situation ofSt,C. Then just as before in timelike direc
tions, one can lift the metricgt up to the tangent space by pulling back by its exponential m
i.e., consider the metricg̃t5(exppt

)*gt defined on balls inTpt
St . The metricg̃t has a uniform

lower bound on the volumes of small balls. All the arguments in steps II–IV can then be ca
out as before on this ‘‘unwrapped’’ space–time and the corresponding unwrapped cylindeC̃r o

.

This gives coordinates (t̃,x̃i) for C̃r o
on which the metricg̃ satisfies the bounds~1.12!. The same

procedure holds when working withS̃ t̃ . These coordinates upstairs withinTqM give then ‘‘multi-
valued’’ coordinates downstairs in~M , g!.

To conclude, we mention two open problems. First, for certain purposes, theL` bound on the
curvature in~1.11! may be viewed as too strong. It would be of interest to know if a version
Theorem 2 holds with suitableLp bounds onuRuT , p.n/2, in place ofL` bounds.
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Second, it would be very interesting if the Einstein equations could be used to remov
dependence of these results on bounds on the full curvature, i.e., if bounds on the full cur
could be replaced by bounds on the Ricci curvature, possibly introducing other hypothes
related to curvature. This seems to be a challenging problem; cf. Ref. 16 for some further d
sion.
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We discuss the Riemann–Lanczos problems in two, three, and four dimensions
using the theory of exterior differential systems and Janet–Riquier theory. We show
that the Riemann–Lanczos problem in two dimensions is always a system in invo-
lution. For each of the two possible signatures we give the general solution in both
instances and show that the occurrence of characteristic coordinates need not affect
the result. In three dimensions, the Riemann–Lanczos problem is not in involution
as an identity occurs. This does not prevent the existence of singular solutions and
we give an example for thereducedGödel space–time. A prolongation of this
problem, whereby an integrability condition is added, leads to a prolonged system
in involution. The Riemann–Lanczos problem in four dimensions is not in involu-
tion and needs to be prolongated as Bampi and Caviglia suggested. Butsingular
solutions of it can be found and we give examples for the Go¨del, Kasner, and
Debever–Hubaut space–times. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1566095#

I. INTRODUCTION

The problem of generating the space–time Weyl conformal curvature tensorCabcd from a
tensor potential is called theWeyl–Lanczos problemand the analogous problem for the Riema
curvature tensor the Riemann–Lanczos problem.

The Lanczos tensor potential admits the following index symmetries,

L @ab#c5Labc , ~1!

wherea,b,c,s50,1,2,3 for four dimensions and

L @abc#50. ~2!

Apart from these, we may impose two gauge conditions: the differential gauge condition

Lab
s
;s50, ~3!

where ‘‘;’’ indicates covariant differentiation and we often writef ab5Lab
s
;s , and the algebraic

gauge or trace free condition

La
s
s50. ~4!

a!Electronic mail: pdolan@inctech.com
b!Electronic mail: agerber03@yahoo.co.uk
30130022-2488/2003/44(7)/3013/22/$20.00 © 2003 American Institute of Physics
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Lanczos discovered the Weyl–Lanczos equations,1 where he introduced a Lagrangian based on
double dual of the Riemann tensorRabcd. The Lanczos tensorLabc arose as a Lagrange multiplie
for this Lagrangian. Lanczos found an expression for the Weyl tensor in terms of certain Lag
multipliers Labc , namely,

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a1gbcL ~ad!1gadL ~bc!2gbdL ~ac!2gacL ~bd!

1 2
3L m;s

ms ~gacgbd2gadgbc!, ~5!

whereLad5La
s
d;s2La

s
s;d . These arethe Weyl–Lanczos equations. Further, if we impose~3! and

~4! above, we can simplify~5! considerably to

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a2gbcL ad;s
s 2gadL bc;s

s 1gbdL ac;s
s 1gacL bd;s

s . ~6!

Many solutions to~6! are known and solutions for vacuum space–times can be found in Re
We can also attempt to express the Riemann curvature tensor in terms of a comparable

potentialL̂abc which leads to theRiemann–Lanczos problem. Udeschini Brinis3 had wanted to
describe the space–time Riemann tensor in terms of a Lanczos tensorL̂abc and proposed the
Riemann–Lanczos relations

Rabcd5L̂abc;d2L̂abd;c1L̂cda;b2L̂cdb;a . ~7!

But the difficulties with the relations~7! were pointed out in two papers by Bampi and Caviglia4,5

where they proved existence of theorems for solutions of~5! and~7!. Whereas the Weyl–Lanczo
problem is always in involution, the Riemann–Lanczos problem isnot and only singular solutions
of it can occur if the problem isnot modified. Bampi and Caviglia showed the following.

~i! The Weyl–Lanczos problem~5! or ~6! has nonsingular solutions forn54, 5, wheren is the
dimension of the space–time manifoldM.

~ii ! For n54 the Riemann–Lanczos problem~7! has no nonsingular solutions but it does ha
‘‘singular’’ solutions which means that the Cartan characters do not adopt their max
values.

~iii ! The differential gauge condition~3! has no effect on the existence or nonexistence
solutions of either~5! or ~7!.

Bampi and Caviglia5 also suggested a prolongation of the Riemann–Lanczos equatio
make them a system in involution.

In the Riemann–Lanczos problem, we meet Eq.~2! and possibly~3! but not ~4!, which leaves
us with 20 independent components for theL̂abc in four dimensions.We always assume that th
cyclic conditions~2! hold but not the trace-free conditions~4!. If Eqs. ~4! were to hold, we would
have

R54L̂ k;n
nk 524L̂ n;k

nk 50,

which would lead to inconsistencies. Because we are only going to talk about the Riem
Lanczos problem in this article, we will change notation fromL̂abc to Labc from now on. We will
also write the Riemann–Lanczos equations in solved form as

f abcd
~R!

ªRabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a . ~8!

The paper by Massa and Pagani6 concerning a modification of the Riemann–Lanczos probl
used a different approach to the above work of Bampi and Caviglia. Accordingly, we do
consider Ref. 6 here. As Ref. 7 is based on Ref. 6 it is also not applicable here.
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II. EXTERIOR DIFFERENTIAL SYSTEMS

First we introduce some theory of exterior differential systems~EDSs! which we are going to
apply to the Riemann–Lanczos problems in two, three, and four dimensions. Good and d
accounts of the theory of exterior differential systems can be found in Refs. 8–10.

A. Exterior differential systems and Pfaffian systems

We denote a formalN-dimensional manifold byM of which the space–time manifoldM is an
n-dimensional submanifold. Then, for a collection of differential forms we define anexterior
differential system ~EDS! as a collection of one-formsa i 1

(1) , two-forms a i 2
(2) and so on up to

p-forms a i p

(p) and possibly zero-forms on our formalN-dimensional manifoldM. A Pfaffian
systemP is a special EDS containing only one-formsua and 0-forms.11–13We denote therank of
P by s which is given by the numbers of independent one-forms inP. Consider now the
collection of all vector fields onM denoted byX~M!. There is a subset ofX~M! given by all
those vector fields which annihilate the Pfaffians inP,

Dª$XPX~M!uua~X!50, a51,...,s%,

so that the number of independent vector fields inD is N2s. We callD thedual systemto P. For
any Pfaffian systemP, we can also look at itsderived systemP8 for which we can write14

P8ª$uaPPudua~X,Y!50, ;X,YPD, a51,...,s%,

whereP8,P always holds. Further, we denote byD̄

D̄ª$YPX~M!udua~X,Y!50, ;XPD, ;a51,...,s%.

Pfaffian systems are classified according to the ease with which they can be integrate
most familiar Pfaffian systems are also the simplest, namely,complete Pfaffian systemsto which
the celebratedFrobenius theoremapplies. We say that a Pfaffian systemP is completeif and only
if P5P8 holds, or, in other wordsD5D̄. In general, Pfaffian systems are not completebut each
Pfaffian system can be enlarged by adding further one-forms until it becomes complete
comes inconsistent. The minimal enlarged Pfaffian system which is complete is known
associated systemA~P! of P and its dimension is called theclassc of P. Sometimes,A~P! is also
called theCartan system C(P).15 Further, the dual space ofC(P) usually denoted byC(D)
5C(P)' is the space containing all Cauchy characteristic vector fields.

A good account of Pfaffian systems characterized by Vessiot vector fields can be fou
Refs. 14 and 16 and many examples are given in Ref. 17. A Vessiot vector field systemD5P' is
complete means then that@D,D##D for all YPD which is equivalent toD̄5D.

When a vector field systemD or Pfaffian systemP fails to be complete, a slightly weake
condition may hold on some subsystem ofD. Such a possibility is that a vector field system is
involution , which is defined as follows:

Definition 1: Involutory subsystem of a vector field system. An involutory subsystemT of a
vector field systemD is a subsystemT of D such that@T,T##D, which means thatT is closed
relative toD but not relative toT itself.

B. Integral elements and Cartan characters

All definitions in this section are based on Ref. 18 which relies on Cartan’s original w
whereas the work in Ref. 19 varies slightly from Ref. 9 in some definitions. When an EDSS or
a Pfaffian systemP is given, we try to find manifolds on which all the differential forms ofS or
P are annihilated. We will construct tangent spaces to such manifolds, where the dimens
each of them can be deduced from a sequence of non-negative integers called the Cartan
ters. Such tangent spaces are calledintegral elementsand are defined as follows.
                                                                                                                



t

r

l

ly as

for a

3016 J. Math. Phys., Vol. 44, No. 7, July 2003 P. Dolan and A. Gerber

                    
Definition 2: Integral element. A p-dimensional subspace(Ep)x at a point x of the tangen
space Tx(M) of a N-dimensional manifoldM is called an integral element of an EDSS if
a j

i (Ep)x50 at x for all formsa j
i in S, which means that all differential forms ofS are annihilated

on (Ep)x at xPM.
Once we have found such ap-dimensional integral element (Ep)x,TxM spanned by

V1,...,Vp, we look for vectorsVx
p11PTxM in such a way that the space generated by (Ep)x and

Vx
p11 forms a (p11)-dimensional integral element. The conditions on such a tangent vectorVx

p11

at the pointxPM are

a i 1
1 ~Vx

p11!50, 1< i 1<k1 ,

a i 2
2 ~Vj 1,Vx

p11!50, 1< i 2<k2 , 1< j 1<p,

~9!
]

a i p11

p11~V1,V2,...,Vp,Vx
p11!50, 1< i p11<kp11 .

The vectorsVx
p11 that satisfy the above system of linear equations generate thepolar space

H((Ep)x)
' of (Ep)x , whereH((Ep)x) is the polar system~9!. Depending on the ranks of the pola

systems generated, we can divide integral elements into three classes which are calledregular,
ordinary , and singular. We look at the subsystema1

1(Vx
1)5¯5ak1

1 (Vx
1)50 of ~9!, where

s0(x)5r (H(E0)x) is its rank. From this, we obtain the integer

s0ªmax$xPM%~r ~H~~E0!x!!!

called thezeroth Cartan character. We define aregular point xPM to be a point where
s0(x)5s0 . Then, a one-dimensional integral element (E1)x is anordinary integral element ifx is
a regular point. Let the polar space of (E1)x in TxM have rankr (H((E1)x))5s1(x)1s0(x).
From this, we define

s1ªmax$xPM,V2PTxM%r ~H~~E1!x!!2s0 ,

which is called thefirst Cartan character . If, for xPM, s1(x)5s1 holds, then the integra
element (E1)x is calledregular. A two-dimensional integral element (E2)x then is calledordinary
if it contains at least one regular one-dimensional integral element. We define inductive
follows.

Definition 3: Cartan characters. The pth Cartan character is inductively defined as

sp5max$xPM,Vp11PTxM%r ~H~~Ep!x!!2 (
i 50

p21

si .

Based on this we can state that ap-dimensional integral element (Ep)x is calledordinary if it
contains at least one (p21)-dimensional regular integral element. Ap-dimensional integral ele-
ment is calledregular if its polar spaceH((Ep)x) has maximal rankr (H((E)p)x)5sp . All other
integral elements are calledsingular.

Note that a sequence of integral elements (E0)x,(E1)x,¯,(Ep)x at a pointxPM is called
a regular chain of integral elements if all its (Ek)x , 1<k<p21, are regular and (Ep)x is at least
ordinary. The maximal dimension an ordinary integral element can adopt is called thegenusg of
S or P. Integral elements are the tangent planes to manifolds which are solution manifolds
given EDSS and Pfaffian systemsP and defined as follows.

Definition 4: Integral manifolds. An integral manifoldN of an EDS S on M is a
p-dimensional submanifoldN of M such that each k-dimensional vector subspace(Ek)x,TxN
for 1<k<p annihilates all the k-forms in the EDSS.
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C. Reduced characters and involution

If we wish to look for specific integral manifolds transversal to some given submanifold
must introduce anindependence conditionV5v1∧¯∧vnÞ0, which is sometimes also calle
the volume element, where thev i are one-forms characterizing such a submanifold. If we se
x1,...,xn as local independent coordinates, where we will use brackets to indicate powersxi

such as in (xi)n, thenV is given byV5dx1∧¯∧dxn. All integral elements on whichV does not
vanish are calledadmissible integral elementsaccording to Ref. 10 and we can define t
following.

Definition 5: Involutive systems. An EDS with independence condition~S, V! is in involution
with respect toV at a point xPM means that there exists anadmissible ordinary integral
element of dimension n of~S, V! at x.

In order to determine the reduced characters, we need to introduce thereduced polar systems
H red((Ep)x) which are defined as polar systems, where one suppresses all components inv
v1,...,vn in each one-form of a given~9!. We then define the reduced ranks08(x)
ªr (H red((E0)x)) ands08ªmax($xPM%s08(x)) so that we can define the reduced characters ind
tively as follows.

Definition 6: Reduced Cartan characters. The reduced Cartan characters sp8 are inductively
defined as

sp8ªmax~ $xPM,V
x
p11PTxM%r ~H red~~Ep!x!!!2 (

i 50

p21

si8 .

For a Pfaffian system~P, V! the reduced Cartan characters can also be computed in the follo
way. Given a Pfaffian systemP consisting ofs one-formsua with independence conditionV
5v1∧¯∧vnÞ0, we denote bypl all the extraN2s2n one-forms such that (ua,v i ,pl), 1
<a<s, form a coframe on our formalN-dimensional manifoldM. Once we have chosen suc
one-formspl, we can write eachdua as

dua5Al i
a pl∧v i1 1

2Bi j
a v i∧v j1 1

2Clk
a pl∧pk~modI~P!!, ~10!

whereI~P! is the differential ideal generated byP. In Eqs.~10!, the termsAl i
a form the tableau

matrix and we call the termsBi j
a the torsion terms, where the notion of torsion here has nothin

to do with affine connections. The Pfaffian system is calledquasi-linear if all the Clk
a 50. We say

that the torsion can be absorbed if a suitable transformationF

F:pl→pl1pi
lv i

with

B̃i j
a 5Bi j

a 1Al j
a pi

l2Al i
a pj

l , ~11!

can be found such thatB̃i j
a 50. WhenBi j

a Þ0 in every coframe (ua,ve,pl), the system possesse
integrability conditions which will prevent it from being in involution. From the tableau ma
Al i

a , we can determine the reduced Cartan characters directly8,10 becauser (Al1
a )5s18 and the rank

of

S Al1
a

Al2
a D

is equal tos181s28 and so on. There are many versions ofCartan’s test for involution ,9 some of
which one can find in Refs. 8 and 10, and we state it as follows.
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Theorem 1: Cartan’s test for involution. A Pfaffian system~P, V! is in involution means that
s05s08 , s15s18 ,...,sp5sp8 and a coframe transformation can be found such thatall its torsion
terms Bi j

a vanish identically.
An important question is whether and when ordinary integral manifolds exist and whe

given some initial data, they are unique. TheCartan–Kähler theorems8,10 give some answers to
these questions for real-analytic systems. They reduce to theCauchy–Kovalevskaya theorem
when the number of equations equals the number of unknowns given bym so thatn5m.20 The
first Cartan–Ka¨hler theorem specifies under which conditions a unique integral manifold o
mensionp can be constructed from a (p21)-dimensional one. The second theorem states
under certain conditions a chain of regular integral manifolds of increasing dimension exis8–10

If there is no general solution for a given EDS~S, V!, then there could be identities or integrabili
conditions so that we mustprolong the system by adding in these conditions and by enlarging
space of our formal jet coordinates to higher order, where in Refs. 8 and 10 a detailed acco
this procedure can be found. The key result for prolongations in the real analytic case is giv
the Cartan–Kuranishi theorem which states that an EDS~S, V! which is not in involution and
not inconsistent becomes either involutive or inconsistent after afinite number of prolongations.21

Comment: We should point out that in Refs. 22–24 there is a quantity similar to the Ca
characters also introduced by Cartan9 called thedegré d’arbitraire . Einstein had introduced the
strength of a system of equations in his last unified field theory of electromagnetism and gr
in order to measure how strongly such a system restricts the solution. A discussion betwe
and Cartan on this subject is presented in Ref. 25. Sue´ finally compared Cartan’s degree o
arbitrariness and Einstein’s strength in Refs. 23 and 24 for linear systems of equations.
derived a relation between this degree of arbitrariness and the Cartan characters for no
overdetermined higher-order systems of PDEs.22

Before we introduce Janet–Riquier theory, we illustrate the above theory with the exam
a coordinate transformation to Euclidean coordinates in two dimensions. For the line eleme
therefore have

ds25y2dx21dy25du21dU2,

whereu, U are the Euclidean coordinates. For this to hold we must have

y25p21P2, 05pq1PQ, 15q21Q2,

where we introduced the Monge notation

pª
]u

]x
, qª

]u

]y
, rª

]2u

]x2 , sª
]2u

]x]y
, tª

]2u

]y2 ,

Pª
]U

]x
, Qª

]U

]y
, Rª

]2U

]x2 , Sª
]2U

]x]y
, Tª

]2U

]y2 .

These are local coordinates on a jet bundleJ2(R2,R2) with N52121416514 formal dimen-
sions, where we haven52 independent andm52 dependent variables. After differentiating th
above equations, we obtain a Pfaffian systemP with s512 independent one-forms which ca
locally be expressed as

u15du2pdx2qdy,

u25dU2Pdx2Qdy,

u35dp2rdx2sdy,

u45dP2Rdx2Sdy,
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u55dq2sdx2tdy,

u65dQ2Sdx2Tdy,
~12!

u75pdr1rdp1PdR1RdP,

u85qdr1rdq1QdR1RdQ1dy,

u95pds1sdp1PdS1SdP2dy,

u105qds1sdq1QdS1SdQ,

u115pdt1tdp1PdT1TdP,

u125qdt1tdq1QdT1TdQ.

As the rank ofD is N2s51421252, wheres512, the system~12! can dually be characterize
by two Vessiot vector fieldsV1, V2 generatingD, where

Vi5Vx
i ]

]x
1Vy

i ]

]y
1~pVx

i 1qVy
i !

]

]u
1~PVx

i 1QVy
i !

]

]U
1~rVx

i 1sVy
i !

]

]p
1~RVx

i 1SVy
i !

]

]P

1~sVx
i 1tVy

i !
]

]q
1~SVx

i 1TVy
i !

]

]Q
1Vr

i ]

]r
1VR

i ]

]R
1Vs

i ]

]s
1VS

i ]

]S
1Vt

i ]

]t
1VT

i ]

]T
,

i 51,2, ~13!

and the coefficientsVr
i , VR

i , Vs
i , VS

i , Vt
i , VT

i are determined through the condition that the
one-formsu7,...,u12 are annihilated byV1, V2. Because here we havedua(V1,V2)[0, we find
that the system~12! is complete. It means thatC(P)5D so thatc52 and, therefore, bothV1 and
V2 are Cauchy characteristics. They form an involution of maximal dimensiong52 and because
s512 ands5s05s08 , thens05s08512. We see thatt5]2u/]y250 andT5]2U/]y250 so that
the solution must be linear iny. The general solution is then given by

u5y cos~x1e!1a, U5y sin~x1e!1b,

p52y sin~x1e!, P5y cos~x1e!,

q5cos~x1e!, Q5sin~x1e!,

r 52y cos~x1e!, R52y sin~x1e!,

s52sin~x1e!, S5cos~x1e!,

t50, T50,

where$a,b,e% are arbitrary constants corresponding to the translational and rotational degr
freedom. This also gives a local parametrization of the two-dimensional integral manifold w
corresponds to this solution.

III. JANET–RIQUIER THEORY

In the original Janet–Riquier theory of systems of partial differential equations~PDEs!, there
was an algorithm created to explain how a given system of PDEs could be brought into p
orthonomic form. Passivity is theabsenceof integrability conditions and orthonomicity is a form
of ordering of the partial derivatives of a system. The passive orthonomic system of a syst
PDEs was the predecessor of what is now called a formally integrable system or involutory s
of PDEs. A theory created by Riquier26 and developed by Janet27,28 and later by Thomas29 now
called Janet–Riquier theory helps to decide such questions. A good account of this theory a
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form as created in Refs. 26, 27 and 29 is given in Russian by S. P. Finikov.30 In order to obtain
intrinsic results Spencer31 and then Goldschmidt32 introduced a new coordinate independent a
proach based on homological algebra. An account of this theory can be found in Ref. 33.

There are many algorithms which have been implemented by algebraic computing. So
them are concerned with the choice of particular rankings such as the REDUCE package DI
Gerdt.34 Reid35 developed a computer package based on MAPLE which brings a system
solved form, which is a modification of an orthonomic system.36 Seiler22,37 uses the theory of the
involutive symbol, which is a modernized version of the original Janet–Riquier theory, to d
mine whether systems are in involution. Janet–Riquier theory is well illustrated by the
example28,33,37and applications to general relativity have previously been made such as in
38–40.

For a system of partial differential equations~5system of PDEs! of orderq, which we will
denote byRq from now on, we usex1,...,xn for the independent variables, where we will u
brackets to indicate powers of anyxi such as in (xi)n, andua for them dependent variables. The
derivatives on the jet bundle of orderq, denoted byJq(Rn,Rm), are denoted byu,J

a , whereJ is a
multi-index. We associate amonomial xJ5(x1) j 1

•¯•(xn) j n with each partial derivativeu,J
a ,

whereJ5( j 1 ,...,j n) is a multi-index and iJi5 j 11...1 j n is the order of the derivative. This
means that to each set of partial derivatives of each dependent variableua corresponds a unique
set of monomials.

Then, weorder the partial derivatives of a system of PDEs in a systematic way. Very oft
we will use an inverse lexicographic ordering based onxns...sx2sx1 on their partial derivatives
so that u,ns...su,2su,1 and so on. Aranking amongstall partial derivatives is defined a
follows.

Definition 7: Ranking of derivatives. A ranking of derivatives is a total orderingRs of all the
partial derivatives u,J

a (for m, n fixed) satisfying the two following conditions (where J and K
multi-indices).

~i! If iJi.iKi , then u,J
a su,K

a .
~ii ! If u ,J1

a su,J2
a , then (u,J1

a ) ,Ks(u,J2
a ) ,K for any multi-index K.

A special subclass of these rankings are calledorderly rankings which are rankings such that~i!
holds for different indicesa referring to different unknownsua ~see Ref. 41 for more details!.
Then, the system can be brought into a more organized form calledorthonomic form . This is
achieved by determining the partial derivative highest in the ranking in each equation ofRq and
calling it the leading derivative of the equation. Once this equation is solved for its lead
derivative which then becomes the only term on its LHS, we call it aprincipal derivative. All
other partial derivatives of that order which are not in the set of principal derivatives are c
parametric derivatives. Based on this we can define an orthonomic system.

Definition 8: Orthonomic system. A system of partial differential equationsRq of order q is
orthonomic with respect to a given rankingRs if

~i! all the PDEs are solved with respect to their leading derivatives;
~ii ! no two leading derivatives are the same; and
~iii ! no parametric derivative in any equation ofRq can be a principal derivative in anothe

equation ofRq or even a partial derivative of any order of a principal derivative.

Those independent variables by means of which we can differentiate the principal deri
of an equation without reintroducing a derivative already produced by means of different
another principal derivative are calledmultiplicative variables for the equation. This induce
multiplicative variables for the monomials corresponding to the partial derivatives.33 To avoid
nonintrinsic results, one introduces special coordinates calledd-regular coordinatesand uses the
theory of theinvolutive symbol of a systemRq which we will introduce next.
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A. Involutive symbol and formal integrability

In order to determine thesymbol of a system of PDEs only the highest-order partial deri
tives of each equation inRq matter. We denote the quantities corresponding to each pa
derivativeu,J

a by VJ
a and define the symbolMq as follows.

Definition 9: Symbol ofRq . A system of partial differential equationsRq of order q, locally
described by p equations in solved form asFt(xi ,ua,u,J

a )50 for t51,...,p, has a solution space
Mq for the unknowns VJ

a with a51,...,m, iJi5q:

Mq : (
a,iJi5q

S ]Ft

]u,J
a DVJ

a50, ~14!

where we formally differentiate with respect to the u,J
a . Mq is called thesymbol of Rq .

For simplicity the matrix rather than the map is usually regarded as the symbol ofRq . We
associate with each symbol equation its multiplicative variables which are the same as the
plicative variables which its corresponding equation inRq adopts. Then, we determine theclass of
an equation in Mq by counting the number of multiplicative variables it adopts—a num
denoted byk such that 0<k<n—and define

bq
~k!
ªnumber of equations of classk in Mq~orRq!.

The definition of theCartan characters aq
(k) is based on thebq

(k) and is given by

aq
~k!
ªm•S n1q2k21

q21 D2bq
~k! , ~15!

where m•(k51
n (q21

n1q2k21) is the total number of partial derivatives of orderq that a system
Rq will have. Earlier in this article, we denoted then11 Cartan characters of an EDS b
sk, k50,1,2,. . . ,n but here we writesk, k,51,2, . . . ,n as aq

(k) as Janet–Riquier theory doe
not gives0. In d-regular coordinatesaq

(k) equals the number of parametric derivatives of clask
and orderq. When no identities are present, the symbol is said to be involutive, which ca
equivalently expressed as33 follows.

Theorem 2: Involutive symbol. In ad-regular coordinate system the following conditions a
equivalent:

~i! The symbolMq is involutive.
~ii ! dim(Mq11)5(k51

n k•aq
(k) .

~iii ! The rank r ofMq11 is r(Mq11)5(k51
n k•bq

(k) .
~iv! Prolongation with respect tononmultiplicative variables does not lead to any new equa

tions.

But a system of equationsRq which has an involutive symbolMq can still admit integrability
conditions. They can be revealed by means of projecting our prolonged systemRq11 , which is
obtained by differentiatingRq with respect to all itsn independent variables, back ontoRq . In
general, we will denote first projections onto lower-order systems
Rq1r

(1) 5pq1r
(q1r 11)(Rq1r 11). If Rq

(1) is not identical toRq , then integrability conditions occur. I
they are identical we can characterize aformally integrable systemRq as33,37 a system of partial
differential equationsRq for whichRq1r

(1) 5Rq1r for all r>0. A special situation occurs whenMq

is involutive and Rq is formally integrable.37 Then, we obtain ideal systems of equations wh
are called involutive systems of equations.

Definition 10: Involutive systems of equations. A system of equationsRq is involutive if and
only if its symbolMq is involutive andRq is formally integrable.

There exists an important criterion for involution that tells us that we only need to pro
once for an involutive system to prove this:

Theorem 3: Criterion for involution. Rq is a system in involution means that its symbolMq

is involutive andRq
(1)5Rq .
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We will now apply the above theory to the Riemann–Lanczos problem.

IV. THE RIEMANN–LANCZOS PROBLEM

In the Bampi–Caviglia papers4,5 the Riemann–Lanczos problem in four dimensions was w
ten as an EDS. Here we are going to introduce a Pfaffian system based on~8! which differs
slightly from that in Ref. 4 because we incorporate the cyclic conditions~2! as well. Independently
of the space–time dimensionn, we can use the exterior differentials of Eqs.~8! in solved form
together with thecontact conditions Kabc to obtain the system

d fabcd
~R! 5~Rabcd,e1aabcde!dxe2dPabcd1dPabdc2dPcdab1dPcdba1Gad

n ~dLnbc1dLncb!

2Gac
n ~dLnbd1dLndb!1Gbc

n ~dLnad1dLnda!2Gbd
n ~dLnac1dLnca!,

Kabc5dLabc2Pabcedxe, ~16!

dKabc5dxe∧dPabce,

whereaabcde is given by

aabcde5Gad,e
n ~Lnbc1Lncb!2Gac,e

n ~Lnbd1Lndb!1Gbc,e
n ~Lnad1Lnda!2Gbd,e

n ~Lnac1Lnca!.
~17!

The (xa,Labc ,Pabcd) are local jet coordinates onJ1(Rn,Rm) with Pabcd5]Labc /]xd when pro-
jected onto our space–time manifold andm is the number of independent Lanczos compone
Labc . A Vessiot vector fieldVPD is then locally given as

V5Ve
]

]xe 1VePabce

]

]Labc
1Vabcd

]

]Pabcd
, ~18!

wherem of the n•m componentsVabcd are defined through the requirement thatd fabcd
(R) (V)50.

This leads to them independent equations

V$abcd%5Ve@Rabcd,e1aabcde1Gad
n ~Pnbce1Pncbe!2Gac

n ~Pnbde1Pndbe!1Gbc
e ~Pnade1Pndae!

2Gbd
n ~Pnace1Pncae!#, ~19!

where$abcd% denotes the Riemann-type symmetrization performed over the indicesabcd. Before
we comment on the Riemann–Lanczos problem in four dimensions, we look at the two
three-dimensional cases.

A. The Riemann–Lanczos problem in two dimensions

First, we consider the Riemann–Lanczos problem in a two-dimensional space–time. I
space–time dimensions there is only one independent Riemann–Lanczos equationf 1212

(R) . We have
two given independent variablesx1, x2, two dependent variablesL121, L122 and four Monge
derivativesP1211, P1212, P1221, P1222 so that (x1,x2,L121,L122,P1211,P1212,P1221,P1222) are lo-
cal coordinates on the jet bundleJ1(R2,R2) with N52121458. We leave the metric tenso
components completely arbitrary so thatf 1212

(R) is given as

f 1212
~R! 5R121222P121212P122112L121~G12

1 2G22
2 !22L122~G11

1 1G12
2 !50. ~20!

We definea1212e in the two-dimensional case to be

a1212e5R1212,e22L121~G12,e
1 2G22,e

2 !22L122~G11,e
1 1G12,e

2 !, ~21!

wheree51,2. The Pfaffian system derived from~20! is locally given by
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u15a12121dx11a12122dx222dP121212dP122112~G12
1 2G22

2 !dL12122~G11
1 1G12

2 !dL122,

u25dL1212P1211dx12P1212dx2, ~22!

u35dL1222P1221dx12P1222dx2,

whereu1 is the exterior derivative off abcd
(R) andu2, u3 are the two contact conditions anddu2, du3

their exterior derivatives. The zeroth character iss053, since we only have to count the numb
of one-forms in~22!. Omitting all the terms involvingdx1, dx2 in the one-forms in~22!, the same
number is obtained so thats0853, leading to our first results05s0853. Further characters wer
obtained to bes15s1852 and s25s2851. A detailed discussion of the polar systems and th
Cartan characters for this case can be found in Ref. 42.

We can also compute the characters using the tableau, and by determining the torsion w
find out whether the system possesses integrability conditions. In order to form a complet
rame for our example~22!, we have to add three one-formspL, whereL now is acollective index
with LP$1211,1221,1222%, to the five one-formsu1, u2, u3, v1, v2 and so we choose

p1211ªdP1211, p1221ªdP1221, p1222ªdP1222.

The dP1212 can be expressed throughu1 as

dP12125p12211~~ 1
2a121211~G12

1 2G22
2 !~P12112~G11

1 1G12
2 !P1221!!v1

1~~ 1
2a121221~G12

1 2G22
2 !~P12122~G11

1 1G12
2 !P1222!!v2~mod $ua%!. ~23!

Having accomplished this, we can then expand the exterior derivatives of the contact condit

du1[0,

du2[2p1211∧v12p1221∧v21~~ 1
2a121211~G12

1 2G22
2 !P12112~G11

1 1G12
2 !P1221!!v1∧v2,

~24!

du3[2p1221∧v12p1222∧v2 ~mod I~P!!.

Therefore, we obtain for the tableau matrices

AL1
a 5S 0 0 0

21 0 0

0 21 0
D , AL2

a 5S 0 0 0

0 21 0

0 0 21
D ,

wherea51,2,3 andL is one of the collective indicesLP$1211,1221,1222%. This leads tos18
52, s2851, and the only nonvanishing torsion term is given by

B12
2 52@ 1

2a121212~G12
1 2G22

2 !P12111~G11
1 1G12

2 !P1221#. ~25!

If we wish to absorb the torsion coefficients, we must find a transformationF with pl→pl

1pi
lv i and quantitiespi

l such that

05B̃i j
a 5Bi j

a 1Al j
a pi

l2Al i
a pj

l .

In our case this leads to the system

05AL2
1 p1

L2AL1
1 p2

L ,
                                                                                                                



uations

nt

ays

nd so

the

xplic-
d line

is is
pends

3024 J. Math. Phys., Vol. 44, No. 7, July 2003 P. Dolan and A. Gerber

                    
05B12
2 1AL2

2 p1
L2AL1

2 p2
L , ~26!

05AL2
3 p1

L2AL1
3 p2

L .

One solutionansatzto fulfill ~26! is to choosep1
2
ªB12

2 while all otherpi
L vanish: thus the torsion

is absorbed and the system is therefore in involution.9,10 Adding the exterior derivative of the
differential gauge conditionL12

s
;s50 does not change the involutivity. Obviously thens05s08

54 so that the set of Cartan characters (s0 ,s1 ,s2) in this case is given by~4, 2, 0!. Detailed
calculations and a REDUCE code are given in Ref. 42.

Next, we use Janet–Riquier theory to reproduce these results. We have a system of eq
R1 with n5m52, q51 and the symbolM1 consists only of a single equation

22V121212V122150, ~27!

which is of class 2 whatever the choice of the orderly ranking.~Note that here and in subseque
sections, where Janet–Riquier theory is applied, thesymbol variables Vabcd, Vabcde have no
connection with Vessiot vector fieldsV.) This yields

a1
~1!52, a1

~2!51.

Trivially, all variables are multiplicative variables and the symbol of one equation is alw
involutive. We have dim(R1)55 and dim(M1)53 and our prolonged system of equationsR2

consists off 1212
(R) , f 1212,1

(R) , f 1212,2
(R) . No integrability conditions can be created because

dim~R1
~1!!5dim~R2!2dim~M2!5924555dim~R1!,

and the system is linear so that formal integrability is demonstrated and the systemR1 is involu-
tive.

If we incorporate the differential gauge conditionLab
s
;s50, thenM1 is formed by

22V121212V122150,
~28!

g11V12111g12V12211g12V12121g22V122250,

which again has all its equations of class 2 whatever the choice of the orderly ranking be a
we obtaina1

(1)52, a1
(2)50. The result is thatR1 is formally integrable and involutive.42 We

conclude thatthe Riemann–Lanczos problem in two dimensions is always in involution and
differential gauge condition does not affect the result. The Cartan characters (s0 ,s1 ,s2) are~3, 2,
1! when no differential gauge condition is imposed but~4, 2, 0! when it is imposed.

We can give the general solution for the two-dimensional Riemann–Lanczos problem e
itly. First, we look at the general two-dimensional space–time with Lorentzian signature an
element in characteristic coordinatesx1, x2 written as

ds252e2rdx1dx2,

wherer is an arbitrary function ofx1, x2. We find that the general solution is of the form

L1215e2r f 1~x1!2 1
4e

2rr ,x1,
~29!

L1225e2r f 2~x2!1 1
4e

2rr ,x2,

where f 1(x1), f 2(x2) are two arbitrary functions depending on one local coordinate each. Th
in agreement with the result for the Cartan characters claiming that the general solution de
on two arbitrary functions of one variable each. The symbol derived fromf 1212

(R) , L12
s
;s is
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0522V121212V1221,
~30!

052V12122V1221,

from which we obtainb1
(1)5b1

(2)51 based on the ranking stemming fromx2sx1. This leads to
a1

(1)5a1
(2)51, which cannot be the intrinsic result as we already solved the two-dimensio

problem in the previous section. We conclude that the above coordinate frame is notd-regular and
we need to perform a coordinate transformation of the form

dx̃15a11dx11a12dx2, dx̃25a21dx11a22dx2

in order to obtain the correct values fora1
(1) , a1

(2) . After such a transformation, the new symb
in orthonomic form is

V122252
a21

a22
V1221,

~31!

V121252
a11

a12
V1211.

Now, both equations are of class 2 so thatb1
(1)50, b1

(2)52, which producesa1
(1)52, a1

(2)50
which is the known intrinsic result for the Cartan characters.

For spaces with Euclidean signature we can write their line element as

ds25e2r~~dx1!21~dx2!2!,

wherer is again an arbitrary function ofx1, x2. We obtain the solution

L1215e2r~ f 1~x11x2!2 1
2r ,x2!,

~32!
L1225e2r~ f 2~x12x2!1 1

2r ,x1!,

and the intrinsic values for the characters area1
(1)52, a1

(2)50.

B. The Riemann–Lanczos problem in three dimensions

In three space–time dimensions with local coordinatesx1, x2, x3, we obtain eight indepen
dent components of the Lanczos tensor, namely,L121, L122, L131, L133, L232, L233, L123, L132

when imposing the cyclic conditions~2!. Each of them has three first-order partial derivatives
that we use the jet bundleJ1(R3,R8) with formal dimensionN531818•3535 to express the
EDS. We obtain the six independent Riemann–Lanczos equations whose exterior derivati
d f1212

(R) , d f1313
(R) , d f2323

(R) , d f1213
(R) , d f1223

(R) , d f1323
(R) . We find that the Riemann–Lanczos problem

three dimensions is not in involution and its reduced characters (s08 ,s18 ,s28 ,s38) are ~14, 8, 7, 3!,
where detailed calculations can be found in Ref. 42. We can test this result with the RED
code given in Ref. 42 and immediately obtain~8, 7, 3! for the reduced characters (s18 ,s28 ,s38) and
that the system is not in involution. It is sufficient to use anarbitrary diagonalized line elemen
which describes three-dimensional space–times completely as is shown in Ref. 43.

We can also use the tableau matrix to calculate this result. First, we must complete our
14 one-forms together with the threeve to a complete coframe consisting ofN535 elements by
introducing the 18pL such that (d fabcd

(R) ,Kabc ,ve,pL) forms a cobasis onM. We introduce the
18 pL using collective indicesL with L51,...,18 with the following correspondence betwe
pL↔dPabcd:

p1↔dP1211, p2↔dP1221, p3↔dP1311,
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p4↔dP1331, p5↔dP2321, p6↔dP2331,

p7↔dP1231, p8↔dP1321, p9↔dP1222,

p10↔dP1312, p11↔dP1332, p12↔dP2322,

p13↔dP2332, p14↔dP1232, p15↔dP1322,

p16↔dP1333, p17↔dP2333, p18↔dP1233.

When using the correspondenceua↔Kabc the eightdKabc can be recast as

du1[2p1∧v12p2∧v22p7∧v31p10∧v32p8∧v31 1
2Bi2

1 v i∧v21 1
2Bi3

1 v i∧v3,

du2[2p2∧v12p9∧v222p14∧v32p5∧v31 1
2Bi3

2 v i∧v3,

du3[2p3∧v12p10∧v22p4∧v31 1
2Bi3

3 v i∧v3,

du4[2p4∧v12p11∧v22p16∧v3,
~33!

du5[2p5∧v12p12∧v22p13∧v31 1
2Bi3

5 v i∧v3,

du6[2p6∧v12p13∧v22p17∧v3,

du7[2p7∧v12p14∧v22p18∧v3,

du8[2p8∧v12p15∧v22 1
2p

11∧v32 1
2p

8∧v32 1
2p

6∧v31 1
2Bi3

8 v i∧v3 ~mod I~P!!.

Using the tableau matrices derived from~33! we obtains1858, s2857 ands3853. We also find that
all remaining torsion coefficientsBi j

a in ~33! can be absorbed so that no integrability conditio
occur at this stage. However, because we have the rank deficiency in the reduced polar
leading tos25s2811, the system admits an identity and isnot in involution . This makes prolon-
gation necessary, but the process of prolongation often becomes simpler when Janet–
theory is used in the way that we now show.

The symbolM1 for the unprolonged Riemann–Lanczos problem in three dimensions con
of the six linear equations derived fromf 1212

(R) , f 1313
(R) , f 2323

(R) , f 1213
(R) , f 1223

(R) , f 1323
(R) and is given in

orthonomic form as~where nonmultiplicative variables are indicated by a"!

V12125V1221 x1x2"

V13135V1331 x1x2x3

V23235V2332 x1x2x3

V12135V12312V13121V1321 x1x2x3

V122352V12322V13221V2321 x1x2x3

V13235
1

2
~V13321V12331V2331! x1x2x3.

We imposed the rankingx3sx2sx1 which then induced the rankingPabc3sPabc2sPabc1 and
amongst each setPabce the rankingP233esP232esP132esP123esP133esP131esP122esP121e .
From this we now obtainb1

(1)50, b1
(2)51, b1

(3)55 anda1
(1)58, a1

(2)57, a1
(3)53. The above

results are intrinsic because we usedd-regular coordinates.42
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In order to see whether the symbol is involutive, we differentiate each equation with re
to x1, x2, x3 from which we can produceM2 , where its sparse coefficient matrix is given a
explained in detail in Ref. 42. We obtainr (M2)518 which does not coincide with the tota
number of multiplicative variables

(
k51

3

k•b1
~k!517Þr ~M2!518,

so thatM1 is it not involutive. Therefore, we prolongR1 to R2 which consists of 24 equations
18 of which are the partial derivativesSabcde of the six f abcd

(R) . We order theSabcde such that
Sabc33sSabc23sSabc22sSabc13sSabc12sSabc11 and then amongst each setS233i j sS232i j sS132i j

sS123i j sS133i j sS131i j sS122i j sS121i j . We find that the prolonged symbolM2 in orthonomic
form is given by

1 V121125V12211 x1 " "

2 V121225V12212 x1 x2 "

3 V1212352V123122V132121V23211 x1 x2 "

4 V131135V13311 x1 " "

5 V131235V13312 x1 x2 "

6 V131335V13313 x1 x2 x3

7 V232135V23312 x1 " "

8 V232235V23322 x1 x2 "

9 V232335V23323 x1 x2 x3

10 V121135V123112V131121V13211 x1 " "

11 V1312252V132122V123122V23211 x1 x2 "

12 V121335
3

2
V123132

1

2
V133121

1

2
V23311 x1 x2 x3

13 V1221352V123122V132121V23211 x1 " "

14 V1222352V123222V132221V23212 x1 x2 "

15 V122335
3

2
V123231

1

2
V233122

1

2
V13322 x1 x2 x3

16 V132135
1

2
~V133121V123131V23311! x1 " "

17 V132235
1

2
~V133221V123231V23312! x1 x2 "

18 V132335
1

2
~V133231V123331V23313! x1 x2 x3,

where the groups of three equations each correspond tof 1212,i
(R) , f 1313,i

(R) , f 2323,i
(R) , f 1213,i

(R) , f 1223,i
(R) ,

f 1323,i
(R) so that 1 ↔ f 1212,1

(R) and so on. This system produces six equations of class 1, 7 of class
5 of class 3 leading tob2

(1)56, b2
(2)57, b2

(3)55. The total number of multiplicative variable
equals 35 and, ifM2 were involutive, we would have to obtainr (M3)535. From differentiating
R2 with respect to all three space–time coordinates, we obtain the symbolM3 and find that
r (M3)535, which means thatM2 is involutive.42 But we can show that the symbol equation]3

@Eq. ~3!#, where 3↔ 3 above, can also be created as a linear combination
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]3@Eq. ~3!#52]2@Eq. ~16!#12]3@Eq. ~11!#22]3@Eq. ~13!#2]2@Eq. ~5!#2]1@Eq. ~7!#
~34!

using formal differentiation so thatr (M3)5(k51
3 k•b2

(k)535. However, it turns out that whe
~34! is rewritten in terms of the full equations fromR3 as

I 5 f 1212,33
~R! 1 f 1313,22

~R! 1 f 2323,11
~R! 22 f 1323,12

~R! 22 f 1213,23
~R! 12 f 1223,13

~R! , ~35!

it is not a trivial identity any longer and cannot be obtained by means of any linear combin
of the f abcd

(R) and their derivativesf abcd,e
(R) so thatr (R3)56118136560. We have

dim~R1!518, dim~M1!518,

dim~R2!556, dim~M2!530,

dim~R3!5100, dim~M3!545,

which leads us to the important consequence that

dim~R2
~1!!5dim~R3!2dim~M3!51002455555dim~R2!21.

This means thatone integrability condition of the form „35… occurs. Our new system of equa
tions has to be given by

05 f abcd
~R! ,

05 f abcd,e
~R! , ~36!

05I .

We find that the symbol of~36! is simply given by the previousM2 together with

V123235
1

~G12
3 2G13

3 !
@V23312~G13

3 2G12
3 !12G33

3 V123122V13322~2G11
1 1G12

3 1G13
3 !#, ~37!

which adopts three multiplicative variables. Therefore, we obtain for~36!

b2,~1!
~1! 56,b2,~1!

~2! 57,b2,~1!
~3! 56 so that a2,~1!

~1! 518,a2,~1!
~2! 59,a2,~1!

~3! 52.

We see thatr (M3
(1))5r (M3)13538 because the three derivatives resulting from~37! are lin-

early independent and becauser (R3
(1))5r (R1)1r (R2

(1))13513563 which leads to

dim~R2
~2!!5dim~R3

~1!!2dim~M3
~1!!5972425555dim~R2

~1!!.

Becauser (M3
(1))5(k51

3 k•b2,(1)
(k) 56114118538, M2

(1) is involutive and, because dim(R2
(2))

5dim(R2
(1))555, there are no integrability conditions that can occur and so the systemR2

(1) is in
involution.

Even though the above prolongation of the Riemann–Lanczos problem mathematically
to a prolonged system in involution, this prolonged system~36! does not respect general cova
ance. This is not satisfactory from a general relativity point of view and we are going to su
a covariant version of the above prolongation. Instead of adding the partial derivatives t
equations, we look at the following new system of equations:

05 f abcd
~R! ,
~38!
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05 f abcd;e
~R! .

The symbol of this modified system obviously coincides with that of the system formed byf abcd
(R) ,

f abcd,e
(R) and, again, we obtain for the rank ofM3 that r (M3)5(k51

3 k•b2
k535 so thatM2 is

involutive. We now have to see whether the linear combination~34! also holds for the full
covariant system here. Calculations show that this is not the case and we obtain a co
version of the above integrability condition in solved form given by

I Cov5 f 1212;33
~R! 1 f 1313;22

~R! 1 f 2323;11
~R! 2 f 1323;12

~R! 2 f 1323;21
~R! 2 f 1213;23

~R! 2 f 1213;32
~R! 1 f 1223;13

~R! 1 f 1223;31
~R! .

~39!

This condition can be rewritten again in solved form as

I Cov5B12123;31B13132;21B23231;1. ~40!

whereBabcdeª f ab@cd;e#
(R) which amounts to the covariant derivatives of the Bianchi identities

theRabcd involved in ~40!. We can rewriteI Cov ~Ref. 44! in a more concise form usingbivectors,
where we introduce the bivector-indicesAI ª12, BI ª31, CI ª23. The integrability conditionI Cov

can then be expressed as

I Cov5 f AA;~33!
~R! 1 f BB;~22!

~R! 1 f CC:~11!
~R! 12~ f AC:~13!

~R! 1 f BC;~12!
~R! 1 f AB:~23!

~R! !5 (
x,y51

3

(
X,Y51

3

f XY;~xy!
~R! .

~41!

Our new covariantly prolonged system is then given by

05 f abcd
~R! ,

05 f abcd;e
~R! , ~42!

05I Cov.

It is r (R2
(1))56119525, r (R3

(1))56119138563 as well asr (M2
(1))519, r (M3

(1))538 so
that M3

(1) coincides with the previous symbol for the prolongation involving partial derivativ
Once again it is dim(R2

(2))5dim(R2
(1))555. We find that the system~42! also consists of a system

in involution which respects general covariance. Therefore, we prefer~42! as a prolongation to a
second-order system in involution for the Riemann–Lanczos problem in three dimensions a
conclude the following.

Theorem 4: Proposition. The Riemann–Lanczos problem in three dimensions is not in inv
lution. Its reduced characters(s08 ,s18 ,s28 ,s38) are (14, 8, 7, 3). They modify to (17, 8, 7, 0) when t
differential gauge conditions are imposed. The Riemann–Lanczos problem becomes involutiv
after one prolongation which is obtained by adding either of the integrability conditions (35
(40) and now its Cartan characters(a2

(1) ,a2
(2) ,a2

(3)) for R2
(1) are (18, 9, 2).

C. The problem in four dimensions and singular solutions

In the Bampi–Caviglia papers4,5 the Riemann–Lanczos problem was written as an EDS
found not to be in involution in four dimensions. In their second paper5 they introduced a prolon-
gation to create an involutive system. Our Pfaffian system for four dimensions is given by~16!,
where n54 and the number of independent Lanczos componentsLabc is m520. We obtain
(xa,Labc ,Pabcd) local jet coordinates onJ1(R4,R20) with N541201805104 formal dimen-
sions. For a Vessiot vector fieldV, 20 of the 80 componentsVabcd are defined through the
requirement thatd fabcd

(R) (V)50 given by~19!. The 60 remaining componentsVabcd2V$abcd% can
be chosen arbitrarily for the first Vessiot vector field. As shown in Ref. 4 a rank deficiency
between thesi and thesi8 occurs due to six identities and the system~16! fails to be involutive.
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The reduced Cartan characters can be computed using the REDUCE computer code in
based on the EDS package by Hartley.45 For a number of space–times such as the conformally
Kasner, Go¨del, some Debever types, and plane wave space–times we verified that the re
Cartan characters (s08 ,s18 ,s28 ,s38 ,s48) were~40, 20, 19, 15, 6! when the differential gauge conditio
~3! was not included and~40, 20, 19, 15, 0! when it was included butneitherdifferential system
is in involution.42

Nevertheless, singular solutions exist and occur when some of the integral elemen
singular so that the characters are not maximal. In the remaining sections of this article, w
give a examples of singular solutions for the Riemann–Lanczos problem mostly in four d
sions.

D. Debever-type space–times: Example

We expect singular solutions to occur for most of the Debever type space–times for wh
line element is given by

ds25dt22 f 2~ t,y,z!dx22dy22dz2 ~43!

with f (t,y,z) being one of the functions given in Refs. 46 and 47. Specifically, for a Deb
space–time withf 5y2 of Petrov typeD we are interested in singular solutions such that

£jLabc50 ~44!

is possible using £jRabcd50 and the fact that¹£j5£j¹ for j any Killing vector field~5KV !.
There are three KVs corresponding to the ignorable coordinatest, x, andz and the components o
the fourth KV arej45(z,0,0,t).48 The only nonvanishing independent Riemann–Lanczos eq
tions aref txty

(R) , f xyxy
(R) , f xzyz

(R) . A singular solution with vanishing Lie derivatives along Killing dire
tions is then given by

Ltxt5C1y4, Ltyz5C2y22, Lxyx5C3y21y3,

whereC1 ,C2 ,C3 are arbitrary constants. On a submanifold of~16! with f abcd
(R) 50 for the above

line element this solution corresponds to a singular integral manifold for which the~reduced!
characters ares05s0853 while all higher characters vanish. The Vessiot vector fields which s
the tangent spaces of this singular solution manifold are locally given as

V15
]

]t
,

V25
]

]x
,

~45!

V35
]

]y
14C1y3

]

]Ltxt
22C2y23

]

]Ltyz
24C2y23

]

]Ltzy
1~2C3y13y2!

]

]Lxyx
14C1y3

]

]Lxzz

112y2
]

]Ptxty
16C2y24

]

]Ptyzy
112C2y24

]

]Ptzyy
12~C313y!

]

]Pxyxy
112y2

]

]Pxzzy
,

V45
]

]z
,

where we substituted

Vtxty
3 512y2, Vtyzy

3 56C2y24, Vxyxy
3 52~C313y!,
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and whereVtxty
3 5Vxzzy

3 andVtzyy
3 52Vtyzy

3 .

E. Singular solution for Go ¨ del space–time

Gödel space–time is a perfect fluid space–time admitting closed timelike curves with
element

ds25a2~dt22dx22dz21 1
2e

2xdy212exdtdy!. ~46!

It is well known49 that this space–time admits aG5 as an isometry group of which three Killin
vectorsj1,j2,j3 are based on the ignorable coordinatest, y, z. The other two are given by

j45
]

]x
2y

]

]y
, j5522e2x

]

]t
1y

]

]x
1S e22x2

1

2
y2D ]

]y
.

But here, the Riemann–Lanczos problem does not admit singular solutions which inherit a
space–time symmetries. However, it is possible to find singular solutions with £jLabc50 imposed
for the three Killing vectors based on ignorable coordinates and we find the solution42

Ltxy52
a2

8
ex, Ltyx5

a2

8
ex, Ltxt52

a2

8
, Lxyy5

3a2

16
e2x.

This solution does not satisfy all the differential gauge conditions~3! however.42 The tangent
spaces of this singular integral manifold are spanned by four Vessiot vector fields whic
locally given as

V15
]

]t
,

V25
]

]x
1

a2

8
ex

]

]Ltxy
1

a2

8
ex

]

]Ltyx
1

3a2

8
e2x

]

]Lxyy
1

1

3
exS 5a

16
2

1

2
2e2x

3a

16D ]

]Ptxyx

2
1

3
exS 5a

16
2

1

2
2e2x

3a

16D ]

]Ptyxx
1

3

4a
e2x

]

]Pxyyx
,

~47!

V35
]

]y
,

V45
]

]z
,

whereVtyxx
2 5Vtxyx

2 .
Note that the solution above isalso a singular solutionto the reduced Gödel space–time

when we choose the line element

ds25a2~dt22dx21 1
2e

2xdy212exdtdy! ~48!

to describe the reduced Go¨del space–time.

F. Kasner space–time

For Kasner space–time we choose the line element

ds25dt22t2p1dx22t2p2dy22t2p3dz2. ~49!
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Kasner space–time admits aG3 based on the three ignorable coordinatesx, y, z. If we impose
£jLabc50, the six nonvanishing components of the Riemann–Lanczos equations
f txtx

(R) , f tyty
(R) , f tztz

(R) , f xyxy
(R) , f xzxz

(R) , f yzyz
(R) . The last three equations can be solved forLtxx ,Ltyy ,Ltzz. But,

inserting this solution into the first three equations leads to the inconsistent solution

Ltxx52 1
4p1t2p121, Ptxxt5~ 1

22 3
4p1!p1t2p122,

Ltyy52 1
4p2t2p221, Ptyyt5~ 1

22 3
4p2!p2t2p222,

Ltzz52 1
4p3t2p321, Ptzzt5~ 1

22 3
4p3!p3t2p322,

becausePabcdÞ]Labc /]xd. However, there are singular solutions for which some of the com
nentsLabc are linear in eitherx, y or z with no Lie symmetries along Killing directions. We fin
that

Ltxt5C1t2p122x, Ltxx5C4t2p121,

Ltyt5C2t2p222y, Ltyy5C5t2p221,

Ltzt5C3t2p322z, Ltzz5C6t2p321,

Lxyx5C7t22p3y, Lxyy5C10t
22p3x,

Lxzx5C8t22p2z, Lxzz5C11t
22p2x,

Lyzy5C9t22p1z, Lyzz5C12t
22p1y

is a singular solution for Kasner space–time for the following constants:

C45
C1

~p121!
2

p1

2
, C55

C2

~p221!
2

p2

2
,

C65
C3

~p321!
2

p3

2
, C75

p1C2

22p1
,

C85
p1C3

22p1
, C95

p2C3

22p2
,

C105
2p2C1

22p2
, C115

2p3C1

22p3
,

C125
2p3C2

22p3
.

A computer code, which determines the rather longish expressions forC1 ,C2 ,C3 in terms of
p1 ,p2 ,p3 , can be found in Ref. 42.

V. CONCLUSION

In two dimensions, the Riemann–Lanczos problem is very simple and we showed tha
always in involution. The general solution was given for both possible choices of signa
Lorentzian and Euclidean.

In three dimensions, a prolongation becomes necessary to make it a system in involuti
integrability condition based on the derivatives of the Bianchi identities occurs when we
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Janet–Riquier theory and introduce the second-order partial derivativesSabcde as new jet coordi-
nates. A singular solution for the unprolonged problem for the reduced Go¨del space–time is given

The Riemann–Lanczos problem in four dimensions is not in involution as already sho
Ref. 4. But singular solutions for the Riemann–Lanczos problem do exist and we found som
Kasner, Go¨del, and a Debever-type spacetime.

ACKNOWLEDGMENTS

Both authors thank D. Hartley and W. M. Seiler for valuable discussions as well as Pro
L. S. Xanthis. We are grateful to Professor C. Hoenselaers for pointing out Refs. 38–40,50
A.G. would like to thank the Swiss National Science Foundation~SNSF! and the Dr Robert
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19E. Kähler,Einführung in die Theorie der Systeme von Differentialgleichungen~Verlag und Druck B. G. Teubner, Leibzig
1934!.

20J. Grifone and Z. Muzsnay,Variational Principles for Second-order Differential Equations~World Scientific, Singapore,
2000!.

21M. Kuranishi, Lectures on Involutive Systems of Partial Differential Equations, Publicações da Sociedade de Math
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The Weyl–Lanczos equations and the Lanczos wave
equation in four dimensions as systems in involution
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The Weyl–Lanczos equations in four dimensions form a system in involution. We
compute its Cartan characters explicitly and use Janet–Riquier theory to confirm
the results in the case of all space–times with a diagonal metric tensor and for the
plane wave limit of space–times. We write the Lanczos wave equation as an exte-
rior differential system and, with assistance from Janet–Riquier theory, we compute
its Cartan characters and find that it forms a system in involution. We compare
these Cartan characters with those of the Weyl-Lanczos equations. All results hold
for the real analytic case. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1566096#

I. INTRODUCTION

A. The Weyl–Lanczos equations and the Lanczos tensor wave equation in four
dimensions

Lanczos1 generated the space–time Weyl conformal tensorCabcd from a tensor potentialLabc

by covariant differentiation such thatCabcd is given by

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a1gbcL ~ad!1gadL ~bc!2gbdL ~ac!2gacL ~bd!

1 2
3L m;s

ms ~gacgbd2gadgbc!, ~1!

where Lad5La
s
d;s2La

s
s;d and ‘‘;’’ denotes covariant differentiation. We call~1! the Weyl–

Lanczos equations. The index symmetries of the Lanczos tensorLabc have to match the symme
tries of ~1! and so it is usual to impose

Labc5L @ab#c ~2!

and

L @abc#50. ~3!

and the trace-free~gauge! condition

La
s
s50. ~4!

The algebraic Eqs.~2!–~4! leave us with only 16 independent components for theLabc . If we then
introduce the differential gauge conditions

a!Electronic mail: pdolan@inctech.com
b!Electronic mail: agerber03@yahoo.co.uk
30350022-2488/2003/44(7)/3035/11/$20.00 © 2003 American Institute of Physics
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Lab
s
;s50, ~5!

which we often denote byf abªLab
s
;s , we can simplify~1! considerably to get

Cabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a2gbcL ad;s
s 2gadL bc;s

s 1gbdL ac;s
s 1gacL bd;s

s . ~6!

We will denote the Weyl–Lanczos equations in solved form as

f abcd5Cabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a1gbcL ad;s
s 1gadL bc;s

s 2gbdL ac;s
s 2gacL bd;s

s .
~7!

We note that Eqs.~5! and ~6! constitute a system of 16 linear first-order partial different
equations in four dimensions. It was already shown in Ref. 2 for the real analytic case th
above four-dimensional Weyl–Lanczos equations consist of an exterior differential system~EDS!
in involution with respect to the space–time variables.

From the Weyl–Lanczos problem it is possible to generate a Lanczos tensor wave eq
and from this the Penrose wave equation for the Weyl tensorCabcd can be derived.3 It is given by

hLabc12Rc
sLabs2Ra

sLbcs2Rb
sLcas2gacR

lsLlbs1gbcR
lsLlas2

1
2RLabc5Jabc , ~8!

where

Jabc5
1
2Rc@a;b#2

1
6gc@aR;b] , hLabc5gsmLabc;s;m .

Penrose’s nonlinear wave equation for the space–time Weyl tensor4

hCabcd2Cab
smCsmcd14Casm[cC d]

m
b

s 1
R

4
Cabcd5J@ab#@c;d#1J@cd#@a;b#2* J@ab#@c;d#

* 2* J@cd#@a;b#
*

~9!

was derived in Ref. 3 from~8! and can be found for all dimensionsn>4. It was not derived from
the wave equations for the Lanczos tensor candidate, which was given forn55 by Edgar and
Höglund.5 We postpone to a later paper the discussion of the five-dimensional Weyl–Lan
problem and the related tensor wave equation for the Lanczos potential. It is not clear fro
published tensor wave equation of Edgar and Ho¨glund5 in five dimensions that there is still a
independentderivation of the Penrose wave equation from it as in four dimensions.

In this article, we are going to compute the Cartan characters for the Weyl–Lanczos equ
in four dimensions explicitly using both EDS theory and Janet–Riquier theory6,7 and we will
derive corresponding results for the four-dimensional wave equation.

II. WEYL–LANCZOS EQUATIONS IN FOUR DIMENSIONS

The theory of exterior differential systems~EDSs! can be found in many places such as
Refs. 8–11. In Ref. 2 it was shown that the Weyl–Lanczos relations in four dimensions
system in involution with respect to the space–time variables. They constitute a system in
lution as compared to the Riemann–Lanczos equations, which do not, even in vacuum s
times whenCabcd5Rabcd, because each problem is based on different partial differential e
tions. ~Of course, this is carrying formality about vacuum space–times to excessive lengths
choose a system of PDEs which is not in involution in preference to one which is in involut!

A. The Weyl–Lanczos equations as an EDS

We introduce the local coordinates (xe,Labc ,Pabcd) on the jet bundleJ1(R4,R16) which form
our formal manifoldM of formal dimensionN54116164584. The exterior derivatives of the
f abcd and of f ab5Lab

s
;s constitute our first 16 one-forms. We also have to add 16contact condi-
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tions Kabc in order to make sure that thePabcd can be considered as partial derivatives of theLabc

when projected onto the space–time manifold. We obtain the Pfaffian systemP as given in Ref. 2,

d fabcd5@Cabcd,e1aabcde1gabcde#dxe2dPabcd1dPabdc2dPcdab1dPcdba1gbcg
nsdPnads

1gadg
nsdPnbcs2gbdg

nsdPnacs2gacg
nsdPnbds1Gad

n ~dLnbc1dLncb!2Gac
n ~dLnbd

1dLndb!1Gbc
n ~dLnad1dLnda!2Gbd

n ~dLnac1dLnca!2gbcg
ns~Gns

m dLmad1Gas
m dLnmd

1Gds
m dLnam!2gadg

ns~Gns
m dLmbc1Gbs

m dLnmc1Gcs
mdLnbm!1gbdg

ns~Gns
m dLmac

1Gas
m dLnmc1Gcs

mdLnam!1gacg
ns~Gns

m dLmbd1Gbs
m dLnmd1Gds

m dLnbm!,

d fab5~Pabnsg,e
ns2LmbnGas,e

m 2LamnGbs,e
m 2LabmGns,e

m !dxe1gns~dPabns2Gas
m dLmbn2Gbs

m dLamn

2Gns
m dLabm!,

Kabc5dLabc2Pabcedxe, ~10!

where aabcde and gabcde are given in Appendix A. The system~10! consists of a system in
involution in the real analytic case and does not possess any Cauchy characteristics. The
characters (s0 ,s1 ,s2 ,s3 ,s4) were computed to be~32,16,16,16,0! or ~16,16,16,16,0! due tod fabcd

andd fab vanishing identically when pulled back onto the submanifold withf abcd50, f ab50 for
a number of space–times in a computation based on REDUCE computer codes.12

We can also compute the reduced Cartan characters for~10! using the tableau matrix. First, w
must complete (d fabcd,d fab ,ve) so that it turns into a complete coframe onM, say
(d fabcd,d fab ,Kabc ,ve,pL) by addingN2s2n548 new one-formspL. Accordingly, we add the
48 new cobasis elements chosen as

pL↔dPabc1 , L51,...,16,

pL↔dPabc2 , L517,...,32,

pL↔dPabc3 , L533,...,48,

where the ordering of thePabcd based on the indicesabc is given in Appendix A and whereL
is a collective index subject to Einstein’s summation convention and corresponding to th
of indices abc. Here, the independence conditionV is given by V5v1∧v2∧v3∧v4,where
v15dx1, v25dx2, v35dx3, v45dx4. We can now express the 16dKabc , where thea below
are arranged in the same way as theLabc in Appendix A, as

dua5AL1
a pL∧v11AL2

a pL∧v21AL3
a pL∧v32dPabc4∧v4. ~11!

Further calculations are based on the assumption that we can express each of the 16dPabc4 in ~11!
as a distinct linear combination of thed fabcd, Kabc , dLab

s
;s and theve.12 We obtain the only

nonvanishing components of the tableau matricesAL1
a , AL2

a and AL3
a to be AL1

a 5AL2
a 5AL3

a 5
21 if a andL refer to the same group of indicesabc. This leads to

S AL1
a

AL2
a

AL3
a

AL4
a

D 5S A 0 0

0 A 0

0 0 A

X1 X2 X3

D ,

which is a 64348 matrix, and whereX1 , X2 , X3 stand forAL4
a and each A is given by the 16

316 matrix Aª52I16. From this we can immediately deduce that the reduced character
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s185s285s38516 ands4850. However, this method does not supplys08 but here clearlys05s085s
532 which is simply the number of independent one-forms in~10! so that (s08 ,s18 ,s28 ,s38 ,s48) is
given by~32, 16, 16, 16, 0!. When~10! is pulled back onto the submanifold, wheref abcd50 and
f ab50, we get~16, 16, 16, 16, 0!. One can show that the torsion termsBi j

a can be made to vanish
through applying a corresponding coframe transformation. This rather cumbersome calc
can be carried out using a REDUCE code in Ref. 12 based on the package EDS.13

B. The Weyl–Lanczos equations as a system of PDEs

The theory in this section and for the Lanczos wave equation below is based on a mode
version of Janet–Riquier theory14–16which can be found in Refs. 17 and 7. A review together w
some results on the Riemann–Lanczos problems in two and three dimensions is given in R

Here, we use~6! and~5! as our first-order system of PDEs denoted byR1 . Using a computer
code in Ref. 12, we derived the symbolM1 for any space–time with diagonal metric

ds25a1~dx1!22a2~dx2!22a3~dx3!22a4~dx4!2, ~12!

wherea1 , a2 , a3 , a4 depend on all space–time variables. We replace the four componentsL121,
L131, L141, L122 and their partial derivatives by solving~4! for them and we choose an orderin
sfor thePabce in such a way thatPabc4sPabc3sPabc2sPabc1 and then the sets ofPabceordered
according toRs

(W,4) for eache51, 2, 3, 4, whereRs
(W,4) is given in Appendix A. This produces a

orderly ranking and induces such a ranking amongst thesymbol variables Vabcd.7,17 Then,M1 is
given in orthonomic form by

~ f 1212! V34345
a4

a1
V13311

a3

a1
V14412

a4

a2
V23322

a3

a2
V24421V3443,

~ f 1213! V24345
a4

a1
V13212

a4

a2
V23221V24431V3442,

~ f 1313! V24245
a4

a3
V23231V24422

a2a4

a1a3
V13312

a2

a3
V3443,

~ f 1214! V23345V23431
a3

a2
V24221V34322

a3

a1
V1421,

~ f 1314! V23245
a2

a1
V14311V23422V24232

a2

a3
V3433,

~ f 1323! V14245
a4

a3
V13232

a4

a3
V12331V14422

a4

a3
V2331,

~ f 1223! V14345
a4

a2
V12322

a4

a2
V13221V14431

a4

a2
V2321,

~ f 1224! V13345V13431
a3

a2
V14222

a3

a2
V24212

a3

a2
V1242,

~13!
~ f 1234! V12345V12431V13422V14322V23411V2431,

~ f 1324! V13245V12431V13422V14231V2431,
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~L12
s
;s! V124452

a4

a3
V23312V24411

a4

a3
V13321V14422

a4

a3
V1233,

~L13
s
;s! V134452

a4

a2
V13222

a4

a3
V13331

a4

a2
V23212V3441,

~L14
s
;s! V144452

a4

a2
V14222

a4

a3
V14331

a4

a2
V24211

a4

a3
V3431,

~L23
s
;s! V234452

a4

a1
V12311

a4

a1
V13212

a4

a2
V23222

a4

a3
V2333,

~L24
s
;s! V244452

a4

a1
V12411

a4

a1
V14212

a4

a2
V24222

a4

a3
V2433,

~L34
s
;s! V344452

a4

a1
V13411

a4

a1
V14311

a4

a2
V23422

a4

a2
V24322

a4

a3
V2432.

All 16 equations in~13! are of class 4 because all variablesx1, x2, x3, x4 are multiplicative
variables for each equation so that we obtainb1

(1)50, b1
(2)50, b1

(3)50, b1
(4)516. For the sum

(k51
4 b1

(k)516, and because we only have 16 equations, this means that we are already
coordinates which ared-regular.12 Then, the Cartan characters area1

(1)516, a1
(2)516, a1

(3)516,
a1

(4)50 according to the formula7,12,17

aq
~k!5mS n1q2k21

q21 D2bq
~k! . ~14!

Now, we must verify that our symbol is involutive and we prolongf abcd, f ab by differentiating
each equation inR1 with respect tox1, x2, x3, x4 to obtainR2 . We find that we can rewrite the
prolonged symbolM2 of R2 in such a way that each equation contains a distinct compo
Vabcde so thatr (M2)564.12 But we also have(k51

4 k•b1
(k)564 which means thatM1 is involu-

tive. In order to show that the system is formally integrable, we have to verify that the cano
projection ofR2 from second to first orderp1

2(R2) coincides withR1 itself. Our system is a linea
system of PDEs and therefore involution follows.12

For a general space–time, the calculations are more cumbersome and in Ref. 12 we lo
the plane-wave limit which all space–times possess. A good account of the plane-wave li
space–times is given in Ref. 18. All space–times can locally be expressed using a line ele

ds252dx1dx21a~dx3!212b3dx2dx312b4dx2dx42c33~dx3!222c34dx3dx42c44~dx4!2,
~15!

wherea, b3 , b4 , c33, c34, c44 are functions of all four coordinates. When a plane-wave limi
taken, the metric~15! becomes18

ds252dx1dx22C33~dx3!222C34dx3dx42C44~dx4!2, ~16!

whereC33, C34, andC44 are arbitrary functions ofx1 only. We can determine the symbol for th
metric ~16! but we see that for whatever ranking we choose, the coordinates are notd-regular.12

We perform a linear coordinate transformation17 which we choose to be

dx̃15a11dx11a12dx2,

dx̃25a21dx11a22dx2,

~17!
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dx̃35dx3,

dx̃45dx4,

wherea115a125a2151/&, a22521/&. This produces a new, only slightly different metric lin
element for~16! which is

ds25~dx̃1!22~dx̃2!22C33~dx̃3!222C34dx̃3dx̃42C44~dx̃4!2. ~18!

Even though this seems a minor transformation, the change fromcharacteristic to noncharac-
teristic coordinates, which are nowd-regular, is necessary in order to obtain the Cartan cha
ters. Then, we evaluatef abcd50, f ab50 for the new line element~16! and order thePabcd such
that Pabc1sPabc2sPabc3sPabc4 instead, whereas we leave the ordering in each setPabce un-
changed as inRs

(W,4) which leads to an orderly ranking. In this way we obtain an orthono
system, where each symbol equation is of the form12

Vabc15 f ~ga8b8 ,Vc8d8e8 f 8!. ~19!

This system is composed of 16 equations all of class 4 which leads tob1
(1)5b1

(2)5b1
(3)50,

b1
(4)516 and therefore to the Cartan charactersa1

(1)5a1
(2)5a1

(3)516 anda1
(4)50. We obtained

the further result thatr (M2)5(k51
4 k•b1

(k)564 and that no integrability conditions occur12 so that
the Weyl–Lanczos equations consist of a system in involution for all plane-wave limits of sp
times with Cartan characters~16, 16, 16, 0!.

III. LANCZOS WAVE EQUATION IN FOUR DIMENSIONS

In this section, we look at the Lanczos wave equation at first as an EDS and then as a
of PDEs. We again determine the Cartan characters and show that it consists of a sys
involution in the real analytic case using each theory, a result which can be derived from the
wave equation directly.

A. The Lanczos wave equation as an EDS

We describe the Lanczos tensor wave equation in terms of an EDS on a jet bundleJ_2(R4,R16)
with formal dimension N5411616411605244 and the local coordinate
(xe,Labc ,Pabcd,Sabcde) composed by 4 space–time coordinatesxe, 16 Labc , 64 Pabcd, and 160
Sabcde. The Sabcde are the variables corresponding to the second-order partial derivatives o
Labc when projected onto our space–time manifold. We denote the components of the
equation in solved form byWabc .

In addition to the exterior derivations ofWabc , we need to add two sets of contact condition
Kabc andKabcd, when we write the Lanczos wave equation as an EDS. Altogether, we obtai
Pfaffian system

dWabc5dWabc ,

Kabc5dLabc2Pabcedxe, ~20!

Kabcd5dPabcd2Sabcdedxe.

TheredWabc are the exterior derivatives of the components of the wave equation in solved
which are locally given by

dWabc5@hLabc12Rc
sLabs2Ra

sLbcs2Rb
sLcas2gacR

lsLlbs1gbcR
lsLlas2

1
2RLabc2Jabc# ,edxe

1gsm@dSabcms2Gam,s
n dLnbc2Gms,s

n dLanc2Gcm,s
n dLabn2Gas

n dPnbcm1Gas
n Gnm

k dLkbc

1Gas
n Gbm

k dLnkc1Gas
n Gcm

k dLnbk2Gbs
n dPancm1Gbs

n Gam
k dLknc1Gbs

n Gnm
k dLakc
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1Gbs
n Gcm

k dLank2Gcs
n dPabnm1Gcs

n Gam
k dLkbn1Gcs

n Gbm
k dLakn1Gcs

n Gnm
k dLabk

2Gms
n dPabcn1Gms

n Gan
k dLkbc1Gms

n Gbn
k dLakc1Gms

n Gcn
k dLabk#12Rc

sdLabs2Ra
sdLbcs

2Rb
sdLcas2gacR

lsdLlbs1gbcR
lsdLlas2

1
2RdLabc . ~21!

For a number of space–times, we could show that the Cartan characters (s0 ,s1 ,s2 ,s3 ,s4) are
given by ~96, 64, 48, 32, 0! and that the system is in involution.12

Again, we can determine the reduced Cartan characters using the tableau matricesAl i
a . First,

we complete (dWabc ,Kabc ,Kabcd,ve) to a coframe on our formally 244-dimensional jet-bund
In ~20! we have 96 one-forms to which we add the 4 one-formsv15dx1, v25dx2, v35dx3,
v45dx4 so that we need to add a further 144 formspL in order to obtain a complete coframe o
N5244 one-forms. Again,L is a collective index subject to Einstein’s summation convention,
time replacing complete sets of indicesabcd in dSabcde. In order to obtain intrinsic values, w
choose to replace all componentsdSabcde, where eitherd or e are54, first, and so on based onx4

being our first coordinate, thenx3, thenx2, andx1 last. The correspondence ofpL↔dSabcde is
given in detail in Appendix B. We solve eachdWabc for a distinctdSabc11. BecausedKabc50
~mod~P!!, we only need to considerdKabcd when computing the tableau matrices and the redu
Cartan characters. We can now write the 64dKabcd as

dua[AL2
a pL∧v21AL3

a pL∧v31AL4
a pL∧v42dSabc11∧v11Bi j

a v i∧v j . ~22!

From this we find that the only nonvanishing tableau matrix componentsAL i
a for iÞ1 are given by

AL i
a 521 when the indicesa and L correspond to the same set of indicesabcd as given in

Appendix B andAL i
a 50 otherwise. This leads to

S AL4
a

AL3
a

AL2
a

AL1
a

D 5S 0 0 A

0 B 0

C 0 0

X1 X2 X3

D ,

which is a 1603144 matrix and whereX1 , X2 , X3 stand forAL1
a andA is a 64364 matrix with

A52I64, B is a 48348 matrix withB52I48 andC is a 32332 matrix withC52I32 so that the
total rankr 5144 is obtained. We obtains18564, s28548, s38532, ands4850, meaning that the se
of reduced Cartan characters (s08 ,s18 ,s28 ,s38 ,s48) is ~96, 64, 48, 32, 0!. Computer codes show tha
we can find a coframe transformation such that the torsion termsBi j

a can be absorbed and th
system is in involution with Cartan characters~96, 64, 48, 32, 0! for a number of space–times.12

B. The Lanczos wave equation as a system of PDEs

We denote the system~8! formed by the 16 components of the wave equation byR2,wave,
where the index ‘‘2’’ refers to the order of the system. Due to the definition of the symbolMq of
a system of PDEsR, only the highest-order derivatives lead to terms in the symbol so tha
only terms contributing to the symbolM2,waveare parts of thehLabc-terms. The 16 equations fo
the symbol for an arbitrary space–time each look like

Vabc445
1

g44~g11Vabc111g22Vabc221g33Vabc3312g12Vabc1212g13Vabc1312g14Vabc14

12g23Vabc2312g24Vabc2412g34Vabc34!. ~23!

We can easily see that by ordering theSabcde in such a way thatSabc44sSabc34sSabc33sSabc24

sSabc23sSabc22sSabc14sSabc13sSabc12sSabc11 based onx4sx3sx2sx1 and by choosing for
each set ofSabci j the orderingRs

(wave,4) given in Appendix B, an orderly ranking is achieved.
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Because all equations of form~23! are of class 4, it means thatb2
(4)516 is the maximal value

for b2
(4) and b2

(1)5b2
(2)5b2

(3)50 so that the Cartan characters area2
(1)564, a2

(2)548, a2
(3)

532,a2
(4)50. Further calculations show thatM2,waveis involutive andno integrability conditions

occurbecause the system is linear so that the Lanczos wave equation in four dimensions c
of a system in involution with Cartan characters~64, 48, 32, 0!.12

We can also derive this result directly from thescalar wave equation

hC50, ~24!

whereC is our scalar component depending onx1, x2, x3, x4. We use a formal manifoldM with
N519 formal dimensions of which a local basis is given by the fourxe, one dependent variabl
C, four Pe and tenSe f on our jet bundleJ 2(R4,R). We obtainb2

(1)5b2
(2)5b2

(3)50 andb2
(4)

51 and the characters area2
(1)54, a2

(2)53, a2
(3)52, a2

(4)50. The symbol of a single equation i
always involutive and we further find thatr (M3)54 and therefore dim(M3)516 whereas
r (R3)55 and dim(R3)530. We also find that dim(R2)514 and

dim~R2
~1!!5dim~R3!2dim~M3!530216514,

so that we conclude that dim(R2)5dim(R2
(1))514. Because the system is linear, no integrabi

conditions can occur and the scalar wave equation~24! consists of a system in involution with
characters~4, 3, 2, 0!. Note that in the case of the Lanczos wave equation, we are dealing wi
equations because we have 16 independent componentsLabc and find the correspondence betwe
the two sets of characters is here given by

16•~4,3,2,0!5~64,48,32,0!.

If we compare the characters of the Weyl–Lanczos equations with those of the Lanczos
equation, we need to prolongate the Weyl–Lanczos equations once to second order. But
involutive system the characters of the symbolMq1r of the prolonged system together with th
bq1r

(k) are directly determined by7,17

aq1r
k 5(

i 5k

n S r 1 i 2k21
r 21 Daq

~ i ! , bq1r
k 5(

i 5k

n S r 1 i 2k21
r 21 Dbq

~ i ! ,

where in our casen54, m516, q51, and r 51, which leads to the result~48, 32, 16, 0! for
(a2

(1) ,a2
(2) ,a2

(3) ,a2
(4)) for the prolonged Weyl–Lanczos equations. This shows that, based o

a2
(k) for both systems, the Weyl–Lanczos equations are more restrictive than the Lanczos

equation with characters~64,48,32,0!. The general solution of the Weyl–Lanczos equations o
depends on 16 arbitrary functions of three variables whereas the general solution for the L
wave equations contains 32 arbitrary functions of three variables.

IV. CONCLUSION

We obtained the Cartan characters (s0 ,s1 ,s2 ,s3 ,s4) for the Weyl–Lanczos equations given a
a Pfaffian system in involution which are~32, 16, 16, 16, 0! and ~16, 16, 16, 16, 0! when pulled
back onto the submanifold where the Weyl–Lanczos equations themselves vanish iden
These results were obtained assisted by REDUCE codes based on the EDS package. Usin
Riquier theory the Cartan characters were obtained to be~16, 16, 16, 0! for a diagonalized
space–time and for the plane wave limit taken of any space–time and these systems w
involution.

We showed that the Lanczos wave equation also consists of a Pfaffian system in invo
and that its Cartan characters are given by~96, 64, 48, 32, 0!. We also found that the Lanczo
wave equation was less restrictive than the Weyl–Lanczos equations allowing for 32 arb
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functions of three variables as opposed to only 16 which can also be derived from the scala
equation. In practice many of the arbitrary functions involved may amount to gauge contribu
though. All results hold for the real analytic case.

ACKNOWLEDGMENTS

Both authors wish to thank D. Hartley and W. M. Seiler for valuable discussions as we
Professor L. S. Xanthis. A.G. would like to thank the Swiss National Science Foundation~SNSF!
and the Dr Robert Thyll-Du¨rr Foundation.

APPENDIX A: THE WEYL–LANCZOS EQUATIONS

Here, we give the expressions for theaabcde and thegabcde occurring in the EDS for the
Weyl–Lanczos equations given by~10!:

aabcde5Gad,e
n ~Lnbc1Lncb!1Gbc,e

n ~Lnad1Lnda!2Gac,e
n ~Lnbd1Lndb!2Gbd,e

n ~Lnac1Lnca!.
~A1!

The quantitygabcde is given by

gabcde5gbc@Pnadsg,e
ns2Lmad~Gns

m gns! ,e2Lnmd~Gas
m gns! ,e2Lnam~Gds

m gns! ,e#1gad@Pnbcsg,e
ns

2Lmbc~Gns
m gns! ,e2Lnmc~Gbs

m gns! ,e2Lnbm~Gcs
mgns! ,e#2gbd@Pnacsg,e

ns2Lmac~Gns
m gns! ,e

2Lnmc~Gas
m gns! ,e2Lnam~Gcs

mgns! ,e#2gac@Pnbdsg,e
ns2Lmbd~Gns

m gns! ,e2Lnmd~Gbs
m gns! ,e

2Lnbm~Gds
m gns! ,e#1gbc,e@Pnadsg

ns2Lmad~Gns
m gns!2Lnmd~Gas

m gns!2Lnam~Gds
m gns!#

1gad,e@Pnbcsg
ns2Lmbc~Gns

m gns!2Lnmc~Gbs
m gns!2Lnbm~Gcs

mgns!#2gbd,e@Pnacsg
ns

2Lmac~Gns
m gns!2Lnmc~Gas

m gns!2Lnam~Gcs
mgns!#2gac,e@Pnbdsg

ns2Lmbd~Gns
m gns!

2Lnmd~Gbs
m gns!2Lnbm~Gds

m gns!#. ~A2!

When introducing the collective indexL for the additional coframe elementspL, we ordered the
Labc according to

L133aL144aL123aL132aL124aL142aL134aL143aL232aL233aL242aL244

aL234aL243aL343aL344

from which we deduce the ordering for thepL↔dPabce in such a way that thedPabce are
arranged like theLabc above. ThepL are then labeled:

p1↔dP1331,..., p16↔dP3441,

p17↔dP1332,..., p32↔dP3442,

p33↔dP1333,..., p48↔dP3443.

When expressing the Weyl–Lanczos equations as a system of PDEs, we used the standard
ranking ~if not stated otherwise explicitly! which is based on the orderingPabc4sPabc3sPabc2

sPabc1 . Then, amongst each set of thePabci we order them according to

P344isP343isP243isP234isP244isP242isP233isP232isP143isP134isP142isP124isP132i

sP123isP144isP133i .

This leads to an orderly ranking for thePabcd for the Weyl–Lanczos equations denoted byRs
(W,4) .
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APPENDIX B: THE LANCZOS WAVE EQUATION

Here, we specify the correspondence between thepL and thedSabcde for the Lanczos wave
equation. For bothi,j fixed we assume that thedSabci j are ordered according to the ordering of t
Labc in Appendix A. For the first 64pL, where we have used the fact thatx4sx3sx2sx1 for our
independent variables in order to obtain intrinsic results, we obtain the labeling~for the pairs of
indicesi j 544, 34, 24, 14!

p1↔dS13344,..., p16↔dS34444,

p7↔dS13334,..., p32↔dS34434,

p33↔dS13324,..., p48↔dS34424,

p49↔dS13314,..., p64↔dS34414.

Then, the next 48pL are given by~for i j 533, 23, 13!

p65↔dS13333,..., p80↔dS34433,

p81↔dS13323,..., p96↔dS34423,

p97↔dS13313,..., p112↔dS34413.

The last 32pL are denoted as follows~for i j 522, 12!

p113↔dS13322,..., p128↔dS34422,

p129↔dS13312,..., p144↔dS34412.

We assumed that all thedSabc11 can be solved for by the 16 exterior derivatives of the wa
equationdWabc and expressed thedSabc11 in this way.

Using Janet–Riquier theory, an orderly rankingRs
(wave,4) for the 160 second-order partia

derivativesSabcde for the Lanczos wave equation is based on

Sabc44sSabc34sSabc33sSabc24sSabc23sSabc22sSabc14sSabc13sSabc12sSabc11

and then amongst each setSabci j for i,j fixed in the same way as for thePabci in Appendix A,
namely,

S344i j sS343i j sS243i j sS234i j sS244i j sS242i j sS233i j sS232i j sS143i j sS134i j sS142i j sS124i j sS132i j

sS123i j sS144i j sS133i j .
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A space–time in toroidal coordinates
J. P. Krisch and E. N. Glassa)

Department of Physics, University of Michigan, Ann Arbor, Michgan 48109
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We present an exact solution of Einstein’s field equations in toroidal coordinates.
The solution has three regions: an interior with a string equation of state; an Israel
boundary layer; and an exterior with constant isotropic pressure and constant den-
sity, locally isometric to anti–de Sitter space–time. The exterior can be a cosmo-
logical vacuum with negative cosmological constant. The size and mass of the
toroidal loop depend on the size ofL. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1580999#

I. INTRODUCTION

There has been increasing interest in space–times with nonspherical topology and n
cosmological constant. Much of the discussion has focused on structures with horizons in a
Sitter ~AdS! space–times.1–5 Vanzo6 pointed out that, in AdS space, there are black hole soluti
with genusg horizons. Aminneborget al. ~ABHP!1 discussed space–times locally isometric
AdS with horizons of arbitrary genus. While many current models of the universe seem to in
that L is positive, there are some models withL,0.7 Aside from their physical relevance to th
actual structure of the Universe, solutions in AdS are very interesting as a comparison c
asymptotically flat solutions. For example, Hawking and Page8 have discussed the relevance of
negativeL to black hole thermal stability. The 211 Bañados–Teitelboim–Zanelli9 black hole
solution and its 311 black string10 lift have generated a large literature.11

In this work we discuss a toroidal fluid solution embedded in a locally AdS exterior. The
an overall metric scale factor which depends on the size ofL. The solution has three regions:

~i! an interior solution with an equation of state,r1pw50;
~ii ! an Israel12 boundary layer with surface stress energySi j and stringlike contentS001Sww

50; and
~iii ! an exterior with constant isotropic pressure, constant density, and a negative cosmo

constant. Just as in the ABHP study, the exterior metric is locally isometric to AdS.
solution models an extended loop with interior structure. The size of the loop and its
depend on the cosmological constant. The solution can be used to model both micro
or very large loop structures, depending on the size ofL.

There have been other discussions of circular string structures. Frolov, Israel and U13

started with an axially symmetric space–time and discussed the relation between interna
structure and angular deficit, then transformed the metric to toroidal coordinates to discu
mass structure of circular cosmic strings. Using toroidal coordinates, Hugheset al.14 studied weak
field loops. Sen and Banerjee15 have discussed a solution for a circular cosmic string loop
cylindrical coordinates. Because often a particular choice of surfaces can simplify the solut
the field equations, we begin with toroidal coordinates.

Cartesian toroids are discussed in the next section. In Sec. III we write the field equatio
the space–time and develop the interior and exterior solutions. Matching conditions are pre
in the fourth section. The Israel boundary layer is described in the fifth section. In Sec. V

a!Permanent address: Physics Department, University of Windsor, Ontario N9B 3P4, Canada. Electronic
englass@umich.edu
30460022-2488/2003/44(7)/3046/13/$20.00 © 2003 American Institute of Physics
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discuss the mass, and the final section concludes with a general discussion.

II. CARTESIAN TOROIDS

The relation between Cartesian coordinates (x,y,z) and toroidal coordinates~h,q,w! on R 3

is16

x5a
sinh~h!cos~w!

cosh~h!2cos~q!
, ~1a!

y5a
sinh~h!sin~w!

cosh~h!2cos~q!
, ~1b!

z5a
sin~q!

cosh~h!2cos~q!
, ~1c!

with 0<h,`, 0<q<2p, 0<w<2p. Here ‘‘a’’ is a constant scale factor.
In toroidal coordinates, the Euclidean metricdx21dy21dz2 becomes

dL25
a2

@cosh~h!2cos~q!#2 @dh21dq21sinh2~h!dw2#. ~2!

The torush5h0 described bydL2 has a circular cross section with circumference 2pa csch(h0),
and the center of the toroid circular cross section is a distancea coth(h0) from the origin. The
equation of thew50, y50 circles, Eq.~1b!, is17

@x2a coth~h0!#21z25a2 csch2~h0!.

As h0 increases, the radius of the loop decreases and the torus approaches the flat torus, a
‘‘ a’’ from the origin. Looking down thez-axis ~about whichw has range 0<w<2p) at the torus,
one sees two concentric circles. Theq5constant surfaces, 0<q<2p, are spheres centered on th
z-axis. From Eq.~1! these spheres have equation

~x21y21z22a2!/2az5cot~q!,

which defines the relation ofq to the torus.

III. SPACE–TIME

For the curved space torus, one must construct two different metrics, an exterior for<h
<h0 and an interior forh0<h<`. The metric that we use to describe the space–time is a sim
generalization of the flat space metric:

ds25
a2

@cosh~h!2cos~q!#2 @2h2~h!dt21e2m(h)dh21dq21h2~h!dw2#. ~3!

Note that metric~3! cannot reduce to the Minkowski metric.

A. Field equations

We write Einstein’s field equations using the conventions of Misner, Thorne, and Whe18

and Wald.19 The field equations are (G5c51)

Gab58pTab . ~4!

Using flow vector ûaûa521, the energy-momentum tensor for a fluid is given in terms
principal pressures as
                                                                                                                



We
soci-

3048 J. Math. Phys., Vol. 44, No. 7, July 2003 J. P. Krisch and E. N. Glass

                    
Tab5rûaûb1p1x̂ax̂b1p2ŷaŷb1p3ẑaẑb . ~5!

In the following development, we write the field equations allowing for fluid anisotropy.
do not includeL explicitly in the stress-energy tensor but will interpret the stress-energy as
ated with a metric solution in terms ofL if appropriate. Using metric~3! above with C
5cosh(h)2cos(q) andua]a5(C/ah)] t , the field equations are

8pra2e2m528ppwa2e2m

52cosh2~h!22 cosh~h!cos~q!1312 sinh~h!C~h8/h!2C2~h9/h!1C2m8~h8/h!

22Cm8 sinh~h!1e2m@231cos2~q!12 cosh~h!cos~q!#, ~6a!

8ppha2e2m53 cosh2~h!2324C sinh~h!~h8/h!1C2~h8/h!2

1e2m@322 cosh~h!cos~q!2cos2~q!#, ~6b!

8ppqa2e2m5cosh2~h!2312 cosh~h!cos~q!22C sinh~h!@2~h8/h!2m8#

1C2@2~h9/h!22m8~h8/h!1~h8/h!2#13e2m sin2~q!, ~6c!

where]h/]h and]m/]h are abbreviated byh8 andm8.

B. Interior solution

Let h25@d0 sinh(h)2b0#
2, e2m51. The interior metric is

gab
in dxadxb5~a/C!2@2h2dt21dh21dq21h2dw2#. ~7!

The energy-momentum components forgin are

8pa2r528pa2pw5~b0 /h!@cosh2~h!2cos2~q!#, ~8a!

8pa2ph5~C/h2!$~d0
21b0

2!C22b0h@cosh~h!1cos~q!#%, ~8b!

8pa2pq5~C/h2!@~d0
21b0

2!C24b0h cos~q!#. ~8c!

The equation of state is

r1pw50. ~9!

The interior metric has quadratic Weyl invariant

CabmnCabmn5
4

3
d0

2 C4

a4h4 @b0 sinh~h!1d0#2, ~10!

and Ricci scalar

Rabgin
ab52

2C

a2h2 $~d0
21b0

2!C22b0h@cosh~h!12 cos~q!#%. ~11!

C. Exterior solution

The solution to be used in the toroid exterior is

gab
ex dxadxb5

a2

@cosh~h!2cos~q!#2 @2h2~h!dt21e2m(h)dh21dq21h2~h!dw2#. ~12!
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In order to describe a cosmological vacuum,ph will have to be constant. The cosine terms shou
vanish. From the general field equations we writeph , grouping the terms:

8ppha2e2m53 cosh2~h!2324 sinh~h!cosh~h!~h8/h!13e2m1cosh2~h!~h8/h!2

1cos~q!@22 cosh~h!e2m14 sinh~h!~h8/h!22 cosh~h!~h8/h!2#

1cos2~q!@2e2m1~h8/h!2#.

To eliminate the cos2 term, take (h8/h)25e2m. The cosine term then becomes

4 cos~q!em@2cosh~h!em1sinh~h!#.

Requiring this term to vanish provides one nontrivial solution

em5sinh~h!/cosh~h!, h5cosh~h!. ~13!

Substituting~13!, the energy-momentum components ofgex are

8pr523/a2, ~14a!

8pph58ppq58ppw53/a2. ~14b!

This can be a space–time with negative cosmological constantL523/a2. The metric is confor-
mally flat and has constant negative Ricci scalarR5212/a2. gex

ab is locally isometric to the AdS
metric.

IV. MATCHING INTERIOR TO EXTERIOR

The two metrics to be joined are

gab
in dxadxb5

a2

C2 $2@d0 sinh~h!2b0#2dt21dh21dq21@d0 sinh~h!2b0#2dw2%,

~15!

gab
ex dxadxb5

a2

C2 F2cosh2~h!dt21
sinh2~h!

cosh2~h!
dh21dq21cosh2~h!dw2G .

Matching the metrics one obtains

cosh~h0!5d0 sinh~h0!2b0 .

Matching the extrinsic curvature yields

d0 cosh~h0!5sinh~h0!.

The bounding surface is thus defined by

cosh~h0!5
b0

d0
221

, ~16a!

sinh~h0!5
d0b0

d0
221

, ~16b!

with
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b0
21d0

251. ~17!

This implies that bothb0 andd0 are less than 1. On the boundary the stresses are

8pa2r528pa2pw5@b0
2 cos2~q!21#, ~18a!

8pa2ph5Cb0@231b0 cos~q!#, ~18b!

8pa2pq5Cb0@2113b0 cos~q!#. ~18c!

A problem with the matching is thatph does not smoothly join to the exterior stress. Th
mismatch would lead to a dynamic boundary. Therefore, an Israel boundary layer will be d
oped.

V. THE BOUNDARY LAYER

A. Position of the layer

If the interior and exterior solutions do not match derivatives but join over an Israel su
layer,12 then the position of the boundary will be set by matching onlyh at h5h0 . For the
exterior we have

h5cosh~h!, em5sinh~h!/cosh~h!.

For the interior

h5d0 sinh~h!2b0 , e2m51.

Matching the interior and exterior ath5h0 provides

cosh~h0!5d0 sinh~h0!2b0 .

Note that thee2m term need not match, since it is the coefficient ofdh2 and the match is forh
constant surfaces. Rearranging, we have the bounding surface

cosh~h0!5
b01kd0~b0

21d0
221!1/2

d0
221

, k5~61!, ~19a!

sinh~h0!5
d0b01k~b0

21d0
221!1/2

d0
221

. ~19b!

B. Parameter constraints

Constraints can be set ond0 andb0 by requiring

sinh~h0!.0, cosh~h0!.0, r interior.0.

Both of the hyperbolic functions in Eq.~19! have a sign choice which is the same for bo
functions. There are eight possible parameter (k,d0 ,b0) combinations for bothd0

2.1 and d0
2

,1 for a total of 16 cases. The hyperbolic conditions eliminate eight and the density cons
five more. The three remaining allowed parameter combinations with their constraints are

~1! d0
2.1:@k511, d0.0, b0.0#, no constraints,
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~2! d0
2.1:@k521, d0.0, b0.0#, Ab0

21d0
221,Ub0

d0
U, Ab0

21d0
221,ud0b0u, ~20!

~3! d0
2,1:@k521, d0.0, b0.0#, Ab0

21d0
221.Ub0

d0
U, Ab0

21d0
221.ud0b0u.

The algebraic details are in the Appendix.

C. Extrinsic curvature

We are interested in a space–time that could describe a loop of matter with an energy d
equal to the loop tension over a bounding Israel surface layer ath5h0 . The stress-energy conten
of the surface layerSi j ~Ref. 12! is given by

8pSi j 5g i j 2ghi j
(b) ~21!

with hi j
(b) the metric of the bounding torus.g i j is the difference between the extrinsic curvatures

the exterior and interior metrics on the boundary

g i j 5Ki j
ex2Ki j

in5^Ki j &.

Calculating the general extrinsic curvature on the bounding torush5h0 with unit normalna we
have

Ki j 52na;bhi
ahj

b ,

Ki j 5naG i j
a 52~na/2!gabgi j ,b .

With C5cosh(h)2cos(q) andha]a5]/]h, we have for the extrinsic curvatures on the bound

K005~naha!
C2

2e2m

]

]h
~h2/C2!, ~22a!

Kww52K00, ~22b!

Kqq5~naha!
C2

2e2m

]

]h
~1/C2!. ~22c!

Kqq will match across the boundary with the metrics we have found. Using Eq.~22a! and forming
K00 we have

K005
h

C
@Ch82h sinh~h!#. ~23!

Establishing the difference between inner and outer spaces and matchingh on the boundary, the
discontinuity in the extrinsic curvature is

^K00&5h@sinh~h0!2d0 cosh~h0!#.

Therefore the boundary layer has a stress energy content

8pS005cosh~h0!@d0 cosh~h0!2sinh~h0!#528pSww . ~24!

RequiringS00.0 and substituting for cosh(h0) and sinh(h0) from Eq.~19! impliesk51. Thus one
parameter set remains:
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d0
2.1:@k511, d0.0, b0.0#. ~25!

The stress energy content of the boundary layer represents a toroidal loop with a stri
equation of state.

VI. MASS

When the generator of time translations is Killing vectorjn, then the Einstein four-momentum
pm5A2gTn

mjn is conserved and a mass can be associated with three-volumedVm ,

M5E
3vol

A2gT n
m jndVm ,

wheredVm5t,mdhdqdw. Substituting we have the mass inside the torus:

M5
2pb0a2

8p E
h0

` E
0

2p h

C3 @cosh~h!1cos~q!#dqdh

5
pb0a2

8 sinh4~h0!
$4d0 sinh~h0!cosh2~h0!2b0@2 sinh2~h0!13#%. ~26!

A similar calculation can be repeated for the mass associated with the surface layer.
Israel formalism the surface stress energy is defined in geodesic coordinates as the thickn« of
the layer approaches zero:

Smn5 «→0
lim E

0

«

Tmndx. ~27!

Start with the definition of the mass in a three-volume and take the limit as the distance be
tori goes to zero:

M 85E
3vol

A2gT n
m jndVm5E

3vol
A2gT n

0 jndhdqdw.

In the limit of zero layer thickness

M 85 «→0
lim E E E

h02«

h0 A2gttgqqgwwghh T n
0 jndhdqdw. ~28!

Assume that the limit can be taken inside the integral and that over the range of theh2 integral
that A2gttgqqgww is approximately constant and takes its value onh0 :

M 85E E A2gtt~h0 ,q!gqq~h0 ,q!gww~h0 ,q! dqdw «→0
lim E

h02«

h0
~T n

0 jnAghhdh!,

M 85E E A2gttgqqgww S n
0 jndqdw.

Integration results in

M 85
ah2

4
@d02tanh~h0!#

2p

sinh~h0!
. ~29!
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VII. DISCUSSION

In summary, we have obtained a fluid solution to the field equations that describes a p
density torus with a boundary layer, embedded in a locally AdS exterior. The solution ha
parameters,d0 andb0 with a restricted range. The fluid and boundary layers both have a strin
equation of state. The solution can describe a variety of structures, depending on the par
value chosen. First consider the size of the loop,Rq5a csch(h0). For the allowed parameter se
we have, in the limitb0

2@ud0
221u,

Rq@k511, d0
2.1#

a
;

d021

b0
.

Rq /a can become very small and the torus will approach the flat torus a distance ‘‘a’’ from the
center of the torus loop. The size of the loop depends on the scale parameter, ‘‘a. ’’ The size of the
scale factor is determined by the cosmological constant. From the field equations we have

8pG

c2 rexterior52
3

a2 , uLu5
3

a2 . ~30!

For example, if this density is roughly the same order as the critical density, we would havuru
;10227 kg/m3 and one finds thata;1028 m. If the solution is used to describe a primordi
universe with a large negativeL, the scale factor could be much smaller and micro loops could
possible.

The mass description is also dependent on the size of the scale factor. We have from E~26!
for the fluid interior

M5
pb0a2

8 F 4d0

sinh~h0!
1

4d0

sinh3~h0!
2

2b0

sinh2~h0!
2

3b0

sinh4~h0!G .
For the surface layer we have Eq.~29!,

M 85
p

2
ah2@d02tanh~h0!#

1

sinh~h0!
.

One thing that is immediately obvious is the different dependence on the scale parameter
largeb0 limit taken above we have

M 8;
p

2
ab0 ,

M;
p

4
a2~d0

221!.

The fluid inside the torus does not depend onb0 in this limit. In the current universe, ifa@1 and
if b0!a, the fluid inside the torus can dominate the mass because of the scale factor. Ifb0;a and
d0→1, the mass in the surface layer could dominate the loop structure. While the size
thin-loop torus depends on ‘‘a, ’’ the ‘‘fat’’ torus can extend much closer in to the origin. As abov
if, in the primordial universe, the cosmological constant was negative and much larger, the
factor, ‘‘a, ’’ could be quite small. The solution could then describe micro loops with the sur
layer the dominant mass contribution.

Several extensions of this solution might be possible. Adding time dependence to gene
oscillating loop for a Casimir calculation would be quite interesting. Time dependence could
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be used to check the evolution and stability over time of a primordial loop. This solution c
also be regarded as a step toward generating multi segment Brevik–Nielson20 loops with metric
dependent tensions.

APPENDIX: MATCHING CONSTRAINTS

The hyperbolic functions are, withS(b0 ,d0)ª(b0
21d0

221)1/2,

cosh~h0!5
b01kd0S

d0
221

, k5~61!, ~A1a!

sinh~h0!5
d0b01kS

d0
221

. ~A1b!

The conditions to be satisfied are

sinh~h0!.0,

cosh~h0!.0.

The cosh function is always positive and sinh(h0) is positive because the range for the inter
metric ish0,h,`. The parameters must always satisfy the condition

b0
21d0

2.1.

The equal sign withS50 is not a possibility since that would imply an exact match of interior a
exterior.

1. sinh „h0…Ì0

d0b01kS

d0
221

.0

A: d0
2.1, k511, 0,d0b01S
~1! (d0.0, b0.0) condition satisfied
~2! (d0,0, b0,0) condition satisfied
~3! (d0.0, b0,0) condition satisfied ifud0b0u,S
~4! (d0,0, b0.0) condition satisfied ifud0b0u,S

B: d0
2.1, k521, 0,d0b02S
~5! (d0.0, b0.0) condition satisfied ifS,ud0b0u
~6! (d0,0, b0,0) condition satisfied ifS,ud0b0u
~7! (d0.0, b0,0) condition excluded
~8! (d0,0, b0.0) condition excluded

C: d0
2,1, k511, 0,2d0b02S
~9! (d0.0, b0.0) condition excluded
~10! (d0,0, b0,0) condition excluded
~11! (d0.0, b0,0) condition satisfied ifS,ud0b0u
~12! (d0,0, b0.0) condition satisfied ifS,ud0b0u

D: d0
2,1, k521, 0,2d0b01S
~13! (d0.0, b0.0) condition satisfied ifud0b0u,S
~14! (d0,0, b0,0) condition satisfied ifud0b0u,S
~15! (d0.0, b0,0) condition satisfied
~16! (d0,0, b0.0) condition satisfied

Summary of Condition 1
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d0
2.1, k521, (d0.0,b0,0) and (d0,0,b0.0) are excluded

d0
2,1, k511, (d0.0,b0.0) and (d0,0,b0,0) are excluded

2. cosh „h0…Ì0

b01d0kS

d0
221

.0

A: d0
2.1, k511, 0,b01d0S
~1! (d0.0, b0.0) condition satisfied
~2! (d0,0, b0,0) condition excluded
~3! (d0.0, b0,0) condition satisfied ifub0u,d0S
~4! (d0,0, b0.0) condition satisfied ifub0u.ud0uS

B: d0
2.1, k521, 0,b02d0S
~5! (d0.0, b0.0) condition satisfied ifd0S,b0

~6! (d0,0, b0,0) condition satisfied ifud0uS.ub0u
~7! (d0,0, b0.0) condition satisfied
~8! (d0.0, b0,0) condition excluded

C: d0
2,1, k511, 0,2b02d0S
~9! (d0.0, b0.0) condition excluded
~10! (d0,0, b0,0) condition satisfied
~11! (d0.0, b0,0) condition satisfied ifub0u.d0S
~12! (d0,0, b0.0) condition satisfied ifb0,ud0uS

D: d0
2,1, k521, 0,2b01d0S
~13! (d0.0, b0.0) condition satisfied ifub0u,d0S
~14! (d0,0, b0,0) condition satisfied ifub0u.ud0uS
~15! (d0,0, b0.0) condition excluded
~16! (d0.0, b0,0) condition satisfied

Summary of Condition 2
d0

2.1, k511, (d0,0, b0,0) is excluded
d0

2.1, k521, (d0.0, b0,0) is excluded
d0

2,1, k511, (d0.0, b0.0) is excluded
d0

2,1, k521, (d0,0, b0.0) is excluded
When the constraints for the two conditions are put together, the cases

k511, d0,0, b0.0, are eliminated for bothd0
2.1 andd0

2,1.
Summary of existing cases after hyperbolic conditions are imposed

d0
2.1:k511 ~A2!

~d0.0, b0.0!

~d0.0, b0,0!: ud0b0u,S, Ub0

d0
U,S

d0
2.1:k521 ~A3!

~d0.0, b0.0!:S,ud0b0u, S,Ub0

d0
U

~d0,0, b0,0!: S,ud0b0u, S.Ub0

d0
U

d0
2,1:k511 ~A4!
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~d0.0, b0,0!:S,ud0b0u, S,Ub0

d0
U

d0
2,1:k521 ~A5!

~d0.0, b0.0!: S.ud0b0u, S.Ub0

d0
U

~d0,0, b0,0!: S.ud0b0u, S,Ub0

d0
U

~d0.0, b0,0!.

Now we require the fluid density inside the torus to be positive:

8pa2r5~b0 /h!@cosh2~h0!2cos2~q!#.0.

cosh(h0) will always be greater than 1 since it equals 1 ath50, which is outside of the torus
interior. In the interiorh0<h<`. We have

b0

d0 sinh~h0!2b0
.0,

1

d0

b0
sinh~h0!21

.0,

d0

b0

b0d01kS

d0
221

.1.

3. d 0
2Ì1

d0
21k

d0

b0
S.d0

221

2k
d0

b0
S,1

k511, ~b0.0, d0.0! and ~b0,0, d0,0!. No constraints

k521, ~b0.0, d0.0! and ~b0,0, d0,0! with constraint Ud0

b0
US,1

4. d 0
2Ë1

2d0
22k

d0

b0
S.12d0

2

2k
d0

b0
S.1
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k511, ~b0,0, d0.0! with constraint S.Ub0

d0
U ~A6!

k521, ~b0.0, d0.0! and ~b0,0, d0,0! with constraint S.Ub0

d0
U

Summarizing all constraints provides

d0
2.1:k511 ~A7!

~d0.0, b0.0!

~d0.0, b0,0!: ud0b0u,S, Ub0

d0
U,S, S,Ub0

d0
U is excluded

d0
2.1:k521 ~A8!

~d0.0, b0.0!:S,ud0b0u, S,Ub0

d0
U

~d0,0, b0,0!: S,ud0b0u, S.Ub0

d0
U, S,Ub0

d0
U is excluded

d0
2,1:k511 ~A9!

~d0.0, b0,0!:S,ud0b0u, S,Ub0

d0
U, S.Ub0

d0
U is excluded

d0
2,1:k521 ~A10!

~d0.0, b0.0!: S.ud0b0u, S.Ub0

d0
U

~d0,0, b0,0!: S.ud0b0u, S,Ub0

d0
U, S.Ub0

d0
U is excluded

~d0.0,b0,0! is excluded

The three allowed parameter combinations are

d0
2.1:k511 ~d0.0, b0.0!

d0
2.1:k521 ~d0.0, b0.0!:S,ud0b0u, S,U b0

d0
U

d0
2,1:k521 ~d0.0, b0.0!: S.ud0b0u, S.U b0

d0
U
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Prolongation methods and Cartan characters for the three-
dimensional Riemann–Lanczos problem

A. Gerbera)

Laboratoire de Mathe´matiques et Physique The´orique, Universite´ de Tours,
Parc de Grandmont, 37200 Tours, France
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The Riemann–Lanczos problem in two dimensions is in involution and its general
solution is known. The three-dimensional Riemann–Lanczos problem is not in
involution and needs to be prolongated. We write the three-dimensional Riemann–
Lanczos problem as an exterior differential system and prolong it to second order.
Using algebraic computing we find that we have to add an integrability condition to
make it a system in involution. We also suggest a prolongation of the three-
dimensional Riemann–Lanczos problem in the same way as Bampi and Caviglia
did for four dimensions. After supplementing this three-dimensional system with an
integrability condition, it becomes involutive with Cartan characters~17,8,2! or
~20,10,3! if no cyclic conditions are imposed. We present the relevant sections of
REDUCE computer codes by means of which these results were obtained. ©2003
American Institute of Physics.@DOI: 10.1063/1.1578181#

I. INTRODUCTION

Apart from the Weyl conformal tensor, which can be expressed by means of a third-
tensor potential, an expression which was first found by Lanczos,1 we can also express th
Riemann tensor using a third-order tensor potential. This third-order tensor potential is u
called theLanczos tensor and its components are denoted byLabc . For the Weyl–Lanczos
problem as well as for the Riemann–Lanczos problem the Lanczos tensor componentsLabc are
subject to the following symmetry condition,

Labc5L [ab]c , ~1!

and, sometimes, we also impose the cyclic conditions

L [abc]50 . ~2!

In this paper we confine ourselves to the discussion of theRiemann-Lanczos equationswhich
were first published in Ref. 2 as

Rabcd5Labc;d2Labd;c1Lcda;b2Lcdb;a . ~3!

For practical reasons we will often write Eqs.~3! in solved form as

f abcd
(R) 5Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a ~4!

denoted byf abcd
(R) . If we impose~1! together with~2!, we obtain two independent componentsLabc

in two dimensions, eight independent components in three dimensions and 20 independen
ponentsLabc in four dimensions. We also have one independent Riemann–Lanczos equat

a!Electronic mail: agerber@gargan.math.univ-tours.fr, agerber03@yahoo.co.uk
30590022-2488/2003/44(7)/3059/12/$20.00 © 2003 American Institute of Physics
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two dimensions, six independent in three dimensions and 20 independent Riemann–Lanczo
tions in four dimensions. Unless stated otherwise we will not impose the differential gauge
ditions

Lab ;s
s 50 . ~5!

We neverassume the trace-free gauge conditions

La
s
s50 ~6!

to hold for the Riemann–Lanczos problem because then we would automatically obtainR50 for
the Ricci scalar which leads to inconsistencies.

As explained in Refs. 3 and 4, Eqs.~3! do not form a system in involution in four dimension
and a prolongation is presented there. The work in this article is based on Refs. 3–6 f
Riemann–Lanczos problem as an exterior differential system. First, we are going to presen
results already known for the Riemann–Lanczos problems in two and three dimensions. Th
are going to use the theory ofexterior differential systems „EDS… and algebraic computing to
present two different prolongations for the three-dimensional Riemann–Lanczos problem to
it involutive, and, we compute itsCartan characters. Algebraic computing supports the calcul
tions as some can be very cumbersome such as the computation of the Cartan characters. T
programs developed by Wahlquist and Estabrook based onMATEMATICA which compute Cartan
characters, and, applications of these programs can be found in Ref. 7. Here, we are going
theREDUCEpackage EDS by Hartley8 and present the relevant sections of computer codes we
in Appendices A, B and C.

II. THE RIEMANN–LANCZOS PROBLEM AS AN EDS

Exterior differential systems~EDS! in general and Cartan characters in particular are
cussed in Refs. 9–13. We can express the Riemann–Lanczos problem as an exterior diff
system~EDS! as it was done in Ref. 3. We use a first-order jet bundleJ 1(Rn,Rm), wheren
denotes the number of local space–time coordinates andm is the number of independent Lanczo
componentsLabc . Local coordinates are then given by (xe,Labc ,Pabcd) characterizing a forma
manifold M of dimensionN5n1m1n•m. The EDS itself is formed by

d fabcd
(R) 5d~Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a!,

~7!
Kabc5dLabc2Pabcedxe ,

where sometimesf abcd
(R) 50 is also assumed, which in subsequent cases does not change any

results obtained except that it reduces the values of the zeroth Cartan characterss0 and their
reduced counterpartss08 . TheKabc are thefirst-order contact conditions and thePabcd coincide
with Pabcd5]Labc /]xd when projected onto the space–time manifold. Next, we briefly recas
results already known for the Riemann–Lanczos problems in two and in three dimensions.
of these results were obtained using Janet–Riquier theory14–16of which modernized versions ca
be found in Refs. 17–19.

A. The Riemann–Lanczos problem in two dimensions

The Riemann–Lanczos problem in two dimensions was discussed in Refs. 5 and 6. We
(x1,x2,L121,L122,P1211,P1212,P1221,P1222) as local coordinates onJ 1(R2,R2) so that the corre-
sponding formal manifoldM is eight-dimensional. We leave the metric tensor components c
pletely arbitrary and obtain the only independent Riemann–Lanczos equation in solved for

f 1212
(R) 5R121222P121212P122112L121~G12

1 2G22
2 !22L122~G11

1 1G12
2 ! , ~8!

whereGbc
a are the Christoffel symbols. We can write the Pfaffian system derived from~8! as
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u15a12121dx11a12122dx222dP121212dP122112~G12
1 2G22

2 !dL12122~G11
1 1G12

2 !dL122,

u25dL1212P1211dx12P1212dx2 , ~9!

u35dL1222P1221dx12P1222dx2 ,

whereu1 is the exterior derivative off abcd
(R) and the one-formsu2,u3 are the two contact condi

tions. The quantitya1212e is given by

a1212e5R1212,e22L121~G12,e
1 2G22,e

2 !22L122~G11,e
1 1G12,e

2 ! ~10!

for e51,2. We obtained the result that the Riemann–Lanczos problem in two dimensions
involution with Cartan characters (s0 ,s1 ,s2)5(3,2,1).5,6 If the exterior derivative of~5! given by
dL12 ;s

s 50 is included in ~9!, the problem remains in involution with Cartan characte
(s0 ,s1 ,s2)5(4,2,0). These results are confirmed using Janet–Riquier theory.6

The general solution to the Riemann–Lanczos problem in two dimensions is known.5 For a
space–time with Lorentzian signature given by

ds252e2rdx1dx2 ,

wherer is an arbitrary function ofx1 andx2, the general solution is

L1215e2r~ f 1~x1!2 1
4 r ,1! , L1225e2r~ f 2~x2!1 1

4 r ,2! ,

where f 1(x1), f 2(x2) are two arbitrary functions depending on one local coordinate each.
spaces with Euclidean signature given by

ds25e2r~~dx1!21~dx2!2! ,

wherer is again an arbitrary function ofx1 andx2, the general solution is

L1215e2r~ f 1~x11x2!2 1
2 r ,2! , L1225e2r~ f 2~x12x2!1 1

2 r ,1! .

Both solutions depend on two arbitrary functions of one variable each, a fact which reflec
intrinsic meaning of the highest nonvanishing Cartan character which is in the two above
s152. ~Here we also imposed the differential gauge conditionL12 ;s

s 50. For more details see Re
5.!

B. The Riemann–Lanczos problem in three dimensions

In three space–time dimensions with local coordinatesx1, x2, x3, we obtain eight in-
dependent components of the Lanczos tensor, namely,L121, L122, L131, L133, L232,
L233, L123, L132 when imposing the cyclic conditions~2!. Each of the components has thre
first-order partial derivatives so that we use the jet bundleJ 1(R3,R8) with formal dimensionN
5318124535 to express the EDS. There are six independent Riemann–Lanczos equ
whose exterior derivatives ared f1212

(R) , d f1313
(R) , d f2323

(R) , d f1213
(R) , d f1223

(R) , d f1323
(R) and eight contact

conditionsKabc . In this way, we obtain for the zeroth Cartan character and its reduced counte
s05s085618514. Using the above local coordinates the EDS is then again of the form~7!. It is
sufficient to consider line elements with diagonalized metric tensor because of Ref. 20.

As discussed in detail in Ref. 6 an identity occurs so that for the second Cartan cha
s25s2811 leading tos2857 and tos258. This means that the necessary condition for a system
be in involution requiring that each Cartan character coincides with its reduced counterpart9,10,13is
not fulfilled and the three-dimensional Riemann–Lanczos problem is not in involution an
reduced characters (s08 ,s18 ,s28 ,s38) are~14,8,7,3!. This result was confirmed with theREDUCE code
given in Appendix A.
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We also used Janet–Riquier theory to examine the three-dimensional Riemann–Lanczo
lem further. After a prolongation to second order we found that theintegrability condition I, given
in solved form as

I 5 f 1212,33
(R) 1 f 1313,22

(R) 1 f 2323,11
(R) 22 f 1323,12

(R) 22 f 1213,23
(R) 12 f 1223,13

(R) , ~11!

had to be added so that the new prolonged system is given by

05 f abcd
(R) , 05 f abcd,e

(R) , 05I . ~12!

In Ref. 5 it is shown in detail that the system~12! consists of a system in involution with Carta
characters~18,9,2! when ~2! is also imposed. There, the integrability condition~11! is also ex-
pressed in a better form respecting general covariance, namely, asI Cov :

I Cov52~ f 1212;(33)
(R) 1 f 1313;(22)

(R) 1 f 2323;(11)
(R) 2 f 1323;(12)

(R) 2 f 1213;(23)
(R) 1 f 1223;(13)

(R) !

5B12123;31B13132;21B23231;150 , ~13!

where theBabcde are Babcde5 f ab[cd;e]
(R) , which reduce to the Bianchi identities for theRabcd

involved. The covariantly prolonged system, where we add the covariant derivatives instead
partial derivatives, is then given by

05 f abcd
(R) , 05 f abcd;e

(R) , 05I Cov . ~14!

This also forms a system in involution again with Cartan characters~18,9,2!,5 and we prefer it to
~12! because it is based on covariant differentiation rather than partial differentiation. Next, w
going to present two different prolongation methods based on the theory of exterior differ
systems~EDS! which will lead to the same result.

III. A PROLONGATION USING EDS AND JET BUNDLES

In this section we show that we can use computer algebra to express the systems~12! and~14!
as EDS and obtain results in agreement with those for the three-dimensional Riemann–L
problem based on Janet–Riquier theory. We introduceSabcde as second-order jet coordinates
that our local coordinates are now given by (xe,Labc ,Pabcd,Sabcde) on a jet bundleJ 2(R3,R8)
with formal dimensionN5318124148583. Again, we obtainPabcd5]Labc /]xd and Sabcde

5]2Labc /]xd]xe if Pabcd andSabcde are projected onto the space–time manifold. The prolon
system is then given by

f abcd
(R) 5Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a ,

~15!
Kabc5dLabc2Pabcedxe, Kabcd5dPabcd2Sabcdedxe ,

whereKabcd are thesecond-order contact conditions. When applying a computer code of whic
extracts are given in Appendix B, combined with the one in Appendix A to this system, we
that ~15! is clearlynot in involutionwith reduced Cartan characters (s18 ,s28 ,s38) given by ~18,9,3!
with ~2! imposed and given by~21,11,4! otherwise. However, if we add either of the conditio
I Cov or I , respectively, and augment~15! to the system

I Cov5B12123;31B13132;21B23231;1 ~or I !,

f abcd
(R) 5Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a ,

f abcd;e
(R) 5Rabcd;e2Labc;de1Labd;ce2Lcda;be1Lcdb;ae ~or f abcd,e

(R) !, ~16!

Kabc5dLabc2Pabcedxe,
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Kabcd5dPabcd2Sabcdedxe ,

the system~16! turns out to be in involution with its set of Cartan characters (s1 ,s2 ,s3) being
~17,8,2! if ~2! is imposed or~20,10,3! if no cyclic conditions are imposed. These results we
obtained using computer codes of which details are given in the Appendixes A and B. We
derive the results for all metrics of the form

ds25~dx1!22b•~dx2!22c•~dx3!2 , ~17!

where the functionsb andc depend on one local coordinate each, or where either or both
precisely given in terms of local coordinates. Further, the results were also obtained for
space–times typically given with nondiagonal line element such as the reduced Go¨del space–time.
The restrictions of the results are due to limited memory available for computing. We believ
when the use of memory is economized further, we will be able to generalize these results
three-dimensional spacetimes.

There is a reason why we do not obtain the Cartan characters~18,9,2!, as we did when using
Janet–Riquier theory, when we apply the theory of exterior differential systems. If we look a
system~15!, we obtain its reduced characters to be~18,9,3! and that the system is not in involu
tion. Using the integrability conditionI Cov ~or I ), we can express one of theSabcde in terms of the
other such second-order jet variables plus lower-order terms. We then build our integral ele
for the system~16! which are our tangent spaces of an integral manifold representing a soluti
our system of equations~for details see Refs. 9–13!. When we construct the firstintegral element
(E1)x at a pointxPM, we express one of thedSabcde through the others which causes the val
of the first reduced Cartan characters18 to drop by one from 18 tos18517. The same procedur
applies at the second stage for a two-dimensional integral element (E2)x so thats2858, and, at the
third stage for a three-dimensional integral element (E3)x we haves3852. Because the system~16!
is involutive, which we could show for all spacetimes of type~17! using algebraic computing
these are equally the values for the Cartan characters themselves. Therefore, we obtain
Cartan characters~17,8,2! with ~2! imposed or~20,10,3! otherwise when we use the theory
EDS. This does not contradict the values obtained in Ref. 5 based on Janet–Riquier theo
above results for the Cartan characters and for involutivity were computed using computer
based on extracts of a code given in Appendix B added to a modified version of that in App
A for metric line elements as explained above based on~17!. Next, we will examine whether the
same kind of prolongation as suggested in Ref. 4 for four dimensions does lead to an invo
system in three dimensions.

IV. A PROLONGATION BASED ON TENSOR DECOMPOSITIONS

It is instructive to look at a prolongation for the Riemann–Lanczos problem in three dim
sions constructed in the same way as Bampi and Caviglia did in Ref. 4 for four dimensions
see whether this leads to an involutive system in three dimensions. We are going to use th
coordinates (xa,Labc ,Pabcd) again but not theSabcde in this approach. In order to obtain a com
plete coframe withN5318124535 elements@or N5319127539 if we do not impose the
cyclic conditions ~2!# and from that to obtain further coordinates, we introduce the 18
one-forms@or 21 if ~2! is not imposed#

vabcd5dPabcd2dP$abcd%5~v̄abcde1v̂abcde!dxe , ~18!

where the brackets$abcd% indicate a Riemann-type symmetry imposed on the indicesabcd.3 The
quantitiesv̄abcde andv̂abcde have the same symmetry conditions as in Ref. 4 only here for t
dimensions, namely,

v̄abcde5v̄ [ab][ cd]e52v̄cdabe,
~19!

v̂abcde5v̂ [ab](cd)e .
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Even though we are not going to use theSabcde, which correspond to the second-order part
derivativesSabcde5]2Labc /]xd]xe when projected onto the spacetime manifold, it has to hol

Sabc[de]5v̄abc[de]1v̂abc[de]1Aabc[de]50 ,

where the quantityAabcde5A$abcd%e is given by

Aabcde5
1

4 S ] f abcd
(R)

]xe 2Sabcde1Sabdce2Scdabe1ScdbaeD , ~20!

and does no longer contain any terms involvingSabcde. Now, we add thev̄abcde and v̂abcde as
new coordinates of a formal manifoldM with local coordinates (xe,Labc ,Pabcd,v̄abcde,v̂abcde)
of formal dimensionN53191271635102 without the cyclic conditions andN5318124
154589 when taking the cyclic conditions~2! into account. Our prolonged EDS in three dime
sions using this prolongation method is then given by

f abcd
(R) 5Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a ,

Wabcde5v̄abc[de]1v̂abc[de]1Aabc[de] ,

Kabc5dLabc2Pabcedxe, ~21!

Kabcd5dPabcd2~v̄abcde1v̂abcde1Aabcde!dxe,

dWabcde5dv̄abc[de]1dv̂abc[de]1Babc[de] fdxf ,

wheredAabcde5Babc[de] fdxf andBabcde f5Babcd(e f)5B$abcd%e f for the same reasons as discuss
in Ref. 4, andKabcd are the one-forms corresponding to the second-order contact cond
expressed in terms of the variablesv̄abcde and v̂abcde. Using a computer code producing th
system~21! of which details are given in Appendix C below, we see that the system~21! is clearly
not in involution with reduced characters~18,9,3! if ~2! is imposed or~21,11,4! if ~2! is not
imposed. Using the commandstorsion and prolong from the EDS package,8 which suggests
prolongations wherever possible, we see that an integrability condition has to be added to~21! in
order to make it an involutive system. After some calculations and further algebraic computa
we find that we have to addprecisely ICov given in ~13! @or I given in ~11! also possible# again,
which is the same integrability conditionas for the EDS before and also the one obtained
Janet–Riquier theory. The new augmented system is now given by

I Cov5B12123;31B13132;21B23231;1 ~or I !,

f abcd
(R) 5Rabcd2Labc;d1Labd;c2Lcda;b1Lcdb;a ,

Wabcde5v̄abc[de]1v̂abc[de]1Aabc[de] ,
~22!

Kabc5dLabc2Pabcedxe,

Kabcd5dPabcd2~v̄abcde1v̂abcde1Aabcde!dxe,

dWabcde5dv̄abc[de]1dv̂abc[de]1Babc[de] fdxf .

We find that the system~22! is involutive with Cartan characters~17,8,2! if we impose the cyclic
conditions~2! and with Cartan characters~20,10,3! otherwise. Again, these results were obtain
for metrics of the form~17! and the results were computed using computer codes based on
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given in Appendixes A and C. We conclude that in three dimensions it is not sufficient to si
prolong the Riemann–Lanczos problem to a second-order system but we must also a
integrability conditionICov ~or I ) to make it a system in involution.

V. CONCLUSION

As opposed to two dimensions, in three dimensions the Riemann–Lanczos problem is
involution and we showed that when we prolongate it to second order using the theory of ex
differential systems and add the integrability conditionICov ~or I ), it turns into an involutive
system with Cartan characters~17,8,2! with cyclic conditions imposed or with characters~20,10,3!
when no cyclic conditions are imposed. This confirms a result given in Ref. 5, where J
Riquier theory was used.

When we use the prolongation method by Bampi and Caviglia4 applied to three dimensions
we find that this prolonged system is clearly not in involution in three dimensions. However,
supplementing it with thesame integrability condition ICov ~or I ), it becomes involutive and its
Cartan characters are again~17,8,2! with ~2! imposed or~20,10,3! otherwise. The above result
were obtained for space–times which admit metric line elements of type~17! using algebraic
computing based on theREDUCE package EDS. It is of interest to improve the efficiency of t
computer codes further so that we can obtain the above results for all three-dimensional
times using algebraic computing.
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APPENDIX A: EDS AND COMPUTER ALGEBRA

The REDUCE package EDS by D. Hartley8 is a very reliable algebraic computing packa
when one wants to calculate properties of EDS. In Ref. 8 important commands such aeds,
contact, pde2eds, pullback, lift , restrict , characters, involution , torsion, andprolong are ex-
plained in detail. They and further available commands perform all important calculation
exterior differential systems efficiently.

The computer code, which creates the unprolonged Riemann–Lanczos equations in
dimensions, is given next, where a version for four dimensions can be found in Ref. 6. We u
packageEXCALC here first to create the differential forms for the exterior differential system u
later on because some of the jet variables below do contain nontensorial indices. The packa
uses the contravariant components of quantities in all expressions whereasEXCALC uses covariant
components~see Ref. 21 for details onREDUCE packages!. After that we use the package EDS
calculate properties of our exterior differential system so created. First, we introduce the no
used in the computer codes below, where all indices run over the three space–time dime
denoted byt, x, y here.
chr(a,2b,2c) Christoffel symbols,
Rie(2a,2b,2c,2d) Components of the Riemann tensor,
Ric(2a,2b), R Ricci tensor and Ricci scalar,
f( 2a,2b,2c,2d), w1(2a,2b,2c,2d) Riemann-Lanczos equations, ext. derivative
gau(2a,2b), w2(2a,2b) Differential gauge conditions, ext. der.s,
L( 2a,2b,2c) Components of the Lanczos potential,
P(2a,2b,2c,2d) First-order jet variables of L(2a,2b,2c),
S(2a,2b,2c,2d,2e) Second-order jet variables of L(2a,2b,2c),
V( 2a,2b,2c,2d,2e,2f) Third-order jet variables of L(2a,2b,2c),
w3(2a,2b,2c) First-order contact conditions.
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load excalc;
on div; on nero;
pform $b,c%50; fdomain b5b(t,x,y); fdomain c5c(t,x,y);
coframe o~t!5d t,

o~x!5d x,
o~y!5d y with metric

g5o(t)* o~t!2b* o~x!* o~x!2c* o~y!* o~y!;
frame e;
riemannconx om;
pform curv(a,b)52; pform chr(a,2b,2c)50;
curv(a,2b)ªd om(a,2b)1om(a,2c) ˆ om(c,2b);
chr(a,2b,2c)ªe(2c)– uom(a,2b);

%Computation of the curvature tensors:
pform $Rie(a,b,c,d),Ric(a,b),Wey(a,b,c,d)%50;
index–symmetries curv~a,b! : antisymmetric in$a,b%;
index–symmetries Rie~a,b,c,d! : antisymmetric in$a,b%, $c,d%

symmetric in$$a,b%,$c,d%%;
index–symmetries Ric~a,b! : symmetric in$a,b%;
index–symmetries Wey~a,b,c,d! : antisymmetric in$a,b%, $c,d%

symmetric in$$a,b%,$c,d%%;
Rie(a,b,c,d)ª5e~d!– u(e~c!– ucurv(a,b));

Rie(2a,2b,2c,2d)ªRie(2a,2b,2c,2d);
Ric(2a,2b)ªg(n,s)* Rie(2n,2a,2s,2b);
Rªg(a,b)* Ric(2a,2b);
Wey(2a,2b,2c,2d)ªRie(2a,2b,2c,2d)1(1/2)* R* (g(2a,2c)* g(2b,2d)

2g(2a,2d)* g(2b,2c))
2(g(2a,2c)* Ric(2b,2d)2g(2b,2c)* Ric(2a,2d)

1g(2b,2d)* Ric(2a,2c)2g(2a,2d)* Ric(2b,2c));

pform $L( 2a,2b,2c),P(2a,2b,2c,2d)%50;
index–symmetries L(2a,2b,2c) : antisymmetric in$2a,2b%;
index–symmetries P(2a,2b,2c,2d) : antisymmetric in$2a,2b%;
%First part of the cyclic conditions if imposed:
L( 2x,2y,2t)ªL( 2t,2y,2x)2L( 2t,2x,2y);
P(2x,2y,2t,2t)ªP(2t,2y,2x,2t)2P(2t,2x,2y,2t);
P(2x,2y,2t,2x)ªP(2t,2y,2x,2x)2p(2t,2x,2y,2x);
P(2x,2y,2t,2y)ªP(2t,2y,2x,2y)2P(2t,2x,2y,2y);

%Creation of Covariant Derivatives KD(2a,2b,2c,2d) of L(2a,2b,2c):
pform K(2a,2b,2c)51; pform KD(2a,2b,2c,2d)50;
index–symmetries K(2a,2b,2c) : antisymmetric in$2a,2b%;
index–symmetries KD(2a,2b,2c,2d) : antisymmetric in$2a,2b%;
K( 2a,2b,2c)ªP(2a,2b,2c,2n)* o~n!2L( 2n,2b,2c)* om(n,2a)

2L( 2a,-n,2c)* om(n,2b)2L( 2a,2b,2n)* om(n,2c);

KD( 2a,2b,2c,2d)ªe(2d)– uK( 2a,2b,2c);

%Riemann-Lanczos equations:
pform $f( 2a,2b,2c,2d),gau(2a,2b)%50;
pform $w1(2a,2b,2c,2d),w2(2a,2b),w3(2a,2b,2c)%51;
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index–symmetries f(2a,2b,2c,2d) : antisymmetric in$2a,2b%, $2c,2d%
symmetric in$$2a,2b%,$2c,2d%%;

index–symmetries w1(2a,2b,2c,2d) : antisymmetric in$2a,2b%, $2c,2d%
symmetric in$$2a,2b%,$2c,2d%%;

index–symmetries gau(2a,2b) : antisymmetric in$2a,2b%;
index–symmetries w2(2a,2b) : antisymmetric in$2a,2b%;
index–symmetries w3(2a,2b,2c) : antisymmetric in$2a,2b%;
f( 2a,2b,2c,2d)ªRie(2a,2b,2c,2d)2KD( 2a,2b,2c,2d)1KD( 2a,2b,2d,2c)

2KD( 2c,2d,2a,2b)1KD( 2c,2d,2b,2a);
gau(2a,2b) ªKD( 2a,2b,s,2s);
%PART~* !: Creation of EDS
w1(2a,2b,2c,2d)ªd f(2a,2b,2c,2d);
w2(2a,2b)ªdgau(2a,2b);
w3(2a,2b,2c)ªd L(2a,2b,2c)2P(2a,2b,2c,2n)* o~n!;
load eds;
coframing($o~a!,d L(2a,2b,2c),d P(2a,2b,2c,2d)%);
myedsrrªEDS($w3(2a,2b,2c),f(2a,2b,2c,2d)%,$o~a!%);
myedsrªlift myedsrr;

%If necessary, store ‘‘myedsr’’ in an output file.
% PART ~** !: Computation of Cartan characters
%Computation of the Cartan characters, torsion, checks for
%involution, linearity and further properties.
%Reload ‘‘myedsr’’ first if output file was created and load eds:
on ranpos; %‘‘on genpos’’ if more memory available
characters myedsr;
involutive myedsr;
quasilinear myedsr; semilinear myedsr;
torsion myedsr; tableau myedsr;
prolong myedsr;
end;

This produces the result that the Riemann–Lanczos problem in three dimensions is not in
lution with reduced characters~18,9,3! if the cyclic conditions are imposed or~21,11,4! if they are
not imposed.

APPENDIX B: THE PROLONGED RIEMANN–LANCZOS PROBLEM USING JET
BUNDLES

Here, we give the important sections of a computer code producing the prolonged
including the integrability conditionICov ~or I ) as discussed in Sec. III. This part has to
combined with the code given in Appendix A omitting part (* ) and part (** ). Here, we use the
further notation:
f4(2a,2b,2c,2d,2e), f7(2a,2b,2c,2d,2e,2f ) 1st and 2nd-order partial derivatives

of Riemann-Lanczos equations,
m1(2a,2b,2c,2d,2e), m2(2a,2b,2c,2d,2e,2f) 1st and 2nd-order covariant deriva-

tives of Riemann-Lanczos equations
w5(2a,2b,2c,2d),w6(2a,2b,2c,2d,2e) 2nd and 3rd-order contact condition

%Impose cyclic conditions for S(2x,2y,2t,2a,2b) and
%V(2x,2y,2t,2a,2b,2c) if they were imposed before.
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%In dLtoP, dPtoS, dStoV below, replacements are made for all
%components L, P, S listed separately, which is abbreviated here:
dLtoPª$d L(2t,2x,2t)5P(2t,2x,2t,2n)* o~n!, . . . %;
dPtoSª$d P(2t,2x,2t,2t)5S(2t,2x,2t,2t,2n)* o~n!, . . . %;
dStoVª$d S(2t,2x,2t,2t,2t)5V( 2t,2x,2t,2t,2t,2n)* o~n!, . . . %;

%Creation of Integrability Condition Int~denoted by I in text!:
pform$f4(2a,2b,2c,2d,2e),f7(2a,2b,2c,2d,2e,2f) %50;
pform$w5(2a,2b,2c,2d),w6(2a,2b,2c,2d,2e)%51;
let dLtoP; let dPtoS;
f4(2a,2b,2c,2d,2e)ªe(2e)– uw1(2a,2b,2c,2d);

clearrules dLtoP; clearrules dPtoS;
w4(2a,2b,2c,2d,2e)ªd f4(2a,2b,2c,2d,2e);
let dLtoP; let dPtoS; let dStoV;
f7(2a,2b,2c,2d,2e,2f)ªe(2f) – uw4(2a,2b,2c,2d,2e);

clearrules dLtoP, dPtoS, dStoV;
Intªf7(2t,2x,2t,2x,2y,2y)1f7(2t,2y,2t,2y,2x,2x)

1f7(2x,2y,2x,2y,2t,2t)22* f7(2t,2x,2t,2y,2x,2y)
22* f7(2t,2y,2x,2y,2t,2x)12* f7(2t,2x,2x,2y,2t,2y);

w5(2a,2b,2c,2d)ªd P(2a,2b,2c,2d)2S(2a,2b,2c,2d,2n)* o~n!;
w6(2a,2b,2c,2d,2e)ªd S(2a,2b,2c,2d,2e)2V( 2a,2b,2c,2d,2e,2n)* o~n!;

%Creation of Covariant Integrability Condition ICov:
pform$wc1(a,b,c,d),wc2(a,b,c,d,e),wc4(a,b,c,d,e)%51;
pform$m1(a,b,c,d,e),m2(a,b,c,d,e,f),m4(a,b,c,d,e,f)%50;
wc1(2a,2b,2c,2d)ªf4(2a,2b,2c,2d,2n)* o~n!2f( 2n,2b,2c,2d)* om(n,2a)

2f( 2a,2n,2c,2d)* om(n,2b)2f( 2a,2b,2n,2d)* om(n,2c)
2f( 2a,2b,2c,2n)* om(n,2d);

m1(2a,2b,2c,2d,2e)ªe(2e)– uwc1(2a,2b,2c,2d);

wc2(2a,2b,2c,2d,2e)ªd m1(2a,2b,2c,2d,2e);
let dLtoP; let dPtoS; let dStoV;
m2(2a,2b,2c,2d,2e,2f)ªe(2f) – uwc2(2a,2b,2c,2d,2e);

clearrules dLtoP; clearrules dPtoS; clearrules dStoV;
wc4(2a,2b,2c,2d,2e)ª
m2(2a,2b,2c,2d,2e,2n)* o~n)2m1(2n,2b,2c,2d,2e)* om(n,2a)

2m1(2a,2n,2c,2d,2e)* om(n,2b)2m1(2a,2b,2n,2d,2e)* om(n,2c)
2m1(2a,2b,2c,2n,2e)* om(n,2d)2m1(2a,2b,2c,2d,2n)* om(n,2e);

m4(2a,2b,2c,2d,2e,2f)ªe(2f) – uwc4(2a,2b,2c,2d,2e);

ICovª
m4(2t,2x,2t,2x,2y,2y)1m4(2t,2y,2t,2y,2x,2x)1m4(2x,2y,2x,2y,2t,2t)

2m4(2t,2x,2t,2y,2x,2y)2m4(2t,2x,2t,2y,2y,2x)2m4(2t,2y,2x,2y,2t,2x)
2m4(2t,2y,2x,2y,2x,2t)1m4(2t,2x,2x,2y,2t,2y)1m4(2t,2x,2x,2y,2y,2t);

%Creating an EDS including ICov~or including Int and partial
%derivatives f4 instead of covariant derivatives m1 below!:
load eds;
coframing($o~a!,d L(a,b,c),d P(a,b,c,d),d S(a,b,c,d,e)%);
myedsrrªEDS($w3(2a,2b,2c),w5(2a,2b,2c,2d),f(2a,2b,2c,2d),
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m1(2a,2b,2c,2d,2e),ICov%,$o~a!%);
myedsrªlift myedsrr;

%Apply part (** ) of Appendix A next for the ‘‘myedsr’’ created here.
We applied part (** ) of the code in Appendix A above to our output file ‘‘myedsr’’ creat

here. Results show that this prolonged system includingICov ~or I ) is then in involution with
Cartan characters~17,8,2! when the cyclic conditions are imposed and with characters~20,10,3!
otherwise.

APPENDIX C: THE PROLONGED RIEMANN-LANCZOS PROBLEM AS GIVEN IN SEC. IV

Here, we give the relevant parts of a computer code producing the EDS for the prolon
given in Sec. IV. We will use the further notation:
f1(2a,2b,2c,2d),w10(2a,2b,2c,2d) Riemann-Lanczos equations without

P(2a,2b,2c,2d), exterior derivatives of f1,
A1(2a,2b,2c,2d,2e) quantitiesAabcde introduced in~20!,
B2(2a,2b,2c,2d,2e,2f) quantitiesBabcde f introduced in~21!,
R1(2a,2b,2c,2d,2e),R2(2a,2b,2c,2d,2e) quantitiesv̄abcde,v̂abcde in ~19!,
w7(2a,2b,2c,2d) contact conditions involving R1, R2.

%3-dimensional Riemann-Lanczos Problem:Bampi-Caviglia Prolongation:
%combine this code with the first part of the code in Appendix A
%omitting part (* ) and part (** ); introduce rule dLtoP again, then:
pform$f1~a,b,c,d!,f2~a,b,c,d,e!,A1~a,b,c,d,e!,A2~a,b,c,d,e!, B2(a,b,c,d,e,f)%50;
pform$w7(a,b,c,d),w8(a,b,c,d,e),w9(a,b,c,d,e),w10(a,b,c,d)%51;
f1(2a,2b,2c,2d)ªf( 2a,2b,2c,2d)1P(2a,2b,2c,2d)2P(2a,2b,2d,2c)

1P(2c,2d,2a,2b)2P(2c,2d,2b,2a);
w10(2a,2b,2c,2d)ªd f1(2a,2b,2c,2d); let dLtoP;
A1(2a,2b,2c,2d,2n)ª(1/4)* (e(2n)– uw10(2a,2b,2c,2d));
clearrules dLtoP;
dPtoR1ª$d P(2t,2x,2t,2t)5(R1(2t,2x,2t,2t,2n)1R2(2t,2x,2t,2t,2n)

1A1(2t,2x,2t,2t,2n))* o~n!, . . . %;
%Impose cyclic conditions on R1 and R2 if necessary, then:
f2(2a,2b,2c,2d,2e)ª

R1(2a,2b,2c,2d,2e)2R1(2a,2b,2c,2e,2d)1R2(2a,2b,2c,2d,2e)
2R2(2a,2b,2c,2e,2d)1A1(2a,2b,2c,2d,2e)2A1(2a,2b,2c,2e,2d);
A2(2a,2b,2c,2d,2e)ªd A1(2a,2b,2c,2d,2e); let dLtoP; let dPtoR1;
B2(2a,2b,2c,2d,2e,2f)ªe(2f) – uA2(2a,2b,2c,2d,2e);
clearrules dLtoP; clearrules dPtoR1;

w7(2a,2b,2c,2d)ªd P(2a,2b,2c,2d)2(R1(2a,2b,2c,2d,2n)
1R2(2a,2b,2c,2d,2n)1A1(2a,2b,2c,2d,2n))* o~n!;

w8(2a,2b,2c,2d,2e)ªd R1(2a,2b,2c,2d,2e)2d R1(2a,2b,2c,2e,2d)
1d R2(2a,2b,2c,2d,2e)2d R2(2a,2b,2c,2e,2d)

1(B2(2a,2b,2c,2d,2e,2n)2B2(2a,2b,2c,2e,2d,2n))* o~n!;
w9(2a,2b,2c,2d,2e)ªd R1(2a,2b,2c,2d,2e)2d R1(2a,2b,2c,2e,2d)

1d R2(2a,2b,2c,2d,2e)2d R2(2a,2b,2c,2e,2d)
1d A1(2a,2b,2c,2d,2e)2d A1(2a,2b,2c,2e,2d);

load eds;
coframing($o~a!,d L(2a,2b,2c),d P(2a,2b,2c,2d),

d R1(2a,2b,2c,2d,2e),d R2(2a,2b,2c,2d,2e)%);
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%Prior to adding Int or ICov to the EDS here, it is necessary
%to create Int and ICov expressed in the variables R1,R2, then:
myedsrrªEDS($w3(2a,2b,2c),w7(2a,2b,2c,2d),w8(2a,2b,2c,2d,2e),

f( 2a,2b,2c,2d),f2(2a,2b,2c,2d,2e),ICov%,$o~a!%);
myedsrªlift myedsrr;

After using part (** ) of the code given in Appendix A applied to the file ‘‘myedsr’’ create
here we obtained that the system is in involution with Cartan characters~17,8,2! if the cyclic
conditions are imposed and~20,10,3! otherwise.
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The algebraic entropy of classical mechanics a…

Robert I. McLachlan and Brett Rylandb)

Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand

~Received 14 October 2002; accepted 3 March 2003!

We describe the ‘‘Lie algebra of classical mechanics,’’ modelled on the Lie algebra
generated by kinetic and potential energy of a simple mechanical system with
respect to the canonical Poisson bracket. It is a polynomially graded Lie algebra, a
class we introduce. We describe these Lie algebras, give an algorithm to calculate
the dimensionscn of the homogeneous subspaces of the Lie algebra of classical
mechanics, and determine the value of its entropy limn→` cn

1/n . It is
1.825 423 774 201 08 . . . , a fundamental constant associated with classical
mechanics. ©2003 American Institute of Physics.@DOI: 10.1063/1.1576904#

I. INTRODUCTION. CLASSES OF LIE ALGEBRAS

The class of ‘simple mechanical systems’ is defined by pairs (Q,V), where the configuration
spaceQ is a real Riemannian manifold and the potential energyV is a smooth real function onQ.
The phase spaceT* Q has a canonical Poisson bracket and a kinetic energyT:T* Q→R associated
with the metric onQ. In general, the smooth functions on a Poisson manifold form a Lie alg
under the Poisson bracket. In the case of a simple mechanical system, we are given two
guished functions, namely the kinetic and potential energies, and one can ask what Lie a
they generate under the Poisson bracket.

In this paper we study, not the Lie algebra generated by aparticular V and T, but the Lie
algebra defined by the wholeclassof simple mechanical systems. That is, one should think of
dimension ofQ as being arbitrarily large, and the metric and potential energies also being
trary.

This question arose out of very practical considerations of the calculations required to
high-order symplectic integrators by splitting and composition, used in applications inclu
molecular, celestial, and accelerator dynamics.17,10The vector fieldX which is to be integrated is
split asX5A1B, whereA andB have the same properties~e.g., Hamiltonian! asX, but can be
integrated exactly. We write exp(tX) for the time-t flow of X. The most common such integrator
the leap-frog method

w~t!ªexp~ 1
2 tA!exp~tB!exp~ 1

2 tA!,

where the small parametert is the time step.
From the Baker–Campbell–Hausdorff formula,7 the mapw~t! can be represented~up to any

power int! as a flow exp(tX̃), where

X̃5A1B1t2~ 1
12 @B,@B,A##2 1

24 @A,@A,B## !1O~t4!. ~1!

Because it is the flow of a vector fieldO(t2)-close to the original one, the integrator is seco
order. The functionX̃ is called themodified vector fieldin the numerical integration literature.10

For simple mechanical systems, we split the Hamiltonian asH5T1V. The flow of ~the
Hamiltonian vector field of! V can of course always be calculated easily, but calculating the

a!Dedicated to Gerhard Wanner on the occasion of his 60th birthday. Of trees and the counting of trees, may the
end!

b!Electronic mail: r.mclachlan@massey.ac.nz
30710022-2488/2003/44(7)/3071/17/$20.00 © 2003 American Institute of Physics
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of the kinetic energyT requires thatQ have integrable~and even fairly simple! geodesics. Becaus
the Lie algebras of Hamiltonian vector fields and of Hamiltonian functions are isomorphic u
@XT ,XV#5X$V,T% , there is a series formally identical to Eq.~1! involving the HamiltoniansT and
V with respect to the Poisson bracket.

In the series of Eq.~1! we see the Lie algebra generated byA andB entering. Such series, fo
example in the proof of the BCH formula, are usually considered in the context of the fre
algebraL(A,B) with two generatorsA andB. One can in fact consider the more general com
sition

)
i 51

s

exp~aitA!exp~bitB!5exp~Z!, ~2!

whereZPL(A,B). RequiringZ5t(A1B)1O(tp11) for some integerp.1 gives a system of
equations in theai andbi which must be satisfied for the method to have orderp.17,24 In the case
of generalA andB, then, at each ordern51, . . . ,p there are dimLn(A,B) suchorder conditions.
HereLn(A,B) is the subspace ofL(A,B) consisting of homogeneous elements of ordern. Witt’s
formula7 states that

dimLn~A,B!5
1

n (
dun

m~d!2n/d, ~3!

wherem(d) is the Möbius function defined bym(1)51, m(d)5(21)k if d is the product ofk
distinct primes, andm(d)50 otherwise. Notice that in this case

dimLn~A,B!;
2n

n
;

the dimensions grow exponentially withn. The base~2 in this case! of the exponent is called the

entropyof L(A,B). In general, the entropy of a graded vector space% Ln is

lim sup
n→`

~dimLn!1/n,

if this limit exists.21 @We shall use generalizations of Witt’s formula12,19 to calculate the dimen-
sions and entropies of other free Lie algebras, see Eqs.~15!, ~17! below.#

In this approach it is assumed that there are no Lie identities satisfied by the vector fieA
andB. This is reasonable if one wants the method to work for allA andB. However, in the case
of simple mechanical systems, the Lie algebra isneverfree, regardless ofT, V, or the dimension
of the system. There are always identities satisfied by kinetic and potential energy. The simp
these is

$V,$V,$V,T%%%[0. ~4!

For, working in local coordinates (q,p) with T5 1
2p

TM (q)p, and recalling the canonical Poisso
bracket

$A,B%ª(
i

]A

]qi

]B

]pi
2

]A

]pi

]B

]qi
,

we have that

$V,T%5(
i , j

]V

]qi
M i j ~q!pj
                                                                                                                



is class
oretical
se. For

ed by
ess by
ach

f

amples
ie

lev
t

and the

e in

ar

3073J. Math. Phys., Vol. 44, No. 7, July 2003 The algebraic entropy of classical mechanics

                    
is of degree 1 inp, and that

$V,$V,T%%5(
i , j

]V

]qi
M i j

]V

]qj
~5!

is a function ofq only. SoV and$V,$V,T%% commute.
Thus, it was realized early on16 that in deriving high-order integrators as in Eq.~2! for simple

mechanical systems, the order conditions corresponding to$V,$V,$V,T%%% and to all its higher Lie
brackets can be dropped. This means that more efficient integrators can be designed for th
of systems. Much work has been done on this special case, both because of its intrinsic the
and practical importance, and because it allows such big improvements over the general ca
example, one can design special~corrector or processor! methods of the formwcw21,3 special
methods for nearly integrable systems such as the solar system,4,23 special methods involving
exact evaluation of the forces associated with the modified potential@Eq. ~5!#,5 and so on—see
Ref. 17 for a survey. All of these studies rely on the structure of the Lie algebra generat
kinetic and potential energy. Bases for this Lie algebra have been constructed, more or l
hand, for small orders.5,6,20In particular, Murua20 associates a unique tree of a certain type to e
independent order condition of symplectic Runge–Kutta–Nystro¨m methods~very closely related
to the problem considered here!, and enumerates these up to order 6.~Iserleset al.11 extend this
approach to some other classes of polynomial vector fields.! However, a systematic description o
the entire Lie algebra is clearly preferred.18

Not many classes of Lie algebras have been completely described. Here are two ex
from the literature. First, Duchamp and Krob9 completely describe all partially-commutative L
algebras

L~A1 , . . . ,An ;@Ai ,Aj #50,~ i , j !PC!,

whereC specifies the pairs of commuting variables. Second, Kirillov, Kontsevich, and Mo13

studied the Lie algebraL generated by two vector fields onR in general position, conjectured tha

(
sPS4

~21!sgn(s)@xs(1) ,xs(2) ,xs(3) ,xs(4) ,y#50 ;x1 ,x2 ,x3 ,x4 ,yPL ~6!

generates all identities, and calculated the dimensions of its homogeneous subspaces
asymptotic growth of their dimension. If their conjecture is true,L is a PI-algebra,2,8 one which
the identities which hold in the Lie algebra@such as Eq.~6!# are satisfied byall elements of the Lie
algebra.

Returning to the case of simple mechanical systems, it is clear that every Lie bracket ofT and
V is a homogeneous polynomial inp. Furthermore, the degrees of these polynomials combin
a natural way. We therefore introduce the following classP of Lie algebras.

We use the notation@XY#ª@X,Y#, @XYZ#ª@X,@Y,Z##, and for setsX, Y, @XY#ª@X,Y#
ª$@X,Y#:XPX,YPY%.

Definition 1: A Lie algebra L is of classP (polynomially graded) if it is graded, i.e., L
5 % n>0Ln , and its homogeneous subspaces Ln satisfy

@Ln ,Lm##Ln1m21 if n.0 or m.0,
~7!

@L0 ,L0#50.

Note that this implies@(L0)n11Ln#50 for all n. We call the grading of L itsgrading by degree.
For example, the Lie algebra generated by kinetic and potential energy is of classP, where

the grading is by total degree inp. The Lie algebra of all polynomial vector fields on a line
space is of classP, where the grading is by total degree. We will give more examples later.
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Such a grading is quite different from the natural grading of a free Lie algebra. Two impo
differences are that~i! It is not Abelian. For,@L2 ,@L0 ,L0##50 while @L0 ,@L0 ,L2###L0 . ~ii ! It is
not finite, in the sense that elements ofLn are Lie brackets of unboundedly many other eleme
of L. For example, the bracket of any number of elements of degree 1 is still of degree 1.

We also need the concept of a Lie algebra which is free in a certain class.
Definition 2 (Ref. 8): Let F be a Lie algebra of classP generated by a setX. Then F is called

a free Lie algebra in the classP, freely generated by the setX, if for any Lie algebra R of class
P, every mappingX→R can be extended to a unique homomorphism F→R. We write F
5LP(X).

In addition to the grading by degree,LP(X) also carries the standard grading which we c
the grading byorder, generated by order(X)51 for all generatorsXPX and order(@Y,Z#)
5order(Y)1order(Z). @The termorder is chosen here because it corresponds to order in the s
of numerical integrators, as in Eq.~1!.#

Because of the importance of the grading by degree for Lie algebras generated by kine
potential energy, we make the following definition.

Definition 3: The Lie algebra LP(A,B), free in the classP, where A has degree 2 and B ha
degree 0, is called theLie algebra of classical mechanics.

Two Lie algebras of classP are easy to describe. First, the Lie algebra withk generators of
degree>1 which is free in the classP is just the standard free Lie algebra onk generators—the
degrees can never decrease if the Lie algebra has no elements of degree 0. Second, the Lie
with generatorsX5$X1 , . . . ,Xk% of degree 0 and generatorsY5$Y1 , . . . ,Yl% of degree 1, free in
the classP, is Y% % n>0@Y nX#, and only contains elements of degree 0 and 1.~In both of
these cases, the grading by degree is in fact Abelian.!

However, we want to describe the Lie algebra of classical mechanics,LP(A,B). This is the
simplest nontrivial case as it includes the essential feature ofP that degrees can both increase a
decrease under Lie brackets.

The paper is organized as follows. In Sec. II, we give a construction which describesLP(A,B)
as the direct sum of an Abelian and a free Lie algebra, both with an infinite number of gene
In Sec. III, we enumerate the dimensions of the homogeneous~by order! components ofLP(A,B)
and hence in Sec. IV numerically compute its entropy. Section V considers special cases~e.g., of
mechanical systems with Euclidean metric; these turn out not to be free in the classP! and other
examples of polynomially graded Lie algebras.

II. STRUCTURE OF THE LIE ALGEBRA OF CLASSICAL MECHANICS

Let c:L(A,B)→LP(A,B) be the unique homomorphism from the free Lie algebra to the
Lie algebra of classP. The kernel kerc can be thought of as the set of identities ofLP(A,B). For
example, we showed above@Eq. ~4!# that @BBBA#Pkerc. This implies that@CBBBA#Pkerc
for all CPL(A,B). However, we will see below that@BBBA# is not the only generator of the
ideal kerc.

Our description ofLP(A,B) is based on the following two observations. First, suppose
wants to describe the Lie algebra with three generatorsA,B,C which is free in the class of Lie
algebras withC50. SinceC generates all identities in this class, this Lie algebra is justL(A,B):
one merely has to drop the generatorC. To generalize this idea, suppose the free Lie alge
L(A,B) can be factored as% i L(Xi) for certain generating setsXi with elements inL(A,B),
such that some subsetY of ø iXi generates all the identities inP. Then, we have

LP~A,B!> %
i

L~Xi \~YùXi !!, ~8!

again we merely drop these generators.
If Y only generatessomeof the identities ofP, then dropping these generators gives a sum

free Lie algebras which is surjectively homomorphic toLP(A,B). This can be used to get uppe
bounds for the dimensions of the homogeneous subspaces ofLP(A,B).
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Second, given a description ofLP(A,B) as such a sum@Eq. ~8!# of free Lie algebras, we can
apply standard techniques to describe it in detail, for example, to construct bases, to comp
dimensions with respect to degree and/or order, and to compute the asymptotic growth o
dimensions.

We begin by stating the crucial tool we shall use, the Lazard factorization of free Lie alge
Theorem 1: ~Refs. 14, 7, 15! Let X and Y be sets of generators. Then

L~XøY!>L~Y! % L~øn>0@Y nX# !.

Applying the Lazard factorization toL(A,B) with X5$A%, Y5$B%, gives

L~A,B!>B% L~A,@BA#,@BBA#,@BBBA#, . . . !

where the elements@BnA# for n>3 are all identities inP. Thus,LP(A,B) is surjectively homo-
morphic toB% L(A,@BA#,@BBA#). The three generators have degrees 2 (A), 1 (@BA#), and 0
(@BBA#). The idea now is to eliminate this new element of degree 0.~Formally, the generators
@BnA#, n>3, do remain in the generating set; but they and all succeeding Lie brackets of
will be dropped at the final stage when we pass toLP(A,B), so we do not need to keep track
them and just indicate them by* .! This gives

L~A,B!>B% L~A,@BA#,@BBA#,* !

>B% @BBA# % L~A,@BA#,@BBA,A#,@BBA,BA#,@BBA,BBA,A# !,* ),

where the generators now have degrees 2, 1, 1, 0, and 0, respectively. Continuing in this w
get the following.

Theorem 2: Let the degree of A be 2 and the degree of B be 0 with respect to the polyn
grading [Eq. (7)]. Then for all k>0 we have the following isomorphism:

L~A,B!>Zk% L~A,Xk ,Yk ,* !,

where

X05B, Xk115Xkø@Yk ,A#,

Y05$B%, Yk115@Yk ,Xk#ø@Yk ,Yk ,A#5@Yk ,Xk11#, ~9!

Z05B, Zk115ZkøYk ,

and* represents generators which are zero inP, i.e., elements of the kernel of the homomorphi
L(A,B)→LP(A,B). The generating sets have the following properties.

(1) All elements ofYk and Zk have degree 0, and all elements ofXk have degree 1.
(2) The Lie algebra spanned byZk is Abelian.
(3) Xk5@Zk ,A#.
(4) All elements ofYk and Zk have odd order, and all elements ofXk have even order.
(5) The element of smallest order inYk is (21)k@@BA#kB#, with order 2k11.
(6) The element of largest order inYk is Bk , defined recursively by B05B, Bk11

5@Bk ,@Bk ,A##. It has order2k1121.
(7) The finite setsXk andZk converge to infinite setsZ andX5@Z,A# in the sense that the set

$X:XPXk ,order~X!<n%
are all equal for k>n/2. We have

L~A,B!>Z% L~A,X,* !

and
LP~A,B!>Z% L~A,X!. ~10!
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(8) The sizes of the setsXk and Yk obey the iteration
uXk11u5uXku1uYku, ~11!

uYk11u5uYku uXk11u

with initial conditionsuX0u50, uY0u51. This iteration generates the sequence ofuXku values

0,1,2,4,12,108,10 476,108 625 644,. . . ; ~12!

there is a constantg'1.1555such that for sufficiently large k, uXku5@g2k
#.

Proof: The iteration results from successive elimination of elements of degree 0, each ite
introducing only a finite number of new elements nonzero inP, which have degrees 0 and 1. Th
other points then follow easily. The final description ofLP(A,B), Eq. ~10!, follows because the
generators ofL(A,X,* ) have degree 2 (A), 1 ~X!, or are identically zero (* ). Therefore
L(A,X,* ) contains no elements of degree 0, soLP(A,X)5L(A,X). The sequence of Eq.~12! is
Sloane’s sequence A001696,22 which comes from the same iteration@Eq. ~11!#; the reference there
to Ref. 1 shows how to establish its doubly-exponential growth. d

The rapid growth of the setsXk andYk means that it is impossible to carry out the iterati
exactly very far. In practice the generating setZ can be found up to any ordern by dropping any
terms of order.n as soon they appear inYk ~i.e., by quotienting all Lie algebras by the ide
consisting of all elements of order.n). We then haveY[(n11)/2]50 and the iteration terminates

The results of the six iterations required whenn512 are shown in Table I. We name th
elements ofZ Z1 , Z2 , . . . asthey are successively generated by the algorithm. This gives a
description of the elements of (LP)n(A,B) of order<12 in terms of 14 elements of degree 0, 1
elements of degree 1, and 1 element of degree 2, which generate a total of 283 elements
<12 ~see Tables II and III!.

III. DIMENSIONS OF THE HOMOGENEOUS COMPONENTS

We now turn to the enumeration ofXk andYk by order. We introduce the generating functio

xk~ t !5 (
n51

`

u$XPXk :order~X!5n%utn,

TABLE I. Elements of degree 0 and order<11 ~i.e., functions ofq only or
modified potentials of simple mechanical systems! appearing at iterationk
of Eq. ~9!. The new elements are numbered consecutivelyZ1 , Z2 , . . . The
degree 1 elementsXnª@Zn ,A# also appear.

k Yk Order

1 Z15B 1
2 Z25@Z1 ,X1# (5@BBA#) 3
3 Z35@Z2 ,X1# (5@BBA,BA#) 5

Z45@Z2 ,X2# (5@BBA,@BBA,A##) 7
4 Z55@Z3 ,X1# (5@@BBA,BA#,BA#) 7

Z65@Z3 ,X2# (5@@BBA,BA#,@BBA,A##) 9
Z75@Z3 ,X3# 11
Z85@Z4 ,X1# 9
Z95@Z4 ,X2# 11

5 Z105@Z5 ,X1# 9
Z115@Z5 ,X2# 11
Z125@Z6 ,X1# 11
Z135@Z8 ,X1# 11

6 Z145@Z10 ,X1# 11
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ỹk~ t !5 (
n51

`

u$YPYk :order~Y!5n%utn, z̃k~ t !5 (
n51

`

u$ZPZk :order~Z!5n%utn

which from Eq.~9! obey

x050, ỹ050, z̃05t,

xk115xk1t ỹk , ỹk115 ỹkxk11 , z̃k115 z̃k1 ỹk .

We can eliminate thet-dependence of this map by introducingyk5t ỹk and zk5t z̃k . Then zk

[xk for all k and the rest of the system is

TABLE II. Dimensions of Lie algebras graded by order. Column 2: Of the free Lie algebra with two generators. C
3: Of the Lie algebra of classical mechanics,LP(A,B) whereA ~kinetic energy! has degree 2 inp andB ~potential energy!
has degree 0 inp, i.e., is a function ofq only. Column 4: Number of modified potentials of ordern in LP(A,B). Column
5: Upper bound for maximum number of linearly independent Poisson brackets of ordern whenM5Rn with the Euclidean
metric, i.e.,A5pTp. Column 6: As column 5, butV(q) is a cubic polynomial.

n dim Ln(A,B) dim(LP)n(A,B) @ tn11#x(t) Euclidean Cubic

1 2 2 1 2 2
2 1 1 1 1
3 2 2 1 2 2
4 3 2 2 2
5 6 4 1 4 3
6 9 5 5 3
7 18 10 2 10 6
8 30 14 14 6
9 56 25 3 25 10

10 99 39 39 12
11 186 69 6 69 19
12 335 110 110 22
13 630 194 12 193
14 1161 321 320
15 2182 557 24 555
16 4080 941 938
17 7710 1638 50 1631
18 14 532 2798 2787
19 27 594 4878 107 4857
20 52 377 8412 8376
21 99 858 14 692 232 14 624
22 190 557 25 519 25 399
23 364 722 44 683 508 44 460
24 698 870 77 993 77 594
25 1 342 176 136 928 1124 136 191
26 2 580 795 240 013 238 684
27 4 971 008 422 360 2513 419 916
28 9 586 395 742 801 738 375
29 18 512 790 1 310 121 5665 130 199
30 35 790 267 2 310 451 2 295 702
31 69 273 666 4 083 436 12 858 4 056 416
32 134 215 680 7 218 252 7 169 109
33 260 300 986 12 781 038 29 356 12 691 109
34 505 286 415 22 638 741 22 474 996
35 981 706 806 40 152 860 67 371 39 853 452
36 1 908 866 960 71 247 291 70 701 714
37 3 714 566 310 126 559 227 155 345 125 562 178
38 7 233 615 333 224 917 313 223 099 566
39 14 096 302 710 400 080 000 359 733 396 759 314
40 27 487 764 474 711 997 958 705 941 791
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x050, y05t2,
~13!

xk115xk1yk , yk115ykxk11 .

The polynomialsxk(t) converge to a formal power seriesx(t). The polynomialsyk(t) converge,
again in the sense of formal power series, to 0. The power seriesx(t) completely determines the
dimensions of the homogeneous components of (LP)n(A,B) @including its abelian partZ, because
zk(t)5xk(t)/t]. We find

x~ t !5t21t41t612t813t1016t12112t14124t16150t181107t201232t221508t2411124t26

12513t2815665t30112858t32129356t34167371t361¯ . ~14!

~For example, the 11111121316514 generators of weight<12 are given in Table I.! Amaz-
ingly, this power series has appeared before~apparently as a curiosity! from the same iteration
@Eq. ~13!, and it appears as Sloane’s sequence A04576122#.

The classical formula of Witt@Eq. ~3!# can be extended to free Lie algebras with more gen
generating sets.12,19 For any set A with generating functiona(t)5(n.0u$APA:order(A)
5n%utn, the dimensionscn5dimLn(A) of the homogeneous components of the graded Lie a
bra L(A)5 % n.0Ln(A) are given by

cn5(
dun

1

d
m~d!bn/d , ~15!

where

2 log~12a~ t !!5 (
n.0

bntn.

In Maple, one can compute the dimensions easily by c5EULERi(INVERT(a)) ~these functions
are available in Ref. 22!, where a and c are the sequences of coefficients ofa(t) and c(t),
respectively.

We apply Eq.~15! to LP(A,B)>Z% L(A,X). The generating function for the grading b
order of$A%øX is t1x(t). This gives the dimensions listed in Table II for 1<n<40. A dramatic
reduction in the dimensions compared to those of the free Lie algebra of rank 2 is evident

TABLE III. Dimensions ofLP(A,B), graded by degreem and by ordern.

n
m

total
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 1 0 1
2 1 0 1
3 2 1 0 1
4 2 0 1 0 1
5 4 1 0 2 0 1
6 5 0 2 0 2 0 1
7 10 2 0 4 0 3 0 1
8 14 0 4 0 6 0 3 0 1
9 25 3 0 9 0 8 0 4 0 1

10 39 0 9 0 14 0 11 0 4 0 1
11 69 6 0 20 0 23 0 14 0 5 0 1
12 110 0 18 0 37 0 32 0 17 0 5 0 1
13 194 12 0 46 0 62 0 46 0 21 0 6 0 1
14 321 0 42 0 90 0 97 0 60 0 25 0 6 0 1
15 557 24 0 107 0 165 0 144 0 80 0 29 0 7 0 1
16 941 0 90 0 229 0 274 0 206 0 100 0 34 0 7 0
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More generally still, Kang and Kim12 consider the grading of a free Lie algebra by an abel
semigroupS which satisfies the finiteness condition that anysPS is a sum of other elements ofS
in only finitely many ways. Then we have

dimLs~A!5(
dus

1

d
m~d!bs/d ~16!

where

2 log~12a~ t !!5(
sPS

bst
s

anddus means that there existstPS such thatdt5s, in which case we writes/d5t.
We can use this to calculate the dimensions ofLP(A,B) with respect to the bigrading by orde

and degree. We first simplify the grading by degree@Eq. ~7!# by introducing degree8(x)
ªdegree(x)21. Then~as long as no elements of degree 0 enter, which now holds!, the semigroup
of the grading by degree8 is isomorphic to the non-negative integers under addition. Including
grading by order givesS5Z.03Z>0. Note that the finiteness condition holds forS since it holds
for Z.0. Since order(A)52, degree8(A)51, and degree8(X)50 for all XPX, the generating
function of $A%øX is ut1x(t) and we apply Eq.~16! with

bt,u52@ tnum# log~12ut2x~ t !!.

This gives the dimensions forn,m<16 as shown in Table III.

IV. ASYMPTOTICS OF THE DIMENSIONS AND CALCULATION OF THE ENTROPY

From Eq. ~15!, the asymptotic growth of the dimensionscn is determined by the analytic
structure—the location and type of the singularities—of2 log(12a(t)). These correspond to zero
and singularities of 12a(t). In particular, if 12a(t) has a simple zero att5a and no other zero
with utu<a, then

cn;
1

n S 1

a D n

~17!

and the Lie algebra has entropy 1/a.
The generating function of$A%øX is t1x(t). We therefore need to study the analytic stru

ture of the function 12(t1x(t)). We therefore study the map of Eq.~13! considered as a map

w:C2→C2, ~x,y!°~x1y,y~x1y!!

with initial conditionsx50, y5t2. If the iterates of the map converge to (x* ,0) say, thenx(t)
5x* . Curiously, the map preserves the area (1/y) dx∧dy, although this plays no role in the
analysis.

The mapw has a line of degenerate fixed points (x,0) with eigenvaluesx and 1. The fixed
points withuxu.1 are unstable and one can show that the fixed points withuxu,1 are stable. The
map remembers its initial condition, and the functionx(t) is thex-coordinate of the fixed poin
reached from initial condition (0,t2).

We can see immediately that~i! for t real and positive,x(t) is strictly increasing; and~ii ! if the
map converges thenux(t)u<1. Fort real and positive, the sequence$yk% is increasing, and if there
is a k such thatyk.1, thenxk→`. Therefore we define

b5 inf$tPR1:xk~ t !→`%.

Because
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uxk11u<uxku1uzku, uzk11u5uzkuuxk11u,

the map converges in the disk$t:utu,b%.
We can get a crude bound onb immediately, but more detailed knowledge requires a num

cal study of the mapw. Let t be real, letI (x,y)5y1x211A2y, and supposex.0, y.0, and
I (x,y),0. Then

I +w2I 5y~x1y!1x1y211A2y~x1y!2~y1x211A2y!

5y~x1y!1A2y~Ax1y21!<y~12A2y!1A2yA12A2y21)

<y~12A2y!1A2y~12 1
2
A2y!21)52&y3/2,0.

Therefore, the orbit must stay in the bounded regionx.0, y.0, I (x,y),0, with xk increasing and
yk decreasing. Therefore the orbit converges to some fixed point (x,0). @Here the curvex51
2A2y2y was chosen because it is a good approximation of the stable manifold of~1,0!.# Since
I (0,t2),0 for 0,t2,22), we haveb.A22).0.51. Better approximations ofb can be
obtained as the roots ofI +wk(0,b2)50 ~i.e., by requiring thekth iterate to land in the trapping
region!, but these must be calculated numerically. On the other hand,x25t21t4.1 if t.0.79, so
we have the bounds 0.51,b,0.79.

We have thatdx(t)/dt.0 on @0,b!, with x(0)50 and x(b)51; and 12t is decreasing.
Therefore 12t2x(t) has exactly one zero in@0,b!, and it is simple. The zero isa, the reciprocal
of the required entropy ofLP(A,B). The numerical value ofa can be determined by solving 1
2t2x(t)50 numerically. @In MATLAB , by function x=f(t); x=0; y=tˆ2; while
y>1e-16, x=x+y; y=y *x; end ; x=1−t−x ; and alpha=fsolve(’f’,0.5).] This
gives the value of the entropy ofLP(A,B) as

1/a51.825 423 774 201 08̄ . ~18!

Are there any other solutions to 12t2x(t)50? Because the coefficients ofx(t) are all
non-negative, there can be none in the diskutu<a. To say more we have to proceed numerica
First, if uxku and uyku get too large then the orbit blows up. Let

D5$~x,y!PC2:uyu.2uxu.2%.

Suppose (xk ,yk)PD. Then

uxk11u>uuyku2uxkuu.uxku.1

and

uyk11u5uxk11uuyku.2uxk11u,

i.e., we have (xk11 ,yk11)PD. The orbit then stays inD and cannot converge—in fact, it mus
blow up doubly exponentially. The first iterate (x1 ,y1)5(t2,t4) is in D if utu.&, and the second
iterate (x2 ,y2)5(t21t4,t4(t21t4)) is in D if utu.1.272 02. In practice, if an iterate enters th
region one can immediately stop the calculation and report that the map diverges.

Using this criterion we computed the functionx(t) numerically. See Figs. 1 and 2.
We have made the following numerical observations.

~1! The singularity ofx(t) closest to the origin is at
t5b51/1.582 079 127 34̄ . ~19!

~2! There are no zeros of 12t2x(t) in the diskutu,b.
~3! The map converges only in a connected, simply connected region with a fractal bound
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~4! The functionx(t) is analytic everywhere inside this region but has a square root singul
everywhere on its boundary.

~5! For each pointz on the boundary,x(t);12a(t2z)1/2 for some constanta depending onz, as
t→z.

FIG. 1. Contour plot ofu12t2x(t)u, showing its main zero att5a51/1.8254̄ and other zeros~two sequences
approachingt5b). The unit circle is also shown.
FIG. 2. Contour plots ofux(t)u ~left, contour interval 0.05! and argx(t) ~right!.
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~6! There is only one zero of 12t2x(t) in utu<b.
~7! The other zeros of 12t2x(t) form two infinite sequencesan , ān , with Re(an).b for all n

and limn→` an5b.

Because of the fractal nature of the boundary, we are unlikely to be able to solve the mw
or find a in closed form. Observation~4! would imply that this boundary forms a natural bounda
for the functionx(t). Observation~5! would imply that the number of modified potentials of ord
n, @ tn11#x(t), is O(n23/2b2n). Observation~6! would imply that the next term in the asymptot
growth of cn5dim(LP)n(A,B) comes from the square root singularity att5b. Indeed, by com-
puting cn numerically forn,80 we find that

cn;n21a2n2H 1.51n21/2b2n n odd

1.61n23/2b2n n even

and

@ tn11#x~ t !;0.9628n23/2b2n

for n even. These are all consistent with the observed singularity structure of 12t2x(t).

V. DISCUSSION

A. Physical interpretation of the generators

There is a particularly nice interpretation ofLP(A,B)>Z% L(A,X) in the specific case o
simple mechanical systems. In local coordinates, letA5T(p)5 1

2p
TM (q)p be the kinetic energy,

whereM (q) is the inverse of the metric~or mass matrix!, and letB5V(q) be the potential energy
The setZ consists of functions ofq only, and we think of them as modified potentials. Eleme
of the span ofZ,

(
ZPZ

aZtdegree(Z)Z5a1tV1a2t3M ~V8,V8!1 ¯ ,

and their flows, can be evaluated explicitly and used to construct high-order integrators of t
systemT1V @see Eq.~23! for more terms#. Now consider the generatorX5@Z,A#PX. It is the
cotangent lift of the gradient flow of the modified potentialZ; we haveX5M (q)(Z(q),p) and
Hamilton’s equations are

q̇5M ~q!Z8~q!5divM21(q) Z5..f ~q!, ṗ52 f 8~q!Tp.

So in a sense the modified potentials and the kinetic energy together contain a complete d
tion of the Lie algebra.

B. Euclidean mechanical systems

Recall that on each manifoldM , each simple mechanical system~say with kinetic energyT
and potential energyV) generates a Lie algebra of classP. Therefore there is a homomorphis
c(M ,T,V) from LP(A,B) onto this Lie algebra. One can ask whether the system (M ,T,V) is in
general position, i.e., if the two Lie algebras are actually isomorphic and kerc(M ,T,V)50. This
is unlikely, because of the existence of identities such as Eq.~6! in Lie algebras of vector fields
One can therefore consider largerclassesof systems and ask whether they are in general posit
That is, does the class satisfy any identities other than those corresponding to the grad
degree@Eq. ~7!#? We conjecture that for the class of all simple mechanical systems, it does

Conjecture 1: The only identities satisfied by all simple mechanical systems are those
the grading by degree. That is,
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ù
M ,T,V

kerc~M ,T,V!50.

This is best discussed by introducing a smaller class which we shall see isnot in general
position. Namely, letM5Rn with the Euclidean metric. Then in coordinates the kinetic energ
T(p)5 1

2( i 51
n pi

2 . The first few modified potentials are then

Z15V,

Z25@BBA#5V8~V8!,

Z35@BBA,BA#52V9~V8,V8!,

Z45@BBA,@BBA,A##54V9~V9~V8!,V8!,

Z55@@BBA,BA#,BA#52V-~V8,V8,V8!14V9~V9~V8!,V8!,

where we regard thekth derivative ofV as a real-valued symmetric linear function onk vectors.
Each modified potential of order 2n21 is a linear combination of the scalar elementary differe
tials of ordern of V. Each such differential can be associated to a free tree withn nodes.~See, for
example, Ref. 10 for a discussion of elementary differentials and trees.! The number of such tree
for n>1 is ~Sloane’s A00005522! 1, 1, 1, 2, 3, 6, 11, 23, 47, 106, 235,. . . . This should be
compared with the number of modified potentials in Eq.~14!, namely 1, 1, 1, 2, 3, 6, 12, 24, 50
107, 232,. . . . There are three interesting consequences.

~i! For n<6, the sequences are the same. In fact, one can check that in the modified pot
of orders 2n21<11, all trees appear, in invertible linear combinations, so these mod
potentials are in general independent.

~ii ! For n57,8,9, there are more modified potentials than free trees. In particular, only 11 o
12 modified potentials of order 13 can be linearly independent. This proves that the cl
Euclideanmechanical systems is not in general position.

~iii ! For n>10, there are fewer modified potentials than free trees. In fact, the former
entropy 1/b51.582̄ while the latter~since the free trees have entropy given by Otte
constant, 2.955̄ ) have entropyA2.955̄ 51.719̄ . Thus, for largen, only certain
combinations of the trees appear inZ.

So far we have only considered the modified potentialsZ themselves. If these are indepe
dent, thenX5@Z,A# is independent too. However, there is still a possibility for extra identitie
hold in the Lie algebra generated byA and X. A term of ordern and degreem is a sum of
elementary differentials ofV andp, corresponding to trees with (n1m11)/2 nodes, of whichm
leaves are labeledp and the remaining nodes are labeledV. In this case we find that for (n1m
11)/2<7 there are always sufficient labeled free trees to prevent forced dependencies amo
Lie brackets. For example, of the 11 free trees with 7 nodes, there are 12, 20, 24, 18, 9, 3
trees in whichm50, 1, 2, 3, 4, 5, and 6 leaves are coloredp, respectively. The dimensions of th
corresponding homogeneous subspaces ofLP(A,B) with (n1m11)/257 are~from Table III! 12,
18, 20, 14, 8, 3, and 1, respectively. Thus, only in the casem50, corresponding to the modifie
potentials themselves, is a dependency forced in this way.

The algorithm forLP(A,B) @Eqs. ~9! and ~13!# can be modified to take into account th
dependencies amongst the Lie brackets in the Euclidean case. To get an upper bound
dimensions and entropy of the Lie algebra in this case, we assume that the dependency
only when forced. Letcn be the number of free trees withn nodes. At iterationk, we already have
zk,2nª@ t2n# z̃k elements of order 2n21 in Zk , andyk,2nª@ t2n# ỹk elements of order 2n21 have
just been created inYk . If zk,2n1yk,2n.cn , we replaceYk by a smaller set, ofcn2zk,2n2yk,2n

elements, which together with the order 2n21 elements ofZk , forms a basis of thecn elementary
differentials. In terms of the generating functions, we add the final step to the iteration of Eq.~13!:
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yk11← (
n>1

min~yk11,2n ,cn2zk11,2n!t2n. ~20!

Let the resulting limiting formal series bexE(t), yE(t), andzE(t). The generating function for
xE(t) is then computed to be

xE~ t !5t21t41t612t813t1016t12111t14123t16147t181102t201221t221484t2411069t26

12386t2815364t3011214332127645t34163259t361 ¯ ~21!

which should be compared with Eq.~14!. At order 14, 16, and 18 the dimensions are limited by
number of elementary differentials, but forn.9, @ t2n#xE(t),@ t2n#x(t),cn . Because the new
map on generating functions, Eq.~20!, is not analytic, it is harder to determine the location of
smallest singularity. We found the smallest root of successive polynomial truncations of2t
2xE(t) and extrapolated these results to obtain

1/aE51.825 0339̄ , 1/bE51.574̄ . ~22!

These are upper bounds for the entropy of the class of Euclidean mechanical systems a
modified potentials, respectively.

~Murua20 has also considered this case, in the context of order conditions for Hamiltonia
the form 1

2(pi
21V(q). He finds a unique independent tree of a certain type for each o

condition, and enumerates these up to order 6. It would be interesting to compare the tw
proaches at higher order.!

The situation is quite different for non-Euclidean, i.e., general, mechanical systems. Rep
the above calculation for a general kinetic energyT(p)5 1

2p
TM (q)p, we get the following modi-

fied potentials. The associated trees will be explained below.

~23!

In this case each modified potential of order 2n21 is a scalar elementary differential ofV and M.
These correspond to bicolored free trees with 2n21 nodes, of whichn nodes are labeledV
~shown as solid circles above! andn21 nodes are labeledM ~shown as open circles above!; the
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latter must have at least two branches since a derivative ofM has at least two indices. Of the 1
1, 3, 11, 47, and 235 free trees of order 1, 3, 5, 7, 9, and 11 respectively, exactly 1, 1, 2, 8, 3
175 of them can be colored~labeled! in this way. The calculation above shows that of the
colorable trees, precisely one coloring of 1, 1, 2, and 7 of these colorable trees occur
modified potentials of orders<7. ~The other colorings of these trees do not occur, because o
way in which the trees at each order are built from the trees of lower order. The colorable 7
tree also does not occur.! It is clear that there is enormously much more freedom in t
case than in the~Euclidean,T(p)5 1

2(pi
2) case considered previously. Therefore, we believe

all the modified potentials are independent in this case. This supports Conjecture 1.

C. Other polynomially graded Lie algebras

We close with a list of some other Lie algebras of classP. In each case one can consider t
case of two generatorsA and B of degrees 2 and 0 and the induced homomorphism fr
LP(A,B).

~1! The case of classical mechanics. The objects are real functions on a cotangent bundle
geneous polynomial inp. This can be specialized to the following cases.
~a! Q any Riemannian manifold, any potential energy, degree(X) is the total degree ofX in p.

Entropy is<1.8254̄ @Eq. ~18!# with Conjecture 1 implying equality.
~b! Q5Rn with the Euclidean metric. Entropy is<1.8250̄ @Eq. ~22!#. It is remarkable that

these two Lie algebras, not previously distinguished from each other in the litera
differ starting at order 13, and have slightly different entropy.

~c! Q5Rn, functions polynomial inp and q. We can then introduce a bigrading by degree
p and by degree inq. To get a new Lie algebra, one of the generators has to be deg
in each grading, which forcesQ Euclidean,A5 1

2(pi
2 , B5V(q) polynomial. For ex-

ample, we have computed the dimensions of the Lie algebra generated by cubic pot
for smalln in Table II—they are remarkably small. See Ref. 11 for an analysis of this
in terms of special types of trees.

~2! Homogeneous polynomial vector fields onRm graded by total degree inx1 , . . . ,xk for some
1<k<m. In the casek5m, the vector fields inX associated withL(A,B) @degree(A)52,
degree(B)50] are associated with free trees in which each node has degree at most 2~since
only the first two derivatives ofA are nonzero!. Their numbers are 1, 1, 1, 2, 3, 6, 11, 23~so
far the same as for the free trees!, then 46, 98, 207, 451,. . . . ~Sloane’s A00119022!, which
gives an upper bound for the number of independent elements ofZ of each odd order. Thes
grow more slowly than the free trees, and even more slowly thanZ, with entropy 1.5758,
compared to 1.5821@Eq. ~19!# for Z. Perhaps in this case the treesT generate the Lie algebr
asT% L(A,@T,A#)?

~3! As the previous item, but multigrading by total degree in different subsets of the variab
~4! Homogeneous polynomial vector fields with the variables partitioned (x,y) with xPRk, y

PRm, and the vector fields of the formp(]/]x) 1q (]/]y) with either degreey(q)
<degreey(p)11, or p[0 and degreey(q)50. Simple mechanical systems form examples
this class. So do high-order ODEs of the formy(n)5 f (y, . . . ,y(n22)) when rewritten as
first-order systems

ẋi5xi11, i50, . . . ,n22,

ẋn215 f ~x1 , . . . ,xn22!,

with xi5y( i ), k5n21, andm51.
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~5! Consider the Schro¨dinger equation

i ċ5¹2c1V~x!c,

where¹2 is the Euclidean Laplacian. The two operators¹2 andV(x) generate a Lie algebra
of classP, where the grading is by degree of the differential operators. For example,

@¹2,V#c5¹•~Vc!1V¹•c

is of degree 1,

@V,V,¹2#c5~¹•~V2!!c

is of degree 0, and

@V,V,V,¹2#c[0.
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Towards the complete classification of homogeneous
two-component integrable equations

Mikhail V. Foursova)

ENSSAT, 6 rue de Ke´rampont, 22305 Lannion Cedex, France

~Received 4 December 2001; accepted 7 February 2003!

In this article we suggest an improved method for classifying general two-
component integrable evolution equations, homogeneous in a given weighting
scheme. This method relies on linear changes of variables and on an appropriate
splitting of the solution space. To illustrate the method, we implement the classifi-
cation of coupled KdV-type equations. We show that there are five nontriangular
systems possessing higher order generalized symmetries. One of these systems is
previously unknown. This seems to be the first classification of coupled integrable
equations homogeneous in a given weighting scheme, without any restrictions on
the form of the main matrix. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1580998#

I. INTRODUCTION

Among many different approaches to the problem of classification of integrable evol
equations, the most successful ones are based on the existence of infinitely many conse
laws or generalized symmetries. These two methods were extensively used by many auth~cf.
Mikhailov, Shabat, and Sokolov25 or Mikhailov, Shabat, and Yamilov26! and they led to the
discovery of many new systems, bothS-integrable andC-integrable in Calogero’s terminology.4

In the present article we consider two-component systems of evolution equations ho
neous in a given weighting scheme. More precisely, we are interested in the general case
the systems whose main matrices are not of any special form.

We suggest a method for completely classifying such equations possessing higher ord
eralized symmetries. It is based on techniques widely used in the field of classification o
grable equations. We think that our method offers an improvement with respect to other ve
since it consists of a simultaneous reduction of the equation and the symmetry to a canonica
while in general one only searches for the canonical forms of the equation.

To illustrate the method, we present the case of coupled KdV-type equations and app
techniques similar to the ones used in our previous articles9–11 about the systematic classificatio
of integrable symmetrically-coupled KdV-type,9 Burgers-type10 and mKdV/pKdV-type
equations.11

Coupled integrable systems come up in many physical applications. From the mathem
point of view, the interest in them has recently been rekindled as a consequence of the key
of Sanders and Wang31 who showed that the list of known integrable homogeneous, autonom
polynomial scalar evolution equations with linear leading terms is exhaustive, whereas
general classes of equations, such as scalar complex evolution equations involving the c
conjugate, were not yet treated in complete generality.~We recall that scalar complex equation
can be equivalently written as two-component systems of real equations for the real and ima
parts.!

Two-component integrable systems have often been considered in the literature. Un
nately, to implement classifications of such systems is usually an intractable problem. Th
attempt to investigate very general two-component systems was done by Mikhailov, Shab

a!Present address: IRISA/Universite´ de Rennes-I, Campus de Beaulieu, 35042 Rennes Cedex, France. Electronic
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Sokolov25 and Svinolupov,33 who worked with Burgers- and Schro¨dinger-type vector equations.
It thus became necessary to consider narrower classes of equations in order to do a co

classification. It was noticed that many important integrable equations are homogeneous
ferential polynomials in a certain weighting scheme. Several classes of homogeneous eq
were thus dealt with by many authors. We will mention here the works of Gerdt and Zhark14

Sanders and Wang,31 Olver and Sokolov,29,30 Meshkov20,24 and Foursov.8–11

Coupled KdV-type equations were first considered by Hirota and Satsuma,17,32 who showed
that the system

Hut5 uxxx1uux1vvx ,
v t5 22vxxx2uvx

~1!

possesses multi-soliton solutions and infinitely many conservation laws. Another similar inte
equation was found by Ito,18

Hut5 uxxx13uux13vvx ,
v t5 vux1uvx,

~2!

who showed that it possesses a recursion operator and an infinite number of nontrivial con
tion laws. Yet another integrable equation of this type was found by Drinfeld and Sokolov6 in the
study of the Kac–Moody algebras

Hut5 3vvx ,
v t5 2vxxx1vux12uvx.

~3!

Its recursion operator was recently found by Wang.35

Other two-component KdV-type equations were considered by Fuchssteiner,13 Nutku and
Oǧus,27 Gerdt and Zharkov,14 Zharkov,39 and Foursov.8,9 Several new integrable equations we
found, all reducible to a triangular form.

More generally, one can consider multi-component KdV-type equations. This is the path
by Antonowicz and Fordy,1 Ma,21 and Ma and Pavlov,22 among others. They have consider
multi-dimensional coupled KdV-type systems and were able to find several generalizations
scalar Hamiltonian operators that provide us with a bi-Hamiltonian structure for these sys
Along the same vein, Gu¨rses and Atalay Karasu15,16 attempted to classify multi-dimensional KdV
equations of the type

ut
i5bj

i uxxx
j 1sjk

i ujux
k ~4!

that possess a recursion operator of degree 4. They found the conditions onb’s ands’s that insure
integrability in the recursion operator sense, but they were unable to find the general so
Another drawback of this approach is thata priori one does not know the degree of the recurs
operator. For example, the Drinfeld–Sokolov equation is of type~4!, but its recursion operator is
of degree 6.

Yet another path to the classification problem was followed by Ays¸e Karasu19 who has inves-
tigated the two-component KdV-type equations that pass the Painleve´ PDE test.37 She presented
15 classes of such equations. Her classification has a big disadvantage: the equations we
sidered in the most general form and many of the systems are far too complicated to be w
with. Using scaling in all variables and linear changes of dependent variables, these 15
could have been reduced to a much simpler form.
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II. STATEMENT OF THE PROBLEM

Definition 1: Let us consider a system of two equations

Hut5F@u,v#,
v t5G@u,v#. ~5!

HereF@u,v#5F(u,v,ux ,vx ,uxx , . . . ) denotes a differential polynomial function ofu andv, i.e.,
a function ofu, v and theirx-derivatives. This equation can be interpreted as a scalar com
equation in the variablez5u1 iv involving its complex conjugatez̄5u2 iv.

Definition 2:A system~5! is calleddecoupledor triangular if it involves either an equation
depending only onu or an equation depending only onv.

For a decoupled system, we can first solve the equation depending on only one variab
then, using it, reduce the other equation to anx,t-dependent one-component equation. As
consequence, one function has no effect on the other and thus these equations are less in
for applications. In our classifications we will only consider equations that cannot be decoup
a change of variables.

Remark:There are in fact two more reasons not to consider decouplable equations.
Fokas’ conjecture is certainly false for them. Second, the number of decouplable equati
extremely large even in the simplest cases, rendering any thorough investigation of them
sible.

Definition 3:A second system oft-independent evolution equations,

Hut5Q1@u,v#,
v t5Q2@u,v#, ~6!

is said to be ageneralized symmetryof ~5! if their flows formally commute:

DK~Q!2DQ~K !50. ~7!

HereQ5(Q1 ,Q2), K @u,v#5(F@u,v#,G@u,v#) andDK denotes the Fre´chet derivative ofK de-
fined by DK(Q)5 (d/d«) K @u1«Q@u##u«50 . For a more detailed explanation of generaliz
symmetries, see Ref. 28.

Definition 4: Let us call the system~5! integrableif it possesses infinitely many generalize
symmetries.

We remark that in all the known cases it is sufficient to produce only a certain fixed nu
of generalized symmetries to guarantee integrability. The property of possessing a fixed num
generalized symmetries has the advantage of being easy to verify. But for every class of eq
we have to choose carefully the necessary number of symmetries. One symmetry would
most convenient case, but it is well-known that one symmetry is not enough to insure the exi
of an infinite number thereof. The first counter-example is due to Bakirov2 ~see Ref. 3 for a proof!.

Fokas7 has thus conjectured that for ann-component system it suffices to producen higher
symmetries. Quite recently, van der Kamp and Sanders34 have found an example of a two
component system possessing exactly two higher-order symmetries. We note, however, th
is no pattern for the orders of the two symmetries in this ‘‘anomalous’’ example, the system
of order 7 and the two symmetries of orders 11 and 29. Moreover, the Bakirov and va
Kamp–Sanders systems are trivially decoupled, while in this work we consider only ‘‘tr
coupled equations. And for all the known cases of integrable non-decouplable equations
conjecture is still valid~as a matter of fact, only one higher symmetry seems to be enough
these cases!. Since all the known symmetry ‘‘pathologies’’ occur only for decoupled systems,
reasonable to continue to rely on Fokas’ conjecture for integrability of nondecoupled syste

The classification problem: to find all nontriangularizable equations of a given class t
possess a higher order generalized symmetry of a certain specified class. Implementing th
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sification for several different classes of symmetries will provide us the equations poss
several higher-order symmetries. Using Fokas’ conjecture, we can thus conclude that thes
tions are integrable.

III. CLASSIFICATION OF HOMOGENEOUS EQUATIONS

For a given PDE, it is relatively easy to check the existence of higher-order genera
symmetries. However, if one is interested in finding all equations from a certain class poss
this property, the problem becomes significantly harder. At first, several attempts were m
classify general classes of scalar and coupled integrable equations. It was soon realized th
an intractable problem in practically all cases of interest. The only classification that was su
fully ~and satisfactorily! completed is the case of general second-order evolution equationut

5F(t,x,u,ux ,uxx) ~see Ref. 25!.
As a consequence, it became necessary to consider narrower classes in order to be

investigate them completely. It was noticed that many integrable evolution equations are
geneous as differential polynomials in a certain weighting scheme~i.e., they possess a scaling L
symmetry!. Moreover, the right-hand sides of symmetries of such equations can be spli
homogeneous components, each of which is a symmetry itself. Therefore, without loss of
ality, we can restrict our attention to homogeneous symmetries.

Definition 5: Let us introduce the followingweighting schemeon the space of differentia
functions. It will assign weightn to the dependent variablesu,v and weight 1 to the
x-differentiation. The weight of a monomial is the sum of the weights of its factors and the w
of a PDEut5P@u# is degP2n.

When n52, we will call this weighting theKdV weighting. The Hirota–Satsuma, Ito, an
Drinfeld–Sokolov equations, as well as the trivially coupled KdV equation, are homogeneo
this weighting.

In the case when both the equation and the symmetry are homogeneous in a certain we
scheme, the classification problem reduces to solving~large! systems of polynomial equations
called theobstruction equations. For scalar equations, this system can be easily resolved
Gröbner basis techniques. However, for general classes of coupled homogeneous equat
resulting system is highly nonlinear and it seems to be impossible to solve it in any ca
interest. The method we suggest in the next section uses linear transformations of varia
reduce this general problem to 17 subcases, thereby reducing the dimension of the solutio
by two or three. In each of the 17 cases, we can then successfully solve the corresponding
of polynomial equations, at least for coupled KdV-type equations.

To compute the symmetries, we use aMAPLE package written by the author. This package u
the same algorithm as theMATHEMATICA package created by Olver.29 The latter package wa
successfully used to implement several classifications of integrable equations~e.g., Olver and
Sokolov29,30 and Foursov8–11!.

Even though it is quite simple to directly compute the symmetry condition~7!, the obtained
system of polynomial equations is often too big to be dealt with as a whole. To overcom
difficulty, Olver29 suggested splitting the commutator~7! into homogeneous parts as algebra
polynomials. This way, one first computes the coefficients of linear monomials, then of qua
ones, of cubic ones, etc. On every step we can either completely resolve the corresponding
or reduce it to the Gro¨bner basis form~and then consider each branch separately, if necess!.
This method allows one to significantly simplify the problem in the majority of cases. A m
detailed explanation and examples of the algorithm can be found in Ref. 29 or 8.

IV. ALGORITHM

Definition 6: Consider a nondegenerate system of two evolution equations

Hut5 auk1bvk1 lower order terms,
v t5 guk1dvk1 lower order terms, ~8!
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whereuk andvk arekth order derivatives with respect tox. By a nondegeneratesystem I mean a
system that does involve thekth order derivatives~i.e., not all ofa, b, g, d vanish!. We call the
matrix A5(g

a
d
b) themain matrixof the system~8!. In vector notation we will write the system a

ut5Auk1 lower order terms, ~9!

whereu5(u,v).
Proposition 7: If the system of the formut5Buk1¯ is a generalized symmetry ofut

5Auk1¯ , then the two main matrices commute, i.e.,@A,B#50.
Proposition 8:Under a general linear invertible change of dependent variables

w5Ku ~10!

~whereK is an invertible matrix! the system~9! is mapped to the systemwt5A8wk1¯ with the
main matrixA85KAK21.

Corollary 9: By a linear invertible change of dependent variables~10! a system of type~9! can
be reduced to a system with the main matrix in Jordan canonical form.

Definition 10:We say that the equationut5Auk1¯ is in canonical formif the main matrix
A is of one of the following forms:

S 1 0

0 1D , S 1 1

0 1D , S 1 0

0 aD , S 0 1

0 0D , S 1 0

0 0D , ~11!

wherea is a constant satisfyinguau>1, aÞ1.
Remark:The subcasesa51 anda50 are written separately for three reasons. First, in

known cases, the solution set for either of these two values is different from the solution se
generic value ofa. Thus this branching seems to be always necessary. Moreover, in casea51, the
main matrix commutes with all the other matrices and thus any linear transformation~10! pre-
serves this canonical form. Last, but not least, the conditionsaÞ1 and aÞ0 are crucial for
successful solving of the obstruction equations.

Corollary 11: Any nondegenerate system~9! can be reduced to canonical form by a line
transformation of type~10!. Moreover, the canonical form of the main matrix is unique a
well-defined.

The proof is a straightforward application of the fact that a nonzero coefficient of the
matrix can be rescaled to 1 by an appropriate scaling int. We remark that in general there seem
to be no canonical form for the lower order terms. In all the five cases, we can still rescaleu and
v. And in the case of unit main matrix, any transformation of type~10! is allowed. As a conse-
quence, if one wants to know whether the given system is integrable, he has to reduce it
canonical form and then compare it to the known integrable equations of this type modulo
formations of type~10! preserving this particular canonical form.

To simplify the symmetry in a way similar to the way we treated the equation, we us
following proposition from linear algebra.

Proposition 12:Two commuting 232 matrices can be simultaneously reduced to~a multiple
of! their Jordan canonical forms by a transformationA→KAK21 for some nondegenerate matr
K.

Remark:This proposition is false for matrices of higher dimension. Thus our method
have to be slightly modified for these cases.

Proposition 13: If the system of the formut5Buk1¯ is a generalized symmetry ofut

5Auk1¯ with A in canonical form~11!, thenB can be reduced to Jordan canonical form by
transformation of type~10!.

The proof relies on the trivial fact that ifut5Q is a symmetry, so isut5kQ for any constant
k.
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Definition 14:We say that the symmetryut5Bum1¯ is in canonical formif its main matrix
B is of one of the following forms:

S 1 0

0 1D , S 1 b

0 1D , S 1 0

0 aD , S 0 1

0 0D , S 0 0

0 1D , ~12!

whereaÞ1 andbÞ0 are constants.
This list is somewhat different from~11!, since we can only apply the changes of variab

~10! that preserve all canonical forms of the equation~9!.
We have thus put together all the building blocks to prove the following key result.
Theorem 15: By a linear change of variables of type~10!, every nondegenerate equation

the type~9! can be reduced to canonical form, simultaneously with its nondegenerate symm
of type ut5Bum1¯ .

This simple trick is crucial for implementing successful classifications of integrable equa
Indeed, as a rule, the greater is the number of arbitrary parameters in the main matrices, the
are the required computations. Writing the equations and the symmetries in canonical form
one to reduce the number of parameters to at most 1 for each canonical matrix, thereby pav
road for complete classification of many classes of integrable equations.

We remark that not all the canonical main matrices for the equation and for the symmet
pairwise commuting. There are eight noncommuting pairs. As a consequence, in order to
pletely classify the equations of a certain type possessing generalized symmetries of a
~different! type, both of type~9!, it is sufficient to consider equations and symmetries with
pairs of main matrices belonging to the list of 17 commuting pairs of canonical matrices.

V. CLASSIFICATION OF COUPLED KdV-TYPE INTEGRABLE EQUATIONS

To illustrate our method, we will show how it helps to resolve the problem of classificatio
coupled KdV-like equations. We choose this class because we think it is the simplest cl
coupled homogeneous equations to deal with, and at the same time a very interesting one
over, it is the class most often considered in the literature. We would like to note that in sp
all the efforts, only particular subclasses were completely investigated. The algorithm we s
allowed us to finally solve this problem and to find one new integrable equation.

Let us thus consider evolution equations of weight 3 in the KdV weighting, i.e., the equa
of the form

Hut5 auxxx1bvxxx1l1uux1l2vux1l3uvx1l4vvx ,
v t5 guxxx1dvxxx1m1uux1m2vux1m3uvx1m4vvx . ~13!

As shown in Sec. III, we can reduce any equation of this type to an equation having its
matrix in canonical form. We implemented six classifications of equations of this type. T
precise, we searched for equations possessing symmetries of orders 4, 5, 6, 7, 8 and
polynomial equations that appear during the classification can be solved using Gro¨bner basis
techniques in the majority of subcases. When the main matrix of the equation is diag(1,a), the
MAPLE’s ‘‘grobner’’ package is not efficient for solving the corresponding systems. However
can do some additional splitting of the solution space and successfully treat each branch
rately. In this way, we were able to prove the following three theorems.

Theorem 16:A two-component system of evolution equations~13! that possesses a symmet
of weight 4, 6 or 8 in the KdV weighting is reducible to triangular form by some linear chang
dependent variables~10!.

Theorem 17:A two-component system of evolution equations~13! possesses a symmetry o
weight 5 in the KdV weighting, if and only if it is reducible@by a linear change of depende
variables~10! and/or a rescaling# either to triangular form or to one of the following four equ
tions:
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Hut5 uxxx1uux1vvx ,
v t5 22vxxx2uvx , ~14!

Hut5 uxxx13uux13vvx ,
v t5 vux1uvx , ~15!

Hut5 uxxx1vxxx12vux12uvx ,
v t5 vxxx29uux16vux13uvx12vvx , ~16!

Hut5 uxxx12vux1uvx ,
v t5 uux . ~17!

We remark that~14! is the Hirota–Satsuma system,~15! is the Ito system, while~17! is the
rescaled Drinfeld–Sokolov equation in our canonical form. The system~16! seems to be new. Ou
computations show that it possesses generalized symmetries of orders 5, 7, 9, 11, 13, 15
as well as conserved densities of weights 2, 4, 6, 8, 10, 12 and 14. We have thus a ver
reason to conjecture that it is integrable, i.e., that it possesses infinitely many generalized
metries.

Theorem 18:A two-component system of evolution equations~13! possesses a symmetry o
weights 7 or 9 in the KdV weighting, if and only if it is reducible@by a linear change of depende
variables~10! and/or a rescaling# either to triangular form, to one of~14!–~17!, or else to the
following system:

Hut5 4uxxx13vxxx14uux1vux12uvx ,
v t5 3uxxx1vxxx24vux22uvx22vvx . ~18!

Remark:The system~18! is not presented here in canonical form. We prefer this fo
since all its coefficients are integer-valued. In canonical form, the main matrix
diag(1,2 (713A5)/2) and the coefficients depend onA5.

The system~18! possesses generalized symmetries of orders 7, 9, 11, 13 and 17, as w
conserved densities of weights 2, 4, 8, 10, 12 and 14. Therefore it is also very likely
integrable. We remark that its symmetry pattern is rather unusual. It is also characteristic
Ramani equation,5 as well as of several equations found by Drinfeld and Sokolov6 in the study of
Kac–Moody algebras.

The explicit form of the system~18! seems to be new.~It was also found by Meshkov,23

independently of us.! We did an extensive search in the literature, but were unable to find
explicit equation equivalent to~18!. It appears, however, albeit implicitly, in a paper of Wilson38

in the study of equations related to the Kac–Moody algebraC2
(1) .

To end up, we would like to remark thata priori we do not know the order of the firs
higher-order symmetry. In this article we have limited our attention to the symmetries of ord
most 9. Similar computations can of course be made in order to search for symmetries
higher order. These computations become rapidly very time-consuming as the order increas
do not implement them here, since we think that it is highly unlikely any new integrable equa
can be found in this way.

VI. CONCLUSIONS

In this article we have presented an improved method allowing one to implement com
classifications of two-component homogeneous integrable evolution equations. Applying
techniques to KdV-type equations, we were able to find a new integrable equation.~Another
application, to Sawada–Kotera and Kaup–Kupershmidt-type equations, can be found in Re!
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An interesting open problem is to produce recursion operators for this new system~16!, as
well as for the system~18!, whose recursion operator seems to be unknown. Jing Ping Wa36

demonstrated that the system~18! does not possess symmetries of orders 10n15. We thus con-
jecture that if this recursion operator exists, its degree should be 10.

Another interesting direction is to generalize this method to consider more general clas
systems. For example, coupled equations homogeneous insomeweighting scheme is a particularl
interesting class. This would require finding equivalence classes undergeneral transformations o
variablespreserving the evolutionary form of the equation. This problem is resolved by Car
equivalence method. Unfortunately, this seems to be impossible at the current stage of de
ment of computer algebra tools, as there is no package allowing one to tackle the prob
classification of equivalence classes for systems of PDEs. However, such packages are c
under development. Their successful realization would allow one to find the complete l
integrable coupled homogeneous evolution equations.
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Isospectrality of spherical MHD dynamo operators:
Pseudo-hermiticity and a no-go theorem

Uwe Günthera) and Frank Stefanib)

Research Center Rossendorf, P.O. Box 510119, D-01314 Dresden, Germany

~Received 8 August 2002; accepted 13 March 2003!

The isospectrality problem is studied for the operator of the spherical hydromag-
netic a2-dynamo. It is shown that this operator is formally pseudo-Hermitian
(J-symmetric! and lives in a Krein space. Based on theJ-symmetry, an operator
intertwining Ansatz with first-order differential intertwining operators is tested for
its compatibility with the structure of thea2-dynamo operator matrix. An intrinsic
structural inconsistency is obtained in the set of associated matrix Riccati equa-
tions. This inconsistency is interpreted as a no-go theorem which forbids the con-
struction of isospectrala2-dynamo operator classes with the help of first-order
differential intertwining operators. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1573741#

I. INTRODUCTION

The magnetic fields of stars and planets are generated by the homogeneous dynamo e
moving electrically conducting fluids.1 This effect is explained within the framework of magnet
hydrodynamics~MHD!, but its experimental demonstration was missing until recently. In 19
the first successful dynamo experiments in Riga and Karlsruhe2 opened up a new way for th
laboratory investigation of homogeneous dynamos. In connection with the data analysis f
existing experiments and the design of new dynamo experiments there is a growing interes
spectral properties of dynamos. Of particular interest is the question of whether isospectra
mos can exist. The first numerical results on this topic were published in Refs. 3, 4, but rig
results are still missing.

As a step towards clarification of this issue, we study in the present paper the quest
whether operator intertwining techniques from quantum mechanics~QM! can be adopted to MHD
dynamo models. In case of an affirmative answer we would obtain an efficient tool for cons
ing isospectral classes of MHD dynamo operators. Otherwise we would get a no-go th
which would forbid a straight analogy with quantum mechanical models.

Let us start by recalling some essentials of operator intertwining transformations in QM.5 Two
operatorsH0 andH1 are said to be intertwined if there exist operatorsA1 andA2 so that

H1A15A1H0, A2H15H0A2 . ~1!

For the corresponding eigenfunctionsf0 andf1 holds, up to normalization,

f15A1f0, A2f15f0 ,

and the operatorsH0 andH1 are isospectral, except for those states that are annihilated byA1 or
A2 . In the case of one-dimensional Schro¨dinger operatorsH05p21V0(x) andH15p21V1(x)
with the momentum operator given asp52 i ]x , the intertwining operators can be chosen
first-order differential operators,

a!Electronic mail: u.guenther@fz-rossendorf.de
b!Electronic mail: f.stefani@fz-rossendorf.de
30970022-2488/2003/44(7)/3097/15/$20.00 © 2003 American Institute of Physics
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A15Aª ip1 f , A25A†52 ip1 f . ~2!

Structural compatibility ofH0 andH1 with the intertwining relations~1! requires that the function
f (x) and the potentialsV0(x), V1(x) are connected by the consistency conditions

V15V012 f 8,

2 f 81 f 25V02E, ~3!

f 81 f 25V12E, ~4!

where the prime denotes differentiation with respect tox; and E is a constant of integration
Linearization of the Riccati differential equations~3!, ~4! shows that this constant can be inte
preted as eigenvalue of the Schro¨dinger operatorsH0 andH1 ,

H0x05Ex0 , for f 52
x08

x0
, ~5!

H1x15Ex1 , for f 5
x18

x1
, ~6!

where x0 and x1 are formal, and not necessarily normalized eigenfunctions ofH0 and H1 ,
respectively. They are connected by the product relation

x0x15c, ~7!

with c a nonvanishing constant. It is straightforward to verify that the shifted Schro¨dinger opera-
tors are factorizable in terms of the intertwining operators,

H02E5A†A, H12E5AA†.

First-order differential intertwining transformations of type~2! are known as Darboux
transformations6 and are widely used to generate isospectral operator classes from given ope
with known spectra.5,7,8 In particular, intertwining constructions are a basic ingredient of su
symmetric quantum mechanical models5,9 and their generalizations to pseudo-supersymme
systems.10,11 As it was demonstrated in Ref. 12, a double-intertwining~double commutation!
method can provide a tool for inserting additional eigenvalues in spectral gaps of given
ground Schro¨dinger and Jacobi operators.

Motivated by the large number of exact results on isospectral classes obtained by op
intertwining constructions, it is natural to investigate whether MHD dynamo operators are
suitable for this technique. For this purpose we study in the present paper the simplest mea
MHD dynamo configuration—the sphericala2-dynamo.1 In terms of the radial momentum opera
tor p52 i (] r11/r ) the 232 operator matrix of thea2-dynamo is given as

Ĥ l@a#[S 2p22
l ~ l 11!

r 2 a~r !

pa~r !p1a~r !
l ~ l 11!

r 2 2p22
l ~ l 11!

r 2

D , ~8!

and lives on the domain

D~Ĥ l@a#!ª Hc5S c1

c2
D : cPH̃[H% H, H5L2~V,r 2dr !,
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V5@0,1#, c~1!50, rc~r !ur→0→0%,

in the Hilbert spaceH̃. ~A brief outline of the derivation of thea2-dynamo operator matrix from
the MHD mean-field induction equation can be found in the Appendix.! It describes the coupled
l -modes of the poloidal and toroidal magnetic field components in a mean-field dynamo m
with helical turbulence functiona(r ). The functiona(r ) does not depend onl and we assume tha
it is real-valued, positive definite, bounded, and sufficiently smooth onV: Im a50, 0,a<c1

,`, aPC4(V). The idealized boundary conditionc(r 51)50 corresponds to a supe
conducting spherical boundary shell and is chosen here to ensure simplicity of the subs
considerations.13 For more realistic models with a close relation to stellar dynamos, the sphe
fluid configurations confined tor ,1 can be assumed as embedded in empty space. The bou
condition should then be replaced byB̂lcur 5150 with B̂l5diag@]r1(l11)/r,1# ~see, e.g., Ref. 1!
what will require a more general approach than that presented in the present paper.

Exploring the fundamental symmetry of thea2-dynamo operator matrix we find in Sec. II tha
Ĥ l@a# acts as a symmetric operator on the Hilbert spaceH̃ when this is endowed with an
indefinite metricJ. That means thea2-dynamo operator matrix is aJ-symmetric ~formally
J-self-adjoint! operator,

Ĥ l@a#5Ĥ l
]@a#ªJĤl

†@a#J,

living in a Krein spaceK̃5H̃J .14 J-self-adjointness is a natural property of operators from d
ferent fields of physics. Examples are, e.g., the super-symmetric Dirac operator,15 PT-symmetric
non-Hermitian Hamiltonians in QM10,16as well as the Wheeler–DeWitt operator for a cosmolo
cal Friedman–Robertson–Walker model coupled to a real massive scalar field.10 Since the recent
paper series10,11,17of Mostafazadeh on non-Hermitian operators with real spectra,J-self-adjoint
operators are also known as pseudo-Hermitian operators.

In analogy with the simple quantum mechanical model described above, we base our is
trality analysis on an intertwining Ansatz for twoa2-dynamo operators with helical turbulenc
functionsa0(r ), a1(r ),

Ĥ l 0
@a0#2EI52ÂÂ], Ĥ l 1

@a1#2EI52Â]Â,

and intertwining operator matricesÂ, Â] that are first-order differential operators,

Âª iR~r !p1Q~r !, Â]
ª2 ipR]~r !1Q]~r !.

This Ansatz leads to a set of six consistency conditions on the matricesR(r ) andQ(r ) which are
studied in Sec. III. It is shown that one pair of conditions fixes the structure ofR(r ) in terms of the
helical turbulence functionsa0(r ) anda1(r ). A second pair is equivalent to the symmetry re
tions B5B], U5U] on the matrix functions

BªR]Q,

UªR@Q]2~R]!8#5RBR212R~R]!8,

and can be regarded as an implicit consequence of theJ-pseudo-Hermiticity of the operato
matricesĤ l 0

@a0# andĤ l 1
@a1#. ~The prime denotes the derivative with respect tor .) The remain-

ing two conditions can be transformed into a pair of coupled matrix Riccati differential equa
~MREs! on B andU.

The consistency of the six conditions is analyzed in Sec. IV with the help of a step-by
reduction of their complexity. First, we conclude from the limiting behavior of the MREs for
→0 that the angular mode numbersl 0 and l 1 in the two dynamo operator matrices should
connected by the incremental relationl 15 l 011. Then we use theJ-symmetry ofB to derive from
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the coupled MREs a system of coupled nonlinear ordinary differential equations~ODEs! involving
the helical turbulence functionsa0(r ) anda1(r ). Analyzing these ODEs, we are able to show t
existence of an inherent contradiction between them. As an implication, we arrive at a
theorem which states that the six consistency conditions cannot be fulfilled simultaneous
that, hence, the structure of thea2-dynamo operator matrices is not suitable for an opera
intertwining technique based on an Ansatz with first-order differential intertwining operators

In the concluding section~V! we briefly discuss some other methods which could be us
for studying isospectrality issues of the dynamo operator matrix and which possibly could pr
a technique to construct classes of isospectral sphericala2-dynamo operators.

II. J -SYMMETRY OF THE DYNAMO OPERATOR MATRIX

In this section, we study the fundamental symmetryJ of the a2-dynamo operator matrix~8!
which allows us to choose an appropriate Ansatz for the intertwining operatorsA1 andA2 .

We start our consideration by introducing the auxiliary operator

Q@a#ªpap1a
l ~ l 11!

r 2 ,

defined on the domain

D~Q!5$f: fPH5L2~V,r 2dr !,f~1!50, rf~r !ur→0→0%,

in the Hilbert spaceH. The operatorQ@a# is a formally self-adjoint singular differential operato
Q5Q† which acts as symmetric operator onH. @In the subsequent compatibility analysis of th
operator intertwining construction we restrict our attention to symmetric~formally self-adjoint!
operators. For simplicity, we leave questions of self-adjoint extensions and corresponding
alized boundary conditions18,19 for the bi-component functionsc aside.# In terms ofQ@a# the
dynamo operator matrix and its formal adjoint read as

Ĥ l@a#5S 2Q@1# a

Q@a# 2Q@1#
D , Ĥ l

†@a#5S 2Q@1# Q@a#

a 2Q@1#
D ,

so that the fundamental~canonical! symmetry can be obtained as

Ĥ l@a#5Ĥ l
]@a#ªJĤl

†@a#J, J5S 0 1

1 0D . ~9!

Diagonalizing the matrixJ,

J→h5STJS, S5
1

&
S 1 21

1 1 D , h5S 1 0

0 21D ,

we see thatĤ l@a# is equivalent to the operator matrix,

Ȟ l@a#5STĤl@a#S5
1

2 S Q@a22#1a 2Q@a#1a

Q@a#2a Q@2a22#2a D ,

with the propertyȞ l@a#5hȞ l@a#†h. The fundamentalh-symmetry of the operator matrixȞ l@a#

implies thatD(Ȟ l) could be endowed with the indefinite metrich so that Ȟ l@a# becomes a
symmetric operator onD(Ȟ l). Due to the invariance of the signature under the transformatioS

the domainD(Ĥ l) can also be endowed with a natural indefinite inner product@•,•#J defined by
the metricJ,
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@x,y#Jª~x,Jy!, x,yPH̃5H% H,

where (•,•) denotes the usual inner~scalar! product in the Hilbert spaceH̃. This means that
Ĥ l@a# is a J-symmetric operator which acts as symmetric operator in a Krein spaceK̃5H̃J ,

@Ĥ lx,y#J5@x,Ĥ l
]y#J .

@For surveys on operators in Krein spaces~Hilbert spaces with additional indefinite inner produ
structures! we refer to the mathematical literature.14,20# From its operator-matrix representation~9!
we see thatJ is self-adjoint, involutory and unitary,

J†5J, J25I , J215J†,

so thatĤ l@a# is a J-pseudo-Hermitian operator in the sense of Refs. 10, 11, 17.
The eigenvalues ofJ-pseudo-Hermitian operators are known10,14,20to be either real or to come

in complex-conjugate pairs. Here we illustrate this property by passing from the eigenvalue
lem for the linear operator pencil,

L̂ l@a,l#cª~Ĥ l@a#2l!c50,

to the eigenvalue problemLl@a,l#c150 for the associated quadratic operator pencilLl@a,l#.
This pencil can be derived explicitly from the Ansatz

c5S c1

1

a
@Q@1#1l#c1

D ,

with a(r )Þ0. As result we obtain

Ll@a,l#c1[H @Q@1#1l#
1

a
@Q@1#1l#2Q@a#J c150

5~A2l21A1l1A0!c150.

The operators

A0ªQ@1#
1

a
Q@1#2Q@a#, A1ªQ@1#

1

a
1

1

a
Q@1#, A2ª

1

a
,

are formally self-adjoint onD(Q) so that the functionalsajª(Ajc1 ,c1), j 51,2,3 are real-
valued: Imaj50.

From the quadratic equation

~Ll@a,l#c1 ,c1!5a2l21a1l1a050,

we conclude that the eigenvalues of theJ-pseudo-Hermitian dynamo operator matrixĤ l and its
associated pencilLl occur as eigenvalue pairs,21

l65
1

2a2
~2a16Aa1

224a0a2!.

Obviously, the sign of the discriminantDªa1
224a0a2 defines whetherl6 are both real or

pairwise complex conjugate. The transition from real eigenvaluesl6 to complex ones occurs a
D50 where the eigenvalue becomes two-fold degeneratel15l25l052 a1/2a2 . This general
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behavior ofl6 confirms the results of numerical simulations,4 which showed that a scaling of th
helical turbulence functiona leads to a pairwise intersection of real eigenvalue branches ofĤ l and
a transition at the intersection points to a pair of complex conjugate eigenvalues.

We note that at the two-fold degenerate pointsl0 of the spectrum withD50 a Jordan–
Keldysh chain22 exists for the linear operator pencil,

L̂ l~l0!c50, L̂ l~l0!x5c,

as well as for the quadratic operator pencil,

Ll~l0!c150, Ll~l0!x11]lLl~l0!c150.

Both are built up from eigenvectorsc, c1 and associated vectorsx, x1 , respectively.

III. CONSISTENCY CONDITIONS AND MATRIX RICCATI EQUATIONS

The fundamentalJ-symmetry (J-pseudo-Hermiticity! of the a2-dynamo operator matrix pro
vides a natural Ansatz for an intertwining construction which respects this symmetry:

Ĥ l 0
@a0#2EI52ÂÂ], Ĥ l 1

@a1#2EI52Â]Â. ~10!

In general, the operator matrixÂ could be annth-order differential operator of the form

Â5 (
k51

n

Rk~r !~ ip !k1Q~r !,

with 232 matricesRk(r ) andQ(r ) as coefficients. For simplicity, we restrict our attention in t
present paper to the first-order differential operator,

Â5 iR~r !p1Q~r !, ~11!

with J-adjoint Â]52 ipR](r )1Q](r ). Here we define the]-operation for a given 232 matrix
C as

C]5JC†J5JC* TJ.

An asterisk and superscript ‘ ‘T’ ’ denote complex conjugation and transposition, respectively.
Let us introduce the abbreviations

K0,1ªI 2a0,1s2 ,

M0,1ªK0,1

l 0,1~ l 0,111!

r 2 1EI2a0,1s1 ,

with the nilpotent matricess6 defined as

s1ªS 0 1

0 0D , s2ªS 0 0

1 0D .

The shifteda2-dynamo operator matrices in~10! take then the short form

Ĥ l 0,1
@a0,1#2EI52pK0,1p2M0,1. ~12!
                                                                                                                



s

ulta-

as a

3103J. Math. Phys., Vol. 44, No. 7, July 2003 Isospectrality of spherical MHD dynamo operators

                    
Substituting~11! and~12! into the intertwining Ansatz~10!, making use of commutation relation
like @p,R(r )#52 iR8(r ) and equating the coefficient matrices of thep2, p, I terms we obtain the
following six consistency conditions:

Ĥ l 0
: p2: RR]5K0 , ~13!

p: RQ]2QR]2R~R]!81R8R]50, ~14!

I : QQ]2R~R]!91R~Q]!82Q~R]!85M0 ; ~15!

Ĥ l 1
: p2: R]R5K1 , ~16!

p: 2R]Q1Q]R50, ~17!

I : Q]Q2~R]Q!85M1 . ~18!

For a successful intertwining construction these matrix equations should be fulfilled sim
neously. So, the main task consists in finding explicit solution sets for~13!–~18!. Alternatively, we
should obtain intrinsic contradictions within this equation system which could be interpreted
no-go theorem forbidding this construction fora2-dynamo operator matrices.

We start our analysis with Eqs.~13! and ~16!. From the tautologiesRR]R5RR]R and
R]RR]5R]RR] follows:

RK15K0R, K1R]5R]K0 ,

what with

R5S r 11 r 12

r 21 r 22
D , R]5S r 22* r 12*

r 21* r 11*
D

yields

r 1250,
a1

a0
5

r 11

r 22
5

r 11*

r 22*
. ~19!

Hence, we can set

r 115ur 11ueig, r 225ur 22ueig, r 215ur 21uei (g1«).

Using this and~19! in

RR]5K05S 1 0

2a0 1D , R]R5K15S 1 0

2a1 1D ,

we find

R5eigS Aa1

a0

0

2
1

2
Aa0a1~11 i tan«! Aa0

a1

D , ~20!

where the phasesg and« are still undefined.
As a next step we analyze Eqs.~14! and ~17!. It is easily seen that defining the matrices
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UªR@Q]2~R]!8#, BªR]Q, ~21!

these equations are equivalent to theJ-symmetry relations

U5U], B5B].

Due to the different symmetry content ofB and Q it is natural to considerB as the primary
structural element of the intertwining construction, andQ as a secondary one. So, we perform o
subsequent investigation in terms ofB andR. Explicitly, theJ-symmetry is realized by the matri
structure

B5S b11 ib4 b2

b3 b12 ib4
D , Im bk50, k51,...,4. ~22!

Furthermore, we excludeQ from ~21! to obtain

U5RBR212R~R]!8. ~23!

Introducing the notationNªR21R8 and substituting~23! into the symmetry relationU5U]

yields the additional constraint

@B,K1
21#5N]2N. ~24!

From Eq.~20! we find

N5 ig8I 1S 2q 0

f qD ,

q5
1

2 S a08

a0
2

a18

a1
D , ~25!

f 52
a1

2 Fa08

a0
~11 i tan«!1 i

«8

cos2 «G , ~26!

so that~24! transforms to

a1S b2 0

22ib4 2b2
D 522ig8I 1S 2q 0

f * 2 f 22qD .

Finally, we arrive at the following restrictions on the phaseg and the componentsb2 andb4 of the
matrix B:

g850, b25
2q

a1
, b45

Im f

a1
52

1

2 S a08

a0
tan«1

«8

cos2 « D . ~27!

Summarizing the implications of the first four consistency conditions, we see that they ar
of intrinsic contradictions. From the initially eight arbitrary complex-valued functions containe
the matricesR andQ, only the three real-valued functions (b1 ,b3 ,«) are still undefined. Togethe
with the helical turbulence functions (a0 ,a1) and the constants (g,E,l 0 ,l 1)PR23Z1

2 , we expect
them to be highly fine-tuned by the remaining two consistency conditions~15! and ~18!.

Let us study these conditions now. Making use of the definitions ofU and B in ~21!, their
implications

Q]2~R]!85R21U, ~28!
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~Q]!82~R]!952R21R8R21U1R21U8,

Q5~R]!21B, ~29!

and setting at the endRR]5K0 , R]R5K1 according to Eqs.~13!, ~16!, we find that~15! and~18!
transform to the matrix Riccati equations~MREs!

U85M02UK0
21U, ~30!

B852M11BK1
21B. ~31!

Similar to the linearization of the scalar Riccati equations mentioned in~3!–~6! of the Intro-
duction, the MREs~30!, ~31! can be linearized by an Ansatz,23,24

U5VW21, V,WPC232, det~W!Þ0, ~32!

B5XY21, X,YPC232, det~Y!Þ0. ~33!

As result we arrive at the equation systems

S V8
W8 D5S 0 M0

K0
21 0 D S V

WD , S X8
Y8 D52S 0 M1

K1
21 0 D S X

YD . ~34!

The 432 matrices

S V
WD ,S X

YDPC432

are defined up toGL(2,C)3GL(2,C)-transformations

S Ṽ

W̃
D 5S VG0

WG0
D , S X̃

Ỹ
D 5S XG1

YG1
D , G0 ,G1PGL~2,C!,

and can be interpreted as homogeneous coordinates of two points on a complex Gra
manifold G2(C4) which consists of 2-dimensional complex subspaces inC4 ~see, e.g., Refs. 23
24!. The matricesU5VW21 and B5XY21 are the corresponding affine coordinates of the
points.

Differentiating~34! and substitutingV5K0W8, X52K1Y8, it is easily seen that the equatio
systems~34! are equivalent to the second-order matrix differential equations,

~] rK0] r2M0!W50,
~35!

~] rK1] r2M1!Y50.

This implies that the matricesW̃5r 21W, Ỹ5r 21Y should be formal~non-normalized! solutions
of the eigenvalue equations for the dynamo operator matricesĤ l 0

@a0#, Ĥ l 1
@a1#, respectively,

Ĥ l 0
@a0#W̃5EW̃, Ĥ l 1

@a1#Ỹ5EỸ.

A comparison with the simple QM model from the Introduction shows that the intertwin
operator matrixÂ should be expressible in terms ofW or Y, and thatW and Y should be
connected by a product invariant like~7!. With the help of~28!, ~29! and ~34! we find

Â5R~ ip2Y8Y21!5~ ip1K0W8W21K0
21!R.
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In order to obtain the product invariant which connectsW and Y, we use a slightly modified
version of~23!,

U5RB]R212R~R]!8,

and substitute from~32!–~34!,

U5RR]W8W21, B]52~Y]!21~Y]!8R]R,

so that

W8W2152~R]!21~Y]!21~Y]!8R]2~R]!21~R]!8. ~36!

This equation is of the typeg5g1n, (] rg)g215(] rg1)g1
211g1(] rn)n21g1

21. Hence, integration
of ~36! yields the product invariant,

Y]R]W5C, det~C!Þ0,

with C a constant nonsingular matrix.
So far, we have obtained a 1:1 generalization of the intertwining technique from the s

QM example described in the Introduction to ourJ-symmetric dynamo operator model. It remai
to test whether the MREs of this model are consistent. This will be the subject of the next se

IV. NO-GO THEOREM

In order to test the pair of MREs~30!, ~31! for consistency, we make use of~23!, ~24! as well
as the relation

N1K1
21N]K15K1

21K185K18 ,

and transform the MRE forU @Eq. ~30!# into an equivalent MRE forB. As result, we arrive at the
following pair of MREs:

B85R21M0R2K1
21BB1BK181@NN]1~N]!8#K1 , ~37!

B852M11BK1
21B, ~38!

which should be satisfied simultaneously. The corresponding consistency test will be perform
two steps:

~1! From the limiting behavior atr→0 we will derive a relation betweenl 0 and l 1 .
~2! We will extract from Eqs.~37!, ~38! a system of nonlinear ODEs for the helical turbulen

functionsa0 ,a1 and for the componentsb1 ,...,b4 of the matrixB. By mutual substitutions of
these ODEs we will find an inconsistency which can be interpreted as a no-go theorem.

A. Limiting behavior at r\0

From the assumed nonsingular behavior of the helical turbulence functions atr→0 follows
that they can be approximated as

a0,1~r→0!'c0,11a0,1r 1O~r 2! , c0,1Þ0.

Substituting this approximation in a slightly rewritten version of the defining equation~35! for the
matrix Y,

F I ] r
22a18s2] r2

l 1~ l 111!

r 2 I 2S E 2a1

a1 E2a1
2D GY50, ~39!
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we obtain the estimate

Y~r→0!'r 2 l 1S I 1
a1

2
s2r 1O~r 2! D ~r 2l 111C11C2!,

whereC1 , C2 are arbitrary nonsingular constant matrices det(C6)Þ0. Correspondingly, it holds

ZªY8Y21'2 l 1r 21I 1
a1

2
s21O~r !, ~40!

B52K1Y8Y21' l 1r 21I 2@c1l 1r 211~ l 111/2!a1#s21O~r !. ~41!

A comparison of~41! with ~22! shows that the componentsb2 andb4 of the matrixB vanish at
least as

b2 ,b4'O~r !, for r→0.

Furthermore, we find with the help of Eqs.~25!, ~26! and ~27! that q'O(r ) and, hence,a0 /c0

5a1 /c1 , as well asq8, f , f 8'O(1) which impliesN,N],(N])8'O(1).
We are now well prepared to perform a partial consistency test of~37! and~38! by comparing

the singular terms of these equations in the vicinity of the originr 50. From the MREs~37! and
~38! we find

2K1
21K18Z2Z85

l 0~ l 011!

r 2 I 2K1
21ZK1Z2ZK181O~1!, ~42!

2K1
21K18Z2Z852

l 1~ l 111!

r 2 I 1ZZ1O~1!, ~43!

respectively. SubstitutingZ from ~40! and equating the coefficients of ther 22,r 21-terms we
obtain from Eq.~42!,

l 15 l 011, a150,

and, hence, alsoa050. Equation~43! is automatically satisfied, becauseY is defined by the
corresponding linearized equation~39!. The incremental relationl 15 l 011 is well known from
ladder operator constructions for spherically symmetric Hamiltonians in QM.5 This is not surpris-
ing, because this ladder operator construction can be recovered from the intertwining const
~10! for the a2-dynamo operator matrices by the two-step transition: 1.a05a15a, 2. a→0.

B. Systems of coupled nonlinear ODEs and their inconsistency

The system of eight coupled nonlinear ODEs for the componentsb1 ,...,b4 of the matrixB is
easily obtained from the MREs~37!, ~38!, e.g., with the help of the matrix multiplication packag
of MATHEMATICA ©. For our analysis it is sufficient to consider only the simplest four equation
this system, i.e., thes1 and I projections of~37! and ~38!:

b2852b1b21a1~11b2
2!, ~44!

522b1b22
a0

2

a1
, ~45!
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b185b1
21b2b32b4

22E2
l 1~ l 111!

r 2 1a1b1b2 , ~46!

52b1
22b2b31b4

21E1
l 0~ l 011!

r 2 2a18b21
a0

2

2
1q82q2. ~47!

Equating the right-hand-sides of~44!, ~45! and usingb252q/a1 from ~27! we are able to expres
b1 as

b152
4q21a0

21a1
2

8q
. ~48!

Taking into account thatq5] r ln(a0 /a1)/2 according to~25! and that the helical turbulence func
tions a0 anda1 do not depend onl 0 or l 1 we conclude from Eq.~48! that b1 should not depend
on l 0 or l 1 too. On the other hand, the addition of~46! and ~47! together with the relationl 0

5 l 121 gives

2b1852
2l 1

r 2 12qS b12
a18

a1
D 1

a0
2

2
1q82q2,

which by integration leads to a functionb1 which depends onl 1 . That means, the term dependin
on l 1 cannot be compensated by a combination ofl 1-independent terms. This is an obviou
contradiction to~48! and we have to conclude that the consistency conditions~13!–~18! cannot be
fulfilled simultaneously. This means that we are lead to the

No-go theorem:The structure of the MHDa2-dynamo operator matrix is incompatible wit
an operator intertwining technique which is based on first-order differential intertwining oper

A similar situation occurs also for three-dimensional spherically symmetric models in Q5

There thel -dependent centrifugal term sets so strong restrictions on the form of the all
potential that an intertwining construction built on first-order differential intertwining operato
only possible for the following three cases: the constant potentialV(r )5const, the Coulomb
potentialV(r )}1/r , and the potential of the three-dimensional isotropic harmonic oscillator
V(r )}r 2. Richer classes of allowed potentials are only found for models in theirs states, when
l 50. Such states area priori excluded for thea2-dynamo operator matrix due to its constructio
@see Eq.~A5!#.

V. CONCLUDING REMARKS

In the present paper, we have tested the MHDa2-dynamo operator matrix for its compatibilit
with the simplest variant of an intertwining construction based onfirst-orderdifferential intertwin-
ing operators. The operators have been chosen in accordance with the fundamentalJ-symmetry
~pseudo-Hermiticity! of the operator matrix and lead to a set of six matrix equations as consis
conditions. With the help of a step-by-step reduction of the complexity we have extracted
basic structural elements and have shown that they contain an intrinsic inconsistency. So, w
to conclude that the structure of thea2-dynamo operator matrix is not compatible with th
considered first-order differential intertwining Ansatz. This fact is the subject of the formu
no-go theorem.

It remains to test whether intertwining constructions can be built from second-order or h
order differential intertwining operators. Energy shift operators based on second-order diffe
expressions are known for harmonic oscillators with time-dependent frequencies and add
1/r 2-term25 as well as for the spherically symmetric oscillator and the Coulomb potentia5 A
generalization of the technique to the MHDa2-dynamo operator matrix seems realistic.

Another approach for a clarification of the considered isospectrality problem could cons
a generalization of the Gelfand–Levitan technique for vector-valued Sturm–Liouville proble26
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Concerning its general structure, thea2-dynamo operator matrixĤ l@a# is a singular non-self-
adjoint matrix Sturm–Liouville operator which by a unitary transformation can be recast int
standard form

2] r P2~r !] r1P0~r !.

In 1998, Jodeit and Levitan26 analyzed the isospectrality problem for matrix Sturm–Liouvi
operators withP2(r )5I and P0(r ) a symmetric matrix. They showed that if two vector-valu
Sturm–Liouville problems are isospectral then the eigenfunctions of one problem can be
structed from the eigenfunctions of the other problem with the help of a matrix Gelfand–Le
transformation. So, a generalization of this technique to Sturm-Liouville problems with non
metric P0(r ) and P2(r )ÞI 2 would naturally cover the isospectrality problem for the MH
a2-dynamo operator matrix.
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APPENDIX A: DERIVATION OF THE a2-DYNAMO OPERATOR MATRIX FROM THE
MEAN-FIELD INDUCTION EQUATION

For completeness we sketch here the main steps of the derivation of the 232 operator matrix
Ĥ l@a# for a model with helical turbulence functiona(r ). The outline follows the technique fo
models witha5const as presented in Ref. 1.

The spherical MHD mean-fielda2-dynamo in its kinematic regime is described by the indu
tion equation for the magnetic field,

] tB5“Ã~aB!1nmDB, ~A1!

supplemented by the condition“"B50. The magnetic diffusivitynm is assumed to be constan
and the helical turbulence functiona to depend only on the distance from the origina5a(r ).
Decomposition into toroidal and poloidal componentsB5Bt1Bp and settingBp5“ÃAt allows
for a decomposition of the induction equation~A1!:

] tBt5“Ã~a“ÃAt!2nm“Ã“ÃBt , ~A2!

] tAt5aBt2nm“Ã“ÃAt . ~A3!

Furthermore, the fieldsBt andAt can be represented as

At52rÃ“F1 , Bt52rÃ“F2 ,

whereF1 andF2 are single-valued scalar functions which are normalized on the unit sphereS2 by
the condition

E
S2

F1,2 dv50. ~A4!

With the help of the relations

D~rÃ“F1!5rÃ“DF1 ,

“Ã@a“Ã~2rÃ“F1!#5rÃ“F1

r
~] ra!~] r rF 1!1aDF1G ,
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arÃ“F25rÃ“~aF2!,

Eqs.~A2! and ~A3! can be rewritten as

rÃ“@nmDF11aF22] tF1#50,

rÃ“FnmDF22
1

r
~] ra!~] r rF 1!2aDF12] tF2G50.

It follows that the expressions in the square brackets are functions ofr and t alone which must
vanish due to the normalization condition~A4! and its implication*S2DF1,2 dv50. By re-scaling
of r and t one sets the magnetic diffusivity to unitynm51 and the boundary conditions atr
51.

With the help of a series expansion in spherical harmonics,

F1,25 (
l ,m,n

el l ,ntF1,2
( l ,m,n)~r !Yl

m~u,f!PL2~V,r 2dr ! ^ L2~S2,dv!, V5@0,1#,

one obtains the eigenvalue problem

D lF1
( l ,m,n)1aF2

( l ,m,n)5l l ,nF1
( l ,m,n) ,

D lF2
( l ,m,n)2

1

r
~] ra!~] r rF 1

( l ,m,n)!2aD lF1
( l ,m,n)5l l ,nF2

( l ,m,n) .

Here we used the notationD l5(1/r 2) ] r r
2] r2 l ( l 11)/r 2 and the fact that due to the symmetry

the dynamo configuration1 the eigenvaluesl l ,n depend only onl andn. We note that the normal
ization condition~A4! implies

F1,2
( l 50,m,n)50. ~A5!

Finally, the substitutionsp52 i (] r11/r ), c1,25F1,2
( l ,m,n)PL2(V,r 2dr) lead to the eigenvalue

problem for thea2-dynamo operator matrixĤ l@a# as it is given in Eq.~8! of the Introduction.
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Special solution of the inhomogeneous Bloch equation
M. Kobayashia)

Department of Physics, Gifu University, Yanagido, Gifu 501-1193, Japan
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A solution of the inhomogeneous Bloch equation is given for a class of three-
dimensional time-varying magnetic fields by finding the fundamental system in
terms of a set of the three independent solutions of the homogeneous Bloch equa-
tion. This class is distinguished by requiring a nonlinear relation between one of the
magnetic field components and the other two components and their derivatives. A
brief discussion of the magnetic field class characteristics and an illustrative ex-
ample are given. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1579992#

I. INTRODUCTION

Since the Bloch equation1 was proposed in 1946, various workers have tried to solv
analytically. As yet few exact solutions are known.2 Very recently, an interesting solution wa
found to the homogeneous Bloch equation.3 This was done by solving the Riccati equation
which the homogeneous Bloch equation reduces.4 The reason why we persist in solving th
homogeneous Bloch equation analytically is due to the fact that the inhomogeneous Bloch
tion is uniquely solved by finding a fundamental system in terms of a set of three indepe
solutions of the homogeneous Bloch equation. By linearizing the Riccati equation, a set of
solutions of the homogeneous Bloch equation are found.5 The fundamental matrix in terms o
these solutions becomes singular. This means two of them serve as independent solutions. W
clarified the utility and limitation of this approach to solve the homogeneous Bloch equatio

The purpose of this paper is to find a fundamental system of solutions using the sta
method of solving the Riccati equation.6 We thus discover a solution of the inhomogeneous Blo
equation for a class of time-varying magnetic fields.

In Sec. II we solve the Riccati equation and find a set of three independent solutions
homogeneous Bloch equation. Then in Sec. III we give a solution of the inhomogeneous
equation using the fundamental system of solutions. A brief discussion of the magnetic field
characteristics and an illustrative example are given in Sec. IV. The final section is devoted
conclusions.

II. THE RICCATI EQUATION

The Bloch equation for magnetization with infinite relaxation times is a homogeneous sy
of three first-order linear differential equations, and given by

Ṁ52g ~BÃM ! , ~1!

where an overdot means differentiation with respect to time. HereM andB are the magnetization
vector and the applied magnetic field, respectively, andg is the gyromagnetic ratio.

It immediately follows from Eq.~1! that the magnitude of the magnetization vector is p
served. Thus we can definem by

a!Electronic mail: masanori@cc.gifu-u.ac.jp
31120022-2488/2003/44(7)/3112/11/$20.00 © 2003 American Institute of Physics
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m5
M

uM u
, ~2!

which obeys the Bloch equation, i.e.,

ṁ52g ~BÃm! , ~3!

with

m"m51 . ~4!

Let us introduce the two variables,j andh, defined by

m11 i m25j~12m3! , ~5!

and

m12 i m25
1

h
~m321! ; ~6!

then we find

j5
m11 i m2

12m3
5

11m3

m12 i m2
, ~7!

and

h52
12m3

m12 i m2
52

m11 i m2

11m3
, ~8!

and the relationships betweenj andh such that

jh* 5j* h521 , ~9!

jj* 5
11m3

12m3
, ~10!

and

h52
12m3

11m3
j . ~11!

Differentiating Eq.~7! with respect to time and substituting Eq.~3! into it, we find the Riccati
equation,

j̇5 1
2 g~B21 i B1! j22 i gB3 j1 1

2 g~B22 i B1! . ~12!

Similarly, we also find the same Riccati equation forh. Here use has been made of the relations

B1 m22B2 m152 1
2 ~B21 i B1!~m11 i m2!2 1

2 ~B22 i B1!~m12 i m2! . ~13!

Let z be defined by

z5S B22 i B1

B21 i B1
D 1/2

; ~14!
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then we find

z56 i eic , ~15!

where

B26 i B156 i B0 e7 ic , ~16!

with

B05AB1
21B2

2 , ~17!

and

c5cos21S B1

B0
D5sin21S B2

B0
D5tan21S B2

B1
D . ~18!

Having assigned the two phases ofz to j andh, we define

j52 i eic u , ~19!

and

h5 i eic v . ~20!

Thus we find the relationships from Eqs.~9!, ~10!, and~11!:

u v* 5u* v51 , ~21!

u u* 5
11m3

12m3
, ~22!

and

v5
12m3

11m3
u . ~23!

Sinceu is defined by Eq.~19!,

j5z u , ~24!

with

z52 i eic , ~25!

then the Riccati equation~12! turns out to be

z u̇5 1
2 g~B22 i B1!~u211!2~ ż1 i g B3 z! u . ~26!

Notice that the Riccati equation~26! can be solved by requiring the coefficient ofu to be
proportional to the coefficient ofu211;

ż1 i g B3 z5 i C 1
2 g~B22 i B1! , ~27!
                                                                                                                



ing

3115J. Math. Phys., Vol. 44, No. 7, July 2003 The inhomogeneous Bloch equation

                    
whereC is an arbitrary real constant. This produces a separation of the variables,u andz, and
leads to an expression forz consistent with the previous definition after solving the result
first-order linear differential equation.6

Using Eqs.~16! and ~25!, we rewrite Eq.~27! in the form

ż5 i ~2g B31 1
2 C g B0!z . ~28!

The solution of Eq.~28! is easily found and given by

z52 i eic , ~29!

where

c5E
t0

t F2g B3~t!1
1

2
C g B0~t!G dt . ~30!

Substituting Eq.~27! into Eq. ~26!, we find

u̇5 1
2 g B0~u22 i C u11! , ~31!

where we have used Eqs.~16! and ~25!.
Solving Eq.~31!, we find two solutions:

u15 i a1b tan~b x! , ~32!

and

u25 i a2b cot~b x! , ~33!

wherea andb are given by

a5 1
2 C , ~34!

and

b5A11a2 , ~35!

and

x5
1

2
g E

t0

t

B0~t! dt . ~36!

Similarly we find the solutions forh as

h5 i eicv , ~37!

with

v5
1

~u u* !
u , ~38!

wherev is the solution of the differential equation;

v̇52 1
2 g B0~v21 i C v11! . ~39!

We thus find the solutions of Eq.~39!,
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v152@ i a1b tan~b x!# , ~40!

and

v252@ i a2b cot~b x!# . ~41!

The solutions of the Riccati equation forj andh have the same forms.
We have found two solutions of the Riccati equation~12!:

j152 i eic u15eic@a2 i b tan~b x!# , ~42!

and

j252 i eic u25eic@a1 i b cot~b x!# . ~43!

The Riccati equation~12! can be cast in the more convenient form

j̇5 i ẋ e2 ic j22 i ẋ3 j2 i ẋ eic , ~44!

where

x35g E
t0

t

B3~t! dt . ~45!

Here we have used Eqs.~16!, ~17!, and~36!.
By using the solutions~42! and~43!, we can find a third solution of the Riccati equation~44!.

Sincej i , (i 51, 2) are the solutions of Eq.~44!, we have

j̇2 j̇ i5 i ẋ e2 ic~j22j i
2!2 i ẋ3~j2j i ! ~ i 51, 2! , ~46!

namely,

j̇2 j̇ i

j2j i
5 i ẋ e2 ic~j1j i !2 i ẋ3 ~ i 51, 2! . ~47!

Thus we find

j̇2 j̇1

j2j1
2

j̇2 j̇2

j2j2
5 i ẋ e2 ic~j12j2! . ~48!

The solution of the differential equation~48! is

j2j1

j2j2
5C1 expH i E

t0

t

ẋ~t!e2 ic(t)@j1~t!2j2~t!# dtJ , ~49!

whereC1 is a constant of integration. The third solution is obtained by substituting Eqs.~42! and
~43! into Eq. ~49!. The result turns out to be

j32j1

j32j2
5tan~b x! , ~50!

where we have chosenC1 as

C15tan@b x~ t0!# . ~51!
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Thus we find

j35eicFa2 i b
11tan~b x!

12tan~b x!G5eicFa1 i b
11cot~b x!

12cot~b x!G . ~52!

III. THE FUNDAMENTAL SYSTEM

A set of three solutions of the homogeneous Bloch equation is obtained from the R
equation~12! corresponding to equations Eqs.~42!, ~43!, and~52!.

Let m( i ) ( i 51, 2, 3), be

m1
( i )5

j i1j i*

11j i j i*
, ~53!

m2
( i )52 i

j i2j i*

11j i j i*
, ~54!

and

m3
( i )52

12j i j i*

11j i j i*
; ~55!

then the fundamental matrixK is defined by

~K ! i j 5Ki j 5mi
( j ) ~ i , j 51, 2, 3! . ~56!

Here use has been made of the definitions ofj andh, Eqs.~5! and~6!, respectively, together with
Eq. ~9!.

Substituting Eqs.~42!, ~43!, and~52! into Eqs.~53!, ~54!, and~55!, we write out the elements
of the fundamental matrix here:

K115m1
(1)5

1

b2 $a @11cos~2b x!#cosc1b sin~2b x!sinc% , ~57!

K215m2
(1)5

1

b2 $a @11cos~2b x!#sinc2b sin~2b x!cosc% , ~58!

K315m3
(1)52S 12a2

b2 D 1

2
@11cos~2b x!#1

1

2
@12cos~2b x!# , ~59!

K125m1
(2)5

1

b2 $a @12cos~2b x!#cosc2b sin~2b x!sinc% , ~60!

K225m2
(2)5

1

b2 $a @12cos~2b x!#sinc1b sin~2b x!cosc% , ~61!

K325m3
(2)52S 12a2

b2 D 1

2
@12cos~2b x!#1

1

2
@11cos~2b x!# , ~62!

K135m1
(3)5

1

b2 $a @12sin~2b x!#cosc1b cos~2b x!sinc% , ~63!
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K235m2
(3)5

1

b2 $a @12sin~2b x!#sinc2b cos~2b x!cosc% , ~64!

and

K335m3
(3)52S 12a2

b2 D 1

2
@12sin~2b x!#1

1

2
@11sin~2b x!# . ~65!

First of all we have to calculate the determinant of the fundamental matrix. The result
out to be

detK5
2a

b3 5C S 2

A41C2D 3

. ~66!

This means that the fundamental matrix is nonsingular and the three solutions of the homog
Bloch equation are linearly independent.

The homogeneous Bloch equation~3! is written in the form

d

dt
m5A m , ~67!

where the normalized magnetization vectorm is a column vector andA is 333 matrix and given
by

A5S 0 g B3 2g B2

2g B3 0 g B1

g B2 2g B1 0
D . ~68!

The homogeneous Bloch equation turns out to be

K̇ i j 5ṁi
( j )5Aik mk

( j )5Aik Kk j ~ i , j 51, 2, 3! , ~69!

where we assume summation over repeated indices and

~A! i j 5Ai j . ~70!

Thus we find

K̇5A K . ~71!

Similarly, we find

detK̇5K̇ i j Ki j
C5Aik Kk j Ki j

C5Aik dki detK5tr A detK , ~72!

whereKi j
C is the cofactor ofKi j and

Kik K jk
C 5d i j detK . ~73!

The solution of the differential equation~72! is

detK5detK~ t0! expF E
t0

t

tr A~t! dtG , ~74!

with
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tr A50 . ~75!

Thus we find that Eq.~66! is exactly the solution we want.
The inhomogeneous Bloch equation has the form

d

dt
m5A m1b , ~76!

where the column vectorb is given by

bi52
mi

Ti
~ i 51, 2, 3! . ~77!

HereTi ( i 51, 2, 3) are relaxation times.
The fundamental system of solutions of the homogeneous system is a set of three l

independent magnetization vector,m( i ) ( i 51, 2, 3). Using the fundamental matrixK defined by
Eq. ~56!, the unique solution to the inhomogeneous system~76! is

m5K K21~ t0! m~ t0!1K E
t0

t

K21~t! b~t! dt , ~78!

where the inverse matrix ofK is defined by

K215
adjK

detK
, ~79!

with

~adjK ! i j 5K ji
C . ~80!

The cofactors ofKi j ( i , j 51, 2, 3), are listed in the Appendix.

IV. CHARACTERISTICS OF THE MAGNETIC FIELD CLASS AND ILLUSTRATIVE
EXAMPLE

In this section we give a brief discussion of the import of the restriction imposed on
magnetic field through the relation~81! below and an illustrative example of precession.

Differentiating Eq.~30! with respect to time, we find

g B35
Ḃ1 B22B1Ḃ2

B1
21B2

2 1
1

2
C gAB1

21B2
2 , ~81!

where we have used Eq.~18!. The third component of the magnetic field is expressed by the o
two independent time-varying magnetic field components. The effect of the assumption~27! is to
restrict the acceptable domain of the magnetic field variation to the region of (B,Ḃ)-space where
the relationship~81! holds.

To discuss the characteristics of the magnetic field class we give some insight to the m
of the restriction~81! which must be satisfied by the applied magnetic field in order to obtain
solution which is developed in the article.

The simplest practical discussion would center on the behavior of the third component
the first two components are harmonically varying;

B~ t !5„B0~ t !cos~vt !, B0~ t !sin~vt !, B3~ t !… , ~82!
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with v being a constant angular velocity~harmonic frequency!. The restriction~81! leads to the
relation

B3~ t !52
v

g
1

1

2
CB0~ t ! . ~83!

This immediately suggests the effect of the variation of the constant C as a controlling infl
on the third component of the applied magnetic field; the effects of variation of harmonic
quency, gyromagnetic ratio and the magnitude of the harmonic field thus being easily interp

If the magnitude of the harmonic field,B0 , is time-independent, we then find the well-know
solution of classical precession.

V. CONCLUSIONS

We have found a solution of the inhomogeneous Bloch equation for a class of time-va
magnetic fields. This has been done by finding the fundamental system in terms of a set
three independent solutions of the homogeneous Bloch equation.

Notice that we can find a solution of the homogeneous Bloch equation in another form

m(1)1m(2)5
2a

b
m(4) , ~84!

where

m(4)5S 1

b
cosc,

1

b
sinc,

a

b D T

. ~85!

Here we have used Eqs.~57! to ~62!. This is a generalized solution of the classical precess
which can be decomposed into the two independent solutions,m(1) andm(2).

In general, the Riccati equation~44! can be rewritten in the form

u̇5ẋu22 i ~ ċ1ẋ3!u1ẋ , ~86!

where

j52 iueic . ~87!

It seems to be difficult to find a general solution of Eq.~86!, becauseẋ3 is contained in the
coefficient ofu. The simplest soluble case is to be imposed the restriction as

ċ1ẋ35Cẋ . ~88!

This is exactly the same as Eq.~81!.
Also note that the solutions obtained by using the linearized Riccati equation5 were restricted

to the case of

C562 or a561 , ~89!

in which some simplifications of the solutions~57!–~65! occur.
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APPENDIX: THE COFACTORS OF K ij „ i , jÄ1, 2, 3…

We list here the cofactors of the element of the fundamental matrixK:

K11
C 5

1

2 S 12a2

b3 D @12cos~2b x!2sin~2b x!#cosc

2
1

b2 H a@cos~2b x!2sin~2b x!#sinc2
1

2
b@11cos~2b x!1sin~2b x!#coscJ ,

~A1!

K21
C 5

1

2 S 12a2

b3 D @12cos~2b x!2sin~2b x!#sinc

1
1

b2 H a@cos~2b x!2sin~2b x!#cosc1
1

2
b@11cos~2b x!1sin~2b x!#sincJ ,

~A2!

K31
C 5

a

b3 @12cos~2b x!2sin~2b x!# , ~A3!

K12
C 5

1

2 S 12a2

b3 D @11cos~2b x!2sin~2b x!#cosc

2
1

b2 H a@cos~2b x!1sin~2b x!#sinc2
1

2
b@12cos~2b x!1sin~2b x!#coscJ ,

~A4!

K22
C 5

1

2 S 12a2

b3 D @11cos~2b x!2sin~2b x!#sinc

1
1

b2 H a@cos~2b x!1sin~2b x!#cosc1
1

2
b@12cos~2b x!1sin~2b x!#sincJ ,

~A5!

K32
C 5

a

b3 @11cos~2b x!2sin~2b x!# , ~A6!

K13
C 52

1

b S 12
12a2

b2 D sin~2b x!cosc1
2a

b2 cos~2b x!sinc , ~A7!

K23
C 52

1

b S 12
12a2

b2 D sin~2b x!sinc2
2a

b2 cos~2b x!cosc , ~A8!

and

K33
C 5

2a

b3 sin~2b x! . ~A9!

The determinant of the fundamental matrix is found by using Eqs.~A1! to ~A9!:
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detK5Ki1 Ki1
C 5Ki2 Ki2

C 5Ki3 Ki3
C 5

2a

b3 . ~A10!
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Quaternionic roots of SO „8…, SO„9…, F4 and the related
Weyl groups

Mehmet Koca,a) Ramazan Koç,b) and Muataz Al-Barwanic)
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Al-Khod 123, Muscat, Sultanate of Oman
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The root systems of SO~8!, SO~9! andF4 are constructed by quaternions. Triality
manifests itself as permutations of pure quaternion unitse1 , e2 ande3 . It is shown
that the automorphism groups of the associated root systems are the finite sub-
groups of O~4! generated by left-right actions of unit quaternions on the root sys-
tems. The relevant finite groups of quaternions, the binary tetrahedral and binary
octahedral groups, play essential roles in the construction of the Weyl groups and
their conjugacy classes. The relations between the Dynkin indices, standard or-
thogonal vector and the quaternionic weights are obtained. ©2003 American In-
stitute of Physics.@DOI: 10.1063/1.1578177#

I. INTRODUCTION

The Lie groups SO~8!, SO~9!, F4 and their Lie algebras have generated more interest1 regard-
ing their use in building massless supersymmetry and supergravity multiplets of the supe
theories and M-theory,2 respectively. The SO~8! is the light-cone little group of the superstrin
theories in 911 dimensions, which are certain limits of a bigger theory, called M-theory exis
in 1011 dimensions. The massless degrees of freedom of M-theory require certain irred
representations of SO~9!. If algebraic structures play any role in ultimate unification of the fu
damental forces, theF4 seems to be a natural symmetry in which SO~9! can be embedded with
triply symmetric way.

In what follows we construct the root systems of SO~8!, SO~9! and F4 in terms of
quaternions3 and their Weyl group elements as pairs of unit quaternions acting on the quate
weights from left and right. We show that the quaternion elements of the binary tetrahedral
and the binary octahedral group are relevant structures both for the root systems as well
Weyl group elements of SO~8! andF4 , respectively. The SO~9! plays a transition stage betwee
SO~8! andF4 .

For the root systems of these Lie algebras and their weights form lattices in four-dimen
Euclidean space, it is expected that their automorphism groups are the finite subgroups o~4!.
The defining representation of O~4! can be constructed by the actions of a pair of unit quaterni
(p,r ) on an arbitrary quaternionq asq→pqr andq→pq̄r with q̄ being quaternion conjugate o
q. The finite subgroups of O~4! can be classified with the use of finite subgroups of quaternio4

We have organized the article as follows: The O~4! group of quaternions are introduced
Sec. II along with the binary tetrahedral group and the binary octahedral group of quaternion
their relevant subgroups, coset structures and the conjugacy classes. In Sec. III, we introd
quaternionic simple roots of SO~8!, construct its root system and its Weyl group with quaternio
The conjugacy classes of the Weyl group with its subgroup structures and extension of the
group by the Dynkin diagram symmetry of SO~8! have been explicitly constructed.

The SO~9! root system and its Weyl group have been studied in Sec. IV. A similar analysi

a!Electronic mail: kocam@squ.edu.om
b!On leave from Department of Physics, Gaziantep University, 27310 Gaziantep, Turkey. Electronic

koc@gantep.edu.tr
c!Electronic mail: muataz@squ.edu.om
31230022-2488/2003/44(7)/3123/18/$20.00 © 2003 American Institute of Physics
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the F4 algebra has been done in Sec. V. Embeddings of SO~9! in F4 , extension ofW(F4) by the
Dynkin diagram symmetry, relations between the Dynkin indices and the quaternionic weigh
a number of interesting aspects of the Weyl groups have been worked out in relevant se
Finally, in Sec. VI we discuss our results along with their possible use in four-dimens
crystallography as well as the superstring theories and M-theory.

II. THE O„4… SYMMETRY OF QUATERNIONS

A quaternionq5(a50
3 qaea with qa real numbers andea(e051,e1 ,e2 ,e3) quaternion units is

a vector in four-dimensional Euclidean space where pure quaternions satisfy the relations

eiej52d i j 1e i jkek , i , j ,k51,2,3. ~1!

Hered i j ande i jk are the usual Kronecker and Levi-Civita symbols, respectively. The quatern
of unit normqq̄5q̄q51 with quaternion conjugateq̄5q02( i 51

3 qiei form a group isomorphic to
SU~2!. The finite subgroups of quaternions relevant to our discussions are the quaternion
Q5^2,2,2& of order 8, the binary octahedral groupT5^3,3,2&52A4 of order 24 and the binary
octahedral groupO5^4,3,2&52S4 of order 48.@There are a number of notations in the literatu
for the finite subgroups of quaternions.~The notation for the finite subgroups of quaternio
^p,q,r & which is introduced by Coxeter and Moser5 means the group generatorsA,B,C satisfy the
relationsAp5Bq5Cr5Z,Z251.) We will interchangeably use all; however, we will mainly fo
low the notations of the Atlas of Finite Groups.6 The groupG5AB denotes any group having
normal subgroup structureA, for which the corresponding quotient group has structureB. The
finite groups of quaternions are of this type, e.g., 2A4 , 2S4 and 2A5 are the double covers of th
tetrahedral, octahedral and icosahedral groups where 2 stands for the center of the grou
groupG5A’B ~or G5A:B in the notation of Ref. 6! is the semi-direct product of two groupsA
andB whereA is the invariant subgroup andB is the quotient group. An important difference fro
the previous case is that a copy ofB lies within the groupG. The direct product of two groups i
denoted byG5A3B.] The conjugacy classes of 2A4 and 2S4 will be used when we construct th
Weyl groupsW(D4), W(B4) andW(F4) of the Lie algebras SO~8!, SO~9! andF4 , respectively,
and they are given in Tables I and II. The positive and negative subscripts are self-explanato
are chosen such that these discrete quaternions will also stand for positive and negative r
the Lie algebras of interest.

For completeness, here we introduce the important properties of the O~4! symmetry of quater-
nions. A pair of unit quaternions (p,r ), with pp̄5r r̄ 51, multiplying an arbitrary quaternionq
from left and right,

~p,r !:q→pqr5eaPqebR, ~2!

leaves the quaternion normqq̄5q̄q invariant. HereP52 P̄ andR52R̄ are pure quaternions. I
can be shown that the determinant of the 434 matrix corresponding to the transformation~2! is

TABLE I. The conjugacy classes of 2A4 .

Conjugacy classes
and orders of elements

Elements in the conjugacy classes denoted also
by their total numbers

1 1
2 21
4 6 : 31 % 32 :6ei , i 51,2,3
6 41 :$

1
2(11e11e21e3),

1
2(11e12e22e3),

1
2(12e12e21e3),

1
2(12e11e22e3)%

6 4̄1 : conjugates of 41
3 425241 : negatives of 41
3 4̄2524̄1 : negatives of 4̄1
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11, thereby indicating that it is an element of the SO~4! subgroup. The left and right rotations i
~2! are actually representing a double rotation through the anglesa1b, a2b about planes
generated by vectors (O,P2R,11RP) and (O,P1R,12RP), respectively.7 The two planes are
orthogonal to each other. In addition to the transformation in~2! one can define a transformatio

~p,r !* :q→pq̄r , ~3!

which also leavesqq̄5q̄q invariant. Since~3! leavesp1r invariant and changes sign ofp2r for
general unit quaternionsp and r , it follows that (p,r )* is a rotary reflection having determinan
21. Therefore (p,r ) and (p,r )* generate the group O~4!. Below we give some properties of th
group elements:

~a,b!~c,d!5~ac,db!, ~a,b!215~a21,b21!5~ ā,b̄!,

~a,b!* ~c,d!* 5~ad̄,c̄b!, ~a,b!* 215~b,a!* ,
~4!

~a,b!~c,d!* 5~ac,db!* ,

~a,b!* ~c,d!5~ad̄,c̄b!* .

The element (1,1)* acts as a conjugation (1,1)* :q→q̄, which leaves the SO~4! invariant:

~1,1!* ~a,b!~1,1!* 215~ b̄,ā!* ~1,1!35~ b̄,ā!PSO~4!. ~5!

This shows that SO~4! is an invariant subgroup of O~4! dividing O~4! into two cosets generated b
the elements (a,b) and (a,b)(1,1)* 5(a,b)* Þ(1,1)* (a,b)5(b̄,ā)* for a general elemen
(a,b). The quotient group O(4)/SO(4)525Z2 is represented by (1,1)* and ~1,1!, a copy of
which is within the group O~4!. Therefore we have the semi-direct product structure O
5SO(4)’2. The SO~3! subgroup of SO~4! is generated by the elements (a,ā), which can be
extended to O~3! by (1,1)* . But we note that (1,1)* and the SO~3! elements are commutative a
we have

~a,ā!~1,1!* 5~1,1!* ~a,ā!5~a,ā!* . ~6!

This relation proves that O~3! has a direct product structure O(3)523SO(3).

TABLE II. The conjugacy classes of 2S4 .

Conjugacy classes
and orders of elements

Elements in the conjugacy classes denoted also
by their total numbers

1 1
2 21
4 6531 % 32 :6ei , i 51,2,3
6 81541 % 4̄1 :

1
2(16e16e26e3)

3 825281 :
1
2(216e16e26e3)

4
61%62 ;615H 1

&
~e16e2!,

1

&
~e26e3!,

1

&
~e36e1!J, 625261

8
618 :H 1

&
~16e1!,

1

&
~16e2!,

1

&
~16e3!J

8
628 52618 :H 1

&
~216e1!,

1

&
~216e2!,

1

&
~216e3!J
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Quaternions can be represented by 232 unitary matrices where the quaternion units have
correspondence 1→I ,ei→2 is i whereI is the 232 unit matrix whiles i are the Pauli matrices
The transformations~2! and ~3! can be written in terms of 232 unitary matrices in the forms

e2 ianW •sW S q01 iq3 iq11q2

iq12q2 q02 iq3
D e2 ibmW •sW

and

e2 ianW •sW S q02 iq3 2 iq12q2

2 iq11q2 q01 iq3
D e2 ibmW •sW ,

respectively. Determinants of the matricesq andq† are left invariant corresponding to the norm
of the vectorsq and q̄, respectively.

The finite subgroups of O~4! can be obtained from the finite subgroups of quaternions by
rules given in~4!. We will analyze some of them when we deal with the Weyl groupsW(D4),
W(B4) and W(F4) as well as the full automorphism groups of the root systems. In an ea
publication8 we have introduced a general method to construct the conjugacy classes
Coxeter groupH4 . A similar method also applies here in the construction of conjugacy class
the Weyl groups of interest.

III. THE ROOT SYSTEM OF SO„8… AND ITS WEYL GROUP W„D4…

In this section we will construct the root system of SO~8! and its automorphism group with
quaternions. In one publication3 one of us~MK ! has given the root systems of SO~8!, SO~9! and
F4 in terms of quaternions. However, no one has since then constructed the automorphism
of their root systems as finite subgroups of O~4! using quaternions.

The scalar product of two quaternionsq1 and q2 can be defined by (q1 ,q2)5 1
2(q1q2

1q2q1). In the four-dimensional Euclidean space the quaternion unitsea(a50,1,2,3) with this
scalar product form an orthonormal basis. The familiar orthogonal vector systeml i ( i
51,2,. . . ,r ) used for the construction of root systems of Lie algebras9 is given forr 54 in terms
of the quaternion units as

l 15
1

&
~11e1!, l 25

1

&
~12e1!, l 35

1

&
~e21e3!, l 45

1

&
~e22e3!. ~7!

The Dynkin diagram of SO~8! with quaternion simple roots scaled by& is depicted in Fig. 1.
@Root systems of SO~8!, SO~9! andF4 will be represented by quaternions scaled by&.#

The positive roots of SO~8! with the simple roots in Fig. 1 are

r 15$1,e1 ,e2 ,e3 , 1
2 ~16e16e26e3!%5$1,31,41 ,4̄1%. ~8!

The nonzero roots including their negatives form the setT5V0% V1% V2 , where

V05$6ea ~a50,1,2,3!%5$61,31 ,32%, ~9a!

FIG. 1. Dynkin diagram of SO~8! with unit quaternions.
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V15$41 % 42%, ~9b!

V25$4̄1 % 4̄2%5V̄1 ~9c!

form the binary tetrahedral group 2A4 of order 24. The setV0 is the quaternion groupQ of order
8 and represents the vertices of a hyperoctahedron in four dimensions.4 Similarly the sets of
quaternionsV1 andV2 each represent a hyperoctahedron, however any two sets, sayV1 andV2 ,
form a hypercube in four dimensions. The symmetry of the root system of SO~8! is the symmetry
of three congruent hyperoctahedrons. The quaternion groupV0 is an invariant subgroup of 2A4

whereV1 and V̄1 are the cosets obtained by multiplyingV0 on the left by

t5 1
2 ~11e11e21e3!, t252 t̄ , i.e., V15t V0 and V̄15 t̄ V05V2 . ~10!

In fact (t, t̄ ) is an SO~3! group element permuting the pure quaternion unitsei i 51,2,3 in the
cyclic order

t ei t̄ 5ei 11 mod 3, i 51,2,3. ~11!

The binary tetrahedral group can be written asT5V0 :3 where 3 is the cyclic group of order 3
The Weyl group ofW(D4) of SO~8! is generated by reflections with respect to the hyp

planes orthogonal to the simple roots. An arbitrary quaternionq is reflected by the quaternioni
root a85&a wherea is unit quaternion

q→q2
2~q,a8!

~a8,a8!
a852aq̄a52~a,a!* . ~12!

The generators ofW(D4) in terms of the unit quaternion simple roots can be written as

2~e1 ,e1!* , 2~e2 ,e2!* , 2~e3 ,e3!* , 2~ t̄ , t̄ !* . ~13!

A computer calculation leading to the 192 elements ofW(D4) with 13 conjugacy classes i
given in Table III.

There is, however, a simpler way to obtain the group elements ofW(D4) by hand. We start
with the quaternion groupV0 , elements of which are the roots of SU(2)4 subalgebra of SO~8!.
The automorphism group of the setV0 is just the set of elements

TABLE III. The conjugacy classes ofW(D4) with quaternions.

Class Order Type No. of elements

1 1 ~1,1! 1
2 2 (21,1) 1
3 4 (31 ,61)% (61,31) 12
4 3 (41 ,41) % (4̄1 ,4̄1) 32

5 6 2@(41 ,41) % (4̄1 ,4̄1)# 32←Coxeter element

6 2 6(e1 ,e1),6(e2 ,e3),6(e3 ,e2) 6
7 2 6(e2 ,e2),6(e3 ,e1),6(e1 ,e3) 6
8 2 6(e3 ,e3),6(e2 ,e1),6(e1 ,e2) 6
9 2 (p,p)* 5(r 1 ,r 1)* a 12
10 2 2(r 1 ,r 1)* 12
11 4 6(e1r 1 ,r 1)* 24
12 4 6(e2r 1 ,r 1)* 24
13 4 6(e3r 1 ,r 1)* 24

ar 1 represent the positive quaternionic roots in~8!.
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~V0 ,V0! and ~V0 ,V0!* ~14!

forming a group of order 3232564. Before proceeding further we note the following products
setsVa(a50,1,2) satisfying the relations

Va Vb5Va1b mod 3; a,b50,1,2. ~15!

The group elements ofW(D4) can be generated by multiplying~14! by the elementa5(t,t) with
a35(1,1) on the left or on the right. Sincea5(t,t) is one of the elements of the set (V1 ,V1) we
have a great number of choices for the coset representatives. Instead of choosing a pa
element we use the whole set of elements (V1 ,V1) to generate the rest of elementsW(D4).
Multiplying ~14! by (V1 ,V1) and (V1 ,V1)25(V2 ,V2) and using~15! we obtain the sets of ele
ments

W~D4!:
~V0 ,V0!, ~V1 ,V1!, ~V2 ,V2!

~V0 ,V0!* , ~V1 ,V1!* , ~V2 ,V2!*
. ~16!

Using ~4! and ~15! we can show that the elements in~16! form a group of order 3236
5192, the conjugacy classes of which are the elements given in Table III. Obviously, the ele
of W(D4) in ~16! leave the root systemFD4

of SO~8!,

FD4
5V0% V1% V2 , ~17!

invariant. However, the full automorphism group ofFD4
is not the Weyl groupW(D4). The

Dynkin diagram symmetry resulting in the simple rootst ei t̄ 5ei 11 with (e45e1) shown in~11!

can be represented by an element of SO~4!, b5(t, t̄ ) with b35(1,1). The cyclic symmetry of the
simple roots is shown in Fig. 2. All Dynkin diagram symmetries leave the associated Weyl g
invariant. In the present example that means

bW~D4! b215W~D4!. ~18!

Adjoining the generatorb to W(D4) one generates a larger group which we denote
Aut8 FD4

5W(D4)’Z3 . The Aut8 FD4
is not the full automorphism ofFD4

. One can, by ex-
changing any pair ofei and leaving the third term intact, extend the Aut8 FD4

to Aut FD4
which

we will discuss later. With the action ofb5(t, t̄ )P(V1 ,V2) on the elements ofW(D4) in ~16! on
the left or right one generates the elements of the Aut8 FD4

:

Aut8 FD4
5$~Va ,Vb! % ~Va ,Vb!* % with a,b50,1,2. ~19!

Here we have altogether 18 sets of 32 sets of quaternions which form a group of orde
Interestingly enough, it exploits the whole set of elements of the binary tetrahedral groT
5FD4

with all possible combinations. Therefore we can concisely write~19! as

Aut8 FD4
5$~T,T! % ~T,T!* %. ~20!

FIG. 2. The cyclic Dynkin diagram symmetry.
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The elements (T,T) form a finite subgroup of SO~4! of order 288. The conjugacy classes
Aut8 FD4

are given in Table IV.
The full automorphism group ofF4 is obtained by extending the Aut8 F4 by a generatorc

52((1/&) (e22e3), (1/&) (e22e3))* which leads to the transformations 1→1, e1→e1 ,
e2↔e3 . The Dynkin diagram symmetry of this transformation is shown in Fig. 3.

The Aut8 F4 is invariant under conjugation by the generatorc

c Aut8 F4 c215Aut8 F4 , ~21!

so that the full automorphism group AutF45Aut8 F4 :Z2 . It is also true that

c W~D4! c215W~D4!. ~22!

Therefore the generatorsb andc generate a groupD3'S3 satisfying the generation relations

c b c215b21. ~23!

Therefore now the AutF4 can be written as

Aut F45W~D4!’S3 . ~24!

FIG. 3. The Dynkin diagram symmetry of SO~8! exchanging two simple roots leaving the other root intact.

TABLE IV. The conjugacy classes of Aut8 FD4
of order 576.

Class Order Type No. of elements

1 1 ~1,1! 1
2 2 (21,1) 1
3 6 (41,1)% (1,4̄1) 8

4 6 (4̄1,1)% (1,41) 8

5 3 2@(41,1)% (1,4̄1)# 8

6 3 2@(4̄1,1)% (1,41)# 8

7 4 (31 ,61)% (61,31) 12
8 3 (41 ,4̄1) 16

9 3 (41 ,41) % (4̄1 ,4̄1) 32

10 6 2@(41 ,41) % (4̄1 ,4̄1)# 32

11 6 2(41 ,4̄1) 16

12 3 (4̄1,41) 16

13 6 2(4̄1,41) 16

14 12 (41,6)% (6,4̄1) 48

15 12 (4̄1,6)% (6,41) 48

16 2 (31,31) % (231,31) 18

17 2 (121,121)* 12
18 2 2(121,121)* 12
19 4 (31r 1 ,r 1)* % (231r 1 ,r 1)* 72
20 6 (41r 1 ,r 1)* 48
21 6 (4̄1r 1 ,r 1)* 48

22 6 2(41r 1 ,r 1)* 48
23 6 2(4̄1r 1 ,r 1)* 48
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This is the group of order 1152 which is also isomorphic to the Weyl group ofF4 . Had we
extendedW(D4) by c we would have obtained the Weyl group of SO~9!,

W~B4!5W~D4!’Z2 ~25!

of order 384. The details of these works will be dealt with in the following sections.
We now turn back to further aspects of the root system of SO~8! and its Weyl groupW(D4).

The weight vector of any irreducible representation of SO~8! is represented by a quaternionq
5q01q1e11q2e21q3e3 . The relations between the quaternion components of a weight ve
and the Dynkin indices∧5(a1 ,a2 ,a3 ,a4) and the Weyl vectord are given by

q05
1

&
~a112a21a31a4!, q15

1

&
a1 , q25

1

&
a4 , q35

1

&
a3 , ~26a!

d5
1

&
~51e11e21e3!. ~26b!

The Dynkin diagram symmetry on the indices (a1 ,a4 ,a3) is now transformed to anS3 symmetry
on the pure quaternion unitse1 , e2 ande3 . This symmetry is even more apparent in the dimens
formula which we do not want to illustrate for it is lengthy. However, similar triality symmet
can be shown on the Weyl groupW(D4). The highest weights of some low dimensional irredu
ible representations of SO~8! are given in the quaternion weights versus Dynkin indices in Ta
V. When we examine the character table ofW(D4) we note that the elements6(e1 ,e1),
6(e2 ,e3) and 6(e3 ,e2) are in the same conjugacy classes which together with the elem
(21,1) and~1,1! form an elementary Abelian subgroup ofW(D4) denoted by 235Z2

3. Obviously
this is an invariant subgroup where the quotient groupS45W(D4)/Z2

3 is generated by the set o
elements

~e3 ,e3!* , ~ t,t !* . ~27!

The generators (e3 ,e3)5(e3 ,e3)* (1,1)* and (t,t)5(t,t)* (1,1)* generate the tetrahedral su
groupA4 of S4 of order 12. TheA4 involves the generators (e3 ,e3), (e2 ,e1), (e1 ,e2) and ~1,1!
which form the elementary Abelian group 22 ~Klein’s fier-gruppe!; under the cyclic group gen
eratora5(t,t) of order 3, the Klein’s four-group is left invariant. This analysis reveals the wh
skeleton of the Weyl groupW(D4),

W~D4!523
’S4523

’A4’2523
’22

’3’2. ~28!

We could have chosen the generators ofS4 as

~e2 ,e2!* and ~ t,t !* , ~29!

which leave the same elementary Abelian group 23 invariant. A closer inspection of Table II
~class numbers 6, 7, 8! shows that we have three alternative choices for the elementary Ab
group 23 and two choices forS4 generators for each elementary abelian group of order 8. Th
another explicit indication that theW(D4) is invariant under an outer automorphism ofS3 .

IV. THE ROOT SYSTEM OF SO„9… AND ITS WEYL GROUP W„B 4…

The standard simple roots of SO~9! with the orthogonal vectorsl i ( i 51,2,3,4)7 and its posi-
tive roots are

l 12 l 2 , l 22 l 3 , l 32 l 4 , l 4 , ~30a!
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l i6 l j , 1< i< j <4,
~30b!

l i , 1< i<4.

Its Dynkin diagram with quaternion simple roots scaled by& is shown in Fig. 4.
The scaled quaternion roots of SO~9! will be given by the sets of quaternions

FB4
:V0 , V1 , V2 and Vx85H 1

2 ~616e1!

1
2 ~6e26e3!

J . ~31!

The set inVx8 is the scaled short roots. The actual short roots of unit norm are denoted by t
Vx5&Vx8 . The first three simple roots in Fig. 4 are the simple roots of SO~8!. The reflection by
the simple roota45&a485(1/&) (e22e3) can be computed by

FIG. 4. Dynkin diagram of SO~9! with scaled quaternion simple roots.

TABLE V. The highest weights of some low dimensional irreducible rep-
resentations of SO~8! with quaternions versus Dynkin indices.

Dimension Dynkin indices Quaternion weight

8v ~1000!
1

&
~11e1!

8s ~0001!
1

&
~11e2!

8c ~0010!
1

&
~11e3!

28 ~0100! &

35v ~2000! &~11e1!

35s ~0002! &~11e2!

35c ~0020! &~11e3!

56v ~0011! &1
1

&
~e21e3!

56s ~1010! &1
1

&
~e31e1!

56c ~1001! &1
1

&
~e11e2!

112v ~3000!
3

&
~11e1!

112s ~0003!
3

&
~11e2!

112c
~0030!

3

&
~11e3!
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q→q85q2
2~q,a4!

~a4 ,a4!
a4 with ~a4 ,a4!51,

~32!
q852a4q̄a4 .

The group elements ofW(B4) then can be generated by the reflection generators

2~e1 ,e1!* , 2~ t̄ , t̄ !* , 2~e3 ,e3!* ,c52S 1

&
~e22e3!,

1

&
~e22e3!D *

. ~33!

The elements of the Weyl groupW(B4) are given in Table VI with their conjugacy classes. T
elements ofW(B4) not only involve the set (Vx ,Vx) but also (Vy ,Vz), (Vz ,Vy) and their star
elements. Here the sets ofVy andVz are obtained fromVx by cyclic permutation ofe1 , e2 , and
e3,

Vy55
1

&
~616e2!

1

&
~6e36e1!6 , Vz55

1

&
~616e3!

1

&
~6e16e2!6 . ~34!

SinceW(D4) is invariant under the action of the elementc as shown in~22! the elements of
W(B4) can also be obtained from the elements ofW(D4) in ~16! by multiplication ofc with those
in ~16! on the left. This can be achieved in a simpler way by using the multiplication table o
setsV0 , V1 , V2 , Vx , Vy andVz given in Table VII.

By multiplying the elements ofW(D4) in ~16! by (Vx ,Vx) on the left we obtain the element
of W(B4) in pairs of sets

TABLE VI. The conjugacy classes ofW(B4) with quaternions.

Class Order Type of elements No. of elemen

1 1 ~1,1! 1
2 2 (21,1) 1
3 4 (6ei ,61),i 51,2,3 12
4 2 $6(ed ,ed),6(ed ,e1),6(e1 ,ed),d52,3% 12
5 2 6$(e1 ,e1),(e2 ,e3),(e3 ,e2)% 6
6 2 6$(a12 ,a31),(a31 ,a12),(a23 ,a23)%

a 24
7 8 6$(a01 ,a23),(a23 ,a01),(a02 ,a12), (a12 ,a02),(a03 ,a31),(a31 ,a03)% 48
8 3 $(41,41),(4̄1 ,4̄1)% 32

9 6 2$(41,41),(4̄1 ,4̄1)% 32

10 4 $(a01 ,a01),(a02 ,a03),(a03 ,a02)% 12
11 4 negatives of elements of class~10! 12

12 2 $(ea .ea)* ,(41,41)* ,(4̄1 ,4̄1)* ,a50,1,2,3% 12

13 2 negatives of elements in class~12! 12
14 4 6$(edea ,ea)* ,(ed41,41)* ,(ed4̄1 ,4̄1)* ,d51,2& a50,1,2,3% 48

15 4 6$(e1ea ,ea)* ,(e24̄1 ,4̄1),(e341,41),a50,1,2,3% 24

16 6 $(4̄1a02 ,a02)* ,(4̄1a12 ,a12)* ,(4̄1a03 ,a03)* ,(4̄1a31 ,a31)* % 32

17 6 negatives of elements in class~16! 32
18 4 6$(eia23 ,a23)* ,(eia01 ,a01)* ,i 51,2,3% 24
19 2 $(a01 ,a01)* ,(a23 ,a23)* % 4
20 2 negatives of elements in class~19! 4

aaab5(1/&) (ea6eb).
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~V0 ,V0!,~V1 ,V1!,~V2 ,V2!,

~V0 ,V0!* ,~V1 ,V1!* ,~V2 ,V2!* ,
~35!

~Vx ,Vx!,~Vy ,Vz!,~Vz ,Vy!,

~Vx ,Vx!* ,~Vy ,Vz!* ,~Vz ,Vy!* .

This is a group of order 123325384 elements generated by the generators ofW(B4) in ~33!
leaving the root system of SO~9! in ~31! invariant. The invariance of the elements ofW(D4) can
also be shown concisely in the following relations

~Vx ,Vx!* ~Va ,Va!~Vx ,Vx!*
215~Vb ,Vb!,

a,b50,1,2 ~36!

~Vx ,Vx!* ~Va ,Va!* ~Vx ,Vx!*
215~Vb ,Vb!* ,

which implies that W(B4)5W(D4):Z2 . We also note that the generatorc52((1/&) (e2

2e3), (1/&) (e22e3))* together with the elements of the elementary Abelian group of orde
6(e1 ,e1),6(e2 ,e3),6(e3 ,e2),6(1,1) given before, form an elementary Abelian group 24 of
order 16. The same elements ofS4 generated by the generators in~27! leave the group 24

invariant, which implies that the Weyl group has the formW(B4)524
’S4524

’22
’3’2.

A few other facts about SO~9! are in order. The positive roots in terms of the scaled qua
nions read as follows:

1,e1 ,e2 ,e3 , 1
2 ~16e16e26e3!, 1

2 ~16e1!, 1
2 ~e26e3!. ~37!

The transformation between the weight vector in the Dynkin basis and the quaternion basis
as the Weyl vector in terms of quaternions are given as follows:

q05
1

&
~a112~a21a3!1a4!, q15

1

&
a1 , q25

1

&
~a31a4!, q35

1

&
a3 , ~38a!

d5
1

&
~61e112e21e3!. ~38b!

The highest weights of some of the low dimensional irreducible representations of SO~9! are given
in Table VIII. Embedding of SO~9! in F4 will be discussed in the next section. The Coxe
elements are all in the same conjugacy classes. One can choose the products of the gene
an arbitrary order. Without loss of generality we can construct the Coxeter element as the pr

TABLE VII. The multiplication table of the setsV0 ,V1 ,V2 ,Vx ,Vy ,Vz . ~It is the same multiplication table of the grou
S3 .)

V0 V1 V2 Vx Vy Vz

V0 V0 V1 V2 Vx Vy Vz

V1 V1 V2 V0 Vz Vx Vy

V2 V2 V0 V1 Vy Vz Vx

Vx Vx Vy Vz V0 V1 V2

Vy Vy Vz Vx V2 V0 V1

Vz Vz Vx Vy V1 V2 V0
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M5S 1

&
~e22e3!,

1

&
~e22e3!D *

~e3 ,e3!* S 1

2
~12e12e22e3!,

1

2
~12e12e22e3! D *

~e1 ,e1!* .

~39!

A simple calculation leads to the element

M5S 1

&
~11e3!,

1

&
~e12e3!D ~40!

with the right propertyM85(1,1). When we convertM to the 434 matrix in the quaternion basi
and calculate the eigenvalues we obtain the complex exponents with the correct Coxeter exp
of SO~9!.

V. THE AUTOMORPHISM GROUP OF F4 ROOT SYSTEM

The simple roots ofF4 in the standard orthogonal basis are given in the respective orde

l 22 l 3 , l 32 l 4 , l 4 , 1
2 ~ l 12 l 22 l 32 l 4!. ~41!

The Dynkin diagram and the scaled quaternionic simple roots ofF4 are shown in Fig. 5. The
positive scaled roots and the Weyl vector in terms of quaternions are

1,e1 ,e2 ,e3 , 1
2 ~16e16e26e3!,

1
2 ~16e1!, 1

2 ~16e2!, 1
2 ~16e3!, ~42a!

1
2 ~e26e3!, 1

2 ~e16e3!, 1
2 ~e16e2!,

d5
1

&
~813e112e21e3!. ~42b!

The relations between the quaternion weights and the Dynkin indices are determined as

TABLE VIII. Some of the low dimensional irreducible representations of
SO~9! in quaternion basis versus Dynkin indices.

Dimension Dynkin indices Quaternion weights

9 ~1000!
1

&
~11e1!

16 ~0001!
1

&
~11e2!

36 ~0100! &

44 ~2000! &~11e1!

84 ~0010! &1
1

&
~e21e3!

126 ~0002! &~11e2!

128 ~1001! &1
1

&
~e11e2!
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q05
1

&
~2a113a212a31a4!, q15

1

&
~a21a31a4!,

~43!

q25
1

&
~a21a3!, q35

1

&
a2 .

Some low dimensional representations using quaternions are given in Table IX. The comple
system ofF4 consists of the sets of elements

V0 , V1 , V2 , Vx8 , Vy8 , and Vz8 , ~44!

where

Vy85H 1
2 ~616e2!

1
2 ~6e36e1!

J , Vz85H 1
2 ~616e3!

1
2 ~6e16e2!

J . ~45!

The roots ofF4 in ~45! represent the weights of the spinor representation16 of SO~9!. A
cyclic symmetry one1 ,e2 and e3 leaves~44! invariant, however it replaces~45! by the pairs
Vz8 ,Vx8 andVx8 ,Vy8 , which indicate that the spinor representation16 and thereby the roots of SO~9!
can be embedded inF4 three symmetric ways. The three alternative ways of SO~9! roots inF4 are

V0 , V1 , V2 , Vi ~ i 5x,y,z!, ~46!

FIG. 5. The Dynkin diagram ofF4 with the scaled roots of quaternions.

TABLE IX. Some of the low dimensional irreducible representations ofF4

with the quaternion highest weights.

Dimension Dynkin indices Quaternion weights

26 ~0001!
1

&
~11e1!

52 ~1000! &

273 ~0010! &1
1

&
~e11e2!

324 ~0002! &(11e1)

1053 ~1001! &1
1

&
~11e1!

10538 ~2000! 2&

1274 ~0100! &1
1

&
~11e11e21e3!

2652 ~0003!
3

&
~11e1!
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one i at a time. The Weyl groupW(F4) can be generated from the reflection generators of sim
roots in Fig. 5. We have already obtained it fromW(D4) as an extension by the Dynkin diagra
symmetry of SO~8!. Now we can determine the elements more explicitly as sets of elements o
binary octahedral group.

The Weyl groupW(B4) is not an invariant subgroup ofW(F4). But by the transformation

b W~B4! b215W8~B4! ~47!

with b5(t, t̄ ) and b35(1,1), we generate new sets of elements representingW(B4) in W(F4).
Indeed a left and right application ofb,b2 andb3 on the set of elementsW(B4) in ~35! generate
the whole set of elements ofW(F4):

~Va ,Vb!,~Va ,Vb!* , a50,1,2, ~48a!

~Vi ,Vj !,~Vi ,Vj !* , i , j 5x,y,z. ~48b!

We have 934536 pair of sets each involving 32 elements which yield the order 3633251152 of
W(F4). The elements in~48a! constitute the group of order 576, an extension ofW(D4) by b. The
set of elements

~Va ,Vb!,~Vi ,Vj !, a50,1,2, i , j 5x,y,z, ~49!

also form a different group of order 576, a finite subgroup of SO~4!. Several other interesting
subgroups can be determined. The embedding of the Weyl groupW(B4) in W(F4) in three
different ways and selection of those elements from~48a! is straightforward.

We have noted in~24! that the AutFD4
5W(D4):S3 . Indeed AutFD4

'W(F4) and, using
the cosets ofW(D4), we can prove that

W~F4!5W~D4!:S3 . ~50!

We recall from~16! that the elements ofW(D4) are of the form

~Va ,Va!, ~Va ,Va!* , a50,1,2. ~51!

We can readily show that the elements ofW(F4) in ~48a! can be generated by applying th
generatorsA5(V1 ,V2) and B5(Vx ,Vx) with A35B25(V0 ,V0) on the left of the elements o
W(D4) in ~51! since theW(D4) is an invariant subgroup ofW(F4):

A W~D4! A215W~D4!,
~52!

B W~D4! B215W~D4!.

Now we can show that the coset representativesA and B generate the groupD35S3 . We
recall that the generation relations of a dihedral groupDn is given by5 b a b215an21, an5b2

51. HereA andB satisfy the relation

B A B215A25A21. ~53!

ThereforeW(F4) is the semi-direct product ofW(D4) with S3 :

W~F4!5W~D4!’S3 . ~54!

The conjugacy classes ofW(F4) are given in Table X.
The automorphism group AutFF4

of the root system ofF4 can be obtained by adding anoth
generator determined from the Dynkin diagram symmetry ofF4 diagram to the Weyl group
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generators ofF4 . The Dynkin diagram symmetry ofF4 is obtained by exchanging the short an
long roots which is shown in Fig. 6. In an explicit form, exchanges of long and short roots

1

2
~12e12e22e3!↔ 1

&
~e12e2!, e3↔

1

&
~e22e3!, ~55!

will result in the transformation

1→ 1

&
~11e1!, e1→

1

&
~12e1!, e2→

1

&
~e21e3!, e3→

1

&
~e22e3!. ~56!

This transformation is a rotation in four-dimensional space which exchanges the following s
roots ofF4 ,

V0↔Vx , V1↔Vy , V2↔Vz , ~57!

and can be represented by the generator

FIG. 6. The Dynkin diagram symmetry ofF4.

TABLE X. The conjugacy classes ofW(F4) with quaternions.

Class Order Type of elements No. of elements

1 1 ~1,1! 1
2 2 (21,1) 1
3 4 (6,1)% (1,6) 12
4 2 (31,31) % (31,32) 18
5 3 (41,41) % (4̄1 ,4̄1) 32

6 6 2@(41,41) % (4̄1 ,4̄1)# 32

7 3 (41 ,4̄1) % (4̄1,41) 32

8 6 2@(41 ,4̄1) % (4̄1,41)# 32

9 6 (81,1)% (1,81) 16
10 3 2@(81,1)% (1,81)# 16
11 12 (31,81) % (31,82) % (81,31) % (82,31) 96←Coxeter element
12 2 (61,61) % (61,62) 72
13 8 (61,618 ) % (61,628 ) % (618 ,61) % (628 ,61) 144
14 4 (618 ,618 ) 36
15 4 2(618 ,618 ) 36

16 2 (1,1)* % (31,31)* % (41,41)* % (4̄1 ,4̄1)* 12

17 2 2@(1,1)* % (31,31)* % (41,41)* % (4̄1 ,4̄1)* # 12

18 4 (31r 18 ,r 18 )* % (32r 18 ,r 18 )* ,(r 18 5ea,41 ,4̄1 ,a50,1,2,3) 72

19 2 (61,61)* % (618 ,618 )* 12
20 2 2@(61,61)* % (618 ,618 )* # 12
21 4 (31r 19 ,r 19 )* % (32r 19 ,r 19 )* ,(r 19 561,618 ) 72
23 6 2(81r 18 ,r 18 )* 96
24 6 (81r 19 ,r 19 )* 96
25 6 2(81r 19 ,r 19 )* 96
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d5S 1

&
~e21e3!,2e2D P~Vx ,V0!. ~58!

When it is put in the form of Eq.~2! it turns out that it is a rotation byp in the plane
determined by the quaternionsq150, q25(1/&) (e21e3)2e2 andq3512 (1/&) (11e1). It is
clear from~56! that while q150 remains fixedq2 and q3 are transformed to their negativesq2

→2q2 andq3→2q3 .
Since the Dynkin diagram symmetry exchanges the simple roots leading to the intercha

the generators ofW(F4) pairwise, the Weyl group ofF4 is left invariant:

d W~F4! d215W~F4!. ~59!

It can be extended to the AutFF4
by a left multiplication ofd on the elements ofW(F4) in ~46!.

This can also be achieved by the left multiplication of (Vx ,V0) on W(F4) leading to the result

~Va ,Vb!, ~Vi ,Vj !, ~Va ,Vi !, ~Vi ,Va!, a,b50,1,2, ~60a!

~Va ,Vb!* , ~Vi ,Vj !* , ~Va ,Vi !* , ~Vi ,Va!* , i , j 5x,y,z. ~60b!

The Aut FF4
is a group of order 2304 whose SO~4! subgroup is of order 1152. Interesting

enough the AutFF4
is the group fully generated by the elements of the binary octahedral g

O. That means the elements in~60! can be written as

~O,O! % ~O,O!* . ~61!

In summary, we have the following isomorphisms:

Aut FF4
5$~O,O! % ~O,O!* %,

Aut FD4
5W~F4!, ~62!

Aut FD4
8 5$T,T! % ~T,T!* %,

with the subgroup sequence

Aut FD4
8 ,Aut FD4

,Aut FF4
. ~63!

The conjugacy classes of AutFF4
are given in Table XI.

One of the interesting subgroups ofW(F4) is of order 384 isomorphic toW(B4), however it
does not leave the root system of SO~9! in any form given by~46! invariant. The group element
are given as follows:

~V0 ,V0!, ~V1 ,V2!, ~V2 ,V1!,
~64a!

~V0 ,V0!* , ~V1 ,V2!* , ~V2 ,V1!* ,

~Vx ,Vx!, ~Vy ,Vy!, ~Vz ,Vz!,
~64b!

~Vx ,Vx!* , ~Vy ,Vy!* , ~Vz ,Vz!* .

The set of elements in~64a! form a group of order 192 with 16 conjugacy classes and lea
the roots system of SO~8! invariant, however this group is not the Weyl group generated by
reflections on simple roots.
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VI. CONCLUSIONS

We are motivated by the work of P. Ramond and his collaborators1 to construct the element
of the Weyl groupsW(D4), W(B4) andW(F4) with pairs of quaternions. We have observed th
the group AutFF4

is isomorphic to the finite subgroup of O~4! of order 2304 represented by th
quaternion elements of the binary octahedral groupO in the form (O,O) % (O,O)* . Several
subgroups of this group have potential interest, in particular, those corresponding to the
groupsW(D4), W(B4) andW(F4). The group (T,T) % (T,T)* , whereT stands for the quaternion
elements of the binary tetrahedral group, is the extension of the Weyl groupW(D4) by the cyclic
symmetry of the Dynkin diagram of SO~8!.

The triality of SO~8! and the embedding ofW(B4) in the W(F4) by a cyclic symmetry
involves the permutation symmetry of pure quaternion unitse1 , e2 , e3 . The weights of irreduc-
ible representations of any of these Lie algebras have been constructed with quaternions
relations between the Dynkin indices and the standard orthogonal vectors in four dimension
been established. The symmetry between the vector, spinor and conjugate spinor represent
SO~8! is a manifestation of theS3 symmetry imposed on the quaternion unitsei . The conjugacy
classes of the Weyl groups and the automorphism groups have been constructed. It has b
noted that without a need of computer calculation one can construct the conjugacy classes b
using the conjugacy classes of the binary tetrahedral and binary octahedral groups.

The groups we have dealt with have the potential importance in four-dimensional cryst
raphy. They involve a great number of crystallographic point groups in three dimensio
subgroups which we have pointed out the general structure without referring to any par
example.

TABLE XI. Conjugacy classes of the group AutFF4
of order 2304.

Class Order Type No. of elements

1 1 ~1,1! 1
2 2 (21,1) 1
3 4 (31 ,61)% (61,31) 12
4 4 (61 ,61)% (61,61) 24
5 6 (81 ,1)% (1,81) 16
6 3 2@(81 ,1)% (1,81)# 16
7 8 (618 ,1)% (1,618 ) 12
8 8 2@(618 ,1)% (1,618 )# 12
9 2 (31 ,631) 18
10 2 (61 ,631) % (631 ,61) 72
11 12 (81 ,631) % (631 ,81) 96
12 8 (618 ,631) % (631 ,618 ) 72
13 2 (61 ,661) 72
14 12 (81 ,661) % (661 ,81) 192
15 8 (61 ,6618 ) % (6618 ,61) 144
16 3 (81,81) 64
17 6 2(81,81) 64
18 24 (81,618 ) % (618 ,81) 96
19 24 2@(81,618 ) % (618 ,81)# 96
20 4 (618 ,618 ) 36
21 4 2(618 ,618 ) 36

22 2 (r 1 ,r 1)* (r 151,31,41 ,4̄1,61,618 ) 24

23 2 2(r 1,r 1)* 24
24 4 (661r 1,r 1)* 288
25 4 (631r 1,r 1)* 144
26 6 (81r 1,r 1)* 192
27 6 2(681r 1,r 1)* 192
28 8 (618 r 1,r 1)* 144
29 8 2(618 r 1,r 1)* 144
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The most important aspect of our work perhaps is that the root systems of the Lie algeb
SO~8! and F4 have a multiplication structure which led to a straightforward method for
construction of their automorphism groups. We are optimistic that the quaternionic represen
of the root systems and the automorphism groups of SO~8!, SO~9! andF4 may pave a new road
for further insights toward the symmetries of supersrings in ten dimensions and M-theory
dimensions.

1T. Pengpan and P. Ramond, Phys. Rep.315, 137 ~1999!; P. Ramond, ‘‘Algebraic Dreams,’’ UFIFT-HET-01-27.
2J. Polchinski,String Theory Volume I, II~Cambridge University Press, Cambridge, 1998!; M. Kaku, Introduction to
Superstrings and M-Theory~Springer, Berlin, 1999!.

3M. Koca and N. Ozdes, J. Phys. A22, 1469~1989!; 22, 4125~1989!.
4P. du Val,Homographies, Quaternions and Rotations~Cambridge University Press, Cambridge, 1964!.
5H. S. M. Coxeter and W. O. J. MoserGenerators and Relations for Discrete Groups, 4th ed.~Springer, Berlin, 1965!.
6J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson,Atlas of Finite Groups~Oxford University Press,
Oxford, 1985!.

7H. S. M. Coxeter,Regular Complex Polytopes~Cambridge University Press, Cambridge, 1973!.
8M. Koca, R. Koç, and M. Al-Barwani, J. Phys. A34, 11201~2001!.
9J. E. Humphreys,Reflection Groups and Coxeter Groups~Cambridge University Press, Cambridge, 1990!; J. Fuchs and
C.
Schweigert,Symmetries, Lie Algebras and Representations~Cambridge University Press, Cambridge, 1993!; R. Slansky,
Phys. Rep.79, 1 ~1981!.
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A geometric description of Routh’s procedure. Addendum:
‘‘Legendre transformation and analytical mechanics:
A geometric approach’’ †J. Math. Phys. 44, 1709 „2003…‡

Stefano Vignoloa)

Dipartimento di Matematica dell’Universita` di Genova, Via Dodecaneso 35-16146,
Genova, Italy

~Received 28 January 2003; accepted 19 March 2003!

The geometrical framework developed in J. Math. Phys.44, 1709~2003! is applied
in order to obtain a geometric description of Routh’s procedure. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1576495#

I. INTRODUCTION

In a recent paper,1 a new geometrical framework for a unified formulation of Lagrangian a
Hamiltonian dynamics has been proposed. The analysis provides a gauge-invariant exten
nonautonomous systems of classical results due to Tulczyjew.

The core of the procedure developed in Ref. 1 may be summarized into the following
gram:

~1.1!

in which:
Vn11 , j 1(Vn11) andP(Vn11) denote, respectively, the configuration space–time, the velo

space–time and the phase space of a holonomic system withn degrees of freedom. All spaces a
fibered over the real lineR through the absolute time functiont.

L(Vn11)→ j 1(Vn11) andH(Vn11)→P(Vn11) denote principal fiber bundles with structur
group (R,1), called, respectively, theLagrangianand theHamiltonian bundles. The latter have
been introduced in Ref. 2~see also Ref. 1 and references therein! to give a geometric arrangemen
to the gauge structure of classical mechanics.

j 1(L(Vn11), j 1(Vn11)), j 1(H(Vn11),P(Vn11)) and j 1(H(Vn11),R) are the first-jet bundles
respectively, associated with the fibrationsL(Vn11)→ j 1(Vn11), H(Vn11)→P(Vn11) and
H(Vn11)→R. All bundles are mutually diffeomorphic, and represent the generalization o
so-calledTulczyjew triple T* (T(M ))↔T(T* (M ))↔T* (T* (M )) ~see, for example, Refs. 3 an
4!. Moreover, all spaces are principal fiber bundles over a base manifoldB, endowed with a
canonical symplectic structure.

In the resulting geometrical setting, a central role is played by the spacej 1(H(Vn11),R). In
fact, the assignment of Lagrangian or Hamiltonian dynamics—expressed geometrically th
sectionsl : j 1(Vn11)→L(Vn11) or h:P(Vn11)→H(Vn11)—gives rise in a natural way to corre
sponding surfaces inj 1(H(Vn11),R). By the very definition ofj 1(H(Vn11),R), these latter have

a!Electronic mail: vignolo@dima.unige.it
31410022-2488/2003/44(7)/3141/4/$20.00 © 2003 American Institute of Physics
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the nature of first-order differential equations yielding the evolution of the system. Switching
the Lagrangian to the Hamiltonian description of dynamics is then merely switching betwee
different representations of the same surface inj 1(H(Vn11),R), related to each other by what i
usually referred to as the Legendre transformation.

II. THE ROUTH’S PROCEDURE

Given a mechanical system as above, assume that the configuration space–timeVn11 is
fibered over ar 11-dimensional manifoldVr 11 , in turn fibered overR through absolute timet.

Typically, this is the situation occurring in the study of systems with geometrical symme
summarized into a Lie groupG acting freely and properly onVn11 , the base spaceVr 11 being
then identified with the quotient spaceVr 11ªVn11 /G.

In what follows, we shall refer the manifoldsVr 11 andVn11 to local fibered coordinatest,qa

and t,qa,qa, respectively (a51,...,r , a5r 11,...,n), subject to the transformation laws

t̄ 5t1c, q̄ b5q̄ b~ t,qa!, q̄ b5q̄ b~ t,qa,qa!.

Now, let j 1(Vr 11) denote the first-jet bundle oft:Vr 11→R andNª j 1(Vr 11)3Vr 11
Vn11 be the

fiber product overVr 11 betweenj 1(Vr 11) andVn11 .
We shall put onj 1(Vr 11), j 1(Vn11) andL(Vn11), respectively, jet and fibered coordinat

expressed by~the significant part of! t,qa,qa,q̇a,q̇a,u̇. The latter undergo the transformatio
laws1,2

q̄̇ b5
]q̄ b

]qa q̇a1
]q̄ b

]t
, q̄̇ b5

]q̄ b

]qa q̇a1
]q̄ b

]qa q̇a1
]q̄ b

]t
, ū̇5u̇1

] f

]qa q̇a1
] f

]qa q̇a1
] f

]t

with f (t,qa,qa)PF(Vn11).
In view of these, it is a straightforward matter to verify the affine nature of the fibra

j 1(Vn11)→N.
Therefore, all the arguments stated in Ref. 1 apply equally well to theaffine principal fibration

L(Vn11)→ j 1(Vn11)→N. In particular, referring systematically the reader to Ref. 1 for proo
comments, and notations, one has the following.

Given any point zPN, let us denote byL(Vn11)z* the space of affine section
sz : j 1(Vn11)z→L(Vn11)z , j 1(Vn11)z and L(Vn11)z being the fibers overz of j 1(Vn11) and
L(Vn11), respectively. In coordinates, everyszPL(Vn11)z* admits a representation of the form

u̇5j01jaq̇a.

There exists a one-parameter group of translations acting onL(Vn11)z* ; the quotient ofL(Vn11)z*
under this action will be denoted byj 1(Vn11)z* .

Introducing the spacesL(Vn11)*ªøzPNL(Vn11)z* and j 1(Vn11)*ªøzPNj 1(Vn11)z* , we
obtain an affine principal fibrationL(Vn11)* → j 1(Vn11)* →N, dual of L(Vn11)→ j 1(Vn11)
→N in the sense described in Ref. 1. We referL(Vn11)* to local coordinatest,qa,qa,q̇a,ja ,j0 ,
subject to transformation laws

j̄b5S ja1
] f

]qaD ]qa

]q̄b
, j̄05j01jaS ]q̄ a

]qa
q̇a1

]qa

] t̄
D 1

] f

]q̄a
q̄̇a1

] f

] t̄

with f (t,q)PF(Vn11). In particular, j 1(Vn11)* coincides with the quotient spac
L(Vn11)* /(]/]j0) generated by the action induced by the fundamental vector field]/]j0.

Denoting by j 1(L(Vn11), j 1(Vn11)) and j 1(L(Vn11)* , j 1(Vn11)* ) the first-jet bundles, re-
spectively, associated with the principal bundlesL(Vn11)→ j 1(Vn11) and L(Vn11)*
→ j 1(Vn11)* , there exists a canonical diffeomorphismc: j 1(L(Vn11), j 1(Vn11))
→ j 1(L(Vn11)* , j 1(Vn11)* ). Referring j 1(L(Vn11), j 1(Vn11)) (. j 1(H(Vn11),R)) to local co-
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ordinatest, qa, qa, p0 , pa , pa , qa, q̇a, ṗ0 , ṗa , ṗa and j 1(L(Vn11)* , j 1(Vn11)* ) to local
jet-coordinatest, qa, qa, q̇a, ja , j0 , j0t

, j0qa , j0qa , j0q̇a , j0ja
, the diffeomorphismc is

described by the relations

t5t, qa5qa, qa5qa, q̇a5q̇a, ja5pa , j05p01paq̇a,

j0t
5 ṗ0 , j0qa5 ṗa , j0qa5 ṗa , j0q̇a5pa , j0ja

52q̇a.

Following Ref. 1, we shall identify systematically bothj 1(L(Vn11), j 1(Vn11)) and
j 1(L(Vn11)* , j 1(Vn11)* ) with j 1(H(Vn11),R), referred to local coordinatest, qa, qa, p0 , pa ,
pa , q̇a, q̇a, ṗ0 , ṗa , ṗa , and we shall regard the relation

j05p01paq̇a5u̇2paq̇a ~2.1!

as a coordinate transformation onj 1(H(Vn11),R). Equation~2.1! represents changes of trivia
ization of the principal bundlej 1(H(Vn11),R)→B. Once again, the previous discussion may
summarized into the commutative diagram

~2.2!

analogous of~1.1!.
Now, let l : j 1(Vn11)→L(Vn11) be a Lagrangian section, locally expressed as~see Refs. 1 and

2!

u̇5L~ t,q,q̇!. ~2.3!

As pointed out in Ref. 1, the surfaceEª j 1( l )( j 1(Vn11)), image of j 1(Vn11) under the first-jet
extensionj 1( l ) of l , carries complete information on dynamics. Indeed, the surfaceE is described
by the equations

p052
]L

]q̇a q̇a2
]L

]q̇a q̇a1L, ṗ05
]L

]t
, pa5

]L

]q̇a , ~2.4a!

ṗa5
]L

]qa , pa5
]L

]q̇a , ṗa5
]L

]qa ~2.4b!

providing, as pointed out in the Introduction, a set of ordinary differential equations for
determination of the evolution of the system.

Making use of the right vertical arrows of the diagram~2.2!, we may projectE into L(Vn11)*
and j 1(Vn11)* , so generating two mapsL l : j 1(Vn11)→L(Vn11)* and l l : j 1(Vn11)
→ j 1(Vn11)* locally expressed as

L l , pa5
]L

]q̇a , j05L2
]L

]q̇a q̇a; ~2.5a!
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l l , pa5
]L

]q̇a . ~2.5b!

Under the regularity assumptioni ]2L/]q̇a]q̇b iÞ0, the mapl l may be~locally! inverted so that
the composite mapL l + l l

21 defines a sectionr : j 1(Vn11)* →L(Vn11)* . The explicit representa
tion of r may be achieved by solving Eqs.~2.5b! with respect to the variablesq̇a and substituting
the result into the second equation~2.5a!. In this way we get the final expression

j052R~ t,qa,qa,q̇a,pa!ªL~ t,qa,qa,q̇a,pa!2paq̇a~ t,qa,qa,q̇a,pa!. ~2.6!

The functionR involved in Eq.~2.6! is commonly known as theRouthian function.5 Accordingly,
the maps~2.5! and the section~2.6! are, respectively, theRouth Mapsand theRouthian section
associated withl .

At this point, it is a straightforward matter to verify that the image spa
j 1(r )( j 1(Vn11)* ), j 1(H(Vn11),R) @ j 1(r ) denoting the first-jet extension ofr ] coincides with
the surfaceE generated by the given Lagrangian sectionl . In other words, through the Routhia
sectionr , we obtain a representation of the surfaceE in terms of the variablest, qa, q̇a, pa , j0 ,
given by the equations

j052R~ t,qa,qa,q̇a,pa!, ṗ052
]R

]t
, q̇a5

]R

]pa
, ~2.7a!

ṗa52
]R

]qa , ṗa52
]R

]qa , pa52
]R

]q̇a . ~2.7b!

Once again, Eqs.~2.7! fix the evolution of the system. In particular, writing the equations
motion in the form~2.7! is especially worthwhile whenever the variablesqa (a5r 11,...,n) are
cyclic6 in the Lagrangian functionL(t,q,q̇)PF( j 1(Vn11)) involved in Eq.~2.3!. Indeed, under
the stated circumstance, the Routhian functionR(t,qa,q̇a,pa) is independent of the variablesqa

too. Therefore, the first set of Eqs.~2.7b! imply the evolution equationspa5ca const. Due to this
fact, by Eqs.~2.7! themselves we derive the decoupled differential equations

d

dt S ]R

]q̇aD2
]R

]qa 50, q̇a5
]R

]pa
~2.8!

with R(t,qa,q̇a,ca), and with the constantsca fixed by the initial data. Equations~2.8! are the
well-known Routh’s equations5 yielding a reduction of the problem of motion.

1E. Massa, E. Pagani, and S. Vignolo, J. Math. Phys.44, 1709~2003!.
2E. Massa, E. Pagani, and P. Lorenzoni, Transp. Theory Stat. Phys.29, 69 ~2000!.
3W. M. Tulczyjew, Symp. Math.15, 247 ~1974!.
4W. M. Tulczyjew, Ann. Inst. Henri Poincare´ 27, 101 ~1977!.
5H. Goldstein,Classical Mechanics~Addison-Wesley, Cambridge, MA, 1950!.
6For example, this is the case wheneverVr 115Vn11 /G with G Abelian Lie group, and the Lagrangian functionL(t,q,q̇)
is G-invariant with respect to the lifted action ofG on j 1(Vn11). j 1(Vr 11)3TG.
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Integrable systems and reductions of the self-dual
Yang–Mills equations

M. J. Ablowitz
Department of Applied Mathematics, University of Colorado, Boulder, Colorado 80309

S. Chakravartya)

Department of Mathematics, University of Colorado,
Colorado Springs, Colorado 80933-7150

R. G. Halburd
Department of Mathematical Sciences, Loughborough University,
Loughborough, Leics, LE11 3TU, United Kingdom

~Received 5 April 2003; accepted 9 April 2003!

Many integrable equations are known to be reductions of the self-dual Yang–Mills
equations. This article discusses some of the well known reductions including the
standard soliton equations, the classical Painleve´ equations and integrable generali-
zations of the Darboux–Halphen system and Chazy equations. The Chazy equation,
first derived in 1909, is shown to correspond to the equations studied independently
by Ramanujan in 1916. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586967#

I. INTRODUCTION

The self-dual Yang–Mills~SDYM! equations~a system of equations for Lie algebra-valu
functions ofC4) play a central role in the field of integrable systems and also play a fundam
role in several other areas of mathematics and physics.

From the perspective of integrable systems, the study of the SDYM equations becam
ticularly intriguing when, in 1985, R. S. Ward59 conjectured that

... many (and perhaps all?) of the ordinary and partial differential equations that
regarded as being integrable or solvable may be obtained from the self-dual gauge
equations (or its generalizations) by reduction.

That the SDYM equations are a rich source of integrable systems is suggested by the fact th
are the compatibility condition of an associated linear problem which admits enormous freed
one allows the associated Lie algebra~the so-called gauge algebra! to be arbitrary. In light of this
and other results, the SDYM equations are often referred to as the master integrable syste
SDYM equations provide us with a means of generating and classifying many integrable sy
and they also give a unified geometrical framework in which to analyze them. Moreover, i
context of the inverse scattering transform, an integrable equation admits well-behaved so
obtained via the related linear problems.

The SDYM equations are of great importance in their own right and have found a remar
number of applications in both physics and mathematics. These equations arise in the con
gauge theory,49 in classical general relativity,63,39and can be used as a powerful tool in the analy
of four-manifolds.29

For finite-dimensional gauge groups the integrability of the SDYM equations can be u
stood from both the inverse scattering transform and geometric points of view.58,13,26An excellent
reference related to the geometric aspects is Mason and Woodhouse.41 Our point of view deals

a!Author to whom correspondence should be addressed. Electronic mail: chuck@math.uccs.edu
31470022-2488/2003/44(8)/3147/27/$20.00 © 2003 American Institute of Physics

                                                                                                                



alge-

tions
DYM
vey–
ener-
with an
rob-

c-
phen
rder to

are
ability

elieve
sulting
at our
math-

rob-
f the
r

ctions
scribe
r, the

some

te-
tion is
s. This
Chazy

able

lems

3148 J. Math. Phys., Vol. 44, No. 8, August 2003 Ablowitz, Chakravarty, and Halburd

                    
with the algebraic and analytic aspects and novel reductions via infinite-dimensional gauge
bras.

The use of certain infinite-dimensional gauge algebras in the self-dual Yang–Mills equa
is an important development in the theory. Using these Lie algebras, reductions of the S
equations to many important equations including the Kadomtsev–Petviashvili, Da
Stewartson, 211-dimensionaln-wave, and Chazy equations have been found. Recently a g
alized Darboux–Halphen system has been obtained as a reduction of the SDYM equations
infinite-dimensional gauge algebra.7 These equations are solvable via an associated linear p
lem, yet their solutions do not possess the Painleve´ property—the characteristic singularity stru
ture often thought to be the hallmark of integrability. A special case of the Darboux–Hal
system is equivalent to the generalized Chazy equation. Much work remains to be done in o
identify the class of infinite-dimensional gauge algebras for which the SDYM equations
integrable. These investigations force us to take a much closer look at the idea of integr
itself.

Throughout we will present geometrical interpretations and reasoning whenever we b
that they provide a deeper insight into the reduction process and the properties of the re
equations. However, this article has been written with the nongeometer in mind. We hope th
survey will be accessible to a wide variety of researchers from many different branches of
ematics and physics.

In Sec. II we introduce the self-dual Yang–Mills equations and their underlying linear p
lem. In Sec. III we discuss reductions of the SDYM equations to integrable PDEs. Many o
reductions in this section can be found in Ablowitz and Clarkson.1 In this section we also conside
reductions to PDEs when the underlying Lie algebra is infinite dimensional. Such redu
include the Kadomtsev–Petviashvili and Davey–Stewartson equations. In Sec. IV we de
reductions of the SDYM equations with finite-dimensional Lie algebras to ODEs. In particula
integrable cases of the equations of motion of a spinning top are recovered, together with
generalizations. We also describe the reductions of SDYM to the Painleve´ equations due to Mason
and Woodhouse.41 Finally, Sec. V considers the reduction of the SDYM with an infini
dimensional Lie algebra to a generalized Darboux–Halphen system whose general solu
densely branched about movable singularities and can contain movable natural barrier
equation in turn has reductions to the Chazy equation and integrable generalizations of the
equation.

II. THE SDYM EQUATIONS

In this section we motivate the SDYM equations from the points of view of both integr
systems and gauge theory.

A. Linear problems and integrable systems

Recall that many 111-dimensional integrable systems are solved via related linear prob
of the form

Cx5XC, ~1!

Ct5TC, ~2!

whereX and T are square matrices of the same dimension which are functions ofx, t, and the
spectral parameterz. The compatibility of these equations~i.e., Cxt5Ctx) is equivalent to

Xt2Tx1@X,T#50. ~3!

In 1973, Ablowitzet al.10,11 solved the inverse scattering problem in the case

X5S 2 i z q~x,t !

r ~x,t ! i z D , T5S A B

C 2AD , ~4!
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whereA,B,C are ~Laurent! polynomials inz.
Below we list several choices ofT that yield a number of integrable equations which will

discussed in later sections.
„i… The Korteweg–de Vries equation:

qt16qqx1qxxx50,

T5S 24i z312iqz2qx 4qz212iqxz2~2q21qxx!

24z212q 4i z322iqz1qx
D

~r 521!.

„ii … The nonlinear Schrödinger equation:

iqt5qxx62q2q* ,

T5S 2i z21 iqr 22qz2 iqx

2r z1 ir x 22i z22 iqr D
~r 57q* !.

„iii … The sine-Gordon equation:

uxt5sinu

T5z21S 1
4 i cosu 1

4 i sinu

1
4 i sinu 2 1

4 i cosu
D ~5!

~q52r 52 1
2 ux !.

It should be noted that the dependence on the spectral parameter and the restriction t32
systems given by~4! is not the only choice for which the inverse scattering problem can be so
for Eq. ~3! ~see, for example, Refs. 3 and 57!.

A simple, natural, and highly symmetric generalization of the linear problem~1! and ~2! to
four variables;x1 , x2 , t1 , t2 is given by

S ]

]x1
1z

]

]x2
DC5~X11zX2!C, ~6!

S ]

]t1
1z

]

]t2
DC5~T11zT2!C, ~7!

where X1 , X2 ; T1 , T2 are functions fromC4 to sl(n;C)—the Lie algebra ofn3n trace-free
matrices with complex-valued entries. The compatibility of this system is equivalent to the
dual Yang–Mills equations with gauge algebrasl(n;C) ~see Sec. II C below!. From the general
form of this linear problem it is clear that many integrable equations are reductions of the sel
Yang–Mills equations because their associated linear problems arise as reductions of the
problem for the SDYM equations. Notice, however, that the right sides of Eqs.~6! and ~7! are
linear inz whereas in the AKNS scheme, the right side of Eq.~2! can be a Laurent polynomial in
z. However, it turns out that reductions of~6! and~7! can have much more general dependence
the spectral parameter.
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B. The Yang–Mills equations

Non-Abelian gauge theories first appeared in the seminal work of Yang and Mills65 as a
non-Abelian generalization of Maxwell’s equations. Let G be a Lie group~referred to as the gaug
group! with Lie algebra LG and let$xm%m50,...,3be coordinates on a four-dimensional manifoldM
which can beR4, R1,3 or R2,2. GivenAm(x)PLG, we introduce the covariant derivatives

Dm5]m2Am , ~8!

and their commutators

Fmn52@Dm ,Dn#5]mAn2]nAm2@Am ,An#. ~9!

The fact that the Yang–Mills equations have a natural geometric interpretation was recog
early on in the history of gauge theory. The covariant derivatives~8! can be used to obtain a loca
representation of a connection on a principal fiber bundle overM . The one-formAªAmdxm is
called theconnection one-formandFª 1

2 Fmndxmdxn thecurvature two-formof the connection.F
can also be expressed as the exterior covariant derivative ofA given by

F5DAªdA2A∧A.

Recall that the Hodge dual operator on the four-dimensional manifoldM takes any two-formT
5 1

2Tmndxm∧dxn to the dual two-form* T5 1
2«mn

gdTgddxm∧dxn where«mngd is totally antisym-
metric with «012351 and the standard metric onM is used to raise and lower indices. Th
Yang–Mills equations then have the simple form

D* F50

together with the Bianchi identity

DF50 ,

which follows from the definitions of exterior covariant derivativeD andF. Note that under the
gauge transformation

Am°g21Amg1g21]mg, gPG, ~10!

the components of the curvature two-form transform as

Fmn°g21Fmng, ~11!

which corresponds to the transformation of the fibers by the right action of the structure gro
on the principal bundle.

C. The self-dual Yang–Mills equations

The Yang–Mills equations are a set of coupled, second-order PDEs in four dimensions
LG-valued gauge potential functionsAm’s, and are extremely difficult to solve in general. It i
however, possible to obtain a special class of first-order reductions of the full Yang–Mills e
tions by noting that anyF that satisfies

* F5lF ~12!

for some constantl, also satisfies the Yang–Mills equations by virtue of the Bianchi ident
DF50. From~12! we must have

** F5l* F5l2F. ~13!
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However,** F5gF whereg5det@gmn# is the determinant of the metric on M. Hence

l5H 61 on R4, R2,2;

6 i on R3,1.

All real solutions of the equations* F56 iF are trivial. On R4 and R2,2, the equations
* F5(2)F are called the~anti-!self-dual Yang–Mills equations. We will work inR4 with the
standard metric

ds25~dx0!21~dx1!21~dx2!21~dx3!2.

The SDYM equations now take the form

F015F23, F025F31, F035F12. ~14!

We introduce the null coordinates

s5
1

&
~x11 ix2!, t5

1

&
~x02 ix3!,

s̃5
1

&
~x12 ix2!, t̃5

1

&
~x01 ix3!.

It then follows fromA5Amdxm5Asds1As̃ds̃1Atdt1At̃dt̃ that

A05
1

&
~At1At̃ !, A15

1

&
~As1As̃!,

A25
i

&
~As2As̃!, A352

i

&
~At2At̃ !,

and the SDYM equations become

Fst50, F s̃ t̃50, Fss̃1Ftt̃50. ~15!

Equations~15! are the compatibility condition of the isospectral linear problem

~]s1z]t̃!C5~As1zAt̃ !C, ~16!

~]t2z]s̃!C5~At2zAs̃!C, ~17!

wherez is the spectral parameter andC is a local section of the Yang–Mills fiber bundle. Th
compatibility condition is simply (]t2z]s̃)(]s1z]t̃)C5(]s1z]t̃)(]t2z]s̃)C. On using Eqs.
~16! and ~17!, this gives

@Fst2z~Fss̃1Ftt̃!1z2F s̃ t̃#C50.

The gauge transformation~10! can be understood by settingC5gC̃ in ~16! and ~17! and
demanding that theAm’s transform so as to preserve the form of these equations.

A very compact way of writing the SDYM equations was introduced by Pohlmeyer.48 Fol-
lowing Yang,64 and working with the Lie algebra su~2!, Pohlmeyer noted that the vanishing ofFst

andF s̃ t̃ allows us to write~locally!
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As5~]sC!C21, At5~]tC!C21,

As̃5~]s̃D !D21, At̃5~]t̃D !D21,

for someC andD in the Lie group G. LettingJ5C21DPG we see that the last equation in~15!
becomes

]s̃~J21]sJ!1]t̃~J21]tJ!50. ~18!

III. EXAMPLES OF REDUCTIONS

Perhaps the simplest reductions of the SDYM equations are those in which theAm’s are taken
to be independent of certain coordinates. With the exception of the reduction to the Ernst eq
all reductions in this section will be with respect to translational symmetries. That is, theAm’s will
be taken to depend only on two linear combinations of the variablesx0, x1, x2, and x3 ~or
equivalentlys, s̃, t, and t̃).

A. The nonlinear Schro ¨ dinger equation

Following Mason and Sparling,40 let us consider the case in which the Lie algebra issl(2;C)
~trace-free 232 matrices over the field of complex numbers! and theAm’s are functions ofx
5s1s̃ andt5 t̃ only. We use the gauge freedom and takeAs50. ~Note that this involves solving
a linear equation forg.)

In terms of the matrix-valued functionsPªAt , QªAs̃ andRªAt̃ , the self-dual Yang–Mills
equations~15! are

Px50, ~19!

Qx2Pt2@P,R#50, ~20!

Rx2Qt2@Q,R#50. ~21!

Note that Eqs.~19!–~21! are invariant ifP, Q, andR all undergo the same constant similari
transformation. Hence ifP is independent oft it can be put into canonical form. In particular,
it is diagonalizable we can, without loss of generality, assume it has the form

P5S k 0

0 2kD ,

for some constantk. From Eq.~20! we see thatQx must have zero diagonal part. Hence we c
take

Q5S 0 q

2r 0D .

Equation~20! gives the parametrization of the off-diagonal elements ofR in terms ofq andr . So
up to a constant~which can be gauged away!, Eq. ~21! gives

R5
1

2k S qr qx

r x 2qr D ,

together with the equations

2kqt5qxx12q2r ,

2krt52r xx22qr2.
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Choosingk5 i /2, r 56q* , gives the nonlinear Schro¨dinger equation

iqt5qxx62uqu2q.

B. The Korteweg–de Vries equation

Mason and Sparling40 also considered the above reduction for the case in whichP is not
diagonalizable. LetP take the canonical form

P5S 0 0

1 0D .

We then find that

Q5S v 1

w 2v D ,

wherew5vx2v2 ~up to an arbitrary function oft),

R5
1

8 S 4~vx2v2!x 28vx

vxxx24vvxx22vx
214v2vx 24~vx2v2!x

D
andu52vx satisfies the Korteweg–de Vries equation

ut5
1
4 uxxx13uux .

C. The sine-Gordon equation

Suppose that theAm’s depend onx5s andt5s̃ only. If we use a gauge in whichAs̃50, then
the linear problem~16! and ~17! for the SDYM equations becomes

]xC5~As1zAt̃ !C, ] tC52
1

z
AtC.

Here we choose the Lie algebra to besu~2! so that theAm’s are skew-Hermitian. We introduce th
parametrization

As52
i

2 S c 0

0 2cD , At52
i

2 S 0 a2 ib

a1 ib 0 D , At̃52
i

2 S 0 1

1 0D
~Ref. 14!, wherea,b,c are real functions ofx and t. The SDYM equations are equivalent to

]a

]x
52bc,

]b

]x
5ac,

]c

]t
52b. ~22!

It follows from the first two equations of~22! that a21b2 is independent ofx. We choosea2

1b251 and introduce the parametrizationa5cosu, b5sinu. This givesc5 ]u/]x. The third
equation in~22! then becomes the sine-Gordon equation

uxt52sinu.
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D. The N-wave equations

Following Chakravarty and Ablowitz,14 we consider the case in which theAm’s are functions
of s andt only and the Lie algebra issu(n;R). In this case, from the self-duality equationF s̃ t̃

50, it follows that@As̃ ,At̃#50. We take

As̃5diag~a1 ,a2 ,...,an!, At̃5diag~b1 ,b2 ,...,bn!,

where theaj ’s andbj ’s are constants~we can use a gauge transformation to make them const!.
Using the parametrizationAs5@Ai j # and At5@Bi j #, the vanishing ofFss̃1Ftt̃ implies that
@As ,As̃#1@At ,At̃#50, which gives

Ai j 5l i j Bi j ,

where

l i j 52
bi2bj

ai2aj
, iÞ j ,

and we have assumed that theaj ’s are distinct. Finally, the vanishing ofFst gives theN-wave
interaction equations,

]Bi j

]s
2l i j

]Bi j

]t
5 (

k51

n

~l ik2lk j!BikBk j . ~23!

In the caseN53 and in whichB is skew-Hermitian, Eq.~23! becomes the three-wave interactio
equation.66 The equation~23! for arbitraryN was studied by Ablowitz and Haberman.3

E. The chiral field equations

A number of important reductions of the SDYM equations come directly from Eq.~18!. If J
depends only onx5s1s̃ and t5t1 t̃, then Eq.~18! becomes the chiral field equation

~J21Jx!x1~J21Jt! t50. ~24!

Usings5 (1/&) (x11 ix2), s̃5 (1/&) (x12 ix2), Ward61,60obtained a 211-dimensional gener-
alization of Eq.~24! by considering a reduction of Eq.~18! in which J depends ont5t1 t̃ ands
and s̃. This gives

~J21Jt! t1~J21Js!s̃50, ~25!

which has been studied by Manakov and Zakharov38 and Villarroel.56 More generally, Ward
obtains the equation

2~J21Jt! t1~J21Jx!x1~J21Jy!y1a@~J21Jy!x2~J21Jx!y#1b@~J21Jt!y2~J21Jy! t#

1c@~J21Jx! t2~J21Jt!x#50, ~26!

where (a,b,c) is spacelike (2a21b21c251) or timelike (2a21b21c2521). If (a,b,c) is
timelike, then Eq.~26! can be transformed to~25!.

F. The Ernst equation

Following L. Witten,62 we letJ in Eq. ~18! be a function ofr5A(x1)21(x2)2 andz5x3 only.
That is,r252ss̃ andz5 ( i /&) (t2 t̃). Equation~18! becomes

r21~rJ21Jr!r1~J21Jz!z50. ~27!
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WhenJ is a real symmetric matrix in SL~2;R!, we can parametrizeJ as

J5
1

f S 1 g

g f21g2D .

In terms of this parametrization, Eq.~27! becomes

f D f 5¹ f •¹ f 2¹g•¹g,

f Dg52~¹ f !•~¹g!,

where¹ª(]r ,]z) and Dª]r
21r21]r1]z

2 are the axisymmetric forms of the gradient and L
placian onR3, respectively, in cylindrical-polar coordinates. Introducing the variableEª f 1 ig,
this system can be written compactly as

R~E!DE5¹E•¹E. ~28!

Equation~28! is called the Ernst equation and describes stationary axisymmetric space–tim
general relativity.30 The functionE is known as the Ernst potential.

G. Toda molecule

In this reduction we choose the Lie algebra to be simple and of rankN @e.g.,sl(N11;C)]. We
use the basis$H j ,Ej

1 ,Ej
2% j 51

N , which satisfies

@Hi ,H j #50, @Ei
1 ,Ej

2#5d i j H j ,
~29!

@Hi ,Ej
1#5KN

ji Ej
1 , @Hi ,Ej

2#52KN
ji Ej

2 ,

whereKN5@KN
i j # is a Cartan matrix. Recall that anN3N-matrix K is called a Cartan matrix if it

satisfies the following properties:

~1! Kii 52.
~2! Ki j is a nonpositive integer ifiÞ j .
~3! Ki j 50 if and only if K ji 50.
~4! K is positive definite with rankN.

We choose theAm’s to be functions ofs and s̃ only and of the form

As5 (
k51

N

uk~s,s̃ !Hk , As̃5 (
k51

N

vk~s,s̃ !Hk ,

At5 (
k51

N

wk~s,s̃ !Ek
1 , At̃5 (

k51

N

wk~s,s̃ !Ek
2 .

Substituting the aboveAm’s into the self-duality equations and using the commutation relati
~29!, a straightforward calculation shows that the functionsuk andvk , k51,2,...,N can be elimi-
nated from the resulting equations, which then yield

Df i52(
j 51

N

KN
i j exp~f j !, i 51,2,...,N, ~30!

wherewi5exp(fi/2) andDf5fss̃ . Equations~30! are known as the Toda molecule equations46

The caseN51 corresponds to the Liouville equationDf1522 exp(f1).
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The above analysis can be repeated for the case in which a basis$H j ,Ej
1 ,Ej

2% j 50
N satisfies the

relations~29! in which K̃N is now taken to be an extended Cartan matrix. An (N11)3(N11)
matrix is said to be an extended Cartan matrix if and only if it is of rank N and satisfies prop
1–3 above. Note that, in particular, an extended Cartan matrix possesses a zero eigenvalue
it is not of maximal rank. This gives the Toda lattice equation

Df i52(
j 51

N

K̃N
i j exp~f j !, i 50,1,...,N. ~31!

In particular, if we take

K̃N5S 2 21 0 ¯ 0 21

21 2 21 0 0

0 � � � A

A � � � 0

0 21 2 21

21 0 ¯ 0 21 2

D ,

then Eq.~31! becomes the two-dimensional Darboux–Toda equation

Df i5exp~f i 21!22 exp~f i !1exp~f i 11!, ~32!

wheref i5f i 1N11 . The system~32! was known to Darboux28 in the nineteenth century.

H. Infinite-dimensional algebras and 2 ¿1 equations

In Ref. 9, Ablowitz, Chakravarty, and Takhtajan considered reductions of the SDYM e
tions in which the Lie algebra is the infinite-dimensional Lie algebra of formal matrix differen
operators in an auxiliary variabley. They then considered reductions in which theAm’s depend
only on two space–time variables. The resulting equations then depends on three variable

1. The 2¿1-dimensional N-wave equation

First consider a reduction in which theAm’s are functions ofx5s and t5t only. Then the
resulting SDYM linear system is given by

]xC5~As1zAt̃ !C,

] tC5~At2zAs̃!C ,

whereC is a function ofx,t,y andz. Choose a gauge in whichAt̃5B andAs̃5C, whereB and
C are constant, commutingn3n matrices. We take the remaining gauge potentials of the f
As5U1B]y and At5V1C]y , whereU(x,y,t),V(x,y,t)Psl(n,C). By taking C5Ge2zy, we
obtain a simpler, reduced linear system from above,

]xG5~U1B]y!G, ~33!

] tG5~V1C]y!G , ~34!

in terms of the functionG(x,y,t). The system~33! and~34! is the standard linear system relate
to the 211-dimensionalN-wave equations. The compatibility of~33! and ~34! is

] tU2]xV1@U,V#2C]yU1B]yV50, @B,V#5@C,U#,

which gives
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@B,] tQ#2@C,]xQ#2C@B,]yQ#1B@C,]yQ#1@@B,Q#,@C,Q##50,

whereU5@B,Q# andV5@C,Q#. In the case whenB andC are diagonal andQ is off-diagonal,
these equations can be transformed to the 211 N-wave equations

]Qi j

]t
5ai j

]Qi j

]x
1bi j

]Qi j

]y
1 (

k51

n

~aik2ak j!QikQk j ,

whereai j , bi j are suitable constants depending on the matrix elements ofB andC.

2. KP, mKP, and DS equations

Chakravarty, Kent, and Newman21 also obtained the Kadomtsev–Petviashvili, modifi
Kadomtsev–Petviashvili, and Davey–Stewartson equations directly as reductions of the S
equations with an infinite-dimensional Lie algebra of formal matrix differential operators. If
Am’s are assumed to depend onx5s1s̃ and t5t only, then the linear problem~16! and ~17!
becomes

]xC5~As1zAt̃ !C, ~35!

] tC5~At1z@As1As̃#1z2At̃ !C. ~36!

The connection components are taken to be of the form

As5U01U1]y , As̃52~B01B1]y!, At5V01V1]y1V2]y
2 , At̃5A,

where the coefficients are 232 matrix-valued functions ofx and t. In order to simplify the
integrability conditions of~35! and~36!, we demand~as in the 211 N-wave case! that the spectral
parameterz be eliminated from this system after a change of variable of the formC5Ge2zy. It
can be shown that this requirement implies thatU15V25B11A andV15U01B0 . Subsequently,
the system~35! and ~36! becomes

]xG5~U01A]y!G, ~37!

] tG5~V01@U01B0#]y1A]y
2!G . ~38!

Appropriate choices of the matricesA, B, U, andV give the linear problem for the KP, mKP, an
DS equations~see Ref. 21!.

Another notable reduction with an infinite-dimensional gauge algebra was considered i
39 by Mason and Newman. They showed that the SDYM equations with the Lie algebra of th
group of volume preserving diffeomorphisms on a four-manifold, in which theAm’s are indepen-
dent of the space-time coordinatess, s̃, t, and t̃, are equivalent to the self-dual Einstein equ
tions. In particular, the reduction to the Plebanski heavenly equation is given in Ref. 22.
equation in turn has a reduction to the Monge–Ampere equation.

I. The SDYM hierarchy

In Ref. 9, the authors studied an infinite hierarchy of equations whose first member w
SDYM system. Each member of the hierarchy has the same underlying spectral problem, a
higher flows are derived from an infinite sequence of nonlocal conservation laws associate
the SDYM equations. Furthermore, many well known integrable hierarchies in 111- and
211-dimensions are derived from the symmetry reductions of the self-dual hierarchy.

In an appropriate gauge, thekth member of the SDYM hierarchy is given by

]tk
As2]sFk211@As ,Fk21#50, ~39!
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whereFn is given recursively by

~]t̃2adAt̃ !Fn1152~]s2adAs!Fn2]s̃Asdn0 , n50,1,...,

andF052As̃ . Equation~39! is the compatibility condition for the system

D1C5A1C, D2C5A2C, ~40!

where, fork52,3,...,

D15]s1z]t̃ , A15As1zAt̃ ,

Dk5]tk
2zk21]s̃ , Ak5~zk21F!1 , F5 (

n50

`

Fnz2n,

and (F)1 denotes the power series part of the Laurent expansion ofF aboutz50. Note that if
k52, thenD25]t2z]s̃ andA25At2zAs̃ , wheret5t2 and we have identifiedAt with F1 . In
this case the linear problem~40! becomes the standard linear problem for the SDYM equatio

As mentioned above, the reduction of the SDYM equations to the 111- and
211-dimensional integrable equations can be extended to a reduction of the SDYM hierar
the corresponding hierarchies. In this way, we can obtain, for example, both the 111- and 2
11-dimensionalN-wave hierarchies. In particular, the Davey–Stewartson equation~DS! can be
obtained as the second member of the 211-dimensionalN-wave hierarchy. See Ref. 9 for detail

IV. ODE REDUCTIONS

A. Integrable tops

The equations of motion for a spinning top have played a fundamental role in the
development of the theory of integrable systems.

1. The Euler –Arnold –Manakov top

In this reduction, following Chakravarty, Ablowitz, and Clarkson,18,19we take the Lie algebra
to be sl(n;C) and we assume that theAm’s are functions oft5s only. The vanishing ofF s̃ t̃

demands thatAs̃ andAt̃ commute. We take these matrices to be diagonal and of the form

As̃5diag~a1 ,a2 ,...,an!, At̃5diag~b1 ,b2 ,...,bn!,

where theaj ’s andbj ’s are constants. The equationFss̃1Ftt̃50 is now the algebraic equatio
@As ,As̃#1@At ,At̃#50, which gives the elements ofAs5@Ai j # in terms of the elements ofAt

5@Bi j # as

Ai j 52
bj2bi

aj2ai
Bi j , iÞ j ,

providedaiÞaj , biÞbj for iÞ j .
Choosingai5bi

2 , i 51,...,n, and As and At to be skew-symmetric, we haveAi j 52(bi

1bj )
21Bi j and the vanishing ofFst gives

dBi j

dt
5 (

k51

n S 1

bj1bk
2

1

bk1bi
DBikBk j . ~41!

Equations~41! were first considered by Manakov37 and Arnold12 and are the equations of motio
for a free n-dimensional rigid body about a fixed point. In the casen53, we obtain Euler’s
equations for a free spinning body about a fixed point,
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dL1

dt
5g1L2L3 ,

dL2

dt
5g2L3L1 ,

dL3

dt
5g3L1L2 , ~42!

where

L15B23, L25B31, L35B12, I 152~b21b3!, I 252~b31b1!, I 352~b11b2!,

and

g15
I 22I 3

I 2I 3
, g25

I 32I 1

I 3I 1
, g35

I 12I 2

I 1I 2
.

In Eq. ~42!, (L1 ,L2 ,L3) is the angular momentum in the body frame and theI k’s are the principal
moments of inertia. Reductions to other integrable tops, including the Kowalevsaya top
described in Refs. 18 and 19.

B. The Painlevé equations

With the exception of the reduction to the Ernst equation, all of the above reductions
been with respect to translational symmetries. In other words, the reductions have all resulte
consideringAm’s that depend only on one or more linear combination of the variabless, s̃, t, and
t̃. In this section we follow Mason and Woodhouse41,42 and obtain reductions to the Painlev´
equations by considering reductions by conformal symmetries.

The Painleve´ equations are the following six classically known ODEs:

PI u956u21t,

PII u952u31tu1a,

PIII u95
1

u
u822

1

t
u81

1

t
~au21b!1gu31

d

u
,

PIV u95
1

2u
u821

3

2
u314tu212~ t22a!u1

b

u
,

PV u95H 1

2u
1

1

u21J u822
1

t
u81

~u21!2

t2 S a1
b

u D1
gu

t
1

du~u11!

u21
,

P VI u95
1

2 H 1

u
1

1

u21
1

1

u2tJ u822H 1

t
1

1

u21
1

1

u2tJ u8

1
u~u21!~u2t !

t2~ t21!2 H a1
bt

u2 1
g~ t21!

~u21!2 1
dt~ t21!

~u2t !2 J .

These equations have played a very important role in integrable systems. Indeed they aris
similarity reductions of classical soliton equations and as monodromy preserving deform
equations associated with linear systems of ODEs with rational coefficients.

The SDYM equations are invariant under the group of conformal transformations~transfor-
mations that preserve the metric up to an over all factor!. The metric onR4 in null coordinates,
ds ds̃1dt dt̃, is proportional to«abgddxabdxgd, where@xab# is the skew-symmetric singula
matrix
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@xab#5S 0 l s t̃

2l 0 2t s̃

2s t 0 1

2 t̃ 2s̃ 21 0

D , ~43!

wherel5ss̃1tt̃.
Consider a mapping of the formx°y5gxgT, where gPGL(4;C). Then the mapping

x°y/y23 generates a conformal transformation ofC4 as it maps the space of matrices of the fo
~43! into itself. In fact, every proper conformal transformation arises in this way. The generato
the conformal transformations are called conformal Killing vectors. In order to calculate
associated conformal Killing vectors we consider a one-parameter family of transformations
by g5exp(eK)5I1eK1O(e2), whereKPgl(4;C). Hencey5x1e(Kx1xKT)1O(e2). Consider
the case in which the matrixK has a 1 in themn component and zeros elsewhere. In compone
we have

yab5xab1e~xandbm2xbndam!1O~e2!.

So

xab° x̃ab5yab/y235xab1e~xandbm2xbndam1xabqmn!1O~e2!,

whereqmn5x3nd2m2x2nd3m. By considering the appropriate components of@xab# we find

s°s1e~x0nd2m2x2nd0m1sqmn!1O~e2!,

s̃°s̃1e~x1nd3m2x3nd1m1s̃qmn!1O~e2!,

t°t1e~x2nd1m2x1nd2m1tqmn!1O~e2!,

t̃° t̃1e~x0nd3m2x3nd0m1 t̃qmn!1O~e2!.

It follows that the conformal Killing vectorXmn associated with the matrixK which is one in the
mn-entry and zero elsewhere, is

X005s]s1 t̃] t̃ , X2052st̃]s2s̃ t̃]s̃1ss̃]t2 t̃2]t̃ ,

X015s̃] t̃2t]s , X215tt̃]s2s̃2]s̃2ts̃]t2s̃ t̃] t̃ ,

X105 t̃]s̃2s]t , X305s2]s2tt̃]s̃1st]t1st̃]t̃ ,

X115s̃]s̃1t]t , X3152st]s2s̃t]s̃2t2]t1ss̃]t̃ ,

X025]t̃ , X2252s̃]s̃2 t̃] t̃ ,

X0352]s , X235 t̃]s2s̃]t ,

X125]s̃ , X3252t]s̃1s]t̃ ,

X135]t , X3352s]s2t]t .

Note that there are 15 independent conformal Killing vectors sinceX001X111X221X3350. This
corresponds to the fact that we could have takengPSL(4;C), which would mean that the trace o
K is zero.
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The Painleve´ equations correspond to reductions of the SDYM equations when the Lie
bra is sl(2;C). The conformal Killing vectors of these reductions correspond to the follow
four-parameter subgroups of GL~4;C!. Mason and Woodhouse42 call these the Painleve´ groups:

PI , PII S a4 a3 a2 a1

0 a4 a3 a2

0 0 a4 a3

0 0 0 a4

D ,

PIII S a4 a2 0 0

0 a4 0 0

0 0 a3 a1

0 0 0 a3

D ,

PIV S a3 a2 a1 0

0 a3 a2 0

0 0 a3 0

0 0 0 a4

D ,

PV S a2 a1 0 0

0 a2 0 0

0 0 a3 0

0 0 0 a4

D ,

P VI S a4 0 0 0

0 a3 0 0

0 0 a2 0

0 0 0 a1

D .

The conformal Killing vectors associated with the Painleve´ equations are discussed below.
PI , PII : The conformal Killing vectors associated with the Painleve´ subgroup given above ar

of the form

a1X031a2~X021X13!1a3~X011X121X23!1a4~X001X111X221X33!.

In this case the vector multiplyinga4 is zero. More generally for the reductions described for ot
Painlevéequations below, the conformal Killing vector associated witha4 is a linear combination
of the conformal Killing vectors associated witha1 , a2 , anda3 .

The vectors multiplyinga1 , a2 , anda3 are, respectively,

X̃152]s ,

X̃25]t1]t̃ ,

X̃35~ t̃2t!]s1]s̃2s̃]t1s̃] t̃ .

We now choose new variablesw1, w2, w3, andt, such that

X̃i~wj !5d i
j , X̃i~ t !50, i , j 51,2,3. ~44!
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A particular choice is

w152s1s̃~ t̃2t!2 2
3s̃

3, w25 t̃2 1
2s̃

2, w35s̃, t5 t̃2t2s̃2.

Using the gauge freedom, we let the one-formA have the form

A5Wjdwj ,

where theWj ’s are functions oft only. That is, the gauge freedom has been used to choos
coefficient ofdt to be zero. Hence,

A52W1ds1~@ t̃2t22s̃2#W12s̃W21W3!ds̃2s̃W1dt1~ s̃W11W2!dt̃,

from which we can read the values ofAs , As̃ , At , andAt̃ . The SDYM equations are

W1850, W285@W1 ,W3#, W385@W2 ,tW11W3#.

From these equations it follows that three conserved quantities arel 5Tr(W1W2), m5Tr(W3W1

1 1
2W2

2), andn5Tr(W2W3).
Using the residual gauge freedom,W1 can be put into one of the canonical forms,

S k 0

0 2kD or S 0 1

0 0D ,

wherek is a constant. The first case leads toPII while the second leads toPI . If we choosey to
be one of the roots of the gauge-invariant equation

det~@W1 ,yW22W3# !50 ,

we find that~up to simple rescalings! y solves the appropriate Painleve´ equation.
For the other Painleve´ equations, we list the conformal Killing vectors, the choices for

wj ’s and t, and the reduced SDYM equations.
PIII

X̃15 t̃]s2s̃]t ,

X̃252t]s1s̃] t̃ ,

X̃352s]s2s̃]s̃2t]t2 t̃] t̃ .

w152t/s̃, w25 t̃/s̃, w352 log s̃, t5s̃21Ass̃1tt̃.

W1850, tW2852@W3 ,W2#, W3852t@W1 ,W2#.
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PIV

X̃15]t̃ ,

X̃252t]s1]s̃1s̃] t̃ ,

X̃35s]s1t]t .

w15 t̃2 1
2 s̃2, w252s/t, w35 logt, t5s̃1s/t.

~45!
W1850, W285@ tW21W3 ,W1#, W385@W3 ,W2#.

PV

X̃152t]s1s̃] t̃ ,

X̃25s]s1s̃]s̃1t]t1 t̃] t̃ ,

X̃352s̃]s̃2 t̃] t̃ .

w15 t̃/s̃, w25 log~@ss̃1tt̃#/s̃ !, w35 log~t/s̃ !, t5s/t1 t̃/s̃.

W1850, W285@W3 ,W1#, tW385@ tW11W2 ,W3#.

PVI

X̃152s]s2t]t ,

X̃252s̃]s̃2 t̃] t̃

X̃35s̃]s̃1t]t .

w152 logs, w252 log t̃, w35 log~ s̃/ t̃ !, t52~tt̃ !/~ss̃!.

W1850, tW285@W2 ,W3#, t~12t !W385@W3 ,tW11W2#.

1. Reduction of the linear problem

Note that each of the symmetry reductions of the SDYM equations to one of the Pai´
equations extends to a reduction of the linear problem~16! and ~17!. However, in finding a
reduction of the linear problem, the spectral parameterz must also be transformed. The symm
tries of the field equations are lifted to symmetries of the linear problem. ForPVI we extend the
reduction above to the linear problem~16! and ~17! by restricting C to have the form
C(s,t,s̃,t̃;z)5c(t;l), wherel5 t̃/(sz). Note that then

t]tC52s̃]s̃C5t] tc, and t̃] t̃C52s]sC5t] tc1l]lc.

The linear problem~16! and ~17! then becomes

]lc52F W2

l21
2

W11W21W3

l21
1

W3

l2t Gc, ] tc5
W3

l2t
c. ~46!

The system of equations~46! is the isomonodromy problem forP VI . The compatibility of~46!
gives Eqs.~45!, which are equivalent toP VI . Isomonodromy problems for the above reductio
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to PI –PV can be obtained in the same way. Indeed, it is often easier to identify a reduction t
of the Painleve´ equations from the form of the isomonodromy problem. By comparing
isomonodromy problem to those in the literature, we can identify the component that will s
the appropriate Painleve´ equation.

V. THE DARBOUX–HALPHEN SYSTEM

In this section we consider a reduction of the SDYM equations to an integrable generali
of the classical Darboux–Halphen system. Its general solution is densely branched and con
movable natural barrier.

Consider the reduction of the SDYM equations in which theAm’s are functions oftª2x0

only. This gives the well known Nahm equations43

Ȧ15@A2 ,A3#, Ȧ25@A3 ,A1#, Ȧ35@A1 ,A2#, ~47!

where we have chosen a gauge in whichA0[0.
Using diff(S3), the infinite-dimensional Lie algebra of vector fields onS3, we choose the

components of the connection to be of the form

Ai~ t !5 (
j ,k51

3

Oi j M jk~ t !Xk . ~48!

The Xk’s are divergence-free vector fields onS3 and satisfy thesu~2! commutation relations

@Xi ,Xj #5 (
k51

3

« i jkXk , ~49!

where« i jk is totally antisymmetric and«12351. The SO~3! matrix @Oi j # is used to represent th
points ofS3 ~see, e.g., Ref. 55! and the action of the vector fieldsXi on Ojk is given by6

XiOjk5(
l 51

3

« iklOjl . ~50!

Substituting Eq.~48! into Eq. ~47! and using~49! and ~50! together with the identities

(
i , j ,k51

3

« i jkOipOjqOkr5«pqr , (
i 51

3

« i jk« imn5 d jmdkn2d jndkm,

yields

Ṁ5~Adj M !T1MTM2~Tr M !M , ~51!

where (AdjM )ª(detM)M21 is the adjoint ofM and the dot denotes differentiation with respe
to t. Equation~51! was first derived in Ref. 20. Equation~51! was also derived in Ref. 34 wher
it was shown to represent an SU~2! invariant hypercomplex four-manifold. Since the Weyl curv
ture of a hypercomplex four-manifold is self-dual, Eq.~51! describes a class of self-dual We
Bianchi IX space–times with Euclidean signature.15

In order to solve Eq.~51! we first introduce a simple factorization. If the eigenvalues of
symmetric part,Ms , of M are distinct, thenMs can be diagonalized using a~complex! orthogonal
matrix P. In this case we may write

M5Ms1Ma5P~d1a!P21,
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wheredªdiag (v1,v2,v3), v iÞv j , iÞ j , and the nonzero elements of the skew-symmetric ma
a are denoted asa1252a215t3 , a2352a325t1 and a3152a135t2 . Using the above factor-
ization of M , Eq. ~51! can be transformed into

v̇15v2v32v1~v21v3!1t2,

v̇25v3v12v2~v31v1!1t2, ~52!

v̇35v1v22v3~v11v2!1t2,

wheret2
ªt1

21t2
21t3

2 and

ṫ152t1~v21v3!, ṫ252t2~v31v1!, ṫ352t3~v11v2! , ~53!

together with the linear equation

Ṗ1Pa50, ~54!

for the matrixP. The system~52! with t250 is the classical Darboux–Halphen system wh
appeared in Darboux’s analysis of triply orthogonal surfaces27 and was later solved by Halphen.32

Halphen also studied and solved Eqs.~52!–~56!,31 which are linearizable in terms of Fuchsia
differential equations with three regular singular points.

Taking the differences between the various equations in~52! results in

v152
1

2

d

dt
ln~v22v3!, v252

1

2

d

dt
ln~v32v1!, v352

1

2

d

dt
ln~v12v2!.

Together with Eqs.~53!, these equations show that

a2
ª

t1
2

~v12v2!~v32v1!
,

b2
ª

t2
2

~v22v3!~v12v2!
, ~55!

g2
ª

t3
2

~v32v1!~v22v3!

are constants. Without loss of generality we choosea, b, andg to have nonnegative real part
Hence, provided the symmetric part ofM has distinct eigenvalues, Eq.~51! reduces to the third-
order system~52!, where

t25a2~v12v2!~v32v1!1b2~v22v3!~v12v2!1g2~v32v1!~v22v3!, ~56!

together with the linear equation~54! for P. In Refs. 47 and 33, solutions of equations~52!–~56!
for special choices ofa, b, andg were determined in terms of automorphic forms.

Note that the system~52! with t2 as in ~56! is invariant under the transformation

t°m~ t !ª
at1b

ct1d
, v j~ t !°

v j~m~ t !!

~ct1d!2 1
c

ct1d
, ad2bc51.

We introduce them-invariant function
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sª
v12v3

v22v3
. ~57!

Differentiating Eq.~57! and using the system~52! yields ṡ52s(v12v2). Repeating this proces
gives s̈52(ṡ22v3s)(v12v2). Solving these two equations together with~57! for thev’s gives

v152
1

2

d

dt
ln

ṡ

s~s21!
,

v252
1

2

d

dt
ln

ṡ

s21
, ~58!

v352
1

2

d

dt
ln

ṡ

s
.

Substituting the parametrization~58! into any of the equations in~52! shows thats(t) must satisfy

$s,t%1
ṡ2

2
V~s!50, ~59!

where

$s,t%ª
d

dt S s̈

ṡD2
1

2 S s̈

ṡD
2

is the Schwarzian derivative andV is given by

V~s!5
12b2

s2 1
12g2

~s21!2 1
b21g22a221

s~s21!
. ~60!

The general solution of Eq.~59! is given implicitly by

t~s!5
u1~s!

u2~s!
, ~61!

whereu1(s) andu2(s) are two independent solutions of the Fuchsian differential equation

d2u

ds2 1
1

4
V~s!u50 ~62!

with regular singular points at 0, 1, and̀. The transformation

u~s!5sc/2~12s!(a1b2c11)/2x~s! ~63!

maps Eq.~62! to the Gauss hypergeometric equation

s~12s!
d2x

ds2 1@c2~a1b11!s#
dx

ds
2abx50, ~64!

wherea5(11a2b2g)/2, b5(12a2b2g)/2, andc512b ~see, e.g., Refs. 45 and 2!. Note
that from the general solutions(t) of Eq. ~59! we can reconstruct thev j ’s from Eqs.~58! and the
t j ’s then follow from ~55!.

From Eq.~61!, if a, b, andg are non-negative real numbers such thata1b1g,1, then the
upper-~or lower-! half s-plane is mapped to a triangular region in thet-plane whose sides are th
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arcs of circles and whose vertices subtend angles ofap, bp, andgp. Moreover, ifa, b, andg are
either 0 or reciprocals of integers, thens is an analytic function oft on the interior of a circle on
the complex sphereCø` but cannot be analytically extended across any point of the circle.
is, the circle is a natural barrier for the functions(t).

The solution procedure just outlined allows us to obtain explicit expressions for the cons
quantities for the generalized Darboux–Halphen system~52! and ~56!. In Ref. 36, it was shown
that the classical Darboux–Halphen system admits no meromorphic first integrals. In Ref. 1
first integrals for the full system~52! and ~56! were found and shown to be branched and tr
scendental involving hypergeometric functions. The existence of these integrals is consiste
Ref. 36 because even in the classical case they are branched despite the fact that the
solution is single-valued.

Fix two linearly independent solutionsu1 andu2 of Eq. ~62! with Wronskian

W~u1 ,u2!5u1u282u2u1851, ~65!

where prime denotes differentiation with respect tos. Then the general solution of Eq.~59! is
given implicitly by

t~s!5
J2u1~s!2J1u2~s!

I 2u1~s!2I 1u2~s!
, ~66!

whereI a andJa , a51,2, are constants satisfyingI 1J22I 2J151. Differentiating Eq.~66! twice
and using~65! gives

I 2u12I 1u25 ṡ1/2 , I 2u182I 1u285 1
2 ṡ23/2s̈. ~67!

Solving the linear equations~67! for I 1 and I 2 gives

I a5
dfa

dt
, fa5 ṡ21/2ua~s!, a51,2. ~68!

The constantsJ1 andJ2 are then obtained from Eqs.~66! and~68! together with the normalization
I 1J22I 2J151. They are given by

Ja5tI a2fa , a51,2 .

So, theI a and Ja , taken to be functions oft,s,ṡ and s̈ are first integrals for the Schwarzia
equation. In terms of the Darboux–Halphen variables, these quantities are

fa5A2r ~v i ! ua~s~v i !! , I a5A 2

r ~v i !
ua8 ~s~v i !!2~v12v22v3!Ar ~v i !

2
ua~s~v i !! ,

wherer (v i)5A(v22v3)/(v12v2)(v12v3) ands(v i) is given by Eq.~57!.
In terms of these variables, the Darboux–Halphen system~52! and~56! can be written as the

Hamiltonian system

ḟa5
]H

]I a
5I a , İ a52

]H

]fa
50 , H5

I 1
21I 2

2

2
, a51,2, ~69!

subject to the algebraic constraint

f1I 22f2I 15W~u1 ,u2!51. ~70!

The canonical coordinates$I a ,fa% are analogs of the action-angle variables for the Darbou
Halphen system. The phase space dynamics of the system is restricted to the constraint s
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given by Eq.~70!. This represents a three-dimensional complex quadric. Poisson–Nambu
tures for the generalized Darboux–Halphen system~52! and ~56! are presented in Ref. 17 whic
are similar to those for rigid body dynamics in three dimensions.44,54The system is also written a
a gradient flow in Ref. 16.

A. The Chazy equation

Let v1 , v2 , v3 be a solution of~52! with t50 and defineyª22(v11v21v3). Theny is
a solution of the equation17,18

d3y

dt3
52y

d2y

dt2
23S dy

dt D
2

, ~71!

which was studied by Chazy.23–25Furthermore, given a solutiony of the Chazy equation~71!, let
v1 , v2 , andv3 be the three roots of the cubic equation

v31
1

2
yv21

1

2

dy

dz
v1

1

12

d2y

dt2
50.

If the v j ’s are distinct, then they solve the classical Darboux–Halphen system@i.e., the system
~52! with t50].

The general solution of the Chazy equation is given by

y~ t~s!!56
d

dt
ln x1~s!, t~s!5x2~s!/x1~s!, ~72!

wherex1 andx2 are two independent solutions of the special hypergeometric equation

s~12s!
d2x

ds2 1S 1

2
2

7

6
sD dx

ds
2

1

144
x50.

On replacingx1 and x2 with the independent linear combinationsax11bx2 and cx11dx2 ,
ad2bc51, it can be seen from Eq.~72! that the Chazy equation admits the symmetry

y~ t !° ỹ~ t !5~ct1d!22yS at1b

ct1dD2
6c

ct1d
, ad2bc51. ~73!

As well as having a general solution in terms of special hypergeometric functions as des
above, the Chazy equation~71! is related to the theory of modular functions.8,53 Indeed, a particu-
lar solution of~71! is given by

y~ t !ª ipE2~ t !, ~74!

where

E2~ t !ª11
6

p2 (
m51

`

(
n52`

`
1

~mt1n!2 ~75!

is the second Eisenstein series.@Note that the series~75! is not absolutely convergent, so the ord
of the sum is important.# The second Eisenstein series can also be written as the Fourier se

E2~ t !51224(
n51

`

s1~n!qn, q5e2p i t ,
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wheres1(n) is the sum of the divisors ofn.
Furthermore, the solution~74! can be written in terms of a special logarithmic potential,

y~ t !5
1

2

d

dt
ln D~ t !, ~76!

whereD is the discriminant cusp form of weight 12, which satisfies

D~m~ t !!5~ct1d!12D~ t !, mPPSL~2;Z!. ~77!

This shows that there is a deep connection between the Chazy equation and the theory of m
forms.

The discriminant modular form has the well known representation

~2p!212D~ t !5q)
n51

`

~12qn!245 (
n51

`

t~n!qn,

whereq5e2p i t and the coefficient functiont(n) is called the Ramanujant-function ~see, e.g.,
Ref. 52!. From Eqs.~76! and ~74! it can be shown thatD satisfies the homogeneous ODE
degree 4;

D3
d4D

dt4
25D2

dD

dt

d3D

dt3
2

3

2
D2S d2D

dt2 D 2

112DS dD

dt D
2 d2D

dt2
2

13

2 S dD

dt D
4

50.

Rankin51 first showed that the discriminant cusp form satisfies this equation. SinceD has no zeros
or poles and satisfies a homogeneous equation it is the natural analog of thet function that appears
in Hirota’s method~see, e.g., Sec. 3.3 of Ref. 4!.

Note that the characterization of the Ramanujan coefficientst(n) is a major problem in
number theory. These famous numbers arise naturally as the Fourier coefficients ofD(t) when we
write the Chazy equation in the above homogeneous form.

Furthermore, there is another important correspondence between the Chazy equati
Ramanujan’s work. In 1916 Ramanujan50 proved that the functions

P~q!51224(
n51

`

s1~n!qn,

Q~q!511240(
n51

`

s3~n!qn,

R~q!512504(
n51

`

s5~n!qn,

wheresk(n)5(dundk, k51,3,5 ~sum of the divisors ofn to thekth power!, satisfy
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q
dP

dq
5

1

12
~P22Q!,

q
dQ

dq
5

1

3
~PQ2R!, ~78!

q
dR

dq
5

1

2
~PR2Q2!.

Using q5e2p i t , t5pt, the equations~78! take the form

dP

dt
5

i

6
~P22Q!,

dQ

dt
5

2i

3
~PQ2R!, ~79!

dR

dt
5 i ~PR2Q2!.

Using the first of the above equations to find Q:Q5P216i dP/dt, the second equation implie
R529(d2P/dt2) 19iP (dP/dt) 1P3. Then the last of the above equations yields

d3ỹ

dt3 52y
d2ỹ

dt2 23S dỹ

dt D 2

,

whereP(q)52 i ỹ(t). Finally, in terms ofỹ(t)5p21y(t), y satisfies the Chazy equation~71!.
Thus the special solution~74! yieldsy(t)5 ipE2(t)5 ipP(q). Knowing P(q), from ~78! we can
obtain the other functionsQ(q) andR(q) directly. Moreover, since we know the general soluti
of the Chazy equation, we know the general solution of the equations of Ramanujan. NoteQ
andR are also called the normalized Eisenstein seriesE4 andE6 ~see, e.g., Ref. 35!.

As an historical postscript we note that Chazy and Ramanujan both worked on the
equation at nearly the same time, but apparently they did not know this!

B. The generalized Chazy equation

Let (v1 ,v2 ,v3) be a solution of~52!–~56!. Ablowitz, Chakravarty, and Halburd5,7 showed
that

yª22~v11v21v3!522TrM ~80!

solves

d3y

dt3
22y

d2y

dt2
13S dy

dt D
2

5
4

362n2 S 6
dy

dt
2y2D 2

, ~81!

if and only if eithera5b5g5..2/n or exactly one of the parametersa, b, g is 2/n and the other
two are 1

3. Equation~81! was also studied by Chazy23–25 and is usually referred to as thegener-
alized Chazy equation@to contrast it with the classical Chazy equation~71!, which is the special
casen5`].

It follows from Eqs.~58! and ~80! that the general solution of~81! is given by

y~ t !5
1

2

d

dt
ln

ṡ6

s4~s21!4 . ~82!
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In Chazy’s analysis of Eq.~81! he showed that its solution is given by

y~ t !5
1

2

d

dt
ln

J̇6

J4~J21!3 , ~83!

where the Schwarz functionJ solves Eq.~59! with ~60! anda51/n, b5 1
3, g5 1

2. The functionJ,
and hencey, is single-valued ifn is an integer greater than 1. The choicen5` again corresponds
to the classical Chazy equation~71!.

Equations~82! and~83! suggest that there is a relationship betweenJ and the special Schwar
zian triangle functionss described above. In the case whens corresponds to the choicea5b
5g52/n, it can be shown that

J5
4

27

~s22s11!3

s2~s21!2 ,

and, similarly, whena52/n, b5g5 1
3, we have

J524s~s21!

~see Ref. 5!.

VI. SUMMARY AND DISCUSSION

The SDYM equations are a rich source of integrable systems. The classical soliton equ
in 111 dimensions and the well known Painleve´ quationsPI –P VI are reductions of the SDYM
equations with finite-dimensional Lie algebras. Reductions of the SDYM equations using in
dimensional algebras are of particular interest. They yield the classical 211-dimensional soliton
equations, the Chazy equations and a ninth-order generalization of the Darboux–Halphen s
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Topological phenomena in the real periodic sine-Gordon
theory
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The set of real finite-gap sine-Gordon solutions corresponding to a fixed spectral
curve consists of several connected components. A simple explicit description of
these components obtained by the authors recently is used to study the conse-
quences of this property. In particular this description allows to calculate the topo-
logical charge of solutions~the averaging of thex-derivative of the potential! and to
show that the averaging of other standard conservation laws is the same for all
components. ©2003 American Institute of Physics.@DOI: 10.1063/1.1588742#

I. INTRODUCTION. ALGEBRO-GEOMETRICAL SOLUTIONS AND THE REALITY
REDUCTIONS. THE TOPOLOGICAL CHARGE

The algebro-geometrical~or finite-gap! solutions play a very important role in the mode
theory of soliton equations with periodic and quasiperiodic boundary conditions. The main
erty characterizing these solutions is the following: the wave function of the auxiliary li
operator is meromorphic in the spectral parameter on the finite part of an algebraic Rie
surface. This allows one to apply the powerful tools of classical algebraic geometry, and to
explicit representations for solutions and wave functions in terms of RiemannQ-functions of
several variables. Usually the algebro-geometrical solutions are dense in the space of the p
ones, and if the nonlinearity tends to zero, they degenerate to finite Fourier sums. Therefor
role in the soliton theory is rather similar to the role of finite Fourier series for the linear PD

The algebro-geometrical solutions of solition equations were first introduced in Ref. 1 in
dedicated to the integration of the Korteveg–de Vries~KdV! equation with periodic boundary
conditions. Real nonsingular periodic algebro-geometrical KdV solutions can be characteriz
the following property: the number of gaps~forbidden bands or zones! in the spectrum of the
auxiliary Schro¨dinger operator acting in the Hilbert spaceL2(R) is finite. This characterization is
not valid for other systems@for example, the spectrum of non-self-adjoint auxiliary operator
the self-focusing nonlinear Schro¨dinger equation~NLS! has no gaps for any regular potential#, but
nevertheless the algebro-geometrical solutions are called finite-gap.

The complete theory of algebro-geometrical KdV solutions involving the spectral theo
periodic~quasiperiodic! finite-gap Schro¨dinger operators on the line and its unification with alg
braic geometry and analysis on the Riemann surfaces, time dynamics and algebro-ge
hamiltonian aspects was constructed in Refs. 2–7~see in the survey article, Ref. 8! and in Refs. 9
and 10. Complex finite-gap solutions of the NLS and sine-Gordon~SG! equations were con
structed in Refs. 11 and 12. Finite-gap solutions of the 211 Kadomtsev–Petviashvili~KP! eqation
were constructed in Ref. 13 on a basis of a purely algebraic formulation of the finite-gap app
developed in this article. The algebro-geometric spectral theory of the stationary period

a!Electronic mail: pgg@landau.ac.ru
b!Electronic mail: novikov@ipst.umd.edu
31740022-2488/2003/44(8)/3174/11/$20.00 © 2003 American Institute of Physics
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Schrödinger operator was developed in Refs. 14 and 15. In these papers it was shown th
proper analog of the finite-gap constraint in the two-dimensional case is the following: the re
tion of the Bloch variety to one energy level is algebraic, and the spectral data is ‘‘collecte
this energy level only. Such potentials can be treated as ‘‘integrable’’ at one energy. It mean
the wave functions for this energy and arbitrary complex quaismomenta can be written exp
in terms of RiemannQ-functions, but the information about the spectral properties at other e
gies is very restricted.

The algebro-geometrical approach allows us to obtain explicit compact formulas for solu
But the Q-functions of several variables are very complicated from the analytic point of v
therefore the existence of such formulas does not lead sometimes to the simple solution
problem of selecting physically or geometrically meaningful solutions among generic com
ones. For example, it is very easy to describe reality conditions for the KdV, defocusing N
sinh-Gordon equation

]2u

]j]h
54 sinhu~j,h!

~in all these cases the auxiliary linear operators are self-adjoint!. However, the reality reduction
for the self-focusing NLS or the sine-Gordon equation found in Ref. 16 are rather nontriv
was shown in Ref. 15 that analogous reductions are responsible for the absence of magne
in the theory of the 2D Schro¨dinger operator. A good review of reality reductions can be found
Ref. 17.

The sine-Gordon equation

utt2uxx1sinu~x,t !50 ~1!

derived in the 19th century geometry in the light-cone representation

ujh54 sinu, u5u~j,h!, ~2!

where

x52~j1h!, t52~j2h!, ]j52]x12] t , ]h52]x22] t ~3!

is one of the most important systems of the soliton theory. One of its distinguished properties
folowing. Usually if we fix the spectral curve~or equivalently all local conservation laws!, then
the level set is a connected Jacobi torus. It is true for KdV, defocusing and self-focusing NL
for both real reductions of the KP equation. But in the sine-Gordon case the level set is a un
2m real Jacobi tori, wherem denotes the number of pairs of negative branch points. As a corol
the result of averaging a generic functional depends not only on the spectral curve, but also
component. This property is also essential if we calculate the action-angle variables~this problem
was studied in Refs. 18 and 19!.

The averaged densities of conservation laws arose naturally as Hamiltonians of the Wh
equations. These equations describe the evolution of parameters of the asymptotic solution
form of a slowly varyingN-phase wavetrains. The Whitham equations for the sine-Gordon
derived in Ref. 20, but the connectivity components of the level sets were not discussed.
point out that the Whitham equations are hyperbolic only in the ‘‘stable’’ case, when all br
point are negative and the number of components is always greater than 1.

It is possible to extract from the calculations of Ref. 20 that for all classical local conserv
laws except the topological charge the result of averaging is the same for all components, b
property was never pointed out explicitly. In Sec. IV we give a simple explanation of it.

Remark:The number of real tori was calculated in Ref. 16, and their characterization in t
of the complex Jacobi torus was obtained in Ref. 21, see also Ref. 22. An elementary desc
of these tori was obtained by the authors in Refs. 23 and 24~see Sec. II below!.
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Another interesting property of the sine-Gordon equation is the following. In the theo
constant negative curvature surfacesu(j,h) denotes the angle between asymptotic lines. In
theory of Josephson junctionsu has the meaning of a phase. In both situations it is defined u
an additive constantc52pn. Therefore, it is natural to call a solutionu(x,t) space-periodic with
the periodT if exp$iu(x1T)%5exp$iu(x)%. The integern such thatu(x1T)5u(x)12pn is called
topological charge: the real numbern̄5n/T denotes thedensity of topological charge. These
quantities are the ‘‘most stable’’ conservation laws surviving all real periodic nonintegrable
turbations. The density of topological charge can be naturally extended to all nonsingular
periodic solutions using the formula

n̄5 lim
T→`

@u~x1T!2u~x!#/2pT.

One of the most natural problems is the following:how to calculate the topological charge of rea
periodic SG solutions in terms of the spectral data: the Riemann surface and the divisor. It turned
out that nobody succeeded to extract the answer from the explicit description of the real c
nents described in terms of the Jacobi torus andQ-functional formulas, found in Refs. 21 and 2
An attempt was made almost 20 years ago in Ref. 18 to solve this problem. For this purpo
so-called ‘‘Algebro-Topological’’ approach was developed in Ref. 18, and an interesting for
was proposed. However, as it was pointed out in Ref. 19, the idea of the proof presented
18 works only if the spectral curve is sufficiently close to a degenerate one. A complete so
using a new development of the main idea of Ref. 18 was obtained only recently by the auth
Refs. 23~for the so-called stable curves! and 24 for generic ones. Our proof is based on a n
effective description of the real components in terms of divisors. We present a summary of
results in Sec. III.

Remark:Formally we can define topological charge for any nonsingular complex solu
But if the solution has poles, this quantity became ill-defined, and no natural nonsingu
condition in terms of the spectral data for complex potentials is known. It explains why only
solutions are discussed.

II. FINITE-GAP SINE-GORDON SOLUTIONS

The ‘‘soliton-type’’ solutions of sine-Gordon were found already in the 19th century u
substitution discovered by Bianchi and S. Lie. Now this method is called ‘‘Backlund transfo
tion.’’

In the early 1970s G. Lamb found out~see Ref. 25! that the sine-Gordon equation is analogo
to KdV in the following sense: the so-called ‘‘inverse scattering method’’ can be applied to it.
modern approach was started in Ref. 26. The critical point of this approach is the follo
zero-curvature representation for SG,

Cx5 1
4 ~U1V!C, C t5

1
4 ~U2V!C, ~4!

where

U5U~l,x,t !5F i ~ux1ut! 1

2l 2 i ~ux1ut!
G , ~5!

V5V~l,x,t !5F 0 2
1

l
eiu

e2 iu 0.
G . ~6!

To construct generic complex finite-gap SG solutions, assume that we have the foll
spectral data:
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~1! A nonsingular hyperelliptic Riemann surfaceG @m25R(l)#, whereR(l)5)k50
2g (l2Ek),

such thatE050 and EiÞEj ,i , j 50,1, . . . ,2g. It has exactly 2g12 branch pointsE050,
E1 , . . . ,E2g , `; the genus ofG is equal tog. A point gPG is by definition a pair of complex
numbersg5(l,m) such thatm25R(l).

~2! A divisor D of degreeg, i.e., set~or formal sum! of g pointsD5g11¯1gg .

For generic dataG,D there exists an unique two-component ‘‘Baker–Akhiezer’’ vect
function C(g,x,t) such that the following hold.

~1! For fixed (x,t) the functionC(g,x,t) is meromorphic in the variablegPG outside the points
0,̀ and has at most first order poles at the divisor pointsgk , k51, . . . ,g.

~2! C(g,x,t) has essential singularities at the points 0,` with the following asymptotics:

C~g,x,t !5S 11o~1!

iAl1O~1! DeiAl~x1t !/4 as l→`, ~7!

C~g,x,t !5S f1~x,t !1o~1!

iAlf2~x,t !1O~l! De2 ~ i /Al!@~x2t !/4# as l→0, ~8!

wheref1(x,t), f2(x,t) are some functions of the variablesx,t.
Denote the divisor of zeros of the first componentc1 by D(x,t)5( jg j (x,t). The vector-

functionC(g,x,t) satisfies to the zero-curvature equations~4! with potential given by the formula

u~x,t !5 i ln
f2~x,t !

f1~x,t !
, ~9!

and the functionu(x,t) solves the SG equation~2!. In terms of the divisor of zerosD(x,t) the
potenitalu(x,t) can be easily written explicitly:

eiu(x,t)5
) j 51

g ~2l j~x,t !!

A) j 51
2g Ej

. ~10!

Thex andt dynamics of the divisorD(x,t) can be described in terms of Dubrovin equations~see
Ref. 24!. From ~10! it follows that the potentialu(x,t) is singular at the point (x0 ,t0) if and only
if one of the pointsgk(x0 ,t0) coincides with 0 or̀ . Collisions of two or more divisor points resu
in singularities in the solutions of Dubrovin equations, but all symmetric combinations o
divisor points including the potentialu(x,t) remain nonsingular.

Remark:The first componentc1 of the Baker–Akhiezer vector-functionC is a partial case of
the general scalar two-point Baker–Akhiezer functions satisfying to the second order linear S¨-
dinger equationL1c150 invented in Ref. 14. Here we have

L15
]2

]j]h
1A~j,h!

]

]h
1W~j,h!,

2A5]j logf1. In this special case our surfaceG is hyperelliptic, the selected points coincide wi
0,̀ and corresponding local parameters are chosen asAl,1/Al. The second functionc2 satisfies
to similar equationL2c250 where the operatorL2 is obtained fromL1 by the so-called Laplace
transformations and vice versa. It is known that cyclic Laplace chains of length 2 lead to th
equation in the general complex case~see Ref. 27!.

Lemma 1: Assume that the spectral data(G,D), D5g11¯ ,gg satisfy the following reality
constraints:

(1) The set of branch points of the Riemann surfaceG contains real points or complex conjuga
pairs of points only, and all real branch points are nonpositive. Without loss of generalit
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may assume that the first2m11 of them, E050, E1 , E2 , . . . ,E2m , are real and0.E1

.E2.¯.E2m , and for k.m we have E2k5E2k21, Im E2kÞ0. Then the spectral curveG is
real and admits aZ23Z2-group of involutions generated by the standard holomorphic in
lution

s:G→G: s~l,m!5~l,2m!, ~11!

transposing the sheets, and by the antiholomorphic involution

t:G→G: t~l,m!5~l̄,m̄! ~12!

~complex conjugation!.
(2) There exists a meromophic differentialV with two simple poles at the points0,̀ such that the

zeros ofV are located at the points D1tD. We shall call such divisorsadmissible. Without

loss of generality we can normalizeV to be real: tV5V̄.

Then the potential u(x,t) is real and nonsingular.
Remark:The constraints on the spectral curve were found in Ref. 12. The characterizat

admissible divisors and the proof of nonsingularity were obtained in Ref. 16.
It is easy to check~see, for example, Ref. 24!

Lemma 2: If D is an admissible divisor, then the divisor of zeros D(x,t)5g1(x,t)1¯

1gg(x,t) is admissible for all x,t
Assume that we have a real meromorphic differentialV with exactly two simple poles at the

points 0,̀ . We can associate an admissible divisorD to it if and only if 2g zeros ofV can be
presented as a union of two subsetsD andD1 such thatD15tD. It is possible if and only if all
real roots ofV have even multiplicity.

Definition 1: Assume that the spectral curveG satisfies the reality conditions formulate
above. A real meromorphic differentialV on G with exactly two simple poles at the points0,̀ is
called admissible if the multiplicity of all real roots is even.

Without loss of generality we may assume that the residues ofV at the points 0 and̀ are
equal to11 and21, respectively. Then we have

V5S 12
lPg21~l!

R~l!1/2 D dl

2l
, ~13!

where Pg21(l) is a polynomial of degree at mostg21 with real coefficients. Let us call the
polynomialPg21(l) admissible if V is an admissible differential.

Denote the map associating an admissible polynomial with an admissible divisor byP:D
→Pg2 l(l). The inverse mapP21 is multivalued. IfPg21(l) is an admissible polynomial, the
the equation

m5lPg21~l!,
~14!

R~l!5m2

has 2g11 roots. One of them is the point~0,0!, the other 2g roots formg pairs. To define an
admissible divisor we have to choose one point from each pair: therefore we have at mg

possibilities depending on the number of real points. In the generic case we have no real ro
the number is equal to 2g in this case.

The description of connected components suggested by the authors in Refs. 23 and 24 i
on the following simple observation:

Consider a pair of functions of the real variablel:

f 6~l!56
AR~l!

l
. ~15!
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We assume that the functionsf 6(l) are defined only for suchlÞ0 that R(l)>0, i.e., these
functions are real-valued. Let us draw the graphs of these functionsy5 f 1(l), y5 f 2(l), and fill
in the following domains~see Fig. 1!:

l,0,y2,
R~l!

l2 ,

~16!

l.0,y2.
R~l!

l2 .

Lemma 3: The polynomial Pg21(l) is admissible if and only if the graph of Pg21(l) does not
cross the black open domains (but it can touch their boundaries).

Now we can associate with each admissible polynomial atopological type, i.e., a collection
of m numberssk561, k51, . . . ,m, defined by the following rule:

sk51 if Pg21~l!> f 1~l! as E2k<l<E2k21 ,

sk521 if Pg21~l!< f 2~l! as E2k<l<E2k21 .

Using simple algebraic estimates~see Ref. 24! it is easy to check:
Lemma 4: Each topological type is presented by the convex subset in the space of polyn

Pg21 . Each of these2m connected components is nonempty and depends continuously o
branch points E1 , . . . ,E2g .

The x and t dynamics of admissible divisors may be rather nontrivial~a number of numeric
experiments are discussed in Ref. 22!. In contrast with the self-adjoint case~KdV, defocusing
NLS, sinh-Gordon! the admissible position of a given divisor point depends on the positio
other ones~the admissibility constraints are nonlocal!. The trajectory of a single divisor point ma
be not well-defined because divisor points may collide and a small variation of parameters n
collision point results in a bifurcation of trajectories. If the potentialu(x,t) is periodic with the
period T, the corresponding divisor is generically periodic only modulo permutations. Bu
following properties can be easily proved using the characterization formulated above.

Lemma 5: Projections of the points of admissible divisors to thel-plane could not lie in the
segments@E1 ,E0#, @E3 ,E2#, . . . ,(2`,E2m#. Moreover, it is possible to choose an open neig
borhood of these segments such that the projections of these points could not lie in it.

Lemma 6: Assume that the projection of a pointgs5(ls ,ms) of an admissible divisor to the
l-plane lie in the segments@E2k ,E2k21#; thenms,0 if sk51 and ms.0 if sk521.

FIG. 1. The graph ofPg21(l) and the forbidden domains.
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III. THE TOPOLOGICAL CHARGE OF REAL SOLUTIONS

It is well-known ~see, for example, Refs. 21 and 22! that after the Abel transform the
x-dynamics of sine-Gordon corresponds to the motion along the straight line

XW 5XW 01UW x, ~17!

in the Jacobi torus, whereUW denotes the noramalized vector ofb-periods of the quasimomentum
differential dp:

Uk52
1

2p R
bk

dp. ~18!

Let us recall that by definitiondp is a meromorphic differential with zeroa-periods and two
second order poles at 0,̀ such that

dp55 S 1

8Al
1oS 1

l D D dl as l→`,

S 1

8lAl
1oS 1

l D D dl as l→0.

~19!

The real part of the Jacobi torus is isomorphic to the factorRn/Zn, therefore we can apply the
following simple analytic lemma:

Lemma 7: Let u(XW ),XPRn be a smooth function inRn such thatexp(iu(XW )) is single-valued

on the torusRn/Zn, i.e., exp(iu(XW1NW ))5exp(iu(XW )) for any integer vector NW . Denote by u(x)
restriction of u(XW ) to the straight line XW 5XW 01x•UW . Then the density of topological chargē

5 limT→`@u(x1T)2u(x)#/2pT is well-defined; it does not depend on the point XW
0 and can be

expressed by the following formula:

n̄5 (
k51

n

nkU
k, ~20!

where UW 5(U1,U2, . . . ,Un), and nk are topological charges along the basic cyclesAk ,k
51, . . . ,n:

u~X1,X2, . . . ,Xk11, . . . ,Xn!2u~X1,X2, . . . ,Xk, . . . ,Xn!52pnk . ~21!

The main step is the calculation of the charges along the basic cyclesAk . To obtain a
convenient answer the choice of canonical basis is very important. Forstable surfaces~surfaces
without complex branch points! the proper system ofa-cycles was constructed in Ref. 18.

We work with the following system of cuts@E1 ,E0#,@E3 ,E2#, . . . ,(2`,E2g#. Let us denote
the sheet containing the linelPR,l.0 m.0 by G1 and the second sheet byG2 ~see Fig. 2!.

For the generic real curves with 2m negative branch pointsE1 , . . . ,E2m andg2m complex
adjoint pairsE2 j 21 ,E2 j5Ē2 j 21 , j 5m11, . . . ,g, we choose firstm a-cycles exactly as in the
stable case. The lastg2m a-cycles should be chosen as coverings onG over the path on the
l-plane connecting the pointsE2 j 21 andE2 j for j .m. All these paths should not meet each oth
All of them should cross positive part of the linel.0 in one pointk j ~i.e., in two points of
Riemann surface! such thatkm11,km12,¯,kg . This basis depends on the order of the co
plex conjugate pairs only~see Fig. 3!.

We assume also that the cyclesb1 ,b2 , . . . ,bm are the ovals lying over the segments@E2 ,E1#,
@E4 ,E3#, @E2m ,E2m21#, respectively.
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For the complex conjugate pairs of branch pointsE2 j ,E2 j 21 , j .m, we make the cuts con
necting each of these points withi` or 2 i` such that the cuts do not intersect the real line.
before we denote the sheet containing the linelPR,l.0 m.0 by G1 and the second sheet b
G2 . The orientation of the cyclesbl ,l 51, . . . ,m, coincides with the standard orientation of th
negative semi-lineR2 at the sheetG1 ; they are opposite at the sheetG2 .

Consider a basic cycleAk on the real component of Jacobi torus, represented by the cl
curveBk on this torus. The image of this cycle in the surfaceG ~i.e., image of it under the invers
Abel map! is a closed oriented curveCk ~may be consisting from several connected compone!
homological to the cycleakPH1(G,Z). From Lemma 5 it follows that this curve does not tou
the closed segments on the real line@2`,E2m#, . . . ,@E3 ,E2#,@E1,0#, and if it crosses the nega
tive semi-line at the inteval@E2l ,E2l 21#, then it happens in the sheetG1 if ( 21)l 21sl.0 and in
the sheetG2 if ( 21)l 21sl,0. From formula~10! it follows that the topological charge along th
cycle Ak is given by

nk5C̃k+R2 , ~22!

whereC̃k is the projection ofCk to thel-plane, and+ denotes the intersection index of curves
the l-plane. Taking into account that any intersection with the negative semi-line is the inte
tion with one of theb-cycles we obtain the following.

Lemma 8: The topological charge along the cycleAk on the real torus in the Jacobian variet
is equal to the intersection index of the corresponding curve Ck with thecounting cycle of the
real componenton the Riemann surfaceG,

FIG. 2. The basica-cycles: the stable case.

FIG. 3. The basic cycles: the generic case.
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nk5Ck+S (
l 51

m

~21! l 21slbl D . ~23!

Let us mention that the cycleCk is homotopic toak on G. ThereforeCk+bl5dkl and

nk5~21!k21sk for k<m,
~24!

nk50 for k.m.

Combining~20! with ~24!, we obtain our main result:
Theorem 1: For any real solution the density of topological charge along the variable x

given by the formula

n̄5
1

2 (
k51

m

~21!k21skU
k, ~25!

where the components Uk of the vector UW are defined by (18).

IV. AVERAGING OF THE LOCAL CONSERVATION LAWS AND TOPOLOGICAL TYPES

For a generic functional

F@u#5E f ~eiu,e2 iu,ux ,uxx , . . . ,ut ,utx ,utxx , . . . !dx ~26!

the result of averaging over a real componet of the Jacobi torus depends on the topolgical ty
example, by averaging ofux we get the topological charge. But if we average the sine-Gor
Hamiltonian

H@u#5E Fut
2

2
1

ux
2

2
1~12cos~u!!Gdx, ~27!

the result is the same for all components. Therefore it is natural to formulate the following
Problem:How to characterize the functionals such that the averaging does not depend

topological type.
A complete classification seems to be a complicated problem. But it is rather easy to form

a natural sufficient condition.
If f (eiu,e2 iu,ux ,uxx , . . . ,ut ,utx ,utxx , . . . ) is apolynomial of its arguments, then it can b

written as a symmetric rational function of the divisor coordinatesf
5 f̃ (l1(x,t), . . . ,lg(x,t),m1(x,t), . . . ,mg(x,t)).

Wf5 f̃ ~l1 , . . .lg ,m1 , . . . ,mg!)
k, l

~lk2l l !)
k51

g
dlk

mk
. ~28!

If we fix all divisor points exceptg1 , we obtain a meromorphic differential onG with poles only
at 0 and `. Assume that the residues of this differential are equal to0 identically in g2 , . . . ,gg .
Then for a given spectral curve the averaging does not depend on the topological type.

Proof: Following Ref. 20 we can calculate the averaging ofF@u# using the formula
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F@u#5C R
a1

••• R
ag

Wf , ~29!

whereC is the normalization constant, andall cyclesak have the proper topological type. The
last condition was not discussed in Ref. 20. The deformations of the integration cycles d
affect the integral if we do not cross 0. If the condition of Lemma 9 is fulfilled, then we can m
the integration path through 0 and ‘‘reach’’ any topological type without changing the integ

As a corollary we immediately get the following statement:
Theorem 2: Assume that the functional F@u# is invariant with respect to the following sym

metries: sk :(lk ,mk)→(lk ,2mk), sk :(l l ,m l)→(l l ,m l) for lÞk. Then the result of averaging
does not depend on the topological type.

Important example:Consider the densities of ‘‘higher SG Hamiltonians’’ defined as o
expansion coefficients of the function

Cx~l,x,t !

C~l,x,t !
~30!

at the points 0 and̀ . Direct calculation shows that

Cx

C
5

1

4 FCj

C
1

Ch

C G , ~31!

where

Cj

C
5 i

m1Qj~l!

~l2l1~x,t !!¯~l2lg~x,t !!
, ~32!

Ch

C
5 i

@m1lQh~l!#@2l1~x,t !, . . . ,~2lg~x,t !!#

l~l2l1~x,t !!¯~l2lg~x,t !!AE1¯E2g

, ~33!

andQj(l), Qh(l) are polynomials of degreeg21 determined by the following conditions:

Qj~lk~x,t !!5mk~x,t !, Qh~lk~x,t !!5
mk~x,t !

lk~x,t !
. ~34!

We see that the odd part ofCxC
1 depends onlk(x,t) but notmk(x,t). Therefore the averaging o

the ‘‘higher SG Hamiltonians’’ does not depend on the topological type.

P.G.G. was partially supported by the RFBR Grant No. 01-01-00874-A. Numerical sim
tions were partially performed on a computer, donated to PGG by the Humboldt Found
S.P.N. was partially supported by NSF Grant No. DMS 0072700.
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Generation of asymptotic solitons of the nonlinear
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This article is about the focusing nonlinear Schro¨dinger equation on the half-line.
The initial function vanishes at infinity while boundary data are local perturbations
of periodic or quasi-periodic~finite-gap! functions. We study the corresponding
scattering problem for the Zakharov–Shabat compatible differential equations, the
representation of the solution of the nonlinear Schro¨dinger equation in the quarter
of the (x,t)-plane through functions, which satisfy Marchenko integral equations.
We use this formalism to investigate the asymptotic behavior of the solution for
large time. We prove that under certain conditions a periodic~quasi-periodic! be-
havior at infinity of boundary data generates an unbounded train of asymptotic
solitons running away from the boundary. The asymptotics of the solution shows
that boundary data with periodic behavior as time tends to infinity generates a train
of such asymptotic solitons even in the case when the initial function is identically
zero. © 2003 American Institute of Physics.@DOI: 10.1063/1.1588465#

I. INTRODUCTION

The nonlinear Schro¨dinger equation is one of the most important completely integrable n
linear equations. It has various applications in nonlinear optics, hydrodynamics, quantum
theory, etc. After the Korteweg–de Vries equation, the nonlinear Schro¨dinger equation was the
second for which an inverse scattering transform was discovered by V. E. Zakharov and
Shabat.41,42 During the next three decades the nonlinear Schro¨dinger equation was studied by
large number of researchers of different orientation ranging from pure mathematics to a
physics. We mention only some results related to the Cauchy problem for the nonlinear S¨-
dinger equation on the whole line with initial functions vanishing at infinity.16 The solvability of
the Cauchy problem was proved and a representation for the solution was obtained v
Gelfand–Levitan–Marchenko equation or, alternatively, via the solution of a Riemann–H
problem for an analytic matrix-valued function. It was also proved that the nonlinear Schro¨dinger
equation with vanishing initial data is a completely integrable infinite-dimensional Hamilto
system.

In the last decade there has been an increase activity in the investigation of initial bou
value problems on the half line. Among publications,2–14,17–25,29–40devoted to this problem, the
more interesting and significant results were obtained by A. S. Fokas18 and A. S. Fokas and A. R
Its.22 Below we will use a modification of this approach. In the framework of the Fokas
approach we recently found characteristic properties of the scattering data for the com
Zakharov–Shabat eigenvalue problem associated with focusing and defocusing nonlinear¨-
dinger equations on the half-axis with initial and boundary functions of Schwartz type.9

In this article we consider a more complicated problem where boundary data have a pe
or quasi-periodic behavior ast tends to infinity. Our main goal is to study the asymptotic behav

a!Electronic mail: aboutet@math.jussieu.fr
31850022-2488/2003/44(8)/3185/31/$20.00 © 2003 American Institute of Physics
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of a solution. To the best of our knowledge such a problem was not considered elsewhere.
consider the Dirichlet and/or the Neumann initial-boundary value problem for the focusing
linear Schro¨dinger equation:

iqt1qxx12uqu2q50, with x,tPR1 , ~1.1!

q~x,0!5u~x!, with xPR1 , ~1.2!

q~0,t !5v~ t ! or qx~0,t !5v1~ t ! with tPR1 , ~1.3!

u~0!5v~0! or ux~0!5v1~0!, ~1.4!

whereu(x) vanishes asx→`, and the boundary values are perturbations

v~ t !5a~ t !1 v̂~ t !, v̂~ t !→0, t→1`, ~1.5!

v1~ t !5b~ t !1 v̂1~ t !, v̂1~ t !→0, t→1` ~1.6!

of ‘‘finite-gap’’ functions a(t) andb(t), which are periodic or quasi-periodic. The functionsv̂(t)
and v̂1(t) vanish at1`. The definition of ‘‘finite-gap’’ functionsa(t) and b(t) will be given
later.

We assume that the solutionq(x,t) of the NLS equation forx,tPR1 is infinitely differen-
tiable, continuous with all its derivatives up to the boundary$x50%ø$t50% of the quarter
xt-plane andq(x,t)PS(R1) in x for any fixed tPR1 , whereS(R1) is the space of infinitely
differentiable functions onR1 such that derivatives of any ordern>0 vanish at infinity faster than
any negative power ofx:

S~R1!5$u~x!PC`~R1!uxmu~n!~x!PL`~R1! for any m,n>0%.

They will be referred as ‘‘Schwartz functions.’’ So the initial functionu(x) andv̂(t), v̂1(t) are of
Schwartz type. Standard notations will be used throughout the article:

s05S 1 0

0 1D , s25S 0 2 i

i 0 D , s35S 1 0

0 21D .

Our study of the solutionq(x,t) is based on simultaneous spectral analysis of two eigenv
problems, one for the linearx-equation

wx1 iks3w5Q~x,t !w,
~1.7!

Q~x,t !5S 0 q~x,t !

2q̄~x,t ! 0 D ,

the other for the lineart-equation

wt12ik2s3w5Q̂~x,t,k!w,
~1.8!

Q̂~x,t,k!52kQ~x,t !2 i~Q2~x,t !1Qx~x,t !!s3 .

Equations ~1.7! and ~1.8! are the well-known Zakharov–Shabat,41 or Ablowitz–Kaup–
Newel–Segur,1 system of linear equations associated toq. Both equations are compatible if an
only if q(x,t) satisfies the nonlinear Schro¨dinger equation~1.1!.

The main goal of this article is to study the scattering problem for compatible differe
equations~1.7! and ~1.8!, the representation of the solutionq(x,t) through functions satisfying
Marchenko integral equations, and the asymptotic behavior ofq(x,t) as t→1`. We prove that
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the principal~nonvanishing! part of the asymptotics is a series of asymptotic solitons. The asy
totics of the solution shows that boundary functionsv(t) or v1(t) with periodic behavior at
infinity generate a train of such solitons even in the case when the initial datau(x) vanish
identically.

Now let us introduce the so-calledfinite-gap functionsa(t) andb(t). We refer to the Appen-
dix for more details.

Let X be the hyperelliptic Riemann surface of genusg given by the equation

z25)
j 50

g

~k2Ej !~k2Ēj !,

with EjPC, Im Ej.0, EiÞEj for iÞ j , and ReE0<ReE1<•••<ReEg . X is a double covering of
the complexk-plane C̄5Cø$`% obtained by gluing two copies ofC̄ along cutsg j whose end-
points are the 2g12 branch pointsEj , Ēj . Let

p:X→C̄

be the canonical projection on thek-plane. Each point in thek-plane has two preimages onX,
except for the 2g12 branch points. Denote the preimage ofk5` on the upper~lower! sheet ofX
by P5`1 ~respectivelyP5`2). We fix the branch of the square root by relation

A)
j 50

g

~k2Ej !~k2Ēj !56kg11@11O~k21!#, k→`6PX6 . ~1.9!

Let D5P11 ¯ 1Pg be a nonspecial integral divisor onX\$`1,`2% and let f(t,P) be the
Baker–Akhiezer vector function onX whose divisor of poles isD. That means

~i! f(t,P) is meromorphic onX \$`1,`2% with divisor of polesD; and
~ii ! the productf(t,P)exp$2 ik2(P)t% is analytic in the neighborhoods of̀6.

The Baker–Akhiezer vector-function satisfies the following equation:28

f t12ik2s3f5Q̂g~ t,k!f, ~1.10!

wherek5p(P) is the canonical projection ofPPX on the complexk-plane and

Q̂g~ t,k!52kQg~ t !2 i~Qg
2~ t !1Q1g~ t !!s3 ,

Qg~ t !5S 0 a~ t !

2ā~ t ! 0 D , Q1g~ t !5S 0 b~ t !

2b̄~ t ! 0 D .

Definition: a(t) and b(t) are calledfinite-gap if ~1.10! has a solution which is a Baker
Akhiezer vector-function on some hyperelliptic Riemann surfaceX of finite genus.

The explicit representation off(t,P) given in the Appendix yields corresponding represe
tations for a(t) and b(t) through theta functions which leads to their periodicity or qua
periodicity in tPR.

A. First case: Re E0Ë0

So,E05 ia2b with a.0 andb.0. Assume the solutionq(x,t) of the Dirichlet or Neumann
problem~1.1!–~1.6! exists and satisfies the smoothness assumptions mentioned above. Th
prove that

q~x,t !52K̄2~x,x,t !, ~1.11!
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whereK̄2(x,y,t) together with someK1(x,y,t) satisfy the linear integral Marchenko equation

K1~x,y,t !2E
x

`

K̄2~x,z,t !H~z1y,t !dz50 for 0<x,y,`, ~1.12!

K̄2~x,y,t !1H̄~x1y,t !1E
x

`

K1~x,z,t !H̄~z1y,t !dz50 ~1.13!

with kernel

H~x,t !5 (
kj PV I

mj
1eikjx14ikj

2t1 (
zj PV II

mj
2eizjx14izj

2t1
1

2pE]V II

c~k!eikx14ik2tdk

1
1

2pE2`

`

r ~k!eikx14ik2tdk. ~1.14!

~i! V I , V II,C are some domains defined by the spectrum of thet-equation~1.10! with finite-
gap coefficientsa(t) andb(t). See Fig. 1 above.

~ii ! The functionr (k), eigenvalueskjPV I and numbersmj
1 ( j 51, . . . ,l ) are uniquely defined

only by initial datau(x).
~iii ! The remaining scattering datac(k), eigenvalueszjP V II and numbersmj

2 ( j 51, . . . ,m)
depend on both initial and boundary data.

Note thatH(x,t) is only defined forx>0 because forx,0 the integral over the infinite contou
]V II does not converge.

Theorem 1: Let q(x,t) be the solution of the nonlinear problem (1.1)–(1.6) given by (1.11)–
(1.14). Let E052b1 ia. We assume b,0 and min1<j<mRezj.2b. Let NPN and

GN~ t !5H xPR1 U x.4bt2
1

2b
log tN11J .

Then, q(x,t) has in GN(t) the following asymptotics, for t→`:

uq~x,t !u25 (
j 51

[ ~N11!/2]
4a2

cosh2@2a~x24bt2xj !1 log t2 j 21/2#
1o~1!,

FIG. 1. SpectrumS of ~1.10!.
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where

xj5xj
(0)1

1

2p E
2`

2b log@11ur~l!u2#

~l1b!21a2 dl,

r~l!5r ~l!1c~l!,

and the numbers xj
(0) depend ong0

1 and c(k).
Remark:If there exist eigenvalueszj with Rezj,2b, then the asymptotics of the functio

uq(x,t)u2 will contain additionally a finite number of ordinary solitons

(
Rezj ,2b

4 Im2 zj

cosh2@2Imzj~x14 Rezj t2yj !#

which move faster than asymptotic solitons away from the boundary in the domainx.4bt and
correspond to those eigenvalueszjPV II for which Rezj,2b.

It is easy to see that asymptotic solitons given by Theorem 1 are similar to ordinary so
but their velocities depend ont. In contrast with ordinary solitons they are not exact solutions
the nonlinear equation, however they satisfy it with increasing accuracy whent→`. For this
reason such objects are called asymptotic solitons. The number of these asymptotic s
increases to infinity whent→` if the observation domain in the neighborhood of the solut
front is extended correspondingly.

B. Second case: Re E0Ì0

Now let us consider the case when the finite-gap functiona(t) or b(t) are such that all branch
pointsEj have a positive real part. In contrast with the first case, such boundary functions d
generate asymptotic solitons.

Theorem 2: Let the boundary functions be such thatReE0.0. Then, the solution q(x,t) has
in the domain

x.z0t,

z05 min
1< j <m

uRezj u2«, «.0,

the following asymptotics, for t→`:

uq~x,t !u25(
j 51

m
4 Im2 zj

cosh2@2Imzj~x14 Rezj t2yj !#
1o~1!.

If in addition $zjPV II%5B, then, in the same domain for t→`,

uq~x,t !u25
1

4pt
logF11UrS 2

x

4t D U
2G1o~ t21!,

with

r~k!5r ~k!1c~k!, z0.0 arbitrary.

Qualitatively these results do not depend on whether the initial functionu(x) is identically
zero or not. In the caseu(x)[0 the scattering functionr (k) is also identically zero, andr(k)
depends on the boundary data only. Thus we have the following

Summary: (1) Boundary datav(t) or v1(t) with periodic or quasi-periodic behavior such tha
ReE0,0 generate an unbounded train of asymptotic solitons which run away from the boun.
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(2) For boundary datav(t) or v1(t) with periodic or quasi-periodic behavior such tha
ReE0.0, only a finite number of ordinary solitons may exist.

(28) If in addition the set of eigenvalues$zjPV II% is empty, then the solution q(x,t) does not
contain any soliton.

Generated by eigenvalueskjPV I @in this caseu(x)Ó0] ordinary solitons run to the boundar
x50 and they are absorbed by the boundary in finite time.

II. BASIC SOLUTIONS

Let us write thex- and t-equations in the form

Wx5U~x,t,k!W, ~2.1!

Wt5V~x,t,k!W, ~2.2!

whereU(x,t,k) andV(x,t,k) are 232 matrices given by

U~x,t,k!5Q~x,t !2 iks3 ,

V~x,t,k!52kQ~x,t !2 i~Q2~x,t !1Qx8~x,t !!s322ik2s3 .

Lemma 1: Let the system (2.1) and (2.2) be compatible for all k. Let W(x,t,k) satisfy the
x-equation (2.1) for all t, and let W(x0 ,t,k) satisfy the t-equation (2.2) for some x5x0 (including
the case x05`).

Then W(x,t,k) satisfies the t-equation for all x.
Proof: See, e.g., Ref. 9. h

Notations: The over-bar denotes the complex conjugation;C6 denotes the upper~lower!
complex half plane; I, II, III, IV are the first, second, third and fourth quadrants of the com
plane. IfA is a 232 matrix, we denoteA2 the first column ofA, andA1 the second column o
A:

A5~A2 A1!5S a1
2 a1

1

a2
2 a2

1D .

We denote@A,B#5AB2BA the commutator of two matricesA andB.
In this section we shall introduce three solutions of bothx- and t-equations. They are calle

‘‘basic’’ solutions.

C. First basic solution

First of all, sinceq(x,t)→0 as x→`, then we can choose the 232 matrix-valuedJost
solutionof the x-equation~1.7! as the first basic solution. It has the integral representation~see,
e.g., Ref. 16!

C~x,t,k!5S e2 ikxs31E
x

`

K~x,y,t !e2 ikys3dyD e22ik2ts3, ~2.3!

where

K~x,y,t !5S K1~x,y,t ! 2K̄2~x,y,t !

K2~x,y,t ! K̄1~x,y,t !
D

with K1 , K2PC`(R13R13R1) and of Schwartz type inx1y for any tPR1 . Moreover,
K(x,x,t) andQ(x,t) are connected by

@s3 ,K~x,x,t !#5Q~x,t !s3 . ~2.4!
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This last equality leads to the important formula

q~x,t !52K̄2~x,x,t ! ~1.11!

for the solutionq(x,t) of the nonlinear Schro¨dinger equation~1.10!. C(x,t,k) satisfies the
x-equation~1.7!. It also satisfies thet-equation~1.8! with x5`, because e2 ik(x12kt)s3 satisfies
both Eqs.~1.7! and ~1.8! for Q(x,t)[0. Then, Lemma 1 implies thatC(x,t,k) satisfies the
t-equation for anyxPR1 , both equations being assumed compatible.

The integral representation~2.3! and Lemma 1 imply the following properties of the matri
valued Jost solutionC(x,t,k) ~cf. Ref. 16!.

Proposition: The first basic solutionC(x,t,k) has the following properties:

(1) C(x,t,k) satisfies both x-and t-equations (1.7) and (1.8).

(2) C(x,t,k)5s2C̄(x,t,k)s2 for kPR.
(3) detC(x,t,k)[1 for kPR.
(4) C(x,t,k) is C` in (x,t,k)PR13R13R.
(5) C1(x,t,k) is analytic in kPC1 , and C2(x,t,k) is analytic in kPC2 .

(6) s2C̄2(x,t,k)5 iC1(x,t,k̄) for any kPC2 .
(7) For k→`,

eikx12ik2tC2~x,t,k!5S 1
0D1O~k21! if Im k<0,

e2 ikx22ik2tC1~x,t,k!5S 0
1D1O~k21! if Im k>0.

D. Second basic solution

Now let us introduce the second basic solutionF(x,t,k) of the x- and t-equations which
satisfies the initial condition

F~0,0,k!5s0 . ~2.5!

It can be represented as a product of two 232 matrices:

F~x,t,k!5w~x,t,k!ŵ~ t,k!, ~2.6!

wherew(x,t,k) satisfies thex-equation under the conditionw(0,t,k)5s0 , andŵ(t,k) satisfies the
t-equation withx50 under the initial conditionŵ(0,k)5s0 . Lemma 1 implies thatF(x,t,k)
satisfies both equations~1.7! and ~1.8!. The existence of the solutionw(x,t,k) and its integral
representation

w~x,t,k!5e2 ikxs31E
2x

x

A~x,y,t !e2 ikys3dy ~2.7!

with some integral kernelA(x,y,t) is proved in Ref. 9.ŵ(t,k) can be found as solution of th
Volterra integral equation:

ŵ~ t,k!5e22ik2ts31E
0

t

e2ik2(t2t)Q̂~0,t,k!ŵ~t,k!dt, ~2.8!

where

Q̂~0,t,k!52kS 0 v~ t !

2 v̄~ t ! 0 D 1 i uv~ t !u2s31 iS 0 v1~ t !

v̄1~ t ! 0 D .
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For ŵ(t,k) the following integral representation,

ŵ~ t,k!5e22ik2ts31E
2t

t

B~ t,s!e22ik2ss3ds1kE
2t

t

C~ t,s!e22ik2ss3ds, ~2.9!

can be found in Ref. 9. In the present caseA(x,y,t), B(t,s) andC(t,s) areC` and bounded.
The integral representations~2.6!–~2.9! yield the following properties ofF(x,t,k).
Proposition: The second basic solutionF(x,t,k) has the following properties:

(1) F(x,t,k) satisfies both x- and t-equations.

(2) F̄(x,t,k̄)5s2F(x,t,k)s2 for any kPC.
(3) detF(x,t,k)[1 for kPC.
(4) F(x,t,k)PC`(R13R13C).
(5) F(x,t,k) is an entire function in kPC.
(6) For kPC, k→`,

F~x,t,k!5FI1O~k21!1OS e2ikxs3

k D1OS e4ik2ts3

k
D Ge2 ik(x12kt)s3.

(7) For kPV I , k→`,

eikx12ik2tF2~x,t,k!5S 1
0D1O~k21!.

The last asymptotic relation can be easily proved using largek asymptotics forw7(x,t,k) and
ŵ2(t,k).

E. Third basic solution

The third basic solution involves aFloquet–Bloch solutionof the equation~1.10!. We have
supposed that the functionsa(t) andb(t) are finite-gap. This means that there exists a hype
liptic Riemann surfaceX and a Baker–Akhiezer vector-functionf(t,P), PPX, which satisfies
~in t) the equation~1.10!. Using theta function theory~Appendix or Ref. 15! one can write

f~ t,P!5x~ t,P!expS 2 itE
Ēg

P
V~Q! D .

Let D5P11 ¯ 1Pg be the divisor of poles off(t,P). For all tPR the functionx(t,P) is
defined onX \$P1 , . . . ,Pg%. Moreover,V(P) is an Abelian differential onX characterized by the
following properties:

~1! It is holomorphic onX \$`6%.
~2! It has the following behavior forP→`6:

V~P!56d~2k2!1OS dk

k2 D ,

wherek5k(P).
~3! It satisfies the normalization conditions:

E
aj

V~P!50, j 51, . . . ,g,

wherea1 , . . . ,ag are suitable one-cycles onX.
More details aboutf(t,P) are given in the Appendix.

Let e(t,k) be the projection off(t,P) on the upper sheetX1 , namely e(t,k)5f(t,P),
wherePPX1 andp(P)5k. This functione(t,k) satisfies~1.10! in tPR, and it is meromorphic
away fromSø$`% where
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SªH kPCUIm m~k!5Im E
Ēg

P
V~P8!50J .

It is known15 that the functionm(k) can be written in the form

m~k!5E
Ēg

k sg121m1sg111¯1mg12

X~s!
ds,

~2.10!

X~s!5A)
j 50

g

~s2Ej !~s2Ēj !.

This integral representation shows that

S5RøGøg0ø•••øgg ,

whereR is the real axis in the complexk-plane,G is an infinite contour onC, asymptotic to the
imaginary axis iR and invariant by complex conjugation, and theg j ’s are finite arcs whose
endpoints are the branch pointsEj and Ēj . We denote

SE5$E0 ,Ē0 , . . . ,Eg ,Ēg%,
~2.11!

Sk5$k j uk j self-intersection of S%.

There exist two types ofS:

~1! For the first type the complex planeC is divided into two nonintersecting left and righ
‘‘half-planes’’ by G ~Fig. 1!.

~2! The second type ofS is that whenG does not divide the planeC. It consists of two connected
partsG6,C6 with endpointsE15Ej 0

andE25Ēj 0
for some 0< j 0<g ~Fig. 2!.

Away from endpoints,g j andG are analytic curves. In what follows we will consider only cas
whereS is of the first type. Let us denote

V I5$kPCuIm k.0, Imm~k!.0%,

V II5$kPCuIm k.0, Imm~k!,0%,

FIG. 2. The second type ofS.
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V III 5$kPCuIm k,0, Imm~k!.0%,

V IV5$kPCuIm k,0, Imm~k!,0%. ~2.12!

So, we obtain a partition of the complexk-plane:

V IøV IIøV III øV IVøS5C,

where

S5$kPCuIm m~k!50%5RøGøg0ø•••øgg ,

V IøV III 5$kPCuIm m~k!.0%,

V IIøV IV5$kPCuIm m~k!,0%.

Now we input the matrix-valued Floquet–Bloch solution

E~ t,k!5S e1~ t,k! 2ē2~ t,k̄!

e2~ t,k! ē1~ t,k̄!
D

of ~1.10!, which is bounded intPR for kPS. We remind thate(t,k) is C` in tPR and k
PS\(SkøSE). It is meromorphic away fromSø$`%.

For kPC\S the matrix-valued functionE(t,k) is unbounded intPR. However, its first col-
umn E 2(t,k) has exponential decay in the domainV IIøV IV as t→` and the second column
E 1(t,k) has exponential decay in the domainV IøV III :

E 7~ t,k!5O~e62Im m(k)t!, t→`.

But, they grow exponentially whenkPV IøV III andkPV IIøV IV , respectively. The determinan

detE~ t,k!5D~k!511e2~0,k!ē2~0,k̄! ~2.13!

does not vanish at anykÞEj ,Ēj .
Examples:The simplest examples of finite-gap boundary data are as follows. Ifg50, there

exist only two branch pointsE0 and Ē0 . Let us putE05 ia2b, a.0, b.0.
Then the functionm(k) has the form

m~k!52~k2b!A~k1b!21a2,

X~k!5A~k1b!21a2,

and the functione(t,k) can be written as

e~ t,k!5S 1

ie2 ivt

a
~k1b2X~k!!D e2 im(k)t.

Using Eq.~1.10! one finds

a~ t !5ae2ivt,

b~ t !52iabe2ivt,
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wherev5a222b2. This case of simplest periodic behavior of boundary data was studied in
10. The genusg51 produces elliptic functionsa(t) and b(t) which are periodic intPR. For
g>2 the functionsa(t) and b(t) can also be periodic. In general, these functions are qu
periodic in tPR with finite number of frequencies.

We introduce the third basic solution as follows. LetĈ(t,k) be a solution of the Volterra
integral equation

Ĉ~ t,k!5E~ t,k!2E
t

`

E~ t,k!E 21~t,k!@Q̂~0,t,k!2Q̂0~t,k!#Ĉ~t,k!dt, ~2.14!

whereQ̂(0,t,k) is as in~2.8!, and

Q̂0~ t,k!5S iua~ t !u2 2ka~ t !1 ib~ t !

22kā~ t !1 ib~ t ! 2 iua~ t !u2 D ,

which means the matrixĈ(t,k) satisfies thet-equation withx50 under the asymptotic conditio

Ĉ(t,k)5E(t,k)1o(1) ast→`. We input the matrix

Y~x,t,k!5w~x,t,k!Ĉ~ t,k!, kPS, ~2.15!

where w(x,t,k) is as in ~2.7!. Lemma 1 implies thatY(x,t,k) is a solution of thex- and
t-equations with

detY~x,t,k!5detE~ t,k!5D~k!, kPS.

For k outside ofS the function Ĉ(t,k), hence alsoY(x,t,k), is unbounded intPR1 . The
matrix-valued functionY(x,t,k) has the same analytic properties inkPC as E(t,k), since the
Green matrixE(t,k)E 21(t,k) is an entire function inkPC, and the integral equation~2.14! is of
Volterra type withtP(t,`). Therefore,Y2(x,t,k) is meromorphic in the domainV IIøV IV , and
Y1(x,t,k) is meromorphic inV IøV III .

The properties of the solutionY(x,t,k) follow from the integral representation~2.7! and from
the integral Volterra equation~2.14!:

Proposition: The third basic solution Y(x,t,k) has the following properties:

(1) Y(x,t,k) is a solution of both x- and t-equations.
(2) Y(x,t,k)5s2Ȳ(x,t,k̄)s2 for kPS.
(3) detY(x,t,k)5D(k) for kPS.
(4) Y(x,t,k)PC`(R13R13S8) whereS85S\(SkøSE).
(5) Y1(x,t,k) is meromorphic in kPV IøV III .
(6) Y2(x,t,k) is meromorphic in kPV IIøV IV .
(7) s2Ȳ2(x,t,k)5 iY1(x,t,k̄) for kPV IIøV IV .
(6) For kPV II , k→`,

eikx12ik2tY2~x,t,k!5S 1
0D1O~k21!.

III. ‘‘SCATTERING’’ „TRANSITION… MATRICES

Definition (scattering matrices):The basic solutions we have introduced are clearly linea
dependent:
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F~x,t,k!5C~x,t,k!S~k!,

Y~x,t,k!5F~x,t,k!P~k!, ~3.1!

Y~x,t,k!5C~x,t,k!R~k!.

The matricesS(k), P(k) and R(k) depend neither onx nor on t because by virtue of the
x-equation they do not depend onx, and by virtue of thet-equation they do not depend ont.
Hence forkPR and forkPS we have

S~k!5C21~0,0,k!, kPR;

P~k!5Y~0,0,k!, kPS; ~3.2!

R~k!5S~k!P~k!, kPR.

Let us study the properties of these ‘‘scattering’’~transition! matrices. Properties ofS(k)
follow from the scattering problem for thex-equation witht50. Indeed, consider the problem o
the wholex-axis by putting

q~x,0!5û~x!5H 0 for xP~2`,0#,

u~x! for xP@0,̀ !.

For simplicity, and to make considerations more transparent, we also suppose that

dn

dxn u~x!U
x50

5
dn

dtn v~ t !U
t50

5
dn

dtn v1~ t !U
t50

50 ~3.3!

for any n>0. Let C̃(x,k) be the Jost solution16 normalized by

C̃~x,k!5e2 ikxs3 for x,0,

and letT̃(k) be the transition matrix for that case, i.e.,

C̃~x,k!5C~x,0,k!T̃~k!.

Putting x50 we find S(k)[T̃(k). Hence the ‘‘scattering’’ matrixS(k) has all properties of the
transition matrixT̃(k).16

Properties of S(k): The scattering matrix S(k) satisfies

(i) S(k)5s2S̄(k)s2 for kPR;
(ii) detS(k)[1 for kPR;
(iii) S(k)PC`(R).

For the half-axis case there are additional properties:

(iv) S(k)5(
2s

2
2(k)

s2
1(k)

s
1
2(k)

2s1
1(k)

) where sj
1(k)5C j

1(0,0,k).

(v) The first line(s2
1(k) 2s1

1(k)) is analytic in kPC1 .
(vi) The second line(2s2

2(k) s1
2(k)) is analytic in kPC2 . @For an arbitrary functionû(x),

xPR, these analytic properties do not hold;s2
1(k) ands1

2(k) are only analytic functions in
kPC1 andkPC2, respectively. In our caseû(x)[0 for x,0, therefores1

1(k) ands2
2(k)

are also analytic functions inkPC6 .]
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(vii) If k PC1 and k→`,

s2
1~k!511O~k21!,

s1
1~k!5O~k21!.

(viii) Under condition ~3.3! s1
1(k)PS(R) and s2

1(k)21 is the Fourier transform of a
complex-valued function f(y)PS(R1).

Proof: To prove the last item we use limit formulas

s1
1~k!5 lim

x→2`

e2 ikxC1
1~x,0,k!,

s2
1~k!5 lim

x→2`

e2 ikxC2
1~x,0,k!,

which follow from the definition of the matrixS(k). If one puts

x j~x,k!5e2 ikxC j
1~x,0,k!,

the x-equation yields

x1812ikx15û~x!x2 , x1~x,k!→0 as x→1`,

x2852û~x!x1 , x2~x,k!→1 as x→1`.

Integrating these equations we find

x1~x,k!52E
x

`

e2ik(y2x)û~y!x2~y,k!dy,

x2~x,k!511E
x

`

û~y!x1~y,k!dy,

and therefore

s1
1~k!52E

2`

`

û~x!e2ikxx2~x,k!dx52E
2`

`

û~x!e2ikxdx2E
2`

`

û~x!e2ikxdxE
0

`

K̄1~x,x1y!eikydy,

s2
1~k!511E

2`

`

û~x!x1~x,k!dx512E
0

`

eikxdxE
2`

`

û~y!K̄2~y,y1x!dy,

whereK̄1(x,y) and K̄2(x,y) are entries of the kernel of triangular integral transformation~2.3!.
Taking into account that both functionsK̄1(x,y) andK̄2(x,y) are of Schwartz type and thatû(x)
is of Schwartz type on the whole axis, which follows from~3.3!, we arrive to the statement of th
last item. h

The matrixS(k)5C21(0,0,k) is determined by the functionu(x)PS(R1). The entries of
this matrix are not independent and can be recovered from one known function. Lets(k)
[s1

1(k)/s2
1(k) be given and let

Sd
ic5$k1 , . . . ,kn%5$kjPC1us2

1~kj !50%

be the set of zeros of the analytic functions2
1(k). Since detS(k)[1, then us2

1(k)u21us1
1(k)u2

[1 for anykPR. This identity yields the well-known formula:
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s2
1~k!5 )

kj PC1

k2kj

k2 k̄ j

expH i

2p E
2`

` log@11us~l!u2#dl

l2k J . ~3.4!

The remaining entries ofS(k) are also recovered:

s1
1~k!5s~k!s2

1~k!, s2
2~k!52 s̄1

1~ k̄!, s1
2~k!5 s̄2

1~ k̄!.

So, the functions2
1(k) may vanish at some pointskjPC1 and the setSd

ic is not empty. Moreover,
these zeros can be multiple and there can exist limit points on the real axisR.16 To avoid these
difficulties we shall consider a subsetS0(R1) of functionsu(x)PS(R1) for which s2

1(k) has a
finite number of simple zeros inC1 ands2

1(k)Þ0 for kPR.
Let us briefly discuss the discrete spectrum of thex-problem. The main relation of the

x-scattering problem is

1

s2
1~k!

F2~x,t,k!5C2~x,t,k!1r ~k!C1~x,t,k! for kPR, ~3.5!

where

r ~k!52
s2

2~k!

s2
1~k!

. ~3.6!

The functionF(x,t,k)5F2(x,t,k)/s2
1(k) is analytic inkPC1 with the exception of a discrete se

Sd
ic5$kjPC1us2

1~kj !50, j 51,2,. . . ,n%,

where it has poles. If

s2
1~kj !5det~F2~x,t,kj ! C1~x,t,kj !!50,

thenF2(x,t,kj )5g j
1C1(x,t,kj ). Hence,

reskj
F~x,t,k!5cj

1C1~x,t,kj !

with

cj
15

g j
1

ṡ2
1~kj !

, j 51,2,. . . ,n,

g j
15

1

s1
1~kj !

.

The dot denotes differentiation w.r.t.k. Note thats1
1(kj )Þ0 because otherwise we come to

contradiction:C1(x,t,kj )[0 sinceC1
1(0,0,kj )5s1

1(kj )50 andC2
1(0,0,kj )5s2

1(kj )50. The set
of zerosSd

ic is finite becauses2
1(k)→1 ask→` and we have supposed thats2

1(k)Þ0 for any
kPR. We also assume that zeros are simple, i.e.,ṡ2

1(kj )Þ0.
Using asymptotics of the functionF2(x,t,k) at k5`, for Im k>0, we find

F~x,t,k!5F S 1
0D1O~ uku21!Ge2 ikx22ik2t for uku→`, kPV I , ~3.7!

which will be used below. So, we come to the following:
Properties of r(k): The reflection coefficient r(k) satisfies the following.
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(i) r (k)PS(R). @For arbitrary functionsu(x) which do not satisfy~3.3! the reflection coeffi-
cient r (k) does not belong to the Schwartz spaceS~R! since, for example,
limk→`2ikr(k)5u(0)Þ0.]

(ii) r (k) is the ratio of two functions2s2
2(k) and s2

1(k) which are analytic in kPC2 and
kPC1, respectively.

Properties of t(k): The transmission coefficient is given by t(k)5@s2
1(k)#21 with

s2
1~k!5 )

kj PC1

k2kj

k2 k̄ j

expH i

2p E
2`

` log@11us~l!u2#dl

l2k J , ~3.4!

Im kj.0, j 51, . . . ,n, and kiÞkj for iÞ j . Moreover, us(k)u5ur (k)u.
These properties follow from thex-scattering problem on the whole axis and can be found

Ref. 16. We also take into account that for the half-axis cases2
2(k)52 s̄1

1( k̄) is analytic ink
PC2 and the constantsg j

1 are not independent parameters~that takes place for whole axis!, and
they are given in terms of the value ofs1

1(k) at kj :

g j
15

1

s1
1~kj !

.

Analytic properties of the ‘‘scattering’’ matrixP(k) are derived from the defining relation, i.e
from ~3.2!, ~2.15!, and~2.14!:

P~k!5E~0,k!1E
0

`

E~0,k!E 21~ t,k!@Q̂~0,t,k!2Q̂0~ t,k!#Ĉ~ t,k!dt.

We stress only the main properties ofP(k)5(
p

2
2(k)

p1
2(k)

p
2
1(k)

p1
1(k)

).

Properties of P(k): The scattering matrix P(k) satisfies the following.

(i) P(k)5s2P̄( k̄)s2 for kPS.
(ii) detP(k)[D(k) for kPS.
(iii) P (k) is C` for kPS8.
(iv P1(k) is meromorphic in kPV IøV III .
(v) P2(k) is meromorphic in kPV IIøV IV .
(vi) P(k)5s01O(k21), kPS, k→`.

Below we need to study properties of the ‘‘scattering’’ matrixR(k) introduced by Eqs.~3.1!
and ~3.2!. If we denote

R~k!5S RII~k! RI~k!

RIV~k! RIII ~k!
D ,

then

RI~k!52R̄IV~ k̄!, RIII ~k!5R̄II~ k̄! for kPS.

Moreover,

RII~k!5p1
2~k!s2

1~k!2p2
2~k!s1

1~k! ~3.8!

is meromorphic inkPV II @henceRIII (k) is meromorphic inkPV III ] and

RIV~k!5p2
2~k!s1

2~k!2p1
2~k!s2

2~k! ~3.9!
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is meromorphic inkPV IV @henceRI(k) is meromorphic inkPV I] . We remind that the branch o
the square root~1.9! is fixed throughout the article and we deal with a single-valued ana
branch of the functionm(k) defined in~2.10!.

From ~3.1! we derive

Y1~x,t,k!5RI~k!C2~x,t,k!1RIII ~k!C1~x,t,k!.

Hence,

RI~k!5det~Y1~x,t,k! C1~x,t,k!!,

RIII ~k!5det~C2~x,t,k! Y1~x,t,k!!.

Let us putx50, andk5k11 ik2PV I . Using~2.3!, ~2.15!, and~2.14! for large enought we obtain

uRI~k!u<C1~k!exp@8~k1
0k2

02k1k2!t#,

whereC1(k) is independent oft, and

k1
0k2

05 max
1< j <n

@Rekj Im kj #,

wherekjPV I is an eigenvalue of thex-scattering problem. Taking into account the analyticity
RI(k) in kPV I\D, choosingk large enough and puttingt→` we find RI(k)[0 for any k
PV I , hence alsoRIV(k)[0 for anykPV IV . So, we come to the main property of the compatib
scattering problem forx- and t-equations.

Properties of R(k): Let GùR5$kG%. Then, for kP@kG ,`), the ‘‘scattering’’ matrix R(k) is
diagonal:

R~k!5S r2~k! 0

0 r1~k!
D

with

r1~k!5
p2

1~k!

s2
1~k!

5
p1

1~k!

s1
1~k!

,

~3.10!

r2~k!5
p1

2~k!

s1
2~k!

5
p2

2~k!

s2
2~k!

,

and the important relation

p1
1~k!

p2
1~k!

[
s1

1~k!

s2
1~k!

. ~3.11!

This relation means that s(k)5s1
1(k)/s2

1(k), which is meromorphic onC1 , is a meromorphic
continuation of p(k)5p1

1(k)/p2
1(k), which is meromorphic onV I .

The asymptotic behavior ofS(k) and P(k) yields the following asymptotic expansions, fo
k→6`:
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RII~k!511
r1

k
1•••,

RIV~k!5
v1

k
1

v2

k2 1••• .

SinceRIV(k)[0 for kP@kG ,`), then its asymptotic behavior is

RIV~k!5O~k2`! for k→2`.

Hence,

RIV~k!, RI~k!PC`~R\~SkùR!!,

RIV~k![0 for kP@kG ,`!, ~3.12!

RI~k![0 for kP@kG ,`!.

ThereforeRIV(k), RI(k) and all their derivatives vanish atk5kG .
Since detR(k)[D(k), then

r2~k!r1~k!5ur1~k!u2[D~k!.

Hence,r6(k) can be written

r6~k!5AD~k! e6 in(k), kP@kG ,`! ~3.13!

for some real functionn(k) defined forkP@kG ,`). This function has an analytic continuatio
also denotedn(k) on V IøV IV . This continuation satisfiesn(k)5 n̄( k̄) and tends to zero when
k→` in view of the asymptotics ofs2

1(k) andp2
1(k). It has logarithmic singularities at the poin

of the divisorD and different boundary values on cutsg j .
Indeed, in view of~3.10!,

pj
1~k!5r1~k! sj

1~k! for j 51,2. ~3.14!

r1(k) must have poles at the points of the divisorD and at the points wheres1
1(k) ands2

1(k)
vanish. On the other hand,s1

1(k) ands2
1(k) must simultaneously vanish at poles in view of t

analyticity of the functionspj
1(k) in the domainV I\D. HenceC1(x,t,k) is identically zero when

k is a pole, which is impossible. Sor1(k) is analytic inkPV I with the exception of the points o
the divisorD where it has simple poles. Hence the functionspj

1(k) andsj
1(k) have a common se

of zeros, possibly empty, inV I .
Other statements aboutn(k) are very easy. So, forRII(k) which is meromorphic inkPV II we

obtain

RII~k!5
s2

1~k!

p2
1~k!

D~k!5AD~k! e2 in(k) for kPG1 . ~3.15!

The last formula follows from relations

RII~k!5p1
2~k!s2

1~k!2p2
2~k!s1

1~k!,

p1
1~k!s2

1~k!2p2
1~k!s1

1~k!50.
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Hence, RII(k) has a meromorphic continuation toV I , where it coincides with the function
D(k)/r1(k). ThereforeRII(k) does not vanish forkP@kG ,`)øG1 , and its only zeros are amon
the zjPV II . Let Sd

bc be the set of zeros ofRII(k):

Sd
bc5$z1 , . . . ,zm%5$zjPV IIuRII~zj !50%.

Let

r~k!ª
RIV~k!

RII~k!
.

As above we also assume the number of zeros ofRII(k) is finite and they are simple, i.e
ṘII(zj )Þ0.

Properties ofr(k) and RII(k): r(k) and RII(k) have the following properties:

(1) They satisfy the determinant relation

11ur~k!u25
D~k!

uRII~k!u2
, kPR. ~3.16!

(2) r(k),RII(k)PC`(R\(SkùR)) and r(k)[0 for kP@kG ,`).
(3) RII(k)5AD(k) e2 in(k) for kP@kG ,`), wheren(k) is real-valued and has an analytic con

tinuation toV IøV IV .
(4) r(k) and all its derivatives have jumps at the real pointsk j,kG :

r(l)~kj20!2r(l)~kj10!5f(l)~kj!, l50,1,. . . , ~3.17!

where f(k) is defined for kPg j
15g jùV II by

f~k!52i
A) i 50

g ~k2Ei !~k2Ēi !

RII~k20!RII~k10! )
l 51

g
1

k2l l
,

~3.18!
ll5p~Pl !, D5P11•••1Pg .

(5) The function

r~k!2r~k!5
p2

2~k!

RII~k!s2
1~k!

has a meromorphic continuation toV II .
Proof: The fourth item will be proved in the next section. The last item follows from E

~3.8! and ~3.9! which yield

p1
2~k!5RIV~k!s1

1~k!1RII~k!s1
2~k!5RII~k!@1/s2

1~k!1s1
1~k!~r~k!2r ~k!!#,

p2
2~k!5RIV~k!s2

1~k!1RII~k!s2
2~k!5RII~k!s2

1~k!@r~k!2r ~k!# for kPR2 ,

and the differencer(k)2r (k) has a meromorphic continuation to the domainV II because the
l.h.s. is meromorphic inkPV II . Hence, the r.h.s. must have a meromorphic continuation to
domainV II .

Besides we remind thatp1
1(k)/p2

1(k)5s1
1(k)/s2

1(k) has a meromorphic continuation to th
domainC1 , i.e., this ratio has no jump over the arcsg j

1 .
The second main relation of the compatible scattering problem is

G~x,t,k!5
1

RII~k!
Y2~x,t,k!5C2~x,t,k!1r~k!C1~x,t,k! for kPR. ~3.19!
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The functionG(x,t,k) is analytic inkPV II , kÞzj with poles atzj ’s. Singularities at the points
l j5p(Pj ), PjPD, are reduced since the divisorD does not depend onx and t, andY2(x,t,k)
and RII(k) have simple poles atl j simultaneously. IfRII(zj )50, j 51, . . . ,m, thenY2(x,t,zj )
andC1(x,t,zj ) are linearly dependent:

Y2~x,t,zj !5g j
2C1~x,t,zj !,

hence

reszj
G~x,t,k!5cj

2C1~x,t,zj !,

cj
25

g j
2

ṘII~zj !

~the dot denotes differentiation with respect tok) with

g j
25

p1
2~zj !

s1
1~zj !

5
p2

2~zj !

s2
1~zj !

.

Using asymptotics of the functionY2(x,t,k) at k5` with kPV II , we find

G~x,t,k!5F S 1
0D1O~ uku21!Ge2 ikx22ik2t ~3.20!

for uku→`, kPV II .

This asymptotic formula will be used in the next section. h

IV. THE MAIN INTEGRAL EQUATIONS

The main relations of the compatible scattering problem follow from~3.1!, ~3.2! and ~3.5!,
~3.19!:

F~x,t,k!5C2~x,t,k!1r ~k!C1~x,t,k! for kPR, ~4.1!

G~x,t,k!5C2~x,t,k!1r~k!C1~x,t,k! for kPR. ~4.2!

These relations give

G~x,t,k!2F~x,t,k!5c~k!C1~x,t,k!, ~4.3!

wherec(k) can be written as follows

c~k!5r~k!2r ~k!5H 2r ~k! for kP@kG ,`!,

p2
2~k!

s2
1~k! RII~k!

for kP~2`,kG#.
~4.4!

Hence,c(k) has a meromorphic continuation from the interval (2`,kG# to the domainV II ,
becausep2

2(k), s2
1(k) and RII(k) are meromorphic inkPV II . Hence,~4.3! is also true fork

PV̄ II . The functionc(k) has poles at thezj ’s, wheres2
1(zj )5RII(zj )50. Since the number o

zeros ofs2
1(k) and RII(k) is finite and they are simple, all poles ofc(k) are simple and their

number is finite. Indeed, we only have to check the cases2
1(z0)5RII(z0)50. Due to~3.8! we also

find p2
2(z0)50. Poles which are related to the divisorD are reduced.

In view of the continuation ofc(k) to V II we have the following relation onG1 :
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Y2~x,t,k20!

RII~k20!
2

F2~x,t,k10!

s2
1~k10!

5c~k!C1~x,t,k! for kPG1 . ~4.5!

To deduce the integral equations of the inverse scattering problem let us put

h2~x,t,k!5G~x,t,k!2S 1
0De2 ikx22ik2t for kP~2`,kG#,

h1~x,t,k!5F~x,t,k!2S 1
0De2 ikx22ik2t for kP@kG,`& .

h2(x,t,k) has different left and right boundary values at eachkPg j
15g jùV̄ II :

h2~x,t,k20!2h2~x,t,k10!5G~x,t,k20!2G~x,t,k10!

5
Y2~x,t,k20!RII~k10!2Y2~x,t,k10!RII~k20!

RII~k10!RII~k20!
.

SinceRII(k)5det(Y2(x,t,k) C1(x,t,k)) one can find

Y2~x,t,k20!RII~k10!2Y2~x,t,k10!RII~k20!

5Y2~x,t,k20!det~Y2~x,t,k10! C1~x,t,k!!

2Y2~x,t,k10!det~Y2~x,t,k20! C1~x,t,k!!

5det~Y2~x,t,k10! Y2~x,t,k20!!C1~x,t,k!

5det~e~0,k10! e~0,k20!!C1~x,t,k!.

Comparing analytic properties of

det~e~0,k10! e~0,k20!! and
2iAX~k!

~k2l1!¯~k2lg!
, l l5p~Pl !, D5(

l 51

g

Pl

as functions on the Riemann surfaceX we infer that they coincide. Therefore

h2~x,t,k20!2h2~x,t,k10!5 f ~k!C1~x,t,k!, kPg j
15g jùV̄ II , ~4.6!

where

f ~k!52i
A) j 50

g ~k2Ej !~k2Ēj !

RII~k20!RII~k10! )
l 51

g
1

k2l l
.

Taking into account analytic continuation of the relation~4.3! to V II we find that forkPg j
1

@c~k20!2c~k10!#C1~x,t,k!5G~x,t,k20!2G~x,t,k10!,

and as above

c~k20!2c~k10!5 f ~k!, kPg j
1 , ~4.7!

wherec(k70) are the left and right boundary values ofc(k) on g j
1 .

Let us consider the integral
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J~x,y,t !5
1

2p E
2`

kG
h2~x,t,k!eiky12ik2tdk1

1

2p E
kG

`

h1~x,t,k!eiky12ik2tdk.

Using Eqs.~4.1!–~4.3! and ~2.3! we find

J~x,y,t !5S K1

K2
D ~x,y,t !1S 0

1DFs~x1y,t !1E
x

`S 2K̄2

K̄1
D ~x,z,t !Fs~z1y,t !dz,

where

Fs~x,t !5
1

2p E
2`

kG
r~k!eik(x1y)14ik2tdk1

1

2p E
kG

`

r ~k!eik(x1y)14ik2tdk

5
1

2p E
2`

kG
c~k!eik(x1y)14ik2tdk1

1

2p E
2`

`

r ~k!eik(x1y)14ik2tdk.

On the other hand, using estimates~3.7! and ~3.20! of F(x,t,z) andG(x,t,z) for largek, taking
into account~4.3!, ~4.5! and ~4.6!, and applying the Jordan lemma, we find

J~x,y,t !5 i (
kj P V I

s2
1(kj )50

reskj
@h1~x,t,k!eiky12ik2t#1 i (

zj P V II
RII (zj )50

reszj
@h2~x,t,k!eiky12ik2t#

2
1

2p E
G1

@h2~x,t,k!2h1~x,t,k!#eiky12ik2tdk2
1

2p (
g j

1PV̄ II

E
g j

1
@h2~x,t,k20!

2h2~x,t,k10!#eiky12ik2tdk

52 (
kj P V I

mj
1eikj y12ikj

2tC1~x,t,kj !2 (
zj P V II

mj
2eizj y12izj

2tC1~x,t,zj !

2
1

2p E
G1

c~k!eiky12ik2tC1~x,t,k!dk2
1

2p (
g j

1PV̄ II

E
g j

1
f ~k!eiky12ik2tC1~x,t,k!dk.

Finally, we have the following integral equations of the inverse scattering:

K1~x,y,t !2E
x

`

K̄2~x,z,t !H~z1y,t !dz50 for 0<x,y,`, ~4.8!

K̄2~x,y,t !1H̄~x1y,t !1E
x

`

K1~x,z,t !H̄~z1y,t !dz50, ~4.9!

with the kernel

H~x,t !5 (
kj P V I

mj
1eikjx14ikj

2t1 (
zj P V II

mj
2eizjx14izj

2t1
1

2p (
g j

1PV̄ II

E
g j

1
f ~k!eikx14ik2tdk

1
1

2p S E
2`

kG
1E

G1
D c~k!eikx14ik2tdk1

1

2p E
2`

`

r ~k!eikx14ik2tdk. ~4.10!

The coefficientsmj
1 andmj

2 are given by
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mj
15@ is1

1~kj !ṡ2
1~kj !#

21,
~4.11!

mj
25p1

2~zj !@ is1
1~zj !ṘII~zj !#

215p2
2~zj !@ is2

1~zj !ṘII~zj !#
2152 i reszj

c~k!.

Taking into account the jump relations~4.7! for c(k) on g j
1 the kernelH(x,t) can be written in

the form ~1.14!. For further analysis of the kernel properties we rewrite this kernel~4.10! as
follows:

H~x,t !5 (
kj P V I

mj
1eikjx14ikj

2t1 (
zj P V II

mj
2eizjx14izj

2t1
1

2p (
g j

1PV̄ II

E
g j

1
f ~k!eikx14ik2tdk

1
1

2p E
2`

kG
r~k!eikx14ik2tdk1E

G1

c~k!eikx14ik2tdk1
1

2p E
kG

`

r ~k!eikx14ik2tdk,

~4.12!

using the relation

c~k!1r ~k!5r~k!. ~4.13!

For any fixedtPR1 the functionH(x,t) will be rapidly decreasing forx→`, if ~3.17! and~4.13!
are fulfilled. Indeed, using the method of steepest descent and integration by parts we s
H(x,t)5O(x2`) becausec(k), r (k), r(k) are C` away from self-intersection pointsk j and,
according to their asymptotic behavior, they vanish at infinity as well as their derivatives o
order. The integrated terms vanish at the pointsk5k j70 because of relations~3.17! on jumps of
r(k) and their derivatives and

dm

dkm ~r~k!2c~k!2r ~k!!U
k5kG

50, m50,1,2,. . . , ~4.14!

which follows from ~4.13!. The contribution of the stationary point@kst52(x1y)/(8t)PR2# is
given by the Schwartz type functionr(k). HenceH(x,t) is rapidly decreasing forx→` for any
fixed t.

On the other hand, using~4.9! for y5x one can prove thatH(x,t)PC`(R13R1) and is of
Schwartz type,H(x,t)5O(x2`), as x→`, since K1(x,y,t) and K2(x,y,t) belong toC`(R1

3R13R1) and are of Schwartz type also asx1y→`, and Eq.~4.9! is a Volterra integral
equation with respect to the kernelH(x,t). Using the method of steepest descent and integra
by parts as above, taking into account the discontinuity ofr(k) at the pointsk j,kG and its
vanishing with all derivatives at the pointkG we find that relations~3.17! must be fulfilled because
H(x,t)5O(x2`).

Remark:For t50 the kernelH(x,t)u t50 coincides with the kernel

H0~x!5 (
kj PC1

mj
1eikjx1

1

2p E
2`

`

r ~k! eikxdk,

because in this case (t50) the integrals over the boundary ofV II can be evaluated by using jum
relations ~4.7! and the residues of the functionc(k). After integration we find thatH(x,0)
5H0(x). Then Marchenko integral equations with kernelH0(x) yield thatq(x,0)5u(x).

Definition (scattering data):Now it is natural to introduce the set

R5$k1 , . . . ,knPV IøV II ; z1 , . . . ,zmPV II ; r ~k!,r~k!,RII~k!% ~4.15!

and to callR thescattering datafor the compatible system of differential equations~1.7! and~1.8!
with q(x,t) satisfying~1.1!–~1.6!.
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The kernelH(x,t) of the Marchenko equations is completely defined by the scattering daR
because the missing coefficientsmj

1 , mj
2 of ~4.11! and the functionsf (k), c(k) can be determined

from scattering data values.
We remind that both finite-gap functionsa(t), b(t) and the corresponding Riemann surfa

X are given. Therefore, the function

D~k!5detE~ t,k!

is also known. It immediately follows from properties proved above that scattering dataR satisfy
the following conditions.

Condition A:

~1! r (k)PS(R).
~2! r (k)5 b(k)/a(k), whereb(k)ª2s2

2(k) is analytic inkPC2 , anda(k)ªs2
1(k) is analytic

for kPC1 and has the form

a~k!5)
j51

n
k2kj

k2k̄j

expF i

2p
E

2`

` log~11ur~s!u2!ds

s2k
G , kPC1 .

Condition B:

~1! r(k),RII(k)PC`(R\(SkùR)) andr(k)[0 for kP@kG ,`).
~2! RII(k) is analytic in kPV II , where it has a finite number of zerosz1 , . . . ,zm , each of

multiplicity 1.
~3! r(k) andRII(k) are connected by

11ur~k!u25
D~k!

uRII~k!u2
, kPR.

~4! RII(k)5AD(k) e2 in(k) for kP@kG ,`), where n(k) is a real-valued function with analytic
continuation toV IøV IV .

~5! r(k) and all its derivatives have jumps at the real pointsk j,kG :

r(l)~kj20!2r(l)~kj10!5f(l)~kj!, l50,1,. . . ,

where f (k) is defined forkPg j
15g jùV̄ II by

f~k!52i
A) j 50

g ~k2Ej !~k2Ēj !

RII~k20!RII~k10! )
l 51

g
1

k2l l
, l l5p~Pl !.

Condition C:
~1! The functionc(k)5r(k)2r (k) extends analytically toV II , where it has a finite number o
polesz1 , . . . ,zm , all simple, and satisfies the jump relations:

c~k20!2c~k10!5 f ~k!, kPg j
1 .

One can think that properties A–C are characteristic, i.e., that they are also sufficie
numbersk1 , . . . ,kn , z1 , . . . ,zm and functionsr (k), r(k), RII(k) to be the scattering data of
compatible system ofx- and t-equations~1.7! and ~1.8! with q(x,t) satisfying~1.1!–~1.6!.

Anyway, formula~1.11! and Marchenko integral equations~4.8! and~4.9! represent a solution
of the focusing nonlinear Schro¨dinger equation if the kernel~4.10! is sufficiently smooth and
rapidly decreasing asx→`. It follows from statements of the next section.

V. GENERATION OF ASYMPTOTIC SOLITONS BY BOUNDARY DATA

Let R5$k1 , . . . ,knPV IøV II ; z1 , . . . ,zmPV II ;r (k),r(k),RII(k)% be data satisfying condi
tions A–C. Then the following statements are true.
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Statements: (1) The xt-integral equation

K~x,y,t !1H~x1y,t !1E
x

`

K~x,z,t !H~z1y,t !dz50,

~5.1!
0<x,y,`, 0<t,`,

with the232 matrix kernel

H~x,t !5S 0 H~x,t !

2H̄~x,t ! 0 D ,

where H(x,t) is given by (4.10), is uniquely solvable in the space L1(x,`) for any x>0 and t
>0.

(2) The solution K(x,y,t) belongs to C`(R13R13R1), it and all its derivatives decrease
faster than any negative power of x1y, for x1y→`, and t fixed.

(3) The matrix

C~x,t,k!5Fe2 ikxs31E
x

`

K~x,y,t !e2 ikys3dyGe22ik2ts3

satisfies the symmetry condition

C~x,t,k!5s2C̄~x,t,k!s2 for kPR

and is a solution of the x-equation (1.7) with Q(x,t) given by

Q~x,t !5s3K~x,x,t !s32K~x,x,t !. ~5.2!

(4) C(x,t,k) is a solution of the x- and t-equations constructed from the matrix Q(x,t) and
its derivative Qx(x,t), using Eqs. (5.2), (1.7), (1.8) and (2.4).

Statement 1 follows from the following lemma about the solvability of thext-integral equa-
tion.

Lemma 2: LetR be data satisfying conditionsA–C. Then, the xt-integral equation (5.1) is
uniquely solvable in the space L1(x,`).

Proof: Under conditions A–C the integral operator of thext-integral equation is compact in
the spaceL1(x,`). Then, by Fredholm theory thext-integral equation has a unique solution if th
homogeneous equation has no nonzero solution. If a nonzero solution does exist inL1(x,`), in
view of the homogeneity of the integral equation, it is bounded, hence it belongs toL2(x,`). The
integral operator is clearly skew-Hermitian inL2(x,`), so we obtain a contradiction, because t
only solution in this case is zero. h

We omit proofs of the remaining statements because they are almost the same as in R
Now let us sketch the proof of the main result.

Sketch of proof of Theorem 1:For study of the asymptotic behavior of the solutionq(x,t) we
use the integral equation~5.1!, which is uniquely solvable in the spaceL1(x,`) and, due to the
statements above, represents aC` and fast decreasing functionq(x,t). We carry out the
asymptotic analysis of the integral equation by reducing the problem to degenerated in
equations, obtaining a determinant formula for the solution and its asymptotics ast→`.

Taking into account properties A–C and using the method of steepest descent and inte
by parts we come to the following decomposition of the scalar kernelH(x,t) as t→`:

H~x,t !5HN~x,t !1H1~x,t !1R0~x,t !1R1~x,t !, ~5.3!

whereHN(x,t) is a degenerate one:
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HN~x1y,t !5e2(a1 ib)(j1h) (
m50

N21
dm~ t !

m! tm13/2~j1h!m,

j5x24bt, h5y24bt.

R0(x1y,t) is given in terms ofr(k) by

R0~x1y,t !5
1

A16pt
rS 2

x1y

8t DexpF ip

4
24itS x1y

8t D 2G .
H1(x1y,t) andR1(x1y,t) admit the estimates

uH1~x1y,t !u<C1uj1huN t2N23/2e2a(j1h),

uR1~x1y,t !u<C2t23/2Ur9S 2
x1y

8t D U.
Let Ĥ be the integral operator which acts inL2(x,`) by

~Ĥ f !~y!5E
x

`S 0 H~y1z,t !

2H̄~y1z,t ! 0 D S f 1~y!

f 2~y! Ddz.

Then the Marchenko integral equations take the form

~ I 1Ĥ !K5G,
~5.4!

K5~K1 K2!, G5~0 H̄ !.

Under conditions A–C,~5.4! has a unique solutionĤ in L2(x,`) and

i~ I 1Ĥ !21i<1.

Let ĤN , R̂0 , Ĥ1 , R̂1 be the corresponding integral operators inL2(x,`) given by the kernelsHN ,
R0 , H1 , R1 . We look for a solution of~5.4! in the form

K5K̃1c,

whereK̃ satisfies

~ I 1ĤN1R̂0!K̃5GN1G0 ,
~5.5!

GN5~0 H̄N!, G05~0 R̄0!.

Then,c5K2K̃ satisfies

~ I 1Ĥ !c5G12Ĥ1K̃2R̂1K̃,

G15~0 H̄11R̄1!.

The last equation yields the estimate

ici5iK2K̃i<C~N!t21/21e
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in the domainVN(t) with 0,e, 1
2. This estimate allows us to consider below the integral eq

tion ~5.5! instead of~5.4!.
The next step is as follows. LetL5(L1(x,y,t) L2(x,y,t)) be a solution of

~ I 1R̂0!L5GR ,
~5.6!

GR5~0 R̄0!.

Then, the solutionK̃ of ~5.5! can be written in the form

K̃5L1~ I 1Q̂!M , ~5.7!

whereI 1Q̂5(I 1R̂0)21, andQ̂ is an integral operator. The kernelQ(y,z) of this operator has an
explicit representation via the vector-functionL(y,z). The substitution of~5.7! into ~5.5! yields a
degenerate integral equation

M1ĤN~ I 1Q̂!M5GN2ĤNL. ~5.8!

The next decisive step is that~5.6! can be explicitly solved in the limitt→`. Namely, it is
possible to show26 that for t→`

iL1~x,y,t !2L1
(`)~x,y,t !iC([X,`))5o~1!,

iL2~x,y,t !2L2
(`)~x,y,t !iL2(X,`)5o~1!, t→`,

where

L1
(`)~x,y,t !52

2

Ap
ep i/4E

X

`

N~X,Z!r~2Z2Y!exp~4it@X22Y212~X2Y!Z# !dZ,

L2
(`)~x,y,t !5

1

At
N~X,Y!exp@4it~X1Y!2#, X5

x

t
, Y5

y

t
,

with

N~X,Y!5
1

4Ap
ep i/4r~2X2Y!expS i

2p E
X

` ln@11ur~2X2S!u2#

S2Y2 i0
dSD .

This explicit formula and the degenerate integral equation~5.8! allow us to complete the proof o
Theorem 1 in the same way as in Ref. 26. h

Sketch of proof of Theorem 2:In the case of Theorem 2, when min0<j<gReEj.0, the kernel
H(x,t) has the form

H~x,t !5 (
kj P V I

mj
1eikjx14ikj

2t1 (
zj P V II

mj
2eizjx14izj

2t1
1

2p S E
2`

kG
1E

G1
D c~k!eikx14ik2tdk

1
1

2p E
2`

`

r ~k!eikx14ik2tdk.

Therefore the corresponding decomposition ast→` will be similar to ~5.3!, but now the degen-
erate kernel has an ordinary solitonic form:
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HN~x,t !5 (
kj P V I

mj
1eikjx14ikj

2t1 (
zj P V II

mj
2eizjx14izj

2t.

It is easy to see that such a kernel generates

~i! solitons which move to the right, i.e., away from the boundary~they correspond to the
eigenvalueskjPV I andzjPV II with negative real part!,

~ii ! and other solitons which move to the left~they correspond to the eigenvalueskjPV I with
positive real part! and which are absorbed by the boundaryx50 in finite time.

The proof of Theorem 2 we carry out by the same approach as above, using Ref. 27. h

APPENDIX: FINITE-GAP FUNCTIONS

Let X be the hyperelliptic Riemann surface of genusg given by the equation

z25)
j 50

g

~k2Ej !~k2Ēj !,

where ImEj.0, EiÞEj for iÞ j . This Riemann surface is a double covering of the comp
k-plane C̄5Cø$`% obtained by gluing two copies ofC̄ along cutsg j whose endpoints are th
2g12 branch pointsEj , Ēj . Let

p:X→C̄

be the canonical projection on thek-plane, and letk5k(P)5p(P) be the image of a pointP
PX. Each pointkPC̄ has two preimages onX, except for the 2g12 branch points. Denote th
preimage ofk5` on the upper~lower! sheetX 1 (X 2) of X by P5`1 (P5`2). We fix the
branch of the square root by the asymptotic behavior

A)
j 50

g

~k2Ej !~k2Ēj !56kg11@11O~k21!#,

~A1!
k→`6PX6 .

Let D5P11•••1Pg be a nonspecial integral divisor onX\$`1,`2% and let f(t,P) be the
Baker–Akhiezer vector function onX whose divisor of poles isD:

~i! f(t,P) is meromorphic onX\$`1,`2% with divisor of polesD;
~ii ! the productf(t,P)exp$2 ik2(P)t% is analytic at̀ 6.

The Baker–Akhiezer function satisfies the following equation:28

f t12ik2s3f5Q̂g~ t,k!f, ~A2!

wherek5k(P), PPX, and

Q̂g~ t,k!52kQg~ t !2 i~Qg
2~ t !1Q1g~ t !!s3

Qg~ t !5S 0 a~ t !

2ā~ t ! 0 D , Q1g~ t !5S 0 b~ t !

2b̄~ t ! 0 D .

Definition: The functionsa(t) andb(t) are calledfinite-gapif there exists a Baker–Akhieze
vector-function on a hyperelliptic Riemann surfaceX of finite genus which is a solution of~A2!.
                                                                                                                



his

d

ives.
l of any
ycles.

ear
is

tatives.
inter-
sis in

ness,

ta

ns:

3212 J. Math. Phys., Vol. 44, No. 8, August 2003 A. Boutet de Monvel and V. Kotlyarov

                    
The functionf(t,P) can be written28 through Riemann theta functions. To establish t
representation we need to define several notions.

The first is a homology basis on the hyperelliptic Riemann surfaceX. It is a system of
equivalent classes of closed, noncontractible, oriented contours onX. Two contours are considere
equivalent if their difference~the union with the orientation of one contour reversed! forms the
oriented boundary of a surface inX. The equivalence classes will be referred to by representat
Two contour representatives of the same class are called homologous cycles. The integra
meromorphic differential without residues gives the same value over any two homologous c
The system of homology classes is a linear space with integer coefficientsH1(X,Z). The zero
element is the equivalence class of contractible oriented loops onX. It is a topological result that
this space has dimension 2g. Let c1 andc2 be two oriented closed contours onX. The intersection
numberc1•c2 is defined as the number of timesc2 crossesc1 from the right ofc1 , minus the
number of timesc2 crossesc1 from the left. The intersection number is a skew-symmetric bilin
form on H1(X,Z). A canonical homology basisis a symplectic basis, i.e., a bas
$a1 , . . . ,ag ;b1 , . . . ,bg% of H1(X,Z) such that

aj•ak5bj•bk50, aj•bl5d j l .

This does not make the basis unique, even up to homology equivalence of class represen
Any linear transformation with integer coefficients of the basis elements will preserve the
section number but modify the particular basis. One can select a particular homology ba
order to simplify the formulas that we will write down, but the results themselves, by unique
are independent of this choice. Once the homology cyclesaj are fixed, the dual cyclesbj are
determined by the intersection relation up to transformation of the form:

bj→bj1(
l 51

g

sjl al ,

where thesjl ’s are integers andsl j 5sjl .
The next ingredient we need are thenormalized holomorphic differentials, Riemann the

functions, Abel map and Jacobian variety. The space ofholomorphic differentialson X has
dimensiong, with basis$v1(P), . . . ,vg(P)% that can be written

v j~P!5
( i 50

g cji k
i~P!

XX~P!
dk~P!,

whereXX(P) is a lifting of the functionX(k) from the cut plane to the Riemann surfaceX: if P
is on the first sheet ofX, then XX(P)5X(k(P)), and if P is on the second sheet ofX, then
XX(P)52X(k(P)). The coefficientscjl are uniquely determined by the normalization relatio

E
al

v j~P!5d j l .

Thesenormalized holomorphic differentialsdefine theb-period matrixB by

Bjl 5E
bl

v j~P!.

This matrix is symmetric with imaginary part positive definite.
Associated withB there is aRiemann theta functionQ defined by the Fourier series

Q~u1 ,...,ug!5 (
nPZg

exp$p i~Bn,n!12p i~n,u!%.
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whereuPCg and (n,u)5n1u11¯1ngug .
Let $ej u j 51, . . . ,g% be the standard basis ofCg and letBej be thej th column of the matrixB.

Let L,Cg be the lattice generated by the vectorsej andBej for j 51, . . . ,g. Then, by definition,
theJacobian varietyof X is the complex torus JacX5Cg/L. TheAbel mapA:X→JacX is defined
by

Aj~P,P0!5E
P 0

P
v j~Q!, j 51,...,g,

whereP0PX is arbitrarily fixed, andQ is the integration variable. TheAbel mapis extended by
linearity to integral divisors. IfD is a divisor of degree 0, thenA(D,P0) do not depend on the
choice ofP0 . Abel’s theorem states that ifD5D12D2 is the divisor of a meromorphic function
on X with D1, D2 the divisors of zeros and poles, thenA(D,P0)50 in JacX. Besides, for any
nonspecial integral divisorD5P11¯1Pg of degreeg there exists a vectorw(D) such that the
Riemann theta functionQ@A(P,P0)1w(D)# defined onX cut along of the cyclesaj andbj has
preciselyg zeros which are the pointsPj . The vectorw(D) is defined by

w~D !52A~D,P0!2K ,

where the Riemann constantK5(K1 , . . . ,Kg)PCg/L is defined by

K j5
1

2
2

Bj j

2
1(

l 51
lÞ j

g E
al
S EP 0

Q
v j Dv l .

Next, we consider onX a meromorphic Abel differentialV which is holomorphic except at̀ 1

and`2, where it has the behavior

V~P!56d~2k2~P!!1OS dk~P!

k2~P! D , P→`6,

and which is normalized by the conditions

E
aj

V~Q!50, j 51,2,...,g.

Note thatV~P! has no residues. LetV5(V1 , . . . ,Vg)PCg defined by

Vj5
1

2p i Ebj

V.

Finally we consider theAbel integral L(P) of logarithmic kind, which is characterized by the
following asymptotics:

dL~P!56d logk~P!1OS dk~P!

k2~P! D , P→`6,

and by the normalization conditions:

E
aj

dL~Q!50, j 51, . . . ,g.

Then, theBaker–Akhiezer vector functionf(t,P) has the form
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f~ t,P!5x~ t,P!expS 2 itE
Ēg

P
V~Q! D ,

wherex(t,P)5(x1(t,P) x2(t,P)) with

x1~ t,P!5
Q@A~P,P0!1w~D !1tV#

Q@A~`1,P0!1w~D !1tV#
3

Q@A~`1,P0!1w~D !#

Q@A~P,P0!1w~D !#
eiV0t,

x2~ t,P!52i
Q@A~P,P0!1w~D !1tV22A~`2,P0!#

Q@w~D !1tV2A~`2,P0!#
3

Q@A~`2,P0!1w~D !#

Q@A~P,P0!1w~D !#
eL(P)e2 iV0t.

The constantV0 is defined by the relations

E
P 0

P
V~Q!7V0562k2~P!1OS 1

k~P! D , P→`6.

For anytPR the vector functionx(t,P) is bounded onX except at the points of the divisorD
5P11•••1Pg . Therefore,f(t,P) is the Floquet–Bloch solution of the equation~A2!. This
representation for Baker–Akhiezer vector-function was first derived by A. R. Its in 1975.
asymptotic expansions of the Baker–Akhiezer function at`6 and Eq.~A2! give representations
for the finite-gap functionsa(t) andb(t) through theta functions from which their periodicity i
tPR, or, in general, their quasi-periodicity ifg>2 is derived.
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The study of the Korteveg–de Vries~KdV! equation is considered as a special
chapter of potential scattering where the dynamic scattering equation is a set of
coupled ‘‘Lax’’ equations. With this approach, all points of view and all tools of
potential scattering have their counterpart in the standard inverse scattering trans-
form, which appears as a straightforward consequence. If the approach is trans-
posed to the quarterplane problem, it shows a generalization to KdV of the solu-
tions obtained by Fokas in the linearized KdV problem, but unfortunately the last
step is iterative and complicated. The method can also be used to study NLS.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1589179#

I. SCATTERING BY LAX EQUATIONS

We consider a special chapter of potential scattering where the ‘‘dynamic equation’’ is a
coupled ~Lax! equations. We already wrote down basic properties, transformation prope
consistency relations, and explicit expansions of solutions.1–4 Here we recall the approach and w
show how it can be applied to boundary value problems.

The nonlinear KdV equation

]V

]t
1

1

4
V-2

3

2
VV850, ~1.1!

where ‘‘prime’’ denotesx-derivative, is the condition for the existence of continuous sec
derivatives of two-vector solutionsF of two linear ~Lax! equations

]F

]x
5MF,

]F

]t
5NF, ~1.2!

where the matricesM andN depend onk, x, t, as follows:

M5M01V~x,t !5..S 0 1

2k2 0D 1S 0 0

V~x,t ! 0D , ~1.3!

N5k2M01S V1 V0

k2V01V2 2V1
D 5..k2M01W, ~1.4!

V05 1
2V~x,t !, V152 1

4V8, V25 1
2V

22 1
4V9. ~1.5!

It is clear from~1.2! that if F exists, it has the form

F5S f
f 8 D . ~1.6!

a!Electronic mail: sabatier@lpm.univ-montp2.fr
32160022-2488/2003/44(8)/3216/10/$20.00 © 2003 American Institute of Physics
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We note that sinceM andN have zero-trace, the matrix determinant det(F,G) of two solutions
of ~1.2! does not depend onx or t. For a given functionV(x,t), which is solution of~1.1!, the
spaceF of solutionsF of ~1.2! is two-dimensional. Assuming now on demand thatV(x,t) goes to
zero ‘‘rapidly enough’’ asx→6` with fixed t or t→6` with fixed x, we can define ‘‘scattering
problems’’ if we can construct ‘‘Jost solutions’’F with given asymptotic properties, which ar
written here in terms of the function

E~k,x,t !5S 1
ik Dexp@ i ~kx1k3t !#5S e

e8 D :

FQ ~k,x,t !2E~k,x,t !5o~ uxu21! fixed t, x→`, ~1.7!

F̂~k,x,t !2E~2k,x,t !5o~ uxu21! fixed t, x→2`, ~1.8!

FW ~k,x,t !2E~k,x,t !5o~ utu21! fixed x, t→`, ~1.9!

F̌~k,x,t !2E~2k,x,t !5o~ utu21! fixed x, t→2`. ~1.10!

For kÞ0, F(k,) andF(2k,) are a basis in the spaceF, so that

F̂~k,!5ĥ~k!FQ ~2k,!1ĥ~k!FQ ~k,!, ~1.11!

FQ ~k,!5h~k!FW ~k,!1j~k!FW ~2k,!, ~1.12!

F̌~k,!5ȟ~k!FW ~2k,!1 ǰ~k!FW ~k,!. ~1.13!

Each of these relations is associated to an inverse one, for example,~1.12! to

FW ~k,!5h~2k!FQ ~k,!2j~k!FQ ~2k,!. ~1.14!

Inserting the reverse relation in the direct relation yields the unitarity relation, here

h~k!h~2k!2j~k!j~2k!51. ~1.15!

Similar relations exist for the other coefficients.
For realV, which is the case here, the Jost solutions take conjugate values ask→2k in R and

the coefficients written above behave accordingly. It is clear that these ‘‘global scattering’’
ficients depend only onk, hence they are invariants in thex, t, plane.

Beside the global scattering problem defined above, we can now define scattering proble
V(x,t), fixed x or fixed t. Scattering coefficients can be related to the global ones by retra
from the functionsF the usual Jost solutions of this scattering problem. As an example, on a
t axis, assuminguV(x,t)uPL1

1(R), the Schro¨dinger scattering problem on the axis has coefficie

R1(k,t), T(k,t). From their asymptotic behavior, we see that the Jost solutions (f 81
f 1

) and (f 82
f 2

)
are equal toFQ , respectively,F̂, times trivial phase factors so that

ĥ~k!5@T~k!#21, ~1.16!

ĵ~k!5@T~k!#21R1~k,t !exp@2ik3t#. ~1.17!

One recognizes in Eq.~1.16! the usual KdV invariant. As for Eq.~1.7!, it gives trivially the
‘‘standard IST’’ ~inverse scattering transform! where V(x,t) is constructed fromT(k) ~bound
states! andR1(k,t), so that the boundary value problem with dataV(x,t0) in L1

1 is solved for any
finite t. A similar analysis can be done on a fixedx axis.3,4 If a spectral measure is identified i
global scattering from the scattering byV(x,t) on a full x-axis, the corresponding Jost solutions
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transformation kernels are solutions3,4 of integral equations whose kernel involves this meas
multiplied by (k1k8)21, and going to at-axis is formally done if we replace this factor by (k3

1k83)21(k22kk81k82). This symmetry is particularly obvious in the multisolitonic case, b
does exist in all others. The IST on axes are nothing but a trivial consequence of trans
invariance in the global scattering problem.

The situations become quite different if two half-axes are involved, as an elbow: if w
solving an inverse problem from informations on each axis, we define ‘‘de facto’’ a scanning of
V(x,t), which must be possible and consistent! What still makes our global scattering app
interesting is that all the conditions for solving the problem can be reproduced on a linear
panion problem in such a way that if a solution of the linear problem does exist, we can tran
it. Fokas5 gave a general approach to linear problems of this kind, by using Fourier represent
of solutions. Now let us recall two properties of the Fourier representations.

~a! If a function f is known only onR1, it has an infinity of Fourier representations, correspo
ing to different continuations onR2.

~b! In many cases, a given Fourier integral may be written in terms of various measures
different supports in the complex plane.

Fokas6 was able to extend his ideas to nonlinear cases, but we do not follow the same
As a tool for transposing to the nonlinear case, we notice that if a functionV(x) is derived from
a transformation kernelK(x,y) represented7 by an expansion over products of solutions, allo
ances seen for Fourier transforms are transposed:~a! the transformation kernels corresponding
different continuations ofV outside the interval where it is considered on an axis give the s
functions on the interval and~b! the support of a measure giving the transformation kernel ca
displaced in the complex plane. In what follows we use these remarks, together with the
scattering approach.

II. CONSISTENCY CONDITIONS

The condition thatV(x,t) solves KdV can also be expressed in terms of global Jost soluti
it follows from the zero trace property and the differentiability that

]

]t
det@VE,F#5

]

]x
det@WE,F#, ~2.1!

where E can be evaluated for6k, F can be any solution of~1.2!, and they can be chose
independently, so that for a given sort ofF there exists two independent relations~2.1!, one with
E(k,) andF(k,), the other one withE(2k,) andF(k,).

In the following we are interested in functionsV(x,t) that go to zero, together with their tw
first derivatives, asx→1`, fixed t>0. Two independent consistency conditions can be writt
Satisfying both conditions is necessary and sufficient forV to satisfy KdV, and it appears that the
most convenient formulation is

]

]t E0

`

dy det@F~2k,y,t !,V~y,t !E~6k,y,t !#52det@F~2k,0,t !,W~k2,0,t !E~6k,0,t !#,

~2.2!

and, explicitly,

İ 15
]

]t E0

`

dy f~2k,y,t !e~2k,y,t !V~y,t !

5 f 8~2k,0,t !e~2k,0,t !@V1~0,t !2 ikV0~0,t !#

2 f ~2k,0,t !e~2k,0,t !@V2~0,t !1 ikV1~0,t !1k2V0~0,t !#, ~2.3!
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İ 25
]

]t E0

`

dy f~2k,y,t !e~k,y,t !V~y,t !

5 f 8~2k,0,t !e~k,0,t !@V1~0,t !1 ikV0~0,t !#

2 f ~2k,0,t !e~k,0,t !@V2~0,t !2 ikV1~0,t !1k2V0~0,t !#, ~2.4!

where we used the value exp@i(kx1k3t)# of the first componente of E.

III. COMPANION LINEAR PROBLEM

We study solutionsFL of the pair of equations

]FL

]x
5M0FL1VE,

]FL

]t
5N0FL1WLE, ~3.1!

whereWL is defined asW but with V2521/4V9. It is readily shown thatFL is twice continuously
diffrentiable if and only ifV satisfies LKdV:

]V

]t
1

1

4
V-50. ~3.2!

The consistency conditions are derived as in Sec. II and the one corresponding to~2.3! will be
written concisely as

]

]t E0

`

dy det@E6,VE2#y52det@E6,WLE2#x50 , ~3.3!

and, explicitly,

]

]t E0

`

dyV~y,t !52V2~0,t !, ~3.4!

]

]t E0

`

e22i ~ky1k3t !V~y,t !dy52e22ik3t@2k2V0~0,t !12ikV1~0,t !1V2~0,t !#. ~3.5!

IV. THE LINEAR QUARTERPLANE PROBLEM

We wish to constructV(x,t) which is a solution of Eq.~3.2! and has prescribed valuesV(x,0),
x>0, V(0,t), 0<t ~satisfying convenient general constraints!. This can be done by identifying
completely a representation ofV(x,t). Now, it is obvious thatV(x,t) has plenty of possible
representations~e.g., Laplace in time! in terms of separable solutions of Eq.~3.2!. But it is not
before the tricky idea of Fokas5 that a special one enables us to manage theV(0,t) condition. I
recall the representations of Fokas with my view and my notations (k→2k compared to Fokas!.
We set

V~x,t !522
]

]x ER
exp@2i ~k8x1k83t !#j~k8!dk822

]

]x EL
exp@2i ~k8x1k83t !#t~k8!dk8,

~4.1!

whereL consists of the rayk5ukueip/3, oriented from` to 0, and the rayk5ukue2ip/3, oriented
from 0 to `. This choice of contour is ajoker because fort50, the integral overL vanishes for
anyx.0 if the functiont(k) is holomorphic inL̄, which we take as a working assumption. Hen
the Fourier transform determinesj(k) from the dataV(x,0). To determinet(k), we recall that
Eqs. ~3.4! and ~3.5! are necessary and sufficient forV to satisfy Eq.~3.2!, but ~3.4! can be
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forgotten since it is a special value of~3.5!, the valuek50, provided thatVPL1
1(R1) andV(x,t)

is continuous at~0,0!, which we assume. Thus it remains to enforce Eq.~3.5!, which we do after
substituting into it Eq.~4.1! and subtracting the calculated part due toj(k): on the right hand side
the Vi ’s are replaced by, say,dVi , and we get

2
]

]t EL
dk8

k8t~k8!

k82k
e2i ~k832k3!t52e22ik3t@2k2dV0~0,t !12ikdV1~0,t !1dV2~0,t !#. ~4.2!

Identifying the powers ofk, we see thatt is bijectively related by Fourier transforms to any
the dV1’s. We can derive it fromdV0 and then calculatedV1 anddV2 :

2i E
L

dk8k8t~k8!e2ik83t52dV0~0,t !, ~4.3!

t~k8!52
3k8

2p i E0

`

e22ik83tdV0~0,t !, ~4.4!

and we see thatt indeed satisfies the working assumption.

V. THE NONLINEAR QUARTERPLANE PROBLEM

We gave transformation operators adapted to studies onx-axes and others adapted to stud
on t-axes. Both give representations ofV(x,t) but we did not emphasize the fact that like in th
linear case and like in ordinary potential scattering, there are many more or less equ
representations and we wish to use this freedom as trickily as Fokas did it in the linear cas
matter of fact, assumeV(x,0)PL1

1(0,̀ ) and look forV(x,t), fixed t>0, in L1
1(0,̀ ). We know

that there exists a kernelk(x,y,t) such that

fQ~k,x,t !5ei ~kx1k3t !1E
x

`

k~x,y,t !ei ~ky1k3t !dy, ~5.1!

V~x,t !522
]

]x
k~x,x,t !. ~5.2!

We know thatk can be expanded into products (e f) (k,x,t) and that this can be done i
several equivalent ways, for instance by ‘‘continuing’’V(x,t), fixed t, for x,0, keepingV in
L1

1(R). Discrete spectrum values and continuous ones may be selected, but they are not in
dent, and we can also move in the complex plane the part corresponding to the spectrums.
we decide to seekk(x,y,t) as

k~x,y,t !5ks~x,y,t !1kt~x,y,t !, ~5.3!

kt~x,y,t !5E
L

ei ~k8y1k83t ! f ~k8,x,t !t~k8!dk8. ~5.4!

For t50, with our assumption onV(x,0), f is holomorphic in Imk8>0, and it follows thatkt

vanishes at anyx>0, t50, if t(k8) is holomorphic inL̄. We take it as a working assumption o
t. Thenks(x,y,0)5k(x,y,0) can be constructed as a transformation operator on thet50 line. It
is defined directly fromfQ(k,x,0) after fQ has been constructed fromV(x,0) by solving the Volterra
integral equation:
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FQ ~k,x,0!5S 1
ik Deikx2E

x

`

dyS cosk~y2x! 2
sink~y2x!

k

k sink~y2x! cosk~y2x!
D V~y,0!FQ ~k,y,0!, ~5.5!

ks~x,y,0!5
1

2p E
2`

1`

e2 iky@ fQ~k,x,0!2eikx#dk. ~5.6!

It can also be derived by the Faddeev–Marchenko methods as an expansion over p
e(k,x,t) f (k,x,t), since it is the kernel associated to scattering coefficients readily writtenx
50 in terms off (6k,0,0). They correspond to a ‘‘potential’’V(x,0) continued by 0 for negative
x. The expansion involves an integral overkPR and a finite sum over the eigenvaluesik, , ,
51,2,...,N. Introducing the auxiliary notations

g~k,x,t !5e~k,x,t ! f ~k,x,t !, ~5.7!

g̃~k,x,t !5e~2k,x,t ! f ~k,x,t !, ~5.8!

it is clear that the expansions ofk(x,y,t) yield

V~x,t !5E dv~k8!g8~k8,x,t !, ~5.9!

whereg8 is thex derivative ofg, and the measuredv(k8) consists of three parts, with separa
supports:R ~continuous spectrum!, ik, ~discrete spectrum!, andL ~ternary support, as we sha
call it!. Let us insert now Eq.~5.9! in Eqs.~2.2! and ~2.3!. We are able to calculate explicitly a
the integrals overy thanks to a number of formulas that follow from Eqs.~1.2!–~1.5!, and are
reproduced below, with dots indicating time derivatives and notations condensed for conven

g952ikg81Vg, ~5.10!

ġ5~k21 1
2V!g82 1

4~V812ikV!g, ~5.11!

ġ85~2ik31 1
2ikV1 1

4V8!g1~k2V2 1
2ikV81 1

2V
22 1

4V9!g, ~5.12!

g~2k!g8~k8!2g~k8!g8~2k!52
k81k

k82k

]

]x
@g~2k!g~k8!#

2
i

k82k

]

]x
@g~2k!g8~k8!2g~k8!g8~2k!#, ~5.13!

g̃9522ikg̃81Vg̃, ~5.14!

g̃5~k21 1
2V!g̃82 1

4~V822ikV!g̃, ~5.15!

g̃85~22ik32 1
2ikV1 1

4V8!g̃81S k2V1 1
2ikV81

V2

2
2 1

4V9D g̃, ~5.16!

g̃~2k!g8~k8!2g~k8!g̃8~2k!52
k82k

k81k

]

]x
@ g̃~2k!g~k8!#

2
i

k81k

]

]x
@ g̃~2k!g8~k8!2g~k8!g̃8~2k!#. ~5.17!

All calculations are elementary but lengthy. The results are
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İ 152e2 ik3t$ f 8~2k,0,t !@a~ t !1 ikC~ t !#2 f ~2k,0,t !@ ika~ t !1b~ t !2g~ t !2k2C~ t !#%

5e2 ik3t$ f 8~2k,0,t !@V1~0,t !2 ikV0~0,t !#2 f ~2k,0,t !@V2~0,t !1 ikV1~0,t !1k2V0~0,t !#%,

~5.18!

İ 252eik3t$ f 8~2k,0,t !@a~ t !2 ikC~ t !#2 f ~2k,0,t !@2 ika~ t !1b~ t !2g~ t !2k2C~ t !#%

5eik3t$ f 8~2k,0,t !@V1~0,t !1 ikV0~0,t !#2 f ~2k,0,t !@V2~0,t !2 ikV1~0,t !1k2V0~0,t !#%,

~5.19!

where

a5
1

2 E dv~k8!H 1

2
V~0,t !g~k8,0,t !1 ik8g8~k8,0,t !J , ~5.20!

b5
1

2 E dv~k8!H 1

2
V8~0,t !g~k8,0,t !1 iV~0,t !k8g~k8,0,t !J , ~5.21!

g5
1

2 E dv~k8!H 1

2
V~0,t !g8~k8,0,t !12k82g8~k8,0,t !J , ~5.22!

C5
1

2 E dv~k8!g8~k8,0,t !. ~5.23!

Equating the two values that appear on the right hand side ofİ 1 ~respectively,İ 2), we obtain
a linear system forf and f 8. The cancelling of coefficients ensures the consistency and the equ
of k powers; more precisely, setting

P5a1V11 ik~V02C! ~5.24!

we get

f 8~2k,0,t !P~k,t !2 f ~2k,0,t !@2 ikP~k,t !1V2~0,t !2g~ t !1b~ t !#50,
~5.25!

f 8~2k,0,t !P~2k,t !2 f ~2k,0,t !@ ikP~2k,t !1V2~0,t !2g~ t !1b~ t !#50.

Hence

V0~0,t !5C~ t !, ~5.26!

V1~0,t !52a~ t !, ~5.27!

V2~0,t !5b~ t !2g~ t !. ~5.28!

The transformation kernel that produces Eq.~5.9! is

k~x,y,t !52
1

2 E dv~k8! f ~k8,x,t !ei ~k8x1k83t !. ~5.29!

As it is inserted into~5.1!, it produces forg(k,x,t) andg8(k,x,t) linear integral equations tha
enable us to construct functions fromdv ~they are the Cauchy form of the Gelfand–Levitan
Marchenko equations!:

g~k,x,t !5e2~k,x,t !F12
i

2 E dv~k8!

k1k81 i e
g~k8,x,t !G , ~5.30!
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g8~k,x,t !5e2~k,x,t !H 2ik2
i

2 E dv~k8!

k1k81 i e
@g8~k8,x,t !12ikg~k8,x,t !#J . ~5.31!

The e(→01) which appears comes from a regularizing of the infinite integral ony which is
necessary only whenR is the support of the concerned part ofdv. From ~5.31! we see that the
right hand side of~5.23! contains only one independent piece of information, which isdv(k8). If
we succeed to get it fromV0(0,t) by solving Eq. ~5.26!, not only do we obtaindv(k) and
g(k,0,t), but ~readily! V1(0,t) and V2(0,t) from ~5.27! and ~5.28! and @by solving ~5.30! and
~5.31! for xÞ0], V(x,t) and all this in a consistent way with KdV requirements. The problem
therefore solved as in the linear case, provided this set of three equations has a solutiondv(k8)
with the desired supports:

g~k,t !5e2ik3tF12
i

2 E dv~k8!

k1k81 i e
g~k8,t !G , ~5.32!

g8~k,t !5e2ik3tH 2ik2
i

2 E dv~k8!

k1k81 i e
@g8~k8,t !12ikg~k8,t !#J , ~5.33!

V~0,t !5E dv~k8!g8~k8,t !, ~5.34!

where we used the condensed notationg(k8,t) for g(k8,0,t). As for the support conditions, we
know the value ofdv(k) on R @continuous spectrum ofV(x,0)] and on the imaginary half axis
@discrete spectrum ofV(x,0)] and we must make sure that the valuedt(k) on L enables the Fokas
joker. So as to make the iterations easy to follow, we leavedv everywhere it is possible. First w
display Eq.~5.34! in favor of t(k)dk, the measure completing it todv being collectively called
ds:

E
L

dk8t~k8!2ik8e2ik83t5V~0,t !2E ds~k8!2ik8e2ik83t

1
i

2 E dv~k!e2ik3tE dv~k8!

k81k1 i e
@g8~k8,t !12ikg~k8,t !#. ~5.35!

Both sides are limited tot.0 and inverting yieldst(k):

t~k9!5t0~k9!1
3k9

2p E
0

`

e22ik93tdtH E dv~k!e2ik3tE dv~k8!

k81k1 i e
@g8~k8,t !12ikg~k8,t !#J ,

~5.36!

t~k!5t0~k!1N~g,g8,t!. ~5.37!

This equation should be combined with~5.32! and ~5.33! which read in concise notations a

g5g01L~g,t!, ~5.38!

g85g081M ~g,g8,t!. ~5.39!

The set of equations is studied more easily in the case without discrete spectrum, wheds
5r(k)dk @known fromV(x,0)]. In any case we have to prove the convergence of the algor

tn11~k!5t0~k!1N~gn ,gn8 ,tn!, ~5.40!

gn115g01L~gn ,tn!, ~5.41!
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gn118 5g081M ~gn ,gn8 ,tn!. ~5.42!

It is possible to do it if conveniently defined normsiri and it0i are small enough and the resu
can be extended if there is a discrete spectrum. This, of course, is a poor result compared
standard IST! We sketch the proof only in the oversimplified case whereV(x,0) is set equal to
zero (x.0). Thus we meet onlyk integrals overL, wheree62ik3t is a number of modulus one an
where we can use the bound, for any functionf:

U E
L

f ~k!dkU<E
0

`

$u f ~ ukueip/3!u1u f ~ ukue2ip/3!u%duku. ~5.43!

In the following, this integral will be denoted for convenience as* uLuu f (k)udk.
Now, from the formula

t0~k!5
3k

2p E
0

`

e22ik3tV~0,t !dt ~5.44!

we can show that ifVPL2(0,̀ )ùL1(0,̀ ), which is a cheap assumption, forkPL, there exists
T and t̄ with

ut0~k!u<
uku

11uku
T0~ uku!<t0, ~5.45!

whereT0(uku) is in L2(R), and its norm is smaller than the number, say,t0. Suppose now the
inequality~5.44! holds fort(k), with T̄, t̄. Then one easily shows from~5.38! and~5.39! that ugu
and uku21ug8u are bounded. Using now the sup norm forugu and uku21ugu, the L2 norm of (1
1uku)uku21ut(k)u for t, we show that the operator (L,M ,N) acting on (g,g8,t) is contracting if
it0i is small enough and that the working assumptions are satisfied.

VI. ALTERNATIVE KERNEL, FINAL REMARKS AND POSSIBLE EXTENSIONS

~a! What makes the method work is thatk(x,y,t) @or k(x,x,t)] and thereforeV(x,t), is ‘‘sepa-
rated’’ into two parts, a part I that reduces att50 to the kernel of the global scatterin
problem defined att50 from V(x,0) (x.0) and zero (x,0), and a part II that does no
contribute toV(x,0) atx>0. One can try to obtain this separation property in another w
by combining a similar part I to a part II that reduces att50 to the kernel of the globa
scattering problem defined att50 from an unknownV(x,0) (x,0), and zero (x>0). The
kernel constructed from I and II has therefore the separation property. It has an exp
over products of solutions but involving bothfQ and f̂ . This last fact, however, does not alte
very much the developments of Sec. V and one gets to three equations similar to~5.32!–
~5.34!. Working on this alternative method is now our current interest because the sepa
on the axist50 is natural: as a matter of fact, all the developments can be written ‘‘exac
in the purely multisolitonic case.

~b! In previous papers3 we showed that transformation kernels related tot-axes are easily con
structed: it is often sufficient to replace (k1k8)21 inside equations like~5.38! by (k3

1k83)21(k22kk81k82) and rewrite it by means of integrals overt. Hence there are ap
proaches ont-axes similar to those onx-axes. It is not impossible that combining a
x-approach and at-approach eventually brings a linearization of the quarterplane probl

~c! We have shown a global scattering by a set of two linear equations whoseC2 consistency is
expressed by KdV and is such that another set of equations, whoseC2 consistency is
expressed by LKdV, shows the linear limit of solutions. A quite similar situation exists fo
least another set of two linear equations:
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]H

]x
5mH,

]H

]t
5nH, ~6.1!

where

m5S 2 ik v

u ikD , ~6.2!

n5S 2ik21 iuv 2 i
]v
]x

22kv

i
]u

]x
22ku 22ik22 iuv

D . ~6.3!

They areC2-consistent if the fieldsu andv satisfy the nonlinear system,

]v
]t

1 i
]2v

]x2
22iuv250,

~6.4!
]u

]t
2 i

]2u

]x2
12iu2v50,

which for v52cu* , realc, reduces to NLS:

i
]u

]t
1

]2u

]x2
12cuuu2u50. ~6.5!

Potential scattering, both onx- and t-axes, can be managed as in the KdV case.
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The Davey–Stewartson I equation on the quarter plane
with homogeneous Dirichlet boundary conditions

A. S. Fokasa)

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
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Dromions are exponentially localized coherent structures supported by nonlinear
integrable evolution equations in two spatial dimensions. In the study ofinitial-
value problems on the plane, such solutions occur only if one imposes nontrivial
boundary conditions at infinity, a situation of dubious physical significance. How-
ever, it is established here that dromions appear naturally in the study ofboundary-
value problems. In particular, it is shown that the long time asymptotics of the
solution of the Davey–Stewartson I equation in the quarter plane with arbitrary
initial conditions and with zero Dirichlet boundary conditions is dominated by
dromions. The case of nonzero Dirichlet boundary conditions is also dis-
cussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1588744#

I. INTRODUCTION

We consider the Davey–Stewartson~DS! I equation:1

iqt1
1
2 ~qxx1qyy!2~wx1uqu2!q50, ~1.1a!

wxx2wyy12uqu2x50. ~1.1b!

In the context of water waves this equation is the shallow water limit of the Benney–Ro2

equation in the case of dominant surface tension. In this caseq(x,y,t) is the amplitude of a surface
wave packet andw is the velocity potential of the associated mean flow. In general the
equation provides a two-dimensional generalization of the nonlinear Schro¨dinger equation and can
be derived from general asymptotic considerations.3

We introduce characteristic coordinates and we also replace the second order equation~1.1b!
by two first order equations: Letj,h, U1(j,h,t), U2(j,h,t), be defined by

j5x1y, h5x2y, U152wh2 1
2 uqu2, U252wj2 1

2 uqu2. ~1.2!

Then the DSI equation becomes

iqt1qjj1qhh1~U11U2!q50, ~1.3a!

U1j
5 1

2 uquh
2 , ~1.3b!

U2h
5 1

2 uquj
2 . ~1.3c!

a!Electronic mail: t.fokas@damtp.cam.ac.uk
32260022-2488/2003/44(8)/3226/19/$20.00 © 2003 American Institute of Physics
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Indeed, writing Eq.~1.1a! in characteristic coordinates and using the definitions ofU1 ,U2 , we
find Eq. ~1.3a!. Also the definition ofU1 implies U1j

52whj2uquj
2/2; writing Eq. ~1.1b! in

characteristic coordinates and using this equation to replacewhj , we find Eq.~1.3b!, and similarly
for Eq. ~1.3c!.

A. Formulation of the problem

Let the complex-valued functionq(j,h,t) and the real-valued functionsU1(j,h,t),
U2(j,h,t), satisfy Eqs.~1.3! in the domain

0,j,`, 0,h,`, t.0, ~1.4!

with the following initial and boundary conditions:

q~j,h,0!5q0~j,h!, 0,j,`, 0,h,`,

q~0,h,t !50, U1~0,h,t !5u1~h,t !, 0,h,`, t.0, ~1.5!

q~j,0,t !50, U2~j,0,t !5u2~j,t !, 0,j,`, t.0,

where the functionsq0(j,h), u1(h,t), u2(j,t) have sufficient smoothness and they also deca
j→` andh→`.

Notations:

~i! Bar denotes complex conjugation.
~ii ! M11,M12,M21,M22 denote the~11!, ~12!, ~21!, ~22! entries of the 232 matrix M .
~iii ! MD ,M0 denote the diagonal and the off-diagonal parts of the 232 matrix M .

Theorem 1.1:Given q0(j,h), define the vector (M1(j,h,k),M2(j,h,k))T by

M1j
2 ikM152 1

2 q0M2 , M2h
5 1

2q̄0M1 , 0,j,`, 0,h,`, Im k<0,

~1.6!
lim
j→`

M150, M2~j,0,k!51.

Given q0 andM2 , defineS0(k,l ) by

S0~k,l !5
1

4p E
0

`E
0

`

djdhq0~j,h!M2~j,h,k!e2 ikj2 i l h, Im k<0, Im l<0. ~1.7!

Given S0 , u1 , u2 , defineŜ(j,h,t) by

iŜt1Ŝjj1Ŝhh1~u1~h,t !1u2~j,t !!Ŝ50, 0,j,`, 0,h,`, t.0, ~1.8a!

Ŝ~j,h,0!5E
2`

` E
2`

`

dkdleikj1 i l hS0~k,l !, 0,j,`, 0,h,`, ~1.8b!

Ŝ~j,0,t !50, 0,j,`, t.0, ~1.8c!

Ŝ~0,h,t !50, 0,h,`, t.0. ~1.8d!

Given Ŝ, define the 232 matricesM 1(j,h,t,k) andM 2(j,h,t,k) as the solution of the follow-
ing nonlocal Riemann-Hilbert problem:

~i! M 1 andM 2 are analytic for Imk.0 and Imk,0, respectively.
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~ii ! M 65I 1O(1/k), k→`, Im kÞ0.
~iii ! For realk, M 1 andM 2 satisfy the following jump condition,

SM11
1

M21
1 D ~j,h,t,k!2S M11

2

M21
2 D ~j,h,t,k!52E

2`

`

dlS~ l ,k,t !e2 i l j2 ikhS M12
1

M22
1 D ~j,h,t,l !,

~1.9!SM12
1

M22
1 D ~j,h,t,k!2S M12

2

M22
2 D ~j,h,t,k!52E

2`

`

dlS~k,l ,t !eil h1 ikjS M11
2

M21
2 D ~j,h,t,l !,

where

S~k,l ,t !5
1

4p2 E
0

`E
0

`

djdhŜ~j,h,t !e2 ikj2 i l h. ~1.10!

This Riemann–Hilbert problem has a unique global solution.
Defineq(j,h,t) by

q52i lim
k→`

~kM12!. ~1.11!

Thenq satisfies~1.3! and ~1.5!.
Remark 1.1:Although the evolution of the scattering dataS(k,l ,t) is in principle determined

by Eqs. ~1.8!, the relevant time dependence is complicated. In turn, this makes it difficu
determine the long time behavior of the solutionM of the RH problem~1.9!. This difficulty can be
bypassed by formulating aninverse problemfor S(k,l ,t). Since Eq.~1.8a! is precisely the one
studied in Ref. 4, the relevant analysis is identical with the one presented in Ref. 4:~a! If u1 and
u2 are time-independent, then the analysis of~1.8! is intimately related with the analysis of th
time-independent Schro¨dinger equation

cxx1~u~x!1k2!c50,

whereu is eitheru1 or u2 . After a long time the solution of~1.8! is dominated by thediscrete
spectrum ofu1 and ofu2 . If u1 andu2 haveN1 andN2 discrete eigenvalues, respectively, then t
long time asymptotics ofq is given by an (N1 ,N2)-breather solution. ~b! If u1 and u2 are
time-dependent, then the analysis of~1.8! is related with the analysis of the time-depende
Schrödinger equation. Assuming a certain completeness relation for the eigenfunctions
time-dependent Schro¨dinger equation, the long time asymptotics of the solutionq is dominated
again by the associated discrete spectrum; in this case the solution is dominated
(N1 ,N2)-dromionsolution.

Remark 1.2:The explicit form of the (N1 ,N2)-dromion solution can be found in Ref. 4, se
also Refs. 5 and 6. Dromion solutions are exponentially decaying in bothj andh. However, in
contrast to the one-dimensional solitons, these solutions donot preserve their form upon interac
tion and therefore can exchange energy. These coherent strucures can be driven everywhe
quarter-planej>0,h>0, by choosing a suitable motion foru1(h,t),u2(j,t).

Remark 1.3:A characteristic feature of boundary-value problems for integrable evolu
partial differential equations~PDEs! in one spatial dimension is that the~spectral! functions
defining the associated Riemann–Hilbert problemscannot in general be expressed explicitly i
terms of the given boundary conditions.7 Explicit formulas can be obtained only for a particul
class of boundary conditions which are referred to in Ref. 7 aslinearizable. The situation is similar
for boundary-value problems in two spatial dimensions. We emphasize that Eqs.~1.8! are explic-
itly defined in terms of the given initial conditions, thus the homogeneous Dirichlet prob
~1.3!–~1.5! belongs to the class of linearizable conditions. It is shown below that for nonho
geneous Dirichlet boundary conditions, the equations definingŜ, in addition to thegivenDirichlet
boundary conditions, also involve theunknownNeumann boundary values.
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Proposition 1.1:Let the complex-valued functionq(j,h,t) satisfy a nonhomogeneous Dirich
let boundary-value problem in the quarter plane, namely, Eqs.~1.3!–~1.5!, whereq(0,h,t)50 and
q(j,0,t)50 are replaced by

q~0,h,t !5g0~h,t !, q~j,0,t !5 f 0~j,t !, ~1.12!

and the functionsg0 , f 0 have sufficient smoothness and they also decay ash→`,j→`. Assume
that there exists a global solution.

This solution can be expressed by Eq.~1.11! through the solution of the Riemann–Hilbe
problem defined in Theorem 1.1. This problem is uniquely defined in terms of the fun
Ŝ(j,h,t) which satisfy the following:

~i! Ŝ solves the linear evolution PDE

iŜt1Ŝjj1Ŝhh1~u11u2!Ŝ1E
0

j

dj̃F1~j,j̃,t !Ŝ~ j̃,h,t !1E
0

h
dh̃F2~h,h̃,t !Ŝ~j,h̃,t !50,

~1.13!

where

F1~j,j̃,t !5
1

4
@ f̄ 1~ j̃,t ! f 0~j,t !2 f̄ 0~ j̃,t ! f 1~j,t !#2

1

16
f ~j,t ! f̄ ~ j̃,t !E

j̃

j

dj8u f ~j8,t !u2,

F2~h,h̃,t !5
1

4
@ ḡ1~ h̃,t !g0~h,t !2ḡ0~ h̃,t !g1~h,t !#2

1

16
g~h,t !ḡ~ h̃,t !E

h̃

h
dh8ug~h8,t !u2,

andg1(h,t), f 1(j,t) denote the Neumann boundary valuesqj(0,h,t),qh(j,0,t).
~ii ! Ŝ satisfies the initial and boundary conditions

Ŝ~j,h,0!5Ŝ0~j,h!, Ŝ~j,0,t !5p f 0~j,t !, Ŝ~0,h,t !5pg0~h,t !, ~1.14!

whereŜ0(j,h) is defined in terms ofq0(j,h) by the rhs of Eq.~1.7!.
Remark 1.4:In the case of boundary-value problems for evolution PDEs in one spatia

mension, the unknown boundary values can be characterized in terms of the given bo
conditions through the analysis of certainglobal relations.7,8 Such global relations exist in two
spatial dimensions and can also be used for the characterization of the unknown boundary
This analysis, which is rather complicated, will be presented elsewhere.

B. Organization of the article

The DSI equation admits a Lax pair formulation. Thet-independent part of the Lax pair@see
Eqs.~4.2!# is analyzed in Sec. II. The specific form of thet-part of the Lax pair@see Eqs.~3.4!#
depends on the specific form of the boundary conditions. Thet-part of the Lax pair for the
homogeneous and nonhomogeneous Dirichlet cases is discussed in Secs. III and V, resp
The proof of Theorem 1.1 is presented in Sec. IV. Section VI contains further discussion.

II. THE t -INDEPENDENT PART OF THE LAX PAIR

Throughout this section wesuppress the t-dependence. Thet-independent part of the Lax pa
is given by Eq.~4.2!. Analyzing this equation in characteristic coordinates we find the follow

Proposition 2.1:Let the vectors

S M11
1

M21
1 D ,S M12

1

M22
1 D ,S M11

2

M21
2 D ,S M12

2

M22
2 D , ~2.1!

which are functions ofj,h,k, be defined by
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M11
1 512

1

2 E0

j

dj8qM21
1 , M12

1 52
1

2 E0

j

dj8eik(j2j8)qM22
1 ,

M21
1 52

1

2 Eh

`

dh8eik(h82h)q̄M11
1 , M22

1 511
1

2 E0

h
dh8q̄M12

1 ,

~2.2!

M11
2 512

1

2 E0

j

dj8qM21
2 , M12

2 5
1

2 Ej

`

dj8eik(j2j8)qM22
2 ,

M21
2 5

1

2 E0

h
dh8q̄eik(h82h)M11

2 , M22
2 511

1

2 E0

h
dh8q̄M12

2 ,

whereq(j,h) has sufficient smoothness and decay. Then we have the following.
~1! The first two vectors in~2.1! are analytic ink for Im k.0, while the last two vectors in

~2.1! are analytic for Imk,0.
~2! For realk, the vectors~2.1! satisfy the relationships

S M11
1

M21
1 D ~j,h,k!2S M11

2

M21
2 D ~j,h,k!52E

2`

`

dlS~ l ,k!e2 i l j2 ikhS M12
1

M22
1 D ~j,h,l !, ~2.3a!

S M12
1

M22
1 D ~j,h,k!2S M12

2

M22
2 D ~j,h,k!52E

2`

`

dlS~k,l !eil h1 ikjS M11
2

M21
2 D ~j,h,l !, ~2.3b!

whereS(k,l ) is defined by

S~k,l !5
1

4p E
0

`E
0

`

djdhq~j,h!M22
2 ~j,h,k!e2 ikj2 i l h, Im k<0, Im l<0. ~2.4!

~3! The vectors~2.1! have the following behavior for largek:

M11
6 511OS 1

kD , M22
6 511OS 1

kD , M12
6 5OS 1

kD , M21
6 5OS 1

kD , k→`, Im kÞ0.

~2.5!

Proof:
~1! The vector (M 11

1 ,M21
1 )T satisfies a system of linear Volterra integral equations with ke

analytic ink for Im k.0 ~sinceh8>h). Thus this vector is analytic for Imk.0 and similarly for
the other vectors.

~2! Let the matricesC1(j,h,k) andC2(j,h,k) be defined by

C65S M11
6 eikh M12

6 e2 ikj

M21
6 eikh M22

6 e2 ikjD . ~2.6!

Then
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C11
1 5eikh2

1

2 E0

j

dj8qC21
1 , C12

1 52
1

2 E0

j

dj8qC22
1 ,

C21
1 5

1

2 Eh

`

dh8q̄C11
1 , C22

1 5e2 ikj1
1

2 E0

h
dh8q̄C12

1 ,

~2.7!

C11
2 5eikh2

1

2 E0

j

dj8qC21
2 , C12

2 5
1

2 Ej

`

dj8qC22
2 ,

C21
2 5

1

2 E0

h
dh8q̄C11

2 , C22
2 5e2 ikj1

1

2 E0

h
dh8q̄C12

2 .

Subtracting the equations defining the vectors (C12
1 ,C22

1 )T and (C12
2 ,C22

2 )T we find

C12
1 2C12

2 52
1

2 E0

`

dj8qC22
2 2

1

2 E0

j

dj8q~C22
1 2C22

2 !, ~2.8a!

C22
1 2C22

2 5
1

2 E0

h
dh8q̄~C12

1 2C12
2 !. ~2.8b!

Using the definition ofS(k,l ), it follows that the first term of the rhs of Eq.~2.8a! equals

2E
2`

`

dlS~k,l !eil h.

Comparing Eqs.~2.8! with the equation satisfied by (C11
2 ,C21

2 )T we find Eq.~2.3b! written in
terms of the functionsC6 instead of the functionsM 6.

Similarly subtracting the equations defining the vectors (C11
1 ,C21

1 )T and (C11
2 ,C21

2 )T we find
Eq. ~2.3a!, where instead of2S( l ,k) we have the function

T~k,l !52
1

4p E
0

`E
0

`

djdhq̄~j,h!M11
1 ~j,h,k!eikh1 i l j. ~2.9!

We will now show that

T~k,l !52S~ l ,k!. ~2.10!

Indeed, the vectors (C11
1 ,C21

1 )T and (C12
2 ,C22

2 )T satisfy the equations

C11j

1 52 1
2 qC21

1 , C12j

2 52 1
2q̄C22

2 ,

C21j

1 5 1
2q̄C11

1 , C22h

2 5 1
2 qC12

2 .

Hence

~C11
1 ~k!C12

2 ~ l !!j52~C21
1 ~k!C22

2 ~ l !!h ,

where for convenience of notation we have suppressed the~j,h! dependence. Integrating thi
equation we find
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E
0

`

dh@C11
1 ~k!C12

2 ~ l !uj5`2C11
1 ~k!C12

2 ~ l !uj50#52E
0

`

dj@C21
1 ~k!C22

2 ~ l !uh50

2C21
1 ~k!C22

2 ~ l !uh50#.

Using Eq.~2.7! to compute the boundary values appearing above, for example,

C12
2 uj5`5C21

1 uh5`50, C11
1 ~k!uj505eikh, C22

2 ~ l !uh505e2 i l j,

we find

E
0

`

dheikhE
0

`

dj8q̄C22
2 ~ l !5E

0

`

djeil jE
0

`

dh8q̄C11
1 ~k!.

The lhs of this equation is the complex conjugate ofS( l ,k), while the rhs equals2T(k,l ).
~3! Equations~2.2! and integration by parts imply Eqs.~2.5!. Q.E.D.

III. THE t -PART OF THE LAX PAIR FOR THE HOMOGENOUS DIRICHLET CASE

In what follows we first derive thet-part of the Lax pair for the vector (C12
2 ,C22

2 )T.
Proposition 3.1:Assume that there exists a functionq(j,h,t) with sufficient smoothness an

decay which satisfies Eqs.~1.3!–~1.5!. Let the vectorC5(C1 ,C2)T satisfy

C1~j,h,t,k!5
1

2 Ej

`

dj8q~j8,h,t !C2~j8,h,t,k!, ~3.1a!

C2~j,h,t,k!5e2 ikj1
1

2 E0

h
dh8q̄~j,h8,t !C1~j,h8,t,k!, Im k<0. ~3.1b!

Then the functionc1(h,t,k) defined by

c1~h,t,k!5C1~0,h,t,k!

solves

ic1t
1c1hh

1u1~h,t !c12S k2c11
1

2
qj~0,h,t ! D2 i E

2`

`

dlg~k2 l ,t !c1~h,t,l !50, ~3.2!

where

g~k,t !5
i

2p E
0

`

dju2~j,t !e2 ikj. ~3.3!

Proof: We will first show that if (C1 ,C2)T satisfies Eqs.~3.1! and q(j,h,t) satisfies Eqs.
~1.3!–~1.5!, then

C1t
5 i ~]j2]h!2C11 iq~]j2]h!C21 iU 1C12 iqhC21v1 , ~3.4a!

C2t
52 i ~]j2]h!2C22 i q̄~]j2]h!C12 iU 2C22 i q̄jC11v2 , ~3.4b!

where the vectorv5(v1 ,v2)T is given by
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v~j,h,t,k!52 ik2C~j,h,t,k!1E
2`

`

dlg~k2 l ,t !C~j,h,t,l !. ~3.5!

Indeed, the vectorC5(C1 ,C2)T satisfies

C1j
52 1

2 qC2 , C2h
5 1

2 q̄C1 . ~3.6!

Suppose thatC satisfies equations similar with~3.4! but with v50. It is straightforward to verify
that the compatibility condition of Eq.~3.4! with v50, and of Eqs.~3.6! yields Eqs.~1.3!.
Actually, if Eqs.~1.3! are valid, then Eqs.~3.4! and~3.6! are compatible for any vectorv given by

v~j,h,t,k!5E
2`

`

dlG~k,l ,t !C~j,h,t,l !.

The precise form ofG depends on the boundary conditions thatC andq satisfy. Indeed,C1 can
be written in the form

C152E
j

`

dj8C1j8
or C1t

52E
j

`

dj8~C1t
!j8 .

By replacing in the above equationC1t
by A1v1 , whereA is defined in the rhs of Eq.~3.4a!, we

find

v152 lim
j→`

@ i ~]j2]h!2C11 iq~]j2]h!C21 iU 1C12 iqhC2#2E
j

`

dj8v1j8
.

Using

lim
j→`

q5 lim
j→`

C150,

the term in the bracket vanishes. Also

v1j
5E

2`

`

dlGC1j
5E

2`

`

dlGS 2
q1

2
C2D52

q1

2
v1 .

Hence

v15
1

2 Ej

`

dj8q1v2 . ~3.7a!

Similarly starting with

C25E
0

h
dh8C2h8

1e2 ikj or C2t
5E

0

h
dh8~C2t

!h8 ,

we find

v25@ i ~]j2]h!2C21 i q̄~]j2]h!C11 iU 2C21 i q̄jC1#h501
1

2 E0

h
dh8q̄v1 .

Using

C1uh505quh5050, ~]j2]h!2C2uh5052k2e2 ikj,
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it follows that

v252 ik2e2 ikj1 iu2~j,t !e2 ikj1
1

2 E0

h
dh8q̄v1 . ~3.7b!

Equations~3.7! imply that the term2 ik2 exp@2ikj# gives rise to2 ik2C, while the term

iu2~j,t !e2 ikj5E
2`

`

dlg~k2 l ,t !e2 i l j ~3.8!

gives rise to the term*2`
` dlg(k2 l ,t)C( l ). Also Eq. ~3.8! implies thatg(k,t) is given by Eq.

~3.3!.
Equation~3.2! follows from the evaluation of Eq.~3.4a! at j50. In this respect we note

C1jh
uj5052 1

2 @qhC21qC2h#j5050,

sinceq(0,h,t)5qh(0,h,t)50. Also

C1jj
uj5052 1

2 @qjC21qC2j#j5052 1
2 qj~0,h,t !,

sinceC2(0,h,t,k)51. Q.E.D.

Using Eq.~3.2!, it is now straightforward to obtain the time evolution ofS(k,l ,t):
Proposition 3.2:Let S(k,l ,t) be defined by Eq.~2.4!, whereM 22

2 (j,h,t,k)5C2 exp@2ikj#,
C2 is defined in terms ofq(j,h,t) in Eqs. ~3.1!, and q evolves in time according to Eqs
~1.3!–~1.5!. Let

Ŝ~j,h,t !5E
2`

` E
2`

`

dkdleikj1 i l hS~k,l ,t !. ~3.9!

Then Ŝ satisfies Eqs.~1.8!.
Proof: Using (M12

2 ,M22
2 )T5e2 ikj(C1 ,C2)T, it follows that the vectorC5(C1 ,C2)T satis-

fies Eqs.~3.1!. Also

S~k,l ,t !5
1

4p E
0

`E
0

`

djdhq~j,h!e2 i l hC2~j,h,k!5
1

2p E
0

`

dhe2 i l hC1~0,h,t,k!, ~3.10!

where the first equality uses the definition ofS @see Eq.~2.4!# and the second equality uses E
~3.1a!. Hence usingC1(0,h,t,k)5c1(h,t,k) and replacing in Eq.~3.9! S by the rhs of Eq.~3.10!
we find

Ŝ~j,h,t !5E
2`

`

dkeikjc1~h,t,k!. ~3.11!

In order to find the time evolution ofŜ we need to take thek-Fourier transform of Eq.~3.2!. In this
respect we note that ifq(0,h,t)50, Eqs.~3.1! imply

c152
1

2

qj~0,h,t !

k2 1OS 1

k3D , k→`. ~3.12!

Using this estimate, Eq.~3.2! implies Eq. ~1.8a!. In this respect we note that thek-Fourier
transform ofk2c11 1

2qj(0,h,t) equalsŜjj . Indeed, ifs(x) denotes the Fourier transform ofc,
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s~x!5E
2`

`

eikxc~k!dk, x.0, ~3.13!

and if c(k) for largek is given by

c~k!5
a

k2 1OS 1

k3D , k→`, ~3.14!

then

d2s

dx2 5E
2`

`

eikx@a2k2c~k!#dk. ~3.15!

In order to derive this result we note that the definition ofs(x) can be rewritten as

s~x!5E
2`

`

eikxFc~k!1
a

11k2Gdk1aE
2`

` eikx

11k2 dk;

the second integral above can be computed explicitly and equalspe2x. Thus

d2s

dx2 5E
2`

`

e2 ikxF ak2

11k2 2c~k!Gdk1ape2x;

simplifying the rhs of this equation we find~3.15!.
Sincec1(0,t,k)5C1(0,0,t,k)50, Eq. ~3.11! implies Ŝ(j,0,t)50. Also

Ŝ~0,h,t !5E
2`

`

dkc1~h,t,k!50,

sincec1 is analytic for Imk,0 and is ofO(1/k2) ask→` @see Eq.~3.12!#. Q.E.D.

IV. PROOF OF THEOREM 1.1

In both Secs. II and III it wasassumedthatq(j,h,t) exists, it is smooth, and it has sufficien
decay. Then, under this assumption, it was shown in Sec. II thatq can be obtained through th
solution of a RH problem uniquely defined in terms ofS(k,l ,t). Furthermore, it was shown in Sec
III that S satisfies Eqs.~1.8!. We will now prove thatq(j,h,t) can be constructed through th
solution of the RH problem~1.9! without the a priori assumption of existence. Furthermore, th
result is validwithout the need for the norms ofq0(j,t),u1(h,t),u2(j,t) to be small.

The function S0(k,l ) is defined through the solution (M1(j,h),M2(j,h))T of the linear
integral equations~1.6!. These equations are of Volterra type, and thus, ifq0PL1 , are always
solvable.

The Fourier transformŜ(j,h,t) of the functionS(k,l ,t) satisfies the linear PDE~1.8a! with
the initial condition Ŝ0(j,h) and with homogeneous Dirichlet boundary conditions. Thus
u1(h,t),u2(j,t) have sufficient smoothness and decay,S(k,l ,t) is well defined.

If the functionsS,Sk ,SlPL2 for fixed t, the RH problem~1.9! has a global solution provided
that its homogeneous version has only thetrivial solution. This is indeed the case:4 Let m satisfy
Eqs.~1.9! but with m5O(1/k) ask→`. The jump conditions imply

m11
1 ~k!2m11

2 ~k!52E
2`

`

dlS~ l ,k!e2 i l j2 ikhm12
1 ~ l !, ~4.1a!
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m12
1 ~k!2m12

2 ~k!52E
2`

`

dlS~k,l !eil h1 ikjm11
2 ~ l !, ~4.1b!

where for convenience of notation we have suppressed thej,h,t dependence ofm,S. Multiplying

Eq. ~4.1a! by m11
2 ( k̄), Eq. ~4.1b! by m22

1 ( k̄), integrating overk, and adding the resulting equation
we find an equation whose lhs equals

E
2`

`

dk~ um11
2 ~k!u21um12

1 ~k!u2!,

while the rhs is imaginary@in this derivation we have used that the integrals ofm11
2 ( k̄)m11

1 (k) and

of m22
1 ( k̄)m12

2 (k) vanish since these products are analytic for Imk.0 and Imk,0, respectively,
and are ofO(1/k2) ask→`]. Hence,m11

2 5m12
1 50.

For the proof of the fact thatq(j,h,0)5q0(j,h) we note thatq(j,h,0) is defined through the
RH problem~1.9! but with S0(k,l ) instead ofS(k,l ,0). By repeating the analysis of Sec. II whe
q(j,h,t) is now replaced by the given functionq0(j,h), it follows thatq0(j,h) is characterized
by precisely the same RH problem as the problem characterizingq(j,h,0). @We note that
(M1 ,M2)T5(M12

2 ,M22
2 )T.] Hence the unique solution of this RH problem impliesq(j,h,0)

5q0(j,h).
We now show that ifq(j,h,t) is defined through the solution of the RH problem~1.9!, then

q satisfies the DSI equation. This proof is based on the extended version of the dressing m
presented in Ref. 9. The dressing method can be used to show that ifM solves an appropriate RH
problem, thenM also solves both parts of the associated Lax pair. Hence, using the compat
condition of this pair,q solves the relevant nonlinear PDE.

We first show thatM solves thet-independent part of the Lax pair

Mx1s3M y2 ik@s3 ,M #1QM50, ~4.2!

where

j5x1y, h5x2y, s35diag~1,21!, Q5S 0 q

2q̄ 0D , ~4.3!

and@,# denotes the usual matrix commutator. Indeed, the jump condition of the RH problem c
written in the form

M 1~x,y,t,k!2M 2~x,y,t,k!5E
2`

`

dlM̃ ~x,y,t,l !F~x,y,t,k,l !, ~4.4!

whereM̃ denotes the matrix with first and second column vectors (M11
2 ,M21

2 )T and (M12
1 ,M22

1 )T,
respectively, andF denotes the off-diagonal matrix with

F12~x,y,t,k,l !52S~k,l ,t !eik(x1y)1 i l (x2y), ~4.5a!

F21~x,y,t,k,l !5F12~x,y,t,l ,k!. ~4.5b!

Using

F12x5 i ~k1 l !F12, F21x52 i ~k1 l !F21,

F12y5 i ~k2 l !F12, F21y5 i ~k2 l !F21,

and writing these equations in a matrix form, we find
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Fx5 i l s3F2 ikFs3 , Fy5 i ~k2 l !F. ~4.6!

Let the operatorsDx ,Dy be defined by

DxM5Mx1 ikMs3 , DyM5M y2 ikM . ~4.7!

These definitions and Eqs.~4.6! imply that

DxE
2`

`

dlM̃ ~ l !F~k,l !5E
2`

`

dl~DxM̃ ~ l !!F~k,l !,

DyE
2`

`

dlM̃ ~ l !F~k,l !5E
2`

`

dl~DyM̃ ~ l !!F~k,l !,

where for simplicity of notation we have suppressed thex,y,t dependence. Hence, bothDxM and
DyM satisfy the same jump condition asM . Using the fact thatQM also satisfies the same jum
condition, it follows that the expression

DxM1s3DyM1QM ~4.8!

satisfies the same jump condition asM . Using

M5I 1
M (1)~x,y,t !

k
1

M (2)~x,y,t !

k2 1OS 1

k3D , ~4.9!

it follows that the largek behavior of the expression~4.8! is given by

~Q2 i @s3 ,M (1)# !1OS 1

kD .

Hence if we defineQ by

Q~x,y,t !5 i @s3 ,M (1)#, ~4.10!

the expression~4.8! satisfies the homogeneous version of the RH problem, therefore it van
and M satisfies equation~4.2!. We note thatQ is off diagonal; furthermore Eq.~4.5b! implies
certain symmetry relations forM , which in turn implies that (Q)2152(Q)12. In summary, ifM
satisfies the RH problem~1.9! and if q is defined throughM by Eq. ~1.11!, thenM satisfies the
t-independent part of the Lax pair.

We now show thatM also satisfies thet-part of the Lax pair. For this purpose, rather th
assuming thatS satisfies Eq.~1.8a! we first assume thatS(k,l ,t) satisfies the equation

iSt2~k21 l 2!S1E
2`

`

dn~2 i !g1~n2 l ,t !S~k,n,t !1 ig2~n,t !S~k2n,l ,t !, ~4.11!

where the functionsg1 ,g2 are defined by

g1~n,t !5
i

2p E
2`

`

dhu1~h,t !einh, g2~n,t !52
i

2p E
2`

`

dju2~j,t !e2 inj. ~4.12!

These equations imply thatF satisfies the evolution equation

Ft5 ik2Fs32 i l 2s3F1E
2`

`

dn~G~x,y,t,n2 l !F~x,y,t,k,n!2F~x,y,t,k2n,l !G~x,y,t,n!!,

~4.13!
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whereG is defined by

G~x,y,t,n!5einy diag~e2 inxg1~n!,einxg2~n!!. ~4.14!

Indeed, using

F12~x,y,t,k,l !52S~k,l ,t !eikj1 i l h, G11~x,y,t,n!5e2 inhg1~n,t !,

G22~x,y,t,n!5einjg2~n,t !,

the ~12! component of Eq.~4.13! yields Eq.~4.11!.
The time dependence ofF suggests the introduction of the operatorDt defined by

DtM5Mt2 ik2Ms31E
2`

`

dnM ~x,y,t,k2n!G~x,y,t,n!. ~4.15!

Indeed it can be shown that

DtE
2`

`

dlM̃ ~ l !F~k,l !5E
2`

`

dl~DtM̃ ~ l !!F~k,l !.

This equation is a direct consequence of the definition ofDt and of Eq.~4.13! provided that

E
2`

`

dlE
2`

`

dnM̃ ~ l !G~n2 l !F~k,n!5E
2`

`

dlE
2`

`

dnM̃ ~ l 2n!G~n!F~k,l !;

this equality is established by replacing on the rhsl 2n by n and then exchangingl andn in the
resulting equation.

Since DtM satisfies the same jump condition asM , following the same logic as in the
derivation of Eq.~4.2! it follows that

2DtM1 is3Dy
2M1BDyM1AM50, ~4.16!

where the matricesA(x,y,t) andB(x,y,t) will be chosen by the requirement that the lhs of E
~4.16! is of O(1/k) as k→`. In this respect we first introduce the following notations for t
O(1/k) term of M @see Eq.~4.9!#:

M (1)~x,y,t !5S a b

c dD . ~4.17!

Equation~4.10! yields

b5
q

2i
, c5

q̄

2i
. ~4.18!

The O(1/k) term of Eq.~4.2! implies

Mx
(1)1s3M y

(1)2 i @s3 ,M (2)#1QM(1)50. ~4.19!

The diagonal and off-diagonal parts of this equation yield

]xMD
(1)1s3]yMD

(1)1QMO
(1)50, ~4.20!

]xMO
(1)1s3]yMO

(1)2 i @s3 ,MO
(2)#1QMD

(1)50. ~4.21!

Equation~4.20! implies
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aj52
uqu2

4i
, dh5

uqu2

4i
. ~4.22!

Using the definitions ofDt andDy , Eq. ~4.16! becomes

Mt52 ik2@s3 ,M #2 ikBM12ks3M y1AM1BMy1 is3M yy

2E
2`

`

dnM ~x,y,t,k2n!G~x,y,t,n!. ~4.23!

The O(k) term of this equation yields

B52@s3 ,M (1)#,

thus @comparing with Eq.~4.10!#

B5 iQ. ~4.24!

The O(1) term of Eq.~4.23! yields

2 i @s3 ,M (2)#2 iBM (1)12s3M y
(1)1A2E

2`

`

dnG~x,y,t,n!50. ~4.25!

Using Eq.~4.19! to replace the first two terms of this equation we find

2Mx
(1)1s3M y

(1)1A2E
2`

`

dnG~x,y,t,n!50.

Solving this equation forA and using the definition ofG @Eqs.~4.14! and ~4.12!# we find

A1152ah1 iu1 , A1252bh , A2152cj , A2252dj2 iu2 . ~4.26!

In summary, if the time evolution ofS(k,l ,t) is given by Eq.~4.11!, whereg1 andg2 are defined
by Eq. ~4.12!, then the time evolution ofM is given by~4.23! whereB5 iQ and the components
of the matrixA are given by Eqs.~4.26!.

Letting

M5C diag~e2 ikh,eikj!, ~4.27!

and using that they-derivative of the above diagonal matrix equalsik times this matrix, it follows
that the time evolution ofC is given by

C t5 is3]y
2C1 iQ]yC1AC1 ik2Cs32E

2`

`

dnC~x,y,t,k2n!diag~g1~n,t !,g2~n,t !!.

~4.28!

With a particular choice of the constants of integration, Eqs.~4.22! yield

a5
i

4 E0

j

dj8uqu2, d52
i

4 E0

h
dh8uqu2. ~4.29!

Then the first and the fourth of equations~4.26! become

A115 i S 1

2 E0

j

dj8uquh
21u1~h,t ! D , A2252 i S 1

2 E0

h
dh8uquj

21u2~j,t ! D .
                                                                                                                



ec. III.

ation

3240 J. Math. Phys., Vol. 44, No. 8, August 2003 A. S. Fokas

                    
Using these expressions as well as Eqs.~4.18!, Eqs.~4.26! become

A115 iU 1 , A1252 iqh , A2152 i q̄j , A2252 iU 2 . ~4.30!

Denoting by (C1 ,C2)T the second column vector ofC, replacingA in Eq. ~4.28! by Eqs.~4.30!,
and noting thatg252g, whereg is defined by Eq.~3.3!, Eq. ~4.28! implies thatC1 ,C2 satisfy
precisely Eqs.~3.4! where the vectorv is defined by Eq.~3.5!.

The vector (C1 ,C2)T also satisfies

C1j52 1
2 qC2 , C2h5 1

2q̄C1 . ~4.31!

It can be verified that the compatibility of Eqs.~3.4! and ~4.31! yields Eqs.~1.3!.
It remains to~a! show that the Fourier transform of Eq.~4.11! yields Eq.~1.8a!; ~b! justify the

choice of the constants of integration of Eqs.~4.22!; and ~c! establish thatq(0,h,t)5q(j,0,t)
50. These interelated facts can be proved by ‘‘reversing’’ the relevant arguments used in S

Q.E.D.

V. THE t -PART OF THE LAX PAIR FOR THE NONHOMOGENEOUS CASE

For simplicity of notation throughout this section we suppress thet-dependence.
Proposition 5.1:Let the vectorC satisfy Eqs.~3.1! whereq satisfies Eqs.~1.3! on the quarter

plane. Then the functionc1(h,k)5C1(0,h,k) satisfies the following equation:

ic1t
1c1hh

2Fk2c11
ikq

2
1

qj

2
1

q

8 E0

h
dh8uqu2G1u1c12 i E

2`

`

dl@g~k2 l !1d~k2 l ,k!1«~k

2 l ,k!#c1~h,l !2
qj

4 E
0

h
dh8q̄c11

q

4 E0

h
dh8q̄jc12

1

16E0

h
dh8uqu2E

0

h8
dĥq̄c150, ~5.1!

whereq,qj in the first bracket are evaluated at~0,h!; uqu,q̄c1 ,q̄jc1 in the integrals with respect to
dh8 are evaluated at (0,h8); q̄c1 in the integral with respect todĥ is evaluated at (0,ĥ); g is
defined by Eq.~3.3!; andd,« are defined by

d~ l ,k!5
i

8p E
0

`E
0

`

djdĵ@ q̄h~j,0!q~ ĵ1j,0!2q̄~j,0!qh~ ĵ1j,0!#e2 ik ĵ2 i l j, ~5.2!

«~ l ,k!52
i

32p E
0

`E
0

`E
0

`

djdĵdj8q̄~j,0!uq~ ĵ1j,0u2q~j1 ĵ1j8,0!e2 ik ĵ2 ikj82 i l j. ~5.3!

Proof: We first show thatC satisfies Eqs.~3.4! where v is defined by Eq.~3.5! with the
additional term

E
2`

`

dl~d~k2 l ,k!1«~k2 l ,k!!C~j,h,l !.

Indeed, proceeding as in the proof of Proposition 3.1 we find that the forcing of the equ
satisfied byv2 involves the following additional terms:

i

4 F q̄h~j,0!E
j

`

dj8q~j8,0!e2 ikj82q̄~j,0!E
j

`

dj8qh~j8,0!e2 ikj8G
2

i

16
q̄~j,0!E

j

`

dj8uq~j8,0!u2E
j8

`

dj9q~j9,0!e2 ikj9. ~5.4!
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For the computation of these additional terms we have used the following expressions, wh
convenience of notation we have suppressed thek-dependence:

c1~j,0!5
1

2 Ej

`

dj8q~j8,0!e2 ikj8, c2~j,0!5e2 ikj,

c1j
~j,0!52 1

2 q~j,0!e2 ikj,

c1h
~j,0!5

1

2 Ej

`

dj8qh~j8,0!e2 ikj81
1

4 Ej

`

dj8uq~j8,0!u2c1~j8,0!,

~5.5!

c2jj
~j,0!52k2e2 ikj,

c2hj
~j,0!5 1

2 q̄j~0,h!c1~j,0!2 1
4 uqu2~j,0!e2 ikj,

c2hh
~j,0!5 1

2 q̄h~j,0!c1~j,0!1 1
2 q̄~j,0!c1h

~j,0!.

Denoting the first bracket in~5.4! by

E
j

`

dj8A~j,j8!e2 ikj85E
2`

`

dld~k2 l ,k!e2 i l j,

replacingk2 l by l andj82j by ĵ, we find

E
0

`

dĵA~j,ĵ1j!e2 ik ĵ5E
2`

`

dld~ l ,k!eil j,

which yields~5.2!. Similarly denoting the second term in~5.4! by

E
j

`

dj8A~j,j8!E
j8

`

dj9B~j9!e2 ikj95E
2`

`

dl«~k2 l ,k!e2 i l j,

replacingk2 l by l , j92j8 by j9 , andj82j by ĵ, we find

E
0

`

dĵA~j,ĵ1j!E
0

`

dj9B~j91 ĵ1j!e2 ik( ĵ1j9 )5E
2`

`

dl«~ l ,k!eil j,

which yields~5.3!.
Equation~5.1! follows by evaluating Eq.~3.4a! at j50. For this computation we use th

following equations, where again for convenience of notation we have suppresse
k-dependence:
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c2~0,h!511
1

2 E0

h
dh8q̄~0,h8!c1~0,h8!, c2h

~0,h!5 1
2 q̄~0,h!c1~0,h!,

c2j
~0,h!52 ik1

1

2 E0

h
dh8q̄j~0,h8!c1~0,h8!2

1

4 E0

h
dh8uq̄~0,h8u2c2~0,h8!,

~5.6!
c1jj

~0,h!52 1
2 qj~0,h!c2~0,h!2 1

2 q~0,h!c2j
~0,h!,

c1jh
~0,h!52 1

2 qh~0,h!c2~0,h!2 1
4 uq~0,h!u2c1~0,h!.

Q.E.D.
Proposition 5.2:Let S(k,l ,t) be defined by Eq.~2.4!, whereM22

2 5C2 exp@2ikj#, C is defined
in terms ofq in Eqs.~3.1! andq evolves in time according to Eq.~1.3!. Let Ŝ be defined in terms
of S by Eq. ~3.9!. ThenŜ satisfies the equation

iŜt1Ŝjj1Ŝhh1~u11u2!Ŝ1E
0

j

dj̃F1~j,j̃,t !Ŝ~ j̃,h,t !1E
0

h
dh̃F2~h,h̃,t !Ŝ~j,h̃,t !50,

~5.7!

where

F1~j,j̃,t !5
1

4
@ q̄h~ j̃,0!q~j,0!2q̄~ j̃,0!qh~j,0!#2

1

16
q~j,0!q̄~ j̃,0!E

j̃

j

dj8uq~j8,0!u2,

~5.8!

F2~h,h̃,t !5
1

4
@ q̄j~0,h̃ !q~0,h!2q̄~0,h̃ !qj~0,h!#2

1

16
q~0,h!q̄~0,h̃ !E

h̃

h
dh8uq~0,h8!u2.

Furthermore,Ŝ satisfies the boundary conditions

Ŝ~j,0,t !5pq~j,0!, Ŝ~0,h,t !5pq~0,h!. ~5.9!

Proof: The analog of Eq.~3.12! is now

c15
2 iq~0,h!/2

k
2

qj/21 ~q/8!*0
hdh8uq~0,h8!u2

k2 1OS 1

k3D , k→`. ~5.10!

Equation~3.11! yields

Ŝ~j,0,t !5E
2`

`

dkeikjC1~0,0,t,k!5
1

2 E2`

`

dkeikjE
0

`

dj8q~j8,0!e2 ikj85pq~j,0!.

Furthermore,

Ŝ~0,h,t !5E
2`

`

dkC1~0,h,t,k!5E
2`

`

dkFC1~0,h,t,k!1
i

2

q~0,h!

k G2
i

2 E2`

` dk

k
q~0,h!,

5pq~0,h!,

sinceC1(0,h,t,k) is analytic for Imk,0.
Taking the Fourier transform of Eq.~5.1! and using the estimate~5.10! we find Eq.~5.7!. In

this respect we note that if we denote the bracket on the rhs of Eq.~5.2! by A(j,ĵ), then the
contribution of the term involvingg is given by
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2 i E
2`

`

dlE
2`

`

dkg~k2 l ,t !c1~ l !eikj

5
1

8p E
2`

`

dlE
2`

`

dkE
0

`

dj8E
0

`

dĵA~j8,ĵ !e2 ik ĵ2 i (k2 l )j81 ikjc1~ l !

5
1

4 E0

`

dj8E
0

`

dĵA~j8,ĵ !d~ ĵ2~j2j8!!Ŝ~j8,h,t !

5
1

4 E0

`

dj8u~j2j8!A~j8,j2j8!Ŝ~j8,h,t !,

wherec1( l )5c1(h,l ). Similarly the contribution of the term involvingd is given by

2
1

32E2`

` E
2`

`

dkdlE
0

`E
0

`E
0

`

dj̃dĵdj8q̄~ j̃,0!uq( ĵ1 j̃,0u2q~ j̃1 ĵ

1j8,0!e2 ik ĵ2 ikj82 i (k2 l ) j̃1 ikjc1~ l !

52
q~j,0!

16 E
0

`

dj̃E
0

`

dĵu~j2 j̃2 ĵ !q̄~ j̃,0!uq~ ĵ1 j̃,0!u2Ŝ~ j̃,h!

52
q~j,0!

16 E
0

j

dj̃E
0

j2 j̃
dĵq̄~ j̃,0!uq~ ĵ1 j̃,0!u2Ŝ~ j̃,h!.

The area of integration is depicted in Fig. 1~a!. Making the change of variablesj85 ĵ1 j̃, ǰ

5j̃, the area of integration is mapped to the area depicted in Fig. 1~b!. Thus the relevant integra
becomes

2q~j,0!

16 E
0

j

dǰS E
ǰ

j

dj8uq~j8,0!u2D q̄~ ǰ,0!Ŝ~ ǰ,h!.

Also regarding the last term of Eq.~5.1! we note that taking its Fourier transform we find

2q~0,h!

16 E
0

h
dh8uq~0,h8!u2E

0

h8
dĥq̄~0,ĥ !Ŝ~j,ĥ,t !.

Changing the order of the integration we find that the relevant contribution involves the las
of F2 , see Eq.~5.8!. Q.E.D.

FIG. 1. The change of variables from (j̃, ĵ) to (ǰ, j8).
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VI. DISCUSSION

In the last decade considerable progress has been made in the understanding of bo
value problems for integrable nonlinear evolution PDEs inone spatial dimension. For example
two of the articles in this special issue are concerned with this development.10,11 Here, to our
knowledge for the first time, a boundary-value problem is solved intwo spatial dimensions.

It has been emphasized by the author that an important difference between initia
boundary-value problems is the following: For initial-value problems one needs to perform
spectral analysis of thet-independent part of the Lax pair only, while for boundary-value proble
the spectral analysis ofbothparts of the Lax pair is needed. In this respect we recall the follow
developments:

~i! It is interesting that the spectral analysis of thet-part of the Lax pair~in addition to that of
the t-independent part! was first considered not for an equation in one spatial dimension but fo
equation in two spatial dimensions, namely the DSI equation: In Ref. 4 Eqs.~1.3! were solved on
the plane, but with nontrivial boundary conditions at infinity,

U1~j,h,t !→u1~h,t !, j→`; U2~j,h,t !→u2~j,t !, h→`.

The authors of Ref. 4, rather than performing the explicit spectral analysis of the rel
t-dependent eigenvalue equation, made use of a certain completeness relation~of course the
derivation of this relation is based on the spectral analysis of the Schro¨dinger eigenvalue equa
tion!.

~ii ! In Ref. 12 theindependentspectral analysis of the two parts of the Lax pair of t
nonlinear Schro¨dinger equation led to the formulation of the solution in terms oftwo Riemann–
Hilbert ~RH! problems, which had to be solved in sequence.

~iii ! In Ref. 13 the above two RH problems were combined and the solutionq was expressed
in terms of asingleRH problem. This RH problem has the distinctive and very useful featur
involving jump matrices withexplicit exponential (x,t) dependence.

~iv! It was shown in Ref. 14 that the above RH problem can be derived in a straightfor
manner by performing thesimultaneousspectral analysis of the Lax pair. The rigorous proof th
the solution of this RH problem yields the unique solution of the given initial-boundary v
problem was presented in Refs. 7 and 8.

In the present article we have implemented for Eqs.~1.3!–~1.5! the construction of (i ) above.
The main reason for using (i ) instead of (iv) is the fact that for the case of homogeneous Dirich
boundary conditions the analysis of thet-part of the Lax pair is very similar to the analys
presented in Ref. 4.

The implementation of (iv) for the initial-boundary value problem formulated in Propositi
1.1 remains open. Furthermore, the analysis of the associated global relation, which chara
g1 and f 1 in terms ofg0 , f 0 andq0 , also remains open.

1A. Davey and K. Stewartson, Proc. R. Soc. London, Ser. A338, 101 ~1974!.
2D. J. Benney and G. J. Roskes, Stud. Appl. Math.48, 377 ~1969!.
3F. Calogero, inWhat is Integrability, edited by V. E. Zakharov~Springer-Verlag, New York, 1992!.
4A. S. Fokas and P. M. Santini, Physica D44, 99 ~1990!.
5M. Boiti, J. Leon, L. Martina, and F. Pempinelli, Phys. Lett. A132, 432 ~1988!.
6J. Hietarinta, inScattering, edited by R. Pike and P. Sabatier~Academic, New York, 2001!.
7A. S. Fokas, Commun. Math. Phys.230, 1 ~2002!.
8A. S. Fokas, A. R. Its, and L. Y. Sung, ‘‘The nonlinear Schro¨dinger equation on the half-line’’~preprint!.
9A. S. Fokas and V. E. Zakharov, J. Nonlinear Sci.2, 109 ~1992!.

10A. Boutet de Monvel and V. Kotlyarov, J. Math. Phys.44, 3185~2003!.
11P. Sabatier, J. Math. Phys.44, 3216~2003!.
12A. S. Fokas, ‘‘Initial-boundary value problems for soliton equations,’’ inProc. III Potsdam-V Kiev International Work-

shop, edited by A. S. Fokas, D. Kaup, A. C. Newell, and V. E. Zakharov~Springer-Verlag, Berlin, 1992!.
13A. S. Fokas and A. R. Its, SIAM J. Math. Anal.27, 738 ~1996!.
14A. S. Fokas, Proc. R. Soc. London, Ser. A53, 1411~1997!.
                                                                                                                



bo,
rtial
at we
-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 8 AUGUST 2003
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It is the aim of the present article to give all formulations of then-component KP
hierarchy and clarify connections between them. The generalization to the
n-component KP hierarchy is important because it contains many of the most
popular systems of soliton equations, like the Davey–Stewartson system~for n
52), the two-dimensional Toda lattice~for n52), then-wave system~for n>3)
and the Darboux–Egoroff system. It also allows us to construct natural generaliza-
tions to the Davey–Stewartson and Toda lattice systems. Of course, the inclusion of
all these systems in then-component KP hierarchy allows us to construct their
solutions by making use of vertex operators. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1590055#

I. INTRODUCTION

The remarkable link between the soliton theory and the group GL` was discovered in the
early 1980s by Sato40 and developed, making use of the spinor formalism, by Date, Jim
Kashiwara, and Miwa.7–9,24 The basic object that they considered is the KP hierarchy of pa
differential equations, which they studied through a sequence of equivalent formulations th
describe below. The first formulation is a deformation~or Lax! equation of a formal pseudo
differential operatorL5]1u1]211u2]221¯, introduced in Refs. 40 and 52:

]L

]xn
5@Bn ,L#, n51,2,... . ~1!

Here ui are unknown functions in the indeterminatesx1 , x2 ,..., andBn5(Ln)1 stands for the
differential part of Ln. The second formulation is given by the following zero curvature~or
Zakharov–Shabat! equations:

]Bm

]xn
2

]Bn

]xm
5@Bn ,Bm#, m,n51,2,... . ~2!

These equations are compatibility conditions for the following linear system

Lw~x,z!5zw~x,z!,
]

]xn
w~x,z!5Bnw~x,z!, n51,2,..., ~3!

on the wave function

w~x,z!5~11w1~x!z211w2~x!z221¯ !ex1z1x2z21¯. ~4!

a!Electronic mail: kac@math.mit.edu
b!Electronic mail: dleur@math.uu.nl
32450022-2488/2003/44(8)/3245/49/$20.00 © 2003 American Institute of Physics
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Provided that~2! holds, the system~3! has a unique solution of the form~4! up to multiplication
by an element from 11z21Cvz21b . Introduce the wave operator

P511w1~x!]211w2~x!]221¯, ~5!

so thatw(x,z)5Pex1z1x2z21¯. Then the existence of a solution of~3! is equivalent to the exis-
tence of a solution of the form~5! of the following Sato equation, which is the third formulatio
of the KP hierarchy:41,52

]P

]xk
52~P+]+P21!2+P, k51,2,..., ~6!

where the formal pseudo-differential operatorsP andL are related by

L5P+]+P21. ~7!

Let P* 511(2])21+w11(2])22+w21¯ be the formal adjoint ofP and let

w* ~x,z!5~P* !21e2x1z2x2z22¯

be the adjoint wave function. Then the fourth formulation of the KP hierarchy is the follow
bilinear identity:

Resz50w~x,z!w* ~x8,z!dz50 for any x and x8. ~8!

Next, this bilinear identity can be rewritten in terms of Hirota bilinear operators defined fo
arbitrary polynomialQ as follows:

Q~D ! f ~x!•g~x!5
def

QS ]

]yD ~ f ~x1y!g~x2y!!uy50 . ~9!

Towards this end, introduce the famoust-function t(x) by the formulas

w~x,z!5G1~z!t/t, w* ~x,z!5G2~z!t/t. ~10!

HereG6(z) are the vertex operators defined by

G6~z!5e6~x1z1x2z21¯ !e7~z21]̃/]x11z22]̃/]x21¯ !, ~11!

where ]̃/]xj stands for (1/j )(]/]xj ). The t-function exists and is uniquely determined by t
wave function up to a constant factor. Substituting thet-function in the bilinear identity~8! we
obtain the fifth formulation of the KP hierarchy as the following system of Hirota bilinear eq
tions:

(
j 50

`

Sj~22y!Sj 11~D̃ !e(r 51
` yrDrt•t50. ~12!

Herey5(y1 ,y2 ,...) arearbitrary parameters and the elementary Schur polynomialsSj are defined
by the generating series

(
j PZ

Sj~x!zj5exp(
k51

`

xkz
k. ~13!

The t-function formulation of the KP hierarchy allows one to construct easily itsN-soliton
solutions. For that introduce the vertex operator:8,9
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G~z1 ,z2!5..G1~z1!G2~z2!: ~14!

~where the sign of normal ordering< means that partial derivatives are always moved to
right!, and show using the bilinear identity~8! that if t is a solution of ~12!, then (1
1aG(z1 ,z2))t, wherea, z1 , z2PC3, is a solution as well. Sincet51 is a solution, the function

f N[~11a1G~z1
~1! ,z2

~1!!!¯~11aNG~z1
~N! ,z2

~N!!!•1 ~15!

is a solution of~12!, too. This is thet-function of theN-soliton solution.
The first application of the KP hierarchy, as well as its name, comes from the fact tha

simplest nontrivial Zakharov–Shabat equation, namely~2! with m52 andn53, is equivalent to
the Kadomtsev–Petviashvili equation if we letx15x, x25y, x35t, u52u1 :

3

4

]2u

]y2
5

]

]x S ]u

]t
2

3

2
u

]u

]x
2

1

4

]3u

]x3D . ~16!

Recall also that the celebrated KdV and Boussinesq equations are simple reductions of~16!. Since
the functionsu andt are related by

u52
]2

]x2
logt, ~17!

the functions 2(]2/]x2)log fN are solutions of~16!, called theN-soliton solutions.
The connection of the KP hierarchy to the representation theory of the group GL` is achieved

via the spinor formalism. Consider the Clifford algebraC, on generatorsc j
1 and c j

2 ( j P1/2
1Z) and the following defining relations~i.e., c i

6 are free charged fermions!:

c i
1c j

21c j
2c i

15d i ,2 j , c i
6c j

61c j
6c i

650. ~18!

The algebraC, has a unique irreducible representation in a vector spaceF (resp.F* ) which is a
left ~resp. right! module admitting a nonzero vectoru0& ~resp.^0u! satisfying

c j
6u0&50 ~resp. ^0uc2 j

6 50! for j .0. ~19!

These representations are dual to each other with respect to the pairing

^^0ua,bu0&&5^0uabu0&

normalized by the condition̂0u1u0&51.
The Lie algebra gl̀ embeds inC, by letting

r ~Ei j !5c2 i
1 c j

2 . ~20!

Exponentiating gives a representationR of the group GL̀ on F andF* . Let, for nPZ,

an5 (
j P1/21Z

c2 j
1 c j 1n

2 for nÞ0, a05(
j .0

c2 j
1 c j

22(
j ,0

c j
2c2 j

1 . ~21!

and consider the following operator onF:

H~x!5 (
n51

`

xnan . ~22!

For a positive integerm let
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^6mu5^0uc1/2
6
¯cm21/2

6 PF* and u6m&5c2m11/2
6

¯c21/2
6 u0&PF.

Then the Fock space is realized on the vector space of polynomialsB5C@x1 ,x2 ,...;Q,Q21# via

the isomorphisms:F→; B defined by

s~au0&)5 (
mPZ

^mueH~x!au0&Qm. ~23!

This remarkable isomorphism is called the boson-fermion correspondence and goes back
work of Skyrme44 and many other physicists; this beautiful form of it is an important part of
work of Date, Jimbo, Kashiwara, and Miwa.8,9,24

Using that

@am ,an#5mdm,2n ~24!

~i.e., that thean are free bosons!, it is not difficult to show that the isomorphisms is characterized
by the following two properties:27

s~ um&)5Qm, sans215
]

]xn
and sa2ns215nxn if n.0. ~25!

Using ~25!, it is easy to recover the following well-known properties of the boson-ferm
correspondence.8,9,27 Introduce the fermionic fields

c6~z!5 (
j P1/21Z

c j
6z2 j 21/2.

Then one has

sc6~z!s215Q61z6a0G6~z!, ~26!

sS (
i , j P1/21Z

r ~Ei j !z1
i 21/2z2

2 j 21/2Ds215
1

z12z2
G~z1 ,z2!. ~27!

HenceG(z1 ,z2) lies in a ‘‘completion’’ of the Lie algebra gl` acting onB via the boson-fermion
correspondence. Therefore, the group GL` and its ‘‘completion’’ act onB and Date, Jimbo,
Kashiwara, and Miwa show that all elements of the orbitO5GL`•1 and its completions satisfy
the bilinear identity~12!. SinceG(z1 ,z2)250 andG(z1 ,z2) lies in a completion of gl̀ , we see
that expaG(z1,z2)511aG(z1,z2) leaves a completion of the orbitO invariant, which explains why
~15! are solutions of the KP hierarchy.

Since the orbit GL̀u0& ~which is the image ofO in the fermionic picture! can be naturally
identified with the cone over a Grassmannian, we arrive at the remarkable discovery of Sa
solutions of the KP hierarchy are parametrized by an infinite-dimensional Grassmannian.41

It was subsequently pointed out in Refs. 27 and 30 that the bilinear Eq.~8! ~in the bosonic
picture! corresponds to the following remarkably simple equation on thet-function in the fermi-
onic picture:

(
kP1/21Z

ck
1t ^ c2k

2 t50. ~28!

This is the fermionic formulation of the KP hierarchy. Since~1! is equivalent to

Resz50c1~z!t ^ c2~z!t50, ~29!
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it is clear from~10! and~11! that Eqs.~8! and~29! are equivalent. Sincet5u0& obviously satisfies
~1! and R^ R(GL`) commutes with the operator(kck

1
^ c2k

2 , we see why any element o
R(GL`)u0& satisfies~28!. Thus, the most natural approach to the KP hierarchy is to start with
fermonic formulation~28!, go over to the bilinear identity~8! and then to all other formulation
~see Refs. 27, 30, and 25!. This approach was generalized in Ref. 33.

Our basic idea is to start once again with the fermonic formulation of KP, but then us
n-component boson-fermion correspondence, also considered by Date, Jimbo, Kashiwa
Miwa.7,24 This leads to a bilinear equation on a matrix wave function, which in turn leads
deformation equation for a matrix formal pseudo-differential operator, to matrix Sato equa
and to matrix Zakharov–Shabat-type equations.

The corresponding linear problem has been already formulated in Sato’s paper41 and Date,
Jimbo, Kashiwara, and Miwa7 have written the corresponding bilinear equation for the wa
function, but the connection between these formulations remained somewhat obscure.

It is the aim of the present article to give all formulations of then-component KP hierarchy
and clarify connections between them. The generalization to then-component KP is importan
because it contains many of the most popular systems of soliton equations, like the D
Stewartson system~for n52), the two-dimensional Toda lattice~for n52), and then-wave
system~for n>3). It also allows us to construct natural generalizations of the Davey–Stewa
and Toda lattice systems. Of course, the inclusion of all these systems in then-component KP
hierarchy allows us to construct their solutions by making use of vertex operators.

Hirota’s direct method23 requires some guesswork to introduce a new function~thet-function!
for which the equations in question take a bilinear form. The inclusion of the equations i
n-component KP hierarchy provides a systematic way of construction of thet-functions, the
corresponding bilinear equations and a large family of their solutions.

The difficulty of thet-function approach lies in the fact that the hierarchy contains too m
Hirota bilinear equations. To deal with this difficulty we introduce the notion of an energy
Hirota bilinear equation. We observe that the most interesting equations are those of lowest
For example, in then51 case the lowest energy~54! nontrivial equation is the classical K
equation in the Hirota bilinear form, in then52 case the lowest energy~52! equations form the
two-dimensional Toda chain and the energy 2 and 3 equations form the Davey–Stewartson
in the bilinear form, and in then>3 case the lowest energy~52! bilinear equations form the
n-wave system in the bilinear form.

The Hirota bilinear equations of then-component KP hierarchy also play a role in the theo
of theta functions of Riemann surfaces. To be more specific, Maffei35 shows that the theta functio
of a Riemann surfaces gives at function for then-component KP hierarchy. He then uses t
results of Sec. III D, formula~80!, to show that such a theta function satisfies the Fay trise
formula. He also shows that more complicated relations in the hierarchy give some theta re
obtained by Gunning in Ref. 20.

There is a new phenomenon in then-component case, which does not occur in the o
component case: thet-function and the wave function are a collection of functions$ta% and$Wa%
parametrized by the elements of the root latticeM of type An21 . The set suppt5$aPM uta

Þ0% is called the support of thet-functiont. We show that suppt is a convex polyhedron whos
edges are parallel to roots; in particular, suppt is connected, which allows us to relate the behav
of the n-component KP hierarchy at different points of the latticeM. It is interesting to note tha
the ‘‘matching conditions’’ which relate the functionsWa and Wb , a,bPM , involve elements
from the subgroup of translations of the Weyl group~Ref. 25, Chap. 6! of the loop group
GL(C@z,z21#) and are intimately related to the Bruhat decomposition of this loop group~see Ref.
40!. We are planning to study this in a future publication.

The behavior of solutions obtained via vertex operators in then-component case is much mor
complicated than for the ordinary KP hierarchy. In particular, they are not necessarily multis
solutions~i.e., a collection of waves that preserve their form after interaction!. For that reason we
call them the multisolitary solutions. Some of the multisolitary solutions turn out to be th
called dromion solutions, which have become very popular recently.6,19,22,21These solutions deca
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exponentially in all directions~and they are not soliton solutions; in particular, they exist only
n.1). It is a very interesting problem for which values of parameters the multisolitary solu
are soliton or dromion solutions.

Note also that the Krichever method for construction of the quasiperiodic solutions of th
hierarchy as developed in Refs. 42 and 43 applies to then-component KP~see, e.g., Ref. 35!.

As shown in Refs. 41 and 8, themth reduction of the KP hierarchy, i.e., the requirement t
Lm is a differential operator, leads to the classical formulation of the celebrated KdV hierarch
m52, Boussinesq form53 and all the Gelfand–Dickey hierarchies form.3. The totality of
t-functions for themth reduced KP hierarchy turns out to be the orbit of the vacuum unde
loop group of SLm .

We define in a similar way the@m1 ,m2 ,...,mn#-reduction of then-component KP and show
that the totality of t-functions is the orbit of the vacuum vector under the loop group
SLm11¯1mn

~see also Ref. 5!. Even the case that allmj51 turns out to be extremely interestin
~it is trivial if n51), as it gives the 111 n-wave system forn>3, the Darboux-Egoroff system
from topological field theory~see also Ref. 50! and the decoupled nonlinear Schro¨dinger ~or
AKNS! system forn52. We note that the@1,1,...,1#-reducedn-component KP, which we call the
n-component NLS hierarchy, admits a natural generalization to the case of an arbitrary simp
group G~then-component NLS corresponding to GLn). These hierarchies, which might be calle
the GNLS hierarchies, contain the systems studied by many authors~Refs. 10, 52, 53, and 33
among others!.

The article is set out as follows. In Sec. II we explain the construction of the semi-infi
wedge representationF of the group GL̀ and write down the equation of the GL`-orbit O of the
vacuumu0& ~Proposition 2.1!. This equation is called the KP hierarchy in the fermionic picture.
usual, the Plu¨cker map makesO a C3-bundle over an infinite-dimensional Grassmannian.
describe the ‘‘support’’ oftPO ~Proposition 2.2!.

In Sec. III we introduce then-component bosonization and write down the fermionic fields
terms of bosonic ones via vertex operators~Theorem 3.1!. This allows us to transport the KP
hierarchy from the fermionic picture to the bosonic one~66! and write down then-component KP
hierarchy as a system of Hirota bilinear Eqs.~70!. We describe the support of at-function in the
bosonic picture~Proposition 3.1!. At the end of the section we list all Hirota bilinear equations
lowest energy~73!–~79!.

We start Sec. IV with an exposition of the theory of matrix formal pseudo-differential op
tors, and prove the crucial Lemma 4.1. This allows us to reformulate then-component KP hier-
archy~66! in terms of formal pseudo-differential operators@see~95! and~103!#. Using the crucial
lemma we show that the bilinear Eq.~66! is equivalent to the Sato Eq.~113! and matching
conditions~107! on the wave operatorsP1(a). We show that Sato equation is the compatibil
condition of Sato’s linear problem~121! on the wave function~Proposition 4.3!, and that compat-
ibility of Sato equation implies the equivalent Lax and Zakharov–Shabat equations~Lemma 4.3!.
We prove that compatibility conditions completely determine the wave operatorsP1(a) once one
of them is given~Proposition 4.1!. At the end of the section we write down explicitly the first Sa
and Lax equations and relations between them.

In Sec. V we show that many well-known 211 soliton equations are the simplest equations
then-component KP hierarchy, and deduce from Sec. IV expressions for theirt-functions and the
corresponding Hirota bilinear equations.

Using vertex operators we write down in Sec. VI theN-solitary solutions~219! of the
n-component KP and hence of all its relatives. We discuss briefly the relation of this ge
solution to the known solutions to the relatives.

In Sec. VII we discuss the@m1 ,m2 ,...,mn#-reductions of then-component KP hierarchy. The
reduce the 211 soliton equations to 111 soliton equations. We show that at the group theor
level it corresponds to a reduction from GL` ~or rather a completion of it! to the subgroup
SLm11¯1mn

(C@ t,t21#) ~Proposition 7.1!. We discuss in more detail the@1,1,...,1#-reduced
n-component KP, which is a generalization of the NLS system and which admits further g
alization to any simple Lie group.
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In Sec. VIII we introduce the Lie algebraW11`(gln) and describe the Orlov–Schulman
Adler–Shiota–van Moerbeke formula for then-component KP hierarchy. This formula gives
connection between the action ofW11`(gln) on a tau function and the Orlov-Schulman symm
tries of the wave function.

II. THE SEMI-INFINITE WEDGE REPRESENTATION OF THE GROUP GL` AND THE KP
HIERARCHY IN THE FERMIONIC PICTURE

Consider the infinite complex matrix group

GL`5$A5~ai j ! i , j PZ11/2uA is invertible and all but a finite number ofai j 2d i j are 0%

and its Lie algebra

gl`5$a5~ai j ! i , j PZ11/2u all but a finite number ofai j are 0%

with bracket@a,b#5ab2ba. The Lie algebra gl̀ has a basis consisting of matricesEi j , i , j
PZ11/2, whereEi j is the matrix with a 1 on the (i , j )th entry and zeros elsewhere.

Let C`5 % j PZ11/2Cv j be an infinite-dimensional complex vector space with fixed ba
$v j% j PZ11/2. Both the group GL̀ and its Lie algebra gl` act linearly onC` via the usual formula:

Ei j ~vk!5d jkv i .

The well-known semi-infinite wedge representation is constructed as follows.27 The semi-
infinite wedge spaceF5L1/2̀ C` is the vector space with a basis consisting of all semi-infin
monomials of the formv i 1

∧v i 2
∧v i 3

∧¯, wherei 1. i 2. i 3.¯ andi ,115 i ,21 for ,@0. We can
now define representationsR of GL` and r of gl` on F by

R~A!~v i 1
∧v i 2

∧v i 3
∧¯ !5Av i 1

∧Av i 2
∧Av i 3

∧¯, ~30!

r ~a!~v i 1
∧v i 2

∧v i 3
∧¯ !5(

k
v i 1

∧v i 2
∧¯∧v i k21

∧av i k
∧v i k11

∧¯ . ~31!

These equations are related by the usual formula:

exp~r ~a!!5R~expa! for aPgl` .

The representationr of gl` can be described in terms of a Clifford algebra. Define the wedging
contracting operatorsc j

1 andc j
2 ( j PZ11/2) onF by

c j
1~v i 1

∧v i 2
∧¯ !5H 0 if j 5 i s for some s,

~21!sv i 1
∧v i 2

¯∧v i s
∧v2 j∧v i s11

∧¯ if i s.2 j . i s11 ;

c j
2~v i 1

∧v i 2
∧¯ !5H 0 if j Þ i s for all s,

~21!s11v i 1
∧v i 2

∧¯∧v i s21
∧v i s11

∧¯ if j 5 i s .

These operators satisfy the following relations (i , j PZ11/2,l,m51,2):

c i
lc j

m1c j
mc i

l5dl,2md i ,2 j , ~32!

hence they generate a Clifford algebra, which we denote byC,.
Introduce the following elements ofF (mPZ):

um&5vm21/2∧vm23/2∧vm25/2∧¯ .

It is clear thatF is an irreducibleC,-module such that
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c j
6u0&50 for j .0. ~33!

It is straightforward that the representationr is given by the following formula:

r ~Ei j !5c2 i
1 c j

2 . ~34!

Define thecharge decomposition

F5 %
mPZ

F ~m! ~35!

by letting

charge~v i 1
∧v i 2

∧¯ !5m if i k1k5
1

2
1m for k@0. ~36!

Note that

charge~ um&)5m and charge~c j
6!561. ~37!

It is clear that the charge decomposition is invariant with respect tor (gl`) @and hence with respec
to R(GL`)]. Moreover, it is easy to see that eachF (m) is irreducible with respect to gl` ~and
GL`). Note thatum& is its highest weight vector, i.e.,

r ~Ei j !um&50 for i , j ,

r ~Eii !um&50 ~resp.5um&) if i .m ~resp. if i ,m!.

The main object of our study is the GL`-orbit

O5R~GL`!u0&,F ~0!

of the vacuum vectoru0&.
Proposition 2.1:27 A nonzero elementt of F(0) lies in O if and only if the following equation

holds in F̂ F:

(
kPZ11/2

ck
1r ^ c2k

2 t50. ~38!

Proof: It is clear that(kck
1u0& ^ c2k

2 u0&50 and it is easy to see that the operator(kck
1

^ c2k
2 PEnd(F ^ F) commutes withR(g) ^ R(g) for any gPGL` . It follows thatR(g)u0& satis-

fies ~38!. For the proof of the converse statement~which is not important for our purposes! see
Ref. 27 or 30. h

Equation~38! is called theKP hierarchy in the fermionic picture.
Note that any nonzero elementt from the orbitO is of the form

t5u21/2∧u23/2∧u25/2∧¯, where ujPC` and u2k5v2k for k@0. ~39!

This allows us to construct a canonical mapw: O→Gr by w(t)5( iCu2 i,C`, where Gr consists
of the subspaces ofC` containing( j 5k

` Cv2 j 21/2 for k@0 as a subspace of codimensionk. It is
clear that the mapw is surjective with fibersC3.

A more general approach using the spin group of the above Clifford algebra is given in
32. As in the KP case there is a connection to Matrix models, see, e.g., Refs. 4 and 51.

Consider the freeZ-moduleL̃ with the basis$d j% j P1/21Z , let D̃ (resp.D̃0)5$d i2d j u i , j P1/2
1Z (resp.i ,2 j P1/21Z1),iÞ j %, and letM̃,L̃ (resp.M̃0,L̃) be theZ-span ofD̃ (resp.D̃0). We
define the weight of a semi-infinite monomial by
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weight~c i 1
1
¯c i s

1c j 1

2
¯c j t

2u0&)5d2 i 1
1¯1d2 i s

2d j 1
2¯2d j t

. ~40!

Note that weights of semi-infinite monomials fromF (0) lie in M̃0 . Given tPF we denote by
f suppt, and call it thefermionic support oft, the set of weights of semi-infinite monomials th
occur int with a nonzero coefficient.

Proposition 2.2: IftPO, then f suppt is the intersection of M˜ 0 with a convex polyhedron with
vertices in M̃0 and edges inD̃0 .

Proof: According to the general result~Ref. 40, Lemma 4!, the edges of the convex hull o
f suppt must be parallel to the elements ofD̃0 . But if the difference of weights of two semi
infinite monomials is a multiple ofd i2d j , then it is clearly equal to6(d i2d j ). Hence edges of
the convex hull off suppt are elements ofD̃0 , and the proposition follows. h

III. THE n-COMPONENT BOSONIZATION AND THE KP HIERARCHY IN THE BOSONIC
PICTURE

Using a bosonization one can rewrite~38! as a system of partial differential equations. The
are, however, many different bosonizations. In this article we focus on then-component bosoniza
tions, wheren51,2,... .

For that purpose we relabel the basis vectorsv i and with them the corresponding fermion
operators~the wedging and contracting operators!. This relabeling can be done in many differe
ways, see, e.g., Ref. 46. The simplest one is the following.

Fix nPN and define forj PZ, 1< j <n, kPZ11/2:

vk
~ j !5vnk2~1/2!~n22 j 11! ,

and correspondingly:

ck
6~ j !5cnk6~1/2!~n22 j 11!

6 .

Notice that with this relabeling we have

ck
6~ j !u0&50 for k.0.

The charge decomposition~36! can be further decomposed into a sum ofpartial chargeswhich are
denoted by chargej , j 51,...,n, defined for a semi-infinite monomialv[v i 1

∧v i 2
∧¯ of weight

( iaid i by

chargej~v !5(
kPZ

akn1 j 21/2, ~41!

which is equivalent to

chargej ck
6~ i !56d i j , chargej u0&50.

Another important decomposition is theenergy decompositiondefined by

energyu0&50, energy ck
6~ j !52k. ~42!

Note that energy is a non-negative number which can be calculated by

energy~v !5 (
kP1/21Z

akS F k

nG1
1

2D . ~43!

Introduce the fermionic fields (zPC3):
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c6~ j !~z!5
def

(
kPZ11/2

ck
6~ j !z2k21/2. ~44!

Next we introduce bosonic fields (1< i , j <n):

a~ i j !~z![(
kPZ

ak
~ i j !z2k215

def

:c1~ i !~z!c2~ j !~z!:, ~45!

where< stands for thenormal ordered productdefined in the usual way~l, m51 or 2!:

:ck
l~ i !c,

m~ j !:5H ck
l~ i !c,

m~ j ! if ,.0,

2c,
m~ j !ck

l~ i ! if ,,0.
~46!

One checks~using, e.g., the Wick formula! that the operatorsak
( i j ) satisfy the commutation rela

tions of the affine algebra gln(C) ˆ with central charge 1, i.e.,

@ap
~ i j ! ,aq

~k, !#5d jkap1q
~ i , ! 2d i ,ap1q

~k j ! 1pd i ,d jkdp,2q , ~47!

and that

ak
~ i j !um&50 if k.0 or k50 and i , j . ~48!

The operatorsak
( i )[ak

( i i ) satisfy the canonical commutation relation of the associative oscill
algebra, which we denote bya:

@ak
~ i ! ,a,

~ j !#5kd i j dk,2, , ~49!

and one has

ak
~ i !um&50 for k.0. ~50!

It is easy to see that restricted to gln(C) ˆ , F (0) is its basic highest weight representation~see
Ref. 25, Chap. 12!. The gln(C) ˆ -weight of a semi-infinite monomialv is as follows:

L01(
j 51

n

chargej~v !d j2energy~v !d̃. ~37!

HereL0 is the highest weight of the basic representation,$d j% is the standard basis of the weig
lattice of gln(C) and d̃ is the primitive imaginary root~Ref. 25, Chap. 7!.

In order to express the fermionic fieldsc6( i )(z) in terms of the bosonic fieldsa ( i i )(z), we
need some additional operatorsQi , i 51,...,n, on F. These operators are uniquely defined by t
following conditions:

Qi u0&5c21/2
1~ i ! u0&, Qick

6~ j !5~21!d i j 11ck7d i j

6~ j ! Qi . ~52!

They satisfy the following commutation relations:

QiQj52QjQi if iÞ j , @ak
~ i ! ,Qj #5d i j dk0Qj . ~53!

Theorem 3.1:7,24

c6~ i !~z!5Qi
61z6a0

~ i !
expS 7 (

k,0

1

k
ak

~ i !z2kD expS 7 (
k.0

1

k
ak

~ i !z2kD . ~54!
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Proof: See Ref. 46.
The operators on the right-hand side of~54! are called vertex operators. They made their fi

appearance in string theory~cf. Ref. 16!.
We shall use below the following notation:

uk1 ,...,kn&5Q1
k1
¯Qn

knu0&. ~55!

Remark 3.1: One easily checks the following relations:

@ak
~ i ! ,cm

6~ j !#56d i j ck1m
6~ j ! .

They imply formula~54! for c6( i )(z) except for the first two factors, which require some ad
tional analysis.

We can describe now then-component boson-fermion correspondence. LetC@x# be the space
of polynomials in indeterminatesx5$xk

( i )%, k51,2,...,i 51,2,...,n. Let L be a lattice with a basis
d1 ,...,dn over Z and the symmetric bilinear form (d i ud j )5d i j , whered i j is the Kronecker sym-
bol. Let

e i j 5H 21 if i . j ,

1 if i< j .
~56!

Define a bimultiplicative functione:L3L→$61% by letting

e~d i ,d j !5e i j . ~57!

Let d5d11¯1dn , M5$gPLu(dug)50%, D5$a i jªd i2d j u i , j 51,...,n,iÞ j %. Of courseM is
the root lattice of sln(C), the setD being the root system.

Consider the vector spaceC@L# with basiseg, gPL, and the following twisted group algebr
product:

eaeb5e~a,b!ea1b. ~58!

Let B5C@x# ^ CC@L# be the tensor product of algebras. Then then-component boson-fermion
correspondence is the vector space isomorphism

s:F→; B, ~59!

given by

s~a
2m1

~ i 1!
¯a

2ms

~ i s! uk1 ,...,kn&)5m1¯msxm1

~ i 1!
¯xms

~ i s!
^ ek1d11¯1kndn. ~60!

The transported charge and energy then will be as follows:

charge~p~x! ^ eg!5~dug!, chargej~p~x! ^ eg!5~d j ug!, ~61!

energy~xm1

~ i 1!
¯xms

~ i s!
^ eg!5m11¯1ms1

1
2 ~gug!. ~62!

We denote the transported charge decomposition by

B5 %
mPZ

B~m!.

The transported action of the operatorsam
( i ) andQj looks as follows:

sa2m
~ j ! s21~p~x! ^ eg!5mxm

~ j !p~x! ^ eg, if m.0,
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sam
~ j !s21~p~x! ^ eg!5

]p~x!

]xm
^ eg, if m.0,

~63!
sa0

~ j !s21~p~x! ^ eg!5~d j ug!p~x! ^ eg,

sQjs
21~p~x! ^ eg!5e~d j ,g!p~x! ^ eg1d j .

Using the isomorphisms we can reformulate the KP hierarchy~38! in the bosonic picture as a
hierarchy of Hirota bilinear equations.

We start by observing that~38! can be rewritten as follows:

Resz50dzS (
j 51

n

c1~ j !~z!t ^ c2~ j !~z!t D 50, tPF ~0!. ~64!

Here and further Resz50dz( j f jz
j ~where f j are independent ofz! stands forf 21 . Notice that for

tPF (0), s(t)5(gPMtg(x)eg. Here and further we writetg(x)eg for tg ^ eg. Using Theorem

3.1, Eq.~64! turns unders ^ s:F ^ F→; C@x8,x9# ^ (C@L8# ^ C@L9#) into the following equation:

Resz50dzS (
j 51

n

(
a,bPM

e~d j ,a2b!z~d j ua2b!expS (
k51

`

~xk
~ j !82xk

~ j !9!zkD
3expS 2 (

k51

` S ]

]xk
~ j !8

2
]

]xk
~ j !9D z2k

k D ta~x8!~ea1d j !8tb~x9!~eb2d j !9D 50. ~65!

Hence for alla,bPL such that~aud!52~bud!51 we have

Resz50S dz(
j 51

n

e~d j ,a2b!z~d j ua2b22d j !expS (
k51

`

~xk
~ j !82xk

~ j !9!zkD
3expS 2 (

k51

` S ]

]xk
~ j !8

2
]

]xk
~ j !9D z2k

k D ta2d j
~x8!tb1d j

~x9!D 50. ~66!

Now making the change of variables

xk
~ j !5 1

2 ~xk
~ j !81xk

~ j !9!, yk
~ j !5 1

2 ~xk
~ j !82xn

~ j !9!,

~66! becomes

Resz50S dz(
j 51

n

e~d j ,a2b!z~d j ua2b22d j !expS (
k51

`

2yk
~ j !zkD expS 2 (

k51

`
]8

]yk
~ j !

z2k

k D
3ta2d j

~x1y!tb1d j
~x2y!D 50. ~67!

We can rewrite~67! using the elementary Schur polynomials defined by~13!:

(
j 51

n

e~d j ,a2b!(
k50

`

Sk~2y~ j !!Sk211~d j ua2b!S 2
]̃

]y~ j !D ta2d j
~x1y!tb1d j

~x2y!50. ~68!

Here and further we use the notation
                                                                                                                



tions:

ed

ents

ial
e

-

3257J. Math. Phys., Vol. 44, No. 8, August 2003 The n-component KP hierarchy

                    
]̃

]y
5S ]

]y1
,
1

2

]

]y2
,
1

3

]

]y3
,...D .

Using Taylor’s formula we can rewrite~68! once more:

(
j 51

n

e~d j ,a2b!(
k50

`

Sk~2y~ j !!Sk211~d j ua2b!S 2
]̃

]u~ j !D
3e( j 51

n
(r 51

` yr
~ j !]/]ur

~ j !
ta2d j

~x1u!tb1d j
~x2u!uu5050. ~69!

This last equation can be written as the following generating series of Hirota bilinear equa

(
j 51

n

e~d j ,a2b!(
k50

`

Sk~2y~ j !!Sk211~d j ua2b!~2D ~ j !̃ !e( j 51
n

(r 51
` yr

~ j !Dr
~ j !

ta2d j
•tb1d j

50 ~70!

for all a,bPL such that~aud!52~bud!51. Hirota’s dot notation used here and further is explain
in the Introduction@see~9!#.

Equation~70! is known ~see Refs. 7, 8, and 24! as then-component KP hierarchy of Hirota
bilinear equations. This equation still describes the group orbit:s(O)5sRs21(GL`)•1.

Remark 3.2:Equation~70! is invariant under the transformationsa°a1g, b°b1g, where
gPM . Transformations of this type are called Schlesinger transformations.

Let t5(gPLtg(x)egPB; the set suppt5def$gPLutgÞ0% is called thesupportof t.
Proposition 3.1: LettPCvxb ^ C@M # be a solution to the KP hierarchy (67). Then suppt is

the intersection of M with a convex polyhedron with vertices in M and edges parallel to elem
of D.

Proof: Consider the linear maps̄:L̃→L defined bys̄(d j )5d ( j 11/2) modn , where a modn
stands for the element of the set$1,...,n% congruent toa modn. Then it is easy to see that fort
PF we have

supp s~t!5s̄~ f supp t!.

Now Proposition 3.1 follows from Proposition 2.2. h

The indeterminatesyk
( j ) in ~70! are free parameters, hence the coefficient of a monom

yk1

( j 1)
¯yks

( j s) (kiPN,k1<k2<¯, j iP$1,...,n%) in Eq. ~70! gives us a Hirota bilinear equation of th

form

(
i 51

n

(
a,b

Qk;a,b
~ j ! ~D !ta2d i

•tb1d i
50, ~71!

whereQk,a,b
( j ) are polynomials in theDr

( i ) , k5(k1 ,...,ks), j 5( j 1 ,...,j s) anda,bPL are such that
~aud!52~bud!51. Each of these equations is a partial differential equation~PDE! in the indeter-
minatesxk

( j ) on functionstg , gPM .
Recall that an expressionQ(D)ta•tb is identically zero if and only ifa5b and Q(D)

52Q(2D). The corresponding Hirota bilinear equation is then calledtrivial and can be disre-
garded.

Let us point out now that the energy decomposition~62! induces the following energy de
composition on the space of Hirota bilinear equations:

energy~Qk;a,b
~ j ! ~D !ta2d i

•tb1d i
!5k11¯1ks1

1
2 ~~aua!1~bub!!. ~72!

It is clear that the energy of a nontrivial Hirota bilinear equation is at least 2.
Below we list the Hirota bilinear equations of lowest energy for eachn.
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n51. In this case we may drop the superscript inDk
(1) and the subscript inta ~which is 0!.

Each monomialyk1
¯yks

gives a Hirota bilinear equation of the form

Qk~D !t•t50

of energyk11¯1ks11. An easy calculation shows that the lowest energy of a nontrivial e
tion is 4, and that there is a unique nontrivial equation of energy 4, the classical KP equation
Hirota bilinear form:

~D1
424D1D313D2

2!t•t50. ~73!

n>2. There is an equation of energy 2 for each unordered pair of distinct indicesi and k
~recall thata ik5d i2dk are roots!:

D1
~ i !D1

~k!t0•t052ta ik
taki

. ~74!

Furthermore, for each ordered pair of distinct indicesi andj there are three equations of energy

~D2
~ i !1D1

~ i !2!t0•ta i j
50, ~75!

~D2
~ j !1D1

~ j !2!ta i j
•t050, ~76!

D1
~ i !D2

~ j !t0•t012D1
~ j !ta i j

•ta j i
50. ~77!

n>3. There is an equation of energy 2 and an equation of energy 3 for each ordered tr
distinct indicesi, j, k:

D1
~k!t0•ta i j

5e ikek je i j ta ik
tak j

, ~78!

D2
~k!t0•ta i j

5e i j ek je ikD1
~k!ta ik

•tak j
. ~79!

@Note that~76! is a special case of~79! wherek5 j .]
n>4. There is an algebraic equation of energy 2 for each ordered quadruple of distinct in

i, j, k, ,:

e i j ek,t0ta ik1a j ,
1e i ,e jkta ik

ta j ,
1e ike j ,ta i ,

ta jk
50. ~80!

Equations~74!–~80!, together with an algebraic equation of energy 3 for each ordered sextup
distinct indices similar to~80!, form a complete list of nontrivial Hirota bilinear equations
energy<3 of then-component KP hierarchy.

IV. THE ALGEBRA OF FORMAL PSEUDO-DIFFERENTIAL OPERATORS AND THE n-
COMPONENT KP HIERARCHY AS A DYNAMICAL SYSTEM

The KP hierarchy and itsn-component generalizations admit several formulations. The
given in the previous section obtained by the field theoretical approach is thet-function formu-
lation given by Date, Jimbo, Kashiwara, and Miwa.7 Another well-known formulation, introduced
by Sato,41 is given in the language of formal pseudo-differential operators. We will show that
formulation follows from thet-function formulation given by Eq.~66!.

We shall work over the algebraA of formal power series overC in indeterminatesj and x
5(xk

( j )), wherek51,2,... andj 51,...,n. The indeterminatej will be viewed as a variable and th
xk

( j ) as parameters. Let
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]5
]

]j
.

A formal n3n matrix pseudo-differential operatoris an expression of the form

P~j,x,]!5 (
j <N

Pj~j,x!] j , ~81!

wherePj aren3n matrices overA. The largestN such thatPNÞ0 is called theorder of P(j,x,])
@write ordP(j,x,])5N]. The coefficientP21 is called theresidueof P ~write Res]P5P21). Let
C denote the vector space overC of all expressions~81!. We have a linear isomorphisms:C
→Matn(A((z))) given bys(P(j,x,]))5P(j,x,z). The matrix seriesP(j,x,z) in indeterminates
j, x andz is called thesymbolof P(j,x,]).

Now we may define a product+ on C making it an associative algebra:

s~P+Q!5 (
n50

`
1

n!

]ns~P!

]zn
]ns~Q!.

We shall often drop the multiplication sign+ when no ambiguity may arise. LettingC(m)5$P
PCuordC<m%, we get aZ-filtration of the algebraC:

¯C~m11!.C~m!.C~m21!.¯ . ~82!

One defines the differential part ofP(j,x,]) by P1(j,x,])5( j 50
N Pj (j,x)] j , and let P25P

2P1 . We have the corresponding vector space decomposition:

C5C2 % C1 . ~83!

One defines a linear map* :C→C by the following formula:

S (
j

Pj]
j D *

5(
j

~2]! j + tPj . ~84!

Here and furthertP stands for the transpose of the matrixP. Note that* is an anti-involution of
the algebraC. In terms of symbols the anti-involution* can be written in the following closed
form:

P* ~j,x,z!5S exp]
]

]zD tP~j,x,2z!. ~85!

It is clear that the anti-involution* preserves the filtration~82! and the decomposition~83!.
Introduce the following notation:

z•x~ j !5zj1 (
k51

`

zkxk
~ j ! , ez•x5diag~ez•x~1!

,...,ez•x~n!
!.

The algebraC acts on the spaceU1 (resp.U2) of formal oscillating matrix functions of the form

(
j <N

Pjz
jez•xS resp. (

j <N
Pjz

je2z•xD , where PjPMatn~A!,

in the obvious way:

P~j,x!] je6z•x5P~j,x!~6z! je6z•x.
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We can now prove the following fundamental lemma.
Lemma 4.1: For P,QPC one has

Resz50~P~j,x,z!ezj!~ tQ~j2h,x8,2z!ez~h2j!!dz5Res]P~j,x,]!+Q* ~j,x8,]!+eh]. ~86!

Proof: We first prove Eq.~86! for h50, i.e.,

Resz50~P~j,x,z!ezj!~ tQ~j,x8,2z!e2zj!dz5Res]P~j,x,]!+Q* ~j,x8,]!. ~87!

For this purpose we letP(j,x,])5( i Pi]
i and tQ(j,x8,])5( jQj (2]) j . Then the left-hand side

of ~87! is

Resz50~P~j,x,z!ezj!~ tQ~j,x8,2z!e2zj!dz5 (
i 1 j 521

Pi
tQj . ~88!

The right-hand side of~87! is equal to Res]( i , j Pi]
i 1 j tQj . Since ( k

k21)50 for k.0 we deduce
that this is equal to

Res](
i , j

Pi]
i 1 j tQj5Res](

i , j
(
k50

` S i 1 j
k D ]k tQ

]jk
] i 1 j 2k

5 (
i 1 j 115k>0

S i 1 j
k D ]k tQ

]jk
] i 1 j 2k

5 (
i 1 j 521

Pi
tQj ,

which is equal to~88!. This proves~87!. Next, we use Taylor’s formula and rewrite the left-ha
side of ~86!:

Resz50~P~j,x,z!ezj!~ tQ~j2h,x8,2z!ez~h2j!!dz

5Resz50~P~j,x,z!ezj!(
k50

`
~2h!k

k!

]k

]jk
~ tQ~j,x8,2z!e2zj!dz

5Resz50~P~j,x,z!ezj!(
k50

`
~2h!k

k! (
,50

k S k
, D ], tQ~j,x8,2z!

]j,
~2z!k2,e2zjdz

5Resz50~P~j,x,z!ezj!(
k50

`
~h!k

k!
t~~2]!kQ~j,x8,]!!e2zjdz. ~89!

Using ~87! we find that the last line of~89! is equal to

Res](
k50

`
~h!k

k!
P~j,x,]!+Q* ~j,x8,]!+]k,

which is equal to the right-hand side of~86!. h

As a consequence of this lemma one finds the following corollary.
Corollary 4.1: The equality

Resz50~P~j,x,z!ezj!~ tQ~j8,x8,2z!e2zj8!dz50 ~90!

is equivalent to
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~P~j,x,]!+Q* ~j,x8,]!!250. ~91!

Proof: Substitutej85j2h in ~90!. Now use Lemma 4.1 and one obtains that

Res]P~j,x,]!+Q* ~j,x8,]!+eh]50.

Next writeeh]5( j 50
` (] j / j !)h j and~91! follows immediately. The converse is proved in a simi

way. h

In this article we will sometimes use infinite order pseudo-differential operators. Follo
Mulase37 we define a valuation

valx :A\$0%→$0,1,2,3,...%

by

valxxk
~ j !5energy~xk

~ j !!5k

and take a completion ofC defined as follows:

Ĉ5H P5(
j PZ

Pj]
jUPjPA and there is a positive real numberCP

and positive integersM P and NP such that valxPj.CPj 2NP for all j .M PJ .

The completionĈ has a natural associative algebra structure. We refer for more informatio
Refs. 36 and 37. It is straightforward to check the following:

Remark 4.1: Lemma 4.1 and Corollary 4.1 also hold for P,QPĈ.
We proceed now to rewrite the formulation~66! of then-component KP hierarchy in terms o

formal pseudo-differential operators.
Let 1<a, b<n and recall formula~66! wherea is replaced bya1da , b by b2db and all

x1
( j ) for 1< j <n by x1

( j )1j:

Resz50S dz(
j 51

n

e~d j ,a1da2b1db!z~d j ua1da2b1db22d j !expS (
k51

`

~xk
~ j !82xk

~ j !9!zkD
3expS 2 (

k51

` S ]

]xk
~ j !8

2
]

]xk
~ j !9D z2k

k D ta1aaj
~j8,x8!tb2abj

~j9,x9!D ez~j82j9!50

~a,bPM !. ~92!

For eachaPsuppt we define the~matrix valued! functions

V6~a,j,x,z!5~Vi j
6~a,j,x,z!! i , j 51

n ~93!

as follows:

Vi j
6~a,j,x,z!5

def

e~d j ,a1d i !z
~d j u6a1a i j !expS 6 (

k51

`

xk
~ j !zkD

3expS 7 (
k51

`
]

]xk
~ j !

z2k

k D ta6a i j
~j,x!/ta~j,x!e6zj. ~94!

It is easy to see that Eq.~92! is equivalent to the following bilinear identity:
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Resz50V1~a,j,x,z! tV2~b,j8,x8,z!dz50 for all a,bPM . ~95!

Definen3n matricesW6(m)(a,j,x) by the following generating series@cf. ~94!#:

(
m50

`

Wi j
6~m!~a,j,x!~6z!2m5e j i z

d i j 21S exp7 (
k51

`
]

]xk
~ j !

z2k

k D ta6a i j
~j,x!)/ta~j,x!. ~96!

Note that

W6~0!~a,j,x!5I n , ~97!

Wi j
6~1!~a,j,x!5H 6e j i ta6a i j

/ta if iÞ j ,

2ta
21 ]ta

]x1
~ i !

if i 5 j ,
~98!

Wi j
6~2!~a,j,x!55 7e j i

]ta6a i j

]x1
~ j ! Y ta if iÞ j ,

S 7
1

2

]ta

]x2
~ i !

1
1

2

]2ta

]x1
~ i !2D Y ta if i 5 j .

~99!

We see from~94! that V6(a,j,x,z) can be written in the following form:

V6~a,j,x,z!5S (
m50

`

W6~m!~a,j,x!R6~a,6z!~6z!2mD e6z•x

5 (
m50

`

W6~m!~a,j,x!~6z!2mR6~a,6z!S6~x,6z!ezj, ~100!

where

R6~a,z!5(
i 51

n

e~d i ,a!Eii ~6z!6~d i ua!,

~101!

S6~x,z!5(
i 51

n

e6( j 51
` xj

~ i !
~6z! j

Eii .

Here and furtherEi j stands for then3n matrix whose (i , j ) entry is 1 and all other entries ar
zero. Now it is clear thatV6(a,j,x,z) can be written in terms of formal pseudo-differenti
operators

P6~a![P6~a,j,x,]!5I n1 (
m51

`

W6~m!~a,j,x!]2m.

~102!
R6~a!5R6~a,j,]! and S65S6~x,]!

as follows:

V6~a,j,x,z!5P6~a!R6~a!e6z•x5P6~a!R6~a!S6e6zx. ~103!

Since obviously
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R2~a,]!215R1~a,]!* and S2~x,]!215S1~x,]!* , ~104!

using Corollary 4.1 and Remark 4.1 we deduce from the bilinear identity~95!

~P1~a,j,x,]!R1~a2b,]!S1~x2x8,]!P2~b,j,x8]!* !250 ~105!

for any a, bPsuppt.
Furthermore, putx5x8. Then one deduces from~105! with a5b that

P2~a!5~P1~a!* !21, ~106!

sinceR6(0)5I n andP6(a)PI n1C2 . Equations~105! and ~106! imply

~P1~a!R1~a2b!P1~b!21!250 for all a,bPsupp t. ~107!

In the rest of this article we sometimes writeP(a), W(a)(k) instead ofP1(a) andW(a)1(k).
Proposition 4.1: GivenbPsupp t, all the pseudo-differential operators P(a), aPsupp t,

are completely determined by P(b) from Eqs. (107). Moreover, ifa5b1a i j , then

P~a!5S S e i j ]1
] logWi j

~1!~b!

]x1
~ i ! D Eii 2

e i j

Wi j
~1!~b!

Eji 1 (
k51
kÞ i , j

n

e ike jkS Ekk2
Wk j

~1!~b!

Wi j
~1!~b!

EikD D P~b!.

~108!

Proof: For P5I n1( j 51
` W( j )]2 j we have

P215I n2W~1!]211~W~1!22W~2!!]221¯ . ~109!

We have foriÞ j :R(a i j )5A]1B1C]21, where

A5e i j Eii , B5 (
k51
kÞ i , j

n

e ike jkEkk , C5e j i Ej j . ~110!

Let a,bPM be such thata2b5a i j . It follows from ~109! and ~107! that P(a)R(a
2b)P(b)215(P(a)R(a2b)P(b)21)15A]1B1W(1)(a)A2AW(1)(b), or equivalently

P~a!~A]1B1C]21!5~A]1B1W~1!~a!A2AW~1!~b!!P~b!.

Using ~110!,

Wii
~1!~a!2Wii

~1!~b!5Wii
~1!~b1a i j !2Wii

~1!~b!

52tb1a i j

21
]tb1a i j

]xi
~1!

1tb
21 ]tb

]xi
~1!

5e i j

] log~e j i tb1a i j
/tb!

]xi
~1!

5e i j

] logWi j
~1!~b!

]xi
~1!

,

and forkÞ i

Wki
~1!~a!5Wki

~1!~b1a i j !5e ik

tb1a i j 1aki

tb1a i j

5e ik

tb1ak j

tb

tb

tb1a i j

5e j i e ike jk

Wk j
~1!~b!

Wi j
~1!~b!

,

we obtain~108!.
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Due to Proposition 3.2 for anya,b P suppt there exist a sequenceg1 ,...,gk such thata
5g1 , b5gk andg i2g i 11PD for all i 51,...,k21. The proposition now follows. h

We call operators of the form~108! which produce new wave functions Schlesinge
Bäcklund differential operators~see Ref. 49!.

Remark 4.2:The functionsP1(a,j,x,z) (aPM ) determine thet-function (ata(j,x)ea up
to a constant factor. Namely, we may recoverta(j,x) from functionsPj j

1(a,x,z) as follows. We
have from~96!

log Pj j
1~a,j,x,z!5 logtaS x,

~p!1d,,1j2
d jp

,z,D 2 logta~x,
~p!1d,,1j!.

Puttingj50 and applying to both sides the operator]/]z2(k>1z2k21]/]xk
( j ) ~that kills the first

summand on the right!, we obtain

S ]

]z
2 (

k>1
z2k21

]

]xk
~ j !D log Pj j

1~a,x,z!5 (
k>1

z2k21
]

]xk
~ j !

logta~x!.

Hence

]

]xm
~ j !

logta~x!5Resz50dz zmS ]

]z
2 (

k>1
z2k21

]

]xk
~ j !D log Pj j

1~a,x,z!. ~111!

This determinesta(x) and henceta(j,x) up to a constant factor. It follows from~98! and
Proposition 3.2 that these constant factors are the same for alla.

Introduce the following formal pseudo-differential operatorsL(a), C( j )(a), L ( j )(a) and dif-
ferential operatorsBm(a) andBm

( j )(a):

L~a![L~a,j,x,]!5P1~a!+]+P1~a!21,

C~ j !~a![C~ j !~a,j,x,]!5P1~a!Ej j P
1~a!21,

L ~ j !~a![C~ j !~a!L~a!5P1~a!Ej j +]+P1~a!21, ~112!

Bm~a![~L~a!m!15~P1~a!+]m+P1~a!21!1 ,

Bm
~ j !~a![~L ~ j !~a!m!15~P1~a!Ej j +]m+P1~a!21!1 .

Using Corollary 4.1 we can now derive the Sato equations from Eq.~95!:
Lemma 4.2: Each formal pseudo-differential operator P5P1(a) satisfies the Sato equations

]P

]xk
~ j !

52~PEj j +]k+P21!2+P5Bk
~ j !P2PEj j +]k. ~113!
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Proof: Notice first that

S ]

]xk
~ j !

2Bk
~ j !~a!D V1~a,x,z!

5S ]

]xk
~ j !

2Bk
~ j !~a!D P1~a!R1~a!ez•x

5S ]P1~a!

]xk
~ j !

R1~a!1P1~a!R1~a!Ej j ]
k2Bk

~ j !~a!P1~a!R1~a!D ez•x

5S ]P1~a!

]xk
~ j !

1P1~a!Ej j ]
k2Bk

~ j !~a!P1~a!D R1~a!ez•x

5S ]P1~a!

]xk
~ j !

1L ~ j !~a!kP1~a!2Bk
~ j !~a!P1~a!D R1~a!ez•x

5S ]P1~a!

]xk
~ j !

1~L ~ j !~a!k!2P1~a!D R1~a!ez•x.

Next apply]/]xk
( j )2Bk

( j )(a) to the Eq.~95! for a5b to obtain

Resz50dzS ]P1~a!

]xk
~ j !

1~L ~ j !~a!k!2D ~P1~a!R1~a!ez•x! t~P2~a!R2~a!e2z•x8!50.

Now apply Corollary 4.1 and~106! to obtain

S S ]P1~a!

]xk
~ j !

1~L ~ j !~a!k!2P1~a!D P1~a!21D
2

50,

which proves the lemma. h

Proposition 4.2: Consider the formal oscillating functions V1(a,xi,x,z) and V2(a,j,x,z),
aPM , of the form (103), where R6(a,z) are given by (101) and P6(a,xi,x,])PI n1C2 . Then
the bilinear identity (95) for alla,bPsupp t is equivalent to the Sato Eq. (113) for each
5P1(a) and the matching condition (105) for alla,bPsupp t.

Proof: We have proved already that the bilinear identity~95! implies ~113! and ~105!. To
prove the converse, denote byA(a,b,j,xi8,x,x8) the left-hand side of~95!. The same argumen
as in the proof of Lemma 4.2 shows that

S ]

]xk
~ j !

2Bk
~ j !~a!D A~a,b,j,j8,x,x8!50, ~114!

A~a,b,j,j8,x,x8!50, if xk
~ i !5xk8

~ i ! for k>1, ~115!

whereBk
( j )(a) is defined by~112!.

Denote byA1(a,b) the expression forA(a,b,j,j8,x,x8) in which we setxk
( j )5xk8

( j )50 for
all k. ExpandingA(a,b,j,j8,x,x8) in a power series inxk

( i )2xk8
( i ) for k>1, we see from~114!

and ~115! that it remains to prove
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A1~a,b!50. ~116!

But the same argument as in the proof of Lemma 4.1 shows that

A1~a,b!5Res]W
1~a,j,]!R1~a2b,]!W2~b,j,]!* ey]dz,

wherey5j2j8. Hence,~116! follows from ~105!. h

Fix aPM ; we have introduced above a collection of formal pseudo-differential operatoL
[L(a), C( i )[C( i )(a) of the form

L5I n]1(
j 51

`

U ~ j !~j,x!]2 j ,

~117!

C~ i !5Eii 1(
j 51

`

C~ i , j !~j,x!]2 j , i 51,2,...,n,

subject to the conditions

(
i 51

n

C~ i !5I n , C~ i !L5LC~ i !, C~ i !C~ j !5d i j C
~ i !. ~118!

They satisfy the following set of equations for somePPI n1C2 :

LP5P],

C~ i !P5PEii , ~119!

]P

]xk
~ i !

52~L ~ i !k!2P, where L ~ i !5C~ i !L.

Notice that the first and last equations of~119! imply that

]P

]j
5(

i 51

n
]P

]x1
~ i !

,

sinceL5I n]1( i(L
( i ))2 .

Proposition 4.3: The system of Eqs. (119) has a solution PPI n1C2 if and only if we can find
a formal oscillating function of the form

W~j,x,z!5S I n1(
j 51

`

W~ j !~j,x!z2 j D ez•x ~120!

that satisfies the linear equations

LW5zW, C~ i !W5WEii ,
]W

]xk
~ i !

5Bk
~ i !W. ~121!

Proof (119)⇒(121): Put W5Pez•x. Then we have
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LW5LPez•x5P]ez•x5zPez•x5zW;

C~ i !W5C~ i !Pez•x5PEii e
z•x5Pez•xEii 5WEii ;

]W

]xk
~ i !

5
]P

]xk
~ i !

1P
]ez•x

]xk
~ i !

52~L ~ i !k!2Pez•x1zkPEii e
z•x52~L ~ i !k!2W1PEii ]

kez•x

52~L ~ i !k!2W1C~ i !P]kez•x52~L ~ i !k!2W1C~ i !LkPez•x52~L ~ i !k!2W1L ~ i !kW5Bk
~ i !W.

~121!⇒~119!: Define PPC by W5Pez•x. If LW5zW, then LPez•x5zPez•x5P]ez•x,
henceLP5P].

If C( i )W5WEii , thenC( i )Pez•x5Pez•xEii 5PEii e
z•x, henceC( i )P5PEii .

Finally, the last equation of~121! gives (]/]xk
( i ))(Pez•x)52(L ( i )k)2Pez•x1L ( i )kPez•x. Since

we have already proved the first two equations of~119!, we derive ~as above! L ( i )kPez•x

5zkPez•x5P]ez•x/]xk
( i ) . Hence (]P/]xk

( i ))ex•z52(L ( i )k)2Pex•z, which proves thatP satisfies
the Sato equations. h

Remarks 4.3:~a! It is easy to see that the collection of formal pseudo-differential opera
$L,C(1),...,C(n)% of the form ~117! and satisfying~118! can be simultaneously conjugated to t
trivial collection $],E11,...,Enn% by somePPI n1C2 . It follows that the solution of the form
~120! to the linear problem~121! is unique up to multiplication on the right by a diagonal mat
of the form

D~z!5exp2(
j 51

`

ajz
2 j / j , ~122!

where theaj are diagonal matrices overC ~indeed, this is the case for the trivial collection!. The
space of all solutions of~121! in formal oscillating functions is obtained from one of the for
~120! by multiplying on the right by a diagonal matrix overC((z)). For that reason the~matrix
valued! functions

W1~a,j,x,z!5P1~a!ex•z, aPsupp t, ~123!

are called thewave functionsfor t. The formal pseudo-differential operatorP1(a) is called the
wave operator. The functionsW2(a,j,x,z)5P2(a)e2x•z are called the adjoint wave function
and the operatorsP2(a) @which are expressed viaP1(a) by ~106!# are called the adjoint wave
operators. Note thatV1(a,j,x,z) are solutions of~121! as well since they are obtained by mu
tiplying W1(a,xi,x,z) on the right byR1(a,z).

~b! Multiplying the wave functionW1(a,j,x,z) on the right byD(z) given by ~122! corre-
sponds to multiplying the correspondingt-function by exptr(k51

` akxk , where xk

5diag(xk
(1) ,...,xk

(n)).
~c! The collection$L,C(1),...,C(n)% determines uniquelyPPI n1C2 up to the multiplication

of P on the right by a formal pseudo-differential operator with constant coefficients fromI n

1C2 .
We shall now rewrite the compatibility conditions of the system~119! @or equivalent compat-

ibility conditions of the system~121!# in the form of Lax equations and Zakharov–Shabat eq
tions.

Lemma 4.3: If for everyaPM the formal pseudo-differential operators L[L(a) and C( j )

[C( j )(a) of the form (117) satisfy conditions (118) and if the Eqs. (119) have a solutio
[P(a)PI n1C2 , then the differential operators Bk

( j )[Bk
( j )(a)5(L ( j )(a)k)1 satisfy one of the

following equivalent conditions:
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]L

]xk
~ j !

5@Bk
~ j ! ,L#,

~124!
]C~ i !

]xk
~ j !

5@Bk
~ j ! ,C~ i !#,

]L ~ i !

]xk
~ j !

5@Bk
~ j ! ,L ~ i !#, ~125!

]B,
~ i !

]xk
~ j !

2
]Bk

~ j !

]x,
~ i !

5@Bk
~ j ! ,B,

~ i !#. ~126!

Proof (cf. Ref. 43):To derive the first equation of~124! we differentiate the equationLP
5P] by xk

( j ) :

]L

]xk
~ j !

P1L
]P

]xk
~ j !

5
]P

]xk
~ j !

],

and substitute Sato’s equation@see~119!#. Then one obtains

]L

]xk
~ j !

P5~Bk
~ j !L2LBk

~ j !!P,

from which we derive the desired result. The second equation of~124! is proven analogously
differentiateC( i )P5PEii , substitute Sato’s equation and use the fact that@L ( j )k,C( i )#50.

Next we prove the equivalence of~124!, ~125!, and ~126!. The implication~124!⇒~125! is
trivial. To prove the implication~125!⇒~124! note thatL5( j 51

n L ( j ) implies that the first equation
of ~124! follows immediately. As for the second one, we have

]C~ i !

]xk
~ j !

5S ]L ~ i !

]xk
~ j !

2C~ i !
]L

]xk
~ j !D L215~@Bk

~ j ! ,L ~ i !#2C~ i !@Bk
~ j ! ,L# !L21

5~@Bk
~ j ! ,C~ i !#L !L215@Bk

~ j ! ,C~ i !#.

Next, we prove the implication~125!⇒~126!. Since both]/]xk
( j ) andad Bk

( j ) are derivations,~125!
implies

]L ~ i !,

]xk
~ j !

5@Bk
~ j ! ,L ~ i !,#.

Hence:

S ]B,
~ i !

]xk
~ j !

2
]Bk

~ j !

]x,
~ i !

2@Bk
~ j ! ,B,

~ i !# D 1S ]~L ~ i !,!2

]xk
~ j !

2
]~L ~ j !k!2

]x,
~ i !

1@~L ~ j !k!2 ,~L ~ i !,!2# D
5@Bk

~ j ! ,L ~ i !,#2@B,
~ i ! ,L ~ j !k#2@Bk

~ j ! ,B,
~ i !#1@~L ~ j !k!2 ,~L ~ i !,!2#5@L ~ j !k,L ~ i !,#50.

SinceC2ùC15$0%, both terms on the left-hand side are zero, proving~126!.
Finally, we prove the implication~126!⇒~125!. We rewrite~126!:
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]L ~ i !,

]xk
~ j !

2@Bk
j ,L ~ i !,#5

]~L ~ i !,!2

]xk
~ j !

1
]Bk

~ j !

]x,
~ i !

2@Bk
~ j ! ,~L ~ i !,!2#.

This right-hand side has orderk21, hence

]L ~ i !,

]xk
~ j !

2@Bk
~ j ! ,L ~ i !,#PC~k21! for every ,.0. ~127!

Now suppose that]L ( i )/]xk
( j )2@Bk

( j ) ,L ( i )#Þ0. Then

lim
,→`

ordS ]L ~ i !,

]xk
~ i !

2@Bk
~ j ! ,L ~ i !,# D 5`,

which contradicts~127!. h

Equations~124! and ~125! are calledLax type equations. Equations~126! are called the
Zakharov–Shabat-typeequations. The latter are the compatibility conditions for the linear prob
~121!. Indeed, since (]/]xk

( j ))(]/]x,
( i ))W5(]/]x,

( i ))(]/]xk
( j ))W, one finds

05
]

]xk
~ j !

~B,
~ i !W!2

]

]x,
~ i !

~Bk
~ j !W!5S ]B,

~ i !

]xk
~ j !

2
]Bk

~ j !

]x,
~ i !

2@Bk
~ j ! ,B,

~ i !# D W.

Notice that as a by-product of the proof of Proposition 4.4, we obtain complementary Zakh
Shabat equations:

]~L ~ i !,!2

]xk
~ j !

2
]~L ~ j !k!2

]x,
~ i !

5@~L ~ i !,!2 ,~L ~ j !k!2#. ~128!

Proposition 4.4: Sato Eq. (113) on PPI n1C2 imply Eqs. (126) on differential operator
Bk

( i )5(L ( i )k)1 .
Proof is the same as that of the corresponding part of Lemma 4.3. h

Remark 4.4:The above results may be summarized as follows. Then-component KP hierar-
chy ~70! of Hirota bilinear equations on thet-function is equivalent to the bilinear Eq.~95! on the
wave function, which is related to thet-function by formula~94! and Remark 4.2. The bilinear Eq
~95! for each a5b implies the Sato Eq.~113! on the formal pseudo-differential operatorP
[P(a). Moreover, Eq.~113! on P(a) for eacha together with the matching conditions~105! are
equivalent to the bilinear identity~95!. Also, the Sato equation@or rather~119!# is a compatibility
condition for the linear problem~121! for the wave function. The Sato equation in turn implies t
system of Lax-type Eq.~125! @or equivalent systems~124! or ~126!, which is the most familiar
form of the compatibility condition# on formal pseudo-differential operatorsL ( i ) @resp.L andC( i )

satisfying constraints~118!#. The latter formal pseudo-differential operators are expressed via
wave function by formulas~112! and ~100!–~103!.

We next write down explicitly some of the Sato Eq.~113! on the matrix elementsWi j
(s) of the

coefficientsW(s)(j,x) of the pseudo-differential operator

P5I n1 (
m51

`

W~m!~j,x!]2m.

We shall writeWi j for Wi j
(1) to simplify notation. We have foriÞk

]Wi j

]x1
~k!

5WikWk j2d jkWi j
~2! , ~129!
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]Wi j
~2!

]x1
~k!

5WikWk j
~2!2d jkWi j

~3! . ~130!

Next, calculating]Wi j /]x2
(k) from ~113! and substituting~129! and ~130! in these equations, we

obtain

]Wi j

]x2
~k!

5Wik

]Wk j

]x1
~k!

2
]Wik

]x1
~k!

Wk j if kÞ i and kÞ j , ~131!

]Wi j

]x2
~ j !

52
]Wj j

]x1
~ j !

Wi j 2
]2Wi j

]x1
~ j !2

if iÞ j , ~132!

]Wi j

]x2
~ i !

522
]Wii

]x1
~ i !

Wi j 1
]2Wi j

]x1
~ i !2

if iÞ j , ~133!

]Wii

]x2
~ i !

5
]2Wii

]x1
~ i !2

12(
pÞ i

Wip

]Wpi

]x1
~ i !

22Wii ]Wii 12]Wii
~2! . ~134!

Remark 4.5:Substituting expressions for theWi j 5Wi j
(1)(a50,x) given by ~98!, the above

equations turn into the Hirota bilinear equations found in Sec. III D as follows:
~129! for i 5 j ⇒~74!
~129! for iÞ j ⇒~78!
~133!⇒~75!
~132!⇒~76!
~131! for i 5 j ⇒~77! ~with j replaced byk!,
~131! for iÞ j ⇒~79!.
We now write down explicitly some of the Lax Eqs.~124! of the n-component KP hierarchy

and auxiliary conditions~118! for the formal pseudo-differential operators

L5I n]1(
j 51

`

U ~ j !~j,x!]2 j and C~ i !5Eii 1(
j 51

`

C~ i , j !~j,x!]2 j ~ i 51,...,n!. ~135!

For the convenience of the reader, recall thatx stands for all indeterminatesxi
(k) , where i

51,2,... andk51,...,n, that the auxiliary conditions are

(
i 51

n

C~ i !5I n , C~ i !C~ j !5d i j C
~ i !, C~ i !L5LC~ i !, ~136!

and that the Lax equations of then-component KP hierarchy are

]L

]xi
~k!

5@Bi
~k! ,L#, ~137a!

]C~, !

]xi
~k!

5@Bi
~k! ,C~, !#, ~137b!

whereBi
(k)5(C(k)Li)1 . For example, we have

B1
~k!5Ekk]1C~k,1!, B2

~k!5Ekk]
21C~k,1!]12EkkU

~1!1C~k,2!. ~138!
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Denote byCi j
(k,,) andUi j

(k) the (i , j )th entries of then3n matricesC(k,,) andU (k), respectively.
Then the]21 term of the second Eq.~136! gives

Ci j
~k,1!50 if iÞk and j Þk, or i 5 j 5k, ~139!

Ck j
~k,1!52Ck j

~ j ,1! . ~140!

Hence the matricesC( j ,1) are expressed in terms of the functions

Ai jªCi j
~ j ,1! ~note that Aii 50!.

The]22 term of the second Eq.~136! allows one to express most of theCi j
(k,2) in terms of theAi j :

Ci j
~k,2!52AikAk j if iÞk and j Þk, ~141!

Ck,k
~k,2!5 (

p51

n

AkpApk . ~142!

Furthermore, the]21 term of the Lax Eq.~137b!1 gives

]Ai j

]x1
~k!

5AikAk j for distinct i , j ,k, ~143!

Ci j
~ j ,2!52

]Ai j

]x1
~ j !

for iÞ j , ~144!

Ci j
~ i ,2!5 (

p51
pÞ i

n
]Ai j

]x1
~p!

for iÞ j . ~145!

The ]22 term of that equation gives foriÞ j ~recall that]5]/]x1
(1)1¯1]/]x1

(n)):

Ci j
~ i ,3!52

]Ci j
~ i ,2!

]x1
~ j !

1Ai j Cj j
~ i ,2!2 (

p51

n

~Aip]Ap j1Cip
~ i ,2!Ap j!, ~146!

Ci j
~ j ,3!52 (

p51
pÞ i

n ]Ci j
~ j ,2!

]x1
~p!

2Ai j Cii
~ j ,2!1 (

p51

n

AipCp j
~ j ,2! . ~147!

Substituting~141!, ~142!, and ~145! @resp.~141!, ~142!, and ~144!# in ~146! @resp. in~147!# we
obtain for iÞ j

Ci j
~ i ,3!52S ]2

]

]x1
~ i !D 2

Ai j 22(
p51
pÞ i

n

AipApiAi j , ~148!

Ci j
~ j ,3!5

]2Ai j

]x1
~ j !2

12(
p51
pÞ j

n

Ai j AjpAp j . ~149!

Furthermore, the]0 and]21 terms of the Lax Eq.~137a!1 give respectively foriÞ j

Ui j
~1!52]Ai j , ~150!
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]Uii
~1!

]x1
~ j !

52]~Ai j Aji !. ~151!

Finally, the]21 term of the Lax Eq.~137b!2 gives

]Ai j

]x2
~ j !

522Ai j U j j
~1!2Ci j

~ j ,3! for iÞ j , ~152!

]Ai j

]x2
~ i !

5]2Ai j 22]Ci j
~ i ,2!2Ci j

~ i ,3!12Uii
~1!Ai j for iÞ j , ~153!

]Ai j

]x2
~k!

5Aik

]Ak j

]x1
~k!

2Ak j

]Aik

]x1
~k!

for iÞk and j Þk. ~154!

Finally, we write down explicitly expressions forU (1) and C( i ,1) in terms of t-functions.
Recall that

P5I n1(
j 51

`

W~ j !]2 j ,

L5P]P215I n]1(
j 51

`

U ~ j !]2 j ,

C~ i !5PEii P
215Eii 1(

j 51

`

C~ i , j !]2 j .

Using ~152! we have

U ~1!52]W~1!, ~155!

U ~2!5W~1!]W~1!2]W~2!, ~156!

C~ i ,1!5@W~1!,Eii #, ~157!

C~ i ,2!5@W~2!,Eii #1@Eii ,W~1!#W~1!. ~158!

Using ~98! we obtain from~155! and ~157!, respectively

Ui j
~1!5H 2e j i ]~ta1a i j

/ta! if iÞ j ,

]S ]ta

]x1
~ i !Y taD if i 5 j ,

~159!

Ai j [Ci j
~ j ,1!5e j i ta1a i j

/ta . ~160!

@Recall that by~139! and ~140! all the matricesC(k,1) can be expressed via the functionsAi j .]
Using ~98! and~99! and~156! and~158! one also may write down the matricesU (2) andC( i ,2) in
terms oft-functions, but they are somewhat more complicated and we will not need them an
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V. THE DARBOUX-EGOROFF SYSTEM, THE n-WAVE INTERACTION EQUATIONS, THE
GENERALIZED TODA CHAIN AND THE GENERALIZED DAVEY–STEWARTSON
EQUATIONS AS SUBSYSTEMS OF THE n-COMPONENT KP

In this section we show that some well-known soliton equations, as well as their na
generalizations, are the simplest equations of the various formulations of then-component KP
hierarchy. To simplify notation, let

t i5x2
~ i ! , xi5x1

~ i ! . ~161!

Let n>3. Then then-component KP in the form of Sato equation contains the system~129! of
n(n21)(n22) equations onn22n functionsWi j ( iÞ j ) in the indeterminatesxi ~all other inde-
terminates being parameters!:

]Wi j

]xk
5WikWk j for distinct i , j ,k. ~162!

This is sometimes called then-wave equation. Thet-function is given by the formula~98! for a
fixed aPM :

Wi j 5e j i ta1a i j
/ta . ~163!

Substituting this in~162! gives the Hirota bilinear Eq.~78!:

D1
~k!ta•ta1a i j

5e ikek je i j ta1a ik
ta1ak j

. ~164!

Note that due to~157!, Wi j 5Ai j if iÞ j , hence~162! is satisfied by theAi j as well.
One usually adds to~162! the following equations, whose group theoretical meaning we s

explain in Sec. VII:

]Wi j 50, iÞ j . ~165!

Using ~119!, this is equaivalent to

(
k51

n
]Wi j

]xk
50.

If one adds the symmetryWi j 5Wji one obtains the Darboux–Egoroff system:

]Wi j

]xk
5WikWk j for distinct i , j ,k,

(
k51

n
]Wi j

]xk
50, ~166!

Wi j 5Wji .

These equations describe certain flat diagonal metrics and classifiy~locally! massive topological
field theories see Refs. 12–15. For a group theoretical interpretation of this system as a sub
of the n-component KP we refer to Ref. 50.

Let nowa5diag(a1,...,an), b5diag(b1,...,bn) be arbitrary diagonal matrices overC. We reduce
the system~162! to the plane:11

xk5akx1bkt.
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A direct calculation shows that~162! reduces then to the following equation on the matrixW
5(Wi j ) ~note that its diagonal entries do not occur!:

Fa,
]W

]t G2Fb,
]W

]x G5va,W#,@b,Wb1b]Wa2a]Wb. ~167!

Hence, imposing the constraint~165!, we obtain the famous 111 n-wave system~cf. Refs. 11 and
38!:

Fa,
]W

]t G2Fb,
]W

]x G5va,W#,@b,Wb . ~168!

Let now

xk5akx1bkt2y. ~169!

Then Eq.~167! gives

Fa,
]W

]t G2Fb,
]W

]x G2a
]W

]y
b1b

]W

]y
a5va,W#,@b,Wb . ~170!

If we let

Qi j 52~ai2aj !Wi j ,

Eq. ~170! turns into the following system, which is called in Ref. 1,~5.4.30a,c!, the 211 n-wave
interaction equations (iÞ j ):

]Qi j

]t
5ai j

]Qi j

]x
1bi j

]Qi j

]y
1(

k
~aik2ak j!QikQk j , ~171!

where

ai j 5~bi2bj !/~ai2aj !, bi j 5bi2aiai j . ~172!

On the other hand, letting~we assume thata1.¯.an)

wi j 5Wi j /~ai2aj !
1/2, ~173!

the Eq.~177! gives for iÞ j

]wi j

]t
2ai j

]wi j

]x
2bi j

]wi j

]y
5(

k
e i jkwikwk j , ~174!

where

e i jk5
aibk1akbj1ajbi2akbi2ajbk2aibj

~~ai2ak!~ak2aj !~ai2aj !!1/2
. ~175!

Imposing the constraintw̄i j 52wji , we obtain from~174! the following Hamiltonian system
~considered in Ref. 38, pp. 175, 242, forn53 and called there the 211 three-wave system! ( i
, j ):

]wi j

]t
2ai j

]wi j

]x
2bi j

]wi j

]y
5

]H

]w̄i j
, ~176!
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where

H5 (
i ,k, j

i ,k, j

e i jk~wikwk jw̄i j 1w̄ikw̄k jwi j !. ~177!

Finally, let n53 and letu15 iw13, u25 iw̄13, u35 iw12, a152a23, b152b23, a252ā13, b2

52b̄13, a352a12, b352b13. Then, after imposing the constrainte13251, Eqs.~176! turn into
the well-known 211 three-wave interaction equations@see Ref. 1,~5.4.27!#:

]uj

]t
1aj

]uj

]x
1bj

]uj

]y
5 i ūkū, , ~178!

where (j ,k,,) is an arbitrary cyclic permutation of 1, 2, 3.
Let n>2. Then then-component KP in the form of Sato equations contains the follow

subsystem of the system of Eq.~129! for arbitraryaPM on the functionsWi j (a) in the indeter-
minatesxi ~all other indeterminates being parameters!:

]Wii ~a!

]xj
5Wi j ~a!Wji ~a! if iÞ j . ~179!

The t-function is given by~98! (aPM )

Wi j ~a!5H e j i ta1a i j
/ta if iÞ j ,

2
]

]xi
logta if i 5 j .

~180!

Substituting this in~179! gives the Hirota bilinear Eq.~74!:

DiD jta•ta52ta1a i j
ta2a i j

. ~181!

In order to rewrite~179! in a more familiar form, let foriÞ j

Ui j ~a!5 loge j i Wi j ~a!5 log~ta1a i j
/ta!. ~182!

Note that log(ta1aij
/ta)52log(t(a1aij )2aij

/ta1aij
. Hence from~180! we obtain

Ui j ~a!52U ji ~a1a i j ! if iÞ j . ~183!

Furthermore, we have

]2

]xi]xj
Ui j ~a!5

]2

]xi]xj
logta1a i j

2
]2

]xi]xj
logta

5
]Wii ~a!

]xj
2

]Wii ~a1a i j !

]xj

5Wi j ~a!Wji ~a!2Wi j ~a1a i j !Wji ~a1a i j !

52
ta1a i j

ta

ta2a i j

ta
1

ta12a i j

ta1a i j

ta

ta1a i j

5eUi j ~a1a i j !2Ui j ~a!2eUi j ~a!2Ui j ~a2a i j !.
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Thus the functionsUi j (a) ( iÞ j ) satisfy the following generalized Toda chain@with constraint
~183!#:

]2Ui j ~a!

]xi]xj
5eUi j ~a1a i j !2Ui j ~a!2eUi j ~a!2Ui j ~a2a i j !. ~184!

Note also that~162! for distinct i, j andk becomes

]Ui j ~a!

]xk
5e ikek je j i e

Ui j ~a!1Uik~a!1Uk j~a!. ~185!

One should be careful about the boundary conditions. LetS5suppt; recall that by Proposition 2.4
S is a convex polyhedron with vertices inM and edges parallel to roots. It follows that~184!
should be understood as follows:

~i! If a¹S, thenUi j (a)50 and~184! is trivial.
~ii ! If aPS, but a1a i j ¹S, then~184! is trivial.
~iii ! If aPS, but a2a i j ¹S, then the second term on the right-hand side of~184! is removed.
~iv! If aPS, a1a i j PS, but a12a i j ¹S, then the first term on the right-hand side of~184! is

removed.

Let now n52, and letun5U12(na12). Then we get the usual Toda chain:

]2un

]x1]x2
5eun112un2eun2un21, nPZ. ~186!

It is a part of the Toda lattice hierarchy discussed in Ref. 47.
Let n>2. Then then-component KP in the form of Sato equations contains the system

Eqs. ~132!, ~133!, ~131! and ~129! for j Þk on n2 functions Wi j in the indeterminatesxk and
tk (k51,...,n) ~all other indeterminates being parameters!:

]Wi j

]t j
52

]2Wi j

]xj
2

12
]Wj j

]xj
Wi j if iÞ j , ~187!

]Wi j

]t i
5

]2Wi j

]xi
2

22
]Wii

]xi
Wi j if iÞ j , ~188!

]Wi j

]tk
5Wik

]Wk j

]xk
2

]Wik

]xk
Wk j if iÞk and j Þk, ~189!

]Wi j

]xk
5WikWk j if iÞk and j Þk. ~190!

This is a system ofn32n evolution Eqs.~187!–~189! andn(n21)2 constraints~190! which we
call the generalized Davey–Stewartson system.

Note that thet-functions of this system are given by~98!, where we may takea50. The
corresponding to~187!–~190! Hirota bilinear equations are~76!, ~75!, ~77! if i 5 j and ~79! if i
Þ j ; ~74! if i 5 j and ~78! if iÞ j , respectively.

Now, note that letting

w i j 5
1

2 S ]Wii

]xi
1

]Wj j

]xj
1

]Wii

]xj
1

]Wj j

]xi
D ~5w j i !
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and subtracting~188! from ~187! we obtain using~190!

]Wi j

]t j
2

]Wi j

]t i
52S ]2

]xi
2

1
]2

]xj
2D Wi j 12Wi j ~w i j 2Wi j Wji !. ~191!

Also, from ~190! we obtain

]2w i j

]xi]xj
5

1

2 S ]

]xi
1

]

]xj
D 2

~Wi j Wji !. ~192!

Let now n52; to simplify notation, let

q5W12, r 5W21, w5w125w21.

Then, making the change of indeterminates

s522i ~ t11t2!, t522i ~ t12t2!, x5x11x2 , y5x12x2 , ~193!

Eqs.~191! and ~192! turn into the decoupled Davey–Stewartson system:

i
]q

]t
52

1

2 S ]2q

]x2
1

]2q

]y2D 1q~w2qr !,

i
]r

]t
5

1

2 S ]2r

]x2
1

]2r

]y2D 2r ~w2qr !, ~194!

]2w

]x2
2

]2w

]y2
52

]2~qr !

]x2
.

Due to ~98!, the correspondingt-functions are given by the following formulas, where we
tn5tna12

:

q52t1 /t0 , r 5t21 /t0 , w52
]2

]x2
logt0 , ~195!

the Hirota bilinear equations being~cf. Ref. 22!

~ iD t1
1
2Dx

21 1
2Dy

2!t1•t050,

~2 iD t1
1
2Dx

21 1
2Dy

2!t21•t050, ~196!

~Dx
22Dy

2!t0•t052t1t21 .

Finally, imposing the constraint

r 5kq̄, where k561, ~197!

we obtain the classical Davey–Stewartson system
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i
]q

]t
1

1

2 S ]2q

]x2
1

]2q

]y2D 5~w2kuqu2!q,

~198!
]2w

]x2
2

]2w

]y2
52k

]2uqu2

]x2
.

Remark 5.1:It is interesting to compare the above results with that obtained via the
equations. To simplify notation, letUi5Uii

(1) . Substituting~149! @resp. ~148!# in ~152! @resp.
~153!#, we obtain foriÞ j

]Ai j

]t j
52

]2Ai j

]xj
2

22Ai j U j22(
kÞ j

Ai j AjkAk j , ~199!

]Ai j

]t i
5

]2Ai j

]xi
2

12Ai j Ui12(
kÞ i

Ai j AikAki . ~200!

These equation together with~143!, ~151!, and ~154! give a slightly different version of the
generalized DS system~recall thatAi j 5Wi j if iÞ j andUi52]Wii ). For n52 we get again the
classical DS system after the change of indeterminates~193! if we let w52 1

2(U11U2).
Finally, we explain what happens in the well-known casen51. In this caseC(1)51 and

auxiliary conditions~136! are trivial. Lax Eq. ~137b! is trivial as well, and Lax Eq.~137a!
becomes

]L

]xi
5@Bi ,L#, i 51,2,..., ~201!

whereL5]1( j 51
` uj (x)]2 j , ]5]/]x1 and Bi5(Li)1 . Thus, the KP hierarchy is a system

partial differential Eqs.~201! on unknown functionsu1 , u2 ,... in indeterminatesx1 , x2 ,... . By
Lemma 3.6,~201! is equivalent to the following system of Zakharov–Shabat equations:

]B,

]xk
2

]Bk

]x,
5@Bk ,B,#. ~202!

By ~138! we have

B15], B25]212u1 . ~203!

Furthermore, we have

B35]313u1]13u213
]u1

]x1
. ~204!

Thus we see that Eqs.~202!k,1 are all trivial, the first nontrivial equation of~202! being

]B2

]x3
2

]B3

]x2
5@B3 ,B2#.

Substituting in it~203! and ~204!, the coefficients of]0 and]1 give, respectively,

2
]u1

]x3
22

]2u1

]x1]x2
26u1

]u1

]x1
53

]u2

]x2
23

]2u2

]x1
2

, ~205!
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6
]u2

]x1
53

]u1

]x2
2

]2u1

]x1
2

. ~206!

Differentiating~205! by x1 and substituting]u2 /]x1 from ~206! gives a PDE onu52u1 , where
we let x15x, x25y, x35t:

3

4

]2u

]y2
5

]

]x S ]u

]t
2

3

2
u

]u

]x
2

1

4

]3u

]x3D . ~207!

This is the classical KP equation. Due to~159!, the connection betweenu and thet-function is
given by the famous formula

u52
]2

]x2
logt. ~208!

Substitutingu in ~207! gives the Hirota bilinear Eq.~73!.

VI. SOLITON AND DROMION SOLUTIONS

We turn now to the construction of solutions of then-component KP hierarchy. As in Ref.
we make use of the vertex operators~54!. When transported via then-component boson-fermion
correspondences from F to B5C@x# ^ C@L#, they take the following form:

c6~ i !~z!5Qi
61z6a0

~ i !S exp6 (
k51

`

zkxk
~ i !D S exp7 (

k51

`
z2k

k

]

]xk
~ i !D . ~209!

Note that forz,wPC3 such thatuwu,uzu we have~l, m51 or 2!

cl~ i !~z!cm~ j !~w!5~z2w!d i j lmQi
l1Qj

m1zla0
~ i !

wma0
~ j !

exp(
k51

`

~lzkxk
~ i !1mwkxk

~ j !!

3exp2 (
k51

` S l
z2k

k

]

]xk
~ i !

1m
w2k

k

]

]xk
~ j !D . ~210!

We let for 0,uwu,uzu

G i j ~z,w!5
def

c1~ i !~z!c2~ j !~w!5~z2w!2d i j QiQj
21za0

~ i !
w2a0

~ j !
exp(

k51

`

~zkxk
~ i !2wkxk

~ j !!

3exp2 (
k51

` S z2k

k

]

]xk
~ i !

2
w2k

k

]

]xk
~ j !D . ~211!

Using ~210!, we obtain foruz1u.uz2u.¯.uz2N21u.uz2Nu.0

G i 1i 2
~z1 ,z2!¯G i 2N21i 2N

~z2N21 ,z2N!

5 )
1<k<,<2N

~zk2z,!~21!k1,d i ki ,Qi 1
Qi 2

21
¯Qi 2N21

Qi 2N

21 )
m51

2N

z
m

~21!m21a
0
~ i m!

3expS 2 (
m51

2N

(
k51

`

~21!mzm
k xk

~m!D expS (
m51

2N

(
k51

`

~21!m
zm

2k

k

]

]xk
~m!D . ~212!
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We may analytically extend the right-hand side of~212! to the domain$ziÞ0, ziÞzj if iÞ j , i , j
51,...,2N%. Then we deduce from~212! for N52 that in this domain we have

G i ,i 2
~z1 ,z2!G i 3 ,i 4

~z3 ,z4!5G i 3 ,i 4
~z3 ,z4!G i ,i 2

~z1 ,z2!, ~213!

G i j ~z1 ,z2!2[ lim
z3→z1
z4→z2

G i j ~z1 ,z2!G i j ~z3 ,z4!50. ~214!

Remark 6.1:Let A5(ai j ) be a n3n matrix overC and let zi , wi ( i 51,...,n) be nonzero
complex numbers such thatziÞwj . Due to~34! the sum

GA~z,w!5 (
i , j 51

n

ai j G i j ~zi ,wj ! ~215!

lies in a completion ofr (gl`).
By ~213! and ~214! we obtain

expGA~z,w!5 )
i , j 51

n

~11ai j G i j ~zi ,wj !!. ~216!

Lemma 6.1: (a) Ift is a solution of the n-component KP hierarchy (70) of Hirota biline
equations, then(expGA(z,w))t is a solution as well for any complex n3n matrix A and any z
5(z1 ,...zn), w5(w1 ,...,wn)PC3n such that ziÞwj .

(b) For any collection of complex n3n-matrices A1 ,...,AN and any collection z(1),...,z(N),
w(1),...,w(N)PC3n with all coordinates distinct, the function

expGA1
~z~1!,w~1!!¯expGAN

~z~N!,w~N!!•1 ~217!

is a solution of the n-component KP hierarchy (70).
Proof: ~a! follows from Proposition 2.1 and Remark 6.1.~b! follows from ~a! since the

function 15su0& satisfies~38!. h

We call ~217! the N-solitary t-function ~of the n-component KP hierarchy!.
In order to write down~217! in a more explicit form, introduce the lexicographic ordering

the setS of all triples s5(p,i , j ), wherepP$1,...,N%, i , j P$1,...,n% ~i.e., s1,s2 if p1,p2 , or
p15p2 andi 1, i 2 or p15p2 , i 15 i 2 and j 1, j 2). GivenN n3n complex matricesAp5(ai j

(p)), we
let as5ai j

(p) for s5(p,i , j )PS; given in addition two sets of nonzero complex numberszs andws ,
all distinct, parametrized bysPS, introduce the following constants:

c~s1 ,...,sr !5)
k51

r

ask )
,5k11

r

e i ki ,
e i kj ,

e j ki ,
e j kj , )

1<k,,<r

~zsk
2zs,

!d i ki ,~wsk
2ws,

!d j kj ,

~zsk
2ws,

!d i kj ,~wsk
2zs,

!d j ki ,

. ~218!

Then theN-solitary solution~217! can be written as follows:

11(
r 51

Nn2

(
~1,1,1!<s1,¯,sr<~N,n,n!

c~s1 ,...,sr !S exp(
k51

r

(
m51

`

~zsk

mxm
~ i k!

2wsk

mxm
~ j k!

!D e(k51
r a i kj k.

~219!

Let n51. Then the index setS is naturally identified with the set$1,...,N%, the two sets of
complex numbers we denote byz2 j 21 and z2 j , j 51,...,N, and we letAp5(z2p212z2p)21ap ,
whereap are some constants. Then~219! becomes the well-known formula~see Ref. 9! for the
t-function of theN-soliton solution:
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t~N!511(
r 51

N

(
1< j 1,¯, j r<N

)
k51

r

aj k )
1<k,,<2r

~zj k
2zj ,

!~21!k1,
exp(

k51

r

(
m51

`

~zj 2k21

m 2zj 2k

m !xm .

~220!

Letting x15x, x25y, x35t and all other indeterminates constantsx45c4 ,..., weobtain, due to
~208!, the soliton solution of the classical KP Eq.~207!:

u~ t,x,y!52
]2

]x2
logt~N!~x,y,t,c4 ,c5 ,...!. ~221!

In particular, thet-function of the one-soliton solution is

t~1!~x,y,t !511
a

z12z2
exp~~z12z2!x1~z1

22z2
2!y1~z1

32z2
3!t1const!, ~222!

and we get the corresponding one-soliton solution of the classical KP Eq.~207!:

u~x,y,t !5
~z12z2!2

2
cosh22S 1

2
~~z12z2!x1~z1

22z2
2!y1~z1

32z2
3!t !1constD . ~223!

Let n52. Then anytPC@x# ^ C@M # can be written in the form

t5 (
,PZ

t,e,a12, where t,[t,a12
.

For aN-solitary solutiont (N) given by ~219! we then have

t,
~N!5d,.01(

r 51

4N

(
~s1 ,...,sr !

c~s1 ,...,sr !exp(
k51

r

(
m51

`

~zsk

mxm
~ i k!

2wsk

mxm
~ j k!

!, ~224!

where (s1 ,...,sr) run over the subset (225)2 of Sr , where

H ~1,1,1!<s1,s2¯,sr<~N,n,n!

#$~ i k , j k!u i k. j k%2#$~ i k , j k!u i k, j k%5,. ~225!

Letting @cf. ~195!#

q52
t1~x,y,t,c,c3

~1!,...!

t0~x,y,t,c,c3
~1! ,...!

, r 5
t21~x,y,t,c,c3

~1! ,...!

t0~x,y,t,c,c3
~1! ,...!

,

~226!

w52
]2

]x2
~ logt0~x,y,t,c,c3

~1! ,...!!,

wherex5x1
(1)1x2

(1) , y5x1
(1)2x2

(1) , t522i (x2
(1)2x2

(2)), c522i (x2
(1)1x2

(2)) and all other inde-
terminatesxk

( j ) are arbitrary constantsck
( j ) , we obtain anN-solitary solution of the decoupled

Davey–Stewartson system~194!.
We turn now to the classical Davey–Stewartson system~198! for k521. The constraint~197!

gives

t1 /t05t21 /t0.

One way of satisfying this constraint is to let
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ai j
~p!5~21! i 1 j ā j i

~p! , z~p,i , j !52w̄~p, j ,i ! ,
~227!

c250, ck
~ j !P i k11R.

We shall concentrate now on the caseN51. It will be convenient to use the following notation

x15x1
~1! , x25x1

~2! ,

zi j 5z~1,i , j ! , ai5a~1,i ,i !PR1~1< i , j <2!, a35a~1,1,2!PC,

C~z,w!5
z2w

z1w̄
, D~z,w!5

ua3u2

~z1 z̄!~w1w̄!
,

Aj~z!5~z1 z̄!S xj2~21! j i t
z2 z̄

4 D1 (
k53

`

~zk2~2 z̄!k!ck
~ j ! ~ j 51,2!,

A3~z,w!5zx11w̄z21 i t S z2

4
1

w̄2

4 D1 (
k53

`

~zkck
~1!2~2w̄!kck

~2!!.

Thenq52t1 /t0 andw52 1
2(]/]x11]/]x2)2 logt0 is a solution of~198!, where

t15a3eA3~z12 ,z21!~11a1C~z12,z11!e
A1~z11!!~11a2C~ z̄21,z̄22!e

A2~z22!!, ~228a!

t05~11a1eA1~z11!!~11a2eA2~z22!!1D~z12,z21!e
A3~z12 ,z21!1A3~z12 ,z21!~11a1uC~z12,z21!u2eA1~z11!!

3~11a2uC~z21,z22!u2eA2~z22!!. ~228b!

Consider now two special cases of~228a! and ~228b!:

~D ! z1[z115z12 and z2[z225z21,

~S! ai50 ~ i 51,2!,

and letT5D or S. Then~228a! and ~228b! reduce to

t15a3eA3~z1 ,z2! in both cases, ~229a!

t0
~T!5~11dTDa1eA1~z1!!~11dTDa2eA2~z2!!1D~z1 ,z2!eA1~z1!1A2~z2!, ~229b!

so thatq(T)52t1 /t0
(T) , w (T)52 1

2(]/]x11]/]x2)2 logt0
(T) is a solution of~198!.

In order to rewriteq(T) in a more familiar form, let (j 51, 2 andaj (zj1 z̄j ).0)

pj
~T!5~aj~zj1 z̄j !!21/2 if T5D and 51 if T5S,

m15m1R1 im1I5
1
2 z̄1 , m25m2R1 im2I5

1
2 z2 ,

mj
~T!52A2m jRpj

~T!e2(k53
`

~21! j ~~21! j2m j !
kck

~ j !
,

j j52xj12m j I t, j̃ j5
1

m jR
log

umj
~T!u

A2m jR

,

r~T!52a3p1
~T!p2

~T! .
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Then we obtain the following expression forq(T):

4r~T!~m1Rm2R!1/2 exp $2~m1R~j12 j̃1!1m2R~j22 j̃2!!1 i ~2~m1Ij11m2Ij2!1~ um1u21um2u2!t1argm1m2!%

~~dTD1exp~22m1R~j12 j̃1!!~dTD1exp~22m2R~j22 j̃2!!1ur~T!u2!
.

The functionq(D) is precisely the~1,1!-dromion solution of the Davey–Stewartson Eqs.~198!
with k521 found in Ref. 19~provided thatm jRPR1). On the other hand, if we letm1I5m2I

50, thenq(T) reduces to the two-dimensional breather solution found in Ref. 6. Finally,q(S) is a
one-solution solution.

Recall that the dromion solutions of the DS equation were originally discovered in Refs.
and 19~see also Ref. 22!. The dromion solutions of the DS equation were first studied from
point of view of the spinor formalism in Ref. 21.

Similarly, we obtain the following solutions of the two-dimensional Toda chain~186!:

u,5H log~t,11
~N! /t,

~N!! if 2N<,<N21,

0 otherwise,
~230!

where thet-functionst,
(N) are obtained from~224! by letting all indeterminatesxm

( j ) with m.1 be
arbitrary constants:

t,
~N!5d,,01(

r 51

4N

(
~s1 ,...,sr !

c~s1 ,...,sr !cs1
¯csr

exp(
k51

r

~xi k
zsk

2xj k
wsk

!, ~231!

where (s1 ,...,sr) runs over~225!2 andcs (sPS) are arbitrary constants.
Let now n>3. Then we obtain solutions of the 211 n-wave system~170! as follows. For 1

< i , j <n let

t i j
~N!5d i j 1(

r 51

Nn2

(
~s1 ,...,sr !

cs1
¯csr

exp(
k51

r

~ai k
x1bi k

t2y!zsk
2~aj k

x1bj k
t2y!wsk

, ~232!

where (s1 ,...,sr) runs over~225!n andcs (sPS) are arbitrary constants. ThenWi j 5e j i t i j /t0 ( i
Þ j ) is a solution of~170!, andQi j 5e i j (ai2aj )t i j /t0 ( iÞ j ) is a solution of~171!.

VII. †m 1 ,m 2 ,...,m n‡-REDUCTIONS OF THE n-COMPONENT KP HIERARCHY

Fix a positive integerm>n and letm11m21¯1mn be a partition ofm into n parts. Let
v j5exp 2pi/mj for j 51,2,...,n. Introduce the followingm2 fields (1< i , j <n, 1<k<mi , 1<,
<mj ):

46

a~ i jk , !~z![ (
pPZ

ap
~ i jk , !z2p215..c1~ i !~v i

kz!c2~ j !~v j
,z!:, ~233!

where the normal ordering is defined by~46!. Note that

a~ i jmimj !~z!5a~ i j !~z!, ~234!

wherea ( i j )(z) are the bosonic fields, defined by~45!, which generate the affine algebra gln(C) ˆ
with central charge 1@see ~47!#. It is easy to check that for arbitrarym, the fieldsa ( i jk ,)(z)
generate the affine algebra glm(C) ˆ with central charge 1. In other words, all the operatorsap

( i jk ,)

(1< i , j <n, 1<k<mi , 1<,<mj , pPZ) together with 1 span glm(C) ˆ in its representation inF
with central charge 1, the charge decomposition being the decomposition into irreducibles. H
using ~54!, ~60! and ~63!, we obtain the vertex operator realization of this representation
glm(C) ˆ in the vector spaceB ~see Ref. 46 for details!.
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Now, restricted to the subalgebra slm(C) ˆ , the representation inF (0) is not irreducible any
more, since slm(C) ˆ commutes with all the operators

bkmn

~s! 5Amn

m (
i 51

n

akmi

~ i ! , kPZ. ~235!

In order to describe the irreducible part of the representation of slm(C) ˆ in B(0) containing the
vacuum 1, we choose the complementary generators of the oscillator algebraa contained in
slm(C) ˆ (kPZ):

bk
~ j !5H ak

~ j ! if k¹mjZ,

M j 11a,mj 11

~ j 11! 2mj 11~a,m1

~1! 1a,m2

~2! 1¯1a,mj

~ j ! !

AM j 11~M j 112mj 11!
if k5,mj and 1< j ,n,

~236!

whereM j5m11m21¯1mj 21 and M150. So the operators~235! and ~236! also satisfy rela-
tions ~49!. Hence, introducing the new indeterminates

yk
~ j !55

xk
~ j ! if k¹mjN,

M j 11x,mj 11

~ j 11! 2~m1x,m1

~1! 1m2x,m2

~2! 1¯1mjx,mj

~ j ! !

AM j 11~M j 112mj 11!
if k5,mj and 1< j ,n,

m1x,m1

~1! 1m2x,m2

~2! 1¯1mnx,mn

~n!

Ammn

if k5,mn and j 5n,

~237!

we haveC@x#5C@y# and

s~bk
~ j !!5

]

]yk
~ j !

and s~b2k
~ j ! !5kyk

~ j ! if k.0. ~238!

Now it is clear that the irreducible with respect to slm(C) ˆ subspace ofB(0) containing the vacuum
1 is the vector space

B@m1 ,m2 ,...,mn#
~0! 5C@yk

~ j !u1< j ,n, kPN, or j 5n, kPN\mnZ# ^ C@Q#. ~239!

The vertex operator realization of slm(C) ˆ in the vector spaceB@m1 ,m2 ,...mn#
(0) is then obtained by

expressing the fields~233! in terms of vertex operators~54!, which are expressed via the operato
~236!, the operatorsQiQj

21 anda0
( i )2a0

( j ) (1< i , j <n) ~see Ref. 46 for details!.
The n-component KP hierarchy of Hirota bilinear equations ontPB(0)5C@y# ^ C@M # when

restricted totPB@m1 ,m2 ,...,mn#
(0) is called the@m1 ,m2 ,...,mn#-th reducedKP hierarchy. It is ob-

tained from then-component KP hierarchy by making the change of variables~237! and putting
zero all terms containing partial derivates byymn

(n) , y2mn

(n) , y3mn

(n) , ... .

It is clear from the definitions and results of Sec. IV that the condition on then-component KP
hierarchy to be@m1 ,m2 ,...,mn#th reduced, i.e.,

(
j 51

n
]t

]xkmj

~ j !
50, for all kPN,

implies the following equivalent conditions~cf. Ref. 9!:
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S (
j 51

n

L~a!kmjC~ j !D
2

50, ~240!

(
j 51

n
]W~a!

]xkmj

~ j !
5W~a!(

j 51

n

zkmjEj j , ~241!

(
j 51

n
]t

]xmj

~ j !
5lt, for some lPC. ~242!

It follows from ~240! that these conditions automatically imply that all of them hold if allmj are
replaced by any, but the same, multiple ofmj .

The totality of solutions of the@m1 ,m2 ,...,mn#th reduced KP hierarchy is given by th
following.

Proposition 7.1: LetO@m1 ,m2 ,...,mn# be the orbit of 1 under the (projective) representation

the loop groupSLm(C@ t,t21#) corresponding to the representation ofŝlm in B@m1 ,m2 ,...,mn#
(0) . Then

O@m1 ,m2 ,...,mn#5s~O!ùB@m1 ,m2 ,...,mn#
~0! .

In other words, thet-functions of the@m1 ,m2 ,...,mn#th reduced KP hierarchy are precisely th
t-functions of the KP hierarchy in the variables yk

( j ) , which are independent of the variables y,mn

(n) ,

,PN.
Proof is the same as of a similar statement in Ref. 27. h

Remark 7.1:The above representation of slm(C) ˆ in B@m1 ,m2 ,...,mn#
(0) is a vertex operator con

struction of the basic representation corresponding to the element of the Weyl groupSm of slm(C)
consisting ofn cycles of lengthm1 , m2 ,...,mn ~see Refs. 26 and 46!. In particular, forn51 this
is the principal realization,34 and for m51 this is the homogeneous realization.@m#th reduced
one-component KP was studied in a great detail in Ref. 8~see also Ref. 27!.

Let n51. Then the@2#-reduced KP hierarchy becomes the celebrated KdV hierarchy on
differential operatorS[(L2)15]21u, whereu52u1 :

]

]x2n11
S1/25@~Sn11/2!1 ,S1/2#, n51,2,..., ~243!

the first equation of the hierarchy being the classical Korteweg–deVries equation

4
]u

]t
5

]3u

]x3
16u

]u

]x
. ~244!

Of course, the@3#-reduced KP is the Boussinesq hierarchy, and the general@m#-reduced KPs are
the Gelfand–Dickey hierarchies.

Let n52. The equations of the@1,1#-reduced two-component KP are independent ofx, hence
Eq. ~194! becomes independent ofx andw becomes 0@see~195!#. Thus, Eq.~94! turns into the
decoupled nonlinear Schro¨dinger system~called also the AKNS system!:

i
]q

]t
52

1

2

]2q

]y2
2q2r ,

~245!

i
]r

]t
5

1

2

]2r

]y2
1qr2.
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Thus ~245! is a part of the@1,1#-reduced two-component KP. For that reason the one-redu
two-component KP is sometimes called the nonlinear Schro¨dinger hierarchy. Of course, under th
constraint~197!, we get the nonlinear Schro¨dinger equation

i
]q

]t
52

1

2

]2q

]y2
2kuqu2q. ~246!

Similarly, under the same reduction the two-dimensional Toda chain~186! turns into the one-
dimensional Toda chain

]2un

]x2
5eun2un212eun112un~here x52y1

~1!!. ~247!

Thus, the one-dimensional Toda chain is a part of the nonlinear Schro¨dinger hierarchy. It was
studied from the representation theoretical point of view in Ref. 45.

Let n>3. Since the constraint~165! is contained among the constraints of the@1,1,...,1#-
reducedn-component KP hierarchy, we see that the 111 n-wave system~168! is a part of the
@1,1,...,1#-reducedn-component KP hierarchy. Note also that the@1,1,...,1#-reduction of the
n-component KP reduces the 211 n-wave interaction system~171! into the 111 system~168!.

Since the nonlinear Schro¨dinger system~245! is a part of the@1,1#-reduced two-componen
KP hierarchy, the@1,1,...,1#-reducedn-component KP hierarchy will be called then-component
NLS. Let us give here its formulation since it is especially simple.

Given an3n matrix C(z)5( jCjz
j , we let

C~z!25(
j ,0

Cjz
j , C~z!15(

j >0
Cjz

j .

Also, given a diagonal complex matrixa5diag(a1,...,an) we let

xk
a5(

j 51

n

akxk
~ j ! ,

]

]xk
a

5(
j 51

n

ak

]

]xk
~ j !

.

Let h denote the set of all traceless diagonal matrices overC.
The n-component NLS hierarchy is the following system on matrix valued functions,

P~a![P~a,x,z!511(
j .0

W~ j !~a,x!z2 j , aPM ,

wherex5$xk
(a)uaPh,k51,2,...%:

]P~a!

]xk
~a!

52~P~a!aP~a!21zk!2P~a! ~248!

with additional matching conditions

~P~a!R~a2b,z!P~b!21!250, a,bPM , ~249!

whereR(g,z)[R1(g,z) is defined by~101!.
This formulation implies the Lax form formulation if we considerC(a)(x,z)

5P(a)aP(a)21 for eachaPh and fixeda. Consider a family of commuting matrix value
functions of the form
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C~a![C~a!~x,z!5a1(
j .0

Cj
~a!~x!z2 j ,

depending linearly onaPh, and letBk
(a)5(C(a)zk)1 . Then the Lax form of then-component NLS

is

]C~a!

]xk
~b!

5@Bk
~b! ,C~a!#, a,bPh, k51,2,... . ~250!

The equivalent zero curvature form of then-component NLS is

]B,
~a!

]xk
~b!

2
]Bk

~b!

]x,
~a!

5@Bk
~b! ,B,

~a!#, a,bPh, k,,51,2,... . ~251!

Since for the@1,1,...,1#-reducedn-component KP one hasL5], i.e., all U ( j )50, we see from
Remark 5.1 that then-component NLS in the form~250! contains the following system of equa
tions on functionsAi j [(C1

Ej j ) i j ( iÞ j ):

]Ai j

]t j
52

]2Ai j

]xj
2

22(
kÞ j

Ai j AjkAk j ,

]Ai j

]t i
5

]2Ai j

]xi
2

12(
kÞ i

Ai j AikAki ,

]Ai j

]tk
5Aik

]Ak j

]xk
2Ak j

]Aik

]xk
, if iÞk, j Þk, ~252!

]Ai j

]xk
5AikAk j , if iÞk, j Þk,

(
k

]Ai j

]xk
5(

k

]Ai j

]tk
50.

This reduces to~215! if n52.
Remark 7.2:Equations~248!, ~250!, and ~251! still make sense if we consider an arbitra

algebraic group G and a reductive commutative subalgebrah of its Lie algebrag. The functions
P(a) take values in G(A((z))) and the functionsC(a) take values ing(A((z))). If G is a simply
laced simple Lie group, the elementR(g,z)PG(C@z,z21#) in matching conditions~249! can be
generalized as follows. Leth be a Cartan subalgebra ofg, normalize the Killing form ong by the
condition that ~aua!52 for any root a, and identify h with h* using this form. Let
M (resp.L),h* 5h be the root~resp. weight! lattice and lete~a,b!: M3M→$61% be a bimul-
tiplicative function such thate(a,a)5(21)(1/2)(aua), aPM . DefineR(a,z)PH(C@z,z21#) for
eacha as follows:

R~a,z!5caza, ~253!

where in any finite-dimensional representationV of G, caPH andzaPH for zPC3 are defined
by

ca~v !5e~b,a!v, za~v !5z~aub!v if vPVb . ~254!
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Note that this GNLS hierarchy is closely related to the Bruhat decomposition in the loop g
G(C((z))).

It is clear that we get thet-function of the@,,,,...,,#th reducedn-component KP hierarchy if
we let in ~217!

ws5vszs , sPS, ~255!

wherevs are arbitrary,th roots of 1. The totality oft-functions is~a completion of! the orbit of
1PB(0) under the group SLm(C@ t,t21#).

VIII. W1¿`„gln… AND THE ORLOV–SCHULMAN–ADLER–SHIOTA–VAN MOERBEKE
FORMULA

In recent years Adler, Shiota, and van Moerbeke2,3 proved a formula, conjectured by Orlo
and Schulman,39 which connects the action ofW11` on the tau-function of the one-component K
hierarchy to the so-called ‘‘additional symmetries’’ of the wave function. These Orlov–Schu
symmetries were also independently found by Fokas and Santini in Ref. 18. In this secti
shall give a generalization of this formula, obtained by one of the authors in Ref. 48, fo
n-component KP case.

In the spirit of Refs. 28, 29, and 41, we introduce the bosonic fields

J~ab,, !~z!5(
kPZ

Jk
~ab,, !z2k2,215:

],c1~a!~z!

]z,
c2~b!~z!:, ~256!

and their generating series

J~ab!~y,w!:5:c1~a!~y!c2~b!~w!:5 (
,50

`
~y2w!,

,!
J~ab,, !~w!5 (

,50

`
~y2w!,

,! (
kPZ

Jk
~ab,, !w2k2,21.

~257!

It is straightforward, but tedious, to check that these operators satisfy the following commu
relations:

@Jk
~ab,, ! ,Jp

~cd,q!#5dbc (
m50

q S q
mD @k1 l #mJk1,1p1q2m

~ad,,1q2m! 2dad (
m50

, S ,
mD @p1q#mJk1,1p1q2m

~cb,,1q2m!

1daddbcdk,2p~2 !,,!q! S k1,
,1q11D ,

where@x#m5x(x21)(x22)¯(x2m11). Hence these operatorsJk
(ab,,) together with 1 satisfy

the commutation relations of the Lie algebraW11`(gln), the central extension of the Lie algeb
of differential operators on (C@ t,t21#)n, where the central element acts as 1. If one substitutes~54!
into ~257! and using~63!, one obtains the following vertex operator expression for the genera
series of the fieldsJ(ab,,)(w):

J~ab!~y,w!5
1

~y2w!dab
~X~ab!~y,w!2dab!, where

X~ab!~y,w!5e~da ,db!eda2dbydaw2dbX̃~ab!~y,w!, and ~258!

X̃~ab!~y,w!5expS (
k51

`

~xk
~a!yk2xk

~b!wk!D expS 2 (
k51

` S ]

]xk
~a!

y2k

k
2

]

]xk
~b!

w2k

k D D .
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In order to give the Orlov–Schulman–Adler–Shiota–van Moerbeke~OSASM! formula, we
have to introduce some infinite order pseudo-differential operators foraPsuppt:

G5jI n1 (
a51

n

(
k51

`

kxk
~a!]k21Eaa ,

M ~a!5P1~a!R1~a!S1~a!jS1~a!21R1~a!21P1~a!215P1~a!R1~a!GR1~a!21P1~a!21,
~259!

C~ i j !~a!5P1~a!R1~a!S1~a!EabS
1~a!21R1~a!21P1~a!21.

Notice thatG, M (a), C( i j )(a)PĈ. One has the following linear problem for the wave functi
V1(a,j,x,z):

L~a!V1~a,j,x,z!5zV1~a,j,x,z!,

M ~a!V1~a,j,x,z!5
]V1~a,j,x,z!

]z
,

~260!
C~ i j !~a!V1~a,j,x,z!5V1~a,j,x,z!Ei j

Bk
~ j !~a!V1~a,j,x,z!5

]V1~a,j,x,z!

]xk
~ j !

.

In the spirit of Sec. VIII. We introduce

Yk
~ab,, !~a!5M ~a!,L~a!k1,C~ab!~a!, ~261!

and define

Y~ab!~a,y,w!5 (
,50

`
~y2w!,

,! (
kPZ

w2k2,21Yk
~ab,, !~a!

5 (
,50

`
~y2w!,

,! (
kPZ

w2k2,21M ~a!,L~a!k1,C~ab!~a!. ~262!

Let d(w2z)5(nPZw
2nzn21. Using ~259! we calculate

Y~ab!~a,y,w!V1~a,j,x,z!5 (
,50

`
~y2w!,

,! (
kPZ

w2k2,21M ~a!,L~a!k1,C~ab!~a!V1~a,j,x,z!

5 (
,50

`
~y2w!,

,! (
kPZ

w2k2,21zk1,
],V1~a,j,x,z!

]z,
Eab

5d~w2z! (
,50

`
~y2w!,

,!

],V1~a,j,x,z!

]z,
Eab

5d~w2z!V1~a,j,x,y!Eab . ~263!

The deduction of the OSASM formula is based on two things;~1! the bilinear identity~64! in a
slightly modified form~with all x1

( i )’s replaced byx1
( i )1j), viz.,
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Resz50dz(
j 51

n

c1~ j !~z!ezjta1d i1db2d j 2da
~j,x!ea1d i1db2d j 2da^ c2~ j !8~z!

3e2zj8tb1d j 2dk
~j8x8!~eb1d j 2dk!850, ~264!

and ~2! the commutation relations~32!, which we rewrite as follows:

cl~ i !~w!cm~ j !~z!1cm~ j !~z!cl~ i !~w!5dl j 2md i j d~w2z!. ~265!

Now, let c1(a)(y)eyjc2(b)(w)ewj
^ 1 act on the bilinear identity~264!. We obtain, using~265!,

Resz50dz(
j 51

n

$c1~ j !~z!c1~a!~y!c2~b!~w!e~z1y2w!j2d jbc1~a!~y!eyjd~w2z!%

3ta1d i1db2d j 2da
~j,x!ea1d i1db2d j 2da^ c2~ j !8~z!e2zj8tb1d j 2dk

~j8x8!~eb1d j 2dk!850.

~266!

Since c1(a)(y)c2(b)(w)5J(ab)(y,w)2dab /(y2w) and since we can subtract a multiple
~264!, we can replacec1(a)(y)c2(b)(w) by J(ab)(y,w). Now remove the tensor product and th
factorsea1d i and (eb1dk)8 and divide byta(j,x)tb(j8,x8). Notice that by doing this, the actio
of J(ab)(y,w) is no longer well-defined. For that reason we introduceJ(ab)(y,w) as follows:

~y2w!dabJ~ab!~y,w!tg~j,x!5$e~da ,db!e~da2db ,g!y~daug!w2~dbug!ey•x~a!2w•x~b!

3e2h~a!~x,y!1h~b!~x,w!2dab%e
~y2w!jtg~x,t !,

whereh (a)(x,z)5(k51
` (]/]xk

(a))(z2k/k). So ~266! turns into

Resz50dzH d~w,z!Via
1~a,j,x,y!Vkb

2 ~b,j8,x8,z!1(
j 51

n

e2h~ j !~x,z!

3S J~ab!~y,w!ta1d i1db2d j 2da
~j,x!

ta1d i2d j
~j,x! D Vi j

1~a,j,x,z!Vk j
2~b,j8,x8z!J 50.

Using ~263! one obtains

Resz50dzH Eii S Y~ab!~a,y,w!V1~a,j,x,z!1(
j 51

n

e2h~ j !~x,z!

3S J~ab!~y,w!ta1d i1db2d j 2da
~j,x!

ta1d i2d j
~j,x! D D V1~a,j,x,z!Ej j J t

V2~b,j8,x8,z!50.

Now notice that

e2h~ j !~x,z!S J~ab!~y,w!ta1d i1db2d j 2da
~j,x!

ta1d i2d j
~j,x! D V1~a,j,x,z!Ej j

5 (
k50

`

cjkL~a!2kC~ j !~a!V1~a,j,x,z!

5H S (
k51

`

cjkL~a!2kC~ j !~a!D
2

1
J~ab!~y,w!ta1d i1db2d j 2da

~j,x!

ta1d i2d j
~j,x!

Ej j J V1~a,j,x,z!,
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hence

Resz50dzEii S Y~ab!~a,y,w!1(
j 51

n

(
k50

`

cjkL~a!2kC~ j !~a!DV1~a,j,x,z! tV2~b,j8,x8,z!50.

Now takeb5a and use Corollary 4.1 and Remark 4.1; one obtains

Eii S Y~ab!~a,y,w!21(
j 51

n S (
k50

`

cjkL~a!2kC~ j !~a!D
2

D 50.

Hence

2Eii Y
~ab!~a,y,w!2V1~a,j,x,z!

5Eii (
j 51

n

e2h~ j !~x,z!S J~ab!~y,w!ta1d i1db2d j 2da
~j,x!

ta1d i2d j
~j,x! D V1~a,j,x,z!Ej j

2
J~ab!~y,w!ta1db2da

~j,x!

ta~j,x!
Eii V

1~a,j,x,z!.

So we obtain the following generalization of the Orlov–Schulman–Adler–Shiota–van Moer
formula.

Theorem 8.1:

2~Y~ab!~a,y,w!2V1~a,j,x,z!! i j

5H e2h~ j !~x,z!S J~ab!~y,w!ta1d i1db2d j 2da
~j,x!

ta1d i2d j
~j,x! D 2

J~ab!~y,w!ta1db2da
~j,x!

ta~j,x! J Vi j
1~a,j,x,z!.

~267!

Introducing the modes of

J~ab!~y,w!5 (
,50

`
~y2w!,

,! (
kPZ

Jk
~ab,, !w2k2,21, ~268!

one has the following.
Corollary 8.1:

2~~M ~a!,L~a!k1,C~ab!~a!!2V1~a,j,x,z!! i j

5H e2h~ j !~x,z!S Jk
~ab,, !ta1d i1db2d j 2da

~j,x!

ta1d i2d j
~j,x! D 2

Jk
~ab,, !ta1db2da

~j,x!

ta~j,x! J Vi j
1~a,j,x,z!.

Proof: Compare in~267! the expansions for the vertex operatorsY(ab)(a,y,w) as in~262! and
J(ab)(y,w) as in ~268!. h
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Additional symmetries and solutions of the dispersionless
KP hierarchy

Luis Martı́nez Alonsoa) and Manuel Mañasb)
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The dispersionless KP hierarchy is considered from the point of view of the twistor
formalism. A set of explicit additional symmetries is characterized and its action on
the solutions of the twistor equations is studied. A method for dealing with the
twistor equations by taking advantage of hodograph type equations is proposed.
This method is applied for determining the orbits of solutions satisfying reduction
constraints of Gelfand–Dikii type under the action of additional
symmetries. ©2003 American Institute of Physics.@DOI: 10.1063/1.1587873#

I. INTRODUCTION

The so-called dispersionless hierarchies1–9 provide an interesting type of nonlinear integrab
model which cannot be studied by the standard schemes of the KP theory and require an
new approach. From the point of view of the Lax formalism, dispersionless hierarchies arise
quasiclassical limits of Lax pair equations performed by replacing operators by phase
functions and commutators by Poisson brackets. In this way, when dealing with dispersi
hierarchies, instead of the associated auxiliary linear system of the standard formalism o
grable systems the underlying equations to be solved are of Hamilton–Jacobi type.

Several methods of solution of dispersionless hierarchies have been formulated. In Refs
4 ~see also Refs. 11 and 12! Kodama and Gibbons gave a direct method based on the us
reductions in which the dependent variables depend on a finite number of unknown function
corresponding reduced hierarchy becomes an infinite set of compatible hydrodynamic s
solvable by hodographic techniques. A]̄ scheme has been proposed by Konopelchenkoet al. in
Refs. 13–15, which introduces an associated]̄ equation of Hamilton–Jacobi type. In this artic
we deal with the twistorial method of Takasaki and Takebe,9,10 Two important advantages of thi
method are the following.

~1! It provides a convenient scheme for describing the symmetries.
~2! All local solutions can be determined by means of the twistor method.

The main aim of this article is to present a technique for deriving explicit examples of
additional symmetries and solutions of dispersionless hierarchies within the framework o
twistor formalism. It requires a new formulation of the twistor equations which involves a ce
type of generating function for canonical transformations of twistor data as well as the u
hodograph equations. To show our strategy, we concentrate on the dispersionless KP~dKP! hier-
archy, which is the prototype of this kind of integrable hierarchy. Its Lax pair formulation invo
a phase space with a canonical pair of coordinates (p,x) and an associated Poisson bracket

$F,G%5
]F

]p

]G

]x
2

]F

]x

]G

]p
.

a!Electronic mail: luism@fis.ucm.es
b!Electronic mail: manuel@darboux.fis.ucm.es
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It is useful to introduce an enlarged Lax formalism with a pair of canonically conjugate varia
L5L(p,t) andM5M(p,t) ~i.e. $L,M%51) depending onp and an infinite set of time param
eters

tª~ t15x,t2 ,...,tn ,...!,

which are assumed to admit expansions of the form

L5p1 (
n>1

un~ t!

pn , M5 (
n>2

ntnL n211x1 (
n>1

vn~ t!

L n11 , ~1!

asp→` andL→`, respectively. The Lax equations of the dKP hierarchy are

]L
]tn

5$Bn ,L%,
]M
]tn

5$Bn ,M%, n>2, ~2!

where

Bnª~L n!>0 .

Here (F)>0 denotes the projection of a Laurent seriesF in the variablep on the subspace
generated by the non-negative powers ofp @we will also use the notation (F)<21ªF2(F)>0].
The system of compatibility equations

]Bm

]tn
2

]Bn

]tm
1$Bm ,Bn%50, mÞn, ~3!

yields an infinite set of nonlinear equations for the coefficientsun of the expansion~1! of L. In
particular for (n,m)5(2,3) one gets the dKP equation~Zabolotskaya–Khokhlov equation!

~ut23uux!x5 3
4 uyy , uªu1 ,tªt3 ,yªt2 . ~4!

This is an interesting nonlinear model with applications, in the study of quasi-plane s
beams,17 quasi-transonic flows past thin wings18 or Einstein-Weyl spaces.19

In the next section we first describe in brief the twistor approach to the solutions and
metries of the dKP hierarchy. Then we present a class of additional symmetries depend
arbitrary functions of one variable, the action of which can be explicitly determined. As a pa
lar case they include the symmetries of the dKP equation found by Dunajski, Mason and T
Ref. 19. The first part of Sec. III is devoted to a new formulation of twistor equations whic
appropriate for dealing with the transformation laws of solutions under the action of symme
In the second part of Sec. III we show how solutions of the dKP hierarchy satisfying redu
constraints of Gelfand–Dikii type transform under the class of additional symmetries introd
in Sec. II. Finally, some explicit examples are worked out.

II. SYMMETRIES IN THE TWISTOR FORMALISM

A. Twistorial structure of the dKP hierarchy

The twistor formalism of the dKP hierarchy is based on the degenerate symplectic form9

vªdp`dx1 (
n>2

dBn`dtn , ~5!

which plays the role of the Gindikin bundle16 of curved twistor theory. The formv encodes both
the Lax equations and their compatibility conditions into the simple system
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v5dL`dM,
~6!

v`v50.

From the first equation we have that

dS MdL1pdx1 (
n>2

BndtnD 50,

so that there exists a generating functionS5S(L,t) for the canonical transformation
(p,x)°(L,M) satisfying

dS5MdL1pdx1 (
n>2

Bndtn ,

or equivalently

M5
]S

]L , p5
]S

]x
, Bn5

]S

]tn
, n>2. ~7!

Notice that from~1! and the first equation of~7! it follows that S can be defined as

S~L,t!5 (
n>1

tnL n2 (
n>1

vn~ t!

n
L 2n.

The twistor scheme for solving the dKP hierarchy is based on the following result.9

Theorem 1: Let (P(p,x),X(p,x)) be a pair of canonically conjugate variables (i.e.$P,X%51).
Then we have the following:

(1) Given two functions(L(p,t),M(p,t)) of the form (1) such that the composite functio
(P(L,B),X(L,B)) have Laurent series expansions in p satisfying thetwistor equations

~P~L,M!!<2150, ~X~L,M!!<2150, ~8!

then (L,M) gives a solution of the dKP hierarchy (2). The pair

~P~p,x!,X~p,x!!

is called the twistor dataof the solution~L,M!.
(2) Each solution of the dKP hierarchy admits a set(P(p,x),X(p,x)) of twistor data.
In general, we cannot assume the existence of appropriate solutions~L,M! of ~8!. For ex-

ample, the canonical variables

Pªp2x, Xª
1

p
, ~9!

determine the twistor equations

~L 2M!<2150, S 1

LD
<21

50,

which obviously have no solutions satisfying~1!.
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B. Symmetry transformations

One of the main features of the twistor equations is that the symmetry properties of the
hierarchy can be formulated in a convenient way.9 Indeed, the natural group acting on the set
twistor data (P(p,x),X(p,x)) is the group of canonical transformations generated by o
parameter groups of the form

exp~s$F, •%!:~P,X!°~P~s!,X~s!!, F5F~p,x!,

P~s!ªP~exp~s$F, •%!p,exp~s$F, •%!x!, ~10!

X~s!ªX~exp~s$F, •%!p,exp~s$F, •%!x!,

where

exp~s$F, •%!GªG1s$F,G%1
s2

2
$F,$F,G%%1¯ .

The following theorem can be proved.9

Theorem 2: A one-parameter group of canonical transformations (10) induces an ac
(L,M)°(L(s),M(s)) on the set of solutions of the dKP hierarchy determined by the flow

]L
]s

5$L,F~L,M!<21%,
]M
]s

5$M,F~L,M!<21%. ~11!

Let us consider symmetries of the dKP hierarchy generated by double series of the fo

F~L,M!5 (
i 52`

`

(
j 52`

`

ci j L iM j . ~12!

We will concentrate on the (r 11)th truncated dKP hierarchiesdefined as the sets of the firs
r 11 flows of the dKP hierarchy (r>2). Thus in order to analyze their symmetries we may
tn50,;n>r 11, and so we may write

M5~r 11!t r 11L r1rt rL r 211¯1x1OS 1

L 2D . ~13!

By substituting this expansion in~12!, a series expansion ofF in powers ofL is obtained. Let us
now investigate those symmetries of the (r 11)th truncated dKP hierarchy which do not involv
the action of higher dKP flows. To this end, we have to avoid terms of the form$(L n)>0 ,L% with
n.(r 11) on the right-hand side of the first equation in~11!. Hence we imposeci j 50 for (i
1 j r ).(r 11), so thatF can be expressed in the form

F~L,M!5 (
n<r 11

anS M
~r 11!L r DL n, ~14!

with an(t) being arbitrary smooth functions. Furthermore, Eq.~11! for L can be written as

]L
]s

5
]F

]M 1$F~L,M!>0 ,L%, ~15!

and it is easy to see that only those terms in~14! with n>1 contribute to]u/]s.
Therefore, we conclude that the symmetries of the (r 11)th truncated dKP hierarchy whic

do not involve higher dKP flows and define a nontrivial action on the coefficientu are of the form
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F~L,M!5 (
n51

r 11

anS M
~r 11!L r DL n. ~16!

This means that, under these conditions, there are essentiallyr 11 types of symmetry generator
of the (r 11)th truncated dKP hierarchy given by

Fi~L,M!ªaS M
~r 11!L r DL i , i 51,...,r 11, ~17!

with a5a(t) being an arbitrary function.
The action of the one-parameter groups generated byFi on the coefficientu can be explicitly

found. Indeed, by identifying the coefficients of 1/p in both members of~15! one gets a first-orde
linear partial differential equation for

u~s,t!ªexp~s$Fi , •%!u~ t!,

the integration of which provides the symmetry transformation

u5u~ t!°ũ5u~s,t!.

Let us illustrate these facts by considering the caser 52. We observe that~13! implies that
near pointst in the region of analyticity ofa

aS M
3L 2D5a~ t !1

2

3
ya8~ t !

1

L 1S 1

3
xa8~ t !1

2

9
y2a9~ t ! D 1

L 2 1OS 1

L 3D . ~18!

One finds the following results for the corresponding three generators~17!:
~1! F1

From ~15! we have

]L
]s

5a8S M
3L 2D 1

3L 1a~ t !
]L
]x

,

so that

]u

]s
5a~ t !

]u

]x
1

1

3
a8~ t !. ~19!

The solution of this equation is

u5U~x1sa~ t !,y,t !1 1
3 sa8~ t !,

whereU is an arbitrary function. It leads to the symmetry

ũ5u~x1sa~ t !,y,t !1 1
3 sa8~ t !. ~20!

~2! F2

In this case~15! becomes

]L
]s

5
1

3
a8S M

3L 2D1
2

3
ya8~ t !

]L
]x

1a~ t !
]L
]y

,

and the equation foru is
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]u

]s
5

2

3
ya8~ t !

]u

]x
1a~ t !

]u

]y
1

2

9
ya9~ t !, ~21!

which has the solution

u5U~x1 2
3 sya8~ t !1 1

3 s2a~ t !a8~ t !,y1sa~ t !,t !1 2
9 sya9~ t !1 1

9 s2a~ t !a9~ t !,

whereU is an arbitrary function. The corresponding symmetry transformation of the dKP equ
is

ũ5u~x1 2
3 sya8~ t !1 1

3 s2a~ t !a8~ t !,y1sa~ t !,t !1 2
9 sya9~ t !1 1

9 s2a~ t !a9~ t !. ~22!

~3! F3

Now Eq. ~15! takes the form

]L
]s

5
1

3
a8S M

3L 2DL1S 1

3
xa8~ t !1

2

9
y2a9~ t ! D ]L

]x
1

2

3
ya8~ t !

]L
]y

1a~ t !
]L
]t

,

which implies

]u

]s
5S 1

3
xa8~ t !1

2

9
y2a9~ t ! D ]u

]x
1

2

3
ya8~ t !

]u

]y
1a~ t !

]u

]t
1

1

3
a8~ t !u1

1

9
xa9~ t !1

2

27
y2a-~ t !.

~23!

The solution of this equation is

u5~c8~ t !!2/3US x~c8~ t !!1/31
2

9
y2

c9~ t !

~c8~ t !!2/3,y~c8~ t !!2/3,s1c~ t ! D
1

1

9
x

c9~ t !

c8~ t !
1

2

27
y2S c-~ t !

c8~ t !
2

4

3 S c9~ t !

c8~ t ! D
2D ,

where U is an arbitrary function andc(t) is such thatc8(t)51/a(t). Hence, by definingT
ªT(s,t) through the implicit relation

c~T!5s1c~ t !,

and by taking into account that

T8ª
]T

]t
5

c8~ t !

c8~T!
,

one finds that the symmetry transformation determined by~23! is

ũ5~T8!2/3uS x~T8!1/31
2

9
y2

T9

~T8!2/3,y~T8!2/3,TD1
1

9
x

T9

T8
1

2

27
y2S T-

T8
2

4

3 S T9

T8D
2D . ~24!

The three symmetries~20!, ~22!, and~24! coincide with the symmetries of the dKP equatio
found by Dunajski, Mason, and Tod.19 by analyzing equivalence transformations of Einstein–W
spaces.

1. Transformation law of twistor data

According to~10! the dKP symmetry generated by~17! corresponds to a canonical transfo
mation law of the twistor data determined by the Hamiltonian system
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dp

ds
5$a~r!pi ,p%,

dx

ds
5$a~r!pi ,x%, ~25!

where we are denoting

rª
x

~r 11!pr .

In terms of (p,r) this system becomes

dp

ds
52

a8~r!

r 11
pi 2r ,

dr

ds
5 i

a~r!

r 11
pi 2r 21, ~26!

and by taking into account that the Hamiltonian function

hªa~r!pi

is a constant of the motion it follows that the solution of~25! can be written as

p~s!5
p

~ j r!1/~r 11! , x~s!5~r 11! j p~s!r . ~27!

Here j 5 j (s,r,h) is the evolution law of the variabler. That is to say, it is the solution of th
initial value problem

] j

]s
5b~r,h!, j ~0,r,h!5r, ~28!

where

b~r,h!ª
i

r 11 S a~r!

h D ~r 11!/ i

h.

The expressions~27! define the action of the additional symmetries~17! on the twistor data.
It is important to observe that the solution of~28! satisfies

s5E
r

j (s,r,h) dr

b~r,h!
,

and, as a consequence, one deduces that the first-order derivatives ofj with respect tor andh are

j r5S a~ j !

a~r! D
~r 11!/ i

,

~29!

j h5sS i

r 11
21D S a~ j !

h D ~r 11!/ i

5S i

r 11
21D s

p~s!r 11 .

As we will see below, these relations will be useful for determining the action of the addit
symmetries on the solutions of the twistor equations.

III. SOLUTIONS OF THE dKP HIERARCHY

A. Generating functions and hodograph equations

We are going to present a scheme for solving twistor equations which is particularly su
to investigate the action of the additional symmetries introduced in the above section. An
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dient of our analysis is the use of a type of generating functions for canonical transformatio
twistor data,20 which allows us to introduce hodograph type equations to formulate part o
constraints imposed by the twistor equations.

Let (P(p,x),X(p,x)) be a pair of canonically conjugate variables. Then for each pos
integerr we have

dP`dX5dp`dx5d~pr 11!`dr, rª
x

~r 11!pr .

Hence there exists an associated generating functionJrªJr(P,r) of the canonical transformation
(p,x)°(P,X) such that

dJr5pr 11dr1XdP,

or equivalently

pr 115
]Jr~P,r!

]r
, X5

]Jr~P,r!

]P
. ~30!

In this way by denoting

Mrª
M

~r 11!L r ,

we deduce

]

]p
Jr~P~L,M!,Mr !5

]Jr

]P
~P~L,M!,Mr !

]P~L,M!

]p
1

]Jr

]r
~P~L,M!,Mr !

]Mr

]p

5X~L,M!
]P~L,M!

]p
1L r 11

]Mr

]p
,

and by taking into account that

L r 11
]Mr

]p
5

1

r 11

]~LM!

]p
2

]S

]p
,

whereS is the function introduced in~7!, we deduce that

X~L,M!5
~]/]p! ~S1Jr~P~L,M!,Mr !2 @1/~r 11!#LM!

~]/]p! P~L,M!
. ~31!

This formula enables us to state the following:
Theorem 3: In terms of the function

SrªS1Jr~P~L,M!,Mr !2
1

r 11
LM, ~32!

the second twistor equation(X(L,M))<2150 is equivalent to the following two conditions
(1) The expansion ofSr in powers of p satisfies

~Sr !<2150. ~33!

(2) At each zero pi of ]P(L,M)/]p it is verified that
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]Sr

]p
~pi ,t!50. ~34!

Henceforth we will refer to~34! as thehodograph equations.
A natural problem is to determine generating functionsJr(P,r) leading to solvable twistor

equations. In this sense, an important class arises whenP5P(p,x) is independent ofx and has a
finite-order expansion asp→`:

P~p!5 (
n52`

N

anpn.

The corresponding generating functionJ0 is of the form

J0~P,x!5 f ~P!1g~P!x,

whereg(P) is the inverse function ofP5P(p). As a consequence

J0~P~L,M!,M!5 f ~P~L!!1LM,

S05S1 f ~P~L!!.

It can be shown that, providedf (P(p)) admits a Laurent expansion asp→`, the twistor equa-
tions determined byJ0 have a solution. Moreover, it turns out that solving the hodograph e
tions forS0 is enough for computingL. Let us illustrate these facts with the following importa
example

Gelfand–Dikii reductions: If we set

J0~P,x!5 f ~P1/m!1P1/mx, f ~P1/m!ª (
n52`

`

cnPn/m, ~35!

for a given integerm.1, the associated twistor data are

P5pm, X5
1

mpm21 ~ f 8~p!1x!. ~36!

Then, the first twistor equation is

L m5~L!>0 ,

so that

L m5pm1qm22~u!pm221¯1q1~u!p1q0~u!, ~37!

where the functionsqi(u) depend on the (m21) first coefficientsuª(u1 ,...,um21) of the ex-
pansion~1! of L. This constraint defines themth Gelfand–Dikii reduction of the dKP hierarchy

For example the first few reductions are

m52, L 25p212u1 ,

m53, L 35p313u1p13u2 ,

m54, L 45p414u1p214u2p16u1
214u3 .

To determineL we must find the (m21) unknownsui as functions oft through the second
twistor equation. Thus, according to Theorem 2, we impose
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S05S1 f ~L!5~S1 f ~L!!>05 (
n>1

~ tn1cn!~L n!n>01c0 .

Hence, by using~37! we can expressS0 as a function of (p,t,u). If we now impose the hodograp
equations~34!, we get (m21) implicit equations

S (
n>1

~ tn1cn!
]

]p
~L n!n>0D U

p5pi (u)

50, i 51,...,m21, ~38!

which determine the functionsui(t) and, consequently,L. Furthermore, by eliminatingp in ~37!
we can expressp as a functionp5p(L,t), which under substitution into

S5 (
n>1

tnL n2S (
n>1

tnL n2 f ~L! D
<21

,

leads toM5]S/]L. Thus, it is easy to see that the functionsL andM are solutions of the twistor
equations which satisfy~1! and, therefore, they solve the dKP hierarchy Henceforth these solu
will be calledGelfand–Dikii solutionsof the dKP hierarchy.

For instance, ifm52 ~dKdV reduction!,

L 25p212u, uªu1 ,

and we settn50, ;n.3, one gets the hodograph relation

3ut1x5F~u!, ~39!

which solves the dKdV equationut53uux . Here

F~u!:25
]

]p (
n>1

cn•~L n!n>0up50

can be assumed to be an arbitrary smooth function ofu. Some elementary solutions provided b
~39! are

F~u!5cu, u52
x

3t2c
,

F~u!5cu2, u5
1

2c
~3t1A9t214cx!, ~40!

F~u!5cu3, u5
f

2c
1

2t

f
, fªS 4x14c2Ax22

4t3

c D 1/3

.

B. The action of additional symmetries on Gelfand–Dikii solutions

Our aim now is to characterize solutions of the dKP hierarchy by applying the symm
transformations~17! to Gelfand–Dikii solutions. Obviously we may start from solutions of t
hodograph equations~38! and then perform the corresponding symmetry transformation. H
ever, in order to do it we need to know how the coefficientsui of the expansion~1! of L transform
under the symmetries~17!, which requires us to solve a system of first-order linear partial dif
ential equations. We are trying instead an alternative way consisting in determining the gen
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functions Jr(P,r) for the transformed twistor data and then solving the corresponding tw
equations according to the scheme of Theorem 3. In this alternative procedure the problem r
to solving a system of implicit algebraic equations.

The dKP symmetry generated by~17! acts on twistor data according to the canonical tra
formation ~27!. In particular, the twistor data~36! for the Gelfand–Dikii reductions transform a

P~s!5S p

~ j r!1/~r 11!D m

,

~41!

X~s!5
P~m21!/m

m
~ f 8~P1/m!1~r 11! j Pr /m!.

Hence, by taking into account thatj is a function of (s,r,h), it follows that

pr 115 j rP~r 11!/m5
]

]r
~ jP ~r 11!/m!2ĥr j hP~r 11!/m,

X5
]

]P
~ f ~P!1/m1 jP ~r 11!/m!2ĥPj hP~r 11!/m,

where

ĥ5ĥ~P,r!ªh~p~P,r!,r!5a~r!p~P,r! i .

By using now~29! we deduce

pr 115
]Jr

( i )~P,r!

]r
, X5

]Jr
( i )~P,r!

]P
, ~42!

where

Jr
( i )~s,P,r!ª f ~P1/m!1 j ~s,r,ĥ!P~r 11!/m1s S 12

i

r 11D ĥ~P,r!. ~43!

Wide families of solutions of the (r 11)th truncated dKP can be found by solving the twis
equations associated with the generating functions~43!. The calculations are simple but long an
require computer aid. To illustrate the strategy for computing these solutions let us consid
family of generating functionsJr

( i ) with

i 5r 11>m. ~44!

The choicei 5r 11 means that we are dealing with the orbits of Gelfand–Dikii solutions un
the action of the symmetry generator

Fr 11~L,M!ªaS M
~r 11!L r DL r 11. ~45!

Thus, according to~29! the function j in ~43! is determined froma through the solution of the
initial value problem

] j

]s
5a~r!, j ~0,r!5r. ~46!
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Hencej is independent ofh and by settings to be a constant, we may takej as a function ofr
only. Therefore, the generating functionsJr

( i ) that we are considering are

Jr~P,r!5 f~P1/m!1 j ~r! P~r 11!/m. ~47!

Notice that

P5
pm

~ j r!m/~r 11! , ~48!

so that the first twistor equation reads

Lm5~Lm!>0 , ~49!

where

Lª
L

j r~Mr !
, Mrª

M
~r 11!L r . ~50!

From ~1! one deduces at once that the integer powers ofL have expansions of the form

L N5pN1¯1an~u1 ,...,uN2n21!pn1¯1bn~u1 ,...,uN1n21!
1

pn 1¯ ,

~51!
1

L N 5
1

pN 1¯1cn~u1 ,...,un2N21!
1

pn 1¯ .

Furthermore,~1! implies that for any smooth functiong5g(t) the composite functiong(Mr) can
be expanded in the form

g~Mr !5gS t r 111
rt r

r 11

1

L 1¯1
vn~ t!

r 11

1

L n 1¯ D
5g~ t r 11!1

rt r

r 11
g8~ t r 11!

1

p
1¯1dn~ t,u1 ,...,un22 ,v1 ,...,vn2r 21!

1

pn 1¯ . ~52!

Thus, from~51! and ~52! and by taking into account~44!, we deduce thatL is of the form

L5~qm~ t,u!pm1¯1q1~ t,u!p1q0~ t,u!!1/m, ~53!

whereuª(u1 ,...,um21).
Two different cases arise.
~1! r5m21,m. This is the simplest situation since from~51!–~53! it follows at once that

Sr5S (
s51

r
r 2s11

r 11
tsL s1gLm1n1 j ~Mr !L

r 11D
>0

is a function depending of (p,t) andu5(u1 ,...,um21). Therefore, the (m21) hodograph equa
tions

]Sr

]p
~pi ,t!50, ~54!

wherepi5pi(t,u) are the zeros of]Lm/]p, are enough for determiningu.
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~2! r>m11. The functionSr5(Sr)>0 depends on (p,t) and ũ5(u1 ,...,ur 21), so that in
addition to the (m21) hodograph equations~54! a set of (r 2m) new equations involvingt and
ũ are required. These additional equations are supplied by vanishing the coefficients of the
tive powers 1/pn (n51,...,r 2m) in

~Lm!<2150.

C. Examples

In the following examples we exhibit solutionsu of the dKP equation~4! depending on an
arbitrary functionj 5 j (r). They are orbits of Gelfand–Dikii solutionsu0 under the action of the
symmetry generated by~45!. Notice that according to~45!–~46! we can obtainu0 by setting j
5r in the expression ofu.

~1! For

r 5m52, f ~P1/2!ªgP7/2,

the generating function~47! becomes

J2~P,r!5gP7/21 j ~r!P3/2, rª
x

3p2 , ~55!

andL2 takes the form

L25~L2!>0

5
p2

~ j 8~ t !!2/32
4

9

y j9~ t !

~ j 8~ t !!5/3p1
2u1

~ j 8~ t !!2/32
2

9

x j9~ t !

~ j 8~ t !!5/32
4

27

y2 j -~ t !

~ j 8~ t !!5/31
20

81

y2~ j 9~ t !!2

~ j 8~ t !!8/3 .

~56!

Hence]L2/]p has a unique zero given by

p15
2

9
y

j 9~ t !

j 8~ t !
.

Moreover, the expression of

S25~ 1
3 yL 21 2

3 xL1gL71 j ~M2!L3!>0

as a function ofp can be computed by using~57! and the expansion

j ~M2!5 j ~ t !1
2

3
y j8~ t !

1

p
1S x

3
j 8~ t !1

2

9
y2 j 9~ t ! D 1

p2

1S 2
2

3
y j8~ t !u11

4

81
y3 j -~ t !1

2

9
xy j9~ t ! D 1

p3 1OS 1

p4D .

In this way the hodograph equation (]S2 /]p)up5p1
50 turns out to be an equation foru5u1 ,

which yields the following solution of the dKP equation

u5
F

105g
2

6 j ~ t ! j 8~ t !4/3

F
1

9 j 8~ t ! j 9~ t !x16 j 8~ t ! j -~ t !y228 j 9~ t !2y2

81~ j 8~ t !!2 , ~57!

where
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Fªg2/3~27350j 8~ t !4/3j 9~ t !y2233075j 8~ t !7/3x1105A35G!1/3,

Gª

1

g
~648j ~ t !3 j 8~ t !41140g j 8~ t !8/3j 9~ t !2y411260g j 8~ t !11/3j 9~ t !xy212835g j 8~ t !14/3x2!.

~2! By setting

r 5m53, f ~P1/3!ªgP7/3,

in ~47! one finds that the first two coefficients of the expansion~1! of L are given by

u5u152
1

1024j 1
2 ~90 j 2

2t2272 j 1 j 3t22128 j 1 j 2y1Z2!, ~58!

u25
221g j 1

8 j 2t Z41F Z218388608j 1
59/4y12359296j 1

55/4 j 2t2

114688g j 1
11Z

, ~59!

where

j iª
] i j

]r i ~ t4!, i>0,

Fª216384j 0 j 1
47/417168g j 1

10j 2x213440g j 1
9 j 2

2ty15670g j 1
8 j 2

3t3

12016g j 1
10j 4t327560g j 1

9 j 2 j 3t3110752g j 1
10j 3ty,

andZ5Z(x,y,t,t4) is a root of the equation

49 j 1
30g2Z101~5 637 144 576g j 1

151/4x12 113 929 216g j 1
147/4j 2 ty21 610 612 736j 0

2 j 1
75/2

1396 361 728g j 1
147/4 j 3t32297 271 296g j 1

143/4j 2
2t3!Z41422 212 465 065 984j 1

87/2y2

133 397 665 693 696j 1
83/2 j 2

2t41237 494 511 599 616j 1
85/2 j 2t2y50.

ACKNOWLEDGMENTS

The authors are grateful to Professor F. Guil for showing them the relevance of gene
functions for canonical transformations of twistor data to get solutions of the dKP hierarchy
work was partially supported by CICYT Project No. BFM2002-01607.

1D. Lebedev and Yu. Manin, Phys. Lett. A74, 154 ~1979!.
2V. E. Zakharov, Funkc. Anal. Priloz.14, 89 ~1980!; Physica D3, 193 ~1981!.
3Y. Kodama, Phys. Lett. A129, 223 ~1988!; Prog. Theor. Phys. Suppl.95, 184 ~1988!.
4Y. Kodama and J. Gibbons, Phys. Lett. A135, 167 ~1989!.
5B. A. Kupershmidt, J. Phys. A23, 871 ~1990!.
6I. M. Krichever, Commun. Pure Appl. Math.47, 437 ~1992!.
7I. M. Krichever, Funct. Anal. Appl.22, 200 ~1989!; Commun. Math. Phys.143, 415 ~1992!.
8V. E. Zakharov, ‘‘Dispersionless limit of integrable systems in 211 dimensions,’’ inSingular Limits of Dispersive
Waves, edited by N. M. Ercolaniet al., Nato Adv. Sci. Inst. Ser. B Phys. 320~Plenum, New York, 1994!.

9T. Takasakyi and T. Takebe, Int. J. Mod. Phys. A7, Suppl 1B, 889~1992!.
10T. Takasaki and T. Takebe, Rev. Math. Phys.7, 743 ~1995!.
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with an application to KPI
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We present in detail an extended resolvent approach for investigating linear prob-
lems associated to 211 dimensional integrable equations. Our presentation is
based as an example on the nonstationary Schro¨dinger equation with potential
being a perturbation of the one-soliton potential by means of a decaying two-
dimensional function. Modification of the inverse scattering theory as well as prop-
erties of the Jost solutions and spectral data as follows from the resolvent approach
are given. ©2003 American Institute of Physics.@DOI: 10.1063/1.1587874#

I. INTRODUCTION

The extended resolvent approach to the study of the spectral theory of differential ope
was developed in Refs. 1–8 as a method that from one side unifies all known approaches
inverse scattering theory, such as dressing transformation, nonlocal Riemann–Hilbert pr
d-bar method and, from the other side, enables considering operators of more generic typ
with nontrivial asymptotic behavior at space infinity. Our presentation is based on the study
well known differential operator

L~x,]x!5 i ]x2
1]x1

2 2u~x!, x5~x1 ,x2!, ~1.1!

i.e., the nonstationary Schro¨dinger equationL(x,]x)F(x,k)50 which is the linear problem asso
ciated to the Kadomtsev–Petviashvili I equation~KPI!:9

~ut26uux1
1ux1x1x1

!x1
53ux2x2

. ~1.2!

This equation has been known to be integrable for about three decades.10,11 The Cauchy problem
for this equation with rapidly decaying initial data was studied by using the inverse scatt
method in Refs. 12–15. At the same time, it is well known that~1.2! is a (211)-dimensional
generalization of the famous Korteweg–de Vries~KdV! equation. Indeed, ifu1(t,x1) obeys KdV,
then

u~ t,x1 ,x2!5u1~ t,x11mx213m2t ! ~1.3!

solves~1.2! for an arbitrary constantmPR. Thus, it is natural to consider solutions of~1.2! that
are not decaying in all directions at space infinity but have one-dimensional rays with behav

a!Electronic mail: boiti@le.infn.it
b!Electronic mail: pempi@le.infn.it
c!Electronic mail: pogreb@mi.ras.ru
d!Electronic mail: prinari@le.infn.it
33090022-2488/2003/44(8)/3309/32/$20.00 © 2003 American Institute of Physics
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the type ~1.3!. The scattering theory for the simplest example of such potentials in~1.1! was
developed in Ref. 16. There, the Cauchy problem for the KPI equation was considered with
data

u~x!5u1~x1!1u2~x!, ~1.4!

whereu1(x1) is the zero time value of the one-soliton solution of the KdV equation andu2(x) is
a smooth real function that decays rapidly enough on the (x1 ,x2)-plane. We consider here
simplified case of~1.3! in which m50. The generic case is reconstructed by means of the Ga
invariance of~1.2!, that is, if u(t,x) is a solution of KPI, then

ũ~ t,x1 ,x2!5u~ t,x11mx213m2t,x216mt ! ~1.5!

also obeys this equation.
In Ref. 1 it was mentioned that the standard approach to the spectral theory of the op

~1.1! based on the integral equation for the Jost solution fails for potentials of the above ty
Ref. 16 the direct problem was studied by using a modified integral equation for the Jost so
i.e., an equation that involves as background solution the Jost solution of the one-soliton po
and corresponding Green’s function. An appropriate Jost solution was introduced and it was
that, in addition to a standard jump across the realk-axis, wherek is the spectral parameter, it als
has a jump across a segment of the imaginary axis of the complexk-plane. In the modified
formulation of the direct and inverse problems given in Ref. 16 some essential properties
Jost solutions and relations between spectral data were stated without proof. The reason
was that a technique based on the Jost solutions themselves is not enough for the study
properties and especially for investigating relations among spectral data. This gap can b
effectively in the framework of the extended resolvent approach that we present in detail i
article. The outline of the article is as follows. In Sec. II we give the basic notions of the reso
approach. In particular, we demonstrate that in this framework the known results for a dec
potential in~1.1! follow readily. In Sec. III we consider the theory of the two-dimensional opera
~1.1! with the pure one-dimensional@u2(x)[0 in ~1.4!# one-soliton potentialu1(x1). In Sec. IV
we apply the resolvent approach to the operator~1.1! with a potentialu(x) that is a perturbation
of this one-dimensional potential. We introduce and study the properties of the correspo
resolvent and Green’s functions, Jost and auxiliary Jost solutions and advanced/retarded so
In Sec. IV E we investigate the properties of the spectral data and derive their character
equations. In Sec. V we summarize the main aspects of the spectral theory developed
framework of the extended resolvent approach.

II. BASIC OBJECTS OF THE RESOLVENT APPROACH

A. Extension of differential operators and resolvent

Let A5A(x,]x) denote a differential operator with kernel

A~x,x8!5A~x,]x!d~x2x8!, x5~x1 ,x2!, ~2.1!

d(x)5d(x1)d(x2) being the two-dimensionald-function. Here we consider the two-dimension
situation, but the whole procedure can be applied in any dimension. In what follows we con
differential operators whose kernelsA(x,x8) belong to the spaceS8 of tempered distributions o
the four real variablesx andx8. Differential operators are polynomials with respect to the deri
tives. In order to exploit this property we introduce theextensionof differential operators, i.e., to
any differential operatorA we associate the differential operatorA(s) with kernel

A~x,x8;s![e2s(x2x8)A~x,x8!5A~x,]x1s!d~x2x8!, ~2.2!

where all variablesx, x8, sPR2. Under the above condition kernels of the extended opera
form a subclass in the spaceS8 of tempered distributionsA(x,x8;s) of six real variables. We
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consider generic elementsA(x,x8;s), B(x,x8;s), etc., of this spaceS8 as operators~not neces-
sarily differentiable! A(s), B(s), etc., with the standard composition rule

~AB!~x,x8;s!5E dx9 A~x,x9;s! B~x9,x8;s!. ~2.3!

Since the kernels are distributions this composition is neither necessarily defined for all pa
operators nor necessarily associative. On the space of these distributions we define the o
of Hermitian conjugationA† as

A†~x,x8;s!5A~x8,x;2s!, ~2.4!

where bar denotes complex conjugation and in the case of matrix operators the matrix on th
must be transposed.

The kernels of the extended differential operators depend polynomially on the variabs
5(s1 ,s2) so that the analytic continuation of the kernels with respect to these variables is a
sible. In what follows we denote such kernels asA(x,x8;s) using boldface font for the comple
variables which hass as real part. So, for the variables we write

s5sR1 isI5~s1 ,s2!PC2, sR[sPR2. ~2.5!

In the following we will use the same notationk5kR1 ikI[k1 ikI for the other complex spectra
parameterkPC we introduce.

Thanks to~2.2! continuation~2.5! ~analytic for the differential operators! is given by

A~x,x8;s!5e2 isI(x2x8)A~x,x8;sR!. ~2.6!

Since this formula is well defined in the spaceS8 for any operatorA(s), it can be used as the
definition of the continuation~in general not analytic! of a genericA(s) in the complex domain,
sPC2.

An operatorA can have an inverse in the sense of the composition law~2.3!, sayAA215I or
A21A5I ~in general left and right inverse can be different!, whereI is the unity operator inS8,

I ~x,x8;s!5d~x2x8!. ~2.7!

Thanks to~2.6! continuation to the complex domain of the operator inverse to~extended! differ-
ential operatorA(s) equals to the inverse of continued differential operatorA(s). Therefore, we
can impose to the inverse the additional condition that the product

A~s1s8!21A~s!21, s,s8PC, ~2.8!

is a bounded function ofs8 in a neighborhood ofs850. Then, if the inversionA21(s) exists, it is
unique and, therefore, in the following in order to guarantee the uniqueness of the inverse w
always require that this condition is fulfilled.

In order to clarify the meaning of the introduced extension of differential operators
convenient to consider the ‘‘shifted’’ Fourier transform

A~p;s!5
1

~2p!2 E dxE dx8 ei (p2sI)x1 isIx8A~x,x8;sR!, ~2.9!

wherepPR2, px5p1x11p2x2 , andsPC2 and to consider it as the kernel of the operatorA(s) in
the transformedp space. In this space the extension of a differential operatorA with constant
coefficients is particularly simple. Indeed, we haveA(p;s)5a(s)d(p), wherea(s) is a polyno-
mial in s. For the kernel of the inverse operator we get triviallyA21(p;s)5d(p)/a(s) and con-
dition ~2.8! means that possible terms proportional tod(a(s)) must be omitted.
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Let D j denote the extension of the differential operator]xj
( j 51,2), i.e., according to~2.2! let

D j~x,x8;s!5~]xj
1sj !d~x2x8!, j 51,2. ~2.10!

In terms of the Fourier transform~2.9! D j (p;s)5sjd(p) and thenD j
21(p;s)5sj

21d(p), so that
inverting ~2.9! we get

D j
21~x,x8;s!5e2s(x2x8)@u~xj2xj8!2u~2sj !#d~xj 112xj 118 !, ~2.11!

where j 11[( j 11)mod2. These operators are just the standard resolvents of the operato]xj
.

This observation motivates the name extended resolvent for the mathematical object we
duced. In fact, we added a complex~spectral! parameter not to the operator itself but to t
operators]xj

. Below we discuss the relevance of this modification and compare our approa
the standard spectral theory of differential operators.

By ~2.10! we have thatD j (x,x8;s)5(]xj
1sj )d(x2x8) that is, of course, an analytic~poly-

nomial! function of s. But for the continuation of the inverse operator we get by~2.11! and~2.6!

D j
21~x,x8;s!5e2s(x2x8)@u~xj2xj8!2u~2sjR!#d~xj 112xj 118 !, ~2.12!

that is not analytic with respect tosj . Moreover, let us perform the operation inverse to imbedd
~2.2!, i.e., to any operatorA(s) with kernelA(x,x8;s) we associate its ‘‘hat-kernel’’

Â~x,x8;s!5es(x2x8)A~x,x8;s!. ~2.13!

It is clear that these objects~in the generic case! do not belong to the spaceS8(R6) of distribu-
tions, while we still can use their composition relation

~AB̂!~x,x8;s!5E dx9 Â~x,x9;s! B̂~x9,x8;s! ~2.14!

derived from~2.3!. Let now A(s) be the extension of a differential operatorA. Then of course
Â(x,x8;s)5A(x,x8), i.e., the kernel of the original differential operator. In particular this me
that Â(x,x8;s) is independent of the variabless. At the same time, as demonstrated by exam
~2.11!, for an operator inverse to a differential operator, the dependence ons of the kernel

A21̂(x,x8;s) is in general nontrivial, for instance,

D j
21̂~x,x8;s!5@u~xj2xj8!2u~2sj !#d~xj 112xj 118 !. ~2.15!

Using the ‘‘hat-operation,’’ for any differential operatorA(x,]x), equalitiesAA215A21A5I take
the form

A~x,]x!A
21̂~x,x8;s!5A d~x8,]x8!A

21̂~x,x8;s!5d~x2x8!, ~2.16!

where A d is the operator dual toA. Thus the hat-kernel~2.13! of the operator inverse to a
extended differential operator gives a two-parametric (sPR2) family of Green’s functions of the
operatorA. In what follows for equalities of the type~2.16! we use the following special notation

AW A21̂~s!5A21̂~s!AQ 5I , ~2.17!

whereAW denotes the operatorA applied to thex-variable of the functionA21̂(x,x8;s) and AQ
denotes the operator dual toA applied to thex8-variable of the same kernel. We also see that a

discontinuity of the kernelA21̂(x,x8;s) with respect to thes-variables belongs to the null space
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the operatorA and its dual. The same is valid for the derivatives of such kernels with respe
thes-variables. Let us mention that for kernels continued by means of~2.6! we have by~2.13! the
relation

A~x,x8;s!5e2s(x2x8)Â~x,x8;sR!, ~2.18!

and for the inversionA21(s) of a differential operatorA(s)

A~s!
]A21~s!

] s̄j

5
]A21~s!

] s̄j

A~s!50. ~2.19!

Thus the d-bar derivatives of the inverse operator also annulate the differential operator a
dual, while by~2.13!

S ]A21~s!

] s̄j
D ˆU

sI50

5
1

2

]A21̂~s!

]sj
, s5sR , ~2.20!

where both derivatives are considered in the sense of distributions.

B. Resolvent approach in the case of rapidly decaying potential

1. Definition of the resolvent

The extension of operatorL(x,]x) in ~1.1! is given by

L~s!5L0~s!2U, ~2.21!

where

L05 iD 21D1
2 ~2.22!

has kernel

L0~x,x8;s!5@ i ~]x2
1s2!1~]x1

1s1!2#d~x2x8!, ~2.23!

andU, which is called the potential operator, has kernel

U~x,x8;s!5u~x!d~x2x8!, ~2.24!

which is independent ofs. Below we always suppose thatu(x) is real, which by~2.4! is equiva-
lent to

L†5L. ~2.25!

The main object of our approach is the~extended! resolventM (s) of the operatorL(s), which is
defined as the inverse of the operatorL, that is,M satisfies

LM5ML5I , ~2.26!

and obeys condition~2.8!. The main advantage of using the extended resolvent is that its de
tives with respect tos are given in terms of its reduced values that are just the Jost solutions~and
their generalizations! of the linear problem under consideration. In their turn discontinuities
derivatives of these solutions lead us to the spectral data, again given as ‘‘further’’ reductio
the resolvent. Let us consider first the resolventM0 of the bare operatorL0 . In terms of the
Fourier transformation~2.9! and thanks to condition~2.8! we get for the kernel of this operato
M0(p;s)5d(p)( is21s1

2)21. Inverting transformation~2.9! we get for the hat-kernel
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M̂0~x,x8;s!5
1

2p i EkI5s1

dkR @u~x22x28!2u~2kRkI2s2!# F0~x,k!C0~x8,k!, ~2.27!

where we introduced the functions

F0~x,k!5e2 ikx12 ik2x2, C0~x,k!5eikx11 ik2x2, ~2.28!

wherek5kR1 ikIPC is a complex~one-dimensional! spectral parameter for which we again u
boldface font and also, in order to simplify notation, standard font for its real part, i.e.,kR[k. The
functionsF0(x,k) andC0(x,k) which naturally appeared in~2.27! obey the differential equation

L0~x,]x!F0~x,k![~ i ]x2
1]x1

2 !F0~x,k!50, ~2.29!

L 0
d~x,]x!C0~x,k![~2 i ]x2

1]x1

2 !C0~x,k!50, ~2.30!

i.e., solve the nonstationary Schro¨dinger equation and its dual in the case of zero potential. T
they can be considered as the Jost solutions for this trivial case. Notice also that they ob
conjugation property

F0~x,k!5C0~x,k̄!. ~2.31!

By using notation~2.17! we can write

LW 0M̂0~s!5M̂0~s!LQ 05I , ~2.32!

showing that the hat version of the extended resolventM̂0(s) is a two-parametric set of Green
functions of operator~1.1! and its dual. In analogy with these notations we write

LW 0F0~k!50, C0~k!LQ 050, ~2.33!

consideringF0(k) and C0(k) as ‘‘vector’’ and ‘‘covector’’ with ‘‘components’’ labeled by the
variablex.

The resolventM0 given in~2.27! obeys the following properties. It is a continuous function
s when sÞ0, it is bounded but discontinuous ats50, it is self-adjoint@cf. ~2.25!#, that is M0

†

5M0 , and from~2.27! we have

]M̂0~s!

]s1
5

i

p E
kI5s1

dkR k̄ d~2kRkI2s2! F0~k! ^ C0~k!, ~2.34!

]M̂0~s!

]s2
5

1

2p i EkI5s1

dkR d~2kRkI2s2! F0~k! ^ C0~k!, ~2.35!

where, in correspondence with the ‘‘vector’’ interpretation of the Jost solutions, the direct pr
in ~2.34!, ~2.35! is defined in the standard way as an operator with kernel

~F0~k! ^ C0~k!!~x,x8!5F0~x,k!C0~x8,k!. ~2.36!

Derivatives in~2.34! and ~2.35! can be considered in the standard sense whens1Þ0, while in
vicinity of s150 they must be understood in the distributional sense. It is easy to see th
integral in ~2.27! is exponentially divergent when, say,s2→`. Thus, indeed,
M̂0(x,x8;s)¹S8(R6).
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2. The resolvent and Hilbert identity

The resolvent of the operatorL can also be defined as the solution of the integral equati

M5M01M0UM , M5M01MUM0 . ~2.37!

Under a small norm assumption on the potential we expect that the solutionM exists and is unique
~the same for both integral equations! if the condition~2.8! is required. Taking into account th
properties ofM0 given above, we get that thanks to the reality of the potentialu(x) the resolvent
is self-adjoint,

M†5M , ~2.38!

M (s) is a continuous function ofs whensÞ0 and discontinuous ats50, and by~2.26! has the
asymptotic expansion

M ~s1 ,s21s28!5
I

is28
1

L~s!

s28
2 1•••, s28PC, s28→`. ~2.39!

As we mentioned above essential information on the spectrum of the operatorL can be derived
from the d-bar derivatives of the resolventM (s) continued in the complex domain. In order
study these derivatives we use the following analog of the well known Hilbert identity,

M 82M52M 8~L82L !M , ~2.40!

whereL8 is another operator of the type~1.1! andM 8 is its resolvent. Let us chooseU85U and
let L5L(s) and L85L(s8) and the same for their resolvents. Then~2.40! can be written in the
form

M ~s8!2M ~s!52M ~s8!~L0~s8!2L0~s!!M ~s!, ~2.41!

or by ~2.26! as

M ~s8!2M ~s!5M ~s8!L0~s8!~M0~s8!2M0~s!!L0~s!M ~s!, ~2.42!

that gives

]M ~s!

] s̄j

5M ~s!L0~s!
]M0~s!

] s̄j

L0~s!M ~s!. ~2.43!

In terms of hat-kernels as defined in~2.13!, thanks to~2.20!, we get

]M̂ ~s!

]sj
5M̂ ~s!LQ 0

]M̂0~s!

]sj
LW 0M̂ ~s!, j 51,2, ~2.44!

and then by~2.34! and ~2.35! for s1Þ0

]M̂ ~s!

]s1
5

i

p E
kI5s1

dkR k̄ d~2kRkI2s2! F~k! ^ C~k!, ~2.45!

]M̂ ~s!

]s2
5

1

2p i EkI5s1

dkR d~2kRkI2s2! F~k! ^ C~k!, ~2.46!

where we introduced the functions
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F~x,k!5E dx8 ~L 0
d~x8,]x8!G~x,x8,k!!F0~x8,k!, ~2.47!

C~x8,k!5E dx C0~x,k! L0~x,]x! G~x,x8,k!, ~2.48!

with G(x,x8,k) defined as a specific value of the resolvent itself

G~x,x8,k!5M̂ ~x,x8;kI,2kRkI!. ~2.49!

In what follows we consider the functionG(x,x8,k) as the kernel of the operatorG(k) and the
functionsF(x,k) andC(x8,k) as vectorF~k! and covectorC~k!. For shortness we write equa
tions of the type~2.47!–~2.49! as

F~k!5G~k!LQ 0F0~k!, C~k!5C0~k!LW 0G~k!, ~2.50!

G~k!5M̂ ~s!us5(kI,2kRkI) . ~2.51!

Relation ~2.49! shows that the functionG(x,x8,k) is in one-to-one correspondence with th
resolventM̂ (x,x8;s) iff kIÞ0, that is, iff the points along the above mentioned discontinuity
the resolvent ats50 are excluded. In order to study this discontinuity we introduce the follow
notation for the specific limits of the resolvent at this point of discontinuity,

G6~x,x8!5 lim
s2→60

lim
s1→0

M̂ ~x,x8;s!, ~2.52!

where the limits1→0 is independent of the sign. Now we choose in~2.42! both s and s8 real,
s185s150 and consider the limitss28→60, s2→70. We get

G12G25G6LQ 0~G0,12G0,2!LW 0G7 , ~2.53!

whereG0,6 is defined in terms of the bare resolventM̂0 like in ~2.52!, so that by~2.27! we have

G0,6~x,x8!5
6u~6~x22x28!!

2p i E dk F0~x,k!C0~x8,k!, ~2.54!

and

G0,12G0,25
1

2p i E dk F0~k! ^ C0~k!. ~2.55!

Inserting this relation in the r.h.s. of~2.53! we derive the equality

G12G25
1

2p i E dk F6~k! ^ C7~k!, ~2.56!

where we introduced the functionsF6(x,k) and C6(x,k), which, in analogy with~2.50! and
using the same notation, are defined by

F6~k!5G6LQ 0F0~k!, C6~k!5C0~k!LW 0G6 . ~2.57!

Next we consider in detail the properties of all the objects introduced so far,G(k), F~k!, C~k!,
G6(k), F6(k), andC6(k).
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3. Properties of the Green’s function

Thanks to~2.17! it is clear thatG(k) defined in~2.49! is a Green’s function of the operatorL
depending on the complex parameterk,

LW G~k!5G~k!LQ 5I . ~2.58!

Properties of this Green’s function follow from the properties ofM (s). In particular, thanks to the
definition ~2.4! and to~2.38! ~i.e., reality of the potentialu) we get

G~x,x8,k!5G~x8,x,k̄!. ~2.59!

Applying the reduction~2.49! to equalities~2.37! we get that this function obeys the integr
equations

G~k!5G0~k!1G0~k!UG~k!, G~k!5G0~k!1G~k!UG0~k!, ~2.60!

where the Green’s functionG0(k) of the operatorL0 is defined by the general formula~2.51! in
terms ofM0 and thanks to~2.27! it equals

G0~x,x8,k!5
1

2p i E dk8 @u~x22x28!2u~kIk8!# F0~x,k81k!C0~x8,k1k8!. ~2.61!

By ~2.60! it is easy to check that the function

g~x,x8,k!5eik(x12x18)1 ik2(x22x28)G~x,x8,k! ~2.62!

is a bounded function of its arguments and that

lim
k→`

g~x,x8,k!50 ~2.63!

if the potentialu(x) decays rapidly enough. The functionG(x,x8,k) is a continuously differen-
tiable function ofk in the whole complex planeC with exception of the real axiskI50, as follows
from ~2.49!. By ~2.45! and ~2.46! for kIÞ0 we have

]G~k!

]kR
5

sgnkI

2p i
F~k! ^ C~k!,

]G~k!

]kI
5

sgnkI

2p
F~k! ^ C~k!, ~2.64!

so that in the complex domain this Green’s function is analytic,

]G~k!

] k̄
50, kIÞ0, ~2.65!

and discontinuous at the real axis.
The Hilbert identity~2.41! allows us also to find relations among the Green’s function

different values of the parameterk. For this sake we chooses185s15s1PR and lets28 ,s2PC. By
~2.23! L(s1 ,s28)2L(s1 ,s2)5 i (s282s2)I . Inserting this equality in~2.41! we can divide both parts
by s282s2 and thanks to condition~2.8! we get

M ~s1 ,s28!M ~s1 ,s2!5 i
M ~s1 ,s28!2M ~s1 ,s2!

s282s2
. ~2.66!

In terms of the hat-kernel of the resolvent by~2.18! we then have
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E dx8 e(s282s2)x28M̂ ~x,x8;s1 ,s2R8 !M̂ ~x8,x9;s1 ,s2R!

5 i
e(s282s2)x29M̂ ~x,x9;s1 ,s2R8 !2e(s282s2)x2M̂ ~x,x9;s1 ,s2R!

s282s2
.

Next we perform the Fourier transform with respect to the differences2I8 2s2I and denotes2R8
5s28 , s2R5s2 . We get fors185s1

E dx18 M̂ ~x,x8;s8!M̂ ~x8,x9;s!5 iM̂ ~x,x9;s8!@u~x292x28!2u~s22s28!#

2 iM̂ ~x,x9;s!@u~x22x28!2u~s22s28!#.

Finally, we introduce kI5s185s1 , kR5s2 /(2s1), k85(s282s2)/(2s1). Then s85(kI,2(kR

1k8)kI) and s5(kI,2kRkI) and using definition~2.49! we can rewrite the above equality i
terms of the Green’s function as

E dx18 G~x,x8,k1k8!G~x8,x9,k!

5 iG~x,x9,k1k8!@u~x292x28!2u~2kIk8!#2 iG~x,x9,k!@u~x22x28!2u~2kIk8!#,

kPC, k8PR. ~2.67!

Properties of the functionsG6(x,x8) as well follow from the properties of the resolvent. Both
them are also Green’s functions of the operator~1.1! and its dual,

LW G65G6LQ 5I , ~2.68!

obey the conjugation property

G6~x,x8!5G7~x8,x!, ~2.69!

and the integral equations

G65G0,61G0,6UG6 , G65G0,61G6UG0,6 , ~2.70!

whereG0,6 is given in ~2.54!.
The limiting values of the Green’s functionG(k) on the real axis in a sense must be close

the Green’s functionsG6 . Indeed, introducing notations

G6~x,x8,k!5G~x,x8,k6 i0!, kPR, ~2.71!

we see by~2.49! that they are given by the following limits of the resolvent

G6~x,x8,k!5 lim
«→10

M̂ ~x,x8;6«,62k«!, ~2.72!

so like in ~2.52! they correspond toM̂ (s) at s50. But the resolvent is discontinuous at this poi
so in the generic situation these limits are different. In order to find relations between the
again start from~2.42! choosing boths8 ands to be real. Performing fors8 the limiting procedure
~2.72! and fors the one in~2.52! we get

Gs~k!2G65~G6LQ 0!~G0
s~k!2G0,6!~LW 0Gs~k!!, ~2.73!
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wherekPR ands51,2. Then, thanks to~2.54! and definitions~2.57! we get from~2.73!

Gs~k!2G65
71

2p i E dk8 u~7s~k2k8!!F6~k8! ^ ~C0~k8!LW 0Gs~k!!, ~2.74!

where for the ‘‘covector’’C0(k8)LW 0Gs(k) we used a shorthand notation analogous to tha
~2.50!. Finally, let us mention that the relation betweenG1 andG2 was given in~2.56!.

4. Jost and advanced Õretarded solutions. Bilinear representation for the resolvent

We have shown that the derivatives of the resolvent and its discontinuities are given in
of the functionsF(k), C(k), F6(k), and C6(k) which in their turn are obtained as speci
reductions of the resolvent. Here we describe the properties of these functions. Thanks to~2.33!
and~2.58! it follows directly from definitions~2.50! that the functionsF(x,k) andC(x,k) obey
the nonstationary Schro¨dinger equation with potentialu(x) and its dual, that is,

LW F~k!50, C~k!LQ 50, ~2.75!

where we use the same notation as in~2.33!. Thanks to~2.59! we get the conjugation property

F~x,k!5C~x,k̄! ~2.76!

and the integral equations for these functions,

F~k!5F0~k!1G0~k!UF~k!, C~k!5C0~k!1C~k!UG0~k!, ~2.77!

follow if we apply LQ 0F0 from the right to the first equation in~2.60! andC0LW 0 from the left to
the second one. Thanks to~2.61! they are just the standard12 equations for the Jost solution of th
nonstationary Schro¨dinger equation and its dual. Thus, in what follows we refer toF(x,k) and
C(x,k) as Jost solutions and toG(x,x8,k) as to the Green’s function of the Jost solutions.
~2.65! these solutions are analytic functions of the spectral parameterk for kIÞ0 and are discon-
tinuous at the real axis. Inserting~2.51! into ~2.50! we get by ~2.18! and ~2.28! the standard
representation

F~x,k!5e2 ikx12 ik2x2x~x,k!, C~x,k!5eikx11 ik2x2j~x,k!, ~2.78!

where

x~x,k!5E dx8 ~ML0!~x,x8;s!, j~x8,k!5E dx ~L0M !~x,x8;s!, ~2.79!

for s5(2 ik,2 ik2). From ~2.77! we get thatx andj are normalized at infinity,

lim
k→`

x~x,k!5 lim
k→`

j~x,k!51, ~2.80!

while the potentialu(x) is reconstructed by their means as

u~x!522i lim
k→`

k]x1
x~x,k!52i lim

k→`

k]x1
j~x,k!. ~2.81!

SolutionsF(x,k) andC(x,k) obey orthonormality relation, i.e., their ‘‘scalar product’’ equals

1

2p E dx1 C~x,k1k8!F~x,k!5d~k8!, kPC, k8PR. ~2.82!
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In order to prove it we applyLQ 0F0(k) to ~2.67! from the right. Thanks to~2.28! and ~2.62! the
integrand in the first term on the r.h.s. of~2.67! is rapidly decaying whenx29→` and we can
integrate by parts, that gives zero due to~2.33!. Thus by recalling~2.50! we obtain

E dx18 G~x,x8,k1k8!F~x8,k!52 i @u~x22x28!2u~2kIk8!#F~x,k! ~2.83!

and by taking the complex conjugate and using the conjugation properties~2.59! and ~2.76!

E dx18C~x8,k1k8!G~x8,x,k!5 i @u~x22x28!2u~2kIk8!#C~x,k1k8!. ~2.84!

Next we applyC0(k1k8)LW 0 to ~2.83! from the left and recalling~2.50! and ~2.28! we have

E dx18 C~x8,k1k8!F~x8,k!5E dx C0~x,k1k8!d~x22x28!F~x,k!2 i E dx C0~x,k1k8!

3@u~x22x28!2u~2kIk8!#u~x!F~x,k!. ~2.85!

Now ~2.82! follows if we consider~2.84! for G0 andC0 , insert it in the second term on the r.h.
of ~2.85! and use the first equation in~2.77!.

The properties of the functionsF6(x,k) and C6(x,k) are derived analogously from the
definition ~2.57!. By ~2.68! they obey

LW F6~k!50, C6~k!LQ 50. ~2.86!

Their conjugation property

F6~x,k!5C7~x,k! ~2.87!

and the integral equations

F6~k!5F0~k!1G0,6UF6~k!, C6~k!5C0~k!1C6~k!UG0,6 , ~2.88!

follow from their definition and Eqs.~2.70!, where the Green’s functionG0,6 is defined in~2.54!.
Thus F6(x,k) and C6(x,k) are just the standard12 advanced/retarded solutions of the nons
tionary Schro¨dinger equation and its dual. Correspondingly, in what follows we refer toG6(x,x8)
as to the Green’s function of the advanced/retarded solutions. In analogy with derivation of~2.82!
we can get the orthonormality relation

1

2p E dx1 C6~x,k1k8!F7~x,k!5d~k8!, k,k8PR. ~2.89!

The properties of the Jost solutions enable us to reconstructM (s) from ~2.45! in the form

M̂ ~x,x8;s!5
1

2p i EkI5s1

dkR @u~x22x28!2u~2kRkI2s2!# F~x,k!C~x8,k! ~2.90!

that generalizes~2.27! to the case of nonzero potentials. Indeed, thanks to~2.78! and to the
boundedness ofx and j the integral, on the interval fixed by theu-functions, is convergent, the
kernelM (x,x8;s)5e2s(x2x8)M̂ (x,x8;s) has zero limit fors2→` in accordance with~2.39!, and
expression~2.45! for the derivative ofM (s) with respect tos1 follows from ~2.90! at s1Þ0 thanks
to the analyticity of the Jost solutions atkIÞ0. At the same time we know that the resolvent mu
be continuous ats150 whens2Þ0. In order to formulate this property, we introduce in analo
with ~2.71! a specific notation for the limiting values of the Jost solutions at the real axis, i.
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F6~x,k!5F~x,k6 i0!, C6~x,k!5C~x,k6 i0!. ~2.91!

Then the above mentioned condition of continuity reads as

E dk F1~k! ^ C1~k!5E dk F2~k! ^ C2~k!. ~2.92!

Representation~2.90! plays a crucial role in the resolvent approach since it enables u
express all objects of the spectral theory in terms of the Jost solutions. In particular, tha
~2.51!, for the Green’s function of the Jost solutions we get

G~x,x8,k!5
1

2p i E dk8 @u~x22x28!2u~kIk8!# F~x,k1k8!C~x8,k1k8!, ~2.93!

that in its turn generalizes~2.61!. Moreover, from ~2.90! one can get an expression of th
advanced/retarded Green’s functions in terms of the limiting values of the Jost solutions. Ap
the limiting procedure~2.52! to ~2.90! we get

G6~x,x8!5
6u~6~x22x28!!

2p i E dk Fs~x,k!Cs~x8,k!, ~2.94!

wheres51,2 and we used notation~2.91! for the limiting values of the Jost solutions at the re
axis. Condition~2.92! guarantees that theG6’s are independent of the signs as it must be.

From the behavior at larges2 of the bilinear representation~2.90!, comparing with~2.39! we
obtain also the following important property of the Jost solutions:

1

2p E
x285x2

dkR C~x8,k!F~x,k!5d~x12x18!, ~2.95!

which can be considered a completeness relation.

5. Relations among Jost and advanced Õretarded solutions. Spectral data

In the previous section, in the framework of the extended resolvent approach, we obtai
~2.93! a bilinear representation in terms of the Jost solutions of the Green’s function for the
solutions and in~2.94! of the Green’s function for the advanced/retarded solutions. We der
also Eq.~2.74! relating these Green’s functions. We can now exploit these results for der
relations among the advanced/retarded and Jost solutions on the real axis and use them
duce the spectral data. In fact, applyingLQ 0F0(k) to ~2.74! from the right, recalling definitions
~2.50! and ~2.57!, we get~notice thatkPR)

Fs~k!5E dk8 F6~k8!r 6
s ~k8,k!, s51,2, ~2.96!

while the relations amongCs(k) andC6(k) can be derived analogously or follow by conjugatio
properties~2.76! and ~2.87!. Here we introduced the spectral data

r 6
s ~k8,k!5d~k82k!7u~6s~k82k!!r s~k8,k!, k8,kPR, ~2.97!

r s~k8,k!5
C0~k8!LW 0Gs~k!LQ 0F0~k!

2p i
[

C0~k8!LW 0Fs~k!

2p i
. ~2.98!

Recalling ‘‘vector’’ and ‘‘covector’’ notations@cf. ~2.47!, ~2.48!, and ~2.50!#, the ‘‘expectation
values’’ at the numerator have the following explicit expressions:
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C0~k8!LW 0Gs~k!LQ 0F0~k!5E dxE dx8 C0~x,k8!~L0~x,]x!L 0
d~x8,]x8!G

s~x,x8,k!!F0~x8,k!,

~2.99!

C0~k8!LW 0Fs~k!5E dx C0~x,k8!L0~x,]x!F
s~x,k!, ~2.100!

showing that they are functions ofk8 andk only.
In order to get the advanced/retarded solutions in terms of the boundary values of th

ones we use~2.94! and the limiting values~2.71! of ~2.93! on the real axis. Then

Gs~k!2G65
71

2p i E dk8 u~6s~k82k!!Fs~k8! ^ Cs~k8!, s51,2, ~2.101!

and in the same way as above we readily derive

F6~k!5E dk8 Fs~k8!r 6
2s~k,k8!. ~2.102!

Now inserting these expressions into~2.96! and taking into account the orthonormality properti
~2.82! and~2.89! of the Jost and advanced/retarded solutions we derive that the spectral dat
characterization equations,17 which we discuss below in Sec. IV E 2 in a more general situati

The alternative spectral data defined as

Fs~k,k8!5E dk9 r 6
2s~k9,k!r 6

2s~k9,k8!, ~2.103!

where the r.h.s. is independent of the choice of6 thanks to the above mentioned characterizat
equations, allow expressing the discontinuity of the Jost solutions across the real axis as

Fs~k!5E dk8 F2s~k8!F2s~k8,k!. ~2.104!

The inverse problem can be formulated in the standard way by using the fact that th
solutionF(x,k) is an analytic function ofk for kIÞ0, has the discontinuity~2.104! at the real axis
and obeys the normalization condition given by~2.78! and~2.80!. In Ref. 5 we also demonstrate
that the inverse problem can be formulated in terms of the resolvent itself. Here we skip th
brevity, as well as many other results that follow from the extended resolvent approach, lik
introduction and properties of the dressing operators,5 derivation of the time evolution of the
spectral data corresponding to the KPI equation and algorithmic construction of time evol
compatible with the given linear problem.4

III. CASE OF ONE-DIMENSIONAL POTENTIAL

A. Main definitions

In this section we consider the spectral theory of the differential operator~1.1! when the
perturbationu2(x) in ~1.4! is identically zero, i.e., we consider the extended differential oper

L1~s!5L0~s!2U1 , U1~x,x8;s!5u1~x1!d~x2x8!, ~3.1!

whereL0(s) is defined in~2.22!. Here and in the following we use the subscript 1 for all obje
related to the case of a one-dimensional potential. In addition we chooseu1 to be the one-soliton
solution of the KdV equation at the initial timet50, that is,
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u1~x1!5
22k2

cosh2 k~x12x0!
, ~3.2!

wherex0 andk.0 are arbitrary constants. This choice is sufficient for showing the main pec
aspects of the imbedding of a one-dimensional potential into two dimensions and is partic
convenient, since all objects relevant to the extended resolvent approach to inverse scatter
be explicitly given.

The Jost and dual Jost solutions@cf. ~2.78!# are given by

F1~x,k!5e2 ikx12 ik2x2x1~x,k!, C1~x,k!5eikx11 ik2x2j1~x,k!, ~3.3!

where as always we use boldface font for the complex spectral parameterk, and

x1~x1 ,k!5
k2 ik tanhk~x12x0!

k2 ik
, j1~x1 ,k!5

k1 ik tanhk~x12x0!

k1 ik
. ~3.4!

They satisfy the differential equations

LW 1F1~k!50, C1~k!LQ 150, ~3.5!

and are analytic in the complexk-plane with the exception of a pole atk5 ik and atk52 ik,
correspondingly. Strictly speaking, in order to deal with Jost solutions defined in the standar
one would have to consider, for instance,F1(x,k) multiplied by (k2 ik)/(k1 ik sgnkI), but this
would introduce unnecessary complications. So, these Jost solutions have no discontinuity
real axis and when we are considering their value at the real axis we can omit the supersc6.
They obey, however, the conjugation property~2.76!.

It is convenient to introduce the residua of functionsF1(x,k) andC1(x,k) at the poles and
their values at the conjugate points. We write

res
k5 ik

F1~x,k!5 iAk

p
ekx0w1~x!, F1~x,2 ik!5

e2kx0

2Akp
w1~x!, ~3.6!

res
k52 ik

C1~x,k!52 iAk

p
ekx0c1~x!, C1~x,ik!5

e2kx0

2Akp
c1~x!, ~3.7!

where

w1~x!5
Akp eik2x2

coshk~x12x0!
, c1~x!5w1~x!. ~3.8!

Functionsw1 andc1 satisfy the differential equations

LW 1w150, c1LQ 150. ~3.9!

The equation

res
k5 ik

F1~x,k!52ike2kx0F1~x,2 ik!, ~3.10!

or an analogous equation forC1 , closes the formulation of the inverse problem for this J
solution.

The orthonormality relation for the Jost solutions is not modified with respect to~2.82!,
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1

2p E dx1 C1~x,k1k8!F1~x,k!5d~k8!, k8PR, kPC, ~3.11!

but now it is accompanied by the scalar products

E dx1 c1~x!F1~x,k!5E dx1 C1~x,k!w1~x!50, ukIu,k, ~3.12!

1

2p E dx1c1~x!w1~x![
1

2p E dx1uc1~x!u2[
1

2p E dx1uw1~x!u251, ~3.13!

where conditionukIu,k in ~3.12! is necessary for the convergence of the integral. On the o
side, the completeness relation is essentially modified with respect to the case of decaying
tial ~2.95! considered above, since we have

E
x285x2

dkR F1~x,k!C1~x8,k!1u~k2ukIu!w1~x!c1~x8!U
x

285x2

52pd~x12x18!. ~3.14!

B. Resolvent

The resolventM1(s) according to our general definition is the inverse, in the sense of~2.26!,
of the extended operator~3.1! and its hat-kernel obeys the equations

LW 1M̂1~s!5M̂1~s!LQ 15I . ~3.15!

Taking into account that the completeness relation~3.14! is modified with respect to~2.95! and
that this relation is the first order term of the asymptotic expansion of the resolvent ass2→`, it
is natural to expect that the bilinear representation~2.90! is also modified by an additional term
proportional to the productw1(x)c1(x8). In fact we get

M̂1~x,x8;s!5
1

2p i S E
kI5s1

dkR @u~x22x28!2u~2kRkI2s2!# F1~x,k!C1~x8,k!

1u~k2us1u! @u~x22x28!2u~2s2!#w1~x!c1~x8! D . ~3.16!

Performing the transformation~2.13! and taking into account the properties of the Jost so
tions and of the functionsw1(x) and c1(x8) one can check thatM1(x,x8;s)PS8 and obeys
integral equations of the kind~2.37! with U5U1 . The second term in~3.16! is different from zero
in the intervalus1u,k, it compensates the discontinuities of the first term ats156k, which are
consequence of the pole singularities ofF1(x,k) and C1(x,k). On the other side, this term
introduces a discontinuity inM1(s) at s250 for all us1u,k and not only ats150 as it was for the
resolvent of the decaying case. By direct calculations one can prove the regularity with resp
s-variables of

M̂1,reg~s!5M̂1~s!2G~s! w1~x!c1~x8!, ~3.17!

where

G~s!5
sgns1

~2p!2 log
s212is1~s12k!

s212is1~s11k!
, ~3.18!
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the logarithm being the principal part with the cut along the negative real axis. Thus, we se
the extended resolvent in the case of one-dimensional potentials gets logarithmic singular
the pointss5(6k,0). The singular part of the resolvent has the structure of a direct produc

C. Properties of the resolvent and Green’s functions

For the discontinuity of the resolvent ats250 we get from~3.16!

lim
s2→10

M̂1~s!2 lim
s2→20

M̂1~s!5
u~k2us1u!

2p i
w1^ c1 , ~3.19!

which also follows from~3.17!. For all other values ofs the resolvent~3.16! has derivatives with
respect tos of the form of ~2.34!, ~2.35!:

]M̂1~s!

]s1
5

i

p E
kI5s1

dkR k̄ d~2kRkI2s2! F1~k! ^ C1~k!, ~3.20!

]M̂1~s!

]s2
5

1

2p i EkI5s1

dkR d~2kRkI2s2! F1~k! ^ C1~k!, ~3.21!

which at the vicinity of the points150 have to be considered in the distributional sense. Thus
can introduce the Green’s functionG1(x,x8,k) of the Jost solutions by using the same definiti
as in ~2.51!. Then, from~3.16! we get the bilinear representation

G1~x,x8,k!5
1

2p i E dk8 @u~x22x28!2u~kIk8!# F1~x,k81k!C1~x8,k81k!

1
u~k2ukIu!

2p i
@u~x22x28!2u~2kRkI!#w1~x!c1~x8!, ~3.22!

which was already derived in Ref. 16, but starting from another point of view. It is easy to c
that this Green’s function obeys the conjugation property~2.59! and that the functiong1(x,x8,k)
defined like in~2.62! has property~2.63!. Taking into account that the resolvent obeys~2.37! with
U5U1 we get that the Green’s function obeys integral equations of the type~2.60!,

G1~k!5G0~k!1G0~k!U1G1~k!, G1~k!5G0~k!1G1~k!U1G0~k!, ~3.23!

it is analytic whenkRkIÞ0, continuous up to the borders of these quadrants, and in this regi
analogy with~2.64! we obtain

]G1~k!

]kI
5

sgnkI

2p
F1~k! ^ C1~k!. ~3.24!

In addition to the standard discontinuity at the real axis, the Green’s function has also a d
tinuity

G1~101 ikI!2G1~201 ikI!5
sgnkI

2p i
u~k2ukIu!w1^ c1 ~3.25!

at the imaginary axis whenukIu,k. Using ~3.17! one can prove that the functionG1(k)
2g(k) w1^ c1 , where

g~k!5G~s!us5(kI,2kRkI)[
sgnkI

~2p!2 log
k2 ik

k1 ik
, ~3.26!
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is a bounded continuous function ofk in vicinity of the cutkR50, ukIu,k with exception of the
point k50. As a consequence the regularized function

G1,reg~k!5G1~k!12p ig~k!~k sgnkI2 ik!F1~k! ^ C1~k! ~3.27!

has finite limits at the pointsk56 ik, while it is discontinuous atkR50 andkI50. In ~3.27! the
multiplier (k sgnkI2 ik) compensates the poles ofF1(k) andC1(k). Note that the regularized
function g1,reg(k) constructed fromG1,reg(x,x8,k) like in ~2.62! is bounded with respect tox and
has finite limits whenx→`.

Let us mention that in the case of the Jost solutionsF1 and C1 the integrals in definitions
~2.47! and ~2.48! are divergent and they must be conveniently regularized in the following w

F1~x,k!5 lim
«→10

E dx8 ~G1~k!LQ 0!~x,x8!F0~x8,k!ei«kIx28, ~3.28!

C1~x,k!5 lim
«→10

E dx8 e2 i«kIx28C0~x8,k!~LW 0G1~k!!~x8,x!, ~3.29!

wherekIÞ0. As the result of this regularization we get~see Refs. 2 and 4! a modification of the
integral equations for the Jost solutions with respect to the standard ones10,12–15 that are not
applicable in the case of one-dimensional potentials. In particular, in spite of the cut
G1(x,x8,k) has on the imaginary axis, we have

F1~101 ikI!2F1~201 ikI!52iAkpekx0d~kI2k!w1 ~3.30!

in agreement with~3.6!.
Whens150 the kernelM̂1(s) is discontinuous ats250. This means that we have to introduc

the advanced/retarded Green’s functions like in~2.52!. By ~3.16! we get the following bilinear
representation for these Green’s functions in terms of the Jost solutions on the real axis:

G1,6~x,x8!5
6u~6~x22x28!!

2p i S E dk F1~x,k!C1~x8,k!1w1~x!c1~x8! D . ~3.31!

The singular part of these Green’s functions is equal to zero, as follows from~3.18!. These Green’s
functions obey the conjugation property~2.69!.

Now turning back to the discontinuity of the resolvent with respect tos2 whens1Þ0 we get
from ~2.51! for these limits

lim
s2→60kI

~M̂1~s!us15kI
!5G1~601 ikI!. ~3.32!

Relations among Green’s functions follow from the bilinear representation~3.16! for the
resolvent. For the boundary values of the Green’s function of the Jost solutions at the real a
use notations~2.72!. Then by~3.22! they are finite for all finitek but discontinuous atk50 and by
~3.31!

G1
s~k!2G1,65

71

2p i E dk8 u~7s~k2k8!!F1~k8! ^ C1~k8!7
u~7sk!

2p i
w1^ c1 , s51,2.

~3.33!

Other relations of such kind, say, among advanced and retarded Green’s functions, can be
analogously.
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IV. INVERSE SCATTERING TRANSFORM ON NONTRIVIAL BACKGROUND:
TWO-DIMENSIONAL PERTURBATION OF THE SOLITON SOLUTION

A. Resolvent

We investigate, now, the operatorL in ~1.1! with a potential of the form~1.4!, whereu1(x1)
is the one-soliton solution~3.2! andu2(x) is a generic real, smooth and rapidly decaying funct
on the plane (x1 ,x2), ‘‘small’’ in some sense, so that it can be considered a two-dimensi
perturbation of the one-soliton solution. According to our general approach we introduc
extensionL(s) of L and the inverse of this extension, i.e., its extended resolventM (s). In the
previous sections we considered the special caseu2(x)[0 and studied in detail the properties
the corresponding resolventM1(s). Therefore, it is convenient to exploit these results and to
for constructing the resolventM (s), instead of the integral equations~2.37!, the following ones,

M ~s!5M1~s!1M1~s!U2M ~s!, M ~s!5M1~s!1M ~s!U2M1~s!, ~4.1!

whereU2(x,x8;s)5u2(x)d(x2x8). We assume that, thanks to the ‘‘smallness’’ requirement
u2(x), both equations admit a unique solutionM (x,x8;s) in S8(R6). This requirement, in addi-
tion, guarantees that the solutionM (x,x8;s) inherits the properties ofM1(x,x8;s), in particular
that M (x,x8;s) is a distribution with respect tox2x8, a smooth function with respect tox1x8
and a continuous function ofs, whens1Þ0 ands2Þ0. Therefore, the Hilbert identities~2.40! and
~2.42! are valid also in our case, since the composition of operators appearing in them exi
are associative. The Hilbert identity~2.40! can be used for proving that equations~4.1! have the
same solution. In fact, if we chooseM to be a solution of the first equation in~4.1! @and then
solution of the second equation in~2.26!# andM 8 to obey the second equation in~4.1! @the first in
~2.26!, correspondingly#, then we obtainM 85M . Notice that, in addition, this proves thatM (s)
is Hermitian, i.e., it obeys~2.38! like in the decaying and one-dimensional cases. Instead,
Hilbert identity ~2.42! can be used for studying the properties of the resolvent in thes variable.
However, as we did for the integral equations~4.1! definingM (s), it is more convenient to rewrite
it in terms of the one-dimensional operatorL1(s) and resolventM1(s) as follows:

M ~s8!2M ~s!5M ~s8!L1~s8!~M1~s8!2M1~s!!L1~s!M ~s!. ~4.2!

Then, in analogy with~2.44! we get for the derivatives of the hat-kernel of the resolvent

]M̂ ~s!

]sj
5M̂ ~s!LQ 1

]M̂1~s!

]sj
LW 1M̂ ~s!, j 51,2, s2Þ0.

Inserting here~3.20! and~3.21! we get for the derivatives ofM̂ (s) the same equations~2.45! and
~2.46! of the decaying case, where the Jost solutions are defined now as@cf. ~2.50!#

F~k!5G~k!LQ 1F1~k!, C~k!5C1~k!LW 1G~k!, ~4.3!

with the Green’s functionG(x,x8,k) defined by~2.51! as in the decaying case. We excluded h
the values250, whereM1(s) is discontinuous.

For the study of the discontinuity ats250 of M (s) inherited fromM1(s), following the
results of Sec. III, we have to consider separately the casess150 ands1Þ0. The boundary values
of the resolvent in the first case, lims2→60M̂ (s)us150 , define the advanced/retarded Green’s fu
tions like in ~2.52!. In the cases1Þ0 for the boundary values of the resolvent thanks to~2.51! we
have in analogy with~3.32! that

lim
s2→60kI

~M̂ ~s!us15kI
!5G~601 ikI!. ~4.4!

Now we consider the properties of these Green’s functions in detail.
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B. The Green’s function of the Jost solutions

1. Properties of G „k…

We proved above that the definition~2.51! of the Green’s functionG(k) of the Jost solutions
is applicable in the case we are considering now. Then directly by~4.1! we get thatG(k) satisfies
the integral equations

G~k!5G1~k!1G1~k!U2G~k!, G~k!5G1~k!1G~k!U2G1~k!. ~4.5!

Taking into account thatL5L12U2 it is easy to check thatG(k) obeys the differential equation
~2.58! and the conjugation property~2.59!. According to the remark we already made above
the resolventM (s), G(k) has the same domains of analyticity asG1(k). Precisely, it is analytic
in the regionkRkIÞ0, where it obeys~2.64! and~2.65!, and continuous up to the borders, it h
a cut atkI50 as in the decaying case and an additional cut atkR50 when ukIu,k. Using
notation~2.71! for the boundary values of the Green’s function at the real axis, we get

lim
skI→10

G~601 ikI!5 lim
6k→10

Gs~k![Gs~60!, s51,2. ~4.6!

Notice that by inserting~4.5! into the definitions~4.3! of the Jost solutions we get the integr
equations

F~k!5F1~k!1G1~k!U2F~k!, C~k!5C1~k!1C~k!U2G1~k!, ~4.7!

which can be also considered to define the Jost solutions.

2. Discontinuity of G „k… across the imaginary axis

As always in order to study the properties of the resolvent at a discontinuity we use the H
identity. Choosing in~4.2! both s ands8 to be real ands15s18 , we have

lim
s2→10

M̂ ~s!2 lim
s2→20

M̂ ~s!5~ lim
s2→60

M̂ ~s!LQ 1!~ lim
s2→10

M̂1~s!2 lim
s2→20

M̂1~s!!~LW 1 lim
s2→70

M̂ ~s!!,

which, by ~4.4!, is the discontinuity of the Green’s function across the imaginary axis. By u
~3.22! for the discontinuity ofG1(k) we obtain

G~101 ikI!2G~201 ikI!5
u~k2ukIu!
2p i sgnkI

~G~601 ikI!LQ 1w1! ^ ~c1LW 1G~701 ikI!!,

~4.8!

where in brackets ‘‘vector’’ and ‘‘covector’’ notation like in~2.50! is used and the direct produc
is defined as in~2.36!. Applying operationsc1LW 1 andLQ 1w1 to this equality from the left and from
the right, correspondingly, we get in the regionk.ukIu.0

F12
c1LW 1G~201 ikI!LQ 1w1

2p i sgnkI
GF11

c1LW 1G~101 ikI!LQ 1w1

2p i sgnkI
G51, ~4.9!

where the ‘‘expectation values’’ in the numerator have explicit expressions analogous to th
~2.99!. Under our assumptions on the potential both multipliers on the l.h.s. are regular in
region so they have no zeroes. Denoting the right multiplier asA(kI) we get

A~kI!5S 16
c1LW 1G~601 ikI!LQ 1w1

2p isgnkI
D 61

, ~4.10!

which has no zeroes for anyukIu,k,
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A~kI!Þ0, ~4.11!

and by~2.59! and the second equality in~3.8! obeys the conjugation property

A~kI!5A~2kI!. ~4.12!

The functionA(kI) is defined inside the intervalukIu,k, it is continuous for allkIÞ0 and using
for the limiting values atkI560 notation of the type~2.71!, A65 limkI→60A(kI), we get by
~4.6! and ~4.10!

A6516
c1LW 1G6~10!LQ 1w1

2p i
. ~4.13!

Thanks to~4.11! both these constantsA6 are different from zero and by~4.12! they are mutually
conjugate,

A25A1. ~4.14!

If we introduce the functions

w~kI!5G~101 ikI!LQ 1w1 , c~kI!5A~kI!~c1LW 1G~201 ikI!!, ~4.15!

where the multiplierA(kI) in the last equality is introduced for convenience, the discontinuity
the Green’s function at the imaginary axis~4.8! can be written in their terms as

G~101 ikI!2G~201 ikI!5u~k2ukIu!
w~kI! ^ c~kI!

2p iA~kI!sgnkI
. ~4.16!

Thanks to~4.10! this equality gives the following relations symmetric to~4.15!,

w~kI!5A~kI!~G~201 ikI!LQ 1w1!, c~kI!5c1LW 1G~101 ikI!. ~4.17!

Notice that using the first equality in~4.15! and the second equality in~4.17! we get by~4.5! the
integral equations for these functions

w~kI!5w11G1~101 ikI!U2w~kI!, c~kI!5c11c~kI!U2G1~101 ikI!, ~4.18!

ukIu,k, which can also be considered to define them.
The values of the Green’s function on the two sides of the cut along the imaginary axis c

obtained by using the derivatives of the Green’s function~2.64!, whose validity can be extended t
the case we are now considering if the Jost solutions are defined as in~4.3!. Performing the limits
kR→60 we get in the stripukIu,k

G~601 ikI!5Gs~60!1
s

2p E
0

kI

da F~601 ia! ^ C~601 ia!, s5sgnkI , ~4.19!

where we used the second equality in~4.6!.

3. Behavior of G „k… at the end points of the cut

In order to study the behavior of the Green’s function in the vicinities of the pointk
56 ik @whereG1(k) is singular# we use~3.27! and introduce the regularized Green’s functi
Greg(k) as solution of the integral equation

Greg~k!5G1,reg~k!1G1,reg~k!U2Greg~k!, ~4.20!
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which thanks to properties ofG1,reg has finite limits at pointsk56 ik. Subtracting~4.20! from
~4.5! and using~3.27! we get

G~k!2Greg~k!522p ig~k!~k sgnkI2 ik!F1~k! ^ C1~k!@ I 1U2G~k!#

1G1,reg~k!U2@G~k!2Greg~k!#.

Under the assumption of unique solvability of~4.20! and thanks to the identityI 1U2G(k)
5LW 1G(k) we derive from this equality for the Green’s function in vicinity of these points
following representation:

G~k!5Greg~k!2
2p ig~k!~k sgnkI2 ik!~Greg~k!LQ 1F1~k!! ^ ~C1~k!LW 1Greg~k!!

112p ig~k!~k sgnkI2 ik!~C1~k!LW 1Greg~k!LQ 1F1~k!!
. ~4.21!

In analogy with ~4.15!, ~4.17! we introduce the regular parts of the functionsw(x,kI),
c(x,kI) at kI56k:

w reg,65Greg~6 ik!LQ 1w1 , c reg,65c1LW 1Greg~6 ik! ~4.22!

and the ‘‘expectation values’’

B65c1LW 1Greg~6 ik!LQ 1w1 . ~4.23!

Then by~3.6!, ~3.7! we have that

2p lim
k→6 ik

~k sgnkI2 ik!~C1~k!LW 1Greg~k!LQ 1F1~k!!5 iB6 ,

and thus using the above notations we get the asymptotic relation

G~k!5Greg~6 ik!1
g~k!w reg~6k! ^ c reg~6k!

12g~k!B6
1o~1!, k→6 ik. ~4.24!

Summarizing, the Green’s functionG(k), like G1(k), has a discontinuity on the segme
ukIu,k of the imaginary axis, but in general it is not necessarily singular at the end points o
segment. Indeed, ifB150, then atk→ ik the logarithmic behavior ofg(k) in the numerator of
~4.24! is not compensated, so the Green’s functionG(k) has a logarithmic singularity at the poin
k5 ik, like in the special case considered in Sec. II. However, if

B1Þ0, ~4.25!

then the logarithmic behaviors of numerator and denominator in~4.24! compensate and we get
finite result. Taking into account the conjugation propertyB25B1, this is also valid for the point
k52 ik, so in this case at the end points of the cut we have

G~6 ik!5Greg~6 ik!2
w reg,6 ^ c reg,6

B6
. ~4.26!

Applying to ~4.24! the operationsc1LW 1 from the left andLQ 1w1 from the right we get forA(kI) by
~4.10! that

A~6k!51 ~4.27!

independently of the value ofB1 .
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C. Jost solutions

1. Properties of Jost solutions

From the properties of the Green’s functionG(k) studied in Sec. II it follows that the Jos
solutionsF~k! andC~k! introduced in~4.3! are analytic in the regionkRkIÞ0, and continuous up
to the borders, have a discontinuity atkI50 as in the decaying case and an additional disco
nuity at kR50 whenukIu,k. By ~2.59! the Jost solutions obey the conjugation property~2.76!.
Moreover, the functionsx(x,k) and j(x,k) defined as in~2.78! are bounded both in the
x-variables and obey condition~2.80!.

The discontinuity of the Jost solutionF(k) at kR→60 follows from ~4.16! by means of
~4.3!, i.e., by applyingLQ 1F1(601 ikI) to ~4.16! from the right. By~3.30! the discontinuity of
F1(k) at the imaginary axis is proportional tow1 . Under condition~4.25! we have representatio
~4.26! thanks to whichG( ik)LQ 1w150 by ~4.22!, ~4.23!. So the discontinuity ofF1(k) in the first
equality in ~4.3! does not contribute to the discontinuity ofF(k) and we get by~4.16!

F~x,101 ikI!2F~x,201 ikI!5u~k2ukIu!w~x,kI!w~kI!, ~4.28!

where

w~kI!5
c~kI!LQ 1F1~ ikI!

2p iA~kI!sgnkI
, ukIu,k, ~4.29!

and again thanks to~4.25! we can omit specification of the limiting procedure forF1(60
1 ikI) in the r.h.s. Below in~4.38! and ~4.42! we give the behavior ofw(kI) and w(kI) that
enables to prove that in the limitB(k)→0 one getsd(kI2k) in the r.h.s. of~4.28!.

If we use for the numerator of~4.29! the explicit expression

c~kI!LQ 1F1~ ikI!5E dx~L 1
d~x,]x!c~x,kI!!F1~x,ikI!,

we recover the spectral dataw(kI) describing the discontinuity of the Jost solutions introduced
Ref. 16. Using~4.3! and ~4.15!–~4.17! w(kI) can be rewritten as

w~kI!5
c1LW 1G~201 ikI!LQ 1F1~ ikI!

2p i sgnkI
[

c1LW 1F~201 ikI!

2p i sgnkI
, ~4.30!

or

w~kI!5
c1LW 1G~101 ikI!LQ 1F1~ ikI!

2p iA~kI!sgnkI
[

c1LW 1F~101 ikI!

2p iA~kI!sgnkI
. ~4.31!

From the first equality here and the conjugation properties of all the objects involved we h

w~2kI!5
C1~ ikI!LW 1w~kI!

2p iA~kI!sgnkI
, ukIu,k. ~4.32!

Notice that by~2.59!, ~4.15!, and~4.17! we get the conjugation property

w~x,kI!5c~x,2kI!, ~4.33!

which motivates the introduction of the multiplierA(kI) in ~4.15!. Then, by conjugation of~4.28!
we get for the dual Jost solution

C~x,101 ikI!2C~x,201 ikI!5u~k2ukIu!c~x,kI!w~2kI!. ~4.34!
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Thus we see that the discontinuity of the Jost solutions across the imaginary axis is given
their terms, but in terms of the functionsw(x,kI), c(x,kI) introduced in~4.15! @or ~4.17!#. From
their definition it follows that they obey equations~2.75!: LW w(kI)50 andc(kI)LQ 50, and can be
considered a generalization of the functionsw1(x), c1(x) to the caseu2 different from zero.
However, they acquire a nontrivial dependence onkI and cannot be obtained as specific values
the Jost solutions. Due to the properties of the Green’s function these solutions are discon
at kI50. In the following we refer tow(x,kI) andc(x,kI) as auxiliary Jost solutions.

2. Behavior of Jost solutions and spectral data at the end points of the cut

The asymptotic behavior of the Jost solutions easily results from the asymptotic prope
the Green’s function given in~4.24!. Applying LQ 1w1 from the right and using definitions~4.22!
and ~4.23! we get

G~k!LQ 1w15
w reg,6

12g~k!B6
1o~1!, k→6 ik. ~4.35!

Then, from the definitions~4.3! of the Jost solution and properties~3.6!, ~3.7! of the Jost solutions
of the one-soliton case, we derive the asymptotic behavior

F~k!5Ak

p

iekx0w reg,1

~k2 ik!~12g~k!B1!
1O~1!, k→1 ik, ~4.36!

F~k!5
e2kx0w reg,2

2Akp~12g~k!B2!
1o~1!, k→2 ik, ~4.37!

while the behavior ofC~k! follows from conjugation property~2.76! and relationsw reg,6

5c reg,7 that follow from ~4.22!. As regards the auxiliary Jost solutionw(kI), by its definition
~4.15! and ~4.35! we get in the same way

w~kI!5
w reg,6

12g~101 ikI!B6
1o~1!, kI→6k, ~4.38!

and asymptotics forc(kI) follow again by the conjugation property~4.33!. We see that the
behavior of the Jost and auxiliary Jost solutions at the pointskI56k is determined by the value
of B1 . If B150 the behavior of the Jost solutions is like in the caseu2[0 @cf. ~3.6! and ~3.7!#
and the auxiliary Jost solutions are finite and nonzero at these points. IfB1Þ0, the behavior of
both types of Jost solutions is modified at these points by the multiplier (loguukIu2ku)21 as
follows from ~3.26!. In particular, in this case we have

w~6k!5c~6k!50. ~4.39!

Now we applyLQ 1w1 from the right to~4.19! with the upper sign and cancelGs(60)LQ 1w1 thanks
to ~4.39!. Then by~4.31! and the conjugation properties~2.76! and ~4.12! we get the following
expression ofw(x,kI) in terms of the Jost solution,

w~x,kI!5 i E
k sgnkI

kI

da A~a!w~2a!F~x,101 ia!, ~4.40!

which, as we will see below, is necessary for closing the inverse problem.
For the spectral dataA(kI) in ~4.10! we can use the first equality in~4.17! and in the case

B1Þ0 also~4.40!, and, then, by~4.27! and ~4.31! we obtain the relation
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A~kI!511 i E
k sgnkI

kI

da w~a!w~2a!A2~a!,

giving the explicit expression ofA(kI) in terms of the spectral dataw(kI),

A~kI!5S 12 i E
k sgnkI

kI

da w~a!w~2a! D 21

, ~4.41!

which also is necessary for closing the inverse problem.
For the spectral dataw(kI) we can use the second equality in~4.31! and taking into accoun

that by ~4.22! and ~4.23! c1LW 1w reg,65B6 we get by~4.36! and ~4.37! the asymptotic behaviors

w~kI!5
iAkekx0B1

2p3/2~k2kI!~12g~101 ikI!B1!
1O~1!, kI→k20, ~4.42!

w~kI!5
ie2kx0B2

4Akp3/2~12g~101 ikI!B2!
1o~1!, kI→2k10. ~4.43!

Notice that forB150 both these asymptotics are equal to zero, while as we mentioned abo
the product on the r.h.s. of~4.28! one getsd-function in this case.

Concluding this study of the properties of the Jost solutions and spectral data at the
kI56k, let us emphasize that, in order to get relations among different spectral data, whi
crucial for solving the inverse problem, as for instance~4.32! used in getting~4.40!, it is necessary
to use different representations for the spectral data, like~4.30! and ~4.31!, in terms of different
solutions of the nonstationary Schro¨dinger equation and its dual. These representations ca
obtained in the framework of the resolvent approach, while they cannot be derived if one
only with equations for the Jost solutions~cf. Ref. 16!.

3. Bilinear representation for the resolvent and Green’s functions

Now, we can derive a bilinear representation of the resolvent in terms of the Jost solution
proved that fors2Þ0 its derivative with respect tos2 obeys~2.46!, so using notations~4.4! for the
limiting values ats250 we get

M̂ ~x,x8;s!5
1

2p i E dk @u~x22x28!2u~2ks12s2!# F~x,k1 is1!C~x8,k1 is1!

1sgns1@u~x22x28!2u~2s2!#@G~x,x8;101 is1!2G~x,x8;201 is1!#.

Then, thanks to~4.16!, we get the following generalization of the bilinear representation~3.16! for
the resolvent of the perturbed potential:

M̂ ~x,x8;s!5
1

2p i E dk @u~x22x28!2u~2ks12s2!# F~x,k1 is1!C~x8,k1 is1!

1
u~k2us1u!
2p iA~s1!

@u~x22x28!2u~2s2!#w~x,s1!c~x8,s1!. ~4.44!

If we consider the kernelM (x,x8;s) defined by~2.13!, then both terms on the r.h.s. give distr
butions belonging toS8. For the first term this follows from the mentioned properties of
functionsx andj, defined as in the decaying case by~2.78!, and for the second term from the fa
thate2s1x1w(x,s1) andes1x1c(x,s1) are bounded at space infinity whenus1u,k. Equation~2.45!
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at s1Þ0 follows from the analyticity of the Jost solutions and from the derivatives of~4.40! and
of the analogous equation forc(s1). The absence of a discontinuity ats150 in the cases2Þ0 like
in the derivation of~2.92! is equivalent to the condition

E dk F1~k! ^ C1~k!1
w1

^ c1

A1 5E dk F2~k! ^ C2~k!1
w2

^ c2

A2 , ~4.45!

where we used notation~2.91! also for the limiting values of the auxiliary Jost solutions on the r
axis

w6~x!5 lim
6kI→10

w~x,kI!, c6~x!5 lim
6kI→10

c~x,kI!. ~4.46!

Thanks to~2.76! and ~4.33! these limiting values obey the conjugation properties

F6~x,k!5C7~x,k!, w6~x!5c7~x!, kPR. ~4.47!

By ~2.49! the bilinear representation~4.44! for the resolvent leads to the following bilinea
representation for the Green’s function of the Jost solutions:

G~x,x8,k!5
1

2p i E dk8 @u~x22x28!2u~kIk8!# F~x,k81k!C~x8,k81k!

1
u~k2ukIu!
2p iA~kI!

@u~x22x28!2u~2kRkI!#w~x,kI!c~x8,kI!, ~4.48!

which generalizes~3.22!. Below we use this bilinear representation for deriving relations betw
the Jost and advanced/retarded solutions.

D. Discontinuity of the resolvent at sÄ0

1. The advanced Õretarded Green’s functions and solutions

Above we investigated the behavior of the resolvent when at least one of the variabless1 or
s2 is different from zero. As we have seen in the case of decaying potentials, it is just the stu
the discontinuity of the resolvent ats50 that leads to relations between Jost and advan
retarded solutions which can be used for defining the spectral data. In the present cas
perturbed one-soliton potential the method is pretty close and, therefore, we omit details a
mainly present the peculiarities of this case. First, we introduce the advanced/retarded G
functions as specific limits of the resolvent in the same way as in~2.52!. It is straightforward to
prove that they obey equations~2.68! and~2.69! and integral equations~2.70!. In order to find the
difference between the advanced and the retarded Green’s function we use the Hilbert ide
the form~4.2!, which, according to our previous discussion, in the case of a perturbed one-s
potential is more convenient than~2.42!. So we choose in~4.2! boths ands8 real,s185s150 and
consider the limitss28→60, s2→70. We get

G12G25G6LQ 1~G1,12G1,2!LW 1G7 ,

which by ~3.31! gives for the discontinuity the representation

G12G25
1

2p i S E dk F6~k! ^ C7~k!1w6 ^ c7 D , ~4.49!

where we introduced not only, in analogy with~2.57!, the advanced/retarded solutionsF6(k),
C6(k) but also the auxiliary advanced/retarded solutionsw6 , c6 defined by
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F6~k!5G6LQ 1F1~k!, w65G6LQ 1w1 , ~4.50!

C6~k!5C1~k!LW 1G6 , c65c1LW 1G6 . ~4.51!

It is easy to check that these functionsF6(x,k), C6(x,k) andw6(x), c6(x) are solutions of the
differential equations~2.86! and obey a conjugation property, i.e.,~2.87! for F6(x,k), C6(x,k),
and

w65c7 ~4.52!

for the auxiliary solutions.
The bilinear representation~4.44! for the resolvent, thanks to~2.52!, gives the following

representation for the advanced/retarded Green’s functions in terms of the Jost and auxilia
solutions on the real axis,

G6~x,x8!5
6u~6~x22x28!!

2p i S E dk Fs~x,k!Cs~x8,k!1
ws~x!cs~x8!

As D , ~4.53!

where we used notations~2.91! for the limiting values of the Jost solutions at the real axis a
where the l.h.s. is independent on the signs51,2 due to condition~4.45!.

2. Relations among Green’s functions G Á
„k … and G Á

The difference among the limiting values of the Green’s functionG(k) on the two sides of the
real axis and the advanced/retarded Green’s functions, like in the case of the decaying po
can be presented in two forms. The first one follows from~4.48! in the limitsk→k6 i0 and~4.53!:

Gs~k!2G65
71

2p i S E dk8 u~6s~k82k!! Fs~k8! ^ Cs~k8!1u~7sk!
ws

^ cs

As D . ~4.54!

A second type of relation, analogous to~2.74!, can be derived from the Hilbert identity~4.2!.
Taking into account definitions~2.72! and ~2.52! we get

Gs~k!2G65G6LQ 1~G1
s~k!2G1,6!LW 1Gs~k!, kPR,

so that we can use~3.33! and definitions~4.50! and ~4.51! to derive

Gs~k!2G65
71

2p i E dk8 u~7s~k2k8!!F6~k8! ^ ~C1~k8!LW 1Gs~k!!

7
u~7sk!

2p i
w6 ^ ~c1LW 1Gs~k!!, s51,2. ~4.55!

Now we can use relations~4.54! and~4.55! in order to get relations among Jost and advanc
retarded solutions, introduce spectral data and get characterization equations such that, in
lar, condition~4.45! is accomplished.

E. Spectral data

1. Relations among Jost and advanced Õretarded solutions

In order to derive these relations we again use definitions~4.3! and ~4.15! for k5kPR and
apply LQ 1F1(k) and LQ 1w1 to ~4.55! from the right ~the latter one to the limit of~4.55! at k
→10). Then by~2.91!, ~4.13!, ~4.46!, and~4.50! we get

Fs~k!5E dk8 F6~k8!r 6
s ~k8,k!1w6r 6

s ~k!, s51,2, ~4.56!
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ws5E dk8 F6~k8!t6
s ~k8!1w6~As!u(7s), ~4.57!

generalizing~2.96!, where we introduced spectral data@cf. ~2.97! and~2.98!# by means of relations

r 6
s ~k,k8!5d~k2k8! 7u~6s~k2k8!!r s~k,k8!, ~4.58!

r s~k,k8!5
C1~k!LW 1Gs~k8!LQ 1F1~k8!

2p i
[

C1~k!LW 1Fs~k8!

2p i
, ~4.59!

r 6
s ~k!57u~7sk!r s~k!, ~4.60!

r s~k!5
c1LW 1Gs~k!LQ 1F1~k!

2p i
[

c1LW 1Fs~k!

2p i
, ~4.61!

t6
s ~k!57u~6sk!ts~k!, ~4.62!

ts~k!5
C1~k!LW 1Gs~10!LQ 1w1

2p i
[

C1~k!LW 1ws

2p i
. ~4.63!

We write equations~4.56! and ~4.57! in a more compact form as

~Fs, ws!5~F6 , w6!* R 6
s , ~4.64!

and omit equations forC and c that can be obtained analogously, or by conjugation. Here
introduced the matrix operator

R 6
s ~k,k8!5S r 6

s ~k,k8! t6
s ~k!

r 6
s ~k8! ~As!u(7s)D . ~4.65!

R † denotes the Hermitian conjugate operator. SolutionsF(x,k) and w(x) @C(x,k) and c(x)]
have been combined in a row~correspondingly, column!, where only the first element depends o
k. For two operatorsR andR8 with elementsRi j , Ri j8 with dependence on the argumentsk, k8
like in ~4.65! we introduce a composition* that gives a matrix of the same form with elemen

~R* R8!11~k,k8!5E dk9 R11~k,k9!R118 ~k9,k8!1R12~k!R218 ~k8!,

~R* R8!12~k,k8!5E dk9 R11~k,k9!R128 ~k9!1R12~k!R228 ,

~4.66!

~R* R8!21~k,k8!5E dk9 R21~k9!R118 ~k9,k8!1R22R218 ~k8!,

~R* R8!22~k,k8!5E dk9 R21~k9!R128 ~k9!1R22R228 .

The unity matrix in the set of such operators is given by

I~k,k8!5S d~k2k8! 0

0 1D . ~4.67!
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In the same way we define the product of the matrix by the row~from the left! and by column
~from the right! of the type used in~4.64!. This composition is also denoted by an asterisk
emphasize that the integration is performed in the first~upper! element only.

Equation~4.64! gives the boundary values of the Jost solutions in terms of the advan
retarded ones. In order to get the inverse relations we apply the same procedures as abov
~4.54! and in analogy with~2.102! in terms of the introduced notations we get

~F6 , w6!5~Fs, ws!* ~Ws!21~R 6
2s!†, ~4.68!

where we introduced the constant matrix

Ws5S 1 0

0 AsD . ~4.69!

Alternative spectral data that relate values of the Jost solutions computed on the two s
the real axis appear if we insert (F6 ,w6) from ~4.68! into ~4.64! for opposite sign ofs. Thus we
get

~Fs, ws!5~F2s, w2s!* ~W2s!21F 2s, ~4.70!

where we denoted

F s5~R 6
2s!†* R 6

2s . ~4.71!

Finally let us note that Eqs.~4.58!–~4.63! together with Eqs.~4.31!, ~4.40!, and ~4.41! solve
completely the so-called direct problem, furnishing all spectral data and the auxiliary fun
w(x,kI) in terms of the Jost solutionF(x,k) and the functionsF1(x,k) andw1(x) relative to the
one-soliton potential.

Below we discuss the properties of these spectral data and relations between them.

2. Characterization equations for spectral data

Inserting~4.68! in ~4.64! we get relation (Fs,ws)5(Fs,ws)(Ws)21(R 6
2s)†* R 6

s , s51,
2, so taking into account the asymptotic behavior of the Jost solutions with respect t
x-variables we derive the characterization equation

~R 6
2s!†* R 6

s ~Ws!215I ~4.72!

for the spectral dataR 6
s . Another characterization equation follows by inserting~4.64! into

~4.68!:

R 6
s ~Ws!21* ~R 6

2s!†5I, ~4.73!

and the third one is the condition that the r.h.s. of~4.71! is independent of the choice of the sig
6:

~R1
s !†* R1

s 5~R2
s !†* R2

s . ~4.74!

These equations generalize the characterization equations of the case of decaying potenti17 We
see that~4.72! and~4.73! are just the condition that the ‘‘triangular operators’’R 6

s are invertible
and that (R6

2s)† is the inverse ofR 6
s (Ws)21. They define, say,R 6

2 if R 6
1 is given. Thus

essential restrictions on the spectral data are imposed by~4.74!, that is a consequence of the reali
condition on the potentialu(x). Thanks to~4.64! this equation proves~4.45!. By ~4.65! we write
~4.74! as a system of three equations~for some signs!:
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S E
k8

1`

2E
2`

k D dk9 r s~k9,k!r s~k9,k8!5sgnk u~kk8! r s~k!r s~k8!1sr s~k,k8!1sr s~k8,k!,

~4.75!

@u~k!As1u~2k!#r s~k!5sS E
0

1`

2E
2`

k D dk8 r s~k8,k!ts~k8!2ts~k!, ~4.76!

uAsu25E dk sgnk uts~k!u211. ~4.77!

Characterization equations for the spectral data~4.71! look simpler,

~F s!†5F s, ~F s!215~W2s!21F 2s~Ws!21, ~4.78!

to which we have to add the requirement thatF s can be decomposed in the product~4.71! of two
sets of triangular operators~4.65!.

3. Discontinuities of spectral data

The cuts of the Jost solutions intersect on the complex plane atk50. Thanks to property~4.6!
for the Green’s function we get by~4.3! that the Jost solution obeys property

lim
skI→10

F~601 ikI!5Fs~60!, s51,2, ~4.79!

which means that it is necessary to pay special attention to the properties of the spectral dat
point k50. Thus taking the limitskI→s0 in ~4.28! we get for the boundary values of the Jost a
auxiliary Jost solutions the relation

Fs~10!2Fs~20!5wsws. ~4.80!

The spectral datar s(k,k8) are defined in~4.59! in terms of the Jost solutionC1(k), which is a
continuous function ofk, and ofFs(k8) which is discontinuous atk850. Thereforer s(k,k8) is
continuous with respect tok andk8 with a possible discontinuity atk850. Precisely, by~4.59!,
~4.63!, and~4.80! we get

r s~k,10!2r s~k,20!5ts~k!ws. ~4.81!

The spectral datats(k) are continuous atk50 and from their definition~4.63! and the definitions
~4.10! and ~4.29! of A andw we derive

ts~0!5sAsw2s. ~4.82!

The spectral datar s(k) are discontinuous atk50 as follows from their definition~4.61!.
Taking into account~4.30! and ~4.31!, we get the relations

r s~10!5sAsws, ~4.83!

r s~20!5sws. ~4.84!

These behaviors atk50 are compatible with the characterization equations. In fact, choo
k8560 in ~4.75! we get~4.76! and analogously~4.76! at k560 gives~4.77!.

F. Inverse problem and time evolution

Let now be given the spectral data, i.e., functionw(kI) and, say,R 6
1 . Functionw(kI) is

continuously differentiable on the intervalukIu,k except for the pointkI50, where it has
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bounded limitsw6. Moreover,w(kI) has the asymptotic behaviors~4.42!, ~4.43! and A(kI)
defined by~4.41! is bounded on this interval and has finite limitsA6 at zero. The spectral dataR 6

1

obey the characterization equation~4.74!, or, more explicitly the characterization equatio
~4.75!–~4.77! for its elements in~4.65! and relations~4.81!–~4.84!. The matrix operatorR 6

1 also
admits inverse, so that the spectral dataR 6

2 can be introduced by~4.72! or ~4.73! with the
triangularity property given in~4.65!, which means that the spectral dataF 2 can be defined by
~4.71!. Taking into account that the Jost solutionF(x,k) is analytic in the complexk-plane with
a discontinuity across the real axis, given by the first equation in~4.70! for s51, and with a
discontinuity across the intervalukIu,k of the imaginary axis, given by~4.28!, and has an
asymptotic normalization atk→` given by ~2.78! and ~2.80!, the Cauchy–Green formula yield

F~x,k!5e2 ikx12 ik2x21
1

2p i E dk8
ei (k82k)x11 i (k822k2)x2

k82k S E dk9F2~x,k9!@F 11
2~k9,k8!

2d~k92k8!#1
w2~x!

A2 F 21
2~k8! D2

1

2p i E2k

k da w~a!

a1 ik
e2(a1 ik)x12 i (a21k2)x2w~x,a!.

~4.85!

Notice that the singular behavior~4.42! of w(a) at a5k is smoothed by~4.38! and, consequently
the integral on the r.h.s. is well defined. It is necessary to emphasize that equalities~4.40! and
~4.85! were derived under condition~4.25! that excludes the caseu2(x)[0. Indeed, in this case
Greg( ik)5G1,reg( ik) so that by~4.23! B(k)50.

The integral equation~4.85! together with~4.40! solves the inverse problem. In fact, consi
ering ~4.40! and the limits of~4.85! ask→k2 i0, kPR, and ask→101 ikI , we obtain a system
of three linear integral equations for$F2(x,k),F(x,101 ikI),w(x,kI)%, whose solution is
uniquely determined in terms of the spectral data. When these boundary values are determi
Jost solution for generickPC is given by ~4.85! and then the potential is reconstructed in t
standard way by~2.78!, ~2.81! as

u~x!5
1

p

]

]x1
F E dk eikx11 ik2x2S E dk8F2~x,k8!@F 11

2~k8,k!2d~k82k!#1
w2~x!

A2 F 21
2~k! D

2 i E
2k

k

da w~a! e2ax12 ia2x2w2~x,a!G . ~4.86!

Since, in the resolvent approach, all spectral data can be given as special reductions
extended resolvent, one can derive directly~see Ref. 4 for details! the time evolution of the
spectral data related to a solution of~1.2!. We omit here these calculations and give only the fi
result on the time evolution of the spectral data:16

F 2~k,k8,t !5S e24ik3t 0

0 1
DF 2~k,k8!S e4ik83t 0

0 1
D , k,k8PR, ~4.87!

w~kI ,t !5e4kI
3tw~kI!, ~4.88!

A~kI ,t !5A~kI!. ~4.89!

Taking the time evolution~4.88! into account we get that~4.42! and~4.43! are preserved under th
dynamics and like in the pure one-soliton case

k~ t !5k, x0~ t !5x014k2t, ~4.90!

wherex0(t) is the parameter of the one-soliton solution~3.2!.
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V. CONCLUSION

We presented the main aspects of what we call the extended resolvent approach to the
theory of differential operators and we tested it in the two-dimensional case of the nonstat
Schrödinger equation with decaying and nondecaying potentials at large distances in the pla
showed that a specific advantage of this approach is that the extended resolventM (s) of the
differential operator~1.1!, which depends on a parametersPR2, can be used as a general tool f
finding all mathematical objects, such as Green’s functions, Jost and auxiliary Jost solu
advanced/retarded solutions and spectral data, which result to be necessary for develop
spectral theory. In fact, the introduction of all these quantities follow naturally from the stud
departure from analyticity of the extended resolvent and of its discontinuities, together w
reductions. In particular, the different Green’s functions involved in the theory are value~in
general limiting values! of the resolventM (s) at different specific pointss, which are suggested
by the behavior ins of M (s) itself. Moreover, the study of the properties of all these object
reduced to the study of the resolventM (s), which can be accomplished by using Hilbert-typ
identities and the bilinear representation~2.90!. This representation gives the extended resolven
terms of the Jost solutions and supplies a simple and straightforward way of deriving rel
between different kinds of solutions of the linear problem, constructing spectral data and de
relations between them, as well as characterization equations.
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Novel integrable reductions in nonlinear continuum
mechanics via geometric constraints

C. Rogers and W. K. Schiefa)

School of Mathematics, The University of New South Wales,
Sydney, New South Wales 2052, Australia

~Received 15 December 2002; accepted 9 April 2003!

The nonlinear equations that describe solitonic behavior in physical systems have,
to-date, typically been derived by approximation or expansion methods. Here, by
contrast, hidden integrable structure is revealed in diverse areas of nonlinear con-
tinuum mechanics through natural geometric constraints. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1589155#

I. INTRODUCTION

The basic equations of hydrodynamics, magnetohydrodynamics, and finite deformation
ticity are intrinsically nonlinear. The extent to which these and other governing equatio
nonlinear continuum mechanics naturally admit integrable structure and are accordingly am
to the powerful techniques of modern soliton theory remains an important open question. Hi
whereas solitonic phenomena have been observed in widely diverse areas in nature, the n
equations that describe solitons have typically been derived by approximation or expansion
ods. It is well-established that solitonic equations arise naturally out of the geometry of
privileged classes of surfaces that admit invariance under Ba¨cklund transformations.1 Soliton
systems that occur, without resort to approximation, in nonlinear physics or continuum mec
have been relatively unknown. The prime exception is the Ernst equation which constitu
reduction of Einstein’s equations in general relativity.2 However, the Ernst equation may be fo
mulated as an elliptic counterpart of a classical Bianchi system descriptive of a class of hype
surfaces constrained to admit a Ba¨cklund transformation.1 Indeed, the celebrated Harrison tran
formation for the Ernst equation as set down in Ref. 3 is the counterpart of a classical Ba¨cklund
transformation for the Bianchi system. This important paradigm motivates an investigation
how appropriate geometric constraints imposed on nonlinear physical models might reveal
integrable structure. Here, we bring together in a single account recent work by the authors
application of geometric constraints to reveal hidden integrable structure over a range of no
physical models in

~i! hydrodynamics,
~ii ! magnetohydrodynamics,
~iii ! the kinematics of ideal fiber-reinforced materials, and
~iv! elastostatics of shell membranes.

Integrable connections in the theory of liquid crystals have recently been uncovered in Re

II. HYDRODYNAMICS BACKGROUND. GENESIS OF THE NLS EQUATION

The celebrated nonlinear Schro¨dinger ~NLS! equation

i
]q

]t
1

]2q

]x2 1nuqu2q50 ~2.1!

a!Author to whom correspondence should be addressed. Electronic mail: schief@maths.unsw.edu.au
33410022-2488/2003/44(8)/3341/29/$20.00 © 2003 American Institute of Physics
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models a wide range of physical phenomena. It was originally derived in explicit form in
context of the self-focusing of optical beams in nonlinear media.5,6 However, the origins of the
NLS equation or, equivalently, ifn.0, of the Heisenberg spin equation7

]S

]t
5S3

]2S

]x2 , S251, ~2.2!

go back to work in hydrodynamics at the beginning of the 20th century. Thus, Da Rios,8 in 1906,
in a study of the motion of an isolated inextensible vortex filament in an unbounded fluid, de
via what is essentially the localized induction approximation~LIA !, a pair of nonlinear coupled
equations for the temporal evolution of the curvature and torsion of the filament. These equ
may be conjugated to produce the NLS equation.9 The original and subsequent results by Da R
were collected in a survey by Levi-Civita.10 An interesting account of the rediscovery of the wo
of Da Rios has been given by Ricca.11

The origins of the NLS equation then seem to reside in hydrodynamics, albeit via app
mation. That it arises in hydrodynamics in the guise of the Heisenberg spin equation but rath
a geometric constraint was established only recently by Rogers.12 The origins of that study go
back to a long outstanding problem in hydrodynamics posed by Gilbarg13 which seeks to delimit
the circumstances under which a motion is uniquely determined by its geometry.

It was Prim14 who established that any steady motion governed by the classical hydrodyn
system

div q50, ~2.3a!

r~q•¹!q1¹p50 ~2.3b!

is uniquely determined by its streamline pattern unless it has constant velocity magnitq
5uqu along individual streamlines or, equivalently, in the absence of stagnation points, unle

div t50, ~2.4!

wheret is the unit tangent to the streamline. In the above,q5qt is the fluid velocity andp,r are
the pressure and constant density, respectively. If the geometric condition~2.4! holds, then there
exists a multiplicity of flows which exhibit the same streamline pattern since the system~2.3! and
~2.4! is seen to be invariant under (p,q)→( f (p),Af 8(p) q).

The Gilbarg problem has been investigated by,inter alia, not only Prim14 but also Howard,15

Wasserman,16 and Marris.17 In Ref. 18, it has been established that, remarkably, this clas
problem may be decomposed into a study of the solitonic Heisenberg spin equation~2.2! with S
5t subject to the condition~2.4!. The results carry over,mutatis mutandis, to the steady motion of
an inviscid and thermally nonconducting gas with arbitrary equation of state as well
magnetohydrostatics.12,18,19

In the sequel, an account of the derivation of the Heisenberg spin equation in hydrodyn
and magnetohydrostatics is presented. The classical Gilbarg problem is reformulated as th
lem of solving the Heisenberg spin equation subject to the geometric constraint~2.4!.

III. GEOMETRIC PRELIMINARIES

The nature of the geometric constraint~2.4! prompts the adoption of a characterization of
three-dimensional vector fieldf inherent in a study of anholonomic coordinate systems
Vranceanu.20 Thus, the orthonormal basis$t, n, b% is introduced along the tangential, princip
normal and binormal directions to the vector lines of nonvanishingf. This formulation has been
previously used to derive kinematic properties in hydrodynamics by Marris and Passman.21 In that
context, as here,f is identified with the velocity fieldq.

Let
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d

ds
5t•¹,

d

dn
5n•¹,

d

db
5b•¹ ~3.1!

denote the directional derivatives in the tangential, principal normal and binormal direc
respectively. It proves convenient to introduce the notation22

uns5n•
dt

dn
, ubs5b•

dt

db
, ~3.2!

in terms of which

div t5S t
d

ds
1n

d

dn
1b

d

dbD •t5uns1ubs . ~3.3!

In a similar manner,

div n52k1b•
dn

db
, div b5n•

db

dn
, ~3.4!

wherek denotes the curvature of thet-field. Moreover,

curl t5S t3
d

ds
1n3

d

dn
1b3

d

dbD t5Vst1kb, ~3.5!

where

Vs5t•curl t5b•
dt

dn
2n•

dt

db
. ~3.6!

Further,

curln52~div b!t1Vnn1unsb,
~3.7!

curlb5~k1div n!t2ubsn1Vbb,

where

Vn5n•curln5t•
dn

db
2t,

~3.8!

Vb5b•curlb52t2t•
db

dn
,

with t the torsion of thet-field. The quantitiesVs , Vn , andVb are termed abnormalities of th
t, n, andb-fields, in turn. Combination of~3.6! and ~3.8! produces the important relation

Vs1Vn1Vb52~Vs2t!. ~3.9!

This connection between the abnormalities appears in another guise in the treat
Weatherburn.23 Therein,Vs , Vn , andVb are called the total moments of thet, n, andb-fields,
respectively.

The identity curl gradf50, on use of the intrinsic decompositions~3.5! and~3.7!, produces
the commutator relations
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d2

dndb
2

d2

dbdn
52Vs

d

ds
1div b

d

dn
2~k1div n!

d

db
, ~3.10a!

d2

dbds
2

d2

dsdb
52Vn

d

dn
1ubs

d

db
, ~3.10b!

d2

dsdn
2

d2

dnds
52k

d

ds
2uns

d

dn
2Vb

d

db
. ~3.10c!

The system governing the directional derivatives of the orthonormal triad$t, n, b% reads

d

dsS t
n
b
D 5S 0 k 0

2k 0 t

0 2t 0
D S t

n
b
D ,

d

dn S t
n
b
D 5S 0 uns Vb1t

2uns 0 2div b

2~Vb1t! div b 0
D S t

n
b
D , ~3.11!

d

db S t
n
b
D 5S 0 2~Vn1t! ubs

Vn1t 0 k1div n

2ubs 2~k1div n! 0
D S t

n
b
D .

The compatibility of this linear system, on application of the commutator relations~3.10!, gives
rise to nine conditions on the eight geometric parametersk,t,Vs ,Vn ,div n,div b,uns , andubs ,
viz.,

duns

db
1

d

dn
~t1Vn!5~k1div n!~Vs22Vn22t!1div b ~ubs2uns!1Vsk, ~3.12a!

d

db
~t1Vn2Vs!1

dubs

dn
5~k1div n!~uns2ubs!1div b ~Vs22Vn22t!, ~3.12b!

d

db
div b1

d

dn
~k1div n!5~t1Vn!~t1Vn2Vs!2unsubs2tVs2~div b!22~k1div n!2,

~3.12c!

d

ds
~t1Vn!1

dk

db
52Vnuns2~2t1Vn!ubs , ~3.12d!

dubs

ds
52ubs

2 1k~k1div n!2Vn~t1Vn2Vs!1t~t1Vn!, ~3.12e!

d

ds
~k1div n!2

dt

db
52Vndiv b2ubs~2k1div n!, ~3.12f!

dk

dn
2

duns

ds
5k21uns

2 1~t1Vn!~3t1Vn!2Vs~2t1Vn!, ~3.12g!
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d

ds
~t1Vn2Vs!52uns~Vn2Vs!1k div b1ubs~22t2Vn1Vs!, ~3.12h!

dt

dn
1

d

ds
div b52k~Vn2Vs!2unsdiv b1~k1div n!~22t2Vn1Vs!. ~3.12i!

Solitonic equations inherent in subsystems of these compatibility conditions have bee
lated via the application of certain geometric constraints in Ref. 24. Here, it is shown ho
classical hydrodynamic system~2.3! subject to the geometric constraint~2.4! when adjoined to an
appropriate subset of the system~3.12!, namely,~3.12d!–~3.12f!, produces an integrable Heisen
berg spin equation that prevails on the constant pressure surfaces. The residual conditions i~3.12!
constrain the foliation of these soliton surfaces.

In what follows, it will emerge that the geometric constraint~2.4! imposed on the hydrody
namic system~2.3! implies the vanishing abnormality condition

Vn50. ~3.13!

Magnetohydrodynamic motions in which this condition arises in conjunction with~2.4! have been
previously investigated by Rogers and Kingston.25 The geometric constraint~3.13! implies the
existence of functionsF andC such that

n5C¹F. ~3.14!

Sincen is parallel to the normal to the surfacesSn :F5const, the vector lines oft ~commonly
termed thes-lines! constitute geodesics thereon. The vector lines ofb ~theb-lines! are necessarily
parallels.23

On introduction of a parametrization of the surfacesSn wherein

d

ds
5

]

]s
,

d

db
5

1

g

]

]b
, ~3.15!

the commutator relation~3.10b! shows that

ubs5
]

]s
ln g. ~3.16!

Thus, with thes-lines andb-lines taken as parametric curves on the surfacesSn , the surface
metric of an individual such surface adopts the form

In5ds21g2~s,b!db2, ~3.17!

whereg is constrained by the relation~3.16!.
The Gauss–Weingarten equations for an individual surfaceSn become

]

]sS t
n
b
D 5S 0 k 0

2k 0 t

0 2t 0
D S t

n
b
D ,

~3.18!

1

g

]

]b S t
n
b
D 5S 0 2t ubs

t 0 k1div n

2ubs 2~k1div n! 0
D S t

n
b
D .

Moreover, if r denotes the generic position vector to a surfaceSn , then
                                                                                                                



e

ical

3346 J. Math. Phys., Vol. 44, No. 8, August 2003 C. Rogers and W. K. Schief

                    
]r

]s
5t,

]r

]b
5gb, ~3.19!

and compatibility requires that thet-field be such that

]t

]b
5

]

]s S ht3
]t

]sD , ~3.20!

where

h5gk21. ~3.21!

IV. THE HEISENBERG SPIN EQUATION IN HYDRODYNAMICS AND
MAGNETOHYDROSTATICS

If we now setq5qt, then decomposition of the hydrodynamic system~2.3! yields

dq

ds
1q div t50, ~4.1!

together with

dp

ds
5rq2 div t,

dp

dn
52rq2k,

dp

db
50. ~4.2!

On use of the commutator relations~3.10!, it is seen that the compatibility conditions for th
pressure field require that

2S d ln q

dn Ddiv t52
dk

ds
1ubsk2

d

dn
div t12k div t,

2S d ln q

db Ddiv t5kVn2
d

db
div t, ~4.3!

2kS d ln q

db D52div ~kb!2Vs div t.

These relations confirm Prim’s result14 that the hydrodynamic motions described by the class
system~2.3! are completely determined by their geometry except when divt50. On the other
hand, if divt50, then~4.3! shows that ifkÞ0, then

ubs5
d

ds
ln k5

]

]s
ln k, ~4.4a!

Vn50. ~4.4b!

Combination of the relation~3.16! with ~4.4a! yields

g5nk, ~4.5!

where]n/]s50. Here, we may setn51 without loss of generality sincen may be absorbed into
the b-coordinate. It is readily shown that the residual condition

d

db
ln q52

1

2k
div kb ~4.6!
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is compatible with the relation

dq

ds
50 ~4.7!

on use of the geometric compatibility conditions~3.12!. It is noted that~4.7! is equivalent, by
virtue of the continuity equation~2.3a!, to the geometric condition divt50 if stagnation points are
excluded. It was with hydrodynamic motions subject to the condition~4.7! that the doctoral thesis
of Howard in 1953 was concerned.15

The relation~4.5!, in view of ~3.20! and ~3.21!, shows that, remarkably, for such hydrod
namic motions, thet-field satisfies the integrable Heisenberg spin equation. The result is e
sulated in the following:

Theorem 1: In steady hydrodynamic motions with

div t50 ~4.8!

andkÞ0, the unit tangent to the streamlines on individual constant pressure surfaces is gov
by the solitonic Heisenberg spin equation

]t

]b
5

]

]s S t3
]t

]sD , ~4.9!

where s denotes arc length of the streamlines and b parametrizes the binormal lines. Conv
any solution of the Heisenberg spin equation subject to the constraint (4.8) gives rise to s
hydrodynamic motions via integration of the compatible linear system (4.2), (4.6), and (4.7)
and q2.

In light of the above result, the classical Gilbarg problem reduces to that of the foliatio
NLS soliton surfaces according to the geometric constraint~4.8!. The integrable Heisenberg spi
equation reduction subject to~4.8! likewise obtains for the steady spatial motion of a Prim ga12

and indeed for that of a gas with general equation of state

r5r~p,h!,
]r

]h U
p

.0. ~4.10!

Importantly, it also appliesmutatis mutandisfor the equilibrium equations of an infinitely con
ducting liquid, namely,26

div H50, 2m~H•¹!H1¹P50, ~4.11!

subject to the condition

H•¹uHu50, ~4.12!

where H denotes the magnetic field,m is the magnetic permeability assumed constant andP
5p1 1

2mH2 is the total pressure. In this context, the role of the constant pressure surfac
hydrodynamics is replaced by the constant total pressure surfacesP5const. The Heisenberg spi
connection has been recently exploited by Schief27 to construct geometric configurations where
the constant total pressure surfaces comprise nested tori which are foliated in accordance w
condition ~4.8!. In this case, the constant total pressure surfaces and the isobar surfac
identical. Remarkably, such equilibrium configurations were earlier obtained in a direct mann
Palumbo,28,29 who asserted that the constant pressure surfaces coincide with the so-calle
surfaces if and only if the magnetic field lines constitute geodesics on these surfaces. Equili
this kind are of importance since they are free of neoclassical transport effects causing inc
diffusion and heat conduction.
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The above-mentioned nested toroidal configurations represent a particular solution
complete set of compatibility conditions~3.12! subject to the geometric constraints~4.4! and~4.8!.
The solution of these constrained compatibility conditions in general remains an open and
tant problem. In terms of complexity, it represents an extension of a classical problem pos
Hamel30 ~vide Ref. 31!.

V. INTEGRABLE STRUCTURE IN IDEAL EQUILIBRIUM MAGNETOHYDRODYNAMICS.
THE POHLMEYER–LUND–REGGE MODEL

It is natural to pose an analog of the Gilbarg problem in ideal magnetohydrodynamics. In
work in this direction was initiated by Wasserman in Ref. 32. However, it is only recently th
has been established that any solution of the ideal magnetohydrodynamic equations govern
steady motion of an infinitely conducting incompressible fluid which is such that the Maxwe
and constant total pressure surfaces coincide is embedded in a multiplicity of solutions
share the magnetic field line and streamline geometry.33 Remarkably, in this case, the magnet
hydrodynamic equations reduce to the integrable Pohlmeyer–Lund–Regge model subje
volume-preserving constraint. Moreover, it may be shown that if the magnetic and velocity
are aligned or either of them vanishes then the Heisenberg spin connection as discusse
previous section is retrieved. Here, the Pohlmeyer–Lund–Regge connection to ideal magn
drodynamics is described.

A. The magnetohydrodynamic system

The system of magnetohydrodynamic equations adopts the form26

div q50, ~5.1a!

r~q•¹!q1¹p5
1

m
curlB3B, ~5.1b!

div B50, ~5.1c!

curl ~q3B!50, ~5.1d!

or, equivalently,

div q50, ~5.2a!

r~q•¹!q2
1

m
~B•¹!B1¹P50, ~5.2b!

div B50, ~5.2c!

~q•¹!B5~B•¹!q, ~5.2d!

whereinP5p1B2/2m is the total pressure andm designates the magnetic permeability. In t
following, we setr5m51 without loss of generality.

The Faraday equation~5.1d! implies that there exist ‘Maxwellian’ surfacesS which bear the
streamlines and magnetic field lines. The commutation property

@q•¹,b•¹#50 ~5.3!

embodied in~5.2d! implies that there exists a coordinate system~x, c, v! such that the Maxwell-
ian surfaces are given byv5const and

q•¹5]x , B•¹5]c ~5.4!
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so that if r denotes the Eulerian coordinate vector then

q5rx , B5rc ~5.5!

are tangent vectors to thex andc coordinate lines, respectively, on the Maxwellian surfaces
terms of this coordinate system, the continuity and induction equations~5.2a! and ~5.2c! in turn,
adopt the form

div rx5
urx ,rc ,rvux
urx ,rc ,rvu

50,

~5.6!

div rc5
urx ,rc ,rvuc
urx ,rc ,rvu

50.

Thus, on appropriate reparametrization of the foliation parameterv, we obtain the volume-
preserving condition

urx ,rc ,rvu51 ~5.7!

while the equation of motion~5.2b! becomes

rxx2rcc1Pxrc3rv1Pcrv3rx1Pvrx3rc50. ~5.8!

It is concluded that the magnetohydrodynamic system~5.2! is equivalent to the system~5.7!, ~5.8!
with the fluid velocity and magnetic field given by~5.5!.

B. The Pohlmeyer–Lund–Regge connection

The preceding canonical formulation of the governing equations has as a consequen
following theorem:33

Theorem 2: If the Maxwellian surfaces coincide with the constant total pressure surface
that P5P(v) then the magnetohydrodynamic system (5.1) or, equivalently, (5.2) reduces
integrablePohlmeyer–Lund–Regge model

rxx2rcc5V~v!rx3rc ~5.9!

subject to the volume-preserving condition

urx ,rc ,rvu51. ~5.10!

The fluid velocity, magnetic field, and total pressure are given by

q5rx , B5rc , P52E V~v! dv, ~5.11!

respectively.
The Pohlmeyer–Lund–Regge model constitutes an integrable nonlinears-model34,35 which

usually consists of the vector equation~5.9! and the admissible constraints

rx
21rc

251, rx•rc50. ~5.12!

The latter normalization may always be achieved by means of a suitable coordinate transfor
which leaves~5.9! invariant. However, in the present magnetohydrodynamic context, the
coordinate lines on the Maxwellian surfaces do not necessarily coincide with the streamlin
magnetic field lines and the volume-preserving condition~5.10! adopts a less convenient form
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The assumption that the magnetic field is orthogonal to the velocity field constitutes an add
constraint on the magnetohydrodynamic system. This orthogonality condition is not ‘geomet
that it is not preserved by the invariance

S q
BD→S coshl sinhl

sinhl coshl
D S q

BD , l5const ~5.13!

of the magnetohydrodynamic system.

C. A substitution principle. Bernoulli integrals of motion

The geometric constraint that the Maxwellian surfaces and constant total pressure su
coincide is equivalently characterized by

q•¹P50, B•¹P50. ~5.14!

If q, B and P obey these conditions then a functionm which is constant on the Maxwellian
surfaces so that

q•¹m50, B•¹m50 ~5.15!

is associated with the multiplicity of solutions$q* ,B* ,P* % of the magnetohydrodynamic syste
~5.2! embodied in the substitution principle

q* 5mq, B* 5mB, ¹P* 5m2¹P. ~5.16!

Thus, any solution of the magnetohydrodynamic system wherein the Maxwellian and co
total pressure surfaces coincide is embedded in a multiplicity of solutions which share the s
line and magnetic field line geometry. This property is reflected by the invariance (x,c,v)
→(x* ,c* ,v* ) of the constrained Pohlmeyer–Lund–Regge system~5.9!, ~5.10!, where

x* 5
x

m~v!
, c* 5

c

m~v!
, v* 5E m2~v! dv ~5.17!

andV* 5V. It is noted that the admittance of invariance properties of substitution principle
has been previously investigated in magnetohydrodynamics in Refs. 36–38.

In view of the conditions~5.14!, it is seen that scalar multiplication of the equation of moti
~5.2b! by q andB, respectively, yields

~q7B!•¹~q6B!250. ~5.18!

Accordingly, we obtain the two Bernoulli-type integrals of motion

~q6B!252B6~x6c,v! ~5.19!

or, equivalently,

q21B25B11B2 , q"B5 1
2 ~B12B2!. ~5.20!

The latter correspond to the first integrals

rx
21rc

25B11B2 , rx•rc5 1
2 ~B12B2! ~5.21!

of the Pohlmeyer–Lund–Regge model. These may be reduced to the normal form~5.12! by means
of a suitable coordinate transformation.
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VI. THE KINEMATICS OF IDEAL FIBER-REINFORCED FLUIDS. INTEGRABLE
ADMISSIBLE REDUCTIONS

The notion of an ideal fiber-reinforced fluid was introduced in Ref. 39 as a model in the l
formation process of fiber-resin materials. This model consists of an incompressible fluid wh
inextensible along ‘fiber’ lines that occupy the volume of the fluid by which they are conve
Resin matrix fiber-reinforced materials enjoy abundant engineering applications, particula
the construction of light laminated shell structures with complicated geometries.

The kinematic conditions that attend the motion of an ideal fiber-reinforced fluid wer
down by Spencer.40 Thus, if a generic fiber direction is characterized by a unit vectort, the
kinematic conditions comprise the usual continuity equation

div v50 ~6.1!

together with the condition

]t

]t
1~v•¹!t5~ t•¹!v. ~6.2!

The latter constitutes the commutativity condition

d

dt S dr

dsD5
d

ds S dr

dt D , ~6.3!

wherer is the position vector to a generic fiber andd/dt5]/]t1v•¹. It is interesting to observe
that a similar compatibility condition arises in the derivation of soliton equations via privile
motions of inextensible curves. The kinematic conditions combine to show that

d

dt
div t50 ~6.4!

and an important subclass of motions is that with40

div t50. ~6.5!

The natural reappearance of the geometric constraint~6.5!, albeit now with regard to the fibe
field, prompts the search for hidden integrable structure within the kinematic conditions~6.1!,
~6.2!. This motivation is enhanced by the presence of the commutativity condition~6.3! as en-
countered in soliton theory. Here, attention is restricted to steady motion, in which cas
kinematic conditions imply that

~v3t!•curl ~v3t!50, ~6.6!

whence thev3t-field is complex-lamellar so that

v3t5C¹F ~6.7!

for some functionsC andF. Thus, surfacesS:F5const exist which bear both the streamlines a
fibers.

It is common in the structure of composite materials to have reinforcement by mu
families of fibers. If there exists a second family of fibers with unit tangentt* which are convected
by the fluid flowv and which also lie on the surfacesS then there exists the additional kinemat
constraint

~v•¹!t* 5~ t* •¹!v, ~6.8!
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wheret* may be decomposed according to

t* 5at1bv. ~6.9!

Substitution of~6.9! into ~6.8! establishes the following result:
Theorem 3: In steady fiber-reinforced motion, the surfacesS bearing the stream lines and

t-fibers contain a second family of fibers

t* 5at1bv, ut* u51 ~6.10!

iff

a21b2v212abv~T"t!51, ~6.11!

whereT is the unit tangent to the streamlines and

da

dS
5

db

dS
50 ~6.12!

with d/dS5T•¹.
The following result is readily obtained as a consequence of Theorem 3:41

Corollary 1: A multiplicity (.2) of fibers can exist on the surfacesS iff the geometry of the
streamlines and fibers is constrained by

div T50, ~6.13a!

d

dS
~T"t!50. ~6.13b!

Materials with two, three, or more families of embedded fibers have been discussed
authoritative monograph of Spencer.42 It is recalled that it is just the geometric condition~6.13a!
which in classical hydrodynamics has been seen to lead to the integrable Heisenberg spi
tion.

If the fluid velocity v is decomposed as

v5vst1vnn1vbb ~6.14!

in terms of the fiber directiont and its principal normaln and binormalb then insertion into the
kinematic conditions~6.1! and ~6.2! yields

dvs

ds
5vnk, ~6.15a!

dvn

ds
5vnuns2vbVn , ~6.15b!

dvb

ds
5vnVb1vbubs , ~6.15c!

dvn

dn
1

dvb

db
52vs div t2vn~k1div n!2vb div b. ~6.15d!

This constitutes an overdetermined system of linear equations for the velocity componentsvs , vn ,
andvb with compatibility condition
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vs

d

ds
div t1vn

d

dn
div t1vb

d

db
div t50. ~6.16!

In particular, the latter constraint is satisfied if

div t50 ~6.17!

in which case the commutator relations~3.10! show that~6.15b!–~6.15d! guarantee the existenc
of a potentialP such that

dP

ds
50, ~6.18a!

dP

dn
52vb , ~6.18b!

dP

db
5vn . ~6.18c!

Moreover, in the case of geometries with

Vn50, ubs5
d

ds
ln k, ~6.19!

the solution of the residual condition~6.15a! is given explicitly by

P5
dx

ds
, ~6.20a!

vs

k
5

dx

db
, ~6.20b!

where the functionx is, a priori, arbitrary. However, insertion ofP as given by~6.20a! into
~6.18a! produces a constraint onx and we obtain:

Theorem 4: The kinematic equations (6.1), (6.2) of ideal fiber-reinforced spatial flows w
geometric constraints

div t50, ~6.21a!

Vn50, ~6.21b!

ubs5
d

ds
ln k ~6.21c!

admit the general solution

v5k
dx

db
t1

d2x

dbds
n2

d2x

dnds
b, ~6.22!

where

d2x

ds2 50. ~6.23!
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The fibers constitute geodesics on a family of surfacesSn .
It is recalled that the conditions~6.21b! and~6.21c! encapsulate the integrable Heisenberg s

equation while~6.21a! is identical to the constraint encountered in the Gilbarg problem. In
present context, however, thet-lines are the fibers. The nested toroidal solutions obtained in
27 carry overmutatis mutandisto provide particular spatial geometries that adhere to the k
matic conditions~6.1! and ~6.2!.

A. The geometry of planar motion

It is asserted in Ref. 40 that two-dimensional flows of an ideal fiber-reinforced fluid
essentially determined by kinematical considerations. Thus, the pressurep and tensionT in the
fiber direction can always be determined such that the equations of motion are satisfied. A
ingly, planar motion is especially privileged and the study of its kinematics assumes an
importance. Here, it is established that the kinematic conditions for the planar motion of an
fiber-reinforced fluid can be encoded in a single nonlinear third-order equation. Remarkab
latter is shown to contain a variant of a well-known integrable system in soliton theory.

In the planar kinematic study of ideal fiber-reinforced fluids, the linear system~3.11! reduces
to

d

ds S t
nD5S 0 k

2k 0D S t
nD ,

~6.24!
d

dn S t
nD5S 0 u

2u 0D S t
nD ,

whereu5uns5div t. The above pair may be interpreted as the Serret–Frenet equations asso
with the planar fibers and their orthogonal trajectories, that is then-lines, with 2u being the
curvature of the latter. The nonlinear system of compatibility conditions~3.12! is identically
satisfied except for the single condition

dk

dn
2

du

ds
5k21u2. ~6.25!

Indeed, on use of the commutator relation

d2

dnds
2

d2

dsdn
5k

d

ds
1u

d

dn
, ~6.26!

it is readily shown that the Serret–Frenet system~6.24! is compatible modulo~6.25!. The general
solution of the latter geometric condition may be parametrized via

k5
dw

ds
, u5

dw

dn
, ~6.27!

where w is an as yet unspecified function. Moreover, the fluid velocityv is now decomposed
according to

v5vt1wn, ~6.28!

whence, on substitution into the kinematic conditions~6.1! and ~6.2!, one obtains

dv
ds

5kw, ~6.29a!
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dw

ds
5uw, ~6.29b!

dw

dn
52uv, ~6.29c!

where the relationk1div n50 valid in planar geometry has been employed.
It is natural to take the fiber lines and their orthogonal trajectories as the coordinate lines

orthogonal system on the plane. Accordingly, if the variabless and n parametrize thet- and
n-lines, respectively, then the metric of the plane adopts the form

I5f2ds21c2dn2, ~6.30!

where the partial and directional derivatives are related by

]

]s
5f

d

ds
,

]

]n
5c

d

dn
. ~6.31!

Thus, if r is a generic point on the plane then

dr

ds
5t5

1

f

]r

]s
,

dr

dn
5n5

1

c

]r

]n
. ~6.32!

In view of ~6.27!, the geometric quantitiesk andu now admit the parametrization

k5
1

f

]w

]s
, ~6.33a!

u5
1

c

]w

]n
. ~6.33b!

Insertion of~6.31! into the commutator relation~6.26! yields

cs5wnf, ~6.34a!

fn52wsc. ~6.34b!

Here and subsequently, subscripts denote partial derivatives.
It now proves convenient to introduce a quantityr according to the relations

dr

ds
51, ~6.35a!

dr

dn
52

v
w

. ~6.35b!

Use of the commutator relation~6.26! and the kinematic conditions~6.29a! and~6.29b! shows that
the relations~6.35! are indeed compatible. By virtue of~6.35a!, the quantityr is seen to constitute
arc length along the fibers. Moreover, the relations~6.35! combine to yield

q•¹r50 ~6.36!

while the compatibility of the kinematic conditions~6.29b! and~6.29c! requires, on use of~6.26!,
that
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q•¹u50, ~6.37!

whence we come to the important conclusion that the divergence of thet-field constitutes a
function of the arc lengthr along the fibers. In fact, in Ref. 41, it has been shown that
geometric property completely characterizes steady planar motions. If we set, for convenie

u5div t5
C8~r!

C~r!
~6.38!

then relations~6.33b! and ~6.34a! together show that

cs

c
5

C8~r!

C~r!
f ~6.39!

while ~6.35a! yields

f5rs , ~6.40!

whence

c5C~r!. ~6.41!

Herein, an arbitrary function of integrationN(n) has been omitted without loss of generality sin
it may be removed via a suitable reparametrization of then-lines. The relation~6.33b!, on use of
~6.38! and ~6.41!, reduces to

wn5C8~r! ~6.42!

while the residual condition~6.34b! shows that

ws52
rsn

C~r!
. ~6.43!

Elimination of w between the latter two relations gives rise to the following result:
Theorem 5: The kinematics of the steady planar motion of an ideal fiber-reinforced flu

governed by the single third-order nonlinear equation

S rsn

C~r! D
n

1C9~r!rs50 ~6.44!

for the arc lengthr along the fibers. Here,C constitutes an arbitrary function ofr. The one-
parameter family of fibersr (s,n5const)is obtained by integration of the compatible pair

r s5rst, rn5C~r!n ~6.45!

while the fluid velocity is given by

v52rnt1C~r!n. ~6.46!

The solution of the Serret–Frenet equations (6.24) reads

t5S cosw

sinw
D , n5S 2sinw

cosw D , ~6.47!

wherew obeys the compatible system
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ws52
rsn

C~r!
, wn5C8~r!. ~6.48!

B. An integrable reduction. Generation of fiber distributions

To proceed, it proves convenient to reformulate the third-order equation~6.44! as a coupled
system of equations, namely,

rsn5mC~r!, mn52C9~r!rs . ~6.49!

The latter admits the first integral

m22ars
25I ~s! ~6.50!

if C is constrained by

C9~r!1aC~r!50, ~6.51!

wherea constitutes an arbitrary constant. On use of an appropriate reparametrization of th
lines, the functionI may be scaled to 0,61. In particular, ifa5I 51 and

C~r!5sinr, ~6.52!

the parametrization

m5e coshv, rs5e sinhv, e251 ~6.53!

of the relation~6.50! results in the following consequence of Theorem 5:
Corollary 2: The specializationC(r)5sinr in (6.44) reduces it to the system

rs5e sinhv, vn5sinr ~6.54!

with associated fluid velocity

v52rnt1sinr n, ~6.55!

where the pair~t, n! is given by (6.47) with

ws52e coshv, wn5cosr. ~6.56!

The metric of the plane may be cast into the form

I5rs
2ds21vn

2dn2 ~6.57!

so thatr and v constitute arc length along thet-lines andn-lines, respectively.
If the term e sinhv in ~6.54! is replaced by sinv then the classical Ba¨cklund equations for

surfaces of constant negative Gaussian curvature result.1 The Gauss equation for such pseud
spherical surfaces is the integrable sine-Gordon equation.43 In the current context, it is readily
verified thatr1 iv obey the sine-Gordon equation

~r1 iv!sn5e sin~r1 iv!. ~6.58!

The system~6.54! guarantees that the pair
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Fs5
e

2S tann sinhv 2
coshv

cosn

coshv

cosn
2tann sinhv

D F,

~6.59!

Fn5
1

2 S 0 cos~r2n!

2cos~r1n! 0 DF

is compatible for any value of the constant parametern. In fact, the latter constitutes a ‘linea
representation’ of the nonlinear system~6.54! in the sense of soliton theory and admits an as
ciated Darboux transformation.1 In this connection, it is noted that, atn50, the fundamental
solution of ~6.59! is given by

Fun505S cosw/2 sinw/2

2sinw/2 cosw/2D . ~6.60!

Thus, the ‘eigenfunction’F encodes the tangent vectorst and n via the anglew. An induced
Bäcklund transformation for the fiber distribution on the plane may be obtained in a stan
manner by employing the Sym–Tafel formula1,44 which, in the current context, states that t
position vector of the fibers is encapsulated in

F21
]F

]n U
n50

. ~6.61!

The above-mentioned results are summarized below:45

Theorem 6: Any solution (r, v) of the integrable system (6.54) together with the associa
fiber position vectorr and tangent vectorst, n may be mapped to another solution(r8,v8) and
fiber distribution(r 8,t8,n8) by the Ba¨cklund transformation

r85r12 arctanS cotn
11j2

12j2D ,

v852v12 S 2j sinn

11j2 D ,

w85w1x, x522 arctanS 2j cosn

12j2 D , ~6.62!

r 85r12 cotn
11j2

12j2 cos
x

2 S cos
x

2
t1sin

x

2
nD ,

t85cosx t1sinx n, n852sinx t1cosx n,

wherej5F1/F2 ande852e. Here, F i designate the components of a vector-valued solutioF
of the linear system (6.59).

The above Ba¨cklund transformation may be used to generate explicitly large classes of
distributions and associated velocity fieldsv. This has been discussed in Ref. 45.

In conclusion, it is noted that if we introduce the vector field

w5sinhv t2evsn ~6.63!

then it is readily shown that
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~w•¹!n5~n•¹!w, div w50. ~6.64!

Consequently, then-lines may also be regarded as inextensible fibers which are convected wi
w-flow. The inextensibility of then-lines is verified by the relation

~w•¹!v50. ~6.65!

Accordingly, we have established the duality

~ t,v!↔~n,w!. ~6.66!

Moreover, it may be shown that such a duality property exists iff the functionC~r! is constrained
by ~6.51!. Thus, the integrable case is privileged with regard to duality.

C. A Loewner connection. The 2 ¿1-dimensional sine-Gordon system

It has been established that the third-order equation~6.44! embodies the complete set o
equations governing steady planar motions. These consist of the geometric system~6.34!, that is

cs5qf, fn52pc, ~6.67!

where

p5ws , q5wn , ~6.68!

along with the kinematic conditions~6.29a! and ~6.29c! given by

vs5pw, wn52qv ~6.69!

and the remaining kinematic condition~6.29b! which may be replaced by

w5c. ~6.70!

Remarkably, ifp and q are arbitrary then the linear system~6.69! may be interpreted as th
standard ‘scattering problem’ associated with the 211-dimensional AKNS hierarchy of soliton
equations46 and ~6.67! constitutes its adjoint. The functionsv andw may be regarded as eigen
functions whilec andf represent adjoint eigenfunctions. Moreover, a ‘squared eigenfunctionM
may be introduced via the compatible system

Ms5fw, Mn52cv. ~6.71!

Squared eigenfunctions play an important role in the construction of binary Darboux transf
tions in soliton theory.47

The reduction~6.68! is admissible and indeed standard in soliton theory. It produces a m
fied Nizhnik-Veselov-Novikov hierarchy~see, e.g., Ref. 48! which may be regarded as
211-dimensional version of the potential modified Korteweg–de Vries hierarchy.46 The latter is
compatible with the 211-dimensional sine-Gordon system which constitutes a particular re
tion of the so-called LKR system.48–50The origins of this master 211-dimensional soliton system
reside in gasdynamics in a study by Loewner51 on the application of infinitesimal Ba¨cklund
transformations to reduce the hodograph equations to appropriate canonical form in su
transsonic and supersonic flow re´gimes. Indeed,~6.69! is gauge-equivalent to the system as stu
ied by Loewner. It was the discovery of the gasdynamic connection with soliton theory vi
LKR system that, in part, motivated the present search for hidden integrability in other cla
systems of nonlinear continuum mechanics.
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The eigenfunction-adjoint eigenfunction constraint~6.70! appears to be novel. It gives rise t
the nonlinearity of the third-order equation~6.44! in that it implicitly relates the functionw to the
~adjoint! eigenfunctions.

The above-mentioned 211-dimensional integrable generalization of the classical sine-Gor
equation may be brought into the compact polynomial form

ŵsnt1ŵshnt1ŵnhst50, ~6.72a!

hsn5ŵsŵn . ~6.72b!

It arises out of the compatibility conditions associated with the Lax pair52

S ]s 2ŵs

ŵn ]n
D S v̂

ŵD50, ~6.73a!

S ]n] t1hnt 2ŵn] t

ŵs] t ]s] t1hst
D S v̂

ŵD50. ~6.73b!

The ‘spatial’ part~6.73a! of this Lax pair may be identified with the linear system~6.69! if we set

ŵ5w, v̂5v, ŵ5w. ~6.74!

It is natural to inquire as to whether the ‘temporal’ part~6.73b! may also be satisfied in the prese
context, in which case the anglew obeys the 211-dimensional sine-Gordon system~6.72! and
gives rise to classes of fiber distributions in whicht plays the role of a parameter.

Here, we focus on the integrable case as summarized in Corollary 2 withe51. Thus, insertion
of ws andwn as given by~6.56! into ~6.72a! yields

~sinhv sinr! t1hnt coshv2hst cosr50, ~6.75!

which admits a decomposition into the two equations

hst5r t sinhv, hnt52v t sinr, ~6.76!

while the remaining equation~6.72b! reads

hsn52coshv cosr. ~6.77!

The compatibility conditionshstn5hnts5hsnt then produce

rnt52v t cosr, vst52r t coshv. ~6.78!

These are readily seen to be compatible with the system~6.54!. Moreover, if we take into accoun
the relationsv52rn andw5c5sinr ~cf. ~6.55!! then it may be verified that the Lax equatio
~6.73b! is indeed satisfied. Accordingly, it has been established that the fluid velocity vecv
associated with steady planar motions governed by the integrable system~6.54! and taken with
respect to the orthonormal basis~t, n! may be interpreted as an eigenfunction of t
211-dimensional sine-Gordon system~6.72!. Even though these integrable motions are not c
strained by their parametric dependence ont, the solutions of the sine-Gordon system are spec
In fact, the associated specialization of the sine-Gordon system encoded in~6.54!, ~6.56! and
~6.76!–~6.78! may be simplified by the observation that

~r1 iv!st5 iws~r1 iv! t , ~r1 iv!nt5 iwn~r1 iv! t ~6.79!

so that
                                                                                                                



ec-

rk of
ing

ilov.
ading
quilib-
may be
text of

ory as
of the

r-

-
opt the

3361J. Math. Phys., Vol. 44, No. 8, August 2003 Novel integrable reductions in continuum mechanics

                    
r t5cosw, v t5sinw ~6.80!

without loss of generality. Hence, we obtain the compatible systems

ws52coshv, wn5cosr,

vn5sinr, rs5sinhv, ~6.81!

r t5cosw, v t5sinw,

and

hsn52cosr coshv,

hst5cosw sinhv, ~6.82!

hnt52sinw sinr,

which may directly be shown to constitute a reduction of the sine-Gordon system~6.72!. It is
interesting that the integrable system~6.81! has been recently discussed by Ferapontov in conn
tion with Laplace transformations and Poisson brackets of hydrodynamic type.53,54

VII. INTEGRABILITY IN THE EQUILIBRIUM THEORY OF SHELL MEMBRANES

The study of the equilibrium of shell membranes has a long history going back to wo
Laméand Clapeyron55 on the symmetric loading of shells of revolution. The classical govern
equations of general membrane theory were set down by Lecornu56 and Beltrami.57 An extensive
account of the membrane theory of shells is presented in the lucid monograph of Novozh58

Here, a classical system descriptive of the equilibrium of shell membranes under normal lo
is investigated. It is established that, remarkably, the nonlinear system comprised of the e
rium equations augmented by the Gauss–Mainardi–Codazzi equations for the membranes
located in a large class of integrable systems which has recently been derived in the con
so-called O surfaces.59

A. The membrane shell system

In the following, we adopt the standard assumptions of classical shell membrane the
described in Ref. 58. The geometric properties of the membrane are analyzed in the setting
classical differential geometry of surfacesS embedded in an Euclidean spaceR3. If a surface
~membrane! S:r5r (a,b) with associated normalN is parametrized in terms of curvature coo
dinatesa, b then the first and second fundamental forms I5dr•dr , II52dN•dr are given by

I5A1
2da21A2

2db2,
~7.1!

II5k1A1
2da21k2A2

2db2,

wherek151/R1 , k251/R2 denote the principal curvatures andR1 ,R2 are the corresponding prin
cipal radii of curvature. In these coordinates, the Gauss–Mainardi–Codazzi equations ad
form

S A2a

A1
D

a

1S A1b

A2
D

b

1k1k2A1A250, ~7.2a!

k1b1~ ln A1!b~k12k2!50, ~7.2b!

k2a1~ ln A2!a~k22k1!50, ~7.2c!
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while the classical membrane equilibrium equations reduce to

~N1A2!a1
~A1

2S!b

A1
2N2A2a1A1A2p150,

~N2A1!b1
~A2

2S!a

A2
2N1A1b1A1A2p250, ~7.3!

N1

R1
1

N2

R2
1p350,

where N1 ,N2 denote the in-plane normal stress components andS5N125N21 designates the
in-plane shear. Here, the functionspi are the components of the surface loading

p5p1e11p2e21p3e3 , ~7.4!

wherein the orthonormal triad (e1 ,e2 ,e3) is defined by

e15
ra

A1
, e25

rb

A2
, e35N5

ra3rb

A1A2
. ~7.5!

The system~7.3! results directly from the general theory of thin shells.58

For any given membrane geometry and prescribed external surface loading, the mem
equilibrium equations constitute a well-determined linear system for the in-plane stress. Ho
if conditions are imposed on the in-plane stress then the equilibrium equations constra
Gauss–Mainardi–Codazzi equations and thereby the geometry of the membrane. Indeed
absence of in-plane shear (S50) with purely normal loading, the equilibrium equations~7.3!
reduce to

N1a1~ ln A2!a~N12N2!50, ~7.6a!

N2b1~ ln A1!b~N22N1!50, ~7.6b!

k1N11k2N21p350. ~7.6c!

The equilibrium equations together with the Gauss–Mainardi–Codazzi equations~7.2! then form
a well-determinedcoupled nonlinearsystem. Thus, under the above-mentioned circumstances
shape of a membrane in equilibrium is restricted. It is noted that the conditionS50 expresses the
requirement that the lines of principal stress on the membrane coincide with the lines of curv

In the simplest case of a ‘homogeneous’ stress distribution, that is,

N15N25c5const, ~7.7!

the equilibrium equations~7.6! reduce to the classical Young–Laplace equation60–62

k11k252c21p3 ~7.8!

which expresses the fact that the normal loadingp3 is proportional to the mean curvature

H5k11k2 ~7.9!

of the membrane. In particular, if

p35const ~7.10!
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then the membrane is of constant mean curvature while whenp350 then the membrane i
minimal. This connection with classical constant mean curvature and minimal surfaces su
the detailed study of the casep35const. Accordingly, in the following, we focus on the case
vanishing in-plane shear and constant purely normal loading.

B. The O surface connection

It is observed that the equilibrium equations~7.6a! and ~7.6b! and the Gauss–Mainardi–
Codazzi equations ~7.2b! and ~7.2c! are identical in form if the correspondenc
(N1 ,N2)↔(k2 ,k1) is made. In fact, this observation provides the link with integrability. This
readily seen by reformulation of the governing equations. Thus, the change of variables

p5
A1b

A2
, q5

A2a

A1
,

H +52k1A1 , K +52k2A2 , ~7.11!

H5A1 , K5A2

takes the Gauss–Mainardi–Codazzi equations~7.2! to the equivalent first-order system

pb1qa1H +K +50, ~7.12a!

Hb5pK, ~7.12b!

H +b5pK+ , ~7.12c!

Ka5qH, ~7.12d!

K +a5qH+ . ~7.12e!

The unit tangent vectorse15X, e25Y to the lines of curvature and the normale35N are then
obtained by solving the Gauss–Weingarten equations

S X
Y
N
D

a

5S 0 2p 2H +

p 0 0

H + 0 0
D S X

Y
N
D ,

~7.13!

S X
Y
N
D

b

5S 0 q 0

2q 0 2K +

0 K + 0
D S X

Y
N
D ,

while the position vectorr of the membrane is constructed by integration of the pair

ra5HX, rb5KY. ~7.14!

Here, it is important to note that the triplets (r ,H,K) and (r + ,H + ,K +), wherer +5N, obey the same
linear equations, namely,~7.12b!, ~7.12d!, and~7.14! on the one hand and~7.12c!, ~7.12e!, and

r +a5H +X, r +b5K +Y ~7.15!

on the other.
The additional change of variables
                                                                                                                



rvature
re said

ure
coor-
ce

al

s
be or-

O
sical
rd and

identified
atrix

3364 J. Math. Phys., Vol. 44, No. 8, August 2003 C. Rogers and W. K. Schief

                    
H̃5N2A1 , K̃5N1A2 ~7.16!

now reduces the equilibrium equations~7.6! to the pair

H̃b5pK̃, K̃a5qH̃ ~7.17!

subject to the constraint

H +K̃1K +H̃2p3HK50. ~7.18!

The relations~7.17! represent nothing but another copy of the equations~7.12b! and ~7.12d! or
~7.12c! and ~7.12e!. They imply the compatibility of the pair

r̃a5H̃X, r̃b5K̃Y ~7.19!

for some vector-valued functionr̃ . Thus, if we interpretr̃ as the position vector of a surfaceS̃

with principal curvaturesk̃152H + /H̃ and k̃252K + /K̃ then the relations~7.14!, ~7.15! and
~7.19! show that the tangent vectors to the coordinate lines on the membraneS, the sphereS + and
the surfaceS̃ are parallel. Moreover, since the Gauss–Weingarten equations~7.13! are formulated
in terms of the orthonormal triad~X, Y, N! only, we deduce that the surfaceS̃ is likewise
parametrized in terms of curvature coordinates. Two surfaces parametrized in terms of cu
coordinates which are such that at corresponding points their tangent vectors are parallel a
to be Combescure transforms of each other.59 It is observed that even though the Combesc
transformation has originally been defined for surfaces parametrized in terms of conjugate
dinates, it may readily be shown that it preserves lines of curvature. Accordingly, the surfaS̃
constitutes a Combescure transform of the membraneS. The following theorem therefore holds:63

Theorem 7: A shell membraneS with vanishing in-plane shear S and constant purely norm

loadingp5p3N is in equilibrium iff there exists a Combescure transformS̃ such that the orthogo-
nality condition

HTLK50 ~7.20!

is satisfied, where

H5S H +

H

H̃
D , K5S K +

K

K̃
D , L5S 0 0 1

0 2p3 0

1 0 0
D . ~7.21!

The in-plane stress components N1 and N2 are given by

N15
k2

k̃2
5

K̃

K
, N25

k1

k̃1
5

H̃

H
. ~7.22!

If one replaces the three-dimensional vectorsH, K by their higher-dimensional analogue
corresponding to a collection of Combescure transforms and demands that these vectors
thogonal with respect to a symmetric constant matrixL then the general class of integrable
surfaces is obtained.59 It is important to remark that O surfaces include and generalize clas
surfaces such as isothermic, constant mean curvature, minimal, linear Weingarten, Guicha
Petot surfaces and surfaces of constant Gaussian curvature. The membrane O surfaces as
above are reminiscent of the classical Guichard surfaces which are associated with the m
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L5S c 0 0

0 0 1

0 1 0
D . ~7.23!

In this case, the orthogonality constraint~7.20! reads

R1R̃21R2R̃11c50. ~7.24!

This is precisely the constraint in terms of which Guichard64 defined his surfaces. In the case
membrane O surfaces, the constraint~7.20! may be written as

R̃11R̃21p3R1R250, ~7.25!

which, by construction, is nothing but the normal component equilibrium equation~7.6c!.

C. Particular membrane geometries

The above formulation of the governing equations may be exploited to isolate part
classes of membrane O surfaces and investigate their properties.63 For instance, if the norma
loading vanishes, that isp350, then the orthogonality constraint~7.20! simplifies to

S H +

H̃ D TS 0 1

1 0D S K +

K̃ D 50. ~7.26!

Thus, the latter imposes a restriction on the surfaceS̃ while S constitutes an arbitrary Combescu

transform ofS̃. Since~7.26! may be cast into the form

H̃5k̃11k̃250, ~7.27!

it is evident that any Combescure transformS of a minimal surfaceS̃ may be considered a
membrane which is in equilibrium.

In the case of non-vanishing normal loading, we may impose the admissible condition

H̃5mH2lH + , K̃5mK2lK + , ~7.28!

wherel andm constitute arbitrary constants. The orthogonality constraint~7.20! then reduces to

S H +

H D TS 2l 2m

2m p3
D S K +

K D50 ~7.29!

or, equivalently,

2lK1mH1p350, ~7.30!

where the Gaussian curvatureK of the membrane is defined by

K5k1k2 . ~7.31!

Importantly, the relation~7.30! shows that the membrane adopts the shape of a linear Weing
surface since the principal curvaturesk1 ,k2 are functionally dependent and their relation is su
that the Gauss and mean curvatures are linearly related.43 It is well-known that linear Weingarten
surfaces are ‘solitonic,’ that is, their underlying Gauss–Mainardi–Codazzi equations constit
integrable system. In the casel50, the above-mentioned constant mean curvature surface
retrieved while the conditionm50 leads to surfaces of constant Gaussian curvature. Li
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Weingarten surfaces are known to be parallel to surfaces of constant Gaussian curvature p
that m222lp3Þ0. Parallel surfaces are of importance in computer-aided engineering des
which context they are termed ‘‘offset surfaces.’’65,66 Potential applications of Weingarten su
faces in this context are discussed in Ref. 67. Thus, linear Weingarten surfaces may be rega
inheriting their integrable nature from surfaces of constant Gaussian curvature~vide Ref. 1!.

Canal surfaces68 may also be identified with membranes in equilibrium. These are the e
lopes of one-parameter families of spheres of variable radius. They include surfaces of rev
and classical Dupin cyclides. The latter are defined by the requirement that the lines of cur
consist of circles.43,68 Dupin surfaces constitute particular members of the integrable clas
classical isothermic surfaces~see, e.g., Ref. 69!. Details of the significance of canal surfaces
shell membrane theory may be found in Refs. 63 and 70.

D. A linear representation and associated Ba ¨cklund transformation

The integrability of O surfaces is reflected by the existence of Lax pairs and Ba¨cklund
transformations.59 The existence of Lax pairs for O surfaces implies that thenonlinear Gauss–
Mainardi–Codazzi and equilibrium equations~7.2!, ~7.6!, and~7.10! may be completely encode
in a pair of linear matrix equations via compatibility. Indeed, the following result may
established.63

Theorem 8: The linear system

S X
Y
R+

R
R̃
D

a

5S 0 2p mH̃2H + 2mp3H mH+

p 0 0 0 0

H + 0 0 0 0

H 0 0 0 0

H̃ 0 0 0 0

D S X
Y
R+

R
R̃
D ,

~7.32!

S X
Y
R+

R
R̃
D

b

5S 0 q 0 0 0

2q 0 mK̃2K + 2mp3K mK+

0 K + 0 0 0

0 K 0 0 0

0 K̃ 0 0 0

D S X
Y
R+

R
R̃
D

is compatible iff the Gauss–Mainardi–Codazzi equations

pb1qa1H +K +50,

Hb5pK, H +b5pK+ , ~7.33!

Ka5qH, K +a5qH+ ,

and the membrane equilibrium equations

H̃b5pK̃, K̃a5qH̃,
~7.34!

H +K̃1K +H̃2p3HK50

are simultaneously satisfied. Here, m is an arbitrary constant parameter.
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The Bäcklund transformation for the general class of O surfaces as set down in Ref.
based on the classical fundamental transformation for conjugate nets and its specialization
classical Ribaucour transformation which preserves lines of curvature.1 In the case of membrane O
surfaces, the associated Ba¨cklund transformation reads as follows:63

Theorem 9: The Gauss–Mainardi–Codazzi and membrane equilibrium equations (7.33) a
(7.34) are invariant under the transformation

H85H2
H̄R

M
, K85K2

K̄R

M
,

~7.35!

p85p2
YH̄

M
, q85q2

XK̄

M
,

whereX,Y,R5(R+ ,R,R̃)T constitute a solution of the linear representation (7.32) subject to
admissible quadratic constraint

X 21Y 21R +
25m~2R+R̃2p3R 2! ~7.36!

and

H̄5Xa1pY1H +R+ , K̄5Yb1qX1K +R+ ,
~7.37!

2M5X 21Y 21R +
2 .

The membranesS and S8 are related by

r 85r2
RM

M
, M5XX1YY1R+N. ~7.38!

The above Ba¨cklund transformation may now be used to construct explicitly large classe
membranes in equilibrium with vanishing in-plane shearS and associated in-plane stress comp
nentsN1 andN2 determined by~7.22!.

In conclusion, it is noted that if the geometry of the membrane is such thatA15A2 , then the
analysis presented here extends to the caseSA1

25const since the in-plane shear terms in t
equilibrium equations~7.3! vanish. In particular, this applies to membranes of constant m
curvature, membranes of revolution and membranes which adopt the shape of Dupin cy
Surfaces constrained byA15A2 are ‘‘solitonic’’ and termed isothermic surfaces.43
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1C. Rogers and W. K. Schief,Bäcklund and Darboux Transformations. Geometry and Modern Applications in So
Theory, Cambridge Texts in Applied Mathematics~Cambridge University Press, Cambridge, 2002!.

2F. Ernst, Phys. Rev.167, 1175~1968!; 168, 1415~1968!.
3B. K. Harrison, Phys. Rev. Lett.41, 1197~1978!.
4W. K. Schief and C. Rogers, On a nonlinear elastic shell system in liquid crystal theory: generalised Willmore s
and Dupin cyclides, in preparation.

5P. L. Kelley, Phys. Rev. Lett.15, 1005~1965!.
6V. I. Talanov, JETP Lett.2, 138 ~1965!.
                                                                                                                



m,’’ in

n-1

ear in

resin

Mech.

ems

uction

3368 J. Math. Phys., Vol. 44, No. 8, August 2003 C. Rogers and W. K. Schief

                    
7M. Lakshmanan, T. W. Ruijgrok, and C. J. Thompson, Physica A84, 577 ~1976!.
8L. S. Da Rios, Rend. Circ. Mat. Palermo22, 117 ~1906!.
9H. Hasimoto, J. Fluid Mech.51, 477 ~1972!.

10T. Levi-Civita, ‘‘Attrazione Newtoniana dei Tubi Sottili e Vortici Filiformi,’’ Annali R. Scuola Norm. Sup. Pisa~Zan-
ichelli, Bologna, 1932!.

11R. L. Ricca, Nature~London! 352, 561 ~1991!.
12C. Rogers, ‘‘On the Heisenberg spin equation in hydrodynamics,’’ inInformes de Mate´matica, Se´rie B, Vol. 127~Instituto

de Matématica Pura e Aplicada, Rio de Janeiro, Brasil, 2000!.
13D. Gilbarg, J. Math. Phys.~Cambridge, Mass.! 26, 137 ~1947!.
14R. Prim, J. Math. Phys.~Cambridge, Mass.! 28, 50 ~1949!.
15L. N. Howard, ‘‘Constant Speed Flows,’’ Ph.D. thesis, Princeton University, 1953.
16R. H. Wasserman, J. Math. Anal. Appl.5, 119 ~1962!.
17A. W. Marris, Arch. Ration. Mech. Anal.90, 1 ~1985!.
18C. Rogers and W. K. Schief, J. Math. Anal. Appl.251, 855 ~2000!.
19A. Fokas, C. Rogers, and W. K. Schief, ‘‘The Da Rios system under a geometric constraint. The Gilbarg proble

preparation.
20M. G. Vranceanu, Me´m. Sci. Mathe´m. 76, 1 ~1936!.
21A. W. Marris and S. L. Passman, Arch. Ration. Mech. Anal.32, 29 ~1969!.
22O. Bjørgum, ‘‘On Beltrami vector fields and flows, Part I.,’’ Universitet I. Bergen, Arbok Naturvitenskapelig rekke

~1951!.
23C. E. Weatherburn,Differential Geometry of Three Dimensions, Vol. I ~Cambridge University Press, Cambridge, 1927!;

Vol. II ~1930!.
24W. K. Schief and C. Rogers, Proc. R. Soc. London, Ser. A455, 3163~1999!.
25C. Rogers and J. G. Kingston, SIAM~Soc. Ind. Appl. Math.! J. Appl. Math.26, 183 ~1974!.
26J. P. Freidberg,Ideal Magnetohydrodynamics~Plenum, New York, 1987!.
27W. K. Schief, ‘‘Nested toroidal flux surfaces in magnetohydrostatics. Generation via soliton theory,’’ submitted.
28D. Palumbo, Nuovo Cimento B53, 507 ~1968!.
29D. Palumbo, Atti Accad. Sci., Lett. Arti Palermo4, 105 ~1984!.
30G. Hamel, Sitzungsber. K., Preuss. Akad. Wiss., Phys. Math. Kl.1937, 5.
31A. W. Marris, Arch. Ration. Mech. Anal.51, 85 ~1973!; 51, 388 ~1973!.
32R. H. Wasserman, Q. J. Mech. Appl. Math.20, 219 ~1967!.
33W. K. Schief, ‘‘Hidden integrability in ideal magnetohydrodynamics. The Pohlmeyer-Lund-Regge model,’’ to app

Phys. Plasmas~2003!.
34K. Pohlmeyer, Commun. Math. Phys.46, 207 ~1976!.
35F. Lund and T. Regge, Phys. Rev. D14, 1524~1976!.
36P. Smith, J. Math. Mech.12, 505 ~1963!.
37G. Power and C. Rogers, Appl. Sci. Res.21, 176 ~1969!.
38O. I. Bogoyovlenskij, Phys. Lett. A291, 256 ~2001!.
39B. D. Hull, T. G. Rogers, and A. J. M. Spencer, ‘‘Theoretical analysis of forming flows of continuous fiber-

systems,’’ inFlow and Rheology in Polymer Composites Manufacturing, edited by S. G. Advani~Elsevier, Amsterdam,
1994!, pp. 203–256.

40A. J. M. Spencer, Eur. J. Appl. Math.8, 209 ~1997!.
41W. K. Schief and C. Rogers, The kinematics of fiber-reinforced fluids. An integrable reduction, to appear in Q. J.

Appl. Math. ~2003!.
42A. J. M. Spencer,Deformations of Fiber-Reinforced Materials~Oxford University Press, Oxford, 1972!.
43L. P. Eisenhart,A Treatise on the Differential Geometry of Curves and Surfaces~Dover, New York, 1960!.
44A. Sym, Soliton surfaces and their applications, inGeometric Aspects of the Einstein Equations and Integrable Syst,

edited by R. Martini~Springer, Berlin, 1985!.
45C. Rogers and W. K. Schief, The kinematics of the planar motion of ideal fiber-reinforced fluids. An integrable red
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55G. Laméand B. P. E. Clapeyron, J. Math.~Crelle! 7 ~1831!.
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A Weierstrass-type system of equations corresponding to theCPN21 harmonic
maps is presented. The system constitutes a further generalization of our previous
construction@J. Math. Phys.44, 328~2003!#. It consists of four first order equations
for three complex functions which are shown to be equivalent to theCPN21 har-
monic maps. When the harmonic maps are holomorphic~or antiholomorphic! one
of the functions vanishes and the system reduces to the previously given generali-
zation of the Weierstrass problem. We also discuss a possible interpretation of our
results and show that in our new case the induced metric is proportional to the total
energy density of the map and not only to its holomorphic part, as was the case in
the previous generalizations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586791#

I. INTRODUCTION

A few years ago Konopelchenko, together with his collaborators,1,2 introduced the subject o
Weierstrass representations of surfaces immersed in multidimensional spaces. This has ge
quite a lot of interest3,4 and has led to the connection with theCPN21 harmonic maps. Exploiting
this connection, we have recently proposed a generalization of these ideas to theCP2 ~Ref. 5! case
and, more recently, managed to generalize it further—to theCPN21 case.6

These generalizations lead to the study of immersed surfaces, whose metric is then re
the properties of the corresponding harmonic maps. In theCP1 case all harmonic maps~from S2)
are holomorphic~or antiholomorphic! and, as the induced metric is characterized by the holom
phic component of the energy, this characterization is complete. This is also the case f
holomorphicCPN21 maps.

In the CPN21 case~for N.2) there are harmonic maps which are not holomorphic7 and for
them the above mentioned construction6 is not complete, as in the general case we would exp
the maps to be characterized by the total energy. Hence a further generalization is called
such a generalization is provided in this article.

In the next section we briefly review theCPN21 harmonic maps~using the formalism as given
in Ref. 7! and in the following sections relate these maps to the various versions of the Weier
problem.

II. CPNÀ1 HARMONIC MAPS

A. Formulation

The CPN21 models are, in fact, a generalization of the, perhaps the simplest, sigma m
namely, theS2 model—also called the vectorO(3) model. TheCPN21 models involve maps from
R2, or S2 if a nontrivial topology is required, toCPN21, i.e.,

a!Electronic mail: grundlan@crm.umontreal.ca
b!Electronic mail: w.j.zakrzewski@durham.ac.uk
33700022-2488/2003/44(8)/3370/13/$20.00 © 2003 American Institute of Physics
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C.V{z5z11 i z2°z5~z1, . . . .,zN!PCN, ~1!

where the homogeneous coordinatesz5(z1, . . . ,zN) have the following property:

z;z85lz for lÞ0.

Exploiting this projective invariance we can require that

z†
•z 5 1 ~2!

holds, where † denotes Hermitian conjugation, and we are still left with the gauge symme

z→z85zeif, ~3!

wheref is a real-valued function.
It is easiest to define theCPN21 models in terms of the Lagrangian density7

L 5 1
4 ~Dmz!†

•Dmz, z†
•z 5 1, ~4!

where the covariant derivativesDm act onz:S2→CPN21 according to the formula

Dmz 5 ]mz 2 ~z†
•]mz!z. ~5!

Here the indexm51,2 denotesz1 andz2 . Note that the covariant derivativesDmz transform under
the gauge transformation~3!

Dmz→Dmz85~Dmz!eif, ~6!

so that the dependence on the phasef drops out of the Lagrangian density~4! and so the mode
is really based onCPN21.

The total Lagrangian is given by

L 5 E L dz dz̄ ~7!

and, if theCPN21 model is defined overS2, we require thatL is finite.
For theCPN21 sigma model it is convenient to define

z 5
f

u f u
, ~8!

whereu f u5( f †
• f )1/2. In terms of f the Lagrangian~7! becomes

L 5 E u ]̄ f u21u] f u2

u f u4
dz dz̄, ~9!

whereu] f u25(] f )†
•(] f ) and u ]̄ f u25( ]̄ f )†

•( ]̄ f ). The Euler–Lagrange equations forf take the
form

S 1 2
f ^ f †

u f u2 D F ]]̄ f 2 ] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G 5 0, ~10!

where we have introduced the holomorphic and antiholomorphic derivatives
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]5
]

]~z11 i z2!
5

]

]z
, ]̄5

]

]~z12 i z2!
5

]

]z̄
, ~11!

and bar denotes complex conjugation.

B. Integrability and first conservation laws

As is well known,8 Eqs.~10! can be written as a compatibility condition for a set of two line
spectral equations for anN-component auxiliary vectorC,

]C 5
2

11l
@]P, P# C,

~12!

]̄C 5
2

12l
@]̄P, P# C,

wherel is a spectral parameter and theN by N matrix P is the projector given by

P 5
1

u f u2
f ^ f †, P†5P, P25P. ~13!

The compatibility conditions for~12! are then

@]]̄P, P# 5 0, ~14!

which, as can be easily checked, are equivalent to Eqs.~10!. Note that~14! can be written in the
form of a conservation law

] @ ]̄P, P# 1 ]̄ @]P, P# 5 0 ~15!

or, equivalently, using the tracelessness of the matrixK, as

]K 2 ]̄K† 5 0, ~16!

where the matricesK andK† are given by

K 5 @ ]̄P, P# 5
]̄ f ^ f † 2 f ^ ]̄ f †

u f u2
1

f ^ f †

u f u4 @~ ]̄ f †
• f !2~ f †

• ]̄ f !#, Tr K50, ~17!

and consequently

K† 52 @]P, P# 52
] f ^ f † 2 f ^ ] f †

u f u2 1
f ^ f †

u f u4 @~] f †
• f !2~ f †

•] f !#.

Note that due to the invariance of the Lagrangian~4! under the gauge transformation~3! we
can, without any loss of generality, set one of the components of the vector fieldf , say f 1 , to 1.
Then, in theCP1 case, all quantities are expressible through one variable

w5
f 2

f 1
5 f 2 ~18!

and the Euler–Lagrange equations~10! take the form
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]]̄w2
2w̄

~11uwu2!
]w]̄w50. ~19!

C. Further conservation laws

Let us note that our matrixK in ~17! is given by

K5M1L, ~20!

where

M5~12P!
]̄ f ^ f †

u f u2
~21!

and

L 5 2
f ^ ]̄ f †

u f u2 ~12P!. ~22!

Thus

M† 5
f ^ ] f †

u f u2 ~12P!, and L† 5 2~12P!
] f ^ f †

u f u2 . ~23!

Next we note that the matricesM andL, separately, satisfy our conservations laws~16!. To
see this consider

]M 2 ]̄M† 52]P
]̄ f ^ f †

u f u2
1 ~12P!

]̄] f ^ f †

u f u2
1~12P!

]̄ f ^ ] f †

u f u2
2 ~12P!

]̄ f ^ f †

u f u4 ]u f u2

2
]̄ f ^ ] f †

u f u2 ~12P!2
f ^ ]̄] f †

u f u2 ~12P!1
f ^ ] f †

u f u2 ]̄P 1
f ^ ] f †

u f u4 ~12P!]̄u f u2.

~24!

But

]P 5
] f ^ f †

u f u2 1
f ^ ] f †

u f u2 2
P

u f u2 ]u f u2 ~25!

and so we see that all the terms in~24! become

~12P!F ]]̄ f 2 ] f
~ f †

• ]̄ f !

u f u2
2 ]̄ f

~ f †
•] f !

u f u2 G
^

f †

u f u2
2

f

u f u2
^ F ]]̄ f † 2 ] f †

~ ]̄ f †f !

u f u2
2 ]̄ f †

~] f †
• f !

u f u2 G ~12P!. ~26!

However, due to~10!, this is zero. Hence we have two separate conservation laws, namely,

]M 5 ]̄M† ~27!

and

]L 5 ]̄L†. ~28!
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Next we consider the explicit form of the entries of the matricesM and L. To do this we
introduce

Fi j 5 f i ] f j 2 f j] f i , ~29!

and

Gi j 5 f i ]̄ f j 2 f j ]̄ f i . ~30!

Then, using expressions~29! and ~30!, we can write the entries of the matricesM and L,
equivalently, in the form

Mi j 5 F̄ i
2 f̄ j ~31!

and

Li j 5 2 f i w̄ j
2 , ~32!

where we have introduced

w i
2 5

1

A2 f̄ k Fki , A5 f̄ l f l ~33!

and

F i
2 5

1

A2 f k Gki , ~34!

and we have used the convention of implicit summation over repeated indices.
Note that from Eqs.~30!, ~33!, and~34! we have two algebraic constraints, namely,

f̄ k wk
2 5 0, f k Fk

2 5 0, ~35!

which imply that only (N21) functionsw i
2 and (N21) functionsF i

2 are linearly independent. S
in our further discussion we take as independent functionsw2

2 , . . . ,wN
2 andF2

2 , . . . ,FN
2 .

Making use of the symmetry~3! we can set, without any loss of generality, say,f 151, and so
we end up with the expressions@for ~33!, and~34!#

w i
2 5

1

A2 @~11 f k f̄ k! ] f i 2 f i~ f̄ k ] f k!#,

~36!

F̄ i
2 5

1

A2 @~11 f k f̄ k! ]̄ f i 2 f i~ f̄ k ]̄ f k!#, i 5 2, . . . ,N,

where

A511u f 2u21¯1u f Nu2.

Note that now all the sums over repeated indices run overk52, . . . ,N.
Next we invert expressions~36! and so express all the derivatives] f i in terms ofw i

2’s and f i .
This way we find that

] f i 5 A @w i
2 1 f i f̄ kwk

2#. ~37!

Thus, in particular, for theCP1 case, Eqs.~37! become
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] f 2 5 A2w2
2 , A 5 11u f 2u2,

and f 2 is often denoted byw ~see, e.g., Ref. 7!, while in theCP2 case we have

] f 2 5 A@~11u f 2u2!w2
2 1 f 2 f̄ 3 w3

2#,

] f 3 5 A@~11u f 3u2!w3
2 1 f 3 f̄ 2 w2

2#, ~38!

A511u f 2u21u f 3u2.

Note that in Refs. 5 and 6 the functionsf 2 and f 3 are denoted byw1 andw2 , respectively.
Similarly,

]̄ f i 5 A @F̄ i
2 1 f i f̄ kF̄k

2#. ~39!

III. THE WEIERSTRASS PROBLEM 1,3

In the Weierstrass problem we consider two complex functionsc5c(z,z̄) andf5f(z,z̄),
which satisfy

] c 5 p f, ]̄f 5 2p c, p5ufu21ucu2. ~40!

Note that we have not specified]̄c, nor ]f.
A natural question then arises. Is this problem related to the harmonic maps of the pr

sections, presumably corresponding to the case ofCP1?
This is indeed the case as has been discussed in Ref. 4. To see this we put

w 5
c

f̄
~41!

and note that

c 5w
~ ]̄w̄!1/2

11uwu2
, f 5

~]w!1/2

11uwu2
~42!

satisfy ~40!. In fact, one can show that~19! and ~40! are equivalent.
Moreover, we can introduce three real quantities:

X15 i E
g
@c̄21f2#dz2@c21f̄2#dz̄,

X25E
g
@c̄22f2#dz 1 @c22f̄2#dz̄, ~43!

X3522E
g
c̄fdz 1 cf̄dz̄,

whereg is any curve from a fixed point toz. Then, it is easy to show that ifc andf satisfy~40!,
the functionsXi do not depend on the contour of the curveg but only on its endpoints.

Furthermore, if we treatXi as components of a vectorrW5(X1 ,X2 ,X3) and introduce the
metric

gzz 5 ~]rW,]rW !, gz̄ z̄ 5 ~ ]̄rW,]̄rW !, gzz̄ 5 ~]rW, ]̄rW !, ~44!
                                                                                                                



th

s, as

ur
multi-

s

t

e
logs of

e

p

3376 J. Math. Phys., Vol. 44, No. 8, August 2003 A. M. Grundland and W. J. Zakrzewski

                    
we find that, for fields which solve~19! on S2, only gzz̄ is nonzero and is given by

gzz̄ 5
u]wu2

~11uwu2!2 5 uDzu2, ~45!

whereD5 1/2 (D12 iD 2), with Di defined in~5!; i.e., is a covariant derivative evaluated wi
respect toz. Note that~45! is a term in the general expression for the energy density of theCP1

map. However, as all harmonic maps onS2 satisfyw5w(z),7 we note thatgzz̄ is the total energy
density of this map.~We are assuming here that we are not dealing with antiholomorphic map
in this case we simply interchange the roles ofz and z̄.)

IV. A GENERALIZED WEIERSTRASS REPRESENTATION IN RM

Having observed that the Weierstrass problem is related to the equations of theCP1 model,
we have in Refs. 5 and 6 presented aCPN21 generalization of the Weierstrass problem. O
generalization was based on the observation that for a generalized Weierstrass system in
dimensional spaces we need a set ofw i andc i which generalize thew andc of the CP1 case.

Then we noted that the quantitiesw i
2 , i 52, . . . ,N, defined in~33!, provide such a choice a

~37! is a naturalCPN21 generalization of~42!.
What should we take for the functionsc i? In Ref. 6 we argued that~41! suggested that we pu

c i 5 f i w̄ i ~46!

with no summation over the indicesi 52, . . . ,N. Then, to complete the generalization of th
Weierstrass system in multi-dimensional spaces, we need relations which would be ana
~40!, i.e., we need to prescribe the first derivatives]̄w i and]c i in terms ofw i andc i .

Note that from~46! we have

]c i 5 ]~ f i w̄ i ! 5 ] f i w̄ i 1 f i ~ ]̄w i !. ~47!

So, we are left to specify]̄w i in terms ofw i , f i and their derivatives. To do this, in Ref. 1, w
noted that from~36! we had

]̄w i
2 5 2

f i~ f̄ l ] f l !

A3 ~ f̄ k ]̄ f k 1 f k ]̄ f̄ k!

1
1

A2 @~11u f u2!]]̄ f i2~ f̄ k]̄ f k!] f i2~ f k]̄ f̄ k!] f i2 ]̄ f i~ f̄ k] f k!2 f i~ ]̄ f̄ k] f k!2 f i~ f̄ k ]]̄ f k!#.

~48!

However, Eq.~10! allowed us to eliminate the second derivatives]]̄ f i from ~48! and also we
noted that all the terms involving first derivatives]̄ f and] f̄ in ~48! canceled. Thus we ended u
with a simple expression

]̄w i 5 2
w i

2A
~ f k ]̄ f̄ k!2

f i

2w iA
2 ~ ]̄ f̄ k] f k! 1

f i

2w iA
3 ~ ]̄ f̄ kf k!~ f̄ l] f l !. ~49!

Next, taking the complex conjugate of~37!,

]̄ f̄ k 5 A @w̄k
2 1 f̄ k f l w̄ l

2#, ~50!

and using~50! we have found
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]̄w i 5 2
1

2 H Aw i~ w̄•c! 1
c i

w i w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#J ~51!

~no summation overi ). The second pair of equations forc i then followed from~47!, i.e.,

]c i 5 Aw̄ iw i
21

1

2
Ac i~ c̄•w! 2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!# ~52!

~no summation overi ).
Thus, in Ref. 6 we proposed the following form of the generalized Weierstrass system

generalized Weierstrass systemin multi-dimensional space is a set of (2N22) complex func-
tions w i andc i , i 52, . . . ,N, which obey the following system of equations~no summation over
i ):

]̄w i 5 2
1

2 H Aw i~ w̄•c! 1
c i

w i w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#J
and

]c i 5 Aw̄ iw i
21

1

2
Ac i~ c̄•w! 2

1

2

uc i u2

uw i u2w̄ i
@~ w̄2

•w2! 1 ~ w̄•c!~c̄•w!#, ~53!

where

A51 1 (
k52

N ucku2

uwku2
.

From our construction it is clear that the above system of equations is equivalent t
equations of theCPN21 sigma model~10!. Moreover, it is easy to check that the system
equations~53! reduces to Eq.~19! whenN52.

V. A MODIFIED GENERALIZED WEIERSTRASS REPRESENTATION

The generalized Weierstrass representation given in the previous section leads to p
functionsw i , c i , i 52, . . . ,N, and, as discussed in Ref. 6, to a geometric interpretation in te
of surfaces inRM for which their metric is given byuDzu2 @as in theCP1 case—see~45!#. This is
the case for the holomorphic solutions but we know7 that CPN21 models have harmonic map
which are not holomorphic~evenCP1 has such maps; in this case, antiholomorphic maps,
these can be considered to be complex conjugates of holomorphic ones!. But for CPN21, N.2,
we have also maps which are neither holomorphic nor antiholomorphic. So can we general
Weierstrass problem differently to bring out this property?

In fact, our discussion of theCPN21 models does tell us what to do. We should use bothw i

andF i . Thus we should consider a larger problem and useF i , w i , and f i .
Then taking~36! and repeating the steps as in~48! ~and usingw2 andF2) we get

]̄w i
2 5 2Aw i

2~w†2
• f ! 2 f i@~w†2

•w2! 1 ~ f †
•w2!~w2†

• f !#, ~54!

]̄F i
2 5 2AF i

2~ f †
•F̄2! 2 f̄ i@~F†2

•F2! 1 ~ f †
•F̄2!~F̄†2

• f !#. ~55!

These equations should then be supplemented with the expressions for] f and] f̄ . The latter are
given by ~37! and ~39! and so take the form
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] f i 5 A @w i
2 1 f i f̄ kwk

2#,
~56!

]̄ f i 5 A @F̄ i
2 1 f i f̄ kF̄k

2#,

where, as usual,A511( f †
• f ) and all indices, and summations, go over (2,. . . ,N).

These four sets of equations~54!–~56!, for three sets of complex functions,f i , w j andFk ,
constitute ourmodified generalized Weierstrass problem.

Let us make a few comments.

~i! The equations fall into two sets~those involving] f i and w j and those involving] f̄ i and
F j ). Both sets are equivalent to the same equations forf i , namely,~10!.

~ii ! Instead of takingf i we could introduce, in analogy with~46!, new functionsc i andC i by,

say,c i5 f i w̄ i andC i5 f iF̄ i . Then our set of functions would effectively decouple.
~iii ! One can consider what happens whenf i are holomorphic; i.e.,]̄ f i50. Then, as is easy to

check,f †
•F̄250, which in turn shows thatuF2u250, thus demonstrating thatF i

250, and
we are left with~54! and ~56! for f i , w j , i.e., with the previous system~53!.

VI. GEOMETRICAL ASPECTS

Next we consider some geometrical aspects of our procedure. This requires the introduc
a real vectorXiPRM which is a generalization of the vector~43! constructed forCP1. In Ref. 6
we have introduced such a vector and showed that its properties generalize those of~43!.

However, our approach here generalizes the discussion in Ref. 6 and elucidates some
points made there. Namely, in our new construction we exploit the matricesM and L. We
introduce two matrices

V 5 E
g
M dz̄ 1 E

g
M† dz ~57!

and

W 5 E
g
L dz̄ 1 E

g
L† dz, ~58!

and for the components of our vectors we take individual entries of each matrix. As TrM5Tr L
50 we see thatV andW have, each, onlyN221 independent entries so our construction gives
two vectors inRN221.

Notice also thatW andV do not depend on the contour of integrationg. This follows from the
fact that for an integral

Z 5 E
G
F~z,z̄ ! dz 1 F̄~z,z̄ ! dz̄

to be independent of the integration contourG the condition is thatF and F̄ must satisfy

]̄F 5 ]F̄,

which is the case forV andW due to, respectively, our conservation laws~27! and ~28!.
Of course we can reexpress our vectorsV andW in terms of the Weierstrass functionsw i , F j

and f k or in terms ofw i , c j , Fk, andC l .
Note that in theCP1 case the matrixW is given by
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W 5 2
1

~11uwu2!2 S w]̄w̄ 2 ]̄w̄

w2]̄w̄ 2w]̄w̄
D , ~59!

and so, given~42!, we see that the integrands of the first terms inXi of ~43! have the form

x152 i @ L̄212L̄12#, x252@ L̄211L̄12#, x352L̄115L̄22. ~60!

So should we consider a new 2(N221) vector, the first half of whose components are vario
entries of the matrixW, and the second half those ofV? In theCP1 case, as shown in Ref. 5, w
can restrict ourselves to a vector with only three components. So we add both contribution
consider anN221 component vector given by all the entries~except the top left hand corner one!
of the matrix

X 5 E
g
~M1L ! dz̄ 1 E

g
~M†1L†! dz. ~61!

Next we calculate the components of the induced metric

gab 5 (
lk

]Xkl

]a

]Xlk

]b
, ~62!

wherea andb arez or z̄. But

]X

]z̄
5 ~M 1 L !,

]X

]z
5 ~M† 1 L†!, ~63!

where we are still using the matrix formulation. Hence

gz̄ z̄ 5 Tr ~M1L !2, gzz 5 Tr ~M†1L†!2, gzz̄ 5 Tr @~M1L !~M†1L†!#. ~64!

However, given the form ofM in ~21! andL in ~22!, we see that

Tr M2 5 Tr L2 5 Tr ~M†!2 5 Tr ~L†! 5 Tr L†M 5 Tr M†L 5 0, ~65!

and so we are left with

gz̄ z̄ 5 2 Tr ~ML !, gzz 5 2 Tr ~M†L†!, gzz̄ 5 Tr @MM†1LL†#. ~66!

Next we observe that

Tr MM† 5 Tr ~12P!
]̄ f ^ f †

u f u2

f ^ ] f †

u f u2
5

] f †
• ]̄ f

u f u4
2

~] f †
• f !~ f †

• ]̄ f !

u f u6
5 uDzu2, ~67!

where, as in~45!, D denotes the covariant derivative evaluated with respect toz. Similarly,

Tr LL† 5 uD̄zu2, ~68!

whereD̄ is again the covariant derivative but this time evaluated with respect toz̄.
Note that, together, the two terms ingzz̄ give the total energy density of the map~i.e.,

uDzu21uD̄zu2).
What aboutgzz andgz̄ z̄? They are given by
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gz̄ z̄ 5 2 Tr ~12P!
]̄ f ^ f †

• f ^ ]̄ f †

u f u4 5 2Tr ~12P!
]̄ f ^ ]̄ f †

u f u2 , ~69!

gzz 5 2 Tr ~12P!
] f ^ f †

• f ^ ] f †

u f u4 5 2Tr ~12P!
] f ^ ] f †

u f u2 , ~70!

and, at first sight, they appear to be nonvanishing. However, they do, in fact, vanish o
solutions of theCPN21 model, i.e., on the vectorsf which satisfy~10!, at least those that ar
defined onS2. To see this we note that

gz̄ z̄ 5
2u f u2~ ]̄ f †

• ]̄ f ! 1 ~ ]̄ f †
• f !~ f †

• ]̄ f !

u f u2 ~71!

andgzz is its complex conjugate.
However, all solutions of~10! defined onS2 are7 of the type

f 5 P1
k g, ~72!

where g is a holomorphic vector, i.e.,gÞg( z̄), and k is some integer taken from the s
$0,1,. . . ,N21%, andP1

l g is defined by the successive, i.e.,P1
l g5P1(P1

l 21g), repetition of the
operation

P1h 5 ]h 2 h
~h†

•]h!

uhu2 . ~73!

Then, as is known,7 P1
k g satisfy

~P1
l g!†

•P1
k g 5 0 if kÞ l , ~74!

]P1
k g 5 P1

k11g 1 P1
k g

~P1
k g†

•]P1
k g!

uP1
k gu2 , ~75!

]̄P1
k g 5 2P1

k21g
uP1

k gu2

uP1
k21gu2

. ~76!

Thus (]̄ f †
• ]̄ f )50 and (f †

• ]̄ f )50 and so we see thatgzz50 ~and so alsogz̄ z̄50).

VII. THE CP1 CASE REVISITED

In the CP1 case it is convenient to calculate its energy momentum tensor

Tmn5~Dmz!†
•Dnz1~Dnz!†

•Dmz2dmnuDau2. ~77!

Then, as is known7

]̄~T111 iT12! 5 0 ~78!

and in theCP1 case

J 5 T111 iT125
]w ]̄w

@11uwu2#2 . ~79!
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When theCP1 model is defined onS2 we find thatJ50, which shows that all the harmoni
CP1 maps onS2 are either holomorphic or antiholomorphic,7 but for theCP1 model onR2, or for
CPN21, N.2, J does not have to vanish.

In the CP1 model case we have~59!,

W 5 2
1

~11uwu2!2 S w]̄w̄ 2 ]̄w̄

w2]̄w̄ 2w]̄w̄
D ~80!

and

V 5
]̄w

~11uwu2!2 S 2w̄ 2w̄2

1 w̄ D . ~81!

This allows us to express]̄w in terms of]̄w̄, J andp given by ~40!. We find

]̄w 5
J~11uwu2!2

]w
5 J ]̄w̄

~11uwu2!2

u]wu2 . ~82!

However, using~42!, we see that

p2 5
u]wu2

~11uwu2!2 ~83!

and so we have

]̄w 5 ]̄w̄
J

p2 . ~84!

This allows us to combine the two vectorsV andW into

V1W 5
]̄w̄

~11uwu2!2 S 2w2Rw̄ 12Rw̄2

R2w2 w1Rw̄D , ~85!

whereR5 J/p2.
This explains the origin of the expressions for the components ofXi given in Ref. 4. However,

it is clear that this possibility to gather both terms into one expression does not genera
higherCPN21 models.

VIII. SUMMARY AND CONCLUDING REMARKS

The main aim of this article has been to derive a generalization of the Weierstrass sys
theCPN21 case for which the metric of the induced surfaces is determined by the energy d
of the corresponding harmonic map.

This has led us to introduce a set of 3N complex functionsw i , F j and f k which are required
to satisfy a system of four classes of first order equations and which are equivalent to th
system of equations of theCPN21 model.

We have also introduced a set of (N221) real quantitiesXi , which can be treated as coord
nates of a surface immersed inRN221 and we have shown that the induced metric of our map
given by

ds25~ uDzu21uD̄zu2! dz dz̄. ~86!
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The study of the generalized Weierstrass representations for surfaces immersed in
dimensional spaces was initiated by Konopelchenko and Landolfi.3 Our work here, in which we
have adopted an alternative approach based on theCPN21 sigma models, provides a generaliz
tion of their results.
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Painlevé analysis of the Ricci-flat ordinary differential
equations associated with Aloff–Wallach spaces
and U „1…-bundles over Fano products
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We apply techniques of Painleve´–Kowalewski analysis to certain ODE reductions
of the Ricci-flat equations. We particularly focus on two examples when the hyper-
surface is an Aloff–Wallach space or a circle bundle over a Fano product. ©2003
American Institute of Physics.@DOI: 10.1063/1.1584207#

I. INTRODUCTION

The difficulty of the Einstein system of partial differential equations has made it natur
consider reductions of this system to ordinary differential equations~ODEs!. One way of perform-
ing this reduction is to require the Einstein metrics to be of cohomogeneity one, that is,
invariant under the action of a group with principal orbits of codimension one. In Dancer
Wang ~2003b! we studied the cohomogeneity-one Ricci-flat equations in the situation whe
isotropy representation of the principal orbit consists of pairwise inequivalent summand
showed how to choose variables so that the equations became a constrained flow of a
system with quadratic nonlinearities.

In Dancer and Wang~2002! we proved some general results about the Painleve´–Kowalewski
analysis of this system. This involves looking for solutions of the equations given byPainlevé
expansions, i.e., meromorphic expansions in~a rational power of! the independent variable. Th
general philosophy of this method is that the existence of large families of Painleve´ expansions
should be associated with ‘‘nice’’ properties of the equations. In particular, if for each depe
variable in the equations there is a corresponding family of Painleve´ expansions which depends o
the full number of parameters and in which that dependent variable actually blows up, then
regarded as a strong indication that the equations are ‘‘integrable.’’A good summary of the m
treatment of Painleve´–Kowalewski analysis may be found in Ablowitzet al. ~1980! and Adler and
van Moerbeke~1982!.

This general theory was applied to some examples in Dancer and Wang~2001, 2002, 2003b!.
Two features were particularly noteworthy.

~i! The existence of Painleve´ expansions is often associated with the existence of a solutio
a Diophantine problem~in many cases, the existence of an integral point on an elli
curve!. This may single out certain dimensions as special.

~ii ! When Painleve´ expansions do exist, they sometimes represent metrics of exceptiona
lonomy.

In this article we shall analyze some further examples, including one which has rec
become relevant in string theory~Cvetic̆et al., 2002a; Gukov and Sparks, 2002; Kanno and Yas

a!Electronic mail: dancer@maths.ox.ac.uk
b!Electronic mail: wang@mcmail.mcmaster.ca
33830022-2488/2003/44(8)/3383/24/$20.00 © 2003 American Institute of Physics
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2002!. This is the example when the principal orbit is an Aloff–Wallach space SU~3!/U~1!. Such
spaces depend on two integer parameters, leading to Diophantine questions during the P´
analysis. Moreover, the Ricci-flat equations have a subsystem whose solutions represent m
Spin~7! holonomy. We find that this Spin~7! subsystem has a family of Painleve´ expansions
depending on the full number of parameters and representing asymptotically locally conical~ALC!
metrics ~cf. Theorem 4.5 and Remark 4.6!. By contrast, large Painleve´ families representing
asymptotically conical~AC! metrics are very rare, and their existence imposes strong Diopha
constraints on the Aloff–Wallach space~cf Theorem 4.8!.

We also consider the case when the hypersurface belongs to a certain class of circle b
over a product of two Fano manifolds admitting Ka¨hler–Einstein metrics. These circle bundles a
classified by two integers, which, together with the dimensions and first Chern classes
factors in the base, lead also to Diophantine questions during the Painleve´ analysis. As a result
dimension 12 is singled out when considering ALC Ricci-flat metrics. Furthermore, the c
bundles which admit Sasakian–Einstein metrics~up to orientation changes! appear to be singled
out in the case of AC Ricci-flat metrics. For this class of bundles, the Ricci-flat equations h
subsystem whose solutions represent Calabi–Yau metrics and can be written down by quad

In order to make this article as self-contained as possible, we include a review of the r
of Dancer and Wang~2002, 2003b! on the general cohomogeneity one Ricci-flat system and
Painlevéanalysis.

II. THE EQUATIONS

In this section we briefly review the formulation in Dancer and Wang~2003b! of the cohomo-
geneity one Ricci-flat equations@see also Be´rard and Bergery~1982!, Dancer and Wang~2000!,
and Eschenburg and Wang~2000! for background on these equations#.

Consider a Riemannian manifold (M,g) with a cohomogeneity one isometric action of
compact Lie groupG, whose principal orbit isG/K. We denote by

p5p1% ••• % pr

the decomposition of the isotropy representationp'T(K)(G/K) of G/K into irreducible
K-representations. We letdi be the real dimension ofpi , and letn5( i 51

r di denote the dimension
of G/K ~so dimM5n11). We used for the vector of dimensions (d1 ,...,dr).

We shall assume that the isotropy representation ismonotypic, that is, all thepi are distinct as
representations ofK. In particular if there is a trivial summand it must be one-dimensional.
metric g may now be written as

dt21gt , ~1!

where

gt5eq1(t)Bup1
'¯'eqr (t)Bupr

~2!

is a one-parameter family ofG-invariant metrics onG/K, B is a fixed background metric onG/K
induced from some biinvariant metric onG, andt is a parameter along a geodesic which interse

all principal orbits orthogonally. Note that the factor exp(1
2d•q) is the ratio of the volume ofgt to

that of B.
The scalar curvature of (G/K,gt) is given by S5(wPWAwew•q, whereAw are ~nonzero!

constants andW is a finite collection of vectorswPZr ~which depend only onG/K and which we
refer to asweight vectors!.

We shall also assume that the elements ofW spanRr , which is the case whenG is semisimple
~Dancer and Wang, 2000!. We define a non-negative integer, by r 1,5uWu, and order the weight
vectors asw(k) (1<k<r 1,), where w( i 1r )5( j 51

r n i j w
( j )(1< i<,), for some constantsn i j .
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Note that by the homogeneity properties of the scalar curvature,w(k)
•(1,...,1)521 for all k, so

we can deduce that( j 51
r n i j 51 for all i . We shall refer to the constantAw(k) just asAk in future.

As explained in Dancer and Wang~2003b!, the Ricci-flat equations forg may be viewed as
the flow for a HamiltonianH̄ together with the constraintH̄50. The potential term is the scala

curvatureS of G/K times the square of the volume distortion factor exp(1
2d•q). The kinetic energy

is given by the signature (1,r 21) quadratic form

J~p!5
1

n21 S (
i 51

r

pi D 2

2(
i 51

r pi
2

di
. ~3!

In Dancer and Wang~2003b! we showed how to rewrite the Ricci-flat equations as a quadr
system, using ideas from Adler and van Moerbeke~1982!. We first define an (r 1,)3r matrix Û
by

Û i j 5dj1wj
( i ) .

Consider the matrixFªÛJÛt, where we have also denoted byJ the matrix of the quadratic form
given in ~3!. Now we can choose an (r 1,)3r matrix Q satisfying QDQt5F, where D
5diag(e1,...,er) ande151, e i521 (i .1). We may also arrange thatQ is of the form

S Q1

nQ1
D ~4!

for some invertibler 3r matrix Q1 .
The Ricci-flat equations forg are now equivalent, after suitable change of dependent

independent variables, to the system

zi852zi (
j 51

r

Qi j v j ~1< i<r 1, !, ~5!

v i85e i (
j 51

r 1,

Qji zj ~1< i<r !, ~6!

together with the constraints

zr 1 j

Ar 1 j
5)

i 51

r S zi

Ai
D n j i

~1< j <, !, ~7!

and the Hamiltonian constraint

H̄[v1
22v2

22¯2v r
22(

j 51

r 1,

zj50. ~8!

Remark 2.1:~i! The quantitieszr 1 j) i 51
r zi

2n j i , as well asH̄, are conserved by the flow. A
discussed in Dancer and Wang~2003b!, Eqs.~5! and~6! may be viewed as a Poisson Hamiltonia
flow, and the constraints~7! define restriction of this flow to a symplectic leaf. The Ricci-fl
equations are then the Hamiltonian flow on this leaf subject to the Hamiltonian constraint~8!.

~ii ! Note that the choice ofQ above is not unique. Indeed, replacingQ by 2Q andv j by 2v j

will leave the above system invariant.
~iii ! For quadratic systems such as~5! and ~6! a general majorization argument shows th

formal Painleve´ expansions about 0 are convergent in a deleted neighborhood of 0.
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III. PAINLEVÉ EXPANSIONS

A. Leading terms

We now review the Painleve´ analysis~Dancer and Wang, 2002! of Eqs.~5! and ~6!. We first
look for possible leading terms of the Painleve´ expansions of solutions to these equations. Pu

zi5a0
( i )smi1¯ , v i5b0

( i )sni1¯ , ~9!

wherea0
( i ) ,b0

( i )Þ0.
It is straightforward to show thatni>21; we shall assume for the moment~see Remark 3.2!

that allmi>22. LetS,$1,...,r 1,% denote the set of indices for whichmi522 andT,$1,...,r %
denote the set of indices for whichni521. It is convenient to introduce an (r 1,)3r matrix P
defined by

Pi j 5H Qi j if i PS,

0 if i ¹S.

In Dancer and Wang~2002! we derived the equation

mi522(
j PS

~QDQt! i j a0
( j )522(

j PS
~ÛJÛt! i j a0

( j )522~FSâ0!( i ),

whereFS denotes the (r 1,)3uSu matrix obtained by deleting thej th column ofF5ÛJÛt iff
j ¹S, andâ0 denotes theuSu31 vector (a0

( i )) i PS . Therefore we need

~FSâ0!( i )51 ~ i PS!, ~10!

~FSâ0!( i ),1 ~ i ¹S!. ~11!

This gives us an algorithm to find the possibilities forS, a0 and b0 . For each subsetS of
$1,...,r 1,%, we solve~10! for â0 and then check if~11! is satisfied.~If uSu,r 1,, then the
componentsa0

( i ) with i ¹S will be free.!
Remark 3.1:We showed in Dancer and Wang~2002! that

j PS whenever w( j )PSpan$w( i ) : i PS%. ~12!

This observation drastically reduces the number of setsS to which we have to apply the algorithm
Remark 3.2:If there are some indicesi for which mi,22, we letS̃ denote the subset of suc

indices corresponding to the minimal leading powermi . Remark 3.1 still applies toS̃ and imme-
diately puts some restrictions onS̃.

Now ~6! implies that( j PS̃Qji a0
( j )50 for i 51,...,r . Theser equations are supplemented b

the , equations ona0 coming from the constraints~7!. Usually these equations force some or
of thea0

( i ) to be zero, giving a contradiction. This is the case in the examples we deal with in
article.

Convergent Painleve´ expansions for Eqs.~5!–~8! give local solutions of the cohomogenei
one Ricci-flat equations. In Dancer and Wang~2002! we derived from the leading term behavio
~ass tends to 0! of an expansion the behavior of the corresponding Ricci-flat metric.

Theorem 3.3: ~Dancer and Wang, 2002! Let U denote the r3r matrix consisting of the first

r rows of Û. Let j be the vector2dU21 and Ui j denote the components of U21. Then 1
2 1

2( imij i is nonzero. Moreover, letting fi(t)
25eqi (t) in (2), we have the following.

(I) If 12 1
2( i 51

r mij i,0, then as s→01, we must have t→1` ~possibly after changing the
sign of t). Asymptotically, we have

f i~ t !2;ci t( jU
i j mj /~12 ~1/2! ( jmjj j !.
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(II) if 1 2 1
2( i 51

r mij i.0, then as s→01, t decreases to a finite limit t* , and asymptotically
we have

f i~ t !2;ci~ t2t* !( jU
i j mj /~12 ~1/2! ( jmjj j !.

In both (I) and (II), the ci are constants which can be explicitly computed in terms
U21, m, j, a0 and the Ai .

Remark 3.4:Painlevéexpansions of type~I! give metrics with a complete end. Two speci
cases are particularly important in examples.

~a! AC asymptotics:If S5$1,...,r 1,% and T5$1,...,r %, that is, all mi equal 22 and allni

equal21, the leading terms are themselves an exact solution of the equations, corresp
to the Ricci-flat cone over a homogeneous Einstein metric onG/K.
Painlevéexpansions with such leading terms will correspond to metricsasymptoticto the
cone@AC in the terminology of Cvetic˘ et al. ~2002a!#.

~b! ALC asymptotics:If we are in case~I! andpi is a trivial summand such that( jU
i j mj50,

then the principal orbits in the Ricci-flat end will be asymptotic to a circle bundle overG/K8
with isometric fibers, whereK8 has Lie algebrak% pi . An important special case is when th
f j (t)

2 for j Þ i grow like t2. Locally ~in t) the metric is now asymptotically that of a circl
bundle with isometric fibres over a cone onG/K8. In Cvetic̆et al. ~2002a! the terminology
asymptotically locally conical~or ALC! was introduced to describe such end behavior. T
circle is often referred to as the M-theory circle, due to the physical implications discu
for example, in Brandhuberet al. ~2001! and Cvetic˘ et al. ~2002a, b!.

B. Resonances

Next one must extend the leading terms of the previous section to full series solutions t
~5! and ~6!, in ~possibly fractional! powers ofs. We write

zi5(
j 50

`

a j
( i )smi1 ~ j /N!, v i5(

j 50

`

b j
( i )sni1 ~ j /N!, ~13!

whereN is an integer to be determined after all the resonances have been computed.
Equations~5! and~6! will now yield recursion relations involving thea j ,b j . Schematically,

the recursion may be written as

Tj~a j ,b j !5expression inak ,bk ~k, j !,

whereTj is a linear operator. Theresonancesof the expansion are the values ofj /N for which Tj

is noninvertible; that is, they give the stages in the recursion at which free parameters may
We shall now summarize the calculation of the resonances in Dancer and Wang~2002!. The

recursion relations are~for j .0)

j

N
a j

( i )22 diag~a0
(1) ,...,a0

(r 1,)! Qb ĵ5Xj , ~14!

S j

N
21Db j

(p)2~DPta j !
(p)5Yj

(p) ~pPT!, ~15!

S np1
j

NDb j
(p)5ep(

i 51

r 1,

Qip a j 2N(mi2np11)
( i ) ~p¹T!, ~16!

where
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b̂ j
(p)5H b j

(p) ~pPT!,

0 ~p¹T!,

Xj
( i )5 (

pPT
(
k51

j 21

2Qip ak
( i )b j 2k

(p) 1 (
p¹T

(
k50

j 2N(np11)

2Qip ak
( i )b j 2k2N(np11)

(p) , ~17!

and

Yj
(p)5ep(

i ¹S
Qpi

t a j 2N(mi12)
( i ) . ~18!

Note thatXj
( i ) andYj

(p) involve only terms with subscripts, j , and the termsb j
(p) with p¹T

do not appear on the left-hand side of~14! and ~15!. Equations~14! and ~15! therefore form a
subsystem of the full recursion, and in this subsystem we can eliminatea j by ~14!.

The following theorem describes the nonzero resonances of the recursion.
Theorem 3.5: ~Dancer and Wang, 2002!:
(a) The (nonzero) resonances R5 j /N of the subsystem (14) and (15) are the roots of

quadratic equation

R~R21!5l, ~19!

where l runs over all the eigenvalues of theuTu3uTu matrix MT obtained from M
ª2DPt diag(a0

(1),...,a0
(r1,)) Q by deleting the pth row and pth column for all p not in T.

(b) If the following conditions,
(i) mi>np21 for all p¹T and i¹S with QipÞ0,
(ii) Q ip50 for all p¹T and iPS,

hold, then Eq. (16) reduces to

S np1
j

NDb j
(p)5ep(

i ¹S
Qip a j 2N(mi2np11)

( i ) , p¹T, ~20!

where the terms on the right have subscript< j , so the only additional nonzero resonances fro
(16) are R52np for p¹T.

Remark 3.6:~1! Equations~14!–~16! are valid for j .0. We may also have additional zer
resonances, associated to free parameters ina0 ,b0 .

~2! In the examples of this article the only case where conditions~i! and ~ii ! do not hold is
S5$4,6% in the example of Sec. IV. In this case we can perform a reindexingj ° j 2N(np11) for
the termsb j

(p) where p¹T, and bring the system back into the form considered above.@cf. S
5$4,5% in Example 5.2 of Dancer and Wang~2002!#.

Remark 3.7:As mentioned in Dancer and Wang~2002!, (b0
(p))pPT is an eigenvector ofMT

with eigenvalue 2, and hence21, 2 are resonances. The appearance of21 as a resonance i
typical for autonomous systems of differential equations, and is associated to the degree o
dom coming from translating the independent variable. For the Einstein system under con
ation, it can be shown that this freedom corresponds to homothetic changes of the metric. W
see below~Proposition 3.10! that the Hamiltonian constraint fixes one free parameter atR52.

Existence of nontrivial Painleve´ expansions~that is, expansions with free parameters oth
than translation! therefore requires, at least in the caseuTu5r , the existence of rational roots o
~19! other than21,2. This can impose constraints on the principal orbitG/K, and in particular
can lead to Diophantine conditions involving, for example, the dimension ofG/K.

One common situation is that we have a family of principal orbit types indexed by an in
k ~often dimension!, and that the eigenvalues ofMT are given by rational functionsPi(k)/Qi(k),
wherePi ,QiPZ@k#. The condition that the associated resonance should be rational is that
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Qi~k!~Qi~k!14Pi~k!! is a perfect square.

We are therefore looking for an integral point (k,y) on the hyperelliptic curve

y25Qi~k!~Qi~k!14Pi~k!!. ~21!

A theorem of Siegel tells us that there are only finitely many solutions@provided that all the roots
of Qi(Qi14Pi) are distinct#.

In Dancer and Wang~2002, 2003b! we encountered examples of this situation where
orbit G/K is Sp(k11)/Sp(k)U(1), Sp(k11)Sp(1)/Sp(k)Sp(1), and Sp(k11)U(1)/
Sp(k)U(1). Theright-hand side of~21! factorized into polynomials of degree<3, and we were
able to reduce the problem of finding integral points on~21! to that of finding integral points
~satisfying certain extra conditions! on an elliptic curve.

C. Compatibility conditions and constraints

By definition, the resonances correspond to the steps in the recursion at which the rec
operator is noninvertible. This means that at each resonance there are compatibility con
which must be satisfied if the recursion is to proceed.

It often happens that these conditions may only be satisfied by setting to zero free para
arising from earlier resonances.

However, in all of our examples compatibility holdsautomaticallyat the top resonanceR
52. In most cases we can see this from the following proposition.

Proposition 3.8:~Dancer and Wang, 2002! Suppose that all compatibility conditions hold fo
R5 j /N,2, and we have

(i) mi>np21 for all p¹T, i ¹S with QipÞ0,
(ii) Q ip50 for all p¹T and iPS, and
(iii) the 2-eigenspace of MT is one-dimensional.

Suppose in addition thateither
(iv) mi1np11.0 for all p¹T and i¹S with QipÞ0, or
(v) mi2np1150 for all p¹T and i¹S with QipÞ0.

Then the compatibility condition holds at R52.

Remark 3.9:Note that condition (iv) holds if mi>0 for all i ¹S, which is true for all cases
in the examples of Secs. IV and V@and the examples of Dancer and Wang~2002!# except the ALC
ones.

Condition (v) holds if there exist constantsn1 andn2 such thatn12n21150 andmi5n1 for
all i ¹S, np5n2 for all p¹T. This situation occurs in the ALC cases of the examples in Secs
and V, and in Dancer and Wang~2002!.

The Hamiltonian constraint~8! is related to the resonance atR52, as we now explain. After
substituting the Painleve´ expansion into the Hamiltonian~8!, one sees that the constant term in t
Hamiltonian is given by a linear combination ofb2N

(p) (pPT) and a2N
( i ) ( i PS) plus terms with

subscripts less than 2N. Substituting in an element of the kernel of the recursion operator aR
52 ~that is, j 52N) we have the following:

Proposition 3.10:~Dancer and Wang, 2002! If all compatibility conditions hold at R52, and
if

2(
pPT

ep~b0
(p)!21(

i PS
a0

( i )Þ0,

then the Hamiltonian constraint may always be satisfied by choosinga2N ,b2N appropriately. In
this situation the Hamiltonian constraint fixes one of the degrees of freedom coming fro
resonance R52.
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As zr 1 j) i 51
r zi

2n j i ( j 51,...,,) are constants of the flow, the remaining constraints~7! are
equivalent to imposing ona0 the constraints

a0
(r 1 j )

Ar 1 j
5)

i 51

r S a0
( i )

Ai
D n j i

~1< j <, !. ~22!

IV. ALOFF–WALLACH SPACES AS PRINCIPAL ORBITS

We shall now look at a specific example, where the principal orbitG/K is the Aloff–Wallach
spaceN(k,l ) ~Aloff and Wallach, 1975!. HereN(k,l ) is defined to be the quotient SU(3)/U(1)k,l

where U(1)k,l denotes U~1! embedded as

eiu°diag~eiku,eil u,eimu!

andk,l ,m are coprime integers withk1 l 1m50. Notice that permutingk,l ,m does not change
the diffeomorphism type of the space. For exampleN(1,21)'N(1,0)'N(21,0). We exclude the
case$k,l ,m%5$1,1,22% as in this case the isotropy representation does not split as the direc
of inequivalent irreducible summands.

The second author~Wang, 1982! showed that everyN(k,l ) admits a homogeneous Einste
metric. It was subsequently shown~Page and Pope, 1984! that there are exactly two such metric
on eachN(k,l ), except forN(1,21) and the spaces obtained from it by permutation, when
metric is unique. Explicit formulas are given in Castellani and Romans~1984! @see Cvetic˘ et al.
~2002b! for a more detailed derivation#. Both Einstein metrics are in fact of weak holonomyG2 ,
so the cone over them has holonomy contained in Spin~7!.

The isotropy representation ofN(k,l ) is

su~3!/u~1!5p0% p1% p2% p3 ,

wherep0 is a trivial summand of real dimension one,pi ( i 51,2,3) are of real dimension 2, an
U~1! acts on them with weights

6~k2 l !,6~k2m!,6~ l 2m!,

respectively. We writeG5k21m21km5k21 l 21kl5 l 21m21 lm. We take the background me
ric B to be the normal metric induced by the trace form2tr(XY).

The weight vectors in the scalar curvature formula are now as follows:

w(1)5~0,21,0,0!, w(2)5~0,0,21,0!, w(3)5~0,0,0,21!,

w(4)5~1,22,0,0!, w(5)5~1,0,22,0!, w(6)5~1,0,0,22!,

w(7)5~0,1,21,21!, w(8)5~0,21,1,21!, w(9)5~0,21,21,1!,

and the corresponding coefficients are (A1 ,...,A9)5(6,6,6,2 3m2/4G ,2 3l 2/4G ,2 3k2/4G ,21,
21,21). We giveF and a choice ofQ below:
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Applying the algorithm of Sec. III we can now find the possible leading terms. It is stra
forward to check from Remark 3.2 that nomi can be less than22. The subgroupC3 of permu-
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tations of$1,...,9% generated by the order three element~123!~456!~789! acts on the set of possibl
S, so we list only one possibility from each orbit. The vectorsm are similarly permuted. Note tha
the last three entries in our table are fixed byC3 .

S m a0
( i ) ( i PS)

$4% (0,1,1,22,0,0,2,0,0) 2
1
2

$7% (6,2,2,8,0,0,22,6,6) 22
$4,5% (1,1,2,22,22,0,2,2,0) 2

1
2,2 1

2

$4,8% (2,7,3,22,8,0,8,22,6) 2
1
2,22

$4,9% (2,3,7,22,0,8,8,6,22) 2
1
2,22

$4,5,9% (3,3,8,22,22,8,8,8,22) 2
1
2,2 1

2,22
$4,5,6% (2,2,2,22,22,22,2,2,2) 2

1
2,2 1

2,2 1
2

$1,...,9% (22,...,22) see below

$1,2,3,7,8,9% (22,22,22,2 8
5,2 8

5,2 8
5,22,22,22) see below

Remark 4.1:The AC case is whenS5$1,...,9%, and the ALC case isS5$1,2,3,7,8,9%. For all
other choices ofS, letting s tend to 0 corresponds to letting arclengtht tend to a finite limit, as in
~II ! of Theorem 3.3.

A. AC case

As mentioned in Remark 3.4~a! the possibilities fora0 may be computed from the homoge
neous Einstein metrics on the principal orbits. Using the formulas of Castellani and Ro
~1984! and Cvetic˘ et al. ~2002b! we find the explicit formula

a05S 2~312 cosf1sinf!

3~21cosf!2 ,
2~312 cosf2sinf!

3~21cosf!2 ,
~312 cosf1sinf!~312 cosf2sinf!

3~21cosf!2 ,

2
~cosf22 sinf!2

18~21cosf!2 ,2
~cosf12 sinf!2

18~21cosf!2 ,2
~213 cosf!2

18~21cosf!2 ,2
~312 cosf2sinf!2

18~21cosf!2 ,

2
~312 cosf1sinf!2

18~21cosf!2 ,2
2

9~21cosf!2D ,

where

l

m
5

~312 cosf1sinf!~cosf12 sinf!

~312 cosf2sinf!~cosf22 sinf!
5

416 cosf112 sinf15 sin 2f

416 cosf212 sinf25 sin 2f
. ~23!

If $k,l ,m%Þ$1,0,21% there are, for each choice ofordered triple (k,l ,m), two choices off in
@0,2p!, corresponding to the two Einstein metrics onN(k,l ). Note that the degenerate ca
$k,l ,m%5$1,1,22% ~that is, l /m51,22 or 2 1

2) occurs iff cosf521,0,1 or2 4
5.

It follows from ~23! that cosf is a root of the quartic

H~ t !5~ l 1m!2~5t224!~5t2112t18!24lm~3t12!2. ~24!

B. ALC case

There are four possibilities fora0 :

~i! a05( 12
25,

12
25,

12
25,m

2v,l 2v,k2v,2 2
25,2

2
25,2

2
25), and

~ii ! a05( 3
5,

3
5,

3
10,m

2v,l 2v,k2v/4,2 1
20,2

1
20,2

1
5), and the two other vectors obtained by app

ing the permutation~123!~789! and shifting the1
4 factor cyclically in the middle three indices.

In both casesv is a free parameter.
The corresponding cohomogeneity one metrics will asymptotically approach a circle b

of constant radiusc1 over a cone over a homogeneous Einstein metric on SU(3)/T2. Cases~i!
                                                                                                                



t

Pain-

tely

nleve
een
r

am-

r

of the

3393J. Math. Phys., Vol. 44, No. 8, August 2003 Painlevé analysis of the Ricci-flat ODEs

                    
and~ii ! correspond to the four homogeneous Einstein metrics on SU(3)/T2, that is,~i! the normal
metric and~ii ! the three Ka¨hler–Einstein metrics. As in Theorem 3.3, we may calculate thav
controls the radiusc1 of the M-theory circle.

We can now calculate the resonances, check the compatibility conditions, and find the
levé expansions.

S Rational resonances~multiplicities!

No. of
parameters in

expansion

$4% 21,0 ~three times!, 1 ~twice!, 2 and2n1
7

$5% or $6% 21,0 ~three times!, 1 ~three times!, 2 7

$7% 21,0 ~three times!, 1 ~twice!, 2 and2n4
7

$4,5% 21 ~twice!, 0 ~twice!, 1 ~twice!, 2 ~twice! 6

$4,8% 21 ~twice!, 0 ~twice!, 1 ~twice!, 2 ~twice! 6

$4,9% 21 ~twice!, 0 ~twice!, 1 ~twice!, 2 ~twice! 6

$4,5,9% 21 ~three times!, 0,1,2~three times! 5

$4,5,6% 21 ~three times!, 0,1,2~three times! 5

$1,...,9% see below see below
$1,2,3,7,8,9% ~i!

21,0,15 ~twice!, 4
5 ~twice!, 2 and 3

5
5

$1,2,3,7,8,9% ~ii ! 21,0,2 and3
5

3

Remark 4.2:~i! As before, we have listed one choice ofS from each orbit of the permutation
groupC3 . The exception is whenS5$4%, $5% or $6%, where we have listed each case separa
becauseS5$4% is slightly different from the other two~this reflects the fact that the choice ofQ
to some extent breaks theC3 symmetry!.

~ii ! The entry in the final column is the maximum number of parameters among Pai´
families with given setS, after all constraints, including the Hamiltonian constraint, have b
imposed. Note that the degree of freedom coming from translation ofs is included as a paramete
~cf. Remark 3.7!.

~iii ! The resonances after ‘‘and’’ are those arising from Theorem 3.5~b!; that is, they are
2na (a¹T) in the cases whereuTu,4. In the ALC case,T5$1,2,3% and the value ofn4 follows
from the fourth equation in~6!. In the remaining cases we obtain the maximal number of par
eters in the expansion by takingna (a¹T) to be zero. IfS5$7%, thenn4 must be 0 or 1.

~iv! Expansions withN51 ~i.e., expansions meromorphic ins rather than a fractional powe
of s) are obtained except whenS is $1, . . . ,9% or $1,2,3,7,8,9%.

Let us discuss the AC and ALC cases in more detail.

C. AC case: SÄˆ1,...,9‰

On computing the characteristic polynomial ofMT and applying Theorem 3.5~a!, we find that
the resonances are the roots of the polynomial

f ~ t ! f ~12t !,

where f is the quartic polynomial

f ~ t !5~ t11!S t32
4

3
t22

1

9
t1

4

27S 14
cos2 f~cosf11!

~cosf12!3 11D D . ~25!

The number of nontrivial rational resonances is therefore twice the number of rational roots
cubic factor inf (t).

We write

Ex~ t !5t32
4

3
t22

1

9
t1

4

27S 14
x2~x11!

~x12!3 11D
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so that the cubic factor isEcosf(t).
The discriminant ofEx(t) is

S 2

27~x12!3D 2

F~x!,

where

F~x!5219 375x6228 660x5120 556x4167 360x3166 544x2143 200x114 400. ~26!

Theorem 4.3:For all but a finite number of Aloff–Wallach spaces N(k,l ), the cubic Ecosf(t)
has at most one rational root, hence the number of parameters in the AC Painleve´ expansion is at
most three.

Proof: Observe that ifEcosf(t) has more than one rational root, then all its roots are ratio
We first claim that

$xPQ:Ex~ t ! has more than one root inQ%

is finite. This is because the discriminant ofEx(t) must now be the square of a rational, and so
have a rational point on the smooth genus two curvey25F(x), whereF(x) is given by ~26!.
Faltings’s proof of the Mordell conjecture shows there are only finitely many such points.

Now consider the case of general cosf. If Ecosf(t) has more than one rational root, then, fro
above, all its coefficients are rational. Therefore there exists a rationalq ~depending onf! such
that cosf is a root of the cubic

cq(f)~ t !5q~ t12!32t2~ t11!5~q21!t31~6q21!t2112qt18q.

Also, we saw earlier that cosf is a root of the quarticH(t) given by ~24!.
If cq(f)(t) is irreducible overQ, then up to a scale factorH(t) must be the product ofcq(f)(t)

and a linear factor. It is straightforward to show, by equating coefficients, that this cannot occ
l /m rational.

It follows thatcq(f)(t) has a root inQ, which means that the cubicEcosf(t) is Ex(t) for some
xPQ. Hence $cosf:Ecosf(t) has more than one rootPQ% is finite, and the claim now
follows. h

Remark 4.4:The program Ratpoints of Elkies, Stahlke, and Stoll was used to searc
rational points on the curvey25F(x) in the range where the denominator ofx is <105. The only
points found were (x,y)5(21,615),(0,6120),(1,6405),(2 4

5,6
648
25 ). As remarked earlier, thes

possibilities forx5cosf correspond precisely to the degenerate case$k,l ,m%5$1,1,22%.

D. ALC case: SÄˆ1,2,3,7,8,9‰

The eigenvalues ofMT are given as follows:
case~i!: 2, 2 4

25 ~twice!,
case~ii !: 2, 1

5, 2 2
5.

In case~i! we have a full set of rational resonances:21,1
5(twice),4

5(twice),2 from the eigen-
values ofMT , 0 as in Remark 3.6~1! and 3

5 from 3.5~b!, asn45m41152 3
5.

In case~ii !, 21,2 are the only rational resonances from the eigenvalues ofMT . We also have
resonances 0 and35 as in ~i!.

The compatibility conditions are computed using MAPLE. In~i! we have a free parameterv0

at j 50, and pick up two morev1 ,v2 at j 51. ~The compatibility condition is vacuous here a
X15Y150.) The compatibility condition atj 53 forcesv0 to equal a certain rational function o
v1 ,v2 , homogeneous of degree two. We pick up a free parameterv3 from the kernel of the
recursion operator atj 53. The compatibility conditions atj 54 are now the vanishing of two
homogeneous polynomials of degree six inv1 ,v2 . These polynomials have a common line
factor, so we lose only one free parameter atj 54. Now the kernel of the recursion operator
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j 54 gives two new free parametersv4 ,v5 . Now Proposition 3.8 ensures that we can solve
recursion atj 510, and the Hamiltonian constraint fixes the parameter here.

The upshot is thatv3 ,v4 ,v5 and one ofv0 ,v1 ,v2 may be regarded as free. We therefo
have five free parameters in all~including the position of the singularity!.

In ( i i ) the recursion operator for~14! and ~15! is invertible for j ,10 and we find thata1

5b̂150 and henceX35Y350. Thereforea350, the compatibility condition holds atj 53 and
we pick up one free parameter here. The other free parameters are fromj 50 and the position of
the singularity.

Now, the equations for the cohomogeneity one metric to be of Spin~7! holonomy will be a
subsystem of the Ricci-flat equations~5! and ~6!.

Transforming the Spin~7!-equations in Gukov and Sparks~2002! to the variables we use, w
find that this subsystem may be written as

z i85z i(
j

Ci j z j ~ i , j 54,5,6,7,8,9! ~27!

with the constraints

z4z75z5z85z6z9 . ~28!

Herez i is the positive square root ofxi andC is the matrix

2

¨

mA 3

2G
0 0 2& 0 0

0 lA 3

2G
0 0 2& 0

0 0 kA 3

2G
0 0 2&

2mA 3

2G
0 0 21/& 3/& 3/&

0 2 lA 3

2G
0 3/& 21/& 3/&

0 0 2kA 3

2G
3/& 3/& 21/&

©
.

We can now look for Painleve´ expansions

z i5(
j 50

`

g j
( i )sm i1 j /N ~ i 54,5,6,7,8,9!,

for ~27!. If we let S denote the set of indices for which the leading power is21, we can form
matricesC̃ and Ĉ defined by

if j PS, C̃i j 5Ci j , Ĉi j 50;

if j ¹S, C̃i j 50, Ĉi j 5Ci j .

It is straightforward to check that

C̃g05m,
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and that the recursion relation is

j

N
g j

( i )2g0
( i )~C̃g j !

( i )5 (
k51

j 21

~C̃g j 2k!
( i )gk

( i )1 (
p¹S

(
k50

j 2N(11mp)

Cipgk
( i )g j 2k2N(11mp)

(p) .

In particular the resonancesR5 j /N are the eigenvalues of diag(g0
(4),...,g0

(9))C̃ @two of the zero
eigenvalues should be removed, as the corresponding free parameters are fixed by the co
~28!#.

We can thus compare the Painleve´ expansions of the exceptional holonomy system~27! with
those of the full Ricci-flat system having the corresponding leading terms.

Theorem 4.5: Consider the cohomogeneity one Ricci-flat system for the principal o
N(k,l )5SU(3)/U(1)k,l . The non-AC Painleve´ expansions of the associated quadratic syst
(5)–(8) which contain metrics ofSpin~7!-holonomy are given by

(I ) a five-parameter family of ALC metrics containing a four-parameter family of A
Spin~7!-metrics,

(II ) a six-parameter family of metrics with S5$4,5% ~or $5,6% or $4,6%! containing a three-
parameter family ofSpin~7!-metrics,

(III ) a seven-parameter family of metrics with S5$4% ~or $5% or $6%! containing a four-
parameter family ofSpin~7!-metrics.

(See Theorem 4.8 for the AC case.) h

Remark 4.6:The expansion for~27! representing ALC metrics has resonances at21,0 and4
5

~twice! ~cf. the resonances for the ALC expansion in the full Ricci-flat system!. A calculation with
MAPLE shows that the compatibility conditions at4

5 hold automatically, so we have a fou
parameter family of expansions. The metrics are asymptotic to a circle of constant radiusc1 over
a cone over the standard normal Einstein metric on SU(3)/T2.

It is interesting to compare this with the equations studied in Dancer and Wang~2002, 2003a!
@see also Cvetic˘ et al. ~2002b! and Cleyton and Swann~2002!# for cohomogeneity oneG2 metrics
with principal orbit SU(3)/T2. These equations form a three-dimensional system, and there
Painlevéexpansion representing metrics asymptotic to a cone over the standard normal E

metric on SU(3)/T2. The eigenvalues are now21,4
5(twice), all compatibility conditions hold, and

we obtain a three-parameter expansion. In fact, the equations may be explicitly solved in te
Jacobi functions.

The extra parameter in the Spin~7! system comes from the free parameter atj 50, that is, the
free leading termg0

(4)5g0
(5)5g0

(6) . This parameter determines the radiusc1 of the M-theory
circle. The existence of our four-parameter ALC Painleve´ expansion suggests that it may b
possible to find a more general solution in closed form to the Spin~7! system than the one
discovered in Cvetic˘ et al. ~2002b! and Kanno and Yasui~2002!.

Remark 4.7:In the AC case, we find that the resonances are the roots of the polynomiaf (t)
that we encountered in~25!. @Recall that the AC resonances for the full Ricci-flat system are
roots of f (t) f (12t).] Theorem 4.3 therefore has the following corollary.

Theorem 4.8:For all but finitely many Aloff–Wallach spaces, theSpin~7! equations have at
most one nontrivial rational resonance in the AC case. The corresponding Painleve´ expansions
have at most two free parameters. h

V. U„1… BUNDLES OVER PRODUCTS OF EINSTEIN FANO VARIETIES

In this section we examine Painleve´ expansions of our Ricci-flat equations~5!–~8! in the case
when the ‘‘principal orbits’’ are certain circle bundles over a product of two Fano varieties stu
in Wang and Ziller~1990!. When the Fano varieties are homogeneous, then the principal c
bundles we consider are homogeneous, and so are genuine principal orbits of a cohomo
one action on the manifoldM. In general, however, there are no symmetries on the Fano vari
or the circle bundles. Nevertheless, it is well known that if we use the Kaluza–Klein constru
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for the metrics on the circle bundles, the formalism of cohomogeneity one Einstein metrics
to the same system of ordinary differential equations as in the homogeneous case.

Let Vi( i 52,3) be respectively smooth Fano varieties admitting Ka¨hler–Einstein metricshi .
The cohomology groupH2(Vi ,Z) is torsion free and so we can write the first Chern class ofVi as
cig i whereg i is an indivisible class andci is a positive integer—the first Chern number. T
principal circle bundles we will consider are circle bundles overV23V3 whose Euler class is
e2g21e3g3PH2(V2 ,Z) % H2(V3 ,Z), whereei are arbitrary nonzero integers. Note that ife2 and
e3 have greatest common divisore1 , then the circle bundle has the bundle whose Euler clas
(e2 /e1) g21 (e3 /e1) g3 as its universal cover. Also, bundles whose Euler classes give rise t
same ordered pair (ue2u,ue3u) are related by pull-back via diffeomorphisms of the base. So
natural and convenient to introduce the quantity

tªUe2

c2
S e3

c3
D 21U ~29!

and not to distinguish bundles with the same invariantt.
We will let di52l i be the real dimension ofVi . Without loss of generality, we may assum

that d2<d3 . We will also normalize the Ka¨hler–Einstein metrichi so that its Ricci form is 2pci

times its Kähler form.
Next we describe the one-parameter families of metrics we will consider on our prin

circle bundles. For each such bundle, we choose a connectionu so that its curvature form is
harmonic with respect to the product metrich2'h3 on the base. Then we consider one-parame
families of metrics of the form

gt5 f 1~ t !2 ~u ^ u!'p* ~ f 2~ t !2h2' f 3~ t !2h3!, ~30!

wherep denotes the bundle projection map andf i are smooth positive functions of the transver
variablet. The scalar curvature ofgt is given by

S~gt!5
d2c2

f 2~ t !2 1
d3c3

f 3~ t !2 2
1

4 S d2e2
2 f 1~ t !2

f 2~ t !4 1d3e3
2 f 1~ t !2

f 3~ t !4 D . ~31!

We shall need some information about Einstein metrics of the form~30! ~without the param-
eter t) on our circle bundles. It was shown by an abstract degree argument in Wang and
~1990! that up to homothety there is a unique Einstein metric in this class of metrics. The sp
case of these bundles whereV25CP1 andV35CP2 was first studied in Witten~1982!. These are
homogeneous seven-dimensional manifolds with SU(3)•SU(2)•U(1) symmetry. For these mani
folds, Castellani, D’Auria, and Fre´ ~1984, p. 627! independently showed the existence of a uniq
homogeneous Einstein metric~up to homothety!. Furthermore, they parametrized the Einste
metrics in terms of the roots of a cubic polynomial whose coefficients depend
a rational expression ofci and ei . Finally, they showed that the Einstein manifolds admi
nontrivial Killing spinor only when this rational expression is 1. In our notation, this is the c
when ei52ci ( i 52,3). Another way to phrase this observation is that the circle bundles
ei52ci ( i 52,3) are the only ones where the unique Einstein metric of bundle type is Sasa
Einstein. This observation holds generally in the situation of Wang and Ziller~1990!, and in an
even more general context, and is due to Boyer and Galicki~2000!. Thus the metric cones ove
these Einstein circle bundles admit a Calabi–Yau metric.

In the Appendix we will give a similar parametrization~in terms oft! of the unique Einstein
metric on the circle bundles under study. This parametrization will be used in this section.

With the above preliminaries, we are now ready to discuss the Painleve´ analysis of~5!–~8! for
the present case.

Note first that from~31! we have the weight vectors

w(1)5~0,21,0!, w(2)5~0,0,21!,
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w(3)5~1,22,0!, w(4)5~1,0,22!,

and corresponding coefficients (A1 ,A2 ,A3 ,A4)5(d2c2 ,d3c3 ,2d2e2
2/4,2d3e3

2/4). So r 53 and
,51. It follows that the matrixF and a choice of the matrixQ are given by

F5S 12
1

d2
1 12

2

d2
1

1 12
1

d3
1 12

2

d3

12
2

d2
1 2

4

d2
0

1 12
2

d3
0 2

4

d3

D ,

Q51
Ad221

d2

0 0

A d2

d221
Ad21d321

d3~d221!
0

d222

Ad2~d221!
2A d3

~d221!~d21d321!
A d21d3

d21d321

A d2

d221

2d21d322

Ad3~d221!~d21d321!
A d21d3

d21d321

2 .

The vectorj in Theorem 3.3 is equal to@1/(d21d3)# (2(d212),2d3 ,1).
Applying the algorithm in Sec. III, one easily checks that possible leading terms of Pai´

expansions for Eqs.~5! and ~6! are as given in the following table.

S T m a0
( i ) ( i PS) Remarks

$3%( i ) $2,3% (0,1,22,0) 2
1
2 d252

$3%( i i ) $1,2,3% S d222

2
,
d2

2
,22,0D 2

d2

4

d2.2

$4% $1,2,3% S d3

2
,
d322

2
,0,22D 2

d3

4
$3,4% $1,2,3% S d21d322

2
,
d21d322

2
,22,22D 2

d2

4
,2

d3

4
$1,2,3,4% $1,2,3% (22,22,22,22) see below AC

$1,2% $1,2% S 22,22,22S d21d322

d21d321D ,22S d21d322

d21d321D D d2

d21d321
,

d3

d21d321

ALC

In the above table, we have not yet imposed the constraint~7!. WhenS5$1,2,3,4%, using~10!
and the parametrization of the Einstein metrics on our circle bundles given in the Append
find that

a0
(1)5

d2

d21d3
S d3m21d212

d3m21d2
D , a0

(2)5
d3

d21d3
S ~d312!m21d2

d3m21d2
D ,

~32!

a0
(3)5

2d2

d21d3
S 1

d3m21d2
D , a0

(4)5
2d3

d21d3
S 1

d3m21d2
D ,
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wherem is the parameter introduced in the Appendix and the constraint condition~7! is precisely
the requirement thatm is a root of the cubic polynomialw given by ~A1!.

WhenS5$1,2%, we may leta0
(4) be a free parameterv0,0, and the constraint~7! implies that

a0
(3)5(d2 /d3) t2v0 .

Regarding the asymptotics of the metrics corresponding to Painleve´ expansions with the
above leading term behavior, the AC and ALC cases are as indicated in the table, withf 1(t)
approaching a positive constant in the latter case. In the remaining cases, ass approaches 0, the
transverse parametert tends to a finite limit, and the volume of the circle bundles tends to 0. Th
is always anf j (t) which blows up, and whenS5$3% or $4% there is always anotherf j (t) which
tends to a positive constant.

We discuss next the resonances and compatibility conditions for our Painleve´ expansions. The
results are summarized in the table below.

S Resonances~multiplicities!

No. of
parameters

in expansion

$3% ( i ) 21,0 ~twice!, 1,2 and2n1
5

$3% ( i i ) 21,0 ~twice!, 1 ~twice!, 2 5

$4% 21,0 ~twice!, 1 ~twice!, 2 5

$3,4% 21 ~twice!, 0,1,2~twice! 4

$1,2,3,4% 21,
22

n21
,

2

n21
,
n23

n21
,
n11

n21
,2

whent51
otherwise see below

4 or 3

$1,2% 21,0,2, roots of R~R21!5
22

n22
4 (n511)

and 2n35
n24

n22
3 ~nÞ11!

Remark 5.1: We follow the same conventions as those in Remark4.2.
(i) Recall that n511d21d3 is the dimension of our hypersurfaces andt is given by

(29).
(ii) We may chooseN51 in the first four cases, and so we obtain expansions meromor

in s.
(iii) We have again listed the maximum number of parameters among Painleve´ expansions

with the sameS in the third column. For example, whenS5$3% andd252, we get five parameter
whenn150, four parameters whenn151 and three parameters whenn1.1.

We now give more details regarding the AC and ALC cases.

A. AC cases

WhenS5$1,2,3,4%, one finds using MAPLE that the eigenvalues of the matrixM ~cf. Theo-
rem 3.5! are 2 and 2(11m26Ad)/@(d21d3)(d3m21d2)# where

d5~d311!2m412~d2d32d22d321!m21~d211!2.

Hence the rationality conditions for the resonances are that

D6511S 8

d21d3
D S 11m26Ad

d3m21d2
D ~33!

should be squares inQ.
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By the discussion in the Appendix, in the special case whent51 ~the Sasakian–Einstein
case!, we havem51, andd5(n21)2. Corresponding toD1 we obtain resonances22/(n21)
and (n11)/(n21), and corresponding toD2 we obtain resonances 2/(n21) and (n23)/(n
21) ~which are equal whenn55).

Lemma 5.2: In the AC case, in order that we have a full set of rational resonances, m must be
rational.

Proof: Note that besides the cubic equationw(x)50, wherew is given by ~A1!, m also
satisfies the quartic equation

F~x!5~~d311!22r
*
2 d3

2!x412~d2d3~12r
*
2 !2d22d321!x21~~d211!22r

*
2 d2

2!50,

wherer * is some rational number, becauseAd/(d3m21d2) has to be rational. Leth(x) be the
minimal polynomial ofm. If h has degree 1,m is rational, so we may assume thath has degree 2
or 3. In the former case, since it dividesw, we get a contradiction to the fact thatw has a unique
real root, as was indicated in the Appendix. In the latter case, up to a constant,w is the minimal
polynomial ofm. If F genuinely has degree 4, sincew must divideF, F has a nonzero rational roo
in addition to the roots ofw. SinceF is even inx, the negative of this root must bem, which would
then be rational. If the coefficient ofx4 in F vanishes, thenw cannot be the minimal polynomia
of m unless the coefficient ofx2 in F vanishes as well. But this leads immediately to a contrad
tion. h

We do not know if the above lemma remains true under the assumption that there is a
one nontrivial rational resonance.

In any case, let us assume thatm is rational in~33!. This imposes a restriction on the circ
bundles through~A2!. In this situation, if one ofD6 is a square inQ, thend must be a square, too
We shall analyze this condition in two steps. First, note that (m2,6Ad) are rational points on the
curve whose equation is

y25~d311!2x212~d2d32d22d321!x1~d211!2.

Since (1,d21d3) is also a rational point on this curve it follows that we can parametrize all o
rational points (xr ,yr) by lines with rational sloper passing through (1,d21d3). Explicitly we
have

xr511
2~d3~d21d3!1d32d22~d21d3!r!

r22~d311!2 , ~34!

yr5~d21d3!1r~xr21!. ~35!

Second, in order forxr5m2 for some positive rational numberm, we must have a rational poin
(r0 ,w0) on the curve

Cd :w25Fd~r!ª~r1d311!~r2d321!~r2d311!~r22d22d321!. ~36!

Note that the underlying circle bundle must then have Euler class satisfying~A2! with m
5Axr0

.
Assuming now thatd is a square inQ as above, it follows by a straightforward computati

that requiringD1 or D2 to be a square inQ is equivalent to the existence of a rational po
having first coordinater0 on one of the two curvesC6 whose respective equations are

C1 :w25F1~r!ª~d21d3!F1~r!G~r!, ~37!

C2 :w25F2~r!ª~d21d3!F2~r!G~r!, ~38!

where
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F1~r!5~d21d324!2r222~d3~d21d324!2116~d22d3!!r1~d21d324!2~d3
221!

24~d21d3!~d2d318!232d3
2 , ~39!

F2~r!5~d21d314!2r222d3~d21d314!2r1~d21d314!2~d3
221!24d2d3~d21d328!,

~40!

G~r!5~d21d3!r222d3~d21d3!r1~d21d3!~d3
221!24d2d3 . ~41!

In particular, there is a full set of rational resonances iff there are rational points on all
curvesCd ,C6 with the samefirst coordinater.

Note that we do not really need both curvesC6 in the above analysis. For a fixed value ofxr

in ~34!, there are two corresponding values ofr, for which the values ofyr are negatives of each
other. So searching for rational points having the same first coordinate on the two curves
same as searching for rational points on one of the curves whose first coordinates determ
samexr .

One can check that the right-hand side of~37! has four distinct real roots except whend2

5d352, and the right-hand side of~38! always has four distinct real roots. Furthermore, t
polynomial Fd(r)•F2(r) has distinct roots except whend21d358, in which case there are
precisely two roots with multiplicity 2 and the rest have multiplicity 1. The genus of the cur

C:#w25Fd~r!•F2~r!

is therefore 3 whend21d3Þ4 or 8, and in this situation Faltings’ theorem implies thatC has only
finitely many rational points. Now consider the situation where (r0 ,w1) and (r0 ,w2) are rational
points onCd andC2 , respectively. Then (r0 ,w1w2) is a rational point on the curveC. This proves
the first assertion in the following theorem.

Theorem 5.3:Among all the circle bundles under study over a fixed base whose dimens
different from4 or 8, there are only finitely many for which the AC Painleve´ expansions can have
a full set of rational resonances. When the base has dimension4 this happens only for the bundle
such thatt51, i.e., the bundles which admit a Sasakian–Einstein metric of bundle type afte
suitable changes in orientation.

We now discuss some low-dimensional cases in more detail and along the way pro
second assertion of the above theorem.

Let us first consider the case whered25d352. In this situation we have circle bundles ov
CP13CP1, and (c2 ,c3)5(2,2). If e2 ande3 are coprime, then all the circle bundles are diffe
morphic toS23S3 by a well-known theorem of Smale~1962!. Equations~37! and ~38! become
respectively

w2524•162
•5•~r224r21!,

w254•162
•~r22!2~r224r21!.

~Note thatF1 reduces to a constant in this case, so the first equation is quadratic inr.! Obviously,
the samer cannot be the first coordinate of two rational points, one on each curve, unler
52, which occurs iffxr5m251. By ~A2!, we must haveue2u5ue3u. The total spaces of thes
bundles are related by pull-back via a diffeomorphism of the base which sends one or both
first Chern classes of the base factors to their negatives. Thus modulo this pull-back, the
precisely the bundles admitting a Sasakian–Einstein metric of bundle type. This gives the s
claim in Theorem 5.3.

If d252 andd354, the respective curves are given by

Cd :w25~r25!~r15!~r23!~r29!,

C1 :w2548~r211!~r119!~3r2224r129!,
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C2 :w2548~5r223!~5r217!~3r2224r129!.

Using the program Ratpoints with a bound of 105 on uru and on its denominator, we find 1
rational points onC1 , 16 rational points onC2 , and 17 rational points onCd , not counting the
point at infinity. Comparing ther-coordinates of the rational points found forC6 andCd , we find
r5 13

3 as the only common value. By~34!, xr51, and sot51.
The same phenomenon is observed for (d2 ,d3)5(2,6),(4,4),(2,8),(4,6). In other words, fo

the AC Painleve´ expansions under consideration, the requirement of having a full set of rat
resonances appears to single out~when d21d3115n<11) the circle bundles on which th
bundle-type Einstein metric is Sasakian–Einstein, modulo orientation change and pull-ba
view of the above numerical evidence and Proposition 5.3, it is tempting to conjecture that
true in general, perhaps even under the weaker requirement that there is at least one no
rational resonance.

We turn now to the compatibility conditions whent51 ~the Sasakian–Einstein case!. The
positive resonances are atj /N 5 1/(l 21 l 3) , (l 21 l 321)/(l 21 l 3) , (l 21 l 311)/(l 21 l 3) and 2. We
takeN to be l 21 l 3 , the complex dimension of the base of our bundles. The compatibility co
tion at j 51 is trivially satisfied since the right-hand side of the recursion relations is zero
therefore obtain a free parameterv1 . If compatibility holds up to and includingj 5 l 21 l 311, then
compatibility at the top resonance follows from Proposition 3.8, and one checks that the
parameter entering at that stage can be used to satisfy the Hamiltonian constraint. Hence w
most a four-parameter Painleve´ family.

When d25d352, we haveN52. The first two nonzero resonances coincide, and the c
patibility condition atj 53 is also satisfied. So we obtain a three-parameter family of expans

When d252, d354, we haveN53. The compatibility condition atj 52 is satisfied, giving
rise to a free parameterv2 . Using MAPLE, one sees that the compatibility condition atj 54 is
satisfied iff

~10v2197&v1
2!~210v213&v1

2!50.

Hence we obtain two three-parameter families of Painleve´ expansions by setting one of the tw
factors in the above equal to 0.

When d25d354, we haveN54. This time, using MAPLE one sees that the compatibil
conditions always hold and we obtain a four-parameter Painleve´ family. On the other hand, when
d252,d356, the compatibility condition atj 53 holds while that atj 55 is given by

v1
2~ 1024

63 v1
31A21v2!50.

So we have two three-parameter Painleve´ families.
Exactly the same phenomena occur for the two cases whered21d3510 and we obtain two

three-parameter families in each case.

B. ALC cases

WhenS5$1,2%, the eigenvalues of the 232 matrix MT are 2 and22/(n22). The equation
R(R21)5 22/(n22) has rational solutions iff (n210)/(n22) is a square inQ. By Lemma 4.1
in Dancer and Wang~2001!, this happens precisely whenn510 or 11. Sincen must be odd in our

situation, we haven511, and the resonances in this case are21,0, 1
3,

2
3,

7
9 and 2. We therefore

takeN59 in the recursion, which we perform using MAPLE.
Recall that we have a free parameterv0 in the leading coefficients. At stepj 53 the right-

hand sides of the recursion relations~14! and~15! vanish and we pick up a free parameterv1 . At
j 56 the compatibility condition requiresv1 to vanish, and we pick up a free parameterv2 . It
follows then that atj 57 the right-hand sides of~14! and ~15! vanish, and we pick up a free
parameterv3 from ~16!. The compatibility condition at the top resonance then follows fr
Proposition 3.8, and as usual the free parameter entering at that point is used to sati
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Hamiltonian constraint. Thus, adding in the singularity position, we obtain a four-parameter
levé family. If nÞ11, then the only positive rational resonances are (n24)/(n22) and 2, and we
can letN5n22. The compatibility condition at (n24)/(n22) is satisfied because we can sho
by induction that the right-hand sides of~14! and ~15! are zero whenj is odd and<n24. The
compatibility condition holds at the top resonance again by Proposition 3.8, and the Hamilt
constraint is satisfied by fixing the parameter entering at the top resonance. Thusv0 , the free
parameter entering atj 5n24, and the singularity position account for a three-parameter Pain´
family.

Finally, we discuss situations in which the metrics represented by the Painleve´ expansions we
obtained above exhibit special geometry.

Recall from Dancer and Wang~1998, Sec. 2! and Wang and Wang~1998! that whenei5
2ci for i 52,3, the cohomogeneity one Ricci-flat equations have a three-parameter fam
explicit ~local! Kähler–Einstein solutions, if we include the freedom to add a constant to
independent variable.@Note thatei52ci ,(i 52,3) is anecessarycondition for Ricci-flat Kähler-
Einstein metrics.# In the above three-parameter family, there is a one-parameter subfam
completeCalabi–Yau metrics. One can easily check that the ends in this subfamily are asym
to the metric cone over the Sasakian–Einstein metric of bundle-type on the circle bundle.

It turns out that whenei52ci( i 52,3), the solution curves of the Ricci-flat system~5!–~8!
which lie in the subvariety given by

v1

Ad2~d221!
1

Ad3 v2

A~d221!~d21d321!
2

v3

A~d21d3!~d21d321!
5

A2z3

Ad2

,

2
Ad221

Ad3~d21d321!
v22

v3

A~d21d3!~d21d321!
5

A2z4

Ad3

,

2Ad21d321

Ad21d3

v35
1

Ad2

z1

A2z3

2Ad2A2z32Ad3A2z4

correspond to Calabi–Yau metrics. If we letz15z1 /A2z3 , z25A2z3 andz35A2z4, then these
variables parametrize the subvariety of Calabi–Yau solutions and~5! and ~6! induce on it the
system

z i85z i(
j

Ci j z j , i , j 51,2,3,

whereC is the matrix

S 0 Ad2 Ad3

1

Ad2

2
2

Ad2

0

1

Ad2

0 2
2

Ad3

D .

By comparing the Painleve´ expansions of this system which have the same leading term
those of the full Ricci-flat system, we obtain the following.

Theorem 5.4: Consider the quadratic system (5)–(8) associated to principal circle bundle
over a product of two Ka¨hler–Einstein Fano varieties V2 ,V3 with ei52ci , i 52,3.

(I ) There are two five-parameter families of meromorphic Painleve´ expansions representin
local Ricci-flat metrics, within each of which is a three-parameter subfamily of Painleve´ expan-
sions representing Calabi–Yau metrics.
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(II ) There is a four-parameter family of meromorphic Painleve´ expansions representing loca
Ricci-flat metrics, within which lies a two-parameter subfamily representing Calabi–Yau metrics.

(III ) If the base dimension is<10, there is a three-parameter family of Painleve´ expansions
(four parameters if Vi have the same dimension) representing complete Ricci-flat ends wit
asymptotics, within which lies a two-parameter subfamily representing Calabi–Yau metrics.

The remaining ALC Painleve´ families do not contain Calabi-Yau metrics.
h

Remark 5.5:~i! We expect that part~III ! of the above theorem should be true without t
dimension restriction.

~ii ! We can relate our Painleve´ expansions to another geometric condition that was fi
explored by Alfred Gray~1976!. This concerns Riemannian metrics which are almost Hermi
with respect to a complex structureJ and for which the curvature four-tensor is totally invaria
underJ. The Kähler condition is a special case of this condition. In Wang and Wang~1998!, this
condition was used to integrate the Einstein equations of cohomogeneity-one type whe
hypersurfaces are circle bundles over a product of Fano manifolds. In particular, it was sho
Lemma 2.14 in Wang and Wang~1998! that local solutions satisfying the above geometric co
dition depend in general on three-parameters. The Ricci-flat equations we are studying
section by Painleve´ analysis are a special case of the Ricci-flat equations in Wang and W
~1998!. Hence the fact that in dimension 12 we obtained a four-parameter family of ALC Pain´
expansions implies that in that dimension there is a one-parameter family of complete Ric
ends with ALC asymptotics whose curvature four-tensor is not totally invariant under the n
complex structure arising in that situation. On the other hand, MAPLE computations see
indicate that Gray’s condition in our situation is closely related to ALC asymptotics and it is
probable that our three-parameter families of ALC Painleve´ expansions in dimensionsÞ12 all
satisfy Gray’s condition.
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APPENDIX: EXPLICIT PARAMETRIZATION OF EINSTEIN METRICS ON CIRCLE
BUNDLES

In this section we indicate how we parametrize the Einstein metrics on the total spaces
circle bundles we considered in Sec. V. The method is similar to that used in Castellaniet al.
~1984! and in Cvetic~2002b!.

We start with the Einstein equations~1.5!, ~1.6! on p. 222 of Wang and Ziller~1990!. In our
notation, and in the case when the base consists of two factors, these are

x1S d2e2
2

x2
2 1

d3e3
2

x3
2 D 54L,

4c2

x2
22x1

e2
2

x2
2 54L,

4c3

x3
22x1

e3
2

x3
2 54L,
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whereL is the Einstein constant andxi5 f i
2 for i 51,2,3. Let us multiply all three of the abov

equations by the factorx2x3 /c2c3x1 . For i 52,3 let s i5ei /ci ~so t5us2 /s3u) and yi

5xi /cix1 , and setW2
25s2

2y3 /y2 , W3
25s3

2y2 /y3 . After subtracting the resulting equations, w
obtain

d2W2
21~d312!W3

254y2 ,

~d212!W2
21d3W3

254y3 .

It follows that

~d21d312!W2
252~2d3y21~d312!y3!,

~d21d312!W3
252~~d212!y22d2y3!.

The relationW2
2W3

25s2
2s3

2 now gives

~d21d312!2s2
2s3

252~F1
22F2

2!,

where

F15
1

&
~~~d212!y22d2y3!1~2d3y21~d312!y3!!

and

F25
1

&
~~~d212!y22d2y3!2~2d3y21~d312!y3!!.

We can therefore write

F15
1

&
~d21d312!us2s3ucoshu,

F25
1

&
~d21d312!us2s3usinhu,

for some parameteru and setm5expu. One easily checks now that the Einstein equations bec
the condition thatm should be a positive root of the cubic polynomial

w~x!5td3x32~d312!x21t~d212!x2d2 . ~A1!

The xi in the original Einstein equations are then given by

x25
x1

4
c2us2s3u~~d312!expu1d2 exp~2u!!,

x35
x1

4
c3us2s3u~d3 expu1~d212!exp~2u!!.

Since roots of a cubic polynomial are given by Cardano’s formula, we may regard the a
Einstein metrics as ‘‘explicit.’’
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Note that form<0 we havew(m),0, and one easily checks also thatw has a unique positive
root. Hence we recover the fact that up to homothety there is a unique solution of the Ei
equations. Our interest here is to parametrize the Einstein metrics in terms oft. Note that when
t51, w has the unique positive rootm51, which represents the unique Sasakian–Einstein me
in the family.

From w(m)50 we obtain the relation

t5
~d312!m21d2

m~d3m21~d212!!
. ~A2!

One can check that as a function ofm.0, t is strictly decreasing, with limm→0t51` and
limm→1`t50.
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Progress in relativistic gravitational theory using
the inverse scattering method

G. Neugebauera) and R. Meinel
Theoretisch-Physikalisches Institut, Friedrich-Schiller-Universita¨t Jena,
Max-Wien-Platz 1, 07743 Jena, Germany

~Received 9 April 2003; accepted 9 April 2003!

The increasing interest in compact astrophysical objects~neutron stars, binaries,
galactic black holes! has stimulated the search for rigorous methods, which allow a
systematic general relativistic description of such objects. This article is meant to
demonstrate the use of the inverse scattering method, which allows, in particular
cases, the treatment of rotating body problems. The idea is to replace the investi-
gation of the matter region of a rotating body by the formulation of boundary
values along the surface of the body. In this way we construct solutions describing
rotating black holes and disks of dust~‘‘galaxies’’!. Physical properties of the
solutions and consequences of the approach are discussed. Among other things, the
balance problem for two black holes can be tackled. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1590419#

I. INTRODUCTION

The systematic investigation of neutron stars and binaries consisting of pulsars and
compact objects and the increasing evidence for the existence of~rotating! black holes have
stimulated theoretical and numerical studies on rapidly rotating bodies in general relativit
doubt, realistic stellar models~e.g., neutron star models! require a careful physical analysis of the
interior states and processes and, as a consequence, extensivenumericalcalculations. On the othe
hand, there is widespread interest for explicit solutions of the rotating body problem unde
plifying assumptions. Such solutions could provide a deeper insight into physical pheno
connected with spinning matter configurations and, moreover, serve as test beds for the nu
investigations mentioned before. A good example is the Kerr solution, which has enriche
knowledge of rotating black holes in an inestimable way. However, rigorous results for rot
bodies are relatively rare in general relativity. Among other things, this is due to the mathem
difficulties with ‘‘free boundary value problems,’’ already known from Newton’s gravitatio
theory, and to the specific complexity of the differential equations of Einstein’s theory insid
body. Namely, the shape of the surface of a rotating self-gravitating fluid ball—the best mod
astrophysical applications—is a ‘‘compromise’’ between gravitational, centrifugal, and pre
forces and not knowna priori. ~The surface is ‘‘free,’’ i.e., not fixed from the very beginning!
Though there are powerful~soliton-! techniques to generate~formal! stationary axisymmetric
solutions of Einstein’s vacuum equations, no algorithm to integrate the interior field equatio
available. Hence, at first glance, a boundary value description of rotating bodies seems
questionable and inadequate. However, there are exceptional cases, in which the surfac
body has a known shape and the surface values provide enough information to constr
complete solution of the vacuum field equations. It is the intention of this article to show tha
is true for stationary black holes and disks of dust, which may be considered to be extr
flattened perfect fluid bodies. Moreover, it should become clear that our procedure, which is

a!Electronic mail: neugebauer@tpi.uni-jena.de
34070022-2488/2003/44(8)/3407/23/$20.00 © 2003 American Institute of Physics
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on the inverse scattering method, opens an access to the not yet solved problem of the ba
two black holes and enables, in principle, the construction of black holes surrounded by dus
~‘‘AGN models’’ !.

Another interesting domain of application for the inverse scattering method is colliding g
tational waves. This theory is out of the scope of our article. We refer to Ref. 1 and refer
therein.

The present work is mainly based on the Refs. 2 and 3, but it also contains substantial m
not published before.

II. THE BOUNDARY VALUE PROBLEM

We consider a simply connected axisymmetric and stationary body and describe its e
vacuum gravitational field in Weyl–Lewis–Papapetrou coordinates

ds25e22U@e2k~dr21dz2!1r2df2#2e2U~dt1adf!2, ~1!

where the ‘‘Newtonian’’ gravitational potentialU, the ‘‘gravitomagnetic’’ potentiala, and the
‘‘superpotential’’k are functions ofr andz alone. Figure 1~a! shows the boundaries of the vacuu
region:A 6 are the regular parts of the axis of symmetry (r50), B is the surface of the body an
C stands for spatial infinity. Later on, we will integrate along the dashed line and pick up i
mation from the boundary values of the gravitational fields atA 6, B andC. The metric~1! allows
an Abelian group of motionsG2 with the generators~Killing vectors!

j i5d t
i , j ij i,0 ~stationarity!,

~2!
h i5df

i , h ih i.0 ~axisymmetry!,

where the Kronecker symbolsd t
i anddf

i indicate thatj i has only at-component whereash i points
in the azimuthalf-direction ~its trajectories are closed circles!!. Obviously,

e2U52j ij i , a52e22Uh ij
i ~3!

is a coordinate-free representation of the two relativistic gravitational fieldsU ~generalization of
the Newtonian gravitational potential! anda ~gravitomagnetic potential!. To get a unique defini-
tion of U anda, we prescribe their behavior at infinity. Assuming that the space–time has
flat at large distances from the body and can be described by a Minkowskian line element~1! in
cylindrical coordinates, we are led to the boundary conditions

FIG. 1. ~a! A slice f5const,t5const,~b! two-sheeted RiemannK-surface with branch points~dots! and two cuts~solid
lines!.2
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C: U→0, a→0, k→0. ~4!

Any linear transformation

t85t, f85f2vt ~5!

introduces a frame of reference which rotates with a constant angular velocityv with respect to
that asymptotic Minkowski space.

To describe stationarity and axixymmetry in that rotating system one would use the K
vectors

j̃ i 85j i 81vh i 8, h̃ i 85h i 8 ~6!

instead of~2!.
Regularity of the metric alongA 6 means

A 6: a50, k50. ~7!

These conditions express the fact thatA 6 is an axis of symmetry (a50) and ensure elementar
flatness along the axis (k50). The behavior ofU anda at the surfaceB of the body depends on
the physical nature of it. Rotatingperfect fluidsare characterized by afour-velocity field ui

consisting of a linear combination of the two Killing vectors,

ui5e2V~j i1Vh i !, uiui521, ~8!

whereV is the angular velocity of the body, and aninvariant scalar pressure p, which is, for rigid
rotation,

V5V0 ~V0 a constant!, ~9!

a function ofV alone,

p5p~V!, ~10!

as a consequence of the Euler equations. Along the surface of the body~if it exists! the pressure
has to vanish,p(V0)50, i.e.,V must be a constant alongB,

B: e2V[2~j i1V0h i !~j i1V0h i !5e2V0. ~11!

That is a further boundary condition. When identifyingv in ~5! andV0 we introduce a frame of
reference co-rotating with the body and may interpreteV as the co-rotating ‘‘Newtonian’’ poten
tial, cf. ~3! and~11!. Interestingly, the event horizonH of a stationary~axisymmetric! black hole
behaves like an ‘‘ordinary’’ perfect fluid surface~11!. Namely, one can show that a linear comb
nation of the two Killing vectors,j i1VHh i , has a vanishing norm alongH,

H: e2V[~j i1VHh i !~j i1VHh i !50, ~12!

whereVH is the angular velocity of the horizon. Hence we may include black holes in our sch
see Fig. 1~a!, for V0→2` andH[B. It will turn out that ~12! together with the correct posi
tioning of the horizonH in Weyl–Lewis–Papapetrou coordinates together with the asymp
behavior ~4! of the ~invariant! potentials~3! suffices for an explicit construction of the Ke
solution—thus providing a simple constructive uniqueness proof for stationary axisymmetric
holes. On the other hand, the condition~11! is not sufficient to calculate the gravitational field
rotating perfect fluid balls. However, in the disk of dust limit of such fluid configurations t
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field equations themselves will provide the missing boundary condition along the surfaceB of the
disk, see Ref. 3. Starting with that completed set of boundary conditions we will be ab
construct the global solution for the rigidly rotating disk of dust.

III. THE FIELD EQUATIONS

The vacuum Einstein equations for the metric coefficientsk, U, a are equivalent to the Erns
equation

~Rf !S f ,rr1 f ,zz1
1

r
f ,rD5 f ,r

2 1 f ,z
2 ~13!

for the complex function

f ~r,z!5e2U1 ib, ~14!

whereb replacesa via

a,r5re24Ub,z , a,z52re24Ub,r ~15!

andk can be calculated from

k,r5r@U ,r
2 2U ,z

2 1 1
4e

24U~b,r
2 2b,z

2 !#, k,z52r@U ,rU ,z1 1
4e

24Ub,rb,z#. ~16!

As a consequence of the Ernst equation~13!, the integrability conditionsa,rz5a,zr and k,rz

5k,zr are automatically satisfied such that the metric functionsa andk may be calculated via line
integration from the Ernst potentialf . Thus, it is sufficient to discuss the Ernst equation alon

IV. THE LINEAR PROBLEM

The existence of a linear problem~LP! for the Ernst equation4–9 is the cornerstone of ou
analysis since it provides a suitable instrument for tackling boundary value problems: the in
scattering method~ISM!. Here we will use a ‘‘local’’ version10 of the linear problem,

F,z5 H S B 0

0 AD 1lS 0 B

A 0 D J F,

~17!

F,z̄5 H S Ā 0

0 B̄
D 1

1

l S 0 Ā

B̄ 0
D J F,

whereF(z,z̄,l) is a 232 matrix depending on the spectral parameter

l5AK2 iz̄

K1 iz
~18!

as well as on the complex coordinatesz5r1 iz, z̄5r2 iz, whereasA,B and the complex con-
jugate quantitiesĀ, B̄ are functions ofz,z̄ ~or r, z! and do not depend onK. From the integrability
condition and the formulas

l ,z5
l

4r
~l221!, l ,z̄5

1

4rl
~l221! ~19!

it follows that a matrix polynomial inl has to vanish. This yields the set of first order different
equations
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A,z̄5A~B̄2Ā!2
1

4r
~A1B̄!, B,z̄5B~Ā2B̄!2

1

4r
~B1Ā!. ~20!

The system has the ‘‘first integrals’’

A5
f ,z

f 1 f̄
, B5

f̄ ,z

f 1 f̄
. ~21!

ResubstitutingA andB in the equations~20! one obtains the Ernst equation~13!. Thus, the Ernst
equation is the integrability condition of the LP~17!. Vice versa, if f is a solution to the Erns
equation, the matrixF calculated from~17! does not depend on the path of integration. The id
of the inverse scattering method~ISM! is to discussF, for fixed but arbitrary values ofz,z̄, as a
holomorphic function ofl ~or K) and to calculateA,B and finally f afterwards. To obtain the
desired information about the holomorphic structure inl, we will integrate the linear system alon
the dashed line in Fig. 1~b! making use of the conditions~4!, ~7!, ~11! or ~12!. In this way, we will
solve thedirect problemof the ISM and obtainF(z,z̄,l) for z,z̄PA 6,B,C. It turns out that the
holomorphic structure remains unchanged by an extension ofz,z̄ off the axis of symmetry into the
entire vacuum region such that one can construct functionsF with prescribed properties inl from
which one obtains the desired solutionf (z,z̄) everywhere in the vacuum region. This second s
can be very technical and will, in general, lead to linear integral equations forF. In some
circumstances,l may be replaced byK. For this purpose, it may be helpful to discuss the mapp
~18! of the two-sheeted Riemann surface ofK onto thel-plane for different values ofr, z ~or
equivalentlyz,z̄). Figure 1~b! shows the position of the branch pointsKB5 iz̄, K̄B52 iz for the
marked pathA 1CA 2B of Fig. 1~a!. It reflects the slicef5const, t5const @Fig. 1~a!# and
indicates, in particular, the position and shape of the body. Note thatF is not defined in the
nonvacuum domain inside the circular contour around the origin.

Consider now a Riemann surface with confluent branch pointsKB5K̄B5zPA 1. Here l
degenerates and takes the valuesl521 for K ’s in the lower sheet, say, andl511 for K ’s in the
upper sheet (KÞKB).

We will now travel along the dashed line of Fig. 1~a! starting from and returning to any poin
r50, zPA 1. @In Fig. 1~b! this corresponds to the bold faced points on the real axis.# Note that
l521 for all K ’s (KÞz) in the lower andl511 for all K ’s (KÞz) in the upper sheet of the
RiemannK-surface belonging to axis valuesr50, zPA 6 @the corresponding branch points clin
to either side of the real axis in Fig. 1~b!#. For r,zPC, the cut between the branch points@e.g.,
right solid line in Fig. 1~b!# points over the entireK-surface and puts ‘‘upper’’K values into the
lower sheet and ‘‘lower’’K values into the ‘‘upper’’ sheet. As a consequence,l will change from
61 to 71 betweenr50, z51` andr50, z52`.11 This ‘‘exchange of sheets’’ is importan
for the solution of the linear problem: The initial valueF(r0 ,z0 ,l) can~and must! be fixed only
in onesheet of theK-surface. The dependence onK in the other sheet follows by integration of th
LP ~17! along a suitable path.11

We will divide the integration of the LP~17! along the closed dashed line of Fig. 1~a! into two
steps:

~i! Integrating alongA 1CA 2: This step can be performed without particular knowledge ab
the body and leads to a ‘‘generalsolution’’ for F on the regular partsA 6 of the symmetry
axis.

~ii ! Integrating alongB: Here we confine ourselves to black holes and disks of dust.
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V. SOLUTION OF THE DIRECT PROBLEM

A. Axis and infinity

Without loss of generality the matrixF may be assumed to have the structure

F5S c~r,z,l! c~r,z,2l!

x~r,z,l! 2x~r,z,2l!
D ~22!

together with

cS r,z,
1

l̄
D 5x~r,z,l!. ~23!

Note that both columns ofF are independent solutions of~17!. The particular form of~22! is
equivalent to

F~2l!5S 1 0

0 21D F~l!S 0 1

1 0D . ~24!

For K→` andl521 the functionsc, x may be normalized by

c~r,z,21!5x~r,z,21!51. ~25!

Finally, the solution to the Ernst equation can be read off atl51 (K→`),

f ~r,z!5x~r,z,1!, ~ f ~r,z!5c~r,z,1!!. ~26!

Remarkably enough, the Ernst equation retains its form in the frame of reference co-rotatin
the body (v5V0). This is a consequence of~3! and ~6! and implies the existence of a linea
problem~17! in the co-rotating system. In particular, theF-matrices of both systems of referenc
are connected by the relation

F85F S 11V0a2V0re22U 0

0 11V0a1V0re22UD 1 i~K1 iz!V0e22US 21 2l

l 1 D GF.

~27!

Henceforth, a prime marks ‘‘co-rotating’’ quantities. We can now realize our program and inte
the linear problem~17! along the partA 1CA 2 of the dashed line in Fig. 1~a!. Using ~17! along
A 6 and ~21! one finds for the axis values ofF

A 1: F5S f ~z! 1

f ~z! 21
D S F~K ! 0

G~K ! 1D , ~28!

A 2: F5S f ~z! 1

f ~z! 21
D S 1 G~K !

0 F~K !
D , ~29!

where f (z)5 f (r50,z) is the axis value of the Ernst potential andF(K),G(K) are integration
‘‘constants’’ depending onK alone. The particular form of~28! is due to the initial conditionc
5x51 for somer050, z5z0PA 1, l521 (K in the lower sheet!, which fixes the second
column of F in ~28!, cf. ~22!. The first column corresponds to the upper (l51) sheet and
represents a general integral with the two integration ‘‘constants’’F(K),G(K) which cannot be
specified here. AlongC, F5F(K) does not depend onr andz, sinceA andB vanish, cf.~21!. The
‘‘exchange of sheets’’ alongC, see Fig. 1~b!, together with~24! leads to the particular form ofF
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on A 2. The representations~28! and ~29! describe the behavior ofc and x in both sheets.
Nevertheless, one may wish to consider the matrixF as a whole as a unique function ofl, which
is therefore defined on both sheets of theK-surface. From this point of view, the equations~28!
and ~29! describeF on one sheet only~say, on the upper sheet!. Its values on the other~lower!
sheet follow from~24!.

Combining~28! and ~29! with ~27! we obtain the axis values in the co-rotating system,

A 1: F85F11 i~K2z!V0e22US 21 21

1 1 D G3F S f ~z! 1

f ~z! 21
D S F~K ! 0

G~K ! 1D G , ~30!

A 2: F85F11 i~K2z!V0e22US 21 21

1 1 D G3F S f ~z! 1

f ~z! 21
D S 1 G~K !

0 F~K !
D G , ~31!

where1 ist the 232 unit matrix. At the branch pointsKB5z of K-surfaces belonging to axi
valuesr50,zPA 6, c andx must be unique, i.e.,

A 1~KB5z!: F5S c c

x 2x
D 5S f ~z! 1

f ~z! 21
D S F~z! 0

G~z! 1D , ~32!

A 2~KB5z!: F5S c c

x 2x
D 5S f ~z! 1

f ~z! 21
D S 1 G~z!

0 F~z!
D , ~33!

whence

A 1: F~z!5
2

f ~z!1 f ~z!
, G~z!5

f ~z!2 f ~z!

f ~z!1 f ~z!
, ~34!

A 2: F~z!5
2 f ~z! f ~z!

f ~z!1 f ~z!
, G~z!5

f ~z!2 f ~z!

f ~z!1 f ~z!
. ~35!

Thus,F(K) andG(K) consist in a unique way of analytic continuations of the real and imagin
parts of the axis values of the Ernst potentialf (z). Vice versa,f (z) follows from F(K),G(K) for
K5z. Interestingly, the determinants ofF and F8 can be expressed in terms ofRf , Rf 8 and
F(K). From ~17! @TrF,zF

215(ln detF) ,z#, ~21! and ~28!–~31!, we have

detF522e2UF~K !, detF8522e2VF~K !, ~36!

where e2U5Rf and e2V5Rf 8 @U5U(r,z),V5V(r,z)#.
We may now interpret the result of~30!–~35! of the integration of the LP alongA 1CA 2: On

the regular partsA 6 of the symmetry axis,F andF8 can explicitly be expressed in terms of th
axis valuesf (z) of the Ernst potential and its analytic continuationsF(K),G(K). To calculate
f (z) one needs boundary values onB. Accordingly, the integration alongB depends on the
physical nature of the rotating body and can be performed in particular cases only. In th
section we will discuss black holes and rigidly rotating disks of dust.

B. Surface

1. One black hole

We identify the surfaceB with the horizonH. In Weyl coordinates, the event horizonH of a
single black hole covers the domain,12

H: r50, K1>z>K2 . ~37!
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@In Fig. 1~a!, the surfaceB degenerates to a ‘‘straight line’’ connecting the regular partsA 2,A 1

of the axis of symmetry.# Along H, e2V has to vanish@see~12!#,

H: e2V[~j i1V0h i !~j i1V0h i !50 ~V05VH!. ~38!

Because of

e2V5e2U~@11V0a#22V0
2r2e24U!, ~39!

cf. ~3!, this implies

H: 11V0a50. ~40!

F and F8 can now be calculated along the horizonH. From ~17!, ~37!, ~38!, ~40! and ~27! we
obtain

F5S f ~z! 1

f ~z! 21
D S U~K ! V~K !

W~K ! X~K !
D ,

H: ~41!

F852iV0~K2z!S 21 0

1 0D S U~K ! V~K !

W~K ! X~K !
D .

The Ernst equations have to hold atK1 andK2 too. Hence,F andF8 must be continuous inK1

andK2 . Considering~28!–~31! and ~41!, we are led to the conditions

S f 1 21

f 112iV0~K2K1! 21D S F 0

G 1D 5S f 1 21

2iV0~K2K1! 0 D S U V

W XD ,

~42!

S f 2 21

f 212iV0~K2K2! 21D S 1 G

0 F D 5S f 2 21

2iV0~K2K2! 0 D S U V

W XD ,

where f 15 f (z5K1) and f 25 f (z5K2). Note thatf 1 and f 2 are imaginary, see~36!.
Eliminating theUVWX matrix, we obtain

N5S 11
F1

2iV0~K2K1! D S 11
F2

2iV0~K2K2! D , ~43!

where

F15S 2 f 1 1

2 f 1
2 f 1

D , F25S f 2 21

f 2
2 2 f 2

D , ~44!

N5S F 2G

G ~12G2!/F D . ~45!

Obviously, the elements ofN are regular everywhere in the complexK-plane with the exception
of the two simple poles atK1 andK2 (IK1505IK2). The sum of the off-diagonal elements
~45! must be zero. This requirement leads to the constraints

f 152 f 2 , V05
i f 1~11 f 1

2!

~K12K2!~12 f 1
2!

. ~46!
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F(K) andG(K) take the form

F~K !5
4V0

2~K22K1
2!14iV0f 1K22 f 1

2

4V0
2~K22K1

2!
, G~K !5

4iV0K112 f 1

4V0
2~K22K1

2!
. ~47!

Here we have chosenK152K2 , i.e., we have set the horizon in a symmetric position in ther,
z-plane. Making use of~34! and ~35! and eliminatingV0 by the second constraint equation w
obtain the axis potential

A 1: f 5
z~11 f 1

2!1~ f 1
22112 f 1!K1

z~11 f 1
2!1~12 f 1

212 f 1!K1
. ~48!

It can be useful to introduce the multipole moments massM and angular momentumJ by an
asymptotic expansion off ,

M5
12 f 1

2

11 f 1
2 K1 ,

J

M
5a5

2if 1K1

11 f 1
2 , ~49!

and to replacef 1 ,K1 in ~47!, ~48! and ~46!:

F~K !5
~K1M !21a2

K21a22M2 , G~K !5
2iMa

K21a22M2 . ~50!

To representf (z), a simplifying parametrization is advisible,

f 15 i tanw/2, a52M sinw, K152K25AM22a25M cosw, w5w̄. ~51!

This yields

A 1: f 5
~z2M !1 iM sinw

~z1M !1 iM sinw
. ~52!

Finally, the second constraint equation~46! becomes the well-known equation of state
black hole thermodynamics,

2MV05
M

a
2AM2

a2 21, ~53!

connecting the angular velocity of the horizon with mass and angular momentum.

2. Two aligned black holes

The same procedure can be used to tackle the balance problem for two black hole
question is whether the spin-spin repulsion of two aligned stationary black holes can comp
their gravitational attraction.

Here we have two horizonsH1 andH2 ,

H1 : r50, K1>z>K2 , H2 :r50, K3>z>K4 , ~54!

separated by a piece of the regular symmetry axisA 0,

A 0: K2>z>K3 . ~55!

As a characteristic black hole property, the norm of the Killing vectors of the co-rota
frameworks has to vanish along the horizons,
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H1 : ~j i1V0
1h i !~j i1V0

1h i !50, H2 : ~j i1V0
2h i !~j i1V0

2h i !50, ~56!

whereV0
1 ,V0

2 are the constant angular velocities of the respective horizons.
Following the arguments for one black hole, we arrive at13

N5)
i 51

4 S 11
Fi

2iV i~K2Ki !
D , ~57!

whereV15V25V0
2 , V35V45V0

2 and

Fi5~21! i S f i 21

f i
2 2 f i

D , ~58!

whence

F~K !5
p4~K !

~K2K1!~K2K2!~K2K3!~K2K4!
,

~59!

G~K !5
p2~K !

~K2K1!~K2K2!~K2K3!~K2K4!
,

wherep4(K) and p2(K) are polynomials inK of the indicated orders. From~59! together with
~34! and~35! we may read off the axis values of the Ernst potential. For the upper axis we o
the structure

A 1: f ~z!5
q2~z!

Q2~z!
. ~60!

We need not use the representation of the explicit form of the second order polyno
q2(z),Q2(z) and of the constraints resulting fromG5N2152N12. Namely, from the fact that
f (z) is a quotient of polynomials of the same~even! order, it is clear that the desired two blac
hole solution can be generated by a Ba¨cklund transformation~in our case by a twofold Ba¨cklund
transformation! from the Minkowski space.~Note that the axis values of the Ernst potent
determine solutions of the Ernst equation in a unique way.!

The four constraintsN2152N12 ensure that the constantsKi , f i52 f̄ i ( i 51, . . . ,4),V0
1 ,V0

2

may be expressed by two position parameters and the masses and angular momenta of
black holes.

The Bäcklund generated solution belonging to~60! known as the ‘‘double Kerr solution’’ was
intensively discussed by several authors.14,15 It turned out that there are necessarily struts betw
the ‘‘horizons.’’ Since we have shown, by solving the boundary value problem, that Ba¨cklund
generated solutions are theonly candidates to describe aligned balanced black holes, we may
assert that black holes cannot be balanced at all.

3. Rigidly rotating disks of dust

Disks of dust can be considered to be extremely flattened spheroids@Fig. 2~a!# consisting of
perfect fluid matter.3 One can show that, for rigidly rotating dust, the boundary conditions~4! and
~11! have to be complemented by the conditionb85If 850 on the disk~B!. This condition
follows from the Einstein equations as a transition condition from a divergence-free part of
equations via Gauss’s theorem.3 Thus we have to take into consideration

A 6: regularity of f , B: f 85e2V0, C: f→1, ~61!

see Fig. 2~a!. On the disk, the linear problem of the co-rotating system of reference takes the
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B: F,r8 52
r

AK21r2~ f 81 f 8!
S 0 f 8,z

f ,z8 0
D F8, ~62!

whereF8 and f 8 are the ‘‘co-rotating’’F-matrix and the ‘‘co-rotating’’ Ernst potential on the disk
This relation must be discussed under the ‘‘boundary conditions’’

F8~r50,z501,l!uB5F8~r50,z501,l!uA 1,

cf. ~30! and

F8~r50,z502,l!uB5F8~r50,z502,l!uA 2,

cf. ~31!.
Again, this discussion allows the construction ofF(K) andG(K) and, via~34! and~35!, the

construction of the axis valuesf (z) of the Ernst potential. We first take advantage of the symme
of the problem which impliesf (r,z)5 f (r,2z) and connects thez-derivatives off 8 above (z
501) and below (z502) the disk

B: f 8,zuz50152 f ,z8 uz502. ~63!

As a consequence, the LP~62! connects the matrixF
A

above the disk,F
A

5F8(r,z501,K),

with the matrixF
B

below the disk,F
B

5F8(r,z502,K),

B: F
A

5S 0 1

21 0D F
B

H~K !, ~64!

where the matrixH(K) ~the ‘‘integration constant’’! does not depend onrPB. At the rim of the
disk we have

F
A

~r0,0,K !5F
B

~r0,0,K !5F
r

. ~65!

FIG. 2. ~a! Boundary value problem for the rotating disk of dust,~b! two-sheetedK-surface of the rotating disk with branch
points at2 iz, iz̄.2
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Because of~64!, the rim matrix F
r

21(1
0

0
21)F

r

can be expressed in terms ofF
A

5F8(r,z

501,K), F
B

5F8(r,z502,K). Note thatF is considered to be a holomorphic function ofl and
therefore a function living on the two-sheeted RiemannK-surface of Fig. 1~b!. Hence we have to
discuss the rim matrix as a function ofK on both sheets.

Any F multiplied from the right by a matrix function ofK is again a solution of the LP. The
discussion of the rim matrix simplifies after the following redefinition

R5S 0 1

21 0D S F 0

G 1D F
r

21S 0 21

1 0 D F
r S F 0

G 1D 21S 0 1

21 0D
21

. ~66!

Using ~30! and ~31! we obtain

R5H e2V0MS 21 on the upper sheet,

2e2V0S 21M on the lower sheet,
~67!

where

M5S G~K ! ~G221!/F

2F~K ! 2G~K !
D , S5S f 0f 024V0

2K2 ib012iV0K

ib022iV0K 21
D ~68!

and

f 05e2V01 ib05 f ~z501!. ~69!

Note thatM5(1
0

0
21)N( 0

21
1
0).

Obviously, TrR5Tr R2150 andM251, whence

Tr MS 215Tr SM50. ~70!

This relation interlinksF(K) andG(K) and, because of~34! and~35!, real and imaginary parts o
the axis valuesf (z) of the Ernst potential.16,17

We next wish to determineF(K) and G(K) which in turn determinef (z). To this end we
considerF~r, z, l!, for fixed coordinatesr, z as a function ofl. We have already used the initia
conditionsc5x51 for somer5r050, z5z0PA 1 prescribed in one sheet (l521) of the
K-plane. In principle the behavior ofF in both sheets and at all points in ther, z-plane can be
calculated by integrating the LP along a suitable path. However, the coefficientsA(r,z), B(r,z)
in the LP ~17! are not explicitly known. Nevertheless, their regular behavior outside the
together with the boundary values on the disk, cf.~61!, provides us with defining properties forF.
One of them may be taken from Fig. 1~b! together with Fig. 2~b!: Since the domain of the disk
0<r<r0 , z506, is a nonvacuum domain, where the LP fails,F at the branch point pairsK
5 ir106,2 ir106, 0<r<r0 , cannot ‘‘pass’’ through the contour~s! G:RK50,2r0<IK
<r0 , i.e., F has a well-defined jump between opposite points along the contour~s! G, see Fig. 2.
A careful discussion would show thatF~r, z, l!, for fixed coordinate valuesr, z outside the disk
(r,z¹B), is a regular function inl outsideG and jumps alongG, i.e., F satisfies a~regular!
Riemann–Hilbert problem.

Consider now the jumpF1
21F2 , where the signs indicate the two sides ofG, cf. Fig. 2~b!.

The LP tells us thatF1
21F2 does not depend on the coordinates and is therefore a functionD of

the contour alone,

F1
21F25Du~K !, KPGu ,

~71!
F1

21F25Dl~K !, KPG l ,
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where u marks the upper and l the lower sheet. Since the jump contoursGu , G l and the jump
matricesDu , Dl are the same for all values ofr, z ~i.e., for all Riemann surfaces with differen
branch points!, we may expressDu andDl in terms of the axis values ofF,

Du~K !5S F1 0

G1 1D 21S F2 0

G2 1D , KPGu . ~72!

A similar relation forDl may be obtained via~24!. As a consequence of~71! and~72! the matrix
F(G

F
1
0)21 does not jump alongGu . Because of~27! the same holds forF8(G

F
1
0)21 and, finally, for

R as defined in~66!. Consider now the RiemannK-surface of the disk rimr5r0 , z50. The cut
between the branch pointsKB56 ir0 coincides with the contourGu , G l which are on the two
‘‘bridges’’ connecting crosswise the upper with the lower sheet. SinceR does not jump onGu , we
have, according to~67!, (MS 21)252(S 21M)1 . ThoughR does not jump,F andG do jump,
cf. ~72!. Note thatF(K) andG(K) are unique functions ofK. Hence, there is only one contou
G:RK50,2r0<IK<r0 , whereM @with the elementsF(K), G(K)] does jump. SinceF is
analytic outsideGu ,G l , the matrixM must be analytic outsideG. Thus we obtainF(K) andG(K)
from the Riemann–Hilbert problem,

KPG: SM252M1S,
~73!

K¹G: M~K ! analytic in K,

S andM as in ~68!. ~Note that the elements ofS, which are polynomials, and the elements
S 21, which are rational functions inK, do not jump alongG.! There is no jump at the end point
of the contour K56 ir0 , M(6 ir0)25M(6 ir0)1 . As a consequence, one obtai
Tr S(6 ir0)50, i.e., the parameter relation

f 0 f̄ 014V0
2r0

251. ~74!

It turns out that the Riemann–Hilbert problem~73! has a unique solutionM(K) in the parameter
region

0<m52V0
2e22V0r0

2,m054.629 661 84... . ~75!

An important step on the way to this solution is the diagonalization ofS. Finally, one obtains
F(K), G(K) and the axis values of the Ernst potentialf (z) in terms of elliptic theta functions. We
need not go this road. As we shall see in the next section, we can use the Riemann–
problem~73! to formulate a more general Riemann–Hilbert problem which will yield the co
plete disk of dust solution in terms of hyperelliptic theta functions.

VI. ERNST POTENTIAL EVERYWHERE

A. Kerr solution

In the preceding section, we analyzed the axis values of the Ernst potential. We will
construct the complete solutionsf (r,z) of our boundary value problems from the informatio
about the behavior along the axis of symmetry gained by the discussion of the direct prob

There is, of course, no question that the discussion of the black hole case in Sec. V B
lead to the famous Kerr solution@in Weyl coordinates~1!#. The point made here is that thi
solution describing the stationary rotating black hole can be derived from a boundary
problem.

To achieve our goal it is useful to exploit the gauge freedom of multiplyingF from the right
by an arbitrary matrix funktion ofK. The transformation
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F̃5
K22a22M2

K@~K1M !21a2#
FS K1m ia

ia K1mD ~76!

preserves the properties~22!–~25! and enables the calculation off via ~26!. Because of~36!, ~50!,
~28! and ~18!, the determinant ofF̃ becomes

detF̃5g
~K1 iz!2

K2 ~l22l1
2!~l22l2

2!, g5g~r,z!52
2e2U(r,z)

~12l1
2!~12l2

2!
, ~77!

where

l i
25

Ki2 iz̄

Ki1 iz
~ i 51,2!. ~78!

This form of the determinant together with the axis values ofF̃ tells us thatF̃ must be a quadratic
matrix polynomial ofl,

F̃5
K1 iz

K
~C1Dl1El2!, ~79!

where the 232 matricesC, D, E are functions ofr, z alone. It can be shown18 that F̃ with ~77!
satisfies the LP.~It is a Bäcklund transformation of the trivial solutionf 51.)

According to~77!, F̃(r,z,l i) ( i 51,2) must have a null eigenvectorbi in the zerosl i ,

F̃~r,z,l i !bi50 ~ i 51,2!. ~80!

From the LP it follows that the elements ofbi have to be constants. Hence, the quotient

x̃~r,z,l!

x̃~r,z,2l!
52

C211D21l1E21l
2

C212D21l1E21l
2 , ~81!

where the coefficients are elements of the matricesC, D, E must be a constant atl5l i ( i
51,2). The values of the two constants (i 51,2) can be read off from the axis values ofF̃
resulting from~81! together with~28!, ~29!, ~50!, ~51! and ~76!,

x̃~l1!

x̃~2l1!
52 i cot

w

2
,

x̃~l2!

x̃~2l2!
5 i cot

w

2
. ~82!

Note thatx̃(21)51 implies

C212D211E2151. ~83!

These three conditions fix the coefficientsC21, D21, E21 via a linear algebraic system. Finally, w
obtain the Ernst potential everywhere fromf 5x̃(1)/x̃(21),

f ~r,z!5
r 1eiw1r 2eiw22M cosw

r 1eiw1r 2eiw12M cosw
, ~84!

where

r i
25~Ki2z!21r2 ~ i 51,2!
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with K152K2 and w as in ~51!. This is the Ernst potentialf of the Kerr solution in Weyl–
Papapetrou coordinates. By virtue of~15! and~16!, this potential determines all metric coefficien
in the line element~1!.

B. Disk of dust solution

In order to construct theF-matrix for arbitrary values ofr, z and l, let us return to the
Riemann–Hilbert problem~73!. As we have seen, the matrixF(G

F
1
0)21 does not jump alongGu .

Analogously,F(0
1

F
G)21 does not jump alongG l . The imagesGl of Gu andG2l of G l inherit these

properties, which are essential to the following deductions.
To formulate a Riemann-Hilbert problem in thel-plane, we define two matrices,

LªFS 1 G

0 F D 21S 1 0

0 21DMS 1 0

0 21D S 1 G

0 F D F21

5FS F 0

G 1D 21S 0 21

1 0 DMS 0 1

21 0D S F 0

G 1D F21

5FS 0 1

1 0D F21, ~85!

Qªe22V0FS 1 G

0 F D 21S 1 0

0 21D ~S1w1!S 1 0

0 21D S 1 G

0 F D F21

5e22V0FS F 0

G 1D 21S 0 21

1 0 D ~S1w1!S 0 21

1 0 D S F 0

G 1D F21, ~86!

where

w52 1
2Tr S52V0

2~K21r0
2!.

Here we have made use of the parameter relation~74!. SinceS andw are polynomials inK and
therefore rational functions inl, the matrixQ has no jump at all. Taking the asymptotics ofS and
w into account,Q must take the following polynomial structure inl:

Q5~K1 iz!2S q1 q2

q3 2q2
D , q15kl1 ll3, q25m1nl21pl4, q35q1rl21sl4, ~87!

wherek,l ,m,n,p;q,r ,s are functions ofr, z alone. From the definitions~85!, ~86! and the condi-
tion ~70!, we may derive

QL52LQ, ~88!

whereas the particular Riemann-Hilbert problem~73! has the continuation

lPGl : ~Q1e22V0w1!L252L1~Q1e22V0w1!,

lPG2l : ~Q2e22V0w1!L252L1~Q2e22V0w1!, ~89!

l¹Gl ,G2l : L analytic in l.

The following solution of the regular Riemann–Hilbert problem~89! is based on the diago
nalization ofQ.

We consider a functionC defined by
                                                                                                                



3422 J. Math. Phys., Vol. 44, No. 8, August 2003 G. Neugebauer and R. Meinel

                    
Cª

1

Aw21e4V0
ln

L̂221A11w2e24V0 L̂21

L̂222A11w2e24V0L̂21

, ~90!

where

L̂5LS 1 Q11

0 Q21
D . ~91!

Note thatC has no branch points at the zeroesK1 , K2 , K̄152K2 and K̄252K1 of w21e4V0,

K1
25r0

2 i2m

m
, K2

25r0
2 i1m

m
@RK1,0, RK2.0, m as in ~75!# ~92!

~C is unaffected by a change in the sign ofAw21e4V0). It is an odd function ofl ~vanishing at
l50 and atl5`). Therefore, the function

Ĉ5C/@l~K1 iz!#5C/A~K2 iz̄!~K1 iz! ~93!

can be discussed as a unique function ofK with the following properties:
~i! Along G, because of~89!, it jumps according to

Ĉ25Ĉ11
2

A~K2 iz̄!~K1 iz!Aw21e4V0
ln

Aw21e4V01w

Aw21e4V02w
. ~94!

~ii ! Because of

L̂21
2 ~11w2e24V0!2L̂22

2 5Q 21
2 , ~95!

Q2152
2 f V0

2e22V0

f 1 f̄
~K2Ka!~K2Kb!, ~96!

the behavior forK→Ka/b is given by

Ĉ→ 62

A~Ka/b2 iz̄!~Ka/b1 iz!~wa/b
2 1e4V0!

ln~K2Ka/b! as K→Ka/b . ~97!

~The ambiguity of sign can be compensated for by the square root.!
~iii ! The behavior forK→`, because of the definitions ofQ andL, is given by

Ĉ→ ln f

V2K3 as K→`. ~98!

These properties are realized by the following representation ofĈ:
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Ĉ5
1

p i E2 ir0

ir0 ln@~Aw821e4V01w8!/~Aw821e4V02w8!#

A~K82 iz̄!~K81 iz!Aw821e4V0~K82K !
dK8

2 2E
K1

Ka 1

A~K82 iz̄!~K81 iz!~w821e4V0!~K82K !
dK8

2 2E
K2

Kb 1

A~K82 iz̄!~K81 iz!~w821e4V0!~K82K !
dK8, ~99!

whereKa andKb have to be determined such thatĈ5O(K23). The lower limits of integration in
the last two integrals have been fixed to obtain the correct result in the Newtonian limitm→0
whereKa /K1511O(m2) andKb /K2511O(m2). ~A systematic post-Newtonian expansion
the solution is given in Ref. 19.! Note that the last two terms in Eq.~99! may also be interpreted
as follows,

2 S E
K1

Ka
1E

K2

KbD 52 S E
Ka

K1
$2%1E

K2

KbD 5E
Ka

Kb

$1%1E
Ka

Kb

$2%, ~100!

showing that nothing special happens atK1 andK2 . In this symbolic notation$2% indicates that
the square root is meant to have the opposite sign with reference to the first term;$1% and $2%
denote different paths in the complexK-plane, which are chosen such that the closed integra

R 5E
Ka

Kb

$1%2E
Ka

Kb

$2%52 E
K1

K2
~101!

is performed around a contour enclosing the branch pointsK1 and K2 of Aw21e4V0. In the
subsequent formulas we normalizeK and introduce

X5
K

r0
, Xa/b5

Ka/b

r0
, X1/25

K1/2

r0
. ~102!

An asymptotic expansion of Eq.~99! for X→` (K→`) leads, according to~98!, to

ln f 5mF E
X1

Xa X2 dX

W
1E

X2

Xb X2 dX

W
2E

2 i

i hX2 dX

W1
G , ~103!

E
X1

Xa dX

W
1E

X2

Xb dX

W
5E

2 i

i hdX

W1
, E

X1

Xa X dX

W
1E

X2

Xb X dX

W
5E

2 i

i hXdX

W1
, ~104!

where the lower integration limitsX1 , X2 are given by

X1
25

i2m

m
, X2

252
i1m

m
~RX1,0, RX2.0!, ~105!

whereas the upper limitsXa , Xb must be calculated from the integral equations~104!. Here we
have introduced the abbreviations

W5W1W2 , W15A~X2z/r0!21~r/r0!2, W25A11m2~11X2!2, ~106!

and
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h5
ln~A11m2~11X2!21m~11X2!!

p iA11m2~11X2!2
. ~107!

The third integral in~103! as well as the integrals on the right-hand sides in~104! have to be taken
along the imaginary axis in the complex X-plane withh and andW1 fixed according toRW1

,0 ~for r, z outside the disk! andRh50. The task of calculating the upper limitsXa , Xb in ~104!
from

u5E
2 i

i h dX

W1
, v5E

2 i

i hXdX

W1
~108!

is known as Jacobi’s inversion problem. Go¨pel20 and Rosenhain21 were able to express the hype
elliptic functions Xa(u,v) and Xb(u,v) in terms of ~hyperelliptic! theta functions. Later on it
turned out that even the first two integrals in~103! can be expressed by theta functions inu and
v! A detailed introduction into the related mathematical theory which was founded by Riem
and Weierstraß may be found in Refs. 22–24. The representation of the Ernst potential~103! in
terms of theta functions can be be taken from Stahl’s book@see Ref. 22, p. 311, Eq.~5!#. Here is
the result: Defining a theta functionq(x,y;p,q,a) by

q~x,y;p,q,a!5 (
m52`

`

(
n52`

`

~21!m1npm2
qn2

e2mx12ny14mna ~109!

one can reformulate the expressions~103! and ~104! to give

f 5
q~a0u1a1v2C1 ,b0u1b1v2C2 ;p,q,a!

q~a0u1a1v1C1 ,b0u1b1v1C2 ;p,q,a!
e2(g0u1g1v1mw) ~110!

with u andv as in ~108! and

w5E
2 i

i hX2dX

W1
. ~111!

The normalization parametersa0 , a1 ; b0 , b1 ; g0 , g1 , the modulip, q, a of the theta
function and the quantitiesC1 , C2 are defined on the two sheets of the hyperelliptic Riema
surface related to

W5mA~X2X1!~X2X1̄!~X2X2!~X2X̄2!~X2 iz̄/r0!~X1 iz/r0!, ~112!

see Fig. 3. There are two normalized Abelian differentials of the first kind,

dv15a0

dX

W
1a1

XdX

W
, ~113!

dv25b0

dX

W
1b1

XdX

W
, ~114!

defined by

R
am

dvn5p i dmn ~m51,2;n51,2!. ~115!
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Equation~115! consists of four linear algebraic equations and yields the four parametersa0 , a1 ,
b0 , b1 in terms of integrals extending over the closed~deformable! curvesa1 , a2 . It can be
shown that there is one normalized Abelian differential of the third kind,

dv5g0

dX

W
1g1

XdX

W
1m

X2dX

W
, ~116!

with vanishinga-periods,

R
aj

dv50 ~ j 51,2!. ~117!

This equation definesg0 , g1 ~again via a linear algebraic system!. The Riemann matrix

~Bi j !5S ln p 2a

2a ln qD ~ i 51,2; j 51,2! ~118!

~with negative definite real part! is given by

Bi j 5 R
bi

dv j ~119!

and defines the modulip, q, a of the theta function~109!. Finally, the quantitiesC1 , C2 can be
calculated by

FIG. 3. Riemann surface with cuts between the branch pointsX1 andX̄1 , X2 andX̄2 , 2 iz/r0 and iz̄/r0 . Also shown are
the four periodsai andbi ( i 51,2). ~Continuous/dashed lines belong to the upper/lower sheet defined byW→6mX3 as
X→`.)3
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Ci52E
2 iz/r0

`1

dv i ~ i 51,2!, ~120!

where1 denotes the upper sheet. Obviously, all the quantities entering the theta functions a
exponential function in~110! can be expressed in terms of well-defined integrals and depen
the three parametersr/r0 , z/r0 , m. The corresponding ‘‘tables’’ fora i , b i , g i , Ci , Bi j , u, v,
w can easily be calculated by numerical integrations. Fortunately, theta series like~109! converge
rapidly. For 0,m,m0 , the solution~110! is analyticeverywhereoutside the disk—even at th
rings 2 iz/r05X1 , X2 . The complete metric, calculated according to~1! and~14!–~16!, is given
in the Appendix.

In the framework of the completely integrable evolution equations, the solution~110! may be
interpreted as a ‘‘Ba¨cklund-like’’ transformation of well-defined ‘‘seed’’ solutionsu,v,w satisfying
axisymmetric Laplace equations. The transformation ‘‘parameters’’a0 ,b0 ;a1 ,b1 ;g0 ,g1 ;
p,q,a;C1 ,C2 depend on the six branch points of the two-sheeted RiemannK-surface associated
with the functionW5W(X), cf. ~106!, and do not depend onu,v,w. All in all, f is a function of
the two parametersr0 andm and the two cylindrical coordinatesr andz. For m!1 we obtain the
Maclaurin disk as the Newtonian limit.

VII. PHYSICAL DISCUSSION

Since the Kerr black hole is also a two-parameter solution, it might be interesting to com
the behavior of both solutions in dependence on common parameters, say, on massM and angular
momentumJ. It must be possible to express the area of the horizon and the disk, the radiusr0 of
the disk or other physical quantities in terms ofM andJ. A very illustrative relation is the angula

FIG. 4. Relation between 2V0M andM 2/J for the classical Maclaurin disk~dashed line!, the general-relativistic dust disk
and the Kerr black-hole.17
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velocity V0 as a function ofM andJ, sinceV0 is defined in both cases. For black holes, we ha
derived the explicit expression~53!. Surprisingly, the corresponding disk of dust relation has
same scaling behavior, i.e.,MV0 is a function ofM2/J alone. Figure 4 shows this dependence
both solutions.17 For M2/J→1 ~corresponding tom→m0), where the disk solution become
identical with the extreme Kerr solution outside the horizon (r21z2.0), there is a ‘‘phase
transition’’ between the disk and the black hole. Note that for nonvanishingV0 , r0→0 as m
→m0 . A detailed analysis of the disk solution form→m0 , including the discussion of a differen
nonasymptotically flat limit of space–time, which is obtained for finiter/r0 and z/r0 (r21z2

50 !), can be found in Ref. 25.
We remark that~110! solves the Bardeen–Wagoner problem26 explicitly. All metric coeffi-

cients in~1! are analytic inr, z outside the disk and continuous through the disk. From a phys
point of view we have an extremely flattened rigidly rotating body and, likewise, a rota
continuous distribution of mass points interacting via gravitational forces alone~‘‘galaxy’’ model!.
Figure 5 illustrates the ‘‘parametric’’ collapse of a disk with the total mass-energyM , the baryonic
massM0 , the angular velocityV0 and the angular momentumJ towards the black hole limit
(12M /M050.373 2835...). Imagine a disk consisting of a fixed number of baryons~fixed M0):
Occupying states with decreasing energyM , it would shrink, thereby shedding angular mome
tum but increasing its angular velocity. The above mentioned limit of the relative binding en
12M /M0 corresponds to the extreme black hole limit. Additional physical effects~ergozones,
dragging effects, surface mass density,...! as well as further parameter relations have been
cussed in Refs. 3 and 27.

The methods outlined in this article could be used to construct self-gravitating disks aro
central black hole.
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APPENDIX: METRIC OF THE RIGIDLY ROTATING DISK OF DUST

The metric functions e2U, a, e2k calcutated from the Ernst potential~110! via ~14!–~16! are
given as follows:

FIG. 5. ~a! V0M0 and ~b! J/M0
2 as functions of the relative binding energy (M 02M )/M0 for the disk of dust.2
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e2U5
q~c!q* ~c!q~a!q* ~a!

q~0!q* ~0!q~a1c!q* ~a1c!
e2(g0u1g1v1mw),

11
~11V0a!e2U

V0r
5

q~0!q* ~0!q~a12c!q* ~a!

q~c!q* ~0!q~a1c!q* ~a1c!
,

e2k(r,z)5
k~r,z!

k~0,0!
,

with

k~r,z!5
q~a!q* ~a!

q~0!q* ~0!
expS 2k02

1

2 (
i ,k51

2

aiak

]2 ln q~x!q* ~x!

]xi]xk
U

x50
D ,

where

2k05
m2

4 E
2 i

i E
2 i

i

dXdX8
~l2l8!2

ll8

h~X!h~X8!~X2X1!~X2X2!~X81X1!~X81X2!

~X2X8!2 ,

l5AX2 iz̄/r0

X1 iz/r0
, l85AX82 iz̄/r0

X81 iz/r0
,

q~x!5q~x;p,q,a!5q~x1 ,x2 ;p,q,a!,

q* ~x!5qS x11
ip

2
,x21

ip

2
;p,q,a D ,

a5~a1 ,a2!5~a0u1a1v,b0u1b1v !, 05~0,0!, c5~C1 ,C2!.
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Twistor theory of hyper-Ka ¨hler metrics with hidden
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We review the hierarchy for the hyper-Ka¨hler equations and define a notion of
symmetry for solutions of this hierarchy. A four-dimensional hyper-Ka¨hler metric
admits a hidden symmetry if it embeds into a hierarchy with a symmetry. It is
shown that a hyper-Ka¨hler metric admits a hidden symmetry if it admits a certain
Killing spinor. We show that if the hidden symmetry is tri-holomorphic, then this is
equivalent to requiring symmetry along a higher time and the hidden symmetry
determines a ‘‘twistor group’’ action as introduced by Bielawski@Twistor Quotients
of Hyper-Kähler Manifolds~World Scientific, River Edge, NJ, 2001!#. This leads to
a construction for the solution to the hierarchy in terms of linear equations and
variants of the generalized Legendre transform for the hyper-Ka¨hler metric itself
given by Ivanov and Rocek@Commun. Math. Phys.182, 291~1996!#. We show that
the ALE spaces are examples of hyper-Ka¨hler metrics admitting three tri-
holomorphic Killing spinors. These metrics are in this sense analogous to the ‘‘fi-
nite gap’’ solutions in soliton theory. Finally we extend the concept of a hierarchy
from that of our earlier work@Commun. Math. Phys.213, 641 ~2000!# for the
four-dimensional hyper-Ka¨hler equations to a generalization of the conformal anti-
self-duality equations and briefly discuss hidden symmetries for these
equations. ©2003 American Institute of Physics.@DOI: 10.1063/1.1588466#

I. INTRODUCTION

It is well known that finding exact solutions to a nonlinear partial differential equation~PDE!
is greatly simplified by the existence of symmetries. In differential geometric language the
metries of a hyper-Ka¨hler structure or, more generally, anti-self-dual conformal structures in
dimensions, correspond to~conformal! Killing vectors. Equations for hyper-Ka¨hler four-manifolds
with conformal Killing vectors have been studied and, in many cases, solved.11,31,9,10

Apart from natural Lie-point symmetries, integrable soliton equations possess infinitely
hidden symmetries, which can also be effectively used to construct solutions. It is less well k
how to find such solutions in hyper-Ka¨hler geometry~although we will see that such solution
have indeed been found in another guise3,17,20!. In this article we shall show that hidden symm
tries correspond to Killing tensors and spinors~which, classically, occur in Riemannian geomet
as additional integrals of the geodesic flow! and propose two methods of finding hyper-Ka¨hler
metrics with such symmetries.

We start by briefly reviewing a beautiful construction of Novikov24 which we shall posit as a
motivation and a guiding principle. Consider the Korteveg–de Vries~KdV! equation

ut1
56uux2uxxx , where u5u~x,t1!, ~1!

a!Electronic mail: m.dunajski@damtp.cam.ac.uk
34300022-2488/2003/44(8)/3430/25/$20.00 © 2003 American Institute of Physics
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together with the associated hierarchy of equations foru(x,t1 ,t2 , . . . )

]u

]t i
5

]

]x

dHi

du
. ~2!

Here

H05E 1

2
u2dx, H15E S 1

2
ux

21u3Ddx, H25E S 1

2
uxx

2 2
5

2
u2uxx1

5

2
u4Ddx, ...

are constants of motions which can be found recursively by solving the Riccati equation. Imp
a constraint

]u

]tk
1c1

]u

]tk21
1 ¯ 1ck

]u

]t0
5c0 ~3!

reduces~1! to an ordinary differential equation~ODE!. This ODE is a completely integrabl
Hamiltonian system withk first integrals in involution. In the simplest nontrivial case the solut
is

x5E du

A2u31c1u212c0u1E
.

In the case of the KdV equation, it is then possible to proceed to obtain explicit formulas for
solutions in terms of theta functions.

For a general integrable system, hidden symmetries are constructed systematically by s
a hierarchy of commuting flows associated to the original equations. A hidden symmetry is th
explicit point symmetry of the hierarchy which, in particular, include the higher flows themse

In this article we shall propose an analogous construction of hidden symmetries fo
hyper-Kähler equations in four dimensions and its integrable generalizations, which inc
quaternionic structures in 4k dimensions. Recall that a four-dimensional Riemannian mani
(M,g) is hyper-Kähler if it admits three Ka¨hler structuresS I , SJ, andSK compatible withg and
such that the endomorphismsI , J, K given byg(IX,Y)5S I(X,Y), etc., satisfyIJ5K52JI. To
impose higher symmetries on this system one needs to

~1! reformulate the hyper-Ka¨hler condition on a metric as an integrable PDE~theheavenly equa-
tion!,

~2! construct the associated hierarchy, and
~3! look for solutions invariant under the hidden symmetries, and characterize twistor s

corresponding to these solutions.

Steps~1! and~2! were taken in Ref. 27, and Refs. 5, 30, 29, and 8, respectively. We shall re
the approach taken in Ref. 8 in Sec. II which focuses on hierarchies associated to four-dime
hyper-Kähler spaces. This is generalized in Sec. VI to give a hierarchy associated to g
conformally ASD spaces both in four dimensions and their higher dimensional generaliz
such as quaternion Ka¨hler spaces. The other sections deal with~3!.

In Secs. III and IV we discuss symmetry and hidden symmetry reduction in the context
four-dimensional hyper-Ka¨hler equations. In Sec. III we first discuss and classify symmetrie
solutions to the hyper-Ka¨hler hierarchy. We use the well known twistor description31 of the
Gibbons–Hawking solution as a guiding example in our analysis of the case of the hierarch
show that when the symmetry is triholomorphic, the solutions of the reduced equations are
and we briefly discuss the corresponding twistor theory. The hyper-Ka¨hler hierarchy is in particu-
lar foliated by four-dimensional hyper-Ka¨hler manifolds that admit a hidden symmetry in a varia
of the Ivanov and Rocek construction.17
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In Sec. IV we discuss hyper-Ka¨hler spaces with a hidden symmetry, defined to be a space
embeds into a hierarchy that has a symmetry. In the general case, we show that a hidden sy
corresponds to the existence of a spinorKB

08 . . . B
k8

B
satisfying

¹ (A
(A8KB

08 . . . B
k8)

B)
50. ~4!

When the hidden symmetry is ‘‘triholomorphic’’ in an appropriate sense, we find thatKB
08 . . . B

k8
B

5¹ (B
08

B
LB

18¯B
k8) for some spinor fieldLB

18¯B
k8

satisfying

¹A(A8LB
18 . . . B

k8)50. ~5!

A nonconstant solutionLA
18 . . . A

k8
to the Killing-spinor equation~5! is said to be a Killing spinor of

type (0,k) and is also sometimes known as a solution to the valence-(0,k) twistor equation. Ifk

52, thenKAA85¹A
B8LA8B8 is a triholomorphic Killing vector of the given hyper-Ka¨hler space, and

the corresponding metric is of the Gibbons–Hawking form.12

If the metric admits a hyper-Ka¨hler hidden symmetry and hence Killing spinor, then t
corresponding twistor space admits a globally defined twistor functionQ homogeneous of degre
k. This is because the existence of a Killing spinor implies that the twistor space of the h
Kähler hierarchy admits an action of a Hamiltonian vector field with HamiltonianQ and factor
spaceO(k). The hyper-Ka¨hler twistor space therefore arises as an affine bundle overO(k),
described by a cohomology classf PH1(CP1,O(22k)). The corresponding space–time can
determined directly and the construction followed through to give explicit formulas for a bas
the self-dual two-forms~and therefore for the metric!.

In Sec. V, we demonstrate that the asymptotically locally Euclidean~ALE! spaces constructe
by Hitchin15 and Kronheimer18,19admit three triholomorphic hidden symmetries. We show that
corresponding twistor spaces are elliptic fibrations overO(k) for some k, and the transition
functions defining these bundles can be found in terms of elliptic integrals.

Finally in Sec. VI we extend the concept of a hierarchy from that of Ref. 8 for the f
dimensional hyper-Ka¨hler equations to a generalization of the conformal anti-self-duality eq
tions and give a brief discussion of hidden symmetries in this context.

The two-component spinor notation used in the article is summarized in the Appendix.

II. THE HYPER-KÄHLER HIERARCHY

Let M be a complex four-manifold equipped with a holomorphic metricg and compatible
volume formn; we shall refer to this triple as aspace–time. For a four-manifold with metric, we
have thatTM5S^ S̃ where S and S̃ are the bundles of self-dual and anti-self-dual spino
respectively, each being rank two complex vector bundles onM. The metric connection neces
sarily preserves this factorization, and the hyper-Ka¨hler condition is equivalent to the conditio
that the induced connection onS̃ be flat.~The I , J, andK act trivially on theS̃ factor and on the
S factor by Paulis matrices.! This implies that, on translation of the one-form indices to indic
A,B,... denoting membership ofS andA8,B8,... denoting membership ofS̃, the curvature has the
form

RAA8BB8CC8DD85«A8B8CABCD«C8D8 , CABCD5C(ABCD) ,

where «AB and «A8B8 are skew, and«AB«A8B8 induces the metric underTM5S^ S̃. In four
dimensions this amounts to the ASD vacuum equations

FABA8B850, R50, CA8B8C8D850. ~6!
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HereR is the Ricci scalar,FABA8B8 is the trace-free part of the Ricci tensor, andCA8B8C8D8 is the
SD part of the Weyl tensor~we use the conventions of Penrose and Rindler26!.

We now show how the geometrical characterization of the hyper-Ka¨hler equations and its
hierarchy can be reduced to differential equations. We use a potential formulation, d
Pleban´ski,27 based on the fact that the equations locally imply the existence of a complex-v
function Q and coordinate system (w,z,x,y) such that the metric is given by

g52dwdx12dzdy22Qxxdz222Qyydw214Qxydwdz, ~7!

andQ satisfies so-called second heavenly equation

Qxw1Qyz1QxxQyy2Qxy
2 50. ~8!

The associated hierarchy is a differential equation with higher times generalizing one o
formulations of the hyper-Ka¨hler equations in terms of potentials. We introduce the coordin
xAi,A50,1,i 50, . . .n, on a (2n12)-dimensional manifoldN. The dependent variableQ(xAi)
satisfies the equations

]Ai]B j21Q2]B j]Ai21Q1$]Ai21Q,]B j21Q%yx50, i , j 51, . . . ,n. ~9!

Here$ . . . , . . .%yx is the Poisson bracket with respect to the Poisson structure]/]xA0∧]/]xA0 . @In
order to make contact with the above forn51, putxA05(y,2x) andxA15(w,z) and note that~8!
is ~9! with i 5 j 51.]

This hierarchy has a Lax representation

LAiF5]Ai21F1l~]AiF1$]Ai21Q,F%!50, ~10!

where A50,1, i 51,...,n, l is an affine coordinate onCP1 and F(xAi,l) is a function onN
3CP1. It is clear that this provides the point of contact with the abstract definition.

It is clear from the form of the equations~10! that the spaceN is foliated by four-dimensiona
hyper-Kähler manifolds parametrized byxAi5const fori>2.

In Ref. 8 the hierarchies were obtained both via a rescursion operator construction and
twistor construction. We shall summarize these constructions in the remaining part of this se

Let

hQ5]x]w1]y]z1Qyy]x
21Qxx]y

222Qxy]x]y

denote the wave operator on the ASD background determined byQ, and letWQ5Ker hQ .
Proposition 2.1:8

(i) Elements ofWQ can be identified with linearized solutionsdQ [i.e., (Q1dQ) satisfies~8! up
to the linear terms indQ] of the heavenly equation (8).
(ii) Let (dQ1dQ2)PWQ3WQ . The ‘‘recursion operator’’ R is defined to be the subspac
R,WQ3WQ on which

]y~dQ2!5~]w2Qxy]y1Qyy]x!dQ1 , 2]x~dQ2!5~]z1Qxx]y2Qxy]x!dQ1 . ~11!

Note that the recursion operator is only an operator in the usual sense when the subspaceR can
be realized as a graph of a genuine operatorR:WQ→WQ given by the recursion relations

RdQ5]y
21~~]w2Qxy]y1Qyy]x!dQ!, RdQ52]x

21~~]z1Qxx]y2Qxy]x!dQ!. ~12!

This identification with a genuine operator will only be possible when we impose approp
boundary conditions. However, for the definition of the hierarchy as a local system of equa
we will need only the definition ofR above.

The first few iterations can be explicitly integrated to give
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w→y→2Qx→Qz→¯ , z→2x→2Qy→2Qw→¯ .

We introduce the new coordinatesxAi, A50, 1, i 50, . . . ,n. For i 50, 1, xAi5xAA8

5(w,z,x,y) are coordinates onM, and for 1, i<n,xAi are the parameters for the new flow
~with 2n22 dimensional parameter spaceX!. The propagation ofQ along these parameters
determined by the recursion relations]Ai11Q5R]AiQ. However, the consistency conditions im
ply that in additionQ satisfies the equations~9! with the Lax system generated by the operat
~10!.

The twistor theory is summarized in the following:
Theorem 2.2:8 There is a 1-1 correspondence between solutions to (9) onM3X and twistor

spacesPTn defined as follows.
The twistor spacePTn is a three-dimensional complex manifold with the following structur

(1) a projectionm:PT→CP1,
(2) a section s:CP1°PT of m with normal bundleO(n) % O(n),
(3) a nondegenerate two-formS on the fibers ofm, with values in the pullback fromCP1 of

O(2n).
(4) The choice of coordinate systems and potentialQ in the second Plebanski form for th

hierarchy corresponds on the twistor space to a choice of point@oA8#PCP1 and canonical
homogeneous degree n coordinatesvA ~i.e., S5dv0∧dv1) on a neighborhood of the fibe

of PTn over @oA8# defined up to2nth order away from this fiber.

Briefly, the spaceM3X is reconstructed as the moduli spaceN of deformations of the sections
given in condition~2! above. ThenN is 2n12-dimensional and we can introduce coordinates a
the functionQ as follows:

We use homogeneous coordinatespA85(p08 ,p18) and affine coordinatel5p08 /p18 onCP1

so that the pointo is represented byoA85(0,1), orl50. The homogeneous coordinatesvA @i.e.,
(vA,pA8).(cnvA,cpA8) for cP$C20%] can be pulled back toN3CP1 and the expansionvA

5p18
n

( i 50
n xA,il i1O(ln11) and this defines coordinatesxA,i on N.

ExpandingvA further, we discover, as shown in Ref. 8, that the twistor coordinatesvA pulled
back to the correspondence spaceCP13N can be expanded further as

vn
05~p18!

nFx0n1lx0n211¯1lnx001ln11
]Q

]x101ln12
]Q

]x111¯1l2n11
]Q

]x1n 1¯G ,

~13!

vn
15~p18!

nFx1n1lx1n211¯1lnx101ln11
]Q

]x001ln12
]Q

]x011¯1l2n11
]Q

]x0n 1¯G ,

and this determinesQ(xAi) ~up to a constant! satisfying~9!. The form of the Lax system~10! is
determined by the fact thatvB are solutions toLAiv

B50.
The form of the expansions~13! and Eqs.~9! can be obtained from the fact that the expans

of S5dv0∧dv1 on N3CP1 in powers ofl must truncate afterl2n.
There is a 2n-dimensional distribution on the ‘‘spin bundle’’D,T(N3CP1) that is tangent to

the fibers of the projectionN3CP1→PTn . The distribution D has an identification with
O(21)^ C2n and is generated by the Lax system~10!.

This correspondence is stable under small perturbations of the complex structure oPTn

preserving~1!–~3!.
One can find the twistor spaces for the four-dimensional hyper-Ka¨hler slices given byxAi

5const,i>2, by taking a sequence ofn21 blowups of points in the fiber overoA8PCP1, the
choice of point in the fiber to blow up at the (n2 i 11)th blowup corresponding precisely to th
choice of the values ofxAi. If one wishes to respect Euclidean reality conditions, one can ins
blow up complex conjugate points in the fibers overoA8 and ôA8 .
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III. SYMMETRIES OF HYPER-KÄHLER HIERARCHIES

For a hyper-Ka¨hler space, we can characterize conformal symmetries as follows: letSA8B8

5(S0808,S0818,S1818) be a basis of SD two-forms, and letS5SA8B8pA8pB8 .
Definition 3.1: A solution to the hyper-Ka¨hler equations admits a symmetry if there exists

vector field K onN together with a lift K̃to SA8 over N such thatLK̃S50.

Here the lift must beK̃5K1fB8
A8pA8]/]pB8 wherefB8

A852 1
2¹BB8K

BA82 1
2¹cK

c«B8
A8 according to

the standard theory of Lie derivatives of spinors, see Ref. 26.
We will use this also as a definition for symmetries of the hyper-Ka¨hler hierarchy where now

S will be the pull-back from twistor space to the spin bundle of the corresponding two-form
is homogeneous of degree 2n in pA8 .

Definition 3.2: A solution to the hyper-Ka¨hler hierarchy admits a symmetry if there exists

vector field K onN together with a lift K̃to SA8 over N such thatLK̃S50.

Again, by homogeneity, we must have that the lift must beK̃5K1fB8
A8pA8]/]pB8 wherefB8

A8 will
be determined byK.

In particular,K̃ is therefore in involution with the Lax distributionD so that it projects down
to a global holomorphic vector fieldK on the twistor spacePT.

We can classify symmetries according to the extent to which they preserve the various
tures onSA8 or on the twistor space. This is most easily seen by examining the vertical pf

5fA8
B8pB8]/]pA85K̃2K ~where hereK̃ denotes the horizontal lift ofK). The matrixfA8

B8 generi-
cally has two constant eigenvalues~the space–time must be of Petrov typeN for nonconstant
eigenvalues to be admissable!.

~1! K will be said to betriholomorphic if the eigenvalues offA8
B8 are equal. The projection ofK̃

to the projective spin bundle,PSA8, is then horizontal, and the vertical partf of K̃ on SA8 is

a multiple of the Euler homogeneity operatorpA8]/]pA8, i.e.,fA8
B85mdA8

B8 . Equivalently, it is
triholomorphic if K is tangent to the fibers of the projectionp:PTn°CP1.

~2! K is said to be Killing if the trace off vanishes,fA8
A850. Thenf preserves the formpA8dpA8

on the spin bundle.

~3! K is said to be a homothety if the trace off, fA8
A8 is constant, i.e.,LK̃«A8B8pA8dpB8

5m«A8B8pA8dpB8 for some constantmÞ0.

In the case that the symmetry is not triholomorphic, we can further distinguish the case whf,
on projection to the projective spin bundle, has one or two zeroes. In the single zero c

particular,fA8
B8 will not be diagonalizable. We will not pursue this distinction here but see Re

and 10 for a study of such symmetries on (1122) hyper-Kähler space.

A. Examples with triholomorphic Killing symmetry

We first consider well known reductions of the hyper-Ka¨hler equations, and then analogo
reductions of the hierarchy.

1. Gibbons –Hawking metrics revisited

The heavenly equation~8! with R(Qx)5Qz50 can be expressed as

dQx∧dx∧dy1dw∧dQx∧dQy50. ~14!

IntroducepªQx and perform a Legendre transform

F~p,y,w!ªpx~w,y,p!2Q~w,z,y,x~w,y,p!!.

Thenx5Fp , Qy52Fy and ~14! yields the wave equation11
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Fpw1Fyy50. ~15!

Implicit differentiation gives

Qyy52Fyy1
Fpy

Fpp
, Qxy52

Fpy

Fpp
, Qxx5

1

Fpp
,

and so@with the help of~7! and ~15!#

g5FppS 1

4
dy21dwdpD2

1

Fpp
S dz2

Fpp

2
dy1FpydwD 2

5cS 1

4
dy21dwdpD2c21~dz1V!2,

~16!

wherec5Fpp and V5Fpydw2(Fpp/2)dy satisfy the monopole equation* dc5dV from ~15!.
Thus ~16! is of the Gibbons–Hawking form.12

The twistor description is as follows: the twistor coordinates pull back to the spin bund

v05p18@w1ly2l2Qx1l3Qz1¯#,

v15p18@z2lx2l2Qy2l3Qw1¯#. ~17!

The vanishing ofQz implies that the whole series forv0 truncates at second order. Thus t
twistor space admits a global section ofO~2!, and this is the Hamiltonian with respect toS, for the
holomorphic vector field corresponding to the Killing field]z5KAA8]AA8 . Conversely, given a
triholomorphic symmetry, the triholomorphicity condition means that its lift to the spin bundleM
is horizontal and so, on twistor space, the corresponding holomorphic vector field is tangent
fibers ofm. It also preservesS and so is Hamiltonian with Hamiltonian given by a homogene
degree-2 global function. We can choosev0 to be this preferred section divided byp18 so that the
series forv0 terminates afterl2.

Substituting the Legendre transform into~17! yields

v05p18@w1ly2l2p#, ~18!

v15p18@z2lFp1l2Fy1l3Fw1¯# . ~19!

With the definitionS5dv0∧dv1ul5constthe equation~15! can be rewritten asS∧S50. The basis
of SD two-forms can be read off fromS5SA8B8pA8pB8 :

S080852dz∧dp1dy∧dFp2dw∧dFy , S08185dz∧dy1dw∧dFp , S18185dz∧dw,

and these determine the metric above.

2. Triholomorphic symmetry reductions of the hierarchy

In this subsection we shall generalize the construction of Gibbons–Hawking metrics des
in the last subsection, and generate solutions to the hyper-Ka¨hler hierarchy such thatRnQx

5]1nQ50. These are the cases of a triholomorphic Killing symmetry.
Proposition 3.3: The hyper-Ka¨hler hierarchy (9) with symmetry]Q/]x1n50 reduces (in

appropriate coordinates) to an overdetermined system of n(2n21) linear equations for
F(t0, . . . ,t2n):

]2F

]t i 11]t j 5
]2F

]t i]t j 11 , i , j 50, . . . ,2n21. ~20!
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Proof: Let PTn be the twistor space from Proposition 2.2, and let (vn
A ,pA8) be homogeneous

coordinates on the neighborhood ofpA85oA8 . ~In the previous sectionPTªPT1 and vA
ªv1

A

correspond to the standard situation of the nonlinear graviton construction.!
Now impose the symmetry condition, i.e., assume thatRnQx5]1nQ50. Again, the vanishing

of ]1nQ implies that the series~13! in l for v0 truncates at degree 2n. @Thus,p18
n v0 is a global

holomorphic function of homogeneity degree-2n on PTn . Conversely, again, this symmetry co
responds to a global holomorphic vector field onPTn that is vertical up the fibers ofm and
preservesS. It therefore is generated by a global HamiltonianQ homogeneous of degree 2n, and
we can take as beforev05Q/p18

n .]
We can now perform the Legendre transform

pi5]1iQ, i 50, . . . ,n21, F~pj ,x0 j !5 (
i 50

n21

pix1i~pj ,x0 j !2Q~x0 j ,x1i~pj ,x0 j !!, x1n5T.

~21!

Therefore]0iF52]0iQ,]pi
F5x1i . Define 2n11 functions (t0, . . . ,t2n) by

tn2 i 215pi , i 50, . . . ,n21, tn1 i5x0i , i 50, . . .n.

This implies

vn
05~p18!

n@ t2n1lt2n211¯1l2nt0#, ~22!

vn
15~p18!

nFT1l
]F

]t0 1l2
]F

]t1 1¯1l2n11
]F

]t2n 1¯G . ~23!

Equations~20! arise from the vanishing of coefficientl2n12 in dvn
0∧dvn

1 :

(
i 50

2n21

dt i∧d
]F

]t i 11 50.

It can also be verified by cross-differentiating that all integrability conditions for the system~20!
are satisfied. h

The geometry on twistor space can be understood as follows. The sectionQ of O(2n)
generates a Hamiltonian flow

K5«AB
]Q

]vA

]

]vB , «AB52«BA , «0151,

on the extended twistor spacePTn . This flow corresponds toK AA18 . . . An8]AA
18 . . . A

n8
5]/]x1n on N.

SinceQ is constant alongK, the quotient spacePTn /K is the total space ofO(2n)→CP1 where
the map toO(2n) is furnished by (vA,pA8)→(Q,pA8).

The full twistor spacePTn is an affine line bundle with trivial underlying translation bund
and so it corresponds to an elementG(Q,pA8) of H1(O(2n),O).

Sections ofO(2n)→CP1 are parametrized byC2n11 with coordinatest5(t0, . . . ,t2n). The
2n12-dimensional space of sections ofPTn→CP1 maps onto this with fiberC parametrized byT.
Choosing linear coordinates up the line bundleh and h̃ over open setsU andŨ, the problem of
lifting a curveL t in O(2n) to one inPTn is one of finding a trivialization of the line bundle ove
Lt , i.e., of finding functionsg(t,pA8) and g̃(t,pA8) such that, onUùŨ, g2g̃5G on restriction
to Lt whereG is the log of the patching function for the line bundle, and therefore has hom
neity degree zero. We can then takeh5T1g. We can give a formula forg as
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g~ t,l!5 R
g
G~ t2n1zt2n211¯1z2nt0,z!dz/~z2l!,

where the contourg is taken inLtùUùŨ surroundingz in U. With an identical expression forg̃
but with contourg̃ such thatg2g̃ surroundsz, we see thatg2g̃5G follows from Cauchy’s
integral formula. Then the expression for the expansion of the coordinateh5T1g aboutl50 is

h5T1(
i 50

l i R G~Q~ t,z!,z!dz/z i 11 .

It can then be seen that if we define

F~ t!5 R
G

G~ t2n1lt2n211¯1l2nt0,l!

l2 dl,

then F clearly satisfies the equations of~20! and we obtain the expansions~22! for (v0,v1)
5(Q/p18

n ,p18
n h). These can then be used to obtain concrete expressions forS5dv0∧dv1 to

determine the geometric structures of the hyper-Ka¨hler hierarchy.
Clearly we have the following.
Lemma 3.4: The full space of the hierarchy is foliated by hyper-Ka¨hler four-manifolds with

xAi5constant for i.1 and metric

2dx10dx0112dx11dx0022
]2Q

]~x10!2 ~dx11!222
]2Q

]~x00!2 ~dx01!224
]2Q

]x00]x10dx01dx11. ~24!

This gives a variant of the Legendre transform of Ivanov and Rocek17 ~see also Ref. 3!.

B. Example for nÄ2

We saw above that forn51 the construction is equivalent to the Gibbons–Hawking anz
The n52 case goes as follows:

Let Fiª] t iF. Implicit differentiation of ]0iF52]0iQ,]pi
F5x1i with respect top0 ,p1 ,y

yields

Qxx52
F00

M
, Qxy5

2F01F021F00F12

M
, Qyy52F222

F00~F12!
222F01F12F021F11~F02!

2

M
,

whereMª(F01)
22F00F11. The metric~7! with x5x(t i),z5z(t i) is defined on the surfaceF4

50. The formula for the metric in terms ofF is not very illuminating, but we shall give it for the
sake of completeness:

g5M 21~F10Ndt1dt21F00Ndt0dt21F11~F01!
2~dt2!21F11

3 ~dt3!212F01~F11!
2dt2dt3

12F01~F00!
2dt0dt11F00

3 ~dt0!21F00~F01!
2~dt1!21@F11N1F01F00F03#dt1dt3

1@3F01F00F112~F01!
31~F00!

2F03#dt0dt3!, ~25!

whereNª(F01)
21F00F11.

IV. HYPER-KÄHLER SPACES WITH HIDDEN SYMMETRIES

If we have a hyper-Ka¨hler space that embeds into a hyper-Ka¨hler hierachy that admits a
symmetry we will say that that the original hyper-Ka¨hler space admits ahidden symmetry.

The first question we wish to address is of how to recognize when a hyper-Ka¨hler space
admits such a hidden symmetry.
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Proposition 4.1: If a hyper-Ka¨hler spaceM admits a hidden symmetry, then it admits
solution to the equation

¹ (A
18

(A
KA

28¯A
n8)

B)
50. ~26!

Proof: This result is most easily seen from the twistor theory. The symmetry vectorK gives
rise to a global holomorphic vector fieldK on the twistor space forN, PTn . The twistor spacePT1

for M is a region in the blowup ofPTn at a number of points. Thus we have a mapp:PT1

→PTn . So rather than considerK itself, we consider the two-formK4nn weight 2n12 where
nnPG(PTn ,V3(2n12)) is given bySn∧pA8dpA8.

This two-form can be pulled back to givep* K4nn a global two-form of weight 2n12 on the
twistor spacePT1 for M. This two-form can then be pulled back to give a two-form on t
spin-bundleSA8 which must take the form

K4nn5~KAA18¯A2n218 e
A

A2n8 pA
18
¯pA

2n8
∧pB8dpB81xA

18¯A
2n8

pA18¯pA2n8 !S1

for someKAA18¯A2n218 andxA
18¯A

2n8
.

The condition that this two-form descends to twistor space is the condition that

pA8¹AA84d~K4nn!50.

This leads to Eq.~26! and

¹ (A
18

A
KA

28¯A
2n8 )A5xA

18¯A
2n8

, ¹A(A8xA
18¯A

2n8 )50 .

However, it can be checked that these two equations are a consequence of~26!, if the first equation
is taken to be the definition ofxA

18¯A
2n8

. h

A. The case of a hidden triholomorphic Killing symmetry

The case of a hidden triholomorphic Killing symmetry reduces to linear equations and c
worked through completely modulo some intergations and solving for implicit functions. Th
effectively the case studied by Ivanov and Rocek17 and generalized by Bielawski.3

In the triholomorphic Killing case, we have the following.
Lemma 4.2: SupposeM admits a hidden triholomorphic Killing symmetry. ThenxA

18¯A
2n8

50 and there exists a spinorfA
28¯A

2n8
such that

¹AA8fA
18¯A

2n8
5KA(A

18¯A
2n218 «A

2n8 )A8 .

Proof: The vanishing ofxA
18¯A

2n8
50 follows from the fact thatK is tangent to the fibers o

twistor space overCP1. The existence offA
18¯A

2n8
follows from the fact thatK is Hamiltonian

with respect to the symplectic formsSn up the fibers ofm and so is generated by a Hamiltonia

QPG(O(2n)). On pullback to the spin bundleQ5fA
18¯A

2n8
pA18¯pA2n8 and the condition thatQ

descends to twistor space ispA8¹AA8Q50 and this gives the equation above. h

The above lemma shows that a Killing spinor on an ASD vacuum determines a functiQ
homogeneous of degreek on its twistor spacePT. This in turn implies the following lemma.

Lemma 4.3: If an ASD vacuum space–time admits a Killing spinor, its twistor spacePT is an
affine line bundle overO(k) with underlying translation bundleO(22k).

Proof: The existence of a global twistor function homogeneous of degreek on PT gives a
projection ontop:PT→O(k). Furthermore, the fiber is spanned by the Hamiltonian vector fiel
Q with respect toS, in local coordinates,
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K5«AB
]Q

]vA

]

]vB .

This is a vector field with values inO(k22). This gives each fiber an affine linear structure wh
is twisted globally byO(22k), since, ifa is a local section ofO(22k) overCP1, thenaK is a
vector whose flows determine an action ofC. ThusPT→O(k) is an affine line bundle overO(k)
with underlying translation bundleO(22k). h

Such affine line bundles are classified by elements@ f # of H1(O(k),O(22k)). In a Cech
description, coverO(k) by open sets,Ui , and represent@ f # by its Cech representativef i j

PG(O(22k),UiùU j ). Then PT is constructed by patching together the total space ofO(2
2k)→Ui to O(22k)→U j by translating the zero section byf i j . The data@ f # therefore deter-
mines the twistor space. This proves the first part of the following theorem.

Theorem 4.4: There is a one-to-one correspondence between ASD vacuum space–times
(M,g) admitting a valence(0,k) Killing spinor and elements@ f # of H1(O(k),O(22k)).

In this case, for k>3, M admits a natural map intoCk115(kSA8 which we coordinate with

tA18¯Ak8. The hyper-Ka¨hler spaceM is determined as a subset ofCk11 by the k23 constraints

f A
18¯A

k248 ª R
G
pA

18
¯pA

k248 f ~Q,pA8!p•dp50.

The basis of SD two-forms for g is then given by the restriction of the forms

SA18B185cB
28¯B

k8A
28¯A

k228 dtA18¯Ak8∧dtB28¯Bk8A
k8
, ~27!

to M, where

cA
18¯A

2k248 5
1

2p i R
G
pA

18
¯pA

2k248
] f

]Q
p•dp ~28!

is a field determined by an arbitrary element of H1(O(k),O(22k)).
Proof: If one wishes to obtain the space–time (M,g,n) determined by a given twistor spac

the first task is to locate the four-dimensional family of sections of the fibrationPT→CP1.

Let tA18¯Ak85t (A18¯Ak8) be coordinates on theCk115(kSA8 parameter space of section

s t :pA8→Q5tA18¯Ak8pA
18
¯pA

k8
PG(O(k)). Sections ofPT→CP1 determine sections ofO(k) by

projection ontoO(k). However, the affine line bundlePT only admits a section over somes t if
the cohomology class@ f # vanishes on restriction tos t . If @ f # vanishes on restriction tos t , PT
restricts to become the line bundleO(22k) so that there is a 32k-dimensional family of sections
over s t for 32k.0 or just the zero-section otherwise.

To obtain explicit formulas, we first note that@ f # determines a field

f A
18¯A

k248 ~ tB18¯Bk8!5 R
g,s t

pA
18
¯pA

k248 f pB8dpB8

on Ck11 ~here we express the natural pairing as a contour integral over some contourg t in s t

where herex is a Cech representative!. This vanishes at sometA18¯Ak8 iff @ f # vanishes on the
correspondings t . Thus, for 32k.0, M is fibered over the zero set ofxA

18¯A
k248 in Ck11 with

32k-dimensional fibers, and is simply identified with this zero set fork>3.
In order to calculate the SD two-forms associated to the space–time, we use the met

Gindikin,13 and pullbackS to the spin-bundle. To this end, introduce local homogeneous coo
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nates (pA8 ,Q,z i)5(cpA8 ,cQ,c22kz i) on each setUi of some Stein cover twistor space; herez i

is a fiber coordinate up the fibers of the affine line bundlePT→O(k) onUi with patching relations
z i5z j1 f i j on UiùU j . In these coordinates

S5dhQ∧dhz i ,

where dh denotes the exterior derivative in whichpA8 is held constant, i.e., horizontal on the sp
bundle over space–time~although slightly confusingly, vertical with respect to the fibrationPT
→CP1). This formS is globally defined on vector fields tangent to the fibers ofPT→CP1 as f i j

does not depend onz i .
In order to evaluate this, we need to find the values ofz i on the sections ofPT→CP1. These

are obtained by a splitting formula due to Sparling.

On as t for which f A
18¯A

k248 (tB18¯Bk8)50, we can findz i(t,pA8) such that

z i~ t,pA8!5z j~ t,pA8!1 f i j ~ tA18¯Ak8pA
18
¯pA

k8
,pB8! . ~29!

For k>3 this solution will be unique, but fork,3 we will be free to addxA18¯Ak228 pA
18
¯pA

k228

to the solution.
In the formula forS we can rearrange so that we have

S5dhQ∧dhz i5dtA18¯Ak8∧dh~pA
18
¯pA

k8
z i ! .

Applying dh to Eq. ~29!, and multiplying byk23 of thep’s, we obtain

dh~pA
18
¯pA

k238 z i !5dh~pA
18
¯pA

k238 z j !1
] f i j

]Q
pA

18
¯pA

k238 pB
18
¯pB

k8
dtB18¯Bk8 .

The cocycle] f i j /]Q defines a class inH1(O(k),O(222k)) so that the expression above tak
values inO(21) on CP1 for each fixedt. Thus the splitting as stated exists and is unique si
H0(CP1,O(21))5H1(CP1,O(21))50. This gives

dh~pA
18
¯pA

k238 z i !5ki ,A
18¯A

k238 B
18¯B

k8
dtB18¯Bk8 ,

whereki ,A
18¯A

2k238 is defined by the splitting relation

ki ,A
18¯A

2k238 2kj ,A
18¯A

2k238 5pA
18
¯pA

2k238
] f i j

]Q

or alternatively the contour integral formula

ki ,A18¯A
2k238 5 R

G i

rA
18
¯rA

2k238
1

p•r

] f i j ~Q,rA8!

]Q
r•dr, ~30!

where for simplicity we assume a two set cover and the contourg i is chosen so thatg i2g j

surroundsp5r. It follows that

cA
18¯A

2k248 5pA2k238 kA
18¯A

2k248 A
2k238 5 R

g i

rA
18
¯rA

2k248
] f i j ~Q,rA8!

]Q
r•dr ~31!

is the field onCk11 naturally associated to] f /]Q.
We therefore obtain the formula
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S5dtA18¯Ak8∧pA
18
pA

28
pA

38
kA

48¯A
2k8

dtAk118 ¯A2k8 .

Define the indexed two-formsS (B18B28)u(A58¯A2k8 ) by

dtB18¯B38(A48¯Ak8∧dtAk118 ¯A2k8 )5« (A48u(B18SB28B38)uA58¯A2k8 )C8.

~This indexed two-form can be represented as

S (B18B28)u(A58¯A2k8 )5
3k

2
dt

C8

(B18B28)u(A58¯Ak118 ∧dtAk128 ¯A2k8 )C8

1ak«
(A58u(B18«B28)uA68dt

C8D8E8

A78¯Ak118 ∧dtAk128 ¯A2k8 )C8D8E8,

whereak is a conbinatorial constant depending onk.) With this, we find that apA8 is contracted
onto ki ,A

18¯A
2k238 so that~31! gives

S5pA
18
pA

28
cA

38¯A
2k228 SA18¯A2k228 .

Thus, the result follows. h

Remarks:
~i! If k.3, then there exists a potential forcA

18¯A
2k248 ,

cA
18 ¯ A

2k248 5]A
k238 ¯A

2k248 f A
18¯A

k248 ,

where

f A
18¯A

k248 5 R
G
rA

18
¯rA

k248 f r•dr.

The space–time is a four-dimensional surfacexA
18¯A

k248 50 in k11-dimensional moduli space o

O(k) sections coordinatized byxA18¯Ak8.
~ii ! k53: The fieldcA

18A
28

does not have a potential, and no conditions have to be impose

the moduli space ofO~3! to find the space–time. This is becauseH0(CP1,O(3))

5H0(CP1,O(1)% O(1)), andxA18A28A38 has as many components asxAA8. Ward32 regardscA
18A

28
as

a self-dual Maxwell field onC4.
~iii ! The casek52 implies the existence of a triholomorphic Killing vector and was cons

ered by Tod and Ward in Ref. 31. Now

c5 R
G

] f

]Q
r•dr

is a solution to the three-dimensional wave equation. The relation between our constructio
the description of the Gibbons–Hawking metric form in Sec. III A 1 is given by

F~xA8B8!5 R
G

G~pA8 ,Q!

~p•o!2 p•dp, c5Fpp5 R
G
~p•o!2

]2G

]Q2 p•dp,

where

xA8B8
ªS 2p y/2

y/2 w D .
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B. Relation between the two constructions

In this section we relate the hyper-Ka¨hler slices~4! of the symmetric hierarchy introduced i
Sec. III to the method described above.

Proposition 4.5: Let fPH1(O(2n),O(222n)) give rise to the ZRM field~28! with k52n.
Then hyper-Ka¨hler metrics arising from Proposition 3.3 form a subclass of metrics from Pro
sition 4.4 if

F5 R
G
~p•o!22G~Q,pA8!p•dp, where ~p•o!2

]G

]Q
5 f PH1~O~2n!,O~222n!!,

where oA8 is a constant spinor.
Proof: Let (Q,pA8) be homogeneous coordinates on the total space ofO(2n) bundle. Let us

choose a constant spinoroA8 and parametrize a section of theO(2n)→CP1 by 2n11 complex
numbers

xA18¯A2n8 5
]2nQ

]pA
18
¯ ]pA

2n8
U

pAi8
5oA8

.

The coordinatesxA18¯A2n8 on C2n11 correspond tot0, . . . ,t2n by

t i5S 2n
i D xA18A28¯A2n8 oA

18
¯ oA

i8
iA

i 118 ¯ iA
2n8

~21!n2 i , i 50, . . . ,2n.

Define

]

]t i 5iA18 ¯ iAi8oAi 118
¯ oA2n8

]

]xA18¯A2n8
.

Let

F5 R
G
~p•o!22G~Q,pA8!p•dp, where ~p•o!2

]G

]Q
5 f PH1~O~2n!,O~222n!!.

We have

f A
18¯A

2n248 5 R
G
pA

18
¯ pA

2n248 f p•dp

5 R
G
pA

18
¯ pA

2n248 ~p•o!2
]G

]Q
p•dp

5oA2n238
¯ oA2n8

]

]xA18¯A2n8
R

G
~p•o!22Gp•dp5

]F

]xA18¯A2n248 08080808
.

Therefore fixing f A
18¯A

2n248 is equivalent to fixing]F/]t i for i ,2n23. Moreover, the global

twistor function is given by

Q5~vn•i !~p•i !n5~p•i !2n(
i 50

2n

l i t2n2 i .

h
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V. ALE SPACES REVISITED; FINITE-GAP SOLUTIONS OF ASD VACUUM EQUATIONS

One way to generalize the Novikov construction of finite gap solutions of the Korteweg
Vries equation to hyper-Ka¨hler equations would be to study solutions to~8! which are invariant
under three commuting hidden symmetries that we shall take to be triholomorphic:

]T1
ª(

i 51

k

ai

]

]t i
, ]T2

ª(
i 51

l

bi

]

]t i
, ]T3

ª(
i 51

m

ci

]

]t i
, where ai ,bi ,ci are constant,

and the propagation ofQ along the parameterst i is determined by the recursion relations~9!. This
would reduce~8! down to an ODE.

Rather than performing the explicit reduction to an ODE, we see from the twistor picture
the twistor space must have three projections onto the total space of the line bundleO(n) for three
values ofn. Thus we have a map of the twistor spacePT into O(p) % O(q) % O(r ) and soPT can
be realized as a hypersurface in this space~although there may need to be some blowup
resolution of singularities where the map fails to be an embedding!. If we realizePT as the zero
set of a functionF taking values in a line bundle of degrees, then we must have, for rationa
curves to have the appropriate normal bundle, thatp1q1r 521s.

We will now see that the ALE hyper-Ka¨hler spaces fall precisely into this above class.
It is well known that hyper-Ka¨hler manifolds (M,g), which have the topology ofR4 at

infinity, and approach the flat Euclidean metrich5dx1
21¯1dx4

2 sufficiently fast, in the sense
that

gab5hab1O~r 24!, ~]a!p~gbc!5O~r 242p!, r 25x1
21¯1x4

2 ~32!

have to be flat. A weaker asymptotic condition one can impose ong is assymptoticaly locally
Euclidean~ALE!.

The ALE spaces are noncompact, complete hyper-Ka¨hler manifolds which satisfy~32! only
locally for r→`. Globally the neighborhood of infinity must look likeS3/G3R, whereG is a
finite group of isometries acting freely onS3 ~a Kleinian group!. These manifolds belong to th
class ofgravitational instantonsbecause their curvature is localized in a ‘‘finite region’’ of
space–time.

Finite subgroups ofG,SU(2) correspond Platonic solids inR3. They are the cyclic groups
and the binary dihedral, tetrahedral, octahedral and icosahedral groups~one can think about the
last three as Mo¨bius transformations ofS25CP1 which leave the points corresponding to vertic
of a given Platonic solid fixed!. Each of them can be related to a Dynkin diagram of a simple
algebra. All Kleinian groups act onC2, and the ‘‘infinity’’ S3,C2. Let (z1 ,z2)PC2. For eachG
there exist three invariantsx,y,z which are polynomials in (z1 ,z2) invariant underG. These
invariants satisfy some algebraic relations which we list below:

Group Dynkin diagram Relation FG(x,y,z)50

cyclic Ak xy2zk50
dihedral Dk21 x21y2z1zk50
tetrahedral E6 x21y31z450
octahedral E7 x21y31yz350
icosahedral E8 x21y31z550

In each case
C2/G,C35$~x,y,z!PC3,FG~x,y,z!50%.

The manifold M on which an ALE metric is defined is obtained by minimally resolvi
the singularity at the origin ofC2/G. This desingularization is achieved by takingM to be the
zero set of
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F̃G~x,y,z!5FG~x,y,z!1(
i 51

r

ai f i~x,y,z!,

where f i span the ring of polynomials in (x,y,z) which do not vanish when]xFG5]yFG5]zFG

50. The dimensionr of this ring is equal to the number of nontrivial conjugacy classes ofG which
is k21, k11, 6, 7 and 8, respectively.6 Kronheimer18,19 proved that for eachG a unique hyper-
Kähler metric exists on a minimal resolutionM, and that this metric is precisely the ALE metr
with R4/G as its infinity. His construction was a combination of the hyper-Ka¨hler quotient16 with
twistor theory.

In each case the twistor space is the three-dimensional hyper-surfaceF̃G(x,y,z,l)50 in the
rank-three bundleO(p) % O(q) % O(r )→CP1. Now x(l)PO(p),y(l)PQ(q),z(l)PO(r ) are
polynomials inl, f i5 f i(x,y,z), andai5ai(l). Therefore

PT→O~p!, PT→O~q!, PT→O~r !,

and Lemma 4.2 implies that the corresponding hyper-Ka¨hler metrics admit three commutin
hidden symmetries, and the heavenly equation~8! reduces to an ODE.

The degreesp,q andr are such thatF̃G(x,y,z,l) is a function homogeneous of some degr
s. Therefore

F̃G :O~p! % O~q! % O~r !→O~s!.

To determine the integersp,q,r ,s take the determinants of the above, and notice that the no
bundle to anO(1)% O(1) section ofPT→CP1 will have the Chern classp1q1r 2s52. This
gives us the following:

Ak PT5$~x,y,z,l!PO~k! % O~k! % O~2!→CP1,

xy2zk2a1zk222¯2ak2150%,

Dk21 PT5$~x,y,z,l!PO~2k! % O~2k22! % O~4!→CP1,

x21y2z1zk1a1y21a2y1a3zk221¯1akz1ak1150%,

E6 PT5$~x,y,z,l!PO~12! % O~8! % O~6!→CP1,
~33!

x21y31z41y~a1z21a2z1a3!1a4z21a5z1a650%,

E7 PT5$~x,y,z,l!PO~18! % O~12! % O~8!→CP1,

x21y31yz31y2~a1z1a2!1y~a3z1a4!1a5z21a6z1a750%,

E8 PT5$~x,y,z,l!PO~30! % O~20! % O~12!→CP1,

x21y31z51y~a1z31a2z21a3z1a4!1a5z31a6z21a7z1a850%.

Note that these spaces are not quite the full nonsingular twistor space as there will be s
points whereF̃G vanishes together with its first derivatives. These singularities can, howeve
resolved, see Ref. 19.

We observe that these twistor spaces have projections ontoO(2n) for 2n5p,q,r and this
corresponds to the existence of three independent commuting triholomorphic hidden symm
The simplest description along the lines of Sec. IV arises for the lowest value ofn, i.e., when we
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project onto thez coordinates in the above construction. It is clear from the above formulas
the fibers of this projection are affine conics in theAk andDk cases, and affine elliptic curves i
the Ek cases.

From now on we shall drop the subscriptG, because the construction we shall describe app
to all cases. These twistor spaces can all be described as affine line bundles overO(r ) in effect by
uniformizing the affine conics or elliptic curves that make up the fibers ofPT→O(r ). The affine
line bundle is determined by a cohomology class inH1(O(r ),O(22r ) which can be evaluated a
a linear field onCr 11. The ALE space can then be realized as~a branched cover of! the zero set
of this linear field in the real sliceRr 11 as in Theorem 4.4.

To make the description more concrete, we now find a patching description of the re
cohomology class inH1(O(r ),O(22r ). We exclude the curve~s! on which bothF̃x50 andF̃y

50 so that we can cover the twistor space by the two open setsU,Ũ such thatF̃xÞ0 in U and
F̃yÞ0 in Ũ. We use (y,z,l) and (x,z,l) as local coordinates inU and Ũ, respectively. The
symplectic formS on each fiber ofPT→CP1 is given by

dy∧dz

F̃x

in U, or
2dx∧dz

F̃y

in Ũ.

These arise from the formulaS5rdx∧dy∧dz/F̃ with the contour being a small circle surroundin
F̃50. The global homogeneous functionz gives rise to a homogeneityr 22 Hamiltonian vector
field Xz tangent to the fibers ofPT→O(r ). From the formulaXz4S5dz we deduce that

Xz5F̃x

]

]y
in U, Xz52F̃y

]

]x
in Ũ.

We now introduce new coordinates (u,z,l) and (ũ,z,l) on U andŨ, respectively, where the fibe
coordinates inu in U→O(r ) and ũ in Ũ→O(r ) satisfyXz(u)5Xz(ũ)51. Therefore

u~y,z!5E
s

F̃x51 dy

F̃x

, ũ~x,z!52E
s

F̃y51 dx

F̃y

for somes, and the patching function is given on the overlap by

f ~z,l!5u2ũ5E
F̃y51

F̃x51 dy

F̃x

. ~34!

In the above formulax should be determined in terms of (y,z,l) using F̃50 before the integral
is evaluated. The upper and lower limits will then involvey5y(z,l).

In the case ofAk ALE space we can assume that

zk1a1zk221¯1ak215)
j 51

k

~z2pj~l!!, where pjPG~O~2!!.

~See Refs. 15 and 6 for further discussion of this point.! A simple integration yieldsf
5 ln ) j51

k (z2pj(l)), and from Proposition 4.5 we find

G5(
j 51

k

~z2pj !~ ln~z2pj !21!.

For Dk21 we can redefinez andaj to get rid of terms linear and quadratic iny, and write
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F̃5x22y2z2)
j 51

k

~z2qj~l!! where qjPG~O~4!!.

Now ~34! yields

f 5
1

Az
ln

~z24z) j 51
k ~z2qj~l!!!1/21Az

~114z) j 51
k ~z2qj~l!!!1/221

.

In the remaining casesE6 , E7 and E8 the fibers ofPT→O(r ) are elliptic curvesx254y2

1g1y1g2 ~in case ofE7 one needs to redefiney,z,ai to obtain this canonical form!. The periods
g1 ,g2 are polynomials inz of order less or equal to 5 which can be determined from~33!. The
fibers can therefore be parametrized by the Weierstrass elliptic function. The cohomology c
represented by an elliptic integral

f 5
1

2 Ey0

y1 dy

A4y31g1y1g2

,

wherey1 andy0 are roots of 4y31g1y1g22 1
450 and 12y21g12150, respectively.

One can now, in principal, take these cohomology classes and integrate them to obtain a
field with r 23 components onCr 11 the vanishing of which will determine the complexified AL
space as a submanifold. This above description is not completely satisfactory for two r
reasons. First, the description of the ALE space will not be global; the projection from the
ALE space toCr 11 can be many to one, and can have irregular values. Second, the lim
integration above defining the cohomology classes actually branch and are not complete
defined.

Further work is required to make this a useful description of ALE spaces. It seems likely
these are the only complete hyper-Ka¨hler metrics with three triholomorphic hidden symmetrie

VI. HIERARCHIES FOR THE GENERALIZED CONFORMAL ANTI-SELF-DUALITY
EQUATIONS

In this section we extend the concept of a hierarchy from that of Ref. 8 for the f
dimensional hyper-Ka¨hler equations to a generalization of the conformal anti-self-duality eq
tions ~and in the process give new and more geometric formulations for the hyper-Ka¨hler hierar-
chy than in Ref. 8!. The guiding motivation for these definitions comes from the twistor the
However, we first define the various concepts in space–time terms, and then discuss the
theory subsequently. We shall, for convenience, work in the holomorphic category. Real ve
of the various structures and equations can then be obtained subsequently by demand
existence of an antiholomorphic involutions fixing a real slice and with specified action on th
various geometric structures.

We will abbreviate the term conformal anti-self-duality to CASD and generalized CAS
GCASD. Unfortunately this terminology is nonstandard but is designed to be consistent wi
corresponding discussion for the anti-self-dual Yang–Mills equations given in Ref. 21. The
eralization of the CASD case is a mild generalization of quaternionic structures discussed i
28 and they have been termed paraconformal structures, see Ref. 2, and Grassman stru1,4

where many properties, including the twistor theory, of these spaces are studied. Here w
refer to them as generalized CASD, GCASD, spaces. The hierarchies defined here are a
case of theP-structures of Gindikin~Ref. 14, and references therein!.

Definition 6.1: A solution to the GCASD hierarchy consists of the data(M,S,S̃,eAA18¯An8)
defined as follows:M is a manifold of dimension r(n11), S and S̃ are vector bundles of rank r

and 2, respectively, we use abstract indices A and A8 to denote membership ofS and S̃, respec-
                                                                                                                



ly of

of a
a
d
ard

a full
ry,

ted

. The

. The

that,

y
uctions

this
hose

ip-
nifold

3448 J. Math. Phys., Vol. 44, No. 8, August 2003 M. Dunajski and L. J. Mason

                    
tively; when realized concretely, A50,1,...,r 21 and A8508,18. The indexed one-form eAA18¯An8,
symmetric over its primed indices, determines an isomorphism TM5S^ (nS̃ at every point.

An elementpA8 of S̃* at mPM determines an rn-plane element

z~m!p5$VPTmM,V4eAA18¯An8pA
18
¯pA

n8
50%.

Such an rn-plane element will be said to be ana-plane element at m. An a-surface is an
rn-dimensional surface whose tangent space defines ana-plane element at each of its points.

The GCASD hierarchy equations are the requirement that there exists a full fami
a-surfaces, with a uniquea-surface through each z(m)p .

The notation derives from the identification of these bundles with the spin bundles
conformal structure in four-dimensions,r 52, n51. It will also be convenient to introduce
‘‘clumped’’ index i for the n11-dimensional vector space(nS̃. When the indices are realize
concretely by a choice of a frame forS̃ with components labeled by 0 and 1, there is a stand
correspondence between thei th component for the clumped index and the component withi 1’s
andn2 i 0’s, so thati naturally goes from 0 ton.

We now assume that we have a solution to the CASD hierarchy so that we have
complement ofa-surfaces and that, shrinkingM to a convex neighborhood of a point if necessa
the space of thesea-surfaces is a manifold. We can then define the following.

Definition 6.2: The space of sucha-surfaces will be called the twistor space and is deno
PT.

Twistor space is anr 11-dimensional complex manifold.
Theorem 6.3:The twistor space determines and is determined by the GCASD hierarchy

correspondence is stable under small deformations of the complex structure ofPT or of the
GCASD hierarchy.

Proof: This is a straightforward extension of Penrose’s nonlinear graviton construction
correspondence can be studied by means of the double fibration

PS̃

p↙ ↘q

M PT .

PointsmPM correspond to rational curvesLmªq(p21(m))[CP1 in PT. The normal bundle of
these rational curves isN5S^ O(n) whereO(n) is the line bundle of Chern classn on CP1; this

follows from the fact that, since the tangent space ofz(m)p is the kernel ofeAA18¯An8pA
18
¯pA

n8
,

the section of the normal bundle corresponding to a vectorV can be identified with

V4eAA18¯An8pA
18
¯pA

n8
, a function with values inS with homogeneityn. However, sections of

O(n) can be identified with functions homogeneous degreen, and so the normal bundle isS
^ O(n) as claimed.

With knowledge of the normal bundle, Kodaira theory can now be applied and shows
since H1(CP1,N)5H1(CP1,End(N))50, the moduli space of curves has dim(H0(CP1,S
^ O(n))5r (n11) dimensions, containsM and TmM[G(S^ O(n))[S^ (nS̃. Points ofPT
clearly then correspond to integrablea-surfaces inM. Kodaira theory also provides the stabilit
of the correspondence under small deformations. See Refs. 22 and 23 for general constr
that apply to these situations. h

Remark:The P-structures of Gindikin are more general but can be understood easily in
context as arising naturally on moduli spaces of rational curves in some complex manifold w
normal bundles areO(k1) %¯% O(kr) with theki not being required to be equal. Such prescr
tions for the normal bundle are unstable under deformations of the underlying complex ma
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unless no two of theki differ by more than one. Under deformations of the complex structure
the moduli space of such rational curves, the normal bundle will jump so that a dense open s
be the stable case where the normal bundle will beE^ O(k) % F ^ O(k11) with E andF trivial
bundles.

This additional generality can be important. For example, if we wish to discuss gener
tions of the Ward construction, the twistor space has the structure of a holomorphic vector b
over a lower dimensional space. In this case, the normal bundle of the rational curves alo
fibers is usually taken to have degree 0, whereas the normal bundle of its projection into the
will usually be required to have a higher degree normal bundle.

These geometric structures fall into the category of involutiveG-structures studied by
Merkulov.22,23 In particular, one can exploit his theorems to deduce the existence of conne
compatible with the geometric structure. However, for the most part, they must have to
although they fall into Merkulov’s category of ‘‘G-structures with very little torsion.’’23

Lemma 6.4: For r>2, n>1, there exists connections onS and S̃ such that the induced

connection on TM has torsion with nonvanishing irreducible parts only inS^ (2S* ^ (n22S̃ and

S* ^ (n24S̃ where we take(nS̃5C for n50 or zero for n,0. There exists a unique choice fo
such a connection when n.1 and unique up to a one-form for n51 (which can be taken to be
exact with appropriate choices).

Proof: Merkulov reformulates the moduli spaces considered above as Legendrian m
spaces of holomorphically embeddedCP13CPr 21’s in the projective cotangent bundlePT* PT of
twistor space. A rational curve,CP1 in PT determines its projective conormal bundle inPT* PT,
i.e., the one-forms up to scale that annihilate the tangent space ofCP1. This correspondence i
studied by means of the following double fibration

PS̃3PS,P~T* M !

m↙ ↘n

M P~T* PT! .

Merkulov’s method uses the contact line bundleL which is the dual to the tautological line bund
T* PT→P(T* PT). On restriction to aCP13CPr 21, it givesO(n,1) whereO(p,q) is the product
of the pullback ofO(p) from CP1 with the pullback ofO(q) frpm CPr 21.

Merkulov shows that the minimal torsion of an affine connection preserving theG-structure
~or obstruction to obtaining a torsion free connection preserving the tensor decomposition
tangent space! is then measured by a geometrically obtained class inH1(CP13CPr 21,L
^ (2(J1L)* ) and the freedom in the resulting connection is given byH0(CP13CPr 21,L
^ (2(J1L)* ).

These groups can be computed as follows. The first jet of a section ofO(n), nÞ0, at a point
of CPr 21 can be encoded into the derivative of a homogeneous degreen function with respect to
the r 11 homogeneous coordinates. The value of the function is then retrieved from th
Euler’s homogeneity equations,pA] f /]pA5n f . Thus, the sheafJ1L on CP13CPr can be under-
stood as the kernel

0→J1L→S* ~n21,1! % S̃* ~n,0! ——→
~pA ,2pA8!

O~n,1!→0

since, in the third map, we are imposing the requirement that the Euler homogeneity relati
each factor leads to the same value forf .

The cohomology groupsHi(CP13CPr 21,L ^ (2(J1L)* ) can therefore be calculated by co
sideration of the long exact cohomology sequence arising from the short exact sequence
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0→S* ~2n,0! % S̃* ~12n,21! ——→
(~pB ,pB8!

(2S* ~2n,1! % S^ S̃~12n,0! % (2S̃~22n,21!

→L ^ (2~J1L* !→0,

wherepA andpA8 are the homogenous coordinates onCPr 21 andCP1, respectively. h

Note that the Merkulov framework is not quite equivalent to ours in the sense that it
requires knowledge of the total spaceP(T* PT) but does not require that it be realized as t
projective cotangent bundle of somePT. The results are only inequivalent forr 51, n,3 andr
52, n51. In these cases the results are well known, for example, the full theory of the latte
goes back to Penrose in 1976.25 The Merkulov framework does not see the curvature conditi
that arise from existence ofPT, but gives the correct result for the existence of and freedom
choosing compatible torsion-free affine connections.

The casesr 51 are also well known, but forn51,2 do not fall satisfactorily into the Merkulov
framework. Forn51, there is a projective structure, i.e., an equivalence class of torsion
connections that share the same unparametrized geodesics, with freedom given by a one-fo
n52 there exists a unique torsion-free connection compatible with a conformal structure.n
53 the connection is still torsion-free, but not subsequently for highern.

The generaln51 case was studied in Refs. 28 and 2. It also follows from the calculation
Ref. 2 that the torsion must be nonzero for a nonflat structure in then.1, r .2 cases as a
consequence of the fact that in these cases the decomposition of the tangent space as
product ofS with (nS̃ determines a paraconformal structure in which both factors have dimen
greater than two, and in that case the torsion-free condition implies flatness.

Lemma 6.5: For r.1, the requirement of uniqueness for thea surface through z(m)p is
redundant.

Proof: The integrability equations in particular give a propagation equation forp across the
a-surface. h

There are a number of specializations of the GCASD equations: hypercomplex, sca
Kähler, Einstein, hyper-Ka¨hler. The hypercomplex and hyper-Ka¨hler cases have straightforwar
extensions to the hierarchy.

~i! The hyper-complex case forr even,n51, where there exists a flat connection onS̃ such
that the distributionD on PS̃ is horizontal. This is equivalent to the existence of a fibrat
PT°CP1. This condition~flatness of the induced connection of 6.4 or a fibration of
associated twistor space overCP1) can clearly be imposed consistently on anyMr ,n to give
a hypercomplex hierarchy.

~ii ! In case of the hyper-Ka¨hler hierarchy, we require that there exists a connection compa
with 6.4 that induces a flat connection onS̃ and preserves skew forms«AB on S and«A8B8
on S̃ such that the forms«ABeA(A18¯An8∧eB18¯Bn8)B are closed. This then implies thath

5«A8B8pA8DpB8 and h∧«ABpA
18
¯pA

n8
eAA18¯An8∧pB

18
¯pB

n8
eBB18¯Bn8 descend toPT, in

such a way thath is the annihilator of an integrable distribution determining a fibrat
over CP1.

A. Reality structures

The imposition of reality conditions is standard; it is imposed by requiring the existence
anti-holomorphic involutions on M that fixes a real slice and preserves the geometric struct
~i.e., sendsa-surfaces toa-surfaces!. In the hyper-Ka¨hler case, we can talk in terms of th
signature of the associated metric~although the following conditions can be applied more gen
ally!. For Euclidean signature, we require that it induces a quaternionic involution onS̃ given by
s2521. In particular there are no nonzero fixed points. It will then also induce a quatern
involution on S which will have to be even dimensional and we must also require that
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Hermitian formpAp̂B«AB be definite~it is trivially definite for r 52). For non-Euclidean signatur
we can have different signatures forpAp̂B«AB , or impose a conjugation whose action onS snf S̃
is an ordinary complex conjugation.

The conjugation will also lead to an antiholomorphic involution on the twistor space, wit
fixed points in the quaternionic case, and with a fixed real slice otherwise. Points of the rea
of M will then correspond tos invariant rational curves.

B. Embedding into hierarchies

In the usual definition of a hierarchy, the hierarchy is an overdetermined, but compa
system of equations which contains the original system. A given solution to the original sy
may not actually extend to a solution of the hierarchy in general~there can be obstructions, see
249 and p. 253, footnote 2, of Ref. 21 for some discussion of this behavior for the Dri
Sokolov hierarchies!. Furthermore, if such an extension does exist, it will not in general be un
without the imposition of boundary conditions.

Our definition of a hidden symmetry in Sec. IV requires the existence of an extension
solution to the original equation to the hierarchy that happens to admit a symmetry, but only
thought of as a solution to the hierarchy.

We state the embedding definition in slightly greater generality as for one hierarchy
another:

Definition 6.6: A solutionMr 1 ,n1
to the GCASD hierarchy embeds into another solut

Mr 2 ,n2
, n1,n2 , r 1<r 2 , if Mr ,n1

embeds intoMr ,n2
as a manifold in such a way that th

a-surfaces ofMr ,n2
intersectMr ,n1

in thea-surfaces ofMr ,n1
and all a-surfaces ofMr ,n1

arise

in this way.
Due to a remarkable theorem of Bernstein and Gindikin,14 the twistor characterization of such a
embedding in the most interesting case,r 15r 2 , is remarkably simple:

Theorem 6.7„Bernstein and Gindikin…: A solutionMr ,n1
to the GCASD hierarchy embed

into Mr ,n2
iff the twistor spacePTn1

for Mr ,n1
is obtained from thatPTn2

for Mr ,n2
by choosing

submanifoldsG1 , G2 ,... of codimension greater than one and S1 , S2 ,... of codimension51
and blowing up along eachG1 , G2 ,... and taking a branch covers branching with some mu
plicity over each Si .

In Ref. 8 ~see also Sec. III!, we embeddedM2,n1
into M2,n2

by blowing up the twistor space
PTn2

at one pointn22n1 times.
Note that it is natural in the quaternionic cases, or in the hyper-CASD cases, to require th

additional structures be compatible. This is straightforward in the hypercomplex case in whic
wishes the embedded twistor space to inherit a fibration overCP1, but when line bundle valued
forms need to be pulled back also, there is the problem that the forms that have been pulle
will in general take values in an inappropriate line bundle unless particular care has been

C. Symmetries and hidden symmetries

We can define a symmetry for a GCASD structure to be the requirement that the twistor
admits a global holomorphic vector fieldK. This will in turn determine global holomorphic vecto
fields K̃ on the correspondence space andK on M, such thatK̃ projects toK. The essential
requirement onK̃ will be that it preserves the twistor distribution and this will lead to a gener
zation of the conformal Killing vector equations onK whose precise form will depend onr andn.

Clearly the concept of hidden symmetry can be applied as before but with greater gene
a solutionMr ,n admits a hidden symmetry if it can be embedded as above into anMr ,m that
admits an explicit symmetry. This will, as in the proof of Proposition 4.1, lead to a global ve
field on PTr ,n with values in a line bundleL of degreem2n ~the restriction of the canonica
bundle ofPTr ,m tensored with the inverse of that ofPTr ,n). There will also be a generalization o
Theorem 4.4: this global vector field with values inL will lead to the realization ofPTr ,n as the
total space of an affine line bundle, with underlying translation bundleL* , over some reduced
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twistor space which will generically bePTr 21,l wherel 5n1m/(r 21), if l is an integer, although
if l is fractional, or in nongeneric situations, the normal bundle of lines in the reduced tw
space must beO(k1) %¯% O(kr 21) with (ki5(r 21)n1m. Thus the originalPTr ,n with a
hidden symmetry can be determined in terms of a lower dimensional twistor space togethe
a linear cohomology class on that space.
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APPENDIX: TWO-COMPONENT SPINOR NOTATION

In four complex dimensions orthogonal transformations decompose into products of AS
SD rotations SO(4,C)5(SL(2,C)3SL̃(2,C))/Z2 . The spinor calculus in four dimensions is bas
on this isomorphism. We use the conventions of Penrose and Rindler.26 The tangent space at eac
point of M is isomorphic to a tensor product of the two spin spacesTaM5SA

^ SA8. Spin dyads
(oA,iA) and (oA8,iA8) spanSA and SA8, respectively. The spin spacesSA and SA8 are equipped
with symplectic forms«AB and «A8B8 such that«015«081851. These antisymmetric objects a
used to raise and lower the spinor indices viaiA5iB«BA ,iB5«ABiB . Let GAB andGA8B8 be the
SL(2,C) and SL̃(2,C) spin connections. The curvature of the unprimed spin connectionRA

B

5dGA
B1GA

C∧GC
B decomposes as

RA
B5CA

BCDSCD1~1/12!RSA
B1FA

BC8D8S
C8D8,

and similarly forRA8
B8 . HereR is the Ricci scalar,FABA8B8 is the trace-free part of the Ricc

tensorRab , andCABCD is the ASD part of the Weyl tensor

Cabcd5«A8B8«C8D8CABCD1«AB«CDCA8B8C8D8 ,

and the two-formsSA8B8 span the three-dimensional space of SD two-forms.
Given a complex four-dimensional manifoldM with curved metricg, a twistor inM is an

a-surface, i.e., a null two-dimensional surface whose tangent space at each point is ana plane
~a null two-dimensional plane with a SD bi-vector!. There are Frobenius integrability condition
for the existence of sucha-surfaces through eacha-plane element at each point and these
equivalent, after some calculation, to the vanishing of the self-dual part of the Weyl curv
CA8B8C8D8 . Thus, givenCA8B8C8D850, we can define a twistor spacePT to be the three complex
dimensional manifold ofa-surfaces inM. If g is also Ricci flat, thenPT has further structures
which are listed in the nonlinear graviton theorem:

Theorem A.1 „Penrose25
…: There is a 1-1 correspondence between complex ASD vac

metrics on complex four-manifolds and three-dimensional complex manifoldsPT such that the
following hold.

(i) There exists a holomorphic projectionm:PT→CP1.
(ii) PT is equipped with a four complex parameter family of sections ofm each with a normal

bundle O(1)% O(1) (this will follow from the existence of one such curve by Koda
theory).

(iii) Each fiber ofm has a symplectic structureSlPG(L2(m21(l)) ^ O(2)), wherelPCP1.

To obtain real metrics on a real four-manifold, we can require further that the twistor space
an antiholomorphic involution.
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The correspondence spaceF5M3CP1 is coordinatized by (x,l), wherex denotes the co-
ordinates onM andl is the coordinate onCP1 that parametrizes thea-surfaces throughx in M.
We representF as the quotient of the primed-spin bundleSA8 with fiber coordinatespA8 by the
Euler vector fieldY5pA8/]pA8. We relate the fiber coordinates tol by l5p08 /p18 . A form
with values in the line bundleO(n) on F can be represented by a homogeneous forma on the
nonprojective spin bundle satisfyingY4a50 , LYa5na.

The correspondence space has the alternate definition

F5PT 3MuZP l x
5M3CP1,

wherel x is the line inPT that corresponds toxPM andZPPT lies onl x . This leads to a double
fibration

M←
p

F→
q

PT. ~A1!

Points inM correspond to rational curves inPT with normal bundleO A(1)ªO(1)% O(1). The
normal bundle tol x consists of vectors tangent tox ~horizontally lifted toT(x,l)F) modulo the
twistor distribution. We have a sequence of sheaves overCP1:

0→D→C4→O A~1!→0.

The mapC4→O A(1) is given byVAA8→VAA8pA8 . Its kernel consists of vectors of the form
pA8lA with lA varying. The twistor distribution is thereforeD5O(21)^ SA and so there is a
canonicalLAPG(D ^ O(1)^ SA) given byLA5pA8¹AA8 . The projective twistor spacePT arises
as a quotient ofF by the twistor distribution. Functions onF which are constant alongLA8 are
called twistor functions.
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Hexagonal circle patterns with constant intersection
angles and discrete Painleve ´ and Riccati equations

S. I. Agafonova) and A. I. Bobenkob)

Fachbereich Mathematik, Technische Universita¨t Berlin, Strasse des 17. Juni 136,
10623 Berlin, Germany
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Hexagonal circle patterns with constant intersection angles mimicking holomorphic
mapszc and log(z) are studied. It is shown that the corresponding circle patterns are
immersed and described by special separatrix solutions of discrete Painleve´ and
Riccati equations. The general solution of the Riccati equation is expressed in terms
of the hypergeometric function. Global properties of these solutions, as well as of
the discretezc and log(z), are established. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586966#

I. INTRODUCTION. HEXAGONAL CIRCLE PATTERNS AND zc

The theory of circle patterns is a rich fascinating area having its origin in the classical th
of circle packings. Its fast development in recent years is caused by the mutual influenc
interplay of ideas and concepts from discrete geometry, complex analysis and the the
integrable systems.

The progress in this area was initiated by Thurston’s idea24,17 of approximating the Riemann
mapping by circle packings. Classical circle packings consisting of disjoint open disks were
generalized to circle patterns where the disks may overlap~see, for example, Ref. 14!. Different
underlying combinatorics were considered. Circle patterns with the combinatorics of the s
grid were introduced in Ref. 22; hexagonal circle patterns were studied in Refs. 7 and 9.

The striking analogy between circle patterns and the classical analytic function theo
underlined by such facts as the uniformization theorem concerning circle packing realizatio
cell complexes with prescribed combinatorics,4 a discrete maximum principle and Schwarz
lemma,20 rigidity properties17,14 and a discrete Dirichlet principle.22

The convergence of discrete conformal maps represented by circle packings was pro
Ref. 21. For prescribed regular combinatorics this result was refined.C`-convergence for hexago
nal packings is shown in Ref. 15. The uniform convergence for circle patterns with the com
torics of the square grid and orthogonal neighboring circles was established in Ref. 22.

The approximation issue naturally leads to the question about analogs to standard ho
phic functions. Computer experiments give evidence for their existence,12,16 however not very
much is known. For circle packings with hexagonal combinatorics the only explicitly desc
examples are Doyle spirals,11,5 which are discrete analogs of exponential maps, and conform
symmetric packings, which are analogs of a quotient of Airy functions.6 For patterns with over-
lapping circles more explicit examples are known: discrete versions of exp(z), erf(z),22 zc, log(z)
~Ref. 3! are constructed for patterns with underlying combinatorics of the square grid;zc, log(z)
are also described for hexagonal patterns.7,9

It turned out that an effective approach to the description of circle patterns is given b
theory of integrable systems~see Refs. 7–9!. For example, Schramm’s circle patterns are gover
by a difference equation which is the stationary Hirota equation~see Ref. 22!. This approach
proved to be especially useful for the construction of discretezc and log(z) in Refs. 3 and 7–9 with

a!Electronic mail: sagafonov@rusfund.ru
b!Electronic mail: bobenko@math.tu-berlin.de
34550022-2488/2003/44(8)/3455/15/$20.00 © 2003 American Institute of Physics
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the aid of some isomonodromy problem. Another connection with the theory of discrete integ
equations was revealed in Refs. 1–3: embedded circle patterns are described by special s
of discrete Painleve´ II and discrete Riccati equations.

In this article we carry the results of Ref. 3 for square grid combinatorics over to hexa
circle patterns with constant intersection angles introduced in Ref. 7.

Hexagonal combinatorics are obtained on a sublattice ofZ3 as follows: consider the subset

H5$~k,l ,m!PZ3: uk1 l 1mu<1%

and join by edges those vertices ofH whose (k,l ,m)-labels differ by 1 only in one componen
The obtained quadrilateral latticeQL has two types of vertices: fork1 l 1m50 the corresponding
vertices have six adjacent edges, while the vertices withk1 l 1m561 have only three. Suppos
that the vertices with six neighbors correspond to centers of circles in the complex planeC and the
vertices with three neighbors correspond to intersection points of circles with the cente
neighboring vertices. Thus we obtain a circle pattern with hexagonal combinatorics.

Circle patterns where the intersection angles are constant for each of three types of~quadri-
lateral! faces~see Fig. 1! were introduced in Ref. 7. A special case of such circle patterns m
icking holomorphic mapzc and log(z) is given by the restriction to anH-sublattice of a specia
isomonodromic solution of someintegrable systemon the latticeZ3. Equations for the field
variablez:Z3→C of this system are

q~zk,l ,m ,zk,l 11,m ,zk21,l 11,m ,zk21,l ,m!5e22ia1,

q~zk,l ,m ,zk,l ,m21 ,zk,l 11,m21 ,zk,l 11,m!5e22ia2, ~1!

q~zk,l ,m ,zk11,l ,m ,zk11,l ,m21 ,zk,l ,m21!5e22ia3,

wherea i.0 satisfya11a21a35p and

q~z1 ,z2 ,z3 ,z4!5
~z12z2!~z32z4!

~z22z3!~z42z1!

is the cross-ratio of elementary quadrilaterals of the image ofZ3. Equations~1! mean that the
cross-ratios of images of faces of elementary cubes are constant for each type of face, w
restrictiona11a21a35p ensures their compatibility.

The isomonodromic problem for this system~see Sec. II for the details, where we present
necessary results from Ref. 7! specifies the nonautonomous constraint

czk,l ,m52k
~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

zk11,l ,m2zk21,l ,m
12l

~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

zk,l 11,m2zk,l 21,m

12m
~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

zk,l ,m112zk,l ,m21
, ~2!

FIG. 1. Hexagonal circle patterns as a discrete conformal map.
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which is compatible with~1! ~this constraint in the two-dimensional case withc51 first appeared
in Ref. 19!. In particular, a solution to~1! and ~2! in the subset

Q5$~k,l ,m!PZ3u k>0, l>0, m<0% ~3!

is uniquely determined by its values

z1,0,0, z0,1,0, z0,0,21 .

Indeed, the constraint~2! givesz0,0,050 and definesz along the coordinate axis (n,0,0), (0,n,0),
(0,0,2n). Then all otherzk,l ,m with (k,l ,m)PQ are calculated through the cross-ratios~1!.

Proposition 1:7 The solution z:Q→C of the system (1) and (2) with the initial data

z1,0,051, z0,1,05eif, z0,0,215eic ~4!

determines a circle pattern. For all(k,l ,m)PQ with even k1 l 1m the points zk61,l ,m , zk,l 61,m ,
zk,l ,m61 lie on a circle with the center zk,l ,m , i.e., all elementary quadrilaterals of the Q-image are
of kite form.

Moreover, Eqs.~1! ~see Lemma 1 in Sec. III! ensure that for the pointszk,l ,m with k1 l 1m
561, where three circles meet intersection angles area i or p2a i , i 51,2,3 ~see Fig. 1 where the
isotropic casea i5p/3 of regular andZ3/2-pattern are shown!.

According to Proposition 1, the discrete mapzk,l ,m , restricted onH, defines a circle pattern
with circle centerszk,l ,m for k1 l 1m50, each circle intersecting six neighboring circles. At ea
intersection point three circles meet.

However, for most initial dataf,cPR, the behavior of the obtained circle pattern is qu
irregular: inner parts of different elementary quadrilaterals intersect and circles overlap. D
QH5QùH.

Definition 1:7 The hexagonal circle pattern Zc, 0,c,2 with intersection anglesa1 ,a2 ,a3 ,
a i.0, a11a21a35p is the solution z:Q→C of (1) subject to (2) and with the initial data

z1,0,051, z0,1,05eic(a21a3), z0,0,215eica3 ~5!

restricted to QH .
Definition 2: A discrete map z:QH→C is called an immersion if inner parts of adjacen

elementary quadrilaterals are disjoint.
The main result of this article is the following theorem.
Theorem 1: The hexagonal Zc with constant positive intersection angles and0,c,2 is an

immersion.
The proof of this property follows from an analysis of the geometrical properties of

corresponding circle patterns and analytical properties of the corresponding discrete Painle´ and
Riccati equations.

The crucial step is to consider equations for the radii of the studied circle patterns in the
Q-sublattice with evenk1 l 1m. In Sec. III, these equations are derived and the geomet
property of immersedness is reformulated as the positivity of the solution to these equa
Using discrete Painleve´ and Riccati equations in Sec. IV we present the proof of the existenc
a positive solution and thus complete the proof of immersedness. In Sec. VI, we discuss p
generalizations and corollaries of the obtained results. In particular, circle patternsZ2 and Log
with both square grid and hexagonal combinatorics are considered. It is also proved that th
immersions.

II. DISCRETE Zc VIA A MONODROMY PROBLEM

Equations~1! have the Lax representation:7

Fk11,l ,m~m!5L (1)~e,m!Fk,l ,m~m!,
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Fk,l 11,m~m!5L (2)~e,m!Fk,l ,m~m!, ~6!

Fk,l ,m11~m!5L (3)~e,m!Fk,l ,m~m!,

wherem is the spectral parameter andF(m):Z3→GL(2,C) is the wave function. The matricesL (n)

are defined on the edgese5(pout ,pin) of Z3 connecting two neighboring vertices and oriented
the direction of increasingk1 l 1m:

L (n)~e,m!5S 1 zin2zout

m
Dn

zin2zout
1 D , ~7!

with parametersDn fixed for each type of edges. The zero-curvature condition on the face
elementary cubes ofZ3 is equivalent to Eqs.~1! with Dn5eidn for properly chosendn . Indeed,
each elementary quadrilateral ofZ3 has two consecutive positively oriented pairs of edgese1 ,e2

ande3 ,e4 . Then the compatibility condition

L (n1)~e2!L (n2)~e1!5L (n2)~e4!L (n1)~e3!

is exactly one of the equations~1!. This Lax representation is a generalization of the one foun
Ref. 19 for the square lattice.

A solution z:Z3→C of Eqs. ~1! is called isomonodromicif there exists a wave function
F(m):Z3→GL(2,C) satisfying~6! and the following linear differential equation inm:

d

dm
Fk,l ,m~m!5Ak,l ,m~m!Fk,l ,m~m!, ~8!

whereAk,l ,m(m) are some 232 matrices meromorphic inm, with the order and position of thei
poles being independent ofk,l ,m. Isomonodromic solutions are important in many applicatio
in particular, for the first time the isomonodromy method was used to solve a discrete eq
appearing in quantum gravity.13

The simplest nontrivial isomonodromic solutions satisfy the constraint

bzk,l ,m
2 1czk,l ,m1d52~k2a1!

~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

zk11,l ,m2zk21,l ,m

12~ l 2a2!
~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

zk,l 11,m2zk,l 21,m

12~m2a3!
~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

zk,l ,m112zk,l ,m21
. ~9!

Theorem 2:7 Let z:Z3→C be an isomonodromic solution to (1) with the matrix Ak,l ,m in (8)
of the form

Ak,l ,m~m!5
Ck,l ,m

m
1 (

n51

3 Bk,l ,m
(n)

m21/Dn
~10!

with m-independent matrices Ck,l ,m , Bk,l ,m
(n) and normalized bytr A0,0,0(m)50. Then these matri-

ces have the following form:

Ck,l ,m5
1

2 S 2bzk,l ,m2c/2 bzk,l ,m
2 1czk,l ,m1d

b bzk,l ,m1c/2
D ,
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Bk,l ,m
(1) 5

k2a1

zk11,l ,m2zk21,l ,m
S zk11,l ,m2zk,l ,m ~zk11,l ,m2zk,l ,m!~zk,l ,m2zk21,l ,m!

1 zk,l ,m2zk21,l ,m
D 1

a1

2
I ,

Bk,l ,m
(2) 5

l 2a2

zk,l 11,m2zk,l 21,m
S zk,l 11,m2zk,l ,m ~zk,l 11,m2zk,l ,m!~zk,l ,m2zk,l 21,m!

1 zk,l ,m2zk,l 21,m
D 1

a2

2
I ,

Bk,l ,m
(3) 5

m2a3

zk,l ,m112zk,l ,m21
S zk,l ,m112zk,l ,m ~zk,l ,m112zk,l ,m!~zk,l ,m2zk,l ,m21!

1 zk,l ,m2zk,l ,m21
D 1

a3

2
I ,

and zk,l ,m satisfies (9).
Conversely, any solution z:Z3→C to the system (1) and (9) is isomonodromic with Ak,l ,m(m)

given by the formulas above.
The special caseb5a15a25a350 with shift z→z2d/c implies ~2!.

III. EUCLIDEAN DESCRIPTION OF HEXAGONAL CIRCLE PATTERNS

In this section we describe the circle patternzc in terms of the radii of the circles. Suc
characterization proved to be quite useful for the circle patterns with combinatorics of the s
grid.1,3 In what follows, we say that the triangle (z1 ,z2 ,z3) haspositive (negative) orientationif

z32z1

z22z1
5Uz32z1

z22z1
Ueif with 0<f<p ~2p,f,0!.

Lemma 1: Let q(z1 ,z2 ,z3 ,z4)5e22ia, 0,a,p.

(i) If uz12z2u5uz12z4u and the triangle(z1 ,z2 ,z4) has positive orientation, thenuz32z2u
5uz32z4u and the angle between@z1 ,z2# and @z2 ,z3# is (p2a).

(ii) If uz12z2u5uz12z4u and the triangle(z1 ,z2 ,z4) has negative orientation, thenuz32z2u
5uz32z4u and the angle between@z1 ,z2# and @z2 ,z3# is a.

(iii) If the angle between@z1 ,z2# and @z1 ,z4# is a and the triangle(z1 ,z2 ,z4) has positive
orientation, thenuz32z2u5uz12z2u and uz32z4u5uz42z1u.

(iv) If the angle between@z1 ,z2# and @z1 ,z4# is (p2a) and the triangle(z1 ,z2 ,z4) has nega-
tive orientation, thenuz32z2u5uz12z2u and uz32z4u5uz42z1u.

Lemma 1 and Proposition 1 imply that each elementary quadrilateral of the studied circle p
has one of the forms enumerated in the lemma.

Proposition 1 allows us to introduce the radius function

r ~K,L,M !5uzk,l ,m2zk61,l ,mu5uzk,l 61,m2zk,l ,mu5uzk,l ,m2zk,l ,m61u, ~11!

where (k,l ,m) belongs to the sublattice ofQ with evenk1 l 1m and (K,L,M ) label this sublat-
tice:

K5k2
k1 l 1m

2
, L5 l 2

k1 l 1m

2
, M5m2

k1 l 1m

2
. ~12!

The functionr is defined on the sublattice

Q̃5$~K,L,M !PZ3uL1M<0, M1K<0, K1L>0!%

corresponding toQ. Consider this function on

Q̃H5$~K,L,M !PZ3uK>0, L>0, M<0, K1L1M50,11%.
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Theorem 3: Let the solution z:QH→C of the system (1) and (2) with initial data (4) be a

immersion. Then function r(K,L,M ):Q̃H→R1 , defined by (11), satisfies the following equation

~r 11r 2!~r 22r 2r 31r ~r 32r 2!cosa i !1~r 31r 2!~r 22r 2r 11r ~r 12r 2!cosa i !50 ~13!

on the patterns of type I and II as in Fig. 2, with i53 and i52, respectively;

~L1M11!
r 42r 1

r 41r 1
1~M1K11!

r 62r 3

r 61r 3
1~K1L11!

r 22r 5

r 21r 5
5c21 ~14!

on the patterns of type III, and

r ~r 1 sina31r 2 sina11r 3 sina2!5r 1r 2 sina21r 2r 3 sina31r 3r 1 sina1 ~15!

on the patterns of type IV. Conversely, r (K,L,M ):Q̃H→R1 satisfying Eqs. (13)–(15) is the radius
function of an immersed hexagonal circle pattern with constant intersection angles [i.e., c
sponding to some immersed solution z:QH→C of (1) and (2)], which is determined by r uniquel.

Proof: The mapzk,l ,m is an immersion if and only if all triangles (zk,l ,m ,zk11,l ,m ,zk,l ,m21),
(zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m) of elementary quadrilaterals of the ma
zk,l ,m have the same orientation~for brevity we call it the orientation of the quadrilaterals!.

Necessity:To get Eq.~14!, consider the configuration of two starlike figures with centers
zk,l ,m with k1 l 1m51 (mod 2) and atzk11,l ,m , connected by five edges in thek-direction as
shown on the left part of Fig. 3. Letr i , i 51, . . . ,6, be theradii of the circles with the centers a
the vertices neighboringzk,l ,m as in Fig. 3. As follows from Lemma 1, the verticeszk,l ,m , zk11,l ,m

and zk21,l ,m are collinear. For immersedzc, the vertexzk,l ,m lies betweenzk11,l ,m and zk21,l ,m .
Similar facts are true also for thel - and m-directions. Moreover, the orientations of elementa
quadrilaterals with the vertexzk,l ,m coincides with one of the standard lattice. Lemma 1 defines
angles atzk,l ,m of these quadrilaterals. Equation~2! at (k,l ,m) giveszk,l ,m :

FIG. 2. Equation patterns.

FIG. 3. Circles.
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zk,l ,m5
2eis

c S k
r 1r 4

r 11r 4
1 l

r 3r 6

r 31r 6
ei (a21a3)1m

r 2r 5

r 21r 5
ei (a11a212a3)D ,

where eis5(zk11,l ,m2zk,l ,m)/r 1 . Lemma 1 allows one to computezk11,l ,m21 , zk11,l 11,m ,
zk11,l ,m11 andzk11,l 21,m using the form of quadrilaterals~they are shown in Fig. 3!. Now Eq.~2!
at (k11,l ,m) defineszk12,l ,m . Condition uzk12,l ,m2zk11,l ,mu5r 1 with the labels~12! yields Eq.
~14!.

For l 50 valueszk11,0,m , zk12,0,m , zk11,0,m21 and the equation for the cross-ratio witha3 give
the radiusR with the center atzk12,0,m21 . Note that forl 50 the term withr 6 andr 5 drops out of
Eq. ~14!. Using this equation and the permutationR→r 1 , r 1→r , r 2→r 2 , r 5→r 3 , one gets Eq.
~13! with i 53. The equation for pattern II is derived similarly.

To derive~15!, consider the figure on the right part of Fig. 3 wherek1 l 1m51 (mod 2) and
r 1 , r 2 , r 3 andr are the radii of the circles with the centers atzk11,l ,m , zk11,l 11,m21 , zk,l 11,m and
zk,l ,m21 , respectively. Elementary geometrical considerations and Lemma 1 applied to the
of the shown quadrilaterals give Eq.~15!.

Remark:Equation~15! is derived forr 5r (K,L,M ), r 15r (K,L,M21), r 25r (K21,L,M ),
r 35r (K,L21,M11). However, it holds true also forr 15r (K,L,M11), r 25r (K11,L,M ),
r 35r (K,L11,M11) since it gives the radius of the circle through the three intersection poin
the circles with radiir 1 , r 2 , r 3 intersecting at prescribed angles as shown in the right part of
3. Later, we refer to this equation also for this pattern.

Sufficiency:Now let r (K,L,M ):Q̃H→R1 be some positive solution to~13!–~15!. We can
rescale it so thatr (0,0,0)51. Starting withr (1,0,21) andr (0,1,21) one can computer every-
where in Q̃H : r in a ‘‘black’’ vertex ~see Fig. 4! is computed from~14!. @Note that onlyr at
‘‘circled’’ vertices is used: so to computer 1,1,21 one needs onlyr (1,0,21) andr (0,1,21).] The
function r in ‘‘white’’ vertices on the border]Q̃H5$(K,0,2K)uKPN%ø$(0,L,2L)uLPN% is
given by ~13!. Finally, r in ‘‘white’’ vertices in QH

int5QH\]Q̃H is computed from~15!. In Fig. 4
labels show the order of computingr .

Lemma 2: Any solution r(K,L,M ):Q̃H→R to (13)–(15) with 0<c<2, which is positive for

inner vertices of Q˜ H defines some zk,l ,m satisfying (1) in Q. Moreover, all the triangles
(zk,l ,m ,zk11,l ,m ,zk,l ,m21), (zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m) have positive
orientation.

FIG. 4. Computingr in Q̃H .
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Proof of the lemma:One can place the circles with radiir (K,L,M ) into the complex planeC
in the way prescribed by the hexagonal combinatorics and the intersection angles. Taki
circle centers and the intersection points of neighboring circles, one recoverszk,l ,m for k1 l 1m
50,61 up to a translation and rotation. Reversing the arguments used in the derivation of~13!–
~15!, one observes from the forms of the quadrilaterals that Eqs.~1! are satisfied. Now using~1!,
one recoversz in the wholeQ. Equation~15! ensures that the radiir remain positive, which
implies the positive orientations of the triangles (zk,l ,m ,zk11,l ,m ,zk,l ,m21),
(zk,l ,m ,zk,l ,m21 ,zk,l 11,m) and (zk,l ,m ,zk11,l ,m ,zk,l 11,m).

Consider a solutionz:Q→C of the system~1! and~2! with initial data~4!, wheref andc are
chosen so that the triangles (z0,0,0),z1,0,0,z0,0,21) and (z0,0,0),z0,0,21 ,z0,1,0) have positive orienta-
tions and satisfy conditionsr (1,0,21)5uz1,0,212z1,0,0u and r (0,1,21)5uz0,1,212z0,0,21u. The
map zk,l ,m defines circle pattern due to Proposition 1 and coincides with the map define
Lemma 2 due to the uniqueness of the solution uniqueness. Q.

Since the cross-ratio equations and the constraint are compatible, the equations for th
are also compatible. Starting withr (0,0,0), r (1,0,21) and r (0,1,21), one can compute
r (K,L,M ) everywhere inQ̃.

Lemma 3: Let a solution r(K,L,M ):Q̃→R of (13)–(15) be positive in the planes given b

equations K1M50 and L1M50. Then it is positive everywhere in Q˜ .
Proof: As follows from Eq.~15!, r is positive for positiver i , i 51,2,3. Asr at (K,K,2K),

(K11,K,2K21) and (K,K11,2K21) is positive,r at (K,K,K21) is also positive. Now
starting fromr at (K,K,2K21) and havingr .0 at (N,K11,2K21) and (N,K,2K), one
obtains positiver at (N,K,2K21) for 0<N,K by the same reason. Similarly,r at (K,N,2K
21) is positive. Thus from positiver at the planesK1M50 andL1M50, we get positiver at
the planesK1M521 andL1M521. Induction completes the proof.

Lemma 4: Let a solution r(K,L,M ):Q̃→R of (13)–(15) be positive in the lines parametrize

by n as(n,0,2n) and (0,n,2n). Then it is positive in the border planes of Q˜ specified by K
1M50 and L1M50.

Proof: We prove this lemma forK1M50. For the other border plane it is proved similar
Equation~14! for (K,L,2K21) gives

r 25r 5

~2L1c!r 11~2K1c!r 4

~2K122c!r 11~2L122c!r 4
, ~16!

thereforer 2 is positive providedr 1 , r 5 and r 4 are positive. ForK5L it reads as

r 25r 5

~2K1c!

~2K122c!
. ~17!

It allows us to compute recursivelyr at (K,K,2K) starting withr at ~0,0,0!. Obviously,r .0 for
(K,K,2K) if r .0 at ~0,0,0!. This property together with the conditionr .0 at (n,0,2n) implies
the conclusion of the lemma since Eq.~16! givesr everywhere in the border plane ofQ̃ specified
by K1M50.

Lemmas 3 and 4 imply that the circle patternzc is an immersion ifr .0 at (N,0,2N) and
(0,N,2N).

IV. PROOF OF THE MAIN THEOREM. DISCRETE PAINLEVÉ AND RICCATI EQUATIONS

In this section, we prove that allr (n,0,2n), ;nPN are positive only for the initial data
z1,0,051, z0,0,215eca3. For the liner (0,n,2n) the proof is the same. Our strategy is as follow
first, we prove the existence of an initial valuez0,0,21 such thatr (n,0,2n).0, ;nPN. Finally
we will show that this value is unique and isz0,0,215eca3.

Proposition 2: Suppose the equation
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~n11!~xn
221!S xn111xn /«

«1xnxn11
D2n~12xn

2/«2!S xn211«xn

«1xn21xn
D5cxn

«221

2«2 , ~18!

where «5eia3, has a unitary solution xn5eibn in the sector0,bn,a3 . Then r(n,0,2n), n
>0 is positive.

Proof: For z1,0,051 and unitaryz1,0,21 , the equation for the cross-ratio witha3 and~2! reduce
to ~18! with unitary xn

25(zn,0,2n212zn,0,n)/(zn11,0,2n2zn,0,n). Note that forn50 the term with
x21 drops out of~18!; therefore the solution forn.0 is determined byx0 only. The condition
0,bn,a3 means that all triangles (zn,0,2n ,zn11,0,n ,zn,0,2n21) have positive orientation. Henc
r (n,0,2n) are all positive. Q.E.D.

Remark:Equation~18! is a specialdiscrete Painleve´ equation. For a more general reductio
of cross-ratio equation see Ref. 18. The case«5 i , corresponding to the orthogonally intersecti
circles, was studied in detail in Ref. 3. Here we generalize these results to the case of ar
unitary «. Below we omit the index ofa so that«5eia.

Theorem 4: There exists a unitary solution xn5eibn to (18) in the sector0,bn,a.
Proof: Equation ~18! allows us to representxn11 as a function ofn,xn21 and xn : xn11

5F(n,xn21 ,xn). F(n,u,v) maps the torusT25S13S15$(u,v)PC: uuu5uvu51% into S1 and
has the following properties:

~i! For all nPN it is a continuous map onAI3ĀI whereAI5$eib:bP(0,a)% and ĀI is the
closure ofAI . Values ofF on the border ofAI3ĀI are defined by continuity:F(n,u,«)
521, F(n,u,1)52«.

~ii ! For (u,v)PAI3AI one hasF(n,u,v)PAIøAII øAIV , whereAII 5$eib:bP(a,p#% and
AIV5$eib:bP@a2p,0)%, i.e., x cannot jump in one step fromAI into AIII 5$eib:b
P(2p,a2p)%.

Let x05eib0. Thenxn5xn(b0). DefineSn5$b0 : xk(b0)PĀI;0<k<n%. ThenSn is a closed set
sinceF is continuous onAI3ĀI . As a closed subset of a segment it is a collection of disjo
segmentsSn

l .
Lemma 5: There exists sequence$Sn

l (n)% such that

(i) Sn
l (n) is mapped by xn(b0) onto ĀI and

(ii) Sn11
l (n11),Sn

l (n) .

The lemma is proved by induction. Forn50 it is trivial. Suppose it holds forn. As Sn
l (n) is

mapped byxn(b0) onto ĀI , continuity considerations andF(n,u,«)521, F(n,u,1)52« imply
xn11(b0) mapsSn

l (n) onto AIøAII øAIV and at least one of the segmentsSn11
l ,Sn

l (n) is mapped
into ĀI . This proves the lemma.

Since the segments of$Sn
l (n)% constructed in Lemma 5 are nonempty, there existsb̄0PSn for

all n>0. For thisb̄0 , the valuexn(b̄0) is not on the border ofĀ0 since thenxn11(b0) would jump
out of ĀI . Q.E.D.

Let r n andRn be the radii of the circles of the circle patterns defined byzk,l ,m with the centers
at z2n,0,0 andz2n11,0,21 , respectively. Constraint~2! gives

r n115
2n1c

2~n11!2c
r n ,

which is exactly formula~17!. From elementary geometric considerations~see Fig. 5! one gets

Rn115
r n112Rn cosa

Rn2r n11 cosa
r n11

~recall thata5a3). Define
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pn5
Rn

r n
, gn~c!5

2n1c

2~n11!2c

and denotet5cosa. Now, the equation for the radiiR, r takes the form

pn115
gn~c!2tpn

pn2tgn~c!
. ~19!

Remark:Equation~19! can be seen as a discrete version of aRiccati equation. This is moti-
vated by the following properties:

~i! The cross-ratio of each four-tuple of its solutions is constant aspn11 is a Möbius transform
of pn .

~ii ! The general solution is expressed in terms of solutions of some linear equation: the
dard ansatz

pn5
yn11

yn
1tgn~c! ~20!

transforms~19! into
yn121t~gn11~c!11!yn111~t221!gn~c!yn50. ~21!

As follows from Theorem 4, Proposition 2, and Lemma 4, Eq.~19! has a positive solution. One
may conjecture that there is only one initial valuep0 such thatpn.0, ;nPN from the consid-
eration of the asymptotics. Indeed,gn(c)→1 asn→`, and the general solution of Eq.~21! with
limit values of coefficients isyn5c1(21)n(11t)n1c2(12t)n. Thus pn5yn11 /yn 1tgn(c)
→21 for c1Þ0. Howeverc1 ,c2 define only the asymptotics of a solution. To relate it to t
initial value p0 is a more difficult problem. Fortunately, it is possible to find the general solu
to ~21!.

Proposition 3: The general solution to (21) is

yn5

GS n1
1

2D
GS n112

c

2D S c1l1
n112c/2FS 32c

2
,
c21

2
,
1

2
2n,z1D

1c2l2
n112c/2FS 32c

2
,
c21

2
,
1

2
2n,z2D D , ~22!

FIG. 5. Circles on the border.
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wherel152t21, l2512t, z15(t21)/2, z252(11t)/2 and F is the hypergeometric func
tion.

Proof: The solution was found by a slightly modifiedsymbolic method~see Ref. 10 for the
method description and Ref. 2 for the detail!. Here,F(a,b,c,z) denotes the standard hyperge
metric function which is a solution of the hypergeometric equation

z~12z!Fzz1@c2~a1b11!z#Fz2abF50 ~23!

holomorphic atz50. Due to linearity, the general solution of~21! is given by a superposition o
any two linearly independent solutions. Direct computation with the series representation
hypergeometric function

FS 12
g21

2
,
g21

2
,12S x1

g21

2 D ,zD
511z

~12 ~g21!/2!~g21!/2

~12~x1 ~g21!/2!!
1¯

1zk
@~12 ~g21!/2!~22 ~g21!/2!¯~k2 ~g21!/2!#@~~g21!/2!~11 ~g21!/2!¯~k21~g21!/2!#

~12~x ~g21!/2!!¯~k2~x1 ~g21!/2!!
1¯

~24!

shows that each summand in~22! satisfies Eq.~21!. To finish the proof of Proposition 3, one ha
to show that the particular solutions withc150, c2Þ0 andc1Þ0, c250 are linearly independent
This fact follows from the following lemma.

Lemma 6: As n→`, function (22) has the asymptotics

yn.~n112g/2!~g21!/2~c1l1
n112g/21c2l2

n112g/2!. ~25!

For n→` the series representation~24! implies F((32g)/2 , (g21)/2 ,1
22n,z1).1. Stirling’s

formula

G~x!.A2pe2xxx2 1/2 ~26!

yields the asymptotics of the factorG(n1 1
2)/G(n112 g/2). This completes the proof of th

lemma and of Proposition~3!.
Proposition 4: A solution of the discrete Riccati equation (19) withaÞp/2 is positive for all

n>0 if and only if

p05
sinca/2

sin~22c!a/2
. ~27!

Proof: For positivepn , it is necessary thatc150: this follows from asymptotics~25! substi-
tuted into~20!. Let us define

s~z!511z
~12 ~g21!/2!~~g21!/2!

1

2

1¯

1zk
~k2 ~g21!/2!¯~12 ~g21!/2!~~g21!/2!~k211 ~g21!/2!

k! S k2
1

2D¯ 1

2

¯ . ~28!

This is the hypergeometric functionF((32g)/2 , (g21)/2 ,1
22n,z) with n50. A straightforward

computation with series shows that
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p0511
2~g21!

22g
z1

4z~z21!

22g

s8~z!

s~z!
, ~29!

wherez5 (11t)/2. Note thatp0 as a function ofz satisfies an ordinary differential equation
first order sinces8(z)/s(z) satisfies the Riccati equation obtained by a reduction of~23!. A
computation shows that@sin(ga/2)#/@sin(22g)a/2# satisfies the same ordinary differential eqi
tion. Since both expression~29! and ~27! are equal to 1 forz50, they coincide everywhere.

Q.E.D.
Proof of Theorem 1:Proposition~4! implies that the initialx0 for which ~18! gives positiver

is unique and implies the initial values~5! for zc if a iÞp/2. For the casea5p/2, any solution for
~19! with p0.0 is positive. Nevertheless, as was proved in Ref. 3,x0 is in this case also unique
and is specified by~27!. Thus for allnPN we haver (n,0,2n).0, r (0,n,2n).0 for the circle
patternzc. Lemmas 4 and 3 complete the proof.

V. HEXAGONAL CIRCLE PATTERNS z2 AND Log

For c52, formula~17! gives infiniter (1,1,21). The way around this difficulty is renorma
izationz→(22c)z/c and a limit procedurec→220, which leads to the renormalization of initia
data~see Ref. 7!. As follows from ~27!, this renormalization implies

r ~0,0,0!50, r ~1,0,21!5
sina3

a3
,r ~0,1,21!5

sina2

a2
, r ~1,1,21!51. ~30!

Proposition 5: The solution to (13)–(15) with c52 and initial data (30) is positive.
Proof: This follows from Lemmas 3 and 4 since Theorem 4 is true also for the casec52.

Indeed, solutionxn is a continuous function ofc. Therefore it has a limit value asc→220 and it
lies in the sectorAI .

Lemma 2 implies that there exists a hexagonal circle pattern with radius functionr .
Definition 3: The hexagonal circle pattern Z2 has a radius function specified by Proposition.
Equations~13!–~15! have the symmetry

r→ 1

r
, c→22c, ~31!

which is theduality transformation~see Ref. 8!. The smooth analogf→ f * for holomorphic
functions f (w), f * (w) is

d f~w!

dw

d f* ~w!

dw
51.

Note that log*(w)5w2/2. The hexagonal circle pattern Log is defined7 as a circle pattern dual to
Z2. Discretez2 and Log are the first two images in Fig. 6.

Theorem 5: The hexagonal circle patterns Z2 and Log are immersions.

FIG. 6. Hexagonalz2, Log and square gridz3/2.
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Proof: For z2 this follows from Proposition 5. Hence the values of 1/r , where r is radius
function for z2, are positive except forr (0,0,0)5`. Lemma 2 completes the proof.

VI. CONCLUDING REMARKS

In this section we discuss corollaries of the obtained results and possible generalizatio

A. Square grid circle patterns zc and Log

Equations~1! extendzk,l ,m corresponding to the hexagonalz2 and Log fromQH into the
three-dimensional latticeQ. Ther -function of this extension satisfies Eq.~15!. Considerzk,l ,m for
the hexagonalzc and Log restricted to one of the coordinate planes, e.g.,l 50. Then Proposition
1 states thatzk,0,m defines some circle pattern with combinatorics of the square grid: each c
has four neighboring circles intersecting it at anglesa3 andp2a3 . It is natural to call itsquare
grid zc ~see the third image in Fig. 6!. Such circle patterns are natural generalization of those w
orthogonal neighboring and tangent half-neighboring circles introduced and studied in Ref

Theorem 6: Square grid zc, 0,c<2 and Log are immersions.
Proof easily follows from Lemma 2.
It is interesting to note that the square grid circle patternzc can be obtained from hexagon

one by limit procedurea3→10 and bya1→p2a2 . These limit circle patterns still can b
defined by~1! and ~2! by imposing the self-similarity conditionzk,l ,m5 f l ,k2m .

B. Square grid circle patterns Erf

For square grid combinatorics anda5p/2, Schramm22 constructed circle patterns mimickin
holomorphic function erf(z)5(2/p)*e2z2

dz by giving the radius function explicitly. Namely, le
n,m label the circle centers so that the pairs of circlesc(n,m), c(n11,m) andc(n,m), c(n,m
11) are orthogonal and the pairsc(n,m), c(n11,m11) andc(n,m11), c(n11,m) are tangent.
Then

r ~n,m!5enm ~32!

satisfies the equation for a radius function:

R2~r 11r 21r 31r 4!2~r 2r 3r 41r 1r 3r 41r 1r 2r 41r 1r 2r 3!50, ~33!

whereR5r (n,m), r 15r (n11,m), r 25r (n,m11), r 35r (n21,m), r 45r (n,m21). For square
grid circle patterns with intersection anglesa for c(n,m), c(n11,m) and p2a for c(n,m),
c(n,m11) the governing Eq.~33! becomes

R2~r 11r 21r 31r 4!2~r 2r 3r 41r 1r 3r 41r 1r 2r 41r 1r 2r 3!12R cosa~r 1r 32r 2r 4!50. ~34!

It is easy to see that~34! has the same solution~32! and it therefore defines a square grid circ
pattern, which is a discrete Erf. A hexagonal analog of Erf is not known.

C. Circle patterns with quasi-regular combinatorics

One can deregularize the prescribed combinatorics by a projection ofZn into a plane as
follows ~see Ref. 23!. ConsiderZ1

n ,Rn. For each coordinate vectorei5(ei
1 , . . . ,ei

n), whereei
j

5d i
j define a unit vectorj i in C5R2 so that for any pair of indicesi , j , vectorsj i ,j j form a basis

in R2. Let VPRn be some two-dimensional simply connected cell complex with vertices inZ1
n .

Choose somex0PV. Define the mapP:V→C by the following conditions:

~i! P(x0)5P0 .
~ii ! If x,y are vertices ofV andy5x1ei , thenP(y)5P(x)1j i .

It is easy to see thatP is correctly defined and unique.
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We callV a projectablecell complex if its imagev5P(V) is embedded, i.e., intersections
images of different cells ofV do not have inner parts. Using projectable cell complexes one
obtain combinatorics of Penrose tilings.

It is natural to define ‘‘discrete conformal map onv’’ as a discrete complex immersio
function z on vertices ofv preserving the cross-ratios of thev-cells. The argument ofz can be
labeled by the verticesx of V. Hence for any cell ofV, constructed onek ,ej , the functionz
satisfies the following equation for the cross-ratios:

q~zx ,zx1ek
,zx1ek1ej

,zx1ej
!5e22iak, j , ~35!

whereak, j is the angle betweenjk andjj , taken positively if (jk ,j j ) has positive orientation and
taken negatively otherwise. Now suppose thatz is a solution to~35! defined on the wholeZ1

n . We
can define a discretezc:v→C for projectableV as a solution to~35! and ~36! restricted toV.
Initial conditions for this solution are of the form~5! so that the restrictions ofz to each two-
dimensional coordinate lattice is an immersion defining a circle pattern with prescribed inte
tion angles. This definition naturally generalizes the definition of discrete hexagonal and s
grid zc considered above.

We finish this section with the natural conjecture formulated in Ref. 2.
Conjecture: The discrete zc:v→C is an immersion.
The first step in proving this claim is to show that Eq.~35! is compatible with the constrain

c fx5(
s51

n

2xs

~ f x1es
2 f x!~ f x2 f x2es

!

f x1es
2 f x2es

. ~36!

For n53 this fact is proven in Ref. 7.
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The geodesic approximation for lump dynamics
and coercivity of the Hessian for harmonic maps
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The most fruitful approach to studying low energy soliton dynamics in field theo-
ries of Bogomol’nyi type is the geodesic approximation of Manton. In the case of
vortices and monopoles, Stuart has obtained rigorous estimates of the errors in this
approximation, and hence proved that it is valid in the low speed regime. His
method employs energy estimates which rely on a key coercivity property of the
Hessian of the energy functional of the theory under consideration. In this article
we prove an analogous coercivity property for the Hessian of the energy functional
of a general sigma model with compact Ka¨hler domain and target. We go on to
prove a continuity property for our result, and show that, for theCP1 model onS2,
the Hessian fails to be globally coercive in the degree 1 sector. We present numeri-
cal evidence which suggests that the Hessian is globally coercive in a certain
equivariance class of the degreen sector forn>2. We also prove that, within the
geodesic approximation, a singleCP1 lump moving onS2 does not generically
travel on a great circle. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586480#

I. INTRODUCTION

Many field theories arising naturally in theoretical high energy physics may be said to
Bogomol’nyi type. For such theories there is a topological lower bound on the energy of
configurations, and this bound is attained only by solutions of a first order ‘‘self-duality’’ equa
the so-called solitons of the theory. The solitons are stable by virtue of their energy-minim
property, and are generically spatially localized lumps of energy with strongly particlelike
acteristics. When static they exert no net force on one another, so the structure of the sp
static multisoliton solutions is rather rich. Examples within the context of gauge theory are
by the Yang–Mills–Higgs and Abelian–Higgs models, whose solitons are called monopole
vortices, respectively. In both these cases, the static models are very well understood a
structure ofMn , the moduli space of staticn-soliton solutions, is known in great detail. Fo
monopoles, in particular, the static system is integrable and there are several constructions
generate exact solutions of various degrees of explicitness. Once one introduces time depe
however, things get much more difficult. No Bogomol’nyi-type field theory~indeed, no Lorentz
invariant field theory! in more than (111) dimensions is integrable, and the construction
nontrivial exact time-dependent solutions seems impossible.

How then is one to understand the dynamics of moving solitons in these models? The
fruitful approach has turned out to be the geodesic approximation of Manton.11 Here one argues on
physical grounds that the solution of any initial value problem in then-soliton sector whose initia
field is a static solution, and whose initial kinetic energy is small, should be forced to stay clo
Mn by energy conservation. Manton suggested that the dynamics should be well approxima

a!Electronic mail: mhaskin@math.jhu.edu
b!Electronic mail: j.m.speight@leeds.ac.uk
34700022-2488/2003/44(8)/3470/25/$20.00 © 2003 American Institute of Physics
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a solution of the reduced variational problem where the field configuration isconstrainedto lie on
Mn at all times. This reduced dynamics turns out to be geodesic flow onMn with respect to a
natural metric called theL2 metric, so one has the appealing suggestion that low energy so
dynamics in Bogomol’nyi-type theories may be understood by studying the Riemannian geo
of their moduli spaces. This is still a highly nontrivial problem, and it was some time before
L2 metrics on the two-monopole and two-vortex moduli spaces were well understood.2,17 Since
first being proposed, the method of Manton has been extended to deal with dynamical issue
than classical multisoliton scattering. Quantum soliton states5 are thought to be well approximate
by eigenstates of the Laplacian onMn , for example, and the thermodynamics of soliton gase12

has been analyzed in terms of the geometry ofMn .
Not all Bogomol’nyi-type field theories are gauge theories. Another class is given by no

ear sigma models with Ka¨hler target space, for example theCPN models. These models ar
nonlinear in the most fundamental way: the field takes values in a space with no linear stru
However, they have many features in common with the gauge theories mentioned above. T
again a topological lower bound on energy, attained only by solutions of a first order p
differential equation, namely the6-holomorphic maps—the Cauchy–Riemann conditions p
the role of the self-duality equation. The static model is integrable and the structure ofMn is again
well understood. The solitons in this case are usually called ‘‘lumps.’’

Given the similarities between lumps and their gauge theoretic counterparts, it was natu
Ward to suggest, in the specific context of theCP1 model on the plane, that the geodesic appro
mation should be applicable to classical lump dynamics too.26 A detailed numerical analysis o
two-lump scattering within the geodesic approximation followed,7 as well as generalizations to th
CPN models.22 One technical problem encountered in all these studies is thatCPN lumps have
L2-infinite zero modes onC, so theL2 metric is only well-defined on the leaves of a foliation
Mn , rather thanMn itself. One interprets this physically as saying that certain parameters in
staticn-lump solution are frozen to constant values by infinite inertia. For example, the wid
a singleCP1 lump is a free parameter, but is frozen in this fashion. Unfortunately, this free
appears to be an artifact of the approximation—numerical solutions suggest that a single
may expand or contract according to the genuine field dynamics. So the geodesic approxim
rather pathological for these models. It is therefore interesting to consider situations where
cal space is compact, since theL2 metric is then guaranteed to be well-defined. In particular,CP1

lumps onS2 and T2 have been studied, and quite a lot is known about the correspondinL2

geometries.19–21

The question remains, of course, whether geodesic flow inMn really does closely approximat
low-energy n-lump dynamics in these theories. For two-vortex and two-monopole dynam
rigorous results supporting the geodesic approximation have been proved by Stuart.23,24 He has
shown that the solution with initial dataf(0)PM2 , ḟ(0)PTf(0)M2 of order e ~wheree.0 is
small!, stays pointwise close~order e2) to its corresponding geodesic inM2 for a time of order
e21. The key idea in Stuart’s analysis is to separate the dynamics into slow and fast time-v
modes by means of the following projection: the true solutionf(t) is projected ontoM2 to obtain
a slow trajectoryf̃,

f~ t !5f̃~et !1e2V~ t !, ~1.1!

and a fast varying ‘‘error’’V(t), the projection being chosen so thatV(t) is alwaysL2 orthogonal
to Tf̃(et)M2 . Stuart goes on to prove that an appropriate Sobolev norm ofV(t) remains bounded
for times of ordere21 by bounding this norm in terms ofHessf̃ , the quadratic form associate
with the second variation of the potential energy functional of the model, which is slowly var
by virtue of energy conservation. It follows that, as expected, the true solution remains clo
M2 . That the projected trajectoryf̃ remains close to geodesic is proved as a separate step.

The whole analysis relies on one’s ability to control Sobolev norms of the error in terms o
Hessian. More precisely, the following coercivity property ofHess is crucial:
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There exists a constantt.0 such that for all f̃PM2 and all VPH1 with V'L2Tf̃M2 ,
Hessf̃(V,V)>tiViH1

2 .

This turns out to be slightly easier to prove for vortices than monopoles since theL2 spectrum of
small oscillations about a static vortex has a mass gap due to the Higgs mechanism. No su
occurs for monopoles.

How much of this framework carries over to sigma models? Since the target space h
linear structure, Eq.~1.1! makes no sense as it stands, and must be replaced. We suggest he
the correct replacement is

f~ t !5expf̃(et)e
2V~ t !, ~1.2!

where exp:TN→N is the exponential map on the target spaceN. Once again, we should choos
V(t) always to beL2 orthogonal toTf̃(et)Mn . In this context, we will prove an analog of Stuart
coercivity lemma for any holomorphic mapf̃ between compact Ka¨hler manifolds, namely, there
existst(f̃).0 such that for allVPH1, V'L2Tf̃Mn ,

Hessf̃~V,V!>t~f̃!iViH1
2 . ~1.3!

The important difference from Stuart’s result is that the constantt depends onf̃, that is, varies
with position inMn . We may define the optimal constant

t~f̃ !5 infH Hessf̃~V,V!

iViH1
2 :VÞ0,V'L2Tf̃MnJ .0. ~1.4!

We prove a result~Theorem 6! which gives sufficient conditions thatt depends continuously on
f̃, and verify that those conditions hold in the main examples of interest to us. It turns out thMn

for sigma models is generically noncompact, so continuity oft(f̃) does not guarantee a glob
bound. In fact, we will show by means of an explicit counterexample thatt(f̃).0 is not neces-
sarily bounded away from zero. The counterexample occurs in the simplest nontrivial
namely the one-lump moduli space of theCP1 model onS2, but we believe it is indicative of a
generic phenomenon for theCPN models on any compact Riemann surface. Roughly speak
t(f̃)→0 as the lumpf̃ shrinks to zero size. One would expect this to happen quite generica
Mn , wherever a family of holomorphic maps degenerates so that a single isolated lump coll
This suggests we are never likely to have a global bounding constantt on Mn as obtained by
Stuart for vortices and monopoles. Consequently, the best result one could hope for fr
analysis of this type for lumps is that the geodesic approximation is good for a time of orderTe21,
whereT is some increasing function of inftt(f̃(et)). In this case, the approximation would wor
well ~in the usual sense! so long as the projected geodesic stays away from]`Mn , the boundary
at infinity of Mn , wheret→0. In particular it seems very unlikely that geodesic flow provide
good approximation to the process of single lump collapse itself. Two independent num
studies of singularity formation in theCP1 model on the plane support this pessimis
assessment.3,10

If we impose extra symmetry on our system, in other words, restrict attention to an admi
equivariance class, then the projected mapf̃ is confined to a totally geodesic submanifoldMn

eq of
Mn , and the errorV is confined to an infinite dimensional subspaceHeq

1 of H1(f̃* TN). We may
define an equivariant versionteq of t by taking the infimum only over sectionsVPHeq

1 . Clearly
teq(f̃)>t(f̃).0. For a certain equivariance class forn-lump dynamics in theCP1 model onS2,
one can prove thatteq is continuous onMn

eq , which is again noncompact. We will prese
numerical evidence thatteq(f̃) is globally bounded away from zero forn>2 in this class. The
point is that onlycoincident n-lump collapse can occur within this particular equivariance cla
and the problem of vanishingt does not appear to happen for such collapse. It is poss
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therefore, that the geodesic approximation does give a good model of equivariant mul
collapse, though one should be cautious: there is ample scope for other aspects of Stuart’s
to break down as singularities form. There are some grounds for optimism. A recent c
numerical study of lump collapse by Linhart and Sadun found that single lump collapse o
plane differed significantly from that predicted by a truncated geodesic approximation,
coincident two-lump collapse did not.10

The rest of this article is structured as follows. In Sec. II we introduce the nonlinear s
models of interest and briefly review some of their standard properties. We focus in particu
the CP1 model onS2, describing what is known about theL2 geometry onMn in this case,
especially forn51. We present a new result on generic behavior of the geodesic flow inM1 which
implies that~within the geodesic approximation! a single lump generically doesnot travel along
great circles onS2. Precise restrictions on the set of nongeneric initial data are given. In Se
we formulate and prove the main result of the article, that the Hessian for these models is co
on H1, in the sense described above. In Sec. IV we establish a simple sufficient condition fot~f!

to depend continuously onf̃PMn . In Sec. V we show that this condition is met in the case ofM1

for the CP1 model onS2. We go on to prove thatt→0 as f̃ approaches]`M1 , so global
coercivity fails in this case. Finally, in Sec. VI we consider the case of then-lump sector of the
CP1 model onS2 within a given equivariance class, showing thatteq is continuous. We conjecture
that Hesseq is globally coercive forn>2 and present some numerical results in support of
conjecture.

II. THE CP1 MODEL ON S2

For our purposes, a nonlinear sigma model consists of a single fieldf:R3M→N, where
(M ,g) and (N,h) are compact Ka¨hler manifolds,M represents physical space,R3M is space–
time, equipped with the Lorentzian pseudometrich5dt22g, andN is the target space. Solution
of the model are local extremals of the action,

S@f#5
1

2 ER3M
(
a

udfEau2

uEau2 5E
R
S 1

2 EM
uḟu22E@f# D , ~2.1!

whereE05]/]t,E1 ,...,Em is an orthonormal basis of vector fields onR3M and E@f# is the
harmonic map energy functional for mapsM→N. Such solutions are called wave maps in t
geometric analysis literature, by analogy with harmonic maps.18 Indeed, static wave maps ar
precisely harmonic maps and hence have been the focus of intense study. In particular, L
owicz showed that if a homotopy class@f# contains6-holomorphic representatives, then the
minimize energy within that class.9 So the moduli space of interest within a given class isM[f]

5Hol[f] (M ,N). For the sake of generality, we will state and prove the coercivity lemma for
Hessian in this general context.

It is important when using the geodesic approximation to know thatM[f] is a finite dimen-
sional smooth manifold. This is not always true in the general case of holomorphic maps be
Kähler manifolds. We discuss this question in more detail in Sec. III, briefly summarizing s
results in the harmonic maps and algebraic geometry literature which allow us to identify c
of sigma model whose moduli spaces are smooth manifolds. For the moment we note th
particular case we have most directly in mind, namelyM5N5S2, the CP1 model on the two-
sphere, certainly does have this property.

We now consider the caseM5N5S2 in more detail. Each homotopy class@f#Pp2(S2) is
labeled by the degree off, an integern, which without loss of generality we may assume
nonnegative. The degreen is interpreted physically as the net lump number of the configuratiof.
The spaceMn of degreen holomorphic mapsS2→S2 is easily constructed explicitly. Choosin
stereographic coordinatesz,WPC on bothM andN, such a map is rational of degreen,
                                                                                                                



nd

ons

ar

s,

e shall
t

g

t

3474 J. Math. Phys., Vol. 44, No. 8, August 2003 M. Haskins and J. M. Speight

                    
f:z°W5
a1zn1¯1an11

an12zn1¯1a2n12
, ~2.2!

whereai are 2n12 complex constants,a1 andan12 do not both vanish, and the numerator a
denominator have no common roots. Since (a1 ,...,a2n12) and (ja1 ,...,ja2n12) give the same
map for alljPC\$0%, we have a natural identification ofMn with a dense open subset ofCP2n11,
whence it inherits a natural topology and complex structure.

The metric of interestg does not descend from the inclusionMn,CP2n11, however. To define
it, one must think of a tangent vectorXPTfMn as a zero mode of the Cauchy–Riemann equati
for mapsM→N at the mapf. Such a zero mode is a smooth section off* TN, the pullback of
the tangent bundle ofN by the mapf, that is, a rule which assigns to eachpPM a vector
V(p)PTf(p)N. We may define theL2 inner product between any pair of sufficiently regul
sectionsX,Y of f* TN by taking their fibrewise inner product inTf(p)N, then integrating overM ,

^X,Y&L25E
M

h~X,Y!. ~2.3!

The L2 metric onMn is simply the restriction of̂ •,•&L2 to zero modes. In more concrete term
one can in principle compute explicit formulas forg by choosing local coordinatesqi on Mn ~for
example, the real and imaginary parts ofai /a1 , on the chart wherea1Þ0) and expressing the
mapf($qi%) as an explicit functionW(z,$qi%), so that

g5(
i j

g i j dqidqj , g i j 5E
C

dzdz̄

~11uzu2!2

1

~11uWu2!2

]W

]qi

]W

]qj . ~2.4!

In practice, of course, the integrals involved are almost always intractable.
Certainly, theL2 metric is a natural way of geometrizingMn . More importantly, it is the

Riemannian metric descending from the restriction of the kinetic energy functional1
2*Muḟu2 to

Mn , and hence the metric whose geodesics are thought to model slow lump dynamics. W
briefly review what is known about the Riemannian manifold (Mn ,g), and prove a new resul
about the generic behavior of geodesics in (M1 ,g).

First, (Mn ,g) is manifestly Hermitian, and is in fact Ka¨hler. This was long suspected, owin
to a rather general formal argument of Ruback,15 and has recently been proved rigorously.21 It is
also known that (Mn ,g) is geodesically incomplete.16 For odd n, (Mn ,g) contains a totally
geodesic Lagrangian submanifold naturally identified with the moduli space of staticRP2 n-lumps
on RP2; for n>3 this submanifold is also incomplete.

There is an isometric action ofG5SO(3)3SO(3) onMn , induced by the natural SO~3!
actions on the domain and target spheres, which onM1 has cohomogeneity 1~genericG orbits
have codimension 1!, and in fact, almost completely determinesg. Consequently, an explici
formula for g is known in this case, and the geometry is particularly well understood. Forn51,
the no common roots condition on the rational mapW(z)5(a1z1a2)/(a3z1a4) is a1a42a2a3

Þ0, so we may identify each map with a projective equivalence class@L# of GL~2,C! matrices.
HenceM1>PL(2,C). By identifying S2 with the unit sphere inR3>su(2) in the usual way, we
may identify the SO~3! action onS2 with the adjoint SU~2! action, so thatg regarded as a metric
on PL~2,C! is invariant under the left and right PU~2! actions:

~@U1#,@U2# !:@L#°@U1LU2#. ~2.5!

Now every@L#PPL(2,C) has a unique polar decomposition

@L#5@U~A11l2I21l"t!# ~2.6!
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where (@U#,l)PPU(2)3R3, l5ulu, and t1 ,t2 ,t3 are the Pauli spin matrices. HenceM1

>PU(2)3R3>SO(3)3R3. Physically, the lump corresponding to (@U#,l) has maximum energy
density at2l/lPS2, sharpness proportional tol and internal orientation@U#. Thel50 lumps
have uniform energy density. TheG action in this coordinate system is

~@U1#,@U2# !:~@U#,l!°~@U1UU2#,AdU2
l!, ~2.7!

where again we have usedR3>su(2) to identify the fundamental SO~3! action onR3 with the
adjoint SU~2! action onsu~2!. From this we see that theG-orbits are level sets ofl, generically
diffeomorphic to SO(3)3S2 ~whenl.0), the only exception beingl50, which is diffeomorphic
to SO~3!.

In Ref. 21 it was proved that everyG invariant Kähler metric onM1 may be written

g5A1 dl•dl1A2~l•dl!21A3 s"s1A4~l"s!21A1l•~s3dl!, ~2.8!

where A1 ,...,A4 are smooth functions ofl only, all determined from the single functionA1

5A(l) by the relations

A25
A~l!

11l2 1
A8~l!

l
, A35

1

4
~112l2!A~l!, A45

1

4l
~11l2!A8~l!. ~2.9!

Heres1 ,s2 ,s3 are the left invariant one-forms on SO~3! dual to the basis$ i /2ta :a51,2,3% for
su(2)>so(3). For theL2 metric, one finds that

A5
4pm@m424m2 logm21#

~m221!3 , m5~A11l21l!2. ~2.10!

It follows from these formulas that (M1 ,g) has finite volume and diameter, is Ricci positive a
has unbounded scalar and holomorphic sectional curvatures. Examining the largel behavior ofg,
one finds that]`M1 , the boundary at infinity ofM1 , is S23S2. This is natural in two ways: a
point in ]`M1 should be thought of as a collapsed lump whose width has shrunk to zero. S
lump is specified by a pair of pointsp,p8 in S2 because every point except one,p, in the domain
gets mapped to the same pointp8 in the codomain, whilep gets mapped to the antipodal poi
2p8. Second, the complex codimension 1 algebraic varietya1a42a2a350 complementary toM1

in CP3 is biholomorphic toCP13CP1, being the image of the holomorphic embedding

~@x1 ,x2#,@y1 ,y2# !°@x1y2 ,x1y1 ,x2y2 ,x2y1#. ~2.11!

Since diam(M1 ,g),`, ]`M1 lies at finite proper distance, so geodesics may reach it in fi
time, the origin of the incompleteness already noted. Given that]`M1 has~real! codimension 2,
however, one would expect geodesics to miss]`M1 generically. More precisely, one would expe
the subset ofTM1 consisting of initial data of geodesics whichdo escape to infinity to have zer
measure with respect to the natural measure inherited fromg.

Geodesic flow in (M1 ,g) was studied in detail in Ref. 19. It turns out to be surprising
complicated given the homogeneity and isotropy of the domain of the sigma model,S2. Geodesics
were found for which the lump spins internally and oscillates between antipodal points.
geodesics were found where the lump travels along a great circle inS2, its speed and shap
undergoing complicated periodic oscillations. Geodesics do exist for which the lump s
traverses a great circle at constant speed and shape, but the initial data to generate such
must be chosen very carefully. Nevertheless, all the geodesics found in Ref. 19 confin
lump’s position2l/l to some great circle for all time. More precisely, they all confinedl(t) to
some plane through the origin. The geodesics themselves were obtained by reducing the g
problem to low dimensional totally geodesic submanifolds, the fixed point sets of discrete
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etries. The question arises, then, whether this ‘‘planar property’’ of the geodesic flow is an a
of the exceptional symmetries enjoyed by these geodesics, or is a general feature of the dy
We shall now prove that the former is the case.

By the G invariance of the metric, it suffices to determine which initial velocitiesu
PTx(0)H at the pointx(0)5(@I2#,(0,0,l)) tangent to the hypersurfaceH5$(@U#,l):l250%
generate geodesics which remain inH. We shall call such an initial velocityu a ‘‘good’’ vector.
Clearly the set of good initial velocities is conical by time-scaling invariance of geodesic flow
this we mean that ifuPTx(0)H is good, so is every vectorjuPTx(0)H, jP@0,̀ ), on the ray
containingu. The question is then whether thelink of this cone of good velocity vectors, that i
its intersection with the unit four-sphere inTx(0)H, has nonvanishing measure inS4.

Theorem 1: Let uPTx(0)H generate a geodesic through x(0) which remains in H. Then u
lies in a codimension 1 cone in Tx(0)H. For generic x(0)PH, the link of this cone is the
suspension of a two-torus. There is at most a nowhere dense subset of H on which the link
cone is S3øS3, two three-spheres intersecting in an equatorial two-sphere.

Proof: Let N be a nonvanishing~but not necessarily unit! normal onH. Then if x(t) remains
in H, g( ẋ(t),N(x(t)))50 for all t. Differentiating this att50 and using the fact thatẋ(t) is
parallel for a geodesic, one finds thatg( ẋ(0),¹ẋ(0)N)50, where¹ is the Levi-Civita connection.
Hence,u5 ẋ(0) must lie in the null space of the symmetric bilinear form

B~u,v !5g~u,¹vN!, ~2.12!

that is,B(u,u)50. Clearly this null space is conical. We seek to understand the link of this c
In this case (H5$l250%), we may choose

N5A3

]

]l2
1

1

2
A1~2l3u11l1u3! ~2.13!

as our normal field, whereua are the left-invariant vector fields on SO~3! dual to sa . We may
computeB(u,v) by extendingu,v to vector fieldsU,V on M1 , then using the usual formula fo
¹ and symmetry ofB,27 to yield

B~u,v !5 1
2 N@g~U,V!#ux(0)1

1
2 g~@U,N#ux(0) ,v !1 1

2 g~@V,N#ux(0) ,u!. ~2.14!

A straightforward but lengthy calculation then shows that

B5 f 1~l!dl1s31 f 2~l!dl3s11 f 3~l!s2s3 , ~2.15!

where

f 15 1
8 ~11l2!~2A1lA8!, f 252 1

4 ~112l2!A~A1lA8!, f 35 1
16 ~11l2!AA8,

~2.16!

at the specific pointx(0)5(@I2#,(0,0,l)). By computing eigenvalues, one sees that, with resp
to some orthonormal basis forTx(0)H,

B~u,u!5 f 2~l!~u2
22u3

2!1Af 1~l!21 f 3~l!2~u4
22u5

2!. ~2.17!

Note that

8 f 1~l!

11l2 52A1lA8.
2l111

l211
A1lA85gS ]

]l3
,

]

]l3
D.0 ~2.18!
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so f 1(l) never vanishes. Consider the setL5 f 2
21(0),@0,̀ ). If L were dense atl0 , then by

continuity of A1lA8, there would be an open interval containingl0 such thatA52 logl
1const. Given the formula~2.10!, A clearly does not coincide with2 logl1const on any interval,
so no suchl0 exists. Hence the setL is nowhere dense.

Let l¹L. By means of al dependent rescaling of the basis, we see that the null space
locus of the equation

ũ2
21ũ4

25ũ3
21ũ5

2 . ~2.19!

Clearly ũ1 may take any value, while (ũ2 ,ũ3 ,ũ4 ,ũ5) lies on a cone inR4 whose link is a
two-torus. Alternatively, we may think of the unit sphere inR5 as the suspension of the unit sphe
in R4 along theũ1 direction. Then the intersection of the link of the null space with each th
sphere of constantũ1P@21,1# is a scaled two-torus. Assembling the slices together we see
the whole null space has a link which is topologically the suspension of a two-torus.6 Either way
of viewing the null set, it is clearly a codimension 1 cone inTx(0)H as claimed.

It remains to consider the nongeneric case,lPL, for which f 2(l)50. In this case, since
f 1(l)Þ0, the cone consists of all vectors for whichu456u5 . The link is the intersection ofS4

with the union of the two orthogonal hyperplanes (u46u5)50, which is manifestly a union of two
three-spheres intersecting in an equatorial two sphere (u45u550). h

We should point out thatuPnull B is a necessary but not sufficient condition for the geode
with initial velocity u to stay inH. It is not certain that the cone of good velocities is all of nullB,
therefore. Given the explicit formula forA, one would expect to be able to improve the char
terization of the nongeneric subset ofH ~on which nullB has linkS3øS3) from nowhere dense to
discrete or finite. Indeed, one may check graphically thatf 2(l)50 has only one solution (l
50.881 to three decimal places!, so the nongeneric set consists of a singleG orbit, S13SO(3),
in H.

Corollary 2: Generically geodesics in(M1 ,g) do not confinel(t) to a plane through0.
Consequently, single lumps generically do not stay on great circles while moving on S2.

Of course, this corollary refers to the lump dynamics within the geodesic approximation
question remains: does this give a good model of the full field dynamics?

III. COERCIVITY OF THE HESSIAN

We wish to consider the wave map problem for maps (R3M ,dt22g)→(N,h), where
(M ,g),(N,h) are compact Ka¨hler, and the initial data have a certain Sobolev regularity and
close to holomorphic, in a sense to be made precise. The eventual aim is to prove that suc
maps stay close toHol[f] (M ,N) and that their closest trajectory inHol[f] (M ,N) is close to a
geodesic. In this section we will prove the main analytic ingredient needed for such a pro
along the lines of Stuart’s work on vortices.

The first thing to note is that the Cauchy problem for such wave maps with initial
(f0 ,ḟ0)PHk

% Hk21 on the time slice$0%3M is well posed, that is, has a unique solution in t
same Sobolev space, witht°(f(t),ḟ(t)) continuous, at least on some open time interv
tP(2e,e), by work of Choquet-Bruhat.4 HereHk denotes the space of mapsM→Rp which are
Hk in the usual sense (f,¹f,...,¹kf are allL2) and which take values onN,Rp ~isometrically
embedded inRp) almost everywhere. For our purposes, it is convenient to use an altern
intrinsic definition ofHk(M ,N), which is only well-defined fork. 1

2dim M . With this restriction
on k, Hk(M ,N) naturally has the structure of a Hilbert manifold. Below we give a brief treatm
of both the intrinsic definition and the Hilbert manifold structure ofHk(M ,N). For a complete
treatment we refer the reader to Ref. 14.

A map f:M→N is said to belong toHk(M ,N) if for any pPM and any chart (U,F)
containingp, and any chart (V,C) containingf(p), the mapC+f+F21:F(U)→Rn belongs to
Hk(F(U),Rn). For this notion to be well-defined we need to ensure that composition byC`

diffeomorphisms on the left and on the right takes anHk map to anHk map. For composition on
the right this is true without any restriction onk. However, for left composition the same resu
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only holds if we assumek. 1
2dim M ~for a discussion of both points see B.1.7 and B.1.9 on p.

in Ref. 13!. From now on we make a standing assumption thatk. 1
2dim M , so that the intrinsic

definition of Hk(M ,N) given above makes sense.
We now exhibit the structure of an infinite dimensional Hilbert manifold onHk(M ,N). Stan-

dard facts on embeddings of Sobolev spaces and the density of smooth maps in Sobolev
prove the following: There are continuous inclusionsC`(M ,N)�Hk(M ,N)�C0(M ,N) and the
first inclusion has dense image. From the latter fact it follows that it is sufficient to exhibit c
for Hk(M ,N) around only theC` maps.

Given fPC`(M ,N) the pullback bundlef* TN ~i.e., the vector bundle overM whose fibre
at m is the vector spaceTf(m)N) comes equipped with a natural inner producth+(f3f) and
compatible connexion¹f, the pullback of the Levi-Civita connection onTN. For any vector
bundleE over compactM equipped with an inner product^ , & and compatible connection¹ there
is a naturalHk inner product on smooth sections ofE:

^V,W&Hk5E
M

^V,W&1E
M

^¹V,¹W&1¯1E
M

^¹kV,¹kW&. ~3.1!

Hk(E) is then defined as the set of finiteHk norm elements of the completion ofC`(E) with
respect to the normi • iHk. For M compact, this definition ofHk(E) is equivalent to the following
alternative definition: given any choice of local coordinates onM and associated bundle trivia
izations forE, a section belongs toHk(E) if it is represented by locallyHk functions in these
trivializations. The difference is that the connection-dependent definition gives a preferred
product onHk(E), i.e., (Hk(E),i • iHk) is naturally a Hilbert space.

The point is thatHk(f* TN) is the local model space for the Hilbert manifoldHk(M ,N). For
each fPC`(M ,N), there is a map expf :Hk(f*TN)→Hk(M,N) given by V(p)°expf(p)V(p),
where exp:TN→N is the exponential map on (N,h). It can be shown that expf maps a neighbor-
hood of 0 in the Hilbert spaceHk(f* TN) bijectively to a neighborhood off in Hk(M ,N). Hence
for eachfPC`(M ,N) there exists somee.0, so that one can define a chart (Uf ,expf

21) based
at f where

Uf5$expf~V!:VPHk~f* TN!,iViHk,e%.

The local homeomorphismUf→Be(0),Hk(f* TN) is simply given by expf
21 . So we identify

Hk maps close tof with Hk sections off* TN by deformingf: the deformed map expf(V) maps
eachpPM to the point inN reached by traveling for unit time along the geodesic with initial d
(f(p),V(p)).

It can be shown that for any two mapsf1 ,f2PC`(M ,N) the change of charts map expf2

21

+ expf1
:expf1

21(Uf1
ùUf2

)→expf2

21(Uf1
ùUf2

) is a diffeomorphism between open sets in the Hilb

spacesHk(f1* TN) and Hk(f2* TN). It follows that the collection of charts$(Uf ,expf
21)u f

PC`(M,N)% defines a differentiable structure onHk(M ,N) with local model a Hilbert space, i.e
Hk(M ,N) is a Hilbert manifold. In fact, the differentiable structure can be shown to be inde
dent of the metrich on N used to define expf .

Given

~i! a holomorphic mapf̃0PHol(M ,N), and
~ii ! sectionsV0 ,X0 ,Y0PHk(f̃0* TN), such that
~iii ! V0 ,Y0 areL2 orthogonal toTf̃0

Hol(M ,N), and
~iv! X0PTf̃0

Hol(M ,N),

ande.0 small, the initial value problem with initial data

f05expf̃0
e2V0 , ḟ05eX01e3Y0 ~3.2!
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has a unique solution inHk. The idea is to decompose this solution intof̃(t)PHol(M ,N) and
V(t)PHk(f̃(t)* TN)ùTf̃(t)Hol(M ,N)'L2 by

f~ t !5expf̃(t)e
2V~ t !, ~3.3!

and then show thatiViHk remains bounded for times of ordere21. The starting point is to show
that iViH1 is controlled byHessf̃(V,V). From now on, all quantities will be considered at a fix
time, and we will denote the holomorphic base map of our local chart inHk by f rather thanf̃,
to simplify notation.

Hessf(X,Y) is the second variation of the harmonic map energyE at the holomorphic~hence
harmonic! mapf. Precisely, given a two-parameter variationfs,t of the mapf through smooth
maps, withdf0,0]/]s5X,df0,0]/]t5YPG(f* TN),

Hessf~X,Y!5
]2E@fs,t#

]s]t U
s5t50

. ~3.4!

There are two useful explicit formulas forHess.25 The first uses only compactness ofM , not the
Kähler property. To write it down we must introduce two new objects. LetEi ,i 51,...,m, be a
local frame of smooth orthonormal vector fields onM . Then the rough Laplacian on sections
f* TN is the second order linear elliptic differential operator

DfV52tr~¹f¹fV!52(
i 51

m

~¹f¹fV!~Ei ,Ei !. ~3.5!

Like the usual Laplacian~on functions or forms! Df is a positive self-adjoint operator. Positivit
follows from the identity

E
M

h~V,DfV!5
1

2 EM
(

i
h~¹Ei

f V,¹Ei

f V!. ~3.6!

We may define a~fiberwise linear! bundle mapRf on f* TN by

RfV5(
i 51

m

RN~V,df Ei !df Ei , ~3.7!

whereRN is the curvature tensor onN. Given these, the Hessian is

Hessf~X,Y!5E
M

h~X,JfY!5^X,JfY&L2, Jf5Df2Rf. ~3.8!

The operatorJf, called the Jacobi operator, is itself second order, linear, elliptic and self-ad
It follows immediately from this formula that every harmonic map into a manifold of nonpos
sectional curvature is weakly stable@meaningHessf(V,V)>0].

In the case of interest to us, namelyM ,N compact Ka¨hler, andf holomorphic, one can obtain
a more useful and rather simpler formula forHess. First one defines the Urakawa connection
f* TN,

~DfV!~X!ª¹JMX
f V2JN¹X

fV, ~3.9!

JM,JN being the almost complex structures onM andN.25 Then

Hessf~V,V!5 1
2 iDfViL2

2 . ~3.10!
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Weak stability of holomorphic maps follows immediately from~3.10!.
DfV50 should be thought of as the linearized Bogomol’nyi equation, so everyVPkerDf

5kerJf is a zero mode of the holomorphic mapf. For the geodesic approximation to make sen
the space of holomorphic maps close tof must be a smooth manifold whose tangent space af
equals kerJf. Sections off* TN in the kernel ofJf are called Jacobi fields alongf. A Jacobi field
is said to be integrable if it may be generated by a variation off through harmonic maps, and th
map itself is said to be Jacobi integrable if all its Jacobi fields have this property. A fundam
theorem of Adams and Simon1 states that a harmonic mapf between real analytic manifolds i
Jacobi integrable if and only if the space of harmonic mapsC2,a close tof is a smooth manifold
with tangent space kerJf at f. Similar results hold in suitable Sobolev spaces of maps also. In
case whereM ,N are Kähler ~hence real analytic!, Lichnerowicz showed that all harmonic defo
mations of a holomorphic mapf are holomorphic,9 so the space of interest to us, the space
holomorphicmaps close tof, is a smooth manifold with tangent space kerJf at f, if and only if
f is Jacobi integrable. Jacobi integrability of harmonic maps is an active field of research w
current state is summarized in Ref. 8. Particularly relevant to the present article is a theo
Wood and Lemaire which states that every holomorphic mapS2→CPN is Jacobi integrable. So th
moduli space of holomorphic maps for theCPN model onS2 is smooth with tangent space kerJf,
as we require. A similar result holds for degreen holomorphic mapsS→CP1, S being a compact
Riemann surface of genusg, providedn.2g22, by a standard application of the Riemann–Ro
theorem. So then-lump moduli space of theCP1 model onS also has the required property, wit
some low degree exceptions.

We may now state and prove our main result.

Theorem 3 †Coercivity of the Hessian‡: Let f:M→N be a holomorphic map betwee
compact Ka¨hler manifolds andHessf be the Hessian of the harmonic map energy functional af.
Then there exists a constantt(f).0 such that for all VPH1(f* TN) with ^V,kerDf&L250,

Hessf~V,V!>t~f!iViH1
2 .

Proof: Both H1 andL2 are Hilbert spaces. We will use→ and⇀ to denote strong and wea
convergence, respectively, the space concerned being explicitly specified. Define the suS
5$VPH1:iViH1

2
51,V'L2kerDf% and the quantity

t~f!5 inf
VPS

Hessf~V,V!5 inf
VPS

1
2 iDfViL2

2 >0. ~3.11!

We claim thatt(f)Þ0. Assume this is false. Then there exists a sequenceViPS such that

DfVi→
L2

0. We will repeatedly extract~nested! subsequences fromVi , which we will always
denote by the same symbol,Vi . Now Vi is bounded inH1 so, by the Alaoglu theorem, there exis

a subsequenceVi⇀H1

V, to some weak limitV. SinceDf:H1→L2 is a bounded linear map, it i
continuous with respect to the weak~and strong! topologies on H1,L2. It follows that

DfVi⇀L2

DfV. But DfVi→
L2

0 ⇒ DfVi⇀L2

0 ⇒ DfV50 by uniqueness of weak limits. Henc

Vi⇀H1

VPkerDf.
Now the inclusioni:H1

�L2 is compact by Rellich’s lemma, so the bounded set$Vi%,H1 is
compact inL2. Hence, any sequence in$Vi%, for exampleVi itself, has a subsequence which

strongly convergent inL2. Once again, denoting this subsequence byVi , we haveVi→
L2

Ṽ. But

thenVi⇀L2

Ṽ so

05^Vi ,kerDf&L2→^Ṽ,kerDf&L2. ~3.12!
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HenceVi→
L2

ṼP(kerDf)'L2.

But i:H1
�L2 is continuous, soVi⇀H1

V ⇒ iVi⇀L2

iV, and soṼ5V by uniqueness of wea

limits. So VPkerDf andVP(kerDf)'L2, and henceV50, soVi→
L2

0. Then, by~3.6! and ~3.8!,

15iVi iH1
2

5iVi iL2
2

1(
a

i¹Ea

f Vi iL2
2

52Hessf~Vi ,Vi !1iVi iL2
2

1(
a

2^RN~dfEa ,Vi !dfEa ,Vi&L2

<2Hessf~Vi ,Vi !1iVi iL2
2

1CfiVi iL2
2 , ~3.13!

whereCf.0 is a constant, by compactness ofN and the tensorial property ofRN. Taking limits

of both sides of~3.13! and usingt(f)50 andVi→
L2

0, one sees that 1<0, a contradiction. h

We remark that theL2 version of this result, that there exists a constantt(f).0 such that
Hessf(V,V)>t(f)iViL2

2 for all V'L2 kerJf, is much easier to prove. SinceJf is elliptic, self-
adjoint and positive definite~for weakly stablef!, andM is compact, we know immediately tha
the spectrum ofJf is discrete and, normal to its kernel, bounded away from 0. The result im
diately follows. In fact the optimal constanttL2(f) in this case is just the lowest nonvanishin
eigenvalue ofJf. Hence the optimal bound is attained in this case, by any eigensection with
eigenvalue. We remark also that the spectrum ofJf is of independent physical interest since
gives the semiclassical meson spectrum of the sigma model in the topological sector@f#.

IV. CONTINUITY OF t„f…

Let fn :M→N be a sequence of smooth holomorphic maps between compact Ka¨hler mani-
folds, converging inC1 to a smooth holomorphic mapf:M→N. From Theorem 3 we have fo
eachn a positive constantt(fn) and the positive constantt~f!, which give lower bounds for the
ratio Hess(V,V)/^V,V&H1

for any H1 section of the pullback bundleL2 orthogonal to all Jacob
fields. In this section we will establish conditions sufficient to guarantee that limn→`t(fn)
5t(f). In subsequent sections we will show that these conditions are met in the cases of i
to us.

In order to compare various quantities~especially the Hessian andH1 norm! at different maps,
it is convenient to make various identifications so that we can treat all geometric quantitie
operators as being defined on the fixed bundleE5f* TN. Sincefn→f, for sufficiently largen
each pullback bundleEn5fn* TN is topologically equivalent toE. However, since each bundleEn

comes naturally equipped with both an inner product and a compatible connection~both of which
occur in the Hessian and theH1-norm of a section! we would also like to transfer these geomet
structures to the bundleE.

Again sincefn→f, for eachxPM ~and for each sufficiently largen) there is a unique
minimizing geodesic joiningfn(x) to f(x). By parallel transporting vectors along this uniqu
geodesic we construct a canonical isometry between the fibers ofE and the fibers ofEn at each
point xPM , and hence a naturalL2 isometry betweenE and En . Using this isometry we can
interpret the natural connection on eachEn as a connection onE, which we shall write¹n . Using
the connection¹n and the~fixed! L2 metric onE we can now interpret each of the Jacobi operat
Jfn ~and hence also the associated symmetric bilinear formHessfn

) as an operator on sections o

the fixed bundleE. Similarly, for eachn we get anHfn

1 norm on sections ofE, by using the

connection¹n and the fixedL2 metric. Since the difference of any two connections onE is
tensorial, it is clear that for eachn ~sufficiently large! theHfn

1 norm is equivalent to theHf
1 norm

on sections ofE.
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Suppose now that the difference between the connections¹n and ¹ tends to zero in the
following pointwise sense,

u¹V2¹nVu<anuVu, ~4.1!

where eachan is a positive number,an→0 asn→`, andu.u refers to the natural pointwise norm
on the bundlesE^ T* M andE, andV is a smooth section ofE.

Lemma 4: Suppose that (4.1) holds. Then the following inequalities also hold:

(i) u i¹Vi22i¹nVi2 u<bniVi1
2,

(ii) u iVi1
22iViH

fn

1
2 u<bniVi1

2,

(iii) u Hessf(V,V)2Hessfn
(V,V) u<cniVi1

2,

where bn ,cn are positive numbers which tend to zero as n→`, and i•i is the L2 norm onG(E),
i•i1 is the H1 norm onG(E) defined using the connection¹ and i•iH

fn

1 is the H1 norm onG(E)

defined using the connection¹n .

Proof: ~i! Elementary manipulations involving the triangle inequality, inequality~4.1! and the
Cauchy–Schwarz inequality yield the following chain of inequalities:

U E
M

~ u¹Vu22u¹nVu2!U<E
M

i¹Vu22u¹nVu2u

<E
M

u u¹Vu2u¹nVu u•u u¹Vu1u¹nVu u

<E
M

u u¹Vu2u¹nVu u•~ u 2u¹Vu1u¹V2¹nVu u!

<2anE
M

uVu u¹Vu 1an
2E

M
uVu2

<2ani uVu i•i u¹Vu i1an
2iVi2

<~2an1an
2! iVi1

2.

Hence the result follows withbn5an(21an).
~ii ! This is immediate from the definition of theH1 norm and part~i!.
~iii ! The definition ofRf @see Eq.~3.7!#, together with the compactness ofM and the fact that

fn→f in C1 implies that

lim
n→`

iRf2Rfni50. ~4.2!

Using part~i! and the definition ofHess we have

uHessf~V,V!2Hessfn
~V,V!u5u 1

2 i¹Vi22 1
2 i¹nVi22^RfV,V&1^RfnV,V&u

< 1
2 ui¹Vi22i¹nVi2u1u^RfV,V&2^RfnV,V&u

<bniVi1
21i~Rf2Rfn!Vi iVi

<bniVi1
21iRf2Rfni iVi2.

The result now follows from~4.2!. h
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We will also need the following simple proposition on the continuity ofL2 orthogonal pro-
jection operators.

Proposition 5: Let Hk(E) denote the Hk sections of E. Let Vn be a sequence of finite dimen
sional vector subspaces of Hk(E) of constant dimension p which converge to anoth
p-dimensional subspace V of Hk(E) in the following sense: there exists an L2-orthonormal basis
e1

n ,...,ep
n of Vn and an L2-orthonormal basis e1 ,...,ep of V so that for each i51,...p, ei

n→ei in
Hk as n→`. Denote by Pn and P the L2 orthogonal projections onto Vn

' and V', respectively.
Then Pn→P in the operator norm on B(Hk(E),Hk(E)), the bounded linear maps between Hk(E)
and itself.

Proof: In this proof, norms and inner products without subscripts will refer toL2 norms and
inner products, whileHk norms and inner products will be referred to with the subscriptk. Since
Pnv5v2( i^v,ei

n&ei
n andPv5v2( i^v,ei&ei we have

iPnv2Pvik5 I(
i

^v,ei
n&ei

n2(
i

^v,ei&ei I
k

<(
i

i^v,ei
n&ei

n2^v,ei&ei ik

<(
i

i^v,ei
n&ei

n2^v,ei
n&ei1^v,ei

n&ei2^v,ei&ei ik

<(
i

u^v,ei
n&u iei

n2ei ik1iei iku^v,ei
n2ei&u

<ivi S (
i

iei
ni iei

n2ei ik1iei ikiei
n2ei i D<ivi S (

i
~11iei ik! iei

n2ei ikD .

~4.3!

So for all vÞ0PHk we have

i~Pn2P!vik

ivik
<

i~Pn2P!vik

ivi <S (
i

~11iei ik! iei
n2ei ikD . ~4.4!

Since by assumptionei
n→ei strongly inHk for eachi , ~4.4! implies that

lim
n→`

sup
vÞ0

i~Pn2P!vik

ivik
50 ~4.5!

as required. h

We now state the main result of this section, a theorem giving sufficient conditions fort~f! to
depend continuously on the holomorphic mapf. The analogous result in Stuart’s analysis
slowly moving Abelian Higgs vortices is Lemma 3.2 of Ref. 23 Our proof of Theorem
inspired by Stuart’s argument.

Theorem 6: Let fn :M→N be a sequence of smooth holomorphic maps between com
Kähler manifolds converging in C1 to the smooth holomorphic mapf:M→N. Suppose all the
Jacobi fields off are integrable and that the conclusions of Lemma 4 hold. Then

lim
n→`

t~fn!5t~f!.

Proof: Let Pn ,P:H1(E)→H1(E) denote L2 orthogonal projection onto kerDfn' and
kerDf', respectively. Sincef is Jacobi integrable, the space of sufficientlyC1-close holomorphic
maps is aC` manifold of dimension equal to dim kerDf. This also holds for allfn for all n
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sufficiently large. In particular, the subspaces kerDfn satisfy the hypotheses of the previous prop
sition for anyk, and in particular fork51. Hence by the previous proposition we have

iP2Pni15dn ,

for some positive numbersdn tending to 0 asn→`.
We will prove ~i! t(f)> lim supn→`t(fn) and~ii ! t(f)< lim infn→`t(fn). From~i! and~ii !

it follows that limn→`t(fn) exists and equalst~f!.
Proof of (i): Consider for any VPH1(E)ù(kerDf)', the section VnªPnV

PH1(E)ù(kerDfn)'. SinceiV2VniH
f
1 5i(P2Pn)ViH

f
1 <dniViH

f
1 we get

u^Vn ,Vn&H
f
1 2^V,V&H

f
1 u<iV2VniH

f
1 ~ iViH

f
1 1iVniH

f
1 !<dn~dn12!^V,V&H

f
1 . ~4.6!

Using the previous inequality and inequality~ii ! of Lemma 4 we have

u^V,V&H
f
1 2^Vn ,Vn&H

fn

1 u<u^Vn ,Vn&H
fn

1 2^Vn ,Vn&H
f
1 u1u^Vn ,Vn&H

f
1 2^V,V&H

f
1 u

<bn^Vn ,Vn&H
f
1 1dn~dn12!^V,V&H

f
1

< f n^V,V&H
f
1 , ~4.7!

where f nª(bn1dn(dn12)(11bn)) is another sequence of positive numbers tending to zer
n→`.

SinceV5Vn1Kn for someKnPkerDfn, we haveHessfn
(Vn ,Vn)5Hessfn

(V,V). Hence

UHessf~V,V!

^V,V&H
f
1

2
Hessfn

~Vn ,Vn!

^Vn ,Vn&H
fn

1 U
5UHessf~V,V!

^V,V&H
f
1

2
Hessfn

~V,V!

^Vn ,Vn&H
fn

1 U
<

Hessf~V,V!u^V,V&H
f
1 2^Vn ,Vn&H

fn

1 u1^V,V&H
f
1 uHessf~V,V!2Hessfn

~V,V!u

^V,V&H
f
1 ^Vn ,Vn&H

fn

1

<
f nHessf~V,V!1cn^V,V&H

f
1

^V,V&H
fn

1
<

f n

12 f n

Hessf~V,V!

^V,V&H
f
1

1
cn

12 f n
. ~4.8!

Let $Vj% j 51
` PH1(E)ù(kerDf)' be a minimizing sequence fort~f! with unit Hf

1 norm, that is

lim
j→`

Hessf~Vj ,Vj !

^Vj ,Vj&H
f
1

5 lim
j→`

Hessf~Vj ,Vj !5t~f!.

Hence there exists a positive constantC and numberse j tending to zero asj→`, such that

Hessf~Vj ,Vj !5t~f!1e j

and

Hessfn
~Vj ,Vj !<C
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for all j andn. DefineVn
j 5PnVjPH1(E)ù(kerDfn)'. The two previous facts together with~4.8!

imply that

Ut~f!1e j2
Hessfn

~Vn
j ,Vn

j !

^Vn
j ,Vn

j &H
fn

1 U<
C fn1cn

12 f n

holds for all j andn. For any fixedn, taking the limit asj→` we see that

t~fn!<t~f!1
C fn1cn

12 f n
.

Hence for any limit pointl of the sequence$t(fn)%n51
` we havel<t(f). In particular we have

lim sup
n→`

t~fn!<t~f!

as required.
Proof of (ii): Since the proof of~ii ! is very similar in character to the proof of~i! we shall omit

some details. Consider the projectionPVn of an element VnPH1(E)ù(kerDfn)' into
H1(E)ù(kerDf)'. Several applications of the triangle inequality, together with the inequalitie
Lemma 4 and the fact thatPn→P in H1, show that there exist two sequences of positive numb
$gn% and$hn% with limn→`gn5 limn→`hn50 so that

u^Vn ,Vn&H
fn

1 2^PVn ,PVn&H
f
1 u<gn^PVn ,PVn&H

f
1 ~4.9!

and

u^Vn ,Vn&H
f
1 2^PVn ,PVn&H

f
1 u<hn^Vn ,Vn&H

f
1 ~4.10!

hold for anyVnPH1(E)ù(kerDfn)'. These two inequalities, combined with the inequalities
Lemma 4 and the fact thatHessf(PVn ,PVn)5Hessf(Vn ,Vn), prove that

UHessf~PVn ,PVn!

^PVn ,PVn&H
f
1

2
Hessfn

~Vn ,Vn!

^Vn ,Vn&H
fn

1 U
5UHessf~Vn ,Vn!

^PVn ,PVn&H
f
1

2
Hessfn

~Vn ,Vn!

^Vn ,Vn&H
fn

1 U
<

Hessfn
~Vn ,Vn!u^Vn ,Vn&H

fn

1 2^PVn ,PVn&H
f
1 u1^Vn ,Vn&H

fn

1 uHessf~Vn ,Vn!2Hessfn
~Vn ,Vn!u

^Vn ,Vn&H
fn

1 ^PVn ,PVn&H
f
1

<

gnHessfn
~Vn ,Vn! ^PVn ,PVn&H

f
1 1cn^Vn ,Vn&H

fn

1 ^Vn ,Vn&H
f
1

^Vn ,Vn&H
fn

1 ^PVn ,PVn&H
f
1

<gn

Hessfn
~Vn ,Vn!

^Vn ,Vn&H
fn

1
1cn

^Vn ,Vn&H
f
1

^PVn ,PVn&H
f
1

<gn

Hessfn
~Vn ,Vn!

^Vn ,Vn&H
fn

1
1

cn

12hn ~4.11!

holds for anyVnPH1(E)ù(kerDfn)'.
Let $Vn

j % j 51
` PH1(E)ù(kerDfn)' be a minimizing sequence fort(fn) with unit Hfn

1 norm,

that is
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lim
j→`

Hessfn
~Vn

j ,Vn
j !

^Vn
j ,Vn

j &H
fn

1
5 lim

j→`

Hessfn
~Vn

j ,Vn
j !5t~fn!.

Hence there exists a positive constantC and numbersen
j tending to zero asj→`, such that

Hessf~Vn
j ,Vn

j !5t~fn!1en
j

and

Hessf~Vn
j ,Vn

j !<C

for all j and n. Consider the sequenceṼn
j 5PVn

j PH1(E)ù(kerDf)'. The two previous facts
together with~4.11! imply that

UHessf~Ṽn
j ,Ṽn

j !

^Ṽn
j ,Ṽn

j &H
f
1

2~t~f!1en
j !U<Cgn1

cn

12hn

holds for all j andn. For any fixedn, taking the limit asj→` we see that

t~f!<t~fn!1Cgn1
cn

12hn
.

Hence for any limit pointl of the sequence$t(fn)%n51
` we havet(f)< l . In particular,

t~f!< lim inf
n→`

t~fn!

as claimed. h

V. THE CASE OF Rat1

It is interesting to consider the simplest nontrivial case, namelyM15Hol1(S2,S2)5Rat1 , in
detail. AlthoughM5N5S2 in this case, it is often helpful to distinguish between domain a
codomain by continuing to denote themM ,N, respectively. We shall do this when clarity require
The G action onMn introduced in Sec. II extends naturally toC`(S2,S2), and leavesE@f#
invariant. It follows thatt~f! is constant onG orbits in Mn . SinceG acts with cohomogeneity 1
on M1 , it suffices to considert~f! for the one-parameter family of maps

fm :z°mz, mP@1,̀ !, ~5.1!

lying on the curveG5$(@I2#,(0,0,l)):l>0% in M1 (so m5(A11l21l)2 as in Sec. II!. We may
think of t as a positive functiont~m! on @1,̀ !. We will first use the results of Sec. IV to prove th
t~m! is continuous. Positivity and continuity oft ensure that it is bounded away from zero on a
compact set. The domain oft ~whether thought of as a function onM1 or on@1,̀ !! is noncompact,
however, so we cannot conclude thatt is globally bounded away from zero. The essential ques
is, then, how doest~m! behave asm→`, that is, as the lump collapses to zero width? We w
prove thatt(m)→0.

First we address the issue of continuity. By symmetry, it suffices to consider a sequen
degree 1 holomorphic mapsfn in the curveG, labeled by a sequencemn in @1,̀ !. If mn→m̂, then
the corresponding mapsfn :z°mnz converge inC1 to f̂:z°m̂z. Since every holomorphic map
S2→S2 is Jacobi integrable, we may apply the results of Sec. IV. We merely need to prove th
pointwise inequality~4.1! on the pullback connexions¹n (¹fn transfered tof̂* TN) holds for any
such sequencemn . Then Lemma 4 applies, and continuity oft follows from Theorem 6.
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We must first construct the canonical isometry between each bundlefn* TN and the fixed
bundle f̂* TN equipped with theirL2 inner products. To this end, it is convenient to define
orthonormal frameE15]/]u, E25cosecu ]/]w on S2, where~u,w! are the usual polar coordi
nates, and the corresponding sectionsẼi

n5Ei+fnPG(fn* TN), Êi5Ei+fPG(f* TN), i 51,2.
Note that varyingf within the familyG sends each fixedpPM along a geodesic of constantw in
N. Note also that the frameE1 ,E2 is parallel along geodesics of constantw, so the canonical
isometry betweenfn* TN and f̂* TN is simply given by the identification

Ẽ1
n[Ê1 , Ẽ2

n[Ê2 . ~5.2!

It is this property which makes polar coordinates particularly natural for our purposes.
In this coordinate system, a holomorphic mapf:z°mz is

~u,w!°~ f m~u!,w!, f m~u!52 cot21S m cot
u

2D . ~5.3!

We will construct the pullback connexion¹f by computing its action onẼi5Ei+f, i 51,2. The
Levi-Civita connection onS2 is

¹E15cotu e2^ E2 , ¹E252cotu e2^ E1 , ~5.4!

or equivalently,

¹e15cotu e2^ e2 , ¹e252cotu e2^ e1 , ~5.5!

where e1 ,e2 is the coframe dual toE1 ,E2 . The following properties of¹f are essential for
computations:

~a! If uPTpM , YPG(f* TN) and f PC`(M ), then¹u
f f Y5u@ f #Y1 f ¹u

fY.
~b! If YPG(f* TN) may locally be identified with a vector fieldỸ on N ~i.e., Y5Ỹ+f, on a

neighborhood ofp), then¹u
fY5¹dfu

N Ỹ.

Now dfE15 f m8 Ẽ1 anddfE25cosecu sin fmẼ2, where8 denotes differentiation with respect tou.
Hence

¹E1

f Ẽ15¹E1

f Ẽ250,

¹E2

f Ẽ15
sin f m

sinu
¹Ẽ2

Ẽ15
sin f m

sinu
cot f mẼ25

cosf m

sinu
Ẽ2 , ~5.6!

¹E2

f Ẽ25
sin f m

sinu
¹Ẽ2

Ẽ252
sin f m

sinu
cot f mẼ252

cosf m

sinu
Ẽ2 .

Note that whenm51, f5Id, and¹ Id5¹, so ~5.6! should reduce to~5.4!, which it does.
Any section off* TN may be written

W5V1JNU, V5V~u,w!Ẽ1 , U5U~u,w!Ẽ1 . ~5.7!

Note that¹f commutes withJN by the Kähler property. By the defining property~a!, above, and
~5.6!, one sees that

¹fV5Vu e1^ Ẽ11
1

sinu
Vw e2^ Ẽ21V cosf m

sinu
e2^ Ẽ2 , ~5.8!
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where subscriptsu,w denote partial derivatives. This gives us explicit formulas for¹f̂ and¹fn.
Using the identification~5.2! we may transfer a sectionW of f̂* TN to fn* TN, act with¹fn, then
transfer back using the same identification, calling the result¹nW. The difference between¹nW

and¹f̂W5¹̂W is, by ~5.8!,

~¹̂2¹n!W5
cosf m̂2cosf mn

sinu
~Ve2^ Ê22Ue2^ Ê1!5

cosf m̂2cosf mn

sinu
JNW. ~5.9!

An elementary calculation shows that

cosf m̂2cosf mn

sinu
5

~m̂22mn
2!sin 2u

2~m̂2 cos2 ~u/2! 1sin2 ~u/2!!~mn
2 cos2 ~u/2! 1sin2 ~u/2!!

⇒Ucosf m̂2cosf mn

sinu
U< 1

2 S 11
1

m̂2 1
1

mn
2 1

1

m̂2mn
2D um̂22mn

2u. ~5.10!

Hence, we have a pointwise bound of the form~4.1!,

u~¹̂2¹n!Wu<anuWu, ~5.11!

where

an5
1

2 S 11
1

m̂2 1
1

mn
2 1

1

m̂2mn
2D um̂22mn

2u→0 ~5.12!

asn→`, as required.
Having shown thatt~m! is continuous, we now address its behavior asm→`. In particular,

we will prove that limm→`t(m)50. To do this, it suffices to consider only sections off* TN of a
certain type, which we will call ‘‘irrotational,’’ namely those of the form

V5V~u!Ẽ1 . ~5.13!

It is straightforward to computeDfV for such sections, and hence obtainHessf(V,V) as an
explicit integral functional ofV. It follows from ~5.8! that

DfV52S V82
cosf m

sinu
VD ~e1^ Ẽ21e2^ Ẽ1!. ~5.14!

The Hessian for irrotational sections is

Hessf~V,V!5
1

2
iDfViL2

2
52pE

0

p

du sinuS V82
cosf m

sinu
VD 2

. ~5.15!

We seek to compare this quantity, for irrotational sectionsL2 orthogonal to kerDf, with iViH1
2 .

Note that kerDf is six-dimensional, and is spanned by

Km
m52

2 cotm~u/2!

11m2 cot2~u/2!
@cos~12m!w Ẽ11sin~12m!w Ẽ2#, m521,0,1, ~5.16!
                                                                                                                



ion
t

ad of

ars

3489J. Math. Phys., Vol. 44, No. 8, August 2003 The geodesic approximation for lump dynamics

                    
and their images underJN. This basis is obtained by considering curves inM1 throughf generated
by altering the real part of one of the coefficients of the rational map. Every irrotational sectV
is automaticallyL2 orthogonal toKm

21 ,Km
0 ,JNKm

21 ,JNKm
0 andJNKm

1 , so we need only insist tha
V is L2 orthogonal to the one and only irrotational section in the basis,Km

1 , which we will
henceforth denoteKm . Explicitly, we require that

^V,Km&L2522pE
0

p

du sinu
V~u!sinu

sin2 ~u/2! 1m2 cos2 ~u/2!
50, ~5.17!

having rearrangedKm slightly.
We shall also need an explict formula foriViH1

. Equation~5.8! implies that

¹fV5V8e1^ Ẽ11V cosf m

sinu
e2^ Ẽ2 , ~5.18!

so

iViH1
2

5i¹fViL2
2

1iViL2
2

52pE
0

p

du sinuS ~V8!21
cos2 f m

sin2 u
V 21V 2D

5Hessf~V,V!1iViL2
2

12pE
0

p

du 2VV8 cosf m

5Hessf~V,V!1iViL2
2

1^V,EmV&L2, ~5.19!

whereE mPC`(S2) is the energy density of the mapf. To see the last equality, note thatf is
holomorphic, hence conformal, so

f m8 5udfE1u5udfE2u5
sin f m

sinu
. ~5.20!

Equation~5.19! follows from ~5.20! and integration by parts.
It also proves useful to write down the formulas above using cylindrical coordinates inste

spherical polar coordinates on the domain. That is in place of~u,w! we use (s,w) where
sª log cotu/2. First notice that with respect to these cylindrical coordinatesf m(s) arises by trans-
lating one fixed profile by am dependent amount. More precisely,

f m~s!5 f 1~s1 logm!, ~5.21!

where

f 1~s!52 cot21~exps!. ~5.22!

We have an analogous formula forKm the irrotational part of the kernel ofDf:

Km~s!5sech~s1 logm!Ẽ1 . ~5.23!

It is a routine computation to obtain the following formulas forHessfm
(V,V), ^V,EmV&L2 and the

L2, H1 norms of an irrotational sectionV from the corresponding formulas using spherical pol
already presented

^V,V&L25E
2`

`

dssech2s V 2, ~5.24!
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^V,EmV&L25E
2`

`

dssech2~s1 logm!V 2, ~5.25!

^V,V&H15E
2`

`

dsS S dV
dsD

2

1tanh2~s1 logm! V 21sech2 s V 2D , ~5.26!

Hessfm
~V,V!5E

2`

`

ds S dV
ds

1tanh~s1 logm!VD 2

. ~5.27!

We may now state and prove the main result of this section. We shall denote the mapz°mz
by fm to emphasize its parametric dependence.

Theorem 7 „Global coercivity of the Hessian fails onRat1…: limm→`t(fm)50.

Proof: Define the following sequence of smooth irrotational sectionsVm5VmẼ1 of fm* TS2

where

Vm~s!5sechs2cmKm~s! ~5.28!

andcm is a constant determined by the requirement that^Vm ,Km&L250. By our previous remarks
this suffices to ensure thatVm is orthogonal to kerDfm. SinceVmPH1(fm* TS2)ùkerDfm it suf-
fices to prove that

lim
m→`

Hessfm
~Vm ,Vm!

^Vm ,Vm&H1
2 50. ~5.29!

In fact, we will show that

lim
m→`

Hessfm
~Vm ,Vm!

^Vm ,EmVm&L2
50, ~5.30!

which implies~5.29! since

iViH1
2

5Hessfm
~V,V!1iViL2

2
1^V,EmV&L2.^V,EmV&L2.

To prove~5.30!, first notice that sinceKmPkerDfm we have

Hessfm
~Vm ,Vm!5Hessfm

~sechs,sechs!.

Using the explicit expression for the Hessian in cylindrical coordinates we find

Hessfm
~sechs,sechs!5E

2`

`

dssech2 s~ tanhsm2tanhs!2,

wheresmªs1 logm. Sinceu(tanhsm2tanhs)2u,4 holds for alls,

Hessfm
~sechs,sechs!,4E

2`

`

dssech2 s58

holds for allm. SinceHessfm
(Vm ,Vm) is bounded for allm, ~5.30! is implied by

lim
m→`

^Vm ,EmVm&L251`. ~5.31!
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To establish~5.31!, first introduce for each non-negative pair of integers (m,n) the positive
function

I m,n~m!5E
2`

`

dssechm s sechn sm .

Clearly, the functionI m,n(m) is bounded above by the constantI m,0 . From the definition ofcm we
have

cm5
^sech ,Km&

^Km ,Km&
5

I 3,1

I 2,2
,

and from Eq.~5.25! and the definition ofVm we have

^Vm ,EmVm&L25cm~cmI 4,022I 1,3!1I 2,2.

SinceI 4,0 is a positive constant andI 1,3, I 2,2 are positive and bounded above,~5.31! will follow if
we can establish that limm→`cm51`. In fact, one can explicitly evaluate the integrals whi
appear in the definition ofcm to obtain

cm5
I 3,1

I 2,2
5

m424m2 logm21

4m~m2 logm2m21 logm11!
.

Clearly, this implies that limm→`cm51` as required. h

VI. THE CASE OF Ratn
eq

Staying in the context of theCP1 model onS2, but generalizing to any degree sector,n>1,
things become rather more difficult. The reason is that the isometric action ofG on Mn5Ratn
does not have cohomogeneity 1, except forn51. In general, then, to understand the glob
behavior oft one must consider the 4(n21)-dimensional orbifoldMn /G, not simply a curve, as
in Sec. V. Reduction to a curveis possible, however, provided we restrict attention to dynam
within a certain equivariance class. Employing stereographic coordinatesz,W on domain and
codomain as usual, and defining polar coordinates such thatz5reiw, one may write the field
equation for theCP1 model on space–timeS23R as

Wtt

~11r 2!2 2S Wrr 1
1

r
Wr1

1

r 2 WwwD2
2W̄

11uWu2 S Wt
2

~11r 2!2 2Wr
22

1

r 2 Ww
2 D 50. ~6.1!

This supports equivariant solutions within the ansatz

W~r ,w,t !5r nq~r ,t !einw. ~6.2!

Providedq:@0,̀ )3(2e,e)→C is nowhere vanishing and has suitable boundary behavior, s
tions within this ansatz have degreen. Substituting ~6.2! into ~6.1! one obtains a
(111)-dimensional hyperbolic partial differential equation forq. The space of static solutions i
simply q(r ,t)5cÞ0, a complex constant. So the equivariant moduli space isMn

eq5Ratn
eq

5$z°czn:cÞ0%>C3, the punctured complex plane. Note thatMn
eq is one connected componen

of the fixed point set inMn of the isometry groupGeq5$(@exp2in (c/2) t3#,@expi (c/2) t3#):c
PR%>SO(2), so we areassured thatMn

eq,Mn is totally geodesic. Both the true wave map flo
and its geodesic approximant stay within the equivariance class, therefore, and one can ag
to what extent the analytic method of Stuart applies. The equivariant configuration space en
residual U~1! symmetry, namelyW(z)°eicW(z), and the discrete symmetryW(z)°1/W(1/z),
both of which leave the harmonic map energy unchanged, so we may again restrict attenti
curve inMn

eq , namelyG5$z°mzn:mP@1,̀ )%. The situation is actuallysimpler than in the full
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degree 1 case, because now the error, that is, the section off* TN along which we exponentiate
to get from the holomorphic approximant to the true solution at timet, must also lie within the
equivariance class. The only sections of relevance, therefore, are irrotational sections and tJN

images. We may define a new optimal constantteq(f), again the infimium of the Hessian forH1

unit sectionsL2 orthogonal to kerDf, but now we include only equivariant sections. Since th
form a subset of all sections, we have trivially thatteq(f)>t(f).0 by Theorem 3.

Once again, we may think ofteq as a function ofmP@1,̀ ). We first show thatteq(m) is
continuous. Since the setup is very similar to Sec. V we use equivalent notation and conve
and omit several details. In spherical polar coordinates, the mapf:z°mzn is

~u,w!°~ f m~u!,nw!, f m~u!52 cot21S m cotn
u

2 D , ~6.3!

so df E15 f m8 Ẽ1 anddf E25n cosecu cosfmẼ2. It follows that

¹fẼ15n
cosf m

sinu
e2^ Ẽ2 , ¹fẼ252n

cosf m

sinu
e2^ Ẽ1 . ~6.4!

Hence, on an irrotational sectionV5V(u)Ẽ1 ,

¹fV5V8e1^ Ẽ11Vn
cosf m

sinu
e2^ Ẽ2 . ~6.5!

Given a general equivariant sectionW5V1JNU, whereV,U are irrotational, we may transferW

to a neighboring bundlef̂* TN ~wheref̂:z°m̂z) using the canonical isometry~5.2!, act with¹f̂,

then transfer back again, to obtain¹̂W. The difference between this and¹fW is

FIG. 1. Plots of the ratioHessfm
(Vm ,Vm)/iVmiH1

2 againstm for the first excited stateVm of the Sturm–Liouville problem
~6.8! with fm :z→mzn, n51,2,3,4. To facilitate comparison of the curves, in each case the ratio has been normaliz
its value atm51 ~0.30, 0.74, 1.17 and 1.55 respectively, to two decimal places!. Note that only forn51 does the ratio tend
to 0 asm→`.
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~¹f2¹̂ !W5n
cosf m2cosf m̂

sinu
JNW. ~6.6!

Now

a~u!5
cosf m2cosf m̂

sinu

5
~m22m̂2!~cos~u/2!sin~u/2!!2n21

~sin2n~u/2!1m2 cos2n~u/2!!~sin2n~u/2!1m̂2 cos2n~u/2!!

⇒ua~u!u<S 11
1

m̂2 1
1

m2 1
1

m̂2m2D um̂22m2u. ~6.7!

So the pullback connexion satisfies a pointwise bound of the correct type (u(¹f2¹̂)Wu
,c(m,m̂)uWu where c→0 as m→m̂) and we may conclude from the results of Sec. IV th
teq(m) is continuous.

As for Rat1 , the interesting issue is the largem behavior ofteq(m). We are so far unable to
prove anything rigorous about limm→`teq(m) ~if, indeed, it exists!. However, we make the fol-
lowing conjecture:

Conjecture 8: For all n>1, limm→`teq(m) exists and is finite. For all n.1, this limit is not
zero.

If true, the equivariant Hessian is globally coercive for degreen greater than unity. One could
at least hope, therefore, to model equivariant lump collapse accurately within the geodes
proximation in the casen.1.

To motivate this conjecture, we should describe some numerical work which led direc
the proof of itsn51 counterpart, Theorem 7. It is straightforward to write the Jacobi operato
irrotational sections as an explicit ordinary differential operator acting onV~u!. The eigenvalue
problem forJf then reduces to a singular Sturm–Liouville problem on~0,p!, namely

2V 92cotuV81n2
cos 2f m

sin2 u
V5v2V. ~6.8!

Herev2>0 is the eigenvalue. The eigenfunctions of this problem form anL2 orthogonal basis for
the space of irrotational sections. In particular, the eigenfunctions outside the kernel, whi
shall refer to as ‘‘excited states,’’ in analogy with quantum mechanics, form a basis fo
irrotational sections orthogonal to kerJf. If we could prove that Hessf(V,V)/iViH1

2

5v2iViL2
2 /iViH1

2 is bounded uniformly away from zero for allm and all excited statesV, global
coercivity of Hesseq would follow. Conversely, if for one of the excited states,v2iViL2

2 /iViH1
2

→0 as m→`, global coercivity must fail: the one parameter family of excited states it
provides a counterexample. Unfortunately, the~m families! of eigensections are rather inaccessib
analytically ~except in the special casem5n51, where they are known exactly!. However, they
are quite easy to construct numerically, either by employing a specialist Sturm–Liouville s
package, or by using a shooting method. We have tried both strategies, obtaining com
results from each.

The pertinent results may be summarized as follows. Forn51,2,3,4 and for all excited state
from second to sixth~ordered by increasingv2), the ratioHessf(V,V)/iViH1

2 appears to remain

bounded away from zero asm→`. More interesting is the first excited state. Here the ra
remains bounded away from zero forn52,3,4, but not forn51. It was by examining the graph
of the n51 first excited eigenstates that the explicit familyVm of the proof of Theorem 7 was
devised: the family is designed to have the same qualitative behavior as the numerically gen
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eigenstates. In Fig. 1 we present a graph showing the ratioHessf(V,V)/iViH1

2 as a function ofm

for the first excited states forn51,2,3,4. These data were generated by a shooting method u
a fourth order Runge–Kutta scheme with variableu step. The singularities atu50,p were handled
by series expansions, so the scheme shot forwards fromu5d and backwards fromu5p2d,
applying a matching condition atu5(p/2) ~d being a small positive number, typically 0.001!. The
difference betweenn51 and the other cases is quite clear. Although it is impossible to be
haustive numerically, the results suggest thatHessf(V,V)/iViH1

2 is bounded away from zero fo

n.1, as we have conjectured. Linhart and Sadun in a recent numerical study of lump colla
theCP1 model onC imposed the analogous equivariance condition on their field equation.10 It is
an intriguing coincidence that they found that single lump collapse differs greatly from the
dictions of the geodesic approximation~truncated to a finite disk inC!, whereas the collapse of tw
coincident lumps is quite well modeled by the geodesic flow.
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The dynamics of vortices on S2 near the Bradlow limit
J. M. Baptistaa) and N. S. Mantonb)

Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Wilberforce Road, Cambridge CB3 0WA, England

~Received 1 August 2002; accepted 9 April 2003!

The explicit solutions of the Bogomolny equations forN vortices on a sphere of
radiusR2.N are not known. In particular, this has prevented the use of the geo-
desic approximation to describe the low energy vortex dynamics. In this article we
introduce an approximate general solution of the equations, valid forR2*N, which
has many properties of the true solutions, including the same moduli spaceCPN.
Within the framework of the geodesic approximation, the metric on the moduli
space is then computed to be proportional to the Fubini–Study metric, which leads
to a complete description of the particle dynamics. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1584526#

I. INTRODUCTION

The Abelian Higgs model in the plane is one of the most studied examples of a field t
with topological solitons. The solitons are vortices. At critical coupling there are Bogom
equations, and it is known that there is a 2N-dimensional manifold of gauge-inequivale
N-vortex solutions.6 This is known as theN-vortex moduli space, and denotedMN . As a mani-
fold, MN>CN. There is a natural metric onMN , arising from the kinetic terms in the Lagrangia
of the model, and it has been proved by Stuart13 that, at least for finite time intervals, geodes
trajectories on the moduli space give a good approximation to the true dynamics of slowly m
vortices.

It is convenient to introduce the standard complex coordinatez on the plane. The locations o
the vortices are theN unordered points where the Higgs field vanishes. These points ma
regarded as the roots of a monic polynomial inz ~monic means that the coefficient ofzN is 1!, and
the natural coordinates on moduli space are theN complex coefficients of such a polynomial. If
particular geodesic motion is known, then the time dependence of the polynomial is known
hence the time dependence of the roots can be calculated.

Now, a general formula for the metric on moduli space has been given by Samols,12 but it is
not explicit, so only very special geodesics, with a high degree of symmetry, are understo
detail for N.2.1,9 One vortex just moves at constant speed along a straight line. The geo
motion for two vortices has been calculated by Samols numerically. The most interesting ph
enon is that, in a head-on collision, two vortices scatter at right angles. Recently, Manto
Speight11 have found an explicit metric forN well separated vortices, from which the geode
motion could be computed.

In this article we are interested in the opposite limit. It is possible to consider the Ab
Higgs model with fields defined on any compact surface. We shall only consider the cas
two-sphere with its standard round metric, parametrized by its radiusR. There are again Bogo
molny equations and a 2N-dimensional moduli space ofN-vortex solutions. As a manifold this is
CPN. However, there is an important geometrical constraint, discovered by Bradlow.2 This is that
the area of the sphere must be greater than 4pN for nontrivial solutions of the Bogomolny
equations to exist. Equivalently,R2.N. The metric on moduli space is known to collapse to z
size as the Bradlow limitR2↘N is approached. We shall be interested here in the case wherR2

a!Electronic mail: j.m.baptista@damtp.cam.ac.uk
b!Electronic mail: n.s.manton@damtp.cam.ac.uk
34950022-2488/2003/44(8)/3495/14/$20.00 © 2003 American Institute of Physics
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is slightly greater thanN. One should think of this as a situation where the vortices are den
squeezed together. We shall present an approximate general solution of the Bogomolny eq
and, using this, calculate the metric on moduli space directly from its definition. Again the
tions involve a polynomial, and the natural coordinates are the complex coefficients of the
nomial. We shall find that the metric is that of Fubini–Study, with an overall scale factor
depends onR22N.

The geodesics on Fubini–Study are quite simple, and hence, in principle, the moti
vortices can be calculated straightforwardly. However, this does involve finding the roo
polynomials with time-varying coefficients, which is not algebraically trivial for three or m
vortices. We shall present examples, mainly of two vortex motion. We should also remar
Stuart’s proof of the validity of the geodesic approximation for vortex motion does not ex
automatically to this regime of being close to the Bradlow limit, so our results on vortex m
remain rather formal at this stage. The particle dynamics we obtain at the end is, nevert
quite ‘‘physical.’’

The article is structured as follows. In Sec. II we introduce the Bogomolny equations oS2,
which is identified withCP1. As in Refs. 2 and 4, the equations are defined on complex
bundles over this surface. In Secs. III and IV we explain our approximation forR2 close toN, and
proceed to compute the metric on the moduli space of the approximate solutions. The geode
this Fubini–Study metric are then used in Sec. V to give an explicit description of theN-vortex
dynamics. Some examples of motions are presented in Sec. VI, and finally in Sec. VII a g
result concerning the number of vortex collisions is proved.

II. THE BOGOMOLNY EQUATIONS

According to Bradlow’s generalization of the classical vortices overR2,2 when the base
manifold is the sphereS2>CP1, the setup for the problem is a complex line bundlep:E→S2 of
degreeN equipped with a Hermitian metrich. The Higgs fieldf is now a section of this bundle
and the gauge potentials are the local one-forms of anh-compatible connectionD on the bundle.
We will take the metric onS2 to be gRªR23(standard metric onS2) , so that the volume of
(S2,gR) is 4pR2.

Letting Aª$h-compatible connections onE% and G(E)ª$global C` sections ofE% , the
Bogomolny equations for (D,f)PA3G(E) are2,4

D0,1f50, ~1!

F1 1
2 ~ ufuh

221! volR50, ~2!

whereD0,1 is the anti-holomorphic part ofD, volRPV2(S2,R) is the volume form of the metric
gR , and2 iF is the globally defined curvature form ofD, so thatFPV2(S2,R).

We remark that the problem does not depend essentially on (E,h), because all complex line
bundles overS2 of a given degreeN are isomorphic. In fact, for another choice (E8,h8) there will
always be an isomorphismf :E→E8 such thatf * (h8)5h. It is then not difficult to check that
(D,f) is a solution of~1! and~2! on (E8,h8) if and only if (f * D , f 21+f) is a solution on (E,h),
where f * D is the pull-back connection onE. Notice in particular thatfPG(E8) and f 21+ f
PG(E) have the same zeros onS2, and hence correspond to the same vortex configuration.

We will now define the particular pair (E,h) which is to be used in the remainder of th
article. LetU15CP1\$@0,1#%, U25CP1\$@1,0#%, where we use the standard homogeneous c
dinates@z0 ,z1# for points onCP1, and letw i :Ui→C be the standard complex charts ofCP1 with
transition functionsw1+w2

215w2+w1
21:z°1/z . Definegi j :UiùU j→U(1) by

g21+w2
21~z!5~z/uzu!N, g1251/g21 , g115g2251.
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Since thegi j satisfy the usual cocycle conditions, it is possible to construct a complex line bu
p:E→CP1 with trivializationsc i :p21(Ui)→Ui3C such thatc i+c j

21(p,y)5(p, gi j (p) y). The
Hermitian metrich on E is defined by requiring the unitarity of the trivializationsc i , that is,
uc i

21(p,y)uh
25uyu2 ; it is well defined becausegi j has values inU(1).

We should now check that degE5N. Define the real valued one-formsAiPV1(Ui ,R) by

Ai5w i* A with Aª
2 iN

2~11uzu2!
~ z̄ dz2z dz̄!PV1~C,R!. ~3!

On U1ùU2 one has

~w2
21!* ~A12A2!5S 1

zD *
A 2A5 i S uzu

z D N

dS z

uzu D
N

5 i ~w2
21!* ~g12dg21!,

or equivalently

~2 iA1!2~2 iA2! 5 g12dg21 ,

which shows that the local forms2 iA1 and2 iA2 define a connectionDN on E. The curvature
2 iF N of DN is a global two-form onCP1 determined byFN5dAj on U j . In particular, one can
compute that

~w1
21!* FN5dA5

iN

~11uzu2!2 dz∧dz̄5~w1
21!* S 1

2
volAND ,

and hence

degEª
i

2p E
CP1

~2 iF N!5
1

2p E
C
~w1

21!* FN5N.

Integrating Eq.~2! over CP1, and using that*CP1F52p degE52pN , it is clear that for
R2,N the Bogomolny equations have no solution, and that forR25N any solution (D,f) must
satisfy f50 andF51/2 volAN5FN . Since we have already constructed a connectionDN on E
with curvature2 iF N , we have an explicit solution of the Bogomolny equations for the caseR2

5N ~which is called the Bradlow limit!, and it can be shown that it is unique up to gau
transformations.

For R2.N Bradlow has shown,2 in a more general context, that for any solution (D,f) of ~1!
and ~2!, the sectionf has exactlyN zeros~which are called vortices!, counting multiplicities.
Moreover, the moduli spaceMN of these solutions up to gauge tranformations is parametrize
the positions inCP1 of theseN vortices. Since the vortices are indistinguishable, this moduli sp
is identified with (CP1)N/SN , whereSN is the group of permutations ofN elements.

Now consider the mapY:(CP1)N/SN→CPN defined in homogeneous coordinates by

@ @u1,v1# ,...,@uN,vN# #°F ..., (
sPSN

vs(1)
¯vs(k)us(k11)

¯us(N) , ... G
0<k<N

.

With some care, one can verify thatY is a bijection. In fact, its inverse may be described in t
following way. Given@w0 ,...,wN#PCPN, consider the nonzero polynomial

P~z!5 (
k50

N

~21!k
N!

k! ~N2k!!
wk zN2k ,

which has degreel<N. Calling z1 ,...,zl the complex roots ofP(z), one has
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Y21~ @w0 ,...,wN# !5@ @1,z1#,...,@1,zl # , @0,1#,...,@0,1# # .

Using this bijection,MN can also be identified withCPN.

III. VORTICES NEAR THE BRADLOW LIMIT

Although we have an accurate description of the moduli spaceMN , the explicit form of the
solutions (D,f) of ~1! and ~2! is not known. In particular, this has prevented any succes
attempt to describe the dynamics of the vortices by means of the well-known geodesic ap
mation. The purpose of this article is to show that by replacing the exact Bogomolny equatio
two other conditions, which should be a good approximation near the Bradlow limitR2↘N, one
can obtain the solutions explicitly; they also haveCPN as their moduli space, and furthermore t
dynamics of these ‘‘pseudo-vortices’’ is completely computable in the framework of the geo
approximation.

Since for R25N the pair (DN,0)PA3G(E) is an exact solution of~1! and ~2!, we may
expect that forR2 close toN the solutions (D,f) will have D'DN ~after a gauge transformatio
if necessary!. We therefore imposeD5DN and look forfPG(E) such that

~DN ,f! is a solution of ~1!, i.e., DN
0,1f50; ~4!

~DN ,f! satisfies ~2! ‘‘on average,’’ i.e.,E
CP1

S FN1
1

2
~ ufuh

221! volRD50. ~5!

@We note in passing that Eq.~4! is analogous to the equation for electron wavefunctions of the
Landau level in the uniform background magnetic fieldFN ; Eq. ~5! is then a wavefunction
normalization condition.#

We will now find the explicit solutions of~4! and ~5!, and then describe their moduli spac
Using the local trivializationc1 of E and the chartw1 of CP1 defined before, the equatio
DN

0,1f50 over the domainU1 is the same as (]̄2 iA0,1)f150, or, explicitly, using~3!,

]f1

] z̄
5

2N z

2~11uzu2!
f1 , ~6!

wheref1PC`(C) is the representative off with respect toc1 .
Equation~6! has the general solutionf15 f (z)(11uzu2)2N/2 , with f holomorphic onC. The

sectionf of E determined byf1 , which is only defined overU1 , has a representativef2 with
respect toc2 given by f2(z)5g12(z)f1(1/z) , which is smooth onC\$0%. But since we are
looking for global solutions of~4!, f must be extensible to all ofCP1, and this will happen iff
f2(z) is smoothly extensible toC. Writing f as a Taylor series, it is then not difficult to check th
this requires that the coefficient ofzn vanishes for alln.N. Thus any solutionf of ~4! must have
a representativef1 over U1 of the form

f1~z!5
a0zN1¯1aN

~11uzu2!N/2 , ~7!

and conversely anyf1 of this form determines a global sectionf of E which is a solution of~4!
over U1 , and by continuity over all ofCP1.

If f is represented byf1 as in ~7!, then the representativef2 will be

f2~z!5
a01¯1aNzN

~11uzu2!N/2

and hence, as for~1! and ~2!, any solutionf of ~4! has exactlyN zeros overCP1, counting
multiplicities.
                                                                                                                



-
-
forms
.

d

r-

3499J. Math. Phys., Vol. 44, No. 8, August 2003 The dynamics of vortices on S2

                    
We now turn to condition~5!. Using that2 iF N is the curvature form of a degreeN bundle,
~5! is equivalent to

4p~R22N!5E
CP1

ufuh
2 volR5E

C
uf1u2

2iR2

~11uzu2!2 dz∧dz̄54pR2(
k50

N
k! ~N2k!!

~N11!!
uaku2 ,

where the last integral is calculated in the Appendix forf1 of the form ~7!. We can therefore
conclude thatf1 represents a solutionf of ~4! and ~5! iff f1 is of the form~7! and satisfies the
normalization condition

(
k50

N
k! ~N2k!!

~N11!!
uaku2512

N

R2 .

Calling D,A3G(E) the subspace of solutions of~4! and ~5!, we thus get a bijectiona:D
→S2N11,CN11 that maps eachfPD, represented by af1 like in ~7!, to the point

S 12
N

R2D 21/2S ... , S k! ~N2k!!

~N11!! D 1/2

ak , ...D
0<k<N

. ~8!

The following step is to determine when two solutions inD are gauge equivalent. Let there
fore (DN ,f) and (DN ,f̃) be a pair of solutions, and supposeg:CP1→U(1) is a gauge transfor
mation onE that takes one into the other. Using the usual transformation rule for connection
underg, and the key fact that the connection is fixed, it is readily shown thatg must be constant
So f̃5eibf for somebPR. Since the converse is clear, we conclude that (DN ,f) and (DN ,f̃)
are gauge equivalent iff

f̃5eibf ⇔ f̃15eibf1 ⇔ c̃5eibc

for somebPR, wherec,c̃PS2N11 are the images of (DN ,f) and (DN ,f̃) under the bijectiona.
Furthermore, notice that this last condition is also equivalent top( c̃)5p(c) in CPN, where
p:S2N11→CPN is the usual principalU(1)-bundle.

Calling MN the moduli space of solutions of~4! and ~5! up to gauge transformations, an
p:D→MN the natural projection, we therefore have

D
——→

a
S2N11

↓p ↓p

MN ——→
ã CPN

~9!

whereã, defined by the commutativity of the diagram, is, likea, a bijection. The right-hand side
of this diagram is a concrete model for the space of solutionsD and its moduli space.

IV. THE METRIC ON THE MODULI SPACE

Using the usual prescriptions of the geodesic approximation~first described in Ref. 10!, we
will now obtain the metricm on MN which, within the framework of this approximation, dete
mines the dynamics of the ‘‘pseudo-vortices’’~which from now on will be just called vortices!.

Suppose one has a curveg in D:

t °
g

~DN ,f~ t !!PD °
a

~w0~ t !,...,wN~ t !!PS2N11 .

A natural Hermitian metric onD is defined by
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K dg

dt
,
dg

dt L
g(t)

ª

1

2 ECP1
h~ḟ~ t !,ḟ~ t !!volR , ~10!

where the dot stands for the time derivative. Notice that in this case, as opposed to what h
in Ref. 12, the gauge potentials do not contribute to the metric, since the connection in our
D is fixed, and thus time independent.

Writing

f1~ t !5
a0~ t ! zN1¯1aN~ t !

~11uzu2!N/2

for the usual representative off(t), using the unitarity ofc1 , and noting thatḟ15(1
1uzu2)2N/2(ȧ0zN1¯1ȧN) , one has that

K dg

dt
,
dg

dt L
g(t)

5
1

2 EC
uḟ1u2

2iR2

~11uzu2!2 dz∧dz̄

5 2pR2(
k50

N
k! ~N2k!!

~N11!!
ȧk aG k 5 2p~R22N!(

k50

N

ẇk wG k ,

again using the integral calculated in the Appendix. We conclude that the HermitianL2 metric on
D corresponds via the mapa to the restriction toS2N11 of the canonical Hermitian metric on
CN11, up to the constant factor 2p(R22N). This metric will also be called̂•,•&.

According to the usual procedure, the metricm on MN is induced from^•,•& on D in the
following way. GivenqPD and a tangent vectordg/dt PTqD , let (dg/dt)' be its component
perpendicular to the subspace ofTqD formed by the vectors tangent to curves onD which are pure
gauge transformations, that is, perpendicular to ker(p* )q . Then

~p* m!qS dg

dt
,
dg

dt D ª K S dg

dt D
'

,S dg

dt D
'
L

q

.

We will now compute the metric onCPN corresponding tom by the identificationã. It will also
be calledm.

Using the diagram ~9!, the subspace ker(p* )q,TqD corresponds to the subspac
ker(p* )a(q),Ta(q)S

2N11. Given wPS2N11,CN11 , we have that ker(p* )w is the one-
dimensional real subspace generated by the vector (d/dt) (eitw)(0)5 iw. Therefore, given a
tangent vectordg/dt 5(ġ0 ,...,ġN) P TwS2N11,TwCN11, we have

S dg

dt D
'

5
dg

dt
2

^dg/dt ,w&

^w,w&
w,

so

K S dg

dt D
'

,S dg

dt D
'
L

w

5 K dg

dt
,
dg

dt L 2
^dg/dt ,w&^w, dg/dt&

^w,w&

5 2p~R22N! (
j ,k50

N

~d jk2w̄jwk! ġ j gG k ,

where the computation in the last step uses that^w,w&52p(R22N), sincewPS2N11. Thus
p* m is the restriction toS2N11 of the two-tensor inCN11,
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2p~R22N! (
j ,k50

N

~d jk2w̄jwk! dwj ^ dw̄k.

Now consider the Ka¨hler formm associated tom. It is defined, as usual, using the imaginary p
of m: m52Im m P V2(CPN,R). We have

p* m5p* ~2Im m!

5 2Im~p* m!

5 2p~R22N!
i

2 (
j ,k50

N

~d jk2w̄jwk! dwj∧dw̄k U
S2N11

52p~R22N!
i

2 (
j ,k50

N S d jk

uw0u21¯1uwNu2
2

w̄jwk

~ uw0u21¯1uwNu2!2D dwj∧dw̄kU
S2N11

52p~R22N!
i

2
]]̄ log~ uw0u21¯1uwNu2!U

S2N11

5 2p~R22N! p* mFS,

wheremFS is the Fubini–Study form onCPN, and the last equality is a well-known result~Ref. 8,
p. 160!. Sincep and (p* )w are both surjective,

p* m5p* ~2p~R22N!mFS! implies m52p~R22N!mFS.

Thereforem52p(R22N)mFS, wheremFS is the Fubini–Study metric onCPN, because a Her-
mitian metric is uniquely determined by its Ka¨hler form.

V. VORTEX DYNAMICS

Having determined the metricm on the moduli spaceMN>CPN, we will now proceed to
explicitly describe its geodesics, which provide an approximate description of the low-e
particle dynamics. Note thatm}mFS implies that the geodesics ofm are exactly the Fubini–Study
geodesics. These are well known~Ref. 8, p. 277! but nevertheless we will rederive them here.

Let p:CN11\$0%→CPN be the natural projection andx0 :U0→CN one of the standard charts o
CPN, whereU05$@w0,...,wN#PCPN:w0Þ0%. Calling (c1,...,cN) the coordinate functions of this
chart, then by definition of the Fubini–Study metric we have onU0

mFS5
i

2
]]̄ log~11uc1u21¯1ucNu2! 5

i

2
hjk̄ dcj∧dc̄k

and

mFS5 hjk̄ dcj
^ dc̄k,

with

hjk̄ 5
d jk

11ucu2
2

ckc̄j

~11ucu2!2. ~11!

For a general Ka¨hler metric the geodesic equations have the simplified form~Ref. 14, p. 4!:

c̈k 5 2
]hjs̄

]cl hks̄ ċl ċ j , where hks̄
ª~sk entry of @hi j̄ #

21!.
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In our casehks̄5(11ucu2)(dsk1ckc̄s), and so the geodesic equations for (CPN,mFS) in the chart
x0 are

c̈ 5
2^ ċ ,c&

11^c ,c&
ċ, ~12!

wherec(t) is a curve inCN and ^•,•& is the canonical Hermitian product.
Now consider curves inS2N11,CN11 of the form

g~ t ! 5 sin~vt ! y1cos~vt ! x, tPR, ~13!

wherex,yPCN11 are orthonormal with respect to the canonical Hermitian product ofCN11. If
x0Þ0, thenp+g(t)¹U0 only for a discrete setD of nonzero values oft, and a short computation
shows that, inR\D,

c~ t ! ª x0+p+g~ t ! 5 c~0!1 ċ~0!
x0 sin~vt !

v~y0 sin~vt !1x0 cos~vt !!
, ~14!

where

ck~0! 5
xk

x0 and ċk~0! 5
v~ykx02xky0!

~x0!2 , k51,...,N. ~15!

One can verify directly that thisc(t) satisfies~12!, and thereforep+g(t) is a geodesic fort in
R\D, and by continuity for allt. If x050 , a similar computation in one of the other standa
charts ofCPN would establish that, also in this case,p+g(t) is a geodesic.

On the other hand, it is not difficult to verify that every geodesic of (CPN,mFS) can be written
asp+g, whereg has the form~13!. Although one could give a general, chart-independent a
ment for this, for later convenience we will proceed unnaturally. Namely, using~15!, one may
simply check that given anyc(0)PCN and ċ(0)PTc(0)C

N>CN, the geodesicp+g(t) with

x 5 ~11uc~0!u2!21/2 ~ 1 , c~0! !,

y 5 v21~11uc~0!u2!21/2 S 2
^ċ~0!,c~0!&
11uc~0!u2 , ċ~0!2

^ċ~0!,c~0!&
11uc~0!u2

c~0! D , ~16!

v 5 ~11uc~0!u2!21/2 S uċ~0!u22
u^ ċ~0!,c~0!&u2

11uc~0!u2 D 1/2

,

has initial position and velocityx0
21(c(0)) and (x0

21)* ( ċ(0)), respectively. This shows tha
every geodesic starting inU0 is of the formp+g(t). Similar calculations in the other standa
charts would extend the result to all ofCPN.

We now note two general properties of the geodesicsp+g(t). First, using~11! and~15!, one
can compute that the velocity of the geodesic, which is a constant of motion, isuvu. Second,
notice that all the geodesics of (CPN,mFS) are periodic. It is not difficult to show that forvÞ0 the
period isp/uvu.

We will now use our knowledge of the geodesics on the moduli space (CPN,m) to give an
explicit description of the vortex dynamics.

Recall from Sec. III that the solutions (DN ,f)PD with the vortices~zeros off! in positions
w1

21(z1),...,w1
21(zN) in CP1 are represented by a functionf1 of the form~7!, where we now have

a0zN1¯1aN } ~z2z1!¯~z2zN!,

and therefore
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ak 5 A ~21!k Sk~z1 ,...,zN!, k50,...,N,

where theSj are the usual elementary symmetric polynomials, andA is a normalization factor
which is nonzero forR2.N. Thus such solutions (DN ,f)PD correspond byp+a to @see~8!#

F ...,~21!k S k! ~N2k!!

~N11!! D 1/2

Sk~z1 ,...,zN! ,... G
0<k<N

PCPN>MN

and by x0+p+a to c5(c1,...,cN) PCN, where

ck5~21!k S N
k D 21/2

Sk~z1 ,...,zN!. ~17!

Inverting these relations, we can obtain the positions of theN vortices as a function of the
coordinatesck of a given point in the moduli spaceCPN. In particular, to the geodesicsc(t) of the
form ~14! corresponds a motion of the vortices determined by

wN1 (
k51

N S N
k D 1/2

ck~ t ! wN2k 5 ~w2z1~ t !!¯~w2zN~ t !!, ~18!

where thezi(t) are the coordinates of the vortices in the chart (w1 ,U1) of CP1. Thus, since we
know all the geodesics of (CPN,m), we can determine all the possibleN-vortex motions by
finding the roots of polynomials of degreeN—either analytically forN<4 or numerically for
N.4.

Now suppose we are given initial positionszi(0) and initial velocitiesżi(0) for the vortices,
where we assume that thezi(0) are all different. Through~17! and its derivative we can get th
corresponding valuesc(0),ċ(0)PCN, then use~16! to determine which geodesicc(t) corresponds
to this initial data, and finally solve~18! to get the motionszi(t). This general procedure has bee
used to obtain the various special vortex motions shown below.

We remark that, because~17! is a local diffeomorphism only in the region where the vortic
do not coincide, only in this region can we guarantee that the final resultzi(t) has indeed the
prescribed initial velocities. This is why we take thezi(0) all different. If thezi(0) are not all
different, there are some values ofżi(0) that do not correspond to anyzi(t) coming from a
geodesic motion.

VI. EXAMPLES OF MOTIONS

Using the method described in the previous section, we now give a few examples of two
three-vortex motions on the sphere. Figures 1–3 show the initial positions and trajectories
complex plane via the stereographic projectionw1 :S2\$N%→C. The particular initial positions and
velocities used in each case are listed in Table I.

To help with the interpretation of the figures, we recall that the stereographic projectio
the property of mapping circles ofS2 ~not necessarily great circles! to circles and straight lines in
the plane. The inversew1

21 has the converse property. Also the circle of unit radius is alw
shown as a dashed curve; the northern~southern! hemisphere ofS2 projects to the exterior~inte-
rior! of that circle.

During the motion shown in Fig. 3, the coordinatec1(t) of expressions~14! and~18! is always
zero. The coordinatec2(t) is of the form 2a212a(11a4)/@2a31 iv cot(vt)#. Taking one of the
rootsz(t) 5 x(t) 1 i y(t) of ~18! and eliminatingt from the systemx(t),y(t) , one obtains that
the trajectory on the plane has the simple equation (x21y2)21(1/a22a2)(x22y2)21 5 0. These
are special cases of Cassini’s ovals and, when projected back to the sphere, look like the
a tennis ball.
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VII. COINCIDENT PARTICLES AND COLLISIONS

In this section we start by finding an algebraic condition which determines when a point
moduli spaceMN>CPN corresponds to a vortex configuration where at least two of the vort
coincide. We then use this condition to show that, for a system ofN vortices starting in different
positions with arbitrary initial velocities, there are at most 2N22 collisions during one period o
the motion.

Using diagram~9! and the definition~8! of the bijectiona, it is not difficult to recognize that
a point @w0 ,...,wN#PCPN corresponds byã21 to the equivalence class inMN of a solutionf
represented by

FIG. 1. ~a! Two colliding vortices, one of which is at rest. One of the vortices describes a great circle on the sphe
passes through the static position of the other.~b! Head-on collision of two vortices with the same speed. There are
collisions at antipodal points. The total trajectory is the union of two great circles.~c! Head-on collision of two vortices
with different initial speeds. Again two collisions occur. The total trajectory is the union of a great circle and another
~d! Symmetrical collision of three vortices with equal speeds. The three vortices collide twice at antipodal points. Th
trajectory is the union of three great circles.

FIG. 2. ~a!,~b!,~d! No collisions occur, and each vortex returns to its initial position after one period.~c! This degenerate
case is the same as Fig. 1~c!—one great circle and another circle—in a different orientation.
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f1~z! 5 A ~11uzu2!2N/2 (
k50

N
wk

~k! ~N2k!! !1/2zN2k,

whereA is a nonzero normalization factor. Thus, asserting that@w0 , ...,wN# corresponds to a
solution with at least two coincident vortices is equivalent to saying that one of the follo
conditions holds:

~i! P(z) ª (k50
N @wk /(k!(N2k)!) 1/2# zN2k has a root of multiplicity at least two;

~ii ! w0 5 w1 50, which corresponds to a double zero off at @0,1#PCP1.

We now use the following result, whose proof is at the end of this section.
Lemma: For any nPN, there is a homogeneous polynomial S in n11 variables of degree

2n22, such that S(a0 ,...,an)50 if and only if (k50
n akz

n2k has a multiple root or a05a150.
An explicit formula forS is given in the proof and we note that, up to a sign,S coincides with

the discriminant of(kakz
N2k whenevera0Þ0.

Using this lemma, it is clear that the points@w0 ,...,wN#PCPN, which correspond to at leas
two coincident vortices, are exactly those of the algebraic hypersurfaceH of degree 2N22 in CPN

determined by the equation

S̃~ ...,wk ,...! ª SS ... ,
wk

~k! ~N2k!! !1/2 , ... D50.

As we have seen in Sec. V, any motion ofN vortices inS2 corresponds to a Fubini–Stud
geodesic inCPN, and these are all of the formt°p(sin(vt)y1cos(vt)x), with x,yPCN11 ortho-
normal andp being the projection fromCN11 to CPN. By the discussion above, it is also clear th
this motion will have a collision of two or more vortices iff the corresponding geodesic inters
H. But since this geodesic lies on the projective lineL 5p(spanC$x,y%),CPN , and does not
intersect itself during one period, we conclude that the number of collisions is not bigger tha
cardinality ofLùH.

It is, however, a standard result in algebraic geometry that eitherL,H or #(LùH)
<degH 5 2N22 . In fact, denotingx5(x0 , ...,xN) andy5(y0 , ...,yN) in CN11, it follows that
a pointp(ux1vy) in L, with (u,v)PC2\$0%, belongs toH iff

FIG. 3. ~with a52) No collision takes place and the vortices exchange positions after one period.

TABLE I. Initial positions and velocities.

1„a… 1„b… 1„c… 1„d… 2„a… 2„b… 2„c… 2„d… 3

z1„0… 11 i 11 i 1 22i /) 1
2

1
2

1
2

1
2

a.0

ż1„0… 212 i 212 i 23 2i /) i i i i i

z2„0… 0 212 i 21 11 i /) 2 2 2 2 2a

ż2„0… 0 11 i 1 212 i /) 0.6 i 3.7 i 4 i 4.5 i 2 i

z3„0… ¯ ¯ ¯ 211 i /) ¯ ¯ ¯ ¯ ¯

ż3„0… ¯ ¯ ¯ 12 i /) ¯ ¯ ¯ ¯ ¯
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Q~u,v ! ª S̃~ux01vy0 ,...,uxN1vyN!50.

But sinceS̃ is homogeneous of degree 2N22, so isQ, and therefore there is a factorization~see
Ref. 7, p. 31!

Q~u,v !5 )
i 51

2N22

~a iu1b iv !, for some ~a i ,b i !PC2 .

If Q is identically zero we haveL,H. If Q is not identically zero, then the roots ofQ are
(b i ,2a i)Þ0; i , and it is apparent thatLùH consists of the pointsp(b ix2a i y), which are at
most 2N22.

We finally conclude that, either the vortices have a motion with at least two of them coinc
for all time, which corresponds toL,H, or there are at most 2N22 collisions in one period.

Proof of the lemma:This lemma is a slight generalization of well-known algebraic results
stated for example in Ref. 5, p. 168, or Ref. 3, p. 178. ConsiderP(z)5(k50

n ak zn2k and its
derivativeP8(z)5(k51

n (n2k11)ak21zn2k, and form the usual resultant

RP,P8~a0 ,...,an!ªU a0 ¯ an

� �

a0 ¯ an

na0 ¯ an21

� �

na0 ¯ an21

U
where there aren21 rows with the coefficients ofP andn rows with the coefficients ofP8, so
that the matrix is (2n21)3(2n21). Applying the usual expansion to the first column of th
determinant we get

RP,P8~a0 ,...,an!5a0 S~a0 , . . . ,an!

with

S~a0 ,...,an! 5U a0 ¯ an

� �

a0 ¯ an

~n21!a1 ¯ an21

na0 ¯ an21

� �

na0 ¯ an21

U
1~21!n nU a1 ¯ an

a0 ¯ an

� �

a0 ¯ an

na0 ¯ an21

� �

na0 ¯ an21

U .
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Expanding again the first columns of the determinants inS(0,a1 ,...,an) we get

S~0,a1 ,...,an!5~21!n~n21! a1 RQ,Q81~21!nn a1 RQ,Q85~21!n~2n21! a1 RQ,Q8

whereQ(z)5(k51
n ak zn2k.

Now, if a0Þ0 , by standard results in basic algebra~see Refs. 5 and 3!,

RP,P85~21!n(n21)/2a0 D~P!,

whereD(P) is the discriminant ofP, and therefore

S~a0 ,...,an!50⇔D~P!50⇔P has a multiple root.

If a050, thenP(z)5Q(z) and

S~a0 ,...,an!5S~0,a1 ,...,an!50⇔a150 or RQ,Q850.

But whena1Þ0, by the same algebraic results,RQ,Q850 ⇔ Q5P has a multiple root.
We finally conclude that

S~a0 ,...,an!50⇔P has a multiple root ora05a150 .

ACKNOWLEDGMENTS

N.S.M. thanks Michael Singer for discussions about the Fubini–Study metric, and also t
the Pure Mathematics Department, University of Adelaide, for hospitality at the time this
was initiated. J.M.B. is supported by the ‘‘Fundação para a Ciência e Tecnologia,’’ Portugal,
through Research Grant No. SFRH/BD/4828/2001.

APPENDIX

In this appendix we compute integrals of the form

E
C
f c̄

2iR2

~11uzu2!2 dz∧dz̄5E
R2

f c̄
4R2

~11x21y2!2 dx dy,

wheref5(11uzu2)2N/2(a0zN1¯1aN) andc5(11uzu2)2N/2(b0zN1¯1bN).
Write

f c̄ 5 (
k, j 50

N

aN2 j b̄N2k f k j~z!, with f k j~z!5 z̄kzj~11uzu2!2N .

Using polar coordinates and integration by parts,

I ~k, j ,N!ªE
R2

f k j~z!

~11uzu2!25E
0

2p

ei ( j 2k)u duE
0

` r k1 j

~11r 2!N12 r dr

52p d jkE
0

` r 2k11

~11r 2!N12 dr

5 d jk

2p

N11 E0

`

r 2k
d

dr S 1

~11r 2!N11D dr

5d jk

2kp

N11 E0

` r 2k21

~11r 2!N11 dr5d jk

k

N11
I ~k21,k21,N21!,

where the vanishing of the boundary terms in the integration by parts is valid forN>k>1. Since
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I ~0,0,N2k! 5 2pE
0

` r

~11r 2!N2k12 dr 5
2p

N2k11 F 1

~11r 2!N2k11G
0

`

5
p

N2k11
,

we have

I ~k, j ,N! 5 d jk

k~k21!¯1

~N11!¯~N122k!
I ~0,0,N2k! 5

k! ~N2k!!

~N11!!
p d jk .

The final result is therefore

E
C
f c̄

2iR2

~11uzu2!2 dz∧dz̄54R2 (
k50

N

I ~k,k,N! aN2k b̄N2k 5 4pR2 (
k50

N
k! ~N2k!!

~N11!!
ak b̄k .
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The moduli space of noncommutative vortices
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The Abelian Higgs model on the noncommutative plane admits both BPS vortices
and non-BPS fluxons. After reviewing the properties of these solitons, we discuss
several new aspects of the former. We solve the Bogomoln’yi equations perturba-
tively, to all orders in the inverse noncommutivity parameter, and show that the
metric on the moduli space ofk vortices reduces to the computation of the trace of
a k3k-dimensional matrix. In the limit of large noncommutivity, we present an
explicit expression for this metric. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1584525#

I. INTRODUCTION AND RESULTS

Vortices are enigmatic objects. Despite the apparent simplicity of the first order equatio
analytic expression for the solution has been found. Moreover, the metric on the moduli
encoding the interactions of two or more vortices, remains unknown. This is in stark contr
higher co-dimension solitons, such as monopoles and instantons, where seemingly more
cated equations readily yield results.

Progress may be made in the limit of far separated vortices. By considering the leading
forces experienced by moving vortices, Manton and Speight determined the asymptotic fo
the low-energy dynamics.1 Their expression contains an unknown coefficient that characterize
exponential return to vacuum of the Higgs field. Although a direct analytic computation of
coefficient appears difficult, a prediction has been given based on T-duality in string theory2 and
is in agreement with previous numerical results.3

Another approach to understanding the dynamics is to deform the background space on
the vortices live. A cunning choice of deformation may ensure that the Bogomoln’yi equa
become tractable. For example, it was discovered long ago that the tricky vortex equa
replaced by Liouville’s equation when the background is taken to be hyperbolic space.4 Strachan
subsequently showed that this simplification is sufficient to allow an explicit calculation o
moduli space metric.5 More recently, Baptista and Manton considered the case ofk vortices
interacting on a sphere of areaA;4pk.6 An analytic expression for the metric was given in t
limit as the area of the sphere shrinks to a critical value,A→4pk. Curiously, in this limit, the
vortex motion exhibits a symmetry enhancement, from the underlying SU~2! symmetry of the
sphere to SU(k11). The physics behind this enhancement remains somewhat puzzling.

Here, we shall again deform the background space so that the dynamics of vortices be
tractable. This time, we take space to be the flat, noncommutative plane. In two spatial d
sions, noncommutivity is rather natural since it breaks only the discrete parity symmetry, le
the continuous rotational symmetry intact. Solitons in noncommutative geometry have be
tensively studied in recent times~see Ref. 7 for reviews!. In particular, aspects of vortices in th
noncommutative Abelian Higgs model have been discussed in Refs. 8–10. As we shall r
noncommutivity yields a one-parameter family of metrics on the vortex moduli space, depe
on g, a dimensionless combination of the gauge coupling constante2, the Higgs expectation value
v and the noncommutivity parameteru,

a!Electronic mail: dtong@mit.edu
35090022-2488/2003/44(8)/3509/8/$20.00 © 2003 American Institute of Physics
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g5ue2v2. ~1!

It was shown by Bak, Lee, and Park9 that solutions to the Bogomoln’yi equations exist only f
21<g<1`. At the critical pointg521, the vortex solutions coincide with the fluxon solutio
discovered in Ref. 11. Here, the moduli space of vortices is endowed with the flat, singular m
on Ck/Sk , and the moduli space approximation breaks down.9 For g,21, there are no further
solutions to the first order vortex equations, but the non-BPS fluxon solutions survive as loc
solitons carrying magnetic flux. In contrast, for21,g,0, these non-BPS fluxon solutions a
unstable to decay into the BPS vortices which have lower mass. Forg.0, only the BPS vortex
solutions exist. This scenario, which was developed in Ref. 9, is summarized in Fig. 1.

Here we consider onlyg.0, and present three, related, results. First, we deriv
2k-parameter formal solution to the vortex equations as an all-orders perturbative expans
g21. For arbitraryg, we then show that the metric on the moduli space ofk vortices is given by
the trace of ak3k matrix. This provides the noncommutative extension of Samols’ expressio
the ordinary commutative case.12 Finally, in the limit g→`, we present an explicit expression fo
the metric on the moduli space of vortices. Fork vortices centered atzaPC, a51,...,k, the Kähler
potential for the multi-cover of the moduli space is given by

K5 log det exp~ z̄azb!. ~2!

Modding out by the permutation groupSk , exchanging theza , results in the true moduli spac
metric. This metric has appeared before in the study of noncommutative scalar solitons,13–16 and
we explain the similarities and differences with its appearance in the Abelian Higgs model

The limit g→` is customarily taken to mean large noncommutivity. However, as is c
from ~1!, it may also be taken to be the strong coupling limite2→`, which is commonly used in
the context of gauged linear sigma models. Indeed, as we shall see, it is only in this limit th
proper kinetic energy of the noncommutative vortices remains finite. In the ordinary, commut
Abelian Higgs model, vortices become vanishingly small in this limit but, nevertheless, pla
important role as singular worldsheet instantons.17 We shall see that noncommutivity on th
worldsheet resolves these singular vortices, in a manner similar to the resolution of singula~1!
Yang–Mills instantons.

FIG. 1. The vortex phase diagram: BPS vortices exist for21<g<`, while non-BPS fluxons exist forg,0, but are stable
only for g<21.
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II. THE VORTEX EQUATIONS

The Lagrangian of the Abelian Higgs model at critical coupling is

L52
1

4e2 Fi j F
i j 1DifD if2

e2

2
~ff†2v2!2.

The model admits BPS vortices of mass 2pv2k, for any positive integerk, satisfying the first
order equations of motion,

F121e2~ff†2v2!50, Dz̄f50, E F1252pk.0, ~3!

where we have introduced the complex structurez5x11 ix2 on the background space. Here w
wish to consider the Abelian Higgs model defined on the noncommutative complex plane
that

@z,z̄#52u.

It is common practice~see Ref. 7! to takez to be an operator on the Hilbert spaceH, isomorphic
to the Hilbert space of a single harmonic oscillator. We define the usual creation and annih
operators, satisfying@a,a†#51, whose action on the orthonormal basisun&50,1,2, . . . isgiven by

aun&5Anun21&, a†un&5An11un11&.

For u.0, the action of all spatial operators may thus be reexpressed as

z5A2ua, ]z•52
1

A2u
@a†,•#, E d2x52puTr,

where Tr is the trace overH. Complex conjugation of the space–time coordinatez is identified
with Hermitian conjugation of operators onH. The fieldsAz andf are themselves promoted t
operators onH. To simplify the equations, we rescale the Higgs fieldf→vf, and decompose the
gauge potential operator as

Az5
i

A2u
~a†1C†!.

The advantage of this notation is that the magnetic fieldF12 is independent ofa anda†, and the
vortex equations~3! become the operator equations,

11@C†,C#5g~ff†21!,

fa1Cf50, ~4!

Tr~11@C†,C# !52k,0.

As promised, the equations depend only on the dimensionless combinationg5ue2v2. They are
valid only for g.0. The rest of this article will be devoted to analyzing these equations. How
for completeness, we first mention the extension tou,0. Definingz5A22ua†, andAz52 i (a
1C)/A22u, we have
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11@C†,C#5g~ff†21!,

fa†1C†f50, ~5!

Tr~11@C†,C# !51k.0.

As depicted in Fig. 1, while the equations~4! are thought to have solutions for allg.0,8 Eqs.~5!
have solutions only for21<g<0.9,10

Note that under a CP transformation, which is a symmetry of the theory, vortices are m
to antivortices, whileu→2u. The phase diagram for antivortices is therefore given by reflec
Fig. 1 in the vertical axis. The theory admits both BPS vortex and BPS antivortex solutions
for ugu<1.

III. THE SOLUTION

We turn now to the solution of the vortex equations~4!. Perturbative progress can be ma
when the dimensionless parameterg is large. For coincident vortices, the solution to first order
1/g was given in Ref. 8. Here we present an iterative solution, for arbitrary vortex positions,
orders in 1/g.

Let us first consider the limitg→`. The first equation in~4! now simply becomesf0f0
†

51, which can be partially inverted to give

f0
†f05~12P!,

whereP, a projection operator onH, determines the kernel off0 : Ker(f0)5PH. In this limit,
the gauge potential is given byC052f0af0

† . After some manipulation, the second and th
vortex equations~4! give further constraints onP,

~12P!aP50, TrP5k. ~6!

~In analyzing this final equation, it appears necessary to employ a suitable regularization
trace overH. We chooseTrN •[(n51

N ^nu•un&, subsequently taking the limitN→`.) Thus the
kernel of f0 is constrained to be ak-dimensional eigenspace of the annihilation operatora.
Eigenvectors ofa are provided by the coherent states,

uz&5exp~za†!u0&5 (
n50

`
zn

An!
un&,

which satisfyauz&5zuz& for any zPC. Thus, in general, solutions to the vortex equations in
limit g→` are parametrized byk complex vectorsuza&, a51, . . . ,k, spanningPH, with

P5 (
a,b51

k

uza.~h21!ab^zbu, ~7!

where the overlap matrixh is defined by

hab5^zauzb&5exp~ z̄azb!. ~8!

We therefore find a 2k ~real! parameter family of solutions. Hearteningly, the number of modu
in agreement with the ordinary, commutative, vortex equations.18 In the limit of far-separated
vortices, we may think of theza as the positions ofk unit-flux solitons. Note that this descriptio
of PH becomes singular in the limit asuza&→uzb& for aÞb. However, as explained nicely in Re
15, the underlying eigen-subspace remains smooth in this limit, and is spanned byuza& anda†uza&.

To extend this analysis away from theg→` limit, we make the expansion
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f5 (
m50

`

g2mfm, C5 (
m50

`

g2mCm .

The resulting iterative equations do not immediately determine the action off1 on the eigenspace
PH. To resolve this, we make the ansatz that the kernel off is independent ofg. In other words,

Ker~f!5PH.

I have not been able to derive this explicitly from~4!, but have been unable to find solutions
which it is not the case. Proceeding with this assumption, we may express the solution to~4! as

Cm52f0dmf0
† , fm5f0cm~12P!,

where the operator coefficientscm anddm are determined by induction, starting fromc051, and
with

dm5cma1 (
l 50

m21

dl~12P!cm2 l ,

~9!

cm5
1

2
~12P! (

l 50

m21

~dl
†~12P!dm2 l 212dm2 l 21~12P!dl

†!2
1

2 (
l 51

m21

c lcm2 l
† .

To summarize, this perturbative solution is uniquely determined by a choice of projector~7! from
among the 2k parameter family of suitable projectors. An important, open, problem is to d
mine the radius of convergence of this expansion.

IV. THE LOW-ENERGY DYNAMICS

Let us turn now to the low-energy dynamics of the noncommutative vortices. As usua
consider the moduli space approximation, in which only the collective coordinatesza , which
determine the projection operatorP, are allowed to vary in time. The linearized Bogomoln’
equations~4! are

@Ċ†,C#1@C†,Ċ#5g~ḟf†1fḟ†!,
~10!

ḟa1Ċf1Cḟ50,

and are to be augmented with Gauss’ law, the equation of motion forA0 . In our operator notation
this reads

2@Ċ†,C#1@C†,Ċ#5g~ḟf†2fḟ†!, ~11!

which can therefore be combined with the first of the Bogomoln’yi equations to give

@C†,Ċ#5gḟf†.

The low-energy dynamics of the solitons is inherited from the kinetic energy terms of the or
field theory in the standard Manton manner,

T52puv2TrS 1

g
Ċ†Ċ1ḟ†f D[2puv2gab~z!żazGb. ~12!

In the second equality above, we have anticipated the Ka¨hlerity of the metric. This property is
guaranteed by supersymmetry. To see this, a standard trick is to embed the theory in on
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maximal supersymmetry, living in the maximal space–time dimension. The Abelian Higgs m
may be embedded in ad5511 dimensional theory which is endowed withN51 supersymmetry
~or eight supercharges!. The vortex solutions under consideration now become BPS three-b
which preserve half of the supersymmetry. The addition of noncommutivity in two, transv
spatial directions does not alter this fact, and the low-energy dynamics is thus describedd
5311, N51 ~four supercharges! nonlinear sigma-model with target space given by the nonc
mutative vortex moduli space. The metric on the target space is necessarily Ka¨hler.

We start our analysis of the moduli space metric by once again taking the limitg→`. As is
clear from~12!, the low-energy Lagrangian remains finite if we interpret this ase2→`. Since the
kinetic terms for the gauge field become negligible in this limit, we have simply

T0

2puv2 5Tr ḟ0
†ḟ0 .

From ~10! and ~11! we find thatḟ05ḟ0P52f0Ṗ, from which we derive the low-energy dy
namics purely in terms of the projection operatorP,

T0

2puv2 5Tr P ḟ0
†ḟ05

1

2
Tr ṖṖ. ~13!

From the definition of the projection operator~7! in terms of the overlap matrix~8! it is simple to
derive the explicit form of the metric,

T0

2puv2 5tr ~]a]̄b logh! żazGb, ~14!

where tr denotes the trace over thek3k matrix indices ofh. The Kähler potential is therefore
given by the expression~2! as promised. The expressions~13! and ~14! have appeared before i
the context of noncommutative solitons.13–16Let us pause briefly to review that work and expla
the differences with the present case. The seminal work13 considered pure scalar field theories
noncommutative space–times. It was shown that, in the limitu→`, any projection operator
solves the equation of motion. To proceed to finite theta one may work, as we have a
perturbatively in 1/g̃51/m2u wherem is some mass scale of the theory. It was shown that, at
order in 1/g̃, only some projection operators survive as solutions to the equations of motion15,16

These are precisely those operators satisfying~6! above. At next-to-leading order in 1/g̃, these
projectors too are lifted, and only isolated solutions remain. This scenario left certain aes
puzzles. For example, it was unclear why,a priori, the moduli space need be Ka¨hler since the
original field theory could not be embedded in a supersymmetric context and the solitons we
BPS. Moreover, the relevant solitons were not the most general solutions to any equati
motion, but rather the surviving approximate solutions at first order in perturbation theory.

In contrast, the appearance of the moduli space in the current context is more natural.
appears atzeroth order in perturbation theory, rather than first, and the solitons are there
solutions to certain equations of motion~namely those derived in the strictg→` limit !. Further-
more, as explained above, the Ka¨hler nature of the target space finds an explanation in term
supersymmetry.

The explicit metric for noncommutative vortices may be easily extracted from~14!. For k
>3, the algebra becomes somewhat entangled, but fork52 it is simple and was given previousl
in Refs. 14–16. Factoring off an overall center of mass, we have the relative moduli
described in terms of the separationz5z12z2 with metric,

ds25S 1

2
coth~ uzu2/2!2

uzu2

4 sinh2~ uzu2/2! Ddzdz̄.
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Since the two vortices are indistinguishable, we should orbifold this space by theZ2 action
z→2z. It is simple to see that this renders the metric nonsingular at the originz50.

We would like to extend this discussion beyond theg→` limit. One may consider proceedin
by calculating the contributions to the low-energy dynamics perturbatively in 1/g. Unlike the case
of scalar field theories, where these effects induce a potential on the moduli space,15,16for the case
of vortices they merely correct the metric on the moduli space. The leading order contribut
given byT5T01T1 /g where

T1

2puv2 5TrP~ ṖṖa~12P!a†2a~12P!ṖṖa†!.

However, this perturbative path appears tedious and illuminates little.
Instead, we finish by deriving the noncommutative extension of Samols’ localiza

theorem.12 Recall that Samols analyzed the dynamics ofk vortices in the ordinary, commutative
Abelian Higgs model. Upon integrating the usual overlap of zero modes over the complex
he found that all contributions vanish apart from those arising at thek zeroes of the Higgs field

Examining our expressions forT0 and T1 above, we see that a similar phenomenon
occurred. The trace over the infinite dimensional Hilbert spaceH has been reduced to a mo
manageable trace over ak-dimensional subspacePH. Here we show that this property holds fo
all values ofg. In order to derive this result, I have found it necessary to introduce the ope
f21. Since Ker(f)Þ0, we must define this operator with care. We require,

ff2151, f21f512P.

While the existence of such an operator in not guaranteed for allg, it is a simple matter to
construct it explicitly within the perturbative context of the solution~9!,

f215 (
m51

`

g2mc̃mf0
† ,

where the operatorsc̃m are defined iteratively asc̃051 andc̃152c1 with the remainder given
by c̃m52( l 51

m c l c̃m2 l . The result below is therefore only strictly valid forg within the radius of
convergence of the series~9!. Wielding this operator allows us to invert the Bogomoln’yi equati
to C52faf21, supplying the leverage necessary to pry open the expression for the k
energy~12!. A little algebra reveals the final result,

T52puv2 Tr PS ḟ†ḟ2
1

g
af21Ċ†ḟ D ,

which indeed reduces to the trace over thek-dimensional subspacePH as advertised.
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Michael K. Murraya)

Department of Pure Mathematics, University of Adelaide,
Adelaide, South Australia 5005, Australia

Michael A. Singerb)

Department of Mathematics and Statistics, James Clerk Maxwell Building,
University of Edinburgh, EH9 3JZ, United Kingdom

~Received 10 December 2002; accepted 9 April 2003!

We discuss the structure of the framed moduli space of Bogomolny monopoles for
arbitrary symmetry breaking and extend the definition of its stratification to the case
of arbitrary compact Lie groups. We show that each stratum is a union of submani-
folds for which we conjecture that the naturalL2 metric is hyper-Ka¨hler. The
dimensions of the strata and of these submanifolds are calculated, and it is found
that for the latter, the dimension is always a multiple of four. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1590056#

I. INTRODUCTION

Recently there has been much interest in monopoles with nonmaximal symmetry break
infinity. In particular questions have been raised as to when they are manifolds and whe
have hyper-Ka¨hler metrics. This note gathers together some mathematical results concerni
structure of the moduli spaces and theirL2 metrics. These range from theorems which have b
proved in full generality through partially proved theorems to outright conjectures.

Recall that we generally expect that moduli spaces of solutions of the self-duality equ
and their reductions such as the Bogomolny equations and Nahm’s equations should be
Kähler manifolds. One reason for this is that formally such moduli spaces arise as hyper-K¨hler
quotients. To recall this, fix a compact, connected Lie groupG, with Lie algebrag, and consider
the spaceA of G-connections~vector potentials! on the trivialG-bundle over flatR4. By identi-
fying

A0dx01A1dx11A2dx21A3dx3

with the g^ H-valued function

A01 iA11 jA21kA3 ,

wherei , j , andk are unit quaternions,A becomes a quaternionic vector space. Formally,A can
be equipped with theL2 metric, making it a flat hyper-Ka¨hler manifold. BecauseR4 is not
compact, the convergence of this metric will depend upon subjecting our connections to s
asymptotic conditions, and these will be considered in detail below. Setting this aside fo
moment, it is a straightforward exercise to check that the hyper-Ka¨hler moment map for the action
of the gauge groupG on A is given by

A°FA
1PV2~X,g! ^ Im H.

a!Electronic mail: mmurray@maths.adelaide.edu.au
b!Electronic mail: michael@maths.ed.ac.uk
35170022-2488/2003/44(8)/3517/15/$20.00 © 2003 American Institute of Physics
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Hence the hyper-Ka¨hler quotientA///G should be the same as the space of anti-self-dual con
tions divided by the action of the gauge group, and theL2-metric will descend to define a
hyper-Kähler metric on the moduli space.

A monopole onR3 is a pairc5(A,F), whereA is a connection on the trivialG-bundleE
→R3, andF is a section of the adjoint bundleE3Gg. The monopolec satisfies the Bogomolny
equations

dAF5* FA ~1.1!

if and only if the connectionFdx01A is anti-self-dual onR3R3. In particular, from this four-
dimensional point of view,F cannot vanish at infinity, because it is independent ofx0 . Thus the
convergence of theL2 metric and the nondegeneracy of the hyper-Ka¨hler symplectic forms are
important issues in this case.

These issues were fully resolved whenG5SU(2) by Atiyah and Hitchin:2 they showed that
the moduli space of~framed! monopoles of chargek is, indeed, a complete hyper-Ka¨hler mani-
fold. Its dimension is 4k where the charge of the monopole isk.

For a general compact Lie group of rankr it is expected that the moduli space of monopo
with maximal symmetrybreaking is a hyper-Ka¨hler manifold although this has not been proved
generality. Except for very simple low charge cases, there are mostly partial results which co
the metric asymptotically near the edge of the moduli space; see, for example, Refs. 4, 5, a
and references therein.

The real complications, however, arise when there isnonmaximal symmetry breakingwhich is
our primary interest below. The case of SU~3! monopoles with minimal symmetry breaking wa
treated in detail in Ref. 7, but beyond this little seems to be known.

We shall present here a summary of the results discussed in the article: the reader will h
refer forward for precise definitions.

The full moduli space of~framed! monopoles of massm and chargem is denoted by
M(u,m,@f#5m). Here 0ÞmPg is arbitrary~maximalsymmetry breaking is precisely the con
dition thatm should be regular! andu is a unit vector inR3. m is a homotopy class, essentially
string of integers. The boundary conditions imposed guarantee that for somekPg,

F~ tu!5m2
k

2t
1o~ t21! for t@0. ~1.2!

There is therefore a mape:M(u,m,@f#5m)→g which assignsk to (A,F). The imageK of e in
g is not the whole ofg, but rather a disjoint union ofC(m)-orbits

K5C~m!k1øC~m!k2ø¯øC~m!kn . ~1.3!

It turns out that thekj are integral elements ofg. The set of all monopoles (A,F) with e(A,F)
PC(m)kj is the j th stratumMj , say, of the moduli space. This was defined in a different way
G5SU(r 11) in Ref. 19. In general,Mj does not have dimension divisible by 4, so it cannot
hyper-Kähler. However, if we define, forkPK,

M~u,m,k!5$~A,F!PM~u,m,@f#5m!:e~A,F!5k% ~1.4!

@the moduli space of framed monopoles oftype (m,k)], then we shall see thatM(u,m,k) has
dimension divisible by 4 and the natural conjecture is that theL2 metric makesM(u,m,k) into a
hyper-Kähler manifold.

At least one of the strata,M1 , say, must be open, hence of the same dimension
M(u,m,@f#5m), but this stratum need not be hyper-Ka¨hler. If, however,C(m)k15k1 , then
M15M(u,m,k1) and then this stratumis a candidate to be hyper-Ka¨hler. Notice more generally
that if k and k8 lie in C(m)kj , an elementgPC(m) with ad(g)k5k8 can be regarded as
constant gauge transformation which mapsM(u,m,k) diffeomorphically toM(u,m,k8).
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In Sec. IV, magnetic chargesm1 ,...,ms and holomorphic chargesh1 ,...,hr 2s are defined for
monopoles inM(u,m,k). The information in the magnetic charges is topological and is equ
lent to the homotopy classm. In particular, the magnetic charges do not vary from stratum
stratum. By contrast the holomorphic charges determine the stratumMj . ~The numbers of
magnetic charges is completely determined by the massm.!

We shall show that ifM(u,m,k) is nonempty, then the charges are all nonnegative, and

dimM~u,m,k!54~m11¯1ms1h11¯1hr 2s!. ~1.5!

Dimensions of the strata and full moduli space are also determined in Sec. VI.

II. THE MODULI SPACE AS A MANIFOLD

In this section we shall introduce various different monopole moduli spaces and ex
carefully which of them are smooth manifolds, and which are likely to admit hyper-Ka¨hler met-
rics. Throughout we shall be consideringEuclideanmonopoles, that is to say, monopoles on fl
R3. Note that the metric enters the Bogomolny equation~1.1! through the Hodge star operato
Some work has also been done on hyperbolic monopoles, whereR3 is replaced by hyperbolic
three-spaceH 3. It is expected that moduli spaces of hyperbolic monopoles will be diffeomor
to the corresponding moduli spaces of Euclidean monopoles, but this has not been pro
general. On the other hand, the issue of natural metrics on moduli spaces of hyperbolic mon
is completely open: all that is known for certain is that theL2 metric is infinite in this case.

There are two reasons why there are so many different monopole moduli spaces. The
that the monopoles must beframed, and this can be done either at a base-point inR3 or ‘‘at
infinity.’’ The second has to do with the specification of the asymptotics of the Higgs fieldF.

A. Notation

In order to discuss monopoles, we shall fix the following:

~i! G is a compact, connected, semi-simple Lie group of rankr . The complexification is
denotedGc and Lie algebrag.

~ii ! If aPg, Oa,g is the orbit of a in g under the adjoint action of G.C(a),G is the
centralizer ofa, with Lie algebrac(a).

~iii ! As a homogeneous space,Oa5G/C(a)5Gc/Pa , wherePa is the appropriate paraboli
subgroup. The latter description givesOa the structure of a compact complex manifold.

~iv! m andk are commuting elements ofg, @m,k#50.
~v! E→R3 will denote the trivial principalG-bundle overR3.

B. Boundary conditions and moduli spaces

The physically natural condition to impose on a solution of the Bogomolny equations i
finite-energy condition

E uFAu25E udAFu2,`. ~2.1!

We shall impose apparently rather stronger asymptotic conditions. It follows from the wo
Taubes ifG5SU(2), that ~2.1! together with~1.1! implies these stronger conditions, but fo
general groups this must remain a conjecture.

Following Jarvis, we assume the following.
~BC1! Along each straight line, there is a gauge in which

F5m2
k

2r
1OS 1

r 11dD
for all sufficiently larger .
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~BC2! In this same gauge,

dAF5
k

2r 2 dr 1OS 1

r 21dD
for all sufficiently larger .

These conditions are closely related to the Bogomolny–Prasad–Sommerfield~BPS! boundary
conditions of Ref. 12.

Define

C5$~A,F!:dAF5* FA , ~A,F!satisfies BC1 and BC2%.

Notice that we do not yet fixm andk: we merely assert that the boundary conditions are satis
for someelementsm andk satisfying

mÞ0, @m,k#50. ~2.2!

Denote byG the group of all automorphismsg of E that preserve the boundary conditions~i.e., g
and ¹g have limits asr goes to infinity along any straight line, and the limiting values
continuously differentiable when viewed as functions on the sphere at infinity!. ThenG acts onC
and we would like to define the monopole moduli space as the quotientM5C/G. This will have
singularities becauseG does not act freely. In addition it will contain components of arbitrar
high dimension. We shall now explain how these two problems are eliminated.

C. The degree of a monopole

The asymptotic value ofF is a sectionf, say, of ad(E`), whereE` is the restriction ofE to
the two-sphere at infinity. Since ad(E`) is a trivial bundle, we can viewf as a continuous map
into g. By BC1, this takes values in the adjoint orbitOm . This orbit is preserved by the action o
gauge transformationsg on E` , but g(f)5ad(g)f, so that this map is not gauge-invarian
However, its homotopy classm5@f# is gauge invariant, becausep2(G)50, so that any gauge
transformation can be deformed to the identity. The homotopy classm is called thedegreeof the
monopole. This discussion suggests the definition of spaces

C~Om ,@f#5m!,

where the adjoint orbit as well as the homotopy class off are fixed. This is referred to as the s
of monopoles of massm and chargem. Note thatOm5G/C(m).

D. Radial scattering and interior framing

Let xPR3 be any point. The moduli space of monopoles framed atx, of massm and charge
m, is the quotient

M~x,Om ,@f#5m!5C~Om ,@f#5m!/G~x!,

where

G~x!5$gPG:g~x!51%.

In Ref. 15 Jarvis proved the following:
Theorem 2.1:There is a natural bijection

r x :M~x,Om ,@f#5m!→R~Om ,m!

where the set on the RHS is the space of all holomorphic mapsv:S2→Om , with @v#5m.
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In definingR(Om ,m) recall from Sec. II A thatOm is in a natural way a complex manifold
It is known6 thatR(Om ,m) is a finite-dimensional smooth manifold, often referred to as a sp
of rational maps. It follows that our framed moduli space can be identified with a smooth m
fold. It should be the case thatr x is naturally a diffeomorphism, but to prove that one would ha
to equipM(x,Om ,@f#5m) with a smooth structure. Although this should be possible, we are
aware of a detailed treatment of this issue.

E. Framing at infinity and parallel scattering

To frame monopoles ‘‘at infinity’’ we pick a pointuPS2, viewed as the sphere at infinity i
R3. Returning to BC1, we define

C~u,m,@f#5m!5$~A,F!PC: lim
t→`

F~ tu!5m,@f#5m%

and

C~u,m,k!5$~A,F!PC:F~ tu!5m2k/2t1o~ t21!%

and introduce the corresponding gauge group

G~u!5$gPG: lim
t→`

g~ tu!51%.

The corresponding moduli spaces are

M~u,m,@f#5m!5C~u,m,@f#5m!/G~u! and M~m,k!5C~u,m,k!/G~u!.

The first of these is called the moduli space of~framed! monopoles with massm and degreem.
The second is called the moduli space of~framed! monopoles of type (m,k).

These can also be identified with spaces of rational maps:
Theorem 2.2: (a) There is a natural bijection ru :M(u,m,m)→R̃(Om ,m). (b) There is a

natural bijection r̂u :M(u,m,k)→R̃(Omk ,m).
Here R̃(Om ,m),R(Om ,m) is the set ofbasedrational maps, that is, those which sendu

PS2 to m. In part ~b!,

Omk5G/Hmk5Gc/Pmk , where Hmk5C~m!ùC~k!, ~2.3!

andPmk is the corresponding parabolic subgroup.
Part~a! of this result was proved first by Donaldson8 for G5SU(2), then by Hurtubise11 for

classical groups by a generalization of Donaldson’s approach. Both parts were proved for g
G by Jarvis13,14 using parallel scattering to associate a rational map to a monopole, and non
analysis to invert this procedure.

We note in passing that Jarvis shows that the restriction ofr u to M(u,m,k) is the composition
of r̂ u with the projectionR̃(Omk ,m)→R̃(Gc/P,m).

Once again, it is not clear that smooth structures have been defined on these framed
spaces. One conjectures that natural smooth structures should exist, such that these bijec
diffeomorphisms.

As we indicated in the Introduction, it is the moduli spacesM(u,m,k) that have dimensions
divisible by 4 and which are therefore candidates to be hyper-Ka¨hler spaces. In Proposition 6.2 th
dimension ofR̃(Omk ,m) will be explicitly computed.

F. Discussion

Let x(t)5ut, and consider the bijectionr x(t) , for t large, of Theorem 2.1. It is tempting t
believe that this should approach the mapr u of Theorem 2.2. However, they cannot be compa
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directly since they have different targets. But we could divide both sides by the appropriate g
to get bijections

r̃ u :M~O,@f#5m!→R̃~Om ,m!/C~m! and r̃ x(t) :M~Om ,@f#5m!→R~Om ,m!/G

and then compare them via the natural isomorphism induced by the inclusion of based ma
unbased maps. A straightforward calculation shows that the limit ofr̃ tu(A,F) typically does not
exist because evaluated in coordinates it blows up. Some kind of renormalization or scaling
be required to find the relationship between the limit ofr̃ x(t) and r̃ u .

III. THE L 2 METRIC

Formally, a tangent vector to (A,F) in C is a pair (Ȧ,Ḟ) satisfying the linearization at (A,F)
of the Bogomolny equations. TheL2 metric gives this vector length-squared equal to

E
R3

~ uȦu21uḞu2!dx; ~3.1!

due to the noncompactness ofR3, this need not converge. Looking back at BC1 and BC2, i
clear that~3.1! cannot converge if the variationḞ changesm or k in BC1. It is natural, therefore
to focus onM(u,m,k) as the obvious candidate to carry a hyper-Ka¨hler metric. Our first task is
to show that if the Bogomolny equations hold asymptotically, then the pair (m,k) determines the
leading asymptotics of the monopole on the whole of the two-sphere at infinity.

We begin by noting that the boundary conditions imply that the connectionA restricts to give
a connectiona on E` and that BC1 gives

F~ tz!5f~z!2
f ~z!

2t
1o~ t21!, ~3.2!

wheref and f are smooth functions ofzPS2 and the framing condition is

f~u!5m, f ~u!5k. ~3.3!

The Bogomolny equations reduce to

¹ f 50, ¹f50, Fa5
f

2
dvol, ~3.4!

where dvol denotes the standard area-form of the unit two-sphere. A pair (f, f ) satisfying~3.3!
and ~3.4! are calledmonopole boundary data.

We now prove that, up to gauge, the pair (f, f ) is completely determined by its value (m,k/2)
at the base-pointu.

Proposition 3.1: Let(f, f ) and (f8, f 8) be boundary data for a monopole:

(i) If u and v are in S2, then there is a gPG such thatf(u)5ad(g)(f(v)) and f(u)
5ad(g)( f (v)).

(ii) If there is an hPG such thatf(u)5ad(h)(f8(u)) and f(u)5ad(h)( f 8(u)), then there is
a g:S2→G such thatfg5f8 and fg5 f 8.

Proof: If f50, this is a trivial case of the results of Ref. 1 classifying equivalence class
Yang–Mills connections over a Riemann surface. We follow the proof in Ref. 1. Recall thaE`

→S2 is a principalG-bundle. Thenf and f can be viewed as equivariant mapsE`→g. Fix a point
p0PE` and let f(p0)5m and f (p0)5k. Becausef and f are covariantly constant they ar
constant along any horizontal path. IfpPP, we can joinp0 to some pointpg with a horizontal
curve and thenf(p)5ad(g)(m) and f (p)5ad(g)(k) as required.

From the discussion in the preceding paragraph it follows that we have a map
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~f, f !:E`→Omk5G/Hmk , Hmk5C~m!ùC~k!.

HereOmk is the orbit of (m,k). The preimage of the cosetHmk , i.e., the set of all pointsp in E`

at which f(p)5m and f (p)5k, is a reduction ofE` to Hmk which we denote byEmk . If p
PEmk , then any horizontal curve is also inEmk becausef and k are constant along horizonta
curves so the connection also reduces toPmk .

BecauseS2 is simply connected, standard results on reduction of bundles to their holon
subgroups can be used.16 It follows from the Ambrose–Singer theorem that the holonomy s
group atp0 is the subgroupH,Hmk obtained by exponentiatingk and thatEmk reduces to a
bundleE0 with structure groupH.

For the final point we need to know thatk is an integral element of the Lie algebra. This
done in Ref. 9 and in a different fashion in Ref. 13. We proceed as follows. Because@m,k#50 the
closure of the subgroup generated by exp(tm1sk) for any t ands will be an Abelian subgroup of
G so a torus and hence inside a maximal torus containingH. If l is any weight of this maximal
torus, we can form an associated line bundle which will have integer chern classl(k). It follows
that k is an integer element ofg and that it exponentiates to define a circle subgroup an
homomorphismx:U(1)→G.

We have now reduced our original bundle to a subbundleQ→S2 which is a circle bundle. It
has a connectionA and a curvatureF with * F5k/2 a constant so that it is a circle bundle
degree 1. IfA8 is another connection with curvatureF85F, then A2A85a with da50 so a
5d(exp(g)) for g:S2→U(1) and hence the connectionsA andA8 are equal after a gauge tran
formation.

This gives us a method of constructing the original bundle, connection and Higgs field
the datam andk. First take the standard U~1! bundleQ→S2 with its SU~2! invariant connection
and fixq0PQ in the fiber over the pointu. Let x:U(1)→Gmk,G be the homomorphism define
by exponentiatingk. We can then formQ3xG, the associated bundle, using the action (q,k)z
5(qz,x(z)21k) for zPU(1). This inherits a connection and the Higgs field is defined
f̂(@q,k#)5ad(k)(m). h

Let C ` denote the set of all monopole boundary data (f, f ) and letG ` be the space of al
gauge transformations at infinity, that is mapsg:S2→G. Define themoduli space of boundary
data to be the quotientM `5C `/G `. We have the boundary map

]:M→M `, ~3.5!

which sends (A,F) to the value of the Higgs field and curvature at infinity. Our reason
introducing the boundary map is that we believe that the methods of Atiyah and Hitchin2 can be
adapted to show that

Conjecture 3.2: If](A,F)5](A8,F8), then there is a gauge transformation g such thatg

2A8 and Fg2F8 are L2.
The idea here is that if the condition holds, then for some gauge transformationg, Fg andF8

should agree up to order 1/r , so thatFg2F8 will be square integrable. Similar consideratio
should apply to the difference between the connections.

Let G `(u) be all gauge transformations which are the identity atu and letC `(u,m,m) be all
pairs (f, f ) with f(u)5m and@f#5m. DenoteM `(u,m,m)5C `(u,m,m)/G `(u). We have the
commuting diagram

M~u,m,m! → M `~u,m,m!

↓ ↓
M~O,m! → M `~O,m!

where both vertical maps are quotienting by the groupC(m).
Conjecture 3.2 would imply that theL2 metric is finite on each of the moduli space

M(u,m,k) of monopoles of type (m,k). This suggests the following.
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Conjecture 3.3: The spacesM(u,m,k) are hyper-Ka¨hler manifolds.
A natural approach to these conjectures is the analysis of the linearizationD at (A,F)

PM(u,m,k) of ~1.1!. Combined with the Coulomb gauge-fixing condition,D becomes a coupled
Dirac operator onR3,

D:C`~R3,H^ H^ ad~E!!→C`~R3,H^ H^ ad~E!!,

whereH is regarded as the spin-bundle ofR3. Unfortunately this operator is not ‘‘invertible a
infinity’’ and so it is not automatically a Fredholm operator inL2. Taubes analyzed it in deta
whenG5SU(2), but ingeneral, rigorous results about this operator are not available. Non
less, it should be possible to find a suitable space of functions such thatD becomes a Fredholm
operator, with index calculable in terms of the type data (m,k). FormallyD is quaternionic, so its
L2 null space will automatically be a quaternionic vector space with compatible inner produc
reader is referred to Ref. 2, Chaps. 3 and 4, for a detailed discussion of the caseG5SU(2).

A. Group actions

ConsiderE, the group of Euclidean transformations ofR3, which is the semi-direct product o
SO~3!, the group of rotations andR3 the group of translations. As the monopole bundleE→R3 is
trivial the groupE acts on the connection and Higgs field, preserves the Bogomolny equation
commutes with gauge transformations so it acts on the full-unframed moduli space. In gene
action disturbs the framings. IfxPR3, then the subgroupEx of transformations preservingx,
which is isomorphic to SO~3!, acts naturally on the moduli space of monopoles framed atx. If
uPS2, then the subgroup ofEu of transformations preserving the line throughu, which is iso-
morphic to SO(2)3R2, will act naturally on the moduli space of monopoles framed atu.

As well as these straightforward actions the moduli spaceM(u,m,k) also carries an action o
the full group of Euclidean transformations. For this we need a different description of this m
space~cf. Ref. 2, pp. 15 and 16!. Note that Proposition 3.1 shows thatk defines a representatio
of the circle in G, hence an associatedG-bundle over the two-sphere. This carries a natu
SO~3!-action and has a unique SO~3!-equivariant connectiona and Higgs fieldf such that
f(u)5m and f (u)5k. The moduli spaceM(m,k) is now defined to consist of configuration
(A,F,q) where (A,f) is a monopole andq is an isomorphism between](A,F) and (f, f ),
modulo the group of gauge transformations that approach the identity at infinity. ThenM(m,k)
has a natural SO~3!-action and can be shown to be diffeomorphic toM(u,m,k). The subtlety is
@as in the caseG5SU(2)] that the diffeomorphism betweenM(m,k) and M(u,m,k) is not
equivariant with respect to the copy of SO(2),SO(3) which fixes the directionu.

B. Discussion

Assuming that theL2 metric does define a genuine hyper-Ka¨hler metric onM(u,m,k), there
are many interesting open questions surrounding it. First of all, there is the issue of wheth
complete for allm andk. Second, there are questions relating to variation of the parametersm and
k. It is natural to conjecture that the metrics will vary smoothly withm as long as the correspond
ing orbit Om does not jump. An interesting conjecture of Lee, Weinberg, and Yi18 suggests that
these hyper-Ka¨hler metrics should also behave well with respect to specialization ofm. To state the
conjecture, call a pathm:@0,d#→g a regular deformation ofm05m(0) if m(t) is regular for all
t.0. Let Mt5M(u,m t ,k), and letgt be theL2 metric onMt .

Conjecture 3.4: Given any0Þm0Pg, there is a regular deformationm t , such that(Mt ,gt)
tends to(M0 ,g0) as t→0.

Note that Jarvis13 describes a ‘‘filling-out procedure’’ which associates to any holomorp
mapv:S2→Om,k a new mapṽ:S2→G/T whereT is a maximal torus. This would appear to b
closely related to the idea of regular deformation of a general elementm, but it says nothing abou
the behavior of the metrics.
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We have now filled in the details of our account in the Introduction up to Eq.~1.4!, though we
have not yet shown thatK has the structure claimed in~1.3!. We turn to that in the next section

IV. MAGNETIC AND HOLOMORPHIC CHARGES

We will now show how to calculate explicitly themagnetic chargesof a monopole which
determine the homotopy classm and theholomorphic chargeswhich determine the strata. We wi
also make some conjectures about the possible values these can take.

In this section,m andk are as before. In addition,T is a maximal torus whose Lie algebrat
contains bothm andk. Recall that a choice of Weyl chamberC in t gives rise to a set of simple
rootsa1 ,...,a r and the corresponding fundamental weightsl1 ,...,l r defined by

2
^a i ,l j&

^a i ,a i&
5d i j . ~4.1!

We can always choose a fundamental Weyl chamberC satisfying

a1~m!.0, . . . ,as~m!.0, and as11~m!50, . . . ,a r~m!50, ~4.2!

because this is just the condition thatm is in the closure ofC and a particular ordering of the
simple roots.

We would like to apply the corresponding fundamental weights tok but this is not possible as
we only know thatk is in the Lie algebra of the centralizer ofm. We can conjugatek by C(m)
until it is inside the torus but then we find thattùC(m)k is not a single point but an orbit unde
Wm the subgroup of the Weyl group stabilisingm. Our first result resolves this problem b
showing that we can pick out a unique elementk̃ of tùC(m)k.

Proposition 4.1: Suppose that the moduli spaceM(u,m,k) is nonempty and we have fixed
maximal torus containingm, a fundamental Weyl chamber C withm in its closure and have

ordered the simple roots so they satisfy (4.2). Then there exists a uniquely determi˜

PtùC(m)k, such that

as11~ k̃!<0, . . . ,a r~ k̃!<0.

Moreover, we havel j ( k̃)>0 for j 51,...,r .
We shall give the proof of this proposition in a moment. For now, we shall use it to defin

chargesof the monopole to be the non-negative integers

l1~ k̃!, . . . ,l r~ k̃!.

They are naturally divided intomagnetic charges

m15l1~ k̃!, . . . ,ms5ls~ k̃!

and theholomorphic charges:

h15ls11~ k̃!, . . . ,hr 2s5l r~ k̃!.

In some examples the simple roots have a natural ordering and it is convenient not to reorde
In that case we just choosek̃ to be the uniquek̃PtùC(m)k such that whenevera i(m)50 we
have a i( k̃)<0. We then say thatl i( k̃) is a magnetic charge ifa i(m).0 and a holomorphic
charge ifa i(m)50.

The most important point to be made here is that it is easy to show thatp2(Om)5Zs and the
magnetic charges determine the homotopy class off the Higgs field at infinity~see, for example,
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Ref. 3!. The magnetic charges therefore cannot change under continuous deformation of a
pole. By contrast, the holomorphic charges can jump under continuous deformation of the
pole.

Note that the strata in the moduli space are all those monopoles with the samek̃.
As well as being non-negative the holomorphic charges satisfy the additional constrain

a i( k̃)<0 for all i 5s11, . . . ,r . This is equivalent to

(
l 51

r 2s
2^a i ,a l 1s&

^a l 1s ,a l 1s&
hl1(

j 51

s
2^a i ,a j&

^a j ,a j&
mj<0, for i 5s11, . . . ,r . ~4.3!

We conjecture the following.
Conjecture 4.2: For a givenm there are monopoles with any collection of non-negat

magnetic charges(m1 , . . . ,ms). Given a choice of magnetic charges there are monopoles
any collection of holomorphic charges(h1 , . . . ,hr 2s) satisfying (4.3).

It should be possible to prove this result using rational maps but it has eluded us. W
prove, however, the following.

Proposition 4.3: For a givenm and choice of magnetic charges there are at most a fin
number of possible holomorphic charges satisfying (4.3).

We defer the proof to the next section but note that this gives the following.
Corollary 4.4: There are only a finite number of strata and in particular there must be an o

stratum.
Note that this approach gives a nice picture in terms of Dynkin diagrams. For max

symmetry-breaking, all charges are magnetic~i.e., topological! and the heuristic is that there ar
mi fundamental monopoles of typei for eachi a node on the Dynkin diagram. For nonmaxim
symmetry breaking mark each nodei with a i(m)50. Now each Dynkin node still has associat
to it the non-negative integerl i( k̃). This number is a magnetic chargemi if i is unmarked, and
again the heuristic is that there aremi fundamental monopoles of typei . If i is a marked node,
thenl i( k̃) is a holomorphic charge. This labels the strata and can jump under continuous
mation of the monopole. The possible holomorphic charges are constrained by inequalities
can be deduced from the Dynkin diagram and~4.3!.

A. Proof of Proposition 4.1

Let Wm be the subgroup of the Weyl group fixingm and note that it acts transitively on the s
of all fundamental Weyl chambers withm in their closure.10

To prove first that ak̃ exists we follow Jarvis13 and consider the conditiona(m2tk8).0 for
large enought and anyk8PtùC(m)k. As there are only a finite number of roots we can find
e.0 such that for alltP(0,e# we have thata(m2tk8)50 if and only if a(m)50 anda(k8)
50 anda(m2tk8).0 implies a(k8)50 anda(k8),0. For any sucht choose a fundamenta
Weyl chamber withm2tk8 in its closure. Ast→0 we see that this hasm in its closure as well. If
this is not the fundamental Weyl chamber we first thought of we can move it bysPWm until it is
and then letk̃5s(k8). Thenm2t k̃ is in the closure of our fundamental Weyl chamber so t
a i(m).0 for i 51, . . . ,s anda j (m)50 anda j ( k̃)<0 for j 5s11, . . . ,r .

We will see in a moment thatk̃ is unique but for now we show thatl i( k̃)>0 for all i
51, . . . ,r .

Consideration of the twistor construction for monopoles shows thatf and f satisfy the fol-
lowing non-negativity constraint for any directionu. Choose any maximal torusT so that
f(u), f (u)Pt. Choose a fundamental Weyl chamber whose closure containsf(u) and let
a1 , . . . ,a r be the corresponding simple roots. Define the fundamental weightsl1 , . . . ,l r by
~4.1!. Then

l i~ f ~z!!>0 for all i 51, . . . ,r
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independent of all the choices made. Note thatk̃ is a conjugate ofk under an element ofC(m) and
hence corresponds to thek for some different monopole which also satisfies the positivity c
straint. Hence we must havel i( k̃)>0 for all i 51, . . . ,r .

Consider lastly the uniqueness ofk̃. So assume we havek̃ ands( k̃) for sPWf anda j ( k̃)
<0 anda j (s( k̃))<0 for everyi 5s11, . . . ,r . Let V be the span of the rootsas11 , . . . ,a r . This
is a root system with Weyl groupWm . Let Ci j be the inverse of the matrixDi j 5^a i ,a j&. Then
both C andD are symmetric. Define

x:t→V

by

x~h!5 (
j ,k5s11

r

a j~h!Cjkak .

Let s l be a simple root reflection fors11< l<r . Then

x~s l~h!!5 (
j ,k5s11

r

s l~a j !~h!Cjkak

5x~h!2 (
j ,k5s11

r
2^a j ,a l&

^a l ,a l&
Cjkak~h!

5x~h!2
2a l~h!

^a l ,a l&
a l .

Moreover,

s l~x~h!!5x~h!2
2^x~h!,a l&

^a l ,a l&

5x~h!2 (
j ,k5s11

r

a j~h!Cjk

2^ak ,a l&

^a l ,a l&

5x~h!2
2a l~h!

^a l ,a l&
a l

5x~s l~h!!.

It follows that if sPWm , thenx(s( k̃))5s(x( k̃)). We also havêa l ,x(h)&5a l(h) so thatx( k̃)
and x(s( k̃)) are in the closure of the same Weyl chamber inV. Applying Humphreys’ 10.3
Lemma B10 we see thatx(s( k̃))5s(x( k̃))5x( k̃) and hencea i( k̃2s( k̃))50 for i 5s

11, . . . ,r . We have previously seen thatl i( k̃2s( k̃))50 for i 51, . . . ,s. Moreover, the span o
the l1 , . . . ,ls is orthogonal to the span of theas11 , . . . ,a r , so together they must spant* and
hencek̃5s( k̃).

B. Proof of Proposition 4.3

Let e be the sum of all the positive roots which are in the span of the simple r
as11 , . . . ,a r . Notice thate( k̃)<0. Recall10 that a simple root reflections i permutes all the
positive roots excepta i which it sends to2a i . So if s11< i<r , we haves i(e)5e22a i so that
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2
^e,a i&

^a i ,a i&
52.

So we have

e5(
j 51

r

2
^e,a i&

^a i ,a i&
l i5(

j 51

s

2
^e,a i&

^a i ,a i&
l i1 (

i 5s11

r

2l i5(
j 51

s

2pjl j1 (
i 5s11

r

2l i ,

wherepj>0 because if 1< j <s we have^e,a j&<0. Applying e to k̃ gives

0<(
i 51

r 2s

hi<(
j 51

s

pjmj

and, as eachhj is non-negative, this means there can only be a finite number of possibilitie

V. EXAMPLES

Let G5SU(N) and m be a diagonal matrix with eigenvaluesim1 ,im2 , . . . ,imq with multi-
plicities n1 , . . . ,nq and assume thatm1.m2.•••.mq . Choose the usual fundamental We
chamber. That is, ifd is any diagonal matrix with entriesid1 , . . . ,idN , then it is in the funda-
mental Weyl chamber ifd1.d2.•••.dN . Clearly this hasm in its closure. Definexj (d)5dj .
Then the simple roots area i5xi 112xi for i 51, . . . ,N21. The fundamental weights satisfy

l j~d!5d11¯ 1dj

and a weight is magnetic ifj 5n1 ,n2 , . . . ,nq21 and holomorphic otherwise.
Let CN5Cn1%¯% Cnq be the corresponding eigenvalue decomposition ofCN. Assume that on

Cnj the eigenvalues ofk are

kn11¯1nj 2111<kn11¯1nj 2112<•••<kn11¯1nj
.

Then k̃ is the diagonal matrix with entriesik1 , . . . ,ikN .
Let Mj be the stratum containingM(u,m,k). It was shown in Ref. 19 that

dim Mj54(
i 51

N

~k11¯1ki !1dim C~m!k,

and hence from the definition of the strata in the Introduction,

dim ~M~u,m,k!!54(
i 51

N

~k11¯1ki !,

so the dimension is divisible by four as required for a hyper-Ka¨hler manifold. In Proposition 6.2
we shall show that this result is always true.

Notice that we could find a deformationm t of m by choosingm t to be diagonal with entries
im j (t) such that

m1~ t !.m2~ t !.m3~ t !.¯.mN~ t !,

and, of course, withm(0)5m. It follows from known results on the moduli spaces12,20 that
dimM(u,m t ,k)5dimM(u,m,k). In fact, the method used in Ref. 19 to calculate the dimens
formula shows thatM(u,m(t),k)) and M(u,m,k) are diffeomorphic spaces of holomorph
maps. This result was generalized to arbitraryG by Jarvis.13
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VI. DIMENSIONS

In this section we compute the dimension of the moduli spaceM(u,m,m) by computing the

dimension ofR̃(Om ,m). We shall also compute the dimensions of the strata and the moduli s

M(u,m,k) of monopoles of type (m,k), by computing the dimension ofR̃(Omk ,m).
Fix a maximal torusT, a fundamental Weyl chamber and a set of simple rootsa1 , . . . ,a r .

For a roota let ga be thea root space. Denote byB the standard Borel determined by this choi
of simple roots. That is the Lie algebra ofB contains the root space of every simple root. T
parabolicP is determined by the fact that its Lie algebrap contains the root spaces for the negati
rootsas11 , . . . ,a r .

If f :S2→Gc/P is a holomorphic map, then we can use it to pull back the tangent bund
Gc/P and the Riemann–Roch theorem tell us that

dim~H0~S2, f 21~TGc/P!!!2dim~H1~S2, f 21~TGc/P!!!5dim~Gc/P!1c1~det~ f 21TGc/P!!,

where det(TGc/P) is the determinant line bundle off 21TGc/P andc1 denotes the first Chern clas
Because the groupG acts holomorphically onGc/P every element ofg defines a holomorphic
vector field onGc/P so we have a surjection of holomorphic vector bundles overS2

g3S2→ f 21TGc/P→0

and it follows from the short exact sequence in cohomology that

dim~H1~S2, f 21~TGc/P!!!50.

The tangent space toR̃(Gc/P,m) at the function f is just the subset of sections i
H0(S2, f 21(TGc/P)) which vanish at the base point, sayPPGc/P. This hasreal dimension

dimR~Gc/P,m!52~dim~H0~S2, f 21~TGc/P!!!2dim~Gc/P!!52c1~det~ f 21TGc/P!!.

Each of the fundamental weightsl1 , . . . ,ls extend to one-dimensional representations oP
and hence define homogeneous line bundlesL(l i) over Gc/P. The magnetic charges of
holomorphic map f are mi52c1( f 21(L(l i))). Choose k̃ so that mi5l i( k̃). Then
c1( f 21(L(2l)))5l( k̃) for any weightl.

Let e be the weight defined by the adjoint representation ofP on p. Then the weight defined
by the adjoint representation ofP on g/p is 2e. The bundle det(T(Gc/P) is then a homogeneou
bundle overGc/P induced by the character2e so that

c1~ f 21~det~TGc/P!!!5c1~ f 21~L~2e!!!5e~ k̃!.

Hence

dimR̃~Gc/P,m!52e~ k̃!.

In the case of maximal symmetry breaking where the parabolicP is a BorelB

e5 (
a.0

a52(
i 51

r

l i ,

so that

dimR̃~G/B,m!54(
i 51

r

mi .
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In the nonmaximal symmetry breaking case we can proceed further. Becausee is a weight we
know that e5( i 51

r 2nil i for some integersni . We also know thate is a character ofP so
invariant under the simple root reflectionss i for i 5s11, . . . ,r . But s j (e)5e1nja j so that we
must have

e5(
i 51

s

2nil i

and hence

dimR̃~Gc/P,m!52(
i 51

s

nimi .

We can obtain some further information about theni . First we note that

ni522
^e,a i&

^a i ,a i&
.

Also, if r is one-half the sum of the positive roots andrp is one-half the sum of the positive roo
a for which g2a,p, then we have thate522r12rp and hence

ni52
^2r22rp ,a i&

^a i ,a i&
52S 122

^rp ,a i&

^a i ,a i&
Dl i

using the standard fact thatr5( i 51
r l i . Hence

dim~R̃~Gc/P,m!!54(
i 51

s S 122
^rp ,a i&

^a i ,a i&
Dmi ,

which agrees with the result in Ref. 20. So we have the following proposition.
Proposition 6.1: The dimension of the moduli spaceM(u,m,m) is

4(
i 51

s S 122
^rp ,a i&

^a i ,a i&
Dmi .

Notice that while the Lie theory guaranteesr is a weight, the same may not be true ofrp and
hence expressions such as

2
^rp ,a i&

^a i ,a i&

may not be integers. This is consistent with the fact that for nonmaximal symmetry breakin
moduli space may not be hyper-Ka¨hler for the simple reason that its dimension is not a multi
of four.

Next we calculate dimR̃(Omk ,m) where Pmk is the parabolic subgroup containing all th
positive roots and the negative rootsa wherea(m)5a( k̃)50 and we letOmk5Gc/Pmk . This is
the parabolic subgroup occurring in~2.3!.

Thene is the sum of all these roots so that

e~ k̃!5 (
a.0

a~ k̃!

and we have
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dimR̃~Gc/Pmk ,k!54S (
i 51

s

mi1(
j 51

r 2s

hj D .

Hence we deduce the following.
Proposition 6.2: The dimension of the moduli spaceM(u,m,k) is

4S (
i 51

s

mi1(
j 51

r 2s

hj D .

In particular it is divisible by four.
Similarly for the strata, we have the following Corollary.
Corollary 6.3: The dimension of the stratumMj containingM(u,m,k) is

4S (
i 51

s

mi1(
j 51

r 2s

hj D 1dimC~m!2dimC~m!ùC~k!.
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The dynamics ofn slowly moving fundamental monopoles in the SU(n11) BPS
Yang–Mills–Higgs theory can be approximated by geodesic motion on the
4n-dimensional hyperka¨hler Lee–Weinberg–Yi manifold. In this article we apply a
variational method to construct some scaling geodesics on this manifold. These
geodesics describe the scattering ofn monopoles which lie on the vertices of a
bouncing polyhedron; the polyhedron contracts from infinity to a point, represent-
ing the spherically symmetricn-monopole, and then expands back out to infinity.
For different monopole masses the solutions generalize to form bouncing nested
polyhedra. The relevance of these results to the dynamics of well separated SU~2!
monopoles is also discussed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1584208#

I. INTRODUCTION

The dynamics of slowly moving BPS monopoles can be approximated by geodesic mot
the moduli space of static solutions, with the metric determined by the kinetic part o
Lagrangian.20,23For two centered SU~2! monopoles the moduli space is the Atiyah–Hitchin ma
fold and the simplest geodesic corresponds to the 90° scattering of two monopoles in a h
collision.3 Unfortunately, for more than two SU~2! monopoles the moduli space metric is n
known explicitly, except in the region where all the monopoles are well separated.12 Despite this
fact some geodesics are known.13,15,16,24They are obtained by the imposition of appropriate spa
symmetries to yield a one-dimensional manifold of static solutions, which is then automatic
geodesic, since the fixed point set of a group action is always a totally geodesic submanif

For BPS monopoles with gauge group SU(n11) and maximal symmetry breaking there aren
topological charges and correspondinglyn types of fundamental monopole, each of which carr
a single unit of one of these charges.25 If there is precisely one fundamental monopole of ea
type, then the moduli space is 4n-dimensional and equipped with the hyperka¨hler Lee–
Weinberg–Yi metric,18 which is known explicitly. The explicit form of the metric allows th
possibility of computing some geodesics and hencen-monopole scattering processes for any va

a!Electronic mail: rbattye@jb.man.ac.uk
b!Electronic mail: g.w.gibbons@damtp.cam.ac
c!Electronic mail: paulina@crv.com
d!Author to whom all correspondence should be addressed. Electronic mail: p.m.sutcliffe@ukc.ac.uk
35320022-2488/2003/44(8)/3532/11/$20.00 © 2003 American Institute of Physics
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of n. In this article we apply a variational method to construct some scaling geodesics o
manifold. The approach is to look for central configurations in which the time dependence is
in the form of an overall scaling of the monopole positions. The resulting algebraic equation
then be written as the critical points of a certain energy function,22 which we minimize using
numerical methods. As examples, we find minimal energy configurations, and hence geodes
all n<20. The symmetries of these configurations are analyzed and suggest the existe
icosahedral minima atn532 andn572, which are also constructed. In all cases the associ
geodesics describe the scattering ofn monopoles which lie on the vertices of a bouncing polyh
dron, in the following sense. The polyhedron first contracts from infinity to a point, which in
moduli space represents the spherically symmetricn-monopole. The evolution then reverses wi
the monopoles located on the vertices of the same polyhedron, but which is now expandin
out to infinity.

For different monopole masses the above solutions generalize to form bouncing neste
hedra. Our solutions also provide geodesics of the Gibbons–Manton metric,12 and hence describe
the scattering ofn SU~2! monopoles, valid in the region where the monopoles are well separ
This reveals a connection with some geodesics obtained earlier using symmetry argumen

II. POLYHEDRAL SCATTERING

The 4n-dimensional hyperka¨hler Lee–Weinberg–Yi manifold is aTn bundle over a
3n-dimensional base space. Fori 51,...,n let u iPS1 be the fiber coordinates andxiPR3 be local
coordinates in the base, which may be thought of as the positions inR3 of each of then mono-
poles. The purely kinetic Lagrangian associated with the metric has the form

L5gi j ẋi• ẋj1gi j
21~ u̇ i1W ik• ẋk!~ u̇ j1W j l • ẋl ! , ~2.1!

where we have used the Einstein summation convention, though this is not to be used in t
of the article unless explicitly stated. The quantities appearing in the above are given by

gii 5mi1(
j Þ i

1

uxi2xj u
, ~2.2!

gi j 5
21

uxi2xj u
, iÞ j , ~2.3!

W i i 5(
j Þ i

wi j , ~2.4!

W i j 52wi j , iÞ j , ~2.5!

andwi j is the value atxi of the Dirac potential due to the monopole atxj , that is,

“ j3wj i 5
xi2xj

uxi2xj u3
. ~2.6!

In the above we have scaled out the magnetic charge of a monopole and the positive constmi

are related to the monopole masses.
The Tn isometry of the metric yields then conserved charges~here we use the summatio

convention once more!

Qi5gi j
21~ u̇ j1W jk• ẋk! , ~2.7!
                                                                                                                



all be

these

volv-

it
ling of
in

ll
when

tial
other,

ersion
ing the

new
dial
w
dinates
ad the
ed

3534 J. Math. Phys., Vol. 44, No. 8, August 2003 Battye et al.

                    
so that the fiber coordinates are nondynamical degrees of freedom. In this article we sh
concerned with monopoles with no electric charge, so we setQi50, for all i 51,...,n. In this case
the Lagrangian describing the motion in the base space is simply

L5(
i

S mi1(
j Þ i

1

xi j
D ẋi

22(
i

(
j Þ i

1

xi j
ẋi• ẋj , ~2.8!

where we have definedxi j 5xi2xj , and xi j 5uxi j u. The geodesic equations which follow from
~2.8! are

mkẍk5(
j Þk

S ẍjk

xjk
1

xjkuẋjku2

2xjk
3 2

ẋjkẋ jk

xjk
2 D . ~2.9!

As suggested in Ref. 22 we now look for time dependent homothetic solutions of
equations, that is, solutions of the formxk(t)5a(t)yk , with constantyk . Clearly, such solutions
describe monopoles in a fixed configuration, but with the overall scale of the configuration e
ing dynamically. Substituting this ansatz into~2.9! yields the equations

mkyk1C(
j Þk

yjk

y jk
50 , ~2.10!

whereC is defined to be the quantity

C5
ȧ2

2äa2 2
1

a
. ~2.11!

Obviously, for a nontrivial solution of~2.10! to exist the quantityC must be a constant, and
turns out that only a positive constant produces a physically acceptable solution. By a resca
the time variable we may, without loss of generality, setC51. The two constants which appear
the general solution of~2.11! may be absorbed by a linear transformation oft, and the solution we
require is given implicitly by

t5Aa1a21 1
2 log~112a12Aa1a2! , ~2.12!

for t>0. It is clear from~2.12! that the scalea(t) is a monotonically increasing function oft,
which for smallt has the expansiona5t2/41¯ and for larget has the asymptotic forma;t.

Note that Eqs.~2.9! are invariant under time reversalt°2t and also spatial inversion of a
the pointsxk°2xk . So far we have only addressed the second part of the geodesic motion,
t>0 and the monopoles are moving away from each other, but the first part witht,0 is simply
obtained by time reversal in Eq.~2.12!, so that the monopoles approach the origin from spa
infinity. Thus the monopoles bounce back off each other, rather than passing through each
which would have been the result if the time inversion was accompanied by the spatial inv
xk°2xk . The fact that the first of these scenarios is the correct one can be seen by study
Lee–Weinberg–Yi manifold in the neighborhood of the originxk50, for all k. Although the
metric appears to be singular at the origin, this is merely a coordinate singularity, and if
coordinates are chosen appropriately~these are essentially polar coordinates but with the ra
variables related to the monopole positions byr k5Auxku) the metric is seen to be flat in these ne
coordinates. The fact that the squares of the monopole positions are related to the flat coor
is the reason that fundamental monopoles of different types bounce back upon collision; h
metric been flat around the origin in the coordinatesxk then the monopoles would have pass
through each other.
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The problem of finding scaling geodesics has now been reduced to the algebraic prob
finding sets ofn points yk , which satisfy~2.10! with C51. Our method is to use a variationa
approach, based on the fact that~2.10! are the equations for critical points of the energy functi

E5
1

2 (
i

mi uyi u22(
i

(
j , i

yi j . ~2.13!

In this formulation the problem has obvious similarities with the classical problem of fin
central configurations5 ~which arise in a similar way when a time dependent homothetic ansa
used in Newton’s equations of motion for gravitating point particles! or equivalently solutions of
the one component plasma~OCP! model.6 The OCP model describes point charges immersed
uniform background of charge with the opposite sign. Hence there are two competing force
first is an attraction towards the origin, represented by exactly the same expression as the fi
in ~2.13!, and repulsion between the points, which in the OCP case is described by the Co
energy. The second term in~2.13! plays a similar role in our problem as the Coulomb energy d
in the OCP model. The contribution of this nonpositive term produces two-body particle r
sions which can balance the attractive central force, producing stable minimal energy con
tions with finite nonzero separations.

In the remainder of this section we shall restrict to the case when all the monopole mass
equal. By rescaling the positionsyk by the inverse of this common mass we obtain the situatio
which all monopole masses are equal to unity, so for the rest of this section we setmi51 for all
i 51, . . . ,n.

Although any critical point of the energy~2.13! will provide us with a geodesic on th
Lee–Weinberg–Yi manifold we shall concentrate only on local minima, since these are the e
to find numerically, and ignore any saddle point solutions. Presumably Leech’s symm
configurations,19 which are sets of particles on a sphere in equilibrium under any force
between pairs of particles, will also yield critical points of~2.13! if the particles are allowed to
move off the sphere, but are required to maintain all symmetries of the spherical configur
Leech’s configurations consist of an infinite family of polygons and bipyramids and a finite fa
with Platonic symmetry.

TABLE I. For 2<n<20 we list the energyE of the minimizing configura-
tion, its symmetry groupG, the distance from the origin of the closest point
r min , and the distance from the origin of the furthest pointr max.

n E G rmin r max

2 21.0000 D`h 1.0000 1.0000
3 24.5000 D3h 1.7321 1.7321
4 212.0000 Td 2.4495 2.4495
5 224.5916 D3h 3.1018 3.1592
6 243.9706 Oh 3.8284 3.8284
7 271.0162 C1 4.4782 4.5635
8 2107.5011 D4d 5.1841 5.1841
9 2154.5499 D3h 5.8376 5.8718

10 2213.5297 D4d 6.5099 6.5412
11 2285.6593 C2v 7.1648 7.2435
12 2372.7470 Yh 7.8819 7.8819
13 2475.3419 C2v 8.5186 8.5980
14 2595.4323 D6d 9.2142 9.2749
15 2734.0923 D3 9.8771 9.9279
16 2892.7338 T 10.5541 10.5925
17 21072.6591 D5h 11.2308 11.2368
18 21275.2163 D4d 11.8834 11.9107
19 21501.5794 C2v 12.5491 12.5987
20 21753.4547 D3h 13.2348 13.2518
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The numerical scheme employed is a multi-start gradient flow algorithm with randomly
tributed initial conditions. The energy function~2.13! has the obvious SO~3! invariance associated
with a spatial rotation of alln points, and also reflection symmetries which change the sign of
one of the three Cartesian components of all the points. Up to the action of these sym
groups, all the minimal energy solutions we find are unique.

The casen51 is trivial; the minimal energy solution is a single point at the origin, withE
50, and hence the scaling solution is time independent, so no geodesic is obtained. For two
the minimal energy isE521 which occurs ify152y25(0,0,1), or any spatial rotation of thi
configuration. In other words, the two monopoles are at antipodal points on the unit spher
associated geodesic describes the head-on collision of two monopoles, in which the sph
symmetric two-monopole is formed, after which the monopoles bounce back off each othe
scattering process was first described by Connell,9 who discovered that the metric on the center
moduli space of two different fundamental SU~3! monopoles is Taub-NUT with a positive mas
parameter.

In Table I we present, for 2<n<20, the energyE of the minimizing configuration, its
symmetry groupG, the distance from the origin of the closest pointr min , and the distance from
the origin of the furthest pointr max.

In the examples in Table I wherer min is equal tor max, to the accuracy presented they are
fact precisely equal, indicating that all the points lie on the surface of a sphere of radiur min

5rmax. For all the other cases it can be seen thatr min andr max are very close in value, showing tha
all n points lie close to, but not exactly on, a sphere. As we shall see later, this feature app
persist for arbitrarily large values ofn, which contrasts sharply with traditional central config
rations with a Coulomb interaction, where this property exists only forn,13 and beyond this
value there are multiple shells.5 It is interesting to note that a scale invariant geometric ene
function exists which also yields minimal energy configurations on a single shell for all num

FIG. 1. For 3<n<20 we display the configurations ofn points~not to scale! by plotting spheres around each of the poin
In each case the diameter of the spheres is equal to the minimal separation between points, to emphasize the sphe
behavior.
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of points.4 It would be interesting to try and classify the properties of interaction potentials w
produce only a single shell.

In Fig. 1 we present, for 3<n<20, the minimal energy configurations ofn points by plotting
spheres around each of the points and in Fig. 2 we plot their energy as a function ofn, for n
<20. In each case the diameter of the spheres is equal to the minimal separation between
to emphasize the sphere packing behavior. As seen from Table I, the size of the configurat~as
measured byr max) grows withn, so for clarity we do not display the configurations to scale. Th
points lie on the vertices of an equilateral triangle, with edge length equal to 3. Forn.3 the points
may be considered as forming the vertices of a polyhedron, which generically is a deltah
that is, all faces are triangular. For example, four points lie on the vertices of a tetrahedro
edge length equal to 4. Forn54,6,8,12 all points lie exactly on the surface of a sphere, and in
on the vertices of a tetrahedron, octahedron, square antiprism and icosahedron, respectiv

As can be seen from Table I and Fig. 1 the points are often arranged symmetrically, thou
casen57 is rather anomalous. There is an obviousD5h symmetric candidate for the minima
energyn57 configuration, in which five points lie on the vertices of a regular pentagon and
two remaining points lie on the fivefold symmetry axis equidistant from the origin. This reg
bipyramid is the obvious generalization of the minimaln55 configuration, which is a bipyramid
with a triangular base. However, the minimal energy solution forn57 is a symmetry breaking
perturbation of the bipyramid. There are points at the north and south poles of a sphere of
4.5635, and the remaining five points lie in a roughly pentagonal distribution, but all with slig
different heights above or below the equatorial plane and different distances from the o
which range from 4.4782 to 4.4825. Clearly this prohibits any exact symmetry, even refle
symmetries, so we label the symmetry group asC1 , indicating no point symmetries. As a check
is possible to minimize within the family ofD5h symmetric configurations, yielding an energ
of E5271.0156, which is indeed slightly higher than the asymmetric minimum w
E5271.0162.

To gain insight into minimizing the energy function~2.13! ~with mk51) it is useful to
consider the restricted problem in which all the points are constrained to lie on a sphere of a
radiusr. The energy of this restricted problem is given by

Er5 1
2 r2n1rU , ~2.14!

where

FIG. 2. The energy as a function ofn ~circles! and the estimate described in the text~curve!.
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U52(
i

(
j , i

uYi2Yju , ~2.15!

for n points Yk5yk /r restricted to lie on the surface of the unit sphere. Minimization of
function U for points on the unit sphere is a problem in discrete geometry which was first p
almost 50 years ago by Fejes To´th,11 though it is usually phrased in terms of maximizing the su
of the mutual separations2U. There are a number of theorems proved about the extrema o
energy function and in particular there is the lower bound1

U. 1
2 2 2

3 n2. ~2.16!

Using this result in~2.14! we obtain a lower bound forEr which we can then minimize over th
radiusr, finding a minimum value at

r5
2n

3
2

1

2n
, ~2.17!

to obtain the lower bound

Esphere.2~ 2
9 n32 1

3 n1 1
8! , ~2.18!

whereEspheredenotes the energy~2.13! ~with mk51) under the restriction that all points lie at th
same distance from the origin. Clearly when we drop this restriction we have no rigorous
bound for the unrestricted energy~2.13! which is our main concern, but since our numeric
results suggest that in all the minimal energy configurations the points lie very close to the s
of a sphere, then we expect that the quantity in~2.18! will be a good estimate of the minima
energy value, though it will tend to be slightly lower. In Fig. 2 we plot this estimate as the cu
line. Clearly the above expectations appear to be realized, in that the estimate is close to t
value, but bounds it from below. In Fig. 3 we compare the estimate~2.17! ~curve! for the size of
the configuration with the numerical values as measured byr max ~circles!. Again it can be seen tha
the estimate is quite accurate.

FIG. 3. The size of the configurationr max as a function ofn ~circles! and the estimater described in the text~curve!.
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The above discussion suggests that our minimal energy solutions are closely related to
which maximize the sum of the mutual separations for points on a sphere. Forn52,3,4,8,12 it is
proved that the extremal configurations for this sphere problem are the dipole, triangle, te
dron, octahedron and icosahedron, respectively~see Ref. 2 and references therein!, which agrees
with our results. Forn<10 this problem was investigated numerically by Berman and Hanes7 and
more recently a comprehensive numerical investigation has been performed by Rakhmano
and Zhou,21 who studied alln<200 and obtained the symmetry groups of the extremal confi
rations. A comparison of the symmetry groups in Table I with those that appear in Ref. 21 re
that the groups agree for all cases exceptn57. ~In Ref. 21 the symmetry group for 18 point
should readD4d not D4h .) In Ref. 21 the symmetry group forn57 is given asC2 and in Ref. 7
the configuration is described as two almost antipodal points with the remaining five p
sprinkled around an equatorial band. Our configuration forn57 is therefore consistent with
small deformation of the spherical extremal solution, which itself has little symmetry.

For all 1<n<20 we found only one local minimum of the energy for each value ofn, except
for n516. Forn516 the global minimum withE52892.7338 has tetrahedral symmetryT, but
we also found a local minimum with energyE52892.7256 and symmetryD4h . Once again this
mirrors the situation in studying extremal problems for points on a sphere.10

In order to further investigate the similarites between our solutions and points on the s
which maximize the sum of the mutual separations we turn our attention to configurations
icosahedral symmetry. For the sphere problem extremal configurations with icosahedral sym
occur for a sequence of points21 which beginsn512,32,72,... As we have seen, forn512 our
solution has icosahedral symmetry, with the points lying on the vertices of an icosahedron,
interesting to compute the minimal energy solutions forn532 andn572, to see if they are
icosahedrally symmetric.

In Fig. 4 we display the minimal energy configurations forn532 andn572, using the same
method as in Fig. 1. Both configurations contain a single shell and have icosahedral symm
predicted by analogy with the sphere problem. Forn532 there are 12 points on the vertices of
icosahedron at a distance of 21.2516 from the origin and a further 20 points at a dista
21.2680 from the origin. The associated polyhedron is the dual of a truncated icosahedron a
energy isE527233.0539. Forn572 the energy isE5282 780.0335. There are 12 points at
distance of 47.9338 and 60 points at a distance of 47.9563.

III. DISTINCT MASSES AND SU „2… MONOPOLES

In this section we mention two extensions of the study we have described so far. The
the obvious generalization to monopoles which are not all of equal mass. As stated earlie
monopoles have the same mass, then varying this mass produces the same configuration b
by the inverse common mass. Thus, the expectation for sets of distinct masses is that m
shells will arise, with monopoles grouped into shells according to their mass, so that the he
monopoles sit closest to the origin, and with each set of monopoles in a given shell being ar
on the vertices of the polyhedron which arises in the minimization of the relevant number of
mass monopoles. This nested polyhedron picture is consistent with the numerical results w

FIG. 4. Forn532 andn572 we display the icosahedrally symmetric minimal energy configurations by drawing sp
around the monopoles.
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obtained. For example, in the case of two distinct masses and four monopoles of each mass
mi51, for i 51,..,4 andmi52, for i 55,..,8; the resulting configuration is that the four hea
monopoles sit on the vertices of a tetrahedron at a distance 1.5940 from the origin and th
light monopoles sit on the vertices of the dual tetrahedron scaled so that they are at a d
6.3543 from the origin. As another example, with 12 light monopoles~with mass one! and six
heavy monopoles~with mass two! the nested polyhedra are an octahedron and an icosahedron
scales 2.6954 and 13.8057, respectively, and oriented so as to preserve their common tet
subgroups. Clearly the relative orientations of sets of nested polyhedra, together with their
mation as very distinct monopole masses are varied towards equality, are interesting pr
which are likely to need substantial investigation in each specific case.

The second extension we consider is to relate our results to the dynamics of well sep
SU~2! monopoles. Although, forn.2, the moduli space metric forn SU~2! monopoles is not
known explicitly, the asymptotic metric is known, which is valid in the region where all
monopoles are well separated.12 This is the Gibbons–Manton metric and it is related to t
Lee–Weinberg–Yi metric through some sign changes. Explicitly, the Gibbons–Manton me
obtained by replacing Eqs.~2.2!–~2.5! by the equations

gii 5mi2(
j Þ i

1

uxi2xj u
, ~3.1!

gi j 5
1

uxi2xj u
, iÞ j , ~3.2!

W i i 52(
j Þ i

wi j , ~3.3!

W i j 5wi j , iÞ j . ~3.4!

If the approach of the previous section is now applied to this metric to find time depen
homothetic solutions then, due to the sign changes, the upshot is that Eq.~2.10! is once again
obtained, but with the replacementC°2C. In this case the physically acceptable solution
therefore to chooseC521. With this choice both the functiona(t) and the positionsyk that we
have found to provide geodesics for the Lee–Weinberg–Yi metric carry over unchanged t
duce geodesics of the Gibbons–Manton metric. The difference now is that these geodes
only valid in the region where all the monopole are well separated, so the solutions break
before they can describe the collision of the monopoles.

For example, forn54, the scaling geodesic describes the scattering of four monopoles o
vertices of a contracting tetrahedron. In fact, by using symmetry arguments, the full geode
which this is a good approximation in the well separated regime, has been found and show
as the monopoles approach they pass through a monopole solution with cubic symmet
emerge on the vertices of an expanding tetrahedron which is dual to the incoming one.15 For this
example, even the metric is known exactly in terms of elliptic integrals.8

It might be amusing to attempt to identify the outcomes of the various SU~2! monopole
scatterings that begin as the contracting polyhedra that we have identified, particularly thos
high symmetry. However, a note of caution must be applied in this situation. The Gibb
Manton metric possesses ann-torus isometry which the true monopole metric does not have
any finite separation. This means that the symmetry of a contracting polyhedron may on
realized in the true SU~2! monopole solution at the limit of infinite separation. As an example
this situation consider the casen56, where the contracting polyhedron is an octahedron. Using
one-to-one correspondence17 between SU~2! n-monopoles and~an equivalence class of! rational
maps between Riemann spheres of degreen we may determine the dimension of the moduli spa
of octahedrally symmetric SU~2! monopoles of charge six. Degree six polynomials form
carrier space for the 7-dimensional irreducible representation of SU~2! and when this representa
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tion is restricted to the octahedral group it decomposes into irreducible representations
octahedral group of dimensions one, three and three. Since two polynomials are required t
a rational map this shows that there are no octahedrally symmetric rational maps of degree s
hence no octahedrally symmetric charge six monopoles. Thus six SU~2! monopoles placed on th
vertices of an octahedron break the octahedral symmetry for any finite value of the separat
matter how large. This contrasts with the above mentioned case ofn54 with tetrahedral symme
try. The five-dimensional irreducible representation of SU~2! when restricted to the tetrahedr
group decomposes into two one-dimensional representations and a three-dimensional rep
tion. The basis polynomials for the two one-dimensional representations yield a one-para
family of tetrahedrally symmetric degree three rational maps, which corresponds to the ge
describing the tetrahedral scattering of four monopoles.14 Thus, in some cases the symmetry of t
scaling geodesics of the Gibbons–Manton metric may be true symmetries of related geode
the true moduli space and in others they may not.

IV. CONCLUSION

The scattering ofn distinct fundamental monopoles can be approximated by geodesic m
on the Lee–Weinberg–Yi manifold. We have described a variational method to construct
geodesics on this manifold for arbitrary values ofn, and applied it to obtain a number of ex
amples. The energy function used in this approach has features similar to that which arises
classic problem of determining central configurations, but in contrast to central configurati
yields points which lie on a single shell for arbitrary values ofn. The geodesics constructed by o
method describe the scattering of monopoles on the vertices of a contracting, and then exp
polyhedron, which generically is a deltahedron. We have found, and exploited, similaritie
tween the deltahedra obtained here and those which arise in the problem of maximizing th
of the mutual separations for points on a sphere.
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In this article we aim to determine the baryon numbers at which the minimal energy
Skyrmion has icosahedral symmetry. By comparing polyhedra which arise as mini-
mal energy Skyrmions with the dual of polyhedra that minimize the energy of
Coulomb charges on a sphere, we are led to conjecture a sequence of magic baryon
numbers,B57,17,37,67,97,. . . , atwhich the minimal energy Skyrmion has icosa-
hedral symmetry and unusually low energy. We present evidence for this conjecture
by applying a simulated annealing algorithm to compute energy minimizing ratio-
nal maps for all degrees up to 40. Further evidence is provided by the explicit
construction of icosahedrally symmetric rational maps of degrees 37, 47, 67 and 97.
To calculate these maps we introduce two new methods for computing rational
maps with Platonic symmetries. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1584209#

I. INTRODUCTION

Skyrmions are topological solitons in three space dimensions which are candidates
effective description of nuclei, with an identification between soliton and baryon numbe10

Recently, the minimal energy Skyrmions for all baryon numbers 1<B<22 were computed and
their symmetries identified.3 The baryon density of these Skyrmions is localized around the
tices and edges of polyhedra, which are almost always trivalent, and forB>7 are composed of 12
pentagons and 2B214 hexagons, with only a few exceptions~which can be understood by
symmetry enhancement principle!. These Skyrmions have discrete point group symmetries,
cluding occasional Platonic symmetries. ForB57 andB517 the minimal energy Skyrmion is
particularly symmetric, having icosahedral symmetryYh , and the value of the energy is unusua
low. However, there are other baryon numbers at which icosahedral Skyrme fields exist, b
minimal energy Skyrmion has less symmetry. This motivates the main question addressed
article, namely, what are the magic baryon numbers at which the minimal energy Skyrmio
icosahedral symmetry with a resulting unusually low energy?

To gain some insight into this problem we note that, as first observed in Ref. 2, there is a
relationship between the polyhedra which arise as minimal energy Skyrmions and the du
polyhedra which occur in the problem of minimizing point Coulomb charges on a sphere.
latter problem is often known as the Thomson problem, even though he appears not to have
it explicitly, and we shall use this nomenclature here. The Thomson problem is well studied
to 200 points on the sphere9 and generically then points sit at the vertices of a combinator

a!Electronic mail: rbattye@jb.man.ac.uk
b!Electronic mail: houghton@maths.tcd.ie
c!Author to whom correspondence should be addressed. Electronic mail: p.m.sutcliffe@ukc.ac.uk
35430022-2488/2003/44(8)/3543/12/$20.00 © 2003 American Institute of Physics

                                                                                                                



lass of
er
t we

y
. 3
gura-

clic
he 22
mmetry
e Th-

same
y
,
ch to
inimal
s us to
y will
at

lem
ergy
nfigu-

ahedral
ions.
hall
ence
d un-
njec-

of

iven
ei.

2

3544 J. Math. Phys., Vol. 44, No. 8, August 2003 Battye, Houghton, and Sutcliffe

                    
deltahedron. Taking the dual of a deltahedron leads to a trivalent polyhedron, which is the c
polyhedra which generically arise for Skyrmions. A Skyrmion polyhedron with baryon numbB
has 2B22 faces, so to identify this with the dual of a Thomson polyhedron requires tha
considern52B22 Coulomb charges on the sphere. Let us denote byGB the symmetry of the
minimal energy Skyrmion with baryon numberB and byHB the symmetry of the minimal energ
Thomson configuration of 2B22 points on the sphere. Extracting the information from Refs
and 5 we obtain Table I, in which we compare the symmetries of the minimal energy confi
tions for each problem.

From Table I it is clear that although a variety of different Platonic, dihedral and cy
symmetry groups occur, there is a remarkable match for the two problems in 17 out of t
cases. Moreover, a closer inspection reveals that in these 17 cases not only do the sy
groups match, but the combinatorial types of the Skyrmion polyhedron and the dual of th
omson polyhedron are identical. The five examples that do not coincide,B55,9,10,19,22, show
that the topography of the two energy functions is slightly different and suggest that the
factors which determine the polyhedron~or its dual! are important, but perhaps with slightl
different weightings. For example, forB59 andB510, which are not particularly low in energy
it is known that Skyrmion configurations exist which have the symmetries required to mat
those of the Thomson problem, but that they have very slightly higher energy than the m
energy Skyrmion. The fact that there is so often an agreement for the two problems lead
believe that, in the cases where particularly symmetric low energy configurations arise, the
be the minima in both problems. Thus, as a working hypothesis to test, we shall postulate thGB

is the icosahedral group only ifHB is also the icosahedral group. Although the Thomson prob
is a difficult one to study numerically, it is certainly much easier than finding minimal en
Skyrmions, so we can take advantage of the known numerical results. Minimal energy co
rations are currently available for up to 200 points, that is,B<101, and of these the valuesB
57,17,37,62,67,97 are selected as magic numbers at which the configuration has icos
symmetry and unusually low energy when compared to a numerical fit of all 200 configurat9

As we describe later, the caseB562 is rather different from the others in the sequence, so we s
leave this example out for the moment. We are thus led to conjecture that there is a sequB
57,17,37,67,97, . . . at which the minimal energy Skyrmion has icosahedral symmetry an
usually low energy. In the rest of this article we perform some investigations to test this co
ture, and hence the connection between Skyrmions and the Thomson problem.

II. MINIMIZING RATIONAL MAPS

A static Skyrme field, U~x!, is an SU~2! matrix defined throughoutR3 and satisfying the
boundary condition thatU→1 asuxu→`. This boundary condition implies a compactification
space so that the Skyrme field becomes a mappingU:S3°SU(2), and so can beclassified by an
integer valued winding number

B5
1

24p2 E e i jk Tr~] iU U21] jU U21]kU U21!d3x, ~2.1!

which is a topological invariant. This winding number counts the number of solitons in a g
field configuration and is identified with baryon number in the application to modeling nucl

The energy of a static Skyrme field is given by

TABLE I. The symmetry groupGB of the minimal energy Skyrmion with baryon numberB and the symmetry groupHB

of the 2B22 points which minimize the Thomson problem.

B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2

GB O(3) D`h Td Oh D2d D4d Yh D6d D4d D3 D3h Td O C2 T D2 Yh D2 D3 D6d Td D3

HB O(3) D`h Td Oh D4d D4d Yh D6d T D4d D3h Td O C2 T D2 Yh D2 D2 D6d Td D5h
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E5
1

12p2 E TrS 2
1

2
~] iU U21!22

1

16
@] iU U21,] jU U21#2Dd3x ~2.2!

and, for each integerB, the problem is to minimize this energy within the class of fields w
baryon numberB in order to find the minimal energy Skyrmion. This problem has been so
numerically for allB<22 ~Ref. 3! yielding the results presented in Table I for the symmetries
the minimal energy Skyrmions. When we refer to the symmetry of a Skyrmion we do not
that the Skyrme field itself is invariant under particular spatial rotations, but rather that the
of a spatial rotation can be undone by the application of the global SO~3! symmetry of the Skyrme
model, which acts through the conjugationU°OUO †, whereOPSU(2) is a constant matrix. In
particular this means that the baryon and energy densities@the integrands in~2.1! and ~2.2!# are
strictly invariant.

It is computationally prohibitive to apply the full numerical scheme to larger values ofB at the
present time, but fortunately an approximation method has been developed which provide
accurate results. This is the rational map ansatz,7 where a Skyrme field with baryon numberB is
constructed from a degreeB rational map between Riemann spheres. Although this ansatz doe
give exact solutions of the static Skyrme equations, it produces approximations which have
gies only a few percent above the numerically computed solutions. Briefly, use spherical c
nates inR3, so that a pointxPR3 is given by a pair (r ,z), wherer 5uxu is the distance from the
origin, and z is a Riemann sphere coordinate giving the point on the unit two-sphere w
intersects the half-line through the origin and the pointx. Now, let R(z) be a degreeB rational
map between Riemann spheres, that is,R5p/q wherep and q are polynomials inz such that
max@deg(p),deg(q)#5B, andp andq have no common factors. Given such a rational map
ansatz for the Skyrme field is

U~r ,z!5expF i f ~r !

11uRu2 S 12uRu2 2R̄

2R uRu221
D G , ~2.3!

where f (r ) is a real profile function satisfying the boundary conditionsf (0)5p and f (`)50,
which is determined by minimization of the Skyrme energy of the field~2.3! given a particular
rational mapR.

Substitution of the rational map ansatz~2.3! into the Skyrme energy functional results in th
following expression for the energy

E5
1

3p E S r 2f 8212B~ f 8211!sin2 f 1I sin4 f

r 2 D dr , ~2.4!

whereI denotes the integral

I5
1

4p E S 11uzu2

11uRu2 UdR

dzU D
4 2i dzdz̄

~11uzu2!2 . ~2.5!

To minimize the energy~2.4! one first determines the rational map which minimizesI, then given
the minimum value ofI it is a simple exercise to find the minimizing profile function. Thu
within the rational map ansatz, the problem of finding the minimal energy Skyrmion reduces
simpler problem of calculating the rational map which minimizes the functionI.

The baryon density of the rational mapR5p/q is proportional to the Wronskian

w~p,q!5p8q2q8p ~2.6!
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which has 2B22 roots, giving the points on the Riemann sphere for which the baryon de
vanishes along the corresponding half-lines through the origin. These 2B22 points on the sphere
give the face-centers of the Skyrmion polyhedron, or equivalently the vertices of the dual
hedron which is associated with the Thomson problem.

Using a simulated annealing algorithm theI minimizing rational maps for 1<B<22 have
been computed3 and found to be in good agreement with the results of full Skyrme field min
zation. Here we extend the simulated annealing computation toB<40, in an attempt to determin
particularly low energy magic numbers. In the Thomson problem the magic numbers are
mined by comparing the energy of minimal solutions with the energy of a numerical fit to the
of all known minimal energy solutions—thereby isolating cases where the energy is lower th
expected fit. In the problem of minimizing rational maps it turns out that there is a more na
approach, due to the fact that a useful lower bound exists. Using a simple inequality it is sho
Ref. 7 thatI>B2. It turns out that examining the excess above this bound, by computing
quantity I/B2, is a good diagnostic tool for highlighting low energy maps, and in particula
more useful than simply calculating the energy of the associated Skyrme field. We illustrate
Fig. 1 by plottingI/B2 for the results of our simulated annealing computations for 2<B<40.
There are clear dips at the magic numbersB57 andB517, corresponding to the already know
low energy icosahedral Skyrmions~see Table I!. There are also dips atB54 andB513, where it
is known that the Skyrmions also have Platonic symmetry, but this time octahedral~see Table I!.
However, there is one more major dip atB537, and this is precisely the value predicted as
next magic number in the icosahedral sequence suggested by comparison with the Th
problem. This result, therefore, provides strong support for our conjectured sequence, pro
we can prove that this low energy degree 37 map obtained from simulated annealing does
have icosahedral symmetry. This will be discussed in the next section.

Note that the quantityI/B2 appears to be tending towards an asymptotic value of around 1
apart from magic numbers where it drops to around 1.25. It would be interesting to understa
approach to a relatively constant value, as well as its magnitude.

In Fig. 2 we plot the energy per baryonE/B of the Skyrmions constructed from the minimiz
ing maps with 1<B<40. The dips at the magic numbers are clearly visible in Fig. 2, reprodu
the sequence displayed in Fig. 1. However, in this case the dips are superimposed upon a

FIG. 1. I/B2 for 2<B<40, as calculated byI minimizing simulated annealing computations. Also shown are the va
of I/B2 for the icosahedrally symmetric Skyrmions withB547 ~cross!, B567 ~square! andB597 ~circle!, discussed in
the text.
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decrease ofE/B with increasingB, which is why we regard the quantityI/B2 as a more usefu
diagnostic thanE/B.

The radius of a Skyrmion produced from the rational map ansatz can be defined as the
value,r * , at which the profile function is equal top/2. In Fig. 3 we plotr

*
2 as a function ofB for

1<B<40. This clearly shows that the radius has aAB dependence, and given that all the
configurations are reasonably close to the Faddeev–Bogomolny energy boundE>uBu, this means
that the energy grows like the square of the radius, as expected for a shell-like structure. No

FIG. 2. The energy per baryonE/B of the Skyrmions constructed from the minimizing maps with 1<B<40. Also shown
are the values ofE/B for the icosahedrally symmetric Skyrmions withB547 ~cross!, B567 ~square! andB597 ~circle!,
discussed in the text.

FIG. 3. r
*
2 , the squared radius of the Skyrmion, as a function of baryon numberB.
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at the magic numbers the radius of the Skyrmion is slightly less than expected, presumably
a more compact arrangement of a particularly symmetric energy density.

III. COMPUTING ICOSAHEDRAL MAPS

Recall that a Skyrmion is symmetric under a groupG,SO(3), if a spatial rotationg
PSO(3) can be compensated by an action of the global SO~3! symmetry. In terms of the rationa
map approach a spatial rotation acts on the Riemann sphere coordinatez as an SU~2! Möbius
transformation. Similarly the global symmetry acts on the Riemann sphere coordinateR of the
target two-sphere as an SU~2! Möbius transformation. Hence, a map isG-symmetric if, for each
gPG, there exists a target space rotationDg such thatR(g(z))5Dg(R(z)). Since we are dealing
with SU~2! transformations the set of target space rotations will form a representation o
double group ofG, but we shall continue to call thisG.

To determine the existence and compute particular symmetric rational maps is a ma
classical group theory. We are concerned with degreeB polynomials which form the carrier spac
for B11, the (B11)-dimensional irreducible representation of SU~2!. Now, as a representation o
SU~2! this is irreducible, but if we only consider the restriction to a subgroupG, B11uG , this
will, in general, be reducible. What we are interested in is the irreducible decomposition o
representation and tables of these subductions can be found, for example, in Ref. 1.

The simplest case in which aG-symmetric degreeB rational map exists is if

B11uG5E1¯ , ~3.1!

whereE denotes a two-dimensional representation. Here, and in the following, the dots d
other representations which are not relevant. In this case a basis forE consists of two degreeB
polynomials which can be taken to be the numerator and denominator of the rational map. A
point which needs to be addressed is that the two basis polynomials may have a common
which case the resulting rational map is degenerate and does not correspond to a genuine
B map.

More complicated situations can arise, for example, if

B11uG5A11A21¯ , ~3.2!

whereA1 andA2 denote two one-dimensional representations, then a whole one-parameter
of maps can be obtained by taking a constant multiple of the ratio of the two polynomials w
are a basis forA1 and A2 , respectively. Anm-parameter family ofG-symmetric maps can be
constructed if the decomposition contains (m11) copies of a two-dimensional representation, t
is,

B11uG5~m11!E1¯ , ~3.3!

where them ~complex! parameters correspond to the freedom in the choice of one copy ofE from
(m11)E.

A detailed explanation of how to explicitly calculate any required symmetric map is give
Ref. 7. However, this approach involves computing appropriate projectors which are matri
size (B11)3(B11), and even with the use of symbolic computational packages this proce
becomes cumbersome for the large values ofB that we are interested in here. In this section
therefore describe and apply two new, more convenient, methods for calculating symmetric
We shall concentrate on the situation of relevance to this article, whereG5Y, the icosahedral
group, but the methods are applicable for anyG.

Before we describe our new approaches we need to recall some facts about representa
the icosahedral group and Klein polynomials of the icosahedron. The icosahedral groupY has the
trivial one-dimensional representationA and two two-dimensional representations, which we
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note byE18 and E28 , with a prime denoting the fact that these are proper representations o
double group. There are also three-, four-, five- and six-dimensional representations, but w
not need these here.

Klein polynomials are strictly invariant polynomials for the Platonic groups.8 Since

13uY5A1¯ , ~3.4!

this implies that there is degree 12 invariant polynomial. This is the Klein polynomial given

kv5z11111z62z ~3.5!

and although it appears to have degree 11, it should be thought of as having degree 12 w
root at infinity. The roots of this polynomial, considered as points on the Riemann spher
located at the vertices of a suitably oriented and scaled icosahedron. The same construct
using the face-centers and mid-points of the edges of the icosahedron, in place of the v
produces the Klein polynomials

kf5z202228z151494z101228z511, ~3.6!

ke5z301522z25210 005z20210 005z102522z511, ~3.7!

which are alsoY-invariant, by construction.

A. Polarization

In this subsection we describe our polarization method for computing symmetric maps.
similar features to the polarization technique used to construct symmetric Nahm data.6

Suppose we wish to obtain the symmetric degreeB map associated with the decompositio

B11uY5E1¯ , ~3.8!

whereE denotes one of the two-dimensional representations. The above fact implies that

E^ B11uY5A1¯ , ~3.9!

and, in our polarization method, the invariant polynomial corresponding to this one-dimens
representation is used to construct a basis for theE in ~3.8!.

It is convenient to work with homogeneous coordinatesx,y on the Riemann sphere, that i
z5x/y, so that a polynomial inz of degreeB corresponds to a homogeneous degreeB polynomial
in x andy.

Let (pL(x,y),qL(x,y)) be known degreeL polynomials which form a basis for the represe
tation E and let k(x,y) be a degreeB1L invariant polynomial which is a basis for the on
dimensional representation in~3.9!. Then, since the pair (]y ,2]x) transform in the same way a
the pair (x,y) under linear SU~2! transformations, this means that the polynomi
pB(x,y),qB(x,y) defined by

pB~x,y!5pL~]y ,2]x!k~x,y!, qB~x,y!5qL~]y ,2]x!k~x,y! ~3.10!

have degreeB and are the required basis for the two-dimensional representation occuring in~3.8!.
As an example of this scheme we now construct the icosahedrally symmetric degr

rational map, in an orientation that we shall require later. The relevant decomposition is

18uY5E281¯ , ~3.11!
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so we first require a knownY-symmetric rational map that is a basis for the representationE28 .
The simplest known example is the degree 7 map7 ~corresponding to theB57 Yh-symmetric
minimal energy Skyrmion!

p7~x,y!5x727x5y227x2y52y7, q7~x,y!5x717x5y227x2y51y7. ~3.12!

Hence we haveB517 andL57, so now we require an invariant polynomialk(x,y) of degree
B1L524. This is easily found by using an appropriate combination of Klein polynomials, in
casek(x,y)5kv

2(x,y) is the degree 24 invariant wherekv(x,y)5x11y111x6y62xy11 is the de-
gree 12 Klein polynomial given earlier, when written in terms of homogeneous coordinates
formula ~3.10! then produces

p175z17117z151119z122187z101187z71119z5117z221,
~3.13!

q175z17217z151119z121187z101187z72119z5117z211,

when written in terms of the inhomogeneous coordinatez. This map is equivalent, after a chang
of spatial and internal orientation, to theYh-symmetric map presented in Ref. 7 that correspo
to the B517 Yh-symmetric minimal energy Skyrmion. In the following subsection we sh
require this map in the orientation presented in~3.13!.

Although this method is much easier to implement than the projector algorithm, it turn
that for the icosahedral maps we require in this article there is yet another approach, which
more effecient.

B. Klein leapfrog

From the previous section we already have twoY-symmetric rational maps, which areR7

5p7 /q7 andR175p17/q17. Here we describe how the otherY-symmetric maps that we requir
can be obtained from these two by the simple multiplication of invariant Klein polynomials.
way of obtaining higher degree invariant rational maps we refer to as the Klein leapfrog me

Recall that we wish to determine whether the low energyI minimizing map of degree 37 tha
we found earlier is icosahedrally symmetric. The relevant decomposition is

38uY5E1812E281¯ . ~3.14!

Both the maps (p7 ,q7) and (p17,q17) are a basis for the representationE28 , and the multiplication
of these maps by any~integer power of a! Klein polynomial does not change the transformati
properties, since Klein polynomials are invariants. Thus, both (kep7 ,keq7) and (kfp17,kfq17) are
degree 37Y-symmetric maps. Each map alone is not a valid degree 37 rational map, sinc
numerator and denominator contain common factors, but taken together they form an acc
basis for the 2E28 in ~3.14!. Explicitly,

R375
p37

q37
5

kfp171ckep7

kfq171ckeq7
, ~3.15!

wherec is a complex parameter. Forc50 or c5` the map is clearly degenerate, having deg
lower than 37, but for generic values ofc the numerator and denominator are coprime.

The Wronskian of this map must be strictly invariant, and indeed it is given by the follow
combination of Klein polynomials:

w~p37,q37!5ke
2kv~80c128c2!2kf

3kv~681120c!. ~3.16!

The 72 roots of this polynomial give the face-centers of the Skyrmion polyhedron. Minimizin
integral I over the one-~complex! parameter family of maps~3.15! results in a minimum atc
520.82910.545i , whereI/B251.255. This is precisely the value found by the minimizati
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over all degree 37 maps, so we confirm that theI minimizing degree 37 map, and hence t
minimal energyB537 Skyrmion, has icosahedral symmetry. Note that the symmetry group is
Y and notYh sincec is not real. A baryon density isosurface plot for the associated Skyrmio
displayed in Fig. 4~a!.

The next magic number in our conjectured icosahedral list isB567. The application of our
simulated annealing scheme to extend the results presented in Fig. 1 to such a large valuB
would require unreasonable computing resources. We therefore make use of the fact t
quantityI/B2 appears to approach an asymptotic value of around 1.28, whereas for icosa
magic numbers the value is closer to 1.25. Therefore we aim to present evidence in suppor
conjecture by finding an icosahedral map of degree 67 withI/B2'1.25.

The relevant decomposition is

68uY52E1813E281¯ , ~3.17!

so we require three degree 67 maps to form a basis for the second component in the
decomposition. These are given by a Klein leapfrog as

~kekfp17,kekfq17!, ~ke
2p7 ,ke

2q7!, ~kf
3p7 ,kf

3q7!. ~3.18!

It might seem strange that (kv
5p7 ,kv

5q7) is not included, but because61uY52A1¯ , there must

be a linear relationship betweenke
2 , kf

3 andkv
5 . In fact, it is given by 1728kv

55ke
22kf

3 .8

Minimizing over the two-~complex! parameter family of maps

R675
kekfp171c1ke

2p71c2kf
3p7

kekfq171c1ke
2q71c2kf

3q7
~3.19!

yields a minimum atc1520.29220.816i , c2520.49111.008i , for which I/B251.250. This
value is plotted as the square in Fig. 1, and it is clearly consistent with being an icosahedral
number, as is the energy per baryon of the associated Skyrmion which is plotted as the sq
Fig. 2. A baryon density isosurface derived from the minimalY-symmetric map is displayed in
Fig. 4~c!.

FIG. 4. Baryon density isosurface plots~to scale! for icosahedral Skyrmions with baryon numbers~a! B537, ~b! B
547, ~c! B567, and~d! B597.
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The next magic number on our list isB597. The required decomposition is

98uY53E1814E281¯ , ~3.20!

so there is a three-~complex! parameter family ofY-symmetric maps. Three of the required ba
maps are obtained by a Klein leapfrog of the three degree 67 basis maps given above, thro
multiplication byke . The fourth basis map is a Klein leapfrog of (p17,q17) through the multipli-
cation bykf

4 . The full map is therefore

R975
ke

2kfp171c1ke
3p71c2kekf

3p71c3kf
4p17

ke
2kfq171c1ke

3q71c2kekf
3q71c3kf

4q17
. ~3.21!

A minimization over the three complex parameters yields a minimum forc150.70510.699i ,c2

520.55421.701i ,c3520.96710.930i , at whichI/B251.248. This value is plotted as the circ
in Fig. 1, and again it is consistent with being the minimal degree 97 map, producing an
icosahedral magic number atB597. A baryon density isosurface of the Skyrmion derived fro
this minimalY-symmetric map is displayed in Fig. 4~d!. The energy per baryon of this Skyrmio
is plotted as the circle in Fig. 2. Given that the rational map ansatz tends to overestima
energy by around 1% or 2%, then the true energy per baryon of this Skyrmion must be very
to that of the hexagonal lattice,4 which hasE/B51.061.

Icosahedrally symmetric rational maps, and hence Skyrme fields, exist for many valuesB,
but rarely are these symmetric configurations those of minimal energy. The simplest exam
the degree 11 rational map presented in Ref. 7. For this mapI/B253.84, which is clearly very
large, and indeed the associatedB511 Skyrme field has larger energy than 11 well-separa
single Skyrmions. This is not very surprising, given that the associated polyhedron
icosahedron—clearly violating the favorable trivalent property at all vertices. However, in
Thomson problem there are more subtle examples, where there is an icosahedrally sym
configuration which has reasonably low energy, but not quite as low as a less symmetric m
energy solution. This situation occurs for the valuesB522,47,82,. . . .9 We shall see if this situ-
ation is also mirrored in the Skyrmion problem, by studyingY-symmetric rational maps of degre
47.

The required decomposition is

48uY5E1812E281¯ , ~3.22!

and a basis for the 2E28 is obtained by the Klein leapfrog ofR17 by ke and the Klein leapfrog of
R7 by kf

2 . Therefore, the one-parameter family ofY-symmetric maps is

R475
kep171ckf

2p7

keq171ckf
2q7

. ~3.23!

Minimizing overc yields a minimum whenc is real~so the symmetry extends toYh) and takes the
valuec521.425, at whichI/B251.314. This value is plotted as the cross in Fig. 1, and it can
seen that, even though it is reasonably low, it is not consistent with the general trend for m
energy maps. The associated energy per baryon is plotted as the cross in Fig. 2 and p
further evidence that this is not a minimal energy Skyrmion. This suggests that the same ph
enon of nonminimal icosahedral maps exists in both the Thomson and Skyrme problems, p
ing yet more evidence for the similarity of these two systems. A baryon density isosurfa
displayed in Fig. 4~b! for the Yh-symmetric Skyrmion obtained from the above map with t
minimal value ofc. From this figure it can be seen that the Skyrmion polyhedron fits into
required class, as a trivalent polyhedron with 12 pentagonal faces and the remaining face
                                                                                                                



e, and
d to a

a-

ciated
nergy
f the
d by the

e
e

ruct
ng if
l
lue

d
t
ld

als of
on has
ur con-
0, and

with

s and
atonic
the less

rystal
is

pos-

3553J. Math. Phys., Vol. 44, No. 8, August 2003 Icosahedral Skyrmions

                    
agonal. Therefore, the reason for it not to be the minimal energy Skyrmion must be subtl
probably involves the placement of the pentagons within the polyhedron, when compare
more favorable but less symmetric distribution.

Finally, we turn to the anomalous case ofB562. In the Thomson problem there is an icos
hedral magic number atB562, but the relevant decomposition for rational maps is

63uY5A1 irreps of dimension greater than 2, ~3.24!

so there is certainly noY-symmetric degree 62 rational map, and probably noY-symmetricB
562 Skyrmion either. The resolution of this problem is the fact that the polyhedron asso
with a Skyrmion is derived from the baryon density, and it is possible that the baryon and e
density of a Skyrmion could have more symmetry than the Skyrme field itself. In terms o
rational map ansatz this corresponds to an enhanced symmetry of the Wronskian, not share
rational map.

Recall that the Wronskian is a polynomial of degree 2B22, so to see if this is a possibl
explanation for the caseB562 we need to look forY-invariant polynomials of degree 122. Th
decomposition

123uY52A1¯ ~3.25!

reveals that there are two invariants, and in fact they are given bykvkfke
3 andkvkf

4ke . Thus, to
address this case we would need to find the family of degree 62 rational maps, (p62,q62), so that
the Wronskian takes the form

w~p62,q62!5kvkfke~c1ke
21c2kf

3!, ~3.26!

wherec1 andc2 are arbitrary complex constants. It is difficult to see how to explicitly const
this family, given we do not know the symmetry of the rational map, but it would be interesti
this could be done, to see whether a map with aY-invariant Wronskian is likely to be the minima
map. However, as far as our definition of icosahedral magic number is concerned, the vaB
562 does not qualify because the map is notY-symmetric.

The example of a nonminimal icosahedralB522 Thomson configuration, briefly mentione
above, also appears to fall into the same class.4 There are noY-symmetric degree 22 maps, bu
there is a degree 42 invariant, given bykvke , to which the Wronskian of a degree 22 map cou
be proportional.

IV. CONCLUSION

In this article we have used a comparison between Skyrmion polyhedra and the du
Thomson polyhedra to predict a sequence of magic baryon numbers at which the Skyrmi
icosahedral symmetry and unusually low energy. We have presented some evidence for o
jecture, through the minimization of the most general rational maps for all degrees up to 4
by the explicit construction, using two new methods, of some high degree rational maps
icosahedral symmetry.

Our methods could also be used to find other possible minimal energy rational map
Skyrme fields, with octahedral and tetrahedral symmetries. It is likely that these other Pl
symmetries are more prevalent than icosahedral symmetry, and may account for some of
pronounced dips in Fig. 1.

Finally, a comparison between the Skyrme crystal and the Skyrme lattice4 suggests that for
large enough baryon numbers the shell-like structure of Skyrmions may give way to a c
structure. However, even the order of magnitude ofB at which this transition might take place
not known, so whether all the icosahedral Skyrmions we have constructed will survive this
sible transition remains an open question.
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Static topologically-nontrivial configurations in sigma-models, for spatial dimen-
sionD>2, are unstable. The question addressed here is whether such sigma-model
solitons can be stabilized by steady rotation in internal space; that is, rotation in a
global SO~2! symmetry. This is the mechanism which stabilizes Q-balls~nontopo-
logical solitons!. The conclusion is that the Q-mechanism can stabilize topological
solitons inD52 spatial dimensions, but not forD53. © 2003 American Institute
of Physics. @DOI: 10.1063/1.1584527#

I. INTRODUCTION

Topological solitons~stable, localized, topologically nontrivial solutions in a field theo!
have long been of great interest, both for their mathematical properties and for their applic
in many areas of physics. In any system admitting such solitons, the nontrivial topology
sufficient to ensure that the solitons are stable. One obvious reason for this is that topology
definition, a nonmetric structure, and so it cannot determine the size of the solitons; for tha
needs to balance the forces acting on the soliton in such a way that it has a preferred size.
for example, the O(n) sigma model inD11 dimensions~with trivial boundary condition at spatia
infinity!, which is the subject of this article. This system admits topological configurations~tex-
tures! whenever the homotopy grouppD(Sn21) is nontrivial; in particular, for (D,n) equal to~2,
3!, ~3, 3! or ~3, 4!. If D53, then solitons tend to shrink—in the pure sigma model, there ar
static solutions. In theD52 case, there are static solutions, for example, the Belavin–Poly
solitons1 in the O~3! system, but these are unstable.2,3

A soliton can always be prevented~or rather discouraged! from spreading out by the addition
if necessary, of a potential~a term involving only the field, and not its gradient!. In order to
stabilize the soliton size, we also need to introduce something which prevents it from shrin
There are several possibilities for such an antishrinking mechanism: for example, a Skyrm
involving four ~or more! powers of the field gradient, or a gauge field suitably coupled to
sigma-field, or periodic time-dependence~rotation in an internal space!. This third possibility also
underlies nontopological solitons~Q-balls!. In this article, we investigate to what extent the Q-b
mechanism is effective at stabilizing topological sigma-model solitons. We shall see that stat
topological Q-solitons exist inD52 spatial dimensions, but not forD53. This result is analogous
to that for the Landau–Lifshitz equation~Heisenberg model of ferromagnetism!, as one might
have surmised since the static Landau–Lifshitz system is identical to the static sigma mod

II. Q-SOLITONS IN THE O„3… SIGMA MODEL

The O~3! sigma model involves a scalar field taking values onS2; this field can be represente
as a unit three-vectorfW 5(f1 ,f2 ,f3) with fW •fW 51. The Lagrangian is

L5 1
2 ~]mfW !•~]mfW !2V~f3!, ~1!

a!Electronic mail: richard.ward@durham.ac.uk
35550022-2488/2003/44(8)/3555/7/$20.00 © 2003 American Institute of Physics
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whereV is some potential function~which, for simplicity, we take to depend only onf3). The
space–time coordinates arexm5(t,xj ), with j 51,...,D. The system has a global SO~3! symmetry
which is broken, by the potential term, to SO~2!. This SO~2! acts only onf1 andf2 , namely, by
changing the phase offªf11 if2 . The corresponding conserved quantity is

Q5E Im~ḟf̄ !dDx. ~2!

Minimizing the energy of a configuration subject toQ being fixed implies,4 in particular, thatfW

has the form

f~ t,xj !5c~xj !eivt, f35c3~xj !, ~3!

with ucu21(c3)251. Without loss of generality, we shall assume thatv>0. Note thatQ5vI ,
whereI 5* ucu2dDx. The energy of a configuration of the form~3! is E5Ed1Ek1Ep , where

Ed5
1

2 E @ u] jcu21~] jc3!2#dDx,

Ek5 1
2 Iv25 1

2 Q2/I ,

Ep5E V~c3!dDx.

The boundary condition isc3→1 asr→`, so we needV(1)50.
A stationary Q-lump is a critical point of the energy functionalE@cW #, subject to Q having

some fixed value. Such a Q-lump is~classically! stable if this critical point is a local minimum o
E. The usual~Derrick! scaling argument shows that any stationary Q-lump must satisfy

~22D !Ed2DEp1DEk50. ~4!

Let the positive constantm be defined byV8(1)52m2; in other words,V(c3)'m2(12c3)
' 1

2m
2ucu2 for c3'1. Then, near spatial infinity, the Euler–Lagrange equations correspondi

E imply that

¹2c2~m22v2!c50.

So in order to satisfy the boundary conditionc→0 asr→`, we needv<m. The solitons are
exponentially localized ifv,m, but less-localized solitons withv5m may also exist.

The parameterm is part of the specification of the system, and the parameterQ is set by the
initial data. Each of these two parameters has dimensions; the combinationQmD21 is dimension-
less, whereas the combination (Q/m)1/D has dimension of length, and determines the size of
soliton. Configurations in this system are classified topologically by their topological chargeN ~an
integer!; if D52, thenN is the winding number, while ifD53, thenN is the Hopf number. Let
E(N,Q) denote the energy of a configuration~or rather, of datafW ,fW t) with topological chargeN
and Noether chargeQ.

Let V0 be the normalized potential functionV0ª2V/m2. Note thatV0(c3)/ucu2→1 asc3

→1. It is clear from~4! that if V0>ucu2 everywhere, withV0.ucu2 somewhere, then there can b
no solution. So the constantK defined byK5min@V0(c3)/ucu2# should satisfyK<1. It then follows
that

Ep5m2E V0>m2KI 5~Km2/v2!Ek>~Km2/v2!Ep , ~5!

where the final inequality comes from~4!. As a consequence, we have
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Km2<v2<m2. ~6!

In the D53 case, the first inequality is strict:Km2,v2<m2.
In two spatial dimensions, it is possible to haveK51, which corresponds to the choic

V(c3)5 1
2m

2(12c3
2). So herev5m. This system,5 and generalizations in which the target spa

is some other Ka¨hler manifold, arise naturally by dimensional reduction from ‘‘pure’’ sigm
models in one dimension higher.6 The energy satisfies a Bogomolny boundE(N,Q)>4pN
1mQ, which ~for N>2) can be saturated: for each value ofN>2 andQ, there is an explicit
family M of stationary multi-soliton solutions such thatE(N,Q)54pN1mQ. There is no force
between the individual solitons: in particular, the total energy has the additive pro
E(N1 ,Q1)1E(N2 ,Q2)5E(N11N2 ,Q11Q2). One may use moduli-space methods~as was done
in Refs. 7–9 for other sigma-model systems! to investigate the scattering of moving solitons;5 this
involves finite-dimensional mechanics onM. The dynamics turns out to be rather exotic~as is
also the case10–12 for nontopological Q-balls!. The solitons are only polynomially localized, an
the nonexistence of anN51 soliton is related to this; anN51 configuration tends to shrink in
size, and there is no stationaryN51 solution.

On the other hand, ifK,1, then one-solitons can exist. Different choices ofV ~having K
,1) seem to lead to similar behavior, but this has yet to be fully investigated; in what follows
take V05 1

2(12c3
4), so K5 1

2. Let us consider, first, the thin-wall limit,13 whereQmD21@1. In
this limit, the~bulk! contributionsEp andEk to the energy are very much greater than the~surface!
contribution Ed . So, the energy is approximatelyE' 1

4m
2*(12c3

4)1 1
2Q

2/*(12c3
2). Without

loss of generality, we may assume thatc351 outside of some compact set. So space is partitio
into three regions: one~with infinite volume! wherec351, the second~with volume A) where
uc3uÞ1, and the third~with volume B) wherec3521. Note thatE depends onA ~and on the
value thatc3 takes onA), but not onB, and that

dE

dc3
5~v22m2c3

2!c3 .

So for fixedA, the functionE has a minimum forc350 (c356v/m are local maxima!. Hence
we should setc350 on A, and the energy becomes

E5 1
2 Q2/A1 1

4 m2A.

Thus for a given value ofQ, the energy has the minimum valueEmin5mQ/& when A
5Q&/m. Note thatv5m/&, at the lower end of its allowed range~6!.

To make further progress, we need to include the effect of surface tension, in other
include the termEd . Let us consider, first, the planar caseD52. For simplicity, we assume
rotational symmetry about a point in the plane: the field is taken to have the formc
5sin(f )exp(iNu) and c35cos(f ), where f 5 f (r ). The boundary conditions aref (0)5p and
f (`)50, andN is the topological charge. The energy functionalE5Ed1Ek1Ep was minimized
numerically, for various values ofm, Q andN. The termEk was used in the formEk5Q2/I , so
that one can minimize while keepingQ fixed; the quantityv does not enter explicitly, but can b
derived ~via the formulav5Q/I ) once the minimum has been found. In each case that
investigated, a smooth minimum was reached. ForN51 andQm53200p ~close to the thin-wall
limit !, the profile functionf (r ) is plotted in Fig. 1. We see that there is a region aroundr 50
where f (r ) drops rapidly fromp to p/2 ~the termEd prevents this region from shrinking furthe
in size!, and then a region~corresponding toA in the argument above! where f 5p/2⇔c350.
Outside of this region, the field takes on its asymptotic valuef 50⇔c351.

Figure 2 displays results forN51, m51 and a range of values ofQ. We see thatE is very
close to being linear inQ ~recall that in the Bogomolny case, it is exactly linear!: to a very good
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approximation, we haveE54p13Q/4. As for v, we know from~6! thatv has to be in the range
1/&,v,1, and we see from the figure that this is so; furthermore,v→1/& as Q→` ~the
thin-wall limit13!, while v→1 asQ→0 ~the thick-wall limit14!.

In the Bogomolny case5 mentioned previously, the energyE(N,Q) of a stationary soliton has
the feature that, for a givenQ, the quantityENª(4pN)21E(N,NQ) is independent ofN; in fact,
EN511mQ/4p. This corresponds to the fact that in this Bogomolny-type system, there i
force between stationary solitons. For the potentialV5 1

4m
2(12c3

4), however, there are suc
forces. This can be seen by examiningEN for fixed Q54p and for various values ofN. Table I
shows the results for 1<N<7. The energy density of the one-soliton is peaked at the poir
50, whereas that for the rotationally-symmetricN-soliton is peaked on a ring. Note thatEN is a
decreasing function ofN, which suggests that thisN-soliton is stable against breakup into solito
of lower topological charge. But this remains to be checked; in particular, one should inves
the vibrational modes about these rotationally-symmetric solutions.

Finally, let us turn to the case ofD53 spatial dimensions. Configurations with nonzero Ho
numberN look like closed loops, which may be linked or knotted. Static knot-solitons are h
been studied in the Faddeev–Skyrme system, where a Skyrme term is added to the Lagr
this extra term stabilizes the solitons, which would otherwise shrink.15–18 The question here is
whether there exist stationary Hopf solitons which are stabilized by internal rotation rather th

FIG. 1. The profile functionf (r ) for the one-soliton solution on the plane, withm520 andQ5160p.

FIG. 2. The energyE and angular frequencyv of the one-soliton, as functions ofQ.
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a Skyrme term. The answer to this question appears to be negative; what happens is as
Consider anN51 configuration. Typically,c351 at spatial infinity and on a curve which exten
to infinity; let us visualize this curve as thez-axis. Second,c3521 on a closed loopL around the
z-axis. Finally,c350 on a torus around thez-axis, with the loopL in its interior. So the regionA
in the previous thin-wall analysis is a thickened torus~with theB-region in its interior! resembling
a closed string. Numerical experiments indicate that, roughly speaking, the Q-effect suppo
thickness of the string, but not its length; the string has a tension which causes its length to
So the configuration collapses, and there is no stationary Hopf soliton in this system. In pri
it remains a possibility that for some potential functionV, some value ofQ, and some nonzero
value of the Hopf numberN, there might exist a stationary solution, but this seems rather unlik

Another way of viewing the situation is as follows. The Q-mechanism provides a lower b
on the quantityI ~sincev is bounded above, andQ5Iv is fixed!; this in turn means that the
volume of the soliton is bounded below. But surface tension then acts to make the soliton s
cal. So we are led to the following conjecture: any stationary Q-ball~whether topological or not!
with v,m, in D spatial dimensions, has O(D) symmetry.~In the Bogomolny case, wherev
5m, rotational symmetry is not essential.5! For standard Q-balls, this conjecture is known to
true,13 but it is not immediately clear that the result extends to cases~such as the present one!
where the target space is nontrivial. The instability of Hopf Q-solitons is an immediate c
quence of the conjecture, since O~3! symmetry implies that the Hopf number is zero.

III. THE O„4… SIGMA MODEL IN 3¿1 DIMENSIONS

In this section, we investigate the analogous problem for the O~4! sigma model in three spac
dimensions. The details of the system are similar to those of the previous section. The field
values onS3, and is represented as a unit four-vectorfW 5(f0 ,f1 ,f2 ,f3). The Lagrangian is~1!,
as before, but with the potential being allowed to depend onf0 and f3 : V5V(f0 ,f3). In
general, this breaks the global O~4! symmetry to O~2!, the subgroup which rotatesf1 and f2 ,
leaving f0 and f3 fixed. The expressions forEd , Ek and Ep are the same as before, withD
53, except that inEd there is an extra term involving (] jc0)2.

We take the boundary condition to bec0→1 as r→` in R3. The massm is defined by
V(c0 ,c3)'m2(12c0)' 1

2m
2(ucu21c3

2) for c0'1; the functionV0 and the constantK are de-
fined as before. The virial relation from~4! with D53 holds as before, as does the inequal
Km2,v2<m2.

In Ref. 19, this system was studied, with the potentialV052(12c0). Since in that case we
haveK51, no soliton solution can exist. The authors of Ref. 19 reach this conclusion fo
topologically trivial caseN50; they report numerical evidence for a nontrivial solution withN
51, but this cannot be correct.

In order to allow the possibility of nontrivial solutions, we need a potentialV0 which hasK
,1; for what follows, we shall takeV05 1

2(12c0
4) as in the previous section. Then there a

solutions, but it appears that they all have trivial topology (N50). One way to see what happen
is to consider the thin-wall limit, wherem2Q@1. So, the energy is approximatelyE' 1

4m
2*(1

2c0
4)1 1

2Q
2/* ucu2, and the corresponding variational equations are

jc02m2c0
350, jc2v2c50, jc350, ~7!

wherejªm2c0
41v2ucu2 ~the j-term arises from enforcing the constraintfW •fW 51). These equa-

tions ~7! have a number of solutions, namely,

TABLE I. EnergyEN5E(N,NQ)/(4pN) and frequencyv/m, for m51 andQ54p.

N 1 2 3 4 5 6 7

EN 1.888 1.840 1.826 1.820 1.817 1.816 1.815
v/m 0.859 0.826 0.817 0.814 0.882 0.811 0.810
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~i! c050, c50, c3561;
~ii ! c50, c350, c0561;
~iii ! c05c350, ucu251;
~iv! c350, c056v/m, ucu2512v2/m2.

So to construct a mimimum-energy configuration, we must partition spaceR3 into regions~sepa-
rated by infinitesimally-thin walls!, on each of which one of these relations holds. It is clear t
regions on whichc3Þ0 contribute only toEp , and that we can reduce the total energy by inst
settingc350, c051 on these regions. In other words,c3 ‘‘collapses’’ to zero, and is replaced b
c0 .

This is exactly what one sees in numerical simulations. For example, we may start wi
O~3!-symmetric ‘‘hedgehog’’ ansatz

c01 ic js j5exp@ i f ~r !xjs j /r #; ~8!

here s j denotes the Pauli matrices, and the profile functionf (r ) satisfies the usual boundar
conditionsf (0)5p, f (`)50. The winding number isN51. Note thatc5c11 ic2 vanishes on
the x3-axis, and thatc0(0)521. If we now relax the configuration by flowing down the ener
gradient, thenc3 approaches zero everywhere except at the single pointr 50; in other words,
there is no continuous minimum in this topological class. By contrast, there is a smooth min
which hasc3[0: this is topologically trivial, and is essentially a standard~nontopological!
Q-ball.

IV. CONCLUDING REMARKS

We begin with a few remarks on the similarities with stationary topological soliton solut
of the Landau–Lifshitz equation

]fW

]t
52fW 3

dE

dfW
. ~9!

HerefW is a unit three-vector representing the local orientation of magnetization, and the eneE
is given by

E5E F1

2
~] jfW !•~] jfW !1U~f3!GdDx. ~10!

A typical choice for the functionU is U5A(12f3
2), whereA is a constant; this corresponds

an easy-axis anisotropy. The boundary condition isf3→1 asr→`. The total magnetization

M5E ~12f3!dDx ~11!

is a conserved quantity. It is clear from scaling that the only static solutions are the Bel
Polyakov solitons1 in spatial dimensionD52, with U[0. But by allowing time dependence, mo
solutions are possible. In particular, we may allow periodic time dependence, and look fo
tionary solutions such that

f11 if25c~xj !eint, f35c3~xj !. ~12!

With this ansatz, the Landau–Lifshitz equation~9! is equivalent to

d

dfW
S E2

1

2
nM D 50. ~13!
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We may think of the solutions as critical points ofE, subject to the constraint thatM has a given
value.20 The simplest example occurs ifU5 1

2n(12c3), for then the functional appearing in~13!
consists of only the gradient term, and the Belavin–Polyakov solitons are solutions~in D52);
these correspond, of course, to the Bogomolny-type Q-lump solitons.5 The analysis of stationary
topological Landau–Lifshitz solitons leads to rather similar results as for Q-solitons~although the
dynamics of moving solitons is quite different!. In D52, there are topological solutions~called
magnetic bubbles—see Ref. 21 for a review!; a single soliton is pinned in space, and cann
move.22 In D53, on the other hand, there are no stationary Hopf solitons;23 however, such solitons
can be stabilized by allowing them to move at constant velocity.23,24

Returning to sigma-model dynamics, we have seen that the Q-mechanism stabilizes to
cal solitons inD52 spatial dimensions, but not inD53. Stabilizing vortex rings~Hopf textures!
in D53 is particularly difficult, since there are two length-scales~the length of the loop and its
width!, each of which has to be fixed. The Q-effect can stabilize the latter, but not the former
does get stable loops in systems with a Skyrme term,15,16and also in systems with a magnetic fie
sufficiently strongly coupled to the scalar field~minimal coupling is not enough!.25 But in the
basic versions of each of these systems, there is only one length-scale; and so the lengt
loop is of the same order as~and only slightly greater than! its thickness. It remains an ope
question as to whether there is a system admitting a stable Hopf soliton in which the two le
scales are significantly different.

A sigma-model soliton inD52 can be thought of as a~straight! sigma-model string in three
spatial dimensions. So, for example, the Q-stabilized solitons discussed in this article ma
application as cosmic strings. Given an appropriate potentialV, long strings with internal rota-
tional energy will be stable, although closed loops will eventually shrink and decay. In
connection, it is worth recalling that, on a cosmological scale, both the width and the leng
sigma-model strings are stabilized by cosmological expansion; but stabilizing the length re
a greater rate of expansion than stabilizing the width.26
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On the Q-ball profile function
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We use analytic and numerical methods to obtain the solution of the Q-ball equa-
tion of motion. In particular, we show that the profile function of the three-
dimensional Q-ball can be accurately approximated by the symmetrized Woods–
Saxon distribution. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586792#

I. INTRODUCTION

The existence of Q-balls is a general feature of scalar field theories carrying a conserve~1!
charge.1,2 Q-balls can be understood as bound states of scalar particles and appear as
classical solutions~nontopological solitons! carrying a rotating time dependent internal pha
They are characterized by a conserved nontopological chargeQ ~Noether charge! which is respon-
sible for their stability~see, for example, Refs. 3 and 4!. These features differentiate the Q-ba
interaction properties from those of the topological solitons since here the chargeQ can take
arbitrary values in a specific range, allowing for the possibility of charge transfer between so
during the interaction process.

Up till now, comprehensive studies of these objects have been made by using either num
simulations3–5 or some analytic considerations.1,6,7 Recently, in Ref. 8 the explicit relation be
tween the energy and the charge of the Q-balls has been derived using analytic argume
particular, a semi-Bogomolny argument in the energy density led to a first order differe
equation whose solution, however, did not satisfy the correct boundary conditions and d
considerably from its exact form. In this work, we present a method to obtain an analytic for
the Q-ball profile function which is in good agreement with the numerical results.

We consider the U~1! Goldstone model, given by the Lagrangian

L5 1
2 ]mf ]mf̄2U~ ufu!, ~1!

wheref is a single complex scalar field in three spatial dimensions while the potential U~ufu! is a
function of ufu only and has a single minimum atf50. This is equivalent of stating that there
a sector of scalar particles~mesons! which carry U~1! charge and have mass squared equa
1
2U9(0). Thecorresponding energy functional is given by

E5E S 1

2
u] tfu21

1

2
u¹fu21U~ ufu! Dd3x. ~2!

The model has a global U~1! symmetry and an associated conserved Noether currentJm exists
whose covariant conservation]mJm50 leads to the existence of the conserved Noether chargQ
given by

a!Permanent address: Insitute of Mathematics, University of Kent, Canterbury CT2 7NF, UK. Electronic
t.ioannidou@ukc.ac.uk

b!Electronic mail: vlachos@physics.auth.gr
35620022-2488/2003/44(8)/3562/7/$20.00 © 2003 American Institute of Physics
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Q5
1

2i E ~f̄ ] tf2f ] tf̄ !d3x. ~3!

A stationary Q-ball solution has the form

f5eivt f ~r !, ~4!

where f (r ) is a real radial profile function which satisfies the ordinary differential equation

f 9~r !1
2

r
f 8~r !52v2f ~r !1U8~ f ! ~5!

with the conditionf (`)50 andf 8(0)50. This equation can either be interpreted as describing
motion of a point particle moving in a potential with friction,1 or in terms of Euclidean bounc
solutions.9 In each case the effective potential being Ueff(f )5v2f2/22U( f ) leads to constraints on
the potential U(f ) and the frequencyv in order for a Q-ball solution to exist. First, the effectiv
mass off must be negative. If we consider a potential U(f ) which is non-negative and satisfie
U(0)5U8(0)50, U9(0)5v1

2 .0, then one can deduce thatv,v1 . Furthermore, the minimum
of U( f )/ f 2 must be attained at some positive value off , say 0, f 0,`, and existence of the
solution requires thatv.v2 wherev2

2 52U( f 0)/ f 0
2. Hence, Q-balls exist for allv in the range

v2,uvu,v1 .
Then, the charge and the energy of a stationary Q-ball solution simplify to

Q54pvE r 2 f 2~r ! dr, ~6!

E54pE S 1

2
v2f 2~r !1

1

2
f * 2~r !1U~ f ! D r 2 dr. ~7!

It has been observed using numerical and analytic methods that the classical stability of a
is related with the dependence of its charge on the internal frequencyv. For small internal
frequency, close to its minimal valuev2 , the profile function is almost constant, which implie
that the charge~6! is large and this corresponds to the so-called thin-wall approximation. On
other hand, for large internal frequency~close to its maximal valuev1) the profile function~and
thus the charge! tends to zero and this corresponds to the thick-wall approximation. In fact
v→v1 , the behavior of the chargeQ depends on the particular form of the potential and
number of dimensions.7 In the case studied here we show thatQ→` asv→v1 .

The choice of the potential is not unique; the standard requirement is that the fun
U( f )/ f 2 has a local minimum at some value off different from zero. For simplicity, we conside
the following form,

U~ f !5 f 2~11~12 f 2!2!, ~8!

which implies that in terms of the earlier notation we have thatv152 andv25&, and therefore
stable Q-balls exist for&,v,2. In this case, the energy-charge dependence of the Q-b
obtained in Ref. 8 using a semi-Bogomolny argument, is given by the analytic expression

EBog5& QBog1
32/3p1/3

27/6 QBog
2/3 1

5p2/3

211/632/3QBog
1/3 2

p~413p2!

36&
1

p4/3~172216p2!

2592 21/6 31/3 QBog
21/3

1
p5/3~20254p2127p4!

1944 25/6 32/3 QBog
22/31O~QBog

21 !. ~9!
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For largeQ, the above equation corresponds to the upper energy bound. The same result
obtained by representing the Q-ball profile function by the Woods–Saxon distribution~i.e., a
generalization of the semi-Bogomolny solution! as presented in Ref. 8.

Let us emphasize that neither the semi-Bogomolny nor the Woods–Saxon ansatz d
accurately the Q-ball profile function. In particular, in both cases the derivative of the p
function at the origin is nonzero~that is, different from the required boundary conditions! while
the corresponding profile function differs from the exact one obtained by solving numerical
equation of motion. In the next section, we show that the symmetrized Woods–Saxon distri
describes accurately the Q-ball profile function and satisfies the correct boundary condition

II. EQUATION OF MOTION

The Q-ball equation of motion~5! for the specific potential~8! is given by

f 9~r !1
2

r
f 8~r !5~42v2! f ~r !28 f 3~r !16 f 5~r ! ~10!

and satisfies the boundary conditionsf 8(0)50, f (`)50. For large values of the argumentr the
nonlinear terms in ~10! can be neglected and we get the asymptotic behaviorf (r )
;exp(2A42v2 r ). The exact solution of~10! should contain only one free parameterv so that
the chargeQ, the energyE and the initial valuef (0) should in principle be expressed as functio
of this parameter. Since Eq.~10! is too complicated to be tackled by analytic methods, we s
seek a suitable ansatz for the profile function and search for relations connectingE, Q and f (0)
with v.

As mentioned earlier, a test profile of the Woods–Saxon type cannot reasonably appro
the Q-ball solution since it fails to satisfy the correct boundary conditions. Nevertheless, it im
an energy-charge relation~9! which holds remarkably well for a wide range of energies, a fact
certainly requires some further investigation. A more general test function that satisfies the c
boundary conditions and has the correct asymptotic behavior is given by the symmetrized W
Saxon distribution

f ~r !5
c

A11c1 cosh~ar !
. ~11!

The values of the arbitrary parametersc, c1, anda can then be determined by fitting the data
the numerically solved~10!. Having done that, we got a very satisfactory agreement in all ca
It is interesting to realize thatf (r ) satisfies the following differential equation,

f 9~r !1
2

r
f 8~r !5

a2

4 S 12
4

ar D f ~r !2
a2

c2 S 12
1

ar D f 3~r !1
3a2

4c4 S ~12c1
2!1

2

3

c1
2

ar D f 5~r !1O~ f 7!,

~12!

which in the limit ar@4 looks exactly like~10!. It is then quite reasonable to expect that the
must be a critical value ofr 5r c beyond which the following equations must approximately h
true:

a2

4 S 12
4

ar c
D.42v2, ~13!

a2

c2 S 12
1

ar c
D.8, ~14!
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3a2

4c4 S ~12c1
2!1

2

3

c1
2

ar c
D .6 . ~15!

The thin-wall approximation is reached whenc1→0, so we will assume thatc1,1 and we shall
neglect the last term on the left hand side of~15!. Then the system above gives the approxim
solutions

c.A2

3
A12c1

2A11A12
3

8

42v2

12c1
2 , ~16!

a.
4&

3
A12c1

2S 11A12
3

8

42v2

12c1
2 D , ~17!

ar
c
.

11A12 3
8 ~42v2!/~12c1

2!

2 1
2 1A12 3

8 ~42v2!/~12c1
2!

. ~18!

A comparison with values obtained by a direct fit shows that the relations above are quite go
fact, Eq.~16! is excellent, while Eq.~17! gives the right shape but the actual values fora are on
the average 10% higher than expected, implying a faster drop of the profile function. Not
both c anda are slowly varying functions ofv.

The equation of motion~10! can be written as

d

dr S 1

2
f * 2~r !1

1

2
v2f 2~r !2U~ f ! D52

2

r
f 82~r ! . ~19!

In the absence of the friction term, Eq.~19! would simply imply the conservation of energy for th
corresponding mechanical problem. In the presence of friction and upon integrating~19! we get
that the initial potential energy equals the work done by friction. This relation can be us
provide a further constraint on the form of~11!:

1

2
v2f 2~0!2U~ f ~0!!522E

0

` f 82~r !

r
dr . ~20!

Recall thatf (0)5c/A11c1. Finally, using the symmetrized Woods–Saxon distribution~11!, the
charge~6! and the energy~7! of the Q-ball can be explicitly evaluated in terms of the parame
c, c1, anda:

Q54pv
c2

3a3A12c1
2

cosh21S 1

c1
D S p21cosh21S 1

c1
D 2D , ~21!

E54pFa214~41v2!

8
I 02S 21

a2

4c2D I 11S 11
a2

8c4 ~12c1
2! D I 2G , ~22!

where the integralsI 0 , I 1, andI 2 are given by

I 05
Q

4pv
, ~23!
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I 15c2I 01c2c1

d

dc1
I 0 , ~24!

I 25c4I 012c4c1

d

dc1
I 01

1

2
c4c1

2 d2

dc1
2 I 0 . ~25!

It is readily seen that the actual values forQ andE depend strongly on the value ofc1 especially
for small values ofc1 . In this region,c1 can be eliminated in favor ofQ to get

E5S 1

v
1

v

2 DQ1
2413a2

16v
~qv!1/3Q2/31

2413a2

8v
~qv!2/3Q1/3

2
~81 a2! p2

8v
qv 1O~Q2 1/3!, ~26!

where

q5
4pc2

3a3 . ~27!

FIG. 1. The profile functionf (r ) as a function ofr for v51.64.

TABLE I. Values of the parametersc, c1 , a and f (0) obtained from~11!
and numerically@ f (0)num# for different values ofv.

Q v c c1 a f (0) f (0)num

23.68 1.79 1.097 0.12 2.66 1.037 1.024
35 1.72 1.087 0.068 2.60 1.052 1.055

61.6 1.64 1.068 0.0243 2.54 1.056 1.065
149.3 1.57 1.049 0.0031 2.53 1.048 1.056
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It is interesting to see that the leading terms of~26! are identical to those of~9! for a52&, c
51, v5&. Taking into account the fact thata andc are slowly varying functions ofv helps to
explain the wide range of applicability of~9!.

As a result, the parametersc, c1 , a, andv for specific values of the chargeQ can be uniquely
determined by solving the system of equations:~16!, ~20!, ~21!, and~22! provided that the energy
charge dependence of the Q-ball is given by~9!. We expect the values obtained that way to
quite accurate as long as~9! remains reasonably accurate. In practice, this means thatQ*16, a
value far distant from the values normally associated with the region of the thin-wall approx
tion. In Table I the values of the arbitrary constants in~11! are presented for different values ofQ
~or v!. That way, the initial valuef (0) can be determined explicitly; a comparison with valu
obtained numerically show that the symmetrized Woods–Saxon distribution describes acc
the Q-ball profile function.

Finally, Fig. 1 presents the profile function obtained analytically and numerically fov
51.64. Figure 2 presents the values of the profile function at the origin for differentv obtained
numerically and analytically.

III. CONCLUSIONS

In this work, the basic properties of the Q-ball profile function have been extensively st
by means of mainly analytic methods. In particular, it has been shown that the profile functio
be accurately approximated by the symmetrized Woods–Saxon distribution, while the corre
ing energy and charge can be explicitly evaluated. The approach presented here might prov
particularly useful in understanding the basic properties of Q-balls such as existence, small
tions and stability. We believe that a similar line of argument can be applied to study the p
function and the energy-charge dependence in other types of potentials. In fact, we expect
symmetrized Woods–Saxon distribution will accurately describe all types of Q-balls inde
dently of the exact form of the scalar potential. Work in this direction is currently in progres
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Recent developments in the theory of quantum integrable particle systems in one-
dimension with inverse square interactions are reviewed. First the Yangian symme-
try is introduced and the energy spectra of the related spin models are discussed.
The character of the su(n)1 WZNW theory is shown to be closely related with the
Rogers–Szego¨ polynomial. Second, the infinite dimensional representation for so-
lutions of the Yang–Baxter equation and the reflection equation is given. Based on
the representation, the Dunkl operators associated with the classical root systems
are constructed. The Macdonald polynomial and its generalization are discussed in
connection with the eigenstates for the trigonometric case. Finally, some results on
short-range interacting systems are mentioned. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1588743#

I. INTRODUCTION

We define the integrability of quantum systems as an extension of the Liouville theore
classical systems. The quantum system is integrable when it hasM independent mutually com
muting conserved operators (M being the number of degrees of freedom!. Quantum integrable
systems1 can be classified by the range of interaction. One is short-range interacting sy
including thed-function gas, the Heisenberg XYZ spin chain and the Toda lattice. The oth
long-range interacting systems: the most famous systems are due to Calogero,2 Sutherland,3 and
Moser.4 See also references in Ref. 5

We consider a system ofN identical particles on a line. The Hamiltonians of the Caloger
Sutherland–Moser~CSM! models are written as follows:

H52(
j 51

N
]2

] zj
2 12 (

1< j ,k<N
`~zjk!•~b22bPjk!, ~1.1!

H52(
j 51

N
]2

] zj
2 12 (

1< j ,k<N
~`~zjk!•~b22bPjk!1`~zj1zk!•~b22bQjQkPjk!!

1(
j 51

N

~`~zj !•~4a214aā22aQj !1`~2zj !•~4ā224āQj !!, ~1.2!

wherezjk5zj2zk and`(z) is the Weierstrass̀-function. Note that the original CSM models d
not contain internal degrees of freedom expressed by operatorsPjk andQj . The models~1.1! and
~1.2! are related to the root system. In this sense, the first one is the A-type, and the secon
BC-type. Another interesting extension is a model confined in an external harmonic potent

H52(
j 51

N
]2

] zj
2 12 (

1< j ,k<N

b22bPjk

zjk
2 1(

j 51

N

v2zj
2 . ~1.3!

a!Electronic mail: hikami@phys.s.u-tokyo.ac.jp
35690022-2488/2003/44(8)/3569/26/$20.00 © 2003 American Institute of Physics
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OperatorsPjk andQj act on the spin space of thej th andkth particles, and satisfy the relation

Pjk Pkl5Pkl Pjl 5Pjl Pjk , Pjk Qj5Qk Pjk , Qj Qk5Qk Qj ,

Pjk
25Qj

251, for j ,k,l are distinct.

In the case of su~2! spin-12, these operators may be chosen nontrivially asPjk5 1
2(11sj•sk),

Qj5s j
z , wheres5(sx,sy,sz) are Pauli spin matrices. Hereafter we use su(n) spin generatorEj

ab

(a,b51,2,. . . ,n) for the j th spin,Eab5ua&^bu, satisfying the commutation relations

@Ej
ab ,Ek

cd#5d jk~dbcEj
ad2ddaEj

cb!. ~1.4!

It is noted that the permutation operatorPjk is written as

Pjk5 (
a,b51

n

Ej
abEk

ba .

Studies of the long-ranged interaction systems have made remarkable developments s
discovery of the integrable variants for spin system.6,7 A well-known example is the Haldane
Shastry~HS! model,

HHS5 (
1< j ,k<N

Pjk

sin2~p~ j 2k!/N!
. ~1.5!

As will be discussed later, the Yangian symmetry is revealed for the HS model withfinite lattice.
This fact gives new insights on interesting subjects such as the fractional statistics, the ch
formula for the WZNW model, and the affine Hecke algebra.

This article presents some recent results related with the quantum CSM models. In Sec
Yangian symmetry is explained. We show that the Haldane–Shastry-type spin chains ha
Yangian symmetry, and that the character formula for the level-1 WZNW model is related wit
HS chain. Section III deals with the infinite-dimensional representation for solutions of the Y
Baxter equation~YBE! and the reflection equation~RE!. We propose a simple method to giv
matrix solutions of YBE and RE. In Sec. IV the elliptic Dunkl operator is constructed by use o
infinite-dimensional representation. The Hamiltonians for the elliptic CSM model are expres
terms of the Dunkl operators. The trigonometric limit is discussed in Sec. V. The trigonom
CSM models are studied from the representation of the affine Hecke algebra. In Sec.
Macdonald polynomial associated with the root systems is discussed in relation wit
q-deformed trigonometric CSM models. Section VIII is devoted to concluding remarks.

II. YANGIAN SYMMETRY AND CHARACTER FORMULA

A. Yangian symmetry

The Yangian symmetry was first defined by Drinfeld8 as a Hopf algebra associated with th
rational solution of the Yang–Baxter equation. The YBE reads~Fig. 1!

R12~j12! R13~j13! R23~j23!5R23~j23! R13~j13! R12~j12!, ~2.1!

where the conventional notation, e.g.,j i j 5j i2j j , is used. We callj j spectral parameters.
OperatorRjk acts on spaceV^ N asR on the j th andkth space, and as identity on the oth

spaces. For solutions of the YBE, we can define a monodromy matrixT(j), which satisfies the
quadratic relation

R12~j12! T
1

~j1! T
2

~j2!5T
2

~j2! T
1

~j1! R12~j12!, ~2.2!
                                                                                                                



tute

nts

3571J. Math. Phys., Vol. 44, No. 8, August 2003 Topics in quantum integrable systems

                    
where we use the standard notation,T
1

(j)5T(j) ^ 1 andT
2

(j)51^ T(j). As solutions of the YBE,
there are three types ofR-matrices: rational, trigonometric, and elliptic ones. When we substi
in the quadratic relation~2.2! a rational su(n) R-matrix R(u)5u1\P, we find that matrix
elements of the monodromy matrix satisfy commutation relations

@Tab~j1!,Tcd~j2!#5
\

j12
~Tcb~j2! Tad~j1!2Tcb~j1! Tad~j2!!. ~2.3!

We refer to\ as a ‘‘deformation parameter.’’ One defines a set of generators$Tl% as a mode
expansion of the monodromy matrixT(j),

Tab~j!5dab2\(
k50

`

Tk
ab j2k21. ~2.4!

The Yangian Y(su(n)) is the algebra constructed from operatorsTk
ab with commutation relations,

@Tl
ab ,Tm

cd#5dbc Tl 1m
ad 2dad Tl 1m

cb 1\(
k50

l 21

~Tk1m
cb Tl 2k21

ad 2Tl 2k21
cb Tk1m

ad !.

The above defining relations are simplified when one introduces new generators~Yangian cur-
rents! by

Q0
ab5T0

ab,
~2.5!

Q1
ab5T1

ab1
\

2
~T0 T0!ab,

where the notation (T0 T0)ab5(c51
n T0

ac T0
cb is used for brevity. We can show that these curre

satisfy the following commutation relations:

@Q0
ab,Q0

cd#5dbcQ0
ad2ddaQ0

cb,

@Q0
ab,Q1

cd#5dbcQ1
ad2ddaQ1

cb, ~2.6!

@Q0
ab,@Q1

cd,Q1
e f##2@Q1

ab,@Q0
cd,Q1

e f##

5
\2

4
~@Q0

ab,@~Q0Q0!cd,~Q0Q0!e f##2@~Q0Q0!ab,@Q0
cd,~Q0Q0!e f## !.

These are the defining relations for the Yangian Y(su(n)).8 It is noted that in the limit\→0 the
Yangian algebra Y(su(n)) reduces to the loop algebra for Lie algebra su(n). Due to this, we can

FIG. 1. Yang–Baxter equation~2.1!.
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regard the Yangian as the ‘‘deformed Lie algebra.’’ The third equation in~2.6! is called the
deformed Serre relation. In a precise sense for the Yangian algebra Y(su(n)), we should set the
quantum determinant qdetT(j) as unity, where the quantum determinant is defined as a cent
the Yangian,9

qdetT~j!5(
s

~2 !s T1 s(1)~j! T2 s(2)~j1\!¯Tn s(n)~j1~n21!\!, ~2.7!

@qdetT~j1!,Tab~j2!#50, for a,b51,2,. . . ,n. ~2.8!

By definition the Yangian symmetry Y(su(n)) is associated with the quantum integrab
colored systems formulated by the rational solution of the YBE, for instance, the XX
Heisenberg model.10 The Yangian symmetry in the XXX–Heisenberg spin chain is revealed
the thermodynamical limit. It is a remarkable fact that the Yangian symmetry is realized i
finite-size HS model.11 As an integrable variant of the HS model, we have the Polychronak
Frahm~PF! model,12 which also possesses the Yangian symmetry.13 The Hamiltonians for these
models are respectively written as follows:

HHS5 (
1< j ,k<N

zj zk

zjk zk j
Pjk , ~2.9!

HPF5 (
1< j ,k<N

1

zjk
2 Pjk . ~2.10!

We can explicitly construct the Yangian currents$Q0
ab,Q1

ab% which satisfy the Yangian commuta
tion relations~2.6! and commute with Hamiltonian.

~a! HS model:

Q0
ab5(

j 51

N

Ej
ab,

Q1
ab5 ( 8

j ,k51

N

~Ej Ek!
ab

zj1zk

zjk
, ~2.11!

where(8 means any two indices do not coincide. For the Yangian currents$Q0
ab,Q1

ab% to com-
mute with the HamiltonianHHS ~2.9!, it is required that the coordinates$zj% satisfy

(
l 51, lÞ j

N
zj zl ~zj1zl !

zjl
3 50, for j 51,2,. . . ,N.

This condition is satisfied when

zk5exp~2 p i k/N!, for finite N,

zk5exp~2 g k!, for N→`, gPR.

The first case corresponds to the HS model~1.5!; all spins are fixed equidistantly on a circle. Th
second one was studied by Inozemtsev;14 each spin is on the infinite one-dimensional regu
lattice. This model reduces to the XXX–Heisenberg spin chain in a certain limit.

~b! PF model:

Q0
ab5(

j 51

N

Ej
ab,
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Q1
ab52 ( 8

j ,k51

N

Ej
ab

1

zjk
2

1 ( 8
j ,k,l 51

N

~EjEkEl !
ab

1

zjk zkl

2(
j 51

N

Ej
ab zj

2 . ~2.12!

In this case the HamiltonianHPF in ~2.10! commutes with the Yangian currents$Q0
ab,Q1

ab% when
we set the coordinates as

zj5 (
l 51, lÞ j

N
2

zjl
3 , for j 51,2,. . . ,N.

This condition means that each spin is fixed on the equilibrium position of the Calogero m
~1.3!, i.e., $zj% are zeros of theNth order Hermite polynomialhN(x):

hN9 ~x!22x hN8 ~x!12N hN~x!50.

B. Motif

The spectra and their degeneracies of these spin chains can be obtained from Ha
‘‘motif.’’ 11,15,16We briefly explain it for the su~2! spin case withN sites. Let us consider a set o
pseudo-momentamjP$1,2,. . . ,N21%. In terms of pseudo-momenta the energies for HS and
models are, respectively, given by

EHS5(
j

mj~mj2N!, ~2.13!

EPF5(
j

~2mj !. ~2.14!

Remark that the eigenvalues are additive. A set$mj% can be represented by an (N11)-term
sequence of 0’s and 1’s, where a 0~resp. 1! indicates the absence~presence! of the integer
corresponding to the position in the sequence. It is required that consecutive 1’s do not occ
that both ends are 0’s. These two 0’s are sometimes replaced by parenthesis ‘~’ and ‘!’. This
sequence is called ‘‘motif.’’ This selection rule shows that motifs are decomposed into a pr
of ‘‘elementary motifs,’’ a series of (M11) consecutive 0’s. Each elementary motif is represen
by the Young diagram

and the multiplicities of each motif is calculated as a tensor product of representations of el
tary motifs. It is seen that the ground state of the spin chain with 2M sites is expressed by mot

For su(n) case, the representation is more involved.15

In the following we show that the representation of motif is derived from the Rogers–S¨
polynomial.17 This polynomial is a special case of the Macdonald polynomial, which will
shown in Sec. VI.

The spectrum of the PF model is simple; energy levels are equally spaced as in~2.14!. This
fact makes it possible to calculate the partition functionZN

(n)(q) of theN-site su(n) PF spin chain;
moddingthe su(n) Calogero model confined in the harmonic potential by the spinless mode
partition function for the PF model is calculated.18 In the case of su~2!, we get
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ZN~q!5 (
k50

N

q(N/2 2k)2FNk G
q

, ~2.15!

where we used the Gaussianq-binomial coefficient~Appendix A!,

FNk G
q

5H ~q;q!N

~q;q!k ~q;q!N2k
, for 0<k<N,

0, otherwise,

with the q-product (a;q)k5(12a) (12a q) ¯ (12a qk21), (a;q)051. The partition function
ZN(q) can be written in a compact form as

ZN~q!5qN2/4
•HN~x15x251;q21!, ~2.16!

where a functionHN(x;q) is the Rogers–Szego¨ ~RS! polynomial19 defined by

HN~x;q!5 (
k50

N FNk G
q

x1
k x2

N2k . ~2.17!

The RS polynomial is regarded as theq-deformed Hermite polynomial, and we have a generat
function,

(
N50

`
HN~x;q!

~q;q!N
tN5

1

~x1 t;q!` ~x2 t;q!`
. ~2.18!

By settingt→q t in the above formula, one obtains the three-term recurrence relation for th
polynomial,

HN~x;q!5s[1]~x! HN21~x;q!2~12qN21! s[12]~x! HN22~x;q!, ~2.19!

wheresl(x) is the Schur function for the Young diagraml. As the RS polynomial is essentiall
the partition function of the PF model and the energy of the PF model is additive for the Ya
invariant bases, we obtain the representation for motifs from the recurrence relation~2.19!:17

~ . . . 11!50, ~ . . . 10!5 ^ ~ . . . 1!,

~ . . . 01!5 ^ ~ . . . !, ~ . . . 00!5 ^ ~ . . . 0!2 ^ ~ . . . !,

with the first three motifs,

~ !5 , ~0!5 , ~1!5 .

One sees that these recurrence relations give the same representation found by Haldane.
identity means that consecutive 1’s are forbidden. This shows that the quasi-particle of the H
PF models has a fractional exclusion statisticsa là Haldane.20 Also one sees that the motif

gives a trivial representation@M2#. As this motif corresponds to the ground state of the HS and
models with 2M sites, we conclude that the ground state is nondegenerate.

Representation for su(n) motif is related with the generalized RS polynomialHN
(n)(x;q)

defined by
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HN
(n)~x;q!5 (

k11¯1kn5N
kj>0

F N
k1 , k2 , . . . ,kn

G
q

x1
k1 x2

k2
¯xn

kn . ~2.20!

Here we use theq-multinomial coefficients,

F N
k1 , k2 , . . . ,kn

G
q

5H ~q;q!N

~q;q!k1
•••~q;q!kn

, for k11¯1kn5N, kj>0,

0, otherwise.

The partition functionZN
(n)(q) of the PF spin chain is written in terms of the generalized

polynomial as

ZN
(n)~q!5q~n21!/2n N2

•HN
(n) ~x15¯5xn51;q21!. ~2.21!

The generating function of the generalized RS polynomial is given by

(
N50

` HN
(n)~x;q!

~q;q!N
tN5

1

~x1 t;q!` ~x2 t;q!`¯~xn t;q!`
. ~2.22!

In the same manner for the su~2! case, by settingt→q t in the above equality one gets a recurren
relation for any (n11)-consecutive generalized RS polynomialsHN

(n)(x;q),

HN
(n)~x;q!5 (

k51

n

~2 !k21
~q;q!N21

~q;q!N2k
s[1k]~x! HN2k

(n) ~x;q!. ~2.23!

It is straightforward to translate the above recurrence relation into a language of motifs. W
an example from su~3! case:

~ . . . 111!50, ~ . . . 110!5 ^ ~ . . . 11!,

~ . . . 011!5 ^ ~ . . . !, ~ . . . 001!5 ^ ~ . . . 0!2 ^ ~ . . . !,

~ . . . 101!5 ^ ~ . . . 1!, ~ . . . 010!5 ^ ~ . . . 01!2 ^ ~ . . . 0!,

~ . . . 100!5 ^ ~ . . . 10!2 ^ ~ . . . 1!,

~ . . . 000!5 ^ ~ . . . 00!2 ^ ~ . . . 0!1 ^ ~ . . . !.

First several motifs are given by

~ !5 , ~0!5 , ~1!5 , ~00!5 , ~10!5~01!5 , ~11!5 .

In su~3! case the three consecutive 1’s are forbidden, and the ground state for a (3M )-site spin
chain is denoted by motif~110110110 . . . 011!. In general, one sees that theN-site spin is repre-
sented by the Young diagram withN boxes, and thatn consecutive 1’s cannot occur for the su(n)
motif. It should be seen that the ground state for an (n3M )-site spin chain is nondegenerate a
given by motif
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One sees also that the motif

corresponds to the Young diagram@1r 11#, but the representation is not given from simple ten
products of each motifs.

Solution of those recurrence relations is explicitly solved as a skew Schur function fo
borderstrip which is no 232 squares.21

In Table I, we list a representation for motifsN54. The representation for the su(n) case
(n,4) is given by removing the forbidden Young tableaus.

C. Character formula

The Yangian currents$Q0
ab,Q1

ab% can be constructed from the current operators for leve
su(n) WZNW theory,22

@Jl
a ,Jm

b #5 f abcJl 1m
c 1dab l d l 1m,0 . ~2.24!

In terms of the currentsJm
a , the Yangian currents are expressed as

Q0
a5J0

a ,
~2.25!

Q1
a5

1

2
f abc(

m.0
J2m

b Jm
c 2

n

2~n12!
W0

a .

We used the zero-mode of theW-current,

Wa~z!5 1
2 dabc:Jb Jc:~z!,

where : : denotes the normal ordering. The conserved operatorsHm for the Yangian currents are
also given in terms of the currents for the su(n)1 WZNW theory. The first two are explicitly
written as

H15L0[
1

2~n11! (m :J2m
a Jm

a :, ~2.26a!

H25 (
m.0

m J2m
a Jm

a 1
n

~n11!~n12!
W0 , ~2.26b!

whereW0 is the zero-mode of the third order Casimir operatorW(z),

W~z!5 1
6 dabc:Ja :Jb Jc<~z!.

TABLE I. Representation for motifs,N54.

Motif $mj% Young diagram EPF EHS

~111! $1,2,3% @14# 26 210
~011! $2,3% @2112# 25 27
~110! $1,2% @2112# 23 27
~101! $1,3% @2112# % @22# 24 26
~010! $2% @22# % @3111# 22 24
~001! $3% @3111# 23 23
~100! $1% @3111# 21 23
~000! $% @41# 0 0
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The fact that the energy levels of the PF chain are equally spaced suggests that the Hamilto
the PF spin chain can be identified as the Virasoro generatorL0 . Through this observation we ca
show that the partition functionZN

(n)(q) for the large-N limit is realized as the affine character fo
the level-1 su(n) WZNW theory,

x,
(n)~q!5 lim

N→`
N[,(mod n)

ZN
(n)~q!. ~2.27!

For the su~2! case we obtain a well-known character formula (,50,1),

x,
(2)~q!5

1

~q;q!`
(

k52`

`

q(k1,/2)25 (
n11n25,(mod 2)

q(n11n2)2/4

~q;q!n1 ~q;q!n2
.

The second equality is proved in Ref. 23 by using spinon bases.
In the general su(n) case, we can obtain the affine character as the large-N limit of ZN

(n)(q),

x,50
(n) ~q!5

1

~q;q!`
n21 (

k152`

`

¯ (
kn2152`

`

qkt
•A"k/2511~n221! q1¯ , ~2.28!

wherekt5(k1 , . . . ,kn21) andA is the Cartan matrix for su(n). A supersymmetric extension o
the PF spin chain is also an interesting subject and has been studied in Ref. 24.

III. INFINITE-DIMENSIONAL REPRESENTATION

A. Infinite-dimensional representation

We investigate solutions of the Yang–Baxter equation~2.1!. Each solution of the YBE corre
sponds to an integrable spin chain. Here we shall consider the infinite-dimensional represe
for solutions.25

We make an ansatz that theR-operator acts on functional space in the following way:

~R12~j! f !~z1 ,z2!5A~z12! f ~z1 ,z2!2B~j,z12! f ~z2 ,z1!,

where functionsA(z) andB(j,z) are to be determined. By using this ansatz in the YBE~2.1!, we
get functional equations

B~j12,z12!•~A~z2! A~2z2!2A~z1! A~2z1!!

5B~j1 ,z1! B~j12,2z2! B~2j2 ,z1!2B~2j2 ,2z2! B~j12,z1! B~j1 ,2z2!,

~3.1a!

B~j1 ,z1! B~2j2 ,z12!5B~j12,z12! B~j1 ,z2!1B~2j2 ,2z2! B~j12,z1!. ~3.1b!

One finds that elliptic function solves the above functional equations,

A~z!5sm~z!, B~j,z!5sj~z!,

wherem is an arbitrary parameter. See Appendix B for definition and properties of the el
function sm(z)5sm(z;t). For our convention, we takeRjk(j) as

~R12~j! f !~z1 ,z2!5
1

sm~j!
~sm~z12! f ~z1 ,z2!2sj~z12! f ~z2 ,z1!!, ~3.2!

which satisfies the unitarity condition,R12(j) R21(2j)51, and the quasi-classical condition
R12(j)um5051.
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The YBE is used to formulate integrable systems with the periodic or twisted boun
condition. Recently much attention has been paid on the effects of the boundary conditi
general, the boundary condition should be carefully fixed to keep the integrability; the ‘‘choic
the boundary condition is determined by the reflection equation~RE!.26 The RE is written as~see
Fig. 2!

R12~j12! K
1

~j1! R21~j11j2! K
2

~j2!5K
2

~j2! R12~j11j2! K
1

~j1! R21~j12!, ~3.3!

whereR is a solution of the YBE~2.1!. To give the solution of the RE~3.3! associated with the
elliptic R-operator~3.2!, we make an ansatz that the boundaryK-operator acts on functional spac
as

~K~j! f !~z!5G~j,z! f ~z!2H~z! f ~2z!, ~3.4!

with functions G(j,z) and H(z) to be fixed. Then from the RE~3.3!, one obtains functiona
equations27

G~j2 ,z2! sj11j2
~z12! sj12

~z11z2!1G~j1 ,z1! sm~z11z2! sm~2z12z2!

1G~j1 ,2z2! sj11j2
~z11z2! sj12

~z11z2!

5G~j1 ,z1! sm~z12! sm~z21!1G~j1 ,z2! sj12
~z12! sj11j2

~z12!

1G~j2 ,2z2! sj12
~z12! sj11j2

~z11z2!, ~3.5a!

G~j1 ,z1! G~j2 ,z2! sj12
~z21!1G~j1 ,z2! G~j2 ,z2! sj11j2

~z12!1H~2z2! H~z2! sj11j2
~z11z2!

5G~j1 ,z1! G~j2 ,z1! sj11j2
~z21!1G~j1 ,z2! G~j2 ,z1! sj12

~z12!

1H~z1! H~2z1! sj11j2
~z11z2!, ~3.5b!

G~j1 ,z1! sj11j2
~z21!1G~j1 ,z2! sj12

~z12!1G~j2 ,2z1! sj11j2
~z11z2!

5G~j2 ,z2! sj12
~z11z2!. ~3.5c!

The solution is written as27

G~j,z!5(
r 50

3

gr s2j
r ~z!, H~z!5(

r 50

3

gr s2n
r ~z!, ~3.6!

where parametersgr and n are arbitrary. Correspondingly, we have explicit forms for t
K-operators,

FIG. 2. Reflection equation~3.3!.
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K~j!5(
r 50

3

gr ~s2j
r ~z!2s2n

r ~z!• t̂ !. ~3.7!

As a simple solution we have

~K I~j! f !~z!5
1

s2n~2j!
~s2j~z! f ~z!2s2n~z! f ~2z!!. ~3.8!

Here theK-operators are normalized to satisfy the unitarity condition,K I(j) K I(2j)51, and the
quasi-classical condition,K I(j50)51.

B. Belavin elliptic solutions

In the remainder of this section, we shall show that the Belavin elliptic solutions of the Y28

are constructed from the infinite-dimensionalR-operator,29 and that the associated bounda
K-matrix is calculated in the same way.27 The strategy is to restrict the functional space to
finite-dimensional one. We set a positive integerkPZ1 , and introduce the shift operatorTk(j),
which acts on the functional space as

~Tk~j! f !~z!5 f S z2
j

kD . ~3.9!

The shift operators satisfy the relations

Tk~j1h!5Tk~j! Tk~h!,
~3.10!

@R~j!,Tk~h! ^ Tk~h!#50.

The first one is trivial, and the second follows from the fact that theR-operator~3.2! only depends
on the differencez12.

To restrict the functional space to be finite-dimensional, we define the functional spaceVk(j)
of the theta function; a functionf (z)PVk(j) is a doubly quasi-periodic function,

f ~z11!5 f ~z!, f ~z1t!5ak~z,j! f ~z!,

whereak(z,j)[exp(22p i k z2p i k t12 p i j). It is seen that the ellipticR-operator~3.2!, the
K-operator~3.7! and the shift operator~3.9! map the functional space in the following way:

R~j12!:Vk~j1! ^ Vk~j21m!→Vk~j11m! ^ Vk~j2!,

K~j!:Vk~n2j!→Vk~n1j!,

Tk~j!:Vk~0!→Vk~j!.

Motivated by these properties, we introduce modified elliptic operatorsRk(j) andKk(j) by

Rk~j12!5Tk~2j12m! ^ Tk~2j2!•R~j!•Tk~j1! ^ Tk~j21m!, ~3.11!

Kk~j!5Tk~2n2j!•K~j!•Tk~n2j!, ~3.12!

both of which preserve the functional spaceVk(0),

Rk~j!:Vk~0! ^ Vk~0!→Vk~0! ^ Vk~0!,

Kk~j!:Vk~0!→Vk~0!.
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It is important that a set of the modified operators,Rk(j) andKk(j), satisfies both the YBE~2.1!
and the RE~3.3!. We write explicit forms of the modified operators:

~Rk~j! f !~z1 ,z2!5smS z121
m1j

k
;t D f S z11

m

k
,z22

m

k D2sjS z121
m1j

k
;t D f S z22

j

k
,z11

j

kD ,

~Kk~j! f !~z!5(
r 50

3

gr S s2j
r S z1

j1n

k
;t D f S z1

2j

k D2s2n
r S z1

j1n

k
;t D f S 2z2

2n

k D D .

The dimension of the spaceVk(0) is k, and therefore we choose as a basis theu-function for
aPZk[Z/kZ:

ua~z!5 (
nPZ

expS p i ~k n1a!2
t

k
12 p i ~k n1a! zD5qFa/k

0 G~kz;kt!. ~3.13!

Since the modifiedR- andK-operators preserve the spaceVk(0), we candefine matrix elements
of operators by expanding with theua-bases. For theR-operator, we define thek23k2-matrix
elements by

Rk~j! ua^ ub5 (
c,dPZk

Rk~j!ac,bd uc^ ud . ~3.14!

The boundaryK-matrix is also fixed ask3k-matrix,

Kk~j! ua5 (
cPZk

Kk~j!a,c uc . ~3.15!

Using the property~B5! of the functionsm(z), we calculate the matrix elements,

Rk~j!ac,bd5da1b,c1d•
q@1/2

1/2#8~0;k t! q@1/2
~b2a!/k11/2#~j2m;k t!

q@1/2
~b2c!/k11/2#~j;k t! q@1/2

~c2a!/k11/2#~2m;k t!
. ~3.16!

The same computation results in the elliptic boundaryK-matrices27

Kk~j!a,c5(
r 50

3

gr

q@1/2
1/2#8~0;k t! q@1/2

22a/k11/2#~2n22j;k t!

q@1/2
2~c1a!/k11/2#~2n;k t! q@1/2

~c2a!/k11/2#~22j;k t!
3

q@kar /2
2c/k1br /2#~n1j;k t!

q@kar /2
2a/k1br /2#~n2j;k t!

.

~3.17!

See Appendix B for definitions ofa r andb r .
To close this section, we note the trigonometric limit of the above results.30 We set basesea

for k-dimensional space,aP$2(k21)/2,2(k21)/211, . . . ,(k21)/2%. The R-matrix is calcu-
lated as

R~u! ea^ eb5H 2q21/2~u1/22u21/2! ea^ eb1u1/2~q1/22q21/2! eb^ ea , for a.b,

~u21/2q1/22u1/2q21/2! ea^ eb , for a5b,

2q1/2~u1/22u21/2! ea^ eb1u21/2~q1/22q21/2! eb^ ea , for a,b.
~3.18!

This matrix is the Drinfeld’s triangularR-matrix. A simple solution of associated bounda
K-matrices is computed as
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K I~u! ea5H 2u21/2~p1/22p21/2! ea1p1/2~u1/22u21/2! e2a , for a.0,

~u1/2p21/22u21/2p1/2! e0 , for a50,

2u1/2~p1/22p21/2! ea1p21/2~u1/22u21/2! e2a , for a,0.

~3.19!

We take a simple example from the case ofn52. These matrices are written in terms
constant matrices,

R~u!5u21/2
•R2u1/2

•P R21 P,
~3.20!

K I~u!5u1/2
•K212u21/2

•K,

where, with constantsp andq, R andK are

R5S q1/2

q1/2 q1/22q21/2

q21/2

q1/2

D , K5S 0 p21/2

p1/2 p1/22p21/2D .

One finds that the following relations are satisfied:

R12R13R235R23R13R12,

R2P R21 P5~q1/22q21/2! P,
~3.21!

K2K215p1/22p21/2,

~1^ K ! R21~K ^ 1! R125R21~K ^ 1! R12~1^ K !.

Those are the defining relations for the Hecke algebra of type-B.

IV. ELLIPTIC DUNKL OPERATOR

In this section we consider the integrability of the elliptic CSM models associated with
classical root systems. The integrability is proved, in classical theory, by using the Lax m
formalism.31 The Lax matrix formalism has been applied to the quantum theory of the rationa
trigonometric models.7,31 Instead, we shall employ a slightly different approach, namely the Du
operator. The Dunkl operator was originally defined as integrable differential-difference op
associated with the root systems32 and applied to the CSM model.13,16,33,34We shall construct the
elliptic Dunkl operators based on the infinite-dimensional representation for solutions o
Yang–Baxter equation and the reflection equation discussed in the previous section.

In addition to the YBE~2.1! and the RE~3.3!, we introduce the ‘‘conjugate’’ reflection
equation~RE2, for short!,

R12~j21! K̄
2

~j2! R21~j11j2! K̄
1

~j1!5K̄
1

~j1! R12~j11j2! K̄
2

~j2! R21~j21!. ~4.1!

Solutions for the RE2 and for the RE, that is,K̄(j) andK(j), are related by

K̄~j!5 t̂K ~j! t̂ , ~4.2!

where the operatort̂ means the reflection on a single-variable functional space,

~ t̂ j f !~ . . . ,zj , . . . !5 f ~ . . . ,2zj , . . . !. ~4.3!
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Hereafter we shall use the exchange operatorŝj ,k ,

~ ŝj ,k f !~ . . . ,zj , . . . ,zk , . . . !5 f ~ . . . ,zk , . . . ,zj , . . . !, ~4.4!

and a parametern̄ for solutions of the RE2@cf. ~3.7!#.
Based on the method of Refs. 30 and 35, we shall construct the elliptic Dunkl differ

operator as variants of the quantum Knizhnik–Zamolodchikov–Bernard equation. For brev
redefine the shift operator from~3.9! as T̂5Tb(m),

~ T̂ f !~z!5 f S z2
m

b D ,

whereb is an arbitrary constant. We recall the commutativity between theR-operator and the shif
operator,

@R~j!,T̂^ T̂#50. ~4.5!

In terms of the infinite-dimensional representations for theR- andK-operators, we can defin
two sets of the elliptic Dunkl operators by

D̂ j~j!5Rj j 21~j j j 21!¯Rj 1~j j 1!•T̂j•Rj N~j jN!¯Rj j 11~j j j 11!, ~4.6!

Ŷj~j!5Rj j 21~j j j 21!¯Rj 1~j j 1!•T̂j•K
j

~j j !•T̂j
213R1 j~j11j j !¯Rj 21 j~j j 211j j !

•Rj 11 j~j j 111j j !¯RN j~jN1j j !3K̄
j

~j j !•Rj N~j j N!¯Rj j 11~j j j 11!, ~4.7!

whereK
j

andK̄
j

act on thej th space. Using the YBE~2.1! and the RE~3.3! with ~4.5!, one finds
that each set of the quantum Knizhnik–Zamolodchikov~qKZ! type difference operators const
tutes a commuting family of operators~an integrable family, hereafter!,

@D̂ j~j!,D̂k~j!#50,
~4.8!

@Ŷj~j!,Ŷk~j!#50.

We assume a parameterm to be infinitesimal and take a quasi-classical limit in the differen
operators. For the A-type operatorD̂ j (j), we see that

D̂ j~j!512
m

b S ]

]zj
2b (

k:kÞ j

N

~sj jk
~zjk! ŝj ,k1r~j jk!2r~zjk!!D 1O~m2!,

where the elliptic functionr(z) is defined byr(z)5(d/dz)logq1(z;t). With a product of func-
tions,

DA~z!5 )
1< j ,k<N

~q1~zjk ;t!!b,

we gauge-transform the operatorD̂ j (j) as D̂ j (j)→DA(z)•D̂ j (j)•DA(z)21. As a result one ob-
tains the A-type elliptic Dunkl operators,

d̂ j5
]

]zj
2b (

k:kÞ j

N

sj jk
~zjk! ŝj ,k , for j 51,2,. . . ,N, ~4.9!
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which constitute an integrable family,

@ d̂ j ,d̂k#50. ~4.10!

Subtracting terms of orderj22 ~which is ac-number! and setting all rapidities to zero (j→0), we
obtain the Hamiltonian of the elliptic CSM model,

H A5 lim
j→0

(
j 51

N

p~ d̂ j
2!5(

j

]2

] zj
2 2(

j ,k
`~zjk!•~2b Pjk1b2!, ~4.11!

wherep means a projection to symmetric functional space,ŝj ,k Pjk51. The next-order conserve
operator is computed as

lim
j→0

(
j 51

N

p~ d̂ j
3!5(

j

]3

]zj
3 1

3

2 (
j ,k

`~zjk!•S ]

]zj
1

]

]zk
D •~b Pjk2b2!.

For the BC-type, we see that the difference operator is calculated in the quasi-classica
m→0 as

Ŷj~j!512
m

b H ]

]zj
2b (

k:kÞ j
~sj jk

~zjk! ŝj ,k1r~j jk!2r~zjk!!2b (
k:kÞ j

~sj j 1jk
~zj1zk! t̂ j t̂ kŝj ,k

1r~j j1jk!2r~zj1zk!!22a~s2j j
~zj ! t̂ j1r~2j j !2r~zj !!22ā~sj j

~2zj ! t̂ j1r~j j !

2r~2zj !!J 1O~m2!.

Here we have substituted explicit forms ofK(j) and K̄(j). By transforming this operatorŶj
BC

→DBC(z)•Ŷj
BC
•DBC(z)21 by a product of functions,

DBC~z!5 )
1< j ,k<N

~q1~zjk ;t! q1~zj1zk ;t!!b
•)

j 51

N

~q1~zj ;t!!2a~q1~2zj ;t!!ā,

we get the BC-type elliptic Dunkl operator,

ŷ j5
]

]zj
2b (

k:kÞ j

N

$sj jk
~zjk! ŝj ,k1sj j 1jk

~zj1zk! t̂ j t̂ kŝj ,k%1~22a s2j j
~zj !22ā sj j

~2zj !!• t̂ j .

~4.12!

It is easily seen that this differential-difference operator is also integrable,

@ ŷ j ,ŷk#50. ~4.13!

The first nontrivial conserved operator, the Hamiltonian of the BC-type, is given by

H BC5 lim
j→0

(
j 51

N

p~ ŷ j
2!5(

j

]2

] zj
2 2(

j ,k

8

$`~zjk!•~2b Pjk1b2!1`~zj1zk!•~2b QjQkPjk

1b2!%2(
j

$`~zj !•~22a Qj14a214aā!1`~2zj !•~24ā Qj14ā2!%, ~4.14!

where we denote the projection operatorp as a restriction to the symmetric space;ŝj ,k Pjk51,
t̂ j Qj51.
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V. AFFINE HECKE ALGEBRA

A. Affine Hecke algebra

Mathematical studies for elliptic cases as a well-defined algebra are not completed. O
other hand, the trigonometric case can be formulated in terms of the affine Hecke algebra. W
the trigonometric limit for solutions of the YBE and RE,sm(z)→p cot(pz)2p cot(pm). In this
limit the R- andK-operators are given by

R~u!5
21

q2q21u
~u ĝ2ĝ21!• ŝ, ~5.1!

K~u!52u2 r̂ 1u ~a2a212b1b21!1 r̂ 21, ~5.2!

where a, b, and q are arbitrary constants. We have introduced the exponential variable
coordinate and rapidity, and defined the so-called Demazure–Lusztig~DL! operators as

ĝ j ,k5
q21 zj2q zk

zj2zk
ŝj ,k1~q2q21!

zk

zj2zk
, ~5.3!

r̂ j5
2a1a212~b2b21! zj

12zj
2 1

a1~b2b21! zj2a21 zj
2

12zj
2 • t̂ j . ~5.4!

Remark that for the exponential variables, the reflection operator acts as

~ t̂ f !~z!5 f ~z21!.

These difference operators satisfy the following relations;

ĝ j , j 11 ĝ j 11,j 12 ĝ j , j 115ĝ j 11,j 12 ĝ j , j 11 ĝ j 11,j 12 ,

r̂ j ĝ j , j 11 r̂ j ĝ j , j 115ĝ j , j 11 r̂ j ĝ j , j 11 r̂ j ,
~5.5!

~ ĝ j ,k1q! ~ ĝ j ,k2q21!50,

~ r̂ j1a! ~ r̂ j2a21!50.

As for the conjugate operatorK̄(j), we define the operatorrC j which has the same form with th
operator r̂ j replacing parametersa and b with c and d, respectively. As we use exponenti
variables, the action of the shift operatorT̂j is given by

~ T̂j f !~ . . . ,zj , . . . !5 f ~ . . . ,p zj , . . . !, ~5.6!

wherep is an arbitrary parameter.
The difference operators are defined by36,37

D̂ j5ĝ j , j 21 ĝ j 21,j 22 . . . ĝ2,1•T̂1•ĝ1,N
21 ĝN,N21

21 . . . ĝ j 12,j 11
21 ŝ1,N ŝ1,N21 . . . ŝ1,2, ~5.7!

Ŷj5ĝ j , j 21 ĝ j 21,j 22 . . . ĝ2,1•T̂1 rC 1 T̂1
21

•ĝ2,1ĝ3,2 . . . ĝN,N213 r̂ N
21

•ĝN,N21
21 ĝN21,N22

21 . . . ĝ j 11,j
21 .

~5.8!

Notice that no spectral parametersj j are included. These two operators are given from the qK
type difference operators~4.6! and ~4.7! by taking limits of the spectral parameters as

0!j1!j2!•••!jN .
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By construction, trivial is the integrability for theseq-difference operators,

@D̂ j ,D̂k#50, ~5.9!

@Ŷj ,Ŷk#50. ~5.10!

We note that theq-difference operatorsD̂ j and Ŷj satisfy the relations

ĝ j 11,j D̂ j ĝ j 11,j5D̂ j 11 , ~5.11!

ĝ j 11,j Ŷj ĝ j 11,j5Ŷj 11 ,

Ŷ1
21

•~ T̂1 rC 1 T̂1
21!5~ T̂1 rC 1 T̂1

21!21
•Ŷ12~c2c21!. ~5.12!

Algebra generated from a set of operators$ĝ j , j 11 ,D̂ j u j 51, . . . ,N% is called the affine Hecke
algebra of type-A while algebra from$ĝ j , j 11 ,Ŷj ,T̂1 r̂ 1T̂1

21 , r̂ N% is of type-B. We can construct th
integrable Hamiltonian systems by

Î n5(
j 51

N

D̂ j
n , Ĵn5(

j 51

N

Ŷj
n . ~5.13!

B. A-type

Let us see that the A-type difference operatorsÎ n are difference analogue of the trigonometr
CSM model. We shall take the quasi-classical limit,

p→11«1O~«2!. ~5.14!

When we introduce a parameterb by q5p2b/2, we find that theq-difference operator has a form

D̂ j→11« d̂ j1O~«2!,

where the differential-difference operatord̂ j is defined by

d̂ j5zj

]

]zj
2b(

k, j

zk

zj2zk
~ ŝjk21!2b(

k. j

zj

zj2zk
~ ŝjk21!1bS j 2

N11

2 D . ~5.15!

The ~trigonometric! Dunkl operator satisfies the relations

@ d̂ j ,d̂k#50, ŝj , j 11 d̂ j2d̂ j 11 ŝj , j 1152b, ~5.16!

which are the quasi-classical limits of~5.9! and~5.11!. The Hamiltonians without spin degrees
freedom (Pjk51) are calculated from the operatorsd̂ j as

H A5DA~z!•(
j 51

N

p~ d̂ j
2!•DA~z!215(

j 51

N S zj

]

]zj
D 2

2b~b21! (
j ,k51

N
zj zk

~zj2zk!
2 , ~5.17!

whereDA(z) is the ground state wave-function,

DA~z!5)
j 51

N

zj
2b(N21)

• )
1< j ,k<N

~zj2zk!
2b.
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Eigenvalues are computed in the following way.37,36 We define the ordering for a monomia
basis,zm5z1

m1 z2
m2

¯ zN
mN . For this basis we define a partition,umu5(m1>m2>•••>mN). Or-

dering is defined as

umu>um8u⇔H m1>m18 ,

m11m2>m181m28 ,
•••

m11•••1mN>m181••• 1mN8 .

~5.18!

We recall that the DL operators have forms

ĝj ,k5q21 ŝj ,k2~q2q21!
zk

zjk
~ ŝj ,k21!, ĝ j ,k

215q ŝj ,k2~q2q21!
zj

zjk
~ ŝj ,k21!.

Thus for the partitionumu, the eigenvalueD j for operatorD̂ j is given by

D j5pmj q2N12 j 21, ~5.19!

where$mj% is a partition in nonincreasing order,m1>m2>•••>mN . The eigenstates are in fac
related with the Macdonald polynomials, which will be discussed later. The eigenvalueE for the
A-type CSM model~5.17! is

E5(
j 51

N

kj
2 , ~5.20!

where the quasi-momentakj are given by

kj5mj1b S N11

2
2 j D . ~5.21!

This means that the momentakj for the quasi-particles satisfy a condition,

kj2kj 11>b. ~5.22!

The momenta for bosons and fermions correspond to casesb50 andb51, respectively. One
realizes from the Hamiltonian~5.17! that interactions vanish in both cases. In this sense the C
model with genericb realizes a free particle with ‘‘fractional exclusion statistics.’’A quasi-parti
excludesb energy levels, i.e., has a statistical interactionb,20

dG52b dN, ~5.23!

whereG andN are the number of energy levels and the number of particles, respectively. Re
that the character for the~chiral! A-type CSM model is calculated as38

Zb~q!5 (
n50

`
qb(n22n)/21n

~q;q!n
xn. ~5.24!

This character coincides with the grand partition function for the spinless CSM model confin
the harmonic potential~1.3!. It is interesting to see that the cases ofb50 and 1 correspond to th
free bosons and fermions, respectively,

Zb50~q!5 )
n51

`
1

12x qn , Zb51~q!5 )
n51

`

~11x qn!.
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The character formula~5.24! suggests that the scattering matrixS(j) is related with the statistica
interaction by a formula

b512
1

2p E dj•S 2 i
d

dj
logS~j! D . ~5.25!

This supports the result of the asymptotic Bethe ansatz,39 by which theS-matrix for the CSM
model is computed as

S~j!5exp~2 ip~b21!sgn~j!!. ~5.26!

C. BC-type

In the following we demonstrate the same calculation for the BC-type. We setq5p2b, and
take a limitp→11«. The quasi-classical limit~5.14! results in

Ŷj→112« ŷ j1O~«2!,

where the BC-type differential-difference operatorŷ j is given by

ŷ j5zj

]

]zj
2b(

k, j

zk

zj2zk
~ ŝj ,k21!2b(

k. j

zj

zj2zk
~ ŝj ,k21!2b (

k:kÞ j

1

zjzk21
~ t̂ j t̂ kŝj ,k21!

1b~ j 21!2S ā
2

zj
221

1a
2

zj21D t̂ j1S ā
zj

211

zj
221

1a
zj11

zj21D . ~5.27!

The BC-type Dunkl operatorŷ j satisfies the following relations, which may be checked from
properties forŶj ;

@ ŷ j ,ŷk#50, ŝj , j 11 ŷ j2 ŷ j 11 ŝj , j 1152b, t̂1 ŷ11 ŷ1 t̂152 ~a1ā !. ~5.28!

The Hamiltonian for the trigonometric CSM model is obtained from the Dunkl operatorŷ j . A
lengthy calculation leads us to

H BC5DBC~z!•(
j 51

N

p~ ŷ j
2!•DBC~z!21

5(
j 51

N S zj

]

]zj
D 2

2b~b21! ( 8
j ,k51

N S zj zk

~zj2zk!
2 1

zj zk

~zj zk21!2D
2(

j 51

N S 2a~2ā12a21!
zj

~zj21!2 14ā~ ā21!
zj

2

~zj
221!2D , ~5.29!

where we suppose that there is no internal degree of freedom (Pjk5Qj51) and define the BC-
type ground state wave-function by

DBC~z!5)
j 51

N

zj
2b(N21)2ā2a ~zj21!2a ~zj

221!ā
• )

1< j ,k<N
~zj2zk!

b~zj zk21!b.

The eigenvalues are calculated in the same method as for the case of the A-type. We re
DL operators,

r̂ 215a1
a1~b2b21! z2a21z2

12z2 ~ t̂21!,
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T̂ rC T̂215c211
c1~d2d21! p z2c21p2 z2

12p2 z2 ~ T̂2 t̂21!.

One can show that the eigenvalueYj for Ŷj is given by

Yj5q2 j 22N p2mj c21 a. ~5.30!

Here $mj% is in a nonincreasing order,m1>m2>•••>mN>0. The energy for the BC-type CSM
model ~5.29! is expressed as

E5(
j 51

N

~kj
BC!2, ~5.31!

where we choose the quasi-momentakj
BC as

kj
BC5mj1b ~N2 j !1a1ā. ~5.32!

One sees that the quasi-particle has a statistical interactionb,

kj
BC2kj 11

BC >b. ~5.33!

The ‘‘boundary interactions,’’a and ā, only shift the quasi-momenta by a constant, and do
change the statistical interaction. To summarize, the statistical interaction in~5.23! is determined
from the bulk property, and is not affected by the boundary effects.

VI. MACDONALD POLYNOMIAL

The difference operatorsD̂ j andŶj introduced in the previous section are closely related w
the Macdonald polynomial.40 The Macdonald polynomial is defined as the orthogonal polynom
associated with the root system. For the case of the BC-type, it can be generalized
Koornwinder–Macdonald~KM ! polynomial, which contains five arbitrary parameters.41

The AN-type Macdonald polynomial is defined as an eigen-polynomial of the differe
operators,

M̂n5 (
I ,$1,2, . . . ,N%

uI u5n

)
j PI
k¹I

q21 zj2q zk

zj2zk
)
j PI

T̂ j , ~6.1!

where the operatorT̂j is defined in~5.6!. In fact these operators are given from the quantum Du
operatorsD̂ j . For example, we have

M̂15p~ Î 1!5(
j 51

N S )
k51
kÞ j

N
q21 zj2q zk

zj2zk D T̂j , ~6.2!

where Î 15( j 51
N D̂ j .

On the other hand, the BC-type KM polynomial is introduced as a generalization o
Askey-Wilson polynomial.42 The KM polynomial is defined as an eigen-polynomial of the ope
tor,

M̂1
BC5(

j 51

N

C j~z! ~ T̂j21!1(
j 51

N

C j~z21! ~ T̂j
2121!, ~6.3!

where functionsC j (z) are defined as
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C j~z!5
~12a1 zj ! ~12a2 zj ! ~12a3 zj ! ~12a4 zj !

~12zj
2! ~12p zj

2!
•)

k51
kÞ j

N
~ t zj2zk! ~12t zj zk!

~zj2zk! ~12zj zk!
.

It should be remarked that we have five arbitrary parameters$aj ,t% besidesp. It is straightforward
to check that the KM operatorM̂1

BC is also given by using the representation of the affine He
algebraŶj ,43

Ŵ1[p~ Ĵ11 Ĵ21!5F01(
j 51

N

F j~z!•~ T̂j
221!1(

j 51

N

F j~z21!•~ T̂j
2221!. ~6.4!

In the above equation, functionsF0 andF j (z) are computed as

F j~z!5c a21
~11c21 d p zj ! ~12c21 d21 p zj ! ~11a b21 zj ! ~12a b zj !

~12zj
2! ~12p2 zj

2!

3)
k51
kÞ j

N
q21 zj2q zk

zj2zk
•

q21 zj zk2q

zj zk21
,

F05~c21 a q12N1c a21 qN21!
qN212q2N11

q221
.

One thus sees that the KM operator is constructed based on the affine Hecke algebra of typ44

Some of eigenfunctions of the Macdonald operatorM̂1 are simply calculated from the gen
erating functionF (N)(z;t),

F (N)~z;t !5)
j 51

N
~q22 zj t;p!`

~zj t;p!`
. ~6.5!

We can show that the functionF (N)(z;t) satisfies a difference equation,

~M̂1 F (N)!~z;t !5S (
j 51

N21

q2 j 2N11D F (N)~z;t !1q2N11 F (N)~z;p t!.

Thus when one defines the ‘‘generalized Rogers–Askey–Ismail~RAI! polynomial’’ Cn
(N)(z) as

F (N)~z;t !5 (
n50

`
~q22;p!n

~p;p!n
•Cn

(N)~z! tn,

one sees that the polynomial is indeed an eigenfunction ofM̂1 ,

~M̂1 Cn
(N)!~z!5S (

j 51

N21

q2 j 2N111q2N11 pnD Cn
(N)~z!. ~6.6!

The generalized RAI polynomialCn
(N)(z) coincides with the A-type Macdonald polynomialPl(z)

for Young diagraml5@n#.40 The RS polynomial, which appeared in Sec. II as a genera
function for the Yangian invariant spin chain, is a special case of the RAI polynomial,

Hn
(N)~p!5 lim

q22→0

Cn
(N)~z!. ~6.7!
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VII. ELLIPTIC RUIJSENAARS MODEL

The Ruijsenaars model45 is an elliptic generalization of the Macdonald difference opera
~6.1!,

D̂n5 (
uI u5n

)
j PI
k¹I

q1~zjk2m!

q1~zjk! )
j PI

T̂ j~b!, ~7.1!

where we have used the shift operator, (T̂j (b) f )( . . . ,zj , . . . )5 f ( . . . ,zj1b, . . . ).
These integrable operators can be constructed as follows.46 We rescale theR-operator~3.2!

and redefine it by

Rjk~j!5sm~zjk!2sj~zjk! ŝjk . ~7.2!

We first consider the two-body case. Simple calculation gives

R21~j! T̂2~b!5
q1~z212m! q18~0!

q1~z21! q1~2m!
T̂2~b!1

q1~z121j! q18~0!

q1~z12! q1~j!
T̂1~b! ŝ12,

which coincides with the Ruijsenaars operatorD̂1 up to a constant if we setj52m and the
operator acts on the symmetric space~we replace permutation operatorsŝ with unity when they
are moved to the rightmost!. As a generalization of this observation, we have the integra
difference operator defined by

D̂~j!5RN,N21~jNN21!¯RN,1~jN1! T̂N~b!, ~7.3!

which reduces to the first order Ruijsenaars operator~up to constant! by suitably setting the
spectral parameters,46

D̂15 lim
j jk→(k2 j )m

D̂~j!. ~7.4!

This construction can be applied to a generalized elliptic Ruijsenaars model47 as well. Using
a solution of the reflection equation~3.7! and ~4.2!, the integrable difference operator can
written as

Ŷ~j!5S )
k51

←
N21

RN,k~jNk!D K
N

~jN! S )
l 51

N21

Rl ,N~j l1jN!D T̂N~2b! K̄
N

~jN! T̂N~b!. ~7.5!

When we setjk52n2(k21)m in this integrable operator, we obtain an elliptic generalization
the Macdonald–Koornwinder operator,46

D̂1
BC5(

j 51

N S )
k51
kÞ j

N

sm~zjk!sm~zj1zk!D S (
r 50

3

gr s2n
r ~zj !D

3S (
r 50

3

ḡr s2n̄
r ~zj1b! T̂j

2~b!2(
r 50

3

ḡr s22(N21)m22n
r ~zj1b!D

1(
j 51

N S )
k51
kÞ j

N

sm~zk j!sm~2zj2zk!D S (
r 50

3

gr s2n
r ~2zj !D
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3S (
r 50

3

ḡr s2n̄
r ~2zj1b! T̂j

22~b!2(
r 50

3

ḡr s22(N21)m22n
r ~2zj1b!D . ~7.6!

Higher conserved operators for these generalized elliptic Ruijsenaars models are ob
explicitly.46 Such an approach is further extended to the quantum integrability of ell
Ruijsenaars models associated with all affine Lie algebras.48 It was also discussed that for a certa
setting of parameters integrable difference operatorsD̂1 in ~7.4! andD̂1

BC in ~7.6! preserve a finite
dimensional space as in Sec. III B and that we can compute the eigenvalues/eigenfunction

VIII. CONCLUDING REMARKS

We have reviewed some salient properties of quantum integrable models with long-
interactions.

In what follows, short-range interaction models are briefly discussed. We remark tha
Yangian symmetry is revealed in the Hubbard model49 and the two-componentd-function inter-
acting fermi gas.50 In the case of thed-function interacting fermi gas, one can construct the Du
operator as well. We find that the YBE~2.1! is solved by theR-operator,51

R~j!512U~sgn~z!2coth~j!!ŝj ,k , ~8.1!

where the function sgn(z) denotes a signature ofz,

sgn~z!5 lim
g→`

coth~gz!5H 11, for z.0,

21, for z,0.

Almost all the properties studied in Sec. V are preserved for thisR-operator; with a shift operator
(T̂f )(z)5 f (z11), one can construct the integrable difference operator,

Î 52(
j 51

N

~ T̂j1T̂j
21!1U (

1< j ,k<N
~sgn~zjk11!2sgn~zjk!!~ T̂j1T̂k

21! ŝj ,k . ~8.2!

This difference operator corresponds, in the su~2! case, to the strongly correlated electron system52

H Bariev52(
j

$~cj ,↑
† cj 11,↑1cj 11,↑

† cj ,↑! ~12Unj ,↓!1~cj ,↓
† cj 11,↓1cj 11,↓

† cj ,↓! ~12Unj 11,↑!%,

~8.3!

wherecj ,s andcj ,s
† are fermion annihilation and creation operators, respectively. It is interes

to see a distinction from the Hubbard model,

H Hubbard52(
j

(
s5↑,↓

~cj ,s
† cj 11,s1cj 11,s

† cj ,s!1U(
j

S nj ,↑2
1

2D S nj ,↓2
1

2D . ~8.4!

As a continuum limit of~8.3!, we obtain the Dunkl operator and the Hamiltonian as follow

d̂j
NLS52 i

]

]zj
1

ib

2 (
k, j

~sgn~zjk!21! ŝj ,k1
ib

2 (
k. j

~sgn~zjk!11! ŝj ,k , ~8.5!

H NLS5(
j 51

N

p~~ d̂ j
NLS!2!52(

j 51

N
]2

] zj
2 12b (

1< j ,k<N
d~zjk! Pj ,k . ~8.6!

We call this system the multi-component nonlinear Schro¨dinger~NLS! model. This is a generali-
zation of thed-function gas.
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APPENDIX A: GAUSSIAN q-BINOMIAL

The q-binomial satisfies the following relations:

F n
mG

q

5F n
n2mG

q

, Fn1m
m G

q21
5q2mnFm1n

m G
q

,

lim
q→1

F n
mG

q

5S n
mD , lim

n→`
F n
mG

q

5
1

~q;q!m
, ~A1!

F n
mG

q

5F n21
m21G

q

1qmFn21
m G

q

5qn2mF n21
m21G

q

1Fn21
m G

q

.

We note that the Euler series-product identity is satisfied for infiniteq-product series,

(
N50

`
tN

~q;q!N
5

1

~ t;q!`
. ~A2!

APPENDIX B: ELLIPTIC FUNCTION

The elliptic functionsm
r (z)5sm

r (z;t) is a doubly quasi-periodic function,

sm
r ~z11!5sm

r ~z!, sm
r ~z1t!5e2p imsm

r ~z!, for It.0. ~B1!

Here we have defined the functionsm
r (z) for r 50,1,2,3 by

sm
r ~z!5

q r 11~z2m;t! q18~0;t!

q r 11~z;t! q1~2m;t!
, ~B2!

where

q1~z!52 i(
nPZ

expS ipS n1
1

2D 2

t12p iS n1
1

2D z1 ipnD ,

q2~z!5 (
nPZ

expS ipS n1
1

2D 2

t12p iS n1
1

2D zD ,

q3~z!5 (
nPZ

exp~ ipn2t12p inz!,

q0~z!5 (
nPZ

exp~ ipn2t12p inz1 ipn!,

and q4(z)5q0(z). We meansm(z)5sm
0 (z). Functionssm

r (z) have simple poles atz5Z1t Z
1v r wherev r[(a r1b r t)/2 are given by (v0 ,v1 ,v2 ,v3)5(0,1/2,(11t)/2,t/2). We summa-
rize some useful formulas for the functionsm(z):

sm~z!52sz~m!, sm~z!52s2m~2z!,

sm~z! s2m~z!5`~z!2`~m!,
~B3!

sl~z! sm~w!5sl1m~w! sl~z2w!1sm~w2z! sl1m~z!,

sl~z! sm~z!5sl1m~z!•~z~z!2z~l!2z~m!2z~z2l2m!!.
                                                                                                                



y is

ction

3593J. Math. Phys., Vol. 44, No. 8, August 2003 Topics in quantum integrable systems

                    
We also use

qFabG~z;t!5 (
nPZ

exp~p i~n1a!2t12p i~n1a!~z1b!!. ~B4!

It is proved by checking the periodicity and the residues that the following equalit
satisfied:29

sm~z;t!5
1

k (
a50

k21

sm1a/kS z;
t

kD , ~B5!

wherek is an arbitrary positive integer,kPZ1 .

1M. A. Olshanetsky and A. M. Perelomov, Phys. Rep.94, 313 ~1983!.
2F. Calogero, J. Math. Phys.10, 2191~1969!; 12, 419 ~1971!.
3B. Sutherland, J. Math. Phys.12, 246 ~1971!; Phys. Rev. A4, 2019~1971!.
4J. Moser, Adv. Math.16, 197 ~1975!.
5 ‘‘Calogero-Moser-Sutherland models,’’ in Proceedings of the workshop held at the University de Montre´al, Montréal,
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Factorization method and the supersymmetric monopole
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We use the generalN51 supersymmetric formulation of one dimensional sigma
models on nontrivial manifolds and its subsequent quantization to formulate the
classical and quantum dynamics of theN52 supersymmetric charged particle
moving on a sphere in the field of a monopole. The factorization method is accom-
modated with the general covariance and it is used to integrate the corresponding
system. ©2003 American Institute of Physics.@DOI: 10.1063/1.1586476#

I. INTRODUCTION

The factorization method was first used by Schro¨dinger1 to diagonalize the harmonic oscilla
tor. It may work when the Hamiltonian of the system can be cast as a product of two oper

H5AB. ~1.1!

A c-number can also be added to the above operator. Most systems treated by this method
dimensional systems,2,3 but it has also been considered in other situations.4

Recently, Ferapontov and Veselov5 used factorization to look for integrable Schro¨dinger op-
erators with magnetic fields on two dimensional surfaces. In the following we will use
approach to the monopole harmonics of Wu and Yang6 to construct the super-symmetric monopo
harmonics. We will show that factorization can be readily used for integrating theN52 super-
symmetric nonrelativistic quantum mechanics7 of a particle with spin moving on a sphere in th
field of a monopole placed at its center. This can be inferred from the fact that the supersym
charge of the classicals-model quantizes as the Dirac operator8,9 on the manifold. Because th
sphere is a two dimensional manifold, in a convenient basis the Dirac operators do not m
components of the spinors and therefore the Hamiltonian of the system will be

H5
1

2
~QQ̄1Q̄Q!5S AB 0

0 BAD ,

and, because of this, the factorization method will be the natural method to integrateH.
As the factorization method is very simple we will recall some of its features here, in ord

make the following computations easier to follow. Therefore, along with~1.1!, one considers the
reverse order product:

H̃5BA.

Then H̃ andH have the same nonzero eigenvalues. Indeed, ifl is an eigenvalue (lÞ0) of H̃,

a!Deceased December 21, 2001. INFM, C.P. MG-7, R-76900 Ma˘gurele, Ilfov, Romaˆnia, and Centrul de Studii Avansate d
Fizică al Academiei Romaˆne, Bucures¸ti, România.

b!Electronic mail: mezincescu@phyvax.ir.miami.edu
35950022-2488/2003/44(8)/3595/12/$20.00 © 2003 American Institute of Physics
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H̃uC̃l&5luC̃l&,

then

uCl&5AuC̃l&

obeys

HuCl&5luCl&.

For the harmonic oscillator,

H5a†a1 1
2

with

@a,a†#51,

introduce

H̃5aa†1 1
25a†a1 3

2.

The operatorsH and H̃ are positive operators, and it follows that the vectoru0&,

au0&50,

is an eigenvector ofH, with l5 1
2, and ofH̃, with l5 3

2, and therefore

a†u0&

is an eigenvector ofH, corresponding tol5 3
2. The procedure can be continued:

H5 5H (2)5H̃115H12.

At the nth step

H (n)5H1n,

with u0& being an eigenvector ofH (n) corresponding to

l5n1 1
2.

ThenH has the same eigenvalue and the corresponding eigenvector is

uCl&5~a†!nu0&.

We emphasize that the factorization method involves three steps: First, write the Hamil
in a factorized way; second, use a trick to castH̃ in a form similar to that ofH ~i.e., move the
destruction operators to the right in the previous example!. The third step is to find the necessa
recurrence procedure that yields all the eigenvalues and eigenvectors. This is also the pat
are going to follow.

In Sec. II we reformulate the method of Ref. 5 for the scalar wave function in the ein
formalism. We show that the recurrence relations are obtained as a consequence of the requ
that the reverse order productBA has the same covariance properties acting on scalar w
vectors as the original productAB. On the sphere this happens because the spin conne
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associated with the U~1! gauge group in the tangent space can be chosen to be proportional
gauge connection corresponding to the monopole at its center,10 the proportionality factor being
exactly the number entering into the Dirac quantization condition.

In Sec. III we formulate the maximal classical supersymmetric action associated wit
motion of a charge on a sphere, in the field of a monopole located at its center. The same
can be obtained by considering the supersymmetric one dimensional SU~2!/U~1! nonlinear model
and coupling it with the electromagnetic field through a gauge potential equal with the conne
generated by the nonlinear transformation law.11 The equivalence of these two formulations ste
from the aforementioned property: the spin connection and the gauge connection are propo
Alternatively, the same result follows by restricting theN51 supersymmetric action correspon
ing to a charge in the field of a monopole through Lagrange super-multipliers.12,13 However, we
prefer to obtain our model from the existing general superspaces-model actions,14,15by fixing the
field content, and choosing the appropriate background. In this way we can follow the natura
of solving models of this sort. We will need only two real anticommuting classical degree
freedom for the formulation of the classical supersymmetric action. After quantization thes
anticommuting degrees of freedom become the gamma matrices. This suggests that t
bosonic degrees of freedom combine with the anticommuting ones in two type-B superfields. Then
we fix the appropriate background in the most general renormalizableN51 type-B superspace
s-model action.14,15The quantization of the general superspaces-models produces the compone
approach to supersymmetric quantum mechanics, the general formulation of which was pur
Ref. 16. To quantize our model we use the procedure of Refs. 17 and 18 in which the rep
etrization covariance can be obtained with the help of the appropriately defined Noether
charge.

Section IV is devoted to the diagonalization of this quantum system, while in Sec. V we
some concluding remarks.

II. FACTORIZATION METHOD

The Hamiltonian for the motion of a chargee, on a sphere, in the field of a monopole
strengthg, localized at the center of the sphere, is

HN52 1
4 gab¹a

(N)¹b
(N), ~2.1!

wheregab is the inverse metric on a sphere

ds25gabdxadxb5R2 sin2 udf21R2du2, ~2.2!

and the covariant derivatives are

¹b
(N)5]b2 iAb

(N), ~2.3!

and

¹a
(N)¹b

(N)5]a¹b
(N)2 iAa

(N)¹b
(N)2Gab

c ¹c
(N), ~2.4!

where]a are the derivatives with respect to the coordinates in a patch on the sphere. The
connectionAa

N is

Af5
eg

R sinu
~612cosu!, ~2.5!

where u,p for the upper sign andu.0 for the lower sign.Gab
c is the standard Christoffe

connection for a sphere, andN5eg.
The desired factorization of~2.1! will be obtained by introducing the stereographic projectio
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cosu512
2

11 ~x21y2!/4R2 , ~2.6!

tanf5
y

x
. ~2.7!

Defining the complex coordinate

z5x1 iy , ~2.8!

the only nonvanishing components ofgab aregzz̄5gz̄z with

gzz̄52h2252S 11
zz̄

4R2D 2

. ~2.9!

Now, in the new coordinates, the Hamiltonian is

HN52
1

2
gzz̄¹ z̄

(N)¹z
(N)1

N

4R2 , ~2.10!

where

¹z
(N)5]z2 iAz

(N), ~2.11!

¹ z̄
(N)5] z̄2 iAz̄

(N), ~2.12!

and

Az
(N)5 1

2 ~A1
(N)2 iA2

(N)!52 iN]z ln h, Az̄
(N)5Az

(N)* . ~2.13!

The Christoffel connection does not appear in~2.10! anymore, because its only nonvanishin
components areGzz

z andG z̄z̄
z̄ . In ~2.10! we have used the relation

gzz̄@¹z
(N) ,¹ z̄

(N)#52
N

R2 , ~2.14!

in order to exhibit the ‘‘destruction operators’’¹z
(N) to the right and the ‘‘creation operators’’¹z̄

(N)

to the left. The lowest eigenvalues ofHN are defined by the zero modes of the operators¹z
(N) .

Moreover, as it will be shown, the excited levels ofHN are related to the lowest levels ofHK , with
K.N. These zero modes are related by the index theorem to topological properties of the
fold, see Ref. 5. Thus we may regard the present method of integratingHN as a topological one

In our case the wave vector is a scalar under the reparametrizations of the manifold. In a
general setting we might consider different assignments of spinorial~tensorial! properties to the
wave vector. This is the case when one deals with the motion of a charged spin1

2 particle on a
sphere, when the wave function is a spinor. Then, for a manifestly covariant approach, the
priate language is the vielbein formalism of general relativity. This is not actually necessary f
case of the scalar wave functions. However, as we will show, even in this case, it allows o
avoid the use of the correct, but rather artificial, similarity transformations5 in establishing the
recurrence relations necessary to apply the factorization method.

Let us now introduce the einbeins for our complex manifold:

gzz̄5ez
1ez̄

2h12, ~2.15!

whereh12 is the metric in the tangent space in an appropriate basis:
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h125h215 1
2, h125h2152. ~2.16!

We have

ez
15ez̄

25h, ez
25ez̄

150. ~2.17!

Using the constant covariance of the einbein

¹aeb
a5]aeb

a1va
a

beb
b2Gab

c ec
a50, ~2.18!

~2.10! becomes

HN52D2
(N)D1

(N)1
N

4R2 , ~2.19!

where

D2
(N)5e2

z̄ ~¹ z̄
(N)1v z̄1

1!, ~2.20!

and

D1
(N)5e1

z ¹z
(N). ~2.21!

Above, one has

e1
z 5e2

z̄ 5h21, ~2.22!

and the nonvanishing components of the spin connection are

vz
1

152vz1
15]z ln h, ~2.23!

v z̄
1

152v z̄1
152] z̄ ln h. ~2.24!

Consider now the tilde of~2.19!:

H̃N52@D1
(N)#nc@D2

(N)#nc1
N

4R2 . ~2.25!

While ~2.19! is manifestly generally covariant~assuming that the wave vector is a world scala!,
~2.25! is not manifestly so. By reversing the order of covariant derivatives, the spin conne
terms in the covariant derivatives do not match the tensor properties of the terms ahead o
This is why, in considering the reverse order product above, we appended thenc index to the
covariant derivatives, even if their definition~2.20! and ~2.21! did not change.

In order to obtain a recurrence relation one would expect~as explained in the Introduction! the
operatorH̃N to be a scalar and act on a scalar wave function. However, thenH̃N is not manifestly
covariant. The manifest covariance ofH̃N is restored by noting that the gauge connection and
spin connection can be chosen to be proportional:10

Aa
(N)5Nva , ~2.26!

whereN5eg appears in the Dirac quantization condition. Therefore we have the following i
tity:

@D1
(N)#nc@D2

(N)#nc5e1
z ¹z

(N)e2
z̄ ~¹ z̄

(N)1vz1
1!5e1

z ~¹z
(N11)1vz2

2!e2
z̄ ¹ z̄

(N11)5D1
(N11)D2

(N11).
~2.27!
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Here the expressions forD1
(N11) , D2

(N11) can be read in the above formula and the expressio

the right, above, is fully covariant. Substituting this inH̃N and moving the destruction operators
the right with the help of~2.14! we have

H̃N5HN
(1)5HN111

2N11

4R2 . ~2.28!

Therefore the next eigenvalue ofHN is (3N12)/4R2. The corresponding eigenvector can

obtained from that ofH̃N , given by the condition

¹z
(N11)C̃150. ~2.29!

One has

C15D2
(N)C̃1, ~2.30!

with D2
(N) defined by~2.20!. Even if we deal with two covariant problems, that ofHN and that of

H̃N , the connection between the two sets of eigenvectors is not generally covariant.
The procedure described above can be continued, and at thel th step we get

HN
( l )5HN1 l1

~2N21!1 l ~ l 11!

4R2 , ~2.31!

with the eigenvalue

l l5
1

4R2 @~2l 11!N1 l ~ l 11!#, ~2.32!

and the corresponding eigenvector ofHN

C l5D2
(N)

¯D2
(N1 l 21)C̃ l , ~2.33!

whereD2
(P) was defined in~2.20!. C̃ l is the solution of

¹z
(N1 l )C̃ l50. ~2.34!

The multiplicity of the stateC l is obtained from the condition of finite norm of the states:

E dzdz̄

2
h2uC̃ l u2,`. ~2.35!

Indeed, the solution of~2.34! is

C̃ l5hN1 l f ~ z̄!, ~2.36!

where f ( z̄) is an arbitrary polynomial of degree<2(N1 l ), making the degeneracy of the corr
sponding state 2(N1 l )11. From the asymptotic behavior of~2.33! in the radial variable, one see
that there are potential problems with normalizability of such states. However, as we check
examples, due to cancellations of unwanted terms the vectorC l is normalizable. We point out tha
this result is valid for integer 2N>0. Otherwise (N,0) the creation and annihilation operato
must be interchanged.
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Hence imposing the manifest general covariance ofH̃N led us to rederive the recurrenc
relations5 necessary in order to completely integrate the HamiltonianHN . In the next section,
using the canonical quantization we will obtain the Hamiltonian for the supersymmetric pa
which will be subsequently diagonalized by the factorization method.

III. NÄ2 SUPERSYMMETRIC QUANTUM MECHANICS ON A SPHERE

We will approach the supersymmetrization of a given bosonic action in the following
Given the target manifold~whose local coordinates are the bosonic fields which appear in
formulation of the one dimensionals-model of the system!, we look at the dimensionality of the
Clifford algebra supported by the tangent space; for the sphere this is two. Therefore,
present case, theG-matrices will be Hermitian matrices and therefore can be obtained from
quantization of the two real anticommuting degrees of freedom. Thus the minimal content
fields realizing the representation of the supersymmetry algebra will be two real bosoni~the
coordinate on the target manifold! and two real anticommuting degrees of freedom. We can
these degrees of freedom in two type-B superfields. Because the tangent space is two dimens
and the supersymmetry charges must be constructed with the help of theG-matrices, one expect
the maximal supersymmetry allowable for the system to beN52. Thus with the help of two type-
B superfields we must formulate anN52 supersymmetric action. This is automatic since o
target space manifold admits a complex structure. The above argument is somehow c
because one formulates the problem on the basis of the outcome of the quantization proc

Therefore, with the help of the metricgab(X
a), the gauge connectionAa

(N)(Xa) and the type-
B superfieldXa(x,u), we construct the followingN51, one dimensionals-model:14,15

S52 i E dtduH gzz̄

2
~DXzẊz̄1DXz̄Ẋz!1AzDXz1Az̄DXz̄J . ~3.1!

Here

D5
]

]u
1 iu

d

dt
, D25 i

d

dt
~3.2!

is the covariant supersymmetric derivative. The superfields,Xz and Xz̄, are connected through
Xz̄5(Xz)† and have the components

z5Xzuu50, lz5~DXz!uu50, ~3.3!

with

lz†52l z̄ ~3.4!

and

E du$¯%5D$¯%uu50. ~3.5!

The action~3.1! is invariant under the supersymmetry transformations

deX
z̄5eQXz̄, ~3.6!

deX
z5eQXz, ~3.7!

where the supersymmetry shift operatorQ is
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Q5
]

]u
2 iu

d

dt
, ~3.8!

with

Q252 i
d

dt
, $Q,D%50. ~3.9!

As mentioned before, because of the fact that the target space manifold is complex w
automatically have a second supersymmetry

dhXz̄52 ihDXz̄, ~3.10!

dhXz5 ihDXz. ~3.11!

The two supersymmetry transformations above can be combined in one complex supersym
which in component fieldsz,z̄,lz,l z̄ takes the form

dz5dmlz, dlz5 idm̄ ż, ~3.12!

and

d z̄5dm̄l z̄, dl z̄5 idmzG , ~3.13!

where

dm†5dm̄. ~3.14!

The action~3.1! can also be written in terms of component fields, and the Lagrangian is

L5gzz̄żzG1 i
gzz̄

2
~lzDl z̄1l z̄Dlz!2 iF zz̄

(N)lzl z̄1Az
(N)ż1Az̄

(N)zG , ~3.15!

where

Fzz̄5]zAz̄2] z̄Az, ~3.16!

and

Dlz5l̇z1 żGzz
z lz, Dl z̄5l̇ z̄1zGG z̄z̄

z̄ l z̄, ~3.17!

whereGzz
z and G z̄z̄

z̄ are the only nonvanishing components of the Christoffel connection for
sphere. Equation~3.15! is invariant under~3.12! and~3.13! and by the Noether procedure one c
deduce the corresponding supercharges:

Q̄52lzgzz̄zG , ~3.18!

Q5l z̄gz̄zż. ~3.19!

From ~3.15! one infers that one can go to the tangent space indices by making the redefin

lz5 ie1
z l1, ~3.20!

l z̄5 ie2
z̄ l2. ~3.21!
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Then the fermions in~3.15! acquire a standard form:

L5gzz̄żzG2
i

4
~l1l̇21l2l̇1!1¯ , ~3.22!

and one concludes thatl6 quantizes as the corresponding (1/&) G6 matrices:

G15~G2!†5S 0 2

0 0D . ~3.23!

The canonical conjugate momentum is given by

Pz5gzz̄zG1
i

2
~vz!ablalb1Az

(N). ~3.24!

With the notation

Pz5gzz̄zG5Pz2
i

2
~vz!ablalb2Az

(N), ~3.25!

the corresponding Noether charge can be written

Q5lzPz5 ie1
z l1S Pz2

i

2
~vz!ablalb2Az

(N)D . ~3.26!

Let us now quantize the superchargeQ.17,18As mentioned beforel6 quantizes as the corre
sponding (1/&) G6, further Pz goes into (1/i )(]/]z); therefore in order to maintain the gener
covariance under quantization we can take the minimalQ:

Q5
G1

&
e1

z ¹z
(N), ~3.27!

where¹z
(N) is the covariant derivative on the spinor wave function:

¹z
(N)5]z2 iAz

(N)2 1
4 vz

abGab, ~3.28!

and the matricesGab are

Gab5 1
2 @Ga ,Gb#, ~3.29!

where

$Ga ,Gb%52hab. ~3.30!

Once we have the quantum expression forQ we can define

Q̄5Q†, ~3.31!

with respect to the scalar product corresponding to~2.35!, where of course now the scalar wav
vector is replaced by the two component wave function. The adjoint ofQ is

Q†52
G2

&
e2

z̄ ¹ z̄
(N), ~3.32!

with
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¹ z̄
(N)5] z̄2 iAz̄

(N)2 1
4 v z̄

abGab. ~3.33!

The Q andQ̄ so defined obey automatically

Q25Q̄250, ~3.34!

because they contain the matricesG6 in their definition. Defining the quantum Hamiltonian by

H5 1
2 ~QQ̄1Q̄Q!, ~3.35!

H commutes automatically with the superchargesQ and Q̄. Thus the quantum ordering inH is
completely fixed by supersymmetry and reparametrization covariance. The expression foH is
also covariant under the reparametrizations of the manifold and the system hasN52 supersym-
metry.

Finally, it might be worth mentioning that by this procedureH is defined from the supersym
metry algebra~3.35! without any recourse to the standard ways of defining it.

IV. SUPERSYMMETRIC MONOPOLE HARMONICS

Diagonalization of the Hamiltonian~3.35! follows now in a rather simple way. Using th
constant covariance of theG-matrices with respect to vector and spinor indices,~3.35! can be cast
in the following form:

H52 1
4 e1

z e2
z̄ @G1G2¹z

(N)¹ z̄
(N)1G2G1¹ z̄

(N)¹z
(N)#, ~4.1!

the productsG1G2 andG2G1 being scalars under local rotations in the tangent plane. Moreo
they are projectors:

G1G25S 4 0

0 0D , G2G15S 0 0

0 4D . ~4.2!

Therefore,H is a sum of factorized terms. We recognize that the operators multiplying the p
uctsG1G2 andG2G1 are connected with the Laplacian appearing in~2.1! with a modified spin
connection, due to the nonzero spin of the wave function. In fact, we have

H5FH (N1 1/2)1
~N1 1

2!

4R2 G G1G2

4
1FH (N2 1/2)2

~N2 1
2!

4R2 G G2G1

4
. ~4.3!

This is due to the fact that the spinor components transform with an effective charge6 1
2 under

local rotations. As remarked before, one can absorb this ‘‘Lorentz charge’’ in the gauge conn
leading to a modification of the effective charge of the corresponding components. Using~2.28!,
it is easy to show that

H̃ (N2 1/2)2
~N2 1

2!

4R2 5H (N1 1/2)1
~N1 1

2!

4R2 . ~4.4!

However, by the same procedureH̃ (N1 1/2) gets connected withH (N1 3/2) . The connection between
H̃ (N1 1/2) andH (N2 1/2) is the result of a different factorization ofHN in Sec. II. From~2.1! one has

HN52D1
(N)D2

(N)2
N

4R2 , ~4.5!

where
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D1
(N)5e1

z ~¹z
(N)1vz2

2!, ~4.6!

and

D2
(N)5e2

z̄ ¹ z̄
(N). ~4.7!

Therefore, with respect to this factorization we have

H̃N52@D2
(N)#nc@D1

(N)#nc2
N

4R2 52D2
(N21)D1

(N21)2
N

4R2 5HN212
2N21

4R2 , ~4.8!

and using the identities just derived one has

H̃ (N1 1/2)1
~N1 1

2!

4R2 5H (N2 1/2)2
~N2 1

2!

4R2 . ~4.9!

We prefer to start with the eigenfunctions ofH (N1 1/2) , because this operator appears in a ma
festly positive definite combination in the Hamiltonian.

Therefore, given the eigenvectorC of H (N1 1/2)1(N1 1
2), with nonzero eigenvalue, we obtai

the corresponding eigenvector ofH (N2 1/2)2(N2 1
2) by taking

D2
(N2 1/2)C, ~4.10!

with D2
(N2 1/2) defined by~2.20!. From ~4.3! the eigenvalues ofH are

El5
1

4R2 ~ l 11!~ l 12N11!, ~4.11!

with the eigenvector being given by

C l5S D2
(N1 1/2)

¯D2
(N1 l 2 1/2)C̃ l

D2
(N2 1/2)D2

(N1 1/2)
¯D2

(N1 l 2 1/2)C̃ l
D . ~4.12!

Therefore we have found the eigenvalues and eigenvectors of theN52 supersymmetric spinning
particle moving on a sphere in the field of a monopole. They are analogous to the eigenfun
determined in Ref. 19.

V. CONCLUSIONS

Restating the main result, we have supersymmetrized and solved the motion of a charg
sphere in the field of a monopole at its center.

The factorization method appears to be the natural way to solve this problem. This is be
in order to formulate a supersymmetric problem one is basically compelled to use the co
structure of the target space manifold. The quantization scheme for the problem is man
taking into account the reparametrizations of the manifold; therefore it is covariant with resp
these reparametrizations. One should remember that one is dealing basically with the alg
angular momentum and it is quite interesting that following the manifest symmetries o
problem one is led to an alternative integration method. In this context, even if algebraic
method appears somewhat strange, albeit natural.

One should also stress that the degeneracies of the levels are all finite and it is well know
we deal with a regularization of the Landau electrons. Taking the limitR2,N→` ~with N/R2

fixed! one obtains the infinitely degenerate states of a planar electron in a constant magnet
In a rather different context, the eigenfunctions obtained in this article may also be stud

methods similar to those used for the harmonic superspace.20
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NOTE ADDED

These computations have been posted on the web as a preprint hep-th/0109002. We h
did not submit the article as we intended to perform some further checks, which were a
outside the main direction of the paper, to illustrate the usefulness of the factorization met
problems in which general covariance plays an important role. Three months after postin
article on the web a lot of our results have been reobtained by Ref. 21.

While in the process of finalizing our paper, on 21 December 2001, my beloved brothe
coauthor on this article suddenly and unexpectedly passed away. For some time afterward
unable to touch this article, and this explains the delay by which this article is submitted.

There remains a topic which is not discussed above and it was not covered in Ref. 21
it is the action of the rotation group which is a symmetry of the model,11 and which completely
fixes the spin of the excitations in the model. I defer this study to a later publication.~I am
indebted to L. Susskind for a discussion of this point.!

It should also be mentioned that the usefulness of the holomorphic approach to closely
problems was recently emphasized in Refs. 22–24.
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Fractional charge definitions and conditions
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~Received 10 December 2002; accepted 9 April 2003!

The phenomenon of fractional charge has come to prominence in recent decades
through theoretical and experimental discoveries of isolable objects which carry
fractions of familiar charge units—electric chargeQ, spinS, baryon numberB and
lepton numberL. It is shown here on the basis of a few simple assumptions that all
these effects may be described using a generalized version ofcharge renormaliza-
tion for locally conserved charges, in which many-body correlations can produce
familiar adiabatic, continuous renormalization, and in some circumstances nonadia-
batic, discrete renormalization. The fractional charges may be carried either by
fundamental particlesor by fundamental solitons. This excludes nontopological
solitons and also skyrmions: The only known fundamental solitons in three or
fewer space dimensionsd are the kink (d51), the vortex (d52), and the mag-
netic monopole (d53). Further, for a charge which is not intrinsically coupled to
the topological charge of a soliton, only the kink and the monopole may carry
fractional values. The same reasoning enforces fractional local values ofB2L for
electrically charged elementary particles. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1586793#

I. INTRODUCTION

The ascendancy of elementary particles in thinking about microscopic physics began
atoms and molecules, followed by electrons, photons, and nuclei, then nucleons and ne
quarks, gluons, and W and Z bosons. The pattern of a hierarchy of length scales, with the p
of one scale being compounds of those found at a shorter scale, has replayed itself sever
over. Even today there is no observational evidence that this pattern terminates at some s

Nevertheless, reasons to question the pattern have emerged. String theory and its d
ments raise the prospect that at sufficiently short scales the elementary objects are not p
but rather extended entities. While such studies give exciting directions for discovery at thos
scales, they actually support rather than undermine the notion of elementary particles: Th
tional structure ‘‘inside’’ the particles does not change the fact that they still look structurele
sufficiently long scales.

A different reason to worry about the universal validity of the particle description at curre
accessible scales has come from theoretical and experimental discoveries of fractional char
the beginning of microscopic physics all kinds of different charges had been observed, w
rational relation among them, progress in understanding would have been impeded se
indeed. We know that did not happen, but in principle the recent discoveries might herald
era where precisely such chaos in the pattern of charges could emerge. The purpose of th
is to present some simple definitions and theorems, based on minimal assumptions, from w
follows that fractional charge fits into the familiar framework of charge renormalization,

a!Electronic mail: goldhab@insti.physics.sunysb.edu
36070022-2488/2003/44(8)/3607/12/$20.00 © 2003 American Institute of Physics
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consequently is so tightly constrained that any threat of ‘‘charge chaos’’ is precluded.
In the standard model of strong and electroweak interactions there are three isolable,

tized charges observable in vacuum at zero temperature that may be locally conserved,

chargeQ, measured in units of the electron chargee, spinSW , whose projection onto a fixed axi
has integer or half-integer values in units of\, and the difference between baryon and lep
chargeB2L, which usually is assumed to have the value 1 for a proton or neutron, and21 for
an electron or neutrino. Despite the existence of an exponentially small effect associate
electroweak instantons, which ’t Hooft1 recognized would produce baryon decay through
Adler–Bell–Jackiw chiral anomaly,2 and possible additional interactions associated with very h
energy scales, B1L also may be treated as conserved in many contexts. If electroweak effect
the difference of light quark masses may be ignored, so that attention is focused exclusively

strong interactions, then also isospinIW may be treated as conserved. Even if electromagn
interactions are included, stillI 3 , as well as flavor charges of higher generations of quark
strangeness, charm, bottom, and top—are conserved.

Thus, many isolable, quantized charges observable in the laboratory are exactly or a
quite accurately conserved. It should be noted that besides these charges there are the co
~i.e., nonquantized!, locally conserved charges corresponding to energy and momentum, w
precisely because they have a continuum of allowed values need not concern us further h

At this point it may be worthwhile to discuss a bit more what is meant by the con
‘‘charge.’’ Of course, the prototype example is electric charge, whose conservation follows
the Maxwell equations. Already in classical physics it was understood that the existence
conserved charge could be deduced from a symmetry of the dynamics. In quantum physics
expressed in terms of a unitary~or in the case of time reversal symmetry, antiunitary! operator
which commutes with the Hamiltonian. If that symmetry be continuous, then the generators
symmetry must be self-adjoint operators. In certain cases, such as the generators of the
group in three space dimensions, which are identified as the angular momentum or spi
system under study, the commutation relations among the generators lead directly to the
zation of the allowed values of the charge. However, for electric charge such a deduction h
yet been possible, while forB2L there is not even a framework to discuss the symmetry bey
the statement that phenomenologically established couplings conserve the charge, i.e., all t
the Lagrangian are invariant under the unitary transformation generated by the operatorB2L.
Thus, in terms of current knowledge, symmetries imply conservation and sometimes even
tization of observable charges, but there is at this point no assurance that all cases of app
conserved and quantized charges are consequent to symmetries which can be identified in
other than by recognizing that the charges seem to be conserved.

In relativistic physics, a conserved charge whose local density is defined must be l
conserved. That is, if the charge in some volume changes, the immediately surrounding v
must experience an equal and opposite change in charge, or expressed differently, the
change of the charge in a volume is equal and opposite to the net current flowing out
volume. The reason is easily found by assuming the contradiction to this assertion: If i
inertial frame a conserved charge disappeared in one place and reappeared instantly at a
place, then in different frames of reference boosted by velocity shifts from the original fram
total charge at certain times either would vanish or would be double the original value, evid
violating charge conservation.

How may charges be measured or observed? Again, the prototype is electric charge,
may be measured through the electromagnetic interaction, either by determining the influe
a particle of a specified electromagnetic field~thus measuring the Lorentz-force charge!, or by
using test particles with known charges to measure the electric flux coming out of the pa
~thus measuring the Gauss-law charge!. In the quantum context, these two may be called
Aharonov–Bohm~AB! charge and the local charge, respectively.3 For other types of charge~i.e.,
not coupled to gauge fields!, one must use more indirect methods, such as counting different
states of an object, To help understand the conceptual structure, one may introduce hypo
Abelian gauge fields weakly coupled to any conserved, localizable charge one wishes to m
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Are there any circumstances in which fractional values of charges may be found, and
what are the precise conditions for this to occur? Let us turn to that issue.

II. DEFINITIONS AND THEOREMS

Definition 1 (Elementary particle):In a given medium, and for a given range of length sca
an isolable particle is calledelementaryif its set of conserved charges cannot be constructed f
any finite assembly of particles which individually carry fractions and/or subsets of that charg

Remarks:In ordinary vacuum at zero temperature, the known elementary particles acco
to this definition are the proton and neutron, thep1 andp0 mesons, the electron, the neutrino, t
photon, and the W1 andZ bosons, plus their antiparticles~the photon,p0 and Z certainly, and the
neutrino possibly, are their own antiparticles!. Among this set, all are isolable, but several a
unstable against decay to two or more others. These nevertheless are properly considered
tary under the definition, because the summed absolute values of certain charges of the
products are greater in magnitude than the corresponding charge of the particle, for exam
electrically neutral neutron decays to proton, electron, and antineutrino, of which the first two
carry unit electric charge.

It is significant that protons, and hadrons in general, exhibit strong short-range interactio
that they really are isolable only at long distance scales. Nevertheless, in nuclear matte
possible to make an accurate description of the dynamics including quasiparticles with the
charges as neutrons and protons, suitably redefined so that these ‘‘nucleon quasiparticles’’
weakly. It is a useful perspective to consider these quasiparticles as nucleons whose e
interactions are renormalized by the strong, short-range correlations of the nuclear medium
quasinucleon may be viewed as having a nucleon kernel surrounded by a cloud of m
polarization. A very similar approach has been most successful in describing electron qua
cles in many different condensed-matter systems. Thus, while the definition of an elem
particle may be medium-dependent, there often is a simple correspondence between a
elementary particles in one medium and a set in a different medium.

Definition 2 (Fundamental particle):A particle is calledfundamentalif it obeys all the criteria
for an elementary particle except possibly that of being isolable, and in addition it has no di
ible internal structure. This means that at the shortest distance scales such particles corres
fields appearing in the Lagrangian.

Remarks:This new criterion removes the nucleons and pions from the list above, and
duces instead the quarks and gluons. While these particles are not isolable in vacuum, the f
quantum chromodynamics~QCD! exhibits asymptotic freedom,4 meaning weak coupling at sho
distance scales, implies that at those scales they may be detected and~for quarks! their electric
charges measured. As the term ‘‘fundamental’’ suggests, the charges of all the known elem
particles in vacuum can be constructed from those of the fundamental particles. In other
there may be additional fundamental particles in the sense described, and there may
fundamental solitons, discussed in the theorems below. Again, all elementary particles in
media have charges which may be constructed from those of the fundamental particles an
tons. In this sense, the fundamental objects may be considered the building blocks for eve
else.

Definition 3 (Fractional charge):An object which carries only a portion of the charges
finite combinations of elementary particles may be said to carryfractional charge. In principle,
such a particle might have, for example, the same spin as the electron, but an electric charg
is an irrational fraction ofe. There is no known instance like this for particles in vacuum, bu
any insulating medium exactly such a phenomenon is found, and in the accepted interpretat
fractional value is treated as arenormalizationof the electron charge from its value in vacuum. B
this definition, the electric charges of quarks are examples of fractional charge, but the frac
values arise because these fundamental particles carry a smaller unit of charge than any~isolable!
elementary particle.

Remarks:This definition invites two thought experiments which illuminate it, and also will
useful later. First, imagine a massive particle such as a proton slowly entering an insu
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medium. As it enters, its local charge is reduced and, by the time it has penetrated far insi
extra charge is found on the surface of the insulator. Thus, total charge is locally cons
throughout the process, but it ends up fractionated between the charge localized on the part
the charge on the surface. The second experiment, even in vacuum, invokes a slow increa
zero in the value ofa, the electromagnetic coupling. As this occurs, the electric field measu
at some distance from a charged particle increases in strength, but not quite proportionalla,
because vacuum polarization increasingly screens the field. Again, charge is locally cons
because as the coupling increases there is an outward flow of current, with the current d
proportional to the electric field at each point.

As mentioned already, the charge which is fractionated is the local charge, while th
charge remains invariant. This is illustrated by another thought experiment. Imagine a cap
stuffed with dielectric and set at voltageV. Then an electron of charge2e passing through the
capacitor will acquire from the electric field a net energy2eV, regardless of the magnitude of th
dielectric response. Of course the presence of the dielectric implies an increase in the am
surface charge on the capacitor plates to achieve the sameV as for the plates in vacuum, but onc
this V is established the effect on the electron is not further modified by the dielectric.

Definition 4 (Breakup):On passing from one medium to another, a particle may unde
charge breakup, meaning that on the other side there are several particles instead of one, eac
only a portion of the set of charges carried by the one particle in the original medium.
evidently is an intrinsically nonadiabatic process, as the number of mobile degrees of fre
changes discontinuously. Note that charge breakup may occur when, for example, a fast e
enters a conventional insulator, knocking loose a number of electrons each of which penetra
into the medium. As a result, very little charge may be left on the surface. Nevertheless, th
a big distinction between such a case and one where the surface simply cannot take up ch
all, as occurs when an electron enters from above a two-dimensional layer exhibiting the fra
quantum Hall effect.

Now we are ready for the first theorem.
Theorem 1„Conservation of particles with fractional charge…: An isolable particle that has

fractional charge with respect to previously identified elementary particles in its medium
itself be an elementary or a fundamental particle of that medium.~As indicated above, a particle
may carry fractional charge with respect to particles indifferent media, as a consequence
medium-dependent charge renormalization.!

Proof: This statement follows directly from the definition of elementary particles, becaus
charges of this object cannot be produced by any finite assembly of particles carrying i
values of the same charge.

Theorem 2 „Fundamental solitons…: The possible soliton carriers of charges which a
fractional with respect to those of other elementary particles in a given medium for spatial d
siond<3 arefundamental solitons, of which the known examples are the kink (d51), the vortex
(d52), and the magnetic monopole (d53).

Proof: A soliton is an object which in first approximation could be described as a clas
field configuration that is classically stable. However, classical stability clearly is not en
because, if addition of energy to the system could enable the disintegration of the soliton, t
conserved charges would have no unconventional carrier, and hence obviously could
fractional. Furthermore, a soliton in a class all with the same low-energy properties could no
fractional charge if some other members of the class were capable of disintegration, beca
solitons in the class would have the same influence on the medium polarization which dete
possible fractional charge.

The kink ind51 may be described by a classical scalar field which has equal potential e
density minima for two or more distinct values of the field. Thus the field can go asymptoti
to one value asx→1` and another value asx→2`. No finite-action process could destroy th
structure, which nevertheless possesses a finite, localized energy in the region between
asymptotic zones. Consequently the kink has a conservedtopological charge, and so there would
be no contradiction if it carried fractional values of other charges.
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In d52, a vortex may be described by a complex scalar field which rotates in phase bynp
at large distances from its center as the radial direction rotates by 2p, while the field magnitude
approaches a fixed value with increasing radius, again to minimize a potential energy den
the Abelian Higgs model for such a vortex, gradient energy is kept finite through coupling o
scalar field to a gauge field, which makes the covariant azimuthal gradient negligible at
distances and implies a magnetic flux stored near the center. There is an alternate descri
the asymptotic fields, in which the scalar field goes to a fixed constant and the gauge field~pure
gauge! corresponds to an Aharonov–Bohm phase factore2p iq/Q relating the phase of a charge
particle wave function at, e.g., azimuthal anglesf50 andf52p, whereQ is the charge of the
scalar field andq is the charge of a particle which experiences a nontrivial Aharonov–Bohm e
upon diffraction around the flux. Again, no finite-action process could destroy this structure

In d53, a configuration again containing a gauge field and perhaps also a scalar field
ates a long-range magnetic monopole field, which cannot be destroyed with finite action, r
less of the precise details of the monopole interior. Thus any of these three solitons pote
would be able to carry charges that are pieces or fractions of those carried by elementary p
in the same medium.

Remarks:From the above argument, no other solitons can carry fractional charge, a
already understood for nontopological solitons.5 A type of nontopological soliton much discusse
recently is the ‘‘Q ball,’’6 a configuration of a charged scalar field which carries a very la
electric charge, stabilized by the attractive self-interaction of the scalar field. Such a s
evidently can be made to disintegrate, and therefore could not carry a fraction of elem
charges.

Perhaps the most famous topological soliton, which according to the above criterion
fundamental, is the skyrmion, described in the nonlinear sigma model by a four-component
field with fixed magnitude. The soliton corresponds to a map from R3 ~with spatial infinity treated
as a single point! to S3 . The winding number of the map is an exactly conserved integer, w
Skyrme proposed should be identified with baryon number.7 However, in its coupling to light
fermions the skyrmion must have effects equivalent to those of a similar object in the linear
model, where a fourth-order polynomial potential density is minimized for a specified magn
of the Skyrme field. For this structure the topological quantum number could be destroyed
finite action by temporarily creating a zero in the Skyrme field at the center of the skyrmion
then allowing the topological charge to flow into the zero and disappear.

MacKenzie and Wilczek8 and D’Hoker and Goldstone9 each computed flows of baryon cu
rent involved in the adiabatic creation of a skyrmion and found integer baryon numbe
implicitly left open the possibility that some exotic circumstance might produce a fractional r
instead. Their construction works exactly the same way for the original skyrmions or fo
almost-stable objects in the linear sigma model, and therefore the argument here shows t
never could obtain fractional charge for this system. There is one apparent way out: Insist t
high-energy behavior indeed is governed by the strict nonlinear sigma model, with fixed m
tude of the Skyrme field. The trouble now is that this theory is well-known to be nonrenorm
able, so that this option is undefined—one only may use the theory with an energy cutoff,
is equivalent to replacing the model with a linear sigma model. Stated differently, usin
nonlinear sigma model is making a statement about the behavior at arbitrarily high energ
what should be only an effective field theory. This would be tantamount to introducing
particles associated with those high energy scales.

Theorem 3 „Fractional charge from conventional renormalization…: For a fractional
charge to be associated with conventional renormalization, the particle must be an electric
or a magnetic monopole ind53, or a kink ind51. Otherwise~in particular for the vortex ind
52), the fractional charge must be intrinsic to the structure of the particle or fundamental so

Proof: For conventional renormalization, as some coupling parameter changes adiaba
there must be a current flow of the relevant charge into or out of the particle in question. Far
from thed53 electric charge, or the magnetic monopole, there is a radial 1/r 2 field. Thus, a local
current density proportional to that field and to the time rate of change of some scalar or ps
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scalar parameter would provide a steady net current into the particle. Clearly the long-rang
is necessary to give direction as well as the correct radial dependence to the current density
space dimension, the different asymptotic behaviors to right and left of the kink field can d
mine locally the sign and magnitude of a current, again proportional to the time rate of chan
some suitable coupling parameter.

Remarks:Thus, in these cases the possibility of creating fractional charge by contin
variation of a suitable parameter is open, while for other isolable objects it is not. In particula
vortex exhibits no locally observable long-range field, only the globally defined vector pote
so that it cannot guide a continuous current flow from infinity. Note that electrically cha
particles ind51 or d52 are not isolable, because the energy for a particle–antiparticle
diverges with separation. In all cases except the two ind53 and the one ind51 just described,
the renormalization cannot be accomplished by a flow from infinity, and therefore must be i
sic to the structure of the particle. For description of such intrinsic fractional charge as d
discrete renormalization to be meaningful, it must be possible to identify some ‘‘core’’ of
particle, with its characteristic conserved charge, to which the medium polarization~leading to net
fractional charge! is attached. That turns out to be possible, and therefore at least a usefu
spective, for all known cases.

We have seen that among solitons only the fundamental ones~stabilized by long-range phys
ics! can nucleate fractional charge. The obvious corollary is that the only other possible ‘‘ker
are those elementary particles which can be taken as given~i.e., determined by short-range phy
ics!. Blankenbecler and Boyanovsky10 have presented another perspective which leads to the s
conclusion as the one here for the case of fractional fermion charge induced by topology
argue that the high-energy coupling of fermions carrying integer values of such a cha
influenced by the asymptotic field of the soliton, and this directly determines the fractional p
the charge localized on the soliton.

III. ILLUSTRATIONS AND COMMENTS

Before going on, it is important to emphasize that the above theorems give necessary
tions for fractional charge—they do not demonstrate that it occurs. Such demonstrations w
important content of works to be cited below.

It has been shown here that the only solitons whose topological charges could have
ventional renormalization to produce fractional values of certain other charges are kink
monopoles, the two types of object first found by Jackiw and Rebbi~JR!11 to carry fractional
charge—to be precise, fermion numberF5 1

2. Their results were verified elegantly using adiaba
flow methods by Goldstone and Wilczek12 and by Seiberg and Witten.13 These methods can b
implemented in such a way that the soliton remains intact, while variation of certain coup
‘‘decorates’’ the object with fractionalF and perhaps also fractional electric charge.

Fractional local charges are significant only if they are eigenvalues rather than expec
values; they must be ‘‘sharp’’ quantum observables. For charges to be sharp, in one space
sion spatial smearing of the corresponding charge density operator is required,14 while in higher
dimensions temporal smoothing is needed as well.15,3

Perhaps the most dramatic observation of fractional charge is associated with the fra
quantum Hall effect~FQHE! discovered by Tsui, Sto¨rmer, and Gossard.16 Here Laughlin17 con-
cluded that the quasiparticles carry a simple fraction of an electron charge, so that an e
entering the medium could break up into several quasiparticles~something dramatically differen
from the breakup into reduced quasiparticle charge and remnant surface charge when an
enters a conventional insulator!. This result was vindicated in several experiments, by Goldm
and Su, de Picciottoet al., Seminadayaret al., and Reznikovet al.18

Jain’s composite-fermion description19 of odd-denominator FQHE states identifies the co
posite fermions as electrons whose strong repulsive mutual correlations renormalize their c
to the observed fractional values associated with the quasiparticles, so that it is natural to i
the quasiparticles as electrons dressed by the medium. In that perspective, the AB char
quasiparticle should be the same as that of an electron, but it is accepted that the force
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particle due to a Maxwell electric fieldEW parallel to the Hall plane may be obtained by usi
precisely the fractional local charge already mentioned. In the dressed-electron picture,
understood as resulting from an induced Chern–Simons field in the Hall plane which
compensates the effect of the Maxwell field.20 The large conceptual advantage of this perspect
embodied in composite-fermion theory,19 is that it not only unifies the description of differen
FQHE regimes, but also provides a close correspondence with previously familiar conde
matter systems and their quasielectron excitations.

The original description of a quasihole for simple Hall fractions was given by Laughlin17 in
terms of a fundamental soliton in the form of a special type of vortex—a vortex in the many-
ground-state wave function. This vortex requires neither Higgs nor gauge field, but only is
sible under the special conditions for which the Laughlin ansatz gives the ground state
function. Now one describes the quasihole as a soliton with local charge and AB charge both
to the same fraction. The ability to describe a quasiparticle either as a fundamental solito
dressed electron may be unique to this particular case. Depending on which one chooses, t
charge always is the same fraction, but the AB charge either has fractional or unit valu
course, all observables are identical in the two descriptions, but as mentioned the electron d
tion has wider and easier application. In these terms, the experiment of Goldman and Su
tioned above was a meaurement of fractional effective AB charge, while the other experi
measuring shot noise were sensitive to fractional local charge.

After JR, besides the independent work of Su, Schrieffer, and Heeger~SSH! on kinks in
polyacetylene,21 there were a number of studies confirming and elaborating on the original fin
that solitons can carry fractional charge. Shankar and Witten22 used bosonization to put fermion
and bosons on the same footing in the kink system, taking account of possible back-reac
fermion on boson degrees of freedom, and confirming the JR result. Su and Schrieffer23 found
examples of kinks in condensed matter models with other rational fractions. Earlier, Wi24

showed that magnetic monopoles could have fractional electric charge determined by the v
angle~or equally well by a crossed electric-magnetic susceptibility like that for a medium
dipolar molecules carrying both electric and magnetic moments!. Sikivie25 put this in the context
of conventional insulator behavior, showing that if a monopole passes through a domain
between different values of the vacuum angleu, then the change in electric charge of the mon
pole is exactly compensated by a change in the surface charge spread over the wall.

The work of Witten24 had two parts. First was a demonstration that the very gauge tran
mation which has a compact U~1! action on conventional charged particles with quantized elec
charge can have a noncompact action on a magnetic monopole, a necessary condition f
tional electric charge on the monopole.~For an extended treatment of this point, see Ref. 26.! The
noncompact action of the electric-charge gauge transformation on the dyon is consisten
gauge invariance because in the mutual interaction of two dyons there is besides the norma
interaction an extra term, gauge-variant but not contributing to the equations of motion fo
pair.27,28The conclusion in Theorem 3 above that the monopole satisfies a necessary cond
possess fractional local electric charge is based on a space–time picture of the magne
configuration of the monopole~corresponding by a magnetic Gauss law to an absolutely conse
charge!, complementary to the topological analysis just mentioned. The second part of Wi
work was a direct construction of the fractional charge from the vacuum angle. Thus he foun
necessary and sufficient conditions for the monopole to carry fractional electric local an
charge. Note that the latter clearly is not conserved when the monopole passes through a
wall.

As mentioned, Goldstone and Wilczek12 developed an adiabatic flow analysis showing thaF
for the JR monopole must change byDF5 1

2 as the fermion mass is chirally rotated from isosca
to isovector. Callan29 considered fermions light even compared to the Coulomb energy requir
confine a unit of electric charge within a monopole radius, findingF5 1

2 appears in a natural way
Over a long period, the notions of electric-magnetic duality, supersymmetry, and JR fermion
modes were locked together, mutually reinforcing all three.30,13 In particular, Seiberg and Witten13

used an adiabatic flow analysis~complementary to that of Goldstone and Wilczek!, which allowed
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them to follow the change ofF and electric chargeQ as the isoscalar part of the fermion mass
lowered from infinity, where the fermion is totally decoupled~meaning any fractional part ofF
must vanish!, to a point where the net mass of one member of the fermion isodoublet goes th
zero. They were able to establish directly thatF becomes fractional, while explicitly treating th
electric charge as a discrete quantum variable.

This subject of adiabatic flow brings attention to the beautiful thought experimen
Laughlin,17 who imagined piercing a fractional quantum Hall layer with an infinitely thin tube
flux, gradually increased from zero to one flux quantum. Through the Faraday effect and th
effect this assures the localization of a fractional charge, immediately showing that the qua
ticles of this system must have fractional charge with respect to electrons in a different med
free (d53) space. The fractional value in itself should not be a surprise, in view of the beh
of normal insulators. However, if we imagine inserting an electron into the layer from above
is no surface in which to leave part of its locally conserved electric charge, so that the c
instead must be deposited on several quasiparticles. This inevitable breakup into many p
was a new and theoretically unanticipated phenomenon.

The concept of fractional soliton charge was at least implicit in the work of Skyrme,7 who
argued that his classical field configuration could be quantized with half-integer isospin an
~a possibility shown consistent with the usual spin-statistics connection in Ref. 31!. Half-integer
values would allow the skyrmion to be identified with the nucleon, but by Theorem 2 are im
sible without elementary or fundamental isospinor fermions: Modification of the short-dist
high-energy part of the Skyrme action~e.g., replacing the nonlinear constraint in his sigma mo
with a quartic action in the chiral field! could destabilize the skyrmion, so that its ‘‘topologica
charge would be ‘‘unwound’’ in a process with finite action, and therefore in principle is
absolutely conserved. Microscopic analyses agree, indicating that the spin and isospin
skyrmion will be integer or half-integer as the number of colors of up and down quarks is ev
odd,32 and therefore integer if there are no quarks.

These considerations may be put more dramatically. The fact that the skyrmion is in a c
objects some of which are not conserved immediately implies that there must be some und
structure to account for spin and isospin charge values that are fractional with respect to the
charges of the sigma model. Thus at best the skyrmion could be a useful description for reas
low-energy and long-distance properties of the nucleon. That indeed is the case, but this
reasoning could have been made at any time after Skyrme’s original work. Perhaps an in
appreciation of this point contributed to initial resistance to his model. Paradoxically, if the m
had been embraced, it might have slowed the approach to quarks and QCD which now g
intellectual basis for the skyrmion’s success in the appropriate domain.

Skyrme’s model describes the nucleon entirely in terms of an SU~2! matrix function U(r ,t),
while in a ‘‘hybrid’’ model the U function is used outside a chosen ‘‘bag’’ radiusR, and inside are
free quarks with angle-dependent boundary condition parametrized by U~r ! at the bag wall.33

Goldstone and Jaffe34 showed that the simple boundary condition guessed in Ref. 33 meet
requirement of net integer baryon numberB. Thus, for the nucleon it becomes possible to int
polate smoothly between soliton and fundamental-particle~quark! descriptions, and neither ca
involve intrinsically fractional charges.

An analogous interpolation has been found for FQHE quasiparticles, which forn51/(2n
11) can blow up into arbitrarily spread-out ‘‘baby skyrmions’’ when the Zeeman splitting
tween the two possible electron spin orientations becomes negligible. Thus, adjusting the Z
splitting allows interpolation between microscopic quasiparticles and macroscopic soliton
course, the charges of the soliton and the quasiparticle are the same. This theoretical re
FQHE follows well-established results for skyrmions of the integer quantum Hall effect with s
Zeeman splitting.35

The SSH kink analysis21 shows that in one space dimension ‘‘spinons’’ with spin1
2 but no

charge and ‘‘holons’’ with charge6e but no spin can travel independently. Kivelsonet al.36

proposed that such objects might play a role in the planar dynamics which appears to be cri
high TC superconductivity. Detailed studies suggested that if so, either these fractional obje
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connected by strings37 or are able to move only along particular lines in the plane.38 However,
Senthil and Fisher39 observed that a dynamics which leads to vortices in terms of some effe
gauge field could allow the string connecting a spinon and a holon to exhibit zero tension, be
the precise path of that string is simply a gauge choice. Hence it becomes imaginable that t
types of particle could move freely in the plane.

The uniqueness of magnetic monopoles among solitons ind53 as possible carriers of frac
tional particle charge is connected with other special properties, such as the ability to conv
dynamics of the lowest fermion partial wave into a one-dimensional problem on a half-line.
is an example of the fact that the chiral anomaly for electrodynamics withd53 may be written as
the product of a magnetic-field contribution which reduces the problem tod51, and an electric-
field contribution just like that for QED ind51.40 The same long-range magnetic field is respo
sible for the possibility of creating an object with half-integer spin41 and Fermi–Dirac statistics42

from spinless bosons in a world with no fundamental fermons, a possibility that we have s
not available to the skyrmion, contrary to casual statements in the literature.

An interesting example of fractional charge is the Higgs–Chern–Simons vortex in Ab
211 D gauge theory, a soliton which carries a conserved topological charge, the quantized
netic flux. There is a locally conserved Gauss-law electric chargeQ5kF1qH , with k the
Chern–Simons~CS! coupling,43 F the quantized magnetic flux, andqH the Noether charge of the
Higgs field. EvidentlyQ vanishes by the Gauss law, but of courseqH does not, and is not eve
conserved ifk varies. Indeed, with the gauge kinetic termF2 omitted, the resulting ‘‘self-dual’’
vortex44 has vanishingQ density everywhere! This system manifestly violates electric cha
conjugation symmetry, and generates fractional values forqH . The fact thatqH would vary if k
changed implies thatk must be constant if one is to interpretqH as a conserved fractional charg
With this assumption, one sees that a given value ofk, which is crucial to the dynamics of thi
soliton, indeed enforces an intrinsic relation between the charge and the soliton structure,
taining consistency with Theorem 3. For non-Abelian CS theory there must be quantizationk,45

but for the Abelian case relevant here there may be some flexibility in the allowed values
self-dual vortex has been proposed, though without explicit identification as such, to be the
carrying quasiparticle of then55/2 FQHE state.46

Up to now we have not considered fractional spin in this discussion. Of course, ind51 spin
is not defined, while ind53 the non-Abelian character of the rotation group assures spin q
tization. However, ind52 the logical possibility of fractional spin is open. Paranjape47 realized
that such spin indeed could be induced for solitons carrying both electric charge and ma
flux; Blankenbecler and Boyanovsky48 gave a simple exposition of the mechanism. That
familiar connection between spin and statistics holds ind52 for the fractional, charge-
conjugation-even part of the spin and the associated part of the statistics was suggested alr
Wilczek,27 and follows from elementary conservation laws:49,20 To be precise, if one definesse

5(s1 s̄)/2, the part of the spin symmetric under particle↔antiparticle, with 0,useu,
1
2, then

there is a contribution to the phase factor on exchange of two indistinguishable particles giv
e2p ise.

The one example of fractional charge by conventional renormalization that remains
discussed is that of the familiar electrically charged elementary particles mentioned at the
ning, the proton and the electron. Suppose we say that the neutron hasB2L51, and the neutrino
hasB2L521. What is the value ofB2L for the charged particles? In first approximation, o
may neglect all contributions to QED vacuum polarization except that of electron loops.
result, the proton is accompanied by a tenuous cloud of electron vacuum polarization, and
still B51, but L5e. Meanwhile, charge renormalization of the electron implies that it haL
512e. Thus,B2L for the proton is 12e, andB2L for the electron ise21. For neutron decay
this gives initialB2L51, and finalB2L5(12e)p1(e21)e2(21)n̄51. In principle, it would
be consistent with all we know to introduce a new gauge field, weakly coupled toB2L. This
would allow direct observation of the different local values ofB2L for the neutral and the
electrically charged particles. However, the main point to make here is that if there is
conserved charge carried by a particle, then it can consistently generate a fractional shift in a
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charge carried by that particle. The fact that in some cases this fractional shift is quantized
in others it can be varied continuously, is important, but the parallelism between the two typ
cases may be even more important.

There is a complementary way to view the above discussion, exemplified by considerat
the weak coupling through the newB2L gauge field between a neutron and a proton. What
discussed already shows that the neutron would see a somewhat weaker field due to e
vacuum polarization. Alternately, if one considers the influence of the neutron on the proto
neutron’sB2L field mixes with the electromagnetic field due to the same vacuum polarizatio
that it couples to the combination of AB chargesB2eQ. The AB charges do not change, but th
field acting on them is modified in a nontrivial way. Of course, in line with the principle
reciprocity, either way of calculating the interaction between neutron and proton gives the
answer.

Note that~assuming the neutrino is its own antiparticle! the nonconservation ofB1L, com-
bined with the conservation ofB2L, assures that the magnitudes of the electric charges of pr
and electron must be equal. This is very close to the assertion that there is a single element
of electric charge~which quarks are able to fractionate because they also possess the add
conserved quantum number triality!.

IV. CONCLUSION

This work is designed both as codification and development of an extensive if not en
coherent literature on fractional charge. The principal results are as follows.

~1! Gauge charge, which in the case of a charge coupled to a local gauge field is the Lorent
charge of a particle in classical mechanics or the Aharonov–Bohm charge in quantum
chanics, is a fundamental, quantized attribute of a fundamental particle or an elem
particle built of fundamental particles, never renormalized or fractionated by change in
dium, scale, or coupling strength. Gauge charge is not necessarily conserved; for ex
there may be processes conserving local charge while allowing excitation of the vacu
mobilize previously latent particles carrying gauge charge. For a fundamental soliton,
may be gauge charges carrying fractional values compared to those found on elem
particles in the same medium, if so with the fractions equal to the corresponding valu
local or Gauss-law charge.

~2! The ~locally conserved! local charge of a particle with specified AB charge may hav
fractional value in one medium or at one scale with respect to its value in a different me
or at a different scale.

~3! In a given medium an isolable particle may carry a fraction of the local charge of an
isolable particle only if the first one is itself elementary, which includes the possibility th
is a fundamental soliton.

~4! Fractional charge may result from conventional, continuous flow if the particle is ad51 kink,
or a d53 electric charge or magnetic monopole. Otherwise the fractional value must
from the intrinsic structure of the particle. In particular, this is the only possible fractio
charge case for ad52 vortex.

The considerations in this work about elementary particles and fundamental solitons s
striking ~and typical! duality. The particles and their constituents are established in the dyna
of the smallest distance and highest energy scales, while the stability of the solitons is assu
the dynamics of the largest distance and lowest energy scales.

It is interesting to wonder about possible extensions of this analysis. There may well be
charges ford.3, and in certain circumstances fractional values of these charges. Even with
domain of d<3 there is a class of issues that remains a matter of art rather than syste
deduction, namely, the determination of the discrete renormalizations which by definition a
directly susceptible to the well-developed techniques used for conventional renormalization
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possible that consistency relations of the type developed by Su50 for the fractional quantum Hal
effect would permit this sort of determination.

It may be in order to say something about the role of this article~in a journal issue devoted to
exact methods for solitons!, which has almost no equations and deals as well with solitons w
do and ones which do not exhibit exact integrability, the latter evidently violating the orig
definition of the term by Zabusky and Kruskal.51 Mathematical physics uses the notion of exa
ness in many ways. On one side, emphasized in this issue, one has exactly soluble system
can be used to infer generic properties that may be compared with real systems whose dy
generally will not be exactly soluble. On the other side one finds systems which may not be
soluble, but the existence of certain local conservation laws still may permit some useful
exact—statements. This work manifestly is intended as a contribution to the latter catego
determining from mild assumptions some stringent requirements for the occurrence of frac
charge.
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Sphalerons, spectral flow, and anomalies
Frans R. Klinkhamera) and Christian Ruppb)
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The topology of configuration space may be responsible in part for the existence of
sphalerons. Here, sphalerons are defined to be static but unstable finite-energy
solutions of the classical field equations. Another manifestation of the nontrivial
topology of configuration space is the phenomenon of spectral flow for the eigen-
values of the Dirac Hamiltonian. The spectral flow, in turn, is related to the possible
existence of anomalies. In this review, the interconnection of these topics is illus-
trated for three particular sphalerons of SU~2! Yang–Mills–Higgs theory. ©2003
American Institute of Physics.@DOI: 10.1063/1.1590420#

I. INTRODUCTION

One of the main themes of the present special issue concerns the so-called topologic
tons. The field configurations of these classical solutions are characterized by a topolo
nontrivial map of the space manifold~or part of it! into some internal space of the model cons
ered. A well-known example is the Skyrme soliton,1 for which the space manifoldS3 ~i.e., the
compactified Euclidean spaceR3) is mapped into the internal space SU~2!. Another example is the
magnetic monopole,2 for which the ‘‘sphere at infinity’’S2 is mapped into the Higgs vacuum
manifold SO~3!/SO~2!.

There exist, however, other classical solutions, the so-called sphalerons, which them
have trivial topology but trace back to nontrivial topology in the configuration space of
fields.3,4 In this contribution, we intend to give an elementary discussion of sphaleron solutio
Yang–Mills–Higgs theory and the underlying topology. In order to get a clear picture of what
on, we focus on a single Yang–Mills–Higgs theory and three specific sphalerons.5–7

Physically, the topological solitons and the sphalerons play a different role. Soliton
primarily relevant to the equilibrium properties of the theory~e.g., the existence of certain stab
asymptotic states!, whereas sphalerons are of importance to the dynamics of the theory
sphaleron5 of the electroweak standard model,8 for example, is believed to play a crucial role fo
baryon-number-violating processes in the early universe~see, e.g., Refs. 9 and 10 for two re
views!.

The outline of this article is as follows. In Sec. II, we present the theory considered, to
SU~2! Yang–Mills theory with a single complex isodoublet of Higgs fields. This particular Yan
Mills–Higgs theory forms the core of the electroweak standard model of elementary pa
physics. In Sec. III, we recall some basic facts about the mapping of spheres into sphe
particular their homotopy classes. In Sec. IV, we describe three sphaleron solutions an
topologicalraison d’être. In Sec. V, we discuss another manifestation of the nontrivial topolog
configuration space, namely the spectral flow of the eigenvalues of the Dirac Hamiltonian
word ‘‘spectral flow’’ is used in a generalized sense, meaningany type of rearrangement of th
energy levels. Loosely speaking, the spectral flow makes it possible for a sphaleron to ac
fermion zero-mode. In Sec. VI, we link the spectral flow to the possible occurrence of anom
~which signal the loss of one or more classical symmetries!. In Sec. VII, finally, we present som
concluding remarks.

a!Electronic mail: frans.klinkhamer@physik.uni-karlsruhe.de
b!Electronic mail: cr@particle.uni-karlsruhe.de
36190022-2488/2003/44(8)/3619/21/$20.00 © 2003 American Institute of Physics
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II. SU„2… YANG–MILLS–HIGGS THEORY

In this article, we consider a simplified version of the electroweak standard model8 without the
hypercharge U~1! gauge field. This means, basically, that we set the weak mixing angleuw

[arctan(g8/g) to zero, whereg8 and g are the coupling constants of the U~1! and SU~2! gauge
groups, respectively. Also, we take only one family of quarks and leptons instead of the
known experimentally.

In general, the fields are considered to propagate in Minkowski space–time with coord
xmPR, m50,1,2,3, and metricgmn(x)5diag(11,21,21,21). But occasionally we go over to
Euclidean space–time with metricgmn(x)5dmn . Natural units with\5c51 are used throughout

The SU~2! Yang–Mills gauge field is denoted byAm(x)[Am
a (x) ta/(2i), where theta are the

three Pauli matrices acting on weak isospin space and the component fieldsAm
a (x) are real.

~Repeated indices are summed over, unless stated otherwise.! The complex Higgs field transform
as an isodoublet under the SU~2! gauge group and is given byF(x)5(F1(x),F2(x)) t, where the
suffix t stands for transpose@cf. Eq. ~5.5! below#. The fermion fields will be discussed in Sec.

The classical action of the gauge and Higgs fields reads

GYMH5E
R4

d4x H 1

2
tr FmnFmn1~DmF!†~DmF!2l ~F†F2h2!2J , ~2.1!

where Fmn[]mAn2]nAm1g@Am ,An# is the SU~2! Yang–Mills field strength andDmF[(]m

1gAm)F is the covariant derivative of the Higgs field. The theory has Yang–Mills coup
constantg and quartic Higgs coupling constantl, but the classical dynamics depends only on
ratio l/g2. The parameterh has the dimension of mass and sets the scale of the Higgs expec
value. The threeW vector bosons then have equal mass,MW5gh/&. The single Higgs scala
boson has a massMH52 Alh .

The action~2.1! is invariant under a local gauge transformation

F8~x!5L~x! F~x! , gAm8 ~x!5L~x! ~ gAm~x!1]m ! L~x!21 , ~2.2!

for an arbitrary gauge functionL(x)PSU(2). Inaddition, there are certain global SU~2! and U~1!
symmetry transformations which operate solely on the Higgs field.

III. MAPS OF SPHERES INTO SPHERES

Let us consider continuous maps from a connected manifoldM to a connected manifoldN.
Two such maps,f 1 and f 2 , are calledhomotopicif the one can be obtained from the other b
continuous deformation. More specifically,f 1 and f 2 are homotopic if there exists a continuou
maph:@0,1#3M→N such thath(0,m)5 f 1(m) andh(1,m)5 f 2(m) for all mPM . All maps M
→N can be divided into equivalence classes, where two maps are equivalent if they are hom
~see, e.g., Ref. 11!.

We are particularly interested in the case whereM andN are the spheresSm andSn, respec-
tively. The set of homotopy classes is called thehomotopy groupand is denoted bypm(Sn).
Figure 1 shows two mapsS1→S1 which are not homotopic. It is clear that in this particular ca

FIG. 1. Two nonhomotopic mapsS1→S1, with inner circles mapped into outer circles and matching points indicated.
the figure on the right, the whole inner circle is mapped into a single point of the outer circle.
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the homotopy classes can be labeled by integer numbers which describe how often the o
circle S1 is wrapped around the target circleS1. This explains the resultp1(S1)5Z, whereZ
denotes the group of integers under addition. The two maps shown in Fig. 1 have wi
numbers 1 and 0.

The homotopy classes ofSn→Sn, for n.1, can be pictured analogously, since the repres
tation of a sphereSn in spherical coordinates contains exactly one azimuthal anglefP@0,2p#.
The result ispn(Sn)5Z. Further homotopy groups arepm(Sn)5$0% for m,n, p3(S2)5Z, and
p4(S3)5Z2 , whereZ2 denotes the group of integers$0,1% under addition modulo 2.

Next, consider families of mapsSm→Sn, where the family parameters themselves form
sphereSp. In short, considerSp3Sm→Sn. Imposing certain constraints, these families of ma
can be viewed as mapsSp1m→Sn and classified according to the homotopy groups of spher

To this end, we introduce thesmash product11 of two spheresSp andSm. The smash produc
Sp∧Sm is defined as the Cartesian productSp3Sm with the set ($x0%3Sm)ø(Sp3$y0%) consid-
ered as a single point, for some arbitrarily chosenx0PSp andy0PSm. It can be shown thatSp∧Sm

is homeomorphic to the sphereSp1m ~see Fig. 2 for a sketch of the proof!.
A simple corollary will be important in the following. Any mapf :Sp3Sm→Sn can effectively

be considered as a map defined onSp∧Sm if f (x0 ,y) is independent ofy and f (x,y0) is indepen-
dent ofx, for an appropriate choice ofx0PSp andy0PSm.

IV. SPHALERONS

The word sphaleron is of Greek origin and means ‘‘ready to fall’’~see Ref. 5 for the etymol-
ogy!. It is used to denote a static but unstable solution of the classical field equations with
total energy of the fields.

In this article, only finite-energy configurations of the fields will be considered. By analog
Morse theory,12 sphalerons can then be looked for by a minimax procedure3 if the configuration
space of the underlying field theory is multiply connected.

The procedure runs as follows: first, construct a noncontractiblep-dimensional sphereSp in
configuration space, then determine its maximal energy configuration, and, finally, ‘‘shrink
sphere to minimize this maximal energy. If the configuration space were compact, this proc
would be guaranteed to give a saddle point. But configuration space is infinite-dimension
noncompact, so that the minimax procedure produces at best only a candidate solution. It ha
checked explicitly that the appropriate minimax-configuration solves the classical field equa
If this is the case, the minimax-configuration is a genuine sphaleron.

A. Sphaleron S

For the sphaleron S4,5,13 of the SU~2! Yang–Mills–Higgs theory~2.1!, we consider three-
space to be compactified by adding the ‘‘sphere at infinity.’’ Configuration space is then the
of all static three-dimensional gauge and Higgs field configurations in a particular gauge
have finite energy. The static gauge field can be written as a Lie-algebra-valued one-form,

A~x1,x2,x3![Am
a ~x1,x2,x3! ta/~2i! dxm , ~4.1!

with implicit sums ofa and m over 1, 2, 3. Furthermore, we use spherical coordinates (r ,u,f)
over R3 and employ the radial gauge conditionAr50, together withA050.

FIG. 2. Left: Cartesian product spaceS13S1 drawn as a torus, with two circles representing the sets$x0%3S1 and S1

3$y0% for some arbitrarily chosen pointsx0 andy0 . Middle: surface after shrinking the first of these sets to a point. Rig
surface after shrinking the second set to a point, which gives the smash productS1∧S1;S2.
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Since the energy has to be finite, only those configurations are admissible for which the
field tends towards a pure-gauge configuration asr→` and the Higgs field towards its associat
vacuum value,

g A`52dv v21 , F`5h vS 0
1D , ~4.2!

for a mapv of the ‘‘sphere at infinity’’S2 into the gauge group SU~2!.
Any loop in configuration space induces a loop in the space of these mappingsv. The

corresponding map is denoted by

U:S13S2→SU~2! , ~m,u,f!°U~m,u,f! , ~4.3!

wheremP@0,p# is the parameter of the loop of configurations anduP@0,p# andfP@0,2p# are
spherical coordinates in three-space.

By imposing certain constraints on this map, we may effectively reduce the set of all
loops, so thatU becomes a mapS3→SU(2);S3 which falls into homotopy classes according
p3(SU(2))5p3(S3)5Z. To be specific, the mapU for m50 andm5p must not depend onu
andf, and the mapU for u50 has to be independent ofm. ThenU is effectively defined on the
smash productS1∧S2;S3, as explained in the last paragraph of Sec. III. Now there exist n
contractible loops of field configurations for which the minimax procedure can be performe

An appropriate expression for the map~4.3! is given by4

U~m,u,f!5y1 ~2 it1!1y2 ~2 it2!1y3 ~2 it3!1y4 12 , ~4.4!

with

S y1

y2

y3

y4
D 5S 2sinm sinu sinf

2sinm sinu cosf
sinm cosm ~cosu21!

cos2 m1sin2 m cosu
D . ~4.5!

In order to calculate the winding number of this particular mapU, we examine its relation to the
standard spherical coordinates onS3,

S z1

z2

z3

z4
D 5S cosu2

sinu2 cosu1

sinu2 sinu1 sinf1

sinu2 sinu1 cosf1

D , ~4.6!

with polar anglesu1 ,u2P@0,p# and azimuthal anglef1P@0,2p#.
We first observe that the two-vector

wW 5S cosm
sinm cosu D ~4.7!

sweeps over the unit disk ifm andu run from 0 top. Since rotations map the unit disk onto itse
and leave the length ofwW invariant,

uwW u2512sin2 m sin2 u , ~4.8!

the relation

S cosu2

sinu2 cosu1
D5S cosa 2sina

sina cosa D S cosm
sinm cosu D ~4.9!
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describes an admissible reparametrization of the disc. By choosinga52m, we find y45z1 and
y35z2. With sinu1 sinu25sinm sinu andf15f, we have alsoy152z3 andy252z4.

The conclusion is that the mapU as defined by Eqs.~4.4! and ~4.5! covers the target spher
S3 exactly once. The mapU has winding number one~or minus one, depending on the definitio
of the winding number! and corresponds to a nontrivial element of the homotopy groupp3(S3)
5Z.

For the static SU~2! gauge and Higgs fields of the noncontractible loop~NCL!, we make the
ansatz4

g A~m,r ,u,f!52 f ~r ! dU~m,u,f! U~m,u,f!21 , ~4.10a!

F~m,r ,u,f!5h h~r ! U~m,u,f!S 0
1D1h ~12h~r !!S 0

exp~2 i m!cosm D , ~4.10b!

with the following boundary conditions for the radial functionsf andh:

lim
r→0

f ~r !/r 50 , lim
r→`

f ~r !51 , ~4.11a!

lim
r→0

h~r !50 , lim
r→`

h~r !51 . ~4.11b!

The energy density of the fields~4.10! turns out to be spherically symmetric. Indeed, the fields
the NCL can also be written in a manifestly spherically symmetric form.14

The fields~4.10! of the NCL atm50 or p correspond to the Higgs vacuum withA(x)50 and
F(x)5(0,h) t. This particular configuration is independent of the radial functionsf andh and has
zero energy according to Eq.~2.1!. The NCL configuration atm5p/2 is distinguished by having
parity reflection symmetry~the only other configuration of the NCL with this property is th
vacuum atm50). For given functionsf andh, this m5p/2 configuration is also the maximum
energy configuration over the NCL. The minimax procedure now consists of adjusting the
functions f and h while maintaining the boundary conditions~4.11!, so that the energy atm
5p/2 is minimized. The resulting configuration is the sphaleron S, as sketched in Fig. 3.

Using numerical methods, one finds for the sphaleron energy the value5

ES'3.043~4p/g2! MW , ~4.12!

which holds for the case of vanishing quartic Higgs coupling constant (l/g250). @The sphaleron
energyES has also been calculated for the full SU(2)3U(1) Yang–Mills–Higgs theory of the
electroweak standard model. The energyES is found to be weakly dependent on the mixing ang
uw , at least near uw50. The emergence of a large magnetic dipole momentmS

}(4p/g2) g tanuw /MW is perhaps more interesting. See Refs. 5, 15, and 16 for details.# For large

FIG. 3. Sphaleron S on top of a noncontractible loop in configuration space. The field energy is zero for the vacu
positive for the sphaleron S.
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enough values ofl/g2, additional solutions appear, the so-called ‘‘deformed sphalerons.’’17,18The
appearance of these extra sphalerons can be explained14 by a simple deformation of the energ
surface in Fig. 3.

The sphaleron S by itself has trivial topology, with the ‘‘sphere at infinity’’S2 mapped into the
Higgs vacuum manifold SU(2);S3; cf. Sec. III.@As mentioned in the Introduction, the magne
monopole2 in SU~2! Yang–Mills theory with a real isotriplet of Higgs is based on the nontriv
mapS2→SO(3)/SO(2);S2.] Note that the original S ansatz, with the so-called hedgehog st
ture, was discovered13 10 years before the construction of S via the NCL.4,5

In the radial gauge, the vacuum configuration of the SU~2! gauge field is uniquely fixed
gAm

vac(x1,x2,x3)50. If this gauge condition is abandoned, any pure-gauge configurationgAm

52]mU U21, for arbitrary time-independent SU~2!-valued fieldU, is a possible vacuum con
figuration. Depending on the topology of three-space, these vacuum configurations may o
not fall into different unconnected classes. This does not happen for our compactificationR3øS`

2 .
But the situation changes if, instead, we choose a one-point compactificationR3ø$`%, with all
fields approaching a single direction-independent value asr→`. Each vacuum configuration the
corresponds to a mapS3→S3 and there are topologically distinct vacuum classes, sincep3(S3)
5Z.

In fact, it is possible to perform a gauge transformation on the NCL~4.10! which changes the
asymptotic behavior of the gauge fields, so that they can be considered to live onS35R3ø$`%.
Let v(m,r ,u,f) be an SU~2!-valued map which approachesU(m,u,f) for r→` and 12 for r
→0. The radial dependence ofv(m,r ,u,f) implements a path which connects the m
U(m,u,f)5v(m,`,u,f) to the constant map125v(m,0,u,f). @Note thatU(m,u,f) for fixedm
is a mapS2→S3 and therefore contractible.#

The crucial point, now, is that the mapv(0,r ,u,f) is homotopically different from the map
v(p,r ,u,f). @Otherwise, the radial dependence ofv(m,r ,u,f) would yield a contraction of
v(m,`,u,f), considered as am-dependent mapS3→S3, which is impossible.# Both maps
v(0,r ,u,f) and v(p,r ,u,f) can also be viewed as mapsS3→S3, since v(m,`,u,f)
5U(m,u,f)512 for m50 and m5p. The conclusion is then that the corresponding vacu
configurationsAm(x1,x2,x3) at m50 andm5p belong to different homotopy classes. This res
will be discussed further in Sec. VI A.

B. Sphaleron S *

The three-space of our SU~2! Yang–Mills–Higgs theory~2.1! is again compactified by addin
the ‘‘sphere at infinity.’’ This time, however, we do not consider one-parameter families~loops! of
static finite-energy configurations but two-parameter families~spheres!. At spatial infinity, these
families are characterized by the map

U:S23S2→SU~2! , ~m,n,u,f!°U~m,n,u,f! , ~4.13!

where~m,n! are the parameters of the sphere of configurations and~u,f! are the polar and azi
muthal angles of the spherical coordinates in three-space. The parametersm andn run from2p/2
to 1p/2 and the boundary of the~m,n!-square atumu5p/2 or unu5p/2 is mapped to the sam
element of SU~2!.

Next, restrict the class of mappingsU by requiring thatU(m,n,0,f) is independent of~m, n,
f! andU(2p/2,2p/2,u,f) independent of~u,f!. ThenU is effectively a mapping fromS4 to
S3, which has a nontrivial homotopy structure,p4(S3)5Z2 . The general idea, now, is to constru
a noncontractible sphere, to determine the maximal energy configuration on that sphere
continuously deform the sphere so that its maximal energy is minimized.19

The construction of the required nontrivial mapS4→S3 is done in two steps. First, a nontrivia
map S3→S2 is found and, second, an operation is performed to increase the dimension o
spheres.

The relevant mapS3→S2 is given by the well-knownHopf fibration,11 which can be ex-
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plained as follows. Consider the three-sphereS3 to be a subset ofC2, namely,$(z1 ,z2) u uz1u2

1uz2u251%. EachC-line through the origin inC2 then intersects with this three-sphere in a gr
circle S1. These great circlesS1 form a pairwise disjoint covering ofS3. Two points ofS3 are
defined to be equivalent (.), if they lie on the same great circleS1. The corresponding projec
tion,

S3→S3/. , ~4.14!

is the desired Hopf map, since the topological spaceS3/. is homeomorphic toS2.
The topological equivalence ofS3/. andS2 can be shown by considering theC-lines which

label the great circlesS1 discussed in the previous paragraph. All but one of theseC-lines can be
parametrized by complex numberscPC. Specifically, the coordinates of such a line read

~z1 , z2!5~w , cw! , for wPC . ~4.15!

In addition, there is the singleC-line given by

~z1 , z2!5~0 , w! , for wPC . ~4.16!

Hence, the total parameter space ofS3/. is given by the one-point-compactified plane, i.e., t
Riemann sphereS2.

The suspensionof a sphereSn is essentially the same as the smash productS1∧Sn. It can be
used to increase the dimension of the spheres appearing in the above discussion. The r
suspension of the Hopf map corresponds to a nontrivial element of the homotopy groupp4(S3)
5Z2 .

In a particular parametrization, the required map~4.13! takes the form19

U~m,n,x̂!5~ sinm1 i cosm exp@ 1 i~n1p/2! t3 # x̂•tW exp@ 2 i~n1p/2! t3 # !

3~ sinm2 i cosm x̂•tW ! , ~4.17!

wherem andn range over@2p/2,p/2# and describe a two-sphere, as does the unit three-ve
x̂[(sinu cosf,sinu sinf,cosu). The mapU(m,n,x̂) is effectively defined on the smash produ
S2∧S2, sinceU is independent ofx̂ for m56p/2 or n56p/2 and independent ofm andn for
x̂5(0,0,1). ~Note that the suspended Hopf map also plays a role in the physics of Sk
solitons.20!

With the map~4.17! in hand, it is possible to construct a noncontractible sphere~NCS! of
static Yang–Mills–Higgs configurations and to obtain the corresponding nontrivial classical
tion, the sphaleron S* , just as for the NCL and the sphaleron S of the previous subsection.
construction of S* is, however, rather subtle. Here, we only describe the four basic steps and
the reader to Ref. 6 for more information.

First, we observe that the map~4.17! singles out thex3 axis, which suggests the use of th
cylindrical coordinatesr, f, and z, defined by (x1,x2,x3)5(r cosf,r sinf,z). Then, it is not
difficult to construct a NCS of static SU~2! Yang–Mills–Higgs configurations, whose behavior
infinity is governed by the SU~2! matrix ~4.17!. Specifically, the NCS configurations can b
written in terms of six axial functionsf i(r,z) and hj (r,z), for i 50,1,2,3 andj 51,2, with
appropriate boundary conditions@for example,f 0(r,z)→1 andh1(r,z)→1 asr21z2→`]. The
SU~2! gauge and Higgs field configuration of the NCS are by construction axially symmetr

Second, the configuration atm5n50 is also invariant under parity reflection and gives t
maximum energy of the NCS. Moreover, it can be verified that thism5n50 configuration, in
terms of the six axial functionsf i(r,z) and hj (r,z), provides aself-consistent ansatzfor the
SU~2! Yang–Mills–Higgs field equations. Concretely, this means that the ansatz reduces th
equations to precisely six partial differential equations~PDEs! for the six functionsf i(r,z) and
hj (r,z), with appropriate boundary conditions which trace back in part to the finite-energy
dition. ~This result agrees with the so-called principle of symmetric criticality,21 which
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states that, under certain conditions, it suffices to consider variations that respect the symm
the ansatz.! The solution of these PDEs then determines the field configurations of the spha
S* . See Fig. 4 for a sketch of configuration space.

Third, the reduced field equations for the sphaleron S* can be solved numerically. For ap
proximately vanishing quartic Higgs coupling constant (l/g251/800), the numerical solution o
the six PDEs with the correct boundary conditions gives the following value for the energy

ES* '1.913ES, ~4.18!

whereES denotes the corresponding energy of the sphaleron S@cf. Eq. ~4.12! above#. In fact, the
sphaleron S* is found to have the structure of a di-atomic molecule, binding together a spha
S and an ‘‘anti-sphaleron’’ S̄. See Ref. 6 for a plot of the energy density and further discuss

Fourth, the construction of S* via the NCS can be extended to the full SU(2)3U(1) theory
of the electroweak standard model by the introduction of one more axial function,f 4(r,z), with
trivial boundary conditions at infinity. But for nonvanishing weak mixing angleuw , there are only
preliminary numerical results for the sphaleron S* and it would be worthwhile to obtain accura
results over the full range of values ofl/g2 anduw .

C. Z-string

Now consider static field configurations of the SU~2! Yang–Mills–Higgs theory~2.1! which
are independent of one spatial coordinate, thez-coordinate, and have vanishing gauge potentia
that direction,Az50. In order to have finite total energy, thez-direction has to be compact an
three-space is taken to beR23S1 instead ofR3. Also, choose cylindrical polar coordinates~r,f,
z) and work in the polar gauge for whichAr50.

Since the energy density in a plane with fixedz has to be finite, the remaining gauge fie
componentAf reduces to a pure-gauge configuration asymptotically,

g Af→2 ~]f v! v21 , as r→` , ~4.19!

for a mapv:S1→SU(2). Basically, this means that the planeR2 is compactified by adding the
‘‘circle at infinity.’’

It is possible to construct a noncontractible sphere of these field configurations by rest
the corresponding maps

U:S23S1→SU~2! , ~m,n,f!°U~m,n,f! , ~4.20!

in such a way that they are effectively defined on the smash productS2∧S1;S3. Specifically, the
sphere is parametrized bym and n which take values in@2p/2,1p/2#. The rim of the~m,n!-
square is identified and corresponds to a single point onS2. The mapU is restricted to be
independent off if ~m,n! lies on this rim and independent of~m,n! if f50.

An appropriate expression for the map~4.20! is given by7

FIG. 4. Sphaleron S* on top of a noncontractible sphere in configuration space.
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U~m,n,f!5V~m,n,0!21 V~m,n,f! , ~4.21a!

V~m,n,f!5z1 ~2 it1!1z2 ~2 it2!1z3 ~2 it3!1z4 12 , ~4.21b!

S z1

z2

z3

z4
D 5S sinm

cosm sinn
cosm cosn sinf
cosm cosn cosf

D . ~4.21c!

Note that the factorV(m,n,0)21 in ~4.21a! serves a dual purpose. First, it assures that the rim
the ~m,n!-square is mapped to a single element, sinceV(m,n,f) is independent off on this
boundary. Second, it makesU independent ofm andn if f50.

For the two-dimensional SU~2! gauge and Higgs fields of the noncontractible sphere~NCS!,
we make the ansatz7

g A~m,n,r,f!52 f ~r! dU~m,n,f! U~m,n,f!21 , ~4.22a!

F~m,n,r,f!5h h~r! U~m,n,f!S 0
1D , ~4.22b!

with parametersumu,unu<p/2. The polar functionsf andh have the following boundary condi
tions:

lim
r→0

f ~r!/r50 , lim
r→`

f ~r!51, ~4.23a!

lim
r→0

h~r!50 , lim
r→`

h~r!51. ~4.23b!

But no point on this NCS corresponds to a vacuum configuration, since the Higgs field i
~4.22b! vanishes atr50 for all values of~m,n!. Therefore, the point of the NCS at the bounda
of the ~m,n!-square must be connected to the vacuum by an additional line segment. The
sponding ansatz is simply

g A~m,n,r,f!50 , ~4.24a!

F~m,n,r,f!5h ~12sin@mn#1h~r! sin@mn# ! S 0
1D , ~4.24b!

for @mn#[max$umu,unu%.p/2 with the parameter range ofm andn extended to@2p,1p#. The set
of configurations~4.21!–~4.24! is like a ‘‘balloon’’ which is tied to the ground by a rope.

The energy of the NCS has a global maximum atm5n50. By minimizing this maximal
energy with respect to the functionsf andh, one finds the coupled differential equations

r f 92 f 85
1

2
g2h2 r h2 ~ f 21! , ~4.25a!

r2 h91r h85h ~12 f !212lh2 r2h ~h221! , ~4.25b!

where the prime indicates a derivative with respect tor. The same differential equations, wit
boundary conditions~4.23!, hold for the so-calledZ-string,22–24 which excites theZ boson and
Higgs fields of the electroweak standard model.

The Z-string is thus the sphaleron on the NCS given by Eqs.~4.21!–~4.24!; see Fig. 5. This
particular sphere~balloon! in configuration space will be discussed further in Sec. VI C. No
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finally, that the configurations of the NCS can also be embedded in the full SU(2)3U(1) gauge
theory of the electroweak standard model; see Ref. 7 for details and numerical results.

V. SPECTRAL FLOW

The classical field configurations of the previous section may serve as background fie
massless Dirac fermions, whose left-handed components form an isodoublet under the~2!
gauge group and whose right-handed components are gauge singlets. The Dirac equation
spinorC(x) reads in this case

~ iD” 2k ~FM
† PL1FMPR!!C50 , ~5.1!

with the Yukawa coupling constantk, the Feynman slash notationD” [gmDm , and the covariant
derivative

DmC~x![@ ]m1gAm~x!PL #C~x! , ~5.2!

which shows that only the left-handed fermions interact with the SU~2! gauge field.
The left- and right-handed projectors are, as usual, defined byPL[ 1

2(12g5) and
PR[ 1

2(11g5). With the Minkowski metric of Sec. II, the Dirac matrices obey the followi
Clifford algebra and Hermiticity conditions:

gmgn1gngm52 gmn , gm †5g0gmg0 , g5[ i g0g1g2g35g5
† . ~5.3!

~For the Euclidean metric, all Dirac matrices are chosen Hermitian,gm †5gm.) The space–time
manifold considered in this article is flat and there is no need to use the vierbeins~tetrads!
explicitly.

The matrixFM in ~5.1! contains the two Higgs field componentsF1 andF2 ,

FM5S F2* F1

2F1* F2
D , ~5.4!

so that

FM•S 0
1D5S F1

F2
D5F . ~5.5!

For the Higgs vacuum withAm(x)50 andFM(x)5diag(h,h), the effective fermion mass is give
by m5kh.

FIG. 5. Z-string on top of a noncontractible sphere~balloon! in configuration space.
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The model considered may serve as the starting point for a consistently renormalized qu
field theory with gauge group SU(2)3U(1) if we include three colors of left-handed qua
isodoublets for each left-handed lepton isodoublet, so that the perturbative gauge anomal25–28

cancel between the quarks and the leptons.29,30 ~A similar cancellation occurs for the nonpertu
bative SU~2! anomaly31 to be discussed in Sec. VI B.! But, for our purpose, it suffices to conside
a singleisodoublet of left-handed fermions, since the fermion isodoublets of the full theory be
identically.

The time-dependent solutions of the Dirac equation~5.1! are, however, not our main interes
Rather, we are interested in the eigenvaluesE of the corresponding Dirac Hamiltonian,

H52 ig0gmDm1k g0~ FM
† PL1FMPR ! , ~5.6!

where use has been made of the fact thatA050 for our gauge field configurations and th
covariant derivativeDm , for m51,2,3, has already been given in Eq.~5.2!. The eigenvaluesE are
real, since the Dirac HamiltonianH is Hermitian.

Now consider periodic one-parameter families~loops! of static background fields. The spe
tral flow invariant32 is then defined as the number of eigenvalues that cross zero from below m
the number of eigenvalues that cross zero from above as the loop parameter varies over it
~in a prescribed direction!. See, e.g., Ref. 33 for an elementary introduction to the concep
spectral flow.

Even if the spectral flow invariant vanishes, there may still be a nontrivial rearrange
~permutation! of the energy levels. We speak about ‘‘spectral flow’’ also in this case.~Mathema-
ticians would perhaps say that there is no spectral flow if the spectral flow invariant is zer! In
addition, we will look for ‘‘spectral flow’’ in two-parameter families of background fields~which
may be characterized by a different topological invariant!.

A. Spectral flow for the sphaleron S

Consider the noncontractible loop~NCL! used in Sec. IV A to construct the sphaleron S, w
parameterm running from 0 top. At the beginning of the loop (m50) and at the end (m5p), the
static background field~4.10! is the same vacuum configuration and the spectrum of the D
Hamiltonian~5.6! is purely continuous with a mass gap 2m according to the Higgs mechanism
(m}h). For the sphaleron S atm5p/2, on the other hand, it has been shown34–38 that the Dirac
HamiltonianH has a single normalizable eigenfunction with eigenvalue zero.

The overall picture, starting fromm50, is that a negative eigenvalueE(m) of the Dirac
HamiltonianH rises above the negative continuous spectrum, crosses zero when the back
fields pass the sphaleron barrier (m5p/2), and finally reaches the positive continuous spectr
for m5p. See Fig. 6 for a sketch and Ref. 38 for numerical results.

The nonvanishing spectral flow over the NCL is guaranteed by the Atiyah–Singer i
theorem,39 which relates the analytic index of the four-dimensional Dirac operator~the loop

FIG. 6. Spectral flow for a path over the sphaleron barrier~cf. Fig. 3!.
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parameterm playing the role of an imaginary time! to the topological charge associated with t
NCL. Further details will be given in Sec. VI A. Here, we only remark that the NCL gauge
~4.10!, defined in Minkowski space, has essentially the same topology as the BPST ins
solution of Euclidean Yang–Mills theory.40,41

B. Spectral flow for the sphaleron S *

For the fermion behavior over the noncontractible sphere~NCS! through S* , we need to resort
to more abstract reasoning, since no complete numerical or analytic solution has been obta
till now.

First, consider massless Dirac fermions withequal gauge couplings for the right- and lef
handed components. It has then been shown that there exist two fermion zero-modes
four-dimensional Euclidean Dirac operator iD” 4 , one of each chirality, if the fermions are placed
the background of the constrained instanton I* .42–44 @Note that a particular time slice through I*
corresponds to the three-dimensional configuration of the S* sphaleron. For practical purpose
one may consider I* as a bound state of a BPST instanton I and an anti-instanton I,̄ just as the
sphaleron S* may be viewed as a composite of a sphaleron S and an anti-sphaleron S;̄ see Eq.
~4.18! and the lines below.#

Now the instanton I* , which depends on four Euclidean space–time coordinates, ca
viewed as a path in configuration space which passes over the S* barrier.~In other words, this path
is homotopic to a particular closed loop on the S* -NCS modulo gauge transformations; cf. Fig. 4!
The two zero-modes of iD” 4 in the I* background, being time-dependent solutions of the Di
equation~with imaginary time!, can be calculated in the adiabatic approximation, where the s
at time t is an eigenstate of the Dirac Hamiltonian with energyE(t). The corresponding ‘‘phase
factor’’ is given by

expS 2E
0

t

dt8 E~ t8! D . ~5.7!

From the normalizability of the zero-mode, it follows thatE(t) is positive fort→1` and nega-
tive for t→2`.

With left- and right-handed chiralities, there are then two energy levelsE(1,2)(t) crossing zero
from below~these energy levels may, of course, be degenerate!. In addition, there are two eigen
valuesE(3,4)(t) which cross zero from above, so that the total spectral flow invariant is zero~note
that the loop through S* over the NCS is contractible!. For these last two eigenvalues, there are
zero-modes of iD” 4 because the corresponding four-dimensional wave functions are not norm
able. Thus we have two pairs of levels which cross at zero energy, one left-handed pair a
right-handed pair. Returning to the Dirac Hamiltonian~5.6! with only left-handed fermions inter
acting with the SU~2! gauge fields, we have the spectral flow of the eigenvaluesE(1)(t) and
E(3)(t) as shown in Fig. 7.

Recently, numerical results45 have been obtained for the eigenvalues of the iD” 4 operator along
a particular path over the I* barrier. It would be interesting to use similar methods to calculate
spectral flow related to S* and also to consider fermion representations other than isodoubl

C. Spectral flow for the Z-string

Finally, we turn to the fermion behavior over the noncontractible sphere~NCS! with the
Z-string at the top.46 First, we choose a path on the NCS~4.21!–~4.24!, which starts in the
vacuum, passes over theZ-string and ends up in the vacuum.

To be concrete, we putn50 in ~4.21! and letm run from 2p/2 to 1p/2. Such a loop is
contractible and there is no net spectral flow to be expected~just as for the loop through S*
considered in the previous subsection!. What happens instead is that one negative eigenv
E(1)(m,0) is raised from the negative continuous spectrum and one positive eigenvalueE(2)(m,0)
is lowered from the positive continuous spectrum. Both eigenvalues meet at energy zero wh
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background fields pass theZ-string configuration (m5n50), cross and reach the opposite regi
of continuous eigenvalues~see the picture on the left in Fig. 8!. The fermion zero-modes of th
Z-string have been studied in Refs. 47 and 48.

We can also consider the behavior of the Dirac eigenvalues over the whole two-para
family ~4.22!. Plotted over the~m,n!-square, the eigenvaluesE(m,n) form a double cone meeting
at m5n50 ~see the picture on the right in Fig. 8!.

VI. ANOMALIES

In this section, we review the relation between the sphalerons presented in Sec. I
so-called anomalies. The connection between sphalerons and anomalies is precisely the
flow discussed in Sec. V.

A. Chiral anomaly and fermion number violation

The chiral U~1! anomaly, which turns out to be related to the sphaleron S, eliminates a
U~1! symmetry of the classical action, viz., chiral invariance. This anomaly can be foun
theories withmasslessfermions, for which there is a classical Ward identity

(
f

S dGcl

dC f

dC f2dC̄ f

dGcl

dC̄ f
D 5]m j m

5 , ~6.1!

whereGcl is the classical action andC f(x) denotes a Dirac fermion field, withf labeling the
different flavors~fermion species!. The rigid chiral transformation of the fermion fields is given b

FIG. 7. Spectral flow for a path through the sphaleron S* ~cf. Fig. 4!.

FIG. 8. Spectral flow over the noncontractible sphere~NCS! through theZ-string ~cf. Fig. 5!. In the picture on the left, the
NCS parametern is held fixed at the value 0 andm is varied. In the picture on the right, the Dirac eigenvalues are sho
for the NCS patchumu,unu<p/2.
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dC f~x!5 ig5 C f~x! , dC̄ f~x!5C̄ f~x! ig5 . ~6.2!

Since the left-hand side of~6.1! vanishes for solutions of the classical equations of motion,
current j m

5 (x)[( fC̄ f(x) g5gmC f(x) is conserved classically. This implies that the chiral cha
Q5[*d3x j0

5(x) does not change with time (t[x0),

dQ5

dt U
classical

50 . ~6.3!

Now suppose that the SU~2! gauge field couples equally to left- and right-handed fermion
the fundamental representation@as is the case for the SU~3! gauge field which is believed to b
responsible for quark confinement in the standard model#. Then the spectral flow for a path ove
the sphaleron S with unit winding number is as shown in Fig. 9: for each isodoublet of ferm
a left-handed state crosses zero from below and a right-handed one crosses zero from
~Essentially the same type of spectral flow has been found49 in the Schwinger model, i.e., two
dimensional quantum electrodynamics with a massless Dirac fermion.! In the Dirac-sea picture o
the second-quantized vacuum, this means that a pair of fermions is created from an initial v
state, namely one chiral fermion and one chiral antiparticle corresponding to a hole in the
sea of antichiral negative-energy states. Hence, the total chiral chargeQ5 changesby two units per
isodoublet, which contradicts the classical conservation equation~6.3!.

This result is supported by the Atiyah–Singer index theorem39 for the four-dimensional chira
Dirac operator~see, e.g., Refs. 50–52!. For N isodoublets, the relation between the change
chiral charge and the appropriate characteristic of the background gauge field is simply th
grated version of the perturbative Ward identity for the chiral current containing the Adler–B
Jackiw anomaly,25,26

(
f 51

N S dG

dC f

dC f2dC̄ f

dG

dC̄ f
D 5@ ]m j m

5 #"G 1
g2N

8 p2
@ tr F̃mn Fmn#"G , ~6.4!

whereG is now the fully quantized vertex functional and the dot denotes an operator insert
The anomalous term in Eq.~6.4! includes the Pontryagin density

q~x![2
g2

16p2 tr F̃mn~x! Fmn~x! , ~6.5!

with F̃mn[ 1
2 emnrsFrs. The integral of this density over the space–time manifoldM is a topo-

logical invariant called the Pontryagin index,

Q[E
M

d4x q~x! . ~6.6!

FIG. 9. Opposite spectral flow for left- and right-handed fermions, which leads to the creation of two units of chiral c
Filled states are drawn black, empty states gray.
                                                                                                                



lso

Secs.
assive
left-

e
that

rly for

g two
uch a

ec.
of the

fermion

3633J. Math. Phys., Vol. 44, No. 8, August 2003 Sphalerons, spectral flow, and anomalies

                    
For compact space–time manifoldsM , the Pontryagin index is an integer number and is a
called the winding number or topological ‘‘charge’’~hence, the notationQ).

Next, turn to the simplified version of the electroweak standard model, as described in
II and V. Here, the fermion fields are fundamentally massless, even though they behave as m
particles in the Higgs vacuum. More importantly, the gauge field now couples only to the
handed parts of the fermion fields; cf. Eqs.~5.1! and ~5.2!. Hence, the spectral flow for a singl
fermion flavor is made up of only one state which crosses zero from below. This implies
fermion number conservationis violated.53,54 See Fig. 10 and compare with Fig. 9.~It is, of
course, important to define carefully what is meant by ‘‘the fermion number’’ of a given state;55–57

see also the discussion in the last three paragraphs of this subsection.!
The mapU given in Sec. IV A essentially provides a mapS3→S3, characterized by the

topological chargeuQu51. The above considerations can be generalized to other~integer! values
of Q and to a model withNfam families of quarks and leptons. The sum of baryon numberB and
lepton numberL is then found to be nonconserved,53

D~B2L !50 , D~B1L !52 NfamQ , ~6.7!

whereDB denotes the change of baryon number between initial and final states and simila
DL.

As explained at the end of Sec. IV A, the NCL can be transformed into a path connectin
topologically distinct vacua in one-point-compactified three-space. The general form of s
vacuum is given by a static pure-gauge configuration,

g A52dx x21 , F5h xS 0
1D , ~6.8!

for a mapx:R3→SU(2) which approaches12 at spatial infinity. The homotopy class to whichx
belongs is characterized by the integerChern–Simons number

NCS@ x #52
1

24p2 E d3x eklm tr$~]kx x21! ~] lx x21! ~]mx x21!% . ~6.9!

The topological chargeQ of the mapv(m,r ,u,f), as discussed in the last two paragraphs of S
IV A, is then the difference of the Chern–Simons numbers of the vacua at the start and end
associated path,

Q5DNCS[NCS@ v~p,r ,u,f! #2NCS@ v~0,r ,u,f! # . ~6.10!

Of course, it is also possible to map them-interval @0,p# on the time interval@2`,1`#.

FIG. 10. Spectral flow in the electroweak standard model, where only left-handed fermions interact with the SU~2! gauge
fields. S denotes the sphaleron, which has a single fermion zero-mode. The spectral flow leads to a change of
number between initial and final states~see text!.
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The sphaleron now corresponds to an energy barrier between these vacua, as sketche
11. The transition between different vacua can, for example, take place by tunnelingthrough the
sphaleron barrier53,54 or by passingover the barrier due to a thermal fluctuation of the fields.5,58

Especially the latter mechanism is expected to contribute significantly to fermion-num
violating processes in the early universe~see, e.g., Refs. 9 and 10!.

The rate of fermion-number-violating processes at relatively low energies (E!ES'10 TeV)
can be calculated from the Euclidean path integral.54,59 But for a reliable discussion of thes
processes at high energies (E*ES) it is advisable to remain in Minkowski space–time. Th
problem, then, is that the compactification of four-space which we used as the starting point
topological considerations is not really physically sensible for Minkowski space–time. The
logical chargeQ, in particular, need not be an integer quantity in Minkowski space–time.
crucial point here is the role ofenergy conservationfor background fields that solve the equatio
of motion; see, e.g., Ref. 60. The general question of which type of gauge field leads to non
spectral flow remains unanswered for the moment.

There exists, however, a result forstrongly dissipativeSU~2! gauge fields.55–57 In this case,
the spectral flow is given by the difference in winding numbers of the asymptotic vacuum
figurations fort→6`. Roughly speaking, this coincides with the previous result in Euclid
space–time, namely Eq.~6.10! inserted into Eq.~6.7!.

For the case of spherically symmetric fields, there is also a result forgeneric~i.e., nondissi-
pative! gauge fields,

D~B2L !50 , D~B1L !52 Nfam~DNwinding1DNtwist! uspher. symm.. ~6.11!

The change ofB1L is now determined by two integers. The first,DNwinding, again corresponds to
Eq. ~6.10!. But the second,DNtwist, is an entirely new characteristic of spherically symmet
SU~2! gauge fields, which is related to the asymptotic behavior of the solutions of a~nonlinear!
Riccati equation embedded in the~linear! zero-energy Dirac equation.61 The integerDNtwist is zero
for strongly dissipative SU~2! gauge fields. See Ref. 62 for further discussion of the issues
volved.

B. Witten’s global gauge anomaly

The global SU~2! gauge anomaly, which turns out to be related to the sphaleron S* , differs
from the case discussed in the previous subsection in that not just a symmetry of the the
eliminated but the theory itself.

As mentioned in Sec. V B, the crossing of energy levels for paths over the S* barrier is related
to the existence of two normalizable zero-modes of the four-dimensional Euclidean Dirac op
iD” 4 , one of each chirality. The noncontractible sphere of three-dimensional configuration
also be viewed as a noncontractible loop of four-dimensional configurations. Furthermo
explained at the end of Sec. IV A, it is possible to pass from aloop of gauge field configurations
in the radial gauge to apathof gauge field configurations without the radial gauge condition. T
resulting path has topologically inequivalent vacua at the start and at the end.

FIG. 11. Potential energy over a slice of configuration space, parametrized by the Chern–Simons numberNCS. The height
of the energy barrier between topologically different vacua (NCS5nPZ) is set by the sphaleron S, which appears

different gauge copies (NCS5
1
21n, for nPZ). This figure essentially ‘‘unwraps’’ the loop of Fig. 3.
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Now consider the change of eigenvalues of iD” 4 along such a path. Since for one ‘‘point’’ o
the path~i.e., the I* -configuration! there are known zero-modes,44 it is to be expected that som
level crossing is occurring also here.

That this is indeed the case has been shown in Ref. 31 by increasing the dimension onc
The one-parameter family of four-dimensional Dirac operators can also be considered as a
five-dimensional one.~In other words, the whole NCS serves as a single background config
tion.! It then follows from the so-called mod-2 Atiyah-Singer index theorem63 that the correspond
ing five-dimensional Dirac operator has a normalizable zero-mode. For iD” 4 , this implies that an
eigenvalue is crossing zero from negative to positive values as the path is traversed. S
neously, there is a second eigenvalue which passes from positive to negative values. This
sion is summarized in Fig. 12, which also gives the corresponding spectral flow in three d
sions. ~The mod-2 index theorem guarantees only an odd number of zero-modes for the
dimensional configuration, but for simplicity we have assumed there is just one. See Ref.
numerical results and further discussion.!

Witten also argued that the spectral flow of iD” 4 leads to a global gauge anomaly.31 In the
Euclidean path integral of SU~2! Yang–Mills theory with a single isodoublet of Weyl fermion
there effectively appears a square root of the Dirac determinant,

E DAm Adet iD” 4 expS 1

2 E d4x tr FmnFmnD , ~6.12!

if one recalls that two Weyl fermions of opposite chiralities make a single Dirac fermion.
The Dirac determinant in Eq.~6.12! depends on the background gauge fieldsAm(x) and its

square root can be defined as the product of the positive eigenvalues@starting from a given gauge
field configuration, sayAm(x)50]. The above considerations then show that for a partic
continuousvariation of the gauge fields we end up with gauge fields, which are related to
starting configuration by a large gauge transformation and which have aAdet iD” 4 of opposite sign
~one positive eigenvalue having become negative; cf. the middle picture of Fig. 12!. In the path
integral, one has to integrate over all gauge fields~taking out the infinite factor due to gaug
invariance afterwards!. Hence, for every contributionAdet iD” 4 there is also a contribution
2Adet iD” 4 arising from the gauge-transformed background fields. This implies that the
integral ~6.12! vanishes.

More precisely, the path integral over the gauge fields is not well defined, because ther
satisfactory way to restrict the integration over the gauge fields so that a single Weyl isod

FIG. 12. Left: sketch of the eigenvalues of the Dirac Hamiltonian for a particular path over the S* noncontractible sphere
~the theory considered has both left- and right-handed fermions interacting with the SU~2! gauge fields, which is not the
case in Fig. 7!. Middle: eigenvalues of iD” 4 for the corresponding noncontractible loop through the constrained insta
I* . Right: eigenvalues of iD” 5 for the corresponding five-dimensional configuration. Each path with an energy
crossing zero from below~thick line! corresponds to a normalizable fermion zero-mode one dimension higher.
sphaleron S* has four fermion zero-modes, the constrained instanton I* two, and the five-dimensional configuration on
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gives a continuous gauge-invariant contribution. This, then, is the Witten anomaly, which ca
be proven without the mod-2 Atiyah–Singer index theorem but with the perturbative Bar
anomaly instead.64,65

C. Z-string global gauge anomaly

Just as for the Witten anomaly and the S* sphaleron of the previous subsection, there exis
global gauge anomaly related to theZ-string sphaleron.46 In order to explain this anomaly, we
need a modified noncontractible sphere~NCS!, obtained by continuous deformation of the ballo
as given in Sec. IV C. This modification has the advantage of being a real sphere, that is, w
degenerate points. The modified NCS still has one point corresponding to the vacuum a
point corresponding to theZ-string ~see the picture in the middle of Fig. 13!.

For the modified NCS, thez-independent SU~2! gauge field is in the polar gaugeAr50. But
like the case of the sphalerons S and S* , it is possible to relax the polar gauge condition and
demand instead that the vacuum reached forr→` is the trivial one. Then one ends up with a di
of configurations with a loop of pure-gauge configurations on the boundary~see the picture on the
right of Fig. 13!. Considering the compactified radial coordinater to be a polar angleu, the fields
are effectively defined on a sphereS2. The loop of vacuum configurations on this two-sphe
restricted to the smash productS1∧S2, corresponds to a nontrivial element of the homotopy gro
p3(S3).

We keep this in mind for later and turn to the eigenvalues of the four-dimensional Eucl
Dirac operator iD” 4 , where the time-dependent background fields are taken to be paths ov
Z-disc, with the start and end point~not necessarily the same! lying on the rim of vacuum
configurations. For any such path passing through theZ-string, we know from Sec. V C that iD” 4

has a single normalizable zero-mode corresponding to the eigenvalue of the Dirac Hamil
which crosses zero from below.

Now consider a particular family of operators iD” 4 corresponding to a family of paths over th
Z-disc, which starts from a constant path corresponding to a point on the rim of the disc, p
through a path via theZ-string, and ends up in a pure vacuum path formed by the boundary o
disc ~see Fig. 14, where theZ-disc of Fig. 13 has been flattened!. This family of four-dimensional
Dirac operators sweeps over the wholeZ-disc and we expect that there is spectral flow cor
sponding to the winding number of the underlying mapS3→S3. In our case, this means that
single eigenvalue of iD” 4 crosses zero. The zero crossing can be expected to occur for the
labeled~3! in Fig. 14.

Like the case of the Witten anomaly in Sec. VI B, this prevents us from defining the sq
root of the fermion determinant as a continuous gauge-invariant function of the bosonic
ground fields. Note that our path of four-dimensional configurations begins in a time-indepe
topologically trivial vacuum and ends up in a gauge-transformed, time-dependent and top
cally nontrivial one.

It is particularly interesting to see how this global gauge anomaly manifests itself in the
of time-independent fermion states. Since the Dirac Hamiltonian is areal Hermitian operator, we
may choose real energy-eigenstates. Concretely, look at the one-dimensional subspace spa

FIG. 13. Z-balloon,Z-sphere andZ-disc.
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the eigenstate which crosses zero from below in the picture on the left in Fig. 8. For the
ground fields, we use an arbitrary loop on theZ-disc, which circumnavigates theZ-string exactly
once and which is parametrized byaP@0,2p#. Then the energy eigenstate defines areal line
bundle overS1.

It has been shown in Ref. 46 that this bundle is, in fact, the Mo¨bius bundle. A normalized
eigenstateuF~0!& transported around the loop ends up asuF(2p)&52uF(0)&; see Fig. 15. The
phase factor found is determined by the Berry phase for adiabatic transport.66 The Berry phasep
~mod 2p! is of topological origin and does not change under continuous deformation of the
as long as the loop of configurations does not touch the fermion degeneracy ‘‘point’’ corres
ing to theZ-string. This observation also shows that the boundary of theZ-disc ~Fig. 13! is a
noncontractible loop of vacuum configurations, since the real Berry phase factor21 on it cannot
be continuously changed to11.

The variation of the eigenstate along the rim of theZ-disc defines a projective action of th
gauge group on the fermionic matter. There is then a global gauge anomaly, because it is
sible to define a real, continuous, and proper~i.e., nonprojective! representation of the local gaug
group on the fermion states. Since the vacuum of quantum field theory is the Dirac sea w
negative-energy eigenstates filled, this also means that the second-quantized vacuum state
the Berry phase factor21. See Sec. 6 of Ref. 46 for further discussion.~We take the opportunity
to correct a slip of the pen. In the last sentence of Footnote 6 in Ref. 46, the words ‘‘and
versa’’ must be deleted.!

A similar interpretation of the Witten anomaly in terms of a Berry phase has been giv
Ref. 67. There is, however, a crucial difference between theZ-string global gauge anomaly and th
Witten anomaly. For theZ-string anomaly, namely, theredoesexist a local counterterm in the
action which restores gauge invariance, but at the price of violating Lorentz and CPT invaria68

More generally, if gauge invariance is enforced, there appears a new anomaly, the so-calle
anomaly~see Refs. 69 and 70 for the main result and Ref. 71 for a review!.

FIG. 14. Five closed loops on theZ-disc ~cf. Fig. 13!. Loop ~1! corresponds to a single point on the boundary, loop~3!
passes through theZ-string, and loop~5! consists of the whole boundary of the disc.

FIG. 15. Möbius bundle structure of the gauge orbit, with loop parameteraP@0,2p#. The line represents a normalized re
eigenstateuF~a!& of the Dirac Hamiltonian, withuF(2p)&52uF(0)&.
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VII. CONCLUSION

The space of finite-energy three-dimensional field configurations of SU~2! Yang–Mills–Higgs
theory~in short, configuration space! has nontrivial topology,3,4 which leads to the existence of
new type of classical solutions, the so-called sphalerons. Sphalerons are unstable static
energy solutions of the classical field equations, whereas solitons are stable solutions.

In Sec. IV, we have explained the topology behind the S, S* , andZ-string sphalerons5–7 of the
SU~2! Yang–Mills–Higgs theory~2.1!. Precisely this theory appears in the electroweak stand
model of elementary particle interactions.8 Knowledge of these classical solutions may, therefo
be of great importance to physics.

Adding chiral fermions to the SU~2! Yang–Mills–Higgs theory, the nontrivial topology o
configuration space makes itself felt by the occurence of spectral flow,32 as discussed in Sec. V. I
turn, the general phenomenon of spectral flow is related to the possible existence of ano
which invalidate certain properties of the classical theory, as discussed in Sec. VI.

The spectral flow over a noncontractible loop through the sphaleron S is related to the
U~1! anomaly,25,26 which corresponds to a breakdown of baryon and lepton number conserv
in the electroweak standard model.53 The spectral flow through the S* and Z-string sphalerons
doesnot lead to a global SU~2! gauge anomaly,31,46 because the electroweak standard model
an even number of chiral isodoublets. Still, there is nontrivial spectral flow~more precisely,
spectral rearrangement! over configuration space, but its physical implications remain to be c
fied ~cf. Refs. 44 and 69!. Indeed, we need a better understanding of the role of configura
space topology in concrete physical problems, such as the behavior of elementary particle fi
high energies or temperatures.
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We examine the low-energy dynamics of four-dimensional supersymmetric gauge
theories and calculate the values of the gluino condensate for all simple gauge
groups. By initially compactifying the theory on a cylinder we are able to perform
calculations in a controlled weakly coupled way for a small radius. The dominant
contributions to the path integral on the cylinder arise from magnetic monopoles
which play the role of instanton constituents. We find that the semi-classically
generated superpotential of the theory is the affine Toda potential for an associated
twisted affine algebra. We determine the supersymmetric vacua and calculate the
values of the gluino condensate. The number of supersymmetric vacua is equal to
c2 , the dual Coxeter number, and in each vacuum the monopoles carry a fraction
1/c2 of topological charge. As the results are independent of the radius of the circle,
they are also valid in the strong coupling regime where the theory becomes decom-
pactified. For gauge groups SU(N), SO(N) and USp(2N) our results for the gluino
condensate are in precise agreement with the ‘‘weak coupling instanton’’ expres-
sions~and not with the ‘‘strong coupling instanton’’ calculations!. For the excep-
tional gauge groups we calculate the values of the gluino condensate for the first
time. © 2003 American Institute of Physics.@DOI: 10.1063/1.1586477#

I. INTRODUCTION AND SUMMARY OF RESULTS

The goal of this article is to provide new calculations of the values of the gluino conde
^tr l2& in four-dimensionalN51 supersymmetric Yang-Mills theory for all the simple gau
groups. Our approach is based on the idea1 that when the space-time is partially compactified
the cylinderR33S1, magnetic monopoles play the role of instanton constituents, directly con
ute to the path integral and completely determine the values of the gluino condensate. Our
for the gluino condensate are summarized in Table I and a universal formula in terms o
algebra data is given in~56!. For classical gauge groups our results are in precise agreemen
the known expressions derived in the ‘‘weak-coupling instanton’’ approach in Refs. 2–5. Fo
exceptional gauge groups the condensates are calculated for the first time.

It is somewhat of a miracle that some features of gauge theories which have supersym
can be understood exactly. Sometimes this success arises from viewing these theories a
embedded in string theory, a classical example being the duality of Maldacena.6 Generally, how-
ever, we can make use of the fact that supersymmetry leads to very restrictive Ward ide
giving rise to powerful holomorphy properties~see the review in Ref. 7!. Regarding this later
point, the full functional form of certain correlators is fixed up to an overall constant. Somet
these correlators have a dependence on the couplings which can be identified with specific
theory configurations, in particular with instantons, but in other cases this is not so.8 In the former
case, it is tempting to suppose that a semi-classical instanton calculation will yield the value
correlator. In particular, we have in mind multi-point functions of the gluino operator trl2 in N
51 supersymmetric gauge theory. It is our thesis that one must be very careful in apply
semi-classical analysis to a strongly-coupled theory and such calculations will only be cor
36400022-2488/2003/44(8)/3640/17/$20.00 © 2003 American Institute of Physics
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they are performed in a weakly-coupled phase, where semi-classical methods are rigorou
tified. It is then possible to infer the value of the correlator in a strongly-coupled phase, i
phase is continuously connected to the weakly-coupled phase by using holomorphicity. It w
misuse of a semi-classical analysis directly in a strongly-coupled phase that led to the
condensate puzzle.

This famous puzzle is the inconsistency between two conceptually different approache
lowed in the early literature of calculating the gluino condensate in pureN51 supersymmetric
gauge theory. In the first methodology9–11—and in the present context the ‘‘suspect’’ metho
because it involves a semi-classical analysis directly in the strongly-coupled confining phase
gauge theory—the so-called strong-coupling instanton~SCI! approach, the gluino condensa
^tr l2& is determined via an explicit one-instanton calculation of a certain multi-point functio
tr l2. Cluster decomposition arguments are then invoked in order to extract the one-point fu
^tr l2&. In the second methodology,2 the so-called weak-coupling instanton~WCI! approach—and
for us the safe method—the calculation is performed with additional matter fields whose pre
ensures that the non-Abelian gauge group is broken and the theory is in a weakly-coupled
phase and a ‘‘constrained instanton’’ calculation is justified.12 Holomorphicity is then used to
decouple the matter fields and to flow continuously to the confining phase of the original g
theory. As is well known, these two methods give two different values for the glu
condensate:2,13,11,5

K tr l2

16p2L
SU(N)

5H 2

@~N21!! ~3N21!#1/N L3 SCI,

L3 WCI.

~1!

@These results are quoted for an SU(N) gauge theory in the Pauli-Villars scheme withL being the
corresponding dimensional transmutation scale of the theory defined in Eq.~2! below.# The reason
for the discrepancy between the SCI and WCI calculations, as well as the question as to w
correct, has been a long-standing controversy.2,11,14,15This controversy was reexamined in Ref. 1
using recently developed multi-instanton methods,17,18for a comprehensive review see Ref. 19. B
evaluating thek-instanton contribution to gluino correlation functions in the large numbe
colors limit it was shown that an essential step in the SCI calculation of the gluino conde
namely the use of cluster decomposition in the instanton sector, is actually invalid. The c
idea pursued in Ref. 1 and in the present paper is that there are additional configurations
contribute to the gluino condensate implying that the SCI calculation only gives part of the an
The existence of other contributions to multi-point correlators of trl2, which are non-instantonic
invalidates the application of cluster decomposition to a purely instantonic contribution.

In Ref. 1 we provided an alternative way to deform the theory in order to connec
confining phase continuously to a weak-coupled phase: in this case a Coulomb rather than a
phase. The idea is to consider the theory partially compactified on the cylinderR33S1. In this
scenario, the gauge field can have a non-trivial Wilson loop around the circle which acts li

TABLE I. The values of the gluino condensate in the Pauli-Villars scheme
~2!.

Gauge group ^tr l2&/(L316p2)

SU(N) 1
SO(N) 24/(N22) 21

USp(2N) 212 2/(N11)

G2 221/231/4

F4 221/9321/3

E6 221/2321/4

E7 227/9321/3

E8 2213/15322/5521/6
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adjoint-valued Higgs field breaking the gauge group to its maximal Abelian subgroup and s
theory is in a Coulomb phase. For small enough radius, the resulting theory is arbitrarily w
coupled and the gluino condensate can be reliably calculated. It is then argued, based on th
argument of holomorphy, that the result is actually independent of the radius and is the
easily extrapolated to the confining phase where the radius goes to infinity and the theory be
decompactified.

However, there is a significant bonus in this scenario: the additional configurations miss
the instanton calculation can explicitly be identified at small radius with BPS monopoles i
gauge theory with the component of the gauge field around the circle playing the role of a
field. However, we should point out that this in no way means that BPS monopoles quantita
describe the physics in the decompactification limit. In this scenario, the one-point function^tr l2&
directly receives a semi-classical contribution from single monopoles, unlike the SCI situat
R4, where, as described above, only multi-functions receive contributions.~There are precisely 2
gluino zero modes in the single-monopole background. These are supersymmetric fermio
modes of the monopole. In distinction with instanton configurations onR4, there are no, e.g.
superconformal gluino zero modes in the monopole background. In fact, classical conf
invariance of the theory is explicitly broken by the compactification on the cylinder.! The mono-
poles consequently carry fractional topological charge. Hence, the theory on the cylinder un
a very pleasing picture of instanton constituents, or instanton partons, that were argued to
important role in confinement of ordinary QCD.20–24 The fact that an instanton configuration o
the cylinder is actually a composite of fundamental monopoles has been the subject of num
earlier works.25–30 These generalize the notion of a periodic instanton, or ‘‘caloron,’’31–33 to the
case when the gauge field has a non-trivial Wilson line around the circle. It is only in this cas
the instanton constituents can be pulled apart and identified with monopoles. It turns out
ordinary QCD the Wilson line of the gauge field around the circle is energetically favore
vanish: in this case the monopoles have no role to play in the physics. On the contrary, as w
explicitly show, inN51 supersymmetric gauge theories, a non-trivial superpotential is gene
by the monopoles whose supersymmetric vacua have a non-trivial value for the Wilson lin
hence monopole effects are important. Other recent references which consider supersym
gauge theories on a cylinder and monopole effects are to be found in Refs. 34–36.

In N51 supersymmetric gauge theories, the first coefficient of theb-function is b053c2 ,
wherec2 is the dual Coxeter number of the gauge group listed in the table in Appendix A. We
use a definition of the dynamical scaleL in the Pauli–Villars renormalization scheme via th
RG-invariant exact relation

L35m3
1

g2~m!
exp

2p i t~m!

c2
. ~2!

@If one chooses to use instead another exact definition ofL,15 more in line with standard QCD
conventions,L̃35(m316p2/3c2g2) exp (28p2/c2g

2 ), then the values of the gluino condensate
Table I have to be adjusted accordingly.# Herem is the Pauli–Villars regulator mass andt is the
usual complexified coupling incorporating both the gauge coupling constantg and the theta angle
q:

t5
q

2p
1

4p i

g2 . ~3!

The article is organized in the following way. In Sec. II we consider, in general terms
effect of compactifying theN51 gauge theory onR33S1. In Sec. III we discuss the variou
semi-classical configurations that can contribute to the functional integral and explain the re
between monopoles and instantons on the cylinder. Regarding this point, our considerations
article are purely field-theoretical; for an elegant D-brane discussion of the SU(N) dynamics on
R33S1 see Refs. 1 and 25. In Sec. IV we derive the form of the superpotential in the low e
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effective three-dimensional theory generated by monopoles~46!. It turns out that this potential is
precisely the affine Toda potential for a specific affine algebra. For the simply-laced cas
affine algebra is the untwisted affinization of the Lie algebra of the gauge group while fo
non-simply-laced cases it is affine algebra whose Kac–Dynkin diagram is obtained from
untwisted affine diagram with long roots changed to short roots, and vice versa. The
algebras~in Kac’s notation37! are listed in Table II. The Toda potential is in complete agreem
with M~F!-theory considerations,38–40 although we will find some additional prefactors that fe
into the calculation of the gluino condensate in an essential way. From the superpotential, w
that the number of supersymmetric vacua is equal to dual Coxeter number of the gauge g
complete agreement with the Witten index.41 The values of the gluino condensate in each vacu
are then found and the results are summarized in Table I. For all classical groups these
agreement with the WCI results of Refs. 2–5. In Appendix A we summarize our Lie alg
conventions and Appendix B contains a brief discussion of the measure needed for integ
over the collective coordinate space of fundamental monopoles.

II. NÄ1 GAUGE THEORY ON THE CYLINDER

In this section, we consider the effect of compactifying the pureN51 gauge theory on a
cylinder of radiusR. To this end, let us takex0 to be periodic with period 2pR. We then impose
periodic boundary conditions on the gauge field and gluino:

vm~xm ,x0!5vm~xm ,x012pR!, l~xm ,x0!5l~xm ,x012pR!. ~4!

~In our notation the four-dimensional indices run overm,n,...50,1,2,3 while our three-
dimensional indices run overm,n,...51,2,3.) Notice that the periodicity of the fermions preserv
supersymmetry.

Smooth finite-action gauge fields on the cylinder were classified in Ref. 33. In particul
finite radius instanton configurations do not exhaust the set of semi-classical contribution
complete set of semi-classical configurations is characterized by three pieces of data. First,
a topological or instanton charge~or second Chern class! generalized fromR4 to the cylinder:

k5
1

16p2 E
R33S1

d4x tr vmn* vmn. ~5!

An important feature of the cylinder is thatk is not quantized in integer units. However, whenk
is an integer there are solutions with actionS58p2k/g22 ikq that, for scale size much smalle
than R, are identifiable as instantons of the uncompactified theory. The second piece o
involves the Wilson loop of the gauge field around the circle:

R
S1

dxm vm5E
0

2pR

dx0 v0[w. ~6!

We will then define the VEV ofw as the asymptotic value at spatial infinity inR3:

TABLE II. The associated affine algebra.

Gauge group Lie algebra Affine Toda potential

G(Simply-laced) g g(1)

SO(2r 11) br a2r 21
(2)

USp(2r ) cr dr 11
(2)

G2 g2 d4
(3)

F4 f 4 e6
(2)
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^w&5 lim
uxmu→`

w"H, ~7!

where we have fixed a portion of the global gauge symmetry by choosing the Wilson loop~7! to
lie within the Cartan subalgebra of the Lie algebrag associated to the gauge groupG. ~Our Lie
algebra conventions are summarized in Appendix A. We will denoter 5rankG vectors in bold-
face.! This still leaves the freedom to perform global gauge transformations from the Weyl g
Wg of G.

A nonzero value for̂w& acts as an adjoint-valued Higgs field that generically breaks the g
group to its maximal Abelian subalgebra U(1)r . The classical moduli spaceMcl , parametrized by
the vector̂ w&, is the quotient

Mcl5
Rr

2p•LW* ’Wg
, ~8!

whereLW* is the co-weight lattice. The form of the quotient is explained in the following way:
have already noted that fixinĝw& to be in the Cartan subalgebra leaves the freedom to perf
global gauge transformations in the Weyl group. On top of this, theories with^w& differing by 2p
times any co-weight vector are equivalent. To see this last point, consider the following top
cally nontrivial gauge transformation

U~x0!5expS ix0

R
v* •HD , ~9!

for any co-weightv* PLW* . This transforms the component of the gauge field around the c
as v0→v01v* •H/R, and hencê w&→^w&12pv* . The transformation~9! is periodic in the
adjoint representation of the gauge group and consequently in the pure gauge theory wh
fields are adjoint-valued̂w& is identified with^w&12pv* . ~Becausea"v* PZ for anyroot a and
co-weightv* .)

We will find it convenient to choose the VEV̂w& to lie in a ‘‘fundamental cell’’

0<^w&•ai,2p , i 51,...,r , ~10!

whereai are the simple roots ofg. @Notice that this region is still an over-parametrization of t
quotient~8!.# The regions wherêw&•ai50, for some set ofi ’s, correspond to submanifolds o
Mcl where a non-Abelian subgroup of the gauge symmetry is restored.

The final piece of data arises from the fact that finite action configurations can also
three-dimensional magnetic charge. This is anr -vector-valued quantityg in the charge space o
the unbroken U(1)r Abelian symmetry that can be defined via a surface integral over the
sphere at spatial infinity inR3 of the magnetic fieldBm5 1

2emnrvnr :

2
1

2p E
S2

dSmBm[g"H. ~11!

The magnetic charge is subject to the usual generalization of the Dirac quantization rule42,43which
requires that

gPLR* , ~12!

the co-root lattice ofg.
Classically, the Wilson loop̂w& is not determined and, so, as we have explained, there

moduli spaceMcl of inequivalent theories. An important question is whether this classical de
eracy persists in the quantum theory. At this point, the behavior depends crucially on wheth
has periodic or anti-periodic boundary conditions on the fermions. In the latter—thermal—
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Ref. 33 argued that nontrivial values of the asymptotic Wilson loop~7! are suppressed in th
infinite volume limit. Consequently, the classically flat directions are lifted by thermal quan
corrections and the true vacuum of the theory is^w&50. In this case, the configurations wit
magnetic charges are not relevant, since they require nonvanishing VEV, and the semi-cl
physics is described by instantons only. Remarkably, for the theory on the cylinder, with pe
boundary conditions on the fermions, the argument of Ref. 33 does not apply and, as we sh
in the following sections, the opposite scenario ensues; namely, the following.

(i) The semi-classical physics of the theory on the cylinder is described by configuratio
BPS monopoles. There arer 11 types of ‘‘fundamental’’ monopole which carry only fou
bosonic and two~adjoint! fermionic zero modes. To those who are sufficiently initiated in
monopole calculus in gauge theories with arbitrary gauge group, this will be a surprise
would expected to have onlyr such monopoles~each with a magnetic charge equal to o
of ther simple roots!. The additional monopole, needed to make up the full complemen
r 11 types, is specific to the compactification on the cylinder since, unlike the other
a nontrivial function of ‘‘time’’ x0 .25,26,29,30The magnetic charge of the new monopole
such that when allr 11 types of monopoles are present with a specific degeneracy
magnetic charges cancel and the resulting configuration carries only a unit of inst
charge. Hence, remarkably, instantons on the cylinder can be understood as com
configurations of monopoles.25–30

(ii) The classical moduli space of the gauge theory on the cylinder~6! is lifted in the quantum
theory in a nontrivial way. The quantum vacua correspond to a single point inMcl cell
along with an additionalc2-fold degeneracy, which has no counterpart in the class
theory, and corresponds precisely to the expectations based on a refined Witten inde41 and
the WCI counting.44,4

III. SEMI-CLASSICAL CONFIGURATIONS

In the weak-coupling limit, the path integral is dominated by field configurations which a
minimal action in each topological sector. These configurations satisfy the four-dimensiona
dual, or anti-self-dual, equationsvmn56* vmn . As we have explained there are two quantu
numbers carried by semi-classical configurations: the topological charge and the magnetic

First of all, let us consider solutions which are independent of the coordinate around the
x0 . These are simply BPS monopoles in the three-dimensional theory45–48with the time direction
taken to be alongx0 . Monopole solutions in a gauge theory with a simple gauge groupG can in
turn be constructed out of the SU~2! BPS monopole in the following way.43 The idea is to take a
regular embedding SU(2),G, associated to a positive roota of G:

t15
1

2
~Ea1E2a!, t25

1

2i
~Ea2E2a! , t35

1

2
a* •H, ~13!

which obey the SU~2! algebra

@ta,tb#5 i eabct
c. ~14!

~Here,a* 52a/a2 is the co-root associated toa.! The monopole solution is then

v0~xn!5Fc~v;xn!tc1
1

2pR S ^w&2
1

2
~^w&•a!a* D •H, vm~xn!5vm

c ~v;xn!tc, ~15!

whereFc(v;xn) is the Higgs field andvm
c (v;xn) are the spatial components of the gauge field~in

the gaugev050) of the SU~2! BPS monopole. The long distance behavior of this solution is

lim
uxmu→`

Fc~v;xn!tc5
v
2

a* •H, ~16!
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where

v5
a•^w&
2pR

. ~17!

For this solution to be well defined, we must havev.0, which is automatic ifa is a positive root
and^w& lies in the fundamental cell~10!, in which case it has magnetic charge, topological cha
and action given by

g5a* , k5a* •
^w&
2p

, S5
4p

g2 a* •^w&. ~18!

For completeness, we give the explicit solution for the SU~2! BPS monopole in ‘‘hedgehog’
gauge,

vm
c ~v;xn!5emnc

xn

uxu2 S 12
vuxu

sinhvuxu D , ~19a!

Fc~v;xn!5
xc

uxu2 ~vuxucothvuxu21!. ~19b!

The asymptotic value of the magnetic field of the hedgehog solution, asuxu→`, is

Bm
c →2

xmxc

uxu4 , ~20!

while in unitary gauge

Bm
c →2

xm

uxu3
dc3, Bm[Bm

c tc→2
xm

2uxu3 a* •H. ~21!

However, thesex0-independent solutions do not exhaust the set of solutions with a g
magnetic chargea* .25 A whole tower of other solutions whichare x0 dependent can be generate
in the following way. First of all, we start with the solution~15! with ^w& lying in the fundamental
cell ~10!. We then write down the same solution with a shifted VEV^w8&5^w&1pna* , where
nPZ. For this solution to be well defined we must have

v85
a•^w8&
2pR

5
a•^w&
2pR

1
n

R
.0 . ~22!

For a5ai , a simple root,~10! implies thatn>0. Acting on the solution with the~nonperiodic!
gauge transformation,

Vn~x0!5expS inx0

2R
a* •HD , ~23!

has the effect of restoring the VEV̂w& to its original value. The new solution is then given by

v0~xn!5Fc~v1n/R;xn!t̃c1
1

2pR S ^w&2
1

2
~^w&•a12pn!a* D •H,

~24!
vm~xn!5vm

c ~v1n/R;xn!t̃ c,

wherev is given as in~17! and the SU~2! generators are conjugated withVn(x0):
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t̃ c5Vn~x0!tcVn~x0!21. ~25!

Notice althoughVn(x0) is not a periodic gauge transformation the generatorst̃c are periodic
functions of x0 . The solution~24! has the same magnetic charge as~15!, but the topological
charge isk5a* •^w&/2p1n. This solution can be interpreted as a composite configuration o
original monopole plus an instanton of chargen.

However, there are also towers of solutions of the self-dual equations that have a ma
charge equal to somenegativeroot.25 We should emphasize that these solutions arenot anti-
monopoles which would satisfy theanti-self-dual equations. To construct these solutions we
start with our solution~15! with ^w& lying in the fundamental cell. We now define a new soluti
with a VEV ^w8&5ka(^w&)1pna* , whereka is the Weyl reflection ina. For the solution to be
well defined we must have

v85
a•^w8&
2pR

52
a•^w&
2pR

1
n

R
.0. ~26!

For a5ai , a simple root, this meansn.0. To reinstall the original VEV, we then perform a We
reflection ina and the gauge transformation~23!. The resulting solution is

v0~xn!5Fc~n/R2v;xn!t̃ c1
1

2pR S ^w&2
1

2
~2^w&•a12pn!a* D •H,

~27!
vm~xn!5vm

c ~n/R2v;xn!t̃ c,

wherev is given in ~17! and the SU~2! generators are now conjugated withVn(x0)ka :

t̃ c5Vn~x0!katckaVn~x0!21. ~28!

It can be easily verified that this solution is again periodic inx0 . The resulting solution has
magnetic charge2a* and topological chargek52a* •^w&/2p1n.

It will be important for later to determine the number of adjoint fermion, or gluino, z
modes of these monopole solutions. Each classical solution has at least two adjoint fermio
modes protected by supersymmetry. These modes can be generated from the purely
solution by acting with the generators of supersymmetry that do not leave the configu
invariant. This gives the universal expression for these supersymmetric modes

la5sa
mnbjbvmn , ~29!

wherevmn is the field strength. For future reference we give the long-distance behavior o
supersymmetric fermion zero modes~29! of our fundamental monopole solutions~15! and ~27!
with n51:

la5sa
mnbjbvmn522~snj!aBn→4p~SFj!aa* •H, ~30!

whereSF(x)5smxm /(4puxmu3) is the massless fermion propagator in three dimensions.
Solutions with only the supersymmetric zero modes have four associated bosonic zero

which correspond to moving the center-of-mass of the monopole inR3 as well as performing
global gauge rotations by exp((i/2) V a* "H). Hence these solutions are special in that they
elementary or ‘‘fundamental’’: the other solutions have additional moduli that correspond to
ing the configuration apart into their fundamental constituents.

As might have been expected there arer solutions of the form~15! wherea is a simple root
ai lying at the bottom of the more general tower of solutions~24!. This gives usi 51,...,r
fundamental monopole solutions with two adjoint-valued fermion zero modes, magnetic c
ai* , and the topological chargek5ai* •^w&/2p. Solutions higher in the tower, withn.0, have
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2(11nc2) fermion zero modes,25,26 as we expect for a configuration of a fundamental monop
andn instantons. In addition to theser fundamental monopoles, there is one other solution tha
fundamental.25,26This is a solution which has a negative magnetic charge equal to the lowes
a0* [a0 ~although the solution, as we explained above isnot an anti-monopole! lying in the
second tower~27! with n51 and hence with topological chargek52a0* •^w&/2p11.

Since ( i 50
r ki* ai* 50, the quantum numbers of the solutions suggest that a pure insta

solution, carrying zero magnetic charge and unit topological charge, is a composite configu
with ki* fundamentalai monopoles, for eachi 50,...,r . ~Hereki* are the dual ‘‘Kac labels,’’ or
co-marks, defined in Appendix A.! This turns out to be the case25,26and the resulting configuration
has exactly 2c2 (4c2) exact fermionic~bosonic! zero modes as expected for a singly-charg
instanton with gauge groupG.

IV. MONOPOLE CONTRIBUTIONS TO THE SUPERPOTENTIAL

In this section, we will explain how the fundamental monopoles described in the last se
lift the classical degeneracy of the theory parametrized by the asymptotic value of the Wilso
^w& ~7!. The idea is to consider the low energy three-dimensional effective theory correspond
the massless Abelian components of the fields formed by integrating out all the massive fi

For this analysis to hold we must first assume there is no roota such that̂ w&•a50, so that
the unbroken gauge group is maximally Abelian U(1)r . We will also assume that the Wilson lin
VEV ^w& lies in the fundamental region~10!. After that we can integrate out~1! all non-Abelian
fields onR33S1, and~2! all the massive Kaluza–Klein modes onS1, i.e., the modes with nonzer
Matsubara frequencyvm5m/R, to flow to the Abelian theory onR3. We emphasize that the
periodicity in^w&;^w&12pv* , v* PLW* , is a property of the full microscopic theory but not
the low-energy theory onR3. Indeed, the large gauge transformation~9! is x0-dependent and ha
the effect of mixing up the massless and massive Kaluza–Klein modes.

The fields of the low energy theory consist of the Wilson loopw, i.e., the componentv0 of the
gauge field averaged over the circle, along withr massless photons corresponding to the com
nents ofvm in the Cartan subalgebra of the gauge group. Along with these bosonic fields the
superpartners corresponding to the Abelian components of the gluino.

It turns out to be convenient to use the fact that massless Abelian gauge fields in
dimensions can be eliminated in favor of scalar fields by a duality transformation. To constru
classical effective action, we start with the action of the pure gauge theory in four dimension
dimensionally reduce to three dimensions keeping only the Abelian components of the
From ~6!, the componentv0 of the four-dimensional gauge field is replaced byw"H/(2pR) and
the resulting three-dimensional effective action is

Scl5
2pR

g2 E d3x H 1

4p2R2 ~]mw!22
1

2
~vmn!212i l̄•s̄mDmlJ 2

iq

8p2 E d3x emnr]mw"vnr .

~31!

@It is useful to notice that in our normalization tr(a"H b"H)5a"b.] In order to construct the dua
description of the three-dimensional gauge field one adds a new term to the action involving
s which serves as a Lagrange multiplier for the Bianchi identity constraint:

Scst52
i

4p E d3x emnr]ms"vnr52
i

2p E
S2

dxm s"Bm. ~32!

The Abelian field strengthvmn can now be integrated-out of the path integral as a Gaussian
to obtain the classical effective action, whose bosonic part is

Scl
bos5

1

2pR E d3x H 1

g2 ~]mw!21
g2

16p2 S ]ms1
q

2p
]mwD 2J . ~33!
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This can be written compactly in terms of the single complex field

z5 i ~tw1s!, ~34!

as

Scl
bos5

1

8p2R E d3x
1

Im t
]mz1

•]mz. ~35!

We have eliminated ther massless photons in favor of anr -vector scalar fields. Notice that since
the magnetic chargeg is quantized in the co-root lattice it follows from~32! that s is physically
equivalent tos12pv for any weightvPLW . Once again, we also have the freedom to perfo
Weyl reflections and sos is valued in the quotient

Rr

2p•LW’Wg
, ~36!

to compare withw which is valued in the slightly different quotient~8!. Obviously these space
are the same for the simply-laced groups.

The fact that both~real! scalar fieldsw ands can be amalgamated into a single complex fie
z is no coincidence. Since the original four-dimensional theory wasN51 supersymmetric, the
effective theory written in terms of the bosonic fieldsw ands, along with the Abelian component
of the gluinola , must form a representation of four-dimensionalN51 supersymmetry~corre-
sponding toN52 in three dimensions! which must be a chiral superfield since we have taken
dual of all the vector fields. In particular the bosonic fields must be expressible in terms of a
complex field as we have found in~34!.

The N52 ~in 3D! supersymmetric completion of the classical action~35! can be most suc-
cinctly expressed in terms of a four-dimensionalN51 chiral superfieldX with scalar componen
z and fermionic componentla , the Abelian component of the gluino. The supersymmetric vers
of ~35! written in superspace is then

Scl5
1

8p2R E d3x
1

Im t
X1

•Xuuuūū. ~37!

Quantum effects can modify the classical expression~37!. However, modifications must pre
serve supersymmetry. As long as we are at a generic point in the classical moduli space, we
to be able to integrate out all the massive fields to be left with an effective theory in terms
superfieldX. The most general possible low energy effective action, i.e., involving at most
derivatives or four fermions, and preservingN52 supersymmetry in three dimensions, is

Seff5E d3x $K~X,X1!uuuūū1W~X!uuu1W̄~X1!u ū ū%, ~38!

which involves an arbitraryD-term K(X,X1) as well as a superpotentialW~X!. It is the super-
potential that is responsible for lifting the classical degeneracy and which we must determ

In the classical theory~37! the superpotential vanishes identically. Quantum corrections
modify the theory in a complicated way depending on the couplings. However, the superpot
by the standard arguments,49,7,34must be holomorphic in the fieldsX and the complexified cou
pling t. In particular, up to the overall factor, the superpotential can only depend onR through the
running of t via the dimensionless quantityRuLu, whereL is the usual Pauli–Villars scale o
strong coupling effects in the pure gauge theory inR4. @This appears when the fields are n
canonically normalized. In our case scalar fields arise from the Wilson line and the dual ph
which are dimensionless. This leads to an overall factor ofR/g2 in Eq. ~46! below.# We intend to
compute the superpotential at weak-coupling, for whichR!uLu21 and the VEV of the effective
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Higgs field ~17! is large and a semi-classical analysis should be reliable. In this regime
superpotential will receive contributions from the minimal action configurations in each topo
cal sector which have exactly two gluino zero modes; in other words, from ther 11 fundamental
monopoles described in the last section. As usual holomorphy then forbids any perturbativ
rections to the semi-classical contributions and, as a consequence, fixes theR dependence, a fac
that ultimately will allow us to takeR to be large.

In the presence of the dual photon fields, the action of the fundamental monopole associa
to the rootaj , j 50,...,r , is given in terms of the VEV of the scalar fieldz by

Sj522p i td j 02 i taj* •^w&2 i aj* •^s&[22p i td j 02aj* •^z&. ~39!

Heret is the complexified coupling~3!.
We determine the form of the superpotential by calculating the monopole contribution t

large distance behavior of the correlator of two components of the massless gluino field

^la~x! ^ lb~0!&. ~40!

In the background of theaj monopole, only the componentla}aj is nontrivial; in fact from~30!
one finds the long-distance behavior to be

la
LD~x!54paj* SF~x2a!a

gjg, ~41!

whereSF(x)5smxm /(4puxmu3) is the massless fermion propagator in three dimensions,am is the
position of the monopole inR3 andja are the Grassmann collective coordinates correspondin
the two supersymmetric zero modes.

In order to evaluate the contribution to the superpotential from the monopole, we nee
measure for integrating over the moduli space of the monopole derived in Appendix B. A fu
mental monopole has a moduli space that is parametrized byam , the position inR3 and by the
U~1! phase angle 0<V<2p. Along with this, there are two Grassmann collective coordina
ja , corresponding to the two supersymmetric zero modes. From Eq.~79! the measure is

E dmmon
( j ) 5

2

aj
2

m3R

g2 e2SjE d3a dV d2j. ~42!

Performing the integrals over the phase angle and the Grassmann collective coordinates,
that

^la~x! ^ lb~0!&5
26p3m3R

g2aj
2 aj* ^ aj* e2p i td j 01aj* •^z&E d3a SF~x2a!a

gSF~a!bg. ~43!

Amputating this correlator we find the associated vertex in the effective action:

S 2pR

g2 D 2 25p3m3R

g2aj
2 e2p i td j 01aj* •^z& ~aj* "l!2. ~44!

In the above, the numerical factor in the bracket reflects our normalization for the kinetic te
a"l which follows from~31!. The vertex~44! is generated by a term in the effective potential
the form

4pm3R

g2aj
2 e2p i td j 01aj* •X . ~45!
                                                                                                                



ce

usual

bra is

Table
ynkin
sa.
rpo-
tified

s, are
e have

e

three-
m the
oint
hree-

affine
inder is

fore

3651J. Math. Phys., Vol. 44, No. 8, August 2003 Monopoles, affine algebras and gluino condensate

                    
@In order to get the correct numerical factor, notice that the fermionic component ofz and the
gluino l are related viac525/2p2g22R l. This follows from the fact50 that the superpartner ofv0

is (l1l̄)/&.] Hence, summing over the effects of allr 11 fundamental monopoles we dedu
that the monopole-generated superpotential of the theory is

Wmono~X!5
2pm3R

g2 S (
j 51

r 2

a j
2 eaj* •X1

2

a 0
2 e2p i t1a0* •XD . ~46!

This is an affine Toda potential for an associated affine algebra. Notice that to give the
expression for a Toda potential one can remove the pre-factors 2/aj

2 by a shift in the field:

X→X1(
j 51

r

ln~aj
2/2!vj1

r

c2
S 2p i t2(

j 50

r

ln~a j
2/2!D , ~47!

wherer5( j 51
r vj is the Weyl vector. For the simply-laced groups, the associated affine alge

the untwisted affinization of the original Lie algebra,g(1) in Kac’s notation,37 while for the
non-simply-laced groups the corresponding affine algebra is twisted in the way described in
II. In these cases, the Kac–Dynkin diagram of the affine algebra is obtained from the Kac–D
diagram of the untwisted affinizationg(1) by changing long roots into short roots, and vice ver
In Kac’s notation37 this leads to the twisted affinization of a different algebra. The same supe
tential has been deduced from entirely different considerations involving M theory compac
on certain eight-dimensional manifolds,38–40,51,52although the 2/aj

2 prefactors, that we shall find
crucial in order to get results for the gluino condensate that agree with other calculation
absent. It is also interesting that the integrable systems related to the Toda potentials that w
found above are precisely those that appear in the ‘‘Seiberg–Witten theory’’ of theN52 gauge
theory with the same gauge group in four dimensions.53,54 Naturally this is no accident since th
N51 theory can be obtained from theN52 theory by soft breaking mass terms.

Importantly, although we have calculated the superpotential in the limitR!uL21u, at weak
coupling, there can be no additional dependence onR and the result can be continued to anyR,
and in particular to the decompactification limit.34,35

One may wonder how the superpotential relates to that calculated in Ref. 55 for the
dimensionalN52 supersymmetric gauge theory. The way that this superpotential arises fro
R→0 limit of our superpotential is explained in a slightly different context in Ref. 34. The p
is that to take the three-dimensional limit, one should take it in such a way that the t
dimensional gauge coupling, which is classically given byg3

25g2/(2pR), is fixed. In other
words, asR→0, we should simultaneously take the limitg→0 in the superpotential~46!. In this
limit, the additional term corresponding to the affine root is removed to give

W3-d5
m3

g3
2 (

j 51

r
2

a j
2 eaj* •X. ~48!

In other words, in this limit, the affine Toda potential becomes the Toda potential for a non
algebra. This is what one expects because the affine term in the superpotential on the cyl
generated by the additional monopole solution that only exists on the cylinder and not inR3. The
genuinely three-dimensional superpotential~48! is the generalization of that of Ref. 55 from SU~2!
to arbitrary gauge group. Just as in the SU~2! case, it does not have a stationary point and there
the theory does not have a vacuum state.
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V. VACUUM STRUCTURE AND THE GLUINO CONDENSATE

The superpotential~46! gives rise to a number of supersymmetric vacua which satisfy

2

a j
2 eaj* •X5

2

a 0
2 kj* e2p i tea0* •X, ~49!

for j 51,...,r . Writing X5( j 51
r ajvj we have

eaj5
kj* aj

2e2p i t

2k
, ~50!

wherek5e( j 51
r aj kj* is determined self-consistently as the solution of the equation

kc25e2p i (c221)t)
j 50

r S kj* a j
2

2 D kj*

. ~51!

There are consequentlyc2 supersymmetric ground states given by thec2 roots of~51! which are
related byX→X12p i r/c2 . ~The vectorr5( j 51

r vj is the Weyl vector and recall thatX is
identified withX12p i r as a consequence of the fact thats is identified withs12pr, sincer
PLW .) These vacua correspond to a fixed value ofw:

w5S 2p

c2
1

g2

4p
lnuku Dr2

g2

4p (
j 51

r

ln~kj* a j
2/2!vj , ~52!

andc2 values ofs given by

s52
q

2p
w1

q12pu

c2
r, ~53!

whereu51,2,...,c2 . Notice that as expected thec2 vacua are related byq→q12p.
The value of the superpotential in one of the vacua is

^Wmono&5
2pm3R

g2 •

e2p i tc2

k
5

2pm3R

g2 •

c2e2p i t/c212p iu/c2

) j 50
r ~kj* a j

2/2!kj* /c2
52pRL3

•

c2e2p iu/c2

) j 50
r ~kj* a j

2/2!kj* /c2
,

~54!

where in the final expression we have eliminated the Pauli–Villars mass scalem in favor of the
Lambda parameter using the exact relation~2!. The value of the gluino condensate in each vacu
can be extracted by using the general relation

K tr l2

16p2L 5b0
21L

]

]L K 1

2pR
WmonoL , ~55!

adapted to the three-dimensional superpotential. The first coefficient of the beta-functionb0

53c2 giving

K tr l2

16p2L 5
L3e2p iu/c2

) j 50
r ~kj* a j

2/2!kj* /c2
. ~56!

The gluino condensate can also be evaluated directly without having to rely on the id
~55!. The idea is to consider the fundamental monopole contributions to the one-point fun
^tr l2/16p2 & in a given vacuum, say theuth. The contribution of theaj monopole to the conden
sate in this vacuum is
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K tr l2

16p2L
j -mono

5E dmmon
( j ) tr l2

16p2 U
j -mono

. ~57!

To evaluate~57!, we can use the normalization of the adjoint fermion zero modes from Ref

E d3a d2j
tr l2

16p2 U
j -mono

5
g2 ReSj

8aj
2p3R

. ~58!

Computing the remaining integral over the phase angle gives

K tr l2

16p2L
j -mono

5
m3 ReSj

4p2aj
2 e2Sj . ~59!

In the supersymmetric vacua

Sj522p i t2 lnS kj* aj
2

2k D ~60!

and so inserting the value fork in ~51! we have

K tr l2

16p2L
j -mono

5
kj* L3e2p iu/c2

c2
•

1

)
j 50

r

~aj
2kj* /2!kj* /c2

. ~61!

Summing over the contributions from ther 11 fundamental monopoles gives~56!.
We conclude the section with the observation that in the supersymmetric vacua ther 11

fundamental monopoles have equal topological charge

aj•
^w&
2p

512a0•
^w&
2p

5
1

c2
~62!

~for j 51,...,r ) independent ofj . In addition, as we have discussed in Sec. III, the configura
which becomes the singly-charged instanton in the uncompactified theory is obtained by c
ering a multi-monopole solution which consists ofkj* of the j th fundamental monopole. In thi
very precise sense they realize the old dream of thinking of the instanton in terms of a
constituents, or instanton quarks.20–24 It was anticipated that the instanton quarks would cause
at least play a major role in, confinement. In the theory on the cylinder this old idea again re
confirmation. Notice that in the quantum vacuum states the dual photon becomes massive
is equivalent to the confinement of the original Abelian electric photons.

APPENDIX A: SOME LIE ALGEBRA CONVENTIONS

In this appendix we give a brief review of particular details of Lie algebras that we will n
For more details on Lie algebras the reader may consult Refs. 56.

Let $Hi% be a maximal set of simultaneously diagonalizable, mutually commuting genera
@Hi ,H j #50. The indicesi , j run from 1 tor , therank of the Lie algebra. We normalize the Carta
generators to one,

tr~HiH j !5d i j , ~A1!

and often think of ther -vectorH. The remainder of the generators are the step operatorsEa with

@H,Ea#5aEa . ~A2!

The normalization condition~A1! makes the length squared of any long root to be equal to 2
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We will denote a set of simple roots asaj , j 51,...,r . These span the root latticeLR . The
lowest root is then denoted asa0 . The co-roots are defined via

a* [
2

a2 a ~A3!

and these span the co-root latticeLR* . The weight latticeLW is dual to the co-root lattice and i
spanned by the fundamental weightsvj where

vi•aj* 5d i j . ~A4!

Similarly one can define the co-weight latticeLW* which is dual to the root lattice and is spann
by the co-weightsvi* where

vi* [
2

ai
2 vi . ~A5!

We will also need to define the dual Kac labels, or co-marks,ki* . By definitionk0* 51 and the
remaining co-marks are given by the expansion of the lowest co-root in terms of the co-si
roots:

a0* 52(
i 51

r

ki* ai* . ~A6!

Finally

c2[(
i 50

r

ki* ~A7!

is thedual Coxeter number. ~The Kac labels, or marks, and Coxeter number are similarly defi
but will not be needed here.!

In Table III we summarize all the Lie algebra data that we need. As well as listing the
Kac labels and dual Coxeter number we also list the root lengthsa j

2 for j 50,...,r . ~Note that the
set of dual Kac labels and root lengths are ordered in the same way.!

APPENDIX B: THE MONOPOLE COLLECTIVE COORDINATE MEASURE

In this appendix we briefly discuss the measure for integrating over the collective coord
of a fundamental monopole. A fundamental monopole has a moduli space that is identical
BPS monopole in SU~2!. Therefore, it is parametrized byam , the position inR3, and by the U~1!
phase angle 0<V<2p. Along with this, there are two Grassmann collective coordinatesja ,

TABLE III. Lie algebra data.

G g c2 $ki* % $a i
2%

SU(r 11) ar r 11 $1,1,...,1% $2,...,2%
SO(2r 11) br 2r 21 $1,1,2,...,2,1% $2,...,2,1%
USp(2r ) cr r 11 $1,...,1% $2,1,...,1,2%
SO(2r ) dr 2r 22 $1,1,2,...,2,1,1% $2,...,2%

G2 g2 4 $1,2,1% $2,2,2/3%
F4 f 4 9 $1,2,3,2,1% $2,2,2,1,1%
E6 e6 12 $1,1,1,2,2,2,3% $2,...,2%
E7 e7 18 $1,1,2,2,2,3,3,4% $2,...,2%
E8 e8 30 $1,2,2,3,3,4,4,5,6% $2,...,2%
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corresponding to the two supersymmetric zero modes. The measure for integrating over the
pole moduli space is obtained in the standard way by changing variables in the path integra
field fluctuations around the monopole to the monopole’s collective coordinates:

E dmmon5m3e2S E d3a

~2p!3/2JaE
0

2p dV

~2p!1/2JVE d2j

JF
, ~B1!

whereS is the monopole action~39! andm is the Pauli–Villars mass scale. The Jacobian fact
Ja andJF were calculated in Ref. 50:

Ja5~ReS!3/2, JF52 ReS, ~B2!

andS is the monopole action. The remaining JacobianJV is given by

JV5
2pR~ReS!1/2

a•^w&
. ~B3!

To derive this, we start with the general expression for the bosonic zero mode,

Zm5
]vm

(V)

]V
1DmL, ~B4!

wherevm
(V) is theV-rotated monopole solution in the singular gauge,

vm
(V)5eiVt3

vme2 iVt3
, ~B5!

andDmL is added to keep the zero mode in the covariant background gauge. Since

]vm
(V)

]V
5 i F1

2
a* •H, vmG , ~B6!

the choice ofL is obvious@recall ~16!#:

L 5
2pR

a•^w&
Fctc 2

1

2
a* •H. ~B7!

This gives

Zm 5
2pR

a•^w&
Dm~Fctc! 5

2pR

a•^w&
vm0, ~B8!

and

JV [ A^ZmuZm& 5
2pR~ReS!1/2

a•^w&
. ~B9!

Gathering all factors together, we find that the measure is

m3R

g2 •

2

a2 •e2SE d3a dV d2j. ~B10!

In contradistinction with the three-dimensional calculation of Ref. 50, our present calculat
locally four-dimensional, i.e., in the path integral we have integrated over the fluctuations a
the monopole configuration inR33S1. Thus, the UV-regularized determinants over nonzero
genvalues of the quadratic fluctuation operators cancel between fermions and bosons
supersymmetry as in Ref. 57. The ultra-violet divergences are regularized in the Pauli–V
scheme, which explains the appearance of the Pauli–Villars mass scalem.
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We present new and streamlined proofs of various formulas for products and ratios
of characteristic polynomials of random Hermitian matrices that have appeared
recently in the literature. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1587875#

I. INTRODUCTION

In random matrix theory, unitary ensembles ofN3N matrices$H% play a central role.15 Such
ensembles are described by a measureda with finite moments*Ruxuk da(x),`, k50,1,2,..., and
the associated distribution function for the eigenvalues$xi5xi(H)% of matricesH in the en-
sembles has the form

dPa,N~x!5
1

ZN
D~x!2 da~x!, ~1.1!

whereda(x)5P i 51
N da(xi), D(x)5PN> i . j >1(xi2xj ) is the Vandermonde determinant for th

xi ’s, and ZN5*¯*D(x)2 da(x) is the normalization constant. The special caseda(x)
5e2x2

dx is known as the Gaussian unitary ensemble~GUE!. For symmetric functionsf (x)
5 f (x1 ,...,xN) of the xi ’s,

^ f &a[
1

ZN
E ¯E f ~x!D~x!2 da~x! ~1.2!

denotes the average off with respect todPa,N .
Recently there has been considerable interest in the averages of products and ratios

characteristic polynomialsDN@m,H#5P i 51
N (m2xi(H)) of random matrices with respect to var

ous ensembles. Such averages are used, in particular, in making predictions about the mom
the Riemann-zeta function@see Refs. 12–14~circular ensembles! and 3 ~unitary ensembles!#.
Many other uses are described, for example, in Refs. 1, 12, and 17.

By ~1.2!, for unitary ensembles, such averages have the form

a!Electronic mail: jbaik@math.princeton.edu
b!Electronic mail: deift@cims.nyu.edu
c!Electronic mail: eugene.strahov@brunel.ac.uk
36570022-2488/2003/44(8)/3657/14/$20.00 © 2003 American Institute of Physics
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K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5
1

ZN
E ¯E

)
j 51

K

)
i 51

N

~m j2xi !

)
j 51

M

)
j 51

N

~e j2xi !

D~x!2 da~x!. ~1.3!

In this article we consider certain explicit determinantal formulas for~1.3!—see ~2.6!, ~2.24!,
~2.36!, ~3.3!, and~3.12! below. Formula~2.6! is due to Brezin and Hikami3 ~see also Ref. 16, and
when all them j ’s are equal, see Ref. 10!, whereas~2.24!, ~2.36!, ~3.3!, and ~3.12! are due to
Fyodorov and Strahov.17,11 References 17 and 11 also contain a discussion of the history of t
formulas. The formulas~3.3! and ~3.12! are particularly useful in proving universality results f
the ratios~1.3! in the Dyson limit asN→` ~see Ref. 17!. For a discussion of other universalit
results, particularly the work of Brezin–Hikami and Fyodorov in special cases, we again ref
reader to Ref. 17. The asymptotic analysis in Ref. 17 is based on the reformulation of the or
nal polynomial problem as a Riemann–Hilbert problem by Fokas, Its, and Kitaev.9 The Riemann–
Hilbert problem is then analyzed asymptotically using the noncommutative steepest-d
method introduced by Deift and Zhou,5 and further developed with Venakides in Ref. 6 to allo
for fully nonlinear oscillations, and in Refs. 7 and 8.

Our goal in this article is to give new, streamlined proofs of~2.6!–~3.12!, using only the
properties of orthogonal polynomials and a minimum of combinatorics. Along the way we
also need an integral version of the classical Binet–Cauchy-formula due to C. Andre´ief dating
back to 1883~see Lemma 2.1 below!.

Let p j (z)5xj1¯ denote thejth monic orthogonal polynomial with respect to the meas
da,

E
R
p j~x!pk~x!da~x!5cjckd jk ; j ,k>0, ~1.4!

where the norming constantscj ’s are positive. The key observation in our approach is that
K51 andM50 in ~1.3!,

^DN@m,H#&a5pN~m! ~1.5!

~see Ref. 18!. In our words, the orthogonal polynomialpN(m) with respect toda is also precisely
the average polynomialP i 51

N (m2xi) with respect todPa,N . Formula~1.5! appears already in the
work of Heine in the 1880s~see Ref. 18!. Set

da@,,m#~ t ![

)
j 51

,

~m j2t !

)
j 51

m

~e j2t !

da~ t !, ,,m>0, ~1.6!

@da@0,0#(t)[da(t)#, and letp j
@,,m#(t) denote thejth monic orthogonal polynomial with respect t

da@,,m#. With this notation we see immediately from~1.3! and ~1.5! that
^Qj 51

K DN@m j ,H#/Qj 51
M DN@e j ,H#&a is proportional topN

@K21,M #(mK). Using a classical determi
nantal formula of Christoffel~see Ref. 18! for pN

@,,0#(m) and a more recent formula of Uvarov19

for pN
@0,m#(m), we are then led~see Sec. II! to ~2.6!, ~2.24!, and~2.36! in a rather straightforward

way. Formula~3.3! appears to have a different character from~2.6!, ~2.24!, and~2.36!, and relies
on Lemma 2.1 mentioned above, which computes the integral of the product of two determi
formula ~3.12! follows ~see Sec. III! by combining~3.3! with ~2.6! and ~2.36!. In Ref. 17 the
authors present a variety of additional formulas for^Qj 51

K DN@m j ,H#/Qj 51
M DN@e j ,H#&a for cases

of K and M not covered by~2.6!–~3.12!: we leave it to the interested reader to verify that t
method of this article can also be used to derive these formulas in a straightforward mann

Remark 1.1:As is well known~see, e.g., Ref. 18!, each measureda gives rise to a tridiagona

operator
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J5J~da!5S a1 b1 0

b1 a2 b2

0 b2 a3 �

� �

D , bi.0, ~1.7!

with generalized eigenfunctions given by the orthonormal polynomials

pj~x!5cj
21p j~x!, j 50,1,..., ~1.8!

i.e.,

bj 21pj 21~x!1aj pj~x!1bj pj 11~x!5xpj~x!, j >1, ~1.9!

where b0[0. Conversely, modulo certain essential self-adjointness issues,da is the spectral
measure forJ in the cyclic subspace generated byJ and the vectore1(1,0,0,...)T ~see, e.g., Ref. 4!.
It follows that the transformation of measures

da→da@,,m# ~1.10!

leads to the transformation of operators

J~da!→J~da@,,m#!. ~1.11!

For appropriate choices ofm1 ,...,mm ande1 ,...,e, , such transformations correspond to removi
m points from the spectrum ofJ(da) and inserting, points: in the spectral theory literature, suc
transformations are known as Darboux transformations. The formulas in this article clearly
vide formulas for the generalized eigenfunctionspj

@,,m#(x) of the Darboux-transformed operato
J(da@,,m#), as well as the matrix entries,aj

@,,m# andbj
@,,m# , in terms of the corresponding objec

for J(da). Again we leave the details to the reader. Here the elementary formulas

bn
2~da!5

n11

n12

Zn~da!Zn12~da!

~Zn11~da!!2
, an~da!5

d

dtU
t50

log
Zn~da t!

Zn11~da t!
, ~1.12!

whereda t(x)5etxda(x), are useful.
Technical Remark 1.2:Formulas~2.6!–~3.12! clearly do not make sense for all values of t

parameters. Inall the calculations that follow, we will assume thatda has compact support,
support (da)5@2Q,Q#, say, and that them i ’s and e j ’s are distinct real numbers greater
than Q: under these assumptions,da@,,m#(t) becomes, in particular, a bona fide measure, etc.
analytic continuation one sees that the formulas remain true for complex values of$m i% and$e j%,
as long as they remain distinct. Furthermore, if them j ’s ande j ’s are distinct, and Im(ej)Þ0 for all
j, then we can letQ→` and so the formulas are true for measuresda with unbounded support
Finally, we can, for example, letm j→mk for some j Þk, which leads to formulas involving
derivatives of thep j ’s, etc.

II. FORMULAS OF CHRISTOFFEL–UVAROV TYPE

We use the notationsda, p j , da@,,m#, p j
@,,m# ,... of Sec. I. In addition, in all the calculation

that follow we assume thatda, $m j%, $ek% satisfy the conditions described in Technical Rema
1.2 above: the natural analytical continuation of the formulas obtained to complex values
parameters, and the limitQ→`, is left to the reader.

The following result of Christoffel~see Ref. 18! plays a basic role in what follows.
Lemma 2.1: Consider the measure da@,,0#(t)5P j 51

, (m j2t)da(t), where,51,2,... .Then the
nth monic orthogonal polynomialpn

@,,0#(t) associated with the new measure da@,,0#(t) can be
expressed as follows:
                                                                                                                



pn
@,,0#~ t !5

1

t2m ¯ t2m

Upn~m1! ¯ pn1,~m1!

]

pn~m,! ¯ pn1,~m,!

pn~ t ! ¯ pn1,~ t !

U
p m ¯ p m

. ~2.1!
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~ 1! ~ ,! U n~ 1! n1,21~ 1!

]

pn~m,! ¯ pn1,21~m,!
U

Proof: Set

qn
@,,0#~ t !5Upn~m1! ¯ pn1,~m1!

]

pn~m,! ¯ pn1,~m,!

pn~ t ! ¯ pn1,~ t !

U . ~2.2!

We note thatqn
@,,0#(t) satisfies the condition* t jqn

@,,0#(t)da(t)50 for all j P$0,...,n21%. Also
qn

@,,0#(m j )50, j 51,...,,, and soqn
@,,0#(t)/@(m12t)¯(m,2t)# is a polynomial of degree at mostn.

Now observe that

E t jF qn
@,,0#~ t !

~m12t !¯~m,2t !Gda@,,0#~ t !50, 0< j ,n, ~2.3!

which means thatqn
@,,0#(t) divided by the product (m12t)¯(m,2t) is proportional to thenth

monic orthogonal polynomialpn
@,,0#(t) associated with the new measureda@,,0#(t). Now qn

@,,0#

3(t) cannot vanish for anyt5m,11.Q, m,11¹$m1 ,...,m,%. Indeed, ifqn
@,,0#(m,11)50, then

there exist$a i% i 50
, , not all zero, such thatp(t)[( i 50

, a ipn1 i(t) vanishes at$m i% i 51
,11. Thus

p̃(t)[p(t)/P i 51
,11(m i2t) is a polynomial of order,n, and as above,p̃(t) is orthogonal tot j ,

0< j ,n, with respect to the measureda@,11,0#(t). Thus p̃(t)[0 and hencea05¯5a,50,
which is a contradiction. Replacing, by ,21, we conclude that

Upn~m1! ¯ pn1,21~m1!

]

pn~m,! ¯ pn1,21~m,!
UÞ0. ~2.4!

Taking the limit t→` and noting that the coefficient of the highest degree ofpn
@,,0#(t) should be

equal to 1, we find the coefficient of proportionality and establish formula~2.1!. h

Representation~2.1! for the monic orthogonal polynomials associated with the meas
da@,,0#(t) immediately leads to the following result:

Corollary 2.2: The product of monic orthogonal polynomialsP j 50
, pn

@ j ,0#(m j 11) defined with
respect to the different measures da@ j ,0#(t)[(m j2t)¯(m12t)da(t) is given by the formula

)
j 50

,

pn
@ j ,0#~m j 11!5

1

D~m!U pn~m1! ¯ pn1,~m1!

]

pn~m,11! ¯ pn1,~m,11!
U , ~2.5!

whereD(m)5P,11> i . j >1(m i2m j ).
We observe that Corollary 2.2 gives the identity for the average of products of ran

characteristic polynomials obtained first by Brezin and Hikami.3

Theorem 2.3:Let DN@m,H# be the characteristic polynomial of the Hermitian matrix H. T
following identity is valid:
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K )
j 51

L

DN@m j ,H#L
a

5
1

D~m!UpN~m1! ¯ pN1L21~m1!

]

pN~mL! ¯ pN1L21~mL!
U , ~2.6!

where the average is defined by (1.2).
Proof: To prove formula~2.6! we use the representation for the monic orthogonal polynom

in the caseL51 given in ~1.5!,

pN~m!5
1

ZN
E ¯E )

i 51

N

~m2xi !D
2~x!da~x!. ~2.7!

Let ZN
@,,0# be defined by

ZN
@,,0#5E ¯E D2~x!da@,,0#~x!, ,51,2,..., ~2.8!

whereda@,,0#(x)5P i 51
N da@,,0#(xi). With this notation, we have

K )
j 51

L

DN@m j ,H#L
a

5
ZN

@L,0#

ZN
5

ZN
@L,0#

ZN
@L21,0#

ZN
@L21,0#

ZN
@L22,0#

¯

ZN
@1,0#

ZN
. ~2.9!

Equation~2.7! implies thatpn
@,21,0#(m,) can be represented as the ratioZN

@,,0#/ZN
@,21,0# , where

pN
@0,0#(m)[pN(m), andZN

@0,0#[ZN . Thus we obtain

K )
j 51

L

DN@m j ,H#L
a

5 )
j 50

L21

pN
@ j ,0#~m j 11!. ~2.10!

The above equation together with Corollary 2.2 proves formula~2.6!. h

Remark 2.4:Notice @see Eqs.~2.7! and ~2.10!# that the average of products of characteris
polynomials can be rewritten as a product of averages. Namely,

K )
j 51

L

DN@m j ,H#L
a

5)
j 51

L

^DN@m j ,H#&a@ j 21,0#, ~2.11!

where^¯&a@ j 21,0# means the average defined by Eq.~1.2! but with respect to the new measu
da@ j 21,0#(x), andda(x)[da@0,0#(x).

The formula of Christoffel@Eq. ~2.1!# enables us to construct the orthogonal polynomi
associated with the measureda@,,0#(t)5P j 51

, (m j2t)da(t) in terms of the orthogonal polynomi
als associated with the measureda(t). Now we derive a formula due to Uvarov19 expressing the
monic orthogonal polynomialspn

@0,m#(t) associated with the measureda@0,m#(t)5P j 51
m (e j

2t)21da(t), again in terms of the monic orthogonal polynomialspn(t) associated with the
measureda(t).

Lemma 2.5: Suppose0<m<n. The monic orthogonal polynomialspn
@0,m#(t) associated with

the measure da@0,m#(t) can be expressed as ratios of determinants.
                                                                                                                



pn
@0,m#~ t !5

U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

pn2m~ t ! ¯ pn~ t !

U
h e ¯ h e

. ~2.12!
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U n2m~ 1! n21~ 1!

]

hn2m~em! ¯ hn21~em!
U

Here the hk(e j )’s are the Cauchy transformations of the monic orthogonal polynomialspk(t).

hk~e j !5
1

2p i E pk~ t !da~ t !

t2e j
. ~2.13!

Proof: Set

qn
@0,m#~ t !5U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

pn2m~ t ! ¯ pn~ t !

U . ~2.14!

Now qn
@0,m#(t) is proportional to thenth monic orthogonal polynomialpn

@0,m#(t) with respect to the
measureda@0,m#(t). Indeed, first observe that

E qn
@0,m#~ t !

t2e j
da~ t !50, j 51,...,m. ~2.15!

Also, for 0<k,n,

tk

P,51
m ~e,2t !

5 (
,51

m
b,

e,2t
1p~ t ! ~2.16!

for suitable constants$b,% and for some polynomialp(t) of degree,n2m. But for 0<k,n,

E tkqn
@0,m#~ t !da@0,m#~ t !52 (

,51

m

b,E qn
@0,m#~ t !

t2e,
da~ t !1E p~ t !qn

@0,m#~ t !da~ t !. ~2.17!

The terms in the sum are zero by~2.15! and the final integral is zero by the construction~2.14! of
qn

@0,m#(t) and the fact that degp(t),n2m. Thusqn
@0,m#(t) is proportional topn

@0,m#(t). An argu-
ment similar to the proof in Lemma 2.1, that

Upn~m1! ¯ pn1,21~m1!

]

pn~m,! ¯ pn1,21~m,!
UÞ0, ~2.18!

shows that the denominator in~2.12! does not vanish. Lettingt→` in ~2.14!, and matching
leading terms, we prove Lemma 2.5. h

Remark 2.6:In Ref. 19, Uvarov obtains formulas forpn
@0,m#(t) of type ~2.12! also in the case

m.n. These formulas can be used to obtain analogs of~2.24! and ~2.36! below in the caseM
.N.
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Remark 2.7:As noted in Refs. 11 and 17, the Cauchy transformationshk(e) of thepk’s occur
explicitly, together with thepk’s, in the solution of the Fokas–Its–Kitaev Riemann–Hilbert pro
lem for orthogonal polynomials.9

Lemma 2.5 implies the following analog of the Christoffel formula for the Cauchy transfo
of monic orthogonal polynomials.

Corollary 2.8: Let hk
@0,m#(e) be the Cauchy transform of the monic polynomialpk

@0,m#(t). with
respect to the measure da@0,m#(t),

hk
@0,m#~e !5

1

2p i E pk
@0,m#~ t !

t2e
da@0,m#~ t !. ~2.19!

Let also0<m<n. Then hn
@0,m#(e) has a representation similar to that for the monic orthogon

polynomialspn
@,,0#(t) [Eq. (2.1)],

hn
@0,m#~e !5

~21!m

~e2em!¯~e2e1!

U hn2m~e1! ¯ hn~e1!

]

hn2m~em! ¯ hn~em!

hn2m~e! ¯ hn~e!

U
U hn2m~e1! ¯ hn21~e1!

]

hn2m~em! ¯ hn21~em!
U . ~2.20!

Proof: The above representation follows from formula~2.12! and from the fact that

1

~ t2em11!¯~ t2e1!
5 (

j 51

m11
1

t2e j
)
kÞ j

1

e j2ek
. ~2.21!

Indeed we find from formula~2.12! thathn
@0,m#(e) is the ratio of the determinants. The elements

the last row of the determinant in the numerator are the integrals

1

2p i E pn2k~ t !da~ t !

~ t2e!~ t2em!¯~ t2e1!
, 0<k<m.

Using identity~2.21! and noting that the only term

1

t2e

1

~e2em!¯~e2e1!
~2.22!

of the sum~2.21! contributes to the determinant,~2.20! follows. h

Equation~2.20! immediately implies the following analogy of~2.5! for the hk
@0,m#’s.

Corollary 2.9: Let0<m<n. Then the product of the Cauchy transforms of monic orthogo
polynomials with respect to the measures da@0,j #(t), 0< j <m, can be written as a determinant,

)
j 50

m

hn2m1 j
@0,j # ~e j 11!5

~21!m~m11!/2

D~e! U hn2m~e1! ¯ hn~e1!

]

hn2m~em11! ¯ hn~em11!
U . ~2.23!

Now we derive the identity for the average of the product of inverse random characte
polynomials.

Theorem 2.10:Suppose1<M<N and letgn522p i /cn
2, where cn is the normality constant

defined by Eq. (1.4). Then we have the following formula:
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K )
j 51

M

DN
21@e j ,H#L

a

5~21!M ~M21!/2

)
j 5N2M

N21

g j

D~e! U hN2M~e1! ¯ hN21~e1!

]

hN2M~eM ! ¯ hN21~eM !
U . ~2.24!

Proof: WhenM51, we use the identity~2.21! together with~2.7! and the relation~see, e.g.,
Ref. 18!

gn21522p in
Zn21

Zn
~2.25!

to obtain

^DN
21@e,H#&a5gN21hN21~e!. ~2.26!

We rewrite the average in Eq.~2.24! as follows:

K )
j 51

M

DN
21@e j ,H#L

a

5
ZN

@0,M #

ZN21
@0,M21#

ZN21
@0,M21#

ZN22
@0,M22#

¯

ZN2M
@0,0#

ZN
@0,0#

, ~2.27!

where

ZN
@0,M #5E ¯E D2~x!da@0,M #~x!, ~2.28!

ZN
@0,0#[ZN andda@0,0#(x)5da(x). The following relation can be observed from Eqs.~2.26! and

~2.25!:

ZN2K
@0,m#

ZN2K21
@0,m21#

522p i ~N2K !hN2K21
@0,m21#~em!. ~2.29!

Inserting this relation in~2.27! we find

K )
j 51

M

DN
21@e j ,H#L

a

5)
j 51

M

gN2 jhN2 j
@0,M2 j #~eM2 j 11!. ~2.30!

Our result~2.24! immediately follows from the above equation and formula~2.23!. h

We now repeat the above considerations for the case

da@,,m#~ t !5
~m12t !¯~m,2t !

~e12t !¯~em2t !
da~ t !. ~2.31!

The first result is a Christoffel-type formula for the measure~2.31!, which is due to Uvarov.19

Lemma 2.11: Suppose0<m<n. Then the monic orthogonal polynomialspn
@,,m#(t)’s with

respect to the measure da,,m] (t) have the following representation:
                                                                                                                



pn
@,,m#~ t !5

1

~ t2m,!¯~ t2m1!

U hn2m~e1! ¯ hn1,~e1!

]

hn2m~em! ¯ hn1,~em!

pn2m~m1! ¯ pn1,~m1!

]

pn2m~m,! ¯ pn1,~m,!

pn2m~ t ! ¯ pn1,~ t !

U
U hn2m~e1! ¯ hn1,~e1!

]

hn2m~em! ¯ hn1,~em!

pn2m~m1! ¯ pn1,~m1!

]

U . ~2.32!
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pn2m~m,! ¯ pn1,~m,!

Proof: As in the previous cases we defineqn
@,,m#(t) to be the determinant in the numerator

~2.32!. Observe that

qn
@,,m#~m1!5¯5qn

@,,m#~m,!50 ~2.33!

and that

E qn
@,,m#~ t !da~ t !

e12t
5¯5E qn

@,,m#~ t !da~ t !

em2t
50. ~2.34!

The next steps are the same as in the proofs of Lemma 2.1 and Lemma 2.5. h

Corollary 2.12:

K )
j 51

K

DN@m j ,H#L
a@0,M #

5
1

D~m!

U hN2M~e1! ¯ hN1K21~e1!

]

hN2M~eM ! ¯ hN1K21~eM !

pN2M~m1! ¯ pN1K21~m1!

]

pN2M~mK! ¯ pN1K21~mK!

U
U hN2M~e1! ¯ hN~e1!

]

hN2M~eM ! ¯ hN~eM !
U . ~2.35!

Proof: Identity ~2.35! follows from Eqs.~2.10! and~2.32! once we note that Eq.~2.32! can be
rewritten in a similar manner as Eq.~2.5!. h

Finally we generalize Theorems 2.3 and 2.10 and obtain a formula for the average of ra
characteristic polynomials.

Theorem 2.13:Suppose0<M<N. Then the average of ratios of characteristic polynomia
of N3N Hermitian matrices H is given by the following formula:
                                                                                                                



K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5

~21!M ~M21!/2 )
j 5N2M

N21

g j

D~m!D~e! U hN2M~e1! ¯ hN1K21~e1!

]

hN2M~eM ! ¯ hN1K21~eM !

pN2M~m1! ¯ pN1K21~m1!

]

U .

l
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lation.
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pN2M~mK! ¯ pN1K21~mK!
~2.36!

Proof: Let a@0,0#[a, Zn
@0,0#[Zn . Then we have

K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5
ZN

@K,M #

ZN
@0,0#

5
ZN

@K,M #

ZN
@0,M #

ZN
@0,M #

ZN
@0,0#

, ~2.37!

i.e.,

K )
j 51

K

DN@m j ,H#

)
j 51

M

DN@e j ,H#
L

a

5K )
j 51

K

DN@m j ,H#L
a@0,M #

K )
j 51

M

DN
21@e j ,H#L

a

. ~2.38!

We use Corollary 2.12 and Theorem 2.10 to obtain formula~2.36!. h

Remark 2.14:Observe that formulas~2.6! and ~2.24! do not follow immediately as specia
cases of~2.36!: some further algebraic manipulation is required. Similarly, the process of ad
and removing zeros is clearly reciprocal. More precisely, givene1 ,...,e, , we can construct the
polynomials pn

@0,,#(t;da@0,,#) associated with the measureda@0,,#(t)5(P i 51
, (e i2t)21)dt by

~2.12!: We can then constructpn
@,,0#(t;d(a@0,,#) @,,0#) with m i5e i , insertingpn

@0,,#(t;da@0,,#) for
pn(t) on the right-hand side of~2.1!. We should find thatpn

@,,0#(t;d(a@0,,#) @,,0#)5pn(t;da).
However, again, this relation is not immediately clear, and requires further algebraic manipu

III. FORMULAS OF TWO-POINT FUNCTION TYPE

The following integral version of the Binet–Cauchy formula is due to Andre´ief,2 and plays a
basic role in our calculations.

Lemma 3.1: Let(X,dm) be a measure space and suppose fi , gjPL2(X,dm) for 1< i , j <k.
Then

E
X
¯E

X
det~ f i~xj !!1< i , j <k det~gi~xj !!1< i , j <k dm~x1!¯dm~xk!

5k! detS E
X

f i~x!gj~x!dm~x! D
1< i , j <k

. ~3.1!

Proof: Setci j 5*Xf i(x)gj (x)dm(x). Then

E
X
¯E

X
det~ f i~xj !!1< i , j <k det~gi~xj !!1< i , j <k dm~x1!¯dm~xk!

5 (
s,tPSk

sgn~s!sgn~t!cs~1!t~1!¯cs~k!t~k!5(
s

sgn~s!(
t

sgn~t+s!cs~1!t+s~1!¯cs~k!t+s~k!

5(
s

~sgn~s!!2(
t

sgn~t!c1t~1!¯ckt~k!5k! det~ci j !1< i , j <k ~3.2!
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as desired. In~3.2! we used sgn(t+s)5(sgnt)(sgns) and the fact thatcs(1)t+s(1)¯cs(k)t+s(k)

5c1t(1)¯ckt(k) for all s. h

Theorem 3.2:Let K>1. Then the following identity is valid:

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
CN,K

D~l!D~m!
det~WI ,N1K~l i ,m j !!1< i , j <K , ~3.3!

where

WI ,N1K~x,y!5
pN1K~x!pN1K21~y!2pN1K~y!pN1K21~y!

x2y
~3.4!

and

CN,K5

)
,5N

N1K21

c,
2

~cN1K21!2K
~3.5!

where c, is again the norming constant forp, given in (1.4).
Proof: Let pj (x)5cj

21p j (x), j >0, denote the orthonormal polynomials with respect toda.
From ~1.2! we obtain

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
1

ZND~l!D~m!
E ¯E D~x,l!D~x,m!da~x!. ~3.6!

Adding columns, we see that the Vandermonde determinantD(x,l) has the form

U p0~x1! p1~x1! ¯ pN1K21~x1!

]

p0~xN! p1~xN! ¯ pN1K21~xN!

p0~l1! p1~l1! ¯ pN1K21~l1!

]

p0~lK! p1~lK! ¯ pN1K21~lK!

U ~3.7!

and similarly forD(x,m). Herep j (t)5p j
@0,0#(t). The determinantD(x,l) can be evaluated by a

Lagrange expansion of the form

(
0< i 1, i 2,¯, i k<N1K21

s i 1 ,...,i KUp i 1
~l1! ¯ p i K

~l1!

]

p i 1
~lK! ¯ p i K

~lK!
UUp j 1

~x1! ¯ p j N
~x1!

]

p j 1
~xN! ¯ p j N

~xN!
U ,

~3.8!

where s i 1 ,...,i K
561 is an appropriate signature and$( j 1 ,...,j N):0< j 1, j 2,¯, j N<N1K

21% is the complement of$ i 1 ,...,i K% in $0,1,...,N1K21%. Multiplying ~3.8! by a similar expan-
sion for D(x,m), and inserting in~3.6!, we obtain a sum of terms of the form

E ¯E Up j 1
~x1! ¯ p j K

~x1!

]

p j 1
~xN! ¯ p j K

~xN!
UUp j

18
~x1!

¯
p j

N8
~x1!

]

p j
18
~xN!

¯
p j

N8
~xN!
Uda~x!, ~3.9!
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which is equal by Lemma 3.1 toN! det(*pj
i8
(x)pjk

(x)da(x))1<i,k<N5N! det(dj
i8jk

cjk
2 )1<i,k<N . From

this we see that

K )
j 51

K

DN@l j ,H#DN@m j ,H#L
a

5
N!

ZND~l!D~m! (
0< i 1,¯, i k<N1K21

s i 1 ,...,i K
2 Up i 1

~l1! ¯ p i K
~l1!

]

p i 1
~lK! ¯ p i K

~lK!
U

3)
k51

N

cj k

2Up i 1
~m1! ¯ p i K

~m1!

]

p i 1
~mK! ¯ p i K

~mK!
U

5
N!Pq5N

N1K21cq
2

ZND~x,l!D~x,m! (
0< i 1,¯, i k<N1K21

det~pi j
~lk!!1< j ,k<K det~pi j

~mk!!1< j ,k<K

5
N!Pq5N

N1K21cq
2

ZND~x,l!D~x,m!
detS (

0< i<N1K21
pi~l j !pi~mk! D

1< j ,k<K

, ~3.10!

where the last line follows by applying Lemma 3.1 to the discrete measuredm5( i 50
N1K21d i . But,

by the Christoffel–Darboux formula,

(
0< i<N1K21

pi~l j !pi~mk!5
pN1K~l j !pN1K21~mk!2pN1K~mk!pN1K21~l j !

l j2mk
, ~3.11!

which then implies~3.3! asZN5N!P,50
N21c,

2 ~see, e.g., Ref. 18!. h

Theorem 3.3:Suppose1<K<N. Then the following identity is valid:

K )
j 51

K
DN@m i ,H#

DN@e j ,H# L
a

5~21!K~K21!/2gN21
K D~e,m!

D2~e!D2~m!
det~WH,N~e i ,m j !!1< i , j <K , ~3.12!

where

WH,N~x,y!5
hN~e!pN21~m!2hN21~e!pN~m!

e2m
~3.13!

and again hk(e)5(1/2p i )*pk(t)da(t)/(t2e) is the Cauchy transform ofpk(t) and gN215
22p i /CN21

2 . Observe first that by linearity
                                                                                                                



U hN2M~e1! ¯ hN1L21~e1!

]

hN2M~eM ! ¯ hN1L21~eM !

pN2M~m1! ¯ pN1L21~m1!

]

U5E ¯E da~l!

~2p i !M)
M

~l j2e j !
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aver-

mials.
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pN2M~m1! ¯ pN1L21~mL!

j 51

3U pN2M~l1! ¯ pN1L21~l1!

]

pN2M~lM ! ¯ pN1L21~lM !

pN2M~m1! ¯ pN1L21~m1!

]

pN2M~m1! ¯ pN1L21~mL!

U . ~3.14!

Inserting~2.36! on the left-hand side, and using~2.5! to reexpress the integrand on the right-ha
side, we obtain the following result, which is of independent interest. The result expresses
ages of ratios of characteristic polynomials in terms of averages of products of such polyno

Proposition 3.4: Let1<M<N. Then

K )
j 51

L

DN@m i ,H#

)
j 51

M

DN@e j ,H#
L

a

5

~21!M ~M21!/2 )
j 5N2M

N21

g j

D~m!D~e!
E ¯E da~l!

~2p i !M)
j 51

M

~l j2e j !

D~l,m!

3K )
j 51

M

DN2M@l j ,H#)
j 51

L

DN2M@m j ,H#L
a

. ~3.15!

Proof of Theorem 3.2:For M5L5K<N, by ~3.15! and ~3.3!,

D~m!D~e!

~21!K~K21!/2 )
j 5N2K

N21

g j
K )

j 51

K

DN@m i ,H#

)
j 51

K

DN@e j ,H#
L

a

5E ¯E da~l!

~2p i !M)
j 51

M

~l j2e j !

CN2K,K)
i 51

K

)
j 51

K

~m i2l j !det~WI ,N~l i ,m j !!1< i , j <K .

~3.16!

But

1

2p i E da~l j !

l j2e j
)
i 51

K

~m i2l j !
pN~l j !pN21~mk!2pN21~l j !pN~mk!

l j2mk

5
1

2p i E da~l j !S 12
m12e j

l j2e j
D S )

i 52
iÞk

K

~m i2l j !D ~pN~l j !pN21~mk!2pN21~l j !pN~mk!!

52
1

2p i E da~l j !
m12e j

l j2e j S )
i 52
iÞk

K

~m i2l j !D ~pN~l j !pN21~mk!2pN21~l j !pN~mk!! ~3.17!
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as * da(l j )l j
,pN21(l j )5* da(l j )l j

,pN(l j )50 for 0<,<K22,N21. Continuing in this
way, the integral reduces toP i 51

K (m i2e j )WH,N(e i ,mk). Thus we find

D~m!D~e!

~21!K~K21!/2 )
j 5N2K

N21

g j

K )
j 51

K

DN@m i ,H#

)
j 51

K

DN@e j ,H#
L

a

5
D~e,m!

D~e!D~m!
det~WI ,N1K~l i ,mk!!1< i ,k<K

~3.18!

and ~3.12! follows. h
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Monotone Riemannian metrics on density matrices
with non-monotone scalar curvature
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The theory of monotone Riemannian metrics on the state space of a quantum
system was established by De´nes Petz in 1996. In a recent paper he argued that the
scalar curvature of a statistically relevant—monotone—metric can be interpreted as
an average statistical uncertainty. The present paper contributes to this subject. It is
reasonable to expect that states which are more mixed are less distinguishable than
those which are less mixed. The manifestation of this behavior could be that for
such a metric the scalar curvature has a maximum at the maximally mixed state. We
show that not every monotone metric fulfils this expectation, some of them behave
in a very different way. A mathematical condition is given for monotone Riemann-
ian metrics to have a local minimum at the maximally mixed state and examples are
given for such metrics. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1592874#

I. INTRODUCTION

The quantum mechanical Hilbert space formalism gives a mathematical description o
ticles with spin of (n21)/2. Concentrating on the spin part of nonrelativistic particles one
build a proper mathematical model in ann dimensional complex Hilbert space. This is the sim
plest physical realization of ann-level quantum system. The states of ann-level system are
identified with the set of positive semidefinite self-adjointn3n matrices of trace 1. The state
form a closed convex set in the space of matrices and its interior, the set of all strictly po
self-adjoint matrices of trace 1 becomes naturally a differentiable manifold.

The idea in mathematical statistics that a statistical or informational distance between
ability measures gives rise to a Riemannian metric is due to Rao1 and was developed by Amari2

and Streater3 among others. Let us see how can one measure the statistical distance betw
simplest probability distributions in classical case Ref. 4. Assume, that we have two proba
distributions (p1,12p1) and (p2,12p2). Let us now suppose that an experimenter, in making
determination of the valuep1 , has onlyn trials. Because of the unavoidable statistical fluctuatio
associated with a finite sample, the experimenter cannot knowp1 exactly. After these measure
ments the experimenter’s uncertainty is the size of a typical fluctuation

Dp15Ap1~12p1!

n
.

We can say that the distributions (p1,12p1) and (p2,12p2) are distinguishable inn trials if the
regions of uncertainty do not overlap, that is, if

up12p2u>Dp11Dp2 .

Let k(n,p1 ,p2) denote the number of the probability distributions of the form (pi ,12pi) between
p1 andp2 ~that isp1,pi,p2) each of which is distinguishable inn trials from its neighbors. The
statistical distance between the given probability distributions is
36750022-2488/2003/44(9)/3675/14/$20.00 © 2003 American Institute of Physics
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d~p1 ,p2!5 lim
n→`

k~n,p1 ,p2!

An
.

From the previous equations we find that

d~p1 ,p2!5E
p1

p2 1

2Ap~12p!
dp5arccos~Ap1p21A~12p1!~12p2!!.

This distance function was introduced by Fisher in 1922.
The Fisher informational metric is unique in some sense~i.e., it is the only Markovian

monotone distance! in the classical case Ref. 5. A family of Riemannian metrics are called m
tone if they are decreasing under stochastic mappings~the exact definition is given below!. These
metrics play the role of Fisher metric in the quantum case. Monotone Riemannian metri
important for information-theoretical and statistical considerations on the state space. The s
monotone metrics for parametric statistical manifolds was initiated by Chentsov and Moroz6

Petz’s classification theorem7 establishes a correspondence between monotone metrics and o
tor monotonef :@0,̀ @→R functions, such thatf (x)5x f(x21) hold for all positivex. In the
simplest quantum case, dealing with 232 matrices we can use the Stokes parametrization, th
every stateD can be uniquely written in the

D5 1
2 ~ I 1x1s11x2s21x2s2!

form, where (s i) i 51,2,3 are the Pauli matrices and (x1 ,x2 ,x3)PR3 with x1
21x2

21x3
2<1. The

interior of the set of states can be identified with the open unit ball inR3 by this parametrization.
In this case a monotone Riemannian metric on this manifold can be written in the

ds25
1

12r 2 dr 21
r 2

~11r ! f S 12r

11r D
dq21

r 2 sin2 q

~11r ! f S 12r

11r D
dw2

form in polar coordinates.
There is a strong connection between the scalar curvature of these manifolds at a give

and statistical distinguishability and uncertainty of the state. IfD0 is an3n density matrix we call
geodesic ball the set

Br~D0!5$Dn3n density matrix: d~D0 ,D !,r %.

The volume of this ball is given by

V~Br~D0!!5
Apn221r n221

GS n211

2 D •S 12
r ~D0!r 2

6~n211!
1O~r 4! D ,

wherer (D0) is the scalar curvature at the pointD0 . According to Ref. 8, the quantityV(Br(D0))
measures the statistical uncertainty and the scalar curvature measures the average statis
certainty. A general explicit formula for the scalar curvature was given by Dittmann10 ~particular
cases have been discussed in Refs. 11 and 12!. There are many Riemannian metrics on the st
space which are statistically relevant in different ways. The stateA is more mixed than the stateB
if for their decreasingly ordered set of eigenvalues (a1 , . . . ,an) and (b1 , . . . ,bn) the inequality

(
l 51

k

al<(
l 51

k

bl
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holds for every 1<k<n.
It is reasonable to expect that the most mixed states are less distinguishable than t

mixed states; for details see Refs. 13 and 14. It means mathematically that in this case the
curvature of a Riemann structure should have the following monotonicity property: ifD1 is more
mixed thanD2 thenr (D2) should be less thenr (D1), wherer (D) denotes the scalar curvature
the manifold at the stateD. It has been shown that the Bures metric does not have this mon
nicity property for the scalar curvature and moreover it has a global minimum at the most m
state. Actually in Ref. 9 it was proved that for the Bures metric for everyn3n density matrixD
the inequality

r ~D !>
~5n224!~n221!

4

holds. If n.3, equality holds iffD5 (1/n) I . If n52, thenr (D)524. This implies that the Bures
metric is ~trivially ! monotone forn52. Indeed all metrics studied thus far in two level quantu
systems have monotone scalar curvature. This means that these metrics are compatible wi
statistical view. Do all monotone metrics have this property in the two level quantum system
answer is no; in this paper we show a family of monotone metrics with non-monotone s
curvature and we give a condition for monotone metric to have a local minimum at the maxi
mixed state.

II. SCALAR CURVATURE ON THE TWO LEVEL QUANTUM SYSTEMS

A. The setup

Let M n
1 be the space of all complex self-adjoint positive definiten3n matrices of trace 1 and

let Mn be the real vector space of all self-adjoint tracelessn3n matrices. The spaceM n
1 can be

endowed with a differentiable structure.15

The tangent spaceTD at DPM n
1 can be identified withMn . A map

K:M n
13Mn3Mn→C, ~D,X,Y!°KD~X,Y!

will be called a Riemannian metric if the following condition holds: For allDPM n
1 the map

KD :Mn3Mn→C, ~X,Y!°KD~X,Y!

is a scalar product and for allXPMn the map

K
•
~X,X!:M n

1→C, D°KD~X,X!

is smooth.
We now use differential geometrical notation to define the scalar curvature of the (M n

1 ,K)
Riemannian manifold. In this case the Riemannian metric is a

K:M n
1→LIN ~Mn3Mn ,R!, D°~~X,Y!°KD~X,Y!!

map, where LIN(U,V) denotes the set of linear maps from the vector spaceU to the vector space
V. The derivative of the metricK is a map

dK:M n
1→LIN ~Mn ,LIN~Mn3Mn ,R!!, D°~X°~~Y,Z!°dKD~X!~Y,Z!!!.

At a givenDPM n
1 point for givenX,YPMn tangent vectors the map

tD,X,Y :Mn→R, Z° 1
2 ~dKD~Y!~X,Z!1dKD~X!~Z,Y!2dKD~Z!~X,Y!!
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is a linear functional. It means that there exists a uniqueVD,X,YPMn tangent vector such that fo
all ZPMn vector

KD~VD,X,Y ,Z!5tD,X,Y~Z!

holds. One can define the map

G:M n
1→LIN ~Mn3Mn ,Mn!, D°~~X,Y!°VD,X,Y!

which is called covariant differentiation. Its derivative is a map

dG:M n
1→LIN ~Mn ,LIN~Mn3Mn ,Mn!!, D°~X°~~Y,Z!°dGD~X!~Y,Z!!!.

The Riemann curvature tensor defined to be

R:M n
1→LIN ~Mn3Mn3Mn ,Mn!, ~D,X,Y,Z!°RD~X,Y,Z!,

where

RD~X,Y,Z!5dGD~X!~Y,Z!2dGD~Y!~X,Z!1GD~X,GD~Y,Z!!2GD~Y,GD~X,Z!!.

The map

a:M n
13Mn3Mn→LIN ~Mn ,Mn!, ~D,X,Y!°aD,X,Y5~Z°RD~Z,X,Y!!,

is needed to define the Ricci tensor

Ric:M n
1→LIN ~Mn3Mn ,R!, D°~~X,Y!°RicD~X,Y!!,

where

RicD~X,Y!5Tr aD,X,Y .

At a givenDPM n
1 point for givenXPMn tangent vector the map

bD,X :Mn→R, Y°RicD~X,Y!

is a linear functional. It means that there exists a uniqueUD,XPMn tangent vector such that fo
all YPMn vector

KD~UD,X ,Y!5bD,X~Y!

holds. From the map

r:M n
1→LIN ~Mn ,Mn!, D°rD5~~X!°UD,X!

we get the scalar curvature of the manifold

Scal:M n
1→R, D°Tr rD .

For further differential geometry details see, for example, Ref. 16.
Let Mn(C) denote the set of complexn3n matrices andMk(Mn) denote the set ofk3k

matrices with entriesMn(C). If T:Mn(C)→Mm(C) is a linear map, it induces a linear ma
T(k):Mk(Mn)→Mk(Mm) by

T(k)~@Ai j # !5@T~Ai j !#.
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The mapT is called positive if it takes positive operators to positive operators. Say thatT is
k-positive if T(k) is positive andT is completely positive if it isk-positive for allk>1.

A linear mappingT:Mn(C)→Mm(C) is defined to be stochastic ifT is completely positive
and trace preserving. For more information on completely positive and stochastic maps se
13 and 14.

Let (Km)mPN be a family of metrics, such thatKm is a Riemannian metric onM m
1 for all m.

This family of metrics is defined to be monotone if

KT(D)
m ~T~X!,T~X!!<KD

n ~X,X!

for every stochastic mappingT:Mn(C)→Mm(C), for everyDPM n
1 and for allXPMn and for

all m,nPN.
Theorem 2.1: Petz classification theorem:7 There exists a bijective correspondence betwe

the monotone family of metrics(Kn)nPN and operator monotone f:R1→R functions such that
f (x)5x f(x21) hold for all positive x. The metric is given by

KD
n ~X,Y!5Tr~X~Rn,D

1/2 f ~Ln,DRn,D
21 !Rn,D

1/2 !21~Y!! ~1!

for all nPN where Ln,D(X)5DX, Rn,D(X)5XD for all D,XPMn(C).
A Riemannian metricK is said to be monotone if there is a monotone family of metr

(Km)mPN such thatK5Kn for an n. We use the normalization condition for the functionf in the
previous theoremf (1)51. Here are some examples of operator monotone functions which
erate monotone metrics from Refs. 17 and 18,

11x

2
,

2x

11x
,

x21

logx
,

2~x21!2

~11x!~ logx!2 ,
2~x21!Ax

~11x!logx
,

2xa11/2

11x2a ,
b~12b!~x21!2

~xb21!~x12b21!
,

where 0<a<1/2 and 0,ubu,1.

B. Curvature and eigenvalues on M 2
¿

There is an explicit formula for scalar curvature in a givenDPM 2
1 state using a monoton

metric coming from a suitablef function defined by Eq.~1!. To use that result to build up a mor
explicit formula to ourM 2

1 manifold, first introduce the Morozova–Chentsov function related
the monotone functionf defined by

c~x,y!ª
1

y f~x/y!
. ~2!

Let us denote by]1c(x,y) the partial derivative ofc(x,y) with respect to its first variable. Defin
four new functions~as in Ref. 10!

h1~x,y,z!ª
c~x,y!2zc~x,z!c~y,z!

~x2z!~y2z!c~x,z!c~y,z!
, h3~x,y,z!ª

z

x2y
~]1~ logc!~z,x!2]1~ logc!~z,y!!,

h2~x,y,z!ª
~c~x,z!2c~y,z!!2

~x2y!2c~x,y!c~x,z!c~y,z!
, h4~x,y,z!ªz]1~ logc!~z,x!]1~ logc!~z,y!. ~3!

The terms likehi(x,x,z) can be computed as a

lim
y→x

hi~x,y,z!

limit. We will need a linear combination of these functions
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h~x,y,z!5h1~x,y,z!2 1
2 h2~x,y,z!12h3~x,y,z!2h4~x,y,z!. ~4!

Theorem 2.2: (see Ref. 10.) Lets(D) be the spectrum of the state DPM n
1 . Then for the

scalar curvature one has the expression

r ~D !5 (
x,y,zPs(D)

h~x,y,z!2 (
xPs(D)

h~x,x,x!1
1

4
~n221!~n222!.

Corollary 2.1: The scalar curvature at the state DPM 2
1 with eigenvaluesl1 ,l2 is given by

r ~D !5h~l1 ,l1 ,l2!1h~l1 ,l2 ,l1!1h~l2 ,l1 ,l1!1h~l2 ,l2 ,l1!1h~l2 ,l1 ,l2!

1h~l1 ,l2 ,l2!1 3
2 .

Theorem 2.3:Let DPM 2
1 and a52l121 wherel1 is an eigenvalue of D and assume th

the monotone metric ofM 2
1 comes from a function f. Then the scalar curvature at D is

r ~a!5

14~a21!F f 8S 12a

11aD G2

~11a!3F f S 12a

11aD G2 1

2~a217a26! f 8S 12a

11aD
~11a!2a fS 12a

11aD 1

8~12a! f 9S 12a

11aD
~11a!3f S 12a

11aD

1

2~11a! f S 12a

11aD
a2 1

3a315a218a24

2~11a!a2 . ~5!

Proof 1: Through the computation we will use the identitiesf 8(1)5 1
2 and 2f (3)(1)

13 f (2)(1)50 which come from the equationsf (x)5x f(1/x) and f (1)51. It is easy to recognize
that hi(y,x,x)5hi(x,y,x) for i 51,2,3,4. First let us note the following identities:

c~x,x!5
1

x
, c~x,y!5c~y,x!, c~x,y!5tc~ tx,ty!, ;tPR1,

~6!

]1c~x,x!52
1

2x2 , ]1
k]2

l c~x,y!5]1
l ]2

kc~y,x!, c~x,y!52x]1c~x,y!2y]2c~x,y!,

which will be used through the computation.
The hi(x,x,y) andhi(x,y,x) like limit functions can be computed. For example,

h1~x,x,y!5 lim
q→x

h1~x,q,y!5 lim
q→x

c~x,q!2yc~x,y!c~q,y!

~x2y!~q2y!c~x,y!c~q,y!
5

c~x,x!2y@c~x,y!#2

~x2y!2@c~x,y!#2 ,

h4~x,y,x!5 lim
q→x

h4~x,y,q!5 lim
q→x

q
]1c~q,x!

c~q,x!

]1c~q,y!

c~q,y!
5x

]1c~x,x!

c~x,x!

]1c~x,y!

c~x,y!
.

After taking into account the identities~6! these limit functions can be simplified,

h1~x,x,y!5
12xy@c~x,y!#2

x~x2y!2@c~x,y!#2 , h1~x,y,x!52
1

2

c~x,y!12x]1c~x,y!

~x2y!c~x,y!
, ~7!

h2~x,x,y!5xS ]1c~x,y!

c~x,y! D 2

, h2~x,y,x!5
1

x S 12xc~x,y!

~x2y!c~x,y! D
2

,

                                                                                                                



3681J. Math. Phys., Vol. 44, No. 9, September 2003 Monotone Riemannian metrics

                    
h3~x,x,y!52
y2c~x,y!@]1c~y,x!#212yc~x,y!]1c~y,x!1xy]1c~x,y!]1c~y,x!

x@c~x,y!#2 ,

h3~x,y,x!52
c~x,y!12x]1c~x,y!

2~x2y!c~x2y!
,

h4~x,x,y!5yS ]1c~y,x!

c~x,y! D 2

, h4~x,y,x!52
1

2

]1c~x,y!

c~x,y!
.

Introducing the suitable sum functions forhi ( i 51,2,3,4),

shi~x,y!ªhi~x,x,y!12hi~x,y,x!1hi~y,y,x!12hi~y,x,y!, ~8!

we get that

sh1~x,y!5
~x1y!~12xy@c~x,y!#2!

xy~x2y!2@c~x,y!#2 2
4x]1c~x,y!12c~x,y!

~x2y!c~x,y!
,

sh2~x,y!5
x@]1c~x,y!#21y@]1c~y,x!#2

@c~x,y!#2 12
~x1y!1xy~x1y!@c~x,y!#224xyc~x,y!

xy~x2y!2@c~x,y!#2 ,

~9!

sh3~x,y!5
~x1y!~c~x,y!@]1,2c~x,y!#22]1c~x,y!]1c~y,x!!

@c~x,y!#2 2
4x]1c~x,y!12c~x,y!

~x2y!c~x,y!
,

sh4~x,y!5
x@]1c~x,y!#21y@]1c~y,x!#2

@c~x,y!#2 2
]1c~x,y!1]1c~y,x!

c~x,y!
.

These sum functions can be expressed by the operator monotone functionf (x):

sh1~x,y!5
1

~x2y!2 S y~x1y!

x
@ f ~x/y!#21y23x1

4x~x2y!

y

f 8~x/y!

f ~x/y! D ,

sh2~x,y!5
x

y2 S f 8~x/y!

f ~x/y! D 2

1
y3

x4 S f ~x/y! f 8~y/x!

@ f ~y/x!#2 D 2

1
2y~x1y!

x~x2y!2 @ f ~x/y!#2

2
8y

~x2y!2 f ~x/y!1
2~x1y!

~x2y!2 ,

~10!

sh3~x,y!5
22x~x1y!

y3 S f 8~x/y!

f ~x/y! D 2

2
~x1y!

x2

f 8~x/y! f 8~y/x!

@ f ~x/y!#2

1
2~x212xy2y2!

y2~x2y!

f 8~x/y!

f ~x/y!
1

x~x1y!

y3

f 9~x/y!

f ~x/y!
2

2

x2y
,

sh4~x,y!5
x

y2 S f 8~x/y!

f ~x/y! D 2

1
y3

x4 S f ~x/y! f 8~y/x!

@ f ~y/x!#2 D 2

1
1

y

f 8~x/y!

f ~x/y!
1

y

x2

f ~x/y! f 8~y/x!

@ f ~y/x!#2 .

The scalar curvature is given by the linear combination of the functionsshi(x,y):

r ~D !5sh1~x,y!2 1
2 sh2~x,y!12sh3~x,y!2sh4~x,y!.

The result is the following:
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r ~D !52
2y f~x/y!21

~x2y!2 16
2x f8~x/y!2y f~x/y!

y~x2y! f ~x/y!
2

1

2

x~813y!

y3 S f 8~x/y!

f ~x/y! D 2

2
3

2

y

x2 S f 8~y/x!

f ~y/x! D 2

1
~31x! f 8~x/y!

y2f ~x/y!
12

x f9~x/y!

y3f ~x/y!
2

f 8~y/x!

x f~y/x!
2

2 f 8~x/y! f 8~y/x!

x2@ f ~y/x!#2 1
3

2
. ~11!

The eigenvalues ofD can be expressed bya as

l15
11a

2
, l25

12a

2
.

Substituting these into the previous formula and collecting the terms we get Eq.~5!. h

Since the scalar curvature formula Eq.~5! is a rather complicated one it is worth mentionin
that there is a completely different proof~which is based on Sec. II A! for Theorem 2.3.

Proof 2: There is another parametrization of the state as it was mentioned in the introdu
Let us use the following parametrization for the 232 density matrices:

1

2 S 11r cosu ~r sinu cosf!1 i ~r sinu sinf!

~r sinu cosf!2 i ~r sinu sinf! 12r cosu D ,

where (r ,u,f) denote the spherical coordinates, but now 0<r ,1. In this case the metric is

ds25
1

12r 2 dr 21
r 2

~11r ! f S 12r

11r D
du21

r 2 sin2 u

~11r ! f S 12r

11r D
df2.

Let us use the order (r ,u,f) for the coordinates.@For example]2t(r ,u,f) denotes the partia
derivative of t(r ,u,f) with respect tou.# The gik metric can be written in the formgik

5d ika i(r ,u,f). The identities

]2a15]3a150, ]2a25]3a250, ]3a350

will simplify the computation. The Christoffel symbols of the second kind for this Rieman
manifold is

G i j
..m5 (

k51

3
1

2
gkm~] igjk1] jgik2]kgi j !, ~12!

where gi j denotes the inverse matrix ofgi j . Since G i j
..m5G j i

..m , there are only seven nonzer
independent Christoffel symbols in this case

G1,1
..15

r

12r 2 , G2,2
..15

2r ~12r !

2~11r !2f ~c~r !! S r 213r 1212r
f 8~c~r !!

f ~c~r !! D , G3,3
..15sin2 u G2,2

..1 ,

G1,2
..25

2 f ~c~r !!

r 2~12r !
G2,2

..1 , G3,3
..252sinu cosu, G1,3

..35G1,2
..2 , G2,3

..35
cosu

sinu
, ~13!

wherec(r )5 (12r )/(11r ).
The Riemannian curvature tensor is given by the equation

Ri jkl 5 (
n51

3

glnS ] iG jk
..n2] jG ik

..n1 (
m51

3

~G jk
..mG im

..n2G ik
..mG jm

..n!D . ~14!
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SinceRi jkl 52Rjikl , Ri jkl 52Ri jlk , andRi jkl 5Rkli j , there are only three nonzero independe
elements of the curvature tensor,

R12125
2r

~11r !4~12r 2! f ~c~r !! S 2r ~12r !
f 9~c~r !!

f ~c~r !!
23r ~12r !S f 8~c~r !!

f ~c~r !! D 2

1~11r !~3r 22!
f 8~c~r !!

f ~c~r !!
1

~r 21r 14!~11r !2

4 D ,

R13135sin2 u R1212, ~15!

R23235
r 2~12r !sin2 u

~11r !4@ f ~c~r !!#2 S r ~r 12!
f 8~c~r !!

f ~c~r !!
1

r 2

11r S f 8~c~r !!

f ~c~r !! D 2

2
~11r !3

12r
f ~c~r !!1

~11r !~21r !2

4 D .

The Ricci curvature tensor is

Rici j 5 (
k,l 51

3

gklRli jk . ~16!

It is symmetric Rici j 5Ricj i , and it has three nonzero elements,

Ric1,15
1

~11r !4 S 4
f 9~c~r !!

f ~c~r !!
26S f 8~c~r !!

f ~c~r !! D 2

1
2~11r !~3r 22!

~12r !

f 8~c~r !!

f ~c~r !!

1
~r 21r 14!~11r !2

2r ~12r ! D ,

Ric2,25
r 2~12r !

~11r !4f ~c~r !! S 2
f 9~c~r !!

f ~c~r !!
24S f 8~c~r !!

f ~c~r !! D 2

1
~11r !~r 214r 24!

r ~12r !

f 8~c~r !!

f ~c~r !!

1
~11r !4

r 2~12r !
f ~c~r !!1

~r 312r 212r 22!~11r !2

2r 2~12r ! D , ~17!

Ric3,35sin2 u Ric2,2.

The scalar curvature at pointD is

r ~D !5 (
i , j 51

3

gi j Ricj i . ~18!

Computingr (D) we get Eq.~5!. h

The stateD is maximally mixed if its eigenvalues are equal, in this casea50. So the scalar
curvature has local minimum or maximum at the maximally mixed state if and only if the func
r (a) has local minimum or maximum at the origin.

C. Curvature formula at the origin and Radon measures

To find an operator monotone functionf such that the scalar curvature has local minimum
the origin we start from the following representation theorem in Ref. 19.

The mapm° f defined by
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f ~x!5E
0

` x~11t !

x1t
dm~ t ! for x.0

establishes an affine isomorphism from the class of positive Radon measures@0,̀ # onto the class
of operator monotone functions.

We use a modified version of the previous theorem Ref. 20.
Theorem 2.4:The mapm° f , defined by

f ~x!5E
0

1 x

~12t !x1t
dm~ t !, for x.0, ~19!

establishes a bijection between the class of positive Radon measures on [0,1] and the c
operator monotone functions.

From this representation we get that

x f~x21!5E
0

1 x

~12t !1tx
dm~ t !5E

0

1 x

~12t !x1t
dm~12t ! .

Thus f (x)5x f(x21) holds iff m(@0,t#)5m(@12t,1#) for all tP@0,1# and thef (1)51 normal-
ization means thatm(@0,1#)51. Let T denote the set of all positive Radon measures on the@0,1#
interval such thatm(X)5m(12X) for every measurableX subset of@0,1# and m(@0,1#)51.
Theorem 2.1 and 2.4 imply that there is bijective correspondence between monotone metr
T.

III. SCALAR CURVATURE

A. Scalar curvatures with local minimum at the origin

For detailed verification of Theorem 3.1 and 3.3 theMaple program was used. The Mapl
worksheet, containing these proofs is available at Ref. 21.

Theorem 3.1:The series expansion of r(a) at the origin leads to the

r ~a!5~6136f 9~1!!1a2~ 100
3 f (4)~1!2140f 9~1!2120f 9~1!2!1a4~352f 9~1!31616f 9~1!2

11092f 9~1!2 1288
3 f (4)~1!1 392

45 f (6)~1!2160f 9~1! f (4)~1!!1O~a6! ~20!

approximation.
Proof: From Eq. ~5! one may expect that the 1/a and 1/a2 type divergences occur in thi

expansion but the behavior derivatives off not allow this. It is obvious thatr (a)5r (2a) from
symmetric reasons~not from the formula! this means that the coefficient ofa(2n11) will be zero
for all nPN. We proof this series expansion only up to the orderO(a4) because the coefficient o
a4 can be derived in a similar way, but it needs more complicated formulas. Through the co
tation we will use the identities

f 8~1!5
1

2
, f (3)~1!52

3

2
f (2)~1!, f (5)~1!52

15f (4)~1!160f (3)~1!160f (2)~1!

2

which come from the equationsf (x)5x f(1/x) and f (1)51. We consider the scalar curvature
a sum of five functions according to the Eq.~5!. The series expansion of the summands can
computed in elementary way, but the intermediate formulas are rather complicated. The
expansions of the five summands from Eq.~5! after simplifications are the following:

~1! 2 7
2 17(4f 9(1)11)•a27(8f 9(1)214 f 9(1)11)•a2.

~2! 26• 1
a 1(24f 9(1)113)2(28f 9(1)112)•a1(16f (4)(1)248f 9(1)2252f 9(1)112)•a2.

~3! 8 f 9(1)1(16f (4)(1)216f 9(1)2256f 9(1))•a2.
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~4! 2• 1
a

214f 9(1)1(4/3 f (4)(1)24 f 9(1))•a2.

~5! 22• 1
a

216• 1
a 2515•a25•a2.

The sum of these expansions leads to Eq.~5! in this theorem. h

Combining Eqs.~19! and~20! we conclude that the scalar curvature has local minimum at
origin if

12S E
0

1

t~12t ! dm~ t ! D 2

2E
0

1

t~ t21!~20t2240t113!dm~ t !,0 ~21!

holds for amPT. The scalar curvature at the origin is given by

6172E
0

1

~ t22t ! dm~ t !.

It has maximum whenm5(1/2)d01(1/2)d1 , the corresponding operator monotone function
f (x)5 (11x)/2 and thenr (0)56. It has minimum whenm5d1/2, the corresponding operato
monotone function isf (x)5 2x/(11x) and thenr (0)5212.

The measuremPT can be transformed into a probability measurem8 on the @0,1# interval
such that

E
0

21/2

t~12t ! dm~ t !5
1

8 E0

1

x dm8~x!

because the 4t(12t) function maps the 2mu [0,1/2] measure into a probability measure on@0,1#. If
l denotes the Lebesgue measure and

m~ t !u [0,1/2]5r~ t ! dl~ t !1( aidpi

then

m8~x!5
1

2
rS 12A12x

x D 1

A12x
dl~x!1( 2aid4pi (12pi )

.

There is one to one correspondence between probability measures on@0,1# andT. Let mm denote
the expectationsm

2 the variance andEn,m the nth momentum of them8 measure. Using Eq.~19!
and the previous notation one can check the following equalities:

f 9~1!52
mm

2
, f (4)~1!523mm1

3

2
E2,m , f (6)~1!5290mm2

45

4
E3,m190E2,m .

Substituting this into the approximation Eq.~20! one gets the following theorem.
Theorem 3.2: If for a measuremPT the inequality

mm~322mm!,5sm
2

holds or if

mm~322mm!55sm
2 and 244mm

3 170mm
2 1114mm,98E3,m

then the scalar curvature of the metric induced by the measurem by the Eq. (19) has loca
minimum at the origin.
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We give examples for monotone metrics which satisfies the previous conditions so the
curvature of them has local minimum at the maximally mixed state.

Theorem 3.3:Let

72A7

14
,p<

1

2

and

h~p!5
A14p2214p141A2640p411280p32880p21240p19

2A7
~22!

and 0<q, 1
22h(p). Then the scalar curvature of theM 2

1 manifold coming from the operato
monotone function

f ~x!5
x

4 S 1

px112p
1

1

~12p!x1p
1

1

qx112q
1

1

~12q!x1qD ~23!

has local minimum at the origin.
Proof: First one can try to find amPT measure such that Eq.~21! holds in

mp5 1
2 dp1 1

2 d12p ~24!

form wheredp is a Dirac measure. Let

tmª12S E
0

1

t~12t ! dm~ t ! D 2

2E
0

1

t~ t21!~20t2240t113! dm~ t ! ~25!

and t(p)5tmp
. We get that

t~p!5p~12p!~8p228p13!.

For all pP@0,1/2# we havet(p).0. This means that the scalar curvature has local maximum
the origin for allmp measures.

Let pP@0,1/2#, qP@p,1/2#, and

mp,q5 1
4 dp1 1

4 dq1 1
4 d12p1 1

4 d12q . ~26!

Let t(p,q)5tmp,q
then

t~p,q!527~p41q4!114~p31q3!26pq~p1q2pq21!2 17
2 ~p21q2!1 3

2 ~p1q!. ~27!

After substituting into Eq.~27! the

p5
v1Av224u

2
, q5

v2Av224u

2
~28!

formulas one derives that

t~u,v !528u21~28v2248v123!u2~7v4214v31 17
2 v22 3

2 v !. ~29!

The equationt(u,v)50 has two solutions for a givenv. Taking into account thatu5pq we get
the condition 0,u, 1

4. The only solution of the equationt(u,v)50 which fulfills this condition is
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u~v !5 7
4 v223v1 23

16 2 1
16A560v422240v313320v222160v1529. ~30!

If the parameterp is given thenq can be computed from the equationu(p1q)5pq. There are
four solutions forq but only one of them is admissible

q~p!5 1
2 2 1

14
A84p2284p12817A2640p411280p32880p21240p19 ~31!

because of the conditions forq. This equation gives positive parameterq if

72A7

14
,p<

1

2
.

One can check that if 0,q,q(p) then the functiont(p,q) is negative. Then we use Eq.~19!
defining a desiredf (z) operator monotone function from themp,q measures. h

If we choose (72A7)/14,p< 1
2 arbitrary andq50 in the previous theorem then we get th

the scalar curvature coming from the operator monotone function

f ~x!5
x

4 S 1

~12p!x1p
1

1

px112p
1

1

x
11D

has local minimum at the origin. In this case series expansion of the scalar curvature at the
is

r ~a!5~ 9
2 236p~12p!!220p~12p!~14p2214p13!•a21O~a4!.

One can prove that the minimum at the origin is not only local but global for these functions
greatest value of the scalar curvature in this case is

r ~1!5
7

2
1

1

p~12p!
.

Here some other examples for operator monotone functions, such that the scalar cu
derived from them has local, but not global minimum at the maximally mixed state,

f ~x!5
x

4 S 4

x11
1

50

x149
1

50

49x11D , f ~x!5
250x

999x11
1

250x

x1999
1

x

x11
.

Numerical computations suggest that the scalar curvature of the Riemannian metric of a thre
quantum system induced by the second function has local minimum at the maximally mixed

IV. CONCLUSIONS

The Riemannian metrics so far studied on the manifoldM n
1 come from special operato

monotone functions according to Theorem 2.1. The metric carries all differential geome
properties of the manifold, this means that from a suitable functionf one can derive all geometri
cal quantities of the manifold. One of the basic phenomenological problems is to give ph
interpretation of differential geometrical quantities.

One can expect that the greatest statistical uncertainty should belong to the most mixed
This expectation means that the scalar curvature of Riemannian metrics should have a
maximum at the maximally mixed state. We gave several examples for suitable operator mo
functions such that the derived scalar curvatures do not fulfill this expectation and have e
local minimum at the maximally mixed state.
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The Kubo–Mori~or Bogoliubov! metric comes from the functionf (x)5 (x21)/logx. This is
one of the statistically most relevant metrics. It was conjectured in Ref. 17 that the scalar cur
of this metric is monotone in the following sense. IfD1 , D2PM n

1 , andD1 is more mixed than
D2 then r (D1)>r (D2).
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Spontaneous localization of electrons in two-dimensional
lattices within the adiabatic approximation
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The conditions for spontaneous localization of electrons in an isotropic two-
dimensional electron–phonon lattice are investigated within the zero adiabatic ap-
proximation. It is shown that the localization occurs when the electron–phonon
coupling takes values within certain finite interval of valuesgc,1,g,gc,2 . At g
,gc,1 the energy minimum is attained for the delocalized states and atg.gc,2 the
strong localization on one lattice site takes place. In this paper we introduce an
ansatz which, under a variational principle, allows us to describe all three regimes
at the same time. The radius of the electron localization, as a function of electron–
phonon coupling constant, is evaluated analytically and shown to fit well the nu-
merical data. ©2003 American Institute of Physics.@DOI: 10.1063/1.1592873#

I. INTRODUCTION

Low-dimensional systems in general, and electron–phonon systems in particular, attra
nificant attention both from the experimental and theoretical points of view.1–8 It is known that in
such systems the electron–phonon coupling can be significant and can lead to the forma
localized modes, due to which the electroconducting and/or optical properties of the syste
change drastically. In particular, in one-dimensional systems~1DSs! solitonlike states of quasipar
ticles ~electron, hole, exciton! can be formed9 under certain conditions, namely, when the para
eters of the system satisfy the conditions of an adiabatic approximation. The latter is valid
the nonadiabaticity parameter, which is determined as the ratio between the width of the e
band and the characteristic energy of the phonons, is small and when the electron–phono
pling takes values within a certain finite intervalgcr,1,g,gcr,2 .10 At weak coupling, wheng
,gcr,1 , the quasiparticle is almost free, while at strong coupling, wheng.gcr,2 , a small polaron
state is formed which corresponds to the self-trapping of this quasiparticle within one lattice
Although both solitons and small polarons correspond to the localized quasiparticle states
transport and stability properties differ significantly: the small polaron motion corresponds
jumping mechanism and is sensitive to temperature, presence of impurities in the compoun
while a soliton, which is localized within several lattice sites, can propagate coherently a
without emitting phonons and is stable due to the mutual compensation between the dispers
the nonlinearity.

Much less is known about the possibility of spontaneous localization, i.e., the formatio
solitonlike states, in 2DSs. First, it is known that in other 2DSs~in plasma, magnetic systems, etc!
2D solitons might be unstable under the interaction with weak perturbations and, as a
collapse, i.e., shrink infinitely.11–13 This shrinking might turn out to be even more important f
‘molecular solitons with nonzero velocity, since it is known that the amplitude and the inv

a!Electronic mail: brizhik@bitp.kiev.ua
b!Electronic mail: eremko@bitp.kiev.ua
c!Electronic mail: b.m.a.g.piette@durham.ac.uk
d!Electronic mail: w.j.zakrzewski@durham.ac.uk
36890022-2488/2003/44(9)/3689/9/$20.00 © 2003 American Institute of Physics
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radius of localization of 1D solitons increase with the increase of their velocity.9,14 On the other
hand, it is clear that such shrinking of the soliton size is restricted by the discreteness
system. Some aspects of this problem have been studied for isotropic15–17and anisotropic18,19 2D
crystals. In particular, the possibility of the existence of solitonlike states in 2D lattices has
demonstrated numerically and analytically within various variational schemes. It has turne
that, even within the adiabatic approximation, when the wave vector of the state is chosen
given by the product of the electron and the renormalized phonon wave functions, the form
of soliton states occurs only within a certain range of the parameters. In the isotropic cas
parametric domain can be characterized again by the dimensionless electron–phonon c
constant: the soliton exists if the conditiongc,1,g,gc,2 is valid, where the constantsgc,1 andgc,2

are, in general, different from the corresponding constant for the 1DSs. This differs from th
case where, once the adiabatic approximation is assumed, the spontaneous localization tak
formally for an arbitrary value of the electron–phonon coupling constant.

To understand this better here we present, within the adiabatic approximation, a varia
function for a 2D isotropic lattice in such a form that it allows us to describe in a self-consi
way all three electron states: delocalized, spontaneously localized and strongly localized~nearly
on one lattice site!. We calculate the radius of localization as a function of the electron–pho
coupling constant, and compare these values with the results of the direct numerical calcu
of the system of discrete equations. The analytical results show distinctly the existence
lower critical valuegc,1 for the formation of solitonlike states, and the transition from solit
states to the small polaron states wheng→gc,2 .

II. GENERAL DESCRIPTION OF THE MODEL

The quasiparticle states in a 2D lattice where the electron–phonon interaction is take
account are described by the following Hamiltonian in the site representation

Ĥ5(
mW

E0AmW
1AmW 1(

mW ,nW
@2JmW ,nW~AmW

1AnW1AnW
1AmW !1xmW ,nWAmW

1AmW ~ ûmW 2ûnW !#

1(
m,nW

p̂m
2 ~nW !

2M
1

1

2 (
m,n,nW ,mW

wm,n~nW ,mW !ûm~nW !ûn~mW !. ~1!

HereAmW
1 (AmW ) are the creation~annihilation! operators of the quasiparticle on the sitemW with

the corresponding radius-vector coordinateRW nW5eW xaxm1eW yayn, m,n50,61,62, . . . , ûmW andp̂mW

are the molecule displacements operators and the corresponding conjugate momenta,E0 is the
quasiparticle on-site energy,JmW ,nW are the exchange interaction energies,xmW ,nW are the electron–
phonon coupling constants,eWm is the unit vector alongm axis, m5x,y. Moreover,am is the
corresponding lattice spacing,M is the atom mass andwm,n(nW ,mW ) are the lattice elasticity coef
ficients which are assumed to be constant on the grid:wmm(nW ,nW 6eW x)5wmm(nW ,nW 6eW y)5w.

In the adiabatic approximation the vector state of the system,uC&, can be chosen in the
multiplicative form20,18 which, after substitution into the Schro¨dinger equation

i\
]

]t
uC&5ĤuC&, ~2!

leads to the following system of discrete equations describing the dynamics of a quasipartic
self-consistent deformational potential on a 2D lattice in the nearest neighbor approximatio

i
dwm,n

dt
5E0wm,n2~wm11,n1wm21,n1wm,n111wm,n21!

1@Um11,n2Um21,n1Vm,n112Vm,n21#wm,n , ~3!
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d2Um,n

dt2 52K@4Um,n2Um11,n2Um21,n2Um,n112Um,n21#1X~ uwm11,nu22uwm21,nu2!, ~4!

d2Vm,n

dt2 52K@4Vm,n2Vm11,n2Vm21,n2Vm,n112Vm,n21#1X~ uwm,n11u22uwm,n21u2!. ~5!

Here we have introduced the dimensionless parameters

t 5
Jt

\
, U 5

uxx

J
, V 5

uyx

J
,

~6!

E0 5
E01W

J
, K 5

\2 w

M J2 , X 5
\2 x2\2

M J3 ,

whereum(nW ,t) are the average values of the molecule displacements in them direction, andwnW is
the probability amplitude of the quasiparticle being located on thenW th site. The total probability is
normalized to unity.

The total energy of the system governed by Eqs.~3!–~5! is conserved and can be represen
as the following functional:

H5(
nW

H E0wnW
* wnW2J@wnW

* ~wnW 1eWx
1wnW 2eWx

!2wnW
* ~wnW 1eWy

1wnW 2eWy
!#

1wnW
* wnWx(

m
@um~nW 1eWm!2um~nW 2eWm!#J 1W. ~7!

HereW, the phonon energy, is the sum of the lattice kinetic and potential energies

W5
1

2 (
nW ,m

H pm
2 ~nW !

M
1wx@um~nW !2um~nW 2eW x!#

21wy@um~nW !2um~nW 2eW y!#2J . ~8!

In this paper we consider a square latticeNx5Ny5N and introduce the quasimomentu
representation

kW5kxeW x1kyeW y , km5
2p l m

N
, l m50,61,62, . . . ,N/2, ~9!

using the following transformation:

wnW5
1

AN
(

kW
F~kW !eikWnW , um~nW !5

1

AN
(

kW
Qm~kW !eikWnW . ~10!

The quasiparticle wave function, after excluding the deformational variables in the stati
case, satisfies in this representation the following nonlinear equation:

@E~kW !2E#F~kW !2
1

N (
kW8,qW

G~qW !F* ~kW8!F~kW81qW !F~kW2qW !50, ~11!

and the corresponding energy functional takes the form

Etot5(
kW

E~kW !uF~kW !u22
1

2N (
kW

G~kW !u`~kW !u2, ~12!
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where

E~kW !5E022J~cos~kx!1cos~ky!!, ~13!

G~kW !5
x2

w

sin2~kx!1sin2~ky!

sin2 ~kx/2! 1sin2 ~ky/2!
, ~14!

`~kW !5(
qW

F* ~qW !F~qW 2kW !5(
nW

eikWnW uwnW u2. ~15!

In view of their complexity, Eqs.~3!–~5! can be studied numerically or by using a variation
scheme. The numerical studies18,17 have shown that, depending on the value of electron–pho
coupling, three types of electron ground states occur. To perform an analytical study dif
forms of the variational functions have been tried, and it has turned out, that the varia
functions which had been used, can describe numerical data satisfactorily only in some
intervals of the coupling constant. Namely, the decreasing exponential function describ
regime of strong localization~strong coupling!,21,17while hyperbolic17 and Gaussian17,16functions
describe the soliton regime~intermediate coupling!. But the transition itself from one regime to th
other, up to now, has not been described analytically. Here we present a trial function in a
which allows us to describe all three regimes of the coupling constant.

III. VARIATIONAL STUDY

First we note that discrete structures that are periodic in space are characterized by fu
which are periodic also in the reciprocal space. Moreover, forN@1, the quasimomentumkW varies
as a quasicontinuous function, which allows us to replace the infinite sums by the corresp
integration in the first Brillouin zone. Taking into account these two arguments, we choose th
function in the form

F~kW !5F~kx!F~ky!, F~km!5
2AK~k!

pAN
dn~um ,k!, ~16!

where dn(um ,k) is the elliptic Jacobi function of the argumentum and of the modulusk, which is
assumed to be the variational parameter. The argument of the elliptic function,u, is related to the
quasimomentumkm by the relationum5K(k)akm /p whereK(k) is the complete elliptic integra
of the first kind. Note that we use the standard notationskm for the quasimomentum andk for the
modulus of the elliptic functions and thereforekm andk should be distinguished. The parameterA
in ~16! can be found from the normalization condition

(
nW

uwnW u25(
km

uF~km!u251, A25
p2

4KE
, ~17!

whereE is the complete elliptic integral of the second kind.
Due to the periodicity of the elliptic function~with period 2K), the function~16! is also a

periodic function ~with period 2p! and it describes a spatially localized distributionwn

5A cosh21(kn) whose width is controlled byk. Indeed,

F~km!5
A

AN
(

n52(N21)/2

(N21)/2
e2 ikmn

cosh~kn!
5

A

AN
F114 (

n51

(N21)/2
e2kn cos~kmn!

11e22kn G . ~18!

Taking the limit N→` and using the Fourier series of the elliptic function dn, leads to the
expression~16! with the Jacobi parameterq5exp(ipt), wheret5 ik/p.

The modulus of the elliptic functions,k, is related to the localization parameter,k, by
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k5p
K8~k!

K~k!
, K8~k!5K~k8!, k82512k2. ~19!

The width of the localized structure,k, as the variational parameter can be determined by m
mizing the energy

dEtot~k!

dk
50. ~20!

Note that function~16! for largek is close to a decreasing exponent, and at smallk it reduces to
the hyperbolic function. Therefore, such a choice of the trial function generalizes these
limiting cases.

The evaluation of~15! with ~16! after integrating over the quasimomentum space gives

`~km!5
K

E Fdn~u!2
cn~u!

sn~u!
Z~u!G , ~21!

where Z(u)5E(u)2uE/K is the JacobiZ-function and where, according to the normalizati
condition,`(0)51.

To perform further calculations analytically it is convenient to use the representation o
elliptic functions in terms of theq-functionsq j (z,q), j 51,2,3,4 defined by the following stan
dard relations:22,23

dn~u!5
q4q3~z!

q3q4~z!
, cn~u!5

q4q2~z!

q2q4~z!
, sn~u!5

q3q1~z!

q2q4~z!
, Z~u!5

p

2K

q48~z!

q4~z!
. ~22!

Herez5pu/2K5km/2 , q j5q j (0), andq j8(z)5dq j (z)/dz.
Next we substitute~22! into ~21! and, using the differential relation,22

q4~z!q28~z!2q2~z!q48~z!52q3
2q1~z!q3~z!, ~23!

we obtain the following representation for`(km):

`~km!52
pq4

2Eq3

q28~z!

q1~z!
. ~24!

To proceed further with the calculations that involve the complete elliptic integrals
convenient to use their representation in terms of theq-functions of zero-argument. For th
complete elliptic integral of the first kind we haveK5pq3

2/2, and for the complete elliptic
integral of the second kind several representations are given in textbooks. From~24!, using the
relationq185q2q3q4 , we obtain a new representation,

E52
p2

4K

q29

q2
, ~25!

which is more convenient than others, and, to our knowledge, is absent from most handbook~see,
e.g., Refs. 22–24!. This relation will be used below.

The calculation of the first term in the energy expression~12! is straightforward, while the
second term requires an approximation. For this we note that the function~14! can be rewritten in
several equivalent ways, one of which contains a term that vanishes on the lineskx56ky in the
kW plane, while the other vanishes on the lineskx50 andky50. Combining these two represent
tions with different weightsa andb, such thata1b51, we can set a corresponding weight as
free parameter to be determined by the requirement of producing the best fit to the numerica
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Taking all this into account, we obtain the following expression for the energy as a functi
the variational parameter~12!:

Etot5E02JH 4L1
g

2
F1@aF11~22a!F2#J , ~26!

whereg is the dimensionless electron–phonon coupling constant

g5
2x2a2

Jw
, ~27!

and where

L 5 (
km

uF~km!u2 cos~km! 5 2
2q2

q29 sinhk
, ~28!

F1 5
1

N (
km

u`~km!u2 5
1

6 S 324
q2

q29
2

q2q2-8

~q29!2 D , ~29!

F2 5
1

N (
km

u`~km!u2 cos~km! 5
L~L coshk21!

sinhk
. ~30!

Substituting~26! into ~20!, we obtain the following equation for the localization parametek
as a function ofg:

g 5 2
8 dL/dk

2aF1F1,k1~22a!~F1,kF21F1F2,k!
, ~31!

whereF j ,k5dF j /dk.
To analyze Eq.~31!, it is necessary to calculate explicitly the derivatives of the functions w

respect to the localization parameter. For this one can use equations forq-functions which, when
t5 ik/p, have the form22–24

]2q j

]z2 5 4
]q j

]k
, j 51,4. ~32!

In this case the functions in~31! are expressed via theq-functions and their zero argumen
derivatives. To calculate the functions appearing in~31! at smallk, when the Jacobi paramete
q5exp(2k) is not small, it is convenient to use theq-functions as functions of the small param
eter q85exp(2ip/t)5exp(2p2/k), performing the imaginary Jacobi transformation. Thus,
instance,22,23

q2~z,q! 5 ~2 i t!2 1/2expS i t8z2

p Dq4~zt8,q8!, t852
1

t
. ~33!

This allows us to determine the dependence of the localization parameterk, as a function of
g given by Eq.~31!, numerically. Our result is presented in Fig. 1, where we see that atg,gc,1

56 the localization does not occur,k50, and the ground electron state corresponds to a delo
ized state. Atg.gc,1 there are two different regimes of the localization with the distinct transi
from one regime, which corresponds tok,1, to the other one withk.1. This transition manifests
itself as a sharp change of the curvek(g).
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To compare the results of the variational analysis presented above with the direct num
calculations of the initial system of discrete equations~3!–~5! it is necessary to calculate the radiu
of the localization. For the latter the following definition can be used:

R25(
n,m

~n21m2!uwn,mu2 5 2
d2

dkW2
`~kW !U

kW50

. ~34!

Substituting the explicit expression~24! in ~34!, we obtain

R2 5
2K2

3p2 F12S 2K

E
21D k82G 5

1

6 S q1-

q18
2

q2
IV

q29
D . ~35!

The analysis of the last expression shows that at smallk the radius equalsR5p/(A6k), i.e., it
coincides with the radius of the hyperbolic trial function, while at large values ofk it takes the
form R5sinh21(k) which is equal to the width of localization of the trial function chosen in
form of a decreasing exponential.17

In Fig. 2 we present this dependence of the radius of localization as a function of the n
earity constant,g, together with the numerical results. The numerical curve shows thatgc,1

'5.85 andgc,2'7.5.
While gc,1 is well defined as the critical value below which stationary solutions of the m

do not exist,gc,2 is more difficult to define explicitly: The transition between localized and v
strongly localized~small polaron! solutions is not very sharp but one observes that during
transition, the second derivative of the inverse radius of the localization,d2(1/R)/dg2, is positive
neargc,2 but negative elsewhere~see Fig. 2 or Ref. 17!. If we call gz,1 andgz,2 the values ofg
where d2(1/R)/dg250, then we can definegc,25(gz,11gz,2)/2 and from Fig. 2. we see tha
R(gc,2)'1 as one would expect intuitively: the solution is essentially localized on one lattice

The variational curve, shown in Fig. 2 corresponds toa50.45 and from it one sees that th
self-trapped state extends over a few lattice sites when 6,g,8. In this case the envelope functio
of the electron distribution changes smoothly from site to site, and the long-wave~continuum!
approximation is valid. Wheng.9, the localization is very narrow, virtually, within one lattic
site and therefore the lattice discretness is essential and the continuum approximation, obv
is not valid.

In general, the value of the parametera introduced in~26! ~notice,a is always,1), changes
the position of the transition from the soliton regime to the regime of strong localization
respect tog in the interval 8–9 and influences the steepness of the transition. Moreovera
.0.5 a bistability takes place, as shown in Fig. 1. Although this bistability can possibly be tho
of as an artifact of the variational analysis, its presence indicates that, within the region

FIG. 1. Dependence of the localization parameterk on the nonlinearity parameterg as the solution of~20! at a50.45
~solid line!, a50.5 ~dashed line!, anda50.6 ~dotted–dashed line!.
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transition,g'8.5, the self-trapped states are sensitive to the influence of various perturba
temperature, inclusion of other vibrational modes@i.e., presence of optical mode~s!, complex
elementary cell of a crystal, account of long-range interactions#, etc. Therefore, this bistability can
manifest itself in other models. It can possibly be treated as a potential barrier which sep
solitonlike states from strongly localized states~the latter ones tend to collapse in the continuu
2D NLSE model!.

IV. CONCLUSIONS

We have shown that a 2D lattice with an electron–phonon interaction admits solitonic
tions when the coupling constantg is larger than its lower critical value,gc,1'5.85, and lower
than its upper critical value,gc,2'7.5 (gc,2'8.5 for the variational curve!. In this interval a
solitonic solution is stable with respect to finite and not too large perturbations. The stabiliz
of such a 2D soliton, which stops it from collapsing or dispersion over the whole lattice, is d
the mutual influence of the nonlinearity, the wave dispersion and the lattice discreteness. Asg gets
larger thangc,2 , the self-trapping changes into the regime of strong localization. This trans
also manifests itself by the appearance of a bend of the numerical dependence 1/R(g), Fig. 2.
When the initial function is slightly different from the stationary state its width oscillates aro
the value that corresponds to the width of the stationary state.17 A study of the dynamics of such
a soliton and its stability with respect to collisions with boundaries is in progress.

Generally speaking, at various values of the electron–phonon coupling different typ
electron ground states are realized: small polarons, solitons~large polarons! or almost free
electrons.10 Between the almost free electron states at a weak coupling and the small polaron
at a strong coupling there is a region of the coupling parameter where a soliton state exis
which arises in systems that satisfy the adiabatic approximation. But the properties of th
adiabatic description of 1D and 2D systems with respect to the self-trapping are qualita
different. While in 1DS the self-trappingformally occurs at an arbitrary value of the couplin
constant within the adiabatic approximation, in 2DS, even within the adiabatic approximatio
these three different regimes can be realized depending on the strength of the coupling.

The comparison of the results obtained here with the conditions of the soliton existence
chains10 shows that solitons in 2D lattices exist at larger values of the electron–phonon cou
constant. Therefore, the properties of systems of similar compounds but possessing a 1D
than a 2D structure, could differ qualitatively. Indeed, such an example is given by the com

FIG. 2. Inverse radius of localization, 1/R, as a function ofg: ~a! Numerical solution of Eqs.~3!–~5!, ~b! variational curve
corresponding to Eq.~35! for a50.45.
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tive study of the vibrational modes of double CvO bond of the peptide group, called Amide
vibrational modes, in biological macromolecules of myoglobin and in photoactive yellow pro
respectively.25 While myoglobin, which is essentiallya-helical, i.e., is a quasi-1D protein an
admits the existence of a long-lived photoexcited Amide-I mode with a lifetime.15 ps, photo-
active yellow protein, which is predominantly ab-sheet protein, does not, under the same con
tions of photoexcitation. Let us add here, that Davydov and Kislukha26 were the first to predict the
self-trapping of Amide-I excitation in a soliton state ina-helical macromolecules due to th
electron–phonon coupling with the hydrogen bonds along polypeptide chains, with the lifeti
such a soliton state much higher than that of an isolated Amide-I excitation.20
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On integrable Hamiltonians for higher spin XXZ chain
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Integrable Hamiltonians for higher spin periodicXXZ chains are constructed in
terms of the spin generators; explicit examples for spins up to3

2 are given. Relations
between Hamiltonians for someUq(sl2)-symmetric andU(1)-symmetric universal
r -matrices are studied; their properties are investigated. A certain modification of
the higher spin periodic chain Hamiltonian is shown to be an integrable
Uq(sl2)-symmetric Hamiltonian for an open chain. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1591054#

I. INTRODUCTION

XXZ spin chains have numerous connections with two-dimensional statistical physic
(111)-dimensional quantum field theory. They describe interaction ofq-deformed spins sitting a
the nodes of a one-dimensional lattice. The spin generatorsS1, S2, andS3 obey the commutation
relations of the quantum Lie algebraUq(sl2),1

@S1,S2#5
sin~2gS3!

sing
, @S3,S6#56S6 . ~1!

We will consider only integrableXXZ spin models. The simplest example in this class i

spin-1
2 chain with the Hamiltonian given by

H5(
n

S 1

2
~Sn

1Sn11
2 1Sn

2Sn11
1 !1~cosg! Sn

3Sn11
3 D .

Higher spinXXZ chains have also been studied2,3 but the technique of the ‘‘R-matrix fusion’’ used
in these works, although sufficient for application of the Bethe ansatz, did not yield ex
expressions for the corresponding Hamiltonians. In fact, only in the spin-1 case such expr
was given in the literature.2 Another method of constructing the higher spin Hamiltonians, ba
on consideration of the universal~spectral parameter dependent! R-matrix, was proposed in Ref. 4
but lacked at the time important ideas of the Hopf algebra approach to the quantum grou
was developed later. In the present paper we will combine these two ingredients togeth
construct local integrable Hamiltonians for higher spinXXZ chains explicitly, i.e., in terms of the
spin generators. This, in particular, will allow us to give a rigorous derivation of the properti
the Hamiltonians and to prove integrability of a certain open higher spin chain.

The paper is organized as follows. In Sec. II we recall some facts aboutUq(sl2)-symmetric
universalr -matrix r (l). In Sec. III we construct aUq(sl2)-symmetric local HamiltonianHn,n11 .
Its properties and properties of the corresponding closed chain HamiltonianH are discussed in
Sec. IV. In particular, we observe thatHn,n11 decomposes into aU(1)-symmetric bulk Hamil-
tonian Ĥn,n11 plus a universal local boundary term. Section V contains explicit expression
Hn,n11 for spins1

2, 1, and3
2. In Sec. VI we find a family of universalr -matrices and Hamiltonians

a!Alexander von Humboldt Fellow, on leave from Steklov Mathematics Institute, St. Petersburg, Russia; electroni
bytsko@physik.fu-berlin.de
36980022-2488/2003/44(9)/3698/20/$20.00 © 2003 American Institute of Physics
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corresponding to an alternative choice of the co-multiplication. In Sec. VII we construct an
family of @U(1)-symmetric# universal r -matrices and local Hamiltonians which contains t
HamiltonianĤn,n11 and the corresponding reflection-symmetric universalr -matrix r 0(l). In Sec.
VIII we employ our construction to establish the integrability of certain@Uq(sl2)-symmetric#
Hamiltonians for an open chain. Appendix A contains technical details related tor (l) andr 0(l).

Appendix B provides some details on computation of the spin-1 and spin-3
2 Hamiltonians pre-

sented in Sec. V. Appendix C explains aq-trace formula forHn,n11 used in Sec. VIII.
For compactness of notations, we will use in the text both the deformation parameg

introduced in~1! andq[eig. We assume thatq is either real or takes values on the unit circle.
the latter caseq is assumed to be generic, i.e., it is not a root of unity.

II. UNIVERSAL r -MATRIX

The starting point of the quantum inverse scattering method is the exchange relation

R~l! L~l1m! ^ L~m!5L~m! ^ L~l1m! R~l! , ~2!

with ^ understood as the tensor product with respect to an auxiliary spaceV ~below it is the space
of 232 matrices! and the usual product of operators in the quantum spaceH. The R-matrix
belongs toV^ V. Thus~2! is an equation inV^ V^ H.

The following L-operator, i.e., an element ofV^ H, is consistent with the algebra~1!

L~l!5
1

sing S sinh@g~l1 iS3!# i sing egl S2

i sing e2gl S1 sinh@g~l2 iS3!#
D ~3!

in the sense that it satisfies Eq.~2! provided thatR(l)5PVŘ(l), where

Ř~l!5 i egl s1
^ s21 i e2gl s2

^ s11
1

sing
sinhS gl1

i g

2
~1^ 11s3

^ s3! D . ~4!

Heresa denote the Pauli matrices,s65s16 is2, andPV5 1
2(1^ 11(asa

^ sa) is the permuta-
tion matrix in V^ V.

The L-operator~3! decomposes into twol-independent Borel components,

~2 sing! L~l!5eglL12e2glL2 , ~5!

which can be utilized to define5 the co-multiplication ~a linear homomorphismD:Uq(sl2)
→@Uq(sl2)# ^ 2) in the matrix form,

D~L6!5L6 ^̇ L6 , ~6!

whereD acts on the quantum space and^̇ denotes the tensor product with respect toH and the
usual matrix product inV. In explicit form ~6! reads

D~S6!5S6
^ q2S3

1qS3
^ S6 , D~S3!5S3

^ 111^ S3 . ~7!

Observe that~4! can be obtained by evaluating the quantum space ofL(l1 i /2) in the
fundamental representation, whereS65q61/2s6 and S35 1

2s
3. In fact, Ř(l) and L(l) are, re-

spectively,V^ V and V^ H representations of a more general object,Ř(l)P@Uq(sl2)# ^ 2, that
satisfies the Yang–Baxter equation inH^ H^ H,

Ř12~l! Ř13~l1m! Ř23~m!5Ř23~m! Ř13~l1m! Ř12~l! . ~8!
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Relation ~2! is then a particular case of~8! with the first and second spaces evaluated in
fundamental representation. Evaluating~8! in the V^ H^ H representation~and interchangingl
with m!, we obtain

r ~l! L~l1m! ^̇ L~m!5L~m! ^̇ L~l1m! r ~l! , ~9!

with r (l)[Ř(l)P, whereP is the permutation inH^ H. For a givenL-operator,~9! can be
regarded as a defining equation on the elementr (l)P@Uq(sl2)# ^ 2 which we will call the univer-
sal r -matrix. Using~5!, Eq. ~9! can be equivalently rewritten as follows:

r ~l! L6 ^̇ L65L6 ^̇ L6 r ~l! , ~10!

r ~l! ~eglL1 ^̇ L21e2glL2 ^̇ L1!5~e2glL1 ^̇ L21eglL2 ^̇ L1! r ~l! . ~11!

In view of ~6!, the first line implies that for any elementjPUq(sl2) we have

r ~l! D~j!5D~j! r ~l! . ~12!

Recall that, for a genericq, the tensor product of two irreducible highest weig
Uq(sl2)-representations of spinS is completely reducible and decomposes into the sum

DS^ DS5(
j 50

2S

D j , ~13!

where each subspaceD j is a highest weightUq(sl2)-module with respect to the action of th
operatorsD(S6) andD(S3).

Equation~12! implies thatr (l) is a function of an operatorJ such that

J u j ,m&5 j u j ,m& ~14!

for any vectoru j ,m& from D j . In other words,

r ~l!5(
j 50

2S

r j~l! Pj , ~15!

wherePj is the projector ontoD j , i.e., Pku j ,m&5d jk u j ,m&. Taking ~15! into account, one can
solve Eq.~11! explicitly ~Refs. 6 and 7 and see also Appendix A!,

r ~l!5P01(
j 51

2S S )
k51

j
sin@g~k2 il!#

sin@g~k1 il!# D Pj . ~16!

Two obvious consequences of this formula are

r ~l! r ~2l!51^ 1 , r ~l! r ~m!5r ~m! r ~l! . ~17!

Introduce aq-analogue of the gamma function satisfying the relation

~qx2q2x! Gq~x!5~q2q21! Gq~x11!

and normalized such thatGq(1)51. If uquÞ1, this equation can be solved in terms of a converg
infinite product. For instance, foruqu,1, the solution is given by

Gq~x!5q1/2x(12x)~q212q!12x)
n50

`
12q2n12

12q2n12x . ~18!
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In terms of theq-gamma function Eq.~16! can be rewritten as follows:

r ~l!5
Gq~J112 il!

Gq~J111 il!

Gq~11 il!

Gq~12 il!
~19!

with J defined by~14!. Equations~16! and ~19! are q-deformations of theirXXX counterparts
found in ~Refs. 8 and 4! ~see also Ref. 9!. @Actually, Refs. 8 and 4 dealt with theXXX analogue
of Ř(l). In the XXZ case,P and Ř(l) do not commute withD and therefore cannot be repre
sented as combinations of the projectorsPj .]

III. HAMILTONIAN

Having a solutionŘ(l) to Eq. ~8! such thatŘ(0)5P @equivalently,r (0)51^ 1], one can
construct an integrable Hamiltonian for a closed chain in the following way10,4,7,9~the normaliza-
tion is chosen for later convenience!:

H5 i
sing

2g (
n51

N

Pn,n11

d

dl
Řn,n11~l!U

l50

5 (
n51

N

Pn,n11 Hn,n11Pn,n115 (
n51

N

Hn11,n ,

~20!

Hn,n115 i
sing

2g

d

dl
ln r n,n11~l!U

l50

with HN,N11[HN,1 ~the periodic boundary conditions!. AlthoughHn,n11ÞHn11,n , we will show
in the following that for the total Hamiltonian we have

H5 (
n51

N

Hn11,n5 (
n51

N

Hn,n11 . ~21!

The HamiltonianH commutes with the higher quantum integrals of motion which are c
structed as higher derivatives of lnr(l). Moreover, if the reference statev for an L-operator in
question is such thatv ^ v is an eigenvector ofr (l), then the corresponding Bethe vectors a
eigenvectors of the Hamiltonian.11,10,4,9 In particular, this is the case for theL-operator~3!, for
which the reference statev is just the highest weight vector.

Combining~19! with ~20!, we obtain a compact formula for the Hamiltonian,

Hn,n115
sing

g
~Cq~Jn,n1111!2Cq~1!! , ~22!

whereCq(x) stands for the logarithmic derivative ofGq(x).
In order to find the Hamiltonian explicitly in terms of the spin generators we first subst

Eq. ~16! into Eq. ~20! and derive

Hn,n115~sing! (
j 51

2S S (
k51

j
cosgk

singk D Pj . ~23!

Next, we have to construct the projectorsPj explicitly. Recall that the Casimir operator of th
algebra~1! is given by

C5S2S11
singS3 sing~S311!

sin2 g
. ~24!

Its value in the highest weight representation of spinS is
                                                                                                                



in

-

in-

pe that

3702 J. Math. Phys., Vol. 44, No. 9, September 2003 Andrei G. Bytsko

                    
CS5
singSsing~S11!

sin2 g
5

cosg2cosg~2S11!

2 sin2 g
.

Applying the co-multiplication~7! to the Casimir operator~24!, we obtain an operator that acts
the tensor productDS^ DS ,

XS5
1

2
DC

5
1

2
~qS3

S1! ^ ~S2 q2S3
!1

1

2
~qS3

S2! ^ ~S1 q2S3
!

1
1

4 sin2 g
~~1^ 11q2S3

^ q22S3
! cosg2~1^ q22S3

1q2S3
^ 1! cos~g~2S11!!! . ~25!

Here we employed the commutation relations~1! and used~as reflected in the subscript ofXS) that
on DS^ DS we haveC^ 151^ C5(1^ 1)CS . It is now easy to see that

XS5
singJ sing~J11!

2 sin2 g
~26!

with J defined by~14!. Indeed, by construction,XS commutes withD(S6). Bearing this in mind,
~26! follows from computing the action ofXS on highest weight vectors.

For a genericq, the eigenvalues of~26! on different subspacesD j in ~13! do not coincide.
Therefore, we can utilize~26! to construct the projectorsPj by means of the Lagrange interpola
tion,

Pj5)
l 50
lÞ j

2S
2XS2@ l #q@ l 11#q

@ j 2 l #q@ j 1 l 11#q
. ~27!

Here we used theq-numbers defined as

@k#q[~qk2q2k!/~q2q21!5
sin~gk!

sing
.

Note that the denominator in~27! can be written differently with the help of the identity@ j
2 l #q@ j 1 l 11#q5@ j #q@ j 11#q2@ l #q@ l 11#q . We have chosen the first expression to indicate s
gularities that can occur ifq is a root of unity.

Combining~27! with ~23!, we obtain a local integrable Hamiltonian for theXXZ spin chain
~we call Hn,n11 local because it is a lattice analogue of the Hamiltonian density. ButHn,n11 is
also local in the sense that it involves spines only at two nearest sites of the lattice. We ho
this mixed terminology will not lead to a confusion!:

Hn,n115~sing! (
j 51

2S F S (
k51

j
cosgk

singk D )
l 50
lÞ j

2S
2~sing!2 XS2sing l sing~ l 11!

sing~ j 2 l ! sing~ j 1 l 11! G ~28!

with XSPHn^ Hn11 given by ~25! which can also be rewritten as follows:

XS5eigSn
3 S 1

2
Sn

1Sn11
2 1

1

2
Sn

2Sn11
1 1singSn

3 singSn11
3 cosgScosg~S11!

sin2 g

1cosgSn
3 cosgSn11

3 singSsing~S11!

sin2 g D e2 igSn11
3

. ~29!
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We remark that 2XS is aq-deformation of square of the sum of two spins in the sense that in
g→0 limit Eq. ~29! simplifies to

XS
05S~S11!1Sn

0
•Sn11

0 5 1
2 ~Sn

01Sn11
0 !2 ,

whereSa
0 are the generators ofsl2 . In this limit Eq. ~28! turns into the integrableXXX Hamil-

tonian constructed in Refs. 12 and 4.
Let us consider the large spinS asymptotics of the Hamiltonian~22!–~23! in terms of the spin

operatorJ defined by~14!. Recall first that for the logarithmic derivative of the~nondeformed!
gamma function we have

C~ j 11!5C~1!1 (
k51

j
1

k
5 lnS j 1

1

2D1O~ j 22! .

Therefore the large spin approximation of theXXX Hamiltonian is

Hn,n115 ln~J1 1
2!1const . ~30!

In theXXZ case, ifq is real, Eq.~18! ~or its counterpart foruqu.1) yieldsCq(x)'x ugu for large
x. More precisely, we infer from~22! and ~23! that

Cq~ j 11!5Cq~1!1ugu(
k51

j

tanh~kugu!5ugu j 1¸g1O~e22ugu j ! , ~31!

where¸g is ag-dependent constant. Hence the large spin asymptotics of theXXZ Hamiltonian is

Hn,n115J sinhugu1const . ~32!

Here we should remind that the spin operator in~32! is not the same as in~30!, Indeed, it is always
given byJ5( j jPj but the projectors are different for differentg. Notice also that the correction
to the leading order in~31! decays very fast@because tanh(x)511O(e22x)]. So, if uguS is not too
small, ~32! is a good approximation even for not too largeS.

Thus, the large spin asymptotics ofHn,n11 in theXXZ case differs from that in theXXX case.
Moreover, for realg, i.e., whenuqu51, the functionCq(x) is not monotonous@as seen from~23!#
and does not have an asymptotics at all.

IV. PROPERTIES

Global symmetry:Recall that the co-associativity property, (D ^ 1)D5(1^ D)D, leads to a
natural notion of annth power of the co-multiplication:D (n11)[(D ^ 1^ n)D (n) with D (1)[D.
Then the global spin generators for a chain withN nodes are naturally introduced6 as S 6

5D (N21)(S6) andS 35D (N21)(S3); which in explicit form reads

S 35 (
n51

N

Sn
3 , S 65 (

n51

N

qS1
3
•••qSn21

3
Sn

6q2Sn11
3

•••q2SN
3

. ~33!

By construction@see~12! and ~23!#, the local HamiltonianHn,n11 is Uq(sl2)-symmetric, i.e., it
commutes withD~j! for any jPUq(sl2). Furthermore, it is easy to check that

@ Hn,n11 ,S 3 #50 for n51,...,N , ~34!

@ Hn,n11 ,S 6 #50 for n51,...,N21 . ~35!

SinceHN,1 does not satisfy~35!, the total Hamiltonian enjoys only theU(1)-symmetry,
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@ H,S 3 #50 . ~36!

Actually, the higher quantum integrals of motion also commute withS 3. Therefore in the presenc
of a constant magnetic fieldh the corresponding Hamiltonian,Hh5H1hS 3, remains integrable
andU(1)-symmetric.

C and P symmetries:Recall that P denotes the permutation inH^ H. Since the co-
multiplication D does not commute withP, neither doesr (l), XS or Hn,n11 . However, we
observe that~here and in the following dependence ong is shown explicitly only if it is affected
by a transformation!

P XS~g! P5XS~2g! , P r ~l,g! P5r ~l,2g! . ~37!

The first relation is obvious from~29! and yields the second one upon noticing that both
projectorsPj (x,g) and the coefficientsr j (l,g) in ~15! are even functions ing. Further, the second
relation in ~37! implies readily that

Pn,n11 Hn,n11~g! Pn,n115Hn,n11~2g! . ~38!

ThusHn,n11 does not have theP ~reflection! symmetry. But, ifq is real, it has theC-symmetry
~invariance with respect to the complex conjugation!. If uqu51, then Eq.~38! shows thatHn,n11

has noC- or P-symmetry separately but it has theCP-symmetry.
Local bulk and boundary terms:As we will see in the following,Hn,n11 decomposes into two

parts~which we will refer to as the local bulk term and the local boundary term!:

Hn,n115Ĥn,n111 i
sing

2
~Sn

32Sn11
3 ! . ~39!

The local bulk term,Ĥn,n11 , has the following properties~see Sec. VII!:

Pn,n11Ĥn,n11Pn,n115Ĥn,n11 , Ĥn,n11~g!5Ĥn,n11~2g! . ~40!

Thus,Ĥn,n11 is P- andC-symmetric for realq as well as foruqu51. In fact~see Sec. VII!, Ĥn,n11

is a local Hamiltonian associated with theL-operator

L̂~l!5
1

sing S sinh@g~l1 iS3!# i S2 sing

i S1 sing sinh@g~l2 iS3!#
D . ~41!

Notice thatĤn,n11 is not Uq(sl2)-symmetric but onlyU(1)-symmetric.
The local boundary term in~39! has the same form for all positive~half-! integer spins. In the

total Hamiltonian of a closed chain all these boundary terms mutually cancel, hence

H5 (
n51

N

Hn,n115 (
n51

N

Ĥn,n11 . ~42!

This together with~40! explains why the two sums in~21! coincide.
Properties with respect to* -operation: The * -structure onUq(sl2) corresponding to the

compact real formUq(su(2)) is defined as an antiautomorphism such that

~S6!* 5h61 S7 , ~S3!* 5S3 ~43!

with some realh. Of course, the prefactorh61 can be eliminated by rescaling the generato

However it may be convenient to keep it. For instance, we saw in Sec. II that, in the spin-1
2 case,
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it is natural to putS65q61/2s6. Thenh51 if uqu51 buth5q if q is real. In fact, the choice o
h is not important for our purposes sinceHn,n11 and Ĥn,n11 containS6 only in homogeneous
combinations like (S1

^ S2).
The action of the* -operation extends on a tensor product as (j ^ z)* 5j* ^ z* . It must be

remarked that properties of the co-multiplication with respect to the action of the* -operation
depend on the choice ofq, namely we infer from~7! and ~43! that @a * -structure satisfying
(D(j))* 5D(j* ) for uqu51 is thenoncompactreal formUq(sl(2,R)), see Ref. 13#

~D~j!!* 5D~j* ! if qPR but ~D~j!!* 5PD~j* !P if uqu51 .

Therefore the local Hamiltonian~28! has the following properties:

~Hn,n11!* 5Hn,n11 for qPR, ~44!

~Hn,n11!* 5Pn,n11Hn,n11Pn,n11 for uqu51 . ~45!

Nevertheless, we see from Eq.~23! that the eigenvalues ofHn,n11 are real in the both cases
Furthermore, it follows from~39!–~40! and ~44!–~45! that

~Ĥn,n11!* 5Ĥn,n11 ~46!

for both regimes ofq. In combination with~42! this implies that the relation

H* 5H ~47!

holds also in the both regimes ofq.
It is worth emphasizing that, foruqu51, objects which have the globalUq(sl2)-symmetry, like

Hn,n11 for nÞN, are in general not self-conjugate with respect to the* -operation~43!. Indeed, if
O* 5O and it commutes with the global spin generatorsS 6 given by ~33!, then it must also
commute with (S 6)* . This imposes a strong extra condition on the structure ofO since foruqu
51 the conjugate ofS 6 belongs toUq21(sl2) rather than toUq(sl2). Conversely, objects that ar
self-conjugate foruqu51 are in general notUq(sl2)-symmetric, for instanceĤn,n11 andH.

T symmetry:The definition (j ^ z)* 5j* ^ z* is consistent with the property of the matr
transposition, (j ^ z) t5j t

^ z t, if j and z are regarded as matrices. Thus the* -operation can be
realized as the matrix Hermitian conjugation,j* 5 j̄ t ~bar denotes the complex conjugation!.

From ~44!, ~45!, and~38! we deduce that (Hn,n11)* 5H̄n,n11 in both regimes ofq. Therefore
finite dimensional matrix representations of the above-considered Hamiltonians are sym
matrices,

~Hn,n11! t5Hn,n11 , ~Ĥn,n11! t5Ĥn,n11 , ~H! t5H . ~48!

Here the first equality leads to the second and the third due to~39! and ~42!, respectively.

V. EXAMPLES „SÄ 1
2,1,3

2…

For the spinS5 1
2, the Hamiltonian~28! is very simple:

Hn,n115~cosg! P15X1/2 , ~49!

and the spin generators are given byS65q61/2s6 andS35 1
2s

3. Using the relations

ets3
s65s6e2ts3

5e6ts6 , eits3
5cost1 is3 sint , ~50!

it is easy to check that~49! acquires the following form:
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Hn,n115
1

2
~Sn

1Sn11
2 1Sn

2Sn11
1 !1~cosg! Sn

3Sn11
3 1

3

4
cosg1 i

sing

2
~Sn

32Sn11
3 ! . ~51!

The bulk term here is the well-knownXXZ deformation of the Heisenberg spin chain.
For S51 the Hamiltonian~28! looks as follows:

Hn,n115~cosg! P11
sin 3g

sin 2g
P25

1

4~cosg!3 ~~cosg14 cos3 g! X12~X1!2! . ~52!

In this case the spin generators are given by~B1!; they are related to the spin-1sl2-generators as
S65(cosg)1/2S0

6 , S35S0
3. RewritingX1 and its square as polynomials in the spin generators~see

Appendix B!, we obtain

Hn,n115
1

4 cosg
~V12~V1!21F1!1 i

sing

2
~Sn

32Sn11
3 ! , ~53!

where

V15
1

2 cosg
~Sn

1Sn11
2 1Sn

2Sn11
1 !1~2 cosg21! Sn

3Sn11
3 , ~54!

F152 cosg~cosg21!Sn
3Sn11

3 12~cosg21!2~Sn
3Sn11

3 !2

2 2~sing!2 ~~Sn
3!21~Sn11

3 !2!1412 cos 2g . ~55!

The bulk term of the Hamiltonian~53! @i.e., ~53! without the last term# coincides~up to a constant!
with the Fateev–Zamolodchikov~FZ! Hamiltonian.2 The FZ Hamiltonian is usually written in a
slightly different way in terms of the spin-1sl2-generators; we have chosen the above form si
it allows for better comparison with theS5 3

2 case.
In the limit g→0, ~52!–~53! simplifies to the well-know spin-1XXX Hamiltonian:

Hn,n11
0 5 5

4 X1
02 1

4 ~X1
0!25 1

4 Sn
0
•Sn11

0 2 1
4 ~Sn

0
•Sn11

0 !21 3
2 .

In the S5 3
2 case the Hamiltonian~23! is given by

Hn,n115~cosg! P11
sin 3g

sin 2g
P21S sin 3g

sin 2g
1~sing!

cos 3g

sin 3g D P3 . ~56!

Rewriting the corresponding expression~28! in the polynomial~with respect to the spin genera
tors! form ~see Appendix B!, we obtain

Hn,n115
1

12~cosg!3~112 cos 2g!3 S 12~cosg! ~V3/2!
31~5 cos 4g2cos 2g12! ~V3/2!

2

1
1

2 cosg
~V3/2Q1Q V3/2!1

112 cos 2g

64 cos2 g
F3/2 D1 i

sing

2
~Sn

32Sn11
3 ! , ~57!

whereQ andF3/2 are real symmetric polynomials inSn
3 andSn11

3 ~see Appendix B! and

V3/25
1

2
~Sn

1Sn11
2 1Sn

2Sn11
1 !1~112 cos 2g!

cos 2g

3 cosg
Sn

3Sn11
3 . ~58!
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Let us remark that in both Hamiltonians~53! and~57! the two ‘‘most non-diagonal’’ terms are
powers of an operatorV which is quadratic in generators. To clarify this fact, we observe that,
for S5 1

2, the corresponding Casimir operators~24! are actually quadratic:

1
2 ~S1S21S2S1!1~cosg!~S3!252 cosg for S51 , ~59!

1
2 ~S1S21S2S1!1~cosg!2~S3!25 1

4 ~17 cos2 g22! for S5 3
2 ~60!

~the last expression differs fromC3/2 by a constant!. Equation~59! is due to the first relation in
~B2!; Eq. ~60! follows from relation~B10! and the identity 2(singS3)2512cos 2gS3.

VI. ANOTHER CO-MULTIPLICATION

As we saw in Sec. II, the co-multiplication operationD plays a key role in the construction o
the HamiltonianH. However, Eq.~7! does not exhaust possible definitions ofD for Uq(sl2). In
fact, a homomorphismDa :Uq(sl2)→@Uq(sl2)# ^ 2 such that

Da~S6!5S6
^ q(6a21)S3

1q(6a11)S3
^ S6 , Da~S3!5S3

^ 111^ S3 ~61!

satisfies all the properties of the co-multiplication for any reala. We had beforea50, which is the
most ‘‘symmetric’’ choice. But we may prefera51 ~or a521) if we want the regimeq,0 to
be on equal footing withq.0 in the sense that the termsq(6a61)S3

in ~61! take only real values.
Notice thatDa is obtained from the co-multiplication~7! by twisting:

Da~j!5Fa D~j! ~Fa!21 , Fa5qaS3
^ S3

PH^ H . ~62!

This twist is rather specific in that it preserves the co-associativity of the co-multiplication~more
general twists give rise to the so-called quasi-Hopf algebras;14 see Ref. 15 for their applications i
integrable spin models!.

In order to construct an integrable Hamiltonian using the new co-multiplicationDa in the
same way as we usedD in Secs. II and III, we should first find anL-operator,L̃a(l), that satisfies
~6! with Da . For this purpose we observe that

Fa5~fa ^ fa!21 D~fa!,

where

fa5q~a/2!(S3)2
PH . ~63!

Therefore we can rewrite the left-hand side of~6! for L̃a(l) as

Da~ L̃a~l!!5~fa ^ fa!21 D~fa L̃a~l! fa
21! ~fa ^ fa!,

which makes it obvious thatL̃a(l) satisfies~6! with Da if it is related to theL-operator~3! as
follows:

L̃a~l!5fa
21 L~l! fa ~64!

5
1

sing S sinh@g~l1 iS3!# i sing eglqa/2qaS3
S2

i sing e2glqa/2q2aS3
S1 sinh@g~l2 iS3!#

D . ~65!
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Since the mapj→fa
21jfa is an automorphism ofUq(sl2), it is clear that the exchange relatio

~2! holds forL̃a(l) with the sameR-matrix as forL(l). Consequently, the Bethe ansatz equatio
for L̃a(l) coincide with those forL(l) ~the reference statev has also not changed!.

Substituting~64! into ~9!, we find a universalr -matrix for the newL-operator:

r̃ a~l!5~fa ^ fa!21 r ~l! ~fa ^ fa!5Fa r ~l! ~Fa!21 . ~66!

The second equality is due to relation~63! and the property~12!. The same twists relate th
corresponding solutions of the Yang–Baxter equation~8!, i.e.,

Řa~l!5~fa ^ fa!21Ř~l!~fa ^ fa!5Fa Ř~l!~Fa!21 . ~67!

Notice that the first equality is consistent with~64! sincefa in the fundamental representation
just a constant. Further, evaluating the right-hand side of~67! in V^ H representation, we see tha
L̃a(l) can be constructed also as a twist by 232 matrix,

L̃a~l!5 f a L~l! f a
21 , f a5q~a/2! s3

^ S3
.

Let us underline that existence of the two ways of constructingL̃a(l) and, as a consequence,
the relation

@L~l!,fa f a#50

is due to the property of the universalr -matrix ~12! applied toj5fa @indeed,qa/2fa f a is D(fa)
evaluated inV^ H].

According to~20!, the local Hamiltonian corresponding to the universalr -matrix ~66! is

H̃n,n11
(a) 5~fn

a fn11
a !21 Hn,n11 ~fn

a fn11
a !5Fn,n11

a Hn,n11 ~Fn,n11
a !21 . ~68!

This transformation does not modify theS5 1
2 Hamiltonian~49! since in this casefa is trivial. But

already forS51 we find ~see Appendix B!

H̃n,n11
(a) 2Hn,n115

12cos~ag!

2 cosg
$Yn,n11 ,Sn

3Sn11
3 %2 i

sin~ag!

2 cosg
@Yn,n11 ,Sn

3Sn11
3 # , ~69!

where @,# and $,% stand for commutator and anticommutator, respectively, andYn,n11

[ 1
2(Sn

1Sn11
2 1Sn

2Sn11
1 ). Notice that the terms on the right-hand side of~69! are nondiagonal.

Finally, the total Hamiltonian is given by

H̃(a)5 (
n51

N

H̃n,n11
(a) 5~Fa!21 H Fa5Fa H ~Fa!21 , Fa[ )

n51

N

fa , Fa[qa(n,mSn
3Sm

3
.

The F-twist here follows easily from~68!. The F-twist yields the same result becauseH com-
mutes withS 3 ~36! and hence withFaFa5q(a/2)(S 3)2

. SinceH̃(a) andH are related by a twist
they have the same set of eigenvalues; this agrees with the fact that the Bethe ansatz eq
have not changed.

Let us conclude this section with a remark: Eqs.~66!, ~67!, and~68! may appear to sugges
that L̃a(l) and r̃ a(l) are related to another twisted co-multiplication,D̃u(j)[u21 D(j) u, where
u5fa ^ fa . But D̃u fails to satisfy the necessary property of a co-multiplication,14 (e ^ 1)D(j)
5j, wheree is the co-unit. SoD̃u is not a co-multiplication of a~quasi! Hopf algebra.~Moreover,
D̃u is not co-associative.!
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VII. FROM Hn,n¿1 TO Ĥn,n¿1

Consider now another family ofL-operators,

L̂b~l!5
1

sing S sinh@g~l1 iS3!# i sing e(g2b)l S2

i sing e(b2g)l S1 sinh@g~l2 iS3!#
D , ~70!

which are obtained from theL-operator~3! as twists by certain 232 matrices,

L̂b~l!5Kl
21 L~l! Kl , Kl5e~1/2! bl s3

PV . ~71!

For b5g this gives theL-operator~41! ~which is most often used in applications of the Bet
ansatz!. The mapS6→e6blS6, S3→S3 is an automorphism ofUq(sl2) but, unlike the case
treated in Sec. VI, it isl-dependent. Therefore, theŘ-matrix corresponding toL̂b(l) differs from
~4!. Namely, as seen from~71!, exchange relation~2! holds for L̂b(l) with Rb(l)5(1
^ Kl

21)R(l)(Kl ^ 1), i.e.,Rb(l)5PŘb(l), where

Řb~l!5 i e(g2b)l s1
^ s21 i e(b2g)l s2

^ s11
1

sing
sinhS gl1

i g

2
~1^ 11s3

^ s3! D .

~72!

In order to find a universalr -matrix for L̂b(l), we will apply the approach which we used
Sec. VI. Namely, we observe thatwl[eblS3

PH is a complementary twist to~71! in the sense tha

@L~l!,Kl wl#50

as follows from the property of the universalr -matrix ~12! for j5wl ~in fact, Kl is just wl

evaluated in the fundamental representation; henceKlwl is D(wl) evaluated inV^ H).
Thus, instead of the twist~71! in the auxiliary spaceV, theL-operator~70! can be obtained as

a twist in the quantum spaceH,

L̂b~l!5wl L~l! wl
21 , wl5eblS3

PH . ~73!

Substituting~73! into ~9! and taking again into account that@r (l),D(wm)#50, we find a
universalr -matrix for L̂b(l),

r̂ b~l!5~1^ wl! r ~l! ~wl
21

^ 1! . ~74!

Unlike Eq.~66! this relation is not a twist. Notice however that the corresponding solutions o
Yang–Baxter equation~8! are related by a twist,

Řb~l!5~1^ wl!Ř~l!~1^ wl
21! . ~75!

It must be stressed now thatL̂b(l) does not possess a decomposition of the type~5!–~6!, and
r̂ b(l) does not commute withD ~or Da), i.e., ~12! does not hold forr̂ b(l) for a genericj. As a
consequence,r̂ b(l) does not have a representation of the type~15!. Moreover, forbÞ0 we have
in general@ r̂ b(l), r̂ b(m)#Þ0 ~except for the fundamental representation in the caseb5g). Nev-
ertheless, the general recipe for constructing a local integrable Hamiltonian applies@because the
Yang–Baxter equation forŘb(l) is valid#. So we substitute~74! into the formula~20! and derive

Ĥn,n11
(b) 5Hn,n112 i

b sing

2g
~Sn

32Sn11
3 ! . ~76!
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Thus the new local Hamiltonian differs fromHn,n11 only in the local boundary term. Hence th
total HamiltonianĤ5(n51

N Ĥn,n11
b coincides withH. Note that the Bethe ansatz equations, d

scribing the spectrum ofĤ, have also not changed, which is not entirely trivial since the co
spondingR-matrix has changed. The reason is that in the derivation of the Bethe ansatz equ
the nondiagonal entries of~72! appear only in the so-called ‘‘unwanted terms’’ that cancel e
other.10,11,9

In Sec. IV we asserted that the local HamiltonianHn,n11 decomposes into a local bounda
term and a local bulk termĤn,n11 which is associated with theL-operator~41!. Now this is
obvious from~70! and ~76! if we put b5g. Since we have found the corresponding univer
r -matrix, we are in a position to prove the properties ofĤn,n11 stated in Sec. IV. For brevity we
denoter 0(l)[ r̂ g(l).

As seen from~72! for b5g, the auxiliaryR-matrix associated with theL-operator~41! is
P-symmetric, i.e., it commutes with the 434 permutation matrixPV . The corresponding univer
sal r -matrix, r 0(l), has analogous properties. Namely,~as we prove in Appendix A! r 0(l) satis-
fies the following relations:

P r 0~l! P5r 0~l! , r 0~l,g!5r 0~l,2g! , ~77!

~r 0~l!! t5r 0~l! , r 0~l! r 0~2l!51^ 1 , ~78!

whereP is the permutation inH^ H andt denotes transposition. The last equality follows from t
formula ~74!, the first relation in~17! for r (l), and the relation@r (l),D(wl)#50. Taking loga-
rithmic derivative of~77! at l50, we establish the symmetries~40! of the local bulk termĤn,n11 .
The first relation in~78! yields in the same way the second relation in~48!.

VIII. OPEN CHAIN

Integrableopenspin chains have also been intensively studied,16–21 in particular, from the
point of view of the fusion procedure and quantum group symmetries.

As we saw in Sec. IV,HN,1 is the only term inH which does not commute with the global sp
generatorsS 6. Omitting it, we obtain a Hamiltonian for an open spin chain,

H 85 (
n51

N21

Hn,n115 (
n51

N21

Ĥn,n111 i
sing

2
~S1

32SN
3 !, ~79!

which is apparentlyUq(sl2)-symmetric, i.e.,@H 8,S 6#5@H 8,S 3#50. It is however not immedi-
ately evident whether the Hamiltonian~79! remainsintegrable.

Let us refer to the sum on the right-hand side of~79! as the bulk Hamiltonian,Ĥ8. The
remaining part can be called the surface term; it is a sum of (N21) local boundary terms we dea
with before. As we discussed earlier, the bulk HamiltonianĤ8 corresponds to theL-operator~41!

and it is only U(1)-symmetric. The fact that adding the surface term toĤ8 restores the
Uq(sl2)-symmetry was observed for spin1

2 in Ref. 16 and for spin 1 in Ref. 17. Integrability of th
corresponding total Hamiltonians was established in Refs. 18–20 in the framework of bou
integrable lattice models. We will prove in the following thatH 8 is integrable for the higher spin
as well.

Let us briefly recall the construction of an integrable Hamiltonian for a chain w
boundaries.18 Let Ř(l) be a solution of the Yang–Baxter equation~8!, andT(l) be a monodromy
matrix obeying the exchange relation~2! with R-matrix PŘ(l). Introduce a boundary monodrom
matrix, Z(l)[T(l)K 2(l)(T(2l))21. The boundary matrix,K 2(l)PH, represents nonperi
odic boundary conditions (Ř and K 2 are close analogues of the bulk and boundary scatte
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matrices22!. @Strictly speaking,K 2(l) is an element ofH^ H but with trivial second component
We had a similar situation in Sec. VII where the twistwl had trivial first component, see Eq.~73!.#
Now, if K 2(l) satisfies the so-called reflection equation, namely,

Ř~l2m! ~K 2~l! ^ 1! ~Ř~2l2m!!21 ~1^ K 2~m!!

5~1^ K 2~m!! Ř~l1m! ~K 2~l! ^ 1! ~Ř~2l1m!!21 , ~80!

thenZ(l) also satisfies this equation. Using this fact one can show that a special trace ofZ(l),
t(l)5tr0K 1(l)Z(l), is a generating function for quantum integrals of motion if the bound
matrix K 1(l)PH satisfies a ‘‘dual’’ reflection equation,18,23

Ř~2l1m! ~~K 1! t~l! ^ 1! Ř~2l2m22d! ~1^ ~K 1! t~m!!

5~1^ ~K 1! t~m!! Ř~2l2m22d! ~~K 1! t~l! ^ 1! Ř~2l1m! , ~81!

and Ř has the following properties:

P Ř~l! P5Ř~l! , Ř~l! Ř~2l!5r1~l! ~1^ 1! , ~Ř~l!! t5Ř~l! , ~82!

~Ř~l!! t1 ~Ř~2l22d!! t15r2~l! ~1^ 1! , ~83!

whered is a constant, andr1(l) andr2(l) are scalar functions.
With all these conditions, an integrable Hamiltonian is given Ref. 18 by the following

logue of the formula~20! @we keep the same normalization as in~20!#:

H 95 (
n51

N21

hn,n111 i
sing

4g

d

dl
K 1

2~l!U
l50

1
tr0~K 0

1~0! h0,N!

tr K 1~0!
,

~84!

hn,n115 i
sing

2g
Pn,n11

d

dl
Řn,n11~l!U

l50

.

Deriving ~84! one assumes thatŘn,n11(0)5P andK 2(0)51, which is consistent with~80!.
Let us try to identify the Hamiltonian~79! as a particular case of~84!. First, we can put

hn,n115Ĥn,n11 if we chooseŘ(l)5Řg(l), where Řg(l)5r 0(l)P is given by ~75! with b
5g. For this R-matrix the properties~82! follow from ~77!; in particular, the second relatio
~unitarity! holds withr1(l)51. The crossing unitarity~83! holds for Řg(l) with d5 i .

The derivation of the reflection equation~80! for K 2 does not use the conditions~82! and
~83!. So, let us look first for anR-matrix for which the reflection equation has a trivial solutio
K 2(l)51. In this case~80! turns into

Ř~l2m! ~Ř~2l2m!!21 5Ř~l1m! ~Ř~2l1m!!21 . ~85!

A solution to this equation is given byŘ(l)5r (l)P, wherer (l) is the universalr -matrix we
discussed in Sec. II. Indeed,~85! follows from the second relation in~17!. Using this observation
we can find a solution to the reflection equation for anyR-matrix Řb(l) given by ~75!. Indeed,
substituting~75! in ~85!, we derive

Řb~l2m! ~1^ wl
2! ~Řb~2l2m!!21 ~1^ w2m

2 !

5~1^ w2m
2 ! Řb~l1m! ~1^ wl

2! ~Řb~2l1m!!21 . ~86!
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Multiplying this relation byD(wl
22)5(wl ^ wl)22 @which commutes withŘb(l)], we bring it to

the form of ~80!. Thus, a solution of the reflection equation forŘb is

K b
2~l!5~wl!225e22blS3

.

Notice that forb5g the R-matrix Ř is symmetric with respect tog @the second relation in
~77!#. Therefore in this case we have another solution@which can be derived directly from~86! by
applying the permutation and then multiplying by (wm ^ wm)2],

K 2~l!5e2glS3
. ~87!

This is the boundary matrix we need since its derivative in~84! gives exactly theS1
3 term in ~79!.

In general, solutions of the reflection equation and of its ‘‘dual’’ are independent of each o
However, as was noted already in Ref. 18, there exist several isomorphisms that allow
constructK 1 if we know K 2. In particular, it is easy to see that a possible solution for~81! is
K 1(l)5(K 2(2l2d)) t. For K 2 given by ~87! this yields

K 1~l!5e22g(l1 i )S3
. ~88!

It turns out that substitution ofK 1(0)5q22S3
into ~84! gives exactly theSN

3 term in ~79!. To
prove this assertion, we first observe~see Appendix C! that for theq-trace of the local Hamiltonian
Hn,n11 we have

trn~q2Sn
3
Hn,n11!5 r̃S 1n11 , ~89!

wherer̃S is a scalar constant.
Taking into account the relation~39! betweenHn,n11 and Ĥn,n11 , we infer from~89! that

tr0~q2S0
3
Ĥ0,N!5~ tr q2S3

! i
sing

2
SN

3 1const.

Now replacingq with q21 and using thatĤn,n11 is an even function ofg ~40!, we find that

tr0~K 1~0! Ĥ0,N!

tr K 1~0!
5

tr0~q22S0
3
Ĥ0,N!

tr q22S3 52 i
sing

2
SN

3 ~90!

holds~up to an additive constant!. Thus, the boundary matrix~88! gives theSN
3 term in ~79!. This

completes the proof that theUq(sl2)-symmetric open chain Hamiltonian~79! is integrable for all
~half-! integer spins.

IX. CONCLUSION

In summary, we have constructed explicitly~in terms of the spin generators! higher spin
closed chain Hamiltonians for two families ofXXZ-type L-operators including the two
L-operators most often used in the literature. We have investigated properties of these H
nians, described their interrelations, and discussed the connection withUq(sl2)-symmetric open
chain Hamiltonians.

We have emphasized a key role of the underlying quantum algebraic structure, especia
universalr -matrix and the co-multiplication, for constructing integrable Hamiltonians and in
tigating their symmetries. The technique presented in this paper can be applied also for con
ing the higher quantum integrals of motion. Also, with certain modifications, this technique c
extended to models based on~the quantum deformation of! the superalgebraosp(1u2); the cor-
responding basic ingredients are known.24
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The presented construction applies also to the case ofq being a root of unity,qp51, if p is
sufficiently large in comparison with the spinS. Indeed, the denominator of~27! does not vanish
if p.8S and therefore the projectorsPj can be used in the usual way. Forp<8S the construction
needs to be modified because eigenvalues of the tensor Casimir operator become degene
the so-called cyclic representations appear.
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APPENDIX A

Here we give some technical details on the universalr -matrices used in the text. First w
recall the derivation of the universalr -matrix ~16! along the lines of Refs. 6 and 7~see also Refs.
9 and 25!. The explicit form of the off-diagonal entries of Eq.~11! is

r ~l! ~e7glS6
^ qS3

1e6glq2S3
^ S6!5~e6glS6

^ qS3
1e7glq2S3

^ S6! r ~l! . ~A1!

A solution to this equation is unique up to a scalar factor.7 Notice that the co-multiplication~7!
satisfies the following relations:

@S«
^ qS3

,D~S«!#5@q2S3
^ S«,D~S«!#50 , «56 .

Therefore, for the highest/lowest weight vectors we deduce that

S6
^ qS3

u j ,6 j &5g6~ j !u j 11,6~ j 11!& , q2S3
^ S6 u j ,6 j &5h6~ j !u j 11,6~ j 11!& ,

~A2!

whereg6( j ) andh6( j ) are scalar functions. Furthermore, we have

~S6
^ qS3

1q6(212 j )q2S3
^ S6! u j ,6 j &

5~~1^ q2S3
! S6

^ q2S3
1q6(212 j )~qS3

^ S6q2S3
!q22S3

^ q22S3
! u j ,6 j &

5~1^ q2S3
! D~S6! u j ,6 j &50 . ~A3!

Applying now~A1! to u j , j & ~for the upper signs! or to u j ,2 j & ~for the lower signs! and using~15!,
~A2!, and~A3!, we deduce that

r j 11~l! ~e6gl2q6(212 j )e7gl!5~e7gl2q6(212 j )e6gl! r j~l! . ~A4!

Both relations in~A4! yield the same functional equation onr j (l) ~which arises also for universa
r -matrices in the lattice sine-Gordon model26 and in the lattice Virasoro algebra27!

r j 11~l!5
sin@g~ j 112 il!#

sin@g~ j 111 il!#
r j~l! . ~A5!

Upon imposing the normalization conditionr (0)51, we obtain expression~16!. A proof that this
r (l) does satisfy all the relations in~11! is given in Refs. 6 and 7. Of course, one is still free

multiply r (l) by a scalar function,r~l!, such thatr(0)51. For instance, the spin-1
2 representation

of Ř(l) given by ~4! corresponds tor(l)5sin@g(11il)#/sing.
Consider now the universalr -matrix r 0(l) introduced in Sec. VII. It is a solution to Eq.~9!

for the L-operator~41!. Unlike the previous case, thisL-operator does not have a Borel decom
position of the type~5!. Therefore the off-diagonal entries of~9! give us fourl-dependent rela-
tions:
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r 0~l! ~S6
^ qS3

1e6glq2S3
^ S6!5~e6glS6

^ qS3
1q2S3

^ S6! r 0~l! , ~A6!

r 0~l! ~S6
^ q2S3

e6gl1qS3
^ S6!5~e6glqS3

^ S61S6
^ q2S3

! r 0~l! . ~A7!

It can be proven along the lines of Ref. 7 that solution to this equation is unique up to a
factor. As we have already shown in Sec. VII, this solution is given byr 0(l)5(1^ eglS3

)r (l)
3(e2glS3

^ 1), wherer (l) solves~A1!.
Now we observe thatr 1(l)[Pr 0(l)P and r 2(l)[(r 0(l)) t solve the same set of equation

~A6! and ~A7!. By the above-mentioned uniqueness, this implies thatr i(l)5ci(l)r 0(l), where
ci(l), i 51,2 are scalar functions. SinceP251^ 1, and ((r 0) t) t5r 0 , we conclude thatci(l)
561. Imposing the conditionr 0(0)51^ 1, we have to putci(l)51. Thus, we have proven th
relations on the left-hand side of~77! and~78!. Employing the first of them and the property~37!
of r (l), we prove the second relation in~77! as follows:

r 0~l,2g!5~1^ e2glS3
!r ~l,2g!~eglS3

^ 1!

5~1^ e2glS3
!Pr ~l,g!P~eglS3

^ 1!

5P~e2glS3
^ 1!r ~l,g!~1^ eglS3

!P

5P~1^ eglS3
!r ~l,g!~e2glS3

^ 1!P

5Pr 0~l,g!P5r 0~l,g! .

In the fourth line we used that@r (l),D(eglS3
)#50.

APPENDIX B

Here we provide some details on computation of the Hamiltonians in the cases of spin
spin 3

2. ForS51, a matrix representation of the spin generators is~as was discussed in Sec. IV, on
has a freedom of rescalingS6→h71/2S6 with any realhÞ0)

S15S 0 a 0

0 0 a

0 0 0
D , S25~S1! t, S35S 1 0 0

0 0 0

0 0 21
D , ~B1!

wheret denotes transposition anda5A2 cosg. Since (S3)35S3, any function ofS3 is a polyno-
mial in S3 of a degree not exceeding two. In particular, we have

sin~ tS3!5S3 sint , cos~ tS3!5122~S3!2 sin2
t

2
. ~B2!

DenoteY5 1
2(Sn

1Sn11
2 1Sn

2Sn11
1 ). With the help of formulas~B2! we rewrite~29! as follows:

X15qSn
3
Y q2Sn11

3
1~cosg! ~L1 1

2 12~cosg!2! ,
~B3!

L5 3
2 22~cosg!21~cosg!2~Sn

3Sn11
3 !1~sing!2~~Sn

3Sn11
3 !222~Sn

3!222~Sn11
3 !2!

1 i ~sin 2g!~Sn
32Sn11

3 1 1
2 ~Sn

3!2Sn11
3 2 1

2 Sn
3~Sn11

3 !2! .

Substituting~B3! into ~52!, applying several times formulas~B2! and~59!, we obtain the Hamil-
tonian in the following form:

Hn,n115
1

4 cosg S 2
1

cos2 g
~Y!22

1

cosg
qSn

3
~Y L1L Y! q2Sn11

3
1 412 cos 2g1~cos 2g!

3~Sn
3Sn11

3 2~Sn
3Sn11

3 !2!2 2~sing!2~~Sn
3!21~Sn11

3 !2! D1 i
sing

2
~Sn

32Sn11
3 ! . ~B4!
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Deriving the first term here we used the following analogue of relation~50!:

etS3
~S6!25~S6!2 e2tS3

5e6t ~S6!2 . ~B5!

Next, we observe that the following identity holds~as can be checked directly in terms of mat
ces!:

2Fa ~qSn
3
~Y L1L Y! q2Sn11

3
! ~Fa!215Qa

2 Y1Y Qa
1 , ~B6!

with Fa as in ~62! and

Qa
65 1

2 ~1^ 1!1~122q6a cosg! Sn
3Sn11

3 . ~B7!

Substituting~B6! and ~B7! with a50 into ~B4!, we obtain the Hamiltonian~53!.
The HamiltonianH̃n,n11

(a) discussed in Sec. VI is obtained from~B4! by the twist~68!. Notice
that the term (Y)2 in ~B4! is not affected due to~B5!. The diagonal part of Hamiltonian apparent
commutes with the twist. So the only part of~B4! which changes is the second term. It transfor
according to~B6!, which yields the Hamiltonian~69!.

Consider now the caseS5 3
2. The spin generators are given by

S15S 0 a1 0 0

0 0 a2 0

0 0 0 a1

0 0 0 0

D , S25~S1! t , S35S 3

2
0 0 0

0
1

2
0 0

0 0 2
1

2
0

0 0 0 2
3

2

D , ~B8!

with a15(2 cos 2g11)1/2 anda252 cosg. Any function ofS3 is a polynomial inS3 of a degree
not exceeding three. In particular,

sin~ tS3!5S 2 sin
t

2
1

1

3
sin3

t

2D S32
4

3 S sin3
t

2D ~S3!3 , ~B9!

cos~ tS3!5cos
t

2
1

1

4
sin

t

2
sint2S sin

t

2
sint D ~S3!2 . ~B10!

The Hamiltonian~56! for S5 3
2 takes the following form in terms ofX3/2 :

Hn,n115
1

4~cosg!3~112 cos 2g!3 ~4~cosg! ~X3/2!
22 ~X3/2!

2 ~13120 cos 2g18 cos 4g

12 cos 6g!1 X3/2~68 cosg148 cos 3g123 cos 5g17 cos 7g1cos 9g!! . ~B11!

This Hamiltonian can be rewritten in the same way as we did forS51 using, in particular,
relations~60!, ~B9! and~B10!, and appropriate analogues of~B5! and~B6!. The final form is given
by ~57!, with
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Q5
1

192
~1^ 1! ~81525832 cosg12352 cos 2g23888 cos 3g12542 cos 4g21620 cos 5g

11600 cos 6g2324 cos 7g1467 cos 8g!1
2

3 S sin
g

2D 2

Sn
3Sn11

3 ~106137 cosg1186 cos 2g

129 cos 3g188 cos 4g113 cos 5g128 cos 6g15 cos 7g!1S sin
g

2D 2

~Sn
3Sn11

3 !2 ~28

253 cosg154 cos 2g231 cos 3g128 cos 4g211 cos 5g110 cos 6g2cos 7g!

1
1

12S sin
g

2D 2

~~Sn
3!21~Sn11

3 !2! ~41211687 cosg1606 cos 2g11085 cos 3g1268 cos 4g

1433 cos 5g158 cos 6g183 cos 7g! ,

F3/25
cos2 g

4
~1^ 1! ~10328117080 cos 2g19071 cos 4g13220 cos 6g1621 cos 8g!

2
1

9 S sin
g

2D 2

Sn
3Sn11

3 ~836415020 cosg112752 cos 2g12499 cos 3g17150 cos 4g

11023 cos 5g13320 cos 6g1447 cos 7g1814 cos 8g183 cos 9g!

2
4

3 S sin
g

2D 2

~Sn
3Sn11

3 !2 ~5362472 cosg1864 cos 2g2347 cos 3g1650 cos 4g

2163 cos 5g1272 cos 6g265 cos 7g178 cos 8g29 cos 9g!2
64

9 S sin
g

2D 4

~Sn
3Sn11

3 !3 ~50

2200 cosg148 cos 2g2168 cos 3g145 cos 4g276 cos 5g128 cos 6g220 cos 7g

113 cos 8g!2~sin 2g!2 ~~Sn
3!21~Sn11

3 !2! ~1691274 cos 2g1106 cos 4g127 cos 6g!

1
4

9 S sin
g

2D 2

~~Sn
3!3Sn11

3 1Sn
3~Sn11

3 !2! ~44422516 cosg1560 cos 2g22037 cos 3g

1334 cos 4g21137 cos 5g1200 cos 6g2417 cos 7g146 cos 8g285 cos 9g! .

The equivalence of~B11! and ~57! as 16316 matrices has been verified with the help of t
programMATHEMATICA .

APPENDIX C

Here we explain the origin of Eq.~89! that was important for our discussion on the open ch
Hamiltonian in Sec. VIII.

Recall that, by definition~see, e.g., Refs. 14 and 28!, a Hopf algebraA possesses the antipod
maps:A→A which is an antihomomorphism consistent with the co-multiplication and the co
in the sense thatm((s^ id)D(j))5m(( id ^ s)D(j))5e(j)•1 ~herem:A ^ 2→A is the multipli-
cation!. Assume that there exists an elementxPA which realizes the square of the antipo
~which is a homomorphism! as an inner automorphism, i.e.,s(s(j))5x j x21 for any jPA.
Then, as was proven in Ref. 28,

tr1~~x21
^ 1! b! ~C1!

belongs to the center ofA if an elementbPA ^ 2 satisfies@b,D(j)#50 for anyjPA.
For A5Uq(sl2) the antipode consistent with the co-multiplication~7! is given by
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s~S6!52q71 S6 , s~S3!52S3 .

It is easy to see that in this casex5q22S3
. Since the universalr -matrix r (l) has the property

~12!, we can apply~C1! and infer that itsq-trace, tr1((q2S3
^ 1) r (l)), belongs to the center o

Uq(sl2). Consequently, the same holds for the local HamiltonianHn,n11 constructed as in~20!.
Being evaluated in an irreducible representation, theq-trace ofHn,n11 becomes just a constant, a
was stated in Eq.~89!.
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Quantum mechanics of damped systems
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We show that the quantization of a simple damped system leads to a self-adjoint
Hamiltonian with a family of complex generalized eigenvalues. It turns out that
they correspond to the poles of energy eigenvectors when continued to the complex
energy plane. Therefore, the corresponding generalized eigenvectors may be inter-
preted as resonant states. We show that resonant states are responsible for the
irreversible quantum dynamics of our simple model. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1599074#

I. INTRODUCTION

Standard textbooks on quantum mechanics investigate mainly the Hamiltonian system,
a quantum system one usually means a Hilbert spaceH which describes physical quantum stat
and a self-adjoint operator~Hamiltonian! in H which governs dynamics of the system. Howev
most of the classical systems are not Hamiltonian and the quantum mechanics of such sys
poorly understood. In the present paper we are going to investigate one of the simples
Hamiltonian systems corresponding to a damped motion in one dimension:

ẋ52gx, ~1.1!

where xPR, and g.0 stands for the damping constant. Classically, the damping behavi
described by the exponential law

x~ t !5e2gtx. ~1.2!

As is well known1 ~see also Ref. 2!, within the standard Hilbert space formulation of quantu
mechanics there is no room for such behavior on a quantum level. Therefore, in order to de
this problem, we shall use the rigged Hilbert space approach to quantum mechanics whic
eralizes the standard Hilbert space version.3–5 A rigged Hilbert space~or a Gelfand triplet! is a
collection of spaces:6,7

F,H,F8, ~1.3!

whereH is a Hilbert space,F is a dense nuclear subspace ofH, andF8 denotes its dual, i.e., the
space of continuous functionals onF ~see Sec. II for a brief review!.

The quantization of our simple model~1.1! leads to a self-adjoint HamiltonianĤ in H
5L2(R). Interestingly,Ĥ being self-adjoint, gives rise to the family of generalized comp
eigenvalues. Clearly, these eigenvalues are not elements of the spectrums(Ĥ)5(2`,`). The
corresponding eigenvectors do not belong toL2(R) but to F8 for an appropriately chosenF. We
show that these complex eigenvalues have many remarkable properties analogous to th
spectrum of a self-adjoint operator. In particular, they give rise to the spectral decompositionĤ.
Moreover, they are closely related to the continuous spectrum ofĤ. It turns out that they corre-

a!On leave from Institute of Physics, Nicolaus Copernicus University, ul. Grudzia¸dzka 5/7, 87-100 Torun´, Poland;
electronic mail: darch@phys.uni.torun.pl
37180022-2488/2003/44(9)/3718/16/$20.00 © 2003 American Institute of Physics
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spond to the poles of the energy eigenvectorscE when continued to the complex energy plan8

Physicists usually called the corresponding eigenvectors resonant states3,9,10 ~see also Ref. 11!. It
is widely believed that resonant states are responsible for the irreversible dynamics of ph
systems~see, e.g., the recent collection of papers3!. Indeed, it is true in our simple model. To se
this we construct two Gelfand triples:

F6,L2~R!,F68 , ~1.4!

such thatF1ùF25$B%. Obviously, the time evolution is perfectly reversible when conside

on L2(R). It is given by the one-parameter group of unitary transformationsU(t)5e2 iĤ t. How-
ever, when restricted toF6 , it defines only two semigroups:U(t>0) on F2 , andU(t<0) on
F1 . Therefore, the evolution onF6 is irreversible. This irreversibility is caused by quantu
damping, or, equivalently, by the presence of resonances.

II. RIGGED HILBERT SPACE

Consider a rigged Hilbert space, i.e., the following collection~Gelfand triplet!:

F,H,F8, ~2.1!

whereH is a Hilbert space with the standard norm topologytH , F is a topological vector spac
with a topology,tF , stronger thantH , andF8 is the dual space of continuous linear functiona
on F.6,7 We denote the action ofF8 on F using Dirac notation, i.e., for anyfPF andFPF8,

^ fuF &ªF~f!. ~2.2!

Any self-adjoint operatorÂ in H may be extended to an operator onF8:

Â:F8→F8, ~2.3!

by

^ fuÂF &ª^ ÂfuF &. ~2.4!

Now, if for any fPF,

^ fuÂFl &5l^ fuFl &, ~2.5!

then FlPF8 is called a generalized eigenvector corresponding to a generalized eigenval.
Omitting f one simply writes

ÂuFl &5luFl &. ~2.6!

Note that a generalized eigenvaluel may be complex. Now, if the spectrum ofÂ,

s~Â!5sp~Â!øsc~Â!,R, ~2.7!

with sp(Â)5$l1 ,l2 ,...%, then the Gelfand–Maurin theorem6,7 implies the following spectral
decompositions:

1F5(
n

uFn &^ Fnu1E
sc(Â)

dl uFl &^ Flu, ~2.8!

and of Â itself:
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Â5(
n

lnuFn &^ Fnu1E
sc(Â)

dl luFl &^ Flu. ~2.9!

This way the rigged Hilbert space approach fully justifies the standard Dirac notation.
The choice ofF depends on the particular problem one deals with. In the present pape

shall consider the following functional spaces:D—the space ofC`(R) functions with compact
supports equipped with the convex Schwartz topology,12 S—the space ofC`(R) functions van-
ishing at infinity faster than any polynomial.12 Moreover, let us define

Zª$F@f# u fPD%, ~2.10!

whereF@f# denotes the Fourier transform off. It turns out13 thatZ is isomorphic to the space o
entire functions of fast decrease alongR. More precisely, let

FL@f#~z!ª
1

A2p
E

2`

`

eizxf~x! dx, ~2.11!

be the Fourier–Laplace transform offPD. One proves12,13 the following
Theorem 1: (Paley–Wiener–Schwartz) Let a.0. An entire function U(z) is a Fourier–

Laplace transform of a function uPD with support

supp~u!5$xPR u uxu<a%,

if and only if

uzunuU~z!u<CneauIm zu, n51,2,... .

Now, for z5xPR, i.e., Imz50, FL@f#5F@f#, and the above theorem implies

uxunuF@f#~x!u<Cn , n51,2,... . ~2.12!

Clearly,ZùD5$B%. Moreover, one has

D,S,L2~R!, ~2.13!

and

Z,S,L2~R!, ~2.14!

and bothD andZ are dense inS. One proves13 that the Fourier transformation which defines t
unitary operator

F : L2~R! → L2~R!, ~2.15!

establishes an isomorphism betweenD andZ.

III. QUANTIZATION OF DAMPED SYSTEMS

Let us quantize a classical damped system described by~1.1!. Clearly this system is no
Hamiltonian. However, it is well known~cf. Ref. 14! that any dynamical system may be rewritte
in a Hamiltonian form. Consider a dynamical system onn-dimensional configuration spaceQ:

ẋ5X~x! , ~3.1!

whereX is a vector field onQ. Now, define the following Hamiltonian on the cotangent bun
P5T* Q:
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H~ax!ªax~X~x!!, ~3.2!

whereaxPTx* Q. Using canonical coordinates (x1,...,xn,p1 ,...,pn) one obtains

H~x,p!5 (
k51

n

pkX
k~x!, ~3.3!

whereXk are components ofX in the coordinate basis]/]xk. The corresponding Hamilton equa
tions take the following form:

ẋk5$xk,H%5Xk~x!, ~3.4!

ṗk5$pk ,H%52(
l 51

n

pl

]Xl~x!

]xk , ~3.5!

for k51,...,n. In the above formulas$ , % denotes the canonical Poisson bracket onT* Q:

$F,G%5 (
k51

n S ]F

]xk

]G

]pk
2

]G

]xk

]F

]pk
D . ~3.6!

Clearly, the formula~3.4! reproduces our initial dynamical system~3.1! on Q.
Let us apply the above procedure to the damped system~1.1!. One obtains for the Hamiltonian

H~x,p!52gxp, ~3.7!

and hence the corresponding Hamilton equations

ẋ52gx, ṗ5gp, ~3.8!

give rise to the following Hamiltonian flow onR2:

~x,p! → ~e2gtx,etgp!. ~3.9!

Now, the quantization is straightforward: one has for the Hilbert spaceH5L2(R), and for the
Hamiltonian

Ĥ52
g

2
~ x̂p̂1 p̂x̂!. ~3.10!

It is evident that~3.10! defines a symmetric operator onL2(R). In Sec. IV we show thatĤ is
self-adjoint and hence it gives rise to a well-defined quantum mechanical problem. Actually
Hamiltonian is well known in quantum optics in connection with the squeezed states of lig15

Introducing â and â* : x̂5(â1â* )/& , p̂5 (â2â* )/& i , the Hamiltonian~3.10! may be
rewritten as follows:Ĥ5(g/2i ) (â* 22â2) , which is exactly a generator of squeezing.

Let us observe that performing the canonical transformation

x5
21

A2g
~P1gX!, p5

1

A2g
~P2gX!, ~3.11!

the classical Hamiltonian~3.10! takes the following form:

Ĥ5 1
2 ~ P̂22g2X̂2!, ~3.12!
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that is, it corresponds to the so-called reversed harmonic oscillator. This system was analy
Ref. 16 and recently in Refs. 17–19~see also Refs. 20 and 21!.

IV. PROPERTIES OF THE HAMILTONIAN

Let us investigate the basic properties of the Hamiltonian defined in~3.10!.
Proposition 1: The operator Hˆ 52 (g/2) (x̂p̂1 p̂x̂) is self-adjoint in L2(R).

Proof: To prove thatĤ is self-adjoint we show thate2 iĤ is unitary inL2(R). One has

Ĥ52
g

2
~ x̂p̂1 p̂x̂!5 igS x

d

dx
1

1

2D . ~4.1!

Let us define

U5e2 iĤ5eg/2egx]x. ~4.2!

Clearly,

Uc~x!5eg/2c~egx!, ~4.3!

for any cPL2(R). The operatorU defines an isometry:

^ UcuUf &5E
2`

`

Uc~x!Uf~x! dx5E
2`

`

egc~egx!f~egx! dx5E
2`

`

c~y!f~y! dy5^ cuf &.

~4.4!

Moreover, due to~4.3!, U is onto, and hence it is unitary inL2(R). Therefore, Stone’s theorem
implies thatĤ is self-adjoint~see, e.g., Ref. 12!. h

Obviously,Ĥ is parity invariant:

PĤP215Ĥ, ~4.5!

where the parity operatorP is defined by

Px̂P2152 x̂, Pp̂P2152 p̂. ~4.6!

Now, let us turn to the time reversal operatorT. The theory invariant under the time reversal h
the following property: ifc(t) is a solution of the Schro¨dinger equation given by

c~ t !5U~ t !c, ~4.7!

with U(t)5e2 iĤ t, thenTc evolves into

~Tc!~2t !5U~ t !~Tc!, ~4.8!

or, equivalently

T~U~ t !c!5U~2t !~Tc!, ~4.9!

for any cPH. Now, following Wigner,22 T is either unitary or anti-unitary. IfT is unitary, then
~4.9! implies

TĤ1ĤT50 . ~4.10!

It means that if
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ĤcE5EcE, ~4.11!

then

Ĥ TcE52E TcE, ~4.12!

that is, any eigenvectorcE with the energyE is accompanied byTcE with energy2E. Usually,
this case is excluded since one expects that the Hamiltonian is bounded from below. If this
case, thenT is anti-unitary and~4.9! implies:

TĤ2ĤT50. ~4.13!

However, the Hamiltonian defined in~3.10! is not bounded from below, and, as we show in S
VI its spectrums(Ĥ)5(2`,`). Therefore, we takeT to be unitary inL2(R).

Proposition 2: The time reversal operatorT is realized by the Fourier transformation:

TcªF@c#, ~4.14!

i.e.,

F21ĤFc52Ĥc, ~4.15!

for all cPL2(R). Moreover,

T2c~x!5Pf~x!5c~2x!. ~4.16!

Denoting byC the complex conjugationCc5c̄, one immediately finds
Proposition 3: The Hamiltonian (3.10) isCT and PCT invariant, i.e.,

@Ĥ,CT#5@Ĥ,PCT#50 . ~4.17!

Therefore, if

ĤcE5EcE, ~4.18!

then

ĤF@cE#5EF@cE#. ~4.19!

Clearly,CT invariance does not produce any conserved quantity sinceCT is anti-unitary.

V. COMPLEX EIGENVALUES

Interestingly, Ĥ being self-adjoint admits generalized eigenvectors with comp
eigenvalues.19,23,20,21Let f 0

6 be distributions satisfying

x̂ f 0
250, p̂ f 0

150. ~5.1!

Clearly,

f 0
2~x!5d~x!, f 0

1~x!51. ~5.2!

Its easy to see that

Ĥ f 0
656 i

g

2
f 0

6. ~5.3!
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Let us define two families:

f n
2
ª

~2 i !n

An!
p̂n f 0

2, f n
1
ª

1

An!
x̂n f 0

1. ~5.4!

One finds

f n
2~x!5

~21!n

An!
d (n)~x!, f n

1~x!5
xn

An!
. ~5.5!

Moreover,

Ĥ f n
656En f n

6, ~5.6!

where

Enª ig~n1 1
2!. ~5.7!

Clearly, bothf n
2 and f n

2 are tempered distributions, i.e.,f n
6PS8. Evidently, they are related by th

Fourier transformation:

F@ f n
1#5A2p i nf n

2 , F@ f n
2#5

i n

A2p
f n

1 . ~5.8!

Let us observe that these two families of generalized eigenvectors have two remarkable pro

E
2`

`

f n
1~x! f m

2~x! dx5dnm, ~5.9!

and

(
n50

`

f n
1~x! f n

2~x8!5d~x2x8!. ~5.10!

These formulas remind one of the basic properties of proper~Hilbert space! eigenvectors: ifÂ is
a self-adjoint operator inH and

Âck5lkck, ~5.11!

whereck are normalized vectors inH, then

E cn~x!cm~x! dx5dnm , ~5.12!

and

(
n

cn~x!cn~x8! dx5d~x2x8!. ~5.13!

Obviously, there is no complex conjugation in~5.9! and ~5.10! since f n
6 are real functions.

Now, for anyfPZ one has
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f~x!5(
n

f (n)~0!

n!
~21!nxn5(

n
f n

1~x!^ f n
2uf &. ~5.14!

On the other hand, for anyfPD, its Fourier transformF@f#PZ, and

f~x!5
1

A2p
E eikxF@f#~k!dk

5
1

A2p
E eikx(

n

F@f# (n)~0!

n!
~21!nkn dk

5(
n

F@ f n
1#~x!^ f n

2uF@f# &

5(
n

F@ f n
1#~x!^ F@ f n

2#uf &

5(
n

f n
2~x!^ f n

1uf &. ~5.15!

Hence, we have two spectral decompositions:

uf &5(
n

u f n
1 &^ f n

2uf & in Z, ~5.16!

and

uc &5(
n

u f n
2 &^ f n

1uc & in D. ~5.17!

In Sec. VII we derive~5.16! and ~5.17! from the spectrum ofĤ. So let us look fors(Ĥ).

VI. SPECTRUM

The Hamiltonian~3.10! has a continuous spectrums(Ĥ)5(2`,`). Since the Hamiltonian
~3.10! is parity invariant each generalized eigenvalueEPR is doubly degenerated:

Ĥc6
E 5Ec6

E . ~6.1!

The above equation may be rewritten as the following differential equation forc6
E :

x
d

dx
c6

E ~x!52S i
E

g
1

1

2Dc6
E . ~6.2!

To solve~6.2! let us introduce the following distributions13 ~see also Ref. 24!:

x1
l
ªH xl, x>0,

0, x,0,
x2

l
ªH 0, x>0,

uxul, x,0,
~6.3!

with lPC ~basic properties ofx6
l are collected in the Appendix!. It is, therefore, clear that the

generalized eigenvectorsc6
E may be written as follows:
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c6
E ~x!ª

1

A2pg
x6

2( iE/g11/2). ~6.4!

It turns out thatc6
E are well-defined tempered distributions for allEPR. Actually, instead ofc6

E

one may work with eigenvectors of the parity operatorP:

ceven
E 5 1

2 ~c1
E 1c2

E ! , ~6.5!

codd
E 5 1

2 ~c1
E 2c2

E !. ~6.6!

Obviously

Pceven
E 5ceven

E , Pcodd
E 52codd

E . ~6.7!

These distributions of definite parity are given by

ceven
E 5

1

A2pg
uxu2( iE/g11/2), codd

E 5
1

A2pg
sign~x!uxu2( iE/g11/2) ~6.8!

~see Refs. 13 and 24 for the properties ofuxul and sign(x)uxul).
With the normalization used in~6.4! one proves25 orthonormality:

E c
6

E1~x!c6

E2~x! dx5d~E12E2!, ~6.9!

and completeness:

E c6
E ~x!c6

E ~x8! dE5d~x2x8!. ~6.10!

Therefore, due to the Gelfand–Maurin spectral theorem one has

f~x!5(
6

E dE c6
E ~x!^ c6

E uf &, ~6.11!

for any fPS, and the corresponding spectral resolution of the Hamiltonian has the follo
form:

Ĥ5(
6

E dE Euc6
E &^ c6

E u. ~6.12!

There is another family of energy eigenvectors directly related toc6
E . Due to~4.19! one has

Ĥ F@c6
2E#5EF@c6

2E#. ~6.13!

The Fourier transform ofc6
E is given by~cf. Ref. 13 and the Appendix!:

F@c6
2E#~k!56

i

2pAg
expF6

ip

2 S i
E

g
2

1

2D GGS i
E

g
1

1

2D ~k6 i0!2( iE/g11/2). ~6.14!

One shows13 that F@c6
E # are well-defined tempered distributions for anyEPR. Moreover,

E F@c
6

E1#~x! F@c
6

E2#~x! dx5d~E12E2!, ~6.15!
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and

E F@c6
E #~x! F@c6

E #~x8! dE5d~x2x8!. ~6.16!

Hence, following the Gelfand–Maurin theorem, we have further spectral decompositions: fo
cPS,

c~x!5(
6

E dE F@c6
2E#~x!^ F@c6

2E#uc &, ~6.17!

and for the Hamiltonian itself:

Ĥ5(
6

E dE EuF@c6
2E# &^ F@c6

2E#u. ~6.18!

VII. ANALYTICITY OF ENERGY EIGENVECTORS

Let us continue the energy eigenvectorsc6
E and F@c6

2E# into the energy complex planeE
PC. It turns out13 ~see also the Appendix! thatc6

E has simple poles atE52En , whereasF@c6
2E#

has simple poles atE51En , with En defined in~5.7!. Therefore, the poles of energy eigenvecto
considered as functions of the complex energy correspond exactly to the complex eigenva
Ĥ which we found in Sec. V. One easily computes the corresponding residues:

Res~c6
E ~x!;2En!5 iA g

2p

d (n)~x!

n! H ~21!n ~1 !

1 ~2 !,
~7.1!

and

Res~F@c6
2E~x!#;1En!56

Ag

2p
~7 i !n11

~21!n

n!
xn. ~7.2!

Hence, residues ofc6
E andF@c6

2E# correspond, up to numerical constants, to the eigenvectorf n
6

~5.5!:

Res~c6
E ~x!;2En!; f n

2, ~7.3!

and

Res~F@c6
2E~x!#;1En!; f n

1. ~7.4!

Any function fPS,L2(R) gives rise to the following functions of energy:

R{E→^ c6
E uf &PC,

and

R{E→^ F@c6
2E#uf &PC.

Let us introduce two important classes of functions:26 a smooth functionf 5 f (E) is in the Hardy
class from aboveH 1

2 ~from belowH 2
2 ) if f (E) is a boundary value of an analytic function in th

upper, i.e., ImE>0 ~lower, i.e., ImE<0) half complexE-plane vanishing faster than any power
E at the upper~lower! semi-circleuEu→`. Now, define

F2ª$fPS u ^ c6
E uf &PH 2

2 % , ~7.5!
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and

F1ª$fPS u ^ F@c6
2E#uf &PH 1

2 %. ~7.6!

Proposition 4:F1ùF25$B%.
Proof: Clearly, if fPF2 , then ^ c6

E uf & is a smooth function ofEPR. Suppose thatf
PF1 , that is

^ F@c6
2E#uf &5^ c6

2EuF@f# &PH 1
2 . ~7.7!

Now, due to the Paley–Wiener theorem12 the inverse Fourier transform ofF@f#,

F21@F@f##~E!5
1

A2p
E

2`

`

F@f#~ t ! e2 i tE dt, ~7.8!

vanishes forE.0. Therefore,f(E)50 for E.0, and hencef (E) cannot be a smooth function o
E. h

Our main result consists in the following.
Theorem 2: For any f6PF6 one has

f2~x!5(
n

f n
2~x!^ f n

1uf2 &, ~7.9!

and

f1~x!5(
n

f n
1~x!^ f n

2uf1 &. ~7.10!

Proof: Due to the spectral formula~6.11! one has, forf2PF2,S:

f2~x!5(
6

E
2`

`

dE c6
E ~x!^ c6

E uf2 & . ~7.11!

Now, since^ c6
E uf2 &PH 2

2 , we may close the integration contour along the lower semi-ci
uEu→`. Hence, due to the residue theorem one obtains

f2~x!522p i(
6

(
n

Res~c6
E ~x!;2En! ^ c6

E uf2 &uE52En
. ~7.12!

Using the definition ofc6
E ,

^ c6
E uf2 &5

1

A2pg
E x6

2( iE/g11/2) f2~x!dx5
1

A2pg
E x6

2(2 iE/g11/2) f2~x! dx, ~7.13!

one finds

^ c6
E uf2 &uE52En

5
1

A2pg
E x6

n f2~x! dx. ~7.14!

Therefore, inserting into~7.12! the value of the residue given in~7.1! one gets finally
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f2~x!5(
n

d (n)~x!

n! E @~21!nx1
n 1x2

n #f2~x! dx

5(
n

~21!n
d (n)~x!

n! E xnf2~x! dx

5(
n

f n
2~x!^ f n

1uf1 &. ~7.15!

To prove~7.10! let us use another spectral formula~6.17!: for any f1PF1,S,

f1~x!5(
6

E
2`

`

dE F@c6
2E#~x!^ F@c6

2E#uf2 &. ~7.16!

Now, since^ F@c6
2E#uf2 &PH 1

2 , we may close the integration contour along the upper se
circle uEu→`. Hence the residue theorem implies

f1~x!512p i(
6

(
n

Res~F@c6
2E~x!#;1En! ^ F@c6

2E#uf1 &uE51En
. ~7.17!

Now, using once more the formula forc6
E one finds

^ F@c6
2E#uf1 &uE51En

5
1

A2pg
^ F@x6

n #uf1 &. ~7.18!

Hence, inserting the values of residues~7.2! into ~7.17! and using the formula forF@x6
n # @see

~A9!# one has

f1~x!5
i

A2p
(

n
~21!n

xn

n!
@~2 i !n11^ F@x1

n #uf1 &2 i n11^ F@x2
n #uf1 &#

5
i

A2p
(

n
~21!n

xn

n! E @~2 i !n11F@x1
n #~k!2 i n11F@x2

n #~k!#f1~k! dk

5
i

2 (
n

~21!n
xn

n!
@~2 i !n11i n2 i n11~2 i !n#E d (n)~k!f1~k! dk

5(
n

f n
1~x!^ f n

2uf1 &, ~7.19!

which ends the proof. h

This way we have recovered~5.16! and ~5.17!. It is not surprising, due to the following.
Proposition 5:F15Z and F25D.
Corollary 1: We have two spectral decomposition of Hˆ :

Ĥ5(
n

Ēnu f n
2 &^ f n

1u on F2 , ~7.20!

and

Ĥ5(
n

Enu f n
1 &^ f n

2u on F1. ~7.21!
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VIII. RESONANCES AND THE QUANTUM DAMPING

Finally, let us turn to the evolution generated by the Hamiltonian~3.10!. Obviously, it gener-
ates a one-parameter unitary group

U~ t !5e2 iĤ t, ~8.1!

on L2(R). It follows from ~4.3! that

c t~x!5U~ t !c~x!5egt/2c~egtx!. ~8.2!

The above formula is well defined for anytPR and clearly, as we already showed, the theory
time-reversal invariant: ifc(t) solves the Schro¨dinger equation so doesTc(t)ªc(2t). There-
fore, working in L2(R) we do not see any damping at all. Now, let us construct two nat
Gelfand triplets:

F6,L2~R!,F68 . ~8.3!

If f2PF2 , then

^ c6
E uU~ t !f2 &5^ U* ~ t ! c6

E uf2 &5e2 iEt ^ c6
E uf2 &. ~8.4!

Hencef2(t)PF2 only for t>0. Similarly, if f1PF1 , thenf1(t)PF1 only for t<0. There-
fore, the restriction of the unitary groupU(t) on L2(R) to F6 no longer defines a group. It give
rise to two semigroups:

U2~ t !:F2→F2 for t>0,

and

U1~ t !:F1→F1 for t<0.

Due to ~7.20! and ~7.21! one has

f1~ t !5U~ t !f15(
n

eg(n11/2)tu f n
1 &^ f n

2uf1 &, ~8.5!

for t<0, and

f2~ t !5U~ t !f25(
n

e2g(n11/2)tu f n
2 &^ f n

1uf2 &, ~8.6!

for t>0. We stress thatf t
2 (f t

1) does belong toL2(R) also for t,0 (t.0). However,f t
2

PF2 (f t
1PF1) only for t>0 (t<0). This way the irreversibility enters on a purely Ham

tonian level by restricting dynamics to the dense subspaceF6 of L2(R).
Formulas~8.5! and ~8.6! are quantum analogues of the classical damping laws:

x~ t !5e2gtx , p~ t !5e1gtp. ~8.7!
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Finally, let us recall that the time reversal operatorT establishes an isomorphism betweenF2 and
F1 . Therefore, each solution

f t
25U2~ t !f2, ~8.8!

with f2PF2 is mapped into

T~f t
2!5U2~2t !T~f2!5U1~ t !T~f2!, t<0. ~8.9!

Conversely, any solution

f t
15U1~ t !f1, ~8.10!

with f1PF1 is mapped into

T~f t
1!5U1~2t !T~f1!5U2~ t !T~f1!, t>0. ~8.11!

Summarizing, quantum dynamics is irreversible onF2 andF1 . This irreversibility is caused by
quantum damping, or, equivalently, by the presence of resonant statesf n

6 ~5.5!. It should be
stressed that it is not an energy that is dissipated. Clearly, the Hamiltonian~3.10! cannot be
interpreted as a system energy—it was used to define a Hamiltonian dynamics of the en
system onL2(R). The quantum damped system is not defined on the entireL2(R) but rather on a
dense subsetF2,L2(R). As we saw it imposes the restriction upon the time evolution such
it is defined only for positivet. Another aspect of dissipation may be seen as follows: letf0

2

PF2 be an initial state then the probability of finding a particle in the interval@2a,a# at time t
is given by

Pt~@2a,a# !5E
2a

a

pt~x! dx, ~8.12!

where

pt~x!5uf t
2~x!u25e1gtuf0

2~e1gtx!u25e1gtp0~e1gtx!. ~8.13!

Therefore,

Pt~@2a,a# !→1, ~8.14!

in the limit t→1`. Hencept(x)→d(x).
In a forthcoming paper we are going to show that also more complicated damped sy

e.g., the damped harmonic oscillator, give rise to irreversible dynamics.
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APPENDIX

The regular tempered distributionx1
l ~with lPC) given by

^ fux1
l &ªE

0

`

xlf~x!dx, ~A1!

for any fPS, is well defined for Rel.21. However, it may be easily extended to the regi
Rel.22 due to the following regularization formula:

E
0

`

xlf~x!dx5E
0

1

xl@f~x!2f~0!#dx1E
1

`

xlf~x!dx1
f~0!

l11
, ~A2!

which holds forlÞ21. In the same way one may extend the distributionx1
l to the region

Rel.2n21 using the formula

E
0

`

xlf~x!dx5E
0

1

xlFf~x!2f~0!2xf8~0!2¯2
xn21

~n21!!
f (n21)~0!Gdx

1E
1

`

xlf~x!dx1 (
k51

n
f (k21)~0!

~k21!! ~l1k!
, ~A3!

which holds forlÞ21,22,...,2n. The above formula shows that^ fux1
l & as a function ofl

PC has simple poles atl521,22,..., and thecorresponding residue atl52k equals
f (k21)(0)/(k21)!.

Using the same arguments one shows that the distributionx2
l may be extended to the regio

Rel.2n21 via

E
2`

0

xlf~x!dx5E
0

`

xlf~2x!dx

5E
1

`

xlFf~2x!2f~0!1xf8~0!2¯2
~21!n21xn21

~n21!!
f (n21)~0!Gdx

1E
1

`

xlf~x!dx1 (
k51

n
~21!k21f (k21)~0!

~k21!! ~l1k!
, ~A4!

which holds forlÞ21,22,...,2n. Hence,̂ fux2
l & has simple poles atl521,22,..., and the

corresponding residue atl52k equals (21)k21f (k21)(0)/(k21)!.
The Fourier transforms ofx6

l ,

F@x6
l #~k!5

1

A2p
E eikxx6

l dx, ~A5!

are given by the following formula:13

F@x6
l #~k!56

i

A2p
e6 ilp/2G~l11!~k1 i0!2l21, ~A6!

where (k6 i0)a is a distribution defined by

~k6 i0!a5k1
a 1e6 iapk2

a . ~A7!
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Due to the EulerG-function the formula~A6! has single poles atl521,22,... . Note, that
although bothk1

a andk2
a have poles ata521,22,..., thedistribution (k6 i0)a is well defined

for all aPC. Indeed

lim
a→2n

~k6 i0!a5 lim
a→2n

~k1
a 1~21!nk2

a !, ~A8!

and, due to~A3! and~A4!, the singular parts ofk1
a andk2

a , at a52n, cancel out. In particular,
for l5nPN, one obtains~cf. Ref. 13!

F@x6
n #~k!5

1

A2p
@~6 i !n11n!k2n211~7 i !npd (n)~k!#. ~A9!
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Extended edge states in finite Hall systems
Christian Ferraria) and Nicolas Macrisb)

Institute for Theoretical Physics, Ecole Polytechnique Fe´dérale,
CH-1015 Lausanne, Switzerland

~Received 18 July 2002; accepted 6 May 2003!

We study edge states of a random Schro¨dinger operator for an electron submitted to
a magnetic field in a finite macroscopic two dimensional system of linear dimen-
sions equal toL. They direction isL-periodic and in thex direction the electron is
confined by two smoothly increasing parallel boundary potentials. We prove that,
with large probability, for an energy range in the first spectral gap of the bulk
Hamiltonian, the spectrum of the full Hamiltonian consists only on two sets of
eigenenergies whose eigenfuntions have average velocities which are strictly
positive/negative, uniformly with respect to the size of the system. Our result gives
a well defined meaning to the notion of edge states for a finite cylinder with two
boundaries, and extends previous studies on systems with only one
boundary. ©2003 American Institute of Physics.@DOI: 10.1063/1.1598642#

I. INTRODUCTION

In this paper we investigate spectral properties of random Hamiltonians describing th
namics of a spinless quantum particle on a cylinder of circumferenceL and confined along the
cylinder axis by two boundaries separated by the distanceL. The particle is subject to an extern
homogeneous magnetic field and a weak random potential. A precise statement of the m
given in Sec. II. The physical interest of the model comes from the integral quantum Hall e
occurring in disordered two dimensional electronic systems subject to a uniform magnetic
for example, in the interface of a heterojunction@v. Klitzing ~1980!, Prange~1987!#. In his treat-
ment of this effect, Halperin~1982! pointed out the fundamental role played by edge sta
carrying boundary diamagnetic currents, and it is therefore important to understand the s
properties of finite but macroscopic quantum Hall samples with boundaries. A short review
spectral properties of finite quantum Hall systems can be found in Ferrari~2001!.

Random Landau Hamiltonians on an infinite plane have been analyzed in the last d
@Dorlas ~1995!, Dorlas ~1996!, Combes~1996!, Barbaroux~1997!, Wang ~1997!, Dorlas ~1997!,
Dorlas ~1999!, and Germinet~2002!#.

The study of random magnetic Hamiltonians with boundaries is more recent and, befo
address the case of a~finite! cylinder, we wish to briefly discuss a few existing results. The c
of a semi-infinite plane with one planar boundary, modeled by a smooth confining potentialU or
a Dirichlet condition atx50, is satisfactorily understood. In this case it is proven that the spec
of the HamiltonianHv

e 5H01U1Vv , H0 being the Landau Hamiltonian for a uniform magne
field B andVv an Anderson-type random potential, has absolutely continuous components
the complement of Landau bands, foriVvi`!B @Fröhlich ~2000!, de Bièvre ~1999!, and Macris
~1999!#. The proof of this statement is essentially based on Mourre theory with conjugate op
y. The positivity ofi @Hv

e ,y# in suitable spectral subspaces ofHv
e leads to the absolutely continu

ous nature of the spectrum. Since this commutator is equal to the velocityvy this means that state
in the corresponding spectral subspaces propagate in they-direction along the edge with positiv
velocity.

For the case of an infinite strip with two boundaries, separated by a distanceL, few results are

a!Electronic mail: christian.ferrari@epfl.ch
b!Institut de Physique, Universite´ de Neuchaˆtel, Neuchaˆtel, Switzerland.
37340022-2488/2003/44(9)/3734/18/$20.00 © 2003 American Institute of Physics
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known. For a general~random! potential we expect that there is no absolutely continuous c
ponent in the spectrum, because the impurities may induce a tunneling~or backscattering! between
the two boundaries and thus propagating edge states along each boundary cannot persis
infinite time. In Combes~2002!, the authors have shown that such states survive, for a finite
related to the quantum tunneling time between the two edges. In Exner~2001!, the authors
consider a parabolic channel in they-direction. They show that if the perturbationV is periodic, or
if V is small enough and decays fast enough in they-direction, then the absolutely continuou
spectrum survives in certain intervals, but their analysis does not cover true Anderson like
tials.

In this work, as in our previous work@Ferrari~2002!#, we address the case of a macrosco
finite systems with two confining walls separated by a distanceL along thex-direction and with
the y-direction of lengthL made periodic~i.e., the geometry is that of a cylinder!. The left ~resp.,
right! walls are modeled by a smooth confining potentialU, ~resp.,Ur) separated by a distanceL,
and thebulk between them contains impurities modeled by a random Anderson-like potentiaVv .
Although the spectrum consists of discrete isolated eigenvalues, we show that there is
defined notion of edge states associated to each boundary.

Let us explain our main new result expressed in Theorem 1 and compare it with that of F
~2002!. We show that, with large probability, the spectrum of the random Hamiltonian,

Hv5H01Vv1U,1Ur ,

in an energy intervalD,( 1
2B1iVvi` , 3

2B2iVvi`) consists in the union of two setsS, andS r ,
which are small perturbations of the spectras(H01U,1Vv

, ) and s(H01Ur1Vv
r ), of the two

edge random Hamiltonians~see Sec. II for their precise definition!. The eigenvalues inS, andS r

are characterized by their average velocity along the periodic directionJE5(cE ,vycE): the
eigenfunctions corresponding to the eigenvalues inS, ~resp.,S r) have a uniformly, negative
~resp., positive! velocity, with respect toL. These are the so-called edge states and from
constructions in the proofs it is possible to see that the eigenvalues inS, ~resp.,S r) correspond to
eigenfunctions localized in thex-direction near the left~resp., right! boundary. The number o
eigenvalues inS, andS r is of orderO(L).

We briefly comment about our paper@Ferrari~2002!# where energies inside the Landau ban
are considered. We proved that with large probability, for a similar model~where no disorder is

present in a thin strip along the boundaries! the spectrum ofHv in D«5@ 1
2B1«, 1

2B1V0# is given
by S,øSbøS r . The eigenfunctions corresponding to the eigenvalues inS,øS r have strictly
positive/negative velocity, andSb is intermixed in betweenS,øS r and the corresponding eigen
functions have an infinitesimal velocity of orderO(e2B(log L)2). The number of eigenvalues inS,

andS r is O(L) while that inSb is O(L2).
Although our analysis is presented for a sample of sizeL3L the same results can be straigh

forwardly extended to all geometries where the two boundaries are separated by any distanD at
leastO(lnL) ~assuming the length of the periodic direction is fixed toL) @Ferrari ~2003!#. For
distancesD5O(1) our analysis does not hold, a fact which is consistent with Combes~2002!. In
fact, we expect that by using the results in the present paper one could prove that a wave
localized on the left boundary and with appropriate energy, will propagate along the left bou
up to a finite tunneling time and, then, backscatter and propagate along the right boundary
forth. The tunneling time is set byVv and the distanceD between the two boundaries. Thus,
D5O(1) with respect toL, this tunneling time is alsoO(1), andalways remains much smalle
thanO(L) which is the time needed for a ballistic flight around the whole periodic directiony. In
Combes~2002! the randomness of the potential is not needed. We suspect that this may also
case in the present problem, but in order to study the nonrandom situation one should ap
other arguments not relying on the Wegner estimate.

The paper is organized as follows. In Sec. II we present the precise definition of the mod
state the main theorem. Section III is concerned with the main mathematical tools used
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analysis: a Wegner estimate and a decoupling scheme of the cylinder into two semi-infinite
The proof of the main theorem is then completed in Sec. IV. Some useful estimates and
technical material are collected in the Appendixes.

II. THE MODEL AND MAIN RESULT

We study the spectral properties of the family of random Hamiltonians,

Hv5H01U,1Ur1Vv , vPVL , ~2.1!

acting in the Hilbert spaceL2(R3@2 L/2 , L/2#) with periodic boundary conditions alongy:
c(x,2 L/2)5c(x, L/2). The HamiltoniansHv , and all the Hamiltonians defined below, a
densely defined self-adjoint operators.

We choose the Landau gauge in which the kinetic part has the formH05 1
2px

21 1
2(py2Bx)2

with a spectrum given by the Landau levels:s(H0)5$(n1 1
2)B;nPN%. The potentialsU, andUr

representing the confinement along thex-direction atx56L/2 are independent ofy and are
supposed strictly monotonic, twice differentiable and satisfy

c1Ux1
L

2U
m1

<U,~x!<c2Ux1
L

2U
m2

, for x<2
L

2
, ~2.2!

c1Ux2
L

2U
m1

<Ur~x!<c2Ux2
L

2U
m2

, for x>
L

2
, ~2.3!

for some constants 0,c1,c2 , 2<m1,m2,` and U,(x)50 for x>2 L/2 , Ur(x)50 for x
< L/2. The random potentialVv is given by the sum of local perturbations located at the site
a finite lattice L5$(n,m)PZ2;nP@2 L/2 , L/2#,mP@2 L/2 , L/2#%. Let V>0, with VPC2,

iVi`<V0 , suppV,B(0, 1
4) ~the open ball centered at~0,0! of radius 1

4) and Xn,m i.i.d. random
variables with common bounded densityhPC2(@21,1#) representing the random strength of ea
local perturbation. ThenVv has the form

Vv~x,y!5 (
(n,m)PL

Xn,m~v!V~x2n,y2m!. ~2.4!

We denote byPL the product measure defined on the set of all possible realizationsVL

5@21,1#L. Clearly for each realizationvPVL we haveiVvi<V0 and we supposeV0!B.
For future use we collect some properties of three simpler random Hamiltonians. Let u

consider the pure edge Hamiltonians,

Ha
05H01Ua , a5,,r . ~2.5!

In the half-plane case studied in Macris~1999! @Ha
0 acting inL2(R2) with Ua a confining wall at

x50] we deduce, from translation invariance alongy, that the spectrum consists of analytic a
monotone decreasing~resp., increasing! branches«n

,(k) @resp.,«n
r (k)] wherekPR is the quantum

number associated to py . One has limk→1`«n
,(k)5 limk→2`«n

r (k)5(n1 1
2)B and

limk→2`«n
,(k)5 limk→1`«n

r (k)51`. For the present case~2.5! because of periodic boundar
conditions alongy the quantum numberk takes discrete values 2pm/L , mPZ. For L finite the
spectrum consists of discrete eigenvaluesEn,m

a 5«n
a(2pm/L) on the spectral branches. Moreov

from the mean value theorem we deduce
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uE0,m11
a 2E0,m

a u>
C0

L
, a5,,r , ~2.6!

for eachm such thatE0,m
a PD«5( 1

2B1V01«, 3
2B2V02«), whereC0.0 is independent ofm and

depends only on the spectral branch«0
a .

We will suppose that the following hypothesis is fulfilled.
Hypothesis 1:There exists L0 and d0.0 such that for all L.L0 ,

dist„s~H,
0!ùD« ,s~Hr

0!ùD«…>
d0

L
. ~2.7!

In order to fulfill this hypothesis one must take nonsymmetric boundary potentialsU, andUr .
We expect that in fact our result still holds forU,(x)5Ur(2x) because physically the random
potentialVv removes with high probability any degeneracy, but in order to control this case
should improve the Wegner estimate in Sec. III. In Appendix C we give an example for a situ
where this hypothesis is satisfied.

We will make use of the random edge Hamiltonians,

Ha5H01Ua1Vv
a , ~2.8!

where Vv
a5VvuLa

with L r5$(n,m)PZ2;nP@L/22 3D/421,L/2#,mP@2 L/2 , L/2#% and L,

5$(n,m)PZ2;nP@2 L/2 ,2 L/21 3D/411#,mP@2 L/2 , L/2#%, whereD5AL. This choice of
D turns out to be convenient in the next sections, but~2.9! and ~2.10! below are still true forD
5O(L).

Since the perturbation has compact support and the essential spectrum ofHa
0 is given by the

Landau levels, the spectrum ofHa is discrete with the Landau levels as only accumulation poi
We denote it bys(Ha)5$Ek

a%. One can prove@Macris ~2003!# that, for eachvPVLa

5@21,1#La ~the restriction of the configurationsv to the sublatticeLa) and for eachk such that
Ek

aPD5(B2d,B1d),D« , for L large enough andV0 /B small but independent ofL, the
distance between two consecutive eigenvalues satisfies

uEk11
a 2Ek

au>
C

L
, a5,,r , ~2.9!

whereC.0 is uniform in k, v. Moreover for eachEk
,PD ~resp.,Ek

r PD) the average velocity
associated to the corresponding eigenfunctions is strictly negative~resp., positive! uniformly in L,

uJE
k
au>C8.0, a5,,r . ~2.10!

The constantC8 is estimated in Appendix B~B17! in terms of the parameters of the model.
Finally we remark that the HamiltonianH01VvuL̃ (L̃,L) has a point spectrum contained

Landau bands~sinceVvuL̃ has bounded support andiVvuL̃i5V0),

s~H01VvuL̃!,ø
n>0

@~n1 1
2!B2V0 ,~n1 1

2!B1V0#. ~2.11!

When L̃ is given by

Lb[L̃5H ~n,m!PZ2;nPF2
L

2
1S D

4
21D ,

L

2
2S D

4
21D G ,mPF2

L

2
,
L

2G J ,

we call the HamiltonianHb[H01VvuLb
the bulk Hamiltonian.
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We now state the main result of this paper.
Theorem 1: Let V0 small enough, fix«.0 and let0,d,B/22V02«. Suppose that(H1)

hold. Then there existsm.0, L̄ such that if L.L̄ one can find a setV̂,VL of realizations of the
random potential Vv with PL(V̂)>12L2n (n@1) such that for allvPV̂ the spectrum of Hv in
D5(B2d,B1d) is the union of two setsS, and S r with the following properties:

~a! E k
aPSa(a5,,r ) are a small perturbation of Ek

aPs(Ha)ùD with

uE k
a2Ek

au<e2mABAL. ~2.12!

~b! For E k
aPSa the average velocity JE

k
a of the associated eigenstate satisfies

uJE
k
a2JE

k
au<e2mABAL. ~2.13!

That is, the eigenfunctions associated to the eigenvalues~of Hv) in D have anO(1) velocity.
The main tools for the proof of Theorem 1 are developed in Sec. III. Basically they cons

a Wegner estimate for the random HamiltoniansHa (a5,,r ) and a decoupling scheme that link
the resolvent of the full HamiltonianHv with those ofH, , Hr andHb . In Sec. IV we prove two
propositions that lead to parts (a) and (b) of Theorem 1. Finally in Appendix A we prove som
technical results; in Appendix B we prove~2.10! and in Appendix C we discuss the Hypothesis

Let x,x8PR3@2 L/2 , L/2#, then one can check that

ux2x8u![ inf
nPZ

A~x2x8!21~y2y82nL!2 ~2.14!

has the properties of a distance onR3SL (SL being the circle of circumferenceL) and that it is
related to the Euclidian distanceux2x8u[A(x2x8)21(y2y8)2 by

ux2x8u!<ux2x8u. ~2.15!

The interest ofu•u! is that, since we are working with a cylindrical geometry, all decay estim
are naturally expressed in terms of this distance. In particular, it permits us to expres
convenient way decay in they-direction that occurs on a scale much smaller thanL.

III. WEGNER ESTIMATES AND DECOUPLING SCHEME

We first give a Wegner estimate for the HamiltoniansHa (a5,,r ). Denote byP0,m
a the

projector ofHa
0 onto the eigenvalueE0,m

a and byPa(I ) the projector ofHa on an intervalI . Let
I m5(E0,m21

a 1d0 ,E0,m
a 2d0) and Da5øm0<m<m1

I m , for some 2`!m0,m1!` and d0

! C0/L , whereC0 is the constant defined in~2.6!. The local potentialsV(x2n,y2m) will also
be denoted byVi , i5(m,n)PL.

Proposition 1: Let V05iVvi sufficiently small with respect to B, EPDaùD« and I5@E

2 d̄,E1 d̄ #,I m . Then

PLa
$dist~s~Ha!,E!, d̄%<ihi`d̄ dist~ I ,E0,m̄

a !22V0
2L4, ~3.1!

where E0m̄
a is the closest eigenvalue ofs(Ha

0) to the interval I.
Proof: We first observe thatVi

1/2P0,m
a Vj

1/2 is trace class. Indeed, usingiABi i<iAiiBi i ( i
51,2) andiABi1<iAi2iBi2 we getiVi

1/2P0,m
a Vj

1/2i1<iVi
1/2P0,m

a i2iP0,m
a Vj

1/2i2<V0iP0,m
a i1

2<V0 .
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We have EPDaùD« , and I 5@E2 d̄,E1 d̄ # for d̄ small enough ~we require that
I ,DaùD«). By the Chebyshev inequality we have

PLa
$dist~s~Ha!,E!, d̄%5PLa

$TrPa~ I !>1%<ELa
$TrPa~ I !%, ~3.2!

whereELa
is the expectation with respect to the random variables inLa .

We first give an estimate on TrPa(I ). Let E0,m̄
a the closest eigenvalue ofs(Ha

0) to I andmi

( i 50,1) s.t. dist(E0,m̄
a ,E0,mi

a )5O(B). Let alsoP.
a 5(m.m1

P0,m
a andP,

a 5(m,m0
P0,m

a .

Using P.
a (Ha

02E)P.
a >0 andP.

a Ra
0(E)P.

a <dist(E0,m111
a ,E)21P.

a we can write

Pa~ I !P.
a Pa~ I !5Pa~ I !P.

a ~Ha
02E!1/2Ra

0~E!~Ha
02E!1/2P.

a Pa~ I !

<dist~E0,m111
a ,E!21@Pa~ I !~Ha2E!P.

a Pa~ I !2Pa~ I !Vv
a P.

a Pa~ I !#, ~3.3!

and thus

iPa~ I !P.
a Pa~ I !i<dist~E0,m111

a ,E!21S uI u
2

1V0D<
1

4
, ~3.4!

if, as we can suppose,V0 is sufficiently small@dist(E0,m111
a ,E)21V05O(V0 /B)#. In a similar

way we get

iPa~ I !P,
a Pa~ I !i<dist~E0,m021

a ,E!21S uI u
2

1V0D<
1

4
. ~3.5!

Now

Tr Pa~ I !P,
a 5Tr Pa~ I !P,

a Pa~ I !<iPa~ I !P,
a Pa~ I !iTr Pa~ I !, ~3.6!

and similarly for TrPa(I )P.
a . Therefore, using 15P,

a 1P.
a 1(m0<m<m1

P0,m
a , together with

~3.4! and ~3.5!, we obtain

Tr Pa~ I !<2 (
m0<m<m1

TrPa~ I !P0,m
a Pa~ I !. ~3.7!

Since

dist~ I ,E0,m
a !2Pa~ I !2<„Pa~ I !~Ha2E0,m

a !Pa~ I !…2, ~3.8!

and dist(I ,E0,m
a )21<dist(I ,E0,m̄

a )21 for all m0<m<m1 , it follows that

Tr P0,m
a Pa~ I !P0,m

a <dist~ I ,E0,m̄
a !22Tr„P0k

a Pa~ I !~Ha2E0,m
a !Pa~ I !~Ha2E0,m

a !Pa~ I !P0,m
a

…

5dist~ I ,E0,m̄
a !22Tr„P0,m

a Vv
a Pa~ I !Vv

a P0,m
a

…. ~3.9!

Thus, taking the expectation value in~3.7! and using that there areO(L) m’s betweenm0 andm1 ,
we get

ELa
$Tr Pa~ I !%<2•O~L !•dist~ I ,E0,m̄

a !22 sup
m0<m<m1

ELa
$Tr~P0,m

a Vv
a Pa~ I !Vv

a P0,m
a !%. ~3.10!

It remains to estimate the expectation value on the right hand side of~3.10!. Here we follow a
method of Combes and Hislop~1996!. Writing Vv

a5( iPLa
Xi(v)Vi ,
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Tr P0,m
a Vv

a Pa~ I !Vv
a P0,m

a 5 (
i,jPLa

2
Xi~v!Xj~v!Tr P0,m

a ViPa~ I !VjP0,m
a

5 (
i,jPLa

2
Xi~v!Xj~v!TrVj

1/2P0,m
a Vi

1/2Vi
1/2Pa~ I !Vj

1/2. ~3.11!

SinceVj
1/2P0,m

a Vi
1/2 is trace class, we can introduce the singular value decomposition,

Vj
1/2P0,m

a Vi
1/25 (

n50

`

mn~un ,.!vn , ~3.12!

where(n50
` mn5iVj

1/2P0,m
a Vi

1/2i1 . Then

Tr Vj
1/2P0k

a Vi
1/2Vi

1/2Pa~ I !Vj
1/25 (

n50

`

mn„un ,Vi
1/2Pa~ I !Vj

1/2vn…

< (
n50

`

mn„vn ,Vj
1/2Pa~ I !Vj

1/2vn…
1/2
„un ,Vi

1/2Pa~ I !Vi
1/2un…

1/2

<
1

2 (
n50

`

mn$„vn ,Vj
1/2Pa~ I !Vj

1/2vn…1„un ,Vi
1/2Pa~ I !Vi

1/2un…%.

~3.13!

An application of the spectral averaging theorem@see Combes and Hislop~1996!# shows that

ELa
$~vn ,Vj

1/2Pa~ I !Vj
1/2vn!%<ihi`2d̄, ~3.14!

as well as for the term withj replacingi andvn replacingun . Combining~3.10!, ~3.13!, ~3.14!,
and ~3.11! we get

ELa
$Tr Pa~ I !%<4•O~L !•ihi`d̄ dist~ I ,E0,m̄

a !22V0
2 (

i,jPLa
2

iVj
1/2P0,m

a Vi
1/2i1

<4•O~L !•ihi`d̄ dist~ I ,E0,m̄
a !22V0

2uLau2. ~3.15!

h

We now turn to the decoupling scheme. By a decoupling formula@Bentosela~1991!, Briet
~1989!# the resolventR(z)5(z2Hv)21 can be expressed, up to a small term, as the sum
Ra(z)5(z2Ha)21 (a5,,r ) andRb(z)5(z2Hb)21. We setD5AL and introduce the charac
teristic functions

J̃,~x!5x ] 2`,2 L/2 1 D/2]~x!, J̃b~x!5x [ 2 L/2 1 D/2 ,L/2 2 D/2]~x!,

J̃r~x!5x [L/2 2 D/2 ,1`[~x!. ~3.16!
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We will also use three boundedC`(R) functions uJi(x)u<1, i PI[$,,b,r % ~see Fig. 1!, with
bounded first and second derivatives supxu]x

nJi(x)u<2, n51,2, and such that

J,~x!5H 1 if x<2
L

2
1

3D

4
,

0 if x>2
L

2
1

3D

4
11,

Jb~x!5H 1 if uxu<
L

2
2

D

4
,

0 if uxu>
L

2
2

D

4
11,

Jr~x!5H 1 if x>
L

2
2

3D

4
,

0 if x<
L

2
2

3D

4
21.

~3.17!

For i PI we haveHvJi5HiJi and the decoupling formula is@Bentosela~1991!#

R~z!5S (
i PI

JiRi~z!J̃i D „12K~z!…21, ~3.18!

where

K~z!5(
i PI

Ki~z!5(
i PI

1

2
@px

2 ,Ji #Ri~z!J̃i . ~3.19!

The main result of this part is a lemma aboutiK(z)i for z such that dist„z,s(Ha)…
>e2m̄ABAL, for a suitablem̄.0 and dist„z,s(Hb)…>«.

Proposition 2: Let «.0, and zPD« such that dist„z,s(H,)øs(Hr)…>e2m̄ABAL with m̄
,1/192.Then for L large enough there exists C(B,V0 ,«).0 and g̃.0 independent of L such
that

iK~z!i<C~B,V0 ,«!e2g̃ABAL. ~3.20!

Proof: Computing the commutator in the definition ofKi(z) we have

Ki~z!52 1
2 ~]x

2Ji !Ri~z!J̃i2~]xJi !]xRi~z!J̃i . ~3.21!

Then

FIG. 1. The system of decoupling functionsJi ( i PI).
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iKb~z!i< 1
2 i~]x

2Jb!Rb~z!J̃bi1i~]xJb!]xRb~z!J̃bi , ~3.22!

iKa~z!i< 1
2 i~]x

2Ja!Ra
b~z!J̃ai1 1

2 i~]x
2Ja!Ra

b~z!Uai dist„z,s~Ha!…211i~]xJa!]xRa
b~z!J̃ai

1i~]xJa!]xRa
b~z!Uai dist„z,s~Ha!…21, ~3.23!

where for the second term we used the second resolvent identity and whereRa
b(z)5(z2@H0

1Vv
a#)21.
We have to estimate norms of the formi f ]x

aR̃(z)gi (a50,1) where hereR̃(z) is Rb(z) or
Ra

b(z), f 5]x
mJi andg5 J̃i or g5Ua .

Using the second resolvent formula we developR̃(z) in its Neumann series, denoteVvuL̃
[W (L̃5Lb or La),

R̃~z!5 (
n50

`

R0~z!@WR0~z!#n, ~3.24!

where R0(z)5(z2H0)21. The norm convergence is ensured since we are in a spectral
indeed

iWR0~z!i<V0 dist„z,s~H0!…21<
V0

V01«
,1. ~3.25!

Therefore

i f ]x
aR̃~z!gi< (

n51

`

i f ]x
aR0~z!@WR0~z!#ngi , ~3.26!

and we have to control the operator normsi f ]x
aR0(z)@WR0(z)#ngi .

For any vectorwPL2(R3@2 L/2 , L/2#) with iwi51,

i f ]x
aR0~z!@WR0~z!#ngwi25E

suppf
u f ~x!u2u„]x

aR0~z!@WR0~z!#ngw…~x!u2 dx. ~3.27!

For the integrand in~3.27! we have

T[u„]x
aR0~z!@WR0~z!#ngw…~x!u

<E
suppg

dx8E dx1¯ dxn

3u]x
aR0~x,x1 ;z!uuW~x1!uuR0~x1 ,x2 ;z!u•••uW~xn!uuR0~xn ,x8;z!uug~x8!uuw~x8!u.

~3.28!

Now, taking outiWi` and using Lemma 1, Appendix A, we get

T <S cB2
V0

V01« D nE
suppg

dx8E dx1•••dxn exp(2ḡAB (
i 50

n

uxi2xi 11u!)

3uF1~ ux2x1u!!u•••uF0~ uxn2x8u!!uug~x8!uuw~x8!u, ~3.29!

wherex05x andxn115x8. Splitting the exponential and making the change of variablesx2x1

52z1 ,..., xn212xn52zn , we get@with xn5xn($zi%,x) andA5cB2 @V0 /(V01«)#
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T <An sup
z1•••zn

H E
suppg

e2 2/3ḡABux2x8u!ug~x8!uuw~x8!uuF0~ uxn2x8u!!ue2 ~1/3!ḡABuxn2x8u! dx8J
3F E

R2
uF1~ uzu!ue2 ~1/3!ḡABuzu dzGF E

R2
uF0~ uzu!ue2 ~1/3!ḡABuzu dzGn21

~3.30!

[An sup
z1•••zn

$X% @Y# @Z#n21. ~3.31!

Splitting the exponential and using the Schwartz inequality we have the estimate

sup
z1•••zn

X< sup
x8Psuppg

e2 ~1/3!ḡABux2x8u!H E
R2

uF0~ uwu!u2e2 ~2/3!ḡABuwu dwJ 1/2

3S sup
x8Psuppg

e2 ~2/3!ḡABux2x8uug~x8!u2D 1/2iwi . ~3.32!

Now, sinceUa do not grow too fast@see~2.2!, ~2.3!# (supx8Psuppge2(2/3)ḡABux2x8uug(x8)u2)1/2 is
bounded by a numerical constant. On the other hand the term*R2uF0(uwu)u2e2(2/3)ḡABuwu dw is
bounded by a constant depending only onB.

Moreover, the termsY andZ are also bounded by a constant depending only onB and not on
L. This leads to

i f ]x
a@R0~z!#ngwi<i f i`Ĉ~B!~C̃~B!A!ne2 ~1/2!ḡABDiwi . ~3.33!

Therefore, ifV0 is small enough the series~3.26! converges and

i f ]x
aR̃~z!gi<C̃~B,V0!ALe2 ~1/12!ḡABD. ~3.34!

This implies

iKb~z!i<«21ALC~B,V0!e2 ~1/12!ḡABAL, ~3.35!

iKa~z!i<ALem̄ABALC~B,V0!e2 ~1/12!ḡABAL, a5,,r ; ~3.36!

thus iK(z)i<C(B,V0 ,«)e2g̃ABAL, where 2g̃5 ḡ/122m̄. Sinceḡ51/16 in Lemma 1, Appendix
A, we must takem̄,1/192. h

We remark that in the proof above we have proved the following statement@see~3.34!# that
will be useful in the next section,

i~12 J̃a!R̃b~z!gi<C̄~B,V0 ,«!e2g̃ABAL, ~3.37!

whereg5Ua or g5xB (B,R3@2 L/2 , L/2#) with dist„suppg,supp(12 J̃a)…5O(D) andR̃b(z)
a resolvent associated to a generic bulk Hamiltonian (H01VvuL̃).

IV. PROJECTOR ESTIMATES AND THE PROOF OF THEOREM 1

In this section we prove two propositions that lead to Theorem 1. LetD85$k:Ek
aPD,a

5,,r %, card(D8)5O(L), whereD,D« is given in Sec. II.
Proposition 3: For L large enough, with probability greater than12L2n (n@1), we have for

all kPD8,

iP2Pa~Ek
a!i<e2gABAL, ~4.1!
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where Pa(Ek
a) is the projector associated to Ha onto Ek

a and P is the projector associated to Hv

onto $zPC:uz2Ek
au<e2m̄ABAL%.

Proof: ~1! Let E5$m:E0,m
a PD,a5,,r %, card(E)5O(L), and let

V̂,5$vPVL,
:dist„E0,m

r ,s~H,!…>L2s,;mPE%, ~4.2!

with s.11, this set has probability

PL,
~V̂,!>12L2(s28). ~4.3!

Indeed, for a fixedmPE, using Proposition 1 and (H1) one gets

PL,
$vPVL,

:dist„E0,m
r ,s~H,!…>L2s, for onemPE%

>12C8~h,V0!L2sL4S d0

L
2L2sD 22

>12C~h,V0!L62s. ~4.4!

For a given realizationv,PV̂, let

V̂ r~v,!5$vPVLr
:dist„Ek

, ,s~Hr !…>L23s, ;kPD8%, ~4.5!

this set has the probability

PLr
„V̂ r~v,!uv,…>12L2(s26) ~4.6!

uniformly with respect to the realizations ofV̂, . Indeed,

PLr
$vPVLr

:dist„Ek
, ,s~Hr !…>L23s, for onekPD8%

>12C8~h,V0!L23sL4~L2s2L23s!22>12C~h,V0!L42s. ~4.7!

It follows that the set

V̂ (,)5$v5~v, ,vb ,v r !PV:v,PV̂, ,vbPVb ,v rPV̂ r~v,!% ~4.8!

Vb5VuLb\(L,øLr )
has probability

PL~V̂ (,)!5PLb
~V̂b!EL,

$PLr
~V̂ r uv,!uv,PV̂,%>~12L2(s26)!PL,

~V̂,!>12L2(s29).
~4.9!

~2! We now work with a givenvPV̂ (,). Takem̄.0 as in Proposition 2 andL large enough
such that for allkPD8 Gk5$zPC:uz2Ek

, u<e2m̄ABAL%ùs(Hr)5B, and remark that TrPb(D)
50 (Pb the projector associated toHb).

We need to introduce two auxiliary HamiltoniansH1 andH2 defined as follows:

H15H01Vv
, uL1

, ~4.10!

H25H01Vv
, uL2

1U, , ~4.11!

whereL25$(n,m)PZ2;nP@2 L/2 ,2 L/21(D/421)#,mP@2 L/2 , L/2#%, andL15L,\L2 , of
course,H,5H21Vv

, uL1
.

From the decoupling formula~3.18! we have
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R~z!2R,~z!5S (
i PI

JiRi~z!J̃i D S (
n51

`

K~z!nD 2~12J,!R,~z!

2J,R,~z!~12 J̃,!1JbRb~z!J̃b1JrRr~z!J̃r , ~4.12!

integrating over]Gk and taking the operator norm we get

iP2P,~Ek
, !i<e2m̄ABALS (

i PI
sup

zP]Gk

iRi~z!i D supzP]Gk
iK~z!i

12supzP]Gk
iK~z!i 1i~12J,!P,~Ek

, !i

1iJ,P,~Ek
, !~12 J̃,!i5a1b1c. ~4.13!

For the first term we note that forL large enoughe2m̄ABALsupzP]Gk
iRi(z)i<1 (i PI). Indeed, for

i 5, we have supzP]Gk
iR,(z)i5em̄ABAL by construction, fori 5b we have supzP]Gk

iRb(z)i
5«21 and for i 5r supzP]Gk

iRr(z)i5(L23s2e2m̄ABAL)21. Then, applying Proposition 2 we ge

a<2C~B,V0 ,«!e2g̃ABAL. ~4.14!

For the second and third terms we first observe that by the second resolvent formula,

P,~Ek
, !

~z2Ek
, !

5~z2H1!21P,~Ek
, !1~z2H1!21@Vv

, uL2
1U,#

P,~Ek
, !

~z2Ek
, !

, ~4.15!

and integrating~4.15! along]Gk we obtain@usings(H1)ùD«5B]

P,~Ek
, !5R1~Ek

, !@Vv
, uL2

1U,#P,~Ek
, ! ~4.16!

5P,~Ek
, !@Vv

, uL2
1U,#R1~Ek

, !. ~4.17!

Therefore, using~4.16! for b and ~4.17! for c we get

b<i~12J,!R1~Ek
, !@Vv

, uL2
1U,#i<i~12 J̃,!R1~Ek

, !@Vv
, uL2

1U,#i , ~4.18!

c<i~12 J̃,!R1~Ek
, !@Vv

, uL2
1U,#i . ~4.19!

Using ~3.37! we get

b1c<2„V0L2i~12 J̃,!R1~Ek
, !xL2

i1i~12 J̃,!R1~Ek
, !U,i…<2C̄~B,V0 ,«!L2e2g̃ABAL.

~4.20!

Thus

iP2P,~Ek
, !i<e2gABAL. ~4.21!

By repeating the above proof in a symmetrical way we get forv in a setV̂ (r ) similar to V̂ (,),

iP2Pr~Ek
r !i<e2gABAL. ~4.22!

Finally we have both~4.21! and ~4.22! for vPV̂5V̂ (,)ùV̂ (r ) with PL>12L2n, n5s210.
Note that we can taken8@1 by takings@11. h

The estimate on the norm difference of the projectors implies that their dimensions a
same and thatE k

aPs(Hv) is a small perturbation ofEk
a : this gives part (a) of Theorem 1.
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Proposition 4: LetvPV̂. Then there existsm̂.0 such that the velocity associated to ea
eigenvalueE k

a of Hv in D satisfies

uJE
k
a2JE

k
au<e2m̂ABAL. ~4.23!

Proof: Let JE
k
a5Tr vyP(E k

a) the average velocity associated to the eigenvalueE k
aPs(Hv)

andJE
k
a5Tr vyPa(Ek

a) that associated to the eigenvalueEk
a of Ha . First we observe thatvyP(E k

a)

is trace class. Indeed,vyP(E k
a)5vyP(E k

a)P(E k
a) with vyP(E k

a) bounded andiP(E k
a)i1

5Tr P(E k
a)5Tr Pa(Ek

a)51:

ivyP~E k
a!i1

2<ivyP~E k
a!i2<iP~E k

a!vy
2P~E k

a!i<2iP~E k
a!~Hv2Vv!P~E k

a!i<~3B12V0!.
~4.24!

To get the second inequality one has simply added positive terms tovy
2 . Similarly,

ivyPa~Ek
a!i1

2<~3B12V0!. ~4.25!

With the help of the identity

P~E k
a!2Pa~Ek

a!5@P~E k
a!2Pa~Ek

a!#21@P~E k
a!2Pa~Ek

a!#Pa~Ek
a!

1Pa~Ek
a!@P~E k

a!2Pa~Ek
a!#, ~4.26!

we get

uJE
k
a2JE

k
au5uTr vy@P~E k

a!2Pa~Ek
a!#u

<uTr vy@P~E k
a!2Pa~Ek

a!#2u1uTr vy@P~E k
a!2Pa~Ek

a!#Pa~Ek
a!u

1uTr vyPa~Ek
a!@P~E k

a!2Pa~Ek
a!#u, ~4.27!

and then, from~4.24! and ~4.25!, we get

uJE
k
a2JE

k
au<2~ ivyP~E k

a!i11ivyPa~Ek
a!i1!iP~E k

a!2Pa~Ek
a!i

<4~3B12V0!1/2iP~E k
a!2Pa~Ek

a!i . ~4.28!

Combining this last inequality with Proposition 3 we get the result. h

From Proposition 4 and the result of Appendix B given in~2.10! we obtain part (b) of
Theorem 1.
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APPENDIX A: ESTIMATE OF THE GREEN’S FUNCTION R0„x,x 8; z…

In this appendix we give the necessary decay property of the kernelR0(x,x8;z) with periodic
boundary conditions alongy. The exact formula forR0(x,x8;z) can be found in Ferrari~2002!.
We introduce the following notation:
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Fa~ ux2x8u!!5H 11U lnS B

2
ux2x8u!

2D U, a50,

11FU lnS B

2
ux2x8u!

2D U1S 11U lnS B

2
ux2x8u!

2D U D ux2x8u!
21G , a51.

~A1!

Lemma 1: IfuIm zu<1, Re zP ] 1
2B, 3

2B@ then, for L large enough, there exists C(z,B) posi-
tive constant independent of L such that(a50,1)

u]x
aR0~x,x8;z!u<C8~z,B!e2 ~B/8! ux2x8u!

2
Fa~ ux2x8u!!<C~z,B!e2ḡABux2x8u!Fa~ ux2x8u!!,

~A2!

where C(z,B)5cB2dist„z,s(H0)…21 with c a numerical positive constant andḡ5 1
16.

Proof: As in Ferrari~2002! we can prove that~for L large enough the logarithmic divergenc
appear only forumu<1 and the sum overumu.1 converge!

u]x
aR0~x,x8;z!u<

C8~z,B!

3
e2 ~B/8! ux2x8u21 (

umu<1
u]x

aR0
`~x y2mL,x8;z!u, ~A3!

with

u]x
aR0

`~x,x8;z!u<5
C8(z,B)

3
e2 (B/8) ux2x8u2H 111B(0,A2B21)(ux2x8u)U lnS B

2
ux2x8u2D UJ , a50,

C8(z,B)

3
e2 B/8 ux2x8u2H 111B(0,A2B21)(ux2x8u)FU lnS B

2
ux2x8u2D U

1S 11U lnS B

2
ux2x8u2D U D ux2x8u21G J , a51.

~A4!

Now, usingux2x8u!<ux2x8u, we can replace the Euclidean distance with the distanceu•u! in all
the terms on the rhs of~A3!, since all these functions are decreasing. To obtain the same boun
the termsumu<1 in the sum we just drop the characteristic functions1B(0,A2B21) . h

APPENDIX B: AVERAGE VELOCITY OF THE EIGENSTATE ASSOCIATED TO Ek
a

In this appendix we prove following Ferrari~1999! that the eigenstates corresponding to t
eigenvalues ofHa (a5,,r ) in a energy intervalD5(B2d,B1d),D« have an average velocit
that is strictly positive/negative uniformly inL, that is, if we haveHack

a5Ek
ack

a then

u~ck
a ,vyck

a!u>C8.0. ~B1!

From the eigenvalue equation we have

i~Ha
02Ek

a!ck
ai25iVv

ack
ai2<V0

2. ~B2!

We now expand ck
a on the eigenfunctions of Ha

0 denoted $fn,m(x,y)

5 (eiky/AL) wnk(x)%nPN,kP (2p/L)Z where wnk is the solution on the eigenvalue problem@ 1
2px

2

1 1
2(k2Bx)21Ua#wnk5Enk

a wnk :

ck
a~x,y!5 (

n50

`

(
mPZ

cn~m!fn,m~x,y!, ~B3!

and of course,
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ick
ai25 (

n50

`

(
mPZ

ucn~m!u251. ~B4!

From ~B3! the equation~B2! becomes

(
n50

`

(
mPZ

ucn~m!u2~En,m
a 2Ek

a!2<V0
2, ~B5!

thus since each term in the sum is positive we have

(
mPZ

uc0~m!u2~E0,m
a 2Ek

a!2<V0
2. ~B6!

We remark that forn>1 one hasuEn,m
a 2Ek

au> B/22d, this leads to

ic!i2[ (
n51

`

(
mPZ

ucn~m!u2<
V0

2

S B

2
2d D 2. ~B7!

Let m! such thatuE0,m!
a

2Ek
au is minimal, and for a fixeda independent ofL let A5@m!

2a,m!1a#. Then from~B5!,

V0
2> (

mPZ
uc0~m!u2~E0,m

a 2Ek
a!2

> (
mPA c

uc0~m!u2~E0,m
a 2Ek

a!2> infmPA c~E0,m
a 2Ek

a!2 (
mPA c

uc0~m!u2, ~B8!

thus

(
mPA c

uc0~m!u2<V0
2 sup

mPA c

~E0,m
a 2Ek

a!22. ~B9!

From ~B4! and ~B7! we get

1> (
mPZ

uc0~m!u2>12
V0

2

S B

2
2d D 2. ~B10!

Combining the last equation and~B9! we get

(
mPA

uc0~m!u2>12V0
2F 1

S B

2
2d D 2 1 sup

mPA c

~E0,m
a 2Ek

a!22G . ~B11!

Decompose nowck
a asck

a5c01c! ; then

u~ck
a ,vyck

a!u>u~c0 ,vyc0!u2u~c! ,vyc!!u22u~c! ,vyc0!u; ~B12!

the first term can be written as
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E
R

dx E
2 L/2

L/2

dy H (
m8PZ

c0* ~m8!
e2 i ~2pm8/L !y

AL
w0,m8

* ~x! (
mPZ

c0~m!vy

ei ~2pm/L ! y

AL
w0,m~x!J

5 (
mPZ

uc0~m!u2E
R

dx~k2Bx!uw0,m~x!u25 (
mPZ

uc0~m!u2]kE0
a~k!uk5 2pm/L . ~B13!

The partial derivative ofE0
a is the average velocity]kE0

a(k)uk5 2pm/L5JE
0,m
a ; thus

u~c0 ,vyc0!u>U (
mPZ

uc0~m!u2JE
0,m
a U>uJE

0m̄
a uH 12V0

2F 1

S B

2
2d D 2 1 sup

mPA c

~E0,m
a 2Ek

a!22G J ,

~B14!

for a suitablem̄PA, and we haveuJE
0,m̄
a u.0. The second term can be bounded as follow

u(c! ,vyc!)u<ic!iivyc!i< V0 /B/22d ivyc!i and

ivyc!i252„c! , 1
2~py2Bx!2c!…

<2„c! ,@ 1
2px

21 1
2~py2Bx!21Ua#c!…12„c0 ,@ 1

2px
21 1

2~py2Bx!21Ua#c0…

52~ck
a ,Ha

0ck
a!52~ck

a ,Hack
a!22~ck

a ,Vv
ack

a!<2~Ek
a1V0!. ~B15!

This leads to the bound

u~c! ,vyc!!u<
V0

B

2
2d

A2~Ek
a1V0!. ~B16!

A similar argument gives the same bound for the third term.
Finally,

u~ck
a ,vyck

a!u>uJE
0,m̄
a uH 12V0

2F 1

S B

2
2d D 2 1 sup

mPA c

~E0,m
a 2Ek

a!22G J 23
V0

B

2
2d

A2~Ek
a1V0!.

~B17!

The right hand side of~B17! is greater than

JF12OS V0
2

B2D G2ABOS V0

B D , ~B18!

where the strictly positive constantJ depends only onB and Ua . For a sufficiently smallV0

.0 the right hand side of~B17! is strictly positive.

APPENDIX C: DISCUSSION OF HYPOTHESIS 1

In this section we indicate a way in which hypothesis (H1) can be achieved explicitly. We
thank Bentosela for pointing out this possibility to one of us. We take two symmetric confi
walls U,(2x)5Ur(x)[U(x) and add a magnetic flux tube of intensity 0<F<2p along the
cylinder axis. Below we check that the magnetic flux lifts the degeneracy of the levels on th
sides of the sample. In this case the pure edge Hamiltonians are
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H,
0@F#5

1

2
px

21
1

2S py2Bx1
F

L D 2

1U~2x!, ~C1!

Hr
0@F#5

1

2
px

21
1

2S py2Bx1
F

L D 2

1U~x!. ~C2!

The spectra of these Hamiltonians are

s~Ha
0@F#!5$En,m

a ~F!:nPN,mPZ%, ~C3!

with En,m
a (F)5«n

a(2pm/L 1 F/L). We consider here only the first spectral branches and
that from the symmetry of the walls, forF50,

«0
,S 2

2p

L
mD5«0

r S 2p

L
mD , ; mPZ. ~C4!

We have

«0
,S 2

2pm

L
1

F

L D5«0
,S 2

2pm

L D1]k«0
,~k,!

F

L
, ~C5!

«0
r S 2pm

L
1

F

L D5«0
r S 2pm

L D1]k«0
r ~kr !

F

L
, ~C6!

for a suitable (2p/L) (2m)<k,< (2p/L) (2m)1 F/L and (2p/L) m<kr< (2p/L) m1 F/L.
Thus

U«0
,S 2

2pm

L
1

F

L D2«0
r S 2pm

L
1

F

L D U5 F

L
u]k«0

r ~kr !2]k«0
,~k,!u>2

F

L
u]k«0

,~k,!u>2C F

L
,

~C7!

whereC.0. A similar argument shows that

U«0
,S 2

2p~m11!

L
1

F

L D2«0
r S 2pm

L
1

F

L D U5UFL @]k«0
,~k,!2]k«0

r ~kr !#2
2p

L
]k«0

,~k,!U
>U2 F

L U]k«0
,~k,!U2 2p

L U]k«0
,~k,!UU>2C uF2pu

L
.

~C8!

Then, by fixingF! such that 0,F!,p or p,F!,2p we achieve~2.7!.
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Wigner–Yanase information on quantum state space:
The geometric approach

Paolo Gibiliscoa)
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~Received 10 April 2003; accepted 3 May 2003!

In the search of appropriate Riemannian metrics on quantum state space, the con-
cept of statistical monotonicity, or contraction under coarse graining, has been
proposed by Chentsov. The metrics with this property have been classified by Petz.
All the elements of this family of geometries can be seen as quantum analogs of
Fisher information. Although there exists a number of general theorems shedding
light on this subject, many natural questions, also stemming from applications, are
still open. In this paper we discuss a particular member of the family, the Wigner–
Yanase information. Using a well-known approach that mimics the classical pull-
back approach to Fisher information, we are able to give explicit formulas for the
geodesic distance, the geodesic path, the sectional and scalar curvatures associate
to Wigner–Yanase information. Moreover, we show that this is the only monotone
metric for which such an approach is possible. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1598279#

I. INTRODUCTION

The notion of information proposed by Fisher is fundamental in probability and statistic
a number of reasons; here we mention only the Cramer–Rao inequality and the asympto
havior of maximum lilkelihood estimators for exponential models~one can see Ref. 5 for unex
pected features and applications of Fisher information!. In classical statistics Rao was the first
point out that Fisher information can be seen as a Riemannian metric on the space of prob
densities. This point of view was nicely complemented by the results of Chentsov, saying th~on
the simplex of probability vectors! Fisher information is the unique Riemannian metric contract
under Markov morphisms. This can be rephrased in a more suggestive way. Markov morp
or positive mappings, are the mathematical counterpart of the notion of noise. Now suppo
we want to use a distance to distinguish different states~probability densities! in a statistically
relevant way. Then the effect of noise must be that of contracting the metric. Chentsov th
says therefore that in the classical case there is only one choice, the Fisher information~another
argument producing Fisher information can be found in Ref. 43!.

In the quantum case one deals with density operators instead of density vectors and
pletely positive mappings play the role of Markov morphisms. As often happens in the qua
counterpart of a classical theory, instead of a uniqueness result, one has a classification th
due to Petz. This result states that there is bijection between statistically monotone metr
quantum state space and the operator monotone functions: we have therefore a rich ‘‘gard
candidates for the role of Fisher information in quantum physics. Among the elements o
family of metrics one can find, in a certain sense, the most relevant Riemannian metrics ap
in the literature.35,37

a!Electronic mail: gibilisc@sci.unich.it
b!Electronic mail: isola@mat.uniroma2.it
37520022-2488/2003/44(9)/3752/11/$20.00 © 2003 American Institute of Physics
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Despite the existence of general results for the theory13,17,19,26,27,28,30,40,41a number of open
problems resists investigation. For example, it does not exist yet a general formula for th
desic path and the geodesic distance associated to an arbitrary monotone metric. For the us
kind of distances see, for example Ref. 32. Because of the absence of a general formula, in
ties ~giving bounds for the geodesic distance! have been proved.38

In this paper we discuss the Wigner–Yanase skew information. To find the formula
geodesic path and geodesic distance we mimic the classical approach to Fisher informat
sphere geometry~one should note the importance of determining the geodesic path in the stu
the 2-Wasserstein metric6!. Indeed Wigner–Yanase information appears as the pull-back of
square root map.18 Next we prove the formula for the scalar curvature. One proof, due to D
mann, uses the general formula13 and requires a long calculation. The second one just uses
pull-back approach. One should emphasize that, since the scalar curvature determin
asymptotic behavior of the volume~for a Riemannian metric! then it has also a statistical meanin
in relation to the quantum analog of Jeffrey’s rule for determining prior probability distribut
~see Ref. 35!. Finally we prove, as a corollary of the results in Refs. 25, 26, and 19 tha
Wigner–Yanase information is the only monotone metric that can be seen as a pull-back m

The paper is organized as follows. In Sec. II we review the geometric approach to F
information. Sec. III one finds an introduction to the general theory of statistical monotone
rics. Sec. IV shows how the Wigner–Yanase information can be seen as a monotone Riem
metric. In Sec. V we show that the Wigner–Yanase geometry can be seen as the sphere g
transposed on the space of density matrices; moreover, we characterize it as the unique p
metric. Section VI contains some comments on the main results and on some open proble

II. FISHER INFORMATION AND ITS GEOMETRY

The classical definition of Fisher information for an indexed family of densitiespu is given by
the variance of the score. In the case of a family indexed by only one parameteru it is the number

I ~u!5EuF S ]

]u
log p uD 2G , ~2.1!

assigned to the parameteru. For n parameters, sayu5(u1, . . . ,un), it is a matrix defined on the
parameter manifold given by

I ~u! i j 5EuF S ]

]u i log p uD S ]

]u j log p uD G . ~2.2!

Geometrically this means thatI (u) is a symmetric bilinear form on the tangent spaces of
parameter manifold. In a coordinate free language it reads as

I ~u!~U,V!5Eu@U~ log p u! V~ log p u!#, ~2.3!

whereU andV are vectors tangent to the parameter manifold andU(log p u) is the derivative of
log p u along the directionU, which meansU(log p u)5(d/dt)log p u1tUut50

.
I (u) is a measure for the statistical distinguishabilty of distribution parameters. Under c

regularity conditions foru°p u the image of this mapping is a manifold of distributions. Th
manifold is the actual object of interest in information geometry rather than the space of
bution parameters and formula~2.3! defines a Riemannian metricg on it ~for a general reference
see Ref. 1!. Indeed, a vectoru tangent to this manifold is of the form

u5
d

dt
p u1tU ut50

,

and the right hand side of~2.3! now reads as
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g~u,v !ªEpFu

p

v
pG , ~2.4!

defining the Fisher metric on the manifold of densities.
We restrict now toPn,Rn, the simplex of strictly positive probability vectors, that i

Pnª$rPRn:( i 51
n r i51,r i.0,i 51,...,n%. An elementrPPn is a density on then-point set

$1,...,n% with r( i )5r i . We regard an elementu of the tangent space TrPn[$uPRn:( i 51
n ui

50% as a functionu on $1,...,n% with u( i )5ui .
Definition 2.1:The Fisher–Rao Riemannian metric on TrPn is given by

^u,v&r
F
ª(

i 51

n
uiv i

r i
, ~2.5!

for u, vPTrPn .
To see the relation between this metric and the Fisher metric, letu,vPTrPn . We obtain from

~2.4!,

g~u,v !5(
i 51

n
u~ i !

r i

v~ i !

r i
r i5(

i 51

n
uiv i

r i
,

in accordance with~2.5!.
The following result is well known and is a very special case of a far more general situ

~see Ref. 15, for example!.
Theorem 2.2: The manifoldPn equipped with the Fisher–Rao Riemannian metriĉ•,•&F is

isometric with an open subset of the sphere of radius 2 inRn.
Proof: We consider the mappingw:P n→S2

n21,Rn,

w~r!ª2~Ar1, . . . ,Arn! .

ThenDrw(u)5(u1 /Ar1 , . . . ,un /Arn) and we get

Drw~^•,•&F!~u,v !ª^Drw~u!,Drw~v !&Rn
5(

i 51

n
ui v i

r i
5^u,v&r

F .

Hence the standard metric on the sphere of radius 2 is pulled back to the Fisher–Rao Riem
metric. h

This identification ofPn with an open subset of a radius 2 sphere allows for obtain
differential geometrical quantities of the Riemannian manifold (Pn ,^•,•&F). From the very defi-
nition of geodesic distance, geodesic path and scalar curvature, one has forSr

n21 , with P1 ,P2

PSr
n21 , the following:

~1! geodesic distance,

d~P1 ,P2!5r •arcosS ^P1 ,P2&
r 2 D ;

~2! geodesic path connectingP1 andP2 ,

gP1 ,P2~ t !5r
~12t !P11tP2

i~12t !P11tP2i

~of course,t is not the arc length parameter!;

~3! scalar curvature,
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Scal~v !5
1

r 2 ~n21!~n22!,

becauseSr
n21 has constant sectional curvature equal to 1/r 2.

Let us denote bydF , gF , ScalF , respectively, the corresponding quantities for the Fis
information. The above considerations give, forr,sPPn , the following:

~1! Bhattacharya distance,

dF~r,s!52 arccosS (
i

r i
1/2s i

1/2D ;

~2! geodesic path connectingr ands,

gF
r,s~ t !52

~~12t !Ar1tAs!2

(
i

~~12t !Ar i1tAs i !
2

;

~3! scalar curvature,

ScalF~r!5
1

4
~n21!~n22!, ;rPPn .

The Levi–Civita connection associated to Fisher metric can be decomposed using the geom
mixture and exponential models. In the rest of the section we explain how.

Definition 2.3:A dualistic structure on a manifoldM is a triple (̂ •,•&,¹,¹̃), where^•,•& is a
Riemannian metric onM and¹,¹̃ are affine connections onM such that

X^Y,Z&5^¹XY,Z&1^Y,¹̃XZ&,

whereX,Y,Z are vector fields. IfU¹,U ¹̃ are the parallel transport associated to¹,¹̃ then the
above equation is equivalent to

^U¹~u!,U ¹̃~v !&5^u,v&.

A divergence on a manifold is a smooth non-negative functionD:M3M→R such that
D(r,s)50 iff r5s. To each divergenceD one may associate a dualistic structu
(^•,•&,¹,¹̃) ~see Refs. 1 and 14!.

Let ¹2 be the Levi–Civita connection of Fisher information. The Kullback–Leibler rela
entropyK(r,s)5( ir i(logri2logsi) gives a dualistic structure (^•,•&F,¹m,¹e) such that

¹25 1
2 ~¹m1¹e!,

where¹m,¹e are the mixture and exponential connections. These connections are torsion fr
flat: once the representation by scores is used for the tangent spaces, the associated
transports are given by

Urs
m :TrP→TsP, Urs

m ~u!5
r

s
u,

Urs
e :TrP→TsP, Urs

e ~u!5u2Es~u!.

The geodesics of¹m,¹e are, respectively, the mixture and exponential models.
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III. METRIC CONTRACTION UNDER COARSE GRAINING

In the commutative case a Markov morphism~or stochastic map! is a stochastic matrix
T:Rn→Rk. In the noncommutative case a stochastic map is a completely positive and
preserving operatorT:Mn→Mk whereMn denotes the space ofn by n complex matrices. We
shall denote byDn the manifold of strictly positive elements ofMn and byD n

1,Dn the submani-
fold of density matrices.

In the commutative case a monotone metric is a family of Riemannian metricsg5$gn% on
$Pn%, nPN such that

gT(r)
m ~TX,TX!<gr

n~X,X!

holds for every stochastic mappingT:Rn→Rm and allrPPn andXPTrPn .
In perfect analogy, a monotone metric in the noncommutative case is a family of Riema

metricsg5$gn% on $D n
1%, nPN such that

gT(r)
m ~TX,TX!<gr

n~X,X!

holds for every stochastic mappingT:Mn→Mm and allrPD n
1 andXPTrD n

1 .
Let us recall that a functionf :(0,̀ )→R is called operator monotone if for anynPN, anyA,

BPMn such that 0<A<B, the inequalities 0< f (A)< f (B) hold. An operator monotone functio
is said to be symmetric iff (x)ªx f(x21) and normalized iff (1)51. In what follows by operator
monotone we mean normalized symmetric operator monotone. With each operator mo
function f one associates also the so-called Chentsov–Morotzova function~see Ref. 8!,

cf~x,y!ª
1

y fS x

yD , for x,y.0.

DefineLr(A)ªrA, andRr(A)ªAr. SinceLr ,Rr commute we may definec(Lr ,Rr). Now we
can state the fundamental theorems about monotone metrics~uniqueness and classification are
to scalars!.

Theorem 3.1: ~Ref. 7! There exists a unique monotone metric onPn given by the Fisher
information.

Theorem 3.2:~Ref. 34! There exists a bijective correspondence between monotone metri
D n

1 and operator monotone functions given by the formula

^A,B&r, fªTr„A•cf~Lr ,Rr!~B!….

The tangent space toD n
1 at r is given byTrD n

1[$APMn :A5A* ,Tr(A)50%, and can be
decomposed asTrD n

15(TrD n
1)c

% (TrD n
1)o, where (TrD n

1)c
ª$APTrD n

1 :@A,r#50%, and
(TrD n

1)o is the orthogonal complement of (TrD n
1)c, with respect to the Hilbert–Schmidt scala

product^A,B&ªTr(A* B). Each statistically monotone metric has a unique expression~up to a
constant! given by Tr(r21A2), for AP(TrD n

1)c. The following result will be used in Sec. V.
Proposition 3.3:~see Ref. 3! Let APTrD n

1 be decomposed as A5Ac1 i @r,U# where Ac

P(TrD n
1)c and i@r,U#P(TrD n

1)o. SupposewPC 1(0,1`). Then

~Drw!~A!5w8~r!Ac1 i @w~r!,U#.

As proved by Lesniewski and Ruskai each monotone metric is the Hessian of a su
relative entropy; to state this result more precisely, we introduce some notation. In what follog
is an operator convex function defined on (0,1`) and such thatg(1)50. The formula

f ~x![ f g~x!ª
~x21!2

g~x!1xg~x21!
,
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associates a normalized, symmetric operator monotone functionf 5 f g to eachg. We denote by
Ds,r5LsRr

21 the relative modular operator. The relativeg–entropy ofr ands is defined as

Hg~r,s!ªTr„r1/2g~Ds,r!~r1/2!….

Hg is a divergence onDn in the sense of Refs. 14, and 1. Ifr,s are diagonal,Hg reduces to the
commutative relativeg–entropy~see Ref. 9!.

Theorem 3.4: ~Ref. 30! Let g be operator convex, g(1)50, f 5 f g and rPDn . Then

2
]

]t

]

]s
Hg~r1tA,r1sB!U

t5s50

5Tr„A•cf~Lr ,Rr!~B!….

To state the general formula for the scalar curvature of a monotone metric we need
auxiliary functions. In what followsc8,( logc)8 denote derivatives with respect to the first variab
andc5cf :

h1~x,y,z!ª
c~x,y!2z c~x,z! c~y,z!

~x2z!~y2z!c~x,z!c~y,z!
,

h2~x,y,z!ª
„c~x,z!2c~y,z!…2

~x2y!2c~x,y!c~x,z!c~y,z!
,

h3~x,y,z!ªz
~ ln c!8~z,x!2~ ln c!8~z,y!

x2y
, ~3.1!

h4~x,y,z!ªz ~ ln c!8~z,x! ~ ln c!8~z,y! ,

hªh12 1
2 h212h32h4 .

The functionshi have no essential singularities if arguments coincide.
Note that^A,B&r

f
ªTr„A•cf(Lr ,Rr)(B)… defines a Riemannian metric also overDn (D n

1 is a
submanifold of codimension 1!. Let Scalf(r) be the scalar curvature of (Dn ,^•,•&r

f ) at r and
Scalf

1(r) be the scalar curvature of (D n
1 ,^•,•&r

f ).
Theorem 3.5: ~Ref. 13! Let s~r! be the spectrum ofr. Then

Scalf~r!5 (
x,y,zPs(r)

h~x,y,z!2 (
xPs(r)

h~x,x,x!,

~3.2!
Scalf

1~r!5Scalf~r!1 1
4 ~n221!~n222!.

IV. WIGNER–YANASE INFORMATION AS A RIEMANNIAN METRIC

Let rPD n
1 be a density matrix and letA be a self-adjoint matrix. The Wigner–Yanas

information ~or skew information, information content relative toA) was defined as

I ~r,A!ª2Tr~@r1/2,A#2!,

where@•,•# denotes the commutator~see Ref. 42!. Consider nowg(x)ªgwy(x)ª4(12Ax). In
this case

Hg~r,s!54„12Tr~r1/2s1/2!….

The associated operator monotone and Chentsov–Morotzova functions are
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f wy~x!ª
1

4
~Ax11!2, cwy~x,y!ª

1

y fwyS x

yD 5
4

~Ax1Ay!2
.

Let us consider the monotone metric,

^A,B&r
wy
ªTr„A cwy~Lr ,Rr!~B!….

A typical element of (TrDn)o has the form i@r,A#, whereA is self-adjoint. We have

^ i @r,A#, i @r,A#&r
wy5Tr „i @r,A#4~Lr

1/21Rr
1/2!22~ i @r,A# !…

524 Tr „~Lr
1/21Rr

1/2!21~@r,A# ! ~Lr
1/21Rr

1/2!21~@r,A# !…

524 Tr „~Lr
1/21Rr

1/2!21+~Lr2Rr!~A! ~Lr
1/21Rr

1/2!21+~Lr2Rr!~A!…

524 Tr „~Lr
1/22Rr

1/2!~A! ~Lr
1/22Rr

1/2!~A!…

524 Tr~@r1/2,A#2!

54I ~r,A!,

and this explains why the monotone metric associated with the function1
4(Ax11)2 is called the

Wigner–Yanase monotone metric.

V. THE MAIN RESULT

First of all, we calculate the scalar curvature of Wigner–Yanase information using The
3.5. If f wy(x)ª 1

4(Ax11)2, we write Scalwy
1 for Scalf

1 .
Theorem 5.1:

Scalwy
1 ~r!5 1

4 ~n221!~n222!.

Proof: Let us calculate the auxiliary functions forcwy(x,y)ª4(Ax1Ay)22. We get

h1~x,y,z!5
Ax Ay13 Ax Az13 Ay Az1z

4 ~Ax1Ay!2 ~Ax1Az! ~Ay1Az!
,

h2~x,y,z!5
~Ax1Ay12 Az!2

4 ~Ax1Az!2 ~Ay1Az!2
,

h3~x,y,z!5
Az

~Ax1Ay! ~Ax1Az! ~Ay1Az!
,

h4~x,y,z!5
1

~Ax1Az! ~Ay1Az!.

Now one can verify by calculation that the symmetrization ofh12 1
2 h2 and the symmetriza-

tion of 2 h32h4 vanish. Hence, by~3.1!, the symmetrization ofh vanishes, too. Since we sum u
in formula ~3.2! over all triples of eigenvalues we may replaceh with its symmetrization without
changing the summation result. Therefore

Scalwy~r!50 , Scalwy
1 ~r!5 1

4 ~n221!~n222!, ;rPD n
1 .

h

Remark 5.2:The fact that Scalwy(r)50 can be seen by a different approach~look at the Wigner–
Yanase metric overDn as the 0-geometry; see Refs. 21 and 27!.
                                                                                                                



tric

,

re of

sphere
phere
all

d

3759J. Math. Phys., Vol. 44, No. 9, September 2003 Wigner–Yanase information on quantum state

                    
In what follows we use the pull-back approach to derive~and explain! the above formula in a
direct way. Furthermore we deduce the geodesic distance and geodesic equation.

Let us denote byS the manifold $APMn : Tr A A* 54, A5A* %. Clearly, sinceS is the
intersection of the radius 2 sphere inCn3n and the subspace of Hermitian matrices, it is isome

with a radius 2 sphereS2
n221.

Now, letw:D n
1→S,Cn3n, w(r)ª2Ar. Then we have the following result~see Refs. 25, 18

27, and 21!.

Theorem 5.3:The pull-back by the mapw of the natural metric onS[S2
n221 coincides with

the Wigner–Yanase monotone metric.
Proof: Let A andB be vectors tangent toD n

1 at r. Becausew(r) w(r)54 r we get from the
Leibniz ruleDrw(A)Ar 1Ar Drw(A)52A. Thus, the differential ofw at the pointr is given by

Drw~A!52~Lr
1/21Rr

1/2!21~A! .

Therefore the pull-back of the real part of the Hilbert–Schmidt metric yields

Drw~Rê •,•&!~A,B!5Re^Drw~A!,Drw~B!&

54 Rê ~Lr
1/21Rr

1/2!21~A!,~Lr
1/21Rr

1/2!21~B!&

54 ^A,~Lr
1/21Rr

1/2!22~B!&

54 TrA ~Lr
1/21Rr

1/2!22~B!

5Tr A cwy~Lr ,Rr!~B!5^A,B&r
wy ,

which was to be proved. h

From this result one can deduce the following.
Theorem 5.4: For the geodesic distance, the geodesic path and the scalar curvatu

Wigner–Yanase information the following formulas hold:

(1) geodesic distance,

dwy~r,s!52 arccos„Tr~r1/2s1/2!…; ~5.1!

(2) geodesic path,

gwy
r,s~ t !52

„~12t !Ar1tAs…2

Tr~„~12t !Ar1tAs…2!
; ~5.2!

(3) scalar curvature

Scalwy
1 ~r!5 1

4 ~n221!~n222!. ~5.3!

Proof: The formulas are immediate consequences of the preceding theorem and of
geometry. Indeed by the pull-back argument the Wigner–Yanase metric looks locally like a s
of radius 2 of dimension (n221). But for a sphere of this kind the sectional curvatures are
equal to1

4 and therefore the scalar curvature is given by1
4(n

221)(n222). h

One may ask if other monotone metrics are the pull-back of some functionw different from
the square root. The rest of the section answers this question.

Definition 5.5:A monotone metriĉ •,•&r, f is a pull-back metric if there exists a manifol
S,Mn and a functionwPC 1(0,1`) such that the pull-back metric ofw:D n

1→S,Mn coincides
with ^•,•&r, f .

Proposition 5.6: Let̂ •,•&r, f be a monotone metric, let c5cf be the associated CM-function
and letwPC 1(0,1`). We have that̂ •,•&r, f is a pull-back metric byw if and only if
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S w~x!2w~y!

x2y D 2

5c~x,y!. ~5.4!

Proof: Apply the proposition~3.3! to tangent vectors in (TrD n
1)o. h

Definition 5.7:Let w,xPC 1(0,1`). We say that~w,x! is a dual pair if there exists an operat
monotonef such that

w~x!2w~y!

x2y
•

x~x!2x~y!

x2y
5c~x,y!, ~5.5!

wherec5cf is theCM-function associated withf .
In such a case we say thatf ~or cf) is a dual function. If~w,w! is a dual pair with respect to

f ~or cf) we say thatf ~or cf) is self-dual. Obviously one has the following.
Proposition 5.8: To say that̂•,•&r, f is a pull-back metric byw it is equivalent to say that f~or

cf) is self-dual with respect tow.
Definition 5.9: Two dual pairs (w,x),(w̃,x̃) are equivalent if there exist constan

A1 ,A2 ,B1 ,B2 such thatA1A251,

w̃5A1w1B1 ,

x̃5A2x1B2 .

Obviously equivalent pairs define the sameCM-function. In what follows we consider dua
pairs up to this equivalence relation with the traditional abuse of language. We are ready t
the fundamental result of the theory that classifies dual pairs.

Theorem 5.10:~Refs. 23, 24, 25, 26, 36, and 19! Let w,xPC 1(0,1`). Then~w,x! is a dual
pair if and only if one of the following two possibilities hold:

„w~x!,x~x!…5S xp

p
,
x12p

12pD , pP@21,2#\$0,1%,

„w~x!,x~x!…5„x, log~x!….

Corollary 5.11: The function f(x)5 1
4(Ax11)2 is the only self-dual operator monotone fun

tion, that is: the Wigner–Yanase metric is the only pull-back metric among statistically monot
metrics.

VI. CONCLUSIONS

Remark 6.1:Note that the formula~5.1! implies dwy(r,s)<2p. An analogous inequality
holds for the Bures metric~see Ref. 10, p. 311!, also known as theSLD-metric: this is the
monotone metric associated withf (x)5 1

2(11x). Indeed the formula,

dBures~r,s!5A222 Tr~r1/2sr1/2!1/2, ~6.1!

seems to be the only other explicit formula for a geodesic distance~in the family of statistically
monotone metrics!.

Remark 6.2:In general it is difficult to give explicit formulas for geodesic paths of monoto
metrics. In the case of the Bures metric these geodesics can be given because they are pro
of large circles on a sphere in the purifying space~see Ref. 10, p. 311 and Refs. 12, 4, and 39!. For
a discussion of geodesics fora-connections see Refs. 27, 28.

Remark 6.3:A classical theorem classifies the spaces of costant curvature.29 It is not known at
the moment if there are other monotone metrics of costant sectional and scalar curvature.

Remark 6.4:We have seen in the commutative case that for the Levi–Civita connection o
pull-back of the square root the decomposition is available,
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¹25
1

2
~¹m1¹e!.

In the noncommutative case an analogous decomposition for the pull-back of the squa
no longer holds. Indeed, on one hand, the use of Umegaki relative entropyH(r,s)5Tr„r(logr
2logs)… produces a similar decomposition, but for the Bogoliubov–Kubo–Mori metric.31,1,22,33

On the other hand, if one usesHwy(r,s)54„12Tr(r1/2s1/2)… as a divergence onD n
1 and con-

structs the associated dualistic structure (^•,•&Hwy,¹Hwy,¹Hwy) ~again following the lines of Refs
14 and 1!, then the construction is trivial, namely, the dual connections both coincide with
Levi–Civita connection of the Wigner–Yanase information. This is easily seen onPn where
Hg(r,s) reduces to Csiszar relativeg-entropy: it is known that such an entropy induces t
a-geometry wherea is given by the formulaa5312g-(1)/g9(1) ~see Ref. 1, p. 57!. For g
54(12Ax) this givesa50, that is, the Fisher information case~see also Ref. 21!.
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Quantum four-body system in D dimensions
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By the method of generalized spherical harmonic polynomials, the Schro¨dinger
equation for a four-body system inD-dimensional space is reduced to the general-
ized radial equations where only six internal variables are involved. The problem
on separating the rotational degrees of freedom from the internal ones for a quan-
tum N-body system inD dimensions is generally discussed. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1599956#

I. INTRODUCTION

Recent years have witnessed a flurry of investigations into the arbitraryD-dimensional
problems1–5 in many branches of physical chemistry and chemical physics. The problems a
ated with theD-dimensional hydrogen atom,6–8 the D-dimensional harmonic oscillator,9–11 and
the connection between the two12–16 have been thoroughly discussed. During the past few ye
with the application of dimensional scaling to the quantum theory of atomic and molecular
ture, large-D helium problem has also been studied by many authors.17–21This approach requires
solving the few-body Schro¨dinger equation in aD-dimensional coordinate space and has be
applied to a large number of physically interesting problems.22–25 Due to the complexity of the
problem for anN-body system inD dimensions, so far there is no complete theoretical solu
whenN.3.

In our recent work,26 a new method for separating the rotational degrees of freedom from
internal ones in a few-body system was proposed. The power of this new approach is in its
of great simplification in calculation of energy levels of a few-body system in terms of
generalized radial equations involving only internal variables, which are derived from the S¨-
dinger equation without any approximation. Some typical three-body system in three-dimen
space, such as a helium atom27–29and a positronium negative ion30 have been solved numericall
with high precision. The key to the approach is that we have found a complete set of indep
eigenfunctions of angular momentum for the system, which are homogeneous polynomials
components of Jacobi coordinate vectors and satisfy the Laplace equation, and chosen a
set of internal variables. Any wave function with a given angular momentum can be expa
with respect to the basis functions where the coefficients, called the generalized radial fun
depend only upon the internal variables. The generalized radial equations satisfied by the
alized radial functions are easily derived owing to the nice property of the basis functions.26 This
method has been generalized to the arbitrary dimensional space for a three-body system31 The
exact interdimensional degeneracies in the system can be obtained directly from the gene
radial equations.32

To further this study, we expect to apply this approach to anN-body system inD dimensions.
As noticed in our previous paper,31 the cases withN,D are very different from the cases wit

a!Electronic mail: guxy@mail.ihep.ac.cn
b!Electronic mail: mazq@sun.ihep.ac.cn
c!Electronic mail: sunjq@mail.ihep.ac.cn
37630022-2488/2003/44(9)/3763/12/$20.00 © 2003 American Institute of Physics
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N>D. The general formulas are hard to express uniformly due to arbitrariness ofD and N.
However, the main characters are manifested fully in a four-body system ofD dimensions, but not
fully in a three-body system. The four-body problems also play a fundamental role in nuclea
hypernuclear physics.33–35 In this paper we will study the problem of separating the rotatio
degrees of freedom from the internal ones for a quantum four-body system inD dimensions in
some detail. The general case (N-body system! will be summarized.

The plan of this paper is as follows: In Sec. II, after separating the motion of the cen
mass by Jacobi coordinate vectors, we will define the generalized spherical harmonic polyn
for a four-body system inD dimensions and prove that they constitute a complete set of inde
dent basis functions for a given total orbital angular momentum in the system. Some new fe
in comparison with the three-body case are also discussed in this section. The generalize
equations satisfied by the generalized radial functions are established in Sec. III. In Sec.
will generalize this method to separate the rotational degrees of freedom from the internal o
an N-body system inD dimensions. Some conclusions will be given in Sec. V.

II. THE GENERALIZED SPHERICAL HARMONIC POLYNOMIALS

For a quantumN-body system in an arbitraryD-dimensional space, we denote the positi
vectors and the masses ofN particles byr k and bymk , k51, 2,...,N, respectively.M5(kmk is
the total mass. The Schro¨dinger equation for theN-body system with a pair potentialV, depending
upon the distance of each pair of particles,ur j2r ku, is

2
1

2
¹2C1VC5EC, ¹25 (

k51

N

mk
21¹ rk

2 , ~1!

where¹ rk

2 is the Laplace operator with respect to the position vectorr k . For simplicity, the natural

units\5c51 are employed throughout this paper. The total orbital angular momentum ope
Lab in D dimensions are defined as21,36

Lab52Lba52 i (
k51

N H r ka

]

]r kb
2r kb

]

]r ka
J , a,b51,2,...,D, ~2!

where r ka denotes theath component of the position vectorr k . Now, we replace the position
vectorsr k with the Jacobi coordinate vectorsRj ,

R05M 21/2(
k51

N

mkr k , Rj5S mj 11M j

M j 11
D 1/2S r j 112 (

k51

j
mkr k

M j
D ,

1< j <~N21!, M j5 (
k51

j

mk , MN5M , ~3!

whereR0 describes the position of the center of mass,R1 describes the mass-weighted separat
from the second particle to the first particle,R2 describes the mass-weighted separation from
third particle to the center of mass of the first two particles, and so on. It is straightforwa
illustrate that the potentialV is a function ofRj•Rk and is rotationally invariant.

In the center-of-mass frame,R050. A straightforward calculation by replacement of variab
shows that the Laplace operator in Eq.~1! and the total orbital angular momentum operatorLab in
Eq. ~2! are directly expressed inRj ,

¹25 (
j 51

N21

¹Rj

2 , Lab5 (
j 51

N21

Lab
( j )52 i (

j 51

N21 H Rja

]

]Rjb
2Rjb

]

]Rja
J ,
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L25 (
a,b52

D

Lab
2 , ~L ( j )!25 (

a,b52

D

~Lab
( j )!2. ~4!

For a four-body system, there are three Jacobi coordinate vectorsR1 , R2 , andR3 , which will
be denoted for simplicity byx, y, andz, respectively,

x5 F m1m2

m11m2
G1/2

$r22r1%,

y5 F ~m11m2!m3

m11m21m3
G1/2H r32

m1r11m2r2

m11m2
J , ~5!

z5 F ~m11m21m31m4!m4

m11m21m3
G1/2

r4 .

Hence,

¹25¹x
21¹y

21¹z
2 , Lab5Lab

(x)1Lab
(y)1Lab

(z) ,

L25 (
a,b52

D

Lab
2 , @L (x)#25 (

a,b52

D

@Lab
(x)#2, ~6!

@L (y)#25 (
a,b52

D

@Lab
(y)#2, @L (z)#25 (

a,b52

D

@Lab
(z)#2.

The Schro¨dinger equation~1! for D>N54 reduces to

$¹x
21¹y

21¹z
2%C~x,y,z!522$E2V~j j ,h j ,z j !%C~x,y,z!,

j15x"x, j25h15x"y, j35z15x"z, ~7!

h25y"y, h35z25y"z, z35z"z,

wherej j , h j , andz j are internal variables. It is worth noticing that for the cases 35D,N two
Jacobi coordinate vectorsx and y can determine the body-fixed frame and this set of inter
variables is not complete because two configurations with different directions ofz reflecting to the
plane spanned byx andy are described by the same internal variables. As pointed in Ref. 26
variablez3 has to be changed to~x3y!•z. We will further discuss this problem in Sec. IV.

Since Eq.~7! is rotational invariant, the total orbital angular momentum is conserved
discussed in Ref. 31, inD-dimensional space, the wave functionC~x,y,z! with a given total
angular momentum has to belong to an irreducible representation of SO(D), and the angular
momentum is also denoted by the representation. For a four-body system, there are onl
Jacobi coordinate vectors so that the possible irreducible representation is described by a
row Young pattern@m,n,t# of SO(D), or its highest weightM5(M1 ,M2 ,M3,0,...,0), where

M15m2n, M25n2t, M35t. ~8!

We only need to consider the highest weight stateCM
[m,n,t] (x,y,z) because its partners can b

calculated from it by the lowering operators. In this paper the highest weight state will be s
called the wave functions with the given angular momentum@m,n,t# for simplicity.

Now we are going to find a complete set of independent eigenfunctions of total orbital an
momentum, where ‘‘independent’’ means that each one in the set cannot be expressed as
bination of the remaining with coefficients only depending on the internal variables. As disc
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in our previous paper,31 the spherical harmonic polynomialsY m
( l )( x̂) are homogeneous polynom

als in the components ofx of degreel , spanning an irreducible traceless tensor space describe
the Young pattern (l )[@ l ,0,0#. WhenD.6, the explicit forms for some polynomials with highe
weightsm are as follows:37

Y ( l )
( l )~x!5ND,l~x11 ix2! l ,

Y ( l 22,1,0,...,0)
( l ) ~x!52AlND,l~x11 ix2! l 21~x31 ix4!, ~9!

Y ( l 24,2,0,...,0)
( l ) ~x!5Al ~ l 21!/2ND,l~x11 ix2! l 22~x31 ix4!2,

where the last equality holds forl .1, andND,l denotes the normalization factor given in Ref. 3

The product of two spherical harmonic polynomialsY m
( l )( x̂) and Y m8

( l 8)( ŷ) belongs to the direct
product of two representation (l ) and (l 8), which is a reducible representation. It can be redu
by the Littlewood–Richardson rule and contraction of a pair ofxa andya , where the latter relates
to the internal variables,

~ l ! ^ ~ l 8!. %
s50

min$ l ,l 8%

%
t50

min$ l ,l 8%2s

@ l 1 l 82s22t,s,0#. ~10!

Since a basis function containing a factor depending on internal variables is not independen
those representations@ l 1 l 82s,s,0# @ t50 in Eq. ~10!# calculated by the Littlewood–Richardso
rule are related to the independent basis functions.31 Calculating by the Clebsch–Gordan coef
cients and removing the normalization factor, we obtain the independent basis functions f
representations @ l 1 l 82s,s,0#, called the generalized spherical harmonic polynom

Ql
( l 1 l 82s)s(x,y). Changing the parametersm5 l 1 l 82s, n5s, andq5 l , we define the general

ized spherical harmonic polynomialQq
mn(x,y) for the representation@m,n# ~Ref. 31! as

Qq
mn~x,y!5

X12
q2nY12

m2q

~q2n!! ~m2q!!
~X12Y342Y12X34!

n, 0<n<q<m,

X125x11 ix2 , X345x31 ix4 , Y125y11 iy2 , Y345y31 iy4 . ~11!

For the product of three spherical harmonic polynomials, Eq.~10! is generalized to

~ l ! ^ ~ l 8! ^ ~ l 9!. %
r 50

min$ l ,l 8%

%
n5r

min$( l 1 l 82r ),(r 1 l 9)%

%
t50

min$r ,(l 92n1r )%

@ l 1 l 81 l 92n2t,n,t# %¯ .

~12!

The ellipsis denotes those representations related to the basis functions which are not indep
Filling the digits 1, 2, and 3 arbitrarily into a given Young pattern@m,n,t# (m>n>t) we

obtain a young tableau. A Young tableau is called standard if the digit in every column o
tableau increases downwards and the digit in every row does not decrease from left to ri
fact, the digits ‘‘1,’’ ‘‘2,’’ and ‘‘3’’ denote the components ofx, y, andz, respectively. Obviously,
the representation@ l 1 l 81 l 92n2t,n,t# listed in Eq. ~12! corresponds to a standard Youn
tableau, where the number of digit ‘‘1’’ in the first row isl , the numbers of digit ‘‘2’’ in the first
and the second rows are respectively (l 82r ) and r , and the numbers of digit ‘‘3’’ in the first,
second, and third rows are, respectively, (l 91r 2n2t), n2r , andt. The basis functions in the
remaining representation spaces, which correspond to nonstandard Young tableaux, are n
pendent.

For a given pattern@m,n,t#, each standard Young tableau is determined by three parameteq,
p, andr , whereq is the number of digit ‘‘1’’ in the first row,p andr are the numbers of digit ‘‘2’’
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in the first and the second rows, respectively.q, p, and r should satisfy the constraints,t<r
<q and r<n<q1p<m. The number of standard Young tableaux for the given Young pat
@m,n,t# is equal to the dimension of the representation@m,n,t# of the SU~3! group,

d[m,n,t]~SU~3!!5 1
2 ~m2t12!~n2t11!~m2n11!. ~13!

For a given representation@m,n,t# of SO(D), each standard Young tableau denoted by (q,p,r )
corresponds to a representation space. The highest weight state in the representation spaceq,p,r )
is the generalized spherical harmonic polynomialQqpr

mnt(x,y,z),

Qqpr
mnt~x,y,z!55

X12
q2nY12

p Z12
m2q2pT12

r 2tT13
n2rTt

~q2n!! p! ~m2q2p!! ~r 2t!! ~n2r !!
, when q>n,

Y12
q1p2nZ12

m2q2pT12
r 2tT13

q2rT23
n2qTt

~q1p2n!! ~m2q2p!! ~r 2t!! ~q2r !! ~n2q!!
, when q,n,

t<r<q, r<n<q1p<m,

X125x11 ix2 , Y125y11 iy2 , Z125z11 iz2 ,

X345x31 ix4 , Y345y31 iy4 , Z345z31 iz4 ,

X565x51 ix6 , Y565y51 iy6 , Z565z51 iz6 ,

T125X12Y342X34Y12, T135X12Z342X34Z12, T235Y12Z342Y34Z12,

T5X12Y34Z561X34Y56Z121X56Y12Z342X12Y56Z342X34Y12Z562X56Y34Z12. ~14!

It is evident thatQqpr
mnt(x,y,z) do not contain a function of the internal variables as a factor,

do their partners due to the rotational symmetry. Therefore,Qqpr
mnt(x,y,z) are independent basi

functions for the given angular momentum described by@m,n,t#. Due to Eq.~12!, the set of
Qqpr

mnt(x,y,z) is complete. The reason why the generalized spherical harmonic polynomial de
by a nonstandard Young tableau is not independent can be seen from the following identit

~15!

This identity is similar to the Fock’s cyclic symmetry condition.38 The left-hand side of Eq.~15!
corresponds to a nonstandard Young tableau, and two terms in the right-hand side corres
two standard Young tableaux, respectively.

Since the problem on completeness of the set is very important, we are going to prov
problem by another method. On the one hand, because the basis functionQqpr

mnt(x,y,z) is a homo-
geneous polynomial of degreem1n1t in the components ofx, y, andz, we calculate the numbe
RD( l ) of basis functions in the sets for the representations@m,n,t# with m1n1t5 l . Namely, we
want to calculate how many homogeneous polynomials of degreel exist in the sets of the inde
pendent basis functions. We first calculate how many basis functions exist in the set for a
representation@m,n,t#. The dimension of the representation@m,n,t# of SO(D) is dD(@m,n,t#),

dD~@m,n,t#!5~D12m22!~D1m1n23!~D1m1t24!~D12n24!

3~D1n1t25!~D12t26!~m2t12!~m2n11!~n2t11!

3
~D1m25!! ~D1n26!! ~D1t27!!

~D22!! ~D24!! ~D26!! ~m12!! ~n11!! t!
. ~16!
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Thus, the number of basis functions in the set for the representation@m,n,t# is
d[m,n,t] (SU(3))dD(m,n,t). Then, the numberRD( l ) of basis functions in the sets for the repr
sentation@m,n,t# with m1n1t5 l is

RD~ l !5 (
t50

[ l /3]

(
n5t

[( l 2t)/2]

d[( l 2n2t),n,t]~SU~3!!dD~@~ l 2n2t!,n,t#!, ~17!

where@x# denotes the largest integer less than or equal tox.
On the other hand, the number of linear independent homogeneous polynomials of degl in

the components ofx, y, andz is MD( l ),

MD~ l !5S l 13D21
3D21 D .

After removing those polynomials in the formj j f (x,y,z), h j f (x,y,z), and z j f (x,y,z), where
f (x,y,z) is a polynomial of degree (l 22), the numberMD( l ) reduces toKD( l ),

KD~ l !5 MD~ l !26MD~ l 22!115MD~ l 24!220MD~ l 26!115MD~ l 28!

26MD~ l 210!1MD~ l 212!

5$~3D27!~3D28!~3D29!~3D210!~3D211!~3D212!112l ~D24!

3@721~3D210!~3D211!~27D22153D1236!#14l 2@184145~D24!~3D211!

3~9D2257D198!#1480l 3~D24!~9D2263D1126!180l 4~27D22207D1404!

1576l 5~D24!164l 6%
~ l 13D213!!

l ! ~3D27!!
, ~18!

wherel 13D>13 andK4(0)51. It is checked by MATHEMATICA that

RD~ l !5KD~ l !. ~19!

Thus, we have proved again thatd[m,n,t] (SU(3)) polynomialsQqpr
mnt(x,y,z) construct a complete

set of independent basis functions for the angular momentum@m,n,t#.
The generalized spherical harmonic polynomialQqpr

mnt(x,y,z) is a homogeneous polynomial o
degreesq, (p1r ) and (m1n1t2q2p2r ) in the components ofx, y, andz, respectively. It is
a simultaneous eigenfunction of¹x

2 , ¹y
2 , ¹z

2 , ¹x•¹y , ¹x•¹z , ¹y•¹z , and the angular momentum
operatorsL2, @L (x)#2, @L (y)#2, @L (z)#2,

¹x
2Qqpr

mnt~x,y,z!5¹y
2Qqpr

mnt~x,y,z!5¹z
2Qqpr

mnt~x,y,z!50,

¹x•¹yQqpr
mnt~x,y,z!5¹x•¹zQqpr

mnt~x,y,z!5¹y•¹zQqpr
mnt~x,y,z!50,

L2Qqpr
mnt~x,y,z!5C2~@m,n,t#!Qqpr

mnt~x,y,z!,

C2~@m,n,t#!5m~m1D22!1n~n1D24!1t~t1D26!, ~20!

@L (x)#2Qqpr
mnt~x,y,z!5q~q1D22!Qqpr

mnt~x,y,z!,

@L (y)#2Qqpr
mnt~x,y,z!5~p1r !~p1r 1D22!Qqpr

mnt~x,y,z!,

@L (z)#2Qqpr
mnt~x,y,z!5~m1n1t2q2p2r !~m1n1t2q2p2r 1D22!3Qqpr

mnt~x,y,z!,
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whereC2(@m,n#) is the Casimir invariant calculated by a general formula@see~1.131! in Ref. 39#.
The parity ofQqpr

mnt(x,y,z) is obviously equal to (21)m1n1t.
Now, we turn to discuss the caseD<6. As is well known, the irreducible traceless tens

space of SO(D) described by a Young pattern has the following properties. It is a null space if
of the lengths of the first two columns of the Young pattern is larger thanD. It reduces into the
selfdual and antiselfdual tensor spaces if the row number of the Young pattern is equal toD/2.
Two representations are equivalent if their Young patterns are the same as each other ex
the first column and the sum of their row numbers is equal toD. Those properties cause th
situation forD<6 different from that forD.6.

WhenD56, there is no problem for the representation@m,n,t# with t50, but whentÞ0, the
representation is reducible. We denote the generalized spherical harmonic polynomials
self-dual and anti-self-dual representations byQqpr

(S)mnt(x,y,z) and Qqpr
(A)mnt(x,y,z), respectively.

Qqpr
(S)mnt(x,y,z) is the same as that given in Eq.~14!, andQqpr

(A)mnt(x,y,z) can be obtained from
Qqpr

(S)mnt(x,y,z) by replacingX56, Y56, andZ56 with X568 , Y568 , andZ568 ,

X568 5x52 ix6 , Y568 5y52 iy6 , Z568 5z52 iz6 . ~21!

The formula~16! for the dimension of the representation@m,n,t# of SO(D) holds forD56 when
t50. WhentÞ0, dD(@m,n,t#) in Eq. ~16! is equal to the sum of the dimensions of the self-d
and antiselfdual representations such that the equality~19! still holds for D56.

When D55, in the possible Young pattern@m,n,t#, t has to be 0 or 1. The representatio
@m,n,1# is equivalent to the representation@m,n,0#. Their dimensions calculated from Eq.~16! are
also the same. The generalized spherical harmonic polynomialsQqpr

mnt(x,y,z) given in Eq. ~14!
hold for D55 except forx65y65z650 andt50 or 1. Therefore, the equality~19! holds for
D55.

For D53, two Jacobi coordinate vectors, sayx and y, can completely determine the body
fixed frame so that the variablesz3 has to be changed as~x3y!•z in order to distinguish two
configurations with different directions ofz. We have discussed in detail the four-body system
three dimensions in our previous paper.26

The case ofD54 is quite complicated because SO~4! is not a simple group. The represent
tion @m,n,0# reduces to a direct sum of a self-dual representation@(S)m,n,0# and an anti-self-dua
one@(A)m,n,0#. The generalized spherical harmonic polynomialsQqpr

(S)mn0(x,y,z) for the self-dual
representations is the same asQqpr

mnt(x,y,z) with t50 given in Eq.~14!. The generalized spherica
harmonic polynomialsQqpr

(A)mn0(x,y,z) for the anti-self-dual representation can be obtained fr
Qqpr

(S)mn0(x,y,z) by replacingX34, Y34, andZ34 with X348 , Y348 , andZ348 ,

X348 5x32 ix4 , Y348 5y32 iy4 , Z348 5z32 iz4 . ~22!

If t51, thenn51 and the representation@m,1,1# is equivalent to the representation@m,0,0#. The
standard Young tableau is described by the parametersq and p (r 51), whereq and p are,
respectively, the numbers of digits ‘‘1’’ and ‘‘2’’ in the first row of the Young tableau. T
generalized spherical harmonic polynomials for two representations@m,l,l#, l50, or 1, are

Qqp
mll~x,y,z!5

X12
q2lY12

p Z12
m2q2pTl

~q2l!! p! ~m2q2p!!
,

T5X12Y34Z348 1X34Y348 Z121X348 Y12Z342X12Y348 Z342X34Y12Z348 2X348 Y34Z12. ~23!

The surprising thing is that Eq.~19! is not satisfied forD54 andl>6. For example,

l 5 6 7 8 9 10

R4~ l ! 5346 10908 20550 36332 60996

K4~ l ! 5336 10836 20256 35436 58728.

~24!
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The reason is that the formula~18! for KD( l ) does not hold forD54 andl>6. ForD54 we find
an identity with respect to the polynomials of degree 6 checked by MATHEMATICA,

j1T23
2 1h2T13

2 1z3T12
2 22j2T13T2312j3T12T2322h3T12T1350. ~25!

The identity obtained from Eq.~25! by replacingX34, Y34, andZ34, respectively, withX348 , Y348 ,
and Z348 still holds. Those equalities obtained by applying the lowering operators and~or! by
multiplying a factor to above two identities are also identities. Thus, the formsj j f (x,y,z),
h j f (x,y,z), andz j f (x,y,z), wheref (x,y,z) is a homogeneous polynomial ofx, y, andz of degree
( l 22), are not independent whenl>6. It is easy to count by MATHEMATICA that the revise
K4( l ) by considering the identities coincides withR4( l ).

III. GENERALIZED RADIAL EQUATIONS

In the preceding section we proved thatd[m,n,t] (SU(3)) polynomialsQqpr
mnt(x,y,z) construct a

complete set of independent basis functions for the angular momentum@m,n,t#. Thus, any function
CM

[m,n,t] (x,y,z) with angular momentum@m,n,t# in the system can be expanded with respect to
basis functionsQqpr

mnt(x,y,z), where the coefficients are functions of internal variables,

CM
[m,n,t]~x,y,z!5 (

q5t

m

(
p5max$(n2q),0%

m2q

(
r 5t

min$q,n%

cqpr
mnt~j j ,h j ,z j !Qqpr

mnt~x,y,z!, ~26!

where the coefficientscqpr
mnt(j j ,h j ,z j ) are called the generalized radial functions. When sub

tuting Eq. ~26! into the Schro¨dinger equation~5!, the main calculation is to apply the Laplac
operator~4! to the functionCM

[m,n,t] (x,y,z). The calculation consists of three parts. In the follo
ing, we remove the arguments (j j ,h j ,z j ) and ~x,y,z! for simplicity. The first is to apply the
Laplace operator to the generalized radial functionscqpr

mnt(j j ,h j ,z j ), which can be calculated by
replacement of variables,

¹2cqpr
mnt5 $4j1]j1

2 14h2]h2

2 14z3]z3

2 12D~]j1
1]h2

1]z3
!1~j11h2!]j2

2

1~j11z3!]j3

2 1~h21z3!]h3

2 14j2~]j1
1]h2

!]j2
14j3~]j1

1]z3
!]j3

14h3~]h2
1]z3

!]h3
12h3]j2

]j3
12j3]j2

]h3
12j2]j3

]h3
%cqpr

mnt , ~27!

where]j denotes]/]j and so on. The second is to apply the Laplace operator to the genera
spherical harmonic polynomialsQqpr

mnt . This part is vanishing becauseQqpr
mnt satisfies the Laplace

equation. The last is the mixed application

2$~]j1
cqpr

mnt!2x1~]j2
cqpr

mnt!y1~]j3
cqpr

mnt!z%•¹xQqpr
mnt12$~]j2

cqpr
mnt!x1~]h2

cqpr
mnt!2y

1~]h3
cqpr

mnt!z%•¹yQqpr
mnt12$~]j3

cqpr
mnt!x1~]h3

cqpr
mnt!y1~]z3

cqpr
mnt!2z%•¹zQqpr

mnt . ~28!

From the definition~14! for Qqpr
mnt we have

x•¹xQqpr
mnt5qQqpr

mnt , y•¹yQqpr
mnt5~p1r !Qqpr

mnt ,

z•¹zQqpr
mnt5~m1n1t2q2p2r !Qqpr

mnt ,

y•¹xQqpr
mnt55

~p11!~q2r !

q2n
Q(q21)(p11)r

mnt 2
~m2q2p11!~r 2t11!

q2n
Q(q21)p(r 11)

mnt ,

when q.n,

~n2q11!Q(q21)(p11)r
mnt , when q<n,
                                                                                                                



3771J. Math. Phys., Vol. 44, No. 9, September 2003 Quantum four-body system in D dimensions

                    
x•¹yQqpr
mnt55

~q2n11!Q(q11)(p21)r
mnt , when q>n,

p~q2r 11!

n2q
Q(q11)(p21)r

mnt 2
~m2q2p11!~r 2t11!

n2q
Q(q11)(p22)(r 11)

mnt ,

when q,n,

z•¹xQqpr
mnt55

~m2q2p11!~q2n1r 2t!

q2n
Q(q21)pr

mnt 2
~p11!~n2r 11!

q2n

3Q(q21)(p11)(r 21)
mnt , when q.n,

2~n2q11!Q(q21)(p11)(r 21)
mnt , when q<n,

x•¹zQqpr
mnt55

~q2n11!Q(q11)pr
mnt , when q>n,

~q1p2n11!~q2r 11!

n2q
Q(q11)pr

mnt 2
~r 2t11!~m1n22q2p!

n2q

3Q(q11)(p21)(r 11)
mnt , when q,n,

z•¹yQqpr
mnt5H ~m2q2p11!Qq(p21)r

mnt 1~n2r 11!Qqp(r 21)
mnt , when q>n,

~m2q2p11!Qq(p21)r
mnt 1~q2r 11!Qqp(r 21)

mnt , when q,n,

y•¹zQqpr
mnt5H ~p11!Qq(p11)r

mnt 1~r 2t11!Qqp(r 11)
mnt , when q>n,

~q1p2n11!Qq(p11)r
mnt 1~r 2t11!Qqp(r 11)

mnt , when q,n.
~29!

Hence, we obtain the generalized radial equation, satisfied by the functionscqpr
mnt(j,h,z),

¹2cqpr
mnt14q]j1

cqpr
mnt14~p1r !]h2

cqpr
mnt14~m1n1t2p2q2r !]z3

cqpr
mnt

1
2p~q2r 11!

q2n11
]j2

c (q11)(p21)r
mnt 2

2~m2q2p!~r 2t!

q2n11
]j2

c (q11)p(r 21)
mnt

12~q2n!]j2
c (q21)(p11)r

mnt 1
2~m2q2p!~q2n1r 2t11!

q2n11
]j3

c (q11)pr
mnt 2

2p~n2r !

q2n11

3]j3
c (q11)(p21)(r 11)

mnt 12~q2n!]j3
c (q21)pr

mnt 12~m2q2p!]h3
cq(p11)r

mnt 12~n2r !

3]h3
cqp(r 11)

mnt 12p]h3
cq(p21)r

mnt 12~r 2t!]h3
cqp(r 21)

mnt 522~E2V!cqpr
mnt , for q.n,

~30a!

¹2cqpr
mnt14q]j1

cqpr
mnt14~p1r !]h2

cqpr
mnt14~m1t2p2r !]z3

cqpr
mnt12p~q2r 11!]j2

c (q11)(p21)r
mnt

22~m2q2p!~r 2t!]j2
c (q11)p(r 21)

mnt 12~p11!~q2r !]j2
c (q21)(p11)r

mnt 22~m2q2p!~r 2t!

3]j2
c (q21)(p12)(r 21)

mnt 12~m2q2p!~r 2t11!]j3
c (q11)pr

mnt 22p~q2r !]j3
c (q11)(p21)(r 11)

mnt

12p~q2r !]j3
c (q21)pr

mnt 22~r 2t!~m2q2p11!]j3
c (q21)(p11)(r 21)

mnt 12~m2q2p!

3]h3
cq(p11)r

mnt 12~q2r !]h3
cqp(r 11)

mnt 12p]h3
cq(p21)r

mnt 12~r 2t!]h3
cqp(r 21)

mnt

522~E2V!cqpr
mnt , for q5n, ~30b!
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¹2cqpr
mnt14q]j1

cqpr
mnt14~p1r !]h2

cqpr
mnt14~m1n1t2p2q2r !]z3

cqpr
mnt12~n2q!

3]j2
c (q11)(p21)r

mnt 1
2~p11!~q2r !

n2q11
]j2

c (q21)(p11)r
mnt 2

2~m2q2p!~r 2t!

n2q11

3]j2
c (q21)(p12)(r 21)

mnt 22~n2q!]j3
c (q11)(p21)(r 11)

mnt 1
2~q1p2n!~q2r !

n2q11

3]j3
c (q21)pr

mnt 2
2~r 2t!~m1n22q2p11!

n2q11
]j3

c (q21)(p11)(r 21)
mnt 12~m2q2p!

3]h3
cq(p11)r

mnt 12~q2r !]h3
cqp(r 11)

mnt 12~q1p2n!]h3
cq(p21)r

mnt 12~r 2t!]h3
cqp(r 21)

mnt

522~E2V!cqpr
mnt , for q,n, ~30c!

where¹2cqpr
mnt is given in Eq.~27!. Only six internal variablesj1 , j2 , j3 , h2 , h3 , andz3 are

involved both in the equations and in the functions. Equation~30! holds either forD.6 or for
4<D<6. For the latter cases some self-dual representation, anti-self-dual representat
equivalent representations may occur. Especially, for a four-body system inD54 dimensions, the
representation@m,1,1# is equivalent to the representation@m,0,0#, but the generalized radial equa
tions for them are decoupled. They will be coupled for theN-body system withN.D54.

IV. QUANTUM N-BODY SYSTEM IN D DIMENSIONS

It is hard to write unified formulas of the generalized radial equations for anN-body system
in arbitraryD-dimensions. However, from the study of the three-body26,31 and four-body system
we are able to summarize the main features on separating the rotational degrees of freedo
the internal ones for anN-body Schro¨dinger equation inD dimensions.

First, after removing the motion of the center of mass, there are (N21) Jacobi coordinate
vectorsRj for an N-body system. On the other hand, in aD-dimensional space one needs (D
21) vectors to determine the body-fixed frame. WhenD>N, all Jacobi coordinate vectors ar
used to determine the body-fixed frame, and all internal variables can be chosen asRj•Rk . The
numbers of the rotational variables and the internal variables are (N21)(2D2N)/2 and N(N
21)/2, respectively. WhenD,N, only (D21) Jacobi coordinate vectors are involved to det
mine the body-fixed frame, and the remaining can be expressed by the first (D21) Jacobi coor-
dinate vectors and the internal variables. The set of internal variablesRj•Rk is no longer complete
because it could not distinguish two configurations, say with differentRD reflecting to the super-
plane spanned by the first (D21) Jacobi coordinate vectors. The correct choice for the inte
variables are

j jk5Rj•Rk , za5 (
a1¯aD

ea1¯aD
R1a1

¯R(D21)aD21
RaaD

,

1< j <D21, j <k<N21, D<a<N21. ~31!

The numbers of the rotational variables and the internal variables areD(D21)/2 andD(2N
2D21)/2, respectively.

Second, for anN-body system inD-dimensions (D>N), the angular momentum is describe
by an irreducible representation of SO(D) denoted by an (N21)-row Young pattern@m#
[@m1 ,m2 ,...,mN21#, m1>m2>¯>mN21 . Due to the rotational symmetry, one only needs
discuss the eigenfunctions of angular momentum with the highest weight. The complete
independent basis functions with the highest weight consists of the eigenfunc
Q(q)

[m] (R1 ,...,RN21) identified by the standard Young tableau (q). Filling the digits 1, 2, ...,N
21 arbitrarily into a given Young pattern@m# we obtain a Young tableau. A Young tableau
called standard if the digit in every column of the tableau increases downwards and the d
                                                                                                                



y a set

dent

e-
and

of Sec.
nc-

-
ctions

the

aplace
to

the
ls sat-

e

ose
f

3773J. Math. Phys., Vol. 44, No. 9, September 2003 Quantum four-body system in D dimensions

                    
every row does not decrease from left to right. Any standard Young tableau is described b
of parameters (q) which contains (N21)(N22)/2 parametersqjk , 1<k< j <N21, denoting the
number of the digitj in the kth row in the standard Young tableau. The number of indepen
basis functionsQ(q)

[m] (R1 ,...,RN21) in the complete set is equal to the dimensiond[m]@SU(N
21)# of the irreducible representation@m# of the SU(N21) group. Q(q)

[m] (R1 ,...,RN21) is a
homogeneous polynomial of degree(mk with respect to the components of (N21) Jacobi coor-
dinate vectorsRj , and satisfies the generalized Laplace equations@see Eq.~20!#. The explicit form
of Q(q)

[m] (R1 ,...,RN21) for the given standard Young tableau (q) is very easy to write. In the Young
tableau, for each column with the lengtht, filled by digits j 1, j 2,¯, j t , Q(q)

[m] (R1 ,...,RN21)
contains a determinant as a factor. Ther th row andsth column in the determinant isRj r (2s21)

1 iRj r (2s) if D.2(N21). Q(q)
[m] (R1 ,...,RN21) also contains a numerical coefficient for conv

nience. WhenN<D<2(N21), some self-dual representation, anti-self-dual representation
equivalent representations have to be considered just like the discussion given in the end
II. When D,N, only the first (D21) Jacobi coordinate vectors are involved in the basis fu
tions Q(q)

[m] (R1 ,...,RD21), which are the same as those for smallerN5D.
At last, whenD>N, any wave functionCM

[m] (R1 ,...,RN21) with the given angular momen
tum @m# can be expanded with respect to the complete and independent basis fun
Q(q)

[m] (R1 ,...,RN21),

CM
[m]~R1 ,...,RN21!5(

(q)
c (q)

[m]~j!Q(q)
[m]~R1 ,...,RN21!, ~32!

where the coefficientsc (q)
[m] (j), called the generalized radial functions, only depend upon

internal variables. WhenD,N, c (q)
[m] (j) andQ(q)

[m] (R1 ,...,RN21) in Eq. ~32! have to be replaced
with c (q)

[m] (j,z) and Q(q)
[m] (R1 ,...,RD21), respectively. Substituting Eq.~32! into the N-body

Schrödinger equation in the center-of-mass frame,

(
j 51

N21

¹Rj

2 CM
[m]~R1 ,...,RN21!522$E2V~j!%CM

[m]~R1 ,...,RN21!, ~33!

one is able to obtain the generalized radial equations. The main calculation is to apply the L
operator to the functionCM

[m,n,t] (x,y,z). The calculation consists of three parts. The first is
apply the Laplace operator to the generalized radial functionsc (q)

[m] (j), which can be calculated by
replacement of variables. WhenD>N we have

¹2c (q)
[m]~j!5H (

j 51

N21

~4j j j ]j j j

2 12D]j j j
!1 (

j 51

N21

(
k5 j 11

N21

@~j j j 1jkk!]j jk

2 14j jk~]j j j
1]jkk

!]j jk
#

12 (
j 51

N21

(
j Þk51

N21

(
j Þt5k11

N21

jkt]j jk
]j j tJ c (q)

[m]~j!, ~34!

wherej jk5jk j and]j denotes]/]j and so on. The second is to apply the Laplace operator to
generalized spherical harmonic polynomials. This part is vanishing because the polynomia
isfy the Laplace equation. The last is the mixed application. WhenD>N we have

2 (
j 51

N21 H ~]j j j
c (q)

[m] !2Rj1 (
j Þk51

N21

~]j jk
c (q)

[m] !RkJ •¹Rj
Q(q)

[m] , ~35!

where the formulas forRj•¹Rj
Q(q)

[m] and Rk•¹Rj
Q(q)

[m] can be calculated from the property of th

polynomial Q(q)
[m] (R1 ,...,RN21). WhenD,N, the internal variables have to be chosen as th

given in Eq.~31! so that Eq.~34! becomes more complicated and Eq.~35! contains more terms o
(]za /]Rj ) •¹Rj

Q(q)
[m] .26
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V. CONCLUSIONS

In this paper, the problem of separating the rotational degrees of freedom from the in
ones for the Schro¨dinger equation of a four-body system inD dimensions is studied in detail b
the method of the generalized spherical harmonic polynomials. We have found a complete
independent basis functions with the given angular momentum described by an irreducible
sentation@m,n,t# of SO(D). This set of basis functions have different form for the caseD.6,
4<D<6, andD53. We have provided an appropriate choice of internal variables for this sy
and derived the generalized radial equations depending solely on internal variables. The
features on the problem of separating the rotational degrees of freedom from the internal o
the Schro¨dinger equation of aN-body system inD dimensions is summarized.
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Global symmetries of time-dependent Schro ¨ dinger
equations
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Rochester, New York 14627

~Received 28 October 2002; accepted 27 April 2003!

Some symmetries of time-dependent Schro¨dinger equations for inverse quadratic,
linear, and quadratic potentials have been systematically examined by using a
method suitable to the problem. Especially, the symmetry group for the case of the
linear potential turns out to be a semidirect productSL(2,R)sT2(R) of the
SL(2,R) with a two-dimensional real translation groupT2(R). Here, the time vari-
able t transforms ast→t85(ct1d)/(at1b) for real constantsa, b, c, and d
satisfyingbc2ad51 with an accompanying transformation for the space coordi-
natex. © 2003 American Institute of Physics.@DOI: 10.1063/1.1591992#

I. FORMULATION

Many solutions of Schro¨dinger equations are known~Refs. 1–4 and earlier references quot
therein! to possess dynamical~or hidden! symmetries which are not apparent at first glance.

In a different approach, Eastwood5 in his study of symmetry of Laplace equation has obser
the following: Suppose that a pair of functionsU(x,) and W(x,) of the coordinatex and its
derivative satisfies

W~x,!D5DU~x,!, S D5(
j 51

n
]2

]xj
2D

for the LaplacianD. Then, ifc(x) is a solution of the Laplace equationDc(x)50, then so will be

c8~x!5U~x,!c~x!.

The purpose of this note is to utilize an analogous method to systematically find g
symmetries of time-independent Schro¨dinger equations. We consider the equation of motion of
form:

]

]t
c~ t,x!5k$D2V~x!%c~ t,x!. ~1.1!

If k is purely imaginary withk52 i\/2m, then it describes the standard Schro¨dinger equation,
while the case ofk being real implies a diffusion-type equation. In what follows, we will alwa
assume that the parameterk is either real or purely imaginary witht andx being real unless it is
stated otherwise.

Consider now a vector space of all suitably smooth functions oft and x, which may be
complex. Suppose that we can find a pair of linear operatorsU andW in this space to satisfy the
condition

WH ]

]t
2kD1kV~x!J 5H ]

]t
2kD1kV~x!J U. ~1.2!

a!Electronic mail: okubo@pas.rochester.edu
37750022-2488/2003/44(9)/3775/25/$20.00 © 2003 American Institute of Physics
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Then, if c(t,x) satisfies Eq.~1.1!, the new function given by

c8~ t,x!5~Uc!~ t,x![Uc~ t,x! ~1.3!

will also obey the same relation, i.e., we have

]

]t
c8~ t,x!5k$D2V~x!%c8~ t,x!. ~1.4!

Some explicit forms ofU and W can be found as follows. Let us consider the coordin
transformation of form forx5(x1 ,x2 , . . . ,xn),

t→t85f~ t !, ~1.5a!

xj→xj85F j~ t,x! ~ j 51,2,. . . ,n! ~1.5b!

for some differentiable functionsf(t) and F j (t,x) to be determined. The action of the line
operatorU to a functionc(t,x) is then assumed to be given as a multiplication of a function a
the coordinate transformation, i.e.,

c8~ t,x!5Uc~ t,x!5K~ t,x!c~ t8,x8!, ~1.6!

whereK(t,x) is a function oft andx to be determined. When we note

]

]t
5ḟ~ t !

]

]t8
1(

j 51

n
]F j~ t,x!

]t

]

]xj8
,

]

]xj
5 (

k51

n
]Fk~ t,x!

]xj

]

]xk8
,

then we calculate

H ]

]t
2kD1kV~x!J c8~ t,x!5H ]

]t
2kD1kV~x!J @K~ t,x!c~ t8,x8!#

5H F ]

]t
2kD1kV~x!GK~ t,x!J c~ t8,x8!

1K~ t,x!(
j 51

n H ]F j~ t,x!

]t
2kDF j~ t,x!

22k(
,51

n
] logK~ t,x!

]x,

]F j~ t,x!

]x,
J ]

]xj8
c~ t8,x8!

1K~ t,x!H ḟ~ t !
]

]t8
2k (

j ,,51

n S (
i 51

n
]F j

]xi

]F,

]xi
D ]2

]xj8]x,8
J c~ t8,x8!.

~1.7!

If F j (t,x), andK(t,x) satisfy relations:

~ i! (
i 51

n
]F j~ t,x!

]xi

]F,~ t,x!

]xi
5d j ,ḟ~ t !S [d j ,

d

dt
f~ t ! D , ~1.8a!
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~ ii ! S ]

]t
2kD DF j~ t,x!52k(

,51

n
] logK~ t,x!

]x,

]F j~ t,x!

]x,
, ~1.8b!

~ iii ! H ]

]t
2kD1kV~x!J K~ t,x!5kḟ~ t !V~x8!K~ t,x!, ~1.8c!

then Eq.~1.7! becomes

H ]

]t
2kD1kV~x!J c8~ t,x!5ḟ~ t !K~ t,x!H ]

]t8
2kD81kV~x8!J c~ t8,x8!, ~1.9!

which reproduces Eq.~1.2! with actions ofU andW given by

Uc~ t,x!5K~ t,x!c~ t8,x8!, ~1.10a!

Wĉ~ t,x!5ḟ~ t !K~ t,x!ĉ~ t8,x8!, ~1.10b!

for any two functionsc and ĉ. For the present problem, we have

ĉ~ t,x!5S ]

]t
2kD1kV~x! Dc~ t,x!.

Summarizing, we have proved the following Theorem.
Theorem 1.1:Let functionsf(t), F j (t,x), andK(t,x) satisfy Eq.~1.8! with t8 andxj8 being

given by Eq.~1.5!. Then for any functionc(t,x) which satisfies Eq.~1.1!, i.e.,

]

]t
c~ t,x!5k$D2V~x!%c~ t,x!,

the new function given by

c8~ t,x!5K~ t,x!c~ t8,x8!5K~ t,x!c~f~ t !,F j~ t,x!!

is also a solution of the same generalized Schro¨dinger equation, Eq.~1.1!.
Remark 1.2:We may call the pair of linear operators (U,W) satisfying Eq.~1.2! admissible.

Then, for the second admissible pair (U8,W8) their product (UU8,WW8) is clearly also admis-
sible. Moreover, the special pair~1,1! acts as the identity. Therefore, a set of all admissible p
form a semigroup. If the pair is invertible, then they present a symmetry group of Eq.~1.1!. More
explicitly, if the transformation with certainV(x) are chosen as in Eq.~1.16!, one gets a setS of
possiblef, F, and K with elementss e S parametrized by real numbersa, b, . . . , i.e., s
5s(a,b, . . . ) and a set ofsolutionsc(t,x;a,b, . . . ). It will be shown in subsequent sections th
the s e S and hence the corresponding solutions can be transformed into each other forma
e.g.,SL(2,R) depending uponV(x).

We can modify Theorem 1.1 slightly as follows. LetV0(x) andV(x) be two potentials, and
suppose that the pair of linear operators (U,W) now satisfies

WH ]

]t
2kD1kV0~x!J 5H ]

]t
2kD1kV~x!J U ~1.11!

instead Eq.~1.2!. We can proceed exactly in the same way as in the previous case, and we
the following theorem.

Theorem 1.3: Let functionsf(t), F j (t,x), andK(t,x), as in Theorem 1.1 except that E
~1.8c! is now replaced by
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H ]

]t
2kD1kV~x!J K~ t,x!5kḟ~ t !V0~x8!K~ t,x!. ~1.12!

Then, for any functionc0(t,x) satisfying

H ]

]t
2kD1kV0~x!J c0~ t,x!50, ~1.13!

the function given by

c~ t,x!5Uc0~ t,x!5K~ t,x!c0~ t8,x8! ~1.14!

satisfies

H ]

]t
2kD1kV~x!J c~ t,x!50. ~1.15!

Remark 1.4:Examples satisfying Theorem 1.3 forV0(x)50 will be given in Secs. III and IV. If
U21 andW21 exist, then we can conversely expressc0(t,x) in terms ofc(t,x).

Returning now to the original discussion of Theorem 1.1, it is in general difficult to
solutions of differential equations, Eq.~1.8!. However, for three cases ofV(x) being inverse
square, linear, and quadratic potentials, we can solve them as follows. The explicit for
F j (t,x) andK(t,x) can then be assumed to be

t85f~ t !, ~1.16a!

xj85F j~ t,x!5j~ t !xj1 f j~ t !, ~1.16b!

K~ t,x!5expH A~ t !1(
j 51

n

Bj~ t !xj1C~ t !x2J , ~1.16c!

for some functionsf(t), j(t), f j (t), A(t), Bj (t), and C(t) of t to be determined as in th
following Proposition.

Proposition 1.5:Equation~1.8! will be satisfied for the ansatz Eq.~1.16!, if we have

~ i! ḟ~ t !5j2~ t !, ~1.17a!

~ ii ! Bj~ t !5
1

2k

ḟ j~ t !

j~ t !
, ~1.17b!

~ iii ! C~ t !5
1

4k

j̇~ t !

j~ t !
, ~1.17c!

provided thatK(t,x) satisfies Eq.~1.8c!, i.e.,

H ]

]t
2kD1kV~x!J K~ t,b!5kḟ~ t !V~x8!K~ t,x!. ~1.18!

We will solve these differential equations, Eqs.~1.17! and~1.18!, in subsequent sections. Th
simplest case of the inverse quadratic potential will be discussed in Sec. II, where the sym
group is SL(2,R). By contrast, the symmetry of the linear potential is a larger one
SL(2,R)sT2(R) which is the semidirect product ofSL(2,R) with a real two-dimensional trans
lation groupT2(R). This will be presented in Sec. III. For the case of the quadratic potentia
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Sec. IV, the symmetry is now either a semigroup or a subgroup ofSL(2,C)sT2(C), depending
upon choices of parameters involved in theory. In Sec. V, we will discuss the associate
algebras of these groups.

Last, we simply remark that the present method will also be applicable when the poten
time-dependent. In that case, we simply replace allV(x), V(x8), V0(x), andV0(x8) in Theorem
1.1 and 1.3, respectively, byV(t,x), V(t8,x8), V0(t,x), andV0(t8,x8). Also, we may generalize
the present method by replacingK(t,x) by K(t,x,,] t) which may depend upon both space a
time derivatives, and] t([ ]/]t).

II. INVERSE QUADRATIC POTENTIAL

In this section, we assume that the potentialV(x) is a homogeneous function ofx of degree
22, i.e., it satisfies an identity

V~lx!5
1

l2 V~x! ~2.1!

for any nonzero real numberl. For example, we may assume

V~x!5
a

x1
21x2

21¯1xn
2 1(

j 51

n
aj

~xj !
2 1 (

j ,k51

n
bjk

~xj2xk!
2,

etc., for some constantsa, aj , andbjk .
We must choosef j (t)50 with xj85j(t)xj in this case. Then Eq.~2.1! implies the validity of

V~x!5j2~ t !V~x8!5ḟ~ t !V~x8!

for l5j(t) so that Eq.~1.18! becomes

H ]

]t
2kDJ K~ t,x!50,

which gives

Ȧ~ t !52nkC~ t !,

Ċ~ t !54k~C~ t !!2.

Solving these with Eq.~1.17! for j(t) andf(t), we find:
Proposition 2.1:For any functionc(t,x) satisfying

]

]t
c~ t,x!5k$D2V~x!%c~ t,x! ~2.2!

with the condition Eq.~2.1! for V(x), a new function given by

c8~ t,x!5S 1

at1bD n/2

expH 2
a

4k~at1b!
x2J c~ t8,x8! ~2.3!

also satisfies the same equation, i.e.,

]

]t
c8~ t,x!5k$D2V~x!%c8~ t,x!, ~2.4!

wheret8 andx8 are given by
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t85
ct1d

at1b
, x85

1

at1b
x. ~2.5!

Here,a, b, c, andd are arbitrary real constants satisfying the condition

bc2ad51. ~2.6!

We will show next that the admissible pair (U,W) of Sec. I will offer infinite dimensional
realizations of theSL(2,R) group. For this purpose, it is more convenient to consider 232
SL(2,R) matrix M by

M5S c d

a bD , detM51. ~2.7!

Moreover, we collectively write the coordinates as

Z5$t,x% ~2.8!

on whichM is assumed to act as

MZ5M $t,x%5$t8,x8%5H ct1d

at1b
,

x

at1bJ . ~2.9!

SinceK(t,x) depends upon parametersa, b, c, andd, we will write it asK(t,xuM ) so that

K~ t,xuM ![K~ZuM !5S 1

at1bD n/2

expH 2
a

4k~at1b!
x2J . ~2.10!

It is then easy to verify.
Proposition 2.2:For any twoSL(2,R) matricesM andM 8, we have

~ i! M ~M 8Z!5~MM 8!Z, ~2.11a!

~ ii ! K~ZuM 8!K~M 8ZuM !5K~ZuMM 8!, ~2.11b!

whereMM 8 implies the standard matrix product ofM andM 8.
The linear operatorsU andW introduced in Sec. I also depend uponM . However, it is more

convenient to rewrite them asU(M 21) andW(M 21) instead ofU(M ) andW(M ) for a reason
which will become clear shortly, so that Eq.~2.3! is rewritten as

U~M 21!c~Z!5K~ZuM !c~MZ!. ~2.12!

Note that

M 215S b 2d

2a c D for M5S c d

a bD .

Then, Eq.~2.11! is immediately translated into the following:
Proposition 2.3:Linear operatorsU(M ) andW(M ) satisfy

U~MM 8!5U~M !U~M 8!, ~2.13a!

W~MM 8!5W~M !W~M 8!. ~2.13b!

In other words, they offer~infinite dimensional! realizations of theSL(2,R) group.
In ending this section, it may be of interest to note the following:
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Remark 2.4:The transformation, Eq.~2.5!, contains both time translation and dilatation
special cases. If we choose

M5S 1 l

0 1D ,

then Eq.~2.5! gives the time translation,

t→t85t1l, x→x85x.

On the other side, the choice of

M5S c 0

0
1

c
D ~cÞ0! ~2.14a!

leads to the dilatation

t→t85c2t, x→x85cx. ~2.14b!

Remark 2.5:For some subgroup ofSL(2,R), the linear operatorU(M ) may possess a non-trivia
fixed point in the function space. Consider the one-dimensional case ofn51 with V(x)50. The
Jacobi’s theta functionu1(xut) is given6 by

u1~xut !5 i (
n52`

`

~21!n expH ipS n2
1

2D 2

t1 ip~2n21!xJ , ~2.15!

which satisfies the one-dimensional Schro¨dinger equation

4p i
]

]t
u1~xut !5

]2

]x2 u1~xut ! ~2.16!

with k52 i /4p. Moreover, if a, b, c, d are all integers withbc2ad51, we then have the
identity6

u1S x

at1b U ct1d

at1bD5e~at1b!1/2expS ipax2

at1b D u1~xut !, ~2.17!

wheree is a constant satisfyinge851, whose particular value depends upon the specificatio
branches of (at1b)1/2 in the complext plane. Settinge51. Eq. ~2.17! is rewritten as

U~M0!u1~xut !5u1~xut ! ~2.18!

for any modular matrixM0 . Therefore, theSL(2,R) orbit of u1(xut) is the homogeneous spac

SL~2,R!/SL~2,Z!,

whereSL(2,Z) is the modular subgroup ofSL(2,R) in which all a, b, c, andd are integers.
Remark 2.6:For the one-dimensional case withV(x)50, the symmetry group is actually

larger one ofSL(2,R)sT2(R) which is a semidirect product ofSL(2,R) with a two-dimensional
translation groupT2(R). This will be shown as a special case ofa5b50 in Eqs.~3.5!–~3.10! in
the following.
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III. LINEAR POTENTIAL

In this section, we will consider the case of the linear potential. For a while, we re
ourselves to one-dimensional space and set

V~x!5a1bx ~3.1!

for constantsa andb. Dropping all subindices such asj ’s in f j (t), Bj (t), etc.~sincen51), Eqs.
~1.18! and ~1.16c! then gives@with Ȧ(t)[ (d/dt) A(t), etc.#

~ i! Ċ~ t !54kC2~ t !, ~3.2a!

~ ii ! Ḃ~ t !54kB~ t !C~ t !1kb@j3~ t !21#, ~3.2b!

~ iii ! Ȧ~ t !5k$B2~ t !12C~ t !%1ka~j2~ t !21!1kbj2~ t ! f ~ t !. ~3.2c!

Together with Eq.~1.17!, which gives 2kB(t)5 ḟ (t)/j(t) and 4kC(t)5 j̇(t)/j(t), we can solve
these equations. In this case, the general solution contains five independent real paramet
convenient for our purpose to parametrize them as

L5 H M ,S m
n D J , ~3.3a!

M5S c d

a bD , detM51, ~3.3b!

where M is the real 232 unimodular matrix just as in Sec. II, which acts now on a tw
dimensional real vector (n

m) in the parameter space. We writeC(t), B(t), etc., now asC(tuL),
B(tuL), etc., in order to indicate their dependence on parameters involved inL. We also rewrite
K(t,x) of Sec. I as

K~ t,xuL!5
1

Aat1b
exp$A~ tuL!1B~ tuL!x1C~ tuL!x2%, ~3.4!

where we changed howeverA(t) there intoA(tuL)2 1
2 log(at1b) for simplicity. Then, their ex-

plicit forms are found to be

~ i! C~ tuL!52
1

4k

a

at1b
, ~3.5a!

~ ii ! B~ tuL!52
n

2k

1

at1b
1

kb

2 H 2~ct1d!

~at1b!2 2t2
bt

at1bJ , ~3.5b!

~ iii ! A~ tuL!52
1

4k
mn1akS ct1d

at1b
2t D1

n2

4k

ct1d

at1b
1kbH m

ct1d

at1b
2nF S ct1d

at1bD 2

2
1

2

t2

at1bG J 1k3b2H 2

3 S ct1d

at1bD 3

1
1

12
t31

b

4

t3

at1b
2

t2~ct1d!

~at1b!2 J .

~3.5c!

In Eq. ~3.5c!, the constant term2mn/4k has been added to simplify the expression ofv(L,L8)
given in Eq.~3.16! shortly. We then have the following Proposition.

Proposition 3.1:For any functionc(t,x) satisfying
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]

]t
c~ t,x!5kH ]2

]x2 2a2bxJ c~ t,x!, ~3.6!

the new wave function given by

c8~ t,x!5K~ t,xuL!c~ t8,x8! ~3.7!

satisfies the same, i.e.,

]

]t
c8~ t,x!5kH ]2

]x2 2a2bxJ c8~ t,x!, ~3.8!

wheret8 andx8 are defined by

t85
ct1d

at1b
, ~3.9a!

x85
x

at1b
1m2n

ct1d

at1b
1k2bH S ct1d

at1bD 2

2
t2

at1bJ . ~3.9b!

Next we will show that the underlying symmetry group is now the semidirect product

G5SL~2,R! sT2~R!. ~3.10!

Let L8 P G with

L85 H M 8,S m8
n8 D J , detM 851

be the second generic element ofG in addition toL given by Eq.~3.3!. We introduce the produc
L+L8 by

L+L85 H MM 8,S m
n D1M S m8

n8 D J , ~3.11!

which can easily be verified to be associative and defines the desired group product of the
G. Note that the unit element 1 and the inverseL21 are then given by

15H S 1 0

0 1D , S 0
0D J , ~3.12a!

L215 H M 21,2M 21S m
n D J , ~3.12b!

respectively. Again, it is convenient to write

Z5$t,x% ~3.13!

collectively for coordinates and assume the action ofL P G to Z to be given by

LZ5L$t,x%5$t8,x8%, ~3.14!

in terms oft8 andx8 given by Eqs.~3.9!. We then find
Proposition 3.2:We have

~ i! L$L8Z%5~L+L8!Z, ~3.15a!
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~ ii ! K~ZuL8!K~L8ZuL!5exp$v~L,L8!%K~ZuL+L8!. ~3.15b!

Here,v(L,L8) is a constant given by

v~L,L8!5
1

4k
$~ma2nc!m81~mb2nd!n8%, ~3.16!

which satisfies the cycle condition

v~L1 ,L2!1v~L1+L2 ,L3!5v~L2 ,L3!1v~L1 ,L2+L3! ~3.17a!

as well as

v~L2
21 ,L1

21!52v~L1 ,L2! ~3.17b!

for L j P G ( j 51,2,3).
The proof of this Proposition requires unfortunately long computations, although it is stra

forward. First, we set

L8Z5L8$t,x%[$ t̄ ,x̄%

so that

t̄ 5f~ tuL8!5
c8t1d8

a8t1b8
,

x̄5j~ tuL8!x1 f ~ tuL8!

with

j~ tuL8!5
1

a8t1b8
,

f ~ tuL8!5m82n8
c8t1d8

a8t1b8
1k2bH S c8t1d8

a8t1b8D
2

2
t2

a8t1b8J .

Since

K~ZuL8!5
1

Aa8t1b8
exp$A~ tuL8!1B~ tuL8!x1C~ tuL8!x2%

and

K~L8ZuL!5
1

Aa t̄1b
exp$A~ t̄ uL!1B~ t̄ uL!x̄1C~ t̄ uL!x̄2%,

we must now evaluate the product

K~ZuL8!K~L8ZuL!5
1

Aa9t1b9
exp$A0~ t !1B0~ t !x1C0~ t !x2%,

with

A0~ t !5A~ tuL8!1A~ t̄ uL!1B~ t̄ uL! f ~ tuL8!1C~ t̄ uL!@ f ~ tuL8!#2,
                                                                                                                



y the

3785J. Math. Phys., Vol. 44, No. 9, September 2003 Time-dependent Schrödinger equations

                    
B0~ t !5B~ tuL8!1B~ t̄ uL!j~ tuL8!12C~ t̄ uL!j~ tuL8! f ~ tuL8!,

C0~ t !5C~ tuL8!1C~ t̄ uL!@j~ tuL8!#2.

Using expressions given in Eq.~3.5!, we can then verify the validity of Eq.~3.15b! after long
calculations. For its computation, the following identities are however quite useful to simplif
proof. Let us set

M 95MM 85S c d

a bD S c8 d8

a8 b8
D 5S c9 d9

a9 b9
D ~3.18!

for M , M 8 P SL(2,R). We then find

~ i! aS c8t1d8

a8t1b8D1b5
a9t1b9

a8t1b8
, cS c8t1d8

a8t1b8D1d5
c9t1d9

a8t1b8
, ~3.19a!

~ ii !
a

~a8t1b8!~a9t1b9!
5

a9

a9t1b9
2

a8

a8t1b8
, ~3.19b!

~ iii ! a8t1b85c~a9t1b9!2a~c9t1d9!,

c8t1d852d~a9t1b9!1b~c9t1d9!. ~3.19c!

Also, for the proof at Eq.~3.17!, it is more convenient to rewrite Eq.~3.16! in the matrix notation
of

4kv~L,L8!5S m
n D T

JMS m8
n8 D , ~3.20!

where (n
m)T is the transpose of (n

m), andJ is given by

J5S 0 1

21 0D , ~3.21a!

which satisfies

MTJM5MJMT5J ~3.21b!

for any M P SL(2,R) and its transpose matrixMT.
Rewriting U andW of Sec. I asU(L21) andW(L21) so that

U~L21!c~Z!5c8~Z!5K~ZuL!c~Z8!, ~3.22!

Proposition 3.2 immediately leads to:
Corollary 3.3: We have

U~L+L8!5exp$2v~L,L8!%U~L!U~L8!, ~3.23a!

W~L+L8!5exp$2v~L,L8!%W~L!W~L8!. ~3.23b!

In other words, bothU(L) andW(L) offer projective representations ofG5SL(2,R)sT2(R).
We note here that the cycle condition, Eq.~3.17a!, ensures the compatibility of Eq.~3.23! with the
associativity of productsU(L)U(L8) andW(L)W(L8).

Before going into further detail, it may be worthwhile to make the following remark.
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Remark 3.4:The groupG5SL(2,R)sT2(R) contains, in some sense, the Galilean gro
Consider a set of allL P G of form

L5H S 1 l

0 1D , S m
n D J , ~3.24!

which causes the coordinate transformation,

t→t85t1l,
~3.25a!

x→x85x1s1vt

with

s5m2nl1k2bl2,
~3.25b!

v52k2bl2n

by Eq. ~3.9!. We note that the classical Newton’s equationmẍ5F is invariant under the Galilean
transformation since the Newtonian forceF is constant for the linear potential. Therefore, in som
sense, the groupG5SL(2,R)sT2 together with Eq.~3.9! may be said to be a quantum
mechanical generalization of the Galilean transform.

We will next give examples of Theorem 1.3 for the case ofV0(x)50 andV(x)5a1bx. For
simplicity, we set

H05H c0~ t,x!US ]

]t
2kD Dc0~ t,x!50J , ~3.26a!

H5H c~ t,x!US ]

]t
2kD1ka1kbxDc~ t,x!50J . ~3.26b!

First, we note that Eq.~1.12! for V0(x)50 implies K(t,x) P H. Solving conditions stated in
Theorem 1.3, we then have two distinct solutions, corresponding toC(x)50 or Þ0. Rewriting
theseK(t,x) now asf j (t,x) ( j 51,2). We have:

Proposition 3.5:Let us set

f 1~ t,x!5exp$2k~a1bx!t1 1
3k

3b2t3%, ~3.27a!

f 2~ t,x!5A1

t
expH 2ktS a1

b

2
xD1

1

12
k3b2t32

x2

4kt J , ~3.27b!

both of which are elements ofH. Then, for anyc0(t,x) P H0 , the functions defined by

c j~ t,x!5 f j~ t,x!c0~ t j8 ,xj8! ~ j 51,2! ~3.28!

are elements ofH, where

t185t, x185x2k2bt2, ~3.29a!

t2852
1

t
, x285

x

t
2k2bt. ~3.29b!

Conversely, supposec(t,x) P H. Then, new functions defined by
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c0
( j )~ t,x!5f j~ t,x!c~ t̃ j ,x̃ j ! ~ j 51,2! ~3.30!

are elements ofH0 , where we have set

f1~ t,x!5exp$k@a1bx#t1 2
3 k2b3t3%, ~3.31a!

f2~ t,x!5
1

At
expH 2

ka

t
2

2

3

k2b3

t3 2
kbx

t2 2
x2

4ktJ , ~3.31b!

with

t̃ 15t, x̃15x1k2bt2, ~3.32a!

t̃ 252
1

t
, x̃25

x

t
1

k2b

t2 . ~3.32b!

So far, we have considered only one-dimensional problems. However, we can find
examples for multidimensional cases with the same symmetry groupG5SL(2,R)sT2(R).

Example 3.6:Suppose thatc(t,x) with x5(x1 ,x2 , . . . ,xn) satisfy

]

]t
c~ t,x!5kH D2(

j 51

n

~a1bxj !2 (
j ,k51

n
ajk

~xj2xk!
2J c~ t,x!, ~3.33!

whereajk with aj j 50 are some constants. We also set

K̃~ t,xuL!5)
j 51

n

K~ t,xj uL!, ~3.34!

whereK(t,xuL) is given by Eqs.~3.4! and ~3.5!. Moreover, we consider the transformation

c~ t,x!→c8~ t,x!5K̃~ t,xuL!c~ t8,x8!, ~3.35!

wheret8 andxj8 are given by Eq.~3.9! by replacingx there byxj8 for eachj 51,2,. . . ,n. When we
note

xj82xk85
1

at1b
~xj2xk!,

for j ,k51,2,. . . ,n, we can readily verify the validity of Eq.~1.9! so thatc8(t,x) is another
solution of Eq.~3.33!.

Example 3.7:As we will see in the following, the two-dimensional nonlinear Schro¨dinger
equation~see Refs. 4 and 7–9 on the subject!

]

]t
c~ t,x1 ,x2!5kH ]2

]x1
2 1

]2

]x2
2 1luc~ t,x1 ,x2!u2J c~ t,x1 ,x2! ~3.36!

possesses alsoG5SL(2,R)sT2(R) symmetry in spite of the nonlinearity of Eq.~3.36!, provided
that the parameterk is purely imaginary. LetK̃(t,x1 ,x2) be given again by Eq.~3.34! with a
5b50 for n52 so that
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K̃~ t,x1 ,x2uL!5
1

at1b
expH 2

1

2k
mn1

n2

2k

ct1d

at1b
2

n

2k

1

at1b
~x11x2!2

1

4k

a

at1b
~x1

21x2
2!J .

~3.37!

We note then that we have

uK̃~ t,x1 ,x2uL!u25
1

~at1b!2

if k is purely imaginary. Then, the new functionc8(t,x1 ,x2) given by Eq.~3.35! for n52 also
satisfies

uc8~ t,x1 ,x2!u25
1

~at1b!2 uc~ t8,x18 ,x28!u2.

As the consequence, it satisfies the analog of Eq.~1.9!, i.e.,

H ]

]t
2kD1kluc8~ t,x1 ,x2!u2J c8~ t,x1 ,x2!

5
1

~at1b!2 K̃~ t,x1 ,x2!H ]

]t8
2kD81kluc~ t8,x18 ,x28!u2J c~ t8,x18 ,x28!50.

Remark 3.8:Let us return now to the functionf 1(t,x) given by Eq.~3.27a!. One thing interesting
about this function is that it is intimately related to a bound state problem. Consider the eigen
problem of

H 2
d2

dx2 1bxJ u~x!5Eu~x! ~3.38!

with the boundary conditionu(0)50 atx50 for some eigenfunctionu(x) P L2(0,̀ ). To see the
connection, we first note

]

]t
f 1~ t,x!5kH ]2

]x2 2~a1bx!J f 1~ t,x! ~3.39!

since f 1(t,x) P H. We next choosek52 i , and observe

lim
t→6`

f 1~ t1 id,x!50,

for any d.0. Therefore, if we set

u~x!5E
2`

`

dt f 1~ t1 id,x! ~3.40!

and integrate Eq.~3.39! in t, u(x) satisfies Eq.~3.38! with E52a. Moreover, lettingd→10, we
calculate

u~x!52E
0

`

dt cosH ~a1bx!t1
1

3
b2t3J , ~3.41!

which is the Airy’s function10 with u(x) P L2(0,̀ ) for b.0. Therefore, if we setx50 with a
52E, the boundary conditionu(0)50 leads to
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E
0

`

dt cosS 1

3
b2t32EtD50. ~3.42!

The relevance of this solution to the quarquonium spectra for theS-wave bound states of th
three-dimensional confining linear potential can be found in Ref. 11.

Remark 3.9: Another interesting property of the function f1(t,x) is that it is invariant under
the following two-dimensional Abelian subgroup G0 of G, which consists of all elements of form

L05H S 1 l

0 1D , S m
0 D J . ~3.43!

Then, it is straightforward to show the validity of

U~L0! f 1~ t,x!5 f 1~ t,x!

so that theG-orbit of f 1(t,x) is the symmetric spaceG/G0 . Note that underL0 , the coordinate
transform as a special Galilean transformation of

t→t85t1l,

x→x85x1~m1k2bl2!12k2blt

by Eq. ~3.25!.
Remark 3.10:If we set m5n50, then the groupG reduces toSL(2,R). Consider now the

following time-dependent potential

V~ t,x!5a1bx1
l

~x2k2bt2!2 ~3.44!

for a constantl. Then, the wave functionc(t,x) satisfying

]

]t
c~ t,x!5kH ]2

]x2 2V~ t,x!J c~ t,x! ~3.45!

is still invariant under theSL(2,R) symmetry, since we will have

x82k2bt825
1

at1b
~x2k2bt2! ~3.46!

under Eq.~3.9! with m5n50. In sec. V, we will also show that any functionc(t,x) satisfying Eq.
~3.45! is an eigenstate of the Casimir invariantI 2 of the s,(2) Lie algebra.

IV. QUADRATIC POTENTIAL

The same method given in the previous sections is also applicable to the case of the qu
potential

]

]t
c~ t,x!5kH ]2

]x2 2~a1v2x2!J c~ t,x!, ~4.1!

for real constantsa andv2. The value ofv2 could also assume a negative value in what follow
However, in order to avoid the question of the reality constraint fort8 andx8, we will temporarily
suppose that variablest, x, t8, andx8 as well as other parameters are allowed to assume com
values. We now perform the coordinate transformation
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t→t85f~ t !, ~4.2a!

x→x85j~ t !x1 f ~ t ! ~4.2b!

as before with

c~ t,x!→c8~ t,x!5K~ t,x!c~ t8,x8!, ~4.3a!

K~ t,x!5exp$A~ t !1B~ t !x1C~ t !x2% ~4.3b!

as in Sec. I. Then Eqs.~1.17! and ~1.18! for n51 give differential equations

~ i! j~ t !j̈~ t !22j̇~ t !j̇~ t !54k2v2j2~ t !$j4~ t !21%, ~4.4a!

~ ii ! j~ t ! f̈ ~ t !22j̇~ t ! ḟ ~ t !54k2v2j5~ t ! f ~ t !, ~4.4b!

~ iii ! ḟ~ t !5j2~ t !, ~4.4c!

among many others.
First, the solution of Eq.~4.4a! leads to

j2~ t !56
exp~4kvt !

$b1a exp~4kvt !%$d1c exp~4kvt !%
~4.5!

for constantsa, b, c, andd satisfyingbc2ad51. At first glance, this appears rather peculi
since the second-order differential equation, Eq.~4.4a!, admits solutions containing three instea
of two arbitrary parameters. However, in writing Eq.~4.5!, we took advantage of the translatio
invariance of Eq.~4.4a! under

t→t85t1 constant,

which adds one more parameter in theory. Then, the general solution of Eq.~4.4b! is found to be

f ~ t !5nFd1c exp~4kvt !

b1a exp~4kvt !G
1/2

2mFb1a exp~4kvt !

d1c exp~4kvt ! G
1/2

, ~4.6!

for additional constantm andn. Therefore, the solution contains five parameters which we spe
by

L5 H M ,S m
n D J , ~4.7a!

M5S c d

a bD at M51 ~4.7b!

just as Eq.~3.3!. If we allow complex values for all these parameters, then the present th
remarkably gives the same symmetry group ofSL(2,C)sT2(C) also as we will see in the
following. However if we restrict ourselves to real values fort, x, t8, andx8, then we will have
the following complications. Because of the square roots operations forj(t) in Eq. ~4.5! as well
as in f (t) of Eq ~4.6!, x8 given by Eq.~4.2b! will not remain real for arbitrary real values ofa, b,
c, d, m, andn. We will discuss the problem later.

Since all functionsj(t), f (t), etc., depend upon the parameters ofL, we rewrite them again
asj(tuL), f (tuL), etc. However, the formulas become simpler, if we use the new variable

u5exp~4kvt !, ~4.8a!
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u85exp~4kvt8! ~4.8b!

instead oft and t8.
We can then rewrite Eq.~4.2! as

u85
cu1d

au1b
, bc2ad51, ~4.9a!

x85j~ tuL!x1 f ~ tuL!, ~4.9b!

where

j~ tuL!5F u

~au1b!~cu1d!G
1/2

, ~4.10a!

f ~ tuL!5nF cu1d

au1bG1/2

2mFau1b

cu1dG1/2

. ~4.10b!

Calculating now explicit forms ofA(tuL), B(tuL), and C(tuL) as in the previous section, w
find:

Proposition 4.1:For anyc(t,x) satisfying Eq.~4.1!, the new function given by

c8~ t,x!5K~ t,xuL!c~ t8,x8!~5U~L21!c~ t,x!! ~4.11!

is also a solution of the same differential equation, Eq.~4.1!. Here, we have set

K~ t,xuL!5exp$A~ tuL!1B~ tuL!x1C~ tuL!x2%, ~4.12a!

A~ tuL!5
1

4
log

u

~au1b!~cu1d!
1

a

4v H logS cu1d

au1bD2 loguJ 1
v

2 H n2
cu1d

au1b
2m2

au1b

cu1d J ,

~4.12b!

B~ tuL!5vH nAu

au1b
1

mAu

cu1dJ , ~4.12c!

C~ tuL!5
v

2 H 211
b

au1b
1

d

cu1dJ . ~4.12d!

We introduce the productL+L8 for two L and L8 again by Eq.~3.11!, which defines the
group G5SL(2,C)sT2(C) for complex L and L8. We also assume the action ofL to the
coordinateZ5$t,x% to be given by Eq.~3.14! so that

LZ5L$t,x%5$t8,x8%. ~4.13!

We then discover after some calculations that the exact analog of Proposition 3.2 also hold
for the present case except for the fact thatv(L,L8) there is now replaced by

v~L,L8!→ṽ~L,L8!5v$~ma2nc!m81~mb2na!n8%. ~4.14!

For the proof of these facts, the identities~3.19! ~with t→u) as well as

b

a9u1b9

a8u1b8

c8u1d8
5

1

c8u1d8
2

a

a9u1b9
, ~4.15a!
                                                                                                                



why
s.

r

t
al

ry

,

igroup

in

3792 J. Math. Phys., Vol. 44, No. 9, September 2003 Susumu Okubo

                    
d

c9u1d9

a8u1b8

c8u1d8
5

1

c8u1d8
2

c

c9u1d9
~4.15b!

are useful, although we will not go into detail. However, we do not understand the reason
both cases of linear and quadratic potentials give at least formally the identical final result

Remark 4.2:In contrast to the case of linear potential, the special transformation Eq.~3.24! of
G5SL(2,R)sT2(R) with Eq. ~4.9! does not give the Galilean formula~3.25! for the present
problem. This is, of course, expected since the classical Newton’s formulamẍ5F5lx ~sor some
constantl! is no longer invariant under the Galilean transformation.

So far we have ignored the question of the reality for variablest, x, t8, andx8. Let us discuss
the problem in some detail in the following. Since both constantsk andv are assumed to be eithe
real or purely imaginary, so will be the productkv. Suppose first thatkv is real. Then,u
5exp(4kvt) is real and positive for realt. The condition that bothx8 andt8 are real requires tha
au1b andcu1d be real with (au1b)(cu1d).0 for anyu.0. This can be possible in gener
only in a neighborhood of the unit elementE5(0

1
1
0) of the SL(2,R) matrix M . Moreover, the

allowed values forM depend upon the timet. In other words, the symmetry group of the theo
is not in general globalSL(2,R) group, but is the so-called local group~or group germ!. Alterna-
tively we may better consider a subset ofSL(2,R) such that alla, b, c, d are non-negative. Then
the reality condition fort8 andu8 is readily maintained. However, the inverse matrixM 21 does
not satisfy the requirement, then. In this case, the symmetry is not a group but a global sem
consisting of all non-negative matrices inSL(2,R), whenkv is real. Note thatm andn are chosen
to be real in the present case in order to makex8 to be real in Eq.~4.9b!.

On the other side, suppose now thatkv is purely imaginary. Then, we haveuuu5uu8u51. In
that case, instead of the parametrization Eq.~4.7b! for M , we may use the conformal mapping
the complexu plane by

u→u85e2iu
u2l

12l* u
, ~4.16!

for real u and any complexl with uluÞ51. The conditionuu8u51 whenever we haveuuu51 is
automatically guaranteed by Eq.~4.16! for arbitrary complex numberl. In terms ofu andl, we
can expressa, b, c, d as

a52
l*

A12ulu2
eiu, b5

1

A12ulu2
e2 iu,

~4.17!

c5
1

A12ulu2
eiu5b* , d52

l

A12ulu2
e2 iu5a*

for ulu,1. This especially gives an identity

cu1d5~au1b!* u ~4.18!

for uuu51. Then, Eq.~4.10a! gives the desired result of the reality constraint of

j~ tuL!5
1

uau1bu
.0.

If we next rewrite Eq.~4.10b! as

f ~ tuL!5nF ~au1b!* u

au1b G1/2

2mF ~au1b!u*

~au1b!* G1/2

~4.19!
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for uuu51, then the reality off (tuL) can also be maintained as long as we have

m* 52n. ~4.20!

We can verify that both Eq.~4.20! and

M5S b* , a*

a, b D
given by Eq.~4.17! remains invariant under the composition law Eq.~3.11!. In conclusion, ifkv
is purely imaginary, the symmetry group of the problem is a particular global subgroupG
5SL(2,C)sT2(C), where we use the parametrization ofSL(2,C) andT2(C) as in Eqs.~4.17!
and ~4.20!. Especially, it contains a group of conformal mappings of transforming the unit c
onto itself in the complexu plane.

Last, we would like to present another example for Theorem 1.3 for the present problem
V0(x)50. Let us set

H05H c0~ t,x!US ]

]t
2k

]2

]x2Dc0~ t,x!50J , ~4.21a!

H15H c~ t,x!US ]

]t
2k

]2

]x2 2k~a1v2x2! Dc~ t,x!50J . ~4.21b!

Solving conditions given in Theorem 1.3, we then find:
Proposition 4.2:For anyc0(t,x) P H0 , the function given by

c~ t,x!5K0~ t,x!c0~ t8,x8! ~4.22!

is an element ofH, where

t852
s2

4kv

1

u1l
, ~4.23a!

x85s
Au

u1l
x2

st

2v

1

u1l
, ~4.23b!

with

K0~ t,x!5
u1/4

~l1u!1/2exp$A0~ t !1B0~ t !x1C0~ t !x2%, ~4.24a!

A0~ t !52
t2

4v

1

u1l
2kat, ~4.24b!

B0~ t !5t
Au

u1l
, ~4.24c!

C0~ t !5
v~l2u!

2~u1l!
. ~4.24d!

Here,s, l, t are arbitrary constants and

u5exp$4kvt%. ~4.25!
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Remark 4.3:Unfortunately, the variablest8 andx8 given by Eq.~4.23! can be real only for the
case ofkv being real. For that case, we can construct solutions of Eq.~4.21b! from that ofc(t,x)
satisfying Eq.~3.26b! by combining Eqs.~3.30! and ~4.22!.

V. LIE ALGEBRAS AND LOCAL SYMMETRY

In the preceding sections, we found that the time-dependent Schro¨dinger equation for some
potentials has global groups as symmetry of the theory. However, much larger local sym
could emerge, if we consider its Lie algebraic structure as follows.

Let us first set for simplicity

K[
]

]t
2kH ]2

]x2 2V~x!J ~5.1!

and

H5$c~ t,x!uKc~ t,x!50%. ~5.2!

Consider now, as an example, the symmetry groupG5SL(2,R)sT2(R) of Sec. III for the linear
potential. We know that for anyc(t,x) P H, we haveU(L)c(t,x) P H for any LP G. Since
G is a Lie group, we can associate a Lie algebraL by considering infinitesimalL’s. It is then
evident that we have

gc~ t,x! P H, g P L. ~5.3!

Let Ũ(L) be the universal enveloping algebra ofL. Also, we will then have

Ũ~L !c~ t,x! P H ~5.4!

wheneverc(t,x) is a sufficiently smooth function oft andx. SinceK is invariant under the time
translationt→t85t1l for any constantl, the Lie algebraL always contain a special element

D[
]

]t
P L ~5.5!

so that this implies the validity of

Dnc~ t,x! P H ~5.6!

for any positive integern. This can be, of course, more directly verified from@Dn,K#50. For the
case of the linear potential of Sec. III, the Lie algebraL consists now of six elements~instead of
five with the additional unit element 1!;

L5$L6 ,L3 ,T1 ,T2 ,1%, ~5.7!

which forms the Abelian-extended Lie algebra of

L5s,~2! % t~2! % u~1!, ~5.8!

whereu(1) is the extra one-dimensional Abelian algebra in conformity with the projective re
sentation nature ofU(L) in Eq. ~3.23!. Their explicit forms are easily calculated from Eqs.~3.4!,
~3.5!, ~3.7!, and~3.9! to be given by

2L35t
]

]t
1

1

2
~x13k2bt2!

]

]x
1kS a1

3

2
bxD t1

1

2
k3b2t31

1

4
, ~5.9a!
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L15
]

]t
12k2bt

]

]x
1k~a1bx!1k3b2t2, ~5.9b!

L25t2
]

]t
1~ tx1k2bt3!

]

]x
1

1

2
t1akt21

1

4
k3b2t41

3

2
kbt2x1

1

4k
x2, ~5.9c!

and

T15
]

]x
1kbt, ~5.10a!

T25t
]

]x
1

1

2k
x1

kb

2
t2. ~5.10b!

They satisfy commutation relations:

@L3 ,L6#56L6 , @L1 ,L2#522L3 , ~5.11a!

@L3 ,T1#5
1

2
T1 , @L3 ,T2#52

1

2
T2 , ~5.11b!

@L1 ,T1#5@L2 ,T2#50, ~5.11c!

@L1 ,T2#5T1 , @L2 ,T1#52T2 , ~5.11d!

@T1 ,T2#5
1

2k
. ~5.11e!

Note that@T1 ,T2#5 1/2k Þ0, reflecting the projective representation of Eq.~3.23!. We note that
T1 andT2 play the role of creation and annihilation operators.

SinceW(L) is also a representation ofG, we can perform the same analysis to find that
corresponding Lie algebraL̃ consisting of

L̃5$L̃6 ,L̃3 ,T̃1 ,T̃2 ,1% ~5.12!

has the form

L̃35L321, L̃15L1 , L̃25L212t,
~5.13!

T̃15T1 , T̃25T2

with the same commutation relation, Eq.~5.11!. When we write

K15
]

]t
2kH ]2

]x2 2a2bxJ , ~5.14!

then Eq.~1.11! becomes

L̃K15K1L. ~5.15!

This especially implies@L1 ,K1#5@T1 ,K1#5@T2 ,K1#50 and@L3 ,K1#5K1 . Moreover, we can
easily find thatK1 is rewritten as a element ofŨ(L) as
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K15L12kT1
2 ~5.16!

while the time derivativeD5 ]/]t is expressed as

D5L122k2bT22ka.

Before going into further details, we note first that the second-order Casimir invariant o
s,(2) sub-Lie algebra ofL is given by

I 25L1L22L3
21L3 . ~5.17!

In contrast, the larger Lie algebraL possesses not the second- but third-order Casimir invari

I 352I 21k$L3~T1T21T2T1!1L1T2T21L2T1T1%. ~5.18!

For our particular form of generators given by Eqs.~5.9! and Eq.~5.10!, we find thatI 3 is purely
a constant

I 35 3
16, ~5.19!

while I 2 is rewritten as

I 25
3

16
1

1

4k
~x2k2bt2!2K1 . ~5.20!

Especially for any functionc5c(t,x) satisfyingK1c50, we haveI 2c5 3
16 c. In this connection,

two special functionsf 1(t,x) and f 2(t,x) given in Eq. ~3.27! have the following interesting
property. They satisfy

L1 f 1~ t,x!5T1f 1~ t,x!50, L3f 1~ t,x!52 1
4 f 1~ t,x!, ~5.21a!

L2 f 2~ t,x!5T2f 2~ t,x!50, L3f 2~ t,x!5 1
4 f 2~ t,x!. ~5.21b!

Therefore, the functionf 1(t,x) corresponds to the highest weight state of simultaneous repre
tations of boths,(2) andL, while f 2(t,x) plays the role of the lowest weight state of anoth
representation. They are infinite dimensional and irreducible butnot unitary. Moreover, they
satisfyK1f j (t,x)50 for j 51,2 so that we have

I 2f j~ t,x!5I 3f j~ t,x!5 3
16 f j~ t,x! ~ j 51,2!. ~5.22!

Also, in view of Eq. ~5.20!, the wave functionc(t,x) satisfying Eqs.~3.44! and ~3.45! is the
eigenstate ofI 2 with

I 2c~ t,x!5H 3

16
2

l

4J c~ t,x!.

The same analysis is readily applicable for the quadratic potential of Sec. IV. In this cas
Lie algebrasL and L̃ are specified by

2L35u
]

]u
1

a

4v
, ~5.23a!

L15
]

]u
2

1

2u
x

]

]x
1S a

4v
2

1

4D 1

u
1

v

2

x2

u
, ~5.23b!
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L25u2
]

]u
1

1

2
ux

]

]x
1S a

4v
1

1

4D u1
v

2
ux2, ~5.23c!

T15
1

Au

]

]x
2

v

Au
x, ~5.23d!

T25Au
]

]x
1vAux, ~5.23e!

with u5exp(4kvt), and

L̃35L3 , L̃15L12
1

u
, L̃25L21u, ~5.24a!

T̃15T1 , T̃25T2 . ~5.24b!

They satisfy the same commutation relations. Eqs.~5.11a!–~5.11d! while Eq. ~5.11e! is now
replaced by

@T1 ,T2#52v. ~5.25!

Writing

K25
]

]t
2kH ]2

]x2 2a2v2x2J , ~5.26!

the analogs of Eqs.~5.15!, and~5.16!, are now given by

L̃K25K2L, ~5.27a!

K2524kvL32
k

2
~T1T21T2T1!, ~5.27b!

D5
]

]t
524kvL32ka. ~5.27c!

Especially, Eqs.~5.24! and ~5.27a! lead to

@L3 ,K2#5@T1 ,K2#5@T2 ,K2#50.

For this case, the second-order Casimir invariantI 2 is still given by Eq.~5.17!, while Eq. ~5.18!
for I 3 must now be replaced by

I 352I 21
1

4v
$L3~T1T21T2T1!1L2T1T11L1T2T2%. ~5.28!

We still have the validity ofI 353/16 but Eq.~5.20! is now replaced by

I 25
3

16
1

1

4k
x2K2 . ~5.29!

Especially, ifc(t,x) now satisfies
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H ]

]t
2kS ]2

]x2 2a2v2x22
l

x2D J c~ t,x!50

for some constantl, then Eq.~5.29! now implies

I 2c~ t,x!5S 3

16
2

l

4Dc~ t,x!.

There exist relations analogous to Eqs.~5.21!. Setting

g1~ t,x!5expH k~v2a!t1
v

2
x2J , ~5.30a!

g2~ t,x!5expH 2k~v1a!t2
v

2
x2J , ~5.30b!

it is easy to verify

K2g1~ t,x!5L1g1~ t,x!5T1g1~ t,x!50, L3g1~ t,x!52 1
4 g1~ t,x!, ~5.31a!

K2g2~ t,x!5L2g2~ t,x!5T2g2~ t,x!50, L3g2~ t,x!5 1
4 g2~ t,x!. ~5.31b!

Note thatg2(t,x) given by Eq.~5.30b! corresponds to the ground state wave function of
familiar harmonic potential. It is again the lowest weight state of representations of boths,(2)
and L. Another interesting function is obtained by settingt5l50, ands51 with appropriate
choice forc0(t,x) in Proposition 4.3. In this way, the function

g3~ t,x!5expH 2k~a1v!t2
v

2
x22g

x

Au
2

g2

4v

1

uJ ~5.32!

for an arbitrary constantg turns out to be a simultaneous eigenfunction ofK2 , T2 , andL2 as in

~ i! K2g3~ t,x!50, ~5.33a!

~ ii ! T2g3~ t,x!5gg3~ t,x!, ~5.33b!

~ iii ! L2g3~ t,x!5
g2

4v
g3~ t,x!. ~5.33c!

Especially, Eq.~5.33b! implies thatg3(t,x) plays a role of coherent state as in the quant
optics,12 sinceT2 may be regarded as the analog of the annihilation operator.
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Nonlinear transforms of momenta and Planck scale limit
A. Chakrabartia)
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Starting with the generators of the Poincare´ group for arbitrary mass~m! and spin
~s!, a nonunitary transformation is implemented to obtain momenta with an abso-
lute Planck scale limit. In the rest frame~for m.0) the transformed energy coin-
cides with the standard one, both beingm. As the latter tends to infinity under
Lorentz transformations the former tends to a finite upper limitm coth(lm)5l21

1O(l), where l is the Planck length and the mass-dependent nonleading terms
vanish exactly for zero rest mass. The invariantm2 is conserved for the transformed
momenta. The speed of light continues to be the absolute scale for velocities. We
study various aspects of the kinematics in which two absolute scales have been
introduced in this specific fashion. The precession of polarization and transformed
position operators are among them. A deformation of the Poincare´ algebra to the
SO(4,1) de Sitter one permits the implementation of our transformation in the
latter case. A supersymmetric extension of the Poincare´ algebra is also studied in
this context. ©2003 American Institute of Physics.@DOI: 10.1063/1.1593225#

I. INTRODUCTION

Possible modifications of special relativity introducing, in addition to the velocity of ligh
second invariant scale corresponding to the Planck energy~the inverse of the Planck length! have
been studied in numerous recent papers exploring various aspects.1–11 The titles of these paper
~citing other relevant sources! convey some idea of the topics addressed. Among the papers
above, our work can be compared most directly, concerning both analogies and crucial differ
with the work of Magueijo and Smolin.4,5 Like them, we introduce the nonlinear constructions v
a nonunitary transformation. But~unlike all the foregoing studies! we introduce spin at the outse
To be able to do so adequately, we start with an irreducible representation@m,s# of the Poincare´
group of positive rest mass (m.0) and an arbitrary integer or half-integer spins. The momentum
generators are thus constrained to satisfy

PmPm5P0
22PW 25m2. ~1!

It will be implicit henceforth that~with a positive square root and¹ i denoting the derivative with
respect toPi),

P05APW 21m2, ¹W P05
PW

P0
. ~2!

Introducing (2s11)3(2s11) spin matricesSW , satisfying

@Si ,Sj #5 i e i jkSk , ~3!

a!Electronic mail: chakra@cpht.polytechnique.fr
b!Laboratoire Propre du CNRS UPR A.0014.
38000022-2488/2003/44(9)/3800/9/$20.00 © 2003 American Institute of Physics
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the generators of pure rotations (JW ) and those of pure Lorentz transformations (KW ) can be repre-
sented as

JW52 iPW 3¹W 1SW , ~4!

KW 52 iP0¹W 2
PW 3SW

P01m
. ~5!

Let us briefly note the following points12 for later use.
~a! The first term ofKW shouldnot be symmetrized. The hermiticity ofKW and the relation to

Newton–Wigner position operators are discussed in Ref. 12@from Eq. ~2.18! onward#.
~b! For m50, the last term ofKW is not well defined only for energy momenta~0,0,0,0!,

namely, at the tip of the light cone that is never in the same orbit with

p250, p0Þ0.

Hence, excluding massless particles with strictly zero energy, one can consistently u~5!
with m50. We will present below results form50 obtained systematically in this fashion. A
explicit unitary transformation to Wigner’s construction in terms of the little groupE2 has been
presented elsewhere~see the discussion and the references in Ref. 12 from Eq.~2.21! onward!.
There it is explained how, in spite of the presence of three spin components in~4! and ~5!, one
finally deals with only one conserved helicity component form50.

~c! The canonical form given by~4! and ~5! is valid for any spin. The Pauli–Lubansk
4-vector is obtained by contracting the dual of the tensor (JW ,KW ) by Pm , or equivalently as

Wm52 i @Pm ,KW •JW # ~6!

5~PW •JW ,P0JW2PW 3KW ! ~7!

5„PW •SW ,mSW 1~P01m!21~PW •SW !PW …. ~8!

This satisfies

WmWm52m2SW 2. ~9!

The relation, fors51/2, with the the Dirac representation and the Dirac equation, are indicat
Ref. 12 @from Eq. ~2.49! onward#. The relevant transformation relating the two representati
diagonalizes the Dirac mass operator (g•p).

Before introducing the explicit form of the transformationV ~to be presented below! let us
note the following aspect.

Having explicitly constructed all the transforms,

V~P0 ,PW ,JW ,KW !V21, ~10!

one can study the set

V~JW ,KW !V21,~P0 ,PW !,

or, in a complementary fashion, the set

~JW ,KW !,V~P0 ,PW !V21.

In the latter case one conserves the explicit representation of the Lorentz algebra and
ates physical significance with the transformed momenta. We will adopt the latter approach
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@providing, however, complete results for~10!#. This will furnish, in the terminology of Ref. 7, an
example of DSR2 theories with bounded energy and momenta. The inverse formulas, givi
standard momenta in terms of the transformed ones, are obtained very simply.

II. THE TRANSFORMATION

Let

V5exp~2 lP0PW •¹W !, ~11!

where 0, l !1, andP05APW 21m2.
In fact, one may assume that in our chosen units (c51), l is the Planck length, which is, mor

generally,

l P5A~ h̄G/c3!. ~12!

As compared to the corresponding operator,

U215exp~2 l Pp0pm]m!, ~13!

of Ref. 4, we have kept only the three space components in the scalar product, but still w
factor P0 rather thanP5uPW u. This is crucial for the remarkable properties obtained below
arbitrary spin.

Implementing, consistently with~2!, for any f ,

@¹W ,P0# f 5
PW

P0
f ,

one obtains

PW [VPW V215
mPW

sinh~ lm!P01cosh~ lm!m
, ~14!

P0[VP0V215m
cosh~ lm!P01sinh~ lm!m

sinh~ lm!P01cosh~ lm!m
, ~15!

satisfying

P0
22PW 25P0

22PW 25m2, ~16!

VJWV215JW52 iPW 3¹W 1SW , ~17!

VKW V2152 i cosh~ lm!P0¹W 2 i sinh~ lm!„m¹W 1m21PW ~PW •¹W !…2e2 lm
PW 3SW

P01m
. ~18!

Note the simplicity of the spin-dependent part on the right of~18!. This corresponds to

V
PW

P01m
V215e2 lm

PW

P01m
. ~19!

Hence, squaring each side and using~1!, one obtains

V
P02m

P01m
V215e22lm

P02m

P01m
. ~20!
                                                                                                                



ale

3803J. Math. Phys., Vol. 44, No. 9, September 2003 Nonlinear transforms of momenta

                    
Thus, one readily obtains~15! and hence also~14!. If, without knowing~15! beforehand, one
proceeds directly to compute the power series,

P05VP0V215P02 l @P0~PW •¹W !,P0#1 l 2
†P0~PW •¹W !@P0~PW •¹W !,P0#‡2¯ , ~21!

one obtains

P05P02 l ~P0
22m2!1 l 2P0~P0

22m2!2¯ . ~22!

The series is difficult to sum up. On the other hand, developing~15! in powers ofl , one easily
reproduces~22!. One similarly obtains for the modulus of the momentum,

P5P2 lPP01 1
2 l 2P~P0

21P2!2¯ . ~23!

It is easy to verify that~14! and~15! can be inverted by simply changing the sign ofl . Thus,

P05m
cosh~ lm!P02sinh~ lm!m

2sinh~ lm!P01cosh~ lm!m
, ~24!

and so on. This is consistent with the invariance of„P0(PW •¹W )… under the transformation.
Let us now consider momentum eigenstates and denote the eigenvalues ofPm andPm by pm

andpm8 , respectively. Then

p085m
coth~ lm!p01m

p01coth~ lm!m
. ~25!

Hence, since we are considering positivep0 , m, and l ,

p08,coth~ lm!m.

Similarly, for the modulus of the momentum, one obtains

p8,
m

sinh~ lm!
.

Thus our transformation, valid for arbitrary spin, indeed leads to an invariant energy sc.
This is the crucial property. For

p05m, p085m,

and as

p0→`, p08→coth~ lm!m,

from below.For all observers, p08 remains bounded. Starting together withp0 in the rest framep08
lags progressively behind as the former increases to finally encounter the barrierm coth(lm). In
powers ofl , one obtains

p08, l 211 1
3 m2l 1O~ l 2!, ~26!

and

p8, l 212 1
6 m2l 1O~ l 2!. ~27!
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The modulus of the transformed velocity, quite consistently with our chosen units (c51), has
the high-energy limit, forp0→`, given by

p8

p08
→ 1

cosh~ lm!
512

1

2
l 2m2,1. ~28!

The limit 1 is attained exactly for form50. This will be seen more precisely immediate
below.

III. ZERO REST MASS

As explained in~b! following Eq. ~5!, the essential results form50 can be obtained~rather
than starting again withm50 in V) easily and directly from our previous ones. Thus form→0
one obtains from~14! and ~15!,

PW 5
PW

lP011
~29!

and

P05
P0

lP011
, ~30!

satisfying evidently~like P0 andPW )

P0
22PW 250.

Now, as compared to the inequality following~25!, again for all parameters positive,

p085
p0

lp011
, l 21. ~31!

As

p0→`, p08→ l 21,

from below. And as compared to~28!,

p8

p08
5

p

p0
51. ~32!

Thus, considering all masses and the system

~JW ,KW ,P0 ,PW !,

one indeed implementstwo absolute scales: one for velocity(c51) and one for energy. The
leading term for the limiting energy is alwaysl 21. This becomes exact for zero rest mass. F
positive mass the exact result is provided by~25!.

IV. PRECESSION OF POLARIZATION

SinceV commutes withSW the standard results for precession of polarization are conse
~See the complete discussion in Ref. 12.! They can, however, be reexpressed in terms of (P0 ,PW ),
if so desired. Thus, under an infinitesimal Lorentz transformation of velocity tanhx (→x) parallel
to the unit vectorn̂, the change
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dSW 5 i @xn̂•KW ,SW #52x
~ n̂3PW !3SW

P01m
52xelm

~ n̂3PW !3SW

P01m
. ~33!

Thus, the formal expression is altered by a simple overall factorelm
„511O( l )…. In Ref. 12,

it is explained how~33! leads to the famous Thomas factor1
2. We will not go further into such

topics in the present study.
We indicate below very briefly possible generalizations of our study in two different d

tions.

V. DEFORMATION OF POINCARÉ TO SO„4,1… de SITTER ALGEBRA

The Lorentz algebra has two invariants:

~KW ,JW !, ~KW 22JW2!.

As pointed out before@see Eqs.~6!–~9!#, commutingPm with the first one leads toWm giving
the spin. The commutation ofPm with the second leads to the homogenousSO(4,1) algebra,
where@along with the LorentzSO(3,1) generators andm5(0,1,2,3)]

Lm55
i

M
@~KW 22JW2!,Pm#1lPm . ~34!

Here M5(PmPm)1/2 is the mass operator andl is an arbitrary parameter. Starting with an irr
ducible space@m,s# ~with m.0, say! one can compute explicitly the actions ofLm5 on the states
using ~34!. Elsewhere,13 we have studied~34! in a more general context using, however, t
Lorentz basis. Here we only point out that (VLm5V21) is obtained directly from our foregoing
results. A detailed study is beyond the scope of this paper.

VI. A SUPERSYMMETRIC EXTENSION

A simple supersymmetric extension14 permitting a ready implementation of our transform
tion can be obtained as follows.~Previous sources are cited in Ref. 14.! One starts with two
fermionic operators satisfying~for i 51,2)

@ai ,aj #1505@ai
† ,aj

†#1 , @ai ,aj
†#15d i j .

One definesQ5(Q1 ,Q2) and the adjointQ† ~a column with two rows! as

Q†5
1

A2~P01M !
@~P01M !1tW•PW #a†. ~35!

Then in terms of Pauli matrices,

@Q†,Q#15t0P01tW•PW . ~36!

This compact notation implies symmetrization of each term of the 232 matrixQ†Q. Thus, for
example, at the top right one obtains

Q1
†Q21Q2Q1

†5P12 iP2 .

A Majorana spinor is provided by (Q1 ,Q2 ,Q†
2 ,2Q†

1).
Next, one defines

SW 5 1
2 ~atWa†!. ~37!
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Adding the spin operatorSW to SW , define

JW52 iPW 3¹W 1~SW 1SW !, ~38!

KW 52 iP0¹W 2
PW 3~SW 1SW !

P01m
. ~39!

Now (Pm ,KW ,JW ) continue to satisfy the Poincare´ algebra along with

@JW ,Q†#52 1
2 tWQ†, ~40!

@KW ,Q†#52
i

2
tW Q†. ~41!

Thus, ~36!, ~40!, ~41! together complete the supersymmetric extension. Various aspect
studied in Ref. 14, citing other sources. Here we only note thatSW commutes withV and denoting

Q̃5VQV21,

Q̃†5
1

A2~P01M !
@~P01M !1tW•PW #a†, ~42!

and

@Q̃†,Q̃#15t0P01tW•PW . ~43!

Thus, our transformation can be readily implemented for such an extension. A more de
study is beyond the scope of this paper.

VII. GRADIENT OPERATORS FOR PW

One obtains for transforms of¹W , consistently with~15! and ~18! and withP0 given by ~15!,

jW5
1

P0
~„cosh~ lm!P01sinh~ lm!m…¹W 1m21 sinh~ lm!PW ~PW •¹W !!, ~44!

where

jW[V¹W V21.

Hence, for suchj i ,

@j i ,Pj #5d i j ~45!

and

@j i ,j j #50. ~46!

Substituting forj i ,

j i85j i1V fiV
21,

where f i depends only on the momenta conserves~45! but not necessarily~46! unless
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~] i f j2] j f i !50.

In particular, starting with the localizing and Hermitian Newton–Wigner position opera
@Ref. 12 from Eq.~2.18! onward#, namely,

XW 5 i¹W 2
PW

2P0
2 , ~47!

one obtains

VXW V215 i jW2
PW

2P0
2 . ~48!

The components continue to satisfy~45! and ~46! ~with a factori ).
We will not attempt to explore here whether other choices can lead to interesting nonco

tative Hopf algebras for the coordinates. Both noncommutative~Ref. 9 and sources cited! and
commutative5 space–times have been proposed in the context of Planck scale limits of mom
In our formalism, apart from the commutativity of~46!, the timet remains a parameter@P0 being
given by ~2!#.

VIII. CONCLUSION

For all mass and spin we have obtained nonlinear functions of the standard momenta p
ing a Planck scale limit. Our construction exhibits that such a property is quite consistent w
fixed velocity of light, time remaining a parameter and commuting position operators corres
ing to those for the nonlinear momenta. Even if one deliberately seeks a different form
violating such properties, a comparison with our formalism will provide a deeper understan

Due to the fact that the new momenta are introduced via a relatively simple conjugatio
our V, all relevant properties are obtained fairly easily and systematically. This has permi
ready passage to de SitterSO(4,1) and to a supersymmetric extension as well.

Elsewhere15 we have presented explicit constructions for the generators of the Poincare´ group
for spacelike momenta and for lightlike momenta with continuous spin. We just mention tha
have strong analogies with those introduced here for the timelike case and thus may sugge
our transformation can be adapted to those cases.

We add the following notes.

~1! In this paper we try to clarify further the properties of the transformed momenta. We r
that in our case equivalence with the standard~untransformed! case would have persisted had o
used~10!, namely,

V~P0 ,PW ,JW ,KW !V21.

But implementing, as we choose to do,

V~P0 ,PW !V21,JW ,KW ,

one obtains fundamentally different properties.Leaving untouchedthe realization of the Lorentz
algebra and the base space, we attribute direct physical significance to the transformed mo
One can legitimately explore other, different postulates. Here we have tried to indicate the re
able consequences of adopting this one, along with our specific transformation.

The simplicity of the inverse transformation@see~24! and related comments# permits quite
straightforward derivations of the nonlinear Lorentz transformation properties of the new
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menta and the new addition law for velocities. For brevity, we give only one example.
Consider a pure Lorentz transformation along the unit vectorn̂ and denoteKW •n̂5Kn and so

on. Now

eixKnP0e2 ixKn5coshxP01sinhxPn

and

eixKnP0e2 ixKn5m
f 1„P02m coth~ lm!…1coth~ lm!sinhx„sinh~ lm!Pn1m cothx…

f 2„P02m coth~ lm!…1sinhx„sinh~ lm!Pn1m cothx…
,

where

f 15„coshx„cosh~ lm!…22„sinh~ lm!…2…, f 25cosh~ lm!sinh~ lm!~coshx21!.

It is evident that the eigenvaluem coth(lm) of P0 is invariant under Lorentz transformation
Thus the Planck scale limit presented below~25! is encapsulated in the nonlinear Lorentz tran
formation laws forPm . In form and also in content, the two transformation laws exhibited av
are, to say the least, distinguishable.
~2! A paper by Ahluwalia, Kirchbach, and Dadhich~gr-qc/0212128! has been brought to ou
notice. There also spin has been taken into consideration. In contrast to our canonical gen
@~4!,~5!# spinor equations are introduced starting with the Dirac equation. We have indi
@below ~9!# references to transformations relating spinor and canonical representations.
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We show that the Ocneanu algebra of quantum symmetries, for anADE diagram
~or for higher Coxeter–Dynkin systems, like the Di Francesco–Zuber system! can
be, in most cases, deduced from the structure of the modularT matrix in theA
series. We recover in this way the~known! quantum symmetries of su~2! diagrams
and illustrate our method by studying those associated with the three genuine ex-
ceptional diagrams of type su~3!, namely,E5 , E9, andE21. This also provides the
shortest way to the determination of twisted partition functions in boundary con-
formal field theory with defect lines. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1592609#

I. INTRODUCTION

This article provides a simple tool for the determination, in most cases, of the algeb
quantum symmetries associated withADE Dynkin diagrams@considered as quantum su~2! ob-
jects# or with their generalizations to higher systems@Di Francesco–Zuber diagrams in the case
su~3!#.

Although a precise general definition of extended Coxeter–Dynkin systems is still lackin
known examples always contain a ‘‘principal’’ series~theA series! and a finite number of ‘‘genu-
ine exceptional’’ cases.24 The other diagrams of the system are obtained as orbifolds of the gen
diagrams~exceptional or not! and as twists or conjugates~sometimes both! of the genuine dia-
grams and of their orbifolds. In the case of su~2! ~the usualADE system!, we have the principal
A series, and the two genuine exceptional casesE6 andE8 ; theD2n diagrams are orbifolds of the
A4n23 diagrams; and theD2n11 diagrams are orbifolds of theA4n21 diagrams andE7 is a twist of
theD10 diagram~itself an orbifold ofA17). In the case of su~3! ~the Di Francesco–Zuber system
slightly amended by A. Ocneanu in Ref. 25!, we have the principal seriesAk , and three genuine
exceptional diagrams:E5 , E9, andE21; the others~in particular the other four exceptionals! of the
system are obtained from these genuine diagrams by orbifolding, twisting and conjugating

In some cases, the vector space spanned by the vertices of a given diagramG admits
‘‘self-fusion,’’ 27,28 i.e., it possesses an associative algebra structure with positive integral str
constants@like An , D2n , E6 andE8 for the su~2! system#. Sometimes it does not~like D2n11 and
E7). In all cases, this vector space is a module over the associative algebra of the par
diagramA of theA series which has the same Coxeter number~whose definition has to be suitabl
generalized for the higher systems!.

The A series is always modular: one can define a representation of SL(2,Z) on the vector
space of every diagram of this class~actually this representation factors to a finite group, but

a!Electronic mail: robert.coquereaux@cpt.univ-mrs.fr
b!Electronic mail: schieber@if.ufrj.br
38090022-2488/2003/44(9)/3809/29/$20.00 © 2003 American Institute of Physics
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shall not need this information here!. The standard generators of this group are calledS andT.
The vector space of the chosen diagram comes with a particular basis, where the basis vec
associated with graph vertices. The operatorT is diagonal on the vertices.

Take G to be a diagram andA to be the corresponding member of theA series. Being a
module over the algebra ofA, there exist induction-restriction maps betweenG andA and one can
try to define an action of SL(2,Z) on the vector space ofG, in a way that would be compatible
with those maps; this is not necessarily possible. In plain terms, suppose that the vertexs of G
appears both in the branching rules~restriction map fromA to G) of verticestp andtq of A; one
could think of defining the value of the modular generatorT on s either asT(tp) or asT(tq), but
this is ambiguous, unless these two values are equal. In general, there is only a subsetJ of the
vertices ofG for which T can be defined: a vertexs will belong to this subset wheneverT is
constant along the vertices ofA whose restriction toG containss.

Following Ocneanu,23 to every diagramG ~with or without self-fusion! belonging to a
Coxeter–Dynkin system, one can associate a bialgebraBG. This bialgebra should be, technicall
a weak Hopf algebra—or quantum groupoid—and we have checked this in a few cases, but
not aware of any general proof~see our comments in the final section!. By using a particular scala
product, one can trade the comultiplication for a multiplication and think thatBG is a di-algebra
rather than a bialgebra. There are two—usually distinct—block decompositions for this di-alg
Blocks of the first type are labeled by points of a diagramA ~the member of theA series that has
same Coxeter number asG). Blocks of the second type are labeled by points of another diag
that we call Oc(G). The two sets of orthogonal projectors associated with these two block
compositions can be multiplied with either of these two associative multiplications and this a
one to define associative algebra structures on the vector spaces spanned by the vertices o
graphsA and Oc(G). We denote these algebras by the same symbol as the graphs themsel
the particular case whereG is a member of theA series, these algebras coincide. In all casesA
is an algebra with a single generator and it is commutative. Oc(G), also called ‘‘algebra of
quantum symmetries ofG, ’’ is in general an algebra with two generators~only one ifG5A) and
it is not always commutative.

In the cases where Oc(G) is commutative, we observe that this algebra of quantum sym
tries can be written in terms of a tensor product of appropriate graph algebras, but the
product should be taken above some subalgebra determined by the modular properties of th
G and we refer to Sec. III for a discussion of the severalADE cases. Paradoxically, the simple
cases~besides theAn) are those where the diagramG is an exceptional diagram equal toE6 or E8

~notice thatE7 does not enjoy self-fusion!; in those simple cases Oc(G) is isomorphic withG
^ JG, whereJ is the particular subalgebra of the graph algebra ofG whose determination~using
modular considerations! was sketched previously. The tensor product sign, taken ‘‘aboveJ, ’’
means that we identifyau^ b anda^ ub wheneveruPJ,G. When Oc(G) is not commutative,
the method is not fully satisfactory, as we shall see.

The structure of our article is as follows. The first section reminds the reader of several
~but not necessarily widely known! facts about graph algebras and their quantum symmetrie
also precises our notations. The reader already familiar with quantum symmetries of graph
skip this part. In the second section, we consider the su~2! Coxeter–Dynkin system, i.e., the usu
ADE diagrams. For every one of them we simply recover the structure of Oc(G) by our method
~which is not fully satisfactory forD2n , since the algebra of quantum symmetries of the late
non commutative!. We give more details on theE6 case because it is both nice and pedagogi
In the third section, we move to the su~3! Coxeter–Dynkin system. After some generalities
these Di Francesco–Zuber graphs and a short description of the cases associated with diag
A type ~which are relatively trivial!, we study, in detail, also because it is simple enough to
pedagogical, the quantum symmetries of the diagramE5 ~the David star!, which is one of the three
genuine exceptional cases and is a module overA5 . The technique being now clear, we list on
the results for the other two genuine exceptional diagramsE9 andE21, i.e., we give their induction-
restriction graphs, the values of the modular operatorT and, forE5 andE21, the structure of their
Ocneanu graph. To every point of such a graph, one may associate a ‘‘toric matrix,’’7,23 or,
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equivalently, a twisted partition function in boundary conformal field theory with defect line31

we also give their explicit expressions for the studied su~3! cases, at least those associated with
so-called ambichiral points~to keep the size of this article reasonable!. The list of Di Francesco–
Zuber graphs being quite long, we stop at this point, but all the other associated Ocneanu
should be obtained by proper generalizations of the study made for su~2!; the details can, admit-
tedly, be quite intricate, in particular for those graphs for which Oc(G) is not commutative.

Many topics discussed in the present article are already known to experts. We believe
ever, that a systematic discussion of the correspondence between the eigenvalues of theT opera-
tors and the determination of quantum symmetries is not available elsewhere. Our explicit
concerning the Ocneanu graphs of several exceptional diagrams of the su~3! system seem also to
be new, and, we hope, of interest for the reader.

II. ABOUT COXETER–DYNKIN GRAPH ALGEBRAS AND THEIR QUANTUM
SYMMETRIES

A. Generalities

To a diagramG belonging to a~possibly higher! Coxeter–Dynkin system, one can associat23

a bialgebraB(G) that we call Ocneanu–Racah–Wigner bialgebra~the precise definition of this
bialgebra uses the notion of essential paths on the graphG: see our discussion in the Appendix!.
According to A. Ocneanu~unpublished!, this object, also called ‘‘algebra of double triangles,’’
a semi-simple weak Hopf algebra~or quantum groupoid!—see Refs. 3 and 21 for general pro
erties of quantum groupoids. We shall not use it explicitly in our article and it is enough to
that, as a bialgebra, it possesses two associative algebra structures~say ‘‘composition+’’ and
‘‘convolution !’’ !, for which the underlying vector space can be block diagonalized~i.e., decom-
posed as a sum of matrix algebras! in two different ways. Diagonalization of the convolutio
product is encoded by a finite dimensional algebra Oc(G) called ‘‘algebra of quantum symme
tries.’’As a vector space, Oc(G) contains one linear generator for every single block of (B(G),!).
As an algebra, it has a unit called 0I and two generators called 1I L and 1I R , which, whenG is a
member of anA series, coincide. Like the graph algebra ofG ~when it exists!, the algebra Oc(G)
comes with a preferred basis. Even when the vector space ofG does not admit self-fusion, so tha
it is only a module over the correspondingA, the associated object Oc(G) is always both an
associative algebra and a bimodule overA^ A. This last structure is encoded by a set of matric
that we call ‘‘toric matrices’’; there is one such matrix for every point of the Ocneanu graph.
multiplicative structure of Oc(G) is fully determined by the two Cayley graphs of multiplicatio
by the generators; the union of these two graphs is called the Ocneanu graph ofG and is denoted
by the same symbol. In most cases, Oc(G) is isomorphic with a tensor product—over a particu
subalgebraJ—of two associative and commutative algebras; we write^̇ [ ^ J this tensor product;
in these cases, Oc(G) is commutative. When it is not commutative@the case ofD2n for the su~2!
system#, one has also to add some matrix algebra component to this tensor product, in or
take the non-commutativity into account~see Ref. 8 for explicit formulas forD2n cases!. The two
generators of Oc(G) read 1I L51^̇ 0 and 1I R50^̇ 1. Their algebraic span are respectively the ‘‘le
chiral’’ and ‘‘right chiral’’ parts. The intersection of chiral subalgebras is called ‘‘ambichiral’’ a
the vector space spanned by those~preferred! linear generators which belong to none of the chi
parts is called ‘‘the supplementary part.’’ All these structures lead to ‘‘nimreps’’~non-negative
integer valued matrix representations! of certain algebras.30

From the point of view of conformal field theory, we are interested in partition functions
torus with defect lines. When there are no defects these partition functions are modular inv
this is usually not so in the presence of defects. In all cases, they are sesquilinear form
non-negative integer entries defined on the vector space spanned by the characters of an a
algebraĜ. Here we forget this interpretation and replace these characters by vertices of a di
of type A. Partition functions are therefore square matrices indexed by these vertices. I
recognized more than 7 years ago by A. Ocneanu~published reference is Ref. 23! that ‘‘the’’
modular invariant of Cappelli–Itzykson–Zuber,4,26,33for a givenADE diagramG, was given by
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the toric matrixW0 associated with the origin 0I of the graph Oc(G). To see an example of how

all this works, the reader may look at Ref. 7, where toric matricesWx associated with the 12 point
x of the graph Oc(E6) are calculated. In Ref. 29 it was shown~among other things! that to the
other points—other than the origin—of a graph Oc(G) can be associated partition functions
boundary conformal field theory~BCFT! with one defect line; these functions are not modu
invariant. More general toric matrices~or partition functions! Wx,y , associated to BCFT with two
defect lines, were also introduced in the same paper~note:Wx[Wx,0I ). Fully explicit expressions
for the twisted partition functionsWx are given in Ref. 8, for allADE cases, by using the
formalism introduced in Ref. 7. This was done independently of Ref. 31. It should probab
stressed that all these expressions were already obtained~but unpublished! almost 8 years ago by
A. Ocneanu himself.

The direct determination of the algebra Oc(G), with the definition provided by A. Ocneanu
is not an easy task and the associated graphs are only known~published! for the su~2! Coxeter–
Dynkin system. One of the purposes of Refs. 7 and 8, besides the calculation of the toric ma
was actually to give an algebraic construction providing a realization of thealgebra Oc(G) in
terms of graph algebras associated with appropriated Dynkin diagrams.

In the simple cases~paradoxically, for Dynkin diagrams, besides theAn themselves, the
‘‘simple’’ cases happen to be those whereG is an exceptional diagram equal toE6 or E8), the
algebra of quantum symmetries is isomorphic withG^ JG, whereJ is a particular subalgebra o
the algebra ofG ~we refer to Ref. 8 for a discussion of allADE cases!. The tensor product sign
taken ‘‘aboveJ, ’’ means that we identifyau^ b anda^ ub wheneveruPJ,G. In the last quoted
reference, the Ocneanugraphs, determined by Ocneanu himself, had to be taken as an input.
was a weak point in our approach.

For the su~2! Dynkin system, i.e., forADE diagrams, one purpose of the present article is
show that the structure of Oc(G), can be, in most cases, determined from the eigenvalues o
modularT matrix in the Hurwitz-Verlinde representation,1,15,34associated with the graph algeb
of An . The method is general but its implementation depends about the type of diagram c
ered, i.e., whether it is a member of theA series, a genuine exceptional, or if it is obtained as
orbifold or by twisting. In any case, one has first to select a particular subspaceJ by using the list
of eigenvalues of the modular operatorT acting on the vertices belonging to the correspondingA
diagram. In the case ofE6 , for instance, the subsetJ, obtained as explained in the introduction, b
using a modular constraint on the induction-restriction rules coming from theA11 action, is
isomorphic with anA3 subalgebra ofE6 and the Ocneanu algebra Oc(E6) is recognized asE6

^̇ A3
E6 . Warning: everywhere in this article, the symbol denoting the diagram also denot

corresponding associative graph algebra, when it exists; it never refers to the correspond
algebra with the same name~for the higher Coxeter–Dynkin systems, this would not even be
algebra in the usual sense!!. The analysis of theD2n cases, where Oc(G) is not commutative, is
more subtle.

For the su~3! system, a direct diagonalization of the convolution law! of the bialgebraB(G)
was never performed explicitly~or maybe by A. Ocneanu, but this information is not availab!,
and the algebras Oc(G)—or their Cayley graphs—have never been calculated~published! or even
properly defined; therefore our method, which can indeed be generalized in a straightfo
manner to this more general setting, has a conjectural flavor since we do not compare our
with those that would be obtained by a direct approach. Nevertheless, we have checked
case of exceptional graphs of su~3! type, that partition functions~toric matrices! associated with
the origin of ‘‘our’’ Ocneanu graphs indeed coincide with the modular invariant partition funct
calculated by Ref. 13 and that expected sum rules also hold~nontrivial equalities between two
sums of squares coming from the diagonalization of the two associative structures for a
bialgebra!. We obtain also, as a by product, the list of twisted partition functions correspondi
a given diagramG @there are 24 of them for the exceptionalE5 case of the su~3! system#.
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B. Useful formulas and notations

For Dynkin diagrams, i.e., the su~2! system,k is the ~dual! Coxeter number of the diagram
itself. It can be defined, without any reference to the theory of Lie algebras, from the normb of
the graph~biggest eigenvalue of the adjacency matrix!: b is equal to 2 cos(p/k). Note that 1
,b,2 ~see also Ref. 14!. For Di Francesco–Zuber graphs, i.e., the su~3! system, the normb is
equal to 112 cos(2p/k). Note that 2,b,3. This again defines the integerk. We call it the
‘‘generalized Coxeter number of the graph’’ or ‘‘altitude’’~like in Ref. 10!. We also defineq
5exp (ip/k), so thatq2k51. Another integerh characterizes the system of diagrams. For Dyn
diagrams,h52, the ~dual! Coxeter number of su~2!. For Di Francesco–Zuber graphs,h53, the
~dual! Coxeter number of su~3!.

The levelk of a diagramis defined by the relationk5k2h. Notation for graphs: we keep th
standard notation for usual Dynkin diagrams, with subscript referring to the number of ver
i.e., the rank of the corresponding Lie algebra. However, for consistency with the notation us
higher Coxeter–Dynkin systems, it would be better for this subscript to refer to the levelk or to
the altitudek. We may use both notations, but with script capitals in the latter case, for ins
~Dynkin diagrams!, Ak225Ak21 , E105E6 , E165E7 , E285E8 . In the case of the Di Francesco
Zuber system of graphs, our subscript will always refer to the level. Sinceh53 for su~3!, we have
k5k23 for all diagrams of this family. The reader should be warned that this notation is
universally accepted, and some authors may prefer to use the altitude~as an upper index! rather
than the level. For instance, the graphs that we callE5 , E9 andE21 ~like in Ref. 25! were called
respectivelyE (8), E 2

(12) andE (24) in Ref. 10.
In the case of su~N!, there areN21 fundamental representationsf , and thereforeN21 graphs

Gf ~see Ref. 10!, representing tensor multiplication of irreps byf . Since we shall work only with
su~2! or su~3!, we need only one graph. In the case of su~2!, this is clear. In the case of su~3!, this
graph is associated with one fundamental irrep~say 3!, the other graph associated with its conj

gate ~say 3̄) is obtained by reversing all the arrows; adjacency matrices corresponding t
fundamental and to its conjugate are denoted byG and by its transposeGT.

For a diagram of type su(N), the graph algebra, when it exists, is faithfully represen
~regular representation! by r 3r matricesGa . In all cases,G0 is the identity matrix andG1 is the
adjacency matrix. We denote byr the number of vertices of the diagramG. The r linear genera-
tors sa of G, with dual Coxeter number~or altitude! k, are then represented byr commuting
matricesGa .

In the particular case whereG is a member of theA system, the generators will be calledt i

and the corresponding matrices will be calledNi . For a diagram of typeA belonging to a given
su(N) system, writing down matricesN0 ~identity! andN1 ~adjacency matrix! is immediate, and
there are always simple recurrence formulas that allow one to compute the matricesNi for all
vertices of theA system in terms ofN0 and N1 ~thought as the basic representation!. These
standard recurrence formulas can be obtained, for instance, by making products of Young
@see later sections for su~2! and su~3!#.

The module property~external multiplication! of the vector space associated with a diagr
G, of level k and possessingr vertices, with respect to an action of the corresponding algebraAk

is encoded by a set ofs matricesFi ,i 50,...,s21, of dimensionr 3r , sometimes called ‘‘fused
graph matrices’’~a misleading terminology!!: t isa5(b(Fi)absb . The numbers of vertices ofAk

depends on the system: for Dynkin diagrams (Ak5Ak11), s5k11; for Di Francesco–Zube
graphs,s5(k11)(k12)/2. Matrix F0 is the identity and matrixF15G1 is also the adjacency
matrix of G. The otherF matrices are determined by imposing that they should obey the s
recurrence relation as theN matrices; this ensures compatibility with left multiplication by th
algebraAk . The sets of matricesFi , Ni andGa of course coincide whenG is a diagram of type
A. The r essential matricesEa are rectangular matrices of dimensions3r defined by setting
(Ea) ib5(Fi)ab ~the reader should be cautious about the meaning of indices: our indicesi or a
refer to actual vertices of the graphs but the numbers chosen for labeling rows and co
depend on some arbitrary ordering on these sets of vertices!. The particular matrixE0 is usually
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called ‘‘intertwiner,’’ in the statistical physics literature; it also describes ‘‘essential paths’’ e
nating from the origin~we shall not need this notion in the present article!. One can check that, fo
graphs with self-fusion,Ea5E0Ga .

Vertices of the diagramG should be thought of as an analog of irreducible representation
a subgroup of a group; the irreducible representations of the bigger group are themselves
sented by vertices of the graphA. In this analogy, the first column of each matrixFi describes the
branching rule oft i with respect to the chosen subgroup~restriction mechanism!. In the same way,
the columns of the particular essential matrixE0 describe the induction mechanism: the nonze
matrix elements of the column labeled bysb tell us what are those representationst i that contain
sb in their decomposition~for the branchingA→G).

Let us recall how we compute the~twisted! partition functionsZx,y , at least, in the case
where Oc(G).G^ JG. Again, we follow the method explained in Ref. 7 and refer to Ref. 8
a discussion of all theADE cases, but another formalism for calculating these quantities
described in Ref. 31. The bimodule structure of Oc(G) with respect to the correspondingAk

algebra is encoded by matricesWx,y defined ast i .x.t j5(y(Wx,y) i j .y. One setsWx5Wx,0I and
obtain the corresponding twisted partition functions as sesquilinear formsZx,y5x̄Wx,yx, or Zx

5Zx,0I . Here x is a vector in the complex vector spaceCs. The modular invariant partition

function isZ0I with 0I 50^̇ 0. TheWx,y can be simply obtained from theWx by working out the
multiplication table of Oc(G) and decomposing the productx3y on the basis generators@one of
us ~RC! acknowledges discussions with M. Huerta about this#. Practically, once we have ther
rectangular matricesEa , of dimensions3r ~with s5k21 for ADE diagrams!, we first replace
by 0 all the matrix elements of the columns labeled by verticesb thatdo notbelong to the subse
J of the graphG, call Ea

red these ‘‘reduced’’ matrices, and obtain, for each pointx5a^̇ b of the
Ocneanu graph Oc(G) ~in some cases,x may be a linear combination of such elements!, a ‘‘toric
matrix’’ Wx5Ea (Eb

red)T of sizes3s.
The usual partition function on a torus is calculated by identifying the states at the end

cylinder through the trace operation. One may incorporate the action of an operatorX attached to
a nontrivial cycle of the cylinder before identifying the two ends. This operator should com
with the Virasoro generators and its effect is basically to twist the boundary conditions. An ex
expression, in the presence of two twistsX andY, was written for such a twisted partition functio
by Refs. 29 and 31; it involves matrix elements of the modular operatorS. Our own determination
of the toric matrices~and corresponding twisted partition functions! uses directly the fusion
algebra—i.e., the graph algebra of theAn diagrams. Of course we could, by using the Verlin
formula, express the fusion rule coefficients through the matrixS, but in our approach, the
diagrams themselves are taken as primary data and we do not need to use this operator
least for the determination of theWx,y .

III. ADE DIAGRAMS: THE su „2… SYSTEM

A. Preliminary remarks

ADE Dynkin diagrams are well known. Their norm~highest eigenvalue of the adjacenc
matrix! is 2 cos(p/k)5b. DiagramsAk21 haver points t j , j 50,...,k22, with r 5k215k11
~this defines the levelk). In the light of McKay correspondance,20 these diagrams appear a
quantum analog of binary polyhedral groups.6,17,18For su~2!, the recurrence formula for adjacenc
matrices associated with irreps is very well known: we haveN0Nj5Nj , N1Nj5Nj 211Nj 11 , for
1< j <k22. This is the usual multiplication of spinj /2 representation by the fundamental~spin
1
2). For the diagramAk21 , we also have a truncation of the spin rule:N1Nk225Nk23 .

Left action of the algebraAk21 on the vector space of a diagramG is defined by setting
F05G051r 3r , F15G1 , and compatiblility with left multiplication inAk21 is ensured by im-
posing the spin ruleF1Fi5Fi 211Fi 11 , a relation that determines theFi ’s iteratively.

The modular generatorT, in the Hurwitz–Verlinde representation, is given by
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Tj j 85expF2ipS ~ j 11!2

4k
2

1

8D Gd j j 8 ,

where j , j 8 run from 0 tok22.
The value ofT on the vertext j of Ak21 is therefore determined, up to a global phase, by

quantityT̂5( j 11)2 mod 4k, which we will call the ‘‘modular exponent’’~see also the Appendix!.
The algebras of quantum symmetries Oc(G), for diagramsG of type ADE, are already known
and the corresponding Ocneanu graphs can be found, for instance, in Refs. 5, 7, 8, 23, 30,
or also, in the context of the theory of induction of sectors, in Ref. 2. In the present sectio
overlap with Ref. 8 is important: in the later reference, an algebraic realization of the alg
Oc(G) was given, but the primary data was the Ocneanu graph itself, taken from Ref. 23.
present section, our aim is neither to describe the algebras of quantum symmetries no
corresponding graphs, since this is known already, but to show how the modular properties
diagrams~in particular the table of eigenvalues for the operatorT), together with the induction-
restriction pattern, can be used to recover the known algebras of quantum symmetries. This
also provides a kind of introduction to Sec. IV where the same techniques will be us
determine the structure of Oc(G) for several diagrams belonging to the su~3! system.

B. First example: The E6 case

1. Graphs

The vector space ofE6 is both an associative~and commutative! algebra with positive integra
structure constants~in other words, it admits self-fusion!, and it is a module overA11. This
example is fully studied in Ref. 7~see also Ref. 6!; in particular its graph algebra matrice
essential matrices, Ocneanu graph and toric matrices are given there. TheE6 Dynkin diagram and
the correspondingA diagram with same norm~i.e., A11) are displayed in Fig. 1.

For trees with one branching point~for instance,E6 , E7 andE8 diagrams!, we label~one of!
the longest branches with increasing integers starting from 0, up to the branching point, th
jump to the extremity of the next~clockwise! branch and so on. This is the ordering consisten
chosen in Refs. 7 and 8.

2. Restriction mechanism

We look atE6 as a module overA11. For this, we define an action ofA11 on E6 :

A113E6→E6

t0 .s i5s i

t1 .s i5( 8 s j

where(8 runs over the neighbors ofs i on the diagramE6 .
We have obvious restrictions:t0�s0 , t1�s1 . To obtain the others, we impose the com

patibility condition: (t1)n.s i5(s1)n.s i . We therefore calculate the powers of the fundamen
t1 ands1 and compare the results:

FIG. 1. TheE6 andA11 Dynkin diagrams.
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~t1!25t01t2 , ~s1!25s01s2 , so t2�s2 ;

~t1!352t11t3 , ~s1!352s11s31s5 , so t3�s31s5 ;

and so on. In this way, we get the following branching rulest i�% Ei j
0 s j ~essential matrixE0):

t0�s0 t1�s1 t2�s2 t3�s31s5

t4�s21s4 t5�s11s5 t6�s01s2 t7�s11s3

t8�s2 t9�s5 t10�s4 .

The rectangular 1136 matrix E0 encodes this result, i.e., the above branching rules give us
lines of this matrix. Notice that this determination ofE0 does not require any calculation involvin
essential paths~this notion, although extremely nice and useful, is not required at this level!.

Once the adjacency matrixG1 is known~read it from the graph!, and the essential matrixE0

~or intertwiner! determined, we can use the general formulas given in the Introduction to d
mine the 6 graph matricesGa , the 11 matricesFi and the other essential matricesEa ~six of them,
including E0). Notice that, from the very beginning, we could have proceeded differently, d
mining first theFi by using both the equationF15G1 and the su~2! rule of composition of spins
~recurrence relation!; these matrices, in turn, determine theEa’s ~in particularE0).

3. Induction mechanism

We now look at these previous branching rules, but in the opposite direction: for instancs3

comes fromt3 and t7 , so we can writes3‚(t3 ,t7). We get the induction correspondenc
E6‚A11 displayed in Fig. 2. This is only another way to write the columns of theE0 matrix. We
also plot the values of the modular exponentT̂ for the verticest i ’s of A11.

From the induction graph we haves0‚(t0 ,t6), and we notice that the value of the modul
matrix T on t0 andt6 is the same~also fort3 andt7 , and fort4 andt10). This allows one to
assign a fixed value ofT to three particular vertices ofE6 : T̂(s0)51, T̂(s3)516 andT̂(s4)
525. For every other point of theE6 graph, the value ofT that would be inherited from theA11

graph by this induction mechanism is not uniquely determined~for instance, in the case ofs1 , the
values ofT̂ obtained fromA11 would be associated witht1 , t5 andt7 but these values are not a
equal!. These elements$s0 ,s4 ,s3% span the subalgebraJ5A3 . This subalgebra is known to
admit an invariant supplement in the graph algebra ofE6 .

4. Quantum symmetries

The Ocneanu graph ofE6 given in Refs. 7, 8, 23, and 31 is the Cayley graph of multiplicat
by the two generators of an associative algebra Oc(E6) which can be realized~see Refs. 7 and 8!
as E6^ A3

E6 . It has 12563 6
3 vertices, three of them being ambichiral, namelys0^̇ s0 , s0

^̇ s3 and s0^̇ s4 . We introduce the symbol̇̂ to denote^ A3
to stress the fact that the tens

product is taken not above the complex numbers but above the subalgebraJ5A3 . This means that

FIG. 2. TheE6‚A11 induction graph and the values ofT̂ on irreps ofA11 .
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a u^̇ b5a^̇ u b wheneveruP$s0 ,s4 ,s3% and a,bPE6 . The point that we make, here, is th
this subalgebraA3 is actuallydeterminedas above, by induction, from the eigenvalues of theT
operator.

5. Dimensions of blocks

Diagonalization of the two algebra structures ofBE6 leads to the quadratic sum rule

dim~BE6!5 (
i PA11

di
25 (

xPOc(E6)
dx

2525125~2!4~157!1,

where di5(a,bPG(Fi)ab runs in the list~6,10,14,18,20,20,20,18,14,10,6! and where, forx5a

^̇ b, dx5( i , j PA11
(Ga .Gb) i j runs in the list~6,8,6,10,14,10,10,14,10,20,28,20!. This identity fol-

lows directly from the fact thatBE6 can be written in two different ways as a direct sum of mat
algebras (BE6 is semi-simple for both structures!.

We have also the linear sum rule(di5(dx57205(2)4(3)2(5)1. Such a linear sum rule als
holds ‘‘experimentally’’ in almost allADE cases~for the D2n cases one has actually to introdu
a simple correcting factor, as explained in Ref. 31!. In general, there is no reason, for a gene
bialgebra—even semi-simple for both structures—to give rise to such a linear sum rule
interpretation of this property is therefore still mysterious. As we shall see in the next part, i
holds for the several examples of diagrams of type su~3! that we have analyzed so far.

There are also quantum sum rules~‘‘mass relations’’!: define o(G)8(aPGqdima
2 , where

qdima are the quantum dimensions of the verticesa of G @for example,o(E6)54(31)),
o(A11)524(21)), o(A3)5(11(&))254]; then, if the diagonalizations of the two algeb
structures ofB(G) are described respectively byAk , for somek, and by Oc(G)5G^ JG for
someJ, one can check thato(Oc(G)) defined aso(G)3o(G)/o(J) is equal too(Ak). In the
present case,o(E6)3o(E6)/o(A3) 5o(A11). This observational fact, properly generalized, ho
for all ADE diagrams. Indeed,o(Dn)5 1

2o(A2n23) and o(E8)3o(E8)/o(J) 5o(A29), where
o(J)5@1#q

21(@5#q /@3#q)2 since the quantum dimensions of verticess0 and s6 spanning the
subspaceJ of E8 are respectively equal to the q-numbers@1#q and @5#q /@3#q ~here q
5exp(ip/30)). In the case ofE7 , we found thato(Oc(E7)) defined aso(D10)3o(D10)/o(J),
where J is the subalgebra ofD10, is equal too(A17). We found also empirically the relation
o(A17)5 o(E7)3o(D10)/o(J), where o(J)5@2#q

21@4#q
21(@4#q /@3#q)2 and where the

q-numbers@2#q , @4#q and @4#q /@3#q are the q-dimensions of the verticess1 , s3 ands5 of E7

@hereq5exp(ip/18)]. Analogous quantum sum rules hold for the several examples of diagram
type su~3! that we have analyzed so far. We do not know any general formal proof of t
quantum relations.

C. The ADE diagrams

We show in this section how all cases relative to the su~2! system can be studied in the sam
manner.

1. E6 case

It was studied in the last section.

2. E8 case

The cases ofE6 and E8 are very similar. The Dynkin diagram of theA series with same
Coxeter number (k530) asE8 is A29. Like E6 , the vector space of the diagramE8 admits
self-fusion~associative algebra structure with positive integral structure constants!. The induction
graphE8‚A29 is displayed in Fig. 3.

The value ofT̂ on irreps (t0 ,t1 ,t2 , . . . ,t28) of A29 @equal fort j to ( j 11)2 mod 120# gives

~1I ,4,9,16,25,36,49=,64,81,100,1I ,22,49=,76,105,16,49=,84,1I ,40,81,4,49=,96,25,76,9,64,1I !.
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We see thatT has the same value on verticest j that correspond tos0 (T̂51). Same comment for
s6 (T̂549). We therefore takeJ5$s0 ,s6%; this generates a subalgebra which is isomorphic w
the algebra of theA2 graph. We have indeed Oc(E8)5E8^ A2

E8 and the Ocneanu graph has 3

583 8
2 vertices, two of them being ambichiral, namely,s0^̇ s0 and s0^̇ s6 . Notice thats6

^̇ s65s0^̇ s0 . Dimensions of blocks can be computed as before~see, for instance, Ref. 8!. One
writesdim(BE8)563 1365(2)5(1973)1 in two different ways as a sum of 29 or 32 squares. T
linear sum rule gives(di5(dx512405(2)3(5)1(31)1.

3. A kÀ1 cases

The induction-restriction rules fromAk21 to itself are of course trivial and the subalgebraJ
determined by the constancy ofT on preimages is equal to the algebraAk21 itself. The algebra
Oc(Ak21) equal toAk21^ Ak21

Ak21 is therefore isomorphic withAk21 itself. The Ocneanu graph
coincides with the original Dynkin diagram.

4. D2n¿1 cases

The Dynkin diagram of theA series with same Coxeter number (k54n22) asD2n11 is
A4n21 . Actually ~see Ref. 19!. D diagrams areZ2 orbifolds of A diagrams.

Let’s first have a look at theA7 case. Its Dynkin diagram and the values ofT̂ on irrepst i ’s are
given in Fig. 4.

The algebra of quantum symmetries ofA7 , as we saw, isA7^ A7
A7.A7 , but there is also

another way to quotient the tensor product if we wantT to be well defined in the quotient. We se
that the values ofT are the same (T̂54) for t1 and t5 , so we define therefore a map~twist!
r:A7→A7 such that

r~t i !5t i for i P$0,2,3,4,6% and r~t1!5t5 , r~t5!5t1 .

FIG. 3. TheE8‚A29 induction graph.

FIG. 4. TheA7 diagram and the values ofT̂.
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Defining then Oc(D5)5A7^ r(A7)A7 we recover the algebra of quantum symmetry ofD5 . This
can be generalized for allD2n11 cases. These diagrams do not enjoy self-fusion displaye
Fig. 5.

5. D2n cases

Starting with theD2n diagram and graph algebra, we obtain the induction graph with res
to the correspondingA diagram with the same norm (A4n23) displayed in Fig. 5.

The value of T̂ on the irreps$t0 ,t1 ,t2 ,...,t2n21 ,t2n ,t2n11 ,...,t4n26 ,t4n25 ,t4n24% of
A4n23 gives

T~t0!5T~t4n24! T~t2!5T~t4n26! ¯ T~t2n24!5T~t2n!.

These last values are symmetric with respect to the central vertext2n .
We can assign a fixed value ofT for the irreps$s0 ,s2 ,...,s2n24 ,s2n22 ,s2n228 % for D2n

~marked with a circle in the induction diagram!. They span the subalgebraJ. However, we notice
immediately that something special happens here: the two ends of the fork~verticess2n22 and
s2n228 ) are not distinguished by the values ofT. Actually, the determination of the graph matric
Ga for the Dynkin diagramD2n is not as straightforward as for some other cases: looking fo
associative algebra determined by this diagram leads to a two-parameter family of solution
there is only one solution~up to permutationG2n22↔G2n228 ) that has correct self fusion, i.e
integrality and positivity of structure constants@a similar phenomenon appears, for example,
the E9 diagram of the su~3! system#. SinceT may be defined on any linear combination of the
two vertices, it is natural to expect that this arbitrariness is encoded, at the level of the alge
quantum symmetries, in a ‘‘noncommutative geometrical spirit,’’ by an algebra of 232 matrices.
Oc(D2n) consists indeed of two separate components: the first~usual! is given by D2n

trunc

^ J8D2n
trunc , where D2n

trunc is the vector space corresponding to the subdiagram spanne
$s0 ,s1 ,s2 ,...,s2n23%, obtained by removing the fork, andJ85$s0 ,s2 ,...,s2n24% is the corre-
sponding truncated subset ofJ. The second component is a noncommutative 232 matrix algebra
reflecting the indistinguishability ofs2n22 ands2n228 . Ambichiral points are associated with th
n11 vertices ofJ ~i.e.,n21 for the linear branch and 2 for the fork!; we expect therefore that th
Ocneanu graph ofD2n will have (2n22)(2n22)/n21 1454n vertices. We could as well sa
that the number of ‘‘effective’’ points ofJ is n, rather thann11 and notice that 4n5 2n
32n/n. This is indeed correct~see Refs. 8, 23, and 31!. One way to realize the algebra Oc(D2n)
is to write it as a quotient of the semi-direct product, byZ25$2,1% of the tensor square of th
graph algebraD2n . The noncommutativity of the multiplication can be seen, for instance, from
fact that (2̂˙ 0,1)(0^̇ 0,2)5(2^̇ 0,2), but (0^̇ 0,2)(2^̇ 0,1)5(28 ^̇ 0,2). The reader may
refer to Ref. 8 for another explicit realization of this algebra. In any case, the method follow
far, which is based on the eigenvalues of theT operator, seems to be insufficient to fully determi
the Ocneanu graph in that example.

FIG. 5. TheD2n‚A4n23 induction graph.
                                                                                                                



hat
r

e-

hs

d
d

ly

s of
the

fully
n

h

s

3820 J. Math. Phys., Vol. 44, No. 9, September 2003 R. Coquereaux and G. Schieber

                    
6. E7 case (related to the D 10 case)

For theD10 case, something special happens. The correspondingA diagram with the same
norm is A17, the induction graph is displayed in Fig. 6, and the value ofT in irreps
$t0 ,t1 , . . . ,t8 , . . . ,t15,t16% of A17 are

~1,4,9I ,16,25,36,49,64,9I ,28,49,0,25,52,9I ,40,1!.

These values are symmetric with respect to the central vertex, as in allA4n23 case. ForA17,
the value ofT on the central vertex (t8) is equal to the value ofT on other vertices, namelyt2 and
t14. This gives us another way to define a twistr acting on the vertices ofD10 ~this is ‘‘the’’
exceptional twist of the su~2! Coxeter–Dynkin system; existence of this twist is not new, but w
we discuss here is its relation with the modularT operator!. In other words, we form the tenso
productD10^ D10, but identifyau^ b with a^ r(u)b whenuP$s0 ,s2 ,s4 ,s6 ,s8 ,s88% and

r~s0!5s0 , r~s4!5s4 , r~s8!5s2 ,

r~s2!5s8 , r~s6!5s6 , r~s88!5s88 .

We obtain the algebraD10^ rD10 which is isomorphic with the algebra of quantum symm
tries of theE7 diagram. The diagramE7 does not enjoy self-fusion.

Remark 1. The reader will have noticed that we do not necessarilystart from a given graphG
~for instance,E7), for which we want to deduce Oc(G). Rather, we first consider all those grap
G which admit a good algebra structure~self-fusion!, i.e.,A, D2n , E6 andE8 ; we then determine,
for every one of them, the induced pattern ofT eigenvalues by looking at the well determine
A→G restriction; finally, we build all the possible quotients ofG^ G over the subalgebras—an
possibly twists—determined by the pattern ofT values. For example, if we assume thatE7 is
already known to ‘‘exist’’~as a module overA17), and since it does not admit self-fusion, the on
thing that we expecta priori is that its algebra of quantum symmetries Oc(E7) will be obtained as
a quotient of a tensor product of the algebrasA17 or D10. Therefore, Oc(E7) is only thename
given to D10^ rD10; the graphE7 itself can then be recognized as one of the two subset
vertices of Oc(E7) that linearly generates a module over one of the two chiral parts of
Ocneanu graph~each one being isomorphic with the algebra ofD10).

Remark 2. As discussed previously, the method that we follow seems to be insufficient to
determine Oc(G) when the later is not commutative~cases when a coefficient strictly larger tha
1 appears in the corresponding expression of the modular invariant partition function!. These is
only one example of this kind for the su~2! system~theD2n diagrams!, but there are several suc
examples for the su~3! system.

IV. DI FRANCESCO–ZUBER DIAGRAMS: THE su „3… SYSTEM

A. Preliminary remarks

In the su~2! case, the classification follows anADE pattern. For su(n),n>2 cases, there wa
no at-hand diagrams to start with, but the list of su~3! diagrams~‘‘generalized Coxeter Dynkin
diagrams’’! was obtained in 1989~with CAF5computer-aided flair! by Di Francesco and Zuber in

FIG. 6. TheD10‚A17 induction graph and the values ofT̂.
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Ref. 10; this list was later shown to be complete by A. Ocneanu, during the Bariloche school
very beginning of 2000~actually one of their graphs—the one calledE 3

(12) in Ref. 10—had to be
removed!.

Pictures of the graphs belonging to the Coxeter–Dynkin system of su~3! can be found in Refs.
10, 11, and 35–37; we refer to Refs. 25 and 38 or to the school web pagewww.univ
2mrs. f r /;coque/Bariloche.html for the final list. We do not discuss the su~4! system in this
article, but these graphs can also be found in the Ocneanu contribution to the same Ba
school25 and on the corresponding web pages.

As recalled earlier, this system contains the principalA series and three genuine exception
cases:E5 , E9 andE21. The other diagrams of this system~and in particular the four other excep
tional ones! are obtained as twists or as orbifolds of the former list~the ‘‘genuine graphs’’!, or by
using conjugation and twisting on the genuine graphs or on their orbifolds. A member of tA
series~a Weyl alcove! is obtained by truncation of the diagram~Weyl chamber! of tensorization of
irreps of su~3! by one of the two—conjugate—fundamentals 3 or 3;̄ for this reason the graphs ar
oriented~see Fig. 7!.

The index refers to the levelk of the graphdefinedby k5k2h5k23. Hereh53 is the
Coxeter number ofthe groupSU~3! andk is the generalized Coxeter number ofthe graph~also
called ‘‘altitude’’!.

We label the verticesj of the Ak diagram as (l1 ,l2), with l1 ,l2>0 and l11l2<k.
Warning: our labels start from 0 and not from 1; many authors follow a different conven
DiagramsAk haver points with r 5(k11)(k12)/2.

The action of the modular matrixT on verticest j[t (l1 ,l2) of Ak is diagonal and given by

~T(k)!lm5ek@2~l111!22~l111!.~l211!2~l211!21k#dlm ,

wherel8(l1 ,l2), m8(m1 ,m2), ek@x#8exp(22ipx/3k), andk5k13. We call ‘‘modular ex-
ponent’’ the quantityT̂52(l111)22(l111).(l211)2(l211)21k mod 3k.

For su~3!, the recurrence formula for adjacency matricesNi associated with irreps is

Nl,m50 if l,0 or m,0,

Nl,05N1,0Nl21,02Nl22,1,

Nl,m5N1,0Nl21,m2Nl21,m212Nl22,m11 if mÞ0,

FIG. 7. TheAk diagram for su~3! with (k11)(k12)/2 vertices.
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N0,l5Nl,0
T .

Remember that fused adjacency matricesFi , associated with any graphG of the same level, are
determined by the same recurrence relations~but the seed is different:F15G1 , the adjacency
matrix of G).

In some cases the vector space generated by the vertices of a Di Francesco–Zuber gra
algebra with positive integral structure constants~self-fusion!. In all cases it is a module over th
algebra of typeA with the same Coxeter number. For anA graph, the identity element is~0,0!;
vertices~1,0! and ~0,1!, corresponding classically to the two representations of dimension 3
the two complex conjugated generators. As always, a given diagram encodes the multiplicat
the generators in the following sense: multiplication of an irrep (l1 ,l2) by the left generator~1,0!
is given by the sum of the irreps which are connected to (l1 ,l2) by an incoming arrow, wherea
multiplication by the right generator~0,1! is given by the sum of the irreps which are connected
(l1 ,l2) by an outgoing arrow. To label vertices, some readers may prefer Young frames~dia-
grams! rather than a notation using weights. The correspondance is as follows: (l1 ,l2) corre-
spond to Young diagramsY(p5l11l2 ,q5l2) with two rows,p boxes on the first row, andq
boxes on the second row. Graphs whose vector space possesses self-fusion have a unit, an
the two generators is located at the extremity of the~single! oriented edge that leaves the orig
~reverse the arrows to get the other generator!. Triality, i.e., $0,1,2PZ/3Z%, is well defined and
compatible with internal multiplication~if it exists! or with external multiplication by vertices o
the correspondingA graph; it is represented by different choices of ‘‘colors’’ of vertices on t
pictures. There is also a conjugacy transformations→sc. At the level of graph matrices, it
corresponds to transposition. ForA graphs, it is represented by symmetry with respect to the in
bissectrix of the graph. The adjacency matrix is not symmetric, but it is normal, so that i
always be diagonalized.

In the following we illustrate the construction of the Ocneanu graphs of quantum symme
using our method based on the eigenvalues of theT operator, for the three genuine exception
cases. Going through the whole list of Di Francesco–Zuber graphs would constitute a
outgrowth of this article. We shall give some more details on theE5 case than on the two others

Notice that the genuine diagramsE5 ,E9 andE21 are the only ones among exceptionals to adm
self-fusion; this was first observed in Ref. 9.

B. First example: The E5 case

TheE5 diagram is illustrated in Fig. 8, together with the correspondingA5 diagram, with same

FIG. 8. TheE5 andA5 generalized Dynkin diagrams.
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norm, equal to 11&, since the altitude isk58. Their respective adjacency matricesG1 andN1

are immediately determined~the adjacency matrix given in Ref. 11 is not typed correctly!.
TheE5 diagram admits self-fusion; 10 is the identity, 21 and 22 are the left and right genera

tors. The multiplication table of the graph algebra ofE5 reads

1 j .1k51 j 1k ,

1 j .2k52 j 1k ,

2 j .2k52 j 1k12 j 1k2311 j 1k23 .

This multiplication table allows one to compute easily the 12 square matricesGa of the graph. The
subset 1i clearly forms a subalgebra of the graph algebra.

1. Restriction mechanism

We define an action ofA5 on E5 in the same way as for the previous cases~see the discussion
for E6), getting the following restrictions: (0,0)�10 , (1,0)�21 and (0,1)�22 . For the others
points, we compute the powers (1,0)a(0,1)b of the two fundamentals as well as the powe
(21)a(22)b and compare them:

~1,0!25~2,0!1~0,1!, ~21!2522125115 , so ~2,0!�15125 ;

~0,1!25~1,0!1~0,2!, ~22!2521124111 , so ~0,2!�11124 ;

~1,0!.~0,1!5~0,0!1~1,1!, 21 .22510120123 , so ~1,1!�20123 ;

~1,0!352~1,1!1~3,0!1~0,0!, ~21!351013201223113 , so ~3,0!�20113 ;

and so on.
From these restriction rules, we obtain immediately the lines of essential matrixE0 ~inter-

twiner!: it is a rectangular matrix with 12 columns, indexed by vertices ofE5 and 21 rows indexed
by vertices ofA5 @i.e., by pairs of integers (l1 ,l2) with l11l2<5 or by Young framesY(p,q)
with 5>p>q].

We could have, as well, calculated directly the 21 fused matricesFi from G1 alone by using
the su~3! recurrence relations; these matrices, in turn, determine the 12 essential~rectangular!
matricesEa .

2. Induction mechanism

From the branching rulesA5→E5 , we get the following induction rules:

10‚~0,0!,~2,2!, 21‚~1,0!,~2,1!,~1,3!,~3,2!,

11‚~0,2!,~3,2!, 22‚~0,1!,~1,2!,~3,1!,~2,3!,

12‚~1,2!,~5,0!, 23‚~1,1!,~0,3!,~2,2!,~4,1!,

13‚~3,0!,~0,3!, 24‚~0,2!,~2,1!,~4,0!,~1,3!,

14‚~2,1!,~0,5!, 25‚~2,0!,~1,2!,~3,1!,~0,4!,

15‚~2,0!,~2,3!, 20‚~1,1!,~3,0!,~2,2!,~1,4!.
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The same information can be gathered from the columns of matrixE0 ~see Fig. 9: each triangle
corresponds to a single column!. The first rule can be interpreted as a manifestation of
existence of a nontrivial quantum invariant of ‘‘degree’’~2,2!.

3. Quantum symmetries

For each 1i , we can verify that the values ofT on the two corresponding (l1 ,l2) coming
from the induction are the same~see Table I!. This allows us to assign a fixed value ofT to the
1i ’s. We can also verify that we can not do the same for the other vertices 2i ’s. We get in this way
a characterization of the subalgebraJ, spanned by the elements 1i ’s.

We therefore expect the algebra of quantum symmetries ofE5 to be Oc(E5)5E5^ JE5 . Its
dimension is 12.12/6524. The left and right subalgebras are respectively spanned byL5$a
^̇ 10% and R5$10^̇ a%, with a equal to 2j or 1j . Both left and right chiral subgraphs have 1
points. The ambichiral subalgebra~of dimension 6! is spanned byA5$1 j ^̇ 10510^̇ 1 j% and the

FIG. 9. Matrix E0 for E5 .

TABLE I. Values of T̂ on the vertices of theA5 graph.

(l1 ,l2) ~0,0! ~1,0! ~2,0! ~3,0! ~4,0! ~5,0! ~1,1! ~2,1! ~3,1! ~4,1! ~2,2! ~3,2!
~0,1! ~0,2! ~0,3! ~0,4! ~0,5! ~1,2! ~1,3! ~1,4! ~2,3!

T̂ 5 1 19 11 1 13 20 13 4 17 5 19
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supplementary subspace~also 6 points! is spanned byC5$2 j ^̇ 2k520^̇ 2 j 1k%. The Ocneanu
graph can be displayed on the~three dimensional! picture~Fig. 10! as two superposed stars kissin
each other along the six ambichiral points, with the vertices spanning the supplement dis
‘‘inside’’ the others. As usual, bold lines—of two different colors—refer to the chiral parts and
lines to the corresponding quotients. This graph is oriented but we have not displayed the
tation of the edges in order not to clutter the picture; the interested reader should do it for hi

4. Dimensions of blocks

The two multiplicative structures+ and ! of the bialgebraBE5 can be diagonalized. Block
corresponding to the first structure are labeled by the 21 points of theA5 diagram. Dimensiondi

of the block i is obtained by summing the matrix elements ofFi . We order the blocksi
5(l,m) according to the level, i.e., (l,m),(l8,m8) if l,l8 or l5l8 andm,m8, and find

$12%,$24,24%,$36,48,36%,$36,60,60,36%,$24,48,60,48,24%,$12,24,36,36,24,12%.

Dimension of the bialgebra is obtained by summing the square of these 21 integerdi :
dim(BE5)529 376. Dimension of the vector space of essential paths~graded by the Young frame
of A5) is ( idi5720.

Blocks corresponding to the second structure are labeled by the 24 points of the Oc
graph Oc(E5). Dimensiondx of the block x is obtained by summing the matrix elements
matricesSx5GaGb whenx5a^̇ b runs over the points of Oc(E5). One finds the following: the
six ambichiral blocks have dimension 12, the six left chiral and the six right chiral blocks w
are not ambichiral have dimension 24, the six complementary blocks have dimension 60. D
sion of the bialgebra is also obtained by summing the square of these 24 integersdx and one finds
the same total as before. Notice that writing 29 376 in two different ways as a sum of 21
squares constitutes, of course, a rather nontrivial check. Notice that we find also(xdx5720.

We summarize the discussion as follows:

dim~BE5!5 (
i PA5

di
25 (

xPOc(E5)
dx

25~2!6~3!3~17!1 and (
i PA5

di5 (
xPOc(E5)

dx5~2!4~3!2~5!1.

FIG. 10. TheE5 Ocneanu graph.
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5. Toric matrices and twisted partition functions

From the essential matricesEa , we easily calculate the toric matrices~square matrices o
dimension 21! and the corresponding partition functions by the method described earlier. Th
one such function for each point of the Ocneanu graph Oc(E5). The one obtained from the identit
10^̇ 10 of the graph is the modular-invariant and agrees with the expression of Ref. 13~there is a
global shift of ~1,1! due to our conventions!:

ZE5
8Z10^̇ 10

5ux (0,0)1x (2,2)u21ux (0,2)1x (3,2)u21ux (2,0)1x (2,3)u21ux (2,1)1x (0,5)u2

1ux (3,0)1x (0,3)u21ux (1,2)1x (5,0)u2.

The others are interpreted as twisted partition functions~one defect line, in the interpretatio
of Ref. 31!. We give only the twisted partition functions associated with ambichiral points0

^̇ 1i , for i P$1,2,3,4,5%:

Z10^̇ 11
5~x (0,3)1x (3,0)!.~ x̄ (0,5)1x̄~2,1)!1~x (2,0)1x (2,3)!.~ x̄ (0,0)1x̄~2,2)!1~x (0,5)1x (2,1)!.~ x̄ (2,0)

1x̄~2,3)!1~x (1,2)1x (5,0)!.~ x̄ (0,3)1x̄~3,0)!1~x (0,0)1x (2,2)!.~ x̄ (0,2)1x̄~3,2)!1~x (0,2)

1x (3,2)!.~ x̄ (1,2)1x̄~5,0)!,

Z10^̇ 12
5~x (1,2)1x (5,0)!.~ x̄ (0,5)1x̄~2,1)!1~x (0,5)1x (2,1)!.~ x̄ (0,0)1x̄~2,2)!1~x (0,3)1x (3,0)!.~ x̄ (2,0)

1x̄~2,3)!1~x (0,2)1x (3,2)!.~ x̄ (0,3)1x̄~3,0)!1~x (2,0)1x (2,3)!.~ x̄ (0,2)1x̄~3,2)!1~x (0,0)

1x (2,2)!.~ x̄ (1,2)1x̄~5,0)!,

Z10^̇ 13
5~x (0,2)1x (3,2)!.~ x̄ (0,5)1x̄~2,1)!1~x (0,3)1x (3,0)!.~ x̄ (0,0)1x̄~2,2)!1~x (1,2)1x (5,0)!.~ x̄ (2,0)

1x̄~2,3)!1~x (0,0)1x (2,2)!.~ x̄ (0,3)1x̄~3,0)!1~x (0,5)1x (2,1)!.~ x̄ (0,2)1x̄~3,2)!1~x (2,0)

1x (2,3)!.~ x̄ (1,2)1x̄~5,0)!,

Z10^̇ 14
5~x (0,0)1x (2,2)!.~ x̄ (0,5)1x̄~2,1)!1~x (1,2)1x (5,0)!.~ x̄ (0,0)1x̄~2,2)!1~x (0,2)1x (3,2)!.~ x̄ (2,0)

1x̄~2,3)!1~x (2,0)1x (2,3)!.~ x̄ (0,3)1x̄~3,0)!1~x (0,3)1x (3,0)!.~ x̄ (0,2)1x̄~3,2)!1~x (0,5)

1x (2,1)!.~ x̄ (1,2)1x̄~5,0)!,

Z10^̇ 15
5~x (2,0)1x (2,3)!.~ x̄ (0,5)1x̄~2,1)!1~x (0,2)1x (3,2)!.~ x̄ (0,0)1x̄~2,2)!1~x (0,0)1x (2,2)!.~ x̄ (2,0)

1x̄~2,3)!1~x (0,5)1x (2,1)!.~ x̄ (0,3)1x̄~3,0)!1~x (1,2)1x (5,0)!.~ x̄ (0,2)1x̄~3,2)!1~x (0,3)

1x (3,0)!.~ x̄ (1,2)1x̄~5,0)!.

C. Second example: The E9 case

This diagram is illustrated on Fig. 11~notice that it would be better drawn three-dimensiona
as a small starwars spaceship with two wings and a cockpit, because of the existing sym
between the two wings, reminiscent of what happens for theD2n Dynkin diagrams!.

The corresponding diagram of theA series isA9 . Altitude of both isk5913512. Their
respective adjacency matrices are immediately read from the graphs. Their number of verti
12 and 103 11

2 555. Restriction and induction is studied as usual, and imposing constancy o
modular operatorT singles out the three circled vertices of Fig. 11 as elements of the ve
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subspaceJ that is used to characterize the ambichiral points of the Ocneanu graph. The
adjacency matricesFi are obtained from the su~3! recurrence formula; this determines the ess
tial matricesEa . We give on Fig. 12 the columns of theE0 matrix indexed by the three specia
points~these are the ‘‘ambichiral columns’’ of the intertwinerE0); a consistent value ofT can be

defined for these three points~and these three points only!, one findsT̂59 for the vertex 00 and

T̂521 for 10 and 20 .
Blocks of the bialgebraBE9 , for its first associative law~+!, are labeled by the 55 vertices o

A9 and their dimensions are given on Fig. 13. The total dimension is the sum of correspo
squares:dim(BE9)5( idi

255189765(2)6(3)2(17)1(53)1.
Something special happens however for this graph~again reminiscent of a similar situation i

the D2n case of Dynkin diagrams!: first of all, the diagram itself is not sufficient to determine
unique associative algebra structure, and one has to impose positivity and integrality of the
ture constants in order to determine a self-fusion structure~it is unique up to permutation of the
two wings!. Since the determination of the corresponding graph matrices is not totally stra
forward, we give below the two matrices corresponding to the endpoints 10 and 20 . We choose the
following order for the vertices: 00,10,20,30 ;01,11,21,31 ;02,12,22,32 . We also give the adjacenc
matrix G01

whose determinationis straightforward.

FIG. 11. TheE9 generalized Dynkin diagram.

FIG. 12. Induction corresponding to the three upper vertices ofE9 .
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G01
5

¨

. . . . . . . . 1 . . .

. . . . . . . . . 1 . .

. . . . . . . . . . 1 .

. . . . . . . . 1 1 1 2

1 . . 1 . . . . . . . .

. 1 . 1 . . . . . . . .

. . 1 1 . . . . . . . .

. . . 2 . . . . . . . .

. . . . 1 . . 1 . . . .

. . . . . 1 . 1 . . . .

. . . . . . 1 1 . . . .

. . . . 1 1 1 1 . . . .

©
,

G10
5

¨

. 1 . . . . . . . . . .

. . 1 . . . . . . . . .

1 . . . . . . . . . . .

. . . 1 . . . . . . . .

. . . . . 1 . . . . . .

. . . . . . 1 . . . . .

. . . . 1 . . . . . . .

. . . . . . . 1 . . . .

. . . . . . . . . 1 . .

. . . . . . . . . . 1 .

. . . . . . . . 1 . . .

. . . . . . . . . . . 1

©
,

G20
5

¨

. . 1 . . . . . . . . .

1 . . . . . . . . . . .

. 1 . . . . . . . . . .

. . . 1 . . . . . . . .

. . . . . . 1 . . . . .

. . . . 1 . . . . . . .

. . . . . 1 . . . . . .

. . . . . . . 1 . . . .

. . . . . . . . . . 1 .

. . . . . . . . 1 . . .

. . . . . . . . . 1 . .

. . . . . . . . . . . 1

©
.

Next, and as expected, the operatorT does not distinguish between these two points, and
therefore expect, as in theD2n case of the su~2! system, that the algebra Oc(E9) of quantum
symmetries will possess a noncommutative 232 matrix component, encoding, in a ‘‘noncomm
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tative geometrical spirit,’’ this indistinguishability. The presence of such a noncommutative
is also reflected in the presence of a coefficient 2 in the~known! modular invariant partition
function. We note, however, that ambichiral points are bound to be, in any case, 00^̇ 00 , 10

^̇ 00500^̇ 10 and 20^̇ 00500^̇ 20 . The corresponding toric matricesW and partition functionsZ
are computed as usual. We define the linear combinationU andV of characters

U5x (2,2)1x (2,5)1x (5,2) ,

V5x (0,0)1x (0,9)1x (9,0)1x (1,4)1x (4,1)1x (4,4) ,

and find

Z00^̇ 00
52 U.Ū1V.V̄,

Z10^̇ 00
5Z20^̇ 00

5U.V̄1V.Ū.

The first one is modular invariant and agrees with the expression of Gannon.13 The other one
should be interpreted as a twisted partition function in a BCFT with defect lines.

Unfortunately, in this case, as it was forD2n , the data provided by the eigenvalues of t
modular operatorT does not seem to be sufficient to determine the full~noncommutative in this
case! structure of Oc(E9) or the Ocneanu graph itself, and we decide to stop at this point.

D. Third example: The E21 case

The E21 diagram is illustrated in Fig. 14. The correspondingA diagram with same norm is
A21. The altitude of both isk52113524. Their respective adjacency matricesG1 andN1 are
immediately obtained from the diagrams. The number of vertices of the two diagrams are r
tively equal to 24 and 223 23

2 5253.

1. Restriction and induction mechanism

The easiest method is to determine first the fused matricesFi by using the recurrence formul
for su~3!. Essential matricesEa—and in particularE0—are then obtained in the usual way fro
the Fi ’s. The first column ofE0 gives the quantum invariants; it is displayed on the left array
Fig. 15.

One can check that the values of the modular operatorT, calculated forA21, are equal for all
nonzero entries of this table. The same property is also true for the column ofE0 associated with
the rightmost point of theE21 graph ~right array of Fig. 15!. However,T, when evaluated on
nonzero entries of the 22 other columns ofE0 , is not constant. We conclude that the setJ

FIG. 13. Dimension of space of blocks~law +! for E9 .
                                                                                                                



es

nts of

-
to the

e
t

f

3830 J. Math. Phys., Vol. 44, No. 9, September 2003 R. Coquereaux and G. Schieber

                    
charactering the ambichiral points of Oc(E21) is a set with two elements: the two extreme vertic
of E21. The values of the modular exponentT obtained for these two points areT̂521 andT̂
539.

The dimensionsdj , with j 5(l1 ,l2) of the 253 blocks of the bialgebraBE21, for the first law
determined by composition of endomorphisms, are obtained by summing matrix eleme
matrices F j . They are displayed in Fig. 16. We obtaindim(BE21)5( jdj

25480 701 952
5(2)9(3)4(67)1(173)1, and also( jdj5288 5765(2)6(3)3(167)1.

2. Determination of the graph algebra and of matrices G a

The determination of graph matricesGa comes from the graphE21 itself. To ease the calcu
lation, it is worth noticing that graph matrices associated with points symmetric with respect
horizontal symmetry axis of the graph are transposed. We have, for example,G55G1 .G12G2 so
that G45(G5) t5G2 .G22G1 . Their determination is straightforward from vertices 1 to 9. W
then use the fact thatG6 .G215G9 to compute the matrixG21 associated with the rightmost poin
of the graph. Multiplying a vertexk by the vertex 21 gives a vertex which is the symmetric ok

FIG. 14. TheE21 generalized Dynkin diagram.

FIG. 15. Induction corresponding to the two extreme points ofE21 .
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with respect to the center of the graph~the center of a star!. In graph algebra terms, we get, fo
example,G5 .G215G20 andG8 .G215G17. It is then easy to compute the matrices associated w
all the other vertices of the graph. The most important result, for what follows, is thatG21.G21

5G0 .

3. Quantum symmetries

As already discussed, the subspaceJ of E21 determining the algebra of quantum symmetries
spanned by 0 and 21; we set Oc(E21)5E21^ JE21. This is a commutative algebra. The left and rig
subalgebrasL andR are respectively spanned bya^̇ 0 and by 0̂˙ a, wherea50,1,...,23. Both
left and right chiral subgraphs have 24 points. The ambichiral subalgebraA, of dimension 2 is
spanned by$0^̇ 0521^̇ 21% and by$0^̇ 21521^̇ 0%. The supplementary subspaceC is spanned
by u^̇ a, whereuP$1,2,3,4,5,6,7,8,10,11,12% and a takes all possible values~but neither 0 nor
21!. The total number of vertices of the Ocneanu graph is therefore 22122121113225288, as
expected from the naive dimension count 243 24

2 5288. As usual, blocks corresponding to th
second structure of the bialgebraBE21 are labeled by the 288 points of the Ocneanu graph, and
dimension dx of the block x is obtained by summing the matrix elements of matricesSx

5GaGb whenx5a^̇ b runs over the points of Oc(E21). We find ~subscript give multiplicities of
the blocks!

Ambichiral: ~24!2

Left ~not ambichiral!: ~60!4~108!4~132!4~144!2~168!2~216!2~252!4

Right ~not ambichiral!: ~60!4~108!4~132!4~144!2~168!2~216!2~252!4

Supplement:~168!8~312!16~384!16~420!8~492!8~600!8~636!8~744!32~804!8~936!8~948!8~996!8

~1080!2~1188!8~1236!8~1272!4~1440!16~1512!2~1548!8~1656!4~1800!16~1932!8

~1968!4~2292!8~2568!2~2988!8~3480!8

The quadratic and linear sum rules read

FIG. 16. Dimension of space of blocks~law +!.
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( dx5( di5288 5765~2!6~3!3~167!1,

( dx
25( di

25480 701 9525~2!9~3!4~67!1~173!1.

4. Toric matrices and twisted partition functions

We define the linear combinationU andV of characters as follows:

U5x (0,0)1x (0,21)1x (1,10)1x (4,4)1x (4,13)1x (6,6)1x (6,9)1x (9,6)1x (10,1)1x (10,10)1x (13,4)

1x (21,0),

V5x (0,6)1x (0,15)1x (4,7)1x (4,10)1x (6,0)1x (6,15)1x (7,4)1x (7,10)1x (10,4)1x (10,7)1x (15,0)

1x (15,6).

The modular-invariant partition functionZE5
~associated with the vertex 0̂˙ 0) and the one asso

ciated with the vertex 0̇̂ 21, that we callZE 5
8 , are

ZE5
8Z0^̇ 05U.Ū1V.V̄,

ZE 5
8 8Z0^̇ 215U.V̄1V.Ū.

The first one agrees with the expression of Ref. 13, the other, as explained in Sec. II B, sho
interpreted as a twisted partition function in a BCFT with one defect line.29 There are 286 othe
such functions for theE21 diagram, but these two are the only ones that are ambichiral.
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APPENDIX A: ABOUT MODULAR INVARIANCE

The expressions forS andT can be taken from the theory of quantum groupsUq(G) at roots
of unity, i.e., whenq5eip/mk. Herem is half the length of a long root, so it is equal to 1 when t
Lie algebraG is simply laced, which is the case in particular for su~2! and su~3!, and k is an
arbitrary positive integer, larger or equal toh, the dual Coxeter number ofG. The equationk
5h1k defines the ‘‘level’’k. One should consider a particular category whose objects are
so-called tilting modules ofUq(G) and whose morphisms are defined up to ‘‘negligible m
phisms’’~see, for instance, Ref. 1!; this is a semisimple ribbon and modular category. This impl
in particular, that a~projective! representation of SL~2,Z! can be defined on the simple object
thanks to two matricess andt and a phasez which are such that (st)35z3s2, s25C, Ct5tC and
C251. The matrixC is called ‘‘conjugation matrix’’ andt is the ‘‘modular twist.’’ For this
category,z5e2ipc/24 with c5(k2h)dim(G)/k. The expression for thet matrix, in the case of an
arbitrary Lie algebraG is tmn5dmnq

^^n,n12r&& wherer is half the sum of positive roots andm, n
are elements of the weight lattice ofG characterizing the representationtm andtn . Here^^.,.&& is
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an invariant bilinear form onG normalized bŷ ^a,a&&52 for a short roota. The corresponding
general expression for thes matrix is more involved and we do not need it in our article. The sa
expressions for the modular generators can be obtained from the Kac–Peterson formulas16 for the
modular transformations of characters of the affine Lie algebraĜ, evaluated at the same valueq
5eip/mk. Herek5k2h is indeed equal to the usual level.

In the case of su~2!, the modular generatorsS, T, are as follows:S5s and T5t/z. The
SL~2,Z! relations read then (ST)35S251, with smn5A2/k sin(p (m11)(n11)/k), for 0<m,n
<k22 and tmn5e( ip/2k) n(n12)dmn . Still for su~2! we havec5326/k, so thatz5eip/4e2 ip/2k

and therefore

Tmn5expF2ipS ~n11!2

4k
2

1

8D Gdmn ,

which is the expression used in the text. One can explicitly see that the previous SL~2,Z! relations
hold. It can be checked, from this expression that,T8k51 whenk is odd andT4k51 whenk is
even. This, by itself, is not enough to imply the following property, which is nevertheless true
was proven more than 100 years ago:15 the above representation of SL~2,Z! factorizes over the
finite group SL~2,Z/8kZ! whenk is odd, and factorizes over SL~2,Z/4kZ! whenk is even. So, in
particular,T4051 for theA4 graph (405835), butT4851 for theA11 graph (4854312). In the
text, we use@for su~2!# a ‘‘modular exponent’’ defined byT̂5(n11)2 mod 4k, but it is clear that
we could use as welln(n12) mod 4k or any other expression differing by a constant shift.

APPENDIX B: THE GENERAL NOTION OF ESSENTIAL PATHS ON A GRAPH G OF
TYPE ADE

The following definitions are not needed if we only want to count the number of esse
paths on a graph. They are necessary if we want to obtain explicit expressions for them.
definitions are adapted from Ref. 23, see also several comments made in Refs. 7 and 6. Cab the
norm of the graphG ~the biggest eigenvalue of its adjacency matrixG! andDi the components of
the ~normalized! Perron Frobenius eigenvector. Calls i the vertices ofG and, if s j is a neighbor
of s i , call j i j the oriented edge froms i to s j . If G is unoriented~the case forADE and affine
ADE diagrams!, each edge should be considered as carrying both orientations. An elementar
can be written either as a finite sequence of consecutive~i.e., neighbors on the graph! vertices,
@sa1

sa2
sa3

¯#, or, better, as a sequence~j~1!j~2!¯! of consecutive edges, withj(1)5ja1a2

5sa1
sa2

, j(2)5ja2a3
5sa2

sa3
, etc. Vertices are considered as paths of length 0. The lengt

the~possibly backtracking! path (j(1)j(2)¯j(p)) is p. We callr (j i j )5s j the range ofj i j , and
s(j i j )5s i the source ofj i j . For all edgesj(n11)5j i j that appear in an elementary path, we s
j(n11)218j j i . For every integern.0, the annihilation operatorCn , acting on the vector spac
generated by elementary paths of lengthp, is defined as follows: ifp<n, Cn vanishes, whereas i
p>n11, then

Cn~j~1!j~2!¯j~n!j~n11!¯ !5ADr (j(n))

Ds(j(n))
dj(n),j(n11)21~j~1!j~2!¯ ĵ~n!ĵ~n11!¯ !.

Here, the symbol ‘‘hat’’~like in ĵ) denotes omission. The result is therefore either 0 or a lin
combination of paths of lengthp22. Intuitively, Cn chops the round trip that possibly appears
positionsn andn11.

A path is called essential if it belongs to the intersection of the kernels of the anihilatorsCn’s.
The following is an example of calculation for theE6 diagram ~square brackets enclos

q-numbers!,
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C3~j01j12j23j32!5A 1

@2#
~j01j12!,

C3~j01j12j25j52!5A@2#

@3#
~j01j12!.

The following difference of nonessential paths of length 4 starting ats0 and ending ats2 is
an essential path of length 4 onE6 :

A@2#~j01j12j23j32!2A@3#

@2#
~j01j12j25j52!5A@2#@0,1,2,3,2#2A@3#

@2#
@0,1,2,5,2#.

Remember the values of theq-numbers:@2#5&/()21) and@3#5 2/()21).
Acting on elementary path of lengthp, the creating operatorsCn

† are defined as follows: if
n.p11, Cn

† vanishes and, ifn<p11, then, settingj 5r (j(n21)),

Cn
†~j~1!¯j~n21!¯ !5 (

d( j ,k)51
AS Dk

D j
D ~j~1!¯j~n21!j jkjk j¯ !.

The above sum is taken over the neighborssk of s j on the graph. Intuitively, this operator add
one ~or several! small round trip~s! at positionn. The result is therefore either 0 or a line
combination of paths of lengthp12. For instance, on paths of length zero~i.e., vertices!,

C1
†~s j !5 (

d( j ,k)51
AS Dk

D j
D j jkjk j5 (

d( j ,k)51
AS Dk

D j
D @s jsks j #.

Jones’ projectorsek can be realized~as endomorphisms of Pathp) by

ek8
1

b
Ck

†Ck .

The reader can check that all Jones–Temperley–Lieb relations between theei are satisfied.
Essential paths can also be defined as elements of the intersection of the kernels of th
projectorsei ’s.

APPENDIX C: THE STRUCTURE OF BG

Paths onG generate a vector space Paths(G) which comes with a grading: paths of homog
neous gradej are associated with Young diagrams of SU(N). In the case of su~2! this grading is
just an integer~to be thought of as a length or as a point of a diagram of typeA!.

What turns out to be most interesting is a particular vector subspaceE5EssPaths(G) of Paths
whose elements are called ‘‘essential paths’’~see above definition!. This subspace is is itsel
graded in the same way as Paths.

We then consider the graded algebra of endomorphisms of essential paths

BG5End]~EssPaths!5 %

j 50,r 21
End~EssPathsj !,

which, by definition, is an associative algebra. By using the fact that paths on the chosen d
can be concatenated, one may define23 anothermultiplicative associative structure onBG that we
call convolution product~see our comments in the next subsection!. This vector space with two
algebra structures is called, by A. Ocneanu, the ‘‘algebra of double triangles.’’

Existence of a scalar product allows one to transmute one of the multiplications~for instance,
the convolution product! into a co-multiplication and it happens that the coproductD is compatible
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with the product@in the sense that we have the homomorphism propertyD(uv)5Du^ Dv]. BG
is therefore a bialgebra. However,BG is not a Hopf algebra but a weak Hopf algebra~or quantum
groupoid!. This statement should be taken with a grain of salt: see our comments in the
appendix. General axioms for weak Hopf algebras are given in Ref. 3. In the present ca
following axiom for Hopf algebras fails to be satisfied: the coproduct of the unitD1511^ 12 is not
equal to1^ 1 ~as usual, a summation is understood!; several other axioms for Hopf algebras a
also modified: the counit is not an homomorphism (e(xy)5e(x11)e(y12)) and, if D2x5x1^ x2

^ x3 , the compatibility axiom for the antipode is modified as followsS(x1)x2^ x3511^ x12 .

APPENDIX D: REMARKS AND OPEN QUESTIONS

Essential paths forADE diagrams@i.e., the su~2! system# have been defined in several pu
lished papers but their analog for higher systems~for instance, the Di Francesco–Zuber diagram!,
although reasonably well understood by a few people, have never been described, as fa
know, in the literature.

The general definition of the convolution product ofBG, for ADE diagrams, was given
‘‘explicitly’’ by A. Ocneanu in Ref. 23 by a rather difficult formula involving several types
generalized quantum 6j symbols. It is certainly interesting to know this general formula, but
our opinion, this expression is not very helpful for a practical investigation of the different c

The fact thatBG is a weak Hopf algebra is a claim that belongs to the folklore, but we are
aware of any general reference showing that all the axioms of Ref. 3 are indeed verified
situation. The authors~together with A. Garcia and R. Trinchero! have, however, checked that it
so in a number of particular cases belonging to theADE series and are working on a gener
proof.

Another possibility for defining the convolution product ofBG is to make use of the notion o
cell systems. This general notion was defined in Ref. 22; it is also described in Ref. 12 an
used, in a particular context, by Ref. 32. We cannot summarize this theory here. Let u
mention that a cell system involves four graphs~top, bottom, left and right! with matching prop-
erties and that, in the present case, the top and bottom graphs are the sameADE diagramG. Cells
are rectangles with top and bottom edges which are also edges of the given graph~s!. Macrocells
have top and bottom edges~or ‘‘horizontal paths’’! that coincide with the essential paths onG;
their left and right edges are called ‘‘vertical paths.’’ To every cell system one can asso
‘‘‘connections’’ which are particular maps associating complex numbers with cells or macro
These numbers, in turn, can be used to define the structure constants of the algebra we are
for. For every point of the graph Oc~G! there is an irreducible connection on the cell system~or an
irreducible quantum symmetry!. Although it seems to provide~at the time of this writing! the
shortest road to the explicit construction of the bialgebraBG, this construction is unfortunately
not explicitly available in the literature.

Among other results, and in the framework of statistical mechanics, Ref. 31 gives many
relations between the vertical product ofBG @the product of endomorphisms acting o
EssPaths(G)] and its horizontal product~or convolution product!. There are indeed several fam
lies of numeral constants that appear as structure constants for these two products, or tha
as coefficients of a kind of Fourier transform relating the two. These constants look like ge
ized quantum 6j symbols and obey different types of~mixed! pentagon equations which them
selves generalize the quantum group version of the Biedenharn–Elliot identity. As discus
Ref. 3, any solution of this ‘‘big pentagon equation’’~involving six different types of generalize
6 j symbols! determines the structural maps of a weakC* Hopf algebra. Unfortunately, we do no
know a single reference that describes a practical implementation of this general constructio~and
gives the values of these structure constants! for the bialgebrasBG associated with specificADE
diagrams or with their higher generalizations.

Graphs Oc(G), encoding the structure of the algebra of quantum symmetries of the dia
G, have been ‘‘conceptually’’ defined by A. Ocneanu in terms of the block structure ofBG for its
convolution product, but it is interesting to notice that, to our knowledge, they were never obt
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in this way. Clearly, it would be interesting to do so. We repeat that our modest purpose,
present article, was to observe that known Ocneanu graphs~or algebras!, in theADE cases, could
be recovered, in most cases, from the modular properties of theT matrix; we then used this
observation to study several cases belonging to the su~3! system. The problem of deducing Oc
neanu graphs from the explicit structure of the bialgebraBG, in the different cases, is a muc
more difficult and interesting program that it would be nice to investigate.

Here comes a short list of open questions that, we hope, may trigger the interest of the

~i! Give a simple definition—valid in all cases—of the convolution product ofBG.
~ii ! Show that this bialgebra is indeed a weak Hopf algebra in all cases.
~iii ! Is it possible to find a kind of multiplication on EssPaths(G) that would allow one to

constructBG in a functorial~and simple! way?
~iv! Determine explicitly the graphs Oc(G) directly from the study of the corresponding bia

gebraBG.
~v! Find a simple algorithm allowing one to calculate all irreducible connections on cell

tems~i.e., the values of cells! in all ADE or generalizedADE cases.
~vi! Precise the relation~if any! between the generalized Coxeter–Dynkin systems and the fi

subgroups of Lie groups.
~vii ! What is the interpretation of all these contructions in terms of the finite dimensional

quotients ofUq(SL2) at roots of unity?
~viii ! Can one, in some sense, ‘‘supersymmetrize’’ these constructions?
~ix! What is the origin of the linear sum rules?
~x! What is the origin of the quantum sum rules?
~xi! As we know, toric matrices~twisted or not! described in the text can be interpreted

partition functions~with or without defect lines! on a torus, at the critical point, for affin
models~WZW models!. Clearly this framework can be generalized in several directio
one may consider more general correlation functions, replace affine models by~general-
ized! minimal models, and replace the torus by higher genus surfaces.

~xii ! We know explicitly how to generalize theADE diagrams in the cases of su~3! and su~4!
and a definition of what are the ‘‘generalized Coxeter-Dynkin systems’’ was briefly m
tionned in Ref. 24 but a detailed description of this notion is clearly needed.

~xiii ! What kind of algebraic structures~generalizing the notion of Lie algebras! can one associ-
ate with a diagram belonging to such a generalized system?
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In this paper we present a covariant quantization of the ‘‘massive’’ spin-2 field on
de Sitter~dS! space. By ‘‘massive’’ we mean a field which carries a specific prin-
cipal series representation of the dS group. The work is in the direct continuation of
previous ones concerning the scalar, the spinor, and the vector cases. The quanti-
zation procedure, independent of the choice of the coordinate system, is based on
the Wightman-Ga¨rding axiomatic and on analyticity requirements for the two-point
function in the complexified pseudo-Riemanian manifold. Such a construction is
necessary in view of preparing and comparing with the dS conformal spin-2 mass-
less case~dS linear quantum gravity! which will be considered in a forthcoming
paper and for which specific quantization methods are needed. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1599055#

I. INTRODUCTION

As recent observational data clearly favors a positive acceleration of the present univer
de Sitter~dS! model represents an appealing first approximation of the background space–ti
two previous papers,1,2 quantizations of ‘‘massive’’ spinor fields and vector fields on the dS sp
have been considered. The spin-2 case is of great importance since the massless tensor fie~spin-
2) is among the central objects in quantum cosmology and quantum gravity on dS space~dS linear
quantum gravity!. It has been found that the corresponding propagator~in the usual linear approxi-
mation for gravitational field! exhibits a pathological behavior for large separated points~infrared
divergence!.3–5

On one hand, this behavior may originate from the gauge invariance of the field equatio
so should have no physical consequences. Antoniadis, Iliopoulos and Tomaras6 have shown that
the large-distance pathological behavior of the graviton propagator on dS background do
manifest itself in the quadratic part of the effective action in the one-loop approximation.
means the pathological behavior of the graviton propagator may be gauge dependent and so
not appear in an effective way as a physical quantity.

On the other hand, some authors argue that infrared divergence could be exploited in o
create instability of dS space.7,8 Tsamis and Woodard have considered the field operator for lin
gravity in dS space along the latter line in terms of flat coordinates, which cover only one-h
the dS hyperboloid.9 Hence they have found a quantum field which breaks dS invariance, and
have examined the resulting possibility of quantum instability.

Nevertheless, a fully covariant quantization of the linear gravitational field without infr
divergence in dS space–time may reveal to be of extreme importance for further developm

a!Electronic mail: garidi@ccr.jussieu.fr
b!Electronic mail: gazeau@ccr.jussieu.fr
c!Electronic mail: takook@ccr.jussieu.fr
38380022-2488/2003/44(9)/3838/25/$20.00 © 2003 American Institute of Physics
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will be considered in a forthcoming paper.10 Such a quantization requires preliminary covaria
quantizations of the minimally coupled scalar field and the ‘‘massive’’ spin-2 field respectiv

Recently, de Vegaet al.11 have shown that, in flat coordinates~not global! on de Sitter space–
time, the infrared divergence does not appear in the ‘‘massless’’ minimally coupled scalar
The question of the covariant minimally coupled scalar field has been completely answered
12 after introducing a specific Krein QFT. We have shown that the effect of that quantiza
without changing the physical content of the theory, appears as an automatic renormaliza
the ultraviolet divergence in the stress tensor and of the infrared divergence in the two
function.13 By using this method for linear gravity~the traceless rank-2 ‘‘massless’’ tensor fiel!
the two-point function is free of any infrared divergence.14 This result has been also obtained
Refs. 15–17.

Here, we present a fully covariant quantization of the ‘‘massive’’ spin-2 field. Our metho
based on a rigorous group-theoretical approach combined with a suitable adaptation
Wightman–Ga¨rding axiomatic, which is carried out in terms of coordinate independent dS wa
The whole procedure originated by Ref. 18 is based on analyticity requirements in the com
fied pseudo-Riemanian manifold. The SO(1,N) unitary irreducible representations~UIRs! acting
on symmetric, traceless and divergence-free tensor eigenfunctions of the Laplace–Beltrami
tor have been investigated in Ref. 19. Previous studies of the ‘‘massive’’ spin-2 field have
carried out in Ref. 20 with a specific choice of coordinates~flat coordinates! covering only
one-half of the dS hyperboloid, and in Ref. 21 where the forbidden mass range for spin-2
has been clarified, and the null-mass limit considered. The mentioned forbidden mass ra
closely related to a novel gauge invariance occurring for a specific representation of the dS
This phenomena has first been observed in Refs. 22 and 23 in the general framework of c
curvature spaces. Recently, various aspects of higher spin physics have been considered in
of papers by S. Deser and A. Waldron. Among these, a stability analysis of the massive
field24 is given as well as detailed discussions about the richness of the plane defined by th
parameter and the cosmological constant.25–27 It is notably shown how this plane is divided b
partially massless lines in various regions with different properties~null propagation, stability,...!.
The null-mass limit has also been analyzed in Ref. 28 and a consistent theory for a massive
field in a general gravitational background has been presented in Refs. 29 and 30. Pion
works concerning propagators in a general curved background are due to A. Lichnerowicz~see, for
instance, Ref. 31!.

In Sec. II, we describe the dS tensor field equation as an eigenvalue equation of the S~1,4!
Casimir operators. The notations and the two independent Casimir operators are introduced
be convenient to use ambient space notations in order to express the spin-2 field equation i
of the coordinate independent Casimir operators. The latter carry the group-theoretical con
the theory and it will be reminded how they enable us to classify the dS group UIR32,33according
to two parametersp andq which behave like a spin (s) and a mass (m) in the Minkowskian limit,
depending on the nature of the involved group representation.

Section III is devoted to the field equation and its solutions. The dS tensor modes are w
in terms of a scalar fieldf and a generalized polarization tensorE,

Kab~x!5Eab~x,j!f~x!.

As for spinor and vector fields, the tensorE(x,j) is a space–time function in dS space–tim
There is a certain extent of arbitrariness in the choice of this tensor and we fix it in such a
that, in the limitH50, one obtains the polarization tensor in Minkowski space–time.

In Sec. IV we derive the Wightman two-point functionWaba8b8(x,x8). This function fulfills
the conditions of~a! positiveness,~b! locality, ~c! covariance,~d! normal analyticity,~e! transver-
sality, ~f! divergencelessness and~g! permutational index symmetries. The four conditions~c!, ~e!,
~f!, and~g! allow one to associate this field with a spin-2 unitary irreducible representation o
dS group. The positivity condition permits us to construct a Hilbert space structure. The loca
related to the causality principle, which is a well defined concept in dS space. The normal
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ticity allows one to viewWaba8b8(x,x8) as the boundary value of an analytic two-point functi
Waba8b8(z,z8) from the tube domains. The analytic kernelWaba8b8(z,z8) is defined in terms of
dS waves in their tubular domains. Then, the Hilbert space structure is made explicit and th
operatorK( f ) is derived. We also give a coordinate-independent formula for the unsmeared
operatorK(x). Brief conclusion and outlook are given in Sec. V. It is in particular asserted tha
extension of our approach to ‘‘massless’’ tensor field~gravitational field in a dS background in th
linear approximation! requires an indecomposable representation of the dS group in view o
construction of the corresponding covariant quantum field. Finally, we have detailed the cl
cation of the unitary irreducible representation of SO0(1,4) in Appendix A. In Appendix B we
relate our construction to the maximally symmetric bitensors introduced in Ref. 34. In Appen
C and D we respectively present the ‘‘massive’’ vector and tensor two-point functions.

II. FIELD EQUATIONS ON de SITTER SPACE

A. Ambient space notations and Casimir operators

The de Sitter space is a solution of the cosmological Einstein equation with positive co
logical constantL. It is conveniently described as a hyperboloid embedded in a five-dimens
Minkowski space

XH5H xPR5;x25habxaxb52H2252
3

LJ , a,b50,1,2,3,4, ~2.1!

wherehab5diag(1,21,21,21,21). The de Sitter metrics reads

ds25habdxadxb5gmn
dSdXmdXn, m50,1,2,3,

where theXm’s are four space–time intrinsic coordinates of the dS hyperboloid.
An immediate realization of field space is made of a second-rank intrinsic tensor fieldhmn

satisfying the conditions of divergenceless, tracelessness, and index permutational symm
spectively:

¹•h~X!50, hm
m~X!50, hmn5hnm . ~2.2!

The wave equation for such fields propagating in de Sitter space can be written as20

~hH12H21mH
2 !hmn~X!50, ~2.3!

wherehH5¹m¹m is the d’Alembertian operator.
Let us now adopt ambient space notations~for details, see Ref. 35!, namely,Kab(x) for the

field. With these notations, the relationship with unitary irreducible representations of the dS
becomes straightforward because the Casimir operators are easy to identify. The tens
Kab(x) has to be viewed as a homogeneous function of theR5-variablesxa with homogeneous
degreel and thus satisfies

xa
]

]xaKgb~x!5x•]Kgb~x!5l Kgb~x!. ~2.4!

The direction ofKab(x) lies in the de Sitter space if we require the condition of transversali36

x•K~x!50. ~2.5!

With these notations, the conditions~2.2! read as

]̄•K50, K a
a5K850, Kab5Kba , ~2.6!

where]̄ is the tangential~or transverse! derivative on dS space,
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]̄a5uab]b5]a1H2xax•], with x• ]̄50. ~2.7!

The tensor with componentsuab5hab1H2xaxb is the so-called transverse projector.
In order to express Eq.~2.3! in terms of the ambient coordinates, we use the fact that

‘‘intrinsic’’ field hmn(X) is locally determined by the transverse tensor fieldKab(x) through

hmn~X!5
]xa

]Xm

]xb

]Xn Kab~x~X!!. ~2.8!

For instance, it is easily shown that the metrichmn corresponds to the transverse projectoruab .
Covariant derivatives acting on a l-rank tensor are transformed according to

¹m¹n ¯¹rhl1¯l l
5

]xa

]Xm

]xb

]Xn ¯
]xg

]Xr

]xh1

]Xl1
¯

]xh l

]Xl l
Trpr]̄aTrpr]̄b ¯Trpr]̄gKh1 ..h l

, ~2.9!

where the transverse projection defined by

~TrprK!l1¯l l
[ul1

h1
¯ul l

h lKh1 ..h l

guarantees the transversality in each index. Applying this procedure to a transverse secon
symmetric tensor field, leads to

¹m¹nhrl5
]xa

]Xm

]xb

]Xn

]xg

]Xr

]xh

]Xl Trpr]̄aTrpr]̄bKgh

5
]xa

]Xm

]xb

]Xn

]xg

]Xr

]xh

]Xl ~ ]̄a]̄bKgh2H2uagKbh2H2uahKbg! . ~2.10!

The kinematical group of the de Sitter space is the ten-parameter group SO0(1,4) @connected
component of the identity in SO~1,4!#, which is one of the two possible deformations of t
Poincare´ group. There are two Casimir operators

Q2
(1)52 1

2 LabLab, Q2
(2)52WaWa, ~2.11!

where

Wa52 1
8 eabgdhLbgLdh, with ten infinitesimal generatorsLab5Mab1Sab . ~2.12!

The subscript 2 inQ2
(1) , Q2

(2) reminds that the carrier space is constituted by second rank ten
The orbital partMab and the action of the spinorial partSab on a tensor fieldK defined on the
ambient space read respectively37

Mab52 i ~xa]b2xb]a!,
~2.13!

SabKgd52 i ~hagKbd2hbgKad1hadKbg2hbdKag!.

The symboleabgdh holds for the usual antisymmetrical tensor. The action of the Casimir ope
Q2

(1) on K can be written in the more explicit form

Q2
(1)K~x!5~Q0

(1)26!K~x!12hK812Sx]•K~x!22S]x•K~x!, ~2.14!

In the latter,Q0
(1)52 1

2 MabMab, and the vector symmetrizerS is defined for two vectorsja and
vb by S(javb)5javb1jbva .
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We are now in position to express the wave equation~2.3! by using the Casimir operators
This can be done with the help of Eq.~2.10! sinceQ0

(1)52H22( ]̄)2. The d’Alembertian operator
becomes

hHhmn5¹l¹lhmn52
]xa

]Xm

]xb

]Xn @Q0
(1)H212H2#Kab , ~2.15!

and the wave equation~2.3! is rewritten as

~Q0
(1)2H22mH

2 !Kab~x!50. ~2.16!

Finally, using formula~2.14! for the tensor fieldKab(x) which satisfies the conditions~2.6!, the
field equation becomes

~Q2
(1)2~mH

2 H2226!!Kab~x!50. ~2.17!

As expected, this formulation of the field equation has now a clear group-theoretical co
In fact, using the representation classification given by the eigenvalues of the Casimir opera
will be able to identify the involved field. At this point let us clarify what we mean by ‘‘massiv
spin-2 de Sitter field. Inasmuch as mass and spin are well-defined Poincare´ concepts, we will
consider exclusively the de Sitter elementary systems~in the Wigner sense! associated to a UIR o
SO0(1,4) that admit a nonambiguous massive spin-2 UIR of the Poincare´ group at theH50
contraction limit. This contraction is performed with respect to the subgroup SO0(1,3) which is
identified as the Lorentz subgroup in both relativities, and the concerned de Sitter represen
are precisely those ones which are induced by theminimal parabolic38 subgroup SO(3)
3SO(1,1)3 ~a certain nilpotent subgroup!, where SO~3! is the space rotation subgroup of th
Lorentz subgroup in both cases. This fully clarifies the concept of spin in de Sitter since it is i
from thesameSO~3!.

B. ‘‘Massive’’ spin-2 unitary representation of the de Sitter group SO 0„1,4…

The operatorQ2
(1) commutes with the action of the group generators and, as a conseque

is constant in each unitary irreducible representation~UIR!. Thus the eigenvalues ofQ2
(1) can be

used to classify the UIR’s, i.e.,

~Q2
(1)2^Q2

(1)&!K~x!50. ~2.18!

Following Dixmier32 we get a classification scheme using a pair (p,q) of parameters involved in
the following possible spectral values of the Casimir operators:

Q(1)5~2p~p11!2~q11!~q22!!I d , Q(2)5~2p~p11!q~q21!!I d . ~2.19!

Three types of scalar, tensorial or spinorial UIR are distinguished for SO0(1,4) according to the
range of values of the parametersq andp,32,33 namely, the principal, the complementary and t
discrete series. In the following, we shall restrict the list to the unitary representations which
a Minkowskian physical spin-2 interpretation in the limitH50 ~for the general situation see Re
39 and Appendix A!. The flat limit tells us that for the principal and the complementary serie
is the value ofp which has a spin meaning, and that, in the case of the discrete series, the
representations which have a physically meaningful Minkowskian counterpart are those wp
5q ~details about the mathematics of the group contraction and the physical principles unde
the relationship between de Sitter and Poincare´ groups can be found in Refs. 40 and 41, resp
tively!. The spin-2 tensor representations relevant to the present work are the following:

~i! The UIR’s U2,n in the principal series wherep5s52 andq5 1
21 in correspond to the

Casimir spectral values:
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^Q2
(1)&5n22 15

4 , ~2.20!

with parameternPR ~note thatU2,n andU2,2n are equivalent!.
~ii ! The UIR’sV2,q in the complementary series wherep5s52 andq2q25m correspond to

^Q2
(1)&5q2q224[m24, 0,m, 1

4 . ~2.21!

~iii ! The UIR’s P2,2
6 in the discrete series whereq5p5s52 correspond to

^Q2
(1)&526. ~2.22!

The spin-2 ‘‘massless’’ field in de Sitter space corresponds to the latter case in whic
sign6 in P2,2

6 stands for the helicity. A forthcoming paper will be entirely devoted to this spe
field.

Equation ~2.17! leads to H2(^Q2
(1)&1 6)5mH

2 which enables us to write the respectiv
‘‘mass’’ relations for the three types of UIR previously described:

mH
2 5H mp

25H2~n21 9
4!, n>0 ~ for the principal series!,

mc
25H2~m12!, 0,m, 1

4 ~ for the complementary series!,

md
250 ~ for the discrete series!.

~2.23!

The spin-2 ‘‘mass’’ range is represented in Fig. 1. The forbidden mass range phenomenon h
discussed by Higuchi in Ref. 21 and largely developed by S. Deser and A. Waldron in
25–27. It has in particular been shown that for~A!dS space times and for fields withs.1, the
plane (mH

2 ,L) is divided in different phases which correspond to unitary or nonunitary regi
These regions are separated ‘‘by lines of novel partially massless gauge theories’’ which
spond to specific representations of the involved group. In the case of the dS group and the
field, theses lines are given by the valuesmH

2 52L/352H2 and mH
2 50. They belong to the

discrete series of unitary irreducible representations with the valuesp52 with q51 (mH
2

52H2) or q52 (mH
2 50). They are represented by the symbolh in Fig. 1. Both cases are

characterized by a certain gauge invariance which allows us to reduce the degrees of free
the corresponding fields. One gets two helicities in the casemH

2 50 and four degrees of freedom
for the field withmH

2 52H2.
As it is explained above, the casemH

2 50 with p5q52 corresponding to the spin-2 linearize
gravity admits a Minkowskian interpretation in the flat limit. On the other hand, we do
consider the values ofmH in the range of the complementary series and the discrete series
mH

2 52H2 as acceptable values of a ‘‘mass.’’ This is because neither the complementary
with p52 nor the discrete series withpÞq are linked to any physical representation in t
Poincare´ flat limit sense. The crucial points are for the complementary series thatmc

2 ~unlike mp
2!)

is confined between the values 0 and1
4 and therefore simply vanishes in the limitH50 and for the

discrete series that in the casepÞq p and q lose their spin meaning. On the contrary, for t
principal series, the contraction limit has to be understood through the constraintm5Hn. The
quantity mH , supposed to depend onH, goes to the Minkowskian massm when the curvature
goes to zero. In short, we only consider as ‘‘massive’’ tensor fields those ones for which the
assumed by the parametermH are in the rangemp which corresponds to the principal series
representations. Equation~2.17! then gives

FIG. 1. Mass range and spin-2 SO0(1,4) unitary irreducible representations.
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~hH12H21mp
2!Kab~x!50. ~2.24!

In order to be more precise, let us recall at this point the physical content of the prin
series representation from the point of view of a Minkowskian observer~at the limit H50). The
principal series UIRU2,n, n>0, contracts toward the tensor massive Poincare´ UIR’s P,(m,2)
andP.(m,2) with negative and positive energies, respectively. Actually, the group represen
contraction procedure is not unique and it has been shown that the principal series UI
contract either toward the direct sum of the two tensor massive Poincare´ UIRs,42

U2,n
H→0,n→`

Hn5m
→P,~m,2! % P.~m,2!, ~2.25!

or simply43

U2,n
H→0,n→`

Hn5m
→P.~m,2! or U2,2n

H→0,n→`

Hn5m
→P,~m,2!. ~2.26!

In contrast, in the massless spin-2 case, only the two aforementioned representationsP2,2
6 , in the

discrete series withp5q52, have a Minkowskian interpretation. The representationP2,2
1 has a

unique extension to a direct sum of two UIRsC(3;2,0) andC(23;2,0) of the conformal group
SO0(2,4) with positive and negative energies, respectively.39,44 The latter restricts to the tenso
massless Poincare´ UIRs P.(0,2) andP,(0,2) with positive and negative energies, respective
The following diagrams illustrate these connections:

C~3,2,0! C~3,2,0! ‚ P .~0,2!

P2,2
1

� % →
H50

% %

C~23,2,0! C~23,2,0! ‚ P ,~0,2!,

~2.27!

C~3,0,2! C~3,0,2! ‚ P .~0,22!

P2,2
2

� % →
H50

% %

C~23,0,2! C~23,0,2! ‚ P ,~0,22!,

~2.28!

where the arrows� designate unique extension, andP :(0,2) @resp.P :(0,22)] are the massles
Poincare´ UIRs with positive and negative energies and positive~resp. negative! helicity.

III. de SITTER TENSOR WAVES

A. Field equation solution

Our aim is now to solve the ‘‘massive’’ spin-2 wave equation for the dS modeK(x)

~Q2
(1)2^Q2

(1)&!K~x!50 with ^Q2
(1)&5n22 15

4 . ~3.1!

In ambient space notations, the most general transverse, symmetric fieldKab(x) can be written in
terms of two vector fieldsK,Kg and a scalar fieldf through the following recurrence formula:37

K5uf1SZ̄1K1D2Kg , ~3.2!

with K satisfying the conditions~2.6!. The symbol Z1 denotes a constant vector andZ̄1a

5uabZ1
b , x•Z̄150. The operatorD2 is the generalized gradientD2K5H22S( ]̄2H2x)K which

makes a symmetric transverse tensor field from the transverse vectorK. The algebraic machinery
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valid for describing fields in anti-de Sitter space can be easily transferredmutatis mutendisto dS
space formalism by the substitutions~see, for instance, Refs. 35, 37, and 45!:

Qs
AdS→2Qs

dS, ~H2!AdS→2~H2!dS.

Reference 45 provides the following useful relations:

Q2uf5uQ0f, Q2D2Kg5D2Q1Kg ,
~3.3!

Q2SZ̄1K5SZ̄1~Q124!K22H2D2~x•Z1!K14u~Z1•K ! .

Defining the generalized divergence]2•K5]•K2H2xK82 1
2]̄K8 andD15H22]̄, one also has

]2•uf52H2D1f, ]2•D2Kg52~Q116!Kg ,
~3.4!

]2•SZ̄1K5Z̄1]•K2H2D1~Z1•K !2H2x~Z1•K !1Z1• ]̄K15H2~Z1•x!K.

PuttingKab(x) given by~3.2! into ~3.1! and from the linear independence of the terms in~3.2! one
gets

~Q12^Q1
(1)&!K50 with ^Q1

(1)&5^Q2
(1)&14 , ~3.5!

~Q02^Q2
(1)&!f524~Z1•K ! , ~3.6!

~Q12^Q2
(1)&!Kg52H2~x•Z1!K . ~3.7!

Note that in these formulas,^Qs
(1)& corresponds to the principal series of representation with s

s and thatK is chosen to be divergenceless. Using the equations~3.4!, the divergenceless cond
tion combined with Eq.~3.7! leads to

Kg5
1

^Q0
(1)&

@2H2D1~f1Z1•K !1Z1• ]̄K2H2xZ1•K13H2x•Z1K#, ~3.8!

where^Q0
(1)&5^Q2

(1)&16. Finally, the traceless condition which yields

]̄•Kg522H2f2H2Z1•K , ~3.9!

compared to the divergence of Eq.~3.8! allows us to expressf in terms ofK:

f52 2
3 ~Z1•K !. ~3.10!

Thus, the fieldsK andf are respectively ‘‘massive’’ vector field~e.g., transforming under the
vector UIRU1,n of the principal series!1 and ‘‘massive’’ scalar field~e.g., transforming under the
scalar UIRU0,n of the principal series!:18

~Q12^Q1
(1)&!K50 and ~Q02^Q0

(1)&!f50. ~3.11!

Note that the equations forK and f are compatible with the relationf52 2
3 Z1•K. The

equations~3.8! and~3.10! show that the massive vectorK determines completely the tensor fie
K which can now be written

K~x!5S 2
2

3
uZ1•1SZ̄11

1

^Q0
(1)&

D2FZ1• ]̄2H2xZ1•13H2x•Z12
1

3
H2D1Z1•G D K .

~3.12!
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As explained in Ref. 1 the solutions to Eq.~3.5! are defined on connected open subsets ofXH

such thatx•jÞ0, wherejPR5 lies on the null coneC5$jPR5; j250%. They are homoge-
neous with degree2 3

27 in on C and thus are entirely determined by specifying their values o
well chosen curve~the orbital basis! g of C. They can be written1 as a product of a generalize
polarization vectorEa(x,j,Z2) with the so-called46 ~scalar! dS waves (Hx•j)s where s52 3

2

2 inPC. The dS wave equations solutions, as functions on de Sitter space, are only l
defined since they are singular on specific lower dimensional subsets ofXH and multivalued on dS
space–time. The physical relevance of such waves can be questioned of course, because
singular behavior and multivaluedness; however their mathematical existence and proper
rigorously justified within the framework of distribution theory.46,47 Moreover physical de Sitte
entities like square integrable states can be built as superpositions of such waves exactly lik
packets are built by superposition of non-square-integrable plane waves in Minkowskian o
ilean quantum mechanics.

The solutions to Eq.~3.5! read

Ka~x!5S s

s11D Ea~x,j,Z2!~Hx•j!s, with s52
3

2
2 in, ~3.13!

whereZ2 is another constant vector. Note that contrary to the Minkowskian case, the polariz
tensor is a function of space–time. The simplest form ofEa(x,j,Z2) compatible with the
Minkowski polarization vector in the flat limit~see Ref. 1! is obtained through the choicej•Z2

50 and reads

E~x,j,Z2!5S Z̄2
l2

Z2
l
•x

x•j
j̄ D with E l~x,j,Z2!• j̄5Z2

l
•j50 . ~3.14!

It is easy to see~flat limit! that the three Minkowski polarization four-vectorsem
l with m

50,1,2,3 are linked toZ2
l by

lim
H→0

E a
l~x,j,Z2!5Z2m

l 2
Z24

l

j4
jm[em

l . ~3.15!

We demand that the Minkowski polarization vectors satisfy the usual relations

el
•k50, el

•el85hll8, (
l51

3

em
l ~k! en

l~k!52S hmn2
kmkn

m2 D[Pmn~k!, ~3.16!

which is achieved if theZ2
l’s are such that

Z2
l
•j50, Z2

l
•Z2

l85hll8, (
l51

3

Z2a
l Z2b

l 52hab and (
l51

3

Z24
l Z2m

l 50 ; m . ~3.17!

These conditions are easily derived by working with a well adapted~to the flat limit! orbital basis.
This basis, characterized by the values61 of the componentj4 , will be discussed later on. A
remarkable feature connected with the use of ambient space notations is that with Eq.~3.17! one
shows that the properties of the dS polarization vector are very similar to the Minkowskian

(
l51

3

E a
l~x,j,Z2! E b

l~x,j,Z2!52S uab2
j̄aj̄b

~Hx•j!2D[Pab~x,j! ,

~3.18!
E l~x,j,Z2!•E l8~x,j,Z2!5Z2

l
•E l8~x,j,Z2!5E l~x,j,Z2!•E l8~x8,j,Z2!5hll8 .

The last equality involves different space–time pointsx,x8 and will be useful on the level of the
two-point function. It follows from Eq.~3.12! that the two spin-2 families of solutions to Eq.~3.1!
read
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K~x!5uf1SZ̄1K1D2Kg[D~x,],Z1 ,Z2!~Hx•j!2 ~3/2! 7 in,

where the operatorD(x,],Z1 ,Z2) is given by

S s

s11D S 2
2

3
uZ1•1SZ̄11

1

^Q0
(1)&

D2F Z1• ]̄2H2xZ1•13H2x•Z12
1

3
H2D1Z1• G D E~x,j,Z2!.

~3.19!

These spin-2 solutions can be brought into the form

Kab~x!5an Eab~x,j,Z1 ,Z2!~Hx•j!s and Kab* ~x! with an5cnS 2~s21!

s11 D ,

~3.20!

where theEab’s are the generalized polarization tensor components,cn is a normalization constan
and where we have again omitted the superscriptl. Because of the conditionsKab5Kba , ]•K
50, andx•K50, the 25 componentsEab reduce to 5 independent components which corresp
precisely to the 2s1155 degrees of freedom of a spin-2 field.

The arbitrariness due to the introduction of the constant vectorsZ1 ,Z2 in our solution has
partly been removed in~3.17! by comparison with the Minkowski polarization vector one eve
tually reaches by going to the flat limit@see~3.15!#. We now apply the same procedure in order
fix the value ofZ1 , that is we investigate the behavior of Eq.~3.19! in the H50 limit. More
precisely, we show thatEab(x,j,Z1 ,Z2) contracts toward the usual Minkowski tensor polarizati
and takes a simple form ifZ1 is chosen to be equal toZ2 and denoted byZ in the following. It is
a matter of simple calculation to get the de Sitter polarization tensor starting with formula~3.19!:

Eab~x,j,Z![E ab
ll8~x,j!5

1

2
FS E a

l~x,j!E b
l8~x,j!2

2

3
S uab2

j̄aj̄b

~Hx•j!2D E l~x,j!•E l8~x,j!G ,

~3.21!

whereE l(x,j)5E l(x,j,Z2). In view of ~3.18! one obtains

E ab
ll8~x,j!5

1

2 FS E a
l~x,j!E b

l8~x,j!1
2

3
hll8(

r
E a

r ~x,j!E b
r ~x,j!G . ~3.22!

It is easy to check that the tensor polarization~3.22! satisfies the propertieshabEab(x,j,Z)50
~tracelessness!, j̄•Eab(x,j,Z)50 and the relation

E ll8~x,j!•• E l9l-~x,j!5E ll8~x8,j!•• E l9l-~x,j!5@hll9hl8l-1hll8hl9l-# . ~3.23!

The dS tensor wavesKab(x) are homogeneous with degrees on the null coneC and on the dS
submanifoldXH characterized byx•x52H22 with H being constant. This is due to

E l~x,aj!5E l~x,j! and E l~ax,j!5E l~x,j!,

which is obvious from the definition ofE l(x,j)

E l~x,j!5S Z̄l2
Zl

•x

j•x
j̄ D5S Zl2

Zl
•x

j•x
j D . ~3.24!

Note that as a function ofR5, the waveKab(x) is homogeneous with degree zero@H(x)
521/A2x•x#.
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B. Flat limit and analytic tensor wave

It order to compute the flat limit of the polarization tensor, it is useful to precise the notio
orbital basisg for the future null coneC 15$jPC; j0.0%.46 Let us choose a unit vectore in R5

and letHe be its stabilizer subgroup in SO0(1,4). Then two types of orbits are interesting in t
present context.

~i! The spherical typeg0 corresponds toePV1[$xPR5; x0.AixW i21(x4)2%, and is an
orbit of He'SO(4),

g05$j;e•j5a.0%ùC 1 .

~ii ! The hyperbolic typeg4 corresponds toe2521. It is divided into two hyperboloid sheets
both being orbits ofHe'SO0(1,3).

The most suitable parametrization when one has in view the link with massive Poincare´ UIRs
is to work with the orbital basis of the second type,

g45$jPC1,j (4)51%ø$jPC1,j (4)521%,

with the null vectorj given in terms of the four-momentum (k0,kW ) of a Minkowskian particle of
massm:

j65S k0

mc
5A kW2

m2c2 11,
kW

mc
,61D . ~3.25!

An appropriate choice of global coordinates is given by

x05H21 sinh~HX0! ,

xW5~HiXW i !21XW cosh~HX0!sin~HiXW i ! , ~3.26!

x45H21 cosh~HX0!cos~HiXW i ! ,

where the dS point is expressed in terms of the Minkowskian variablesX5(X05ct,XW ) measured
in units of the dS radiusH21.

The Minkowskian limit of the dS waves at pointx can be written as18

lim
H→0

~Hx•j2!s5exp@2 ik•X# ~positive energy!,

~3.27!
lim

H→0
e2 ips~Hx•j1!s5exp@ ik•X# ~negative energy!.

Since the contraction is done with respect to the Lorentz subgroup SO0(1,3) @g4 is invariant under
SO0(1,3)] the equations~3.27! indicate that with the orbital basisg4, dS waves can contrac
toward the sum of two solutions with opposite energies~see Ref. 43!.

The polarization tensor limit is easily obtained with the help of

lim
H→0

H2s252m2, lim
H→0

E a
l~x,j!5em

l ~k! , lim
H→0

uab5hmn , lim
H→0

j̄a5
km

m
;jPg4 .

Finally, one recovers the Minkowskian massive spin-2 polarization tensor:48

lim
H→0

E ab
ll8~x,j!5emn

ll8~k!5
1

2
Sem

l ~k!en
l8~k!1

1

3
hll8(

l
em

l ~k!en
l~k! ,
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which satisfieshmnemn
ll8(k)5kmemn

ll8(k)50 and

(
ll8

emn
ll8~k!erp

ll8~k!5
1

2
@Pmr~k!Pnp~k!1Pnr~k!Pmp~k!#2

1

3
@Pmn~k!Prp~k!# . ~3.28!

Hence, we have shown that in the limitH50, (Hx•j)s and Eab(x,j,Z) behave like the plane
waveeik•X and the polarization tensor in Minkowski space–time, respectively.

Although the ‘‘massive’’ field equation solutionsKab(x) andKab* (x) are complex conjugated
they cannot be associated with the positive and negative energies respectively as
Minkowskian situation. Actually, despite the fact that the solutions are globally defined~in a
distributional sense! in dS space, the concept of energy is not~absence of global timelike killing
vector field!. As a result, concepts like ‘‘particle’’ and ‘‘antiparticle’’ are rather unclear and
differences between these two solutions is not really explained or understood. In terms of
representation these two solutions are equivalent, because the two representationsU2,n andU2,2n

are. Note that the minimally coupled scalar field requires both sets of solutions in order to a
a covariant quantization.12 This will certainly also be the case for the spin-2 massless field in
space since it is constructed from a minimally coupled scalar field as it will be shown in Re

In the present case, the ‘‘massive’’ free field covariant quantization can be constructed
the positive norm states alone sinceKab(x) transforms under the group action in a closed wa

~U~g! K!ab~x!5ga
ggb

d Kgd~g21x!

5ga
ggb

d an Egd~g21x,j,Z!~Hg21x•j!s

5an Eab~x,gj,gZ!~Hx•gj!s. ~3.29!

This is easily proved since the vector polarization satisfies

Ea~g21x,j,Z!5S Za2
g21x•Z

g21x•j
jaD5S Za2

x•gZ

x•gj
jaD5~g21!a

d Ed~x,gj,gZ! . ~3.30!

We have mentioned that the dS waves solutions, as functions on de Sitter space, are only
defined since they are singular on specific lower dimensional subsets ofXH and multivalued on dS
space–time. In order to get a global definition, they have to be viewed as distributions47 which are
boundary values of analytic continuations of the solutions to tubular domains in the comple
de Sitter spaceXH

(c) . The latter is defined as follows:

XH
(c)5$z5x1 iyPC5; habzazb5~z0!22zW•zW2~z4!252H22%

5$~x,y!PR53R5; x22y252H22, x•y50% .

For an univalued determination, we must introduce the forward and backward tubes ofXH
(c) .

First of all, let T65R52 iV6 be the forward and backward tubes inC5. The domainV1 ~resp.
V2) stems from the causal structure onXH :

V65$xPR5; x0:AixW i21~x4!2%. ~3.31!

We then introduce their respective intersections withXH
(c) ,

T 65T6ùXH
(c) , ~3.32!

which are the tubes ofXH
(c) . Finally, we define the ‘‘tuboid’’ aboveXH

(c)3XH
(c) by

T125$~z,z8!; zPT 1,z8PT 2%. ~3.33!
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Details are given in Ref. 46. Whenz varies inT 1 ~or T 2) andj lies in the positive coneC 1 the
wave solutions are globally defined because the imaginary part of (z•j) has a fixed sign and
z•jÞ0.

We define the de Sitter tensor waveKab(x) as the boundary value of the analytic continuati
to the future tube of Eq.~3.20!. Hence, forzPT 1 andjPC 1 one gets the two solutions

Kab~z!5an E ab
ll8~z,j!~Hz•j!s and Kab* ~z* !5an* E ab* ll8~z* ,j!~Hz•j!s* . ~3.34!

IV. TWO-POINT FUNCTION AND QUANTUM FIELD

A. The two-point function

As explained in Ref. 46, the dS axiomatic field theory is based on the Wightman two-
double tensor-valued function

Waba8b8~x,x8! a8,b850,1,...,4. ~4.1!

Indeed, this kernel entirely encodes the theory of the generalized free fields on dS space–timXH ,
at least for the massive case. For this, it has to satisfy the following requirements:

~a! Positiveness:For any test functionf abPD(XH), we have

E
XH3XH

f * ab~x!Waba8b8~x,x8! f a8b8~x8!ds~x!ds~x8!>0, ~4.2!

whereds(x) denotes the dS-invariant measure onXH .46 D(XH) is the space of functionsC` with
compact support inXH .

~b! Locality: For every spacelike separated pair (x,x8), i.e., x•x8.2H22,

Waba8b8~x,x8!5Wa8b8ab~x8,x!. ~4.3!

~c! Covariance:

~g21!a
g~g21!b

d Wgdg8d8~gx,gx8!ga8
g8gb8

d85Waba8b8~x,x8!, ~4.4!

for all gPSO0(1,4).
~d! Index symmetrizer:

Waba8b8~x,x8!5Wabb8a8~x,x8!5Wbaa8b8~x,x8!. ~4.5!

~e! Transversality:

xaWaba8b8~x,x8!505x8a8Waba8b8~x,x8!. ~4.6!

~f! Divergencelessness:

]x
aWaba8b8~x,x8!505]x8

a8Waba8b8~x,x8!. ~4.7!

~g! Normal analyticity: Waba8b8(x,x8) is the boundary value~bv! in the distributional sense
of an analytic functionWaba8b8(z,z8).

Concerning the last requirement,Waba8b8(z,z8) is actually maximally analytic, i.e., can b
analytically continued to the ‘‘cut domain’’

D5$~z,z8!PXH
(c)3XH

(c):~z2z8!2,0%.
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The Wightman two-point functionWaba8b8(x,x8) is the boundary value ofWaba8b8(z,z8) from
T12 and the ‘‘permuted Wightman function’’Wa8b8ab(x8,x) is the boundary value o
Waba8b8(z,z8) from the domain

T215$~z,z8!; zPT 2,z8PT 1%.

Once these properties are satisfied, the reconstruction theorem49 allows us to recover the corre
sponding quantum field theory. Our present task is therefore to find a doubled tensor
analytic function of the variable (z,z8) satisfying the properties~a!–~g!. Following Ref. 46~in
which the construction has been done for the scalar case!, the analytic two-point function
Waba8b8(z,z8)[Waba8b8

n (z,z8) is obtained from the dS tensor waves~3.34!. The parametern
refers to the principal series. The two-point function is given in terms of the following clas
integral representations,

Waba8b8
n

~z,z8!5uanu2E
g
~Hz•j!s~Hz8•j!s* (

ll8
E ab

ll8~z,j! E a8b8
* ll8~z8* ,j! dsg~j!, ~4.8!

wheredsg(j) is the naturalC 1 invariant measure ong, induced from theR5 Lebesgue measure,46

and the normalization constantan is fixed by local Hadamard condition. The latter selects a uni
vacuum state for quantum tensor fields which satisfies the dS field equation. In order to
whether conditions~a!–~g! are satisfied by Eq.~4.8!, let us first rewrite the two-point function in
a more explicit way. This will be done by using the scalar and the vector ‘‘massive’’ ana
two-point functionsW0

n(z,z8), W1
n(z,z8) ~whereZ52H2z•z8). The latter satisfy the complex

versions of the Casimir equations:

~Q12^Q1
(1)&!W1

n~z,z8!50 and ~Q02^Q0
(1)&!W0

n~z,z8!50 . ~4.9!

In Appendix C and in Ref. 1 it is shown howW1
n(z,z8) can be written in terms of the scala

analytic two-point function:

W1
n~z,z8!5

^Q0&

^Q1&
S 2 ua•ua8

8 1
H2s~u•z8!D18

^Q0&
1

H2s* ~u8•z!D1

^Q0&
1

H2ZD1D18

^Q0&
DW0

n~z,z8!.

~4.10!

The Wightman scalar two-point functionW 0
n(x,x8) is given by46

W 0
n~x,x8!5bv W0~z,z8! with W0

n~z,z8!5cn
2E

g
~Hz•j!s~Hz8•j!s* dsg~j! . ~4.11!

The normalization constantcn
2 is determined by imposing the Hadamard condition on the tw

point function. This has been done in Ref. 46 where the scalar two-point function has
rewritten in terms of the generalized Legendre function for well chosen spacelike separated
z andz8. It has been established thatW0(z,z8)5CnPs

(5)(2Z) with Cn52p2e2pncn
2 and

cn
25

H2epnG~2s!G~2s* !

25p4m2 . ~4.12!

This normalization corresponds to the Euclidean vacuum46 and Ps
(5)(Z) is the generalized

Legendre function of the first kind. There are several reasons which explain the appeara
W0

n(z,z8) andW1
n(z,z8). First of all, both correspond to the commonly used two-point functi

~see, for instance, Ref. 34! as it is checked in Appendix C. Moreover, since the vector two-po
function, is written in terms of the scalar two-point function it exhibits the two building block
the tensor expression which are well known and simple to manipulate. As a matter of fact, t
limit is very easy to compute in this framework.
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We have seen that the spin-2 analytic two-point function~4.8! is obtained from the tenso
waves~3.34!. Let us cast the latter into the more suitable form

K~z!5
an

2
FSE l~z,j!E l8~z,j!2

2sgll8

3~s21! S u2
H2D2D1

2s2 D G ~Hz•j!s ~4.13!

by using the property

(
l

E l~z,j! E l~z,j!~Hz•j!s52S u2
j̄ j̄

~Hz•j!2D ~Hz•j!s52
s

s21 Fu2
H2D2D1

2s2 G~Hz•j!s .

~4.14!

We then simply develop the two-point function and obtain

Wn~z,z8!5
uanu2

4 E
g
SS8S (

l
E l~z,j! E * l~z8*,j! D S (

l8
E l8~z,j! E * l8~z8*,j!D

3~Hz•j!s~Hz8•j!s* dsg~j!2
4

3

^Q0&

^Q1&
Fu2

H2D2D1

2s2 GFu82
H2D28D18

2s* 2 G
3cn

2E
g
~Hz•j!s~Hz8•j!s* dsg~j! . ~4.15!

From the property

(
l

E l~z!E * l~z8* !5F2u•u81
~u•z8!j̄8

z8•j
1

~u8•z!j̄

z•j
1

Z j̄ j̄8

H2z•jz8•j
G , ~4.16!

and the relationH2 D2 K(x)5(s21) S j̄ K(x)/(z•j) , it is clear that the analytic two-point func
tion can be written in the general form:

Wn~z,z8!5M ~z,z8! W1
n~z,z8!1N~z,z8! W0

n~z,z8! . ~4.17!

The differential operatorsM (z,z8) andN(z,z8) are given by

M ~z,z8!5
^Q0&14

^Q0&
F2 SS8u•u81

H2S~u•z8!D28

s* 21
1

H2S8~u8•z!D2

s21
1

ZH2D2D28

~s21!~s* 21!
G ,

~4.18!

N~z,z8!5
4

3

^Q0&

^Q1&
Fu2

H2D2D1

2s2 GFu82
H2D28D18

2s* 2 G .

Eventually, the analytic tensor two-point function is given in terms of the scalar analytic two-
function by

Waba8b8
n

~z,z8!5D~z,z8!W0
n~z,z8!,

with D(z,z8) a differential operator discussed in Appendix D. The boundary value ofWn(z,z8)
gives the following integral representation for the Wightman two-point function:

W~x,x8!5uanu2(
ll8

E
g
dsg~j!E ll8~x,j!E * ll8~x8,j! bv~Hz•j!s~Hz8•j!s* , ~4.19!

with
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bv~Hz•j!s~Hz8•j!s* 5uHx•jusuHx8•jus* @u~Hx•j!1u~2Hx•j! e2 ips#

3@u~Hx8•j!1u~2Hx8•j! e1 ips* #. ~4.20!

This relation defines the two-point function in terms of global waves on the real hyperboloidXH .
Let us now check if this kernel fulfills the conditions~a!–~g! required in order to get a

Wightman two-point function. We recall that the existence of the latter which is requested b
axiomatic field theory.

~i! The positiveness property follows from the relation

E
XH3XH

f * ab~x!Waba8b8~x,x8! f a8b8~x8!ds~x!ds~x8!5uanu2E
g
dsg~j!(

ll8
g* ll8~j! gll8~j! ,

~4.21!

where

gll8~j!5E
XH

ds~x! f ab~x!E ab* ll8~x,j!@u~Hx•j!1u~2Hx•j! e1 ips* #uHx•jus* . ~4.22!

The hermiticity property is obtained by considering boundary values of the following identi

Waba8b8~z,z8!5Wa8b8ab
* ~z8*,z* !, ~4.23!

which is easily checked on Eq.~4.8!.
~ii ! In order to prove the locality condition, we use the hermiticity condition and the follow

relation:

Wa8b8ab
* ~z8* ,z* !5Wa8b8ab~z8,z!.

This easily follows from the form of the two-point function for spacelike separated points give
Appendix D:

Wn~z,z8!5CnD~z,z8!Ps
(5)~2Z! with D* ~z* ,z8* !5D~z,z8!,

and from the relation50

Ps
(5)~2Z!5Ps*

(5)
~2Z!.

One finally gets

Waba8b8~z,z8!5Wa8b8ab
* ~z8*,z* !5Wa8b8ab~z8,z!.

It should be noticed that the spacelike separated pair (x,x8) lies in the same orbit of the comple
dS group as the pairs (z,z8) and (z8* ,z* ). Therefore the locality conditionWaba8b8(x,x8)
5Wa8b8ab(x8,x) holds.

~iii ! The group action on the dS modes~3.29! and the independence of the integral~4.8! with
respect to the selected orbital basis entail the covariance property

~g21!a
g~g21!b

d Wgdg8d8~gx,gx8!ga8
g8gb8

d85Waba8b8~x,x8!. ~4.24!

~iv! The symmetry with respect to the indicesa, b and a8, b8 and the transversality with
respect tox andx8 are guaranteed by construction. So is the divergencelessness condition

~v! The analyticity properties of the tensor Wightman two-point function follow from
expression of the dS tensor waves~3.34!.
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Remark:A massive spin-2 two-point function had already been proposed in Ref. 20. Alth
the approach we have used here is very different~in Ref. 20 the coordinates are nonglobal, t
modes have a spin-0 and spin-2 content,...!, it has been possible to check that our vector two-po
function is in agreement with the one presented in Ref. 20. This is of importance since it con
for tensor fields the validity of the integral representation method~4.8! originated in Ref. 46 for
the scalar case. However, explicit comparison for the spin-2 case would be a rather tedio
given the differences between both formalisms and the involved expression of the spin-2
point function given in Ref. 20. It seems that one can at least say that the ambient space for
presents the advantage of simplicity. This is again verified by performing the flat limit as it is
in the next paragraph and this was already the case when the unitary irreducible represen
had to be identified in Sec. II.

B. The flat limit

The flat limit is straightforward to compute with the help of the orbital basisg4 . The measure
dsg4

(j) is chosen to bem2 times the natural one induced from theR5 Lebesgue measure. Thi

yields dsg4
(j)5d3kW /k0 and the constantuanu2 reads

uanu254
^Q0&14

^Q1&
FH2epnG~2s!G~2s* !

25p4m2 G54
^Q0&14

^Q1&
FH2n21H2/4

24p3m2 G . ~4.25!

One finds the massive spin-2 Minkowski two-point function:

lim
H→0

1

4
W n~x,x8!5

1

2~2p!3 E (
ll8

ell8~k!ell8~k!exp~2 ik~x2x8!!d3kW /k0 , ~4.26!

where the factor 1/4 is due to our definition of the operatorsS and S8. This limit can also be
computed~more explicitly! starting with Formula~4.17!. The flat limit for the scalar and vecto
two-point functions have been computed in Refs. 1 and 46, one obtains:

lim
H→0

W 0
n~x,x8!5W P~X,X8!, lim

H→0
W1~x,x8!52Fhmn1

1

m2

]

]Xm]XnGW P~X,X8![W mn
P ~X,X8! ,

~4.27!

whereW P(X,X8) and W mn
P (X,X8) are the scalar and vector massive Minkowskian two-po

functions respectively. Under the constraintHn5m, which implies

lim
H→0

H2^Qs&5m2 and lim
H→0

H2s252m2 , ~4.28!

one finally gets the massive spin-2 Minkowski two-point function~see, for instance, Ref. 19!

lim
H→0

1

4
W~x,x8!51

1

3 Fhmn1
1

m2

]

]Xm]XnGW m8n8
P

~X,X8!

2
1

2
SFhmn81

1

m2

]

]Xm]Xn8GWm8n
P

~X,X8! . ~4.29!

C. The quantum field

The explicit knowledge ofW n(x,x8) allows us to make the QF formalism work. The tens
field K(x) is expected to be an operator-valued distributions onXH acting on a Hilbert spaceH.
In terms of Hilbert space and field operator, the properties of the Wightman two-point func
are equivalent to the following conditions:49
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~1! Existence of an unitary irreducible representation of the dS group

U5U2,n, ~and possibly V2,q!.

~2! Existence of at least one ‘‘vacuum state’’V, cyclic for the polynomial algebra of field
operators and invariant under the above representation of the dS group.

~3! Existence of a Hilbert spaceH with positive definite metric that can be described as
Hilbertian sum

H5H0% @ % n51
` SH 1

^ n#,

whereH05$lV, lPC%.
~4! Covariance of the field operators under the representationU,

U~g!Kab~x!U~g21!5ga
ggb

d Kgd~gx!.

~5! Locality for every spacelike separated pair (x,x8)

@Kab~x!,Ka8b8~x8!#50.

~6! KMS condition or geodesic spectral condition46 which means the vacuum is defined
a physical state with the temperatureT5 H/2p.

~7! Transversality

x•K~x!50.

~8! Divergencelessness

]•K~x!50.

~9! Index symmetrizer

Kab5Kba .

Given the two-point function, one can realize the Hilbert space as functions onXH as follows. For
any test functionf abPD(XH), we define the vector valued distribution taking values in the sp
generated by the modesKab(x,j)[bvKab(z,j) by

x→pab~ f !~x!5E
XH

Waba8b8~x,x8! f a8b8~x8!ds~x8!5(
ll8

E
g
dsg~j!Kj

ll8~ f ! Kab
ll8~x,j! ,

~4.30!

whereKj
ll8( f ) is the smeared form of the modes:

Kj
ll8~ f !5E

XH

Kab* ll8~x,j! f ab~x!ds~x! . ~4.31!

The space generated by thep( f )’s is equipped with the positive invariant inner product

^p~ f !,p~g!&5E
XH3XH

f * ab~x!Waba8b8~x,x8!ga8b8~x8!ds~x8!ds~x! . ~4.32!

As usual, the field is defined by the operator valued distribution

K~ f !5a~p~ f !!1a†~p~ f !! , ~4.33!
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where the operatorsa(Kll8(j))[all8(j) anda†(Kll8(j))[a†ll8(j) are respectively antilinea
and linear in their arguments. One gets

K~ f !5(
ll8

E
g
dsg~j!@Kj*

ll8~ f ! all8~j!1Kj
ll8~ f ! a†ll8~j!# . ~4.34!

The unsmeared operator reads

Kab~x!5(
ll8

E
g
dsg~j!@Kab

ll8~x,j! all8~j!1Kab* ll8~x,j! a†ll8~j!# , ~4.35!

whereall8(j) satisfies the canonical commutation relations~ccr! and is defined by

all8~j!uV.50.

The measure satisfiesdsg( l j)5 l 3dsg(j) andKab
ll8(x,l j)5 l sKab

ll8(x,j) yields the homogeneity
condition

all8~ l j![a~Kll8~ l j!!5a~ l sKll8~j!!5 l s* all8~j!.

The integral representation~4.35! is independent of the orbital basisg as explained in Ref. 46. Fo
the hyperbolic type submanifoldg4 the measure isdsg4

(j)5d3jW /j0 and the ccr are represente
by

@all8~j!,a†l9l-~j8!#5@hll9hl8l-1hll8hl9l-#j0d3~jW2jW8!. ~4.36!

The field commutation relations are

@Kab~x!,Ka8b8~x8!#52i Im^pab~x!,pa8b8~x8!&52i ImWaba8b8~x,x8! . ~4.37!

V. CONCLUSION

In this article we have considered the ‘‘massive’’ spin-2 tensor field that is associated
principal series of the dS group SO0(1,4) with ^Qn&5n22 15

4 n>0, and corresponding to th
nonzero ‘‘mass’’mp

25H2(n21 9
4). In our view, the use of the ‘‘mass’’ concept is more forced

tradition than relevant to our analysis. The use of ambient space formalism endowed the de
physics with a Minkowskian-type appearance. The main differences hold in the space time
dence of the de Sitter polarization tensor. This formalism yields simple expressions and ma
Sitter QFT look almost like standard QFT in flat space–time.

The group theoretical point of view allows a systematic and complete study of the spin-2
theory and legitimizes the restriction of ‘‘massive’’ fields to those which carry principal se
representations. Indeed, in the case of the complementary series (^Qm&5m24, 0,m, 1

4), al-
though the associated ‘‘mass’’mc

25H2(m12), 0,m, 1
4 is strictly positive, the physical mean

ing of their carrier fields remains unclear since theH50 limits of these representations in th
complementary series do not correspond to any physical representation of the Poincare´ group.

Sincemp
2 and mc

2 are strictly nonzero, ‘‘massless’’ spin-2 fields must belong to the disc
series among which onlyPs,s

6 have a physically meaningful Poincare´ limit. Now since the asso-
ciated ‘‘mass’’ ismd

25H2$622(s221)%, s>2, and is expected to be real, the only possi
value ofs is 2 with md

250. HenceP2,2
6 correspond precisely to ‘‘massless’’ tensor fields~linear

quantum gravity in dS space! in perfect agreement with the fact that, on one hand, these re
sentations have nonambiguous extensions to the conformal group SO~4,2! and, on the other hand
the latter are precisely the unique extensions of the massless Poincare´ group representations with
helicity 62. In this casen should be replaced by63i /2 in the formulas of the present article.14

The projection operatorD @Eq. ~3.19! on the classical level# and the normalization constantcn
2
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@Eq. ~4.12! on the quantum level# then become singular. This singularity is actually due to
divergencelessness condition needed to associate the tensor field with a specific UIR of
group. To solve this problem, the divergencelessness condition must be dropped. Then th
equation becomes gauge invariant, i.e.,K gt5K1D2Lg is a solution of the field equation for an
vector fieldLg as far asK is. As a result, the general solutions transform under indecompos
representations of the dS group. By fixing the gauge, the field can eventually be quantized

A second type of singularity appears. It is due to the zero mode problem of the Lap
Beltrami operator on dS space inherited from the minimally coupled scalar field.12 Accordingly,
we feel that a Krein space quantization along the lines presented in Ref. 12 can be succe
carried out in the spin-2 massless case in dS space. This situation will be considered in a
coming paper.10
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APPENDIX A: CLASSIFICATION OF THE UNITARY IRREDUCIBLE REPRESENTATIONS
OF THE de SITTER GROUP SO0„1,4…

Unitary irreducible representations~UIRs! of SO0(1,4) are characterized by the eigenvalues
the two Casimir operatorsQ(1) andQ(2) introduced in Sec. II. In fact the UIRs may be labeled
a pair of parametersD5(p,q) with 2pPN andqPC, in terms of which the eigenvalues ofQ(1)

andQ(2) are expressed as follows:2,32,33

Q(1)5@2p~p11!2~q11!~q22!#Id , Q(2)5@2p~p11!q~q21!#Id .

According to the possible values forp andq, three series of inequivalent representations may
distinguished: the principal, complementary and discrete series. We writes whenp or q have spin
meaning.

~1! Principal series representationsUs,n , also called ‘‘massive’’ representations:D5(s, 1
2

1 in) with

s50,1,2, . . . and n>0 or s5 1
2 , 3

2 , . . . and n.0.

The operatorsQ(1) andQ(2) take respectively the following forms:

Q(1)5@~ 9
4 1n2!2s~s11!# Id , Q(2)5@~ 1

4 1n2!s~s11!# Id .

They are called the massive representations of the dS group because they contract tow
massive spins representations of the Poincare´ group.

~2! Complementary series representationsVs,n : D5(s, 1
2 1n) with

s50 and nPR , 0,unu, 3
2 or s51,2,3, . . . and nPR ,0,unu, 1

2 .

The operatorsQ(1) andQ(2) take the forms

Q(1)5@~ 9
4 2n2!2s~s11!# Id , Q(2)5@~ 1

4 2n2!s~s11!# Id .

Here, the only physical representation in the sense of the Poincare´ limit is the scalar case corre
sponding toD5(0,1) and also called the conformally coupled massless case.

~3! Discrete seriesPp,0 andPp,q
6 : D5(p,q) with

p51,2,3, . . . and q50 or p5 1
2,1,32,2, . . . and q5p,p21, . . . ,1 or 1

2 .
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In this case, the only physical representations in the sense of Poincare´ limit are those withp5q
5s. They are called the massless representations of the dS group.

Note that the substitutionq→(12q) does not alter the eigenvalues; the representations
labelsD5(p,q) andD5(p,12q) can be shown to be equivalent. Finally, we have pictured so
of these representations in terms ofp andq in Fig. 2. The symbolss andh stand for the discrete
series with semi-integer and integer values ofp, respectively. The complementary series is re
resented in the same frame by bold lines. The principal series is represented in the Re (q)5 1

2 plane
by dashed lines. We have represented the three discrete series of representation with vp
5 1

2,
3
2,

5
2, Re (q)5 1

2 and Im (q)50 with the principal series in order to show how these two diagra
fit together.

APPENDIX B: MAXIMALLY SYMMETRIC BITENSORS IN AMBIENT SPACE

Following Allen and Jacobson in Ref. 34 we will write the two-point functions in de Si
space~maximally symmetric! in terms of bitensors. These are functions of two points (x,x8)
which behave like tensors under coordinate transformations at either point. The bitenso
called maximally symmetric if they respect the de Sitter invariance.

As shown in Ref. 34, any maximally symmetric bitensor can be expressed as a su
products of three basic tensors. The coefficients in this expansion are functions of the ge
distancem(x,x8), that is the distance along the geodesic connecting the pointsx andx8 @note that
m(x,x8) can be defined by unique analytic extension also when no geodesic connectsx andx8].
In this sense, these fundamental tensors form a complete set. They can be obtained by di
ating the geodesic distance:

na5¹am~x,x8!, na85¹a8m~x,x8!,

and the parallel propagator

gab852c21~Z!¹anb81nanb8.

The geodesic distance is implicitly defined46 for Z52H2x•x8 by

Z5cosh~mH ! for x and y timelike separated,

Z5cos~mH ! for x and y spacelike separated such thatux•x8u,H22.

The basic bitensors in ambient space notations are found through

]̄am~x,x8!, ]̄b8
8 m~x,x8!, ]̄a]̄b8

8 m~x,x8!,

restricted to the hyperboloid by

FIG. 2. SO0(1,4) unitary irreducible representation diagrams.
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Tab8~x,x8!5
]xa

]Xa

]x8b8

]X8b8
Tab8 .

For Z5cos(mH), one finds

na5
]xa

]Xa ]̄am~x,x8!5
]xa

]Xa

H~ua•x8!

A12Z 2
, nb5

]x8b8

]X8b8
]̄b8
8 m~x,x8!5

]x8b8

]X8b8

H~ub8
8 •x!

A12Z 2
,

and

¹anb85
]xa

]Xa

]x8b8

]X8b8
ua

su
b8

8g8
]̄s]̄g8

8 m~x,x8!5c~Z!FZnanb82
]xa

]Xa

]x8b8

]X8b8
ua•ub8

8 G ,

with c(Z)52 H/A12Z 2. For Z5cosh(mH), na , nb8 are multiplied byi and c(Z) becomes
2 iH /A12Z 2. In both cases we have

]xa

]Xa

]x8b8

]X8b8
ua•ub8

8 5gab81~Z21!nanb8.

APPENDIX C: ‘‘MASSIVE’’ VECTOR TWO-POINT FUNCTION

Given the important role played by the ‘‘massive’’ vector Wightman two-point function in
construction of the spin-2 two-point function we briefly present here a derivation of it~for details
see Ref. 1!. In addition we compare our two-point function with the one given in Ref. 34.
consider the ‘‘massive’’ vector Wightman two-point function which corresponds to the princ
series of representation of SO0(1,4) and satisfies

~Q12^Q1&!W 1ab8
n

~x,x8!50, where ^Q1&5n21 1
4 with nPR .

This bivector is obtained as the boundary value of the analytic bivector two-point function
tained with the modes~3.13!:

W1ab8
n

~z,z8!5cn
2 ^Q1&

^Q0&
E

g
(
l

E a
l~z,j! E b8

* l
~z8*,j!~Hz•j!s~Hz8•j!s* dsg~j!.

With the help of Eq.~4.16! and the relationH2D1(Hz•j)s5sj̄(Hz•j)s/(z•j) it is easy to
expand the transverse bivector in terms of the analytic scalar two-point functionW0(z,z8):

W1
n~z,z8!5

^Q0&

^Q1&
S 2 ua•ua8

8 1
H2s~u•z8!D18

^Q0&
1

H2s* ~u8•z!D1

^Q0&
1

H2ZD1D18

^Q0&
DW0

n~z,z8!.

The analytic ‘‘massive ’’ scalar two-point function is

W0
n~z,z8!5cn

2E
g
~Hz•j!s~Hz8•j!s* dsg~j! with cn

25H2e1pnG~2s!G~2s* !/~25p4m2! ,

which satisfies

~Q02^Q0&!W0
n~z,z8!50, where ^Q0&5n21 9

4 with nPR .

The choice of normalization corresponds to the Euclidean vacuum andW0(z,z8) can be written as
a hypergeometric function~see Ref. 46!:
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W 0
n~z,z8!5Cn 2F1S 2s,2s* ;2;

11Z
2 D5CnPs

5~2Z! with Cn5
H2G~2s! G~2s* !

24p2m2 .

In order to show that our vector two-point function is the same two-point function as the
given by Allen and Jacobson in Ref. 34, we developW1

n(z,z8) using essentially]̄af(Z)
52(ua•z8)H2 (d/dZ) f(Z). One finds

W 1ab8
n

~x,x8!5bvW1
n~z,z8!5ua•ub8

8 U~Z!1H2
~ub8

8 •z!~ua•z8!

12Z 2 V~Z!,

with

U~Z!52
1

^Q1&
FQ01Z d

dZ GW0
n~z,z8! , V~Z!5

1

^Q1&
F3

d

dZ 1Z 2
d

dZ 1ZQ0GW0
n~z,z8!,

where

Q05~12Z 2!
d2

dZ 2 24Z d

dZ

is the second order differential operator deduced from the Casimir operator expressed w
variableZ in place of (z,z8). The functionsU(Z) andV(Z) satisfy the property

ZU~Z!1V~Z!5
3

^Q1&

d

dZ W0
n~z,z8![L~Z!,

with

L~Z!53H2
G~12s! G~12s* !

26^Q1&p
2m2 2F1S 12s,12s* ;3;

11Z
2 D ,

which is the solution of the equation

FQ022Z d

dZ 262^Q1&GL~Z!50.

Finally, let us write the intrinsic expression of the two-point functionW 1
n(x,x8) obtained as

the boundary value ofW1
n(z,z8). The intrinsic expression is

Qab8[
]xa

]Xa

]x8b8

]X8b8
W 1ab8

n
~x,x8!.

Since

]xa

]Xa

]x8b8

]X8b8
ua•ub8

8 5gab81~Z21!nanb8 ,
]xa

]Xa

]x8b8

]X8b8

H2~ub8
8 •x!~ua•x8!

12Z 2 5nanb8 ,

one gets

Qab5gab8U~Z!1na nb8~L~Z!2U~Z!!,

and in the case of SO0(4,1):
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Qab52gab8U~Z!2na nb8~U~Z!2L~Z!!.

This is the expression given by Allen and Jacobson in Refs. 20 and 34.

APPENDIX D: ANOTHER EXPRESSION FOR THE SPIN-2 TWO-POINT FUNCTION

We present another form of the spin-2 two-point function, which is useful for the proof o
locality condition. We begin with the termM (z,z8)W1

n(z,z8):

^Q0&14

^Q0&
F2 SS8u•u81

H2S~u•z8!D28

s* 21
1

H2S8~u8•z!D2

s21
1

ZH2D2D28

~s21!~s* 21!
GW1

n~z,z8! .

We rewrite this equation using the relations

H2S~u•z8!D28W1
n52 SS8u•u8W1

n12u8Su•W1
n1 1

2 D2D28W2 ,

H2S8~u8•z!D2W1
n52 SS8u•u8W1

n12uS8u8•W1
n1 1

2 D2D28W2 ,

H2ZD2D28W1
n52 SS8u•u8W1

n12uS8u8•W1
n12u8Su•W1

n1D2D28~W21H2ZW1
n! ,

whereD2D28W252H2D2S8(u8•z)W124uS8u8•W1 . This is obtained by simple calculation of

~Q22^Q2&!~SS8u•u8W1
n1D2D28W3!50 ,

with the help of Eq.~3.3! and where we have writtenW25(Q12^Q2&)W3 . One gets

M ~z,z8!W1
n~z,z8!52 SS8u•u8W1

n1
2us* S8u8•W1

n

^Q0&
1

2u8sSu•W1
n

^Q0&

1D2D28S H2ZW1
n

^Q0&
2

3W2

2^Q0&
D .

Now, given that

Su•W1
n5

2

3 Fu1
H2D2D1

2^Q0&
G~W1

n!8 and S8u8•W1
n5

2

3 Fu81
H2D28D18

2^Q0&
G~W1

n!8 ,

where (W1
n)8 is the trace of the vector two-point function given by

~W1
n!85h••W1

n53U~Z!1ZL~Z!523
^Q0&

^Q1&
W0

n~z,z8! ,

we find the following form for the spin-2 two-point function:

Wn~z,z8!5M ~z,z8!W1
n~z,z8!1N~z,z8!W0

n~z,z8!

5q@uu8~W1
n!82 3

2 uS8u8•W1
n2 3

2 u8Su•W1
n#2 SS8u•u8W1

n1D2D28W4 ,

whereq52 4
9(^Q0&29)/^Q0& and

D2D28W45
6uS8u8•W1

n

^Q0&
2

3H2D2S8~u8•z!W1
n

^Q0&
1D2D28S H2ZW1

n

^Q0&
1

H4D1D18~W1
n!8

9^Q0&
2 D .

The two-point function can be rewritten as
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Wn~z,z8!5D~z,z8!W0
n~z,z8! ,

where the differential operatorD(z,z8) obviously satisfiesD* (z* ,z8*)5D(z,z8) . This property
serves to prove the locality condition.
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Improved Epstein–Glaser renormalization. II. Lorentz
invariant framework
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The Epstein–Glaser typeT-subtraction introduced by one of the authors in a pre-
vious paper is extended to the Lorentz invariant framework. The advantage of using
our subtraction instead of the Epstein and Glaser standardW-subtraction method is
especially important when working in Minkowski space, as then the counterterms
necessary to keep Lorentz invariance are simplified. We show how
T-renormalization of primitive diagrams in the Lorentz invariant framework di-
rectly relates to causal Riesz distributions. A covariant subtraction rule in momen-
tum space is found, sharply improving upon the BPHZL method for massless
theories. ©2003 American Institute of Physics.@DOI: 10.1063/1.1597420#

I. INTRODUCTION

According to the spirit of Epstein–Glaser theory,1 the physical process of renormalization
mathematically expressed as an extension of functionals, v.gr.~convolutions of! powers of Feyn-
man propagators, to well defined distributions. This paper is a continuation of Ref. 2 by the s
named author, in which an extension on configuration space was presented. By modifying t
of, and relaxing the conditions on, the infrared regulatorsw introduced by Epstein and Glase
very useful results on the distributions at the crossroads of mathematics and quantum field
have been obtained; the relationship of this improved Epstein–Glaser subtraction, d
‘‘ T-renormalization,’’ with Hadamard regularization, the minimal subtraction scheme in analy
regularization, and differential renormalization, has been treated there at length. Hereinaft
paper2 will be denoted by Paper I.

The discussion in Paper I took place in the Euclidean framework introduced by Stora3 in the
realm of the Epstein–Glaser construction. We tackle in this paper the problem of going
‘‘physical world’’ with its symmetry group of transformations, namely the Minkowski space
the Lorentz group, respectively.

The Lorentz covariance properties of extensions for powers of propagators are deeply
to theS-matrix covariance. Prima facie, Epstein–Glaser procedures are not covariant. A pr
existence of covariant time ordered products was first given in Ref. 1, working on mome
space. About 10 years later, the problem was translated into a group cohomological ques
configuration space by Popineau and Stora in Ref. 4—another work which has remained
status of preprint. The latter analysis is available in textbook form.5 In relatively recent~also
apparently unpublished! preprints,6,7 explicit computations for ‘‘counterterms’’ re-establishin
Lorentz invariance of the extensions have been performed.

A perfectly covariant method for the extension of distributions employed in quantum
theory exists, although it is rarely used: the ‘‘analytical regularization’’ method8 of Bollini, Giam-

a!Also at Universite´ de la Méditerranée, Aix-Marseille II; Electronic mail: sel@cpt.univ-mrs.fr
b!Unité Propre de Recherche 7061, et FRUMAM/Fe´dération de Recherche 2291.
38630022-2488/2003/44(9)/3863/13/$20.00 © 2003 American Institute of Physics
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biagi, and Gonzales Domı´nguez. It leads to quantum versions of the Riesz distributions of clas
field theory.9–11

In this paper we extendT-renormalization of primitive diagrams to the Lorentz-invaria
framework, and show that it generalizes directly the causal or quantum Riesz distributions

The proof that all difficulties in renormalization theory can be overcome through exclu
use of theT operation is work in progress; the third paper of the series12—from now on denoted
Paper III—deals with renormalization of nonprimitive diagrams and the Hopf algebra of Feyn
graphs.13–15 It is of course not claimed that the simplicity of the class of extensions envisag
this work guarantees that it is the physically relevant one in all circumstances; as a rule, the
will be singled out by appropriate renormalization prescriptions.

We do not suppose the reader to be familiar with causal Riesz distributions. Thus we t
them in Sec. III, after recalling the main properties of our ‘‘natural’’ extension method in Se
The covariance properties ofT-renormalization are then addressed in Sec. IV. To fix ideas,
mainly consider in Sec. V the basic primitively divergent graphs in masslessw4

4 theory, and
demonstrate by way of example the link to analytical regularization and causal Riesz distribu
Section VI shows howT-renormalization improves upon the BPHZL formalism. We conclu
with a brief discussion and outlook.

II. MAIN FEATURES OF T-RENORMALIZATION

Let us begin by fixing some conventions. The scalar functionals we shall be dealing
~coming from the Wick theorem! are to be extended to the main diagonal ofR4(n11). The latter
can be regarded as the origin inR4n thanks to translation invariance, allowing to setxn1150, for
instance.

For fixed j P$1, . . . ,n%, to each four coordinatexj ~a point inR4) let a j5(a0
j ,a1

j ,a2
j ,a3

j ) be
a quadri-index, wheream

j is a non-negative integer for eachj and each Lorentz indexm. One has,
according to Schwartz’s notation,16 a j ! 5a0

j !a1
j !a2

j !a3
j ! and ua j u5a0

j 1a1
j 1a2

j 1a3
j , as well as

xj
a j
ª )

m50

3

~xj
m!am

j
, ]a jªS ]

]xj
D a j

5 )
m50

3 S ]

]xj
mD am

j

5..)
m50

3

~]m
j !am

j
.

We also use a multiquadri-indexa5(am
j ) notation: a! 5a1!a2! •••an! and uau5ua1u1ua2u

1¯1uanu, as well as

xa
ª)

j 51

n

xj
a j

, ]aª)
j 51

n

]a j .

We assume that the reader is familiar with the basic concepts of distribution theory. In this
operators~Fourier transforms, actions of the Lorentz group, subtractions, . . .! are defined on
distributions always by transposition~or adjoint mapping!, and we denote them by thesameletter
denoting the original action on test functions.

Consider scalar functionalsf (xj ) defined onM4
n11\Dn11 , whereDn11ª$x15¯5xn11% is

the full diagonal; thus we assume that the diagram is primitive or that Bogoliubov’s17 disentan-
gling operationR̄ corresponding to all subgraphs~see Paper III! has been performed. Those wi
be considered as functionals of the difference variables inR4n\$0%. A tempered distributionf̃
PS8(R4n) is anextensionor renormalizationof f if

f̃ @f#[^ f̃ ,f&5E
R4n

f ~x!f~x! d4nx

holds wheneverf belongs toS(R4n\$0%). In QFT one considers a generalized homogene
degree, thescaling degree.18 The scaling degrees of a scalar distributionf at the origin ofRd is
defined to be
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s~ f !5 inf$ s: lim
l→0

lsf ~lx!50 % for f PS8~R4n!,

where the limit is taken in the sense of distributions. Essentially this means thatf (x)
5O(uxu2s( f )) asx→0 in the Cesa`ro or distributional average sense.19

Let thens( f )5a, with a an integer, andk5a24n>0. Then, f ¹L loc
1 (R4n). The simplest

way to get an extension off would appear to be standard Taylor series surgery: throw away
k-jet j 0

kf of f at the origin, and definef̃ by transposition:

^ f̃ ,f&5^R0
k f ,f&ª^ f ,R0

kf&,

where R0
kfªf2 j 0

kf is the Taylor remainder. Using Lagrange’s integral formula forR0
k , and

exchanging integrations, one appears to obtain an explicit integral formula forR0
k f :

R0
k f ~x![T1f ~x!ª~2 !k11~k11! (

ubu5k11
]bF xb

b! E0

1

dt
~12t !k

tk14n11 f S x

t D G . ~1!

The trouble with~1! is that the remainderR0
kf is not a test function and therefore, unless t

infrared behavior off is good, we can end up with an undefined integral. Actually, for the ne
of theories with only massive fields, formula~1! is largely sufficient. However in theories wit
massless particles,f is typically an homogeneous function with an algebraic singularity,
infrared behavior is pretty bad, and24n is also the critical degree. A way to avoid the problem
to weigh the Taylor subtraction. Epstein and Glaser1 introduced infrared regulatorsw with the
propertiesw(0)51 andw(a)(0)50 for 0,uau<k, as well as projector mapsf°Wwf on S(Rd)
given by

Wwf~x!ªf~x!2w~x! j 0
kf~x!. ~2!

There is a considerable amount of overkill in~2!. We argued in Paper I that one can, a
should, weigh only thelast term of the Taylor expansion. This leads to the definition used in
paper, at variance with Epstein and Glaser:

Twf~x!ªf~x!2 j 0
k21~f!~x!2w~x! (

uau5k

xa

a!
f (a)~0!. ~3!

Justw(0)51 is now required in principle for the weight function.Tw is also a projector. To obtain
an integral formula for it, start from

Twf5~12w!R0
k21f1wR0

kf.

By transposition, using~1!, we derive

Twf ~x!5~2 !kk (
uau5k

]aF xa

a! E0

1

dt
~12t !k21

tk1d f S x

t D S 12wS x

t D D G
1~2 !k11~k11! (

ubu5k11
]bF xb

b! E0

1

dt
~12t !k

tk1d11 f S x

t DwS x

t D G . ~4!

Consider the functional variation of the renormalized amplitudes with respect tow. One has

K d

dw
Twf ,c Lª d

dl
Tw1lc f U

l50

.

Equation~3! yields
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d

dw
Twf @•#5~2 !k11 (

uau5k
f @xa

•#
]ad

a!
, ~5!

independently ofw. The combination (2) uau/a! ]ad is rebaptizedda . A central fact of renormal-
ization theory, under its distributional guise, is that there is no unique way to construc
renormalized amplitudes, the inherent ambiguity being represented by the undetermined
cients of thed and its derivatives, describing how the chosen extension acts on the~finite codi-
mension! space of test functions which donot vanish to some order in a neighborhood of 0. The
is, however, a more natural way—in which the ambiguity is reduced to terms in the higher-
derivatives ofd, as seen in~5!, exclusively. This is guaranteed by our choice ofTw .

A word on the space of infrared regulatorsw is in order. In Paper I it was shown that, for th
extension of homogeneousf of the kind found in massless field models, any element of the sp
K8 ~dual of the Grossmann–Loupias–Stein function space! of distributions rapidly decreasing in
the Cesa`ro sense,20 taking the value 1 at zero, qualifies as a weight ‘‘function.’’ The spaceK8 is a
kind of distributional analogue of the Schwartz spaceS. Elements ofK8 have moments of all
orders. In particular, exponential functionseiqx do qualify; this was realized by Prange, at th
heuristical level.21 See the consequences in Sec. VI. The usefulness ofK8 has appeared by now in
many different contexts.22 The regulatorw(mx)5H(12muxu) of Paper I, withH the Heaviside
function, will be mainly used here. CallTm the corresponding renormalization.

The results just summarized go a long way to justify the conjecture~made by Connes and
independently by Estrada! that Hadamard’s finite part theory is in principle enough to deal w
quantum field theory divergences. At least in the Euclidean context. When going from there
physical signature for the space–time, both the ultraviolet and the infrared problems immed
turn nastier, in a tangled sort of way. For the first, since the singular support of the Fey
propagator lies on the whole light cone, it would appear that we have to worry about singul
supported on the entire cone, and not just at the origin. For the second, it is easy to see th
approach infinity in directions parallel to the light cone, the Feynman propagator decays auxu
and not ‘‘naı¨vely’’ anymore as 1/uxu2.

Both kinds of trouble are a bit less ferocious than they seem. There are techniques for d
with the worsened infrared problem, conjuring at need combinations of diagrams.23 Microlocal
analysis~Ref. 24, Sec. 8.2! can be invoked25 to argue that the ultraviolet troubles remain conce
trated at the origin, just as in the Euclidean case. In the next section, we show the same
square and the cube of the Feynman propagator~i.e., the basic four-point and two-point diverge
graphs in thew4

4 model!, by a direct calculation.
WhereasT1 of ~1! ostensibly preserves the Lorentz covariance properties off , the operatorTw

of ~4! in general does not. Our main task is to fix this problem.

III. CAUSAL RIESZ DISTRIBUTIONS

Riesz’s method consists in generalizing to the Lorentz-invariant context the well-know
lomorphic family of distributions onR,

Fl~x!ª
x1

l21

G~l!

for complexl, which have the properties

Fl* Fm5Fl1m,
dFl

dx
5Fl21, F0~x!5d~x!,

where* denotes convolution of distributions. In fact, Riesz only dealt with the~advanced and!
retarded propagators. He was able to show that the holomorphic family of distributionsGret

l

defined onR4 as follows:
                                                                                                                



-
rs

ted to

the

riza-

4,
rphic

t

ns

3867J. Math. Phys., Vol. 44, No. 9, September 2003 Improved Epstein–Glaser renormalization. II

                    
Gret
l ~x!5Cl x1

2(l22) ,

with x1
2 equal tot22uxuW 25t22r 2 on the forward light cone and to 0 anywhere else, and

Cl5
1

22l21p G~l!G~l21!
,

fulfills

Gret
l

* Gret
m 5Gret

l1m , hGret
l 5Gret

l21, Gret
0 5d.

In particular,x1
2(l22) is at once seen to have~generally double! poles with residues concen

trated at the origin as the only singularities. TheGret
l constitute a set of convolution inverse powe

of the d’Alembertian, verifyinghlGret
l 5d(x).

In quantum field theory, as stressed in Ref. 8, the relevant set of inverse powers is rela
the Feynman propagator

DF~x!5
2 i

4p2~ t22r 22 i e!
.

We therefore focus on (t22r 26 i e)a22, with poles ata50,21, . . . , with the aim of studying the
renormalization by analytic regularization in the variablea of the functionals (t22r 26 i e)22,
(t22r 26 i e)23, and so on, ill-defined as distributions. For a start, we need to compute
residues at the poles.

It is instructive and convenient for the purpose of looking at the spirit of analytic regula
tion at the EuclideanR4 first, in a somewhat unconventional manner. Considerr2

ªuxu25t2

1r 2. The singularities ofra are well known~see Paper I!: simple poles in the regularizing
variablea at 2422k, for k50,1,. . . , with residues

Res
a52422k

ra5
V4 Dkd

2kk! 4.6.8¯~212k!
, ~6!

the denominator in the casek50 being 1; hereV452p2 is the area of the sphere in dimension
and D the Laplacian in dimension 4. It is possible, and usually done, to define a holomo
family of distributions that encodes the pole structure ofra in the same way thatFl encodes that
of x1

l . However, we consider instead the followingmeromorphicfamily:

Geucl
a ~x!5Ca r2(a22),

with

Ca5
e2 ipaG~22a!

4ap2G~a!
.

Notice thatGeucl
1 is the Green function for the Laplace equation onR4; thatDGeucl

a 5Geucl
a21 , which

is quickly seen fromDrm5m(m12)rm22; and thatGeucl
2m(x)5Dmd(x); the latter of course is jus

another way of writing~6!.
It is also true thatGeucl

a
* Geucl

b 5Geucl
a1b . For that, define the Fourier transforms on test functio

by

F@f#~p![f̂~p!ªE d4x

~2p!2 e2 ipxf~x!, F21@f#~p![f̌~p!ªE d4x

~2p!2 eipxf~x!,
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and on distributions by transposition. ThenF f Fg5(2p)22F( f * g) for convolvable distributions.
It turns out~Ref. 26, Theorem 5.9! that

Ĝeucl
a ~p!5~2p!22e2 ipaupu22a, ~7!

a most interesting duality. From this the convolution identity follows.
Now we obtain the poles of (x26 i e)a from the poles ofr2a. We follow Gelfand and Shilov

~Ref. 27, Chap. III, Secs. 2.3 and 2.4! in this. Consider the quadratic formsg6(x)ª6 ir2. Then
g6

a 5e6 ipa/2r2a. Rewrite equation~6! as

Res
a5222 l

g6
a 5

2p2 Dg6

l d

4l l ! ~ l 11!!A~7 i !4 detg6

,

with Dg6
the Laplacian canonically associated tog6 , which is 7 iD on this occasion. To be

precise, ifg̃i j is the inverse matrix of the quadratic formg, then

Dgª(
i , j

g̃i j ] i ] j .

For the formsg(x)5t22r 26 i e(t21r 2), we find then by analytic continuation:

Res
a5222 l

~x26 i e!a5
6 ip2 h ld

4l l ! ~ l 11!!
.

~This analytic continuation is not to be confused with the one involved in the definition of theGa

for a complex.!
The information on the singularity structure of (x26 i e)a—and of its Fourier transform—can

now be codified incausal Riesz distributions G6
a . To wit, we define

G6
a ~x!ª

7 ie7 ipaG~22a!

4ap2G~a!
~ t22r 26 i e!a22, ~8!

and, sure enough,

G2
1 ~x!5DF~x!, G6

2 l~x!5h ld~x!

for l>0. Also,hG6
a (x)5G6

a21(x), just as for the ordinary Riesz distributions. This is clear fro

h~ t22r 26 i e!a2254~a21!~a22!~ t22r 26 i e!a23

valid for 1,Ra,2, and then analytically extended. It follows thath l f 5G6
2 l

* f for appropriately
convolvablef ; andha for complexa can be defined byha f 5G6

2a
* f .

We can perform the~covariant, if one wishes! Fourier transforms by the same method
analytic prolongation from the Fourier transforms of ther 2a. The result is

Ĝ6
a ~p!5~2p!22e7 ipa~p27 i e!2a, ~9!

wherep25E22upW u2. For instance,

Ĝ2
0 ~p!51/4p2, Ĝ2

1 ~p!5D̂F~p!5
21

4p2~p21 i e!
,

as expected.17 There is still an interesting duality at work here. Moreover,
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G6
a

* G6
b 5G6

a1b .

In summary, thanks to~rigorous! ‘‘Wick rotation,’’ the structure of the causal Riesz distribu
tions G6

a is remarkably simpler than the structure of the retarded Riesz distributionsGret
a . It

largely parallels the positive signature case, vindicating Schwinger’s contention on the ‘‘E
ean’’ character of quantum field theory.28

We turn finally to the renormalization of the functionals (t22r 22 i e)2 l with l>2 from G2
a .

We may define the extension@(t22r 22 i e)22#AR , as a distribution, to be the second term on t
right-hand side of the expansion

~ t22r 22 i e!k225..
2 ip2d~x!

k
1@~ t22r 22 i e!22#AR1O~k!.

That is to say,

@~ t22r 22 i e!22#AR5 lim
k→0

d

dk
@k~ t22r 22 i e!k22#.

Analogously,

~ t22r 22 i e!k235..
2 ip2hd~x!

8k
1@~ t22r 22 i e!23#AR1O~k!, ~10!

ask→0 defines@(t22r 22 i e)23#AR , and so on.

IV. LORENTZ COVARIANCE OF THE T-RENORMALIZATION

The action of an elementL of the Lorentz group onR4n is given by the tensorial represen
tation

L ^ nxª~Lx1 , . . . ,Lxn!,

to be denotedL as well, according to custom. The action of the Lorentz group on functiona
defined by

^L f ~x!,f~x!&[^ f ~Lx!,f~x!&ª^ f ~x!,Lf~x!&, with Lf~x!ªf~L21x!.

It follows that ^L f (x),L21f(x)&5^ f (x),f(x)&.
A Lorentz invariant functional fulfills

f ~Lx!5 f ~x!. ~11!

@More generally, in the nonscalar case,f would have tensorial and/or spinorial character and o
would have a covariant transformation

f ~Lx!5@D~L! f #~x!

with D(L) a finite dimensional representation of SL~2, C!—making no notational distinction
between belonging to the Lorentz group and to its cover—acting on functionals in the ob
way.#

Derivatives will transform according to the~tensor powers of the! contragredient representa
tion: one has

xa ]a~Lf!5xa ]a~f+L21!5xa@L21#b
a~]bf!+L215~Lx!b~]bf!+L21.

In particular,
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xa ]a~Lf!~0!5@L21x#b ]bf~0!, ~12!

that is to sayR0
kL5LR0

k , and

da~Lx!5@L21x#a
b db~x!. ~13!

Suppose thatf is Lorentz invariant and a particular extensionTwf to the whole ofR4n has
been constructed, according to our scheme.All the extensions off are given by

Twf 1 (
uau<k

aa da , ~14!

with ( k
4n1k) coefficientsaa. Our goal is to show that a Lorentz invariant extensionTw

covf can be
obtained within the class ofT extensions, advocated in this series of papers. Namely,

Tw
covf ~Lx!5Tw

covf ~x!,

with

Tw
covf 5Twf 1 (

uau5k
aa da , ~15!

for at most ( k
4n211k) coefficientsaa; so that the ambiguity~14! in all the smaller orders drops ou

By a theorem of Ga˚rding and Lions,29 the difference between two covariant extensions m
be of the formP(h)d, whereP(h) is a polynomial inh; in our case, a monomial.

The proof is by direct computation; sinceL f 5 f , we get

^L~Twf !2Twf ,f&5^Twf ,Lf&2^Twf ,f&

5^ f ,TwLf&2^ f ,Twf&

5^ f ,~12w!R0
k21Lf1wR0

kLf&2^ f ,~12w!R0
k21f1wR0

kf&

5
~12!

^ f ,~12w!LR0
k21f1wLR0

kf&2^ f ,~12w!R0
k21f1wR0

kf&

5^L f ,~12L21w!R0
k21f1L21wR0

kf&2^ f ,~12w!R0
k21f1wR0

kf&

5
~11!

^ f ,~12L21w!R0
k21f1L21wR0

kf&2^ f ,~12w!R0
k21f1wR0

kf&

5^ f ,~w2L21w!~R0
k21f2R0

kf!&5 (
uau5k

^ f ,~w2L21w!xa&
]af~0!

a!
.

The integral̂ f ,(w2L21w)xa& exists under the hypothesis we have made.
This shows that

L~Twf !2Twf 5 (
uau5k

ba~L!da ,

with coefficients

ba~L!5~2 !k^ f ,~w2L21w!xa&,

with uau5k. One also has
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(
uau5k

ba~L!da5k (
uau5k

]aF xa

a! E0

1

dt
~12t !k21

tk14n f S x

t D S wS x

t D2wS Lx

t D D G
1~k11! (

ubu5k11
]bF xb

b! E0

1

dt
~12t !k

tk14n11 f S x

t D S wS Lx

t D2wS x

t D D G .
The rest of the proof just follows the steps of the cohomological argument in Ref. 4: app

two Lorentz transformations, on use of~13!—and omitting indices—one obtains

b~L1L2!5L2
21b~L1!1b~L2!, ~16!

whereL2
21 denotes the tensor antirepresentation. A solution for this equation is given by

b~L!5~12L21!a ~17!

with aPR4k independent ofL. Actually ~16! is a group 1-cocycle equation, for SL~2, C!, with
values in the space carrying the contragredient representation, and because of the vanishin
the first cohomology groupH1(SL(2,C);R4k)30 its only solutions are of the trivial form~17!.

Now, we conclude that, ifa satisfies~17!, then, in view of~13!, formula ~15! gives indeed a
Lorentz invariant renormalization off .

For logarithmic divergences,b50, and, as@L21# ^ 051, one can takea arbitrary ~this is a
priori obvious in view of the Lorentz invariance ofd!. The choicea50 commends itself.

For higher order divergences, in principle one solves~17! for a and plugs the~in general
nonunique! solution in ~15!. However, following a suggestion in Ref. 25, a wiser course can
devised. For simplicity, we taken51 from now on. Then we can assume thatf depends only on
x2.31 It will be seen that only the symmetric part of the Lorentz content ofaa counts. Consider
s( f )56, i.e., k52, a quadratic divergence. We revert to a Lorentz quadri-index notation:uau
52, a↔(m1m2). It is found6 that the totally symmetric part

a(m1m2)52 1
4^ f ,~xm1xm2xr]r2x2x(m1]m2)!w&,

is a possible choice fora; this choice is canonical in thatam
m50. Integrating by parts the previou

expression, on account of]m f 52xm f 8, we obtain

a(m1m2)5^ f ,~xm1xm22 1
4x

2gm1m2!w&.

In ~15! with use of~3! we see cancellation of the first term on the right-hand side of this equa
and finally the canonical expression

^Tw
covf ~x!,f~x!&5 K f ~x!,f~x!2f~0!2w~x!

hf~0!

8
x2L ,

emerges for the Lorentz-invariant distribution extending a quadratically divergent Lor
invariant functionalf . This formula supplants the casek52 of ~3! in practice.

More generally, from the formulas in Ref. 6, we can derive, fors( f )52m14 or 2m15:

^Tw
covf ~x!,f~x!&5 K f ~x!,f~x!2f~0!2

hf~0!

8
x22¯2w~x!jmx2mL , ~18!

where

jmª
2~2m21!!!

~2m12!!! ~2m!!
.
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Concentrate now inTm
cov. In Sec. IV B of Paper I we proved that the Euclide

^@r2422m#AR ,f(x)& is given by

K r2422m,f~x!2f~0!2
Df~0!

8
r22¯2H~12r!jm Dmf~0!r2mL .

This expression Wick-rotates intô@(x26 i e)222m#AR ,f(x)&, which therefore is given by

K ~x26 i e!222m,f~x!2f~0!2
hf~0!

8
x22¯2H~12r!jmhmf~0!~x2!mL .

The conclusion is that@(x26 i e)222m#AR5Tm51
cov (x26 i e)222m. For negative powers of the Feyn

man propagator, the Bollini, Giambiagi, and Gonzales Domı´nguez analytic regularization and ou
canonical covariant renormalization using theimprovedsubtractionTm51 give one and the sam
result.

This coincidence is extended toTm for all values ofm by introduction of a ’t Hooft factor in
the definition of@(x26 i e)222m#AR . The procedure will be clear from the examples in the n
section.

V. COMPUTING EXAMPLES

The singularities of the powers ofDF are concentrated at the origin, so that the improv
method of Epstein and Glaser is directly applicable here. Consider first theTm renormalization of
(t22r 22 i e)22, corresponding to the ‘‘fish’’ diagram in thew4

4 model. We use the notation
@ f #Rª@ f #R,mªTm

covf . From~4! we obtain, in full analogy with the Euclidean case~see Sec. III of
Paper I!:

@~x22 i e!22#R,m5 1
2]nFxn

logm2~x22 i e!

~x22 i e!2 G .
This is the very same result coming from analytical regularization: just check

m2k~x22 i e!k225
m2k

2k
]n@xn~x22 i e!k22#,

and expand ink the right-hand side. In conclusion,

@~ t22r 22 i e!22#R,m5@~ t22r 22 i e!22#AR,m ,

or @(DF)2#R5@(DF)2#AR , with this generalized definition of@•#AR .
Consider now the ‘‘sunset’’ diagram in the same model. Have another look at Sec. III of P

I; one obtains

@~x22 i e!23#R,m53 (
ubu53

]bF xb

b!

log~m2~x22 i e!!

~x22 i e!3 G2
3ip2

8
hd~x!.

Analogously, one checks by a longer but straightforward calculation,

m2k~x22 i e!k235
3m2k

2k~123k12k2! (
ubu53

]bS xb~x22 i e!k23

b! D .

It is clear from~10! that

3 ]bS xb~x22 i e!k23

b! D52
ip2

4
hd~x!,
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from which

m2k~x22 i e!k235
2 ip2hd~x!

8k
1@~x22 i e!23#R,m1O~k!.

Therefore@(DF)3#R5@(DF)3#AR .
For higher order powers ofGF similar arguments show that

@~DF! l #R5@~DF! l #AR

is true generally forl>2.
Powers of the massive propagatorDF

m are renormalizable in our standard way, by use of~1!,
now applicable, and automatically Lorentz-covariance preserving. The scaling degree of the~pow-
ers of! propagators is the same in the massive and in the massless cases. One routinely fi
instance,

@~DF
m!2#R~x!52

m2

32p4 ]mxmS K1
2~mA2x21 i e!2K0~mA2x21 i e!K2~mA2x21 i e!

2x21 i e D .

VI. BPHZ RENORMALIZATION REVISITED

It is well known that for zero-mass models, the basic BPHZ scheme runs into trouble. T
due to the failure of]m f̂ (0) to exist forumu5k, on account of the infrared problem. Now, one c
try subtraction at some suitable external momentumqÞ0, providing a mass scale. It is patent th
this last subtraction will introduce in the Minkowskian context a noncovariance. This prom
Lowenstein and Zimmermann to introduce their ‘‘soft mass insertions;’’32 but that BPHZL method
is quite awkward in practice.

A far simpler solution to the problem is now available to us. It comes from the observati
Paper I that the BPHZ method is ancillary to the Epstein and Glaser: from the definitions

^F@R0
k f #,F21@f#&5^F@ f #,F21@R0

kf#&. ~19!

An expression such asF@ f # is not a priori meaningless: it is a well-defined functional on th
linear subspace of Schwartz functionsf whose first moments*paf(p) ddp up to orderk11
happen to vanish: this is the Fourier counterpart of the space of distributions on configu
space acting on Schwartz test functions vanishing up to orderk11 at the origin.

Now, one has

~xmf! ˇ ~p!5~2 i ! umu ]mf̌~p!,

wherem denotes a multi-index; so that, in particular,

~xm! ˇ ~p!5~2 i ! umu~2p!d/2 ]md~p!.

Also,

]mf~0!5~2 i ! umu~2p!2d/2^pm,f̌&.

From this, with an integration by parts in the right-hand side of~19!, we conclude

^F@R0
k f #,F21@f#&5^R0

kF@ f #,F21@f#&;

that is to say,F andR0
k commute. Thus the BPHZ subtraction rule in momentum space is equ

lent to ~1!.
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Now use~18! instead of~1!, with employment ofw(x)5exp(2iqx), with qÞ0, which, as
discussed earlier, is a perfectly good infrared regulator. From that follows the simple, obv
covariant, rule:

Tq
covf ~p!5 f ~p!2

h f ~0!p2

8
2¯2jmhmf ~q! ~p2!m

for a Feynman amplitudef in momentum space. NotehmTq
covf (q)50. The difference between

two of these recipes is, as it should be, a Lorentz-invariant polynomial inp, of degree the
divergence index.

VII. OUTLOOK

The ‘‘missing link’’ between the Epstein–Glaser subtraction method and the literatur
prolongation of distributions found in Paper I has here been extended to the Minkowskian co
Before rendering in the language ofT renormalization the full complexity of the construction
time-ordered products, and the main result of perturbative renormalization theory, one ne
handle the combinatorial aspects of diagrams with subdivergences. This we do in the next p
the series~Paper III!, using a variant of the Connes–Kreimer Hopf algebraic paradigm.
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Dynamical structure of irregular constrained systems
Olivera Miškovića) and Jorge Zanelli
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Hamiltonian systems with functionally dependent constraints~irregular systems!,
for which the standard Dirac procedure is not directly applicable, are discussed.
They are classified according to their behavior in the vicinity of the constraint
surface into two fundamental types. If the irregular constraints are multilinear~type
I!, then it is possible to regularize the system so that the Hamiltonian and Lagrang-
ian descriptions are equivalent. When the constraints are power of a linear function
~type II!, regularization is not always possible and the Hamiltonian and Lagrangian
descriptions may be dynamically inequivalent. It is shown that the inequivalence
between the two formalisms can occur if the kinetic energy is an indefinite qua-
dratic form in the velocities. It is also shown that a system of type I can evolve in
time from a regular configuration into an irregular one, without any catastrophic
changes. Irregularities have important consequences in the linearized approxima-
tion to nonlinear theories, as well as for the quantization of such systems. The
relevance of these problems to Chern–Simons theories in higher dimensions is
discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1601299#

I. INTRODUCTION

Dirac’s Hamiltonian analysis provides a systematic method for finding the gauge symm
and the physical degrees of freedom of constrained systems like gauge theories and g1

Constraints arise through conditions of the form

f r~z!'0 ~r 51, . . . ,R!, ~1!

wherez are local coordinates in phase spaceG. In the most common cases of physical interest
f’s are functionally independent; these are the regular constrained systems. There are so
ceptional cases in which functional independence is violated. In theseirregular systemsit is not
always clear how to identify symmetries and true degrees of freedom. Moreover, the Hamil
and Lagrangian descriptions may not be equivalent in irregular systems.

Irregular systems are not necessarily intractable nor exotic. A common example is a r
istic massless particle (pmpm50), which is irregular at the origin of momentum space (pm

50). There are other physical circumstances in which regularity is violated, and not on
isolated states but on large portions of phase space where the system evolves. This is the
Chern–Simons~CS! theories for dimensionsD>5 where, for some initial configurations, regu
larity can fail at all times and one is forced to live with this problem.

A CS Lagrangian describes a gauge theory for a certain Lie groupG in a space–time of odd
dimension. The construction is naturally invariant under diffeomorphisms and provides a
standard but otherwise acceptable description of gravity as a gauge theory.2–5 Furthermore, CS
theories are highly nonlinear, possess propagating degrees of freedom,6 and have a very rich phas
space structure with many different sectors, some of which describe irregular systems.7

In five-dimensional CS supergravity, it was observed that the linearized action arou
certain anti–de Sitter background seems to haveone more degree of freedomthan the fully

a!Also at Departamento de Fı´sica, Universidad de Santiago de Chile, Casilla 307, Santiago 2, Chile.
38760022-2488/2003/44(9)/3876/12/$20.00 © 2003 American Institute of Physics
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nonlinear system.8 This paradoxical behavior can be seen to arise from a violation of the regu
conditions among the symmetry generators of the theory in the region of phase space defi
the selected background.

Here we address different scenarios in which regularity conditions can be violated, how
systems can be handled in some cases, and why linearization may fail to approximate a no
system faithfully. It is found that there are two main types of irregular constraints, multili
~type I! and nonlinear~type II!. The constraints of the first type can always be regularized, w
type II constraints~of the form f k, wheref has a simple zero andk.1) can be regularized only
if f is a second class function.

Constraints satisfying regularity conditions are sometimes referred to aseffectiveconstraints.9

The issue of regularity~effectiveness! and its relevance for the equivalence between the Lagra
ian and Hamiltonian formalisms has also been discussed in Refs. 10 and 11.

II. REGULARITY CONDITIONS

Consider a dynamical system in a phase spaceG with local coordinateszi[(q,p) ( i
51,...,2n). Conditions~1! define the constraint surface

S5$z̄PGuf r~ z̄!50 ~r 51,...,R!~R<2n!%. ~2!

Dirac’s procedure guarantees that the system remains on the constraint surface during its ev
~for reviews, see Refs. 1,12–16!. Choosing different coordinates onG may lead to different forms
for the constraint functions whose functional independence is not obvious. Theregularity condi-
tions were designed by Dirac to test this.17

Regularity conditions (RCs): The constraintsf r'0 are regular if and only if their small
variationsdf r evaluated onS define R linearly independent functions ofdzi .

To first order indzi , the variations of the constraints have the form

df r5Ji
rdzi ~r 51, . . . ,R!, ~3!

whereJi
r[ ]f r /]zi uS is the Jacobian evaluated on the constraint surface. An equivalent defin

of the RCs is:13 The set of constraintsf r'0 is regular if and only if the Jacobian Ji
r

5]f r /]zi uS has maximal rank, R(J)5R.
A simple classical mechanical example of functionallydependentconstraints occurs in a

two-dimensional phase space with coordinates (q,p) and constraintsf1[q'0 andf2[pq'0.
In this case,J5@0

1
q
p#q50 andR(J)51.

A system of just one constraint can also fail the test of regularity. Consider, for exampl
constraintf5q2'0 in a two-dimensional phase space. In this case,J5(2q,0)q25050 and
R(J)50. The same problem occurs with the constraintqk'0, for k.1, which has a zero ofkth
order on the constraint surface. This example illustrates that oneconstraintmay be dependent on
itself, while onefunction is, by definition, always functionally independent.

Equivalence: Different sets of constraints are said to be equivalent if they define the
constraint surface.

Note that this definition refers to the locus of constraints, not to equivalence of the res
dynamics. Since the surfaceS is defined by the zeros of the constraints, while the regula
conditions depend on their derivatives, it is possible to replace a set of irregularf’s by an
equivalentset of regular constraintsf̃.

In the classification of irregular systems, two questions present themselves: what is thenature
of the constraints that give rise to irregularity, andwherethe irregularities can occur. These issu
are addressed in the following sections. A third question is whether a system can evolve fr
initial state in which regularity holds, into an irregular configuration. This will be discussed in
last section.
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A. Basic types of irregular constraints

Irregular constraints can be classified according to their behavior in the vicinity of the su
S. For example, linearly dependent constraints have Jacobian with constant rankR8 throughoutS,
and

f r[Ji
r~ z̄!~zi2 z̄i !'0, R~J!5R8,R. ~4!

These constraints are regular systems in disguise simply becauseR2R8 constraints are redundan
and should be discarded. The subset withR8 linearly independent constraints gives the corr
description. For example, the linearly dependent constraintsf15z andf252z are clearly in this
category. Apart from this trivial case, two main types of truly irregular constraints, which do
possess a linear approximation in the vicinity of some points ofS, can be distinguished.

Type I. Multilinear constraints:Consider the constraint

f[)
i 51

M

f i~z!'0, ~5!

where the functionsf i have simple zeros. Each factor defines a surface of codimension 1,

S i[$z̄PGu f i~ z̄!50%, ~6!

andS is the collection of all surfaces,S5øS i . The rank of Jacobian off is reduced at inter-
sections

S i j [S iùS j . ~7!

Thus, the RCs hold everywhere onS, except at the intersectionsS i j , wheref has zeros of higher
order. Note that the intersections~7! also include the points where more than twoS’s overlap.

Type II. Nonlinear constraints:Consider the constraint of the form

f[@ f ~z!#k'0 ~k.1!, ~8!

where the functionf (z) has a simple zero. This constraint has a zero orderk in the vicinity of S,
its Jacobian vanishes on the constraint surface and, therefore, the RCs fail~here we assumek
.1 in order to avoid infinite values for]f/]zi on S!. It could seem harmless to replacef by the
equivalent regular constraintf (z)'0, but it turns out that this may change the dynamics
original system, as we show below.

Types I and II are the two fundamental generic classes of irregular constraints. In ge
there can be combinations of them occurring simultaneously near a constraint surface
constraints of the formf5@ f 1(z)#2f 2(z)'0, etc.

B. Classification of constraint surfaces

The previous classification refers to the way in whichf approaches zero. Now we will discus
whereregularity can be violated. The rank of the Jacobian]f r /]zi need not be constant through
out S: suppose one eigenvalue of the Jacobian vanishes on a submanifoldS0,S. On S0 regu-
larity is violated, while it still holds on the rest ofS. Thus, barring accidental degeneracies su
as linearly dependent constraints, one of these three situation may present themselves.

~A! The RCs are satisfied everywhere on the constraint surface:J has maximal rank through
out S ~regular systems!.

~B! The RCs fail everywhere on the constraint surface:J has constant rankR8,R on S.
~C! The RCs fail onS0 : R(J)uS0

5R8,R, while R(J)5R elsewhere onS.
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In the last case, the constraint surface can be decomposed into two nonoverlapping sS0

and SR . Then, the rank of the Jacobian jumps fromR(J)5R on SR , to R(J)5R8 on S0 .
Although the functionsf r are continuous and differentiable, this is not sufficient for regular
Irregular cases are illustrated by the following examples.

In a (21N)-dimensional phase space (q,p,z1,...,zN), the constraintsf1[q2p'0 andf2

[qp'0 are irregular on the whole constraint surface$(0,0,z1,...,zN)%, where the Jacobian ha
rank R(J)51. Note that these constraints are always irregular, although the functionsq1p and
qp are functionally independent everywhere except forq5p, which happens to be the case at t
constraint surface.

An example having both regular and irregular sectors is a massless relativistic parti
Minkowski space with phase space (qm,pn). The constraintf[pmpm'0 has JacobianJ
5(0,2pm)f50 , and its rank is one everywhere, except at the apex of the cone,pm50, where the
light cone is not differentiable and the Jacobian has rank zero.

The lack of regularity, however, is not necessarily due to the absence of a well-defined s
tangent space forS. Consider, for example, the multilinear constraint

f~x,y,z!5~x21!~x21y221!'0. ~9!

Here the constraint surfaceS is composed of two submanifolds: the planeP5$(x,y,z)ux21
'0%, and the cylinderC5$(x,y,z)ux21y221'0%, which are tangent to each other along the li
L5$(x,y,z)ux51,y50,zPR%. The Jacobian onS is

J5~3x21y222x21,2y~x21!,0!f50 ~10!

and its rank is 1 everywhere, except onL, where it is zero. The constraintf is irregular on this
line. However, the tangent vectors toS are well defined there. The irregularity arises becausef is
a multilinear constraint of the type described by~5! and has two simple zeros overlapping onL.
The equivalent set of regular constraints onL is $fP5x21'0,fC5x21y221'0%, as we will
see below.

III. TREATMENT OF IRREGULAR SYSTEMS

In what follows regular systems and linearly dependent constraints will not be discussed
are either treated in standard texts, or they can be trivially reduced to the regular case.

A. Multilinear constraints

Consider a system of type I, as in Eq.~5!. In the vicinity of an irregular point where only two
surfaces~6! intersect, sayS1 andS2 , the constraintf'0 is equivalently described by the set
regular constraints

f 1'0, f 2'0. ~11!

This replacement generically changes the Lagrangian of the system, and the orbits, a
Suppose the original canonical Lagrangian is

L~q,u!5pi q̇
i2H~q,p!2uf~q,p!, ~12!

whereH is the Hamiltonian containing all regular constraints. Replacingf by ~11!, gives rise to
an effective Lagrangian

L12~q,v !5piq̇
i2H~q,p!2v1f 1~q,p!2v2f 2~q,p! ~13!

defined onS12. Thus, instead of theirregular Lagrangian~12! defined on the wholeS, there is a
collection ofregularizedeffective Lagrangians defined in the neighborhood of the different in
sections ofS i ’s. For each of these regularized Lagrangians, the Dirac procedure can be carri
to the end.
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Let us illustrate this with the example of a Lagrangian in a (21N)-dimensional configuration
space (x,y,q1,...,qN),

L5
1

2 (
k51

N

~ q̇k!21
1

2
~ ẋ21 ẏ2!2lxy. ~14!

This Lagrangian describes a free particle moving on the set

$~x,y,qk!PRN12uxy50%,RN12, ~15!

which is the union of two (N11)-dimensional planes wherex and y vanish, respectively. The
constraint surface defined byxy50 can be divided into the following sets:

S15$~x,0,qk;px ,py ,pk!uxÞ0%,

S25$~0,y,qk;px ,py ,pk!uyÞ0%, ~16!

S125$~0,0,qk;px ,py ,pk!%.

The constraint is regular onS1øS2 , while on S12 it is irregular and can be exchanged by$f1

5x'0, f25y'0%. The corresponding regularized Lagrangians are

L15
1

2 (
k51

N

~ q̇k!21
1

2
ẋ2,

L25
1

2 (
k51

N

~ q̇k!21
1

2
ẏ2, ~17!

L125
1

2 (
k51

N

~ q̇k!2,

and the Lagrange multipliers have dropped out, so the regularized Lagrangians describe p
degrees of freedom only—as expected.

The corresponding regularized Hamiltonians are

H15
1

2 (
k51

N

pk
21

1

2
px

2 ,

H25
1

2 (
k51

N

pk
21

1

2
py

2, ~18!

H125
1

2 (
k51

N

pk
2 ,

which are defined in the corresponding reduced manifolds of phase space~obtained after complet-
ing the Dirac procedure!:
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S̃15$~x,0,qk;px,0,pk!uxÞ0%,

S̃25$~0,y,qk;0,py ,pk!uyÞ0%, ~19!

S̃125$~0,0,qk;0,0,pk!%.

It is straightforward to generalize the proposed treatment when more than two surfacS i

overlap.
Evolution of a multilinearly constrained system:Since in the presence of a multilinear co

straint there are regions of the phase space where the Jacobian has different rank, a questi
about the evolution of this system. Can the system evolve from a generic configuration in a
of maximal rank, reaching a configuration of lower rank in finite time? In the case that that
possible, what happens with the system afterwards?~This problem should not be confused wi
the issues arising in degenerate systems.18–20!

To answer this question let us consider the simple example discussed above~14!, for N51,

L5 1
2 ~ ẋ21 ẏ21 ż2!2lxy. ~20!

In the regionsS1 andS2 @see Eqs.~16!#, the rank is maximal and the free particle can move fre
along thex- or y-axis, respectively.

Suppose that the initial state is

x~0!5a.0, y~0!50, z~0!50, ẋ~0!52v,0, ẏ~0!50, ż~0!50, ~21!

so that the particle is moving onS1 , with finite speed along thex-axis towardsx50 onS12. The
evolution is given byx̄(t)5a2vt, ȳ(t)50, z̄(t)50 and the particle clearly reachesx50 in a
finite time (T5a/v). What happens then? According to the evolution equation, forx,0 the
trajectory takes the formx̄(t)5a82v8t, ȳ(t)50, z̄(t)50, however the action would be infinit
unlessa5a8 and v5v8. Therefore, the particle continues unperturbed past beyond the
where the RCs fail. So, the irregular surface is not only reachable in a finite time, but it is cr
without any observable effect on the trajectory.

From the point of view of the trajectory in phase space, it is clear that the initial

(a,0,0;2v,0,0) lies on the surfaceS̃1 , and at t5T the system reaches the point (0,0,

2v,0,0), whichdoes not lie onthe surfaceS̃125$(0,0,z;0,0,pz)%.
While it is true that att5T the Jacobian changes rank, it would be incorrect to conclude

the evolution suffers a jump since the dynamical equations are perfectly valid there. In or
have significant change in dynamics, the Jacobian should change its rank in an open set.

B. Nonlinear constraints

Let us now turn to the case of irregular systems of type II. As we will show, it is possib
replace a nonlinear irregular constraint by an equivalent linear one without changing the dy
cal contents of the theory, provided the linear constraint is second class. Otherwise, the re
Hamiltonian dynamics will be, in general, inequivalent to that of the original Lagrangian sys

In order to illustrate this point, consider a system given by the Lagrangian

L~q,u!5 1
2 g i j q̇i q̇ j2u@ f ~q!#k, ~22!

wherek.1 and
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f ~q![ciq
iÞ0, i 51, . . . ,N. ~23!

Here we assume the metricg i j to be constant and invertible, and the coefficientsci are also
constant. The Euler–Lagrange equations describe a free particle in anN-dimensional space, with
time evolutionq̄i(t)5v0

i t1q0
i , whereu(t) is a Lagrange multiplier. This solution is determine

by 2N initial conditions,qi(0)5q0
i and q̇i(0)5v0

i subject to the constraintsciq0
i 50 andciv0

i

50. Thus, the system possessesN21 physical degrees of freedom.
In the Hamiltonian approach this system has a primary constraintp[ ]L2 /]u̇ '0 whose

preservation in time leads to the secondary constraint

f[@ f ~q!#k'0. ~24!

According to~8!, this is a nonlinear constraint and there are no further constraints. As a c
quence, the system has only two first class constraints$p'0, f k'0%, and N21 degrees of
freedom, as found in the Lagrangian approach.

On the other hand, if one chooses instead of~24!, the equivalent linear constraint

f ~q!5ciq
i'0, ~25!

then its time evolution yields anewconstraint,

x~p![g i j ci pj'0. ~26!

Now, since

$ f ,x%5g i j ci cj[ici2, ~27!

two cases can be distinguished.

~1! If ici50, there are three first class constraints,p'0, f '0, andx'0, which means that the
system hasN22 physical degrees of freedom. In this case, substitution of~24! by the equiva-
lent linear constraint~25!, yields adynamically inequivalentsystem.

~2! If iciÞ0, then f '0 andx'0 are second class, whilep'0 is first class, which leavesN
21 physical degrees of freedom and the substitution does not change the dynamics
system.

Thus, if f k'0 is irregular, replacing it by the regular constraintf '0 changes the dynamics
f is a first class function, but it gives the correct result if it is a second class function.

Note that in the Lagrangian description there is no room to distinguish first and second
constraints, so it would seem like the value ofici did not matter. However, the inequivalence
the substitution can be understood in the Lagrangian analysis as well. Suppose that i
permissible to exchange the constraintf k'0 by f '0 in the Lagrangian. Then, instead of~22!, one
would have

L̃~q,u!5 1
2 g i j q̇i q̇ j2u f~q!. ~28!

It can be easily checked that~28! yieldsN22 degrees of freedom whenici50, andN21 degrees
of freedom wheniciÞ0, which agrees with the results obtained in the Hamiltonian analysis. N
that the substitution off k by f modifies the dynamics only ifg i j ci cj50, but this can happen
nontrivially only if the metricg i j is not positive definite.

In general, a nonlinear irregular constraintf'0 has a multiple zero on the constraint surfa
S, which means that its gradient vanishes onS as well. An immediate consequence of (]f/]zi)
'0, is thatf commutes with allfinite functions onG,

$f,F~z!%'0. ~29!
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As a consequence,f'0 is first class and is always preserved in time,

ḟ'0. ~30!

On the other hand, a nonlinear constraint cannot be viewed as a symmetry generator
because it does not generate any transformation,

d«zi5$zi ,«f%'0. ~31!

Consistently with this,f cannot be gauge-fixed, as there is no finite functionP on G such that

$f,P%Þ0. ~32!

In this sense, a nonlinear first class constraint that cannot be gauge-fixed, cancels only
degree of freedom. The other half degree of freedom cannot be cancelled because the gaug
function does not exist and, in particular, it cannot appear in the Hamiltonian. Although
features~29!–~32! allow counting the degrees of freedom in a theory, these systems are p
logical and their physical relevance is questionable since their Lagrangians cannot be regu

When a nonlinear constraintf'0 can be exchanged by a regular one, the Lagrangia
regularized as in the case of multilinear constraints. For example, the system~22! with iciÞ0 has
Hamiltonian

H5 1
2 g i j pipj1lp1u f~q!, ~33!

where f 5ciq
i will turn out to be a second class constraint. The corresponding regularized

grangian is

L reg5
1
2 g i j q̇i q̇ j2u f~q!, ~34!

which coincides withL̃, Eq. ~28!, as expected.
In Refs. 10 and 11 irregular systems of the type II were discussed. It was pointed out tha

was a possible loss of dynamical information in some cases. From our point of view, it is clea
this would occur whenf is a first class function.

IV. LINEARIZATION OF IRREGULAR SYSTEMS

It has been observed in five-dimensional Chern–Simons theory, that the effective acti
the linearized perturbations of the system around certain backgrounds seems to have more
of freedom than the fully nonlinear theory.8 This is puzzling since the heuristic picture is that t
degrees of freedom of a system correspond to the small perturbations around a local minim
the action, and therefore the number of degrees of freedom should not change when the lin
approximation is used.

In view of the discussion in the preceding section, it is clear that a possible solution o
puzzle lies in the fact that substituting a nonlinear constraint by a linear one may chang
dynamical features of the theory. But the problem with linear approximations is more seriou
linearized approximation retains only up to quadratic and bilinear terms in the Lagrangian,
give linear equations for the perturbations. Thus, irregular constraints in the vicinity of the
straint surface are erased in the linearized action. The smaller number of constraints in the
tive theory can lead to the wrong conclusion that the effective system possess more deg
freedom than the unperturbed theory. The lesson to be learned is that the linear approxim
not valid in the part of the phase space where the RCs fail.

This is illustrated by the same example discussed earlier~22!. One can choose as a bac
ground the solution (q̄1,...,q̄N,ū), whereq̄i(t)5q0

i 1v0
i t satisfies the constraint

ci q̄
i50, ~35!
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and ū(t) is an arbitrarily given function. This describes a free particle moving in
(N21)-dimensional plane defined by~35!. The linearized effective Lagrangian, to second orde
the small perturbationssi5qi2q̄i(t) andw5u2ū(t), has the form

Leff~s,w!5 1
2 g i j ~v0

i 1 ṡi !~v0
j 1 ṡj !2ū~cis

i !2, ~36!

and the equations of motion are

s̈i1G j
i ~ t ! sj50, i 51,...,N, ~37!

whereG j
i [2ū g ikckcj is the eigenfrequency matrix. Sinceū is not a dynamical variable, it is no

varied and the nonlinear constraint (cis
i)250 is absent from the linearized equations. The sys

described by~37! possessesN physical degrees of freedom, that is, one degree of freedom m
than the original nonlinear theory~22!.

The only indication that one of these degrees of freedom has a nonphysical origin
following: If iciÞ0, splitting the components ofsi alongci and orthogonal toci as

si~ t ![s~ t !g i j cj1s'
i ~ t !, ~38!

gives rise to the projected equations

s̈'
i 50, ~39!

s̈12ū~ t !ici2s50. ~40!

The N21 components ofs'
i (t) obey a deterministic second order equation, whereass(t)

satisfies an equation which depends on an indeterminate arbitrary functionū(t). The dependence
of s5 s̄(t,ū(t)) on the background Lagrange multiplierū is an indication thats is a nonphysical
degree of freedom, sinceu was an arbitrary function to begin with. This is not manifest in E
~40!, whereū is a fixed function and, from a naive point of view,s(t) is determined by the sam
equation, regardless of the physically obscure origin of the functionū. It is this naive analysis tha
leads to the wrong conclusion indicated above.

Let us emphasize that a linearized theory may be consistent by itself, but it is not nece
a faithful approximation of a nonlinear theory.

One way to avoid the inconsistencies between the original theory and the linearized one
be to first regularize the constraints~if possible! and then linearize the corresponding regu
Lagrangian.

V. CHERN–SIMONS THEORIES

Hamiltonian structure of CS theories has been studied in Ref. 6. The phase space o
theory inD52n11 space–time dimensions, invariant underN-parameter gauge group, is define
by canonically conjugate pairs of fields (Ai

a(x,t),pa
i (x8,t)), where a51,...,N and xi ( i

51,...,2n) are the local coordinates on a spatial section. The CS Hamiltonian density is giv

H5A0
a G̃a1ui

afa
i , ~41!

whereui
a(x,t) andA0

a(x,t) are Lagrange multipliers for the constraints

fa
i [pa

i 2L a
i ~Aj

b!'0, ~42!

Ga5gaa1¯an
Fa1∧¯∧Fan'0. ~43!

HereGa[d2nx G̃a , g is a symmetric tensor of rankn11, invariant under action of a gauge grou
andF5dA1A∧A is the curvature two-form associated to the gauge field one-formA.
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Constraintsfa
i are regular because they are linear in momenta. Thus, the regularity o

theories is determined by momentum-independent constraintsGa . Their small variations,dGa

5Jab DdAb, evaluated atGa50, give the (2n22)-form Jab , which can be identified as th
Jacobian,

Jab[n gaba2¯an
Fa2∧¯∧Fan. ~44!

According to Dirac’s definition, sufficient and necessary condition forGa to be regular is

R~Jab!5N. ~45!

SinceJab is field dependent, its rank may change in space. In particular, for a pure gauge
figurationF50, andJab has rank zero. For other configurations, the rank of Jacobian can r
from zero toN, and the irregularities are always of multilinear type because in the expression~43!
the phase space coordinatesAi

a occur only linearly.
In general, a non-Abelian CS theory forD>5 possesses a nonvanishing number of phys

degrees of freedom6

f 2n11~N!5nN2n2N ~N>2! ~46!

in regular andgenericcases.20 Therefore, in CS theories, the study of dynamics requires not o
the analysis of regularity, but also of genericity. In spite of the fact that both conditions
expressed in terms of the same matrixVab

i j , they are independent. For example, the extreme c
of F50 is both irregular and degenerate, but there are examples in CS supergravity whi
generic and irregular.8 The opposite case occurs in a five-dimensional CS theory based oG1

3G2 for particular choice of invariant tensor. In this case, there exist configurations whic
regular but degenerate. Take the group indices asa5(r ,a) corresponding toG1 andG2 , respec-
tively, and invariant tensor asgrs15grs andgab1̄5gab ~both invertible!. Then the configuration

Fa5( f 1 dx1∧dx2,h1̄ dx3∧dx4) is regular and degenerate. Indeed,Jab5( 0
grs f 1

gab h1̄

0
! is regular,

while Vab
i j with nonvanishing componentsV rs

345grs f 1 andVab
12 5gab h1̄ has 2N zero modes and

is therefore degenerate.
As a consequence of existence of both regularity and genericity issues, the regular

problem is much more delicate in CS theories.

VI. COMMENTS

A. Dirac conjecture

Dirac conjectured thatall first class constraints generate gauge symmetries.17 It was shown
that Dirac’s conjecture is not true for first class constraints of the formf k (k.1), and following
from ḟ '0.14,15Therefore, for systems with nonlinear constraints, the conjecture does not wor
they generically provide counterexamples of it.13,21,22

From the point of view of irregular systems, it is clear that Dirac’s conjecture fails
nonlinear constraints because they do not generate any local transformation, cf. Eq.~31!. In Refs.
10 and 11 it was observed that Dirac’s conjecture may not hold in the presence of irre
constraints of type II.

In the case of multilinear constraints, however, Dirac’s conjecture holds. The fact th
irregular points the constraints do not generate any transformation only means that these a
points of the gauge transformation.

B. Quantization

Although, in view of the above discussion, it is possible to deal systematically with clas
theories containing irregular constraints, there may be severe problems in their quantum d
tion. Consider a path integral of the form
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Z;E @dq#@dp#@du#expi @pq̇2H~q,p!2uf~q,p!#, ~47!

wheref5@ f (q,p)#k is a nonlinear constraint. Integration onu yields tod( f k), which is not well
defined for a zero of orderk.1, making the quantum theory ill defined. Only if the nonline
constraint could be exchanged by the regular one,f (q,p)'0, the quantum theory could be save
An example of this occurs in the standard approach for QED, where it is usual practi
introduce the nonlinear gauge fixing termu(] iA

i)2 in order to fix the primary constraintp0

[(dI ED /dȦ0)'0. Since the gauge conditionf (A)5] iA
i(x)'0 is a second class constraint, i

substitution by a regular constraint does not change its dynamical structure.

VII. SUMMARY

We have discussed the dynamics and evolution of a system possessing constraints wh
violate the regularity conditions~functional independence! on some subsets of the constrai
surfaceS. These so-called irregular systems are seen to arise generically because of nonlin
in the constraints and can be classified into two families: multilinear~type I! and nonlinear~type
II !.

Type I constraints are of the formf5) f i(z), where f i possess simple zeros. These co
straints violate the regularity conditions~RCs! on sets of measure zero on the constraint surfacS.

Type I constraints can be exchanged by equivalent constraints which are regular giv
equivalent dynamical system.

Type II constraints are of the formf5 f k (k.1) wheref has a simple zero. They violate th
RCs on sets of nonzero measure onS.

A type II constraint can be replaced by an equivalent linear one only if the latter is se
class; if the equivalent linear constraint is first class, substituting it for the original cons
would change the system.

In general, the orbits can cross the configurations where the RCs are violated withou
catastrophic effect for the system. If the symplectic form degenerates at the irregular p
additional analysis is required.

The naive linearized approximation of an irregular constrained system generically chan
by erasing the irregular constraints. In order to study the perturbations around a classical o
an irregular system, it would be necessary to first regularize it~if possible! and only then do the
linearized approximation.

Chern–Simons theories possess irregular and regular sectors. This problem is indepen
the presence of degeneracies in the symplectic form, making the regularization problem
more complex.
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Detecting ill posed boundary conditions in general
relativity
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Baton Rouge, Louisiana 70803-4001
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A persistent challenge in numerical relativity is the correct specification of bound-
ary conditions. In this work we consider a many-parameter family of symmetric
hyperbolic initial-boundary value formulations for the linearized Einstein equations
and analyze its well posedness using the Laplace–Fourier technique. By using this
technique ill posed modes can be detected and thus a necessary condition for well
posedness is provided. We focus on the following types of boundary conditions: (i )
boundary conditions that have been shown to preserve the constraints, (i i ) bound-
ary conditions that result from setting the ingoing constraint characteristic fields to
zero, and (i i i ) boundary conditions that result from considering the projection of
Einstein’s equations along the normal to the boundary surface. While we show that
in case (i ) there are no ill posed modes, our analysis reveals that, unless the
parameters in the formulation are chosen with care, there exist ill posed constraint
violating modes in the remaining cases. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1599056#

I. INTRODUCTION

Obtaining a long time convergent numerical simulation of a binary black hole space–tim
domains with artificial boundaries continues to be a challenge in numerical relativity and
which has recently received a substantial amount of attention, notably in the case of hype
formulations ~see Refs. 1 and 2 for reviews!. The challenge remains in part because of
difficulty in specifying boundary conditions. It has been recognized3–12 that the boundary condi
tions have to satisfy two important requirements. First, they have to preserve the constrain
this we mean that they must guarantee that if the constraints are satisfied initially they ar
satisfied at later times. We refer to boundary conditions that satisfy this property as con
preserving boundary conditions~CPBCs!. Second, the boundary conditions have to be such
the resulting initial-boundary value problem~IBVP! is well posed. This means that given initia
and boundary data a unique solution exists and that at each fixed time the solution de
continuously on the data. Well posedness is a necessary condition for the construction of
tent and stable finite difference schemes.13,14

When the evolution equations are in symmetric hyperbolic form one usually specifies
mal dissipative boundary conditions.15 Under certain technical assumptions, these conditions g
antee that the resulting IBVP is well posed.16,17 Using maximal dissipative boundary condition
Friedrich and Nagy3 were able to find well posed CPBCs for a particular formulation of the
nonlinear vacuum equations. However, most of the hyperbolic formulations used in num
relativity are based on evolution equations that use a different set of variables than in Ref.
these formulations, the derivation of well posed CPBCs seems to be more difficult. Part
problem stems from the fact that CPBCs result in a set of partial differential equations that
hold at the boundary surface, and it is not always possible to cast these equations into the
maximal dissipative boundary conditions. This is probably the reason why current well p
CPBCs for formulations other than that used in Ref. 3 are either limited to homogeneous bou
data9 or to linearizations around a Minkowski background.7–9 Even in those cases, the CPBC
obtained so far might be too restrictive in the sense that they do not allow the specification
38880022-2488/2003/44(9)/3888/12/$20.00 © 2003 American Institute of Physics
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physical quantities at the boundary with the freedom one would like to have. For example, th
posed boundary conditions obtained in Ref. 7 involve a coupling between the in- and ou
variables and, likely, this coupling will introduce reflections at the boundary. Therefore,
general techniques are desirable in order to show well posedness for more generic CPBC

In this article, we use the Laplace–Fourier technique to analyze boundary conditio
linearized general relativity. This technique is very useful when the evolution equations are
and have constant coefficients since it can be applied to boundary conditions that are more
than the maximal dissipative ones. Specifically, it can be applied to boundary conditions
have the form of differential equations at the boundary. Furthermore, the method is capa
detecting the presence of ill posed modes analytically. Ill posed modes are solutions to the
that grow exponentially in time with an exponential factor that can be arbitrarily large, and
existence makes it impossible for the solution to depend continuously on the data. The La
Fourier technique therefore provides us with a necessary condition for well posedness. Ho
it should be emphasized that the absence of ill posed modes~as defined in this article! does not
automatically guarantee well posedness. Although more complicated in this case, results
variable coefficient case are available by freezing the coefficients at the boundary~see Refs. 18
and 19!.

This article is organized as follows: The conditions under which the specification of nonm
mal dissipative boundary conditions for symmetric hyperbolic systems with constant coeffi
yields ill posed modes are reviewed in Sec. II. In Sec. III we discuss the boundary condition
have been considered for the generalized Einstein–Christoffel formulation of Eins
equations20,21 when linearized around flat space–time. The generalized Einstein–Christoffe
tem is a family of symmetric hyperbolic formulations that is parametrized by a constanth. The
boundary conditions we are considering are (i ) the CPBCs that were considered in Ref. 7 and t
are based on solving a closed evolution system at the boundary and on maximal diss
boundary conditions, (i i ) boundary conditions that are obtained by setting the ingoing const
characteristic fields to zero, and (i i i ) boundary conditions that are obtained by considering
projection of Einstein’s equations along the normal to the boundary surface, as recently pro
by Frittelli and Gomez.10,11 In Sec. IV we apply the techniques discussed in Sec. II and show
the cases (i i ) and (i i i ) suffer from the presence of ill posed modes unless the parameterh in the
generalized Einstein–Christoffel formulation lies in a specific range. We also show that the
no ill posed modes in case (i ) which is consistent with the well posedness estimates derive
Ref. 7. In Sec. V we show that the ill posed modes we have found in cases (i i ) and (i i i ) do, in
fact, all violate the constraints. This means that the evolution system for the constraint varia
ill posed in those cases. Since this system is always strongly hyperbolic and since our bo
conditions are constructed from specifying maximal dissipative conditions for this system
also illustrates that maximal dissipative boundary conditions do not necessarily yield a well
formulation if the evolution equations are strongly hyperbolic~but not symmetrizable!. In particu-
lar, our calculations show that the boundary conditions that are constructed following schemi i )
and (i i i ) do not necessarily lead to CPBCs and that one should always check the evolution s
for the constraint variables. Our results and their implications on deriving well posed CPBC
discussed in Sec. VI. A similar analysis for the Frittelli–Reula22 system has been undertaken
Stewart.4

II. DETECTING ILL POSED MODES

In this section, we review the techniques that can reveal the presence of ill posed modes
are based on a Laplace transformation in time and on a Fourier transformation in the
directions that are tangential to the boundaries and are described in more detail in Refs. 13
For simplicity, we restrict the following discussion to the 2D case; the generalization to 3
straightforward.

Consider a 2D first order in time and space linear evolution equation of the form

] tu5A]xu1B]yu, ~1!
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whereu5u(t,x,y) is a vector-valued function and the matricesA andB are constant and sym
metric. We consider solutions to Eq.~1! on the domaint.0, x.0, 2p,y,1p with initial data

u~0,x,y!5 f ~x,y! ~2!

and boundary conditions atx50 of the form

L~] t ,]y!u~ t,0,y!5g~ t,y!, ~3!

whereL is a linear operator with constant coefficients that only involves derivatives which
tangential to the boundary. For technical reasons, we assume thatL(] t ,]y) is homogeneous in the
sense thatL(m] t ,m]y)5mL(] t ,]y) for all positivem. We also assume periodic boundary con
tions in they-direction ~similar conclusions hold for the case2`,y,1`).

The IBVP~1!–~3! is said to be well posed,24 if given smooth square integrable dataf , g, there
exists a unique smooth solution. Furthermore, there are constantsC, a such that

iu~ t,.!i2<CeatF i f i21E
0

t

ig~t,.!i2dtG , ~4!

for all t.0 and all square integrable dataf andg. Here,iu(t,.)i denotes theL2 norm ofu defined
by iu(t,.)i25*x.0uu(t,x,y)u2dxdy and, similarly, i f i25*x.0u f (x,y)u2dxdy and ig(t,.)i2

5* ug(t,y)u2dy. The estimate~4! implies that for each fixedt, the solution depends continuous
on the dataf andg.

A first step in checking if a given initial-boundary formulation satisfies a well posed
inequality of the type~4! is to look for solutions of the problem with homogeneous data (g50)
which are of the form

u~ t,x,y!5est1 ivyũ~x!, ~5!

where v is an integer,s is complex with Re(s).0 and ũ(x) is a smooth function that lies in
L2(0,̀ ). If such a solution exists, the problem cannot be well posed. In order to see this we
that the functions

um~ t,x,y!5em(st1 ivy)ũ~mx!, ~6!

where m51,2,3, . . . can be arbitrarily large, are also solutions and sinceium(t,.)i /ium(0,.)i
5exp(mRe(s)t) the estimate~4! cannot hold with constantsC anda that are independent of th
initial data. Therefore, an obvious check for well posedness is to see whether or not Eqs.~1! and
~3! admit nontrivial solutions of the form~5! with homogeneous boundary data.

Using expression~5! in Eqs.~1! and ~3!, we obtain~for g50)

sũ5A]xũ1 ivBũ, ~7!

L~s,iv!ũ~0!50. ~8!

These equations form a system of ordinary differential equations and can be solved analytic
order to do so, we first bringA to diagonal form through an orthonormal transformation. Thus,
matrix B is still symmetric and we can write

A5S 0 0

0 A1
D ,

whereA15diag(l1, . . . ,lp ,lp11, . . . ,lp1q) with l1 , . . .lp real and negative andlp11 , . . . ,lp1q

real and positive. Here,p andq are the number of in- and outgoing modes, respectively. Acco
ingly, we write
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B5S B00 B01

B10 B11
D , L5~L0 ,L1!, ũ5S ũ0

ũ1
D .

Now the zero components of Eq.~7! yield the following algebraic relation betweenũ0 and ũ1 :

S00ũ052S01ũ1 , ~9!

where we have introduced the matrixS5S(s,v)5sI2 ivB. Since the matrixB is symmetric, the
matrix S005sI2 ivB00 is invertible for all Re(s).0 and all integerv, and we can expressũ0 in
terms ofũ1 :

ũ052S00
21S01ũ1 . ~10!

Inserting this into the remaining equations of the system~7! and ~8!, we obtain the reduced
problem

]xũ15M ~s,v!ũ1 , ~11!

L̃ũ150, ~12!

where

M ~s,v!5A1
21~S11~s,v!2S10S00

21S01~s,v!!,

L̃~s,v!5L12L0S00
21S01.

One can show19 that for Re(s).0 the matrixM (s,v) has exactlyp eigenvalues with negative rea
parts and exactlyq eigenvalues with positive real parts~the eigenvalues are counted according
their algebraic multiplicity!.

The eigenvalues ofM that have positive real part lead to exponential growth inx. Since the
solution ũ has to be inL2(0,̀ ), the integration constants have to be chosen such that there
such growth inx. In order to achieve this, we choose, for each (s,v), a unitary matrixU
5U(s,v) that bringsM (s,v) in upper triangular form:

U~s,v!21M ~s,v!U~s,v!5S M 2~s,v! M0~s,v!

0 M 1~s,v!
D . ~13!

Here, M 2 (M 1) is an upper triangular matrix whose eigenvalues have negative~positive! real
parts. If we introduce the new variablev(x)5U(s,v)21ũ1(x), system~11! and ~12! becomes

]xv2~x!5M 2~s,v!v2~x!1M0~s,v!v1~x!,

]xv1~x!5M 1~s,v!v1~x!,

L2v2~0!1L1v1~0!50,

where (L2 ,L1)5L̃U. It follows that v1 must vanish forv to be inL2(0,̀ ). This implies that
v2(x)5exp(M2x)s2 wheres2 has to satisfy the boundary conditionL2s250. We conclude
that the system~7! and~8! has only the trivial solution if and only if the determinant condition25

detL2~s,v!Þ0, Re~s!.0, ~14!

is satisfied.~In particular,L2 must be a square matrix of dimensionp. This means that we nee
exactly as many independent boundary conditions as there are ingoing modes.! If the determinant
condition is violated at some point (s,v)5(s0 ,v0), it is also violated for (s,v)5m(s0 ,v0) with
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m51,2,3, . . . and the initial-boundary formulation admits solutions of the form~5! that grow
exponentially in time where the exponential factors can have arbitrarily large real part.

In Sec. IV we will discuss the determinant condition for the case of the linearized Ein
equations with boundaries.

III. BOUNDARY CONDITIONS FOR THE LINEARIZED EINSTEIN–CHRISTOFFEL
SYSTEM

In this section we discuss boundary conditions for a linearization of the generalized Eins
Christoffel vacuum equations.20 This formulation has the attractive feature that when lineari
around flat space–time written in Minkowski coordinates it simply reduces to a set of six
equations, written in first order form:

] tKi j 52dkl]kf li j , ~15!

] t f ki j52]kKi j . ~16!

Here,Ki j denotes the linearized extrinsic curvature and the symbolsf ki j represent linear combi
nations of the linearized Christoffel symbolsGki j :

f ki j5G ( i j )k1d rsS dkiG [s j] r1dk jG [si] r1
h24

2h
d i j G [sk] r D . ~17!

The value ofh ~which has to be different from zero! parametrizes the family of formulations. Th
particular case withh54 corresponds to the original Einstein–Christoffel system derived
Anderson and York.21 We set the shift to zero, and the lapse is linearized in such a way th
satisfies the densitized lapse gauge conditiona5Ag up to second order corrections, whereg
denotes the determinant of the three metric. A solution to the system~15! and~16! is a solution to
the linearized Einstein equations if and only if the constraints are satisfied. In terms o
constraint variables

C5
h

4
d rs] rvs, ~18!

Cj5d rs~] rKs j2] jKrs!, ~19!

Clki j 52] [ l f k] i j 1h ] [ ldk]( iv j )1
h24

4
d i j ] [ lvk] , ~20!

wherevk5d i j ( f ki j2 f i jk), the constraints are given byC50, Cj50, Clki j 50.
We consider the evolution system~15! and~16! on the domaint.0, x.0, 2p,y, z, ,1p

and introduce the characteristic variables in thex direction,26

ui j
(2)5

1

&
~Ki j 1 f xi j !, ~21!

ui j
(1)5

1

&
~Ki j 2 f xi j !, ~22!

uAi j
(0)5 f Ai j . ~23!

Here and in the following, capital Latin indices stand for the tangential directionsy andz. When
written in terms of these variables the evolution equations~15! and ~16! take the form
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] tui j
(2)52]xui j

(2)2
1

&
dAB]AuBi j

(0), ~24!

] tui j
(1)51]xui j

(1)2
1

&
dAB]AuBi j

(0), ~25!

] tuAi j
(0)52

1

&
]A~ui j

(2)1ui j
(1)!, ~26!

and we see that the matrixA in Eq. ~1! is diagonal.
For the constraints to be satisfied everywhere, when boundaries are present, one has to

that they are satisfied initially and that no constraint violating mode enters the domain. In or
ensure this, we follow the analysis in Ref. 7 and first consider the evolution of the cons
variables with respect to the flux defined by the main evolution equations~15! and~16!. One can
show7 that the traceless part ofClki j is constant in time, while the remaining constraints propag
according to

] tC5
h

4
d i j ] iCj , ~27!

] tCj5
422h

h
] jC2d rs] rTs j, ~28!

] tTi j 52] iCj1S 12
3h

4 D ] jCi1
h

4
d i j d

rs] rCs, ~29!

] tVi j 5S 7h

4
23D ] [ iCj ] , ~30!

whereTi j 5d rs(Cri js1Ci jrs), andVi j 5d rsCi jrs . Introducingk5123h/4 and the variables

Ci j 5Ti j 1
2h24

h
d i j C5d rs~] r f i js2] j f irs!1k] jv i2kd i j d

rs] rvs , ~31!

the characteristic fields can be written as27

Vj
(2)5

1

&
~Cj1Cx j!, ~32!

Vj
(1)5

1

&
~Cj2Cx j!, ~33!

VA j
(0)5CA j1k~dx jCxA2dA jCxx!, ~34!

Ṽi j
(0)52

7k12

3
C[ i j ]1~k11!Vi j . ~35!

If the system~27!–~30! is symmetric~or symmetrizable! hyperbolic, one can guarantee that if th
constraints are satisfied initially and if homogeneous maximal dissipative boundary conditio
given, the constraints will be satisfied everywhere. Therefore, we consider boundary condit
x50 which are of the form
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Vx
(2)2aVx

(1)50, VA
(2)2bVA

(1)50, ~36!

uxx
(2)2c uxx

(1)5gxx , ûAB
(2)2d ûAB

(1)5ĝAB , ~37!

where the magnitudes ofa, b, c and d are smaller or equal to 1 andûAB
(7)5uAB

(7)

2 1
2dABdCDuCD

(7) denotes the traceless part ofuAB
(7) . In order to express the conditions~36! in terms

of the main variablesKi j , f ki j , we use the definition of the constraint variables, Eqs.~18!, ~19!,
and ~31!, and the evolution equations~15! and ~16! in order to tradex-derivatives by time and
tangential derivatives:

Vx
(7)5dABF6] tuAB

(7)1]AuxB
(7)6

dCD

&
]CuDAB

(0) 6
k

2
]A~&dCDuCDB

(0) 2&d i j uBi j
(0)1uxB

(2)2uxB
(1)!G ,

VA
(7)57] tuxA

(7)1dCD]CuAD
(7)2d i j ]Aui j

(7)7
dCD

&
]CuDxA

(0) 7
k

2
dCD]A~&uCDx

(0) 2uCD
(2)1uCD

(1)!.

It follows from the energy estimates derived in Ref. 7 that when 0,h,2 the conditions~36!
guarantee that the constraints are satisfied everywhere if they are satisfied initially. In the f
ing, we will also consider other values ofh and show that one might have ill posed modes if t
parameterh lies outside the interval~0, 2!. Notice that the conditions~36! do not involve deriva-
tives normal to the boundary (]x). They can be interpreted as evolution equations for the varia
dAB(uAB

(2)1auAB
(1)) anduxA

(2)1buxA
(1) at the boundary. The functionsgxx and ĝAB are data that can

be given freely for a combination of the in- and outgoing gauge and physical varia
respectively.7

In the next section, we will analyze the following choices of parameters:

~1! a521, b51, c5d51:
This corresponds to the Neumann boundary conditions that we have discussed in Re
this case the boundary conditions can be recast in a closed evolution system at the bo
Its solutions provide boundary data for the main evolution system in the form of max
dissipative boundary conditions. When 0,h,2 one can derive well posedness estimates
the resulting IBVP and the boundary conditions can indeed be called CPBCs.

~2! a51, b521, c5d521:
This corresponds to the Dirichlet conditions specified in Ref. 7. They can also be recas
closed evolution system at the boundary, and for 0,h,2 one has a well-posed IBVP with
CPBCs.

~3! a50, b50:
This corresponds to setting the ingoing constraint variables to zero and might be the
obvious choice for obtaining CPBCs. However, we will show in the next section tha
resulting IBVP possesses ill posed modes unless the parameterh is chosen appropriately.

~4! a50, b51:
These are the conditions that one obtains after linearizing the boundary conditions tha
recently proposed in Ref. 11. There, the Einstein–Christoffel formulation (h54) is consid-
ered and the boundary conditions~36! are obtained by projecting Einstein’s equations alo
the normal to the boundary rather than by analyzing the evolution of the constraints. In
one can show that settingGxA to zero and rewriting28 the resulting equations in terms of th
variablesKi j and f ki j is equivalent to the second equation in~36! with b51, while settingGxx

(Gtx) to zero is equivalent to the first equation in~36! with a51 (a521). In Ref. 11, the
authors propose to set the linear combinationGxx2Gtx to zero which would correspond t
usinga50 in ~36!. In the next section, we show that the resulting boundary conditions y
an ill posed formulation if the parameterh is not chosen appropriately.
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IV. LAPLACE–FOURIER ANALYSIS

Following the analysis described in Sec. II, we look for solutions to Eqs.~15!, ~16!, ~36!, and
~37! with homogeneous boundary data (gxx50, ĝAB50) and which are of the form

ui j
(7)~ t,x,y,z!5est1 ivyy1 ivzzũi j

(7)~x!, ~38!

uAi j
(0)~ t,x,y,z!5est1 ivyy1 ivzzũAi j

(0)~x!, ~39!

wheres is a complex number with positive real part andvy andvz are integers. For the solutio
to be square integrable, we require the functionsũi j

(7)(x) andũAi j
(0)(x) to be inL2(0,̀ ). From Eqs.

~38!, ~39!, and~26! we obtain an algebraic condition

sũAi j
(0)52

i

&
vA~ ũi j

(2)1ũi j
(1)! ~40!

that can be used to eliminate the variableũAi j
(0) from the remaining equations. Inserting Eq

~38!–~40! into Eqs.~24! and ~25! yields the ordinary differential equation

]xS ũi j
(2)

ũi j
(1)D 5M ~s,vI !S ũi j

(2)

ũi j
(1)D , ~41!

where

M ~s,vI !5S 2s2
vI 2

2s
2

vI 2

2s

vI 2

2s
s1

vI 2

2s

D ~42!

andvI 5(vy ,vz). The matrixM (s,vI ) has the eigenvalues6As21vI 2.
We first look at the casevI 50, which corresponds to solutions that have trivialy and z

dependence. For those, the matrixM (s,vI ) is diagonal and since Re(s).0 we see that we mus
haveũi j

(1)50 for the solution to be inL2. The boundary conditions~36! and ~37! yield

ũxx
(2)~0!50, û̃AB

(2)~0!50, sdABũAB
(2)~0!50, sũxA

(2)~0!50, ~43!

therefore we have only the trivial solution. There are no ill posed modes with trivial depend
on the variables that are tangential to the boundary. We show now that the situation become
more complicated when one considers modes that have a nontrivial tangential dependenc

Assume thatvI Þ0. Following the analysis of Sec. II we introduce a unitary matrixU
5U(s,vI ) that brings the matrixM (s,vI ) into upper triangular form. To lighten the notation w
introduce the quantitiesz5s/uvI u, l5A11z2, c(z)5(l2z)2 andN511uc(z)u2. One can then
verify that the matrix~a star denotes complex conjugation!

U~z!5N21/2S 2
uzu
z

uzu
z*

c*

uzu
z

c
uzu
z*

D ~44!

is unitary and satisfies

U~z!21MU~z!5uvI uS 2l M0~z!

0 l
D , M0~z!5

11c* ~214z21c* !

2z* N
, ~45!
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where inl the branch is chosen such that for Re(z).0, Re(l).0. In terms of the new variable
(v i j

(2) ,v i j
(1))T5U21(ũi j

(2) ,ũi j
(1))T Eq. ~41! yields

uvI u21]xv i j
(2)52lv i j

(2)1M0~z!v i j
(1) , ~46!

uvI u21]xv i j
(1)5lv i j

(1) . ~47!

For the solution to be inL2, we must havev i j
(1)50. This implies thatv i j

(2)5e2luvI uxs i j , wheres i j

are constants which describe the value thatv i j
(2) takes at the boundary. Using the matrixU(z) we

can express theũ variables at the boundary as

ũi j
(2)~0!52N21/2

uzu
z

s i j , ~48!

ũi j
(1)~0!5N21/2

uzu
z

c~z!s i j , ~49!

ũAi j
(0)~0!5

i

&

v̂A

z
N21/2

uzu
z

~12c~z!!s i j , ~50!

wherev̂A5vA /uvI u.
Using Eqs.~38!, ~48!, and~49! in the boundary condition~37!, we find that

~11cc~z!!sxx50, ~11dc~z!!ŝAB50, ~51!

whereŝAB denotes the tracefree part ofsAB . Since the functionc~z! maps the half plane Re(z)
.0 to the interior of the unit circle and sinceucu<1, udu<1, it follows that sxx50 and ŝAB

50.
Next, we insert all of this into the boundary conditions~36!. The result is more convenientl

expressed if one introduces a normalized vectorĵA that is orthogonal tov̂A and considers the
componentssxv5dABsxAv̂B andsxj5dABsxAĵB . The projection of the second equation in~36!

along ĵ implies that sxj must vanish, while the remaining equations in~36! imply that s
[dABsAB andsxv must satisfy the following 232 system:

L2~z!S s
sxv

D50,

~52!

L2~z!5S 2l~11ac!2k~11a!~l2z! 2i ~11ac!1 ik~11a!~11c!

i ~11bc!2 ik~11b!~11c! 2l~11bc!12k~11b!~l2z!
D .

The determinant ofL2(z) is given by

detL2~z!5~614z2!@~11ac~z!!~11bc~z!!2k2~11a!~11b!c~z!#. ~53!

Clearly, the first factor cannot be zero since Re(z).0. Therefore, detL2(z) can only vanish if the
term inside the square brackets does.

We now focus on the different cases discussed in the previous section:

~1! a521, b51, c5d51:
In this case, the second term inside the square brackets vanishes and the first term i
zero sinceuc(z)u,1. Therefore, the resulting formulation possesses no ill posed mode
course, when 0,h,2 this is consistent with our calculation in Ref. 7 where the estimates
have derived exclude the presence of ill posed modes.
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~2! a51, b521, c5d521:
The result is the same as in the previous case.

~3! a50, b50:
In this case, the terms inside the square brackets simplify to 12k2c(z). A small calculation
reveals that this can only be zero ifz5(k221)/2uku andkÞ0. Therefore, detL2(z) has a zero
with Re(z).0 if and only if k2.1. This is equivalent toh,0 or h. 8

3. Therefore, setting the
ingoing constraint variables to zero in the family of generalized Einstein–Christoffel sys
does indeed yield ill posed boundary conditions if the parameterh lies outside the interva
@0, 8/3#.

~4! a50, b51:
Here the terms inside the square brackets reduce to 11(122k2)c(z). Since the functionc
maps the positive real axis onto the open interval~0, 1! it follows that this expression neve
vanishes if and only ifk2<1. In particular, one has ill posed modes whenh54 and the
boundary conditions that were proposed in Ref. 11 yield, at least when linearized arou
space–time, an ill posed initial-boundary formulation. On the other hand, if at the boun
one considers the equationsGxy5Gxz50 and the equationGxt50 instead of the combination
Gxx2Gxt50, one hasa521 and the resulting formulation does not in fact suffer fro
possessing ill posed modes.

V. VIOLATIONS OF THE CONSTRAINTS

In this section, we show that the ill posed modes we have found in the previous section v
the constraints. In order to see this, we use these ill posed modes to compute the co
variablesCj . From Ki j 5(ui j

(2)1ui j
(1))/&, Eqs. ~19!, ~48!, and ~49!, and sxx50, ŝAB50, we

have

Cx52
uvI u

A2N

uzu
z

~12c~z!!~ls1 isxv!exp@ uvI u~zt2lx1 i v̂AxA!#, ~54!

vACA5
uvI u

A8N

uzu
z

~12c~z!!~ is12lsxv!exp@ uvI u~zt2lx1 i v̂AxA!#, ~55!

where (s,sxv) is a nontrivial solution to Eq.~52!. Sinceuc(z)u,1 for Re(z).0, and since

detS l i

i 2l
D 5312z2Þ0, ~56!

we see that the variablesCx andvACA cannot simultaneously vanish. Therefore, all the ill pos
modes we have found areconstraint violatingmodes. This means that under generic small p
turbations of the initial data these modes will be excited and the constraint variables will
exponentially with an exponential factor that can be arbitrarily large. In this sense, the bou
conditions that lead to ill posed modes donot preserve the constraints. We point out that t
constraint variables constructed from any solution of the main evolution system~15! and~16! with
boundary conditions~36! and~37! provide a solution of the evolution of the constraint variabl
Eqs.~27!–~30! with boundary conditions~36!. Since we have shown that the constraint variab
constructed from ill posed modes are ill posed modes themselves@see Eqs.~54! and ~55!#, the
IBVP for the constraint variables cannot be well posed. This emphasizes the importance of lo
at the evolution system for the constraints and checking its well posedness when deriving C
for Einstein’s equations.

We conclude this section with two remarks. First, one can check that the evolution syste
the constraint variables, Eqs.~27!–~30!, is strongly hyperbolic for any nonvanishing value of t
parameterh. On the other hand, our analysis above shows the existence of ill posed modes
h lies outside of the interval@0,8

3] and the coupling constantsa andb are chosen as in cases~3!
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and ~4! of the previous section. This illustrates that applying maximal dissipative boundary
ditions to evolution systems that are strongly hyperbolic~but not symmetrizable! does not neces
sarily yield a well posed problem.

The second remark concerns the choicea5b521 for the coupling constants in Eq.~36!. In
this case it follows that the determinant condition is always satisfied, regardless of the val
the parameterh. In fact, one can show that the resulting boundary conditions are cons
preserving: The evolution equations imply that the constraint variableCj satisfies the wave equa
tion:

] t
2Cj5d rs] r]sCj . ~57!

On the other hand, the choicea5b521 corresponds to imposing the momentum constraint at
boundary. SinceCj satisfies the wave equation, this implies thatCj50 everywhere, ifCj is
satisfied initially. It then follows from Eqs.~27!, ~29!, and~30! that the remaining constraints ar
also satisfied if they are satisfied initially. This explains why one has CPBCs for allhÞ0 when
a5b521. However, the above argumentation is expected to break down when one consid
nonlinear regime since in this case lower order terms might prevent one from obtaining a
system forCj alone. In this case, one has to rely on the symmetrizer for the system~27!–~30!
which was constructed in Ref. 7, and one might not be able to show that the constraints pro
whenh lies outside the interval@0, 2!, even whena5b521.

VI. CONCLUSIONS

We have analyzed ill posed modes in the family of the generalized Einstein–Chris
formulation of Einstein’s equations with boundaries. We considered boundary conditions
result from coupling the ingoing characteristic constraint variables to the outgoing ones. S
cally, the cases we have studied include the boundary conditions we have obtained in Ref
the boundary conditions that originate from considering the projection of Einstein’s equa
along the normal to the boundary. When linear fluctuations around Minkowski space are c
ered, we have shown that the formulation is subject to constraint violating ill posed modes
the parameters in the equations and the coupling between the in- and outgoing constraint va
are chosen carefully. In fact, it is not difficult to show that if the coupling constantsa andb are
real and satisfy21,a<1 and 21,b<1 there are always ill posed modes as long as
parameterh lies outside the interval@0,8

3]. In particular, this is the case when the ingoing co
straint variables are set to zero. Furthermore, there are ill posed modes for the boundary con
that were obtained in Ref. 11 when applied to the linearized Einstein–Christoffel systeh
54). However, our analysis also reveals that these ill posed modes could easily be avoi
imposing a different linear combination of Einstein’s equations at the boundary or by changin
parameterh such that it lies in the interval 0,h< 8

3. In any case, our analysis highlights th
importance of studying the evolution system for the constraint variables and ensuring its
posedness since all the ill posed modes we have found are constraint violating. In particu
formulations we have studied in this article show that even though the main evolution sys
symmetric hyperbolic, the evolution equations for the constraint variables is not necessarily
metrizable. For the cases in which the propagation of the constraints is described by a syst
is strongly hyperbolic~but not symmetrizable! we have shown that specifying maximal dissipati
boundary conditions can lead to an ill posed system.

It is interesting to note that all the ill posed modes that appear have a nontrivial depen
in the spatial directions that are tangential to the boundary surface. Therefore, such modes
not be present in the one-dimensional case. This might explain why the numerical simulati
Ref. 6, where the Einstein–Christoffel system (h54) was evolved using boundary condition
obtained by setting the ingoing constraints to zero, did not show any ill posed modes.

The simple analytic method we have used in this article, which is based on the determ
condition ~14!, should be used to test the well posedness of the boundary conditions b
numerically evolving any evolution system since the presence of ill posed modes would detr
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tally affect numerical stability. However, we also stress that more work is required to d
sufficient conditions for well posedness for the choices of parameters when the determinan
dition is satisfied. In particular, it would be worthwhile to analyze CPBCs where the incom
physical variables can be freely specified.
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the norm of the solution at the boundary surface. For the purpose of the present article, it is sufficient to cons
weaker estimate~4! since we will show that when the determinant condition is violated, the inequality~4! cannot hold for
all initial data.

25This condition is weaker than the uniform Kreiss condition18 that requires thatudetL2u must be bounded away from zero
The reason why here we do not require the uniform Kreiss condition is that it might be too strong for the case of
in general relativity. As we will see in Sec. IV the well posed CPBCs that were derived in Ref. 7 do not satis
uniform Kreiss condition.

26Notice that the characteristic variables defined here are related with the onesv i j
(6) defined in Ref. 7 according toui j

(6)

5v i j
(7)/&.

27For h52 or h5
8
3 these fields are not complete. Whenh52 it follows that Ci j is traceless and as a consequen

dABVAB
(0)50. But in this case one has the additional field 2C1Cxx that propagates with zero speed. Whenh5

8
3, Ṽi j

50 can be replaced by the fieldsVAB and 6VxA15CxA .
28Actually this procedure is not unique since there is an ambiguity when first derivatives of the variablesKi j and f ki j are

substituted for second derivatives of the three-metric. This ambiguity stems from the fact that one can always cha
resulting expression by using the constraintsClki j 50. For definiteness, we take the choice that leads to the s
boundary conditions as in Ref. 7.
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Dynamical system approach to FRW models
in higher-order gravity theories

John Miritzisa)
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We study the late time evolution of positively curved FRW models with a scalar
field which arises in the conformal frame of theR1aR2 theory. The resulted
three-dimensional dynamical system has two equilibrium solutions corresponding
to a de Sitter space and an ever expanding closed universe. We analyze the structure
of the first equilibrium with the methods of the center manifold theory and, for the
second equilibrium, we apply the normal form theory to obtain a simplified system,
which we analyze with special phase plane methods. It is shown that an initially
expanding closed FRW space–time avoids recollapse. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1602161#

I. INTRODUCTION

A central question in relativistic cosmology is that of deciding about the past and fu
asymptotic states of cosmological models.1 However, general relativity leads to singularities in t
space–times of all known cosmological models with ordinary matter. Higher order curv
corrections in the gravitational action may rectify the problem and lead to cosmological m
free from such pathologies, at the cost of diverging from a FRW behavior at late times.2 There is
a resurgence of interest in such theories which naturally arise in string-theoretic consideratio~cf.
brane models with Gauss–Bonett terms3–6!. An interesting feature of higher order theories is th
inflation emerges in these theories in a most direct way. In one of the first inflationary mo
proposed in 1980 by Starobinsky,7 inflation is due to theR2 correction term in a gravitationa
LagrangianL5R1aR2 where a is a constant. The dynamics of higher order cosmologie
closely related to scalar-field cosmologies in general relativity because of their confo
equivalence.8,9 There are certain limitations to this procedure related to the issue of physical r
of the two metrics involved10 and to the fact that the conformal transformation may fail to
regular at all points of the space–time. Nevertheless, it is practically useful and investigati
the conformal frame have given some interesting results, e.g., the cosmic no-hair theo
quadratic cosmologies.11,12

Most of the studies of scalar-field cosmologies with the dynamical systems method
restricted to FRW models~see, for example, Refs. 13 and 14, and references therein!, although
there are important investigations in spatially homogeneous Bianchi cosmologies with an
nential potential.15 In particular, for flat FRW models with a scalar field there are some gen
results which do not rely on the particular properties of the potential.16,17However, the situation is
more delicate for positively curved FRW models with a scalar field having a potential with a
local minimum. The main problem which confronts us is the following: Can a closed univ
filled with ordinary matter and a scalar field avoid recollapse?

In this article we investigate the evolution of positively curved FRW models with a scalar
having the potential which arises in the conformal frame of theR1aR2 theory in vacuum.8,11The
motivation for this choice is presented in Sec. III. The dimension of the dynamical sys
involved in such models is greater than two and the usual methods of phase plane analysis

a!Electronic mail: john@env.aegean.gr
39000022-2488/2003/44(9)/3900/11/$20.00 © 2003 American Institute of Physics
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be applied. In particular, for nonhyperbolic equilibrium points the linearization theorem doe
yield any information about the stability of the equilibria and, therefore, more powerful met
are needed. The center manifold theorem shows that the qualitative behavior in a neighborh
a nonhyperbolic equilibrium pointq is determined by its behavior on the center manifold neaq.
Since the dimension of the center manifold is generally smaller than the dimension of the dy
cal system, this greatly simplifies the problem. The other general method for simplifying
dynamical system is the normal form theory, which consists in a nonlinear coordinate transf
tion that allows us to simplify the nonlinear part of the system. Both methods are used in Se
and IV, respectively.

The plan of the article is as follows. In the next section we write down the field equa
assuming an arbitrary potential, as a constrained four-dimensional dynamical system. In S
we use the constraint equation to reduce the dimension of the system to three and after a
change of variables we find the equilibrium points of the system and discuss the physical m
of these particular solutions. In particular we show using the methods of the center ma
theory that the equilibrium corresponding to the de Sitter solution is asymptotically unstab
Sec. IV we find the so-called normal form of the dynamical system, which greatly simplifie
problem, since two of the equations decouple. We study the qualitative behavior of the re
two-dimensional system and analyze the late time evolution of the model. We show th
initially expanding universe avoids recollapse. In Sec. V we apply the same techniques
FRW spaces filled with a barotropic fluid in the conformal frame of theR1aR2 theory and study
the detailed evolution of the models.

II. SCALAR-FIELD COSMOLOGIES

In general relativity the evolution of FRW models with a scalar field~ordinary matter is
described by a perfect fluid with energy densityr and pressurep) are governed by the Friedman
equation,

S ȧ

aD 2

1
k

a2 5
1

3 S r1
1

2
ḟ21V~f! D , ~1!

the Raychaudhuri equation,

ä

a
52

1

6
~r13p12ḟ222V!, ~2!

the equation of motion of the scalar field,

f̈13
ȧ

a
ḟ1V8~f!50, ~3!

and the conservation equation,

ṙ13~r1p!
ȧ

a
50. ~4!

We adopt the metric and curvature conventions of Ref. 1. Here,a(t) is the scale factor, an overdo
denotes differentiation with respect to timet and units have been chosen so thatc5158pG.

From Eqs.~1!–~4! we see that the state (a,ȧ,r,f,ḟ)PR5 of the system lies on the hypersu
face defined by the constraint,~1!, and the remaining field equations can be written as a fi
dimensional dynamical system. In vacuum,r50, the dimension of the dynamical system reduc
to four.

In the literature of scalar-field cosmologies the exponential potential function, viz.,V(f)
5V0e2lf, is the most popular not only because of the variety of alternative theories of gr
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which predict exponential potentials, but also due to the fact that this potential has the
property thatV8}V, which allows the introduction of normalized variables according to
formalism of Wainwrightet al.1 In flat k50 FRW models, for example, with a scalar field havi
an exponential potential, introducing the variablesx;ḟ/H, y;AV/H and the time coordinate
t5 ln(a/a0) enables the evolution equations to be written as a two-dimensional dynamical s
~cf. Ref. 18! and in more general homogeneous cosmologies associated with a scalar fie
dimension of the dynamical system reduces by one if the potential function is exponential.

If we set ḟ5y, ȧ/a5H, the evolution equations~2!–~4! in vacuum become

ȧ5Ha,

ḟ5y,
~5!

ẏ523Hy2V8~f!,

Ḣ52 1
2 y21k/a2,

subject to the constraint

3H213k/a25 1
2 y21V~f!. ~6!

Therefore, the phase space of the dynamical system~5! is the set

$~a,f,y,H !PR4:3H213k/a25 1
2 y21V~f!%.

III. CURVED FRW IN R¿aR2 THEORY: EQUILIBRIA

In the remainder of the article we assume that the potential function of the scalar field

V~f!5V`~12e2A2/3f!2, ~7!

which arises in the conformal frame of theR1aR2 theory.8,11 This potential has a long and fla
plateau. For large values off, the potential,V, is almost constant,V`5 limf→1`V(f), thusV
has the general properties for inflation to commence. In Ref. 12 it was proved a cosmic n
theorem, i.e., Bianchi models with ordinary matter satisfying the strong energy condition
scalar field with potential~7!, asymptotically isotopize. According to this picture, the unive
started in a homogeneous state and during inflation it had enough time to isotropize.

In order to reduce the dimension of the dynamical system~5! we use the constraint~6! to
eliminatea. The evolution equations become

ḟ5y,

ẏ523Hy2V8~f!, ~8!

Ḣ52H22 1
3 y21 1

3 V~f!.

Linearization of~8! near the equilibrium point~0,0,0! shows that the Jacobian matrix at that po
has one zero and two purely imaginary eigenvalues. Consequently the Hartman–Grobma
rem does not apply. Therefore, we cannot draw any conclusions about the stability of the e
rium from an examination of the Jacobian.

We simplify the system by rescaling the variables by the equations

f→A 2
3f,
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y→A4V`/3 y,

H→
A2V`

3
H,

t→ 1

A2V`

t.

In order to take account of the equilibrium point corresponding to the point at ‘‘infinity’’ and
remove the transcendental functions, it is convenient to introduce the variableu defined by

uªe2f, ~9!

to obtain finally

u̇52uy,

ẏ52Hy2u~12u!, ~10!

Ḣ52 1
3 H22 2

3 y21 1
2 ~12u!2.

Note that under the transformation~9!, the resulted three-dimensional dynamical system~10! is
quadratic. In view of~6! we have 3H22 1

2y
22V(f).0, hence, the phase space of the system~10!

is the set

Sª$~u,y,H !PR3:H22y22 3
2 ~12u!2.0%. ~11!

The equilibrium points of~10! are
A: (u51,y50,H50). This corresponds to the limiting state of an ever-expanding univ

with H→0 while the scalar field approaches the minimum of the potential and the scale
goes to infinity. Equality in~11! which arises from the flat,k50, case defines a set on th
boundary ofS. We conclude that the point A, which corresponds to the Minkowski solution
located on this boundary. The detailed structure of this equilibrium will be analyzed in the
section.

B: (u50,y56)/2,H50). These lie outside of the phase space and, therefore, are unp
cal.

C: (u50,y50,H56A 3
2). In the next section we show that only the point with the1 sign

can be approached by a trajectory starting with aH.0. It corresponds to the de Sitter univer
with a cosmological constant equal toAV`. Regarding the stability of this equilibrium, it is eas

to see that the Jacobian matrix of~10! at q5(0,0,A3
2) has one zero and two negative eigenvalu

The center manifold theorem implies that there exists a local two-dimensional stable ma
throughq ~see, for example, Ref. 19!. That means that all trajectories asymptotically approach
q ast→` lie on a two-dimensional invariant manifold. Sinceq is a nonhyperbolic fixed point, the
topology of the flow nearq is nontrivial and is characterized by a one-dimensional local ce
manifold intersectingq. In the Appendix we prove the following result.

Proposition 1: The equilibrium pointq5(0,0,A3
2) of ~10! is locally asymptotically unstable.

IV. LATE TIME EVOLUTION

It is easy to see that at the equilibrium point, (u51,y50,H50), the eigenvalues of the
Jacobian of~10! are 6 i ,0 and, therefore, we cannot infer about the stability of the equilibriu
Nevertheless, it is the most interesting case, because in all other equilibria the scalar field r
the flat plateau, which is impossible if we restrict ourselves to initial values ofH smaller than
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AV`. The study of the qualitative behavior of a dynamical system near a nonhyperbolic eq
rium point is difficult even in two dimensions. We find the so-called normal form~cf. Ref. 19 for
a brief introduction! of the system~10! near the equilibrium point (u51,y50,H50). The idea of
the normal form theory is the following: Given a dynamical system with equilibrium point at
origin, ẋ5Ax1f(x), where A is the Jordan form of the linear part andf(0)50, perform a
nonlinear transformationx→x1h(x), whereh(x)5O(uxu2) as uxu→0, such that the system be
comes ‘‘as simple as possible.’’

To write the system in a form suitable for the application of the normal form theory, we
the fixed point to~0,0,0! by settingx5u21 and the system becomes

ẋ52y2xy,

ẏ5x1x22Hy, ~12!

Ḣ5 1
2 x22 2

3 y22 1
3 H2.

We now perform the nonlinear transformation

x→x2y21 1
4 Hy,

y→y1xy1 1
4 Hx,

H→H1 7
12 xy,

and keeping only terms up to second order we obtain the system

ẋ52y2 1
2 Hx,

ẏ5x2 1
2 Hy, ~13!

Ḣ52 1
12 ~x21y2!2 1

3 H2.

Note that the results are valid only near the origin.
Passing to cylindrical coordinates (x5r cosu, y5r sinu, H5H), we have

ṙ 52 1
2 rH ,

u̇51, ~14!

Ḣ52 1
12 r 22 1

3 H2 .

We note that theu dependence of the vector field has been eliminated, so that we can stud
system on ther 2H plane. The equationu̇51 means that the trajectory in thex2y plane spirals
with angular velocity 1. It is convenient to rescale the variables by

r→6r , H→3H, ~15!

so that the projection of~14! on ther 2H plane is

ṙ 52 3
2 rH ,

~16!
Ḣ52r 22H2 .
                                                                                                                



n

-

om

first
sses
e

ever,

he line
roach

l
the
alar

ls

3905J. Math. Phys., Vol. 44, No. 9, September 2003 Dynamical system approach to FRW models

                    
This system belongs to a family of systems studied in 1974 by Takens.20

It is easy to obtain the phase portrait of~16! via numerical integration. However, we ca
analyze the qualitative behavior of the trajectories using theoretical arguments. First,~16! is
invariant under the transformationt→2t, H→2H ~which implies that all trajectories are sym
metric with respect to ther axis! and the liner 50 is invariant. Second, the system~16! has
invariant linesH5cr. To see this, write

dH

dr
5c5

2r 22c2r 2

2 3
2cr2

5
212c2

2 3
2c

⇒c56&. ~17!

Taking the dot product of the vector field (2 3
2rH ,2r 22H2)T with the radial vector (r ,H)T

along the lineH5cr we find that it is negative forH.0 and positive forH,0. Therefore, the
direction of the flow alongH5cr in the first quadrant is towards the origin and goes away fr
the origin in the second quadrant. Note thatH is always decreasing along the orbits whiler is
decreasing in the first quadrant. Since no trajectory can cross the lineH5cr, all trajectories
starting above this line approach the origin asymptotically. On any orbit starting in the
quadrant below the lineH5cr, H becomes zero at some time and the trajectory vertically cro
the r -axis. Once the trajectory enters the second quadrant,r increases andH decreases. The phas
portrait is shown in Fig. 1.

At first sight, it seems probable that an initially expanding universe may recollapse. How
the phase space of the dynamical system~16! is not the wholer 2H plane, because of the
constraint~11!, which in terms of the variables~15! becomes

H2.6r 2. ~18!

Therefore, for an expanding universe we should consider only trajectories starting above t
H5A6r and according to the previous discussion all these trajectories asymptotically app
the origin.

We now turn to the relation of the dynamics in ther 2H plane to the full three-dimensiona
system~14!, or the equivalent~13! in Cartesian coordinates. Any trajectory spirals clockwise in
x2y plane while bothH andx21y2 are decreasing. In physical terms this means that the sc
field oscillates around the minimum of the potential with a decreasing amplitude,H is always
decreasing and, in view of~6!, the curvature decreases. A typical trajectory of~13! is shown in
Fig. 2.

FIG. 1. The phase portrait of~16!. The invariant trajectoriesH56&r are shown with thicker lines. For expanding mode
only trajectories above the lineH5A6r belong to the phase space of the system.
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V. COMMENT ON FLAT FRW MODELS

Consider a flat FRW model containing a barotropic fluid with an equation of statep5(g
21)r, where 0<g<2, and a scalar field having the potential~7!. Then the system~2!–~4!
reduces again to a four-dimensional dynamical system, namely,

ḟ5y,

ẏ523Hy2V8~f!,
~19!

ṙ523grH,

Ḣ52
1

2
y22

g

2
r,

subject to the constraint

3H25r1 1
2 y21V~f!. ~20!

In contrast to~5d!, the fourth of~19! implies thatH is always decreasing. If we use the constra
~20! to eliminater, the evolution equations become

ḟ5y,

ẏ523Hy2V8~f!, ~21!

Ḣ52
3g

2
H22

22g

4
y21

g

2
V~f!.

We see that the structure of~21! describing a flat FRW model with a perfect fluid and a sca
field, apart from being parameter dependent, has a striking similarity to the dynamical syste~8!
for the vacuum positively curved FRW with a scalar field. Proceeding as in Sec. IV, we en
with the following system in cylindrical coordinates:

ṙ 52 1
2 rH ,

u̇51, ~22!

FIG. 2. Trajectories of the full three-dimensional system spiral approaching the origin.
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Ḣ5
5g24

8
r 22

g

2
H2 .

Although the system~22! depends only on one parameter, it is convenient to rescale the vari
by

r→lr , H→mH ~23!

with

m5
2

g
, l5AU 16

g~5g24!
U,

so that the projection of~22! on ther 2H plane is

ṙ 52
1

g
rH ,

~24!

Ḣ5br22H2 ,

where

b511 for g. 4
5, b521 for g, 4

5.

Note that~24! has a first integral, viz.,

I ~r ,H !52
1

2g
r 22gS br2

121/g
2H2D . ~25!

In fact, it is straightforward to verify that (]I /]r ) ṙ 1(]I /]H)Ḣ50 along the solution curves o
~24!. The level curves ofI are the trajectories of the system.

Invariant linesH5cr exist for certain values of the parameterg. We find @cf. ~17!#

c56A b

121/g
.

Case I. Forb511, invariant lines exist ifg.1. We find that the direction of the flow alon
H5cr in the first quadrant is towards the origin and goes away from the origin in the se
quadrant. Note that in the first quadrantr is decreasing along the orbits and thatḢ vanishes along
the lineH5r , which lies below the invariant lineH5cr. It can be shown that in the first quadra
a level curve ofI (r ,H) may intersect the lineH5r only once@it is sufficient to consider the leve
curve passing through an arbitrary point (r 1,0) and compute ther coordinate at the intersectio
with the line H5r ]. We conclude that once a trajectory crosses the lineH5r , it is trapped
between the linesH5r andH5cr and, sinceṙ ,0, it approaches the origin asymptotically.

Case II.b511 and4
5,g,1. There are no invariant lines. Similar arguments as in case I y

the phase portrait shown in Fig. 3.
Case III.g, 4

5 (⇒b521). The analysis is exactly the same as in Sec. IV.
In all cases we must remember that the phase space of the dynamical system~24! is not the

whole r 2H plane, because of the constraint~11!, which in terms of the variables~23! reads

H2.
6g

u5g24u
r 2. ~26!
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Therefore, for an expanding universe, we should consider only trajectories starting above t
H5A6g/u5g24ur , which in case III lies always above the lineH5cr and, according to the
previous discussion, all these trajectories asymptotically approach the origin.

We conclude that, in the conformal frame of theR1aR2 theory, an initially expanding flat
universe with a barotropic fluid as matter source remains ever-expanding and eventua
quadratic curvature corrections become negligible. This result, established by stability analy
in accordance with the general properties of all flat FRW models with a scalar field hav
potential with a unique zero minimum.17

VI. DISCUSSION

We have analyzed the qualitative behavior of a positively curved FRW model contain
scalar field with the potential~7!. This model is conformally equivalent to the positively curv
FRW space–time in the simplest higher order gravity theory, namely theR1aR2 theory. We have
shown that an initially expanding closed universe avoids recollapse provided that the initial
of H is less thanAV`. This result should be compared to a counterexample of the closed uni
recollapse conjecture~cf. Ref. 21, where it is shown that initially expanding vacuum diago
Bianchi IX models in purely quadratic gravity are ever-expanding!. It should be of interest to
investigate if a closed FRW universe filled with ordinary matter satisfying the usual en
conditions and a scalar field with the potential~7! can avoid recollapse. This is equivalent to t
analysis of the qualitative behavior of the full five-dimensional system~2!–~4!. A partial answer to
this question for an arbitrary non-negative potential having a unique minimumV(0)50 is given
in Ref. 17.
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APPENDIX: PROOF OF PROPOSITION 1

In order to determine the local center manifold of~10! at q, we have to transform the system
into a form suitable for the application of the center manifold theorem. The procedure is
systematic and will be accomplished in the following steps.

~1! The Jacobian of~10! at q5(0,0,A 3
2) has eigenvalues 0,2A2

3 and2A 3
2 with correspond-

ing eigenvectors (2A2
3,

2
3 ,1)T, (0,0,1)T and (0,1,0)T. Let T be the matrix having as column

these eigenvectors. We shift the fixed point to~0,0,0! by settingH̃5H2A3
2 and write ~10! in

vector notation as

ż5Az1F~z!, ~A1!

whereA is the linear part of the vector field andF(0)50.

FIG. 3. The phase portrait of~24! for 1,g,2,
4
5,g,1, and 0,g,

4
5, respectively.
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~2! Using the matrixT which transforms the linear part of the vector field into Jordan can
cal form, we define new variables, (x,y1 ,y2)[x, by the equations

u52A 2
3x,

y5 2
3 x1y2 ,

H̃5x1y1 ,

or in vector notationz5Tx, so that~A1! becomes

ẋ5T21ATx1T21F~Tx!.

Denoting the canonical form ofA by B we finally obtain the system

ẋ5Bx1f~x!, ~A2!

wheref(x)ªT21F(Tx). In components system~A2! is

S ẋ
ẏ1

ẏ2

D 5S 0 0 0

0 2A2
3 0

0 0 2A 3
2

D S x
y1

y2

D 1S 2 2
3x

22xy2

10
27x

22 1
3y1

22 2
3y2

22 2
3xy11 1

9xy2

4
9 x22 2

3xy12 1
3xy22y1y2

D . ~A3!

~3! The system~A3! is written in diagonal form

ẋ5Cx1 f ~x,y!,
~A4!

ẏ5Py1g~x,y!,

where (x,y)PR3R2, C is the zero 131 matrix, P is a square matrix with negative eigenvalu
and f ,g vanish at0 and have vanishing derivatives at0. The center manifold theorem asserts th
there exists a one-dimensional invariant local center manifoldWc(0) of ~A4! tangent to the cente
subspace~the y50 space! at 0. Moreover,Wc(0) can be represented as

Wc~0!5$~x,y!PR3R2:y5h~x!, uxu,d%; h~0!50, Dh~0!50,

for d sufficiently small~cf. Ref. 19, p. 155!. The restriction of~A4! to the center manifold is

ẋ5Cx1 f ~x,h~x!!. ~A5!

According to Theorem 3.2.2 in Ref. 22, if the originx50 of ~A5! is stable~resp. unstable!, then
the origin of ~A4! is also stable~resp. unstable!. Therefore, we have to find the local cent
manifold, i.e., the problem reduces to the computation ofh(x).

~4! Substitutingy5h(x) in the second component of~A4! and using the chain rule,ẏ
5Dh(x) ẋ, one can show that the functionh(x) that defines the local center manifold satisfies

Dh~x!@Cx1 f ~x,h~x!!#2Ph~x!2g~x,h~x!!50. ~A6!

This condition allows for an approximation ofh(x) by a Taylor series atx50. Sinceh(0)
50, Dh(0)50, it is obvious thath(x) commences with quadratic terms. We substitute

h~x!5..S h1~x!

h2~x! D5S a1x21a2x31O~x4!

b1x21b2x31O~x4! D
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into ~A6! and set the coefficients of like powers ofx equal to zero to find the unknown
a1 ,b1 , . . . .

~5! Sincey1 is absent from the first of~A3!, we give only the result forh2(x). We find b1

5 4
9A 2

3, b25 4
81. Therefore,~A5! yields

ẋ52 2
3 x22 4

9A 2
3x

32 4
81 x41O~x5!. ~A7!

It is obvious that the originx50 of ~A7! is asymptotically unstable~saddle point!. The theorem
mentioned after~A5! implies that the originx50 of the full three-dimensional system is unstab
This completes the proof.
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Generalized variational principle of Herglotz for several
independent variables. First Noether-type theorem
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This paper extends the generalized variational principle of Herglotz to one with
several independent variables and derives the corresponding generalized Euler–
Lagrange equations. The extended principle contains the classical variational prin-
ciple with several independent variables and the variational principle of Herglotz as
special cases. A first Noether-type theorem is proven for the new variational prin-
ciple, which gives the conserved quantities corresponding to symmetries of the
associated functional. This theorem contains the classical first Noether theorem as
a special case. As examples for applications we calculate a conserved quantity for
the damped nonlinear Klein–Gordon equation and we show that the equations
which describe the propagation of electromagnetic fields in a conductive medium
can be derived from the generalized variational principle of Herglotz~but not from
a classical variational principle!. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1597419#

I. INTRODUCTION

The generalized variational principle, proposed by Herglotz,1,2 defines the functional whos
extrema are sought by a differential equation rather than by an integral. It contains as a
case the classical variational principle with one independent variable.

The Herglotz principle gives a variational description of nonconservative as well as co
vative processes involving one independent variable. The solutions of the equations provid
extrema of the functional determine a one-parameter group of contact transformations. See
ther et al.3 From the paper of Furta4 we see that there is a close link between the Herg
variational principle and control and optimal control theories. Through contact transformation
Herglotz principle is also related to thermodynamics. See Mrugala.5 Georgievaet al.6 prove a
Noether-type theorem which yields conservation laws corresponding to the symmetries
functional defined by the Herglotz variational principle.

In this paper we extend the generalized variational principle of Herglotz to one with se
independent variables. This new variational principle can give a variational description of
conservative processes involving physical fields. It reduces to the Herglotz generalized vari
principle when only one independent variable, the time-variable, is present. It also reduces
classical variational principle with several independent variables. Thus, it contains both the
glotz’s variational principle and the classical variational principle with several independent
ables as special cases. One valuable characteristic of the new variational principle is that
a variational description of nonconservative processes even when theLagrangian is not an explicit

a!Electronic mail: bogdana@pacificu.edu
b!Electronic mail: guenth@math.orst.edu
c!Electronic mail: bodt@efn.org
39110022-2488/2003/44(9)/3911/17/$20.00 © 2003 American Institute of Physics
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function of time, which is not possible with the classical variational principle. This is shown
Sec. VII.

The classical first Noether theorem applies only to functionals defined by integrals
Noether.7,8 Thus, a need arises for a Noether-type theorem which does apply to functionals d
by differential or integro-differential equations. In this paper we formulate and prove a
Noether-type theorem for the generalized variational principle with several independent var
i.e., when the functional is defined by an integro-differential equation. One of its coroll
provides an explicit procedure for finding the conserved quantities corresponding to symmet
this functional.

A criterion for a transformation to be a symmetry of the functional defined by the genera
variational principle with several independent variables is proven. This criterion contains
special case the criterion for a transformation to be a symmetry of a variational integral due

Six corollaries of the first Noether-type theorem are proven. Five of them provide cons
quantities in systems described by the generalized Euler–Lagrange equations with sever
pendent variables. The significance of the first Noether-type theorem in the several indep
variables case is further demonstrated by applying it to the equations describing the propaga
electromagnetic fields in conductive media and to the damped nonlinear Klein–Gordon equ

II. THE GENERALIZED VARIATIONAL PRINCIPLE WITH SEVERAL INDEPENDENT
VARIABLES

In the variational principle of Herglotz the functionalz5z@x;s# of x[(x1,...,xn) is defined
by a differential equation of the form

dz

dt
5L~ t,x,ẋ,z!, 0<t<s,

where t is the only independent variable andẋ5dx/dt. Herglotz showed that the value of th
functional is an extremum when its argument functionsxk(t) are solutions of the generalize
Euler–Lagrange equations

]L

]xk 2
d

dt

]L

] ẋk 1
]L

]z

]L

] ẋk 50, k51,...,n.

In this section we generalize the Herglotz variational principle to one involving several
pendent variables.

For the remainder of this paper, the independent variables will be the time variablet and the
spatial coordinatesx[(x1,...,xn). The argument function of the functionalz@u;s# defined by the
new variational principle will beu5u(t,x) 5 (u1(t,x),...,um(t,x)). The standard abbreviation
ut

i5]ui /]t and uxk
i

5]ui /]xk will be used. The summation convention is assumed for the en
paper.

The generalized variational principle with several independent variables is as follows:
Let the functional z5z@u;s# of u5u(t,x) be given by an integro-differential equation of th

form

dz

dt
5E

V
L~ t,x,u,ut ,ux ,z! dnx, 0<t<s, ~2.1!

where x[(x1,...,xn), dnx[dx1•••dxn, u[(u1,...,um), ux[(ux
1 ,...,ux

m), ut[(ut
1 ,...,ut

m), and
ux

i [(ux1
i ,...,uxn

i ), i 51,...,m, and where the functionL is at least twice differentiable with respec
to ux , ut and once differentiable with respect to t,x,z. Let h[(h1(t,x),...,hm(t,x)) have con-
tinuous first derivatives and otherwise be arbitrary except for the boundary conditions:

h~0,x!5h~s,x!50,
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h~ t,x!50 for xP]V, 0<t<s,

where ]V is the boundary ofV. Then, the value of the functional z@u;s# is an extremum for
functions u which satisfy the condition

d

d«
z@u1«h;s#u «5050. ~2.2!

The functionL will be called, just as in the classical case, theLagrangian density. It should
be observed that when a variation«h is applied tou the equation~2.1!, defining the functionalz,
must be solved with the same fixed initial conditionz(0) at t50 and the solution evaluated at th
same fixed final timet5s for all varied argument functionsu1«h.

III. GENERALIZED EULER–LAGRANGE EQUATIONS WITH SEVERAL INDEPENDENT
VARIABLES

In this section we derive the equations which provide the extrema of the functionalz@u;s#
defined by the integro-differential equation~2.1!. Because of the obvious correspondence with
classical case, we call these equations thegeneralized Euler–Lagrange equations with severa
independent variables.

Theorem 3.1.: Every function u[(u1,...,um), for which the functional z defined by th
integro-differential equation (2.1) has an extremum, is a solution of

]L
]ui 2

d

dt

]L
]ut

i 2
d

dxk

]L
]uxk

i 1
]L
]ut

i E
V

]L
]z

dx50 , i 51,...,m. ~3.1!

Proof: We will show that equations~3.1! are a consequence of condition~2.2!. For this
purpose let«h be the variation of the argument of the functionalz and denote byz5z(t) the
quantity

z~ t !5
d

d«
z@u1«h;t#u «50. ~3.2!

To find the differential equation forz we apply the variation«h to the argument function in the
defining equation~2.1!, i.e.,

d

dt
z@u1«h;t#5E

V
L~ t,x,u1«h,ut1«h t ,ux1«hx ,z! dnx ~3.3!

and differentiate the result with respect to«. Then, we set«50 to obtain

dz

dt
5E

V
S ]L

]ui h i1
]L
]ut

i h t
i1

]L
]uxk

i hxk
i D dnx1zE

V

]L
]z

dnx, i 51,...,m, ~3.4!

where in the last term we have used the fact thatz does not depend onx. For convenience we
denote byA(t) andB(t) the quantities

A~ t !5E
V
S ]L

]ui h i1
]L
]ut

i h t
i1

]L
]uxk

i hxk
i D dnx, B~ t !5E

V

]L
]z

dnx.

With this notation Eq.~3.4! becomes

dz~ t !

dt
5A~ t !1B~ t ! z~ t !
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which is the sought equation forz(t). Its solutionz(s), evaluated at the end of the time interv
t5s, is the variation ofz@u;s# and is given by

expS 2E
0

s

B~u! du D z~s!5E
0

s

expS 2E
0

t

B~u! du DA~ t ! dt ~3.5!

sincez(0)50. We are interested in those functionsu which leave the functionalz@u;s# stationary,
i.e., those for which the variationz(s) is identically zero. Hence,~3.5! becomes

E
0

s

expS 2E
0

t

B~u! du DA~ t ! dt50. ~3.6!

Inserting expressionsA(t) andB(t) into ~3.6!, denoting the exponential function by

E~ t ![expS 2E
0

t

B~u! du D
and integrating by parts the terms containinghxk

i produces the equation

E
0

s

E~ t !E
V
S ]L

]ui h i1
]L
]ut

i h t
i1

d

dxk S ]L
]uxk

i h i D 2h i
d

dxk

]L
]uxk

i D dnx dt50. ~3.7!

By Gauss’ theorem the space integral of the third term in~3.7!

E
V

d

dxk S ]L
]uxk

i h i D dnx5E
]V

h i
]L

]uxk
i dak50

vanishes becauseh50 on]V, by definition. Here, dak stands for thek-component of the surface
element da5(da1 ,...,dan) of ]V. Next, we integrate by parts~with respect tot) the terms
involving h t

i in ~3.7! to obtain

E
0

s

E~ t !E
V
S ]L

]ui 2
d

dxk

]L
]uxk

i Dh i dnx dt2E
V
E

0

s

h i
d

dt S E~ t !
]L
]ut

i Ddt dnx50

becauseh(0,x)50 andh(s,x)50, by definition. Finally, expanding the second integrand in
last equation and collecting terms, we get

E
0

sE
V

E~ t !S ]L
]ui 2

d

dxk

]L
]uxk

i 2
d

dt

]L
]ut

i 1
]L
]ut

i E
V

]L
]z

dnxDh i dnx dt 50 .

Taking in consideration thath is arbitrary and thatE(t).0 for all t, we obtain equation~3.1!,
which concludes the proof. h

It is important to observe that the generalized Euler–Lagrange equations~3.1! reduce to the
classical Euler–Lagrange equations whenL does not depend onz, i.e., when the functionalz
defined by the integro-differential equation~2.1! reduces to the classical definition of a function
by an integral. Also, Eqs.~3.1! reduce to the generalized Euler–Lagrange equations for the
eralized variational principle of Herglotz whent is the only independent variable involved.

IV. INFINITESIMAL CRITERION FOR INVARIANCE

In this section we give an infinitesimal criterion for the invariance of the functionalz defined
by Eq. ~2.1! under the action of a one-parameter group of transformations of the indepe
variablest, x[(x1,...,xn) and the dependent variablesu[(u1,...,um), i.e.,
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t̄ 5f~ t,x,u;«!,

x̄k5wk~ t,x,u;«!, k51,...,n, ~4.1!

ūi5c i~ t,x,u;«!, i 51,...,m .

To find the transformed functionsūi5ūi( t̄ ,x̄;«) of the functionsui5ui(t,x) we insert the latter
into f andwk of ~4.1! to get a system ofn11 equations withn11 unknownst,x1,...,xn and a
parameter«. We invert this system to obtaint andx1,...,xn as functions oft̄ andx̄1,...,x̄n. These
we substitute into the lastm equations of~4.1! to get ūi as a function oft̄ and x̄1,...,x̄n and«,
which we denote byūi5ūi( t̄ ,x̄;«).

Definition 4.1:The transformed functionalz̄, of a functionalz defined by~2.1!, is the solution
of the transformed integro-differential equation

dz̄

dt̄
5E

V̄
L~ t̄ ,x̄,ū~ t̄ ,x̄!,ū t̄ ,ūx̄ ,z̄! dnx̄, ~4.2!

whereV̄ is the transformed domain of the domainV.
Observation: The most general one-parameter group of transformations of the indepe

and dependent variables admitted by equation (2.1) is

t̄ 5f~ t;«!,

x̄k5wk~ t,x,u;«!, k51,...,n, ~4.3!

ūi5c i~ t,x,u;«!, i 51,...,m.

Proof: For a givenu5u(x,t) the solutionz of the nontransformed equation~2.1! and it’s
derivative dz/dt are functions oft only. Assume that we transform~2.1! with ~4.1! wheref does

depend on eitherx or u or both. Then, from the transformed equation~4.2! follows that dz̄/dt̄ , and
hencez̄, are functions oft̄ only. On the other hand, if we apply the transformation~4.1! directly
to the solutionz the result will depend onx. Clearly, this is a contradiction. To avoid it, we mu
restrict the transformation of thet-variable as shown in~4.3!. h

Definition 4.2:Let F, V, andC i be the sets on whicht, x, andui(t,x) vary. A local group of
transformationsG acting on the independent and dependent variables is asymmetry groupof the
functionalz defined by the integro-differential equation~2.1! if wheneverD is a subdomain with
closureDcl,V and ui5ui(t,x) are functions defined overF3D whose graphs lie inF3V
3C i with continuous second partial derivatives, andgPG is such that

ūi5ūi~ t̄ ,x̄!5g+ui~ t,x!, i 51,...,m

are single valued functions defined overF̄3D̄,F3V, then the functional defined by the tran
formed integro-differential equation

dz̄

dt̄
5E

D̄
L~ t̄ ,x̄,ū~ t̄ ,x̄!,ū t̄ ,ūx̄ ,z̄! dnx̄ ~4.4!

is equal to the functional defined by the original integro-differential equation

dz

dt
5E

D
L~ t,x,u~ t,x!,ut ,ux ,z! dnx ~4.5!
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for all t. HereD̄ denotes the transformedD under G.
Proposition 4.3: The one-parameter group of transformations G in (4.3) is a symmetry g

of the functional defined by the integro-differential equation (2.1) if and only if

dt

dt
L1

dt̄

dt
U

«50

~ pr(1)v~ L !1 L Div j !50 ~4.6!

for all t ,x,u,ut , and ux in the domain of definition, where

v5t~ t !
]

]t
1 jk~ t,x,u!

]

]xk 1 h i~ t,x,u!
]

]ui ~4.7!

is the infinitesimal generator of the group G, Div j denotes the total divergence of the n-tuple
j[(j1,...,jn), and pr(1)v is the first prolongation ofv.

Proof: The functionst, jk, andh i in ~4.7! are

t[
df

d« U
«50

, jk[
dwk

d« U
«50

, k51,...,n, h i[
dc i

d« U
«50

, i 51,...,m.

For eachgPG the group transformation (t̄ ,x̄,ū)5g+(t,x,u) can be regarded as a change
variables, so that we can rewrite the transformed equation~4.4! as

dz̄

dt
5

dt̄

dt ED
L~ t̄ ,x̄,pr(1)~g+u!~ t̄ ,x̄!,z̄! detJg~ t,x,pr(1)u~ t,x!! dnx, ~4.8!

where the Jacobi matrix has the entries

Jg
k j~ t,x,u(1)!5

d

dxk wg
j ~ t,x,u(1)!,

and u(1)5(u,ut ,ux). If G is a symmetry group of the functionalz defined by~2.1!, then the
functionalz defined by~4.5! is identical with the functionalz̄ defined by~4.8!. Hence

dt̄

dt ED
L~ t̄ ,x̄,pr(1)~g+u!~ t̄ ,x̄!,z̄! detJg~ t,x,pr(1)u~ t,x!! dnx5E

D
L~ t,x,u~ t,x!,ut ,ux ,z! dnx

holds for all subdomainsD of V, all functionsui and all t in the domain of definition. Sincet̄
5f(t;«) does not depend onx1,...,xn, the arbitrariness ofD implies that

dt̄

dt
L~ t̄ ,x̄,pr(1)~g+u!~ t̄ ,x̄!,z̄! detJg~ t,x,pr(1)u~ t,x!!5L~ t,x,u~ t,x!,ut ,ux ,z! ~4.9!

holds for allt,x,u,ut ,ux in the domain of definition. The infinitesimal version of~4.9! is obtained
by settingg5g«5exp(«v) and differentiating with respect to« which produces

S dt

dt
L 1

dt̄

dt
~ pr(1)v ~L! 1 L Div j ! D detJg«

5 0, ~4.10!

the expression in parentheses being evaluated at (t̄ ,x̄,ū«
(1)). In particular, when«50, g« is the

identity map and we obtain~4.6!. Conversely, if~4.6! holds for all (t,x,u,ut ,ux) in the domain of
definition, then~4.10! holds for « sufficiently small. The left-hand side of~4.10! is just the
derivative of the left-hand side of~4.9! with respect to«. Thus, integrating from 0 to« we get~4.9!
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for g sufficiently near the identity. The usual connectivity arguments complete the proof fo
gPG. h

We observe that the infinitesimal criterion which the above proposition provides reduces
infinitesimal criterion for the invariance of the classical variational integral under a grou
transformations, when the generalized variational principle with several independent var
reduces to the classical variational principle.

V. FIRST NOETHER-TYPE THEOREM FOR THE GENERALIZED VARIATIONAL
PRINCIPLE WITH SEVERAL INDEPENDENT VARIABLES

In this section we formulate and prove a theorem which provides an identity correspond
each symmetry of the functionalz defined by the integro-differential equation~2.1!. We call it a
first Noether-type theorem for the generalized variational principle with several independen
ables because this theorem contains as a special case the classical first Noether theorem

As corollaries to this theorem we show that there is a correspondence between the sym
of the functionalz defined by Eq.~2.1! and conserved quantities of the corresponding general
Euler–Lagrange equations.

Theorem 5.1:Let (4.3) be a given symmetry group with infinitesimal generator

v5t~ t !
]

]t
1 jk~ t,x,u!

]

]xk 1 h i~ t,x,u!
]

]ui , k51,...,n, i 51,...,m. ~5.1!

of the functional z@u;s# defined by (2.1). Then the identity

E
D
S d

dt S ES ~t ut
i1j j uxj

i
2h i !

]L
]ut

i 2tLD D 1
d

dxk S ES ~t ut
i1j j uxj

i
2h i !

]L
]uxk

i 2jkLD D D dnx50

~5.2!

holds on solutions of the generalized Euler–Lagrange equations (3.1). Here D is any subdoma
of V, includingV itself, whose closure Dcl,Vcl and E5E(t) is

E5expS 2E
0

tE
D

]L
]z

dnx du D . ~5.3!

Proof: We write the integro-differential equation~2.1! for any subdomainD of V and apply
the transformation~5.1! to it, i.e.,

dz̄

dt̄
5E

D̄
L~ t̄ ,x̄, ū~ t̄ ,x̄!, ū t̄ , ūx̄ ,z̄! dnx̄, f~0;«!< t̄<f~s;«!. ~5.4!

Here dnx̄5dx̄1
¯dx̄n andD̄5D̄( t̄ , ū, «) denotes the result of transformingD with ~5.1! which, in

general, depends ont̄ , ū, and«. Now we change the independent variablest̄ and x̄k in ~5.4! ~but
not the dependent variables! back to the original independent variablest and xk. The resulting
equation is

dz̄

dt
5

dt̄

dt ED
L~ t̄ ,x̄, ū~ t̄ ,x̄!, ū t̄ , ūx̄ , z̄!detS ] x̄

]xDdnx, 0<t<s, ~5.5!

where] x̄/]x stands for the Jacobian matrix of the transformation of thex variables. Differentiat-
ing equation~5.5! with respect to«,

d

dt

dz̄

d«
5

dt̄

dt ED
S dL

d«
detS ] x̄

]xD1L d

d«
detS ] x̄

]xD Ddnx1
d

d«

dt̄

dt ED
L detS ] x̄

]xDdnx, ~5.6!
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and observing that

dt̄

dt
U

«50

51, detS ] x̄

]xD U
«50

51,
d

d«

dt̄

dt
U

«50

5
dt

dt

produces

dz

dt
5E

D

dL
d« U

«50

dnx1E
D
L d

d«
detS ] x̄

]xD U
«50

dnx1
dt

dt ED
L dnx, ~5.7!

where, by definition, the variationz5z(t) of z̄ is

z~ t ![
dz̄

d« U
«50

.

Now, we need to express the first and the second integrands in~5.7! in terms of known functions.
The calculations are lengthy and are given in the Appendix. When the results

dL
d« U

«50

5
]L
]t

t1
]L
]xk jk1

]L
]ui h i1

]L
]ut

i S dh i

dt
2ut

i dt

dt
2uxk

i djk

dt D1
]L

]uxk
i S dh i

dxk 2uxj
i dj j

dxkD1
]L
]z

z,

~5.8!

d

d«
detS ] x̄

]xD U
«50

5
djk

dxk ~5.9!

are inserted into~5.7! we obtain the equation for the variationz(t), namely,

dz~ t !

dt
5E

D
S ]L

]t
t1

]L
]xk jk1

]L
]ui h i1

]L
]ut

i S dh i

dt
2ut

i dt

dt
2uxk

i djk

dt D
1

]L
]uxk

i S dh i

dxk 2uxj
i dj j

dxkD1L dj j

dxj D dnx1
dt

dt ED
L dnx1z~ t !E

D

]L
]z

dnx. ~5.10!

Its solutionz(s), evaluated att5s, is given by

E~s! z~s!2z~0!5E
0

sE
D

E~ t !S ]L
]t

t1
]L
]xk jk1

]L
]ui h i1

]L
]ut

i S dh i

dt
2ut

i dt

dt
2uxk

i djk

dt D
1

]L
]uxk

i S dh i

dxk 2uxj
i dj j

dxkD1LS dj j

dxj 1
dt

dt D D dnx dt, ~5.11!

whereE(t) is the expression~5.3! ands is the value oft at which the solutionz(t) of Eq. ~2.1!
was evaluated in order to obtain the functionalz@u;s#. By definition,z(0)50. By hypothesis, the
transformation group~4.3! leaves the functionalz̄ invariant, soz(s)50. Thus,~5.11! becomes

E
0

sE
D

E S ]L
]t

t1
]L
]xk jk1

]L
]ui h i1

]L
]ut

i S dh i

dt
2ut

i dt

dt
2uxk

i djk

dt D
1

]L
]uxk

i S dh i

dxk 2uxj
i dj j

dxkD1LS dj j

dxj 1
dt

dt D D dnx dt50. ~5.12!

Next we form total derivatives with respect tot andxk in the integrandI of ~5.12!. A tedious but
straightforward calculation yields
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I 52
d

dt S ES ~t ut
i1j j uxj

i
2h i !

]L
]ut

i 2tLD D 2
d

dxk S ES ~t ut
i1j j uxj

i
2h i !

]L
]uxk

i 2jkLD D
2E~t ut

i1j j uxj
i

2h i !S ]L
]ui 2

d

dt

]L
]ut

i 2
d

dxk

]L
]uxk

i 1
]L
]ut

i E
D

]L
]z

dnxD
1t ES LE

D

]L
]z

dnx2
]L
]z ED

L dnxD . ~5.13!

We evaluate the above expression on a solution of the generalized Euler–Lagrange equati~3.1!
~hence the third term becomes zero! and insert it into~5.12!. Then, recognizing that the spac
integral of the last term in~5.13! vanishes, i.e.,

E
D
S LE

D

]L
]z

dnx2
]L
]z ED

L dnxD dnx85E
D
L dnx8E

D

]L
]z

dnx2E
D

]L
]z

dnx8E
D
L dnx50

and that the limits of the time integral is arbitrary, we obtain

E
D
S d

dt S ES ~t ut
i1j j uxj

i
2h i !

]L
]ut

i 2tLD D 1
d

dxk S ES ~t ut
i1j j uxj

i
2h i !

]L
]uxk

i 2jkLD D D dnx50,

which concludes the proof. h

Corollary 5.2: Theorem 5.1 reduces to the classical first Noether theorem when the ge
ized variational principle with several independent variables reduces to the classical variat
principle.

Proof: The generalized variational principle with several independent variables reduces
classical variational principle if the Lagrangian densityL, in the defining equation~2.1!, does not
depend onz. This is so because, then, the functionalz@u;s# becomes a space–time integral ofL,
i.e.,

z@u;s#5E
0

sE
V
L~ t,x,u,ut ,ux! dnx dt ~5.14!

and the generalized Euler–Lagrange equation~3.1! becomes the classical Euler–Lagrange eq
tion. On the other hand, whenL does not depend onz the integrand in~5.2! is independent ofD
since, in this case,E51 as seen from~5.3!. Then, the arbitrariness ofD in the identity ~5.2!
implies that the integrand is identically zero and we obtain the conservation law

d

dt S ~t ut
i1j j uxj

i
2h i !

]L
]ut

i 2tLD 1
d

dxk S ~t ut
i1j j uxj

i
2h i !

]L
]uxk

i 2jkLD 50, ~5.15!

which holds on solutions of the classical Euler–Lagrange equations. This is precisely the c
vation law of the classical first Noether theorem. h

VI. CONSERVED QUANTITIES IN DISSIPATIVE AND GENERATIVE SYSTEMS WITH
SEVERAL INDEPENDENT VARIABLES

Systems described by the generalized Euler–Lagrange equations

]L
]ui 2

d

dt

]L
]ut

i 2
d

dxk

]L
]uxk

i 1
]L
]ut

i E
V

]L
]z

dnx50, i 51,...,m ~6.1!

are in general not conservative. In this section we show how Theorem 5.1 can be used
conserved quantities in such systems. To carry out this procedure, we must find the symme
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the functionalz@u,s# defined by Eq.~2.1!. Each one-parameter symmetry provides one conse
quantity. To test whether a one-parameter group of transformations of the independent and
dent variables is a symmetry group of the functionalz we use the infinitesimal criterion which
Proposition 4.3 provides.

Theorem 6.1:Let (4.3) be a symmetry group, with infinitesimal generator (4.7), of the fu
tional z defined by (2.1). If the equations

~t ut
i1j juxj

i
2h i !

]L
]uxk

i 2jkL50, k51,...,n, i 51,...,m

hold on the boundary]V of V, then the quantity

E~ t !E
V
S ~t ut

i1j juxj
i

2h i !
]L
]ut

i 2tLDdnx5const ~6.2!

is conserved on solutions of the generalized Euler–Lagrange equations (6.1), where

E~ t ! [ expS 2E
0

tE
V

]L
]z

dnx du D . ~6.3!

Proof: From Gauss divergence theorem and the hypothesis of the theorem follows th
second term in the identity~5.2! of Theorem 5.1 is zero, that is

E
V

d

dxk S ES ~t ut
i1j j uxj

i
2h i !

]L
]uxk

i 2jkLD D dnx50.

Hence, identity~5.2! becomes

d

dt EV
ES ~t ut

i1j juxj
i

2h i !
]L
]ut

i 2tLDdnx50,

which is the statement of the theorem. h

The following corollary is an important special case of Theorem 6.1.
Corollary 6.2: Let (4.3) be a symmetry group, with infinitesimal generator (5.1), of the f

tional z defined by (2.1) withV5Rn. If

U E
Rn

L~ t,x,u~ t,x!,ut ,ux ,z! dnx U,` ~6.4!

over the entire time domain, then the quantity

E~ t !E
RnS ~t ut

i1j juxj
i

2h i !
]L
]ut

i 2tLDdnx5const ~6.5!

is conserved on solutions of the generalized Euler–Lagrange equations (6.1), where

E~ t ! [ expS 2E
0

tE
Rn

]L
]z

dnx du D . ~6.6!

Proof: The requirement~6.4! implies that limuxu→` L50. Then ]L/]uxk
i , k51,...,n, i

51,...,m are also zero at infinity. Thus, the hypotheses of Theorem 6.1 are satisfied and~6.5!
follows from ~6.2!. h
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VII. SOME APPLICATIONS

The generalized variational principle with several independent variables gives a varia
description of nonconservative as well as conservative processes involving physical field
next three corollaries give conserved quantities which correspond in the classical case to th
energy, linear momentum, and angular momentum of the fieldu(t,x)5(u1(t,x),...,um(t,x)) de-
fined onRn. See Goldstein,9 Chap. 12.

Corollary 7.1: Let the condition (6.4) hold and let the functional z, defined by the equation
(2.1), be invariant with respect to translations in time. Then the quantity

E~ t !E
RnS ut

i ]L
]ut

i 2LDdnx5const, i 51,...,m ~7.1!

with E(t) given by (6.6), is conserved on solutions of the generalized Euler–Lagrange equations
(6.1).

Proof: Time-translations are the transformations

t̄ 5t1«, x̄k5xk, k51,...,n, ū5u

from which we have

t5
dt̄

d«
U

«50

51, jk50, k51,...,n, h50.

Inserting these into~6.5! produces~7.1!. h

If, following the classical field theory, we interpret the expression

E5ut
i ]L
]ut

i 2L ~7.2!

as the energy density of the fieldu(t,x), then~7.1! states that the total field energy changes in ti
proportional to 1/E(t).

Corollary 7.2: Let the condition (6.4) hold and let the functional z, defined by the equation
(2.1), be invariant with respect to space translations along the xk coordinate. Then the quantity

E~ t !E
Rn

]ui

]xk

]L
]ut

i dnx5const ~7.3!

with E(t) given by (6.6), is conserved on solutions of the generalized Euler–Lagrange equations
(6.1).

Proof: Space translations along thexk coordinate are the transformations

t̄ 5t, x̄k5xk1«, x̄ j5xj for j Þk, ū5u, j 51,...,n

from which we get

jk5
dx̄k

d« U
«50

51, j j50 for j Þk, t5h50.

Then,~7.3! follows from ~6.5!. h

If, following the classical field theory, we interpret the expression

Pk52
]ui

]xk

]L
]ut

i , i 51,...,m ~7.4!
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as thek component of the linear momentum density, then~7.3! states that thekth component of
the field’s total linear momentum changes in time proportional to 1/E(t).

Corollary 7.3: Let the condition (6.4) hold and let the functional z, defined by the equation
(2.1), be invariant with respect to rotations in the i j-coordinate plane. Then the quantity

E~ t !E
Rn

S xj
]ul

]xi 2xi
]ul

]xj D ]L
]ut

l dnx5const ~7.5!

with E(t) given by (6.6), is conserved on solutions of the generalized Euler–Lagrange equations
(6.1).

Proof: The rotations in thei j plane are the transformations

x̄i5xi cos«1xj sin«, x̄ j52xi sin«1xj cos«, x̄k5xk for kÞ i , j

from which we obtain

j i5
dx̄i

d« U
«50

5xj , j j5
dx̄ j

d« U
«50

52 xi , jk50 for kÞ i , j , t5h50.

Inserting these into~6.5! of Corollary 6.2 produces~7.5!. h

If, following the classical field theory, we interpret the expression

Mi j 5S xj
]ul

]xi 2xi
]ul

]xj D ]L
]ut

l 5xi Pj2xj Pi ~7.6!

as thei j component of the angular momentum density of the fieldu(t,x), then~7.5! states that the
i j component of the field’s total angular momentum changes in time proportionally to 1/E(t).

An observation: LetF5F(u,ux ,ut ,x,t) be any real-valued function which is, at least, twi
differentiable with respect to u, ux , ut and once differentiable with respect to x, t. Then, all
equations, linear and nonlinear, of the form

]F
]ui 2

d

dxk

]F
]uxk

i 2
d

dt

]F
]ut

i 1a
]F
]ut

i 50 , i 51,...,m ~7.7!

are generalized Euler–Lagrange equations (3.1) derivable from the generalized variational p
ciple with Lagrangian density

L5F1a z,

wherea5a(x,t) and

a~ t !5E
V

a~x,t ! dnx.

Hence, we can apply the Noether-type theorems to any equation of the form~7.7!. It should be
noticed that due to the presence of the terma ]F/]ut

i these equations describe generative
dissipative processes and cannot be derived from the classical variational principle.

Here, we give two illustrative examples of equations from the family~7.7!. The first is the set
of equations which describe the propagation of electromagnetic fields in a conductive med

c2 ¹2E2
]2E

]t2 2
s

«

]E

]t
50, ~7.8!
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whereE5(E1,E2,E3) is the electric field vector,c is the velocity of the electromagnetic wave
s is the electrical conductivity, and« is the dielectric constant of the medium. Exactly the sa
equation holds for the magnetic field vectorB5(B1,B2,B3). These equations are a direct cons
quence of the Maxwell’s equations in conjunction with the medium’s property equationsJ5s E
andr50, whereJ5(J1,J2,J3) is the current density andr is the charge density.

One can easily verify that Eq.~7.8! belongs to the family~7.7! by inserting

L5c2
]Ei

]xj

]Ei

]xj 2
]Ei

]t

]Ei

]t
1a~x! z, i , j 51,2,3 ~7.9!

into the generalized Euler–Lagrange equations~3.1! and setting

s

«
5E

V
a~x! d3x5const.

Thus, the Noether-type theorem can be applied and, with the appropriate boundary conditio
function a(x), we obtain the conserved quantities of the Corollaries 7.1, 7.2, and 7.3.

As a second example consider the equation

¹2u2
1

v2

]2u

]t2 1G~uu* ! u50 ~7.10!

describing the real or complex fieldu5u(x,t), whereu* denotes the complex conjugate ofu, G
is a differentiable function andv is a constant. This equation is known as the nonlinear Kle
Gordon equation. Its linear version, withG5const plays an important role in relativistic fiel
theories. The one-dimensional version of~7.10! with realu andG(u2)u5sinu is the sine-Gordon
equation. The field equations of the form~7.10! can be derived from the Lagrangian density

L~u,ut ,¹u!5¹u • ¹u* 2
1

v2

]u

]t

]u*

]t
2F~uu* !, ~7.11!

where

dF~r!

dr
5G~r! and F~0!50.

We consider as physically meaningful only those solutions of~7.10! which are free of singularities
and for which

U E
V
L~ t,x,u,ut ,ux! dx U,`

holds over the entire time domain. The processes described with an equation of the form~7.10! are
conservative since the Lagrangian~7.11! does not explicitly depend on time.

One is also interested in nonconservative processes involving fields. The simplest mo
tion of ~7.10! which makes it suitable to describe nonconservative processes is to include
term proportional to the time derivative of the field. Thus, a physically meaningful noncons
tive version of~7.10! is

¹2u2
1

v2

]2u

]t2 1k
]u

]t
1G~uu* ! u50, ~7.12!
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wherek is a constant. Withk.0 the process described by~7.12! is generative, and withk,0 it
is dissipative. Whenu is a real field, equations of the form~7.12! belong to the family~7.7! and
can be derived via the present generalized variational principle from the Lagrangian densi

L5¹u • ¹u2
1

v2 S ]u

]t D
2

2F~u2!1a~x! z, ~7.13!

where ]F(r)/]r5G(r), and a5a(x) is a given function of the coordinatesx5(x1,...,xn)
which satisfies the condition

U E
V

a~x! dnxU,`.

Indeed, inserting the Lagrangian~7.13! into the generalized Euler–Lagrange equations~3.1!,

]L
]u

2
d

dt

]L
]ut

2
d

dxk

]L
]uxk

1
]L
]ut

E
V

]L
]z

dnx

52 2u
]F

]~u2!
1

2

v2

]2u

]t2 22 ¹2u2
2

v2

]u

]t EV
a~x! dnx50,

we see that the last expression is the same as~7.12! with

k5
1

v2 E
V

a~x! dnx5const. ~7.14!

Consequently, we may apply the first Noether-type theorem 5.1 to obtain conserved quanti
particular, observing that the Lagrangian~7.13! is invariant under translations in time we ma
apply Corollary 7.1 to obtain the conserved quantity

exp~2kv2t !E
V
S 1

v2 S ]u

]t D
2

1¹u • ¹u2F~u2!1a~x! zDdx5const, ~7.15!

wherez is the solution of the defining equation~2.1!. In accordance with the conservative case,
can interpreted the quantity

]L
]ut

ut2L52
1

v2 S ]u

]t D
2

2¹u • ¹u1F~u2!2a~x! z

as the energy density of the fieldu(t,x). Then Eq.~7.15! states that the total field energy exp
nentially increases whenk.0 and decreases whenk,0.10–20

APPENDIX

Derivation of the relation (5.8):We differentiate the transformed Lagrangian dens
L( t̄ ,x̄,ū,ū t̄ ,ūx̄ ,z̄) in Eq. ~5.5! with respect to« and set«50,

dL
d«

U
«50

5S ]L
] t̄

df

d«
1

]L
] x̄k

dwk

d«
1

]L
]ūi

dc i

d«
1

]L
]ūi

t̄

d

d«

]ūi

] t̄
1

]L
]ūi

x̄k

d

d«

]ūi

] x̄k
1

]L
] z̄

dz̄

d« D U
«50

,

which when written withz and the infinitesimal generators of the group becomes
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dL
d«

U
«50

5
]L
]t

t1
]L
]xk

jk1
]L
]ui

h i1
]L
]ut

i

d

d« S ]ūi

] t̄
D U

«50

1
]L

]uxk
i

d

d«
S ]ūi

] x̄kD U
«50

1
]L
]z

z. ~A1!

To calculate

d

d« S ]ūi

] t̄
D U

«50

differentiate the equationūi( t̄ ,x̄;«)5c i(t,x,u;«)5ūi(t,x,u;«) with respect tot,

]ūi

] t̄

dt̄

dt
1

]ūi

] x̄k S ] x̄k

]t
1

] x̄k

]uj
ut

j D 5
]ūi

]t
1

]ūi

]uj
ut

j . ~A2!

Set«50 and take into account the identities

]ūi

]t U
«50

50,
]ūi

]uj U
«50

5d j
i ,

] t̄

]t
U

«50

51,
] x̄k

]t U
«50

50,
] x̄k

]ujU
«50

50.

Substitute these in~A2! and solve the resulting equation forū
t̄

i u«50 to find

ū
t̄

i u«505ut
i . ~A3!

Differentiate the equationūi( t̄ ,x̄;«)5c i(t,x,u;«)[ūi(t,x,u;«) with respect toxk,

]ūi

] x̄l S ] x̄l

]xk 1
] x̄l

]uj uxk
j D5

]ūi

]xk 1
]ūi

]uj uxk
j . ~A4!

Set«50 and substitute the identities

]ūi

]xk U
«50

50,
]ūi

]ujU
«50

5d j
i ,

] x̄l

]xk U
«50

5dk
l ,

] x̄l

]ujU
«50

50

in ~A4!. Then solve the resulting equation forūx̄k
i u«50 to obtain

ūx̄k
i u«505uxk

i . ~A5!

Differentiate~A2! with respect to« to get

ū
t̄

i d

d«

dt̄

dt
1

dt̄

dt

dū
t̄

i

d«
1ūx̄k

i S d

d«

] x̄k

]t
1

d

d« S ] x̄k

]uj Dut
j D1S ] x̄k

]t
1

] x̄k

]uj ut
j D dūx̄k

i

d«

5
d

d« S ]ūi

]t
1

]ūi

]uj ut
j D . ~A6!

Set«50 in ~A6! and substitute~A3! and ~A5! in it. Then take into account the identities

d

d«

]ūi

]t U
«50

5
]h i

]t
,

d

d«

]ūi

]uj U
«50

5
]h i

]uj ,
d

d«

] t̄

]t
U

«50

5
]t

]t
,

] t̄

]t
U

«50

51,
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d

d«

] x̄k

]t U
«50

5
]jk

]t
,

d

d«

] x̄k

]uj U
«50

5
]jk

]uj ,
] x̄k

]t U
«50

50,
] x̄k

]ujU
«50

50.

Consequently, Eq.~A6! becomes

]h i

]t
1

]h i

]uj ut
j5ut

i ]t

]t
1

d

d«
ū

t̄

i U
«50

1uxk
i S ]jk

]t
1

]jk

]uj ut
j D ~A7!

from which we obtain

d

d«
ū

t̄

i U
«50

5
dh i

dt
2ut

i dt

dt
2uxk

i djk

dt
. ~A8!

We must now calculate

d

d« S ]ūi

] x̄kD U
«50

,

which appears in~A1!. For this purpose differentiate~A4! with respect to«,

d

d«

]ūi

]xk 1
d

d«

]ūi

]uj uxk
j

5
d

d«
~ ūx̄l

i
!S ] x̄l

]xk 1
] x̄l

]uj uxk
j D1ūi

x̄lS d

d«

] x̄l

]xk 1uxk
j d

d«

] x̄l

]uj D . ~A9!

Set«50 in ~A9!, substitute~A3! and ~A5! into ~A9! and observe that

d

d«

]ūi

]xk U
«50

5
]h i

]xk ,
d

d«

]ūi

]uj U
«50

5
]h i

]uj ,
] x̄l

]xkU
«50

5dk
l ,

] x̄l

]uj U
«50

50,
d

d«

] x̄l

]xk U
«50

5
]j l

]xk ,
d

d«

] x̄l

]ujU
«50

5
]j l

]uj .

Then ~A9! becomes

]h i

]xk 1
]h i

]uj uxk
j

5
d

d«
ūi

x̄lU
«50

dk
l 1uxl

i S ]j l

]xk 1
]j l

]uj uxk
j D , ~A10!

from which we get

d

d«
ūi

x̄kU
«50

5
dh i

dxk 2uxl
i dj l

dxk. ~A11!

Substituting~A8! and ~A11! into ~A1! produces the relation~5.8!,

dL
d« U

«50

5
]L
]t

t1
]L
]xk jk1

]L
]ui h i1

]L
]ut

i S dh i

dt
2ut

i dt

dt
2uxk

i djk

dt D1
]L

]uxk
i S dh i

dxk 2uxl
i dj l

dxkD1
]L
]z

z.

Derivation of the relation (5.9):We use the formula for the derivative of a determina
according to which

d

d«
detS ] x̄

]xD5Ak
j d

d« S ] x̄k

]xj D , ~A12!

whereAk
j is the cofactor of the determinant’s entry] x̄k/]xj . Next,
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d

d« S ] x̄k

]xj D5
]

]xj

dx̄k

d«
5

]2x̄k

]xj ]«
1

]2x̄k

]ui ]«

]ui

]xj ,

becausex̄k5 x̄k(t,x,u(t,x);«). Hence~A12! becomes

d

d«
detS ] x̄

]xD5Ak
j S ]2x̄k

]xj ]«
1

]2x̄k

]ui ]«

]ui

]xj D .

Setting«50 in the above expression and observing thatAk
j u«505dk

j is a cofactor of the identity
matrix, we get the relation~5.9!,

d

d«
detS ] x̄

]xD U
«50

5S ]jk

]xj 1
]jk

]ui

]ui

]xj D dk
j 5

djk

dxj dk
j 5

djk

dxk.
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On the basis of the equivalence between the AKNS hierarchy and the cKP hierar-
chy with the constraintk51, we point out that there exist two choices to keep the
form of the Lax operator when we perform the gauge transformation for the AKNS
hierarchy, which results in two classes of functions to trigger the gauge transfor-
mation. For the second choice, two theorems for two types of gauge transformation
are established. Several new and more general forms of tau-functions for the AKNS
hierarchy are obtained by means of gauge transformations of both types. The union
of the two choices leads to new forms oft-functions. We generate the AKNS
hierarchy from the ‘‘free’’ Lax operatorL (0)5] via a chain of gauge
transformations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1581973#

I. INTRODUCTION

The AKNS hierarchy and its generalizations1,2 are very important and basic in the theory
PDEs. They yields the generalized nonlinear Schro¨dinger equation~including nonlinear Schro¨-
dinger equation and the derivative Schro¨dinger equation!, the KdV equation, the mKdV equation
the sine-Gordon equation, the sinh-Gordon equation, the Harry–Dym equation, etc. This hie
is also equivalent to the constrained KP hierarchy~cKP! with constraintk51.3–5 Explicitly, the
AKNS hierarchy can be expressed as

]L (0)

]tk
5@Bk

(0) ,L (0)# ~1.1!

by means of a pseudodifferential operator having the following form:

L (0)5]1f (0)+]21+c (0), Bk
(0)[~L (0)!1

k . ~1.2!

HereA1 , respectively,A2 denote the differential, respectively, integral part of the pseudodif
ential operatorA5A11A2 . ForL (0), L1

(0)5], L2
(0)5f (0)+]21+c (0) , wheref (0) andc (0) in L (0)

are the solutions of the equations

]f~0!

]tk
5Bk

(0)
•f (0),

]c (0)

]tk
52B

k

* (0)
•c (0). ~1.3!

Here the symbol ‘‘+’’ denotes product of operators and the symbol ‘‘•’’ indicates that the operato
acts the function just following. For example,]2+ f 5 f xx12 f x+]1 f +]2 is a sum of operators
]21+ f 5 f +]212 f x+]221 f xx+]221¯ is also an operator. But]2

• f 5 f xx is a function;]21
• f

5* f dx is a function. Of course,f +]5 f •], f +g5 f •g; the functionsf andg can be regarded as th
zeroth order operators. The symbol* indicates the operation of conjugation; (A+B)* 5B*
39280022-2488/2003/44(9)/3928/33/$20.00 © 2003 American Institute of Physics
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+A* ,]*52],f* (x)5f(x),(f+]21+g)*52g+]21+f ~hereA, B are differential operators,f , g are func-
tions!. It can be shown that~1.3! are consistent with~1.1!. For simplicity, we adopt the notation o
Ref. 6. The solutions of~1.3!, f (0), respectively,c (0) are called the ‘‘eigenfunction,’’ respectively
the ‘‘adjoint eigenfunction’’ of the AKNS hierarchy. For example, the first two flows of the AK
hierarchy (t15x) are

f t2
(0)5fxx

(0)12~f (0)!2c (0) , c t2
(0)52cxx

(0)22f (0)~c (0)!2, ~1.4!

and

f t3
(0)5fxxx

(0) 16f (0)c (0)fx
(0) , c t3

(0)5cxxx
(0) 16f (0)c (0)cx

(0) . ~1.5!

The Baker–Akhiezer~BA! function x (0)(l,x) is defined by the equation

L (0)
•x (0)~l,x!5l•x (0)~l,x!,

]x (0)~l,x!

]tk
5Bk

(0)
•x (0)~l,x!. ~1.6!

The adjoint BA functionm (0)(l,x) is defined by the equation

L* (0)
•m (0)~l,x!5l•m (0)~l,x!,

]m (0)~l,x!

]tk
52B

k

* (0)
•m (0)~l,x!. ~1.7!

On the other hand, we can rewriteL (0) as

L (0)5]1u2
(0)+]211u3

(0)+]221u4
(0)+]231¯ , ~1.8!

so that the coordinatesu2
(0) ,u3

(0) ,u4
(0) ,... are expressed uniquely by the dynamical variab

f (0) ,c (0) and their derivatives

u2
(0)5f (0)

•c (0) , u3
(0)52f (0)

•cx
(0) , u4

(0)5f (0)
•cxx

(0) , ... . ~1.9!

It is easy to find viau5u2 ,t15x,t25y,t35t the KP equation

~4ut212uux2uxxx!x23uyy50. ~1.10!

From Sato’s KP theory~see, for example, Refs. 7 and 8!, the set$ui
(0)% can be generated by th

t-function t (0),

u2
(0)5

]2 ln t (0)

]x2 , ~1.11!

u3
(0)5 1

2 ~]x] t2
2]x

2!• ln t (0), ~1.12!

etc. Through~1.11! and~1.12!, $f (0) ,c (0)% can be expressed by the samet (0), which provides an
alternative to representing the solution to the AKNS hierarchy via its correspondingt-function.

Recently several peoples have been devoted to solving the cKP hierarchy by
transformations.6,9–18Two types of gauge transformation operators

Type I : TD~x!5x+]+x21,

Type II : TI~m!5m21+]21+m,

for the KP hierarchy were proposed first by Ref. 19; they were then shown to be also able t
with the cKP hierarchy.6,9–12,18Herex andm are the ‘‘eigenfunction’’ and the ‘‘adjoint eigenfunc
tion’’ of the KP hierarchy, respectively. On the other hand, there are two classes of function~we
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call them the generating functions of the gauge transformation, denoted shortly by GFGT! appro-
priate to produce the above-mentioned transformations. The first is the BA function,9 the other is
the ‘‘eigenfunction’’~or the ‘‘adjoint-eigenfunction’’!.6,10–12,18However, the discussion for the tw
types of gauge transformations with the two classes of GFGT is neither complete nor syste
In addition, the transformed functiont (n) of Ref. 6 does not hold for the cKP withk51 and one
component~i.e., in the AKNS case!. So we provide a unified frame to deal with the AKN
hierarchy and we discuss some explicit solutions of the KP equation as examples.

The organization of the present paper is as follows. In Sec. II, we deduce the transforme
operatorL (1) from theL (0) in ~1.2! under the gauge transformations of TypeI and TypeII . In this
process, we point out that there are two choices of gauge transformation for the AKNS hie
in order to keep the form of the Lax operator, which results in two classes of GFGT. Particu
the second choice for TypeI and TypeII is discussed in detail, respectively. Then, in Sec. III,
study the successive applications of the gauge transformation with the second choice.
followed by the Sec. IV, which treats the union of the two choices in one chain of gauge t
formations. The generation of the AKNS hierarchy from the ‘‘free’’ Lax operatorL (0)5] is the
main content of the Sec. V. The last Sec. VI contents some concluding remarks.

Before ending this section, let us list some identities, which are used repeatedly in th
lowing sections:

]+ f 5 f +]1 f x , ~1.13!

]21+ f 5 f +]212]21+ f x+]21, ~1.14!

TI~x!52~TD
21~x!!* 52~TD* ~x!!21, ~1.15!

TD~m!52~TI
21~m!!* 52~TI* ~m!!21, ~1.16!

~TD~x!+A2+TD
21~x!!150. ~1.17!

In addition, because thet-function can be only determined up to a constant factor, we always
the global minus oft-function for AKNS hierarchy in this paper.

II. TWO CHOICES OF GAUGE TRANSFORMATION FOR THE AKNS HIERARCHY

Let us begin with a brief summary about the gauge transformation for the AKNS hiera
SupposeT is a pseudodifferential operator, and

L (1)5T+L (0)+T21, Bn
(1)[~L (1)!1

n , ~2.1!

so that

]

]tn
L (1)5@Bn

(1) ,L (1)# ~2.2!

still holds for the transformed Lax operatorL (1); thenT is called a gauge transformation operat
According to the definition of gauge transformation, we have

Lemma 2.1: The operator T is a gauge transformation operator, if

~T+Bn
(0)+T21!15T+Bn

(0)+T211
]T

]tn
+T21, ~2.3!

or

~T+Bn
(0)+T21!252

]T

]tn
+T21. ~2.4!
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Proof : By using ~2.1! we have

]L (1)

]tn
5

]T

]tn
+T21+T+L (0)+T211T+Bn

(0)+T21+T+L (0)+T212T+L (0)

+T21+T+Bn
(0)+T212T+L (0)+T21+

]T

]tn
+T21,

@Bn
(1) ,L (1)#5Bn

(1)+T+L (0)+T212T+L (0)+T21+Bn
(1) .

Taking these back into~2.2!, one gets

Bn
(1)5T+Bn

(0)+T211
]T

]tn
+T21.

On the other hand, we have

Bn
(1)[~L (1)!1

n 5~T+Bn
(0)+T21!1 .

from the definition of the gauge transformation. The lemma is then proved by comparing th
expressions ofBn

(1) . h

This is concordant with the statement of Refs. 6 and 19, where it is given in the contest
Zakharov–Shabat~ZS! equation. Our proof is independent of the concrete form of the Lax op
tor L (0), so it also hold for the generalized KP hierarchy.14,20 In order to prove the existence of th
two types of gauge transformation, we need to discuss first the following lemma.

Lemma 2.2:~Ref. 21! Let f be a well defined function, A a pseudodifferential operator; then

(1) ~ f +]+ f 21+A+ f +]21+ f 21!15 f +]+ f 21+A1+ f +]21+ f 212 f 21

+@]x~ f 21
•~A1• f !!#+]21+ f 21. ~2.5!

(2) ~ f 21+]21+ f +A+ f 21+]+ f !25 f 21+]21+ f +A2+ f 21+]+ f 2 f 21

+]21+ f +]x~ f 21
•~A1* • f !!. ~2.6!

Theorem 2.1:(Ref. 6) For the AKNS hierarchy, there exist two types of gauge transforma
operators:

Type I : TD~x!5x+]+x21, ~2.7!

Type II : TI~m!5m21+]21+m. ~2.8!

Herex andm are the eigenfunction and the adjoint eigenfunction of the Lax operator L(0) in (1.2),
respectively.

Proof: First, for the TypeI case@see~2.7!#,

Bn
(1)[~L (1)!1

n 5~TD+~L (0)!n+TD
21!1

5TD+~L (0)!1
n +TD

212x•]x~x21
•~~L (0)!1

n
•x!!)+]21+x21

5TD+Bn
(0)+TD

212x•]x~x21
•~Bn

(0)
•x!!+]21+x21

5TD+Bn
(0)+TD

212S x+]+
x tn

x
+]21+x212x+

x tn

x
+]+]21+x21D
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5TD+Bn
(0)+TD

211
x tn

x
2x+]+

x tn

x
+]21+x21.

Here the relations~2.5!, Bn
(0)5(L (0))1

n , x tn
5Bn

(0)
•x and ~1.13! have been used. On the oth

hand,

]TD

]tn
+TD

215~x+]+x21! tn
+TD

21

5x tn
+]+x21+x+]21+x212x+]+

x tn

x2 +x+]21+x21

5
x tn

x
2x+]+

x tn

x
+]21+x21.

Hence

Bn
(1)[~L (1)!1

n 5TD+Bn
(0)+TD

211
]TD

]tn
+TD

21 ,

and this indicates thatTD(x) is indeed a gauge transformation operator via Lemma 2.1. Sec
we want to prove that the equation~2.4! hold for TypeII case@see~2.8!#,

~TI+Bn
(0)+TI

21!25~m21+]21+m+Bn
(0)+m21+]+m!2

5m21+]21+m+~Bn
(0)!2+m21+]+m2m21+]21+m+]x~m21

•~~B n* (0)!1•m!!

5m21+]21+m+]x~m21
•m tn

!.

In the above destination, the relations~2.6!, (Bn
(0))250, m tn

52Bn*
(0)
•m have been used. More

over, with the help of~1.14!, we have

2
]TI

]tn
+TI

2152
]

]tn
~~m21+]21+m!!+m21+]+m

5
m tn

m2 +]21+m+m21+]+m2m21+]21+m tn
+m21+]+m

5
m tn

m
2m21~m tn

+m21+]212]21+~m tn
•m21!x+]21!+]+m

5
m tn

m
2

m tn

m
1m21+]21+]x~m tn

+m21!+m

5m21+]21+m+]x~m tn
+m21!.

The above two equations show thatTI(m) satisfies~2.4!, soTI(m) is also a gauge transformatio
operator according to Lemma 2.1. h

Although the gauge transformation operators in Theorem 2.1 guarantee the validity of th
equation, it is not enough to ensure that thef (0) andc (0) are transformed to be the new solutio
of the AKNS hierarchy. To this end, the gauge transformation operators, must be moreov
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quired to keep the form of Lax operator. Let us now introducen BA functions $x i
(0)

5x(l i ,x),i 51,2,...,n% and n adjoint BA functions$m i
(0)5m(l i ,x),i 51,2,...,n%, besides the

‘‘eigenfunction’’ f (0) and the ‘‘adjoint eigenfunction’’c (0) of L (0).
Lemma 2.3: Via the gauge transformation of TypeI [see (2.7)], L(0) becomes L(1), which is

given by

L (1)5]1x•~ ln x!xx+]21+x211x•S x21
•f (0)

•E c (0)
•x D

x

+]21+x212x

•~x21
•f (0)!x+]21+S E c (0)

•x D +x21

5]1f0
(1)+]21+c0

(1)1f (1)̃+]21+f (1)̃, ~2.9!

f0
(1)5x•~ ln x!xx1x•S x21

•c (0)
•S E f (0)

•x D D
x

5~TD~x!+L (0)!•x, ~2.10!

c0
(1)5x21, ~2.11!

f (1)̃5x•~x21
•f (1)!x5TD~x!•f (0) , ~2.12!

f (0)̃52x21
•S E c (0)

•x D52TI~x!•c (0) . ~2.13!

Proof: The transformed Lax operatorL (1)5TD(x)+L (0)+(TD(x))21 can be written in two
parts.~a! The first part is

LA5TD~x!+]+~TD~x!!21

5S ]2
xx

x D +]+x+]21+x21

5]2+x+]21+x212
xx

x
+]+x+]21+x21

5~xxx12xx+]1x+]2!+]21+x212
xx

x
+~xx1x+]!+]21+x21

5~xxx12xx+]!+]21+x211x+]+x212
xx

2

x
+]21+x212xx•x21

5]1S xxx12xx+]2
xx

2

x D +]21+x2122
xx

x

5]1S xxx2
xx

2

x D +]21+x21

5]1x•~ ln x!xx+]21+x21.

In above destination, the relation~1.13! is used repeatedly.~b! The second part,LB , comes from
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LB5TD~x!+f (0)+]21+c (0)+~TD~x!!21

5x+]+x21+f (0)+]21+c (0)+x+]21+x21

5x+]+x21+f (0)+S S E c (0)
•x D +]212]21+S E c (0)

•x D D +x21

5x•S x21
•f (0)

•S E c (0)
•x D D

x

+]21+x211x•x21
•f (0)

•1•S E c (0)
•x D •x21

2x•~x21f (0)!x+]21+S E c (0)
•x D +x212x•x21f (0)

•1•S E c (0)
•x D +x21

5x•S x21
•f (0)

•S E c (0)
•x D D

x

+]21+x212x•~x21f (0)!x+]21+S E c (0)
•x D +x21,

with the help of~1.13! and ~1.14!. From ~a! and ~b!, L (1) in ~2.9! is obtained. Then

f0
(1)5x•~ ln x!xx1x•S x21

•f (0)
•S E c (0)

•x D D
x

5x•F ~ ln x!x1x21
•f (0)

•S E c (0)
•x D G

x

5x•F1

x
S xx1f (0)

•S E c (0)
•x D D G

x

5x•FL (0)
•x

x G
x

5~TD~x!+L (0)!•x.

It is easy to deduce the other equations Lemma 2.3.
This lemma shows that, there are two choices to keep the form ofL (1): the first choice is

characterized by the formulaf (1)̃+]21+f (1)̃50; the second choice by the formulac0
(1)+]21

+c0
(1)50. So we have the following.

Theorem 2.2: (A) The GFGT of the first choice is the ‘‘eigenfunction’’ of L(0), i.e., x
5f (0) , which results in TD(f (0))5f (0)+]+(f (0))21, then

f (1)5f (0)
•~~ ln f (0)!xx1f (0)

•c (0)!5~TD~f (0)!+L (0)!•f (0) ,
]f (1)

]tn
5Bn

(1)
•f (1) , ~2.14!

c (1)5~f (0)!21,
]c (1)

]tn
52B

n

* (1)
•c (1) . ~2.15!

Moreover, from$x i
(0) ,m i

(0) ,i 51,2,...,n%, if we define

x i
(1)5TD~f (0)!•x i

(0)5f (0)+]+~f (0)!21
•x i

(0) , ~2.16!

m i
(1)52TI~f (0)!•m i

(0)52~f (0)!21+]21+f (0)
•m i

(0) , ~2.17!

then$x i
(1) ,m i

(1)% statisfy

]x i
(1)

]tn
5Bn

(1)
•x i

(1) , L (1)
•x i

(1)5l i•x i
(1) , ~2.18!
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]m i
(1)

]tn
52Bn*

(1)
•m i

(1) , L* (1)m i
(1)5l i•m i

(1) . ~2.19!

The transformedt-functiont (1) related to L(1) reads

t (1)5f (0)
•t (0), ~2.20!

wheret (0) is thet-function of L(0). (B) For the second choice, the correspondingGFGT is one
of the BA functions, for example, x5xk

(0) , then TD(xk
(0))5xk

(0)+]+(xk
(0))21,

f (1)5TD~xk
(0)!•f (0)5xk

(0)+]+~xk
(0)!21

•f (0) ,
]f (1)

]tn
5Bn

(1)
•f (1) , ~2.21!

c (1)52TI~xk
(0)!•c (0)52~xk

(0)!21+]21+xk
(0)
•c (0) ,

]c (1)

]tn
52B

n

* (1)
•c (1) . ~2.22!

From $x l
(0) ,m l

(0) ,l 51,2,...,n,lÞk,%, if we define

x l
(1)5TD~xk

(0)!•x l
(0)5xk

(0)+]+~xk
(0)!21

•x l
(0) , xk

(1)50, ~2.23!

m l
(1)52TI~xk

(0)!•m l
(0)52~xk

(0)!21+]21+xk
(0)
•m l

(0) , mk
(1)52TI~xk

(0)!•mk
(0)Þ0, ~2.24!

then the$x l
(1) ,m l

(1)% satisfy

]x l
(1)

]tn
5Bn

(1)
•x l

(1) , L (1)
•x l

(1)5l l•x l
(1) , ~2.25!

]m l
(1)

]tn
52B

n

* (1)
•m l

(1) , L* (1)
•m l

(1)5l l•m l
(1) . ~2.26!

The transformedt-functiont (1) of L(1) is

t (1)5xk
(0)
•t (0), ~2.27!

in which t (0) is thet-function of L(0).
Furthermore, for the gauge transformation of TypeII TI(m)5m21+]21+m, see~2.8!, the

transformed Lax operator is given by the following.
Lemma 2.4:

L (1)5TI~m!+L (0)+TI
21~m!

5]1m21+]21+~mx•m21!x+m1m21+]21

+S S E m•f (0)D •c (0)
•m21D

x

+m2m21
•S E m•f (0)D +]21+~c (0)

•m21!x+m

5]1f0
(1)+]21+c0

(1)1f (1)̃+]21+f (1)̃, ~2.28!

in which

c0
(1)5m21, ~2.29!

c0
(1)5~mx•m21!x•m1S S E m•f (0)D •c (0)

•m21D
x

•m, ~2.30!
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f (1)̃5TI~m!•c (0)5
1

m
•E m•f (0) , ~2.31!

f (1)̃52TD~m!•f (0)52m•S f (0)

m D
x

. ~2.32!

Proof: As in Lemma 2.3, it is convenient to express the transformed Lax operator in two p
~a! The first part needs

LA5TI~m!+]+~TI~m!!21

5m21+]21+m+]+m21+]+m

5m21+~m+]212]21+mx+]21!+]+m21+]+m

5m21+]+m2m21+]21+mx+1+m21+]+m

5]1m21
•mx2m21~~mx•m21!+]212]21+~mx•m21!x+]21!+]+m

5]1m21
•mx2m21

•~mx•m21!+]21+]+m1m21+]21+~mx•m21!x+]21+]+m

5]1m21
•mx2mx•m211m21+]21+~mx•m21!x+]21+]+m

5]1m21+]21+~mx•m21!x+m.

Obviously, we used the relation~1.14! repeatedly.
~b! With the same method of~a!, on direct computation the second part become

LB5TI~m!+f (0)+]21+c (0)+~TI~m!!21

5m21+]21+m+f (0)+]21+c (0)+m21+]+m

5m21+S S E m•f (0)D +]212]21+S E m•f (0)D D +c (0)+m21+]+m

5m21+S E m•f (0)D +]21+c (0)+m21+]+m2m21+]21+S E m•f (0)D +c (0)+m21+]+m

5m21+S E m•f (0)D +~~c (0)
•m21!+]212]21+~c (0)

•m21!+]21!+]+m

2m21+S S S E m•f (0)D •c (0)
•m21D +]212]21+S S E m•f (0)D •c (0)

•m21D
x

+]21D +]+m

5m21+S E m•f (0)D +c (0)+m21+]21+]+m2m21+S E m•f (0)D +]21+~c (0)
•m21!x

+]21+]+m2m21+S E m•f (0)D +c (0)+m21+]21+]+m

1m21+]21+S S E m•f (0)D •c (0)
•m21D

x

+]21+]+m

52m21+S E m•f (0)D +]21+~c (0)
•m21!x+m1m21+]21+S S E m•f (0)D •c (0)

•m21D
x

+m.

The sum ofLA andLB providesL (1). In view of its use in the following section, we rewritec0
(1)

as
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c0
(1)5~mx•m21!x•m1S S E m•f (0)D •c (0)

•m21D
x

•m,

52m•S 2
mx

m
2

1

m
•c (0)

•S E m•f (0)D D
x

52m•S 2mx2c (0)
•~*m•f (0)!

m D
x

52m•S L* (0)
•m

m
D

x

.

52~TD~m!+L* (0)!•m.

h

Lemma 2.4 indicates that there are two choices of gauge transformation in order to ke

form of Lax operator. The first choice isf (1)̃+]21+f (1)̃50. The second choice isc (1)+]21+c (1)

50. Then we have
Theorem 2.3: (A) Under the gauge transformation with the first choice, characterized by

relation f (1)̃+]21+f (1)̃50, the correspondingGFGT is the ‘‘adjoint eigenfunction’’ (of the first
class), i.e., m5c (1) . Then TI(c

(1))5(c (0))21+]21+c (0) ,

c (1)5~c (0)!21,
]f (1)

]tn
5Bn

(1)
•f (1) , ~2.33!

c (1)5c (0)
•~~ ln c (0)!xx1c (0)

•f (0)!52~TD~c (0)!+L* (0)!•c (0) , ~2.34!

]c (1)

]tn
52Bn*

(1)
•c (1) . ~2.35!

From $x i
(0) ,m i

(0) ,i 51,2,...,n%, if we define

x i
(1)5TI~c (0)!•x i

(0)5
1

c (0) •E c (0)
•x i

(0) , ~2.36!

m i
(1)52TD~c (0)!•m i

(0)52c (0)
•S m i

(0)

c (0)D
x

, ~2.37!

then$x i
(1) ,m i

(1)% satisfy

]x i
(1)

]tn
5Bn

(1)
•x i

(1) , L (1)
•x i

(1)5l i•x i
(1) , ~2.38!

]m i
(1)

]tn
52Bn*

(1)
•m i

(1) , L* (1)m i
(1)5l i•m i

(1) . ~2.39!

The transformedt-functiont (1) of L(1) becomes

t (1)5c (0)
•t (0), ~2.40!

wheret (0) is thet-function of L(0).
(B) For the gauge transformation with the second choice, characterized by the relationf (1)

+]21+c (1)50, the correspondingGFGT is theadjoint-BA function (of the second class). Fo
example, ifm5mk

(0) , then TI((mk
(0))5(mk

(0))21+]21+mk
(0)),
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f (1)5TI~mk
(0)!•f (0)5~mk

(0)!21
•S E mk

(0)
•f (0)D ,

]f (1)

]tn
5Bn

(1)
•f (1) , ~2.41!

c (1)52TD~mk
(0)!•c (0)52mk

(0)
•S c (0)

mk
(0)D

x

,
]c (1)

]tn
52Bn*

(1)c (1) . ~2.42!

Let lÞk, for $x l
(0) ,m l

(0) ,l 51,2,...,n%, we can then define

x l
(1)5TI~mk

(0)!•x l
(0)5

1

mk
(0) •S E mk

(0)
•x l

(0)D , xk
(1)5

1

mk
(0) •S E mk

(0)
•xk

(0)DÞ0, ~2.43!

m l
(1)52TD~mk

(0)!•m l
(0)52mk

(0)
•S m l

(0)

mk
(0)D

x

, mk
(1)50, ~2.44!

and then$x l
(1) ,m l

(1)% satisfy

]x l
(1)

]tn
5Bn

(1)
•x l

(1) , L (1)
•x l

(1)5l l•x l
(1) , ~2.45!

]m l
(1)

]tn
52Bn*

(1)m l
(1) , L* (1)

•m l
(1)5l l•m l

(1) . ~2.46!

The transformedt-functiont (1) corresponding to the L(1) is

t (1)5mk
(0)
•t (0), ~2.47!

wheret (0) is thet function of L(0).
Remark 2.1:There is a main difference between the results of Refs. 6, 10–12 and this p

Their GFGT~i.e., of the first class! can come only from the integral part ofL (0), but ours~i.e., of
the second class! can come only from the outside ofL (0), which implies that the second class
GFGT ~which is a BA function ofL (0)) can’t come fromL (0). So there exist an essential diffe
ence between the two choices, Theorem 2.2 and Theorem 2.3 can not be on obtained resul
Refs. 6, 10–12, although it has a similar form to those results. But let us note that Theore
agrees with Ref. 9, which is obtained from the matrix hierarchy.

Remark 2.2:Theorem 2.2 and Theorem 2.3 can be the generalized to the case of the g
cKP hierarchy.

Remark 2.3:One can find from Theorem 2.2 and Theorem 2.3 that all the gauge transfo
tions keep the eigenvalue equation of theBA functions and the adjoint BA function
$x l

(0) ,m l
(0) ,l 51,2,...,n%. This observation indicates that we can make gauge transformations

the union of the two choices. This union will be discussed in Sec. IV.

III. SUCCESSIVE APPLICATION OF GAUGE TRANSFORMATIONS WITH THE SECOND
CHOICE FOR THE AKNS HIERARCHY

In Refs. 6, 10–12, the gauge transformation with the first choice has been studied clea
completely. So we will not consider this case in the following. Our main aim is to analyze
successive applications of the gauge transformations with the second choice. To simpli
presentation, we introduce the following notations for the WronskianWn

5Wn(x1
(0) ,x2

(0) ,x3
(0) ,...,xn

(0)), and the generalized Wronskian determinant:22
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IWk,n[IWk,n~mk
(0) ,mk21

(0) ,...,m1
(0) ;x1

(0) ,x2
(0) ,...,xn

(0)!

5U E mk
(0)
•x1

(0) E mk
(0)
•x2

(0) E mk
(0)
•x3

(0)
¯ E mk

(0)
•xn

(0)

E mk21
(0)

•x1
(0) E mk21

(0)
•x2

(0) E mk21
(0)

•x3
(0)

¯ E mk21
(0)

•xn
(0)

] ] ] ¯ ]

E m1
(0)
•x1

(0) E m1
(0)
•x2

(0) E m1
(0)
•x3

(0)
¯ E m1

(0)
•xn

(0)

x1
(0) x2

(0) x3
(0)

¯ xn
(0)

x1,x
(0) x2,x

(0) x3,x
(0)

¯ xn,x
(0)

] ] ] ¯ ]

~x1
(0)!(n2k21) ~x2

(0)!(n2k21) ~x3
(0)!(n2k21)

¯ ~xn
(0)!(n2k21)

U , ~3.1!

IW0,n[Wn~x1
(0) ,x2

(0) ,x3
(0) ,...,xn

(0)!. ~3.2!

IŴk,n[IŴk,n~xk
(0) ,xk21

(0) ,...,x1
(0) ;m1

(0) ,...,mn
(0)!

5U E xk
(0)
•m1

(0) E xk
(0)
•m2

(0) E xk
(0)
•m3

(0)
¯ E xk

(0)
•mn

(0)

E xk21
(0)

•m1
(0) E xk21

(0)
•m2

(0) E xk21
(0)

•m3
(0)

¯ E xk21
(0)

•mn
(0)

] ] ] ¯ ]

E x1
(0)
•m1

(0) E x1
(0)
•m2

(0) E x1
(0)
•m3

(0)
¯ E x1

(0)
•mn

(0)

m1
(0) m2

(0) m3
(0)

¯ mn
(0)

m1,x
(0) m2,x

(0) m3,x
(0)

¯ mn,x
(0)

] ] ] ¯ ]

~m1
(0)!(n2k21) ~m2

(0)!(n2k21) ~m3
(0)!(n2k21)

¯ ~mn
(0)!(n2k21)

U , ~3.3!

IŴ0,n[Wn~m1
(0) ,m2

(0) ,m3
(0) ,...,mn

(0)!. ~3.4!

Here, (f i
(0))(k)5]kf i

(0)/]xn ,* f 5* f dx with the integration constant sets to zero.
Now let us discuss several interesting chains of gauge transformations through the foll

n-step gauge transformations. We first consider the successive application ofTD in the i th channel
~we adopt the notation of Ref. 6!. For the chain of gauge transformations, we have the followi

L (0) ——→
TD

(1)
~x i

(0)
!

L (1) ——→
TI

(2)
~m i

(1)
!

L (2) ——→
TD

(3)
~x i

(2)
!

L (3) ——→
TI

(4)
~m i

(3)
!

¯→¯ , ~3.5!

we have the following.
Lemma 3.1: Letx i

(0)Þ0,m i
(0)Þ0, then

x i
(1)5TD

(1)~x i
(0)!•x i

(0)50, m i
(1)52TI

(1)~x i
(0)!•m i

(0)52
1

x i
(0) E x i

(0)m i
(0) ,
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x i
(2)5

1

m i
(1) , m i

(2)50,

x i
(3)50, m i

(3)5
1

x i
(2) 5m i

(1) ,

x i
(4)5

1

m i
(3) 5

1

m i
(1) , m i

(4)50,

]]

x i
(2k11)50, m i

(2k11)5m i
(1) ; k>1,

x i
(2k12)5

1

m i
(1) , m i

(2k12)50, k>0. ~3.6!

Lemma 3.2: Letx i
(0)Þ0,m i

(0)Þ0, then

TI
(2)~m i

(1)!+TD
(1)~x i

(0)!512
x i

(0)

*x i
(0)
•m i

(0) +]21+m i
(0)ÞI , ~3.7!

and

TI
(2k)~m i

(2k21)!+TD
(2k21)~x i

(2k22)!5I ~k>2!, ~3.8!

TD
(2k21)~x i

(2k22)!+TI
(2k22)~m i

(2k23)!5I ~>2!. ~3.9!

Proof:

TI
(2)~m i

(1)!+TD
(1)~x i

(0)!5~m i
(1)!21+]21+m i

(1)+x i
(0)+]+~x i

(0)!21

52~m i
(1)!21+]21+S E m i

(0)
•x i

(0)D +]+~x i
(0)!21

5~m i
(1)!21+F S 2E m i

(0)
•x i

(0)D +]211]21+~m i
(0)
•x i

(0)!+]21G+]+~x i
(0)!21

511
1

m i
(1) +]21+m i

(0)512
x i

(0)

*x i
(0)
•m i

(0) +]21+m i
(0)ÞI .

Using Lemma 3.1, the left-hand side of~3.8! and ~3.9! can be written explicitly as

TI
(2k)~m i

(2k21)!+TD
(2k21)~x i

(2k22)!5~m i
(2k21)!21+]21+m i

(2k21)+x i
(2k22)+]+~x i

(2k22)!21

5~m i
(2k21)!21+]21+1+]+~x i

(2k22)!215I

and

TD
(2k21)~m i

(2k22)!+TI
(2k22)~x i

(2k23)!5x i
(2k22)+]+~x i

(2k22)!21+~m i
(2k23)!21+]21+m i

(2k23)

5x i
(2k22)+]+1+]21+m i

(2k23)5I .

h
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Theorem 3.1:

t (2k)5t (2k22)5¯5t (2)52S E x i
(0)
•m i

(0)D •t (0), ~3.10!

t (2k21)5t (2k23)5¯5t (1)5x i
(0)
•t (0). ~3.11!

Proof: From Theorem 2.2 and Theorem 2.3, the tau-function ofL (2k) is t (2k)5m i
(2k21)

•t (2k21). Then, according to Lemma 3.1,

t (2k)5m i
(2k21)

•t (2k21)5m i
(2k21)

•x i
(2k22)t (2k22)5t (2k22)5m i

(2k23)
•x i

(2k24)t (2k24)5t (2k24)

]

5t (2)5m i
(1)
•x i

(0)
•t (0)52S E x i

(0)
•m i

(0)D t (0).

And ~3.11! is obtained by a similar way. h

Remark 3.1:The property of the tau-function in the above theorem is different from the
of the first choice.6 For the first choice, if we construct one chain of gauge transformations su
~3.5!, obviously we can only obtain two tau-functions:t (2k)5¯5t (2)5t (0),t (2k21)5¯5t (1).
In particular, the alternative application of TypeI and TypeII can be obtained via the singl
channel. Meanwhile, this novel property of thet-function results in the periodical transformatio
with respect to the number of steps in the chain of gauge transformations, when we consi
multichannel~mixed! case~see below!.

We now consider another chain of gauge transformations in thei th channel, in which the first
step is a gauge transformation of TypeII ,

L (0) ——→
TI

(1)
~m i

(0)
!

L (1) ——→
TD

(2)
~x i

(1)
!

L (2) ——→
TI

(3)
~m i

(2)
!

L (3) ——→
TD

(4)
~x i

(3)
!

¯→¯ . ~3.12!

For this chain of gauge transformations, we have the following.
Lemma 3.3: Letx i

(0)Þ0,m i
(0)Þ0, then

x i
(1)5

1

m i
(0) +]21+m i

(1)
•x i

(0)5
1

m i
(0) •E ~m i

(0)
•x i

(0)!, m i
(1)50 ,

x i
(2)50, m i

(2)5
1

x i
(1) ,

x i
(3)5

1

m i
(2) 5x i

(1) , m i
(3)50,

x i
(4)50, m i

(4)5
1

x i
(3) 5

1

x i
(1) ,

] ]

x i
(2k)50, m i

(2k)5
1

x i
(2k21) 5

1

x i
(1) , k>1,

x i
(2k11)5

1

m i
(2k) 5x i

(1) , m i
(2k11)50, k>0. ~3.13!
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Lemma 3.4: Letx i
(0)Þ0,m i

(0)Þ0, then

TD
(2)~x i

(1)!+TI
(1)~m i

(0)!512
x i

(0)

*x i
(0)
•m i

(0) +]21+m i
(0)ÞI ~3.14!

and

TD
(2k)~x i

(2k21)!+TI
(2k21)~m i

(2k22)!5I ~k>2!, ~3.15!

TI
(2k21)~m i

(2k22)!+TD
(2k22)~x i

(2k23)!5I ~k>2!. ~3.16!

Proof:

TD
(2)~x i

(1)!+TI
(1)~m i

(0)!5x i
(1)+]+~x i

(1)!21+~m i
(0)!21+]21+m i

(0)

5x i
(1)+]+

1

*m i
(0)
•x i

(0) +]21+m i
(0)

5x i
(1)+S ]

*m i
(0)
•x i

(0) 1S 1

*m i
(0)
•x i

(0)D
x
D +]21+m i

(0)

5
*m i

(0)
•x i

(0)

m i
(0) +S 2

m i
(0)
•x i

(0)

~*m i
(0)
•x i

(0)!2 1
1

*m i
(0)
•x i

(0) +] D +]21+m i
(0)

512
x i

(0)

*m i
(0)
•x i

(0) +]21+m i
(0)Þ5I .

Using Lemma 3.3, then

TD
(2k)~x i

(2k21)!+TI
(2k21)~m i

(2k22)!5x i
(2k21)+]+~x i

(2k21)!21+~m i
(2k22)!21+]21+m i

(2k22)

5x i
(2k21)+]+1+]21+m i

(2k22)5I

and

TI
(2k21)~m i

(2k22)!+TI
(2k22)~x i

(2k23)!5~m i
(2k22)!21+]21+m i

(2k22)+x i
(2k23)+]+~x i

(2k23)!21

5m i
(2k22)+]21+1+]+~x i

(2k23)!215I .

h

Theorem 3.2:

t (2k)5t (2k22)5¯5t (2)5S E x i
(0)
•m i

(0)D •t (0), ~3.17!

t (2k21)5t (2k23)5¯5t (1)5m i
(0)
•t (0). ~3.18!

Proof: Lemma 3.4 shows thatt (2k)5t (2k22)5¯5t (2),t (2k21)5t (2k23)5¯5t (1). From
Theorem 2.2 and Theorem 2.3, we havet (1)5m i

(0)
•t (0) andt (2)5(*x i

(0)
•m i

(0))•t (0). h

In order ot obtain the explicit form off (n) ,c (n) ,t (n) after an-step gauge transformation, w
give the determinant representation of the gauge transformation operators.

Lemma 3.5:~Ref. 22! For n.k, there are two gauge transformation operators
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Tn1k5TI
(n1k)~mk

(n1k21)!+TI
(n1k21)~mk21

(n1k22)!¯TI
(n11)~m1

(n)!+TD
(n)~xn

(n21)!

+TD
(n21)~xn21

(n22)!¯TD
(1)~x1

(0)!

5
1

IWk,n
•U E x1

(0)
•mk

(0) E x2
(0)
•mk

(0)
¯ E xn

(0)
•mk

(0) ]21+mk
(0)

E x1
(0)
•mk21

(0) E x2
(0)
•mk21

(0)
¯ E xn

(0)
•mk21

(0) ]21+mk21
(0)

] ] ¯ ] ]

E x1
(0)
•m1

(0) E x2
(0)
•m1

(0)
¯ E xn

(0)
•m1

(0) ]21+m1
(0)

x1
(0) x2

(0)
¯ xn

(0) 1

x1,x
(0) x2,x

(0)
¯ xn,x

(0) ]

] ] ¯ ] ]

~x1
(0)!(n2k) ~x2

(0)!(n2k)
¯ ~xn

(0)!(n2k) ]n2k

U , ~3.19!

and

Tn1k
21 5U x1

(0)+]21 E mk
(0)
•x1

(0)
¯ E m1

(0)
•x1

(0) x1
(0) x1,x

(0)
¯ ~x1

(0)!(n2k22)

x2
(0)+]21 E mk

(0)
•x2

(0)
¯ E m1

(0)
•x2

(0) x2
(0) x2,x

(0)
¯ ~x2

(0)!(n2k22)

] ] ] ] ] ] ] ]

xn21
(0) +]21 E mk

(0)
•xn21

(0)
¯ E m1

(0)
•xn21

(0) xn21
(0) xn21,x

(0)
¯ ~xn21

(0) !(n2k22)

xn
(0)+]21 E mk

(0)
•xn

(0)
¯ E m1

(0)
•xn

(0) xn
(0) xn,x

(0)
¯ ~xn

(0)!(n2k22)

U
•

~21!n21

IWk,n
. ~3.20!

Let us to discuss the multichannel~pure! case. For the chain of gauge transformations,

L (0) ——→
TD

(1)
~x1

(0)
!

L (1) ——→
TD

(2)
~x2

(1)
!

L (2) ——→
TD

(3)
~x3

(2)
!

L (3) ——→
TD

(4)
~x4

(3)
!

¯→¯L (n21) ——→
TD

(n)
~xn

(n21)
!

L (n), ~3.21!

we have
Theorem 3.3:

f (n)5TD
(n)~xn

(n21)!+TD
(n21)~xn21

(n22)!¯+TD
(2)~x2

(1)!+TD
(1)~x1

(0)!•f (0)

5
Wn11~x1

(0) ,x2
(0) ,...,xn

(0) ,f (0)!

Wn~x1
(0) ,x2

(0) ,...,xn
(0)!

, ~3.22!

c (n)52TI
(n)~xn

(n21)!•c (n21)

5~21!nTI
(n)~xn

(n21)!+TI
(n21)~xn21

(n22)!¯TI
(2)~x2

(1)!+TI
(1)~x1

(0)!•c (0)

5~21!n
IW1,n~c (0) ;x1

(0) ,x2
(0) ,...,xn

(0)!

Wn
, ~3.23!
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t (n)5Wn~x1
(0) ,x2

(0) ,...,xn
(0)!•t (0), ~3.24!

x i
( j )5H 0, n> j > i ,

Wj 11~x1
(0) ,x2

(0) ,...,x j
(0) ,x i

(0)!

Wj~x1
(0) ,x2

(0) ,...,x j
(0)!

, j , i<n,
~3.25!

m i
(n)52TI

(n)~xn
(n21)!•m i

(n21)

5~21!nTI
(n)~xn

(n21)!+TI
(n21)~xn21

(n22)!¯TI
(2)~x2

(1)!+TI
(1)~x1

(0)!•m i
(0)

5~21!n
IW1,n~m i

(0) ;x1
(0) ,x2

(0) ,...,xn
(0)!

Wn
. ~3.26!

Proof: This can be obtained by direct calculation with the help of successive applicatio
Theorem 2.2, and by using Lemma 3.5. h

Similarly, for the gauge transformation of TypeII , the following chain of gauge transforma
tions:

L (0) ——→
TI

(1)
~m1

(0)
!

L (1) ——→
TI

(2)
~m2

(1)
!

L (2) ——→
TI

(3)
~m3

(2)
!

L (3) ——→
TI

(4)
~m4

(3)
!

¯→L (n21) ——→
TI

(n)
~mn

(n21)
!

~3.27!

implies the following.
Theorem 3.4:

f (n)5TI
(n)~mn

(n21)!+TI
(n21)~mn21

(n22)!¯TI
(2)~m2

(1)!+TI
(1)~m1

(0)!•f (0),

5
IW1,n~f (0) ;m1

(0) ,m2
(0) ,...,mn

(0)!

Wn~m1
(0) ,m2

(0) ,...,mn
(0)!

, ~3.28!

c (n)5~21!nTD
(n)~mn

(n21)!+TD
(n21)~mn21

(n22)!¯TD
(2)~m2

(1)!+TD
(1)~m1

(0)!•c (0)

5~21!n
Wn11~m1

(0) ,m2
(0) ,...,mn

(0) ,c (0)!

Wn~m1
(0) ,m2

(0) ,...,mn
(0)!

, ~3.29!

t (n)5Wn~mn
(0) ,mn21

(0) ,...m2
(0) ,m1

(0)!•t (0), ~3.30!

x i
(n)5TI

(n)~mn
(n21)!•x i

(n21)5TI
(n)~mn

(n21)!+TI
(n21)~mn21

(n22)!¯TI
(2)~m2

(1)!+TI
(1)~m1

(0)!•x i
(0) ,

5
IW1,n~x i

(0) ;m1
(0) ,m2

(0) ,...,mn
(0)!

Wn~m1
(0) ,m2

(0) ,...,mn
(0)!

~3.31!

m i
( j )5H 0, n> j > i ,

~21! j
•

Wj 11~m1
(0) ,m2

(0) ,...,m j
(0) ,m i

(0)!

Wj~m1
(0) ,m2

(0) ,...,m j
(0)!

, j , i<n.
~3.32!

Remark 3.2:This formula,~3.22!, is the same as the result of Ref. 21, and~3.24! also equals
with those result@although Ref. 21 does not include the explicit form as~3.24!#. Because the
GFGT will be lost after the gauge transformation, cannot do the (n11)th step of gauge transfor
mation in the multichannel~pure! case according to~3.21! and ~3.27! if we only use n BA
functions orn adjoint BA functions.

Finally, we would like to discuss the more complicated case: the multichannel~mixed!. First
of all, there is an important lemma exactly similar to the result of Ref. 6@see~67! and~68! there#.
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Lemma 3.6: Suppose the BA functionx i
(k21) and the adjoint BA functionm j

(k21) of L(k21)

lied in a chain of gauge transformations, andx i
(k21)Þ0,m i

(k21)Þ0,iÞ j . For the two chains,

~A!:L (k21) ——→
TD~x i

(k21)
!

L (k) ——→
TI ~m j

(k)
!

L (k11), ~3.33!

~B!:L (k21) ——→
TI ~m j

(k21)
!

L (k) ——→
TD~x i

(k)
!

L (k11), ~3.34!

we have

TI~m j
(k)!+TD~x i

(k21)!5TD~x i
(k)!+TI~m j

(k21)!512
x i

(k21)

*m j
(k21)

•x i
(k21) +]21+m j

(k21) . ~3.35!

Meanwhile, thetA
(k11) is generated by A andtB

(k11) is generated by B, which are of the form

tA
(k11)52S E x i

(k21)
•m j

(k21)D •t (k21), ~3.36!

tB
(k11)5S E x i

(k21)
•m j

(k21)D •t (k21), ~3.37!

and tA
(k11) is equivalent totB

(k11) .
Proof: Formula~3.35! is proved in a similar way to~3.7! and ~3.14!. tA

(k11) and tB
(n1k) are

obtained by successive applications of Theorem 2.2 and Theorem 2.3 with two steps. h

This lemma is very important to study thet-function generated by gauge transformations
the multichannel~mixed! case. Thet (n1k) is determined uniquely up to an unimportant min
sign. It leads us to neglect the order of the channel adopted in one chain of gauge transform
However, in order to understand and calculate easily the transformation of thet-function, we still
discuss firstly the chain of gauge transformations with a fixed ordering of the channels. F
chain of gauge transformations withn>k.1,

L (0) ——→
TD

(1)
~x1

(0)
!

L (1) ——→
TD

(2)
~x2

(1)
!

L (2) ——→
TD

(3)
~x3

(2)
!

L (3)
¯

→L (n21) ——→
TD

(n)
~xn

(n21)
!

L (n) ——→
TI

(n11)
~m1

(n)
!

L (n11) ——→
TI

(n12)
~m2

(n11)
!

L (n12)
¯

→L (n1k21) ——→
TI

(n1k)
~mk

(n1k21)
!

L (n1k), ~3.38!

we want to obtain thef (n1k) ,c (n1k) ,t (n1k) of L (n1k) transformed from theL (0) by the above
chain of gauge transformations.

Theorem 3.5:

f (n1k)5TI
(n1k)~mk

(n1k21)!+TI
(n1k21)~mk21

(n1k22)!¯TI
(n11)~m1

(n)!+TD
(n)~xn

(n21)!

+TD
(n21)~xn21

(n22)!¯TD
(1)~x1

(0)!•f (0)5
IWk,n11~mk

(0) ,...,m1
(0) ;x1

(0) ,...,xn
(0) ,f (0)!

IWk,n
,

~3.39!

c (n1k)5~Tn1k
21 !* •c (0)5~21!n

IWk11,n~c (0) ,mk
(0) ,mk21

(0) ,...,m1
(0) ;x1

(0) ,...,xn
(0)!

IWk,n
, ~3.40!
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t (n1k)5IWk,n•t (0), ~3.41!

Proof: f (n1k)5Tn1k•f (0) is obtained by the successive applications of Theorem 2.2, T
rem 2.3, then taking the expression ofTn1k into it yields the explicit form ofc (n1k) as a
determinant. Meanwhile, using Theorem 2.2, Theorem 2.3 and the definition of operati
conjugation, we have

c (n1k)5~21!n1kTD
(n1k)~mk

(n1k21)!+TD
(n1k21)~mk21

(n1k22)!¯TD
(n11)~mk

(n1k21)!TI
(n)~xn

(n21)!

+TI
(n)~xn21

(n22)!¯TI
(n)~x1

(0)!•c (0)5~Tn1k
21 !* •c (0) .

The formal determinantal expression ofc (n1k) follows from the above lemma. Theorem 2.2 a
Theorem 2.3 imply

t (n1k)5mk
(n1k21)

•mk21
(n1k22)

¯m1
(n)
•t (n),

in which m i
( j ) given by

m i
(n1 j )5~Tn1 j

21 !* •m i
(0)

5H 0, j > i

~21!n
IWj 11,n~m i

(0) ,m j
(0) ,m j 21

(0) ,...,m1
(0) ;x1

(0) ,...,xn
(0)!

IWj ,n~m j
(0) ,m j 21

(0) ,...,m1
(0) ;x1

(0) ,...,xn
(0)!

, k > i . j > 1.

Specially, them i
(n) and thet (n) are given by Theorem 3.3. So taking these expressions back

t (n1k) finishes the proof of theorem. h

Moreover, for

L (0) ——→
TI

(1)
~m1

(0)
!

L (1) ——→
TI

(2)
~m2

(1)
!

L (2) ——→
TI

(3)
~m3

(2)
!

L (3)
¯

→L (n21) ——→
TI

(n)
~mn

(n21)
!

L (n) ——→
TD

(n11)
~x1

(n)
!

L (n11) ——→
TD

(n12)
~x2

(n11)
!

L (n12)
¯L (n1k21) ——→

TD
(n1k)

~xk
(n1k21)

!

L (n1k),

~3.42!

the f (n1k) , c (n1k) , t (n1k) are written as follows.
Theorem 3.6:

f (n1k)5~21!k
IŴk11,n~f (0) ,xk

(0) ,xk21
(0) ,...,x1

(0) ;m1
(0) ,...,mn

(0)!

IŴk,n

, ~3.43!

c (n1k)5~2 !n1kTI
(n1k)~xk

(n1k21)!+TI
(n1k21)~xk21

(n1k22)!¯TI
(n11)~x1

(n)!+TD
(n)~mn

(n21)!

+TD
(n21)~mn21

(n22)!¯TD
(1)~m1

(0)!•c (0)

5~21!n1k
IWk,n11~xk

(0) ,...,x1
(0) ;m1

(0) ,...,mn
(0) ,c (0)!

IŴk,n

, ~3.44!

t (n1k)5IŴk,nt (0). ~3.45!

Proof: Its proof is similar to way of Theorem 3.5, hence we omit it.
Theorem 3.7:For the following chain of gauge transformations with k,n,
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L (0) ——→
TD

(1)
~x1

(0)
!

L (1) ——→
TD

(2)
~x2

(1)
!

L (2) ——→
TD

(3)
~x3

(2)
!

L (3)
¯

→L (n21) ——→
TD

(n)
~xn

(n21)
!

L (n) ——→
TI

(n11)
~m1

(n)
!

L (n11) ——→
TI

(n12)
~m2

(n11)
!

L (n12)
¯

→L (2n21) ——→
TI

(2n)
~mn

(2n21)
!

L (2n) ——→
TD

(2n11)
~x1

(2n)
!

L (2n11) ——→
TD

(2n12)
~x2

(2n11)
!

L (2n12)
¯

→L (3n21) ——→
TD

(2n)
~xn

(3n21)
!

L (3n) ——→
TI

(3n11)
~m1

(3n)
!

L (3n11) ——→
TI

(3n12)
~m2

(3n11)
!

L (3n12)
¯

→L (4n21) ——→
TI

(4n)
~mn

(4n21)
!

L (4n) ——→
TD

(4n11)
~x1

(4n)
!

¯ , ~3.46!

the final form oft (mn1k) (m50,1,2,...;k50,1,2,...,n21) for L (mn1k) is

t (mn1k)5H t (k)5Wk~x1
(0) ,¯ ,xk

(0)!•t (0), if m50.

t (n1k)5IWk,n•t (0), if m is odd.

t (2n1k)5IWn2k,n~mn
(0) ,¯ ,mk11

(0) ;x1
(0) ,¯ ,xn

(0)!•t (0), if m is even.
~3.47!

Proof: First of all, Lemma 3.2, Lemma 3.4, and Lemma 3.6 imply directly

t (mn1k)5H t (n1k), if m is odd

t (2n1k), if m is even.

On the other hand,t (k) is given by Theorem 3.3, andt (n1k) is given by Theorem 3.5. In fact
according to Lemma 3.2, Lemma 3.4, and Lemma 3.6,t (2n1k) is equivalent tot-function obtained
by the following chain:

L (0) ——→
TD

(1)
~x1

(0)
!

L (1) ——→
TD

(2)
~x2

(1)
!

L (2) ——→
TD

(3)
~x3

(2)
!

L (3)
¯

→L (n21) ——→
TD

(n)
~xn

(n21)
!

L (n) ——→
TI

(n11)
~mk11

(n)
!

L (n11) ——→
TI

(n12)
~mk12

(n11)
!

L (n12)
¯

→L (n1n2k21) ——→
TI

(n1n2k)
~mn

(n1n2k21)
!

L (n1n2k).

So Theorem 3.5 yieldst (n1n2k) with a corresponding modification of the GFGTs. h

Moreover,
Theorem 3.8:For the chain of gauge transformations

L (0) ——→
TI

(1)
~m1

(0)
!

L (1) ——→
TI

(2)
~m2

(1)
!

L (2) ——→
TI

(3)
~m3

(2)
!

L (3)
¯

→L (n21) ——→
TI

(n)
~mn

(n21)
!

L (n) ——→
TD

(n11)
~x1

(n)
!

L (n11) ——→
TD

(n12)
~x2

(n11)
!

L (n12)
¯

→L (2n21) ——→
TD

(2n)
~xn

(2n21)
!

L (2n) ——→
TI

(2n11)
~m1

(2n)
!

L (2n11) ——→
TI

(2n12)
~m2

(2n11)
!

L (2n12)
¯

→L (3n21) ——→
TI

(2n)
~mn

(3n21)
!

L (3n) ——→
TD

(3n11)
~x1

(3n)
!

L (3n11) ——→
TD

(3n12)
~x2

(3n11)
!

L (3n12)
¯
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→L (4n21) ——→
TD

(4n)
~xn

(4n21)
!

L (4n) ——→
TI

(4n11)
~m1

(4n)
!

¯ , ~3.48!

the final form oft (mn1k) (m50,1,2,...;k50,1,2,...,n21) for L (mn1k) is

t (mn1k)5H t (k)5Wk~m1
(0) ,...,mk

(0)!•t (0), if m50

t (n1k)5IŴk,n•t (0), if m is odd

t (2n1k)5IŴn2k,n~xn
(0) ,¯ ,xk11

(0) ;m1
(0) ,...,mn

(0)!•t (0), if m is even.

~3.49!

Proof: The proof of this theorem is similar to way of Theorem 3.8. h

IV. THE UNION OF THE TWO CHOICES OF GAUGE TRANSFORMATIONS

In the previous part of this paper, all chains of gauge transformations include only one c
It is natural to explore the case of the union of two choices. To our knowledge, this has no
done so far in literature. We consider the following four chains. For the chain withk,n,

L (0) ——→
TD

(1)
~f(0)!

L (1) ——→
TD

(2)
~f~1)!

L (2) ——→
TD

(3)
~f(2)!

L (3)
¯

→L (n21) ——→
TD

(n)
~f(n21)!

L (n) ——→
TD

(n11)
~x1

(n)
!

L (n11) ——→
TD

(n12)
~x2

(n11)
!

L (n12)
¯

→L (n1k21) ——→
TD

(n1k)
~xk

(n1k21)
!

L (n1k), ~4.1!

we have the following.
Theorem 4.1:

f (n)5
Wn11~f (0) ,h (1) ,...,h (n21) ,h (n)!

Wn~f (0) ,h (1) ,...,h (n21)!
, ~4.2!

c (n)5~f (n21)!21, ~4.3!

f (n1k)5
Wn1k11~f (0) ,h (1) ,...,h (n21) ,x1

(0) ,x2
(0) ,...,xk

(0) ,h (n)!

Wn1k~f (0) ,h (1) ,...,h (n21) ,x1
(0) ,x2

(0) ,...,xk
(0)!

, ~4.4!

c (n1k)5~21!kTI
(n1k)~xk

(n1k21)!+TI
(n1k21)~xk21

(n1k22)!¯TI
(n12)~x2

(n11)!+TI
(n11)~x1

(n)!•c (n) ,

5~21!k
IW1,k~c (n) ;x1

(n) , ...,xk
(n)!

Wk~x1
(n) , ...,xk

(n)!
, ~4.5!

x i
(n1 j )5H 0, k > j > i ,

Wn1 j 11~f (0) ,h (1) ,...,h (n21) ,x1
(0) ,x2

(0) ,...,x j
(0) ,x i

(0)!

Wn1 j~f (0) ,h (1) ,...,h (n21) ,x1
(0) ,x2

(0) ,...,x j
(0)!

, j , i <k,
~4.6!

m i
(n1 j )5~21!n1 jTI

(n1 j )~x j
(n1 j 21)!+TI

(n1 j 21)~x j 21
(n1 j 22)!¯TI

(n11)~x1
(n)!+TI

(n)~f (n21)!

+TI
(n21)~f (n22)!¯TI

(1)~f (0)!•m i
(0)

5~21!n1 j
IW1,n1 j~m i

(0) ;f (0) ,h (1) ,...,h (n21) ,x1
(0) ,...,x j

(0)!

Wn1 j~f (0) ,h (1) ,...,h (n21) ,x1
(0) ,...,x j

(0)!
, ~4.7!
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t (n1k)5Wn1k~f (0) ,h (1) ,h (2) ,...,h (n21) ,x1
(0) ,x2

(0) ,...,xk
(0)!t (0). ~4.8!

Here h (k)5(L (0))k
•f (0) .

Proof: This is a straightforward calculation via the repeated use of Theorem 2.2 and Le
3.5. We only point that, in the above chain, the firstn steps are gauge transformations of TypeI
with the first choice, while the latterk steps use the second choice. h

The second chain is

L (0) ——→
TD

(1)
~f(0)!

L (1) ——→
TD

(2)
~f(1)!

L (2) ——→
TD

(3)
~f(2)!

L (3)
¯

→L (n21) ——→
TD

(n)
~f(n21)!

L (n) ——→
TI

(n11)
~m1

(n)
!

L (n11) ——→
TI

(n12)
~m2

(n11)
!

L (n12)
¯

→L (n1k21) ——→
TI

(n1k)
~mk

(n1k21)
!

L (n1k). ~4.9!

If k,n, we have
Theorem 4.2:

f (n1k)5
IWk,n11~mk

(0) ,...,m1
(0) ;f (0) ,h (1) ,...,h (n21) ,h (n)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,h (1) ,...,h (n21)!
, ~4.10!

c (n1k)5~21!k
Wk11~m1

(n) , ...,mk
(n) ,c (n)!

Wk~m1
(n) , ...,mk

(n)!
, ~4.11!

x i
(n1k)5

IWk,n11~mk
(0) ,...,m1

(0) ;f (0) ,h (1) ,...,h (n21) ,x i
(0)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,h (1) ,...,h (n21)!
, ~4.12!

m i
(n1k)5~21!n

IWk11,n~m i
(0) ,mk

(0) ,...,m1
(0) ;f (0) ,h (1) ,...,h (n21)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,h (1) ,...,h (n21)!
, ~4.13!

t (n1k)5IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,h (1) ,...,h (n21)!t (0). ~4.14!

Herec (n) , m i
(n) andh (n) are given by Theorem 4.1.

We also like to consider the analogous treatment for the TypeII case. For the chain withk
,n,

L (0) ——→
TI

(1)
~c(0)!

L (1) ——→
TI

(2)
~c(1)!

L (2) ——→
TI

(3)
~c(2)!

L (3)
¯

→L (n21) ——→
TI

(m)
~c(n21)!

L (n) ——→
TI

(n11)
~m1

(n)
!

L (n11) ——→
TI

(n12)
~m2

(n11)
!

L (n12)
¯

→L (n1k21) ——→
TI

(n1k)
~mk

(n1k21)
!

L (n1k), ~4.15!

we have the following.
Theorem 4.3:

f (n)5~c (n21)!21, ~4.16!

c (n)5~21!n
Wn11~c (0) ,j (1) ,...,j (n21) ,j (n)!

Wn~c (0) ,j (1) ,...,j (n21)!
, ~4.17!
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f (n1k)5TI
(n1k)~mk

(n1k21)!+TI
(n1k21)~mk21

(n1k22)!¯TI
(n12)~m2

(n11)!+TI
(n11)~m1

(n)!•f (n) ,

5
IW1,k~f (n) ;m1

(n) , ...,mk
(n)!

Wk~m1
(n) , ...,mk

(n)!
, ~4.18!

c (n1k)5~2 !n1k
Wn1k11~c (0) ,j (1) ,...,j (n21) ,m1

(0) ,m2
(0) ,...,mk

(0) ,j (n)!

Wn1k~c (0) ,j (1) ,...,j (n21) ,m1
(0) ,m2

(0) ,...,mk
(0)!

, ~4.19!

x i
(n1 j )5TI

(n1 j )~m j
(n1 j 21)!+TI

(n1 j 21)~m j 21
(n1 j 22)!¯TI

(n11)~m1
(n)!+TI

(n)~c (n21)!

+TI
(n21)~c (n22)!¯TI

(1)~c (0)!•x i
(0)5

IW1,n1 j~x i
(0) ;c (0) ,j (1) ,...,j (n21) ,m1

(0) ,...,m j
(0)!

Wn1 j~c (0) ,j (1) ,...,j (n21) ,m1
(0) ,...,m j

(0)!
,

~4.20!

m i
(n1 j )5H 0, k > j > i ,

~21!n1 j
Wn1 j 11~c (0) ,j (1) ,...,j (n21) ,m1

(0) ,m2
(0) ,...,m j

(0) ,m i
(0)!

Wn1 j~c (0) ,j (1) ,...,j (n21) ,m1
(0) ,m2

(0) ,...,m j
(0)!

, j , i <k,

~4.21!

t (n1k)5Wn1k~c (0) ,j (1) ,j (2) ,...,j (n21) ,m1
(0) ,m2

(0) ,...,mk
(0)!t (0). ~4.22!

Here j (k)5(L* (0))k
•c (0) .

Proof: This is obtained by a straightforward calculation via the repeated use of Theore
and Lemma 3.5. We only point that, in the above chain, the firstm steps are gauge transformatio
of Type II with the first choice, while in the latterk steps with second choice is used. h

The fourth chain is

L (0) ——→
TI

(1)
~c(0)!

L (1) ——→
TI

(2)
~c(1)!

L (2) ——→
TI

(3)
~c(2)!

L (3)
¯

→L (n21) ——→
TI

(m)
~c(n21)!

L (n) ——→
TD

(n11)
~x1

(n)
!

L (n11) ——→
TD

(n12)
~x2

(n11)
!

L (n12)
¯

→L (n1k21) ——→
TD

(n1k)
~xk

(n1k21)
!

L (n1k). ~4.23!

We then have the following.
Theorem 4.4:

f (n1k)5
Wk11~x1

(n) , ...,xk
(n) ,f (n)!

Wk~x1
(n) , ...,xk

(n)!
, ~4.24!

c (n1k)5~21!n1k
IŴk,n11~xk

(0) ,...,x1
(0) ;c (0) ,j (1) ,...,j (n21) ,j (n)!

IŴk,n~xk
(0) ,...,x1

(0) ;c (0) ,j (1) ,...,j (n21)!
, ~4.25!

x i
(n1k)5~21!k

IŴk11,n~x i
(0) ,xk

(0) ,...,x1
(0) ;c (0) ,j (1) ,...,j (n21)!

IŴk,n~xk
(0) ,...,x1

(0) ;c (0) ,j (1) ,...,j (n21)!
, ~4.26!
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m i
(n1k)5~21!n1k

IŴk,n11~xk
(0) ,...,x1

(0) ;c (0) ,j (1) ,...,j (n21) ,m i
(0)!

IŴk,n~xk
(0) ,...,x1

(0) ;c (0) ,j (1) ,...,j (n21)!
, ~4.27!

t (n1k)5IŴk,n~xk
(0) ,...,x1

(0) ;c (0) ,j (1) ,...,j (n21)!t (0). ~4.28!

Here,j (k) , x i
(n) andf (n) are given by Theorem 4.3.

Remark 4.1:The main characteristic of thet-functions,f (n1k) andc (n1k) , in the four chains
mentioned above is that there are ‘‘eigenfunctions’’ and BA functions ofL (0) in their Wronskians
or the generalized Wronskians at the same time.

V. GENERATION OF THE AKNS HIERARCHY FROM THE ‘‘FREE’’ LAX OPERATOR L „0…

Ä

In Refs. 10–12, Aratynet al.have performed the following gauge transformation with the fi
choice,

TD
(1)~f (0)!5f (0)+]+~f (0)!21, ~5.1!

L (1)5TD
(0)~f (0)!+]+~TD

(0)~f (0)!!215]1f (0)
•~ ln f (0)!xx+]21+~f (0)!21, ~5.2!

wheref (0) is an ‘‘eigenfunction’’ ofL (0)5], i.e., it satisfies

]f (0)

]tn
5~L (0)!1

n
•f (0)5]n

•f (0). ~5.3!

They showed
Theorem 5.1: (Refs. 10–12) For the successive k-step gauge transformations,

L (0) ——→
TD

(1)
~f(0)!

L (1) ——→
TD

(2)
~f(1)!

L (2) ——→
TD

(3)
~f(2)!

L (3) ——→
TD

(4)
~f(3)!

¯→¯ , ~5.4!

starting with the initial ‘‘free’’ Lax operator L(0)5],

L (n)5TD
(n)~f (n21)!+]+~TD

(n)~f (n21)!!215]1f (n)+]21+c (n) , ~5.5!

where

f (n)5

Wn11S f (0) ,fx
(0) ,fxx

(0) ,...,
]n21f (0)

]xn21 ,
]nf (0)

]xn D
WnS f (0) ,fx

(0) ,fxx
(0) ,...,

]n21f (0)

]xn21 D , ~5.6!

c (n)5~f (n21)!21, ~5.7!

t (n)5WnS f (0) ,fx
(0) ,fxx

(0) ,...,
]n21f (0)

]xn21 D , t (0)51. ~5.8!

Proof: See Refs. 10–12. In fact, this result is the corollary of Theorem 4.1 in the caseh ( i )

5] if (0)/]xi ,i 51,2,...,n. h

This theorem indicates that one can construct the AKNS hierarchy from the ‘‘free’’
operatorL (0)5]. And it is also suggested formula in the following.

Theorem 5.2:Let L(0)5]; for the chain of n-step gauge transformations with the operator
TypeII ,
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L (0) ——→
TI

(1)
~c(0)!

L (1) ——→
TI

(2)
~c(1)!

L (2) ——→
TI

(3)
~c(2)!

L (3) ——→
TI

(4)
~c(3)!

¯→¯ , ~5.9!

we obtain

L (n)5TD
(n)~f (n21)!+]+~TD

(n)~f (n21)!!215]1f (n)+]21+c (n) , ~5.10!

where

f (n)5~c (n21)!21, ~5.11!

c (n)5

Wn11S c (0) ,cx
(0) ,cxx

(0) ,...,
]n21c (0)

]xn21 ,
]nc (0)

]xn D
WnS c (0) ,cx

(0) ,cxx
(0) ,...,

]n21c (0)

]xn21 D , ~5.12!

t (n)5WnS c (0) ,cx
(0) ,cxx

(0) ,...,
]n21c (0)

]xn21 D , t (0)51. ~5.13!

Here c (0) is the ‘‘adjoint eigenfunction’’ of L(0)5].
Proof: One states by noting that

L (0)5][]1f (0)+]21+c (0)uf(0)50 .

So we can regardc (0) as the ‘‘adjoint eigenfunction’’ ofL (0), i.e.,

]c (0)

]tn
52~L* (0)!1

n
•c (0) , c tn

(0)5~21!n11]n
•c (0) .

Using the gauge transformation with the first choice in Theorem 2.3~or see Ref. 6!, we have

TI
(1)~c (0)!5~c (0)!21+]21+c (0) ,

L (1)5TI
(1)~c (0)!+L (0)+~TI

(1)~c (0)!!215TI
(1)~c (0)!+]+~TI

(1)~c (0)!!215]1c (1)+]21+c (1) ,

f (1)5~c (0)!21,

c (1)52TD
(1)~c (0)!•~L* (0)

•c (0)!5
W2~c (0) ,cx

(0)!

W1~c (0)!
.

Then using the property of the Wronskian, and applying successivelyTI with the first choice, this
theorem is proven. h

The two chains of gauge transformations mentioned in above refer to single-channel~pure!
case. There is no multichannel possibility in the present case~i.e., with the first choice!, hence we
only need to discuss the single-channel~mixed! case.

Theorem 5.3:Let one chain of n-step gauge transformations start with L(0)5], the let p of
them be of TypeI , q of them of TypeII , W051.

(A) If the first step is of TypeI , f (0)Þ0, c (0)50, then

t (n)5Wp2qS f (0) ,fx
(0) ,fxx

(0) ,...,
]p2qf (0)

]xp2q D ~5.14!

in which p>q.
(B) If the first step is of TypeII , c (0)Þ0, f (0)50, then
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t (n)5Wq2pS c (0) ,cx
(0) ,cxx

(0) ,...,
]q2pc (0)

]xq2p D ~5.15!

in which q>p.
Proof: There is an obvious identity

TI
(k11)~c (k11)!+TD

(k)~f (k)!5TD
(k11)~f (k11)!+TI

(k)~c (k)!5I ,

which is similar to the equation~61! of Ref. 6. Using this identity and the Theorem 5.1 a
Theorem 5.2, theorem is proved. h

Since the AKNS hierarchy can be produced fromL (0)5] with the first choice, we would like
to introduce an analogous procedure for the chain of gauge transformations with the s
choice, i.e.,

L (0) ——→
TD

(1)
~x1

(0)
!

L (1) ——→
TD

(2)
~x2

(1)
!

L (2) ——→
TD

(3)
~x3

(2)
!

L (3) ——→
TD

(4)
~x4

(3)
!

¯→¯ ,

L (0) ——→
TI

(1)
~m1

(0)
!

L (1) ——→
TI

(2)
~m2

(1)
!

L (2) ——→
TI

(3)
~m3

(2)
!

L (3) ——→
TI

(4)
~m4

(3)
!

¯→¯ .

Unfortunately, these two chains of gauge transformations cannot produce the AKNS hier
because they keepL (k)5]. However, the union of the two choices is very interesting. Each of
theorems given in the preceding section can supply an explicit approach to generate the
hierarchy from ‘‘free’’ Lax operatorL (0)5]. To save space, we only discuss the gauge trans
mation chain~4.9! with L (0)5]5]1f (0)

•]21
•c (0)uc(0)50 , which leads to the following theorem

Theorem 5.4:

x i
(n)5

Wn11~f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21),x i
(0)!

Wn~f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!
, ~5.16!

m i
(n)5~21!n

IW1,n~m i
(0) ;f (0) ,fx

(0) ,fxx
(0) ,...,~f (0)!(n21)!

Wn~f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!
, ~5.17!

f (n1k)5
IWk,n11~mk

(0) ,...,m1
(0) ;f (0) ,fx

(0) ,fxx
(0) ,...,~f (0)!(n21),~f (0)!(n)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!
, ~5.18!

c (n1k)5~21!k
Wk11~m1

(n) , ...,mk
(n) ,c (n)!

Wk~m1
(n) , ...,mk

(n)!
, ~5.19!

x i
(n1k)5

IWk,n11~mk
(0) ,...,m1

(0) ;f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21),x i
(0)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!
, ~5.20!

m i
(n1k)5~21!n

IWk11,n~m i
(0) ,mk

(0) ,...,m1
(0) ;f (0) ,fx

(0) ,fxx
(0) ,...,~f (0)!(n21)!

IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!
, ~5.21!

t (n1k)5IWk,n~mk
(0) ,...,m1

(0) ;f (0) ,fx
(0) ,fxx

(0) ,...,~f (0)!(n21)!. ~5.22!

Here f (0) is the eigenfunction ofL (0)5], hence it satisfies]f (0)/]tn 5(L (0))1
n
•f (0)5]n

•f (0); and ]m i
(0)/]tn 52(L (0)* )1

n m i
(0)5(21)n11]n

•m i
(0) , (L (0))* •m i

(0)52]m i
(0)5l im i

(0) .
c (n) andf (n) are given by Theorem 5.1.

Now we consider some concrete examples of Theorem 5.4 withn52,k51. Let l i( i
51,2,...,5) andh1 be constants,u i5l i t11l i

2t21l i
3t3 , û152h1t12h1

2t22h1
3t3 .
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~1! Let

f (0)5eu11eu21eu3, c (0)50, m1
(0)5eû1.

Then Theorem 5.4 yields

f (211)

5
eu11u21u3~l12l2!2~l12l3!2~l22l3!2

eu11u3~2h11l2!~l12l3!21eu21u3~2h11l1!~l22l3!21eu11u2~2h11l3!~l12l2!2 ,

~5.23!

c (211)

5
eu3~2h11l1!~2h11l2!1eu2~2h11l1!~2h11l3!1eu1~2h11l2!~2h11l3!

eu11u3~2h11l2!~l12l3!21eu21u3~2h11l1!~l22l3!21eu11u2~2h11l3!~l12l2!2 ,

~5.24!

t (211)5eû1
eu11u3~h12l2!~l12l3!21eu21u3~h12l1!~l22l3!21eu11u2~h12l3!~l12l2!2

~h12l1!~h12l2!~h12l3!
.

~5.25!

f (211) andc (211) satisfy equations~1.4! and ~1.5!. Furthermore, a solution of the KP equatio
~1.10! is given by u5f (211)c (211) or ~1.11!. In Figs. 1~a!–1~c!, 2f (211) ,c (211) ,u, respec-
tively, are plotted.

~2! Let

f (0)5eu11eu21u31eu4, c (0)50, m1
(0)5eû1.

With the help of theMATHEMATICA, we got

f (211)5H ~eu1l1
31eu2l2

31eu3l3
31eu4l4

3!F ~eu1l11eu2l21eu3l31eu4l4!S eu1

2h11l1

1
eu2

2h11l2
1

eu3

2h11l3
1

eu4

2h11l4
D2~eu11eu21eu31eu4!S eu1

2h11l1
l1

1
eu2

2h11l2
l21

eu3

2h11l3
l31

eu4

2h11l4
l4D G2~eu1l1

21eu2l2
21eu3l3

21eu4l4
2!

3F ~eu1l1
21eu2l2

21eu3l3
21eu4l4

2!S eu1

2h11l1
1

eu2

2h11l2
1

eu3

2h11l3
1

eu4

2h11l4
D

2~eu11eu21eu31eu4!S eu1

2h11l1
l1

21
eu2

2h11l2
l2

21
eu3

2h11l3
l3

21
eu4

2h11l4
l4

2D G
1~eu1l11eu2l21eu3l31eu4l4!F ~eu1l1

21eu2l2
21eu3l3

21eu4l4
2!S eu1

2h11l1
l1

1
eu2

2h11l2
l21

eu3

2h11l3
l31

eu4

2h11l4
l4D2~eu1l11eu2l21eu3l31eu4l4!

3S eu1

2h11l1
l1

21
eu2

2h11l2
l2

21
eu3

2h11l3
l3

21
eu4

2h11l4
l4

2D G J H eu11u2~l12l2!2

~h12l1!~h12l2!
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1
eu11u3~l12l3!2

~h12l1!~h12l3!
1

eu21u3~l22l3!2

~h12l2!~h12l3!
1

eu11u4~l12l4!2

~h12l1!~h12l4!
1

eu21u4~l22l4!2

~h12l2!~h12l4!

1
eu31u4~l32l4!2

~h12l3!~h12l4! J , ~5.26!

FIG. 1. Parameters in~a!–~c! aret50, l1521, l2520.015,l351, h152. ~a! Minus times solutionf (211) to the first
two flows ~1.4! and~1.5! of AKNS hierarchy;~b! solutionc (211) to the first two flows~1.4! and~1.5! of AKNS hierarchy;
~c! solutionu5f (211)c (211) to the KP equation~1.10!.
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c (211)5$eu112u4~2h11l1!~h12l2!~h12l3!~l12l4!21eu212u4~h12l1!~2h11l2!~h1

2l3!~l22l4!21eu312u4~h12l1!~h12l2!~2h11l3!~l32l4!21eu112u3~2h1

1l1!~h12l2!~h12l4!~l12l3!21eu212u3~h12l1!~2h11l2!~h12l4!~l22l3!2

1eu412u3~h12l1!~h12l2!~2h11l4!~l32l4!21eu112u2~2h11l1!~h12l3!~h1

2l4!~l12l2!21eu312u2~h12l1!~2h11l3!~h12l4!~l32l2!21eu412u2~h12l1!

3~h12l3!~2h11l4!~l42l2!21eu212u1~2h11l2!~h12l3!~h12l4!~l12l2!2

1eu312u1~h12l2!~2h11l3!~h12l4!~l12l3!21eu412u1~h12l2!~h12l3!~2h1

1l4!~l12l4!22eu11u21u3~h12l4!@l2~l22l3!2l31l1
3~l21l3!22l1

2~l2
21l3

2!

1l1~l2
31l3

3!12h1
2~l1

21l2
22l2l31l3

22l1~l21l3!!1h1~22l1
322l2

31l2
2l3

1l2l3
222l3

31l1
2~l21l3!1l1~l2

21l3
2!!#2eu11u21u4~h12l3!@l2~l22l4!2l4

1l1
3~l21l4!22l1

2~l2
21l4

2!1l1~l2
31l4

3!12h1
2~l1

21l2
22l2l41l4

22l1~l21l4!!

1h1~22l1
322l2

31l2
2l41l2l4

222l4
31l1

2~l21l4!1l1~l2
21l4

2!!#2eu11u31u4~h1

2l2!@l3~l32l4!2l41l1
3~l31l4!22l1

2~l3
21l4

2!1l1~l3
31l4

3!12h1
2~l1

21l3
2

2l3l41l4
22l1~l31l4!!1h1~22l1

322l3
31l3

2l41l3l4
222l4

31l1
2~l31l4!

1l1~l3
21l4

2!!#2eu21u31u4~h12l1!@l3~l32l4!2l41l2
3~l31l4!22l2

2~l3
21l4

2!

FIG. 2. Parameters in~a!–~c! are t50, l1520.5, l250.5, l3520.6, l450.6, h15100. ~a! Minus times solution
f (211) to the first two flows~1.4! and~1.5! of AKNS hierarchy;~b! solutionc (211) to the first two flows~1.4! and~1.5!
of AKNS hierarchy;~c! solution u5f (211)c (211) to the KP equation~1.10!; ~d! solution u5f (211)c (211) to the KP
equation~1.10! with parameterst50, l1521, l250.2, l351, l450.05, h152.
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1l2~l3
31l4

3!12h1
2~l2

21l3
22l3l41l4

22l2~l31l4!!1h1~22l2
322l3

31l3
2l4wz

1l3l4
222l4

31l2
2~l31l4!1l2~l3

21l4
2!!#%Y H ~h12l1!~h12l2!~h12l3!~h1

2l4!~eu11u2~l12l2!21eu11u3~l12l3!21eu11u4~l12l4!21eu21u3~l22l3!2

1eu21u4~l22l4!21eu31u4~l32l4!2!S eu11u2~l12l2!2

~h12l1!~h12l2!
1

eu11u3~l12l3!2

~h12l1!~h12l3!

1
eu21u3~l22l3!2

~h12l2!~h12l3!
1

eu11u4~l12l4!2

~h12l1!~h12l4!
1

eu21u4~l22l4!2

~h12l2!~h12l4!

1
eu31u4~l32l4!2

~h12l3!~h12l4! D J , ~5.27!

t (211)5eû1F eu11u2~l12l2!2

~h12l1!~h12l2!
1

eu11u3~l12l3!2

~h12l1!~h12l3!
1

eu21u3~l22l3!2

~h12l2!~h12l3!

1
eu11u4~l12l4!2

~h12l1!~h12l4!
1

eu21u4~l22l4!2

~h12l2!~h12l4!
1

eu31u4~l32l4!2

~h12l3!~h12l4!G . ~5.28!

FIG. 3. Parameters in~a!–~c! are t50, l1520.5, l250.5, l3520.6, l450.6, l551.2, h15100. ~a! Minus times
solutionf (211) to the first two flows~1.4! and~1.5! of AKNS hierarchy;~b! solutionc (211) to the first two flows~1.4! and
~1.5! of AKNS hierarchy;~c! solutionu5f (211)c (211) to the KP equation~1.10!; ~d! solutionu5f (211)c (211) to the KP
equation~1.10! with parameterst50, l1520.5, l250.5, l3520.6, l450.6, l550, h15100.
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The graphs of2f (211) ,c (211) ,u are plotted in Figs. 2~a!–2~c! for this case. Additionally, we
also give in Fig. 2~d! another graph ofu with a different parameter.

~3! Take

f (0)5eu11eu21u31eu41eu5, c (0)50, m1
(0)5eû1.

FIG. 4. Solutionu5f (211)c (211) to the KP equation~1.10! with parametersl1521, l2521.5, l351, l453, l55
23, h1524. ~a! t520.6; ~b! t50; ~c! t50.6.
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We give the graphs@Figs. 3~a!–3~c!# of 2f (211) ,c (211) ,u , and in Fig. 3~d! the graph ofu for
a different parameter. Specifically, in order to explore approximately the evolution of the so
of KP equation, we also display in Figs. 4~a!–4~c! u at t3520.6,0,0.6.

VI. CONCLUSION AND DISCUSSION

In this paper we point out that there exist two choices that keep the form of the Lax ope
when we perform gauge transformations for the AKNS hierarchy, which naturally leads to
classes of GFGT—eigenfunction and BA function ofL (0). The second choice automatically im
plies that the GFGTx must come from outside ofL (0), in contrast to the first choice.6,10–12On the
basis of these facts, we obtain Theorem 2.2 and Theorem 2.3 about the two choices of TypI and
Type II , respectively. We study systematically the successive application of gauge transform
with the second choice for the AKNS hierarchy. The union of the two choices is also discu
which results in a newt-function. Finally, starting with the ‘‘free’’ Lax operatorL (0)5], the
AKNS hierarchy has been constructed via gauge transformation, and its severalt-functions are
obtained. Our results also show that the generalized Wronskian of thet function of the AKNS can
not be of the binary type ifk.1, the latter is defined by Ref. 6 Obviously,t (n1k) is still of binary
type whenk51.

Finally we would like to re-emphasize that the functions in the elements of the Wronski
the t-functions presented in this paper~with the second choice! are different from those in the
previous literature.6,10–12 So the finalt-function are as well essentially different. The figures
Fig. 1 are similar to the results of Ref. 23, which are obtained from the Wronskian solution o
KP hierarchy. The relation between the gauge transformation given here and the known D
transformation24 for the AKNS hierarchy is an interesting question, the discussion of which is
for future publications. Moreover, it will be interesting to consider the analogue of our resul
the matrix constrained KP hierarchy, see Ref. 9. For chains of gauge transformations includi
choices, there also exist other more complicated cases that shall have to be discussed. Fin
also would like to generalize our results to the supersymmetric KP and cKP hierarchy.25–27
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Tri-Hamiltonian formulation for certain integrable
lattice equations

R. Sahadevan and S. Khousalya
Ramanujan Institute for Advanced Study in Mathematics, University of Madras,
Chepauk, Chennai-600 005, Tamil Nadu, India

~Received 5 May 2003; accepted 8 May 2003!

A systematic investigation of integrable differential–difference equations with two
independent variables admitting multi-Hamiltonian structure is presented. Consid-
ering the Volterra~VL !, Toda~TL!, Relativistic Toda~RT!, Belov–Chaltikian~BC!
and Blaszak–Marciniak both three~BM3! and four ~BM4! coupled lattice equa-
tions it is shown that they admit a sequence of operators out of which only three are
Hamiltonian ones and so they are tri-Hamiltonian systems only. It is observed that
the constructed third operator for VL and BC lattice equations is Hamiltonian only
if the field variable is periodic with even period. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1601300#

I. INTRODUCTION

The study of discrete nonlinear systems governed by both ordinary and partial differe
difference and pure difference equations including lattice equations has aroused increasing
in the last few years particularly from the point of view of complete integrability. It is well kno
that the completely integrable nonlinear partial differential equations~PDEs! admitting solitons
possess a variety of mathematical structures such as Lax representation, Painleve´ property, a
sequence of generalized symmetries and conservation laws, master symmetries,
Hamiltonians, etc.1–11

The discovery of solitons started with an investigation of the solution of nonlinear PDEs
the soliton solution could be explained by the existence of conservation laws. It is known
every conservation law of a PDE comes from a corresponding symmetry property. This
principle constitutes the first fundamental result in the study of classical or quantum mech
systems with prescribed groups of symmetries. In a classic work, Emmy Noether has dev
procedure to derive conservation laws and explicitly shown that there exists a one to one
spondence between symmetry groups and conservation laws for the Euler Lagrange eq
This resulted in the search for hidden symmetries called generalized symmetries, which are
whose infinitesimal generators depend not only on the independent and dependent variable
PDEs but also on the derivatives of the dependent variables.

Considering nonlinear evolution equations with (111) dimensions, Olver12 has shown re-
markably that, how a sequence of generalized symmetries can be derived recursively thro
operator known as recursion operator, if one nontrivial generalized symmetry is known. I
1980s Shabat13 and his school using the basic principles have classified a complete list of no
ear evolution equations with (111) dimension demanding that under what conditions the gi
equation admits a sequence of generalized symmetries and conservation laws. The posses
sequence of generalized and conservation laws is characterizing property of integrable no
PDEs.3 Also the existence of generalized symmetries often helps to derive other integra
properties: recursion operator, hereditary operator, bi-Hamiltonian formulation, etc., of non
PDEs. This fact has been verified for a large number of nonlinear evolution equations w
11) and (211) dimensions possessing solitons by different researchers during the pas
decades. Recent development in discrete nonlinear systems reveals that the above-me
results appear to hold for nonlinear PDDEs with two independent variables (tPR, nPZ) as
well.14–22Given a PDDE with two independent variables we have shown that how to constru~i!
39610022-2488/2003/44(9)/3961/18/$20.00 © 2003 American Institute of Physics
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a sequence of generalized symmetries and conserved densities17 and ~ii ! a factorizable recursion
operator using its generalized symmetries.21 As illustrations, in Ref. 21 we have considered B
BM3, and RT lattice equations and derived factorizable recursion operators using their gene
symmetries and shown explicitly that they are bi-Hamiltonian systems. It is known that VL
and BM4 lattice equations are bi-Hamiltonian systems.18,20 In this paper, we wish to investigat
whether RT, VL, TL, BC, BM3, and BM4 lattice equations, respectively, governed by

vnt5vn~un212un!, unt5un~un212un111vn2vn11!, ~1!

unt5un~un112un21!, ~2!

unt5vn112vn , vnt5vn~un2un21!, ~3!

unt5un~un112un21!1vn212vn , vnt5vn~un122un21!, ~4!

unt5wn112wn21 , vnt5un21wn212unwn , wnt5wn~vn2vn11!, ~5!

unt5un~vn2vn21!, vnt5wnun112wn21un , wnt5qnun122unqn21 , qnt5un132un ,
~6!

where

unt5
dun

dt
, vnt5

dvn

dt
, wnt5

dwn

dt
, qnt5

dqn

dt
,

un5u~n,t !, vn5v~n,t !, wn5w~n,t !, qn5q~n,t !,

t is a continuous variable andn is a discrete variable, admit multi-Hamiltonian structures or
and show explicitly that they are tri-Hamiltonian systems only.

The plan of the article is as follows: In Sec. II, we briefly outline the basic notations
definitions required for this paper. In Sec. III, we explain how to construct a sequence of ope
$H3 ,H4 ,...% for an integrable nonlinear PDDE if it admits two distinct and invertible Hamilton
operatorsH1 andH2 . Also for each of the above lattice Eqs.~1!–~6! we construct a sequence o
operators and show that only three of them are Hamiltonian ones. In Sec. IV, we give brief d
of our results.

II. PRELIMINARIES AND BASIC RESULTS

We recall the following notations and definitions which are required for further discus
Consider, a first order PDDE with two independent variables~one-continuous, one-discrete! of the
form

]Un

]t
5Unt5F~ ...,Un21 ,Un ,Un11 ,...!, ~7!

whereUn5U(n,t) andF~•••! are vector quantities with same number of components, saym. The
vector functionF is assumed to be a polynomial in the dependent variable and their shifts. T
is no restriction on the level of shifts or the degree of nonlinearity. Define the shift operatorsE and
E21 by

EUn5Un11 , E21Un5Un21 .

Let D andD1 being the difference operators are defined by

DUn5~E21!Un , D1Un5~E2121!Un .
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We then define the linear operator (E2E21)215(D2D1)21, (E21)215D21, and (E21

21)215(D1)21 by

~D2D1!21Un5
1

2 F (
k52`

21

Un1112k2 (
k51

`

Un2112kG ,

D21Un5
1

2 F (
k52`

21

@Un1112k1Un12k#2 (
k51

`

@Un2112k1Un2212k#G ,

~D1!21Un52
1

2 F (
k52`

21

@Un1212k1Un1112k#2 (
k51

`

@Un12k1Un2112k#G .

Note that (D2D1)21((D2D1)21)215((D2D1)21)21(D2D1)2151. Let H:L q→L q be a
linear operator andVH be a formal evolutionary vector field with characteristic is theq-tuple,

~Hu!a5 (
b51

q

Habub

of vertical univector. Then the prolongation of the vector field is given by

PrVHu5(
a,J

EJS (
b

HabubD ]

]EJUa .

Definition 2.1:A linear operatorH1 of Eq. ~7! is said to be a Hamiltonian operator if it is ske
symmetric and satisfies Jacobi identity.4

Definition 2.2:Equation~7! is said to be a bi-Hamiltonian and tri-Hamiltonian system, if
can be written as

Unt5H2

dH0

dUn
5H1

dH1

dUn
, ~8a!

and

Unt5H3

dH0

dUn
5H2

dH1

dUn
5H1

dH2

dUn
, ~8b!

where H1 , H2 , and H3 are Hamiltonian operators whileH0@Un#, H1@Un#, and H2@Un# are
appropriate Hamiltonian functionals.

Definition 2.3:An operator valued functionR is said to be a recursion operator of Eq.~7! if
it satisfies

G̃~n!5RG~n!, ~9!

where G(n)5(G1(n),G2(n), . . . ,Gm(n)) and G̃(n)5(G̃1(n),G̃2(n), . . . ,G̃m(n)) are general-
ized symmetries of Eq.~7!. In other words,R maps symmetries to new symmetries.

A. Construction of the second operator H2

Let us assume that the given PDDE~7! can be written as

Unt5H1

dH0

dUn
, ~10!
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whereH1 is an (m3m) invertible matrix Hamiltonian operator which can be expressed in te
of the difference operators of the dependent variables whileH0 is the associated (13m) matrix
Hamiltonian functional. We further assume that the entries (Hi j

(1)), (H 1 j
(0)), (H 1 j

(1)) of the Hamil-
tonian operatorH1 , the Hamiltonian functionalsH0 andH1 , respectively, having rankspi j , r 1 j ,
ands1 j , i , j 51,2,. . . ,m which may be integers or rational numbers.

The second operatorH2 , if exists, for Eq.~7! satisfying the relation

H2

dH0

dUn
5H1

dH1

dUn
~11!

can be constructed in the following way. LetH2 be a (m3m) invertible matrix operator of the
form

H25FH11
(2) H12

(2) ... H1m
(2)

H21
(2) H22

(2) ... H2m
(2)

] ]

Hm1
(2) Hm2

(2) ... Hmm
(2)

G .

Then the rank of the entries (Hi j
(2)) of H2 must satisfy the following relations:

rank H11
(1)1rank

dH1

dU1
1¯1rank H1m

(1)1rank
dH1

dUm

5rank H11
(2)1rank

dH0

dU1
1¯1rank H1m

(2)1rank
dH0

dUm
,

]

rank Hm1
(1)1rank

dH1

dU1
1¯1rank Hmm

(1) 1rank
dH1

dUm

5rank Hm1
(2)1rank

dH0

dU1
1¯1rank Hmm

(2) 1rank
dH0

dUm
.

Accordingly, we choose the entries (Hi j
(2)) of the matrix operatorH2 written in terms of the

difference and inverse difference operators of the dependent variables and their inverse.
tuting the operatorH2 in Eq. ~11! and then solving yields the explicit form of the operatorH2 with
the required ranks.

If the constructed operatorH2 for Eq. ~7! is also a Hamiltonian operator, then the recursi
operatorR usually can be written as

R5H2H1
21 .

B. Application

We consider the VL lattice equation~2! which can be written as

unt5H1

dH1

dun
5un~E2E21!un , ~12!

where the Hamiltonian operatorH15un(E2E21)un , while the Hamiltonian functionalH1 takes
the formH15(nun . Obviously the rank of the right-hand side of Eq.~12! is 2. We know that the
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Hamiltonian functional of VL lattice Eq.~2! is H05(n logun and so rank ofdH0 /dun 521.
Then the left-hand side of Eq.~11! demands that the rank ofH2 must be equal to 3 and so w
considerH2 having the form21

H25aun
2Eun1bunEun

21cunEunEun1a1un
2E21un1b1unE21un

21c1unE21unE21un1d1un
3 ,

where a, b, c, a1 , b1 , c1 , and d1 are arbitrary constants to be determined. Substituting
Hamiltonian operatorH1 , Hamiltonian functionalsH0 andH1 along with the operatorH2 in Eq.
~11!, we find that the consistency condition holds only for the following parametric restrictio

a5b5c52a152b152c151

and so the operatorH2 becomes

H25un~Eun1unE1EunE2E21un2unE21un2unE21!un . ~13!

It is straightforward to check that the skew symmetric operatorH2 is Hamiltonian~see Sec. III!.
Thus the recursion operatorR5H2H1

21 for the VL lattice equation~2! is

R5un@unE2unE211Eun1EunE2E21un2E21unE21#~E2E21!21
1

un
. ~14!

It is appropriate to mention here that there exists a link between Lax operators and some
integrability properties of the nonlinear PDEs~see Ref. 3! and PDDEs.23,24

III. TRI-HAMILTONIAN SYSTEM

It is known that if an integrable partial differential–difference equation with two indepen
variables admit two invertible Hamiltonian operatorsH1 andH2 , then it is possible to construct
sequence of operatorsHn satisfying the relation

Hn5R n22H2 , n>3, ~15!

whereR5H2H1
21 is a recursion operator. It is appropriate to mention here that the constr

operatorsHn ,n>3 need not be Hamiltonian, in general. We show below that the integrable la
Eqs.~1!–~6! possessing bi-Hamiltonian structure admits a sequence of operatorsHn ,n>3 out of
which the operatorH3 alone Hamiltonian and the remaining operatorsHn ,n>4 are non-
Hamiltonian ones. For clarity of presentation, we furnish below the computational details o
RT and VL equations and for the remaining lattice equations only brief details are given.

A. RT lattice equation

1. Construction of a sequence of operators

In Ref. 21 we have shown that the RT lattice equation~1! can be written as

Fv t

ut
G5H2F dH0

du

dH0

dv

G5H1F dH1

du

dH1

dv

G ~16!

associated with the Hamiltonian functionals,H0(u,v)52(n@u1v# and H1(u,v)5(n @ 1
2(u

2

1v2)1uv1 v̄ u1u ū#, whereu5un , v5vn , ū5un11 , v̄5vn11 . Here the Hamiltonian opera
tors H1 andH2 take the form

H15FuE2E21u 2~12E21!u

2u~E21! 0 G , ~17a!
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H25F0 v~E2121!u

u~E21!v u~E2E21!u
G ~17b!

and so the recursion operatorR becomes

R5F v v1v~12E21!u~E21!21
1

u

u~11E! u~11E!1u~E21!v~E21!21
1

u
1u~E2E21!u~E21!21

1

u

G . ~18!

Making use of the Hamiltonian operatorsH1 and H2 in Eq. ~15! we construct a sequence o
operators (Hn ,n>3):

H35F v~E21u2uE!v v(2v2u2uE1E21u

1vE211E21uE21)u

u~v1u1E21u2uE2Ev2EuE!v u~2Eu1uE212uE1E21u

22Ev12vE212EuE1E21uE21)u

G ,

~19!

H45R 2H25FH11
(4) H12

(4)

H21
(4) H22

(4)G , ~20!

where

H11
(4)5v2~E21u2uE!v1vu~v1u1E21u2uE2Ev2EuE!v

1v~12E21!u~E21!21~v1u1E21u2uE2Ev2EuE!v,

H12
(4)5v2~2v2u2uE1E21u1vE211E21uE21!u1vu~2Eu1uE212uE1E21u22Ev

12vE212EuE1E21uE21!u1v~12E21!u~E21!21~2Eu1uE212uE1E21u22Ev

12vE212EuE1E21uE21!u, ~20a!

H21
(4)5u~11E!v~E21u2uE!v1u~11E!u~v1u1E21u2uE2Ev2EuE!v

1u~E21!v~E21!21~v1u1E21u2uE2Ev2EuE!v

1u~E2E21!u~E21!21~v1u1E21u2uE2Ev2EuE!v,

H22
(4)5u~11E!v~2v2u2uE1E21u1vE211E21uE21!u1u~11E!u~2Eu1uE212uE

1E21u22Ev12vE212EuE1E21uE21!u1u~E21!v~E21!21~2Eu1uE212uE

1E21u22Ev12vE212EuE1E21uE21!u1u~E2E21!u~E21!21~2Eu1uE21

2uE1E21u22Ev12vE212EuE1E21uE21!u, ~20b!

and so on. Since the entries of the remaining operatorsHn ,n>5 involves lengthy expressions w
refrain from presenting their explicit form.

2. Tri-Hamiltonian structure

For completeness we briefly present the computational details of the operatorsH1 andH2 as
Hamiltonian ones. In order to prove that the skew symmetric operatorsH1 and H2 are Hamil-
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tonian it remains to prove that they satisfy the Jacobi identity. Let us first consider the
symmetric operatorH1 . It is appropriate to mention the following theorem for a system
nonlinear partial differential equations]u/]t 5K(u) due to Olver.4

Theorem: Let D be a skew-adjointq3q matrix differential operator of the system of parti
differential equations,]u/]t 5K(u) and Q5 1

2*$Q∧DQ%dx, the corresponding functional bi
vector. ThenD is Hamiltonian if and only if

PrVDu~Q!50. ~21!

Hereu5u(x,t,u). Recent investigations by Sanders and Wang25 suggest that the above result, E
~21!, holds good for nonlinear PDDEs as well. For nonlinear PDDEs, the prolongation o
vector field takes the form

PrVDu5(
a,J

EJS (
b

DabubD ]

]EJua ,

whereEJ is the shift operator.
Let u15(u,§)T. Then

H1u15H1Fu§ G5F ~uE2E21u!u1~E2121!u§
2uDu G5FF1

F2
G .

Next, define a bi-vectorQ of H1 by

QH1
5

1

2 ( @u∧F11§∧F2#

5
1

2 ( @u u ∧ ū2u ū ∧u1u ū ∧ §2u u ∧ §2u § ∧ ū1u § ∧u#

which can be simplified, using the property of the wedge product, (u∧ ū52 ū∧u, ū∧§

52§∧ ū, u∧u50), into

QH1
5( @u u ∧ ū1uū ∧ §1u § ∧ u#,

where§̄5§n11 ,ū5un11 . Now

PrVH1u1
~QH1

!5( @~2u ū1uu! ∧ ~u∧ ū1 ū ∧ §1§ ∧ u!#50

and so the skew symmetric operatorH1 is Hamiltonian. Here( is used to denote the equivalenc
classes after dividing the image of (12E). In a similar manner, we have checked that the sk
symmetric operatorsH2 andH3 satisfy

PrVH2u1
~QH2

!50, PrVH3u1
~QH3

!50

indicating they are Hamiltonian operators.
Next consider the skew symmetric operatorH4 . Now

H4u15H4Fu§ G5FH11
(4)u1H12

(4)§

H21
(4)u1H22

(4)§G5FF1

F2
G ,

where H11
(4) , H12

(4) , H21
(4) , and H22

(4) are given in Eqs.~20a! and ~20b!. As before we define a
bi-vectorQ of H4 as
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QH4
5

1

2 ( @u∧F11§∧F2#.

Proceeding further along the lines described above we find thatPrVH4u1
(QH4

) reduce into

PrVH4u1
~QH4

!5( ~E21!~¯ !1( ~E2E21!21~¯ !. ~22!

Obviously the expression in the first summation becomes zero while the expression in the
summation does not vanish due to the presence of the inverse difference operator (E2E21)21 and
so

PrVH4u1
~QH4

!Þ0

proving that the operatorH4 is not a Hamiltonian operator. Similar conclusions can be arrive
for the remaining skew symmetric operatorsHn ,n>5.

It is appropriate to mention here that a similar feature has been observed in the c
integrable nonlinear partial differential equations. For example, Fordy and Antonwicz8 have
shown that the two coupled Korteweg–de Vries equation admitsfour distinct operatorsH1 , H2 ,
H3 , and H4 and pointed out that the first three operators are Hamiltonian whileH4 is not a
Hamiltonian operator because the associatedPrVH4u1

(QH4
)Þ0 since it involves integro differ-

ential operator.
Thus we conclude that the RT lattice equation~1! is only a tri-Hamiltonian system. Using

different approach Fuchssteineret al.19 have also shown that RT is a tri-Hamiltonian system.

B. VL lattice equation

1. Construction of a sequence of operators

Here

H15u~E2E21!u, H25u~Eu1uE1EuE2uE212E21u2E21uE21!u.

Using the operatorsH1 andH2 in Eq. ~15! we obtain the following operators:

H35RH2

5u~11E1E21!u@Eu1uE1EuE2E21u2uE212E21uE21#u1u@Eu21EuE21u

1Eu2E1EuE21uE2E21u22E21uEu2E21u2E2E21uEuE#u1u@Eu~E21!21E21u

1Eu~E21!21u2E21u~12E21!21E21u2E21u~12E21!21u#~E2E21!u, ~23!

H45R 2H2

5@u~11E1E21!u1uEu~E21!212uE21u~12E21!21#$~11E1E21!

3u@Eu1uE1EuE2E21u2uE212E21uE21#u1Eu~11E21!u2

1Eu~11E21!uEu1Eu~E21!21E21u~E2E21!u1Eu~E21!21u~E2E21!u

2E21u~E11!u22E21u~E11!uEu2E21u~12E21!21E21u~E2E21!u

2E21u~12E21!21u~E2E21!u%, ~24!

and so on.
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2. Tri-Hamiltonian structure

First consider the skew symmetric operatorH1 . Let

H1u5u ū ū2u uI uI ,

whereuI 5un21 , etc. As before we define a bi-vectorQ of H1 by

QH1
5

1

2 ( @u∧H1u#5
1

2 ( @u ∧ u ūū2u ∧ uI uI #5
1

2 ( @u ū u ∧ ū2u ū ū∧ u#.

~25!

Making use of the property of wedge product, the above equation can be written as

QH1
5( @ u ū u ∧ ū #

and hence

PrVH1u1
~QH1

!5( @ ū ~uū ū2u uI uI ! ∧ u ∧ ū1u ~ ūu% u% 2u ū u!∧ u ∧ ū #

5( @ u ū u% u ∧ ū ∧ u% 2 uI u ū uI ∧ u ∧ ū #

5( @ ~E21!uI u ū uI ∧u ∧ ū #50

and so the operatorH1 is Hamiltonian. In a similar manner, we have checked that the s
symmetric operatorH2 satisfy

PrVH2u1
~QH2

!50 ~26!

indicating that it is a Hamiltonian operator.
Next consider the skew symmetric operatorH3 . As before we define a bi-vectorQ of H3 by

QH3
5( @u3 ū ū1u2 ūu% u% 2u2 uI 2 uI 2u3 uI uI 2u2 uI u= u=1u ūu% 2 u% 1u ū2 u% u%

1u ū u% ū̄
¯

ū̄
¯

2u uI u= 2 u=2u uI 2 u= u=2uuI u= uT uT1u ū3 ū1u2 ū2 ū2u uI 3uI

1uEu~E21!21u~E2E21!uu1uEu~E21!21Eu~E2E21!uu

2uE21u~12E21!21E21u~E2E21!uu2uE21u~12E21!21u~E2E21!uu#.

Making use of the property of wedge product and then computing the related prolongation
a tedious calculation, we find that

PrVH3u1
~QH3

!5( ~E21!~¯ !50 ~27!

provided if the field variableu is periodic with even period. Furthermore we have checked tha
prolongation associated with the operatorsHn ,n>4 does not vanish, that is

PrVH4u1
~QH4

!Þ0, PrVH5u1
~QH5

!,Þ0,... ~28!

even if the field variableu is periodic with even period.
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Hence Vl lattice equation is a tri-Hamiltonain system only if the field variable is periodic w
even period.

Using the Poisson structure technique Wadatiet al.22 have also shown that the VL lattic
equation~2! is a tri-Hamiltonian system.

C. TL lattice equation

We have checked that the TL lattice equation~3! admits a tri-Hamiltonian structure and thu
can be written as

Fut

v t
G5H3F 1

2v

0
G5H2F01G5H1F1uG .

Here the operators

H15F ~E21!v 0

0 v~12E21!
G , H25Fu~E21!v Ev2vE21

v~E2E21!v v~12E21!u
G ~29!

and

H35RH2

5F ~E21!v21~EvE2vE21!v1u2~E21!v u~Ev2vE21!1~Ev2vE21!u

2v~uE2E21u!v v~Ev2E21vE21!1v~12E21!u21v2~12E21

~30!

with the recursion operatorR5H2H1
21 as

R5F u ~Ev2vE21!~12E21!21
1

v

v~11E21! v~12E21!u~12E21!21
1

v

G . ~31!

Proceeding in a similar manner we construct a sequence of operators (Hn , n>4). For example,
the operatorH4 is

H45R 2H25FH11
(4) H12

(4)

H21
(4) H22

(4)G , ~32!

where

H11
(4)52~Ev2vE21!~12E21!21~uE2E21u!v1u~E21!v21u~EvE2vE21!v1u3~E21!v,

H12
(4)5~Ev2vE21!~12E21!21~Ev2E21vE21!1~Ev2vE21!u2

1~Ev2vE21!~12E21!21v~12E21!1u2~Ev2vE21!1u~Ev2vE21!u, ~32a!

H21
(4)52v~12E21!u~12E21!21~uE2E21u!v1v~11E21!~E21!v2

1v~11E21!~EvE2vE21!v1v~11E21!u2~E21!v,

H22
(4)5v~12E21!u~12E21!21~Ev2E21vE21!1v~12E21!u31v~12E21!

3u~12E21!21v~12E21!1v~11E21!~uEv2uvE21!1v~11E21!~Ev2vE21!u.

~32b!
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The operatorsHn ,n>5 involve lengthy expressions; we have not presented their explicit fo
here.

In order to investigate the nature of the operatorH4 Hamiltonian or not let

H4u15H4Fu§ G5FH11
(4)u1H12

(4)§

H21
(4)u1H22

(4)§G5FF1

F2
G ,

whereH11
(4) , H12

(4) , H21
(4) , andH22

(4) are given in Eqs.~32a! and ~32b!. Define a bivectorQ of H4

as

QH4
5

1

2 ( @u∧F11§∧F2#.

Proceeding as before for the RT lattice equation~1! we find that the prolongation associated wi
H4 does not vanish due to the presence of the inverse difference operator (E2E21)21 and soH4

is not a Hamiltonian operator. Similar conclusions can be arrived at for the remaining
symmetric operatorsHn ,n>5.

Thus we conclude that the TL lattice equation~3! is only a tri-Hamiltonian system. Simila
observation has also pointed out by Oevelet al. using a different approach.18

D. BC lattice equation

A detailed but cumbersome calculation shows that BC lattice equation~4! possesses tri-
Hamiltonian structure and hence can be written as

Fut

v t
G5H3Fu1ū1uI

21 G5H2F 0

1

3v
G5H1F10G , ~33!

where the Hamiltonian operatorsH1 , H2 , andH3 take the form

H15FH11
(1) H12

(1)

H21
(1) H22

(1)G , H25FH11
(2) H12

(2)

H21
(2) H22

(2)G
and

H35FR11H11
(2)1R12H21

(2) R11H12
(2)1R12H22

(2)

R13H11
(2)1R14H21

(2) R13H12
(2)1R14H22

(2)G
with the recursion operatorR

R5H2H1
215FR11 R12

R21 R22
G ,

where

H11
(1)5uEu2uE21u1E21v2vE,

H12
(1)52uE22v1uEv,

H21
(1)5vE2u2vE21u,

H22
(1)5vE2v1vEv2vE22v2vE21v, ~34!
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H11
(2)5u~uE1Eu1EuE2uE212E21u2E21uE21!u1uE21v2uEvE1E21vE21u2vE2u

2uvE2vEu1E21uv1uE22v,

H12
(2)52u~2uE2Eu2EuE1uE221E21uE221E21uE21!v2v~11E1E2!v

1E21v~11E211E22!v2~uE21u2uEuE21!v,

H21
(2)52v~uE211E21u1E21uE212EuE2E2u2E2uE!u2v@~11E1E2!vE

2~11E211E22!v#2v@2uE1EuE21#u,

H22
(2)52v@E21uE221uE222uE2E2uE1E21u1E21uE21

2E2uE212EuE1EuE222E2u#v, ~35!

R115@u~EuE2E21uE21!u1uE21~11E21!v2u~11E!vE1~E21uv2vEu!

1~u2~12E21!1uE21uE222uEuE1~12E21!!v2~11E21!21u#

3~E21v2vE2u~E2121!~11E21!21u!21, ~36a!

R125H @u~uE1Eu1EuE2uE212E21u2E21uE21!u1uE21v2uEvE1E21vE21u2vE2u

2uvE2vEu1E21uv1uE22v#1@u~2uE2Eu2EuE1uE221E21uE221E21uE21!

1v~11E1E2!2E21v~11E211E22!v1~uE21u2uEuE21!#F ~E2E22!21~E2E21!u

1~E2E22!21
1

u
~E21v2vE!G J S v~12E!u2~11E!

1

u
~E21v2vE! D 21

, ~36b!

R135$@v~EuE2E21uE211E2uE2EuE21!u2~11E1E2!vE1~11E211E22!v

1@u~~12E21!1~E1E21!uE222~11E!EuE!%~11E21!21u#~E21v2vE

2u~E2121!~11E21!21u!21, ~37a!

R145H @2v~uE211E21u1E21uE212EuE2E2u2E2uE!v2v~11E1E2!vE1v~11E21

1E22!v1v~uE2EuE21!u1v~E21uE221uE222uE2E2uE1E21u1E21uE21

2E2uE212EuE1EuE222E2u!#F ~E2E22!21~E2E21!u1~E2E22!21
1

u
~E21v

2vE!G J S v~12E!u2~11E!
1

u
~E21v2vE! D 21

. ~37b!

Making use of the operatorsH1 andH2 in Eq. ~15! we have constructed a sequence of opera
$H4 ,H5 ,H6 ,...% which involve lengthy expressions.

We observe that the prolongation corresponding to the operatorH3 vanishes only if the field
variablesu andv are periodic with even period like for VL equation. Further we have checked
the prolongation associated with the operatorsHn ,n>4 does not vanish even if the field variable
are periodic with even period and so they are not Hamiltonian ones.

Thus the BC lattice equation~4! is a tri-Hamiltonian system provided if the field variables a
periodic.
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We find after detailed calculations that, both BM3 and BM4 lattice equations~5! and~6! admit
only three distinct Hamiltonian operators and so they are tri-Hamiltonian system~brief details are
given in Appendixes A and B!.

IV. CONCLUSION

A systematic investigation of multi-Hamiltonian structure of certain integrable nonlinear
tial differential–difference equations with two independent variables is presented. It is show
the RT, TL, BM3, and BM4 lattice equations admit only three Hamiltonian operators while
well-known VL and BC lattice equations possess three Hamiltonian operators only if the
variable is periodic with even period and hence they are tri-Hamiltonian systems only.
observed that the presence of the inverse difference operators prevents one to show
operator HN , N>4 is not Hamiltonian. A similar feature was observed for two coup
Korteweg–de Vries equations by Fordy and Antonwicz.8
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APPENDIX A: BM3 LATTICE EQUATION

The BM3 lattice equation~5! can be written as

F ut

v t

wt

G5H3F 0

0

1

w

G5H2F 0
1
0
G5H1Fw

v
u
G , ~A1!

wherew5wn and the Hamiltonian operatorsH1 , H2 , H3 takes

H15F ~E2E21! 0 0

0 0 ~E2121!w

0 2w~E21! 0
G ,

H25F H11
(2) H12

(2) H13
(2)

H21
(2) H22

(2) H23
(2)

H31
(2) H32

(2) H33
(2)
G and H35F H11

(3) H12
(3) H13

(3)

H21
(3) H22

(3) H23
(3)

H31
(3) H32

(3) H33
(3)
G , ~A2!

where

H11
(2)5Ev2vE212u~E21!~E2E21!21~E2121!u, H12

(2)5EwE2E21w,

H13
(2)5u~E21!~E2E21!21~E2121!w,

H21
(2)5wE2E21wE21, H22

(2)5E21uw2uwE, H23
(2)5v~E2121!w,

H31
(2)5w~E21!~E2E21!21~E2121!u, H32

(2)52w~E21!v,

H33
(2)5w~2~E2E21!2~E21!~E2E21!21~E2121!!w, ~A2a!

H11
(3)5uwE211E21wu2wuE2Ewu1v2E212Ev2,
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H12
(3)52EwvE2EwEv1vE21w1E21wv,

H13
(3)5~EwE2E21wE21!w,

H21
(3)5E21wvE211vE21wE212wEv2vwE,

H22
(3)5E21wE21w2wEwE1uwvE1uwEv2E21uwv2vE21uw,

H23
(3)5v2~12E21!w1~2E21uwE211uwE!w,

H31
(3)5wE21wE212wEwE2wE21uv1wEuv,

H32
(3)5wEv22wv21wEuwE2wE21wuE2uw21uw2E,

H33
(3)5wEvw2wvE21w ~A2b!

with the recursion operatorR for the BM3 lattice equation~5! takes the form

R53
~E2E21)21@Ev2vE21 ~E2E21)21@EwE2E21w# (E2E21)21@u~E21)

2u~E21)~E2E21)21 ~E2E21)21~E2121)#w

~E2121)u#

2~E2E21)21~E2121!u v @11E211~E2E21!21

~E2121!]w

1

w
~E2121!21

1

w
~E2121!21

1

w
~E2121!21

@wE2E21wE21# @E21uw2uwE# @v~E2121!w#

4 .

Making use of the operatorsH1 andH2 in Eq. ~10! we have constructed a sequence of opera
Hn , n>4 and checked that the required prolongation does not vanish in each of the ope
indicating that they are not Hamiltonian.

APPENDIX B: BM4 LATTICE EQUATION

A detailed calculation shows that the BM4 lattice equation~6! possesses a tri-Hamiltonia
structure and thus can be written as

F ut

v t

wt

qt

G5H3F 1

u

0

0

0

G5H2F 0
1
0
0
G5H1F wI

v
ū
0
G , ~B1!

whereq5qn , wI 5wn21 ,

H15F 0 u~12E21! 0 0

~E21!u 0 0 0

0 0 qE2E21q E2E22

0 0 E22E21 0

G ,
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H25FH11
(2) H12

(2) H13
(2) H14

(2)

H21
(2) H22

(2) H23
(2) H24

(2)

H31
(2) H32

(2) H33
(2) H34

(2)

H41
(2) H42

(2) H43
(2) H44

(2)

G and H35FH11
(3) H12

(3) H13
(3) H14

(3)

H21
(3) H22

(3) H23
(3) H24

(3)

H31
(3) H32

(3) H33
(3) H34

(3)

H41
(3) H42

(3) H43
(3) H44

(3)

G ,

where

H11
(2)5u~E32E21!u, H12

(2)5u~12E21!v,

H13
(2)5u~12E2!w, H14

(2)5u~11E222E2E2!q,

H21
(2)5v~E321!u, H22

(2)5wEu2uE21w,

H23
(2)5vw2vE2w1qEu2uE22q,

H24
(2)52vEq1qv2uE231Eu2vE2q1vE21q,

H31
(2)52wE3u1wE2u, H32

(2)5qE2u2uE21q,

H33
(2)5wE2w2vE21q2wEw1qEv2uE221E2u,

H34
(2)5wE2q2vE221Ev2wE21q,

H41
(2)52qE3u1qE2u, H42

(2)5E3u2uE21,

H43
(2)5qE2w2qEw1E2v2vE21, H44

(2)5qE2q2q21Ew2wE21,

H11
(3)5u~12E21!v~E11!~E211!u1u~E32E21!~E21!21v~E321!u1u~11E222E

2E2!q~E2E22!21wE2~12E!u1@u~12E2!w2u~12E222E2E2!q~E2E22!21

3~qE2E21q!#~E22E21!21qE2~12E!u,

H12
(3)5u~12E21!v21u~E211!~11E21!~wEu2uE21w!1u~11E222E2E2!q

3~E2E22!21~qE2u2uE21q!1@u~12E2!w2u~11E222E2E2!q~E2E22!21

3~qE2E21q!#~E22E21!21~E3u2uE21!,

H13
(3)52u~12E21!vE~11E!w1u~E211!~11E21!~vw2vE2w1qEu2uE22q!

1u~11E222E2E2!q~E2E22!21~wE2w2vE21q2wEw1qEv2uE221E2u!

1@u~12E2!w2u~11E222E2E2!q~E2E22!21~qE2E21q!#~E22E21!21

3~qE2w2qEw1E2v2vE21!,

H14
(3)5u~E2121!v~11E212E1E21!q1u~E32E21!~E21!21~2vEq1qv2uE231Eu

2vE2q1vE21q!1u~11E222E2E2!q~E2E22!21~wE2q2wE21q2vE221Ev !

1@u~12E2!w2u~11E222E2E2!q~E2E22!21~qE2E21q!#~E22E21!21

3~qE2q2q21Ew2wE21!,
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H21
(3)5~wEu2uE21w!~E11!~E211!u1v~E321!~E21!21v~E321!u1~2vEq1qv2uE23

1Eu2vE2q1vE21q!~E2E22!21wE2~12E!u1@vw2vE2w1qEu2uE22q

2~2vEq1qv2uE231Eu2vE2q1vE21q!~E2E22!21~qE2E21q!#

3~E22E21!21qE2~12E!u,

H22
(3)5~wEu2uE21w!v1v~E321!~E21!21~wEu2uE21w!1~2vEq1qv2uE231Eu

2vE2q1vE21q!~E2E22!21~qE2u2uE21q!1@vw2vE2w1qEu2uE22q

2~2vEq1qv2uE231Eu2vE2q1vE21q!~E2E22!21~qE2E21q!#

3~E22E21!21~E3u2uE21!,

H23
(3)5~uE21w2wEu!E~11E!w1v~E321!~E21!21~vw2vE2w1qEu2uE22q!1~2vEq

1qv2uE231Eu2vE2q1vE21q!~E2E22!21~wE2w2vE21q2wEw1qEv2uE22

1E2u!1@~vw2vE2w1qEu2uE22q!2~2vEq1qv2uE231Eu2vE2q1vE21q!

3~E2E22!21~qE2E21q!#~E22E21!21~qE2w2qEw1E2v2vE21!,

H24
(3)5~wEu2uE21w!~12E21!21~11E222E2E2!q1v~E321!~E21!21~2vEq1qv

2uE231Eu2vE2q1vE21q!1~2vEq1qv2uE231Eu2vE2q1vE21q!

3~E2E22!21~wE2q2vE221Ev2wE21q!1@~vw2vE2w1qEu2uE22q!2~2vEq

1qv2uE231Eu2vE2q1vE21q!~E2E22!21~qE2E21q!#~E22E21!21~qE2q2q2

1Ew2wE21!,

H31
(3)5~qE2u2uE21q!~E11!~E211!u2wE2v~E321!u1~wE2q2vE221Ev2wE21q!

3~E2E22!21wE2~12E!u1@~wE2w2vE21q2wEw1qEv2uE221E2u!2~wE2q

2vE221Ev2wE21q!~E2E22!21~qE2E21q!#~E22E21!21qE2~12E!u,

H32
(3)5~qE2u2uE21q!v2wE2~wEu2uE21w!1~wE2q2vE221Ev2wE21q!~E

2E22!21~qE2u2uE21q!1@~wE2w2vE21q2wEw1qEv2uE221E2u!2~wE2q

2vE221Ev2wE21q!~E2E22!21~qE2E21q!#~E22E21!21~E3u2uE21!,

H33
(3)5~qE2u2uE21q!~12E21!21~12E2!w2wE2~wv2vE2w1qEu2uE22q!1~wE2q

2vE221Ev2wE21q!~E2E22!21~wE2w2vE21q2wEw1qEv2uE221E2u!

1@~wE2w2vE21q2wEw1qEv2uE221E2u!2~wE2q2vE221Ev2wE21q!

3~E2E22!21~qE2E21q!#~E22E21!21~qE2w2qEw1E2v2vE21!,

H34
(3)5~qE2u2uE21q!~12E21!21~11E222E2E2!q2wE2~2vEq1qv2uE231Eu2vE2q

1vE21q!1~wE2q2vE221Ev2wE21q!~E2E22!21~wE2q2vE221Ev2wE21q!

1@~wE2w2vE21q2wEw1qEv2uE221E2u!2~wE2q2vE221Ev2wE21q!

3~E2E22!21~qE2E21q!#~E22E21!21~qE2q2q21Ew2wE21!,
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H41
(3)5~E3u2uE21!~E11!~E211!u2qE2v~E321!u1~qE2q2q21Ew2wE21!~E

2E22!21wE2~12E!u1@~qE2w2qEw1E2v2vE21!2~qE2q2q21Ew2wE21!

3~E2E22!21~qE2E21q!#~E22E21!21qE2~12E!u,

H42
(3)5~E3u2uE21!v2qE2~wEu2uE21w!1~qE2q2q21Ew2wE21!~E2E22!21~qE2u

2uE21q!1@~qE2w2qEw1E2v2vE21!2~qE2q2q21Ew2wE21!~E2E22!21

3~qE2E21q!#~E22E21!21~E3u2uE21!,

H43
(3)5~E3u2uE21!~12E21!21~12E2!w2qE2~vw2vE2w1qEu2uE22q!1~qE2q2q2

1Ew2wE21!~E2E22!21~wE2w2vE21q2wEw1qEv2uE221E2u!1@~qE2w

2qEw1E2v2vE21!2~qE2q2q21Ew2wE21!~E2E22!21~qE2E21q!#~E2

2E21!21~qE2w2qEw1E2v2vE21!,

H44
(3)5~E3u2uE21!~12E21!21~11E222E2E2!q2qE2~2vEq1qv2uE231Eu2vE2q

1vE21q!1~qE2q2q21Ew2wE21!~E2E22!21~wE2q2vE221Ev2wE21q!

1@~qE2w2qEw1E2v2vE21!2~qE2q2q21Ew2wE21!~E2E22!21~qE2E21q!#

3~E22E21!21~qE2q2q21Ew2wE21!

with the recursion operatorR for the BM4 lattice equation is

R5FR11 R12 R13 R14

R21 R22 R23 R24

R31 R32 R33 R34

R41 R42 R43 R44

G ,

where

R115u~12E21!v~12E21!21u21,

R125u~E32E21!~E21!21,

R135u~11E222E2E2!q~E2E22!21,

R145u~12E2!w~E22E21!212u~11E222E2E2!q~E2E22!21~qE2E21q!~E22E21!21,
~B2a!

R215~wEu2uE21w!~12E21!21u21,

R225v~E321!~E21!21,

R235~2vEq1qv2uE231Eu2vE2q1vE21q!~E2E22!21,

R245~vw2vE2w1qEu2uE22q!~E22E21!212~2vEq1qv2uE231Eu2vE2q1vE21q!

3~E2E22!21~qE2E21q!~E22E21!21, ~B2b!

R315~qE2u2uE21q!~12E21!21u21,
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R3252wE2,

R335~wE2q2vE221Ev2wE21q!~E2E22!21,

R345~wE2w2vE21q2wEw1qEv2uE221E2u!~E22E21!212~wE2q2vE221Ev

2wE21q!~E2E22!21~qE2E21q!~E22E21!21, ~B2c!

R415~E3u2uE21!~12E21!21u21,

R4252qE2,

R435~qE2q2q21Ew2wE21!~E2E22!21,

R445~qE2w2qEw1E2v2vE21!~E22E21!212~qE2q2q21Ew2wE21!~E2E21!21

3~qE2E21q!~E22E21!21. ~B2d!

Here again we have constructed a sequence of operatorsH4 ,H5 ,... andverified that none of them
is Hamiltonian ones.
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Spectral curve and Hamiltonian structure
of isomonodromic SU „2… Calogero–Gaudin system
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This paper presents a new approach to the Hamiltonian structure of isomonodromic
deformations of a matrix system of ordinary differential equations~ODEs! on a
torus. An isomonodromic analogue of the SU~2! Calogero–Gaudin system is used
for a case study of this approach. A clue of this approach is a mapping to a finite
number of points on the spectral curve of the isomonodromic Lax equation. The
coordinates of these moving points give a new set of Darboux coordinates called
the spectral Darboux coordinates. The system of isomonodromic deformations is
thereby converted to a nonautonomous Hamiltonian system in the spectral Darboux
coordinates. The Hamiltonians turn out to resemble those of a previously known
isomonodromic system of a second-order scalar ODE. The two isomonodromic
systems are shown to be linked by a simple relation. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1591053#

I. INTRODUCTION

The notion of isomonodromic deformations originates in the celebrated work of Fuchs.1 Fuchs
studied isomonodromic deformations of a second-order linear ordinary differential equ
~ODE! of the form

d2y

dz2 1S a

z2 1
b

~z21!2 1
c

~z2t !2 1
d

z~z21!
2

3

4~z2l!22
t~ t21!K

z~z21!~z2t !
1

l~l21!n

z~z21!~z2l! D y50

with five regular singular pointsz50,1,̀ ,t,l on the Riemann sphere, and discovered a nonlin
ODE that is nowadays called the sixth Painleve´ equation. His work was soon generalized
Garnier2 and Schlesinger3 in two different directions. Whereas Garnier extended the work
Fuchs to a second-order linear ODE with more singularities~including irregular ones as well!,
Schlesinger studied a matrix system of the form

dY

dz
5(

j 51

N
Aj

z2t j
Y,

and obtained the so-called Schlesinger system

]Ak

]t j
5~12d jk!

@Ak ,Aj #

tk2t j
2d jk(

lÞk

@Ak ,Al #

tk2t l

that characterizes isomonodromic deformations. It turned out afterwards4 that Garnier’s isomono-
dromic deformations with an arbitrary number of regular singular points can be reconstructed
the 232 Schlesinger system.

a!Electronic mail: takasaki@math.h.kyoto-u.ac.jp
39790022-2488/2003/44(9)/3979/21/$20.00 © 2003 American Institute of Physics
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The next stage of generalization is, naturally, isomonodromic deformations on a torus
issue was first tackled by Okamoto,5 who obtained a system of isomonodromic deformations o
second-order scalar ODE on a torus. One of his remarkable results is that the isomono
system on a torus can be formulated as a Hamiltonian system in much the same way as G
isomonodromic system on a sphere was converted to a Hamiltonian system.6 Iwasaki7 extended
Okamoto’s work to scalar ODEs of an arbitrary order on an arbitrary compact Riemann su
and elucidated the geometric origin of the Hamiltonian structure that Okamoto derived. The
of isomonodromic systems on a torus was further refined by Okamoto himself8 and Kawai.9

As regards matrix systems, Korotkin and Samtleben10 constructed an example of isomon
dromic deformations of a 232 matrix system on a torus. Levin and Olshanetsky11 developed a
general framework in which the Schlesinger system and Korotkin and Samtleben’s isomon
mic system are placed, along with generalizations to higher genus Riemann surfaces, in a
way. Some more examples of matrix systems with different structures are also known.12–15Com-
pared with Okamoto and Iwasaki’s formulation, these ‘‘elliptic analogues of the Schlesinge
tem’’ are obtained on an entirely different ground, such as conformal field theories, vector bu
on a torus, KZ equations, and~classical or quantum! integrable systems. This can be seen in
structure of the matrix linear system

dY

dz
5L~z!Y

for which isomonodromic deformations are constructed. Namely, the matrixL(z) ~‘‘ L-matrix’’ ! in
these examples is borrowed from the isospectral Lax equation of an integrable system, thou
Lax equation of isomonodromic deformations takes the nonisospectral form

]L~z!

]t j
5@L~z!,M j~z!#2

]M j~z!

]z
.

Each of those isomonodromic systems is thus accompanied by an isospectral partner.
The correspondence between isospectral and isomonodromic systems will have a num

significant implications. Among them, we are particularly interested in the role of ‘‘spectral
boux coordinates.’’ The notion of spectral Darboux coordinates was introduced by the Mo
group for isospectral systems with a rationalL-matrix,16 and extended to isomonodromic system
on a sphere.17,18As they demonstrated for those cases, one can construct a mapping from th
equation of this type of systems to a dynamical system of a finite number of pointsP1 ,...,PN on
the spectral curve

G5$~z,w!udet~wI2L~z!!50%,

though the spectral curve itself becomes dynamical in the case of isomonodromic deform
Spectral Darboux coordinates are the coordinatesl1 ,...,lN ,m1 ,...,mN of the moving pointsPk

5(lk ,mk). These coordinates lead to ‘‘separation of variables’’ of isospectral systems. The
classical case is the so-called Moser systems;19 separation of variable of those systems w
worked out by Moser himself. Remarkably, as Harnad and Wisse pointed out,18 almost the same
story repeats on the isomonodromic side, except that separability is lost there. In particula
shows an algebro-geometric interpretation of Okamoto’s reformulation6 of Garnier’s work4 on the
232 Schlesinger system.

This paper presents a similar approach to one of the ‘‘elliptic analogues’’ of the Schles
systems, namely, the aforementioned isomonodromic system of Korotkin and Samtleben~in a
slightly modified form!. The isospectral partner of this isomonodromic system is the Calog
Gaudin system20,21 for the SU~2! group. Separation of variables of the usual SU~2! Calogero–
Gaudin system has been developed by Brzezin´ski22 and Enriquezet al.23 ~including ‘‘quantum
separation of variables’’ in the sense of Sklyanin24!. Our method is more or less parallel to their
in particular, that of Brzezin´ski. Actually, it is a rational~rather than elliptic! model of the SU~2!
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Calogero–Gaudin system that he considered. Thus we are to extend his method in two w
first, to an elliptic model~which is the subject of the work of Enriquezet al. as well!, and second,
to an isomonodromic system.

A main outcome of our consideration~summarized in Theorem 1, Sec. V! is that the isomono-
dromic SU~2! Calogero–Moser system can be converted to a nonautonomous Hamiltonian s
in the spectral Darboux coordinates. The Hamiltonians of this non-autonomous system turn
be a considerably intricate functions of the Darboux coordinates and the time variables. Re
ably, however, a very similar Hamiltonian system has been discovered by Okamoto8 for isomono-
dromic deformations of a second-order scalar ODE on a torus. We shall show a natural ex
tion of this coincidence from our point of view.

This paper is organized as follows. Sections II and III are for preparation. In Sec. II
Poisson structure of theL-matrix of the Calogero–Gaudin systems is reviewed. In Sec. III,
isomonodromic system is formulated in terms of two canonically conjugate ‘‘Calogero varia
and a set of ‘‘spin variables.’’ Sections IV and V are the main part of this paper. In Sec. IV
spectral curve and the spectral Darboux coordinates are introduced. In Sec. V, the nonauto
Hamiltonian system is derived. Section VI deals with the relation to isomonodromic deforma
of a second-order scalar ODE. Section VII is for conclusion and supplementary remarks. P
the technical details are collected in Appendixes.

II. L -MATRIX AND POISSON STRUCTURE

A. L -matrix

Following the idea of Korotkin and Samtleben,10 we start from theL-matrix

L~z!5S p 0

0 2pD 1(
j 51

N S z~z2t j !Aj
3 f~q,z2t j !Aj

2

f~2q,z2t j !Aj
1 2z~z2t j !Aj

3 D , ~1!

whereq andp are Calogero variables,Aj
6 andAj

3 are spin variables,z(z) denotes the Weierstras
z function, andf(u,z) the auxiliary function that is widely used in the study of systems of
Calogero type:

z~z!5
s8~z!

s~z!
, f~u,z!5

s~u2z!

s~u!s~z!
. ~2!

Here s(z) is the Weierstrass sigma function, and the prime stands for a derivative, i.e.,s8(z)
5ds(z)/dz. Let 2v1 and 2v3 denote the primitive periods of the Weierstrass functions. Throu
out this paper, we assume thatt jÞtk if j Þk.

This L-matrix is slightly different from that of Korotkin and Samtleben.10 They use Jacobi’s
elliptic theta functionq1 rather than Weierstrass’ sigma functions. Their L-matrix is thereby
more suited for formulating isomonodromic deformations against the modulust. We dare to
modify Korotkin and Samtleben’sL-matrix because this simplifies the use of interpolation form
las of elliptic functions. It should be possible to start from theL-matrix of Korotkin and Samtleben
and to derive substantially the same results, though we shall not pursue it in this paper.

The Poisson structure of the dynamical variables is a standard one. The Calogero va
q,p are, in fact, the relative coordinateq1–q2 and momentum (p1–p2)/2 of a two body system
with canonical variables (q1 ,q2 ,p1 ,p2), and become a canonically conjugate pair$q,p%51 in
themselves. The spin variablesAj

6 ,Aj
3 obey the su~2! relations

$Aj
3 ,Ak

6%56d jkAk
6 , $Aj

1 ,Ak
2%52d jkAk

3 ~3!

with respect to the Poisson bracket.
The Poisson bracket of the spin variables is nothing but the Kostant–Killilov bracket fo

residue matrix
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Aj5S Aj
3 Aj

2

Aj
1 2Aj

3D ~4!

of L(z) at z5t j . The conjugacy class

Oj5$Aj uAj;diag~u j /2,2u j /2!% ~5!

of semi-simple matrices with fixed eigenvalues6u j /2 is a maximal~two-dimensional! symplectic
leaf of this Poisson structure. One can use a canonically conjugate pair (xj ,j j ), $xj ,j j%51, to
parametrize this symplectic leaf as follows:

Aj
152

j j
2

2
1

u j
2

2xj
2 , Aj

25
xj

2

2
, Aj

35
xjj j

2
. ~6!

Note that this parametrization is consistent with the Poisson bracket ofAj
6,3 .

B. Poisson bracket of L -matrix elements

Let us write the matrix elements ofL(z) as

L~z!5S A~u! B~u!

C~u! 2A~u!
D . ~7!

More explicitly,

A~u!5p1(
j 51

N

z~z2t j !Aj
3 ,

B~u!5(
j 51

N

f~q,z2t j !Aj
2 ,

C~u!5(
j 51

N

f~2q,z2t j !Aj
1 .

The nonzero Poisson brackets of these matrix elements take the form

$A~z!,B~w!%5B~z!f~2q,z2w!2B~w!z~z2w!, ~8!

$A~z!,C~w!%52C~z!f~q,z2w!1C~w!z~z2w!, ~9!

$B~z!,C~w!%52~A~z!2A~w!!f~q,z2w!12fu~q,z2w!(
j 51

N

Aj
3 , ~10!

where

fu~u,z!5
]f~u,z!

]u
.

Thus the Poisson algebra of the matrix elements ofL(z) almost closesup to the extra term
proportional to( j 51

N Aj
3 , which is later set to zero in order to derive the Lax equation.

These Poisson commutation relations can be easily verified by direct calculations usi
functional identity
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f~u,z!f~2u,w!1f~u,z2w!~z~z!2z~w!!1fu~u,z2w!50 ~11!

of the auxiliary functions. This functional identity is a consequence of the more general on

f~u,z!f~v,w!1f~u1v,z!f~2v,z2w!2f~u1v,w!f~u,z2w!50, ~12!

from which the former identity can be derived by lettingv→2u.
The Poisson structure of theL(z)-matrix elements can be cast into the compact form

$L~z! ^, L~w!%5 (
a,b,c,d

$Lab~z!,Lcd~w!%Eab^ Ecd

5@L~z! ^ I 1I ^ L~w!, r ~z2w!#12
]r ~z2w!

]q (
j 51

N

Aj
3 , ~13!

whereEab denotes the matrix with the (a,b) element equal to 1 and the other elements vanish
The r -matrix takes the form

r ~z2w!5z~z2w!E11^ E111f~q,z2w!E12^ E211f~2q,z2w!E21^ E121z~z2w!E22^ E22

5S z~z2w! 0 0 0

0 0 f~q,z2w! 0

0 f~2q,z2w! 0 0

0 0 0 z~z2w!

D , ~14!

which is a special case of the well-known dynamicalr -matrix of the elliptic Calogero–Mose
system.25–27

III. HAMILTONIANS AND LAX EQUATIONS

A. Hamiltonians

We now introduce the Hamiltonians

Hj5Res
z5t j

1

2
Tr L~z!2, ~15!

which can be written, more explicitly, as

Hj5pAj
312(

kÞ j
z~ t j2tk!Aj

3Ak
31(

kÞ j
f~2q,t j2tk!Aj

2Ak
11(

kÞ j
f~q,t j2tk!Aj

1Ak
2 .

Note that these Hamiltonians depend on the time variables explicitly; the associated Hamil
system is thus nonautonomous. As we show in the following, these Hamiltoniansalmost commute
up to a term proportional to the factor( jAj .

To this end, we use the general formula

H 1

m
TrL~z!m,

1

k
Tr L~n!nJ 5Tr($L~z! ^, L~w!%L~z!m21

^ L~w!n21). ~16!

Inserting the Poisson commutation relations~13! into the right-hand side, we obtain the identit

H 1

2
TrL~z!2,

1

2
Tr L~w!2J 52 TrS ]r ~z2w!

]q
L~z! ^ L~w! D (

j 51

N

Aj
3 , ~17!
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which implies that the Poisson brackets of the Hamiltonians are proportional to( j 51
N Aj

3 :

$Hj ,Hk%}(
j 51

N

Aj
3 . ~18!

Moreover, as direct calculations show, the factor( j 51
N Aj

3 itself commutes with the Hamiltonians

H (
j 51

N

Aj
3 , HkJ 50. ~19!

These relations ensure that one can consistently impose the constraint

(
j 51

N

Aj
350, ~20!

which is preserved by the Hamiltonian flows

]q

]t j
5$q,Hj%,

]p

]t j
5$p,Hj%,

]Ak

]t j
5$Ak ,Hj%. ~21!

This constrained nonautonomous Hamiltonian system is our elliptic analogue of the Sche
system.

B. Calculating ˆL „z…,Hj‰

Our next task is to calculate the Poisson bracket

$L~z!,Hj%5(
a,b

$Lab~z!,Hj%Eab

of the L-matrix with the Hamiltonians. To this end, one can use another general formula

H L~z!,
1

n
TrL~w!nJ 5Tr2($L~z! ^, L~w!%I ^ L~w!n21), ~22!

where Tr2 denotes the trace over the second component of the tensor product:

Tr2S (
a,b,c,d

XabcdEab^ EcdD 5(
a,b

S (
c

XabccDEab .

Plugging the Poisson commutation relation~13! into this formula, one obtains the identity

H L~z!,
1

2
TrL~w!2J 5@L~z!, Tr2~r ~z2w!I ^ L~w!!#12 Tr2S ]r ~z2w!

]q
I ^ L~w! D (

j 51

N

Aj
3 .

~23!

The residue atw5t j should give the Poisson bracket that we have sought. The residues o
quantities on the right-hand side can be easily evaluated:

Res
w5t j

Tr2~r ~z2w!I ^ L~w!!5S z~z2t j !Aj
3 f~q,z2t j !Aj

2

f~2q,z2t j !Aj
1 2z~z2t j !Aj

3 D ,
                                                                                                                



t

son
x

3985J. Math. Phys., Vol. 44, No. 9, September 2003 Spectral curve and Hamiltonian structure

                    
Res
w5t j

Tr2S ]r ~z2w!

]q
I ^ L~w! D5S 0 fu~q,z2t j !Aj

2

2fu~2q,z2t j !Aj
1 0

D .

One thus ends up with the identity

$L~z!,Hj%5@L~z!,M j~z!#1term proportional to( j 51
N Aj

3, ~24!

where

M j~z!5S z~z2t j !Aj
3 f~q,z2t j !Aj

2

f~2q,z2t j !Aj
1 2z~z2t j !Aj

3 D . ~25!

C. Isomonodromic Lax equation

We are now ready to rewrite the constrained Hamiltonian system~20! and ~21! into an
isomonodromic Lax equation.

Let us examine what occurs if the matrix elements ofL(z) are differentiated againstt j . For
instance, the~1,2! element reads

L12~z!5 (
k51

N

f~q,z2tk!Ak
2 ,

hence the Leibniz rule yields

]L12~z!

]t j
5 (

k51

N S fu~q,z2tk!
]q

]t j
Ak

21f~q,z2tk!
]Ak

2

]t j
D 2f8~q,z2t j !Aj

2 ,

where

f8~u,z!5
]f~q,z!

]z
.

Note here that the last term on the right-hand side is equal to]M j ,12(z)/]z. Since the
t j -derivatives of the dynamical variables can be expressed as the Poisson bracket withHj @see
~21!#, the foregoing equation can be rewritten

]L12~z!

]t j
5$L12~z!,Hj%2

]M j ,12~z!

]z
.

Repeating similar calculations for the other matrix elements, we can eventually confirm tha

]L~z!

]t j
5$L~z!,Hj%2

]M j~z!

]z
.

We now turn on the constraint~20! and apply the previous calculation converting the Pois
bracket$L(z),Hj% to the commutator@L(z),M j (z)#. The outcome is the isomonodromic La
equation

]L~z!

]t j
5@L~z!,M j~z!#2

]M j~z!

]z
~26!

with an extra term on the right-hand side that breaks isospectrality of theL-matrix.
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IV. SPECTRAL CURVE AND DARBOUX COORDINATES

A. Spectral curve

The spectral curve is defined by the eigenvalue equation

det~wI2L~z!!50. ~27!

SinceL(z) is trace-free, the left-hand side can be rewritten as

det~wI2L~z!!5w21detL~z!5w22 1
2Tr L~z!2. ~28!

Under the constraint~20!, the matrix elements ofL(z) enjoy the following quasi-periodicity
along the period lattice of the torus:

L~z12mv112nv3!5e2(2mh112nh3)QL~z!e(2mh112nh3)Q, ~29!

where Q is the diagonal matrixQ5diag(q,2q), and h1 and h3 are the values ofz(z) at z
5v1 ,v3 . The quasiperiodicity ofL(z) is a consequence of the quasiperiodicity ofz(z) and
f(u,z),

z~z12mv112nv3!5z~z!12mh112nv3 , ~30!

f~u,z12mv112mv3!5e22mh122nh3f~u,z!, ~31!

which are easy to confirm from the property of the sigma function.
The quasiperiodicity ofL(z), in particular, implies the double periodicity of TrL(z)2/2,

which thereby becomes an elliptic function with poles atz5t1 ,...,tN . Since

L~z!5
Aj

z2t j
1O~1!

asz→t j , this elliptic function has a double pole atz5t j with the leading coefficient equal to th
quadratic Casimir

Cj5
1

2
Tr Aj

25
u j

2

4
~32!

of Aj . The residue is nothing but the HamiltonianHj . Thus TrL(z)2/2 can be expressed as

1

2
Tr L~z!25(

j 51

N

Cj`~z2t j !1(
j 51

N

Hjz~z2t j !1H0 , ~33!

whereH0 is a constant term~which however depends onv1 andv3). Also note that the Hamil-
tonians are not linearly independent, but obey the linear constraint

(
j 51

N

Hj50. ~34!

This is a consequence of the the double periodicity of TrL(z)2/2.
The spectral curve thus turns out to be a double covering of the torus. The branch poin

located above the~possibly multiple! 2N zeros of TrL(z)2/2. If these zeros are all simple, th
genus of the spectral curve is equal toN11. The spectral curve is time-dependent because of
extra term]M j (z)/]z on the right-hand side of the Lax equation.
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B. Spectral Darboux coordinates

The construction of spectral Darboux coordinates is parallel to the case of the rationa~and
isospectral! model.22 The ‘‘coordinate part’’l1 ,...,lN are defined as theN zeros~modulo the
period lattice! of L12(z),

L12~l j !50, ~35!

and the ‘‘momentum part’’m1 ,...,mN are defined to be the value ofL11(z) at these points,

m j5L11~l j !5p1 (
k51

N

z~l j2tk!Ak
3 . ~36!

In order to avoid a delicate problem, we assume throughout the following consideration thl j

Þlk if j Þk. It is easy to see that (l j ,m j ) sits on the spectral curve;L(l j ) takes the triangular
form

L~l j !5S mk 0

L21~l j ! 2mk
D ,

which implies that6m j are eigenvalues ofL(l j ).
The l j ’s are constrained by a linear relation. To see this, let us note thatL12(z) can be

factorized as

L12~z!5k
) j 51

N s~z2l j !

) j 51
N s~z2t j !

, ~37!

wherek is a constant that does not depend onz. The quasiperiodicity

L12~z12mv112nv3!5e2(2mh112nh3)qL12~z!

of L12(z) implies that its zerosl1 ,...,lN are constrained as

(
j 51

N

l j2(
j 51

N

t j[q mod 2v1Z12v3Z. ~38!

Since eachl j is defined only up to a difference by an element of the period lattice, let us red
l j ’s, if necessary, such that this holds without ‘‘mod 2v1Z12v3Z’’:

(
j 51

N

l j2(
j 51

N

t j5q. ~39!

Of course this will be valid only for alocal study of the system; this naive prescription has to
modified if one considers a global problem.

C. Time-dependent canonical transformation

In order to prove the canonicity of these variablesl j ,m j , we now restrict the spin variable
onto the direct productO13¯3ON of the symplectic leaves and use the parametrization~6! by
(xj ,j j ). Moreover, we tentatively relax the constraint~20!, which now takes the form

(
j 51

N

xjj j50, ~40!

and restore it in the final stage.
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The factorization relation~37! of L12(z) now reads

1

2 (
j 51

N

f~q,z2t j !xj
25k

Q~z!

P~z!
, ~41!

where we have introduced the two functions

Q~z!5)
j 51

N

s~z2l j !, P~z!5)
j 51

N

s~z2t j !. ~42!

This reduces to the relations

1

2
xj

25k
Q~ t j !

P8~ t j !
5k

)k51
N s~ t j2lk!

)kÞ js~ t j2tk!
~43!

of the residues of both sides atz5t j . These relations show how the old variablesxj are connected
with the new variablesl j ~and k!. By logarithmic differentiation, these relations can be furth
converted to the linear relations

2d logxj5d logk1 (
k51

N

d logs~ t j2lk!2(
kÞ j

d logs~ t j2tk!

5d logk1 (
k51

N

z~ t j2lk!~dt j2dlk!2(
kÞ j

z~ t j2tk!~dt j2dtk! ~44!

of differential forms.
Our goal is to derive a relation between the canonical one-forms( j 51

N j jdxj1pdq and
( j 51

N m jdl j . We first multiply the both sides of the last relation byxjj j /2, sum over j
51,...,N, and addpdq to both sides. We then obtain the linear relation

(
j 51

N

j j dxj1pdq5
1

2 (
j 51

N

xjj jd logk1
1

2 (
j ,k51

N

xjj jz~ t j2lk!~dt j2dlk!

2
1

2 (
j Þk

xjj jz~ t j2tk!~dt j2dtk!1pdq.

On the other hand, by differentiating~39!, we have the relation

dq5(
j 51

N

dl j2(
j 51

N

dt j ,

which we can use to eliminate the differential dq on the right-hand side of the foregoing line
relation of one-forms. The right-hand side thereby becomes a linear combination of d logk, dl j ’s,
and dt j ’s, and the coefficient of dl j turns out to be equal tom j by ~36!. We thus eventually find
that

(
j 51

N

j jdxj1pdq5
1

2 (
j 51

N

xjj jd logk1(
j 51

N

m jdl j2p(
j 51

N

dt j1
1

2 (
j ,k51

N

xjj jz~ t j2lk!dt j

2
1

2 (
j Þk

xjj jz~ t j2tk!~dt j2dtk!. ~45!
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Equation ~45! shows thatl j and m j are Darboux coordinates of the canonical one-fo
( j 51

N j j dxj1pdq, and that logk is a conjugate variable of the left-hand side of constraint~40!.
This interpretation is fully parallel to the spectral description of rational isospectral systems16–18

An essential difference lies in the fact that the time variables explicitly enter the rel
between the two canonical one-forms. This means that the spectral Darboux coordina
connected with the old variables (xj ,j j ,q,p) by a time-dependentcanonical transformation. Ac
cordingly, the Hamiltonians~which is denoted byH j in the following! in the spectral Darboux
coordinates differ from the HamiltoniansHj in the old variables (xj ,j j ,q,p). Their relation is to
be determined by the fundamental formula

(
j 51

N

j jdxj1pdq2(
j 51

N

Hjdt j5(
j 51

N

m jdl j2(
j 51

N

H jdt j , ~46!

in which we have imposed the constraint~40!. More explicitly, the new Hamiltonians are define
as

H j5Hj1p2
1

2
xjj j S (

k51

N

z~ t j2lk!2(
kÞ j

z~ t j2tk!D 1
1

2 (
kÞ j

z~ t j2tk!xkjk . ~47!

The goal of Sec. V is to rewrite the right-hand side in terms of the spectral Darboux coordi

V. HAMILTONIAN SYSTEM IN SPECTRAL DARBOUX COORDINATES

A. Linear equations characterizing Hamiltonians

Let us recall that the pairs (l j ,m j ) of the spectral Darboux coordinates all sit on the spec
curve. Therefore the equations

mk
25(

j 51

N

Cj`~lk2t j !1(
j 51

N

Hjz~lk2t j !1H0

are satisfied fork51,...,N. These equations, along with the linear constraint~34!, may be thought
of as a system of linear equations that determineHj ’s. In fact, as we shall discuss afterwards, the
linear equations can be solved forHj ’s, which thereby becomes an explicit function of the spec
Darboux coordinates~and of the time variables!.

If the system in consideration were an isospectral system~such as the Moser system or th
usual Calogero–Gaudin system!, the time variables would not appear here explicitly, andHj ’s
would be the Hamiltonians that we have sought. The only problem would have been to sol
foregoing linear equations forHj . This is, actually, what Brzezin´ski22 and Enriquezet al.23 did in
their work on separation of variables of the SU~2! Calogero–Gaudin system.

In the present case, the true Hamiltonians arenot Hj ’s but Hj ’s. We have to rewrite the extra
terms on the right-hand side of~47!, too, as a function of the spectral Darboux coordinates. T
is another problem that we have to solve.

To this end, let us note that the defining equation~36! of m j , which can be rewritten as

mk5(
j 51

N

z~lk2t j !
xjj j

2
1p,

may be thought of as a system of linear equations forp and xjj j /2. If one can solve these
equations forp andxjj j /2, the solution should be an expression ofp andxjj j /2 as a function of
the spectral Darboux coordinates. Remarkably, these linear equations have the same coeffic
the foregoing linear equations forH0 andHj . Moreover,xjj j /2 obey the linear constraint~40!, in
perfect analogy with the linear constraint~34! for Hj .
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Thus the two problems, one forHj and the other for the extra terms in~47!, can be reduced
to a single problem, namely, solving a system of linear equations of the form

(
j 51

N

z~lk2t j !Xj1X05bk ~k51,...,N!,

~48!

(
j 51

N

Xj50.

As we shall show in the following, this system of linear equations has a unique and ex
solution.

B. Solution of linear equations

We assume thatqÓ0 mod 2v1Z12v3Z or, equivalently,s(q)Þ0. The following ensures the
uniqueness of solution of~48!.

Lemma 1: If bj5¯5bN50, then X05X15¯5XN50.
Proof: Consider the function

f ~z!5(
j 51

N

z~z2t j !Xj1X0 .

The first N equations of~48! imply that f (z) has zeros atz5l1 ,...,lN . The remaining one
ensures thatf (z) is a doubly periodic meromorphic function on thez plane. All possible poles are
obviously simple and confined toz5t1 ,...,tN and their translations by the period lattice. The
fore, if f (z) is not identically zero, the zerosl j and the polest j are constrained as

(
j 51

N

l j2(
j 51

N

t j[0 mod 2v1Z12v3Z,

but this contradicts the assumption thatqÓ0; recall the constraint~39!. Thus f (z) is identically
zero, and all the coefficientsX0 ,X1 ,...,XN have to be zero. Q.E.D

Having proven the uniqueness, the problem is to find a solution by any means. This c
done with the aid of an elliptic analogue of Lagrange’s interpolation formula~see Appendix A!.

Lemma 2: A solution of (48) is given by

Xj5 (
k51

N
Q~ t j !P~lk!s~ t j2lk1q!bk

P8~ t j !Q8~lk!s~ t j2lk!s~q!
, ~49!

X052 (
j ,k51

N
Q~ t j !P~lk!s~ t j2lk1q!z~lk2t j2q!bk

P8~ t j !Q8~lk!s~ t j2lk!s~q!
. ~50!

Proof: We have only to confirm that theseXj andX0 do satisfy~48!. The last equation of~48!
is indeed satisfied as~A1! shows. As regards the other equations of~48!, the main task is to
calculate

(
j 51

N

z~l l2t j !Xj5 (
k51

N S (
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
z~l l2t j !D P~lk!bk

Q8~lk!s~q!
.

We can use the two identities~A3! and~A4! to rewrite the sum overj on the right-hand side, and
find that
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(
j 51

N

z~l l2t j !Xj5 (
k, j 51

N
Q~ t j !P~lk!s~ t j2lk1q!z~lk2t j2q!bk

P8~ t j !Q8~lk!s~ t j2lk!s~q!
1bl52X01bl ,

which is nothing but the firstN equations of~48!. Q.E.D.

C. Writing Hj explicitly

Let us apply the foregoing formulas~49! and ~50! of solution of ~48! to the problem of
deriving an explicit form ofH j as a function of the spectral Darboux coordinates.

If we use the formulas to the case where

Xj5Hj , X05H0 , bk5mk
22(

l 51

N

Cl`~lk2t l !,

we find the following expression ofHj andH0 :

Hj5(
j 51

N
Q~ t j !P~lk!s~ t j2lk1q!

P8~ t j !Q8~lk!s~ t j2lk!s~q! S mk
22(

l 51

N

Cl`~lk2t l !D , ~51!

H052 (
j ,k51

N
Q~ t j !P~lk!s~ t j2lk1q!z~lk2t j2q!

P8~ t j !Q8~lk!s~ t j2lk!s~q! S mk
22(

l 51

N

Cl`~lk2t l !D . ~52!

Similarly, if we use the formulas in the case where

Xj5
1
2 xjj j , X05p, bk5mk ,

we find the following expression ofxjj j /2 andp as a function of the spectral Darboux coordinat

1

2
xjj j5 (

k51

N
Q~ t j !P~lk!s~ t j2lk1q!mk

P8~ t j !Q8~lk!s~ t j2lk!s~q!
, ~53!

p52 (
j ,k51

N
Q~ t j !P~lk!s~ t j2lk1q!z~lk2t j2q!mk

P8~ t j !Q8~lk!s~ t j2lk!s~q!
. ~54!

Thus we have been able to rewrite each term on the right-hand side of~47! to an explicit function
of the spectral Darboux coordinates.

Although the extra terms on the right-hand side of~47! still appear to be in disorder, one ca
see by straightforward calculations~see Appendix B! that the sum of these terms boils down to
form similar to the foregoing expression ofHj :

p2
1

2
xjj j S (

k51

N

z~ t j2lk!2(
kÞ j

z~ t j2tk!D 1
1

2 (
kÞ j

z~ t j2tk!xkjk

5 (
k51

N
Q~ t j !P~lk!s~ t j2lk1q!

P8~ t j !Q8~lk!s~ t j2lk!
~z~ t j2lk1q!2z~ t j2lk!!mk . ~55!

Combining these results, we obtain the following expression ofH j in terms of the spectra
Darboux coordinates:
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H j5 (
k51

N
Q~ t j !P~lk!s~ t j2lk1q!

P8~ t j !Q8~lk!s~ t j2lk!s~q!

3S mk
21~z~ t j2lk1q!2z~ t j2lk!!mk2(

l 51

N

Cl`~lk2t l !D . ~56!

Eliminating q by ~39!, we eventually obtain a final expression of the Hamiltonians:

H j5 (
k51

N
Q~ t j !P~lk!s~( lÞkl l2( lÞ j t l !

P8~ t j !Q8~lk!s~ t j2lk!s~( l 51
N l l2( l 51

N tl !

3S mk
21~z~ t j2lk1q!2z~ t j2lk!!mk2(

l 51

N

Cl`~lk2t l !D . ~57!

In summary, we have proven the following.
Theorem 1: The isomonodromicSU~2! Calogero–Gaudin system can be converted to t

nonautonomous Hamiltonian system

]lk

]t j
5

]H j

]mk
,

]mk

]t j
52

]H j

]l j
~58!

in the spectral Darboux coordinatesl j ,m j . The Hamiltonians are given by (57).

VI. RELATION TO SECOND-ORDER SCALAR ODE

A. Deriving second-order ODE

The structure of the HamiltoniansH j is very similar to Okamoto’s Hamiltonians for isomono
dromic deformations of a scalar ODE on a torus.8 This is not a coincidence, but can be explain
in the same way as the case of the 232 Schlesinger system.6

A clue is the fact that any 232 matrix system

dY

dz
5L~z!Y, Y5S y1

y2
D ,

yields a second-order scalar ODE of the form

d2y1

dz2 1p1~z!
dy1

dz
1p2~z!y150. ~59!

The coefficientsp1(z) andp2(z) of the latter are determined by the matrixL(z) as follows:

p1~z!52Tr L~z!2~ logL12~z!!8, ~60!

p2~z!5detL~z!2L118 ~z!1L11~z!~ logL12~z!!8. ~61!

In our case,L(z) is trace-free, so that the foregoing formulas ofp1(z) andp2(z) become slightly
simpler: First,p1(z) can be written explicitly as

p1~z!52~ logL12~z!!852(
j 51

N

z~z2l j !1(
j 51

N

z~z2t j !, ~62!

which implies thatp1(z) is doubly periodic. Second,p2(z) is also doubly periodic~as the quasi-
periodicity of the matrix elements ofL(z) implies!, and given by
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p2~z!52 1
2Tr L~z!22L118 ~z!1L11~z!~ logL12~z!!8.

One can see from this formula thatp2(z) has simple poles atz5l j and double poles atz5t j . Let
us expressp2(z) as

p2~z!5(
j 51

N

a j`~z2t j !1(
j 51

N

b jz~z2t j !1(
j 51

N

g jz~z2l j !1d ~63!

and determine the coefficients by Laurent expansion at the poles.
~1! The first coefficienta j can be read off from the (z2t j )

22 term of the Laurent expansio
of 2Tr L(z)2/2:

a j52Cj52Tr Aj
2/2. ~64!

~2! The second coefficientb j is the residue ofp2(z) at z5t j . The termL118 (z) does not
contribute to the residue. The residue of the other terms atz5t j can be expressed as

2Res
z5t j

1
2Tr L~z!252Hj

and

Res
z5t j

L11~z!~ logL12~z!!852p2
1

2 (
kÞ j

z~ t j2tk!xkjk1
1

2
xjj j S (

k51

N

z~ t j2lk!2(
kÞ j

z~ t j2tk!D .

As ~47! shows, the sum of these two quantities is equal to2H j . Therefore

b j5Res
z5t j

p2~z!52H j . ~65!

~3! The thrid coefficientg j is the residue ofp2(z) at z5l j . Since

2 Res
z5l j

1
2Tr L~z!250

and

Res
z5l j

L11~z!~ log L12~z!!85L11~l j !5m j ,

g j can be expressed as

g j5 Res
z5l j

p2~z!5m j . ~66!

Thus the HamiltoniansH j and the ‘‘momenta’’m j can be identified with the residues ofp2(z).
Exactly the same relation can be seen in the case of Garnier’s isomonodromic system on a s6

B. Another form of second-order ODE

Strictly speaking, however, the second-order ODE above differs from that of Okamoto8 and
Kawai,9 who consider a linear ODE of the form

d2y

dz2 1p~z!y50. ~67!
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At least formally, this discrepancy can be removed by the ‘‘gauge transformation’’

y15expS 2 1
2Ez

p1~z!dzD y. ~68!

The coefficientp(z) is given by

p~z!52 1
2 p18~z!2 1

4 p1~z!21p2~z!. ~69!

Note, however, that this is actually a delicate procedure, because the gauge transformatio
spoil the isomonodromic property. Fortunately, the present case is free from this problem
gauge transformation takes the form

y15S ) j 51
N s~z2l j !

) j 51
N s~z2t j !

D 1/2

y, ~70!

and since the factor in front ofy has constant monodromy, the isomonodromic property is p
served by the gauge transformation.

The zeroth order termp(z) of the transformed ODE is a doubly periodic meromorphic fun
tion with second-order poles atz5l j ,t j . The residues ofp(z) at these poles can be readi
determined:

Res
z5l j

p~z!5m j22(
k51

N

z~l j2tk!12(
kÞ j

z~l j2lk!, ~71!

Res
z5t j

p~z!52H j22(
k51

N

z~ t j2lk!12(
kÞ j

z~ t j2tk!. ~72!

It is rather these quantities that Okamoto8 and Kawai9 use as Hamiltonians and conjugate variab
of l j ’s. We can indeed reformulate our Hamiltonian system in that way. Namely, if we defin

n j5 Res
z5l j

p~z!, K j52Res
z5t j

p~z!, ~73!

these quantities satisfy

(
j 51

N

m jdl j2(
j 51

N

H jdt j5(
j 51

N

n jdl j2(
j 51

N

K jdt j1exact form. ~74!

This implies thatl j ’s and n j ’s are a new set of Darboux coordinates, and that the prev
Hamiltonian system is now converted to the new Hamiltonian system

]lk

]t j
5

]K j

]nk
,

]nk

]t j
52

]K j

]l j
. ~75!

C. Reconstructing 2 Ã2 matrix system

Let us now consider the inverse problem. Namely, given the isomonodromic deformatio
the second-oder scalar ODE above, the problem is to reconstruct a 232 matrix system. A similar
problem is discussed by Okamoto~Ref. 6, Sec. 3! in the case of isomonodromic deformations
a sphere. One can mostly follow his method. As it turns out, theL-matrix L(z) can be recon-
structed by an algebraic procedure once the factork is determined. The factork, on the other hand
has to be determined by a set of differential equations.
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Suppose thatk has been determined. The first step of reconstruction ofL(z) is to reconsider
~37! and~39! asdefinitionof L12(z) andq. Aj

2 andq are thus reproduced. Second, letL11(z) be
a function of the form

L11~z!5p1(
j 51

N

f~q,z2t j !Aj
3 ~76!

that satisfies the interpolation relationsL11(l j )5m j for j 51,...,N. As we have seen in Sec. V
these relations can be solved forAj

3 and p under the constraint( j 51
N Aj

350. The remaining
variablesAj

1 can be reproduced by

Aj
15

u j
224~Aj

3!2

4Aj
2 ~77!

as ~6! shows. One can thus reconstructL(z) from the fundamental variablesl j ,m j ,t j of the
isomonodromic deformations of the second-order scalar ODE.

To derive a set of differential equations fork, we start from the differential equations

]Ak

]t j
5@Ak ,M j~ tk!# ~ j Þk!, ~78!

which is a consequence of the Lax equation~26!. The ~1,2! component of this matrix equatio
reads

]Ak
2

]t j
52f~q,tk2t j !Aj

2Ak
322z~ tk2t j !Aj

3Ak
2 . ~79!

After long and messy calculations~which we omit!, one can derive the following intricate differ
ential equation fork:

] logk

]t j
5

Q~ t j !

P8~ t j !
(
,51

N
P~l,!s~ t j2l,1q!

Q8~l,!s~ t j2l,!s~q!
~2~z~ t j2l,1q!2z~q!!m,

1z~ t j2l,!~z~ t j2l,1q!2z~ t j2l,!!!2(
,Þ j

z~ t j2t,!1 (
,51

N

z~ t j2l,!. ~80!

VII. CONCLUSION

We have applied the method of spectral Darboux coordinates to Korotkin and Samtle
isomonodromic system on a torus.10 The isomonodromic system has thus been converted
nonautonomous Hamiltonian system in the spectral Darboux coordinates. Although the Ha
nians turn out to be a considerably intricate function, the method we have used is a
straightforward analogue of the usual method for isomonodromic deformations on a spher

Our nonautonomous Hamiltonian system may be thought of as an elliptic analogue of G
er’s isomonodromic systems.2,4,6 Almost the same system has been derived by Okamoto f
isomonodromic deformations of a second-order scalar ODE on a torus.8 We have seen how thes
two systems are related. Speaking differently, our approach from a 232 matrix system reveals a
hidden algebro-geometric meaning of the Hamiltonian structure in Okamoto’s work.6

An important lesson of the present work is that the notions of spectral curve and sp
Darboux coordinates persist to be useful and essential beyond isospectral deformation
observation lies in the heart of the work of Harnad and Wisse.18 We have confirmed it for an
example of isomonodromic deformations on a torus.
                                                                                                                



been

em is
se for

l ana-
romic

ond-
f the

t is the
-
model.

rk is

3996 J. Math. Phys., Vol. 44, No. 9, September 2003 Kanehisa Takasaki

                    
In this respect, an interesting problem is to describe the isomonodromic SU~2! pure Gaudin
system12,14from the same point of view. Separation of variables of the isospectral partner has
studied by Sklyanin and Takebe28 ~see also the paper of Hurtubise and Kjiri29 for geometric
aspects!. The work of Sklyanin and Takebe shows that separation of variables of this syst
technically far more complicated than the Calogero–Gaudin system. This will be also the ca
the isomonodromic analogue.

Let us conclude the present consideration with a remark on trigonometric and rationa
logues. The trigonometric and rational analogues of Korotkin and Samtleben’s isomonod
deformations can be obtained by replacing the basic functionss(z), z(z), and f(u,z) by the
following trigonometric or rational functions.

~1! Trigonometric model:

s~z!5sinz, z~z!5
cosz

sinz
, f~u,z!5

cosz

sinz
2

cosu

sinu
. ~81!

~2! Rational model:

s~z!5z, z~z!5
1

z
, f~u,z!5

1

z
2

1

u
. ~82!

A hyperbolic model will be obtained if one replaces the trigonometric functions by the corresp
ing hyperbolic functions. These are nothing but the well-known pattern of degeneration o
Calogero–Moser systems; the Calogero–Gaudin systems, too, obey this pattern. In fact, i
rational model in this list that Brzezin´ski considered in his work.22 One can formulate an isomono
dromic partner of these degenerate Calogero–Gaudin systems as in the case of the elliptic
Presumably, those isomonodromic systems will not be known in the literature.
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APPENDIX A: INTERPOLATION FORMULA

Let us examine the auxiliary function

f k~z!5
Q~z!s~z2lk1q!

P~z!s~z2lk!
.

This is a doubly periodic meromorphic function with simple zeros atl j ( j Þk) and lk2q and
simple poles att j ( j 51,...,N). By the residue theorem, the residues

Res
z5t j

f k~z!5
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!

at the polesz5t j obey the sum-to-zero constraint

(
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
50. ~A1!

Let us consider the linear combination
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(
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
z~z2t j !

of z(z2t j ) weighted by these residues. Since this function is a doubly periodic meromo
function with the same set of simple poles and residues asf k(z), it differs from f k(z) by at most
a constant:

Q~z!s~z2lk1q!

P~z!s~z2lk!
5(

j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
z~z2t j !1constant.

Moreover, since the left-hand side vanishes atz5lk2q, the constant term on the right-hand sid
can be easily determined as follows:

constant52(
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
z~lk2t j2q!.

We thus obtain the interpolation formula

Q~z!s~z2lk1q!

P~z!s~z2lk!
5(

j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
~z~z2t j !2z~lk2t j2q!!. ~A2!

One can derive the following three identities from this interpolation formula.
~1! Since the left-hand side of the interpolation formula vanishes atz5l l ( lÞk),

(
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
~z~l l2t j !2z~lk2t j2q!!50 ~ lÞk!. ~A3!

~2! By letting z→lk in the interpolation formula,

(
j 51

N
Q~ t j !s~ t j2lk1q!

P8~ t j !s~ t j2lk!
~z~lk2t j !2z~lk2t j2q!!5

Q8~lk!s~q!

P8~lk!
. ~A4!

~3! By replacingk→ l , j→k and separating a term from the sum, the interpolation form
takes the form

(
kÞ j

Q~ tk!s~ tk2l l1q!

P8~ tk!s~ tk2l l !
z~z2tk!5

Q~z!s~z2l l1q!

P~z!s~z2l l !
2

Q~ t j !s~ t j2l l1q!

P8~ t j !s~ t j2l l !
z~z2t j !

1 (
k51

N
Q~ tk!s~ tk2l l1q!

P8~ tk!s~ tk2l l !
z~l l2tk2q!.

By letting z→t j ,

(
kÞ j

Q~ tk!s~ tk2l l1q!

P8~ tk!s~ tk2l l !
z~ t j2tk!

5
Q~ t j !s~ t j2l l1q!

P8~ t j !s~ t j2l,! S 2
1

2

P9~ t j !

P8~ t j !
1

Q8~ t j !

Q~ t j !
2z~ t j2l l !1z~ t j2l l1q! D

1 (
k51

N
Q~ tk!s~ tk2l l1q!

P8~ tk!s~ tk2l l !
z~l l2tk2q!. ~A5!
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APPENDIX B: CALCULATION OF EXTRA TERMS IN „47…

Let us use~53! to rewrite the last piece on the right-hand side of~47! as

1

2 (
k51

N

z~ t j2tk!xkjk5(
l 51

N S (
kÞ j

Q~ tk!s~ tk2l l1q!

P8~ tk!s~ tk2l l !
z~ t j2tk! D P~l l !m l

Q8~l l !s~q!
.

The sum overkÞ j arising here has been partially calculated in~A5!. Using the identities

1

2

P9~ t j !

P8~ t j !
5(

kÞ j
z~ t j2tk!,

Q8~ t j !

Q~ t j !
5 (

k51

N

z~ t j2lk!

on the right-hand side of~A5!, one can rewrite the foregoing quantity as

1

2 (
k51

N

z~ t j2tk!xkjk5(
l 51

N
Q~ t j !P~l l !s~ tk2l l1q!m,

P8~ t j !Q8~l l !s~ t j2l l !s~q! S 2(
kÞ j

z~ t j2tk!1 (
k51

N

z~ t j2lk!D
1(

l 51

N
Q~ t j !P~l l !s~ tk2l l1q!

P8~ t j !Q8~l l !s~ t j2l l !s~q!
~z~ t j2l l1q!2z~ t j2l l !!m,

1 (
k,l 51

N
Q~ tk!P~l l !s~ tk2l l1q!z~l l2tk2q!m l

P8~ tk!Q8~l l !s~ tk2l l !s~q!
.

By ~53! and ~54!, the first and third lines on the right-hand side turn into the following form:

first line52
1

2
xjj j S (

Þ j
z~ t j2tk!2 (

k51

N

z~ t j2lk!D ,

third line52p.

Since the sum of these two cancels the second and third pieces on the right-hand side of~47!, we
eventually obtain the identity

p2
1

2
xjj j S (

k51

N

z~ t j2lk!2(
kÞ j

z~ t j2tk!D 1
1

2 (
kÞ j

z~ t j2tk!xkjk

5(
l 51

N
Q~ t j !P~l l !s~ t j2l l1q!

P8~ t j !Q8~l l !s~ t j2l l !s~q!
~z~ t j2l l1q!2z~ t j2l l !!m l ,

which is nothing but~55!.
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The multilinear variable separation approach and the related ‘‘universal’’ formula
have been applied to many (211)-dimensional nonlinear systems. Starting from
the universal formula, abundant (211)-dimensional localized excitations have
been found. In this paper, the universal formula is extended in two different ways.
One is obtained for the modified Nizhnik–Novikov–Veselov equation such that
two universal terms can be combined linearly and this type of extension is also
valid for the (211)-dimensional symmetric sine-Gordon system. The other is for
the dispersive long wave equation, the Broer–Kaup–Kupershmidt system, the
higher order Broer–Kaup–Kupershmidt system, and the Burgers system where
arbitrary number of variable separated functions can be involved. Because of the
existence of the arbitrary functions in both the original universal formula and its
extended forms, the multivalued functions can be used to construct a new type of
localized excitations, folded solitary waves~FSWs! and foldons. The FSWs and
foldons may be ‘‘folded’’ in quite complicated ways and possess quite rich struc-
tures and multiplicate interaction properties. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1598619#

I. INTRODUCTION

In nonlinear science, soliton theory plays an essential role and has been applied in alm
the natural sciences especially in all the physical branches such as fluid physics, condensed
biophysics, plasma physics, nonlinear optics, quantum field theory and particle physics,1–7

Most of the previous studies on soliton theory especially in high dimensions are restricted
single valued situations. However, in various cases, the real natural phenomena are too intr
describe only by virtue of the single valued functions. For instance, in nature, there exis
complicated folded phenomena such as the folded protein,8 folded brain and skin surfaces, an
many other kinds of folded biologic systems.9 The simplest multivalued~folded! waves may be
the bubbles on~or under! a fluid surface. Various ocean waves are really folded waves, too
course, at present stage, it is impossible~and we have no ambitions! to make satisfactory analytic
descriptions for such complicated folded natural phenomena. But, it is still worth starting
some simpler cases.

Similar to the single valued cases, the primary question we should~and we can! ask is: Are
there any stable multivalued~folded! localized excitations? For convenience later, we define
multivalued localized excitations as folded solitary waves~FSWs!. Furthermore, if the interaction

a!Electronic mail: sylou@sjtu.edu.cn
40000022-2488/2003/44(9)/4000/26/$20.00 © 2003 American Institute of Physics
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among FSWs are completely elastic, we call them foldons. In (111)-dimensional case, the
simplest foldons are so-called loop solitons10 which have been found in many (111)-dimensional
integrable systems10 and applied in some possible physical fields like the string interaction
external field,11 quantum field theory,12 and particle physics.13 Nonetheless, within our knowledge
there is no study at all for the possible higher dimensional foldons.

Lately, the multilinear variable separation approach~MLVSA ! has been developed well fo
many (211)-dimensional integrable systems14 such as the Davey–Stewartson~DS! equation,15,16

the Nizhnik–Novikov–Veselov~NNV! equation,17 the asymmetric NNV~ANNV ! equation,18 the
asymmetric DS~ADS! equation,19 the dispersive long wave equation~DLWE!,20,21 the Broer–
Kaup–Kupershmidt ~BKK ! system,22 the higher order BKK system,23 the nonintegrable
(211)-dimensional Korteweg–de Vries~KdV! equation,24 the long wave–short wave interactio
model~LWSWIM!,25 the Maccari system,26 the Burgers equation,27 the (211)-dimensional sine-
Gordon~2DsG! system,28 and the general (N1M )-component AKNS system.29 We call all these
models the MLVSA solvable models. Using the MLVSA results, we have found that the form

U[
22Dqypx

~a01a1p1a2q1a3pq!2 , D[a0a32a1a2 , ~1!

is valid for suitable fields or potentials of all the above-mentioned models. In Eq.~1!, p
[p(x, t) is an arbitrary function of$x, t%, q[q(y, t) may be either an arbitrary function fo
some kinds of models such as the DS system, the NNV system, and the 2DsG system
arbitrary solution of a Riccati equation~or heat conduction equation! for some other systems,a0 ,
a1 , a2 , anda3 are constants. One of the most important results obtained from~1! is that all the
known MLVSA solvable models possess quite rich localized excitations such as the sol
dromions, lumps, breathers, instantons, ring solitons, peakons, compactons, localized chao
fractal patterns, and so on.14

In the universal formula~1!, the appearance of the arbitrary functionp ~andq for some of the
MLVSA solvable models! is closely related to the arbitrary boundary conditions of some type
the quantities for the related models. In some celebrated papers, the effects of arbitrary bo
conditions have been considered for some (211)-dimensional integrable systems.30–34 For in-
stance, Fokas and Santini30–32had investigated the exact solutions of the DS system with arbit
boundary data by means of the most powerful and fruitful method, the inverse scattering
formation. The similar treatment for the 2DsG system was given by Konopelchenko
Dubrovsky.33,34 One of the interesting results obtained by Fokas and Santini is worth mentio
again here: The localized traveling solutions, say, dromions, do not preserve their form
interaction and hence exchange energy. Only for a special choice of the spectral parame
these solutions preserve their forms. This kind of result had been found also for
(211)-integrable models. In fact, the non-complete elastic interaction property among t
11)-dimensional localized excitations is correct for all the MLVSA solvable models becau
the validity of ~1!. In this paper, the necessary and sufficient conditions on the selections o
arbitrary functions appearing in the universal formula~1! ~and its extended forms! for the com-
pletely elastic interaction will be given.

On the other hand, following the general ideas introduced in Ref. 30, one could, in prin
investigate the stability properties of the solutions presented in this paper and their releva
asymptotic states for suitable initial boundary value problems. However, here, we study on
interaction behavior among the localized solutions by studying the asymptotic property o
universal formula~1! and its extensions because these formulas are valid for more than
system.

In Sec. II of this paper, the MLVSA is extended for the modified NNV~MNNV ! system and
the 2DsG system. Compared with the other known MLVSA solvable models, the variable
ration solutions of these two systems display a new phenomenon, Two solutions expressed
universal quantity~1! can be added linearly to generate a new solution under some specia
ditions. In the linear case, any number of variable separation solutions can be linearly supe
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to yield new solutions of the same system. Thus, naturally, there comes another importan
tion, whether the ‘‘universal’’ formula can be extended in a way that more variable sepa
functions are included. In Sec. III A, we extend the ansatz of the MLVSA to get an extended
of the universal formula~1! for the (211)-dimensional DLWE. Whence the universal formula
extended to a general form for a particular system, one will ask whether the extended form
valid for the other systems. In the Secs. III B, III C, and III D, the extended formula is dem
strated valid at least for three other nonlinear systems, the BKK system, the higher order
system, and the (211)-dimensional Burgers system. In Sec. IV, starting from the universal
mula and its extended forms, a new type of localized excitations, FSWs and foldons, are dis
in detail. Section V is devoted to investigating the interaction properties both for the ge
localized excitations and the particular types of FSWs and foldons. The last section is a
summary and discussion. Some special results of this paper have already been reported
previous brief report.35

II. THE FIRST TYPE OF EXTENSION OF THE MLVSA

A. The variable separation solution for the MNNV system

In this section, we apply the MLVSA to a new example, the MNNV system,36

ut1uxxx1uyyy1s2ux
31s2uy

313uxvxx13uyvyy50, ~2!

vxy1s2uxuy50, ~3!

which is a main member of the MNNV hierarchy associated with the generalized Lame´ system.37

In ~2! and~3!, s2561. We call the system~2!–~3! the MNNV I for s2521 and the MNNV II
for s251. The 2DsG system is just the negative member of the MNNV I hierarchy.38 In Ref. 39,
the geometrical significance of the MNNV I system is established. The binary Darboux tran
mation of the MNNV I is constructed in Ref. 40.

The first step of the MLVSA is to transform the original model into a general multilinear f
by means of the Painleve´ Bäcklund transformation. For the MNNV system, through the stand
leading order analysis and the truncated expansion approach of the Weiss–Tabor–Carneva
levé analysis,41 we find that the following Painleve´ Bäcklund transformation

u56s ln
f

g
1u0 , ~4!

v52 ln~ f g!1v0 , ~5!

where$u0 ,v0% is an arbitrary known seed solution of the MNNV system, changes the mode
bilinear equation system

~Dt1Dx
31Dy

313v0xxDx13v0yyDy! f •g1@s2~u0x
2 Dx1u0y

2 Dy!6s21~u0xDx
26u0yDy

2!# f •g50,
~6!

@sDxDy6u0yDx6u0xDy# f •g50, ~7!

where the Hirota’s bilinear operatorsDx , Dy , Dt are defined by

Dx
nDy

mDt
kf •g[]e1

n ]e2

m ]e3

k f ~x1e1 ,y1e2 ,t1e3!g~x2e1 ,y2e2 ,t2e3!ue150,e250,e350 . ~8!

The second key step of the MLVSA is to take a suitable variable separation ansatz suc
the space variable can be separated into different functions.

Compared with the universal formula~1! of the other MLVSA solvable models, the variab
separation ansatz for the bilinear MNNV system~6! and ~7! can be taken as
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f 5a01a1p1a2q1a3pq, ~9!

g5b01b1p1b2q1b3pq, ~10!

wherep[p(x, t) is y-independent,q[q(y, t) is x-independent, andai , bi ( i 50, . . . , 3) are
taken as constants here though they may bet-dependent.

The third step of the MLVSA is to select some types of seed solutions for the sake of incl
as many arbitrary functions as possible. It is straightforward that, for the MNNV system~2! and
~3!,

u050, v05v1~x, t !1v2~y, t ! ~11!

with arbitrary functionsv1(x, t)[v1 , v2(y, t)[v2 is one of the appropriate seed solutions.
Now we come to the final step of obtaining the variable separation solution to the MN

system. Substituting~9!–~11! into Eq. ~7! yields a simple relation among constantsai , bi , i
50, . . . , 3,

b3a01a3b02a1b22a2b150. ~12!

Thereafter, due to~9!–~12!, Eq. ~6! becomes

qt1qyyy13v2yyqy

~a3b22a2b3!q212~a3b02a2b1!q1a1b02a0b1

52
pt1pxxx13v1xxpx

~a3b12a1b3!p212~a3b02a1b2!p1a2b02a0b2
. ~13!

Because the left of~13! is x-independent and the right isy-independent,~13! is correct iff ~if and
only if!

pt1pxxx13v1xxpx52c~ t !@~a1b32a3b1!p212~a1b22a3b0!p1a0b22a2b0#, ~14!

qt1qyyy13v2yyqy5c~ t !@~a3b22a2b3!q212~a3b02a2b1!q1a1b02a0b1#, ~15!

wherec(t) is an arbitrary function oft.
For any fixedv1 andv2 , to solve~14! and ~15! is still very difficult since the terms,q2 and

p2, imply the nonintegrability.42 However, thanks to the arbitrariness of the functionsv1 andv2 ,
we can treat the problem in an alternative way: consideringp andq to be arbitrary functions, then
v1 andv2 can be solved from~14! and ~15!,

v1xx52
1

3px
$pt1pxxx1c~ t !@~a3b12a1b3!p212~a3b02a1b2!p1a2b02a0b2#%, ~16!

v2yy52
1

3qy
$qt1qyyy2c~ t !@~a3b22a2b3!q212~a3b02a2b1!q1a1b02a0b1#%. ~17!

Till now, the variable separation solution of the MNNV system is obtained

u56s ln
a01a1p1a2q1a3pq

b01b1p1b2q1b3pq
, ~18!

v52 ln@~a01a1p1a2q1a3pq!~b01b1p1b2q1b3pq!#1v11v2 ~19!

with arbitrary functionsp and q, the constant relation~12!, and the functionsv1 and v2 deter-
mined by~16! and ~17!.
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It is known that the localized excitations and the universal quantityU expressed by~1! are
related to the different quantities for different models. For instance, for the DS system,

iut1
1
2 ~uxx1uyy!1auuu2u2uv50, ~20!

vxx2vyy22a~ uuu2!xx50, ~21!

the universal quantity~1! is valid for the quantityauuu2, i.e., auuu25U, whereas, for the NNV
equation,

ut2auxxx2buyyy13a~uv !x13b~uw!y50, ~22!

ux5vy , ~23!

uy5wx , ~24!

the fieldu itself can be expressed by the universal quantity, say,u5U.
As for the MNNV system ~2! and ~3!, it is interesting to consider the potentia

F([22uxy /s) andG([22vxy),

F56H 2~a1a22a0a3!pxpy

~a01a1p1a2q1a3pq!2 2
2~b1b22b0b3!pxpy

~b01b1p1b2q1b3pq!2J [6~Ua2Ub!, ~25!

G5H 2~a1a22a0a3!pxpy

~a01a1p1a2q1a3pq!2 1
2~b1b22b0b3!pxpy

~b01b1p1b2q1b3pq!2J [Ua1Ub . ~26!

In Eqs. ~25! and ~26!, each one ofUa and Ub is rightly the universal quantity~1!, which
reveals two universal terms~every term is a solution of the MNNV system! can be combined
linearly for the potentialsF andG. The nonlinearity of the model is implied by the relation~12!
among the constants inUa andUb and the opposite sign of the term,Ub , in Eqs.~25! and ~26!.

B. The variable separation solution for the 2DsG system

In Ref. 28, one of the present authors~S.-Y.L.! has shown that the variable separation solut
of the 2DsG system43,44

uxyt1uyvxt1uxvyt50, ~27!

vxy5uxuy , ~28!

is completely similar to that of the MNNV system. To compare the results of two models
outline the variable separation solution of the 2DsG system here. Using the Painleve´ Bäcklund
transformation,

u56 i ln
f

g
, ~29!

v5 ln~ f g!1v11v2 , ~30!

where we also fix the seed solution as$u050, v05v1(x,t)1v2(y, t)% similar to the case of the
MNNV system, the 2DsG system is changed to a bilinear form

@DxDyDt1v1xtDy1v2ytDx# f •g50, ~31!

DxDyf •g50. ~32!
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Adopting the ansatz~9!–~10! with the seed solution simultaneously, Eq.~32! gives the constan
relation ~12! and Eq.~31! becomes

$@A1p212A2p1a2b02b2a0#v1xt12@A1p2A2#pxt%px
2122A1pt

5$@B1q222A2q1b1a02a1b0#v2yt12@B1q2A2#qyt%qy
2122B1qt , ~33!

where

A15a3b12a1b3 , A25a3b02b2a1 , B15a2b32a3b2 .

Likewise, takingp andq as arbitrary functions, then Eq.~33! is valid iff v1 andv2 satisfy

v1xt5
~c~ t !12A1pt!px22~A1p2A2!pxt

A1p212A2p1a2b02b2a0
, ~34!

v2yt5
~c~ t !12B1qt!qy22~B1q2A2!qyt

B1q222A2q1b1a02a1b0
, ~35!

with an arbitrary functionc(t).
Now defining

F[2iuxy , G[22vxy ~36!

for the 2DsG system, then we obtain the completely same results~25! and ~26!.
For the real 2DsG system and the real MNNV I system, the fieldu itself is important. The real

condition ofu tells one thatg should be a complex conjugate off ,

g5 f * . ~37!

Under the real condition~37!, the expression ofu for the real MNNV I system and the 2DsG
system becomes

u52 arctan
~a1r1Aqr2a3iqi !pi1~a2r1Apr !qi1pr~a1i1a3iqr !1a0i1a2iqr

~a1i1Aqi1a3iqr !pi1~a3i pr1a2i !qi2pr~a1r1Aqr !2a0r2a2rqr
, ~38!

where the subscriptsr and i express the real and imaginary parts of the related quantities, s

a1r5R~a1!, a1i5I~a1!. ~39!

Actually, expressions~4!, ~5!, and ~11! hint that for the real MNNV I system and the re
2DsG system,f andg can be simply taken as28

f 511 ipq, g512 ipq ~40!

with arbitrary realp5p(x,t) andq5q(y,t) by redefining the functionsp, q, v1 , andv2 . Under
this observation,~38! is simplified to

u52 arctan~pq!. ~41!

In Ref. 28, various single valued localized excitations with and without completely el
interaction property have been discussed for quantitiesF, G, andu of the 2DsG system. It has
also been pointed out that the variable separation solution of the real 2DsG system is equiva
that obtained by the Moutard transformation.28,33,34,45
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III. THE SECOND TYPE OF EXTENSIONS OF THE MLVSA

A. Extension of the variable separation solution of the DLWE

In Sec. II, we have extended the MLVSA to the MNNV and the 2DsG systems such tha
universal terms can be combined linearly. However, except for some functions of timet, there are
no further space variable separated functions included. In this section, we will extend the M
in a quite different way for the DLWE, the BKK system, the higher order BKK system, and
Burgers equation so as to include more variable separated functions.

For the (211)-dimensional DLWE,

uyt1hxx1uxuy1uuxy50, ~42!

h t1ux1hux1uhx1uxxy50, ~43!

the basic variable separation solution reads

v[2h215U, ~44!

u56
2px~a11a3q!

a01a1p1a2q1a3pq
1u0 , ~45!

where p is an arbitrary functions of$x, t%, q5q(y,t) is an arbitrary solution of the Riccat
equation,

qt2a0c02~a1c11a2c02a0c2!q2~a3c12a2c2!q250, ~46!

and the seed functionu0 is linked top by

u052px
21@pt6pxx2a0c12~a1c11a2c01a0c2!p2~a1c21a3c0!p2#. ~47!

The (111)-dimensional DLWE@y5x of ~42!–~43!# is also called the classical Boussine
equation. There are lots of papers discussing its possible applications and exact solutions46 The
(211)-dimensional DLWE was first obtained by Boitiet al.20 as a compatibility condition for a
‘‘weak’’ Lax pair. In Ref. 47, Paquin and Winternitz showed that the symmetry algebra of~42!–
~43! possesses the infinite-dimensional Kac–Moody–Virasoro structure. Some special sim
solutions are given in Ref. 47 by using symmetry algebra and the classical theoretical an
The more general symmetry algebra,W` symmetry algebra, is given in Ref. 48. In Ref. 49, ni
types of two-dimensional similarity reductions and thirteen types of ordinary differential equ
reductions are given. Though the model is Lax or IST integrable, it does not pass the Pa´
test.50

To extend the universal formula to a more general form, we use the MLVSA again
completeness, we repeat the first two steps of the MLVSA for the DLWE~42!–~43! though they
have been given in our previous papers.14,21

To change the system to a multilinear form, by using the standard truncated Painleve´ expan-
sion, we have the following Ba¨cklund transformation:

u562
f x

f
1u0 , ~48!

h52
f xy

f
22

f xf y

f 2 1h0 , ~49!

with $u0 , h0% being its arbitrary solution. Substituting Eqs.~48! and~49! into Eqs.~42! and~43!
leads to
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~ f xxxx6 f xyt! f 22@ f xxf xy1 f yf xxx1 f xf xxy6~ f t f xy1 f yf x,t1 f xf yt!# f 12 f xf y~ f xx6 f t!

6@u0~ f 2f xxy2 f f yf xx22 f f xf xy12 f yf x
2!1 f ~ f f xy2 f xf y!u0x1 f ~ f f xx2 f x

2!u0y1 f 2f xu0xy#50.
~50!

~h0117u0y!~ f f xx2 f x
2!1 f f x~h0x7u0xy!50. ~51!

From the DLWE~42!–~43!, it is easy to see that

u05u0~x,t !, ~52!

h0521, ~53!

is a trivial seed solution withu0 being an arbitrary function of$x, t%. Under the selections
~52!–~53!, the bilinear equation~51! satisfies identically.

In order to solve the trilinear equation~50! with ~52!–~53!, one has to use some prior ansa
The basic variable separation solution~44!–~45! results from the ansatz

f 5a01a1p1a2q1a3pq. ~54!

It is known that for the DLWE~42!–~43!, there are two sets of infinitely many symmetries, a
every symmetry possesses an arbitrary function ofy or t.48 That means infinitely many arbitrar
functions of y and t can enter into the solution of~42!–~43!. So, it is probable to extend th
solution ~44! to a more general form with more arbitrary functions. After finishing the deta
calculations, we find that the following variable separation ansatz,

f 5q01(
i 51

N

piqi , ~55!

where$qi , i 50, 1, 2, . . . ,N%, and$pi , i 51, 2, . . . ,N% are functions of$y, t% and $x, t%, re-
spectively, solves the trilinear equation~51! with ~52!–~53! under the conditions

qit5(
j 50

N

~ci j 1qiCj !qj , i 50, 1, . . . , N, ~56!

pit5~c002u0]x2]x
2!pi2c0i1(

j 51

N

~cj 0pi2cji !pj , i 51, 2, . . . , N, ~57!

where$ci j , Cj , i , j 50, 1, 2, . . . ,N% are arbitrary functions oft. Obviously, the general ansat
~55! will return back to the known one, Eq.~54!, when N53,q05a0 , q15a1 , q25a2q, q3

5a3q, p15p35p, p251.
The corresponding solution for the fieldv([2h21) now reads

v5
22( i 51

N pixqiy

q01( i 51
N piqi

1
2( i 51

N pixqi~q0y1( j 51
N pjqjy!

~q01( i 51
N piqi !

2 [UE ~58!

while the quantityu is given by

u56
2( i 51

N pixqi

q01( i 51
N piqi

1u0 . ~59!

It is clear that in addition to one (111)-dimensional arbitrary function of$x, t% ~one ofu0

and pi), (N11)(N12)21 arbitrary functions oft, ci j , Cj have been included in the gener
solution. Furthermore, various arbitrary functions ofy and $x, t% will enter into ~58! after the
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coupled systems of~56! and ~57! are solved. Because of the complexity, we have to leave th
problems for our future studies. Here we just write down the simplest nontrivial case for late
Fixing N51, ci j 5Ci50, p15p, andq0→a01q0 , the formula~58! is simplified to

v5
2px~q1q0y2~a01q0!q1y!

~a01q01pq1!2 [V ~60!

with q0 andq1 being arbitrary functions ofy andp being an arbitrary function of$x, t%. It has
been proven that the simplified quantity expressed by~60! does work for many other known
models which allow the universal formula~1!.24,51,52

B. Extension of the variable separation solution of the BKK system

It should be mentioned that though we have not yet proven the validity of~58! for all the
models listed in Sec. I, the extended form~58! is really valid at least for some of them like th
BKK system, the higher order BKK system, and the~211!-dimensional Burgers system.

In this section, we extend the universal formula~1! to ~58! for the BKK system

Hty2Hxxy12~HHx!y12Gxx50, ~61!

Gt1Gxx12~HG!x50. ~62!

The variable separation solution~1! for the quantityU522G of the BKK system has been
given in Ref. 22. From Ref. 22, we know that for the BKK system the corresponding Pain´
Bäcklund transformation

H5~ ln f !x1H0 , ~63!

G5~ ln f !xy1G0 , ~64!

where$H0 ,G0% is an arbitrary known seed solution, transforms Eqs.~61! and~62! to the following
trilinear and bilinear forms, respectively,

2H0~2 f x
2f y1 f 2f xxy2 f f yf xx22 f f xf xy!12H0xf ~ f f xy2 f xf y!12 f 2f xH0xy2 f ~ f xf ty1 f yf tx

1 f t f xy1 f xf xxy1 f yf xxx1 f xxf xy!1 f 2~ f txy1 f xxxy!12 f xf y~ f t1 f xx!12H0yf ~ f f xx2 f x
2!50,

~65!

~ f f xx2 f x
21 f f x]x!~G02H0y!50. ~66!

For the BKK system, the seed solution can be taken as

G050, ~67!

H0[h~x, t !5h, ~68!

with an arbitrary functionh with respect to the indicated arguments.
Now, using the ansatz~54!, we can retrieve the results in Ref. 22. Whereas, taking advan

of the general ansatz~55!, we have

qit5(
j 50

N

~ci , j1qiCj !qj , i 50, 1, . . . , N, ~69!

pit5~c0022h]x2]x
2!pi2c0i1(

j 51

N

~cj 0pi2cji !pj , i 51, 2, . . . , N ~70!
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with $ci j , Cj , i , j 50, 1, 2, . . . ,N% being arbitrary functions oft. Therefore, the correspondin
solutions for the fieldsG andH read

G52
1

2
UE , ~71!

H5
2( i 51

N pixqi

q01( i 51
N piqi

1h, ~72!

where the expression ofUE is exactly same as that of the DLWE expressed by~58!.

C. Extension of the variable separation solution of the higher order BKK system

Though not proved yet, it is rather reasonable to believe that if one member of an inte
hierarchy is ~generalized! MLVSA solvable, then the whole hierarchy may be~generalized!
MLVSA solvable. For instance, in Ref. 14, the ANNV system and the ADS system, which be
to the same system, are solved by the similar MLVSA. The MLVSA solvable systems NNV
DS also belong to the same hierarchy. In Sec. II, two models, the MNNV system and the
system, existing in the same hierarchy, are MLVSA solvable in a similar way. To confirm
conclusion further, in this section, we work on the generalized MLVSA solvability of the n
member of the BKK hierarchy, the higher order BKK system,53

Hyt14~Hxx1H323HHx13Hgy!xy112~Hgy!xx50, ~73!

gyt14~gxxy13H2gy13Hgxy13gygx!x50. ~74!

The details of the MLVSA solvability of an equivalent form of the higher order BKK system
be found in Ref. 23 and the generalized MLVSA solvability of the equivalent higher order B
system has been given by Lin and Qian.54

Obviously, the higher order BKK system has a trivial seed solution

H5H0[H0~x,t !, g5g0[g0~x,t !, ~75!

with H0 andg0 being arbitrary functions of$x, t%.
The following Painleve´ Bäcklund transformation,

H5~ ln f !x1H0 , g5~ ln f !x1g0 , ~76!

degenerates two equations of the higher order BKK system to a single trilinear equation

12f ~ f f xy2 f xf y!~g0x1H0
2!x112@2 f x~ f xf y2 f f xy!1 f 2f xxy2 f f yf xx#~H0

21g0x!112@2 f xf yf xx

1 f ~ f f xxxy2 f yf xxx2~ f xf xy!x!#H0112f ~ f f xxy2 f yf xx!H0x2 f ~ f yf xt14 f yf xxxx14 f xyf xxx

14 f xf xxxy1 f t f xy1 f xf yt!1 f 2~4 f xxxxy1 f xyt!12 f xf y~ f t14 f xxx!50. ~77!

To solve the trilinear equation~77!, we use the generalized variable separation ansatz~55! again.
After finishing some detailed calculations, one can find that the general variable separation
~55! really solves Eq.~77! under the conditions

qit5(
j 50

N

~cji 1Cjqi !qj , i 50, 1, . . . , N, ~78!
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pit524pixxx212H0pixx212~g0x1H0
2!pix1c00pi2c0i1(

j 51

N

~cj 0pi2cji !pj ,

i 51, 2, . . . , N, ~79!

where$ci j , Cj , i , j 50, 1, 2, . . . ,N% are arbitrary functions oft.
For the higher order BKK system~73!–~74!, the extended expression of the universal quan

UE expressed by~58! is valid for the potentialG1[2Hy52gy , i.e.,

G152Hy52gy5UE . ~80!

D. Extension of the variable separation solution of the Burgers equation

In this section, we discuss another generalized MLVSA solvable system,
(211)-dimensional Burgers equation,

vyt5vyvyy1avxvxy1bvyyy1abvxxy , ~81!

in its potential form, wherea andb are arbitrary constants. An equivalent form of the poten
Burgers equation~81! is derived from the generalized Painleve´ integrable classification.27

The following transformation

v52b ln f 1v0 , ~82!

with arbitrary seed solutionv0 changes the potential Burgers equation~81! to a bilinear form

v0y~ f f yy2 f y
2!1av0x~ f f xy2 f xf y!1v0yyf f y1av0xyf f x2~ f ]y2 f y!~ f t2b fyy2ab fxx!50.

~83!

Evidently, Eq.~81! possesses a trivial seed solution

v05v0~x,t ! ~84!

with v0 being an arbitrary function of the indicated variables.
The simple and direct calculations show that the generalized variable separation ansa~55!

solves the bilinear equation~83! under the conditions

pit5S ab]x
21av0]x2a i1(

j 51

N

b j pj D pi , i 51, 2, . . . , N, ~85!

qit5bqiyy1~a01a i !qi , i 50, 1, . . . , N, ~86!

where$a i , i 50, 1, 2, . . . ,N, b j , j 51, 2, . . . ,N% are all arbitrary functions oft.
For the Burgers equation, the quantityw[ (1/b) vxy possesses the same form as the exten

universal formula, i.e.,

w5
1

b
vxy5UE . ~87!

IV. FSWs AND FOLDONS

Starting from the ‘‘universal’’ formula~1! and using many kinds of single valued functions f
p andq, plenty of localized excitations such as the solitoffs, dromions, lumps, breathers, in
tons, ring solitons, peakons, and compactons have been obtained. Using (111)-dimensional
chaotic and fractal functions, some kinds of (211)-dimensional localized chaotic and fract
patterns have also been found.14
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In this section, we focus our attention on the possible multivalued localized excitations, F
and foldons, constructed on the basis of the universal formula~1! and extended forms, especiall
the quantityv expressed by~60! and the fieldu shown in~41! for the real MNNV I and 2DsG
systems.

First of all, we write down a (111)-dimensional localized function,pf , in the form

pf[(
j 51

M

f j~j2cj t !, ~88!

x5j1(
j 51

M

gj~j2cj t !, ~89!

where c1,c2,¯,cM are all arbitrary constants and$ f j , gj%, ; j are all localized functions
with the properties

f j~6`!5F6, gj~6`!5Gj
65constant. ~90!

Judged from expression~89!, j may be a multivalue function in certain regions ofx by
selecting the functionsgj suitably. Therefore, the functionpf may be a multivalue function ofx in
these regions though it is a single valued function ofj. Besides,pf is an interaction traveling
solution ofM localized excitations due to the property

jux→`→x→`. ~91!

Indeed, most of the known (111)-dimensional multiloop solutions are the special cases of~89!.
Now, if all the arbitrary functions in the universal formula~1! and/or its slightly general one~60!
@and/or its even more general extended one~58!# possess the forms similar to~88! with ~89!–~90!,
then we can get various (211)-dimensional FSWs and/or foldons.

In Fig. 1, four typical FSWs are plotted for the universal quantityU expressed in its specia
form

U5
2pxqy

~p1q1a0!2 , ~92!

FIG. 1. Four typical FSWs for the fieldU expressed by~92! at t50 with ~93!–~98! and the related concrete paramet
selections are given in~99! for the ‘‘tent’’ shape FSW~a!, ~100! for the ‘‘worm’’ shape FSW~b!, ~101! for the ‘‘worm-
dromion’’ shape FSW~c!, and~102! for the ‘‘worm-solitoff’’ shape FSW~d!, respectively.
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i.e., a35a1215a22150 of ~1!, with the function selections

px52k1 sech2~k2j2k3t !, ~93!

p52
k1

3k2
@312k2k41k2k4 sech2~k2j2k3t !#tanh~k2j2k3t !, ~94!

x5j1k4 tanh~k2j2k3t !, ~95!

qy52 l 1 sech2~ l 2j!, ~96!

q52
l 1

3l 2
@312l 2l 31 l 2l 3 sech2~ l 2h!#tanh~ l 2h!, ~97!

y5h1 l 3 tanh~ l 2h!, ~98!

while the parametersk1 , k2 , k3 , k4 , l 1 , l 2 , and l 3 are selected such thatp is multivalued in a
small region ofk2x2k3t andq is single valued in the whole region ofy.

The detailed selections of the parameters are

k15k25k35 l 15 l 251, l 350, k4522.5, a051.9 ~99!

for the ‘‘tent’’ shape FSW shown in Fig. 1~a!,

k15k25k35 l 15 l 251, l 350, k4522.5, a058 ~100!

for the ‘‘worm’’ shape FSW plotted in Fig. 1~b!,

k1510, k25k35 l 15 l 25 l 351, k4521.15, a0510 ~101!

for the ‘‘worm-dromion’’ shape FSW~which looks like a ‘‘worm’’ riding on a dromion! given in
Fig. 1~c!, and

k15k25k35 l 15 l 25 l 351, k4521.15, a051.9 ~102!

for the ‘‘worm-solitoff’’ shape FSW~which looks like a ‘‘worm’’ riding on a solitoff’s head!
exhibited in Fig. 1~d!.

Figure 2 shows another three typical FSWs for the same universal quantity expressed b~92!

FIG. 2. Another three typical FSWs for the fieldU expressed by~92! at t50 with ~93!–~98! and the detailed paramete
selections are shown in~a! ~103!, ~b! ~104!, and~c! ~105!, respectively.
                                                                                                                



gle

s

4013J. Math. Phys., Vol. 44, No. 9, September 2003 Extended multilinear variable separation approach

                    
with ~93!–~98!. However, the parameters are chosen such that bothp andq are multivalued.
For Fig. 2~a!, the corresponding parameters are

k15k25k35 l 15 l 251, l 3521.4, k4522.5, a051.9. ~103!

For Fig. 2~b!, we have

k15k25k35 l 15 l 251, l 35k4521.6, a058. ~104!

The parameter selections

k15k25k35 l 15 l 251, l 35k4521.15, a054 ~105!

are related to Fig. 2~c!.
In fact, the expression~92! with ~93!–~98! also includes some interesting new types of sin

valued localized excitations by selecting the parameters appropriately such that bothp andq are
single valued.

In Fig. 3, three types of single valued localized excitations are plotted. Figure 3~a! shows a
dromion structure and the corresponding parameters read

k15k25k35 l 15 l 25 l 35k451, a054. ~106!

Because of the arbitrariness of the functionsp and q, some types of piecewise continuou
functions can be used to produce some types of (211)-dimensional peakons14,55 and
compactons.22,56 Three special critical cases,

k2k4521, l 2l 3^ &21, ~107!

k2k4^ &21, l 2l 3521, ~108!

and

k2k4521, l 2l 3521, ~109!

of the expression~92! with ~93!–~98! display some new types of peakon solutions.
Figure 3~b! shows a peakon structure of~92! with ~93!–~98! and ~107! at time t50. The

detailed parameters read

FIG. 3. Three novel single valued localized excitations for the universal quantityU shown by~92! at t50 with ~93!–~98!
while the corresponding parameters are fixed as in~106! for the dromion~a!, ~110! for the first type of peakon~b!, and
~111! for the second type of peakon~c!, respectively.
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k15k25k35 l 15 l 25 l 351, k4521, a054. ~110!

Figure 3~c! shows the structure of another kind of peakon solution expressed by~92! with
~93!–~98! and ~109! at t50 while the related parameters are

k15k25k35 l 15 l 251, l 3521, k4521, a054. ~111!

The more complicated FSWs and/or foldons can be constructed in two ways, selecting
complicated multivalue functions for the universal formula or using the extended forms o
universal formula with more arbitrary functions. In Fig. 4, some slightly more complex FSW
plotted for the quantityv expressed by~60! with

px52k1 sech2~k2j2k3t !, ~112!

p5
1

2
k1k5~sech4~k2j2k3t !21!2

k1

15k2
$151k2@6k6110k41~5k413k6!sech2~k2j2k3t !

29k6 sech4~k2j2k3t !#tanh~k2j2k3t !%, ~113!

x5j1k4 tanh~k2j2k3t !1k5 tanh2~k2j2k3t !1k6 tanh3~k2j2k3t !, ~114!

q0y52 l 1 sech2~ l 2h!, ~115!

q05
1

2
l 1l 5@sech4~ l 2h!21#2

l 1

15l 2
@1516l 2l 6110l 2l 41 l 2~5l 413l 6!sech2~ l 2j!

29l 2l 6 sech4~ l 2j!#tanh~ l 2h!, ~116!

q1y52 l 3 sech~ l 2h!, ~117!

q15
l 3

8
sech~ l 2h!tanh~ l 2h!@6l 6 sech2~ l 2h!23l 624l 4#2

l 3

4l 2
~814l 2l 413l 2l 6!arctan exp~ l 2h!

1
2

3
l 3l 5 sech3~ l 2h!, ~118!

y5h1 l 4 tanh~ l 2h!1 l 5 tanh2~ l 2h!1 l 6 tanh3~ l 2h!, ~119!

FIG. 4. Plots of the FSWs for the fieldv expressed by~60! at t50 with ~112!–~119! and the related concrete paramet
selections are~120! for ~a!, ~121! for ~b!, ~122! for ~c!, and~123! for ~d!.
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at time t50.
The detailed selections of the parameters are

2k15k25k35k55 l 15 l 25 l 35 l 551, k45 l 552, k65 l 6524, a0550 ~120!

for Fig. 4~a!,

k1572, k25k35k55 l 15 l 25 l 35 l 551, k45 l 452, k65 l 6524, a05250 ~121!

for Fig. 4~b!,

k152 6
5 , k25k35k55 l 15 l 25 l 35 l 551, k45 l 452, k65 l 652 27

5 , a0550 ~122!

for Fig. 4~c!, and

k1523, k25k35k55 l 15 l 25 l 35 l 551, k45 l 452, k65 l 65210, a05250 ~123!

for Fig. 4~d!.
As mentioned in Sec. II the fieldu is very important for the real MNNV I system and the re

2DsG system. Similar FSWs and foldons can also be constructed for the fieldu expressed by~38!
and/or~41!.

In Fig. 5, four types of FSWs are plotted for the fieldu of the MNNV I system and the 2DsG
system expressed by~41! and the functionsp andq are taken as

p5k1 sech2~k2j2k3t !, ~124!

x5j1k4 tanh~k2j2k3t !1k5 tanh2~k2j2k3t !1k6 tanh3~k2j2k3t !, ~125!

q5 l 1 sech2~ l 2h!, ~126!

y5h1 l 3 tanh~ l 2h!1 l 4 tanh2~ l 2h!1 l 5 tanh3~ l 2h!. ~127!

For Fig. 5~a!, the related parameters are fixed as

k151.2, l 15 l 25k25k351, l 35k4522, l 45 l 55k55k650. ~128!

The details on the parameters of Fig. 5~b! read

FIG. 5. Plots of the FSWs for the fieldu ~41! with ~124!–~127! for the real MNNV I and 2DsG systems att50 while the
corresponding parameters are~128! for ~a!, ~129! for ~b!, ~130! for ~c!, and~131! for ~d!.
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k15k25k35k55 l 15 l 25 l 35 l 551, k45 l 452, k6524. ~129!

For Fig. 5~c!, we select

k15120, k25k35k55 l 25 l 35 l 551, l 156, k45 l 452, k6524. ~130!

The parameter selections

k153, k25k35k55 l 15 l 25 l 351, l 5528, k45 l 452, k65212, ~131!

are responsible for Fig. 5~d!.
Fortunately, owing to the arbitrariness of the functions in the universal formula and its e

sion forms, we have constructed not only the single valued localized excitations but also qui
FSWs. Now, one of the most important problems which should be discussed in the first pl
whether these types of localized excitations are solitons. Particularly, are these FSWs foldo
find the answer, we have to study the interaction properties among these types of loc
excitations.

V. INTERACTION PROPERTIES OF „2¿1…-DIMENSIONAL LOCALIZED EXCITATIONS

In Ref. 14, we have plotted some special interaction figures for two special types of loca
excitations~saddle type of ring solitons and peakons! with and without completely interaction
properties. In Ref. 22, a method is proposed to construct compact solitary waves and comp
on the basis of the universal formula~1!. In Ref. 28, the method has been developed to gene
general (211)-dimensional solitary waves and solitons for the quantityF expressed by~25!. The
complete interaction properties of the plateau type, basin type, and bowl type ring solitons f
2DsG system are discussed in Ref. 28. In our previous short report,35 a possible way is provided
to construct foldons for the quantity given by~60! with static q0 and q1 . In this section, as a
summary and extension, we first discuss the interaction property of the localized excit
related to the universal quantity~1! and the fieldv ~60!. The possible foldon excitations ar
specified both for the quantitiesv andu expressed by~60! and ~41!, respectively. Then we give
some concrete interaction examples of FSWs and foldons.

A. Asymptotic behaviors of the localized excitations produced from „1…

In general, if the functionsp andq are selected as multi-localized solitonic excitations w

pu t→7`5(
i 51

M

f i
7 , f i

7[ f i~x2ci t1d i
7!, ~132!

qu t→7`5(
j 51

N

hj
7 , hj

7[hj~y2Cjt1D j
7!, ~133!

where$ f i , hj% ; i and j are localized functions, then the universal quantityU expressed by~1!
deliversM3N (211)-dimensional localized excitations with the asymptotic behavior

Uu t→7`→(
i 51

M

(
j 51

N 2~a1a22a3a0! f ix
7hjy

7

~a01a1~ f i
71Fi

7!1a2~hj
71H j

7!1a3~ f i
71Fi

7!~hj
71H j

7!!2 [(
i 51

M

(
j 51

N

Ui j
7 ,

~134!

where

Fi
75(

j , i
f j~7`!1(

j . i
f j~6`!, ~135!
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Hi
75(

j , i
hj~7`!1(

j . i
hj~6`!, ~136!

and we have assumed, without loss of generality,Ci.Cj andci.cj if i . j .
It can be deduced from expression~134! that thei j th localized excitationUi j preserves its

shape during the interaction iff

Fi
15Fi

2 , ~137!

H j
15H j

2 . ~138!

Meanwhile, the phase shift of thei j th localized excitationFi j reads

d i
12d i

2 ~139!

in the x direction and

D j
12D j

2 . ~140!

in the y direction.
The above discussions demonstrate that multiple localized solitonic excitations for the

versal quantityU can be constructed without difficulties via the (111)-dimensional multiple
localized excitations with the properties~132!, ~133!, ~137!, and ~138!. As a matter of fact, any
multiple localized solutions~or their derivatives! with completely elastic interaction behaviors
any known (111)-dimensional integrable models can be utilized to construct (211)-dimensional
multiple localized solitonic solutions with completely elastic interaction properties for all
MLVSA models. Some detailed examples have been given in Ref. 28 for the 2DsG system
on the multi-soliton solutions of the (111)-dimensional sine-Gordon equation and the Kd
equation.

If f i andhj of ~132! and~133! are taken as (111)-dimensional localized multivalue function
~say, loop solitons!, then~1! becomes multiple FSWs (Fi

1ÞFi
2 , H j

1ÞH j
2 at least for one ofi , j )

or multiple foldons (Fi
15Fi

2 , H j
15H j

2 for all i , j ).

B. Asymptotic properties of the localized excitations generated via „60…

If the functionp is in the form~132! while q0 andp0 are taken as arbitrary static function
then the fieldv expressed by~60! possesses the following asymptotic behavior:

vu t→7`→(
i 51

M 2 f ix
7@q1q0y2~a01q0!q1y#

~a01q01~ f i
71Fi

7!q1!2 [(
i 51

M

v j
7 . ~141!

If condition ~137! is satisfied, then the asymptotic property~141! reveals the solitonic property fo
the fieldv given by ~60!.

To get the multiple FSWs and/or foldons from~60! with p selected as~132!, we have to
requirep and thenf i be localized multivalue functions again.

More concretely, selecting the multivalue functionp of ~60! as~88!–~90!, v j
7 of ~141! will be

(zj[j2cj t),

v j
75

2 f jzj

7 @q1q0y2~a01q0!q1y#

~11gjzj

7 !@a01q01q1~ f j
7~zj !1F j

7!#2 , ~142!

x5j1d j
71gj

7~zj !, ~143!

where the phase factorsd j
7 read
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d j
75(

i , j
Gi

71(
i . j

Gi
6 . ~144!

From the asymptotic results~142!–~144!, we discover four important facts.
~i! The j th localized excitation given by~60! with ~88!–~90! is a traveling wave moving in the

velocity cj along the negative (cj,0) or positive (cj.0) x direction.
~ii ! The multivalued properties of thej th localized excitation is only determined bygj of ~89!.
~iii ! The shape of thej th excitation will change if

F j
1ÞF j

2 , ~145!

following the interaction. Contrarily, if

F j
15F j

2 , ~146!

it will preserve its shape.
~iv! The total phase shift for thej th excitation is

d j
12d j

2 . ~147!

C. Interaction properties of the localized excitations for the field u „41… of the real
MNNV I system and the 2DsG system

For the real MNNV I system and the 2DsG systems, the important localized excitations f
field u come from~41!. Selecting the functionsp andq as ~132! and ~133! leads to

uu t→7`→2 arctan(
i 51

M

(
j 51

N

~ f i
71Fi

7!~hj
71H j

7!. ~148!

Furthermore, the most important selections forp andq may be

f i~6`!50, hj~6`!50,; i , j . ~149!

Under condition~149!, we have

f i
7hj

7ux21y2→`→0, ~150!

and then~148! can be simplified to

uu t→7`→(
i 51

M

(
j 51

N

2 arctan~ f i
7hj

7![(
i 51

M

(
j 51

N

ui j . ~151!

The asymptotic property~151! gives rise to a conclusion that whenp and q possess the
property~132! and~133! with ~149!, the interactions among the localized excitations for the fi
u of the MNNV I and 2DsG systems are completely elastic no matter whether the functionsp and
q are single valued or multivalued. In Ref. 28, some special examples for the complete in
tions of the plateau type and basin type ring solitons are given.

D. Examples of the foldon interactions

In this section, we give some concrete examples on the foldon and FSW interactions.
Example 1: Two foldon interaction of the MNNV I system and the 2DsG system.
For the real MNNV I and 2DsG systems, a special type of multiple foldon solutions for

field u ~41! can be obtained by taking
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p5(
i 51

N

si sechmi~ki~j2ci t !!, ~152!

x5j1(
i 51

N

yi tanhni~ki~j2ci t !!, ~153!

q5(
i 51

M

Si sechMi~Ki~h2Cit !!, ~154!

y5h1(
i 51

M

Yi tanhNi~Ki~h2Cit !!, ~155!

wheresi , yi , Si , Yi , ci , Ci , ki , andKi are all arbitrary constants,M , N, mi , ni , Mi , andNi

are positive integers.
Figure 6 shows the two-foldon interaction with

p52 sech2 j1sech2~j2 1
4 t !, ~156!

x5j21.8 tanhj21.7 tanh~j2 1
4 t !, ~157!

FIG. 6. Evolution plots of two foldons for the fieldu expressed by~41! for the MNNV I and 2DsG systems with the
selections~156!–~159! at the times~a! t5224, ~b! t520, ~c! t5216, ~d! t528, ~e! t50, ~f! t58, ~g! t516, and~h!
t524, respectively.
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q5sech2 h, ~158!

y5h22 tanhh. ~159!

From Figs. 6~a!–6~h!, we can see that the interaction between two foldons is comple
elastic. One of the velocities of two foldons is fixed as zero, which makes it easy to survey
phase shifts. Clearly, before the interaction, the static foldon~the large one! is located atx
521.7 while after the interaction, it shifts tox51.7. Actually, once the conditions~149! are
satisfied, the completely elastic interaction property of the multiple localized excitations fo
field u expressed~41! with ~132!–~133! of the MNNV I and 2DsG systems is entirely guarante
by the completely elastic interaction property of the (111)-dimensional fieldsp and q. For
instance, the completely elastic interaction property of the two-loop solutionp expressed by~156!
with ~157! ensures the completely elastic interaction property of two dromions shown in F
Figure 7 is an evolution plot of two (111)-dimensional loop solitons expressed by~156! with
~157!.

Example 2: Interaction among Four foldons of the MNNV I system and the 2DsG syste.
Figure 8 shows a special four-foldon interaction ofu expressed by~41! for the MNNV I and

2DsG systems where the functionsp andq are taken as

p50.6 sech2 j1sech2~j2t !, ~160!

x5j21.15 tanhj21.15 tanh~j2t !, ~161!

q5sech2 h12 sech2~h2t !, ~162!

y5h21.15 tanhh21.15 tanh~h2t !. ~163!

Similar to the example shown in Fig. 6, in addition to the completely elastic interac
property among four foldons, phase shifts are observed from Fig. 8. To reveal phase shift
convenient and sufficient to set the velocity of one loop soliton~either forp or q) to zero. Seen
from Figs. 8~a! to 8~h!, prior to interaction, the smallest foldon is static and situated at$x
521.15,y521.15%, the largest foldon is moving with its center located at$x5t11.15,y5t
11.15%, while for the other two foldons, they are static in one direction and moving in the o
direction and their centers are located at$x521.15,h5t11.15% and $x5t11.5, y521.15%,
respectively; after the interaction, the static foldon remains static with shape unchanged
center shifts to$x51.15,y51.15%, the largest foldon recovers its shape and its center shift
$j5t21.15,y5t21.15%, the others preserve their shapes and velocities~static in one case! but
have their centers shifted to$x51.15,y5t21.15% and$x5t21.15,y51.15%, respectively.

Example 3: Interaction between two FSWs for all the MLVSA solvable systems.
The last two special examples are responsible for the real MNNV I system and the real

system. For the other MLVSA models studied in Ref. 14 and also mentioned in Sec.

FIG. 7. Evolution plot of two loop solitons for the quantityp expressed by~156! with ~157! regarding Fig. 6.
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universal quantity~1! @or its extend form~58!# is of more importance. Some examples of t
single FSW have been discussed in the last section and the general aspect of the related
FSWs and foldons has been given in Secs. V A and V B. Here we write and plot down two
special two-FSW~example 3! and two-foldon~example 4! solutions for the universal quantityU.

Figure 9 is a pre- and post-interaction plot of the two FSWs for the quantityU expressed by
~92! with the selections

px5212 sech2 j210 sech2~j2t !, ~164!

p5
253

5
cotht csch2 t ln

a11

a1b
1

2

15~b11!3~b1a!3~a21!2 $~150a311398a211308a

1180!b51~4116a314134a245a417029a2254!b41~35a511853a4113 175a3

113 533a211722a142!b313a~1735a3192195a416457a211741a!b2

13a2~2712493a12523a2117a3!b111a3~262a1717a2!%, ~165!

a[exp~2j!, b[exp~2t !, ~166!

x5j21.15 tanhj21.15 tanh~j2t !, ~167!

FIG. 8. Evolution plot of four foldons for the fieldu expressed by~41! for the MNNV I and 2DsG systems with the
selections~160!–~163! at the times~a! t526, ~b! t524, ~c! t522, ~d! t50, ~e! t51.5, ~f! t52.5, ~g! t54, and~h! t
56, respectively.
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qy52sech2 h, ~168!

q52 1
30 tanhh~72 23

2 sech2 h!, ~169!

y5h21.15 tanhh, ~170!

a0530. ~171!

From Figs. 9~a! and 9~b!, we know that the quantityU ~92! with ~164!–~171! expresses a specia
two-FSW solution in that the interaction between them is nonelastic. Actually, the comp
elastic interaction condition~137! is not satisfied for the solution~92! with ~164!–~171!. For the
static FSW,

F1
12F1

25 14
3 Þ0, ~172!

and for the moving FSW,

F2
12F2

252 28
5 Þ0. ~173!

Though the singular factors~at t50), cotht, cscht, and 1/(a21) appear in the expression ofp
~165!, there is no singularity for the interaction solution~92! with ~164!–~171! inasmuch

pu t505 lim
t→0

p5
44~15a2239a28!

15~a11!3 , ~174!

and

maxup1qu<maxupu1maxuqu5 359
30 1 286

345A299'26.3,a0530. ~175!

Example 4: Interaction between two foldons for the MLVSA solvable systems.
According to the general discussions in Secs. V A and V B, in order to find foldons

functionsp andq must be selected in a way that the conditions~137!–~138! or ~146! are satisfied.
Figure 10 is a pre- and post-interaction plot of two foldons for the fieldU expressed by~92!

with the selections@a[exp(2j), b[exp(2t)#

FIG. 9. Pre- and post-interaction of two FSWs at times~a! t524.5, and~b! t54.5 for the universal quantityU ~92! with
~164!–~171!.

FIG. 10. Pre- and post-interaction of two foldons at times~a! t525.5, andt55.5 for the universal quantityU ~92! with
~176!–~182!.
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px52 4
5 sech2 j2 1

2 sech2~j2t !, ~176!

p5
39

10
cotht csch2 t ln

a11

a1b
1

1

5~b11!3~b1a!3~a21!2 $~67a176a215a318!b52~8

2211a2205a32377a215a4!b413a~231243a1225a2129a3!b31ab2~8a41257a3

11027a21263a15!2a2~52401a22392a18a3!b1156a4%, ~177!

x5j21.5 tanhj21.5 tanh~j2t !, ~178!

qy52sech2 h, ~179!

q5 1
3 tanhh~112 sech2 h!, ~180!

y5h22 tanhh, ~181!

a0520. ~182!

Since the completely elastic interaction condition~137! is really satisfied for both the stati
excitation and the moving one, the solution~92! with ~176!–~182! is genuinely a two-foldon
solution. Likewise, there is no singularity for the solution~92! with ~176!–~182! thanks to

pu t505 lim
t→0

p5
13~a224a21!

5~a11!3 ~183!

and

maxup1qu<maxupu1maxuqu5
13

10
1

26

45
A61

&

3
'3.12,a0520. ~184!

VI. SUMMARY AND DISCUSSIONS

The MLVSA has been successfully applied to many (211)-dimensional nonlinear system
Utilizing the MLVSA, a universal formula is derived for all the known MLVSA solvable mode
Simultaneously, a diversity of localized excitations are obtained from this universal formul
the appropriate selections of the arbitrary functions included in the formula.

In this paper, the MLVSA and the universal formula have been extended in two direc
First, the MLVSA is extended for the MNNV system and the 2DsG system where two univ
terms with some suitable conditions can be superposed to generate a new exact solution
same models. Second, by changing the basic ansatz of the MLVSA, the universal form
extended at least for the DLWE, the BKK system, the higher order BKK system, and the Bu
system such that arbitrary number of variable separated functions are included in the v
separation solutions. The MLVSA and the universal formula may also be extended in some
ways. For instance, the MLVSA has been successfully extended to the differential-diffe
systems,57 and arbitrary number of the variable separated functions can also be introduc
means of the Darboux transformations and the Ba¨cklund transformations58 and so on.

Starting from the ‘‘universal’’ formula and/or its extended forms, all sorts of localized e
tations with and without completely elastic interaction properties are constructed readily by
ably selecting the arbitrary functions according to the asymptotic results~134!, ~141!, ~142!, and
~151!. Especially, a new kind of localized excitations, FSWs and foldons, is investigated
analytically and graphically. Foldons may be folded quite freely and complicatedly and
possess quite rich structures and interaction properties. The explicit phase shifts for all the
ized excitations offered by the universal formula and its extended forms have also been g
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On the one hand, there are a large number of complicated ‘‘folded’’ and/or the multiva
phenomena in the real natural world. Nonetheless, there is no good analytical way to trea
kinds of complicated phenomena. This paper is only a beginning attempt to looking for some
of possible stable multivalued localized excitations, FSWs and foldons, for some real ph
models including some quite ‘‘universal’’ systems like the well-known DS systems59–61 and the
DLWE.

In Refs. 30 and 62, the authors pointed out that the localized solutions of the DS equatio
dromions, can be remote controlled by choosing a suitable motion of the boundaries. In R
we also pointed out that though the localized excitations such as the dromions, lumps
solitons, peakons and foldons proposed here possess zero boundary conditions for the quU
and its extended forms, the boundary conditions for other quantities, say, the mean flow for t
model andv for the MNNV system, are not identically zero. The different selections of
arbitrary functionsp andq in ~1! correspond to the different selections of boundary condition
those fields~or potentials! with nonzero boundary conditions and vice versa. That means, in s
sense, the dromions, foldons, and other types of localized excitations for some physical qu
are remote controlled by some other quantities~or potentials!. This fact hints that it is possible fo
one to observe the dromions, foldons, and other kinds of localized excitations from the sy
governed by the MLVSA solvable models via inputting suitable boundary conditions. For fold
the input boundaries may be selected as (111)-dimensional loop solitons.

Because the formula~60! is valid for various (211)-dimensional interesting models whic
are widely applied in many physical fields, we do believe that foldons are useful in the stud
the complicated ‘‘folded’’ natural world. The more about both the~extended! ‘‘universal’’ formula
and the general~or special! foldons especially their possible real applications should be stu
further.
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Vavilov–Cherenkov and transition radiations
on the dielectric and metallic spheres
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Closed expressions are obtained for angular and frequency radiation intensities
produced by a charge moving inside the dielectric sphereS, with observations
made outsideS ~in fact, this is a typical experimental situation when a charge
moves in one medium while measurements are made in the other one!. It is shown
that the difference in media properties inside and outsideS drastically affects an-
gular and frequency distributions. Also, a charge motion is considered which begins
and terminates in medium 2 and which passes either through the dielectric sphere
filled with medium 1 or through the metallic one. The energy flux in medium 2
involves the Vavilov–Cherenkov, transition radiation and the one arising from the
charge instantaneous beginning and termination of motion. The evaluated angular
and frequency distributions for various charge velocities and medium properties
inside and outsideS show that the standard identification of the charge velocity by
its radiation on the part of the charge trajectory wherebn.1 is not always valid.
We analyze also the frequently used interpretation of the transition radiation in
terms of instantaneous charge deceleration in one medium and its sudden accelera-
tion in another one, and find them as to be insufficient. On the other hand, attempts
to interpret the transition radiation in terms of semi-infinite motions terminating in
one medium and beginning in the other one turn out to be correct if one takes into
account the terms corresponding to the Vavilov–Cherenkov radiation. ©2003
American Institute of Physics.@DOI: 10.1063/1.1602162#

I. INTRODUCTION

This paper has a twofold aim.
First, usually, a charge moves in the one medium~1! while the measurements are made in t

other one~2!. For example, in the original Cherenkov experiments,1 the electron moved in the
vessel filled with water, while measurements were made outside this vessel, in air. The radia
a charge moving inside the infinite cylindrical sampleC was considered by Frank and Ginsbur2

who shown that there is no radiation outsideC if the Tamm–Frank radiation condition is no
fulfilled there. It should be recalled that Frank and Ginsburg evaluated the energy flux i
direction perpendicular to the motion axis. The energy flux in the direction parallel to the m
axis was evaluated in Ref. 3. It was shown there that this component of radiation is infinitely
for all frequencies except for the infinite discrete sequence of frequencies where it is infini

In the same reference,3 the geometrical optics consideration has been applied to the radi
of charge moving in the finite space interval lying completely inside the sphereS filled with a
substance 1 with refractive indexn1 . Observations are made outsideS, in medium 2 with refrac-
tive indexn2 . It was shown there that the angular spectrum broadens ifn2,n1 . One of the goals
of the present treatment is to make the quantitative analysis of this problem. For this, we eva
angular and frequency radiation intensities for a number of charge velocities and media prop
In general, the presence of medium 2 outsideS different from medium 1 insideS leads to the
40260022-2488/2003/44(9)/4026/31/$20.00 © 2003 American Institute of Physics
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broadening of the angular spectrum and to the appearance of additional maxima at large
Calculations predict the oscillations of the frequency spectrum. This could be observed e
mentally.

The second problem which will be studied here is the transition and Vavilov–Cherenkov~VC!
radiations on the dielectric and metallic spheres. The notion of the transition radiation was
duced by Frank and Ginsburg4 who studied radiation arising from the uniformly moving char
passing from one medium to another. They considered the plane boundary between media
A thorough exposition of the transition radiation may be found in Ref. 5. In this consideration
consider a charge motion which begins and terminates in medium 2 and which passes thro
dielectric sphere filled with medium 1. The energy flux is evaluated in medium 2. As far a
know, the transition radiation only for plane interfaces was considered in physical literature
the treated problem the angular and frequency radiation intensities are evaluated for a num
charge velocities and media properties. These expressions contain transition and VC radia
well as the radiation from the charge instantaneous beginning and termination of motion
proved that the identification~frequently used by experimentalists! of the charge velocity by the
Cherenkov radiation on the part of the charge trajectory wherebn.1 is not always valid in the
presence of boundaries.

There are analyzed attempts to explain transition radiation in terms of the charge ins
neous termination of motion in one medium and the instantaneous charge beginning of mo
another medium. It is proved that their contribution to the radiation intensity disappears
charge motion with instantaneous velocity jumps can be considered as a limiting case
charge smooth motion. It is considered also the interpretation of the transition radiation in te
semi-infinite charge motions with instantaneous termination of the charge motion in one m
and with its instantaneous beginning of motion in the other one. It is shown that if the c
velocity is greater than the light velocity in medium, the terms corresponding to the VC rad
should be taken into account.

The plan of our exposition is as follows. The mathematical preliminaries are collected in
II. The expansion of the electromagnetic field in terms of Legendre polynomials for the T
problem is given in Sec. III. In Sec. IV, a charge moving inside the dielectric sphereS filled with
the substance 1 is considered. The radiation intensity is evaluated outsideS, in medium 2. In Sec.
V, a charge whose motion begins and terminates in the medium 2 and which passes thro
dielectric sphere filled with medium 1 or through the metallic one. The energy flux is evaluat
medium 2. In Sec. VI, the review of attempts to interpret the transition radiation in term
sudden termination of the charge motion in one medium and its sudden beginning in the oth
is given. A short resume of the results obtained is presented in Sec. VII.

II. MATHEMATICAL PRELIMINARIES

We consider the charge motion in medium as to be given and intend to evaluate the e
magnetic field arising from such a motion. The solving of Maxwell equations grounds on th
of the Green functions.

For the charge motion in medium with refractive indexn, the Green function is equal to

Gn5exp~ iknR!/R, R5urW2rW8u. ~2.1!

Herekn5kn, k5v/c andn is the medium refractive index. Its expansion in spherical coordin
is given by~see, e.g., Ref. 6!

Gn52 (
m>0

em~2l 11!
~ l 2m!!

~ l 1m!!
cosm~f2f8!Gl~r ,r 8!Pl

m~cosu!Pl
m~cosu8!, ~2.2!

where
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Gl~r ,r 8!5 iknj l~knr ,!hl~knr .!, j l~x!5Ap

2x
Jl 11/2~x!, hl~x!5Ap

2x
Hl 11/2

(1) ~x!,

em51/(11dm,0); r .5r ,r ,5r 8 if r .r 8; r .5r 8,r ,5r if r ,r 8.
These equations are no longer valid if medium consists of two pieces with different refra

indices. We consider a particular case when space regions inside and outside the sphere
radiusa are filled with the substances 1 and 2 with parameterse1 ,m1 and e2 ,m2 , respectively.
The Green function satisfying equations

~D1k1
2!Gn524pd3~rW2rW8!

for r ,a and

~D1k2
2!Gn524pd3~rW2rW8!

for r .a has the same form as~2.2! but with Gl(r ,r 8) given by

Gl5 ik1Q~a2r !Q~a2r 8! j l~k1r ,!hl~k1r .!1 ik2Q~r 2a!Q~r 82a! j l~k2r ,!hl~k2r .!

1 ik1DlQ~a2r !Q~r 82a! j l~k1r !hl~k2r 8!1 ik2ClQ~r 2a!Q~a2r 8! j l~k1r 8!hl~k2r !.

~2.3!

Herek15kn1 andk25kn2 (n15Ae1m1 andn25Ae2m2 are the refractive indices of media 1 an
2, respectively!. The constantsCl and Dl are defined by the boundary conditions atr 5a. The
vector potential~VP! in the spectral representation for a charge moving along thez axis is found
from the equation

Az5
1

c E G~rW,rW8!m~r 8! j z~rW8!dV8, ~2.4!

wherem5m1 for r ,a andm5m2 for r .a. The integration is performed over space points wh
the spectral current densityj z(rW8) differs from zero.

III. PEDAGOGICAL EXAMPLE: THE TAMM PROBLEM IN A SPHERICAL BASIS

A. The original Tamm problem

Tamm considered the following problem.7 A point charge is at rest at the pointz52z0 of the
z axis up to a momentt52t0 and at the pointz5z0 after the momentt5t0 . In the time interval
2t0,t,t0 , it moves uniformly along thez axis with the velocityv greater than the light velocity
in mediumcn5c/n. The nonvanishingz component of the VP in the spectral representation
given by

Az~x,y,z!5
em

2pc
aT , ~3.1!

where

aT5E
2z0

z0 dz8

R
expF ikS z8

b
1nRD G , R5@r21~z2z8!2#1/2, r25x21y2.

Imposing the conditions:~i! R@z0 ~this means that the observation distance is much larger
the motion interval!; ~ii ! knR@1, kn5v/cn ~this means that the observations are made in the w
zone!; ~iii ! nz0

2/2Rl!1, l52pc/v @this means that the second-order terms in the expansionR
should be small compared withp since they enter as a phase in~3.1!; l is the observed wave
length#, Tamm obtained the following expression for the magnetic VP:
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Az5
em

pnvr
exp~ iknr !q, q5

1

1/bn2cosu
sinFkLn

2 S 1

bn
2cosu D G . ~3.2!

HereL52z0 is the motion interval andbn5bn. In the limit kL→`, one gets

q→pdS 1

bn
2cosu D , Az→

em

vnr
exp~ iknr !d~cosu21/bn!. ~3.3!

Using the vector potential~3.2!, Tamm evaluated the electromagnetic field strengths and
energy flux through the sphere of the radiusr for the whole time of observation

E5R0
2E Sr dV dt5E d2E

dV dv
dV dv, dV5sinu du df, Sr5

c

4p
EuHf ,

where

d2E
dV dv

5
e2m

p2nc
q2 sin2 u ~3.4!

is the energy emitted into the solid angle dV, in the frequency interval dv. This famous formula
obtained by Tamm is frequently used by experimentalists for the identification of the ch
velocity. Equation~3.4!, being integrated over the solid angle, defines the frequency distributio
the radiation

dE
dv

5E d2E
dV dv

dV.

It is given by8,9

dE
dv

5
2e2b

pc S 12
1

bn
2D H sin2@kL~12bn!/2b#

12bn
2

sin2 v@kL~11bn!/2b#

11bn
2

kL

2b FsiS kL

b
~12bn! D

2siS kL

b
~11bn! D G J 2

2e2

pcn2b F ln
u12bnu
11bn

2ciS kL

b
u12bnu D1ciS kL

b
~11bn! D G

2
e2

pcn2 H 2n1
1

kL FsinS kL

b
~12bn! D2sinS kL

b
~11bn! D G J . ~3.5!

Heresi(x) andci(x) are the integral sine and cosine defined by equations

si~x!52E
x

` sint

t
dt, ci~x!52E

x

` cost

t
dt.

For kL@1, Eq. ~3.5! reduces to the form given by Tamm:

dE
dv

5WBS ~3.6!

for v,cn and

dE
dv

5WBS1WCh ~3.7!

for v.cn . Here
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WBS5
2e2m

pcbn2 S ln
11bn

u12bnu
22bnD and WCh5

e2mkL

c S 12
1

bn
2D .

Tamm identifiedWBS with the spectral distribution of the bremsstrahlungs, arising from the ch
instantaneous acceleration and deceleration at the moments6t0 , respectively. On the other hand
WCh was identified with the spectral distribution of the VC radiation. This is supported by the
that WCh related to the charge motion interval coincides with the famous Frank-Tamm for
describing the energy radiated per unit length and per unit frequency for the charge unbo
motion10

d2E
dv dL

5
e2

c2 S 12
1

bn
2D .

The typical experimental situations described by the Tamm formula are~i! the b decay of a
nucleus at one space point accompanied by a subsequent absorption of the emitted ele
another point;~ii ! a high energy electron consequently moves in vacuum, enters into the diel
slab, leaves the slab and propagates again in vacuum. Since the electron moving unifor
vacuum does not radiate~apart from the transition radiation arising at the boundaries of
dielectric slab!, the experimentalists describe this situation via the Tamm formula, assuming
the electron is created at one side of the slab and is absorbed at the other~see, e.g., Refs. 8
11–15!.

B. Expansion of the Tamm problem in terms of Legendre polynomials

Let a charge moves in medium in a finite interval (2z0 ,z0) ~this corresponds to the so-calle
Tamm problem!. Then, the current density corresponding to the Tamm problem, in the sph
coordinates, is given by

j z~v!5
e

4p2r 2 sinu Fd~u!expS ikr

b D1d~u2p!expS 2
ikr

b D GQ~z02r !. ~3.8!

Then, using~2.2!, one gets on the observation sphere of the radiusr .z0 ,

Az~v!5
iemkn

2pc ( ~2l 11!Plhl~knr!Jl~0,z0!,

Hf~v!52
iek2n2

2pc ( Pl
1hl~knr!J̃l~0,z0!, Eu~v!52

ek2mn

2pc ( Pl
1Hl~knr!J̃l~0,z0!.

~3.9!

Here

Jl~0,z0!5E
0

z0
j l~knr8! f l~r 8!dr 8, J̃l~0,z0!5Jl 21~0,z0!1Jl 11~0,z0!,

Hl~x!5ḣl~x!1
hl~x!

x
,

f l~r 8!5expS ikr 8

b D1~21! l expS 2
ikr 8

b D , k15kn1 , k25kn2 .

In obvious cases, we omit the arguments of the Legendre polynomials if they equal cosu. At large
distances (kr@1) one can replace Hankel functions by their asymptotic values:
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Az;
em

2pcr
exp~ iknr !( ~2l 11!i 2 l PlJl~0,z0!,

Hf;2
ekn

2pcr
exp~ iknr !( i 2 l Pl

1J̃l~0,z0!, Eu;2
ekm

2pcr
exp~ iknr !( i 2 l Pl

1J̃l~0,z0!.

The angular radiation intensity on the sphere of the radiusr

d2E
dv dV

5
1

2
cr2~EuHf* 1c.c.!5

e2k2nm

4p2c
U( i 2 l Pl

1J̃l~0,z0!U2

5
e2k2nm sin2 u

4p2c
U( ~2l 11!i 2 l PlJl~0,z0!U2

. ~3.10!

Or, in a manifest form,

d2E
dv dV

5
e2mn

p2c
sin2 u~S11S2!2, ~3.11!

where

S15(
l 50

`

~21! l~4l 11!P2l~cosu!I 2l
c , S25(

l 50

`

~21! l~4l 13!P2l 11~cosu!I 2l 11
s ,

~3.12!

I 2l
c 5E

0

kz0
j 2l~nx!cosS x

b Ddx, I 2l 11
s 5E

0

kz0
j 2l 11~nx!sinS x

b Ddx.

Integrating~3.11! over the solid angle, one obtains the frequency distribution of the radia

dE
dv

5
e2k2nm

pc (
l ~ l 11!

2l 11
uJ̃l~0,z0!u2

5
8e2nm

pc F( ~ l 11!~2l 11!

4l 13
~ I 2l

c 1I 2l 12
c !21(

l ~2l 11!

4l 11
~ I 2l 11

s 1I 2l 21
s !2G . ~3.13!

These equations are valid if the radiusr of the observation sphere is larger thanz0 .
Numerical calculations show that Eqs.~3.11! and ~3.13! coincide with the corresponding

Tamm equations~3.4! and ~3.5!.
We concentrate now on the vector potential. For this, we rewrite it as

Az5
iemn

pc (
l 50

`

~4l 11!h2l~knr!P2l~cosu!I 2l
c 2

emn

pc (
l 50

`

~4l 13!h2l 11~knr!P2l 11~cosu!I 2l 11
s .

~3.14!

Usually, observations are made on large distances. For example, forl5431025 cm and r
51 m, kr52pr /l;107. Replacing the Hankel functions by their asymptotic values, one ge

Az5
em

krpc
exp~ iknr !~S11S2!. ~3.15!

Obviously, ~3.2! and ~3.15! should coincide~since the same assumptions are involved in th
derivation!. Equating them, one gets
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S11S25
1

n

sin@kz0n~cosu21/bn!

cosu21/bn
. ~3.16!

Now we consider the coefficientsI 2l
c and I 2l 11

s . In the limit kz0→`, the integrals

I 2l
c 5E

0

`

j 2l~nx!cosS x

b Ddx, I 2l 11
s 5E

0

`

j 2l 11~nx!sinS x

b Ddx

can be evaluated in a closed form~see, e.g., Ref. 6!. They are given 0 forbn,1 and

I 2l
c 5

p

2n
~21! l P2l~1/bn!, I 2l 11

s 5
p

2n
~21! l P2l 11~1/bn!

for bn.1. Substituting this into~3.15!, one gets

Av5
em

2nkrc
exp~ iknr !F(

l 50

`

~4l 11!P2l~cosu!P2l~1/bn!

1(
l 50

`

~4l 13!P2l 11~cosu!P2l 11~1/bn!G
5

em

2nkrc
exp~ iknr !(

l 50

`

~2l 11!Pl~cosu!Pl~1/bn!

5
em

nkrc
exp~ iknr !d~cosu21/bn!. ~3.17!

In deriving this, we used the completeness relation

(
l 50

`

~ l 11/2!Pl~x!Pl~x8!5d~x2x8!.

Vector potential~3.17! coincides with the one entering into~3.3!.

IV. THE TAMM PROBLEM FOR A CHARGE MOVING INSIDE THE SPHERICAL SAMPLE

A. Main formulas

Let a charge move in a finite space interval (2z0 ,z0) lying entirely inside the sphereS of the
radiusa ~Fig. 1!. The sphere is filled by a substance 1 with parameterse1 andm1 . The observa-

FIG. 1. A charge moves inside the dielectric sphereS filled with the medium 1. The radiation of intensity is measur
outsideS, in medium 2.
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tions are made in the medium 2 with parameterse2 and m2 surroundingS. The EMF strengths
contributing to the radial energy flux are equal to~see Appendix A!

Hf52
iek2n2

2

2pc ( C̃l Pl
1hl~k2r !,

Eu52
i

e2kr

d

dr
~rH f!52

em2n2k2

2pc ( Hl~k2r !Pl
1C̃l ~4.1!

for r .a and

Hf52
iek2n1

2

2pc ( Pl
1@D̃ l j l~k1r !1 J̃l

(1)~0,z0!hl~k1r !#,

~4.2!

Eu52
em1n1k2

2pc ( Pl
1@D̃ lJl~k1r !1 J̃l

(1)~0,z0!Hl~k1r !#

for z0,r ,a. Here

J̃l
(1)~x,y!5Jl 21

(1) ~x,y!1Jl 11
(1) ~x,y!, Jl

(1)~x,y!5E
x

y

j l~k1r 8! f l~r 8!dr 8,

Jl~x!5
dj l~x!

dx
1

j l~x!

x
5

1

2l 11
@~ l 11! j l 212 l j l 11#,

Hl~x!5
dhl~x!

dx
1

hl~x!

x
5

1

2l 11
@~ l 11!hl 212 lhl 11#.

Imposing the continuity ofHf andEu at r 5a, one finds the following equations forC̃l and
D̃ l :

n2
2C̃lhl~2!2n1

2D̃ l j l~1!5n1
2hl~1!J̃l

(1)~0,z0!,
~4.3!

m2n2C̃lHl~2!2m1n1D̃ lJl~1!5m1n1Hl~1!J̃l
(1)~0,z0!,

where 15k1a and 25k2a. From this one easily findsC̃l ,

C̃l5
im1

n2k2a2dupl
J̃l

(1)~0,z0!, ~4.4!

where

D l5m2n1 j l~1!Hl~2!2m1n2Jl~1!hl~2!.

At large distances (kr@1) one can replace Hankel function by its asymptotic value. Then,

Hf52
ekn2

2pc

exp~ ik2r !

r
S, Eu52

ekm2

2pc

exp~ ik2r !

r
S, ~4.5!

where

S5( i 2 l Pl
1C̃l . ~4.6!
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The radiation intensity per unit frequency unit and per unit solid angle is

d2E
dV dv

5
1

2
cr2~EuHf* 1c.c.!5

e2k2n2m2

4p2c
uSu2. ~4.7!

The integration over the solid angle gives the frequency distribution of radiation

dE
dv

5
e2k2n2m2

pc (
l ~ l 11!

2l 11
uC̃l u2. ~4.8!

When the media inside and outsideS are the same (e15e15e, m15m25m), one gets

D l5
im

nk2a2 and C̃l5 J̃l
(1)~0,z0!,

that is, one arrives at the one-medium Tamm problem for the space interval (2z0 ,z0).

B. Numerical results

In Fig. 2, there are shown angular radiation intensities~solid lines! evaluated according~4.7!
for kz0510, ka520, n152 andn251 ~that is, there is a vacuum outsideS) for a number of
charge velocities. Side by side with them, the Tamm angular intensities~3.4! ~dotted lines! corre-
sponding ton5n1 , L52z0 are shown. The distinction of~4.7! from ~3.4! is due to the presenc
of the medium 2 outside S not coinciding with medium 1. This results in the broadening o
angular intensity distribution and in its rise at large observation angles.

The corresponding frequency distributions~4.8! ~solid lines! together with the Tamm fre-
quency distributions~3.5! ~dotted lines! are shown in Fig. 3. It is seen that the frequency dis
bution ~4.8! oscillates around the Tamm one~3.5!. When evaluating dE/dv, we implicitly assumed
that the refractive indexn1 does not depend onv in the treated frequency interval. In fact, this
a common thing in refractive media. For example, for the usual water the refractive ind
almost constant in the frequency interval 631014,v,631015 s21 encompassing the visible
light region.

In Fig. 4, there are shown angular radiation intensities~solid lines! evaluated according~4.7!
for kz0510,ka520,n151 andn252 ~that is, there is a vacuum insideS) for a number of charge
velocities. Side by side with them, the Tamm angular intensities~3.4! ~dotted lines! corresponding
to n5n1 , L52z0 are shown. It is seen that the presence of medium outsideS affects not so
strongly as in Fig. 2.

The corresponding frequency distributions are shown in Fig. 5. Again, oscillations aroun
Tamm frequency distribution~3.5! are observed.

Probably, the rise of angular intensities at large angles shown in Figs. 2 and 4 is due
reflection of the VC radiation from the internal side ofS.

V. THE TAMM PROBLEM FOR A CHARGE PASSING THROUGH THE SPHERE

A. Dielectric sphere

1. Main formulas

Let a charge move with a constant velocityv in the interval (2z0 ,z0). There is a sphereS of
the radiusa,z0 with its center at the origin~Fig. 6!.

The space insideS is filled by the substance with parameterse1 , m1 . OutsideS there is
substance with parameterse2 , m2 . The EMF strengths contributing to the radial energy flux
~see Appendix B!

Hf52
iek2

2

2pc ( C̃l Pl
1hl~k2r !, Eu52

ek2m2n2

2pc ( Hl~k2r !Pl
1C̃l ~5.1!
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for r .z0 ,

Hf52
iek2

2

2pc ( P̃l
1@C̃lhl~k2r !2hl~k2r !J̃l

(2)~r ,z0!1 j l~k2r !H̃ l
(2)~r ,z0!#,

~5.2!

Eu52
ek2m2n2

2pc ( P̃l
1@C̃lHl~k2r !2Hl~k2r !J̃l

(2)~r ,z0!1Jl~k2r !H̃ l
(2)~r ,z0!#

FIG. 2. Angular radiation intensities ine2/c units ~solid curves! for the charge motion shown in Fig. 1 and various char
velocities. The media parameters aren152, n251 ~that is, there is vacuum outside the sphereS). Further,kz0510,ka
520. The dotted curves are the Tamm angular intensities~3.4! evaluated forkL52kz0 andn5n1 . The difference between
these two curves is due to the fact that the medium outsideS is not the same as insideS. The exact angular intensities ar
much broader than the corresponding Tamm ones. Probably, the rise of angular intensities at large angles is d
reflection of the VC radiation from the internal side ofS.
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for a,r ,z0 and

Hf52
iek1

2

2pc ( P̃l
1@D̃ l j l~k1r !1hl~k1r !J̃l

(1)~0,r !1 j l~k1r !H̃ l
(1)~r ,a!#,

~5.3!

Eu52
ek2m1n1

2pc ( P̃l
1@D̃ lJl~k1r !1Hl~k1r !J̃l

(1)~0,r !1Jl~k1r !H̃ l
(1)~r ,a!#

FIG. 3. Frequency radiation intensities ine2/c units ~solid curves! for the charge motion shown in Fig. 1 and variou
charge velocities. The media parameters are the same as in Fig. 2. Further,kz05m, ka52m. The dotted curves are the
Tamm frequency intensities~3.5! evaluated forkL52kz0 andn5n1 . It is seen that frequency intensities~4.8! oscillate
around the Tamm ones.
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for r ,a. Here

H̃ l
(1)~x,y!5Hl 21

(1) ~x,y!1Hl 11
(1) ~x,y!, J̃l

(2)~x,y!5Jl 21
(2) ~x,y!1Jl 11

(2) ~x,y!,

H̃ l
(2)~x,y!5Hl 21

(2) ~x,y!1Hl 11
(2) ~x,y!, Hl

(1)~x,y!5E
x

y

hl~k1r 8! f l~r 8!dr 8,

Jl
(2)~x,y!5E

x

y

j l~k2r 8! f l~r 8!dr 8, Hl
(2)~x,y!5E

x

y

hl~k2r 8! f l~r 8!dr 8.

FIG. 4. The same as in Fig. 2 but forn151, n252 ~that is, there is vacuum insideS). The dotted curves are the Tamm
angular intensities~3.4! evaluated forkL52kz0 andn5n1 .
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EquatingEu andHf at r 5a, one obtains the following equations forC̃l and D̃ l :

n2
2hl~2!C̃l2n1

2 j l~1!D̃ l5n1
2hl~1!J̃l

(1)~0,a!1n2
2@hl~2!J̃l

(2)~a,z0!2 j l~2!H̃ l
(2)~a,z0!#,

~5.4!

m2n2Hl~2!C̃l2m1n1Jl~1!D̃ l5m1n1Hl~1!J̃l
(1)~0,a!1n2m2@Hl~2!J̃l

(2)~a,z0!2Jl~2!H̃ l
(2)~a,z0!#.

Here we set 15k1a and 25k2a. For example,j l(1)[ j l(k1a), etc. From this one easily obtain
C̃l :

FIG. 5. The same as in Fig. 3 but forn151, n252 ~vacuum insideS). The Tamm frequency intensities~3.5! are evaluated
for kL52kz0 andn5n1 .
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C̃l5
1

D l
H im1

n2k2a2 J̃l
(1)~0,a!1 J̃l

(2)~a,z0!@m2n1 j l~1!Hl~2!2m1n2Jl~1!hl~2!#

2H̃ l
(2)~a,z0!@m2n1 j l~1!Jl~2!2m1n2Jl~1! j l~2!#J

5
i

D l
H m1

n2k2a2 J̃l
(1)~0,a!1 J̃l

(2)~a,z0!@m2n1 j l~1!Nl~2!2m1n2Jl~1!nl~2!#

2Ñl
(2)~a,z0!@m2n1 j l~1!Jl~2!2m1n2Jl~1! j l~2!#J . ~5.5!

HereD l5n1m2 j l(1)Hl(2)2m1n2Jl(1)hl(2). At largedistances (kr@1), one has

Hf'2
ekn2

2pcr
exp~ ikn2r !S, Eu'2

ekm2

2pcr
exp~ ikn2r !S, ~5.6!

where

S5( i 2 l C̃l Pl
1 . ~5.7!

Correspondingly, the energy flux through the sphere of the radiusr is

d2E
dv dV

5
1

2
cr2~EuHf* 1c.c.!5

e2k2n2m2

4p2c
uSu2. ~5.8!

Integration over the solid angle gives the frequency distribution of radiation

dE
dv

5
e2k2n2m2

pc (
l ~ l 11!

2l 11
uC̃l u2. ~5.9!

The one-medium Tamm problem is obtained either in the limitka→0 or when media 1 and 2 ar
the same.

2. Numerical results

In Fig. 7, there are shown angular radiation intensities~solid lines! evaluated according
~5.8! for kz0520, ka510, n152 and n251 ~that is, there is a vacuum outside the sphe
S and a substance withn152 inside it! for a number of charge velocities. Side by side with the
the Tamm angular intensities~3.4! ~dotted lines! corresponding ton5n1 , L52a are shown.
It is the usual thing in the VC radiation theory to associate the observed radiation with th
of the charge trajectory wherebn.1 @see, e.g., Ref. 10 and~ii ! item at the end of Sec. III A#.
It the treated case, it lies within the sphereS. We observe a rather poor agreement of the ex

FIG. 6. A charge motion begins and terminates in medium 2. It passes through sphereS filled with the medium 1. The
radiation of intensity is measured outsideS, in medium 2.
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intensity ~5.8! with the Tamm one~3.4!. Experimentalist studying, e.g., electron passing throu
the dielectric sphereS, will not see the pronounced Cherenkov maximum atu5uc (cosuc

51/bn) and, on these grounds, will not identify the charge velocity. Forb50.4 we did not presen
the Tamm intensity since for this velocity the Tamm intensities arising from the charge moti
0,r ,a ~medium 1! anda,r ,z0 ~medium 2! intervals are of the same order. It is not clear to

FIG. 7. Angular radiation intensities ine2/c units ~solid curves! for the charge motion shown in Fig. 6 and various char
velocities. The medium insideS is dielectric with n152. OutsideS there is vacuum (n251). Further,ka510, kz0

520. The dotted curves are the Tamm angular intensities~3.4! evaluated forkL52ka andn5n1 . The noncoincidence of
exact angular intensities with the corresponding Tamm ones and, in particular, the absence of the pronounced ma
cosu51/bn ~especially forb51 andb50.8) demonstrates that the applicability of the Tamm formula for describing
radiation arising from the charge passage through the dielectric sample is rather limited.
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how to combine the corresponding Tamm amplitudes. In any case, Eqs.~5.8! and ~5.9! give the
exact solution of the treated problem, while the Tamm intensities are needed only for the
pretation purposes. The corresponding frequency distribution~5.9! also differs appreciably from
the Tamm one~3.5! ~Fig. 8!.

In Fig. 9, there are shown angular radiation intensities~solid lines! evaluated according to
~5.2! for kz0520, ka510, n151 andn252 ~that is, the vacuum bubble insideS surrounded by

FIG. 8. Frequency radiation intensities ine2/c units ~solid curves! for the charge motion shown in Fig. 6 and variou
charge velocities. The media parameters are the same as in Fig. 7. Further,ka5m, kz052m. The dotted curves are the
Tamm frequency intensities~3.5! evaluated forkL52ka andn5n1 .
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a substance withn252) for a number of charge velocities. Side by side with them, the Ta
angular intensities~3.4! ~dotted lines! corresponding ton5n2 , L52(z02a) are shown. In the
treated case, the part of the charge trajectory wherebn.1 lies outside the sphereS. We observe
a satisfactory agreement of the exact intensity~5.8! with the Tamm intensity~3.4!. Experimentalist
studying, e.g., the electron passing through the dielectric sphereS, will see the pronounced
Cherenkov maximum atu5uc (cosuc51/bn). The corresponding frequency distribution~5.3!
does not differ appreciably from the Tamm one~3.5! ~Fig. 10!.

B. Metallic sphere

On the surface of ideal metal, tangential components of the electric field strength vanish16 For
the metallic sphere of the radiusa, this leads to the disappearance ofEu . This definesC̃l :

FIG. 9. The same as in Fig. 7 but forn151, n252 ~that is, there is vacuum insideS). The dotted curves are the Tamm
angular intensities~3.4! evaluated forkL52k(z02a) andn5n2 .
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C̃l5 J̃l
(2)~a,z0!2

Jl~2!

Hl~2!
H̃ l

(2)~a,z0!5
i

Hl~2!
@Nl~2!J̃l

(2)~a,z0!2Jl~2!Ñl
(2)~a,z0!#. ~5.10!

Then, angular and frequency distributions are given by~5.8!, ~5.9! but with C̃l defined by~5.10!.
Numerical results:Let outside S be vacuum. The corresponding angular distributions~5.8!

~solid lines! are compared in Fig. 11 with the Tamm angular intensities~3.4! ~dotted lines! evalu-
ated forL52(z02a) andn5n2 . Sincebn<1 outside the sphereS, the angular intensities ar
rather small.

FIG. 10. The same as in Fig. 8 but forn151, n252 ~there is vacuum insideS). The dotted curves are the Tamm frequen
intensities~3.5! evaluated forkL52k(z02a) andn5n2 .
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The corresponding frequency distributions~5.9! ~solid lines! and the Tamm ones~3.5! ~dotted
lines! are shown in Fig. 12. Their agreement is rather poor.

Let outsideS be the medium with the refractive indexn252. The corresponding angular an
frequency distributions are shown in Figs. 13 and 14, respectively. We observe the satis
agreement with the Tamm intensities evaluated forL52(z02a) andn5n2 .

VI. DISCUSSION

Formulas obtained in the preceding two sections describe the VC radiation, the rad
arising from the charge instantaneous acceleration and deceleration and the transition ra
arising from a charge passing from one medium to another.

FIG. 11. Angular radiation intensities ine2/c units~solid curves! for the charge motion shown in Fig. 6 and various char
velocities. The medium insideS is ideal metallic substance. The medium refractive index outsideS is n251 ~vacuum!.
Further,ka510,kz0520. The dotted curves are the Tamm angular intensities~3.4! evaluated forkL52k(z02a) andn
5n2 .
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To separate contribution of the transition radiation, one should subtract~according, e.g., to
Ref. 5 or Ref. 17! the field strengths corresponding to the inhomogenuous solution of the Max
equations from the total field strengths. In the treated case, the field strengths correspondin
Tamm problem should be subtracted~they are written out in Sec. III B!. This leads to the following
redefinition of theC̃l coefficients:

C̃l→C̃l2An1m1

n2m2
J̃l

(1)~0,z0!

FIG. 12. Frequency radiation intensities ine2/c units ~solid curves! for the charge motion shown in Fig. 6 and variou
charge velocities. The medium insideS is ideal metallic substance. The medium refractive index outsideS is n251
~vacuum!. Further, ka5m,kz052m. The dotted curves are the Tamm frequency intensities~3.5! evaluated forkL
52k(z02a) andn5n2 .
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for the motion shown in Fig. 1,

C̃l→C̃l2An1m1

n2m2
J̃l

(1)~0,a!2Jl
(2)~a,z0!

for the charge motion through the dielectric sphere~Fig. 7! and

C̃l→C̃l2Jl
(2)~a,z0!

FIG. 13. The same as in Fig. 11 but for metallic substance. The medium refractive index outsideS is n252. The dotted
curves are the Tamm angular intensities~3.4! evaluated forkL52k(z02a) andn5n2 .
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for the charge motion through the metallic sphere~Fig. 7!. These newly definedC̃l being substi-
tuted into~4.7!, ~4.8!, ~5.8!, and~5.9! give transition radiation intensities. Due to the lack of spa
and since the observable radiation intensities are the total ones presented in Figs. 2–5 an
we do not evaluate transition radiation intensities in this paper.

In the physical literature there are semi-intuitive interpretations of the transition radiation
the one arising in the Tamm problem in terms of instantaneous acceleration and decelerati
in terms of semi-infinite charge motion terminating at one side of the media interface and b
ning at the other one. Their insufficiencies~discussed below! prevent us from their applying to th

FIG. 14. The same as in Fig. 12 but forn252. The dotted curves are the Tamm frequency intensities~3.5! evaluated for
kL52k(z02a) andn5n2 .
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consideration of VC and transition radiation on the spherical sample. In any case, exact so
and numerical calculations presented in Secs. IV and V contain all necessary information
analysis of experimental data.

A. Comment on the transition radiation

1. Interpretation of the transition radiation in terms of instantaneous velocity jumps

Sometimes the transition radiation is interpreted as a charge uniform motion with the ve
v in medium 1, its sudden stop in medium 1 at the border with medium 2, the sudden st
motion in medium 2 and the charge uniform motion in medium 2 with the velocityv ~see, e.g.,
Refs. 18–20!. It is suggested that the main contribution to the radiation intensity give the m
tioned above instantaneous jumps of the charge velocity. The radiation intensity arising fro
charge sudden stop in medium 1 is taken in the form

d2E
dv dV

5
e2

4p2c
F bW 3nW r

12n1~bW nW r !
G 2

, ~6.1!

wherebW 5vW /c, nW r is the unit radius vector of the observation point andn1 is the refractive index
of the medium 1.

On the other hand, the exact calculations were made in Ref. 21 for the following decele
motion along thez axis:

z~ t !5z11v1~ t2t1!2 1
2 a~ t2t1!2, v~ t !5v12a~ t2t1!, t1,t,t2, ~6.2!

which begins at the momentt1 at the space pointz1 with the velocityv1 and ends at the momen
t2 at the space pointz2 with the velocityv2 . The time motion intervalt22t1 and decelerationa
are easily expressed throughz1 ,z2 ,v1 , andv2,

t22t152
z22z1

v11v2
, a5

1

2

v1
22v2

2

z22z1
. ~6.28!

It was shown in Ref. 21 that for the fixed wavelengthl, the intensity of radiation tends to zero fo
k(z22z1)→0 (k52p/l). This certainly disagrees with~6.1! which differs from zero for any
motion interval. To clarify the situation, we turn to the derivation of~6.1!.

2. The derivation of (6.1)

For simplicity, we consider at first a charge motion in vacuum closely following Landau
Lifshitz treatise.22 Its authors begin with the equations

HW 5~nW r3EW !, EW 52
1

c
AẆ ,

which are valid in the wave zone~the dot above the vector potentialAW means the differentiation
over the laboratory time!. For the Fourier transform ofHW one gets

HW v52
1

2pc E2`

`

~nW r3AẆ !exp~ ivt !dt. ~6.3!

Now, if AW Þ0 for t1,t,t2 , then forv(t22t1)!1 one can set exp(ivt)'1, thus obtaining

HW v52
1

2pc E nW r3
]AW

]t
dt52

1

2pc
nW r3~AW 22AW 1!. ~6.4!
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Here AW 25AW (t5t2) and AW 15AW (t5t1). Further, authors of Ref. 22 changeAW 1 and AW 2 by the
Lienard–Wiechert potentials. This gives

HW v5
e

2pcr F b23nr

12~bW 2nW r !
2

b13nr

12~bW 1nW r !
G . ~6.5!

The radiation intensity per unit frequency and per unit solid angle is

d2E
dv dV

5cr2uHW vu25
e2

4p2c F b23nr

12~bW 2nW r !
2

b13nr

12~bW 1nW r !
G 2

. ~6.6!

Now if the final velocity is zero,~6.6! coincides with~6.1!.

3. Resolution of paradox

We rewrite the integral entering into~6.4! in the form

E ]AW

]t
dt5E ]AW ~ t~ t8!!

]t8
dt85AW 22AW 1 , ~6.7!

where t8 is the charge retarded~proper! time. The laboratory timest1 and t2 being expressed
through the retarded times for the one dimensional motion along thez axis are given by

t15t181
1

c
@r21~z2z18!2#1/2, t25t281

1

c
@r21~z2z28!2#1/2, ~6.8!

wherez185z8(t18) and z285z8(t28) are the charge positions at the timest18 and t28 . Now, let the
charge proper timet8 be uniquely related to its positionz8. Then, forz185z28 , one getst185t28 ,
t15t2 and, therefore,AW 25AW 1 , HW v50, and d2E/dv dV50.

We illustrate this using the motion law~6.2! as an example@note thatt and z entering into
~6.2! are the charge proper timet8 and its positionz8]. For this motion law,t8 is uniquely related
to z8,

t85t112v1

z22z1

v1
22v2

2 F12S 12
z82z1

z22z1

v1
22v2

2

v1
2 D 1/2G . ~6.9!

According to ~6.28!, t25t1 for z25z1 . Therefore,AW 25AW 1 for t25t1 and HW v given by ~6.4!
vanishes in thek(z22z1)→0 limit, in accordance with Ref. 21.

The main assumptions for the vanishing ofHW v are ~i! the discontinuous charge motion wit
the velocity jumps can be viewed as a limiting case of the continuous motion without the ve
jumps when the length along which the velocity changes fromv1 to v2 tends to zero;~ii ! the
retarded~proper! charge time is uniquely related to its position.

We conclude the interpretation of the transition radiation in terms of the charge instanta
acceleration and deceleration at the border of two media is not sufficient if the discontin
charge motion can be treated as a limiting case of the continuous charge motion. In any ca
discontinuous charge motion cannot be realized in nature: it is the suitable idealization of
continuous charge motion.

In general,AW (t2) does not coincide withAW (t1) if the charge proper time is not uniquely relate
to its position. Consider, for example, the immovable elementary~infinitesimal! time dependent
source. Then,AW (t2)ÞAW (t1) andHW vÞ0. Another possibility to obtainAW (t2)ÞAW (t1) is to take into
account the internal degrees of freedom of a moving charged particle@for example, its spin flip at
the fixed space point can giveAW (t2)ÞAW (t1)].
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4. On the interpretation of the transition radiation in terms of the charge semi-infinite
motions

In Refs. 4 and 5, the transition radiation was associated with the charge radiation o
semi-infinite intervals (2`,0) and~0,̀ ! lying in media 1 and 2, respectively. We analyze th
situation using the vector potential as an example. VP corresponding to the charge mo
medium 1 is given by

Az5
em1

2pc E2`

0 dz8

R
exp~ ic!, ~6.10!

wherec5kz8/b1k1R, k15kn1 , R5Ar21(z2z8)2. In the quasiclassical approximation on
gets

Az
(1)5

em1

2pcr

1

12b1 cosu
~6.11!

for b,b151/n1 . For b.b1 ,

Az
(1)5~6.11! for u,u1 ,

Az
(1)5~6.11!1AT

(1) for u.u1 .

Here

AT
(1)5

em1

2pc
expS ip

4 DA2pbg1

kr sinu
expF ikr

b S cosu1
sinu

g1
D G , g15

1

Au12b1
2u

, cosu15
1

b1
.

~6.12!

SinceAT(1) decreases like 1/Akr, the radiation intensity is large in theu.u1 angular region.
Similarly, the vector potential corresponding to the charge motion in medium 2 is given

Az
(2)52

em2

2pcr

1

12b2 cosu
for b,b251/n2 . ~6.13!

For b.b2 ,

Az
(2)5~6.13! for u.u2 ,

Az
(2)5~6.13!1AT

(2) for u,u2 .

Here

AT
(2)5

em2

2pc
expS ip

4 DA2pbg2

kr sinu
expF ikr

b S cosu1
sinu

g2
D G , g25

1

Au12b2
2u

, cosu25
1

b2
.

~6.14!

Usually, the termsAT
(1) andAT

(2) are dropped in standard considerations of the transition radia
Their interference withAz

(1) andAz
(2) given by ~6.12! and ~6.13!, respectively, leads to the osci

lations of the radiation intensity in theu.u1 angular region for the charge semi-infinite motio
(2`,0) in medium 1, and in theu,u2 angular region for the charge semi-infinite motion~0,̀ ! in
medium 2.
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A further procedure in obtaining the transition radiation intensities is the evaluation of
strengths corresponding to vector potentials in media 1 and 2 and their superposition with
sponding Fresnel coefficients. Sometimes the secondary photon rescatterings at the bound
media 1 and 2~for the dielectric plate! are taken into account.

Since we have at hand the exact solution for the charge moving inside and outsid
dielectric or metallic sphere, these tricks are not needed: they are automatically taken into a
in closed expressions for radiation intensities.

5. On the physical meaning of A T
„1… and A T

„2… terms

To clarify the physical meaning ofAT
(1) andAT

(2) terms, we consider the case when media
and 2 are the same. Then, the vector potential corresponding to the infinite motion (2`,`)
reduces to the sum of vector potentials corresponding to semi-infinite motions in media 1

Az5Az
(1)1Az

(2)50

for b,1/n and

Az5AT
(1)1AT

(2)5
em

2pc
expS ip

4 DA2pbgn

kr sinu
expF ikr

b S cosu1
sinu

gn
D G , gn5

1

Au12bn
2u

~6.15!

for b.1/n. But this is the asymptotic form (r→`) of the VC vector potential corresponding t
the charge infinite motion in unbounded medium

Az5
em

pc
K0S kr

bgn
D for b,

1

n
and Az5

iem

2c
expS ikz

b DH0
(1)S kr

bgn
D for b.

1

n
.

This means thatAT
(1) andAT

(2) terms describe the VC radiation for the semi-infinite charge moti
in media 1 and 2. This is also confirmed by the exact solution corresponding to the semi-i
charge motion in dispersion free medium found in Refs. 23 and 24 in the time represen
Indeed, the space regions where the VC radiation differs from zero are just the same wheAT

(1)

andAT
(2) terms differ from zero.

It is easy to check that the values ofAz
(1) andAz

(2) are defined by the boundary pointz850,
while the values ofAT

(1) andAT
(2) terms are defined by stationary pointsz8 lying in the intervals

(2`,0) and~0,̀ !, respectively.
We see that the interpretation of the transition radiation in terms of semi-infinite motio

the intervals (2`,0) and~0,̀ ! is sufficient only forb,1/n. On the other hand, forb.1/n, the
Cherenkov termsAT

(1) andAT
(2) should be taken into account.

B. Comment on the Tamm problem

For the Tamm problem~uniform charge motion in a restricted space interval!, the vector
potential is given by~3.1!. It is easily evaluated in the quasiclassical approximation. Foz
,rgn2z0 andz.rgn1z0 one gets

Az
out52

iemb

2pck H 1

r 22bn~z2z0!
expF ik

b
~bnr21z0!G2

1

r 12bn~z1z0!
expF ik

b
~bnr12z0!G J .

~6.16!

Here r 15Ar21(z1z0)2 and r 25Ar21(z2z0)2. Inside the intervalrgn2z0,z,rgn1z0 , the
vector potential equals

Az
in5Az

out1Az
Ch , ~6.17!
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where

Az
Ch5

em

2pc
expS ikz

b DA2pbgn

kr sinu
expS i

p

4 DexpS ikr sinu

bgn
D .

It is seen thatAz
out is infinite atz5rgn6z0 ~this is due to the quasiclassical approximation use!.

Therefore, the radiation intensity should have maxima atz5rgn6z0 , with a kind of plateau for
rgn2z0,z,rgn1z0 and a sharp decreasing forz,rgn2z0 andz.rgn1z0 . At the observa-
tion distances much larger than the motion length

r 12bn~z1z0!'r ~12bn cosu!, r 22bn~z2z0!'r ~12bn cosu!,

bnr 12z05bnr 2z0~12bn cosu!, bnr 21z05bnr 1z0~12bn cosu!.

Then,

Az
out5

emb

pckr
exp~ iknr !

sin@vt0~12bn cosu!#

12bn cosu
, ~6.18!

that coincides with the Tamm vector potentialAz
T entering into~3.2!. Thus, inside the interva

rgn2z0,z,rgn1z0 ,

Az
in5Az

T1Az
Ch . ~6.19!

We observe that infinities ofAz
out disappeared due to the approximations involved. It is seen

for kr@1, Az
Ch and Az

T behave like 1/Akr and 1/kr, respectively. It follows from this that the
radiation intensity in space regionsz.rgn1z0 and z,rgn2z0 is described by the Tamm for
mula ~3.4!. On the other hand, inside the space regionrgn2z0,z,rgn1z0 , the radiation in-
tensity differs appreciably from the Tamm one. In fact, the second term inAz

in is much larger than
the first one (Az

T) for kr@1 ~since they decrease like 1/Akr and 1/kr for kr→`, respectively!. It
is easy to check that on the surface of the sphere of the radiusr , the intervalsz,rgn2z0 ,
rgn2z0,z,rgn1z0 and z.rgn1z0 correspond to angular intervalsu.u1 , u2,u,u1 and
u,u2 , whereu1 andu2 are defined by

cosu152
e0

bn
2gn

2 1
1

bn
F12S e0

bngn
D 2G1/2

and

cosu25
e0

bn
2gn

2 1
1

bn
F12S e0

bngn
D 2G1/2

. ~6.20!

Heree05z0 /r . For r @z0 ,

u15uc1
e0

bngn
, u25uc2

e0

bngn
,

whereuc is defined by cosuc51/bn. Therefore, inside the angular intervalu2,u,u1 the radia-
tion intensity should have plateau with its height proportional to the observation distancer . In the
limit r→`, the aboveu interval diminishes and for the radiation intensity one gets thed-type
singularity at cosu51/bn ~in addition toAz

T). However, theu integral from it is finite. Although
Du5u12u252e0 /bngn is very small forr @z0, the length of arc on the observation sphere
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which the radiation intensity differs from the Tamm one is finite: it is given by 2z0 /bngn . It
would be interesting to observe this deviation experimentally~there are recent experimental ind
cations for the existence of this plateau25!.

From the previous consideration it follows thatAz
Ch is a part of the Cherenkov shock wav

enclosed between straight linesz52z01rgn andz5z01rgn with its normal inclined under the
angle uc towards the motion axis. In the quasiclassical approximation, the stationary poiz8
5z2rgn of the integralaT entering in~3.1! lies inside the motion interval (2z0 ,z0) and defines
the value ofAz

Ch . On the other hand, for theAz
out the stationary point ofaT lies outside the charge

motion interval and the value ofaT is defined by initial and final points of the motion interva
Therefore,Az

out is somehow related to the beginning and the end of motion. In Refs. 26 and 2
radiation intensity in the Tamm problem was associated with the interference of bremsstra
shock waves arising from the instantaneous velocity jumps at the beginning and the end of m
However, if one replaces the instantaneous velocity jumps by the smoothed ones and the
the width of the transition region~where the velocity smoothly changes! to zero then the contri-
bution of this region to the radiation intensity also tends to zero.21 There are no velocity jumps fo
this smoothed motion and, therefore, the radiation intensity in the Tamm problem cann
attributed to them. However, there are acceleration jumps at the beginning and the end of
and at the moments when the accelerated motion meets the uniform one. Thus, the above i
can be still associated with acceleration jumps. To clarify the situation, the Tamm problem
absolutely continuous charge motion~for which the velocity itself and all its time derivatives a
absolutely continuous functions of time! was considered in Ref. 28. It was shown that the re
tively slow decreasing of the radiation intensity outside the plateau is replaced by its expon
damping. This means that the discontinuities of higher derivatives of the charge velocity co
ute to the asymptotic behavior of the radiation intensities as well. Formerly, for the charge m
in vacuum, the exponential damping for all angles was recognized in Refs. 29–32. We con
the instantaneous velocity jumps at the beginning and the end of motion do not contribute
radiation intensity provided they can be viewed as the limiting cases of the smooth charge m
in the limit when the lengths of accelerated~decelerated! pieces of the charge trajectory tend
zero. This means that attempts to interpret the radiation intensity given by the Tamm formula~3.4!
in terms of the charge instantaneous acceleration and deceleration are insufficient.

We summarize:

~1! The interpretation of the transition radiation and the Tamm problem in terms of instanta
acceleration and deceleration is not sufficient;

~2! the usual interpretation of the transition radiation arising when the charge crosses the b
ary between two media in terms of semi-infinite charge motions is valid only ifb,1/n1 and
b,1/n2 . Otherwise, this interpretation should be supplemented by the Cherenkov-type t

~3! there is no need in artificial means mentioned in previous two items in the treated e
solvable case corresponding to the transition and VC radiations on a spherical sample

VII. CONCLUSION

We briefly review the main results obtained.
~1! The electromagnetic field strengths and angular radiation intensity corresponding

Tamm problem are developed in terms of Legendre polynomials. The corresponding repre
tion for the frequency distributions is also found.

~2! We found closed expressions for the electromagnetic field arising from the charge m
confined to the dielectric sphereS which is surrounded by another dielectric medium with diele
tric properties different from those insideS. It is studied how differences of media properti
inside and outsideS affect the angular and frequency radiation intensities for various ch
velocities. In general, these differences lead to the broadening of the angular spectrum, to
of angular intensities at large angles, and to the appearance of oscillations in the freq
spectrum.
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~3! It is considered how radiates a charge whose motion begins and terminates in med
and which passes through the dielectric sphereS filled with medium 1 or through the metallic
sphere. The evaluated energy flux includes the VC and transition radiations as well as
originating from the beginning and termination of motion. It is shown that when the mediu
outsideS is vacuum and medium 1 insideS has refractive indexn1 satisfyingbn1.1, the angular
and frequency radiation intensities cannot be always interpreted in terms of the Tamm fo
~3.4! corresponding to the charge motion insideS ~as it is usually believed!.

~4! It is proved that the interpretation of the transition radiation in terms of the instantan
termination of the charge motion in one medium and its instantaneous beginning in the oth
is not valid if the above motion with sudden velocity jumps can be considered as a limiting
of the smooth charge motion. It is shown that the interpretation of the transition radiation in
of semi-infinite motions with instantaneous termination of the charge motion in one medium
with its instantaneous beginning in the other one, should be supplemented with the VC rad
terms. Certainly, these remarks are related only to the interpretation of the transition radiatio
to the exact solutions obtained for the plane interface, e.g., in Refs. 5 and 17.

APPENDIX A

Using ~2.3!, ~2.4!, and~3.8! we find that the magnetic vector potential corresponding to F
1 equals

Az5
iek2m2

2pc ( ~2l 11!Pl~cosu!hl~k2r !Cl

for r .a,

Az5
iek1m1

2pc ( ~2l 11!Pl~cosu!@ j l~k1r !Dl1hl~k1r !Jl
(1)~0,z0!#

for z0,r ,a, and

Az5
iek1m1

2pc ( ~2l 11!Pl~cosu!@ j l~k1r !Dl1hl~k1r !Jl
(1)~0,r !1 j l~k1r !Hl

(1)~r ,z0!#

for r ,z0 . Here we set

Jl
(1)~x,y!5E

x

y

j l~k1r 8! f l~r 8!dr 8, Hl
(1)~x,y!5E

x

y

hl~k1r 8! f l~r 8!dr 8.

DifferentiatingAz , one finds EMF strengths~4.1!, ~4.2! in which

C̃l5Cl 211Cl 11 and D̃ l5Dl 211Dl 11 .

Since EMF strengths contain onlyC̃l and D̃ l , the coefficientsCl and Dl entering into electro-
magnetic potentials are not needed.

APPENDIX B

The magnetic vector potential satisfying equations (D1k2
2)Az50 for r .z0 , (D1k2

2)Az

524pm2 j z /c for a,r ,z0 and (D1k1
2)Az524pm1 j z /c for r ,a is given by

Az5
iek2m2

2pc ( ~2l 11!Plhl~k2r !FCl

m1

m2
Jl

(1)~0,a!1Jl
(2)~a,z0!G

for r .z0 ,
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Az5
iek2m2

2pc ( ~2l 11!PlFhl~k2r !Cl

m1

m2
Jl

(1)~0,a!1hl~k2r !Jl
(2)~a,r !1 j l~k2r !Hl

(2)~r ,z0!G
for a,r ,z0, and

Az5
iek1m1

2pc ( ~2l 11!Pl~cosu!F j l~k1r !
m2

m1
DlHl

(2)~a,z0!1hl~k1r !Jl
(1)~0,r !

1 j l~k1r !Hl
(1)~r ,a!G

for r ,a. Here

Jl
(2)~x,y!5E

x

y

j l~k2r 8! f l~r 8!dr 8, Hl
(2)~x,y!5E

x

y

hl~k2r 8! f l~r 8!dr 8.

It is convenient to redefineCl andDl :

Cl85Cl

m1

m2
Jl

(1)~0,a!1Jl
(2)~a,z0!, Dl85Dl

m2

m1
Hl

(2)~a,z0!.

Then,

Az5
iek2m2

2pc ( ~2l 11!Plhl~k2r !Cl8

for r .z0 ,

Az5
iek2m2

2pc ( ~2l 11!Pl~cosu!@Cl8hl~k2r !2hl~k2r !Jl
(2)~r ,z0!1 j l~k2r !Hl

(2)~r ,z0!#

for a,r ,z0, and

Az5
iek1m1

2pc ( ~2l 11!Pl~cosu!@Dl8 j l~k1r !1hl~k1r !Jl
(1)~0,r !1 j l~k1r !Hl

(1)~r ,a!#

for r ,a. DifferentiatingAz , one recovers EMF strengths~5.1!–~5.3! where

C̃l5Cl 218 1Cl 118 , D̃ l5Dl 218 1Dl 118 .

Again, we do not need coefficientsCl andDl entering into the vector potential since EMF fie
strengths~and the radiation intensity! depend only onC̃l and D̃ l .
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Classical transport of charged particles in a magnetic field
Noel Corngolda)

Watson Laboratories, California Institute of Technology, Pasadena, California 91125

~Received 8 September 2002; accepted 23 April 2003!

We examine the traditional transport equation for classical, charged particles dif-
fusing in a cold, absorbing medium subject to a uniform magnetic field and in
which scattering is isotropic. Steady-state solutions in plane geometry are examined
in some detail; we make no expansion about an isotropic angular distribution.
Restricting the motion to two dimensions captures most of the interesting features;
there is some discussion of the three-dimensional case. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1591994#

I. INTRODUCTION

The motion of ions and electrons in a weakly ionized gas subjected to external electr
magnetic fields is an ancient and ‘‘classical’’ problem in kinetic theory.1,2 The analysis of these
systems~‘‘swarms’’! is based, almost always, upon a linear ‘‘Boltzmann,’’ or transport equat
The equation is treated in its most general form so that one can be as faithful as possible
experiments. Most often the velocity variation of the distribution function is expressed in term
a series of tensorial spherical harmonics, and the evolution of the density described in ‘‘hyd
namic’’ and ‘‘nonhydrodynamic’’ terms.~Here, the interested reader should consult the impres
publications of Australian physicists.3–6! Such expansions—which may be viewed as a gene
zation of the traditional, Chapman–Enskog treatment of Boltzmann’s equation—generate a
nite hierarchy of ‘‘moment-equations,’’ a hierarchy which is truncated at some level, for rea
which are physical or practical. This procedure, with its advantages and its limitations, has
part of transport theory almost since its creation. Since these expansions are usually asymp
best, one welcomes comparison with exact solutions of related transport equations which
trivial.

This paper is concerned with the solution of such a relevant model—it describes the
independent transport of charged test-particles in a cold medium which scatters isotropicall
capture particles, and is immersed in a uniform magnetic field. Since no electric field is pr
the distribution in velocity is simpler, but still interesting. In the solution, the most impor
dimensionless parameter isv, the ratio of cyclotron frequency to collision frequency. If on
wishes to go beyond treating the analysis as a mathematical exercise, merely, one notes tv is
trivially small for ions in realistic situations, but can be interestingly large for electrons. Then
~asymptotic! velocity distribution deviates considerably from the isotropic form about which
simplest ‘‘hydrodynamic’’ models are centered. Other results are—apart from an array of attr
equations involving Bessel functions—~1! that the magnetic field shatters the famous continu
spectrum associated with the ‘‘one-speed transport equation7’’ into an infinity of discrete eigen-
values.~We discuss the behavior of these eigenvalues as field and absorption strength are
the limit v→0 is quite singular.! ~2! The magnetic field induces a flow parallel to the source pla
This ‘‘diamagnetic drift’’ is well known to plasma physicists.8 Here we treat it in some detail
Most important is that none of our results rely upon an assumption of ‘‘small gradients.’’

Justifying the irreversible, transport—rather than the reversible, Liouville treatment of a
lem in kinetic theory—poses famous and delicate problems. In the case of an isolated and
gas one justifies mathematically the transition from Liouville to transport by a limi

a!Electronic mail: nrdc@caltech.edu
40570022-2488/2003/44(9)/4057/21/$20.00 © 2003 American Institute of Physics
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process—by invoking the ‘‘Grad-limit.9’’ To the physicist, this means, roughly, that the gas sho
be sufficiently dilute for transport theory to be useful. When the system is subject to ex
fields, matters become more difficult. Recently, a group of scholars10 has analyzed the limiting
process for the Lorentz model—which describes charged particles diffusing through a static
of scatterers—immersed in a magnetic field. Their analysis considers how unusual trajecto
particle whirling in circular orbit in the space between two scatterers, for example—are
treated in the construction of the ‘‘correct,’’ coarse-grained transport equation. Our paper a
these difficult issues. We simply study the ‘‘traditional’’ transport equation as a mathem
object, acknowledging that it describes the physics correctly in some regime where the ma
field is not too strong and that often, continuing results obtained from a sanctioned regio
v,1, into a questionable one, sayv@1, has some value.

Most of the paper is devoted to motion in two dimensions~2D!—in a plane perpendicular to
the uniform magnetic field. We give, briefly, expressions for densities and currents in the
dimensional case as well. In treating the equation, its features and consequences, we al
strength of the uniform magnetic field to vary arbitrarily. The fact that a steady source of par
in an absorbing medium produces a steady distribution indicates that the traditional equation
no weight to particles whirling, collisionless in tight circles,

II. ANALYSIS OF A SIMPLE MODEL

We begin with a simple model: noninteracting charged particles of fixed kinetic energy m
in a plane perpendicular to an uniform magnetic field. The particles scatter elastically and
pically from host atoms~‘‘neutrals.’’! We are in steady state, there is a plane source (y–z plane!
at the origin, and the medium, which is unbounded, may absorb particles. The distribution fu
for position and velocity,F(x,f), depends then upon two variables, and we face the kin
equation

m
]

]x
F~x,f!2v

]

]f
F~x,f!5

c

2p E
0

2p

df F~x,f!2F~x,f!1Q~f!d~x!. ~1!

This familiar equation, with (v•x)5m5cosf, is written in dimensionless variables. The consta
speed is taken to be unity, distance is scaled by the total mean-free-path for encounters,
the corresponding mean-free-time, andv represents the cyclotron frequencyqB/mc divided by
the collision frequency.v may also be seen as the ratio of mean-free-path to Larmor radius.c, the
number of secondaries produced per collision, is limited to 1.c>0. As we see later, transport i
three dimensions—with plane symmetry—is not that much more difficult.

After Fourier transformation inx we have

Of ~k,f!52v
]

]f
f ~k,f!1~11 ikm! f ~k,f!5

c

2p E
0

2p

df f ~k,f!1Q~f! ~2!

or

~O2cP! f ~k,f!5Q~f!.

A new notation, Dirac-like, helps. Our operators act in function spaces whose elements a
tribution functionsu f &. and^gu. There is a complex inner product. Thus,

^gu f &[E
0

2p

df g* ~f! f ~f!5^ f ug&*

and

~O2cP!u f &5uQ&. ~3!
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P is the projection operator,

Pu f &[ua&^au f &, ^aua&51

with

ua&5
1

A2p
, ^au f &5E

0

2p

df
1

A2p
f ~f!.

We may also useu1&5A2pua&, so that^1u f &5*0
2p df f (k,f) gives n(k), the angle-integrated

density. The particle currents are

Jx,y~k!5E
0

2p

df@cosf,sinf# f ~k,f!.

We use the special notationJx,y(k)5^ j x,yu f & for the currents.
Two results follow quickly; the solution to the kinetic equation, Eq.~3!, is

u f &5
1

O uQ&1c
1

O ua&

^au
1

O uQ&

F12c^au
1

O ua&G , ~4!

and if we take the particularly simple case of an isotropic source of strengthuQ&5ua& we find

u f &5
1

F12c^au
1

O ua&G
1

O ua&5
1

D~k,c!

1

O ua&,

~5!

^au f &5
1

F12c^au
1

O ua&G ^au
1

O ua&5
1

D~k,c!
^au

1

O ua&.

The last equation also states that with unit source,uQ1&51/2p,

n~k!5
1

D~k,c!
^au

1

O ua&5
K~k!

D~k,c!
5

K~k!

12cK~k!
.

There are corresponding expressions for the currents,

Jx,y~k!5
1

D~k,c!
^ j x,yu

1

O ua&

for sourceuQ&5ua&.
An alternative expression forJx(k) appears if we integrate Eq.~1! directly, to get the equation

of continuity,

]

]x
Jx~x!1~12c!n~x!5Qd~x!.

We find
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ikJx~k,c!5
12K~k!

12cK~k!
5

D~k,1!

D~k,c!
, ~6!

for unit sourceuQ1&. That the various expressions are related by partial integration will be ev
later, as will the expression

iJy~k,c!5
v

2

1

D~k,c!

]

]k
K~k!. ~7!

The quantity

K~k!5^au
1

O ua&

contains the essence of the system, generating the relaxation lengths, for example. This k
the Fourier transform of the kernel controlling the Peierls integral equation11 for n(x) ~see the
following!. We shall refer toD(k,c)512cK as the dispersion function. This article is concern
with the features of density and current. To get at them, we learn as much as we can abouK(k)
andD(k,c).

A. Evaluating the kernel

Of the several ways to evaluate the kernel; two are particularly helpful. In the first, we m
use of the eigen-vectors of the operatorO,

Oun&5lnun&.

One finds

un&5
1

A2p
exp@ inf#expF i

k

v
sinfG ,

~8!
ln512 inv.

The un& are complete and orthonormal, with the usual complex inner product. The wave nu
k appears parametrically in the eigenvector but not in the eigenvalue. Theun& form a useful basis
for expansion. Since

^aun&5
1

2p E
0

2p

df exp@ inf#expF i
k

v
sinfG5~2 !nJnS k

v D5^nua&. ~9!

Bessel functions make their expected appearance. A quite straightforward calculation leads
the first of several expressions for the kernel,

^au
1

O ua&5FJ0S k

v D G2

12(
n51

` FJnS k

v D G2Y ~11n2v2!. ~10!

~In the following text, we may denotek/v by k, which is proportional to the ratio of cyclotron
radius to wavelength of thek mode.!

Another straightforward calculation, making use ofJ65Jx6 iJy and recursion relations
leads to Eq.~7! for the transverse current—the ‘‘diamagnetic drift’’ of the plasma physicists.
note an alternate derivation ahead.

A more powerful and elastic representation of the kernel stems from an ‘‘algebraic’’ me
which is a simplified version of the method of characteristics.
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Write

1

O u f &5E
0

`

dt e2te2t~A1B!u f &,

~11!

~A1B!5 ik cosf2v
]

]f
5eik sin fS 2v

]

]f De2 ik sin f.

Multiplication by t and constructing the exponential series gives

e2t~A1B!5eik sin f expS vt
]

]f De2 ik sin f,

and we can write, quite generally,

^gu
1

O uQ&5E
0

`

dt e2tE
0

2p

df g~f!* eik@sin f2sin~f1vt !#Q~f1vt !. ~12!

In particular, our kernel is

^au
1

O ua&5
1

2p E
0

`

dt e2tE
0

2p

df eik@sin f2sin~f1vt !#, ~13!

and inversion of the Fourier transform gives the Peierls integral equation which corresponds
~1!. One finds—for an isotropic source—

n~x!5
1

2p E
2`

`

dx8 K~x2x8!@n~x8!1q~x8!#

with

K~x2x8!5E
0

`

dt e2tE
0

2p

df d~x2x81@sinf2sin~f1vt !# !.

After some reduction, using the fact that the integral of a periodic function over its perio
unaltered by a shift in the variable of integration, we find

K~x2x8!5
1

12e24p/v E0

2p

duE
0

2p

df e22u/vdS v

2
~x2x8!2sinu sinf D .

K is even, in its argument. In our dimensionless unitsv, the ratio of cyclotron frequency to
collision frequency is the reciprocal of the ratio of cyclotron radius to mean-free-path. Thu
constraint expressed by thed-function, that ux2x8u<2/v, is precisely the statement that th
farthest-ranging particle is found at one ‘‘cyclotron-diameter’’ from a plane source, having le
source traveling parallel to it. The Peierls’ kernel,K(x), has ‘‘compact support’’; it has no expo
nential tail. Further reduction will be remarked upon later.@See Eq.~24!.#

Returning to the kernel, note the limitv→0 when

^au
1

O ua&→
1

2p E
0

2p

df
1

11 ik cosf
5

1

A11k2
. ~14!
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In the field-free case, the kernel and the dispersion function are analytic in a cut, complex-k plane,
and spatial relaxation is described by a discrete and a continuous spectrum of relaxation l
The Fourier inverse of the kernel,

1

2p E
2`

`

dk eikx^au
1

O ua&5
1

p
K0~ uxu!,

expresses the density of uncollided particles as a Bessel function. Another useful limiting e
sion holds whenv@1. Then Eq.~10! informs us that

^au
1

O ua&→FJ0S k

v D G2

. ~15!

The kernel, as expressed by Eq.~13!, may be simplified if we expand the exponential, noti
that only even powers survive the angle-averaging. One finds that whenn52m,

1

2p E
0

2p

df@sinf2sin~f1vt !#n5S 2m
m D FsinS vt

2 D G2m

.

Now, two paths are open; one can use

1

~2m!! E0

`

dt e2tS sin
v

2
t D 2m

5v2m )
r 51

m
1

11r 2v2
,

to get the useful series

^au
1

O ua&511 (
m51

`

~2 !mS 2m
m D S k2

4 D m

)
r 51

m
1

11r 2v2
, ~16!

or eschew thet-integration, recognizing the series as generating the Bessel functionJ0 , and hence
that

K~k!5^au
1

O ua&5E
0

`

dt e2tJ0S 2
k

v
sin

vt

2 D . ~17!

~The Appendix contains a shorter derivation of this result.!
Equation~17! may be rearranged by exploiting periodicity, and using

E
0

p

df g~f!F~sinf!5E
0

p/2

dfFgS p

2
2f D1gS p

2
1f D GF~cosf!,

to get

K~k!5
2

v

1

12e22p/v E0

p

df e22f/vJ0S 2
k

v
sinf D ~18!

5
2

v

1

sinhS p

v D E0

p/2

df coshS 2f

v D J0S 2
k

v
cosf D , ~19!

all of which have been found useful. A nice connection with the eigenfunction expansion, Eq~10!,
is made via Neumann’s addition formula
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J0~2t sinc!5J0~ t !212 (
n51

`

Jn~ t !2 cos 2nc

in concert with Eq.~17!.
Finally, we may Fourier-invert Eq.~19! to get another representation of the Peierls kern

namely

K~x!5
1

p

1

sinhS p

v D E0

f
* ~vx!

df

coshS 2f

v D
Acos2 f2cos2 f* ~vx!

, 0,x,
2

v

50, x.
2

v
, ~20!

wheref* is defined through cosf*5(v/2)x. ~See Fig. 1.!
A final comment for this section: There is still another way to solve our transport equa

Fourier expansion inf. That approach, which is more natural when the scattering is anisotr
leads to difference equations, to solutions in terms of continued fractions and to the tradi
truncated solutions which we wish to avoid.

B. The complex k plane

The Fourier inversion of̂au f & and^ j x,yu f & will be controlled by singularities in the comple
k plane. The series in Eq.~16! converges throughout thek plane for all nonzerov, assuring us that
our kernel is an entire function ofk. Thus, the only singularities are the zeros of the dispers
function. The magnetic field has shattered the continuous spectrum and it is to the zeros t
turn. They will describe the relaxation lengths which characterize the system. Since their lo

FIG. 1. K2 , the 2D kernel~Peierls! for the integral equation for density,n(x), with v50.5, shown as a function of its
argument,y5vuxu/2. The kernel is zero wheny.1 while K2(12)51/@2 sinh(p/v)#.
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depends upon both magnetic field and absorption, 0<v,` and 0<c<1, the picture, overall, is
complicated. But the analysis is eased somewhat by the fact thatc andv occur separately in the
dispersion function. We begin by observing the following.

~1! SinceD is a real function ofk2, a complex root of the dispersion equation will gener
four zeros in thek plane, of the form6(j6 ih). Thus we may limit our discussion to a sing
quadrant of the complexk plane, with the understanding that the other three will be filled
reflection.

~2! If the particle distribution is to be bounded at infinity we expect thatD has no zeros on the
real axis ofk. ~The exceptional casec51 produces a second-order zero at the origin, and
‘‘physical’’ when the source is moved to infinity—the Milne case.! And inspection of the series fo
D shows that whenc51, there are no zeros~poles! on the imaginary axis.

~3! The dominant zero. When 0,c,1 there is a dominant zero~pole! on the positive~and the
negative! sections of the imaginary axis, wherek5 ih. This pole, with its associated residu
describes the dominant, large-x, ‘‘asymptotic’’ behavior of the distribution. There is no other ze
on the axis because the kernel is a function ofh which increases smoothly.~The zeros which are
off-axis and are discussed later, give oscillatory contributions which cannot dominate, asym
cally.! Then, for the dominant zero, we have four regimes as follows.

~i! Strong field~v@1, c arbitrary!. Here, Eq.~15! enables us to write

h05vy~c!,

where

12cI0~y!250 ~21!

for all c. ~In practice, the estimate is valuable even atv'1.!
~ii ! Weak absorption(12c!1, v arbitrary!. Here, the zero lies close to the origin, and t

series, Eq.~16! yields

h0.A2~12c!~11v2!, ~22!

a result which emerges from Eq.~21!, too. It describes a simple, exponential attenuation, wh
has been increased by the magnetic field. In the field-free caseh05A12c2 exactly.

~iii ! Strong absorption(c→0, v arbitrary!. When field is absent the kernel displays bran
points, and the zero falls into the branch singularity whenc50. With field present, there are n
branch points and matters are quite different. The dominant zero moves along the imagina
to infinity asc→0, the dominant relaxation length becoming arbitrarily small. It is the magn
field, rather than the mean free-path, which is in control. Equation~21! yields an easy estimate
when the field is large,

h0.
v

2
logS 1

cD . ~23!

In the limit, c50, the distribution becomes that of uncollided particles proceeding fro
plane, isotropic source. It is simply the Peierls kernel, Eq.~20!. It helps to write the symmetric
distribution as (x.0)
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n0~x!5K~x!5
1

p

coshS 2f* ~vx!

v D
sinhS p

v D E
0

f
* ~vx!

df
1

Acos2 f2cos2 f* ~vx!

1
1

p

1

sinhS p

v D E0

f
* ~vx!

df

coshS 2f

v D2coshS 2f* ~vx!

v D
Acos2 f2cos2 f* ~vx!

, 0,x,
2

v

50, x.
2

v
. ~24!

The key quantity in its description isf* (vx), which descends from~p/2! at the plane source to
zero at the edge of the distribution. We note further that~a! the second term in Eq.~24! is bounded
for all f* (x), vanishing at the edge of the distribution, while~b! the integral appearing in the firs
term may be transformed into the complete elliptical integralK(sin2 f* ). It diverges, logarithmi-
cally at the source plane, and is~p/2! at the edge. Thus, the distribution of uncollided particles
discontinuous at its edge. We have the limits~see Fig. 1!

n0~x!5K~x!→ 1

2 sinhS p

v D , x→ 2

v
,

~25!

n0~x!5K~x!;
1

p
cothS p

v D logS 1

xD1¯, x→0.

The size of the step-discontinuity vanishes, conveniently, asv→0, while the leading behavior a
the source plane coincides with that of the field-free case.

~iv! Weak field~v→0, c arbitrary!. While the large-v limit is relatively simple, the small-v
limit is not. Since singularities which are absent whenvÞ0 appear~at h561! when v50, the
behavior in the neighborhood of these points cannot be analytic. The simple expression, Eq~22!,
does not tell the full story. We begin by studying

I~f,h!5coshS 2

v
f D I 0S 2

v
h cosf D ,

the integrand appearing in Eq.~19!, in the regime~2/v![l@1. At the limits of integration we have

I~0,h!5I 0~lh!, IS p

2
,h D5coshS l

p

2 D ,

and behavior will be different in different intervals ofh, for absorption may causeh0 to be large.
It is no surprise thath51, andh5p/2, play important roles in the analysis.

~a! Whenh,1, I~f,h! is seen to be an increasing function off in ~0,p/2! and the integral is
controlled by the behavior ofI near its maximum—at the edge. If we rearrange Eq.~19! to place
the maximum at the origin we obtain

K~ ih!5
1

2 E0

L

dt I 0S lh sinS t

l D D $~coth~L!21!et1~coth~L!11!e2t%,

where
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L5
p

v
5

p

2
l.

A little consideration shows that whenl is very large we may write

K~ ih!.E
0

`

dt I 0S lh sinS t

l D De2t

with exponentially small error,O(e2(12h)L). Then, expansion aboutt50, aided by the relation

1

n! E0

`

dt e2ttnJ0~kt!5
1

~11k2!~n11/2!
PnS 1

A11k2D ~26!

(Pn is the Legendre polynomial! yields

K~ ih!5^au
1

O ua&5
1

A12h2 F12
1

2 S v

2 D 2

h2
41h2

~12h2!3
1¯G , ~27!

in which the singular nature of the small-v behavior is displayed.
In the complimentary situation, whenh.1, I~f,h! posesses a maximum inside the interv

~0,p/2!. When that sharp maximum dominates the contribution from the edge, expansion pro

K~ ih!.
1

Ah221
expF S 2

v D S sin21
1

h
2

p

2
1Ah221D G , ~28!

as ~2/v!→`. Thus, whenh@1 as well,

K~ ih!.
1

h
expF 2

v S h2
p

2 D G , ~29!

which leads easily to the estimate

h0.
v

2
logS 1

cD for c→0 and v ‘‘small,’’ ~30!

familiar, and in agreement with Eq.~23!.
Some dominant zeros are displayed in Table I.
~4! Transients. The other zeros, or relaxation lengths, form a complex pattern. They pro

transient, oscillating terms in the spatial distribution. We would like a picture of the pattern
how it alters as the magnetic field is altered. In particular, we are interested in the limitv→0.
Ultimately, we rely on the summation, numerically, of Eq.~16!. But the search for zeros is helpe
greatly by asymptotic estimates, to which we turn.

TABLE I. 1/h0 is the relaxation length, in units of mean-free-path, for the
particle distribution far from its plane source, in the presence of various
amounts of capture and various magnetic field strengths.

v

Dominant zero,h0

c50.9 c50.7 c50.5 c50.3 c50.1

0.25 0.46 0.78 1.0 1.2 1.5
0.5 0.50 0.89 1.2 1.5 2.0
1 0.65 1.2 1.6 2.1 3.0
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~i! Strong field~v@1, uku arbitrary! (k[k/v). We begin with the simplest estimate,v@1,
when a different approach yields a familiar result,

K~k!.11 (
m51

` S 2m
m D S 2

k2

4v2D m
1

~m! !2
5

2

p E
0

p/2

df J0S 2
k

v
sinf D5J0S k

v D 2

. ~31!

Then, thev dependence is simple,kn5vkn , wherekn(c) is one of the complex zeros of 1
2cJ0(k)2. ~In practice, the estimate is valuable even atv'1.! Among these, the ‘‘higher har
monics’’ ~uku@1! obey

sin 2x

2x
e2y5

p

c
, cos 2x52ye22y

p

c
, ~32!

wherek5x1 iy . From these, we infer

kn'vH np1 i
1

2
logF S 2n1

1

2D p2

c G J , n50,1,2,... ~33!

for the regimev@1 anduku@v. The real parts of the relaxation constants increase only loga
mically, the imaginary parts linearly. Note that the dominant zero is contained here, asso
with c!1, and behaves as

k0. i
v

2
logS 1

cD .

~ii ! Weak fieldis included in the regime~uku@1, v arbitrary!. We begin with the estimate

E
0

p

df e22f/vJ0~2k sinf!;
1

2k
@11e22p/v12e2p/v sin 2k#, uku→`, ~34!

derived by the method of stationary phase, including end-point corrections. The derivation
ceeds with the assumption thatk is real, but suggests strongly that the result holds throughou
quadrant when Re~k!.0. This conjecture is supported by the fact that Eqs.~34! and ~31! are
identical, namely,

K~k!'
i

2pk
e22ik

when their domains overlap, and by numerical experience. We have, then, the approxima
persion equation,

11S 2e2p/v

11e22p/vD sin 2k5
kv

c S 12e22p/v

11e22p/vD . ~35!

For field strengthse22p/v!1, and for k large, further simplification enables us to write th
estimate as

cj511expF 2

v S h2
p

2 D Gsin
2j

v
,

~36!

ch5expF 2

v S h2
p

2 D Gcos
2j

v
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~recall thatk5j1 ih).
Whenv is small these expressions are useful whenh.p/2. Then, with

h5
p

2
1

v

2
h1~v!

and

j5
v

2
j1~v!.

the new functions assumed to be regular, we are led to

kn5v@np2j* #1 i Fp2 1
v

4
logH 11S pc

2 D 2J G1o~v!,

where (np2j* )52j1(0) is the solution to

tan$2j1~0!%52
2

pc
,

andn51,2,... is not too large. This pattern of zeros, differing little in their imaginary parts,
marching into a point on the imaginary axis, is roughly~‘‘semiquantitatively’’! correct. The nu-
merical values it yields are helpful, even though the true point of accumulation isk5 i rather than
k5 i (p/2). Of course, the asymptotic expansion fails on the imaginary axis. There, and
unknown strip containing it, we return to the expansion used in connection with Eq.~27! to obtain

K~k!5^au
1

O ua&5
1

Ak211 F12
1

2 S v

2 D 2

k2
k224

~k211!3
1¯G , ~37!

a complicated series which exhibits clearly the branch-point singularity and omits exponen
small terms~in v!. Before Eq.~37! is used to estimate zeros computation of the winding-num
suggests that if we consider a small circular region aboutk5 i , the number of zeros~poles! present
in the region increases without limit asv→0. Analysis of the series suggests that the zeros do
follow distinct, ray-like paths as they fall into the~nascent! branch point. Rather, their path
merge. For example the first few terms of Eq.~37! yield a pair of roots and a merged pa
described by

k2 i'av2/3expS p

6
i D F17

1

3
A2a v1/3expS p

3
i D G ,

~38!

a5
1

4
~5!1/3

in the first quadrant. The dependence uponv2/3 is borne out to a fraction of a percent by numeric
calculation, and thep/6, which characterizes the asymptote, appears to be correct, but the nu
cal coefficients need improvement. Overall the dependence uponv is quite singular, for we have
omitted exponentially singular factors. See Fig. 2.
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C. Densities and currents

The currentsJx,y(k) may be obtained from the kernel via Eqs.~6! and ~7! or directly, from

1

A2p
^ j 6u

1

O ua&5E
0

`

dt e2tE
0

2p df

2p
e6 ifeik@sin f2sin~f1vt !#,

which yields, foruQ1& ~unit source!,

iJx~k!5
1

D~k,c!
E

0

`

dt e2t cos
vt

2
J1S 2k sin

vt

2 D ,

~39!

2 iJy~k!5
1

D~k,c!
E

0

`

dt e2t sin
vt

2
J1S 2k sin

vt

2 D ,

as symmetric alternatives to Eqs.~6! and ~7!. Also, there is Eq.~17!,

n~k!5
1

D~k,c!
E

0

`

dt e2tJ0S 2
k

v
sin

vt

2 D .

Equations~6! and ~7! follow easily from Eq.~39! by integration by parts.
SinceD(k,c) is even ink, we conclude that the components of current change sign whenx is

replaced by2x. SinceD(k,c) diminishes with increasingk @see Eq.~34!#, the behavior of density
and current near the source is linked to the behavior of the integrals in Eq.~39!. These, which
describe the uncollided particles, may be inverted and reduced to

J0x~x!5
1

p

cosf* ~x!

sinhS p

v D E
0

f
* ~x!

df sinhS 2f

v D tanf

Acos2 f2cos2 f* ~x!

5 1
22~12c!x n0~x!1¯, ~40!

FIG. 2. Three zeros~poles! and their ‘‘motion’’ in thek plane as the magnetic field~v! is altered.v→0 brings them to
k5 i .
                                                                                                                



y

are
uity is

way.

weak

ed

helpful
re is
only
n

4070 J. Math. Phys., Vol. 44, No. 9, September 2003 Noel Corngold

                    
J0y~x!52
1

p

cosf* ~x!

sinhS p

v
D E

0

f
* ~x!

df

coshS 2f

v
D

Acos2 f2cos2 f* ~x!

52
v

2
x n0~x! ~41!

near the source-plane. For the behavior~‘‘asymptotic’’! far from the plane, we turn to inversion b
contour integration to get

Jy~x!52
v

2c (
n

eiknx,

Jx~x!52S 12c

c D (
n

1

knDn
eiknx, ~42!

n~x!5
i

c (
n

1

Dn
eiknx,

with Dn[(]/]k)D(kn,c). Though the summation is over all zeros in the upper half-plane, we
most interested in the contribution from the dominant zero. Note that the equation of contin
satisfied, ‘‘mode by mode,’’ and observe the strangely simple expression forJy(x), as well as the
singular behavior atx50.

The transverse current,Jy(x), which is zero at the source plane, grows as one proceeds a
The ratioJy(x)/Jx(x) is then of some interest. The ratio assumes the value1

2@k0D0/(12c)#v
asymptotically. One may compute the quantity easily in two limiting cases. In the first, very
capture,c@12c, the ratio is simply~2v!. In the second, very high frequency,v@1 @see Eqs.
~16! and ~31!# the ratio is (2vF(c)), where

F~c!5
Ac

12c
k0J1~k0!, J0~k0!5

1

Ac
. ~43!

Diffusion: (k05 ih05vk0). The question of diffusion and diffusion constant may be view
in two ways. One can note that far from the source the density followsnxx1k0

2n50, an equation
suggesting steady-state diffusion with diffusion coefficient

Dxx5
~12c!

h0
2

.

More generally,

Dxx5Dyy5
~12c!

h0
2

, Dyx52Dxy5
v

2k0

]

]k
D~k,v!uk0

, ~44!

the tensor components depending upon field strength and capture. This view is surely more
to the experimenter than is the traditional attitude that ‘‘Fick’s law’’ holds throughout, that the
everywhere a proportionality between density gradient and current. In fact, the law holds
when spatial variations are so gentle~‘‘long-ranged’’! that only the lowest powers in an expansio
in k need be retained. Then, Eq.~16! leads to
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S Jx

Jy
D52

1

2
~ ik !

1

12c

1

11v2 S 1
2v D , ~45!

describing ‘‘classical’’ anisotropic diffusion, with diffusion tensor

Di j 5
1

2

1

11v2 S 1 v

2v 1 D . ~46!

This simple picture, found in most textbooks, displays a ‘‘normal’’ diffusion, inhibited by
magnetic field, and transverse diffusion, induced by the field. The tensor multiplication may
be written

D•¹n5
1

2

1

11v2
@12v ẑ3#¹n.

The two treatments differ little when capture is almost negligible andk0 is small. The case of large
field ~‘‘high frequency’’! is accessible through Eqs.~16! and ~31! when Eq.~44! yields

Dyx52Dxy52
1

vAc

J1~k0!

k0
.

Thus, for fixed capture, the transverse diffusion is—again—inhibited by the magnetic
when the field is large.Dyx rises, proportionally tov whenv is small, reaches some peak valu
then decreases, as 1/v.

D. The distribution in angle

The angular distribution in the dominant, asymptotic mode is of particular interest. In
notation of Eq.~44! that quantity,F`(x,f), is

F`~x,f!5
i

D0
eik0xF0~f!

with

F0~f!5
1

2p E
0

`

dt e2t expS i S k0

v D @sinf2sin~f1vt !# D ~47!

for unit source. The transient modes have a similar appearance. One of the many possib
rangements brings us to the convenient form,

F0~f!5
1

2pv

1

12e22p/v
e~1/v!F~f!E

f

f12p

da e2~1/v!F~a! ~48!

with F(f)5f2h0 sinf @k05ih0(v,c)#. And there is always the differential equation

2v
]

]f
z~f!1~12h0 cosf!z~f!5

1

2p

which, when solved~numerically! under the condition thatz(f)5z(f12p), yields a function
proportional toF0(f).

Once again, the question ofh0,1 or h0.1 enters. In the former caseF~f! is positive and
increasing, in the latter, not so, and one encounters more dramatic behavior. Analytical inform
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is available whenv is small, when familiar ideas from ‘‘asymptotics’’ enter.12 For example, as
v→0 the dominant contribution from the integral in Eq.~48! comes from the interval whereF~a!
is minimum. In the caseh0,1 the minimum is ata5f and expansion about that~edge-! value
yields

F0~f!5
1

2p

1

~12h0 cosf! F12v
h0 sinf

~12h0 cosf!2
1¯G ,

precisely the ‘‘outer expansion’’ of the solution to the differential equation. Since the outer
tion satisfies the boundary condition, there is no need for a boundary layer. This simple expr
displays an interesting feature of the angular distribution—a small peak centered at a small
The disturbance, vanishing withv, generates the transverse current.

When h0.1 the situation is different.F~a! is oscillatory, and has a single minimum, at
<f* ,p/2 where cosf*5(1/h0). In a subinterval of~2p,f<p!, namely, (f** ,0,f
,f* ), whereF(f** )5F(f* ), the minimum lies inside the integration of Eq.~48! and produces
boundary layer behavior.F~f! rises rapidly, proportional to exp@(1/v)(F(f)2F(f* ))# then falls
and passes to the nonexponential ‘‘outer’’-behavior for the remainder of the interval. Thes
tures are displayed in Figs. 3 and 4. Clearly, these angular distributions are not represented
an expansion-in-angle that is near-isotropic. The distributions associated withh0.1 become quite
singular in the limit of vanishing field—the continuum limit.

E. Transport in three dimensions „3D…

Since the key features are captured in the 2D case, we treat 3D briefly. We remain with
symmetry. Then, the modifications are relatively minor. It is convenient to use two sets of
variables. In one, thex axis is the polar axis and the polar and azimuthal angles are denoted~u,c!;

FIG. 3. Asymptotic angular distribution~2D! for v50.5,c50.86. Arbitrary normalization. Capture moderate, field stron
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in the other, thez axis, to which the field is parallel, is the polar axis and the angles are~x,f!. The
streaming portion of the transport equation is altered only in that ‘‘m5cosf’’ is replaced by
m5sinx cosf. Sincex enters the equation only ‘‘parametrically,’’ it may be absorbed throu
much of the subsequent calculation by simply replacing the Fourier transform variable ‘‘k’’ by
k'5k sinx. The density is now a function of two angles,~x,f!. The in-scattering term is altere
through the replacement,

1

2p E
0

2p

df→ 1

4p E dV5
1

4p E
0

2p

dfE
0

p

dx sinx.

The vector space is now a space of functions defined on the unit sphere, and we may us~u,c!
or ~x,f! in place of the variable,f. The inner product is now

^gu f &[E dV g* ~V! f ~V!5^ f ug&*

and the ubiquitous

^fua&5
1

A2p
, ^au f &5E

0

2p

df
1

A2p
f ~f!

become

^Vua&5
1

A4p
, ^au f &5E dV

1

A4p
f ~V!.

With these reinterpretations, most of the equations of the 2D case may be carried over, ea
3D, turning Bessel functions into spherical Bessel functions. We begin with the kernel,

FIG. 4. Asymptotic angular distribution~2D! for v50.25, c50.1. Arbitrary normalization. Capture very strong, fie
moderate.
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^au
1

O ua&→
1

4p E
0

`

dt e2tE dV eik'@sin f2sin~f1vt !#

5E
0

`

dt e2t
1

2 E
0

p

dx sinx J0S 2k sin
vt

2
sinx D . ~49!

Here, and in the discussion of currents, the relation

E
0

p/2

dx sinn11 x Jn~z sinx!5 j n~z!,

between ordinary and spherical Bessel functions is useful. Then,

K3~k,v![^au
1

O ua&5E
0

`

dt e2t j 0S 2k sin
vt

2 D5
2

v

1

sinhS p

v D E0

p/2

df coshS 2f

v D j 0S 2
k

v
cosf D ,

~50!

with j 0(z)5sinz/z.
Upon expansion to produce a power series ink, one finds

K3~k,v!5F11 (
m51

`
~2k2!m

2m11 )
r 51

m
1

11r 2v2G . ~51!

FIG. 5. K3 , the 3D kernel~Peierls! for the integral equation for density,n(x), with v50.5, shown as a function of its
argument,y5vuxu/2. The kernel is zero wheny>1.
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Settingv50 gives the familiar logarithm of the field-free case, and expanding for smallv in
the manner given earlier@e.g., Eqs.~27! and ~37!# yields the singular and asymptotic sequenc

K3~k,v!5
1

2ik
log

11 ik

12 ik
1

1

3
v2

k2

~k211!3
1¯1exponentially small terms. ~52!

The regimev@1 is dealt with best via the series, Eq.~49!, giving

K3~k,v!� v

2k E0

2k/v

dz J0~z!. ~53!

These expressions are helpful in determining the zeros ofD3(k,v,c), which, like its predecessor
is entire-in-k. The behavior of these zeros is quite similar to their 2D counterparts. Turning t
picture inx coordinates, we note that the Peierls kernel may be obtained by Fourier-invertin
~49! to get a pretty, ‘‘3-Sine’’ formula for the even function,

K3~x2x8,v!5
1

12e24p/v E0

2p

du E dV e22u/vdS v

2
~x2x8!2sinu sinf sinx D . ~54!

Comments made earlier about its compact support continue to hold. On the other hand, w
Fourier-invert Eq.~50! to get quite a different compact form,

K3~x,v!5
1

2 sinhS p

v D E0

f
* ~vx! df

cosf
cosh

2f

v
~55!

(cosf*5(v/2)x, and u(v/2)xu,1). In fact, K3 may be shown to vanish with vertical tangen
~See Fig. 5.! That this rather peculiar expression does become the familiar exponential in
whenv→0 may be seen by setting

f5S p

2
2c D ,

expanding the cosh, and passing to the limit.
Currents. We have, generally,

Jx,y,z~k![J~k!5^ j u
1

O uQ&1
c

D~k,c!
^ j u

1

O ua&^au
1

O uQ&. ~56!

When the source is isotropic, and normalized toA4p,

J~k!5
1

D~k,c!
^ j u

1

O ua&, ~57!

and we discuss the numerator of this expression,

1

A4p
^ j x,yu

1

O ua&5
1

4p E
0

`

dt e2tE dV sinx@cosf,sinf#eik'@sin f2sin~f1vt !#, ~58!
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1

A4p
^ j zu

1

O ua&5
1

4p E
0

`

dt e2tE dV cosxeik'@sin f2sin~f1vt !#

5E
0

`

dt e2t
1

2 E
0

p

dx sinx cosxJ0S 2k sinx sin
vt

2 D50, by symmetry.

~59!

Thus, quite generally,

Jz~k!5^ j zu
1

O uQ&,

an expression which is, at first sight, puzzling, for the current appears to be independ
capture. A moment’s thought convinces one of its correctness, and thatJz is, in any case, trivial.
We merely note that with isotropic scattering, a beam becomes distributed isotropically at th
collision. After that collision, only a density gradient will drive a current. But in our problem, th
are no gradients in thez direction;Jz exists only in the interval from birth to first collision whe
the value of ‘‘c’’ is irrelevant. This argument holds for particles immersed in an arbitrary exte
field that is independent ofz. Thez current is carried only by uncollided particles. Adding a bit
anisotropy to the scattering changes the result significantly.

The current components,Jx,y(k), are simply the weightedx average of their counterparts i
two dimensions, Eq.~39!. The connection between ordinary and spherical Bessel functions
gives the concise result,

iJx~k!5
1

D3~k,c!
E

0

`

dt e2t cos
vt

2
j 1S 2k sin

vt

2 D ,

~60!

2 iJy~k!5
1

D3~k,c!
E

0

`

dt e2t sin
vt

2
j 1S 2k sin

vt

2 D ,

for currents in three dimensions.
Angular distributions. Expressions for the angular distribution associated with dominant

transient modes may be obtained easily. One simply replacesk0 with k0 sinx in Eq. ~47!. The
distributions are then symmetric with respect to the (x–y) plane and fixing a value ofx is
equivalent to selecting one of the 2D distributions we have described earlier. Asx decreases from
its in-plane value ofp/2, the effectiveh0 diminishes and the corresponding distribution
smoother. Overall, angular distributions in 3D appear to be smoother than those in 2D.

One can proceed further with details of the 3D case, in a manner similar to that of 2D
is clear that the 2D case displays almost everything that is interesting about the problem. Th
step should be an attack upon the time-dependent problem, which is simple enough after L
transform, but whose inversion is a complicated matter.
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APPENDIX

An alternative, easier way to evaluate the key quantity,

^au
1

O ua&5
1

2p E
0

`

dt e2tE
0

2p

df eik@sin f2sin~f1vt !#
                                                                                                                



uced

4077J. Math. Phys., Vol. 44, No. 9, September 2003 Transport in magnetic field

                    
is to notice that@sinf2sin(f1vt)#522 sin(vt/2)cos(f1vt/2), and that the replacement of (f
1vt/2) by f does not alter the value of the integral. The expression

^au
1

O ua&5E
0

`

dt e2tJ0S 2k sin
vt

2 D
follows at once. In fact, evaluation of the matrix element in the expression for the current ind
by an isotropic source

Jx,y~k!5
1

D~k!
^ j x,yu

1

O ua&,

1

A2p
^ j x,yu

1

O ua&5
1

2p E
0

`

dt e2tE
0

2p

df@cosf,sinf#eik@sin f2sin~f1vt !#

is made easy by the same approach. The change of variable (f1vt/2)→f and integration by
parts produces the results noted earlier.
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The three-body problem with an inverse square law
potential

Lidia Jiménez-Laraa) and Eduardo Piñab)

Departamento de Fı´sica, Universidad Auto´noma Metropolitana-Iztapalapa,
P.O. Box 55 534, Me´xico, D. F., 09340, Me´xico

~Received 2 April 2003; accepted 14 April 2003!

We study the motion of three masses in a plane interacting with a central potential
proportional to 1/r 2 using the coordinates introduced recently by Pin˜a. We show
that this problem with four degrees of freedom~three angles and a distance related
to the inertia moment of the system in these coordinates! is partially separable, and
can be reduced to a problem with two degrees of freedom~two angles! with a new
constant of motion. We find a symmetry of reflection~an involution! for this system
and we use the symmetry lines to find periodic orbits in the angular coordinates.
These orbits will not be periodic in general on the whole phase space because the
coordinate of distance type grows ast when t→` and it is unbounded. However,
if the inertia moment of the system remains constant, they will be periodic on the
whole phase space. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1597948#

I. INTRODUCTION

We consider three massesm1>m2>m3 moving in a plane and interacting with a centr
potentialk/r 2, k constant. Poincare´ studied this problem at the end of the 19th century1 and he
showed by the minimum action principle that there exist periodic orbits for this problem. Sb2

consider Newtonian-type potentialsk/r n when the total angular momentum vanishes, and
proves the existence of a periodic orbit. We use the coordinates introduced in Ref. 3 in the w
Ref. 4 to show that for a potentialk/r 2 there is an extra constant of motion that allows us
separate the motion of the total inertia moment. We then introduce appropriate dimensi
variables in order to reduce the number of parameters, and we give a global description of th
inertia moment variable. We then reduce the problem to an equivalent two degrees of freedo
with a constant of motion, and we obtain a symmetry of involution. By means of the symm
lines of the problem we find explicitly periodic orbits.

The main idea introducing the new coordinates is to choose the origin of coordinates
center of mass, and to select the frame of principal axes of the three particles. Since the m
in a plane, it is sufficient to take into account only one rotation anglec ~instead of three Euler
angles! in order to transform from the principal axes frame to the inertial one. Two distanceR1

andR2 ~associated with the two independent inertia moments!, and an extra angles are defined in
these coordinates. In the Appendix we show explicitly the change of coordinates from th
coordinates (xi ,yi), i 51,2,3 to the four generalized coordinatesc,R1 ,R2 ,s and the relation of
the last three with the distances between particles.

II. EQUATIONS OF MOTION

The HamiltonianH5T1V of these problem results in5

H5
1

2m S P1
21P2

21
~R1

21R2
2!~Ps

21Pc
2 !14R1R2PsPc

~R1
22R2

2!2 D 2
k

2 S 1

r 23
2 1

1

r 13
2 1

1

r 12
2 D ,

a!Electronic mail: lidia@xanum.uam.mx
b!Electronic mail: pge@xanum.uam.mx
40780022-2488/2003/44(9)/4078/12/$20.00 © 2003 American Institute of Physics
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where m5A(m1 m2 m3)/(m11m21m3), Pi , i 51,2,s,c are the canonical momenta,r j l , j , l
51,2,3 are the distances betweenmj and ml , k is a constant and the two independent iner
moments are related withR1 andR2 by I 15mR1

2 and I 25mR2
2. Note that ifR15R2 , the Hamil-

tonian is not well defined, because the change of variables is not well defined there, then w
avoid those values.

It is convenient to change the variablesR1 andR2 for the polar variablesR, u,

R15R cosu,

R25R sinu

with RPR1 , uPS1. Now mR25I is the inertia moment of the system,I 5S i 51
3 mir i

2 . The Hamil-
tonian goes over to

H5
1

2m S PR
21

Pu
2

R2 1
~Ps

21Pc
2 !12 sin 2uPsPc

R2 cos2 2u D 2
k

2 S 1

r 23
2 1

1

r 13
2 1

1

r 12
2 D ,

where the distances between particlesr j l become

S r 23
2

r 13
2

r 12
2
D 5B R2S cos2 u sin2 s1sin2 u cos2 s

cos2 u cos2 s1sin2 u sin2 s
2cos 2u sin 2s

D , ~1!

with B being the constant dimensionless matrix, depending only on the masses, given
appendix, Eq.~A8!. If we define the dimensionless distancessi j 5r i j /R, divide ~1! by R2 and
simplify, we obtain

S s23
2

s13
2

s12
2
D 5BS ~12cos 2s cos 2u!/2

~11cos 2s cos 2u!/2
2sin 2s cos 2u

D , ~2!

and then the Hamiltonian results in

H5
PR

2

2m
1

1

2mR2 S Pu
21

~Ps
21Pc

2 !12 sin 2uPsPc

cos2 2u
2mkF 1

s23
2 1

1

s13
2 1

1

s12
2 G D . ~3!

The equations of motion derived from this Hamiltonian function have three constants of m
the energy with the valueE,

H5T1V5E, ~4!

the angular momentum with the valuepc ,

Pc5mR2@ċ2sin 2uṡ#5pc , ~5!

and a third constant,

K5
Pu

2

2
1

Ps
21Pc

212 sin 2uPsPc

2 cos2 2u
2

mk

2 F 1

s23
2 1

1

s13
2 1

1

s12
2 G5K. ~6!

III. SEPARATION OF VARIABLES

The Hamiltonian~3! is separable int, c, and R variables, with constants of separationH
5E, Pc5pc andK5K, respectively. The Hamiltonian reduces to
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H5
PR

2

2m
1

K
mR2 , ~7!

then theR(t) variable can be solved independently of the other ones by using the first inte
H5E andK5K with the solution

mR252Et21At1B, ~8!

A, B constants of integration.
For the angular variables the Hamilton equations are given by

2
]H
]b

52
1

mR2

]K
]b

5
dPb

dt
,

]H
]Pb

5
1

mR2

]K
]Pb

5
db

dt

with b5u,s,c. These equations suggest that we introduce a new time rescaled byR22 to obtain
Hamilton equations, withK the ‘‘Hamiltonian’’ of a reduced system without theR variable.
Before doing this, we introduce dimensionless variables in order to reduce the number of p
eters.

IV. DIMENSIONLESS VARIABLES

We simplify the study of this problem introducing dimensionless variables denoted
prime. This reduces the study to a few cases depending on whetherE or K are equal or different
from zero.

We first define

K85
K
mk

, Pi85
Pi

Amk
, i 5u,s,c ,

where we are assuming an attractive potential, i.e.,k.0, but this is not restrictive. Equation~6!
becomes

K85
Pu8

2

2
1

Ps8
21Pc8

212 sin 2uPs8 Pc8

2 cos2 2u
1V~u,s!, ~9!

where the ‘‘potential’’V is

V~u,s!52
1

2 F 1

s23
2 1

1

s13
2 1

1

s12
2 G ,

and the dimensionless square distances are given by~2!. Now we consider the energy equation~7!
with two cases.

~1! EÞ0. Now let

H85
H
uEu

, PR85
PR

AmuEu
, R85RAuEu

k
, t85t

uEu

Amk
, ~10!

be the dimensionless Hamiltonian, momentum, distance, and time, respectively. Then w
only two values forH8561, depending on whetherE is positive or negative. The first integral o
energy reduces to
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H85
PR8

2

2
1

K8

R82 561 . ~11!

~2! E50. We defineR05R(0) and

H85
HR0

2

k
, PR85

PRR0

Amk
, R85

R

R0
, t85

t

R0
2Ak

m
. ~12!

Then the energy equation is the same as that in theEÞ0 case but now it has the numerical valu
zero,

H85
PR8

2

2
1

K8

R82 50 , ~13!

and then

PR856
A22K8

R8
,

with K8<0.
In this way, we have to consider essentially three cases for the energy:H8521, H850 and

H851. From now on, we will work with the dimensionless variables but we drop the prim
order to make easier the notation.

V. SOLUTION OF THE R VARIABLE

As we have shown in Sec. IV, the dimensionless energy equation~11! or ~13! gives the
solution for theR variable

H5
PR

2

2
1

K
R2 ~14!

with H561 in case~1! andH50 in case~2!. Solving for PR
2 we have

HR2>K
then the total inertia moment must be greater or equal toK/H. In Figs. 1, 2, and 3 we show th
projection of the phase portrait on the (R ,PR) plane whenH51, H50 andH521, respectively.
Now we consider these three values separately.

~a! H51. From Eq.~14!, we see thatKPR. WhenK50, the solution has constant momentu
PR56&. The R variable comes from infinity, and then the system goes to total collisioR

FIG. 1. Motion on the (R ,PR) plane forH51, KPR.
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50, or the system comes from total collision and thenR escapes to infinity hyperbolically. Not
that R→` means that at least two of the particles escape to infinity. This solution give
asymptote that divides the other two casesK.0 orK,0. If K.0, the inertia moment comes from
infinity with PR,0, reaches a minimum value atR5AK whenPR50, and then escapes to infinit
with PR.0 ~hyperbolic solutions!. If K,0, then the system goes out from total collision a
escapes to infinity withPR.0, or comes from infinity and goes to total collision. See Fig. 1.

~b! H50. Then we have thatK<0. If K50, all the solutions are equilibrium points. Then,
we find periodic solutions in the angular variables whenK50, they will be periodic also inR if
we putH50. If K,0, the system goes out from total collision and escapes to infinity withPR

50 ~parabolic solutions!, or comes from infinity and goes to total collision. See Fig. 2.
~c! H521. Then K,0 and all the solutions come from total collision, reach a maxim

value of the inertia moment atR5A2K, and then return to total collision. See Fig. 3.

VI. THE ANGULAR MOTION

We have seen that theR variable can be separated and the study of this problem reduced
few cases:~a! H51, KPR; ~b! H50, K<0; ~c! H521, KPR2 ~remember we are using th
dimensionless variables of Sec. IV dropping the primes!. At any rate, the Hamilton equations fo
the angular variables result in

2
]H
]b

52
1

R2

]K
]b

5
dPb

dt
, ~15!

]H
]Pb

5
1

R2

]K
]Pb

5
db

dt
, ~16!

with b5u,s,c. These equations suggest that we define a new~dimensionless! time

FIG. 2. Motion on the (R ,PR) plane forH50, K<0.

FIG. 3. Motion on the (R ,PR) plane forH521, K,0.
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dt5
dt

R2

and considerK as a ‘‘Hamiltonian,’’ witht its canonical coordinate

dPb

dt
52

]K
]b

,

db

dt
5

]K
]Pb

,

whereb5u,s,c.
As Pc is a first integral, we will assume it to be a constant parameter with valuepc in all the

calculations. Coordinatec can be ignored until the other coordinates are known as function
time, then the quadrature forc can be used to obtain the complete solution

ċ5
pc1sin 2uPs

mR2 cos2 2u
. ~17!

This quadrature reduces the number of variables from three to two. From now on,Pc5pc will be
an extra constant parameter.

For u ands variables we obtain

dPu

dt
52

2~Ps
21pc

212 sin 2uPspc!tan 2u

cos2 2u
2

2Pspc

cos 2u
2

]V
]u

,

dPs

dt
52

]V
]s

,

~18!du

dt
5Pu ,

ds

dt
5

Ps1sin 2upc

cos2 2u
.

This Hamiltonian system is not defined atu56p/4,63p/4, because the change of variabl
is not well defined there. Furthermore, the potentialV(u,s) is a function of 2u and 2s. Thus the
dominium ofs andu is sP@0,p) anduP(2p/4,p/4)ø(p/4,3p/4).

We have reduced the original problem with four degrees of freedom and Hamiltonian~3! to a
two degrees of freedom problem with HamiltonianK and a parameterpc .

VII. SYMMETRIES AND POINCARÉ MAPS

The Hamiltonian system obtained by~3! is invariant under the involution

~R,u,s,c,PR ,Pu ,Ps ,pc ,t !→~R,2u,s,2c,2PR ,Pu ,2Ps ,pc ,2t !.

Upon restricting it to two degrees of freedom and calling itI 0 , we get

I 0~u,s,Pu ,Ps ,t!5~2u,s,Pu ,2Ps ,2t!.

Let P5$(u,s):uP(2p/4,p/4)ø(p/4,3p/4) andsP@0,p)% andV5$(u,s,Pu ,Ps):(u,s)
PP,(Pu ,Ps)PR2% be the configuration and phase space in the reduced problem, respec
Let E5$xPV:K5K%, KPR be the level of constant ‘‘energy.’’ We introduce a Poincare´ section
S5$xPE:u50% and the Poincare´ map T:S→S induced by the Hamiltonian flow. We observ
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that I 0S5S, i.e., the Poincare´ section is invariant under the involutionI 0 . From Eq.~9! with u
50 we see that every point inS and their iterations withT must be in the interior of the region

Ps
2<2K22V~0,s!2pc

2 , ~19!

We next fix the valuespc50, m153, m252, andm351 to show some numerical result
The vectors a and b become a5(0.377 172,20.533 402,20.064 712 5) and b
5(0.156 230,0.220 942,20.910 574); then relation~19! implies K>V(0,s). In Fig. 4 we plot
V(0,s). The three valuess151.963 495,s251.178 097, ands353.070 644 correspond to th
double collisionss2350, s1350 and s1250 on the S section, respectively, whereV(0,s i)
→2`, i 51,2,3. The potential has three maximum valuesK1523.156 102,K2523.700 327,
andK3525.435 221. For valuesK.K1 , all the values ofs are allowed in the Poincare´ region.
If K1.K.K2 , there is a forbidden region ofs. If K2.K.K3 , there are two forbidden region
and if K,K3 , there are three forbidden regions in the Poincare´ region.

The Poincare´ maps forK521,0 do not seem to have islands. In Fig. 5 the Poincare´ map for
K510 is shown, where two islands are evident. For this value ofK there are stable periodic orbit
at the center of the islands.

In what follows, symmetrical periodic orbits will be found.

VIII. PERIODIC ORBITS

A survey of the state of the art on the theory of reversible dynamical systems and the r
on symmetrical periodic orbits is given in Ref. 6. Here we use the symmetry lines to find pe
orbits. Let G05$xPS:I 0x5x%5$xPS:Ps50% be the set of invariant points ofI 0 , called the

FIG. 4. The potentialV(0,s) ~we useds instead ofs in the graph! for m153, m252, m351, andpc50. We also show
its maximum valuesK1523.1561,K2523.7003, andK3525.4352, and the valuess151.963 49,s251.178 09,s3

53.070 64 where a double collision takes place and the potential tends to2`.

FIG. 5. Poincare´ map form153, m252, m351, pc50, andK510. The horizontal axis issP@0,p#, and the vertical one
is PsP@2p,p#.
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fundamental symmetry line, andG2 j5TjG0 , j PZ the symmetry lines obtained by the Poinca´

map ofG0 . It can be shown7,8 that the intersections of these symmetry lines are periodic or
i.e., if

xPG2 jùG2i then T2u j 2 i ux5x, iÞ j .

If x is at the intersection ofG2 j and G2i , then it is a periodic orbit ofT and its period divides
2u j 2 i u, j ,i PZ.

We have integrated the Hamiltonian system~18! by a Runge–Kutta method order 7–8 wi
initial conditions (s,Ps)5(s,0) on the fundamental symmetry lineG0 and we calculated theG2 ,
G4 , G6 , andG8 lines. In Figs. 6, 7, and 8 are shown these lines forpc50, m153, m252, m3

51 andK521,0,10, respectively. The intersections of the symmetry lines are periodic orb
S. We show in Fig. 9 three periodic orbits in the configuration spaceP, obtained by the intersec
tion of the symmetry lines for three different values ofK521,0,10, and in Figs. 10, 11, and 1
the respective orbits of the three bodies in the Cartesian rotating frame moving withc for each
case ofK. In general, they will not be periodic in all the variables becauseR is not a periodic
variable, except for the caseK50 andH50 whereR becomes constant. In addition we mu
choose thepc parameter properly to have a periodic orbit with the same frequency of thc

FIG. 6. G0 , G2 , G4 , G6 , andG8 symmetry lines form153, m252, m351, pc50, andK521. The horizontal axis is
sP@0,p#, and the vertical one isPsP@2p,p#.

FIG. 7. G0 , G2 , G4 , G6 , andG8 symmetry lines form153, m252, m351, pc50, andK50. The horizontal axis iss
P@0,p#, and the vertical one isPsP@2p,p#.
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FIG. 8. G0 , G2 , G4 , G6 , andG8 symmetry lines form153, m252, m351, pc50, andK510. The horizontal axis is
sP@0,p#, and the vertical one isPsP@2p,p#.

FIG. 9. Three different periodic orbits in the reduced configuration space~s,u! for K521,0,10~we useds and t instead
of s and u in the graph!. The respective periodic orbits of the three bodies in Cartesian coordinates are shown in
10–12.

FIG. 10. Periodic orbits in Cartesian coordinates forK521. m1 corresponds to the biggest dot andm3 corresponds to the
smallest dot.

FIG. 11. Periodic orbits in Cartesian coordinates forK50. m1 corresponds to the biggest dot andm3 corresponds to the
smallest dot.
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motion, which we are not describing here. The periodic solutions here obtained are in g
periodic up to a rotation and a homothetic transformation byc andR variables, respectively.

IX. CONCLUSIONS

We have introduced suitable coordinates to separate partially the problem of four degr
freedom by means of three first integrals. We thus studied the motion in the (R,PR) plane and we
showed that generically, at least two particles will escape to infinity increasing continuously
inertia moment, or the three particles will collide.

We therefore have reduced the problem to a two degrees of freedom one with an
constant of motionK, and we have been able to find periodic orbits for these reduced prob
These solutions will be in general periodic up to a rotation and homothetic transformation
whole space. For special values of the constants of motion (E50, K50), the periodic orbits will
also be periodic in theR variable. If we properly selectpc , the solution will be completely
periodic.

Generically, the three bodies either collide, or their total inertia moment tends to infi
which means that at least two of them escape to infinity.
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APPENDIX

In this appendix we give the explicit change of coordinates from the coordinates in Ref
the Cartesian inertial frame. First, we put the origin of coordinates at the center of mass
three particles, and we choose the third coordinate of each particle to be zero. In addition toc
coordinate that rotates from the principal axes frame to the inertial frame, three other coord
are introduced:s, R1 , andR2 . The last two are distances closely related to the two indepen
inertia momentsI 15mR1

2 and I 25mR2
2 , wherem is the mass

m5A m1 m2 m3

m11m21m3
.

The Cartesian inertial coordinates in the plane of motion (xi ,yi) for eachmi , written in terms
of the new coordinates are

FIG. 12. Periodic orbits in cartesian coordinates forK510. m1 corresponds to the biggest dot andm3 corresponds to the
smallest dot.
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r j5S xj

yj
D5C S aj

bj
D , i 51,2,3, ~A1!

where

C5S R2 coss cosc1R1 sins sinc R2 sins cosc2R1 coss sinc

R2 coss sinc2R1 sins cosc R2 sins sinc1R1 coss cosc D .

The vectors a and b are constant, perpendicular, and orthogonal to the vectorm
5(m1 ,m2 ,m3) in the mass space,

a"m5b"m5a"b50 . ~A2!

If we denote the matrixM5diag$m1,m2,m3%, we can complete the definition of vectorsa and
b assuming

b M aT50, ~A3!

and the normalization conditions

a M aT5b M bT5m , ~A4!

that define the vectorsa andb with no dimensions. The transformation~A1! is well defined when
(aibj2ajbi)(R122R2

2)Þ0, iÞ j . In the case ofm1.m2.m3 the a andb vectors result in4

a5yaS m1

m12xa
,

m2

m22xa
,

m3

m32xa
D ~A5!

and

b5ybS m1

m12xb
,

m2

m22xb
,

m3

m32xb
D , ~A6!

wherexa andxb are the roots~with xa.xb) of the quadratic equation

x2~m1
21m2

21m3
2!2x@~m11m21m3!~m1m21m1m31m2m3!23m1m2m3#

1~m11m21m3!m1m2m350 ,

andya andyb are normalization factors given by

yi
2S m1

3

~m12xi !
2 1

m2
3

~m22xi !
2 1

m3
3

~m32xi !
2D 5m ,

with i 5a,b.
If two or three masses are equal, vectorsa andb must be redefined and constructed by us

the properties~A2!–~A4!. For instance, form1>m25m3 we choose

a5
1

&
~0,1,21! ,

and

b5
1

A2~112m2 /m1!
~22m2 /m1,1,1! ,
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where the factor of normalization ism2 instead ofm in ~A4!.
Finally, the relation among the distance between particles and the new coordinates is

S r 23
2

r 13
2

r 12
2
D 5BS R1

2 sin2 s1R2
2 cos2 s

R1
2 cos2 s1R2

2 sin2 s

~R2
22R1

2!2 sins coss
D , ~A7!

whereB is the constant matrix, depending only on the masses,

B5
1

m2 S m1
2 b1

2 m1
2 a1

2 2m1
2 a1 b1

m2
2 b2

2 m2
2 a2

2 2m2
2 a2 b2

m3
2 b3

2 m3
2 a3

2 2m3
2 a3 b3

D . ~A8!

In the case of two or three equal masses, the factor 1/m2 in B must be changed by

1

m2
2 1

2

m1m2
.
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The Ermanno–Bernoulli constants and representations
of the complete symmetry group of the Kepler
problem

P. G. L. Leacha) and K. Andriopoulos
GEODYSYC, Department of Mathematics, University of the Aegean,
Karlovassi 83 200, Greece

M. C. Nucci
Dipartimento di Matematica e Informatica, Universita´ di Perugia, 06123 Perugia, Italy

~Received 12 July 2002; accepted 28 March 2003!

The expression of the components of the equation of motion of the classical Kepler
problem in terms of the natural variables associated with the Ermanno–Bernoulli
constants leads naturally to the same equations as are obtained by the technique of
reduction of order developed by Nucci@J. Math. Phys.37, 1772~1996!#, reported
by Nucci and Leach@J. Math. Phys.42, 746 ~2001!#. Three representations of the
complete symmetry group of the Kepler problem are obtained from the three stan-
dard representations of the complete symmetry group of the simple harmonic os-
cillator. The algebra of the complete symmetry group of the two-dimensional Ke-
pler problem is identified to beA1% $A3,3%. The applicability of the results to other
classes of problem, such as the Kepler problem with drag, which possess a con-
served vector of Laplace–Runge–Lenz type, is indicated. The three-dimensional
Kepler problem is shown to be completely specified by six symmetries rather than
the eight previously reported by Krause@J. Math. Phys.35, 5734~1994!#. © 2003
American Institute of Physics.@DOI: 10.1063/1.1576903#

I. INTRODUCTION

When studies of the Lie point symmetries of various ordinary differential equations
systems of ordinary differential equations were being reported in the late 1970s, it was cust
to describe the set of point symmetries obtained by the Lie method as the complete sym
group of the differential equation~or system of differential equations!. This was a reaction to som
earlier results obtained using Noether’s theorem for which, in the case of a linear second
ordinary differential equation, five point symmetries were reported. The expression fell out o
during the 1980s. In 1994 Krause15 revived the usage of the expression in a context for whic
was a much more suitable descriptor. Krause’s concept of a complete symmetry group
differential equation is the group associated with the set of symmetries, be they point, co
generalized or nonlocal, required to specify the equation or system completely. Specifica
required that the elements of the group have the two properties that the manifold of solutio
an homogeneous space of the group and the group be specific to the system, i.e., no othe
admits it. Subsequently a requirement of minimality was added after Andriopouloset al.1,2 showed
that not only was the group not unique but also the dimensionality could vary. The comple
of the specification was up to a scaling factor in the example used by Krause as the vehicle
discussion and up to an arbitrary translation in an example discussed by Leachet al.21

As a vehicle to illustrate the concept of a complete symmetry group Krause used the K
problem, which is probably the central paradigm of mechanics. The Kepler problem posses
first integrals of the conservation of the scalar energy, the vector of angular momentum

a!Permanent address: School of Mathematical and Statistical Sciences, University of Natal, Durban 4041, Rep
South Africa.
40900022-2488/2003/44(9)/4090/17/$20.00 © 2003 American Institute of Physics
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vectors in the plane of the orbit known as Hamilton’s vector13 and the Laplace–Runge–Len
vector.5,14,3,16,31,22The invariance Lie algebra of the first integrals under the operation of taking
Poisson bracket is so~4! ~in the case of negative energy! and the Lie algebra of the five Lie poin
symmetries of the equation of motionA2% so(3). Thealgebra of the complete symmetry grou
has not been given. The elements of the five-dimensional algebra are

X15] t , X35x2]x3
2x3]x2

,

X25t] t1
2
3r ] r , X45x3]x1

2x1]x3
, ~1.1!

X55x1]x2
2x2]x1

in which x1 , x2 , andx3 are the usual Cartesian components of the position vectorr of magnitude
r . These five point symmetries of the equation of motion are insufficient to specify the equ
completely. To overcome the deficiency in the number of symmetries Krause introduced a
cal symmetry of specific structure defined by

Y5F E j~ t,x1 ,...,xN!dt G] t1(
i 51

N

h i~ t,x1 ,...,xN!]xi
~1.2!

and obtained three symmetries of this form,videlicet

Y152S E x1dt D ] t1x1r ] r ,

Y252S E x2dt D ] t1x2r ] r , ~1.3!

Y152S E x3dt D ] t1x3r ] r ,

which has the compact form

Y52S E r dt D ] t1r r ] r , ~1.4!

in which r 25x1
21x2

21x3
2 , for the Kepler problem. With these three additional symmetries he

able to specify completely the three second order equations of the equation of motion, up
value of the gravitational constant in the radial equation which, as was noted above, is sca

Despite Krause’s belief that the necessary number of symmetries for the complete sym
group of the Kepler problem could not the obtained by means of the standard Lie point sym
analysis, Nucci28 was able to obtain all of the elements of the complete symmetry group by m
of Lie point symmetry analysis—to be fair to Krause one must omit the word standard—so
the determination of the symmetries could be determined by the use of her interactive cod26,27

The technique of reduction of order introduced by Nucci28 was successfully used by Nucci an
Leach29 on a number of problems, both real and imaginary, for which conserved vectors o
type of the Laplace–Runge–Lenz had been found, mainly in the 1980s.7,8,10,11,18,17Just as the
Laplace–Runge–Lenz vector provides a direct route to the equation of the orbit of the cla
Kepler problem, the corresponding vectors of the generalized Kepler problems provide the
direct route to the equations of their orbits.

Nucci and Leach29 showed that there were more nonlocal symmetries of the structure ad
by Krause~1.2!, obtainable as point symmetries by the reduction method of Nucci, than Kr
had reported. One of the intentions of this paper is to show that these additional nonloca
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metries have a place in the discussion of the complete symmetry group. We find that the
three equivalent representations of the complete symmetry group, which we also described,
Kepler problem. All symmetries are found by point methods. We find that there is no need
the method of reduction of order introduced by Nucci since there is a natural variable availa
its existence was demonstrated using the method of reduction of order in Nucci and Leach29—to
write the system as the equation of a one-dimensional simple harmonic oscillator plus a c
vation law. ~This is in the case of a two-dimensional treatment. For three dimensions the c
sponding result is one differential equation plus two conservation laws. We confine our att
to two dimensions for purposes of simplicity of presentation.! The equivalence of the Keple
problem to the simple harmonic oscillator plus a conservation law is carried over in the g
properties. Some years ago Mahomed and Leach20 showed that the three first integrals of th
simple harmonic oscillator,ẍ1x50,

I 15x cost2 ẋ sint,

I 25x sint1 ẋ cost, ~1.5!

I 35
x cost2 ẋ sint

x sint1 ẋ cost

each possessed three Lie point symmetries with the same algebra. More recently Andrio
et al.1 showed that this very algebra provided the elements of the complete symmetry group
equation of motion for the simple harmonic oscillator. We see that these three equivalent
sentations lead to three equivalent representations of the complete symmetry group of the
problem.

By analogy these results apply to all other systems for which one can obtain a Lap
Runge–Lenz vector.

In the next section we summarize the determination and properties of the integrals
Kepler problem, show how this leads naturally to the simple harmonic oscillator and consid
properties of the symmetries of the latter. In the following section we provide an explicit de
stration that the sets of symmetries obtained are indeed the elements of the complete sy
group of the two-dimensional Kepler problem. In Sec. IV we consider the connection betwee
simple harmonic oscillator and the Kepler problem in three dimensions. We present some
vations in Sec. V.

II. THE CONSERVATION LAWS OF THE KEPLER PROBLEM

The reduced equation for the Kepler problem is

05 r̈1
mr

r 3 . ~2.1!

The vector product ofr with ~2.1!, videlicet

05r3 r̈1
mr3r

r 3 , ~2.2!

gives that

Lªr3 ṙ ~2.3!

is a conserved vector, essentially the angular momentum.~One could imagine that we set th
effective mass of the system at unity by rescaling.!

The vector product of~2.1! with L gives
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05~ ṙ3L ! .1
mr3L

r 3 . ~2.4!

With the use of the decomposition

ṙ5 ṙ r̂1r r̂̇ ~2.5!

we may write the vector product in the numerator of the second term of~2.4! as

r3L5r ṙ r2r 2~ ṙ r̂1r r̂̇ !52r 3r̂̇ ~2.6!

so that~2.4! becomes

05~ ṙ3L ! .2m r̂̇ ~2.7!

and we obtain a second conserved vector,videlicet

Jª ṙ3L2m r̂ ~2.8!

which is the renowned Laplace–Runge–Lenz vector, presumably so-called because it was
ered by Ermanno and Bernoulli at the beginning of the eighteenth century.

There is a third conserved vector which was obtained by Hamilton in 1845. Trivially it ma
obtained by taking the vector product ofL andJ. However, as it arises from a direct integratio
of the equation of motion~2.1!, such a derivation from integrals which require the use of in
grating factors applied to the equation of motion does seem to be a little lacking in fundam
ism. We define a unit vector,v̂, as the unit vector in the instantaneous direction of the ang
velocity, i.e., in the direction ofr̂̇ . With r̂ andL̂ it forms an orthogonal triad. Specifically we hav

v̂5L̂3 r̂ , ~2.9!

so that

v̇̂5L̂3 r̂̇ , ~2.10!

since the direction ofL is constant. We consider the vector product on the right of~2.10!. From the
definition of the angular momentum we have

L̂
L

r 2 5 r̂3 r̂̇ . ~2.11!

Taking the vector product of this withr̂̇ we have

L̂3 r̂̇
L

r 2 52 r̂̇ . r̂̇ r̂

⇔ r̂52
L

r 2

1

r̂̇ . r̂̇
L̂3 r̂̇

52
L

r 2

1

r̂̇ . r̂̇
v̇̂ ~2.12!

and so the equation of motion~2.1! becomes
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05 r̈2
m

r 2

L

r 2

1

r̂̇ . r̂̇
v̇̂. ~2.13!

SinceL5r 2r̂3 r̂̇ , Eq. ~2.13! is trivially integrated to give

Kª ṙ2
mv̂

L
, ~2.14!

which is Hamilton’s vector.
We note that in the above derivation we have not made use of the fact that the orbit i

plane due to the conservation of the angular momentum. When we reduce the motion to mo
a plane, we may use plane polar coordinates, (r ,u), and replacev̂ with û.

The vectorsJ, K , andL constitute an orthogonal triad.
The explicit expression forJ in plane polar coordinates is

J5~r 3u̇22m! r̂2r 2ṙ u̇û. ~2.15!

Since r̂5 î cosu1ĵ sinu and û52 i sinu1ĵ cosu, the Cartesian components ofJ are

Jx5~r 3u̇22m!cosu1r 2ṙ u̇ sinu, ~2.16!

Jy5~r 3u̇22m!sinu2r 2ṙ u̇ cosu. ~2.17!

From the combination

Jx6 iJy5~r 3u̇22m!e6 iu6 ir 2ṙ u̇e6 iu5L2S 1

r
2

m

L2 6 i
ṙ

r 2u̇
D 57 iL 2S S 1

r D 8
6 i S 1

r
2

m

L2D De6 iu,

~2.18!

whereLªr 2u̇ is the magnitude of the angular momentum and the prime denotes different
with respect tou, we define the Ermanno–Bernoulli constants as

J65~v186 iv1!e6 iu, ~2.19!

wherev151/r 2m/L2. The reason for the rescaling is to be found in the radial equation of mo
which has the simple form

v191v150, ~2.20!

i.e., the equation for a one-dimensional simple harmonic oscillator. Of course, the reduction
radial equation to that of a linear oscillator equation is scarcely novel@see, for example, Whitake
~Ref. 32, p. 83!#, but its group theoretical derivation and the identification of the new variabl
being derived from the Laplace–Runge–Lenz vector is more recent.29 Note that we can write the
Laplace–Runge–Lenz vector in terms ofv1 as

J5L2~v1r̂1v18û!. ~2.21!

For the sake of completion we note that the scalar product ofṙ with ~2.1! is easily integrated
to give the energy integral,videlicet

Eª
1

2
ṙ . ṙ2

m

r
. ~2.22!

The various first integrals are related according to
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L4J1J252L2E1m2. ~2.23!

III. THE THREE REPRESENTATIONS OF THE COMPLETE SYMMETRY GROUP OF THE
KEPLER PROBLEM

In terms of the dependent variablesv1 and v2 and the independent variableu the two-
dimensional Kepler problem is defined by the system of differential equations

v191v150, ~3.1!

v2850, ~3.2!

which correspond to the radial and angular components of the equation of motion~2.1!. As a linear
second order ordinary differential equation~3.1! possesses eight Lie point symmetries. The
point symmetries of the system~3.1! and ~3.2! can be written as

G15]v2
, G465e6 iu]v1

,

G25]u , G565e62iu~]u6 iv1]v1
!, ~3.3!

G35v1]v1
, G665e6 iu~v1]u6 iv1

2]v1
!.

These nine point symmetries plus] t which is implicit in the change of independent variable fro
t to u constitute the set of symmetries at our disposal for the determination of the com
symmetry group of the Kepler problem.

In 1988 Mahomed and Leach20 showed that to each of three specific invariants of a sec
order equation possessing eight Lie point symmetries there were three point symmetries w
same algebra,videlicet D% sT2 . Recently, Andriopouloset al.1 showed that the same three sym
metries completely specified the equation and so the complete symmetry group was the sem
product of dilations and translations in the plane. In our format, which differs somewhat from
earlier literature, the invariants,I A , I B , andI C , and the symmetriesAi , Bi , andCi , i 51,3, are

I A5~v11 iv18!eiuH A15eiu]v1
,

A25]u2 iv1]v1
,

A35e2iu~]u1 iv]v1
!,

~3.4!

I B5~v12 iv18!e2 iuH B15e2 iu]v1
,

B25]u1 iv1]v1
,

B35e22iu~]u2 iv]v1
!,

~3.5!

I C5
v11 iv18

v12 iv18
e2iuH C15v1]v1

,

C265e6 iu~v1]u6 iv1
2]v1

!.
~3.6!

We note the typical variation of the appearance of combinations ofG2 andG3 , both of which are
rescaling symmetries, in the algebras of the invariants.6,19

Proposition:The complete symmetry group of the two-dimensional Kepler problem give
the equation of motion~2.1! has three~equivalent! representations given by the setsA, B or C
plus ] t .

To demonstrate the correctness of the proposition we first express the symmetries in te
the variables found in~2.1!. A ( t,r ,u) symmetry becomes a (u,v1 ,v2) symmetry according to
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t] t1h] r1z]u→z]u1V]v1
1S]v2

, ~3.7!

where

v25r 2u̇, v15
1

r
2

m

v2
2 ,

S52hr u̇1r 2~ ż2 u̇ ṫ !, ~3.8!

V52
h

r 2 1
2m

v2
3 S.

For A1 we havez50, V5eiu and S50. We use the relations in~3.8! to determine thath
52r 2eiu andt522*reiu dt. The same procedure is followed forA2 andA3 . In (t,r ,u) coor-
dinates we obtain

A15S 2E reiu dt D ] t1r 2eiu] r ,

A252S t2
m

L2 E r dt D1r S 12
mr

L2 D ] r2 i ]u , ~3.9!

A35S 2im

L2 E re2iu dt D ] t2 ir S 12
mr

L2 De2iu] r1e2iu]u .

The general radial and angular components of the equation of motion can be written
system

r̈ 5 f ~ t,r ,u, ṙ ,u̇ !,

ü5g~ t,r ,u, ṙ ,u̇ !,

and invariance under the symmetry] t immediately enables us to write this in the simpler form

r̈ 5 f ~r ,u, ṙ ,u̇ !, ~3.10!

ü5g~r ,u, ṙ ,u̇ !. ~3.11!

The actions of the second extensions ofA1 , A2 , andA3 on ~3.10! and ~3.11! give, respec-
tively,

r
] f

]r
1 ir u̇

] f

] ṙ
22u̇

] f

]u̇
5 irg 22 f 12i ṙ u̇2r u̇2, ~3.12!

r
]g

]r
1 ir u̇

]g

] ṙ
22u̇

]g

]u̇
524g2

2ṙ u̇

r
22i u̇2, ~3.13!

r S 12
mr

L2 D ] f

]r
2 i

] f

]u
2 ṙ

] f

] ṙ
22u̇S 12

mr

L2 D ] f

]u̇
523 f 12

mr

L2
f , ~3.14!
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r S 12
mr

L2 D ]g

]r
2 i

]g

]u
2 ṙ

]g

] ṙ
22u̇S 12

mr

L2 D ]g

]u̇
524gS 12

mr

L2 D 1
2m ṙ u̇

L2
, ~3.15!

2r S 12
mr

L2 D ] f

]r
1

] f

]u
2F ṙ 12ir u̇S 12

mr

L2 D G ] f

] ṙ
12u̇S 12

mr

L2 D ] f

]u̇

52 f S 11
2mr

L2 D 22igr S 12
mr

L2 D 14r u̇2S 12
mr

L2 D 24i ṙ u̇S 12
mr

L2 D , ~3.16!

2r S 12
mr

L2 D ]g

]r
1

] f

]u
2F ṙ 12ir u̇S 12

mr

L2 D G ]g

] ṙ
12u̇S 12

mr

L2 D ]g

]u̇

52gS 12
2mr

L2 D 14i u̇2S 12
mr

L2 D 2
2m ṙ u̇

L2
, ~3.17!

after division byeiu in ~3.12! and ~3.13! ande2iu in ~3.16! and ~3.17!, respectively.
We observe that the right-hand sides of the angular equations contain onlyg whereas those o

the radial equations contained bothf andg. We work with the former set of equations. Addin
~3.15! and ~3.17! we obtain

22F ṙ 1 ir u̇S 12
mr

L2 D G ]g

] ṙ
522g14i u̇2S 12

mr

L2 D . ~3.18!

The combination2(12mr /L2) ~3.13! and ~3.15! gives

2F ṙ 1 ir u̇S 12
mr

L2 D G ]g

] ṙ
5

2m ṙ u̇

L2 12S 12
mr

L2 D S ṙ u̇

r
1 i u̇2D . ~3.19!

We eliminate all derivatives ofg by means of the combination~3.18! and ~3.19! to obtain

g52
2ṙ u̇

r
. ~3.20!

We further observe that the left-hand sides of the radial equations contain the same te
those of the angular equations withf in place ofg and take the same combinations as in t
preceding paragraph to obtain

f 5r u̇2S 12
mr

L2 D ~3.21!

which, on the replacement ofL by r 2u̇ becomes

f 5r u̇22
m

r 2 . ~3.22!

Hence theA-set of symmetries, together with] t , provides a representation of the comple
symmetry group of the Kepler problem in the two-dimensional form considered here. As theB-set
of symmetries is the complex conjugate of theA-set, it is evident that this set also leads to
representation of the complete symmetry group. We need only consider now theC-set.

In terms of (t,r ,u) coordinates theC-set symmetries are
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C15S 22E x dt D ] t2rx] r , ~3.23!

C265F E S 2
ṙ

L
6

ix

r
72i

x2

r De6 iu dt G] t7 ix2e6 iu] r1
x

r
e6 iu]u , ~3.24!

in which we have introduced the notation

x512
mr

L2 , ẋ52
m ṙ

L2 ~3.25!

in an attempt to compactify the expressions.
From our experience with theA-set of symmetries we know that the right-hand sides of

equations will be the same, apart from an interchange off andg, for both the radial and angula
components of~3.10! and ~3.11!. We also expect the angular equation to be simpler and
commence with these. We obtain

C1 , 2rx
]g

]r
1~ ṙ x2rẋ !

]g

] ṙ
12xu̇

]g

]u̇
;

C26 , F7 ix2
]g

]r
1

x

r

]g

]u
1S 72ixẋ1x2u̇1

ṙ 2

L
7

i ṙ x

r
6

2i ṙ x2

r
D ]g

] ṙ
62i

x2u̇

r

]g

]u̇
Ge6 iu.

~3.26!

By means of some obvious manipulations we find that

2ixC12r ~C21e2 iu2C22eiu!50 ~3.27!

and so must use this combination on the left-hand sides to obtaing. The left-hand sides are

C1 , 4gx12ẋu̇;
~3.28!

C26 , 6
4ixẋu̇

r
7

2ix2ṙ u̇

r 2 1gS ṙ

L
7

ix

r
6

4ix2

r D ;

from the latter of which a common factor of exp@6iu# has been removed. After a little manipu
lation of these expressions in~3.27! we regain~3.20!.

The left-hand sides of the radial equations are

C1 , f S 3x1
mr

L2 D ;

C26 , f S 3
ṙ

L
62i

mx

L2 72i
x

r
64i

x2

r D72i ẋ214xẋu̇1x2g6 ix2u̇26 i
ṙ 2u̇

L

2 ṙ S 6
i ẋ

r
7

ix ṙ

r 2 7
4ixẋ

r
6

2ix2ṙ

r 2 2
xu̇

r
1

2x2u̇

r
D ;

and, when we substitute these expressions in~3.27! and simplify, we obtain

2ixS f 2r u̇21
m

r 2D ~3.29!
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and so the radial equation of motion is regained.
Thus we have proven the proposition by explicit demonstration.
We observe that the symmetry,] t , is necessary to enable the manipulations with the term

e6 iu above. Without this symmetry we would have to include the nonlocal coefficients of th] t

and so the exponential terms could not be eliminated.A priori one would have expected fiv
symmetries from general considerations of the number of symmetries needed for annth order
system1 and it is evident that the first order equation, representing the conservation of an
momentum, does not lead to the requirement of an additional symmetry.

It remains to consider the algebra of these representations of the complete symmetry
The Lie brackets of the three representations are

@A1 ,A2#LB522iA1 , @B1 ,B2#LB52iB1 , @C1 ,C26#LB5C26 ,

@A1 ,A3#LB50, @B1 ,B3#LB50, @C21 ,C22#LB50,
~3.30!

@A2 ,A3#LB52iA3 , @B2 ,B3#LB522iB3 ,

@] t ,Ai #LB50, @] t ,Bi #LB50, @] t ,Ci #LB50.

The differences in the brackets can be rectified by suitable rescaling of the symmetrie
renumbering. We note that] t has zero Lie brackets with all other symmetries. Taking theC-set as
an example we see that subalgebraC1 acts semidirectly on the pair,C26 , which is an Abelian
subalgebra. Thus the structure of the algebra isA1% $A1% s2A1%, where we use the standar
notation of the Mubarakzyanov classification,23–25 in which the algebras within braces constitu
the semidirect sum of dilations and translations in the plane, also known asA3,3.

The reduction of~2.1! to ~3.1! and~3.2! is essentially a reduction of order using the symme
] t of the system~2.1!. We have noted that all of the elements of the algebra of the comp
symmetry group have zero Lie bracket with this symmetry. It is a commonplace@see, for example,
Olver ~Ref. 30, p. 185!# that, if a point symmetry has zero Lie bracket with the symmetry used
the reduction, it remains as a point symmetry of the reduced system. If it does not, then it be
an exponential nonlocal symmetry of the reduced system. Here we have an interesting situa
that a nonlocal symmetry having zero Lie bracket with the reducing symmetry becomes a
symmetry of the reduced system. This is a hitherto unexplored aspect of the subject of no
symmetries and may well bear fruitful investigation.

As a final point in connection with the representations of the complete symmetry group
two-dimensional Kepler problem we note that it is not necessary to express these in te
nonlocal symmetries. If we consider the threeA symmetries by way of example, we have

A15S 2E reiu dt D ] t1r 2eiu] r ,

A252S t2
m

L2 E r dt D ] t1r S 12
mr

L2 D ] r2 i ]u , ~3.31!

A35S 2im

L2 E re2iu dt D ] t2 ir S 12
mr

L2 De2iu] r1e2iu]u .

In each case the nonlocality comes from the integral in the coefficient function of] t . In the case
of A2 we may manipulate the integral as follows:

E r dt5E r
du

u̇
5E r 3

L
du5L5E du

~m1J cosu!3
, ~3.32!
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in which we have used the equation,r (u), of the orbit. Similarly we have

E reiu dt5L5E eiu du

~m1J cosu!3 ,

~3.33!

E re2iu dt5L5E e2iu du

~m1J cosu!3 ,

for A1 andA3 , respectively. The integrals may be evaluated using standard integrals~Ref. 12, pp.
179, 180!. In the case of negative energy as generalized symmetries we have

A15F ir 2L

J
1

mr 2 sinu

2~22E!L
1

r ~m212J2!sinu

2~22E!2L
2

6mJ

~22E!5/2arctanS m2J

m1JD 1/2

tan
u

2G] t1r 2eiu] r ,

A252F t2
m

L2 S r 2J sinu

4EL
2

3mrJ sinu

8E2L
1

2m21J2

~22E!5/2arctanS m2J

m1JD 1/2

tan
u

2D G] t1r S 12
mr

L2 D ] r

1]u , ~3.34!

A35
2im

L2 F ~2m22J2!mr 2 sinu

2J2~22E!L
1

2m413m2J222J428mJ318m3J

2J2L~22E!2 r sinu

2
4m4112m3J26mJ324J4

J2~22E!5/2 arctanAm2J

m1J
tan

1

2
uG] t2 ir S 12

mr

L2 De2iu] r1e2iu]u ,

in which we have used the well-known relationshipJ252EL21m2. ~The forms of the symmetries
for the cases of positive and zero energy are calculated similarly.! The symmetries are generalize
since L, E, and J are functions ofṙ and u̇. We note that the appearances of the generali
symmetries are complicated and not particularly intuitive. One is inclined to the opinion tha
nonlocal representation is to be preferred.

IV. THE KEPLER PROBLEM IN THREE DIMENSIONS

The radial, polar and azimuthal components of the equation of motion for the Kepler pro
~2.1!, are

r̈ 2r u̇22r sin2 uḟ252
m

r 2 , ~4.1!

r ü12ṙ u̇2r ḟ2 sinu cosu50, ~4.2!

~r f̈12ṙ ḟ !sinu12r u̇ḟ cosu50, ~4.3!

respectively. The Laplace–Runge–Lenz vector,~2.8!, has the three Cartesian components

Jx5S L2

r
2m D sinu cosf2r 2ṙ ~ u̇ cosu cosf2ḟ sinu sinf!, ~4.4!

Jy5S L2

r
2m D sinu sinf2r 2ṙ ~ u̇ cosu sinf1ḟ sinu cosf!, ~4.5!

Jz5S L2

r
2m D cosu1r 2ṙ u̇ sinu, ~4.6!
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and we combine the first two to obtain

J65Jx6 iJy5F S L2

r
2m D sinu2r 2ṙ u̇ cosu7 ir 2ṙ ḟ sinuGe6 if. ~4.7!

By analogy with the two-dimensional Kepler problem the real part of the expression withi
crochets is the obvious candidate for one of the new variables.

The matter of identifying a third variable—thez-component of the angular momentum whic
comes from direct integration of the azimuthal inflation makes an obvious second varia
requires a little ingenuity. From the azimuthal equation,~4.3!, we have

ṙ 52r u̇ cotu2
r f̈

2ḟ
. ~4.8!

With this and following division by the commonr the polar equation becomes

ü22u̇2 cotu2
f̈u̇

ḟ
2ḟ2 sinu cosu50. ~4.9!

We takef to be the new independent variable. Then~4.9! is

u922u82 cotu2sinu cosu50, ~4.10!

where the prime denotes differentiation with respect to the new independent variablef. A second
oscillator is obtained after the change of variablev25cotu.

Thus we obtain a two-dimensional oscillator plus a conservation law,videlicet

v191v150, v15S L2

r
2m D sinu2r 2ṙ u̇ cosu,

v291v250, v25cotu, ~4.11!

v3850, v35r 2ḟ sin2 u,

where the independent variable isf.
The Lie point symmetries of~4.11! are those of the two-dimensional linear system plus]v3

and are9

G165e6 if]v1
, G265e6 if]v2

,

G365v1e6 if@]f6~v1]v1
1v2]v2

!#, G465v2e6 if@]f6~v1]v1
1v2]v2

!#,

G565e6 if@]f6~v1]v1
1v2]v2

!#,

~4.12!
G65v1]v1

, G75v1]v2
,

G85v2]v1
, G95v2]v2

,

G105]f , G115]v3
.

The algebra of these 16 symmetries isA1% sl(4,R), where the sl(4,R) is the algebra of the poin
symmetries of the two-dimensional simple harmonic oscillator.
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The two-dimensional oscillator is completely specified by the five symmetries2 G16 , G26 ,
and G61G9 which has the algebraA1% s$2A1% 2A1%, being a representation of the semidire
product of dilations and translations in the four-plane. This algebra completely specifies th
tem ~4.11!. Consequently the three-dimensional Kepler problem is completely specified b
six-dimensional algebraA1% $A1% s$2A1% 2A1%%.

Krause15 reported that eight symmetries were needed to specify the three-dimensional K
problem. Evidently he did not make the correct choice of symmetries. If one considers the
sentation of, say,G16 in terms of spherical polar coordinates, one obtains

G165H E 2r cosu expF2E ḟ2 sin3 u

u̇ cosu
dtGF E exp~6 if!

r 4u̇ cos2 u
expS E ḟ2 sin3 u

u̇ cosu
dt D dtGdtJ ] t

1H r 2 cosu expF2E ḟ2 sin3 u

u̇ cosu
dtGF E exp~6 if!

r 4u̇ cos2 u
expS E ḟ2 sin3 u

u̇ cosu
dt D dtG J ] r .

~4.13!

The structure of this symmetry is scarcely intuitive and it is unlikely that anyone could mak
Anzatz for a structure of this type.

V. CONCLUSION

In this paper we have shown that there are three representations of the complete sym
group for the Kepler problem. These three representations followed directly from the three
sentations of the complete symmetry group for the simple harmonic oscillator. As Nucc
Leach29 have shown that a number of related problems, all characterized by the possessio
conserved vector of Laplace–Runge–Lenz type, may be reduced to the simple harmonic os
we may infer that these systems also have three representations for their complete sym
groups. Indeed, one expects that the algebra be the same.

Given that the algebra is the same, there should exist a transformation of coordinates b
any two of these systems. We illustrate this in the case of the Kepler problem with drag
problem of a low altitude satellite modelled by Danby,4 with the equation of motion

r̈ 1
a

r 2 ṙ 1
m

r 3 r 50, ~5.1!

wherea andm are constants. Since the direction of the angular momentum is a constant, w
analyze the problem in two dimensions using plane polar coordinates, (r ,u). The radial and
angular components of the equation of motion are

r̈ 2r u̇21
a ṙ

r 2 1
m

r 2 50, ~5.2!

r ü12ṙ u̇1
au̇

r
50. ~5.3!

The reduction to the simple harmonic oscillator and a first-order conservation law is achiev
the change of variables

v15
1

r
2mz~u!,

~5.4!
v25r 2u̇1au,
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where the functionz(u) is defined by

z~u!5Eu sin~u2h!dh

~b2ah!2

⇔z9~u!1z~u!5
1

~b2ah!2 ~5.5!

andb is the value of the conservation lawL1au which replaces the conservation of the mag
tude of the angular momentum found for the standard Kepler problem. The Ermanno–Be
constants are

J65F S 1

r
2mzD 8

6 i S 1

r
2mzD G . ~5.6!

In line with the treatment of the Kepler problem we would expect the system~5.2! and~5.3!
to be completely specified by the symmetry] t plus any one of the triplets which complete
specify the equation for the oscillator, say theA-set. We can incorporate the symmetry] t into the
definition of the system to be tested,videlicet

r̈ 5 f ~r ,u, ṙ ,u̇ !, ~5.7!

ü5g~r ,u, ṙ ,u̇ !. ~5.8!

In terms of the variablest, r , andu the threeA symmetries are

A15S 2E reiu dt D ] t1r 2eiu] r , ~5.9!

A25F E S 2i 22mr ~z81 iz!
a

L Ddt G] t1 ir @11 imr ~z81 iz!#] r1]u , ~5.10!

A35F E S 22mr ~z82 iz!1
a

L De2iu dt G] t2 ir @12m ir ~z82 iz!#e2iu] r1e2iu]u . ~5.11!

The actions of the second extensions of these three symmetries on the pair of equation~5.7!
and~5.8! produce the following set of equations to be solved to determinef andg. The equations
alternate from radial to angular in turn,

ir 2g12ir ṙ u̇2r 2u̇222r f 5r 2
] f

]r
1 ir 2u̇

] f

] ṙ
22r u̇

] f

]u̇
, ~5.12!

24r f 22ṙ u̇22ir u̇25r 2
]g

]r
1 ir 2u̇

]g

] ṙ
22r u̇

]g

]u̇
, ~5.13!
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23i f 22
a

L
f 2m~r 2g12r ṙ u̇ !~z91 iz8!2mr 2u̇2~z-1 iz9!12mr f ~z81 iz!

5 ir @11m ir ~z81 iz!#
] f

]r
1

] f

]u
1F2 i ṙ 2mr 2u̇~z91 iz8!2

a ṙ

L
G ] f

] ṙ

1F22i u̇12mr u̇~z81 iz!2
au̇

L
G ] f

]u̇
, ~5.14!

24ig12m~2rg1 ṙ u̇ !~z81 iz!12mr u̇2~z91 iz8!1
2a ṙ

r 3
2

ag

L

5 ir @11m ir ~z81 iz!#
]g

]r
1

]g

]u
1F2 i ṙ 2mr 2u̇~z91 iz8!2

a ṙ

L
G ]g

] ṙ

1F22i u̇12mr u̇~z81 iz!2
au̇

L
G ]g

]u̇
, ~5.15!

2 i f 2m~r 2g12r ṙ u̇ !~z91 iz812z!12~r ü12ṙ u̇ !2mr 2u̇2~z-2 iz9!24imr 2u̇2~z92 iz8!

2
a f

L
1

a ṙ L̇

L2
14ir u̇212m~r f 12r 2u̇2!~z82 iz!2

2ia ṙ u̇

L
2

a f

L

52 ir @12m ir ~z82 iz!#
] f

]r
1

] f

]u
1F2r u̇2mr u̇~z91 iz812z!2

a ṙ

L
G ] f

] ṙ

1F2i u̇12mr u̇~z82 iz!2
au̇

L
G ] f

]u̇
, ~5.16!

2ig12m~2rg1 ṙ u̇ !~z82 iz!12mr u̇2~z91 iz812z!1
2a ṙ

r 3
24u̇22

2iau̇

r 2

ag

L

52 ir @12m ir ~z82 iz!#
]g

]r
1

]g

]u
1F2r u̇2mr u̇~z91 iz812z!2

a ṙ

L
G ]g

] ṙ

1F2i u̇12mr u̇~z82 iz!2
au̇

L
G ]g

]u̇
. ~5.17!

We observe that the combinationsr @(5.17)2(5.15)#12i (12mrz)~5.13! and the same with
~5.16!, ~5.14!, and~5.12! give zero on the right-hand side and so the system of partial differe
equations to determinef and g reduces to an algebraic equation. From the combination of
angular equations we verify that

g52
2ṙ u̇

r
2

au̇

r 2 . ~5.18!

With this and the combination of the radial equations we then verify that
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f 5r u̇22
a ṙ

r 2 2
m

r 2 ~5.19!

provided the functionz(u) is a solution of the equation

z91z5
1

L2 . ~5.20!

Since the sets of symmetriesB andC are related to those ofA by means of a point transfor
mation which preserves the differential equation, it is evident that the same result applies
setsB andC.

In this paper we have demonstrated that the Kepler problem can be recast as a simp
monic oscillator plus a conservation law. By contrast with other literature on the relation
between the Kepler problem and the simple harmonic oscillator in which the Kepler probl
embedded in an oscillator of higher dimension we have shown that the Kepler problem i
dimensions has a natural representation in terms of a one-dimensional oscillator plus a firs
equation which represents the conservation of angular momentum. In the case of the
problem in three dimensions the natural representation is in terms of a two-dimensional osc
and the conservation of thez component of the angular momentum. Because of this relation
between the Kepler problem and the simple harmonic oscillator and the well-established
for the complete symmetry group of the latter it has been a relatively easy matter to determ
complete symmetry group for the Kepler problem in its two- and three-dimensional forms
former requires four symmetries to specify it completely and the latter six. In both case
number of symmetries required is one less than would have been expected, that being five
two-dimensional case and seven for the three-dimensional case.

We recall that Krause15 reported that the complete symmetry group of the three-dimensi
Kepler problem consists of eight elements which is considerably in excess of the number re
here. It is known1 that an inappropriate choice of symmetries can result in more symmetries
required to specify the equation than the minimal number. Apparently this is what happened
case of Krause’s work. That it should happen is quite understandable since he was workin
vacuum, as it were. In the case of the present work we had the advantage of the resu
oscillator systems2 and the relationship between the Kepler problem and the oscillator which
have shown for the three-dimensional problem. Furthermore, as we saw in the case of the
dimensional Kepler problem, the representation of the elements of the complete symmetry a
in terms of the original variables of the Kepler problem is extremely nonlocal and m
nonintuitive.
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Lorenz integrable system moves a ` la Poinsot
M. C. Nuccia)

Dipartimento di Matematica e Informatica, Universita` di Perugia, 06123 Perugia, Italy

~Received 12 February 2003; accepted 20 May 2003!

A transformation is derived which takes the Lorenz integrable system into the
well-known Euler equations of a torque-free rigid body about a fixed point, i.e., the
famous motion a` la Poinsot. The proof is based on Lie group analysis applied to
two third-order ordinary differential equations admitting the same two-dimensional
Lie symmetry algebra. Lie’s classification of two-dimensional symmetry algebras
in the plane is used. If the same transformation is applied to the Lorenz system with
any values of the parameters, then one obtains Euler equations of a rigid body
about a fixed point subjected to a torsion depending on time and angular velocity.
The numerical solution of this system yields a three-dimensional picture which
looks like a ‘‘tornado’’ the cross-section of which has a butterfly-shape. Thus
Lorenz’sbutterflyhas been transformed into atornado. © 2003 American Institute
of Physics. @DOI: 10.1063/1.1599955#

I. INTRODUCTION

The motion of a heavy rigid body about a fixed point is one of the most famous problem
classical mechanics.1 In 1750 Euler2 derived the equations of motion, which now bear his nam
and described what is nowadays known as the Euler–Poinsot case because of the geo
description given by Poinsot about 100 years later.3 It was Jacobi4 who integrated this case b
using the elliptic functions which he had developed~along with Legendre, Abel, and Gauss5! and
mastered6—we have translated this fundamental text into Italian and commented extensive7

More than 200 years later, in 1963, a paper was published8 in which was presented a syste
of three ordinary differential equations. The author considered a hydrodynamical system
oped by Rayleigh9 and reduced it by applying a double Fourier series as in Ref. 10. Thu
obtained what nowadays is the famous Lorenz system.11 Three parameters are part of the Lore
system. For particular values of those parameters the Lorenz system can be integrated in
form by means of Jacobi elliptic functions.12 We call this system the Lorenz integrable system

In January 2001 the first Whiteman prize for notable exposition on the history of mathem
was awarded to Thomas Hawkins by the American Mathematical Society. In the citation,
lished in the Notices of AMS48, 416-417~2001!, one reads that Thomas Hawkins ‘‘... has writt
extensively on the history of Lie groups. In particular he has traced their origins to@Lie’s# work in
the 1870s on differential equations ... theidée fixeguiding Lie’s work was the development of
Galois theory of differential equations ...~Hawkins’s book13! highlights the fascinating interactio
of geometry, analysis, mathematical physics, algebra and topology ... .’’ Also Hawkins had
lished ‘‘the nature and extent of Jacobi’s influence upon Lie.’’14

In the Introduction of his book15 Olver wrote that ‘‘it is impossible to overestimate th
importance of Lie’s contribution to modern science and mathematics. Nevertheless anyone
already familiar with@it# . . . is perhaps surprised to know that its original inspirational source
the field of differential equations.’’

Lie’s monumental work on transformation groups,16–18 and in particular contac
transformations,19 led him to achieve his goal.20

Many books have been dedicated to this subject and its generalizations~Refs. 21–23, 15,
24–29!.

a!Electronic mail: nucci@unipg.it
41070022-2488/2003/44(9)/4107/12/$20.00 © 2003 American Institute of Physics
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Lie group analysis is indeed the most powerful tool to find the general solution of ord
differential equations. Any known integration technique can be shown to be a particular cas
general integration method based on the derivation of the continuous group of symmetries
ted by the differential equation, i.e., the Lie symmetry algebra. In particular Bianchi’s the
~Refs. 30 and 15! states that, if an admittedn-dimensional solvable Lie symmetry algebra
found, then the general solution of the correspondingnth-order system of ordinary differentia
equations can be obtained by quadratures. The admitted Lie symmetry algebra can be
derived by a straightforward although lengthy procedure. As computer algebra software be
widely used, the integration of systems of ordinary differential equations by means of Lie g
analysis is becoming easier to perform. A major drawback of Lie’s method is that it is us
when applied to systems ofn first-order equations, because they admit an infinite numbe
symmetries, and there is no systematic way to find even a one-dimensional Lie symmetry a
apart from trivial groups like translations in time admitted by autonomous systems. One m
to derive an admittedn-dimensional solvable Lie symmetry algebra by making an ansatz on
form of its generators.

However, in Ref. 31 we have remarked that any system ofn first-order equations could b
transformed into an equivalent system where at least one of the equations is of second orde
the admitted Lie symmetry algebra is no longer infinite-dimensional, and nontrivial symmetr
the original system could be retrieved.31 This idea has been successfully applied in several
stances~Refs. 31–34!. Also in Ref. 35 we have have shown that first integrals can be obtaine
Lie group analysis, even if the system under study does not come from a variational problem
without making use of Noether’s theorem.36 If we consider a system of first-order equations an
by eliminating one of the dependent variables, derive an equivalent system which has one e
of second-order, then Lie group analysis applied to that equivalent system yields the firs
gral~s! of the original system which do~es! not contain the eliminated dependent variable.
course this requires that such first integrals exist. The procedure should be repeated as ma
as there are dependent variables in order to find all such first integrals. The first integrals
spond to the characteristic curves of determining equations of parabolic type which are
structed by the method of Lie group analysis. We remark that interactive~not automatic! programs
for calculating Lie symmetries such as Refs. 37 and 38 are more appropriate for performin
task.

We have briefly sketched three apparently unrelated subjects. In this paper we show t
Lorenz system and the Euler equations are actually related by means of Lie group analysis.
39 we applied Lie group analysis to a third-order differential equation, which is equivalent t
Lorenz integrable system, and obtained a two-dimensional Lie symmetry algebra, which w
used to integrate the Lorenz integrable system in terms of Jacobi elliptic functions. Here we
that the same Lie symmetry algebra is admitted by a third-order differential equation wh
equivalent to the Euler equations of a torque-free rigid body moving about a fixed point. T
transformation is easily derived by which the Lorenz integrable system becomes the Euler
tions of a torque-free rigid body moving about a fixed point. Thus, it can be stated that
Lorenz integrable system moves a` la Poinsot.’’ If the same transformation is applied to the Lore
system with any value of parameters, then one obtains the Euler equations of a rigid body m
about a fixed point and subjected to a torsion depending on time and angular velocity
numerical solution of this system yields a three-dimensional picture which resembles a ‘‘torn
the cross-section of which has a butterfly-shape. By means of our transformation Lorenz’sbutterfly
becomes atornado.

In the last section the relationship between Lie group analysis and first integrals35 is exem-
plified by considering the Euler equations of a torque-free rigid body about a fixed point an
Lorenz integrable system.
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II. BUTTERFLIES AND TORNADOES

Consider the Lorenz system:8

x85s̃~y2x!, ~1!

y852xz1 r̃ x2y, ~2!

z85xy2b̃z, ~3!

wheres̃, b̃, and r̃ are parameters~a prime denotes differentiation with respect tot!. This system
can be reduced to a single third-order ordinary differential equation forx,41 which admits a
two-dimensional Lie symmetry algebra ifs̃51/2, b̃51, andr̃ 50. System~1!–~3! becomes

x85
~y2x!

2
, ~4!

y852xz2y, ~5!

z85xy2z. ~6!

The corresponding third-order equation is

2xx-22x8x915xx923x8212x3x813xx81x41x250, ~7!

and admits a two-dimensional Lie symmetry algebraL2 with basis:

X15]t , X25et/2S ]t2
1

2
x]xD . ~8!

A basis of its differential invariants of-order<2 is given by

f5S x81
x

2D x22, c5S x91
3

2
x81

x

2D x23. ~9!

Equation~7! is reduced to the following first-order equation:

~c22f2!
dc

df
522cf2f, ~10!

which can be easily integrated40 to give

114c24f2

~112c!2 5c1 , ~11!

where c1 is an arbitrary constant. The substitution ofx and its derivatives into~11! yields a
second-order ordinary differential equation,

114S x91
3

2
x81

1

2
xD x2324S x81

1

2
xD 2

x24

~x312x913x81x!2x26 5c1 , ~12!

which admits the Lie symmetry algebraL2 . Lie’s classification of two-dimensional algebras in
four canonical types20 allows us to integrate~12! by quadrature if we introduce the canonic
variables:
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v522e2t/2, u5
e2t/2

x
, ~13!

which transform Eq.~12! into

114S du

dv D 2

24u
d2u

dv2

F2u
d2u

dv2 24S du

dv D 2

21G2 5c1 , ~14!

and operators~8! into

X̄15]v , X̄25v]v1u]u . ~15!

Then the general solution of~14! can be easily derived20 to be

E ~2c172c2u22c2
2u4!21/2du56

v

2Ac1

1c3 , ~16!

with c2 and c3 arbitrary constants. This solution which involves an elliptic integral has alre
been obtained by Sen and Tabor41 by means of a lengthier analysis.

The Euler equations describing the motion of a heavy rigid body about a fixed point wi
torsion are

ṗ5
~B2C!

A
qr, ~17!

q̇5
~C2A!

B
pr, ~18!

ṙ 5
~A2B!

C
pq, ~19!

with A, B, andC being the principal moments of inertia, andp(t), q(t), andr (t) the components
of the angular velocity~a dot denotes differentiation with respect tot). This system can be reduce
to a single third-order ordinary differential equation for, say,p, viz.,

p
d3p

dt3 2
dp

dt

d2p

dt2 2
4~C2A!~A2B!

BC
p3

dp

dt
50, ~20!

which admits a two-dimensional Lie symmetry algebraL2 with basis:

G15] t , G25t] t2p]p . ~21!

The two Lie symmetry algebrasL2 andL2 that we have found are actually the same, i.e., Type
in Lie’s classification.20 Therefore they are linked by a transformation which takes (t,x) into
(t,p). Prolongation to the second-order of the two equivalent Lie symmetry algebras yie
transformation which takes the system~17!–~19! into the system~4!–~6! as

t5 logS 4

t2D ,
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x5
p t

2
,

~22!

y5
C2B

2 A
qrt2,

z5
C2B

2A F ~C2A!

B
r 21

~A2B!

C
q2G t2,

with the following condition on the momenta of inertia:

~A2B!~A2C!

BC
5

1

4
. ~23!

A slightly more general condition could have been considered if one replaces 1/4 withk/4 (k an
arbitrary parameter!. If one derivesB from ~23! by assumingA2C.0 and 4A23C.0, i.e.,

B5
4A~A2C!

4A23C
, ~24!

then the transformation~22! turns into the following:

t5 logS 4

t2D ,

x5
p t

2
,

~25!

y52
~2A2C!~2A23C!

2A~4A23C!
qrt2,

z52
~2A2C!~2A23C!@4A2q22~4A23C!2r 2#

8A2~4A23C!2 t2,

and the system~17!–~19! assumes the form

ṗ5
~2A2C!~2A23C!

A~4A23C!
qr, ~26!

q̇5
3C24A

4A
pr, ~27!

ṙ 5
A

4A23C
pq. ~28!

We also derive the inverse transformation, i.e.,

t52e2t/2,
~29!

p5xet/2,
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q52
~4A23C!yet/2

2A~2A2C!~2A23C!~Ay21z21z!
,

r 5
Aet/2AAy21z21z

A~2A2C!~2A23C!
,

which takes the system~4!–~6! into the system~17!–~19! after substitutingB as in ~24!.
If one applies the transformation~29! to the general Lorenz system~1!–~3!, then the following

equations are obtained:

ṗ5
2~2A2C!~2A23C!s̃

A~4A23C!
qr1~2s̃21!

p

t
, ~30!

q̇5
3C24A

4A
pr1~ b̃21!

4A2q22~4A23C!2r 2

4A2q21~4A23C!2r 2

q

t

1 r̃
2~4A23C!3A

~2A2C!~2A23C!@4A2q21~4A23C!2r 2#

pr

t2 , ~31!

ṙ 5
A

4A23C
pq2~ b̃21!

4A2q22~4A23C!2r 2

4A2q21~4A23C!2r 2

r

t

1 r̃
8~4A23C!A3

~2A2C!~2A23C!@4A2q21~4A23C!2r 2#

pq

t2 . ~32!

They can be interpreted as the Euler equations of a rigid body moving about a fixed poi
subjected to a torsion which depends on timet and angular velocity (p,q,r ) in the body-frame
reference. Also the momenta of inertia are linked by relation~24!. To our knowledge such a
system has never been described.

If we use Maple V in order to draw a three-dimensional plot of system~30!–~32!, then a
‘‘tornado,’’ the cross-section of which resembles a butterfly, is obtained~Fig. 1!. The usual values

FIG. 1. The 3-dim plot of the ‘‘tornado.’’
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for the Lorenz parameters,s̃510, b̃58/3, r̃ 528, are imposed. Also we assumeA52 and C
51. We considert as it varies in the interval@2,0.015#, which corresponds totP@0,9.8# approxi-
mately. The step size used is 0.00005.

The butterfly-shape curve is better seen in Fig. 2, which shows the two-dimensional plop
versusq.

A clearer view of the ‘‘tornado’’ is given in Fig. 3, which shows the two-dimensional plot
r versusq. Another view can be found in Fig. 4 which shows the two-dimensional plot ofr versus
p.

In Figs. 5 and 6 the plot ofp versust is given for two different but close initial values~1 and
1.01!. For relatively large values oft, saytP@2,0.5#, the solutions are the same~Fig. 5!. For small
t, saytP@0.05,0.015#, a dramatic difference appears~Fig. 6!.

In Ref. 42 it was found that one could explicitly derive a first integral of the Lorenz sys
~1!–~3! in six different instances which correspond to particular values of the Lorenz param
It is a trivial task to apply those findings to system~30!–~32! by using the transformation~22!. The
following is the list of the six cases with a relative first integralF for the system~30!–~32!.

FIG. 2. The 2-dim plot ofp vs q.

FIG. 3. The 2-dim plot ofr vs q.
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~1! b̃52s̃, r̃ arbitrary,

F542s̃21t2(122s̃)Sp21
@4A2q22~4A23C!2r2#~2A2C!~2A23C!s̃

A2~4A23C!2 D .

~2! b̃50, s̃5 1/3 , r̃ arbitrary,

F541/3t22/3S 2p2r̃ 22
~2A2C!~2A23C!

3A~4A23C!
pqrt2

3

16
p4t2

2
~4A2q22~4A23C!2r 2!~2A2C!~2A23C!

8A2~4A23C!2 p2t21
~2A2C!2~2A23C!2

3A2~4A23C!2 q2r 2t2D .

~3! b̃51, r̃ 50, s̃ arbitrary,

F5
~4A2q21~4A23C!2r2!2~2A2C!2~2A23C!2

4A4~4A23C!4
.

~4! b̃54, s̃51, r̃ arbitrary,

F54t26S16p2r̃ 132r̃
„4A2q22~4A23C!2r 2

…~2A2C!~2A23C!

A2~4A23C!2 2p4t2

FIG. 4. The 2-dim plot ofr vs p.

FIG. 5. Varying the initial condition ofp in t52 by 0.01. The two plots ofp(t),tP@2,0.5# are indistinguishable.
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22
~4A2q22~4A23C!2r 2!~2A2C!~2A23C!

A2~4A23C!2 p2t2132
~2A2C!~2A23C!

A~4A23C!
pqrt

116
~2A2C!2~2A23C!2

A2~4A23C!2 q2r 2t2232
~4A2q22~4A23C!2r 2!~2A2C!~2A23C!

A2~4A23C!2 D .

~5! b̃51, s̃51, r̃ arbitrary,

F52
4

t2
p2r̃1

„4A2q21~4A23C!2r 2
…

2~2A2C!2~2A23C!2

4A4~4A23C!4 .

~6! b̃56s̃22, r̃ 52s̃21

F544s̃t2(124s̃)S2 p4t2

64s̃
2s̃

„4A2q22~4A23C!2r 2
…~2A2C!~2A23C!

32A2~4A23C!2 p2t21
~2s̃21!2

4s̃
p2

1
~2A2C!~2A23C!~2s̃21!

2A~4A23C!
pqrt1

~2A2C!2~2A23C!2s̃

4A2~4A23C!2 q2r 2t2D .

III. LIE GROUP ANALYSIS AND FIRST INTEGRALS

In Ref. 35 we showed the application of Lie group analysis in order to obtain first inte
with at least one missing variable. Consider Euler equations~17!–~19!. There exist two well-
known first integrals, i.e., the conservation of kinetic energy and the conservation of an
momentum:

Ap21Bq21Cr25I 1 , ~33!

A2p21B2q21C2r 25I 2 . ~34!

We derivep from ~19! ~the method works independently of the chosen equation! as

p5
Cṙ

~A2B!q
,

in order to obtain the following two differential equations inq and r , one of first-order and one
second-order, respectively:

FIG. 6. Varying the initial condition ofp in t52 by 0.01. There are two different plots ofp(t),tP@0.05,0.015#: the darker
line represents the plot ofp(t) with initial conditionp51 in t52, and the lighter line the plot ofp(t) with initial condition
p51.01 in t52.
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q̇5
C~CA!r ṙ

B~A2B!q
, ~35!

r̈ 5
C~C2A!

B~A2B!q2 r ṙ 21
~B2C!~A2B!

AC
rq2. ~36!

When Lie group analysis of the system~35!–~36! is performed, a linear partial differentia
equation of a parabolic structure is generated. Its characteristic curve is given by

B~A2B!q21C~A2C!r 2,

which is a combination of the two first integrals~33! and~34!. Consequently we introduce the ne
dependent variables such that

q5AC~C2A!r 21s

B~A2B!
, ~37!

in order to obtain the following system:

ṡ50, ~38!

r̈ 5
C~C2A!r ṙ 2

C~C2A!r 21s
1

~C2A!~B2C!r 3

AB
1

~B2C!sr

ABC
. ~39!

Equation~39! admits an eight-dimensional Lie symmetry algebra~i.e., it is linearizable! if either
A5C or B5C, i.e., the case of the torque-free Lagrange top~uniform precession!. If either q or
r , one at a time, is eliminated from system~17!–~19!, then a similar result is obtained, i.e., th
other two combinations of the first integrals~33! and~34!. Indeed the elimination ofq yields the
first integral,

A~A2B!p21C~B2C!r 2,

and the elimination ofr yields the first integral

B~B2C!q21A~A2C!p2.

If the same method is applied to the Lorenz integrable system~4!–~6!, then the following two first
integrals are obtained:

~y21z2! e2t, ~40!

~z2x2! et. ~41!

Those first integrals were found in Ref. 12 by using the Painleve´ analysis.
From ~6! we have

x5
z81z

y
,

in order to obtain the following two differential equations iny andz: one of first-order and one
second-order, respectively:

y852
y21z21zz8

y
, ~42!
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z95
y423y2z25y2z822z324z2z822zz82

2y2 . ~43!

When the Lie group analysis of the system~42!–~43! is performed, a linear partial differentia
equation of a parabolic structure is generated. Its characteristic curve is given by

y21z2.

Consequently we introduce the new dependent variableY such that

y5AY2z2, ~44!

in order to obtain the following system:

Y8522Y, ~45!

z95
Y222Yz223Yz25Yz81z41z31z2z822zz82

2~Y2z2!
. ~46!

The first equation can be easily integrated to yield the first integral~40!. If we eliminatey from
system~4!–~6!, a similar procedure provides the first integral~41!.
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In this article we consider a family of minimization problems whose solutions
represent the vortices of two dimensional flows. We prove that if we consider an
admissible sequence of vortices, then the corresponding centroids converge to the
global minimizer of the Routh function associated with an appropriate energy
functional. © 2003 American Institute of Physics.@DOI: 10.1063/1.1597947#

I. INTRODUCTION

It is well known that for isochoric~volume-preserving! plane motion of a fluid, the velocity
field u(x1 ,x2) satisfies the continuity equation¹•u50, which is identically satisfied if we write

u5S ]c

]x2
,2

]c

]x1
D ,

wherec is the stream function, which is constant on any curve everywhere tangent to the ve
field. It is also well known that for an incompressible fluid, the dynamical equations of p
motion can be reduced to the vorticity equation

]v

]t
1u•¹v50,

wherev52Dc is the ~scalar! vorticity ~i.e., the nonzero component of¹3u). Note that when
v50, the flow is said to be irrotational. It follows that for steady motion~no time dependence! the
Jacobian determinant ofc andv vanishes; that is,

@c,v#50, ~1!

and soc andv are functionally dependent. Insertingv52Dc into ~1! we derive

@c,2Dc#50. ~2!

Therefore, iff is any real valued function andc is a solution of the semilinear equation

2Dc5f~c!, ~3!

a!Electronic mail: b–emamizadeh@yahoo.com
b!Address to be used for correspondence
41190022-2488/2003/44(9)/4119/15/$20.00 © 2003 American Institute of Physics
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thenc is also a solution of~2!. So, a solution of~3! would represent the stream function of a tw
dimensional ideal fluid. For the mathematical background in fluid dynamics the reader is re
to Ref. 15.

In Ref. 11, it was proved that the following inverse~the nonlinearityf was not knowna
priori ! problem,

2Dc5f~c! in V,

c50 on ]V,
~4!

2DcPF,

c→lx1x2 at infinity,

has a solution, whereV was a set obtained by excluding a region containing the origin andF was
the set of rearrangements of a given function~see the next section for definition!. Any solution of
~4!, recalling the above discussion, represents a planar ideal fluid inV which is tangential to]V
(c50 on ]V!, its vorticity belongs toF, and behaves as an irrotational flow at long range po
(c→lx1x2). The proof was based on the extensively developed rearrangement variationa
ciples for strictly convex functionals which are weakly sequentially continuous. More precise
was shown that forCl5C2lI, the difference of a quadratic and a linear integral functional o
V, the variational problem

Pl : sup
zPF

Cl~z! ~5!

is solvable for small positive values ofl. The corresponding Euler–Lagrange equation a
solution of~5! would then provide a solution for~4!. It was shown that using a standard rescali
@z(x)→cz(c1/2x)#, one converts~5! into a new parametrized family of variational problems

P̂c : sup
zPFc

Ĉc~z!, ~6!

which are easier to deal with essentially because the rescaling would elliminate thel in front of

the linear part ofCl at the price of having all the integrals involved inĈc over the rescaledV,
denotedVc ~see the next section for definitions!. It was proved in Ref. 11 that~6! is solvable
providedc@1; this implies that~5! is solvable whenl is small enough. Since solutions of~6! also
represent steady flows, in this article we would like to consider~6! independent of~5!, and prove
an asymptotic result concerning the centroids of the solutions of~6!. We will show that ifcn is an
admissible sequence, and ifzcn

is any solution ofP̂cn
, then the sequence of centroids ofzcn

will
converge to the global maximizer of the Routh function

H~x!5
1

4p
log

uxu
2x1x2

1x1x2 .

This result is stated in Theorem 3 of the next section.
Badiani1 considered a similar situation whereV in his case was the upper half plane excludi

a region containing the origin. Since the upper half plane is symmetric with respect to thex2-axis,
the author of Ref. 1 could make effective use of Steiner symmetrization techniques. Howe
our case, due to lack of symmetry of the quarter plane, we are unable to use Steiner symm
tion, so we need to obtain novel estimates in order to make up for this deficiency. Moreover
estimates can be similarly reproduced for the upper half plane case and in fact for any wedg
domains in general.
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The main mathematical difficulty in proving solvability of problems likeP̂c is the unbound-
edness of the domain of the problem which makes the usual direct method of calculus of var
unavailable. However, it is well known that essential information can be extracted from con
ering P̂c first on bounded domains~see Ref. 2!. Therefore, for the convenience of the reader
end this section with a brief review of the variational principle suitable for proving solvabilit
variational problems similar toP̂c . For a complete treatment the reader is referred to Ref. 1

Let V be a bounded domain inR2; let p and q be conjugate exponents, that is, 1/p11/q
51, for 2,p,`. Suppose thatF:Lp(V)→` is a convex functional andF~V! is the set of
rearrangements of a given functionf 0PLp(V). Then the following result was obtained b
Burton:4 If F is weakly sequentially continuous, thenF attains a maximum relative toF~V!. In
addition, if F is strictly convex and f* is a maximizer relative toF~V! and gP]F( f * ), subdif-
ferential ofF at f* , then

f * 5f+g, ~7!

almost everywhere inV for some increasing functionf.
Note that in caseF is differentiable, which is indeed the case we are interested in,

]F( f * )5$F8( f * )%. Therefore~7! turns into

f * 5f+F8~ f * !, ~8!

almost everywhere inV. Equation~8! will prove to be the main ingredient in our analysis;
particular it is very helpful in deriving essential estimates.

Rearrangement variational problems have been an active field of research in recent ye
Refs. 1, 5, 6, and 9–12 for theoretical results and Refs. 7 and 8 for numerical results.

II. NOTATION, DEFINITIONS AND THE STATEMENT OF THE MAIN RESULTS

Henceforthp is an arbitrary fixed number in~2, `!. For any numberr>1, r * denotes the
conjugate exponent, 1/r 11/r * 51. For a measurable setE#R2, uEu denotes the Lebesgue me
sure ofE. The ball centered atx with radiusj is denotedBj(x); in the case where the center
the origin we writeBj . Given a measurable setA#R2, xPR2 is called a density point ofA
whenever

uBe~x!ùAu.0,

for everye.0. The set of all density points ofA is denoted den(A). The essential diameter ofA,
denoted diam(A), is defined by

diam~A!5sup$ux2yu: x,yPden~A!%.

Let D be an open, bounded, simply connected set containing the origin and assumeD̄,B1 . Let
P1 denote the open first quadrant; letV5P1\D̄ such that]VPC2. For c.0 we set

Vc5$xPP1u c1/2xPV%.

The symbolsG1 , G, GB and Gc denote the Green’s functions for2D with homogeneous
Dirichlet boundary conditions inP1 , V, P1\B̄1 andVc , respectively. It is well known that

G1~x,y!5
1

2p
log

ux2 ȳu ux2yI u
ux2yu ux2 ȳI u

, x,yPP1 , xÞy,

where the overline and the underline signs designate the reflections with respect tox1 andx2 axes,
respectively. We also have the following identity:
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Gc~x,y!5G~c1/2x,c1/2y!, x,yPVc , xÞy.

By applying the maximum principle we readily obtain

GB~x,y!<Gc~x,y!<G1~x,y!, ~9!

where each inequality holds in the positive domain. For a measurable functionz andxPR2 we
define

K1z~x!5E
P1

G1~x,y! z~y!dy,

Kz~x!5E
V

G~x,y! z~y!dy,

Kcz~x!5E
Vc

Gc~x,y! z~y!dy,

whenever the integrals exist.
We let hPC2(V)ùC1(V̄) be a function satisfying

Dh50 in V,

h50 on ]V,

h5x1x21O~ uxu22! as uxu→`,

¹h5~x2 ,x1!1O~ uxu23!, as uxu→`,

and

x1x22
x1x2

uxu4 <h<x1x2 , xPV. ~10!

Let us fix z0PLp(V), a non-negative, nontrivial function with compact support and ass
usupp(z0)u5pa2, for somea.0. In addition, we suppose thatiz0i151. A measurable functionz
is said to be a rearrangement ofz0 on V whenever

u$xPVu z~x!>a%u5u$xPVu z0~x!>a%u,

for everyaPR. The set of all rearrangements ofz0 on V, with compact support, is denotedF. For
c.0 and a measurable functionz we define

Cc~z!~x!5cz~c1/2x!, xPVc . ~11!

The mappingCc as defined in~11! takes measurable functions onV to measurable functions o
Vc . By Fc we denote the set of all rearrangements ofCc(z0) on Vc with compact support. Given
a measurable functionz on Vc , c.0, we define the energy functional

Ĉc~z!5
1

2 EVc

z Kcz2E
Vc

hcz, ~12!

wherehc(x)5c21 h(c1/2x), whenever the integrals exist. Forc.0 we set
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P̂c : sup
zPFc

Ĉc~z!.

The solution set forP̂c is denotedSc . Let us note that from~10! we infer

x1x22
x1x2

c2uxu4
<hc~x!<x1x2 , xPVc . ~13!

We end this section with a result from Ref. 11~Theorem 1! followed by the main results of this
article ~Theorems 2 and 3!.

Theorem 1: There exists c0.0 such that for c>c0, P̂c is solvable. Moreover, ifzPSc , then

supp~z!,BR(c) ,

where R(c) is a constant merely depending on c which satisfies

R~c!<Ac1/2, ~14!

for some A.0. In addition we have

supp~z!5$xPVc :Kcz~x!2hc~x!>gc%, ~15!

wheregc is a constant depending on c satisfying the following inequality:

gc>
1

2p
log

c1/2

2a
1C. ~16!

Theorem 2: There exist c1>c0 and R.0 such that if c>c1 and zPSc , then

supp~z!#BR , ~17!

modulo a set of measure zero.
Before stating our last result we need the following definitions.
Definition 1: For a measurable functionf on S#R2, the centroid off , denoted cent(f ), is

defined by

cent~ f !5E
S
x f~x!dx.

Definition 2:Suppose$cj% is a sequence of real numbers andzcj
is a measurable function o

Vcj
, for j PN. We say the sequence$zcj

% is admissible whenever$cent(zcj
)% is a convergent

sequence inR2.
Remark:Let us point out that if$cj% is a sequence withcj>c1, andzcj

PScj
, j PN, then by

Theorem 2,$zcj
% contains a subsequence which is admissible.

Theorem 3: Suppose$cj% is a sequence of real numbers tending to infinity. Supposezcj

PScj
, and $zcj

% is admissible. Then

cent~zcj
!→ x̂, ~18!

as j→`.
Throughout the article the symbolC always indicates a universal constant which may app

in consecutive steps with different values.
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III. PRELIMINARIES

In this section we recall some results from Ref. 11. We begin with the following identiti

G~x,y!5
1

2p
log

1

ux2yu
2h~x,y!,

G1~x,y!5
1

2p
log

1

ux2yu
2h1~x,y!,

GB~x,y!5
1

2p
log

1

ux2yu
2hB~x,y!,

whereh, h1, andhB are harmonic functions, for fixedy, in their respective domains. From~9! it
follows that

h1~x,y!<h~x,y!<h1~x,y!, ~19!

where the inequalities are understood to hold in the positive domains. We setĥ5h2h1 and ĥ1

5h12h1 . Then from~19! we infer 0<ĥ<ĥ1 ; also elementary calculations verify that

ĥ1~x,y!<
x2y2

p~ uxuuyu21!2 , ~20!

providedx,yPP1\B̄1 . Similarly, we obtain

0<ĥ1~x,y!<
x1y1

p~ uxuuyu21!2 , ~21!

providedx,yPP1\B̄1 .
Let zPLp(V) have compact support. ThenK1z(x) is defined at every pointxPR2 ~see Ref.

9!. Thus from

uKz~x!u<Kuzu~x!<K1uzu~x!,

it follows that Kz(x) is defined at everyxPR2.
For c.0, letCc :F→Fc be defined as in~11!. ThenCc is a bijection. Moreover, ifzPF, then

~i! iCc(z)ip5c1/p* izip and
~ii ! usupp(C(z))u5c21 usupp(z)u, where supp(•) denotes the usual support of a function.

The Routh function associated withP̂c is denotedH(x)5H1(x)1H2(x), xPP1 , where

H1~x!5
1

4p
log

uxu
2x1x2

,

H2~x!5x1x2 .

Observe that forzP]P1 we have limx→z H(x)5`. Elementary calculations prove thatH has a
unique global minimum atx̂5( x̂1 ,x̂2)ª(1/(2A2p),1/(2A2p)). For more information on the
Routh function the reader is referred to the classic monograph, Ref. 14.
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IV. AN AUXILIARY LEMMA

The main feature of this section is the following support lemma which is a crucial tool in
analysis to follow. We first need the following result from Ref. 1.

Proposition:SupposeQ>1 andc>4a2. Let vPLp(P1) be a non-negative function vanish
ing outside a set of measurepa2 and definevc(x)5Cc(v)(x). For xPP1 , we set B̂(x)
5BQa/c1/2(x) and

I ~x!5E
B̂(x)

logS 2aux2 ȳu
c1/2ux2yu D vc~y!dy,

Ī ~x!5E
B̂(x)

logS 2aux2yI u
c1/2ux2yu D vc~y!dy.

Then there exist constantsN1 , N2 , N3 , N18 , N28 andN38 such that

I ~x!<H ~N11N2u logx2u!ivip , x2>a,

N3ivip , 0,x2<a,
~22!

and

Ī ~x!<H ~N181N28u logx1u!ivip , x1>a,

N38ivip , 0,x1<a.
~23!

Lemma (support lemma): Let c0 be as in Theorem 1. Then there exist cˇ .c0 and d.0 such that if
c> č, then

diam~supp~ žc!!<d, ~24!

for all žcPSc .
Proof: It suffices to setč5max$c0,4a2%. Fix c> č and žcPSc . From ~15! and ~16! we infer

Kcžc~x!2hc~x!>
1

2p
log

c1/2

2a
1C,

for almost everyxPsupp(žc). SinceKcžc(x)<K1žc(x) we deduce

hc~x!1C<K1žc~x!2
1

2p
log

c1/2

2a
5

1

2p E
Vc

log
2aux2 ȳuux2yI u
c1/2ux2yuux2 ȳI u

žc~y!dy, ~25!

for almost everyxPsupp(žc). Let us setS5$xPP1u min$x1,x2%.a% and forxPP1 define

J~x!5
1

2p E
B̂(x)

log
2aux2 ȳuux2yI u
c1/2ux2yuux2 ȳI u

žc~y!dy,

whereB̂(x) is defined as in the proposition. Observe that forx, yPP1 we haveux2 ȳu/ux2 ȳI u
,1 andux2yI u/ux2yI u,1. Hence, forxPP1\S we can apply~22! and ~23! to obtain

J~x!<N39iz0ip , ~26!

whereN95max$N3, N38%. Also, for xPS we have

J~x!<I ~x!<~N11N2u logx2u! iz0ip . ~27!
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Therefore, from~25!–~27! we infer that for almost everyxPsupp(žc) we have

hc~x!1C<
1

2p E
Vc\B̂(x)

logS 2aux2 ȳu
c1/2ux2yu D žc~y!dy1H ~N11N2u logx2u!iz0ip , xPS,

N39iz0ip , xPP1\S.
~28!

Since supp(žc) is essentially contained inBR(c) andR(c)<Ac1/2, by ~14!, we obtain

1

2p E
Vc\B̂(x)

logS 2aux2 ȳu
c1/2ux2yu D žc~y!dy<

1

2p
log

4R~c!

Q E
Vc\B̂(x)

žc~y!dy, ~29!

for every xPP1 . Therefore by~29! and rearranging the terms in~28! we infer that for almost
everyxPsupp(žc) we have

1

2p
log

Q

4R~c!
E

Vc\B̂(x)
žc(y)dy<H N39iz0ip1C2hc(x), xPP12S,

(N11N2u logx2u)i)iz0ip1C2hc(x), xPS.

From this we deduce the existence of a positive constantn such that

log
Q

4R~c!
E

Vc\B̂(x)
žc~y!dy,n. ~30!

Let us now setQ54R(c)e2n. Then, from~30! we obtain

E
Vc\B̂(x)

žc~y!dy,
1

2
, ~31!

for almost everyxPsupp(žc). We now claim that

diam~supp~ žc!!<8aR~c!e2n/c1/2. ~32!

To seek a contradiction suppose this is not true, that is, diam(supp(žc)).8aR(c)e2n/c1/2. In this
case, there existx and y in den(supp(žc)) such that ux2yu.8aR(c)e2n/c1/2. Hence
B8aR(c)e2n/c1/2(x) andB8aR(c)e2n/c1/2(y) are disjoint. Thus, by~31!, we obtain

1,E
B8aR(c)e2n/c1/2(x)

žc~w!dw1E
B8aR(c)e2n/c1/2(y)

žc~w!dw<1,

which is a contradiction, hence from~14! and ~32! we obtain~24!. h

V. PROOFS OF THEOREMS 2 AND 3

Proof of Theorem 2: The proof consists of three assertions.
Assertion 1:Let č be as in the lemma. Then there existc18> č andR̄.0 such that ifc>c18 and

žcPSc , then

supp~ žc!,L~2d!ø~P1ùBR̄!, ~33!

modulo a set of measure zero. Here

L~2d!5$xPP1u min$x1 ,x2%<2d%, ~34!

whered is the bound stated in the lemma.
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Proof of Assertion 1:Suppose the assertion is false. Hence there exist sequences$cj%, $žcj
%

and$xj% such that

~a! č<cj→`, as j→`,
~b! žcj

PScj
, for all j , and

~c! xj5(xj ,1 ,xj ,2)Pden(supp(žcj
)), for all j , anduxj u→`, as j→`.

For simplicity, when appropriate, we replacecj by j , thus we writeĈ j for Ĉcj
, ž j for žcj

. The

Schwarz-symmetrization ofž j with respect tox̂ is denoted byz j* . Without loss of generality we
may assume that supp(z j* ),B1/4A2p( x̂) for all j . Fixing j , we observe, from the lemma, tha
supp(ž j ) is essentially contained inP1\L(d), where

L~d!5$xPP1u min$x1 ,x2%<d%.

Therefore

Ĉ j~z j* !2Ĉ j~ ž j !>E
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x! D ž j~x!ž j~y!dxdy

2E
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x! D z j* ~x!z j* ~y!dxdy,

~35!

where we have applied ann-dimensional generalization of an inequality of F. Riesz on rearran
ments to the logarithmic parts~see, for example, Ref. 3!. Sinceh>h1 we infer

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!>

1

4p
log

ux2 ȳI u
cj

1/2ux2 ȳuux2yI u
2

1

4p
log

1

cj
1/21x1x22

x1x2

cj
2uxu4

>
1

4p
log

ux2 ȳI u
ux2 ȳuux2yI u

1
1

2
x1x2 , ~36!

for all x, yPden(supp(ž j )). Also, note that forx, yPsupp(z j* ),B1/4A2p( x̂) we have

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!<

1

2
ĥ~cj

1/2x,cj
1/2y!1

1

2
h1~cj

1/2x,cj
1/2y!2

1

4p
log

1

c1/21x1x2

<
1

2
ĥ1~cj

1/2x,cj
1/2y!1

1

4p
log

ux2 ȳI u
ux2 ȳuux2yI u

1x1x2

<
cjx1x2

2p~cj uxuuyu21!2 1
1

4p
log

ux2 ȳI u
ux2 ȳuux2yI u

1x1x2<K1 ,

~37!

provided j is sufficiently large; here,K1 is positive constant.
Let us assume thatxj ,2→`, as j→` ~the case wherexj ,1→` can be treated similarly!;

moreover we may assume that for almost everyx5(x1 ,x2)Psupp(ž j ) we havex2<xj ,2 . There-
fore, by ~36!, for x, yPden(supp(ž j )) we find
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1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!>

1

4p
log

1

ux2 ȳu
1

1

2
d~xj ,22d!

>
1

4p
log

1

2xj ,2
1

1

2
d~xj ,22d!→`, ~38!

as j→`. Hence from~35!, ~37!, and~38! we deduce

Ĉ j 0
~z j 0

* !2Ĉ j 0
~ ž j 0

!.0,

for some j 0 sufficiently large. This contradicts the maximality ofž j 0
. Hence the assertion i

proved.
Assertion 2:Let c18 be as in Assertion 1. Then there existsm.0 such that ifc>c18 and žc

PSc , then

supp~ žc!,$xPP1u x1x2,m%, ~39!

modulo a set of measure zero.
Proof of Assertion 2:Let us fixc>c18 and consideržcPSc . From Assertion 1 it follows that

there existst.a such that supp(žc) is essentially contained inR13(0,t) or (0,t)3R1. Let us
first suppose that supp(žc) is essentially contained inR13(0,t). Then for almost everyx
5(x1 ,x2)Psupp(žc), with x1.t, we can apply the estimate~13! to obtain

K1žc~x!2
1

2
x1x2>Kcžc~x!2hc~x!>

1

2p
log

c1/2

2a
2C. ~40!

Therefore from~40! we infer

x1x2<2K1žc~x!2
1

p
log

c1/2

2a
1C5

1

p E
Vc

log
2aux2 ȳuux2yI u
c1/2ux2yuux2 ȳI u

žc~y!dy1C. ~41!

The integral in~41! is dominated by*Vc
log (2aux2ȳu/c1/2ux2yu) žc(y)dy. Now we write

E
Vc

log
2aux2 ȳu
c1/2ux2yu

žc~y!dy5E
Ba/c1/2(x)

log
2aux2 ȳu
c1/2ux2yu

žc~y!dy

1E
Vc\Ba/c1/2(x)

log
2aux2 ȳu
c1/2ux2yu

žc~y!dy.

Applying ~22!, with Q51, we findh̄.0 such that

E
Ba/c1/2(x)

log
2aux2 ȳu
c1/2ux2yu

žc~y!dy<h̄. ~42!

We also have

E
Vc\Ba/c1/2(x)

log
2aux2 ȳu
c1/2ux2yu

žc~y!dy< log~4t!. ~43!

Hence from~42! and ~43! we conclude that for almost everyxPsupp(žc) we have
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x1x2<
1

p
~h̄1 log~4t!!1C. ~44!

From ~44! we readily deduce~39!.
The case where supp(žc) is essentially contained in (0,t)3R1 can be treated similarly@in the

proof we make use of~23!#. Therefore the proof of Assertion 2 is complete.
Assertion 3:Let c18 be as in Assertion 1. Then there existc1>c18 , R.0, such that ifc>c1 and

žcPSc , then

supp~ žc!,BR ,

modulo a set of measure zero.
Proof of Assertion 3: To seek a contradiction, suppose the assertion is false. Then by Ass

2, there exist sequences$cj%, $ž j% and$xj% such that the following hold.

~i! c18<cj→`, as j→`.
~ii ! ž jPS j such that supp(ž j ) is essentially contained inR13(0,1/j ), for all j ; the case where

supp(ž j ) is essentially contained in (0,1/j )3R1 can be treated similarly.
~iii ! xjPden(supp(ž j )), for every j , anduxj u→` as j→`.

Notice that we have again replacedcj by j , when appropriate.
We claim that diam(supp(ž j ))→0, as j→`. To prove the claim we fixj . Then for almost

everyxPsupp(ž j ) we have

1

2p
log

cj
1/2

2a
1C<K j ž j~x!2h j~x!<K1ž j~x!<

1

2p E
V j

log
ux2 ȳu
ux2yu

ž j~y!dy,

sinceh j is positive andK j ž j (x)<K1ž j (x) for almost everyxPV j . Therefore,

C<
1

2p E
V j

log
2aux2 ȳu
cj

1/2ux2yu
ž j~y!dy.

Let Q.1 and setB̂(x)ªBQa/c
j
1/2(x). Then

C<
1

2p E
B̂(x)

log
2aux2 ȳu
cj

1/2ux2yu
ž j~y!dy1

1

2p E
V j \B̂(x)

log
2aux2 ȳu
cj

1/2ux2yu
ž j~y!dy.

Applying ~22! we find that

1

2p E
B̂(x)

log
2aux2 ȳu
cj

1/2ux2yu
ž j~y!dy<K2 ,

whereK2 is a positive constant. Also

1

2p E
V j \B̂(x)

log
2aux2 ȳu
cj

1/2ux2yu
ž j~y!dy<

1

2p
log

2~d12!

Q E
V j \B̂(x)

ž j~y!dy,

where we have used the fact that forx, yPsupp(ž j ),

ux2 ȳu<ux2yu1uy2 ȳu<diam~supp~ ž j !!12y2<diam~supp~ ž j !!12/j , ~45!

and that diam(supp(ž j ))12/j <d12. Therefore, we obtain
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C<K21
1

2p
log

2~d12!

Q E
V j \B̂(x)

ž j~y!dy.

Hence by rearranging we derive

log
Q

2~d12!
E

V j \B̂(x)
ž j~y!dy<2p~C1K2!, n̂,

for somen̂.0. Let us now setQ52(d12)e2n̂ to obtain

E
V j \B̂(x)

ž j~y!dy,
1

2
, ~46!

for almost everyxPsupp(ž j ). From ~46!, applying the same argument as in the lemma, we fi

diam~supp~ ž j !!,
4a~d12!e2n̂

cj
1/2 . ~47!

The proof of the claim is complete when we letj→` in ~47!.
Let z j* denote the Schwarz symmetrization ofž j with respect tox̂. We intend to show that

Ĉ j 1
(z j 1

* )2Ĉ j 1
( ž j 1

).0, for somej 1 , which is a contradiction to the maximality ofž j 1
, and hence

the desired result follows. However, this is easily proved using the same method emplo
Assertion 1, the key step being a result similar to~38! which is explained here. Forx, y

Pden(supp(ž j )) we have

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!>

1

2
h1~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/2

5
1

4p
log

ux2 ȳI u
ux2 ȳuux2yI u

>
1

4p
log

1

ux2 ȳu
; ~48!

now by using~45! we obtain

1

4p
log

1

ux2 ȳu
>

1

4p
log

1

diam~supp~ ž j !!12/j
→0, ~49!

as j→`. This finishes the proof of Assertion 3, hence the proof of the theorem is completeh

Proof of Theorem 3:We again replacecj by j to simplify notation. Let us also set cent(z j )
5zj5(zj ,1 ,zj ,2) and assume thatzj→z, as j→`. By maximality of ž j we have

Ĉ j~ ž j !>Ĉ j~z j* !, ~50!

wherez j* denotes the Schwarz symmetrization ofž j with respect tox̂. From ~50! and an appli-
cation of Riesz’s inequality we obtain
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Tj~ ž j !ªE
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x! D ž j~x!ž j~y!dxdy

<E
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x! D z j* ~x!z j* ~y!dxdy5Tj~z j* !. ~51!

We now fix 0,e,1/(2A2p). Then there existsj 0(e)PN such that if j > j 0(e), then
supp(z j* ),Be( x̂). For j > j 0(e) andx, yPBe( x̂) we have

U12 h~cj
1/2x,cj

1/2y!2
1

4p
log

1

cj
1/22H1~ x̂!U

<
1

2
ĥ1~cj

1/2x,cj
1/2y!1

1

4p U log
2x̂1x̂2ux2 ȳI u

ux2 ȳuux2yI uux̂u U
<

cjx2y2

2p~cj uxuuyu21!2 1
1

4p U log
2x̂1x̂2ux2 ȳI u

ux2 ȳuux2yI uux̂u U
<

cj~ x̂11e!~ x̂21e!

2p~cj~ ux̂u2e!221!2 1
1

4p
sup

x,yPBe( x̂)
U log

2x̂1x̂2ux2 ȳI u
ux2 ȳuux2yI uux̂ U→0,

as j→`. This implies

E
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/2D z j* ~x!z j* ~y!dxdy→H1~ x̂!, ~52!

as j→`. Also, from ~13!, we have

uh j~x!2H2~ x̂!u<ux1x22 x̂1x̂2u1
1

cj
2uxu2 ,

for xPBe( x̂),

sup
xPBe~ x̂!

uh j~x!2H2~ x̂!u→0, ~53!

as j→`. From ~52! and ~53! we deduce thatTj (z j* )→H( x̂), as j→`.
We now claim that

Tj~ ž j !→H~z!, as j→`. ~54!

Note that by proving~54! we will have completed the proof of the theorem; indeed, if~54! is true,
then from~51! we inferH(z)<H( x̂), henceẑ5 x̂. To prove the claim we first show thatz¹]P1 .
Seeking a contradiction we supposezP]P1 . Settingz5(z1 ,z2), we may assume thatz250. Fix
e.0; then there existsj̄ (e)PN such that ifj > j̄ (e), then

ux2zu<ux2zj u1uzj2zu<diam~supp~ ž j !!1e, ~55!

for almost everyxPsupp(ž j ). Now, similarly to ~48! and ~49! we derive

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!>

1

4p
log

1

ux2 ȳu
>

1

4p
log

1

diam~supp~ ž j !!12y2

,
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for x, yPden(supp(ž j )) and j > j̄ (e). If j > j̄ (e) andyPsupp(ž j ), we can apply~55! to derive

y2<uy2zu<diam~supp~ ž j !!1e.

Therefore if j > j̄ (e) andx, yPden(supp(ž j )), then

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/21h j~x!>

1

4p
log

1

3diam~supp~ ž j !!12e
.

This in conjunction with the fact that diam(supp(ž j ))→0, as j→`, implies

lim sup
j→`

Tj~ ž j !>
1

4p
log

1

2e
,

hence lim supj→`Tj ( ž j )5`, since e.0 was arbitrary. However, this contradicts~51!, since
Tj (z j* ) is bounded from above for all sufficiently largej @see~37!#. Hence,z¹]P1 .

We now set«5dist(z,]P1), the distance fromz to ]P1 . We showed above that«.0.
Observe that there existsǰ («)PN such that if j > ǰ («), then supp(ž j ) is essentially contained in
B«/2(z). We next define the real valued functionD on V3V,R4 by

D~x,y!5D~x1 ,x2 ,y1 ,y2!5h1~x,y!.

Note that¹D is bounded onB«/2(z)3B«/2(z), hence, there exists a positive constant, sayK3 ,
such thati¹Di`,B«/2(z)3B«/2(z)<K3 . Now, for j > ǰ («) andx, yPB«/2(z) we can apply the mean
value inequality to deduce

U12 h~cj
1/2x,cj

1/2y!2
1

4p
log

1

cj
1/22H1~z!U< 1

2
ĥ1~cj

1/2x,cj
1/2y!1

1

4p
uD~x,y!2D~z,z!u

<
1

2
ĥ1~cj

1/2x,cj
1/2y!1

1

4p
K3u~x,y!2~z,z!uR4

5o~1!1
1

4p
K3u~x,y!2~z,z!uR4, ~56!

as j→`, uniformly in x andy, whereu•uR4 denotes the usual Euclidean distance inR4. Note that
for j > ǰ («) andx, yPB«/2(z) we have

u~x,y!2~z,z!uR4<4~diam~supp~ ž j !!1uẑj2zu!5o~1!, ~57!

as j→`. Whence by~56! and ~57! we obtain

1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/22H1~z!5o~1!,

as j→`, uniformly in x, yPB«/2(z). This, in turn, shows that

E
V j

E
V j

S 1

2
h~cj

1/2x,cj
1/2y!2

1

4p
log

1

cj
1/2D ž j~x!ž j~y!dxdy→H1~z!,

as j→`. To complete the proof it remains to show that

h j~x!2H2~z!5o~1!, ~58!
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as j→`, uniformly in xPB«/2(z). So let us fixxPB«/2(z) and supposej > ǰ («). Then

uh j~x!2H2~z!u<ux1x22z1z2u1
1

cj
2uxu2

.

It is easy to verify that

ux1x22z1z2u<ux2udiam~supp~ ž j !!1uzj ,1udiam~supp~ ž j !!1uzj ,1zj ,22z1z2u→0,

as j→`, uniformly in x. Therefore~58! follows, so we infer

E
V j

h j~x!ž j~x!dx→H2~z!,

as j→`. Thus the proof of the theorem is complete. h
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Integrable hydrodynamic chains
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A new approach for derivation of Benney-type moment chains and integrable hy-
drodynamic type systems is presented. New integrable hydrodynamic chains are
constructed; all their hydrodynamical reductions are described and integrated. New
(211) integrable hydrodynamic type systems are found. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1597946#

I. INTRODUCTION

The integrable hydrodynamic chain

] tAk5]xAk111kAk21A0,x , k50,1,. . . , ~1!

for the first time was introduced by D. J. Benney in a theory of finite-depth fluid~see Ref. 5!. Here
the momentsAk are an infinite number of field variables. Later, it was shown that these mom
satisfy a dispersionless limit of KP hierarchy determined by the Sato pseudo-differential op

L̂5]x1A0]x
211A1]x

221¯ ,

which in dispersionless limit is reduced to

l5m1
A0

m
1

A1

m2 1¯ . ~2!

The Benney moment chain can be written in the equivalent form~see Ref. 20!

l t2mlx5
]l

]m Fm t2]xS m2

2
1A0D G . ~3!

If l5const, thenm is a generating function~with respect to the parameterl! of the conservation
law densities

m t5]xS m2

2
1A0D . ~4!

In the case, when only the firstN momentsAk are functionally independent (k50, 1, . . . ,N
21), all Ak with k>N can be consistently expressed as functions of the firstN moments. This is
called a hydrodynamical reduction. More generally, we can define ‘‘differential reductions
which all Ak with k>N can be consistently expressed as functions of the firstN moments and
their derivatives. However, we are only concerned with hydrodynamical reductions here~in the
spirit of Ref. 21!. Then these hydrodynamical reductions are the hydrodynamic type sys
written in Riemann invariantsr i ,

r t
i5m i~r !r x

i , i 51,2,. . . ,N, ~5!

a!Electronic mail: maxim.pavlov@mtu-net.ru
41340022-2488/2003/44(9)/4134/23/$20.00 © 2003 American Institute of Physics
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i.e., a hydrodynamic type system has diagonal form in these field variables and there
summation over each repeated index~see, for instance, Ref. 36!. The Riemann invariantsr i and
the characteristic velocitiesm i(r ) are determined by conditions

r i5m i1
A0

m i
1

A1

m i
2 1

A2

m i
3 1¯, 15

A0

m i
2 12

A1

m i
3 13

A2

m i
4 1¯ .

@See~2! and~3!. Of course, defining the Riemann invariants and characteristic speeds in ter
formal series is apparently risky—at least we should emphasize that these series will conv
analytic functions in all cases considered, see Ref. 21.# These hydrodynamic type systems a
integrable, too~all momentsAk are some functions ofr i , which are determined by compatibilit
conditions with whole Benney moment chain, see Ref. 21!. These hydrodynamic type system
have the same generating functions of conservation laws@see~4!# and the commuting flows~see
Ref. 33; the ‘‘commuting flows’’ means that the Riemann invariantsr i simultaneously are func
tions of an infinite number of independent variablestk , k50,1,. . . , heret0[x, t1[t),

m~l!t(l̃)5]x ln@m~l!2m~l̃!#, ~6!

where

]t(l̃)5] t0
1

1

l̃
] t1

1
1

l̃2
] t2

1¯ .

Moreover, the generating function~with respect to the parameterl̃) of solutions for any reduction
~5! can be found by the Tsarev generalized hodograph method~Ref. 36, also see Ref. 33!

x1m i~r !t5
1

m i~r !2m~l̃!
, i 51,2,. . . ,N. ~7!

Thus, if some hydrodynamic type system is recognized as a reduction of the Benney m
chain, it means that this system has most properties of the Benney moment chain.

The idea presented in this article is the following: if one can introduce the momentsAk for
given integrable hydrodynamic type system~5!, then one can ignore the origin ~i.e., given
hydrodynamic type system! of this hydrodynamic chain

] tA5F~A!Ax ,

where A is an infinite-number component vector andF(A) is an infinite-number componen
matrix. The next step is a description of all possible integrable hydrodynamical reductions@one of
them, of course, must be the original hydrodynamic type system~5!#,

r t
i5Vi~r !r x

i , i 51,2,. . . ,M , ~8!

where M is not connected withN @see ~5!#, and Vi satisfy some nonlinear system of parti
differential equations~PDE’s! ~see below!. Also, we assume thatViÞVk for any iÞk ~this is a
necessary condition for the application of the Tsarev generalized hodograph method!. Thus, every
hydrodynamic chain constructed in this way can be regarded as ahuge boxfor some variety of the
integrable hydrodynamic type systems.

For instance, the particular case of gas dynamics

ut5]xFu2

2
1

hg21

g21G , h t5]x~uh!, ~9!
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for g52 ~shallow water equations!,

ut5]xFu2

2
1h G , h t5]x~uh!, ~10!

satisfies the Benney moment chain~1! if one introduces the momentsAk5ukh.
It is easy to check that the Benney moment chain has a more general~the Zakharov! reduction

Ak5( i 51
N ui

kh i ~see Ref. 38!, which creates the dispersionless limit of the vector nonlinear Sc¨-
dinger equation~VNLS!

] tui5]xFui
2

2
1 (

k51

N

hkG , ] th i5]x~uih i !, i 51,2,. . . ,N. ~11!

Remark: Under this Zakharov reduction infinite series (2) yields a more compact expre
(see Ref. 38)

l5m1 (
k51

N
hk

m2uk
. ~12!

It is easy to check that the dispersionless limit of VNLS satisfies equation (3) with respect
equation of Riemann surface (12).

Obviously, in both above-mentioned cases, corresponding hydrodynamic type system~10!
and ~11! have the same generating functions of conservation law densities~4! and commuting
flows ~6! as whole Benney moment chain~1!. Here we demonstrate this approach on an exam
of a new hydrodynamic chain, which contains some important reductions well known in m
ematics, fluid dynamics, nonlinear optics, biology and chemistry.

The main classification problem in the theory of integrable hydrodynamic type systems c
reformulated as the problem of description of all possible integrable hydrodynamic chain
simplicity, we restrict our consideration to the case, when any hierarchy of the hydrodyn
chains can be written in a conservative form@see, for instance,~30! below#:

] tn
Ak5]xFk,n~Ak1n ,Ak1n21 , . . . ,A0!, k,n50,1,2 . . .

If one can classify all possible functionsFk , it means that all the hydrodynamic type system
embedded in such hydrodynamic chains by different reductions are classified, too. In the si
case (N52),

] tA05]xF01~A0 ,A1!, ] tA15]xF11~A0 ,A1 ,A2!,

whereA2(A0 ,A1) is a conservation law density of the reduced hydrodynamic type system.
the governing equation for functionA2 is quasilinear,

f vwuu5@ f u2wv2wwwv#wuv1@wu1wwwu#wvv ,

where

u[A0 , v[A1 , w[A2 , f [F01, w[F11.

WhenF015v andF115w(u,v)2u2/2, this is the two-component reduction of the Benney m
ment chain~see Ref. 21!,

wuu52wvwuv1~wu2u!wvv .

If F015v2u2 andF115w(u,v)2uv, then the corresponding equation,
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wuu52~u1wv!wuv1~wu2v !wvv ,

can be solved in the parametric form

w5 1
6 @A9~s!1B9~r !#31@A9~s!1B9~r !#@A8~s!2sA9~s!1B8~r !2rB9~r !#1s2A9~s!22sA8~s!

12A~s!1r 2B9~r !22rB8~r !12B~r !,

v5 1
2 @A9~s!1B9~r !#21A8~s!2sA9~s!1B8~r !2rB9~r !, u5A9~s!1B9~r !,

whereA(s) and B(r ) are arbitrary functions. Thus, the two-component reduced~hydrodynamic
type! system in Riemann invariants is

r t5~A9~s!1B9~r !1r !r x , st5~A9~s!1B9~r !1s!sx .

This system is the natural two-parametric generalization of gas dynamics~9! ~see below!.
The goal of this article is a complete description of theN-component generalization of th

above-mentioned formulas.
In Sec. II of this paper, so-called the ‘‘«-systems’’ are introduced. All their properties such

conservation laws and commuting flows are described. The corresponding hydrodynamic c
found by the natural introduction of moments.

In Sec. III, some properties of such transformations between different representations
hydrodynamic chain are obtained.

In Sec. IV, all possible hydrodynamical reductions are found. Particular and important r
tions of this hydrodynamic chain are emphasized.

In Sec. V, generating functions of conservation law densities, commuting flows and solu
~by the Tsarev generalized hodograph method! for these hydrodynamical reductions are co
structed.

In Sec. VI, a general solution of these hydrodynamic type systems is presented.
In Sec. VII, new (211) integrable hydrodynamic type systems are found.
In Sec. VIII, another hydrodynamic chain is presented and all its hydrodynamical reduc

are described.
In Sec. IX, we discuss some still open problems: Hamiltonian structures and integrabl

persive extensions of hydrodynamic chains and their reductions.
In Sec. X~Conclusion!, we describe a general situation in a theory of hydrodynamic cha

II. ‘‘«-SYSTEMS’’

This class of integrable hydrodynamic type systems

r t
i5F r i2« (

m51

N

r mG r x
i , i 51,2,. . . ,N, ~13!

where« is an arbitrary constant, was established in Ref. 29~also see Refs. 17 and 30–32!. These
hydrodynamic type systems~13! and its commuting flows~see below! we shall call the ‘‘«-
systems.’’ The particular caseN52 plays an important role in gas dynamics@see~9!, where the
adiabatic indexg5 (322«)/(122«)], in field theory (g521, the Born–Infeld equation!, in
nonlinear optics@g52, the dispersionless limit of the nonlinear Schro¨dinger equation, see~9!# and
in fluid dynamics (g54, the dispersionless limit of the second commuting flow to the Boussin
equation!. Also, the ‘‘«-systems’’~for arbitrary N) are well known in differential geometry («
52 1

2, elliptic coordinates, see, for instance, Ref. 32; the dispersionless limit of Coupled KdV
for instance, Ref. 16!, in soliton theory («51, some particular solutions of linearly degenerat
systems are multi-gap solutions of KdV, see Ref. 11!, in biology and chemistry («521, chroma-
tography, electrophoresis, isotahophoresis!. Moreover, a general solution can be found explici
~see Ref. 31!, for instance, in one-atomic (g5 5

3, «521) and two-atomic (g5 7
5, «522) gases
                                                                                                                



-

nte-

oeffi-

ry of

en-

4138 J. Math. Phys., Vol. 44, No. 9, September 2003 Maxim V. Pavlov

                    
@see~13!# and their generalization for an arbitraryN and an arbitraryinteger «. Thus, the obvious
aim is to extend a class of integrable hydrodynamic type systems starting from~13! with preser-
vation of some properties.

The hydrodynamic type system~13! has a generation functionm of conservation law densi
ties; whenl→`,

m[ )
m51

N

~12r m /l!2«511a1 /l1a2 /l21¯ , ~14!

whenl→0 ~up to constant multiplier!

m[ )
m51

N

~r m2l!2«5b01b1l1b2l21¯ . ~15!

The first series~14! is a series of polynomial conservation law densitiesak with respect to
Riemann invariants~this is analog of the Kruskal series of conservation law densities for i
grable dispersive systems like the Korteweg–de Vries equation!. We shall call them as ‘‘higher’’
~or ‘‘positive’’ ! conservation law densities and correspondingly their homogeneity. The c
cientsbk we shall call as ‘‘lower’’~or ‘‘negative’’! conservation law densities~they play a role as
‘‘new’’ conservation law densities appearing under Miura type transformation in the theo
integrable dispersive systems!.

It is easy to check that any commuting flow~so, every Riemann invariantr i is a function of
three independent variablesx, t, t!

r t
i 5w(«)

i ~r !r x
i ~16!

to hydrodynamic type system~13! has velocities

w(«)
i ~r !5] ih(2«) , ~17!

whereh(2«) is some conservation law density of the ‘‘(2«)-system,’’

r t
i5F r i1« (

m51

N

r mG r x
i , i 51,2,. . . ,N.

Since the ‘‘«-systems’’ and ‘‘(2«)-systems’’ have generating functions of conservation law d
sities such that

m («)•m (2«)51, ~18!

then a generating function of commuting flows to~13! in Riemann invariants is@see~16! and~17!#

r
t(l̃)

i
5

1

~12r i /l̃ !m̃
r x

i , ~19!

and in the conservative form@cf. ~6!# is

mt(l̃)5
l̃

l̃2l
]xS m

m̃
D , ~20!

wherem̃[m(l̃) @see~14! and ~15!#.
Higher commuting flows can be obtained from@see~14!#
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m̃[ )
m51

N

~12r m /l̃ !2«511a1 /l̃1a2 /l̃21¯

and formal series

]t(l̃)5] t0
1

1

l̃
] t1

1
1

l̃2
] t2

1¯

when l̃→`. The corresponding generating functions of conservation laws are

] tk
m5]xFm (

m50

k

ãmlk2mG , k50,1,2,. . . , ~21!

where

ã05a051, ã152a1 , ãn52an2 (
m51

n21

ãman2k , n52,3,. . . .

The correspondinghigher commuting flows~in Riemann invariants! are

] tk
r i5F (

m50

k

ãm~r i !k2mG r x
i , k50,1,2,. . . . ~22!

Lower commuting flows can be obtained from@see~15!#

m̃[ )
m51

N

~r m2l̃ !2«5b01b1l̃1b2l̃21¯

and formal series

]t(l̃)5l̃] t21
1l̃2] t22

1l̃3] t23
1¯ ,

when l̃→0. The corresponding generating functions of conservation laws are

] t2k21
m5]xFm (

m50

k

b̃mlm2k21G , k50,1,2,. . . , ~23!

where

b̃05
1

b0
, b̃k52

1

b0
(

m50

k21

b̃mbk2m , k51,2,. . . .

The correspondinglower commuting flows~in Riemann invariants! are

] t2k21
r i5F (

m50

k

b̃m~r i !m2k21G r x
i , k50,1,2,. . . . ~24!

If l→` and l̃→`, all thehigher conservation laws for thehigher commuting flows are

] tk
am5]xF (

s50

k

ãsak1m2sG , k50,1,2,. . . . ~25!
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If l→0 andl̃→`, all the lower conservation laws for thehigher commuting flows are

] tn
bk5]xF (

s50

k

bsãn1s2kG , k<n, ] tn
bk5]xF (

s50

n

ãsbk1s2nG , k>n. ~26!

If l→0 andl̃→0, all the lower conservation laws for thelower commuting flows are

] t2n21
bm5]xF (

k50

n

b̃kbn1m112kG , n50,1,2,. . . . ~27!

If l→` and l̃→0, all thehigher conservation laws for thelower commuting flows are

] t2n21
am115]xF (

k50

m

asb̃n1s2mG , m<n, ] t2n21
am115]xF (

k50

n

b̃sam1s2nG , m>n. ~28!

All these above formulas can be easily checked by direct calculations.
For instance, the initial system~13! has the generating function of conservation laws

] tm5]x@~l2a1!m#, ~29!

where an infinite set of thepositive~polynomial! conservation laws is

] t1
ak5]x@ak112a1ak#, k51,2,. . . , ~30!

and an infinite set of thenegativeconservation laws is

] t1
b05]x~2a1b0!, ] t1

bk5]x@bk212a1bk#, k51,2,. . . . ~31!

The second commuting flow@see~13! and ~22!#

r t2
i 5F ~r i !22«r i (

m51

N

r m1
«2

2 S (
m51

N

r mD 2

2
«

2 (
m51

N

~r m!2G r x
i , i 51,2,. . . ,N,

has the generating function of conservation laws@see~21!#

m t2
5]x@~l22a1l1a1

22a2!m#,

where an infinite set of thepositive~polynomial! conservation laws is@see~25!#

] t2
ak5]x@ak122a1ak111~a1

22a2!ak#. ~32!

An infinite set of thenegativeconservation laws is@see~26!#

] t2
b05]x@b0~a1

22a2!#, ] t2
b15]x@b1~a1

22a2!2a1b0#,

] t2
bk5]x@bk~a1

22a2!2a1bk211bk22#, k52,3,. . . .

The firstnegative(l̃→0) commuting flow is@see~24!#

r t21

i 5
1

b0r i r x
i 5

)m51
N ~r m!«

r i r x
i , ~33!

where the generating function of conservation laws is@see~23!#
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m t21
5]x

m

lb0
, ~34!

where an infinite set ofnegativeconservation laws is@see~27!#

] t21
bk5]x

bk11

b0
, k50,1,2,. . . , ~35!

and an infinite set ofpositiveconservation laws is@see~28!#

] t21
a15]x

1

b0
, ] t21

ak115]x

ak

b0
, k51,2,. . . . ~36!

Remark: The reciprocal transformation [see the first equation in (31)]

dy215b0dx2a1b0dt1 , dz5dt1 ,

connects system (13) [also, see (30) and (31)] and its commuting flow (33) [also, see (35
(36)].

The reciprocal transformation [see (29)]

dy5m@dx1~l2a1!dt1#, dz5dt1 ,

connects system (13) and the generating function of its commuting flows [see (16)–(20)]

] ta152l]x~1/m!.

III. NEW HYDRODYNAMIC CHAIN

The hydrodynamic type system~13! can be rewritten as the infinite moment chain

] tck5]xck112c1]xck , k50,61,62, . . . , ~37!

where the firstN momentsck (k51,2,. . . ,N) are functionally independent:

c05« (
m51

N

ln r m, ck5
«

k (
m51

N

~r m!k, k561,62, . . . . ~38!

Thus, all ak , bk and ck can be expressed via each other~see below!. This is an invertible
transformation.

However, now we can start our investigation namely from a hydrodynamic chain writte
form ~37! or, for instance, in form~30! without any reference on the original hydrodynamic ty
system~13! @and the explicit expressions~38!#. If now we restrict our infinite moment chain to th
N-component case, then just one particular solution obviously is exactly the hydrodynamic
system~13! @also, see~38!#. How to find all other possible reductions? The answer will be don
next section.

Remark: For the first time, this hydrodynamic chain (30) has been derived (in another te
by S. J. Alber (see Ref. 2; also it has been independently obtained in another context by
Mikhalev, see Ref. 27), and recently by L. M. Alonso and A. B. Shabat (see Ref. 4; they d
mostly differential reductions and very particular hydrodynamical reductions; in our article
describe all possible hydrodynamical reductions). Actually, the starting point of their inves
tions was the hydrodynamic type ‘‘«-system,’’ when«52 1

2, related by generalized reciproca
transformation with averaged (by the Whitham method) integrable systems (determined by
second order spectral transform with energy-dependent potential, see also mentioned refe
related with hyperelliptic surfaces.
                                                                                                                



t

ee

st of

tion law

4142 J. Math. Phys., Vol. 44, No. 9, September 2003 Maxim V. Pavlov

                    
The generating function of conservation laws for the hydrodynamic chain~37! is exactly~29!,
where@cf. ~14!#

m511 (
k51

`

akl
2k5expF (

k51

`

ckl
2kG , c1[a1 , ~39!

andl→`. The hydrodynamic chain~31! satisfies the same generating function~29!, where@cf.
~15!#

m5 (
k50

`

bkl
k5expF2 (

k50

`

c2kl
kG , c0[2 ln b0 , ~40!

andl→0.
All the positivecommuting flows in field variablesck are

] tn
ck5 (

m50

n

ãmck1n2m,x , k50,61,62, . . . ,

where the generating function of conservation law densities for an arbitrarypositivecommuting
flow is ~21!; all negativeflows are

] t2n21
ck5 (

m50

n

b̃mck1m2n,x , k50,61,62, . . . ,

where the generating function of conservation law densities for an arbitrarynegativecommuting
flow is ~23!. All thesenegativeflows can be obtained frompositivecommuting flows~see above!
by the reciprocal transformation~see the Remark of the previous section!. For instance, the firs
negativeflow is

] t21
ck5ec0]xck21 , k50,61,62, . . . . ~41!

Remark: Obviously, the values a˜ k and b̃k can be expressed from analogs of (39) and (40) [s
(20)],

1

m
511 (

k51

`

ãkl
2k5expF2 (

k51

`

ckl
2kG , ã1[2c1 , l→`.

1

m
5 (

k50

`

b̃kl
k5expF (

k50

`

c2kl
kG , b̃0[ec0, l→0.

Thus, the hydrodynamic chain~37! can be expressed via the different moments (ak , bk), see,
for instance, the Remark in Sec. VI.

The relationship~39! between thepositive momentsck and thepositive conservation law
densitiesak can be expressed explicitly by the next four recursive formulas, where the fir
them,

dak115 (
m51

k

amdck112m1dck11 , k50,1,2,. . . ,

is a consequence of the three local symmetry operators acting on a space of the conserva
densitiesak : the shift operator
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d̂ak115
]ak11

]c1
5ak , k50,1,2,. . . ;

the scaling operator

R̂ak5 (
m51

`

mcm

]ak

]cm
5kak , k50,1,2,. . . ;

and the projective operator

Ŝak5Fc11 (
m51

`

~m11!cm11

]

]cm
Gak5~k11!ak11 , k50,1,2,. . . .

IV. FINITE-COMPONENT REDUCTIONS

Theorem 1: The hydrodynamic type system (8) with an arbitrary number of componen
embedded into the hydrodynamic chain (37) if and only if

Vi5 f i~r i !2c1 , c15 (
m51

N

cm~r m!, ~42!

where fi(r
i) and ck(r

k) are arbitrary functions.
Proof: Any reductions are compatible with given hydrodynamic chain~37! if every moment

ck can be expressed as a function of justN independent Riemann invariantsr i . Then one obtains

Vi] ick5] ick112c1] ick , i 51,2, . . ., ,N,k50,61,62, . . . ,

It is easy to see, that

] ick115~Vi1c1!k] ic1 , i 51,2,. . . ,N, k50,61,62, . . . .

Thus, the second derivatives

] j@~Vi1c1!k] ic1#5] i@~Vj1c1!k] j c1#, i 51,2,. . . ,N, k50,61,62, . . . ,

yield the general reduction~42!. j

Thus, all moments are

ck5 (
m51

N E r m

@ f m~l!#k21dcm~l!, k50,61,62, . . . .

Remark: The hydrodynamic type systems

r t21

i 5Wi~r !r x
i , i 51,2,. . . ,N, ~43!

embedded into first negative flow (41) [see (37)] can be found in the same way [see (42)]
Wi] ick5ec0] ick21 one can obtain ] ick5(ec0/Wi)k] ic0 . In comparison with ] ick5(Vi

1c1)k] ic0 one can obtain

Wi5
1

f i~r i !
expF (

m51

N E r m dcm~l!

f m~l! G . ~44!

The next task is how to write hydrodynamical reductions inclosedform via special variables
like conservation law densities@see, e.g.,~30!#. It means that all higher momentsaN1k (k
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51,2,. . . ) must be expressed via lower momentsak (k51,2,. . . ,N). In the particular case~13!,
all higher momentsaN1k are polynoms, which can be found from the relations@see~14!#

05@~11la11l2a21¯1lNaN1lN11aN111¯ !21/«# (N1k), k51,2,. . . .

For example, the first higher momentaN11 can be found from the more compact recursive relat

(
k51

N11
G~121/«!zk

(N11)

G~12k21/«!G~k11!
50,

wherezk
(N11) is a coefficient of the series

@a11a2l1a3l21¯1aN122kl
N112k#k5a1

k1lka1
k21a21¯1lN112kzk

(N11)1¯ .

All higher momentsaN1k are polynoms of lower momentsak , e.g.,

a35
11«

«
a1a22

~11«!~112«!

6«2 a1
3 , N52,

a45
11«

2«
~2a1a31a2

2!2
~11«!~112«!

2«2 a1
2a21

~11«!~112«!~113«!

24«3 a1
4 , N53,

a55
11«

«
~a1a41a2a3!2

~11«!~112«!

2«2 ~a1
2a31a1a2

2!1
~11«!~112«!~113«!

6«3 a1
3a2

2
~11«!~112«!~113«!~114«!

120«4 a1
5 , N54,

and so on. The first exceptional case is the chromatography phenomena («521). Then

a352a1a21 1
6 a1

3 , N52,

a452 1
2 ~2a1a31a2

2!1 1
2 a1

2a22 1
12 a1

4 , N53,

a552~a1a41a2a3!1 1
2 ~a1

2a31a1a2
2!2 1

3 a1
3a21 1

20 a1
5 , N54;

the second exceptional case is~dispersionless limits of coupled KdV and coupled Harry Dy!
«52 1

2, then first higher momentaN11 is just a quadratic expression via lower momentsak . It
means that corresponding hydrodynamic type systems have at least one local Hamiltonian
ture ~see Ref. 34!; actually, the largest number of local Hamiltonian structures is (N11), iff «
52 1

2, see Ref. 16. The third exceptional case is«521/M , whereM53,4,. . . . Then all expres-
sions for the higher momentsak will be quickly truncated~see above; it means that just few term
will survive in corresponding sums!.

V. COMMUTING FLOWS AND REDUCTIONS

The corresponding linear system for conservation law densities~see Ref. 36! is

] ikh5
ck8~r k!

f i~r i !2 f k~r k!
] ih2

c i8~r i !

f i~r i !2 f k~r k!
]kh, iÞk. ~45!

The general solution of such a system is determined byN functions of a single variable~also, see
Ref. 36!. In a particular, but very important, case of the ‘‘«-systems’’@see, for example,~13!# this
linear system~45! is exactly theN-component generalization of the Euler–Darboux–Pois
system~see Ref. 31!
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] ikh5
«

r i2r k @] ih2]kh#, iÞk. ~46!

At first, it is necessary to find a generating function of conservation law densitiesm, which can be
found in comparison with~29! and ~42!

m~r ,l!5expS (
k51

N E r k dck~ l̃ !

l2 f k~ l̃ !
D . ~47!

This formula ~47! simplifies in the case of the ‘‘«-systems’’@see~14! and ~15!, that was well
known in the caseN52, for example, see Ref. 7#. The velocitieswi of the commuting flows~i.e.,
Riemann invariantsr i are considered as the functions simultaneously of three independent
ablesx, t, t!,

r t
i 5wi~r !r x

i , i 51,2,. . . ,N, ~48!

can be found as the solutions of another linear system~also see Ref. 36!:

] iw
k52

c i8

f i~r i !2 f k~r k!
~wi2wk!, iÞk. ~49!

Theorem 2: Any solutions of the linear system (49) are connected with the solution
another linear system [cf. (45)],

] ikh̃52
ck8~r k!

f i~r i !2 f k~r k!
] i h̃1

c i8~r i !

f i~r i !2 f k~r k!
]kh̃, iÞk,

by the differential substitution of the first order

wi5
1

c i8
] i h̃.

Thus, the generating function of solutions@for the hydrodynamic type systems~8! and~42!–
~44!; cf. ~13! and ~33!# by the Tsarev generalized hodograph method~also see Ref. 36! is

x1F f i~r i !2 (
k51

N

ck~r k!G t11
1

f i~r i !
expF (

m51

N E r m dcm~l!

f m~l!
G t21

52
1

l2 f i~r i !
expF2 (

k51

N E r k dck~ l̃ !

l2 f k~ l̃ !
G , ~50!

where the generating function of commuting flows@see~19!# in Riemann invariants is

r
t(l̃)

i
5

1

~12 f i~r i !/l̃ !m̃
r x

i .

Remark: If one selects the monoms

c i~r i !5« i r
i ,

where«k are arbitrary constants, then the generalized ‘‘«-systems’’
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r t
i5F r i2 (

m51

N

«mr mG r x
i ~51!

have the generating function of conservation law densities [cf. (14) and (47)]

m5 )
m51

N

~12r m /l!2«m.

In the general case(N is arbitrary) the hydrodynamic type system (51) is the natu
N-parametric reduction of the hydrodynamic chain (37). When N52 this system (51) is the
natural two-parametric generalization of gas dynamics (9). If we choose [cf. (38)]

c05 (
m51

N

«m ln r m, ck5
1

k (
m51

N

«m~r m!k, k561,62, . . . ,

then the hydrodynamic type system (51) satisfies hydrodynamic chain (37).
Remark: In the particular case fi(r

i)5« i (« i are arbitrary constants and« iÞ«k for iÞk; this
is the N-component generalization of gas dynamics, when the adiabatic indexg51) the hydro-
dynamic type system (42)

r t
i5F« i2 (

m51

N

cm~r m!G r x
i

is ‘‘trivial’’ [also c i(r
i)Þconst] . In this case, the linear system (45) has constant coefficient

]2h

]Ri]Rk 5
1

« i2«k
F ]h

]Ri 2
]h

]RkG , iÞk,

where Ri5c i(r
i).

VI. GENERAL SOLUTION

Description of the general solution for the linear system~45! is a very complicated task
Construction of the general solution has been made only in the case of the ‘‘«-systems’’~see Ref.
31!, whenN is arbitrary; casesN52 andN53 were completely investigated by G. Darboux,
P. Eisenhart, and T. H. Gronwall~see Refs. 7 and 10!. The basic idea of how to construct a gene
solution ~parametrized byN functions of a single variable, see Ref. 36! of any overdetermined
linear systems like~45! was presented in Ref. 36 by recursive application of symmetry opera
compatible with such systems. However, here we establish an alternative approach in the s
G. Darboux~see Ref. 36; also, see the section concerning elliptic coordinates in Ref. 7!. Elliptic
coordinatesma (a51,2,. . . ,N) appear in the theory of integrable hydrodynamic type syste
associated with hyperelliptic curves, i.e., with the ‘‘«-systems,’’ where«52 1

2. G. Darboux sug-
gested to introduce special variablesr k (k51,2,. . . ,N) for separation of coordinates in th
Laplace equation by the following rule@see~15!, when«52 1

2]

ma
25

)k51
N ~ga2r k!

)bÞa~ga2gb!
, gii 5

)b51
N ~r i2gb!

)kÞ i~r i2r k!
,

wherega are arbitrary constants@the denominator)bÞa(ga2gb) in the first expression is just a
constant multiplier, which does not affect the property to be a conservation law density, als
~29!# and the flat~not constant! metric gii (r ) determined by
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ds25 (
a51

N

~dma!25 (
k51

N

gkk~drk!2.

Thus, elliptic coordinates coincide with the Riemann invariants for ‘‘«-systems,’’ where«52 1
2. It

is easy to generalize the Darboux coordinatesma to an arbitrary«:

~ma!21/«5
)k51

N ~ga2r k!

)bÞa)~ga2gb!
, a51,2,. . . ,N.

In this case, all the ‘‘«-systems,’’ for instance,~13! and~33!, can be written explicitly viama in the
conservative form@see~30! and ~35! in the particular case«52 1

2]

] tma5]xF S « (
b51

N

~mb!21/«1ga2« (
b51

N

gbDmaG ,

~52!

] t21
ma5

)b51
N ~gb!«

ga
]xF S 12 (

b51

N
~mb!21/«

gb
D «

maG , a51,2,. . . ,N.

Remark: The hydrodynamic type systems (13) and (33) for another set of the momek

5(b51
N (gb)k(mb)21/« [see (52)] can be written as the following hydrodynamic chains:

] t1
Ek5]xEk111«FE02 (

b51

N

gbGEk,x2EkE0,x , k50,61,62, . . . , ~53!

] t21
Ek5 )

b51

N

~gb!«@~12E21!«]xEk211~12E21!«21Ek21E21,x#, ~54!

where

a15«S (
b51

N

gb2E0D , b05 )
b51

N

~gb!2«~12E21!2«.

Remark: The hydrodynamic chain (53) is the same as the hydrodynamic chain (30), be
these two chains are connected by the invertible transformation [see (29) and (39)]

m21/«511 (
k50

`

Ekl
2(k11), ~55!

wherel→`. The hydrodynamic chain (54) is the same as the hydrodynamic chain (35), be
these two chains are connected by the invertible transformation [see (34) and (40)]

m21/«512 (
k51

`

E2kl
k21,

wherel→0.
Thus, our approach is the following: we markN arbitrary pointsl5ga (N distinct punctures!

on the Riemann surfaceF(l,m)50 @see~47! and cf.~12!#; then we obtain special set of coord
nates

ma5expS (
k51

N E
ga

r k dck~ l̃ !

ga2 f k~ l̃ !
D , ~56!
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which in fact is the fundamental basis of linearly independent solutionsfor the corresponding
linear system~45!. It means that any solution of the linear system~45! can be presented as a line
combination of the basis solutions~56! with some coefficients. Finally, we just mention that a
overdetermined linear system like~45! must have a general solution which depends onN arbitrary
parametersga . In our case, we should takeN infinite series of the conservation law densitiesma,k

(k51,2,. . . ) starting near already fixed puncturesga :

m (a)5ma1~l2ga!ma,11~l2ga!2ma,21¯, l→ga , a51,2,. . . ,N.

Thus, the general solution of the linear system~45! is

h~r !5 (
b51

N E
gb

r b

wb~l!m (b)~l!dl,

wherewb(l) are arbitrary functions, and the general solution of the hydrodynamic type syste
given in the implicit form@see~8!, ~42!–~44!, and~50!#:

x1F f i~r i !2 (
k51

N

ck~r k!G t11
1

f i~r i !
expF (

m51

N E r m dcm~l!

f m~l! G t21

5
1

c i8~r i !
] iF (

b51

N E
gb

r b

wb~l!m̃ (b)~l!dlG , ~57!

where

m̃a5expF2 (
k51

N E
ga

r k dck~ l̃ !

ga2 f k~ l̃ !
G , m̃~r ,l!5expF2 (

k51

N E r k dck~ l̃ !

l2 f k~ l̃ !
G ,

m̃ (a)5m̃a1~l2ga!m̃a,11~l2ga!2m̃a,21¯, l→ga , a51,2,. . . ,N.

The general solution of the linear system~45! can be presented in the most possible explicit fo
in special case, when values« are integersfor the ‘‘«-systems.’’ The caseN52 ~namely, Euler–
Darboux–Poisson equation! was completely investigated~see, for instance, Ref. 35!. Its generali-
zation on theN-component case~46!, or moreover on the case of arbitraryintegers«m @see~51!#,

] ikh5
1

r i2r k @«k] ih2« i]kh#, iÞk, ~58!

can be made in the same way as in Ref. 35. For simplicity, here we shall restrict our conside
to the case of~46! ~see Ref. 31!.

The general solution of~46! ~if «56n, n51,2,. . . ) is

h(n)5 (
k51

N
dn

d~r k!n F wk~r k!

(mÞk~r k2r m!nG , h(2n)5 (
k51

N E r k

wk~l! )
m51

N

~l2r m!ndl,

wherewk(r
k) areN arbitrary functions of a single variable@if we replacewk(l)→wk

(nN11)(l) in
secondnegativecase, then all integrals can be expressed via finite number of derivatives o#.
Thus, indeed, these solutions are general~see Ref. 36! for positiveand negative integers« @see
~13! and~46!#. The general solutions for~58! can be obtained by recursive application of Lapla
transformations~see Ref. 11! to the above formulas~also, see Ref. 1!.

If « is negative and«Þ2n, n51,2,. . . , then the above-mentioned solution~right! easily
generalizes to
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h«5 (
k51

N E
gk

r k

wk~l! )
m51

N

~l2r m!2«dl,

wheregk (k51,2,. . . ,N) are arbitrary constants. If« is positive and«Þn, n51,2,. . . , then the
above-mentioned solution~left! easily generalizes to just the case when«N is integer. Then

h«5 (
k51

N R
Ck

wk~l!dl

)m51
N ~l2r m!« ,

where Ck (k51,2,. . . ,N) are simple small contours surrounding the pointsl5r k (k
51,2,. . . ,N). However, in a general case~when « is positive and«N is not integer! these
contoursCk could not be closed on corresponding Riemann surface, because a sum of all
shifts ~for every point! will not be proportional to 2pM , whereM is some integer. For avoiding
this problem one can introduce another set of contour-dumbbell-shaped figuresCk,k11 surround-
ing every two neighbor pointsl5r k and l5r k11 (k51,2,. . . ,N). So, the integration mus
change sign twice from clockwise to anticlockwise, then every time a phase shift will bp
exactly. However, the number of contours must be equal toN21, because in the opposite case~if
the number isN) all contours became linearly dependent. Thus, in this general case a ge
solution of ~46! parametrized by theN arbitrary functions of a single variable is

h«5 (
k51

N21 R
Ck,k11

wk~l!dl

)m51
N ~l2r m!« 1E

2`

0 wN~l!dl

)m51
N ~l2r m!« ,

where for simplicity we assume~without lost of generacy! that real parts of Riemann invariantsr k

~branch points on a complex Riemann surface! are numerated as follows:

0,Rer 1,Rer 2, ¯,Rer N.

VII. „2¿1…-INTEGRABLE HYDRODYNAMIC TYPE SYSTEMS

The Benney moment chain~1! is equivalent to the hierarchy of (211) hydrodynamic type
systems embedded in the dispersionless KP hierarchy as the Khohlov–Zabolotskaya equa

~ut2
2uux!x5ut1t1

, ~59!

which can be obtained from the coupled equations of the Benney moment chain~1! and one
equation of its first nontrivial commuting flow~see Sec. IX!

] t2
Ak5]xAk121A0Ak,x1~k11!AkA0,x1kAk21A1,x , k50,1,2,. . . , ~60!

by eliminating the momentsA1 andA2 :

] t1
A05]xA1 , ] t1

A15]x@A21 1
2 A0

2#, ] t2
A05]x@A21A0

2#,

whereu5A0 .
Let us start now with the hydrodynamic chains~30! and ~32!, eliminate the field variablea3

from couple equations from the first hydrodynamic chain~30! and one equation from the secon
hydrodynamic chain~60!,

] t1
a15]x@a22a1

2#, ] t1
a25]x@a32a1a2#, ] t2

a15]x@a322a1a21a1
3#.

Then we came to the new integrable (211) hydrodynamic type system
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ut1
5wx , ut2

5wt1
1uwx2wux , ~61!

where

u5a1 , w5a22a1
2 .

It is easy to check that all possible hydrodynamical reductions of this system~61! ~see, for
instance, the approach in Ref. 15!:

r t1
i 5m i~r !r x

i , r t2
i 5z i~r !r x

i , i 51,2,. . . ,N,

are exactly the same as those found already@see~42!#, where

z i5 f i
2~r i !2 f i~r i !(

k50

N

cm~r m!1
1

2 S (
k50

N

cm~r m!D 2

2 (
k50

N E r k

f k~l!dck~l!.

Moreover, one can obtain a whole hierarchy of such integrable (211) hydrodynamic type sys
tems like~61! by eliminating some other field variablesak in combination with other commuting
flows of the hydrodynamic chain~30!. For example, two other equations@see~37! and ~41!#,

] t1
e2c05]x@2c1e2c0#, ] t21

c15]xe
c0, ~62!

yield a new integrable (211) hydrodynamic type system@its (111) hydrodynamical reductions
are exactly~43! and ~44!#.

VIII. ANOTHER HYDRODYNAMIC CHAIN

Now we start with the integrable hydrodynamic type system18

r t
i5F (

m51

N

«mr m2« i (
m51

N

r mG r x
i , i 51,2,. . . ,N, ~63!

when«k are arbitrary constants. This system can be rewritten as the hydrodynamic chain

] tck5c1]xck2c0]xck11 , k50,61,62, . . . , ~64!

where the moments

ck5 (
m51

N

r m~«m!k.

Theorem 3: Under the reciprocal transformation

dz5
1

c0
dx1

c1

c0
dt, dy5dt,

this hydrodynamic chain linearizes

]yck1]zck1150, k50,61,62, . . . . ~65!

It means that any reductions such as~63! of the hydrodynamic chain~64! linearizes under
above reciprocal transformation. The solution of the hydrodynamic chain~65! is a set of the
separate Riemann–Monge–Hopf equations

r y
i 1 f i~r i !r z

i 50, i 51,2,. . . ,N,
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wheref i(r
i) are arbitrary functions. Thus, every integrable reduction of hydrodynamic chain~64!

has the simple form

r t
i5@c0f i~r i !2c1#r x

i ,

where

ck5 (
m51

N E r m

@ f m~l!#kdcm~l!, k50,61,62, . . . ,

and cm(r m) are arbitrary functions@by scalingcm(r m)→Rm integrable hydrodynamical reduc
tions are parametrized byN arbitrary functions of a single variable only#.

IX. OPEN PROBLEMS

The Benney moment chain~the Zakharov reduction! is a dispersionless limit of the vecto
nonlinear Schro¨dinger equation@see ~11!, ~12!, and Ref. 38#. The inverse problem is how to
reconstruct adispersiveintegrable analog of given hydrodynamic type system. Adispersiveanalog
is known @coupled KdV is adispersiveanalog of system~13!; couple Harry Dym is adispersive
analog of system~33!, see, e.g., Refs. 22 and 16# just in the case of the ‘‘«-systems’’ with «
52 1

2. The KP hierarchy is adispersiveanalog for thewholeBenney moment chain~1! @as the KP
equation is adispersiveanalog of the Khohlov–Zabolotzkaya system~59!#, but similardispersive
(211) analogs for the whole hydrodynamic chain~37! or for the (211) hydrodynamic type
systems~61! or ~62! still are unknown.

Local Hamiltonian structures for the hydrodynamic type system~13! were completely inves-
tigated in Ref. 29 and 16. It was proved that, ifN52, then the hydrodynamic type system~13! for
any« has three local Hamiltonian structures~also, see Refs. 28 and 12!; if N53 and«52 1

2, then
it has four local Hamiltonian structures; ifN53 and«51, then it has two-parametric family o
local Hamiltonian structures~also see Refs. 30 and 17!; if N.3, then «52 1

2 and it has
(N11)-local Hamiltonian structures.

Hamiltonian structures of integrable hydrodynamic type systems are determined by a
gii ~see, Ref. 9!. The metric

gii 5z i~r i !expF22(
kÞ i

E r k dck~l!

f i~r i !2 f k~l!G
with arbitrary functionsz i(r

i) determines a nonlocal Hamiltonian formalism~see Ref. 13 and 36!
of hydrodynamic type systems~8! and~42!–~44! and their commuting flows. Unfortunately, loca
and nonlocal Hamiltonian formalism has been done just for the hydrodynamic type system~13!
when«561 and«52 1

2 ~see, for instance Refs. 17 and 13!. However, the problem of a descrip
tion of local and nonlocal Hamiltonian structures in general case~42! still is open. Nevertheless
this problem can be solved by the Dirac restriction of a Hamiltonian structure~see for the begin-
ning Ref. 13! known for the whole hydrodynamic chain, as it was already done in Ref. 6 for o
hydrodynamic chains.

The starting point of such an investigation is a Lax-type representation. For instanc
Lax-type representation@see~2!# for the dispersionless KP hierarchy@i.e., the Benney momen
chain ~1!# is well known ~see Ref. 26!

] tn
l5$Qn ,l%5

]Qn

]m

]l

]x
2

]Qn

]x

]l

]m
, n50,1,2,. . . , ~66!

whereQn is the part, polynomial inm, of ln. Also, the first local Hamiltonian structure for whol
Benney moment chain~1!,
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] tn
Ak5 (

m>0
FkAk1m21]x

dHn11

dAm
1S mAk1m21

dHn11

dAm
D

x
G , ~67!

where the Hamiltonian isH25 1
2*@A21A0

2#dx, was constructed in Ref. 25@the relationship be-
tween formulas~66! and~67! was found in Ref. 26, too; first nontrivial commuting flow@see~60!#
is determined by the next HamiltonianH35 1

3*@A313A0A1#dx; functionalH05*A0dx is a Ca-
simir of this Hamiltonian structure, the functionalH15*A1dx is a momentum of this Hamiltonian
structure#.

Similar Lax type representation for the hydrodynamic chain~37! was established in Ref. 4@cf.
~66!#

] tn
L5^Qn ,L&5Qn

]L

]x
2

]Qn

]x
L, n50,1,2,. . . , ~68!

where

Qn5~lnL !1 , L511G0 /l1G1 /l21G2 /l31¯ .

The corresponding first hydrodynamic chain

] t1
Gk5]xGk111G0Gk,x2GkG0,x , k50,1,2,. . . ,

is exactly the hydrodynamic chain~53!, where«51, and the linear term2«((b51
N gb)Ek,x is

removed by a shift of the independent variable@x→x2«((b51
N gb)t#. Thus, a generating function

of these moments is@see~53!, ~55!, and~68!#

m21[L511 (
k50

`

Gkl
2(k11).

The alternative Lax type representations are

] tk
r5F (

m50

k

ãmlk2m]x ,rG , ] t2k21
r5F (

m50

k

b̃mlm2k21]x ,rG , k50,1,2,. . . ,

wherem5rx @see~21! and ~23!#.
We suppose that the hydrodynamic chain~37! and its commuting flows have local Hami

tonian structure@cf. ~67!#

] tn
ck5 (

k51

`

@bk,m~c!]x1]xbm,k~c!#
dHn11

dcm
,

wherebk,m are some functions.
The Hamiltonian structures of integrable hydrodynamic type systems can be succe

investigated by application of methods from the differential~see, for example, Refs. 36, 29–3
12,16, 13, and 17! and algebraic geometries~see, for instance, Refs. 8 and 24!. An alternative way
is following: assume that our given integrable hydrodynamic type system (N components! is a
some reduction of some ‘‘bigger’’ integrable hydrodynamic type system (N1M components!;
assume that Hamiltonian structure of such ‘‘bigger’’ integrable hydrodynamic type syste
already known. Then the direct application of the Dirac restriction to this Hamiltonian stru
@the first step in such procedure~see Ref. 13! is the choice of some Riemann invariantsr k

5const,k51,2,. . . ,M ] yields the transformed Hamiltonian structure of a ‘‘restricted’’ hydrod
namic type system. The Dirac restriction of Hamiltonian structures~in algebraic language! was
developed in application to hydrodynamic chains and their reductions~see Ref. 6!. The first step
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in such a procedure is the recalculation of the Lax type representation@such as~66! or ~68!# to the
Hamiltonian structure of a whole hydrodynamic chain@see, for instance,~67!#.

X. CONCLUSION

In this article we present a recipe: how to construct a hydrodynamic chain starting from
given hydrodynamic type system withpolynomial~or rational! velocities with respect to their field
variables@for simplicity we have mentioned just two cases: namely Benney moment chain, w
moments are connected directly with someconservation law densities(uk ,hk) and the hydrody-
namic chain~37!, whose moments are connected directly withRiemann invariants#. In fact, it
means thatany integrable hydrodynamic type system„written in Riemann invariants … with
such polynomial velocities is embedded in hydrodynamic chain„37… or its higher „or lower…
commuting flows. Any integrable hydrodynamic type system written in Riemann invariants w
rational velocities

r t
i5g0

~r i !M1g1~r i !M211¯1gM

~r i !K1e1~r i !K211¯1eK
r x

i , i 51,2,. . . ,N, ~69!

has the generating function of conservation laws

m t5]xFg0

lM1g1lM211¯1gM

lK1e1lK211¯1eK
mG . ~70!

For simplicity we assume that the coefficientsek and gk of such rational velocities are some
symmetric~not necessary to bepolynomials!! functions of Riemann invariants;K, M , andN are
arbitrary natural numbers. As example, we can take any integrable systems embedded int32
spectral transform like the Korteweg–de Vries equation, the Bonnet equation~the sine-Gordon
equation! and the nonlinear Schro¨dinger equation. All their Whitham deformations@i.e., hydrody-
namic type systems, see, for instance, Refs. 8 and 24# have such representation~69! as conse-
quence~70! written in Abelian differentials on hyperelliptic surfaces

] tdp5]xdq,

where

dp5
lK1e1lK211¯1eK

A)m51
N ~r m2l!

dl, dq5g0

lM1g1lM211¯1gM

A)m51
N ~r m2l!

dl,

and velocities of~69! are

g0

~r i !M1g1~r i !M211¯1gM

~r i !K1e1~r i !K211¯1eK
5

dq

dpU
l5r i

.

Substituting@cf. ~39!#

m511 (
k51

`

akl
2k

into the generating function~70! one can obtain similar formulas and results as it was done in
article. The next step is areplicationof integrable hydrodynamic type systems as different hyd
dynamical reductions of hydrodynamic chains. Themain advantageof suchreplicatedsystems is
a preservationof some properties of original hydrodynamic type systems likegenerating functions
of conservation laws and commuting flows@see~2!, ~4!, and~6! for the Benney moment chain~1!;
see~14!, ~29!, and~20! for the hydrodynamic chain~37!#. Thus, a problem of integrability is muc
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simpler—all that necessary to do: to construct a general solution@starting from already obtained
generating function, see~7!, ~50!, and~57!#, parametrized byN functions of a single variable~see
Ref. 36! and to solve Cauchy problem, that in fact is done to this moment just for four case~the
Zakharov reduction of the Benney moment chain, see Ref. 19; linearly degenerate system, s
37; this particular class is the ‘‘«-systems’’ with«51; hydrodynamic type systems of the Tamp
class, this particular class is the ‘‘«-systems’’ with«521, see Ref. 29; Whitham hydrodynam
type systems related with hyperelliptic surfaces such averagedN-phase solutions of Korteweg–d
Vries equation~KdV! or nonlinear Schro¨dinger equation~NLS!, it was done in articles of G. El, T
Grava, B.A. Dubrovin, F. R. Tian, J. Gibbons and many others!.

Moreover, any two commuting flows of~29!, for example,~21!,

dz5mFdx1 (
m50

k

ãmlk2mdtk1 (
m50

n

ãmln2mdtnG , k,n51,2,. . . ,

yield the hydrodynamic type systems withrational velocities

r tk
i 5

(m50
k ãm~r i !k2m

(m50
n ãm~r i !n2m r tn

i , kÞn, i 51,2,. . . ,N.

A more complicatedrational dependence can be obtained by application of a generalized r
rocal transformation~see, for instance, Ref. 11 and 17!, starting from~29! and its commuting
flows.

Thus, this is apowerful tool for classificationof integrable hydrodynamic type systems a
their integrability. Moreover, if any given hydrodynamic type system has a generating functio
conservation laws@see, for instance,~4! or ~29!#, it means that the corresponding hydrodynam
chain has the same generating function. For example, if a some hydrodynamic type system
same generating function as the Benney moment chain~4!, it means that this hydrodynamic typ
system is some reduction of the Benney moment chain. Thus, this is a wonderful symptom
recognition of an immersion of any unknown hydrodynamic type systems into already k
hydrodynamic chains. Thus,if one can construct a generating function of conservation laws
some hydrodynamic type system, it means that, in fact, the hydrodynamic chain is alread
structed~and may be recognized, because, obviously, the number of hydrodynamic chains is
smaller than the number of integrable hydrodynamic type systems!.

However, the problem of a description of all possible reductions is very complicated
instance, this problem for the Benney moment chain is still open~see Ref. 21!. However, this
problem for the Boyer–Finley moment chain~continuum limit of the Darboux–Laplace chain
which also is known as two-dimensional Toda lattice, see Refs. 3, 15, and 24! in fact doesnot
exist, because both mentioned hydrodynamic chains are related by special exchange of in
dent variables~see Ref. 23!. Thus, we are lucky to solve this problem for the hydrodynamic ch
~37!.
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Random matrix averages and the impenetrable Bose gas
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The density matrix for the impenetrable Bose gas in Dirichlet and Neumann bound-
ary conditions can be written in terms of^) l 51

n ucosf12cosuluucosf22cosulu&,
where the average is with respect to the eigenvalue probability density function for
random unitary matrices from the classical groups Sp(n) and O1(2n), respec-
tively. In the largen limit log-gas considerations imply that the average factorizes
into the product of averages of the form̂) l 51

n ucosf2cosulu&. By changing vari-
ables this average in turn is a special case of the function oft obtained by averaging
) l 51

n ut2xl u2q over the Jacobi unitary ensemble from random matrix theory. The
latter task is accomplished by a duality formula from the theory of Selberg corre-
lation integrals, and the largen asymptotic form is obtained. The corresponding
largen asymptotic form of the density matrix is used, via the exact solution of a
particular integral equation, to compute the asymptotic form of the low lying ef-
fective single particle states and their occupations, which are proportional to
AN. © 2003 American Institute of Physics.@DOI: 10.1063/1.1599954#

I. INTRODUCTION

The probability density functions~p.d.f.’s!

1

n! S 1

2p D n

)
l 51

n

4 sin2~u l ! )
1< j ,k<n

4~cosuk2cosu j !
2, ~1!

2

n! S 1

2p D n

)
1< j ,k<n

4~cosuk2cosu j !
2, ~2!

where 0<u j<p ( j 51, . . . ,n) occur in both random matrix theory and the quantum many b
problem. In the former they are eigenvalue p.d.f.’s for classical groups with the Haar~uniform!
measure—the group Sp(n) of n3n unitary matrices with real quaternion elements~which are
themselves 232 matrices!, and the group O1(2n) of 2n32n unitary matrices with real element
~real orthogonal matrices! and determinant equal to11, for ~1! and ~2!, respectively. A self-
contained derivation of these facts can be found in Ref. 1, Chap. 2. In the latter they a
absolute value squared of the ground state wave function forn free fermions on the interval@0, p#
with Dirichlet and Neumann boundary conditions, respectively. As is similarly well known,
revised from first principles in our work,2 they are also the absolute value squared of the gro

a!Electronic mail: P.Forrester@ms.unimelb.edu.au
b!Electronic mail: n.frankel@physics.unimelb.edu.au
c!Electronic mail: t.garoni@physics.unimelb.edu.au
41570022-2488/2003/44(9)/4157/19/$20.00 © 2003 American Institute of Physics

                                                                                                                



of the

ations
h

from

es
e
lating
ties of

of

tem
the free

ensity
rge
e of

riodic

ener-
nd

artwig

n
In

4158 J. Math. Phys., Vol. 44, No. 9, September 2003 Forrester, Frankel, and Garoni

                    
state wave function forn impenetrable bosons on the interval@0, p#—in one-dimension the
ground state wave function of the impenetrable Bose system is equal to the absolute value
corresponding free Fermi system.

In studies relating to both these seemingly disparate interpretations of the p.d.f.’s~1! and ~2!
there is cause to investigate the function of (f,m,n) defined by averaging

)
l 51

n

~cosf2cosu l !
m ~3!

with respect to these p.d.f.’s. In the random matrix interpretation this comes about in applic
to L-function theory.3–5 Briefly, there are families ofL-functions with special symmetries whic
are known to have their nontrivial zeros well described by eigenvalues of random matrices
the classical group corresponding to that symmetry. For cosf51 and small values ofm the
expected value of~3! can be computed with$u l% corresponding to the zeros of particular famili
of L-functions, and it can also be computed—withm a general non-negative integer—for th
random matrix ensembles. This then allows for both a test of the original hypothesis re
L-functions to random matrices, and provides specific conjectures for the statistical proper
the zeros of theL-function families.

In the quantum many body interpretation the immediate interest is not in the average~3!,
but rather the average of

)
l 51

n

ucosf12cosu l uucosf22cosu l u. ~4!

This gives the ground state density matrix of the corresponding impenetrable Bose gas sys~if
the absolute value signs are removed, the average gives the ground state density matrix for
Fermi system!.2 However the study of~4! leads back to the computation of~3!. Thus as noted in
Refs. 6 and 7 for the problem of computing the asymptotic behavior of the ground state d
matrix for the impenetrable bosons in the bulk and in an harmonic trap respectively, for lan
andf1 andf2 fixed the average~4! is expected to factorize, and be proportional to the averag
the product involvingf1 times the average of the product involvingf2 . The latter are then the
continuation inm of ~3! from the even positive integers to the valuem51 @this being a way to
effectively study the average of the absolute value of~3!#.

We remark that in the case of the density matrix for the impenetrable bosons in pe
boundary conditions the analogous task is to compute the average of

)
l 51

n

ueif12eiu lu ueif22eiu lu ~5!

with respect to the p.d.f.,

1

n! S 1

2p D n

)
1< j ,k<n

ueiuk2eiu j u2, ~6!

where2p,u j<p ( j 51, . . . ,n). In this case the asymptotic form for largen with f1 and f2

fixed is a special case of known asymptotic forms for Toeplitz determinants with singular g
ating functions of the so-called Fisher–Hartwig-type~for an extended discussion on this point a
references to the relevant literature, see Ref. 2!. The average of~4! with respect to~1! or ~2! can
readily be written as a Hankel determinant, but there is no known analog of the Fisher–H
asymptotic form.

In Sec. II we show how, form an even positive integer, the average of~3! with respect to the
p.d.f.’s ~1! and ~2!, which is by definition ann-dimensional integral, can be written as a
m-dimensional integral. From the latter the largen asymptotic form of the average is deduced.
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Sec. III the result of Sec. II is used to deduce the largen asymptotic form of the average~4! with
respect to the p.d.f.’s~1! and~2! and thus of the ground state density matrix. We conclude in S
IV by applying our result for the asymptotic form of the density matrix to the computation of
occupations of the effective single particle states. We also make some remarks in relation
wider setting of our asymptotic analysis, in which we use Coulomb gas arguments to formul
analog of the Fisher–Hartwig asymptotic form for a class of Jacobi unitary ensemble aver

II. DUALITY FORMULAS FOR MULTIPLE INTEGRALS AND ASYMPTOTIC ANALYSIS

A. The duality formula

The change of variables,

xj5
1
2 ~cosu j11! ~0<xj<1, j 51, . . . ,n! ~7!

transforms~1! and ~2! into p.d.f.’s which are proportional to

)
l 51

n

~xl~12xl !!1/2 )
1< j ,k<n

~xk2xj !
2, ~8!

)
l 51

n

~xl~12xl !!21/2 )
1< j ,k<n

~xk2xj !
2, ~9!

respectively. These p.d.f.’s in turn are special cases of the class of p.d.f.’s proportional to

)
l 51

n

xl
l1~12xl !

l2 )
1< j ,k<n

~xk2xj !
2 ~10!

known in random matrix theory as the Jacobi unitary ensemble. Also, under the change o
ables~7! the task of computing the average of~3! becomes the task of computing the average

)
l 51

n

~ t2xl !
m ~11!

with respect to~8! and ~9!, or more generally with respect to~10!.
In fact there is an advantage in further generalizing the setting of the computation o

average of~11! and considering the class of multiple integrals known as Selberg correl
integrals, defined by

Sn,m~l1 ,l2 ,l;t1 , . . . ,tm!ª
1

C E
[0,1]n

dx1 ¯ dxn)
l 51

n S xl
l1~12xl !

l2)
i 51

m

~ t i2xl !D
3 )

1< j ,k<n
uxk2xj u2l

5K )
l 51

n

)
i 51

m

~ t i2xl !L
J(2l)En

. ~12!

Here,

C5Sn~l1 ,l2 ,l!5E
[0,1]n

dx1 ¯ dxn)
l 51

n

xl
l1~12xl !

l2 )
1< j ,k<n

uxk2xj u2l, ~13!
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known as the Selberg integral, is the normalization chosen so that the coefficient of) i 51
m ti

n is
unity, and the average over J(2l)En refers to the p.d.f.,

1

Sn~l1 ,l2 ,l! )l 51

n

xl
l1~12xl !

l2 )
1< j ,k<n

uxk2xj u2l ~14!

@the notation J(2l)En denotes the Jacobi-~2l! ensemble, which withl51 corresponds to the
Jacobi unitary ensemble~10!#. Setting t15 ¯ 5tm5t in ~12! gives the average of~11! with
respect to~14!. The advantage in studying~12! is that we can put to use the discovery of Ref.
relating the Selberg correlation integrals to the theory of Jack polynomials~in the casel51 the
Jack polynomials coincide with the Schur polynomials9!. In particular the Selberg correlatio
integrals were evaluated in terms of a generalization of the Gauss hypergeometric functio2F1

based on the Jack polynomials. It was realized by one of the present authors10–15 that theory
initiated in Ref. 8 could be further developed and used to express the average of~9! with respect
to ~14! and its limiting forms as the Laguerre—~2l! ensemble and the Gaussian—~2l! ensemble,
asm-dimensional integrals. Because the role ofn andm is effectively interchanged, these inte
gration identities have been referred to as duality formulas.16–18 One of their uses, as we wil
demonstrate in the case of the average of~11! with respect to~10!, is in the computation of the
largen asymptotics.

The particular duality formula of interest to us is given explicitly in Ref. 15. To state the re
we must introduce the generalized circular ensemble, CbEN , as the p.d.f. proportional to

)
1< j ,k<N

uzk2zj ub ~zj5eiu j , 2p,u j,p, j 51, . . . ,N!. ~15!

With this notation, we read off from Ref. 15, Eq.~3.41! that

K )
l 51

N

zl
(h12h2)/2u11zl uh11h2~11tzl !

mL
CbEN

}K )
l 51

m

@12~12t !xl #
NL

J(4/b)Em

U
l152(h22m11)/b21

l252(h111)/b21

.

~16!

But we want to makê ) l 51
n (t2xl)

m&J(2l)En
the quantity being transformed, so~16! requires

manipulation. For this we write

t°12
1

t
, m↔N,

2

b
5l, N5n. ~17!

Noting that then

h15
1

l
~l211!21, h25

1

l
~l111!1n21, ~18!

multiplying both sides of~16! by tmN and taking the complex conjugate of the left-hand side
~16! shows

K )
l 51

n

~ t2xl !
mL

J(2l)En

5AK )
l 51

m

zl
([(l12l2)/l] 2n)/2u11zl u [(l11l212)/l] 1n22@ t~11zl !21#nL

C(2/l)Em

, ~19!
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whereA, the proportionality constant, is independent oft. To specifyA requires, in addition to the
Selberg integral~13!, the so-called Morris integral,

Mn~a,b,l!ªS 1

2p D nE
2p

p

du1 ¯ E
2p

p

dun)
l 51

n

zl
(a2b)/2u11zl ua1b )

1< j ,k<n
uzk2zj u2l. ~20!

Then settingt51 in ~19! shows that

A5
Sn~l1 ,l21m,l!

Sn~l1 ,l2 ,l!

Mm~0,0,1/l!

Mm~h2 ,h1,1/l!
, ~21!

whereh1 and h2 are given by~18!. Both the Selberg integral and Morris integral have ex
evaluations in terms of products of gamma functions~see, e.g., Ref. 1!. In the casel51 these read

Sn~a,b,1!5 )
j 50

n21
G~a111 j !G~b111 j !G~21 j !

G~a1b111n1 j !

5
G~n111a!

G~11a!

G~n111b!

G~11b!

G~n111a1b!

G~2n111a1b!
G~n12!, ~22!

Mn~a,b,1!5 )
j 50

n21
G~a1b111 j !G~21 j !

G~a111 j !G~b111 j !

5
G~n111a1b!

G~11a1b!

G~11a!

G~n111a!

G~11b!

G~n111b!
G~n12!, ~23!

where G(z) denotes the BarnesG-function, related to the gamma function by the function
equation,

G~z11!5G~z!G~z!. ~24!

B. Asymptotics

Our interest is in the asymptotic form of the J(2l)En average in~19! in the casel51 andm
even. The experience of our previous study,7 in which we studied the same product averaged o
the Gaussian unitary ensemble~eigenvalue p.d.f. of complex Hermitian matrices with Gauss
entries! using a result known in the literature19 ~see also Ref. 20!, tells us the related quantity,

Zn,l1 ,l2
~~X,q!!

Zn1q,l1 ,l2
~~•,0!!

, ~25!

where

Zn,l1 ,l2
~~X,q!!5Xl1q~12X!l2qE

0

1

dX1 ¯ E
0

1

dXn)
l 51

n

Xl
l1~12Xl !

l2uX2Xl u2q

3 )
1< j ,k<n

uXk2Xj u2 ~26!

is better suited for the purpose. In addition to multiplying the JUEn average in~19! by the
t-dependent factortl1m/2(12t)l2m/2, a key feature of~25! is the normalization chosen so that
the interpretation of~26! as the configuration integral for a log-potential Coulomb gas the n
malization has the same total charge.
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It follows from ~19!, ~21!, and noting

Zn1q,l1 ,l2
~~•,0!!5Sn1q~l1 ,l2,1!, ~27!

that we have the duality formula for~25! with q5m/2, m even

Zn,l1 ,l2
~~ t,m/2!!

Zn1m/2,l1 ,l2
~~•,0!!

5
Sn~l1 ,l21m,1!

Sn1m/2~l1 ,l2,1!Mm~l11n,l2,1!
tl1m/2~12t !l2m/2

3S 1

2p D mE
2p

p

du1 ¯ E
2p

p

dum)
l 51

m

zl
(l12l22n)/2u11zl ul11l21n@ t~11zl !21#n

3 )
1< j ,k<m

uzk2zj u2

5
Sn~l1 ,l21m,1!

~2p!mSn1m/2~l1 ,l2,1!Mm~l11n,l2,1!
I n~ t !, ~28!

where

I n~ t !ªtl1m/2~12t !l2m/2E
C m

dx1 ¯ dxm)
l 51

m

~xl !
l11l21n~xl21!2(l21n1m)~ txl21!n

3 )
1< j ,k<m

~xk2xj !
2. ~29!

In ~29!, C is any simple closed contour starting atxj50 in the complex plane and encirclingxj

51 anticlockwise without crossing the intervalxjP(0,1). We obtain the second equality in~28!
by writing the integrand in a form without absolute value signs, changing variables

du j5
1

izj
dzj , ~30!

then changing variableszj °xj21.
The largen, fixed tP(0,1) asymptotic analysis of an integral very similar to~29! has been

detailed in Ref. 14, and that analysis in turn follows the stationary phase analysis of a r
multiple integral given in Ref. 11. Now, then-dependent terms in the integrand ofI n(t) are

xj
n~12xj !

2n~12txj !
n5exp@n~ logxj2 log~12xj !1 log~12txj !!#. ~31!

As noted in Ref. 14, a simple calculation shows that the stationary point of the exponent o
when

xj516 i F1

t
~12t !G1/2

5..x6 . ~32!

This suggests we deform the contours so thatm/2 integration variables, (x1 , . . . ,xm/2) say, pass
through x1 , and the remaining pass throughx2 . We must then expand the integrand in t
neighborhood of these stationary points. Because we have made a definite choice of thm/2
variables, we must multiply by the combinatorial factor (m/2

m ). Another factor of (21)m/2 comes
from the sense of the deformed contour being opposite forx1 andx2 . From Ref. 14 we know tha
expanding the exponent in~31! to second order in (x62xj ) gives

exp@n~ logxj2 log~12xj !1 log~12txj !!#;expF2
na

2
~xj2x6!2G , ~33!
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where

a5
t2

~12tx6!2 1
1

x6
2 2

1

~12x6!2 . ~34!

Regarding the leading order expansion of the other terms in the integrand we have

)
1< j ,k<m

~xk2xj !
2;~x12x2!2(m/2)2 )

1< j ,k<m/2
~xk2xj !

2 )
m/211< j ,k<m

~xk2xj !
2, ~35!

)
j 51

m

~xj !
l11l2~xj21!2(l21m);ux1u(l11l2)mu12x1u2(l21m)m. ~36!

Hence,

I n~ t !;~21!m/2S m
m/2D @ tl1~12t !l2#m/2~x12x2!2(m/2)2ux1u(l11l2)mu12x1u2(l21m)m

3U E
2`

`

dx1 ¯ E
2`

`

dxm/2)
l 51

m/2

expF2na

2
xl

2G )
1< j ,k<m/2

~xk2xj !
2U2

5~21!m/2S m
m/2D @ tl1~12t !l2#m/2~x12x2!2(m/2)2ux1u(l11l2)mu12x1u2(l21m)m

3unau2(m/2)2~Vm/2!
2, ~37!

where

Vm/2ªE
2`

`

dx1 ¯ E
2`

`

dxm/2)
l 51

m/2

expF2
1

2
xl

2G )
1< j ,k<m/2

~xk2xj !
2. ~38!

From Ref. 14,

ux1u5A1

t
, u12x1u5A12t

t
, ux12x2u52A12t

t
, uau5

2t3/2

~12t !1/2, ~39!

so ~37! simplifies to read

I n~ t !;S m
m/2D2(m/2)2n2(m/2)2@ t~12t !#2m2/8~Vm/2!

2. ~40!

Furthermore, we recognizeVm/2 as a limiting case of the Selberg integral known as the Me
integral,21 which has the evaluation,

Vm/25~2p!m/4 )
j 50

m/221

G~21 j !5~2p!m/4G~m/212!. ~41!

Recalling~28!, our remaining task is to compute the asymptotic form of the combinatio
Selberg integrals and the Morris integral therein. According to~22! and ~23!, for this we require
knowledge of the asymptotic expansion of the BarnesG-function. In fact Barnes himself showed22

logS G~n1a11!

G~n1b11! D ;
n→`

~b2a!n1
a2b

2
log~2p!1S ~a2b!n1

a22b2

2 D logn1o~1!. ~42!
                                                                                                                



atrix

4164 J. Math. Phys., Vol. 44, No. 9, September 2003 Forrester, Frankel, and Garoni

                    
Using this we find

Sn~l1 ,l21m,1!

Sn1m/2~l1 ,l2,1!Mm~l11n,l2,1!
;

nm2/22m/2

G~m12!
. ~43!

Substituting~41! in ~40!, then substituting the result together with~43! in ~28! we obtain the
sought asymptotic formula,

Zn,l1 ,l2
~~ t,q!!

Zn1q,l1 ,l2
~~•,0!!

;
1

pq

G2~q11!

G~2q11!
~2n!2q1q2

@ t~12t !#2q2/2, ~44!

where we have setm/25q and use has been made of the functional equation~24!. We note that the
right-hand side of~44! is independent of the parametersl1 andl2 .

A check on our workings to this stage is the special caseq51. Then~25! coincides with the
eigenvalue density in the JUE,rJUE(X), normalized so that its integral on@0, 1# is unity. Setting
q51 in ~44! we read off that

rJUE~X!;
1

p
~X~12X!!21/2, ~45!

which is indeed the known functional form~see, e.g., Ref. 1!.

III. ASYMPTOTIC FORM OF THE DENSITY MATRICES

Consider the impenetrable Bose gas ofN11 particles confined to the interval@0,L# with
Dirichlet boundary conditions. We know from Ref. 2 that the ground state density m
rN11

D (x,y) is given by

rN11
D ~x,y!5

~N11!

C S sin
px

L D S sin
py

L D E
0

L

dx1 ¯ E
0

L

dxN)
l 51

N

sin2
pxl

L

3Ucos
px

L
2cos

pxl

L UUcos
py

L
2cos

pxl

L U )
1< j ,k<N

Ucos
pxk

L
2cos

pxj

L U2

, ~46!

where

C5E
0

L

dx1 ¯ E
0

L

dxN11 )
l 51

N11

sin2
pxl

L )
1< j ,k<N11

Ucos
pxk

L
2cos

pxj

L U2

. ~47!

Let us now change variables,

cos
pxj

L
52Xj21 ~48!

in both ~46! and ~47!, and let us define

rN11
D ~X,Y!ªrN11

D ~x,y!ucospx/L52X21
cospy/L52Y21

. ~49!

Then in terms of the generalization of~26!,
                                                                                                                



und

e

in the

4165J. Math. Phys., Vol. 44, No. 9, September 2003 Random matrix averages and the Bose gas

                    
Zn,l1 ,l2
~~X,q1!,~Y,q2!!5uX2Yu2q1q2Xl1q1~12X!l2q1Yl1q2~12Y!l2q2E

0

1

dX1 ¯ E
0

1

dXn

3)
l 51

n

Xl
l1~12Xl !

l2uX2Xl u2q1uY2Xl u2q2 )
1< j ,k<n

uXk2Xj u2 ~50!

we have

rN11
D ~X,Y!5

pr

uX2Yu1/2@X~12X!#1/4@Y~12Y!#1/4
ZN,1/2,1/2~~X,1/2!,~Y,1/2!!

ZN11,1/2,1/2~~•,0!,~•,0!!
, ~51!

whererªN/L.
Similar considerations apply to the impenetrable Bose gas ofN11 particles confined to the

interval @0,L# with Neumann boundary conditions. Again from Ref. 2 we know that the gro
state density matrixrN11

N (x,y) is given by

rN11
N ~x,y!5

~N11!

C E
0

L

dx1 ¯ E
0

L

dxN)
l 51

N Ucos
px

L
2cos

pxl

L UUcos
py

L
2cos

pxl

L U
3 )

1< j ,k<N
Ucos

pxk

L
2cos

pxj

L U2

, ~52!

where

C5E
0

L

dx1 ¯ E
0

L

dxN11 )
1< j ,k<N11

Ucos
pxk

L
2cos

pxj

L U2

. ~53!

Defining

rN11
N ~X,Y!ªrN11

N ~x,y!ucospx/L52X21
cospy/L52Y21

~54!

and changing variables according to~48! in ~52! and ~53! shows

rN11
N ~X,Y!5

pr

uX2Yu1/2@X~12X!#1/4@Y~12Y!#1/4
ZN,21/2,21/2~~X,1/2!,~Y,1/2!!

ZN11,21/2,21/2~~•,0!,~•,0!!
. ~55!

As already noticed in Refs. 6, 7, the log-gas interpretation of~50! allows us to predict that for
largen it factorizes into a function ofX and the same function ofY, which are themselves of th
form ~26!. Explicitly, we expect

Zn,l1 ,l2
~~X,q1!,~Y,q2!!

Zn1q11q2 ,l1 ,l2
~~•,0!,~•,0!!

;
Zn,l1 ,l2

~~X,q1!!

Zn1q1 ,l1 ,l2
~~•,0!!

Zn,l1 ,l2
~~Y,q2!!

Zn1q2 ,l1 ,l2
~~•,0!!

. ~56!

As in ~26!, the key to choosing the correct normalizations is to balance the total charge
log-gas interpretation. Settingq15q25q as required by~51! and ~55! it follows from ~56! that

Zn,l1 ,l2
~~X,q!,~Y,q!!

Zn12q,l1 ,l2
~~•,0!,~•,0!!

;S 1

pq

G2~q11!

G~2q11!
~2n!2q1q2D 2

@X~12X!#2q2/2@Y~12Y!#2q2/2.

~57!

Substituting this asymptotic form withq51/2 in ~51! and~55! we obtain that for largeN and fixed
X,YP(0,1),
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rN11
D ~X,Y!;rN11

N ~X,Y!;r
G4~3/2!

A2N

@X~12X!#1/8@Y~12Y!#1/8

uX2Yu1/2 . ~58!

It is of interest to compare the asymptotic formula~58! against a numerical determination o
say rN11

D (X,Y) or more convenientlyrN11
D (X,12X). To compute the latter we write it as

random matrix average. Thus it follows from the various definitions that

rN11
D ~X,12X!5

8r

N11
X~12X!K )

l 51

N

~ u4~12X!24Xl u!~ u4X24Xl u!L
JUEN

U
l15l251/2

. ~59!

For each k51,2,. . . , M suppose we sample from JUENul15l251/2 obtaining the N-tuple

(X1
(k) ,X2

(k) , . . . ,XN
(k)). Then the method of Monte Carlo integration tells us that

rN11
D ~X,12X!5

8r

N11
X~12X!

1

M (
k51

M

)
l 51

N

~ u4~12X!24Xl
(k)u!~ u4X24Xl

(k)u!1OS 1

AM
D .

~60!

Fortuitously, we have available a recently discovered23 random three term recurrence which ge
erates a polynomial, the zeros of which have the p.d.f. J(2l)En . In the case of interest (l15l2

51/2, l51) the recurrence states

A0~x!51,

A1~x!5x2BD@n11/2,n11/2#,

Aj~x!5~w2~x21!1w0x!Aj 21~x!1w1x~x21!Aj 22~x! ~ j 52, . . . ,n!, ~61!

where with

aPGD@n112 j 11/2,1#, bPGD@ j 21,1/2#, cPGD@n112 j 11/2,1#, ~62!

anddªa1b1c we have

w05
a

d
, w15

b

d
, w2512w02w1 . ~63!

Here BD@a,b# denotes the classical beta distribution, while GD@m,s# denotes the classica
gamma distribution. The theory of Ref. 23 tells us thatAn(x) has its zeros distributed according
JUEnul15l25l . Implementing~61! for fixed n we thus computed the samples required in~60! for

the Monte Carlo evaluation ofrN11
D (X,12X). Forming the ratio then with the asymptotic form

~58! gave the data in Table I.

IV. PHYSICAL AND MATHEMATICAL IMPLICATIONS

A. Ground state occupation of effective single particle states

The ground state density matrix is the theoretical quantity which quantifies the conden
of a Bose system. Thus if we decompose the density matrix

rN~x,y!5(
j 50

`

l jf j~x!f j~y!, ~64!

where thel j ,f j are the eigenvalues and normalized eigenfunctions in the eigenvalue prob
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E rN~x,y!f j~y! dy5l jf j~x!, ~65!

then by analogy with the free Fermi system in which~64! holds with l j51 ( j 50, . . . ,N21),
l j50 ( j >N), we see that thel j have the physical interpretation as the occupation number
effective single particle statesf j (x). For Bose–Einstein condensation to occur we must havel0

proportional toN.
To study ~65! in the case of the impenetrable Bose gas in Dirichlet or Neumann boun

conditions we restrict ourselves to largeN where use can be made of the asymptotic form of
density matrices~58!. Before making the substitution, recalling the definitions~49! and ~54! we
must first change variables in~65! and redefine the eigenfunctions so that

cospy/L52Y21, f j~Y!5f j~y!ucospy/L52Y21 , f j~X!5f j~x!ucospx/L52X21 . ~66!

Doing this we obtain, for largeN, the integral equation

AN

2

G4~3/2!

p E
0

1 @X~12X!#1/8@Y~12Y!#1/8

uX2Yu1/2 f j~Y!
dY

AY~12Y!
5l jf j~X!. ~67!

It follows immediately that

l j}AN. ~68!

As noted in Ref. 7 this conclusion requires thatj be fixed—for j @N we expectl j}(N/ j )4 in
keeping with the corresponding result in periodic boundary conditions, since in this regim
boundary conditions are not expected to play a role.

Setting

l j5
G4~3/2!

&p
ANl̄ j ~69!

and rearranging,~67! reads

E
0

1 f j~Y!

uX2Yu1/2

dY

@Y~12Y!#3/85l̄ j

f j~X!

@X~12X!#1/8. ~70!

TABLE I. The ratiorN11
D,MC(X,12X)/rN11

D (X,12X) whererN11
D,MC(X,12X)

refers to the Monte Carlo expression~60!, while rN11
D (X,12X) is the

asymptotic form ~58!. We choseN514, and evaluated~60! with M
55000.

X rN11
D,MC(X,12X)/rN11

D (X,12X)

0.025 1.0958
0.075 1.0039
0.125 1.0363
0.175 1.0098
0.225 0.9439
0.275 1.0080
0.325 0.9692
0.375 1.0338
0.425 0.9706
0.475 1.1309
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Remarkably the effective single particle ground statef0(X), and the corresponding scaled occ
pation numberl̄0 can be computed exactly from~70!. To see this requires knowledge of a pie
of integral equation theory presented in Porter and Stirling.24 The relevant theory tells us that th
solution of the integral equation,

E
0

1 f~ t !

ux2tun
dt51, n,1 ~71!

is

f~x!5
1

p S cos
pn

2 D @x~12x!# (n21)/2. ~72!

Settingn51/2, it follows immediately that

f0~X!5
1

AA
@X~12X!#1/8, l̄05p& ~73!

satisfies~71!, where the normalizationA is determined by the requirement that

L

p E
0

1

~f0~X!!2
dX

AX~12X!
51, ~74!

and so

A5
L

p
B~3/4,3/4!, ~75!

whereB(a,b) denotes the beta function. Substituting the exact evaluation ofl̄0 in ~69! shows that
in the largeN limit,

l05G4~3/2!AN51.3069AN. ~76!

To compute the higher order single particle states and their corresponding occupatio
make the ansatz,

f j~X!}f0~X!pj~X!, ~77!

wherepj (X) is a polynomial of degreej . Now $f j (X)% can always be chosen to be orthogon
~note that the measure isdX/AX(12X) on @0, 1#! so recalling~73! we require

E
0

1 pj~X!pk~X!

~X~12X!!1/4dX50, j Þk. ~78!

Up to normalization, the unique polynomials with this property are the particular Gegen
polynomials

pj~X!5Cj
1/4~2X21!, ~79!

which we note are proportional to the particular Jacobi polynomialsPj
21/4,21/4(2X21). Normal-

izing ~77! with the substitution~79! as in ~74! shows

f j~X!5A1

L
Aj ! ~ j 11/4!G2~1/4!

G~ j 11/2!
~X~12X!!1/8Cj

1/4~2X21!. ~80!
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Now substituting~80! in ~70! and settingX51 we obtain a definite integral forl̄ j which can be
found in Ref. 25, giving us the evaluation

l̄ j5A2p
G~ j 11/2!

j !
~81!

and hence

l j5G4~3/2!
G~ j 11/2!

Ap j !
AN. ~82!

To arrive at~80! we have made the ansatz~77!. In fact a different approach can be taken to t
problem, in which it is shown that an integral operator following from~70! commutes with the
differential operator determining the polynomials$Cj

1/4(2X21)% j 50,1,2, . . . . This is done in the
Appendix.

Finally, we note that substituting~58!, ~80!, and ~81! in ~64! gives the following interesting
identity:

1

uX2Yu1/25A2

p
G2~1/4!(

j 50

`

~ j 11/4!Cj
1/4~2X21!Cj

1/4~2Y21!. ~83!

B. Generalized Fisher–Hartwig-type asymptotics

One viewpoint of our asymptotic analysis of multiple integrals of the form~50! is that we are
studying asymptotic problems of the Fisher–Hartwig class. Let us recall that the latter
literally to Toeplitz determinants with both zeros and jump discontinuities is its generating
tion,

DN@ea(u)#ªdet@ai 2 j # i , j 51, . . . ,N , ea(u)5 (
p52`

`

apeipu, ~84!

where

a~u!5g~u!2 i (
r 51

R

br@p2~u2f r !#mod 2p1(
r 51

R

ar logu222 cos~u2f r !u ~85!

with

g~u!5 (
p52`

`

gpeipu, (
p52`

`

upuugpu2,`. ~86!

Thusg(u) is a regular term, while atf r (r 51, . . . ,R) there is a jump discontinuity of strengthbr

and a zero of orderar . To see the relationship with~50! we setbr50 (r 51, . . . ,R) thus elimi-
nating the jump discontinuities, and recall the general formula relating a Toeplitz determinan
multiple integral,

DN@ea(u)#5
1

N! E0

2p

du1 ¯ E
0

2p

duN)
l 51

N

ea(u l ) )
1< j ,k<N

ueiuk2eiu j u2

5
1

N! E0

2p

du1 ¯ E
0

2p

duN)
l 51

N

eg(u l )S )
r 51

R

ueiu l2eifru2ar D )
1< j ,k<N

ueiuk2eiu j u2.

~87!
                                                                                                                



e
f

ent

4170 J. Math. Phys., Vol. 44, No. 9, September 2003 Forrester, Frankel, and Garoni

                    
Fisher and Hartwig26 conjectured that in the case~87!,

DN@ea(u)#;eg0Ne(r 51
R ar

2 log NE, ~88!

whereE is independent ofN. This was subsequently proved, and it was furthermore shown

E5eSk51
` kgkg2k)

r 51

R

e2ar (g(fr )2g0) )
1< j ,k<R

ueifk2eif j u22akaj )
r 51

R
G2~11ar !

G~112ar !
~89!

~see, for example, the monograph27 and references therein!.
As noted by one of the present authors some years ago,28 it is straightforward to reproduce th

structure of~88! using the analogous log-gas argument to that used here in the analysis o~50!.
Now the ~normalized! multiple integral corresponding to~87! which relates to~50! is

Hn,l1 ,l2
@eh(x)) r 51

R uyr2xu2qr#

Hn,l1 ,l2
@1#

, ~90!

Hn,l1 ,l2
@ f ~x!#ªE

0

1

dx1 ¯ E
0

1

dxn)
l 51

n

f ~xl !xl
l1~12xl !

l2 )
1< j ,k<n

uxk2xj u2, ~91!

whereh(x) is analytic on~0,1!. As our final issue, we would like to extend the log-gas argum
used in the analysis of~50! to predict the largen asymptotic form of~90!.

From the log-gas perspective, the natural quantity to analyze is

)
1< j ,k<r

uyk2yj u2qjqk

Hn,l1 ,l2
@eh(x)) r 51

R uyr2xu2qr#

Hn1(
r 51
R qr ,l1 ,l2

@eh(x)#
. ~92!

Analogous to~56! we expect for largen ~92! to factorize as

Hn,l1 ,l2
@eh(x)) r 51

R uyr2xu2qr#

Hn1(
r 51
R qr ,l1 ,l2

@eh(x)#
;)

r 51

R

e2qrh(yr )
Hn,l1 ,l2

@ uyr2xu2qr#

Hn1qr ,l1 ,l2
@1#

, ~93!

where the second expression is motivated by inspection of the known results~88! and ~89! for
~87!.

Thus we expect

Hn,l1 ,l2
@eh(x)) r 51

R uyr2xu2qr#

Hn,l1 ,l2
@1#

; )
1< j ,k<r

uyk2yj u22qjqk

Hn1(
r 51
R qr ,l1 ,l2

@eh(x)#

Hn,l1 ,l2
@1#

3)
r 51

R

e2qrh(yr )
Hn,l1 ,l2

@ uyr2xu2qr#

Hn1qr ,l1 ,l2
@1#

. ~94!

But according to~44!,
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Hn,l1 ,l2
@ uyr2xu2qr#

Hn1qr ,l1 ,l2
@1#

;
1

pqr

G2~qr11!

G~2qr11!
~2n!2qr1qr

2
~yr~12yr !!2qr

2/2. ~95!

Also, for the first ratio on the right hand side of~94! we have available both rigorous results29,30

as well as log-gas type arguments31 which together tell us that

Hn1Q,l1 ,l2
@eh(x)#

Hn,l1 ,l2
@1#

;expFn1Q1~l11l2!/2

p E
0

1 h~x!

@x~12x!#1/2dxGexpF2
l11l2

4
~h~0!1h~1!!G

3expF 1

4p2 E
0

1

dx
h~x!

@x~12x!#1/2E
0

1

dy
h8~y!@y~12y!#1/2

x2y G . ~96!

Substituting~95! and ~96! in ~93! gives the analog of~88!,

Hn,l1 ,l2
@eh(x)) r 51

R uyr2xu2qr#

Hn,l1 ,l2
@1#

;expFn1( r 51
R qr1~l11l2!/2

p E
0

1 h~x!

@x~12x!#1/2dxG
3expF (

r 51

R

~2qr1qr
2!log 2nGK, ~97!

where

K5 )
1< j ,k<R

uyk2yj u22qjqke2(l11l2)[h(0)1h(1)]/4e2(r 51
R qrh(yr )

3expF 1

4p2 E
0

1

dx
h~x!

@x~12x!#1/2E
0

1

dy
h8~y!@y~12y!#1/2

x2y G
3)

r 51

R

@yr~12yr !#
2qr

2/2)
r 51

R
1

pqr

G2~qr11!

G~2qr11!
. ~98!

C. Concluding remarks

In our first paper on the impenetrable Bose gas2 we set ourselves the goal of providing th
leading asymptotic form of the density matrix for the impenetrable Bose gas in a harmoni
and in Dirichlet and Neumann boundary conditions. It was noted in Ref. 2 that for the im
etrable Bose gas in periodic boundary conditions, the Fisher–Hartwig formula gave the asym
form,

rN11
C ~x;0!;r

G4~3/2!

A2p
S p

N sin~prx/N! D
1/2

. ~99!

In Ref. 7, it was shown that for the harmonic well

~2N!1/2rN11
H ~A2NX,A2NY!;N1/2

G4~3/2!

p

~12X2!1/8~12Y2!1/8

uX2Yu1/2 , ~100!

while in the present paper, after changing variables according to~49!, the asymptotic form of the
density matrix is shown to have the leading asymptotic form~58!. As a consequence of the scalin
properties of these asymptotic forms, the occupation number of the low lying effective s
particle states are all proportional toAN, but with a proportionality constant dependent on t
particular system.
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To obtain the asymptotic forms we have used a combination of exact analysis, made p
by the theory of Selberg correlation integrals, and physical reasoning based on log-gas ana
Taking this argument to its logical conclusion leads to a conjectured exact asymptotic for
given by ~97! and ~98! for a Jacobi weight analog of the Fisher–Hartwig formula.
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APPENDIX: PROOF THAT ˆf0„X…Cj
1Õ4
„2XÀ1…‰ jÄ0,1,2, . . . ARE SOLUTIONS OF THE

INTEGRAL EQUATION „70…

The assertion that thef j (X) given by~77! are solutions of~70! is equivalent to stating that th
Gegenbauer polynomials are eigenfunctions of the integral operator,

K@ f ~j!#ªE
21

1 dc

uj2cu1/2~12c2!1/4 f ~c!, ~A1!

where for convenience we are working on the interval21<j<1. In this appendix we prove tha
K commutes with the differential operator,L, which determines the Gegenbauer polynomials

Lª~12j2!
d2

dj2 2
3

2
j

d

dj
, ~A2!

with

LCj
1/4~j!52 j ~ j 11/2!Cj

1/4~j!. ~A3!

We begin by identifyingK@Cj
1/4(j)# with the following finite sum of hypergeometric func

tions:

K@Cj
1/4~j!#5V j (

k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
S 11j

2 D 1/4

2F1S 1

4
2k,

3

4
;
5

4
;
11j

2 D
1~21! jV j (

k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
S 12j

2 D 1/4

2F1S 1

4
2k,

3

4
;
5

4
;
12j

2 D , ~A4!

where

V jª
G~3/4!

G~5/4!

G~ j 11/2!

j !
. ~A5!

To derive ~A4! we break up the interval of integration inK@Cj
1/4(j)# into two regions, thus

removing the need for the modulus, which gives

K@Cj
1/4~j!#5E

j

1

~12c2!21/4Cj
1/4~c!

dc

Ac2j
1~21! jE

2j

1

~12c2!21/4Cj
1/4~c!

dc

Ac1j

5z2
1/4E

0

1

dc c21/4~12c!21/2~12z2c!21/4Cj
1/4~122z2c!

1~21! j z1
1/4E

0

1

dc c21/4~12c!21/2~12z1c!21/4Cj
1/4~122z1c!, ~A6!

where we have defined
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z6ª
16j

2
~A7!

and in obtaining the second equality we have changed integration variables fromc to (1
2c)/(12j) and (12c)/(11j) in the first and second integrals respectively. Substituting
following known25 expansion for the Gegenbauer polynomials

Cj
1/4~c!5

~21! jG~ j 11/2!

j !Ap
(
k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
S 11c

2 D k

~A8!

into ~A6!, and using the standard integral representation of the2F1 function,

E
0

1

dc
c21/4~12c!21/2

~12zc!2k11/4 5B~3/4,1/2!2F1S 1

4
2k,

3

4
;
5

4
;zD , ~A9!

then results in~A4!.
We can now utilize known hypergeometric identities to facilitate the operation of the d

ential operatorL on the expression forK@Cj
1/4(j)# given by ~A4!. We note that the structure o

~A4! is of the form,

K@Cj
1/4~j!#5V jSj~z1!1~21! jV jSj~z2!, ~A10!

where

Sj~z!ª(
k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
z1/4

2F1S 1

4
2k,

3

4
;
5

4
;zD . ~A11!

In terms of both the variablesz5z1 andz5z2 the differential operatorL has the form

L5z~12z!
d2

dz2 2
3

4
~2z21!

d

dz
. ~A12!

Utilizing the identity32

dn

dzn Fzd
pFqS a1 , . . . ,ap

r1 , . . . ,rq
UzD G5~d2n11!nzd2n

p11Fq11S d11,a1 , . . . ,ap

d112n,r1 , . . . ,rq
UzD , ~A13!

we find that

Lz1/4
2F1S 1

4
2k,

3

4
;
5

4
;zD5

z1/4

z S 2
3

16D ~12z! 2F1S 1

4
2k,

3

4
;2

3

4
;zD

1
z1/4

z S 2
3

16D ~2z21! 2F1S 1

4
2k,

3

4
;
1

4
;zD , ~A14!

Lz1/4
2F1S 1

4
2k,

3

4
;
5

4
;zD52

1

2
z1/4k 2F1S 1

4
2k,

3

4
;
5

4
;zD2

1

4
z1/4k 2F1S 1

4
2k,

3

4
;
1

4
;zD ,

~A15!
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Lz1/4
2F1S 1

4
2k,

3

4
;
5

4
;zD52z1/4kS k1

1

2D 2F1S 1

4
2k,

3

4
;
5

4
;zD

2z1/4kS 1

4
2kD 2F1S 1

4
2~k21!,

3

4
;
5

4
;zD , ~A16!

where the equalities in~A15! and ~A16!, respectively, follow from the two particular contiguit
relations,32

S 2
3

16D ~12z!2F1S 1

4
2k,

3

4
;2

3

4
;zD5

1

16
@~624k!z23#2F1S 1

4
2k,

3

4
;
1

4
;zD

2
kz

2 2F1S 1

4
2k,

3

4
;
5

4
;zD , ~A17!

and

2
1

4 2F1S 1

4
2k,

3

4
;
1

4
;zD52k 2F1S 1

4
2k,

3

4
;
5

4
;zD2S 1

4
2kD 2F1S 1

4
2~k21!,

3

4
;
5

4
;zD .

~A18!

Hence from~A16! we obtain

LSj~z!52z1/4(
k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
kS 1

2
1kD 2F1S 1

4
2k,

3

4
;
5

4
;zD

2z1/4(
k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
kS 1

4
2kD 2F1S 1

4
2~k21!,

3

4
;
5

4
;zD . ~A19!

Changing summation index in the second sum in~A19! from k to k21 and simplifying we deduce
finally that

LSj~z!52 j ~ j 11/2!(
k50

j
~2 j !k~ j 11/2!k

k! ~3/4!k
z1/4

2F1S 1

4
2k,

3

4
;
5

4
;zD52 j ~ j 11/2!Sj~z!,

~A20!

which then implies that

LKCj
1/4~j!52 j ~ j 11/2!KCj

1/4~j! ~A21!

5KLCj
1/4~j! ~ j 50,1,2, . . .! ~A22!

and so

@K,L#50. ~A23!
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Entropy production fluctuations of finite Markov chains
Da-Quan Jiang,a) Min Qian, and Fu-Xi Zhangb)

LMAM, School of Mathematical Sciences, Peking University,
Beijing 100871, People’s Republic of China

~Received 6 September 2002; accepted 14 April 2003!

For almost every trajectory segment over a finite time span of a finite Markov chain
with any given initial distribution, the logarithm of the ratio of its probability to that
of its time-reversal converges exponentially to the entropy production rate of the
Markov chain. The large deviation rate function has a symmetry of Gallavotti–
Cohen type, which is called the fluctuation theorem. Moreover, similar symmetries
also hold for the rate functions of the joint distributions of general observables and
the logarithmic probability ratio. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1581971#

I. INTRODUCTION

Stationary nonequilibrium states play an important role in statistical physics and have
studied since Boltzmann’s time. In 1993, Evans, Cohen, and Morriss1 found in computer simula-
tions that the natural invariant measure of a stationary nonequilibrium system has a sym
which, being called later the fluctuation theorem by Gallavotti and Cohen,2–5 gives a general
formula for the probability ratio of observing trajectories that satisfy or violate the second la
thermodynamics. Since then there have been many derivations and generalizations of the
tion theorem. Motivated by the result in Ref. 1, Gallavotti and Cohen6 gave the first mathematica
presentation of the fluctuation theorem for stationary nonequilibrium systems modelled by h
bolic dynamical systems: Provided that the dynamics is invariant under time reversal a
sufficiently chaotic, the probability distributions of the phase space contraction averaged
large time spans have a large deviation property and the large deviation rate function
symmetry. Evans and Searles7–13 considered transient, rather than stationary, nonequilibrium
tems and employed a known equilibrium state~such as the Liouville measure! as the initial
distribution to derive a transient fluctuation theorem. Gallavotti14 and Evanset al.13,15 proposed a
local version of the fluctuation theorem. Kurchan16 pointed out that the fluctuation theorem al
holds for certain diffusion processes. Lebowitz and Spohn17 extended Kurchan’s results to gener
Markov processes, and Maes18 thought of the fluctuation theorem as a property of space–t
Gibbs measures. Searles and Evans19 derived the transient fluctuation theorem for non-station
stochastic systems.

For systems close to equilibrium, the distribution of trajectories over a finite time interva
little difference from that of their time reversals, and the fluctuation theorem yields the
known Green–Kubo formula and the Onsager reciprocity relations,3,17,18,20,21i.e., the symmetry of
the transport coefficients matrix which relate thermodynamic ‘‘forces’’ and ‘‘fluxes.’’ Surprisin
the fluctuation theorem is also valid for systems in the nonlinear response regime far from
librium. In this sense, the fluctuation theorem can be thought of as an extension of the fluctu
dissipation theorem, which holds for systems in the linear response regime close to equilib

The concept of entropy production was first put forward in nonequilibrium statistical phy
to describe how far a specific state of a system is away from its equilibrium state.22–24 In Refs.
25–27, a measure-theoretic definition of entropy production rate is proposed for stochast
cesses, unifying different entropy production formulas in various concrete cases. Supposej

a!Electronic mail: jiangdq@math.pku.edu.cn
b!Electronic mail: zhangfxi@math.pku.edu.cn
41760022-2488/2003/44(9)/4176/13/$20.00 © 2003 American Institute of Physics
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5$jn%nPZ is a stationary, irreducible and positive recurrent Markov chain with finite state spaS,
transition probability matrixP5(pi j ) i , j PS , and invariant distributionP5$p i% i PS . Let P andP2

be the distributions of the Markov chain and its time-reversal respectively, and denote
restrictions onF 0

n5s(j i ,0< i<n) by P[0,n] andP[0,n]
2 . The entropy production rate ofj is defined

as

ep5
def

lim
n→1`

1

n
H~P[0,n] ,P[0,n]

2 !,

where H(P[0,n] ,P[0,n]
2 ) is the relative entropy ofP[0,n] with respect toP[0,n]

2 . A sufficient and
necessary condition forP[0,n] and P[0,n]

2 being mutually absolutely continuous is thatpi j

.0⇔pji .0 for any i , j . Under this assumption,

ep5EP[0,n] log
dP[0,n]

dP[0,n]
2 5

1

2 (
i , j PS

~p i pi j 2p j pj i !log
p i pi j

p j pj i
. ~1!

For a stationary Markov process, its entropy production rate can be defined similarly. In Re
and 28–30, the entropy production rateep of a stationary finite Markov chain is expressed
terms of cycles, which occur along almost all sample paths, and their weights. Recently,
et al.31 gave a measure-theoretic exposition of the entropy production rate for hyperbolic dy
cal systems, which was defined by Ruelle32 from the physical point of view. Maeset al.33 pre-
sented a definition of entropy production rate for some classes of deterministic and stoc
dynamics in the context of Gibbs measures.

In this paper, we prove the following strong limit theorem for a stationary irreducible fi
Markov chain with discrete or continuous time parameter:

lim
t→1`

1

t
log

dP[0,t)

dP[0,t)
2 ~v!5ep , P2a.s.

Furthermore, the convergence of the corresponding distributions is shown to be exponenti
the large deviation rate functionI (z) satisfies a symmetry:I (z)5I (2z)2z for any zPR; this is
actually the fluctuation theorem of Gallavotti–Cohen type for finite Markov chains. The pro
based on the well-known Perron–Frobenius theorem.34–37The statement of the theorem appear
in the pioneering paper Lebowitz and Spohn,17 which also contained a proof. Here we presen
mathematically strict proof. Part of the idea and techniques in our paper comes from Ref.
which it is sincerely acknowledged. Moreover, we give a strict but very simple proof to
fluctuation theorem for the logarithmic probability ratios and for the joint distributions of th
with general observables. We also discuss the transient fluctuation theorem for nonsta
Markov chains with discrete or continuous time parameter.

II. FINITE MARKOV CHAINS WITH DISCRETE TIME PARAMETER

To bring the main ideas into eminence, in this section we first treat the simplest caj
5$jn :nPZ% will be from now on a stationary irreducible discrete time Markov chain on pr
ability space ~V,F,P! with finite state spaceS5$1,2,...,d%, transition probability matrixP
5(pi j ) i , j PS , and invariant probability distributionP5$p i% i PS . Without loss of generality, we
assume thatj is a coordinate process on its canonical trajectory space~V,F,P!. That is,V5SZ,
F5s$jn :nPZ% andP is the distribution ofj. Now we introduce two transformations: the tim
reversal transformation

r :V→V, jn~rv!5j2n~v!, ;nPZ;

and the shift operator
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u:~V,F!→~V,F!, jn~uv!5jn11~v!, ;nPZ.

It is easy to see thatr andu areF-measurable and invertible withr 215r . Sincej is stationary,
unP5P, which yieldsunP25P2 becauseru5u21r , whereP25rP is the distribution ofj’s time
reversal. The stationary Markov chainj is said to be reversible ifP5P2. As is well known,j is
reversible if and only if the entropy production rateep of j vanishes, or iffp i pi j 5p j pj i for any
i , j PS, i.e. j is in detailed balance.25–27

For eachnPZ andkPN, denote byP[n,n1k] andP[n,n1k]
2 , respectively, the restrictions ofP

and P2 on F n
n1k5s(jm :n<m<n1k). We assume that the transition matrixP satisfies the

condition

pi j .0⇔pji .0, ; i , j PS. ~2!

Otherwise,P[0,n] is not absolutely continuous with respect toP[0,n]
2 , and by the definition of

relative entropy,H(P[0,n] ,P[0,n]
2 ) is infinite for all nPN, henceep51`. This is a trivial case.

Proposition 2.1: Under the condition (2), P[n,n1k] andP[n,n1k]
2 are absolutely continuous with

respect to each other, and the Radon–Nikodym derivative is given by

dP[n,n1k]

dP[n,n1k]
2 ~v!5

pjn(v)pjn(v)jn11(v)¯pjn1k21(v)jn1k(v)

pjn1k(v)pjn1k(v)jn1k21(v)¯pjn11(v)jn(v)
, P2a.s.

Notice that (1/n) EP log(dP[0,n] /dP[0,n]
2 ) converges to the entropy production rateep of j,

which is given in~1!. In fact, we can get a stronger result.
Proposition 2.2: Under the condition (2),

lim
n→1`

1

n
log

dP[0,n]

dP[0,n]
2 ~v!5ep , P2a.s. or L1~dP!.

Proof: Let

f ~v!5 log
pj0(v)pj0(v)j1(v)

pj1(v)pj1(v)j0(v)
,

then

1

n
log

dP[0,n]

dP[0,n]
2 ~v!5

1

n
log

pj0(v)pj0(v)j1(v)¯pjn21(v)jn(v)

pjn(v)pjn(v)jn21(v)¯pj1(v)j0(v)

5
1

n (
k50

n21

log
pjk(v)pjk(v)jk11(v)

pjk11(v)pjk11(v)jk(v)

5
1

n (
k50

n21

f ~ukv!, P2a.s.

By the Birkhoff ergodic theorem,38

lim
n→1`

1

n
log

dP[0,n]

dP[0,n]
2 ~v!5 lim

n→1`

1

n (
k50

n21

f ~ukv!5E f dP5ep , P2a.s. or L1~dP!. h

There will naturally arise the question what is the convergence rate. The large deviation
provides us a way to calculate this rate. LetWn(v)5 log(dP[0,n] /dP[0,n]

2 )(v) and cn(l)
5(logEelWn)/n. It is not difficult to see thatWn /n takes finitely many values andelWn(v).0,
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P2a.s. Thus, according to Theorem II.6.1 in Ellis,39 in order to verify$mn :nPZ1%, wheremn is
the distribution ofWn /n, has a large deviation property, we only need to verify the free ene

function c(l)5
def

limn→1` cn(l) of $Wn :nPZ1% exists and is differentiable.
Theorem 2.3: For all lPR, limn→1` cn(l) exists and the free energy function c(l) of

$Wn :nPZ1% is differentiable.
Proof: From Proposition 2.1,

EelWn5 (
i 0 ,i 1 , ¯ ,i n :

pi 0i 1
¯pi n21i n

.0

p i 0
pi 0i 1

¯pi n21i nS p i 0
pi 0i 1

¯pi n21i n

p i n
pi 1i 0

¯pi ni n21

D l

5 (
i 0 ,i 1 , ¯ ,i n

p i 0
ai 0i 1

~l!¯ai n21i n
~l!S p i 0

p i n
D l

,

where

ai j ~l!5H pi j
11lpji

2l , pi j .0,

0, pi j 50.

It is obvious thatpi j .0⇔ai j (l).0. HenceA(l)5(ai j (l)) is an irreducible nonnegative matrix
By the Perron–Frobenius theorem, the spectral radiuse(l) of A~l! is a positive eigenvalue o
A~l! with one-dimensional eigenspace$kaW :kPR%, whereaW 5(a1 ,a2 ,...,ad)T anda i.0 for all
i PS.

For any givenl.0, denote

C05max
i , j

S p i

p j
D l

, amin5min
i

a i , amax5max
i

a i .

Then

1

C0amax
pW A~l!naW <EelWn<

C0

amin
pW A~l!naW ,

wherepW 5(p1 ,p2 ,...,pd). Hence

lim
n→1`

1

n
logEelWn5 lim

n→1`

1

n
logpW A~l!naW 5 loge~l!,

wheree(l) is differentiable because it is the simple eigenvalue of a differentiable matrixA~l!
~see Ref. 37 for details!. h

By now, we have verified the fact that$mn :nPZ1% has a large deviation property with ra
function I (z)5suplPR$lz2c(l)%. Sincecn(•), nPN, andc(•) are all finite, andc(•) is differ-
entiable atl50, by Theorem II.6.3 in Ellis,39 Wn /n converges exponentially to the consta
c8(0). From Proposition 2.2,c8(0) equals the entropy production rateep of the stationary Markov
chain j. Furthermore, the innate symmetry of$Wn% implies the symmetry of its free energ
function and rate function.

Theorem 2.4: (Fluctuation theorem) The free energy function c(l) and the large deviation
rate function I(z) of $Wn :nPZ1% have the following properties:

c~l!5c~2~11l!!, ;lPR, I ~z!5I ~2z!2z, ;zPR.

Proof: SinceP andP2 are reciprocal under the time-reversal transformation,
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dP[0,n]

dP[0,n]
2 ~rv!5

dP[ 2n,0]
2

dP[ 2n,0]
~v!5

dP[0,n]
2

dP[0,n]
~u2nv!5S dP[0,n]

dP[0,n]
2 ~u2nv! D 21

.

Thus

EelWn5E S dP[0,n]

dP[0,n]
2 ~v! D l

dP~v!

5E S dP[0,n]

dP[0,n]
2 ~rv! D l

dP2~v!

5E S dP[0,n]

dP[0,n]
2 ~u2nv! D 2l

dP2~v!

5E S dP[0,n]

dP[0,n]
2 ~v! D 2(11l)

dP~v!5Ee2(11l)Wn.

This yieldsc(l)5c(2(11l)), and hence

I ~z!5 sup
lPR

$lz2c~l!%5 sup
lPR

$lz2c~2~11l!!%

5 sup
lPR

$2~11l!z2c~l!%5 sup
lPR

$l•~2z!2c~l!%2z5I ~2z!2z. h

We could regardWn(v)/n5 (1/n)log(dP[0,n] /dP[0,n]
2 )(v) as the time-averaged entropy pr

duction rate of the sample trajectoryv of the stochastic system modelled by the Markov chainj.
Roughly speaking, the fluctuation theorem gives a formula for the probability ratio that the sa
entropy production rateWn /n takes a valuez to that of2z, and the ratio is roughlyenz. If the
Markov chainj is reversible,I (0)50 and I (z)51` for any zÞ0. In this case the fluctuation
theorem gives a trivial result. However, if the Markov chainj is not reversible, forz.0 in a
certain range, the sample entropy production rateWn /n has a positive probability to take the valu
z.0 as well as the value2z. The fluctuation theorem tells that the former probability is grea
which accords with the second law of thermodynamics.

Now we discuss the transient fluctuation theorem for non-stationary Markov chains. As
that j̃5$j̃n :nPZ1% is an irreducible finite Markov chain on its canonical trajectory sp
(Ṽ,F̃,P̃) with finite state spaceS and transition probability matrixP5(pi j ) i , j PS as j. Suppose
that the initial distributionn ~not necessarily invariant! satisfiesn i.0 for any i PS. Denote the
distributions of the trajectory segments ofj over a finite time interval@0,n# and their time
reversals byP̃[0,n] andP̃[0,n]

2 , respectively. LetW̃n5 log(dP̃[0,n] /dP̃[0,n]
2 ). From the above presen

tation, one can easily see that$m̃n :n>0%, the family of distributions of$W̃n /n:n>0%, also has a
large deviation property and$W̃n% has the same free energy function as$Wn%, which yields that
$m̃n% has the same large deviation rate function as$mn% and thus the rate function has a symmet
Moreover, for anyn.0,zPR, it holds that

P̃S W̃n

n
5zD 5P̃S dP̃[0,n]

dP̃[0,n]
2

5enzD 5P̃[0,n]S dP̃[0,n]

dP̃[0,n]
2

5enzD 5enzP̃[0,n]
2 S dP̃[0,n]

dP̃[0,n]
2

5enzD
5enzP̃[0,n]S dP̃[0,n]

2

dP̃[0,n]

5enzD 5enzP̃S W̃n

n
52zD .
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SinceS is finite, W̃n /n only takes a finite number of values and both sides of the above equ
may simultaneously be equal to zero. However, in case one can divide over, the above equa
be written as

P̃S W̃n

n
5zD

P̃S W̃n

n
52zD 5enz.

Such an equality is called the transient fluctuation theorem by Evanset al.7–13,19

III. FINITE MARKOV CHAINS WITH CONTINUOUS TIME PARAMETER

In this section, we will discuss the same problem in the case of continuous time. The em
is much more oriented to detailed mathematical analysis and estimates. Letj5$j t :tPR% be a
stationary, irreducible Markov chain on a probability space~V,F,P! with finite state spaceS
5$1,...,d%, conservativeQ-matrix Q5(qi j ) i , j PS , and invariant distributionP5$p i% i PS . With-
out loss of generality, we suppose that~V,F,P! is the canonical trajectory space ofj, and its
trajectories are right continuous having left limits. Since the time-reversed trajectories ar
continuous having right limits, we should modify them. Define the time-reversal transform
and the shift operator as

r :~V,F!→~V,F!, j t~rv!5 lim
s↑2t

js~v!, ;tPR,

u t:~V,F!→~V,F!, js~u tv!5js1t~v!, ;s,tPR.

r ,u t are F-measurable and invertible withr 215r , ru t5u2tr , u tP5P and u tP25P2, where
P25rP. The stationary Markov chainj is said to be reversible ifP5P2. As is well known,j is
reversible if and only if the entropy production rateep of j vanishes, or iffp iqi j 5p jqj i for any
i , j PS.26,27,29 Similarly as in the discrete time case, we assume that theQ-matrix satisfies the
condition

qi j .0⇔qji .0, ; i , j PS. ~3!

For eachsPR and tPR1, denote byP[s,s1t) andP[s,s1t)
2 , respectively, the restrictions ofP and

P2 on F s
s1t5s(ju :s<u,s1t), then we have the following proposition.

Proposition 3.1: Under the condition (3), P[s,s1t) and P[s,s1t)
2 are absolutely continuous with

respect to each other, and the Radon–Nikodym derivative is given by

dP[s,s1t)

dP[s,s1t)
2 U

Ai 0i 1¯ i n
(t)

5
p i 0

qi 0i 1
¯qi n21i n

p i n
qi ni n21

¯qi 1i 0

, P2a.s.,

where

Ai 0i 1¯ i n
~ t !5$vPV:v jumps n times in@s,s1t !, and the states are i0 ,...,i n in turn%.

Proof: DenoteT05s and the jump times in the interval@s,s1t) by T1(v),T2(v),... in turn.
For anyn>0, i 0 ,i 1 ,...,i nPS, 0,s1,¯,sn,sn115t and smallds1 ,...,dsn.0 ~such thatsk

1dsk,sk11 , k51,...,n), denote

A5$vPAi 0i 1¯ i n
~ t !:sk<Tk~v!,sk1dsk , k51,...,n%.
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Then

P~A!5E
s1

s11ds1
dt1E

s2

s21ds2
dt2¯E

sn

sn1dsn
dtn

3E
t

1`

dtn11p i 0
qi 0i 1

¯qi n21i n
qi n

e2qi 0
t1e2qi 1

(t22t1)
¯e2qi n

(tn112tn)

5E
s1

s11ds1
dt1E

s2

s21ds2
dt2¯E

sn

sn1dsn
dtnp i 0

qi 0i 1
¯qi n21i n

3e2qi 0
t1e2qi 1

(t22t1)
¯e2qi n21

(tn2tn21)e2qi n
(t2tn).

Since

rA5$vPAi ni n21¯ i 0
~ t !:t2~sn112k1dsn112k!<Tk~v!,t2sn112k , k51,...,n%,

it follows that

P2~A!5P~rA !5E
t2(sn1dsn)

t2sn
dt1E

t2(sn211dsn21)

t2sn21
dt2¯E

t2(s11ds1)

t2s1
dtnp i n

qi ni n21
¯qi 1i 0

3e2qi n
t1e2qi n21

(t22t1)
¯e2qi 1

(tn2tn21)e2qi 0
(t2tn)

5E
s1

s11ds1
dt1E

s2

s21ds2
dt2¯E

sn

sn1dsn
dtnp i n

qi ni n21
¯qi 1i 0

3e2qi 0
t1e2qi 1

(t22t1)
¯e2qi n21

(tn2tn21)e2qi n
(t2tn)

5
p i n

qi ni n21
¯qi 1i 0

p i 0
qi 0i 1

¯qi n21i n

P~A!.

Notice that suchA’s as above generateF[s,s1t) , then one obtains the desired result immediate
h

The entropy production rateep of the stationary Markov chainj can be defined by

ep5
def

lim
t→1`

1

t
H~P[0,t) ,P[0,t)

2 !5 lim
t→1`

1

t
EP log

dP[0,t)

dP[0,t)
2 ,

or equivalently, as in Refs. 26 and 27, by

ep5
def

lim
t↓01

1

t
H~P[s,s1t) ,P[s,s1t)

2 !5 lim
t↓01

1

t
EP log

dP[s,s1t)

dP[s,s1t)
2 ,

wheresPR. The equivalence is a direct consequence of Theorem 10.4 in Varadhan.40 In Refs. 26,
28, and 29, an entropy production formula was given forj:

ep5
1

2 (
i , j PS

~p iqi j 2p jqj i !log
p iqi j

p jqj i
. ~4!

Employing Proposition 3.1 and~6!, ~7! below, it is not difficult to prove this formula strictly.
Proposition 3.2: Under the condition (3),
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lim
t→1`

1

t
log

dP[s,s1t)

dP[s,s1t)
2 ~v!5ep , P2a.s.

Proof: Let Nt(v) be the number of jumps ofv in the interval@s,s1t), Nt( i , j ,v) be the
number of jumps fromi to j of v in the interval@s,s1t) and$Xk%kPZ1 be the embedded chain o
j defined byXk5jTk

. By Proposition 3.1,

1

t
log

dP[s,s1t)

dP[s,s1t)
2 ~v!5

1

t (
n50

1` S log
pX0(v)

pXn(v)
1 (

k50

n21

log
qXk(v)Xk11(v)

qXk11(v)Xk(v)
D 1$Nt5n%~v!

5
1

t (
n50

1`

1$Nt5n%~v!log
pX0(v)

pXn(v)

1 (
i , j PS

(
n50

1`

(
k50

n21
1

t
1$Nt5n%~v!1$Xk5 i ,Xk115 j %~v!log

qi j

qji

5
1

t (
n50

1`

1$Nt5n%~v!log
pX0(v)

pXn(v)
1 (

i , j PS

1

t
Nt~ i , j ,v!log

qi j

qji
, ~5!

where 1A(•) is the indicator function of the eventAPF. For any t1 ,t2>0 and i , j PS,
Nt11t2

( i , j ,v)5Nt1
( i , j ,v)1Nt2

( i , j ,u t1v), P2a.s. By the subadditive ergodic theorem,38 for any
d.0, it holds that

lim
n→1`

1

nd
Nnd~ i , j ,v!5 inf

n

1

nd
ENnd~ i , j ,• !5

1

d
ENd~ i , j ,• !, P2a.s.

For anyt, there existn(t)PZ1 and r (t)P@0,d) such thatt5n(t)d1r (t), thus

1

t
Nt~ i , j ,v!5

1

t
Nn(t)d~ i , j ,v!1

1

t
Nr (t)~ i , j ,un(t)dv!, P2a.s.

Consequently,

lim
t→1`

1

t
Nn(t)d~ i , j ,v!5

1

d
ENd~ i , j ,• !, P2a.s.

Now we would like to prove that limt→1` Nr (t)( i , j ,u
n(t)dv)/t50, P2a.s. For any given

i 0 ,i 1 ,...,i nPS,

P~Ai 0i 1¯ i n
~ t !!5E

0

t

dtnE
0,t1,t2,¯,tn

dt1 dt2¯dtn21p i 0
qi 0i 1

¯qi n21i n
e2qi n

t)
k51

n

e(qi k
2qi k21

)tk

<p i 0
qi 0i 1

¯qi n21i n

tn

n!
. ~6!

Hence for anyn,

P~Nt~v!5n!< (
i 0 , ¯ ,i n
i kÞ i k11

p i 0
qi 0i 1

¯qi n21i n

tn

n!
<

~maxi qi t !
n

n!
. ~7!

For any«.0,
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(
n50

1`

P~Nd~ i , j ,v!.n«!< (
n50

1`

P~Nd~v!.n«!

5 (
n50

1`

(
k.n«

P~Nd~v!5k!

5 (
k51

1`

(
0<n,k«21

P~Nd~v!5k!

<(
k51

1`

P~Nd~v!5k!~k«2111!,1`.

Since the process is stationary,P(Nd( i , j ,undv).n«)5P(Nd( i , j ,v).n«) for any n.0. This
together with the Borel–Cantelli lemma yields that

PS ' a sequence$tk>0%kPN s.t. tk↑1` and
1

tk
Nr (tk)~ i , j ,un(tk)dv!.«,;kPND

<P@Nd~ i , j ,undv!.n« infinitely often#50.

HenceP2a.s., limt→1` (1/t) Nr (t)( i , j ,u
n(t)dv)50. So for any givend.0, it holds that

lim
t→1`

1

t
Nt~ i , j ,v!5

1

d
ENd~ i , j ,• !, P2a.s., ~8!

whereENd( i , j ,•)5(n51
1` ENd( i , j ,•)1$Nd5n%(•). On one hand,

1

d
ENd~ i , j ,• !1$Nd51%~• !5

1

d
P~Nd~v!51,Nd~ i , j ,v!51!

5
1

d E0

d
p iqi j e

2qjde(qj 2qi )t dt→p iqi j , as d→01.

On the other hand, from~7!

1

d (
n52

1`

ENd~ i , j ,• !1$Nd5n%~• !<
1

d (
n52

1`

nP~Nd~v!5n!→0, as d→01.

Hence (1/d) ENd( i , j ,•)5p iqi j , which together with~5! and ~8! yields that

lim
t→1`

1

t
log

dP[s,s1t)

dP[s,s1t)
2 ~v!5(

i , j
p iqi j log

p iqi j

p jqj i
5ep , P2a.s. h

Let Wt(v)5 log(dP[0,t) /dP[0,t)
2 )(v), m t be the distribution ofWt /t andct(l)5(logEelWt)/t.

According to Theorem II.6.1 in Ellis39 ~modified for continuous time parameter!, in order to verify
$m t :tPR1% has a large deviation property, we only need to provect(l) is finite and the free

energy functionc(l)5
def

limt→1` ct(l) of $Wt :tPR1% exists and is differentiable.
Proposition 3.3: For any t.0 and lPR, ct(l) is finite.
Proof: For anyi PS, by Proposition 3.1, it holds that
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Ei~ t,l!5
def

E~elWtuj05 i !5 (
n50

1`

(
i 1 , ¯ ,i n :

qii 1
qi 1i 2

¯qi n21i n
.0

S p iqii 1
qi 1i 2

¯qi n21i n

p i n
qi ni n21

¯qi 2i 1
qi 1i

D l

P~Aii 1 . . . i n
~ t !uj05 i !.

~9!

From ~6! and ~7!,

(
i 1 , ¯ ,i n :

qii 1
qi 1i 2

¯qi n21i n
.0

S p iqii 1
qi 1i 2

¯qi n21i n

p i n
qi ni n21

¯qi 2i 1
qi 1i

D l

P~Aii 1 . . . i n
~ t !uj05 i !<Bl

~ClDt !n

n!
,

whereB5maxi,j pi /pj , C5max$qij /qji :qij.0% andD5maxi qi . HenceEi(t,l),1` andEelWt

5( ip iEi(t,l),1`. On the other hand, it is easy to seeEelWt.0. Thus ct(l)
5 (1/t)logEelWt is finite. h

Theorem 3.4: For all lPR, limt→1` ct(l) exists and the free energy function c(l) of
$Wt :tPR1% is differentiable.

Proof: From ~6!,

d

dt
P~Ai 0i 1¯ i n

~ t !!52qi n
P~Ai 0i 1¯ i n

~ t !!1qi n21i n
P~Ai 0i 1¯ i n21

~ t !!. ~10!

By Proposition 3.1 andP25rP, it holds that

P~Ai 0i 1¯ i n
~ t !!5

p i 0
qi 0i 1

¯qi n21i n

p i n
qi ni n21

¯qi 1i 0

P~Ai ni n21¯ i 0
~ t !!.

This together with~10! yields that

d

dt
P~Ai 0i 1¯ i n

~ t !!52qi 0
P~Ai 0i 1¯ i n

~ t !!1
p i 0

qi 0i 1

p i 1

P~Ai 1i 2¯ i n
~ t !!,

and it follows that

d

dt
P~Ai 0i 1¯ i n

~ t !uj05 i 0!52qi 0
P~Ai 0i 1¯ i n

~ t !uj05 i 0!1qi 0i 1
P~Ai 1¯ i n

~ t !uj05 i 1!.

Taking differentials on both sides of~9! with respect tot, we get

d

dt
Ei~ t,l!52qiEi~ t,l!1 (

j :qi j .0
qi j S p iqi j

p jqj i
D l

Ej~ t,l!. ~11!

Let

E~ t,l!5S E1~ t,l!

¯

Ed~ t,l!
D , l i j ~l!5H 2qi , if i 5 j ,

qi j S p iqi j

p jqj i
D l

, if qi j .0,

0, if qi j 50.

15S 1
]

1
D .

SinceE(0,l)51, ~11! yields E(t,l)5eL (l)t1, whereL (l)5( l i j (l)). Thus

ct~l!5
1

t
logEelWt5

1

t
log(

i
p iEi~ t,l!5

1

t
logpW eL (l)t1, ~12!
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wherepW 5(p1 ,p2 ,...,pd). It is easy to see thatqi j .0⇔ l i j (l).0 andqi j 50⇔ l i j (l)50. Since
Q is irreducible, the Taylor expansion ofeL (l)t at t50,

eL (l)t5I1L ~l!t1
1

2!
L ~l!2t21¯1

1

n!
L ~l!ntn1o~ tn!,

tells that for anyi , j PS, there is ad( i , j ).0 such that@eL (l)t# i j .0 for anytP(0,d( i , j )#. Hence
eL (l)d.0 for any sufficiently smalld, which yields that it holds for alld.0. For a fixedd.0, by
the Perron–Frobenius theorem, the spectral radiuse(l,d) of eL (l)d is a positive eigenvalue o
eL (l)d with one-dimensional eigenspace. This together with~12! yields that

c~l!5 lim
t→1`

ct~l!5d21 loge~l,d!.

c(l) is differentiable becauseL (l) is differentiable and so areeL (l)d ande(l,d). h

Also the innate symmetry of$Wt% implies symmetries of its free energy function and ra
function. The proof is exactly the same as that of Theorem 2.4.

Theorem 3.5: (Fluctuation theorem) The free energy function c(•) and the large deviation
rate function I(•) of $Wt :tPR1% satisfy

c~l!5c~2~11l!!, ;lPR, I ~z!5I ~2z!2z, ;zPR.

As in the discrete-time case, the transient fluctuation theorem holds for nonstationary M
chains with continuous-time parameter. Suppose thatj̃5$j̃ t :t>0% is a Markov chain on its
canonical trajectory space (Ṽ,F̃,P̃) with the same state spaceS and the sameQ-matrix Q as those
of j. Assume that the initial distributionn ~may not invariant! satisfiesn i.0 for all i PS. Denote
the distributions of the trajectory segments ofj over a finite time interval@0,t) and their time
reversals byP̃[0,t) andP̃[0,t)

2 , respectively. LetW̃t5 log(dP̃[0,t) /dP̃[0,t)
2 ). From the above presenta

tion, one can see that$m̃ t :t>0%, the family of the distributions of$W̃t /t:t>0%, also has a large
deviation property and$W̃t% has the same free energy function as$Wt%, which yields that$m̃ t% has
the same large deviation rate function as$m t% and thus the rate function has a symmetry. We a
have

P̃S W̃t

t
5zD 5etzP̃S W̃t

t
52zD , ;t.0,zPR.

IV. FLUCTUATIONS OF GENERAL OBSERVABLES

With the assumptions and notation of the stationary case in Sec. II, letw:S→R be an observ-
able and Fn(v)5(k50

n w(jk(v))5(k50
n w(j0(ukv)). Clearly, Fn satisfies Fn(rv)

5Fn(u2nv) for any vPV. From the Birkhoff ergodic theorem, it follows that limn→1` Fn /n
5EPw. Use the Perron–Frobenius theorem, then one sees that

c~l1 ,l2!5
def

lim
n→1`

1

n
logEel1Wn1l2Fn

exists and is differentiable with respect tol1 ,l2 . Thus$mn :n>0%, the family of the distributions
of $(Wn /n,Fn /n):n>0%, has a large deviation property with rate functionI (z1 ,z2)
5supl1 ,l2PR$l1z11l2z22c(l1 ,l2)%. It is not difficult to find that c(l1 ,l2)5c(2(1

1l1),l2) andI (z1 ,z2)5I (2z1 ,z2)2z1 . In general, let$FW n :n>0% and$CW n :n>0% be two sets
of random vectors on~V, F, P!, whereFW n and CW n are F 0

n measurable. Provided that the fre
energy function
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c~l,nW ,gW !5
def

lim
n→1`

1

n
logEelWn1^nW ,FW n&1^gW ,CW n&

exists and is differentiable, it holds that$mn :n>0%, the family of the distributions of

$ (1/n) (Wn ,FW n ,CW n):n>0%, has a large deviation property with rate functionI (z,uW ,vW )
5supl,nW ,gW $lz1^nW ,uW &1^gW ,vW &2c(l,nW ,gW %.

Theorem 4.1: If FW n(rv)5FW n(u2nv) and CW n(rv)52CW n(u2nv) for any n>0 and v
PV, it holds that

c~l,nW ,gW !5c~2~11l!,nW ,2gW !, I ~z,uW ,vW !5I ~2z,uW ,2vW !2z.

Proof: For any givenl,nW ,gW ,

EelWn1^nW ,FW n&1^gW ,CW n&5E S dP[0,n]

dP[0,n]
2 ~v! D l

e^nW ,FW n(v)&1^gW ,CW n(v)& dP~v!

5E S dP[0,n]

dP[0,n]
2 ~rv! D l

e^nW ,FW n(rv)&1^gW ,CW n(rv)& dP2~v!

5E S dP[0,n]

dP[0,n]
2 ~u2nv! D 2l

e^nW ,FW n(u2nv)&1^gW ,2CW n(u2nv)& dP2~v!

5Ee2(11l)Wn1^nW ,FW n&1^2gW ,CW n&.

The desired result follows immediately. h

Remark:The same result still holds for the continuous time case.
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A direct calculation of the free energy from the Bethe
ansatz equation for the Heisenberg model

Go Katoa) and Miki Wadatib)

Department of Physics, Graduate School of Science, University of Tokyo,
Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
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Thermodynamics of the XXX Heisenberg model is studied. The trace of the
Boltzmann weight with respect to the Hilbert space is taken in the thermodynamic
limit with the number of up-spins being fixed. The expression of the trace gives an
explanation why the correct thermodynamic quantities are derived from the string
hypothesis. A combination of this with the previous result leads to a conclusion that
the free energy can be calculated only from the Bethe ansatz equation. The method
is more direct than other known methods which were used to derive the free
energy. © 2003 American Institute of Physics.@DOI: 10.1063/1.1592610#

I. INTRODUCTION

There are two well-known methods to calculate the free energy for quantum integrabl
tems. One is the thermodynamic Bethe ansatz~TBA! method,1 and the other is the quantum
transfer matrix~QTM! method.2–6 Both methods, however, are still unsatisfactory. In TBA ca
we assume the form of the entropy. And we use the string hypothesis7,8 for some models, whose
validity is not yet proved. While QTM is a general formulation, it is difficult to analyze
resultant equations. We solve them asymptotically or numerically. In this paper, we present a
method whereby the free energy is derived without logical jumps, assumptions and num
supports.

We treat the spin-half XXX Heisenberg chain. The Hamiltonian of the system is

H52J(
j 51

L

~Sj
xSj 11

x 1Sj
ySj 11

y 1Sj
zSj 11

z !2h(
j 51

L

Sj
z1constant, ~1.1!

whereL is the total number of sites,J is the coupling constant andh expresses the external field
This model is interesting since it has bound states, and correspondingly the Bethe equation
complex solutions. Throughout the paper, we assume periodic boundary condition, and use
which makesJ51.

We briefly summarize our previous work9 on this system. We suppose the expression ofZM ,
the trace of the Boltzmann weight with respect to the Hilbert space in which the numb
up-spins is fixed to beM . An infinite sum(MZM defined by the expression is analyzed by use
combinatorial relations. Then, it is proved that the free energy2kBT log (MZM can be expressed
in term of the function which satisfies an integral equation. The result perfectly agrees wi
free energy derived from a different method.10

Our purpose is to derive directly the expression

ZM[Tr e2bHM, b51/kBT ~1.2!

5
ehM

M ! (
uPQM

F )
sPu

Ns! G (
zPQ̄(u)

m~ 0̂u ,z!F )
u8Pz

E
2`

`

dxu8GU]I

]xU
L,z

e2bE(z)

~1.3!

a!Electronic mail: kato@monet.phys.s.u-tokyo.ac.jp
b!Electronic mail: wadati@phys.s.u-tokyo.ac.jp
41890022-2488/2003/44(9)/4189/12/$20.00 © 2003 American Institute of Physics
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in the thermodynamic limitL→`. All the notation in~1.3! are explained in the following sections
Here, HM denotes the Hamiltonian~1.1! acting on the Hilbert space in which the number
up-spins is restricted to a constantM . In this paper, we use only the Bethe ansatz; the eigenen
E of HM is given by

E1hM5 (
m51

M
2

xm
2 11

, ~1.4!

where$xm% satisfies the Bethe equations,

Fxm1 i

xm2 i G
L

5 )
m8Þm

xm2xm812i

xm2xm822i
, ~1.5!

which are due to periodic boundary condition. Note that~1.3! is the expression ofZM supposed in
the previous paper.9 We thus complete a new method to derive the free energy of this sy
independent of TBA and QTM.

The derivation goes as follows. First, we express the trace in a series with respect to so
of the Bethe equations, which constitute a complete set of the system. Next, the series are r
by integrals over pseudomomenta. The replacement, however, has a difficulty, because th
equations have complex solutions. The difficulty is resolved by taking a ‘‘good’’ integral p
Finally, changing the integral path into a straight line on the complex plane,ZM in ~1.3! is
obtained.

We also show that the expression ofZM gives a reason why the string hypothesis, that is,
substitution of the Bethe equations for string center equations, is appropriate. The substituti
critical procedure when we apply the thermodynamic Bethe ansatz to an integrable system
has bound states.

The outline of this paper is the following. In Sec. II, we derive the expression~1.3! under the
condition M52 only from the Bethe ansatz. In Sec. III, we outline the derivation ofZM in
arbitrary M case. In Sec. IV, we reformulate the results in graphical expressions. In Sec.
examine the string hypothesis by use of thus proved expression ofZM . The last section is devote
to the concluding remarks. Technical details of calculations and proofs are very complicate
therefore we write them in a separate paper.

II. DERIVATION OF Z2 FROM BETHE EQUATIONS

To explain the essence of the method, we consider theM52 case. With the eigenenergiesE
~1.4! for M52, Z2 becomes

2Z2e2bh25( expS 2b (
m51

2
2

xm
2 11D . ~2.1!

Here,( without subscript means a summation over all the different physical solutions of the B
equations. It is interpreted as a summation with respect to a set of integers$I 1 ,I 2% corresponding
to a physical solution, where$I 1 ,I 2% is related to$x1 ,x2% by

Fx11 i

x12 i G
L

5e22p i I 1Fx12x212i

x12x222i G and ~1↔2!. ~2.2!

Note thatI 1 , I 2 are so-called quantum numbers and they are usually used when Eqs.~2.2! are
written in logarithm forms. They are included in~2.2! to show explicitlyI 1 , I 2-dependences ofx1 ,
x2 . We say that a solution of the Bethe equations is a ‘‘physical solution’’ if and only if the
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pseudomomentax1 ,x2 of the solution do not have ‘‘same value.’’ The words ‘‘different’’ an
‘‘same value’’ will be explained later.

Equation~2.1! can be written as

2Z2e2bh25 (
I 1 ,I 2

expS 2b (
m51

2
2

xm
2 11D 2(

I
expS 2b

4

x211D , ~2.3!

wherex15x1(I 1 ,I 2), x25x2(I 1 ,I 2) are functions ofI 1 and I 2 . The first double summations ar
over all the solutions of the Bethe equations~2.2! and the second summation is over the solutio
of the following equation:

Fx1 i

x2 i G
L

52e22p i I . ~2.4!

In ~2.3!, extinction of nonphysical states from the sum is realized by the subtraction of the s
term.

By using the Poisson formula

(
n

f ~n!5 (
m52`

` E f ~n!e2p inm dn, ~2.5!

we express~2.3! as

2Z2e2bh25 (
m1 ,m252`

` E E expS 2b (
m51

2
2

xm
2 11

12p i ~m1I 11m2I 2!D dI 1 dI 2

2 (
m52`

` E expS 2b
4

x211
12p i ~mI! DdI . ~2.6!

The most important matter in~2.6! is the definition of the paths of the multiple integrals. For t
Poisson formula we define the paths as follows: The paths are manifolds on whichI 1 ,I 2 ,I is a set
of real numbers andx1 ,x2 ,x are continuously distributed. The orientation of the integral paths
chosen so that the values of integrals*dI 1 dI 2 and *dI for any part of the integral path ar
positive. The above definition explicitly characterizes the second integral in~2.6!: we may take the
integral path with respect tox to be (2`,`).

For rewriting ~2.1! into ~2.6!, it is necessary to define the words ‘‘different’’ and ‘‘sam
value.’’ We regard $x1 ,x2PC or `% in Eq. ~2.2! as a multivalued vector function o
$e2p i I 1,e2p i I 2Þ0,̀ %. Whetherx1 andx2 take the ‘‘same value’’ or not depends on neighborhoo
of the point$x1 ,x2% on the Riemann surface defined by the function. We call thatx1 andx2 take
the ‘‘same value’’ if and only if there is a point$x18 ,x28% in any neighborhood wherex185x28 and
x1,2Þx1,28 . In casex15x2Þ`,6 i , this definition indicates thatx1 andx2 take the ‘‘same value.’’
Therefore, in almost all the region of variables$x1 ,x2%, this definition leads to a valid definition
of the ‘‘physical solution.’’ Next, ‘‘different’’ is defined as follows. Solutions of~2.2! correspond-
ing to different points on the Riemann surface are ‘‘different,’’ where we regard~2.2! as an
equation for$x1 ,x1% fixing $e2p i I 1,e2p i I 2% to be constants. At any point on the Riemann surfa
the number of ‘‘different’’ solutions is estimated by

lim
e→0

max number of points onRe corresponding to the same$e2p i I 18,e2p i I 28%, ~2.7!

where Re is an e-neighborhood of the point on the Riemann surface. Summarizing the a
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considerations, we can say that the point on the Riemann surfacex1 ,x25`, I 1 ,I 25 integer cor-
responds to two ‘‘different’’ solutions, and to two ‘‘physical solutions.’’ But, there is only o
eigenstate corresponding to the point. We interpret this as follows. The ‘‘values’’x1 andx2 are not
the ‘‘same value,’’ and one of the ‘‘physical solutions’’ is given by exchanging the ‘‘values’’x1 ,x2

of the other ‘‘physical solution.’’
We consider an integral, that is the first term in~2.6!,

(
m1 ,m252`

` E E expS 2b (
m51

2
2

xm
2 11

12p i ~m1I 11m2I 2!D dI 1 dI 2 ~2.8!

along the integral path

US x12 i

x11 i D
LS x12x212i

x12x222i D U5A1 and ~1↔2!, ~2.9!

whereA1 andA2 are constants. The integral~2.8! does not depend onA1,2 in case 0,A1,2,`.
The reason is that the integrand on the path is bounded, and the dimension of the nona
region, i.e.,x1 ,x256 i or `, on the Riemann surface$e2p i I 1,e2p i I 2% is sufficiently small. It is to
be noted that we define the orientation of the path so that an integral**dI 1 dI 2 for any part of the
path is positive.

Using the above fact, we can change the integral path of the multiple integral~2.8! into the
path ~2.9!. DefiningA1,2 as a set of sufficiently small real numbers, we have

~2.8!5 (
m1 ,m252`

` E
ux22 i u501

E
ux12 i u501

U ]~ I 1 ,I 2!

]~x1 ,x2!
UexpS 2b (

m51

2
2

xm
2 11D

3S x12 i

x11 i D
m1LS x22 i

x21 i D
m2LS x12x212i

x12x222i D
m12m2

dx1 dx2 , ~2.10!

whereux1,22 i u501 indicates the integral path thatx1,2 turns around a pointi anticlockwise. The
Jacobian from (I 1 ,I 2) to (x1 ,x2) is denoted byu](I 1 ,I 2)/](x1 ,x2)u. This expression~2.10! en-
ables us to evaluate the upper bound for the absolute value of the sum without the term
sponding tom1 ,m250. The upper bound is estimated asCe2cL whereC andc do not depend on
L. Then, in the thermodynamic limit the terms corresponding tom1Þ0 or m2Þ0 can be ne-
glected. Hereafter, we drop these terms.

We change the integral path fromuxs2 i u501 into (2`,`). From ~2.10!, we have

~2.8!5E
2`

` E
2`

` U ]~ I 1 ,I 2!

]~x1 ,x2!
UexpS 2b (

m51

2
2

xm
2 11D dx1 dx21E

2`

` S 8L

~x1 i !214D
3expS 2b

4

~x1 i !214D dx

2p
. ~2.11!

The second term in the above represents a residue which the modification of the integra
generates.

We shift the integral path of the variablesx in ~2.11! from (2`,`) to (2`2 i ,`2 i ), and
rewrite variablesx into x2 i ,

~2.8!5E
2`

` E
2`

` U ]~ I 1 ,I 2!

]~x1 ,x2!
UexpS 2b (

m51

2
2

xm
2 11D dx1 dx21E

2`

` S 8L

x214DexpS 2b
4

x214D dx

2p
.

~2.12!
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We purposely write this obvious modification in order to compare this procedure with that in
M>3.

Using the expression~2.12! in ~2.6! and substituting the Jacobian explicitly, we obtain

2Z2e2bh25E
2`

` E
2`

` U ]~ I 1 ,I 2!

]~x1 ,x2!
UexpS 2b (

m51

2
2

xm
2 11D dx1 dx21E

2`

` S 8L

x214DexpS 2b
4

x214D dx

2p

2E
2`

` S 2L

x211DexpS 2b
4

x211D dx

2p
.

5E
2`

` E
2`

` 2L

x1
211

2L

x2
211

expS 2b (
m51

2
2

xm
2 11D dx1 dx21E

2`

` E
2`

` S 2L

x1
211

1
2L

x2
211D 24L

~x1
22x2

2!14
expS 2b (

m51

2
2

xm
2 11D dx1 dx212E

2`

` S 4L

x214D
3expS 2b

4

x214D dx

2p
2

1

2 E2`

` S 4L

x211DexpS 2b
4

x211D dx

2p
. ~2.13!

This formula corresponds to~1.3! for M52. A remark is in order: Because of the same reason
we neglect the terms corresponding tom1Þ0 or m2Þ0, we drop the terms corresponding tom
Þ0 in the second term of~2.6! by taking the thermodynamic limit.

III. DERIVATION OF ZM FROM BETHE EQUATIONS

In order to explain our analysis of~1.2! for arbitrary M case, we need several symbols a
notations. Definitions of symbols are placed before we first use them. To make clear the ext
from M52, we refer to the corresponding expression by writing, for instance, cf.~2.8!.

With the eigenenergiesE ~1.4!, ZM is written as

M !ZMe2bhM5( expS 2b (
m51

M
2

xm
2 11D ~3.1!

@cf. ~2.1!#. Here,( without subscript means a summation over all the different physical solut
of the Bethe equations~1.5!. It is interpreted as a summation with respect to a set of integers$I m%
corresponding to a physical solution, where$I m% is related to$xm% by

Fxm1 i

xm2 i G
L

5e22p i I m )
m8Þm

Fxm2xm812i

xm2xm822i G ~3.2!

@cf. ~2.2!#. We call that a solution of the Bethe equation is a physical solution if and only if
two pseudomomentaxm of the solution do not take same value. The words different, and s
value are defined in the same way as inM52 case.

Definition Q(s): Let s be a set which has a finite number of elements.Q~s! denotes all the
patterns of division of a sets. A pattern of divisionu is a set with elements each of which is
cluster. The clusters8 is one of the pieces into which a sets is divided, and the cluster is als
regarded as a set

Q~s!5 H u U s5 %
s8Pu

s8 J . ~3.3!

In case ofs5$1,2,...,n%, we writeQn for Q($1,2,...,n%) for simplicity.
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Definition Ns : Let s be a set or a sequence which has a finite number of elements.
number of elements of a set or a sequences is denoted byNs .

By use of the above symbols,~3.1! can be rewritten as

M !ZMe2bhM5 (
uPQM

m~ 0̂M ,u!(
$I s%

e2bEu ~3.4!

@cf. ~2.3!#, wherem(0̂M ,u) andEu are, respectively, defined as

m~ 0̂M ,u![ )
sPu

~2 !Ns21~Ns21!!, ~3.5!

Eu[ (
sPu

2Ns

xs
211

, uPQM . ~3.6!

In ~3.4!, ($I s% means a summation over all the solutions of equations

Fxs1 i

xs2 i G
L

5e22p i I s )
s8Pu,Þs

Fxs2xs812i

xs2xs822i G
Ns8

, sPu. ~3.7!

We note that Eqs.~3.7! are Eqs.~3.2! with the restrictions

xm 5 xs , I m 5 I s , mPs. ~3.8!

In other words,~3.7! for u which satisfiesNu5M is equivalent to~3.2!. Then, the difference
between~3.1! and the term corresponding to theu in ~3.4! is the sum over nonphysical states wi
respect to~3.2!. And, extinction of nonphysical states from the sum is realized by the coeffic
(uPQM

m(0̂M ,u). The functionm(0̂M ,u) is a special case of the Mo¨bius functionm(u8,u) which
comes from a natural definition of partial order among elements inQM . In this way, the equiva-
lence of~3.1! and ~3.4! can be regarded as the Mo¨bius inversion formula.11,12

The sum in~3.4! is replaced by integrals

M !ZMe2bhM5 (
uPQM

m~ 0̂M ,u!E e2bEu )
sPu

dI s ~3.9!

@cf. ~2.6!#. Here, we have applied the Poisson formula, and neglected higher order terms
form e2cL which do not contribute toZM in the thermodynamic limit. It is important to pa
attention to the integral paths. We define the path of the multiple integral in~3.9! depending onu.
The integral path is a manifold on which$I s% is a set of real numbers and$xs% are continuously
distributed. Concretely, the integral path foru is anNu-dimensional surface defined by condition

US xs2 i

xs1 i D
L

)
s8Pu,Þs

S xs2xs812i

xs2xs822i D
Ns8U51. ~3.10!

The orientation of the integral path is chosen so that the value of an integral*)dI s for any part
of the integral path is positive.

We introduce integrals

E e2bEu )
sPu

dI s , ~3.11!

along the integral path
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US xs2 i

xs1 i D
L

)
s8Pu,Þs

S xs2xs812i

xs2xs822i D
Ns8U5As , sPu ~3.12!

@cf. ~2.8! and~2.9!#. The relation betweenxs andI s is defined by~3.7! andEu is defined by~3.6!.
The integrals~3.11! do not depend onAs in case 0,As,` due to the same reason as in the ca
M52. Note again that we define the orientation of the path so that an integral*)dI s for any part
of the path is positive.

Therefore, we can change the integral path~3.10! in the multiple integral~3.9! into the path
~3.12!. By definingAs as a set of sufficiently small real numbers, we can rewrite~3.9! as

~3.9!5 (
uPQM

m~ 0̂M ,u!F )
sPu

E
uxs2 i u501

dxsGU]I s

]xs
U

L,u

e2bEu ~3.13!

@cf. ~2.10!#, where uxs2 i u501 indicates the integral path thatxs turns around a pointi anti-
clockwise. To be precise, there remain other integral paths in the limitAs→0, but all the integrals
for these paths cancel out each other.

Definition L(u): Let u be a set with a finite number of elements. We denote byL~u! all the
patterns of connection of the setu. What we call a pattern of connection satisfies the following t
conditions.~1! Any two elements ofu are connected or not. Simply, there is no multiple conn
tion. ~2! There is no closed path in the connections. Then, a pattern of connectionl is a set of
elements each of which corresponds to a connectionh. To summarize,L~u! satisfies conditions,

if hPlPL~u!, then h5$s,s8%, s,s8Pu,

if $s1 ,s2%,$s2 ,s3%,...,$sm21 ,sm%PlPL~u!, then $s1 ,sm%¹l, ~3.14!

and has the most elements of all sets which satisfy the above conditions.
Definition Gu(l): Let u be a set with a finite number of elements, andlPL(u). Gu(l) is an

element ofQ~u!. In other words,Gu(l) is a pattern of division ofu. We call thats ands8 in u
are indirectly connected byl whens is linked tos8 through one or some connections inl. Two
elements inu are indirectly connected byl if and only if there is a clusteru8PGu(l) containing
the two elements. Precisely,Gu(l) satisfies the conditions,

Gu~l!P Q~u!

if $s,s8%Pl, then s,s8Pu8PGu~l!, ~3.15!

and has the most elements of all sets which satisfy the conditions.
Definition Q̃(u): Let u be a set with a finite number of elements. A setQ̃(u) consists of all

elementsz̃ satisfying the following conditions. First,z̃ is a set of sequences as elements. Seco
all the elements in the sequences are inu. Third, a set of setsz derived fromz̃ is in Q~u!. Here,
z is derived from z̃ when we replace sequences inz̃ with sets by ignoring the order of th
sequences. Note that the number ofz̃ ’s which become az by the above procedure is)u8PzNu8!.

Using these symbols, we can change the integral path in~3.13! from uxs2 i u501 into
@2`1 i min(s1)d,`1i min(s1)d#;
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~3.9!5 (
uPQM

(
z̃PQ̃(u)

(
lPL( z̃)

F )
(s1 ,s2 ,...)5 ũP z̃

E
2`1 i min(s1)d

1`1 i min(s1)d dxũ

2p G
3F )

z̃8PGz̃(l)
S (

ũP z̃8
(

smP ũ5(s1 ,...)

2Nsm
L

~xũ12~m21!i !211D G
3F )

$ũ,ũ8%Pl
S (

smP ũ5(s1 ,...)
(

s
m8
8 P ũ85(s18 ,...)

24Nsm
Ns

m8
8

~xũ2xũ812~m2m8!i !214D G
3expS 2b (

ũP z̃
(

smP ũ5(s1 ,...)

2Nsm

~xũ12(m21)i )211D
3 )

(s1 ,...)5 ũP z̃
F ~2 !Ns1

21~Ns1
21!!Ns1

21 )
sm.1P ũ

3F (
u8PQ(sm)

Nsm21

Nu8 )
s8Pu8

~2 !Ns821~Ns821!! G G ~3.16!

@cf. ~2.11!#, where min(s1) means the smallest integer in the sets1 . In ~3.16!, we have substituted
an explicit expression of the Jacobian,

~2p!NuU]I s

]xs8
U

L,u

[F )
sPu

NsG21

(
lPL(u) F )

$s,s8%Pl

2
4NsNs8

~xs2xs8!
214G )

u8PGu(l)
F (

sPu8

2NsL

xs
211G .

~3.17!

A remark is in order. In~3.16!, the series(z̃¯ with respect toz̃ can be divided into two parts. On
is a set in which all elements have only one element, and the other contains the rest. The
is a set of terms corresponding to~3.13! with an integral path (2`,`). The latter is a set of terms
corresponding to residues which the modification of the integral path generates.

Definition Q̄(u): Let u be a set which has a finite number of sets as elements.Q̄(u) consists
of all elementsz satisfying the following two conditions. First,z is in Q~u!. Second, any setu8 in
z satisfies the condition that all sets as elements in the setu8 have the same number of elemen
Then,

Q̄~u!5$zPQ~z!uNs5Ns8 , s,s8Pu8Pz%. ~3.18!

We transform the integral path of a variablexũ in ~3.16! from @2`1 i min(s1)d,1`
1i min(s1)d# to @2`2(Nũ21)i ,1`2(Nũ21)i #, and change variablesxũ into xũ2(Nũ21)i .
Then, we obtain

M !ZMe2hM5 (
uPQM

F )
sPu

Ns! G (
zPQ̄(u)

m~ 0̂u ,z!F )
u8Pz

E
2`

`

dxu8GU]I

]xU
L,z

e2bE(z) ~3.19!

@cf. ~2.12!# and then@cf. ~2.13!# where

m~ 0̂u ,z![ )
u8Pz

~2 !Nu821~Nu821!!, ~3.20!

E~z![ (
u8Pz

2Nu8M u8

xu8
2

1M u8
2 , ~3.21!
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~2p!NzU]I

]xU
L,z

[F )
u8Pz

Nu8
21G (

lPL(z) F )
z8PGz(l)

S (
u8Pz8

2Nu8M u8L

xu8
2

1M u8
2 D G

3F )
$u8,u9%Pl

~2Nu8Nu9!KMu8 ,Mu9
~xu82xu9!G , ~3.22!

with

Kn,m~x![H k un2mu~x!12k un2mu12~x!1¯12kn1m22~x!1kn1m~x!, nÞm,

2k2~x!1¯12k2n22~x!1k2n~x!, n5m,
~3.23!

and

kn~x![
2n

x21n2 . ~3.24!

Contrary to theM52 case, this modification of the integral paths is not trivial in generalM case,
because many residues are generated by the modification. In this way, we have shown the
lence of~3.9! and~3.19!, and therefore have proved~1.3!. This completes the main purpose of th
paper. We remark that~3.19! is the expression which we supposeZM to be in the previous paper.9

IV. GRAPH REPRESENTATION

We further develop a graphical representation ofZM . We call anl times rolled coil anl -toron
~Fig. 1!, and call anm times repeatedl -toron anl m-toron ~Fig. 2!. Therefore,l 1-toron is simply an
l -toron. The terminology ‘‘toron’’ has been introduced in the theory of quantum clu
expansions.13,14We call a connection of two torons abranch. Thetreeconsists of a toron or toron
connected by branches. Theforestconsists of the trees. We denote byWM a set of all the forests
which satisfy the condition thatM is the sum of the number of rolls multiplied by the number
repetitions for torons. Figure 3 illustrates all the elements inW2 . Remark that there are four type
of forest inW2 . It turns out that each forest inW2 corresponds to a term in~2.13!.

In terms of these terminologies, we may rewrite~3.19! as

FIG. 1. l -toron.

FIG. 2. l m-toron.
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ZMe2bhM5 (
f PWM

Sym~ f !

M ! )
t in the forest f

S~ t !. ~4.1!

Here, Sym(f ) indicates a symmetrical factor of the forest. That is, Sym(f ) means the number o
different ways in which a set$1,...,M % can be distributed to all the torons off at a time, on the
condition thatml elements are placed in anl m-toron. For example,

~4.2!

From ~3.19!, we can show thatS(t) in ~4.1! is given as follows:

S~ t ![S)
v

~MvNv!! ~21!Nv21Nv
n(v,t)22D E )

v

dxv

2p
LS (

v

2NvMv

xv
2 1Mv

2 D S )
bPJ(t)

2KMva(b) ,Mvb(b)
~xva(b)2xvb(b)! De2b((v @2NvMv /~xv

2
1Mv

2
!] !. ~4.3!

We explain notations in~4.3!: Mv denotes the number of repetitions for toronv, Nv the number
of rolls for toronv, andJ(t) a set of all the branches contained in a treet. n(v,t) is the number
of branches with which the toronv is connected in the treet. va(b) and vb(b) denote two
end-torons connected by a branchb. And (v ~or )v) indicates a sum~or a product! with respect
to all the toronsv in the treet. For example,

~4.4!

~4.5!

~4.6!

~4.7!

Substitution of~4.2! and the above expressions into~4.1! gives Eq.~2.13!.
As examples, we list graphical representations ofZ1;Z4 ,

FIG. 3. A set of the forests,W2 . ~a! Two trees each of which consists of a 1-toron.~b! A tree where two 1-torons are
connected by a branch.~c! A 2-toron, ~d! 12-toron.
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Z1e2bh5s, ~4.8!

~4.9!

~4.10!

The coefficients of trees are Sym(f )/M ! multiplied by the coefficients ofS(t), i.e.,

S)
v

~MvNv!! ~21!Nv21Nv
n(v,t)22D . ~4.11!

V. A RELATION BETWEEN ZM AND THE STRING HYPOTHESIS

The function~3.22! is the Jacobian between$xu% and$I u% defined by the relations,

Fxu81M u8i

xu82M u8i
GL

5e22p i I u8 )
u9Pz,Þu8

EMu8 ,Mu9
~xu82xu9!

Nu9, ~5.1!

whereuPQM , zPQ̄(u), and

En,m~x![
@x2~n1m!i #@x2un2mu i #
@x1~n1m!i #@x1un2mu i # )

k51

min(n,m) F x1~n1m22k!i

x2~n1m22k!i G
2

. ~5.2!

We emphasize the following: We regard the variableI u as an integer and interpret the valuexu8 as
an M u8-string center. The relations~5.1! are indeed the equations which are introduced by
string hypothesis on condition that allNu8Pz51. And, each term of~3.21! is the energy corre-
sponding to anM u8-string in the string hypothesis.

Now, we study Eq.~3.19! again. As we have shown in the previous paper,9 the expression
~3.19! can be derived by summing up the string center equation formally. The derivatio
summarized as follows. From the string hypothesis, we have

M !ZMe2hM5 (
uPQM

F )
sPu

Ns! G (
zPQ̄(u)

m~ 0̂u ,z!(
$I u%

e2bE(z), ~5.3!

where($I u% means a summation over all the real number solutions of~5.1! on condition that$I u%
are integers. Note that the coefficients are derived from the symmetry of the quasiparticles. W
derive

M !ZMe2hM5 (
uPQM

F )
sPu

Ns! G (
zPQ̄(u)

m~ 0̂u ,z!F )
u8Pz

E dI u8Ge2bE(z)

5 ( F ) Ns! G ( m~ 0̂u ,z!F ) E`

dxu8GU]I

]xUe2bE(z), ~5.4!

uPQM sPu zPQ̄(u) u8Pz 2`
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from ~5.3! by formally using the formula~2.5!, and neglecting the terms which correspond tom
Þ0 in the formula~2.5! in the thermodynamic limit, i.e., replacing the sum($I u% into the integral
)u8Pz*dI u8 . We usually do such a replacement in the thermodynamic limit: e.g., in case o
free Fermion, we use the relation

(
k

log~11e2bk2
!5LE dk

2p
log~11e2bk2

!. ~5.5!

The relation~5.4! is obviously equivalent to~3.19!. But, there remains a problem with th
derivation of~5.4! from the string hypothesis. When we use the Poisson formula~2.5!, the orien-
tation of the integral path on the right-hand side of~2.5! should have the following property: th
value of an integral*)dI for any part of the integral path is positive. Recall that we have defi
the orientation of the integral path~3.9! by this condition. The integral path in~5.4!, however, does
not have this property since the Jacobianu]I /]xu is not necessarily positive definite. The value
the integral isO(LM) and the difference between the right-hand side of~5.4! and the value of the
integral using the truly oriented integral path isO(LM21.5), whereM is the number of up-spins
The solution of this problem is one of the followings:~1! The differenceO(LM21.5) does not have
any effect on the free energy.~2! The sum of the terms we have dropped in~5.4! is O(LM21.5),
i.e., we must not neglect the terms. Note that such neglect in~3.9! has been proved to be valid.~3!
The string hypothesis is not true, and a formal replacement of( into *dx in the thermal Bethe
ansatz cancels the error of the string hypothesis.

Note that in the previous paper,9 we do not claim that the derivation of~3.19! using the string
hypothesis is complete, but claim that~3.19! is related to the string hypothesis and the free ene
is properly derived when we assume the relation~3.19!. On the contrary, in this paper, we hav
derived~3.19! step by step only assuming the Bethe ansatz equations.

VI. CONCLUSION

In this paper, we have explicitly calculated Tre2bHM for the one-dimensional XXX Heisen
berg model, which is the trace of the Boltzmann weight under the restriction that the num
up-spinM is fixed. This method relies only on the Bethe ansatz equations. Using this metho
the result in Ref. 9, we have obtained the free energy, whose expression perfectly agree
TBA. In a sense, we have generalized the direct method or the Bethe ansatz cluster exp
method11,12,15into models with bound states. We emphasize that this derivation of the free e
is independent of QTM, TBA and is free from the string hypothesis. We can replace the Boltz
weight with some other functions in case that the Boltzmann weight and the functions ha
same analyticity. Therefore, it may be possible to calculate some other thermodynamic qua
^A& in the same way by replacing the Boltzmann weighte2bH with Ae2bH. A further application
of the method to other integrable models is also one of the future problems.
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Symmetry and pattern formation for a planar layer
of nematic liquid crystal

David Chillingwortha)

Department of Mathematics, University of Southampton,
Southampton SO17 1BJ, United Kingdom

Martin Golubitskyb)

Department of Mathematics, University of Houston, Houston, Texas 77204-3476
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Using equivariant bifurcation theory, and on the basis of symmetry considerations
independent of the model, we classify square and hexagonally periodic patterns that
typically arise when a homeotropic or planar isotropic nematic state becomes un-
stable, perhaps as a consequence of an applied magnetic or electric field. We relate
this to a Landau–de Gennes model for the free energy, and derive dispersion
relations in sufficient generality to illustrate the role of up/down symmetry in de-
termining which patterns can arise as a stable bifurcation branch from either initial
state. © 2003 American Institute of Physics.@DOI: 10.1063/1.1598620#

I. INTRODUCTION

There is an extensive amount of literature on spatially periodic pattern-formation in phy
and biological systems: see for example the surveys by Cross and Hohenberg~1993! and Cladis
and Palffy-Muhoray~1995!. The mathematical techniques to analyze the creation and interac
of such patterns often involve reduction of the governing partial differential equations to a fi
dimensional system that captures the essential dynamics near a bifurcation point of a funda
equilibrium state, followed by a bifurcation analysis to classify the branching of multiple s
tions.

The crucial role ofsymmetryin organizing pattern-forming bifurcations has been recogni
for some time: see Busse~1962!; Buzano and Golubitsky~1983!; Golubitsky et al. ~1984!, for
example. Indeed, on the basis of symmetry considerations alone, and with some natural
generacy assumptions, a classification of branching behavior for systems with symmetry
given that is independent of the actual mathematical model. This insight, with the asso
technical machinery of group theory and group actions, is the inspiration for the texts su
Golubitsky et al. ~1988!; Chossat and Lauterbach~2000!; Golubitsky and Stewart~2002!. The
general theory provides a framework: in order to make specific predictions of physical beh
exerimental numerical values~or sometimes just their signs! need to be determined, unfortunate
not necessarily an easy task.

In this paper we generalize methods that have been previously and successfully app
other fields~Buzano and Golubitsky, 1983; Golubitskyet al., 1984; Golubitskyet al., 1988; Bress-
loff et al., 2001a; Golubitsky and Stewart, 2002! to the context of pattern formation in plana
liquid crystals. A preliminary version of our results appears in Golubitsky and Chillingw
~2003!. We consider periodic planar patterns with square or hexagonal symmetry that can bif
from a homeotropic or planar isotropic state. We do not claim to predict experimental cond
under which these states can be observed; rather we set out a dictionary of possibilities
basis of natural mathematical assumptions. Numerous patterns similar to those we describ
indeed been observed in liquid crystal experiments, see, e.g., de Gennes~1974!; Huh et al. ~2000!,
but under conditions often quite different from ours. The question of how to detect experime

a!Electronic mail: drjc@maths.soton.ac.uk
b!Electronic mail: mg@uh.edu
42010022-2488/2003/44(9)/4201/19/$20.00 © 2003 American Institute of Physics

                                                                                                                



ion to
spects

ce of

t
ally

cules

and
f any

three-

est
n-

y have

than

g
l peri-

4202 J. Math. Phys., Vol. 44, No. 9, September 2003 D. Chillingworth and M. Golubitsky

                    
the variety of director-field patterns predicted here is one that we are not yet in a posit
answer. However, we do give some pointers on dealing with this issue by calculating key a
of branching behavior for an explicit Landau–de Gennes type model.

II. THE GENERAL STRATEGY

In the Landau theory of phase transitions for a liquid crystal the degree of coheren
alignment of molecules is usually represented by atensor order parameter, a field of symmetric
333 tensorsQ(x), xPR3 with tr(Q)50 ~Sluckin, 2000!. We think ofQ as the second momen
of a probability distribution for the directional alignment of a rod-like molecule. In a spati
uniform system,Q is independent ofxPR3. WhenQ50 the system isisotropic, with molecules
not aligned in any particular direction. If there is a preferred direction along which the mole
tend to lie ~but with no positional constraints! the liquid crystal is innematicphase. There are
many other types of phase involving local and global structures, see Sluckin~2000!.

In this paper we consider a thin planar layer of nematic liquid crystal where the top
bottom boundary conditions on this layer are identical. In this situation the symmetries o
liquid crystal model will include planar Euclidean symmetriesE~2! as well as up/down reflection
symmetry.

A configuration orstateof a liquid crystal is often described by a director field~a unit length
vector field! that assigns to each pointx in the planar layer a unit vectorn~x! in the direction inR3

along which molecules tend to align. In this descriptionn~x! and2n(x) are not distinguished. We
approximate a planar layer by a plane—so for us a liquid crystal state consists of a
dimensional director fieldn defined onR2.

In the Landau theory the direction ofn~x! is just an eigenvector corresponding to the larg
eigenvalue ofQ(x)—the direction in which a molecule has the ‘‘maximum probability’’ of alig
ing. We shall refer toQ(x) also as thestate of the system. IfQ(x) has two~or three! equal
maximum eigenvalues thenn~x! is undefined~a dislocation occurs!, whereas the tensor fieldQ(x)
is everywhere defined, continuous and in our case analytic.

In our discussion we assume an initial equilibrium stateQ0 that isE~2!-invariant. Because of
translation symmetry such states are spatially uniform and because of rotation symmetry the
the form

Q05hF 21 0 0

0 21 0

0 0 2
G

for some nonzerohPR. For h.0 the stateQ0 represents ahomeotropicphase~the state has
constant alignment in the vertical direction!, whereas forh,0 it represents a planarisotropic
liquid crystal ~a molecule is equally likely to align in any horizontal direction!. The stateQ0 is
also invariant under up/down reflection, that is conjugacy by the matrix

t5F 1 0 0

0 1 0

0 0 21
G .

We consider models for equilibria that are determined internally by a free energy rather
externally by, say, a magnetic field. Thus, the symmetry group for our discussion is

G5E~2!3Z2~t!,

since these are the symmetries of both the initial stateQ0 and the model.
Our aim in this paper is to study local bifurcation fromQ0 to states that have spatially varyin

alignment along the plane. Specifically, we consider bifurcation to states exhibiting spatia
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odicity with respect to some planar lattice. Following Golubitskyet al. ~1988! and Golubitsky and
Stewart~2002! we use group representation theory to extract information about nonlinear beh
near bifurcation that is independent of the model.

There is a common approach to all lattice bifurcation problems, which we now describe
discussion, adapted from Bressloffet al. ~2001a!, will be familiar to anyone who has studie
pattern formation in Be´nard convection models, although there are minor differences due to
change in context. See Golubitskyet al. ~1988!; Golubitsky and Stewart~2002!.

Let l be a bifurcation parameter and assume that the equations haveQ0 as an equilibrium for
all l. Let L denote the equations linearized aboutQ0 . In the models,l is the temperature and
bifurcation occurs asl is decreased.

~1! A linear analysis aboutQ0 leads to adispersion curve.
Translation symmetry in a given direction implies that~complex! eigenfunctions have aplane

wave factor wk(x)5e2p ik"x wherekPR2. Rotation symmetry implies that the linearized equatio
have infinite-dimensional eigenspaces; instability occurs simultaneously to all functionswk(x)
with constantk5uku. The numberk is called thewave number. Points (k,l) on the dispersion
curve are defined by the maximum values ofl for which an instability of the solutionQ0 to an
eigenfunction with wave numberk occurs.

~2! Often, the dispersion curve has a unique maximum, that is, there is acritical wave number
k* at which the first instability of the homogeneous solution occurs asl is decreased.

Bifurcation analyses near such points are difficult since the kernel of the linearizati
infinite-dimensional. This difficulty can be side-stepped by restricting solutions to the cla
possible solutions that are doubly periodic with respect to a planar latticeL.

~3! The symmetries of the bifurcation problem restricted toL change from Euclidean sym
metry in two ways.

First, translations act on the restricted problem moduloL; that is, translations act as a toru
T2. Second, only a finite number of rotations and reflections remain as symmetries. L
holohedry HL be the group of rotations and reflections that preserve the lattice. The sym
groupGL of the lattice problem is then generated byHL , T2, as well as~in our case! Z2(t).

~4! The restricted bifurcation problem must be further specialized. First, alattice typeneeds to
be chosen~in this paper square or hexagonal!. Second, thesizeof the lattice must be chosen so th
a plane wave with critical wave numberk* is an eigenfunction in the spaceFL of matrix functions
periodic with respect toL.

ThosekPR2 for which the scalar plane wavee2p ik"x is L-periodic are calleddual wave
vectors. The set of dual wave vectors is a lattice, called thedual lattice, and is denoted byL* . In
this paper we consider only those lattice sizes where the critical dual wave vectors are vec
shortest length inL* . Therefore, generically, we expect kerL5Rn wheren is 4 and 6 on the
square and hexagonal lattices, respectively.

~5! Since kerL is finite-dimensional, we can use Liapunov–Schmidt or center manifold
duction to obtain a system of reduced bifurcation equations onRn whose zeros are in 1:1 corre
spondence with the steady states of the original equation. Moreover, this reduction can b
formed so that the reduced bifurcation equations areGL-equivariant.

~6! Solving the reduced bifurcation equations is still difficult. A partial solution can be fo
as follows. A subgroupS,GL is axial if dim Fix(S)51 where

Fix~S!5$xPkerL:sx5x ;sPS%.

The Equivariant Branching Lemma~Golubitsky et al., 1988! states that generically ther
exists a branch of solutions corresponding to each axial subgroup. These solution types a
classified by finding all axial subgroups, up to conjugacy.

On general grounds, when restricting attention to bifurcations corresponding to shortest
length vectors, we may assume the representation~action! of GL to be irreducible: see Golubitsk
et al. ~1988!; Chossat and Lauterbach~2000!. In Sec. III we show that there are four distinct typ
of irreducible representation ofGL that can occur in bifurcations fromQ0 . These representation
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are the four combinations of~i! scalar or pseudoscalar~see Bosch Vivancoset al., 1995; Bressloff
et al., 2001a; Golubitsky and Stewart, 2002! and~ii ! preserve or breakt symmetry. In Sec. III we
also compute the axial subgroups for each of these representations and draw pictures of eac
relevant planforms on the square and hexagonal lattices.

Note that line fields near hometropic are almost vertical, whereas line fields near isotrop
almost horizontal. In our figures, where we view the perturbed line fields from above, we se
planar projections of the line field in all cases. We also see the deviation from vertical and, th
foreshortening of the line field elements, the deviation from horizontal. However, in this pr
tation, we cannot distinguish the ‘‘up’’ and ‘‘down’’ ends of the line field elements. It is
elementary yet curious observation that in Landau models restricted to a planar layer, bifurc
from the homeotropic phase (h.0) do not lead to clear new patterns unlesst symmetry is
broken: thet symmetry ‘‘freezes’’ the director field to the vertical. This point is discussed in m
detail in Sec. III. Therefore we present pictures of the four bifurcations from the isotropic
(h,0) and only the two bifurcations whent acts as21 in the homeotropic case (h.0). The
t511 bifurcations in the homeotropic case can lead to patterns in a theory posed on a thic
planar layer. In such a theory, which goes beyond what we present here, the precise f
boundary conditions on the upper and lower boundaries of the layer will determine the p
types. In the other bifurcations, the contributions to pattern selection of these boundary con
should be less important.

In fact, the bifurcation theory for each of these four representations ofGL has been discusse
previously in different contexts. It is only the interpretation of eigenfunctions in the conte
Q(x) that needs to be computed, along with the pictures of the resulting planforms. More sp
cally, whent acts trivially on kerL the scalar representation has been used in the study of pa
formation in Rayleigh–Be´nard convection by Busse~1962! and Buzano and Golubitsky~1983!,
and the pseudoscalar representation has been studied by Bosch-Vivancos, Chossat, and M
~1995! and also in the context of geometric visual hallucinations by Bressloffet al. ~2001b!;
~2001a!. When t acts nontrivially the two representations have the same matrix generator
although the planforms are different for these two representations the bifurcation theory is
tical. Indeed, this theory is just the one studied for Rayleigh–Be´nard convection with a midplane
reflection by Golubitsky, Swift, and Knobloch~1984!.

Perhaps the most interesting patterns that appear from our analysis are the stripes or
~from convection studies! type patterns that bifurcate from the isotropic state whent symmetry is
not broken, that ist511. The scalar pattern is a ‘‘martensite’’ pattern whereas the pseudos
pattern is a ‘‘chevron’’ pattern. See Fig. 1. The fact that such patterns do occur in liquid c
layers is well known: see, for example, de Gennes~1974!, and also Huhet al. ~2000! from which

FIG. 1. Stripes from isotropic (h,0) state witht511 representations: scalar ‘‘martensite’’~left!; pseudoscalar ‘‘chev-
ron’’ ~right!. Note that• in the figures indicates points whereQ(x) has a double maximum eigenvalue.
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the pictures in Fig. 2 are taken. However, it is important to emphasize that these pattern
observed under experimental conditions far removed from those to which our theoretical
applies. Moreover, the observed chevrons exhibit additional fine periodic structure~which renders
them visible as chevrons and not stripes! that we do not discuss here. We recall that patte
described in this paper are those that can arise close to homeotropic or planar isotropic st

In Sec. IV we introduce free energies that illustrate that all four representations ca
encountered asl is decreased, although in our model only two of them can be the first bifurca
from homeotropy while only the other two can be the first bifurcation from isotropy.~It is likely
that different models will allow other variations.! It then follows from the Equivariant Branchin
Lemma that each of the axial equilibrium types that we describe in Sec. III is an equilib
solution to the nonlinear model equations.

III. SPATIALLY PERIODIC EQUILIBRIUM STATES

In this section we list the axial subgroups for each of the four representations ofGL on the
square and hexagonal lattices, and then plot the planforms for the associated bifurcating b
from both the isotropic (h,0) and homeotropic (h.0) states. We emphasize that these res
depend only on symmetry and can be obtained independently of any particular model. Fir
describe the form of the eigenspaces for each of these four representations. Second, we dis
group actions and the axial subgroups for each of these representations. Finally, we p
associated direction fields.

A. Linear theory

Let L denote the linearization of the governing system of differential equations atQ0 @for the
free energy model with free energyF we haveL5d2F(Q0)]. Bifurcation occurs at paramete
values whereL has nonzero kernel. We prove that generically, at bifurcation to shortest dual
vectors, kerL has the form given in Theorem 3.1. Let

Q115F a 0 0

0 b 0

0 0 2a2b
G , Q125F 0 0 i

0 0 0

i 0 0
G ,

~1!

Q215F 0 1 0

1 0 0

0 0 0
G , Q225F 0 0 0

0 0 i

0 i 0
G .

In the double superscript onQ, the first6 refers to scalar or pseudoscalar representation and
second6 refers to the action oft. In Table I we also fix the generators of the lattice and its d
lattice.

FIG. 2. Rolls~left! and chevrons~right!. ~Pictures courtesy of J.-H. Huh.!
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Theorem 3.1:On the square lattice, letj be rotation counterclockwise byp/2. Then, in each
irreducible representation, kerL is four-dimensional and its elements have the form

z1e2p ik1"x Q661z2 e2p ik2"x j•Q661c.c. ~2!

for z1 ,z2PC , where Q66 is the appropriate matrix specified in (1), j•Q denotesjQj21, and
c.c. denotes complex conjugate.

On the hexagonal lattice, letj be rotation counterclockwise byp/3. Then, in each irreducible
representation, kerL is six-dimensional and its elements have the form

z1e2p ik1"x Q661z2 e2p ik2"x j2
•Q661z3 e2p ik3"x j4

•Q661c.c. ~3!

for z1 ,z2 ,z3PC .
Proof: Let V and VC denote the space of~respectively! real and complex 333 symmetric

matrices with zero trace. Planar translation symmetry implies that eigenfunctions~nullvectors! of
L are linear combinations of matrices that have the plane wave form

e2p ik"xQ1c.c., ~4!

whereQPVC is a constant matrix andkPR2 is a wave vector. For fixedk let

Wk5$e2p ik"xQ1c.c.:QPVC% ~5!

be the ten-dimensionalL-invariant real linear subspace consisting of such functions.
Rotations and reflectionsgPO(2)3Z2(t),O(3) act onWk by

g~e2p ik"xQ!5e2p i (gk)"x gQg21. ~6!

When looking for nullvectors we can assume, after rotation, thatk5k(1,0). We can also rescal
length so that the dual wave vectors of shortest length have length 1; that is, we can assu
k51.

Bosch Vivancos, Chossat, and Melbourne~1995! observed that reflection symmetries c
further decomposeWk into two L-invariant subspaces. To see why, consider the reflection

k~x,y,z!5~x,2y,z!.

Note that the action~6! of k on Wk ~dropping the1c.c.) is

k~e2p ik"xQ!5e2p ik(k)"x kQk215e2p ik"x kQk21.

Sincek251, the subspaceWk itself decomposes as

Wk5Wk
1

% Wk
2 , ~7!

TABLE I. Generators for the planar lattices and their dual lattices.

Lattice ø1 ø2 k1 k2 k352(k11k2)

Square ~1,0! ~0,1! ~1,0! ~0,1! —

Hexagonal S 1,
1

)
D S 0,

2

)
D ~1,0!

1

2
~21,) !

1

2
~21,2) !
                                                                                                                



n

s.

to

l

c.

es is

4207J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

                    
wherek acts trivially onWk
1 and as minus the identity onWk

2 , and each ofWk
1 andWk

2 areL
invariant. We call functions inWk

1 evenand functions inWk
2 odd. Bifurcations based on eve

eigenfunctions are calledscalar and bifurcations based on odd eigenfunctions are calledpseudo-
scalar.

A further simplification in the form ofQ can be made. ConsiderrPSO(2),O(3) given by
(x,y,z)°(2x,2y,z). Since~dropping the1c.c.)

r~e2p ik"xQ!5e2p irk"xrQr215e22p ik"xrQr215e2p ik"xrQr21

the associated action ofr on VC is related to the conjugacy action by

r~Q!5rQr21. ~8!

Since L commutes withr and r251, the subspaces of the kernel ofL where r(Q)5Q and
r(Q)52Q areL-invariant. Therefore, we can assume thatQ is in one of these two subspace
Note moreover that translation by1

4k implies that ife2p ik"xQ is an eigenfunction thenie2p ik"xQ is
a ~symmetry related! eigenfunction. It follows from~8! that if r acts as minus the identity onQ,
then r acts as the identity oniQ. Thus we can assume without loss of generality that up
translational symmetryQ is r-invariant, that isQ has the form

Q5F a g ic

g b ih

ic ih 2a2b
G ,

wherea,b,c,g,hPR. Therefore we have proved
Lemma 3.2: Up to symmetry eigenfunctions in Wk have the form

e2p ik"xQ1c.c.

where Q is nonzero, r-invariant, and either even or odd.
Lemma 3.2 implies that typically eigenfunctions inWk lie in one of the two-dimensiona

subspacesVk
1 ,Vk

2 of Wk
1 ,Wk

2 that have the form

Vk
15$ze2p ik"xQ1:zPC%,

Vk
25$ze2p ik"xQ2:zPC%,

where

Q15F a 0 ic

0 b 0

ic 0 2a2b
G and Q25F 0 g 0

g 0 hi

0 hi 0
G ~9!

with the specific valuesa,b,c,g,hPR being chosen byL ~cf. Golubitsky and Stewart, 2002, Se
5.7!.

Moreover, sinceL commutes witht we can further split

Vk
15Vk

11
% Vk

12 and Vk
25Vk

21
% Vk

22

into subspaces on whicht acts trivially and by minus the identity, and each of these subspac
L-invariant. Since
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tQt5F a g 2 ic

g b 2 ih

2 ic 2 ih 2a2b
G

we see thatVk
665$ze2p ik"xQ66:zPC%, where the matricesQ66 are as given in~1!.

Finally, note that kerL is invariant under the action ofj. It follows that on the square lattice

kerL5Vk
66

% j~Vk
66!

whereas on the hexagonal lattice

kerL5Vk
66

% j2~Vk
66! % j4~Vk

66!

thus verifying~2!, ~3! and completing the proof of Theorem~3.1!. h

B. Axial subgroups

The scalar and pseudoscalar actions ofE~2! on the eigenfunctions on the square and hexa
nal lattices are computed in Bressloffet al. ~2001a!. The results are given in Table II in terms o
the coefficientszj in ~2! and ~3!.

The axial subgroups for each of the four irreducible representations ofGL are given in Table
III, together with generators (z1 ,z2)PC2 or (z1 ,z2 ,z3)PC3 ~fixed vectors! of the corresponding
one-dimensional fixed-point subspaces~axial eigenspaces! in kerL, and descriptions of the asso
ciated patterns~planforms!.

The results in Table III summarize known results for scalar actions with and withou
midplane reflection~Buzano and Golubitsky, 1983; Golubitskyet al., 1984! and the less well
known results for pseudoscalar actions~Bosch Vivancoset al., 1995; Bressloffet al., 2001a!. See
also Golubitsky and Stewart~2002!. More precisely, on the hexagonal lattice, the scalar1 action is
identical to the action studied in Be´nard convection~Busse, 1962; Buzano and Golubitsky, 198!
and the scalar2 action is identical to the one studied in Be´nard convection with the midplan
reflection~Golubitskyet al., 1984!. The pseudoscalar1 action is identical to that studied in Bosc
Vivancoset al. ~1995! and Bressloffet al. ~2001a!, whereas the pseudoscalar2 action is again the
same as the one in Be´nard convection with the midplane reflection—but with different isotro
subgroups, as Figs. 5 and 6 show.

TABLE II. ~Left! D4 u T2 action on square lattice;~right! D6 u T2 action on hexagonal lattice. Here@u1 ,u2#5u1ø1

1u2ø2 as in Table I. For scalar representatione511; for pseudoscalar representatione521.

D4 Action D6 Action

1 (z1 ,z2) 1 (z1 ,z2 ,z3)
j (z2,z1) j (z2,z3,z1)
j2 (z1,z2) j2 (z3 ,z1 ,z2)
j3 (z2 ,z1) j3 (z1,z2,z3)
k e(z1 ,z2) j4 (z2 ,z3 ,z1)
kj e(z2,z1) j5 (z3,z1,z2)
kj2 e(z1,z2) k e(z1 ,z3 ,z2)
kj3 e(z2 ,z1) kj e(z2,z1,z3)

kj2 e(z3 ,z2 ,z1)
kj3 e(z1,z3,z2)
kj4 e(z2 ,z1 ,z3)
kj5 e(z3,z2,z1)

@u1 ,u2# (e22p iu1z1 ,e22p iu2z2) @u1 ,u2# (e22p iu1z1 ,e22p iu2z2 ,e2p i (u11u2)z3)
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C. The planforms

We now consider two-dimensional patterns by disregarding thez coordinate inx ~but not in
Q) and restricting attention to equilibrium states that are periodic with respect to a squa
hexagonal lattice in thexy plane.

To visualize the patterns of bifurcating solutions we assume a layer of liquid crystal ma
in the xy plane that to first order has the form

Q~x!5Q01«E~x!,

whereE is an axial eigenfunction,« is small, andQ0 is either isotropic (h521) or homeotropic
(h511). At each point (x,y) we represent the director field by a standard-length interval in
eigendirection corresponding to the largest eigenvalue of the symmetric 333 matrix Q(x) at x
5(x,y) and we plot only the projection of that interval in thexy plane. In this picture, a line
element that degenerates to a point corresponds to a vertical eigendirection.

Suppose first thatQ0 is homeotropic. In this case the associated pattern is an array of po
Moreover, in our simulations no pattern will appear in bifurcations for whichQ(x) is fixed by the
action oft. For, if E(x)PVk

11 or Vk
21 then

TABLE III. Summary of axial subgroups. On the hexagonal lattice in the scalar case witht511 the points~1,1,1! and
(21,21,21) have the same isotropy subgroup@D6(k,j) % Z2(t)#—but are not conjugate by any element ofGL . There-
fore, the associated eigenfunctions generate different planforms.

Lattice Planform Axial isotropy subgroup Fixed vector

Scalar representation (e511); t511
Square Squares D4(k,j) % Z2(t) ~1,1!

Stripes Z2
2(kj2,t) % O(2)@u2 ,k# ~1,0!

Hexagonal Hexagons1 D6(k,j) % Z2(t) ~1,1,1!
Hexagons2 D6(k,j) % Z2(t) (21,21,21)
Stripes Z2

2(kj3,t) % O(2)@u2 ,k# ~1,0,0!

Pseudoscalar representation (e521); t511
Square Squares D4(k@

1
2 ,

1
2#,j) % Z2(t) ~1,1!

Stripes Z2
2(kj2@

1
2,0#,t) % O(2)@u2 ,k@

1
2,0## ~1,0!

Hexagonal Hexagons Z6(j) % Z2(t) ~1,1,1!
Triangles D3(kj,j2) % Z2(t) ( i ,i ,i )
Rectangles Z2

3(k,j3,t) (0,1,21)
Stripes Z2

2(kj3@
1
2,0#,t) % O(2)@u2 ,k@

1
2,0## ~1,0,0!

Scalar representation (e511); t521
Square Squares D4(k,j) % Z2(t@

1
2 ,

1
2#) ~1,1!

Stripes Z2
2(kj2,t@

1
2,0#) % O(2)@u2 ,k# ~1,0!

Hexagonal Hexagons D6(k,j) ~1,1,1!
Triangles D6(k,tj) ( i ,i ,i )
Rectangles Z2

3(tk,j3,t@0,
1
2#) (0,1,21)

Stripes Z2
2(kj3,t@

1
2,0#) % O(2)@u2 ,k# ~1,0,0!

Pseudoscalar representation (e521); t521
Square Squares D4(tk,j) % Z2(t@

1
2 ,

1
2#) ~1,1!

Stripes Z2
2(kj2@

1
2,0#,t@

1
2,0#) % O(2)@u2 ,k@

1
2,0## ~1,0!

Hexagonal Hexagons D6(tk,j) ~1,1,1!
Triangles D6(tk,tj) ( i ,i ,i )
Rectangles Z2

3(k,j3,t@0,
1
2#) (0,1,21)

Stripes Z2
2(kj3@

1
2,0#,t@

1
2,0#) % O(2)@u2 ,k@

1
2,0## ~1,0,0!
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Q~x!5FA 0

0 bG ,
whereA is a 232 block andb is a scalar. Sinceb is close to 2~the largest eigenvalue ofQ0) it
is also the largest eigenvalue forQ(x) for « small. Hence, the leading eigendirection~correspond-
ing to the largest eigenvalue! is always vertical and no patterns appear that are determine
changes in eigendirection. Nevertheless, since variation in the vertical eigenvalue ofQ(x) repre-
sents variation in the propensity of molecules to align vertically it is plausible that indis
patterns could nevertheless be observed in practice.

Next suppose thatQ0 is planar isotropic. For small« the director field is nearly horizonta
~exactly horizontal ift511) and so our figures represent the pattern fairly accurately. Wht
521 there are small sinusoidal oscillations in the vertical component of the director field.

Bifurcations from isotropy exhibit lines or points of dislocation~where the director field is
undefined! whereas bifurcations from homeotropy do not. In the latter case the director fie
near vertical and there are small sinusoidal variations in the horizontal components. In this c
the standard ‘‘rolls’’ terminology is misleading, as the director field is never horizontal: rath
oscillates about the vertical in a vertical plane and so generates ‘‘stripes.’’

In Figs. 3 and 4 we plot solutions corresponding to scalar and pseudoscalar square
patterns. In Figs. 5–10 we plot those for a hexagonal lattice. In the planforms obtaine
bifurcation from homeotropy• indicates a vertical line element; whereas in the planforms obta
by bifurcation from isotropy• indicates points whereQ(x) has a double maximum eigenvalu

FIG. 3. Square lattice bifurcations from isotropic (h,0) liquid crystal to square patterns:~upper left! scalart511;
~upper right! pseudoscalart511; ~lower left! scalart521; ~lower right! pseudoscalart521. Corresponding stripes
patterns can be found in Figs. 1 and 7–10.
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FIG. 4. Square lattice bifurcations from homeotropic (h.0) to squares witht521: ~left! scalar;~right! pseudoscalar.
Corresponding stripes patterns can be found in Figs. 5 and 6.

FIG. 5. Hexagonal lattice bifurcations from homeotropic (h.0) with scalart521 representation:~upper left! stripes;
~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
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FIG. 6. Hexagonal lattice bifurcations from homeotropic (h.0) with pseudoscalart521 representation:~upper left!
stripes;~upper right! hexagons;~lower left! triangles;~lower right! rectangles.

FIG. 7. Hexagonal lattice bifurcations from isotropic (h,0) with scalart511 representation: stripes in Fig. 1;~left!
hexagons1; ~right! hexagons2.
                                                                                                                



ns are

bifur-
ge-
cally

not
results,

cation
ollows.
, for

lue

anch

4213J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

                    
that is, a dislocation. Observe that across lines of dislocation the two competing directio
necessarily orthogonal inR3.

IV. FREE ENERGY MODELS

These results imply that for a planar liquid crystal there are four types of steady-state
cations, scalar, pseudoscalar, andt561 of each type, that can occur from a spatially homo
neous equilibrium to spatially periodic equilibria. Whichever bifurcation occurs, then generi
all of the planforms that we listed in the relevant section of Table III will be solutions. We have
discussed the difficult issue of stability of these solutions since these are model dependent
whereas the classification of equilibria that we have given is independent of the model.

What remains is to complete a linear calculation to determine when a steady-state bifur
occurs and whether it is scalar or pseudoscalar. The outline of such a calculation goes as f
We first compute adispersion curvefor both scalar and pseudoscalar eigenfunctions. That is
each wavelengthk5uku we determine the first valuelk of the bifurcation parameterl whereL has
a nonzero kernel. The curve (k,lk) is called the dispersion curve. We then find the minimum va
l* 5lk

*
on the dispersion curve; the corresponding wavelengthk* is thecritical wavelength. We

expect the first instability of the spatially homogeneous equilibrium to occur at the valuel* of the
bifurcation parameter. A bifurcating branch can consist of stable solutions only if the br
emanates from the first bifurcation~at l* ).

FIG. 8. Hexagonal lattice bifurcations from isotropic (h,0) with scalart521 representation:~upper left! stripes;~upper
right! hexagons;~lower left! triangles;~lower right! rectangles.
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As an illustration we now carry out these calculations for a Landau–de Gennes type
with appropriate planar symmetry. Related calculations were carried out for bifurcation from
three-dimensional isotropic phase in Grebelet al. ~1983!. In this model we show that there ar
bifurcations corresponding to each of the four irreducible representations ofGL , and which of
them occurs first depends on the action oft.

A. Dispersion curves for a two-dimensional Landau–de Gennes model

The free energyF is expressed as an integral per unit volume of afree energy densityF which
has two principal componentsF0 and Fd corresponding tobulk termsand deformation terms,
respectively: we writeF accordingly asF5F01Fd . For a system in three dimensions the
typically @see, e.g., Grebelet al. ~1983!# take the form

F0~Q!5 1
2 luQu22 1

3 B trQ31 1
4 CuQu4,

Fd~Q!5c1u¹Qu21c2u¹•Qu21c3uQ•¹∧Qu,

respectively, whereuRu2 denotes the sum of the squares of the coefficients of the tensorR. The
expression forF0 represents the simplestSO~3!-invariant function onV exhibiting nontrivial
interaction of local minima close toQ50, while Fd consists of thoseSO~3!-invariant terms of at
most order 2 in spatial first derivatives~the chiral termuQ•¹∧Qu is not reflection-invariant!.

FIG. 9. Hexagonal lattice bifurcations from isotropic (h,0) with pseudoscalart511 representation:~upper left! stripes;
~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
                                                                                                                



: the
an

r iso-
h
iral
free

4215J. Math. Phys., Vol. 44, No. 9, September 2003 Patterns in planar nematic liquid crystals

                    
For a two-dimensional problem this choice of free energy function is not fully appropriate
relevant symmetry group is nowG5E(2)3Z2(t). Consequently a wider range of terms c
appear inF0 , while theuQ•¹∧Qu term will no longer appear inFd .

We are interested in planforms that bifurcate from either the bulk homeotropic state o
tropic state, represented byQ0 with h.0 or h,0, respectively. An example of a bulk term wit
E(2)3Z2(t) invariance is (Q0•Q)2, and a candidate for a deformation term to replace the ch
term isuDQu2 representing longer range interactions of molecules. Accordingly we consider a
energy densityF5F01Fd where now

F0~Q!5 1
2 luQu22 1

3 BtrQ31 1
4 CuQu41 1

12 D~Q0•Q!2,

Fd~Q!5c1u¹Qu21c2u¹•Qu21c4uDQu2.

Equilbrium states are critical points ofF, and forF0 we have

dF0~Q!R5lQ•R2BQ2
•R1CuQu2Q•R1 1

6 D~Q0•Q!~Q0•R!

for arbitrary 333 real symmetric matricesQ,R ; thus restricted toQ with trace zero we have
dF0(Q)50 when

lQ2B~Q22 1
3 uQu2I !1CuQu2Q1 1

6 D~Q0•Q!Q050

FIG. 10. Hexagonal lattice bifurcations from isotropic (h,0) with pseudoscalart521 representation:~upper left!
stripes;~upper right! hexagons;~lower left! triangles;~lower right! rectangles.
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and we easily verify the following:

dF0~Q0!50⇔l2Bh1~6C1D !h250. ~10!

Observe thatdF(Q)R50 automatically for any spatially periodic stateR with zero mean, as
the integral of an expression linear inR or its derivatives remains bounded as the volume tend
infinity. Therefore~10! is the condition forQ0 to be an equilibrium state in our free energy mod

To study stability of the stateQ0 we evaluate the second derivative of the free energy atQ0 .
For RPV we find

d2F0~Q0!R25luRu222BQ0•R21C~2~Q0•R!21uQ0u2uRu2!1 1
6D~Q0•R!2

and ~integrating over unit area!

d2Fd~Q0!R25c1E u¹Ru21c2E u¹•Ru21c4E uDRu2

sinceQ0 is spatially constant and terms linear inR integrate to zero.
We have already seen from Theorem 3.1 that theE(2)3Z2(t) invariance of the free energ

implies that generically the eigenfunctions ofd2F(Q0) on the space ofL-periodic matrix func-
tions are linear combinations of functions belonging to one of the four subspacesVk

66 and their
rotations underp/2 ~square lattice! or 62p/3 ~hexagonal lattice!. We next seek dispersion rela
tions for each of the spacesVk

66 in turn. WhenR5e2p ik"xQ1c.c. it is easy to check that

1

4p2 E u¹Ru252k2uQu2,
1

4p2 E u¹•Ru252uQku2,
1

16p4 E uDRu252k4uQu2,

wherek5uku. Without loss of generality we can takek5(k,0,0) and then after rescalingk by a
factor of 2p the evaluations ofd2F0(Q0)R2 andd2Fd(Q0)R2 are given in Table IV.

If we normalize by choosingD so that~10! is satisfied byh51 ~corresponding to homeot
ropy! then we find the conditions for a zero eigenvalue in each of the last three~one-dimensional!
eigenspaces are, respectively,

l2B16C1~c11 1
2c2!k21c4k450,

l12B16C1~c11 1
2c2!k21c4k450, ~11!

l2B16C1c1k21c4k450

with the analogous expressions forh521 ~bifurcation from two-dimensional isotropy! obtained
by merely reversing the sign ofB in these equations.

Stationary values ofl as a function ofk occur where

TABLE IV. Computation ofd2F(Q0)R2.

R d2F0(Q0)R2 d2Fd(Q0)R2

Vk
11 l(a21b222ab)

2B(a21b2110ab)h
16C(7(a21b2)110ab)h2

2k2(c2a21

(a21b21(a1b)2)(c11c4k2))

Vk
12 4(l2Bh16Ch2)

524Dh2 by ~10!
(4c112c2)k214c4k4

Vk
21 4(l12Bh16Ch2) (4c112c2)k214c4k4

Vk
22 4(l2Bh16Ch2)

524Dh2
4c1k214c4k4
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k252~c11 1
2c2!/2c4

for Vk
12 andVk

21 , or

k252c1/2c4

for Vk
22 , giving values

l5H B26C1~c11 1
2 c2!2/4c4 for Vk

12

22B26C1~c11 1
2 c2!2/4c4 for Vk

21

B26C1c1
2/4c4 for Vk

22.

~12!

Finally, if RPVk
11 then the matrix ford2F0(Q0)R2 as a quadratic form ina,b is

F l2B142C 2l25B130C

2l25B130C l2B142C G
and ford2Fd(Q0)R2 is

F4c1k212c2k214c4k4 2c1k212c4k4

2c1k212c4k4 4c1k214c4k4G
and sod2F(Q0)uVk

11 has a nontrivial kernel when the determinant of the sum of these
matrices vanishes.

With c250 ~that is, in physical terms, with no energy cost to the molecules for ‘‘splay’’! the
algebra simplifies to yield the dispersion relation

l522B26C1
c1

2

4c4
. ~13!

From ~11! and~13! we therefore see that withc250 the values ofl for Vk
66 depend only on

the second6, that is on whether bifurcating solutions have vertical reflection symmetryt
511) or not (t521) and are the same for the scalar and the pseudoscalar represent
Moreover, asl decreases, the first bifurcation from the homeotropic state (h.0) hast521
while the first bifurcation from the isotropic state (h,0) hast511 . These statements rema
true for sufficiently smalluc2u .

B. Plausibility and applications

The models that we have described are of course mathematical idealizations of an
physical situation. In particular

~i! full two-dimensional Euclidean lattice symmetry~by its nature infinite! cannot exist in
practice, and

~ii ! the question of stability of the patterns has not been addressed.

Issue ~i! arises in many areas of pattern formation, and it is a common observation
despite the meaninglessness of full Euclidean lattice symmetry, the types of pattern tha
symmetry predicts are indeed seen in physical situations over even fairly small regions. Mor
attempts to force a planar solution into a sphere or other geometrical surface naturally l
dislocations in the pattern. For liquid crystals these questions become particularly important
context of membranes and other structures in biology@Brown and Wolken~1979!# where hexago-
nal patterns, for example, are not uncommon~although we make no claim to connect them direc
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with the hexagonal planforms that we discuss!. Our planar idealization may thus form a startin
point for understanding two-dimensional pattern formation in more realistic contexts.

The very interesting question of stability of solutions~ii ! is a mathematical issue that needs
be addressed on two levels. First, stability restricted to perturbations within the lattice sho
considered. The general analysis has been worked out for the scalar representations~Buzano and
Golubitsky, 1983; Golubitskyet al., 1984! and discussed for the pseudoscalart51 ~Bressloff
et al., 2001a!, but has not been completed for the pseudoscalart521 representation~though the
analysis should be similar to the pseudoscalart51 case!. A full treatment of this stability~based
on symmetry and otherwise independent of the equations! will, even for our simplified model,
require a long calculation and is beyond the scope of this work. We note that with the
assumption of a free energy function it might be feasible to address even more general s
issues. However, we again believe that such efforts should be reserved for models more ph
realistic than ours.

V. CONCLUSION

We have classified those square and hexagonally periodic patterns that are predicted to
the director field of a planar layer of a nematic liquid crystal when a homeotropic or p
isotropic state loses stability via the simplest spatially doubly periodic steady-state bifurca
The techniques are those of group theory and representation theory, and are valid for an
model under various reasonable assumptions. If such patterns are observed experimentall
conditions consistent with our assumptions, then our analysis provides the explanation
remains is to evaluate relevant constants~on the basis of physical data! in order to determine
which of the patterns is to occur. We have investigated some aspects of this for a Land
Gennes free energy model. Analogous methods to these have been used for some time in
fields such as Be´nard convection, but for liquid crystal models the extra complexity of the ma
order parameter here gives a richer geometric structure.
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Group lattices~Cayley digraphs! of a discrete group are in natural correspondence
with differential calculi on the group. On such a differential calculus geometric
structures can be introduced following general recipes of noncommutative differ-
ential geometry. Despite the noncommutativity between functions and~generalized!
differential forms, for the subclass of ‘‘bicovariant’’ group lattices considered in
this work it is possible to understand central geometric objects like metric, torsion
and curvature as ‘‘tensors’’ with~left! covariance properties. This ensures that
tensor components~with respect to a basis of the space of 1-forms! transform in the
familiar homogeneous way under a change of basis. There is a natural compatibility
condition for a metric and a linear connection. The resulting~pseudo-! Riemannian
geometry is explored in this work. It is demonstrated that the components of the
metric are indeed able to properly describe properties of discrete geometries like
lengths and angles. A simple geometric understanding of torsion and curvature in
particular is achieved. The formalism has much in common with lattice gauge
theory. For example, the Riemannian curvature is determined by parallel transport
of vectors around a plaquette~which corresponds to a biangle, a triangle or a
quadrangle!. © 2003 American Institute of Physics.@DOI: 10.1063/1.1594820#

I. INTRODUCTION

In a previous paper1 we started to develop a general formalism of differential geometry
group lattices~Cayley digraphs!, based on elementary notions of noncommutative geometry.
present work extends the latter to a formalism of discrete~pseudo-! Riemannian geometry of the
subclass ofbicovariantgroup lattices, as defined in Ref. 1. A group lattice, which is determined
a discretegroupG and afinite subsetS ~not containing the unit elemente), naturally defines a
first-order differential calculus~which extends to higher orders! over the algebraA of functions on
G. If S generatesG, bicovariance of the group lattice (G,S) is equivalent to bicovariance of th
first-order differential calculus in the sense of Ref. 2.

‘‘Riemannian geometry’’ of discrete groups in the context of noncommutative geometry
already been considered in several publications.3–5 The present approach differs from those
particular by introducing a metric tensor as an element of a left-covariant tensor product
space of 1-forms with itself. This tensor product is obtained from thea priori given tensor product
overA by using the special structure of group lattices and the bicovariance condition. Thoug
formalism has ideas in common with the approach of Ref. 6, it crucially differs from the la
where a left-covariant tensor product for arbitrary differential calculi on finite sets was constr
making use of a connection. The present approach is simpler and geometrically more trans
but restricted to bicovariant group lattices and thus a subclass ofregular7 digraphs. One should
keep in mind that extensions of geometric structures from ordinary differential geometry t

a!Electronic mail: dimakis@aegean.gr
b!Author to whom correspondence should be addressed. Electronic mail: fmuelle@gwdg.de
42200022-2488/2003/44(9)/4220/40/$20.00 © 2003 American Institute of Physics
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framework of noncommutative geometry may be carried out in various ways and only applic
can decide on their usefulness. For our choice, we will demonstrate that it leads to simp
convenient rules of discrete geometry. It is also this last aspect, namely the fact that we es
a geometric interpretation of thea priori abstract formalism, which distinguishes the present w
from some previous publications on noncommutative geometry of discrete groups.

The reason why we define a metric as a left-covariant tensor is that in this case its comp
are ‘‘local’’ objects~see Sec. II A!. More generally, the components of left-covariant tensors o
a homogeneous local transformation law under a change of basis. In this sense they ar
counterparts of tensors in ordinary differential geometry. This is quite in the spirit of Wils
lattice gauge theory: discretizationa priori moves local fields to nonlocal objects, but via paral
transport around a plaquette local objects are obtained. This is important in order to ma
gauge invariance, which is the main principle behind it. Similarly, we may postulate the pr
vation of the tensor transformation principle. This also allows us to consider coordinate tra
mations on group lattices very much in analogy with continuum differential geometry~see Sec.
VI !. The idea of constructing left- or alternatively right-covariant tensors in a noncommut
differential calculus already appeared in Ref. 8. Viewed as a map between leftA-modules, a
left-covariant tensor is leftA-linear.

Discrete~pseudo-! Riemannian geometry is of relevance for numerical evaluation and
path integral quantization of classical physical models based on continuum Riemannian geo
like mechanical and general relativistic systems~see Ref. 9, for example!. The approach based o
concepts of noncommutative geometry is an alternative to Regge calculus.10 It has the advantage
however, that its formal structure is much closer to continuum differential geometry. Simila
with previous approaches to gravity using concepts of lattice gauge theory exist,11 but there is little
overlap when it comes to the details of the formalism. Of course, discrete geometry is a
subject~see Ref. 12, for example! and relations between the present work and earlier approa
can certainly be established to some extent. This will not be attempted in this work. Rath
concentrate on what the machinery of algebraic noncommutative geometry applied in a n
way to ~bicovariant! group lattices gives us and we reveal the geometric significance of dis
analogs of metric, metric-compatible linear connections, torsion and curvature.

Section II discusses the nonlocality of the tensor product overA and introduces the left-
covariant tensor product for bicovariant group lattices, which induces a left-covariant prod
the space of formsV. Left-covariant metrics are then introduced and a compatibility condi
with a linear connection is formulated. The geometric meaning of the parallel transport deter
by a metric-compatible linear connection is explored. Furthermore, we introduce the notio
‘‘discrete Killing vector field.’’ Section III elaborates the torsion and the curvature of lin
connections on bicovariant group lattices and also provides corresponding expressions in te
basic vector fields~which constitute a subclass of discrete vector fields, see Ref. 1!. The Appendix
presents expressions of basic formulas with respect to an orthonormal coframe field. Sec
deals with group lattices which carry a metric and a torsion-free compatible linear connect

A metric-compatible linear connection provides us with a parallel transport which maps
of the group lattice isometrically into the tangent space at some site. Torsion and curvature
connection are, respectively, corresponding first and second order obstructions. It turns o
torsion plays a much more fundamental role in this discrete framework than in ordinary conti
differential geometry. Linear connections with torsion are needed to describe even simple
lattice geometries in this framework~see Sec. V!.

In Sec. VI we introduce the concept of coordinates on group lattices and elaborate in p
lar the geometry of hypercubic lattices based on the Abelian groupZn. Some concluding remark
are collected in Sec. VII.

The present work relies on the notation and results of Ref. 1. It isnot self-contained. We refer
to an equation in Ref. 1 in the form (I .a.b) where (a.b) is the equation number in Ref. 1. In th
following we restrict our considerations to bicovariant group lattices (G,S), i.e., S is assumed to
be closed under the adjoint action of all elements ofS and their inverses.
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II. TENSOR PRODUCTS, METRICS, AND LINEAR CONNECTIONS

In this section we first briefly discuss the consequences of the nonlocality of the usual
product overA. Then we make use of the special structure of bicovariant group lattices in
to construct a new tensor product which is left-covariant so that the corresponding tensor c
nents are ‘‘local’’ and able to carry a geometric meaning. The left-covariant tensor produ
forms induces a left-covariant~generalized wedge! product in the space of forms. Left-covaria
metrics are introduced and a compatibility condition with a linear connection is formulated
latter involves an extension of the linear connection from the space of 1-forms to a left-cov
tensor product. This is a familiar procedure in the tensor calculus on manifolds, but in gene
at all straightforward in noncommutative geometries~see also Ref. 3!. Of particular importance for
an understanding of the formalism is the observation that a metric-compatible linear conn
determines an isometric map of parts of the group lattice into the tangent space at a~fixed! site. In
the last subsection we define discrete Killing vector fields and invariant metrics on a~bicovariant!
group lattice.

A. Nonlocality of the tensor product over A
For the differential calculus (V,d) determined by a group lattice (G,S) there is a distin-

guished~left and right! A-module basis$uh u hPS% of the space of 1-formsV1 which satisfies
uhf 5Rh* f uh for all elementsf of the space of functionsA on G, whereRh is the right action on
G by an elementhPS. As a consequence,

~ f uh! Â~ f 8uh8!5 f ~Rh* f 8! uh
^Auh8 ~2.1!

for all f , f 8PA. For eachgPG there is a functioneg such thateg(g8)5dg,g8 for all g8PG. For
this function we obtain

eg~uh
^Auh8!5~eguh! ^A~eghuh8!, ~2.2!

which shows that the tensor product^A is nonlocal since the two factors ‘‘sit’’ at different~though
neighboring! points. Let us consider an object

g5 (
h,h8PS

gh,h8 uh
^Auh8 ~gh,h8PA!. ~2.3!

Under a linear change of basisuh° ũh
ª(h8PS ah

h8 uh8 with coefficientsah
h8PA we find

g5 (
h1 ,h2 ,h18 ,h28PS

gh
18 ,h

28
~a21!h18h1

~Rh1
* a21!h28h2

ũh1^Aũh25 (
h1 ,h2PS

g̃h1 ,h2
ũh1^Aũh2 ~2.4!

from which we read off the coefficients with respect to the new cobasis:

g̃h1 ,h2
5 (

h18 ,h28PS

gh
18 ,h

28
~a21!h18h1

~Rh1
* a21!h28h2

. ~2.5!

Here we see again the nonlocal character of the tensor product^A .

B. Left-covariant tensor product for bicovariant group lattices

By acting on each component, the mapsRh* andRh21* for hPS extend to tensor products o
V1 and toV as automorphisms. Then there is another tensor product with a local transform
rule. This ‘‘left-covariant’’ tensor product is defined via

~uh1^A¯^Auhr ! ^ LTªuh1^A¯^Auhr ^ARh
r
21*
¯Rh

1
21* T, ~2.6!
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whereT is an arbitrary element of a tensor product ofV1 over A. The inverse relation is

~uh1^A¯^Auhr ! ^AT5~uh1^A¯^Auhr ! ^ LRh1
* ¯Rhr

* T. ~2.7!

Using Rh* uh85uad(h)h8 we find in particular

uh
^ Luh85uh

^Auad(h21)h8 , uh
^Auh85uh

^ Luad(h)h8. ~2.8!

Note also that

~uh1^ L¯^ Luhr ! ^ LT5~uh1^ L¯^ Luhr ! ^ARh
1
21*
¯Rh

r
21* T, ~2.9!

~uh1^ L¯^ Luhr ! ^AT5~uh1^ L¯^ Luhr ! ^ LRhr
* ¯Rh1

* T. ~2.10!

A local transformation law is indeed obtained since the new tensor product satisfies

~ f 1T1! ^ L~ f 2T2!5 f 1f 2 T1^ LT2 ~2.11!

for all f 1 , f 2PA and elementsT1 ,T2 of tensor products ofV1.

Lemma 2.1: The left-covariant tensor product^ L is associative:

~T1^ LT2! ^ LT35T1^ L~T2^ LT3! ~2.12!

for all Ti in tensor products ofV1.
Proof: In particular, we find

~uh1^ Luh2! ^ LT5~uh1^ARh
1
21* uh2! ^ LT

5~uh1^Auad(h1
21)h2! ^ LT

5uh1^Auad(h1
21)h2^AR[ad(h

1
21)h2] 21

* Rh
1
21* T

5uh1^Auad(h1
21)h2^ARh

1
21* Rh

2
21* T

5uh1^ARh
1
21* ~uh2^ARh

2
21* T!5uh1^ L~uh2^ LT!.

Our more general assertion is proved in the same way. j

Lemma 2.2: For all T1 ,T2 in tensor products ofV1,

Rh* ~T1^ LT2!5~Rh* T1! ^ L~Rh* T2!. ~2.13!

Proof:

Rh* @~ f uh1^A¯^Auhr ! ^ LT#5Rh* ~ f uh1^A¯^Auhr ! Rh* Rh
r
21*
¯Rh

1
21* Rh21* Rh* T

5Rh* ~ f uh1^A¯^Auhr ! R[ad(h)hr ]
21* ¯R[ad(h)h1] 21* Rh* T

5Rh* ~ f uh1^A¯^Auhr ! ^ LRh* T

for all f PA and allT in a tensor product ofV1. Now the assertion follows by linearity. j
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C. A left-covariant product in the space of forms

The nonlocality of the tensor product̂A discussed above is inherited by the product inV. For
a bicovariant group lattice we can define a left-covariant product inV via

v1ùv25p~v1^ Lv2!, ~2.14!

wherep is the projectionV ^AV→V. The new product inherits from̂ L left-covariance and
associativity. From the definition we obtain

~uh1
¯uhr !ùv5uh1

¯uhr Rh
r
21*
¯Rh

1
21* v, ~2.15!

uh1
¯uhr v5~uh1

¯uhr !ùRh1
* ¯Rhr

* v, ~2.16!

and also

~uh1ù¯ùuhr !ùv5~uh1ù¯ùuhr ! Rh
1
21*
¯Rh

r
21* v, ~2.17!

~uh1ù¯ùuhr ! v5~uh1ù¯ùuhr !ùRhr
* ¯Rh1

* v. ~2.18!

In particular,

uhùuh85uh uad(h21)h8, uh uh85uhùuad(h)h8. ~2.19!

The 2-form relations~see Sec. IV of Ref. 1! now read

(
h,h8PS

dh8h
g uhùuh850 ; gPS(2) ~2.20!

and a 2-form can be decomposed using the projections

p(e)~uhùuh8!5dhh8
e uhùuh8,

p(h)~uh8ùuh9!5dh9h8
h uh8ùuh9, hPS(1) , ~2.21!

p(g)~uhùuh8!5dh8h
g uhùuh8, gPS(2) ,

whereS(1)5S2ùS, S(2)5S2\Se andSe5Sø$e%. For a cycleh1h25h2h35¯5hrh1 we obtain

uh1uh21uh2uh31¯1uhruh15uh1ùuhr1uh2ùuh11¯1uhrùuhr 21 . ~2.22!

Hence the structure of 2-form relations is preserved by theù-product.
SinceRh* commutes withp, ~2.13! leads to

Rh* ~v1ùv2!5~Rh* v1!ù~Rh* v2!. ~2.23!

In Ref. 1 a mapD:V→V has been introduced which is a graded derivation with respect to
ordinary product inV and satisfies

D~uh!ª (
h8,h9PS

dh9h8
h uh8ùuh9. ~2.24!

Lemma 2.3:D is a graded derivation with respect to theù-product inV.
Proof: Using ~I.4.11! and ~I.4.20! we obtain
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D~uhùv!5D~uh Rh21* v!

5D~uh! Rh21* v2uh D~Rh21* v!

5D~uh! Rh21* v2uh Rh21* D~v!

5 (
h8,h9PS

dh9h8
h uh8ùuh9ùRh9h8

* Rh21* v2uhùD~v!

5D~uh!ùv2uhùD~v!

for all vPV. This in turn implies the general derivation rule

D~v8ùv!5D~v8!ùv1~21!r v8ùD~v!,

wherev8 is an arbitraryr -form. j

The map d isnot a derivation with respect to theù-product. For anr -form v we obtain from
~I.4.12! the formula

dv5 (
hPS

uhùRh* v2~21!r vùu2D~v!, ~2.25!

where

u5 (
hPS

uh. ~2.26!

This allows us to evaluate d applied to any form in terms of expressions which only involv
ù-product~instead of the original product inV!. In fact, we could have defined the left-covaria
product of forms~and moreover the left-covariant tensor product! by its basic properties~without
reference to the tensor product overA! and the action of d directly in terms of~2.25!. Reversing
some of the arguments would then demonstrate that there is a product inV with respect to which
d becomes a derivation.

D. Fixing the ambiguity of 2-form components

Given a 2-form

c5 (
h,h8PS

ch,h8 uhùuh8, ~2.27!

the biangle and triangle coefficient functionsch,h8 are uniquely determined, but there is an a
biguity in the quadrangle coefficients as a consequence of the 2-form relations~2.20!. Indeed,
writing

c (g)5p(g)c5 (
h,h8PS

č (g) h,h8 uhùuh8 ~2.28!

for gPS(2) , there is a freedom of gauge transformationsč (g) h,h8°č (g) h,h81C (g) dh8h
g with an

arbitrary functionC (g) on G.13 For any two membersh,h8 and ĥ,ĥ8 of the chainh1h185¯

5hrhr85gPS(2) , the difference

c (g) h,h8;ĥ,ĥ8ªč (g) h,h82č (g) ĥ,ĥ8 ~2.29!

and thus also
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c (g) h8,hª (
ĥ,ĥ8PS

c (g) h8,h;ĥ8,ĥ5ugu č (g) h8,h2 (
ĥ,ĥ8PS

d ĥĥ8
g

č (g) ĥ8,ĥ ~2.30!

is gauge invariant and hence independent of the choice of the coefficient functionsč (g) h,h8 ~from
their gauge equivalence class!. Hereugu denotes the length of the chain which belongs tog, i.e.,
ugu5r . Furthermore, we obtain(h,h8dh8h

g c (g) h,h850 and

c (g)5
1

ugu (
h,h8PS

dh8h
g c (g) h,h8 uhùuh8, ~2.31!

which suggests todefinethe functions~2.30! as thequadrangle componentsof the 2-formc ~with
respect to theù-product!. The equationc (g)50 ~for a 2-formc! is equivalent to the vanishing o
all the differencesc (g) h,h8;ĥ,ĥ8 .

Of course, also in the case of higher than 2-forms there is an ambiguity in the choi
coefficients and a corresponding way of fixing it.

E. Left-covariant metric and compatibility with a linear connection

Let us expressg given in ~2.3! as

g5 (
h,h8PS

gh,h8 uh
^ Luh8 ~2.32!

with gh,h8PA. By comparison with~2.3!, we obtain

gh,h85gh,hh8h21. ~2.33!

We say thatg is symmetricif gh,h85gh8,h , which corresponds togh,h21h8h5gh8,h821hh8 . Further-
more,g is said to beinvertible if the matrix g5(gh,h8) is invertible ~at all sites!.

An objectg as considered above is a candidate for a ‘‘metric tensor.’’ Its components sh
then be expected to determine lengths of vectors and angles between vectors at a si
interpretation clearly distinguishes the componentsgh,h8 and thus the left-covariant tensor produ
~see also the corresponding remarks in the Introduction!. Hence we define ametric tensoras an
objectg of the form ~2.32! such that the coefficient matrixg is real, symmetric and invertible.

A metric g is calledleft-invariant if Lh* g5g for all hPS, whereLh denotes the left action by
h on G. This is equivalent to a ‘‘constant metric,’’ i.e.,gh,h8PR. A left-invariant metric is called
bi-invariant if it is also right-invariant, i.e., Rh* g5g for all hPS. This means that the metric i
constant and satisfiesgh1 ,h2

5gad(h)h1 ,ad(h)h2
for all h,h1 ,h2PS.

Let $,h u hPS% be the vector fields dual to$uh u hPS%, so that,hf 5Rh* f 2 f for f PA. Let
V,h

be the parallel transport along the vector field,h with respect to a linear connection onV1

~see Ref. 1!. We write

V,h8
uh5 (

h9PS
~Rh821* Vh

h8,h9! uh9, ~2.34!

whereVh5(Vh9
h,h8) are matrices with entries inA. V extends toV1

^ LV1 via

V,h
~a ^ Lb!5V,h

a ^ LV,h
b. ~2.35!

ThenVª(hPSuh
^ AV,h

has the propertyV( f a ^ Lb)5 f V(a ^ Lb) and thus defines a connectio
according to Lemma 6.1 of Ref. 1.

An elementgPV1
^ LV1 is said to becompatiblewith the linear connection¹ if
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¹g50, ~2.36!

which in terms of the parallel transport operators takes the form

V,h
g5g ;hPS. ~2.37!

In components, this reads

(
h1 ,h2PS

Vh1
h,h

18
Vh2

h,h
28
gh1 ,h2

5Rh* gh
18 ,h

28
~2.38!

and in matrix form

Rh* g5Vh
T g Vh. ~2.39!

If g is a metric, this condition requires that the matricesVh , hPS, are invertible. For a given
metric, there are not always matricesVh satisfying~2.39!.

Lemma 2.4: A linear connection compatible with a metric on a connected componen
bicovariant group lattice exists if and only if the metric has the same signature at all sites.

Proof: This is a direct consequence of the fact that two real symmetric matricesA,B with the
same rank are related byB5VTAV with an invertible matrixV if and only if both have the same
signature. j

A bicovariant group lattice supplied with a metric of constant signature will be calle
Riemannian group latticein the following. Since we require a metric to be nondegenerat
Riemannian group lattice (G,S,g) should be regarded as anuSu-dimensional structure.

The metric-compatibility condition determines the transport matrices, and thus the conne
only up to transformationsVh°Jh Vh with arbitrary isometriesJh , which are matrices of func-
tions onG such that

Jh
T g Jh5g. ~2.40!

F. Backward parallel transport of vector fields and geometric interpretation of
metric-compatible linear connections

Vector fields are elements of theA-bimodule generated by$,h u hPS%.1 A linear connection
determines a backward parallel transport of vector fields along a vector field:

Ṽ,h
Xª (

h8,h9PS
~Rh* Xh8! Vh9

h,h8•,h9 , ṼXª(
hPS

Xh Ṽ,h
~2.41!

~see Ref. 1 for details!. The vectors

Vh,h8ªṼ,h
,h85 (

h9PS

Vh9
h,h8•,h9 ~2.42!

are the images in the tangent space atg of the vectors,h8 at gh. If the transport is metric-
compatible, the vectorsVh,h8 at g carry the metric properties of,h8 at gh, i.e.,

gh8,h9~gh!5g~,h8 ,,h9!~gh!5g~Vh,h8 ,Vh,h9!~g!. ~2.43!

Of course, we can also transport tangent vectors from more remote sites to the tangen
at g by iterated application of the operatorsṼ,h

:

Vh1 ,...,hr 11
ªṼ,h1

¯Ṽ,hr
,hr 11

. ~2.44!
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The results will, however, be path-dependent in general. But here we see very clearly the g
ric significance of a metric-compatible linear connection. It maps part of the group lattice int
tangent space at a site in such a way that the metric relations are preserved, i.e., isometric
general, this cannot be done for the whole group lattice. Torsion and curvature are obstru
We have already shown in Ref. 1 that in the case of vanishing torsion at least the next-ne
part of the group lattice is mapped isometrically into the tangent space in this way, i.e
backward parallel transport preserves the group lattice geometry to first order. Curvatur
second order obstruction. Its biangle, triangle and quadrangle parts are given, respectively

~ Ṽ,h1
Ṽ,h2

2I ! ,h5 (
h8PS

~Vh1
Rh1

* Vh2
2I !h8

h ,h8 if h1h25e,

~ Ṽ,h1
Ṽ,h2

2Ṽ,h3
! ,h5 (

h8PS
~Vh1

Rh1
* Vh2

2Vh3
!h8

h ,h8 if h1h25h3PS(1) ,

~ Ṽ,h1
Ṽ,h2

2Ṽ, ĥ1
Ṽ, ĥ2

! ,h5 (
h8PS

~Vh1
Rh1

* Vh2
2Vĥ1

Rĥ1
* Vĥ2

!h8
h ,h8 if h1h25ĥ1ĥ2PS(2) .

~2.45!

An equivalent curvature definition will be presented in Sec. III. The last formula of~2.45! is a
discrete version of a familiar formula of continuum differential geometry: the quadrangle c
ture is determined by parallel transport of a vector field around a quadrangle. There a
counterparts of biangle and triangle curvature in continuum differential geometry.

Let us make more precise how an isometric tangent space picture of~part of! a group lattice
is obtained if a metric-compatible linear connection is given. IfS hasn different elements, let ( , )
be an inner product inRn with the same signature asg. At the origin inRn we choose ann-bein
$uh u hPS% such that

~uh ,uh8!5g~,h ,,h8!~g!. ~2.46!

Then i:,h°uh extends to an isomorphism of metric linear spaces. Furthermore,Vh,h8
ªi(Vh,h8)5(h9PSVh9

h,h8 uh9 represents the vectorVh,h8 in Rn. We attach it at the tip ofuh .
More generally, the vector

Vh1 ,...,hr 11
ªi~Vh1 ,...,hr 11

!5 (
hPS

uh @Vh1
~g! Vh2

~gh1!¯Vhr
~gh1¯hr 21!#h

hr 11
~2.47!

has to be attached at the tip ofuh1
1Vh1 ,h2

1¯1Vh1 ,...,hr
.

The isometriesJh act on the vectorsVh,h8 as follows:

Jh~Vh,h8!ª (
h1 ,h2

uh1
Jh1

h,h2
Vh2

h,h8. ~2.48!

The isometry property of theJh then implies

~Jh~Vh,h8!,Jh~Vh,h9!!5~Vh,h8 ,Vh,h9!. ~2.49!

The backward parallel transport and the isomorphismi provide us with a convenient way t
describe the action of a~metric-compatible! linear connection inRn ~supplied with a standard
inner product!. This will be used extensively in Secs. IV and V.

G. Contravariant metric and compatibility with a linear connection

A left-covariant tensor product of vector fieldsX,Y is defined as follows:

X^ LYª(
hPS

Xh ,h^ARh* Y . ~2.50!
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Given a metric tensor in the sense of Sec. II E, there is also a ‘‘contravariant’’ metric tenso

h5 (
h,h8PS

hh,h8
•,h^ L,h85 (

h,h8PS

hh,ad(h)h8
•,h^A,h8 , ~2.51!

where (h(g)h,h8) is the inverse of the matrixg at gPG.
If the matricesVh are invertible for allhPS, the corresponding linear connection onV1

induces a connection on the spaceX of vector fields~see Ref. 1!. An elementhPX^ LX is
compatiblewith the connection¹ if ¹h50, where¹ has been extended toX^ LX following the
procedure in Sec. II E. This is

Rh* hh1 ,h25 (
h18 ,h28PS

~Uh!h1
h

18
~Uh!h2

h
28
hh18 ,h28 ~2.52!

or Rh* h5Uh h Uh
T in matrix form, whereUhªVh

21 .

H. Discrete Killing vector fields

Let X5(hPSXh
•,h be a discrete vector field for which the mapfX :G→G, which is deter-

mined byfX* 5I 1X on functions, is differentiable~see Ref. 1!. X will be called aKilling vector
field of a metricg if £ Xg5fX* g2g50 ~with the Lie derivative £ introduced in Ref. 1!. For X
5,h this becomesRh* g5g, i.e.,

g~gh!h1 ,h2
5g~g!ad(h)h1 ,ad(h)h2

~2.53!

for all gPG. The right hand side of~2.53! can be expressed in the form (Ph
T g(g) Ph)h1 ,h2

where
the matrixPh represents a permutation.

A metric g on a bicovariant group lattice (G,S) is thus right-invariant if it satisfies £,h
g50

for all hPS. A right-invariant metric is completely determined by its values at one site~e.g., at the
unit elemente).

VhªPh defines a linear connection which is compatible with every right-invariant me
Each other linear connection compatible with a right-invariant metric is then obtained aVh

ªJhPh , whereJh is at each lattice site an isometry of the metric.

Example 2.1:Let G be a discrete group andS,G\$e% finite andAbelian. If £ ,h
g50 for some

hPS, the condition~2.53! becomesg(gh)5g(g), which means that the functionsgh1 ,h2
, h1 ,h2

PS, are constant on the orbits inG under the right actionRh . Let G5Zn or G5Z, and 1PS. If
,1 is a Killing vector field, the metric coefficientsgh1 ,h2

are constant on the whole group. Th
corresponding natural linear connection is then given byVh5I . j

Example 2.2:Let G5S3 andS5$(12),(13),(23)%. We introduce the matrices

P(12)5S 1 0 0

0 0 1

0 1 0
D , P(13)5S 0 0 1

0 1 0

1 0 0
D , P(23)5S 0 1 0

1 0 0

0 0 1
D . ~2.54!

If , (12) is a Killing vector field of a metric g on this group lattice, theng(g (12))
5P(12) g(g) P(12) which determines the metric at the sites~12!, ~13!, ~23! in terms of the metric at
the sitese, (132), (123), respectively. If, (13) and , (23) are Killing vector fields ofg, then
g(g (13))5P(13) g(g) P(13) and g(g (23))5P(23) g(g) P(23) . The right-invariant metrics on
(S3 ,$(12),(13),(23)%) are then given by
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g~e!5S a b c

b d e

c e f
D , g~~12!!5S a c b

c f e

b e d
D , g~~13!!5S f e c

e d b

c b a
D ,

~2.55!

g~~23!!5S d b e

b a c

e c f
D , g~~123!!5S d e b

e f c

b c a
D , g~~132!!5S f c e

c a b

e b d
D ,

with constantsa,b,c,d,e, f . A linear connection compatible with this family of metrics is obtain
by choosingVh5Ph . The family of right-invariant metrics includes

g~h!5S a b b

b a b

b b a
D , ~2.56!

which is bi-invariant. j

III. TORSION AND CURVATURE AS LEFT-COVARIANT TENSORS

The torsion 2-forms

Qh5duh2p~¹uh!5duh2u uh2 (
h8,h9PS

Vh
h8,h9 uh8uh9 ~3.1!

can be rewritten in terms of theù-product and then decomposed into biangle, triangle
quadrangle parts as follows:

Qh5 (
h1 ,h2PS

Qh
h1 ,h2

uh1ùuh2

5 (
h1 ,h2PS

S Q(e) h1 ,h2

h 1 (
h0PS(1)

Q(h0) h1 ,h2

h 1 (
gPS(2)

Q̌(g) h1 ,h2

h D uh1ùuh2. ~3.2!

In this way we find the biangle components

Q(e) h1 ,h2

h 5dh1h2

e ~dh1

h 1Vh
h1 ,h2

! ~3.3!

and the triangle components

Q(h0) h1 ,h2

h 5dh2h1

h0 ~dh1

h 2dh0

h 1Vh
h1 ,h

1
21h2h1

!. ~3.4!

In the case of the quadrangle components, one has to take the 2-form relations~2.20! into account.
As a consequence of the latter, the functionsQ(g) h1 ,h2

h are not uniquely determined. Following th

discussion in Sec. II D, it is convenient to introduce the differences

Q(g) h1 ,h2 ;ĥ1 ,ĥ2

h
ªQ̌(g) h1 ,h2

h 2Q̌(g) ĥ1 ,ĥ2

h
5dh2h1

g ~dh1

h 2d ĥ1

h
1Vh

h1 ,h
1
21h2h1

2Vh
ĥ1 ,ĥ

1
21ĥ2ĥ1

! ~3.5!
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@cf. ~2.29!# whereĥ2 ,ĥ1 is any pair of elements ofS which belongs to the same chain ash2 ,h1 ~so
that ĥ2ĥ15g5h2h1). In particular, the vanishing of the quadrangle part of the torsion 2-form
equivalent to the vanishing of all the quantities~3.5!. According to Sec. II D, the quadrangl
torsion components should be defined as follows,

Q(g) hi8,hi

h
ªugu Q̌(g) hi8,hi

h
2 (

h8,h9PS

dh8h9
g Q̌(g) h9,h8

h
5 (

h8,h9PS
h8h95g

Q(g) hi8,hi ;h9,h8
h , i 51,...,ugu,

~3.6!

if h1h185¯5hrhr85g is the corresponding chain. This does not depend on the choice o
coefficient functionsQ̌(g) h8,h

h which is ambiguous as a consequence of the 2-form relations.
After some manipulations like

(
h8,h9PS

uh8uh9^AV,h9
V,h8

uh

5 (
h1 ,h9PS

~uh1uh9! ^ LRh1
* Rh9

* V,h9
V,h1

uh

5 (
h1 ,h9PS

~uh1ùuad(h1)h9! ^ LRh1
* Rh9

* V,h9
V,h1

uh

5 (
h1 ,h2PS

~uh1ùuh2! ^ LRh2h1
* V,ad(h1

21)h2
V,h1

uh

5 (
h1 ,h2PS

~uh1ùuh2! ^ LRh2h1
* (

h8,h9
~R(h2h1)21* Vh1 ,h9

h
!

3~Rh
1
21h

2
21h1

* Vh
1
21h2h1 ,h8

h9 ! uh9

5 (
h1 ,h2 ,h8,h9PS

~uh1ùuh2! ^ LVh1 ,h9
h

~Rh1
* Vh

1
21h2h1 ,h8

h9 ! uad(h2h1)h9

5 (
h1 ,h2 ,h8,h9PS

~uh1ùuh2! ^ LVh1 ,h9
h

~Rh1
* Vad(h

1
21)h2 ,ad[(h2h1)21]h8

h9 ! uh8 ~3.7!

the definition of the curvature, see~I.7.4!, leads to

R~uh!5 (
h8,h1 ,h2PS

S (
h9PS

Vh
h1 ,h9 ~Rh1

* Vh9
h

1
21h2h1 ,ad[(h2h1)21]h8!2dh8

h dh2h1

e

2 (
h9PS

dh2h1

h9 Vh
h9,ad[(h2h1)21]h8D uh1ùuh2^ Luh8. ~3.8!

Writing
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R~uh!5 (
h8,h1 ,h2

R h
h8,h1 ,h2

uh1ùuh2^ Luh8

5 (
h1 ,h2PS

S R (e) h8,h1 ,h2

h
1 (

h0PS(1)

R (h0) h8,h1 ,h2

h
1 (

gPS(2)

Ř(g) h8,h1 ,h2

h D uh1ùuh2^ Luh8

~3.9!

we obtain the biangle components

R (e) h8,h1 ,h2

h
5dh2h1

e ~Vh1
Rh1

* Vh2
2I !h

h8, ~3.10!

the triangle components

R (h0) h8,h1 ,h2

h
5dh2h1

h0 ~Vh1
Rh1

* Vh
1
21h2h1

2Vh0
!h

h
0
21h8h0

, ~3.11!

and the differences of quadrangle components

R (g) h8,h1 ,h2 ;ĥ1 ,ĥ2

h
ªŘ(g) h8,h1 ,h2

h
2Ř(g) h8,ĥ1 ,ĥ2

h

5dh2h1

g ~Vh1
Rh1

* Vh
1
21h2h1

2Vĥ1
Rĥ1

* Vĥ
1
21ĥ2ĥ1

!h
g21h8g. ~3.12!

Again, ĥ2 ,ĥ1 is any pair withĥ2ĥ15gPS(2) .
According to Sec. II D, the quadrangle curvature components should be defined as fol

R (g) h8,hi8,hi

h
ªugu Ř(g) h8,h

i8 ,hi

h
2 (

h9,h-PS

dh9h-
g Ř(g) h8,h-,h9

h

5 (
h9,h-PS
h9h-5g

R (g) h8,hi8,hi ;h-,h9
h ,

i 51, . . . ,ugu, ~3.13!

if h1h185¯5hrhr85g is the corresponding chain. Understanding that the quadrangle pa
R h

h8,h9,h- is given by the above expression, the components of aRicci tensorcan be defined
without ambiguity as follows:

Rich,h8ª (
h9PS

R h9
h,h9,h8. ~3.14!

With the help of a metric, acurvature scalarcan be built:

Rª (
h,h8PS

~g21!h,h8Ric~,h ,,h8!. ~3.15!

There is, however, another contraction of the curvature tensor, namely,

Ric̃h,h8ª (
h9PS

R h9
h,h8,h9 , ~3.16!

which leads in general to a different Ricci tensor and curvature scalar. Moreover, also the
traction (h9PSR h9

h9,h,h8 is in general different from zero. This complicates finding a suita
analog of the Einstein equation, for example.
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A. Bianchi identities

According to Ref. 1, the first Bianchi identity can be expressed as follows:

dQh1Q~¹uh!5p+R~uh!5 (
h8,h1 ,h2PS

R h
h8,h1 ,h2

uh1ùuh2ùuh8. ~3.17!

Using u v5(hPSuhùRh* v we find

Q~¹uh!52u Qh1 (
h8,h9PS

Vh
h8,h9 uh9 Qh852 (

h8PS

uh8ùRh8
* Qh1 (

h8,h9PS

Vh
h8,h9 uh9ùRh9

* Qh8,

~3.18!

and, thus, with the help of~2.25!,

dQh1Q~¹uh!52Qhùu2D~Qh!1 (
h8,h9

Vh
h8,h9u

h9ù~Rh9
* Qh8!. ~3.19!

Replacing the left hand side of~3.17! with the last expression, we obtain the first Bianchi ident
in terms of theù-product. In the case of vanishing torsion, it reduces to

(
h8,h1 ,h2PS

R h
h8,h1 ,h2

uh1ùuh2ùuh850. ~3.20!

Using Vh
h8ª(h9PSVh

h9,h8 uh9 and

R h
h8ª (

h1 ,h2PS
R h

ad(h2h1)h8,h1 ,h2
uh1ùuh2 ~3.21!

the second Bianchi identity~I.7.15! reads

D~R h
h8!5 (

h9PS
~Vh

h9 R h9
h82R h

h9 Vh9
h8!

5 (
h1 ,h2PS

Vh
h1 ,h2

uh1ùRh1
* R h2

h82 (
h1 ,h2 ,h3PS

R h
ad(h3h2)h1 ,h2 ,h3

uh2ùuh3ùRh3h2
* Vh1

h8.

~3.22!

Evaluating the left hand side with the help of Lemma 2.3, this yields a 3-form expression w
only involves theù-product.

B. Integrability conditions of the metric-compatibility equation

The integrability condition for the metric-compatibility of a linear connection is¹2g50 and
thus involves the curvature. After some manipulations we obtain the conditions

Vh1
Rh1

* Vh2
5Bh1 ,h2

for a biangle h1h25e, ~3.23!

Vh1
Rh1

* Vh2
5Th1 ,h2

Vh for a triangle h1h25hPS(1) , ~3.24!

Vh1
Rh1

* Vh2
5Kh1 ,h2 ;ĥ1ĥ2

Vĥ1
Rĥ1

* Vĥ2
for a quadrangleh1h25ĥ1ĥ2PS(2) , ~3.25!
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where for allgPG the matricesBh1 ,h2
(g), Th1 ,h2

(g), Kh1 ,h2 ;ĥ1ĥ2
(g) are elements of the isometr

group ofg(g). Now we obtain for biangles

R h
(e) h8,h1 ,h2

5dh2h1

e ~Bh1 ,h2
2I !h

h8 , ~3.26!

for triangles

R h
(h0) h8,h1 ,h2

5dh2h1

h0 ~~Th1 ,h2
2I !Vh0

!h
h

0
21h8h0

, ~3.27!

and for quadrangles

R h
(g) h8,h1 ,h2 ;ĥ1 ,ĥ2

5dh2h1

g ~~Kh1 ,h2 ;ĥ1 ,ĥ2
2I ! Vĥ1

Rĥ1
* Vĥ

1
21ĥ2ĥ1

!h
g21h8g , ~3.28!

whereĥ2ĥ15gPS(2) . As a consequence, the essential part of the curvature tensor is given b
isometriesB,T,K.

C. Torsion and curvature as maps on vector fields

Let (G,S) be a bicovariant group lattice andQh
h1 ,h2

be the torsion tensor components intr
duced in~3.2! with the quadrangle part defined in~3.6!. For vector fieldsX,Y we introduce the
torsion tensor

Q~X,Y!ª (
hPS, h1 ,h2PSe

Xh1Yh2 Qh
h1 ,h2

•,h. ~3.29!

This expression obviously satisfiesQ( f •X, f 8•Y)5 f f 8 Q(X,Y) and is therefore a~left! tensor. In
the following we consider in more detail the case whereX,Y are basic. The torsion tensor can th
be written as

Q~X,Y!5 (
hPS

Qh
sX ,sY

•,h , ~3.30!

where the mapsX : G→S is determined byXh(g)5dsX(g)
h ~see also Ref. 1!.

Below we will need the following expression for basic vector fieldsX,Y,

ṼXRX* Y5 (
h1 ,h2PS

Xh1 Yad(h1)h2 Ṽ,h1
,h2

5 (
h1 ,h2PS

dh1 ,sX dh2 ,ad(sX)21sY Ṽ,h1
,h2

5 (
hPS

Vh
sX ,ad(sX)21sY

•,h , ~3.31!

where we used~I.5.21!, ~I.7.17!, and~I.5.12!.
If X,Y form a biangle, so thatsYsX5e, then
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Q~X,Y!5 (
hPS

Q(e)sX ,sY

h
•,h

5 (
hPS

dsXsY

e ~dsX

h 1VsX ,sY

h !•,h

5X1 (
hPS

Vh
sX ,sY

•,h5X1ṼXRX* Y. ~3.32!

If X,Y,Z form a triangle, so thatsYsX5sZ , we obtain

Q~X,Y!5 (
hPS,h1PS(1)

Q(h1)sX ,sY

h
•,h

5 (
hPS,h1PS(1)

dsYsX

h1 ~dsX

h 2dh1

h 1Vh
sX ,ad(sX)21sY

!•,h

5X1ṼXRX* Y2Z. ~3.33!

Finally, for a quadrangleX,Y,X̂,Ŷ ~which satisfiessYsX5sŶsX̂¹Se) we find

Q~X,Y;X̂,Ŷ!ªQ~X,Y!2Q~X̂,Ŷ!

5 (
hPS,gPS(2)

Q(g)sX ,sY ;sX̂ ,sŶ

h
•,h

5 (
hPS,gPS(2)

dsYsX

g ~dsX

h 2dsX̂

h 1VsX ,ad(sX)21sY

h
2Vh

sX̂ ,ad(sX̂)21sŶ
!•,h

5X1ṼXRX* Y2X̂2ṼX̂RX̂* Ŷ . ~3.34!

For arbitrary vector fieldsX,Y,Z we define thecurvature tensor

R~X,Y!~Z!5 (
hPS, h1 ,h2 ,h3PSe

Xh1Yh2Zh3 R h
h3 ,h1 ,h2

•,h , ~3.35!

where the ambiguity in the quadrangle components is fixed by~3.13!. If X,Y,Z are basic, we
obtain

R~X,Y!~Z!5 (
hPS

R h
sZ ,sX ,sY

•,h. ~3.36!

For further evaluation we need the following expressions,

ṼRX*
YZ5(

h1

~RX* Y!h1 Ṽ,h1
Z

5 (
h1 ,h2

~RX* Y!h1 ~Rh1
* Zh2! Ṽ,h1

,h2

5 (
h1 ,h2 ,h

~RX* Y!h1 ~Rh1
* Zh2! Vh

h1 ,h2
•,h ~3.37!

and
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ṼXṼRX*
YZ5(

h1

Xh1 Ṽ,h1
~ ṼRX*

YZ!5 (
h,h1 ,h2 ,h3

Xh1 Yad(h1)h2 ~Rh1h2
* Zh3! ~Vh1

Rh1
* Vh2

!h
h3
•,h

~3.38!

using ~I.5.21! and ~I.5.12!. With the help of these formulas we obtain

R~X,Y!~Z!5ṼXṼRX*
YZ2Z for a biangle X,Y, ~3.39!

R~X,Y!~Z!5~ ṼXṼRX*
Y2ṼW! RW* Z for a triangle X,Y,W, ~3.40!

and

R~X,Y;X̂,Ŷ!~Z!ªR~X,Y!~Z!2R~X̂,Ŷ!~Z!

5~ ṼXṼRX*
Y2ṼX̂ṼRX̂*

Ŷ! R(RX*
Y)* RX* Z

for a quadrangleX,Y,X̂,Ŷ. ~3.41!

The Ricci tensordefined in~3.14! can also be expressed as follows:

Ric~X,Y!ª(
hPS

^R~,h ,Y!~X!,uh&. ~3.42!

IV. RIEMANNIAN GROUP LATTICES ADMITTING A TORSION-FREE COMPATIBLE
LINEAR CONNECTION

Let (G,S) be a bicovariant group lattice and~V,d! be the associated differential calculus. T
formalism developed in the previous sections enables us to carry familiar constructions o
tinuum differential geometry over to group lattices. In particular, we may look for an analog o
Levi-Civita connectionof a metricg. This means we should look for torsion-free linear conn
tions which are compatible withg.

In Sec. II E a~bicovariant! group lattice supplied with a metric tensorg of constant signature
has been called a ‘‘Riemannian group lattice.’’ In this section we further demand that it adm
torsion-freemetric-compatible linear connection. Unlike the continuum case, on most group
tices not every metric admits such a connection. As we shall see below, this condition i
places severe restrictions on the components of a metric. This should not come as a big s
In continuum differential geometry the requirement of a smooth metric on a smooth man
guarantees that the metric components at ‘‘neighboring’’ points fit together. On the other
given a set of points in a Euclidean space, for example, and prescribing metric compone
every point, a corresponding embedded digraph does not exist, in general. This is not the
story, however. In the case of a maximal group lattice~complete digraph!, which corresponds to a
maximal setS, vanishing torsion already determines a unique linear connection, so that no
dom is left to satisfy the metric-compatibility conditions for a ‘‘nontrivial’’ geometry~see Sec.
IV A !. ReducingS to smaller sets allows for more freedom in a torsion-free connection and
for more solutions of the metric-compatibility conditions.

If a metric-compatible linear connection is found for a given metric, it is only determine
to transformationsVh°Jh Vh of the transport matrices with isometry matricesJh ~see Sec. II E!
with coefficientsJh8

h,h9 . Requiring vanishing torsion restricts this freedom, but in general d
not fix it completely. In the following we elaborate this in more detail. More generally, we l
separately at the consequences of vanishing biangle, triangle and quadrangle torsion toget
the metric-compatibility condition. In the following, the matricesJh are always constrained by th
isometry condition~2.40!.
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(a) Vanishing biangle torsion.The biangle torsion vanishes for a biangleh1h25e ~at some
lattice site! if and only if

Vh
h1 ,h2

52dh1

h ; hPS, ~4.1!

which is Vh1 ,h2
52,h1

. Together with the compatibility condition~2.39!, this leads to

Rh1
* gh2 ,h52 (

h8PS

gh1 ,h8 Vh8
h1 ,h ; hPS ~4.2!

and in particular

Rh1
* gh2 ,h2

5gh1 ,h1
~h1h25e!. ~4.3!

It is natural to assign togh1 ,h1
the interpretation of the square of the distance fromg to gh1 . Then

~4.3! tells us that this distance is equal to the reverse distance, i.e., that fromgh1 to g.
Remark:For making contact with ordinary discrete geometry, this suggests to demand

ishing biangle torsion. It should be noticed, however, that~4.3! does not necessarily requir
vanishing biangle torsion~see Sec. V B!. Furthermore, in a communication network it is natural
allow the possibility of assigning different lengths~routing distances! to a direction and its in-
verse. j

As a consequence of~4.1!, only transformations ofVh1
are allowed with an isometry matrix

Jh1
subject to

Jh
h1 ,h1

5dh1

h ; hPS. ~4.4!

This meansJh1
,h1

5,h1
, which restricts the freedom to isometries leaving the vectorVh1 ,h2

52,h1
invariant. These are rotations~including reflections! aboutVh1 ,h2

.
(b) Vanishing triangle torsion. The vanishing of the triangle torsion for a triangleh1h25h0

~at some lattice site! amounts to

Vh
h1 ,h2

5dh0

h 2dh1

h ; hPS, ~4.5!

which is Vh1 ,h2
5,h0

2,h1
. Together with~2.39! this implies

Rh1
* gh2 ,h5 (

h8PS
~gh0 ,h82gh2 ,h8! Vh8

h1 ,h ; hPS ~4.6!

and in particular

Rh1
* gh2 ,h2

5gh1 ,h1
1gh0 ,h0

22 gh0 ,h1
~h1h25h0!. ~4.7!

Using the standard interpretation of the metric components, this is a well-known law of Eucl
geometry, the cosine law of triangles. Hence, the requirement of a metric-compatible and tri
torsion-free linear connection restricts the metric in such a way that triangles are always
triangle torsion is admitted, then it is possible to curve a triangle in such a way that the pa
transport is that of a spherical triangle, for example, see Sec. V A.

Equation~4.5! restricts the freedom of isometries in the transport matrices by

Jh
h1 ,h0

2Jh
h1 ,h1

5dh0

h 2dh1

h ; hPS, ~4.8!

which isJh1
(,h0

2,h1
)5,h0

2,h1
. HenceJh1

corresponds to a ‘‘rotation’’ which leaves the vect
Vh1 ,h2

5,h0
2,h1

fixed.
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(c) Vanishing quadrangle torsion. The vanishing of the quadrangle torsion associated wi
quadrangleh1h25ĥ1ĥ25g¹Se ~at some lattice site! means

Vh
h1 ,h2

1dh1

h 5Vh
ĥ1 ,ĥ2

1d ĥ1

h
; hPS ~4.9!

and thusVh1 ,h2
2Vĥ1 ,ĥ2

5, ĥ1
2,h1

. Together with the metric-compatibility condition this impos
restrictions on the metric components. In particular, for a positive definite metric the tria
inequalities lead to

uiVh1 ,h2
i2iVĥ1 ,ĥ2

iu<i,h1
2, ĥ1

i<iVh1 ,h2
i1iVĥ1 ,ĥ2

i , ~4.10!

whereiVh1 ,h2
i5Ag(Vh1 ,h2

,Vh1 ,h2
). Using ~2.39!, this restricts the metric components by

uARh1
* gh2 ,h2

2ARĥ1
* gĥ2 ,ĥ2

u<Agh1 ,h1
1gĥ1 ,ĥ1

22 gh1 ,ĥ1
<ARh1

* gh2 ,h2
1ARĥ1

* gĥ2 ,ĥ2
.

~4.11!

The isometriesJh have to satisfy the equation

(
h8PS

~Jh
h1 ,h82Jh

ĥ1 ,h8! Vh8
h1 ,h2

5Jh
ĥ1 ,h1

2dh1

h 2Jh
ĥ1 ,ĥ1

1d ĥ1

h
; hPS, ~4.12!

which is Jh1
Vh1 ,h2

2Jĥ1
Vĥ1 ,ĥ2

5, ĥ1
2,h1

. In particular, a rotation which leavesVh1 ,h2
fixed, so

that Jh1
Vh1 ,h2

5Vh1 ,h2
, together with a rotation which leavesVĥ1 ,ĥ2

fixed, so thatJĥ1
Vĥ1 ,ĥ2

5Vĥ1 ,ĥ2
, preserves the quadrangle and thus solves the above constraint. Another possib

given by combined rotationsJh1
and Jĥ1

which leave the vectorVh1 ,h2
2Vĥ1 ,ĥ2

and thus, ĥ1

2,h1
fixed, so thatJh1

(,h1
2, ĥ1

)5,h1
2, ĥ1

andJĥ1
(,h1

2, ĥ1
)5,h1

2, ĥ1
.

The following subsections provide examples of Riemannian group lattices which a
torsion-free linear connections. In the discussions we make use of the fact that a linear con
determines a tangent space picture of the group lattice, as described in Sec. II F.

A. Maximal group lattices

A group lattice (G,S) with S5G\$e% is called maximal. It is bicovariant and carries the
universal differential calculus. There are only biangles and triangles, but no quadrangle
condition of vanishing torsion determines a unique linear connection which is given by

Vh
h1 ,h2

5H 2dh1

h
if h1h25e,

dh0

h 2dh1

h
if h0ªh1h2Þe,

~4.13!

and thus constant. This impliesVhVh215I andVh1
Vh2

5Vh0
if h1h25h0 . As a consequence, th

curvature of the connection vanishes.14

The metric compatibility condition evaluated for this connection becomes

Rh* gh1 ,h2
5H gh,h2gh,hh2

2ghh1 ,h1ghh1 ,hh2 if hh1Þe, hh2Þe,

gh,h2gh,hh2 if hh15e, hh2Þe,

gh,h if h15h2 , hh15e.

~4.14!

Example 4.1:Let G be Z3 , the cyclic group consisting of the three elements 0,1,2 w
addition modulo 3 as the group composition. We choose the group lattice determinedS
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5$1,2% which is the complete digraph with three vertices. There are two biangles, 1125052
11 ~modulo 3!, and two triangles, 11152 and 21251 ~modulo 3!. The unique torsion-free
linear connection is determined by the two matrices

V15S 21 21

1 0 D , V25S 0 1

21 21D . ~4.15!

A metric is given by

g5S a b

b cD ~4.16!

with functionsa,b,c, and the compatibility condition with the above connection reduces to

R1* S a b

b cD 5S a22b1c a2b

a2b a D . ~4.17!

This means that one can specify arbitrary values of the metric functionsa,b,c at onepoint. The
metric at the other points is then determined by the last equation and the resulting metric oZ3 is
compatible with the above torsion-free connection. Assigning the usual interpretation in ter
Euclidean distances and angles to the metric components, one recovers the rules of Eu
trigonometry. In particular, in case of a constant metric, the compatibility condition restrictsg to

g5aS 1 1
2

1
2 1

D ~4.18!

with a constanta. This expresses metric properties of a regular Euclidean triangle. The pa
transport determined by the torsion-free connection coincides with that of the Euclidean
Indeed, from~2.41! we infer

at k11 mod 3 atk mod 3 atk12 mod 3 atk mod 3

Ṽ,1
: ,1 °

,22,1 Ṽ,2
: ,1 °

2,2

,2 2,1 ,2 ,12,2

which maps the Riemannian group lattice isometrically onto a Euclidean triangle in the ta
space at a site. j

Example 4.2:Let G5Z4 , S5$1,2,3%. The torsion-free linear connection is then given by

V15S 21 21 21

1 0 0

0 1 0
D , V25S 0 0 1

21 21 21

1 0 0
D , V35S 0 1 0

0 0 1

21 21 21
D .

~4.19!

Assuming the metric to be constant, the compatibility condition restricts it to the form

g5S a b a2b

b 2 b b

a2b b a
D . ~4.20!

For b5a/2 we recover the geometry of a regular tetrahedron in EuclideanR3. Since we deal with
a three-dimensional Riemannian group lattice, we are actually describing the tetrahedron v
Furthermore, in the limitb→a the above geometry tends to that of a quadrate in the Euclid
                                                                                                                



it
in

ct of

ttice,
Levi-
ch a

n of

e

4240 J. Math. Phys., Vol. 44, No. 9, September 2003 A. Dimakis and F. Müller-Hoissen

                    
plane where the vector associated with 2PS corresponds to the diagonal. Accordingly, in this lim
the determinant ofg vanishes, so thatg no longer defines a metric according to our definition
Sec. II E. j

B. Two-dimensional Riemannian group lattices

Let G be a discrete group andS5$a,b% be a subset consisting of two different elements ofG
which generateG such that (G,S) is a bicovariant group lattice. Then eitheraba215a, which
contradictsaÞb, or aba215b, which is ab5ba. Hence, bicovariance requires thatG is Abe-
lian. By a fundamental theorem, every finite Abelian group is isomorphic to a direct produ
cyclic groups of prime power order.

The following examples in particular demonstrate that, for a given metric on a group la
there may not exist a metric-compatible linear connection with vanishing torsion, i.e., a
Civita connection. Moreover, in contrast to ordinary continuum differential geometry, if su
connection exists, then is not unique in general.

1. Z4 lattices

(a) Let G5Z4 and S5$1,2%. There is one biangle, 21250 ~modulo 4!, one triangle, 1
1152, and one quadrangle, 112535211, which implies the 2-form relationu1ùu2

52u2ùu1. Vanishing torsion restricts the matricesVi of the linear connection to

V15S 21 p

1 11qD , V25S 11p 0

q 21D ~4.21!

with arbitrary functionsp andq. For a metric of the form~4.16!, the metric-compatibility condi-
tion R1* g5V1

TgV1 reads

R1* a5a22 b1c , R1* b5p ~b2a!1~11q!~c2b! ,
~4.22!

R1* c5p2 a12 p ~11q! b1~11q!2 c.

With the help ofR2* 5(R1* )2, the second conditionR2* g5V2
TgV2 leads toV1 (R1* V1) V2

215J,
whereJ is an arbitrary element of the isometry group of the metric~at each site of the group
lattice!. A lengthy computation, aided by computer algebra, reveals thatevery Levi-Civita connec-
tion on (Z4 ,$1,2%) is flat, i.e., its curvature vanishes.15 The integrability condition~3.27! then
enforcesJ5I so thatV25V1 R1* V1 . As a consequence, we obtain the following representatio
Z4 : R1* p52p/(11p1q), R1* q52(21p1q)/(11p1q). This impliesR2* p52p/(11p) and
R2* q5q/(11p) and thus (R1* )4p5(R2* )2p5p, (R1* )4q5(R2* )2q5q.

Excluding special values ofq(0) andp(0), thegeometries with a Levi-Civita connection ar
given by

a~1!5a~0!22 b~0!1c~0! , b~1!52p~0! a~0!1@p~0!212q~0!# b~0!1@11q~0!# c~0!,

c~1!5p~0!2 a~0!12 p~0! @11q~0!# b~0!1@11q~0!#2 c~0!,

a~2!5@11p~0!#2 a~0!12 q~0! @11p~0!# b~0!1q~0!2 c~0!,

b~2!52@11p~0!# b~0!2q~0! c~0! , c~2!5c~0!, ~4.23!

a~3!5@11p~0!#2 a~0!12 @11p~0!# @11q~0!# b~0!1@11q~0!#2 c~0!,

b~3!5p~0! @11p~0!# a~0!1@112 p~0!# @11q~0!# b~0!1@11q~0!#2 c~0!,

c~3!5p~0!2 a~0!12 p~0! @11q~0!# b~0!1@11q~0!#2 c~0!,
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and

q~1!52@21p~0!1q~0!#/@11p~0!1q~0!# , p~1!52p~0!/@11p~0!1q~0!#,

q~2!5q~0!/@11p~0!# , p~2!52p~0!/@11p~0!#, ~4.24!

q~3!52@21p~0!1q~0!#/@11q~0!# , p~3!5p~0!/@11q~0!#.

(b) Let G5Z4 again, but now we chooseS5$1,3%. In this case, there are two biangles,
13505311 ~modulo 4!, no triangle and a quadrangle corresponding to 111525313
~modulo 4!. The latter leads to the 2-form relationu1ùu11u3ùu350. The condition of vanishing
torsion imposes the following restrictions on a linear connection,

V15S u 21

11v 0 D , V35S 0 11u

21 v D , ~4.25!

with arbitrary functionsu and v. For a metric of the form~4.16! the compatibility condition
R1* g5V1

TgV1 reads

R1* a5u2 a12u~11v ! b1~11v !2 c , R1* b52u a2~11v ! b , R1* c5a, ~4.26!

and, with the help ofR3* 5(R1* )3, the second metric-compatibility conditionR3* g5V3
TgV3 leads to

V1 (R1* V1)@(R1* )2V1# V3
215J whereJ is an element of the isometry group of the metric. Furth

exploration with the help of computer algebra shows thatevery Levi-Civita connection on
(Z4 ,$1,3%) has vanishing curvature.

Since the only metric-compatible torsion-free linear connections on the aboveZ4 lattices have
vanishing curvature, via backward parallel transport they are isometrically mapped to a
lattice inR2 which represents the tangent space at a site. In particular, this means that we
model something like a tetrahedron surface in this way. To supply theZ4 group lattices with
nonvanishing curvature is only possible if the condition of vanishing torsion is dropped~see Sec.
V B!.

2. Z2 lattices

Let us consider the group lattice (Z2,$1̂,2̂%) where 1̂ª(1,0) and 2ˆª(0,1). It has no biangles
or triangles, but a quadrangle corresponding to 1ˆ 12̂52̂11̂. The condition of vanishing torsion
restricts the parallel transport matricesViªVî to

V15S p u

q 11v D , V25S 11u r

v sD ~4.27!

with arbitrary functionsp,q,r ,s,u,v. The following example demonstrates that there are tors
free and metric-compatible parallel transports withnonvanishing curvature even on a two
dimensional lattice carrying the metric properties of a regular quadratic lattice in EuclideanR2.

Example 4.3:Let us choose the metric to be

g5S 1 0

0 1D ~4.28!

at all sites. The metric-compatibility condition for the above torsion-free linear connection
leads to the following two classes of solutions. The first class is given by

V15S e1 0

0 1D , V25S 1 0

0 e2
D ~4.29!
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with functionse i with values in$61%. The curvature only vanishes ife1 ande2 are constant in the
1̂ and 2̂direction, respectively.

If the curvature vanishes, the~backward! parallel transport does not depend on the path in
lattice, see~2.45!. It can thus be used to map the whole group lattice into the tangent space
point, which is isomorphic toR2 in the case under consideration. Let us choose the lattice p
~0,0!. The tangent vectors,h at this site may then be identified with the vectorsu1 andu2 pointing
from ~0,0! to ~1,0! and~0,1!, respectively, inR2. Then, 1̂ at the group lattice site~1,0! is mapped
to the vectorV1,1 which we attach at the tip ofu1 in R2 according to the prescription of Sec. II F
If e1521, this vector points into the ‘‘wrong direction,’’ i.e., its tip coincides with~0,0!. This
means that the resulting lattice inR2 getsfolded. Similarly, if e2521, the lattice gets folded in the
other direction.

A particular solution is given byVh5I , the unit matrix, at all sites. It corresponds to th
ordinary Euclidean parallel transport. This solution certainly has a nice continuum limit. Intro
ing a lattice spacing parameter, we may writeVh5I 1k Gh1O(k2). Some of the other solution
Vh given above have negative determinant at some sites and cause folding in the sense de
above. They are related to the above solution at those sites by an isometryJh with determinant
21. As a consequence, they cannot have a continuum limit. The requirement of a continuum
may thus distinguish a certain connection and eliminate connections with folding.

The second class of solutions is given by

V15S 0 21

e1 0 D , V25S 0 e2

21 0 D . ~4.30!

The curvature only vanishes if at all sitesR
2̂
* e15e2 and R

1̂
* e25e1 . An orientation-preserving

connection is obtained ife15e251. The corresponding transports in the two directions act w
rotations. j

There are metrics~with constant signature! on (Z2,$1̂,2̂%) which donot admit a Levi-Civita
connection, although the constraints are by far not as stringent as in our previous exa
Counterexamples are easily constructed. A geometric condition for the existence of a Levi-
connection is given by~4.11! in the case of a positive definite metric. Let us recall its origin in
case under consideration. The tangent space at a sitea is isomorphic toR2 with the Euclidean
inner product of vectors~see Sec. II F!. The tangent vectors, î are then represented by vecto
uiPR2, i 51,2, such thatui•uj5gi j (a) where gi jªgî , ĵ . The parallel transportṼ, î

maps the

tangent space at the sitea1 î into the tangent space ata. Metric-compatibility of the connection
means

V i j •V ik5gjk~a1 î !, ~4.31!

where V i j representsṼ, î
, ĵ at the sitea. If the connection is~quadrangle! torsion free, then

adjacent quadrangles are preserved by the backward parallel transport, so thatui1V i j 5uj

1V j i . The last equation has solutions if and only ifiV12u2uV21i<uu22u1u<uV12u1uV21u, where
uV12u denotes the Euclidean norm ofV12 in R2. This is illustrated in Fig. 1. Using~4.31!, this
condition is expressed as

uAg22~a11̂!2Ag11~a12̂!u<Ag11~a!1g22~a!22 g12~a!<Ag22~a11̂!1Ag11~a12̂!
~4.32!

in terms of the metric at the sitesa, a11̂ and a12̂ @see also~4.11!#. If this condition is not
fulfilled, a Levi-Civita connection does not exist. If the condition is satisfied, a Levi-Civita c
nection exists, but it is not unique. Even if equality holds in the last part of~4.32!, so that the
circles in Fig. 1 have exactly one point in common, we still have the freedom to chooseV11 and
V22 in two possible ways, as illustrated in Fig. 2.
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The freedom in the parallel transport left by the conditions of metric-compatibility and
ishing torsion is a freedom of reflections about some axes. In Fig. 2 it shows up as refle
about the three axesAC, BC andAB. In Sec. IV C we show that reflections aboutAB andBC
and their composition comprise the whole freedom left forV1 and V2 by the conditions of
vanishing torsion and metric-compatibility. Such reflections lead to folding of the tangent s
lattice obtained by backward parallel transport of the group lattice to the tangent spacea.
Moreover, the orientation of some of the frames ata obtained by backward parallel transport
frames of basic tangent vectors ata1 î , i 51,2, gets changed. This can be excluded by demand
that detVi.0. But we should also require that the dyad (V21,V12) has positive orientation, which
is necessary in order to avoid reflections about the axisAB. This amounts toV1

121V2
12.0. In

higher dimensions, the determination of the ambiguities in the Levi-Civita connections and
reduction appears to be a difficult task~see also Sec. IV C!.

Whereas torsion is a first order quantity, curvature is of second order since it exp
features of the geometry determined by the composition oftwo ~backward! parallel transports. In
the case under consideration, the components of the curvature tensor are given in matrix f
Ri jªVi R

î
* Vj2Vj R

ĵ
* Vi . In Fig. 3 the vectorz representsṼ,1

Ṽ,2
Z whereZ5( iZ

i
•, î . Hence

z5(
i , j

ui @V1~a!V2~a11̂!# i
j Zj~a11̂12̂!. ~4.33!

The vectorz8 representsṼ,2
Ṽ,1

Z, so that

z 85(
i , j

ui @V2~a!V1~a12̂!# i
j Zj~a12̂11̂!. ~4.34!

The difference gives a measure of the curvature ata @see also~2.45!#:

FIG. 1. Levi-Civita connections on aZ2 lattice exist iff at each lattice site the circle with radiusuV12u around the tip ofu1

intersects the circle with radiusuV21u around the tip ofu2 .
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z2z 85(
i , j

ui R i
j 12~a! Zj~a11̂12̂!. ~4.35!

If the torsion vanishes at a sitea, one can draw an isometric picture of the geometry in the tang
space ata to first order. This represents the sitea, its first order neighborsa1 î , and the basic
tangent vectors at these sites while preserving the metric properties at all these sites and pre
biangles, triangles and quadrangles ata. If, moreover, the curvature vanishes ata, then we can
draw an isometric picture to second order.

C. Freedom of Levi-Civita connections on a hypercubic Zn lattice

We already learned that, in general, there is no Levi-Civita connection for a given metr
a group lattice. If such a connection exists, it need not be unique. The corresponding freedo
be explored in this section for the case of hypercubicZn lattices given byG5Zn and S5$ î u i

51,...,n%, where îª(0,...,1,...,0) with the 1 in thei th position. We consider only positive

FIG. 2. The vectorsV i j andV i j8 result from torsion-free metric-compatible~backward! parallel transports which differ by
a reflection about some axis.
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definite metrics and choose the standard inner product (u,v)5u•v for u,vPRn ~cf. Sec. II F!. In
the case of a hypercubic group lattice the condition of vanishing torsion can be expressed

ui1V i j 5uj1V j i . ~4.36!

Together with the metric-compatibility, this determines a Levi-Civita connection up to isome
Ji which preserve the above conditions, i.e.,

ui1Ji~V i j !5uj1Jj~V j i ! ~4.37!

@see also~2.48!#. Subtracting~4.36! from ~4.37!, we find

A i j 5A j i where A i jªJi~V i j !2V i j . ~4.38!

Using the isometry condition~2.49! and the last equation, we obtain

V i j •V i j 5Ji~V i j !•Ji~V i j !5V i j •V i j 1A i j •~A i j 12 V i j ! ~4.39!

so that

A i j •~A i j 12 V i j !50 ~4.40!

and because of~4.38! also

A i j •~A i j 12 V j i !50. ~4.41!

Subtracting the last two equations and using~4.36! leads to

A i j •~uj2ui !50. ~4.42!

For iÞ j and if A i j Þ0, we setA i j 5a i j ai j with a unit vectorai j orthogonal touj2ui . From~4.40!
we then obtaina i j 522 ai j •V i j 50, so that

A i j 522 ~ai j •V i j ! ai j ~4.43!

and thus

Ji~V i j !5V i j 22 ~ai j •V i j ! ai j , Jj~V j i !5V j i 22 ~ai j •V j i ! ai j . ~4.44!

FIG. 3. The familiar effect of curvature: backward parallel transport along different paths results in different vectors
tangent space at a point.
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As a consequence, the effect ofJi on V i j is that of a reflection with respect to the hyperpla
orthogonal toai j ~which in turn is orthogonal touj2ui). If A i j Þ0 for all j Þ i , thenJi for a fixed
i reflects all then21 vectorsV i j , j Þ i , with respect to the respective hyperplane~orthogonal to
ai j ). Of course, we still have to respect the remaining conditions which arise from the isom
conditions~2.49!, i.e., Ji(V ik)•Ji(V i l )5V ik•V i l .

Let us look at the two-dimensional case. IfA1250, we haveJ1(V12)5V12 and J2(V21)
5V21, soJ1 andJ2 are reduced to reflections aboutV12 andV21, respectively. IfA12Þ0, then we
haveJ1(V12)5V1222 (a12•V12) a12, J2(V21)5V2122 (a12•V21) a12. The effect of both is a re-
flection about the axis alongu22u1 . If H12 is such a reflection, thenH12J1(V12)5V12 and
H12J2(V21)5V21 which reduces the problem to the caseA1250 for H12Ji . In three dimensions
~see Fig. 4! a classification of the various possibilities already turns out to be quite involved

V. GROUP LATTICE GEOMETRIES WITH TORSION

Section IV demonstrated that Riemannian group lattices in general do not possess a
Civita connection. In some cases onlyflat Levi-Civita connections exist so that one has to allo
for nonvanishing torsion in order to get nonvanishing curvature and thus enough flexibil
assign a nontrivial geometry to the group lattice. Relaxing the previous requirement of van
torsion clearly opens more possibilities for modeling discrete surfaces. In fact, the follo
examples demonstrate that linear connections with torsion naturally appear as properties
mannian group lattice geometries. The first subsection below shows how in the presence of
a triangle can be curved so that it fits on the surface of a sphere. The remaining subsectio
a Z4 lattice example.

A. A Z3 lattice geometry with torsion

Let G5Z3 andS5$1,2%. According to Sec. III the components of the torsion tensor are

Q1
1,1511V1

1,1, Q1
1,2511V1

1,2, Q1
2,15V1

2,1, Q1
2,25211V1

2,2,
~5.1!

Q2
1,15211V2

1,1, Q2
1,25V2

1,2, Q2
2,1511V2

2,1, Q2
2,2511V2

2,2.

FIG. 4. Tangent space picture of the nearest neighborhood for the cubicZ3 lattice, as determined by a Levi-Civita
connection. The freedom in the choice of such a connection is due to reflections with respect to hyperplanes thui

2uj , iÞ j .
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If we do not require the vanishing of the whole torsion, but only of the biangle part,
Q(0) 1,2

h 5Q(0) 2,1
h 50, then we can simulate the geometry of a spherical triangle. Setting

g5S 1 0

0 1D , ~5.2!

a particular solution of the metric-compatibility conditions is

V15S 0 21

1 0 D , V25S 0 1

21 0D . ~5.3!

Now ~2.41! leads to

at k11 mod 3 atk mod 3 atk12 mod 3 atk mod 3

Ṽ,1
: ,1 °

,2 Ṽ,2
: ,1 °

2,2

,2 2,1 ,2 ,1

which matches the parallel transport along a spherical triangle. The curvature tensor ha
triangle components. Using the matrix notationRh1 ,h2

5(R h
h8,h1 ,h2

), we obtain

R(2) 1,15S 21 21

1 21D , R(1) 2,25S 21 1

21 21D , ~5.4!

and R(0) 1,25R(0) 2,150 ~vanishing biangle curvature!. The Ricci tensor Rich,h85R 1
h,1,h8

1R 2
h,2,h8 is given by

Ric52S 1 1

1 1D ~5.5!

in matrix notation, and the curvature scalar isR522. The torsion 2-form is given by

Q15u1ùu1, Q25u2ùu2. ~5.6!

This is an example of a geometry which cannot be isometrically embedded in a Euclidean
Rn for anynPN, simply due to the fact that with the choice of metric~5.2! the sum of the angles
of the triangle is 3p/2 and notp as in Euclidean geometry. This fact is taken care of by the tors
of the connection which causes the backward parallel transport of the group lattice triangle
close to a triangle in the tangent space at a site. The resulting picture inR2, which represents the
tangent space at the unit element, is drawn in Fig. 5. Here we usedV1152V215u2 , V12

52V2252u1 which follows from ~5.3!. The triangle torsion satisfies

(
i

ui Qi
1,15u11V112u25u1, (

i
ui Qi

2,25u21V222u15u2. ~5.7!

From ~2.47! we obtainV1115V22152u1 , V1125V22252u2 and, using~2.45! and ~3.11!, the
following curvature expressions:

(
i

ui R i
(2) 1,1,152u11u2, (

i
ui R i

(2) 2,1,152u22u1 ,

~5.8!

(
i

ui R i
(1) 1,2,252u12u2, (

i
ui R i

(1) 2,2,252u21u1 .
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B. The group lattice „Z4 ,ˆ1,2‰…

Let G5Z4 andS5$1,2%. The torsion of a linear connection has the following componen

Qh
2,25Vh

2,21d2
h for the biangle 21250,

Qh
1,15Vh

1,12d2
h1d1

h for the triangle 11152, ~5.9!

Qh
2,152Qh

1,25Qh
1,2;2,15Vh

1,22Vh
2,12d2

h1d1
h for the quadrangle 112521153 .

(a) If we require vanishing biangle and triangle torsion, but nonvanishing quadrangle to
the coefficient matrices of the parallel transport have the form

V15S 21 p

1 11qD , V25S 11r 0

s 21D ~5.10!

with functionsp,q,r ,s. As an example, choosing the constant metric

g~k!5S 1 1
2

1
2 1

D , k50,1,2,3 ~5.11!

~which is the metric of a regular tetrahedron surface immersed in three-dimensional Euc
space!, and assuming also constant transport matrices, the compatibility conditions with the
nection given by~5.10! take the form

q5p , p~p11!50, s5212r /2 , r ~r 12!50, ~5.12!

so that there are four different connections which are compatible with the metric. All solu
have vanishing biangle curvature. The solution withp521, r 50 has nonvanishing triangle an

FIG. 5. The result of backward parallel transport of the group lattice (Z3 ,$1,2%) into the tangent space at 0, using th
connection given by~5.3!. The points 18 and 19, and also 28 and 29, do not coincide because of nonvanishing torsion
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quadrangle curvature. The solutions with (p,r )5(0,0), (p,r )5(21,22) and (p,r )5(0,22)
possess only nonvanishing triangle curvature. In the latter case (p50,r 522) we have

V15S 21 0

1 1D , V25S 21 0

0 21D . ~5.13!

The only nonvanishing part of the curvature 2-form is the triangle part

R(2) 1,15V1V12V25S 2 0

0 2D . ~5.14!

The development of this group lattice in the tangent space at 0 is shown in Fig. 6. Here we
V115u22u1 , V125u2 , V2152u1 andV2252u2 which follows from ~5.13!. The resulting sur-
face does not exhibit folding. The quadrangle torsion is given by

(
i

ui Qi
(3) 1,25u11V122u22V2152 u1. ~5.15!

Using ~2.47! we obtainV1115u1 , V1125u2 and thus the following curvature expressions:

(
i

ui R i
(2) 1,1,15V1112V2152 u1, (

i
ui R i

(2) 2,1,15V1122V2252 u2. ~5.16!

Remark: In general, the compatibility condition for a constant metric does not enforc
constant connection, i.e., constant transport matrices. Conversely, a constant connection
compatible with nonconstant metrics. As an example, all metrics of the form

g~0!5g~2!5S a b

b cD , g~1!5g~3!5S a22b1c c2b

c2b c D ~5.17!

are compatible with the connection~5.13!. j

(b) If only nonvanishingbiangle torsionis admitted, the coefficient matrices of the paral
transport take the form

FIG. 6. The result of backward parallel transport of the group lattice (Z4 ,$1,2%) into the tangent space at 0, using th
connection given by~5.13!.
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V15S 21 p

1 11qD , V25S 11p u

q v D ~5.18!

with functionsp,q,u,v. If these are taken to be constants, the compatibility conditions with
metric ~5.11! reduce to

p5q50
u50,v51 or u51,v521 or

p5q521
u51,v521 or u521,v50

which determines four different connections. The solution with (p,q,u,v)5(0,0,0,1) has the
transport matrices

V15S 21 0

1 1D , V25S 1 0

0 1D ~5.19!

for which the curvature 2-form vanishes. The corresponding tangent space picture obtain
backward parallel transport of the group lattice into the tangent space at 0 is drawn in F
Indeed, from the figure we read offV225u2 , u11V115u2 , u11V125u21V21, which determines
the above transport matrices. The biangle torsion satisfies( iui Qi

(2) 1,15u21V2252 u2 . Further-
more, we haveV1215V2115u22u1 andV1225V2125u2 .

The solution with (p,q,u,v)5(21,21,1,21) has the propertiesV1V15V2 , V2V25V1 and
@V1 ,V2#50, so again the whole curvature 2-form vanishes. The remaining two solutions
vanishing biangle curvature, but nonvanishing triangle and quadrangle curvature.

(c) If only triangle torsion is allowed, there is no connection compatible with the me
~5.11!.

VI. GROUP LATTICE GEOMETRY AND COORDINATES

In order to explore discrete structures in close analogy with the continuum it should
interest to consider analogs of coordinates and coordinate transformations, as well as the
ated properties of geometric objects. Moreover, if there is a continuum limit, as in the cas
hypercubicZn lattice, one should recover the corresponding continuum structures.

Let (G,S) be a group lattice withuSu5n. Real functionsxm, m51,...,n, are said to be
coordinateson G if ( xm):G→Rn is injective and the matrix (,hxm) is invertible at allgPG. If
coordinates do not exist globally, they can still be introduced on subsets ofG.

FIG. 7. The group lattice (Z4 ,$1,2%) mapped to the tangent space at 0 using a connection with nonvanishing bi
torsion, but vanishing triangle and quadrangle torsion.
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The first subsection below presents an example of a coordinate system on aZ4 lattice. In
particular, it demonstrates a relation between discrete structures and noncommutative diffe
calculi on the algebra of functions onRn which has not yet been sufficiently explored. The seco
subsection then treats in some detail Riemannian geometry of a hypercubicZn lattice in terms of
adapted coordinates.

A. Coordinates on „Z4 ,ˆ1,2‰…

The two functions

x5e02e11e22e3, y5e01e12e22e3 ~6.1!

are coordinates onZ4 with S5$1,2%. Since (x(0),y(0))5(1,1), (x(1),y(1))5(21,1),
(x(2),y(2))5(1,21) and (x(3),y(3))5(21,21), the map (x,y):Z4→R2 is obviously injec-
tive. UsingR1* x52x, R2* x5x, R1* y5x y, R2* y52y, we obtain the Jacobian

~,hxm!5S 22 x 0

~x21! y 22 yD , ~6.2!

which is indeed invertible at each lattice site. Every function onZ4 can be expressed as a functio
of x andy. They satisfyx25y251. The coordinatesx,y then constitute a representation ofZ4 .
For the differentials we obtain the expressions

dx5@u,x#522 x u1, dy5@u,y#5~x21! y u122 y u2, ~6.3!

and, thus, usingx251,

u152
1

2 x
dx, u25

1

4
~x21! dx2

1

2 y
dy. ~6.4!

Furthermore, usinguhf 5Rh* f uh we obtain the following commutation relations between t
coordinatesx,y and their differentials:

@dx,x#522 x dx, @dy,y#522 y dy, @dx,y#5@dy,x#5~x21! y dx. ~6.5!

We have thus reached a formulation of the differential calculus on (Z4 ,$1,2%) as a noncommuta
tive differential calculus onR2. Indeed, imposing the relations~6.5! on two real functionsx,y, the
group lattice (Z4 ,$1,2%) can be essentially recovered. The first two relations imply d(x2)50
5d(y2). As a consequence,x2 andy2 are ‘‘constants’’ for this differential calculus and commu
with differentials. Using~6.5! this implies

05@d~y2!,x#5@dx,y2#5@dx,y# y1y @dx,y#5~x21! y ~dx! y1~x21! y2 dx

5~x21! y xydx1~x21! y2 dx5~x221! y2 dx, ~6.6!

and, thus,x251, assumingy2Þ0 and thatV1 is free with basis dx,dy. The equations~6.5! are
homogeneous iny, so that they are not able to fix the value ofy2. But the calculus is obviously
consistent with the constrainty251. Passing over to the algebraA of functions generated by th
variablesx,y modulo the relationsx25y251 and setting

e05
~11x!~11y!

4
, e15

~12x!~11y!

4
, e25

~11x!~12y!

4
, e35

~12x!~12y!

4
,

~6.7!

we find eiej5d i , j ei and( ie
i51. These are the primitive idempotents ofA.
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Let us deduce some more consequences from the commutation relations~6.5!. They are
equivalent to

dx x52x dx , dx y5x y dx , dy y52y dy , dy x5x dy1~x21! y dx, ~6.8!

so that

dx f~x,y!5 f ~2x,xy! dx, ~6.9!

dy f~x,y!5 f ~x,2y! dy1
f ~x,xy!2 f ~2x,xy!

2 x
~x21! y dx . ~6.10!

Introducing~left! partial derivatives of a functionf via

df 5]xf dx1]yf dy, ~6.11!

we find

dy f~x,y!2 f ~x,y! dy5@df ,y#5~]xf ! @dx,y#1~]yf ! @dy,y#, ~6.12!

which together with~6.5! and ~6.10! leads to

]xf 5
1

2x
~ f ~x,xy!2 f ~2x,xy!! , ]yf 5

1

2y
~ f ~x,y!2 f ~x,2y!!. ~6.13!

A similar calculation starting with dx f(x,y)2 f (x,y) dx5@df ,x# leads to an apparently differen
expression for]xf . It reduces to the above formula with the help of

f ~x,xy!5 1
2 ~~x11! f ~x,y!2~x21! f ~x,2y!!, ~6.14!

which holds as a consequence ofx251. Of course, all geometric structures on (Z4 ,$1,2%) can now
be expressed in terms of the coordinates and their differentials.

B. Hypercubic group lattice geometry in coordinates

Let G be the additive groupZn and S5$m̂u m51,...,n% be the standard basis ofZn, i.e., m̂
5(0,...,0,1,0,...,0) with the 1 at themth position. There are no biangles or triangles, but o
quadrangles. The group lattice is the oriented hypercubic lattice and foraPZn the functionsea

form a basis overC of A. Then (, m̂ f )(a)5 f (a1m̂)2 f (a) defines a basis$, m̂% of the spaceX of
vector fields. The dual basis ofV1 is given by

um̂5 (
aPZn

ea dea1m̂ . ~6.15!

The functionsxm5k (aPZnamea, m51,...,n, with a constantk, are coordinates on the spac
Every function can be written asf (x) with x5(x1,...,xn). Furthermore, we find

um̂5
1

k
dxm, m51, . . . ,n . ~6.16!

Sincem̂1 n̂5 n̂1m̂, the 2-form relations dxm dxn52dxn dxm hold for all pairsm,n51,...,n. As
a consequence, every product of the form dxm1

¯dxmr is totally antisymmetric. Since the group
Abelian, dxm1ù¯ùdxmr5dxm1

¯dxmr. This implies thata1ù¯ùa r is totally antisymmetric
for arbitrary 1-formsa i . It should be noticed, however, thata1¯a r is not antisymmetric, in
general.

Introducing~left! partial derivatives of a functionf (x) via
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df 5 (
m51

n

~]1m f ! dxm, ~6.17!

we find

]1m f 5
Rm̂

* f 2 f

k
, ~Rm̂

* f !~x!5 f ~x1km̂!. ~6.18!

The backward parallel transport of a linear connection with transport matricesVm5(Vr
ms) acts as

follows:

Ṽ]1m
]1n5

1

k (
r

Vr
mn•]1r. ~6.19!

Let us write

¹dxm5u ^Adxm2 (
n51

n

Vm
n ^Adxn52 (

n51

n

Gm
n ^Adxn, ~6.20!

where

Vm
n5

1

k (
r51

n

Vm
rn dxr , Gm

n5 (
r51

n

Gm
rn dxr. ~6.21!

Using u5(m51
n um̂5(1/k)(m51

n qm dxm with qm51 for m51,...,n, we obtain

Gm
rn5

1

k
@Vm

rn2qr dn
m#. ~6.22!

The components of the torsion 2-formQm5 1
2(n,r51

n Qm
nr dxnùdxr are

Qm
nr5

1

k
~Vm

[nr]2q [n dr]
m !5Gm

[nr] ~6.23!

and the components of the curvature 2-formR(dxm)5 1
2(n,r,s51

n R m
nrs dxrùdxs

^ Ldxn are given
by

R m
nrs5~Rrs!m

n5
1

k2 ~Vr Rr̂
* Vs2Vs Rŝ

* Vr!m
n. ~6.24!

The two Bianchi identities take the form

(
l51

n

Vm
[nuluRn̂

* Ql
rs]2Qm

[nrRn̂1 r̂
* qs]5k R m

[nrs] , V[nRn̂
* Rrs]5R[nrRn̂1 r̂

* Vs] . ~6.25!

The compatibility condition for the linear connection and a metric tensor

g5 (
m,n51

n

gmn~x! dxm
^ Ldxn ~6.26!

with symmetric components, i.e.,gmn5gnm , reads
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Rr̂
* ~gmn!5Vr

T ~gmn! Vr. ~6.27!

The integrability condition of this equation~iteration around a plaquette! implies that the matrices
Kmn , which are defined by

VmRm̂
* Vn5Kmn VnRn̂

* Vm , ~6.28!

are isometries ofg at every point of the lattice. The curvature tensor, in matrix form, can now
written as follows:

Rmn5
1

k2 ~Kmn2I ! VnRn̂
* Vm . ~6.29!

If the torsion vanishes, the first Bianchi identity reduces toR m
[nrs]50. Then there is~up to the

global sign! only one definition of a Ricci tensor:

Ricmn5 (
r51

n

R r
mrn . ~6.30!

The curvature scalar is given by

R5 (
m,n51

n

gmn Ricmn ~6.31!

involving the components of the inverse metricg215(m,n51
n gmn ]1m ^ L]1n .

Let ym(x) be a set ofn real-valued functions which can be inverted to expressxn in terms of
the functionsym and for which the Jacobian

J m
nª]1nym ~6.32!

is invertible. The functionsym are then new coordinates and we have

dym5 (
n51

n

J m
n dxm , dxm5 (

n51

n

~J 21!m
n dyn. ~6.33!

Note that dymùdyn1dynùdym50, while dym dyn1dyn dymÞ0, in general. Introducing~left!
partial derivatives with respect to the basis dym via

df 5 (
n51

n

]1n
y f dyn, ~6.34!

we obtain

]1n
y f 5 (

m51

n

~J 21!m
n ]1m f ~6.35!

and, in particular,

~J 21!m
n5]1n

y xm. ~6.36!

Using the coordinatesxm, the basic commutation relations of the differential calculus are

@dxm,xn#5k dmn dxm. ~6.37!
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In terms ofym they read

@dym,yn#5k (
r51

n

Cmn
r dyr , Cmn

rª (
s51

n

J m
s J n

s ~J 21!s
r. ~6.38!

In the limit ask→0 we obtain in both coordinate systems the ordinary continuum differe
calculus, as long as the coordinate transformation does not involvek. If f andym are differentiable
functions ofxm, then in this limit df becomes(m(] f /]xm)dxm and also(m(] f /]ym)dym with the
help of the chain rule. Although the lattice differential calculus becomes particularly simple
expressed in terms of the coordinatesxm, in the continuum limit all coordinate systems are on
equal footing. The discrete calculus also allowsk-dependent coordinate transformations. B
exploring the continuum limit we should require that such a transformation remains a coor
transformation in the limitk→0.

Since the metric is defined using the left-covariant tensor product, the metric compo
transform homogeneously with the Jacobi matrix:

gmn8 ~y!5 (
r,s51

n

~J 21!r
m ~J 21!s

n grs~x!, ~6.39!

whereg5(m,ngmn8 (y)dym
^ Ldyn. This local tensor transformation property is shared by the c

ponents of the torsion and curvature, in particular. A linear connection and the associated tra
matrices have a nonlocal character. With the help of~2.41! and ~6.19! we find

Vm8 ~y!5 (
n51

n

~J 21!n
m~x! J~x! Vn~x! J 21~x1kn̂!. ~6.40!

For an appropriate Levi-Civita connection,~6.22! should tend to the Christoffel symbols in th
continuum limit. ExpressingVr in ~6.27! in terms ofGr

mn , we find

]1rgmn5gml Gl
rn1gln Gl

rm1k gkl Gk
rm Gl

rn. ~6.41!

If torsion vanishes, so thatGl
mn5Gl

nm , this implies

2Grmn5]1mgrn1]1ngrm2]1rgmn1k ~Glrm Gl
rn2Glmr Gl

mn1Glnr Gl
nm!, ~6.42!

so that indeed the Christoffel symbols, which expressGr
mn in terms of the metric functions, ar

obtained in the continuum limit. There is no such expression in the discrete framework.

VII. CONCLUSIONS

Starting from basic formulas of noncommutative geometry, we developed a formalis
Riemannian geometry of group lattices. More precisely, we restricted our considerations
subclass of bicovariant group lattices. Only for this subclass there is a simple conversion be
the ordinary tensor product̂A and the left-covariant tensor product̂L . The latter played a
crucial role in making contact with classical geometry. In particular, it allows us to introdu
discrete analog of a metric tensor with a natural geometric interpretation and, more technic
formulate a compatibility condition with a linear connection.

In particular in the case of aZn group lattice, the discrete geometry obtained has much
common with lattice gauge theory. It yields a discretization of continuum geometry via plaqu
where the curvature results from parallel transport around a plaquette~see also the various
approaches11 to ‘‘lattice gravity’’ in this context!. In contrast, in Regge calculus the curvature
concentrated at a hinge~which in two dimensions is a vertex!.

Given a metric, the compatibility condition for a linear connection leaves us with the free
of torsion. This is analogous to continuum differential geometry where the additional require
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of vanishing torsion uniquely determines a particular linear connection, the Levi-Civita conne
~which is expressed via the Christoffel symbols in terms of the metric coefficients!. The situation
is much more complicated for group lattices, however.

A Levi-Civita connection need not exist for a given Riemannian group lattice. Furthermo
such a connection exists, then it is not unique in general. We achieved a geometric unders
of this ambiguity through the elaboration of several examples. The deeper origin is the fac
our connections have values in a group algebra rather than a Lie algebra. The latter only fe
part of a~continuous! group which is connected with the identity.

The requirement of a Levi-Civita connection for a Riemannian group lattice strongly res
the metric, in general. On the other hand, we learned from our examples that metric-com
linear connections with nonvanishing torsion show up quite naturally. A convenient cond
which replaces that of vanishing torsion is not available. A few general statements can nev
less be made. Vanishing triangle torsion means assigning Euclidean properties to the res
triangle. Of course, a group lattice with Euclidean triangles, but more than three sites, may s
curved. Nonvanishing biangle torsion allows for an anisotropy of the distance relation betwe
respective two lattice sites, adhering to a simple interpretation of the metric coefficients
requirement of vanishing biangle torsion would rule out this feature. But it would also elim
geometries without such an anisotropy as we saw in Sec. V B.

On the other hand, a distance anisotropy may indeed appear in communication network~with
a group lattice structure!, a relation which should be elaborated elsewhere.16 The design of a
communication network determines its efficiency. The broadcast time, for example, clear
pends on its geometry.17 For such problems the geometric formalism developed in this work co
be of help.

Our examples demonstrate that torsion quite naturally enters the stage. The more we
from the continuum, the more we get away from the familiar condition of vanishing torsio
continuum ~pseudo-! Riemannian geometry. Hypercubic group lattices, which only consis
quadrangles, are rather close to the continuum in this sense. Biangles and triangles add
rigidity of a lattice, so that torsion becomes necessary in order to curve it. The conclusion i
in contrast to ordinary continuum differential geometry,~nonzero! torsion is an essential ingredien
of our discrete geometric formalism. Interesting field equations will have to take care of thi
and describe the dynamics of metricand torsion.

Is there a distinguished geometry associated with a~bicovariant! group lattice? Indeed, a
direct consequence of the definition of a group lattice is the existence of a family of vector
,h,hPS. Requiring that these are Killing vector fields of the metric, so that their flows pres
the metric, restricts thea priori possible metrics to the class of right-invariant metrics which
completely determined by the components at one site. IfS is Abelian, these are simply th
constant metrics, i.e., the components are the same at all sites~which correspond to the grou
elements!. Associated with the class of right-invariant metrics is a distinguished metric-compa
linear connection. Moreover, we have the notion of bi-invariance of a metric which determi
subclass of right-invariant metrics. Interesting relations between group structure and geome
expected to emerge from this.

Even in the familiar hypercubic lattice case the~pseudo-! Riemannian geometry derived from
the general framework of group lattice geometry appears to be new. In particular in the
presented in Sec. VI B, using coordinates on the lattice, the close analogy with continuum
mannian geometry becomes transparent. This provides an alternative to the existing discret
of gravity theories.

Representations of ‘‘intrinsic’’ group lattice geometries via immersions in a Euclidean s
will be treated in a separate work. For two-dimensional Riemannian group lattices~where S
consists of two different elements!, the bicovariance condition restricts to Abelian groups, an
relatively simple formalism of immersions can be developed in analogy with that of contin
differential geometry. For immersions of higher than two-dimensional Riemannian group la
in EuclideanRn the formalism is more complex and new features will show up.
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APPENDIX: ORTHONORMAL COFRAME FIELDS

Let g be a metric on a group lattice (G,S) which has Euclidean~or Lorentzian! signature at
each point. Anorthonormal coframe fieldis a set ofuSu linearly independent 1-formsEa ~at each
point of G) such that

g5 (
a,b51

uSu

hab Ea
^ LEb, ~A1!

whereh5(hab) has entries61 on the diagonal and zeros otherwise~according to the signature o
g!. Writing

Ea5 (
hPS

Ea
h uh , a51,...,uSu, ~A2!

it follows that the matrix (Ea
h) is invertible at all sitesgPG. Let (Ēh

a) denote its inverse. In the
following, for (hab) we may take more generally an arbitrary constant symmetric matrix. U
~I.6.5! and ~2.34!, we find

V,h
Ea5 (

b51

uSu

~Rh21* La
h,b! Eb ~A3!

with

La
h,bª (

h8,h9PS

Ea
h8 Vh8

h,h9 Rh* Ēh9
b, ~A4!

or Lh5E Vh Rh* Ē in an obvious matrix notation. As a consequence,

¹Ea5u ^AEa2(
b

La
b^AEb , La

bª(
hPS

La
h,b uh. ~A5!

Let us introduce the dual frame field

Ēaª(
hPS

Ēh
a•,h ~A6!

which satisfieŝ Ēa ,Eb&5da
b . As a consequence of~I.7.17! and ~2.41!, we find

Ṽ,h
Ēa5(

b
Lb

h,a•Ēb. ~A7!

The metric-compatibility condition for the connection takes the form

Lh
T h Lh5h. ~A8!

The matricesLh are thus isometries ofh, they have values in the orthogonal groupO(h) of h.
This shows that if an orthonormal coframe field is chosen,an h-compatible linear connection is
equivalent to a map G3S→O(h).

The components of the torsion 2-form with respect to the coframeEa are

Qa
ªQ~Ea!5Ea u2D~Ea!1 (

b51

uSu

La
b Eb. ~A9!
                                                                                                                



4258 J. Math. Phys., Vol. 44, No. 9, September 2003 A. Dimakis and F. Müller-Hoissen

                    
Here we used~I.7.6!, D( f v)5 f D(v), ~I.6.5! and ~A3!. Writing this as

Qa5 (
h1 ,h2PS

S Ea
h1

2 (
hPS

Ea
h dh1h2

h 1(
b

La
h1 ,b Rh1

* Eb
h2D uh1 uh2 ~A10!

the condition of vanishing torsionQa50 yields for biangles (h1h25e,h1 ,h2PS(0))

Lh1
Rh1

* Eh2
52Eh1

, ~A11!

where, for example,Eh1
denotes the column with entriesEa

h1
. For triangles@h1h25hPS(1)# it

yields

Lh1
Rh1

* Eh2
5Eh2Eh1

, ~A12!

and for quadrangles (h1h25ĥ1ĥ25gPS(2))

Lh1
Rh1

* Eh2
2Lĥ1

Rĥ1
* Eĥ2

5Eĥ1
2Eh1

. ~A13!

The components of the curvature with respect to the coframeEa are

R~Ea!5 (
b51

uSu

R a
b^AEb, ~A14!

where

~R a
b!5L22D~L !2I De , Lª(

hPS
Lh uh. ~A15!

With the help of the Leibniz rule and~I.2.15!, we obtain the first Bianchi identity~I.7.11! in the
following form,

dQ~E!1~L2u! Q~E!5S (
b

R a
b EbD 52DeE2D~L ! E1L2 E, ~A16!

whereE stands for the column with entriesEa. From

05¹~R~Ea!!2R~¹Ea!5(
b

S 2D~R a
b!1(

c
~La

c R c
b2R a

c Lc
b! D ^AEb ~A17!

we obtain the following version of the second Bianchi identity:

D~R a
b!5(

c
~La

c R c
b2R a

c Lc
b!. ~A18!

Writing

R~Ea!5 (
b51

uSu

(
h1 ,h2PS

R a
b,h1 ,h2

uh1ùuh2^ LEb, ~A19!

we find the biangle part of the curvature

R(e) h1 ,h2
5dh2h1

e ~Lh1
Rh1

* Lh
1
21h2h1

2I !, ~A20!

the triangle part (hPS(1))
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R(h) h1 ,h2
5dh2h1

h ~Lh1
Rh1

* Lh
1
21h2h1

2Lh! E(h) , ~A21!

and the quadrangle curvature (gPS(2))

R(g) h1 ,h2 ;ĥ1 ,ĥ2
5dh2h1

g ~Lh1
Rh1

* Lh
1
21h2h1

2Lĥ1
Rĥ1

* Lĥ
1
21ĥ2ĥ1

! E(g) . ~A22!

Here we have introduced

E (g) b
a

ª (
h8PS

~Rg* Ea
h8! Ēgh8g21

b. ~A23!
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Continuous wavelet transform on a special
homogeneous space
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We consider a semidirect product of two locally compact groupsS andT, with S
Abelian, denoted bySsT. An action of SsT on S is introduced to makeS a
homogeneous space ofSsT. Then we define a unitary representation fromSsT
into the unitary group ofL2(S) which is our main tool for defining the continuous
wavelet transform onL2(S). Also the main properties of the transform are dis-
cussed. We prove the Plancherel and inversion formulas and reproducing kernel’s
formula for this transform. This is finally specialized to the case of the continuous
wavelet transform onL2(Rd). © 2003 American Institute of Physics.
@DOI: 10.1063/1.1591055#

I. INTRODUCTION AND NOTATIONS

Let G be a locally compact topological group. We denote bydmG a fixed left Haar measure
on G and byDG the modular function. ByCc(G) we mean the space of continuous functions
compact support onG. An action of a locally compact groupG on a locally compact Hausdorf
spaceS is a continuous map (x,s)°xs from G3S to S such thats°xs is a homeomorphism o
S for eachxPG, andx(ys)5(xy)s, for all x,yPG andsPS. S is called a transitiveG-space if
for everys,tPS there existsxPG such thatxs5t. A homogeneous space is a transitiveG-space
that is isomorphic to a quotient spaceG/H for some closed subgroupH of G @for more informa-
tion see Folland~1995!, Chap. 2#.

Let G/H be a homogeneous space. A rho-function for the pair (G,H) is a continuous function
r:G°(0,̀ ) such that

r~xj!5
DH~j!

DG~j!
r~x!, xPG,jPH.

For any locally compact groupG and any closed subgroupH of G, (G,H) admits a rho-function
@see Folland~1995!, Proposition 2.54#.

Any homogeneous spaceG/H has a strongly quasi-invariant measure which arises fro
rho-function and for any rho-function for the pair (G,H) there is a strongly quasi-invarian
measure@see Folland~1995!, Chap. 2, or Reiter~1968!, Chap. 8#. But here we meet a special cas
of a homogeneous space which has more familiar measure than strongly quasi-invariant me

Let G be of the formG5G1H whereG1 andH are closed subgroups andG1ùH5$e%, so
everyxPG could be written uniquely in the formx5gh with gPG1 ,hPH. Suppose further tha
the mapx°(g,h) of G onto the productG13H is continuous and hence a homeomorphis
Now, the function

r~x!5
DH~h!

DG~h!
, x5gh,gPG1 ,hPH ~1!

a!Electronic mail: Fashandi@math.um.ac.ir
42600022-2488/2003/44(9)/4260/7/$20.00 © 2003 American Institute of Physics
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is a rho-function for the pair (G,H). By Reiter ~1968!, Chap. 8, Sec. 1.4, there is a relative
invariant positive measuredrẋ on G/H such that for allf PCc(G/H):

E
G/H

f ~y21ẋ! dr~ ẋ!5r~y!E
G/H

f ~ ẋ! dr~ ẋ!, yPG, ~2!

But G/H is isomorphic toG1 as a topological space, so by Reiter~1968!, Chap. 8, Sec. 1.5
drẋ is a left Haar measure onG1 , which will be shown by dmG1

, and for all f PCc(G) we have

E
G1

E
H

f ~gh!dmH~h! dmG1
~g!5E

G
f ~x!r~x! dmG~x!, ~3!

or if we replacef by f /r we obtain

E
G1

E
H

f ~gh!
DG~h!

DH~h!
dmH~h! dmG1

~g!5E
G

f ~x! dmG~x!. ~4!

Also we can rewrite~2! as follows, which is valid for allf PL1(G1),

E
G1

f ~y21x! dmG1
~x!5r~y!E

G1

f ~x! dmG1
~x!, yPG. ~5!

By Reiter ~1968!, Chap. 8, Sec. 2.3, formula~3! holds for all f PL1(G). Later we approach a
homogeneous space which has the above properties.

Let S andT be groups and suppose that there is a homomorphismt°s t from T into the group
of automorphisms ofS. For (s,t), (ś, t́ )PS3T, define

~s,t !~ ś, t́ !5~ss t~ ś!,t t́ !.

Then S3T is a group, it is called a semidirect product ofS and T and is denoted bySsT. Its
identity is (e1 ,e2), wheree1 ande2 are the identities ofS andT, respectively. The inverse of (s,t)
is (s t21(s21),t21).

Let S̃5$(s,e2);sPS% andT̃5$(e1 ,t);tPT%. ThenS̃vIG andT̃<G, S̃ùT̃5$(e1 ,e2)%, and
G5S̃T̃. If S andT are locally compact groups and (s,t)°s t(s) is continuous thenG is a locally
compact group andS̃ and T̃ are closed inG.

We denote byĜ the dual group of a locally compact Abelian groupG and by f̂ Fourier
transform of a functionf . For more information about the properties ofĜ, the definition of
Fourier transform and related theorems, we refer the reader to Rudin~1960!, Chap. 1 or Folland
~1995!, Chap. 4.

By a ~unitary! representation we mean a homomorphismp from a locally compact groupG
into the groupU~H! of unitary operators on some nonzero Hilbert spaceH that is continuous with
respect to the strong operator topology. A vectorfPH is said to be admissible if

E
G

u^f,p~x!f&u2dmG~x!,1`.

A representationp is called irreducible if$0% andH are the only closed linear subspaces that
invariant under the unitary operatorsp(x);xPG. An irreducible representation which has at lea
one admissible vector is called a square integrable representation. If there exists a vectorfPH
such that the closed linear span of$p(x)f,xPG% is equal toH, thenf is called a cyclic vector
andp is called a cyclic representation.

In this paper we study the continuous wavelet transform onL2(S) using a unitary represen
tation from SsT into the unitary group ofL2(S). In particular we extend the results of Koorn
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winder ~1993!. The idea of working on semidirect product of groups in the framework of wav
analysis is not new. In Grossmanet al. ~1985!, which is one of the first papers of wavelet analys
the continuous wavelet transform onL2(R) was defined by means of a certain square integra
representation of the semidirect productRsR1 on the unitary group ofL2(R). The square inte-
grability of this representation guarantees the existence of an inverse wavelet transfor
admissibility condition. However, we prove them without square integrability’s assumption
stead we use the fact thatS is a homogeneous space ofSsT. In recent years, this kind of result t
other groups has been extended, especially the construction of wavelet transform and d
frames from semidirect product ofRk and a closed matrix group has been considered@see, e.g.,
Aniello et al. ~2001!, Aniello et al. ~1998!, Fuehr and Meyer~2002!#. Also some authors have
concerned the wavelet transform in the context of square integrable representations of
compact groups on infinite dimensional separable Hilbert spaces@see Wong~2002!#. These wave-
let transforms are based on coherent states parametrized by elements in the groupG. The book by
Ali et al. ~2000! presents the more general theory of coherent states associated with homog
space and contains an extensive list of references on coherent states parametrized by po
homogeneous space. Torresani~1995! and Antoine and Vandergheynst~1999! have presented
some applications of coherent states on manifolds.

II. MAIN RESULTS

Let G be semidirect product of two locally compact groupsS andT, thatS is Abelian, and let
•:G3S°S be as follows:

~a,b!.s5asb~s!.

It is easy to check that ‘‘.’’ is an action ofG on S. Since for eachs1 , s2PS, (s2s1
21 ,e2).s1

5s2 , S is a transitiveG-space. AlsoS is a homogeneous space ofG, sinceF:G/T̃°S defined by
F((s,t)T̃)5s is a homeomorphism. Let

r~s,t !5r~e1 ,t !5
D T̃~e1 ,t !

DG~e1 ,t !
.

Clearly,r is a rho-function for the pair (G,T̃). From now on, we user(t) instead ofr(e1 ,t). r

satisfies Eq.~1!, so there is a left Haar measuredm S̃(s,e2) on S̃ such that~4! and~5! hold, hence
there is a left Haar measuredmS on S, that ~4! and ~5! could be rewritten as follows:

E
S
E

T

f ~s,t !

r~ t !
dmT~ t !dmS~s!5E

G
f ~g!dmG~g!, f PL1~G!, ~6!

E
S

f ~~a,b!21.s!dmS~s!5r~b!E
S

f ~s!dmS~s!, f PL1~S!. ~7!

Now we definep from G into U(L2(S)), the unitary group ofL2(S) such that

@p~a,b! f #~s!5r~b!21/2f ~~a,b!21.s!. ~8!

It can be easily checked thatp is a unitary representation.
Definition 1: We sayCPL1ùL2(S) is a waveletif iCiL2(S)51 and there is a constantCC

such that 0,CC,1` and for anygPŜ,

CC ªE
T
uĈ~g+s t!u2dmT~ t !.

For a waveletC we put
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Cs,t ªp~s,t !C, ~s,t !PG.

Definition 2: For any f PL2(S), thecontinuous wavelet transformof f is defined as follows:

W f~s,t !5^ f ,Cs,t&L2(S) .

By Parseval’s formula@see Rudin~1960!, Sec. 1.6.2# we also have

W f~s,t !5^ f̂ ,Ĉs,t&L2(Ŝ) , f PL2~S!.

Using the Schwarz inequality it is easy to see thatW f is a bounded and continuous function onG.
Lemma 3:Let CPL2(S), then

Ĉs,t~g! 5r~ t !1/2g~s!Ĉ~g+s t!, gPŜ. ~9!

Proof: First we assumeCPL1ùL2(S). Since Cs,tPL1ùL2(S) by definition of Fourier
transform@Rudin ~1960!, Sec. 1.2.3# and using~7! and ~8! we have

Ĉs,t~g!5E
S

Cs,t~x!g~x! dmS~x!5r~ t !1/2E
S

C~x!g~~s,t !.x! dmS~x!5r~ t !1/2g~s!Ĉ~g+s t!.

Now, if CPL2(S), by definition of Fourier transform of functions inL2(S) @see the proof of
Theorem 1.6.1 in Rudin~1960!# formula ~9! obtains. h

Theorem 4: Let C be a wavelet andf ,gPL2(S). Then we have
~i! (Plancherel formula) iW fiL2(G)

2
5CC i f iL2(S)

2 ,
~ii ! (Parseval formula) ^W f,Wg&L2(G)5CC ^ f ,g&L2(S) .

Proof: Put

Ft~g! 5 f̂ ~g! Ĉ̄~g+s t!, tPT,gPŜ.

By Holder’s inequalityFtPL1(Ŝ). Also we can easily check that

Ft~g! 5r~ t21! @ f !~C+s t21!!# ˆ ~g!,

whereC!(s)5C(s21). Since f PL2(S) and (C+s t21)!PL1ùL2(S) by Folland~1995!, Propo-
sition 2.39, f !(C+s t21)!PL2(S), thus its Fourier transform is defined, soFtPL2(Ŝ) and by

Pontriagin Duality Theorem@Rudin ~1960!, Theorem 1.7.2#, F̂ tPL2(S). Also we put Gt(g)

5ĝ(g) Ĉ̄(g+s t), soGt satisfies the above results aboutFt . Therefore by~9!

W f~s,t !5^ f̂ ,Ĉs,t&L2(Ŝ)5r~ t !1/2E
Ŝ

Ft~g! g~s! dm Ŝ~g!5r~ t !1/2 F̂ t~s21!.

Similarly, Wg(s,t)5r(t)1/2Ĝt(s
21). So we have

E
T
E

S
W f~s,t !Wg~s,t ! r~ t !21 dmS~s!dmT~ t !5E

T
^F̂ t ,Ĝt&L2(S) dmT~ t !

5E
T
E

Ŝ
Ft~g!Gt~g! dm Ŝ~g!dmT~ t !

5CC ^ f̂ ,ĝ&L2(Ŝ) 5CC ^ f ,g&L2(S) .

So by ~6! we obtain
                                                                                                                



f

4264 J. Math. Phys., Vol. 44, No. 9, September 2003 Fashandi et al.

                    
E
G

W f~s,t !Wg~s,t ! dmG~s,t !5CC^ f ,g&L2(S) . ~10!

If f 5g, then

iW fiL2(G)
2

5CC i f iL2(S)
2 .

That meansW fPL2(G), so we have the Parseval formula by~10!. h

Remark 5:For a moment, let us define the continuous wavelet transform as follows:

W f~s,t !5
1

ACC

^ f ,Cs,t&, f PL2~S!. ~11!

By Theorem 4 we can easily conclude thatW is an isometry ofL2(S) into its range. Theorem 7
will specify the range of continuous wavelet transform which is a closed subspace ofL2(G). The
following lemma will be used for proving Theorem 6, we refer the reader to Koornwinder~1993!,
Lemma 4.1, for its proof.

Lemma 6:Let H1 andH2 be Hilbert spaces and letF:H1→H2 be an isometry intoH2 . Then
FF!:H2→H2 is the orthogonal projection ofH2 onto F(H2).

Theorem 7: (Reproducing kernel formula)Let hPL2(G). Then h5W f, for some f
PL2(S) if and only if

h~ ś, t́ !51/CC E
G

h~s,t ! ^Cs,t ,C ś, t́&L2(S) dmG~s,t !.

Proof: Let us considerW as in ~11!, so by Lemma 6,WW! is an orthogonal projection o
L2(G) onto W(L2(S)). Now, if hPL2(G) we have

~WW!h!~ ś, t́ !5
1

ACC

^W!h,C ś, t́&L2(S)

5
1

ACC

^h,WC ś, t́&L2(G)

51/CC E
G

h~s,t ! ^Cs,t ,C ś, t́&L2(S) dmG~s,t !.

h

Lemma 8:Let f andCPL1ùL2(S). Putht(s)5W f(s,t), for a fixedtPT, then

ĥt~g!5r~ t !1/2f̂ ~g!Ĉ̄~g+s t!, gPŜ. ~12!

Proof: By ~9! we have

ht~s!5W f~s,t !5r~ t !1/2E
Ŝ

f̂ ~g!Ĉ̄~g+s t!g~s! dm Ŝ~g!

5r~ t !21/2E
Ŝ

@ f !~C+s t21!!# ˆ ~g!g~s! dm Ŝ~g!

5r~ t !21/2@ f !~C+s t21!!#~s!.
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In the last equality we applied Fourier Inversion formula@see Folland~1995!, Theorem 2.40#
which is valid here because@ f ! ( C+s t21 ) ! # PL1ùL2(S)ùC0(S), also @ f !(C+s t21)!# ˆ

PL1(Ŝ). ThereforehtPL1ùL2(S) and ~12! obtains. h

Theorem 9: (Inversion formula)Let f PL1ùL2(S) and f̂ PL1(Ŝ), then for eachuPS,

f ~u!51/CC E
G

W f~s,t ! Cs,t~u! dmG~s,t !.

Proof: By Lemma 8 we have

E
S

W f~s,t ! g~s21! dmS~s!5r~ t !1/2f̂ ~g!Ĉ̄~g+s t!.

Multiplying both sides of the above equality byr(t)21/2Ĉ(g+s t) and integrating overT we get

f̂ ~g!51/CCE
T
E

S
r~ t !21/2W f~s,t !Ĉ~g+s t!g~s21! dmS~s!dmT~ t !.

Now, by the inverse Fourier transform, Lemma 3 and~6! we have

f ~u!5E
Ŝ

f̂ ~g!g~u! dm Ŝ(g)5
1

CC
E

T
r~ t !21E

S
W f~s,t !E

Ŝ
Ĉs,t~g!g~u! dm Ŝ~g!dmS~s!dmT~ t !

5
1

CC
E

T
E

S
r~ t !21W f~s,t !~u!Cs,t~u! dmS~s!dmT~ t !

5
1

CC
E

G
W f~s,t !Cs,t~u! dmG~s,t !.

h

III. EXAMPLE AND REMARKS

As an example of the continuous wavelet transform discussed in Sec. II we consider s
rect product of the additive groupRd and the multiplicative groupR1ª(0,̀ ) under homomor-
phisms:R1→Aut(Rd) defined by

sa~b!5ab, aPR1,bPRd.

In order to compare our result with Koornwinder~1993!, we reverse the order ofRd andR1 and
we putG5R1sRd with the following multiplication and inversion;

~a,b!~ á,b́ !5~aá,b1ab́ !, ~a,b!215~a21,2ba21!.

Since (a,b)→ab is continuous soG is a locally compact group with modular functio
DG(a,b)5a2d and with Haar measurea2d21da db, where da is the Lebesgue measure onR and
db is the Lebesgue measure onRd @for more information about computing the Haar measure
semidirect product of two locally compact groups see Hewitt and Ross~1985!, Chap. 5, Sec.
15.29#. G acts onRd with the following action:

G3Rd→Rd, ~a,b!.x5ax1b,

that are the affine transformations. With this actionRd is a homogeneous space ofG. Now
formulas~6! and~7! are valid with the rho-functionr(a)5ad,aPR1 and dmRd appearing in them
is equal to the Lebesgue measure onRd. The representationp defined by~8! is as follows:

@p~a,b! f #~x!5a2d/2f S x2b

a D , ~a,b!PG,xPRd, f PL2~Rd!.
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Let C be a wavelet as in Definition 1, so

CC5E
Rd

uĈ~aj!u2
da

a
, ;jPR1,

and

Ca,b~x!5a2d/2CS x2b

a D , ~a,b!PG,xPRd.

We refer the reader to Theorems 2.2, 2.3, 2.5 and Proposition 4.4 in Koornwinder~1993! to
compare them with properties of this transform that we obtained in Sec. II.

Remark 10:Theorem 4 implies that any waveletC is an admissible and cyclic vector for th
representationp defined by~8!.

Remark 11:If G5RsR! where R!5R2$0%, then the representationp defined by~8! is
irreducible@see Koornwinder~1993!, Sec. 5#; however, ifG5RsR1 then

$ f PL2~R!;support f̂ #@0,̀ !%

is a proper closed invariant subspace forp, so in this casep is not irreducible. Therefore, it is no
possible to say anything about irreducibility ofp defined by~8!.

Remark 12: Let G be a locally compact group,H a Hilbert space, andp a square integrable
representation ofG on U~H! andg be an admissible vector for it. In Grossmanet al. ~1985!, the
continuous wavelet transform of anyf PH is defined by

Wgf ~x!5^ f ,p~x!g&,

which satisfies in plancherel formula, inversion formula, and reproducing kernel formula be
of irreducibility of p @the latest results in this context could be found in Wong~2002!#. We defined
the continuous wavelet transform in the same way, but without irreducibility’s assumption.
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Angular Gelfand–Tzetlin coordinates for the supergroup
UOSp„k 1Õ2k 2…
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We construct Gelfand–Tzetlin coordinates for the unitary orthosymplectic super-
group UOSp(k1/2k2). This extends a previous construction for the unitary super-
group U(k1 /k2). We focus on the angular Gelfand–Tzetlin coordinates, i.e., our
coordinates stay in the space of the supergroup. We also present a generalized
Gelfand pattern for the supergroup UOSp(k1/2k2) and discuss various implications
for representation theory. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1594819#

I. INTRODUCTION

If the symmetries of a physical problem are simple enough, proper coordinates are e
find. However, already the Schro¨dinger equation for a particle in a potential with spherical sy
metry leads to nontrivial group theory, such as parametrization of the Lie group SO~3! with Euler
angles, spherical harmonics, Wigner representation functions and, in the case of the hy
atom, additional symmetries and the Lie group SO~4!. The coordinates mostly used distinguis
for a good physics reason, certain directions and thus do not treat all coordinates on an
footing. Group theoretically, such parametrizations are called noncanonical. The Euler angl
example, describe three subsequent rotations, first, about thez-axis, second, about the newy-axis,
and, third, about the newz-axis. Nevertheless, there are many problems, particularly in statis
mechanics, in many-body physics and in matrix models, where one does not want to disti
certain directions. Rather, all variables parametrizing the group should be treated on an
footing. Gelfand–Tzetlin coordinates1–3 are such a coordinate system. Their construction is ba
on a group chain or coset decomposition. Thus Gelfand–Tzetlin coordinates have a clear re
structure. From a physics point of view, it is important that matrix elements, measures and
quantities reflect this clear recursive structure and can be given very explicitly. The genera
this group chain construction makes Gelfand–Tzetlin coordinates powerful tools in applica
~see, for example, Refs. 4 and 5!, but also for conceptual studies~see, for example, Refs. 6–8!. A
particularly intriguing aspect is the intimate and direct connection between Gelfand–Tzetl
ordinates on the group manifold and representations of this group. Their rich features an
relevance for different types of studies ranging from physics applications to pure mathem
render Gelfand–Tzetlin coordinates important objects in their own right.

In Ref. 5, Gelfand–Tzetlin coordinates were constructed for the unitary supergroup U(k1 /k2).
In the present contribution, we further extend this and construct Gelfand–Tzetlin coordinat
the unitary orthosymplectic supergroup UOSp(k1/2k2). As this supergroup appears in the theo
of disordered systems,9 our construction of Gelfand–Tzetlin coordinates might be of direct use
future physics applications. The unitary orthosymplectic supergroup UOSp(k1/2k2) contains the
symplectic group USp(2k2) and the orthogonal group SO(k1) as subgroups. Thus, our constru
tion also includes coordinate systems for these two groups in ordinary space. The construc

a!Electronic mail: thomas.guhr@matfys.lth.se
b!Electronic mail: heiner.kohler@uam.es
42670022-2488/2003/44(9)/4267/20/$20.00 © 2003 American Institute of Physics
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the orthogonal group was implicitly also done in Ref. 8.
For the sake of clarity, an important remark is in order: We distinguish betweenangular and

radial Gelfand–Tzetlin coordinates. In the present work, we construct angular ones. By th
mean that they never leave the space of the group and its algebra. In previous contribution10–13

we constructed radial Gelfand–Tzetlin coordinates to study certain types of group integrals.
radial Gelfand–Tzetlin coordinates are capable of mapping the integral over a group onto in
over the radial part of a different symmetric space. Hence, in this sense, these coordinate
the space of the group and its algebra. Here, we always stay with the angular Gelfand–
coordinates.

The appreciated explicit formulas resulting from the Gelfand–Tzetlin construction imply
unavoidable disadvantage that a reader, not familiar with the subject, can quickly lose his
tation. Therefore, we decided to skip several detailed calculations if, in our opinion, it woul
be too cumbersome for the reader to recover the missing steps by properly adjusting the
sponding ones in Ref. 5. In any case, we recommend that an interested but unexperienced
studies first Refs. 4 and 8 and then Ref. 5 before reading the present contribution.

The article is organized as follows: In Sec. II, we construct the angular Gelfand–Tz
coordinates. We state the generalized Gelfand pattern in Sec. III and discuss some issues r
representation theory. Summary and conclusions are given in Sec. IV.

II. CONSTRUCTION OF THE COORDINATE SYSTEM

In Sec. II A, we collect some properties of the supergroup UOSp(k1/2k2) needed in the
sequel. We set up the proper Gelfand–Tzetlin equations and their recursion to all levels in
II B and II C, respectively. We solve these equations in Sec. II D. We summarize the constr
of the Gelfand–Tzetlin coordinates for the ordinary unitary symplectic group in Sec. II E.
invariant measure of the supergroup is worked out in Sec. II F. The matrix elements o
supergroup are obtained in Sec. II G.

A. The supergroup UOSp „k 1Õ2k 2…

The classification of superalgebras and supergroups can be found in Refs. 14–16. He
restrict ourselves to summarizing features of the supergroups OSp(k1/2k2) and UOSp(k1/2k2).
We will refer to k1 and 2k2 as the bosonic and fermionic dimensions, respectively. We introd
the notation (k1/2k2) for the resulting superdimension. The elements of OSp(k1/2k2) are those
elementsu of the general linear supergroup GL(k1/2k2) which satisfyu†Lu5L. The metricL is
given by

L5diag~1k1
,1k2

^ t (2)!, ~1!

where 1k1
and 1k2

are thek13k1 and thek23k2 unit matrices and wheret (2) is one of the two by
two matrices,

t (0) 5 F1 0

0 1G , t (1) 5 F 0 2 i

2 i 0 G ,
~2!

t (2) 5 F 0 1

21 0G , t (3) 5 F1 i 0

0 2 i G .
The supergroup UOSp(k1/2k2) is the compact subgroup of OSp(k1/2k2). By construction, the
direct product SO(k1) ^ USp(2k2) of the ordinary orthogonal and the ordinary unitary symplec
group is a subgroup of UOSp(k1/2k2). As is well known, the ordinary orthogonal group SO(k1)
has slightly different features for even and odd dimensionk1 . Thus, these differences are als
present in the supergroup UOSp(k1/2k2).
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The group elements act on a graded space, which we denote byL50L%
1L. It decomposes

into a sum of an even0L and an odd1L subspace according to its transformation properties un
the parity automorphism.17 We define a basisej5ej 1 , j 51,....,k1 , for 0L, and ek11 j5ej 2 , j
51,...,2k2 , for 1L, respectively.

The supergroup UOSp(k1/2k2) can be obtained by the exponential mapping of the supe
gebra uosp(k1/2k2), such thatsPuosp(k1/2k2) leads tou5exp(s)PUOSp(k1/2k2). The con-
struction of the angular Gelfand–Tzetlin coordinates uses as the starting point the Cartan
gebra uosp(0)(k1/2k2) of uosp(k1/2k2). For even bosonic dimension 2k1 , the elements of
uosp(0)(2k1/2k2) are the matrices

s5diag~ is11t
(2),...,isk11t (2),s12t

(3),...,sk21t (3)!, ~3!

while for odd bosonic dimension 2k111, the uosp(0)(2k111/2k2) consists of the matrices

s5diag~ is11t
(2),...,isk11t (2),0,s12t

(3),...,sk21t (3)!. ~4!

Naturally, uosp(0)(k1/2k2) is the direct sum of the Cartan subalgebras of so(k1) and usp(2k2).

B. Derivation of the angular Gelfand–Tzetlin equations

Gelfand–Tzetlin coordinates are based on a group chain or, equivalently, on a coset d
position. The coset decomposition needed for the supergroup UOSp(k1/2k2) is

UOSp~k1/2k2!5
UOSp~k1/2k2!

UOSp~~k121!/2k2!)
^

UOSp~~k121!/2k2!

UOSp~~k122!/2k2!)
^¯^

UOSp~1/2k2!

USp~2k2!

^
USp~2k2!

USp~2k222!
^¯^

USp~4!

SU~2!
^ SU~2!. ~5!

Every coset space describes a unit sphere. The first coset UOSp(k1/2k2)/UOSp((k121)/2k2)) is
a sphere in a superspace with dimension (k1/2k2). The dimension of the space in which the sphe
lives is lowered by one in every step. The sphere UOSp(1/2k2)/USp(2k2) is the last one living in
a superspace; the following spheres in the second line of Eq.~5! are spheres in ordinary space
Coordinate systems will be constructed on all these spheres under the nontrivial requireme
the orthogonality, more precisely the equationu†Lu5L, is always respected. Thus, once t
coordinate system on one sphere has been obtained, the orthogonal complement to eve
vector on this sphere has to be constructed, the next sphere lives in this smaller space.
loosely speaking, the spheres in the coset decomposition are orthogonal to each other. T
struction to follow is an extension of the one in Ref. 5 for the unitary supergroup. For simpl
we consider the case of evenk1 first. The differences occurring for oddk1 will be dealt with in
Sec. II C.

To project onto a smaller subspace, we writeuPUOSp(k1/2k2) as u5@u1 u2¯uk112k2
#

where the columnsui are normalized supervectors. We denote byuji their entries in the basis
ej 1 , j 51,...,k1 , and ej 2 , j 51,...,2k2 . The orthogonality condition requires the vectorsui , i
<k1 , to be real:

uji 5uji* , for 1< j <k1 , and u(k112 j ) i5u~k112 j 21!i* , for 1< j <k2 . ~6!

We consider the first vector. It is parametrized byk1 real commuting variablesuj 1 and 2k2

complex anticommuting variables. For the latter we write

u(k112 j ) i5a j* , 1< j <k2. ~7!
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We also define ua j u25a j* a j . The supervector u1 describes the coset spac
UOSp(k1/2k2)/UOSp((k121)/2k2) which is—similar to ordinary spaces—isomorphic to the s
face of the (k1/2k2) dimensional sphereS(k121)/2k2. We go from Cartesean coordinates to a n
set of coordinates foru1 by projecting a fixed elements of the Cartan subalgebra on a space
superdimension ((k121)/2k2) orthogonal tou1 ,

s(1)5~1k112k2
2u1u1

†!s~1k112k2
2u1u1

†!. ~8!

The eigenvalues and eigenvectors of this projected matrix are obtained by solving the sup
metric Gelfand–Tzetlin equation

sp
(1)ep

(1)5~1k112k2
2u1u1

†!s~1k112k2
2u1u1

†!ep
(1)5~1k112k2

2u1u1
†!sep

(1), ~9!

which extends the equation in Ref. 5 for the unitary supergroup to UOSp(k1/2k2). It is convenient
to rotate the basis in such a way thats becomes diagonal before solving Eq.~9!. We introduce the
primed basis

e(2i 21)18 5
1

&
~e(2i 21)11 ie(2i )1!,

e(2i )18 5
1

&
~ ie(2i 21)11e(2i )1!, i 51...,k1/2, ~10!

ei28 5ei2, i 5k111,...,k112k2.

The rotation only affects the bosonic degrees of freedom, not the fermionic ones. Due t
rotation, the bosonic entries ofu18 are now complex variables which we write in the form

u(2 j )18 5 iu (2 j 21)18* 5
i

&
uv j

(1)uexp~2 iq j
(1)!, j 51,...,k1/2. ~11!

The fermionic entries are, also in the primed basis, given by Eq.~7!. To calculate the eigenvalues
we need the characteristic function of the eigenvalue equation~9!,

z~sp
(1)!5detg~~1k112k2

2u1u1
†!s2sp

(1)!52sp
(1)detg~s2sp

(1)!u1
†

1k112k2

s2sp
(1) u1. ~12!

Importantly, the functionz(sp
(1)) behaves differently for thek1 bosonic eigenvalues, i.e., for thos

in the boson–boson blocksp
(1)5sp1

(1) , p51,...,k1 , and for the 2k2 fermionic eigenvalues, i.e., fo
those in the fermion–fermion blocksk11p

(1) 5 isp2
(1) , p51,...,2k2 . The equation above has therefo

to be discussed in the limits

z~sp
(1)! →H 0 for p51,...,k1 ,

` for p5k111,..., k112k2 .
~13!

Together with the normalization conditionu1
†u151 we find the following set of equations:

15 (
p51

k1/2

uvp
(1)u21 (

p51

k2

uap
(1)u2, ~14!
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05~sp1
(1)!2S (

q51

k1/2 uvq
(1)u2

~sq1!22~sp1
(1)!2 1 (

q51

k2 uaq
(1)u2

~ isq2!22~sp1
(1)!2D , p51,...,~k121!, ~15!

zp5~ isp2
(1)!2

)q51
k1/2

~~sq1!22~ isp2
(1)!2!

)q51
k2 ~~ isq2!22~ isp2

(1)!2!
S (

q51

k1/2 uvq
(1)u2

~sq1!22~ isp2
(1)!2 1 (

q51

k2 uaq
(1)u2

~ isq2!22~ isp2
(1)!2D ,

zp→`, p51,...,2k2. ~16!

This is a system of equations in the variables (sp1
(1))2 and (isp2

(1))2. The second equation has
twofold degenerate solution atsp1

(1)50. If sp1
(1) ,isp2

(1) are solutions of the above equations,2sp1
(1) and

2 isp2
(1) are solutions as well. Hence the projected matrix~8! is of the form~4! in the proper basis

ej
(1) and belongs itself to the Cartan subalgebra uosp(0)((k121)/2k2). This is crucial for the

recursion. The system~14!–~16! is overdetermined; out of thek112k211 equations in~14!–~16!,
only k1/21k2 are independent. The system yields the moduli squared of the entries of the
u18 expressed in terms of the eigenvaluess(1). We call the latter bosonic eigenvalues if they satis
Eq. ~15!, and fermionic eigenvalues if they satisfy Eq.~16!. With the substitutionssq1

( j )→(sq1
( j ))2

andisq2
( j )→( isq2

( j ))2, j 51,2, the set of independent equations is equivalent to the correspondin
of equations for the unitary supergroup. Thus, we can directly read off the solutions from R
They will be stated in Sec. II D.

C. Recursion to all levels in superspace

The construction just outlined for the first coset space has to be continued recursively to
the entire group manifold. For the ordinary groups, this recursion can be found in Refs. 1–3.
present case, we extend the recursion for the unitary supergroup in Ref. 5. As the Cartan
gebra uosp(0)(k1/2k2) is slightly different for even and odd bosonic dimensionk1 according to
Eqs.~3! and~4!, we have to distinguish these two cases for the recursion. For brevity, we re
a level as even, if (k12n11) is even, and as odd otherwise.

In the nth step the vectorun8 is expanded in a set ofk12n1112k2 basis vectorsej8
(n21),

which span the subspace ofL orthogonal tou5@u1 u2¯un21#. This set splits into two disjoint
subsets. The first subset containsk12n11 vectorsej 18

(n21) spanning some subspace of0L. The
second one contains 2k2 basis vectorsej 28

(n21) spanning1L. The entries ofun in this basis are
complex variables

e(2p)18 (n21)†un5 i ~e(2p21)18 (n21)†un!* 5
i

&
uvp

(n)uexp~2 iqp
(n)!,

p<H ~k12n11!/2 for k12n11 even,

~k12n!/2 for k12n11 odd,
~17!

e(2p)28 (n21)†un5~e(2p21)28 (n21)†un!* 5 ap
(n)* , p<k2.

For k12n11 odd, the remaining entry is parametrized by a real variable and an in
r P$0,1% as

e(k12n11)18 (n21)†un5~21!rv ~k12n!/2 11
(n) . ~18!

Thus, we can write down the rotatednth eigenvector on the (n21)th level,

un8
(n21)5 (

j 51

k112k22n11

ej8
(n21)†unej8

(n21). ~19!
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The projection ofs onto this subspace after thenth step is given by

s(n21)5S (
i 5n

k112k2

uiui
†D sS (

i 5n

k112k2

uiui
†D 5S 1k112k2

2 (
i 51

n21

uiui
†D sS 1k112k2

2 (
i 51

n21

uiui
†D ~20!

and belongs to the Cartan subalgebra of UOSp((k12n)/2k2). The new coordinates are obtaine
by projectings(n21) on the subspace orthogonal toun by

sp
(n)ep

(n)5~1k112k2
2unun

†!s(n21)~1k112k2
2unun

†!ep
(n)5~1k112k2

2unun
†!s(n21)ep

(n). ~21!

For k12n11 even, this leads to a system of equations as in~14!–~16! reduced by (n21)/2
unknown variables. For (k12n11) odd, the equations have a slightly different form,

15 (
p51

~k12n!/2

uvp
(n)u21uv ~k12n!/2 11

(n) u21 (
p51

k2

uap
(n)u2, ~22!

05sp1
(n)S (

q51

~k12n!/2
~sp1

(n)!2uvq
(n)u2

~sq1
(n21)!22~sp1

(n)!2 1uv ~k12n!/2 11
(n) u21 (

q51

k2 ~sp1
(n)!2uaq

(n)u2

~ isq2
(n21)!22~sp1

(n)!2D ,

p51,...,~k12n!, ~23!

zp52 isp2
(n)

)q51
~k12n!/2

~~sq1
(n21)!22~ isp2

(n)!2!

)q51
k2 ~~ isq2

(n21)!22~ isp2
(n)!2!

S (
q51

~k12n!/2
~sp1

(n)!2uvq
(n)u2

~sq1
(n21)!22~ isp2

(n)!2 1uv ~k12n!/2 11u2

1 (
q51

k2 ~sp1
(n)!2uaq

(n)u2

~ isq2
(n21)!22~ isp2

(n)!2D , zp→`, p51,...,2k2. ~24!

The difference between Eqs.~22!–~24! and the corresponding equations~14!–~16! for the even
levels is due to the isolated entry~18!, which has to be treated separately. This reflects
difference between the even orthogonal group and the odd orthogonal group in ordinary s

The new basis vectorsej8
(n) are related to the basis vectors of the foregoing level by ak1

2n12k2)3(k12n1112k2) rectangular supermatrixb̂8(n). The moduli squared of its entrie
b̂pm8(n) are determined by rewriting Eq.~21! and multiplying it from the left hand side with
em8

(n21)†:

em8
(n21)†s(n21)ep8

(n)5sp
(n)em8

(n21)†ep8
(n)1em8

(n21)†unbp
(n), ~25!

where we definedbp
(n)5un

†s(n21)ep8
(n). On the other hand, we have

em8
(n21)†s(n21)ep8

(n)5sm
(n21)em8

(n21)ep8
(n), ~26!

which yields for the matrix elements ofb̂8(n) the expression

b̂pm8 (n)5
1

sm
(n21)2sp

(n) umn8 (n21)bp
(n). ~27!

The modulus squared ofbp
(n) is determined by the normalization of the rotated basis vec

em8
(n)† ep8

(n)5dmp , i.e., by the condition that the matrixb̂8(n)b̂8(n)† is unity in thek12n12k2

dimensional subspace orthogonal tou5@u1 u2¯un#. Due to the block structure of the superm
trix b̂8(n), the vectorb(n) has commuting and anticommuting elements. Fork12n11 even we
define uwp

(n)u25ub2p
(n)u25ub2p21

(n) u2,p51,...,(k12n11)/2, for the commuting elements an

ubp
(n)u25ubk12n1112p

(n) u25ubk12n12p
(n) u2,p51,...,k2 , for the anticommuting elements. Fork12n
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11 odd we defineuwp
(n)u2 and ubp

(n)u2 correspondingly. Again, there is a difference in the det

mining equations ofuwp
(n)u2 andubp

(n)u2 between the even and the odd levels of the recursion.
k12n11 even we have

1

uwp
(n)u2

5 (
m51

(k12n11)/2
~sm1

(n21)!21~sp1
(n)!2

~~sm1
(n21)!22~sp1

(n)!2!2 uvm
(n)u21 (

m851

k2 ~ ism82
(n21)

!21~sp1
(n)!2

~~ ism82
(n21)

!22~sp1
(n)!2!2 uam8

(n)u2,

p51,...,~k12n21!/2. ~28!

For the remaining modulus squared we obtain

1

uw~k12n11!/2
(n) u2

5 (
m51

(k12n11)/2
1

~sm1
(n21)!2 uvm

(n)u21 (
m851

k2 1

~ ism82
(n21)

!2 uam8
(n)u2. ~29!

The moduli squared of the anticommuting coordinates ofb(n) fulfill a formally similar equation.
However, it is mathematically more precise to write it in the inverted form to avoid the appea
of purely nilpotent variables in the denominator,

15ubp
(n)u2S (

m51

(k12n11)/2
~sm1

(n21)!21~ isp2
(n)!2

~~sm1
(n21)!22~ isp2

(n)!2!2 uvm
(n)u21 (

m851

k2 ~ ism82
(n21)

!21~sp1
(n)!2

~~ ism82
(n21)

!22~sp1
(n)!2!2 uam8

(n)u2D ,

p51,...,k2. ~30!

The corresponding equations for the odd levels are obtained from Eqs.~28! and ~30! by making
the following formal replacements. In Eq.~28!, the sum overm runs only to (k12n)/2 and, in
addition, the termuv (k12n)/2 11

(n) u2/(sp1
(n))2 is subtracted. In Eq.~30!, the first sum runs only to

(k12n)/2 and the termuv (k12n)/2 11
(n) u2/( isp2

(n))2 is subtracted. Moreover, Eq.~29! does not exist for

the odd levels.

D. Solution of the angular Gelfand–Tzetlin equations

Up to thek1th level both sets of equations~14!–~16! and~28!–~30! have to be solved for even
and odd levels separately. For the even levels, there is, as already mentioned above,
correspondence to the case of the unitary supergroup. Thus, we find employing the results
5,

uvp
(n)u25

)q51
~k12n21!/2

~~sp1
(n21)!22~sq1

(n)!2!)q51
k2 ~~sp1

(n21)!22~ isq2
(n21)!2!

)q51,qÞp
~k12n11!/2

~~sp1
(n21)!22~sq1

(n21)!2!)q51
k2 ~~sp1

(n21)!22~ isq2
(n)!2!

,

p51,...,~k12n11!/2, k12n11 even,
~31!

uap
(n)u25~~ isp2

(n)!22~ isp2
(n21)!2!

3
)q51

~k12n21!/2
~~ isp2

(n21)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n21)!2!

)q51
~k12n11!/2

~~ isp2
(n21)!22~sq1

(n21)!2!)q51,qÞp
k2 ~~ isp2

(n21)!22~ isq2
(n)!2!

,

p51,...,k2.

We have included the first level by settings5s(0). To find the solution of Eqs.~28!–~30!, one
cannot directly make use of the results in the unitary case. An explicit calculation is nece
which is given in Appendix A. It yields
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uwp
(n)u25

2)m51
~k12n11!/2

~~sm1
(n21)!22~sp1

(n)!2!)q51
k2 ~~sp1

(n)!22~ isq2
(n)!2!

2~sp1
(n)!2)q51,qÞp

~k12n21!/2
~~sp1

(n)!22~sq1
(n)!2!)q51

k2 ~~sp1
(n)!22~ isq2

(n21)!2!
,

p51,...,~k12n21!/2 ,

uw~k12n11!/2
(n) u25

)m51
~k12n11!/2

~sm1
(n21)!2)q51

k2 ~ isq2
(n)!2

)m51
~k12n21!/2

~sm1
(n)!2)q51

k2 ~ isq2
(n21)!2

, ~32!

ubp
(n)u25~~ isp2

(n)!22~ isp2
(n21)!2!

3
)q51,qÞp

k2 ~~ isp2
(n)!22~ isq2

(n)!2!)q51
~k12n11!/2

~~ isp2
(n)!22~sq1

(n)!2!

2~ isp2
(n)!2)q51

~k12n21!/2
~~ isp2

(n)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n)!22~ isq2

(n21)!2!
,

p51,...,k2 .

We observe that the squares of the fermionic eigenvalues of the different levels (isp2
(n))2 differ only

by a nilpotent variable. Hence, we introduce complex anticommuting variablesjp
(n) such that

ujp
(n)u25~ isp2

(n)!22~ isp2
(n21)!2. ~33!

We emphasize that this feature is highly nontrivial: the difference of the squared fermionic e
values for two neighboring levels can be expressed as the modulus squared of one anticom
variable.

The solutions of Eqs.~22!–~24! for the odd levels, i.e., fork12n11 odd, cannot directly be
obtained by adjusting the results of Ref. 5. However, as the necessary modifications are intu
clear, we do not derive the solutions for the odd levels in detail. We simply state the result

uvp
(n)u25

)q51
~k12n!/2

~~sp1
(n21)!22~sq1

(n)!2!)q51
k2 ~~sp1

(n21)!22~ isq2
(n21)!2!

~sp1
(n21)!2)q51,qÞp

~k12n!/2
~~sp1

(n21)!22~sq1
(n21)!2!)q51

k2 ~~sp1
(n21)!22~ isq2

(n)!2!
,

p51,...,~k12n!/2,

uv ~k12n!/2 11
(n) u25

)q51
~k12n!/2

~sq1
(n)!2)q51

k2 ~ isq2
(n21)!2

)q51
~k12n!/2

~sq1
(n21)!2)q51

k2 ~ isq2
(n)!2

, ~34!

uap
(n)u25~~ isp2

(n)!22~ isp2
(n21)!2!

3
)q51

~k12n!/2
~~ isp2

(n21)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n21)!2!

~ isp2
(n21)!2)q51

~k12n!/2
~~ isp2

(n21)!22~sq1
(n21)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n)!2!
,

p51,...,k2.

The solutions of Eqs.~28!–~30! for the odd levels read

uwp
(n)u25

1

2

)m51
~k12n!/2

~~sm1
(n21)!22~sp1

(n)!2!)q51
k2 ~~sp1

(n)!22~ isq2
(n)!2!

)q51,qÞp
~k12n!/2

~~sp1
(n)!22~sq1

(n)!2!)q51
k2 ~~sp1

(n)!22~ isq2
(n21)!2!

, p51,...,~k12n!/2,

~35!

ubp
(n)u25

1

2
~~ isp2

(n)!22~ isp2
(n21)!2!

)q51,qÞp
k2 ~~ isp2

(n)!22~ isq2
(n)!2!)q51

~k12n!/2
~~ isp2

(n)!22~sq1
(n21)!2!

)q51
~k12n!/2

~~ isp2
(n)!22~sq1

(n)!2!)q51,qÞp
k2 ~~ isp2

(n)!22~ isq2
(n21)!2!

,

p51,...,k2.
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From the solutions stated in Eqs.~31!–~35! one derives the corresponding formulas for the gro
SO(k1) in ordinary space by setting all anticommuting variables to zero.

A comparison with the results for the unitary supergroup U(k1/2k2) in Ref. 5 reveals an
interesting formal connection. The Cartan subalgebras u(0)(k12n11/2k2) and u(0)(k12n/2k2) of
U(k12n11/2k2) and U(k12n/2k2), respectively, are all diagonal matrices:

s(n21)5diag~s11
(n21) ,...,s(k12n11)1

(n21) ,is12
(n21) ,...,is2k22

(n21)!,

~36!
s(n)5diag~s11

(n) , ...,s(k12n)1
(n) ,is12

(n) , ...,is2k22
(n) !.

If one now formally replaces, in the results for the unitary supergroup, these matricess(n21) and
s(n) with elements of the Cartan subalgebra of uosp(0)(k12n11/2k2) and uosp(0)(k12n/2k2)
according to

s(n21)↔diag~ is11
(n21) t~3!,...,is@~k12n11!/2#1

(n21) t~3! ,2s12
(n21)t (3),...,2sk22

(n21)t (3)!,

~37!
s(n)↔diag~ is11

(n) t~3! ,...,is@~k12n21!/2#1
(n21) t~3! ,0,2s12

(n) t~3! ,...,2sk22
(n) t (3)!, k12n11 even,

the results in Eqs.~31! and~32! and in Eqs.~34! and~35! are recovered. This formal connectio
between the unitary supergroup and the unitary orthosymplectic one is natural and pla
Unfortunately, we could not make a sound mathematical reasoning out of the replaceme~37!
which would go beyond thea posterioriobservation. However, the formal connection stated ab
illustrates the deep relationship between the groups which will become even more apparen
generalized Gelfand pattern given in Sec. IV.

E. Ordinary unitary symplectic group

Thek1th step of the recursion is the last one in a superspace. We now approach the seco
of Eq. ~5!. The following steps do not involve anticommuting variables anymore. We are left
the ordinary unitary symplectic group USp(2k2) and its coset decomposition. We make use of
isomorphism18 USp(2k2)>U(k2 ;4) where U(k2 ;4) is the unitary group ink2 dimensions param-
etrized over the quaternions. Since U(k2 ;4) can be parametrized analogously to U(k2 ;2)
5U(k2), i.e., to the unitary group over the complex numbers, we simply have to adjust the r
of Refs. 1 and 4 where Gelfand–Tzetlin coordinates for the ordinary unitary group were
structed. We writeUPU(k2 ;4) asU5@U1 U2¯Uk2

#. The normalized vectorsUi have quater-
nionic entries:

Umi5Umi0t (0)1Umi1t (1)1Umi2t (2)1Umi3t (3). ~38!

The quantitiesUmik , k50,...,3, are real numbers. As basis vectors in Eq.~38!, one can use the
232 matrices defined in Eq.~2!.18 Thus, we stay with the notationt ( i ),i 50,...,3. The Cartan
subalgebra is of the forms2

(k1)
5diag (s12

(k1)t (3),...,sk22
(k1)t (3)). The Gelfand–Tzetlin eigenvalu

equation reads for the first level of the USp(2k2) recursion, i.e., for the levelk111 of the
UOSp(k1/2k2) recursion,

~1k2
2U1U1

†!is2
(k1)

~1k2
2U1U1

†!En
(1)5 isn2

(k111)En
(1). ~39!

We introduced the notationU15uk111 andEn
(1)5en

(k111) to highlight that the vectors and matrice
used here span an ordinary vector space. Equation~39! can be viewed either as an eigenval
equation for ak23k2 matrix over the quaternion field or for a 2k232k2 matrix over the field of
complex numbers. For a comprehensive account on matrices with quaternionic entries see R
The eigenvalues on the right hand side of Eq.~39! are in principle still quaternionic. We now ca
proceed by multiplying Eq.~39! on both sides with 1k2

^ t (3) from the left. This renders the matri
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on the left hand side of Eq.~39! Hermitian self-dual.19 Employing the Pauli matrices as quaternio
basis a Hermitian self-dual 2k232k2 matrix B is characterized by entries of the form

Bi j 5F zi j wi j*

2wi j zi j*
G , iÞ j , i , j 51,...,k2 , and Bii 5Fzii 0

0 zii*
G , i 51,...,k2 . ~40!

It is easy to see thatt (3)((1k2
2U1U1

†) is2
(k1)(1k2

2U1U1
†)) i j has exactly this property. In physics

Hermitian self-dual matrices describe systems with Kramers degeneracy. We now use a s
result for matrices with quaternionic entries: A Hermitian self-dual matrix hask2 scalar eigenval-
uessp2

(k111)t (0).19 In order to keep the notation simple, we also denote them bysp2
(k111) . After this

adjustment, we can proceed along the same lines which led to Eq.~12!. The equation reduces t
the well known Gelfand–Tzetlin equations1,4 of the unitary group U(k2 ;2)5U(k2),

15 (
n51

k2

uUn1u2,

~41!

05 (
m51

k2 uUm1u2

ism2
(k1)

2 isp2
(k111), p51,...,k221.

This establishes a one-to-one correspondence between the (k221) eigenvaluesisp2
(k111) and the

moduli squared of the quaternionic entries

uUm1u25 (
k50

3

Um1k
2 . ~42!

All formulas derived in Refs. 1 and 4 for the unitary group can now be adopted to the un
symplectic one.

F. Invariant measure

According to the coset decomposition~5!, the invariant measuredm(u) of u
PUOSp(k1/2k2) is the product of all measures on the cosets, i.e., on the spheres describ
them. Of course, these measures are conditioned, because the orthogonality of the vectoun in
u5@u1 u2¯uk112k2

# has to be respected. As we will see, the Gelfand–Tzetlin coordinates
care of this condition in a most convenient way. We evaluate the squared invariant length e
dun

†dun . For (k12n11) even, it reads,

dun8
†dun8 5 dun

†dun

5 (
m51

~k12n11!/2
1

4uvm
(n)u2

~duvm
(n)u2!21 (

m51

~k12n11!/2

uvm
(n)u2~dqm

(n)!21 (
m851

k2

d~am8
(n)

!* dam8
(n),

~43!

where we use the parametrization~11!. The first equality is due to the basis independence of
invariant length element. It is a highly welcomed feature of the Gelfand–Tzetlin coordinate
the unitary group in ordinary space1,4 and in superspace5 that the metric remains diagonal. Th
holds also in the present problem. Extending the corresponding calculation of Ref. 5, we fi
the even levels, i.e., fork12n11 even,
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dm~un!52k2 )
p51

~k12n21!/2

sp1
(n)

B@~k12n21!/2# k2
~~s(n)!2!

B@~k12n11!/2# k2
~~s(n21)!2!

d@s1
(n)#d@q (n)#d@j (n)#,

n<k1, k12n11 even, ~44!

and for the odd levels, i.e., fork12n11 odd, we have

dm~un!52k2
)p51

k2 isp2
(n)isp2

(n21)

)p51
~k12n!/2sp1

(n21)

B@~k12n!/2# k2
~~s(n)!2!

B@~k12n!/2# k2
~~s(n21)!2!

d@s1
(n)#d@q (n)#d@j (n)#,

n<k1, k12n11 odd. ~45!

Here, we introduced the function

Bnm~s!5
)p.q

n ~sp12sq1!)p.q
m ~ isp22 isq2!

)p,q~sp12 isq2!
5

Dn~s1!Dm~ is2!

)p
n)q

m~sp12 isq2!
. ~46!

It contains the ordinary Vandermonde determinantsDn(s1) andDm( is2) and can be viewed as th
supersymmetric generalization of the Vandermonde determinant.5,20,21Furthermore, we defined

d@s1
(n)#5 )

p51

~k12n11!/2

dsp1
(n), d@q (n)#5 )

p51

~k12n11!/2

dqp
(n), and d@j (n)#5 )

p51

k2

djp
(n)* djp

(n).

~47!

Remarkably, Eqs.~44! and~45! imply that the measures on all cosets factorize. Collecting all th
measures up to thek1th step, we obtain the invariant measure ofuPUOSp(k1/2k2) in the form

dm~u!52k1k2

Dk2
~~ is2

(k1)
!2!

Bk1/2 k2
~s2! )

i 51

k1

)
p51

k2

isp2
( i )d@s1

( i )#d@q ( i )#d@j ( i )#dm~U !, ~48!

wheredm(U) is the invariant measure onUPUSp(2k2). We mention in passing that the measu
of the orthogonal group in ordinary space can be obtained by setting all anticommuting var
to zero in the invariant length~43!, and skipping all couplings between the bosonic and fermio
eigenvalues in Eq.~48!.

The measure~48! on UOSp(k1/2k2) has an important feature: Most conveniently, it is, ap
from dm(U), flat. This follows directly from the factorization of the measures~44! and~45! on the
coset spaces. This is also true for the Gelfand–Tzetlin coordinates of the unitary gro
ordinary1,4 and in superspace5 as well as for the ones of the orthogonal group in ordinary sp
However, this important feature does not continue beyond thek1th level. We will see that now in
working out the measuredm(U) for UPUSp(2k2). We writeu5@U1 U2¯Uk2

# and decompose

the entryUnm as Unm5uUnmuÛnm , with Ûnm a unimodular quaternion. We introduce a para
etrization of the unimodular quaternion,

Ûnm5Fcoscn
(m) exp~2 ign1

(m)! 2sincn
(m) exp~ ign2

(m)!

sincn
(m) exp~2 ign2

(m)! coscn
(m) exp~ ign1

(m)!
G , ~49!

which allows us to write the invariant length element squared as

Tr dUm
† dUm5 (

n51

k2 S 1

4uUnmu2 ~duUnmu2!21(
i 51

2

uUnmu2~dgni
(m)!21uUnmu2~d coscn

(m)!2D ,

m51,...,k2. ~50!
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Employing and properly adjusting the results of Refs. 1 and 4, one finds the measure of the
in the mth level

dm~Um!5
Dk22m~ is2

(k11m)
!

2k22mDk22m11
3 ~ is2

(k11m21)
!
)
p,q

~ isp2
(k11m21)

2 isq2
(k11m)

!d@s2
(k11m)

#d@cosc (m)#d@g (m)#, ~51!

with the definitions

d@s2
(k11m)

#5 )
p51

k22m11

dsp2
(k11m), d@cosc (m)#5 )

p51

k22m11

d coscp
(m), and

d@g (m)#5 )
p51

k22m11

dgp1
(m)dgp2

(m). ~52!

One clearly sees that the factorization property does not hold for the unitary symplectic g
This is a peculiarity of the Gelfand–Tzetlin parametrization for the unitary symplectic gr
Collecting all levels we arrive at the invariant measure onUPUSp(2k2),

dm~U !5
1

2k2(k221)/2Dk2

3 ~ is2
(k1)

!
)
m51

k2

)
n51

k22m11

)
n851

k22m isn2
(k11m21)

2 is
n82

(k11m)

Dk22m
2 ~ is2

(k11m)
!

3d@s2
k11m

#d@cosc (m)#d@g (m)#, ~53!

which combines with Eq.~48! to the full measure on UOSp(k1/2k2).

G. Matrix elements

With the results of the previous sections, we can express an arbitrary columnup of a matrix
u5@u1 u2¯uk112k2

# in the unitary orthosymplectic supergroup UOSp(k1/2k2) in terms of our
angular Gelfand–Tzetlin coordinates. In the rotated primed basis~10!, we have

up85b̂8(1)Tb̂8(2)T
¯b̂8(n21)Tup8

(n21), ~54!

whereb̂(n) and the scalar products are defined in Eqs.~17!–~19! and in Eqs.~25! and~27!. So far,
we have constructed a unitary representation of UOSp(k1/2k2). We also wish to obtain an ortho
symplectic representation. To this end, we have to assure that the vectorsuj , j <k1 , become real,
when the matrixu85@u18 u28¯uk11k2

8 # is rotated back into the unprimed basis. We only discuss

casek12n11 even; the odd case is treated analogously. We recall that the vectorb(n) entering in
the projection matrix in Eq.~27! has been determined only up to a phase. There is an ambigu
choosing the phase ofb(n). The Gelfand–Tzetlin coordinates parametrize the vectorun only up to
some phases associated with the action of the Cartan subgroup of UOSp((k12n11)/2k2). Thus,
the projection matrixb̂(n) is as well invariant under the action of this Cartan subgroup. We m
multiply b̂(n) with an arbitrary element of the Cartan subgroup without changing its projec
properties. We setb2p

(n)5 ib2p21
(n) , p<(k12n21)/2, andbk12n

(n) 5 i uw(k12n11)/2u in the commuting

sector andbk12n1112p
(n) 52bk12n12p

(n)* , p51,...,k2 , in the anticommuting one. The remainin

phases may be set to zero. With this choice of phases and after undoing the basis rotat
columns as well as the rows ofb̂(n)T fulfill the reality condition~6!. The vectorsun

(n21) become
real, too. An explicit form of the real matricesb̂(n) is given in Appendix B.
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III. GENERALIZED GELFAND PATTERN

The unitary Lie group U(k;b) over the real (b51) and complex (b52) numbers and ove
the quaternions (b54) is isomorphic to the orthogonal, unitary and unitary symplectic gro
SO(k)>U(k;1), U(k)>U(k;2), and USp(2k)>U(k;4). The Gelfand–Tzetlin representatio
scheme are obtained from the following procedure.3 An irreducible representation is defined by a
ordered set of integers or half integers called highest weights. This irreducible representati
be decomposed in irreducible representations of U(k21;b). In the decomposition each irreduc
ible representation of U(k21;b) occurs either exactly once or never. Only those irreduc
representations appear whose highest weights satisfy certain betweenness conditions depe
the group under consideration. Going through all steps of the group chain or, equivalent
coset decomposition,

U~k;b!5
U~k;b!

U~k21;b!
^

U~k21;b!

U~k22;b!
^¯^

U~2;b!

U~1;b!
^ U~1;b!, ~55!

one has labeled all states in the irreducible representation of U(k;b) by a set of integers or hal
integers, arranged in a Gelfand pattern.

The analog for the coordinates is as follows. We consider the adjoint group actioOk

5U†xU on an elementx of the Cartan subalgebra u(0)(k;b) with UPU(k;b). Here, in this one
instance, we use the symbolx for an element in the algebra, because we want to emphasize
the present discussion so far applies to ordinary groups and because we want to avoid co
with the discussion to follow on the supergroups. This subsetOk5U†xU of the complete algebra
is calledorbit. We can map the U(k;b) orbit labeled by an ordered set of eigenvaluesxi.xi 11

onto many different U(k21;b) orbits by projectingOk onto ak21 dimensional subspace. Bu
only those U(k21;b) orbits Ok21 can be reached, whose eigenvalues interlace two neighbo
eigenvalues ofOk . This is the so called minimax principle for self-adjoint operators.22 The
Gelfand–Tzetlin method uses the eigenvalues of the projected matrix as coordinates of th
U(k;b)/U(k21;b). However, x is a fixed point of the action of the Cartan subgro
exp(ix0), x0Pu(0)(k;b). Hence, the coset U(k;b)/U(k21;b) is parametrized by the eigenvalue
of Ok21 only up to equivalence classes with respect to the action of the Cartan subgro
U(k;b), parametrized byx0 . In this way the set of variables describing the coset is split into
parts: One part consists of the eigenvalues ofOk21 , the other one of the independent elements
x0 . Guillemin and Sternberg6 introduced the concept of complete integrability by interpreting
entries ofx as action and the elements ofx0 as angle coordinates of a generalized mechan
system. We emphasize that this usage of the term angles is different from the one intro
previously. We distinguish between radial and angular Gelfand–Tzetlin coordinates. How
both Gelfand–Tzetlin coordinates, the radial and the angular ones, allow for a further distin
between action and angle degrees of freedom, although the interpretation is slightly differen
two cases. The Guillemin–Sternberg theory applies only to the groups U(k;b) for b51,2 but not
to the unitary symplectic group. This can be considered as the reason for the relatively c
cated expression of the measure for USp(2k)>U(k;4).

The generalized Gelfand pattern for UOSp(k1/2k2) can be extracted from the positive de
niteness of the moduli squared of the bosonic matrix elementsuv i

(n)u2. If one restricts oneself to
the subgroup, which consists of the direct product SO(k1) ^ USp(2k2), the pattern of the SO(k1)
and USp(2k2) are rederived which are well known from representation theory.3 We state them
here in a different form which emphasizes the relation to the pattern of the unitary groupk)
which is the famous triangle23
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x1
(0) x2

(0)
¯ xk

(0) xk11
(0)

x1
(1) x2

(1)
¯ xk22

(1) xk
(1)

] ~56!

x1
(k21) x2

(k21)

x1
(k)

with the betweenness conditions

xi 11
( j 21)<xi

( j )<xi
( j 21). ~57!

The first row in the pattern~56! labels the orbit which was used as the starting point for
construction of the parametrization. We underline them to distinguish them from the coord
of the group. From this pattern the pattern of the orthogonal group can be derived by the
tution rule ~37!, i.e., by assigning to the Cartan subalgebra u(0)(k) of the unitary group U(k) the
corresponding one so(0)(k) of the orthogonal group SO(k). We restrict ourselves to the case
evenk. The pattern~56! acquires the form

1x1
(0) 1x2

(0)
¯ 1xk11

(0) 2xk11
(0)

¯ 2x2
(0) 2x1

(0)

x1
(1) x2

(1)
¯ xk

(1) 0 2xk
(1)

¯ 2x2
(1) 2x1

(1)

]

x1
(2k22) x2

(2k22) 2x2
(2k22) 2x1

(2k22) ~58!

x1
(2k21) 0 2x1

(2k21)

x1
(2k) 2x1

(2k)

0

with the betweenness conditions

xi 11
( j 21)<xi

( j )<xi
( j 21) ,

~59!
uxj

(2k22 j 12)u<xj
(2k22 j 11).

We notice the symmetry along the middle axis. The variable space of the SO(2k12) is already
covered by the left half of the triangle. The other half is shown to indicate its relation to the un
case~56!. This symmetry in the pattern is due to the presence of an anti-unitary invariance~see the
discussion in Ref. 24!. In most physics applications, this is time reversal invariance: A sys
which is not invariant under time reversal is modeled by Hermitian operators. One can go to
reversal invariant system by replacing these operators with real symmetric ones. Restrict
pattern ~58! to the left half of the triangle, the patterns appear in their traditional form.2 By
construction, the pattern of the unitary symplectic group USp(2k) coincides with the one of the
unitary group U(k); this is due to the fact that only the action variables are used in the pattern
unitary group has only one, but the unitary symplectic group has three angle variables comin
every action.
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The two patterns of the orthogonal and the unitary symplectic groups together represe
subgroup SO(k1) ^ USp(2k2) of UOSp(k1/2k2). What represents the cose
UOSp(k1/2k2)/(SO(k1) ^ USp(2k2))? We observe that the lengths squaredujp

(n)u2 of the anticom-
muting variablesjp

(n) introduced in Eq.~33! have a distinguished meaning. We may identify the
lengths of the anticommuting variables as the analogs of the actions stemming from the co
ing degrees of freedom. We can organize the lengths squaredujp

(n)u2 in a rectangular pattern. Thus
the generalized Gelfand pattern for the unitary orthosymplectic supergroup UOSp(k1/2k2) are
obtained,

1s11
(0) 1s21

(0)
¯ 1sk111

(0) 2sk111
(0)

¯ 2s21
(0) 2s11

(0)

s11
(1) s21

(1)
¯ sk1

(1) 0 2sk1
(1)

¯ 2s21
(1) 2s11

(1)

]

s11
(2k22) s21

(2k22) 2s21
(2k22) 2s11

(2k22)

s11
(2k21) 0 2s11

(2k21)

s11
(2k) 2s11

(2k)

0

uj1
(1)u2 uj2

(1)u2
¯ ujk221

(1) u2 ujk2

(1)u2

~60!
uj1

(2)u2 uj2
(2)u2

¯ ujk221
(2) u2 ujk2

(2)u2

]

uj1
(k1)u2 uj2

(k1)u2 ¯ ujk221
(k1) u2 ujk2

(k1)u2

s12
(k1) s22

(k1)
¯ s(k221)2

(k1) sk22
(k1)

s12
(k111) s22

(k111)
¯ s(k222)2

(k111) s(k221)2
(k111)

]

s12
(k11k221) s22

(k11k221)

s1
(k11k2)

with the betweenness conditions

s( i 11)1
(m21)<si1

(m)<si1
(m21) ,

s( i 11)2
(k11 l )

<si2
(k11 l 11)

<si2
(k11 l ) , ~61!

2sj 1
(k122 j 21)

<sj 1
(k122 j )

<sj 1
(k122 j 21) ,

where 1< j <k1/221, 1<m<k122, and 0< l<k221. It was shown in Ref. 25 that the unitar
supergroup U(1/1) can be represented by supersymmetric generalizations of Wigner fun
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This representation of the supergroup U~1/1! is labeled by the length of an anticommuting va
able. Therefore, we want to interpret the generalized Gelfand pattern~60! as labeling another kind
of representation which involves anticommuting variables as labels. The two triangles lab
basis of an irreducible representation of the product SO(k1) ^ USp(2k2), whereas the remaining
coset UOSp(k1/2k2)/(SO(k1) ^ USp(2k2)) is represented by the rectangular block of the leng
squared of anticommuting variables. This extends the corresponding considerations for the
supergroup in Ref. 5. It is challenging to find a further interpretation of these new represent
of supergroups, possibly by generalizing the Guillemin–Sternberg theory.

IV. SUMMARY AND CONCLUSIONS

We constructed Gelfand–Tzetlin coordinates for the unitary orthosymplectic superg
UOSp(k1/2k2). To this end, we further extended the construction for the unitary superg
U(k1 /k2). We obtainedangular Gelfand–Tzetlin coordinates, which always live in the space
the unitary orthosymplectic supergroup. They ought to be distinguished fromradial Gelfand–
Tzetlin which map group degrees of freedom onto those of another space. We also calcula
invariant Haar measure on UOSp(k1/2k2) and obtained an expression that is fairly simple due
the recursive structure of the coordinates. As the orthogonal and the unitary symplectic grou
subgroups of the unitary orthosymplectic supergroup, our construction also includesangular
Gelfand–Tzetlin coordinates on these ordinary groups.

The Gelfand–Tzetlin coordinates can be arranged in a generalized Gelfand pattern. A re
able feature of this pattern is the appearance of moduli squared of anticommuting variable
argued that an interpretation of these anticommuting variables as eigenvalues of a set of in
operators is likely to exist. It is an interesting task to clarify the roˆle of these anticommuting
variables in the representation theory for supergroups.

So far, Gelfand–Tzetlin coordinates were only constructed for compact groups. But there
apparent obstacle to construct them also for noncompact groups. It would be interesting to
such a construction is indeed possible and how the noncompactness of some variables is r
in the corresponding Gelfand pattern, in ordinary and in superspace.
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APPENDIX A: SOLUTION OF EQS. „28…–„30…

We consider Eq.~28! and insert the solutions foruvm
(n)u2 and uam

(n)u2 given in ~31!. The right
hand side of Eq.~28! can then be expanded in a sum of monomials in the nilpotent Gelfa
Tzetlin variablesujq

(n)u2, q51,...,k2 . Since each of theujq
(n)u2 only appears linearly, the rank o

the monomials cannot exceedk2 . Thus, we can rewrite Eq.~28! in the form

1

uwp
(n)u2 5(

r 50

k2

M (r ) , ~A1!

where M (r ) is the nilpotent part of 1/uwp
(n)u2, consisting of monomials inujq

(n)u2 with rank r .
Explicitly we have
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M (r )5 (
j 1< j 2<•••< j r

k2

(
m

~k12n11!/2 )q51,qÞp
~k12n21!/2

~~sm1
(n21)!22~sq1

(n)!2!

)q51,qÞm
~k12n11!/2

~~sm1
(n21)!22~sq1

(n21)!2!

~sm1
(n21)!21~sp1

(n)!2

~sm1
(n21)!22~sp1

(n)!2

3
) i 51

r uj j i
u2

) i 51
r ~~sm1

(n21)!22~ isj i2
(n21)!2!

1 (
j 2<•••< j r

j 1Þ j i

k2 )q51,qÞp
~k12n21!/2

~~ isj 12
(n21)!22~sq1

(n)!2!

)q51
~k12n11!/2

~~ isj 12
(n21)!22~sq1

(n21)!2!

~ isj 12
(n21)!21~sp1

(n)!2

~ isj 12
(n21)!22~sp1

(n)!2

3
) i 51

r uj j i
u2

) i 52
r ~~ isj 12

(n21)!22~ isj i2
(n21)!2!

, ~A2!

for r 51,...,k2 . The sum overm is the Laplace expansion of a determinant. For its evaluation
use the formula

1

) i 51
r ~~sm1

(n21)!22~ isi2
(n21)!2!

5(
i 51

r
1

~sm1
(n21)!22~ isi2

(n21)!2

1

) i 8Þ i
r

~~ isi2
(n21)!22~ isi 82

(n21)
!2!

,

~A3!

which is well known from complex analysis. After symmetrizing the second sum in the ind
j i ,i 51,...,r , we arrive at the following expression forM (r ):

M (r )5 (
j 1< j 2<•••< j r

k2

(
i 51

r
1

) i 8Þ i
r

~~ isj i2
(n21)!22~ isj i 82

(n21)!2!

3 (
m

~k12n11!/2 )q51,qÞp
~k12n21!/2

~~sm1
(n21)!22~sq1

(n)!2!

)q51,qÞm
~k12n11!/2

~~sm1
(n21)!22~sq1

(n21)!2! F ~sm1
(n21)!21~sp1

(n)!2

~~sp1
(n)!22~ isj i2

(n21)!2!~~sm1
(n21)!22~sp1

(n)!2!

2
~sm1

(n21)!21~sp1
(n)!2

~~sp1
(n)!22~ isj i2

(n21)!2!~~sm1
(n21)!22~ isj i2

(n21)!2!G)i 51

r

uj j i
u2

1 (
j 1< j 2<•••< j r

k2

(
i 51

r
1

) i 8Þ i
r

~~ isj i2
(n21)!22~ isj i 82

(n21)!2!

3
)q51,qÞp

~k12n21!/2
~~ isj 12

(n21)!22~sq1
(n)!2!

)q51
~k12n11!/2

~~ isj 12
(n21)!22~sq1

(n21)!2!

~ isj 12
(n21)!21~sp1

(n)!2

~ isj 12
(n21)!22~sp1

(n)!2 )
i 51

r

uj j i
u2. ~A4!

Now the determinant mentioned above can be evaluated by using the translational invaria
the differences. The second term in the squared bracket cancels completely; we are left w

M (r )5 (
j 1< j 2<•••< j r

k2

(
i 51

r
1

) i 8Þ i
r

~~ isj i2
(n21)!22~ isj i 82

(n21)!2!

3
2~sp1

(n)!2)q51,qÞp
~k12n21!/2

~~sq1
(n)!22~sp1

(n)!2!

~~sp1
(n)!22~ isj i2

(n21)!2!)m51
~k12n11!/2

~~sm1
(n21)!22~sp1

(n)!2!
)
i 51

r

uj j i
u2. ~A5!

Using identity~A3! once more and summing overr gives
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1

uwp
(n)u2

5
22~sp1

(n)!2)q51,qÞp
~k12n21!/2

~~sp1
(n)!22~sq1

(n)!2!

)m51
~k12n11!/2

~~sm1
(n21)!22~sp1

(n)!2!
S (

r 50

k2

(
j 1< j 2<•••t< j r

k2

)
i 51

r uj j i
u2

~sp1
(n)!22~ isj i2

(n21)!2D .

~A6!

The double sum in Eq.~A6! simply amounts to

)
q51

k2 S 11
ujq

(n)u2

~sp1
(n)!22~ isq2

(n21)!2D . ~A7!

Employing the definition~33! of ujq
(n)u2, we arrive at the final result foruwp

(n)u2 in Eq. ~32!.
Equation~29! and the corresponding equation for the odd levels are evaluated similarly, yie
the results stated in Sec. II D. Equation~30! has to be treated differently due to the Grassma
singularities, occurring on the left hand side. Inserting the expressions Eq.~31! into Eq. ~30! we
have

15ubp
(n)u2S (

m

~k12n11!/2
~sm1

(n21)!21~ isp2
(n)!2

~~sm1
(n21)!22~ isp2

(n)!2!2 uvm
(n)u21 (

m851
m8Þp

k2 ~ ism82
(n21)

!21~ isp2
(n)!2

~~ ism82
(n21)

!22~ isp2
(n)!2!2 uam8

(n)u2

1
)q51

~k12n21!/2
~~ isp2

(n21)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n21)!2!

)q51,qÞp
k2 ~~ isp2

(n21)!22~ isq2
(n)!2!)q51

~k12n11!/2
~~ isp2

(n21)!22~sq1
(n21)!2!

3
~ isp2

(n21)!21~ isp2
(n)!2

ujp
(n)u2 D . ~A8!

To cancel the singularity,ubp
(n)u2 has to be expanded in terms ofcp

(n)ujp
(n)u2. The expansion

coefficientcp
(n) now contains a nonzero part and its inverse is therefore well defined. Dividing

sides bycp
(n) and ordering the right hand side by powers ofujp

(n)u2, one finds

1

cp
(n) 52~ isp2

(n21)!2
)q51

~k12n21!/2
~~ isp2

(n21)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n21)!2!)

)q51,qÞp
k2 ~~ isp2

(n21)!22~ isq2
(n)!2!)q51

~k12n11!/2
~~ isp2

(n21)!22~sq1
(n21)!2!

1S (
m

~k12n11!/2
~sm1

(n21)!21~ isp2
(n)!2

~~sm1
(n21)!22~ isp2

(n)!2!2u vm
(n)u21 (

m851
m8Þp

k2 ~ ism82
(n21)

!21~ isp2
(n)!2

~~ ism82
(n21)

!22~ isp2
(n)!2!2 uam8

(n)u2

2
)q51

~k12n21!/2
~~ isp2

(n21)!22~sq1
(n)!2!)q51,qÞp

k2 ~~ isp2
(n21)!22~ isq2

(n21)!2!)

)q51,qÞp
k2 ~~ isp2

(n21)!22~ isq2
(n)!2!)q51

~k12n11!/2
~~ isp2

(n21)!22~sq1
(n21)!2! D ujp

(n)u2. ~A9!

Sincecp
(n) and thus 1/cp

(n) are of order zero inujp
(n)u2, the whole term in round brackets can b

neglected. It can be shown by straightforward manipulations that this term leads just to a s

( isp2
(n21))2→( isp2

(n))2 in the resulting expression forcp
(n) . This does not affectubp

(n)u2. Hence, we
immediately arrive at the result forubp

(n)u2 given in Eq.~32!. The equations for the odd levels a
treated accordingly.

APPENDIX B: REAL FORM OF THE PROJECTION MATRICES b̂ „n …

We restrict ourselves to the casen<k1 , (k12n11) even. The odd case can be treat
accordingly. The rectangular (k12n111k2)3(k12n1k2) matrix b̂(n)T can schematically be
written as
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b̂(n)5F b̃11
(n) b̃1

(n) b̃12
(n)

b̃21
(n) b̃2

(n) b̃22
(n)G . ~B1!

Here,b̃11
(n) is a (k12n11)/23(k12n21)/2 matrix with entries

~ b̃11
(n)! i j 5&

uv i
(n)uuwj

(n)u
~si1

(n21)!22~sj 1
(n)!2 F sj 1

(n) cosq i
(n) sj 1

(n21) sinq i
(n)

2sj 1
(n) sinq i

(n) sj 1
(n21) cosq i

(n)G . ~B2!

The matrixb̃12
(n) has dimension (k12n11)/23k2 and entries

~ b̃12
(n)! i j 5

uv i
(n)u

~si1
(n21)!22~ isj 2

(n)!2

3F b j
(n)* ~ isj 2

(n) cosq i
(n)1sj 1

(n21)i sinq i
(n)! 2 ib j

(n)* ~si1
(n21) cosq i

(n)1 isj 2
(n)i sinq i

(n)!

2b j
(n)~ isj 2

(n) cosq i
(n)2sj 1

(n21)i sinq i
(n)! 2 ib j

(n)~si1
(n21) cosq i

(n)2 isj 2
(n)i sinq i

(n)!
G .

~B3!

Moreover,b̃21
(n) is a k23(k12n11)/2 matrix with entries

~ b̃21
(n)! i j 5

uwj
(n)u

~ isi2
(n21)!22~sj 1

(n)!2 F a i
(n)sj 1

(n) ia i
(n)isi2

(n21)

a i
(n)* sj 1

(n) 2 ia i
(n)* isi2

(n21)G , ~B4!

and b̃22
(n) is a k23(k12n11)/2 matrix with entries

~ b̃22
(n)! i j 5&F a i

(n)b j
(n)* /~ isi2

(n21)2 isj 2
(n)! a i

(n)b j
(n)/~ isi2

(n21)1 isj 2
(n)!

2a i
(n)* b j

(n)* /~ isi2
(n21)1 isj 2

(n)! 2a i
(n)* b j

(n)/~ isi2
(n21)2 isj 2

(n)!
G . ~B5!

Finally, the entries ofb̃1
(n) and b̃2

(n) are given by

~ b̃1
(n)! i5&

uv i
(n)uuw~k12n11!/2

(n) u

si1
(n21) F sinq i

(n)

cosq i
(n)G , i 51,...,

k12n11

2
,

~B6!

~ b̃2
(n)! i5

1

&

uw~k12n11!/2
(n) u

si1
(n21) F ia i

(n)

2 ia i
(n)* G , i 51,...,k2 .

We notice that all elements ofb̂(n) are real.
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On the construction of self-polar and self-polar Hilbertian
norms on Minkowski space of dimension 2

Gerald Hofmann
Fritz-Siemon-Str. 7, D-04347 Leipzig, Germany

~Received 12 February 2003; accepted 15 April 2003!

Considering the real Minkowski spaceM 2 endowed with the indefinite inner prod-
uct (aW ,bW )5xaxb2yayb , aW 5(xa ,ya), bW 5(xb ,yb)PM 2, we give a general con-
struction for the boundary]Up5$aW PM 2; p(aW )51% of the unit ballUp of some
self-polar normp on M 2. We show further that every self-polar normp on M 2 is
obtained by our construction. A detailed investigation of the possible choices of the
ingredients of our construction~two pointsPj , j 51,2, and a convex arc connect-
ing P1 andP2) yields a complete classification of all self-polar norms onM 2. Our
results are finally applied to the special case of Hilbertian self-polar
norms. © 2003 American Institute of Physics.@DOI: 10.1063/1.1597421#

I. INTRODUCTION AND SOME PRELIMINARIES

For a pre-Hilbert~unitary! spaceE,@ .,.# ~i.e., the inner product@.,.# is positive definite!, a
canonical norm

p~x!5A@x,x# , ~1!

xPE, exists onE. Now it is of interest to find the corresponding substitutes when the pre-Hi
space is replaced by some nondegenerate inner product spaceE,(.,.), @i.e., E is a real or complex
vector space equipped with a bilinear symmetric respective sesquilinear Hermitian form~.,.! which
is nondegenerate, see Refs. 4 and 3#.

If the inner product~.,.! is indefinite, then~1! does not define a norm, and thus, no canoni
norm is available. As explained in Refs. 8 and 9, the role of the canonical norm~1! is now played
by Hilbertian self-polar normsq satisfying

q~x!5 sup
0ÞyPE

u~x,y!u
q~y!

, ~2!

and furthermore, given by

q~x!5A@x,x# , ~3!

xPE, in terms of a positive definite inner product@.,.# on E3E.
In generalization of the positive definite case, where the canonical norm is uniquely de

the following is possible in the general case of an inner product space:

~i! there is no self-polar norm onE,(.,.), ~cf. Ref. 4, Example III.3.2!.
~ii ! there is exactly one self-polar norm onE,(.,.), ~cf. Ref. 10, and references cited there!.
~iii ! there is a whole family of self-polar norms defining nonequivalent topologies onE, ~such

a family of self-polar norms was explicitely constructed by Araki in Ref. 1!.

If ~iii ! applies to some inner product spaceE,(.,.), it is of interest to have a complet
classification of all self-polar norms as well as Hilbertian self-polar norms onE,(.,.). Along these
lines, the present paper is aimed at such a classification in the easiest instance of an indefin
42870022-2488/2003/44(9)/4287/21/$20.00 © 2003 American Institute of Physics
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product space, namely, the real Minkowski spaceM 2 of dimension 2. Let us mention that
special example of such a self-polar norm onM 2, which is different from the well-known
Euclidean norm, is given in Ref. 6, Example 2.9. Furthermore, the self-polar and Hilbe
self-polar norms onM 2 are also of some interest, since they serve as building blocks for
construction of self-polar and Hilbertian self-polar norms, respectively, on inner product spa
higher dimensions, including the case of infinitely many dimensions, where those norms
nonequivalent locally convex topologies~see Ref. 10, Sec. 6.2!.

In order to obtain such a classification, we give a general construction which explicitly y
all self-polar and Hilbertian self-polar norms, respectively, onM 2. It turns out that in contrast to
the positive definite case, where exactly one Hilbertian self-polar norm exists, onM 2 there are as
well nondenumerably many self-polar as nondenumerably many Hilbertian self-polar norm

Remembering that on the one hand the unit ballUp5$aPM 2; p(a)<1% of some normp is
a symmetric, convex, compact set containing the originO as an inner point, and on the other han
p is the gauge ofUp , we have a one-to-one correspondence between the normsp and the convex
curves]Up5$aPM 2; p(a)51% ~see Lemma 4.1 for more details!. The idea of our construction
is to construct those curves]Up for which the normp is self-polar and Hilbertian self-polar
respectively.

In all what follows let a connected piece of the boundary of some convex, compac
containingO as an inner point be denoted asconvex arc. Roughly speaking, we show that eve
convex arck, which connects the two halfs of hyperbolae

h1
15$aW 5~xa ,ya!PM 2; xa

22ya
2521,ya.0% ,

h2
15$aW 5~xa ,ya!PM 2; xa

22ya
2521,xa.0%

from some pointP1Ph1
1 to a point P2Ph2

1 and lies completely between them~see Fig. 1!,
extends to a convex curve]Up related to some self-polar normp ~see Theorem 4.11!. On the other
hand, we show that every convex curve]Uq related to a given self-polar normq on M 2 is
obtained by that construction~see Theorem 4.13!.

Let us mention that the well-known Aronszajn–Schatten construction of self-polar n
~Ref. 2 and Ref. 4, Chap. IV.4! is completely different from our construction, because our c
struction completes some convex arck to the boundary of the unit ball of a self-polar norm, whi

FIG. 1. Steps I and II of the construction.
                                                                                                                



ction
of

y 3.3.
s are

ied to
rtian
yield
eas of

4289J. Math. Phys., Vol. 44, No. 9, September 2003 Self-polar norms on Minkowski space

                    
the Aronszajn–Schatten construction starts with some normq satisfyingq8<q (q8 denotes the
polar norm ofq) and then constructs a self-polar normq` by an iteration process.

The pattern of the present paper is as follows. While the three steps I, II, III of the constru
of ]Up of some self-polar normp is described in Sec. II, Sec. III is aimed at the determination
this construction. More precisely, the possible choices ofPjPhj

1 , j 51,2, are characterized in
Lemma 3.1, and then all the possible constructions of Sec. II are parametrized in Corollar
Our main results are contained in Sec. IV. While Theorem 4.11 shows that self-polar norm
obtained by our construction, Theorem 4.13 proves that every self-polar norm onM 2 is given by
our construction. Using those results, a complete classification of all self-polar norms onM 2 is
contained in Corollary 4.14. In Sec. V, the above results on self-polar norms are appl
the interesting case of Hilbertian self-polar norms. Along these lines all self-polar Hilbe
norms are explicitely given in Proposition 5.2, and those constructions of Sec. II, which
Hilbertian self-polar norms, are characterized in Corollary 5.6. Let us mention that some id
the present paper are taken from Ref. 11.

II. THE CONSTRUCTION

In the present section the construction of the boundary]Up of the unit ball

Up5$aW PM 2;p~aW !<1%

of some self-polar normp on the real Minkowski spaceM 2 is given. Using Cartesian
(x,y)-coordinates, remember that the inner product onM 2 is given by

~aW ,bW !5xaxb2yayb ,

whereaW 5(xa ,yb),bW 5(xb ,yb)PM 2, xa ,ya ,xb ,ybPR.
Let us consider the following four halfs of hyperbolae:

h1
15$aW PM 2;xa

22ya
2521,ya.0%, ~4!

h1
25$aW PM 2;xa

22ya
2521,ya,0%, ~5!

h2
15$aW PM 2;xa

22ya
251,xa.0%, ~6!

h2
25$aW PM 2;xa

22ya
251,xa,0%. ~7!

The construction proceeds through the following steps I–III.
Step I:

~1! Choosing an arbitraryx1PR, consider the point

P15~x1,A11x1
2!Ph1

1 .

~2! Consider the tangentt1 on h1
1 at P1 given by

t1 : y5A11x1
21

x1

A11x1
2 ~x2x1! . ~8!

~3! Consider the intersection pointS5t1ùh2
1 with coordinatesxS ,yS , which are explicitly given

by

xS5x11& A11x1
2 ,

~9!
yS5& x11A11x1

2 .
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Step II:

~1! Choose a pointP2Ph2
1 with coordinatesP25(x2 ,y2) such that

~i! y2<& x11A11x1
2 , ~10!

~ii ! x1<& y21A11y2
2 ~11!

are satisfied.
~2! Choose a convex arck with the properties

~i! k connects P2 with P1 ,

~ ii ! k does not contain any points ofh1
1 orh2

1 other thanP1andP2 .
~12!

~See Fig. 1.!
Remark 2.1:~a! Using polar coordinates, the above conditions~10!, ~11! upon P2 are more

transparently described in~30!. Especially, it will be shown in Remark 3.2~b! that P2 satisfying
~10!, ~11! always exists.

~b! The geometric interpretation of~10!, ~11! is the following. Considering the tangentt2 on
h2

1 at P2 , given by

t2 :
x2x2

y2y2
5

y2

A11y2
2

, ~13!

and the intersection pointP35t1ùt2 , we get that~10!, ~11! are equivalent to the property that th
triangleD(P1P2P3) is either positively orientated or it collapses to the straight lineP1P2.

@Proof: Consider the intersection pointT5t2ùh1
1 with coordinates

xT5& y2 1A11y2
2 ,

~14!
yT5& A11y2

21y2 .

Notice that the triangleD(P1P2P3) is positively orientated or it collapses to the straight lineP1P2

if and only if

y2<yS , ~15!

x1<xT , ~16!

are satisfied. Inserting~9! and ~14! in ~15! and ~16!, respectively, the proof is completed.# h

~c! Considering the triangleD(P1P2P3) given above, we get that a convex arck connecting
P2 with P1 satisfies~12! if and only if k is inside or at the boundary ofD(P1P2P3). Hence, such
an arck always exists by Remark 2.1~b!.

Step III: Introducing polar coordinatesr 5Ax21y2, w5arctan (y/x) on M 2, let the convex
arc k be given by the function

w→r k~w! with w2<w<w1 ,

wherew j5arctan (yj /xj) denote the polar angles ofPj , j 51,2. Then,

r ~w!55
r k~w! for w2<w<w1 ,

S sup
w2<c<w1

r k~c!cos~c1w2p! D 21 for w1,w<w21p,

r k~w1p! for w21p,w<w11p,

S sup
w <c<w

r k~c!cos~c1w! D 21 for w11p,w,w212p

~17!
2 1
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describes the boundary]Up of the unit ballUp of some self-polar normp on M 2.
While the proof thatw→r (w) given in ~17! describes the boundary of the unit ball of som

norm p @which especially implies thatw→r (w) is continuous atw1 ,w2 ,w11p,w21p] will be
given in Lemmas 4.1a and 4.2, the self-polarity ofp will be shown in Theorem 4.11.

The suprema used in~17! are considered next.
Lemma 2.2: (a) The suprema considered in (17) are positive.
(b) The following relations hold:

r ~w!5 inf
w2<c<w1 ,

p/2,c1w,3/2p

~r k~c!cos~c1w2p!!21

for w1,w<w21p, ~18!

r ~w!5 inf
w2<c<w1 ,

3/2 p,c1w,5/2 p

~r k~c!cos~c1w!!21

for w11p,w<w212 p. ~19!

Proof: ~a! Let us consider the first sup in~17!:

S sup
w2<c<w1

r k~c!cos~c1w2p! D 21 for w1,w<w21p . ~20!

For proving that this sup is positive, it is enough to show that for eachwP(w1 ,w21p# there is a
c0P@w2 ,w1# such that

p

2
,c01w,

3

2
p ~21!

are satified, since then cos(c01w2p).0 follows. Notice first that

2
p

4
,w2,

p

4
,

p

4
,w1,

3

4
p

by construction. We consider now two cases.~i! If wP(w1 ,w21 (p/2)#, then choosec05w1 .
~21! now follows fromc01w5w11w and

p

2
,2w1,w11w<w11w21

p

2
,

p

4
1

3

4
p1

p

2
5

3

2
p .

~ii ! If wP(w21 (p/2) ,w21p#, then choosec05w2 . ~21! then follows fromc01w5w21w and

0,2w21
p

2
,w21w,2w21p,

3

2
p .

The proof for the second sup in~17! is analogous.
~b! Equation~18! follows from ~a! and the fact that this sup is positive if and only if~21! is

satisfied withc05c modulo 2p. If we takew85w1p in ~18! then ~19! follows. h

The following is aimed at a geometric intepretation of~17! which yields a construction of the
curvew→r (w). For eachcP@w2 ,w1#, consider

x→gc~x!5~r k~c!cos~c1x2p!!21 for
p

2
2c ,x,

3

2
p2c , ~22!
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and notice that~22! describes in polar coordinates a straight linegc through the point

Pc[~~r k~c!!21,p –c!

and with normal directionp –c in polar coordinates@see also Remark 2.5~b!#. Let Gc be the
half-plane which is defined by the straight linegc and containsO. The equation~18! readily yields
the following.

Proposition 2.3: The curvew→r (w), w1,w<w21p, given in (17) coincides with the
boundary of the figureù

cP[w2 ,w1]
Gc in the sector with polar anglesw1,w<w21p. h

Corollary 2.4: The curvew→r (w), w1,w<w21p, given in (17) is a convex arc inM 2.
Proof: Due to Proposition 2.3, the curve under consideration arrises as the inner bound

that part of the sector with polar angles beweenw1 andw21p which is enveloped by the linesgc ,
cP@w2 ,w1#, given in~22!. Consequently, the curve under consideration is a convex arc~see Ref.
7, Example 1.2.2!. h

Remark 2.5:~a! Sincew→r (w),w2<w,w212p, given in ~17! is p-periodic by construc-
tion, analogues statements to Proposition 2.3 and Corollary 2.4 apply tow→r (w) with w11p
,w,w212p, too.

~b! We confirm for all what follows that the normal direction of a straight lineg not containing
O points into the half plane which is defined byg and does not containO.

III. DETERMINATION OF THE CONSTRUCTION

The aim of the present section is to describe all possible choices of the ingredients
construction given in Sec. II, and then to parametrize all the constructions in Corollary 3.3

For later use, let us describe the geometric objects considered in Sec. II in polar coord
~see Fig. 1!.

~1! The hyperbolae,

h1
1 : r h

1
1~w!5~Aucos 2wu!21 for

p

4
,w,

3p

4
; ~23!

h2
1 : r h

2
1~w!5~Acos 2w!21 for 2

p

4
,w,

p

4
. ~24!

~2! The points,

P1 : ~r 1 ,w1! with r 15r k~w1!5~Aucos 2w1u!21; ~25!

P2 : ~r 2 ,w2! with r 25r k~w2!5~Acos 2w2!21. ~26!

~3! The tangentstj on hj
1 at Pj , j 51,2,

t1 : r t,1~w!5~r 1 cos~p2w12w!!21

for
p

2
2w1,w,

3

2
p2w1 , ~27!

t2 : r t,2~w!5~r 2 cos~w21w!!21

for 2
p

2
2w2,w,

p

2
2w2 . ~28!

Let us also consider the half-linessj5$lOW Pj ; l.0%, j 51,2, and the intersection points

Q15s1ùt2 and Q25s2ùt1 . ~29!
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The possible choices of the pointsPj , j 51,2, considered in Sec. II, steps I, II, are chara
terized next.

Lemma 3.1: Let the Cartesian and polar coordinates of Pj , j 51,2, be given by

Pj[~xj ,yj ![~r j ,w j ! ,

respectively. Then the following are equivalent.

(i) The Cartesian coordinates of Pj , j 51,2, satisfy the inequalities (10) and (11).
(ii) The triangleD(P1P2P3) [see Remark 2.1(b)] is either positively orientated or it collaps

to the straight lineP1P2.
(iii) The following two properties hold:

(a) either the origin O and P1 are in the same half-plane relative to the tangentt2 or
P1Pt2 ;
(b) either the origin O and P2 are in the same half-plane relative to the tangentt1 or
P2Pt1 .

(iv) The following two properties hold:
(a) if Q1 exists, thenuOP1u<uOQ1u; (e.g., hereuOP1u denotes the Euclidean length of th
straight line segmentOP1);
(b) if Q2 exists, thenuOP2u<uOQ2u;

(v) The polar anglesw j of Pj satisfy
cos2 ~w11w2!<ucos~2w1!u cos~2w2! , ~30!

where

2
p

4
,w2,

p

4
,

p

4
,w1,

3

4
p.

Proof: (i)⇔(ii) The proof is given in Remark 2.1~b!. ( ii) ⇔(iii) is obvious. (iii)⇔(iv), First
we prove the following:

Q15s1ùt2 exists if and only if w11w2,
p

2
, ~31!

Q25s2ùt1 exists if and only if w11w2.
p

2
. ~32!

Noticing that the normal direction of the tangentt2 is 2w2 by ~28! @see also Remark 2.5~b!#, we
get thatQ1 exists if and only if (p/2) 2w2.w1 , and so~31! applies. The proof of~32! is
analogous.

In view of ~31! and ~32!, we consider the following three cases separately.
Case 1:Let w11w2,(p/2). Note first that ifQ1 ~respectively,Q2) does not exist, then

~iii !~a! @respectively,~iii !~b!# is satisfied. In the case under consideration we have thatQ1 exists,
and Q2 does not exist. Hence, both~iii !~b! and ~iv!~b! hold. Furthermore,~iii !~a! is obviously
satisfied if and only ifuOP1u<uOQ1u, i.e., ~iv!~a! holds.

Case 2:Let w11w2.(p/2). The proof is analogous to case 1.
Case 3:Let w11w25(p/2). Now, neitherQ1 nor Q2 exist by ~31!, ~32!. Consequently

~iii !~a!,~b! and ~iv!~a!,~b! are satisfied.
(iv)⇔(v): The above three cases are again considered.
Case 1:w11w2,(p/2). ~28! and ~31! now yield

uOQ1u5r t,2~w1!5
1

r 2 cos~w11w2!
.
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Then ~iv!~a! is satisfied if and only if

r 1<
1

r 2 cos~w11w2!
. ~33!

Inserting~25!, ~26! in ~33!, we get that~iv! holds if and only if~30! is satisfied.
Case 2:w11w2.(p/2). The proof is analogous to case 1.
Case 3:w11w25(p/2). Because~30! as well as~iv! are obviously satisfied, the proof i

completed. h

Motivated by~30!, let us put

Q5H ~w1 ,w2!;
p

4
,w1,

3p

4
,2

p

4
,w2,

p

4
,cos2 ~w11w2!,ucos~2w1!u cos~2w2!J , ~34!

]Q5H ~w1 ,w2!;
p

4
,w1,

3p

4
,2

p

4
,w2,

p

4
,cos2 ~w11w2!5ucos~2w1!u cos~2w2!J ,

~35!

see Fig. 2.
Remark 3.2:~a! Introducing new variables

a65w26S w12
p

2 D ,

we get cos2(w11w2)5sin2(a1) and

ucos~2w1!u cos~2w2!5~cosa1 cosa2!22~sina1 sina2!2

5211cos2 a11cos2 a2

5cos2 a22sin2 a1 .

Inserting the above in~30!, we obtain

sin2~a1!< 1
2 cos2~a2! .

FIG. 2. The admissible values for (a1 ,a2) and (w1 ,w2).
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Hence the polar anglesw j of Pj , j 51,2, satisfy~30! if and only if (w1 ,w2) belongs to the
shaded area given in Fig. 2. Especially, it is now obvious that for eachp/4,w1,3p/4, there is
some2 p/4,w2,p/4 such that~30! holds.

~b! A slight modification of the above proof yields the following refinement of Lemma 3
(ii) ⇔(v):

~a! the triangleD(P1 ,P2 ,P3) is positively orientated if and only if

~w1 ,w2!PQ ;

~b! the triangleD(P1 ,P2 ,P3) collapses to the straight lineP1P2 if and only if (w1 ,w2)
P]Q.

A parametrization of all the constructions of self-polar norms given in Sec. II is given n
Corollary 3.3: LetZ denote the set of all convex arcs connecting A1 with A2 , and lying inside

or at the border of the triangleD(A1A2A3), where A15(0,1),A25(1,0),A35(1,1) in Cartesian
coordinates, we have a bijection from

P5~Q3Z!d]Q ~d denotes disjoint union!

onto the set of (self-polar) norms constructed in Sec. II.
Proof: Using Lemma 3.1, (i)⇔(v), and~34!, ~35!, the ingredients$P1 ,P2 ,k% of our construc-

tion given in Sec. II are determined by a pair (w1 ,w2)PQø]Q and a convex arck satisfying the
requirements of step II of our construction. Assume first that (w1 ,w2)PQ. For each (w1 ,w2)
PQ let us now introduce an affine mappingJ (w1 ,w2) :R2→R2 defined by

J (w1 ,w2)~Pj !5Aj , j 51,2,3, ~36!

and notice thatJ (w1 ,w2) is regular~i.e., one-to-one! sinceP1 ,P2 ,P3 are affinely independent by
Remark 3.2~b!, ~a!. Note then that a convex arck satisfies the requirements of step II@see Remark
2.1~c!# if and only if J (w1 ,w2)(k)PZ due to elementary geometric properties of affine mappi
~Ref. 5. Kap. E2!. Otherwise, if (w1 ,w2)P]Q then the triangleD(P1P2P3) collapses to the
straight lineP1P2 @see Remark 3.2~b!, ~b!#, and consequently, we getk5P1P2. Finally, because
on the one hand a unit ballUp uniquely defines the ingredients (P1 ,P2 ,k) of our constuction by
Pj5]Upùhj , j 51,2, andk is that part of]Up which connectsP2 with P1 , and on the other
hand, equal choices of the ingredients give the same norm by~17!, the map fromP onto the set
of norms constructed in~17! is a bijection. h

IV. PROOF OF THE CONSTRUCTION

The aim of the present section is to show thatw→r (w), w2<w,w212p, given in ~17!
describes the boundary]Up of some self-polar normp on M 2. The proof is based on the
following five Lemmata 4.1, 4.2, 4.5, 4.9, 4.10. While Lemmata 4.1, 4.2 are concerned
general properties of a normp, its polar normp8 will be considered in Lemmata 4.5, 4.9, 4.10

Throughout the present section let us use polar coordinates (r ,w) on M 2.
While ~a! of the following lemma characterizes those functionsw→r (w) which describe the

boundary]Up of some normp, part ~b! gives a relation between a normp and the functionw
→r p(w) which describes]Up in polar coordinates.

Lemma 4.1: (a) A functionw→r p(w), w0<w,w012p, with somew0PR describes the
boundary]Up5$aW PM 2; p(aW )51% of a norm p onM 2 if and only if

(i) w→r p(w), w0<w,w012p, with somew0PR describes the outer boundary of a conv
figure in M 2, which contains O,

(ii) r p is p-periodic, i.e.,

r p~w01w1p!5r p~w01w! for w0<w,w01p .
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(iii) There are reals cj with 0,cj,`, j 51,2, such that

c1<r p~w!<c2

for w0<w,w012p.
(b) If w→r p(w), 0<w,2p, describes the boundary]Up of some norm p onM 2, then for

aW 5(xa ,ya)PM 2, ax5% cosw, ay5% sinw, we have

p~aW !5
%

r p~w!
. ~37!

Proof: The above assertions are immedeate consequences of the defining properties of
which yield that the unit ballUp5$aW PM 2; p(aW )<1% associated withp is a symmetric, convex
compact set containing the originO as an inner point, and vice versa,p is the gauge ofUp ~e.g.,
see Ref. 7, C, Sec. 1.2!, ~Ref. 12, Sec. 14.1!. h

Under the situation of Lemma 4.1, let thep-periodic extension of the abover p also be
denoted by the same symbolr p .

Lemma 4.2: Properties (i), (ii), (iii) of the above Lemma 4.1 are satisfied byw→r (w), w2

<w,w212p, given in (17).
Proof: Settingw05w2 in Lemma 4.1~a!, property~ii ! is obviously satisfied by the constructio

given in ~17!.
For verifying ~i!, let us consider the curvel defined by

l: w→r l~w!5 inf
w2<c<w1

p/2,c1w,3/2p

~r k~c!cos~c1w2p!!21, w1<w<w21p. ~38!

Due to Corollary 2.4,l is a convex arc. Noticing now that both curvesk andl are continuous due
to their convexity, it is enough to show the following~1! and~2! for verifying thatk andl ‘‘glue’’
together to one convex arckøl:

~1! køl is continuous atw1 , i.e.,

inf
w2<c<w1

p/2,c1w1,3/2p

~r k~c!cos~c1w12p!!215r k~w1! , ~39!

~2! the tangentt1 toucheskøl at P1 , and t1 does not have any further points ofkøl in
common, i.e.,

t1ù~køl!5P1 . ~40!

Noticing thatp/2,2 w1, 3
2p, we insertw5w1 in ~38! and then use~25!:

r l~w1!5 inf
w2<c<w1

p/2,w11c,3/2p

~r k~c!cos~c1w12p!!21

<~r k~w1! cos~2w12p!!21

5~r k~w1! ucos~2w1!u!215~r k~w1! ~r 1!22!215r 1 . ~41!

For showing the converse estimation, remember first that the tangentt1 lies above arck by
Remark 2.1~c!, i.e.,

~r 1 cos~p2w12c!!21>r k~c! for cP@w2 ,w1#ùS p

2
2w1 ,

3

2
p2w1D

by ~27!. Hence,
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~r k~c!cos~p2w12c!!21>r 1 for cP@w2 ,w1#ùS p

2
2w1 ,

3

2
p2w1D ,

and thus

r l~w1!5 inf
w2<c<w1

p/2,w1c,3/2p

~r k~c!cos~c1w12p!!21>r 1 . ~42!

~39! is now a consequence of~41!, ~42!, and~25!. Becausegw1
5t1 , ~40! follows from ~38! and

Remark 2.1~c!. Hencekøl is a convex arc.
Considering now the curvem given by

w→r m~w!5 inf
w2<c<w1 ,

3/2 p,c1w,5/2 p

~r k~c!cos~c1w!!21

for w11p,w<w212 p,

and arguing as above, we get thatkøm is a convex arc, too. Finally usingp-periodicity of w
→r (w), we obtain~ii !.

In order to verify~iii !, note first that the construction ofk implies that there are constants
,dj,`, j 51,2, such that

d1,r k~w!,d2 for wP@w2 ,w1#

@see Remark 2.1~c!#. Because the convex arcl connects the pointsP1 and

P4[~r 2 ,w21p!,

it is obvious that the straight line throughP1 ,P3 does not contain the originO, and the triangle
D(P1 ,P3,0) is positively orientated. For the distance 0,d3,` of O to the straight line through
P1 ,P3 , the convexity ofl yields

r ~w!.d3 for wP@w1 ,w21p# .

The continuity ofl then implies that there is a 0,d4,` with

r ~w!,d4 for wP@w1 ,w21p# .

Again using~i!, we finally obtain

c1,r ~w!,c2 for wP@w2 ,w212p# ,

where 0,c15min$d1,d3%,`, 0,c25max$d2,d4%,`. h

The polar norm

p8~aW !5 sup
0ÞbW PM 2

uxaxb2yaybu

p~bW !
~43!

of some normp on M 2 is considered next, whereaW 5(xa ,ya), bW 5(xb ,yb).
Definition 4.3: Letw→r p(w), 0<w,2p, describe the boundary]Up of the unit ball of some

norm p onM 2. Then let us considerw→r p* (w), 0<w,2p, where

r p* ~w!5 S sup
0<q,2p

r p~q! cos~q2w! D 21. ~44!
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Remark 4.4:Using p-periodicity of r p and cos(q2w6p)52cos(q2w), we get

r p* ~w!5 S sup
0<q,2p

r p~q! ucos~q2w!u D 215 S sup
qP

r p~q! ucos~q2w!u D 21 . ~45!

Lemma 4.5: For every norm p onM 2, the boundary

]Up85$aW PM 2; p8~aW !51%

of the unit ball of its polar norm p8 is given byw→r p8(w), 0<w,2p, where

r p8~w!5r p* ~2w! . ~46!

Proof: For aW 5(xa ,ya)5(% cosw,% sinw, bW5(xb ,yb)5(s cosc,s sinc), Eqs. ~37!, ~43!, ~45!
imply

%

r p8~w!
5p8~aW !

5 sup
s.0

0<c,2p

%sucosw cosc2sinw sincu
s

r p~c!

5% sup
0<c,2p

$r p~c! ucos~w1c!u%

5
%

r p* ~2w!
,

and consequently,r p8(w)5r p* (2w). h

Remark 4.6:~a! Sincep8 is a norm onM 2 ~e.g., see Ref. 4, Chap. III.4!, ~46! implies that
properties~i!, ~ii !, ~iii ! of Lemma 4.1~a! are satisfied byw→r p* (w), too.

~b! For a construction of the polar norm in case of Euclidean metric, the reader is refer
Ref. 7, C, Sec. 3.2.

In order to get relations betweenr p andr p* , we need the following prerequisites. Rememb
ing the following properties of a convex curvew→r (w), 0<w,2p:

~i! w→r (w) is continuous forwP@0,2p), and

lim
w→2p20

r ~w!5 lim
w→10

r ~w!5r ~0! .

~ii ! The left and right derivative,

~]6r!~w0!5 lim
h→60

r ~w01h!2r ~w0!

h
~47!

exits for eachw0P@0,2p).
~iii ! w→r (w) is everywhere differentiable~i.e., ]15]2) exept on a countable set of points.

Let us introduce the notion of a support line, its normal direction, extremal support lines
functions assigning the normal directions of all the support lines and of the extremal support
respectively, at a given point.

Definition 4.7: Let]Up : w→r p(w), 0<w,2p, be a convex curve satisfying (i), (ii), (iii) o
Lemma 4.1(a).

(a) A straight lineg is then calledsupport lineon g at point P0[(r (w0),w0) if both P0

Pgù]Up and Up lies on one side ofg.
(b) The normal directionof a support lineg on ]Up is the direction of a vector being

orthogonal ong and pointing into that half-plane which is defined byg and does not contain the
origin O.
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(c) For every point P0P]Up , let us consider theextremal support linesg0
6 on ]Up at P0

defined as the limits of the straight liness6 through the points P0 and

P6[~r p~w06h!,w06h!

as h→0.
(d) Let Q r :R→$ intervals of S1% denote the2p-periodic function which assigns to eachw0

PR the set of the normal directions of all the support lines on]Up at P0[(r p(w0),w0). (Here S1

denotes the unit sphere in two dimensions.)
(e) Let F r

6 :R→R be the2p-periodic functions which assigns to eachw0PR the normal
directions of the extremal support linesg0

6 [cf. (c)].
If it is clear from the context, then let us writeQ andF6 instead ofQ r andF r

6 , respectively.
Remark 4.8:~a! Obviously, a support line exists at every pointP[(r p(w),w). ~b! If w

→r p(w) is differentiable atw5w0 , then the tangent on]Up at P0 is the unique support line a
P0 . ~c! Recall that the anglesa6 between the extremal support linesg0

6 and the vectorOPW 0 are
given by

tana65
r p~w0!

~]6r p!~w0!
, ~48!

where a65p/2 is confirmed if]6r p50, see Fig. 3. Since 0<a2<a1,p, here and in the
following we make the convention 0<arctan%,p, %PR, i.e.,

arctan%5H Arctan% if %>0,

p1Arctan% if %,0,
~49!

where Arctan denotes the principal branch. The normal directions ofg0
6 are then given by

F6~w0!5a61w02
p

2
5S arctan

r p~w0!

~]6r p!~w0! D1w02
p

2
. ~50!

~d! We haveQ(w0)5@F2(w0), F1(w0)#, since a straight linegq with normal directionq
throughP0 is a support line on]Up at P0[(r p(w0),w0) if and only if

F2~w0!<q<F1~w0! . ~51!

FIG. 3. The extremal support lines on]Up at P0 .
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The convexity of]Up readily yields the following.
Lemma 4.9: Letw→r p(w) describe the boundary]Up of some norm p onM 2, and 0<x1

,x2,x3,2p.
(a) For eachqPQ(x2), we haveF1(x1)<q<F2(x3).
(b) If F1(x1),F2(x2), thenQ(x1)ùQ(x2)5B.
(c) If F1(x1)5F2(x2), thenQ(x1)ùQ(x2)5F1(x1).
(d) It holdsø

xP[0,2p)
Q(x)5S1, and

ø
xP[x1 ,x2]

Q~x!5@F2~x1!, F1~x2!# . ~52!

Proof: See Ref. 13. Theorem 24.1. h

In the following thep-periodic extensions ofr p and r p* are again denoted byr p and r p* ,
respectively.

Lemma 4.10: Letw→r p(w) describe the boundary]Up of some norm p onM 2. Then,

(a) for eachw,qPR, we have

r p* ~q! r p~w! ucos~w2q!u<1 ;

(b) the following are equivalent:

(i) the function

x→gq~x!5
r p~w0!cos~w02q!

cos~x2q!
, xPS q2

p

2
,q1

p

2 D ,

defines a support linegq with normal directionq on ]Up at P0[(r (w0),w0),
(ii) qPQ r(w0),
(iii) r p* (q) r p(w0) cos(w02q)51 ,
(iv)

arctanS r p~w0!

~]2r p!~w0! D<q2w01
p

2
<arctanS r p~w0!

~]1r p!~w0! D ;

(c) rp(w)5r p** (w),wPR.
Proof. ~a! Using ~45!, we obtain the estimation under consideration from

r p* ~q!r p~w! ucos~w2q!u5
r p~w! ucos~w2q!u

supxPr p~x! ucos~x2q!u
<

r p~w! ucos~w2q!u
r p~w! ucos~w2q!u

51 .

~b! (i)⇔(ii) readily follows from Definition 4.7~d!.
(i)⇔(iii): Notice first that

gq : x→gq5
r p~w0!cos~w02q!

cos~x2q!
, xPS q2

p

2
,q1

p

2 D ,

is a support line on]Up at P0[(r p(w0),w0) if and only if

r p~x!<
r p~w0!cos~w02q!

cos~x2q!
, xPS q2

p

2
,q1

p

2 D . ~53!

Using p-periodizity of r p , ~53! is equivalent to
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r p~w! ucos~w2q!u<r p~w0!cos~w02q! , wPR . ~54!

Because~54! is equivalent to

r p* ~q!5~r p~w0!cos~w02q!!21

by ~45!, the euivalence (i )⇔( i i i ) follows.
(i)⇔(iv): Considering the extemal support linest0

6 on ]Up at P0 , and taking~49!, ~50! into
account, we get the equivalence under consideration by~51!.

~c! Let wPR. We get

~r p** ~w!!21 r p~w!5sup
qP

r p* ~q!cos~w2q! r p~w!<1 ~55!

by Definition 4.3 and Lemma 4.10~a!. Furthermore,~52! yields that there is aq0PQ(w), and then

r p* ~q0!cos~w2q0! r p~w!51 ~56!

by Lemma 4.10~b!. Now, ~55! and ~56! yield the assertion under consideration. h

We are now prepared to prove the first main result of this section.
Theorem 4.11:The curvew→r (w), w2<w,w212p, given in (17) describes the boundar

]Up5$aW PM 2; p~aW !51% ~57!

of some self-polar norm p on Minkowski spaceM 2.
Proof: Due to Lemmas 4.1 and 4.2, there is some normp on M 2 such that~57! holds. For

showing thatp is self-polar, it is enough to verify that

r ~w!5r * ~2w! ~58!

for wPR, by Lemma 4.5. Since bothr and r * are p-periodic, it suffices to show~58! for w
P@w12p, w2#ø@w2 ,w1#.

Case 1:Let wP@w12p, w2#. Noticing that the normal directionsq j of the tangentstj , j
51,2, introduced in~8! and ~13! are given by

q15p2w1 and q252w2 , ~59!

respectively@see~27!, ~28!#, we get

2wP@q2 , q1# . ~60!

Furthermore, we haveq1PQ r(w1) since both~1! q1 is the normal direction oft1 and~2! t1 is a
support line atw1 by ~40! and the explanation beforehand of~40!. An analogous reasoning yield
q2PQ r(w2).

Because of~52! and Lemma 4.9~a!, ~60! implies that there is somec0P@w2 , w1# such that

2wPQ~c0! . ~61!

Due to Lemma 4.10~b!, (ii)⇔(iii), relation ~61! yields

r * ~2w!r ~c0!cos~w1c0!51. ~62!

Now,
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r ~w! <
~* !

~r ~c0!cos~w1c0!!21

5
~** !

r * ~2w!

5
~*** !

S sup
0<x,2p

$r ~x! cos~x1w!% D 21

< S sup
w2<c<w1

$r ~c! cos~c1w!% D 21

5
~* !

r ~w!

verifies ~58! in case 1, where~* ! follows from ~17!, ~** ! from ~62!, and~*** ! from ~44!.
Case 2:Let wP@w2 , w1#. ~59! then implies

2wP@2w1 ,2w2#5@q12p,q2# . ~63!

The same reasoning as in case 1 yields the existence of ac̃0P@w12p,w2# such that

2wPQ r~ c̃0! , ~64!

and

r * ~2w!r ~ c̃0!cos~ c̃01w!51 . ~65!

As for x→r * (x),xPR, the further proof is based on the assertion

wPQ r* ~2c̃0! ~66!

which will be verified at the end of the proof. Due to Lemma 4.10~b!, (ii)⇔(iii), applied tox
→r * (x), ~66! yields

r ** ~w!r * ~2c̃0!cos~ c̃01w!51 . ~67!

Because of relationsr ** (w)5r (w) due to Lemma 4.10~c!, andr * (2c̃0)5r (c̃0) already proved
in case 1 above,~67! implies

r ~w!r ~ c̃0!cos~ c̃01w!51 .

The last equation and~65! now imply r (w)5r * (2w) in case 2.
Proof of (66): If c̃0P(w12p,w2), thenr (c̃0)5r * (2c̃0) by case 1, and

~]6r * !~2c̃0!52~]7r !~ c̃0! ~68!

readily follows from~47!. Using ~49!, ~50! and Remark 4.8~d!, we get

Q r* ~2c̃0!52Q r~ c̃0!

from ~68!. The last equation and~64! now imply ~66!.
Assume nowc̃05w2 . Due to~63!, ~64! andq2PQ r(w2), we get

2wP@q12p, q2#ùQ r~ c̃0!5@q12p, q2#ù@F r
2~w2!, F r

1~w2!#5@F r
2~w2!, q2# .

Then,
                                                                                                                



es on

y-

re

4303J. Math. Phys., Vol. 44, No. 9, September 2003 Self-polar norms on Minkowski space

                    
wP@2q2 , 2F r
2~w2!#5@w2 , F r*

1
~2w2!# ~69!

by ~59!, and r * (2w2)5r (w2) ~which is a consequence of case 1! yields F r
2(w2)

52F r*
1 (2w2) by ~68! and ~50!. Noticing that

r ** ~w2!r * ~2w2!cos 2w25r ~w2!r * ~2w2!cos 2w251

by Lemma 4.10~c!, 2w25q2PQ(w2) and Lemma 4.10~b!, (ii)⇔(iii), we get

w2PQ r* ~2w2!5@F r*
2

~2w2!, F r*
1

~2w2!#

from Lemma 4.10~b!, (ii)⇔(iii), too. The assertion to be shown now follows from

wP@w2 , F r*
1

~2w2!#,@F r*
2

~2w2!, F r*
1

~2w2!#5Q r* ~2w2!5Q r* ~2c̃0! .

The final casec̃05w12p is treated analogously. The proof of Theorem IV is completed.h
The following is aimed at showing that every self-polar norm onM 2 is obtained by our

construction given in Sec. II.
Lemma 4.12: Let p be any self-polar norm onM 2, and]Up5$xWPM 2; p(xW )51% the bound-

ary of the unit ball Up of p. Then]Up touches each of the four hyperbolaehj
6 , j 51,2, [cf.

(4)–(7)] in exactly one point. The tangents of the hyperbolae in these points are support lin
]Up .

Proof: (Uniqueness).Let w→r p(w), 0<w,2p, denote the function describing]Up in polar
coordinates. Because the assumptionp5p8 of the lemma under consideration impliesr p* (2w)
5r p(w), 0<w,2p, by ~46!, Lemma 4.10~a! yields

1>r p* ~2w!r p~w!ucos~2w!u5~r p~w!!2 ucos~2w!u ,

and consequently, (r p(w))2<ucos(2w)u21 for 0<w,2p. Remembering the equations of the h
perbolaehj

6 , j 51,2, @see~23!, ~24!, and related equations forhj
2], we obtain that the curve]Up

must lie between the four hyperbolae. On the other hand,]Up has to be convex, and so the
cannot be more than one point of intersection with each of the four hyperbolae.

Existence of intersection points:In analogy to Definition 4.7~d! let us introduce a function
Qh

2
1: (2 p/4 , p/4)→R given by

Qh
2
1~w!52w , wPS 2

p

4
,
p

4 D , ~70!

and notice thatQh
2
1(w0) gives the normal direction of the tangentt on h2

1 at P0

[((Acos 2w0)
21,w0) ~in polar coordinates!. Furthermore,w→Qh

2
1(w) is a continuous, strictly

monotone decreasing function which satisfies

lim
w→2 p/4 10

Qh
2
1~w!5

p

4
, ~71!

lim
w→ p/4 20

Qh
2
1~w!52

p

4
. ~72!

Since on the one hand the unit ballUp is a convex figure containingO as an inner point and
lying between the four hyperbolaehj

6 , j 51,2, and on the other hand, the tangentstw on h2
1 at

Pw[((Acos 2w0)
21,w0) approach the straight liney52x from above asw→2 p/410 there has

to be an angle2 p/4,b,0 such thattbùUpÞB and the triangleD(OPbR) is positively
orientated for some pointRPtbùUp . Then
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F r p

1~b!<Qh
2
1~b! ~73!

sinceF r p

1 (b) is the normal direction of the extremal support linegb
1 @see Definition 4.7~e!# on

]Up at b which cannot intersect the inner of the convex figureUp . Noticing then that the tangent
tw considered above approach the straight liney5x from below asw→ (p/4) 20, we get analo-
gously the existence of some angle 0,b̃,p/4 such that

F r p

2~ b̃ !>Qh
2
1~ b̃ ! . ~74!

Because of~52! of Lemma 4.9, the continuity ofQh
2
1 and ~73!, ~74! yield the existence of

somec0P@b,b̃#,(2 p/4 , p/4) such that

Qh
2
1~c0!P@F r p

2~c0!,F r p

1~c0!# . ~75!

Due to Lemma 4.10~b! @(ii)⇔(iii) #, ~75! and ~70! with w05c0 imply

15r p* ~2c0!r p~c0!cos~2c0! 5
~* !

~r p~c0!!2 cos~2c0! , ~76!

where (* ) follows from ~46! and the assumptionp5p8 of the lemma under consideration. Now
~76! and the equation of the hyberbolah2

1 given in ~24! imply

CP]Upùh2
1 ,

where the polar coordinates of the intersection pointC are given by (r p(c0), c0). Furthermore,
Lemma 4.10~b! @(i)⇔(ii) # and~75! imply that the tangentt on h2

1 at C is a support line of]Up .
The remaining three hyperbolae can be treated in the same way. h

Theorem 4.13:For every self-polar norm p on Minkowski spaceM 2, there exist ingredients
$P1 ,P2 ,k% of the construction given in Sec. II such that the boundary]Up of the unit ball of p is
obtained by (17).

Proof: Let p denote a self-polar norm onM 2. We consider thep-periodic function

w→r p~w! , wPR ,

which describes]Up in polar coordinates. Due to Lemma 4.12, there are four points

Cj
65]Upùhj

6 , j 51,2 ,

at which ]Up touches the hyperbolaehj
6 . Set Pj5Cj

1 . Let w j denote the polar angles ofPj ,
j 51,2. Because the tangentstj on hj

1 at Pj , j 51,2, are support lines for]Up by Lemma 4.12
and because]Up is the outer boundary of a convex figure containingO as an inner point,
$P1 ,P2 ,k% satisfy the requirements of steps I, II of our construction, wherek is given by w
→r p(w), w2<w<w1 . Let now

w→r ~w! , w2<w,w212p ,

denote the function given in~17!. Obviously, r p(w)5r (w) for w2<w<w1 . Using the
p-periodicity of bothr andr p , it remains to verify thatr p(w)5r (w) for w1<w<w21p. So let
w0P@w1 ,w21p#. Analogously to~60! we obtain

2w0P@q2 ,q1# ,

whereq j denote the normal directions of the tangentstj on hj
1 at Pj , j 51,2. Due to~52!, there

is a
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c0P@w2 ,w1# ~77!

such that2w0PQ r(c0). Applying Lemma 4.10~b!, (i i )⇔( i i i ), to bothr and r p , we get

15r p* ~2w0!r p~c0!cos~c01w0! 5
~* !

r p~w0!r p~c0!cos~c01w0! , ~78!

15r * ~2w0!r ~c0!cos~c01w0! 5
~** !

r ~w0!r p~c0!cos~c01w0! , ~79!

where (* ) follows from p5p8, and (** ) from the facts thatr (w) describes the boundary]U of
the unit ball of some self-polar norm by Theorem 4.11 and thenr p(c0)5r (c0) by ~77!. Now, ~78!
and ~79! imply r p(w0)5r (w0). h

Corollary 3.3 and Theorem 4.13 immedeately yield the following parametrization of all
polar norms onM 2.

Corollary 4.14: The mapping given in Corollary 3.3 is a bijection betweenP5(Q
3Z)d]Q and the set of all self-polar norms onM 2. h

V. HILBERTIAN SELF-POLAR NORMS ON M 2

The aim of the present section is to characterize those self-polar norms onM 2 which are
Hilbertian in addition. To do so, we apply the following taken from Ref. 9, Theorem 5.4.

Proposition 5.1: Let q be a norm on an inner product space E,(.,.) with complete Hilbertian
majorantt(p), p(.)5A@ .,.#, and Gram operator G, (x,y)5@x,Gy#, x,yPE. Then the following
are equivalent:

(i) q is Hilbertian and self-polar,
(ii) a symmetry S (5S215S* ) and a bounded linear operator B exist on the Hilbert spa

E,@ .,.# such that
(1) B is positive on E,@ .,.#,
(2) Gx5BSBx, xPE,
(3) q(x)5p(Bx), xPE.
In the case at hand we haveE5M 2, @aW ,bW #5xaxb1yayb , (aW ,bW )5xaxb2yayb , p(aW )

5Axa
21ya

2, Gram operatorG5(0
1

21
0), aW 5(xa ,ya), bW 5(xb ,yb).

Proposition 5.2: All the Hilbertian self-polar norms onM 2 are given by

qa~aW !5Aa j1
2 1

1

a
j2

2 , j65
1

&
~xa6ya! ,

wherea.0.
Proof: Consider the linear operatorA5B2, whereB is taken from Proposition 5.1~ii !, ~2!. Let

aW ( j )5(x( j ),y( j ) and l ( j ).0, j 51,2, be eigenvectors and eigenvalues of the positive operatoA,
respectively. UsingG25I ~identity operator! andA5B25BSBB22BSB5GB22G5GA21G, we
get

A~GaW (1)!5GA21G2aW (1)5GA21aW (1)5l21~GaW (1)! .

HenceGaW (1) is an eigenvector ofA, too, and so

l (2)5
1

l (1) .

If l (1)5l (2)51, thenA5B5I . Otherwise,aW (2)5GaW (1)5(x(1),2y(1)) and the orthogonality of
the eigenvectorsx(1)x(2)1y(1)y(2)50 imply
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aW (1)5
1

&
~1,1! , aW (2)5

1

&
~1,21! .

Hence,

A5
1

2 S 1 1

1 21D S l (1) 0

0 ~l (1)!21D S 1 1

1 21D
follows. The assertion to be shown now follows from Proposition 5.1~ii !, ~3!, and

~qa~aW !!25@BaW , BaW #

5F 1

&
S 1 1

1 21D S xa

ya
D ,

1

& S l (1) 0

0
1

l (1)
D S 1 1

1 21D S xa

ya
D G

5
l (1)

2
~xa1ya!2 1

1

2l (1) ~xa2ya!25l (1)j1
2 1~l (1)!21j2

2

with a5l (1), andj651/& (ax6ay). h

Proposition 5.2 readily yields the following.
Corollary 5.3: The boundary]Uq,a5$aW PM 2; qa(aW )51% of the unit ball Uq,a is given by

the ellipseEa :

a211

2a
~x21y2!1

a221

a
xy51 . ~80!

Remark 5.4:~a! The semiaxis of the ellipseEa considered in~80! are given by

bW (1)5
1

A2a
~1,1! , bW (2)5Aa

2
~1,21! .

~b! The ellipseEa is given in polar coordinates by

r ~w!5SAa211

2a
1

a221

2a
sin 2w D 21

, 0<w,2p . ~81!

The aim of the following is to derive a relation between the general construction given in
II and ]Uq,a described in~80!, ~81!. More precicely, the ingredients of the general construct
P1 ,P2 andk will be given for the case at hand.

Lemma 5.5: We haveEaùhj
65Qj

6 , j 51,2, where the polar coordinates of the points Qj
6

are given by

Qj
6[SAa211

2a
,wa, j

6 D ,

with wa,2
1 52 1

2 arcsin (a221)/(a211) , wa,2
2 5wa,2

1 1p, wa,1
1 5(p/2) 2wa,2

1 , and wa,1
2 5(3p/2)

2wa,2
1 .
Proof: Equations~24! and ~81! imply

a211

2a
1

a221

2a
sin 2w5cos 2w , 2

p

4
,w,

p

4
,

and a simple calculation yields the polar coordinates ofQ2
1 :
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wa,2
1 52

1

2
arcsin

a221

a211

and

r h
2
1~wa,2

1 !5S 12S a221

a211D 2D 2 1/4

5Aa211

2a
.

The second half of the lemma under consideration is now obvious by symmetry. h

Since a self-polar norm onM 2 is uniquely determined by the ingredients$P1 ,P2 ,k% of our
construction~see Corollary 4.14!, we get the following characterization of those constructio
which yield Hilbertian self-polar norms onM 2.

Corollary 5.6: The general construction given in Sec. II with the ingredients P15Q1
1 , P2

5Q2
1 and the convex arck given in polar coordinates by

w→SAa211

2a
1

a221

2a
sin 2w D 21

, wa,2
1 <w,wa,1

1

yields the curve]Uq,a described in~80!, ~81!. h
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The eigenvalue equation on the Eguchi–Hanson space
Andreas Malmendiera)

Department of Mathematics, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, Massachusetts 02139

~Received 14 December 2002; accepted 23 February 2003!

We consider the eigenvalue equation for the Laplace–Beltrami operator acting on
scalar functions on the noncompact Eguchi–Hanson space. The corresponding dif-
ferential equation is reducible to a confluent Heun equation with Ince symbol
@0,2,12#. We construct approximations for the eigenfunctions and their asymptotic
scattering phases with the help of the Liouville–Green approximation~WKB!.
Furthermore, for specific discrete eigenvalues obtained by a continued T-fraction
we construct the solution by the Frobenius method and determine its scattering
phase by a monodromy computation. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1579548#

I. INTRODUCTION

The Eguchi–Hanson metric~Eguchi and Hanson, 1979! is a self-dual, asymptotically locally
Euclidean~ALE! metric on the cotangent bundle of the 2-sphere T* S2. Geometrically, this cor-
responds to a Ricci-flat metric on the smooth resolution space of anA1-singularity—such a
singularity looks like the origin ofC2/Z2 , where theZ2-group acts by point reflection at the origin

Apart from Euclidean quantum gravity this metric has physical applications in string com
tification. In fact, it is well known that the only nontrivial two-dimensional Calabi–Y
manifold—this is a K3-surface—can be obtained from theZ2-orbifold limit TC

2/Z2 by blowing up
its 16 A1-singularities~whereTC

2 is the complex two-dimensional torus!. By gluing the Eguchi–
Hanson metric together with the flat torus metric one can explicitly construct an almost Ric
metric on a K3-surface~Bozhkov, 1988! which is related to a Ricci-flat metric on K3 by a gaug
transformation~Taubes, 1982!.

In this paper we shall examine the eigenvalue equation for the Laplace–Beltrami opera
the Eguchi–Hanson space. The problem is interesting from a mathematical point of view sin
differential equation is separable and reduces to an ordinary differential equation which due
singularities can be identified as confluent Heun equation with corresponding Ince sy
@0,2,12# ~see Decarreau, Maroni, and Robert, 1978 for definitions!. The Heun equation is an
ordinary differential equation with four regular singularities on the punctured Riemann spher
coalescing two of the regular singularities to one irregular singularity one obtains the con
Heun equation~analogously to the procedure by which one obtains the confluent hypergeom
differential equation from the hypergeometric one!.

The problem is also interesting from a physical point of view since the functions tha
obtained by gluing the eigenfunctions on the Eguchi–Hanson space together with the well k
eigenfunctions on the flat torus describe the quantum mechanical limit of string fields on K

The plan of the paper is as follows: In Sec. II we introduce the ordinary differential equ
that describes the radial part of the eigenvalue equation of the Laplace operator on the E
Hauson space. In Sec. III we construct its solutions and their corresponding scattering pha
the Liouville–Green approximation~WKB!. This extends and corrects a result in Mignemi~1991!.
In Mignemi ~1991! the author used the ad hoc version of the Liouville–Green approximation.
version did not give approximations for the wave functions which are valid over the whole r
Furthermore, we give error bounds for the constructed solutions and their scattering phase

a!Electronic mail: malmendi@mit.edu
43080022-2488/2003/44(9)/4308/36/$20.00 © 2003 American Institute of Physics
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explicit calculations can be found in the Appendix~cf. Appendices A and B!. In Sec. IV we
construct the exact solutions for specific discrete eigenvalues by the Frobenius method.
special values are given by the vanishing condition for a continned fraction. This approa
similar to the treatment of the generalized spheroidal wave equation in Wilson~1928! and Leaver
~1986!. In addition, we can determine the exact scattering phase by a monodromy compu
Finally, we will show how this information can be used to compute the asymptotic scatt
phase for this discrete set of eigenvalues. In Sec. V we present the numerical results obta
the method of Secs. III and IV and show that they match up to a high accuracy. In Sec. VI w
the conclusions of this article and a brief outlook.

II. THE EIGENVALUE EQUATION

In this section we introduce the eigenvalue equation for the Laplace–Beltrami operator
Eguchi–Hanson space. Using the SU~2!3U~1! symmetry of the Eguchi–Hanson space this eig
value equation will reduce to an ordinary differential equation of second order. A complete
vation of these and similar results can be found in Gibbons and Manton~1986! and Perry~1978!.

The Riemannian metric on T* S2 that is known as the Eguchi–Hanson metric is Hyperka¨hler.
Moreover, a complex structure which is compatible with the Hyperka¨hler structure can be intro
duced by identifying T* S2 with the complex manifold T* CP1. In particular, the latter can be
covered by two coordinate chartsU>U8>C2 with coordinates (u,j), (u8,j8), respectively. Here,
u, u8 denote Euclidean coordinates on the baseCP1, andj, j8 parameterize the fiber of the bund
T* CP1→CP1. This means that

UùU8>C* 3C, ~u8,j8!PUùU8:~u8,j8!5~u21,u2j!. ~1!

Note that T* CP1 describes the minimal resolutionC2/Z2̃ of C2/Z2 , whereZ2 acts on (z1,z2)
PC2 by (z1,z2)°(2z1,2z2). To see this, onU0ª$(u,j)PUujÞ0% use (u,j)5(z1/z2,(z2)2),
and analogously for the other chart. Then~1! is given byz1↔z2, and by the above we identify

C2/Z2 with T* CP1 with the zero section removed. The exceptional divisor ofC2/Z2̃ therefore
corresponds to the zero section of T* CP1. In these coordinates, i.e., outside the exceptio
divisor, the Eguchi–Hanson metric takes the form,

g
i ̄

EH
5

Ac41R4

R2 H d i j̄ 2
c4zizj̄

R2~c41R4!
J ,

where

R25uz1u21uz2u2,

andc.0 is the parameter of the Eguchi–Hanson metric. Introducing the Euler angles~u,f,c! on
S3 by

S z1

z2D5RS cos
u

2
e~ i /2!~c1f!

sin
u

2
e~ i /2!~c2f!

D ,

we can describe coordinates~in the coordinate patch withz2Þ0) by a radial partRPR.0 and the
anglesuP~0,p!, fP@0,2p!, cP@0,4p!. In the following, it will be more convenient to user
ªA4 R41c4 instead ofR.

The singularity ofC2/Z2 then sits atr 5c. On the exceptional divisor, the Eguchi–Hans
metric takes the form of the Fubini–Study metric onCP1, and therefore assigns volumep to the
exceptional divisor~Eguchi and Hanson, 1979!.

The Z2-operation mentioned above takes the form
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Z2 : S z1

z2D°2S z1

z2D
~u,c,f!°~u,c12p,f!.

In these new coordinates the metric takes the form originally found by Eguchi and Hanson
Lie group SO~3! acts on itself by multiplication from the left and from the right. Let us call t
vector fields that generate the right-multiplication (j1 ,j2 ,j3), and the ones that generate th
left-multiplication (j̄1 ,j̄2 ,j̄3). Since SO(3)>SU(2)/Z2>S3/Z2 we have an action of these vecto
fields on the Eguchi–Hanson space. In Gibbons and Manton~1986! the authors derive tha
; i , j :@j i ,j̄ j #50 and that (j1 ,j2 ,j3 ,j̄1) define Killing vector fields that generate an su(2L

% u(1)R symmetry algebra of the Eguchi–Hanson space.
Let D denote the Laplace–Beltrami operator on functions that is associated to the Eg

Hanson metric. Furthermore, letC denote a smooth function on the Eguchi–Hanson space.
consider the eigenvalue equation for the real positive eigenvalue.~We are considering only the
scattering case since we want to glue together the eigenfunctions on the Eguchi–Hanson sp
the flat torus. However, eigenfunctions forE,0 would correspond to bounded states.! i.e., (E
1D)C50 for E.0. The operatorE1D can be expressed merely in terms ofd/dr, j2

5( i 51
3 j i

2, j3
2, i.e.,

E1D5E1S 12
c4

r 4D d2

dr2
1S 3

r
1

c4

r 5D d

dr
1

4j2

r 2
1

4c4j3
2

r 2~r 42c4!
.

Due to their commutation relations we can diagonalize the operatorsj3 , j̄3 , j2 simultaneously
and expand the eigenfunctions in terms of Wigner functionsDqm

j (u,c,f) @see Abramowitz and
Stegun~1955! for definitions#, i.e.,

C~r ,u,c,f!5(
j 50

`

(
q,m52 j

j

aqm
j A~ j ,q,buz!Dqm

j ~u,c,f!,

wherezªr 2/c2, bªc2E/4, andaqm
j are complex coefficients, and theA( j ,q,buz) are functions

that depend only on the coordinatez. The Wigner functions fulfill

j̄3Dqm
j 52 imDqm

j ,

j3Dqm
j 5 iqDqm

j ,

~j1
21j2

21j3
2!Dqm

j 52 j ~ j 11!Dqm
j ,

where

j PN, q,mP@2 j , j #N .

Here, j, q are the quantum numbers that label the SU~2! representation. The eigenvalue equati
for C then reduces to an ordinary differential equation forA( j ,q,bu.),

05F d2

dz2
1

2z

z221

d

dz
1

~bz2 j ~ j 11!!~z221!2q2

~z221!2 GA~ j ,q,buz!. ~2!

The differential equation~2! has three singularities which we have summarized in the follow
table:
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z r singularity roots

1 c regular
6

q

2
21 ic regular

6
q

2
` ` irregular

~for q50 the regular singularities are logarithmic!.

One should notice that our differential equation has an irregular singularity at infinity, th
not of Fuchsian-type. More precisely, it is a confluent Heun equation with Ince symbol@0,2,12#.
To construct a continuous solution valid on the whole Eguchi–Hanson sphere we have to c
the regular boundary condition atz51 ~then we can extend this solution toz51, i.e., the blown
up A1-singularity!. This means that we are looking for therecessivesolutions that behave like
(z21)q/2 for z→1. This means that all the eigenfunctions obtain a constant value on the
CP1 which gives the exceptional divisor of the blow-up. By approaching the singular poin
C2/Z2 with different slopes, one reaches different points in the exceptional divisor. But f
well-defined solution of the differential equation, the limit does not depend on the chosen

We remark that the differential equation~2! does not depend onq but only onq2. Therefore,
it suffices to restrict ourselves toq>0. Then, the functionC takes the following form:

C~r ,u,c,f!5(
j 50

`

(
q50

j

A~ j ,q,buz! (
m52 j

j

~aqm
j Dqm

j ~u,c,f!1a2qm
j D2qm

j ~u,c,f!!.

On these functions the differential operator of Eq.~2! is self-adjoint: Since the differential operato
in Eq. ~2! is already formally self-adjoint the statement follows from the application of the res
in @Coddington and Levinson~1955!, Sec. 3.9# and a detailed study of the singularity atz51 for
q50, where the differential equation is of alimit-circle type, and forq>1, where it is oflimit-
point type; for more details see Coddington and Levinson~1955!.

The specific problems that arise in the treatment of the differential Eq.~2! are due to the
structure of singularities. In particular, the major issue is to treatthreesingularities—one being an
irregular singularity—at the same time. The problem is to derive the connection betwee
different bases which provide expansions of the solutions in the neighborhood of the sin
points. Another important question is how given a system of solutions the solutions transform
each other when passing through a cycle around the corresponding singularity.

For the thrice-punctured Riemann sphere with only regular singularities~this is a generalized
hypergeometric equation! this can be done in terms of the Meijer transcendental functions—
they were recently applied in Greene and Lazaroiu~2001!. Here, the key technique lies in
representation of the solutions in terms of Mellin–Barnes integrals.

For only two singularities—one being regular, one being singular—techniques can be a
which are familiar from the treatment of the Bessel differential equation. This corresponds
confluent hypergeometric equation, i.e., a hypergeometric equation where two regular singu
are coalescing and forming one irregular singularity. Here, the key technique is a gener
Borel transformation@Gurarii and Matsaev~1994! and Gurarii and Matsaev~1994!# which relates
a cycle around the regular singularity atz51 to the irregular one atz5`.

In the case of two regular and one irregular singularities we cannot apply Mellin–Ba
integrals. Due to the irregular singularity solutions are oscillating at large real values. Thu
conditions for convergence for the Mellin–Barnes integrals when continuing into the com
plane to close the path of integration to a cycle are not satisfied any more.

On the other hand, due to the third singularity atz521 a cycle around infinity is also no
homologous to a cycle aroundz51. Thus, an asymptotic expansion of the regular solution can
be derived by a Borel transformation. However, as we will show in Sec. IV B, in some parti
cases one can still use a similar argument.
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III. WKB-TYPE SOLUTIONS

In this section we give approximations to the recessive solutions of differential equatio~2!
that can be obtained by the Liouville–Green approximation~WKB!. The explicit derivation of the
results can be found in Appendices A.1–A.4.

From now on we suppress the labelsb, j, q in A(b, j ,quz). Substituting A(z)
5(z221)2(1/2)w(u,z) in Eq. ~2! we find

d2

dz2
w~u,z!5@2u2f ~z!1g~z!#w~u,z!, ~3!

whereu25b, g(z)52(z221)22, a5 j ( j 11)/b, b5q2/b, and

f ~z!5
~z2a!~z221!2b

~z221!2
.

We remark that due to the possible values forj, q, b we will always have 1<b11,a and 0
<a.

Equation~3! is the standard form of a differential equation of second order considere
Liouville–Green approximation~WKB!. Following the discussion in Olver~1974!, the specific
approximation depends on the order of the pole atz51 as well as the number ofsimple transition
points ~tps!, i.e., simple zeros, in the regionz.1 which is of interest in connection with th
geometry discussed in Sec. II. A simple analysis of the functionf shows that we have to deal wit
the four different cases~I–IV ! which are summarized in the table below.

case condition order of pole atz51 tp for z.1

I 1,b11,a 2 yes

II b50, 1,a 1 yes

III b50, a51 0 no

IV b50, 0<a,1 1 no

For the different cases one can then apply the Liouville–Green approximation. First, one pe
a Liouville-transformation of the variablez to the new variablez. The transformation is given by
an integral equation of the form,

;z>z0 :G~z!5E
z0

z
Au f ~ t !udt

such thatz andz are analytic functions of each other, and where the functionG and the pointz0

depend on the case~I–IV ! we are dealing with. Simultaneously, we replace the functionw by a
function W according tow(u,z)5Audz/dzuW(u,z). The choices are as follows:

case G(z) z0

I 2

3
~2z!2/3 .1 such thatf (z0)50

II z1/2~z2a!1/22
a

2
lnS2z2a12z1/2~z2a!1/2

a D a

III z 1
IV (2z)1/2 1

and
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aª
2

p E
1

a

dtA2 f ~ t !.

The aim of this transformation is to transform the differential equation~3! to a differential equa-
tion of the form,

d2

dz2
W~u,z!5~T1~u,z!1T2~z!!W~u,z!,

where T1 and T2 are real-valued functions such that the approximating differential equa
obtained by omittingT2 has solutions which are functions of a single variable. However,
transformation has been done in a way that the approximate solution will still reflect the
behavior of the solution at the singularity atz51 and forz→`. From now on we suppress th
dependence ofu in w andW.

We have found the following approximations for the solutions of differential equation~2! that
are regular atz51:

case approx. function form

I Airy w~z!5A4 2
z

f ~z!
Ai ~u2/3z!

II Whittaker w~z!5A4 z2a

2uz f ~z!
e2 ip/4M iua/2,0~2iuz!

III Bessel w~z!5
z1/2

A4 f ~z!
J0~uz!

IV Bessel w~z!5
uzu1/2

A4 4uzu f ~z!
J0~uuzu1/2!

Asymptotically, the Eguchi–Hanson metric becomes the flat metric. Therefore, the solutions
differential equation~2! must have the following behavior:

A~z! ;
z→` 1

z3/4
sin~2Abz1D j ,q!, ~4!

whereD j ,q is called the scattering phase. Based on the results of Olveret al. ~see Appendices
A.1–A.4 for details!, for the scattering phase we obtain the results listed below, where in the
column we give the equation number for the error bounds that are determined in Appendix

case D j ,q(b) error

I Ab limz→`S E
z0

z
Af ~ t !dt22AzD 1

p

4
~22!

II 22AbA11aEFA 2

11aG1
aAb

2

2
aAb

2
lnSaAb

2 D 1argGS121
iaAb

2 D 1
p

4
~24!

III 2A8b1
p

4
~27!

IV ~12a!A2bKFA11a

2 G22A2b E FA11a

2 G1
p

4
. ~30!
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Here, F(f,m), E(f,m) denote elliptic integrals of the first and second kind, and K(m)
5F(p/2,m) and E(m)5E(p/2,m) are the corresponding complete elliptic integrals@cf.
Abramowitz and Stegun~1955!, Sec. 17#. This corrects a result in Mignemi~1991!.

IV. SOLUTIONS RELATED TO CONTINUED FRACTIONS

In this section we determine for which values ofb, j, q the exact solution of the differentia
equation~2! can be obtained by a formal power series expansion~Frobenius method! around the
singularity atz51.

For an expansion around the regular singularity atz51 a transformation according toz
5 1

2(z21) is suitable. Substitution of

A~z!5~z221!q/2u~z! ~5!

in Eq. ~2! yields

05z~z11!u9~z!1~q11!~2z11!u8~z!1~b~2z11!1m!u~z!, ~6!

wherem5q(q11)2 j ( j 11). In a neighborhood ofz51 the two linearly independent solution
can be represented by the series,

ureg~z!5 (
k50

`

ak~b, j ,q!zk,

~7!

using~z!5ureg~z!~ ln z1Bu!1
1

zq (
k50

`

bk~b, j ,q!zk,

where Bu is a real number. Since the singular solution is not unique~one can always add a
multiple of the regular solution!, the parameterBu is not uniquely determined. However, th
parameter can be fixed by fixing the asymptotic scattering phase of the singular solution.

By the Frobenius method@cf. Rabenstein~1972!, Chap. 3.6# we obtain the coefficients
(ak)k>21 as solutions of the following three-term recurrence relation:

a2150,
~8!

;k>0: ak1152
k~k12q11!1m1b

~k11!~k1q11!
ak2

2b

~k11!~k1q11!
ak21 .

Notice that a rescaling of the parametera0 results in a general rescaling of all the coefficien
(ak)k>21 since Eq.~8! is linear. However, the crucial information, i.e., the ratio ofa1 anda0 is
fixed by the recurrence relation~8!. By standard methods one can show that there are only
types of solutions for (ak)kPN in ~8! depending on the radius of convergencer c of the series
(k50

` akz
k,

lim
k→`

ak11

ak
5H 21 r c51,

0 r c5`.

A solution with r c51 corresponds to a solution of the recurrence relation for generic value
(b, j ,q), whereas the solution withr c5` is theminimal solution. @A minimal solution (gn)nPN is
defined by the universal property that for any other solution (hn)nPN one obtains limn→` gn /hn

50.] The question for which values of the parameters (b, j ,q) this minimal solution exists will be
considered in Sec. IV A. One should mention that it is possible to derive an explicit represen
of the coefficients (ak)kPN by the use of Babister’s inhomogeneous hypergeometric funct
~Exton, 1991!. However, this approach did not enable us to derive the asymptotic behavior
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case of a minimal solution. To solve the differential equation~6! by a Laplace transformation as i
Exton ~1991! for similar differential equations or an Euler transformation as in Kazakov~1998! is
not possible due to the structure of the coefficients in Eq.~6!.

To gain a better understanding of solutions to~6!, let us take a look at the solutionureg which
is regular atz51 (z50) in terms of the singularity atz521 (z521). Let v reg(z) be the
solution regular atz521 (z521). Its continuation toz→` shall have an asymptotic scatterin
phase ofg, which by ~4! and ~5! gives an asymptotic expansion,

v reg~z! ;
z→` sin~2A2bz1g!

zq1~3/4! S 11OS 1

z D D .

We fix a solution singular atz521 (z521) by the requirement that its asymptotic scatteri
phase differs from the regular solution by a phase ofp/2, giving an asymptotic expansion,

vsing~z! ;
z→` cos~2A2bz1g!

zq1~3/4! S 11OS 1

z D D .

To resume, looking for the nontrivial solutions of the differential equation~2! we have already
found two contributions: for a generic set of parameters (b, j ,q) the solution regular atz51 (z
50) has a regular singularity atz521 (z521). This means that it is a linear combination
v reg andvsing, without loss of generality,

Because of the singularity atz521 (z521) the representation ofureg by a power series expan
sion must break down for all valuesuzu.1. Therefore, the asymptotic scattering phase ofureg can
in general not be obtained from~7!.

Only for those values (bn)nPN that lead to a minimal solution of the recurrence relation~8!
the solution regular atz51 is regular atz521 as well, and therefore of classC`(R). This means
sin a50 and therefore

D j ,q~bn!5g modp. ~9!

Since we can always change the sign of the solution by an overall factor the scattering ph
only determined up to an integer multiple ofp. In Sec. IV B we will eventually determineg.

A. Minimal solutions and continued fractions

According to Pincherle’s Theorem~see Jones and Thron~1980!, Sec. 5.3! a three-term recur-
rence relation,

;n>1 yn1152dnyn1gnyn21

has a minimal solution if and only if the following continued fraction converges,

(
k51

`
gku
udk

5
g1

d11
g2

d21
g3

d31¯

.
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In particular, if (an)nPN is the minimal solution it follows thata0Þ0 and

2
a1

a0
1 (

k51

`
gku
udk

50.

For any set of parameters (j ,q), where as beforeq>0, we now define the functionM̃( j ,qux) by
the continued fraction ofThron type ~or T-fraction!,

M̃~ j ,qux!ªd01 (
k51

`
gku
udk

,

where

;k>0 dkª
k~k12q11!1m2x

~k11!~k1q11!
,

;k>1 gkª
2x

~k11!~k1q11!
.

Using the Umordnungssatz@Perron, 1977, Kap. 6.42, Satz 2# and @Jones and Thron~1980!, Sec.
7.3, Th. 7.23#, we can conclude that the functionM̃( j ,qux) is a meromorphic function onC.
Moreover, by the above its real zeros determine the values ofx52b for which the recurrence
relation ~8! has a minimal solution, i.e., the radius of convergence of the power series expa
~7! becomes infinite.

The corresponding solutionureg is then of classC`(R). Since the relationA(b, j ,quz)5A
(2b, j ,qu2z) holds for the differential Eq.~2!, it follows that any such smooth solution forb, j ,q
in z is simultaneously a smooth solution for2b, j ,q in the variable2z. Therefore,x5b must be
another zero ofM̃( j ,qux). This is,

M̃~ j ,qub!50⇔M̃~ j ,qu2b!50.

Using the Umordnungssatz@Perron~1977!, Kap. 6.42, Satz 2#, one can see that one can cancel t
factor (k11)(k1q11) in gk , dk . Namely, it is equivalent to calculate the zeros of the me
morphic functionM( j ,qux) instead ofM̃( j ,qux), whereM( j ,qux) is defined by the continued
fraction,

M~ j ,qux!ªd01 (
k51

`
cku
udk

, ~10!

where

;k>0 dkªk~k12q11!1m2x,

;k>1 ckª2k~k1q!x.

For this continued fraction one can even prove separate convergence@see Thron~1991! for defi-
nitions#. To see this, recall thatm5(q2 j )( j 1q11), and rewrite the continued fraction in th
following way:

; j 2q>1 M~ j ,qux!5d01 (
k51

j 2q21
cku
udk

1
2 j ~ j 2q!

211
m~ j ,qux!

x

,
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; j >0 M~ j , j ux!5xS 211
m~ j , j ux!

x D .

Here,

m~ j ,qux!ª (
k5 j 2q11

` cku

udk

can be written as a T-fraction using again the Umordnungssatz@Perron~1977!, Kap. 6.42, Satz 2#,
i.e.,

m~ j ,qux!5 (
k5 j 2q11

`
Fkxu

u11Gkx
, ~11!

where

;k> j 2q11 Gkª2
1

~k2 j 1q!~k1 j 1q11!
,

;k> j 2q12 Fkª
2k~k1q!

~k2 j 1q21!~k2 j 1q!~k1 j 1q!~k1 j 1q11!
,

F j 2q11ª j 2q11.

Since we have both(k5 j 2q11
` uFku,` and(k5 j 2q11

` uGku,` we can apply@Thron ~1991!, Sec.
3, Th. 3.1# to the T-fraction~11!: let Ak(x) and Bk(x) be the numerators and denominato
respectively, of thenth approximant of the T-fraction~11!. Then the sequences (Ak(x))k> j 2q11

and (Bk(x))k> j 2q11 converge, uniformly on compact subsets ofC, to entire functionsA(x) and
B(x) of order at most one. FurtherB(0)51, A(0)50, A8(0)5F j 2q11 so that neither function is
identically zero, and (1/x)m( j ,qux) is well defined atx50.

B. The determination of the scattering phase and the monodromy

In this section we calculate the scattering phase of the regular solutionureg in the case that it
is also regular atz521.

Let us first look at the asymptotic expansion of the solutions of Eq.~6!. For an asymptotic
expansion a Fabry transformation~Olver, 1974! is suitable, i.e., a change of the variable accord
to x25z. With u(z)5U(x), Eq. ~6! becomes

~x211!U9~x!1S 2
x211

x
1

2~q11!~2x211!

x DU8~x!1~4b~2x211!14m!U~x!50.

By standard methods,@cf. Coddington and Levinson~1955!# one finds that this equation has tw
linearly independent solutionsH1 , H2 , such that for somed.0 the following asymptotic expan
sions hold,

;x 22p1d<argx<p2d: H1~x!;
1

x2q1~3/2!
e22iA2bx(

k50

`
~21!kpk

~4iA2bx!k
,

~12!

;x 2p1d<argx<2p2d: H2~x!;
1

x2q1~3/2!
e22iA2bx(

k50

`
pk

~4iA2bx!k
,

where the coefficients (pk)kPN fulfill the following four-term recurrence relation:
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p225p2150,
~13!

;k>0: pk115
k~k11!24b24 j ~ j 11!2 3

4

k11
pk132b

k1q

k11
pk21

232b
k21~2q21!k2q1 1

4

k11
pk22 .

It follows from this recurrence relation that forp0PR the coefficients (pk)kPN are real. In par-
ticular, we haveH1(x)5H2( x̄). This property remains true not only asymptotically, but also
the actual solutions: Since all the coefficients in the differential equation are real, the co
conjugate of any solution is again a solution.

The Stokes phenomenon will lead to a nontrivial monodromy of the solutions if we
through a cycle around infinity~Olde Daalhuis, 1995!. However, since the solutionsH1 , H2 are a
complete system of solutions the new solutions can be expressed as linear combinations o
These are the connection formulas. In the case of a second order differential equation th
been explicitly calculated, namely in Olde Daalhuis and Olver~1994!. We obtain foruxu@0,

lim
u→1

H1~xe22p iu!52H1~x!12p iPH2~x!,

~14!
lim
u→1

H2~xe2p iu!522p iPH1~x!2H2~x!.

The parameterP can be determined by a generalized Borel transformation of the asymp
solution as pointed out in Gurarii and Matsaev~1994! and Gurarii and Matsaev~1994!. For
ordinary differential equations of second order this has been done explicitly by Olde Daalhu
Olver ~1994!. Applying these results we can determine the parameterP from the coefficients in the
asymptotic expansion~13!, i.e.,

P5 lim
k→`

1

~k21!!

pk

p0
. ~15!

In particular, the parameterP is real. We subsume the solutionsH1 , H2 in the vector H
ª

t(H1 ,H2). We are interested in the matrixC which describes the behavior if we go around t
singularity atx5`, i.e.,

lim
u→1

H~xe2p iu!5C"H~x!,

lim
u→1

H~xe22p iu!5~C!21
•H~x!.

From the connection formulas~14! we obtain

C52S 124p2P2 2p iP

2p iP 1 D . ~16!

Notice that this matrix describes the monodromy by passing through a cycle around infinity~in the
x-variable!. In the original variablez this describes a cycle that winds up twice around infinity

As a last step we need to calculate the linear combination of the regular solutionureg(z) in
terms of the solutionsH(x) derived earlier. This amounts to determining a complex param
lPU(1) such that
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ureg~z!5~l l̄!•H~x!.

The occurrence ofl and l̄ is due to the fact thatureg(z) is real, i.e.,ureg( z̄)5ureg(z), and
H1( x̄)5H2(x).

Now, the representation ofureg(z) by the power series~7! is valid for uzu.1 iff the coefficients
(ak)k>1 constitute a minimal solution of the recurrence relation~8!. Therefore,ureg(z) has a trivial
monodromy around both of the regular singularities iff the (ak)k>1 constitute a minimal solution
of Eq. ~8!. Hence, iff for any set of parameters (b, j ,q) the equationM( j ,qub)50 holds, then the
following equation must hold:

ureg~z!5 lim
u→1

ureg~ze4p iu!5~l l̄!• lim
u→1

H~xe2p iu!5~l l̄!•C"H~x!.

Thus, the equationM( j ,qub)50 holds iff

~l l̄!5~l l̄!•C,

or equivalently~sinceP is real!,

P25
1

p2
,

l̄52 ipPl.

If we setl5 ie2 ig with gPR we obtain

g5H p

4
if P5

1

p

3p

4
if P52

1

p

modp. ~17!

Thus,l encodes the crucial information for the asymptotic expansion of the regular solution

ureg~z!5
1

i
~eigH2~x!2e2 igH1~x!!;

2p0

zq1~3/4! S sin~2A2bz1g!1OS 1

Az
D D .

This is the desired formula for the scattering phase in the case that the set of parametersb, j ,q)
induces a minimal solution of the recurrence relation~8!.

By standard methods one can show that there are only the following two types of asym
behavior for solutions (pk)kPN of the recurrence relation~13!,

pk11

pk
5H k1OS 1

kD
64A2b1OS 1

kD .
~18!

Therefore, ifPkª1/(k21)!(pk /p0) converges tos/p @cf. Eqs.~15! and ~17!# i.e.,

Pk5
s

p
1

m

kn
1oS 1

knD ,
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wheres is either21 or 1 andmPR, nPR.0 , the ratio of the coefficientspk11 and pk must
behave asymptotically as

pk11

pk
5k2

nmsp

kn
1oS 1

knD .

A comparison with~18! then givesn>1, and by expanding the RHS of~13! we finally obtain

pk11

pk
5k2

msp

k
1OS 1

k2D ,

msp54b14 j ~ j 11!1 3
4.

Therefore, the coefficients (pk)kPN must be a dominant solution of Eq.~13! if Pk converges to
s/p.

C. Computation

The numerical determination of the scattering phase consists of two steps: First, we h
determine the successive zeros of the functionM( j ,qux). However, one should mention that fo
the necessary evaluation of the continued fraction one has to use a backward algorithm sin
forward algorithm must be numerically instable as shown in Gautschi~1967!.

We have determined the positive zeros (bn)nPN of M( j ,qux) by a simple bisection algorithm
where the evaluation of the continued fraction was accomplished by the Gautschi algorithm
essential to use the functionM( j ,qux) instead of the earlier definedM̃( j ,qux): Because of the
structure of the coefficients in the continued fraction the typical values ofM̃( j ,qux) become very
small, and the determination of its zeros unstable.

Second, for those values ofbn for which the recurrence relation~8! has a minimal solution by
~17! the asymptotic scattering phase is eitherp/4 or 3p/4 depending on the sign ofP. P is
determined by a solution of the four-term recurrence relation~13!. We have proven in Sec. IV B
that for the parameters (bn , j ,q) this must be a dominant solution of the recurrence relation~13!.
Thus,P can be determined by a simple forward algorithm which will be numerically stable. W
the set (bn , j ,q,signP) we then have the data needed for a numerical interpolation of the
tering phase over the whole range ofb.

V. NUMERICAL RESULTS

A. Numerical results for the WKB approximation

The figures below show the scattering phases for different quantum numbersj and q with
varying parameterb obtained by the WKB approximation from Sec. III. In Figs. 1–4 we ha
applied the WKB approximation of case I. Figure 1 shows~from the top to the bottom! the graphs
for D j ,q for j 51,...,10 andq51. Figure 2 shows~from the top to the bottom! the graphs forD j ,q

for j 53,...,10 andq53. Figure 3 shows~from the top to the bottom! the graphs forD j ,q for j
54,...,10 andq54. Figure 4 shows~from the top to the bottom! the graphs forD j ,q for j 55 and
q51,3,5. In Figs. 5 and 6 we have compared the WKB approximation of case II–IV~left! with the
WKB approximation of case I~right! for the valuesj 59, q50. The vertical line in Fig. 5 is
indicating the transition from case II–IV. Figure 7 shows~from the top to the bottom! the graphs
for D j ,0 for j 51,3,5. Figure 8 shows the graph forD12,0.

B. Comparison between WKB and Frobenius method

In this section we compare the numerical results for the asymptotic scattering phase ob
by the WKB approximation~already shown in Sec. V A! with the numerical data obtained by th
Frobenius/continued-fraction method as described in Sec. IV C.
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The figures below show the scattering phases for different quantum numbersj and q with
varying parameterb. Each figure will show the graph@b,D j ,q

WKB(b)# of the corresponding WKB
approximation, and crosses will mark the points@bn ,D j ,q

Fr (bn)#n>1 obtained by the Frobenius
continued-fraction method wherebn is thenth zero ofM( j ,qub) and

D j ,q
Fr ~bn!52

p

4
~21s!2 l j ,q~n!p2max~0,j 21!p ~19!

with s5sign(P) ~cf. Sec. IV B! and;n>1 : l j ,q(n)PN0 . Notice that the scattering phase is on
determined up to a multiple ofp since we can always change the sign of a solution by an ove
factor. Therefore, Eq.~19! is equivalent to Eq.~17!. We will also present an additional and mo
significant diagram of (D j ,q(b)modp) and varying parameterb.

Figures 9, 11, 13, 15 showD j ,0(b) with varying b. For all j and q50 we have founds
5sign(P)521. For j <6 it is l (n)ªn and all bn. j ( j 11), i.e., 1.a>0 and we have to
compare it to case IV of the WKB approximation.j 57 is the lowest value where forq50 we

FIG. 1. D j ,q for j 51,...,10;q51.

FIG. 2. D j ,q for j 53,...,10;q53.
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haveb1, j ( j 11), i.e., 1,a, and we have to compare it to case II of the WKB approximati
we have to relabel thebn . This can be done by setting; j >7 : l (n)ªun2 3

2u2
1
2.

However, since the phase can be obtained only up to multiples ofp the function l (n) is
irrelevant for the comparison ofD j ,q

WKB(b) andD j ,0
Fr (bn). For this purpose one can look at Fig

10–16, which are independent ofl (n). These figures show an exact match of the data
obtained by the WKB approximation and the Frobenius/continued-fraction method.

Figures 17–24 showD j ,1(b) with varying b. For all j andq51 we have founds5sign(P)
521. For j <8 it is l (n)ªn. j 59 is the lowest value where forq51 we haveb1,bmax, where
bmax denotes the local maximum of the WKB approximation: We have to relabel thebn . This can
be done by setting; j >9 : l (n)ªun2 3

2u2
1
2. Figures 17–24 show an exact match of the data s

obtained by the WKB approximation and the Frobenius/continued-fraction method.
Figures 25–32 showD j ,2(b) with varying b. For all j andq52 we have founds5sign(P)

521. For j <11 it is l (n)ªn. Figures 25–32 show an exact match of the data sets obtaine
the WKB approximation and the Frobenius/continued-fraction method.

The accuracy of the WKB approximation can be explained as follows: from the error b
in Eq. ~30! we can deduce the following numerical result for the errord j ,q(b) of D j ,q(b);

FIG. 3. D j ,q for j 54,...,10;q54.

FIG. 4. D j ,q for j 510, q51,...,10.
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ud j ,q50~b!u<
p

2
min~1,1.1e~1.2/Ab!21!.

This means that forb.4 we already have

ud j ,q50~b!u<
p

2
~e~1.2/Ab!21!,

and forb.100 we findud j ,q50(b)u<p/10.
The same computations can be made forq>1 with similar results since we also have a simil

error bound for the generald j ,q(b) in Eq. ~22!.

FIG. 5. D9,0 for cases II, III, IV.

FIG. 6. D9,0 for case I.
                                                                                                                



on the

-
bers

, or
in these

d the
mero-

scat-

4324 J. Math. Phys., Vol. 44, No. 9, September 2003 Andreas Malmendier

                    
VI. CONCLUSIONS AND OUTLOOK

The eigenvalue equation for the Laplace–Beltrami operator acting on scalar functions
noncompact Eguchi–Hanson space reduces to a confluent Heun equation@~2! or after a suitable
substitution~6!# with the Ince symbol@0,2,12#.

With the help of the Liouville–Green approximation~WKB! we have constructed approxima
tions for the eigenfunctions by special functions in Sec. III. Depending on the quantum num
that label the SU~2!-representation the approximating functions are either Airy, Whittaker
Bessel functions. Furthermore, we have derived the scattering phases and error bounds
cases.

Moreover, for specific discrete values of the eigenvalue in Sec. IV we have constructe
exact solutions by the Frobenius methods. These eigenvalues are given by the zeros of a
morphic function defined by the infinite continuous fraction~10!. Together with a monodromy
computation this has provided us with the data needed for a numerical interpolation of the
tering phases.

FIG. 7. D j ,0 for j 51, 3, 5.

FIG. 8. D12,0.
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Finally, in Sec. V we have shown that these two sets of data~obtained by the WKB approxi-
mation and the Frobenius/continued-fraction method! agree to a high accuracy. This shows th
one can find a discrete set of exact values for the spectral density of the Laplace–Be
operator by the method described in Sec. IV C. Conversely, it shows that the expressions
eigenfunctions and scattering phases which were derived in Sec. III and which have the adv
of being given in terms of explicit functions are very accurate approximations and can be us
all numerical purposes.

It is now interesting to ask whether the meromorphic function defined by the conti
fraction ~10! can be expressed explicitly as a ratio of special functions. If so we could obtai
discrete eigenvalues—for which we have already calculated the exact scattering phase an
we have also computed numerically by the continued fraction—as zeros of this ratio of s
functions. A first step towards an explicit representation of the continued fraction might arise
the method of Pincherle. If we apply Perron~1977! ~Kap. 21.84, Satz 8! to the continued fraction
~10! we obtain the following result: a representation of the meromorphic function defined b
T-fraction ~10! is given by

FIG. 9. D0,0
WKB andD0,0

Fr .

FIG. 10. D0,0
WKB andD0,0

Fr modulop.
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M~ j ,qux!5q~q11!2 j ~ j 11!1x1

dq016px3fS 1

2xD1*1/2x
` dzf~z!z23

dq08px2fS 1

2xD1*1/2x
` dzf~z!z22

.

Here,f is the solution of the differential equation,

H z3S z2
1

2xD d2

dz2
1z2S ~q11!z2

q

xD d

dz
1S x2q~q11!1 j ~ j 11!

2x
z2

1

2xD J f~z!50

that behaves as (z2(1/2x))q at the regular singularityz51/2x. An analysis of the differential
equation shows that such a solution always exists. A further analysis of the behavior
irregular singularityz5` then shows that all the appearing integrals also exist.

FIG. 11. D1,0
WKB andD1,0

Fr .

FIG. 12. D1,0
WKB andD1,0

Fr modulop.
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A closer investigation of the meromorphic functionM( j ,qux) is subject of our ongoing
research.
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APPENDIX A: THE DIFFERENT CASES IN THE WKB APPROXIMATION

In this Appendix we show the explicit construction of the approximate solutions of the
ferential equation~3! by the Liouville–Green approximation~WKB! in cases I–IV~cf. Sec. III!.

FIG. 13. D7,0
WKB andD7,0

Fr .

FIG. 14. D7,0
WKB andD7,0

Fr modulop.
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The construction of an error bound in cases I–III can be found in the references. The const
of the bound in case IV is given in Appendix B and might explain the construction and philos
behind these error bounds.

To give bounds for the different cases I–IV we need the notion of auxiliary weight, mod
and phase functionE, M, andu: If X, Y are solutions of the respective differential equation of t
first and second kind, thenX5ME21 sinu andY5EM cosu.

In particular, in case I we will needE, M, u for the Airy function@see Olver~1974!, Sec. 11.2#
for more details!,

Ai ~x!5
M ~x!

E~x!
sinu~x!, Bi~x!5E~x!M ~x!cosu~x!.

In cases III and IV, we will use the functionsE0 , M0 , u0 for the Bessel function@see Olver
~1974!, Secs. 12.1 and 12.3 for more details#,

FIG. 15. D9,0
WKB andD9,0

Fr .

FIG. 16. D9,0
WKB andD9,0

Fr modulop.
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J0~x!5
M0~x!

E0~x!
cosu0~x!, Y0~x!5E0~x!M0~x!sinu0~x!.

For case II, the definition of modulus and weight function is the most complicated. Therefor
refer to @Dunster~1994!, Chap. 2, Th. 1# for quite extensive definitions in this case.

1. Case I

In case I it is easy to prove that the functionf has a transition point~i.e., simple zero! at z
.1 which we denote byz0 . The idea is now to perform the transformation of the variablez and
the functionw(z) to z, W(z) according to

5 ; z>z0 : 2
3~2z!3/25E

z0

z
Af ~ t !dt,

; z<z0 : 2
3z

3/25E
z

z0A2 f ~ t !dt,

FIG. 17. D2,1
WKB andD2,1

Fr .

FIG. 18. D3,1
WKB andD3,1

Fr .
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and w(z)5A2(dz/dz)W(z). Note thatz→2` corresponds toz→`, z→02 to z→z01, and
z→` to z→1. Equation~3! becomes

d2

dz2
W~z!5@u2z1c~z!#W~z!,

~A1!

c~z!5
5

16z2
2@4 f ~z! f 9~z!25 f 8~z!2#

z

16f ~z!3
2

zg~z!

f ~z!
.

Approximate solutions of~3!, i.e., solutions of~A1! with c50, that are regular atz51, are given
by Olver ~1974! ~Sec. 11.3, Th. 3.1!,

w~z!5A4 2
z

f ~z!
@Ai ~u2/3z!1e~u,z!#, ~A2!

with

ue~u,z!u<
1

l

M ~u2/3z!

E~u2/3z!
@e~2l/u!Vz,`~ uzu1/2B0~z!!21#.

The constantl and the functionB0 are defined as follows:

lªsup
x

H puxu
1

2
M2~x!J ,

B0~z!ª
1

2Auzu
E

z

` dv

uvu1/2
c~u,v !,

andV is the variational operator, i.e.,

Vz,`~ uzu1/2B0~z!!5
1

2 Ez

` dv

uvu1/2
uc~u,v !u.

FIG. 19. D4,1
WKB andD4,1

Fr .
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Following the discussion in Olver~1974! ~Sec. 13.7.2! we can determine the behavior forz→1
andz→`,

A~z! ——→
z→1 A4 b

2Apq
~z21!q/2,

A~z! ;
z→` 1

Apz3/4
sinS uE

z0

z
Af ~ t !dt1

p

4
1d D ,

where we have used limz→` e(u,z)50, and the phased is determined by limz→` e(u,z). We
know that the argument of the sin-function equals 2Abz1D j ,q for largez, i.e.,

A~z! ;
z→` 1

Apz3/4
sin~2Abz1D j ,q!.

FIG. 20. D5,1
WKB andD5,1

Fr .

FIG. 21. D6,1
WKB andD6,1

Fr .
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Therefore, for the scattering phase we obtain

D j ,q5u lim
z→`

S E
z0

z
Af ~ t !dt22AzD 1

p

4
1d,

and with the help of Olver~1974! ~Sec. 11.2! it follows that

2udu
p

<minH 1,
1

l
@e~2l/u!V2`,`~ uzu1/2B0~z!!21#J . ~A3!

To resume, the solution~A2! can be considered as relation between the recessive solution a
asymptotic expansion. In this sense, the solution is aconnection formulaand it is known as the
Gans–Jeffreysformula.

FIG. 22. D7,1
WKB andD7,1

Fr .

FIG. 23. D8,1
WKB andD8,1

Fr .
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2. Case II

In case II, f (z)5(z2a)/(z221), we can apply a result of Olver and Nestor that has b
generalized in Dunster~1994!. The Liouville transformation takes the form,

E
a

zS t2a

t D 1/2

dt5E
a

z

dtAf ~ t !

with

aª
2

p E
1

a
A2 f ~ t !dt.

Therefore, we perform the transformation of the variablez and the functionw(z) to z, W(z)
according to

FIG. 24. D9,1
WKB andD9,1

Fr .

FIG. 25. D4,2
WKB andD4,2

Fr .
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z1/2~z2a!1/22
a

2
lnS 2z2a12z1/2~z2a!1/2

a D5E
a

z
Af ~ t !dt

andw(z)5Adz/dzW(z). The integral can be expressed through an elliptic integral of the se
kind;

E
a

z
Af ~ t !dt52A~z2a!~z11!

z21
22A11a E FarcsinSAz2a

z21D ,A 2

11aG .
Note thatz→a corresponds toz→a, z→0 to z→1, where branches ofz must be chosen such tha
it is an analytic function at both values. Moreover,z→` corresponds toz→`. Equation~3!
becomes

d2

dz2
W~z!5Fu2

a2z

z
2

1

4z2
1

c~z!

z GW~z!,

FIG. 26. D5,2
WKB andD5,2

Fr .

FIG. 27. D6,2
WKB andD6,2

Fr .
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c~z!5
4z21a2

16z~a2z!2
1@4 f ~z! f 9~z!25 f 8~z!2#

z2a

16f ~z!3
1

~z2a!g~z!

f ~z!
.

Approximate solutions of~3!, i.e., solutions of~20! with c50, that are regular atz51, are given
in Dunster~1994! ~Chap. 2, case 1,m50) in terms of the Whittaker functionM, i.e.,

w~z!5A4 z2a

z f ~z! Fe2~ ip/4!A 2p

11epua
M iua/2,0~2iuz!1e~u,z!G ~A4!

with

ue~u,z!u<
Mua/2,0

~1! ~2uz!

Eua/2,0
~0! ~2uz!

@ek0~ua/211!1/3/2uVP~0!~F !21#.

FIG. 28. D7,2
WKB andD7,2

Fr .

FIG. 29. D8,2
WKB andD8,2

Fr .
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For the error bound we have adopted the notation of Dunster~1994! ~Chap. 2, Th. 1!. Using
formula ~2.19! in Dunster~1994! we determine the behavior of the solution forz→1,

A~z! ——→
z→1 A 2p

11epua
A4 2au2

a21 S z

z21D 1/4

,

where we have used limz→0 e(u,z)50. A close examination of the Liouville transformation the
shows thatz/(z21)→(a21)/(2a) for z→0 andz→1. Using Dunster~1994! @~2.16!–~2.18!# we
obtain forz→`,

A~z! ;
z→` 2

z3/4
sinS uz2

ua

2
ln~2uz!1

p

4
1g1d D ,

where

FIG. 30. D9,2
WKB andD9,2

Fr .

FIG. 31. D10,2
WKB andD10,2

Fr .
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g5argGS 1

2
1

iua

2 D
and the phased is determined by limz→` e(u,z). We know that the argument in the sin-functio
equals 2Abz1D j ,0 for largez, i.e.,

A~z! ;
z→` 1

z3/4
sin~2Abz1D j ,0ua.1!.

A careful examination of the Liouville transformation reveals the following relation between l
z andz,

z2
a

2
2

a

2
ln~z!1

a

2
lnS a

4 D1O~z21!52Az22A11a E FA 2

11aG1O~z2~1/2!!.

Therefore, for the scattering phase we obtain

D j ,0ua.15u lim
z→`

S z2
a

2
ln~2uz!22AzD1

p

4
1g1d

522uA11a E FA 2

11aG1
au

2
2

au

2
lnS au

2 D1
p

4
1g,

g5argGS 1

2
1

iua

2 D , ~A5!

2udu
p

<min$1,@ek0~ua/211!1/3/2uVP~0!~F !21#%.

The phaseD j ,0ua.1 differs from the one obtained in Mignemi~1991!.

FIG. 32. D11,2
WKB andD11,2

Fr .
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3. Case III

In case III, the functionf has neither a transition point nor a pole forz>1. This case can be
understood as the limita→1 of case II, and applying further results of Olver’s~1977!, in this limit
the Whittaker function will become the Bessel functionJ0 .

The idea is to perform the transformation of the variablez and the functionw(z) to z, W(z)
according to

z5E
1

z
Af ~ t !dt52Az1122A2

and w(z)5Adz/dzW(z). Note thatz→` corresponds toz→` and z→0 to z→1. Equation~3!
becomes

d2

dz2
W~z!5F2u22

1

4z2
1

c~z!

z GW~z!,

~A6!

c~z!5
1

4z
1@4 f ~z! f 9~z!25 f 8~z!2#

z

16f ~z!3
1

zg~z!

f ~z!
.

Approximate solutions of~3!, i.e., solutions of~A6! with c50, that are regular atz51, are given
by Olver ~1977! ~Chap. 5, Th. 2, case 2,n50, m50!, i.e.,

w~z!5
1

A4 f ~z!
@z1/2J0~uz!1e~u,z!#, ~A7!

with

ue~u,z!u<
l 0,1

l 0,0

M0~uz!

E0~uz!
@el 0,0V0,z~H !21#.

The constantsl 0,0, l 0,1, and the functionH are defined as follows:

l 0,0ªsup
x

$pV0~x!M0
2~x!%,

l 0,1ªsup
x

$pV0~x!uJ0~x!uE0~x!M0~x!%,

H~u,z!ª
1

2 E c~u,z!

V0~z!
dz,

V0~x!ª
11x

lnS e1
1

xD ,

andV is the variational operator, i.e.,

V0,z~H !5
1

2 E0

z dv
V0~uv !

uc~u,v !u.

We determine the behavior of the solutions forz→1 andz→`,
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A~z! ——→
z→1 1

A2
J0S u

z21

A2
D→ 1

A2
,

A~z! ;
z→` A2

Apuz3/4
sinS uE

1

z
Af ~ t !dt1

p

4
1d D ,

where we have used limz→01 e(u,z)50, and the phased is determined by limz→` e(u,z). We
know that the argument of the sin-function equals 2Abz1D j ,0ua51 for largez, i.e.,

A~z! ;
z→` A2

Apuz3/4
sin~2Abz1D j ,0ua51!.

Therefore, for the scattering phase we obtain

D j ,0ua515u lim
z→`

S E
1

z
Af ~ t !dt22AzD 1

p

4
1d52A8b1

p

4
1d

and with the help of Olver~1977! ~Chap. 5! and analogous to Appendix B the bound fore in ~A7!
gives a bound for the phased. It follows that

2udu
p

<minH 1,
l 0,1

l 0,0
@el 0,0/uV0,̀ ~H !21#J . ~A8!

The phaseD j ,0 differs from the one obtained in Mignemi~1991! by p/4.

4. Case IV

In case IV the functionf has no transition point forz>1 and takes the formf (z)5(z
2a)/(z221). The idea is now to perform the transformation of the variablez and the function
w(z) to z, W(z) according to

~2z!1/25E
1

z
Af ~ t !dt

andw(z)5A2(dz/dz)W(z). The integral can be expressed through elliptic integrals of the
and second kind,

E
1

z
Af ~ t !dt52Az221

z2a
1~12a!A2 FFarcsinSAz21

z2aD ,A11a

2 G
22A2 EFarcsinSAz21

z2aD ,A11a

2 G .
Note thatz→2` corresponds toz→` andz→02 to z→11. Equation~3! becomes

d2

dz2
W~z!5F u2

4z
2

1

4z2
1

c~z!

z GW~z!,

~A9!

c~z!5
1

16z
2

g~z!

4 f ~z!
2

4 f ~z! f 9~z!25 f 8~z!2

64f ~z!3
.
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Approximate solutions of~3!, i.e., solutions of~A9! with c50, that are regular atz51, are then
given by Olver~1974! ~Sec. 12.4, Th. 4.1,n50, n50), i.e.,

v~z!5
1

A4 4uzu f ~z!
@ uzu1/2J0~uuzu1/2!1e~u,z!# ~A10!

with

ue~u,z!u<
l0,1

l0,0
uzu1/2

M0~uz!

E0~uz!
@el0,0/uVz,0~ uzu1/2B0~z!!21#.

The bound for the errore is derived in Appendix B. The constantsl0,0,l0,1, as well as the
function B0 are defined as follows:

l0,0ªsup
x>0

$pxM0
2~x!%,

l0,1ªsup
x>0

$pxM0
2~x!,cosu0~x!%,

B0~z!ª
1

uzu1/2Ez

0 dv

uvu1/2
c~v !,

andV is the variational operator, i.e.,

Vz,0~ uzu1/2B0~z!!5E
z

0 dv
uvu1/2 uc~v !u,

We determine the behavior of the solutions forz→1 andz→`,

A~z! ——→
z→1 1

A2
J0~uA2~12a!Az21!→ 1

A2
,

A~z! ;
z→` 1

Apuz3/4
sinS uE

1

z
Af ~ t !dt1

p

4
1d D ,

where we have used that limz→02 e(u,z)50 and the phased is determined by limz→2` e(u,z).
We know that the argument of the sin-function equals 2Abz1D j ,0 for largez, i.e.,

A~z!;
1

Apuz3/4
sin~2Abz1D j ,0!.

Therefore, we obtain for the scattering phase,

D j ,0ua,15u lim
z→`

S E
1

z
Af ~ t !dt22AzD 1

p

4
1d

5~12a!A2b K FA11a

2 G22A2b E FA11a

2 G1
p

4
1d.

In addition, we will derive in Appendix B,
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2udu
p

<minH 1,
l0,1

l0,0
@e~l0,0/u!V2`,0~ uzu1/2B0~z!!21#J . ~A11!

The phaseD j ,0ua,1 differs from the one obtained in Mignemi~1991! by p/4 and the factor in front
of the elliptic integral of the first kind.

APPENDIX B: ERROR BOUNDS

In this Appendix we apply the construction of error bounds presented in Olver~1974! ~Sec.
11.3! to case IV @cf. Olver ~1974! ~Sec. 12.4, Ex. 4.4!#. In case IV the Bessel function
uzu1/2J0(uuzu1/2) and uzu1/2Y0(uuzu1/2) of the first and second type, are first approximations forW.
They are exact solutions ifc[0. SubstitutingW(z)5uzu1/2J0(uuzu1/2)1e(u,z), the differential
equation becomes

d2

dz2
e~u,z!2F u2

4z
2

1

4z2Ge~u,z!5
c~z!

z
@e~u,z!1uzu1/2J0~uuzu1/2!#.

If we rewrite it as an integral equation we obtain a Volterra integral equation,

e~u,z!5E
z

0

K~z,v !
c~v !

uvu1/2 @e~v !1uvu1/2J0~uuvu1/2!#dv,

where

K~z,v !5puvu1/2@J0~uuzu1/2!Y0~uuvu1/2!2Y0~uuzu1/2!J0~uuvu1/2!#.

Using the fact thatE0 is a nonincreasing function we obtain

We introduce the parametersk0 , k by

k0ª sup
vP@z,0#

$P0~v !Q~v !%<
l0,0

u
,

kª sup
vP@z,0#

$Q~v !uuvu1/2J0~uuvu1/2!u%<
uzu1/2l0,1

u
.

With the help of Olver~1974! ~Sec. 6.10, Th. 10.2! which establishes a bound for the solution
a Volterra integral equation we end up with a bound fore,

ue~u,z!u
P0~z!

<
k

k0
@exp$k0Vz,0~ uzu1/2B0~z!!%21#<uzu1/2

l0,1

l0,0
FexpH l0,0

u
Vz,0~ uzu1/2B0~z!!J 21G .

~B1!

We are interested in an error bound for the phase in the asymptotic expansion of the so
Assume that the solutionW takes the following form for large argumentsz:

W~u,z! ;
z→`S 2uzu1/2

pu D 1/2S ~11r!sinS uuzu1/21
p

4
1d D1o~1! D .
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As in Olver ~1974! ~Sec. 6.7! we rewrite the difference of the exact and the approximate solu
as a trigonometric function,

e~u,z!5W~u,z!2uzu1/2J0~uuzu1/2!

;
z→`S 2uzu1/2

pu D 1/2H @11r#sinS uuzu1/21
p

4
1d D2sinS uuzu1/21

p

4 D J
5S 2uzu1/2

pu D 1/2

s sinS uuzu1/21
p

4
1h D ,

where the new parameterss ~always considered to be positive! andh are related tor andd by

~11r!eid511seih.

By elementary geometry it follows that 2udu/p<s. Then, the bound fore in ~B1! gives a bound for
s. Now, we choose a sequence (zn) with limn→` zn52` for which uuzu1/21(p/4)1h is an odd
integer multiple ofp/2. This shows that

sz→2`5 lim
z→2`

S pu

2uzu1/2D 1/2

ue~u,z!u.

Finally, since

M0~x! ;
x→`S 2

pxD 1/2

,

E0~x! 5
x→`

1,

we obtain a bound ford,

2udu
p

<minH 1,
l0,1

l0,0
@e~l0,0/u!V2`,0~ uzu1/2B0~z!!21#J .
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Berezin transform on the quantum unit ball
Dmitry Shklyarova)

Institute for Low Temperature Physics and Engineering,
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Genkai Zhangb)
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We introduce and study, in the framework of a theory of quantum Cartan domains,
a q-analog of the Berezin transform on the unit ball. We constructq-analogs of
weighted Bergman spaces, Toeplitz operators, and covariant symbol calculus. In
studying the analytical properties of the Berezin transform we introduce also the
q-analog of the SU(n,1)-invariant Laplace operator~the Laplace–Beltrami opera-
tor! and present related results on harmonic analysis on the quantum ball. These are
applied to obtain an analog of one result by A. Unterberger and H. Upmeier. An
explicit asymptotic formula expressing theq-Berezin transform via the
q-Laplace–Beltrami operator is also derived. At the end of the article, we give an
application of our results to basic hypergeometricq-orthogonal polynomials.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1593226#

I. INTRODUCTION

Since the appearance of quantum groups in the middle of the 1980s there have been d
attempts to find an appropriate generalization to theq-case of various classical constructions in t
analysis and geometry of Lie groups. Recently, it became clear1 that there should exist a substa
tial q-analog of the theory of Cartan domains~the most studied class of such domains constitu
the so-called classical domains2!. In turn, this observation has opened a way to generalizatio
other important theories about those domains. One of the most fascinating among them
Berezin quantization.3 Though Berezin applied his construction to a wide class of Ka¨hler mani-
folds, the most complete and precise results have been obtained just in the particular c
Cartan domains.4,5

It should be noted that first attempts to findq-analogs of some constructions of the Berez
theory were made before the study ofq-Cartan domains was initiated. For example, in Ref. 6
authors studied a two-parameter deformationPq,l of the polynomial algebraC@z,z̄# related to
certain SU(1,1)-covariant Poisson brackets on the unit disk. They showed, among other
that for anyl the algebraPq,l is acted upon by the quantum universal enveloping algebraUqsl2 .
Also, for each q the authors definedq-analogs of the weighted Bergman spacesLa

2((1
2uzu2)ldz̄dz) (l>0) on the unit disk and showed thatPq,l could be realized as the algebra
Toeplitz operators~with symbols fromPq,0) on theq-weighted Bergman space corresponding
l. This observation suggests that it is reasonable to regardPq,0 as a genuine function algebra o
the quantumunit disk andPq,l as a result of the Toeplitz quantization ofPq,0 which, in addition,
respects theUqsl2-actions in complete analogy with the classical setting.

This point of view was developed in detail in Ref. 7. There, in addition to the results of
6, q-analogs of covariant symbols and of the Berezin transform on the quantum unit disk
produced~see Ref. 8 for a concise account!. Also, in Ref. 7 an explicit asymptotic formula
expressing theq-Berezin transform via aq-Laplace–Beltrami operator on the quantum disk, w

a!Electronic mail: shklyarov@ilt.kharkov.ua
b!Author to whom correspondence should be addressed. Electronic mail: genkai@math.chalmers.se
43440022-2488/2003/44(9)/4344/30/$20.00 © 2003 American Institute of Physics
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derived. This allowed the authors to produce an analog of the Berezin star product and t
obtain a formal deformation of the algebraPq,0 .

The present article continues the study of theq-Berezin transform initiated in Ref. 7. Here w
investigate the case of the quantum unit ball, whose one-dimensional version is the afor
tioned quantum unit disk, and generalize to this case almost all constructions of Ref. 7. Na
we produce analogs of the weighted Bergman spaces, Toeplitz operators, covariant symbo
the Berezin transform on the unit ball. Also, we define aq-analog of the SU(n,1)-invariant
Laplace operator~the Laplace–Beltrami operator! and derive an explicit asymptotic formula ex
pressing theq-Berezin transform via theq-Laplace–Beltrami operator.

It is appropriate to mention here that in the case of the quantum unit ball we encounter
phenomenon imperceptible in the case of the quantum unit disk. Namely, there is not any
factory analog of coherent states on the ball which are used to define covariant symb
operators and regarded as a basic ingredient of the Berezin’s theory. An appropriate analog
quantum unit disk was found in Ref. 7. However, that was possible due to commutativity o
algebra of ‘‘holomorphic functions’’ on the quantum disk, but the commutativity fails in the c
of the quantum ball. Fortunately, even in the classical setting there is an alternative way to
covariant symbols. Namely, the map

operator on a
weighted Bergman space°

covariant symbol,
a function on the ball

is, roughly speaking, the adjoint of the map

function
on the ball °

Toeplitz operator on a
weighted Bergman space

with respect to certain SU(n,1)-invariant inner products in the spaces of functions and opera
~see Ref. 5!. The significance of the Toeplitz and covariant calculi is of course well known and
been intensively studied. We exploit just this idea to define covariant symbols and thus the B
transform in theq-setting.

Let us turn now to description of the contents of the article.
Our results rely heavily on function theory in the quantum unit ball. In Sec. II we recal

basic setup and results from that theory obtained earlier by L. Vaksman and his group9,10 in the
more general setting of quantummatrix balls. In brief, we define an involutive algebra of ‘‘poly
nomials’’ on the quantumCn which generalize the algebraPq,0 mentioned above. The algebra
endowed with an action of the quantum universal enveloping algebraUqsun,1 . This is a counter-
part of the classical SU(n,1)-action on the unit ball. Using the polynomial algebra, we produce
spaces of ‘‘finite functions’’ and ‘‘distributions’’ on the quantum ball which inherit t
Uqsun,1-action. The crucial property, which justifies our definition of the space of finite funct
on the quantum ball, is the existence of aUqsun,1-invariant integral on that space, an analog of t
integral with respect to the SU(n,1)-invariant measure on the ball. We present an explicit form
for that integral. We note that the existence of the integral allows one to formulate many pro
of harmonic analysis on the quantum ball. Though the present article does not deal with ha
analysis, we develop some partial results~see description of Sec. IV below! which are needed to
put our result in a coherent and rigorous mathematics context.

Section III is devoted to find an appropriate algebraic and analytical setting. There we
developing of theq-Berezin’s theory and present all necessary definitions. First, we define an
of the weighted Bergman spaces in the ball and produce the notion of Toeplitz operator
polynomial or finite symbols. Though the finite symbols are of more importance for our ex
tion, we devote a separate subsection to the study of the algebra of Toeplitz operator
polynomial symbols. This is motivated by the observation that this algebra is a multivar
generalization of the algebraPq,l studied in Ref. 6. Results of Ref. 6 suggest that the algebr
Toeplitz operators with polynomial symbols might be interesting from the point of view of
theory of operator algebras. In the last subsection we present definitions of covariant symbo
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of the q-Berezin transform. Thus, in Sec. III we define three important maps: the map that
a function to the corresponding Toeplitz operator, the map that sends an operator to its co
symbol ~a function on the quantum ball!, and, finally, their composition—theq-Berezin
transform—which sends a function to the covariant symbol of the corresponding Toeplitz ope
We observe also that the three maps intertwine naturalUqsun,1-actions on the spaces of function
and operators. This quantum group symmetry of theq-Berezin transform simplifies drasticall
many computations in subsequent sections.

To investigate theq-Berezin transform further, for instance, to find its asymptotic expans
we need some results on harmonic analysis, particularly onq-spherical transform in the quantum
ball. These are presented in Sec. IV. First of all, we define there an analog of the Laplace–B
operator on the ball. At first sight, our definition seems to be somewhat unusual
q-Laplace–Beltrami operator appears as the first term in the asymptotic expansion
q-Berezin transform. However, this agrees with the classical Berezin’s theory. Besides, we b
that results of Sec. IV provide a sufficient evidence of rationality of such a definition. In partic
a ‘‘radial part’’ of our q-Laplace–Beltrami operator turns out to be a second order differe
operator which tends to the radial part of the classical Laplace–Beltrami operator asq approaches
1. Moreover, the difference operator turned out to be quite well studied by experts in the the
q-special functions~see, for instance, Ref. 11!. In particular, the problem of expansion in eige
functions of that difference operator had been already solved, and we recall explicit formu
the text. In view of our approach, those eigenfunctions should be regarded as analogs
spherical functions on the ball while the expansion is an analog of the spherical transform~see
Ref. 12!. Moreover, the Plancherel measure, which appears in the inverse transform, involv
analog of the Harish–Chandrac-function for the ball.

After we present the results on theq-spherical transform, we turn back in Sec. V to the stu
of the q-Berezin transform. In the first subsection of Sec. V we consider its ‘‘radial part.’’
prove that the radial part of the transform is extended to a bounded self-adjoint operator
space of square-integrable radial function on the quantum ball~we mean square-integrability with
respect to the invariantq-integral!. Moreover, the resulting operator commutes with the radial p
of the q-Laplace–Beltrami operator which is also a bounded self-adjoint operator on the
space. Since the latter operator has simple spectrum~this is stated in Sec. IV!, the radial part of the
q-Berezin transform appears to be a function of the radial part of theq-Laplace–Beltrami opera
tor. We found the function explicitly. We note that in the classical case the corresponding
was obtained in Ref. 5 for any Cartan domain. This computation has a number of consequ
some of which we use further in Sec. VI. In the last subsection of Sec. V, we present an asym
formula expressing theq-Berezin transform via theq-Laplace–Beltrami operator.

Section VI is meant for those readers who are interested in various mathematical applic
of the Berezin transform. It is, however, nevertheless related to quantization. In the theory o
quantization one associates to each function an operator so that the one-dimensional pro
onto the coherent state at a point~in the phase space! are assigned to the delta function. Howev
if the given Hilbert space has an orthogonal basis, the projections onto the basis vectors a
natural subjects so it is interesting to compute their covariant symbols. Here in our settin
show that the spherical transforms of those covariant symbols are, roughly speaking, hyp
metric orthogonalq-polynomials. We derive orthogonality relations for those orthogonal poly
mials, the so-called continuous dualq-Hahn polynomials.13 The entire family of these polynomial
depends on three parameters~not countingq) while we treat a two-parameter subfamily whic
appears naturally in connection with theq-Berezin transform. The idea we use appeared for
first time in Ref. 14 in the classical setting~see also Ref. 15!.

Let us make some comments about the most important agreements and notations use
article. First of all, the quantum-group parameterq is supposed to be a number from the interv
~0,1!. Next, we puthª logq22, soh.0; tªq2a will be the deformation parameter in the Berez
transform. Finally, we describe some convenient multi-index notations. We denote multi-in
by underlined small letters, the zero multi-index by 0I . For iI5( i 1 ,...,i n), jI5( j 1 ,...,j n) we put
                                                                                                                



. We

ce an
nted

wever,

ive

on
s
el-

en-

-

4347J. Math. Phys., Vol. 44, No. 9, September 2003 Berezin transform on the quantum unit ball

                    
u iIu5 i 11 i 21¯1 i n and iI3 jI5( i 1• j 1 ,...,i n• j n). For noncommuting variablesz1 ,z2 ,...,zn and
z1* ,z2* ,...,zn* we set

ziI
ªzn

i n
•zn21

i n21
• ••• •z1

i 1 , z* iI
ªz1

* i 1
• ••• •zn21

* i n21
•zn

* i n .

Finally, we denoteP(n)5$kI PZ>0
n u k1>k2>¯>kn%.

II. BASICS OF FUNCTION THEORY IN THE QUANTUM UNIT BALL

The aim of Sec. II is to introduce some notions of function theory in the quantum ball
define the involutive algebra of finite functions and the space of distributions on theq-ball. These
spaces admit actions of certain quantum universal enveloping algebra. Finally, we produ
explicit formula for the invariant integral on the space of finite functions. The material prese
in this section is not new: the quantum ball treated here is a particular case of the quantummatrix
ball considered in details in Refs. 9 and 10. Most results can be found in those papers, ho
we reformulate some of them for our particular purpose.

A. Polynomials on the quantum Cn

An initial object in constructing function theory in the quantum ball is the unital involut
algebra given by its generatorsz1 ,z2 ,...,zn and the relations

zizj5qzjzi , i , j , ~2.1!

zi* zj5qzjzi* , iÞ j , ~2.2!

zj* zj5q2zjzj* 1~12q2!S 12 (
k5 j 11

n

zkzk* D . ~2.3!

We denote this algebra byP(Cn)q and treat it as the polynomial algebra on the quantumCn. The
algebraP(Cn)q is a particular case of the algebra Pol(Matm,n)q of polynomials on the quantum
space ofm3n matrices considered in Refs. 9 and 10. Specifically,P(Cn)q coincides with
Pol(Mat1,n)q . @Moreover, it is not hard to show thatP(Cn)q is isomorphic to the known twisted
CCR-algebra.16#

In the sequel we use the algebraP(Cn)q to produce some ‘‘functional’’ spaces and algebras
the quantum ball. Those spaces, as well as the algebraP(Cn)q itself, are endowed with structure
of Uqsun,1-modules whereUqsun,1 is certain* -Hopf algebra called the quantized universal env
oping algebra forsun,1 . Let us turn to precise definitions.

We recall first the definition ofUqsun,1 . It is a ‘‘real form’’ of the Drinfeld–Jimbo quantum
universal enveloping algebraUqsln11 . The latter algebra is the unital algebra given by the g
eratorsEi ,Fi ,Ki

61 , i 51,2,...,n, and the following relations:

KiK j5K jKi , KiKi
215Ki

21Ki51, KiEj5qai j EjKi ,

KiF j5q2ai j F jKi , EiF j2F jEi5d i j ~Ki2Ki
21!/~q2q21!,

Ei
2Ej2~q1q21!EiEjEi1EjEi

250, u i 2 j u51,

Fi
2F j2~q1q21!FiF jFi1F jFi

250, u i 2 j u51,

@Ei ,Ej #5@Fi ,F j #50, u i 2 j uÞ1,

with (ai j ) being the Cartan matrix of typeAn . Moreover,Uqsln11 is a Hopf algebra. The comul
tiplication D, the antipodeS, and the counit« are determined by
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D~Ei !5Ei ^ 11Ki ^ Ei , D~Fi !5Fi ^ Ki
2111^ Fi , D~Ki !5Ki ^ Ki ,

S~Ei !52Ki
21Ei , S~Fi !52FiKi , S~Ki !5Ki

21 ,

«~Ei !5«~Fi !50, «~Ki !51.

The quantum universal enveloping algebraUqsun,1 is defined as the*-Hopf algebra
(Uqsln11 ,* ) with * being the involution inUqsln11 given by

En* 52KnFn , Fn* 52EnKn
21 , ~Kn

61!* 5Kn
61 ,

Ej* 5K jF j , F j* 5EjK j
21 , ~K j

61!* 5K j
61 , for j Þn

~see Ref. 17 for basic definitions concerning*-Hopf algebras!.
We need also the notion ofUqsun,1-module algebra. LetA be a Hopf algebra. An algebraF is

said to be anA-module algebra ifF carries a structure ofA-module and multiplication inF agrees
with the A-action, i.e., the multiplicationF ^ F→F is a morphism ofA-modules.~We recall that
for any A-modulesV1 , V2 their tensor product is endowed with anA-module structure via the
comultiplicationD:A→A^ A.) If A or F has some extra structures this definition includes nat
additional requirements. For example, in the case of a unital algebraF one adds the requiremen
of A-invariance of the unit:j(1)5«(j)•1, jPA. In the case of an involutive algebraF and a
*-Hopf algebraA one imposes the requirement of agreement of the involutions:

~j~ f !!* 5S~j!* ~ f * !, jPA, f PF. ~2.4!

Some natural examples of module algebras appear in the classical setting. SupposeX is a
smooth G-space with G being a Lie group. The G-action induces an action of the uni
enveloping algebraUg in the spaceC`(X) via differential operators. The usual Leibnitz rule f
the differentiation of product of two functions means thatC`(X) is a Ug-module algebra. This
example suggests the use of the language of module algebras for description of alge
functions onquantumG-spaces.

The structure ofUqsun,1-module algebra inP(Cn)q which we are going to present has th
following classical counterpart. The unit ballUn5$zPCnuizi,1% is a homogeneous space of th
group SU(n,1) whose elements act via~biholomorphic! linear-fractional transformations. Ele
ments of the universal enveloping algebraUsun,1 act on the spaceC`(Un) via differential opera-
tors with polynomial coefficients and thus keep the subspace of polynomials invariant.
induces aUsun,1-module algebra structure in the polynomial algebra onCn. We turn now to the
quantum case.

To describe theUqsun,1-module algebra structure inP(Cn)q we consider the action of the
elementsEi ,Fi ,Ki

61 on the generatorszi ,zi* . Moreover, by~2.4! it is sufficient to present for-
mulas for the action ofEi ,Fi ,Ki

61 on the ‘‘holomorphic’’ partz1 ,...,zn of generators ofP(Cn)q .
These are given in the following:

Proposition 2.1: There exists a unique structure of Uqsun,1-module algebra inP(Cn)q such
that, for kÞn,

Kkzi5H qzi , i 5k,

q21zi , i 5k11,

zi , otherwise,

~2.5!

Fkzi5q1/2
•H zi 11 , i 5k,

0, otherwise,
~2.6!
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Ekzi5q21/2
•H zi 21 , i 5k11,

0, otherwise,
~2.7!

and

Knzi5H q2zi , i 5n,

qzi , otherwise,
~2.8!

Fnzi5q1/2
•H 1, i 5n,

0, otherwise,
~2.9!

Enzi52q1/2
•H zn

2 , i 5n,

znzi , otherwise.
~2.10!

This statement may be deduced from Proposition 2.1 and Corollary 5.6 in Ref. 9 by easy c
tations. In the next subsection we will introduce some other importantUqsun,1-module algebras.

B. Finite functions on the quantum ball

It should be noted that in the classical case the space of polynomials does not suit purp
harmonic analysis in the ball because the volume of the ball with respect to the SU(n,1)-invariant
measure

dn~z!5
dm~z!

~12izi2!n11 ~2.11!

@wheredm(z) is the normalized Lebesgue measure# is infinite. One observes the same problem
the quantum setting: there is noUqsun,1-invariant integral onP(Cn)q , i.e., a linear positive
functional n:P(Cn)q→C such thatn(j( f ))5«(j)•n( f ) for any jPUqsun,1 ~« is the counit of
Uqsun,1). Thus it is reasonable to look for a quantum counterpart of the space of finite func
on the ball~functions with compact supports inside the ball!. The following construction for such
a counterpart was proposed in Ref. 9, Sec. 7.

Let us add to the algebraP(Cn)q one more generatorf 0 which satisfies the relations

f 0* 5 f 0
25 f 0 , zi* f 05 f 0zi50, i 51,2,...,n. ~2.12!

The resulting involutive algebra will be denoted byF(Un)q . It is demonstrated in Ref. 9, Sec. 7
that one may extend the structure ofUqsun,1-module algebra inP(Cn)q to one in F(Un)q as
follows:

Kkf 05 f 0 , Fkf 05Ekf 050, ~2.13!

with kÞn and

Knf 05 f 0 , Fnf 052
q1/2

q2221
f 0•zn* , Enf 052

q1/2

12q2 zn• f 0 . ~2.14!

The involutive algebraD(Un)q of finite functions on the quantum ball is defined as the two-sid
ideal F(Un)q• f 0•F(Un)q in F(Un)q . Due to ~2.13! and ~2.14!, D(Un)q is a Uqsun,1-module
subalgebra in F(Un)q . In the next subsection we present an explicit formula for
Uqsun,1-invariant integral onD(Un)q .

The above definition ofD(Un)q is convenient for many purposes but performing compu
tions. We present therefore an alternative description ofD(Un)q . For that purpose we letH be the
P(Cn)q-module given by its unique generatore0 such thatzi* e050, i 51,2,...,n. By the formulas
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~2.2! and~2.3!, H5P(Cn)q•e05C@Cn#q•e0 with C@Cn#q being the unital~noninvolutive! subalge-
bra in P(Cn)q generated byzi , i 51,2,...,n. Moreover, the elements$zmI

•e0%mI PZ
>0
n constitute a

basis inH. The following statement may be deduced from known results concerning the tw
CCR-algebra~see, for instance, Ref. 18!.

Proposition 2.2: (i) There exists a (unique up to a positive multiplier) scalar product in H s
that

~ f •e1 ,e2!5~e1 , f * •e2!

for any fPP(Cn)q and e1 ,e2PH.
(ii) The corresponding* -representation T ofP(Cn)q in the completion H̄of the pre-Hilbert

space H~the so-called Fock representation! is a faithful irreducible representation by bounde
operators.

We let C* (P(Cn)q) be theC* -algebra generated byP(Cn)q via the representationT. We
describe now an embedding ofD(Un)q in C* (P(Cn)q).

The representationT can be extended to a faithful* -representation of the algebraF(Un)q by
setting

T~ f 0!5orthogonal projection ontoC•e0 .

It is easy to show that the subalgebra$T( f ) u f PD(Un)q% of the algebra of bounded operato
on H̄ coincides with the subalgebra of those operators whose matrices in the basi$zmI

•e0%mI PZ
>0
n have only finitely many nonzero entries. Thus the algebraD(Un)q can be realized as a

subalgebra ofC* (P(Cn)q). It admits the following transparent description.
Let yi512zizi* 2¯2znzn* PP(Cn)q , i 51,2,...,n. Then (y1 ,...,yn) is a tuple of pairwise

commuting positive operators onH̄. The joint spectrum of the tuple (y1 ,...,yn) in C* (P(Cn)q) is
the closure inRn of the ‘‘q-simplex’’

M5$~q2k1,q2k2,...,q2kn! u kI PP~n!% ~2.15!

@P(n) is defined in the Introduction#. This is a consequence of the commutation relations

ziyj5H q22yjzi , i< j ,

yjzi , otherwise,
zi* yj5H q2yjzi* , i< j ,

yjzi* , otherwise.
~2.16!

We will henceforth identify a functionf (y1 , . . . ,yn) with a function f on the setM via the
spectral calculus.

Using the definition ofyi ’s and~2.16!, one can write an arbitrary elementf PP(Cn)q uniquely
in the form

f 5 (
iI3 jI50

ziI f iI, jI
~y1 ,y2 ,...,yn!z* jI. ~2.17!

The subalgebraD(Un)q,C* (P(Cn)q) may be identified with the algebra of finite sums of t
form ~2.17! whose coefficients are functions onM with finite supports.

We will use both descriptions ofD(Un)q . It is clear that the ‘‘distinguished’’ finite functionf 0

which appears in the definition ofD(Un)q may be described, in those terms, as follows:f iI, jI
[0

provided iIÞ0I or jIÞ0I , and

f 0I ,0I ~q2k1,q2k2,...,q2kn!5H 1, kI 50I ,

0, otherwise.

The following crucial property off 0 will simplify proofs of many results.
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Proposition 2.3: f0 generatesD(Un)q as a Uqsun,1-module.
A proof can be found in Ref. 9, Sec. 7.

C. Invariant integral

In this subsection we present an explicit formula for theUqsun,1-invariant integral on the
quantum ball. This formula was found in Ref. 9, Sec. 9.

Keep in mind the notationT for the Fock representation ofP(Cn)q and H for a
P(Cn)q-module, a dense linear subspace in the Hilbert spaceH̄ of the representationT ~see the
previous subsection!. It is easy to observe thatT( f )(H),H for any finite functionf . Thus H
becomes aD(Un)q-module. It is convenient to identify theD(Un)q-moduleH with the left ideal
C@Cn#q• f 0 @this is possible due to~2.12!#, with which we may equipH with some extra structures
In particular, the isomorphism ofD(Un)q-modules

H.C@Cn#q• f 0,D~Un!q

and formulas~2.5!, ~2.8!, ~2.13!, and ~2.14! defineH as aUqh-module whereUqh is the Hopf
subalgebra inUqsln11 generated byKi

61 , i 51,2,...,n. Denote the corresponding representati
of Uqh in H by G. The following statement was proved in Ref. 9.

Proposition 2.4: The linear functional onD(Un)q given by

f °n~ f !5trS T~ f !GS )
j 51

n

K j
2 j (n112 j )D D

is a Uqsun,1-invariant integral, i.e., n( f * f ).0, f Þ0, and n(j( f ))5«(j)•n( f ), jPUqsun,1 .
We shall use the normalized integral

E
Un

f dnq5~q2;q2!n•n~ f !

with (q2;q2)n5(12q2)(12q4)¯(12q2n).
The invariant integral is unique up to a positive scalar. This is an immediate conseque

Proposition 2.3.
We can rewrite now the formula for the invariant integral in a more convenient form. Sup

f PD(Un)q is written in the form~2.17!. Then one checks easily that

E
Un

f dnq5~q2;q2!n• (
kI PP(n)

f 0I ,0I ~q2k1,q2k2,...,q2kn!•q22nk1
•q2k2

• ••• •q2kn. ~2.18!

In the next proposition we explain how theUqsun,1-invariant integral makesD(Un)q into a
unitary Uqsun,1-module and thus provides a setup for harmonic analysis in the quantum ba

Proposition 2.5: The scalar product inD(Un)q given by

~w1 ,w2!5E
Un

w2* •w1dnq

is Uqsun,1-invariant, i.e., (j(w1),w2)5(w1 ,j* (w2)) for any w1 ,w2PD(Un)q and any j
PUqsun,1 .

Proof: This follows from the condition~2.4! in D(Un)q and the following formula of ‘‘inte-
grating by parts:’’ for anyw1 ,w2PD(Un)q andjPUqsun,1 one has

E
Un

j~w1!•w2dnq5E
Un

w1•S~j!~w2!dnq ~2.19!
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with S being the antipode ofUqsun,1 . To prove the latter formula, it is sufficient to verify th
equality on generatorsEi ,Fi ,Ki

61 of Uqsun,1 . In this particular case the equality is equivalent
the Uqsun,1-invariance of the integral. j

D. Distributions on the quantum ball

The aim of this subsection is to define the spaceD(Un)q8 of distributions on the quantum bal
We follow ideas in Ref. 19, Sec. 1, where the simplest casen51 is treated.

Equip the vector spaceD(Un)q with the weakest topology so that all the linear functional

l iI, jI
kI : f ° f iI, jI

~q2k1,q2k2,...,q2kn!

are continuous@hereiI, jIPZ>0
n satisfy iI3 jI50I , kI PP(n), and f iI, jI

is the corresponding coefficien
in the expansion~2.17! of f ].

The following results can be proved by direct, however tedious, computations, which we
Proposition 2.6: For a fixed fPD(Un)q the operator inD(Un)q of the right multiplication by

f is continuous. Also, the Uqsun,1-action in D(Un)q is continuous.
Let D(Un)q8 be the completion of the topological vector spaceD(Un)q . We shall use the

concrete realization ofD(Un)q8 as the space of infinite sums of the form~2.17! whose coefficients
f iI, jI

are arbitrary functions on theq-simplexM @see~2.15!#. The above proposition, by continuity
implies thatD(Un)q8 is a rightD(Un)q-module and aUqsun,1-module. Moreover, these structure
agree: the multiplication mapD(Un)q8^ D(Un)q→D(Un)q8 is a morphism ofUqsun,1-modules.
This is a consequence ofUqsun,1-moduleness of the algebraD(Un)q .

Let us construct a nondegenerate pairingD(Un)q83D(Un)q→C which will justify the term
‘‘distribution.’’ Let $cb%b be a convergent net inD(Un)q and suppose limb cb5c, c
PD(Un)q8 . Then for anywPD(Un)q the limit limb *Un

cbwdnq exists and depends only onc and
w ~i.e., independent of a choice ofcb). Indeed, let us prove existence of lim*Un

cbwdnq . Propo-
sition 2.3 implies that there existsjwPUqsun,1 such thatw5jw( f 0). By ~2.19!

E
Un

cbwdnq5E
Un

S21~jw!~cb! f 0dnq .

Since theUqsun,1-action is continuous, it is sufficient now to prove existence of the limit in
particular casewª f 0 . But in this case existence is equivalent to continuity of the functionall 0I 0I

0I

and thus is obvious. Independence of the limit on a particular choice of the net$cb% can be proved
by the same arguments.

Thus we get a well defined pairing

D~Un!q83D~Un!q→C, ~c,w!°E
Un

cwdnq ,

and, due to~2.19!, it satisfies the property

E
Un

j~c!•wdnq5E
Un

c•S~j!~w!dnq ~2.20!

for any cPD(Un)q8 , wPD(Un)q , andjPUqsun,1 . In other words, we have constructed a mo
phism ofUqsun,1-modules,

D~Un!q8→dual of D~Un!q .

@For anA-moduleV the dual spaceV* is endowed with anA-module structure via the antipode
j f (•)5 f (S(j)•).] In fact, this is an isomorphism. This can be proved by computation just
was done in Ref. 19, Sec. 1, in the casen51.
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III. q -BEREZIN TRANSFORM

The aim of this section is to construct aq-analog of the Berezin transform in the unit ball. F
that purpose we define alsoq-analogs of the weighted Bergman spaces, Toeplitz operators,
covariant symbols.

A. q -weighted Bergman spaces

In the classical case the weighted Bergman space is defined as the closure of the s
holomorphic polynomials with respect to the norm

i f ia5S G~n1a11!

G~n11!G~a11!
E

Un

u f ~z!u2~12izi2!adm~z! D 1/2

. ~3.1!

Here a.21, dm is the normalized Lebesgue measure, and the multiplierG(n1a11)/G(n
11)G(a11) normalizes the measuredma5(12izi2)adm(z). Let us define aq-analog ofdma .

SupposeaPZ>0 . The formula~3.1!, along with~2.11!, suggests the following definition o
the q-weighted integral,

E
Un

f dma,q5
Gq2~n1a11!

Gq2~n11!Gq2~a11!
E

Un

f •y1
a1n11dnq ~3.2!

with y1512z1z1* 2¯2znzn* PP(Cn)q ~see Sec. II B!. Here we use the standard notation:20

Gq~x!5
~q;q!`

~qx;q!`
~12q!12x

with

~a;q!`5~12a!~12aq!~12aq2!¯ , ~a;q!g5
~a;q!`

~aqg;q!`
, gPC.

Using ~2.18! and the definition ofGq2, we may rewrite the integral in the following way:

E
Un

f dma,q5~q2a12;q2!n (
kI PP(n)

f 0I ,0I ~q2k1,q2k2,...,q2kn!•q2k1(a11)
•q2k2

• ••• •q2kn. ~3.3!

The latter formula can be used to define theq-weighted integral for arbitraryaPR.
We defineL2(dma,q) as the completion ofD(Un)q with respect to the norm

i f ia,q5S E
Un

f * • f dma,qD 1/2

.

We shall use the concrete realization ofL2(dma,q) as the subspace inD(Un)q8 of those distribu-
tions for which the right-hand side is finite.

From now on we supposea is a positive real number. In this case, we ha
P(Cn)q,L2(dma,q) @this may be checked by direct computations using formula~3.3!#. By anal-
ogy with the classical case, we define theq-weighted Bergman spaceLa

2(dma,q) as the closure in
L2(dma,q) of the subspaceC@Cn#q of ‘‘holomorphic’’ polynomials.

Proposition 3.1: The monomialszmI constitute an orthogonal basis in La
2(dma,q) and

izmI ia,q
2 5

Gq2~n1a11!Gq2~m111!¯Gq2~mn11!

Gq2~m11¯1mn1n1a11!
.

Proof: By the above definitions
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~zmI ,zlI!a,q5~q2a12;q2!n (
kI PP(n)

f 0I ,0I ~q2k1,q2k2,...,q2kn!•q2k1(a11)
•q2k2

• ••• •q2kn,

wheref 0I ,0I is the corresponding term in the expansion~2.17! of the polynomialz* lIzmI . Obviously,
the f 0I ,0I -term vanishes formI Þ lI. This implies the pairwise orthogonality of the monomials. Su
posemI 5 lI. It is easy to show that

z* mI zmI 5y2
m1y3

m2
¯yn

mn21S q2
y1

y2
;q2D

m1

S q2
y2

y3
;q2D

m2

¯S q2
yn21

yn
;q2D

mn21

~q2yn ;q2!mn
.

~3.4!

Denote byf (y1 ,y2 ,...,yn) the right-hand side of the latter equality. One has

(
kI PP(n)

f ~q2k1,q2k2,...,q2kn!•q2k1(a11)12k21¯12kn

5
1

~12q2!n )
j 50

n21 E
0

1

ta1m11¯1mj 1 j~q2t;q2!mj 11
dq2t

where*0
1f (t)dq2t is the Jackson integral given by

E
0

1

f ~ t !dq2t5~12q2!(
l 50

`

f ~q2l !q2l . ~3.5!

What remains is to use the following well known formula:20

E
0

1

ta~q2t;q2!bdq2t5
Gq2~a11!Gq2~b11!

Gq2~a1b12!
.

j

In the classical case the Hilbert spaceL2(dma) admits a natural unitary SU(n,1)̃-action,
where SU(n,1)̃ is the universal covering of SU(n,1). The invariant subspaceLa

2(dma) of holo-
morphic functions is called the representation of the holomorphic discrete series.21,22 The corre-
sponding infinitesimalUsun,1-action is obtained by a simple twisting of the natural action. Belo
we produce an analog of the twistedUsun,1-action.

It was proved in Ref. 10, Sec. 6, that there exists a unique representationpa of Uqsun,1 in
P(Cn)q andD(Un)q such that for allf PP(Cn)q @or f PD(Un)q]

pa~Ej ! f 5H Ej f , j Þn,

Enf 2q1/2
12q2a12n12

12q2 ~Knf !zn , j 5n,
~3.6!

pa~F j ! f 5H F j f , j Þn,

q2a2n21Fnf , j 5n,
~3.7!

pa~K j
61! f 5H K j

61f , j Þn,

q6(a1n11)Kn
61f , j 5n,

~3.8!

whereEj f ,F j f ,K j f are defined in Proposition 2.1@~2.13! and~2.14! for f PD(Un)q]. In order to
not consider the polynomials and finite functions separately, it will be convenient sometim
regardpa as a representation ofUqsun,1 in F(Un)q .

The following statement is proved in Ref. 10, Sec. 6.
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Proposition 3.2: For anyw1 ,w2PF(Un)q and anyjPUqsun,1

~pa~j!w1 ,w2!a,q5~w1 ,pa~j* !w2!a,q

with (•,•)a,q being the scalar product in L2(dma,q).
Note that the subspaceC@Cn#q,F(Un)q is actually aUqsun,1-submodule. It should be treate

as a module of the holomorphic discrete series forUqsun,1 .
Before we proceed further, let us fix more notation. The spaceC@Cn#q @as well asF(Un)q]

admits two differentUqsun,1-actions, namely, the original one which was introduced earlie
Proposition 2.1 and the twisted one which appeared in this subsection. In order to emphas
a space is considered together with the twistedUqsun,1-actionpa we shall add the subscripta in
the notation, for example,C@Cn#q,a . The subscript will also indicate the pre-Hilbert space str
ture given by the scalar product (•,•)a,q .

The following important observation relates the usual and the twistedUqsun,1-actions: the
multiplication mapF(Un)q^ F(Un)q,a→F(Un)q,a is a morphism ofUqsun,1-modules. This can
be proved by direct computations.

B. Toeplitz operators

In this subsection we produceq-analogs of Toeplitz operators with polynomial and fin
symbols. As in the previous subsection, it is convenient to consider symbols from the a
F(Un)q when there is no necessity to consider the cases of polynomial and finite symbols
rately.

Let Pa,q be the orthogonal projection inL2(dma,q) ontoLa
2(dma,q). The Toeplitz operatorTf

with the symbolf PF(Un)q is defined as follows:

Tf :C@Cn#q,a→C@Cn#q,a , Tf~c!5Pa,q~ f •c!.

To formulate the principal result of the present subsection, we recall the following well kn
construction. LetA be a Hopf algebra andV an A-module. Then the space End(V) admits the
following ‘‘canonical’’ structure of theA-module: forjPA, TPEnd(V),

j~T!5(
j

j j8•T•S~j j9!,

where S is the antipode ofA, D(j)5( jj j8^ j j9 ~with D being the comultiplication!, and the
elements on the right-hand side are multiplied within the algebra End(V). This action ofA in
End(V) makes End(V) into anA-module algebra.

Proposition 3.3: The linear map

F~Un!q→End~C@Cn#q,a!, f °Tf ,

is a morphism of Uqsun,1-modules.
Proof: In the classical case the projectionPa,q intertwines the twisted SU(n,1)̃-action in

L2(dma) andLa
2(dma). In the quantum case theUqsun,1-actionpa is not defined on the entire

L2(dma,q). Nevertheless, the intertwining property may be formulated due to the equality

Pa,q~F~Un!q,a!5C@Cn#q,a .

To prove the equality, we endow the spaceC@Cn#q,a with the obviousZ>0-grading by powers of
monomials and observe that eachf PF(Un)q,a is orthogonal to all but finitely many homogeneo
components ofC@Cn#q,a . Now it is evident that the operatorPa,q :F(Un)q,a→C@Cn#q,a is a
morphism ofUqsun,1-modules: this follows fromUqsun,1-invariance of the orthogonal comple
ment ofC@Cn#q,a in F(Un)q,a .
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Let f PF(Un)q . Denote byf̂ 5 f̂ a the endomorphism ofF(Un)q,a given by f̂ a(w)5 f •w. The
map

F~Un!q→End~F~Un!q,a!, f ° f̂ a ,

is a morphismUqsun,1-modules~see the remark at the end of the previous subsection!. It remains
to use the equalityTf5Pq,a• f̂ auC[Cn] q,a

. j

Remark:One can use the above observation to show that the projectionPa,q is a q-integral
operator with a simple kernel which is aq-analog of the so-called Bergman kernel; see Ref.
But this result is not needed in the present article.

C. On the case of polynomial symbols

For purposes of this article we need mostly Toeplitz operators with finite symbols. How
we present some results about the polynomial case which seem to be interesting by them

Let ẑi stand for the operator inC@Cn#q,a of the left multiplication byzi , ẑi* for the adjoint
operator. The following observation is straightforward: for a polynomialf 5(alI,mI z* lIzmI one has
Tf5(alI,mI ẑ* lIẑmI . Thus all Toeplitz operators with polynomial symbols belong to the unital s
algebra in End(C@Cn#q,a) generated byẑi andẑi* , i 51,2,...,n. Denote this subalgebra byPn,q,a .
It is an involutive algebra with the involution given by* : ẑi° ẑi* .

Proposition 3.4: The Uqsun,1-action in End(C@Cn#q,a) induces a Uqsun,1-module algebra
structure inPn,q,a .

Proof: First we have to establishUqsun,1-invariance of the subspacePn,q,a in End(C@Cn#q,a),
that is, to show thatj( ẑi*

aẑj
b) belong to Pn,q,a for any a,bPZ>0 , i , j 51,2,...,n, and j

PUqsun,1 . According to Proposition 3.3

j~ ẑi*
aẑj

b!5j~Tz
i*

az
j
b!5Tj(z

i*
az

j
b) .

By the remark preceding the present proposition,Tj(z
i*

az
j
b)PPn,q,a . It remains to prove module

algebra property~2.4! for Pn,q,a . But it may be derived easily from Proposition 3.2. j

Proposition 3.5: The following commutation relations hold:

ẑi ẑj5qẑj ẑi , i , j ,

ẑi* ẑj5qẑj ẑi* 1q2a12nS ẑi* ẑj S q21~12q2!(
k51

n

ẑkẑk* D 2qẑj ẑi* D , iÞ j ,

ẑj* ẑj5q2ẑj ẑj* 1~12q2!S 12 (
k5 j 11

n

ẑkẑk* D
1q2a12nS ẑj* ẑj S q21~12q2!(

k51

n

ẑkẑk* D 2q2ẑj ẑj* 2~12q2!(
k51

j

ẑkẑk* D .

Proof: The relations may be deduced from the formulas

ẑi~zmI !5qmn1mn211¯1mi 11zmI 8

@wheremI 85(m1 ,...,mi11,...,mn)],

ẑi* ~zmI !50, mi50,

ẑi* ~zmI !5
qmn1mn211¯1mi 11~12q2mi !

12q2m112m21¯12mn12n12a zmI 9
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@wheremI 95(m1 ,...,mi21,...,mn)]. The first equality is obvious, the other follows from Prop
sition 3.1. j

Note that fora5` the above relations coincide with the defining relations forP(Cn)q .
The unital involutive algebra given by the above commutation relations can be viewed

two-parameter deformation of the polynomial algebra onCn. It is easy to show that forn51 the
algebra is isomorphic to the one considered in details in Ref. 6~see the Introduction!.

D. Covariant symbols and q -Berezin transform

In this subsection, we define the notion of covariant symbols of operators on theq-weighted
Bergman spaces and use it to define aq-analog of the Berezin transform.

To define covariant symbols we need a certain inner product in the space of operator
q-weighted Bergman space~see the Introduction!. This product is defined via the so-calle
q-trace. So we recall first its definition.

Let V be a finite-dimensionalUqsln11-module. Theq-trace is the linear functional on End(V)
given by

trq :T°trS T•)
j 51

n

K j
2 j (n112 j )D . ~3.9!

The following well known observation explains the importance of this functional~see Ref. 17!: the
q-trace is an invariant linear functional on End(V), i.e., trq(j(T))5«(j)•trq(T) for any j
PUqsln11 andTPEnd(V).

We will modify the definition slightly for the infinite-dimensional spaceV5C@Cn#q,a . Let
End0(C@Cn#q,a) be the subspace in End(C@Cn#q,a) of those automorphisms whose matrices in t
basis$zmI % have only finitely many nonzero entries. Theq-trace ~3.9! is a well defined linear
functional on End0(C@Cn#q,a). The invariance property still holds in this case.

Proposition 3.6: The q-trace is an invariant linear functional onEnd0(C@Cn#q,a).
Sketch of a proof:A standard proof in the finite-dimensional case uses the canonical iso

phism of Uqsln11-modules End(V).V^ V* with V* being the dualUqsln11-module.17 The
statement of Proposition 3.6 can be proved by the same argument since End0(C@Cn#q,a)
.C@Cn#q,a ^ C@Cn#q,a* . j

Remarks:~i! The formula~3.9! is the same as the one which defines the invariant integra
the quantum ball~see Proposition 2.4!. But Proposition 2.4 does not follow formally from th
above statement since theD(Un)q-moduleH is not aUqsln11-module.

~ii ! Using the equality~3.12! below and the same idea as in the proof of Proposition 2.5
can show that the scalar product in End0(C@Cn#q,a) given by (T1 ,T2)5trq(T2* •T1) is
Uqsun,1-invariant. The unitary representation ofUqsun,1 in End0(C@Cn#q,a) should be treated as
q-analog of the canonical representation of SU(n,1).23

For a particulara, we shall use the modifiedq-trace Trq on End0(C@Cn#q,a) which differs
from trq by a constant:

Trq5qn(n1a11)
~q2;q2!n

~q212a;q2!n
trq .

It is easy to deduce the following explicit formula for Trq . Let APEnd0(C@Cn#q,a) be the endo-
morphism given byA(zmI )5(kIAkI

mI
•zkI . Then

Trq~A!5
~q2;q2!n

~q212a;q2!n
•(

mI
AmI

mI
•q22n(m11m21¯1mn)

•q2m21¯12mn
• ••• •q2mn. ~3.10!

Now we are ready to define the notion of covariant symbols. LetTPEnd(C@Cn#q,a). A
distributions(T)PD(Un)q8 is said to be the covariant symbol ofT if for any f PD(Un)q
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E
Un

s~T!• f dnq5Trq~T•Tf !. ~3.11!

Note that forf PD(Un)q one hasTfPEnd0(C@Cn#q,a). Thus the right-hand side of~3.11! is well
defined. The arguments cited at the end of Sec. II D imply existence and uniqueness
covariant symbol of an arbitrary endomorphismF. Actually, the mapT°s(T) is conjugated to
the mapf °Tf .

We have the following elementary property of theq-trace, which can be proved by the sam
arguments as the formula of integrating by parts~see the proof of Proposition 2.5!: for any T
PEnd(C@Cn#q,a), T0PEnd0(C@Cn#q,a), andjPUqsun,1 ,

Trq~j~T!•T0!5Trq~T•S~j!~T0!!. ~3.12!

This implies the following.
Proposition 3.7: The map

End~C@Cn#q,a!→D~Un!q8 , T°s~T!,

is a morphism of Uqsun,1-modules.
Proof: The equality~3.12! gives an identification of theUqsun,1-module End(C@Cn#q,a) with

the dual of End0(C@Cn#q,a) ~see the definition of the dual module in Sec. II D!. What remains is to
use Proposition 3.3 and the observation that the map End(C@Cn#q,a)→D(Un)q8 , T°s(T) is
conjugated toD(Un)q→End0(C@Cn#q,a), f °Tf . j

We are in position to define theq-Berezin transformBq,a . It is defined as the linear map from
D(Un)q to D(Un)q8 which sends a finite function to the covariant symbol of the correspon
Toeplitz operator:

Bq,a : f °s~Tf !.

The following crucial statement is straightforward.
Proposition 3.8: The q-Berezin transform is a morphism of Uqsun,1-modules.
Due to Proposition 2.3, any morphism ofUqsun,1-modulesT:D(Un)q→D(Un)q8 is completely

determined by the elementT( f 0)PD(Un)q8 . Thus it would be very useful to computeBq,a( f 0).
Proposition 3.9:

Bq,a~ f 0!5~q2a12;q2!n•y1
a1n11 .

Proof: We have to check that for anyf PD(Un)q

~q2a12;q2!nE
Un

y1
a1n11

• f dnq5Trq~Tf 0
•Tf !. ~3.13!

Let us denote by f iI, jI
kI (kI PP(n), iI, jIPZ>0

n , iI3 jI50I ) the finite function given by f iI, jI
kI

5ziI f kI(y1 ,y2 ,...,yn)z* jI with

f kI~q2l 1,q2l 2,...,q2l n!5H 1, kI 5 lI

0, otherwise.

For example,f 0I ,0I
0I 5 f 0 . Evidently, the functionsf iI, jI

kI constitute a basis inD(Un)q .

It follows from the definitions that both sides of~3.13! vanish for fª f iI, jI
kI provided iIÞ0I or

jIÞ0I . Thus we have to verify~3.13! for fª f kI . It follows from ~2.18! that
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~q2a12;q2!nE
Un

y1
a1n11

• f kIdnq5~q2a12;q2!n•~q2;q2!n•q2k1(a11)
•q2k2

• ••• •q2kn.

Let us compute the right-hand side of~3.13! with fª f kI . Evidently,

f 0•zmI 5H f 0 , mI 50I ,

0, otherwise.

Besides,*Un
f 0dma,q5(q2a12;q2)n . These equalities mean that

Tf 0
~zmI !5H ~q2a12;q2!n , mI 50I ,

0, otherwise.

Clearly, the vectorf kI•zmI PL2(dma,q) is orthogonal to any monomialzlI except the caselI5mI . In
particular, the monomials are eigenvectors ofTf kI

. Thus

Trq~Tf 0
•Tf kI

!5~q2;q2!n~Tf kI
~1!,1!a,q

5~q2;q2!nE
Un

f kIdma,q

5~q2a12;q2!n•~q2;q2!n•q2k1(a11)
•q2k2

• ••• •q2kn.

j

IV. q -LAPLACE–BELTRAMI OPERATOR AND ASSOCIATED q-SPHERICAL
TRANSFORM

In this section we define aq-analog of the SU(n.1)-invariant Laplace operator~the Laplace–
Beltrami operator! on the unit ball and study aq-analog of the spherical transform in the unit ba
Namely, we calculate the ‘‘radial part’’ of theq-Laplace-Beltrami operator, findq-spherical func-
tions, and present an inversion formula for theq-spherical transform.

A. q -Laplace–Beltrami operator

In this subsection, we consider the asymptotic expansion of theq-Berezin transformBq,a at
the limit t5q2a→0. A q-analog of the Laplace–Beltrami operator on the ball is defined as
coefficient att in that expansion.

Recall ~see the proof of Proposition 3.9! the notationf iI, jI
kI (kI PP(n), iI, jIPZ>0

n , iI3 jI50I ).

SupposeT is the linear map fromD(Un)q to D(Un)q8 . The numbers

TiI, jI ;pI ,rI
kI ,sI 5E

Un

T~ f iI, jI
kI !• f pI ,rI

sI dnq

will be called the matrix entries ofT. Due to nondegeneracy of the pairingD(Un)q83D(Un)q

→C ~Sec. II D!, the matrix entries determineT completely.
Let us denote the matrix entries of theq-Berezin transformBq,a by BiI, jI ;pI ,rI

kI ,sI (a). Introduce the

new variablet5q2a. We will regard the matrix entriesBiI, jI ;pI ,rI
kI ,sI (a) as functions oft and use the

notationBiI, jI ;pI ,rI
kI ,sI (t)ªBiI, jI ;pI ,rI

kI ,sI (a), Bq,tªBq,a .

Proposition 4.1: There exists a sequence$Bq, j% j PN of linear endomorphisms ofD(Un)q such
that

(i) Bq, j are independent of t (i.e., their matrix entries are independent of t);
(ii) each Bq, j is a Uqsun,1-module morphism; and
(iii) for any f PD(Un)q
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Bq,t~ f !5 f 1(
j 51

`

Bq, j~ f !•t j , ~4.1!

where the series is convergent inD(Un)q8 .
Proof: First of all, we will construct a sequence$Bq, j% j PZ>0

of linear operators fromD(Un)q

to D(Un)q8 such that eachBq, j is independent oft and Bq,t( f )5( j 50
` Bq, j ( f )•t j for any f

PD(Un)q ~the series is convergent in the sense that all the corresponding series of matrix
are convergent!. For that purpose we need the following.

Lemma 4.2: The matrix entries BiI, jI ;pI ,rI
kI ,sI (t) are polynomials in t.

Proof of the lemma:Due to Proposition 2.3, for anykI , iI, jIPZ>0
n ( iI3 jI50I ) there existsj iI, jI

kI

PUqsun,1 such thatf iI, jI
kI 5j iI, jI

kI ( f 0). Then,

BiI, jI ;pI ,rI
kI ,sI ~ t !5E

Un

Bq,t~ f iI, jI
kI !• f pI ,rI

sI dnq5E
Un

Bq,t~j iI, jI
kI ~ f 0!!• f pI ,rI

sI dnq5E
Un

Bq,t~ f 0!•S~j iI, jI
kI !~ f pI ,rI

sI !dnq ,

where the last equality is due to Proposition 3.8 and the equality~2.20!. Thus to prove the lemma
it suffices to establish that the entriesB0I ,0I ;pI ,rI

0I ,sI (t)5*Un
Bq,t( f 0)• f pI ,rI

sI dnq are polynomials.

Recall ~Proposition 3.9! that Bq,a( f 0)5(q2a12;q2)n•y1
a1n11 . Thus

E
Un

Bq,t~ f 0!• f pI ,rI
sI dnq5~q2a12;q2!nE

Un

y1
a1n11

• f pI ,rI
sI dnq .

The latter integral vanishes withpI Þ0I or rIÞ0I . Consider the integral (q2a12;q2)n*Un
y1

a1n11

• f kIdnq ( f kI are defined in the proof of Proposition 3.9!. Obviously,

~q2a12;q2!nE
Un

y1
a1n11

• f kIdnq5~q2a12;q2!n~q2;q2!nq2k1(a11)q2k2
¯q2kn

5~q2t;q2!n~q2;q2!nq2k1tk1q2k2
¯q2kn.

j

Now we can define$Bq,m%mPZ>0
by their matrix coefficients

~Bq,m! iI, jI ;pI ,rI
kI ,sI 5

1

m!

dmBiI, jI ;pI ,rI
kI ,sI ~ t !

dtm
U

t50

.

This definition implies theUqsun,1-invariance of the mapsBq,m . Indeed, we should prove coin
cidence of the mapsBq,m•j and j•Bq,m for any jPUqsun,1 , or, equivalently, equality of all
matrix entries (Bq,m•j) iI, jI ;pI ,rI

kI ,sI and (j•Bq,m) iI, jI ;pI ,rI
kI ,sI . Due toUqsun,1-invariance ofBq,t , one has

~Bq,t•j! iI, jI ;pI ,rI
kI ,sI 5~j•Bq,t! iI, jI ;pI ,rI

kI ,sI

for any iI, jI ,pI ,rI ,kI ,sI . What remains is to differentiate the latter equality.
Let us show that the image of the mapBq,m :D(Un)q→D(Un)q8 is contained inD(Un)q .

Since allBq,m are morphisms ofUqsun,1-modules, we need to verify thatBq,m( f 0)PD(Un)q .
This can be easily deduced from the following equivalent formulation of Proposition 3.9:

Bq,t~ f 0!5~q2t;q2!n•(
k50

`

f kq
2k(n11)tk, ~4.2!

where f k , kPZ>0 , are the finite functions given by
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f k5 f k~y1 ,y2 ,...,yn!5H 1, y15q2k,

0, otherwise,
~4.3!

and the series~4.2! is convergent inD(Un)q8 . Differentiating with respect tot provesBq,m( f 0)
PD(Un)q .

The equality~4.2! and continuity of theUqsun,1-action inD(Un)q8 prove also statement (i i i )
of Proposition 4.1. j

Proposition 4.1 implies, in particular, thatBq,t5 id1o(1) when t→0. By analogy with the
classical case we call the first term of the asymptotic series~4.1! theq-Laplace–Beltrami operato
on the quantum ball:

Dn,q5
q22n

12q2

dBq,t

dt U
t50

. ~4.4!

Clearly,Dn,q :D(Un)q→D(Un)q is a morphism ofUqsun,1-modules.
There are many evidences that this operator should indeed be treated as aq-analog of the

classical Laplace-Beltrami operator in the unit ball. The results of the present section prov
example of such an evidence.

In conclusion, we make also the following remark. The operatorDn,q appeared as the firs
term of asymptotic of theq-Berezin transform. It turns out that other terms can be explic
expressed viaDn,q . This will be shown in the next section~Sec. V B!.

B. Radial part of the q -Laplace–Beltrami operator

In the classical case the Laplace–Beltrami operator in the unit ball keeps invariant the
of smooth radial functions, i.e., functions depending on the radius only. The reason is th
radial functions are precisely the S(U(n)3U(1))-invariant functions with S(U(n)
3U(1)),SU(n,1) being the isotropy group of the center of the ball. Thus the ‘‘right’’q-analog
of the radial functions are functions on the quantum ball which areUqs(un3u1)-invariant where
Uqs(un3u1) is the *-Hopf subalgebra inUqsun,1 generated byEi ,Fi , i 51,2,...,n21, and all
K j

61’s.
It can be proved that anyUqs(un3u1)-invariant element inP(Cn)q is a polynomial inz1z1*

1z2z2* 1¯1znzn* . The idea of the proof is as follows.Uqs(un3u1)-invariance of a polynomial,
in particular, implies itsUqh-invariance, i.e.,K j -invariance for anyj . Obviously, the latter mean
that the polynomial depends onz1z1* ,z2z2* ,...,znzn* only. One can write down without difficulties
explicit formulas for the action of the generatorsEi ,Fi , i 51,2,...,n21, on an arbitrary elemen
which depends onz1z1* ,z2z2* ,...,znzn* and find the invariant elements.

In many computations it is convenient to use the elementy1512z1z1* 2¯2znzn* instead of
z1z1* 1z2z2* 1¯1znzn* since the former quasicommutes with all the generatorszi ,zi* @see
~2.16!#:

ziy15q22y1zi , zi* y15q2y1zi* .

In the sequel we omit the subscript 1 in the notation fory1 .
Using precisely the same arguments, one can show that anyUqs(un3u1)-invariant finite

function or distribution on the quantum ball depends ony5y1 only.
Recall the notationf k , kPZ>0 , from the previous subsection:

f k~y!5H 1, y5q2k,

0, otherwise.

These functions constitute a basis in the space of radial finite functions on the quantum bal
have the following obvious properties: first,f k• f l5dkl f k with dkl being the Kronecker symbol
and, second, for any distributionf (y),
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f 5 (
k50

`

f ~q2k!• f k ,

where the series converges inD(Un)q8 .
Our aim now is to compute the action of theq-Laplace–Beltrami operatorDn,q on radial finite

functions. We would determine the action completely if we findDn,q( f k).
Proposition 4.3: The operatorDn,q has the following matrix form:

Dn,q~ f k!5
q2

~12q2!2 •~~12q2k12! f k112~11q22n22q2k! f k1~q22n2q2k22! f k21!

(we assume fk[0 for k,0).
The proof of the proposition will be given in Sec. IV D.
Proposition 4.3 allows us to apply theq-Laplace–Beltrami operator to any radial functionf

5 f (y). We call the restriction of the operator to the space of radial functions the radial part o
q-Laplace–Beltrami operator and denote it byDn,q

(r) . Using the explicit formula from Proposition
4.3, one can show that the radial part is given by the following second-order difference op

Dn,q
(r) 5

q2nyn11

~yq2;q2!n21
Dy2n11~yq;q2!nD ~4.5!

with D f (y)5@ f (q21y)2 f (qy)#/(q21y2qy) .

C. q -spherical transform

In this subsection we describe eigenfunctions of the operatorDn,q
(r) and present an explici

formula for expansion in these functions. The associatedq-spherical transform should be viewe
as aq-analog of the spherical transform in the unit ball.12 The eigenfunctions ofDn,q

(r) appear to be
closely related to certain one-parameter family of the Al-Salam-Chihara polynomials,13 and this
observation simplifies proofs of many statements.

Recall the definition of the basic hypergeometric series3f2 :20

3f2S a1 , a2 , a3

b1 , b2
q, zD 5 (

n50

`
~a1 ;q!n•~a2 ;q!n•~a3 ;q!n

~b1 ;q!n•~b2 ;q!n•~q;q!n
zn.

Recall also the notationh5 logq22 ~see the Introduction!. We define the elementfr(y)
PD(Un)q8 as follows:

fr~y!53f2S y21, qn1 ir, qn2 ir

q2n, 0
q2, q2D , rPF0;

2p

h G . ~4.6!

Obviously,fr(1)51. It is aq-analog of the spherical function in the unit ball as one can see f
the following.

Proposition 4.4: The distributionfr(y) is an eigenvector of the operatorDn,q
(r) :

Dn,q
(r) ~fr~y!!5l~r!•fr~y!

with l(r)52q222n (12qn1 ir)(12qn2 ir)/(12q2)2 , rP@0; 2p/h#.
Proof: Recall the notationQm(x;a,buq) for the Al-Salam-Chihara polynomials~Ref. 13, Sec.

3.8!. It is straightforward that
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fr~q2m!5
qnm

~q2n;q2!m
•QmS cos

hr

2
;qn,qnUq2D . ~4.7!

The statement of Proposition 4.4 is just another formulation of the recurrence relation fo
Al-Salam-Chihara polynomials@Ref. 13,~3.8.4!#. j

Let us compute restriction of the invariant integral in the quantum ball onto the space of
finite functions:

E
Un

f ~y!dnq5~q2;q2!n• (
kI PP(n)

f ~q2k1!•q22nk1
•q2k2

• ••• •q2kn

5~q2;q2!n•(
k50

`

f ~q2k!•q22nk (
0<kn<¯<k2<k

q2k2
• ••• •q2kn.

Using the formula~4.15! and the Jackson integral~3.5!, we finally get

E
Un

f ~y!dnq5
12q2n

12q2 E
0

1

f ~y!y2n21~yq2;q2!n21dq2y. ~4.8!

Let us denote byLn,q andLn,q8 the spaces of radial finite functions and radial distributions
the quantum ball, respectively. Elements of these spaces can be treated as functions on
metric progressionq2Z>0. We also impose the notationL n,q

2 for the Hilbert space of ‘‘square
integrable’’ radial distributions:

L n,q
2 5H f ~y!PLn,q8 U i f iL 2

2
5

12q2n

12q2 E
0

1

u f ~y!u2y2n21~yq2;q2!n21dq2y,`J .

We define theq-spherical transform as the mapF:Ln,q→C`(0; 2p/h) given by

f ~y!°Ff ~r!5
12q2n

12q2 E
0

1

f ~y!fr~y!y2n21~yq2;q2!n21dq2y. ~4.9!

It is clear ~see the proof of Proposition 4.4! that

Ff k~r!5~12q2n!•q22kn
•~q2k12;q2!n21•fr~q2k!

5~12q2n!•q2kn
•

~q2k12;q2!n21

~q2n;q2!k
•QkS cos

hr

2
;qn,qnUq2D . ~4.10!

Hence the image ofF is the space of polynomials in coshr/2.
The following proposition can be derived from the spectral decomposition of the ope

Dn,q
(r) , and a special case of a general result of Ref. 11, Sec. 5.

Proposition 4.5: (i) The operatorDn,q
(r) on Ln,q can be extended to a bounded self-adjo

operator onL n,q
2 . It has simple purely continuous spectrum which coincides with the seg

@l(2p/h);l(0)# (with l being defined in Proposition 4.4).
(ii) For any finite function f(y)

f ~y!5
1

4p
•

h

12q2n •E
0

2p/h

Ff ~r!fr~y!
dr

uc~r!u2
, ~4.11!

where c(r) (a q-analog of the Harish–Chandra function) is given by
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c~r!5
Gq2~n!Gq2~ ir!

Gq2
2

~n/21 ir/2!
.

(iii) The q-spherical transformF:Ln,q→C`(0; 2p/h) can be extended to a unitary linea
operatorF:L n,q

2 →L2(dr/uc(r)u2):

12q2n

12q2 E
0

1

u f ~y!u2y2n21~yq2;q2!n21dq2y5
1

4p
•

h

12q2n •E
0

2p/h

uFf ~r!u2
dr

uc~r!u2
~4.12!

(the Plancherel formula).
Note that, due to~4.10!, statement~iii ! can be rewritten as the orthogonality relations for t

Al-Salam-Chihara polynomials~Ref. 13, Sec. 3.8!:

1

4p E
0

2p/h

QkS cos
hr

2
;qn,qnUq2DQmS cos

hr

2
;qn,qnUq2D dr

uc~r!u2
5dkm•

~q2n;q2!k
2

h~q2k12;q2!n21
.

~4.13!

D. Proof of Proposition 4.3

It suffices, due to~4.4!, to verify that

Bq,t~ f k!5 f k1t
q2n12

~12q2!
•~~12q2k12! f k112~11q22n22q2k! f k1~q22n2q2k22! f k21!

~4.14!

modulo t2. For that purpose we compute firstTf k
.

Recall the notationC@Cn#q,a ~Sec. III A!. Define aZ>0-grading in the spaceC@Cn#q,a as
follows:

C@Cn#q,a
(m)5 linear span of zmI , umI u5m.

We need first the following lemma.
Lemma 4.6:

Tf k
uC[Cn]

q,a
(m)5q2(k2m)(a11)

•

~q2a12;q2!n1m•~q2k22m12;q2!n1m21

~q2;q2!n1m21
.

Proof of the lemma:Using the same arguments as in the classical case, it can be prove
C@Cn#q,a

(m) , mPZ>0 , are pairwise non-isomorphic irreducibleUqs(un3u1)-modules @we mean
restriction of the representationpa onto Uqs(un3u1)]. Due to theUqs(un3u1)-invariance off k

@with respect to the untwistedUqs(un3u1)-action#, Proposition 3.3, and the Schur lemma,

Tf k
uC[Cn]

q,a
(m)5ck

m .

@SinceC@Cn#q,a
(m) is an irreducibleUqs(un3u1)-module, the algebra homomorphismUqs(un3u1)

→End(C@Cn#q,a
(m)) is surjective, however the only operators commuting with the full matrix alge

are constants.# To compute the constantck
m we applyTf k

to a distinguished vector inC@Cn#q,a
(m) , for

example,zn
m :

ck
m5

~Tf k
zn

m ,zn
m!a,q

~zn
m ,zn

m!a,q
5

~ f kzn
m ,zn

m!a,q

~zn
m ,zn

m!a,q
.

By Proposition 3.1 the denominator is equal to (q2;q2)m /(q2n12a12;q2)m . What remains is to
compute the numerator:
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~Tf k
zn

m ,zn
m!a,q5E

Un

zn*
mf kzn

mdma,q

5E
Un

f k2m~q2yn ;q2!mdma,q

5~q2a12;q2!n (
kI PP(n)

f k2m~q2k1!~q212kn;q2!mq2k1(a11)q2k2
¯q2kn

5~q2a12;q2!nq2(k2m)(a11) (
0<kn<¯<k2<k2m

~q212kn;q2!mq2k2
¯q2kn.

To continue computation we need the following simple formula which can be proved by induc

(
a< l n ...< l 1<b

q2l 1
¯q2l n5q2an

~q2b22a12;q2!n

~q2;q2!n
. ~4.15!

By this formula (q212kn;q2)m5(q2;q2)m(0< l m<¯< l 1<kn
q2l 1

•••q2l m. Applying ~4.15! one more
time, we finally get

~Tf k
zn

m ,zn
m!a,q5~q2a12;q2!nq2(k2m)(a11)~q2;q2!m

~q2k22m12;q2!n1m21

~q2;q2!n1m21
.

j

Let Pm denote the orthogonal projection inC@Cn#q,a onto C@Cn#q,a
(m) . The above lemma say

that

Tf k
5 (

m50

k

q2(k2m)(a11)
•

~q2a12;q2!n1m•~q2k22m12;q2!n1m21

~q2;q2!n1m21
•Pm . ~4.16!

Lemma 4.7: The covariant symbols(Pm) is given by

s~Pm!5q22m(a1n11)
•

~q2a12n12;q2!m

~q2;q2!m
•ya1n11

•~yq22m12;q2!m .

Proof of the lemma:Since C@Cn#q,a
(m) , mPZ>0 , are pairwise non-isomorphic irreducibl

Uqs(un3u1)-modules, the projectionsPm areUqs(un3u1)-module morphisms. Thus by Propo
sition 3.7 s(Pm) should be a function ofy. Denote it by pm(y). Recall that pm(y)
5(k50

` pm(q2k) f k(y). The coefficientspm(q2k) can be derived from the equalities

E
Un

pm~y!• f ldnq5Trq~Pm•Tf l
!, l PZ>0 .

Using the propertyf k• f l5dkl f k and Lemma 4.6, we can rewrite the latter equality as follows

pm~q2l !•~q2;q2!n•q22nl
• (

0<kn<¯<k2< l
q2k2

¯q2kn

5q2(l 2m)(a11)
•

~q2a12;q2!n1m•~q2l 22m12;q2!n1m21

~q2;q2!n1m21
•Trq~Pm!.

By ~3.10! Trq(Pm)5@(q2;q2)n /(q2a12;q2)n#•q22nm
•(0<kn<¯<k2<mq2k2

¯q2kn. Using ~4.15!
we obtainpm(q2l)5@(q2a12n12;q2)m•(q2l 22m12;q2)m /(q2;q2)m#•q2(l 2m)(a1n11). j

We continue the proof of our proposition. Lemmas 4.6 and 4.7 now imply
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Bq,a~ f k!5q2k(a11)
•ya1n11

• (
m50

k

q24m(a11)22mn

•

~q2a12;q2!n1m~q2k22m12;q2!n1m21~q2a12n12;q2!m

~q2;q2!n1m21~q2;q2!m
•~yq22m12;q2!m .

~4.17!

Note that (yq22m12;q2)m5( l 50
` (q2l 22m12;q2)m• f l5( l 5m

` (q2l 22m12;q2)m• f l . Consequently,

ya1n11
•~yq22m12;q2!m5 (

l 5m

`

q2l (a1n11)
•~q2l 22m12;q2!m• f l

5(
r 50

`

q2(m1r )(a1n11)
•~q2r 12;q2!m• f m1r ,

and

Bq,a~ f k!5 (
m50

k

(
r 50

`

q2a(k2m1r )
•q2k22m12rn12r

•

~q2a12;q2!n1m~q2k22m12;q2!n1m21~q2a12n12;q2!m~q2r 12;q2!m

~q2;q2!n1m21~q2;q2!m
• f m1r .

The substitutiont5q2a gives

Bq,t~ f k!5 (
m50

k

(
r 50

`

tk2m1r
•q2k22m12rn12r

•

~ tq2;q2!n1m~q2k22m12;q2!n1m21~ tq2n12;q2!m~q2r 12;q2!m

~q2;q2!n1m21~q2;q2!m
• f m1r .

To finish the proof of~4.14! we have to compute the coefficient att in the last series. Due to
presence oftk2m1r in the sum, the only terms which might give a nonzero contribution to
coefficient correspond to the values (m,r )5(k,0), (m,r )5(k,1), or (m,r )5(k21,0) which we
treat separately.

~1! (m,r )5(k,0): the corresponding term is equal to

~ tq2;q2!n1k~ tq2n12;q2!kf k5S 12t
q2n12

~12q2!
~11q22n22q2k! D f k1o~ t !.

~2! (m,r )5(k,1): the corresponding term is equal to

t•q2n12
•~ tq2;q2!n1k~ tq2n12;q2!k

12q2k12

12q2 f k115t•
q2n12

~12q2!
•~12q2k12! f k111o~ t !.

~3! (m,r )5(k21,0): the corresponding term is equal to

t•q2
•~ tq2;q2!n1k21~ tq2n12;q2!k21

12q2n12k22

12q2 f k215t•
q2n12

~12q2!
•~q22n2q2k22! f k211o~ t !.

This finishes the proof.
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V. FURTHER PROPERTIES OF THE q-BEREZIN TRANSFORM

In this section we study further theq-Berezin transform. Namely, we consider its restricti
Bq,a

(r) onto the space of radial functions. We prove thatBq,a
(r) is extended to a bounded self-adjoi

operator onL n,q
2 which commutes with the radial partDn,q

(r) of the q-Laplace–Beltrami operator
Since the latter has a simple spectrum,Bq,a

(r) is a function ofDn,q
(r) . We find the function explicitly.

In the classical case this is computed in Ref. 24 We also present an asymptotic expansion
q-Berezin transform at the limitt5q2a→0 mentioned at the end of Sec. IV A.

A. Boundedness of the q -Berezin transform

Let Bq,a
(r) :Ln,q→Ln,q8 be restriction of theq-Berezin transform onto the spaceLn,q of finite

radial functions on the quantum ball.
Proposition 5.1: Bq,a

(r) can be extended to a bounded self-adjoint operator onL n,q
2 . It is a

function of Dn,q
(r) . The operatorF•Bq,a

(r)
•F 21 on L2(dr/uc(r)u2) is the multiplication by the

(bounded) function

bq,a~r!5
~q212a;q2!`•~q2n1212a;q2!`

~qn1212a1 ir;q2!`•~qn1212a2 ir;q2!`
. ~5.1!

Proof: We divide the proof into three lemmas.
Lemma 5.2: Bq,a

(r) (Ln,q),L n,q
2 and one has the equality

Dn,q
(r)

•Bq,a
(r) 5Bq,a

(r)
•Dn,q

(r) ~5.2!

of linear maps fromLn,q to L n,q
2 .

Sketch of a proof:The inclusion is due to the formula~4.17!. Indeed, one has to show tha
ya1n11

•(yq22m12;q2)mPL n,q
2 for any m, and this is clear by the definition.

To prove the equality~5.2!, we have to show thatDn,q
(r)

•Bq,a
(r) ( f k)5Bq,a

(r)
•Dn,q

(r) ( f k) for any k.
The left-hand side may be computed by successive application of~4.17! and ~4.5! while the
right-hand one may be computed via Proposition 4.3 and~4.17!. j

Lemma 5.3: Suppose B is a linear operator fromLn,q to L n,q
2 which satisfies the properties

Dn,q
(r)

•B5B•Dn,q
(r) ;

B f05~q2a12;q2!n•ya1n11.

Then B5Bq,a
(r) .

Proof: The statement is a simple consequence of the equality

Ln,q5 linear span of$~Dn,q
(r) !mf 0%mPZ>0

,

which in turn may be deduced easily from Proposition 4.3. j

Lemma 5.4: The bounded self-adjoint operatorF 21
•bq,a(r)•F @bq,a is given by (5.1)] on

L n,q
2 possesses the properties from the previous lemma.

Proof: The first property holds trivially. Let us prove the second one.
Let (•,•)L2, (•,•)L 2 be the inner products inL2(dr/uc(r)u2) and L n,q

2 , respectively. It is
sufficient to show that

~bq,a~r!•Ff 0, Ff k!L25~q2a12;q2!n•~ya1n11, f k!L 2

for any kPZ>0 . Recall ~4.10! that Ff k(r)5(12q2n)•q2kn
• @(q2k12;q2)n21 /(q2n;q2)k#

•Qk(r) with Qk(r)ªQk(cos (hr/2) ;qn,qnuq2). We rewrite the condition as follows:

~bq,a~r!, Qk~r!!L25qk(n1212a)
•

~q2a12;q2!n

~q2;q2!n
. ~5.3!
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Keep in mind the following formula for the generating function of the Al-Salam-Chihara poly
mials @Ref. 13 formula~3.8.13!#:

(
j 50

`
zj

~q2;q2! j
•Qj~r!5

~qnz;q2!`•~qnz;q2!`

~qirz;q2!`•~q2 irz;q2!`
.

Substitutionzªq2a121n gives (q2a12;q2)n( j 50
` @qj (2a1n12)/(q2;q2) j # •Qj (r)5bq,a(r). Now

validity of ~5.3! follows from the latter equality and the orthogonality relations~4.13! for the
Al-Salam-Chihara polynomials. j

Proposition 5.1 follows directly from the last two lemmas.

B. Asymptotic expansion of the q -Berezin transform

Proposition 5.5: For any fPD(Un)q

Bq,t~ f !5~q2t;q2!n•(
j 50

`

t j
•q2 j

•

~q2 j 12;q2!n21

~q2;q2!n21
•pj~Dn,q! f

with

pj~Dn,q!5(
l 50

j
~q22 j ;q2! l•q2l

~q2n;q2! l•~q2;q2! l
• )

m50

l 21

~~12q2m!~12q2m12n!2q2m12n22~12q2!2Dn,q!.

Proof: Recall @see~3.9!# that

Bq,a~ f 0!5~q2a12;q2!n•ya1n115~q2a12;q2!n•(
j 50

`

q2 j (a1n11)
• f j

or, in terms oft5q2a,

Bq,t~ f 0!5~ tq2;q2!n•(
j 50

`

t jq2 j (n11)
• f j .

Since any morphism ofUqsun,1-modules is determined uniquely by its value on the vectorf 0 , it
suffices to prove thatpj (Dn,q) f 05q2 jn

• @(q2;q2)n21 /(q2 j 12;q2)n21# • f j or, equivalently,

pj~Dn,q
(r) ! f 05q2 jn

•

~q2;q2!n21

~q2 j 12;q2!n21
• f j .

Let us apply theq-spherical transformF to both sides of the latter equality. We get

pj~l~r!!Ff 0~r!5q2 jn
•

~q2;q2!n21

~q2 j 12;q2!n21
•Ff j~r!. ~5.4!

Recall@see~4.10!# thatFf k(r)5(12q2n)•q22kn
•(q2k12;q2)n21•fr(q2k). This formula reduces

proving ~5.4! to proving the equality

pj~l~r!!5fr~q2 j !, ~5.5!

and the latter is just a straightforward computation. j
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VI. AN APPLICATION: ORTHOGONALITY RELATIONS FOR CONTINUOUS DUAL
q-HAHN POLYNOMIALS

The aim of this section is to describe one application of our results to the theory of
orthogonal polynomials. Namely, we use theq-Berezin and theq-spherical transform to obtain
orthogonality relations for certain two-parameter family of the so-called continuous dualq-Hahn
polynomials~see Ref. 13!. Of course, this result is not new. However, we believe that our
proach might be interesting.

Throughout this sectiona.21 is a fixed number.

A. Auxiliary results

The aim of this subsection is to derive some useful consequences of Proposition 5.1.
Proposition 6.1: Bq,a

(r) is extended to an invertible operator onL n,q
2 .

Proof: It suffices to observe that the ‘‘symbol’’bq,a(r) is invertible:

bq,a~r!>
~q212a;q2!`•~q2n1212a;q2!`

~2qn1212a;q2!`•~2qn1212a;q2!`
.0.

j

To go further, we introduce some auxiliary notations. Denote byLOp andLOp8 the subspaces
of Uqs(un3u1)-module morphisms in End0(C@Cn#q,a) and End(C@Cn#q,a), respectively. Since
the subspacesC@Cn#q,a

(m) , mPZ>0 , in C@Cn#q,a are pairwise non-isomorphic irreducibleUqs(un

3u1)-modules~see the proof of Lemma 4.6!, the vector spaceLOp is generated by the orthogona
projectionsPm onto the subspacesC@Cn#q,a

(m) . LOp8 is the space of infinite series of the form

T5(
m

amPm , amPC.

Elements of LOp and LOp8 play the role of ‘‘radial’’ elements in End0(C@Cn#q,a) and
End(C@Cn#q,a).

Let L Op
2 be the subspace inLOp8 of ‘‘ q-Hilbert–Schmidt’’ operators:

L Op
2 5$TPLOp8 u Trq~T* •T!,`%.

Note that the triple (LOp,LOp8 ,L Op
2 ) is very similar to the triple (Ln,q ,Ln,q8 ,L n,q

2 ) introduced in
Sec. IV C.

Recall ~Sec. III D! the notations for the linear map from End0(C@Cn#q,a) to D(Un)q8 which
sends endomorphisms to their covariant symbols. Due to Proposition 3.7s(LOp),Ln,q8 . Let us
denote restriction ofs onto LOp by s (r).

Proposition 6.2: The image of operators (r) lies in L n,q
2 . Moreover, s (r) can be extended to a

bounded invertible operator fromL Op
2 to L n,q

2 .
Proof: Recall ~Sec. III D! that the maps is defined via the equality

E
Un

s~T!• f dnq5Trq~T•Tf !,

which should be fulfilled for anyf PD(Un)q . Let T(r) be restriction ontoLn,q of the operator from
D(Un)q to End0(C@Cn#q,a) which sends finite functions to the corresponding Toeplitz operat
By Proposition 3.3T(r)(Ln,q),LOp8 . More precisely, by Lemma 4.6,

T(r)~Ln,q!,LOp. ~6.1!
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In particular,T(r) can be considered as a densely defined operator fromL n,q
2 into L Op

2 . The above
definition ofs implies the following equivalent definition ofs (r): for an elementTPLOp one has
s (r)(T)5t(y) iff

12q2n

12q2 E
0

1

t~y! f ~y!y2n21~yq2;q2!n21dq2y5Trq~T•T(r)~ f ~y!!! ~6.2!

for any f (y)PLn,q . Let us prove thatT(r) can be extended up to a bounded operator fromL n,q
2 to

L Op
2 . Supposef (y)PLn,q . Then, by~6.1! and ~6.2!

Trq~~T(r)~ f ~y!!!* •T(r)~ f ~y!!!5
12q2n

12q2 E
0

1

s (r)
•T(r)~ f ~y!! f ~y!y2n21~yq2;q2!n21dq2y

5
12q2n

12q2 E
0

1

Bq,a
(r) ~ f ~y!! f ~y!y2n21~yq2;q2!n21dq2y

5~Bq,a
(r) f , f !L 2<iBq,a

(r) i~ f , f !L 2.

To prove boundedness ofs (r) it remains to observe that, by~6.2!, s (r) coincides onLOp with
(T(r))* . Invertibility of s (r) may be deduced using similar arguments and Proposition 6.1.j

B. Orthogonality relations

First we describe an idea of producing the orthogonality relations. It is based on the follo
statement.

Proposition 6.3: The operator

Ua :L Op
2 →L2S dr

uc~r!u2D , T°
1

Abq,a~r!
•Fs (r)~T!

is unitary.
Remark:In the classical case the operatorUa ~the product of the spherical transform with th

unitary part of the covariant symbol map! was studied in Ref. 14.
Proof: By Proposition 5.1

1

bq,a~r!
•F5F~Bq,a

(r) !21.

Keep in mind the notation (•,•)L2, (•,•)L 2 for the inner products inL2(dr/uc(r)u2) andLn,q ,
respectively. Then

S 1

Abq,a~r!
•Fs (r)~T!,

1

Abq,a~r!
•Fs (r)~T!D

L2

5S 1

bq,a~r!
•Fs (r)~T!, Fs (r)~T! D

L2

5~F~Bq,a
(r) !21s (r)~T!, Fs (r)~T!!L25~~Bq,a

(r) !21s (r)~T!, s (r)~T!!L 2.

The result then follows since (Bq,a
(r) )215(s (r)* )21

•(s (r))21. j

Recall that the projectionsPm , mPZ>0 , constitute an orthogonal basis in the Hilbert spa
L Op

2 . Proposition 6.3 implies thatFs (r)(Pm), mPZ>0 , constitute an orthogonal basis i
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L2(dr/bq,a(r)uc(r)u2). Our intention now is to show thatFs (r)(Pm) are very close to certain
continuous dualq-Hahn polynomials, and the above observations will give us the orthogon
relations for these polynomials.

Proposition 6.4: Let Pm(r)5Fs (r)(Pm)(r). Then

Pm~r!5
~q2;q2!n•~q2n1212a;q2!`

2

~qn1212a1 ir;q2!`•~qn1212a2 ir;q2!`
•q22m(n1a)

•

~q2n1212a;q2!m

~q2;q2!m

•3f2S q22m, qn1212a1 ir, qn1212a2 ir,

q2n1212a, q2n1212a q2, q2D .

Proof: Keep in mind~Lemma 4.7! that we have already computeds (r)(Pm)

s (r)~Pm!5q22m(a1n11)
•

~q2a12n12;q2!m

~q2;q2!m
•ya1n11

•~yq22m12;q2!m .

By the q-binomial formula20 the equality can be rewritten as follows:

s (r)~Pm!5q22m(a1n11)
•

~q2a12n12;q2!m

~q2;q2!m
•(

l 50

m
~q2;q2!m

~q2;q2! l~q2;q2!m2 l
•~21!m

•ql ( l 22m11)
•yn111 l 1a

5q22m(a1n11)
•(

l 50

m
~q2a12n12;q2!m

~q2;q2! l~q2;q2!m2 l
•~21!m

•ql ( l 22m11)
•yn111 l 1a. ~6.3!

Hence it remains to computeFyn111 l 1a for any l>0. Let us apply theq-spherical transform to
both sides of the formulaBq,a( f 0)5(q2a12;q2)n•ya1n11. Due to Proposition 5.1

~q212a;q2!`•~q2n1212a;q2!`

~qn1212a1 ir;q2!`•~qn1212a2 ir;q2!`
•Ff 05~q212a;q2!n•Fyn111a,

or, equivalently,

Fyn111a5
~q2;q2!n•~q2n1212a;q2!`

2

~qn1212a1 ir;q2!`•~qn1212a2 ir;q2!`
.

Let us make the substitutionNªn111a (N.n11):

FyN5
~q2;q2!n•~q2N;q2!`

2

~q2N2n1 ir;q2!`•~q2N2n2 ir;q2!`
.

Thus,

Fyn111 l 1a5
~q2;q2!n•~q2n1212l 12a;q2!`

2

~qn1212l 12a1 ir;q2!`•~qn1212l 12a2 ir;q2!`
.

The latter equality, together with~6.3! and simple computations, gives our formula. j

Recall the notationpk(x;a,b,cuq) for the continuous dualq-Hahn polynomials~Ref. 13, Sec.
3.3!. The above proposition implies
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Fs (r)~Pm!5
q2mn

•~q2;q2!n•~q2n1212a;q2!`•~q2n12m1212a;q2!`

~qn1212a1 ir;q2!`•~qn1212a2 ir;q2!`•~q2;q2!m

•pmS cos
hr

2
;qn1212a,qn,qnUq2D .

Let pm(r)ªpm(cos(hr/2) ;qn1212a,qn,qnuq2). Applying Proposition 6.3 and the above observ
tions, we get

1

4p E
0

2p/h

pm~r!pl~r!
dr

~qn1212a1 ir;q2!`
2
•~qn1212a2 ir;q2!`

2
•bq,a~r!uc~r!u2

5
q2mn

•~12q2n!•~q2;q2!m
2

h•~q2;q2!n
2
•~q2n1212a;q2!`

2
•~q2n12m1212a;q2!`

2 •Trq~Pm•Pl !,

or, using the explicit formula forbq,a ,

1

4p E
0

2p/h

pm~r!pl~r!
dr

~qn1212a1 ir;q2!`~qn1212a2 ir;q2!`uc~r!u2

5dml

~q2;q2!m~q2;q2!m1n21

h~q2;q2!n21~q2n12m1212a;q2!`
2 .

Recall ~Proposition 4.5! that

1

uc~r!u2
5UGq2

2
~n/21 ir/2!

Gq2~n!Gq2~ ir!
U2

5~q2n;q2!`
2
•

~q2ir;q2!`~q22ir;q2!`

~qn1 ir;q2!`
2 ~qn2 ir;q2!`

2 .

Finally we have

1

4p E
0

2p/h

pm~r!pl~r!
~q2ir;q2!`~q22ir;q2!`

~qn1212a1 ir;q2!`~qn1212a2 ir;q2!`~qn1 ir;q2!`
2 ~qn2 ir;q2!`

2 dr

5dml

1

h~q2n12m1212a;q2!`
2 ~q2m12;q2!`~q2n12m;q2!`

.

The latter equality is a particular case of the orthogonality relations for the entire fami
continuous dualq-Hahn polynomials given in Ref. 13~3.3.2!.

VII. CONCLUSION

As it was mentioned in the Introduction, this research is, above all, a part of the ge
program of studyingq-Cartan domains, which we believe is a promising subject in quantum g
theory. To our knowledge the results above on finding a mathematical setting for the Toepli
covariant calculi, expressing Berezin transform as a function of theq-Laplacian operator, and on
computing the covariant symbol of the projections are all new. Those results, in the classica
are naturally related to finding an expansion of the associate* -productf * hg of covariant symbols
as a power series in the Planck constanth ~see, e.g., Ref. 25!. Thus, the most natural continuatio
of the present paper would be understanding the expansion of the*-product in this case since
certain computation might be easier than in the classical case, and generalization of our re
the case of other, more complicatedq-Cartan domains, first of all,q-matrix balls.9,10 We mention
Ref. 10 whereq-weighted Bergman spaces onq-matrix balls are constructed and studied. Usi
these results, it is not so difficult to generalize our definition of theq-Berezin transform. However
to obtain more deep results~for instance, an explicit asymptotic formula for theq-Berezin trans-
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form! one needs to develop to some extent harmonic analysis onq-matrix balls. This seems to b
a difficult problem itself. By now, harmonic analysis is developed quite well for compact qua
homogeneous spaces only. Nevertheless, we are fully confident that all the results we pre
this article admit generalization to otherq-Cartan domains.
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The curvature of a three-dimensional Riemannian manifold with Lorentzian signa-
ture is algebraically classified using the fact that the spinor equivalent of the trace-
less part of the Ricci tensor is a totally symmetric four-index spinor. Following G.
S. Hall and M. S. Capocci@J. Math. Phys.40, 1466~1999!# it is shown that at each
point of the manifold there exists four, possibly complex, null vectors which are
analogous to the Debever–Penrose vectors and also satisfy the conditionRabl

al b

50. It is also shown that a similar conclusion holds for the Cotton–York
tensor. © 2003 American Institute of Physics.@DOI: 10.1063/1.1592611#

I. INTRODUCTION

The usefulness of the two-component spinor formalism in general relativity is well establ
and an illustrative example of it can be found in the algebraic classification of the confo
curvature~see, e.g., Refs. 1 and 2!. At each point of the space-time manifold, the spinor equival
of the conformal curvature tensor is given by a totally symmetric four-index spinor~the Weyl
spinor! and its complex conjugate. The Weyl spinor is the symmetrized product of four one-
spinors which define four null directions whose coincidences determine the algebraic type
conformal curvature.

In the case of a Riemannian manifold of dimension three, the Riemann curvature ten
determined by the Ricci tensor alone and therefore the curvature can be classified using th
tensor directly. By considering a three-dimensional space with indefinite~Lorentzian! metric, Hall
et al.3,4 obtained four canonical forms for symmetric two-index tensors in terms of tr
$ l a ,na ,xa% such thatl ana515xaxa , with all other products equal to zero, which were th
applied to classify the Ricci and the Cotton–York tensors. The Cotton–York tensor is analog
the conformal curvature tensor of a Riemannian manifold of dimension greater than three
sense that its vanishing is locally equivalent to the conformal flatness of the manifold.

It is noteworthy that a spinor formalism similar to that employed in the four-dimensi
space–time can be applied in the case of space–times of 211 dimensions, that is, three
dimensional Riemannian manifolds with indefinite metric. By contrast with the two-compo
spinors in four dimensions, for which two types of spinor indices are necessary, in a
dimensional space only one type of spinor indices is required.5–7

The traceless symmetric real two-index tensors in three-dimensional spaces have been
fied in Ref. 6 making use of the fact that the spinor equivalent of a tensor of this type c
expressed as the symmetrized product of four one-index spinors. The aim of this paper is to
this classification to the traceless part of the Ricci tensor and to the Cotton–York tenso
three-dimensional manifold with Lorentzian signature and to establish some properties
curvature tensors that follow from those of their spinor equivalents. It should be remarke

a!Electronic mail: gtorres@fcfm.buap.mx
43740022-2488/2003/44(9)/4374/7/$20.00 © 2003 American Institute of Physics
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since the Cotton–York and the Ricci tensor are symmetric two-index tensors, the same
sification scheme can be applied to both of them. The classification employed here is a
interest in the case of a four-dimensional manifold with ultra-hyperbolic, or Kleinian, signa
(1122), since its conformal curvature corresponds to two independent four-index totally
metric spinors and the spin group is isomorphic to the product of two copies of SL~2,R! or of
SU~1,1!.

In Sec. II a brief description of the spinor formalism for three-dimensional spaces wit
definite metric is given and in Sec. III this formalism is applied in the classification of
curvature of a three-dimensional manifold with Lorentzian signature.

II. SPINORS IN THREE-DIMENSIONAL SPACES WITH INDEFINITE METRIC

A two-component spinor formalism analogous to that employed in the study of the spin o
electron in nonrelativistic quantum mechanics can be applied in any three-dimensional real
space,V, with an indefinite metric tensor. A one-index spinor has two complex components w
will be denoted by symbols likecA or cA, where the capital italic indices take two values on
e.g., 1 and 2. The spinor indices will be lowered or raised following the rules

cA5«ABcB, cA52«ABcB , ~1!

where

~«AB!5S 0 1

21 0D 5~«AB!. ~2!

Hence,cAfA52cAfA , for any pair of one-index spinors,«A
B5dB

A , and«B
A52dB

A .
If $e1 ,e2 ,e3% is an orthogonal basis ofV with respect to which the components of the met

tensor are given by (gab)5diag(1,1,21), a,b,...51,2,3, andsa
AB are~possibly complex! scalars

such that

sa
AB5sa

BA , ~3!

sa
ABsb

CDgab52~«AC«BD1«AD«BC!, ~4!

then with each vector with componentsva we can associate its spinor equivalent with compone

vAB5
1

&
sa

ABva . ~5!

~The tensor indices,a,b,..., areraised or lowered by means ofgab andgab in the usual way.!
Equation~4! is equivalent to

sa
ABsbAB522gab . ~6!

Hence, from Eq.~5! we have

va52
1

&
sa

ABvAB . ~7!

In general, if tab¯d are the components of ann-index tensor, the components of its spin
equivalent are defined by

tABCD¯GH5
1

&
sa

AB

1

&
sb

CD¯
1

&
sd

GHtab¯d . ~8!
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Then

tab¯d5S 2
1

&
sa

ABD S 2
1

&
sb

CDD¯S 2
1

&
sd

GHD tABCD¯GH ~9!

and

t
¯a¯ s¯a¯52t

¯AB¯ s¯AB¯. ~10!

Owing to Eq.~3! the components of the spinor equivalent of a tensor are symmetric on eac
of spinor indices corresponding to a tensor index,tABCD¯GH5t (AB)(CD)¯(GH) , where the paren-
theses denote symmetrization on the indices enclosed. The componentstABCD¯GH may have
additional symmetries depending on those oftab...d . For instance, iftab are the components of
skewsymmetric two-index tensor thentABCD52tCDAB and, therefore, the componentstABCD can
be expressed in the form

tABCD5tBD«AC1tAC«BD , ~11!

wheretAB is a symmetric object (tAB5 1
2t

R
ARB).

Similarly, if the tab are the components of a symmetric two-index tensor then, in additio
the symmetriestABCD5t (AB)(CD) , we havetABCD5tCDAB , but not necessarilytABCD will coincide
with, e.g.,tACBD ; the componentstABCD are totally symmetric ifftab is symmetric and traceless
In general,tab¯d is symmetric and traceless iff its spinor equivalenttABCD¯GH is totally symmet-
ric.

The connection symbols, sa
AB , are not uniquely defined by Eqs.~3! and ~4!; a convenient

choice is given by the real matrices

~s1
AB![S 1 0

0 21D , ~s2
AB![S 0 1

1 0D , ~s3
AB![S 21 0

0 21D . ~12!

Alternatively, we can also make use of

~s1
AB![S i 0

0 i D , ~s2
AB![S 1 0

0 21D , ~s3
AB![S 0 i

i 0D , ~13!

which satisfy

sa
AB52hAChBDsaCD, ~14!

where

~hAB!5S 1 0

0 21D . ~15!

The spin transformations will be given by SL~2,R! or SU~1,1! matrices (UA
B), depending on

whether we employ the connection symbols~12! or ~13!, respectively.5 Under a spin transforma
tion the components of anm-index spinorcAB...F transform as

c8AB¯F5UA
MUB

N¯UF
RcMN¯R . ~16!

With any m-index spinorcAB¯F we can associate anotherm-index spinor, called the mate
conjugate, or adjoint, ofcAB¯F whose components are given by5,7
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ĉAB¯F5H cAB¯F if saAB are given by ~12!,

i mhAMhBN¯hFRcMN¯R if the saAB are given by ~13!.
~17!

Then the componentsĉAB¯F also transform according to Eq.~16! ~as can be shown noticing tha
the spin transformations are given by matrices that satisfy the conditionÛA

B5UA
B), «̂AB

5«AB , c9 AB¯F5cAB¯F , andtAB¯GH are the components of the spinor equivalent of a real ten
iff t̂ AB¯GH5tAB¯GH . Actually, one can define a spinor as real if it is equal to its mate.

From Eq.~10! it follows that for a vectorva, vava52vABvAB522 det(vAB); hence,va is
null ~i.e., vava50) iff there exists a one-index spinoraA such that

vAB5aAaB ; ~18!

the null vectorva is real iff, additionally,âAâB5aAaB , which is equivalent to the condition
âA56aA . The factorization~18! is a special case of the fact that any totally symmetricm-index
spinor cAB¯F can be expressed as the symmetrized product ofm ~not necessarily different!
one-index spinors

cAB¯F5a (AbB¯dF) . ~19!

The spinorsaA , bA ,..., dA , are defined up to a scalar factor and are called principal spino
cAB¯F . A one-index spinorjA is a principal spinor ofcAB¯F iff cAB¯FjAjB

¯jF50. As in the
case of the two-component spinor formalism employed in the four-dimensional space–tim
factorization~19! follows from the fundamental theorem of algebra.1

III. ALGEBRAIC CLASSIFICATION OF THE CURVATURE

Let M be a three-dimensional Riemannian manifold with indefinite metric. The compon
of the curvature tensorRabcd of the Levi–Civita connection ofM , with respect to an orthogona
basis of the tangent space ofM at a pointp such that (gab)5diag(1,1,21), satisfy the conditions
Rabcd5R[ab][ cd] , where the square brackets denote antisymmetrization on the indices enc
hence, applying~11! it follows that the spinor equivalent ofRabcd can be expressed in the form5

RABCDEFHI5
1
2 ~«AC«EHGBDFI1«AC«FIGBDEH1«BD«EHGACFI1«BD«FIGACEH! ~20!

~the factor 1/2 is introduced for convenience!, with

GABCD5G(AB)(CD) . ~21!

Then, the symmetryRabcd5Rcdab, is equivalent toGABCD5GCDAB and from Eq.~20! it follows
that

GABCD5RABCD1 1
4 R~«AC«BD1«AD«BC!, ~22!

whereRABCD is the spinor equivalent of the Ricci tensor,Rab[Rc
acb , andR is the scalar curva-

ture,R5Ra
a . Hence,GABCD is the spinor equivalent ofGab5Rab2 1

2Rgab and if FABCD denotes
the spinor equivalent of the traceless part of the Ricci tensor,Fab5Rab2 1

3Rgab , we have

GABCD5FABCD1 1
12 R~«AC«BD1«AD«BC!. ~23!

Thus, the curvature tensor is determined by the totally symmetric spinorFABCD and the scalar
curvatureR; therefore, the curvature can be classified according to the algebraic structu
FABCD .

In the case of a four-dimensional manifold with Lorentzian signature, at each point o
manifold there exist four~not necessarily different! real null vectorsl m ~called Debever–Penros
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vectors! such thatl ml [nCr]ms[ tl l] l
s50, whereCmnrs is the conformal curvature tensor~see Refs.

8 and 9; the existence of these null directions was already implicit in Ref. 10!. As we shall show,
at each point of a three-dimensional manifold with indefinite metric there exist four, pos
complex, null vectorsl a such that

l al [bRc]ad[el f ] l
d50 ~24!

~see also Ref. 4!. In effect, making use of the fact that the spinor equivalent of a null vector i
the formaAaB and of the expression~11! for the spinor equivalent of a skewsymmetric two-ind
tensor, one finds that Eq.~24! amounts to

aAaMa (BaNRC)NAMDP(E
QaF)aQaDaP50,

which, by virtue of Eq.~20!, reduces toGNM PQaNaMaPaQ50 or, equivalently,

FNM PQaNaMaPaQ50, ~25!

i.e., aA is a principal spinor ofFABCD . Even thoughFABCD is the spinor equivalent of a rea
tensor, its principal spinors need not be real. IfaA is a principal spinor ofFABCD then so is its
mateâA ; hence, as shown in Ref. 6,F̂ABCD5FABCD iff FABCD is of one of the following forms:

Type I FABCD5a (AbBgCdD) with âA5aA , b̂A5bA , ĝA5gA , d̂A5dA ,

Type II FABCD5a (AbBgCĝD) with âA5aA , b̂A5bA ,

Type III FABCD56a (AâBbCb̂D) ,

Type IV FABCD5a (AaBbCgD) with âA5aA , b̂A5bA , ĝA5gA ,

Type V FABCD56a (AaBbCb̂D) with âA5aA ,

Type VI FABCD56a (AaBbCbD) with âA5aA , b̂A5bA ,

Type VII FABCD56a (AaBâCâD) ,

Type VIII FABCD5a (AaBaCbD) with âA5aA , b̂A5bA ,

Type IX FABCD56aAaBaCaD with âA5aA . ~26!

Thus, aA is a principal spinor ofFABCD iff aAaB is the spinor equivalent of a null vecto
satisfying Eq.~24!.

Equation~25! is equivalent toRABCDaAaBaCaD50, i.e.,

Rabl
al b50 ~27!

and therefore we conclude that, at each point ofM , there are four, possibly complex, null vecto
l a such thatRabl

al b50 and that Eq.~24! is equivalent to Eq.~27! if l a is null ~cf. Ref. 4!.
On the other hand, the conditionRabl

a5l l b is equivalent toFabl
a5(l2 1

3R) l b and, assum-
ing again thatl a is null and possibly complex we have

FABCDaAaB5~ 1
3 R2l!aCaD , ~28!

whereaAaB is the spinor equivalent ofl a . If 1
3R2l50, Eq. ~28! means thataA is a triple or

quadruple principal spinor ofFABCD ~types VIII and IX!, and conversely; thenaA ~and hencel a)
                                                                                                                



nt

of Eq.
e

y

inors

ed
uten–

r
er as

r

e
a for-

sional

4379J. Math. Phys., Vol. 44, No. 9, September 2003 Curvature of three-dimensional manifolds

                    
must be real@see Eq.~26!# and its direction is unique@i.e., there is only one linearly independe
solution to Eq.~28!#. When 1

3R2lÞ0, aA is a double principal spinor ofFABCD ~types IV, V, VI,
and VII! and, therefore, in this case there are at most two linearly independent solutions
~28!; furthermore, sincegAdA5ĝAd̂A for any pair of one-index spinors, by inspection of th
possible cases in~26!, one finds thatl must be real.@Actually, there are exactly two real linearl
independent solutions of Eq.~28! iff FABCD is of type VI, in which case1

3R2l.0 and there are
two complex linearly independent solutions of Eq.~28! iff FABCD is of type VII, then 1

3R2l
,0.]

Using Eqs.~20! and ~23! one finds that the spinor equivalent ofRabcdl
bl c is

RABCDEFHIa
CaDaEaF5 1

6 RaAaBaHa I22a (AFB)DF(Ha I )a
DaF,

which is proportional toaAaBaHa I iff Eq. ~28! holds. Hence,Rabcdl
bl c is proportional tol al d iff

Rabl
a5l l b .4

It may be noticed that, for instance, the expressionFABCD5a (AbBgCdD) is the spinor equiva-
lent of the traceless part of the symmetrized product of the vector equivalents ofa (AbB) and
g (AdB) , i.e., of Fab5v (awb)2

1
3v

cwcgab , whereva andwa are the vector equivalents ofa (AbB)

and g (AdB) , respectively.~However, if the principal spinors ofFABCD are not repeated, the
vectorsva andwa are not defined uniquely byFab since we can combineaA , bA , gA , anddA in
three different ways to form a pair of vectors. By contrast, the directions of the principal sp
of FABCD are uniquely defined.!

In a three-dimensional Riemannian manifoldM , the Riemann tensor is completely determin
by the Ricci tensor and an analog of the conformal curvature tensor is given by the Scho
Bach–Cotton–York tensor

Yab5«acd~¹cRb
d2 1

4 db
d]cR!5«acd~¹cFb

d1 1
12 db

d]cR!, ~29!

which is symmetric and traceless.M is locally conformally flat iff Yab vanishes. The spino
equivalent ofYab is totally symmetric and can be algebraically classified in the same mann
FABCD @see Eq.~26!#. Thus, we conclude that at each point ofM there exist four~not necessarily
different! complex null vectorsl a such that

Yabl
al b50 ~30!

~cf. Ref. 4! and the spinor equivalent of a null vectorl a satisfying Eq.~30! is of the formaAaB ,
whereaA is a principal spinor ofYABCD , the spinor equivalent ofYab . The eigenvalue equation
Yabl

a5l l b , for l a null, has solution only ifYABCD has at least one repeated principal spinor.
The principal spinors ofFABCD need not coincide with those ofYABCD and the algebraic

types ofFABCD andYABCD may be different. However, ifaA is ak-fold repeated principal spino
of FABCD with k>3, thenaA is at least a (k22)-fold repeated principal spinor ofYABCD , as can
be seen using the fact that Eq.~29! amounts to

YABCD52& ¹R
(AFBCD)R , ~31!

where¹AB denotes the spinor equivalent of the covariant derivative operator¹a .
The spinor formalism obtained with the real connection symbols~12! is equivalent to the triad

formalism given in Ref. 3. When the complex connection symbols~13! are employed, instead, th
number of independent components and equations reduces almost by half, thus obtaining
malism closer to the Newman–Penrose formalism applied in the case of the four-dimen
space-time.

1R. Penrose, Ann. Phys.~N.Y.! 10, 171 ~1960!.
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Pauli approximations to the self-adjoint extensions
of the Aharonov–Bohm Hamiltonian
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It is well known that the formal Aharonov–Bohm Hamiltonian operator, describing
the interaction of a charged particle with a magnetic vortex, has a four-parameter
family of self-adjoint extensions, which reduces to a two-parameter family if one
requires that the Hamiltonian commutes with the angular momentum operator. The
question we study here is which of these self-adjoint extensions can considered as
limits of regularized Aharonov–Bohm Hamiltonians, that is Pauli Hamiltonians in
which the magnetic field corresponds to a flux tube of nonzero diameter. We show
that not all the self-adjoint extensions in this two-parameter family can be obtained
by these approximations, but only two one-parameter subfamilies. In these two
cases we can choose the gyromagnetic ratio in the approximating Pauli Hamil-
tonian in such a way that we get convergence in the norm resolvent sense to the
corresponding self-adjoint extension. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1601298#

I. INTRODUCTION

The Aharonov–Bohm Hamiltonian operator, describing the interaction of a charged pa
with a magnetic vortex, that is, an infinitely extended, infinitely thin, impenetrable magnetic
tube, is given by

H5
1

2mS p2
e

c
AD 2

, ~1.1!

where the vector potentialA is given by

A5
f

2p

k3r

r 2 , ~1.2!

f being the flux of the tube. It is well known1,2 that this formal operator has a four-parame
family of self-adjoint extensions, which reduces to a two-parameter family if one requires th
Hamiltonian commutes with the angular momentum operator. These self-adjoint extensions
obtained formally by adding a delta function. The question we study in this paper is which of
self-adjoint extensions can considered as limits of regularized Aharonov–Bohm~AB! Hamilto-
nians, that is Pauli Hamiltonians in which the magnetic field corresponds to a flux tube of no
diameter.

This problem has been studied by Bordag and Voropaev3 and by Moroz.4 These authors make
the connection between the regularized Hamiltonian and the self-adjoint extensions of th
Hamiltonian and show that the gyromagnetic ratio has to be chosen in a particular way. Th

a!On leave of absence from Department of Mathematics, University of Malta, Msida MSD 06, Malta. Electronic
james.borg@um.edu.mt

b!Research Associate, School of Theoretical Physics, Dublin Institute for Advanced Studies. Electronic
joe.pule@ucd.ie
43850022-2488/2003/44(10)/4385/26/$20.00 © 2003 American Institute of Physics
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this by matching the bound states as the radius of the vortex tends to zero, but do not
convergence of the operators. Also they do not take into account the second parameter
two-parameter family of self-adjoint extensions mentioned above. Here we proceed more s
atically to extend the results of Refs. 3 and 4. We consider convergence in the norm res
sense. We show that not all the self-adjoint extensions in this two-parameter family can b
tained by these approximations, but only two one-parameter subfamilies. Tamura5 has done related
work but with a different emphasis.

When the AB Hamiltonian is decomposed into the subspaces corresponding to the va
the angular momentummPZ, it turns out that ifN is the integer part of the dimensionles
parametera5fe/hc, then the Hamiltonians restricted tom5N andm5N11 are not essentially
self-adjoint while the ones with other values ofm are essentially self-adjoint. The operato
corresponding tom5N and m5N11 each have a one-parameter family of self-adjoint ext
sions. We denote these parameters in (2`,`# by nN andnN11 , respectively,nN5` andnN11

5` corresponding to theregular self-adjoint extension. We prove that for the subfamiliesnN

P(2`,`), nN115` andnN11P(2`,`), nN5` we can choose the gyromagnetic ratio,g, in
the approximating Pauli Hamiltonian in such a way that we get convergence in the norm res
sense to the corresponding self-adjoint extension. The approximating Hamiltonian is

HR5
1

2mS p2
e

c
ARD 2

2
ge\

2mc
k"BR ~1.3!

with BR5curlAR . The vector potentialAR is 0 inside a tube of radiusR away from its boundary
and given by~1.2! outside the tube away from the boundary. It was shown in Refs. 3 and 4 th
obtain a nontrivial limit,g must depend onR and must tend to 2 in a certain way. For a discuss
of the physical significance of this limit we refer the reader to these papers. The same resul
here for the self-adjoint extensions withnNP(2`,`), nN115`. However, for the self-adjoint
extensions withnN11P(2`,`), nN5`, which were not considered in Refs. 3 and 4,g must
behave like2214(N11)/a.

Two other approximations have been considered, namely, the case when the magnet
inside the tube is homogeneous3,4 and the case when it is proportional to 1/r .3 The situation in
these cases is similar but more complex. We deal with these briefly at the end of the pape

The paper is set out as follows. In Sec. II we give the basic properties of the AB Hamilto
In Sec. III we carry out the approximation to the AB Hamiltonian with an infinitely thin infinit
extended cylindrical shell of nonzero radiusR. In Sec. IV we smooth the flux shell to give it
nonzero thickness. In this section we only sketch the proof. In Sec. V we discuss the oth
approximations. In the Appendixes A and B we give the asymptotic behavior of the sp
functions needed for these approximations.

II. THE AB HAMILTONIAN

In the sequel we set\2/m52 ande/c51 so that the AB Hamiltonian is formally the operat

H5~ i¹1A!2, ~2.1!

in L2(R2), where the vector potentialA is now given by

A5a
k3r

r 2 . ~2.2!

We let a5N1d, whereNPZ and 0,d,1. Without loss of generality, we shall assume thata
.0.

This Hamiltonian is discussed in great detail in Refs. 1 and 2. The analysis procee
decomposing the underlying space and studying the radial Hamiltonians
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hm52
1

r

]

]r
r

]

]r
1

~m2a!2

r 2 ~2.3!

in L2((0,̀ ),r dr ). Taking as domainC0
`((0,̀ ),r dr ), these operators are essentially self-adjo

except for the casesm5N,N11 which have deficiency indices~1,1!. These two operators there
fore have self-adjoint extensionshN,nN

and hN11,nN11
, parametrized bynN and nN11 , where

2`,nN , nN11<`. These self-adjoint extensions can be identified with the boundary condi

nmf05f1 ,

where

f05 lim
r↓0

r um2auf~r !

and

f15 lim
r↓0

r 2um2au@f~r !2r 2um2auf0#.

A four-parameter family of self-adjoint extensions ofH can be constructed from these. If w
consider only self-adjoint extensions which commute with the angular momentum operato
reduces to a two-parameter family. For this particular choice, the self-adjoint extension,Hn, with
nP(2`,`#2, is just the direct sum

Hn5hN,nN
% hN11,nN11

% %
m52`

mÞN,N11

`

hm .

We shall writeH` for Hn with n5(`,`). Let gk, m5(hm2k2)21. Then

gk, m~r ,r 8!5
ip

2
Jum2au~kr,!H um2au

(1) ~kr.!, ~2.4!

where r ,5min$r,r8% and r .5max$r,r8%. The resolventsgk,m
nm 5(hm,nm

2k2)21, m5N,N11, are
given by

gk,m
nm ~r ,r 8!5gk, m~r ,r 8!1c~m,nm ,k!H um2au

(1) ~kr !H um2au
(1) ~kr8!, m5N,N11, ~2.5!

with

c~m,n,k!5
2p2

2G~11um2au! S k

2D 2um2auS e2 ipum2au G~12um2au!
um2au S k

2D 2um2au

1nG~ um2au! D 21

, ~2.6!

c~m,`,k!50. ~2.7!

Finally, the resolvent of the HamiltonianGk
n5(Hn2k2)21 is given by~see Ref. 1!:

Gk
n5gk,N

nN % gk,N11
nN11 % %

m52`
mÞN,N11

`

gk,m . ~2.8!

Note that the operatorshm,nm
have no bound state fornm>0 and one bound state,Em , for nm

,0 given by
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S i
AEm

2 D 2um2au

52
G~11um2au!
G~12um2au!

nm , m5N,N11. ~2.9!

III. APPROXIMATION BY FINITE FLUX TUBE

The Aharonov–Bohm Hamiltonian consists of an infinitely thin magnetic flux tube. As a
approximation toHAB, consider a flux tube of radiusR.0, with ad-function on a cylindrical shell
~following Ref. 3 but see also Refs. 6, 4!. That is we take the vector potential

AR5H 0, r ,R,

a
k3r

r 2 , r .R.
~3.1!

Thenk"BR5(a/R) d(r 2R), so that formally, the Hamiltonian is then given by

HR5~ i¹1AR!21
b

R
d~r 2R!, ~3.2!

whereb52ga/2. The components inL2((0,̀ ),r dr ) corresponding to the angular momentumm
of this formal operator are

2
1

r

]

]r
r

]

]r
1

~m2aQ~r 2R!!2

r 2 1
b

R
d~r 2R!, ~3.3!

whereQ is the unit step function. The procedure for adding a point interaction atr 5R to a radial
Hamiltonian is standard~cf. Ref. 7 Sec. I.3.1!. The point we make here is thatb, the strength of
the point interaction, has to depend onR anda in a definite way so that the self-adjoint extensio
obtained in this manner converge to the AB self-adjoint extensions asR tends to 0.

Consider the following operator inL2((0,̀ ),r dr ):

hm,R52
1

r

]

]r
r

]

]r
1

~m2aQ~r 2R!!2

r 2 ~3.4!

with the closure ofC0
`((0,̀ )\$R%) as its domain~Ref. 7, p. 75!, i.e.,

D~hm, R!5$gPH2,2~~0,̀ !,r dr ! s.t. hm, RgPL2~~0,̀ !,r dr ! and g~R!50%. ~3.5!

Then its adjoint has domain~Ref. 7, p. 75!

D~hm, R* !5$gPH2,2~~0,̀ !\$R%,r dr !ùH2,1~~0,̀ !,r dr ! s.t.hm, RgPL2~~0,̀ !,r dr !%.
~3.6!

The equationhm, R* f5k2f, I(k).0, has one solution inD(hm, R* ) for all values ofmPZ ~see
Note 1, Appendix A!, given by

fm,k~r !5H Jumu~kr !, r ,R,

Bm~k!H um2au
(1) ~kr !, r .R,

~3.7!

whereBm(k) is chosen so that the conditionfm,k(R1)5fm,k(R2) is satisfied. Thus the opera
torshm, R have deficiency indices~1,1!. Self-adjoint extensionshm, R

b are obtained by imposing th
following boundary condition on the domain ofhm, R :

fm,k8 ~R1 !2fm,k8 ~R2 !5
b~a,R!

R
fm,k~R!, ~3.8!
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whereb(a,R) is a constant parameter~Ref. 7, p. 76!. Note that we do not want the paramet
b(a,R) to depend onm since it represents2ga/2. We shall henceforth be writingb for this
parameter to make the notation less cumbersome.

Next we find the resolventgk, m, R
b 5(hm, R

b 2k2)21. Note first thatgk, m, R
0 5(hm, R2k2)21,

I(k).0, is given by~Note 2, Appendix A!

gk, m, R
0 ~r ,r 8!55

ip

2
Jumu~kr,!S Am,R

(2) ~k!

Bm,R
(2) ~k!

Jumu~kr.!1H umu
(1)~kr.! D , r ,r 8,R,

ip

2 S Jum2au~kr,!1
Bm,R

(1) ~k!

Am,R
(1) ~k!

H um2au
(1) ~kr,! DH um2au

(1) ~kr.!, r ,r 8.R,

ip

2Am,R
(1) ~k!

Jumu~kr,!H um2au
(1) ~kr.!, otherwise,

~3.9!

where the constantsAm,R
(1) (k),Am,R

(2) (k),Bm,R
(1) (k), andBm,R

(2) (k) are given by

Am,R
(1) ~k!5

W@Jumu ,H um2au
(1) #~kR!

W@Jum2au ,H um2au
(1) #~kR!

, ~3.10!

Bm,R
(1) ~k!5

W@Jumu ,Jum2au#~kR!

W@H um2au
(1) ,Jum2au#~kR!

, ~3.11!

Am,R
(2) ~k!5

W@H um2au
(1) ,H umu

(1)#~kR!

W@Jumu ,H umu
(1)#~kR!

, ~3.12!

Bm,R
(2) ~k!5

W@Jumu ,H um2au
(1) #~kR!

W@Jumu ,H umu
(1)#~kR!

. ~3.13!

HereW@ • , • # denotes the Wronskian. Then the resolvent ofhm, R
b is given by~Note 3, Appendix

A!:

gk, m, R
b 5gk, m, R

0 2
b

11bgk, m, R
0 ~R,R!

gk, m, R
0 ~ • ,R! ^ gk, m, R

0 ~ • ,R!, ~3.14!

for I(k).0. We are interested in the behavior ofgk, m, R
b (r ,r 8) for small R. We note first that

limR→0 gk, m, R
0 (r ,r 8)5gk, m(r ,r 8), which is the resolvent of the regular operator. For smallR,

gk, m, R
0 ~r ,R!gk, m, R

0 ~R,r 8!. c̃m
2 ~k!R2um2auH um2au

(1) ~kr !H um2au
(1) ~kr8!, ~3.15!

where

c̃m~k!5
ip

~ um2au1umu!G~ um2au! S k

2D um2au

. ~3.16!

If um2au.1 ~i.e., if m¹$N,N11%), then the second term will either go to zero, or to a const
multiple of H um2au

(1) (kr)H um2au
(1) (kr8). Now H um2au

(1) (kr) is not in L2((0,̀ ),r dr ) since it behaves
like r 2um2au for small r ~see Note 1, Appendix A!. So in the latter case, the limit is not the kern
of a rank-one operator inL2((0,̀ ),r dr ). In particular, this means that it cannot be the kernel
a resolvent operator. Thus a meaningful nonzero limit for the second term in Eq.~3.14! exists only
for the casesm5N,N11. It shall be shown later that for smallR, we get
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gk, m, R
0 ~R,R!.

1

um2au1umu S 12
2e2 ipum2auG~12um2au!
~ um2au1umu!G~ um2au! S kR

2 D 2um2au D . ~3.17!

For the caser ,r 8.R ~the other cases are straightforward!, this results in

gk, m, R
b ~r ,r 8!.gk, m, R

0 ~r ,r 8!2
b c̃m

2 ~k!R2um2au

11
b~12 c̃8~k!R2um2au!

um2au1umu

H um2au
(1) ~kr !H um2au

(1) ~kr8!,

~3.18!

where

c̃8~k!5
2e2 ipum2auG~12um2au!
~ um2au1umu!G~ um2au! S k

2D 2um2au

. ~3.19!

The second term in~3.18! converges to a nonzero limit ifb has the followingR-dependence for
small R:

b.2~ um2au1umu!S 12
2um2aunm

um2au1umu
R2um2au D . ~3.20!

Then we obtain

lim
R→0

gk, m, R
b ~r ,r 8!5gk, m~r ,r 8!1c~m,nm ,k!H um2au

(1) ~kr !H um2au
(1) ~kr8!. ~3.21!

This gives the correct expression in~2.5! for the kernel of the resolvent of some self-adjoi
extension ofhm , m5N,N11.

The following are the only cases of interest.

~I! If b.2a@12 (2d/a) nNR2d#, then the second term in Eq.~3.14! approaches

~1! a nonzero limit form5N, corresponding to the self-adjoint extensionhN,nN
;

~2! zero limit for m5N11, corresponding to the regular self-adjoint extensionhN11,̀ ;
~3! zero limit for mÞN,N11, corresponding to the self-adjoint operatorshm .

~II ! If b.(a22(N11))(12„2(12d)/@2(N11)2a#…nN11R2(12d)), then the second term in
Eq. ~3.14! approaches

~1! a non-zero limit form5N11, corresponding to the self-adjoint extensionhN11,nN11
;

~2! zero limit for m5N, corresponding to the regular self-adjoint extensionhN,` ;
~3! zero limit for mÞN,N11, as before.

We can state the above results as a Theorem.
Theorem 1: Let

HR
b5 %

m52`

`

hm,R
b . ~3.22!

Then HR
b(a,R) converges, as R→0, to one of the self-adjoint extensions Hn of the AB Hamiltonian

only if either

(I) b(a,R)1a/R2d) →2dnN

or
(II) b(a,R)2a12(N11)/R2(12d) →2(12d)nN11 .
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In case (I) HR
b(a,R) converges in the norm resolvent sense, as R→0, to H (nN , `), and in case

(II) to H (`, nN11).
Proof: Let us consider case~I!, case~II ! is similar. Since

i~HR
b(a,R)2k2!212Gk

(nN , `)i5max$igk, N, R
b(a,R) 2gk, N

nN i ,igk, N11, R
b(a,R) 2gk, N11i ,

sup
mPZ

mÞN,N11

igk, m, R
b(a,R) 2gk, mi%, ~3.23!

we not only have to prove that the the terms in the right-hand side of the above equations
zero, but we have to show thatigk, m, R

b(a,R) 2gk, mi tends to zero uniformly inm. To do this we need
to obtain detailed upper and lower bounds on the special functionsJn andHn

(1) . These are given
in the Appendix.

The first term in the expressions forgk, m, R
b(a,R) is gk, m, R

0 and first term in the expressions fo
gk, m

n is gk, m . Therefore we start with the following lemma. Herei•i2 denotes the Hilbert–
Schmidt norm, and of coursei•i<i•i2 .

Lemma 1: For any m, limR→0igk, m, R
0 2gk, mi250. Furthermore, there exists MPN such that

for umu.M , there exists a constant c(R), independent of m, such that igk, m, R
0 2gk, mi2

<c(R), and limR→0 c(R)50.
Proof:

igk, m, R
0 2gk, mi2<i g̃1i21i g̃2i21i g̃3i21i g̃4i21i g̃52gk, mi2 , ~3.24!

where

g̃1~r ,r 8!5
ip

2

Am,R
(2) ~k!

Bm,R
(2) ~k!

Jumu~kr !Jumu~kr8!1(0, R)3(0, R)~r ,r 8!, ~3.25!

g̃2~r ,r 8!5
ip

2
Jumu~kr,!H umu

(1)~kr.!1(0, R)3(0, R)~r ,r 8!, ~3.26!

g̃3~r ,r 8!5
ip

2

Bm,R
(1) ~k!

Am,R
(1) ~k!

H um2au
(1) ~kr !H um2au

(1) ~kr8!1(R, `)3(R, `)~r ,r 8!, ~3.27!

g̃4~r ,r 8!5
ip

2Am,R
(1) ~k!

Jumu~kr,!H um2au
(1) ~kr,!1(0, R] 3[R, `)ø[R, `)3(0, R]~r ,r 8!, ~3.28!

g̃5~r ,r 8!5
ip

2
Jum2au~kr,!H um2au

(1) ~kr.!1(R, `)3(R, `)~r ,r 8!. ~3.29!

Using the bounds~B32!, ~B41!, and~B45! in Appendix B and the relation

W@Jn~z!,Hn
(1)~z!#5

2i

pz
, ~3.30!

we can see that for any«.0, there existsR0.0 such that ifR,R0 , then the following bounds
hold:

1

uAm,R
(1) ~k!u

<
2G~ umu11!

uum2au1umuuG~ um2au! UkR

2 Uum2au2umu

~11«!, ~3.31!
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UBm,R
(1) ~k!

Am,R
(1) ~k!

U< puum2au2umuu
~ um2au1umu!G~ um2au!G~ um2au11!

UkR

2 U2um2au

~11«!, ~3.32!

UAm,R
(2) ~k!

Bm,R
(2) ~k!

U< uum2au2umuuG~ umu!G~ umu11!

2p~ um2au1umu! UkR

2 U22umu

~11«!. ~3.33!

Now we can find bounds for the terms in Eq.~3.24! for small R,

i g̃1i2
25E E ug̃1~r ,r 8!u2 r dr r 8 dr 85

p2

4 UAm,R
(2) ~k!

Bm,R
(2) ~k!

U2S E
0

R

r dr uJumu~kr !u2D 2

.

Using ~3.33! and ~B1! we get

i g̃1i2
2<H ~ um2au2umu!2R4

64umu2~ umu11!2~ um2au1umu!2 ~11«!, mÞ0,

R4

64
~11«!, m50.

~3.34!

Next we have

i g̃2i2
25E ug̃2~r ,r 8!u2 r dr r 8 dr 8

5
p2

4 E
0

R

r dr r 8 dr 8uJumu~kr,!u2uH umu
(1)~kr.8 !u2

5
p2

2 E
0

R

r dr uJumu~kr !u2E
r

R

r 8 dr 8uH umu
(1)~kr8!u2.

From ~B1!, ~B18! and ~B25!, we get

i g̃2i2
2<5

R4

16umu2~11umu! ~11«!, umu.1,

R4

32
~11«!, umu51,

R4

32
(8(lnkR)214lnkR11)(11«), m50.

~3.35!

From the relationsKn(z)5Kn( z̄) and

Hn
(1)~z!52

2i

p
e2 1/2 ipnKn~2 iz!, ~3.36!

we obtain

E
R

`

r dr uH um2au
(1) ~kr !u25

4

p2 E
R

`

dr
r 2um2au1j21

r 2um2au1j22 K um2au~ i k̄r !K um2au~2 ikr !

<
4R222um2au2j

p2 E
0

`

dr r 2um2au1j21K um2au~ i k̄r !K um2au~2 ikr !.

for 2um2au1j.2.
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Using the formula 6.576 of Ref. 8, we then get

E
R

`

r dr uH um2au
(1) ~kr !u2<

2

p2 uku22um2au2jUR2U
222um2au2j GS j

2DGS 1

2D
GS j

4
1

1

2D

3

GS um2au1
j

2
1

1

2DGS 2um2au1
j

2D S GS um2au1
j

2D D 2

GS um2au1
j

4
1

1

2DG~2um2au1j!

~3.37!

for um2au>1 andj.0.
So, if mÞN,N11,

i g̃3i2
25E ug̃3~r ,r 8!u2 r dr r 8 dr 85

p2

4 UBm,R
(1) ~k!

Am,R
(1) ~k!

U2E
R

`

r dr uH um2au
(1) ~kr !u2E

r

`

r 8 dr 8uH um2au
(1) ~kr8!u2

<
p2

4 UBm,R
(1) ~k!

Am,R
(1) ~k!

U2F E
R

`

r dr uH um2au
(1) ~kr !u2G2

<
~ um2au2umu!2

~ um2au1umu!2 S R

2 D 422j

uku22jS GS j

2DGS 1

2D
GS j

4
1

1

2D D
2

~11«!

3S GS um2au1
j

2
1

1

2DGS 2um2au1
j

2D S GS um2au1
j

2D D 2

GS um2au1
j

4
1

1

2DG~2um2au1j!G~ um2au!G~ um2au11!
D 2

. ~3.38!

For m5N,N11 the following bound is sufficient:

i g̃3i2
2<S p2uum2au2umuu

4~ um2au1umu!G~ um2au!G~ um2au11! D
2UkR

2 U4um2au

3iH um2au
(1) ~kr !i4~11«!.

~3.39!

Thus, for fixedm, i g̃3i2→0 asR→0 provided we choosej,2.
To make the bound fori g̃3i2 in ~3.38! independent ofm, we use the following limit:

lim
n→`

nb2a
G~n1a!

G~n1b!
51, ~3.40!

to deduce that there existsM0PN such that, ifumu.M0 , then

S GS um2au1
j

2
1

1

2DG~2um2au1j/2! D 2

~G~ um2au1j/2!!4

S GS um2au1
j

4
1

1

2DG~2um2au1j!G~ um2au!G~ um2au11! D 2 <22jm̄3/2j22 ~3.41!

wherem̄5 bum2au c, and we must choosej, 4
3.
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Similarly, for mÞN,N11,

i g̃4i2
25E ug̃4~r ,r 8!u2r dr r 8 dr 8 ~3.42!

5
p2

2uAm,R
(1) ~k!u2 E

0

R

r dr uJumu~kr !u2E
R

`

r 8 dr 8uH um2au
(1) ~kr8!u2 ~3.43!

<
2j21R42j

~ umu11!~ um2au1umu!2 uku2j

GS j

2DGS 1

2D
GS j

4
1

1

2D ~11«!

3

GS um2au1
j

2
1

1

2DGS 2um2au1
j

2D S GS um2au1
j

2D D 2

GS um2au1
j

4
1

1

2DG~2um2au1j!~G~ um2au!!2

, ~3.44!

while for m5N,N11,

i g̃4i2
2<

p2Uk2U
2um2au

R2um2au12

~ umu11!~ um2au1umu!2~G~ um2au!!2 iH um2au
(1) ~kr !i2~11«!. ~3.45!

As previously, for fixedm, i g̃4i2→0 asR→0 if we choosej,2.
To obtain a bound independent ofm in ~3.44!, we again use the limit in~3.40! to show that

there existsM1PN such that, ifumu.M1 , then

GS um2au1
j

2
1

1

2DGS 2um2au1
j

2D S GS um2au1
j

2D D 2

~11umu!GS um2au1
j

4
1

1

2DG~2um2au1j!~G~ um2au!!2

<2j/4M1
3/4j21. ~3.46!

Finally,

g̃5~r ,r 8!2gk, m~r ,r 8!52
ip

2
Jum2au~kr,!H um2au

(1) ~kr.!1R2\(R,`)3(R,`) ~3.47!

so

i g̃52gk, mi2
25

p2

2 E
0

R

r dr uJum2au~kr !u2E
r

R

r 8 dr 8uH um2au
(1) ~kr8!u2

1
p2

2 E
0

R

r dr uJum2au~kr !u2E
R

`

r 8 dr 8uH um2au
(1) ~kr8!u2. ~3.48!

The first term is bounded byR4(11«)/16um2au2(11um2au), while for the second term we
need to consider the casesmÞN,N11 separately using Eq.~3.37!.

Then we deduce that formÞN,N11,
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i g̃52gk, mi2
2<

R4~11«!

8um2au2~11um2au!
1

S 2

kD j

GS 1

2DR42j

8~11um2au! ~11«!

3

GS j

2DGS um2au1
j

2
1

1

2DG~2um2au1j/2!~G~ um2au1j/2!!2

GS j

4
1

1

2DGS um2au1
j

4
1

1

2DG~2um2au1j!~G~ um2au11!!2

,

~3.49!

while for m5N,N11,

i g̃52gk, mi2
2<

R4~11«!

8um2au2~11um2au!
1

p2Uk2U
2um2au

R2um2au12

4~11um2au!~G~11um2au!!2 iH um2au
(1) ~kr !i2~11«!.

~3.50!

A similar argument to that used previously shows that the bound in~3.49! may be taken to be
independent ofm. This completes the proof of Lemma 1.

h

Next we shall show that the operatorhm, R
b converges in the norm resolvent sense to

appropriate limit providedb obeys condition I or II.
Lemma 2: (a) If condition I (condition II) holds, then for mÞN (mÞN11), the operator

hm, R
b converges to hm in the norm resolvent sense as R→0.

Furthermore, there exists MPN such that forumu.M , there exists a constant c(R), inde-
pendent of m, such thatigk, m, R

b 2gk, mi2<c(R), and limR→0c(R)50.
(b) If condition I (condition II) holds, then the operator hN,R

b converges to hN,nN
(hN11,R

b

converges to hN11,nN11
) in the norm resolvent sense as R→0.

Proof: We shall prove the Lemma for the case when condition I holds. The correspon
proof for the case when condition II holds is similar.

First we note the limiting behavior ofgk, m, R
0 (R,R) for small R,

gk, m, R
0 ~R,R!.H 1

um2au1umu ~12 c̃8~k!R2um2au!, m5N,N11,

1

um2au1umu ~12d~k!R2!, mÞN,N11.

~3.51!

where

c̃8~k!5
2e2 ipum2auG~12um2au!
~ um2au1umu!G~ um2au! S k

2D 2um2au

~3.52!

and

d~k!5
1

12um2au S 11
um2au2umu

um2au~ um2au1umu! D S k

2D 2

. ~3.53!

~a! Let mÞN and suppose condition I holds. We need to show that
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lim
R→0

igk, m, R
b 2gk, mi250. ~3.54!

Now

igk, m, R
b 2gk, mi2<igk, m, R

0 2gk, mi21U b

11bgk, m, R
0 ~R,R!

Uigk, m, R
0 ~ • ,R!i2.

~3.55!

In Lemma 1, we have shown that limR→0igk, m, R
0 2gk, mi250.

The following three cases need to be considered separately:
Case 1.m50,1,2,...,N21;
Case 2.m5N11;
Case 3.m<21 or m>N12.

Case 1. Ifm50,1,2,...,N21, thenum2au1umu5a. For small R,

U b

11bgk, m, R
0 ~R,R!

U. a2

2dunNu
R22d, ~3.56!

while

igk, m, R
0 ~ • ,R!i25E

0

`

r dr ugk, m, R
0 ~r ,R!u2

5
p2

4uAm,R
(1) ~k!u2 H uH um2au

(1) ~kR!u2E
0

R

r dr uJumu~kr !U2

1uJumu~kR!u2E
R

`

r dr uH um2au
(1) ~kr !u2J

<~11«!F R2

2a2~11umu!
1

R22j

2a2 S 2

kD j GS j

2DGS 1

2D
GS j

4
1

1

2D

3

GS um2au1
j11

2 DG~2um2au1j/2!~G~ um2au1j/2!!2

GS um2au1
j12

4 DG~2um2au1j!~G~ um2au!!2
G ,

~3.57!

Taking j,2(12d) gives the desired limit.
Case 2. Ifm5N11, thenum2au1umu5N122d. Then

lim
R→0

U b

11bgk,N11,R
0 ~R,R!

U5 a~N122d!

2~12d!
, ~3.58!

while
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E
0

`

r dr ugk,N11,R
0 ~r ,R!u2

5
p2

4uAN11,R
(1) ~k!u2 H uH12d

(1) ~kR!u2E
0

R

r dr uJN11~kr !u21uJN11~kR!u2E
R

`

r dr uH12d
(1) ~kr !u2J

~3.59!

<
R2

2~N12!~N122d!2 ~11«!1
p2iH12d

(1) ~kr !i2

~N122d!2~G~12d!!2 UkR

2 U2(12d)

~11«!.

~3.60!

Case 3. Ifm<21 or m>N12, thenum2au1umu5u2m2au. The constant term is bounde
as follows:

U b

11bgk, m, R
0 ~R,R!

U< au2m2au
u2m2au2a

~11«!, ~3.61!

and

E
0

`

r dr ugk, m, R
0 ~r ,R!u25

p2

4uAm,R
(1) ~k!u2 H uH um2au

(1) ~kR!u2E
0

R

r dr uJumu~kr !u2

1uJumu~kR!u2E
R

`

r dr uH um2au
(1) ~kr !u2J ~3.62!

<F R2

2u2m2au2~11umu!
1

R22j

2u2m2au2 S 2

kD j GS j

2DGS 1

2D
GS j

4
1

1

2D ~11«!

3

GS um2au1
j11

2 DG~2um2au1j/2!~G~ um2au1j/2!!2

GS um2au1
j12

2 DG~2um2au1j!~G~ um2au!!2
G , ~3.63!

An argument similar to that used in~3.46! ensures that the bound is independent ofm if umu is
large enough.

~b! Let m5N and suppose condition I holds. Then

igk,N,R
b 2gk,N

nN i2<igk,N,R
0 2gk,Ni21i l k,N,R2 l k,Ni2 , ~3.64!

where

l k,N,R~r ,r 8!5
b

11bgk,N,R
0 ~R,R!

gk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8! ~3.65!

and

l k,N5c~N,nN ,k!Hd
(1)~kr !Hd

(1)~kr8!. ~3.66!
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As noted previously, Lemma 1 proves that limR→0igk,N,R
0 2gk,Ni250.

Now,

i l k,N,R2 l k,Ni2
25E r dr r 8 dr 8U b

11bgk,N,R
0 ~R,R!

gk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8!

2c~N,nN ,k!Hd
(1)~kr !Hd

(1)~kr8!U2

~3.67!

5 l (1)1 l (2)2 l (3)2 l (3), ~3.68!

where

l (1)5U b

11bgk,N,R
0 ~R,R!

U2E r dr r 8 dr 8ugk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8!u2, ~3.69!

l (2)5uc~N,nN ,k!u2E r dr r 8 dr 8uHd
(1)~kr !Hd

(1)~kr8!u2, ~3.70!

and

l (3)5
b

11bgk,N,R
0 ~R,R!

c~N,nN ,k!E r dr r 8 dr 8gk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8!Hd
(1)~kr !Hd

(1)~kr8!.

~3.71!

For smallR,

b

11bgk,N,R
0 ~R,R!

.
2a2R22d

2dnN1a c̃8~k!
. ~3.72!

Then

E r dr r 8 dr 8ugk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8!u2

5
p4

16uAN,R
(1) ~k!u4 H uHd

(1)~kR!u4F E
0

R

r dr uJN~kr !u2G2

1UJN~kR!u4F E
R

`

r dr uHd
(1)~kR!u2G2J .

~3.73!

The first term is bounded by@R4/(4a4(N11)2)# (11«), while for smallR,

U b

11bgk,N,R
0 ~R,R!

U2 p4uJN~kR!u4

16uAN,R
(1) ~k!u4 F E

R

`

r dr uHd
(1)~kR!u2G2

.
p4S k

2D 4d

~G~d!!4~2dnN1a c̃8~k!!2 iHd
(1)~kr !1(R,`)i45uc~N,nN ,k!u2iHd

(1)~kr !1(R,`)i4.

~3.74!

Then l (1)→ l (2) asR→0 by dominated convergence.
For l (3) we have
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E r dr r 8 dr 8 gk,N,R
0 ~r ,R!gk,N,R

0 ~R,r 8!Hd
(1)~kr !Hd

(1)~kr8!

5F ip

2AN,R
(1) ~k! H Hd

(1)~kR!E
0

R

r dr JN~kr !Hd
(1)~kr ! 1JN~kR!E

R

`

r dr uHd
(1)~kr !u2J G2

. ~3.75!

The first term in the brackets goes to@ iG(d)R22d/(ap(N122d))# ( k̄/2)2d, while for smallR,

ip

2AN,R
(1) ~k!

JN~kR!E
R

`

r dr uHd
(1)~kr !u2.

ip

aG~d!
UkR

2 Ud

iHd
(1)~kr !1(R,`)i2. ~3.76!

Then l (3)→ l (2) asR→0 by dominated convergence, which completes the proof.
h

IV. APPROXIMATION BY SMOOTH FLUX TUBE

In Sec. III, AR5a (k3r /r 2) Q(r 2R) so thatBR is concentrated on a cylindrical shell. No
we replace theQ-function by a smooth step function which approximates theQ-function asR
→0. Let a:R°R be a differentiable function witha(r )50 for r<0 and a(r )51 for r>r 0 ,
wherer 0.0. Furthermore, leta be such that the functionb(r )5 (1/r )(d/dr ) a(r ) is bounded in
absolute value~i.e., there existsb0PR such thatub(r )u<b0). Then b(r ) has support only in
(0,r 0), and*0

`b(r ) r dr 51. We take

ÂR5a
k3r

r 2 aS r 2R

R5 D ~4.1!

so thatk"B̂R5R25a b((r 2R)/R5). Let

ĤR5~ i¹1ÂR!21
b

a
k"B̂R . ~4.2!

b here depends ona andR. Motivated by the result of Sec. III we shall consider two cases:

~a! b(a,R).2a(12 2d/a nNR2d),
~b! b(a,R).(a22(N11))(122(12d)/2(N11)2a nN11R2(12d)).

The component of the operatorĤR on the space with angular momentumm are

ĥm,R52
1

r

]

]r
r

]

]r
1

S m2aaS r 2R

R5 D D 2

r 2 1bR25bS r 2R

R5 D . ~4.3!

We shall prove convergence in the norm resolvent sense of the operatorsĥm,R , and hence ofĤR .
We can rewrite the last equation as

ĥm,R52
1

r

]

]r
r

]

]r
1

~m2aQ~r 2R!!2

r 2 1
b

R5r
VmS r 2R

R5 D ~4.4!

where

Vm~r !5r b~r !1
R4

b~rR411!
$22ma~a~r !2Q~r !!1a2~a2~r !2Q~r !!%. ~4.5!

We note thatVm(r ) has support only in (0,r 0), and that
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uâm~r !uªu22ma~a~r !2Q~r !!1a2~a2~r !2Q~r !!u<mK, ~4.6!

whereK is a constant independent ofm andR.
Define the auxiliary operators

h̃m, R52
1

r

]

]r
r

]

]r
1

S m2aQS r 2
1

R4D D 2

r 2 1
R5b

r
VmS r 2

1

R4D . ~4.7!

Vm is form compact~Note 4, Appendix A! with respect to

2
1

r

]

]r
r

]

]r
1

~m2aQ~r 2R!!2

r 2 ,

so the form sum~4.7! is well-defined. From Theorem B.1~b! of Ref. 7, the resolvent ofh̃m, R for
k2Pr(h̃m, R) andI(k).0, is given by

@ h̃m, R2k2#215gk, m, R
0 2R5bgk, m, R

0 ṽm@11bB̃m,R~k!#21ũmgk, m, R
0 , ~4.8!

where

ṽm~r !5U1r VmS r 2
1

R4D U1/2

, ũm~r !5U1r VmS r 2
1

R4D U1/2

sgnFVmS r 2
1

R4D G ~4.9!

and

B̃m,R~k!5R5ũmgk, m, R
0 ṽm , I~k!.0. ~4.10!

B̃m,R extends to a Hilbert–Schmidt operator~Note 4, Appendix A!.
Introducing the unitary scaling group (URg)(r )5(1/R5) g(r /R5), we get

ĥm,R5
1

R10URh̃m, RUR
21 . ~4.11!

Then, noting that

R10URgk, m, R
0 UR

215gk/R5,m,R
0 ~4.12!

and taking the translationr→r 1 (1/R4), we obtain

@ ĥm,R2k2#215F 1

R10URh̃m, RUR
212k2G21

5R10UR@ h̃m, R2~R5k!2#21UR
21

5R10UR@gR5k, m, R
0

2R5bgR5k, m, R
0 ṽm@11bB̃m,R~R5k!#21ũmgR5k, m, R

0
#UR

21

~4.13!

for k2Pr(ĥ) andI(k).0. ForI(k).0, define Hilbert–Schmidt operatorsAm,R(k), Bm,R(k), and
Cm,R(k), with integral kernels

Am,R~k,r ,r 8!5gk, m, R
0 ~r ,R~11R4r 8!!v̂m~r 8!, ~4.14!

Bm,R~k,r ,r 8!5ûm~r !gk, m, R
0 ~R~11R4r !,R~11R4r 8!!v̂m~r 8!, ~4.15!
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Cm,R~k,r ,r 8!5ûm~r !gk, m, R
0 ~R~11R4r !,r 8!, ~4.16!

where

v̂m~r !5UVm~r !

r U1/2

and ûm~r !5UVm~r !

r U1/2

sgn@Vm~r !#. ~4.17!

Then ~4.13! becomes

@ ĥm,R2k2#215gk, m, R
0 2bAm,R~k!@11bBm,R~k!#21Cm,R~k! ~4.18!

for k2Pr(h«, m, R) andI(k).0.
Using this representation we can prove the following result.
Theorem 2: Let

ĤR5 %
m52`

`

ĥm,R . ~4.19!

ThenĤR converges, asR→0, to one of the self-adjoint extensionsHn of the AB Hamiltonian only
if either

~I! b(a,R)1a/R2d →2dnN

or
~II ! b(a,R)2a12(N11)/R2(12d) →2(12d)nN11 .

In case~I! ĤR converges in the norm resolvent sense, asR→0, toH (nN , `), and in case~II ! to
H (`, nN11).

The proof of this theorem is fairly standard but by no means trivial. Because again we re
uniform convergence inm we need to control them behavior and this makes the proof ve
lengthy. We therefore do not give the proof here but only state the two lemmas required in th
when Condition I holds. Once we have these two lemmas, the proof is similar to that of The
1 and the result follows from them.

We have already proved thatgk, m, R
0 →gk,m in norm. Let

v~r !5ub~r !u1/2, u~r !5ub~r !u1/2sgn@b~r !#. ~4.20!

Lemma 3:If condition I holds, then

~a! for m,0 andm.N, the operatorsAm,R(k),Cm,R(k)→0 in norm;
~b! for m50,...,N21, the operatorsR2dAm,R(k),R2dCm,R(k)→0 in norm;
~c! for m5N, R2dAm,R(k)→AN(k) and R2dCm,R(k)→CN(k) in norm, whereAN(k,r ,r 8)

5 c̃N(k)Hd
(1)(kr)v(r 8) andCN(k,r ,r 8)5 c̃N(k)u(r )Hd

(1)(kr8).

Lemma 4:If condition I holds, then

~a! for m,0 and m.N, ib(a,R)Bm,R(k)i2< Cuau/(um2au1umu), where C is a constant
independent ofm andR;

~b! for m50,...,N, R2d@11b(a,R)Bm,R#21→ (1/km) ^v,•&u in norm asR→0, where

km5H 2
a

2dnN
, m50,...,N21,

a c̃N
2 ~k!

c~N,nN ,k!
, m5N.

~4.21!
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V. OTHER APPROXIMATIONS

As mentioned in the Introduction, there are two other very natural approximations. These
investigated also in Refs. 3 and 4. Case~1! is when the magnetic field inside the cylinder of radi
R is homogeneous, that is,

AR5H a
k3r

R2 , r ,R

a
k3r

r 2 , r .R.

~5.1!

Herek"BR52a/R2 Q(R2r ).
Case~2! is when the magnetic field is proportional to 1/r inside the cylinder

AR5H a
k3r

rR
, r ,R,

a
k3r

r 2 , r .R.

~5.2!

In this casek"BR5(a/rR) Q(R2r ).
Let

s5H 11N

M ~1,21N,a!
, in case~1!

112N

M ~1,212N,2a!
, in case~2!,

~5.3!

whereM (a,b,z) is Kummer’s function. Leth be a solution of the equation

h52
~12d!~21N!M ~h,21N,a!

aM ~h11,31N,a!
, ~5.4!

in case~1! and of the equation

h52
~12d!~312N!M ~h,312N,2a!

aM ~h11,412N,2a!
, ~5.5!

in case~2!. Note that both these equations have an infinite number of solutions.
Let

fk, m, R~r ,r 8!5gk, m, R
b ~r ,r 8!2gk, m~r ,r 8!,

where gk, m, R
b (r ,r 8) is the resolvent of the approximating Hamiltonian in each case

gk, m(r ,r 8) is as in~2.4!.
The following are the only cases which give nontrivial results:

~I! if b.2a@12s (2d/a) nNR2d# asR→0, thenfk, m, R(r ,r 8) approaches
~1! a nonzero limit form5N, corresponding to the self-adjoint extensionhN,nN

,
~2! zero limit for m5N11, corresponding to the regular self-adjoint extensionhN11,̀ ,
~3! zero limit for mÞN,N11, corresponding to the self-adjoint operatorshm .

~II ! if b.a(2h21)@12(2h/(2h21)) nN11R2(12d)# asR→0, thenfk, m, R(r ,r 8) approaches
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~1! a nonzero limit form5N11, corresponding to the self-adjoint extensionhN11,nN11
,

~2! zero limit for m5N, corresponding to the regular self-adjoint extensionhN,` ,
~3! zero limit for mÞN,N11, as before.
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APPENDIX A

Note 1

The Bessel functions of the first and third kind have the following limiting and asymp
properties:9

~1! for small z,

Jn~z!.
1

G~n11! Sz

2D
n

~nÞ21,22,23,...!, ~A1!

Hn
(1)~z!.

2iG~n!

p Sz

2D
2n

~Rn.0!; ~A2!

~2! for large uzu,

Jn~z!5A 2

pz H cosSz2
np

2
2

p

4D1euIzuO~ uzu21!J ~ uargzu,p!, ~A3!

Hn
(1)~z!5A 2

pz
ei [z2 ~np/2! 2 ~p/4!] ~2p,argz,2p!. ~A4!

Two linearly independent solutions of

S 2
1

r

]

]r
r

]

]r
1

n2

r 2 Dfk~r !5k2fk~r ! ~A5!

areJn(kr) andHn
(1)(kr).

In the given case, the only solution forr ,R which lies inD(hm, R* ) is Jumu(kr), while for r
.R the only solution isH um2au

(1) (kr).

Note 2

To obtain the Green’s function, consider two solutions of Eq.~A5!, one of which is regular at
r 50 and irregular atr 5`, while the other is irregular atr 50 and regular atr 5`.

Consider

f1,m,k~r !5H Jumu~kr !, r ,R,

Am
(1)~k!Jum2au~kr !1Bm

(1)~k!H um2au
(1) ~kr !, r .R,

~A6!

f2,m,k~r !5H Am,R
(2) ~k!Jumu~kr !1Bm,R

(2) ~k!H umu
(1)~kr !, r ,R,

H um2au
(1) ~kr !, r .R,

~A7!

where the constantsAm,R
(1) (k),Am,R

(2) (k),Bm,R
(1) (k), and Bm,R

(2) (k) are chosen so that the bounda
conditionsfm,k(R1)5fm,k(R2) andfm,k8 (R1)5fm,k8 (R2) are satisfied~note that the second
boundary condition is the one imposed to obtain the regular self-adjoint extension, i.e., th
with b50).
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Then gk, m, R
0 (r ,r 8)5cf1,m,k(r ,)f2,m,k(r .), where r ,5min$r,r8% and r .5max$r,r8%. The

constantc is determined by considering the boundary condition atr 5r 8:

D
]gk, m, R

0

]r
U

r 5r 8

[ lim
r↓r 8

]gk, m, R
0

]r
~r ,r 8!2 lim

r↑r 8

]gk, m, R
0

]r
~r ,r 8!52

1

r 8
. ~A8!

Then we obtain

gk, m, R
0 ~r ,r 8!55

ip

2Bm,R
(2) ~k!

f1,m,k~r ,!f2,m,k~r .!, r ,r 8<R,

ip

2Am,R
(1) ~k!

f1,m,k~r ,!f2,m,k~r .!, r ,r 8>R.

~A9!

Note that the boundary conditions imply that

lim
R→0

~Am,R
(1) ~k!2Bm,R

(2) ~k!!50. ~A10!

Note 3

~Compare Theorem I.3.1.2 of Ref. 7! The general structure of Eq.~3.14! follows from Krein’s
formula. To verify the constant in the second term, define forgPL2((0,̀ ),r dr ) andI(k).0,

f b~r !5~~hm,R2k2!21g!~r !2
b

11bgk, m, R
0 ~R,R!

^gk, m, R
0 ~•,R!,g&gk, m, R

0 ~r ,R!. ~A11!

5E
0

`

dr 8 r 8 gk, m, R
0 ~r ,r 8!g~r 8!2

b

11bgk, m, R
0 ~R,R!

3E
0

`

dr 8 r 8 gk, m, R
0 ~r ,R!gk, m, R

0 ~R,r 8!g~r 8!. ~A12!

Then f bPH loc
2,2((0,̀ )\$R%,r dr )ùH2,1((0,̀ ),r dr ) and

f b8 ~R1 !2 f b8 ~R2 !5
b/R

11bgk, m, R
0 ~R,R!

E
0

`

dr 8 r 8 gk, m, R
0 ~R,r 8!g~r 8!5

b

R
f b~R!.

~A13!

This means thatf bPD(hm, R
b ). Furthermore, forI(k).0,

~hm, R
b 2k2! f b5g~r !, r P~0,̀ !\$R% ~A14!

which proves Eq.~3.14!.

Note 4

To show thatB̃ extends to a Hilbert–Schmidt operator, we need to show that~cf. Ref. 7, p. 80!

E
[0,`)3[0,`)

dr dr 8 uV~r !uugk, m, R
0 ~r ,r 8!u2uV~r 8!u , `, I~k!.0. ~A15!

This follows by considering the behavior of the Bessel functions for small and large argumen
discussed in Note 1. From the previous estimate we obtain
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UV~r !

r U1/2S 2
1

r

]

]r
r

]

]r
1

~m2aQ~r 2R!!2

r 2 1ED 1/2

PB`~L2~~0,̀ !,r dr !!, E.0. ~A16!

APPENDIX B

In this section we shall derive bounds for expressions involving the Bessel functionsJn(z)
andHn

(1)(z).
First we shall obtain upper bounds foruJn(z)u. If n>2 1

2, then it follows10 from Poisson’s
integral that

uJn~z!u<
Uz2U

n

G~n11!
euIzu. ~B1!

For n,2 1
2, the following series expansion,9 which is valid for allz andn, is used:

Jn~z!5S z

2D n

(
k50

` S 2
1

4
z2D k

k!G~n1k11!
~B2!

5

S z

2D n

G~n11!
S 11 (

k51

` G~n11!S 2
1

4
z2D k

k!G~n1k11!
D . ~B3!

For nÞ21,22,23,...,

uG~n11!u
uG~n1k11!u

<
1

un011uk ,

whereun011u5min$un11u,un12u,un13u,...%. Thus we obtain

uJn~z!u<
Uz2U

n

uG~n11!u
e1/4 uzu2/un011u, nÞ21,22,23,... . ~B4!

Next we obtain lower bounds foruJn(z)u. Using the series expansion~B2!, and the same argumen
used for~B4!, we obtain

uJn~z!u>
Uz2U

n

uG~n11!u ~22e1/4 uzu2/un011u!, nÞ21,22,23,... . ~B5!

The above bounds imply that, given any«.0, there existsz0 such that, for anyn, if uzu,uz0u then

uJn~z!u<
Uz2U

n

uG~n11!u ~11«!, ~B6!

uJn~z!u>
Uz2U

n

uG~n11!u ~12«!. ~B7!
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If n is a negative integer, upper and lower bounds may be deduced using

Jn~z!5~21!nJunu~z!. ~B8!

Upper and lower bounds for expressions involving the derivatives ofJn(z) may be deduced from
the recurrence relation

Jn8~z!52Jn11~z!1
n

z
Jn~z!. ~B9!

Now we turn to bounds foruHn
(1)(z)u. These are obtained using the following relation:

Hn
(1)~z!5 i csc~np!$e2np iJn~z!2J2n~z!%. ~B10!

Note that we are only interested in the casen>0. Thus, whenn.0 andn¹Z,

uHn
(1)~z!u<

G~n!

p Uz2U
2n

e1/4 uzu2/un111uS 11
uG~12n!u
G~11n!

Uz2U
2nD , ~B11!

uHn
(1)~z!u>

G~n!

p Uz2U
2n

~22e1/4 uzu2/un111u!S 12
uG~12n!u
G~11n!

Uz2U
2nD . ~B12!

Here un111u5min$un11u,un12u,un13u,...,u2n11u,u2n12u,u2n13u,...%.

For nPZ1, we use the relation

Hn
(1)~z!5Jn~z!1 iYn~z!, ~B13!

whereYn(z) is the Bessel function of the second kind with series expansion

Yn~z!52

S z

2D 2n

p (
k50

n21
~n2k21!!

k! S z2

4 D k

1
2

p
lnS z

2D Jn~z!2

S z

2D n

p (
k50

`
c~k11!1c~n1k11!

k! ~n1k!!

3S 2
z2

4 D k

, n>1 ~B14!

with the Digamma functionc(n)5 G8(n)/G(n) given by

c~1!52g, c~n!52g1 (
k51

n21
1

k
, n>2, ~B15!

whereg is Euler’s constant.
Noting that (n2k21)!<G(n) and@c(k11)1c(n1k11)#/(n1k)! <2G(n) for n>1, we

get the following bounds:

uYn~z!u<
G~n!

p Uz2U
2n

e1/4 uzu2H 11
2

G~n!
Uz2U

2nS 11
1

G~n11!
U ln z

2UeuI(z)u2 1/4 uzu2D J , n>1,

~B16!

uYn~z!u>
G~n!

p Uz2U
2nH ~22e1/4 uzu2!2

2

G~n!
Uz2U

2n

e1/4 uzu22
2

G~n!G~n11!
U ln z

2UUz2U
2n

euI(z)uJ ,

n>1. ~B17!
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The corresponding inequalities forHn
(1)(z) are

uHn
(1)~z!u<

G~n!

p Uz2U
2n

e1/4 uzu2H 11
2

G~n!
Uz2U

2nS 11S U ln z

2U1 p

2 D 1

G~n11!
euI(z)u2 1/4 uzu2D J , n>1,

~B18!

uHn
(1)~z!u>

G~n!

p Uz2U
2nH ~22e1/4 uzu2!2

2

G~n!
Uz2U

2n

e1/4 uzu2

2S 2U ln z

2U1p D 1

G~n!G~n11!
Uz2U

2n

euI(z)uJ , n>1. ~B19!

The above bounds imply that, given any«.0, there existsz0 such that, for anyn.0, if uzu
,uz0u then

uHn
(1)~z!u<

G~n!

p Uz2U
2n

~11«!, ~B20!

uHn
(1)~z!u>

G~n!

p Uz2U
2n

~12«!. ~B21!

For n50, we use the following series expansion forY0(z):

Y0~z!5
2

p H lnS z

2D1gJ J0~z!1
2

p
H z2

4
2S 11

1

2D S 1

4
z2D 2

~2! !2 2S 11
1

2
1

1

3D S 1

4
z2D 3

~3! !2 2¯
J .

~B22!

Noting that 11 1
21¯1 (1/n) <n!, we find that the term in the second bracket of~B22! is

bounded in absolute value bye1/4uzu221. Hence we get the following bounds forY0(z):

uY0~z!u<
2

p
u ln zu H uJ0~z!u1

uJ0~z!u
u ln zu ~ ln 21g!1

e1/4 uzu221

u ln zu J , ~B23!

uY0~z!u>
2

p
u ln zu H uJ0~z!u2

uJ0~z!u
u ln zu ~ ln 21g!2

e1/4 uzu221

u ln zu J . ~B24!

Then, using~B4! and ~B5! for the casen50, we obtain the corresponding bounds forH0
(1)(z):

uH0
(1)~z!u<

2

p
u ln zue1/4 uzu2H 11

1

u ln zu S ln 21g1
p

2 D1
12e2 1/4 uzu2

u ln zu J , ~B25!

uH0
(1)~z!u>

2

p
u ln zu H ~22e1/4 uzu2!2

e1/4 uzu2

u ln zu S ln 21g1
p

2 D2
e1/4 uzu221

u ln zu J . ~B26!

Now, for fixed arg(z), we know thatu ln zu>lnuzu, and that for any«8.0, u ln zu<lnuzu(11«8) if uzu is
small enough. This implies that for any«.0, there existsz0 such that, ifuzu,uz0u, then

uH0
(1)~z!u<

2

p
lnuzu~11«!, ~B27!
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uH0
(1)~z!u>

2

p
lnuzu~12«!. ~B28!

Next we obtain bounds for the Wronskians that appear in the expressions for the con
Am,R

(1) (k),Am,R
(2) (k),Bm,R

(1) (k), andBm,R
(2) (k) which are defined in Note 2 of Appendix A.

Using ~B9! and ~B10!, we can write

W@Hn
(1)~z!,Jn8~z!#5Hn

(1)~z!Jn8
8 ~z!2Hn

(1)8~z!Jn8~z!

5
i

sin~np!
~$e2np iJn~z!2J2n~z!%Jn8

8 ~z!2$e2np iJn8~z!2J2n8 ~z!%Jn~z!!

~B29!

5
i

sin~np! S 2
n81n

z
Jn8~z!J2n~z!1Jn811~z!J2n~z!2Jn8~z!J2n11~z!

1e2 ipnH n82n

z
Jn8~z!Jn~z!2Jn811~z!Jn~z!1Jn8~z!Jn11~z!J D . ~B30!

From the bounds derived above, we obtain

uW@Hn
(1)~z!,Jn8~z!#u>

~n81n!G~n!

2pG~n811!
Uz2U

n82n21H ~22e1/4 uzu2/n811!~22e1/4 uzu2/un111u!

2
2euI(z)u

n81n
S e1/4 uzu2/un111u

n811 Uz2U
2

1
e1/4 uzu2/un111u

u12nu Uz2U
2

1
un81nueuI(z)u

2G~n11!
Uz2U

2n

1
uG~12n!ueuI(z)u

G~n12!
Uz2U

2n12

1
uG~12n!ueuI(z)u

~n811!G~n11!
Uz2U

2n12D J , ~B31!

for n,n8.0, n¹Z.
Since G(12n)5 p/(sin(pn)G(n)), then for any«0.0 there existz0 and ñ0 such that for

uzu,uz0u andn8,n. ñ0 ,

uW@Hn
(1)~z!,Jn8~z!#u>

~n81n!G~n!

2pG~n811!
Uz2U

n82n21

~12«0!. ~B32!

Using a similar argument to that used in~B30!, as well as the relation

Hn
(1)8~z!52Hn11

(1) ~z!1
n

z
Hn

(1)~z!, ~B33!

we can write

W@Hn
(1)~z!,Hn

(1)~z!#5Hn
(1)~z!Hn

(1)8~z!2Hn
(1)8~z!Hn

(1)~z! ~B34!

5
i

sin~np! S J2n~z!Hn11
(1) ~z!2

n1n

z
J2n~z!Hn

(1)~z!2J12n~z!Hn
(1)~z!

1e2 ipnH n2n

z
Jn~z!Hn

(1)~z!2Jn~z!Hn11
(1) ~z!1Jn11~z!Hn

(1)~z!J D . ~B35!

Let nPZ1, n.0, andn¹Z. Using the relation
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Hn11
(1) ~z!5

2n

z
Hn

(1)~z!2Hn21
(1) ~z!,

and the bounds in~B4! and~B11!, one can see that for any«1.0 there existz1 andn1 such that
for uzu,uz1u andn,n.n1 ,

UJ2n~z!S Hn11
(1) ~z!2

n1n

z
Hn

(1)~z! D U< n2n

2p

G~n!

uG~12n!u Uz2U
2n2n21

~11«1!,

uJ12n~z!Hn
(1)~z!u<

G~n!

puG~22n!u Uz2U
2n2n11

~11«1!, ~B36!

Un2n

z
Jn~z!Hn

(1)~z!U< un2nuG~n!

2pG~n11!
Uz2U

2n1n21

~11«1!, ~B37!

uJn~z!Hn11
(1) ~z!u<

G~n11!

pG~n11!
Uz2U

2n1n21

~11«1!, ~B38!

uJn11~z!Hn
(1)~z!u<

G~n!

pG~n12!
Uz2U

2n1n11

~11«1!. ~B39!

The above results imply that foruzu,uz1u andn,n.n1 ,

uW@Hn
(1)~z!,Hn

(1)~z!#u<
un2nu
2p2 G~n!G~n!Uz2U

2n2n21S 11
2

un2nuu12nu Uz2U
2

1
uG~12n!u
G~n11!

U z

2 U
2n

1
2nuG~12n!

un2nuG~n11!
Uz2U

2n

1
2uG~12n!u

un2nuG~n12!
Uz2U

2n12D ~11«1!. ~B40!

From this we deduce that for any«2.0 there existz2 and n2 such that foruzu,uz2u and n,n
.n2 ,

uW@Hn
(1)~z!,Hn

(1)~z!#u<
un2nu
2p2 G~n!G~n!Uz2U

2n2n21

~11«2!. ~B41!

Using ~B9!, we obtain

W@Jn~z!,Jn~z!#5Jn~z!Jn8~z!2Jn8~z!Jn~z! ~B42!

5
n2n

z
Jn~z!Jn~z!2Jn~z!Jn11~z!1Jn11~z!Jn~z!. ~B43!

Then, fornPZ1, andn>2 1
2,

uW@Jn~z!,Jn~z!#u<
un2nueuI(z)u

2G~n11!G~n11!
Uz2U

n1n21H 11S 2n

n11
1

2

n11D Uz2U
2J . ~B44!

Thus, for any«3.0 there existz3 andn3 such that foruzu,uz3u andn,n.n3 ,
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uW@Jn~z!,Jn~z!#u<
un2nu

2G~n11!G~n11!
Uz2U

n1n21

$11«3%. ~B45!
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Stratified reduction of many-body kinetic energy operators
Toshihiro Iwaia) and Hidetaka Yamaoka
Department of Applied Mathematics and Physics, Kyoto University,
Kyoto 606-8501, Japan
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The center-of-mass system of many bodies admits a natural action of the rotation
group SO~3!. According to the orbit types for the SO~3! action, the center-of-mass
system is stratified into three types of strata. The principal stratum consists of
nonsingular configurations for which the isotropy subgroup is trivial, and the other
two types of strata consist of singular configurations for which the isotropy sub-
group is isomorphic with either SO~2! or SO~3!. Depending on whether the isot-
ropy subgroup is isomorphic with SO~2! or SO~3!, the stratum in question consists
of collinear configurations or of a single configuration of the multiple collision. It is
shown that the kinetic energy operator is expressed as the sum of rotational and
vibrational energy operators on each stratum except for the stratum of multiple
collision. The energy operator for nonsingular configurations has singularity at
singular configurations. However, the singularity is not essential in the sense that
both of the rotational and vibrational energy integrals have a finite value. This can
be proved by using the boundary conditions of wave functions at singular configu-
rations for three-body systems, for simplicity. It is shown, in addition, that the
energy operator for collinear configurations has also singularity at the multiple
collision, but the singularity is not essential either in the sense that the kinetic
energy integral is not divergent at the multiple collision. Reduction procedure is
applied to the respective energy operators for the nonsingular and the collinear
configurations to obtain respective reduced operators, both of which are expressed
in terms of internal coordinates. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1602160#

I. INTRODUCTION

This article has an aim to studyn-body Hamiltonians by means of a transformation group
key idea is as follows: Consider a quantum system on a manifold on which a compact Lie
acts. The manifold is then stratified into the disjoint union of strata according to the orbit typ
the group action. If a Hamiltonian operator defined on the manifold is invariant under the g
action, it will be stratified in such a manner that the Hamiltonian operator has a descripti
each stratum. The restricted Hamiltonian operator on each stratum will be reduced, by u
unitary irreducible representation of the group, to an operator on the orbit space formed fro
stratum in question.

The center-of-mass system forn bodies admits the action of the rotation group SO~3! in a
natural manner. According to the orbit types for the SO~3! action, the center-of-mass system
stratified into strata. The principal~or maximal! stratum consists of nonsingular configurations
which the isotropy subgroup is trivial, so that it is made into an SO~3! principal fiber bundle.1 The
strata of lower dimension consist of singular configurations for which the isotropy subgroup
trivial. Practically, singular configurations are collinear ones and simultaneous multiple coll
and nonsingular configurations are planar or spatial ones.

To study quantum systems for nonsingular configurations, one can apply connection the
the SO~3! bundle, through which the kinetic energy operator is determined to be the su

a!Electronic mail: iwai@amp.i.kyoto-u.ac.jp
44110022-2488/2003/44(10)/4411/25/$20.00 © 2003 American Institute of Physics
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rotational and vibrational energy operators.2–5 However, these operators fail to be defined
singular configurations. In contrast with the case of nonsingular configurations, the strat
collinear configurations is not made into a principal fiber bundle, but it remains to have a b
structure. The present article shows that one can set up quantum systems on each stratum
basis of the bundle structure of each stratum. The quantum systems defined on respectiv
will be reduced to quantum systems defined on respective orbit spaces formed from the res
strata.

On each stratum except for the multiple collision stratum, the kinetic energy opera
decomposed into the sum of rotational and vibrational energy operators. The energy opera
nonsingular configurations has singularity at singular configuration, but it is shown that th
gularity is not essential in the sense that both of the rotational and vibrational energy int
have a finite value. This can be proved by using the boundary conditions of wave functio
singular configurations, while the proof is given only for three-body systems for simplicity.
thermore, the energy operator for collinear configurations, which is also expressed as the
rotational and vibrational energy operators, has also singularity at the multiple collision, b
singularity is not essential either in the sense that the kinetic energy integral is not divergent
multiple collision. The description of the kinetic energy operator as the sum of rotationa
vibrational energy operators is effectively used to provide reduced kinetic energy operat
terms of internal~or shape! coordinates.

The organization of this article is as follows: In Sec. II, a brief review is made of
center-of-mass system along with the stratification by means of the SO~3! action. Section III is a
review of the Fourier analysis of wave functions,6,7 which is an application of the Peter–We
theorem on unitary irreducible representations of compact Lie groups. Section IV is conc
with a geometric setting for nonsingular configurations. A connection form and a metric
defined and expressed in terms of local coordinates. Transformation law for locally defined
nection forms is discussed also. In Sec. V, the kinetic energy operator is defined for nonsi
configurations, which is broken up into the sum of rotational and vibrational energy oper
Operating on equivariant functions with these operators, one obtains reduced rotational and
tional energy operators in terms of local coordinates for the shape of nonsingular configur
Transformation law for locally defined reduced operators is studied as well. Section VI is sp
ized to three-body systems. Though the three-body system was already studied in the
manner,4 this section deals with it in a different coordinate system to discuss the singularity o
kinetic energy operator. It is shown that the rotational and the vibrational energy operators a
singular in the sense that the rotational and vibrational energy integrals are not diverg
singular configurations. Section VII deals with collinear configurations. A~singular! connection
form will be defined on the stratum of collinear configurations. In Sec. VIII, the kinetic en
operator for collinear configurations is studied on the basis of the singular connection trea
Sec. VII. Operating on equivariant wave functions with the kinetic energy operator, one obt
reduced kinetic energy operator, which is defined on the shape space of collinear configur

II. THE CENTER-OF-MASS SYSTEM

Let xi andmi with i 51,...,N be position vectors and masses of point particles inR3, respec-
tively. Then the configurations of the point particles are denoted byx5(x1 ,x2 ,...,xN). The center-
of-mass systemM is defined to be

M5H x5~x1 ,x2 ,...,xN!UxiPR3,(
i 51

N

mixi50J . ~1!

The configurationx is characterized by the linear subspace

Fxªspan$x1 ,x2 ,...,xN%. ~2!
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According as dimFx50,1,2,3, the configurations of the particles are pointlike, collinear, pla
and spatial, respectively. ThusM is broken up into four subsets:

M5 ø
k50

3

Mk , Mkª$xPM u dimFx5k%, k50,1,2,3. ~3!

The center-of-mass system admits a natural SO~3! action:

Fg~x!5gx5~gx1 ,gx2 ,...,gxN!, gPSO~3!, xPM . ~4!

The isotropy subgroupGx of G5SO(3) atxPM is defined, as usual, to beGx5$gPGugx
5x%. Now one can show that the isotropy subgroups are trivial,Gx5$e%, on M2øM3 , that is,
SO~3! acts onM2øM3 freely. However, onM1 and onM0 , the isotropy subgroups are nontrivia
at xPM1 and atxPM0 , they are isomorphic with SO~2! and with SO~3!, respectively. Configu-
rations inM0øM1 are called singular, which are pointlike or collinear. Depending on the dim
sionality of the isotropy subgroupsGx , orbits Ox of G throughxPM are classified into three
cases:

Ox>H SO~3! for xPM2øM3 ,

S2>SO~3!/SO~2! for xPM1 ,

$0% for xPM0 .

~5!

According to the orbit types,M is stratified into strata:

M5ṀøM1øM0 , ṀªM2øM3 . ~6!

On restricting M to Ṁ5M 2øM3 , we can makeṀ into a principal fiber bundleṀ→Q̇

ªṀ /SO(3),1 since SO~3! is compact and since SO~3! acts onṀ freely. However, the total spac
M cannot be made into a principal fiber bundle. The orbit spaceQªM /SO(3) is not a manifold
in general. In fact, in the case of the three-body system, the orbit space is homeomorphic w
closed half space ofR3.4 In the case of the four-body system, the orbit space is shown to
homeomorphic withR6.8 ThoughM itself is not a principal fiber bundle, we may makeM into a
stratified fiber bundle with respective projections

Ṁ→Ṁ /SO~3!, M1→M1 /S2, M0→M0 /M0 . ~7!

It is to be noted thatṀ andM1 are viewed as the configuration spaces for ‘‘nonlinear molecu
and for ‘‘linear molecules,’’ respectively. Equation~7! implies that we can discuss nonlinear a
linear molecules separately, but on an equal footing from the viewpoint of transformation
theory.

It is of great use to employ Jacobi vectors in working with the center-of-mass system
Jacobi vectorsr j , j 51,...,N21, are defined to be

r jªS 1

m j
1

1

mj 11
D 21/2S xj 112

1

m j
(
i 51

j

mixi D , m jª(
i 51

j

mi . ~8!

Since the position vectorsxi in the center-of-mass system are uniquely described in term
Jacobi vectors, we can identify the center-of-mass system with the set of collections of
vectors:

M>$x5~r1 ,...,rN21!u r jPR3, j 51,...,N21%. ~9!
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Thus, M is viewed as the linear space formed byx5(r1 ,...,rN21), or as the space of 33(N
21) matrices. Since rankx5dimFx , we can regardṀªM2øM3 as the space of 33(N21)
matrices of rank greater than or equal to two.M1 andM0 are the spaces of 33(N21) matrices
of rank 1 and of rank 0, respectively. The space of singular configurations,M1 andM0 , forms the
boundary of the space of nonsingular configurations,M2øM3 . Note that dimṀ53N23,
dimM15N11, and dimM050. We note, in conclusion, that the SO~3! action is expressed as

~r1 ,...,rN21!°~gr1 ,...,grN21!. ~10!

III. FOURIER ANALYSIS OF WAVE FUNCTIONS

To treat wave functions irrespectively of the orbit type of the SO~3! action on the center-of-
mass system, it is of great use to apply Fourier analysis on the basis of the Peter–Weyl th
on unitary irreducible representations of compact Lie groups. To describe this method,6,7 we put
the problem in a general setting. LetM be a manifold on which a compact Lie groupG acts. Let
mM be aG-invariant measure onM . We take the spaceL2(M ) of square integrable functions o
M as the Hilbert space of wave functions, in which theG is represented unitarily throug
(U(g) f )(x)5 f (g21x), gPG, xPM .

Let mG and L2(G) denote the normalized invariant measure onG and the space of squar
integrable functions onG with respect tomG , respectively. Let (H x,rx) be irreducible unitary
representations ofG, wherex ranges over all the inequivalent representations. We denot
r i j

x the matrix elements of the representationrx with respect to some orthonormal basisei
x of

H x, where i , j 51,...,dx , with dx5dimH x. The Peter–Weyl theorem states that the set
all the matrix elements$Adxr i j

x %x,i , j forms a complete orthonormal system inL2(G). By
this theorem, any functionw of L2(G) is expanded into

w~h!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g!w~g!dmG~g!. ~11!

We turn to wave functions onM . For a functionf PL2(M ), we may viewf (hx) as a function
on G with x fixed arbitrarily, f x(h)ª f (hx), and apply the above expansion tof x to obtain

f ~hx!5 (
x,i , j

dxr i j
x ~h!E

G
r i j

x ~g! f ~gx!dmG~g!. ~12!

We here introduce the operatorsPi j
x andPi

x on L2(M ) by

Pi j
x
ªdxE

G
r i j

x ~g!U~g!dmG~g!, ~13!

Pi
x
ªPii

x , ~14!

respectively. These operators satisfy that

~Pi j
x !†5Pji

x , Pi j
x Pk,

x85dxx8d jkPi ,
x , ~15!

and

~Pi
x!†5Pi

x , Pi
xPj

x85dxx8d i j Pi
x , ~16!

respectively. Moreover, one verifies that

~Pi j
x !†Pi j

x 5Pj
x , Pi j

x ~Pi j
x !†5Pi

x . ~17!
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It then follows that when restricted to ImPj
x , the Pi j

x provides the unitary isomorphism

Pi j
x : Im Pj

x→
;

Im Pi
x . ~18!

Furthermore, we can show thatPi j
x andU(g) are put together to give

Pi j
x U~g!5(

k
rk j

x ~g21!Pik
x , ~19!

U~g!Pi j
x 5(

k
r ik

x ~g21!Pk j
x . ~20!

From ~20!, it turns out that the mapEj
x : L2(M )→H x

^ L2(M ) defined by

Ej
x
ª

1

Adx
(
i 51

dx

ei
x

^ Pi j
x ~21!

satisfiesU(g21)Ej
x5rx(g)Ej

x , or equivalently

~Ej
x f !~gx!5rx~g!~Ej

x f !~x!, f PL2~M !, ~22!

which implies that theH x-valued functionEj
x f is a rx-equivariant function.

We here introduce the space,L2(M ;H x)G, of square integrable equivariantH x-valued func-
tions by

L2~M ;H x!G
ªH c:M→H xU E

M
ic~x!i2dmM~x!,`, c~gx!5rx~g!c~g!J , ~23!

wheregPG, xPM , andi•i denotes the norm inH x. Then we can view the operatorEj
x as a map

L2(M )→L2(M ;H x)G. The adjoint operator (Ej
x)†: L2(M ;H x)G→L2(M ) is defined, of course

through

^c,Ej
x f &H x ^ L2(M )5^~Ej

x!†c, f &L2(M ) , cPL2~M ;H x!G, f PL2~M !, ~24!

where the subscriptsH x
^ L2(M ) and L2(M ) attached tô , & indicate the spaces on which th

respective inner products are defined. Then one can observe that

~Ej
x!†Ej

x5Pj
x , Ej

x~Ej
x!†5 idL2(M ;H x)G. ~25!

These relations imply that when restricted to ImPj
x , theEj

x provides a unitary isomorphism

Ej
x : Im Pj

x→
;

L2~M ;H x!G, j 51,...,dx . ~26!

We now apply the above-mentioned Fourier analysis toN-body systems. The manifoldM we
take is the center-of-mass system forN bodies. We introduce the Euler angles~f, u, c! through

g5efR(e3)euR(e2)ecR(e3), gPSO~3!, ~27!

where ek , k51,2,3, are the standard basis ofR3 and R(ek) denote the 333 antisymmetric
matrices defined throughR(ek)a5ek3a for aPR3. Let Dnm

, (g) denote the matrix elements o
unitary irreducible representations of SO~3! with ,50,1,2,..., and umu,unu<,.9 They are ex-
pressed as
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Dnm
, ~g!5e2 infdnm

, ~u!e2 imc, ~28!

wherednm
, (u) are given by

dnm
, ~u! 5~21!n2mA~,1n!~,2n!~,1m!~,2m!

3 (
k50

,2m
~21!k

k! ~,2n2k!! ~,1m2k!! ~n2m1k!! S sin
u

2D 2k1n2mS cos
u

2D 2,22k2(n2m)

.

~29!

Let dm(g) denote the invariant volume element on SO~3!, which is expressed, in terms of th
Euler angles, as

dm~g!5sinu dudfdc with E
SO(3)

dm~g!58p2. ~30!

According to~12! with r i j
x 5Dmn

, , dx52,11, anddmG(g)5dm(g)/(8p2), a wave function
f (hx) on M is expanded into a Fourier series

f ~hx!5 (
,50

`

(
umu,unu<,

2,11

8p2 Dmn
, ~h!E

SO(3)
D̄mn

, ~g! f ~gx!dm~g!, xPM . ~31!

The mapEm
, : L2(M )→H ,

^ L2(M ) is defined as in~21!:

Em
, f 5

1

A2,11
(

um8u<,

em8
,

^ Pm8m
, f , ~32!

where em8
, , denoted usually byu, m8&, is the basis of the representation spaceH ,. The

rx-equivariance condition~22! now takes the form

~Em
, f !~hx!5D,~h!~Em

, f !~x!. ~33!

IV. NONSINGULAR CONFIGURATIONS

In this section, we make a brief review of the geometric setting-up for the nonsin
configurations.4 We note first that the center-of-mass system is now identified with the se
collections of the Jacobi vectors@see~9!#. As is already mentioned, SO~3! acts onṀ freely, so that
Ṁ is made into an SO~3! bundle,

p: Ṁ→Q̇ªṀ /SO~3!. ~34!

The inertia tensor,Ax : R3→R3, is defined forxPM through

Ax~v!5 (
j 51

N21

r j3~v3r j !, vPR3, ~35!

and the connection formv is defined forxPṀ to be

vx5RS Ax
21S (

j 51

N21

r j3dr j D D , ~36!
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whereR:R3→so(3) is the isomorphism already mentioned in Sec. III. Note thatAx
21 exists only

for xPṀ . The connection formv gives rise to a direct sum decomposition of the tangent spac
Ṁ at xPṀ ,

Tx~Ṁ !5Vx% Hx , ~37!

whereVxªTx(Ox) is the tangent space to the SO~3!-orbit Ox throughxPṀ andHxªkervx with
vx :Tx(Ṁ )→so(3). Tangent vectors inVx and inHx are called rotational~or vertical! and vibra-
tional ~or horizontal!, respectively. By definition, rotational vectors are put in the formR(a)x with
aPR3. In fact, for a one-parameter group of rotationsetR(a) acting onM , its infinitesimal gen-
erator is given by

d

dt
etR(a)xU

t50

5R~a!x5~R~a!r1 ,...,R~a!rN21!. ~38!

In contrast with this, the definition ofHx implies that

u5~u1 ,...,uN21!PHx⇔ (
j 51

N21

r j3uj50. ~39!

Further, it is easy to see thatVx andHx are orthogonal to each other with respect to the metr

ds25 (
j 51

N21

dr j•dr j . ~40!

In fact, for R(a)xPVx anduPHx , one has

(
j

R~a!r j•uj5a•(
j

r j3uj50. ~41!

For a tangent vector v5(v1 ,...,vN21)PTx(Ṁ ), its vertical components Px(v)
5(Px(v)1 ,...,Px(v)N21)PVx are given by

Px~v ! j5S Ax
21S (

k51

N21

r k3vkD D 3r j . ~42!

In what follows, we describe the connection formv and the metricds2 in terms of local
coordinates. Lets be a local section defined on an open subsetU of Q̇, s: U→Ṁ . Then any point
xPp21(U) is expressed as

x5gs~q!5~gs1~q!,...,gsN21~q!!, qPU. ~43!

Let gPSO(3) andqPU be assigned by the Euler angles~u, f, c! and by local coordinates
qa, a51,...,3N26, respectively. Then a straightforward calculation along with~36! and ~43!
provides

vgs(q)5dgg211gvs(q)g
215g~g21dg1vs(q)!g

21, ~44!

where

vs(q)ªRS As(q)
21 S (

j 51

N21

sj~q!3dsj~q!D D . ~45!
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We here expressvs(q) as

vs(q)5 (
a51

3

(
a51

3N26

La
a~q!dqaR~ea!, ~46!

and introduce a moving frameua , a51,2,3, and the left-invariant one-formsCa, a51,2,3, on
SO~3! by

ua5gea , ~47!

g21dg5 (
a51

3

CaR~ea!, ~48!

respectively. Then the connection formv given by ~44! is put in the form

vgs(q)5(
a

QaR~ua!, Qa
ªCa1(

a
La

a~q!dqa, ~49!

where we have used the formulaR(gea)5gR(ea)g21.
The horizontal lift, (]/]qa)* , of a local vector field]/]qa on U is defined through

vgs(q)S S ]

]qaD * D50, p* S S ]

]qaD * D5
]

]qa , ~50!

and proves to be given by

S ]

]qaD *
5

]

]qa 2(
a

La
a~q!Ka , a51,2,...,3N26, ~51!

whereKa are the left-invariant vector fields on SO~3!, which are dual toCa:

Ca~Kb!5db
a , a,b51,2,3. ~52!

The dqa, Qa and the (]/]qa)* , Ka form local bases of one-forms and of vector fields
p21(U)>U3SO(3), respectively, in accordance with the decomposition~37!. They are dual to
each other:

dqaS S ]

]qbD * D5db
a , dqa~Ka!50, ~53!

QaS S ]

]qaD * D50, Qa~Kb!5db
a . ~54!

In contrast with left-invariant one-forms and vector fields, right-invariant one-formsFa and
vector fieldsJa are defined through

dgg215 (
a51

3

FaR~ea!, ~55!

Fa~Jb!5db
a , a,b51,2,3, ~56!

respectively. Sinceg(g21dg)g215dgg21, the right- and left-invariant one-forms are related
each other, and so are the right- and left-invariant vector fields,
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Fa5 (
b51

3

gabC
b, Ja5 (

b51

3

gabKb , ~57!

wheregab denote the matrix elements ofg.
We here associate the vector fieldsKa and Ja with the angular momentum operator. Th

infinitesimal rotation~38! is put in the form of operator,

(
k51

N21

R~a!r k•
]

]r k
5a•S (

k51

N21

r k3
]

]r k
D 5a"J, ~58!

where we have set

J5 (
k51

N21

r k3
]

]r k
. ~59!

Since one has, from~58! with a5ea ,

ea•J5
d

dt
etR(ea)xU

t50

5
d

dt
etR(ea)gs~q!U

t50

, ~60!

ea•J can be identified with the right-invariant vector fieldsJa on SO~3!, Ja5ea•J. Further, on
account of~47! and ~57!, we obtain

J5 (
a51

3

eaJa5 (
a51

3

uaKa . ~61!

The last equality of the above equation also means that

Ka5ua•J5
d

dt
etR(ua)xU

t50

5
d

dt
getR(ea)s~q!U

t50

. ~62!

This implies thatKa can be identified with an infinitesimal rotation with respect to the so-ca
body frame.

In terms of the Euler angles given byg5efR(e3)euR(e2)ecR(e3), theKa andJa and theCa and
Fa are expressed, respectively, as

K152
cosc

sinu

]

]f
1sinc

]

]u
1cotu cosc

]

]c
,

K25
sinc

sinu

]

]f
1cosc

]

]u
2cotu sinc

]

]c
, ~63!

K35
]

]c
,

C15sinc du2sinu cosc df,

C25cosc du1sinu sinc df, ~64!

C35dc1cosu df,
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J152cosf cotu
]

]f
2sinf

]

]u
1

cosf

sinu

]

]c
,

J252sinf cotu
]

]f
1cosf

]

]u
1

sinf

sinu

]

]c
, ~65!

J35
]

]f
,

F152sinf du1sinu cosf dc,

F25cosf du1sinu sinf dc, ~66!

F35df1cosu dc.

We now wish to express the metric~40! in terms ofdqa, Qa. We first note that the basi
vector fields (]/]qa)* , Ka are expressed also as

S ]

]qaD *
5(

j
S ]

]qaD *
r j•

]

]r j
, Ka5(

j
Kar j•

]

]r j
, ~67!

respectively. Since vibrational and rotational vectors are orthogonal to each other, one has

ds2S S ]

]qaD *
,KaD5(

j
S ]

]qaD *
r j•Kar j50. ~68!

We further introduce the quantitiesaab andAab by

aabªds2S S ]

]qaD *
,S ]

]qbD * D5(
j

S ]

]qaD *
r j•S ]

]qbD *
r j , ~69!

Aabªds2~Ka ,Kb!5(
j

Kar j•Kbr j . ~70!

Then the metricds2 is put in the form

ds25(
a,b

aabdqadqb1(
a,b

AabQ
aQb. ~71!

SinceKar j5ua3r j5g(ea3sj (q)), one obtains, from~51!,

S ]

]qaD *
r j5gS ]sj~q!

]qa 2(
a

La
a~q!~ea3sj~q!! D , ~72!

and then the quantitiesaab andAab are put, respectively, in the form

aab5(
j

S ]sj

]qa 2(
a

La
a~q!~ea3sj ! D •S ]sj

]qb 2(
b

Lb
b~q!~eb3sj ! D , ~73!

Aab5(
j

~ua3r j !•~ub3r j !5ua•Ax~ub!5ea•As(q)~eb!. ~74!
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In the remainder of this section, we consider the transformation law for local expressio
the connection form. Lett: V→Ṁ be another local section defined on an open subsetV with
VùUÞB. Then the local sectionst and s are related byt(q)5k(q)s(q), qPVùU with
k(q)PSO(3). From ~44!, it follows that

vt(q)5dkk211kvs(q)k
21. ~75!

Like ~46!, we describe the connection formvt(q) as

vt(q)5(
a

(
a

L̃a
a~q!dqaR~ea!. ~76!

Then the transformation law~75! brings about

(
a

L̃a
adqa5Fa~k!1(

b
kab(

a
La

bdqa, ~77!

whereFa(k) are defined throughdkk215(aFa(k)R(ea) and kab denote the components ofk
PSO(3). Furthermore, we note that the inertia tensor is subject to the transformationAhx

5hAxh
21 for any hPSO(3), sothat the components (Aab) transform according to

Ãab5(
c,d

kadAdckbc , k5~kab!, ~78!

where

Ãab5ea•At(q)~eb!. ~79!

We note also that since the metricds2 is SO~3!-invariant,aab are defined independently of th
choice of sections, so that the (aab) defines a metric tensor onU,Q̇.

V. KINETIC ENERGY OPERATOR FOR NONSINGULAR CONFIGURATIONS

In this section, we study the kinetic energy operator for nonsingular configurations by
the setup stated in Secs. III and IV, and obtain a reduced kinetic energy operator which is d
on Q̇. We begin by considering the gradient vector

¹5S ]

]r1
,...,

]

]rN21
D . ~80!

For a smooth wave functionf , we regard¹ f as a tangent vector toṀ , and decompose¹ f
according to~37!:

¹ f 5~¹ f !rot1~¹ f !vib . ~81!

The rotational vector (¹ f )rot is given by (¹ f )rotªPx(¹ f ), so that its components are express
on using~42! with vk5] f /]r k , as

Px~¹ f ! j5S Ax
21S (

k
r k3

] f

]r k
D D 3r j

5 ~Ax
21~Jf !!3r j

5S Ax
21S (

a
uaKaf D D 3r j

5(
a

~~Ax
21~ua!!3r j !Kaf . ~82!
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Then (¹ f )rot turns out to have the components

S ] f

]r j
D

rot

5 (
a51

3

t j
aKaf , t j

a
ªAx

21~ua!3r j , j 51,...,N21. ~83!

In contrast with this, the components of (¹ f )vib can be put in the form

S ] f

]r j
D

vib

5 (
a51

3N26

vj
aS ]

]qaD *
f , j 51,...,N21, ~84!

where the vectorsvj
a will be determined as follows: From~67! along with the decomposition

]/]r j5(]/]r j )rot1(]/]r j )vib , the basis tangent vectors can be expressed as

Ka5(
j

Kar j•S (
b

t j
bKb1(

a
vj

aS ]

]qaD * D , ~85!

S ]

]qbD *
5(

j
S ]

]qbD *
r j•S (

b
t j
bKb1(

a
vj

aS ]

]qaD * D . ~86!

These equations provide

(
j

Kar j•t j
b5da

b , (
j

S ]

]qaD *
r j•t j

b50, ~87!

(
j

Kar j•vj
a50, (

j
S ]

]qbD *
r j•vj

a5db
a . ~88!

Equations~88! are used to determinevj
a or the vectorsva:5( jvj

a
•(]/]r j ). It then turns out that

va are expressed as

va5(
b

aabS ]

]qbD *
, ~89!

or

vj
a5var j5(

b
aabS ]

]qbD *
r j , ~90!

where

~aab!ª~aab!21. ~91!

In addition, it is easy to show that

(
j

t j
a
•t j

b5Aab, ~92!

(
j

t j
a
•vj

a50, ~93!

(
j

vj
a
•vj

b5aab, ~94!
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where

Aab
ªua•Ax

21~ub!5ea•As(q)
21 ~eb!. ~95!

It is to be noted thatAx
21 is defined only forxPṀ .

We are now in a position to study the kinetic energy operator. The kinetic energy integ
our N-body system is given by

T5
1

2 EM
(

j

] f

]r j
•

] f

]r j
dV, ~96!

wheredV is the standard volume element ofM . The energy operator, which is equal to2 1
2 times

the LaplacianD, is defined through integration by part as follows:

T5E
M

f̄ S 2
1

2 (
j

S ]

]r j
D 2

f D dV5E
M

f̄ S 2
1

2
D f DdV, ~97!

where f is assumed to be a smooth function with compact support. According to the ortho
decomposition,¹5¹rot1¹vib , of the gradient operator, the kinetic energy is also broken up
rotational and vibrational energies,

T5Trot1Tvib , ~98!

where

Trot5
1

2 EM
(

j
S ] f

]r j
D

rot

•S ] f

]r j
D

rot

dV, ~99!

Tvib5
1

2 EM
(

j
S ] f

]r j
D

vib

•S ] f

]r j
D

vib

dV. ~100!

The rotational and vibrational energy operators will be defined by carrying out the integratio
part for the energy integralsTrot andTvib , respectively. Accordingly, the LaplacianD is broken up
into two,

D5D rot1Dvib . ~101!

We wish to expressD rot andDvib in terms of local coordinates. From~71! together with~49!,
the volume elementdV proves to be expressed as

dV5dQ∧dm~g!, ~102!

where

dQ5r~q!dq1∧¯∧dq3N26, ~103!

r~q!5Adet~Aab!det~aab!, ~104!

dm~g!5C1∧C2∧C35sinudu∧df∧dc. ~105!

By using ~83! and ~92! and performing integration by part, we obtain

Trot5
1

2 EM
(

j
(

a
t j
aKaf •(

b
t j
bKbf dV52

1

2 EM
f̄(

a,b
Ka~AabKbf ! dV, ~106!
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where we have used the fact thatKa are volume-preserving operators on SO~3!. In the same
manner, it follows from~84! and ~94! that

Tvib5
1

2 EM
(

j
(
a

vj
aS ]

]qaD *
f •(

b
vj

bS ]

]qbD *
f dV

52
1

2 EM
f̄

1

r~q! (a,b
S ]

]qaD * S aabr~q!S ]

]qbD *
f D dV. ~107!

Thus we have found the respective expressions ofD rot andDvib :

D rot5(
a,b

Ka~AabKb!, ~108!

Dvib5
1

r~q! (a,b
S ]

]qaD * S aabr~q!S ]

]qbD * D . ~109!

Note that these operators fail to be defined at singular configurations. In fact, for singula
figurations, one has det(Aab)50, so thatAab is not defined, and furtherr(q)50.

In the remainder of this section, we show that the rotational and vibrational energy oper
2 1

2D rot and2 1
2Dvib , will reduce to operators acting on wave functions of internal variables (qa).

To this end, we restrict ourselves to the subspace ImPm
, of L2(M ). Then we obtain, from~26!,

^Pm
, f 1 ,Pm

, f 2&L2(M )5E
M

^Em
, f 1 ,Em

, f 2&H ,dV, f 1 , f 2PL2~M !, ~110!

where we have used the fact thatEm
, Pm

, f 5Em
, f , and ^ , &H , denotes the inner product on th

representation spaceH , assigned by,. From~33! together with~43!, one finds that theH ,-valued
function Em

, f is locally expressed as

~Em
, f !~gs~q!!5D,~g!~Em

, f !~s~q!!. ~111!

If f has a compact support inp21(U), Eq. ~110! becomes

^Pm
, f 1 ,Pm

, f 2&L2(M )58p2E
Q̇

^~Em
, f 1!~s~q!!,~Em

, f 2!~s~q!!&H ,dQ, ~112!

where we have used the fact thatD,(g) is a unitary matrix. This equation means that we may vi
(Em

, f )(s(q)) as a~locally defined! H ,-valued wave function on the internal spaceQ̇. If f is
smooth enough, the projection operatorPm8m

, and a differential operator such as (]/]qa)* com-
mute, so that we obtain

Em
, S ]

]qaD *
f 5S idH , ^ S ]

]qaD * DEm
, f , ~113!

where idH , denotes the identity ofH ,. The right-hand side of this equation means that we m
differentiateEm

, f componentwise. We recall here that the operatorKa acts on theD-functions10 as

KaD,~g!52 iD ,~g!@ Ĵa
(,)#, ~114!

where Ĵa are the angular momentum operators defined to beĴa52 iJa , and @ Ĵa
(,)# denote their

representation matrices which are, as usual, given by
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@ Ĵ1
(,)#m21 m5

1

2
A~,1m!~,2m11!, @ Ĵ1

(,)#m11 m5
1

2
A~,2m!~,1m11!,

@ Ĵ2
(,)#m21 m52

1

2i
A~,1m!~,2m11!, @ Ĵ2

(,)#m11 m5
1

2i
A~,2m!~,1m11!, ~115!

@ Ĵ3
(,)#mm5m, the others vanishing.

Operating onD,(g)(Em
, f )(s(q)) with idH , ^ (]/]qa)* and using~114!, we obtain

S idH , ^ S ]

]qaD * DD,~g!~Em
, f !~s~q!!5D,~g!¹a~Em

, f !~s~q!!, ~116!

where

¹a5I 2,11^
]

]qa 1 i(
a

La
a~q!@ Ĵa

(,)#, ~117!

and I 2,11 denotes the (2,11)3(2,11) identity matrix.
We have to point out that the operators¹a may be defined independently of the choice of loc

sections. We recall here that theṀ is made into the fiber bundle~34!. Take a representation spac
H ,>C2,11 of SO~3!. Then the associated complex vector bundle is defined to beṀ3,H ,

ª(Ṁ3H ,)/SO(3), where the SO~3! action on the product spaceṀ3H , is defined by
(gx,D,(g)v) for (x,v)PṀ3H ,. The space of equivariant functions onṀ is in one-to-one
correspondence with the space of sections inṀ3,H ,; s(p(x))5@(x,F(x))#, wheres andF are
a section and an equivariant function, respectively, and@ • # denotes the equivalence class. W
denote this correspondence bys5gF. For a local sections in Ṁ and the equivariant function
Em

, f , one has@(x,(Em
, f )(x))#5@(s(q),(Em

, f )(s(q)))#, which means that (Em
, f )(s(q)) serves

as a local expression of the sections(p(x))5@(x,(Em
, f )(x))#. For a sections in Ṁ3,H ,, the

covariant derivative ofs with respect to a vector fieldX on Q̇5Ṁ /SO(3) is defined by

¹X s5gX* ~g21s!, ~118!

whereX* denotes the horizontal lift ofX. Equation~117! is a local expression of the covarian
differential operator with respect to]/]qa.

For confirmation, we show that locally defined operators~117! can be pieced togethe
to define an operator independently of the choice of sections. For another local sectiont in Ṁ ,
we have another local expression (Em

, f )(t(q)) of the sections(p(x))5@(x,(Em
, f )(x))#. The

locally definedH ,-valued functions (Em
, f )(t(q)) and (Em

, f )(s(q)) are related by the gaug
transformation

~Em
, f !~t~q!!5D,~k~q!!~Em

, f !~s~q!!, qPVùU. ~119!

For (Em
, f )(t(q)), we have the covariant differential operator, instead of~117!,

¹̃a5I 2,11^
]

]qa 1 i(
a

L̃a
a~q!@ Ĵa

(,)#. ~120!

We show that the locally defined covariant differential operators,¹a and ¹̃a , are subject to the
transformation law

¹̃a~Em
, f !~t~q!!5D,~k~q!!¹a~Em

, f !~s~q!!, ~121!
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or, equivalently,

(
a

¹̃a~Em
, f !~t~q!!dqa5D,~k~q!!(

a
¹a~Em

, f !~s~q!!dqa. ~122!

The transformation law~121! shows that locally defined covariant differential operators are pie
together to define a covariant differential operator acting on sections inṀ3,H ,;

@~s~q!,¹a~Em
, f !~s~q!!!#5@~t~q!,¹̃a~Em

, f !~t~q!!!#. ~123!

To prove ~122!, we need some formulas onD-functions. In contrast with~114!, we have the
formula10

JaD,~g!52 i @ Ĵa
(,)#D,~g!. ~124!

From ~114! and ~124! together with~57!, we obtain the formula

@ Ĵa
(,)#D,~g!5(

b
gabD

,~g!@ Ĵb
(,)#. ~125!

Using the transformation law~77! along with the above formulas and the equation

dD,~k!5(
a

KaD,~k!Ca~k!, ~126!

we can verify~122! in a straightforward manner.
We proceed to the operatorsD rot and Dvib . Operating onD,(g)(Em

, f )(s(q)) with idH ,

^ D rot and idH , ^ Dvib , we obtain

~ idH , ^ D rot!D
,~g!~Em

, f !~s~q!!52D,~g!(
a,b

Aab@ Ĵa
(,)#@ Ĵb

(,)#~Em
, f !~s~q!!, ~127!

~ idH , ^ Dvib!D,~g!~Em
, f !~s~q!!5D,~g!

1

r~q! (a,b
¹a~aabr~q!¹b~Em

, f !~s~q!!!, ~128!

respectively. From these equations, it turns out that the LaplacianD5Dvib1D rot reduces to the
operator acting on vector-valued wave functions (Em

, f )(s(q)),

D red
ª

1

r~q! (a,b
¹a~aabr~q!¹b!2(

a,b
Aab@ Ĵa

(,)#@ Ĵb
(,)#. ~129!

We here have to mention the transformation law for the locally defined reduced Laplacian
(Em

, f )(t(q)), we have the reduced Laplacian expressed as

D̃ red
ª

1

r~q! (a,b
¹̃a~aabr~q!¹̃b!2(

a,b
Ãab@ Ĵa

(,)#@ Ĵb
(,)#. ~130!

Using the transformation law~78! and the formula~125! in addition to~121!, we can also show
that D̃ red andD red are related by

D̃ red~Em
, f !~t~q!!5D,~k~q!!D red~Em

, f !~s~q!!. ~131!

Thus we obtain the following.
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Theorem 1: For nonsingular configurations, the Laplacian reduces to an operator actin
the sections in the associated vector bundleṀ3,H ,, which is expressed locally asD red given by
~129! or D̃ red given by~130! according to the choice of local sections inṀ→Q̇. The reduced local
operatorsD red and D̃ red are subject to the transformation law~131!.

VI. THREE-BODY SYSTEMS

Our aim in this section is to show that in spite of the singularity ofD rot andDvib at singular
configurations, the rotational and vibrational energy integrals are not divergent at singula
figurations. To this end, we need to understand the detailed behavior of wave functions at s
configurations. For this reason, we specialize in three-body systems for simplicity. Let us
duce internal coordinates (z1 ,z2 ,z3) by

z15r 1 , z25r 2 cosw, z35r 2 sinw, ~132!

where

r 15ir1i , r 25ir2i , r1•r25r 1r 2 cosw. ~133!

Using za , a51,2,3, we define a local sections by

s1~q!5z1e3 , s2~q!5z2e31z3e1 . ~134!

We note here that the local sections is defined originally on an open subsetU of Q̇

5Ṁ /SO(3). If we arestrict in using the term ‘‘local section,’’ we must pose the restriction t
z1.0 andz3.0 to identify the open subsetU. However, (z1 ,z2 ,z3) can serve as local coordi
nates beyondU,

$~z1 ,z2 ,z3!u z1>0,z3>0%. ~135!

The coordinates (z1 ,z2 ,z3) work well in the orbit spaceM /SO(3) for describing singular con
figurations. In fact, we have collinear configurations ifz350, and the configurations that two o
three particles collide but the remainder is separate, ifz150. If z15z25z350, we have a triple
collision. With this interpretation, we are allowed to makez3 tend to zero, for example.

From the definition~74! along with ~134!, the inertia tensor and its inverse ats(q) are put,
respectively, in the form

~Aab!5S z1
21z2

2 0 2z2z3

0 z1
21z2

21z3
2 0

2z2z3 0 z3
2

D , ~136!

~Aab!5S 1

z1
2 0

z2

z1
2z3

0
1

z1
21z2

21z3
2 0

z2

z1
2z3

0
z1

21z2
2

z1
2z3

2

D . ~137!

From ~45!, ~134!, and~137!, the connection form proves to be expressed as

vs(q)5
z2dz32z3dz2

z1
21z2

21z3
2 R~e2!. ~138!
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From ~51! together with~138!, the horizontal lifts of]/]za are given by

S ]

]z1
D *

5
]

]z1
,

S ]

]z2
D *

5
]

]z2
1

z3

z1
21z2

21z3
2 K2 , ~139!

S ]

]z3
D *

5
]

]z3
2

z2

z1
21z2

21z3
2 K2 .

From ~73! and ~139!, the metric tensor and its inverse are calculated, respectively, as

~aab!5S 1 0 0

0
z1

21z2
2

z1
21z2

21z3
2

z2z3

z1
21z2

21z3
2

0
z2z3

z1
21z2

21z3
2

z1
21z3

2

z1
21z2

21z3
2

D , ~140!

~aab!5S 1 0 0

0
z1

21z3
2

z1
2 2

z2z3

z1
2

0 2
z2z3

z1
2

z1
21z2

2

z1
2

D . ~141!

Further, the volume densityr(q) given in ~104! is expressed as

r~q!5z1
2z3 . ~142!

Thus we have obtained all the quantities needed for expressing the rotational and the vibr
energy operators given by~108! and~109!, respectively. The resultant expression looks singula
the singular configurations, i.e., at the triple collision,z15z25z350, and at the collinear con
figuration,z150 or z350.

To investigate how singular the operators are at singular configurations, we treat the rot
and the vibrational energy integrals in detail. The vibrational energy integral for the three
system is expressed as

Tvib5
1

2 EM
S S U ] f

]z1
U2

1
z1

21z3
2

z1
2 US ]

]z2
D *

fU2

1
z1

21z2
2

z1
2 US ]

]z3
D *

fU2

2
z2z3

z1
2 S S ]

]z2
D *

f S ]

]z3
D *

f

1S ]

]z3
D *

f S ]

]z2
D *

f D D z1
2z3dz1dz2dz3dm~g!. ~143!

From this along with~139!, we can observe that the integralTvib is not divergent at singula
configurations. In fact, at a glance, we see that no singularity occurs atz150. Turning to the
singular configuration given byz15z25z350, we pick up one of the terms in the integrand, s

z1
21z3

2

z1
2 US ]

]z2
D *

fU2

5
z1

21z3
2

z1
2 S U ] f

]z2
U2

1
z3

z1
21z2

21z3
2 S ] f

]z2
K2f 1

] f

]z2
K2f D 1

z3
2uK2f u2

~z1
21z2

21z3
2!2D .

~144!
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If we take the spherical polar coordinates for (z1 ,z2 ,z3) with the radial variable r
5Az1

21z2
21z3

2, the volume elementdQ5z1
2z3dz1dz2dz3 is put in the formdQ5r 5drdn, where

dn denotes the area element induced on the quarter sphere given byz1
21z2

21z3
251, z1>0, and

z3>0. Now it is easy to see that iff is smooth in a neighborhood ofr 50, no divergence occurs
at r 50 in the integral of the above term with respect tor 5drdn. For the other terms of the
integrand, the same proof of non-divergence also runs well.

The rotational energy integral for the three-body system is expressed as

Trot5
1

2 EM
S 1

z1
2 uK1f u21

1

z1
21z2

21z3
2 uK2f u21

z1
21z2

2

z1
2z3

2 uK3f u21
z2

z1
2z3

~K1f K3f 1K3f K1f ! D
3z1

2z3dz1dz2dz3dm~g!. ~145!

It is clear that no divergence occurs atz150. We are now interested in the singularity atz350.
Among the terms of the integrand of the right-hand side of~145!, @(z1

21z2
2)/z1

2z3
2#uK3f u2 might

cause the divergence of the integral atz350:

E
M

z1
21z2

2

z3
uK3f u2dz1dz2dz3dm~g!. ~146!

However, we can show that the integral~146! is not divergent on account of the bounda
condition for the wave functionf at z350. To this end, we may restrictM to p21(U) and use the
fact that if f is assumed to be analytic atz350, f can be expanded into a Fourier series, w
respect toD-functions, of the form

f ~gs~q!!5 (
,50

`
2,11

4p (
unu,umu<,

Dmn
, ~g!z3

unu(
j 50

`

z3
2 jCnm j~z1 ,z2!. ~147!

We notice here that in Ref. 11 Mitchell and Littlejohn proved that the analyticity assumptio
an equivariant function gives rise to a power series inz3 with the exponents of the formunu
12 j . By the Fubini theorem, the integral~146! restricted onp21(U) can be written as

E
U

dz1dz2dz3

z1
21z2

2

z3
E

SO(3)
uK3f u2dm~g!. ~148!

Carrying out the integration over SO~3! along with ~147!, we obtain

E
SO(3)

uK3f u2dm~g!5
1

2 (
,50

`

~2,11! (
umu,unu<,

n2z3
2unuFnm~z1 ,z2 ,z3!, ~149!

where

Fnm~z1 ,z2 ,z3!ª (
j , j 850

`

z3
2 j 12 j 8Cnm j~z1 ,z2!Cnm j8~z1 ,z2!, ~150!

and we have used the orthogonality ofD-functions,

E
SO(3)

Dmn
, ~g!Dm8n8

,8 ~g!dm~g!5
8p2

2,11
d,,8dmm8dnn8 , ~151!

and the fact thatK3Dmn
, (g)52 inDmn

, (g). Hence, we obtain
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E
U

dz1dz2dz3

z1
21z2

2

z3
E

SO(3)
uK3f u2dm~g!

5
1

2 (
,50

`

~2,11! (
umu,unu<,

E
U

z1
21z2

2

z3
n2z3

2unuFnm~z1 ,z2 ,z3!dz1dz2dz3 . ~152!

From this, we observe that the integral~146! is not divergent atz350. We may weaken the
analyticity assumption on wave functions atz350 to smoothness assumption to some extent

We turn to the singularity atz15z25z350. In this case, we have to consider whether
integral

E
p21(U)

S z1
2z3

z1
21z2

21z3
2 uK2f u21

z1
21z2

2

z3
uK3f u2D dz1dz2dz3dm~g! ~153!

is divergent atz15z25z350 or not. In the spherical polar coordinates for (z1 ,z2 ,z3), the
three-formdz1dz2dz3 is expressed asr 2drdn. Hence the integral~153! is not divergent atz1

5z25z350, if f is smooth in the neighborhood ofr 50. Thus we conclude that
Theorem 2:While the rotational and the vibrational energy operators look singular at sing

configurations, the singularity is not essential in the sense that the rotational and the vibr
energy integrals are not divergent at singular configurations on account of the boundary be
of wave functions there. The reduced kinetic energy operator looks singular as well, b
singularity is not essential in the same sense.

VII. COLLINEAR CONFIGURATIONS

In this section, we consider the spaceM1 of collinear configurations. ThoughM1 is a part of
the boundary ofṀ , and the rotational and the vibrational energy operators defined onṀ have
singularity atM1 , we will be able to define restricted rotational and vibrational energy opera
for collinear configurations, if we restrict ourselves toM1 . The rotation group SO~3! does not act
freely onM1 , but it has the isotropy subgroup which is isomorphic with SO~2!, so that the orbit
of SO~3! throughxPM1 is identified withS2; Ox>SO(3)/SO(2)>S2. We can decompose th
tangent space toM1 at xPM1 into a direct sum of vertical and horizontal subspaces; the ver
subspaceVx

(1) is defined to be the tangent space to the orbitOx throughxPM1 , and the horizontal
subspaceHx

(1) to be the orthogonal complement ofVx
(1) :

Tx~M1!5Vx
(1)

% Hx
(1) , Vx

(1)
ªTx~Ox!, Hx

(1)
ª~Vx

(1)!', ~154!

where the metric with respect to which the orthogonality is referred is induced onM1 from that on
the center-of-mass systemM .

We are to express basis vectors inVx
(1) in terms of local coordinates. To this end, we rec

here the formula~62! which holds for singular configurations as well. However, in the pres
case, we must take thes(q) as a local section inM1 : s0 :U (1),M1 /S2→M1 . The formula~62!
restricted toxPM1 implies thatKa are tangent vectors inVx

(1) . To find an explicit local expres-
sion of Ka , we take the sections0 to be

s0~q!5~j1e3 ,...,jN21e3!, qPU (1), ~155!

wherej j are local coordinates inU (1). Then a generic pointxPp21(U (1)) is expressed as

x5gs0~q!5~j1ge3 ,...,jN21ge3!, gPSO~3!. ~156!

We putg in the formg5efR(e3)euR(e2)ecR(e3). Then the pointx is assigned by the local coord
nates (u,f,j1 ,...,jN21), c being eliminated on account ofecR(e3)e35e3 . Hence we may take the
matrix g asefR(e3)euR(e2).
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We first deal withK1 . Using the formula~62! restricted toM1 , one has

K15
d

dt
getR(e1)s0~q!U

t50

52~j jge2!52~j j~2sinf e11cosf e2!!. ~157!

On the other hand, the curvex(t)5getR(e1)s0(q) is put, in terms of (u,f,j j ), in the form

x~ t !5~j j~sinu cosf e11sinu sinf e21cosu e3!!, ~158!

whereu and f are viewed as functions oft. Differentiating this with respect tot at t50, and
setting the resultant tangent vector equal toK1 given by ~157!, we find that

K1
(1)5

21

sinu

]

]f
, ~159!

where the superscript(1) indicates that the vector fieldK1
(1) is defined onM1 . In the same manne

as above, we have

K2
(1)5

]

]u
. ~160!

For K3 , we can easily find that

K3
(1)5

d

dt
getR(e3)s0~q!U

t50

50. ~161!

The vector fieldsK1
(1) andK2

(1) form a local basis of vertical vector fields onM1 . We have
observed, in the course of the above calculation, thatK1

(1) andK2
(2) can also be expressed as

K1
(1)52 (

j 51

N21

j ju2•
]

]r j
, K2

(1)5 (
j 51

N21

j ju1•
]

]r j
, ~162!

respectively.
We proceed to find a local basis inHx

(1) . The local vector fields]/]j j can be put in the form

]

]j j
5 (

i 51

N21
]r i

]j j
•

]

]r i
5u3•

]

]r j
. ~163!

From ~162! and ~163!, it follows that ]/]j j are orthogonal toK1
(1) , K2

(1) ;

ds2~Ka
(1) ,]/]j j !50, a51,2, j 51,...,N21. ~164!

This implies that]/]j j , j 51,...,N21, form a local basis of horizontal vector fields. The inn
product among these basis vector fields are given by

ds2~Ka
(1) ,Kb

(1)!5 (
j 51

N21

j j
2dab , a,b51,2, ~165!

ds2~]/]j i ,]/]j j !5d i j , i , j 51,...,N21. ~166!

It is easy to see that the basis of one-forms dual toKa
(1) and]/]j j are given by

2sinu df, du, dj1 ,...,djN21 , ~167!
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of which the first two are vertical and the remainder horizontal. From~165!–~167!, the induced
metric onM1 proves to be expressed as

ds2(1)5 (
j 51

N21

j j
2~du21sin2 u df2!1 (

j 51

N21

dj j
2 . ~168!

The volume element onM1 is then given by

dV(1)5dQ(1)∧dS, ~169!

where

dQ(1)5r1~j!dj1∧¯∧djN21 , r1~j!ª (
j 51

N21

j j
2 , ~170!

dS5sinu du∧df. ~171!

As was already mentioned in Sec. IV, the inertia tensorAx is singular atxPM1 . However, to
study collinear configurations, we have to know to what extent theAx is singular atxPM1 . For
x5(r1 ,...,rN21)PM1 , one has rankx51. Hence we can express Jacobi vectors asr j5l ja,
wherel jPR andaÞ0. Then forv, the inertia tensor takes the value

Ax~v!5 (
j 51

N21

l j
2~ uau2v2~a"v!a!. ~172!

Suppose now thatvPkerAx . Then one hasv5(a"v)a/uau2, which means that

kerAx5span$a%, xPM1 . ~173!

In contrast with this, for any vectoruPspan$a%', one has

Ax~u!5 (
j 21

N21

l j
2uau2u, ~174!

which implies that span$a%' is the eigenspace associated with the multiple eigenva
( j 51

N21l j
2uau25( j 51

N21ur j u2.
If we take a5ge35u3 and setl j5j j , and if we restrict the domain ofAx to the subspace

span$u1 ,u2%5span$u3%
', the restrictedAx becomes invertible:

~Ax
(1)!21~ua!5S (

j 51

N21

j j
2D 21

ua , xPM1 , a51,2. ~175!

The connection form~36! fails to be defined forxPM1 , as is easily seen. However, takin
~175! into account, we may define a restricted connection form. We recall here that we
obtained the decomposition~154!, which allows the interpretation thatM1 admits a ‘‘singular’’
connection, since~154! may be viewed as an analog to the decomposition~37!. We now look into
the connection form associated with the decomposition~154!. By using the local coordinates give
in ~156!, we obtain

r j3dr j5j j
2~C1(1)u11C2(1)u2!, ~176!

whereCa(1) are given by

C1(1)52sinu df, C2(1)5du. ~177!
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Note thatCa(1) are the reduced form ofCa given in~64!. Thus the total angular momentum is p
in the form

(
j 51

N21

r j3dr j5 (
j 51

N21

j j
2~C1(1)u11C2(1)u2!. ~178!

Since this vector is in the space span$u1 ,u2%, we can apply the restricted inverse opera
(Ax

(1))21 to ~178! to obtain a one-form,

v (1)
ªRS ~Ax

(1)!21S (
j 51

N21

r j3dr j D D 5C1(1)R~u1!1C2(1)R~u2!. ~179!

For horizontal and vertical vectors onM1 , the formv (1) takes values as follows:

v (1)~]/]j j !50, j 51,...,N21, ~180!

v (1)~Ka
(1)!5R~ua!, a51,2. ~181!

Since these equations are in keeping with the decomposition~154!, we may call the formv (1) a
~singular! connection form onM1 . Since]/]j i form a basis of the horizontal subspaceVx

(1) and
since@]/]j j ,]/]j i #50, the curvature of the connectionv (1) vanishes.

In conclusion of this section, we show that

M1 /S2>R13RPN22, ~182!

where R15$r PRu r .0% and RPN22 denotes the real projective space of dimensionN22.
Since xPM1 is of rank 1, we can describex as x5(j1u,...jN21u) with uuu51 and
(j1 ,...,jN21)Þ0. If (j1u,...,jN21u) and (h1v,...,hN21v) are equivalent under the SO~3! action,
we havehkv5jkgu, k51,...,N21, for somegPSO(3). This implies thatuhku5ujku, hencehk

56jk , and further the choice of sign should be independent ofk. Conversely, ifhk56jk , then
there existgPSO(3) such that (h1v,...,hN21v)5g(j1u,...,jN21u). This is because one ha
2u5epR(w)u for a vectorw such thatw'u. It then follows that the map

ṘN21
ªRN212$0%→M1 /S2; ~j1 ,...,jN21!°@~j1u,...,jN21u!#, ~183!

where@(¯)# denotes the equivalence class, is two-to-one, that is,6(j1 ,...,jN21) maps to the
same point ofM1 /S2. This results in

ṘN21/Z2>M1 /S2, ~184!

whereZ2 acts onṘN21 by (jk)°6(jk). SinceṘN21>R13SN22, one obtains

M1 /S2>R13SN22/Z2>R13RPN22. ~185!

In Ref. 12, they showed that the orbit of the shape,p(x), of a collinear configurationxPM1 by
the action of the kinetic group O(N21) on M /SO(3) to the right is diffeomorphic withRPN22.

VIII. KINETIC ENERGY OPERATOR FOR COLLINEAR CONFIGURATIONS

In the same manner as that used to obtain the kinetic energy operatorD for nonsingular
configurations, we can obtain the kinetic energy operator for singular configurations. From~168!,
it follows that the kinetic energy integral for collinear configurations is given by
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1

2 EM1
S 1

r1~j! S U] f

]uU
2

1
1

sin2 u U ] f

]fU2D1 (
j 51

N21 U ] f

]j j
U2D dV(1), ~186!

wheredV(1) is the volume element given in~169!. Integrated by part, this integral is expressed

2
1

2 EM1

f̄ S 1

r1~j! S 1

sinu

]

]u S sinu
] f

]u D1
1

sin2 u

]2f

]f2D1
1

r1~j! (
j 51

N21
]

]j j
S r1~j!

] f

]j j
D D dV(1).

~187!

Thus we obtain the kinetic energy operator2 1
2D

(1) with the LaplacianD (1) on M1 ,

D (1)5
1

r1~j!
L1

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D , ~188!

whereL is the spherical Laplacian onS2,

L5
1

sinu

]

]u S sinu
]

]u D1
1

sin2 u

]2

]f2 . ~189!

The first and second terms on the right-hand side of~188! are a rotational and a vibrationa
operator, respectively.

The operatorD (1) has singularity at multiple collision for whichr1(j)50. However, it is clear
that the energy integral~186! is not divergent at the multiple collisionj j50. Note also that the
spherical LaplacianL has no singularity atu50,p, as is well known.

We proceed to show that the LaplacianD (1) will reduce to an operator acting on the wav
functions of variables (j j ). For x5s0(q) andh5etR(e3), the equivariance condition~33! special-
izes to

~Em
, f !~s0~q!!5~Em

, f !~etR(e3)s0~q!!5D,~etR(e3)!~Em
, f !~s0~q!!. ~190!

Since

D,~etR(e3)!5diag~e2 i ,t,...,e2 i t ,0,eit ,...,ei ,t!, ~191!

the above condition implies that theH ,-valued function (Em
, f )(s0(q)) has only one non-zero

component (P0m
, f )(s(q))/A2,11, and hence theH ,-valued function (Em

, f )(gs0(q))
5D,(g)(Em

, f )(s0(q)) has thenth (unu<,) component expressed as

1

A2,11
Dn0

, ~g!~P0m
, f !~s0~q!!5A4p Y,n~ge3!~P0m

, f !~s0~q!!, ~192!

whereY,n are the spherical harmonics andge3 denotes a point of the unit sphereS2, which are
designated by the variables~u, f!.

Operating on~192! with the LaplacianD (1), we obtain~up to the factorA4p)

D (1)Y,n~ge3!~P0m
, f !~s0~q!!5Y,n~ge3!S 2

,~,11!

r1~j!
1

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D D

3~P0m
, f !~s0~q!!. ~193!

Thus we find an operator acting on functions (P0m
, f )(s0(q)),
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D (1)red
ª

1

r1~j! (
j 51

N21
]

]j j
S r1~j!

]

]j j
D2

,~,11!

r1~j!
. ~194!

We have to note here that this reduced operator is globally expressed on the orbit spaceM1 /S2 on
account of~184!. In fact, the operator~194! is expressed in terms of (j1 ,...,jN21)PṘN21 and
invariant under the inversion (jk)°2(jk). Thus we have the following.

Theorem 3: For collinear configurations, the reduced kinetic energy operator2 1
2D

(1)red on
M1 /S2 is given by~194!. It looks singular at the multiple collision configuration (j j50), but the
singularity is not essential in the sense that the kinetic energy integral is not divergent
multiple collision.

We note that the Hamiltonian operator for linear molecules was already discussed
elementary manner.13 The method taken in this article to derive the kinetic energy operator is q
different from that in Ref. 13. Ours is clear and natural from the viewpoint of differential ge
etry.
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Dense Dirac combs in Euclidean space with pure point
diffraction

Christoph Richard
Institut für Mathematik, Universita¨t Greifswald, Jahnstr. 15a, 17487 Greifswald, Germany

~Received 7 February 2003; accepted 9 July 2003!

Regular model sets, describing the point positions of ideal quasicrystallographic
tilings, are mathematical models of quasicrystals. An important result in mathemati-
cal diffraction theory of regular model sets, which are defined on locally compact
Abelian groups, is the pure pointedness of the diffraction spectrum. We derive an
extension of this result, valid for dense point sets in Euclidean space, which is
motivated by the study of quasicrystallographic random tilings. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1609032#

I. INTRODUCTION

An important question in mathematical diffraction theory concerns the problem of w
distributions of matter diffract@Bombieri and Taylor~1986!#. By now, there are only partia
answers to this question which go beyond the crystallographic case. A mathematical idealiza
the set of atomic positions of a piece of matter are Delone sets@Lagarias~2000!#. A subsetL of Rd

is called aDeloneset if it is uniformly discrete and relatively dense. This means that there are
r ,R.0 such that each ball of radiusr ~respectively,R) contains at most~respectively, at least! one
point of L. This class, however, is too general to obtain specific results about spectral prop
It includes, for example, ordered structures such as crystals, as well as structures with di
and also amorphous systems.

A special class of Delone sets are model sets@see, for example, Moody~1997!#, which arise
from a cut-and-project scheme. We will repeat their precise definition below. Model sets
strong regularity properties such as uniform point densities. They are mathematical abstract
ideal quasicrystals, whose diffraction spectrum is experimentally known to consist of Bragg
only. By now, the study of model sets is a rather well developing subject, and their diffra
properties are well understood@Hof ~1995!, Hof ~1998!, Schlottmann~1998!, Schlottmann
~2000!#. The most general description is in terms of measures on locally compact Abelian gr
in generalization of Euclidean space@Schlottmann~1998!#. It is known that regular model sets ar
pure point diffractive. A first proof of this fact was given by Hof~1998! and, in a more genera
setup, by Schlottmann~1998!, where they used a dynamical systems approach together wit
argument due to Dworkin~1993!. Recently, an alternative proof has been given by Baake
Moody ~2002!, who considered Delone sets with certain additional properties, which inc
model sets. For these sets, they explicitly constructed a cut-and-project scheme and were
prove the pure pointedness of the diffraction spectrum directly. As they showed, their result
a natural interpretation in terms of the theory of almost periodic measures@Gil de Lamadrid and
Argabright~1990!#. An important assumption of the approach is the~uniform! discreteness of the
point setL, arising from the physical motivation.

In this paper, we will show that the diffraction result for regular model sets remains vali
certain dense point sets in Euclidean space, which appropriately generalize model sets
point sets are not a mathematical curiosity but admit an interpretation in terms of ave
structures derived fromrandom tilingswith quasicrystallographic symmetries@Henley ~1999!,
Richardet al. ~1998!, Richard~1999!#: Soon after the discovery of quasicrystals, it became c
that there are two competing models for the description of their unusual diffraction prope
namely the ideal tiling model and the random tiling model. Whereas the ideal tiling model~i.e., a
44360022-2488/2003/44(10)/4436/14/$20.00 © 2003 American Institute of Physics
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model set! leads to a diffraction spectrum consisting of Bragg peaks only, in the random
model a continuous background in addition to Bragg peaks was expected, as has been ar
Henley~1999!. There is at present no rigorous treatment of diffraction properties of quasicry
lographic random tilings ind.1, apart from the comparatively simple situation of disorder aris
from independent random variables@Baake and Moody~1998!# and the investigation Ku¨lske
~2001!. For rigorous results about diffraction of crystallographic random tilings ind52 and
random tilings ind51, see Baake and Ho¨ffe ~2000!, Höffe and Baake~2000!. The derivation of
Henley’s prediction rests on nonrigorous arguments and uses an averaged point distribution
can be regarded as a generalized model set, being dense in Euclidean space. This distribu
assumed to exist in dimensionsd.2 @Henley ~1999!#. In the following, we give a rigorous
exposition of a main part of this approach, which is, on the other hand, a generalization
cut-and-project scheme for regular model sets to dense point sets@see also Ho¨ffe ~2001!, which
introduces the setup used in this paper, and the review article Baakeet al. ~2003!, where the
diffraction formula of Theorem 10 is cited#. After recollecting the basic terminology and centr
theorems of diffraction theory of regular model sets in Sec. II, we will define generalized m
sets in Sec. III and show that they are pure point diffractive. This leads to a generalizat
Poisson’s summation formula to certain dense point sets. Section IV will apply the results w
Henley’s framework for the description of diffraction properties of quasicrystallographic ran
tilings. A discussion of open questions and possible future work concludes the paper.

II. DIFFRACTION OF WEIGHTED REGULAR MODEL SETS

In this section, we recollect and extend results from diffraction theory of weighted re
model sets, which we shall generalize in the following section to the setup of a dense Dirac

Throughout the paper, we consider the situation of acut-and-project scheme@Moody ~1997!#
with a Euclidean spaceRd and a Euclidean spaceRm, calleddirect space andinternal space.

Let L̃,Rd3Rm be a lattice and denote the volume of its fundamental domain byudet(L̃)u. If
p1 andp2 are the natural~orthogonal! projections ofRd3Rm ontoRd andRm, respectively, then
p1u L̃ is assumed to be one-to-one andp2(L̃) is assumed to be dense. SetL5p1(L̃) and let
( )!:L→p2(L̃) denote the mappingp2+(p1u L̃)21, also called thestar-map. This is summarized in
the following diagram:

p1 p2

Rd ← Rd3Rm → Rm

ø 121↖ ø ↗dense

L L̃5$~x,x!!uxPL%

~1!

For an open and relatively compact subsetW,Rm, also calledwindow, define themodel set
L(W) by

L~W!ª$xPL u x!PW%. ~2!

Denote the volume ofW by vol(W). Model sets are Delone sets, i.e., they are both unifor
discrete and relatively dense@Moody ~1997!, Schlottmann~1998!#. The model setL(W) is called
regular if BÞW5 int(W) is compact and if]W has zero Lebesgue measure.

Associated with the latticeL̃ is its dual lattice (L̃)* , defined via

~ L̃ !* 5$yPRd3Rm u y•xPZ for all xPL%. ~3!

Denote its image inRd by L* 5p1((L̃)* ). A remarkable property of cut-and-project schemes
duality @Moody ~1997!, p. 418#. We can dualize the given cut-and-project scheme to obta
cut-and-project scheme for the dual lattice. By identifying direct and internal space with
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corresponding duals, we can see that the projectionp1 , restricted to the dual lattice (L̃)* , is
one-to-one, and that the dual lattice has dense imagep2((L̃)* ) in Rm. The corresponding star-ma
is defined on the setL* . We denote it by ( )! again.

Regular model sets have a well-defined density. Throughout the paper, we will con
infinite volume limits to be taken on sequences of balls. Existence of these limits may howe
derived for more general van Hove sequences, see Schlottmann~2000! for the example of the
density formula. LetBn(a) denote the closed ball of radiusn centered ataPRd. We setBn

5Bn(0).
Theorem 1: @Density formula~Schlottmann, 1998!# Let L(W) be a regular model set. The

lim
r→`

1

vol~Br~0!!
S (

xPL(W1u)ùBr (a)
1D 5

vol~W!

udet~ L̃ !u
,

uniformly in a and in u. h

This result may be used to consider sums over weighted regular model sets. Consider fi
situation where the weight of a pointxPL(W) only depends onx.

Lemma 1: LetL(W) be a regular model set, f :Rd→C bounded anduxud111au f (x)u<C for
some constants C.0 and a.0. Then, for aPRd and uPRm, the sums

s~u,a!ª (
xPL(W1u)1a

f ~x!

are absolutely convergent. Moreover, they are uniformly bounded in u and in a, the bound being
proportional tovol(W).

Proof: For RPN, consider the sums

s,~u,a,R!ª (
xPL(W1u)1a

uxu,R

u f ~x!u, s>~u,a,R!ª (
xPL(W1u)1a

uxu>R

u f ~x!u.

In the density formula, the sequence on the left-hand side is certainly bounded by twice its
for almost allr . This implies for the number of points within a ball of radiusn,

u~L~W1u!1a!ùBn~0!u5uL~W1u!ùBn~2a!u<c vol~W! nd ~n.n0~W!!,

uniformly in u and ina, wherec52Sd /udet(L̃)u, andSd,Rd denotes the volume of the unit bal
The numbern0(W) is increasing with decreasing volume ofW. Together withf bounded, the
above estimate implies thats,(u,a,R) is uniformly bounded inu and in a with a number
proportional to vol(W). We derive a uniform bound ons>(u,a,R). By assumption, we have
uxud111au f (x)u<C. Definegnª(n<uxu,n11u f (x)u and estimategn by

gn<u~L~W1u!1a!ùBn11~0!u
C

nd111a <c vol~W!~n11!d
C

nd111a <
2c C vol~W!

n11a ~4!

for n.n1(W). Thus forR.n1(W),

us>~u,a,R!u< (
n>R

gn<2c C vol~W! (
n5R

`
1

n11a ,`, ~5!

since by assumptiona.0. The bound is independent ofu and of a. Note that we have
limR→` s>(u,a,R)50.

Remark:The above sumss(u,a) are absolutely convergent and bounded uniformly inu and
in a under the milder assumptionuxud1au f (x)u<C for some constantsC.0 and a.0. This
follows already from the uniform discreteness ofL(W) by a standard estimation. The addition
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property that there exists a bound proportional to vol(W), which we will use extensively below, is
a result of the density formula. It would be interesting to consider whether the assumptionf
in the above lemma may be weakened, since the estimation in Eq.~4! seems rather crude.

Consider now the situation where the weight of a pointxPL(W) depends only on its interna
coordinatex!. This leads to Weyl’s theorem on uniform distribution in the context of regu
model sets@Kuipers and Niederreiter~1974!, Schlottmann~1998!#.

Theorem 2: @Weyl’s theorem for regular model sets~Baake and Moody, 2000!# Let L(W) be
a regular model set, with compact, Riemann measurable W,Rm. Let f:Rm→C be continuous with
supp(f ),W. Then, for all aPRd,

lim
r→`

1

vol~Br~0!!
(

xPL(W)ùBr (a)
f ~x!!5

1

udet~ L̃ !u
E

W
f ~y! dy,

uniformly in a. h

The fundamental object in diffraction theory of weighted model sets is theweighted Dirac
combv defined by

v5 (
xPL(W)

f ~x!!dx , ~6!

where supxPL(W)u f (x!)u,`. This defines a complex regular Borel measure onRd, which is
translation bounded, sinceL(W), being a model set, is uniformly discrete. Recall that a meas
v is translation boundediff, for all compactK,Rd, supyPRduvu(y1K)<CK,` for some con-
stantCK which only depends onK. Here,uvu denotes the total variation measure andy1K5$y
1x u xPK%. In the following, we assume that the functionf satisfies the assumption of Weyl
theorem for regular model sets, i.e., we assume thatf :Rm→C is continuous with supp(f ),W.

Diffraction properties can be expressed using theFourier–Bohr coefficient cW(k) of the
weighted Dirac combv, defined by

cW~k!5 lim
r→`

1

vol~Br~0!! (
xPL(W)ùBr (a)

f ~x!!e22pik•x, ~7!

wherekPRd andaPRd. We have the following theorem.
Theorem 3: @Fourier–Bohr coefficients~Bernuau and Duneau, 2000; Hof, 1995!# Let L(W)

be a regular model set, with compact, Riemann measurable W,Rm. Let f:Rm→C be continuous
with supp(f ),W. Then, for all kPRd, the Fourier–Bohr coefficient cW(k) exists and is inde-
pendent of aPRd. Its value is given as follows. For any kPL* , one has

cW~k!5
1

udet~ L̃ !u
E

W
e2pik!

•uf ~u! du5
1

udet~ L̃ !u
f uŴ~2k!!,

and cW(k)50 if k does not belong to theZ-module L* . h

Remark:In Bernuau and Duneau~2000!, the theorem is proved only for the case wheref (u)
equals unity. The statement can be generalized to the situation described above by th
methods which lead to Weyl’s formula, generalizing the density formula. ForkPL* , the theorem
is a direct consequence of Weyl’s density formula.

For regular model sets, theweighted density of pointsr exists, because Weyl’s theorem fo
regular model sets implies

rª lim
r→`

1

vol~Br !
v~Br !5

1

udet~ L̃ !u
E

W
f ~u! du. ~8!
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This identity may be viewed as a particular normalization of admissible functionsf , which we
employ in the following.

Diffraction is described by properties of the Fourier transform of theautocorrelation, which

we now define@see also Hof~1995!, Baake, Moody, and Pleasants~2000!#. Set ṽ( f )5v( f̃ ),
where f̃ (x)5 f (2x). Define truncated Dirac combsvn5vuBn

and setṽn5(vn)˜ . The finite
autocorrelation measures

gv
(n)
ª

1

vol~Bn!
vn* ṽn ~9!

are well defined, sincevn has compact support. Recall that theconvolutionof two measuresm, n
is defined asm* n( f )5*Rd3Rdf (x1y) dm(x) dn(y), being well defined if at least one of them ha
compact support. The finite autocorrelation measures read explicitly

gv
(n)5 (

zPD
hn~z!dz , hn~z!5

1

vol~Bn! (
x,yPL(W)ùBn

x2y5z

f ~x!! f ~y!!, ~10!

whereD5L(W)2L(W) is the set of difference vectors ofL(W). It can be shown that the vagu
limit n→` leads to a unique autocorrelationgv .

Theorem 4: ~Autocorrelation! Let L(W) be a regular model set, with compact, Riema
measurable W,Rm. Let f:Rm→C be continuous withsupp(f ),W. Then, the vague limit n
→` of the finite autocorrelation measuresgv

(n) leads to a unique measuregv , called natural
autocorrelation, being a translation bounded, positive definite pure point measure. It is
explicitly by

gv5 (
zPD

h~z!dz , h~z!5
1

udet~ L̃ !u
E

Wù(W1z!)
f ~u! f ~u2z!! du. ~11!

h

Recall that a measurem is positive definiteiff m(g* g̃)>0 for all compactly supported con
tinuous functionsg.

The proof of the theorem proceeds as follows@Baake, Moody, and Pleasants~2000!#. All
autocorrelation coefficientsh(z)5 limn→` hn(z) exist due to Weyl’s theorem for regular mod
sets. They are locally summable, sinceD is closed and discrete. Then,gv defines a distribution
over the space of allC` functions of compact support. The translation boundedness is inhe
from v @see Hof~1995!, Prop. 2.2#. Finally, gv can be written as a certain volume-normaliz
convolution, which implies that it is a distribution of positive type.

Due to Bochner’s theorem@Reed and Simon~1980!, p. 331#, the Fourier transformgv̂ of gv

is a positive measure and also translation bounded@Baake, Moody, and Pleasants~2000!#. Recall
that theFourier transform m̂ of a tempered distributionm is defined asm̂(w)5m(ŵ) for all
Schwartz functionsw, whereŵ(y)5*e22piy•xw(x) dx. It can be shown that the Fourier transfor
of the autocorrelation is a pure point measure@Schlottmann~2000!, Baake and Moody~2002!#.

Theorem 5: @Diffraction formula~Bernuau and Duneau, 2000# Let L(W) be a regular model
set, with compact, Riemann measurable W,Rm. Let f:Rm→C be continuous withsupp(f ),W.
The Fourier transformgv̂ of the autocorrelation measuregv is a translation bounded, positive
pure point measure. It is explicitly given by

gv̂5 (
kPL*

ucW~k!u2dk ,

where L* is the projection of the dual lattice into direct space, and cW(k) are the Fourier–Bohr
coefficients of Theorem 3. h
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Recall that a measurem is positive iff m(g)>0 for all compactly supported continuou
functionsg>0.

Remark:The pure pointedness ofgv̂ has been shown in Hof~1998!, Schlottmann~1998!, and
Baake and Moody~2002!. The explicit formula for the discrete part ofgv̂ was proved in Hof
~1995!, but appeared earlier at different places in the physical literature. In the context o
formed model sets, which include regular model sets as a special case, the theorem app
Bernuau and Duneau~2000!. The diffraction formula is often stated for unweighted Dirac com
but also holds for weighted Dirac combs, as is seen by an approximation of the weight funcf
by step functions, analogously to the proof of Weyl’s theorem for regular model sets in Baak
Moody ~2000! using the density formula.

III. DIFFRACTION OF DENSE DIRAC COMBS

We now extend the above results to the situation of a dense Dirac comb. The corresp
proofs will rely on the above results. In the following, we assume a cut-and-project scheme
the preceding section with the additional property that the canonical projectionsp1 and p2 ,
restricted toL̃, are both one-to-one, and the images ofL̃ are both dense inRd andRm, respec-
tively. The star-map is then a bijection betweenL and L!. This additional assumption makes
possible to regard subsetsB,Rd as windows, leading to model sets in internal spaceRm.

Define theweighted Dirac combv by

v5 (
xPL

f ~x!!dx . ~12!

Since theZ-moduleL is dense in Euclidean space, the above sum is now well defined only u
special assumptions on the weight functionf .

Theorem 6: ~Weighted Dirac combs with dense support! Let f:Rm→C be bounded, and
uxum111au f (x)u<C for some constants C.0 and a.0. Then, the weighted Dirac combv is a
translation bounded measure.

Proof: Let a compactK,Rd be given. CoverK with a finite number of translated unit ball
Wi such thatK,ø i 51

n Wi5W. For yPRd, the total variation measure ofv is bounded by

uvu~K1y!< (
xPLù(W1y)

u f ~x!!u5 (
x!P(Lù(W1y))!

u f ~x!!u5..aK~y!.

The additional assumptions on the cut-and-project setup, introduced at the beginning
section, imply that (Lù(W1y))! is a regular model set with window (W1y),Rd. Lemma 1
then yields thataK(y),bK,`, uniformly in y, for somebK . This implies thatv is a measure,
and thatv is translation bounded. h

We derive a generalization of Weyl’s theorem on uniform distribution to dense point se
Theorem 7: ~Weyl’s theorem for dense point sets! Let f:Rm→C be continuous, and

uxud111au f (x)u<C for some constants C.0 and a.0. Then

lim
r→`

1

vol~Br~0!!
(

xPLùBr (a)
f ~x!!5

1

udet~ L̃ !u
E

Rm
f ~u! du,

uniformly in a.
Proof: For sPN, let Bs,Rm denote the ball of radiuss centered at 0. The idea of the proo

is to approximate the dense setL by the model setsL(Bs). Let xs :Rm→@0,1# be continuous with
xs(x)51 for uxu,s21 andxs(x)50 for uxu>s. Define the numbers

wr ,s5
1

vol~Br~0!!
(

xPL(Bs)ùBr (a)
~xs• f !~x!!, ws85

1

udet~ L̃ !u
E

Bs

~xs• f !~u! du,
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wr5
1

vol~Br~0!!
(

xPLùBr (a)
f ~x!!, w5

1

udet~ L̃ !u
E

Rm
f ~u! du.

We have limr→` wr ,s5ws8,` due to Weyl’s theorem for regular model sets. We also h
lims→` ws85w,`. This follows from Lebesgue’s dominated convergence theorem, since
functionsu(xs• f )(u)u are bounded byu f (u)u uniformly in s, andf (u) is by assumption absolutel
integrable~the integral being finite!.

We now show that lims→` wr ,s5wr uniformly in r and ina. We have the estimate

uwr2wr ,su5
1

vol~Br~0!! U (
xPLùBr (a)

f ~x!!2 (
xPL(Bs)ùBr (a)

~xs• f !~x!!U
<

1

vol~Br~0!! S (
x!P(LùBr (a))!\Bs

u f ~x!!u1 (
x!P(LùBr (a))!

s21<ux!u,s

u f ~x!!u D
5

1

vol~Br~0!! S (
x!P(LùBr (a))!\Bs21

u f ~x!!u D .

We estimate the last term using Eq.~5! in Lemma 1. Sincen1(Br 2
)<n1(Br 1

) for r 2>r 1 , we get
for s>n1(B1) and r .1,

uwr2wr ,su<
1

vol~Br !
S 2c C vol~Br ! (

n5s21

`
1

n11aD .

Since the bound is independent ofr anda and vanishes ass→`, the assertion follows.
We now use a 3« argument to show thatwr→w. Fix «.0. We haveuw2ws8u,« for s

.s0(«). We also haveuwr ,s2wr u,« for s.s1(«) uniformly in r . Last, we haveuws82wr ,su,«
for r .r 0(«,s). Takes.max$s0(«),s1(«)%. For r .r 0(«,s), we thus have

uw2wr u<uw2ws8u1uws82wr ,su1uwr ,s2wr u<3 «.

This establishes the convergence result of the theorem. h

For applications to diffraction, we restrict the class of admissible functionsf in the remainder
of this paper. Letf :Rm→C be continuous, andu f (x)u<C/uxum111a for some constantsC.0 and
a.0. We can argue as in the preceding section, using Weyl’s theorem for dense point sets,
weighted density of points exists,

rª lim
r→`

1

vol~Br !
v~Br !5

1

udet~ L̃ !u
E

Rm
f ~u! du. ~13!

This identity may be viewed as a particular normalization of admissible functionsf . Given a
weighted Dirac combv with dense support, we consider its Fourier–Bohr coefficients. We de
the finite volume approximations

cr~k!5
1

vol~Br~0!! (
xPLùBr (a)

f ~x!!e22pik•x, ~14!

where kPRd and aPRd. The numberscr(k) exist ~and may depend ona), as is seen by an
argument similar to that used for proving the existence of the Dirac combv. In the limit r→`, we
have the following result.
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Theorem 8: ~Fourier–Bohr coefficients for dense point sets! Let f:Rm→C be continuous, and
uxum111au f (x)u<C for some constants C.0 and a.0. Then, for all kPRd, the Fourier–Bohr
coefficient c(k)5 limr→` cr(k) exists and is independent of a. Its value is given as follows. Fo
any kPL* and for any aPRd, one has

c~k!5
1

udet~ L̃ !u
E

Rm
e2pik!

•uf ~u! du5
1

udet~ L̃ !u
f̂ ~2k!!,

and c(k)50 if k does not belong to theZ-module L* .
Proof: The proof is analogous to the proof of Weyl’s theorem for dense point sets above

sPN, let Bs,Rm denote the ball of radiuss, centered at 0, and define the numbers

cr ,s~k!5
1

vol~Br~0!! (
xPL(Bs)ùBr (a)

~xs• f !~x!!e22pik•x,

cs8~k!5H 1

udet~ L̃ !u
E

Bs

~xs• f !~u!e2pik!
•u du, kPL* ,

0, k¹L* ,

c8~k!5H 1

udet~ L̃ !u
E

Rm
f ~u!e2pik!

•u du, kPL* ,

0, k¹L* .

We have limr→` cr ,s(k)5cs8(k),` due to Theorem 3. We also have lims→` cs8(k)5c8(k),` by
Lebesgue’s dominated convergence theorem. We show that lims→` cr ,s(k)5cr(k) uniformly in r
and ina. As in Theorem 7, we can then use a 3« argument to show thatcr(k) converges toc8(k)
as r→`. Thusc(k)5 limr→` cr(k)5c8(k), and the assertion of the theorem follows.

For everykPRd, we have the estimate

ucr~k!2cr ,s~k!u<
1

vol~Br~0!! S (
x!P(LùBr (a))!\Bs

u f ~x!!u1 (
x!P(LùBr (a))!

s21<ux!u,s

u f ~x!!u D .

This is the same expression as in the proof of Theorem 7. We can repeat the previous ar
and derive a uniform bound inr and ina, which vanishes ass→`. h

The finite autocorrelation measures of the dense Dirac combv,

gv
(n)
ª

1

vol~Bn!
vn* ṽn , ~15!

are well defined, sincevn has compact support. They read explicitly

gv
(n)5 (

zPL
hn~z!dz , hn~z!5

1

vol~Bn! (
x,yPLùBn

x2y5z

f ~x!! f ~y!!. ~16!

We show that the limitn→` leads to a unique autocorrelation. As a first step, we show tha
pointwise limit exists.

Lemma 2: Lethn(z) denote the finite autocorrelation coefficients of the weighted Dirac co
v. The numbershn(z) have a well-defined limith(z), which is a positive definite function. It i
given by
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lim
n→`

hn~z!5h~z!5
1

udet~ L̃ !u
E

Rm
f ~u! f ~u2z!! du. ~17!

Proof: This is an application of Weyl’s theorem for dense point sets. We have

hn~z!5
1

vol~Bn! (
xPLùBn

x2zPLùBn

f ~x!! f ~x!2z!!

5
1

vol~Bn! (
xPLùBn

f ~x!! f ~x!2z!!2
1

vol~Bn! (
xPLùBn

x2z¹LùBn

f ~x!! f ~x!2z!!.

The first term in the last line converges toh(z) by Weyl’s theorem for dense point sets, and t
second one, which we denote byr n(z), converges to zero, as we now show. Note thatuxu,n
2uzu implies ux2zu,n. Consider forn.uzu the estimate

ur n~z!u<
1

vol~Bn! S (
xPLùBn

2 (
xPLùBn2uzu

D u f ~x!!u u f ~x!2z!!u

5
1

vol~Bn! (
x!P(Lù(Bn\Bn2uzu))

!
u f ~x!!u u f ~x!2z!!u.

This is a summation over a regular model set with windowBn\Bn2uzu . Due to Lemma 1, the sum
is bounded by the volume of the window, which is a shell of thicknessuzu of the ball of radiusn.
Thus, the last expression vanishes like 1/n asn→`. The limit h(z) is a positive definite function,
since it is the limit of the positive definite functionshn(z). h

Theorem 9: ~Autocorrelation! Let f:Rm→C be continuous, anduxum111au f (x)u<C for some
constants C.0 and a.0. The weighted dense Dirac combv has the unique autocorrelation

gv5 (
zPL

h~z!dz , h~z!5
1

udet~ L̃ !u
E

Rm
f ~u! f ~u2z!! du,

wheregv is a translation bounded, positive definite pure point measure.
Proof: Consider the regular model set autocorrelation measures

gv,s5 (
zPDs

hs~z!dz , hs~z!5
1

udet~ L̃ !u
E

Bsù(Bs1z!)
~xs• f !~u!~xs• f !~u2z!! du,

whereBs denotes the ball of radiussPN, andDs5L(Bs)2L(Bs). Note thatDs,Ds11,L and
seths(z)50 if z¹Ds . Consider the associated finite autocorrelation measures

gv,s
(n) 5 (

zPDs

hn,s~z!dz , hn,s~z!5
1

vol~Bn! (
x,yPL(Bs)ùBn

x2y5z

~xs• f !~x!!~xs• f !~y!!.

Since these measures arise from regular model sets, we havegv,s
(n) →gv,s vaguely. The measure

gv,s converge togv vaguely, as follows from Lebesgue’s dominated convergence theorem:
that hs(z)→h(z) and uhs(z)u,uhu(z)ª@1/udet(L̃)u# *Rmu f (u)u u f (u2z!)udu. Note that g uvu
ª(zPLuhu(z)dz defines a measure: Forg uvu and compactK, we have the estimate
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g uvu~K !< (
zPLùW

uhu~z!5 (
z!P(LùW)!

1

udet~ L̃ !u
E

Rm
u f ~u!u u f ~u2z!!udu

5
1

udet~ L̃ !u
E

Rm
u f ~u!uS (

z!P(LùW)!
u f ~u2z!!u D du,`,

whereW5ø i 51
n Wi is a covering ofK with a finite number of translated unit ballsWi . In the last

equation, we exchanged summation and integration, which is justified by Lebesgue’s dom
convergence theorem, since the terms in brackets are bounded uniformly inu due to Lemma 1.
For g continuous with support onK, we then have

lim
s→`

gv,s~g!5 lim
s→`

(
zPLùK

hs~z!g~z!5 (
zPLùK

lim
s→`

hs~z!g~z!5 (
zPLùK

h~z!g~z!5gv~g!.

We will show below thatgv,s
(n) →gv

(n) vaguely, uniformly inn. The above results may then be us
with a 3« argument as in Theorem 7 to show thatgv

(n)→gv . Sincev is translation bounded, we
further conclude that all finite volume approximationsgv

(n) are uniformly translation bounded@Hof
~1995!, Prop. 2.2#, hence the limit is translation bounded. As it coincides with the pointwise li
it is unique. The measuresgv

(n) are positive definite by construction. Since the positive defin
measures are closed in the vague topology,gv is a positive definite measure. The explicit form
the vague limit shows thatgv is pure point.

To show the uniform convergence ofgv,s
(n) , consider for a compact setK,Rd the estimate

ugv
(n)~K !2gv,s

(n) ~K !u5
1

vol~Bn! U (
zPLùK

(
xPLùBn

x2zPLùBn

f ~x!! f ~x!2z!!

2 (
zPLùK

(
xPL(Bs)ùBn

x2zPL(Bs)ùBn

~xs• f !~x!!~xs• f !~x!2z!!U
<

1

vol~Bn! U (
zPLùK

S (
xPLùBn

f ~x!! f ~x!2z!!

2 (
xPL(Bs)ùBn

~xs• f !~x!!~xs• f !~x!2z!! D U
1

1

vol~Bn! U (
zPLùK S (

xPLùBn
x2z¹LùBn

f ~x!! f ~x!2z!!

2 (
xPL(Bs)ùBn

x2z¹L(Bs)ùBn

~xs• f !~x!!~xs• f !~x!2z!!D U .

Both terms in the last inequality may be estimated by

1

vol~Bn! (
zPLùK S (

x!P(LùBn)!\Bs

u f ~x!!u u f ~x!2z!!u1 (
x!P(LùBn)!

s21<ux!u,s

u f ~x!!u u f ~x!2z!!u D
by the same argument as in the proof of Theorem 7. We may now interchange the summatio
use the fact that the sum overz is bounded uniformly inx! due to Lemma 1. The remaining term
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is of the same form as that in Theorem 7. We conclude that it approaches zero ass→` uniformly
in n. Thusgv,s

(n) →gv
(n) vaguely and uniformly inn, which concludes the proof. h

It now follows from the theorem of Bochner–Schwartz@Reed and Simon~1980!, p. 331# that
the Fourier transform of the autocorrelation is a positive, translation bounded measure. An e
expression for the discrete part (gv̂)pp of gv̂, which is given in the following theorem, can b
deduced from Hof~1995!, Theorem 3.4. The theorem states that the Fourier transform o
autocorrelation measure has no continuous component.

Theorem 10: ~Diffraction formula! Let f:Rm→C be continuous and, for some constants
.0 and a.0, uxum111au f (x)u<C. The Fourier transformgv̂ of the autocorrelationgv of the
weighted dense Dirac combv is a positive, translation bounded pure point measure and explic
given by

gv̂5 (
kPL*

uc~k!u2dk5
1

udet~ L̃ !u2
(

kPL*
u f̂ ~2k!!u2dk ,

where theZ-module L* is the projection of the dual lattice.
Proof: We showed in the proof of Theorem 9 that the autocorrelation measuresgv,s converge

vaguely togv . Since the Fourier transform is continuous in the vague topology, the Fo
transforms of the autocorrelation measuresgv,sˆ converge vaguely togv̂. We will show that the
vague limit leads to the above expression.

Take a compact setK,Rd and a coveringW5ø i 51
n Wi of K with a finite number of translated

unit balls Wi . Since (L* ùW)! is, by duality, a Delone set, we may order the numbersk
PL* ùK to obtain a sequence (ki) i PN with ukj

!u>uki
!u for j . i . Moreover, sincecs8(k)→c(k) ~in

the notation of the proof of Theorem 8!, we may choose a subsequence (sj ) j PN such that
uucsj

8 (ki)u22uc(ki)u2u,22 i on L* ùK for all j PN. For explicity of notation, we will suppress th

index j in the following. Fix«.0. We have

(
i 5m11

`

ucs8~ki !u21 (
i 5m11

`

uc~ki !u2< (
i 5m11

`

22 i12 (
i 5m11

`

uc~ki !u2,«

for m.m0(«). The last sum can be made arbitrarily small, since it arises from the discrete p
the measuregv̂, see Hof~1995!, Theorem 3.4. Moreover, we have( i 51

m (ucs8(ki)u22uc(ki)u2)
,« for s.s0(«,m), since ucs8(k)u2→uc(k)u2 uniformly in k. Fix now m.m0(«). For s
.s0(«,m), we have

U(
i 51

`

ucs8~ki !u22(
i 51

`

uc~ki !u2U< (
i 5m11

`

ucs8~ki !u21U(
i 51

m

~ ucs8~ki !u22uc~ki !u2!U1 (
i 5m11

`

uc~ki !u2

<2«.

For g continuous and compactly supported onK, this implies

gv̂~g!5 lim
s→`

gv,ŝ~g!5 lim
s→`

(
kPL* ùK

ucs8~k!u2g~k!5 (
kPL* ùK

uc~k!u2g~k!.

SinceK was an arbitrary compact set, our claim follows. h

The above results lead to a generalized Poisson summation formula. Recall that, for a
L,Rd, the Poisson summation formula is@Córdoba~1989!#

S (
xPL

dxD ˆ

5
1

udet~L !u (
kPL*

dk , ~18!
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whereudet(L)u is the volume of the fundamental domain of the latticeL, and the sum ranges ove
all points of the dual latticeL* . For regular model setsL(W),Rd, a generalized Poisson formul
is given by

S (
zPD

h~z!dzD ˆ

5 (
kPL*

ucW~k!u2dk , ~19!

as is readily inferred from Theorem 5. This identity is not symmetric because the first sum r
over the uniformly discrete setD5L(W)2L(W), whereas the second sum ranges over
projection of the dual latticeL* , which is a dense set. For weighted Dirac combs defined o
denseZ-moduleL,Rd, we obtain from Theorem 10 the formula

S (
zPL

h~z!dzD ˆ

5 (
kPL*

uc~k!u2dk , ~20!

where the sums on both sides are defined on a dense set. Within this symmetric setup, it
easier to investigate which constraints on an underlying point set an identity of the above
imposes@Lagarias~2000!, Problem 4.1#.

IV. APPLICATIONS TO RANDOM TILINGS

In this section, we explain how the above results can be used to infer diffraction propert
random tiling ensembles.

A tiling of Rd is a face-to-face space filling with tiles from a finite set ofRd-polytopes called
prototiles, without any gaps and overlaps@Richardet al. ~1998!#. There might be a number o
additional packing rules specifying the allowed configurations. Associated with a tiling is th
L of all vertex positions of the tiling. Take a ballBn,Rd of radiusn and count the number o
different patches ofBn , where we identify patches which are equal up to a translation. If
number of allowed patches increases exponentially with the volume of the ball, we call the
all tilings a random tilingensemble.

The usual ideal quasiperiodic tilings like the Penrose tiling, the Ammann–Beenker tiling
others, have the special property that the vertex positions of its tiles form a~regular! model set.
Essentially, the set of all tilings is given by the collection of the original model set together
model sets of arbitrarily translated window. For tilings ofRd whose vertex positions constitute
Delone set and are described by a primitive substitution, it can be shown that the num
allowed patches of radiusn grows asymptotically proportional tond @Lenz ~2002!#.

Relaxation of the packing rules for these tilings usually results in a random tiling ense
with strictly positive entropy@Henley ~1999!#. Since entropy is an indication of disorder, on
should expect a nonvanishing continuous component in the diffraction spectrum in additio
discrete part. By construction, the set of vertex positions of each random tiling can be mappe
internal space via the star-map, resulting in a distribution, which may be supported on a
bounded domain in internal space. This is different from the distribution of a model setL(W),
which is the characteristic function 1W of the window.

A natural object to consider is theaveraged distribution, where we take the average over a
random tilings. Here, we adopt the normalization that 0PL for all random tilingsL. The averaged
distribution defines a weighted point set ofRd which is supported on a countable, dense subse
Rd.

Henley~1999! gives nonrigorous arguments that the averaged distribution~for infinite tilings!
exists in dimensionsd.2. In dimensionsd<2, the width of the averaged distribution for finit
patches on balls should diverge with the radiusn of the ball. Ind51, the divergence is with the
square root of the system size, ind52, the divergence is logarithmic. He concludes that
dimensiond<2 the diffraction spectrum of a random tiling should have a trivial discrete pa
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In d51, his arguments can be made rigorous@Baakeet al. ~2003!#. Consider, for example, the
Fibonacci model set. Other tilings may be treated similarly. LetZ@t#5Z1Zt,R, wheret5(1
1A5)/2 is the golden mean. The ringZ@t# is the ring of integers of the quadratic fieldQ(t)
5Q(A5). Let ( )! denote the automorphism ofQ~t! that maps A5°2A5. The set L̃
5$(x,x!) u xPZ@t#% is a lattice in R3R. The Fibonacci model set is the setL(W)5$x
PZ@t# u x!P(21,t21#%. Consecutive points of the model set have distances 1 ort. If we regard
the point positions as left endpoints of half-open intervalsu, v of length 1 andt, we get the
Fibonacci tiling. A Fibonacci random tilingis an arbitrary sequence~a.s.! of intervalsu, v such
that the frequency ofu is a.s. equal to 1/t. The averaged distribution for a patch of sizeN is, to
leading order inN, given by@Höffe ~2001!, Baakeet al. ~2003!#

r~x!!5A t

2N
f S x!A t

2ND , f ~z!52S e2z2

Ap
2uzu erfc~ uzu!D , ~21!

where erfc(x)5 (2/Ap) *x
`e2t2 dt denotes the complementary error function. The distribut

width therefore grows with the system size asAN. Together with the above analysis, this may le
to a trivial Bragg peak at the origin asN→`. This corresponds to the behavior of the Fibona
random tiling, whose diffraction spectrum has been computed explicitly@Baake and Ho¨ffe
~2000!#. It consists of an absolutely continuous component in addition to a trivial Bragg pe
the origin. It would be interesting to compute the continuous component of the averaged stru
which may be given by largeN corrections to the asymptotic behavior in Eq.~21!.

For d.1, there are no rigorous results about the averaged distribution of quasicryst
random tilings, which is due to more restrictive matching rules for the prototiles.~In d51, the
only matching rule is the face-to-face condition, resulting in Bernoulli ensembles, which are
to analyze.! There are however numerical investigations for a number of quasicrystallogra
random tilings ind52 andd53.

In d52, the averaged distribution of the Ammann–Beenker random tiling appears to
Gaussian type, with a distribution width diverging logarithmically with the system size@Höffe
~2001!#. Thus, the situation is similar to thed51 case discussed above. A numerical analysis
the diffraction measure indicates a trivial Bragg peak at the origin, together with a sin
continuous component@Höffe ~2001!#. This behavior is believed to be generic ind52 @Henley
~1999!#.

In d>3, the averaged distribution is predicted to exist@Henley ~1999!#. Our result then
implies that the averaged structure is pure point diffractive, if the distribution function is w
behaved. However, the diffraction picture of a typical random tiling ind>3 is expected to display
an diffuse background in addition to Bragg peaks@Henley~1999!#. The averaging on the level o
the Dirac comb thus has the effect of extinguishing continuous components of the diffra
spectrum.

To conclude, it is necessary to prove Henley’s statements about the existence of an av
distribution with finite width ind>3. Furthermore, it would be interesting to investigate t
relation between diffraction properties of the averaged structure and the random tiling, in pa
lar whether the discrete parts of both structures coincide and whether the continuous parts c
in d<2. Concerning the results of this paper, a natural question is how they can be ext
beyond the Euclidean case towards the setup of locally compact Abelian groups.~The proofs of
the pure pointedness of the diffraction spectrum used the fact thatRn is isomorphic to its dual.!
Another aspect concerns the connection to the theory of almost periodic measures@Gil de La-
madrid and Argabright~1990!#, which may also be used for a characterization of diffract
spectra with continuous components.
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On the pseudo-Hermitian nondiagonalizable Hamiltonians
G. Scolaricia) and L. Solombrinob)
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We consider a class of~possibly nondiagonalizable! pseudo-Hermitian operators
with discrete spectrum, and we establish for such a class the equivalence between
the pseudo-Hermiticity property and the existence of an antilinear involutory sym-
metry. Moreover, we prove that this class actually coincides with the one of~pos-
sibly nondiagonalizable! weak pseudo-Hermitian operators, and that in no case
~unless they are diagonalizable and have a real spectrum! they are Hermitian with
respect to a definite inner product. Finally, we show that a typical degeneracy of the
real eigenvalues~which reduces to the well-known Kramers degeneracy in the
Hermitian case! occurs whenever a fermionic~possibly nondiagonalizable! pseudo-
Hermitian Hamiltonian admits an antilinear symmetry like the time-reversal opera-
tor T. Some consequences and applications are briefly discussed. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1609031#

I. INTRODUCTION

Non-Hermitian Hamiltonians play by now a relevant role in physics, in that they appe
several completely different problems.1 Among them, a remarkable subclass is given by
pseudo-Hermitian operators,2 i.e., those operators which satisfy

hHh215H† ~1!

with h5h† @instead, whenever~1! holds without any constraint on the~linear and invertible!
operatorh, H is calledweakly pseudo-Hermitian3#. Of course, Hermiticity is a particular case o
pseudo-Hermiticity, corresponding toh51. In particular, in the last several years, the concep
pseudo-Hermiticity has given rise to a growing interest, since it allows one to explain the ty
features ofPT-symmetric quantum mechanics. Pseudo-Hermiticity also represents the math
cal background of a recent proposal on acomplex extension of Quantum Mechanics.4,5

The essential feature of the pseudo-Hermitian operators is the peculiarity of their spe
which can be constituted by real as well as complex~but grouped in complex-conjugate pair!
eigenvalues.3,6 Another characteristic feature of the pseudo-Hermiticity property is its connec
with the existence of antilinear symmetries. The idea of such a connection stemmed naturall
the studies on thePT-symmetric quantum mechanics, as we said above, and it has been a
proven in the case of diagonalizable operators.3,7

The aim of this paper is just to go on a systematic and deep study on nondiagonal
pseudo-Hermitian operators. Such Hamiltonians can arise, for instance, for some critical par
values, whenever a physical system undergoes a perturbation which preserves the p
Hermiticity, but not the diagonalizability, of its Hamiltonian. An example of such a situat
concerning the effective Hamiltonian for a certain closed FRW mini-super-space-quantum c
logical model, is discussed in Ref. 8; another example is shown in Sec. VI. Furthermore,
cases of nondiagonalizable operators also arise in the classification of the real, 434 pseudo-
Hermitian energy momentum tensorTb

a .1

a!Electronic mail: scolarici@le.infn.it
b!Electronic mail: solombrino@le.infn.it
44500022-2488/2003/44(10)/4450/10/$20.00 © 2003 American Institute of Physics
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We recall that the peculiarity of the spectrum of pseudo-Hermitian operators, originally s
with reference to diagonalizable operators with discrete spectrum, has been recently extend
class of nondiagonalizable Hamiltonians.8 In particular, in this paper we intend to establish t
equivalence of the pseudo-Hermiticity property and the existence of antilinear symmetries fo
class of operators.

To this end, we recall~and partly refine! in Sec. II the basic results on this subject, and
show that the~possibly broader! class of weakly pseudo-Hermitian operators with a discr
spectrum actually coincides with the class of pseudo-Hermitian operators. Next, we inquire i
III into the definiteness or the indefiniteness of the metric induced byh, concluding that for any
pseudo-Hermitian operatorH with discrete spectrum, the metric is always indefinite unlessH is
diagonalizable with real spectrum. This result disproves a recently stated theorem on the su8

Successively, in Sec. IV, we take into account the connection between the pseudo-Herm
property and the existence of antilinear symmetries, showing that such connection holds a
the nondiagonalizable case. Section V is devoted to a discussion on the time-reversal invari
fermionic Hamiltonians, extending a result on the~generalized! Kramers degeneracy that we hav
already proven for diagonalizable operators.9 Finally, some concluding remarks and possible a
plications of the previous results are briefly presented in Sec. VI.

II. THE SPECTRUM OF NONDIAGONALIZABLE PSEUDO-HERMITIAN OPERATORS

According to Ref. 8 we consider here only linear operatorsH acting in a separable Hilber
spaceH and having discrete spectrum. Moreover, throughout this paper we shall assume t
the eigenvaluesEn of H have finite algebraic multiplicitygn and that there is a basis ofH in which
H is block diagonal with finite-dimensional diagonal blocks. Then, a complete biorthono
basisE5$ucn ,a,i &,ufn ,a,i &% exists such that the operatorH can be written in the following
form:8

H5(
n

(
a51

dn S En(
i 51

pn,a

ucn ,a,i &^fn ,a,i u1 (
i 51

pn,a21

ucn ,a,i &^fn ,a,i 11u D , ~2!

wheredn denotes the geometric multiplicity~i.e., the degree of degeneracy! of En , a is a degen-
eracy label andpn,a represents the dimension of the simple Jordan blockJa(En) associated with
the labelsn anda ~hence,(a51

dn pn,a5gn). Furthermore, we denote byk(n,a) the total number of
identical simple blocksJa(En) occurring in the above decomposition ofH.

Hence,ucn ,a,1& ~respectively,ufn ,a,pn,a&) is an eigenvector ofH ~respectively,H†):

Hucn ,a,1&5Enucn,a,1&, H†ufn ,a,pn,a&5En* ufn,a,pn,a&, ~3!

and the following relations hold:

Hucn ,a,i &5Enucn ,a,i &1ucn ,a,i 21&, iÞ1, ~4!

H†ufn ,a,i &5En* ufn ,a,i &1ufn ,a,i 11&, iÞpn,a . ~5!

The elements of the biorthonormal basis obey the usual relations

^cm ,a,i ufn ,b, j &5dmndabd i j , ~6!

(
n

(
a51

dn

(
i 51

pn,a

ucn ,a,i &^fn ,a,i u5(
n

(
a51

dn

(
i 51

pn,a

ufn ,a,i &^cn ,a,i u51. ~7!
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The following theorem has been proven in Ref. 8:
Theorem 1: Let H be a linear operator acting in a Hilbert spaceH. Suppose that the

spectrum of H is discrete, that its eigenvalues have finite algebraic multiplicity, and that (2) h
Then, the following conditions are equivalent:

(i) the eigenvalues of H are either real or come in complex-conjugate pairs and the geom
multiplicity and the Jordan dimensions of the complex-conjugate eigenvalues coincid

(ii) H is pseudo-Hermitian.

In order to fix our notation, and for the benefit of the reader, we prefer to provide he
~somewhat different! proof of the implication (i)⇒(ii), which allows us to obtain a useful de
composition ofh.

Let us therefore assume that condition~i! holds, and use~whenever it is necessary! the
subscript ‘‘0’’ to denote real eigenvalues, and the subscripts ‘‘6’’ to denote the complex eigen
values with positive or negative imaginary part, respectively. Then,H assumes the following form
@see Eq.~2!#:

H5(
n0

(
a51

dn0 S En0 (i 51

pn0 ,a

ucn0
,a,i &^fn0

,a,i u1 (
i 51

pn0 ,a21

ucn0
,a,i &^fn0

,a,i 11u D
1 (

n1 ,n2

(
a51

dn1 F (
i 51

pn1 ,a

~En1
ucn1

,a,i &^fn1 ,a,i u1En2
ucn2

,a,i &^fn2
,a,i u!

1 (
i 51

pn1 ,a21

~ ucn1
,a,i &^fn1 ,a,i 11u1ucn2

,a,i &^fn2
,a,i 11u!G . ~8!

Furthermore, given any complete orthonormal basisF5$uun ,a,i &% in our space~that we
denote by the samen,a,i labels used for the elements ofE!, let us pose

S5(
n

(
a51

dn

(
i 51

pn,a

ufn ,a,i &^un ,a,i u, ~9!

and H̃5S†HS†21. By a straightforward calculation one obtains

H̃5(
n0

(
a51

dn0 S En0 (i 51

pn0 ,a

uun0
,a,i &^un0

,a,i u1 (
i 51

pn0 ,a21

uun0
,a,i &^un0

,a,i 11u D
1 (

n1 ,n2

(
a51

dn1 F (
i 51

pn1 ,a

~En2
uun1

,a,i &^un1 ,a,i u1En1
uun2

,a,i &^un2
,a,i u!

1 (
i 51

pn1 ,a21

~ uun1
,a,i &^un1 ,a,i 11u1uun2

,a,i &^un2
,a,i 11u!G . ~10!

Then, let us consider the involutory operatorsU andV defined, respectively, as follows:

Uuun6
,a,i &5uun7

,a,i &, Uuun0
,a,i &5uun0

,a,i &, ~11!

and
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Vuun ,a,i &5uun ,a,pn,a112 i &. ~12!

The explicit forms ofU andV are

U5U15 (
n0 ,a,i

uun0
,a,i &^un0

,a,i u1 (
n1 ,n2 ,a,i

~ uun2
,a,i &^un1

,a,i u1uun1
,a,i &^un2

,a,i u!

~13!

and

V5V15 (
n0 ,a,i

uun0
,a,pn0 ,a112 i &^un0

,a,i u

1 (
n1 ,n2 ,a,i

~ uun1
,a,pn1 ,a112 i &^un1

,a,i u1uun2
,a,pn2 ,a112 i &^un2

,a,i u!. ~14!

Moreover bothU and V are clearly Hermitian operators, and~recalling that, by hypothesis
pn1 ,a5pn2 ,a)

UV5UV15(
n0

(
a51

dn0

(
i 51

pn0 ,a

uun0
,a,pn0 ,a112 i &^un0

,a,i u

1 (
n1 ,n2

(
a51

dn1

(
i 51

pn1 ,a

~ uun1
,a,pn1 ,a112 i &^un2

,a,i u1uun2
,a,pn2 ,a112 i &^un1

,a,i u!

5VU.

Thus, one can easily verify thatH̃ is a pseudo-Hermitian operator:

h̃H̃h̃215H̃†,

whereh̃5UV. Hence, finally,

hHh215H†,

where

h5Sh̃S†5SUVS†5(
n0

(
a51

dn0

(
i 51

pn0 ,a

ufn0
,a,pn0 ,a112 i &^fn0

,a,i u

1 (
n1 ,n2

(
a51

dn1

(
i 51

pn1 ,a

~ ufn1
,a,pn1 ,a112 i &^fn2

,a,i u

1ufn2
,a,pn2 ,a112 i &^fn1

,a,i u!

5h†. ~15!

In conclusion we see thatthe spectrum of a pseudo-Hermitian operator is real if and only
U[1 [hence, by Eq. (15), h5SVS†] , and thata pseudo-Hermitian operator is diagonalizable
and only if V[1 [hence, again by Eq. (15), h5SUS†] .

Remark:We stress here that in order to prove the implication (ii)⇒(i) only the invertibility of
h is needed, while the Hermiticity propertyh5h† does not come into play.8 Hence, by the same
arguments one can prove that even the spectrum of aweakly pseudo-Hermitianoperator3 @i.e., an
operator which satisfies Eq.~1! without any constraint on the~linear and invertible! operatorh#,
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satisfies condition~i!. On the other hand, the above proof shows that condition~i! implies that an
Hermitian operatorh exists which fulfils Eq.~1!. Thus, if we just consider operators having
discrete spectrum, the~possibly broader! class of weakly pseudo-Hermitian operators actua
coincides with the one of pseudo-Hermitian operators.~This fact was already pointed out fo
diagonalizable operators.3,10! Nevertheless, we recall that the weak pseudo-Hermiticity is a m
useful notion, in that, for instance, it simplifies checking Eq.~1!.

III. NONDIAGONALIZABILITY AND METRIC INDEFINITENESS

We have seen in the preceding section that an Hermitian operatorh always exists such that
nondiagonalizable operatorH @whose spectrum obeys condition~i! in Theorem 1# is pseudo-
Hermitian; moreover, it is well known that in this case one can define a new inner product8

^^c,f&&hª^cuhuf&, ~16!

and, correspondingly, ah-pseudonorm̂ ^c,c&&h . Then, one may of course inquire into the de
niteness or the indefiniteness of the metric induced by^^,&&h .

Equation~15! in the preceding section clearly shows that the metric associated with suchh
cannot be a definite~nor a semidefinite! operator; indeed, beingh̃ involutory and nonidentical
~unlessH is a diagonalizable operator with real spectrum!, some of its eigenvalues~but not all!
must be negative, hence the same happens~by the Sylvester’s law of inertia11! for the eigenvalues
of the operatorh. This fact can suggest that in all cases of nondiagonalizable~or else, diagonal-
izable with complex spectrum! pseudo-Hermitian operators, the metric must be indefinite; h
ever, as Eq.~15! does not provide us the more general form ofh, we must resort to some othe
argument in order to confirm this conjecture.

Let us then consider the simplest 232 nondiagonalizable operatorA:

A5S E 1

0 ED ~EPR!.

A is clearly pseudo-Hermitian and, by a straightforward calculation, one can easily verify th
most generaloperatorh which fulfils Eq. ~1! is

h5S 0 k

k k8
D ~kÞ0!;

moreoverh5h†, if and only if, k,k8PR, and in this case the eigenvalues ofh have with certainty
opposite signs. Obviously the same happens for theh-pseudonorm of the corresponding eige
vectors; hence some state exists with a negativeh-pseudonorm, besides other states with a posi
h-pseudonorm.

This simple example disproves a recently stated theorem according to which ‘‘~a nondiago-
nalizable operator! H is pseudo-Hermitian if and only if it is Hermitian with respect to a posit
semidefinite inner product.’’ 8

Actually, the following theorem holds.
Theorem 2: Let H be an operator with discrete spectrum. Then, there exists a de

operator h such that H ish-pseudo-Hermitian if and only if H is diagonalizable with re
spectrum.

Proof: Let H be a pseudo-Hermitian operator. We preliminarily observe that, being in any
h an invertible operator, all its eigenvalues must be different from zero, so that the metric in
by the inner product~16! either is definite or is indefinite. Now, let us suppose that a posi
~respectively, negative! definite operatorh exists which fulfils condition~1!; then, anR exists such
that h5R†R ~respectively,h52R†R),11 and by Eq.~1! we obtain

RHR215R†21H†R†5~RHR21!†,
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i.e.,RHR21 is Hermitian, hence it is diagonalizable and it has a real spectrum. Since the sim
transformations preserve the properties of the spectrum, the same occurs forH. Conversely, ifH
is diagonalizable with real spectrum, then by Eq.~15! in the preceding section a positive defini
metric h5SS† exists which fulfils condition~1! ~since in this caseU5V[1). j

We recall that the equivalence between the definiteness of a suitableh and the reality of the
spectrum ofH was already proven for diagonalizable operators.6

IV. NONDIAGONALIZABLE OPERATORS AND ANTILINEAR SYMMETRIES

A very intriguing feature of the pseudo-Hermiticity property is its connection with the e
tence of antilinear symmetries. This connection was already acknowledged to hold in the c
diagonalizable operators with discrete spectrum;3,7 indeed, the pseudo-Hermiticity property is
necessary and sufficient condition for a~diagonalizable! operatorH to admit an antilinear~invo-
lutory! symmetry.3 Considering the great physical interest in the study of such symmetries~we
recall that the time-reversal symmetry is associated, in complex quantum mechanics, w
antilinear operator!, we intend here to inquire the above-mentioned connection in the cas
nondiagonalizable pseudo-Hermitian operators. To this end, let us premise a definition.

Definition (Ref. 12): Given the complete orthonormal basisF5$uum ,a,i &% in a Hilbert space,
we call conjugationassociated with it the involutory antilinear operator

QF5 (
m,a,i

uum ,a,i &K^um ,a,i u, ~17!

where the operator K acts transforming each complex number on the right into its com
conjugate.

Analogously, in the case of a complete biorthonormal basisE5$ucn ,a,i &,ufn ,a,i &%, we call
conjugation associated with it the involutory antilinear operator3

QE5 (
n,a,i

ucn ,a,i &K^fn ,a,i u. ~18!

Then, the following theorem holds.
Theorem 3: Let H be a linear operator. Suppose that the spectrum of H is discrete, tha

eigenvalues have finite algebraic multiplicity and that (2) holds. Then the following condition
equivalent:

(i) an antilinear invertible operatorV exists such that@H,V#50;
(ii) H is (weakly) pseudo-Hermitian;

(iii) an antilinear involutory operatorV̂ exists such that@H,V̂#50;
(iv) a basis exists in which H assumes a real form.

Proof: (i)⇒(ii) Let V exist such that@H,V#50. This implies that@H̃,Ṽ#50, whereH̃

5S†HS†21 andṼ5S†VS†21. Then, the linear operator

h̃5VQFṼ

@whereF is the orthonormal basis associated withH̃ @see Eq.~10!#, while V andQF are defined as
in Eqs. ~12! and ~17!, respectively# fulfils the condition stated by Eq.~1!, henceH̃ is ~weakly!
pseudo-Hermitian; indeed,
                                                                                                                



f the

cit

ferring

4456 J. Math. Phys., Vol. 44, No. 10, October 2003 G. Scolarici and L. Solombrino

                    
VQFṼH̃Ṽ21QF
21V21

5VQFH̃QFV

5(
n0

(
a51

dn0 S En0 (i 51

pn0 ,a

uun0
,a,i &^un0

,a,i u1 (
i 51

pn0 ,a21

uun0
,a,i 11&^un0

,a,i u D
1 (

n1 ,n2

(
a51

dn1 F (
i 51

pn1 ,a

~En1
* uun1

,a,i &^un1 ,a,i u1En1
uun2

,a,i &^un2
,a,i u!

1 (
i 51

pn1 ,a21

~ uun1
,a,i 11&^un1

,a,i u1uun2
,a,i 11&^un2

,a,i u!G5H̃†.

Finally, posingh5Sh̃S†5SVQFS†V one obtains

hHh215SVQFS†VH~SVQFS†V!215SH̃†S215H†.

(ii) ⇒(iii). If H is ~weakly! pseudo-Hermitian, the eigenvalues ofH are either real or come in
complex-conjugate pairs and the geometric multiplicity and the Jordan dimensions o
complex-conjugate eigenvalues coincide~see the remark below Theorem 1!. Then, one can easily
see, recalling the definition of the operatorU provided in the proof of Theorem 1@Eq. ~11!# and
Eqs.~10! and ~17!, that

QFH̃QF5UH̃U.

Hence the antilinear operator

Ṽ5QFU5UQF5(
n0

(
a51

dn0

(
i 51

pn0 ,a

uun0
,a,i &K^un0

,a,i u

1 (
n1 ,n2

(
a51

dn1

(
i 51

pn1 ,a

~ uun1
,a,i &K^un2

,a,i u1uun2
,a,i &K^un1

,a,i u!

commutes withH̃. Moreover,Ṽ is involutory, as one can immediately verify by using the expli

expression ofṼ in the previous equation. Then, it follows immediately@recalling Eq.~18! and
observing thatQFS†5S†QE] that

V̂5S†21ṼS†5S†21UQFS†5S†21US†QE ~19!

commutes withH and is involutory.
(iii) ⇒(iv). ~See Prop. 5 in Ref. 3, where an analogous statement has been proven, re

to diagonalizable operators.!

If we denote byL the linear part ofV̂, i.e., V̂5LK ~whereK is the complex conjugation

operator!, then V̂251 implies LL* 51 and this is possible if and only if anM exists such that

L5MM* 21.12 Then @H,V̂#50 impliesHMM* 215MM* 21H* , hence

M 21HM5~M* 21H* M* !5~M 21HM !* .

(iv)⇒(i) Trivially, every operator which assumes a real form in some basisB commutes with
the conjugation associated withB. j
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Remark:Note that the equivalence (i)⇔(iv) that we prove above clearly restates precisel
similar ~seemingly, more general! result in literature, according to whichwhenever H commute
with an antiunitary symmetry A such that A2k51 (k odd!, it is possible to construct a basis i
which the matrix elements of H are real.13

V. THE KRAMERS DEGENERACY

On the basis of the above-stated theorem@in particular, by the implication (i)⇒(ii)] one can
conclude that any time-reversal invariant~diagonalizable or not! HamiltonianH must belong to
the class of pseudo-Hermitian Hamiltonians. The converse does not hold in general, sin
cannot always interpret the antilinear symmetryV of H as the time-reversal operatorT; further-
more, it is well known that in case of fermionic systems

T2521

and the above theorem, whereas it assures the existence of an involutory antilinear symmet
not say anything about the existence of a symmetry likeT.

In order to go more deeply into the matter, we can now state the following.
Theorem 4: Let H be a linear operator with a discrete spectrum. Then, the following co

tions are equivalent:
(i) an antilinear operatorT exists such that@H,T#50, with T2521;
(ii) H is pseudo-Hermitian and the Jordan blocks associated with any real eigenvalue o

in pair [i.e., for any couple En0
,a, the number k(n0 ,a) is even (see Sec. II)].

Proof: Let us assume that condition~i! holds; then, by Theorem 3,H is pseudo-Hermitian,
hence its eigenvalues are either real or come in complex-conjugate pairs and the geometr
tiplicity and the Jordan dimensions of the complex-conjugate eigenvalues coincide~see Theorem
2!.

Let now ucn0
,a,1& be an eigenvector ofH; then, Tucn0

,a,1& too is an eigenvector ofH,
corresponding to the same eigenvalueEn0

, and linearly independent fromucn0
,a,1&. ~Indeed,

assume thatT ucn0
,a,1&5aucn0

,a,1& for some aPC; applying T one gets ucn0
,a,1&

52uau2ucn0
,a,1&, which is impossible.!

If ucn0
,b,1& is another eigenvector ofH, linearly independent fromucn0

,a,1& andTucn0
,a,1&,

also Tucn0
,b,1& is linearly independent from all three; otherwise, applying once againT to the

relation

aucn0
,a,1&1bTucn0

,a,1&1gucn0
,b,1&1dTucn0

,b,1&50

we could eliminate, for instance,Tucn0
,b,1&, thus obtaining a linear dependence betwe

ucn0
,a,1&, Tucn0

,a,1&, anducn0
,b,1&, contrary to the previous hypothesis.

We can conclude, iterating this procedure, that the geometric multiplicitydn0
of En0

must be
necessarily even. Moreover, one can always assume that, for a suitable choice of the basis
Tucn0

,a,1&[ucn0
,a8,1& for somea8.

Let us consider now the subset of vectors$ucn0
,a,i &,i 51, . . . ,pn0 ,a%. They constitute a basis

in the subspace associated with the Jordan blockJa(En0
); then by hypothesis one has

(
i 51

pn0 ,a

a i ucn0
,a,i &50 ⇔ a i50 ; i 51, . . . ,pn0 ,a .

Applying T to the previous equation, one obtains
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(
i 51

pn0 ,a

a i* Tucn0
,a,i &50 ⇔ a i50 ; i 51, . . . ,pn0 ,a ,

hence, the vectors$Tucn0
,a,i &[ucn0

,a8,i &,i 51, . . . ,pn0 ,a% too are linearly independent, an
pn0 ,a5dimJa(En0

)<pn0 ,a85dimJa8(En0
). On the other hand, applyingT to the basis vectors

$Tucn0
,a,i &% of the subspace associated withJa8(n0), one obtains that the dimensions of the tw

blocks must coincide, henceJa(n0) andJa8(n0) are identical.
@Alternatively, the same result can be obtained by applyingT to both members of Eq.~4!.#
Conversely, let condition~ii ! hold; thenH assumes the form

H5(
n0

(
a51

dn0
/2 FEn0 (i 51

pn0 ,a

~ ucn0
,a,i &^fn0

,a,i u1ucn0
,a1dn0 ,a/2,i &^fn0

,a1dn0 ,a/2,i u!

1 (
i 51

pn0 ,a21

~ ucn0
,a,i &^fn0

,a,i 11u1ucn0
,a1dn0 ,a/2,i &^fn0

,a1dn0 ,a/2,i 11u!G
1 (

n1 ,n2

(
a51

dn1 F (
i 51

pn1 ,a

~En1
ucn1

,a,i &^fn1 ,a,i u1En1
* ucn2

,a,i &^fn2
,a,i u!

1 (
i 51

pn1 ,a21

~ ucn1
,a,i &^fn1 ,a,i 11u1ucn2

,a,i &^fn2
,a,i 11u!G .

Let us denote byT the following antilinear operator:

T5(
n0

(
a51

dn0
/2

(
i 51

pn0 ,a

~ ucn0
,a,i &K^fn0

,a1dn0 ,a/2,i u2ucn0
,a1dn0 ,a/2,i &K^fn0

,a,i u!

1 (
n1 ,n2

(
a51

dn1

(
i 51

pn1 ,a

~ ucn2
,a,i &K^fn1 ,a,i u2ucn1

,a,i &K^fn2
,a,i u!, ~20!

where the operatorK acts transforming each complex number on the right into its comp
conjugate. Then, one easily obtains, by inspection, that@H,T#50 andT2521. j

Recalling that the algebraic multiplicity of anyEn is gn5(a51
dn pn,a , from Theorem 4 in

particular it follows that whenevera pseudo-Hermitian operator H admits an antilinear symme
T with T2521, both the geometric and the algebraic multiplicity of any real eigenvalue of H
even.

The above-mentioned theorem generalizes an analogous theorem stated from the auth~and
referring to diagonalizable pseudo-Hermitian operators!,9 which in turn generalizes from variou
points of view the Kramers theorem on the degeneracy of any fermionic~Hermitian! Hamiltonian.
Hence, by an abuse of language, we will continue to denote as ‘‘Kramers degeneracy’’ this typical
feature of real eigenvalues of pseudo-Hermitian operators admitting a symmetry likeT.

VI. CONCLUDING REMARKS

Basing on Theorem 4, we can quickly test theT-invariance properties of pseudo-Hermitia
Hamiltonians. Indeed, let us consider for instance the operator

Heff5S E ir

is ED ~E,r ,sPR!
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which we already discussed elsewhere,9 and which arises in the modified Mashhoon mode14

where one introduces a (T-violating! spin-rotation coupling to explain the muon’s anomalousg
factor.

This Hamiltonian ~as long as it is diagonalizable andrs,0! is time-reversal violating;9

however, for some choice of parameter values~for instance,rÞs50), Heff is no longer diagonal-
izable. Now, on the basis of Theorem 4 we can conclude that also for such valuesHeff cannot
admit an antilinear symmetryT such thatT2521 ~hence,Heff cannot beT-invariant!. In fact,
being the geometric multiplicity of its eigenvalueE odd, condition~ii ! of Theorem 4 does no
hold. We recall however that we obtained the same result by a straightforward calculation.9

Finally, we note that in a symmetry-adapted basis$ucn&,Tucn&% the matrix of any pseudo
Hermitian operatorH, satisfying condition~ii ! of Theorem 4, assumes a symplectic form. Th
property, in the Hermitian case, is often used in order to simplify some electronic-structur
culations occurring for instance in molecular or solid-state physics.15
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Potential and field singularity at a surface point charge
Alexander Silbergleita)

Gravity Probe B, W. W. Hansen Experimental Physics Laboratory, Stanford University,
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The behavior of the magnetic potential near a point charge~fluxon! located at a
curved regular boundary surface is shown to be essentially different from that of a
volume point charge. In addition to the usual inverse distance singularity, two
singular terms are generally present. The first of them, a logarithmic one, is axially
symmetric with respect to the boundary normal at the charge location, and propor-
tional to the sum of the two principal curvatures of the boundary surface at this
point, that is, to the local mean curvature. The second term is asymmetric and
proportional to the difference of the two principal curvatures in question; it is also
bounded at the charge location. Both terms vanish, apparently, if the charge is at a
planar point of the boundary, and only in this case. The field in the charge vicinity
behaves accordingly, featuring generally two singular terms proportional to the
inverse distance, in addition to the main inverse distance squared singularity. This
result is significant, in particular, for studying the interaction of magnetic vortices
in type II superconductors. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1605497#

Magnetic vortex lines are formed in type II superconductors.1 When crossing the supercon
ductor boundary, they create strongly localized surface sources of magnetic field~fluxons!, which
may play an important role in various physical situations. For instance, two space tests o
stein’s General Relativity, Gravity Probe B,2,3 and STEP~Space Test of the Equivalenc
Principle!,4 are based on low temperature technology with type II superconductors, and their
is significantly affected by fluxons.

The size of a surface magnetic spot is about the microscopic London length,1 i.e., it is
typically much smaller than characteristic macroscopic sizes involved. Thus thepoint charge
approximation appears naturally and proves to be sufficient for many applications. Within
approximation, the magnetic potential,c5c(R), satisfies the Neumann boundary value probl

Dc50, RPD, ~1!

]c

]n U
S

5(
j 51

N

n jF0dS~R2Rj !, R, RjPS . ~2!

Here the domainD is the empty space, surfaceS is the superconductor boundary,F05h/2e is the

a!Electronic mail: gleit@relgyro.stanford.edu
b!Electronic mail: ilya@caltech.edu
c!Electronic mail: nemenman@kitp.ucsb.edu
44600022-2488/2003/44(10)/4460/7/$20.00 © 2003 American Institute of Physics
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magnetic flux quantum in SI units, and the magnetic field isB52¹c. Moreover,dS(R2Rj )
denotes the surface delta-function at the position,Rj , of a vortex, andn j is either plus or minus
one, depending on whether the field line enters the domainD (n j511), or exits it (n j521). We
assume that the boundaryS is smooth enough~at leastC3) near every charge. Outside the char
vicinities it may have any singularities compatible with the finite local energy condition, mea
(¹c)2 is locally integrable.

If D is bounded, then each vortex line starts and ends at the boundary, the number of c
is even, and the total charge vanishes,( j 51

N n j F050, which condition is the solvability criterion
of the problem, Eqs.~1! and~2!. If the domainD is infinite, some field lines may end at infinity
and this condition may not hold; in any case, we do not use it in the following analysis, wh
entirely local.

An immediate question regarding the above boundary value problem is how does its so
behave near a surface charge? For a curved boundary, an answer based on the similarity
volume point charge turns out incorrect. This is seen from the simplest example, a sph
domain. A closed-form exact solution to Eqs.~1! and~2! in the exterior of a sphere was obtaine
in Ref. 5. It shows that a new logarithmic singular term, inversely proportional to the radius o
sphere, is added to the main inverse distance singularity in the expansion of the potential n
charge. So, what happens with the singularity for a generally curved smooth surface?

Our search for the answer to this natural and, in fact, classical question covered boo
papers in both mathematical physics and in the field of vortices in superconductors, as w
communications with colleagues in both fields. We also talked with high energy theorists e
ing to find perhaps some relevant results in view of the discussions of the magnetic mon
However, no ready answer was found, which might not be so surprising. Indeed, the Neu
boundary value problem with surface charges is not relevant to the design of electrostatic sy
On the other hand, its magnetostatic implementation became available only with the wide
technical use of superconductors in the recent years. Last but not least, the answer proves t
that simple.

In this paper we fill the gap by deriving a complete singular part of the expansion o
solution to Eqs.~1! and~2! near a charge at an arbitrary curved smooth boundary. As compar
the case of a sphere, one more singular term, proportional to the difference of the two pri
curvatures, appears in the general case.

We are interested in the behavior of the potential near a single surface charge at someRj . For
brevity, we thus drop the charge index in the following calculation. We put the origin
Cartesian coordinate system atRj , so thatr[R2Rj . We point thez axis along the outward
normal to the surfaceS ~that is, into the superconducting bulk!, choosing thex andy axes in the
tangent plane, so that the unit vectors$x̂,ŷ,ẑ% form a right orthogonal triplet. Along with Cartesia
$x, y, z%, we will use the corresponding spherical,$r , u, f%, and cylindrical,$r, f, z%, coordinate
systems~see Fig. 1!.

The shape of the smooth boundary surface in the vicinity of the charge can be described
equationz5F(x,y). The Taylor expansion of the functionF(x,y) aroundx5y50 apparently has
no terms linear inx or y, sincez is oriented along the normal. Moreover, by an appropri
rotation of the coordinate axesx̂,ŷ in the tangent plane, we can ensure that the second c
derivative ofF vanishes at the origin, hence the expansion acquires the form

z5F~x,y!5
k(x)

2
x21

k(y)

2
y21O~r3![ f ~x,y!1O~r3! , ~3!

where

k(x)5
]2F

]x2 U
x5y50

, k(y)5
]2F

]y2U
x5y50

~4!

are the two principal curvatures of the boundary surface at the charge location.
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Since, nearr50,

dS~r !5d~x!d~y!/J,

]/]n5n̂•¹5~1/J!~]/]z2Fx ]/]x2Fy ]/]y! ,

J[A11Fx
21Fy

2 ,

the boundary condition, Eq.~2!, in the vicinity of the charge can be written in terms of variab
x,y,z as6

]c

]z U
z5F(x,y)

5nF0d~x!d~y!1S Fx

]c

]x
1Fy

]c

]y D U
z5F(x,y)

. ~5!

The partial derivatives of the functionF(x,y) near the origin are given, to the order we a
interested in, by

Fx5k(x)x1O~r2!, Fy5k(y)y1O~r2!. ~6!

Once again, we only care about the vicinity of the charge wherez5F(x,y) is small, so we can
use perturbation of the boundary to move the boundary condition, Eq.~5!, to the planez50. This
is done by means of the following Taylor expansion of an arbitrary functionw5w(x,y,z):

wuz5F(x,y)5wuz501F
]w

]z U
z50

1
F2

2

]2w

]z2U
z50

1¯ .

Applying this to the derivatives ofc in Eq. ~5! we write it, to the proper order, in the form:

]c

]z U
z50

5nF0d~x!d~y!1S Fx

]c

]x
1Fy

]c

]y
2F

]2c

]z2 D U
z50

1¯ . ~7!

The final step of this derivation is to expandc in a series of successively smaller~that is, less
singular at the origin! functionsc ( i ),

c5c (0)1c (1)1c (2)1¯ . ~8!

FIG. 1. Definition of coordinate systems near a charge.
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Introducing this expansion in the boundary condition Eq.~7! and then matching the terms of th
same order, we end up with the following sequence of boundary conditions forc ( i ),
i 50,1,2,. . . , atz50:

]c (0)

]z U
z50

5nF0d~x!d~y!, ~9!

]c (1)

]z U
z50

5Fk(x)x
]c (0)

]x
1k(y)y

]c (0)

]y
2 f ~x,y!

]2c (0)

]z2 GU
z50

, ~10!

and so on. Here we have dropped higher order terms on the right-hand sides by replacingF and
Fx , Fy with their main term expressions from Eqs.~3! and ~6!, respectively. Of course, al
functionsc ( i ) are subject to the Laplace equation, Eq.~1!.

Thus,locally we have successfully replaced the boundary value problem of Eqs.~1! and~2! in
the domainD by a sequence of problems for functionsc ( i ), i 50,1,2,. . . , harmonic in the
half-spacez,0 and satisfying the above boundary conditions, Eqs.~9!, ~10!, etc. We now need to
solve these problems for the half-space one by one, until the normal derivative of the so
becomes finite at the boundary.

The zero-order solutionc (0) obeying the boundary condition of Eq.~9! is, of course,

c (0)5
nF0

2p

1

r
. ~11!

It allows one to immediately calculate the right-hand side of Eq~10!. Indeed,

f
]2c (0)

]z2 U
z50

52
nF0f

2p S 1

r 3 2
3z2

r 5 D U
z50

52
nF0

2p

k(x)x21k(y)y2

2r3 ,

where the second term in the middle expression turns to zero atz50, contributing nod-like
singularities, due to the presence of the factorf 5O(r2). Also taking into account that]r 21/]x
52x/r 3, ]r 21/]y52y/r 3, we find the boundary condition forc (1) in its final explicit form:

]c (1)

]z U
z50

52
nF0

2p

k(x)x21k(y)y2

2r3 52
nF0

8p Fk(x)1k(y)

r
1

k(x)2k(y)

r
cos 2fG . ~12!

The two terms on the utmost right here have essentially different singularities at the origin
this reason, we treat them separately by splitting the problem in two in the following way:

c (1)5cs
(1)1c r

(1) , ~13!

]cs
(1)

]z
U

z50

52
nF0

8p

k(x)1k(y)

r
, ~14!

]c r
(1)

]z
U

z50

52
nF0

8p

k(x)2k(y)

r
cos 2f. ~15!

The Neumann problem forcs
(1) in the half-space does not have solutions bounded at infin

as one would expect in our investigation~we are actually looking for termsgrowingaway from the
charge, because a weaker singularity next to the inverse distance is most probably some lo
tending to infinity at both the charge and the infinite distance from it!. For this reason, no solution
can be found by means of standard techniques. However, a harmonic and regular in the ha
z,0 function
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cs
(1)5K1 ln@~r 2z!/d#5K1@ ln~r /d!1 ln~12cosu!#, ~16!

K6[nF0@k(x)6k(y)#/8p, ~17!

where d.0 is an arbitrary constant of the dimension of length, provides the needed sol
Indeed, it satisfies the boundary condition, Eq.~14!, in view of

] ln~r 2z!/]z5~r 2z!21~z/r 21!521/r→21/r, z→20.

The solution given by Eq.~16! is unique in the class of functions with the logarithmic growth
infinity, namely, those with the asymptotics

cs
(1)5K1 ln~r /d!1K1 ln~12cosu!1o~1!,

]cs
(1)

]r
5K1 /r 1O~1/r 2!, r→`.

Contrary to the previous one, the Neumann problem forc r
(1) ,

Dc r
(1)50, z,0,

]c r
(1)

]z
U

z50

52
K2

r
cos 2f, ~18!

has a unique, up to a constant, solution bounded at infinity@namely, a solution that obeys som
what unusual conditionsc r

(1)5O(1), ]c r
(1)/]r 5o(1/r 2), r→`]. The solution is obtained by the

standard separation of variables in cylindrical coordinates using the Hankel transform,
reads:

c r
(1)52K2 cos 2f E

0

`

J2~lr!exp~2luzu!
dl

l

52
K2 cos 2f

2 S r

r 2zD
2

52
K2

2

x22y2

~r 2z!2. ~19!

The value of the integral is found in Ref. 7, 4.14.~5!, and the constantK2 is defined in Eq.~17!.
Interestingly, this solution in spherical coordinates does not depend on the radius, being a fu
of the angles only@singular on the positive semiaxisz.0, same ascs

(1) in Eq. ~16!#:

c r
(1)52

K2

2

sin2 u cos 2f

~12cosu!2 ,
]c r

(1)

]r
50.

It is now straightforward to see that the Neumann boundary data for all higher order co
tions to the potential, starting withc (2), are finite at the origin~and dropping fast enough a
infinity!; accordingly, the solutions of the corresponding problems bounded at infinity are u
up to an additive constant. It also means that all the terms in the expansion, Eq.~8!, of the
potential, whose normal derivative are singular at the location of a surface charge, are given
solutions already found. Hence, combining the expressions from Eqs.~11!, ~16!, and~19!, we find
the desired formula for the magnetostatic potential near a surface charge (r→0):

c5c (0)1cs
(1)1c r

(1)1¯

5
nF0

2p F1

r
1

k(x)1k(y)

4
ln

r 2z

d
2

k(x)2k(y)

8

x22y2

~r 2z!2G1~nonsingular terms!. ~20!

It is easy to rewrite this in our general notations from Eqs.~1! and ~2! by replacingur u with
uR2Rj u, x with X2Xj , etc. Instead, we give the expression of the singular part of the mag
field near the charge. It can be written in the form:
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B52¹c5
nF0

2p F r̂

r 2 2
k(x)1k(y)

4r S r̂ 1
sinu

12cosu
û D2

k(x)2k(y)

4r

sinu

~12cosu!2 ~cos 2f û

1sin 2f f̂!G1~nonsingular terms!. ~21!

Here are a few concluding remarks regarding the obtained result.
First, notice that the leading order contribution to the potential, Eq.~11!, is twice that of the

point charge located in a volume away from its boundaries. This is clearly explained by th
that the field lines and the flux from the surface charge emanate only into the half-space, ver
full space for the volume charge.

The two singular corrections to the usual inverse distance singularity of the potential, Eq~20!,
are very different. The first one is logarithmic, axially symmetric about the direction of the no
to the boundary at the charge location, and proportional to the sum of two principal su
curvatures there, i.e., to the mean boundary curvature. Thus, it vanishes if the charge s
symmetric saddle point of the boundary. The second additional singularity is asymmetric, p
tional to the difference of the principal curvatures, and vanishes thus when the latter are equ
when the charge is at a spherical point of the boundary. This second term is bounded at the
location@giving unbounded field components, see Eq.~21!#, but is not uniquely defined there, wit
the limiting values depending on the direction along which the limit is taken. Note that
corrections vanish simultaneously if and only if the charge is at the planar point of the boun

In a particular case when the domainD is the exterior of a sphere of the radiusa, one has
k(x)5k(y)51/a. If there is just one surface charge,N5 j 51 andn51 ~so that the incoming vortex
line ends at infinity!, Eq. ~20! becomes

c5
F0

2p F 1

uR2R1u
1

1

2a
ln

uR2R1u2n̂"~R2R1!

d G1~nonconstant nonsingular terms!, ~22!

in complete agreement with the exact solution obtained in Ref. 5 withd52a.
Finally, the obtained singular expansion of the potential can be used in the derivation

force acting on a charge in a fashion similar to the one developed in the case of volume
charges,8 i.e., by means of the geometrical regularization of energy and, henceforth, the for
the energy gradient in the charge location. However, in a striking contrast with the volume
the force here is found to depend on the gradient of the curvature at the charge location. N
due to the first additional singular term in the potential, Eq.~20!, there appears a tangential forc
on the charge which tries to move it toward the point of the stationary mean curvature o
boundary, and which diverges in the regularization limit. If confirmed, this divergence w
mean that either the approximation of thepoint surface charges does not completely describe
microscopic, but finite size fluxons, or, strangely enough, that the fluxons cannot reside at ar
points of a curved boundary, or perhaps even something else.

A detailed study of fluxon interactions will be carried out in a separate publication. How
it is clear that it will necessarily use the results of this paper, in view of the relation

c~r ,m!5E
S
dS~j! m~j! c~r2j! ,

wherec(r ,m) is the potential created by the surface charge densitym~j!, jPS, andc~r ! is the
potential from Eq.~20!. For small, yet finite size fluxons the divergent asymptotics derived ab
will have an explicit short scale cutoff defined by the spatial extent of the density~presumably, the
London length!. However, the detailed analysis will require a deeper insight in the real structu
magnetic vortex lines near a boundary. Without such an analysis one cannot, in fact, sp
about the strength and importance of these surface interactions; we will thus limit ourselves
a few short comments.
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First, one compares, naturally, the surface force coming from the logarithmic term in the
potential to the strength of the random pinning force that defines the fluxon’s position.9 The latter
depends on the flux tube length and the former does not. So, allowing for a physical regular
of the mathematically divergent surface effects, one will in any case come up with some c
teristic length,L, below which the surface force will dominate. The description of the vortex
dynamics that does not account for surface effects at distances from the surface smaller thL is
necessarily incomplete.

Second, forces between two vortices in a superconducting bulk are exponentially smal
vortex line separation is larger than the London length~precisely the regime we are discussing!.
These forces can be neglected. Thus, the surface effects we have found will be the l
interaction terms. Such effects are significant and translate into an experimentally relevan
netic ‘‘friction’’ between superconducting bodies.10

We thank Leonid Bakaleinikov, David Gross, Lev Kapitanski, Akakii Melikidze, And
Ruckenstein, Andrey Shytov, and Robert Wagoner for discussions and valuable reference
and partly I.M. were supported by NASA Grant No. NAS 8-39225 to Gravity Probe B. I.N.
supported by NSF Grant No. PHY99-07949 to Kavli Institute for Theoretical Physics.
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Group theory approach to the Dirac equation with a
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We generalize the Dirac equation toD11 space–time. The conserved angular
momentum operators and their quantum numbers are discussed. The eigenfunctions
of the total angular momentums are calculated for both oddD and evenD cases.
The exact solutions of theD11-dimensional radial equations of the Dirac equation
with a Coulomb plus scalar potential are analytically presented by studying the
Tricomi equations obtained from a pair of coupled first-order ones. The eigenvalues
are also discussed in some detail. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1604185#

I. INTRODUCTION

The exact solutions of the nonrelativistic and relativistic equations with the Coulomb pote
play an important role in quantum mechanics.1–3 For example, the study of the exact solutions
the Schro¨dinger equation for a hydrogen atom is an important advance at the beginning of
lishment of quantum mechanics. Recently the study of the Dirac equation with the Coulom
scalar potential has been investigated. For instance, the bound states of this case have bee
in 311 dimensions.4,5 Moreover the correspondingS-matrix in the quantum scattering theory h
also been carried out by Vaidya and Souza in 311 dimensions.6 With the interest of the lower-
dimensional field theory and condensed matter physics, the lower-dimensional case seem
cally relevant since the results obtained in this case exhibit some new features. Therefo
bound states of the (211)-dimensional Dirac equation with the Coulomb plus scalar poten
have been investigated in our previous work.7 Similarly with the interest of the higher-dimension
field theory, it is worth studying the exact solutions of this quantum system inD11 dimensional
space–time, which is the main purpose of this work.

This article is organized as follows. Section II is devoted to the generalization of the D
equation toD11 space–time. In Sec. III, the conserved angular momentum operators and
quantum numbers are discussed. The eigenfunctions of the total angular momentums are
lated for both oddD and evenD cases from the view point of the group theory. The rad
equations of this quantum system are obtained. In Sec. IV, the exact solutions of the
equations, which are expressed by the confluent hypergeometric functions, are analytical
sented. The energy levels and some special cases are also discussed in great detail. The co
remarks are given in Sec. V.

a!
This work has been started at Instituto de Ciencias Nucleares of UNAM.

b!
Electronic mail: dongsh2@yahoo.com
44670022-2488/2003/44(10)/4467/13/$20.00 © 2003 American Institute of Physics
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II. THE DIRAC EQUATION IN D¿1 DIMENSIONS

In this section we review some properties of the Dirac equation inD11 dimensional space–
time. The Dirac equation inD11 dimensions can be written as8

i (
m50

D

gm~]m1 ieAm!C~x,t !5MC~x,t !, ~1!

whereM is the mass of the particle, andD11 matricesgm satisfy the anticommutative relations

gmgn1gngm52hmn1, ~2!

with

hmn5hmn5H dmn when m50,

2dmn when mÞ0.
~3!

Throughout this article, the natural units\5c51 are employed if not explicitly stated otherwis
Discuss the special case where onlyA0 of Am is nonvanishing and spherically symmetric:

eA05V~r !, Aa50, when aÞ0. ~4!

The HamiltonianH(x) of the system is expressed as

i ]0C~x,t !5H~x!C~x,t !, H~x!5 (
c51

D

g0gcpc1V~r !1g0M ,

~5!

pc52 i ]c52 i
]

]xc , cP@1,D#.

The orbital angular momentum operatorsLab , the spinor operatorsSab , and the total angular
momentum operatorsJab are defined as follows:

Lab52Lba5 ixa]b2 ixb]a , Sab52Sba5 i
gagb

2
,

Jab5Lab1Sab , 1<a,b<D, ~6!

J25 (
a,b52

D

Jab
2 , L25 (

a,b52

D

Lab
2 , S25 (

a,b52

D

Sab
2 .

The eigenvalue ofJ2 (L2 or S2) is denoted by the CasimirC2(M ), whereM is the highest weight
of the representation to which the total~orbital or spinor! wave function belongs. We will discus
the Casimir in the next section. It is easy to show by the standard method8 that Jab and k are
commutative with the HamiltonianH(x),

k5g0S (
a,b

igagbLab1
D21

2 D 5g0S J22L22S21
D21

2 D . ~7!

III. THE RADIAL EQUATIONS

Because of the spherically symmetric potentialV(r ), the symmetry group of the system
SO(D) group. Erdelyi,9 Louck10 and Chatterjee11 have introduced the hyperspherical coordina
in the realD-dimensional space:
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x15r cosu1 sinu2¯ sinuD21 ,

x25r sinu1 sinu2¯ sinuD21 ,

xb5r cosub21 sinuk¯ sinuD21 , bP@3,D21#, ~8!

xD5r cosuD21 ,

(
a51

D

~xa!25r 2.

The unit vector alongx is usually denoted byx̂5x/r . The volume element of the configuratio
space is

)
a51

D

dxa5r D21drdV, dV5 )
a51

D21

~sinua!a21dua ,

~9!

r P@0,̀ #, u1P@2p,p#, ucP@0,p#, cP@2,D21#.

We now sketch some necessary information of the SO(D) group. From the representatio
theory of Lie groups,12–14 the Lie algebras of the groups SO(2N11) and SO(2N) are BN and
DN , respectively. Their Chevalley bases with the subscriptm, 1<m<N21, are the same:

Hm~J!5J(2m21)(2m)2J(2m11)(2m12) ,

Em~J!5 1
2~J(2m)(2m11)2J(2m21)(2m12)2 iJ (2m21)(2m11)2 iJ (2m)(2m12)!, ~10a!

Fm~J!5 1
2~J(2m)(2m11)2J(2m21)(2m12)1 iJ (2m21)(2m11)1 iJ (2m)(2m12)!.

However, the bases with the subscriptN are different:

HN~J!52J(2N21)(2N) ,

EN~J!52 iJ (2N21)(2N11)1J(2N)(2N11) , ~10b!

FN~J!5 iJ (2N21)(2N11)1J(2N)(2N11)

for SO(2N11), and

HN~J!5J(2N23)(2N22)1J(2N21)(2N) ,

EN~J!5 1
2~J(2N22)(2N21)1J(2N23)(2N)1 iJ (2N22)(2N)2 iJ (2N23)(2N21)!, ~10c!

FN~J!5 1
2~J(2N22)(2N21)1J(2N23)(2N)1 iJ (2N23)(2N21)2 iJ (2N22)(2N)!,

for SO(2N). The operatorJab may be replaced byLab or Sab depending on the studied wav
functions.Hm(J) span the Cartan subalgebra, and their eigenvalues for an eigenstateum& in a
given irreducible representation~IR! are the components of a weight vectorm5(m1 ,...,mn):

Hm~J!um&5mmum&, mP@1,N#. ~11!

If the eigenstatesum& for a given weightm are degeneracy, this weight is called a multiple weig
otherwise a simple one.Em are called the raising operators andFm the lowering ones. For an IR
there is a highest weightM , which is a simple weight and is used to describe the IR. Generally
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irreducible representation is also called the highest weight representation and directly deno
M . The CasimirC2(M ) is calculated by the formula@see~1.131! of Ref. 14#

C2~M !5M•~M12% !5 (
m,n51

N

Mmdm~A21!mn~M n12!, ~12!

where% is the half sum of the positive roots in the Lie algebra,A21 is the inverse of the Carton
matrix, anddm are the half square lengths of the simple roots.

The orbital wave functions inD-dimensional space are usually expressed by the sphe
harmonicsYm

( l )( x̂),10,11 which belong to the weightm of the highest weight representation (l )
[( l ,0,...,0). For the highest weight state,m5( l ), we have

Y( l )
( l )~ x̂!5ND,l r

2 l~x11 ix2! l , ~13a!

with the normalization factor

ND,l55 22N2 lA ~2l 12N21!!

pNl ! ~ l 1N21!!
when D52N11,

A~ l 1N21!!

2pNl !
when D52N.

~13b!

Its partnersYm
( l )( x̂) is calculated fromY( l )

( l )( x̂) by lowering operatorsFm(L). The Casimir for the
spherical harmonicYm

( l )( x̂) can be calculated by Eq.~12!:

L2Ym
( l )~ x̂!5C2@~ l !#Ym

( l )~ x̂!, ~14!

with

C2@~ l !#5 l ~ l 1D22!.

It is known that the spinor wave functions as well as those for the total angular momentu
different for D52N11 andD52N, as studied in Ref. 15. Nevertheless, for completeness
clearness, it is necessary to review how to calculate these wave functions with the help
groups SO(2N11) and SO(2N).

A. The SO „2N¿1… case

WhenD52N11 we can define

g05s331, ga5~ is2!3aa , aP@1,2N11#, ~15!

with the Pauli matrixsa , the 2N-dimensional unit matrix1 and the (2N11) matricesaa satis-
fying the following anticommutative relations:

abaa1aaab52dab1, b, a51, 2,...,~2N11!. ~16!

The dimensions ofaa matrices are 2N. Thus the spinor operatorSab becomes a block matrix

Sab513S̄ab , S̄ab52 i
aaab

2
. ~17!

The relation betweenSab andS̄ab is very similar to that between the spinor operators for the Di
spinors and for the Pauli spinors. The operatork becomes
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k5s33k̄, k̄52 i (
a,b

aaabLab1
D21

2
. ~18!

The spinorx(m) belongs to the spinor representation (s)[(0,...,0,1). It isfound from Eq.~12!
that the Casimir for the representation (s) can be calculated asC2@(s)#5(2N21N)/4.

On the other hand, it is well known that the product ofYm
( l )( x̂) andx(m8) belongs to the direct

product of two representation (l ) and (s), which is a reducible representation:

~ l !3~s!.~ l ,0,...,0,1! % ~ l 21,0,...,0,1!. ~19!

Generally speaking, there are two different ways to construct a wave function belonging
representation (j )[( l ,0,...,0,1), namely, the combination ofYm

( l )( x̂)x(m8) and that of
Ym

( l 11)( x̂)x(m8), which are different in eigenvalues ofk̄. Considering the spherically symmetr
system, we only calculate the highest weight state for the representation (j ) from the Clebsch–
Gordan coefficients

f uKu,( j )~ x̂!5Y( l )
( l )~ x̂!x@~s!#5ND,l r

2 l~x11 ix2! lx@~s!#, ~20!

with

uKu5C2@~ j !#2C2@~ l !#2C2@~s!#1N5 l 1N,

and

f2uKu,( j )~ x̂!5(
m

Ym
( l 11)~ x̂!x@~ j !2m#^~ l 11!,m,~s!,~ j !2mu~ j !,~ j !&

5ND,l r
2 l 21~x11 ix2! l$x2N11x@~s!#1~x2N211 ix2N!x@~0,...,0,1,1̄!#

1~x2N231 ix2N22!x@~0,...,0,1,1̄,1!#1¯1~x31 ix4!x@~1,1̄,0,...,0,1!#

1~x11 ix2!x@~ 1̄,0,...,0,1!#%, ~21!

with

2uKu5C2@~ j !#2C2@~ l 11!#2C2@~s!#1N52 l 2N.

The wave functionsCK,( j )(x) of the total angular momentum belonging to the IR (j ) can be
written as

CK,( j )~x,t !5r 2Ne2 iEtS F~r !fK,( j )~ x̂!

iG~r !f2K,( j )~ x̂! D , ~22a!

with the following properties:

H1~J!CK,( j )~x!5 lCK,( j )~x!,

HN~J!CK,( j )~x!5CK,( j )~x!,
~22b!

Hm~J!CK,( j )~x!50, mP@2,N21#,

kCK,( j )~x!5KCK,( j )~x!, K56~ l 1N!.

Their partners can be calculated by the lowering operatorsFm .
The radial equation depends on the explicit forms ofaa matrices, which can be expressed

direct products ofN Pauli matricessa :16
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~23!

a2N115s33s33...3s3 .

From the explicit forms ofaa , one can obtain

~aW • x̂!fK,( j )~ x̂!5r 21 (
b51

2N11

abxb fK,( j )~ x̂!5f2K,( j )~ x̂!,

~24!

~aW •p¢ !r 2NfK,( j )~ x̂!5 (
b51

2N11

abpb r 2NfK,( j )~ x̂!5 iKr 2N21f2K,( j )~ x̂!.

Substitution ofCK( j )(x) into the Dirac equation~5! leads to the following radial equation,

G8~r !1
K

r
G~r !5@E2V~r !2M #F~r !,

~25!

2F8~r !1
K

r
F~r !5@E2V~r !1M #G~r !,

where and hereafter the prime denotes the first derivative with respect to the variabler (r).

B. The SO „2N… case

As we know, the reducible spinor representation of SO(2N) is reduced to two inequivalen
fundamental spinor representations (1s)[(0,0,...,0,1) and (2s)[(0,0,...,1,0). Likewise it is
shown from Eq.~12! that the Casimir for both spinor representations can be obtained asC2@
(6s)#5(2n22n)/4. From theaa matrices given in Eq.~23!, we define thegm matrices forD
52N:

g05a2N11 , ga5a2N11aa , aP@1,2N#. ~26!

Here theg0 is a diagonal matrix where half of the diagonal elements are equal to11 and the
remainder to21. On considering the spinor operatorSab and the operatork are commutative with
g0, each of them becomes a direct sum of two matrices, referring to the rows with the eigen
11 and21 of g0, respectively. The spinorsx6(m) belong to the spinor representations (1s)
and (2s), respectively, and satisfy

g0x6~m!56x6~m!. ~27!

Thus the product ofYm
( l )( x̂) andx6(m8) belongs to the direct product of two representati

( l ) and (6s), which is a reducible representation:

~ l !3~1s!.~ l ,0,...,0,1! % ~ l 21,0,...,0,1,0!,
~28!

~ l !3~2s!.~ l ,0,...,0,1,0! % ~ l 21,0,...,0,1!.
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There exist two kinds of representations for the total angular momentum: the represen
( j 1)[( l ,0,...,0,1) and therepresentation (j 2)[( l ,0,...,0,1,0). Nevertheless, their Casimirs a
equal:

C2@~ j 1!#5C2@~ j 2!#5 l ~ l 12N21!1
N~2N21!

4
. ~29!

Similar to the case of SO(2N11), there exist two different ways to obtain the wave functio
belonging to the representation (j 1): the combination of Ym

( l )( x̂)x1(m8) and that of
Ym

( l 11)( x̂)x2(m8). Because of the spherical symmetry, one only calculates the highest weigh
for the representation (j 1) by the Clebsch–Gordan coefficients:

fK,( j 1)~ x̂!5Y( l )
( l )~ x̂!x1@~1s!#5ND,l r

2 l~x11 ix2! lx1@~1s!#, ~30a!

and

f2K,( j 1)~ x̂!5(
m

Ym
( l 11)~ x̂!x2@~ j 1!2m#^~ l 11!,m,~1s!,~ j 1!2mu~ j 1!,~ j 1!&

5ND,l r
2 l 21~x11 ix2! l$x2N211 ix2Nx2@~2s!#1~x2N231 ix2N22!

3x2@~0,...,0,1,1̄,0!#1~x2N251 ix2N24!x2@~0,...,0,1,1̄,0,1!#1¯

1~x31 ix4!x2@~1,1̄,0,...,0,1!#1~x11 ix2!x2@~ 1̄,0,...,0,1!#%, ~30b!

with

K5C2@~ j 1!#2C2@~ l 11!#2C2@~1s!#1N2 1
25 l 1N2 1

2.

However, for the representation (j 2)[( l ,0,...,0,1,0) we obtain

f2K,( j 2)~ x̂!5Y( l )
( l )~ x̂!x2@~2s!#5ND,l r

2 l~x11 ix2! lx2@~2s!#, ~31a!

and

fK,( j 2)~ x̂!5(
m

Ym
( l 11)~ x̂!x1@~ j 2!2m#^~ l 11!,m,~2s!,~ j 2!2mu~ j 2!,~ j 2!&

5ND,l r
2 l 21~x11 ix2! l$x2N212 ix2Nx@~1s!#1~x2N231 ix2N22!x1@~0,...,0,1,0,1̄!#

1~x2N251 ix2N24!x1@~0,...,0,1,1̄,1,0!#1¯1~x31 ix4!x1@~1,1̄,0,...,0,1,0!#

1~x11 ix2!x1@~ 1̄,0,...,0,1,0!#%, ~31b!

with

K5C2@~ j 2!#2C2@~ l 11!#2C2@~1s!#1N2 1
252~ l 1N2 1

2!.

From the explicit forms ofaa one obtains

~aW • x̂!fK,( j v)~ x̂!5r 21(
a51

2N

aaxafK,( j v)~ x̂!5f2K,( j v)~ x̂!,

~32!

~aW •p¢ !r 2N11/2fK,( j v)~ x̂!5 (
a51

2N

aapa r 2N11/2fK,( j v)~ x̂!5 iKr 2N21/2f2K,( j v)~ x̂!,
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with v51 or 2.
The wave functionsCK,( j v)(x) of the total angular momentum belonging to the IR (j v) are

expressed as

C uKu,( j 1)~x,t !5r 2N11/2e2 iEt$F~r !f uKu,( j 1)~ x̂!1 iG~r !f2uKu,( j 1)~ x̂!%,

C2uKu,( j 2)~x,t !5r 2N11/2e2 iEt$F~r !f2uKu,( j 2)~ x̂!1 iG~r !f uKu,( j 2)~ x̂!%, ~33a!

kCK,( j v)~x!5KCK,( j v)~x!, uKu5 l 1N2 1
2, v51 or 2,

with the following properties:

H1~J!CK,( j v)~x!5 lCK,( j 1)~x!, HN21~J!CK,( j 1)~x!50, ~33b!

HN~J!CK,( j 1)~x!5CK,( j 1)~x!, HN21~J!CK,( j 2)~x!5CK,( j 2)~x!, ~33c!

HN~J!CK,( j 2)~x!50, Hm~J!CK,( j v)~x!50, mP@2,N22#. ~33d!

Their partners can be calculated by the lowering operatorsFm .
Substitution ofCK( j v)(x) into the Dirac equation~5! allows us to obtain the radial equation

which are in the same forms as those inD52N11 case:

G8~r !1
K

r
G~r !5@E2V~r !2M #F~r !,

~34!

2F8~r !1
K

r
F~r !5@E2V~r !1M #G~r !.

IV. THE EXACT SOLUTIONS OF THE RADIAL EQUATION

Although the wavefunctions and the eigenvaluesK are different for theD52N11 case and
the D52N case, the forms of the radial equations are unified

GKE8 ~r !1
K

r
GKE~r !5@E2V~r !2M #FKE~r !,

2FKE8 ~r !1
K

r
FKE~r !5@E2V~r !1M #GKE~r !, ~35!

K56~2l 1D21!/2.

We now consider the Dirac equation with a mixed potential including a Coulomb pote
and a scalar one. The Coulomb potential is derived from the exchange of massless p
between the nucleus and the lepton orbiting around it, namely,

Vc52
A1

r
. ~36!

However, the scalar potential

Vs52
A2

r
~37!
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is added to the mass term of the Dirac equation, which can be interpreted as an effective, po
dependent mass. It is created by the exchange of the massless scalar meson. TheA1 andA2 are the
electrostatic and the scalar coupling constants, respectively.

It is found that the radial componentsFKE(r ) and GKE(r ) satisfy the following first-order
differential equations

GKE8 ~r !1
K

r
GKE~r !5S E2M1

A11A2

r DFKE~r !,

~38!

2FKE8 ~r !1
K

r
FKE~r !5S E1M1

A12A2

r DGKE~r !.

It is convenient to introducer for the bound states:

r52rAM22E2, uEu,M . ~39!

We thus have

GKE8 ~r!1
K

r
GKE~r!5S 2

1

2
AM2E

M1E
1

A11A2

r DFKE~r!,

~40!

FKE8 ~r!2
K

r
FKE~r!5S 2

1

2
AM1E

M2E
2

A12A2

r DGKE~r!.

Define the wave functionsF6(r) with the forms

GKE~r!5AM2E@F1~r!1F2~r!#,
~41!

FKE~r!5AM1E@F1~r!2F2~r!#.

Substitutions of Eq.~41! into Eq. ~40! allow us to write down

F18 ~r!1F28 ~r!1
K

r
@F1~r!1F2~r!#5F2

1

2
1

A11A2

r
AM1E

M2EG @F1~r!2F2~r!#,

~42!

F18 ~r!2F28 ~r!2
K

r
@F1~r!2F2~r!#5F2

1

2
2

A12A2

r
AM2E

M1EG @F1~r!1F2~r!#.

Their addition and subtraction lead to

F18 ~r!2S A1E1A2M

rAM22E2
2

1

2D F1~r!52S K

r
1

A1M1A2E

rAM22E2 D F2~r!,

~43!

F28 ~r!1S A1E1A2M

rAM22E2
2

1

2D F2~r!52S K

r
2

A1M1A2E

rAM22E2 D F1~r!.

Taking the following conventions,

t5
A1E1A2M

AM22E2
, t85

A1M1A2E

AM22E2
, ~44!

we have
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F18 ~r!2S t

r
2

1

2DF1~r!52
t81K

r
F2~r!,

~45!

F28 ~r!1S t

r
2

1

2DF2~r!5
t82K

r
F1~r!,

from which we can obtain the following important second-order differential equations:

F d2

dr2 1
1

r

d

dr
1S 2

1

4
1

t61/2

r
2

h2

r2 D GF6~r!50,

~46!
h25K22A1

21A2
2 .

For the weak Coulomb potential, we have

h5AK22A1
21A2

2.0. ~47!

It is found that Eq.~46! is a special case of the Tricomi equation,17 which can be expressed as

d2y

dx2 1S a1
b

xD dy

dx
1S a1

a

x
1

j

x2D y50. ~48!

From the behaviors of the wave functions at the origin and infinity, we define

F6~r!5rhe2r/2R6~r!. ~49!

Substitution of this into~47! leads to

d2

dr2 R6~r!1S 211
112h

r D d

dr
R6~r!1

t2h2 1
26

1
2

r
R6~r!50, ~50!

whose solutions are the confluent hypergeometric functions

R1~r!5a0F~h2t,2h11;r!,
~51!

R2~r!5b0F~11h2t,2h11;r!,

which imply that GKE(r) and FKE(r) can be directly expressed by the combinations of
confluent hypergeometric functions.

We now study the relation between the coefficientsa0 andb0 . Before proceeding to do so,
is necessary to review the following recursive relations between the confluent hypergeo
functions17

g
d

dz
F~a,g;z!5a F~a11,g11;z!,

zF~a11,g11;z!5gF~a11,g;z!2gF~a,g;z!,
~52!

aF~a11,g11;z!5~a2g!F~a,g11;z!1gF~a,g;z!,

aF~a11,g;z!5~z12a2g!F~a,g;z!1~g2a!F~a21,g;z!.

It is shown from Eqs.~46!, ~51! and ~52! that
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S h2t

r
a01

t81K

r
b0DF~11h2t,2h11;r!50. ~53!

Since botha0 andb0 cannot be vanishing, we obtain

b05
t2h

t81K
a0 . ~54!

From Eq.~42! we thus have

GKE~r!5NKEAM2Erhe2r/2

3@~t81K !F~h2t,2h11;r!1~t2h!F~11h2t,2h11;r!#,
~55!

FKE~r!5NKEAM1Erhe2r/2

3@~t81K !F1~h2t,2h11;r!2~t2h!F~11h2t,2h11;r!#,

where the normalization factorNKE5a0(t81K)21(2AM22E2)21/2 can be determined later.
We now study the eigenvalues of this quantum system. The quantum condition is ob

from the finiteness of the solutions at infinity:

t2h5n850,1,2,..., ~56!

whenn850, h5t, and

K25t21A1
22A2

25~t8!2.

ThereforeK has to be positive in order to avoid the trivial solution.
Introducing the principal quantum number

n5uKu2~D23!/21n85uKu2~D23!/21t2h5 l 111n851, 2,..., ~57!

we have

EA11MA2

AM22E2
5n2uKu1

D23

2
1h5n81h[k. ~58!

The energyE can be solved from Eq.~58!:

E~n,K !5M H 2
A1A2

A1
21k2 6F S A1A2

A1
21k2D 2

2
A2

22k2

A1
21k2G1/2J . ~59!

We now consider a few special cases. First, ifA150, thenh5AK21A2
2, and

E~n,K !56M S 12
A2

2

k2D 1/2

. ~60!

It implies that there are two branches of solutions symmetric for the positive and negative
gies. For a largeD, we have

E~n,D !.6M @122A2
2D2214A2

2~2n23!D232¯#, ~61!

which implies that the energy is independent ofl for a largeD. For a smallA2 , we have
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E~n,l ,D !.6M H 12
A2

2

2@n1~D23!/2#2 1
A2

4

2@n1~D23!/2#4 S 2n1D23

2l 1D21
2

1

4D J , ~62!

where the first term on the right-hand side is the rest energyM (c251 in our conventions!, the
second one is from the solutions of the Schro¨dinger equation, and the third one is the fine struct
energy, which removes the degeneracy between the states with the samen.

Second, ifA250, thenh5AK22A1
2 and from Eq.~58! E has the same sign asA1 when

K2.A1
2. For the attractive Coulomb potential (A1.0) we have the positive energyEnK

EnK5M S 11
A1

2

k2D 21/2

. ~63!

It coincides with the conclusion from the Sturm–Liouville theorem for a weak attrac
potential.18 For a largeD similarly we have the same result as Eq.~61!.

For a smallA1 , we have

E~n,l ,D !.M
A1

uA1u H 12
A1

2

2@n1~D23!/2#2 2
A1

4

2@n1~D23!/2#4 S 2n1D23

2l 1D21
2

3

4D J . ~64!

Similarly, the physical meanings of three terms are similar to those of Eq.~62! except for the
different expansion coefficients.

We are now briefly considering the special caseD51 in this case. It is found that there i
absence of the bound states sinceh becomes imaginary regardless of the value ofA1 . This can be
easily checked from the fact that the eigenvalues and eigenfunctions do not exist at all.

Third, if A15A2 , we haveh5uKu and

E~n!5M F2
A1

2

A1
21~n1~D23!/2!2 6

~n1~D23!/2!2

A1
21~n1~D23!/2!2G . ~65!

If we choose the negative sign in the result, we haveE52M , which is a singular solution of Eq
~58!. For the positive sign, we have

E~n!5M F12
2A1

2

A1
21~n1~D23!/2!2G . ~66!

We now determine the normalization factorNKE from the normalization condition

E CKE
† CKEdV51. ~67!

Noticing n85t2h is a non-negative integer, we can express the confluent hypergeometric
tion by the associated Laguerre polynomial19

Ln
a~r!5

G~a1n11!

n!G~a11! 1F1~2n,a11;r!, ~68!

E
0

`

rae2rLn
a~r!Lm

a ~r!dr5
G~n1a11!

n!
dnm . ~69!

Through a direct calculation we obtain

NKE5
~M22E2!1/4

G~2h11! F G~t1h11!

2Mt8~K1t8!~t2h!! G
1/2

. ~70!
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V. CONCLUDING REMARKS

In this work we have studied the~D11!-dimensional Dirac equation with a Coulomb plu
scalar potential with the interest of higher-dimensional field theory. The eigenfunctions c
analytically obtained by studying the second-order differential equations obtained from the
order coupled ones. The eigenvalues as well as their special cases are studied. Before en
article, we give two remarks here. First, in comparison with the 3D case, the angular mom
quantum numberK in D11 dimensions plays the role of the good quantum numberk in three
dimensions~more strictly,uKu1 1

2↔uku). Second, for the special caseD51, it is found from Eq.
~35! that K50. Therefore, it is shown from Eq.~47! that h becomes imaginary ifuA2u,uA1u,
which means that there is absence of the bound states in this case. On the contrary, there
bound states ifuA2u.uA1u.
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A quantum weak energy inequality for spin-one fields
in curved space–time
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Quantum weak energy inequalities~QWEI! provide state-independent lower
bounds on averages of the renormalized energy density of a quantum field. We
derive QWEIs for the electromagnetic and massive spin-one fields in globally hy-
perbolic space–times whose Cauchy surfaces are compact and have trivial first
homology group. These inequalities provide lower bounds on weighted averages of
the renormalized energy density as ‘‘measured’’ along an arbitrary timelike trajec-
tory, and are valid for arbitrary Hadamard states of the spin-one fields. The QWEI
bound takes a particularly simple form for averaging along static trajectories in
ultrastatic space–times; as specific examples we consider Minkowski space~in
which case the topological restrictions may be dispensed with! and the static Ein-
stein universe. A significant part of the paper is devoted to the definition and
properties of Hadamard states of spin-one fields in curved space–times, particularly
with regard to their microlocal behavior. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1602554#

I. INTRODUCTION

In common with all observed forms of classical matter, the spin-one fields described b
Maxwell and Proca equations obey the weak energy condition~WEC!. That is, the stress-energ
tensorTab obeysTabv

avb>0 for all timelike vectorsva. In classical general relativity, energ
conditions such as the WEC play a key role in many important results, notably the singu
theorems of Penrose1 and Hawking.2 Moreover, since any metric solves the Einstein equations
some choice of stress-energy tensor, it is arguable that general relativity has limited pre
power in the absence of such conditions.

However, all classical energy conditions are violated by quantum fields, as has been
for many years.3 Typically, the energy density at a given space–time point is unbounded
below as a function of the state. Specific examples of negative energy states are provi
highly squeezed states of light in quantum optics, the Casimir vacuum state for a quantize
between uncharged perfectly conducting parallel planar plates and the Boulware vacuum
outside a black holes. Replacing the classical stress-energy tensor on the right-hand side
stein’s equation with its quantum expectation value, we must therefore allow for negative e
sources, raising the possibility of exotic phenomena within the realm of semiclassical gravit
example, negative energy can be used to maintain static traversable wormholes,4,5 create naked
singularities,6,7 travel faster than light,8,9 and travel backward through time.5,10 In negative energy
models studied by Parker and Fulling it is even possible to avoid the cosmological singula11

thus threatening to overthrow the classical singularity theorems. One might also expect tha
tive energy fluxes could lead to macroscopic violations of the second law of thermodynam12

Of course, macroscopic violations of the second law are not observed in nature. Motiva
these thermodynamic considerations, Ford12 deduced that the negative fluxes and energy dens

a!Electronic mail: cjf3@york.ac.uk
b!Electronic mail: mpj11@york.ac.uk
44800022-2488/2003/44(10)/4480/34/$20.00 © 2003 American Institute of Physics
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of quantum fields must be subject to constraints, at least on average. These constraints, kn
quantum inequalities, or QI, provide state-independent lower bounds on certain weighted ave
of the stress-energy tensor. They may therefore be regarded as the remnants of the classica
conditions after quantization; thus, for example, the analogue of the WEC is sometimes refe
as aquantum weak energy inequalityor QWEI. Such bounds typically take the form

E ^:Tab~g~t!!ua~t!ub~t!:&v f ~t!dt>2Q~g, f ! , ~1!

where f >0 is the weight, or sampling function,g is a smooth timelike curve, parametrized b
proper timet and with four-velocityua5(dg/dt)a, and :Tab : denotes the stress-energy tens
normal ordered with respect to some reference statev0 . The significant point is that the boun
Q(g, f ) is independent of the statev. The class of statesv for which the bound holds must als
be delineated—all bounds in the literature require~at least! that v and v0 be Hadamard states
although this can be weakened slightly. Of course the normal ordered energy density differ
the renormalized energy density by the~renormalized! energy density of the reference stat
Accordingly, Eq.~1! may easily be converted into a bound on the renormalized energy den

As we will shortly describe, various authors have established QWEI’s for the scalar and
fields in different circumstances, leading up to general results valid in curved space–time
main aim of the present paper is to establish similar QWEI’s for the Maxwell and Proca fie
general globally hyperbolic space–times. In order to do this, we have also made a detailed
of the field theories concerned, particularly in relation to the class of Hadamard states. S
new results obtained here may therefore be of more general interest.

As already mentioned, the earliest work on quantum inequalities is due to Ford, who
lished a bound on negative energy fluxes for scalar fields in 1991.13 The first QWEI was obtained
for the massless, minimally coupled scalar field in Minkowski space–time by Ford and Rom14

who established the inequality~1! for the case of an inertial worldlineg and with f taking the
Lorentzian form f (t)5t0 /(p(t21t0

2)), in which t0 sets the characteristic time scale for t
averaging. In four dimensions, the resulting bound was

E ^:Tab~t!ua~t!ub~t!:&v

t0

p~t21t0
2!

dt>2
3

32p2t0
4 . ~2!

These results were then extended by Ford and Roman to the massive scalar field in Min
space14,15 and were further extended by Pfenning and Ford to minimally coupled scalar fiel
arbitrary mass in ultrastatic curved space–times.16–18 In these generalizations, it was found th
the dominant term of the QWEI has a form similar to Eq.~2!, but with subdominant correction
terms due to the curvature and the mass of the field. Pfenning and Ford also showed that on
express the bound on the right-hand side of the QWEI in terms of derivatives of the Euc
Green’s function for the space–time and developed a short sampling time approximation
QWEI which could be used in space–times where it would be too hard to calculate the
QWEI bound.

The restriction to the Lorentzian weightt0 /(p(t21t0
2)) was removed by various authors. B

making use of the conformal properties of field theories in two dimensions, Flanagan19,20 has
derived optimal quantum inequalities for the massless scalar field for arbitrary smooth po
sampling functions, and Vollick has done the same for the Dirac field.21 QWEI’s for the minimally
coupled scalar field in static curved space–times of any dimension for an arbitrary sam
function were established by Fewster in work with Eveson22 and Teo.23

More recently, techniques drawn from microlocal analysis have been used to consid
generalize previous QWEI’s and to put them on a mathematically rigorous footing. Fewster24 used
these techniques to derive a QWEI for minimally coupled scalar fields in general globally h
bolic space–times~the most general class on which the Klein–Gordon equation is well-posed!. In
this case, averaging takes place along an arbitrary timelike worldline, using any weight of the
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f (t)5g(t)2 for g smooth, real-valued and compactly supported. Subsequently, Fewster and
established similar results for the Dirac and Majorana fields in four-dimensional globally h
bolic space–times.25 Averaging over space–time volumes has been considered by Helfer,26 also in
great generality.

Previous work on QWEIs for spin-one fields has focussed on the electromagnetic fiel
ginning with the work of Ford and Roman,15 who derived a QWEI for the case of Lorentzia
sampling along inertial trajectories in Minkowski space. More recently, Pfenning27 has derived a
QWEI for the electromagnetic field in static curved space–times with arbitrary positive w
sampling functions by using the techniques developed for the scalar field in Refs. 22 and 23.
similar techniques, Marecki28 has derived bounds on the fluctuations of the electric field stren
which are of interest in quantum optics.

In this paper we will adapt the methods of Ref. 24 to the Maxwell and Proca fields.
depends crucially on the fact, first discovered by Radzikowski29 for scalar fields, that the class o
Hadamard states may be characterized in terms of a wave-front set condition on the two
function. Similar reformulations are known for the Dirac field30–32 but there is as yet no ful
treatment for the Maxwell and Proca fields in the literature.@See, however, Refs. 33 and 34 fo
~non microlocal! discussions of Hadamard states for electromagnetism using Faddeev–
ghosts.# Our treatment of this issue has been influenced to some extent by the forthcoming
of Junker and Lledo´,35 although it has been conducted largely independently, leading to s
technical differences with their approach~Ref. 69!.

The paper is structured as follows. The Maxwell and Proca fields are most elegantly des
using differential forms; accordingly, we begin in Sec. II with a description of our convention
differential forms and other geometric objects which will appear in this paper. In particula
delineate the class of globally hyperbolic space–times to be considered; for technical reaso
convenient to assume that their Cauchy surfaces are compact and have trivial first hom
group. This is followed by a brief introduction to microlocal analysis leading to the definitio
the wave-front set forp-form distributions.

In Sec. III we describe the quantization of the Maxwell and Proca fields in globally hyper
space–times. We adopt an algebraic approach, giving a direct construction of algebras of o
ables equivalent to those obtained by Dimock36 and Furlani.37 We also define the notion of a
Hadamard state for these fields, as a state whose two-point function~Ref. 70! is related in a certain
way to a one-formKlein–Gordon bisolution of Hadamard form. Such bisolutions and their m
crolocal properties have been discussed in detail by Sahlmann and Verch;32 we may therefore read
off the microlocal properties of the Maxwell and Proca two-point functions in Hadamard s
This permits us to apply the methods of Ref. 24 to obtain quantum inequalities for these fie
Sec. V. Before this, in Sec. IV, we specialize to the class of ultrastatic space–times in order t
further insight into the abstract definitions of Sec. III. In particular, we prove the existenc
Hadamard states in these space–times and use deformation arguments38 to deduce from this the
existence of Hadamard states in general globally hyperbolic space–times obeying our topo
restrictions. We also compare our approach with other quantization schemes, including the G
Bleuler method. As mentioned above, we expect that some of the results obtained here to
wider interest.

In Sec. VI we investigate our QWEI in Minkowski space, and in general ultrastatic sp
times ~modulo the usual topological conditions!. Simple formulas are obtained for the QWE
bound, which are readily compared with those previously obtained for the scalar fiel
Minkowski space, the QWEI bound is weaker by a factor of exactly 2 for the Maxwell field~as
already noted in Ref. 27! and by a factor of 3 for the Proca field. This is not very surprising a
simply reflects the number of spin degrees of freedom. In curved space–time, howeve
spin-one and scalar QWEIs cannot be related in this fashion. To emphasize this, we ex
determine the QWEI bound in the Einstein static universe, providing a concrete example
ultrastatic QWEI. Two appendixes contain the proofs of some technical results required
body of the paper.
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II. PRELIMINARIES

Units where\5c51 are used throughout. The notationC0
`(Rn) denotes the space of smoot

compactly supported~Ref. 71!, complex-valued functions onRn.

A. Geometry and forms

Spin-one fields on globally hyperbolic space–times are most elegantly formulated in ter
differential forms. We will follow the conventions of Ref. 39, which we now briefly summarize
the benefit of the reader.

SupposeN is a smoothn-dimensional manifold which is connected, boundaryless, orienta
Hausdorff, paracompact, and equipped with a smooth metric of indexs ~Ref. 72!. We denote the
space of smooth, complex-valuedp-forms onN by Vp(N); the subspace of compactly support
p-forms will be written V0

p(N). Eachp-form may be regarded as an antisymmetric covari
p-tensor field and we will occasionally use index notation accordingly. Thus the exterior pr
a∧bPVp1q(N) of aPVp(N) andbPVq(N) is given by

~a∧b!a1¯ap1q
5

~p1q!!

p!q!
a [a1¯ap

bap11¯ap1q] , ~3!

and the exterior derivatived:Vp(N)→Vp11(N) is defined by

~da!a1¯ap11
5~p11!¹[a1

aa2¯ap11] , ~4!

where the square brackets denote antisymmetrization and¹a is any connection onN ~d is inde-
pendent of the choice of connection!. The Hodge* -operator is defined uniquely as the ma
* :Vp(N)→Vn2p(N) such that

a∧* b5
1

p!
aa1 ...ap

ba1¯apd volg , ~5!

where d volg is the positive volumen-form associated with the metricg. In particular, (* )2

5(21)p(n2p)1s on p-forms. By combining the Hodge* and exterior derivative, we may defin
the coderivatived:Vp(N)→Vp21(N) ~with the convention thatd annihilates all zero-forms! by
d5(21)n(p21)1s11* d* , which reduces tod5* d* in a four-dimensional Lorentzian space–tim

The operations introduced above allow us to define a symmetric pairing^•,•& of p-forms
under integration: we set

^U,V&[E
N
U∧* V ~6!

for any U,VPVp(N) for which the integral exists. Sinced(U∧* V)5dU∧* V2U∧* dV, Stokes’
theorem gives

^dU,V&5^U,dV& ~7!

for smooth (p11)- andp-formsU andV whose supports have compact intersection. In this se
the operatorsd andd are dual.

The Laplace–Beltrami operator is defined as2(dd1dd), i.e., it is equal tominus the
Laplace–de Rahm operatordd1dd. Where the manifoldN is a Lorentzian space–time, wit
signature12¯2, the Laplace–Beltrami operator is also known as the D’Alembertian and
be denoted byh. We wish to point out that Dimock36 usesh to denote the Laplace–de Rah
operator; our usage is determined by the convention thath should have principal partgmn]m]n ,
in accordance with typical usage in general relativity.

Finally, the spacesV0
p(N) may be given locally convex topologies~Ref. 73! and the corre-

sponding topological dualsV0
p(N)8 will be called the spaces ofp-form distributions onN. @The
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pairing ^•,•& provides a natural embedding ofVp(N) in V0
p(N)8.] In the casep50, we will also

useD~N! andD8(N) for V0
0(N) andV0

0(N)8, respectively. The exterior derivative and coderiv
tive are defined on these spaces by

~dU!~ f !5U~df ! ~UPV0
p~N!8, f PV0

p11~N!! ~8!

and

~dU!~ f !5U~df ! ~UPV0
p~N!8, f PV0

p21~N!! ~9!

which extend the definitions given for smooth forms by virtue of the embeddings defined a
and the calculation~7!. In a similar way, the Hodge* -operator may also be extended to a m
from p-form distributions to (n2p)-form distributions by

~* U!~ f !5~21!p(n2p)U~* f ! ~UPV0
p~N!8, f PV0

n2p~N!! ; ~10!

and it is easily checked that the formulad5(21)n(p21)1s11* d* remains true for distributions.

B. Microlocal analysis and the wave-front set

Our proof of the quantum weak energy inequality turns on the detailed singularity prop
of various distributions related to the two-point functions of quantum fields in Hadamard s
The information required is encoded in thewave-front setof these distributions, which is define
as follows.~See Ref. 40 for a full presentation.!

We will define the Fourier transformû of uPC0
`(Rn) using the nonstandard convention

û~k!5E dny u~y!eik•y, ~11!

which conforms to the conventions used, e.g., in Ref. 24. The Fourier transform can be ex
to scalar distributions of compact support by writingû(k)5u( f k) where f k5eik•y. Given a cone
V,(Rn\$0%), we will say thatû(k) is of rapid decrease inV if for eachNPN there exists a rea
constantCN such that

uû~k!u<
CN

~11uku!N ;kPV, ~12!

whereuku denotes the Euclidean norm ofk.
Smooth compactly supported functions have Fourier transforms which decay faster tha

inverse power in the whole ofRn, but the same is not true for arbitrary distributionsu of compact
support. A well-known example is the Diracd-function, whose Fourier transform does not dec
at infinity in any direction. We define the set of singular directionsS(u) to be the set of allk
PRn\$0% having no conical neighborhoodV in which û is of rapid decrease.

More detailed information about the singularities ofu can be gained by localizing the singula
directions. In particular, the set ofsingular directionsof u at a pointx is defined by

Sx~u!5ù
x

S~xu! , ~13!

where the intersection is taken over all smooth compactly supported test functionsxPC0
`(Rn)

with x(x)Þ0. Thewave-front setWF (u) of u is then defined by

WF ~u!5$~x,k!PRn3~Rn\$0%!ukPSx~u!%. ~14!
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The wave-front set can be extended in a natural way to distributions on manifolds. Let (N,g)
be a smoothn-dimensional manifold of the type discussed above. Each distributionu in D8(N)
has a representativeukPD8(Rn) in each coordinate chart (U,k) @with corresponding coordinate
denotedxm5k(x)m] defined so that

uk~ fA2ugu!5u~ f +k! ~15!

holds for every smooth functionf compactly supported ink(U),Rn, whereugu is the determinant
of gmn . The wave-front set WF (u) is now a subset of the cotangent bundleT* N with the
property that (x,k)PWF (u) if and only if there is a chart (U,k) about x so that (xI ,kI )
PWF (uk), where (xI ,kI ) are the coordinates of (x,k) anduk is defined as in~15!. In fact, it may
be shown~see Theorem 8.2.4 and the following discussion in Ref. 40! that the restriction of
WF (u) to U is given by

WF ~u!ùT* U5k* WF ~uk!ª$k* ~xI ,kI !:~xI ,kI !PWF ~uk!% , ~16!

where the pull-backk* relates (x,k)PT* N to its coordinates byk* (xI ,kI )5(x,k).
There is a natural extension of the wave-front set top-form distributions. Letv i ( i 50,...,n

21) be a global orthonormaln-bein on N ~i.e., the vectorsv i obey gabv i
av j

b5h i j and thus
h i j v i

av j
b5gab, whereh i j is diagonal withs entries equal to21 and the rest equal to11) and let

Vi be the dual basis of one-forms:Va
i 5h i j gabv j

b . For eachUPV0
p(N)8, we may define the

component distributionsUi 1¯ i p
PD8(N) by

Ui 1¯ i p
~ f !5h i 1 j 1

¯h i pj p
U~ f Vj 1∧¯∧Vj p! ~17!

for f PD(N). Then we define the wave-front set ofU to be

WF ~U!5 ø
i 1 , . . . ,i p

WF ~Ui 1 . . . i p
! , ~18!

which may be shown to be independent of the particular choice ofn-bein v i .

III. QUANTIZATION OF THE MAXWELL AND PROCA FIELDS

A. Classical theory

We will consider the Maxwell and Proca fields propagating on four-dimensional Loren
globally hyperbolic space–times. Each such space–time is a pair (M,g) consisting of a four-
dimensional, smooth, real manifoldM, with the topological properties listed at the start of S
II A, together with a smooth Lorentzian metricg with signature~1,2,2,2!. Global hyperbolicity,
which will ensure well-posedness of our field equations, requires that (M,g) be time-orientable
and thatM contain a Cauchy surfaceS, that is, a smooth spacelike hypersurface intersec
precisely once by every inextendible causal curve inM. In fact, one may show41 that M is
diffeomorphic toR3S. We will assume for the most part thatS ~also referred to as the spatia
section! is compact and thatS has trivial first singular homology group with real coefficien
H1(S). This is equivalent to the triviality of the compact support de Rahm cohomology g
Hc

3(M) ~Ref. 74!; note that this condition excludes, for example, the 3-torusT3 as a spatial
section. The compactness assumption is made for convenience only; triviality ofH1(S) is ines-
sential for the Proca field, but appears to be required in order to establish some of our res
the Maxwell field.

The classical uncharged spin-1 field of massM.0 is a real one-form fieldAPV1(M)
obeying the Proca equation

~2dd1M2!A50 . ~19!
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Applying the coderivatived we see thatdA50 and so any solution to Eq.~19! also satisfies the
one-form Klein–Gordon equation

~h1M2!A50 . ~20!

Conversely, any solution to~20! satisfying the constraint

dA50 ~21!

solves the Proca equation. The advantage of the system~20! and ~21! is that ~20! has the hyper-
bolic principal partgab]a]b in local coordinates and therefore admits unique fundamental s
tions EM

6 :V0
1(M)→V1(M), respectively,37,42 such that

~h1M2!EM
65EM

6~h1M2!51 ~22!

and supp (EM
6J),J6(suppJ) for JPV0

1(M). Here,J6(S), the causal future~1!/past~2! of S,
is defined to be the set of points in (M,g) that can be reached from the setS,M by a future
~1!/past~2! directed causal curve. The operatorsEM

6 extend toJ with suppJ compact to the
past/future and for suchJ, A 65EM

6J is the unique solution of (h1M2)A65J with suppA
compact to the past/future. In addition, we introduce the advanced-minus-retarded bisoluti75

EM5EM
22EM

1 , ~23!

which satisfies the homogenous Klein–Gordon equation

~h1M2!EM5EM~h1M2!50 . ~24!

We also note that, sinced and d commute with the Klein–Gordon operatorh1M2 ~or, more
precisely, intertwine its action on zero- and one-forms! these operators also intertwine the acti
of EM

6 on zero- and one-forms.
The fundamental solutions for the one-form Klein–Gordon equation allow us to solve

inhomogeneous Proca equation,

~2dd1M2!A5J , ~25!

with advanced~2! or retarded~1! boundary conditions. Assuming the existence of a solution
applying the coderivative, we finddA5M 22dJ. This allows us to rewrite~25! as

~h1M2!A5~2dd1M2!A2dd A5J2M 22 dd J , ~26!

to which A 65EM
6(J2M 22 dd J) are the unique solutions with support inJ6(suppJ). Using

the propertydEM
65EM

6d, these may be shown to be the required solutions to~25!. We write

DM
65EM

6~12M 22 dd! ~27!

for the corresponding solution operators and define

DM5DM
22DM

1 , ~28!

which will later appear in the commutation relations for the quantized Proca field. We will als
the notationDM and EM for the bidistributions defined byDM( f ,g)5^ f ,DMg& and EM( f ,g)
5^ f ,EMg& ( f ,gPV0

1(M)).
Turning to electromagnetism, the theory is described by a one-form potentialAPV1(M)

obeying

ddA50 , ~29!
                                                                                                                



gauge
tials

s

ua-
e

ace–

s,
more

alued

elds

wski
-
sform
s in a

uantum

etting,

4487J. Math. Phys., Vol. 44, No. 10, October 2003 A QWEI for spin-one fields in curved space–time

                    
which entails that the field strengthF5dA obeys Maxwell’s equations,

dF50 and dF50 . ~30!

Two potentialsA andA8 are gauge equivalent, denoted byA;A8, if A5A81dx for somex
PV0(M). Since gauge equivalent potentials lead to the same field strength, it is really the
equivalence classes@A# of solutions which are of physical significance rather than the poten
themselves. We can partially fix the gauge freedom by passing to the Lorentz gaugedA50, in
which the Maxwell equations are expressed by theM50 case of the system~20!, ~21!. Just as
with the Proca equation, the fundamental solutions to~20! permit us to solve the inhomogeneou
Maxwell equation

2ddA5J , ~31!

where, for consistency, the sourceJPV0
1(M) is required to obey the current conservation eq

tion dJ50. DefiningA 65E0
6J, we note thatdA 65dE0

6J5E0
6dJ50 and therefore deduc

that A 6 is the unique Lorentz gauge solution to~31! with support inJ6(suppJ).

B. Quantization: Algebras of observables

The canonical quantization of the Maxwell and Proca fields in globally hyperbolic sp
times was accomplished by Dimock36 and Furlani,37 respectively~see also Ref. 43!. Here, we give
a direct construction of suitable algebras of~polynomials in! smeared fields for these theorie
isomorphic to those emerging from the constructions of Refs. 36 and 37. We begin with the
straightforward Proca case, for which the algebra of observables will be denotedAM(M,g). This
algebra is constructed by first using the set of smooth compactly supported complex v
one-form test functionsV0

1(M) to label a set of abstract objects$A( f )u f PV0
1(M)% which

generate a free unital* -algebra overC. These objects are interpreted as smeared one-form fi

A~ f ! ‘ 5 ’ ^A, f & . ~32!

The algebraAM(M,g) is defined to be the quotient ofAM by the following relations:

~P1! Linearity, A(a f 11b f 2)5aA( f 1)1bA( f 2) for all a,bPC and f iPV0
1(M);

~P2! Hermiticity, A( f )* 5A( f̄ ) for all f PV0
1(M);

~P3! Field equations,A(@dd2M2# f )50 for all f PV0
1(M);

~P4! CCRs,@A( f 1),A( f 2)#52 iDM( f 1 , f 2)1 for all f iPV0
1(M).

Here,DM is the propagator defined in~28!.
For electromagnetism, quantization is complicated by gauge freedom. Even in Minko

space this presents serious problems: as shown by Strocchi44,45 in the Wightman axiomatic ap
proach, the vector potential cannot exist as an operator-valued distribution if it is to tran
correctly under the Lorentz group or even display commutativity at spacelike separation
weak sense. Dimock36 circumvented such problems by constructing smeared field operators@A#
3( f ) which may be smeared only with co-closed~divergence-free! test functions, i.e.,f must
satisfydf 50. These objects may be interpreted as smeared gauge-equivalence classes of q
one-form fields: formally,

@A#~ f ! ‘ 5 ’ ^A, f & , ~33!

whereA is a representative of the equivalence class@A#; sincedf 50, we havê dx, f &5^x,df &
50 so this interpretation is indeed gauge independent. Adapting this idea to our present s
we start with a set of abstract objects$@A#( f ) u f PV0

1(M) with df 50% labeled only by co-closed
test one-forms. As before, we use this set to generate a free unital* -algebra overC and define the
algebra of observablesA(M,g) to be the quotient of this algebra by the following relations:
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~M1! Linearity, @A#(a f 11b f 2)5a@A#( f 1)1b@A#( f 2) for all a,bPC and co-closedf i

PV0
1(M);

~M2! Hermiticity, @A#( f )* 5A( f̄ ) for all co-closedf PV0
1(M);

~M3! Field equations,@A#(ddf )50 for all f PV0
1(M);

~M4! CCRs,@@A#( f 1),@A#( f 2)#52 iE0( f 1 , f 2)1 for all co-closedf iPV0
1(M).

@Note that the one-formsf appearing in axiom~M3! need not be co-closed.#
To see that these algebras are equivalent to those constructed in Refs. 36 and 37, it su

observe that, first, the field operators of Refs. 36 and 37 certainly satisfy the relations abov~see
Proposition 8 of Ref. 36 and Theorem 3 of Ref. 37; note that there are notational differences! and,
second, that the algebras we have constructed admit no nontrivial quotients, as may be s
applying the theory of Sec. 7.1 in Refs. 46 and 76. Accordingly, our algebras are isomorp
those of Refs. 36 and 37.

C. Quantization: Hadamard states

A stateon a * -algebraA is a linear functionalv:A→C which is normalized so thatv(1)
51 and has the positivity propertyv(B* B)>0 for all BPA. However, not all states on
AM(M,g) andA(M,g) are of physical relevance—many are insufficiently regular to permit
definition of the stress-tensor, for example. We will focus attention on the class ofHadamard
states, for which the stress-tensor may be defined by point-splitting techniques. The Had
condition was first stated rigorously for the scalar field by Kay and Wald;47 more recently, Sahl-
mann and Verch32 have studied the Hadamard form for wave equations with metric principal
This does not immediately cover either the Maxwell or Proca equations~which are not hyper-
bolic!. Nonetheless, we may exploit the close relationship of these equations to the one
Klein–Gordon equation to define the notion of Hadamard states for these theories.

To be more specific, a distributionWP(V0
1(M)3V0

1(M))8 is said to be of Hadamard form
if its singular part takes a prescribed form in a causal normal neighborhoodN of some Cauchy
surface inM. This requirement is implemented by requiring thatW2Hk should beCk for each
kPN, whereHk is a prescribed sequence of distributions onN3N. Furthermore—as in the scala
case47,48—if W is a bisolution toh1M2 ~or even a bisolution moduloC`) then the Hadamard
form propagates in the sense thatW will satisfy the above criterion in any causal normal neig
borhood of any Cauchy surface inM ~see Theorem 5.5 in Ref. 32!. It follows that the difference
W2W8 between Hadamard form (h1M2)-bisolutionsW andW8 is everywhere smooth onM
3M. For our purposes, the second crucial property of a Hadamard bisolutionW ~first noted in the
scalar case by Radzikowski29! is that its wave-front set is given explicitly by

WF ~W!5Rª$~x,k;x8,2k8!PṪ* ~M3M! : ~x,k!;~x8,k8! and kPV̄x
1% . ~34!

Here, Ṫ* (M3M) denotes the cotangent bundle ofM3M with its zero section excised, an
(x,k);(x8,k8) if and only if k8 is the parallel transport ofk along a null geodesic connectingx
and x8, to which k is a cotangent vector atx ~if x5x8 this degenerates to the requirement th
k5k8 is null!. We have also usedV̄x

1 to denote the closed cone of future pointing covectors ax.
It is also worth noting that the wave-front set condition essentially characterizes the Had
form @see Remark 5.9~i! in ~Ref. 32!#: if W is a (h1M2)-bisolution (modC`) which obeys Eq.
~34! and hasW( f 1 , f 2)2W( f 2 , f 1)52 iEM( f 1 , f 2) (modC`) thenW is of Hadamard form.

We are now in a position to define the notion of a Hadamard state for the Maxwell and
fields. Our definitions are similar to those employed by Junker and Lledo´35 and~particularly in the
Maxwell case! were influenced by early versions of their work.49

Proca: A state v on AM(M,g) is Hadamard if there exists a Hadamard for
(h1M2)-bisolutionWM such that

v~A~ f 1!A~ f 2!!5WM~ f 1 ,~12M 22 dd! f 2! ~35!
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for all f iPV0
1(M).

Maxwell:A statev on A(M,g) is Hadamard if there exists a Hadamard formh-bisolutionW
such that

v~@A#~ f 1!@A#~ f 2!!5W~ f 1 , f 2! ~36!

for all f iPV0
1(M) with df i50.

Remarks:~a! In neither case is the Hadamard form bisolution uniquely determined by
state.

~b! As stated, these conditions appear global in nature and it is not clear,a priori, that any
states satisfying these definitions exist in general space–times. These concerns will be all
Sec. IV E, where we show that Hadamard states exist on general globally hyperbolic space
~subject to our usual topological restrictions onS!. A key part of this argument is the proof~in
Appendix A! that it suffices for Eqs.~35! and ~36! to hold for f i supported in a causal norma
neighborhood of a Cauchy surface for them to hold for allf i . In combination with an explicit
construction of a Hadamard state in ultrastatic space–times~in Secs. IV B and IV C! this permits
us to apply standard deformation arguments38 to deduce the existence of Hadamard states
general.

~c! Since the two-point functionv (2)( f , f 8)ªv(A( f 1)A( f 2)) for a Hadamard statev of the
Proca field is given by acting on a Hadamard (h1M2)-bisolution with a partial differential
operator, we may use Eq.~34! and the nonexpansion of the wave-front set under such operato
obtain

WF ~v (2)!#R. ~37!

In the Maxwell case, the two-point functionv (2)( f , f 8)ªv(@A#( f 1)@A#( f 2)) is not a distribution
~because it is only defined on co-closed test one-formsf i). However, the two-point function of the
field strengthF( f )ª@A#(df ) is a bidistribution on two-forms satisfying

v~F~ f 1!F~ f 2!!5W~df 1 ,df 2! ~38!

and therefore has wave-front set contained inR.
~d! The Hadamard condition for electromagnetism was discussed in Refs. 33 and 34

context of a Faddeev–Popov method. Here, the action is modified by the addition of a
breaking term and the ghost action, describing the dynamics of a complex, anticommuting
field. In that context, the electromagnetic potential may be smeared with arbitrary one-form
fields and so the corresponding two-point function is a distributional bisolution to the mas
Klein–Gordon equation~at least in the Feynman gauge!. In a Hadamard state~on the algebra
generated by the vector potential and the ghost fields!, this two-point function is required to be o
Hadamard form@thus generalizing~36! to non-co-closedf i ]; in addition, a Ward identity is
required to connect this two-point function to that of the ghost field. This ensures that the c
butions to the stress-energy tensor arising from the gauge-breaking and ghost actions p
cancel in Hadamard states.

IV. HADAMARD STATES IN ULTRASTATIC SPACE–TIMES

To provide a concrete example of the foregoing definitions, we now specialize to the cla
ultrastatic space–times. Although one may quantize the Maxwell and Proca fields directly in
space–times~see, e.g., Refs. 50 and 51! it appears that no attention has been given to whether
resulting Fock vacua are Hadamard. Our approach is rather to construct a distinguished Ha
state and then to observe that the corresponding representations coincide with those o
directly. Our analysis of the ultrastatic case will also lead to a proof of the existence of Hada
states for the Proca and Maxwell fields in general globally hyperbolic space–times as w
providing explicit two-point functions for particular Hadamard states which will be used in
VI. We recall that a space–time (M,g) is said to be ultrastatic ifM5R3S and g51% 2h,
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where (S,h) is a smooth Riemannian manifold. As usual, we will also assume thatS is compact
and the homology groupH1(S) is trivial. We will often denote a point inM by the pair (t,xI ),
with tPR, xI PS.

Our discussion in this section will proceed as follows. We begin with the construction
one-form Hadamard (h1M2)-bisolution WM on (M,g). Next, we construct Fock represent
tions of the Proca and Maxwell fields on (M,g) with the property that the Fock vacuum in ea
case is Hadamard according to the definitions of the preceding section. In each case, theWM plays
the role of the required Hadamard (h1M2)-bisolution. We also discuss the relationship of o
procedure to the Gupta–Bleuler approach and the method of quantization in a fixed gauge.
we explain how these results imply the existence of Hadamard states in general space
Some parts of the analysis are relegated to Appendix B.

A. Construction of a Hadamard „h¿M2
…-bisolution

As is well-known, the Klein–Gordon equation in an ultrastatic space–time is readily red
to the analysis of an elliptic eigenvalue problem. Namely, ifjPV1(M) is a static one-form~i.e.,
independent of the ultrastatic time parametert) then A(t,xI )5e2 ivtj(xI ) solves the one-form
Klein–Gordon equation if and only if

Kj5v2j, ~39!

where the operatorK acts onj(xI )5j0(xI )dt1jS(xI ) (j0PV0(S), jSPV1(S)) by

Kj5~~2DS
s 1M2!j0!dt1~2DS1M2!jS , ~40!

with DS
s andDS denoting the scalar and one-form Laplace–Beltrami operators on (S,h).

To analyzeK further, it is helpful to have various inner product spaces in mind. For eacp,
the spaceVp(S) may be endowed with a positive definite inner product

~u,v !Lp(S)5E
S
ū∧* Sv , ~41!

where* S is the Hodge operator on (S,h). By completingVp(S) with respect to the correspond
ing norm we obtain the Hilbert spaceLp(S) of square integrablep-forms onS. The direct sum
H5L0(S) % L1(S) therefore corresponds to a Hilbert space of static one-forms, on which tK
may be defined as a positive self-adjoint operator@by using Eq.~40! to defineK on V0(S)
% V1(S) and then forming the Friedrichs extension#. BecauseS is compact,K has a purely
discrete spectrum.

From a geometrical viewpoint, however, the Hilbert space inner product is not comp
natural. It is therefore convenient to introduce an indefinite inner product onH by

^̂ juh&&5E
S
jm~xI ! hm~xI ! d volh~xI !5~j0 ,h0!L0(S)2~jS ,hS!L1(S) . ~42!

We will denote the resulting indefinite inner product space~also known as aKrein space! by K. In
addition, we will say that a set$j j : j PJ% of vectors~labeled by the elements of some setJ) in K
is pseudo-orthonormalif ^̂ j j uj j&&561 for eachj and ^̂ j j uj j 8&&50 for all j Þ j 8; the set is said to
be complete if

h5(
j PJ

^̂ j j uj j&& ^̂ j j uh&& j j ~43!

holds for allhPK, with the sum converging in the topology induced by the norm ofH. We will
refer to jPK as timelike, spacelike or null depending on whether^̂ juj&& is positive, negative or
zero, respectively.
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The following result is proved in Appendix B.
Theorem IV.1: Let j j ( j PJ) be a complete, pseudo-orthonormal basis forK such that Kj j

5v j
2j j (v j>0) and setAj (t,xI )5e2 iv j tj j (xI ). Then

WM~ f 1 , f 2!52 (
j PJ:v j .0

1

2v j
^̂ j j uj j&&^Aj , f 1& ^Aj , f 2& ~ f iPV1~S!! ~44!

defines a one-form Hadamard(h1M2)-bisolution WM on (M,g) which is independent of the
particular basis chosen. For M.0, we have

WM~ f 1 , f 2!2WM~ f 2 , f 1!52 iEM~ f 1 , f 2! ~45!

for all f iPV0
1(M); in the case M50, this holds provided the fi are both co-closed.

Our task is now to analyze the eigenproblem~39!. We may identify various families of
eigenfunctions which are more or less convenient for different purposes and which may be
bined to form complete pseudo-orthonormal bases~again, different bases are useful in differe
contexts!. A typical eigenfunction will be denotedj(l, j ), wherel labels the family to which it
belongs andj ~which labels eigenfunctions within families! takes values in a labeling setJ(l).
BecauseK is manifestly positive, the eigenvalues may be expressed as the squares of non-n
quantitiesv(l, j ): thusKj(l, j )5v(l, j )2j(l, j ). The corresponding Klein–Gordon solution

A~l, j !~ t,xI !5e2 iv(l, j )tj~l, j !~xI ! . ~46!

We begin by identifying three eigenfunction families which together form a simultaneo
K-pseudo-orthonormal andH-orthonormal basis. The analysis of Eq.~39! is considerably simpli-
fied by the fact that it decouples into the two equations

~2DS
s 1M2!j05v2j0 , ~47!

~2DS1M2!jS5v2jS . ~48!

Accordingly, choosing w j ( j PJ(S)) to label a complete orthonormal basis
(2DS

s 1M2)-eigenfunctions forL0(S) with corresponding eigenvaluesv(S, j )2, we may identify
a family of ‘‘scalar’’ K-eigenfunctions given by

j~S, j !5w j dt ~ j PJ~S!! . ~49!

~By elliptic regularity, eachw j is in fact smooth.! Clearly thej(S, j ) are pseudo-orthonormal an
timelike in K, as well as beingH orthonormal. For future reference, we note that there is a un
spatially constant eigenfunction volh(S)21/2dt with eigenvalue M2. Writing F j (t,xI )
5e2 iv(S, j )tw j (xI ), the corresponding one-form positive frequency modes are

A~S, j !5F j dt . ~50!

The remaining pseudo-orthogonal modes must have vanishingdt component; that is, they
must lie in the spacelike subspaceL1(S) of H. On this subspace, the inner products ofH andK
differ by an overall sign only, soK-pseudo-orthonormality andH-orthonormality are again iden
tical. SinceH1(S) is trivial, the Hodge decomposition~see, e.g., Prop. 11.7 in Ref. 52! gives
L1(S)5dSV0(S) % dSV2(S), where the decomposition is orthogonal with respect to (•,•)L1

and hencê^•u•&&, and the bars denote closure. As is easily verified, the LaplacianDS is block
diagonal with respect to this decomposition, thus enabling us to seek eigenfunctions within
subspace in turn. If the restriction onH1(S) were removed, there would be a third subspa
consisting of harmonic forms~i.e., the kernel ofDS). In the Proca case, the resulting modes le
to additional terms in various expansions given below and in the quantum inequality, but d
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significantly alter the formalism. By contrast, the incorporation of the harmonic modes in
Maxwell case raises nontrivial issues, to which we hope to return elsewhere.

Now, the ‘‘longitudinal’’ subspacedSV0(S) is clearly spanned by the set of nonvanishi
vectors of the formdj(S, j ) ( j PJ(S)); owing to the relationDSdS5dSDS

s , these must also be
eigenvectors for2DS1M2 with eigenvaluev(L, j )25v(S, j )2. As the only vanishing vector o
this form is obtained from the spatially constant mode, the appropriate labeling set isJ(L)5$ j
PJ(S):v(S, j ).M %. Furthermore, the calculation

^̂ dSw j udSw j 8&&52~dSw j ,dSw j 8!L1(S)52~w j ,dSdSw j 8!L1(S)52~v~S, j !22M2!d j j 8 ~51!

shows that the appropriately normalized longitudinal eigenfunctions are

j~L, j !5~v~S, j !22M2!21/2dSw j ~ j PJ~L !! . ~52!

The corresponding Klein–Gordon modes may also be expressed in the form

A~L, j !5
dF j1 iv~L, j !F j dt

Av~L, j !22M2
. ~53!

All remaining pseudo-orthonormal modes must lie in the coexact subspacedSV2(S). We will
refer to these as the transverse modesj(T, j ) with labeling setJ(T) and eigenfrequenciesv(T, j );
they are necessarily spacelike. In general, thev(T, j )’s will be distinct from thev(S, j )’s ~even in
situations of high symmetry such as the Einstein space–time—see Sec. VI C!.

Applying Theorem IV A, we obtain a Hadamard bisolution

WM~ f 1 , f 2!52 (
lP$S,L,T%

(
j PJ(l)

s~l!

2v~l, j !
^A~l, j !, f 1& ^A~l, j !, f 2& , ~54!

wheres(S)51, s(L)5s(T)521.

B. The Proca field

We now construct a state onAM(M,g) whose two-point function is related toWM by Eq.~35!
and is therefore Hadamard. We begin by finding an expression forWM( f 1 ,(12M 22 dd) f 2). To
this end, we first note that the transverse modesj(T, j ), being coexact, are necessarily co-close
dSj(T, j )50. It follows thatdA(T, j )50, so transverse modes therefore solve the Proca equa
The same cannot be said of the scalar and longitudinal modes, for which

dA~S, j !5 iv~S, j !F j ~55!

for all j PJ(S), and

dA~L, j !52Av~S, j !22M2F j ~56!

for all j PJ(L). It is convenient to change basis, introducing

j~P, j !5
1

M
@v~S, j !j~L, j !2 iAv~S, j !22M2j~S, j !#, ~57!

j~G, j !5
1

M
@Av~S, j !22M2j~L, j !2 iv~S, j !j~S, j !# ~58!
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with labeling setsJ(P)5J(G)5J(L). The two sets are pseudo-orthonormal, withj(P, j ) and
j(G, j ) being spacelike and timelike, respectively. By construction, the ‘‘scalar Proca’’ m
A(P, j )(t,xI )5e2 iv(P, j )tj(P, j )(xI ) are co-closed and therefore obey the Proca equation. We
note the expressions

A~P, j !5
1

M
@v~S, j !A~L, j !2 iAv~S, j !22M2A~S, j !#

5
iM

Av~S, j !22M2 FF j dt2 i
v~S, j !

M2 dF j G . ~59!

On the other hand, the corresponding ‘‘gradient’’ modesA(G, j ) have

A~G, j !5M 21 dF j ~60!

and therefore have nonvanishing coderivative

dA~G, j !5MF j . ~61!

From Theorem IV A, we know thatWM is basis independent and may therefore be expres
in terms of theA(P, j ), A(G, j ), A(T, j ) and the unique spatially constant mode. Of these,
scalar Proca and transverse modes are left invariant by the operator (12M 22 dd), while the
spatially constant mode and the gradient modes are annihilated. Accordingly, withWM expressed
in the new basis, we find

WM~~12M 22 dd! f 1 , f 2!5WM~ f 1 ,~12M 22 dd! f 2!

5 (
lP$T,P%

(
j PJ(l)

1

2v~l, j !
^A~l, j !, f 1& ^A~l, j !, f 2& . ~62!

As a consequence of the first equality and Eq.~45! we see that

WM~ f 1 ,~12M 22 dd! f 2!2WM~ f 2 ,~12M 22 dd! f 1!52 iEM~ f 1 ,~12M 22 dd! f 2!

52 iDM~ f 1 , f 2!, ~63!

which in turn leads to the expansion

DM~ f 1 , f 2!5 (
lP$T,P%

(
j PJ(l)

1

2v~l, j !
~^A~l, j !, f 1& ^A~l, j !, f 2&2^A~l, j !, f 2& ^A~l, j !, f 1&! .

~64!

To complete the analysis, we define smeared fields

A~ f !5 (
lP$T,P%

(
j PJ(l)

1

A2v~l, j !
~^A~l, j !, f & a~l, j !1^A~l, j !, f & a~l, j !* ! ~65!

on the Fock spaceFM generated by operatorsa(l, j ) obeying@a(l, j ),a(l8, j 8)* #5dll8d j j 81. It
is now easily verified that theA( f ) provide a representation of axioms~P1!–~P4! on ~a dense
domain! FM . Thus the Fock vacuumu0& defines a state onAM(M,g) with two-point function

^0uA~ f 1!A~ f 2!u0&5WM~ f 1 ,~12M 22 dd! f 2! . ~66!

Accordingly, this state is Hadamard. Acting on the vacuum with smeared fields, we obtain a
set of Hadamard states inFM .
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C. The Maxwell field

We now repeat the above analysis for the Maxwell field. In this instance, we begin by fin
an expression forW0( f 1 , f 2) for co-closedf i . Since theA(P, j ) andA(G, j ) diverge asM→0,
we revert to the scalar, longitudinal, and transverse modes of Sec. IV A. Now, from Eqs.~50! and
~53!, it is simple to shoŵ A(L, j ),F&5 i ^A(S, j ),F& for all co-closedF. This has the effect tha
the contributions toW0( f 1 , f 2) from the scalar and longitudinal modes cancel and so only
contributions from the transverse modes:

W0~ f 1 , f 2!5 (
j PJ(T)

1

2v~T, j !
^A~T, j !, f 1& ^A~T, j !, f 2& , ~67!

for any co-closedf i . Defining

@A#~ f !5 (
j PJ(T)

1

A2v~T, j !
~^A~T, j !, f & a~T, j !1^A~T, j !, f & a~T, j !* ! ~68!

on the Fock spaceF0 generated by operatorsa(T, j ) obeying@a(T, j ),a(T, j 8)* #5d j j 81, we may
again verify that the@A#( f ) provide a representation of axioms~M1!–~M4! on ~a dense domain
in! F0 . Thus the Fock vacuumu0& defines a state onA(M,g) with two-point function

^0u@A#~ f 1!@A#~ f 2!u0&5W0~ f 1 , f 2! ~69!

for all co-closedf i and is therefore Hadamard, as are states obtained from it by acting
polynomials in smeared fields.

D. Comparison with other quantization methods

It is instructive to compare our approach to two more familiar methods of quantizatio
particular, the Gupta–Bleuler formalism50,53,54and~for electromagnetism! quantization in a fixed
gauge. A detailed presentation of these methods for electromagnetic fields in static space
can be found in Ref. 27. We will confine our remarks to the Maxwell case, but analogous
ments apply to the Proca field.

As is well-known, the Gupta–Bleuler procedure starts by adding a gauge breaking term
Maxwell Lagrangian. By choosing the coefficient of this term appropriately, the field equa
become precisely those of the massless Klein–Gordon equation.~This is sometimes known as th
Feynman gauge.! This equation is then quantized using an indefinite inner product space@effec-
tively the symmetric Fock spaceF~K! over our Krein spaceK#. The physical Hilbert space is the
selected by the requirement that they be annihilated by the positive frequency part of the
gence of the resulting field operators.

In our approach the various ingredients of the Gupta–Bleuler formalism appear in a dif
way. We start from the Hadamard bisolutionW0 , which is in fact the two-point function of the
static vacuum of the Gupta–Bleuler theory in the indefinite spaceF~K!. In our approach, however
the restriction to the physical state space occurs at the one-particle level: the Hadamard co
and the restriction to co-closed test one-forms pick out a preferred Hilbert subspace ofK, namely,
the subspaceHphys spanned by the transverse modesj(T, j ). The quantum fields are then give
immediately as operators on the symmetric Fock spaceF05F(Hphys) over this Hilbert space. The
key advantage of our approach over the Gupta–Bleuler method is, of course, that it is not
a particular notion of positive frequency and is applicable in general globally hyperbolic sp
times.

An alternative to the Gupta–Bleuler approach is to fix a gauge from the outset. Employin
Coulomb gauge,27 we would seek modesAj obeyingdAj50 with vanishingdt component. These
modes are easily seen to constitute the transverse familyA(T, j ) and we essentially recover th
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field operators of Eq.~68!, but without the restriction to co-closedf i . By contrast, no gauge is
ever chosen in our approach and the transverse modes emerge naturally from the Ha
condition in combination with the restriction to co-closedf i .

E. Existence of Hadamard states in globally hyperbolic space–times

Once the existence of Hadamard states has been established in ultrastatic space–tim
ments due to Fulling, Narcowich, and Wald38 may be used to deduce their existence in gene
globally hyperbolic space–times obeying our usual topological restrictions. We illustrate th
the Proca field, indicating the slight differences required in the Maxwell case.

Let (M,g) and (M8,g8) be globally hyperbolic space–times and suppose that there i
isometryc:N→N8 between causal normal neighborhoodsN andN8 of Cauchy surfaces inM
andM8, respectively. Then any statev on AM(M,g) determines a statev8 on AM(M8,g8) as
follows: given any f 1 ,...,f nPV0

1(M8) choose f̃ 1 ,...,f̃ nPV0
1(N8) such that f̃ k2 f kP(2dd

1M2)V0
1(M8). @The existence of suchf̃ k follows from Proposition A 3~a!.# Now define

v8~A8~ f 1!¯A8~ f n!!5v~A~c* f̃ 1!¯A~c* f̃ n!! , ~70!

wherec* denotes the pull-back,c* f 5 f sc and we have usedA8( f ) to denote field operators in
AM(M8,g8). It is easily verified thatv8 is a state onAM(M8,g8). Moreover, ifv is Hadamard
then the isometry ensures thatv8(A( f 1)A( f 2))5W( f 1 ,(12M 21 dd) f 2) for all f iPV0

1(N8),
whereW is a (h1M2)-bisolution Hadamard bisolution onN3N. It then follows from Theorem
A.1 thatv8 is Hadamard.

Given a globally hyperbolic space–time (M,g), we may now employ a construction de
scribed in Ref. 38 to obtain a globally hyperbolic space–times (M8,g8) and (M 9,g9) so that~i!
(M9,g9) is ultrastatic;~ii ! M8 contains Cauchy surfacesS18 andS28 with causal normal neigh-
borhoodsN18 andN28 so thatN18 ~respectively,N28) is isometric to a causal normal neighborho
of a Cauchy surface in (M,g) @respectively, (M9,g9)]. As all the Cauchy surfaces involved ar
therefore homeomorphic, (M8,g8) and (M9,g9) will obey our topological restrictions if (M,g)
does. Starting with a Hadamard state on the ultrastatic space–time (M9,g9) we may induce
Hadamard states on (M8,g8) and hence on (M,g). ThusAM(M,g) admits Hadamard states.

An analogous argument applies in the Maxwell case. The only differences are that a
functions must now be co-closed, we use part~b! of Proposition A instead of part~a!, and use the
appropriate form of the Hadamard condition.

V. A QUANTUM WEAK ENERGY INEQUALITY

We now proceed to prove our quantum inequality. Lett °g(t) be a smooth timelike curve in
M parametrized by its proper timetPR, and letG be a tubular neighborhood ofg. InsideG let
$v i

ru i 50,1,2,3% be an orthonormal frame obeyinggrs5h i j v i
rv j

s and with the property that the
restriction ofv0 to g is the four-velocityus(t)5(dg(t)/dt)s of the curve:v0

s(g(t))5us(t).
~See Ref. 25 for an explicit construction of such a frame.!

The first step is to construct the quantized energy density measured along the curv
starting point is the classical stress-energy tensor, which for the Proca and Maxwell fields
the form

Tmn5 1
4 gmnFrsF rs2FmrF n

r1M2~AmAn2 1
2 gmnArA r!, ~71!

with M50 in the Maxwell case. The energy density along the curve is given
Tmn(g(t))um(t)un(t); we may extend this quantity off the curve by definingT(x)
5Tmn(x)v0

m(x)v0
n(x). A little manipulation shows that

T~x!5
1

4 (
i 50

3

(
j 50

3

~v i
rv j

sFrs!21
1

2
M2(

i 50

3

~v i
rAr!2. ~72!
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We may rewriteT in terms of forms with the aid of the one-form basis$Vi : i 50,1,2,3% dual to the
v i , given byVm

i 5h i j gmnv j
n . Writing Wi j 5Vi∧Vj , we find

T~x!5
1

4 (
i 50

3

(
j 50

3

@* ~F∧* Wi j !#21
1

2
M2(

i 50

3

@* ~A∧* Vi !#2 , ~73!

which is clearly the restriction to the diagonalx85x of

T~x,x8!5
1

4 (
i 50

3

(
j 50

3

@* ~F∧* Wi j !#ux@* ~F∧* Wi j !#ux8

1
1

2
M2(

i 50

3

@* ~A∧* Vi !#ux@* ~A∧* Vi !#ux8 . ~74!

The functionT(x,x8) provides a point-split classical energy density, related to the true en
density on the curveg by T(g(t))5T(g(t),g(t)). Moreover, forf , f 8PD(M) we see that

E
M3M

T~x,x8! f ~x! f 8~x8!d volg~x!d volg~x8!

5
1

4 (
i 50

3

(
j 50

3

^F,Wi j f &^F,Wi j f 8&1
1

2
M2(

i 50

3

^A,Vi f &^A,Vi f 8&

5
1

4 (
i 50

3

(
j 50

3

^A,d~Wi j f !&^A,d~Wi j f 8!&1
1

2
M2(

i 50

3

^A,Vi f &^A,Vi f 8& . ~75!

The advantage of this reformulation is that it is easily quantized: given a Hadamard statev on
AM(M,g) for the Proca field, orA(M,g) for the Maxwell field we simply replace occurrences
^A,F&^A,F8& with the two-point functionv (2)(F,F8) thus obtaining a scalar bidistributio
^T&vPD8(M3M) given by

^T&v~ f , f 8!5
1

4 (
i 50

3

(
j 50

3

v (2)~d~Wi j f !,d~Wi j f 8!!1
1

2
M2(

i 50

3

v (2)~Vi f ,Vi f 8! . ~76!

~Note that in the Maxwell case, the above expression reduces to its first term, in whic
arguments of the two-point function are co-closed.!

Now suppose that a reference Hadamard statev0 is specified. Since the difference betwe
Hadamard form (h1M2)-bisolutions is smooth,

^:T:&v5^T&v2^T&v0
~77!

is easily seen to be a smooth function onM3M. Thus we may unsplit points to define th
normal ordered energy density alongg by

^:r:&v~t!5^:T:&v~g~t!,g~t!! . ~78!

We will need three further observations. First,^:T:&v is symmetric as a consequence of t
commutator axiom~P4!/~M4!. Second,̂ T&v is a distribution ofpositive type, i.e., ^T&v( f̄ , f )
>0 for all f PD(M). This is ultimately a consequence of the positivity propertyv(B* B)>0 and
the hermiticity axiom~P2!/~M2!. Third, the wave-front set of̂T&v obeys

WF ~^T&v!#R . ~79!
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In the Proca case, this is a straightforward consequence of the nonexpansion of the wave-f
under partial differential operators. In the electromagnetic case, the key point is
(F,G)°v (2)(dF,dG) is a distribution~the two-point function of the field strength! whose wave-
front set is known to be contained inR.

Now consider the pull-backw* ^T&v of the bidistribution^T&v induced by the smooth ma
w(t,t8)5(g(t),g(t8)). This quantity is formally the unrenormalized energy density, with po
split alongg. We now claim thatw* ^T&v is a well-defined distribution of positive type. To verif
this, we first note thattw8(t,t8):T(g(t),g(t8))

* (M3M)→R is the linear map

tw8~t,t8!:~k,k8!°~ur~t!kr ,us8~t8!ks8
8 ! ~80!

from which it follows thatw has the following set of normals:

Nw5$~g~t!,k;g~t8!,k8!PT* ~M3M!:ur~t!kr5us8~t8!ks8
8 50% . ~81!

Second, we note that all the covectors appearing in WF (^T&v) are null, and therefore canno
annihilate any nonzero timelike vector. Accordingly, the intersection WF (^T&v)ùNw is empty and
the pull-backw* ^T&v exists by Theorem 2.5.118 in Ref. 55~in which the set of normals is als
defined!. Theorem 2.2 of Ref. 24 guarantees that it inherits the positive type property.

Theorem 2.5.118 in Ref. 55 also asserts that the wave-front set ofw* ^T&v obeys
WF (w* ^T&v),w* WF (^T&v). Thus, we have (t,z;t8,2z8)Pw* WF (^T&v) only if

~z,2z8!5~ tw8~t,t8!!~k,2k8!5~ur~t!kr ,2us8~t8!ks8
8 ! . ~82!

Since the vectorsus(t), us8(t8) and the covectorsks , ks8
8 are all future pointing their contrac

tions will always be positive. It will therefore be the case thatz,z8.0.
Summarizing,w* ^T&v is a well-defined distribution inD8(R2), which is of positive type and

has a wave-front set obeying

WF ~w* ^T&v!,$~t,z;t8,2z8!u z,z8.0% . ~83!

We are now in a position to state and prove our quantum weak energy inequality. The proo
fact essentially identical to that given for the scalar field in Ref. 24; it is given here for comp
ness.

Theorem V.1: Let v and v0 be Hadamard states onAM(M,g) for the Proca field, or
A(M,g) for the electromagnetic field. Define the point-split normal ordered energy density^:T:&v

relative tov0 by Eq. (77) and the normal ordered energy density^:r:&v(t) by Eq. (78). Then the
quantum inequality

E dt~g~t!!2^:r:&v~t!>2E
0

` da

p
@~g^ g!w* ^T&v0

#∧~2a,a! ~84!

holds and the right-hand side is finite for all real-valued gPC0
`(R).

Proof: Letting gPC0
`(R) be a real valued function of proper timet, we have
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E dt~g~t!!2^:r:&v~t!5E dt ~g~t!!2w* ^:T:&v~t,t!

5E dtE dt8 g~t!g~t8!d~t2t8!w* ^:T:&v~t,t8!

5E
2`

` da

2p E dtE dt8 g2a~t!ga~t8!w* ^:T:&v~t,t8!

5E
2`

` da

2p
w* ^:T:&v~g2a ^ ga!5E

0

` da

p
w* ^:T:&v~ga ^ ga!, ~85!

wherega(t)5g(t)eiat and we used the symmetry propertyw* ^:T:&v(ga ^ ga)5w* ^:T:&v(ga

^ ga) in the last step. Using the definition of^:T:&v and the fact thatw* ^T&v is of positive type
we have

E dt ~g~t!!2w* ^:T:&v~t,t!>2E
0

` da

p
w* ^T&v0

~ga ^ ga!. ~86!

Settinge(a,a8)(t,t8)5ei (at1a8t8), we note that the integrand in the above expression ma
rewritten as

w* ^T&v0
~ga ^ ga!5w* ^T&v0

~~g^ g!e(2a,a)!

5@~g^ g!w* ^T&v0
#~e(2a,a)!

5@~g^ g!w* ^T&v0
#∧~2a,a! ~87!

by our definition for the Fourier transform. Thus we obtain Eq.~84!.
The fact that the right-hand side of Eq.~84! is convergent follows from an analysis of th

wave-front set. From the definition of the wave-front set, it is obvious that

WF ~~ f 1^ f 2!w* ^T&v0
!#WF ~w* ^T&v0

! ~88!

for any f iPC0
`(R). Thus the singular directions for (f 1^ f 2)w* ^T&v0

are contained in$(z,
2z8)u z,z8.0%. In consequence, the Fourier transform@(g^ g)w* ^T&v0

#∧(2a,a) decays rap-
idly as a→1`. The integral on the right-hand side of Eq.~84! therefore converges thereb
providing a finite bound for allgPC0

`(R). h

VI. EXAMPLES

A. Minkowski space–time

Although Minkowski space lies outside the discussion of Sec. III because its Cauchy su
are noncompact, the arguments presented in Sec. V apply equally well to the two-point fun
arising from standard Minkowski quantizations of the Maxwell and Proca fields based o
Poincare´ invariant vacua. As we will see, these vacua are Hadamard; furthermore the topolo
the Cauchy surface played no role in the proof of our QWEIs. We refer the reader to Ref. 56~and
references therein! for a careful discussion of the quantization of constrained systems in
context of algebraic field theory in Minkowski space.

We illustrate our QWEIs for the case of an inertial worldlineg, using the usual Poincar´
invariant vacua as reference states. Boosting to the rest frame ofg, we adopt coordinates in which
g(t)5(t,x0 ,y0 ,z0) for some fixed (x0 ,y0 ,z0)PR3. We also adopt the orthonormal framev i

m

5(]/]xi)m for i 50, . . . ,3.
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Let us begin by recalling that the vacuum two-point function for thescalar Klein–Gordon
equation is given by

WM
(s)~x,x8!5E

R3

d3k

~2p!3

1

2v
e2 ikl (x2x8) l

, ~89!

wherekj5(v,k) andv5(uku21M2)1/2. This is of course a Hadamard (h1M2)-bisolution, and
it may be used to define a one-form Hadamard (h1M2)-bisolution by

WM~ f , f 8!52h i j WM
(s)~ f i , f j ! . ~90!

@The overall sign is determined by the requirement that—anticipating the commutation rel
~P4!/~M4!—the antisymmetric partWM( f , f 8)2WM( f 8, f ) should be equal to2 iEM( f , f 8)
52 ih i j EM

(s)( f i , f j ).]
Turning to the Proca field, the Poincare´ invariant vacuum two-point function57

v0
(2)~ f , f 8!52E

R3

d3k

~2p!3

1

2v S h i j 2
kikj

M2 D f̂ i~2k! f̂ j~k! ~91!

is easily seen to be of the form

v0
(2)~ f , f 8!5WM~ f ,~12M 22 dd! f 8! ~92!

and is therefore Hadamard. We may also write the vacuum two-point function in terms
kernel

v0
(2)i j ~x,x8!52E

R3

d3k

~2p!3

1

2v S h i j 2
kikj

M2 De2 ikl (x2x8) l
. ~93!

It is not a difficult calculation to show that the point-split vacuum energy density along
worldline g is

w* ^T&v0
~t,t8!5

3

2 ER3

d3k

~2p!3 ve2 iv(t2t8)5
6p

~2p!3 E
0

`

dk k2v~k!e2 iv(k)(t2t8) , ~94!

where in the last step, we have changed to spherical polar coordinates in the momentum i
tion, performed the angular integrals, and writtenv(k)5Ak21M2. This expression can be use
to evaluate the right-hand side of Eq.~84!, giving

E dt ^:r:&v~t!g~t!2>2E
0

` da

p
@~g^ g!w* ^T&v0

#∧~2a,a!

52
6

~2p!3 E
0

`

daE
0

`

dk k2v~k!uĝ~a1v~k!!u2 .

Before commenting on the above expression, we wish to perform a similar analysis fo
electromagnetic field. The vacuum two-point function for electromagnetism in the Coulomb g
is given by

v0
(2)i j ~x,x8!52E

R3

d3k

~2p!3

1

2v
hi j e2 ikl (x2x8) l

, ~95!

wherev5uku and
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hi j 5H h i j 1kikj /v2 for iÞ0Þ j ,

0 otherwise.
~96!

It is straightforward to check that, for co-closed test one-formsf , f 8 @i.e., ki f̂ i(k)50] we have
v0

(2)( f , f 8)5W0( f , f 8) and thatv0 is therefore Hadamard. An identical computation to the ab
now reveals that

w* ^T&v0
~t,t8!5E

R3

d3k

~2p!3 ve2 iv(t2t8)5
4p

~2p!3 E
0

`

dk k2v~k!e2 iv(k)(t2t8) , ~97!

and hence

E dt ^:r:&v~t!g~t!2>2
4

~2p!3 E
0

`

daE
0

`

dk k2v~k!uĝ~a1v~k!!u2 . ~98!

From this point on, the Proca and electromagnetic fields can be treated simultaneously
two bounds take the common form~settingM50 for electromagnetism!

E dt ^:r:&v~t!g~t!2>2sIM~g! , ~99!

wheres is the number of spin degrees of freedom for the field, i.e.,s52 for Maxwell ands53 for
Proca, and

I M~g!5
2

~2p!3 E
0

`

daE
0

`

dk k2v~k!uĝ~a1v~k!!u2 . ~100!

This integral can be further simplified by making an additional change of variables,

u5a1v~k!,
~101!

v5v~k! ,

whereupon the above integral can be rewritten as

I M~g!5
2

~2p!3 E
M

`

duuĝ~u!u2E
M

u

dv v2Av22M2. ~102!

In fact, the scalar field also satisfies Eq.~99! with s51.22 Thus, in Minkowski space, the QWE
bounds for scalar, Proca and Maxwell fields differ only by a factor equal to the number of
states~as already noted for the electromagnetic field in Ref. 27!. However, in more general curve
space–times the scalar and one-form fields can have different eigenfrequency spectra lea
very different quantum weak energy inequalities for each field.

B. Ultrastatic space–times

We now turn to the class of examples in which the space–time is ultrastatic~with compact
Cauchy surface obeying our usual requirements! and the energy density is sampled along a sta
worldline, using the ultrastatic vacua of Sec. IV as reference states. In this case, the qu
inequality Eq. ~84! takes a remarkably simple form. Recall that, for both the Proca and
Maxwell fields, the two-point function of the vacuum state can be written compactly as

v (2)~F,F8!5 (
l physical

(
j PJ(l)

1

2v~l, j !
^A~l, j !,F& ^A~l, j !,F8&, ~103!
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wherel ranges only over the physical families of modes, i.e.,lP$T,P% for Proca, butl5T only
for Maxwell. In the Maxwell case, we restrict attention to co-closed test one-formsF and F8.
Using the mode expansion~103! for the two point function, and recalling thatF5dA, it is not
difficult to show that77

@~g^ g!w* ^T&v#∧~2a,a!5E dtE dt8 g~t! g~t8! e2 ia(t2t8)

3 (
l physical

(
j PJ(l)

N~l, j !~g~t!,g~t8!! , ~104!

where

N~l, j !~x,x8!5
1

2v~l, j ! H 1

4 (
p50

3

(
q50

3

@Fmn~l, j !vp
mvq

n#~x! @Frs~l, j !vp
rvq

s#~x8!

1
1

2
M2(

p50

3

@Am~l, j !vp
m#~x! @Ar~l, j !vp

r#~x8!J . ~105!

Now if we choose a static worldlineg(t)5(t,x0), then

N~l, j !~g~t!,g~t8!!5e2 iv(l, j )(t2t8) T~l, j ! , ~106!

where

T~l, j !5
1

2v~l, j ! H 1

4 (
p50

3

(
q50

3

u@Fmn~l, j !vp
mvq

n#~g~t0!!u21
1

2
M2(

p50

3

u@Am~l, j !vp
m#~g~t0!!u2J

~107!

is the classical energy density per mode at the spatial position of the observer’s worldline.@Note
that the leading factor of (2v(l, j ))21 appears because our modes were normalized using
L2-inner product onS, rather than the symplectic inner product.# The most notable point to be
made here is thatT(l, j ) is t independent because thee2 ivlt dependence in the modes is remov
by taking the magnitude of the complex functions. Thus Eq.~104! becomes

@~g^ g!w* ^T&v#∧~2a,a!5 (
l physical

(
j PJ(l)

uĝ~a1v~l, j !!u2T~l, j ! , ~108!

and the quantum weak energy inequality for static observers in ultrastatic space–times be

E dt~g~t!!2^:r:&v~t!>2E
0

` da

p (
l physical

(
j PJ(l)

uĝ~a1v~l, j !!u2T~l, j !. ~109!

As we will see, the above form turns out to be calculationally convenient in some set
However, we also note that the quantum weak energy inequality may be written

E dt~g~t!!2^:r:&v~t!>2E
0

`

du uĝ~u!u2Q~u!, ~110!

where

Q~u!5
1

p (
l physical

(
j PJ(l)

s.t. v(l, j )<u

T~l, j ! ~111!
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measures the maximum energy density available if no mode with frequency greater thau is
excited. The analysis carried out in Sec. 5 of Ref. 24 for the scalar field may be adapted to
that Q(u) is positive and polynomially bounded asu→`. Several other systems obey quantu
inequalities of this form, which motivated the study of related conditions for general qua
dynamical systems in Ref. 58. In the terminology of that paper, the ultrastatic vacuum
constructed here fulfill alimiting static QWEI. We expect that the analysis of Ref. 58 would app
equally well to the Proca and Maxwell fields, thereby establishing links between quantu
equalities and the thermodynamic properties of these fields.

C. Static Einstein universe

A nice example of the ultrastatic quantum inequality is provided by the static Einstein
verseR3S3 with line element

ds25dt22a2@dx21sin2 x~du21sin2 udw2!#. ~112!

Here a is the radius of the universe and~x,u,w! are spherical polar coordinates on the u
three-sphere. Various authors have studied the electromagnetic mode functions in the E
universe59–61 and it turns out that essentially the same ansatz can be used to obtain the mo
the Proca field.

We know from Sec. IV that the scalar Proca modes are completely specified by finding
solutions to the massive, minimally coupled scalar wave equation (hs1M2)F50. A complete set
of suitably normalized positive frequency mode solutions in the Einstein universe is given b62,63

Fnlm~x!5a23/2Pnl~x! Ylm~u,w! e2 isnt, ~113!

whereYlm(u,w) are the standard spherical harmonics on a two-sphere,64 Pnl(x) can be written in
terms of Gegenbauer polynomialsCh

l(x)65 as

Pnl~x!5
l ! 2 l 1 1/2A~n2 l !! ~n11!

Ap~n1 l 11!!
sinl x Cn2 l

l 11~cosx!, ~114!

and the frequency of the modes is

sn5An~n12!

a2 1M2. ~115!

Here, the primary quantum numbern ranges over the non-negative integersn50,1,2, . . . . For a
given n there are (n11)2 harmonic states with the same frequency labeled by the quan
numbers,l 50,1,. . . ,n andm52 l ,2 l 11, . . . ,0, . . . ,l 21,l . However, the casen5 l 5m50 cor-
responds to the spatially constant mode; thus the labelling set for the scalar Proca modes g
Eq. ~59! is n51,2,... , withl andm as before.

On the other hand, the family of transverse modes breaks up into two subfamilies:61 the
magneticJ-pole modes taking the form

A~M ,n,l ,m!5* d~Cnlm dt∧dx! , ~116!

and the electricJ-pole modes,

A~E,n,l ,m!5* dS a

n
A~M ,n,l ,m!∧dt D , ~117!

where the scalar functionsCnlm obey
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S hs1
2 cosx

a2 sinx
]x1M2DCnlm50. ~118!

The positive frequency mode solutions to this partial differential equation are

Cnlm~x!5A2an Vnl~x! Ylm~u,w! e2 ivnt, ~119!

where

Vnl~x!5
l ! 2 lA~n2 l 21!!

Ap l ~ l 11!~n1 l !!
sinl 11 x Cn2 l 21

l 11 ~cosx! ~120!

and the frequency of the modes is given by

vn5An2

a2 1M2. ~121!

Here the quantum numbers range over a different set of allowed values. The primary qu
numbern ranges over the integersn52,3, . . . . For a givenn there aren221 harmonic states
with the same frequency labeled by the quantum numbers,l 51,2,. . . ,n21 and m52 l ,21
11, . . . ,0, . . . ,l 21,l . We stress that both transverse subfamilies have an energy spectrum
by Eq. ~121!, which differs from that of the scalar Proca modes. There is actually a more co
nient basis of transverse mode solutions given by

A~6,n,l ,m!5
1

&
@A~M ,n,l ,m!6A~E,n,l ,m!# , ~122!

which are simultaneous eigenfunctions ofdS* S and2DS1M2 ~which commute!. Thel5M or
E families of modes are, roughly speaking, the linearly polarized solutions of the field whil
l51 or 2 modes are the circularly polarized solutions.

For the interested reader, we also state the component form of the three families of ph
modes. The two transverse polarizations of the field are

Am~M ,n,l ,m!5
1

a S 0, 0,2
1

sinu
]w , sinu]uDCnlm ~123!

and

Am~E,n,l ,m!5
1

an S 0,
l ~ l 11!

sin2 x
, ]x]u , ]x]wDCnlm , ~124!

while the scalar Proca modes are

Am~P,n,l ,m!5
asn

2

MAn~n12!
S n~n12!

isna2 , ]x , ]u , ]wDFnlm . ~125!

One may readily verify that the two transverse modes and the scalar Proca mode all ha
propertydA(l,n,l ,m)50, for l5M ,E,P and therefore solve the Proca equation~19!. Moreover,
these modes obey the~pseudo!-orthonormality conditions of Sec. IV A.

Since the Einstein space–time is ultrastatic, we can find the quantum weak energy ine
from Eq. ~109!. To begin, let the worldline for a stationary observer be given byg(t)
5(t,x,u,w) where~x,u,w! are the coordinates of a fixed point in space. An orthonormal bas
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the neighborhood aroundg is given byv i
m5Augmmu(]/]xi)m ~no sum onm!. All of the work is in

the evaluation of the classical energy density per mode,T(l,n,l ,m), defined by Eq.~107!, which,
in the Einstein space–time takes the form

T~l, j !5
1

4v~l, j ! F uF 01u2

a2 1
uF 02u2

a2 sin2 x
1

uF 03u2

a2 sin2 x sin2 u
1

uF 12u2

a4 sin2 x
1

uF 13u2

a4 sin2 x sin2 u

1
uF 23u2

a4 sin4 x sin2 u
1M2S uA 0u21

uA 1u2

a2 1
uA 2u2

a2 sin2 x
1

uA 3u2

a2 sin2 x sin2 u D G . ~126!

Beginning with the 6 modes, it is straightforward to calculate the field stren
F(6,n,l ,m)5dA(6,n,l ,m). Inserting the field strength into the above expression, and u
]xCnlm5]xCnlm, we arrive at

T~6,n,l ,m!5
vn

4a4n2 F S l ~ l 11!

sin2 x D 2

uCnlmu21
1

sin2 x S u]x]uCnlmu21
1

sin2 u
u]x]wCnlmu2D

1
n2

sin2 x S u]uCnlmu21
1

sin2 u
u]wCnlmu2D G . ~127!

Note that the1 and2 modes have equal energy densities. Next, we use the definition Eq.~119!
of the scalar functionsCnlm and two identities. The first identity,

u]uYlmu21
1

sin2 u
u]wYlmu25

1

2
DS2uYlmu21 l ~ l 11!uYlmu2 ~128!

is for the spherical harmonics where

DS25
1

sinu
]u sinu]u1

1

sin2 u
]f

2 ~129!

is the two-sphere Laplacian. The second identity is

l ~ l 11!

sin2 x
Vnl

2 1~]xVnl!
25S n21

1

2
]x

2DVnl
2 , ~130!

which follows from the ordinary differential equation satisfied byVnl(x). Using both of these we
arrive at

T~6,n,l ,m!5
vn

2a3n H l ~ l 11!

sin2 x S 2n21
1

2
]x

2DVnl
2 uYlmu21

1

2sin2 x
@~]xVnl!

21n2Vnl
2 #DS2uYlmu2J .

~131!

Because the frequencyvn is independent ofl andm, we can sum over these labels, obtaini
considerable simplification from the summation theorems for the spherical harmonics and G
bauer polynomials. In the case of the spherical harmonics it is well-known that64

(
m52 l

l

uYlm~u,w!u25
2l 11

4p
, ~132!

which reduces the sum over alll andm of T(6,n,l ,m) to
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(
l 51

n21

(
m52 l

1 l

T~6,n,l ,m!5
vn

8pa3n (
l 51

n21
~2l 11!l ~ l 11!

sin2 x S 2n21
1

2
]x

2DVnl
2

5
v

8pa3n

1

sin2 x S 2n21
1

2
]x

2D sin2 x (
l 51

n21
~2l 11!l ~ l 11!

sin2 x
Vnl

2 . ~133!

Using the summation theorem for the Gegenbauer polynomials,

(
l 51

n21
~2l 11!l ~ l 11!

sin2 x
Vnl

2 ~x!5
1

p Fn2
1

n S sinnx

sinx D 2G , ~134!

@~Eq. 8.934.3! of Ref. 65# we finally obtain

(
l 51

n21

(
m52 l

1 l

T~6,n,l ,m!5
~n221!vn

4p2a3 . ~135!

It is noteworthy that this expression is exactly the total zero-point energy ofn221 harmonic
oscillators at frequencyvn , divided by the spatial volume 2p2a3 of the Einstein universe.

The contribution from the scalar Proca modes is calculated in much the same manne
only difference is that we make use of the following two identities:

~]xPnl!
21

l ~ l 11!

sin2 x
Pnl

2 5n~n12!Pnl
2 1

1

2 sin2 x
]x sin2 x]xPnl

2 , ~136!

which follows from the ordinary differential equation satisfied byPnl and

(
l 50

n

~2l 11!Pnl
2 ~x!5

2~n11!2

p
, ~137!

which again follows from the summation theorem for the Gegenbauer polynomials. For the
mode we find

(
l 50

n

(
m52 l

1 l

T~P,n,l ,m!5
~n11!2sn

4p2a3 . ~138!

Again we have found the zero-point energy times the multiplicity divided by the spatial vol
Finally, let s be the total number of spin degrees of freedom for the field, i.e.,s52 for

Maxwell ands53 for Proca. Substituting Eqs.~135! and ~138! into Eq. ~109!, we can write the
quantum weak energy inequality in the Einstein space–time for an arbitrary real-value
function g(t)PC0

`(R) as

E dt ^:r:&v~t!g~t!2>2
2

4p2a3 (
n52

`

~n221!vnE
0

` da

p
uĝ~a1vn!u2

2
~s22!

4p2a3 (
n51

`

~n11!2snE
0

` da

p
uĝ~a1sn!u2 , ~139!

which holds for all Hadamard statesv.
By suitably restricting the class of allowed states~if necessary! this bound may be extended t

noncompactly supportedg whose Fourier transforms have sufficiently rapid decay.78 For electro-
magnetism, the above bound was evaluated for a Lorentzian test function in Ref. 27; here w
treat the example of a Gaussian test function in both the electromagnetic and Proca cases.
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g~t!5p21/4t0
21/2expS 2

1

2

t2

t0
2D , ~140!

the weight functiong(t)2 is a normalized Gaussian. Using the Fourier transform ofg,

ĝ~a!5p1/4~2t0!1/2expS 2
a2t0

2

2 D , ~141!

it is now possible to calculate

E
0

`

dauĝ~a1v!u25p erfc~vt0! , ~142!

where erfc(x) is the complementary error function. Accordingly, the quantum weak energy
equality for this test function is

E dt ^:r:&v~t!g~t!2>2
3s

64p2t0
4 Ss~t0 /a!, ~143!

where the scale function

Ss~z!5
16

3
z4F2

s (
n52

`

~n221!An21M2a2 erfc~An21M2a2z!

1
s22

s (
n51

`

~n11!2An~n12!1M2a2 erfc~An~n12!1M2a2z!G ~144!

is plotted in Fig. 1. For very short sampling times the scale function is close to unity an
QWEI bound is the same as that for Minkowski space–time.27 This is expected because th
space–time appears to be flat over time scales which are short relative to the radius
universe, and we should expect to recover the Minkowski space result. As the sampling
becomes progressively longer, the field has more time to ‘‘sample’’ the curvature of the uni
and thus it becomes increasingly difficult to generate negative energy densities. Also, as th
of the field increases it becomes increasingly difficult to generate negative energy densitie
is seen by the faster decay in the scale functions for larger value of the field mass as s
previous evaluations of the scale function for scalar fields in other space–times.15,17,18As men-
tioned above, the quantum inequality bound has also been evaluated for electromagnetism
Lorentzian sampling function27 and the behavior is very much the same.

FIG. 1. Plot of the scale functionSs(z) for the Gaussian sampling function in the Einstein universe. Three different c
are of Eq.~144! are displayed: Electromagnetism~solid line! and two cases of the Proca field for different values of t
mass times the radius of universe, Ma51 ~dashed line! and Ma52 ~dotted line!. The plots were produced by evaluatin
the first 3000 terms in the summation of Eq.~144!.
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APPENDIX A: CONSISTENCY OF THE HADAMARD CONDITION WITH THE
CONSTRAINTS

In this appendix we prove the following local-to-global result.
Theorem A.1: Let v be a state on eitherAM(M,g) or A(M,g) and suppose that there exis

a causal normal neighborhoodN of a Cauchy surfaceS in M, and a Hadamard bisolution WM
(respectively, W) to h1M2 (respectively, h) on N3N such that

v~A~ f 1!A~ f 2!!5WM~ f 1 ,~12M 22 dd! f 2! ~A1!

for all f iPV0
1(N) (in the Proca case) or

v~@A#~ f 1!@A#~ f 2!!5W~ f 1 , f 2! ~A2!

for all f iPV0
1(N) with df i50 (in the Maxwell case). Thenv is Hadamard.

Thus the Hadamard conditions introduced in Sec. III C respect the Cauchy evolution
field equations: if they are satisfied near one Cauchy surface, they hold near all others and
hold globally. As the Hadamard form for Klein–Gordon bisolutions also propagates in this
~Theorem 5.5 in Ref. 32!, our discussion may be regarded as checking the consistency o
definitions of Sec. III C with the Proca and Maxwell constraints. The propagation property i
of the key ingredients used in Sec. IV E, where we established the existence of Hadamard s
general globally hyperbolic space–times obeying our usual topological conditions. Althoug
will use the fact thatS is compact for both the Maxwell and Proca fields this condition c
probably be dropped; however in the Maxwell case it appears to be necessary@in Lemma A.4~b!#
to assume thatH1(S) is trivial and that the compact support cohomology groupHc

3(M) of the
space–time is therefore also trivial.

The proof of Theorem A relies on a number of results concerning the classical Proca,
well, and Klein–Gordon fields. One fact which will be used repeatedly is that, forf PV0

1(M),
EM f 50 if and only if f P(h1M2)V0

1(M). Indeed,f 5(h1M2)EM
1 f and since, by hypothesis

EM
1 f 5EM

2 f , the support ofEM
1 f is contained in the compact setJ1(suppf )ùJ2(suppf ). Our

first observation generalizes this fact to the Proca field.
Lemma A.2: Let M.0. For f PV0

1(M), DM f 50 if and only if fP(2dd1M2)V0
1(M).

Proof: Since (12M 22 dd)(2dd1M2)5h1M2, sufficiency holds becauseEM is a Klein–
Gordon bisolution. Conversely,DM f 50 is equivalent toEM(12M 22 dd) f 50; hence, we have

~2dd1M2! f 5M2~h1M2!g ~A3!

for somegPV0
1(M). By applyingdd to both sides, we obtainddf 5(h1M2)ddg, which may

be subtracted from the previous expression to yield

~h1M2! f 5~h1M2!~2dd1M2!g . ~A4!

Since bothf andg are compactly supported, we conclude thatf 5(2dd1M2)g. h

Proposition A.3: (a) Given any fPV0
1(M) there exists gPV0

1(M) such that f˜5 f 1(2dd
1M2)g is an element ofV0

1(N).
(b) Given any co-closed fPV0

1(M) there exists gPV0
1(M) such that f˜5 f 2ddg is a co-

closed element ofV0
1(N).

Proof: ~a! Choose smooth functionsx6 on M with x11x251 andx1 equal to unity to the
future of N and vanishing to the past ofN. Then

f̃ 5~2dd1M2!x1DM f ~A5!

belongs toV0
1(N) and satisfiesDM f̃ 5DM f . Applying Lemma A.2 tof̃ 2 f , it follows that f̃ 5 f

1(2dd1M2)g as required.
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~b! With x6 as above, setf̃ 52ddx1E0f . Then f̃ belongs toV0
1(N) and is co-closed;

moreoverE0 f̃ andE0f are gauge equivalent by the proof of Prop. 4~c! in Ref. 36. Accordingly,
there existshPV0(M) such thatE0( f̃ 2 f )5dh. Taking coderivatives, usingdE05E0d and
co-closure off̃ and f , we haveddh50 and henceh5E0z for somezPV0

0(M). Substituting
back, we see thatE0( f̃ 2 f 2dz)50, so

f̃ 2 f 2dz5hg ~A6!

for somegPV0
1(M). Taking coderivatives again,h(z2dg)50 and hence~because bothz and

g are compactly supported! z5dg. Substituting back in Eq.~A6!, we havef̃ 5 f 1ddg1hg5 f
2ddg as required. h

Lemma A.4: (a) IfA is a weak one-form(h1M2)-solution obeying

A~~2dd1M2! f !50 ~A7!

for all f PV0
1(N), then Eq. (A7) holds for all fPV0

1(M).
(b) If A is a weak one-formh-solution vanishing on co-closed fPV0

1(N), thenA vanishes
on all co-closed fPV0

1(M).
Proof: ~a! Since, for f PV0

1(N), A((h1M2) f )50, we have by Eq.~A7! that

A~ddf !50 ~A8!

for all f PV0
1(N). Thus,A(d•) is a global weak scalar (h1M2)-solution vanishing ondV0

1(N).
Now we may fix f 0PV0

0(N) such that anyf PV0
0(N) may be written

f 5 f 0E f d volg1dh ~A9!

for somehPV0
1(N). ~Since N is connected, boundaryless and orientable, this follows by

Rahm’s theorem: see the remarks following Theorem 7.5.19 in Ref. 39.! Combining Eqs.~A8! and
~A9!, we haveA(df )5A(df 0)* f d volg for all f PV0

0(N). Accordingly,A(d•) is constant onN
and hence@since it is a (h1M 2)-solution# on M. It follows that A(ddf )5A(df 0)*df d volg
50 for all f PV0

1(M). Since A((h1M2) f )50, we deduce that Eq.~A7! holds for all f
PV0

1(M) as required.
~b! A(d•) is a two-form weakh-solution vanishing on allhPV0

2(N) and hence on allh
PV0

2(M). But sinceHc
3(M) is trivial, any f PV0

1(M) such thatdf 50 can be written asf
5dh for somehPV0

2(M) and we conclude thatA( f )5A(dh)50. h

After these preliminaries, we may now prove the main result of this section.
Proof of Theorem A.1:The arguments for the two theories run along parallel lines. First

extends theWM ~respectively,W) to be a global bisolution to the appropriate one-form Klei
Gordon equation. Crucially, Theorem 5.5 of Ref. 32 assures us that the Hadamard form prop
and that the resulting bisolution is therefore of Hadamard from on the whole ofM3M. Thus it
suffices to show that Eq.~A1! holds for all f iPV0

1(M) @respectively, that Eq.~A2! holds for all
co-closedf iPV0

1(M)]. In the Proca case, we apply Proposition A.3~a! together with the field
equation axiom~P3! and Eq.~A1! to show that

v~A~ f 1!A~ f 2!!5v~A~ f̃ 1!A~ f̃ 2!!5WM~ f̃ 1 ,~12M 22 dd! f̃ 2! ~A10!

for generalf iPV0
1(M). In the Maxwell case, we apply Proposition A.3~b!, axiom ~M3! and Eq.

~A2! to obtain

v~@A#~ f 1!@A#~ f 2!!5v~@A#~ f̃ 1!@A#~ f̃ 2!!5W~ f̃ 1 , f̃ 2! ~A11!

for co-closedf iPV0
1(M). The following claim will be proved below.
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Proposition A.5: In the Proca case,

WM~~2dd1M2! f , f 8!5WM~ f 8,~2dd1M2! f !50 ~A12!

for all f , f 8PV0
1(M), while in the Maxwell case, we have

W~ddf , f 8!5W~ f 8,ddf !50 ~A13!

for all f , f 8PV0
1(M) with f8 co-closed.

In combination with the explicit form off̃ i2 f i @and, in the Proca case, the fact that1
2M 22 dd) and2dd1M2 commute#, Proposition A.5 allows us to show that

WM~ f̃ 1 ,~12M 22 dd! f̃ 2!5WM~ f 1 ,~12M 22 dd! f 2! ~A14!

in the Proca case, and thatW( f̃ 1 , f̃ 2)5W( f 1 , f 2) holds for the Maxwell field. Taken together wit
Eqs.~A10! and ~A11!, respectively, these relations then establish Eqs.~A1! and ~A2!. h

The claim made above is proved as follows.
Proof of Proposition A.5:Fix an arbitraryf 8PV0

1(N) ~with the additional requirement tha
df 850 in the Maxwell case!. Then WM(•, f 8) and WM( f 8,•) @or W(•, f 8) and W( f 8,•) in the
Maxwell case# obey the hypotheses of Lemma A.4~a! owing to Eq.~A1! and axiom~P3! @respec-
tively, Eq. ~A2! and axiom~M3!#. Accordingly, Eq.~A12! @respectively, Eq.~A13!# holds for all
f PV0

1(M) and the fixed f 8PV0
1(N). Now fix f PV0

1(M) arbitrarily. In the Proca case
WM((2dd1M2) f ,•) and WM(•,(2dd1M2) f ) are weak (h1M2)-solutions vanishing onN
and hence globally, as required. In the Maxwell case,W(ddf ,•) and W(•,ddf ) are weak
h-solutions vanishing on co-closed elements ofV0

1(N). Lemma A.4~b! entails that they therefore
vanish on all co-closedf 8PV0

1(M), thereby completing the proof. h

APPENDIX B: CONSTRUCTION OF A HADAMARD „h¿M2
…-BISOLUTION IN

ULTRASTATIC SPACE–TIMES

In this appendix we prove Theorem IV.1 by explicitly constructing a Hadam
(h1M2)-bisolutionWM on any ultrastatic space–time (M,g) obeying the assumptions stated
the beginning of Sec. IV. ForM.0, the argument proceeds as follows. First, we use functio
calculus on the Hilbert spaceH to defineWM as a bilinear map fromV0

1(M)3V0
1(M) to C. We

show thatWM is in fact a one-form bidistributional weak (h1M2)-bisolution, with antisymmet-
ric part 2 iEM , and determine a crude bound on its wave-front set. Next, we appeal to
existence of aHadamard(h1M2)-bisolutionW̃M , also with antisymmetric part2 iEM , estab-
lished in Lemma 5.4~a! of Ref. 32. A simple microlocal argument is used to show thatWM

2W̃M is smooth, from which it follows thatWM is itself Hadamard. Finally, we show thatWM

may be expanded in terms of anyK-pseudo-orthonormal complete set of eigenvectors for
operatorK as claimed in Theorem IV.1. The argument is only slightly different in the caseM
50.

It will be convenient to regard eachAPV1(M) as a smooth one-parameter familyt°A(t)
of elements inH5L0(S) % L1(S), whereA(t) is the restriction ofA to the constant time surfac
$t%3S. The pairing^•,•& of one-forms onM is related to the inner products ofH andK by

^A,B&5E dt ^̂ A~ t !uB~ t !&&5E dt ~A~ t !,JB~ t !!H , ~B1!

whereJ51L0(S) % 21L1(S) . We note thatJ andK5(2DS
s 1M2) % (2DS1M2) commute.

With these conventions, the Klein–Gordon equation (h1M2)A50 may be written as the
Hilbert space ordinary differential equation,

2] t
2A~ t !5KA~ t ! . ~B2!
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Suppose thatM.0. BecauseS is compact,K has discrete spectrum bounded below byM2.0.
Accordingly, the operatorK21/2 is well-defined and bounded, and the advanced-minus-reta
solution operatorEM :V0

1(M)→V1(M) may be written

~EMJ!~ t !5E dt8 K21/2sin@K1/2~ t82t !#J~ t8! , ~B3!

thus obtaining

EM~J,J8!5^J,EMJ8&5E dt dt8 ~J~ t !,JK21/2sin@K1/2~ t82t !#J8~ t8!!H . ~B4!

We define our candidate Hadamard (h1M2)-bisolutionWM by taking the positive frequency
part of 2 iEM , i.e., by replacing the sine function by an exponential. To be precise, forf , f 8
PD(R) andg,g8PV0(S) % V1(S), we define

WM~ f ^ g, f 8^ g8!52 1
2 ~ fC ~K1/2!ḡ,K21/2f̂ 8~K1/2!Jg8!H , ~B5!

in which operators such asf̂ 8(K1/2) are defined by functional calculus. Using the Cauch
Schwarz inequality and elementary operator norm estimates, we find

uWM~ f ^ g, f 8^ g8!u< 1
2 iK21/2i igi ig8i sup

vPs(K1/2)

u f̂ ~2v!u sup
vPs(K1/2)

u f̂ 8~v!u , ~B6!

from which it follows thatWM extends to a distribution in (V0
1(M)3V0

1(M))8. It is straight-
forward to check thatWM is a weak (h1M2)-bisolution, with antisymmetric part2 iEM .

The wave-front set ofWM may be estimated in two ways. First, because it is
(h1M2)-bisolution, we have

WF ~WM !#N3N, ~B7!

where N5$(x,k)PT* M:gab(x)kakb50% is the null bundle of (M,g). Second, the explicit
bound~B6!, coupled with the observation that supvPs(K1/2)u f̂ (l2v)u is bounded asl→1`, but
rapidly decaying forl→2` ~and vice versa for supvPs(K1/2)u f̂ (l1v)u) entails that

WF ~WM !#~T 1øZ!3~T 2øZ!, ~B8!

whereT 65$(x,k)PT* M:6k0.0% andZ5$(x,k)PT* M:k50% is the zero section ofT* M.
Comparing these two estimates,

WF ~WM !#~N 1øZ!3~N 2øZ!, ~B9!

whereN 65NùT 6 are the future (1) and past (2) null bundles.
We now appeal to the existence of a Hadamard form (h1M2)-bisolutionW̃M on (M,g) with

antisymmetric part2 iEM @Lemma 5.4~a! of Ref. 32#. Since the wave-front set ofW̃M also obeys
~B9!, we have

WF ~WM2W̃M !#~N 1øZ!3~N 2øZ! . ~B10!

But WM2W̃M is symmetric, so we also have

WF ~WM2W̃M !#~N 2øZ!3~N 1øZ! . ~B11!
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Comparing these two bounds, we see that WF (WM2W̃M)#Z3Z and, since the wave-front se
excludes the zero section, we conclude that this wave-front set is in fact empty. Accord
WM5W̃M (modC`) so WM is of Hadamard form.

The analysis of the massless case is complicated by the existence of a zero eigenvalu
w05(1,0) forK. @Triviality of H1(S) precludes the existence of any harmonic one-forms onS, so
w0 is the unique zero mode.# However, the spectrum ofK is otherwise bounded away from zer
so K21/2 is well-defined and bounded onPH, where P is the orthogonal projector onto th
orthogonal complement ofw0 . In this case, we define

W~ f ^ g, f 8^ g8!52 1
2 ~ fC ~K1/2!Pḡ,K21/2f̂ 8~K1/2!PJg8!H . ~B12!

It is easy to check thatW is a bi-distributionalh-bisolution, whose antisymmetric part is

W~J,J8!2W~J8,J!52 iE0~J,J8!1 i E dt dt8 ~ t82t ! ~J~ t !, w0!H ~w0 ,JJ8~ t8!!H ~B13!

and is therefore equal (modC`) to 2 iE0 . Appealing as before to the existence of a Hadam
h-bisolution W̃ with antisymmetric part2 iE0 , the argument used above shows thatW5W̃

(modC`) becauseW2W̃ is symmetric (modC`). It remains to show that the last term in E
~B13! vanishes ifJ andJ8 are both co-closed, as required for consistency with the commu
axiom ~M4!. Using Eq.~B1! and the fact thatJw05w0 , one may show that the term in questio
is proportional to^J̄,dt& ^tdt,J8&2^J̄,tdt& ^dt,J8&, which vanishes becausêJ̄,dt&5^dJ,t&
50 and similarly^dt,J8&50.

Finally, let j j be a complete set ofK-pseudo-orthonormalK-eigenfunctions, with correspond
ing eigenvaluesvl

2 (vl>0). Using the completeness relation Eq.~43!, we see that

f̂ 8~K1/2!* K21/2fC ~K1/2!Pḡ5 (
j :v jÞ0

j jv j
21 f̂ 8~v j ! fC ~v j !^̂ j j uj j&& ^̂ j j uḡ&& ~B14!

and hence

W~J,J8!52 (
j :v jÞ0

1

2v j
^̂ j j uj j&& ^̂ fC ~v j !ḡuj j&&^̂ j j u f̂ 8~v j !g8&&

52 (
j :v jÞ0

1

2v j
^̂ j j uj j&& ^Aj ,J& ^Aj ,J8& , ~B15!

where we have defined the modesAj by Aj (t)5e2 iv j tjl and used

^̂ j j u f̂ 8~v j !g8&&5E dt eiv j t ^̂ j j u f 8~ t !g8&&5E dt ^̂ Aj~ t !uJ8~ t !&&5^Aj ,J8& ~B16!

and ^̂ f̂̄ (v j )ḡuj j&&5^J,Aj&5^Aj ,J&.
In the caseM.0, exactly analogous arguments show that theWM(J,J8) may also be written

in the form of the right-hand side of Eq.~B15! ~the restriction tov j.0 is inessential as all mode
obey this condition!. This completes the proof of Theorem IV. 1.
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A direct derivation of polynomial invariants
from perturbative Chern–Simons gauge theory
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Graduate School of Mathematical Sciences, The University of Tokyo,
Tokyo 153-8914, Japan
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There have been several methods to show that the expectation values of Wilson
loop operators in the SU(N) Chern–Simons gauge theory satisfy the HOMFLY
skein relation. We shall give another method from the perturbative method of the
SU(N) Chern–Simons gauge theory in the light-cone gauge, which is more direct
than already known methods. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1606525#

I. INTRODUCTION

The connection between the three-dimensional Chern–Simons gauge theory and knot
was established by E. Witten, who showed that the expectation value of Wilson loop opera
the Chern–Simons gauge theory satisfies the HOMFLY skein relation,10 using certain conforma
field theories@see Fig. 1~a!#. Since then the Chern–Simons gauge theory has been studied fr
variety of points of view. J. Frohlich and C. King3 derived the Knizhnik–Zamolodchikov equa
tions from the Chern-Simons gauge theory in the light-cone gauge@Fig. 1, (b1)]. The solution of
this differential equation was shown to be simply related to the HOMFLY skein relation for l
@Fig. 1, (b2)]. On the other hand, J. M. F. Labastida and E. Perez6 derived the Kontsevich integra
from the perturbative analysis of the Chern–Simons gauge theory in the light-cone gauge@Fig.
1~c!#. It is known that the combination of the Kontsevich integral and the weight system ofsu(N)
satisfies the HOMFLY skein relation7,9 @Fig. 1~d!#. We remark that the Kontsevich integral
derived from the Knizhnik–Zamolodchikov equations, using an iterated integral5 @Fig. 1~e!#.
These relations among the three-dimensional Chern–Simons gauge theory, the HOMFLY
relation, the Knizhnik–Zamolodchikov equations and the Kontsevich integral imply the
structure of the Chern–Simons gauge theory.

But these already known methods need rather complicated concepts. Therefore, we wou
to give a more straightforward and simpler approach. In this article, inspired by the two meth6,9

@Figs. 1~c! and 1~d!#, we give another such method to derive the HOMFLY skein relation from
Chern–Simons gauge theory@Fig. 1~f!# without using any other theory.

We remark that in Refs. 2 and 4 the skein relation was derived at first order in the cou
constant, using a variational method based on the properties of the path integral.

II. THE FORMULATION OF THE CHERN–SIMONS GAUGE THEORY

In this section, we review the Chern–Simons gauge theory as in Refs. 2, 3, 6, and 8.
The Chern–Simons gauge theory is a three dimensional model based on the LagranL

which is a differential three-form defined onR3 parametrized by (x0,x1,x2):

L~A!5tr ~A∧dA1 i 2
3 A∧A∧A!,

where a connectionA is su(N)-valued one form onR3, and ‘‘tr ’’ means the trace.
The generators ofsu(N) are normalized as follows:

a!Electronic mail: ochiaito@ms.u-tokyo.ac.jp
45140022-2488/2003/44(10)/4514/13/$20.00 © 2003 American Institute of Physics
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tr ~TaTb!5 1
2 dab , @Ta ,Tb#5 i f ab

c Tc ,

with the structure constantsf ab
c . The action of the Chern–Simons gauge theory is given by

Sk~A!5
k

4p E
R3

L~A!5
k

4p E
R3

dx0∧dx1∧dx2emnrtr S Am]nAr1 i
2

3
AmAnArD

5
k

8p E
R3

dx3emnrS Am
a ]nAr

a2
1

3
Am

a An
bAr

c f ab
c D , ~2.1!

wherek is a real parameter and

A5Amdxm5Am
a Tadxm.

Let us introduce so-called ‘‘Wilson loop operators.’’ LetC be a curve parametrized byxW (t).
Define the holonomy ofA along a curveC by

HC~A!5P expi R
C
A, ~2.2!

where the right-hand side of~2.2! means

11 (
m51

`

i mE
tmin,t1,¯,tm,tmax

dt1¯dtm ẋmm~ tm!Amm
~x~ tm!!¯ ẋm1~ t1!Am1

~x~ t1!!.

The holonomyHC(A) has the important property as follows. If a curveC5$xW (t)utmin<t
<tmax% is divided into n-curvesCk5$xW (s) usk21<s<sk% (tmin5s0,s1,¯,sn5tmax), then the
holonomyHC(A) is decomposed as follows:

HC~A!5HCn
~A! ¯ HC1

~A!. ~2.3!

Let K be a knot~i.e., a closed curve! in R3. The Wilson loop operatorWK(A) is a special type
of functional of connectionA defined by

WK~A!5tr ~HK~A!!.

We extend the above definition to a link. LetL5$K1 ,...,Km% be anm-component link which is a
union ofm knotsKi( i 51,...,m). Then, the definition of the Wilson loop operator can be exten
to a link L as follows:

FIG. 1. Illustration of introduction.
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WL~A!5WK1
~A!¯WKm

~A!. ~2.4!

We will define the expectation value of the Chern–Simons gauge theory as follows
expectation value ofWL(A) is defined by

^WL&5
1

Z E @DA#eiSk(A) WL~A!, ~2.5!

where

Z5E @DA#eiSk(A) ~2.6!

and the symbol@DA# denotes the path integral over all equivalence classes of connections m
gauge transformations.

It is convenient to introduce new coordinates,

z5x11 ix2, z̄5x12 ix2, t5x0, ~2.7!

and define also

]5
1

2 S ]

]x1
2 i

]

]x2
D , ]̄5

1

2 S ]

]x1
1 i

]

]x2
D . ~2.8!

For a connectionA5Am dxm, set

Az5
1
2 ~A11A2!, Az̄5

1
2 ~A12A2!. ~2.9!

In order to evaluate expectation value~2.5!, it is necessary to fix a gauge condition. W
introduce the light-cone gauge condition as in Refs. 3 and 6. The light-cone gauge condi
defined by

Az̄5
1
2 ~A12A2!50. ~2.10!

This gauge condition is preferable, since it kills the second term on the right-hand side of~2.1! and
greatly simplifies the theory.

Using these new coordinates~2.7!–~2.9! and the light-cone gauge condition~2.10!, the action
of the Chern–Simons gauge theory~2.1! is transformed into

Sk~A!5
k

4p E dtdz̄dz
1

2
~A0

a]̄Az
a2Az

a]̄A0
a!. ~2.11!

We remark that the above equation is a quadratic form.
Under these conditions, the two-point correlation functions are computed in Refs. 3 and

fixed x5(t,z,z̄), x85(t8,z8,z̄8), we can considerA0
a(x)Az

b(x8), A0
a(x)A0

b(x8) andAz
a(x)Az

b(x8) as
functionals ofA. From the Appendix, their expectation values are given by

^A0
a~x!Az

b~x8!&52dab
2

k

d~ t2t8!

z2z8
, ~2.12!

^A0
a~x!A0

b~x8!&50, ~2.13!

^Az
a~x!Az

b~x8!&50. ~2.14!
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Under these preparations, we will show that the expectation value of the Wilson loop op
satisfies the HOMFLY skein relation by a direct computation. The main idea of the computat
as follows. First, we decomposeR3 into the three domains$t<0%, $0<t<e%, $e<t% called the
lower domain, the middle domain and the upper domain, respectively. We will show tha
expectation value of the Wilson loop operator is essentially the product of three expectation
corresponding to these three domains. By applying the perturbative method to the expe
value corresponding to the middle domain, we can derive the HOMFLY polynomial.

III. DIVISION OF THE EXPECTATION VALUE OF THE WILSON LOOP OPERATOR

In this section, we divide the expectation value of the Wilson loop operator into three p
We assume that a knotK is in a special position as follows. We divide a knotK into 4n curves

Ca5$xW~s!usa21<s<sa%, 05s0,s1,¯,s4n51,

and set

da5C4a23 ~a51,2,3,...,n!,

eb5C2b ~b51,2,3,...,2n!, ~3.1!

f a5C4a21 ~a51,2,3,...,n!.

Moreover, it is assumed that the curvesda , eb and f a are in the regiont<0, 0<t<e, e<t,
respectively.~See Fig. 2!

Define holonomiesDK
a(A), EK

b(A) andFK
a(A) for the curvesda , eb and f a by

DK
a~A!5P expi E

da

A,

EK
b~A!5P expi E

eb

A, ~3.2!

FK
a~A!5P expi E

f a

A.

From ~2.3!, the Wilson loop operatorWK(A) can be expressed as the trace over the produc
the matricesDK

a , EK
b , andFK

a (1<a<n, 1<b<2n) as follows:

FIG. 2. Division of a knotK.
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WK5tr S )
a51

4n

HCaD 5tr S )
a51

n

EK
2aFK

aEK
2a21DK

a D
5 (

i 1¯ i 2n
(

j 1¯ j 2n
)
a51

n

~EK
2a! j 2a

i 2a~FK
a ! j 2a21

j 2a ~EK
2a21! i 2a21

j 2a21~DK
a ! i 2a22

i 2a21

5 (
i 1¯ i 2n

(
j 1¯ j 2n

~FK! j 2n ,¯ , j 1
~EK! i 2n¯ i 1

j 2n¯ j 1~DK! i 2n¯ i 1,

where we seti 2n5 i 0 andDK , EK andFK in the last line are defined by

~DK! i 2n¯ i 15 )
a51

n

~DK
a ! i 2a22

i 2a21 ,

~EK! i 2n¯ i 1

j 2n¯ j 15 )
a51

n

~EK
2a! j 2a

i 2a~EK
2a21! i 2a21

j 2a21 ,

~FK! j 2n ,¯ , j 1
5 )

a51

n

~FK
a ! j 2a21

j 2a .

As a result, we obtain the following lemma.
Lemma 3.1:The Wilson loop operatorWK(A) is decomposed as follows:

WK5FK EK DK , ~3.3!

where the right-hand side of~3.3! means

FK EK DK5 (
i 1¯ i 2n

(
j 1¯ j 2n

~FK! j 2n ,¯ , j 1
~EK! i 2n¯ i 1

j 2n¯ j 1~DK! i 2n¯ i 1.

Remark:Note that the curves inDK , EK , and FK are in the regiont<0, 0<t<e, e<t,
respectively.

For a link, we extend the above lemma as follows.
Lemma 3.2:Let L5$K1 ,...,Km% be anm-component link. The Wilson loop operator forL is

decomposed as follows:

WL5FL EL DL , ~3.4!

whereDL , EL , andFL on the right-hand side are defined by

DL5DK1
¯DKm

,

EL5EK1
¯EKm

,

FL5FK1
¯FKm

.

Proof: From Lemma 3.1, we decompose each Wilson loop operatorWKa
(a51,2,...,m) as

follows:

WK j
5FK j

EK j
DK j

~ j 51,2,...,m!.

Inserting this into~2.4!, we obtain
                                                                                                                



same

d as

d

tical

two-

llows:

4519J. Math. Phys., Vol. 44, No. 10, October 2003 A direct derivation of polynomial invariants

                    
WL5FK1
¯FKm

EK1
¯EKm

DK1
¯DKm

.

This shows~3.4!. h

We divide the expectation value of the Wilson loop operator into three parts in the
manner as the Wilson loop operator.

Lemma 3.3:The expectation value of Wilson loop operator for a knot is decompose
follows:

^WK&5^FK&F^EK&E^DK&D , ~3.5!

where the right-hand side of~3.5! means

^FK&F^EK&E^DK&D5 (
i 1¯ i 2n

(
j 1¯ j 2n

^~FK! j 2n ,¯ , j 1
&F^~EK! i 2n¯ i 1

j 2n¯ j 1&E^~DK! i 2n¯ i 1&D

and

^~DK! i 2n¯ i 1&D5
1

ZD
E @DA#D expS ik

4p E
$2`<t<0

J L~A! ~DK~A!! i 2n¯ i 1,

^~EK! i 2n¯ i 1

j 2n¯ j 1&E5
1

ZE
E @DA#E expS ik

4p E
$0<t<e%

L~A! D ~EK~A!! i 2n¯ i 1

j 2n¯ j 1,

^~FK! j 2n ,¯ , j 1
&F5

1

ZF
E @DA#F expS ik

4p E
$e<t<`%

L~A! D ~FK~A!! j 2n ,¯ , j 1
,

where@DA#D , @DA#E and @DA#F mean the measure restricted to the regiont<0, 0<t<e and
e<t, respectively. Here,ZD , ZE andZF are defined as in~2.6!, but the regions of the measure an
the action are restricted tot<0, 0<t<e ande<t, respectively.

Proof: We divide the domain of integration of action~2.1! into three parts:

Sk~A!5
k

4p E
$`<t<0%

L~A!1
k

4p E
$0<t<e%

L~A!1
k

4p E
$e<t<`%

L~A!. ~3.6!

Next, since the measure of the path integral has the property

@DA#5@DA#F@DA#E@DA#D , ~3.7!

inserting~3.6!, ~3.7! and ~3.4! into ~2.5! yields ~3.5!. h

More generally, Lemma 3.3 can be easily extended for a linkL as follows:
Lemma 3.4:̂ WL&5^FL&F ^EL&E ^DL&D .

IV. THE MAIN PART OF COMPUTATION

Let L1 , L2 andL0 be general multi-component links as shown in Fig. 3 which are iden
with each other outside the region 0<t<e. Especially, we writeK1 , K2 andK0 instead ofL1 ,
L2 and L0 , if L1 , L2 and L0 are a one-component knot, a one-component knot, and a
component link, respectively.

From Lemma 3.4, we decompose the expectation value of Wilson loop operators as fo

^WL1
&5^FL1

&F^EL1
&E^DL1

&D , ~4.1!

^WL2
&5^FL2

&F^EL2
&E^DL2

&D , ~4.2!
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^WL0
&5^FL0

&F^EL0
&E^DL0

&D . ~4.3!

We will concentrate our attention on the computation of^ELr
&L (r50,6), since ^DLr

&D and

^FLr
&F take the same value forr50,6. But, avoiding unnecessary complexity, we will limit ou

situation to the caseLr5Kr (r50,6). Then, decompositions~4.1!–~4.3! become

^WK1
&5^FK1

&F^EK1
&E^DK1

&D ,

^WK2
&5^FK2

&F^EK2
&E^DK2

&D ,

^WK0
&5^FK0

&F^EK0
&E^DK0

&D .

In what follows, we will be mainly concerned with the computation of^EK1
&E . Without loss

of generality, we may assume that the curvese1 ,e2 ,...,e2n in K1 are given as follows. Two curve
e1(t) ande3(t) are given by

ea~ t !5~ t,za~ t !!, a51,3 0<t<e,

where

z1~ t !52a expS ipt

e D , z3~ t !5a expS ipt

e D . ~4.4!

Here we remark that we have chosene1(t) ande3(t) instead ofe1(t) ande2(t), sincee1(t) and
e3(t) are upward whilee2(t) is downward@see~3.1!#.

The other curvese2 ,e4 ,...,e2n are straight lines parallel tot-axis

ea~ t !5~ t,za!, a52,4,...,2n,

whereza (a52,4,...,2n) are fixed points and distinct from each other.

FIG. 3. L1 ,L2 ,L0 .
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Under these assumptions, we will compute^EK1
&E using the perturbative method.

In new coordinates~2.7! and ~2.9!, holonomy~3.2! takes the form

EK1

a ~A!5P expi E
ea

A511 (
m51

`

i mE
0,t1,¯,tm,e

dt1¯dtm )
k51

m

~A0
ak~ tk ,za~ tk!!

1 ża~ tk!Az
ak~ tk ,za~ tk!!!3Ta1

¯Tam. ~4.5!

Let us consider the integrands of~4.5! in the next lemma.
Lemma 4.1:

^~A0
a~ t,za~ t !!1 ża~ t !Az

a~ t,za~ t !!!~A0
b~s,zb~s!!1 żb~s!Az

b~s,zb~s!!!&E

5dab d~ t2s!
2

k

d

dt
log~za~ t !2zb~ t !!. ~4.6!

Proof: The left-hand side of~4.6! is equal to

2~ ża~ t !2 żb~s!!^A0
a~ t,za~ t !!Az

b~s,zb~s!!&E .

Inserting~2.12! into this, we have the right-hand side of~4.6!. Here we remark that~2.12! is still
valid for ^•&E , since the argument for deriving~2.12! is independent of the domain oft. See the
Appendix. h

Lemma 4.2:For sufficiently smalla, ^EK1
&E is transformed into the following simple form

^~EK1
! i 2n¯ i 1

j 2n¯ j 1&E5d i 2n

j 2n
¯d i 4

j 4d i 2

j 2^~EK1

3
^ EK1

1 ! i 3i 1

j 3 j 1&E , ~4.7!

where

~EK1

3
^ EK1

1 ! i 3i 1

j 3 j 15~EK1

3 ! i 3

j 3~EK1

1 ! i 1

j 1.

Proof: Using ~A6! in the Appendix, we can express the left-hand side of~4.7! as the sum of
the products of the elements

^~A0
a~ t,za~ t !!1 ża~ t !Az

a~ t,za~ t !!!~A0
b~s,zb~s!!1 żb~s!Az

b~s,zb~s!!!&E . ~4.8!

If a is sufficiently small, for all the combination (a,b)Þ(1,3),(3,1), we may considerza(t) and
zb(s) to be constant. Then, from Lemma 4.1, we find that these elements~4.8! vanish. Hence it is
enough to consider the combination (a,b)5(1,3),(3,1) only. We can see that this combinati
directly gives the nontrivial factor̂(EK1

3
^ EK1

1 ) i 3i 1

j 3 j 1&E in ~4.7!. This completes the proof. h

Next, let us evaluate the nontrivial element^(EK1

3
^ EK1

1 ) i 3i 1

j 3 j 1&E on the right-hand side of~4.7!.

Lemma 4.3:The nontrivial element on the right-hand side of~4.7! is computed as follows:

^~EK1

3
^ EK1

1 ! i 3i 1

j 3 j 1&E5~exp~s Ta
^ Ta!! i 3i 1

j 3 j 1, ~4.9!

where (s52 2p i /k).
Proof: Inserting~4.5! into the left-hand side of~4.9! and using Lemma 4.1, we obtain

^EK1

3
^ EK1

1 &E511 (
m51

` S 2
2

k
Ta

^ TaD mE
0,t1,¯,tm,1

)
k51

m

~d log~z3~ tk!2z1~ tk!!!.

~4.10!

Here we have used the fact that~4.6! vanishes iftÞs.
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Inserting~4.4! into the second term on the right-hand side of~4.10!, we have

E
0,t1,¯,tm,1

)
k51

m

~d log~z3~ tk!2z1~ tk!!!5
1

m!
~ ip!m.

Inserting this into the right-hand of~4.10! and summarizing it as an exponential function, w
obtain

^EK1

3
^ EK1

1 &E5exp~s Ta
^ Ta!.

h

Let V5Rn be theN-dimensional vector space. DefineP:V^ V→V^ V by

P~v ^ w!5w^ v,

wherev andw areN-dimensional vectors.
Lemma 4.4:

expS s

2ND ^EK1

3
^ EK1

1 &E2expS 2
s

2ND ^EK2

3
^ EK2

1 &E5S expS s

2 D2expS 2
s

2 D D P. ~4.11!

Proof: Inserting the so-called Fierz identity

Ta
^ Ta52

1

2N
1^ 11

1

2
P

into the right-hand side of~4.9!, we obtain

^~EK1

3
^ EK1

1 !&E5expS 2
s

2NDexpS s

2
PD . ~4.12!

Similarly, we compute the expectation value forK2 in the same manner asK1 and obtain

^~EK2

3
^ EK2

1 !&E5expS s

2NDexpS 2
s

2
PD . ~4.13!

Inserting~4.12! and ~4.13! into the left-hand side~4.11! and using

S expS s

2
PD2expS 2

s

2
PD D5S expS s

2 D2expS 2
s

2 D D P

yields the right-hand side of~4.11!. h

Theorem 4.5:The expectation values forL1 , L2 andL0 satisfy the relation

expS s

2ND ^WL1
&2expS 2

s

2ND ^WL2
&5~e~1/2! s2e2 ~1/2! s! ^WL0

&. ~4.14!

Proof: First, we prove relation~4.14! for Kr (r50,6), i.e.,

expS s

2ND ^WK1
&2expS 2

s

2ND ^WK2
&5~e~1/2! s2e2 ~1/2! s!^WK0

&. ~4.15!

Multiplying both sides of~4.11! by d i
j 2n
¯d i

j 4d i
j 2, we have
2n 4 2
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expS s

2ND ^~EK1
! i 2n¯ i 1

j 2n¯ j 1&E2expS 2
s

2ND ^~EK2
! i 2n¯ i 1

j 2n¯ j 1&E5~es/22e2 s/2! d i 2n

j 2n
¯d i 4

j 4d i 2

j 2Pi 3i 1

j 3 j 1.

Multiplying this by ^(DKr
) i 2n¯ i 1&D and ^(FKr

) j 2n ,¯ , j 1
&F (r50,6), we obtain~4.15!.

Next, relation~4.15! can be extended forLr (r50,6) in the same way, since the proof o
relation~4.15! is focused on two curvese1(t) ande3(t) and independent of the other parts. Th
completes the proof. h

Let L5$K1 ,...,Km% be anm-component link which is a union ofn knots Ki ( i 51,...,m).
Define lk(Ki ,K j ) to be the linking number betweenKi andK j , andc f(Ki) the framing number,
i.e., the linking number between the knotKi and its framing. For a linkL, set

w~L !52(
i , j

lk~Ki ,K j !1(
i 51

m

c f~Ki !.

Next, definePL(x,N) by

PL~s,N!5expH 2s
N221

2N
w~L !J ^WL&. ~4.16!

Then, we easily obtain the following corollary, using standard argument.2

Corollary 4.6:

expS Ns

2 D PL1
~s,N!2expS 2

Ns

2 D PL2
~s,N!5~e~1/2! s2e2 ~1/2! s!PL0

~s,N!. ~4.17!

Proof: Inserting~4.16! into ~4.14! and using

w~L1!2w~L0!5w~L0!2w~L2!51

yield ~4.17!. h

Remark:Equation~4.17! is called the HOMFLY skein relation.

APPENDIX: THE PERTURBATIVE METHOD

In this section, we review the perturbative method for the Chern–Simons gauge theory f
matter of convenience. See quantum field theory textbooks for more details.

Let W(A) be an arbitrary complex-valued functional of connectionA. The expectation value
of W(A) is defined by

^W&5
1

Z E @DA#eiSk(A) W~A!, ~A1!

where the symbol@DA# denotes the path integral.
The action of the Chern–Simons gauge theory in light-cone gauge~2.11! is transformed into

the matrix form:

Sk~A!5
k

4p E dtdz̄dz
1

2
~A0

a]̄Az
a2Az

a]̄A0
a!52

1

2 E dtdz̄dz~A0
a ,Az

a!
k

4p S 0 2 ]̄

]̄ 0
D S A0

a

Az
aD .

We remark that the above equation is a quadratic form. Therefore, for the above equation, w

Sk~A!52
1

2 E dx dx8 tÂ~x!D~x,x8!Â~x8!,
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wherex5(t,z,z̄), x85(t8,z8,z̄8), Â5 t(A0
a ,Az

a),

D~x,x8!5
k

4p S 0 2 ]̄

]̄ 0
D d~x2x8!

and ]̄ means the derivative with respect toz̄.
Then expectation value~A1! is transformed into the following form:

^W&5
1

Z E @DA0#@DAz#e
2 ~ i /2! *dx dx8 tÂ(x)D(x,x8)Â(x8) W~A!. ~A2!

Unfortunately,A0 andAz are infinite dimensional spaces and there is no rigorous method to d
the path integral. Instead we know the perturbative analysis, which will be explained as fo

In order to explain the perturbative method, we start with a finite dimensional situation
Ref. 1. LetV be an arbitrary complex-valued function onRn. Let us evaluate

^V&5
1

U E
Rn

dxW expS 2
i

2 (
ab

labxaxbD V~xW !, ~A3!

where

U5E
Rn

dxW e2 ~ i /2!Sablabxaxb
.

This is a finite dimensional analog for infinite dimensional situation~A2!. Introducing new vari-
ablesJ5(Ja), we have

^V&5
1

U E
Rn

dxW e2 ~ i /2!Sablabxaxb
V~xW !eiJaxa

uJW50 ,

5VS ]

]~ iJa! D 1

U E
Rn

dxW e2 ~ i /2!Sablabxaxb
eiJaxa

uJW50 ,

where we set

VS ]

]~ iJa! D5 (
n1¯nn

1

n1!¯nn!

]n11¯1nnV

~]x1!n1
¯~]xn!nn

~0!S ]

i ]J1
D n1

¯S ]

i ]Jn
D nn

.

This integral is Gaussian and easily calculated as follows:

^V&5VS ]

]~ iJa! De2 ~ i /2!Sablab( iJa)( iJb)uJW50 , ~A4!

wherelab is the inverse matrix oflab . We have the identity

FS ]

]~ iJa! DG~ iJW !UJW505GS ]

]xaDF~xW !U
xW50

,

whereF andG are arbitrary functions onRn. Using this identity,~A4! is transformed into

^V&5expS 2
i

2 (
ab

lab
]

]xa

]

]xbDV~xW !uxW50 . ~A5!

This is a final result for the finite dimensional situation.
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Now, let us turn our attention to infinite dimensional situation~A2!. Let us introduce ‘‘the
inverse matrix analog’’ ofD(x,x8) as follows. Set

G~x2x8!5S 0 2
2

k

d~ t2t8!

z2z8

2

k

d~ t2t8!

z2z8
0

D .

Then we have

E dx8D~x,x8!G~x82x9!5 id d~x2x9!,

where ‘‘id ’’ denotes the identity matrix. ThereforeG(x2x8) is thought to be ‘‘the inverse matrix
analog’’ of D(x,x8).

Now we can compare infinite dimensional situation~A2! with the finite dimensional one~A3!
by the following correspondence:

a,b↔x5~ t,z,z̄!,x85~ t8,z8,z̄8!,

(
ab

↔E dx dx8,

xa↔Â~x!5 t~A0
a~x!,Az

a~x!!,

lab↔D~x,x8!,

lab↔ iG~x2x8!.

Therefore, comparing~A5!, we can evaluate path integral~A2! as follows:

^W&5expH E dtdzdz̄E dt8dz8dz̄8
d

dA0
a~x!

D0z
ab~x2x8!

d

dAz
b~x8!J W~A!uA50 , ~A6!

wherex5(t,z,z̄), x85(t8,z8,z̄8) and

D0z
ab~x2x8!52dab

2

k

d~ t2t8!

z2z8
.

Here we remark that~A6! is still valid for ^W&E , since the argument for deriving~A6! is
independent of the domain oft.

From ~A6!, we can compute the two-point correlation functions~2.12!–~2.14! as follows:

^A0
a~x!Az

b~x8!&5D0z
ab~x2x8!52dab

2

k

d~ t2t8!

z2z8
,

^A0
a~x!A0

b~x8!&50,

^Az
a~x!Az

b~x8!&50.
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Seiberg–Witten monopole equations
on noncommutative R4
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~Received 2 May 2003; accepted 27 May 2003!

It is well known that, due to vanishing theorems, there are no nontrivial finite action
solutions to the Abelian Seiberg–Witten~SW! monopole equations on Euclidean
four-dimensional spaceR4. We show that this is no longer true for the noncommu-
tative version of these equations, i.e., on a noncommutative deformationRu

4 of R4

there exist smooth solutions to the SW equations having nonzero topological
charge. We introduce action functionals for the noncommutative SW equations and
construct explicit regular solutions. All our solutions have finite energy. We also
suggest a possible interpretation of the obtained solutions as codimension four
vortex-like solitons representingD(p24)- andD(p24)-branes in aDp-Dp brane
system in type II superstring theory. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1604454#

I. INTRODUCTION

The Seiberg–Witten~SW! monopole equations1 have been derived in the context of twiste
N52 supersymmetric Yang-Mills~SYM! theory2,3 in some limit of the coupling constant. Anothe
limit of this theory yields the anti-self-dual Yang–Mills~ASDYM! equations. Namely, the
ASDYM equations correspond to the weak coupling limit while the SW equations are relat
the strong coupling regime obtained by theS-dualization~see, e.g., Refs. 1, 4–6 and referenc
therein!. Note that the SW equations are associated with the Abelian groupU(1) and have a
compact moduli space while the ASDYM equations, considered in Donaldson–Witten~DW!
theory,7,2 possess the non-Abelian gauge groupSU(2) and a noncompact moduli space. That
why SW theory is much easier to handle compared to DW theory. A bridge between these th
is provided by the non-Abelian SW equations~see, e.g., Refs. 8–11, 6 and references ther!
whose moduli space contains both DW and SW moduli spaces as singular submanifolds.

It is well known that, due to a vanishing theorem of the Lichnerowicz–Weitzenbo¨ck type,
there are no nontrivial finite action solutions to the Abelian SW equations on Riemannian
manifolds with non-negative scalar curvature and, in particular, onR4 ~cf. Ref. 1!. This assertion
is also true for lower-dimensional reductions of the SW equations, i.e., these reductions also
exhibit regular solutions onRn<3 with a nonzero topological charge. Nevertheless, one m
construct nontrivial non-L2 solutions, as it has been done, e.g., in Refs. 12–15.

a!Electronic mail: popov@itp.uni-hannover.de
b!Electronic mail: sergeev@mi.ras.ru
c!Electronic mail: wolf@itp.uni-hannover.de
45270022-2488/2003/44(10)/4527/28/$20.00 © 2003 American Institute of Physics
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Note that for the vanishing spinor field the SW equations specialize to the Abelian ASD
equations which have no nontrivial regular solutions~instantons! onR4 either. However, Nekrasov
and Schwarz have demonstrated in Ref. 16 that smooth Abelian instanton solutions do e
Ru

4 , which is a noncommutative deformation ofR4 with constant deformation parametersu
5(umn). Moreover, they have proven that noncommutativity resolves the singularities o
instanton moduli space. In the present paper we observe a similar phenomenon for th
equations onRu

4 by constructing nontrivial regular solutions to the noncommutative SW equat
It is well known that the SW equations on Ka¨hler surfaces are similar to the vortex equatio

in two dimensions. Motivated by this relation, we interpret regular~vortex-like! solutions to the
SW equations onRu

4 asD(p24)- andD(p24)-branes in aDp-Dp brane–antibrane system i
type II superstring theory. This interpretation can also be extended to the commutative case
SW equations on Ka¨hler surfaces.

The paper is organized as follows. In the next section we formulate the SW equationsR4

and fix our notation. In Sec. III we introduce the noncommutatively deformed non-Abelian
equations. We derive them from properly deformedU(2) self-duality type equations in eigh
dimensions17 by a dimensional reduction to four dimensions~cf. Ref. 18!. The resultingU1(1)
3U2(1), U1(1) andU2(1) noncommutative SW equations can also be produced from ap
priate action functionals by using a Bogomolny type transformation. We point out tha
U1(1)3U2(1), U1(1) andU2(1) noncommutative SW equations share the same commut
limit. In Sec. IV we present a number of regular solutions to the noncommutative SW equa
and discuss theirD-brane interpretation in a string theoretic context. In Sec. V we conclude
a brief summary and open problems. Finally, in an Appendix we perform the Bogomolny
transformation for the noncommutativeU1(1)3U2(1) SW action functional.

II. SW MONOPOLE EQUATIONS ON R4

A. SW action functional

In this paper we consider the SW equations on the Euclidean spaceR4, provided with the
standard metricg5(dmn), wherem,n,...51,...,4. The~energy! functionalE5E(A,F) for these
equations has the form~cf., e.g., Refs. 19–21!

E~A,F!5E
R4

d4x$FAu21uDAFu21 1
4uFu4%. ~2.1!

HereAPV1
„R4,u(1)… is a connection one-form onR4 with pure imaginary smooth coefficient

andFPC`(R4,C2) is a Weyl spinor given by a smooth complex-valued vector function onR4.
We denote byFA

1PV1
2
„R4,u(1)… the self-dual part of the curvatureFA of A and by DA the

covariant derivative associated withA. Moreover, we use the abbreviationuDAFu2

5Dmf i(Dmf i)
† and setuFAu25 1

2FmnFmn
† .

By exploiting a Bogomolny type formula, the energy functional can be rewritten in the f

E~A,F!5SW~A,F!28p2Q, ~2.2!

where

SW~A,F!5E
R4

d4x$uD AFu212uFA
12s1~F ^ F†!0u2% ~2.3!

is the SW action functional and

Q52
1

8p2 E
R4

FA`FA ~2.4!
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is the topological charge. In the above formula~2.3! we denote byDA the Dirac operator associ
ated withA. We also use the notation

s1~F ^ F†!0ªs1~F ^ F†2 1
2uFu2id!, ~2.5!

where

s1 : Herm0~C2!→V1
2
„R4,u~1!…

is a map identifying the space Herm0(C2) of traceless Hermitian endomorphisms ofC2 with the
spaceV1

2
„R4,u(1)… of imaginary-valued self-dual two-forms onR4. The inverse of this map is

given by the Clifford multiplication by two-forms~see, e.g., Refs. 19–21!.
It is easy to see that the functionals~2.1! and~2.3! are invariant under gauge transformatio

of the form

A°A1g†dg and F°g†F, ~2.6!

wheregPC`
„R4,U(1)….

B. SW monopole equations

Since the functional SW(A,F) is positive semi-definite andQ is a topological term, the
Bogomolny formula~2.2! implies that the lower bound of the energyE(A,F) is attained on
solutions to the equations

FA
15s1~F ^ F†!0 , ~2.7a!

DAF50, ~2.7b!

which are known as the SW monopole equations. They are differential equations of first ord
their solutions, which minimize the energy functionalE(A,F), automatically satisfy the~second
order! Euler–Lagrange equations for the functionalsE(A,F) and SW(A,F).

Writing tF5(f1 ,f2), one can see that Eqs.~2.7! are equivalent to~cf. Ref. 19!

F121F345
i

2
~f1f̄12f2f̄2!,

F131F4252 1
2~f2f̄12f1f̄2!, ~2.8a!

F141F235
i

2
~f2f̄11f1f̄2!

and

S 2D41 iD 3 D21 iD 1

2D21 iD 1 2D42 iD 3
D S f1

f2
D50. ~2.8b!

It is easy to prove that these equations have no nontrivial solutions with finite action. Na
we have the following theorem~see, e.g., Refs. 1, 19–21!:

Theorem: Suppose APV1
„R4,u(1)… and FPC`(R4,C2) satisfy the equations (2.8). More-

over, we assume thatFPL2(R4) and E(A,F),`. Then the only solution to (2.8) is the trivia
solution (A,F)5(0,0) modulo the gauge transformations (2.6).

This theorem is also true for lower dimensional reductions of the SW equations~defined on
Rn<3), i.e., these reductions do not exhibit regular nontrivial solutions either. However, as we
already mentioned in the Introduction, one can construct nontrivial non-L2 solutions.12–15
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C. Perturbed SW action functional and monopole equations

The gauge group action~2.6! on the space of pairs (A,F) is free, unlessF[0. In order to
avoid solutions of the form (A,0), which may cause singularities in the moduli space of solutio
we perturb the monopole equations by adding an extra term to the first SW equation,

FA
11x15s1~F ^ F†!0 , ~2.9a!

DAF50, ~2.9b!

wherex1 is the self-dual part of a two-formxPV2
„R4,u(1)… ~perturbation!. Solutions to these

equations minimize the functional

SWx~A,F!5E
R4

d4x$uD AFu212uFA
11x12s1~F ^ F†!0u2%. ~2.10!

In components Eq.~2.9a! reads as

F121F341x121x345
i

2
~f1f̄12f2f̄2!,

F131F421x131x4252 1
2~f2f̄12f1f̄2!, ~2.11!

F141F231x141x235
i

2
~f2f̄11f1f̄2!.

The SW action functional, as in the unperturbed case, is related to an energy function

Ex~A,F!5E
R4

d4x$uFAu21uDAFu212ux12s1~F ^ F†!0u2%, ~2.12!

via a Bogomolny type formula,

SWx~A,F!5Ex~A,F!116p2 Kx18p2Q. ~2.13!

The topological chargeQ is given, as before, by formula~2.4! and the Chern–Simons type ter
Kx is defined as

Kx52
1

4p2 E
R4

FA
1`x1. ~2.14!

III. SW MONOPOLE EQUATIONS ON Ru
4

A. Non-Abelian SW monopole equations

1. Noncommutative Euclidean space Ru
2n

Let A(R2n) be the algebra of polynomial functions onR2n ~which is endowed with the
canonical metricdab) andu5(uab) be a real invertible skew-symmetric 2n32n matrix with the
inverse matrixu215(uab) defined byuagugb5da

b for a,b,...51,...,2n. Then the deformed
algebraAu(R2n) is defined as

Au~R2n!ªT~R2n!/^@xa,xb#2 iuab&1<a,b<2n , ~3.1!

whereT(R2n) is the tensor algebra ofR2n and ^@xa,xb#2 iuab&1<a,b<2n denotes the two-sided
ideal generated by@xa,xb#2 iuab,T(R2n). For brevity we shall denoteAu(R2n) simply by Ru

2n

and call it the noncommutative Euclidean 2n-dimensional space.
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One way to realize the noncommutative extension~3.1! of the algebraA(R2n) is by defor-
mation of the pointwise product between functions via the so-called star~Moyal! product,

~ f !g!~x!ª f ~x! expH i

2
]Qauab]WbJ g~x!, ~3.2!

where f ,gPC`(R2n,C). In particular, it follows from~3.2! that

@xa,xb#!ªxa!xb2xb!xa5 iuab. ~3.3!

For later convenience we introduce complex coordinates onR2n>Cn,

za5x2a211 ix2a and z̄ā5x2a212 ix2a, for a51,...,n, ~3.4!

and derivatives

]za5 1
2~]2a212 i ]2a! and ] z̄ā5 1

2~]2a211 i ]2a!. ~3.5!

Note that by an orthogonal change of coordinates one can always transformuab to its canonical
~Darboux! form whose only nonzero components areu2a21,2a with a51, . . . ,n. Then the com-
mutation relations~3.3! translate to

@za,z̄ā#!5uaā, with uaā52u2a21,2a, ~3.6!

and all other commutators are equal to zero.

2. Self-duality type equations in eight dimensions

A standard way to obtain a noncommutative generalization of a theory is to replace n
the ordinary commutative product between field variables with the noncommutative star pr
However, it is well known that this method of translating a commutative theory into a non
mutative one is not uniquely defined when the matter fields are involved. For instance, the
fields in noncommutativeU(1) gauge theory onR2n can be regarded in three different way
namely as elements of a left module@over the algebraAu(R2n)], or as elements of a right module
or they can transform in the adjoint representation. For this reason we propose derivin
noncommutative SW equations from noncommutative self-duality type Yang–Mills~YM ! equa-
tions in eight dimensions, which are uniquely defined. Eventually, we will discover the equa
corresponding to the above mentioned naive substitution rule by a formal reduction of
general equations. In the commutative case a similar idea has been worked out by the au
Ref. 18.

Let us consider pureU(2) YM theory onRu
8 . In star-product formulation the componentsFab

of the YM curvatureFA read as

Fab5]aAb2]bAa1@Aa ,Ab#! ~3.7!

and take values inu(2). Here a, b,..., run from 1 to 8. Consider the generalized self-dua
equations for YM fields in eight dimensions,

Fab5 1
2TabgdFgd , ~3.8!

where the totally antisymmetric tensorTabgd is determined by the octonionic structure consta
f i jk as

Ti jkl 5
1
6e i jklmnqf mnq and T8i jk5 f i jk , for i , j ,k, . . .51,...,7. ~3.9!

~In the commutative case these equations were introduced in Ref. 17 and discussed, e.g.,
22, 23. We usef 1275 f 3475 f 5675 f 1635 f 2465 f 2535 f 15451.) Note that the tensorTabgd and there-
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fore the equations~3.8! are invariant with respect to the groupSpin(7) rather thanSO(8). In fact,
it is impossible to construct a totally antisymmetric tensor of rank four in eight dimensions w
is invariant underSO(8) rotations.

Using the definition~3.9!, we can write down the generalized self-duality~3.8! in components
as follows:

F121F341F561F7850,

F131F421F571F8650,

F141F231F761F8550,

F151F621F731F4850, ~3.10!

F161F251F381F4750,

F171F821F351F6450,

F181F271F631F5450.

With the help of~3.4! and the definitions

Aza5 1
2~A2a212 iA2a! and Az̄ā5 1

2~A2a211 iA2a!, for a51,...,4, ~3.11!

we rewrite~3.10! as

Fz1z̄1̄1Fz2z̄2̄1Fz3z̄3̄1Fz4z̄4̄50, ~3.12a!

Fz1z21Fz̄3̄z̄4̄50, ~3.12b!

Fz2z42Fz̄1̄z̄3̄50, ~3.12c!

Fz1z41Fz̄2̄z̄3̄50. ~3.12d!

Note thatAz̄ā52Aza
† , since the componentsAa are skew-Hermitian.

3. Reduction to four dimensions

Following Baulieu et al.,18 we assume that the gauge potential componentsAza for a

51,...,4 do notdepend on the coordinatesz3,z4,z̄3̄,z̄4̄ and definetCª(C1 ,C2) with C1ªAz̄3̄

andC2ªAz4. Then the equations~3.12! dimensionally reduce to

Fz1z̄1̄1Fz2z̄2̄52~@C1 ,C1
†#!2@C2 ,C2

†#!!, ~3.13a!

Fz1z25@C1 ,C2
†#! , ~3.13b!

Dz̄1̄C12Dz2C250, ~3.13c!

Dz̄2̄C11Dz1C250, ~3.13d!

where the covariant derivativeDza is defined byDzaC5]zaC1@Aza,C#! . In the commutative
limit these equations coincide with a non-Abelian generalization of the SW equations, cons
in Ref. 18. Note that the special case of these equations corresponding toC2[0 was discussed in
Refs. 24, 25.
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Along with the unperturbed equations~3.13! we shall also consider the perturbed equatio
~cf. Refs. 8–10!. For that we introduce au~2!-valued two-formx and add its self-dual partx1 to
FA

1 ,

Fz1z̄1̄1Fz2z̄2̄1xz1z̄1̄1xz2z̄2̄52~@C1 ,C1
†#!2@C2 ,C2

†#!!, ~3.14a!

Fz1z21xz1z25@C1 ,C2
†#! , ~3.14b!

Dz̄1̄C12Dz2C250, ~3.14c!

Dz̄2̄C11Dz1C250. ~3.14d!

B. Abelian SW monopole equations

In order to get Abelian SW equations from the non-Abelian ones, we shall consider solu
of a particular type given by a suitable ansatz. This will reduce the gauge groupU(2) to U(1)
3U(1) and then, further down toU(1).

1. Noncommutative U ¿(1)ÃUÀ(1) SW monopole equations

Let us consider theU(1)3U(1) subgroup ofU(2) with the generators

S i 0

0 i D and S i 0

0 2 i D , ~3.15!

and assume that the components of the gauge potentialAza for a51,2 take the form

AzaªS A1za 0

0 A2za
D , with A6za5 1

2~B za6A za!, ~3.16!

and A za,B zaPC`(R4,iR^ C). ~If not stated differently,a,b,..., run always from 1 to 2 in the
sequel.! Furthermore, we restrictC1 andC2 to the form

C1,2ªS 0
1

A8
f1,2

0 0
D , ~3.17!

wheref1,2PC`(R4,C).
Substituting~3.16! and~3.17! into the equations~3.13!, after a straightforward calculation w

obtain the equations

F1z1z̄1̄1F1z2z̄2̄52 1
8~f1!f1

†2f2!f2
†! and F1z1z25 1

8f1!f2
† , ~3.18a!

F2z1z̄1̄1F2z2z̄2̄5 1
8~f1

†!f12f2
†!f2! and F2z1z252 1

8f2
†!f1 , ~3.18b!

as well as

Dz̄1̄f12Dz2f250 and Dz̄2̄f11Dz1f250, ~3.19!

where we have used the definition

Dzafª]zaf1A1za!f2f!A2za. ~3.20!

HereF6zaz̄ā are the components of the curvature associated withA6za, i.e.,

F6zaz̄ā5]zaA6 z̄ā2] z̄āA6za1@A6za,A6 z̄ā#! . ~3.21!
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Analogously, by assuming thatx5diag(x1 ,x2) with x6PV2(R4,iR) in ~3.14!, we obtain the
perturbed equations

F1z1z̄1̄1F1z2z̄2̄1x1z1z̄1̄1x1z2z̄2̄52 1
8~f1!f1

†2f2!f2
†!, ~3.22a!

F1z1z21x1z1z25 1
8f1!f2

† , ~3.22b!

F2z1z̄2̄1F2z2z̄2̄1x2z1z̄1̄1x2z2z̄2̄5 1
8~f1

†!f12f2
†!f2!, ~3.22c!

F2z1z21x2z1z252 1
8f2

†!f1 . ~3.22d!

We consider the equations~3.18!, ~3.19! and~3.22!, ~3.19! as a noncommutative extension of th
unperturbed and perturbed Abelian SW equations, respectively. Since there are two gauge
tials in the equations, we call them the noncommutative unperturbed and perturbedU1(1)
3U2(1) SW equations.

It remains to find out what kind of gauge transformations leave theU1(1)3U2(1) SW
equations invariant. It is obvious from the explicit form of these equations thatf1 andf2 are in
the bi-fundamental representation ofU1(1)3U2(1). Hence, Eqs.~3.18!, ~3.19! and ~3.22! are
invariant under gauge transformations of the form

A6°g6
† !A6!g61g6

† !dg6 , x6°g6
† !x6!g6 and F°g1

† !F!g2 , ~3.23!

whereg6PC`(R4,U6(1)) andtF5(f1 ,f2).
In the commutative limit the covariant derivative~3.20! turns into

Dzaf5]zaf1~A1za2A2za!f5]zaf1A zaf, ~3.24!

i.e., the gauge potentialB disappears from the equations~3.19!. In other words, one copy ofU(1)
decouples fromU(2) and the matter fieldF interacts only with theSU(2) part. Hence, in the
commutative caseF is charged with respect to the diagonalU(1) subgroup ofU1(1)3U2(1)
corresponding to the gauge potentialA5A12A2 . Furthermore, the commutator in the expre
sion for the~Abelian! curvature vanishes and hence as a corollary we haveF6zaz̄ā5 1

2(FB zaz̄ā

6FA zaz̄ā). In the commutative limit one may choose the perturbationsx6 so that

x6zaz̄ā52 1
2FB zaz̄ā6 1

2xzaz̄ā and x6z1z252 1
2FB z1z26 1

2xz1z2, ~3.25!

wherexPV2(R4,u(1)) is some other perturbation. Then from Eqs.~3.22! we obtain

FA z1z̄1̄1FA z2z̄2̄1xz1z̄1̄1xz2z̄2̄52 1
4~f1f̄12f2f̄2! and FA z1z21xz1z25 1

4f1f̄2 .
~3.26!

~Note that in the case of complex valued-functions ‘‘†’’ goes to ‘‘2’’ in the commutative limit.!
Thus, we recover the perturbed SW equations~2.8b! and~2.11! ~written in complex coordinates!.
Of course, the choicex[0 corresponds to the unperturbed equations.

Remark:Consider the unperturbed equations~3.18! and ~3.19!. In the commutative limit we
arrive at the standard unperturbed SW equations for configurations~A,F! plus the Abelian
ASDYM equations forB, i.e.,

FB z1z̄1̄1FB z2z̄2̄50 and FB z1z250. ~3.27!

Taking the trivial solutionB50 ~recall that there are no Abelian instantons onR4) we remain with
the standard unperturbed SW equations. More generally, any pure gauge configuration forB will
do the same. The noncommutative version of the latter statement is, however, nontrivial.
chooseB za in ~3.16! of the form
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B za5 1
2~b†!]zab2b!]zab†!, ~3.28!

with bPC`
„R4,U(1)…, then it will correspond in the commutative limit to a pure gauge confi

ration but, of course, it is not pure gauge in the noncommutative case. Only in the commu
limit the curvatureFB disappears and we arrive at the unperturbed SW equations~2.8!.

2. Noncommutative U Á(1) SW monopole equations

In Eqs.~3.18!–~3.23! the fieldF is regarded as an element of aRu
4-bimodule transforming in

the bi-fundamental representation of the gauge groupU1(1)3U2(1). However, in the noncom-
mutative setup the matter fieldF can also be thought of either as an element of a rightRu

4-module
@the U1(1) case# or as an element of a leftRu

4-module@the U2(1) case#. These two cases ca
easily be read off Eqs.~3.22a!, ~3.22b! and ~3.22c!, ~3.22d!, respectively. Namely, consider th
equations

Fz1z̄1̄1Fz2z̄2̄1xz1z̄1̄1xz2z̄2̄52 1
4~f1!f1

†2f2!f2
†! and Fz1z21xz1z25 1

4f1!f2
† ,

~3.29a!

as well as

Dz̄1̄f12Dz2f250 and Dz̄2̄f11Dz1f250, ~3.29b!

wherexPV2(R4,iR) and the~right! covariant derivative reads as

Dzaf5]zaf1A za!f. ~3.29c!

@Formally, these equations can be obtained from~3.19!–~3.22! by choosingB za5A za ~i.e.,
A2za50), taking x6 such that x1zaz̄ā5xzaz̄ā, x1z1z25xz1z2, x2z1z̄1̄1x2z2z̄2̄5 1

8(f1
†!f1

2f2
†!f2) and x2z1z252 1

8f2
†!f1 , wherexPV2(R4,iR), and rescalingF°&F.] Note that

the curvatureFA is now computed fromA, i.e. Fmn5]mAn2]nAm1@Am ,An#! .
Similarly, we may introduce the equations

Fz1z̄1̄1Fz2z̄2̄1xz1z̄1̄1xz2z̄2̄5 1
4~f1

†!f12f2
†!f2! and Fz1z21xz1z252 1

4f2
†!f1

~3.30a!

and

Dz̄1̄f12Dz2f250 and Dz̄2̄f11Dz1f250, ~3.30b!

wherexPV2(R4,iR) and

Dzaf5]zaf2f!B za ~3.30c!

is the~left! derivative.@These equations can formally be obtained from~3.19!–~3.22! by choosing
B za52A za ~i.e., A1za50) and putting x1z1z̄1̄1x1z2z̄2̄52 1

8(f1!f1
†2f2!f2

†), x1z1z2

5 1
8f1!f2

† , x2zaz̄ā5xzaz̄ā and x2z1z25xz1z2, where xPV2(R4,iR). Again we should rescale
F°&F.] Now the curvatureFB is associated with the gauge potentialB, i.e., Fmn5]mBn

2]nBm1@Bm ,Bn#! .
We shall call~3.29! and ~3.30! the perturbed noncommutativeU1(1) andU2(1) SW equa-

tions. Obviously, the unperturbed equations appear forx[0. Note that the systems~3.29! and
~3.30! are totally equivalent and the only difference between them is an artifact of noncomm
tivity. The commutative limits of both cases are, of course, identical and produce~2.9!. Moreover,
in the commutative case the gauge transformations~3.23! reduce to the standard ones, i.e., o
may choose the identity either forg2 or for g1 .
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C. Operator form of the Abelian SW monopole equations

1. Weyl transform

Due to the nonlocal nature of the star product, explicit calculations might be quite tedio
is therefore convenient to pass over to the operator formalism via the Weyl orderingW given by

W : f̃ ~k!° f̂ ~ x̂!5
1

~2p!2nE
R2n

d2nk f̃~k! eikx̂, ~3.31a!

W 21 : f̂ ~ x̂!° f̃ ~k!5uPf~2pu!uTr$e2 ikx̂ f̂ ~ x̂!%, ~3.31b!

where f̃ (k) stands for the Fourier transform off (x)PS(R2n),

f ~x!° f̃ ~k!5E
R2n

d2nx f~x!e2 ikx. ~3.32!

HereS(R2n) is the Schwartz space of fast decreasing functions onR2n, ‘‘Tr’’ denotes the trace in
the operator representation of the noncommutative algebra and ‘‘Pf~2pu!’’ is the Pfaffian of
(2puab). ~However, in later considerations we shall make suitable choices forf which are
weaker.! Also, in these equationskx is a shorthand notation forkaxa. One can verify~see, e.g.,
Ref. 26! that the following relations are true:

W : f !g° f̂ ĝ and E
R2n

d2nx f 5uPf~2pu!uTr f̂ . ~3.33!

We may regard the coordinatesx̂a as operators which act on some Fock spaceH, specified in
Sec. IV, and satisfy the commutation relations@ x̂a,x̂b#5 iuab. With a proper choice of coordinate
the parametersuab will have the canonical form~3.6!. For the complex coordinatesẑa, also
considered as operators inH, we then get

@ ẑa,ẑb#50 and @ ẑa, ẑ̄ā#5uaā, for a,b51,...,n. ~3.34!

A straightforward calculation shows that coordinate derivatives are now inner derivations o
algebra, i.e.,

]̂za f̂ 5uaā@ ẑ̄ā, f̂ # and ]̂ z̄ā f̂ 5u āa@ ẑa, f̂ #. ~3.35!

In the operator formulation, the perturbed noncommutativeU1(1)3U2(1) SW equations~3.19!
and ~3.22! retain their form,

F̂1z1z̄1̄1F̂1z2z̄2̄1x̂1z1z̄1̄1x̂1z2z̄2̄52 1
8~f̂1f̂1

†2f̂2f̂2
†!, ~3.36a!

F̂1z1z21x̂1z1z25 1
8f̂1f̂2

† , ~3.36b!

F̂2z1z̄1̄1F̂2z2z̄2̄1x̂2z1z̄1̄1x̂2z2z̄2̄5 1
8~f̂1

†f̂12f̂2
†f̂2!, ~3.36c!

F̂2z1z21x̂2z1z252 1
8f̂2

†f̂1 , ~3.36d!

and

D̂z̄1̄f̂12D̂z2f̂250 and D̂z̄2̄f̂11D̂z1f̂250, ~3.36e!

where
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D̂zaf5 ]̂zaf̂1Â1zaf̂2f̂Â2za. ~3.37!

In order to simplify our notation, from now on we omit the hats over the operators.

2. U¿(1)ÃUÀ(1) SW action functional

Having introduced theU1(1)3U2(1) noncommutative extension of the SW equatio
~3.36!, we shall define an appropriate action functional. For this purpose we switch back t
coordinates.

Let tF5(f1 ,f2) andtF*ª(f2
† ,2f1

†). ~Note that ‘‘* ’’ is nothing but a spinor conjugation.!
Then the noncommutative deformation of the action functional~2.10! will have the form

SWx~A1 ,A2 ,F;u!5 1
2uPf~2pu!uTr$uDA1 ,A2

Fu21u~DA1 ,A2
F!†u21 8uFA1

1

1x1
12s1~F ^ F†!0u218uFA2

1 1x2
12s1~F* ^ ~F* !†!0u2%,

~3.38!

where

ucu2
ªc1c1

†1c2c2
† and uc†u2

ªc1
†c11c2

†c2 , ~3.39!

for any tc5(c1 ,c2). Here, DA1 ,A2
denotes the Dirac operator depending on the two ga

potentialsA1 andA2 , i.e.,

DA1 ,A2
F5S 2D41 iD 3 D21 iD 1

2D21 iD 1 2D42 iD 3
D S f1

f2
D , ~3.40!

where the covariant derivativesDm are given by~3.37!. Note that the prefactors in~3.38! are
adjusted in such a way that we recover~2.10! in the commutative limit. It is not difficult to see tha
the ~perturbed! U1(1)3U2(1) SW equations following from~3.38! are given by the equations

DA1 ,A2
F50, FA1

1 1x1
15s1~F ^ F†!0 and FA2

1 1x2
15s1

„F* ^ ~F* !†
…0 , ~3.41!

whose solutions minimize the action functional~3.38!. In components these equations coinci
with ~3.36!.

Assuming thatf1,2 andF6mn are of proper trace-class, e.g.,uTrf1,2u,` and uTrF6mnu,`,
we can show that

SWx~A1 ,A2 ,F;u!5Ex~A1 ,A2 ,F;u!116p2 Kx2uPf~2pu!uTrT, ~3.42!

where the functionalsEx andKx are given by

Ex~A1 ,A2 ,F;u!5uPf~2pu!uTr$2uFA1
u212uFA2

u21 1
2uDA1 ,A2

Fu21 1
2u~DA1 ,A2

F!†u2

1 4ux1
12s1~F ^ F†!0u214ux2

12s1~F* ^ ~F* !†!0u2% ~3.43!

and

Kx52
1

8p2 uPf~2pu!uTr(
i 56

$Fimn
1 ,x imn

1 %. ~3.44!

The topological termT reads as

T5 (
i 56

~Fimn * Fimn1“imJim!. ~3.45a!
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Here

“6m • ª]m • 1@A6m , • #, ~3.45b!

‘‘ * ’’ denotes the Hodge operator and$A,B%ªAB1BA. The currentsJ6m depend in a particular
fashion on the fieldsf1 andf2 , their derivatives and on the gauge potentialsA6m . The explicit
derivation of~3.42! and the expressions for the currentsJ6m are given in Appendix A. Note tha
similarly to the commutative case the functionalsEx116p2Kx and SWx yield the same equation
of motion. The integration of~3.45a! yields the topological charge

Q52
1

8p2 uPf~2pu!uTrT, ~3.46!

for the considered field configuration (A1 ,A2 ,F) on Ru
4 .

3. Generalized coupled vortex equations

Let us put one component ofF to zero, e.g., consider the casetF5(f1 ,f2)5..(f,0). @Note
that in the case of Ka¨hler manifolds (R4 is trivially Kähler! the field f can be regarded as
scalar.20,21# Moreover, we choose

x6z1z250 and x6z1z̄1̄1x6z2z̄2̄57 1
8 v6 , ~3.47!

wherev6 are some Hermitian operators acting onH. Then the energy functional~3.43! turns into

Ex~A1 ,A2 ,F;u!5uPf~2pu!uTr$F1mnF1mn
† 1F2mnF2mn

† 1 1
2Dmf~Dmf!†1 1

2~Dmf!†Dmf

1 1
8~v12ff†!21 1

8~v22f†f!2%, ~3.48a!

andKx is given by

Kx52
i

32p2 uPf~2pu!uTr$$F1121F134,v1%2$F2121F234,v2%%. ~3.48b!

Also the currentsJ6m have a fairly simple form,

J1m5
i

4
~emn121emn34!~f~Dnf!†2~Dnf!f†!, ~3.49a!

J2m52
i

4
~emn121emn34!~f†~Dnf!2~Dnf!†f!, ~3.49b!

whereemnls is the Levi-Civita symbol withe123451 ~see the Appendix!.
For our choices ofF andx6 the perturbedU1(1)3U2(1) SW equations in complex coor

dinates read as

F1z1z̄1̄1F1z2z̄2̄5 1
8~v12ff†! and F1z1z250, ~3.50a!

F2z1z̄1̄1F2z2z̄2̄52 1
8~v22f†f! and F2z1z250, ~3.50b!

Dz̄1̄f50 and Dz̄2̄f50. ~3.50c!

In the commutative case these equations were considered, e.g., in Ref. 9.
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4. UÁ(1) SW action functionals

Having introduced theU1(1)3U2(1) SW functionals, we are now interested in prop
functionals for theU6(1) cases~3.29! and ~3.30!. Let us first discuss the perturbedU1(1) SW
equations. In this case the SW action functional takes the following form:

SWx~A,F;u!5uPf~2pu!uTr$uDAFu212uFA
11x12s1~F ^ F†!0u2%. ~3.51!

Note that now the Dirac operator depends only onA and the covariant derivatives are given b
~3.29c!. Also here the prefactors have been chosen such that the correct commutative limit w
obtained. As before, the functional SWx may be rewritten as

SWx~A,F;u!5Ex~A,F;u!116p2Kx2uPf~2pu!uTrT, ~3.52!

whereEx turns out to be

Ex~A,F;u!5uPf~2pu!uTr$uFAu21uDAFu212ux12s1~F ^ F†!0u2%. ~3.53!

The Chern–Simons termKx reads as

Kx52
1

16p2 uPf~2pu!uTr $Fmn
1 ,xmn

1 %, ~3.54!

and the topological termT is given by

T5 1
4$Fmn ,* Fmn%1¹mJm , with ¹mJm5]mJm1@Am ,Jm#, ~3.55!

implying the charge

Q52
1

8p2 uPf~2pu!uTrT. ~3.56!

Again all equations simplify essentially if one choosestF5(f1 ,f2)5(f,0), xz1z250 and
xz1z̄1̄1xz2z̄2̄52 1

4v, wherev is some Hermitian operator. ThenEx andKx are given by

Ex~A,F;u!5uPf~2pu!uTr$ 1
2FmnFmn

† 1Dmf~Dmf!†1 1
4~v2ff†!2% ~3.57a!

and

Kx52
i

32p2 uPf~2pu!uTr $F121F34,v%. ~3.57b!

The currentJm reduces in this case to

Jm5
i

2
~emn121emn34!„f~Dnf!†2~Dnf!f†

…. ~3.58!

Finally, the perturbedU1(1) SW equations read as

Fz1z̄1̄1Fz2z̄2̄5 1
4~v2ff†! and Fz1z250, ~3.59a!

Dz̄1̄f50 and Dz̄2̄f50. ~3.59b!

In the commutative case thesev-vortex equations in four dimensions were considered, e.g
Ref. 9. Note that in a similar manner one can write down the functionals corresponding
U2(1) case~3.30!. Since they look essentially the same as the above-introducedU1(1) function-
als we refrain from writing down their explicit form.
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IV. PARTICULAR SOLUTIONS

A. Operator realization

The form of the Heisenberg algebra type commutation relations~3.34! suggests that the
algebraRu

4 may be represented by a pair of harmonic oscillators in the two-oscillator Fock s
H>H1^ H2> % n1 ,n2

C un1 ,n2&. We introduce, as usual, annihilation and creation opera

$ca ,ca
†%a51,2, satisfying@ca ,ca

†#51. They act onH and are defined by the relations

c1un1 ,n2&5An1 un121,n2& and c1
†un1 ,n2&5An111 un111,n2&, ~4.1a!

c2un1 ,n2&5An2 un1 ,n221& and c2
†un1 ,n2&5An211 un1 ,n211&, ~4.1b!

where$un1 ,n2& u n1 ,n2PN0% form an orthonormal basis inH. The commutation relations~3.34!
imply that the operators$ca ,ca

†%a51,2 have the form

c1ª
ẑ1

Au11̄

11sgn~u11̄!

2
1

zC 1̄

Au 1̄1

12sgn~u11̄!

2
and

c1
†
ª

zC 1̄

Au11̄

11sgn~u11̄!

2
1

ẑ1

Au 1̄1

12sgn~u11̄!

2
, ~4.2a!

c2ª
ẑ2

Au22̄

11sgn~u22̄!

2
1

zC 2̄

Au 2̄2

12sgn~u22̄!

2
and

c2
†
ª

zC 2̄

Au22̄

11sgn~u22̄!

2
1

ẑ2

Au 2̄2

12sgn~u22̄!

2
. ~4.2b!

We introduce so-called shift operatorsS(a) acting on the Fock spacesHa . They are partially
isometric operators sending the Fock spaceHa to its subspace (1(a)2P0

(a))Ha , where we denote
by P0

(a)5u0&a^0ua the orthogonal projector onto the ground state ofHa and 1(a)2P0
(a) is the

complement projector. Then

S(a) : Ha→~1(a)2P0
(a)!Ha , with S(a)†S(a)51(a) and S(a)S(a)†51(a)2P0

(a) . ~4.3!

The operatorS(a) may be given by the explicit formula

S(a)5 (
n>0

un11&a^nua . ~4.4!

We will sometimes drop the index ‘‘a’’ on the stateun&a in the following if the meaning is clea
from the context.

The next step is to construct a shift operatorS on H>H1^ H2 such that

S : H→~12P0!H, with P05u0,0&^0,0u, ~4.5!

andS†S51 andSS†512P0 . A naive idea to take simply the tensor productS(1)
^ S(2) does not

work. One possible realization of the required operatorS is given by the formula27

S511 (
n>0

~ un11&^nu2un&^nu! ^ P0
(2)511~S(1)21(1)! ^ P0

(2) , ~4.6!
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but there are also other realizations~see, e.g., Ref. 28!.
For later convenience we introduce the operators

X6zaªA6za1uaāz̄
ā and X6 z̄āªA6 z̄ā1u āaza, for a51,2. ~4.7!

Then a short calculation of the YM curvature yields

F6z1z25@X6z1,X6z2#, F6z1z̄2̄5@X6z1,X6 z̄2̄#, F6z2z̄1̄5@X6z2,X6 z̄1̄#, ~4.8a!

F6z1z̄1̄5@X6z1,X6 z̄1̄#1u11̄ , F6z2z̄2̄5@X6z2,X6 z̄2̄#1u22̄ , ~4.8b!

and the covariant derivatives become

Dzaf5X1zaf2fX2za and Dz̄āf5X1 z̄āf2fX2 z̄ā. ~4.9!

B. Solutions to the perturbed SW equations

1. U¿(1)ÃUÀ(1) SW monopole equations

Let us consider Eqs.~3.50! rewritten in operator form. For the operators~4.7! we take~cf.,
e.g., Refs. 29, 30!

X6za5uaāS
Nz̄ā~S†!N1 (

n50

N21

la,nun&^nu ^ P0
(2) , ~4.10!

where the shift operatorS is given by ~4.6!, la,nPC and NPN. Then the commutator
@X6za,X6 z̄ā# is readily computed to be

@X6za,X6 z̄ā#52uaā~12PN!, ~4.11!

wherePN is given by

PNª (
n50

N21

un&^nu ^ P0
(2) . ~4.12!

It easy to see that the second equations of~3.50a! and ~3.50b! are trivially satisfied. Choosing
v2[0 and

f5A8~u11̄1u22̄! PN , ~4.13!

we can solve~3.50c! and the first equation of~3.50b! consistently, while the first equation o
~3.50a! implies that

v1516~u11̄1u22̄!PN . ~4.14!

Note that the modulila,n in ~4.10! can be interpreted as position parameters~see, e.g., Refs. 29
31, 32!.

Obviously, the components~4.8! of the curvature and the fieldf are of proper trace-class
Moreover, it can be easily checked thatf is covariantly constant, i.e., along withDz̄āf50,
required by the SW equations, we also haveDzaf50. This means that the currentsJ6m ~3.49!
vanish identically. Thus, it is straightforward to evaluate the topological charge~3.46! for this
configuration. What we find for the topological term~3.45a! is

T528
1

u12u34PN . ~4.15!

Using uPf(2pu)u54p2uu12u34u, we get immediately a charge,
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Q54e1e2N, with e1ª
uu12u
u12 and e2ª

uu34u
u34 . ~4.16!

@Note that the definition of the charge~3.46! differs by a factor of 2 in comparison with th
standard one.# Note thatKx given by ~3.48b! is also finite. Therefore, the considered field co
figuration has finite energy

Ex532p2f ~u!N with f ~u!ªuu12u34uF S 1

u12D 2

1
1

u12u341S 1

u34D 2G . ~4.17!

Let us now consider a slight generalization of the ansatz~4.10!. We take first

X6za5uaāS
N6z̄ā~S†!N61 (

n50

N621

la,n
6 un&^nu ^ P0

(2) , ~4.18a!

and find that@X6za,X6 z̄ā#52uaā(12PN6
). Second, choosing

f5A8~u11̄1u22̄! SN1~S†!N2 ~4.18b!

and the perturbationsv6 such that

v158~u11̄1u22̄! and v258~u11̄1u22̄!~122PN2
!, ~4.19!

one can easily show that our equations are solved consistently. Again, all our operators
proper trace-class forN1ÞN2 . In the case ofN15N2 one encounters a slight subtlety since t
field f is not of trace-class contrary to our assumption. However, potentially dangerous term
fF212f

† for instance~see the Appendix!, which occurred in~3.43!, are obviously zero when
N15N2 . Moreover, the fieldf is covariantly constant, as one can readily check. Therefore
currentsJ6m ~3.49! are identically zero. The topological term~3.45a! for this configuration thus
reads as

T524
1

u12u34~PN1
1PN2

!, ~4.20!

which produces a topological chargeQ52e1e2(N11N2). @Note that the definition of the charg
~3.46! differs by a factor of 2 in comparison with the standard one.# The functionalEx for these
solutions computes to

Ex516p2f ~u!~N11N2!, ~4.21!

where f (u) is given by~4.17!.

2. U¿(1) SW monopole equations

Consider now Eqs.~3.59! and choose the ansatz

Xza5uaāS
Nz̄ā~S†!N1 (

n50

N21

la,nun&^nu ^ P0
(2) and f5gSN, ~4.22!

with la,nPC and gPR. Then the first equation of~3.59a! can be solved byu11̄1u22̄5 1
4g

2

5 1
4v, while the other two equations are trivially satisfied. The only nonvanishing componen

the curvature areFzaz̄ā5uaāPN . Note that the expression forf is covariantly constant which
implies the vanishing of the current~3.58!. The charge~3.56! is equal toQ5e1e2N and the energy
Ex is 8p2f (u)N, where f (u) is given by~4.17!.
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Consider again Eqs.~3.59!. Besides the shift type solution forf we can also find a projecto
type solution. Namely, we choosef5gP0 with gPR,

v5~4~u11̄1u22̄!1g2!P0 , ~4.23!

and theXza’s as previously. With this choice the first two equations of~3.59a! are trivially
satisfied, while~3.59b! yields the conditionP0za50. Hence, we have to setuaā,0. Again, the
only nonvanishing components of the curvature areFzaz̄ā5uaāP0 . Moreover, we have

D1f52 iD 2f52Au11̄gu0,0&^1,0u and D3f52 iD 4f52Au22̄gu0,0&^0,1u, ~4.24!

which imply the vanishing of the currentJm ~3.58!. The topological charge for this configuratio
is Q5e1e2 .

C. Solutions to the unperturbed SW equations

In this section we shall consider solutions to the unperturbed SW equations. We conce
on the case of the unperturbedU1(1) equations, i.e.,~3.59! with v[0, as an illustrative example

1. U¿(1) SW monopole equations with FÆ0

In this case we obtain the noncommutative Abelian ASDYM equations. Solutions to
equations, i.e., noncommutative Abelian instantons, have been known for quite some16

However, for the sake of completeness we briefly review their construction. Note that in the
F[0 the currentJm is identically zero.

In terms of the operators~4.7! the Abelian ASDYM equations read as

@Xz1,Xz̄1̄#1@Xz2,Xz̄2̄#1u11̄1u22̄50 and @Xz1,Xz2#50. ~4.25!

Again we consider an ansatz forXza of the form ~4.22!. This ansatz yields solutions to th
equations~4.25! if the deformation tensorumn is anti-self-dual which trivially follows from~4.22!.
The only nonvanishing components of the curvature areFzaz̄ā5uaāPN implying that the charge
~3.56! is equal toQ52N. The modulila,n entering the solution are position parameters show
the location of the noncommutative instantons33 ~see also Ref. 32 for a recent review!.

It is also possible to consider the case of ASDYM equations on a self-dual backgroun

which u11̄5u22̄5..u. Let us assume thatu.0, which leads to the definitionsc15z1/Au and c2

5z2/Au. We choose the ansatz34,35

Xz152
1

u
S†z̄1̄f ~N!S52

1

Au
S†c1

†f ~N!S and Xz252
1

u
S†z̄2̄f ~N!S52

1

Au
S†c2

†f ~N!S,

~4.26!

and assume thatf (N)u0&5 f (0)u0&50, where NªN11N2ªc1
†c11c2

†c2 . Then the equation
@Xz1,Xz2#50 is trivially satisfied. A short calculation yields forf (N) the result34,35

f 2~N!5
N~N13!

~N11!~N12!
. ~4.27!

The nonvanishing components of the curvature in this case are

Fzaz̄b̄5
1

u
S†ca

†~ f 2~N11!2 f 2~N!!cbS, ~4.28a!

Fzaz̄ā5
1

u
S†@~Na11! f 2~N!2Naf 2~N21!21#S. ~4.28b!
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Using these expressions, we compute the topological charge~3.56! to be 21. A straightforward
extension of the above ansatz allows one to construct multi-instanton configurations, as w34,35

2. Fock spaces with indefinite norm

Let us now discuss the case whenF does not vanish identically. For that we relax th
condition of positivity of the norm of the Fock spacesH1,2 and assume instead that at least one
them has an indefinite norm~cf. Ref. 36!. For instance, we can introduce a collection of t
creation and annihilation operators$ca ,ca

†%a51,2, satisfying @c1 ,c1
†#51, @c2 ,c2

†#521, and de-
fined by the relations

c1un1 ,n2&5An1 un121,n2& and c1
†un1 ,n2&5An111 un111,n2&, ~4.29a!

c2un1 ,n2&52An2 un1 ,n221& and c2
†un1 ,n2&5An211 un1 ,n211&, ~4.29b!

substituting ~4.1!. The normalization condition is modified to ^n1 ,n2um1 ,m2&
5(21)n2dn1m1

dn2m2
. The identity operator is given by

15 (
n1 ,n2

~21!n2un1 ,n2&^n1 ,n2u. ~4.30!

Moreover, we have to redefine the relations between$ca ,ca
†%a51,2 and$za,z̄ā%a51,2 so that

c1ª
ẑ1

Au11̄

11sgn~u11̄!

2
1

zC 1̄

Au 1̄1

12sgn~u11̄!

2
and

c1
†
ª

zC 1̄

Au11̄

11sgn~u11̄!

2
1

ẑ1

Au 1̄1

12sgn~u11̄!

2
, ~4.31a!

c2ª
zC 2̄

Au22̄

11sgn~u22̄!

2
1

ẑ2

Au 2̄2

12sgn~u22̄!

2
and

c2
†
ª

ẑ2

Au22̄

11sgn~u22̄!

2
1

zC 2̄

Au 2̄2

12sgn~u22̄!

2
. ~4.31b!

The definition of the shift operatorS(1) remains the same, while forS(2) we obtain

S(2) : H2→~1(2)2P0
(2)!H 2 with S(2)†S(2)521(2) and S(2)S(2)†52~1(2)2P0

(2)!,
~4.32!

with the representation

S(2)5 (
n>0

~21!nun11&2^nu2 . ~4.33!

For an operatorS : H→(12P0)H on H with the propertiesSS†512P0 andS†S51, we can use
the old expression~4.6!, since the indefiniteness of the norm does not affect the verificatio
these properties. Indeed,S contains only the identity1, given by ~4.30!, and the projectorP0

(2)

on H2 .
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3. U¿(1) SW monopole equations with tFÄ(f,0)

We start from~3.59! with v[0. In this case the SW equations read as

Fz1z̄1̄1Fz2z̄2̄52 1
4ff†, Fz1z250 and Dz̄āf50, ~4.34!

where the covariant derivativeDza acts asDzaf52uaāf z̄ā1Xzaf. Suppose thatH1 is positive
normed whileH2 is endowed with an indefinite norm. Using the definition~4.6! and the ansatz
Xza5uaāSz̄āS†, we find again~4.11!. Assuming thatf5gP0 with gPR, we can solve the las

equation of~4.34! if P0za50, i.e.,za;ca
† . For a52 this is satisfied because of our choiceu22̄

.0 and fora51 it implies u11̄,0. The second equation of~4.34! is again identically satisfied
while the first one yields the conditionu11̄1u22̄52 1

4g
2, which makes sense due to the differe

signs ofu11̄ andu22̄ . The nonvanishing components of the curvature areFzaz̄ā5uaāP0 and one
can readily verify that the currentJm from ~3.58! has no contributions to the topological char
~3.56!. Moreover, the computation of the topological charge gives21. Note that the introduction
of an indefinite norm onH2 was needed for having solutions to the equationu11̄1u22̄52 1

4g
2 on

the components ofumn .

4. U¿(1) SW monopole equations and vortices

Finally we discuss a case which is slightly different from the cases described above,
sense that we fix the explicit form of the solutions on a two-dimensional subspace ofRu

4 from the
very beginning. This eventually results in theU1(1) vortex equations on the complementa
two-dimensional subspace.

Again, let H1 be positive normed andH2 endowed with an indefinite norm, such th

@z2,z̄2̄#5u22̄.0 and @c2 ,c2
†#521. Furthermore, we choose an ansatz forXz2 of the form Xz2

5u22̄1
(1)

^ S(2)z̄2̄S(2)†. A short calculation yields the resultFz2z̄2̄5u22̄1
(1)

^ P0
(2) . Assuming that

A z15A z1^ P0
(2) , we obtainFz1z̄1̄5F z1z̄1̄^ P0

(2) . Similarly, we takef5c ^ P0
(2) . Then the equa-

tion Dz̄2̄f50 implies the conditionP0
(2)z250, which is identically satisfied due to the relatio

z2;c2
† . Moreover, the equationFz1z250 is trivially satisfied. Usingu22̄521/u22̄, we finally

arrive at the equations

H F z1z̄1̄2S 1

u22̄
2

1

4
cc†D J ^ P0

(2)50, ~4.35a!

~] z̄1̄1A z̄1̄!c ^ P0
(2)50. ~4.35b!

~Note that these equations can also be obtained in the context of the perturbed SW equation
chooses the perturbation proportional toP0

(2) . Then there is no necessity to introduce an indefin

normed space.! Rescalingc°2 c̃/Au22̄ and introducingbª4/u22̄, we obtain the equations

F z1z̄1̄5
b

4
~12c̃c̃†! and ~] z̄1̄1A z̄1̄!c̃50, ~4.36!

on Ru
2,Ru

4 . For b51 they coincide with the standardU1(1) vortex equations. The equation

~4.36! with u11̄52u12Þ0 and their explicit solutions were extensively discussed in the litera
~see, e.g., Refs. 37, 38, 30!. Note that the choice of the projectorP0

(2) onH2 ensures a finite charg
for this solution. To exemplify this case let us rewriteA z1 via X z15A z11u11̄z̄

ā with X z1

5u11̄(S
(1))Nz̄1̄(S(1)†)N. Moreover, suppose thatc̃5(S(1))N. Then one readily verifies thatu11̄

5b/451/u22̄. Therefore, we end up withFz1z̄1̄5u11̄PN and f5 (2/Au22̄) (S(1))N
^ P0

(2) . Note

that u11̄,0. The topological charge~3.46! for this configuration isQ52N.
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To summarize, we have described solutions onRu12
2

3Ru34
2 . It is also allowed to putu12 to zero

in order to have solutions onR23Ru34
2 . Then the second equation of~4.36! reduces toA z̄1̄

52] z̄1̄ log c̃. Assuming thatc̃5e(u1 iv)/2 has zeros at pointszn
1 in the complex plane, we obtain

from the first equation of~4.36! with b51 ~see, e.g., Refs. 39, 21!,

Du5eu2114p (
n51

N

d (2)~z12zn
1 ,z̄1̄2 z̄n

1̄!, ~4.37!

i.e., the standard Liouville type equation onR2>C. The modulizn
1 are position parameters of th

N-vortex solution on thez1-plane. It is well known that this equation exhibits regularN-vortex
solutions.39

D. Noncommutative solitons and D-branes

Without refering to string theory theU1(1)3U2(1) andU6(1) SW monopole equations ar
simply understood as noncommutative generalizations of the Abelian SW equations. In th
tion we shall discuss how one can interpret solutions to the noncommutative SW equati
D-brane configurations in a stringy context.

1. Brane –antibrane effective action

In the simplest case of type II superstrings living in the target spaceR9,1 a Dp-brane with a
world volumeRp,1

�R9,1 may be defined via a relative map,

w : ~S2 ,]S2!→~R9,1,Rp,1!, ~4.38!

where S2 is a string world sheet with boundary]S2 . One may also considerDp-branes
(5anti-Dp-branes) which areDp-branes with opposite orientation and Ramond–Ramond~RR!
charge.

It is well known that there are stable BPSDp-branes in type IIA~evenp) and type IIB~odd
p) superstring theory. Besides that, it is also well known that a system consisting of coinc
Dp-brane andDp-brane is unstable since open strings ending on these branes have a tac
mode (M2,0) in the spectrum~see, e.g., Refs. 40–44 and references therein!. This instability can
be seen in the low energy effective action for the brane–antibrane pair. Namely, the effectiv
theory describing light excitations of this system contains two Abelian gauge potentialsA6 and a
complex scalarf ~tachyon!. The latter one is associated with modes of the open string stret
between brane and antibrane, and is believed to be subject to a ‘‘Mexican hat’’ potentia
tachyon carries charge one under the diagonalU(1) subgroup of the groupU1(1)3U2(1) with
the generator diag(i,2i) corresponding to the gauge potentialA12A2 . After turning on a con-
stantB-field ~generating a noncommutativity tensoru on Rp,1 45! the theory becomes noncommu
tative and the tachyon field transforms in the bi-fundamental representation ofU1(1)3U2(1).46

In perturbative string theory the first computations of the brane-antibrane effective action
performed in Ref. 47. The resulting effective Lagrangian reads as

L (2)5F1âb̂F1
âb̂1F2âb̂F2

âb̂1~D âf!D âf1
1

4
~t22ff̄!2, ~4.39!

where the covariant derivative is given byD âf5]âf1(A1â2A2â)f, the overbar denotes
complex conjugation,t2 is a constant andâ,b̂,...50,1,...,p. This is not the full effective La-
grangian since the coupling between closed string RR fields and open strings gives an ad
term LCS called the Chern–Simons term.48 For constant components of the RR fields, which
now consider, this term does not contribute to the equations of motion, and therefore we w
discuss it here. Note that the terms given by~2.14! and ~3.44! are of such a kind.

The tachyon potential given by~4.39! has the quartic form
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V~f,f̄ !5 1
4~t22ff̄!2. ~4.40!

Computations in level truncated superstring field theory yield the same result.49 Any minimum
ff̄5t2 of the tachyon potential describes the closed string vacuum~tachyon condensate!. The
perturbative spectrum around this vacuum is conjectured not to contain any open string
tions. As it was discussed in Refs. 46, 30, 50, in the presence of aB-field background a noncom
mutative generalization of the effective theory~4.39! might be of the form

L nc
(2)5F1âb̂F1

†âb̂1F2âb̂F2
†âb̂1 1

2$D
âf,~D âf!†%1 1

8~t22ff†!21 1
8~t22f†f!2, ~4.41!

whereD âf5]âf1A1âf2fA2â . Higher order corrections to the quartic tachyon potential
known ~see, e.g., Refs. 51, 43!. The result is qualitatively similar~‘‘Mexican hat’’ form with
minima atff̄,`), and~4.40! is the leading order term. Note that a quartic form of the poten
was also obtained in Refs. 45, 52–54 for bound states inD(p22)-Dp andD(p24)-Dp systems
by using scattering calculations in string theory, level truncated superstring field theory a
analyzing the fluctuation spectrum around~noncommutative! vortex and instanton solutions.

Quite different results have been obtained in boundary string field theory~BSFT! ~see, e.g.,
Refs. 55, 56 and references therein!. There~as in Ref. 57! the Lagrangian density is proportiona
to the tachyon potential itself, and the potential has the formV;exp(2ff̄) with a ring of minima
at ff̄→`. It is believed that the level truncation scheme and the BSFT approach can be r
by a field redefinition involving all components of the string field.55 Various ‘‘improved versions’’
of the effective action of the brane–antibrane system have been introduced~see, e.g., Refs. 58
59!, and in the literature there is no final agreement on its form. Thus, the action based
Lagrangian~4.39! @or ~4.41! in the presence of aB-field# might be considered as an approximati
of the low energy effective action of the brane–antibrane system. In any case the dis
Yang–Mills–Higgs theory provides a simple field theoretic model of the more complicated s
field theory description of brane–antibrane systems.

2. Noncommutative vortices and ABS solitons

Recall that branes and antibranes have opposite RR charge and therefore they can an
into the closed string vacuum state withA650 andff†5f†f5t2. However, instead of taking
the vacuum solution, one can choose as the ground state a~tachyon! soliton solution to the
equations of motion for the Lagrangian~4.41!. Such kinds of solutions are interpreted as bou
states ofDp-branes andDp-branes, equivalent toD-branes of lower dimensionality. Here w
discuss the main example of such solutions obtained via the Atiyah–Bott–Shapiro~ABS!
construction.40,60–62These ABS~noncommutative! solitons live in 2n<p dimensions, and forn
51 they coincide with noncommutative vortices onRu

2 . For n52 the ABS solitons are non
Abelian and therefore differ from those~Abelian! SW solutions which also solve the field equ
tions following from ~4.41!.

To describe the ABS solitons onRu
2n we consider a non-Abelian generalization of the L

grangian~4.41! with a U1(q)3U2(q) gauge group forq52n21 and the tachyon fieldf in the
bi-fundamental representation (q,q̄) of this group. This model describes two Hermitian rankq
vector bundlesE6→Rp,1 with connection one-formsA6 andfPHom(E2 ,E1) and is associated
with a system ofq Dp-branes andq Dp-branes with common world volumeRp,1. We assume tha
2n<p and introduce an ansatz for ABS solitons related to Clifford algebras.

Consider the Clifford algebra of the Euclidean space (R2n,dab), generated by unity and
elementsGa such that

GaGb1GbGa522dab , ~4.42!
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with a,b,...51,...,2n. In the 2n32n matrix representation of this algebra the generatorsGa can
be chosen of the form

Ga5S 0 ga
†

2ga 0
D , ~4.43!

where thega’s areq3q gamma matrices withq52n21. In this representation the spinor spa
W>C2q can be decomposed into a direct sumW>W1

% W2 of semi-spinor spacesW6 ~the
spaces of Weyl spinors!. Note that forn51 we haveg151 andg25 i .

Considering the noncommutative deformationRu
2n of R2n discussed in Secs. III A and III C

we introduce the operators

T5ga
†xa

1

A~gx!~gx!†
and T†5

1

A~gx!~gx!†
gaxa, ~4.44!

wheregx is a short hand notation forgaxa. The operatorT defines a map,

T̂ : H^ W2→H^ W1. ~4.45!

HereH is the Hilbert space realized as a representation space ofn oscillators defined by formulas
similiar to ~4.1! and ~4.2!, andW6 are the semi-spinor spaces introduced above. In matrix r
ization T̂ looks as

T̂5S 0 T

0 0D , ~4.46!

and hence, following the authors of Refs. 40, 63, 62, 50, we will not distinguishT and T̂ in the
sequel.

It is not difficult to see that

T†T51q and TT†51q2P0 , ~4.47!

whereP0 is the projector onto the kernel ofT†. This state is the tensor product of the oscillat
ground state with itself and the lowest weight spinor ofSO(2n) ~the fermion ground state!. Also,
by introducingTNªTN with T1[T, we have

TN
† TN51q and TNTN

† 51q2PN21 , ~4.48!

wherePN21 is the projector onto the kernel ofTN
† , anN-dimensional subspace inH^ W. One can

show that

dim kerTN50 and dim cokerTNªdim kerTN
† 5N, ~4.49!

and therefore the index ofTN is given by

indTNªdim kerTN2dim cokerTN52N. ~4.50!

The operatorsTN andTN
† are Toeplitz operators.

Now we reduce the equations of motion for the Lagrangian~4.41! to the spaceRu
2n
�Ru

p11 by
assuming that all fields depend only onxa and by takingA6a as the only nonvanishing compo
nents of the gauge potentialsA6 . To solve the reduced field equations we considerTN asq3q
matrices with operator entries and introduce the ansatz,
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A1za52~A1 z̄ā!†5tuaā~TN1
z̄āTN1

† 2 z̄ā!, A2za505A2 z̄ā and f5tTN1
, ~4.51!

which solves the equation of motion for~4.41!.30,50 More general solutions can also be co
structed. Forn51 the solution~4.51! describesN1 vortices onRu

2 . In the casen52 it gives a
solution for theU1(2)3U2(2) Yang–Mills–Higgs model onRu

4 . Some noncommutative SW
solutions@e.g.,~4.18a!, ~4.18b! with N250] solve the above equations as well but for the gau
group U1(1)3U2(1). These solutions can therefore be regarded as a new kind of tac
solitons.

3. Noncommutative SW solitons

Note that the SW equations~3.50! with v15v25t25const coincide with the first order BP
equations for the Lagrangian~4.41!, and therefore their solutions also satisfy the equations
motion for ~4.41!. In particular, the solution given by~4.18! with N1>1 andN250 is such a
solution. Following the general logic of Sen’s proposal, it is natural to interpret this solution
configuration ofN1 stableD(p24)-branes, corresponding to the topologically stable codim
sion four SW soliton on aDp2Dp brane pair.

The more general configuration described by~4.18! with N6>1 can be interpreted in two
different ways. First, we may again choosev15v25t25const. Then one can show that th
configuration satisfies the second order equations of motion for the Lagrangian~4.41! but does not
satisfy the first order equations~3.50! with constantv6 . This is natural since this solution corre
sponds to a system ofN1 D(p24)-branes andN2 D(p24)-branes which is not a BPS configu
ration from the point of view of the Lagrangian~4.41!. Second, one may consider the situati
wherev1 depends onff† andv2 on f†f and take as the low energy effective action the sum
the functional~3.48a! and the Chern–Simons term~3.48b!, where the latter contributes to th
equations of motion for nonconstantv6 . Then for proper choices ofv6 one can obtain configu
rations which satisfy the noncommutative SW equations. For instance, the choice

v15t2 and v252t212f†f ~4.52!

corresponds to the same tachyon potentialV;(t22ff†)21(t22f†f)2 as in ~4.41!. However,
for the above choice ofv6 the Chern–Simons term~3.48b! becomes nontrivial and contributes
the equations~3.50! which are the BPS equations for the actionEx116p2Kx with Ex and Kx

determined by~3.48!. Therefore, forv6 given by~4.52! the configuration~4.18! with N6>1 is a
solution to the SW equations~3.50!. So, in both cases the configuration~4.18! may be interpreted
as N1 D(p24)-branes andN2 D(p24)-branes. Other solutions to the noncommutative S
equations can be analyzed similarly.

V. CONCLUDING REMARKS

In this paper we have discussed different noncommutative deformations of the~perturbed! SW
monopole equations on Euclidean four-dimensional space. Namely, starting from proper
formed U(2) self-duality type YM equations in eight dimensions, we performed a reductio
U(2) noncommutative SW equations onRu

4 with the matter field in the adjoint representation
the gauge group. We then concentrated on theU1(1)3U2(1),U(2) noncommutative SW equa
tions with the matter in the bi-fundamental representation ofU1(1)3U2(1). Perturbed versions
of these equations have also been discussed. Then, by considering the matter fieldF as an element
of a right or leftRu

4-module, we have introduced the~perturbed! U1(1) andU2(1) SW equations.
The commutative limits of all these three Abelian cases are identical to the standard~perturbed!
Abelian SW equations onR4. In summary we may write down the following diagram:
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This picture shows the connection between the theories discussed in this paper. Note t
noncommutative vortex equations in two dimensions can easily be obtained via dimen
reduction from the noncommutative SW equations with properly chosen perturbations.

It has been shown thatRu
4 supports regular finite-action solutions to the SW equations eve

there are no such solutions in the commutative case. This is a well known phenomenon rel
the fact that, due to the noncommutativity tensoru, an additional length scale enters the theory.
have constructed explicit solutions to theU1(1)3U2(1) andU6(1) noncommutative SW equa
tions and interpreted them asD-brane configurations in type II superstring theory. It would
illuminating to generalize the present results to non-Abelian noncommutative SW theor
discuss the latter’s relation to superstring theory.
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APPENDIX: NONCOMMUTATIVE BOGOMOLNY TRANSFORMATION

In order to derive~3.42! we need the trivial identities

~Dmf!c†52f~Dmc!†1¹1m~fc†! and ~Dmf!†c52f†~Dmc!1¹2m~f†c!, ~A1!

where the covariant derivatives¹6m are given by~3.45b!. Furthermore, we have

@Dm ,Dn#f5F1mn f2f F2mn . ~A2!

Let us consider

4uFA1

1 1x1
12s1~F ^ F†!0u2522„F1mn

1 1x1mn
1 2smn

1 ~F ^ F†!0…
2

522~F1mn
1 !222$F1mn

1 ,x1mn
1 %12$F1mn

1 ,smn
1 ~F ^ F†!0%

22~x1mn
1 2smn

1 ~F ^ F†!0!2. ~A3!

This expression contains

~F1mn
1 !25 1

4~F1mn1* F1mn!25 1
2~F1mn!21 1

4$F1mn ,* F1mn%, ~A4a!
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$F1mn
1 ,smn

1 ~F ^ F†!0%5
i

2
$F112

1 ,f1f1
†2f2f2

†%2 1
2$F113

1 ,f2f1
†2f1f2

†%

1
i

2
$F114

1 ,f2f1
†1f1f2

†%, ~A4b!

2~x1mn
1 2smn

1 ~F ^ F†!0!252ux1
12s1~F ^ F†!0u2. ~A4c!

Similarly,

4uFA2

1 1x2
12s1~F* ^ ~F* !†!0u2522~F2mn

1 1x2mn
1 2smn

1
„F* ^ ~F* !†

…0!2

522~F2mn
1 !222$F2mn

1 ,x2mn
1 %

12$F2mn
1 ,smn

1
„F* ^ ~F* !†

…0%

22~x2mn
1 2smn

1
„F* ^ ~F* !†

…0!2 ~A5!

with

~F2mn
1 !25 1

2~F2mn!21 1
4$F2mn ,* F2mn%, ~A6a!

$F2mn
1 ,smn

1
„F* ^ ~F* !†

…0%52
i

2
$F212

1 ,f1
†f12f2

†f2%

1 1
2$F213

1 ,f1
†f22f2

†f1%2
i

2
$F214

1 ,f1
†f21f2

†f1%, ~A6b!

2~x2mn
1 2smn

1
„F* ^ ~F* !†

…0!252ux2
12s1

„F* ^ ~F* …†!0u2. ~A6c!

A lengthy but straightforward calculation exploiting~A1! and ~A2! yields for 1
2uDA1 ,A2

Fu2

the expression

1
2uDA1 ,A2

Fu25 1
2u iD 3f12D4f11 iD 1f21D2f2u21 1

2u iD 1f12D2f12 iD 3f22D4f2u2

52
i

2
$F112

1 ,f1f1
†2f2f2

†%1 1
2$F113

1 ,f2f1
†2f1f2

†%

2
i

2
$F114

1 ,f2f1
†1f1f2

†%1 1
2uDA1 ,A2

Fu22¹1mJ1m1C1 , ~A7!

where

J1m5
i

4
~emn121emn34!J1n

(1)1 1
4~emn311emn24!J1n

(2)1
i

4
~emn231emn14!J1n

(3) ~A8a!

and

J1n
(1)5f1~Dnf1!†2~Dnf1!f1

†2f2~Dnf2!†1~Dnf2!f2
† , ~A8b!

J1n
(2)52f1~Dnf2!†1~Dnf1!f2

†1f2~Dnf1!†2~Dnf2!f1
† , ~A8c!

J1n
(3)5f2~Dnf1!†2~Dnf2!f1

†1f1~Dnf2!†2~Dnf1!f2
† . ~A8d!

The termC1 is given by
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C152 if2F212
1 f2

†1 if1F212
1 f1

†2f2F213
1 f1

†1 if2F214
1 f1

†1 if1F214
1 f2

†1f1F213
1 f2

† .
~A9!

In a similar manner, we also have

1
2u~DA1 ,A2

F!†u25
i

2
$F212

1 ,f1
†f12f2

†f2%2 1
2$F213

1 ,f1
†f22f2

†f1%

1
i

2
$F214

1 ,f1
†f21f2

†f1%1 1
2u~DA1 ,A2

F!†u22¹2mJ2m1C2 , ~A10!

where

J2m52
i

4
~emn121emn34!J2n

(1)2 1
4~emn311emn24!J2n

(2)2
i

4
~emn231emn14!J2n

(3) ~A11a!

and

J2n
(1)5f1

†~Dmf1!2~Dmf1!†f12f2
†~Dmf2!1~Dmf2!†f2 , ~A11b!

J2n
(2)52f2

†~Dmf1!1~Dmf2!†f11f1
†~Dmf2!2~Dmf1!†f2 , ~A11c!

J2n
(3)5f1

†~Dmf2!2~Dmf1!†f21f2
†~Dmf1!2~Dmf2!†f1 . ~A11d!

The termC2 is

C25 if2
†F112

1 f22 if1
†F112

1 f12f2
†F113

1 f12 if2
†F114

1 f12 if1
†F114f21f1

†F113f2 .
~A12!

Therefore, we discover that

1
2uDA1 ,A2

Fu21 1
2u~DA1 ,A2

F!†u214uFA1

1 1x1
12s1~F ^ F†!0u2

14uFA2

1 1x2
12s1

„F* ^ ~F* !†
…0u2

5 1
2uDA1 ,A2

Fu21 1
2u~DA1 ,A2

F!†u212uFA1
u212uFA2

u214ux1
12s1~F ^ F†!0u2

14ux2
12s1~F* ^ „F* !†

…0u22 1
2$F1mn ,* F1mn%22$F1mn

1 ,x1mn
1 %2¹1mJ1m

2 1
2$F2mn ,* F2mn%22$F2mn

1 ,x2mn
1 %2¹2mJ2m1

i

2
$F112

1 ,f1f1
†2f2f2

†%

2 1
2$F113

1 ,f2f1
†2f1f2

†%1
i

2
$F114

1 ,f2f1
†1f1f2

†%1C12
i

2
$F212

1 ,f1
†f12f2

†f2%

1 1
2$F213

1 ,f1
†f22f2

†f1%2
i

2
$F214

1 ,f1
†f21f2

†f1%1C2 .

Now suppose that all operators entering this formula are of proper trace-class, e.g.,uTrf1,2u,`
and uTrF6mnu,`. Then
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TrH i

2
$F112

1 ,f1f1
†2f2f2

†%2 1
2$F113

1 ,f2f1
†2f1f2

†%1
i

2
$F114

1 ,f2f1
†1f1f2

†%1C1

2
i

2
$F212

1 ,f1
†f12f2

†f2%1 1
2$F213

1 ,f1
†f22f2

†f1%2
i

2
$F214

1 ,f1
†f21f2

†f1%1C2J 50,

~A13!

since we can use the invariance of the trace under cyclic permutations. In fact, one can
check that for each term in~A13! there exists a corresponding term having the opposite sig
that the trace is indeed zero.

Finally we obtain

Tr$ 1
2uDA1 ,A2

Fu21 1
2u~DA1 ,A2

F!†u214uFA1

1 1x1
12s1~F ^ F†!0u2

1 4uFA2

1 1x2
12s1

„F* ^ ~F* !†
…0u2%

5Tr$ 1
2uDA1 ,A2

Fu21 1
2u~DA1 ,A2

F!†u212uFA1
u212uFA2

u214ux1
12s1~F ^ F†!0u2

1 4ux2
12s1

„F* ^ ~F* !†
…0u2%2TrT1

16p2

uPf~2pu!u
Kx , ~A14!

which is the desired result. Note that the choicef15f andf250 yields the expressions~3.49a!
and ~3.49b! for the currentsJ6m .
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Semiclassical asymptotics for the Maxwell–Dirac system
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We study the coupled system of Maxwell and Dirac equations from a semiclassical
point of view. A rigorous nonlinear WKB-analysis, locally in time, for solutions of
~critical! order O(A«) is performed, where the small semiclassical parameter«
!1 denotes the microscopic/macroscopic scale ratio. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1604455#

I. INTRODUCTION AND SCALING

The Maxwell–Dirac system~MD! is fundamental in the relativistic description of spin 1
particles. It represents the time-evolution of fast~relativistic! electrons and positrons within ex
ternal andself-consistentgenerated electromagnetic fields:

i\]sC5 (
k51

3

ak
„2 i\c]k2e~Ak1Ak

ext!…C1e~V1Vext!C1mc2bC,

~1.1!

S 1

c2 ]s
22D DV5

1

4pe0
r, S 1

c2 ]s
22D DA5

1

4pce0
j ,

where theparticle- andcurrent-densitiesare defined by

rªeuCu2, j kªe^C,akC&, k51,2,3. ~1.2!

Here,C5C(s,y)PC4 is the 4-vector of thespinor field, normalized s.t.,

E
R3

uC~s,y!u2 dy51, ~1.3!

with s, y[(y1 ,y2 ,y3), denoting the time—resp. spatial coordinates inMinkowski space. Further,
V(ext)5V(ext)(s,y)PR is the self-consistent resp. external electric potential and Ak

(ext)

5Ak
(ext)(t,x)PR, the correspondingmagnetic potential, with A5(A1 ,A2 ,A3). In the following,

the usual scalar-product for vectorsX,YPC4 will be denoted bŷ X,Y& and we shall also write
uXu2ª^X,X&. The so-calledDirac matricesb,ak, k51,2,3, are explicitly given by

bªS 12 0

0 212
D , ak

ªS 0 sk

sk 0 D , ~1.4!

with 12 , the 232 identity matrix andsk the 232 Pauli matrices, i.e.,

s1
ªS 0 1

1 0D , s2
ªS 0 2 i

i 0 D , s3
ªS 1 0

0 21D . ~1.5!

a!Electronic mail: christof.sparber@univie.ac.at
b!Electronic mail: peter.markowich@univie.ac.at
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Hence,ak,b areHermitian and moreover one easily checks that the following identities hold
k,l 51,2,3:

aka l1a lak5 2dkl ,
~1.6!

akb1bak5 0.

Finally, the appearing physical constants are the normalized Planck constant\, the speed of light
c, the permittivity of the vacuume0 , the particle massm and the chargee.

Additionally to ~1.1!, we impose theLorentz gauge condition,

1

c
]sV~s,y!1div A~s,y!50, ~1.7!

for the initial potentialsV(0,y) andA(0,y). The gauge is henceforth conserved during the tim
evolution. It ensures that the correspondingelectromagnetic fields E, B are uniquely determined
by

E~s,y!ª2
1

c
]sA~s,y!2¹V~s,y!, B~s,y!ªcurlA~s,y!. ~1.8!

The MD equations are the underlying field equations of relativisticquantum electro-dynamics, cf.
Schwabl~1999!, where one considers the system within the formalism ofsecond quantization.
Nevertheless, in order to obtain a deeper understanding for the interaction of matter and rad
there is a growing interest in the MD system also for classical fields, since one can expect a
qualitative results; cf. Esteban and Sere~2002!. From the mathematical point of view, the strong
nonlinear MD system poses a hard problem in the study of PDE’s arising from quantum ph
Well posedness and the existence of solutions on all ofRy

3 but only locally in time, has been
proved almost forty years ago in Gross~1996!. On the other hand, only partial results~i.e., for
small initial data! have been obtained in the quest of global-in-time solutions@Chadam~1973!,
Georgiev~1991!, Flato, Simon, and Tafflin~year!# let alone the study of other qualitative featur
of this system; cf.@Booth and Radford~1997!, Esteban, Georgiev, and Sere~1996!, Esteban and
Sere~2002!, Chadam and Glassey~1976!#. However, there are some recent and quite comp
results concerning thenonrelativistic limit of the MD equations; cf. Bechouche, Mauser, a
Selberg~year! also Masmoudi and Mauser~2001!.

In this paper, we shall analyze the MD system in asemiclassicalregime. To do so, we firs
rewrite the equations such that there remains only one~positive! dimensionlessparameter,

d5
4p\c«0

e2 , ~1.9!

which is obtained by replacingy→y/ ȳ, s→s/ s̄ andC(s,y)→ ȳ23/2C(s/ s̄,y/ ȳ), in order to main-
tain the normalization condition~1.3!, with

cs̄5 ȳ and ȳ5
e2

mc2«0
. ~1.10!

Here, we also replaced both, the external and the self-consistent potentials, byA(ext)(s,y)
→lA(ext)(s/ s̄,y/ ȳ) andV(ext)(s,y)→kV(ext)(s/ s̄,y/ ȳ), with k5cl andl5mc/e. We assume for
the following thatAext,Vext are ofO(1) in these units. In summary, we obtain the MD system
dimensionless form:
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id]sC5 (
k51

3

ak
„2 id]k2~Ak1Ak

ext!…C1~V1Vext!C1bC,

hV5r, hA5 j ,

~1.11!

where from now onhª]s
22D. In ~1.11!, s,y represent themicroscopictime and length scales

Note that in general,d cannot be considered as asmall parameter. For example, in the case
electronsd is indeed the inverse of thefine structure constant, i.e., d'137. Hence, semiclassica
asymptotics ind, i.e., on ~1.11! directly, only make sense for highly charged and conseque
heavy particles.

Therefore, we need to rescale the system~1.11! such that the time-evolution can be consider
semiclassical, independent of the precise physical properties of the particles. We can supp
the given external electromagnetic potentials are slowly varying w.r.t. to the microscopic s
i.e. Vext5Vext(s«/d,y«/d) and likewiseAext5Aext(s«/d,y«/d), where from now on« denotes the
small semiclassical parameter. Here, thed is included in the scaling in order to eliminate it from
the resulting equation. Hence, observing the evolution on macroscopic scales we are led t

y5
d

«
x, s5

d

«
t. ~1.12!

Moreover, we want the coefficients of all nonlinearities to beO(1), i.e., they shouldnot carry a
positive power of«. It turns out that there exists solutionsc«, which obey this requirement. If we
set

d

«
C~s,y!5c«~ t,x!, ~1.13!

then the normalization condition for~1.3! gives

E
R3

uc«~ t,x!u2 dy5
«

d ER3
uC~s,y!u2 dx5

«

d
. ~1.14!

This implies that we need to look for solutionsc« s.t.,

c«;O~A«!, ~1.15!

assuming, as mentioned above, thatd;O(1). We therefore end up with the followingsemiclas-
sical scaledMD system:

i«] tc
«5 (

k51

3

ak
„2 i«]k2~Ak

«1Aext!…c«1bc«1~V«1Vext!c«, ~1.16!

hV«5uc«u2, ~1.17!

hAk
«5^c«,akc«&, k51,2,3, ~1.18!

subject toCauchy initial data:

c«u t505c I
«~x!;O~A«!,

V«u t505VI
«~x!, ] tV

«u t505ṼI
«~x!, ~1.19!

A«u t505AI
«~x!, ] tA

«u t505ÃI
«~x!.
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For this nonlinear system, we want to find an asymptotic description ofc«;O(A«) as«→0, i.e.,
a semiclassical description. Note that,equivalently, one could consider asymptotic solutions of t
form

F«~ t,x!ª
1

A«
c«~ t,x!;O~1!, ~1.20!

which do not vanish in the limit«→0 and which again satisfy the semiclassical scaled D
system, modified by the fact that the right hand sides of~1.17!, ~1.18! are multiplied by an
additional factor«. This illustrates the fact that we are dealing with asmall coupling limit. We
further stress that in our scaling the mass isO(1) andfixedas«→0, which is different from the
otherwise similar scaling used in Kunze and Spohn, where a classical mechanics analogue
MD system has been studied. The~rigorous! analysis of semiclassical asymptotics has a lo
tradition in quantum mechanics, the most common technique being the so calledWKB-method.
Quite recently, a semiclassical approach to thelinear Dirac equation was taken in Bolte an
Keppeler ~1999! and also, usingWigner measures, in Gérard, Markowich, Mauser, Poupau
~1997! and Spohn~2000!. For a broader introduction on linear techniques and results, we ref
Maslov and Feydoriuk~1981!, Robert~1998!, Sparber, Markowich, and Mauser~2003! and the
references given therein. Nonlinear extensions of the WKB-method can be found, for exam
Georgiev~1991! and Grenier~1998!, wherescalar-valuedsemilinear Schro¨dinger equations are
analyzed. We remark that the case of the nonlinear Dirac 4-system introduces significan
difficulties in the WKB-analysis; some of them are already present in the linear setting.

Mathematically, our approach is inspired by techniques developed in Donat and Rauch~1997!,
which sometimes go under the nameweakly nonlinear geometrical optics. Due to the appearanc
of the small parameter« in front of each derivative in~1.16! we are in the regime of so-calle
dispersiveweakly nonlinear geometrical optics, which differs in several aspects from the no
persive one. We remark that the latter case is much better studied in the so far existing lite
and we refer to Joly, Metivier, and Rauch~1999!, for a recent review.

To be more precise, we shall seek a local-in-time solution of~1.16!, which asymptotically
takes the following form:

c«~ t,x!5A« u«~ t,x,f~ t,x!/«!,
~1.21!

u«~ t,x,u!;(
j 50

`

« j /2uj~ t,x,u!.

Here, all theuj (t,x,u)PC4 being 2p-periodic w.r.t.uPR. Due to the factor«1/2, we call them
small semiclassical approximate solutions, or small WKB-solutions. As expected, there are tw
modes of the phase functionf6 , which satisfy the~free! relativistic Hamilton–Jacobi equation
corresponding to positive, resp., negative energies and, of course, convergence of the ex
~1.21! can only hold on a time interval, which corresponds to the existence of smooth solu
f6 . In weakly nonlinear geometrical optics, the homogeneity of the nonlinearity determine
required order of smallness of the asymptotic solution and, as we shall see, the factorA« precisely
fits with the cubic nonlinearities in~1.16!. We will show that for this particular scale we obtain, o
the one hand,independentpropagation of the electronic, resp., positronic phase functionf6 and,
the other hand,nonlinear interactionof the corresponding principal amplitudesu0,6 .

In other words, we study solutions on the threshold ofadiabatic decoupling, a phenomena
which is already well known in the linear case; cf. Panati, Sohn, and Teufel~19XX!. In particular,
the importance of theO(A«)-scale for the~linear! Dirac equation is stressed in Fermania
Kammerer~2003!, where one can also find a detailed description of the energy-transfer bet
electrons and positrons in terms oftwo-scaleWigner measures. These results, together with o
suggest that if one wants to obtain a semiclassicalO(1)-approximation in the strongly couple
regime, one needs to take into account simultaneous scales of order« and O(A«). These
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asymptotic solutions are then appropriate for heavily charged particles. We finally remark, t
the very recent paper@Jeanne~2002!#, coupled Gauge-fields are studied from a similar point
view as in our work.

This paper is organized as follows: We collect some preliminaries in Sec. II, then we
determine the critical exponent and the corresponding eikonal equation of the approximate
type solution in Sec. III. The corresponding«-oscillations introduced by the nonlinearity a
determined in Sec. IV and the nonlinear transport of the approximation along the rays o
metrical optics is obtained in Sec. V. Finally, in Sec. VI we shall prove that there exis
~local-in-time! solution of the MD system which stays close to the approximation and we
collect some further qualitative results.

II. PRELIMINARIES

In the following, we will assume that no external electromagnetic fields are present:

Vext~ t,x![0, Aext~ t,x![0. ~2.1!

Moreover, we assume that att50 we have

VI
«~x!5ṼI

«~x![0, AI
«~x!5ÃI

«~x![0. ~2.2!

Neither of these assumptions changes the following analysis significantly. They are only im
for the sake of simplicity. Further note that the DM system is time-reversible, but w.r.o.g. we
consider positive times only in the sequel.

Using the fundamental solution of the wave equation in dimensiond53 and for timest
.0, we find the following expression forV, calledthe retarded potential:

V«@c«#~ t,x!5
1

4p E
ux2yu<t

uc«~ t2ux2yu,y!u2

ux2yu
dy5.. Gr~ t,x!* uc«~ t,x!u2, ~2.3!

where* denotes the convolution w.r.t. (t,x) and

Gr~ t,x!ª
Q~ t !

4puxu
d~ t2uxu!. ~2.4!

Likewise,A« can be written as

A«@c«#~ t,x!5Gr~ t,x!* ^c«~ t,x!,akc«~ t,x!&. ~2.5!

If assumption~2.2! is dropped, we would have to additionally include the homogeneous solu
of the wave equation in~2.3!, ~2.5!.

Using these representations, we shall rewrite~1.16!–~1.18! in the form of asemilinear Dirac
equation:

i«] tc
«2D A

« ~ t,x,«Dx!c
«5 0,xPR3, t.0,

~2.6!
c«u t505 c I

«~x!,

whereD A
« is a matrix-valueddifferential operator (Dxª2 i¹). The corresponding«-dependent

symbol is given by

D A
« ~ t,x,j!5a•„j2A«@c«#~ t,x!…1b1V«@c«#~ t,x!, ~2.7!

wherex,j,PR3,tPR. Here and in the following we use the notation
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a•jª(
k51

3

akjk . ~2.8!

Note that in the nonlinear equation~2.6!, the potentialsA«@c«#, V«@c«# dependnon-locally on
c«, as indicated by the bracket-notation.

Multiplying ~2.6! with c« and taking imaginary parts, we obtain the usual conservation
for ic«(t,x)i2 , hence theconservation of charge:

E
R3

^c«~ t,x!,c«~ t,x!& dx5ic«~ t,x!i2
25const. ~2.9!

The free Dirac operatorwill be denoted by

D~«Dx!c
«
ª2 i«~a•¹!c«1bc«, ~2.10!

with the symbol

D~j!5a•j1b. ~2.11!

This 434 matrix has two different eigenvaluesh6(j) of multiplicity 2 each:

h6~j!ª6l~j!, jPR3, ~2.12!

where

l~j!ªAuju211, jPR3. ~2.13!

As expected, the eigenvaluesh6(j) are nothing but thefree Hamiltonianfor a relativistic particle.
The positive, resp., negative sign in~2.13! corresponds toelectrons, resp.,positrons. By straight-
forward calculations we obtain the following lemma.

Lemma 2.1: Thespectral projectorsP6(j):C4→C4, associated to h6(j) are given by

P6~j!ª
1

2 S id46
1

l~j!
D~j! D , P6P7[0. ~2.14!

The matrix-valued symbolD(j) can therefore be decomposed into its positive and nega
energy part in the following way:

D~j!5h1~j!P1~j!1h2~j!P2~j!. ~2.15!

We notice that

h6~2j!5h6~j!, whereas P6~2j!5P7~j!. ~2.16!

For later purposes, we also define the following definition.
Definition 2.2:The partial inverseL6(j):C4→C4, associated toP6(j), is given by

L6~j!P6~j!50, L6~j!D~j!X5„id42P6~j!…X, ;XPC4. ~2.17!

Finally, we recall the definition ofasymptotic equivalences.
Definition 2.3: Let O#Rn, n>1, be an open set,aj (y)PC`(Rn;Cn) and a«PC`(#0,«0@

3Rn;Cn). Then we say thata« is asymptotically equivalent to the formal sum( j 50
` e jaj and write

a«~y!;(
j 50

`

« jaj~y!, ~2.18!
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if for every m.0, every multiindexs and every compact subsetK,O, there exists aCm,s.0,
such that

sup
K
U]y

sS a«~y!2(
j 50

m

« jaj~y!DU<Cm,s«m. ~2.19!

III. GENERALIZED WKB–ANSATZ AND THE EIKONAL EQUATION

At first we will show that the desiredO(A«)-asymptotics for the spinor field fits into th
framework of weakly nonlinear~dispersive! geometrical optics, as introduced in Donat and Rau
~1997!, for nonlinear hyperbolic systems.

We plug the followinggeneralized WKB–Ansatzinto Eq. ~2.6!:

c«~ t,x!5«p u«~ t,x,f~ t,x!/«!,

u«~ t,x,u!;(
j 50

`

« jpuj~ t,x,u!, ~3.1!

where the functionsuj (t,x,u)PC4 are assumed to be sufficiently smooth and 2p-periodic w.r.t.
uPR. This gives

05 i«p11] tu
«2«p D A

« ~ t,x,«Dx!u
«

5 i«p11
„] tu

«1~a•¹!u«
…2«pbu«1 i«p

„] tf1~a•¹f!…]uu«1«3pN «@u«#, ~3.2!

with a nonlinearity, N «:C4→C4, defined by

N «@u«#ª„~a•A«@u«#!2V«@u«#…u«. ~3.3!

The strategy is now to expand the right-hand side of~3.2! as

«p(
j 50

`

« jpRj~ t,x! ~3.4!

and choose the coefficientsuj of ~3.1! in such a way, thatRj (t,x)[0, ; j PN.
It is important to note that the first term on the right hand side of~3.2! is of order«p11,

whereas the second and the third are;O(«p). SinceA«@u«#, V«@u«# are of order«2p, by Eqs.
~2.3!, ~2.5!, the functionN «@u«# is of order«3p. This nonlinear term is supposed to besmall,
more precisely, it should not enter into the equation forR0 , describing terms of orderO(«p), but
rather into expressions ofO(«p11). Thus we are led to the followingnormalization condition:

3p5p11, ~3.5!

implying p51/2. With this normalization we haveu«;O(«1/2) ~just as required by the scalin
presented in the introduction!, whereas the nonlinear term satisfiesN «@u«#;O(«3/2).

Remark 3.1:The choicep51/2 gives the critical exponent in the sense that for amplitu
O(«1/2) one can prove simultaneously the existence of the approximate smooth solution for
t5O(1), i.e., on a time-scaleindependentof «, and nontrivial nonlinear behavior in the princip
term of the approximation; cf. Donat and Rauch~1997!; and Joly, Metivier, and Rauch~1999!.

SettingR0(t,x)50 yields

i „] tf1~a•¹f!…]uu02bu050. ~3.6!

SinceujPC`(R43S1;C4) it can beFourier-expandedw.r.t. u,
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u0~ t,x,u!5 (
mPZ

u0,m~ t,x!eimu. ~3.7!

By this procedure, we find the following equation for the coefficientsu0,m :

L„m df~ t,x!…u0,mª„m ] tf1D~m¹f!…u0,m50, ~3.8!

where D„¹(mf)… is the 434 symbol matrix of the free Dirac operator evaluated atj
5„mf(t,x)…. In order to have a nontrivial solutionu0,mÞ0 we impose the condition that ther
exists an open setV#R113, having a nontrivial intersection with$t50%, s.t.,

detL„m df~ t,x!…50, ;~ t,x!PV#R113. ~3.9!

Using Eqs.~2.12!, ~2.15!, this is equivalent to

~m ] tf!22um¹fu251, ;~ t,x!PV#R113. ~3.10!

Thus, form561, the phase functionf satisfies~in V! theeikonal equationfor theKlein–Gordon
operator, i.e.,

~] tf!22u¹fu251, ;~ t,x!PV#R113. ~3.11!

Indeed, it is easy to see that the choicesm561 are the only possibilities, since Eq.~3.11! gives

~m] tf!22um¹fu2215~m221!„~] tf!22u¹fu2…5m221, ~3.12!

which is different from zero for allmÞ61. Hence, in the Fourier-series~3.7!, there appear only
two nontrivial harmonics, which are associated to the eikonal equation~3.11!: namely
exp„if(t,x)/«…, for m51 and exp„2 if(t,x)/«…, for m521.

For m561 the equation~3.11! is fulfilled by two possiblef’s, obtained from

] tf6~ t,x!5h6„¹f6~ t,x!…[6Au¹f6~ t,x!u21150. ~3.13!

This is theHamilton–Jacobi equationfor free relativistic particles. The following lemma guara
tees the existence and uniqueness of smooth solutions, where from now on, we shall de
D2f (x), the Hessian of a given functionf :R3→R.

Lemma 3.2: Givenf IPC`(R3;R), s.t. iD2f I(x)i<C, there exist T6.0 and uniquely de-
termined functionsf6PC`(V6 ;R), whereV6ª@0,T6)3R3, s.t.

] tf6~ t,x!5 h6~¹f6~ t,x!!, ;~ t,x!PV6 ,
~3.14!

fu t505 f I~x!.

Proof: We only proof the assertion forf1 , since the other case is completely analogous. T
initial value problem isnoncharacteristiceverywhere, since

] tf1~0,x!5Au¹f1~0,x!u211 Þ0, ;xPR3. ~3.15!

Thus, ] tf1(0,x) can be obtained from the initial dataf1(0,x)5f I(x)PCb
`(R3) at each point

xPR3. Standard PDE theory then guarantees the existence of a unique smooth solutiof1

PC`(V1 ;R), as long as

12t iD2h1~¹f I !i iD2f I iÞ0. ~3.16!

Since D2H(j) is uniformly bounded, this condition holds by assumption and the assertio
proved. h
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Remark 3.3:The assumption in Lemma 3.2 can be relaxed tof IPC`(R3;R). In this case,
however, one cannot guarantee the existence of a smooth solutionf in a space–time slab, but onl
in some open setO,R113. In the following, this would lead to some technical difficulties, whi
we want to avoid, though, the whole procedure can be generalized to that case.

By Eq. ~3.13!, we have

2f6~ t,x!5f7~ t,x!, ~3.17!

assuming that it holds initially at$t50%,V. In the following, we therefore consider only th
solution to ~3.13! with a positive sign in front of the square root and write for itf(t,x)
[f1(t,x). Also, we henceforth denote byVª@0,T1)3R3 the slab, in which the existence of
smooth functionf is guaranteed. This we can do w.r.o.g., as will become clear in a momen

Since forf[f1 it holds that] tf2h1(¹f)50, Eq.~3.8! implies the followingpolarization
conditions, locally for all (t,x)PV:

„P2~¹f!u0,11…~ t,x!50 ⇔ „P1~¹f!u0,11…~ t,x!5u0,11~ t,x!. ~3.18!

Likewise, we get

„P1~¹f!u0,21…~ t,x!50 ⇔ „P2~¹f!u0,21…~ t,x!5u0,21~ t,x!. ~3.19!

One easily checks, using~2.16! and ~3.17!, that the conditions obtained with the choicef
5f2 , areequivalentto ~3.18!, ~3.19!. Thus, Eq.~3.8! indeed carries two degrees of freedom f
the phase, given by6f ~or equivalentlyf1 , f2). The amplitudes are then rigidly linked, b
~3.18!, ~3.19!.

In summary, we find that theprincipal term u0(t,x,u) in our asymptotic description is give
by

u0~ t,x,f~ t,x!/«!ªu0,11~ t,x!eif(t,x)/«1u0,21~ t,x!e2 if(t,x)/«, ~3.20!

where the amplitudes are polarized according to~3.18!, ~3.19!. From now on we shall use th
simplified notationu0,615u0,6 .

IV. OSCILLATIONS OF THE NONLINEARITY

Let us determine the response of the wave equations~1.17!, ~1.18! to r.h.s. source terms
induced by functions of the form~3.20!:

To this end, we calculate:

uu0„t,x,f~ t,x!/«…u25uu0,1~ t,x!u21uu0,2~ t,x!u2. ~4.1!

The terms, that mix the electronic and positronic components cancel, sinceP6 is Hermitian and
P6P7[0. Hence, we get from~2.3! ~at least formally!, that the scalar potentialV generated by
the principal termu0 , is simply given by

V@u0#5 Gr~ t,x!* „uu0,1~ t,x!u21uu0,2~ t,x!u2
…. ~4.2!

In order to calculate the magnetic potential corresponding tou0 , we first note that, by definition
we have the following identity:

P6~j!~a•j1b!5h6~j! P6~j!. ~4.3!

Differentiating w.r.t.jk and multiplying~from the right! with P6(j) gives

P6~j!akP6~j!5P6~j!~]jk
h6~j!!P6~j!56

jk

Auju211
P6~j!, ~4.4!
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sinceP6
2 (j)5P6(j). The expression

v6~j!ª¹jh6~j!56
j

l~j!
, ~4.5!

is called the electronic, resp., positronicgroup velocity, v6PC`(R3;R3). Using this definition,
we obtain fork51,2,3:

^u0„t,x,f~ t,x!/«…,aku0~ t,x,f~ t,x!/«!&

5v1,k„¹f~ t,x!…uu0,1~ t,x!u2 1v2,k„¹f~ t,x!…uu0,2~ t,x!u2

1^u0,1~ t,x!,aku0,2~ t,x!&e2 i2f(t,x)/« 1^u0,2~ t,x!,aku0,1~ t,x!&ei2f(t,x)/«. ~4.6!

The oscillating terms are usually called theZitterbewegungof the Dirac-current, cf. Schwab
~1999!, p. 195. The fact that the current-density corresponding tou0 carries«-oscillations is in
sharp contrast to the WKB-approach for Schro¨dinger-type problems; see, e.g., Ge´rard ~1992! and
Grenier~1998!.

The Zitterbewgung may cause severe problems sincea priori one cannot exclude the poss
bility of resonant interactionsbetween the principal termu0 and the magnetic potentialA«@u0#
obtained from~1.18! with the r.h.s. given by~4.6!. If this happens to be the case, our one-ph
ansatz~3.1! breaks down and instead one would need to establish a so-calledresonant asymptotic
expansionin the spirit of Joly, Metivier, and Rauch~1993!. @We remark that so far, only the cas
of resonances in one spatial dimension can be treated rigorously; cf. Joly, Metivier, and
~1999!.#

We will show that these problems do not appear in our situation. To this end, we ne
describe precisely what kind of«-oscillations are present inA«@u0#.

First we note that, by the superposition principle, every term appearing on the r.h.s. of~4.6!
generates its own potential field. The nonoscillating terms of~4.6! lead to a standard hyperboli
problem; hence~2.5! gives

A0@u0#~ t,x!ªGr~ t,x!* ~v1~¹f!uu0,1u21v2,k~¹f!uu0,2u2!~ t,x!. ~4.7!

In order to treat the Zitterbewegung, let us defineZª(Z1 ,Z2 ,Z3) by

Zk„t,x,f~ t,x!/«…ª^u0,1~ t,x!,aku0,2~ t,x!&e2 i2f(t,x)/«1^u0,2~ t,x!,aku0,1~ t,x!&ei2f(t,x)/«,
~4.8!

k51,2,3.

Using this definition, we can now prove the following lemma.
Lemma 4.1: LetV#R113 be the slab in which existence of a smooth phasefPC`(V;R),

satisfying ~3.14!, is guaranteed. Then, given ZPC`(V3S1;C3), as in ~4.8!, there exists a
uniquely determined smooth A«PC`(V3S1;C3), with

A«~ t,x,u!;(
l 51

`

« lAl~ t,x,u!, ~4.9!

s.t. A«(t,x,f(t,x)/«) satisfies

hA«~ t,x!2Z~ t,x!;0, in C`~V;C3!,

A«u t505] tA
«u t5050.

~4.10!

More precisely, Al(t,x,f(t,x)/«) can be written in the following form:

Al~ t,x,f~ t,x!/«!5Al
1~ t,x!ei2f(t,x)/«1Al

2~ t,x!e2 i2f(t,x)/«, ~4.11!
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with principal amplitudes A1
6PC`(V;C3), given by

A1,k
6 ~ t,x!56 ^u0~ t,x!,aku0~ t,x!&. ~4.12!

Proof: The proof can be done separately for each spatial component ofA«(t,x,u) and for both
types of oscillations, corresponding to62f. Hence, we are led to the following type of problem

ha«~ t,x!5b~ t,x!e6 i2f(t,x)/«, ~ t,x!PV,

a«u t505] ta
«u t505 0, ~4.13!

for some givenbPC`(V;C). Let us define a new variablef «(t,x)PC5 by

f «~ t,x!ª~]1a«,]2a«,]3a«,] ta
«,a«!Á~ t,x!.

Further, denoting by

b̂~ t,x!ª~0,0,0,b~ t,x!,0!Á,

we can rewrite~4.13! in the form of a symmetric hyperbolic system,

„] t1~l•¹!1k…f «~ t,x!5b̂~ t,x!e6 i2f(t,x)/«, ~4.14!

with lk, k, denoting realvalued~symmetric! 535 matrices. In our case, these matrices are sim
given by @see, e.g., Racke~1992!, p. 21, for more details#:

lk
ª2~dmkdn41dm4dnk!m,n , kª2~d5md4n!m,n , m,n51, . . . ,5, ~4.15!

wheredab denotes the Kronecker symbol andk51,2,3.
It is now possible to use the existing results on linear geometrical optics, provided the

62f is not characteristic for the system~4.14!, i.e.,

det„62] tf~ t,x!62l•¹f~ t,x!1k)Þ0, ;~ t,x!PV. ~4.16!

Computing this determinant, we obtain the condition

632~] tf!3~~] tf!22u¹fu2!Þ0, ;~ t,x!PV. ~4.17!

Since, by assumption,f solves the Klein–Gordon eikonal equation~3.11! the second factor on the
l.h.s. of ~4.17! is equal to one and thus, different from zero in all ofV. On the other hand we ge
from ~3.11!: (] tf)35(u¹fu211)3/2Þ0, ;(t,x)PV. Hence, condition~4.16! is fulfilled and the
assertion follows from Theorem 4.4 in Rauch~1992!. In particular we get

A1,k
6 ~ t,x!5

71

2~] tf!21u¹fu2 ^u0~ t,x!,aku0~ t,x!&56^u0~ t,x!,aku0~ t,x!&, ~4.18!

which concludes the proof. h

Lemma 4.1 shows that the Zitterbewegung in~4.6! generates a magnetic potential which
small, i.e., at least of orderO(«). Moreover the«-oscillations, appearing inA«, are exactly the
sameas in the~4.6! and hence we can consistently proceed with our one-phase expansion foc«.

Remark 4.2:Although the MD system is hyperbolic, Lemma 4.1 can be considered a
analogu of so-calledelliptic high frequency asymptotics, the main feature of which is the fact
asymptotic solutions can be obtained bylocal ~in t,x) algebraic relations. In other words, th
Maxwell system can be consideredtransparentw.r.t. to the oscillations generated by the Dira
equation.
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The result of Lemma 4.1 implies that the nonlinearityN «@u0#, defined in~3.3!, admits an
asymptotic expansion of the form

N «@u0#~ t,x,u!;N0@u0#~ t,x,u!1(
l 51

`

« lNl~ t,x,u!, ~4.19!

where, using the expressions~4.2!, ~4.7!, we have

N0~ t,x,u!5 „~a•A0@u0#~ t,x!…2V@u0#~ t,x!! u0~ t,x,u!, ~4.20!

and for all l>1:

Nl~ t,x,u!ª „a•Al~ t,x,u!… u0~ t,x,u!, ~4.21!

with Al given by ~4.11!.
Note that the expression~4.19! represents two kinds of«-oscillations: Those described b

phase-functions6f are present in all termsNl with l>0, whereas«-oscillations with phases
63f appear inNl with l .0. Also, note thatu0 enters in anonlocalway only in the lowest order
term ~4.20!.

V. NONLINEAR TRANSPORT ALONG RAYS

We need to find an evolution equation, which determinesu0 from the initial data. To this end
let us define an operatorP, which projects on the set of harmonics corresponding to solution
the eikonal equation~3.11!.

Definition 5.1:Given somevPC`(R43S1;C4), which can be represented by

v~ t,x,u!5 (
mPZ

vm~ t,x!eimu, ~5.1!

we define the action ofP on v, by

~Pv !~ t,x,u!ª„P1~¹f!v11…~ t,x!eiu1„P2~¹f!v21…~ t,x!e2 iu. ~5.2!

In words: P picks modes corresponding tom561 and multiplies them with the matrice
P6(¹f). Note that, at least inV, it holds true that

~Pu0!~ t,x,u!5u0~ t,x,u!, ~5.3!

in view of ~3.8! and ~3.18!, ~3.19!.
From ~3.2!, we have that the evolution ofu0 is determined by terms of orderO(«p11)

5O(«3/2). Setting the corresponding coefficient in~3.4! equal to zero, i.e.,R2(t,x)50, yields

i „] tf1~a•¹f!…]uu22bu21 i „] tu01~a•¹!u0…1N0@u0#50, ~5.4!

with N0@u0# as in ~4.20!. Equation~5.4! implies

i „] t1~a•¹!…u01N0@u0#Pran~ i „] tf1~a•¹f!…]u2b!. ~5.5!

Applying P to ~5.4! eliminates the term includingu2 , sinceP projects on the kernel ofi „] tf
1(a•¹f)…]u2b and we obtain

iP] tu01 iP~a•¹!u01PN0@u0#50. ~5.6!

Using the fact thatPu05u0 , by ~5.3!, this gives

P] t~Pu0!1P~a•¹!~Pu0!5 iPN0@Pu0#. ~5.7!
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This equation is similar to the one appearing in Donat and Rauch~1997!, however, in contrast to
the quoted work, our nonlinearity constitutes only the first term of an asymptotic expansion
full N «@u0#.

We proceed by stating a useful identity:

akP6~j!5P7~j!ak1v6,k~j!I4 , ~5.8!

obtained from straightforward calculations. After more lengthy but straightforward calculation
which we apply the relations~4.3!, ~4.4!, and~5.8!, we can express the l.h.s. of~5.7! in the form
of a transport operator:

P6] t~P6u0!1P6a•¹~P6u0!5] tu0,61„v6~¹f!•¹…u0,61 1
2 div„v6~¹f!…u0,6 . ~5.9!

On the other hand, computing the action of the projectorP on the nonlinear termN0@u0#, we get

PN0@Pu0#5 eif/«~„A0@u0#•v1~¹f!…2V@u0# ! u0,1

1e2 if/«~„A0@u0#•v2~¹f!…2V@u0# ! u0,2 . ~5.10!

Here we have again used~4.4!. Thus, we finally conclude, that the time-evolution of theprincipal
amplitudes u0,6 is governed by the following semilinear first-order system:

~] t1„v1~¹f!•¹…!u0,1~ t,x!5G1@u0#~ t,x! u0,1~ t,x!,
~5.11!

~] t1„v2~¹f!•¹…!u0,2~ t,x!5G2@u0#~ t,x! u0,2~ t,x!,

where

G6@u0#~ t,x!ª iA0@u0#•v6~¹f!2 iV@u0#2 1
2 div„v6~¹f!…. ~5.12!

By construction, the polarization ofu0,6 is conserved during the evolution. The system~5.11!
determines (Pu0)(t,x,u), from its initial data (Pu0)(0,x,u) and since (Pu0)5u0 , we have com-
pletely constructedu0 .

Multiplying ~5.11! by ū0,1 , resp., ū0,2 and integrating by parts, we obtain the importa
property of charge-conservation:

E
R3

uu0,1~ t,x!u21uu0,2~ t,x!u2 dx5iu0~ t,x!i2
25const. ~5.13!

Givenu0 , determined by~5.11!, it remains to construct the higher order termsuj (t,x,u), j >1 of
our approximate solution. This can be done by a similar construction as given in Donat and
~1997!.

We expand the cubic nonlinearityN «@u«# in powers of«:

N «@u01«u11¯#; N «@u0#1«M «@u0 ,u1#1¯ , ~5.14!

where, using the definitions~4.2!, ~4.8!, we easily compute

M «@u0 ,u1#52 ~Gr* ^u0 ,u1&!u01V@u0#u11a•~Gr* Z! u1

1S (
k51

3

ak~Gr* ^u0 ,aku1&1Gr* ^u1 ,aku0&!D u0 . ~5.15!

We need to apply Lemma 4.1 to all terms appearing on the r.h.s of~5.14!, which results in a
similar expansion as given in~4.19!. Hence, after rearranging terms in powers of«, we can write
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N «@u01«u11¯#;N0@u0#1«N11«M0@u0 ,u1#1¯ . ~5.16!

Consequently, forj >1, theO(« j /211/2)-coefficient is given by

Rj~ t,x!5 i „] tf1~a•¹f!…]uuj2buj1 i „] t1~a•¹!…uj 22

1M0@u0 ,uj 22#1S~u0 , . . . ,un, j 22!, ~5.17!

where, as usual, we impose:un(t,x,u)50, for all n,0. The source termS, only depends on lower
order coefficientsu0 , . . . ,un, j 22 . It is obtained by applying Lemma 4.1 to higher order terms
the expansion~5.14!, leading to contributionsNl andMl with: l 115 j /2.

We can now decompose

uj~ t,x,u!5~Puj !~ t,x,u!1~ id42P!uj~ t,x,u!. ~5.18!

Note that in contrast tou0 , where, in view of~5.3!, it holds that

~ id42P!u0~ t,x,u!50, ~5.19!

we cannot expect all higher order coefficientsuj to be polarized too. Hence, we need to determ
separatelyPuj and (id42P)uj . To this end, we introduce the following definition.

Definition 5.2:Again, let v(t,x,u) be given as in Definition 5.1, then we define a part
inverseQ, associated toP, by

~Qv !~ t,x,u!ª„L1~¹f!v11…~ t,x!eiu1„L2~¹f!v21…~ t,x!e2 iu, ~5.20!

whereL6 is the partial inverse toP6 , defined by~2.17!.
Assume now that we already knowun , for n, j , then (id42P)uj is determined by setting

(QRj )(t,x,u)50. This gives

~ id42P!uj52 Q~ i „] t1~a•¹!…uj 221M0@u0 ,uj 22#1S~u0 , . . . ,un, j 22!!. ~5.21!

On the other hand, setting (PRj 12)(t,x,u)50, we obtain an evolution equation forPuj :

iP] t~Puj !1 iP~a•¹Puj !52PM0@u0 ,uj #1r ~u0 , . . . ,uj !, ~5.22!

where

r ~u0 , . . . ,uj !ª2PS~u0 , . . . ,un, j !2P„i ] t1 i ~a•¹!2b…~ id42P!uj . ~5.23!

Here, the first term on the r.h.s is already known by the inductive hypothesis and the seco
is given by Eq.~5.21!. Hence, by induction, one can construct all higher order coefficie
uj (t,x,u), j >1 in this way.

Note, that the left hand side of~5.22! is essentially a transport operator, which can be
pressed as shown above. Thus~5.22! constitutes alinear first order system, which determines th
so-calledpropagating partPuj from its initial data.

Remark 5.3:The above construction can be generalized to the case, where, additionallygiven
external potentialsVext, Aext are included, and/or nonzero Cauchy initial data for the Maxw
equations~1.17!, ~1.18! are assumed. In the presence of external fields one checks that, inst
~3.13!, the following Hamilton–Jacobi equation, corresponding tom51, holds:

] tf66Au¹f62Aext~ t,x!u2111Vext~ t,x!50. ~5.24!

Since no other harmonics withmÞ1 exist, one again ends up with two phasesf6(t,x), corre-
sponding to the electronic, resp., positronic degrees of freedom. In this case, how
2f1(t,x)Þf2(t,x), in contrast to~3.17!. Also, one obtains an additional matrix-valuedspin-
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transport term, appearing on the left-hand side of~5.11! and which can be found in, for example
Bolte and Keppeler~1999!; Fermanian-Kammerer~2003!; Panati, Sohn, and Teufel~19XX!

We are now in the position of formulating our first theorem~in which we do not aim to impose
the weakest possible assumptions!. In the following,C(0)

` denotes the space of smooth functio
compactly supported inxPR3.

Theorem 5.4:Assume that the initial datac I
«(x) admits an asymptotic expansion of the form

c I
«~x!5A« u«~x,f I~x!/«!,

~5.25!

u«~x,u!;(
j 50

`

« j /2x j~x,u!,

wheref IPC`(R3;R) satisfiesiD2f I i<C. Further, letx jPC(0)
` (R33S1;C4) be s.t.,

~Px j !~x,u!5x j~x,u!, ; j PN. ~5.26!

Then, there exists a0,T* <T, a corresponding domainV*ª@0,T* )ùV and a uniquely deter-
mined u«PC(0)

` (V* 3S1;C4), with

u«~ t,x,u!;A« (
j 50

`

« j /2uj~ t,x,u!, ~5.27!

s.t. u«(t,x,f(t,x)/«) satisfies:

i«] tu
«2D A

« ~ t,x,«D !u«;0, ;~ t,x!PV,
~5.28!

u«u t505c I
«~x!.

More precisely we have the following. The principal term u0 is given by (3.20), satisfie
(Pu0)(t,x,u)5u0(t,x,u) and solves (5.7) with initial data(Pu0)(0,x,u)5x0(x,u).

For all j >1, the infinite sequence of equations (5.21), (5.22), uniquely determines uj (t,x,u),
with initial data (Puj )(0,x,u)5x j (x,u).

Proof: The existence of a smooth phasefPC`(V;R), on the slabV#R113, is already
guaranteed by Lemma 3.2.

Next, consider the casej 50: Sincev6(¹f)PR3, defined by~4.5!, satisfies for all multi-
indicess, n,

sup
~ t,x!PV

u ] t
s]x

n v6,k„¹f~ t,x!…u,`, k51,2,3, ~5.29!

we find that the l.h.s. of~5.11! constitutes a linear symmetric hyperbolic system. Fr
L2-conservation property~5.13! the usual commutator estimates lead toHs-regularity, i.e.,u0

PC1(R3;Hs) for all s>0. Now, it is a standard result for the linear wave equations ind53 spatial
dimensions, that source terms inHs(R3) generate solutions~at least! in Hs(R3); cf. Hörmander
~1985!, Chapter XXIII. This fact and Schauder’s lemma imply that the map,

u0~ t,• !°G6@u0~ t,• !#, ~5.30!

are locally Lipschitz fromHs
„(0,t)3R33S1

… to itself, for all s.2, uniformly for 0<t,T. By a
standard Picard iteration we therefore obtain a local-in-time existence and uniqueness re
Hs(V* 3S1), for everys.2 and a Sobolev imbedding givesu0PC1(V* 3S1;C4). The proof of
the asserted regularity for thet-derivatives follows by using the differential equation to expre
them in terms ofx-derivatives and the finite speed of propagation for the solution of~5.11! implies
that u0 is compactly supported inRx

3 sincex0 is also.
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Finally, for j .0, we have that the amplitudesuj ,6 are determined by the linear symmetr
hyperbolic system~5.22!, ~5.21! and the assertion is proved. h

Once again, we stress the fact that we analyze the MD system in aweakly coupled regime.
Indeed, the above result implies the following.

Corollary 5.5: Let u«(t,x,f(t,x)/«) be as in Theorem 5.4; then

V«@u«#~ t,x!;«V@u0#~ t,x!1O~«2!,
~5.31!

A«@u«#~ t,x!;«A0@u0#~ t,x!1O~«2!,

where V@u0#, A0@u0# are nonoscillating and explicitly given by (4.2), (4.7).

VI. STABILITY AND FURTHER RESULTS

In Theorem 5.4 we obtained a functionu«, which solves the MD equation up to a residu
R«;0, compactly supported in@0,T* #3R3. We want to compareu« to a true solutionc« and
prove thatu«2c«;0 on V* 5@0,T* #3R3.

Theorem 6.1: Under the assumptions of theorem 5.4, there is an«* P(0,1), s.t. for «,«* ,
there exists a unique smoothc«PC(0)

` (V* ;C4), satisfying

i«] tc
«2D A

« ~ t,x,«D !c«50, ;~ t,x!PV* ,
~6.1!

c«u t505c I
«~x!,

which is asymptotically equivalent to u«, i.e.,

c«~ t,x!;u«~ t,x,f~ t,x!/«!, in C(0)
` ~V* ;C4!. ~6.2!

Proof: Defining v«
ªu«2c«, we obtain for the following IVP:

i „«] t1«~a•¹!…v«2bv«1N «@u«1v«#2N «@u«#52R«, in V* ,

v«u t5050. ~6.3!

The nonlinearity can be handled analogous to the proof of Lemma 6.2, in Donat and R
~1997!, since for smooth sources the wave equation has smooth solutions, which moreover
with finite speed. Having this in mind, the rest of the proof is a simple modification of the on
Theorem 6.1 in Donat and Rauch~1997!. h

As far as the generation of positronic-modes is concerned, the local-in-time solutioc«

;O(A«) shows the following qualitative behavior:
Corollary 6.2: Letc I

« be as in Theorem 5.4. If initially(P2c I
«)(x)50, then, for0<t,T* , it

holds: (P2c«)(t,x);O(«3/2), i.e., no positronic-modes are generated, up to O(«3/2) and the
analogous statement for electrons is valid, too.

Proof: The assertion holds true, since a careful examination of the asymptotic expa
shows that both,u0 and u1 , satisfy (Puj )(t,x,u)5uj (t,x,u), in V* . h

For completeness, we shall also consider thematrix-valued Wigner transformcorresponding
to c«, i.e.,

w«@c«#~ t,x,j!ª
1

~2p!3 E
R3

c«S t,x1
«

2
yD ^ c«S t,x2

«

2
yDei j•y dy, ~6.4!

where^ denotes the tensor product of vectors. The real-valued 434-matrix w«@c«# is a phase-
space descriptionof the quantum statec«.
                                                                                                                



, as
c-

es
order

have

case
re

s
mma-
er
es

rks as
the

relativ-

e

in two

s,’’

appear

r the

4571J. Math. Phys., Vol. 44, No. 10, October 2003 Semiclassical asymptotics for Maxwell–Dirac

                    
Corollary 6.3: Letc«;O(A«) be the unique smooth local-time-solution of the MD system
guaranteed by Theorem (6.1) and let w«@c«#;O(«) be its Wigner transform. Then, up to extra
tion of subsequences, we have

lim
«→0

1

«
w«@c«#5m, in S8~@0,T* !3Rx

33Rj
3!weak2!, ~6.5!

where the matrix-valued Wigner measurem is given bym5m11m2 , with

m6~ t,x,j!5u0,6~ t,x! ^ ū0,6~ t,x! d„j7¹f~ t,x!…. ~6.6!

Proof: Sincef has no stationary points withinV* , a nonstationary phase argument impli
that all Wigner matrix elements, which mix the electronic and positronic components are of
O(«`). The assertion then follows from the well known results on Wigner measures;cf. Gérard,
Markowich, Mauser, and Poupaud~1997! h

We finally remark on the case of the Dirac–Maxwell system where the Dirac particles
vanishing mass. Instead of~3.13! we obtain

] tf56u¹fu, ~6.7!

which is equivalent to the eikonal equation of the wave equation. It follows that in this
Lemma 4.1 cannot hold, since the phases6f are characteristic for the wave equation. Mo
precisely, they are indeedeverywherecharacteristic, i.e., in all ofV, which again allows for an
asymptotic description of theA«, similar to~4.9!, ~4.11!; cf. Lax ~1957! or Rauch~1999!, Chap. 5.
In this case, the«-oscillations are also given by exp(62if/«), but the corresponding amplitude
Al

6 are of course different. The main difference, however, is the fact that in this case the su
tion index runs froml 50 to infinity, i.e., «-oscillations are present already in the lowest ord
term. This leads to a more complicated structure of the transport equations for the amplituduj ,
but apart from that all results remain valid.
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Resorting to the finite-order expansion of the Lax matrix, the elliptic coordinates
are introduced, from which the discrete Ablowitz–Ladik equations and the (2
11)-dimensional Toda lattice are decomposed into solvable ordinary differential
equations. The straightening out of the continuous flow and the discrete flow is
exactly given through the Abel–Jacobi coordinates. As an application, explicit qua-
siperiodic solutions for the (211)-dimensional Toda lattice are obtained. ©2003
American Institute of Physics.@DOI: 10.1063/1.1605820#

I. INTRODUCTION

Since Ablowitz and Ladik introduced the discrete AKNS equations~called also discrete
Ablowitz–Ladik equations!,1,2 numbers of researches were conducted in a series of papers.1–8 For
example, there is research conducted for soliton solutions, Bac¨klund transformation, Darboux
transformation, Hamiltonian structures, conserved quantities, and other properties. The aut
Refs. 9–12 discuss quasiperiodic solutions for the discrete Ablowitz–Ladik equations, w
include the discrete nonlinear Schro¨dinger equation and the discrete mKdV equation. In Ref.
the algebraic–geometrical approach was used to study the discrete Ablowitz–Ladik equ
from which the Baker–Akhiezer function and quasiperiodic solutions corresponding to fi
genus Riemann surfaces were obtained.

In this paper, our main aim is to study straightening out of the discrete Ablowitz–Ladik fl
including the continuous flow and discrete flow, based on the ideas in Refs. 14–16. As an
cation, we obtain quasiperiodic solutions of the (211)-dimensional Toda lattice. The outline o
the present paper is as follows. In Sec. II the discrete Ablowitz–Ladik hierarchy is constr
with the aid of the Lenard gradient sequences. The relation between the (211)-dimensional Toda
lattice and discrete Ablowitz–Ladik equations is discussed. In Sec. III we introduce a Lax m
from which a direct relation between the elliptic coordinates and solutions of the dis
Ablowitz–Ladik equations is established. The (211)-dimensional Toda lattice is separated in
solvable ordinary differential equations. In Sec. IV the Abel–Jacobi coordinates are introduc
which the straightening out of the continuous flow and the discrete flow are studied in det
Sec. V the Riemann–Jacobi inversion is discussed, from which the quasiperiodic solutions
(211)-dimensional Toda lattice are obtained by using the Riemann theta functions.

II. THE DISCRETE ABLOWITZ–LADIK HIERARCHY

In this section, we shall derive the Ablowitz–Ladik hierarchy. To this end we first introd
the Lenard gradient sequences
45730022-2488/2003/44(10)/4573/16/$20.00 © 2003 American Institute of Physics
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KnSj 21~n!5JnSj~n!, JnS21~n!50, j >0, ~2.1!

KnŜj 21~n!5JnŜj~n!, KnŜ0~n!50, j <0, ~2.2!

and take

S21~n!5S 0
0
1
D , Ŝ0~n!5S 22un21

22vn

1
D ~2.3!

as a starting point of Eq.~2.1! or Eq. ~2.2!, respectively, with two matrix operators

Kn5S E 0 un~E11!

0 1 vn~E11!

vnE 2un D
D , Jn5S 1 0 0

0 E 0

vnE 2un D
D .

Here the shift operatorE and the difference operatorD are defined asE f(n)5 f (n11), D f (n)
5 f (n11)2 f (n). It is easy to see that

kerKn5$cŜ0~n!u;c%, kerJn5$cS21~n!u;c%. ~2.4!

ThenSj (n) andŜ2 j (n) ( j >0) are uniquely determined by the recursion relation Eq.~2.1! or Eq.
~2.2! up to a termc1S21(n) or c2Ŝ0(n), which are always assumed to be zero. The first f
members are

S0~n!52S un

vn21

2unvn21

D , Ŝ21~n!52S 2un221un21~un21vn1un22vn21!

2vn111vn~unvn111un21vn!

2un21vn

D ,

S1~n!52S un112un~un11vn1unvn21!

vn222vn21~unvn211un21vn22!

2un11vn212unvn221unvn21~un11vn1unvn211un21vn22!
D .

Consider the discrete spectral problem2,17

x~n11!5Unx~n!, Un5
1

gn
S l un

vn l21D , x~n!5S x (1)~n!

x (2)~n! D , ~2.5!

whereun andvn are two potentials,l is a constant spectral parameter,

gn5A12unvn.

In order to derive the Ablowitz–Ladik hierarchy, we assume that the time dependence ofx(n) for
the spectral problem~2.5! obeys the differential equation

x~n! tm
5Vn

(m)x~n!, Vn
(m)5S A(m)~n! B(m)~n!

C(m)~n! 2A(m)~n!
D , ~2.6!

where

A(m)~n!5a (
j 50

m21

Sj 21
(3) ~n!l2m22 j1b (

j 50

2(m21)

Ŝj
(3)~n!l22m22 j1

1

2
aSm21

(3) ~n!1
1

2
bŜ2m

(3) ~n!,
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B(m)~n!5a(
j 51

m

Sj 21
(1) ~n!l2m22 j 111b (

j 521

2m

Ŝj 11
(1) ~n!l22m22 j 21, ~2.7!

C(m)~n!5a(
j 51

m

Sj 21
(2) ~n!l2m22 j 111b (

j 521

2m

Ŝj 11
(2) ~n!l22m22 j 21.

Then the compatibility condition between Eqs.~2.5! and ~2.6! yields the zero-curvature equatio
Untm

1UnVn
(m)2Vn11

(m) Un50, which is equivalent to the evolution equation

gn~gn
21! tm

5DA(m)~n!1l21vnEB(m)~n!2l21unC(m)~n!,

untm
1ungn~gn

21! tm
5l21EB(m)~n!2lB(m)~n!1un~E11!A(m)~n!,

~2.8!
vntm

1vngn~gn
21! tm

5lEC(m)~n!2l21C(m)~n!2vn~E11!A(m)~n!,

gn~gn
21! tm

52DA(m)~n!1lunEC(m)~n!2lvnB(m)~n!.

From Eqs.~2.1! and ~2.2!, it is easy to calculate that

DSj 21
(3) ~n!1vnESj 21

(1) ~n!2unSj 21
(2) ~n!50,

ESj 21
(1) ~n!2Sj

(1)~n!1un~E11!Sj 21
(3) ~n!50,

~2.9!
Sj 21

(2) ~n!1vn~E11!Sj 21
(3) ~n!2ESj

(2)~n!50,

2DSj 21
(3) ~n!1unESj

(2)~n!2vnSj
(1)~n!50, j >0,

DŜj 21
(3) ~n!1vnEŜj 21

(1) ~n!2unŜj 21
(2) ~n!50,

EŜj 21
(1) ~n!2Ŝj

(1)~n!1un~E11!Ŝj 21
(3) ~n!50,

~2.10!
Ŝj 21

(2) ~n!1vn~E11!Ŝj 21
(3) ~n!2EŜj

(2)~n!50,

2DŜj 21
(3) ~n!1unEŜj

(2)~n!2vnŜj
(1)~n!50, j <0.

Substituting Eq.~2.7! into Eq. ~2.8! and using Eqs.~2.9! and ~2.10!, we obtain

gn~gn
21! tm

5 1
2 D~aSm21

(3) ~n!1bŜ2m
(3) ~n!!1avnESm21

(1) ~n!2aunSm21
(2) ~n!,

untm
1ungn~gn

21! tm
5aESm21

(1) ~n!2bŜ2m11
(1) ~n!1 1

2 un~E11!~aSm21
(3) ~n!1bŜ2m

(3) ~n!!,

~2.11!
vntm

1vngn~gn
21! tm

5bEŜ2m11
(2) ~n!2aSm21

(2) ~n!2 1
2 vn~E11!~aSm21

(3) ~n!1bŜ2m
(3) ~n!!,

gn~gn
21! tm

52 1
2 D~aSm21

(3) ~n!1bŜ2m
(3) ~n!!1bunEŜ2m11

(2) ~n!2bvnŜ2m11
(1) ~n!,

Resorting to the first expression of Eq.~2.9! and the fourth expression of Eq.~2.10!, the first and
the fourth expressions of Eq.~2.11! can be written as

gn~gn
21! tm

5 1
2 D~bŜ2m

(3) ~n!2aSm21
(3) ~n!!. ~2.12!
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Substituting Eq.~2.12! into the second and third expressions of Eq.~2.11! and using Eq.~2.10!, we
obtain the Ablowitz–Ladik hierarchy

untm
5aESm21

(1) ~n!1aunESm21
(3) ~n!2bEŜ2m

(1) ~n!2bunEŜ2m
(3) ~n!,

~2.13!
vntm

52aSm21
(2) ~n!2avnSm21

(3) ~n!1bŜ2m
(2) ~n!1bvnEŜ2m

(3) ~n!, m>0.

The first two members are

ut0
5~a1b!un , v t0

52~a1b!vn , ~2.14!

unt1
52~12unvn!~aun111bun21!,

~2.15!
vnt1

522~12unvn!~avn211bvn11!.

Equations~2.15! is, respectively, reduced to the coupled discrete nonlinear Schro¨dinger equation

unx5~12unvn!~un111un21!,
~2.16!

vnx52~12unvn!~vn211vn11!

for a5b5 1
2, x5t1 , and the coupled discrete mKdV equation

unt5~12unvn!~un112un21!,
~2.17!

vnt5~12unvn!~vn212vn11!

for a52b5 1
2, t5t1 . Since Eqs.~2.16! and ~2.17! are compatible, we assume that (un ,vn) is a

compatible solution of Eqs.~2.16! and ~2.17!, and introduce a functionwn by

wn512unvn . ~2.18!

Then the functionwn satisfies the (211)-dimensional Toda lattice equation18,19

1

4 S ]2

]x2 2
]2

]t2D ln wn52wn2wn112wn21 , ~2.19!

which can be verified through a direct calculation.

III. THE ELLIPTIC COORDINATES

Assume that Eqs.~2.5! and ~2.6! have two basic solutionsc(n)5(c (1)(n),c (2)(n))T and
f(n)5(f (1)(n),f (2)(n))T. We define a Lax matrixWn of three functionsf (n),g(n),h(n) by

Wn5
1

2
~f~n!c~n!T1c~n!f~n!T!s5S f ~n! g~n!

h~n! 2 f ~n!
D , s5S 0 21

1 0 D . ~3.1!

It is easy to verify by~2.5! and ~2.6! that

Wn11Un2UnWn50, Wntm
5@Vn

(m) ,Wn#, ~3.2!

which imply that the function detWn is a constant independent ofn andtm . In fact, we obtain by
the first expression of Eq.~3.2! that Wn115UnWnUn

21 . Then detWn115detWn , which means
that detWn is independent ofn. In a way similar to the continuous case, a direct calculation sh
that (detWn)tm

50. Equations~3.2! can be written as
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lD f ~n!1vnEg~n!2unh~n!50,

l21Eg~n!2lg~n!1un~E11! f ~n!50,
~3.3!

lEh~n!2l21h~n!2vn~E11! f ~n!50,

l21D f ~n!2unEh~n!1vng~n!50,

and

f ~n! tm
5B(m)~n!h~n!2C(m)~n!g~n!,

g~n! tm
52A(m)~n!g~n!22B(m)~n! f ~n!, ~3.4!

h~n! tm
52C(m)~n! f ~n!22A(m)~n!h~n!.

Suppose that the functionsf (n),g(n), andh(n) are finite-order polynomials inl,

f ~n!5 (
j 50

N11

f j 21~n!l2(N11)22 j , g~n!5 (
j 51

N11

gj 21~n!l2(N11)22 j 11,

~3.5!

h~n!5 (
j 51

N11

hj 21~n!l2(N11)22 j 11.

Substituting Eq.~3.5! into Eq.~3.3! and comparing the coefficients of the same power ofl yields

KnGj 21~n!5JnGj~n!, JnG21~n!50,
~3.6!

KnGN~n!50,

with Gj (n)5(gj (n),hj (n), f j (n))T, g21(n)50,h21(n)50. It is easy to see that the equatio
JnG21(n)50 andKnGN(n)50 have the general solutions

G21~n!5a0S21~n!, ~3.7!

GN~n!5b0Ŝ0~n!, ~3.8!

wherea0 andb0 are constants. Acting withJn
21Kn andKn

21Jn , respectively, upon Eqs.~3.7! and
~3.8! yield

G0~n!5a0S0~n!1a1S21~n!,
~3.9!

GN21~n!5b0Ŝ21~n!1b1Ŝ0~n!,

in view of Eqs.~2.1! and ~2.2!, wherea1 andb1 are constants. For the sake of convenience,
seta051. From Eqs.~3.7!–~3.9!, we have

f 21~n!51, f 0~n!522unvn211a1 , g0~n!52un ,

h0~n!52vn21 , f N~n!5b0 , gN~n!522b0un21 , ~3.10!

hN~n!522b0vn , f N21~n!522b0un21vn1b1 .

We useg(n) andh(n) as polynomials ofl to define the elliptic coordinates$m i(n)% and$n i(n)%:
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g~n!52lun)
i 51

N

~z2m i~n!!, h~n!52lvn21)
i 51

N

~z2n i~n!! ~3.11!

with z5l2. By comparing coefficients of the same power forz, we get

g1~n!52g0~n!(
j 51

N

m j~n!, h1~n!52h0~n!(
j 51

N

n j~n!, ~3.12!

un21

un
5~21!N11

1

b0
)
i 51

N

m i~n!,
vn

vn21
5~21!N11

1

b0
)
i 51

N

n i~n!. ~3.13!

As m51 we equating coefficients ofl2N11 from both sides of the second equation of Eq.~3.4!,

g0~n! t1
5~aS0

(3)~n!1bŜ21
(3)~n!!12aS21

(3)~n!g1~n!22b f 21~n!Ŝ0
(1)~n!22aS0

(1)~n! f 0~n!,
~3.14!

which, together with Eqs.~3.12! and ~3.13!, implies

1

2
] t1

ln un5unvn~21!N11F ab0

) j 51
N n j~n!

2
b

b0
)
j 51

N

m j~n!G
2a(

j 51

N

m j~n!1
b

b0
~21!N11)

j 51

N

m j~n!2a1a. ~3.15!

We now use the original equations~2.15! and ~3.13!

1

2
] t1

ln un5~12unvn!~21!N11F ab0

) j 51
N m j~n11!

1
b

b0
)
j 51

N

m j~n!G . ~3.16!

By equating the two expressions of1
2] t1

ln un , we arrive at

wn512unvn5
@b01~21!N( j 51

N m j~n!) j 51
N n j~n!1a1~21!N) j 51

N n j~n!#) j 51
N m j~n11!

b0@) j 51
N m j~n11!1) j 51

N n j~n!#
.

~3.17!

Let us consider the function detWn , which is a (2N12)th-order polynomial inz (z j5l j
2)

with constant coefficients of then flow and tm flow,

2detWn5 f 2~n!1g~n!h~n!5 )
j 51

2N12

~z2z j !5R~z!. ~3.18!

Substituting Eq.~3.5! into Eq. ~3.14! and comparing the coefficients ofz2N11 andz0 yield

a152
1

2 (
j 51

2N12

z j , b05 )
j 51

2N12

l j , 2b0b152 (
j 1,¯, j 2N11

z j 1
¯z j 2N11

. ~3.19!

Using Eqs.~3.11! and ~3.4!, we have

f ~n!uz5mk(n)5AR~mk~n!!, f ~n!uz5nk(n)5AR~nk~n!!, ~3.20!
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mk~n! t1

AR~mk~n!!
5

un
21@l21B(1)~n!#uz5mk(n)

) i 51,iÞk
N ~mk~n!2m i~n!!

,

nk~n! t1

AR~nk~n!!
5

2vn21
21 @l21C(1)~n!#uz5nk(n)

) i 51,iÞk
N ~nk~n!2n i~n!!

,

1<k<N, ~3.21!

with

un
21@l21B(1)~n!#uz5mk(n)52a1

2b~21!N

b0mk~n! )
i 51

N

m i~n!,

vn21
21 @l21C(1)~n!#uz5nk(n)52a1

2b~21!N

b0nk~n! )
i 51

N

n i~n!.

Then we have

mk~n!x

AR~mk~n!!
5

12
~21!N

b0mk~n!
) i 51

N m i~n!

) i 51,iÞk
N ~mk~n!2m i~n!!

,

nk~n!x

AR~nk~n!!
5

211
~21!N

b0nk~n!
) i 51

N n i~n!

) i 51,iÞk
N ~nk~n!2n i~n!!

,

1<k<N, ~3.22!

mk~n! t

AR~mk~n!!
5

11
~21!N

b0mk~n!
) i 51

N m i~n!

) i 51,iÞk
N ~mk~n!2m i~n!!

,

nk~n! t

AR~nk~n!!
5

212
~21!N

b0nk~n!
) i 51

N n i~n!

) i 51,iÞk
N ~nk~n!2n i~n!!

,

1<k<N. ~3.23!

Therefore, if the (2N12) distinct parametersl1 ,...,l2N12 (ulkuÞul j u,kÞ j ) are given, and let
mk(n) andnk(n) be solutions of ordinary differential equations~3.22! and ~3.23!, then (un ,vn)
determined by Eq.~3.13! solves the coupled discrete nonlinear Schro¨dinger equation~2.16! and
the coupled discrete mKdV equation~2.17!. This means that the functionwn by Eq. ~2.18! or Eq.
~3.17! is a solution of the (211)-dimensional Toda equation~2.19!.

IV. STRAIGHTENING OUT OF THE CONTINUOUS FLOW

In this section, we shall discuss straightening out of the corresponding continuous flow
first introduce the Riemann surfaceG of the hyperelliptic curvej25R(z),R(z)5) j 51

2N12(z
2z j ), of genusN. On G there are two infinite points̀ 1 and`2 , which are not branch points o
G. EquipG with the canonical basis of cycles:a1 ,...,aN ; b1 ,...,bN , and the holomorphic differ-
entials

ṽ l5
z l 21 dz

AR~z!
, 1< l<N.

Then the period matricesA andB defined by
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Ai j 5E
aj

ṽ i , Bi j 5E
bj

ṽ i ,

are invertible.20,21 Let C5A21, t5A21B. If we normalizeṽ l into the new basisv j

v j5(
l 51

N

Cjl ṽ l , 1< j <N, ~4.1!

then we have

E
ai

v j5d j i , E
bi

v j5t j i . ~4.2!

Now we introduce the Abel mapA(P)

A~P!5E
P0

P

v,

which can be extended linearly to the whole divisor group ofG, A: Div(G)→J(G)5CN/T, where
the latticeT is spanned by the periodic vectors$dk ,tk% with components given by Eq.~4.2!. The
Abel–Jacobi coordinates are defined as

r (1)~n!5AS (
k51

N

P~mk~n!!D 5 (
k51

N E
P0

P(mk(n))

v, ~4.3!

r (2)~n!5AS (
k51

N

P~nk~n!!D 5 (
k51

N E
P0

P(nk(n))

v, ~4.4!

where P(mk(n))5(z5mk(n),j5AR(mk(n))), P(nk(n))5(z5nk(n),j5AR(nk(n)))PG, and
P0 is chosen a base point onG. The components of the Abel–Jacobi coordinates in Eqs.~4.3! and
~4.4! read

r j
(1)~n,x,t !5 (

k51

N E
P0

P(mk(n,x,t))

v j5 (
k51

N

(
l 51

N

Cjl E
z(P0)

mk(n) z l 21 dz

AR~z!
, 1< j <N, ~4.5!

r j
(2)~n,x,t !5 (

k51

N E
P0

P(nk(n,x,t))

v j5 (
k51

N

(
l 51

N

Cjl E
z(P0)

nk(n) z l 21 dz

AR~z!
, 1< j <N, ~4.6!

wherel(P0) is the local coordinates ofP0 . By using Eqs.~4.5! and ~3.22!, we have

]xr j
(1)~n!5(

l 51

N

(
k51

N

Cjl

mk
l 21~n!mk~n!x

AR~mk~n!!

5(
l 51

N

(
k51

N F12
~21!N

b0mk~n! )i 51

N

m i~n!G mk
l 21~n!Cjl

) iÞk
N ~mk~n!2m i~n!!

,

which implies

]xr j
(1)~n!5CjN1

1

b0
Cj 15V j

(1) , 1< j <N ~4.7!

in view of the equalities
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(
k51

N
1

mk~n!) iÞk
N ~mk~n!2m i~n!!

5
~21!N11

) i 51
N m i~n!

,

~4.8!

(
k51

N mk
l 21~n!

) iÞk
N ~mk~n!2m i~n!!

5d lN , 1< l<N.

In a similar way, we obtain from Eqs.~4.5!, ~4.6!, ~3.22!, and~3.23! that

] tr j
(1)~n!5CjN2

1

b0
Cj 15V j

(2) , ~4.9!

]xr j
(2)~n!52V j

(1) , ] tr j
(2)~n!52V j

(2) , 1< j <N. ~4.10!

V. STRAIGHTENING OUT OF THE DISCRETE FLOW

Let us denote the fundamental solution matrix of Eq.~2.5! by

Mn5~x1~n!,x2~n!!5S p(1)~n! p(2)~n!

q(1)~n! q(2)~n!
D , M05S 1 0

0 1D
which can be expressed explicitly as

Mn115UnUn21¯U0 . ~5.1!

By mathematical induction, it is easy to prove that

M15
1

g0
S l u0

v0 l21D ,

M25
1

g0g1
S l21u1v0 lu01l21u1

lv11l21v0 u0v11l22 D ,

M35
1

g0g1g2
S l31l~u1v01u2v1!1l21u2v0 l2u01u0u2v11l22u2

l2v21u1v0v21v11l22v0 lu0v21l21~u0v11u1v2!1l23D , ~5.2!

p(1)~n!5
1

g0g1¯gn21
H ln1ln22(

j 51

n21

ujv j 211¯1l2n12un21v0J ,

p(2)~n!5
1

g0g1¯gn21
H ln21u01ln23u0(

j 51

n22

uj 11v j1¯1l2n11un21J ,

q(1)~n!5
1

g0g1¯gn21
H ln21vn211ln23S vn221vn21(

j 51

n22

ujv j 21D 1¯1l2n11v0J ,

q(2)~n!5
1

g0g1¯gn21

3H ln22u0vn211ln24S u1vn211u0vn221u0vn21(
j 51

n23

uj 11v j D 1¯1l2nJ .

~5.3!
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The Lax matrixWn satisfies the discrete Lax equation~3.2!, Wn11Un2UnWn50, which
implies that the solution space of the linear equationx(n11)5Unx(n) is invariant under the
action ofWn . Let % be the eigenvalue ofWn in the solution space, andx(n) be the associated
eigenfunction, which is called the Baker function~after some normalization!:

x~n11!5Unx~n!, Wnx~n!5%x~n!. ~5.4!

It is easy to see that detu%2Wnu5%22f2(n)2g(n)h(n)50, which yields the algebraic curveG. Thus
there are two eigenvalues%656%, whereby~3.18!:

%5Af 2~n!1g~n!h~n!5AR~z!. ~5.5!

An elementary discussion shows that the corresponding Baker functions can be taken as

x6~n!5x1~n!1b6x2~n!, ~5.6!

x̂6~n!5c6x1~n!1x2~n! ~5.7!

with

b65
6%2 f ~0!

g~0!
, c65

f ~0!6%

h~0!
. ~5.8!

Theorem 5.1: ~Formulas of Dubrovin–Novikov’s type!: Let p6(n,l) and q6(n,l) be the
first component and the second one, respectively, of the Baker functionsx6(n,l) and x̂6(n,l).
Then

p1~n,l!p2~n,l!5
g~n!

g~0!
5

un

u0
)
j 51

N
z2m j~n!

z2m j~0!
, ~5.9!

q1~n,l!q2~n,l!5
h~n!

h~0!
5

vn21

v21
)
j 51

N
z2n j~n!

z2n j~0!
. ~5.10!

Proof: Resorting to Eq.~5.1! and the first expression of Eq.~3.2!, we have

WnMn5MnW0 , ~5.11!

from which a direct calculation derives Eqs.~5.9! and ~5.10!.
Proposition 5.2:For l→`, we have

p1~n,l!5
ln

g0¯gn21
$11O~l22!%,

~5.12!

p2~n,l!5g0¯gn21

unl2n

u0
$11O~l22!%,

q1~n,l!5
vn21ln

g0¯gn21v21
$11O~l22!%,

~5.13!
q2~n,l!5g0¯gn21l2n$11O~l22!%.

Proof: By using Eqs.~5.5! and ~3.5!, we obtain

%5l2(N11)$11a1l221O~l24!%, ~5.14!
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which implies

b15v21l21$11O~l22!%, b252
l

u0
$11O~l22!%,

~5.15!

c15
l

v21
$11O~l22!%, c252u0l21$11O~l22!%.

Set Eq.~5.3! and the first expression of Eq.~5.15! into p1(n,l)5p(1)(n,l)1b1p(2)(n,l), we
have the first expression of Eq.~5.12!. The estimation of the second expression of Eq.~5.12! for
p2(n,l) is obtained from the first one and

p1~n,l!p2~n,l!5
un

u0
$11O~l22!%.

Similarly, we can prove Eq.~5.13!.
According to Eq.~5.8!, it is easy to see thatlb1 andlb2, lc1 andlc2 are functions ofz,

which can be regarded as the values of the single-valued functions@lb#(P) and@lc#(P) on the
upper and lower sheets ofG, respectively. Moreover, it is obvious that the following functions a
polynomials ofz5l2 with degrees as tabled:

l2k22p(1)(2k) 2k21 l2k21p(1)(2k11) 2k
l2k21p(2)(2k) 2k21 l2kp(2)(2k11) 2k
l2k21q(1)(2k) 2k21 l2kq(1)(2k11) 2k
l2kq(2)(2k) 2k21 l2k11q(2)(2k11) 2k

Therefore, the following expressions

p6~2k,l!5p(1)~2k,l!1~lb6!H 1

l
p(2)~2k,l!J ,

~5.16!
lp6~2k11,l!5lp(1)~2k11,l!1~lb6!p(2)~2k11,l!,

q6~2k,l!5~lc6!H 1

l
q(1)~2k,l!J 1q(2)~2k,l!,

~5.17!
lq6~2k11,l!5~lc6!q(1)~2k11,l!1lq(2)~2k11,l!,

determine four meromorphic functions ofz on G: p(2k,P) and @lp#(2k11,P), q(2k,P) and
@lq#(2k11,P).

In the local coordinatesz5z21, ĵ5z2N21j, the equation ofG near infinity is written as

ĵ22R* ~z!50, R* ~z!5 )
j 51

2N12

~12z j z!. ~5.18!

On G there are two infinities and two zeros

`s5~z50,ĵ5~21!s!, 0s5~z50,j5~21!sb0!, s51,2,

which are located on the upper (s52) and lower (s51) sheets, respectively. By Proposition 5.
the principal asymptotic terms of the four meromorphic functions near`2 are
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p1~2k,P!;
zk

g0¯g2k21
, lp1~2k11,P!;

zk11

g0¯g2k
,

~5.19!

q1~2k,P!;
v2k21zk

v21g0¯g2k21
, lq1~2k11,P!;

v2kz
k11

v21g0¯g2k
,

and their principal asymptotic terms near`1 are

p2~2k,P!;
u2k

u0
g0¯g2k21z2k, lp2~2k11,P!;

u2k11

u0
g0¯g2kz

2k,

~5.20!
q2~2k,P!;g0¯g2k21z2k, lq2~2k11,P!;g0¯g2kz

2k.

Proposition 5.3:For l→0, we have

p2~n,l!5
un21l2n

g0¯gn21u21
$11O~l2!%,

~5.21!
p1~n,l!5g0¯gn21ln$11O~l2!%,

q2~n,l!5
l2n

g0¯gn21
$11O~l2!%,

~5.22!

q1~n,l!5
vn

v21
g0¯gn21ln$11O~l2!%.

Proof: It is easy to see that

%5b01b1l21O~l4!,

b152v0l$11O~l2!%, b25
1

u21l
$11O~l2!%, ~5.23!

c152
1

v0l
$11O~l2!%, c25u21l$11O~l2!%.

Substituting Eq. ~5.3! and the third expression of Eq.~5.23! into p2(n,l)5p(1)(n,l)
1b2p(2)(n,l), we obtain the first expression of Eq.~5.21!. The second expression of Eq.~5.21!
is given from the first one and

p1~n,l!p2~n,l!5
un

u0
)
j 51

N
m j~n!

m j~0!
$11O~l2!%5

un21

u21
$11O~l2!%.

In a similar way, Eq.~5.22! can be proved.
Resorting to Proposition 5.3, the principal asymptotic terms of the four meromorphic

tions near 02 are

p1~2k,P!;g0¯g2k21zk, lp1~2k11,P!;g0¯g2kz
k11,

~5.24!

q1~2k,P!;
v2k

v21
g0¯g2k21zk, lq1~2k11,P!;

v2k11zk11

v21g0¯g2k
,

and their principal asymptotic terms near 01 are
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p2~2k,P!;
u2k21z2k

u21g0¯g2k21
, lp2~2k11,P!;

u2kz
2k

u21g0¯g2k
,

~5.25!

q2~2k,P!;
z2k

g0¯g2k21
, lq2~2k11,P!;

z2k

g0¯g2k
.

Based on the Dubrovin–Novikov’s formulas Eqs.~5.9!, ~5.10! and through an elementar
analysis, it is easy to see the following assertions.

Proposition 5.4:The Baker functionp(2k,P) is of the properties:

~i! N simple poles atm1(0),...,mN(0) and two poles ofkth order at̀ 2 and 01 ;
~ii ! N simple zeros atm1(2k),...,mN(2k) and two zeros ofkth order at̀ 1 and 02 .

The Baker function@lp#(2k11,P) has

~i! N simple poles atm1(0),...,mN(0), apole of (k11)th order at̀ 2 and a pole of
kth order at 01 ;

~ii ! N simple zeros atm1(2k11),...,mN(2k11), a zero ofkth order at`1 and a zero of
(k11)th order at 02 .

Proposition 5.5:The Baker functionq(2k,P) is of the properties:

~i! N simple poles atn1(0),...,nN(0) and two poles ofkth order at̀ 2 and 01 ;
~ii ! N simple zeros atn1(2k),...,nN(2k) and two zeros ofkth order at̀ 1 and 02 .

The Baker function@lq#(2k11,P) has

~i! N simple poles atn1(0),...,nN(0), apole of (k11)th order at̀ 2 and a zero of
(k11)th order at 02 ;

~ii ! N simple zeros atn1(2k11),...,nN(2k11), a zero ofkth order at̀ 1 and a pole ofkth
order at 01 .

Theorem 5.6: ~Straightening out of the discrete flow!

r (s)~2k!2r (s)~0!52V (0)k ~modT!, ~5.26!

r (s)~2k11!2r (s)~0!52V (0)k1h2 ~modT! ~5.27!

or

r (s)~n!2r (s)~0!5V (0)n1@12~21!n#h0 ~modT!, ~5.28!

whereT is the lattice spanned by the periodic vectors, and

V (0)5 1
2 ~h22h1!, h05 1

4 ~h11h2!, hs5E
0s

`s
v, s51,2.

Proof: For n52k, we introduce the meromorphic differential onG:

v~2k!5H d

dz
ln p~2k,P!J dz ~5.29!

which has poles atm j (0) andm j (2k) with the residues21,1, respectively, and poles at`1 , `2 ,
01 , 02 with the residuesk, 2k, 2k,k, respectively. LetV be the Abel differential of the secon
kind, andv(P,Q) be the normal Abel differential of the third kind with the residue 1,21 atP,Q,
respectively, and the properties
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E
aj

v~P,Q!50, E
bj

v~P,Q!52pA21E
Q

P

v j .

Herev j is the normalized Abel differential of the first kind given by~4.1!. Then the differential
~2.25! can be expressed as a linear combination ofV, v(P,Q) andv j in view of the poles, that
is

v~2k!5V1kv@`1 ,`2#1kv@02,01#1(
j 51

N

v@m j~2k!,m j~0!#1(
j 51

N

ejv j , ~5.30!

whereej ’s are some complex numbers. Integrating Eq.~5.30! along al and bl , we obtain that
el52pnlA21 and

(
j 51

N E
m j (0)

m j (2k)

v l5kS E
02

`2
2E

01

`1Dv l1ml2(
j 51

N

njt j l , ~5.31!

wherenl andml are certain integers. This completes the proof of Eq.~5.26! for s51.
For n52k11, consider the meromorphic differential

v~2k11!5H d

dz
ln@lp#~2k11,P!J dz

5V1kv@`1 ,`2#1kv@02,01#1v@02 ,`2#

1(
j 51

N

v@m j~2k11!,m j~0!#1(
j 51

N

êjv j , ~5.32!

which implies Eq.~5.27! for s51. Similarly, we can prove Eqs.~5.26! and ~5.27! for s52.
Note: Now we have a clear evolution picture of the continuous flows and discrete

through the Abel–Jacobi coordinates:~i! they are straightened out;~ii ! they commute each othe
Therefore, the compatible solution of various flows are obtained simply by a linear superpo
Specifically, we have

r (1)~n,x!5V (0)n1V (1)x1@12~21!n#h01r0
(1) ,

~5.33!
r (2)~n,x!5V (0)n2V (1)x1@12~21!n#h01r0

(2) ,

for the coupled discrete nonlinear Schro¨dinger equation~2.16! and

r (1)~n,t !5V (0)n1V (2)t1@12~21!n#h01r0
(1) ,

~5.34!
r (2)~n,t !5V (0)n2V (2)t1@12~21!n#h01r0

(2) ,

for the coupled discrete mKdV equation~2.17!, where

V (1)5~V1
(1) ,...,VN

(1)!T, V (2)5~V1
(2) ,...,VN

(2)!T,

r0
(1)5 (

k51

N E
P0

P(mk(0))

v, r0
(2)5 (

k51

N E
P0

P(nk(0))

v.

Further, for the (211)-dimensional Toda lattice~2.19! we have
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r (1)~n,x,t !5V (0)n1V (1)x1V (2)t1@12~21!n#h01r0
(1) ,

~5.35!
r (2)~n,x,t !5V (0)n2V (1)x2V (2)t1@12~21!n#h01r0

(2) .

VI. EXPLICIT SOLUTIONS

The expression~5.30! gives the explicit solution of the (211)-dimensional Toda lattice equa
tion ~2.19! in the Abel–Jacobi coordinates (r (1)(n),r (2)(n)). In order to get the solution in the
original coordinatewn , the following steps should be completed:

~r (1)~n!,r (2)~n!!→~m j~n!,n j~n!!→~un ,vn!→wn .

To this end, we consider the Riemann theorem,20,21 which asserts that there exist constant vect
M (1) andM (2) ~the Riemann constants! such thatu(A(P(z))2r ( l )(n)2M ( l )) has exactlyN zeros
at m1(n),¯ ,mN(n) for l 51 or n1(n),¯ ,nN(n) for l 52. Through a standard treatment,22–24we
obtain

ln )
j 51

N

m j~n!5 ln
u~A~01!2r (1)~n!2M (1)!u~A~02!2r (1)~n!2M (1)!

u~A~`1!2r (1)~n!2M (1)!u~A~`2!2r (1)~n!2M (1)!
1(

j 51

N E
aj

ln lv j ,

~6.1!

ln )
j 51

N

n j~n!5 ln
u~A~01!2r (2)~n!2M (2)!u~A~02!2r (2)~n!2M (2)!

u~A~`1!2r (2)~n!2M (2)!u~A~`2!2r (2)~n!2M (2)!
1(

j 51

N E
aj

ln lv j ,

~6.2!

(
j 51

N

m j~n!5
1

2
~]x1] t!ln

u~r (1)~n!1M (1)2A~`1!!

u~r (1)~n!1M (1)2A~`2!!
1(

j 51

N E
aj

lv j , ~6.3!

(
j 51

N

n j~n!5
1

2
~]x1] t!ln

u~r (2)~n!1M (2)2A~`2!!

u~r (2)~n!1M (2)2A~`1!!
1(

j 51

N E
aj

lv j . ~6.4!

According to Eqs.~5.35!, ~6.1!–~6.4! can be written as

ln )
j 51

N

m j~n!5 ln
u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k1!

u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k2!

1 ln
u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k̂1!

u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k̂2!
1%0 , ~6.5!

ln )
j 51

N

n j~n!5 ln
u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k3!

u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k4!

1 ln
u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k̂3!

u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k̂4!
1%0 , ~6.6!

(
j 51

N

m j~n!5
1

2
~]x1] t!ln

u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k2!

u~V (0)n1V (1)x1V (2)t1@12~21!n#h01k̂2!
1%1 , ~6.7!

(
j 51

N

n j~n!5
1

2
~]x1] t!ln

u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k̂4!

u~V (0)n2V (1)x2V (2)t1@12~21!n#h01k4!
1%1 , ~6.8!

where
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k15r0
(1)1M (1)2A~01!, k̂15r0

(1)1M (1)2A~02!,

k25r0
(1)1M (1)2A~`1!, k̂25r0

(1)1M (1)2A~`2!,

k35r0
(2)1M (2)2A~01!, k̂35r0

(2)1M (2)2A~02!,

k45r0
(2)1M (2)2A~`1!, k̂45r0

(2)1M (2)2A~`2!,

%05(
j 51

N E
aj

ln lv j , %15(
j 51

N E
aj

lv j .

Substituting Eqs. ~6.5!–~6.8! into Eqs. ~3.17! yields quasiperiodic solutions of th
(211)-dimensional Toda equation~2.19!.
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Unifying scheme for generating discrete integrable
systems including inhomogeneous and hybrid models
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A unifying scheme based on an ancestor model is proposed for generating a wide
range of integrable discrete and continuum as well as inhomogeneous and hybrid
models. They include in particular discrete versions of sine-Gordon, Landau–
Lifshitz, nonlinear Schro¨dinger~NLS!, derivative NLS equations, Liouville model,
~non-!relativistic Toda chain, Ablowitz–Ladik model, etc. Our scheme introduces
the possibility of building a novel class of integrable hybrid systems including
multicomponent models like massive Thirring, discrete self-trapping, two-mode
derivative NLS by combining different descendant models. We also construct in-
homogeneous systems like Gaudin model including new ones like variable mass
sine-Gordon, variable coefficient NLS, Ablowitz–Ladik, Toda chains, etc. keeping
their flows isospectral, as opposed to the standard approach. All our models are
generated from the same ancestor Lax operator~or its q→1 limit! and satisfy the
classical Yang–Baxter equation sharing the samer -matrix. This reveals an inherent
universality in these diverse systems, which become explicit at their action-angle
level. © 2003 American Institute of Physics.@DOI: 10.1063/1.1604456#

I. INTRODUCTION

Though integrable models represent only a special class of nonlinear systems, their nu
and varieties discovered until today have become amazingly large. Therefore it is partic
important now to have well defined schemes, which will be able to generate them in a syst
way, find out their interrelations, detect the fundamental ones and identify their universal p
ties. Reduction of Lax operators in AKNS spectral problem,1 classification of soliton bearing
equations through self-dual Yang–Mills equation,2 gauge unification of nonlinear Schro¨dinger
~NLS!-type models3 are few of such successful approaches. However most of these schem
designed to deal with the continuous models only, whereas the importance and significa
discrete integrable systems have been well emphasized in recent years.4 Moreover, the algebraic
approach in classical integrable models, though it has a rich and sophisticated formulation t
the classical Yang–Baxter equation and the classicalr -matrix,5 as it appears, has not been e
ploited fully.

Our aim here is therefore to propose an unified algebraic scheme for systematic genera
a large class of integrable discrete models, based on their underlying Poisson bracket~PB! struc-
ture. The specialty of this class of models is that they can be easily quantized to yie
corresponding quantum integrable systems and their classification may be done through th
ciated classicalr -matrix with its known trigonometric and rational solutions. We present an i
grable discrete ancestor model linked with the trigonometricr -matrix ~and itsq→1 form related
naturally to the rational solution ofr ) and containing a set of arbitrary parameters. Various cho
of these external parameters define in turn different underlying algebraic structures and th
ciated Lax operators. This generates through suitable realizations a wide range of divers
grable systems sharing the samer -matrix with their ancestor model. They are by constructi

a!Electronic mail: anjan@theory.saha.ernet.in
45890022-2488/2003/44(10)/4589/15/$20.00 © 2003 American Institute of Physics

                                                                                                                



mits,
of the

tain
fficient
As an
dels,

its
homo-
proach
n

ls and
n and

ely to
nstant
bitrary

erated

lete

tems

odels.
odels.
ion of

d

d from
-

lem:

he
r

4590 J. Math. Phys., Vol. 44, No. 10, October 2003 Anjan Kundu

                    
integrable discrete models with few of them having also well defined field limits.
Our scheme, the basic idea of which is borrowed from the quantum domain,6,7 appears to be

effective not only in classifying an important class of discrete models as well as their field li
but also their inhomogeneous extensions. Along with the exactly integrable discrete versions
well known models like sine-Gordon, Landau–Lifshitz equation, NLS, derivative NLS~DNLS!,
Liouville model, relativistic and nonrelativistic Toda chain, Ablowitz–Ladik model, we also ob
new inhomogeneous models like variable mass sine-Gordon and more general variable coe
NLSs, as well as Gaudin model, inhomogeneous Ablowitz–Ladik model and Toda chains.
important application of our scheme we may construct novel families of integrable hybrid mo
by combining different descendant models in different domains of the lattice space~very recently
such field models attracted attention8!, or by fusing copies of a single component model to get
multicomponent generalization. Moreover, the present method of generating integrable in
geneous discrete and continuum models reveals the intriguing fact that the conventional ap
by considering space–time dependent spectral parameterl(x,t)9–14 is rather restricted and eve
appears to be misleading, since it would lead in general to a dynamicalr -matrix spoiling the
underlying algebraic structure and forbidding therefore the possible quantization of the mode
their usual action-angle formulation. Moreover, for more general inhomogeneous sine-Gordo
NLS models, as we find here, the conventional treatment of nonisospectral flow would be lik
fail. In our approach on the other hand the necessary isospectrality is kept intact by taking co
l as in the original homogeneous case and the inhomogeneity is introduced through ar
parameters, which act like Casimir operators in the associated Poisson algebra.

Since all these models, in spite of their manifestly diverse forms and nature, are gen
from the same ancestor model sharing the samer -matrix ~or its q→1 form!, it reveals an intrigu-
ing universality among them which is reflected prominently in their description of comp
integrability through action-angle variables.

The paper is arranged as follows. In Sec. II we review the theory of integrable sys
satisfying classical Yang–Baxter equation associated with classicalr (l2m) matrix. Section III
presents the explicit form of the ancestor model and itsq→1 limit together with the underlying
PB algebras. We introduce our generating scheme in Sec. IV and construct concrete m
Section V accounts for the generation of integrable inhomogeneous as well as hybrid m
Section VI focuses on the universal property of all descendant models by explicit construct
their action-angle variables. Section VII is the concluding section.

II. CLASSICAL YANG–BAXTER EQUATION AND INTEGRABLE SYSTEMS

By integrability of a nonlinear discrete system defined on a lattice with sitesj 51,2,...,N, we
mean it in the Liouville sense by requiring the existence of itsN number of independent conserve
quantities Cn ,n51,2,...,N including the HamiltonianH of the system with the criteria
$Cn ,Cm%50. Such conserved quantities can be considered as the action variables generate
a spectral parameterl-dependent transfer matrix as:t(l)5(n51

N Cnln and consequently the in
tegrability criteria may be replaced by the single condition

$t~l!,t~m!%50. ~1!

For deriving this condition therefore along with the conventional linear spectral prob
Tk11(l)5Lk(l)Tk(l) we define also the PB algebra for its Lax operatorLk(l) in a specific
form, which is known as the classical Yang–Baxter equation~CYBE!5

$Lk~l! ^ ,Ll~m!%5dkl@r ~l2m!,Lk~l! ^ Lk~m!# ~2!

associated with the classicalr (l2m)-matrix playing the role of structure constants. For t
associativity of algebra~2! ensuring its Jacobi identity, ther -matrix in turn must satisfy anothe
form of CYBE,

@r 12~l2m!,r 13~l2d!#1@r 12~l2m!,r 23~m2d!#1@r 13~l2d!,r 23~m2d!#50. ~3!
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It is crucial to observe that, though there is a variety of Lax operator solutions to~2! with different
basic operators and spectral parameter dependence, representing a wide range of integra
tems~for a list see Sec. IV!, the associatedr -matrix solutions satisfying~3! are only of three types
elliptic, trigonometric, and rational. Moreover most of the known models are linked to the las
cases only, i.e., to the trigonometricr -matrix,

r t~l2m!5
1

i sin~l2m! S 1

2
cos~l2m!s3^ s31s1 ^ s21s2 ^ s1D ~4!

or to its q→1, l, m→0 limit given by the rational solution

r r~l2m!5
1

i ~l2m!
P, where P5 1

2 ~ I 1sW •sW !, ~5!

P being the permutation operator. The above remarkable observation has motivated us to
ture that all integrable models satisfying the CYBE~2! must be derivable from an ancestor mod
with their Lax operators obtained as various reductions of this single ancestor Lax operat
this should make ther -matrix, inherited from their ancestor, to be naturally the same for all th
descendant models. In the next section we present such an ancestor model in the explic
associated with the trigonometricr -matrix ~4!, from which we will be able to generate a ric
collection of integrable discrete and continuum models including inhomogeneous as well as
systems, all satisfying the CYBE and sharing the samer -matrix ~4! @or its rational limit~5!#. Note
that from the CYBE~2! one can go to its global description

$TN~l! ^ ,TN~m!%5@r ~l2m!,TN~l! ^ TN~m!# ~6!

for the monodromy matrix

TN~l!5LN~l!¯L1~l!5S aN~l! bN~l!

cN~l! dN~l!
D . ~7!

It is important to notice that~6! exhibits exactly the same form as its local relation~2!, which
reflects a deep underlying Hopf algebra structure, an important characteristic of all such inte
systems.15 Defining now the transfer matrix ast(l)5trTN(l)5aN(l)1dN(l) and taking the
trace of ~6! one can easily derive~since the rhs being the trace of a commutator is zero! the
integrability condition~1! for the system. Therefore going backwards in the logical chain we
conclude that the nonlinear systems with its representative Lax operator and ther -matrix satisfy-
ing the CYBE ~2! must be an integrable system. We shall see below that the relation~6! also
carries important information for deriving action-angle variables and reflects an universal pro
for all integrable systems sharing the samer -matrix and hence belonging to the same class.

Note that in this algebraic approach we are not concerned about the usual Lax pairL,M and
do not obtain the dynamical equation from the flatness condition involving them. We on the
hand take the Lax operatorLk(l) satisfying the CYBE as the representative of the integra
model and using it construct the monodromy matrix:T(l)5)kLk(l) and then the transfer matri
from its tracet(l)5trT(l). Expanding further the transfer matrixt~l! in spectral parameterl as
described above, we derive the conserved quantities including the HamiltonianH in the explicit
form. The dynamical equation can now be obtained as the Hamilton equationc t5$c,H%, using
the fundamental PB relations.

At the lattice constantD→0 one may recover in some cases the corresponding field mo
Lk(l)→I 1DL(x,l)1O(D2) with L(x,l) as the field Lax operator. Though the associa
r -matrix remains the same, the CYBE gets deformed and the corresponding monodromy
T(l) at the infinite interval limitl 5ND→` satisfies also a bit different global CYBE.5 For
continuum models one can extract the conserved quantities more conveniently from th
operator using the Ricatti equation derived from the linear spectral problem.
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III. ANCESTOR MODELS ASSOCIATED WITH TRIGONOMETRIC AND RATIONAL
r -MATRIX

As mentioned, our generating scheme for integrable models is based on various reduct
a discrete ancestor Lax operator, which we propose to take in the following form:7

Lk
trig(anc)~j!5S jc1

1eiaSk
3
1j21c1

2e2 iaSk
3

2 sinaSk
2

2 sinaSk
1

jc2
1e2 iaSk

3
1j21c2

2eiaSk
3D , j5eil, ~8!

and demand it to satisfy the CYBE~2! with the trigonometricr -matrix ~4!. SW k appearing in~8! are
the basic dynamical fields PB algebra of which as specified below is dictated by its integra
andca

6 ,a51,2 are a set of arbitrary parameters. The structure of the Lax operator~8! becomes
clearer if we notice its possible decomposition, after an allowed gauge transformationh
5eils3, Lt(anc)(j)→hLt(anc)(j)h215jL11j21L2 , where L6 are spectral parameterj-free
upper/lower triangular matrices. Note that ther -matrix ~4! allows also a similar decompositio
~after a similar gauge transformation!:

r tS j

h D→ j

h
r 11S j

h D 21

r 2 , j5eil, h5eim

with r 6 being spectral-free upper/lower triangular matrices, which together withL6 satisfy the
FRT-type16 PB algebra derivable from the CYBE.17 The demand of integrability on~8! through the
CYBE can be shown to be equivalent to the underlying general algebra

$Sk
3 ,Sl

6%56 idklSk
6 , $Sk

1 ,Sl
2%5 i

dkl

sina
f ~2aSk

3!, with f ~x!5~M 1 sin~x!1M 2 cos~x!!,

~9!

where M 656 1
2A61(c1

1c2
26c1

2c2
1) are arbitrary parameters acting as central elements

trivial brackets with all others:$M 6,•%50 and in general may also be site and time dependen
is important to note that the underlying PB structure~9! is linked with a generalization of the we
known quantum group algebra. For generating integrable systems from this ancestor mod
find first a realization of~9! in canonical variables$uk ,pl%5dkl , in the form

Sk
35uk , Sk

15e2 ipkg~uk!, Sk
25g~uk!e

ipk, ~10!

where

g~uk!5@k1sina~s2uk!$ f ~a~uk1s11!!%#1/2
1

sina
, ~11!

containing free parametersk, s and functionf (x) as defined in~9!. It should be remarked here tha
realization~10! usually assumes the complex conjugacySk

25(Sk
1)* , which however is not im-

posed by the integrability condition~9!. Note that we have now lots of freedom for generati
descendant models from the ancestor Lax operator~8! by using various reductions of~11! under
different choices of the arbitrary parametersc’s as well ask and s or its further realization in
bosonicvariables:$ck ,c l* %5 idkl in ~10!. Moreover we can multiply these Lax operators from le
or right bysa ,a51,2,3, since such transformations are allowed by the CYBE due to a symm
of ~4! and ~5! as @r ,sa^ sa#50.

We will demonstrate in the next section that a class of discrete integrable systems
nontrivial deformation parameterq, which may be interpreted as therelativistic parameter can be
generated in a systematic way from the ancestor Lax operator~8!. The nonrelativistic models on
the other hand may be constructed in a similar way from theq→1 limit of ~8! given as
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Lk
rat.(anc)~l!5S c1

0~l1sk
3!1c1

1 sk
2

sk
1 c2

0~l2sk
3!2c2

1D , ~12!

with ca
0,1,a50,1 being arbitrary parameters. Here due to the corresponding limits ofSW→sW,

$ca
6%→$ca

0,1%, M 1→2m1, M 2→2am2, j→11 il, the PB algebra~9! reduces to

$sk
1 ,sk

2%5 idkl~2m1sk
31m2!, $sk

3 ,sl
6%56 idklsk

6 , ~13!

wherem15c1
0c2

0 , m25c1
1c2

01c1
0c2

1 with $m6,•%50. Note that a Casimir operator commutin
with all other generators of~13! may be constructed as

S25sk
3~m1sk

31m2!1sk
1sk

2 ~14!

and a realization of it~13! given by the generalizedHolstein–Primakovtransformation~HPT!

sk
35s2Nk , sk

15g0~Nk!ck , sk
25ck* g0~Nk!,

~15!
g0~Nk!5~m21m1~2s2Nk!!1/2, Nk[ck* ck

in bosonic variablesck , which in fact is thea→0 limit of ~10! and ~11!. We stress again tha
since the conjugacy ofsk

6 is not necessarily imposed by the integrability,c,c* in ~15! in general
may not be complex conjugates. Note that the ancestor model~12! represents the undeforme
rational class and satisfies the CYBE with the rationalr -matrix ~5!. Equations~8! and~12! serving
as the ancestor Lax operators for the discrete integrable models may also yield for some s
the corresponding field models with the Lax operatorL(x,l). The associatedr -matrix however
would remain the same at the continuum limit, since it is a global nondynamical object ind
dent of site indices. We shall see in Sec. V that parametersc’s in general can be space–tim
dependent and hence could induce inhomogeneity in the model preserving the constancy
spectral parameter.

IV. UNIFIED GENERATION OF DISCRETE INTEGRABLE MODELS

From the ancestor models proposed we generate here integrable discrete models belo
both trigonometric and rational class.

A. Relativistic models belonging to trigonometric class

For constructing this class of models we start from the ancestor Lax operator~8! and look into
its different realizations by choosing first the arbitrary parametersc’s as constants.

~1! Discrete sine-Gordon model:Parameter choicec1
652c2

65mD, with m as the constan
mass. This givesM 250, M 152(mD)2, and reduces realization~10! correspondingly to yield
from ~8! ~after multiplying it from right by2 is1) the Lax operator

Lk~l!5S g~uk!e
ipkD mD sin~l1auk!

mD sin~l2auk! e2 ipkDg~uk!
D , g2~uk!512~mD!2 cosa~2uk11!.

~16!

It is important to note that~16! yields exactly the Lax operator of the integrable discrete si
Gordon model18 and at the continuum limitD→0, when e6 ipkD→16D ipk and (uk ,pk)
→(u(x),p(x)), recovers clearly the field Lax operator

Lk~l!511DL~x,l!, L~x,l!5 ip~x!s31m sin~l1au~x!!s11m sin~l2au~x!!s2 ,
~17!

p~x!5u̇~x!
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of the well-known sine-Gordon modelutt2uxx1sinau50. Remarkably the PB algebra~9! in this
case reduces to the classical limit of the celebratedquantum group15 with its familiar relation
$S1,S2%52 i @2S3#q . We will see in the next section that a more general choice for the pa
eters would lead to an inhomogeneous extension of this sine-Gordon model.

~2! Discrete Liouville model:Parameter choicec1
15c2

25D, c1
25c2

150. This givesM 6

56 1
2A61D2 and correspondingly reduces~10! to derive from the same ancestor~8! ~after mul-

tiplying it from right by s1) the Lax operator

Lk~j!5S epkDg~uk! Djeauk

D

j
eauk g~uk!e

2pkDD , g2~uk!511D2ea(2uk1 i ), ~18!

which represent the discrete Liouville model19 and at its field limit (D→0) the Lax operatorL
5ps31eau@js11(1/j) s2# of the well known Liouville equation:utt2uxx5eau. Note that in
this case~9! gives a novel PB algebra with exponentially deformed relation like$S1,S2%
5 (1/2 sina) e2iaS3

.
It is intriguing to observe here that though the underlying PB structure and hence its re

tion giving the model are fixed by the choice ofM 6, the Lax operator~8! which depends directly
on the parametersc’s may take different forms for the same model. For example, in the pre
case with additional choicec1

2Þ0 would record the same values forM 6, but a different Liouville
Lax operator.20 This opens up therefore a promising possibility for systematically obtaining
ferent useful Lax operators for the same integrable model.

~3! Relativistic Toda chain:Different sets of constant choices~i! ca
151, a51,2, or ~ii ! ca

2

51, a51,2, or ~iii ! c1
7561, or ~iv! c1

151, with the rest ofc’s being zero, lead toM 650,
reducing therefore~9! to the simple PB algebra

$Sk
1 ,Sl

2%50, $Sk
3 ,Sl

6#56 idklSk
6 , ~19!

and the realization~10! ~after a canonical interchange of variables:u→2 ip, p→2 iu,) to the
form

Sk
352 ipk , Sk

65ae7uk. ~20!

This generates interestingly from the same ancestor Lax operator~8! different forms of the
discrete-time or relativistic Toda chain~RTC!. For example, case~iii ! yields

Lk~j!5S 1

j
eapk2je2apk aeuk

2ae2uk 0
D , ~21!

recovering the Lax operator found in Ref. 21, while~iv! generates a different Lax operator22 for
the same model. More famous RTC model of Suris23 however is obtained in this approach aft
performing atwisting transformation with twisting parameter taken as6a ~of these equivalent
cases we consider here only2a, for definiteness!, which deforms ther t-matrix ~4! by adding a
constant matrixV to it,21

r t→r V5r t2V, where V5 i ~s3^ I 2I ^ s3!. ~22!

As a result the form of the ancestor Lax operator~8! also gets changed with its elements tran
forming as

ca
6→ca

6eiaSk
3
, Sk

6→S̃k
65ei1/2aSk

3
Sk

6ei1/2aSk
3
. ~23!
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Implementing the corresponding changes in~21! and using the same realization~20! for the
variables~23! we obtain now the explicit form of the Lax operator

Lk~j!5S 1

j
e2apk2j aeuk

2ae2apk2uk 0
D , ~24!

generating that of the Suris RTC.23

~4! Discrete derivative NLS:Parameter choice as constants,

c1
15c2

151, c1
252 iqD, c2

25
iD

q
, giving M 152D sina, M 252iD cosa ~25!

gives~10! a q-bosonic realization asSk
152Qk , Sk

25Qk* , Sk
352Nk , with a PB algebra induced

from ~9! as

$Qk ,Nl%5 idklQ, $Qk ,Ql* %5 idkl

cos~a~2N11!!

cosa
, ~26!

which clearly reduces to the standard bosonsck ,ck* at a→0. It is worth noting that this new
q-bosonic model as realized from the ancestor Lax operator~8! ~after introducingD! would give

Lk~j!5S 1

j
q2Nk2 i jDqNk11 Qk*

Qk
1

j
qNk1 i jDq2(Nk11)

D , ~27!

which represents an exact lattice version of the DNLS equation.24 When expressed throug
bosonic field:Q5c@D (@2N#q/2N cosa)#1/2, N5Ducu2, Eq. ~27! yields at the continuum limit
D→0 the field Lax operator

L~c!52~ 1
4 j22ucu2!s31j~c* s11cs2! ~28!

of the well-known Chen–Lee–Liu DNLS equation:25 ic t5cxx24i ucu2cx .
~5! Ablowitz–Ladik model:This model involving also another form ofq-boson is possible to

generate in our scheme, though it needs twisting transformation as in the Suris RTC men
above and is associated with the same twistedr V-matrix ~22! and the twisted ancestor La
operator with the change~23!. Now the the parameter choicec1

15c2
250 with c1

25c2
151 giving

M 65 1
2A61 ~compare with the Liouville case! together with the twisting removes dynamic

variables from the diagonal elements of the twisted Lax operator as well as modifies the P
algebra of the transformed variablesS̃k

6 as derivable from~9!. Therefore namingbk52 sinaS̃k
1 we

get this modified PB relation as$bk ,bl* %5 idkl(12bk* bk), confirming the basic variables of th
Ablowitz–Ladik model as a type ofq-boson with its Lax operator as

Lk~j!5S 1

j
bk*

bk j
D ~29!

related to~22!. We will see later how space-time dependent parametersc’s give inhomogeneous
extensions of this model. Note that another intriguing possibility of generalizing this model a
if we simply considerc1

1Þ0 in the above construction. It is not dificult to see that, realizingSk
3

                                                                                                                



-
uld

vistic

is

ivistic

g

noted
we

x-

ever,

4596 J. Math. Phys., Vol. 44, No. 10, October 2003 Anjan Kundu

                    
52ln(12bk*bk) this would generate an extra termjc1
1(12bk* bk)

22ia in the upper diagonal ele
ment of the Ablowitz–Ladik Lax operator~29!. Its consequence in the dynamical equation wo
be an interesting problem to study.

B. Nonrelativistic models belonging to rational class

Deformation parameterq5eia, as we have seen in the above models, serves as the relati
or the deformed bosonic parameter. We consider now the undeformed limitq→1 or a→0, when
as explained already, ther -matrix reduces to its rational form~5! and the ancestor Lax operator
converted to~12! with the underlying PB algebra~13!.

We find that the integrable models belonging to this rational class are mostly nonrelat
models, which can be generated in a similar way from the rational ancestor model~12! with
different constant choices for parametersca

0,1, a51,2 involved in it.
~6! Landau–Lifshitz equation (LLE):Parameter choiceca

051, c1
152c2

152 l compatible with
m151, m250, reduces~13! to the classical sl2 spin algebra$sk

a ,sl
b%5 idkle

abgsl
g with spin: s2

5(sk
3)21sk

1sk
2[sWk

2 as the Casimir operator reduced from~14!. The ancestor Lax operator~12!
simplifies ~ignoring an irrelevant multiplicative factor! to

Lk~l!5I 1
1

l2 l
sW k•sW ~30!

representing a discrete version of the LLE. At the continuum limitD→0 puttingsWk→DsW(x) one
gets from the Casimir:sW2(x)51 and from the Lax operatorLk(l)→I 1DL(l),L(l)5 @1/(l
2 l )#sW(x)•sW , that for the well known LLE.26

~7! Discrete NLS model:For the same sl2 spin algebra transformation~15! yields the standard
HPT with g0(ucku)5(2s2Ducku2)1/2 ~consideringck ,ck* to be complex conjugates and scalin
them byAD). This realization by considering parameterl 50 leads~12! to the Lax operator of
exactly integrable discrete NLS model18 given by

Lk~l!5S l1s2Ducku2 ADc* g0~ ucku!

ADcg0~ ucku! l2s1Ducku2
D . ~31!

At the field limit: D→0, Eq. ~31! yields ~after multiplying it from left bys3D and considering
s51/D) the familiar form of the Lax operator

L~l!5ls31&~c* s12cs2! ~32!

for the NLS field equationic t5cxx12ucu2c.
~8! Simple lattice NLS:On the other hand, a complementary choicem150, m251, giving

g0(Nk)51 converts~15! directly to the realizationsk
15ck , sk

25ck* , sk
35s2ck* ck in bosonic

field: $ck ,c l* %5 idkl . Now a compatible choice of parameters:c1
05c2

151, c2
05c1

150 together
with this bosonic realization generates from the ancestor~12! the Lax operator

Lk~l!5S l1s2Nk ck*

ck 21
D , Nk5ck* ck, ~33!

which may be associated with another simple lattice NLS model proposed in Ref. 27 and as
there c,c* may not be complex conjugates at the discrete level. At the continuum limit
recover again the same field Lax operator~32! for the NLS equation and regain also the comple
conjugacy of the fields~see Ref. 27 for details!.

~9! Nonrelativistic Toda chain:Note that the trivial choicem650 yields from~13! again the
same algebra~19! and therefore we may take the same realization of it as found before. How
the rational form of ancestor model~12! generates now simpler Lax operator
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Lk~l!5S pk2l euk

2e2uk 0 D ~34!

of the nonrelativistic Toda chain associated with the rationalr -matrix and described by the Hami

tonian:H5(k
1
2 pk

21e(uk2uk11).
Thus we have demonstrated that discrete and continuum integrable models can be obta

a unified way from the ancestor Lax operator~8! @or its rational limit~12!# by choosing different
sets of constant values for the parametersc’s involved in the ancestor model and by usin
different realizations of the underlying PB algebra. In the next section we find how a more ge
choice ofc’s can generate further the inhomogeneous extensions of these integrable mode

We find also a convincing answer to an important question raised above asking why dif
integrable systems with varied Lax operator solutions should have the samer -matrix, by discov-
ering that all these models are basically obtainable from the same ancestor model~8! associated
with the trigonometricr -matrix ~4!. These descendant models, whose explicit Lax operators
derive here satisfy the CYBE~2! inheriting and sharing the samer -matrix ~4!. We will see in Sec.
VI that this significant fact induces a universality among these seemingly diverse system
defining their action-angle variables in the same way.

V. INTEGRABLE INHOMOGENEOUS AND HYBRID MODELS WITH ISOSPECTRAL
FLOW

We have seen how by fixing the values of certain parameters we could generate a
spectrum of integrable models belonging to the trigonometric and rational class. We focus h
some promising possibilities to generalize this procedure for constructing novel integrable fa
of inhomogeneous and hybrid models.

A. Inhomogeneous models

Returning again to the ancestor model~8! we may notice that the parametersca
6 , a51,2

entering in it@similarly, ca
0,1, a51,2 in its rational limit~12!# act like external parameters havin

trivial PB with all basic variables in their local algebra and therefore, apart from constan
earlier they may be considered in general as site~time! dependent arbitrary functions. As a resu
M 6 in ~10!, ~11! in turn also become functionsMk

6(t),k51,2,...,N @and similarlymk
6(t) in ~15!#

and lead to new integrable descendant models, which are inhomogeneous extensions of
crete and continuum models constructed above. However this integrable family of inhomoge
models is obtained in our scheme by keeping the usual isospectral flow. Moreover, such con
of spectral parameters~except some trivial transformations like shifting, etc.! is essential in this
algebraic formalism for satisfying the CYBE~6! with spectral dependent global and nondynami
r (l2m)-matrix. It is important also to notice that the inhomogeneity is introduced here thr
a set of different independent parameters:cak

6 ~or cak
0,1) with a51,2 and therefore it may not b

always possible to absorb them in the single spectral parameter, even by declaring it to b
sospectral. Therefore we see that, contrary to the standard approach the inhomogeneous
cannot be described in general as nonisospectral flow, at least those that belong to the
family. Moreover isospectrality is a necessary criterion for the CYBE solution, as expla
already.

~10! Variable mass sine-Gordon model:The construction is parallel to that of the consta
mass sine-Gordon model obtained above, where in place of constants we choose now the
eters as four different variable mass:c1

65m1k
6 (t)D, c2

65m2k
6 (t)D. This would generate from the

ancestor Lax operator~8! and realization~10! a general form of a new inhomogeneous sin
Gordon model, which is integrable and satisfies the CYBE associated to the trigonom
r -matrix ~4!. Particular choices of the inhomogeneities would yield naturally different forms o
variable mass sine-Gordon model, discrete as well as continuum, which seem to have bee
considered before.
                                                                                                                



incide:
y the

s
gh

mass.

riable

nce
n-

hich
lained

rm

ld

halleng-
sso-
o-
n

tor
n the

ass

4598 J. Math. Phys., Vol. 44, No. 10, October 2003 Anjan Kundu

                    
For a demonstration we take up the simplest case when all mass parameters co
mak

6 (t)5mk(t). This variable mass discrete sine-Gordon model can be described again b
same form~16! by replacing constantm by a variablemk(t). At the continuum limit this would
correspond to a sine-Gordon field model with variable massm(x,t). If the mass parameter i
assumed to be factorized:m(x,t)[m0(t)m1(x), by introducing a new coordinate system throu
nonlinear transformation (t,x)→(T,X), T5* tm0(t8)dt8, X5*xm1(x)dx8, the Hamiltonian of
the model can be written formally again as the standard sine-Gordon model with unit
Nevertheless we notice that even in a further simplified case withm0(t)51, the soliton solutions
in the original system might have quite interesting character depending on the form of the va
massm1(x) ~see Fig. 1!.

~11! Inhomogeneous NLS model:Since this model belongs to the rational class, in accorda
with our strategy we start with the ancestor Lax operator~12! and consider the parameters i
volved in it and in realization~15! to be site and time dependent functions:cak

0,1(t), a51,2. With
all of them different we naturally get the general inhomogeneous discrete NLS model, w
retains its integrability and contrary to the standard approach also its isospectrality, as exp
already. For constructing the corresponding field model we take the parameters in the foc1k

0

5g1k , c2k
0 52g2k , c1k

1 5(1/D) 1 f 1k , c2k
1 52 (1/D) 1 f 2k , s5D and at the limitD→0 obtain

the Lax operator

L~l!5S L1~x,t ! Q*

2Q 2L2~x,t ! D , where La~x,t !5lga~x,t !1 f a~x,t !, a51,2 ~35!

andQ5cg0(x,t) with g0(x,t)5(g1(x,t)1g2(x,t))1/2, representing an inhomogeneous NLS fie
model with inhomogeneities introduced by the independent functionsga(x,t), f a(x,t), a51,2. It
may be stressed again that here the spectral parameterl is strictly constant and whenL1ÞL2 , all
inhomogeneous parameters apparently cannot be absorbed in this single parameter. It is c
ing to derive the explicit form of this integrable variable coefficient general NLS equation, a
ciated with the rationalr -matrix ~5!. For showing that the Lax operator of many known inhom
geneous NLS equations can actually be derived from~35!, we consider the particular situatio
g15g2[g(x,t), f 15 f 2[ f (x,t) and rewrite~35! as

L~l!5L~x,t !s31Q* s12Qs2 , L~x,t !5lg~x,t !1 f ~x,t !. ~36!

It is remarkable that from this single operator we recover atg51, f 5at the Lax operator of Ref.
9, at g5 1/t , f 5 4x/t that of Ref. 10 and similarly atg5T(t), f 5 (a/2) xT(t) that of Ref. 11.
Note however that the actual form of the equations depend also on the time evolution operaM ,
which is likely to be different in our approach from the known ones, since in our constructio

FIG. 1. How the kink solution@for m1(x)51] deforms in variable mass sine-Gordon model depending on the m
parameterm1(x)5x andm1(x)5x2, respectively.
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fundamental canonical PB structure is always preserved. Therefore it would be a challe
problem to derive these new integrable inhomogeneous NLS equations explicitly from
Hamiltonian using the canonical PB.

~12! Gaudin model:It is intriguing that just by considering the parameterl in the Lax operator
~30! for the discrete LLE to be site dependent:l→ l k , one recovers the Lax operatorLk(l)5I
1 @1/(l2 l k)#sWk•sW for the celebrated Gaudin model, given by the integrable HamiltoniansHk

5( lÞk
N @1/(l k2 l l)# (sWk•sW l), k51,2,...,N.28 This model is associated also with the rationalr r ma-

trix ~5!.
~13! Inhomogeneous relativistic and nonrelativistic Toda chains:It is not difficult to see that

by repeating the construction of the Toda chains but taking the parameters to be nonconst
get integrable inhomogeneous extensions of such models. For example, considering in a
Lax operator~12! the parameters to bec1

65 f k
6(t), c2

650, but using the same realization as f
the original relativistic Toda chain, we get an extension of its Lax operator~21! to include
inhomogeneity through arbitrary functionsf k

6(t):

Lk~j!5
1

2 S f k
2

j
eapk2 f k

1je2apkD ~ I 1s3!1a~euks12e2uks2!,

which therefore would represent a new integrable family of inhomogeneous relativistic
chain. We will not present here its explicit form.

At a→0 this family of relativistic models would go to its nonrelativistic limit represented
the Lax operator

Lk~l!5S ~pk2l!1g2k ~c1k
0 !21euk

2~c1k
0 !21e2uk 0

D , ~37!

which is an obvious extension of~34! ~by introducing the inhomogeneous parameterg2k

[c1k
1 /c1k

0 and normalizing it byc1k
0 ). Without defining any time evolution operatorM , we can

directly construct from~37! the explicit form of the Hamiltonian through the conserved quantity
H5CN21 and derive the Hamilton equations using the canonical PB betweenuk ,pl , yielding
u̇k5pk1g2k and hence the inhomogeneous Toda chain equation as

d2

dt2
uk5g1~k!eu(k21)2u(k)2g1~k11!eu(k)2u(k11)1ġ2~ t !1boundary terms ~38!

with arbitrary parametersg1(k)5(c1k
0 c1k11

0 )21 andg2(k). Different choices of these paramete
would generate from~38! different inhomogeneous Toda chains. For example the partic
choices:g1(k)5k, g2(k)5a0t andg1(k)54k211, g2(k)5kt derives the Toda chains found i
Ref. 12, though in contrast we recover this result in a completely isospectral way.

~14! Inhomogeneous Ablowitz–Ladik model:It is easy to notice again that if instead of co
stants as in the original model, we choose the parameters through arbitrary functionG(t) asc1

2

5(c2
1)215eG(t), keeping the same trivial choice forc1

15c2
250, we generate from~8! the Lax

operator

Lk~j!5S 1

j
eG(t), bk*

bk , je2G(t)
D . ~39!

Remarkably, in spite of our isospectral approach, Eq.~39! recovers exactly the Lax operator o
Ref. 13 for arbitraryG(t) and that of Ref. 14 forG(t)5at, representing known inhomogeneou
Ablowitz–Ladik models.
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In a similar way by generalizing the constant parameters to inhomogeneous functions o
generate systematically inhomogeneous extensions of other integrable models constructe
Note again that all such extensions retain the integrability of the system as well as the is
trality and the samer -matrix solution.

B. Integrable hybrid models

Our scheme for generating different integrable models from an ancestor model shari
samer -matrix opens up a possibility of constructing new families of integrable models byhybrid-
izing these descended models.

Such constructions can be of two types. The first type of hybrid models may be construc
using different descendant Lax operators obtained directly from~8! @or alternatively from~12!# as
its different but consistent reductions and realizations at different lattice sites. Since all rep
tative Lax operators of these constituent models:Lk

d(k)(l), with d(k) denoting different members
of the same descendant class inserted at sitesk, should share the samer -matrix, the monodromy
matrix of this hybrid model:T$d%(l)5)d(k),kLk

d(k)(l) must satisfy the global CYBE~6! and
represent therefore an integrable system with the set of conserved quantities including the
tonian obtainable as usual through expansion ofthyb(l)5tr(T$d%(l)) in the spectral paramete
One can generate in this way some exotic hybrid models by combining for example, sine-G
and Liouville models, different types of relativistic Toda chain or discrete NLS model,
constructed above. These hybrid models presumably would show different dynamics at di
domains in the coordinate space. It is encouraging to note that very recently such model
received well deserved attention, though only at the continuum level.8 We hope that the presen
idea, based on discrete approach andr -matrix formalism would prove to be promising and fruitfu
for analyzing such hybrid integrable models.

A second type of hybrid model may be constructed by considering different representat
the Lax operator for different components of the field and inserting their direct product at the
lattice site. As a result one can build new multi-component generalization of a scalar m
through thefusedLax operator:Lk

$m%5)mLk
(m) , where each entry in the product would represe

individual components. Note that unlike the vector generalization, which needs also en
matrix realization for the Lax operator, our multicomponent hybrid models would yield on
32 matrix Lax operators. For elaborating this idea we present the detail construction
integrable hierarchy of two-component DNLS model.

~15! Integrable hierarchy of two-component DNLS:Note that in constructing the discret
DNLS model in Sec. IV, the values ofM 6 fixed by ~25! actually determined the underlyin
algebra as well as the required realization. It is however crucial to notice now that intercha
the parametersc1

6↔c2
7 would not change the values ofM 6 and therefore would lead to the sam

algebra and its realization, but result to a complementary form for the Lax operator, th
representing the same DNLS model. In our construction of the two-component model with
ck

(b) , b51,2 having PB relations$ck
(b) ,c l*

(g)%5 idbgdkl , we takeca
6 , a51,2 as in~25! for

building the Lax operatorLk
(1)(c (1)) as~27! for the first component. However, for the correspon

ing construction ofL̃k
(2)(c (2)) related to the second component we take the complementary ch

by considering c1
6↔c2

7 . The fused Lax operator taking the formLk
(1,2)(c (b))

5Lk
(1)(c (1))L̃k

(2)(c (2)) represents now a new discrete multicomponent DNLS satisfying the CY
~2! with the samer -matrix ~4!. At the continuum limitD→0, repeating the construction for th
scalar DNLS model~28!, it is easy to see that the field Lax operator of this two-component m
is given simply as a linear superpositionL(c (1),c (2))5L(c (1))1L̃(c (2)) with the explicit form

L~c (1),c (2)!5S 1

4 S 1

j2 2j2D1ucu1
22ucu2

2Ds31S jc1* 1
1

j
c2* Ds11S jc11

1

j
c2Ds2, j5eil.

~40!
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It is interesting to show by direct construction that this Lax operator generates an integ
hierarchy of multicomponent DNLS model through the expansion lnt(l)5(n50

` C6nl
72n with

H25C21C22 introducing a new two-component generalization of the Chen–Lee–Liu DN
equation. We are not giving here its explicit form, which can be worked out with little patie
The higher conserved quantities will yield higher order equations. Some similar class of di
matrix and multicomponent DNLS models was proposed recently.29

~16! Massive Thirring model:It is remarkable that~40! constructed through a novel hybrid
ization from our ancestor model coincides also with the Lax operator of the bosonic ma
Thirring model.30 Hamiltonian of this relativistic model may be given through the same conse
quantities constructed for the above model in the formH15C11C21 .

~17! Integrable discrete self-trapping model:A discrete self-trapping model with two-boson
modesc (a),c* (a),a51,2 given by the Hamiltonian

H52F1

2 (
a

2

~sa2N(a)!21~c* (1)c (2)1c* (2)c (1)!G
was studied in Ref. 31. This integrable model is associated with a Lax operator, which m
constructed by fusing two operators asL(l)5L (1)(l)L (2)(l), whereL (a)(l) are given by the
same Lax operator~33! for each of the modesa51,2.

An interesting line of investigation would be to apply this hybridization method for constr
ing possible multicomponent extensions of other models like relativistic Toda chain, Ablow
Ladik, Liouville model, LLE, Gaudin model, etc. The linear superposition of Lax operators
building new nonlinear integrable systems, as revealed here, seems to be a promising ide
pursuing.

VI. UNIVERSAL PROPERTIES OF INTEGRABLE DESCENDANT MODELS

We have seen that diverse forms of integrable models: discrete and continuum, homog
and inhomogeneous, multicomponent and hybrid models can be generated in a systematic
our ancestor model scheme. Among this diversity however we find also an unexpected uni
ity. Indeed, as we have found, a wide range of models, namely sine-Gordon, Liouville, D
relativistic Toda chain, etc., including their discrete, inhomogeneous and hybrid variants bel
the trigonometric class, while models like NLS, Toda chain, etc., and their related discret
inhomogeneous extensions are in the same rational class, which being in fact the undefoq
→1 or the nonrelativistic limit of the former class.

The crucial observation is that the diversity of all descendant models belonging to the
class seems to disappear at the global level allowing their description through a universal
angle variable. The reason for this is very simple. Though these models differ widely at their
level having different forms of the Lax operator, their monodromy matrixTN(l) ~7! satisfies the
same global relation~6! with the samer -matrix, which is inherited from their ancestor model a
shared by all of them.

As a result, for all models belonging, for example, to the trigonometric class, the PB rela
should be given by the same structure constants expressed through the elements of ther t-matrix
~4!. For the twisted models, e.g., Suris RTC and Ablowitz–Ladik model the structure cons
should similarly be given by the twistedr V-matrix ~22!. In the same way all models from th
rational class should have analogous property expressed through the elements of rationalr r-matrix
~5!. However, while the action variables are constants in time, the time evolution of angle
ables depends on the definition of the Hamiltonians through conserved quantities, which u
differs for different models.

Such differences also bear some additional imprint at the continuum limit, when the m
dromy matrix is defined asT(l)5 limN→` L`

2N(l)TN(l)L`
2N(l) and the corresponding CYBE i

modified as5 $T(l) ^ ,T(m)%5r 1(l2m)T(l) ^ T(m)2T(l) ^ T(m)r 2(l2m), where r 6(l
2m)5 limN→` L`

7N(l) ^ L`
7N(m)r (l2m)L`

6N(l) ^ L`
6N(m). Therefore though the action-ang
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description for such models of the same class are again basically the same, the influence
individual models also enters now due to the appearance ofr 6 modified by the asymptotic forms
L`(l) of the individual Lax operators. Nevertheless it is startling to check that the cano
action-angle variables for widely different field models like DNLS24 and the sine-Gordon1 are
defined exactly in the same way:p(j)5 (1/2pcj) ln ua(j)u, q(j)5argb(j) for the continuum
modes with PB$q(j),p(h)%5d(j2h), j.0 andpk5(1/2c) ln jk , qk5ln bk for the discrete set
with $qk ,pl%5dkl and similarly for their conjugatesq̄k ,p̄l .

Therefore we may conclude that all integrable models presented here may be describ
versally through the ancestor Lax operator~8! and ther t-matrix ~4! ~or twistedr V) or similarly by
the q→1 limit as the ancestor model~12! and ther r-matrix ~5!, where the global relations like
action-angle variables are determined by ther -matrix elements alone. The individuality of th
models may be reflected only in the definition of their Hamiltonians through conserved qua
and for continuum models, additionally in the limiting forms of their Lax operators.

VII. CONCLUDING REMARKS

We have presented here a unifying scheme based on PB algebra for systematically gen
a large class of integrable discrete and continuum models from a single ancestor mode
models include well known and new integrable systems as well as inhomogeneous models
on our construction we conclude that more general and logical approach for inhomoge
integrable models, at least for models with nondynamicalr -matrix, would be to describe them a
isospectral flow in inhomogeneous external fields. As another fruitful application of the pr
scheme we have proposed a simple method for constructing new families of integrable
models byfusingdifferent types of descendant models. In spite of the vastly diverse form of t
models their common ancestor and commonr -matrix reveal an inherent universality in the
description through action-angle variables.

We strongly hope that the algebraic approach linked with the quantum group structure f
lated here for generating classical integrable discrete as well as field models, though a bit u
mon in the community working in classical integrability, would prove to be much powerful du
its systematic and algorithmic nature. Similarly the novel ideas of construction introduced
like generating integrable hybrid and multicomponent models and creating integrable inho
neity in isospectral flow, are expected to be equally promising.
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General soliton matrices in the Riemann–Hilbert problem
for integrable nonlinear equations

Valery S. Shchesnovicha) and Jianke Yangb)

Department of Mathematics and Statistics, University of Vermont,
Burlington, Vermont 05401
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We derive the soliton matrices corresponding to an arbitrary number of higher-
order normal zeros for the matrix Riemann–Hilbert problem of arbitrary matrix
dimension, thus giving the complete solution to the problem of higher-order soli-
tons. Our soliton matrices explicitly give all higher-order multisoliton solutions to
the nonlinear partial differential equations integrable through the matrix Riemann–
Hilbert problem. We have applied these general results to the three-wave interac-
tion system, and derived new classes of higher-order soliton and two-soliton solu-
tions, in complement to those from our previous publication@Stud. Appl. Math.
110, 297 ~2003!#, where only the elementary higher-order zeros were considered.
The higher-order solitons corresponding to nonelementary zeros generically de-
scribe the simultaneous breakup of a pumping wave (u3) into the other two com-
ponents (u1 andu2) and merger ofu1 andu2 waves into the pumpingu3 wave. The
two-soliton solutions corresponding to two simple zeros generically describe the
breakup of the pumpingu3 wave into theu1 andu2 components, and the reverse
process. In the nongeneric cases, these two-soliton solutions could describe the
elastic interaction of theu1 and u2 waves, thus reproducing previous results ob-
tained by Zakharov and Manakov@Zh. Éksp. Teor. Fiz.69, 1654~1975!# and Kaup
@Stud. Appl. Math.55, 9 ~1976!#. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1605821#

I. INTRODUCTION

The importance of integrable nonlinear partial differential equations~PDEs! in 111 dimen-
sions in applications to nonlinear physics can hardly be overestimated. Their importance pa
stems from the fact that it is always possible to obtain certain explicit solutions, called soliton
some algebraic procedure. At present, there is a wide range of literature concerning inte
nonlinear PDEs and their soliton solutions~see, for instance, Refs. 1–4 and the referen
therein!. The reader familiar with the inverse scattering transform method knows that it is zer
the Riemann–Hilbert problem~or poles of the reflection coefficients in the previous nomenclatu!
that give rise to the soliton solutions. These solutions are usually derived by using one
several well-known techniques, such as the dressing method,1,5,6 the Riemann–Hilbert problem
approach,2,3 and the Hirota method~see Ref. 1!. In the first two methods, the pure soliton solutio
is obtained by considering the asymptotic form of a rational matrix function of the spe
parameter, called the soliton matrix in the following. It is known that the generic case of zer
the matrix Riemann–Hilbert problem is the case of simple zeros7–12 ~see also Ref. 13!. A single
simple zero produces a one-soliton solution. Several distinct zeros will produce multisolito
lutions, which describe the interaction~scattering! of individual solitons. As far as the generic ca
is concerned, there is no problem in the derivation of the corresponding soliton solutions.

However, in the nongeneric cases, when at least one higher-order~i.e., multiple! zero is

a!Also at: Instituto de Fisica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, Brazil;
electronic mail: valery@ift.unesp.br

b!Electronic mail: jyang@emba.uvm.edu
46040022-2488/2003/44(10)/4604/36/$20.00 © 2003 American Institute of Physics
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present in the Riemann–Hilbert problem, the situation is not so definite. Higher-order zeros
be considered separately, as, in general, the soliton solutions which correspond to suc
cannot be derived from the known generic multisoliton solutions by coalescing some o
distinct simple zeros. This is clear from the fact that a higher-order zero generally correspo
a higher-order pole in the soliton matrix~or its inverse!, which cannot be obtained in a regular wa
by coalescing simple poles in the generic multisoliton matrix. The procedure of coalescing s
distinct simple zeros produces only higher-order zeros with equal algebraic and geometric
plicities ~the geometric multiplicity is defined as the dimension of the kernel of the soliton m
evaluated at the zero!, which is just the trivial case of higher-order zeros. For instance, if
algebraic multiplicity is equal to or greater than the matrix dimension, then such coalescin
produce a higher-order zero with the geometric multiplicity no less than the matrix dimen
which could only correspond to the zero solution instead of solitons. Thus the soliton ma
corresponding to higher-order zeros of the Riemann–Hilbert problem require a separate co
ation.

Soliton solutions corresponding to higher-order zeros have been investigated in the lite
before, mainly for the 232-dimensional spectral problem. A soliton solution to the nonlin
Schrödinger~NLS! equation corresponding to a double zero was first given in Ref. 14 but wit
much analysis. The double- and triple-zero soliton solutions to the KdV equation were exa
in Ref. 15 and the general multiple-zero soliton solution to the sine-Gordon equation was
sively studied in Ref. 16 using the associated Gelfand–Levitan–Marchenko equation. In Re
and 18, higher-order soliton solutions to the NLS equation were studied by employing the dr
method. In Refs. 19–21, higher order solitons in the Kadomtsev–Petviashvili I equation
derived by the direct method and the inverse scattering method. Finally, in our pre
publication22 we have derived soliton matrices corresponding to a singleelementaryhigher-order
zero—a zero which has the geometric multiplicity equal to 1. Our studies give the general h
order soliton solutions for the integrable PDEs associated with the 232 matrix Riemann–Hilbert
problem with a single higher-order zero. Indeed, any zero of the 232-dimensional Riemann–
Hilbert problem is elementary since a nonzero 232 matrix can have only one vector in its kerne

However, the previous investigations left some of the key questions unanswered. For ins
the general soliton matrix corresponding to a single nonelementary zero remained unknown
zeros arise when the matrix dimension of the Riemann–Hilbert problem is greater than 2.
rally then, the ultimate question—the most general soliton matrices corresponding to an ar
number of higher-order zeros in the generalN3N Riemann–Hilbert problem, was not addresse
Because of these unresolved issues, the most general soliton and multisoliton solutions to
integrable through theN3N Riemann–Hilbert problem~such as the NLS equation,23 the three-
wave interaction system,2,24–27and the Manakov equations28! have not been derived yet.

In this paper we derive the complete solution to the problem of soliton matrices correspo
to an arbitrary number of higher-order normal zeros for the generalN3N matrix Riemann–
Hilbert problem. These normal zeros are defined in Definition 1, and are nonelementary in g
They include almost all physically important integrable PDEs where the involution property@see
Eq. ~4!# holds. The corresponding soliton solutions can be termed as the higher-order mu
tons, to reflect the fact that these solutions do not belong to the class of the previous g
multisoliton solutions. Our results give a complete classification of all possible soliton solutio
the integrable PDEs associated with theN3N Riemann–Hilbert problem. In other words, ou
soliton matrices contain the most general forms of reflection-less~soliton! potentials in the
N-dimensional Zakharov–Shabat spectral operator. For these general soliton potentials, the
sponding discrete and continuous eigenfunctions of theN-dimensional Zakharov–Shabat operat
naturally follow from our soliton matrices. As an example, we consider the three-wave intera
system, and derive single-soliton solutions corresponding to a nonelementary zero, and
order two-soliton solutions. These solutions generate many new processes such as the
neous breakup of a pumping wave (u3) into the other two components (u1 andu2) and merger of
u1 andu2 waves into the pumpingu3 wave, i.e.,u11u21u3↔u11u21u3 . They also reproduce
previous solitons in Refs. 2, 22, 26, 27 as special cases.
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The paper is organized as follows. A summary on the Riemann–Hilbert problem is plac
Sec. II. Section III is the central section of the paper. There we present the theory of s
matrices corresponding to several higher-order zeros under the assumption that these z
normal ~see Definition 1!, which include the physically important cases with the involution pr
erty @see Eq.~4!#. Applications of these general results to the three-wave interaction system
contained in Sec. IV. Finally, in the Appendix we briefly treat the more general case wher
zeros are abnormal.

II. THE RIEMANN–HILBERT PROBLEM APPROACH

The integrable nonlinear PDEs in 111 dimensions are associated with the matrix Rieman
Hilbert problem~consult, for instance, Refs. 1–12, 29–32!. The matrix Riemann–Hilbert problem
~below we work in the space ofN3N matrices! is the problem of finding the holomorphi
factorization, denoted below byF1(k) and F2

21(k), in the complex plane of a nondegenera
matrix functionG(k) given on an oriented curveg:

F2
21~k,x,t !F1~k,x,t !5G~k,x,t ![E~k,x,t !G~k,0,0!E21~k,x,t !, kPg, ~1!

where

E~k,x,t ![exp@2L~k!x2V~k!t#.

Here the matrix functionsF1(k) and F2
21(k) are holomorphic in the two complementary d

mains of the complexk-plane:C1 to the left andC2 to the right from the curveg, respectively.
The matricesL(k) andV(k) are called the dispersion laws. Usually the dispersion laws comm
with each other, e.g., given by diagonal matrices. We will consider this case@precisely in this case
E(k,x,t) is given by the above formula#. The Riemann–Hilbert problem requires an appropri
normalization condition. Usually the curveg contains the infinite pointk5` of the complex plane
and the normalization condition is formulated as

F6~k,x,t !→I as k→`. ~2!

This normalization condition is called the canonical normalization. Setting the normaliz
condition to an arbitrary nondegenerate matrix functionS(x,t) leads to the gauge equivalen
integrable nonlinear PDE, e.g., the Landau–Lifshitz equation in the case of the NLS equa3

Obviously, the new solutionF̂6(k,x,t) to the Riemann–Hilbert problem, normalized toS(x,t), is
related to the canonical solution by the following transformation

F̂6~k,x,t !5S~x,t !F~k,x,t !. ~3!

Thus, without any loss of generality, we confine ourselves to the Riemann–Hilbert problem
the canonical normalization.

For physically applicable nonlinear PDEs the Riemann–Hilbert problem possesses the
lution properties, which reduce the number of the dependent variables~complex fields!. The
following involution property of the Riemann–Hilbert problem is the most common in app
tions

F1
† ~k!5F2

21~ k̄!, k̄5k* . ~4!

Here the superscript ‘‘†’’ represents the Hermitian conjugate, and ‘‘* ’’ the complex conjugate.
Examples include the NLS equation, the Manakov equations, and theN-wave system. The analy
sis in this article includes this involution~4! as a special case. In this case, the overline o
quantity represents its Hermitian conjugation in the case of vectors and matrices and the co
conjugation in the case of scalar quantities. In other cases, the original and overlined qua
may not be related.
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To solve the Cauchy problem for the integrable nonlinear PDE posed on the whole axisx, one
usually constructs the associated Riemann–Hilbert problem starting with the linear spectra
tion

]xF~k,x,t !5F~k,x,t !L~k!1U~k,x,t !F~k,x,t !, ~5!

whereas thet-dependence is given by a similar equation

] tF~k,x,t !5F~k,x,t !V~k!1V~k,x,t !F~k,x,t !. ~6!

The nonlinear integrable PDE corresponds to the compatibility condition of the system~5! and~6!:

] tU2]xV1@U,V#50. ~7!

The essence of the approach based on the Riemann–Hilbert problem lies in the fact t
evolution governed by the complicated nonlinear PDE~7! is mapped to the evolution of th
spectral data given by simpler equations such as~1! and ~20a!–~20b!. When the spectral data i
known, the matricesU(k,x,t) andV(k,x,t) describing the evolution ofF6 can then be retrieved
from the Riemann–Hilbert problem. In our case, the potentialsU(k,x,t) andV(k,x,t) are com-
pletely determined by the~diagonal! dispersion lawsL(k) and V(k) and the Riemann–Hilber
solutionF[F6(k,x,t). Indeed, let us assume that the dispersion laws are polynomial funct
i.e.,

L~k!5(
j 50

J1

Ajk
j , V~k!5(

j 50

J2

Bjk
j . ~8!

Then using similar arguments as in Ref. 32 we get

U52P$FLF21%, V52P$FVF21%. ~9!

Here the matrix functionF(k) is expanded into the asymptotic series,

F~k!5I 1k21F (1)1k22F (2)1¯ , k→`,

and the operatorP cuts out the polynomial asymptotics of its argument ask→`. An important
property of matricesU andV is that

Tr U~k,x,t !52Tr L~k!,
~10!

Tr V~k,x,t !52Tr V~k!,

which evidently follows from Eq.~9!. This property guarantees that the Riemann–Hilbert ze
are (x,t) independent.

Let us consider as an example the physically relevant three-wave interaction system.2,24,25,27

SetN53,

L~k!5 ikA, A5S a1 0 0

0 a2 0

0 0 a3

D , V~k!5 ikB, B5S b1 0 0

0 b2 0

0 0 b3

D , ~11!

whereaj andbj are real with the elements ofA being ordered:a1.a2.a3 . From Eq.~9! we get

U52L~k!1 i @A,F (1)#, V52V~k!1 i @B,F (1)#. ~12!

Setting
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u15Aa12a2F12
(1) , u25Aa22a3F23

(1) , u35Aa12a3F13
(1) , ~13!

assuming the involution~4!, and using Eq.~12! in ~7! we get the three-wave system:

] tu11v1]xu11 i«ū2u350, ~14a!

] tu21v2]xu21 i«ū1u350, ~14b!

] tu31v3]xu31 i«u1u250. ~14c!

Here

v15
b22b1

a12a2
, v25

b32b2

a22a3
, v35

b32b1

a12a3
, ~15!

«5
a1b22a2b11a2b32a3b21a3b12a1b3

@~a12a2!~a22a3!~a12a3!#1/2 . ~16!

The group velocities satisfy the following condition:

v22v3

v12v3
52

a12a2

a22a3
,0. ~17!

The three-wave system~14! can be interpreted physically. It describes the interaction of th
wave packets with complex envelopesu1 , u2 , andu3 in a medium with quadratic nonlinearity.

In general, the Riemann–Hilbert problem~1!–~2! has multiple solutions. Different solution
are related to each other by the rational matrix functionsG(k) ~which also depend on the variable
x and t):2–6,13

F̃6~k,x,t !5F6~k,x,t !G~k,x,t !. ~18!

The rational matrixG(k) must satisfy the canonical normalization condition:G(k)→I for k→`
and must have poles only inC2 @the inverse functionG21(k) then has poles inC1 only#. Such a
rational matrixG(k) will be called the soliton matrix below, since it gives the soliton part of
solution to the integrable nonlinear PDE.

To specify a unique solution to the Riemann–Hilbert problem the set of the Riemann–H
data must be given. These data are also called the spectral data. The full set of the spect
comprises the matrixG(k,x,t) on the right-hand side of Eq.~1! and the appropriate discrete da
related to the zeros of detF1(k) and detF2

21(k). In the case of involution~4!, the zeros of
detF1(k) and detF2

21(k) appear in complex conjugate pairs,k̄ j5kj* . It is known7–12 ~see also
Ref. 13! that in the generic case the spectral data include simple~distinct! zerosk1 ,...,kn of
detF1(k) and k̄1 ,...,k̄n of detF2

21(k), in their holomorphicity domains, and the null vecto
uv1&,...,uvn& and ^v̄1u,... ,̂ v̄nu from the respective kernels:

F1~kj !uv j&50, ^v̄ j uF2
21~ k̄ j !50. ~19!

Using the property~10! one can verify that the zeros do not depend on the variablesx andt.
The (x,t) dependence of the null vectors can be easily derived by differentiation of~19! and use
of the linear spectral equations~5! and ~6!. This dependence reads
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uv j&5exp$2L~kj !x2V~kj !t%uv0 j&, ~20a!

^v̄ j u5^v̄0 j uexp$L~ k̄ j !x1V~ k̄ j !t%, ~20b!

whereuv0 j& and ^v̄0 j u are constant vectors.
The vectors in Eqs.~20a! and ~20b! together with the zeros constitute the full set of t

generic discrete data necessary to specify the soliton matrixG(k,x,t) and, hence, unique solutio
to the Riemann–Hilbert problem~1!–~2!. Indeed, by constructing the soliton matrixG(k) such
that the following matrix functions:

f1~k!5F1~k!G21~k!, f2
21~k!5G~k!F2

21~k! ~21!

are nondegenerate and holomorphic in the domainsC1 and C2 , respectively, we reduce th
Riemann–Hilbert problem with zeros to another one without zeros and hence uniquely so
~for details see, for instance, Refs. 2–4, 13!. Below by matrixG(k) we will imply the matrix from
equation~21! which reduces the Riemann–Hilbert problem~1!–~2! to the one without zeros. The
corresponding solution to the integrable PDE~7! is obtained by using the asymptotic expansion
the matrixF(k) ask→` in the linear equation~5!. In theN-wave interaction model it is given by
formula ~12!. The pure soliton solutions are obtained by using the rational matrixF5G(k).

The above set of discrete spectral data~19! holds only for the generic case where zeros
detF1(k) and detF2

21(k) are simple. If these zeros are higher-order rather than simple, wha
discrete spectral data should be and how they evolve withx andt is unknowna priori. Moreover,
we have stressed in Sec. I that the case of higher-order zeros cannot be treated by co
simple zeros, thus is highly nontrivial. In the next sections, we give the complete solution t
problem.

III. SOLITON MATRICES FOR GENERAL HIGHER-ORDER ZEROS

In this section we derive the soliton matrices for an arbitrary matrix dimensionN and an
arbitrary number of higher-order zeros under the assumption that these zeros are norm~see
Definition 1!. Normal higher-order zeros are most common in practice. In general, they are
elementary. Our approach is based on a generalization of the idea in our previous paper.22

A. Product representation of soliton matrices

Our starting point to tackle this problem is to derive a product representation for so
matrices. This product representation is not convenient for obtaining soliton solutions, but
lead to the summation representation of soliton matrices, which is very useful.

In treating the soliton matrix as a product of constituent matrices@called elementary matrice
in Ref. 2, see formulas~24! and~27! below# one can consider each zero of the Riemann–Hilb
problem separately. For instance, consider a pair of zerosk1 and k̄1 , respectively, ofF1(k) and
F2

21(k) from Eq. ~1!, each having orderm:

detF1~k!5~k2k1!mw~k!, detF2
21~k!5~k2 k̄1!mw̄~k!, ~22!

wherew(k1)Þ0 andw̄( k̄1)Þ0. The geometric multiplicity ofk1 ( k̄1) is defined as the number o
independent vectors in the kernel ofF1(k1) (F2

21( k̄1)), see~19!. In other words, the geometri
multiplicity of k1 ( k̄1) is the dimension of the kernel space ofF1(k1) (F2

21( k̄1)). It can be easily
shown that the order of a zero is always greater or equal to its geometric multiplicity. It is
obvious that the geometric multiplicity of a zero is less than the matrix dimension. Let us
how the soliton matrices are usually constructed~see, for instance, Refs. 2 and 13!. Starting from
the solutionF6(k) to the Riemann–Hilbert problem~1!–~2!, one looks for the independen
vectors in the kernels of the matricesF1(k1) andF2

21( k̄1). Assuming that the geometric multi
plicities of k1 and k̄1 are the same and equal tor 1 , then we have
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F1~k1!uv i1&50, ^v̄ i1uF2
21~ k̄1!50, i 51, . . . ,r 1 . ~23!

Next, one constructs the constituent matrix

x1~k!5I 2
k12 k̄1

k2 k̄1

P1 , ~24!

where

P15(
i , j

r 1

uv i1&~K21! i j ^v̄ j 1u, Ki j 5^v̄ i1uv j 1&. ~25!

Here P1 is a projector matrix, i.e.,P1
25P1 . It can be shown that detx15(k2k1)

r1/(k2k̄1)
r1 ~note

that the geometric multiplicityr 1 is equal to rankP1). If r 1,m then one considers the new matr
functions

F̃1~k!5F1~k!x1
21~k!, F̃2

21~k!5x1~k!F2
21~k!.

By virtue of Eqs.~23!, the matricesF̃1(k) and F̃2
21(k) are also holomorphic in the respectiv

half planes of the complex plane~see Lemma 1 in Ref. 22!. In addition,k1 and k̄1 are still zeros

of detF̃1(k) and detF̃2
21(k). Assuming that the geometric multiplicities of zerosk1 andk̄1 in new

matricesF̃1(k) and F̃2
21(k) are still the same and equal tor 2 , then the above steps can b

repeated, and we can define matrixx2(k) analogous to Eq.~24!. In general, if the geometric
multiplicities of zerosk1 and k̄1 in matrices

F̃1~k!5F1~k!x1
21~k!¯x l 21

21 ~k!, F̃2
21~k!5x l 21~k!¯x1~k!F2

21~k! ~26!

are the same and given byr l ( l 51,2,. . . ), then we can define a matrixx l similar to Eqs.~24! and

~25! but the independent vectorsuv i l & and^v̄ i l u ( i 51, . . . ,r l) are from the kernels ofF̃1(k1) and

F̃2
21( k̄1) in Eq. ~26!. When this process is finished, one would get the constituent mat

x1(k),..., x r(k) such thatr 11r 21¯1r n5m, and the product representation of the solit
matrix G(k),

G~k!5xn~k!¯x2~k!x1~k!. ~27!

This product representation~27! is our starting point of this paper. In arriving at this repr
sentation, our assumptions are that the zerosk1 and k̄1 have the same algebraic multiplicity@see

Eq. ~22!#, and their geometric multiplicities in matricesF̃1(k) andF̃2
21(k) of Eq. ~26! are also

the same for alll ’s. For convenience, we introduce the following definition.
Definition 1: A pair of zeros k1 and k̄1 in the matrix Riemann–Hilbert problem is called

normal if the zeros have the same algebraic multiplicity, and their geometric multiplicitie

matricesF̃1(k) and F̃2
21(k) of Eq. (26) are also the same for all l’ s.

In the text of this paper, we only consider normal zeros of the matrix Riemann–Hi
problem. The case of abnormal zeros will be briefly discussed in the Appendix.

Remark 1:Under the involution property~4!, all zeros are normal. Thus, our results f
normal zeros cover almost all the physically important integrable PDEs.

Remark 2:Normal zeros include the elementary zeros of Ref. 22 as special cases, but th
nonelementary in general.

It is an important fact~see Ref. 22, Lemma 2! that the sequence of ranks of the projectorsPl

in the matrixG(k) given by Eq.~27!, i.e., built in the described way, is nonincreasing:
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rankPn<rankPr 21<¯<rankP1 , ~28!

i.e., r n<r n21<¯<r 1 . This result allows one to classify all possible occurrences of a hig
order zero of the Riemann–Hilbert problem for an arbitrary matrix dimensionN. In general, for
zeros of the same order, different sequences of ranks in Eq.~28! give different classes of higher
order soliton solutions. In Ref. 22 we constructed the soliton matrices for the simplest seque
ranks, i.e., 1, . . . ,1.Such zeros are called ‘‘elementary.’’ If the matrix dimensionN52 ~as for the
nonlinear Schro¨dinger equation!, then all higher-order zeros are elementary since rankP1 is al-
ways equal to 1.

To obtain the product representation for soliton matrices corresponding to several highe
normal zeros one can multiply the matrices of the type~27! for each zero, i.e.,G(k)
5G1(k)G2(k)¯GNZ

(k), whereNZ is the number of distinct zeros and eachG j (k) has the form
given by formula~27! with n substituted by somenj .

The product representation~27! of the soliton matrices is difficult to use for actual calculatio
of the soliton solutions. Indeed, though the representation~27! seems to be simple, derivation o
the (x,t) dependence of the involved vectors~except for the vectors in the first projectorP1)
requires solving matrix equations with (x,t)-dependent coefficients. One would like to have
more convenient representation, where all the involved vectors have explicit (x,t) dependence.
Below we derive such a representation for soliton matrices corresponding to an arbitrary n
of higher-order normal zeros.

For the sake of clarity, we consider first the case of a single pair of higher-order z
followed by the most general case of several distinct pairs of higher-order zeros.

B. Soliton matrices for a single pair of zeros

Definition 2: For soliton matrices having a single pair of higher-order normal zeros(k1 ,k̄1),
supposeG(k) is constructed judiciously as in Eq. (27), with ranks rj of matrices Pj (1< j <n)
satisfying inequality (28), i.e.,

r n<r n21<¯<r 1 .

Then a new sequence of positive integers

s1>s2>¯>sr 1

is defined as follows:
sn[the index of the last positive integer in the array@r 1112n,r 2112n, . . . ,r n112n#.

The sequence of integers$r n ,r n21 , . . . ,r 1% is then the rank sequence associated with the pai

zeros(k1 ,k̄1) and the new sequence$s1 ,s2 , . . . ,sr 1
% is called the block sequence associated w

this pair of zeros.
Remark:It is easy to see that the sum of the block sequence is equal to the sum of all

(
n51

r 1

sn5(
l 51

n

r l ,

with the sum being equal to the algebraic order of the Riemann–Hilbert zeros (k1 ,k̄1).
For example, if the rank sequence is$3% @only one constituent matrix in~27!—trivial higher-

order zero#, then the block sequence is$1,1,1%; if the rank sequence is$1,1,1,1% ~an elementary
zero!, then the block sequence is$4%; if the rank sequence is$2,3,5,7%, then the block sequence i
$4,4,3,2,2,1,1%.

With these definitions the most general soliton matricesG(k) andG21(k) for a single pair of
higher-order normal zeros (k1 ,k̄1) are given as follows. This result is a generalization of o
previous result22 to nonelementary higher-order zeros.
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Lemma 1: Consider a single pair of higher-order normal zeros(k1 ,k̄1) in the Riemann–
Hilbert problem. Suppose their geometric multiplicity is r1 , and their block sequence i
$s1 ,s2 , . . . ,sr 1

%. Then the soliton matricesG(k) and G21(k) can be written in the following

summation forms:

G~k!5I 1 (
n51

r 1

S̄n , G21~k!5I 1 (
n51

r 1

Sn . ~29!

Here Sn and S̄n are the following block matrices,

S̄n5(
l 51

sn

(
j 51

l uq̄ j
(n)&^ p̄l 112 j

(n) u

~k2 k̄1!sn112 l
5~ uq̄sn

(n)&,...,uq̄1
(n)&D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D , ~30a!

Sn5(
l 51

sn

(
j 51

l upl 112 j
(n) &^qj

(n)u
~k2k1!sn112 l 5~ up1

(n)&,...,upsn

(n)&Dn~k!S ^qsn

(n)u

]

^q1
(n)u

D , ~30b!

where Dn(k) and D̄n(k) are triangular Toeplitz matrices of the size sn3sn :

D̄n~k!51
1

~k2 k̄1!
0 ... 0

1

~k2 k̄1!2

1

~k2 k̄1!
� ]

] � � 0

1

~k2 k̄1!sn
...

1

~k2 k̄1!2

1

~k2 k̄1!

2 ,

~31!

Dn~k!5S 1

~k2k1!

1

~k2k1!2 ...
1

~k2k1!sn

0 � � ]

] �

1

~k2k1!

1

~k2k1!2

0 ... 0
1

~k2k1!

D .

The vectorsupi
(n)&,^ p̄i

(n)u,^qi
(n)u,uq̄i

(n)& ( i 51, . . . ,sn) are independent of k, and in the two sets
$up1

(1)&, . . . ,up1
(r 1)

&% and $^ p̄1
(1)u, . . . ,̂ p̄1

(r 1)u% the vectors are linearly independent.

Remark 1:If r 151, the zerosk1 and k̄1 are elementary.22 In this case, the above solito
matrices reduce to those in Ref. 22.

Remark 2:The total number of allup& vectors or̂ p̄u vectors from alln blocks are equal to the
algebraic order of the zerosk1 and k̄1 .

Proof: The representation~29! can be proved by induction. Consider, for instance, the form
for G(k). Obviously, this formula is valid forn51 in Eq.~27!, whereG(k) contains only a single
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matrix x1(k). Now, suppose that this formula is valid forn.1. We need to show that it is valid
for n11 as well. Indeed, denote the soliton matrices forn andn11 by G(k), andG̃(k), respec-
tively, the rightmost multiplier inG̃(k) being x̃(k). Then we have

G̃~k!5G~k!x̃~k!5S I 1
A1

k2 k̄1

1
A2

~k2 k̄1!2
1¯1

An

~k2 k̄1!nD S I 1
R

k2 k̄1
D

5I 1
Ã1

k2 k̄1

1
Ã2

~k2 k̄1!2
1¯1

Ãn11

~k2 k̄1!n11
, ~32!

where

R[~ k̄12k1!P̃5(
l 51

r̃

uul&^ūl u. ~33!

Here we have normalized the vectorsuul& and ^ūl u such that

^ūl uui&5~ k̄12k1!d l ,i , ~34!

andr̃ 5rankR. In view of Eq.~28!, we know thatr̃>r 1 , wherer 1 is the geometric multiplicity of
k1 andk̄1 in the soliton matricesG(k) andG21(k). The coefficients at the poles inG̃(k) are given
by

Ã15A11R, Ãj5Aj1Aj 21R, j 52, . . . ,n, Ãn115AnR. ~35!

Consider first the coefficientsÃ2 to Ãn11 . The explicit form of the coefficientsAj can be obtained
from Eqs.~29!, ~30!, and~32! as

Aj[ (
n51

r 1

Aj
(n)5 (

n51

r 1

(
l 51

sn112 j

uq̄l
(n)&^ p̄sn122 j 2 l

(n) u, ~36!

where the inner sum is zero ifsn112 j <0. Substituting this expression into~35! and defining the
following new vectors in each block:

^p! 1
(n)u5^ p̄1

(n)uR, ^p! j
(n)u5^ p̄ j

(n)uR1^ p̄ j 21
(n) u, j 52, . . . ,sn , ~37!

@for blocks of size 1,sn51, the second formula in~37! is dropped#, we then put the coefficients
Ã2 ,...,Ãn11 into the required form

Ãj5 (
n51

r 1

(
l 51

s̃n112 j

uq! l
(n)&^p! s̃n122 j 2 l

(n) u, j 52, . . . ,n11,

where

uq! l
(n)&[uq̄l

(n)&, l 51, . . . ,s̃n21,

ands̃n5sn11, i.e., the size of eachn-block grows by one as we multiply byx̃(k) in formula~32!.
Next, we consider the coefficientÃ1 . Defining the vector̂ p! s̃n

(n)u[^ p̄sn

(n)u and utilizing the

definition ~37!, we can rewriteA1
(n) as
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A1
(n)5 (

l 51

s̃n21

uq̄l
(n)&^p! s̃n112 l

(n) u2(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) uR. ~38!

To setÃ15A11R into the required form

Ã15 (
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u1 (
n51

r 1

(
l 51

s̃n

uq! l
(n)&^p! s̃n112 l

(n) u, ~39!

we must define exactly one new vectoruq! s̃n

(n)& for eachn-block @in the second term of Eq.~39!# and

r̃ 2r 1 new blocks of size 1 containing 2(r̃ 2r 1) new vectorsuq̄1
(m)& and ^p! 1

(m)u. Due to formulas
~35! and ~38!, the new vectors to be defined must satisfy the following equation:

(
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u1 (
n51

r 1

uq! s̃n

(n)&^ p̄1
(n)uR5R2 (

n51

r 1

(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) uR, ~40!

where the definition of̂p! 1
(n)u in Eq. ~37! has been utilized. Substituting the expression~33! for R

into the above equation, we get

(
m5r 111

r̃

uq! 1
(m)&^p! 1

(m)u5(
l 51

r̃

uj l&^ūl u, ~41!

where

uj l&[S I 2 (
n51

r 1

(
l 52

sn

uq̄l
(n)&^ p̄sn122 l

(n) u D uul&2 (
n51

r 1

uq! s̃n

(n)&^ p̄1
(n)uul&, l 51, . . . ,r̃ .

To show that Eq.~41! is solvable, we need to use an important fact that the matrix

M5~Mn,l !, Mn,l5^ p̄1
(n)uul&, n51, . . . ,r 1 , l 51, . . . ,r̃ 1 ,

has rankr 1 . This fact can be proved by contradiction as follows.
Suppose the matrixM has rank less thanr 1 . Then itsr 1 rows are linearly dependent. Thu

there are such scalarsC1 ,C2 , . . . ,Cr 1
, not equal to zero simultaneously, that the vector

^hu[ (
n51

r 1

Cn^ p̄1
(n)u

is orthogonal to alluul& ’s, i.e.,

^huul&50, 1< l< r̃ . ~42!

According to our induction assumption that soliton matrices involvingn multipliers in formula
~27! have the form~29!, we can easily show, by equating the coefficient at the highest polek

5 k̄1 in the left-hand side~lhs! of the identityG(k)G21(k)5I to zero, that̂ p̄1
(n)uG21( k̄1)50 for

all 1<n<r 1 ~see also Ref. 22!. Thus^huG21( k̄1)50 as well. According to Lemma 1 in Ref. 22
if ^hu is in the kernel ofG21( k̄1) and is orthogonal to alluul& ’s, then ^hu is in the kernel of
G̃21( k̄1) as well, i.e.,̂ huG̃21( k̄1)50. But according to our construction of soliton matrices@see
Eq. ~27!#, the vectorŝ ūl u ( l 51, . . . ,r̃ ) are all the linearly independent vectors in the kernel
G̃21( k̄1). Thus^hu must be a linear combination of^ūl u ’s. Then in view of Eqs.~34! and~42!, we
find that ^hu50, which leads to a contradiction.
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Now that the matrixM has rank r 1 , then we are able to select vectorsuq! s̃n

(n)& (n

51, . . . ,r 1) such thatr 1 of the r̃ vectors^j l u are zero. With this choice ofuq! s̃n

(n)& ’s, the rhs of Eq.

~41! becomesr̃ 2r 1 blocks of size 1. Assigning these blocks to the lhs of~41!, then Eq.~41! can
be solved. Hence we can put the coefficientÃ1 in the required form~39!.

Next we prove that all vectorŝp! 1
(n)u (1<n< r̃ ) in the matrixG̃(k) are linearly independent

These vectors were defined in the above proof as

^p! 1
(n)u5^ p̄1

(n)uR5(
l 51

r̃

^ p̄1
(n)uul&^ūl u, 1<n<r 1 , ~43!

and ^p! 1
(n)u for r 111<n< r̃ are simply equal tor̃ 2r 1 of the vectorsūl depending on whatr 1

3r 1 submatrix ofM has rankr 1 . To be definite, let us suppose the firstr 1 columns of the matrix
M have rankr 1 ~i.e., linearly independent!. Then according to the above proof, we can uniqu
select vectorsuq! s̃n

(n)& (n51, . . . ,r 1) such thatuj l&50 for 1< l<r 1 . Thus,

^p! 1
(n)u5^ūnu, r 111<n< r̃ . ~44!

Recalling that vectorŝūnu (1<n< r̃ ) in the projectorR ~33! are linearly independent, and the fir
r 1 columns of matrixM have rankr 1 , we easily see that vectors^p! 1

(n)u (1<n< r̃ ) as defined in
Eqs.~43! and ~44! are linearly independent.

Last, we prove that the sizes of blocks in representations~29! are given by the block sequenc
defined in Definition 2. An equivalent statement is that the numbers of matrix blocks with
@1,2,3,. . . ,n# are given by the pairwise differences in the sequence of ranks:@r 12r 2 ,r 2

2r 3 , . . . ,r n212r n ,r n#, where the last number in the sequence defines the number of bloc
sizen. This can be easily proven by the induction argument using the fact that the number o
blocks of size 1 inÃ1 ~35! is given by r̃ 2r 1 , while the sizes of old blocks grow by 1 in eac
multiplication as in formula~32!.

Using similar arguments, we can prove that the representation~29! for G21(k) is
valid, and vectorsup1

(1)&, . . . ,up1
(r 1)

& are linearly independent. This concludes the proof
Lemma 1. Q.E.D.

C. Soliton matrices for several pairs of zeros

Next, we extend the above results to the most general case of several pairs of highe
normal zeros$(k1 ,k̄1),...,(kNZ

,k̄NZ
)%. In this general case, the soliton matrixG(k) can be con-

structed as a product of soliton matrices~27! for each zero, which are given by the procedu
outlined in the beginning of this section@see Eqs.~22! to ~27!#. Thus,G(k) can be represented a

G~k!5G1~k!•G2~k!¯GNZ
~k!. ~45!

For each pair of zeros (kj ,k̄ j ), we can define its rank sequence and block sequence by Defin
2 either fromG(k) directly or from the individual matrixG j (k) associated with this zero. It is eas
to see that using either ofG(k) or G j (k) gives the same results. The inverse matrixG21(k) can be
represented in a similar way.

The product representation~45! for G(k) and its counterpart forG21(k) are not convenient for
deriving soliton solutions. Their summation representations such as Eq.~29! are needed. It turns
out thatG(k) andG21(k) in the general case are given simply by sums of all the blocks from
pairs of zeros plus the unit matrix. Let us formulate this result in the next lemma.

Lemma 2: Consider several pairs of higher-order normal zeros$(k1 ,k̄1),...,(kNZ
,k̄NZ

)% in the

Riemann–Hilbert problem. Denote the geometric multiplicity of zeros(kn ,k̄n) as r1
(n) and their

block sequence as$s1
(n) ,s2

(n) , . . . ,sr
1
(n)

(n)
% (1<n<NZ). Then the soliton matricesG(k) andG21(k)

can be written in the following summation forms:
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G~k!5I 1 (
n51

NZ

(
n51

r 1
(n)

S̄n
(n) , G21~k!5I 1 (

n51

NZ

(
n51

r 1
(n)

S n
(n) . ~46!

Here S n
(n) and S̄n

(n) are the following block matrices:

S̄n
(n)5~ uq̄s

n
(n)

(n,n)
&,...,uq̄1

(n,n)&)D̄n
(n)~k!S ^ p̄1

(n,n)u
]

^ p̄s
n
(n)

(n,n)u
D , ~47a!

S n
(n)5~ up1

(n,n)&,...,ups
n
(n)

(n,n)
&)Dn

(n)~k!S ^qs
n
(n)

(n,n)u

]

^q1
(n,n)u

D , ~47b!

where Dn
(n)(k) and D̄n

(n)(k) are triangular Toeplitz matrices of the size sn
(n)3sn

(n) :

D̄n
(n)~k!51

1

~k2 k̄n!
0 ... 0

1

~k2 k̄n!2

1

~k2 k̄n!
� ]

] � � 0

1

~k2 k̄n!sn
(n) . ..

1

~k2 k̄n!2

1

~k2 k̄n!

2 ,

~48!

Dn
(n)~k!5S 1

~k2kn!

1

~k2kn!2 ...
1

~k2kn!sn
(n)

0 � � ]

] �

1

~k2kn!

1

~k2kn!2

0 ... 0
1

~k2kn!

D .

Vectors upi
(n,n)&,^ p̄i

(n,n)u,^qi
(n,n)u,uq̄i

(n,n)& ( i 51, . . . ,sn
(n)) are independent of k. In addition, for

each n, vectors$up1
(1,n)&, . . . ,up

1
(r 1

(n) ,n)
&% and $^ p̄1

(1,n)u, . . . ,̂ p̄
1
(r 1

(n) ,n)u% are linearly independent
respectively.

Proof: Again we will rely on the induction argument. As it was already mentioned, the gen
soliton matrixG(k) corresponding to several distinct zeros can be represented as a product~45! of
individual soliton matrices~27! for each zero. For clarity reason and simplicity of the presenta
we will give detailed calculations for the simplest case of just one product in~45!. Then we will
show how to generalize the calculations. Consider soliton matrixG(k) for two pairs of distinct
higher-order zeros (k1 ,k̄1) and (k2 ,k̄2). We haveG(k)5G1(k)G2(k) and

G~k!5S I 1
A1

k2 k̄1

1•••1
An1

~k2 k̄1!n1
D S I 1

B1

k2 k̄2

1•••1
Bn2

~k2 k̄2!n2
D . ~49!
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Herenj ( j 51,2) is the number of simple matrices in the product representation~27! for G j . Due
to Lemma 1, the coefficientsAj andBj are given by formulas similar to~36!:

Aj5 (
n51

r 1
(1)

(
l 51

sn
(1)

112 j

uq̄l
(n,1)&^ p̄s

n
(1)122 j 2 l

(n,1) u, ~50!

Bj5 (
n51

r 1
(2)

(
l 51

sn
(2)

112 j

uq̄l
(n,2)&^ p̄s

n
(2)122 j 2 l

(n,2) u. ~51!

On the other hand, by expanding formula~49! into the partial fractions we get

G~k!5I 1
Ã1

k2 k̄1

1¯1
Ãn1

~k2 k̄1!n1

1
B̃1

k2 k̄2

1¯1
B̃n

~k2 k̄2!n2

. ~52!

Consider first the coefficientsÃj . Multiplication by (k2 k̄1)n1 of both formulas~49! and~52! and
taking derivatives atk5 k̄1 using the Leibniz rule gives

Ãn12 l5
1

l ! H dl

dkl ~k2 k̄1!n1G~k!J
k5 k̄1

5(
j 50

l An12 j

~ l 2 j !!

d( l 2 j )G2

dk( l 2 j ) ~ k̄1!. ~53!

In a similar way we get

B̃n22 l5(
j 50

l
d( l 2 j )G1

dk( l 2 j ) ~ k̄2!
Bn22 j

~ l 2 j !!
. ~54!

Now substituting Eqs.~50! and ~51! into ~53! and ~54! and defining new vectors

^p! m
(n,1)u5 (

j 50

m21

^ p̄m2 j
(n,1)u

1

j !

djG2

dkj ~ k̄1!, m51,...,sn
(1) , ~55!

and

uq! m
(n,2)&5 (

j 50

m21
1

j !

djG1

dkj ~ k̄2!uq̄m2 j
(n,2)&, m51,...,sn

(2) , ~56!

we find that

Ãj5 (
n51

r 1
(1)

(
l 51

sn
(1)

112 j

uq̄l
(n,1)&^p! s

n
(1)122 j 2 l

(n,1) u, ~57!

B̃j5 (
n51

r 1
(2)

(
l 51

sn
(2)

112 j

uq! l
(n,2)&^ p̄s

n
(2)122 j 2 l

(n,2) u, ~58!

which give precisely the needed representation~46!. Note from definitions~55! and ~56! that
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@^p! 1
(n,1)u, . . . ,̂ p! r

1
(1)

(n,1)u#5@^ p̄1
(n,1)u, . . . ,̂ p̄r

1
(1)

(n,1)u#G2~ k̄1!

and

@ uq! 1
(n,2)&, . . . ,uq! r

1
(2)

(n,2)
&] 5G1~ k̄2!@ uq̄1

(n,2)&, . . . ,uq̄r
1
(2)

(n,2)
&].

Due to Lemma 1, vectors$^ p̄1
(n,1)u, . . . ,̂ p̄r

1
(1)

(n,1)u% and $uq̄1
(n,2)&, . . . ,uq̄r

1
(2)

(n,2)
&% are linearly indepen-

dent respectively. In addition, matricesG1( k̄2) andG2( k̄1) are nondegenerate. Thus new vecto
$^p! 1

(n,1)u, . . . ,̂ p! r
1
(1)

(n,1)u% and $uq! 1
(n,2)&, . . . ,uq! r

1
(2)

(n,2)
&% are linearly independent respectively as we

This completes the proof of Lemma 2 for two pairs of higher-order zeros.
It is easy to see that the above procedure of redefining the vectors in the blocks corresp

to different zeros will also work in the general case, whenG1(k) is replaced by the produc
G1(k)¯Gn(k), andG2(k) replaced byGn11(k). In this case, the sum over all distinct poles w
be present in the left parentheses in formula~49!, and consequently there will be more terms
formula ~52!. Formula~53! will be valid for coefficientsÃ of each zero, and formula~54! remains
valid as well. Thus by defining vectors^p! m

(n, j )u by formula~55! for each zerokj (1< j <n), and
defining vectorsuq! m

(n,n11)& by formula ~56! for zero kn11 , we can show that the matrixG(k)
consisting ofn11 products ofG j (k) can be put in the required form~46!. This induction argu-
ment then completes the proof of Lemma 2. Q.E.

The notations in the representation~46! for soliton matrices with several zeros are getti
complicated. To facilitate the presentations of results in the remainder of this paper, let us
mulate the representation~46!. For this purpose, we definer 15r 1

(1)1¯1r 1
(NZ) , wherer 1

(n)’s are
as given in Lemma 2. Then we replace the double summations in Eq.~46! with single ones,

G~k!5I 1 (
n51

r 1

S̄n , G21~k!5I 1 (
n51

r 1

Sn . ~59!

Inside these single summations, the firstr 1
(1) terms are blocks of type~47! for the first pair of zeros

(k1 ,k̄1), the nextr 1
(2) terms are blocks of type~47! for the second pair of zeros (k2 ,k̄2), and so on.

Block matricesSn and S̄n can be written as

S̄n5(
l 51

sn

(
j 51

l uq̄ j
(n)&^ p̄l 112 j

(n) u
(k2k̄n)sn112 l 5(uq̄sn

(n)&,...,uq̄1
(n)&)D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D , ~60a!

Sn5(
l 51

sn

(
j 51

l upl 112 j
(n) &^qj

(n)u
~k2kn!sn112 l 5~ up1

(n)&,...,upsn

(n)&)Dn~k!S ^qsn

(n)u

]

^q1
(n)u

D , ~60b!

where matricesDn(k) and D̄n(k) are triangular Toeplitz matrices of the sizesn3sn :

D̄n~k!5S 1

~k2k̄n!
0 ... 0

1

~k2k̄n!2

1

~k2k̄n!
� ]

] � � 0

1

~k2k̄n!sn
...

1

~k2k̄n!2

1

~k2k̄n!

D ,
                                                                                                                



Dn~k!5S 1

~k2kn!

1

~k2kn!2 ...
1

~k2kn!sn

0 � � ]

] �

1

~k2kn!

1

~k2kn!2 D . ~61!

me of

the

uct of
tor
tor

.,

in
s

4619J. Math. Phys., Vol. 44, No. 10, October 2003 General soliton matrices

                    
0 ... 0
1

~k2kn!

Here

kn5kj , if 11(
l 51

j 21

r 1
( l )<n<(

l 51

j

r 1
( l ) ~1< j <NZ!. ~62!

In other words,kn5k1 for 1<n<r 1
(1) , kn5k2 for r 1

(1)11<n<r 1
(1)1r 1

(2) , etc. In addition,

$sn ,11( l 51
j 21r 1

( l )<n<( l 51
j r 1

( l )% is the block sequence of thej th pair of zeros (kj ,k̄ j ). This new
representation~59! is equivalent to~46!, but it proves to be helpful in the calculations below.

We note that the simplified way of block numeration used in the representation~59! reflects
the important property of the solitons matrices: the soliton matrices preserve their form if so
the zeros coalesce~or, vice versa, a zero splits itself into two or more zeros!. The only thing that
does change is the association of a particularn-block to the pair of zeros.

The representation~59! @or ~46!# is but the first step towards the necessary formulas for
soliton matrices. Indeed, there are twice as many vectors in the expressions~59! for G(k) and
G21(k) as compared to the total number of vectors in the constituent matrices in the prod
representations of the type~27! for each pair of zeros. As the result, only half of the vec
parameters, sayupi

(n)& and ^ p̄i
(n)u, are free. To derive the formulas for the rest of the vec

parameters in~59! we can use the identityG(k)G21(k)5G21(k)G(k)5I . First of all, let us give
the equations for the free vectors themselves.

Lemma 3: The vectorsup1
(n)&,...,upsn

(n)& and ^ p̄1
(n)u,... ,̂ p̄sn

(n)u from eachnth block in the repre-

sentation (59)–(60) satisfy the following linear systems of equations:

Gn~kn!S up1
(n)&
]

upsn

(n)&
D 50, Gn~k![S G 0 ... 0

1

1!

d

dk
G G � ]

] � � 0

1

~sn21!!

dsn21

dksn21 G ...
1

1!

d

dk
G G

D , ~63!

(^ p̄1
(n)u,... ,̂ p̄sn

(n)u!Ḡn~ k̄n!50, Ḡn~k![S G21 1

1!

d

dk
G21 ...

1

~sn21!!

dsn21

dksn21 G21

0 G21
� ]

] � �

1

1!

d

dk
G21

0 ... 0 G21

D .

~64!

Remark:Note that the matricesGn(k) andGn
21(k) have block-triangular Toeplitz forms, i.e

they have the same~matrix! element along each diagonal.
Proof: The derivation of the systems~63!–~64! exactly reproduces the analogous derivation

Ref. 22 for the case of elementary zeros~as the equations for thenth block resemble analogou
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equations for a single block corresponding to a pair of elementary zeros!. For instance, the system
~63! is derived by considering the poles ofG(k)G21(k) at k5kn , starting from the highest pole
and using the representation~59!–~60! for G21(k). The details are trivial and will not be repro
duced here. Note that there may be several sets of vectors~from differentn-blocks of the same pai
of zeros! which satisfy similar equations if the geometric multiplicity of this pair of zeros is hig
than 1. Q.E.D.

Now let us express theuq̄& and^qu vectors in the expressions~59!–~60! for G(k) andG21(k)
through theup& and^ p̄u vectors. This will lead to the needed representation of the soliton mat
given through theup& and^ p̄u vectors only. It is convenient to formulate the result in the followi
lemma.

Lemma 4: The general soliton matrices for several pairs of normal ze

$(k1 ,k̄1),...,(kNZ
,k̄NZ

)% are given by the following formulas:

G~k!5I 2~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)K̄21D̄~k!S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~65a!

G21~k!5I 2~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)D~k!K 21S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~65b!

where sn and r1 are the same as in Lemma 2. The matricesD̄(k) and D(k) are block-diagonal:

D̄~k![S D̄1~k! 0

�

0 D̄r 1
~k!
D , D~k![S D1~k! 0

�

0 Dr 1
~k!

D , ~66!

where the triangular Toeplitz matrices Dn̄(k) and Dn(k) are defined in formulas (61). The matri-

ces K̄and K have the following block matrix representation:

K̄[S K̄ (1,1) ... K̄ (1,r 1)

] ]

K̄ (r 1,1) ... K̄ (r 1 ,r 1)
D , K[S K (1,1) ... K (1,r 1)

] ]

K (r 1,1) ... K (r 1 ,r 1)
D , ~67!

with the matrices K̄(n,m) and K(n,m) being given as

K̄ (n,m)5 (
j 50

sn21

(
l 50

sm21
~21! l~ j 1 l !!

j ! l !

H2 j
(n)Q̄l

(n,m)

~km2k̄n! j 1 l 11 ,
                                                                                                                



,

4621J. Math. Phys., Vol. 44, No. 10, October 2003 General soliton matrices

                    
K (n,m)5 (
l 50

sn21

(
j 50

sm21
~21! l~ l 1 j !!

l ! j !

Ql
(n,m)H j

(m)

~ k̄n2km! l 1 j 11 . ~68!

Here $H2sn11
(n) , ...,Hsn21

(n) % is the basis for the space of sn3sn-dimensional Toeplitz matrices

defined as(H j
(n))a,b[da,b2 j . The nonzero elements of matrices Ql̄

(n,m) and Ql
(n,m) are defined as

the inner products between the p-vectors from the blocks with indicesn and m :

Q̄l
(n,m)[S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D ~0,...,0,up1

(m)&,...,upsm2 l
(m) , Ql

(n,m)[S 0
]

0

^ p̄1
(n)u
]

^ p̄sn2 l
(n) u

D ~ up1
(m)&,...,upsm

(m) . ~69!

Remark 1:In the case of a single pair of zeros (k1 ,k̄1) simply replacekm (k̄m) andkn (k̄n)
in formula ~67! by k1 ( k̄1).

Remark 2:In the case of the involution~4! property, the obvious relations hold:

k̄n5kn* , ^ p̄ j
(n)u5upj

(n)&†, D̄n~k!5Dn
†~k* !, K̄ (n,m)5~K (m,n)!†.

Proof: We only need to prove that theuq̄& and^qu vectors in soliton matrices~59! and~60! are
related to theup& and ^ p̄u vectors by

~ uq̄s1

(1)&,...,uq̄1
(1)&,...,uq̄sr 1

(r 1)
&,...,uq̄1

(r 1)
&)K̄52~ up1

(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&), ~70!

and

KS ^qs1

(1)u

]

^q1
(1)u
]

^qsr 1

(r 1)u

]

^q1
(r 1)u

D 52S ^ p̄1
(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

p̄sr 1

(r 1)u

D , ~71!

where matricesK andK̄ are as given in Eq.~67!. We will give the proof only for Eq.~70!, as the
proof for ~71! is similar. Note that in the case of involution~4!, Eq. ~71! follows from ~70! by
taking the Hermitian conjugate.

To prove Eq.~70!, we consider the corresponding expressions~59! and ~60! for G(k),

G~k!5I 1 (
n51

r 1

~ uq̄sn

(n)&,...,uq̄1
(n)&)D̄n~k!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D . ~72!

We need to determine theuq̄&-vectors using Eq.~63!. Note that thel th row in them-system~63!
can be written as
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FG~km!,
1

1!

dG

dk
~km!,...,

1

~ l 21!!

dl 21G

dkl 21 ~km!G S upl
(m)&
]

up1
(m)&

D 50 ~73!

for each 1<m<r 1 . When the expression~72! for G(k) is substituted into the above equation, w
get

(
n51

r 1

~ uq̄sn

(n)&,...,uq̄1
(n)&)H D̄n~km!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D upl

(m)&1
1

1!

dD̄n

dk
~km!S ^ p̄1

(n)u
]

^ p̄sn

(n)u
D upl 21

(m) &1¯

1
1

~ l 21!!

dl 21D̄n

dkl 21 ~km!S ^ p̄1
(n)u
]

^ p̄sn

(n)u
D up1

(m)&J 52upl
(m)& . ~74!

The derivatives ofD̄n(km) can be easily computed as

dl D̄n

dkl ~km!5 (
j 50

sn21
~21! l~ j 1 l !!

j !

H2 j
(n)

~km2k̄n! j 1 l 11 . ~75!

Now it is straightforward to verify that all equations of the type~74! can be united in a single
matrix equation~70! by padding some columns in the summations of~74! by zeros, precisely as i
is done in the definition~69! of Q̄(n,m). As a result we arrive at the relation~70! betweenuq̄& and
up& vectors, where the matrixK̄ is precisely as defined in Lemma 4. Q.E.D

D. Two special cases

Our soliton matrices derived above reproduce all previous results as special cases. The
matrices were previously obtained in two special cases: several pairs of Riemann–Hilber
with equal geometric and algebraic multiplicities,13 and a single pair of elementary higher-ord
zeros.22 In the first case, suppose that the geometric and algebraic multiplicities ofn pairs of
Riemann-Hilbert zeros$(kj ,k̄ j ),1< j <n% are$r ( j ),1< j <n%, respectively. Then the soliton matr
ces have been given before13 ~see also Appendix B in Ref. 33! as

G5I 2 (
i , j 51

n

(
m51

r ( i )

(
l 51

r ( j )
uv i

(m)&~F21! im, j l ^v̄ j
( l )u

k2 k̄ j

, G215I 1 (
i , j 51

n

(
m51

r ( i )

(
l 51

r ( j )
uv j

( l )~F21! j l ,im^v̄ i
(m)u

k2kj
,

~76!

where r ( j ) vectors $uv j
( l )&,1< l<r ( j )% and $^v̄ j

( l )u,1< l<r ( j )% are in the kernels ofG(kj ) and
G21( k̄ j ), respectively,

G~kj !uv j
( l )&50, ^v̄ j

( l )uG21~ k̄ j !50, l 51, . . . ,r ( j ), ~77!

and

Fim, j l 5
^v̄ i

(m)uv j
( l )&

kj2 k̄i

. ~78!

Moreover,
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detG5)
j 51

n S k2kj

k2 k̄ j
D r ( j )

.

The above special soliton matrices can be easily retrieved from the general soliton m
~65!–~69! of Lemma 4. Indeed, in this special case, the block sequence of a pair of zeros (kj ,k̄ j )
is a row of 1’s of lengthr ( j ). Thussn51 for all n’s. Consequently, matricesDn andD̄n in Eq. ~66!

have dimension 1. In addition, matricesK (n,m) andK̄ (n,m) in Eq. ~68! also have dimension 1, an
the summations in their definitions can be dropped sincel 50 and j 50 there. Hence, we get

K̄ (n,m)5~K (m,n)!†5
^ p̄1

(n)up1
(m)&

km2k̄n
,

see ~69!. Relating up& vectors $up1
(n)&,11( l 51

j 21r ( l )<n<( l 51
j r ( l )% to $uv j

( l )&,1< l<r ( j )% and
$^p1

(n)u,11( l 51
j 21r ( l )<n<( l 51

j r ( l )% to $^v j
( l )u,1< l<r ( j )% for each j 51, . . . ,n, and recalling the

definition ~62! of k’s, we readily find that our general representation~65! reduces to~76!. We note
by passing that the soliton matrices~76!–~78! cover the case of simple zeros, where there is
one vector in each kernel in~77!.

Our second example is a single pair of elementary higher-order zeros. A higher-order z
called elementary if its geometric multiplicity is 1.22 This case has been extensively studied in
literature before~see Refs. 15, 17, 18, 22! for different integrable PDEs. The soliton matrice
having similar representation as~65!–~69! for this case were derived in our previous publication22

The only difference between that paper’s representation and the present one~65!–~69! is the
definition of the matricesK and K̄. However, in this special case, these matrices have just
block each, i.e.,K (1,1) and K̄ (1,1), since there is just onen block in the soliton matrices. By
comparison of both definitions one can easily establish their equivalence.

E. Invariance properties of soliton matrices

In this section, we discuss the invariance properties of soliton matrices. When the s
matrix is in the product representation~27! for a single pair of zeros, the invariance prope
means that one can choose anyr 1 linearly independent vectors in the kernels ofG(k1) and
G21( k̄1), or more generally, one can choose anyr l (1< l<n) linearly independent vectors in th
kernels of (Gx1

21
¯x l 21

21 )(k1) and (x l 21¯x1G21)( k̄1), and the soliton matrix remains invarian
In other words, given the soliton matrixG(k), for a fixed set ofr l linearly independent vector
uv i l & (1< i<r l) in the kernels of (Gx1

21
¯x l 21

21 )(k1) and another fixed set ofr l linearly inde-
pendent vectorŝv̄ i l u (1< i<r l) in the kernels of (x l 21¯x1G21)( k̄1), new sets of vectors

@ uṽ1l&,uṽ2l&, . . . ,uṽ r l ,l&] 5@ uv1l&,uv2l&, . . . ,uv r l ,l&]B ~79!

and

F ^v! 1l u
^v! 2l u
]

^v! r l ,l u
G5B̄F ^v̄1l u

^v̄2l u
]

^v̄ r l ,l u
G , ~80!

whereB and B̄ are arbitraryk-independent nondegenerater l3r l matrices, give the same solito
matrix G(k). This invariance property is obvious from definitions~25! for projector matrices. Note
that the invariance transformations~79! and ~80! are the most general automorphisms of t
respective kernels~i.e., null spaces! of (Gx1

21
¯x l 21

21 )(k1) and (x l 21¯x1G21)( k̄1).
Now let us determine the total numberNfree of free complex parameters characterizing t

higher-order soliton solution. For a single pair of the higher-order zeros (k1 ,k̄1) in the case with
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no involution, it is given by the total numberNtot (52N( l 51
n r l12) of all complex constants in al

the linearly independent vectors in the above null spaces and the pair of zeros (k1 ,k̄1), minus the
total numberNinv (52( l 51

n r l
2) of the free parameters in the invariance matrices~79! and ~80!.

Thus, in the case with no involution, we have

Nfree[Ntot2Ninv52N(
l 51

n

r l1222(
l 51

n

r l
2 . ~81!

Note that the total number ofuv& or ^v̄u vectors in the product representation~27!, given by the
sum ( l 51

n r l , is equal to the algebraic order of the pair of zeros (k1 ,k̄1). In the case of the
involution ~4!, the numberNfree is reduced by half. When the soliton matrices have several p
of zeros as in the product representation~45!, the invariance property is similar, and the tot
number of free soliton parameters is given by the sum of the right-hand side~rhs! of formula ~81!
for all distinct pairs of zeros.

By analogy, the invariance properties for the summation representation~65! of the soliton
matrices are defined as preserving the form of the soliton matrices as well as the equ
defining theup& and^ p̄u vectors~63! and~64!. The equations defining the transformations betwe
different sets ofp vectors of the same invariance class must be linear, since all the setsp
vectors in the invariance class satisfy equations~63! and~64! for a fixedsoliton matrix—i.e., the
invariance transformations are a subset of transformations between solutions to a set oflinear
equations. Thus the most general form of the invariance is given by two linear transformati
one for up& vectors and one for̂p̄u vectors:

~ u p̃1
(1)&,...,u p̃s1

(1)&,...,u p̃1
(r 1)

&,...,u p̃sr 1

(r 1)
&)5~ up1

(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)B ~82!

and

S ^p! 1
(1)u
]

^p! s1

(1)u

]

^p! 1
(r 1)u
]

^p! sr 1

(r 1)u

D 5B̄S ^ p̄1
(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D . ~83!

Different from the product representation of the soliton matrices, the transformation matriB

andB̄ in Eqs.~82! and~83! cannot be arbitrary in order to keep the soliton matrices~65! and Eqs.
~63! and ~64! invariant. Let us call such matricesB and B̄ which keep the soliton matrices~65!
invariant as the invariance matrices. The form of invariance matrices can be determined
easily by considering the invariance of Eqs.~63! and ~64!.

Recall from Lemma 3 that allup& vectors in the soliton matrix~65! satisfy the equation

GBS up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 50, GB[S G1~k1! 0

�

0 Gr 1
~k r 1

!
D , ~84!
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where Gn(kn) is the lower-triangular Toeplitz matrix defined in Eq.~63!. The matrixB is an
invariance matrix if and only if the above equation is still satisfied when theup& vectors in Eq.
~84! are replaced by the transformed vectorsu p̃& in Eq. ~82!, and the resulting matricesK andK̄
are nondegenerate@see Eq.~65!#. Note that the transformation~82! can be rewritten in the fol-
lowing form:

S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D 5BTS up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D , ~85!

where the superscript ‘‘T’’ stands for the matrix transposition. Since the originalup& vectors can be
chosen arbitrarily~the matrixGB is determined subsequently from theseup& vectors as well as the
^ p̄u vectors!, in order for the aboveu p̃& vectors~85! to satisfy Eq.~84! as well, the necessary an
sufficient condition is thatGB andBT commute, i.e.,

GB•BT5BT
•GB , ~86!

andB is nondegenerate. The requirement for the nondegeneracy ofB is needed in order for the

resulting matricesK̃ andK! to be nondegenerate@see Eq.~96!#. Similarly, we can show that the
matrix B̄ in Eq. ~83! is an invariance matrix if and only ifḠB and B̄T commute,

ḠB•B̄T5B̄T
•ḠB , ~87!

and B̄ is nondegenerate. Here the block-diagonal matrixḠB is

ḠB[S Ḡ1~k1! 0

�

0 Ḡr 1
~k r 1

!
D , ~88!

and upper-triangular Toeplitz matricesḠn(kn) have been defined in Eq.~64!. Note that matrices
GB andḠB have exactly the same forms asD̄(k) andD(k), respectively. Thus invariance matrice
BT and B̄T commute withD̄(k) andD(k) as well:

D̄~k!•BT5BT
•D̄~k!, D~k!•B̄T5B̄T

•D~k!. ~89!

In addition, sinceD T has the same form asD̄, invariance matricesB andB̄ also commute withD
andD̄:

B•D~k!5D~k!•B, B̄•D̄~k!5D̄~k!•B̄. ~90!

The form of these invariance matrices are easy to determine. First of all, the commuta
relations~90! demand that the invariance matrixB has a block-diagonal form with each bloc
corresponding to a pair of zeros:
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B5S B1

B2

�

BNZ

D . ~91!

HereBn is a square matrix associated with thenth pair of zeros (kn ,k̄n). The form of each matrix
Bn is readily found to be

Bn5S Bn
(1,1) ... B

n

(1,r 1
(n))

] ]

B
n

(r 1
(n),1) ... B

n

(r 1
(n) ,r 1

(n))
D , ~92!

whereBn
(n,m) is a sn

(n)3sm
(n) matrix of the following type:

Bn
(n,m)5S 0 . . . 0 b1 b2 . . . bs

n
(n)21 bs

n
(n)

0 � � 0 b1 b2 �
bs

n
(n)21

] � � � � � � ]

0 � � � � 0 b1 b2

0 . . . . . . . . . . . . . . . 0 b1

D , n>m, ~93a!

Bn
(n,m)51

c1 c2 . . . cs
m
(n)21 cs

m
(n)

0 c1 c2 �
cs

m
(n)21

] 0 � � ]

] � � � c2

] � � 0 c1

] � � � 0

] � � � ]

0 . . . . . . . . . 0

2 , n<m, ~93b!

s1
(n)>s2

(n)> . . . >sr
1
(n)

(n)
is the block sequence of zeros (kn ,k̄n) as in Lemma 2~see Definition 2!,

andbj ,cj are arbitrary complex constants which are generally different in different submat
Bn

(n,m) . The invariance matrixB̄ has the form ofBT ~in general, with arbitrary elements unrelate
to those ofB).

The above forms~92! and~93! of the invariance matricesBn andB̄n follow immediately from
the following argument. Consider, for instance, the matrixBn . The commutability relation with
the part of the matrix D(k) corresponding to thenth pair of zeros, i.e.,D (n)(k)
5diag@D1

(n)(k), . . . ,Dr
1
(n)

(n)
(k)# where matricesDn

(n)(k) are given by Eq.~48!, produces the following

set of independent matrix equations:

Dn
(n)~k!Bn

(n,m)5Bn
(n,m)Dm

(n)~k!, n,m51, . . . ,r 1
(n) . ~94!

For n5m, the above equations are equivalent to the commutability conditions for the s
elementary higher-order zero considered in Ref. 22, thus the form~93! for the diagonal blocks
Bn

(n,n) follows accordingly. Consider now the case whenn.m ~the other case can be consider
similarly!. We have thensn

(n)<sm
(n) , thus the square matrixDm

(n)(k) contains the matrixDn
(n)(k) in
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its lower right corner@consult the definition~48!#. It is easy to conclude, first of all, that the firs
m2n columns of the matrixBn

(n,m) are identically zero, otherwise on the rhs of Eq.~94! we would
have higher powers of (k2kn)21 than the highest power of this quantity on the left-hand s
~lhs!. Then if we denote the nonzero part ofBn

(n,m) as B̂n
(n) , the condition~94! becomes

Dn
(n)~k!B̂n

(n)5B̂n
(n)Dn

(n)~k!,

which is equivalent to the one considered above in the case ofm5n. Thus the form~93a! for the
off-diagonal blocks of the invariance matrixBn

(n,m) follows as well. Q.E.D.
From the above explicit expressions~91!–~93! for invariance matrices in the summatio

representation~65!, it is easy to see that the total numberNinv of free complex constants in thes
invariance matrices coincides with that in the product representation~27! and~45! @see Eq.~81!#.
Indeed consider for simplicity just a single pair of zeros. In the case with no involution~4!, the
total numberNinv of free complex constants in the invariance matrices~91!–~93! is

Ninv52(
n51

r 1

~2r 122n11!sr 12n11

52 (
m51

r 1

~2m21!sm

52S n (
m51

r n

~2m21!1~n21! (
m5r n11

r n21

~2m21!1¯1 (
m5r 211

r 1

~2m21!D 52(
l 51

n

r l
2 ,

~95!

which is exactly the same as that in Eq.~81! for Ninv . Here we have used the fact that the numb
of blocks with sizes@1,2,3,. . . ,n# are given by the differences of the ranks@r 12r 2 ,r 2

2r 3 , . . . ,r n212r n ,r n# ~see the end of the proof of Lemma 1 in Sec. III B!.
This result is not surprising since the invariance properties of the soliton matrices i

summation representation originate from the invariance properties in the product represen
that is why the respective invariance matrices have the same total number of free para
Consequently, the total number of free complex parameters in the summation representati~65!
is the same as in the product representation, as expected. In the case with no involution for a
pair of zeros it is given by the same Eq.~81!.

Invariance matrices have many important properties. These include~i! the identity matrixI is
an invariance matrix;~ii ! if B is an invariance matrix, so iscB, wherec is any nonzero complex
constant;~iii ! if B is an invariance matrix, so isB21; ~iv! if B1 and B2 are two invariance
matrices, so areB16B2 andB1•B2 . In the former case,B16B2 should be nondegenerate.

Last, we note that if matricesB and B̄ satisfy the commutability relations~90!, the transfor-
mations~82! and~83! indeed keep the soliton matrices~65! invariant. The proof uses the fact tha
under the transformation~82! whereB is an invariance matrix~the ^ p̄u vectors are held fixed!,

matricesK andK̄ are transformed to

K̃5KB, K! 5K̄B ~96!

respectively. Similarly, under the transformation~83! while keeping theup& vectors fixed, matrices

K andK̄ are transformed to

K̃5B̄K, K! 5B̄ K̄. ~97!
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For a single pair of elementary higher-order zeros these facts have been proved in Ref. 2
proof for the present general case is given below. Since the proofs for Eqs.~96! and ~97! are
similar, we only consider Eq.~96!.

To prove the transformation~96!, we need to recall how matricesK andK̄ are obtained. The

matrix K̄ is derived from Eq.~84!. Comparing this equation with~70!, we find that

~GB2I !S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 5K̄TS uq̄s1

(1)&

]

uq̄1
(1)&
]

uq̄sr 1

(r 1)
&

]

uq̄1
(r 1)

&

D .

Now using the form~85! of the transformation~82! and recalling thatBT andGB2I commute, we

readily find that (K! )T5BTK̄T, thusK! 5K̄B. As about the matrixK, it is derived from the equation

~^ p̄1
(1)u, . . . ,̂ p̄s1

(1)u, . . . ,̂ p̄1
(r 1)u, . . . ,̂ p̄sr 1

(r 1)u!ḠB50,

whereḠB is given by Eqs.~63! and ~88!. Recall thatG21(k) is given by Eq.~59!, i.e.,

G21~k!5I 1~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)D~k!S ^qs1

(1)u

]

^q1
(1)u
]

^qsr 1

(r 1)u

]

^q1
(r 1)u

D .

Thus, using the transformation~82! and noting thatB andD commute@see Eq.~90!#, we readily

find thatK̃5KB, i.e., the equation~96! holds.
Because of Eq.~96! and the commutability relation~90!, we see that soliton matricesG(k)

andG21(k) in Eq. ~65! indeed remain invariant under the transformation~82!. Analogously, these
soliton matrices are also invariant under the transformation~83! if matrix B̄ is an invariance
matrix. In the case of involution~4!, transformations~82! and ~83! need to be performed simul
taneously sinceup& and^ p̄u vectors are related by the Hermitian operation. Under these comb

transformations, matrixK transforms toK̃5B̄KB, thus soliton matrices~65! remain invariant as
well.

The invariance matrices can be used to reduce the number of the free parameters in the
solution to the minimum, which is given by the formula~81!. They are also used to reduce th
(x,t) dependence of the soliton matrices to the simplest possible form~see the next section!.

F. Spatial and temporal evolutions of soliton matrices

Finally, we derive the (x,t) dependence of the free vector parameters which enter the so
matrix ~65!. The idea is similar to the one used in the derivation of Eqs.~20! in Sec. II. Our
starting point is the fact that the soliton matrixG(k,x,t) satisfies Eqs.~5! and~6! with potentials
U(k,x,t) andV(k,x,t):
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]xG~k,x,t !5G~k,x,t !L~k!1U~k,x,t !G~k,x,t !, ~98a!

] tG~k,x,t !5G~k,x,t !V~k!1V~k,x,t !G~k,x,t !. ~98b!

First we need to find the equations for the triangular block–Toeplitz matricesGn andḠn . To this
goal one needs to differentiate Eqs.~98! with respect tok up to the (sn21)th order. It is easy to
check that the equations forGn have the same form as Eqs.~98!,

]xGn~k,x,t !5Gn~k,x,t !Ln~k!1Un~k,x,t !Gn~k,x,t !, ~99a!

] tGn~k,x,t !5Gn~k,x,t !Vn~k!1Vn~k,x,t !Gn~k,x,t !. ~99b!

HereLn , Vn , Un , andVn are lower-triangular block–Toeplitz matrices,

Ln[S L 0 ... 0

1

1!

d

dk
L � � ]

] � L 0

1

~sn21!!

dsn21

dksn21 L ...
1

1!

d

dk
L L

D ,

~100!

Vn[S V 0 ... 0

1

1!

d

dk
V � � ]

] � V 0

1

~sn21!!

dsn21

dksn21 V ...
1

1!

d

dk
V V

D ,

Un[S U 0 ... 0

1

1!

d

dk
U � � ]

] � U 0

1

~sn21!!

dsn21

dksn21 U ...
1

1!

d

dk
U U

D ,

~101!

Vn[S V 0 ... 0

1

1!

d

dk
V � � ]

] � V 0

1

~sn21!!

dsn21

dksn21 V ...
1

1!

d

dk
V V

D .

Indeed, this is due to the fact that the matrix multiplication in~99! exactly reproduces the Leibni
rule for higher-order derivatives of a product. Similarly, using the equations forG21,

]xG
21~k,x,t !52L~k!G21~k,x,t !2G21~k,x,t !U~k,x,t !, ~102a!

] tG
21~k,x,t !52V~k!G21~k,x,t !2G21~k,x,t !V~k,x,t !, ~102b!
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one finds that

]xḠn~k,x,t !52L̄n~k!Ḡn~k,x,t !2Ḡn~k,x,t !Ūn~k,x,t !, ~103a!

] tḠn~k,x,t !52V̄n~k!Ḡn~k,x,t !2Ḡn~k,x,t !V̄n~k,x,t !, ~103b!

whereL̄n , V̄n , Ūn , andV̄n are upper-triangular block–Toeplitz matrices:

L̄n5S L
1

1!

d

dk
L ...

1

~sn21!!

dsn21

dksn21 L

0 L � ]

] � �

1

1!

d

dk
L

0 ... 0 L

D ,

~104!

V̄n5S V
1

1!

d

dk
V ...

1

~sn21!!

dsn21

dksn21 V

0 V � ]

] � �

1

1!

d

dk
V

0 ... 0 V

D ,

Ūn5S U
1

1!

d

dk
U ...

1

~sn21!!

dsn21

dksn21 U

0 U � ]

] � �

1

1!

d

dk
U

0 ... 0 U

D ,

~105!

V̄n5S V
1

1!

d

dk
V ...

1

~sn21!!

dsn21

dksn21 V

0 V � ]

] � �

1

1!

d

dk
V

0 ... 0 V

D .

To obtain the (x,t) dependence of thep vectors, let us differentiate Eqs.~63! and ~64!. Utilizing
Eqs.~100! and ~103!, we find that

Gn~kn!H @]x1Ln~kn!#S up1
(n)&
]

upsn

(n)&
D J 50 ~106!

and
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Gn~kn!H @] t1Vn~kn!#S up1
(n)&
]

upsn

(n)&
D J 50. ~107!

Due to the invariance properties~the explanation will follow below!, we can set the quantitie
inside the curly brackets of Eqs.~106! and ~107! to be zero without any loss of generality:

@]x1Ln~kn!#S up1
(n)&
]

upsn

(n)&
D 50, @] t1Vn~kn!#S up1

(n)&
]

upsn

(n)&
D 50. ~108!

The reason for it is the uniqueness of solution to the Riemann–Hilbert problem for a given
the spectral data. Thus, the (x,t) dependence of theup& vectors is

S up1
(n)&
]

upsn

(n)&
D 5exp$2Ln~kn!x2Vn~kn!t%S up01

(n)&
]

up0sn

(n) &
D . ~109!

By similar arguments, the (x,t) dependence of thêp̄u vectors is given as

~^ p̄1
(n)u,... ,̂ p̄sn

(n)u!5~^ p̄01
(n)u,... ,̂ p̄0sn

(n) u!exp$L̄n~ k̄n!x1V̄n~ k̄n!t%. ~110!

Here the subscript ‘‘0’’ is used to denote constant vectors. The exponential functions in the
two equations can be readily determined. Indeed, by using the property that the opera
raising a diagonal matrix@such asL(k)x1V(k)t here# to the exponent commutes with th
construction of the related triangular block–Toeplitz matrix~see appendix in Ref. 22!, we find that

exp$2Ln~kn!x2Vn~kn!t%5S E~k1! 0 ... 0

1

1!

d

dk
E~k1! � � ]

] � E~k1! 0

1

~sn21!!

dsn21

dksn21 E~k1! ...
1

1!

d

dk
E~k1! E~k1!

D
~111a!

and

exp$L̄n~ k̄n!x1V̄n~ k̄n!t%5S E21~ k̄1!
1

1!

d

dk
E21~ k̄1! ...

1

~sn21!!

dsn21

dksn21 E21~ k̄1!

0 E21~ k̄1! � ]

] � �

1

1!

d

dk
E21~ k̄1!

0 ... 0 E21~ k̄1!

D ,

~111b!

whereE(k)[exp$2L(k)x2V(k)t%.
Given the spatial and temporal evolutions of vectorsup& and^ p̄u, as in Eqs.~109!–~111!, the

associated soliton matrices~65! can be constructed. Eventually, the soliton solutions are der
from Eq.~5! by taking the limitk→`. The soliton solutions for the three-wave interaction mo
are given by Eqs.~12! and ~13!. The corresponding eigenfunctions of theN-dimensional
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Zakharov–Shabat spectral problem with these soliton~reflectionless! potentials are then simply
the column vectors of the soliton matricesG(k) andG21(k) given by~65! with k either equal to
one of the zeros (kj , k̄ j ) ~the eigenfunctions of the discrete spectrum! or taking values on the rea
axis ~the eigenfunctions of the continuous spectrum!.

Last, let us show that other solutions to Eqs.~106! and ~107!, different from those given by
Eq. ~108!, will give the same soliton matrices. Notice that Eqs.~106! for all n blocks can be
written in the following compact form:

GB~]x1VB!S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 50, VB[S V1~k1! 0

�

0 Vr 1
~k r 1

!
D . ~112!

According to the invariance properties discussed in the Sec. III E, any two vectors in the ker
matrix GB are linearly dependent. Thus the most generalup& solutions to Eq.~106! are such that

~]x1VB!S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D 5BT~x,t !S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D , ~113!

whereB is an invariance matrix which depends onx andt in general@see Eq.~85!#. To show that
theseu p̃& vectors give the same soliton matrices~65! as theup& vectors from Eq.~108!, we define
a matrix functionG(x,t) which satisfies the following differential equation and initial conditio

]xG~x,t !5BT~x,t !G~x,t !, Gux505I .

Because the matrixB here is an invariance matrix andG(x50)5I , obviously the functionG(x,t)
is an invariance matrix as well~note thatG is always nondegenerate by construction!. In addition,
G21 is also an invariance matrix. Now for any solutionu p̃& of Eq. ~112!, we define new vectors
up& as

S up1
(1)&
]

ups1

(1)&

]

up1
(r 1)

&
]

upsr 1

(r 1)
&

D 5G21S u p̃1
(1)&
]

u p̃s1

(1)&

]

u p̃1
(r 1)

&
]

u p̃sr 1

(r 1)
&

D .

Then theseup& vectors satisfy the first equation in~108!. This can be checked directly by subs
tuting the above equation into~108! and noting that matricesG andVB commute by virtue of Eq.
~86! and the fact that matricesVB andGB have identical form. SinceG21 is an invariance matrix,
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the up& andu p̃& vectors, related as above, naturally give the same soliton matrices~65!. Thus there
is no loss of generality in picking the particular solutions of Eq.~106! given by Eqs.~108!.

IV. APPLICATIONS TO THE THREE-WAVE INTERACTION SYSTEM

To illustrate the above general results, we apply them to the three-wave interaction mod~14!
and display various higher-order soliton solutions. In this case, the involution property~4! holds,
thus all zeros are normal and appear in complex conjugate pairs. The soliton matrixG(k) is given
by Eq. ~65a!, where^ p̄u5up&†, and the (x,t) evolution of up& vectors is given by Eqs.~109! and
~111a!. The general higher-order soliton solutions of the three-wave system are then given
~13!, where

F (1)5G (1)52~ up1
(1)&,...,ups1

(1)&,...,up1
(r 1)

&,...,upsr 1

(r 1)
&)K̄21S ^ p̄1

(1)u
]

^ p̄s1

(1)u

]

^ p̄1
(r 1)u
]

^ p̄sr 1

(r 1)u

D , ~114!

and matrixK̄ is given in Eq.~67!. In all our solutions, we fix the parameters in the dispersion la
~11! as (a1 ,a2 ,a3)5(1,0.5,20.5) and (b1 ,b2 ,b3)5(1,1.5,0.5).

A. Soliton solutions for a single pair of nonelementary zeros

First, we derive soliton solutions corresponding to a single pair of nonelementary zer
particular, we consider the rank sequence$1, 2% of a pair of zeros (k1 ,k̄1). In this case,r 152 and
r 251. Using formula~81! ~for the case of involution! we get the number of free complex param
eters in the soliton solution:

Nfree53~211!112~411!5102555.

There are threeup& vectors,up1
(1)&, up2

(1)&, andup1
(2)& in Eq. ~114!. Whenk1 and the initial values

@ up01
(1)&,up02

(1)&,up01
(2)&] of these vectors are provided, the soliton solutions~13! will then be com-

pletely determined.
In the present case, the block sequence reads$s1 ,s2%5$2,1%, the corresponding invarianc

matrix B can be readily obtained from the general formula~91! as

B5S b11 b12 b13

0 b11 0

0 b32 b33

D ,

which indeed has five free complex parameters@see Eq.~95!#. The invariance matrixB̄ is just the
Hermitian conjugate of theB matrix.

To display these soliton solutions, we choosek1511 i , up02
(1)&5@21,i ,12 i #T, up01

(2)&
5@1,0.5,21#T. Whenup01

(1)&5@1,11 i ,0.5#T ~the generic case!, the solutions are plotted in the to
row of Fig. 1. In the two nongeneric cases~where some elements of theup& vectors vanish!,
up01

(1)&5@0,11 i ,0.5#T andup01
(1)&5@1,0,0.5#T, the solutions are plotted in the second and third ro

of Fig. 1, respectively. We see that in the generic case, three sech waves in the three com
interact and then separate into the same sech waves with their positions shifted. In other
this is a u1(sech)1u2(sech)1u3(sech)→u1(sech)1u2(sech)1u3(sech) process. What happens
that the initial pumping (u3) wave breaks up into two sech waves in the other two componentsu1

andu2), while simultaneously the two initialu1 andu2 waves combine into a pumping sech wav
                                                                                                                



he
sech

ases,

three-
6 and

ix:

der
a

4634 J. Math. Phys., Vol. 44, No. 10, October 2003 V. S. Shchesnovich and J. Yang

                    
Thus this process is a combination of two subprocesses:u3→u11u2 and u11u2→u3 . This
phenomenon seems related to the rank sequence$1, 2% of the present solitons and the fact that, t
rank sequence$1% itself describes the breakup of a pumping sech wave into two nonpumping
waves, while the rank sequence$2% itself describes the reserve process. In the nongeneric c
these solutions can describe theu1(sech)1u2(second order)→u2(sech)1u3(sech) process, the
u1(sech)1u2(sech)1u3(sech)→u3(second order) process~see Fig. 1, second and third rows!, and
many others. In the solutions of Fig. 1, theaj and bj parameters are such thatu2,u3,u1 . If
u1,u3,u2 , the processes will be exactly the opposite~see Ref. 22!. Thus our solutions can
describe the processes reverse to those of Fig. 1 as well.

B. Soliton solutions for two pairs of simple zeros

Here we derive the soliton solutions corresponding to two pairs of simple zeros in the
wave system~14!. Some solutions belonging to this category have been presented in Refs. 2
27. But we will show that those solutions are only special~nongeneric! solutions for two pairs of
simple zeros. Below, the more general solutions for this case will be presented.

In this case,r 1
(1)5r 1

(2)51. By using formula~81!, for the case of involution~4!, for two pairs
of zeros, we readily obtain that the number of free complex parameters in the solution is s

Nfree52~3311121!56.

Indeed, there are twoup& vectors in Eq.~114!. Together with the two zerosk1 andk2 , there are
eight complex parameters in the soliton solutions. However, the 232 invariance matrixB in this
case is diagonal and has two free~diagonal! complex parameters.

Three solutions, withk1511 i , k252110.5i and three different sets ofup01
(1)& and up01

(2)&
vectors, are displayed in Fig. 2. In the generic case whereup01

(1)&5@1,11 i ,0.5#T and up01
(2)&

5@1,0.5,21#T ~see top row of Fig. 2!, the solution describes the breakup of a higher-or
pumping (u3) wave into two higher-orderu1 andu2 waves. This is analogous to solutions for
single pair of elementary zeros with algebraic multiplicity 2~see Ref. 22!. In the nongeneric case

FIG. 1. Soliton solutions in the three-wave system~14! corresponding to a single pair of zeros with rank sequence$1, 2%
at time t5215, 0, and 15. Here,k1511 i , up02

(1)&5@21,i ,12 i #T, up01
(2)&5@1,0.5,21#T. First row, up01

(1)&5@1,11 i ,0.5#T;
second row,up01

(1)&5@0,11 i ,0.5#T; third row, up01
(1)&5@1,0,0.5#T.
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whereup01
(1)&5@0,11 i ,0.5#T andup01

(2)&5@1,0.5,21#T ~second row in Fig. 2!, the present solutions
can describe theu2(sech)1u3(sech)→u1(sech)1u2(second order) process. This process has b
seen in Ref. 22 for elementary zeros as well. More interestingly, in the nongeneric case
p01

(1)@1#5p01
(2)@3#50, these solutions describe the elastic interaction of a sechu1 wave with a

sechu2 wave ~see bottom row of Fig. 2!. These are precisely the soliton solutions presente
Refs. 26 and 27. We see that these solutions are simply nongeneric solutions for two p
simple zeros.

C. Soliton solutions for two pairs of higher-order zeros

Last, we consider two pairs of distinct zeros, one simple and the other one elementary w
algebraic multiplicity 2. Let us sayk1 is the elementary zero, andk2 is the simple zero. Then the
rank sequence fork1 is $1, 1%, and the rank sequence fork2 is $1%. Thus,r 1

(1)51, r 2
(1)51, and

r 1
(2)51. By formula~81!, we have

Nfree53~111!112~111!1331112158.

Indeed, in this cases1
(1)52 ands1

(2)51, hence there are 11 complex parameters in the sol
solutions~nine in the threeup& vectors, plus the two zerosk1 andk2). The invariance matrixB can
be found from the general formula~91! as

B5S b11 b12 0

0 b11 0

0 0 b33

D ,

which has three free complex parameters. ThusNfree5112358 as calculated above.
Three solutions, withk1511 i , k252110.5i , up02

(1)&5@21,i ,12 i #T, and three different
sets ofup01

(1)& and up01
(2)& vectors, are displayed in Fig. 3. In the generic case~first row in Fig. 3!,

FIG. 2. Soliton solutions in the three-wave system~14! corresponding to two pairs of simple zeros at timet5215, 0, and
15. Here, k1511 i , k252110.5i . First row, up01

(1)&5@1,11 i ,0.5#T, up01
(2)&5@1,0.5,21#T; second row,up01

(1)&5@0,1
1 i ,0.5#T, up01

(2)&5@1,0.5,21#T; third row, up01
(1)&5@0,11 i ,0.5#T, up01

(2)&5@1,0.5,0#T.
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this solution describes the breakup of a higher-order pumping wave (u3) into the otheru1 andu2

components~both higher order!. In nongeneric cases, it can describe processes such asu2(sech)
1u3(higher order)→u1(higher order)1u2(higher order) ~second row of Fig. 3!, u1(sech)
1u2(sech)1u3(sech)→u1(higher order)1u2(higher order)~last row of Fig. 3!, and many others
The reverse processes of Fig. 3 can also be described by choosingaj and bj values such that
u1,u3,u2 instead ofu2,u3,u1 in Fig. 3.

V. CONCLUSION AND DISCUSSION

We have proposed a unified and systematic approach to study the higher-order solito
tions of nonlinear PDEs integrable by theN3N-dimensional Riemann–Hilbert problem. We ha
derived the complete solution to the Riemann–Hilbert problem with an arbitrary numb
higher-order zeros, and characterized the discrete spectral data. Therefore, we have obta
most general form of the higher-order multisoliton solutions to nonlinear PDEs integrable th
the N3N-dimensional Riemann–Hilbert problem. In other words, the most general reflectio
~soliton! potentials in theN-dimensional Zakharov–Shabat operators have been derived.
eigenfunctions associated with these reflectionless potentials are readily available from our
matrices. We have applied these general results to the three-wave interaction system, a
higher-order soliton and two-soliton solutions have been presented. These solutions reve
processes such asu11u21u3↔u11u21u3 . They also reproduce previously known solito
from Refs. 2, 22, 26, and 27 as special cases. Our results can be applied to derive highe
multisolitons in the NLS equation and the Manakov equations as well, but this is not pursu
this paper.

The results obtained in this paper are significant from both physical and mathematical
of view. Physically, our results completely characterized higher-order solitons and multisolito
important physical systems such as the three-wave interaction equation, the NLS equation
Manakov equations. These higher-order solitons can describe new physical processes

FIG. 3. Soliton solutions in the three-wave system~14! corresponding to two pairs of zeros—one elementary w
algebraic multiplicity 2, and the other one simple. Here,k1511 i ~elementary zero!, k252110.5i ~simple zero!, and
up02

(1)&5@21,i ,12 i #T. First row, up01
(1)&5@1,11 i ,0.5#T, up01

(2)&5@1,0.5,21#T; second row,up01
(1)&5@0,11 i ,0.5#T, up01

(2)&
5@1,0.5,21#T; third row, up01

(1)&5@0,11 i ,0.5#T, up01
(2)&5@1,0.5,0#T.
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those displayed in Figs. 1–3. If these integrable equations are perturbed~which is inevitable in a
real-world problem!, our higher-order solitons then become the starting point for the develop
of a soliton-perturbation theory which could determine what happens to these higher-order s
under external or internal perturbations.34,35 From the mathematical point of view, our resul
completely characterized the discrete spectral data of higher-order zeros in a g
N-dimensional Riemann–Hilbert problem. These results will be useful for many purposes s
proving the completeness of eigenfunctions in aN-dimensional Zakharov–Shabat spectral pro
lem with arbitrary localized potentials. The difficulty of such a proof is caused by higher-o
zeros. Hopefully, with our results at hand, this difficulty can be removed.

From a broader perspective, our results are closely related to many other physical and
ematical problems. For instance, the lump solutions in the Kadomtsev–Petviashvili equati
given by the higher-order poles of the time-dependent Schro¨dinger equation. In Refs. 20 and 2
lump solutions corresponding to certain special higher-order poles were derived, but the
general lump solutions still remain an open question. Note that the time-dependent Schro¨dinger
equation is an infinite-dimensional system compared to our presentN-dimensional Riemann–
Hilbert system. But the ideas used in this paper might be generalizable to the time-dep
Schrödinger equation as well. This remains to be seen.
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APPENDIX: GENERAL RIEMANN–HILBERT PROBLEM WITH ABNORMAL ZEROS

Here we show that our soliton matrices of Sec. III can be generalized to the case of Riem
Hilbert problem with abnormal zeros. However, due to the lack of important applications, we
show only a simple example, which corresponds to a pair of zeros with different geom
multiplicities but the same algebraic multiplicity. Then we comment on the general case of s
nonpaired zeros.

Let us use the simplest example to show the idea behind generalization of our results
general Riemann–Hilbert problem with abnormal zeros. Consider one pair of zeros (k1 ,k̄1) which
have the same algebraic multiplicity 2 but different geometric multiplicities, which here will b
and 2, respectively. The corresponding soliton matrices are given as follows:

G~k!5I 1
~ k̄12k1!~ uv1&^v̄1u1uv2&^v̄2u!

k2 k̄1

, ~A1!

G21~k!5S I 1
~k12 k̄1!uv1&^v̄1u

k2k1
D S I 1

~k12 k̄1!uv2&^v̄2u
k2k1

D , ~A2!

with the conditions that̂v̄ j uv j&51, ^v̄2uv1&50, and^v̄1uv2&Þ0. To verify that the above matrice
are indeed inverse to each other it is enough to rewrite the matrixG(k) in the form

G~k!5S I 1
~ k̄12k1!uv2&^v̄2u

k2 k̄1

D S I 1
~ k̄12k1!uv1&^v̄1u

k2 k̄1

D ~A3!
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and take into account thatPj[uv j&^v̄ j u is a projector. Equations~A2! and ~A3! are in fact the
product representations of the form~27!. Now let us show that there are exactly two solutions

^ p̄uG21( k̄1)50. Indeed, the corresponding null vectors are as follows:

^ p̄1u5^v̄1u, ^ p̄2u5^v̄2u. ~A4!

This is due to the fact thatG21( k̄1)5(I 2P1)(I 2P2). But, on the other hand, there is just on
solution to G(k1)up&50: up1&5uv1&. Suppose that there is another solutionup2& to G(k1)up&
50 linearly independent fromup1&. We have then using formula~A1! for G(k1),

up2&5uv1&^v̄1up2&1uv2&^v̄2up2&. ~A5!

Thus up2&5auv1&1buv2&. Using this in formula~A5! we get, due tô v̄2uv1&50 and ^v̄1uv2&
Þ0,

auv1&^v̄1uv2&50,

which is a contradiction, sinceaÞ0.
The soliton matrices given by formulas~A1!–~A2! have the following form in the standar

notations of Lemma 1 of Sec. III:

G~k!5I 1
uq̄1&^ p̄2u1uq̄2&^ p̄1u

k2 k̄1

, ~A6!

G21~k!5I 1
up1&^q2u1up2&^q1u

k2k1
1

up1^q1u
~k2k1!2 , ~A7!

where

uq̄1&5( k̄12k1)uv2&, uq̄2&5( k̄12k1)uv1&, ^q1u5~k12 k̄1!2^v̄1uv2&^v̄2u,

^q2u5~k12 k̄1!^v̄1u, up2&5
uv2&

~k12 k̄1!^v̄1uv2&
.

Notice thatG(k) has two blocks of size 1, whileG21(k) has one block of size 2.
In general, for one pair of zeros with different geometric multiplicities, the soliton matr

have the structure of Lemma 1 but with different numbers of blocks inG(k) andG21(k), while
the total number of theup& and^ p̄u vectors appearing in these matrices is the same and equa
the order of the pair of zeros. One can proceed to derive the representations similar to th
Lemma 4 for this case. Evidently, due to the way of the derivation, the formulas will be sim
with the only difference in the number of blocks and block sizes inG(k) andG21(k).

In the more general case of the Riemann–Hilbert problem with abnormal zeros, the zer
be nonpaired~for instance, zero of order 2 inC1 and two simple zeros inC2). Formally, this case
can be obtained by ‘‘splitting’’ some of the paired zeros into several distinct zeros in the so
matricesG(k) and G21(k) discussed above, since this limit is obviously regular@the geometric
multiplicity of the zero to be split should be at least equal to the number of the new z
generated in this way, thus providing for the needed number of blocks; formula~A6!, for instance,
allows splitting of the zerok5 k̄1 of G21(k) into two simple zeros#. Thus, the most general cas
can be handled starting from the case of just one pair of zeros, i.e., the case discussed abo
explicit expressions for the soliton matricesG(k) and G21(k) will involve similar relations be-
tween the numbers of zeros, their geometric multiplicities and the numbers and sizes ofn
blocks of vectors as those in Lemma 1, though, obviously, with different particular numbe
each of the two matrices.
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Isomonodromy deformations for the ZS-AKNS system
with quadratic spectral variables

Derchyi Wua)

Institute of Mathematics, Academia Sinica, Taipei, Taiwan

~Received 23 April 2003; accepted 13 May 2003!

We solve the monodromy problem and prove the Painleve property for self-similar
ZS-AKNS flows with a quadratic spectral variable in this report. In particular, we
obtain meromorphic solutions for the Cauchy problem of the self-similar derivative
nonlinear Schro¨dinger equation. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1603959#

I. INTRODUCTION

The six Painleve transcendents PI-PVI, were introduced by Painleve@Clarkson~1990!# and
Gambier~1910! at the beginning of the 20th century from strictly mathematical considera
They found second order ordinary differential equations of certain general type can eith
integrated in terms of known functions or can be reduced to one of the six Painleve equ
Now Painleve transcendents have appeared in a wide range of physical applications@Fokaset al.
~1988!; Ablowitz and Clarkson~1991!#.

One of the most important developments in Painleve theory is the discovery that Pa
equations are the compatibility conditions~or isomonodromy conditions! of suitable overdeter-
mined linear systems with regular or irregular singular points@Fuchs ~1907!, Garnier ~1912!,
Schlesinger~1912!, Flaschka and Newell~1980!, Jimboet al. ~1981a!, Jimbo and Miwa~1981,
1982!#. Therefore the Cauchy problem of a given Painleve equation can be formulated as s
the inverse monodromy problem of the associated overdetermined system. Besides, a clo
nection between Painleve equations and integrable systems was discovered by Ablowitz~1977!,
Ablowitz et al. ~1980!, Fokaset al. ~1982,1988,1992!, Olver, etc. They found similarity reduction
of integrable systems give rise to Painleve transcendents.

In particular, Beals and Sattinger~1993! derived the overdetermined linear systems for
self-similar solutions of the ZS-AKNS~with linear spectral variables! and Gelfand–Dikii flows
and studied the associated inverse monodromy problems. More precisely, the correspondin
determined linear systems concerned are

]C

]x
5@zJ1q1~x!#C,

~1.1!

z
]C

]z
5(

j 50

n

zjAj8~x!C,

and

]C

]x
5@Jz1q2~x!#C,

~1.2!

z
]C

]z
5A8~x,z!C,

a!Electronic mail: mawudc@math.sinica.edu.tw
46400022-2488/2003/44(10)/4640/12/$20.00 © 2003 American Institute of Physics
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wherexPR, zPC, Jz andA(x,z) are a matrix and certain polynomial inzn. ~There are recursive
formulas betweenq1 and Aj8 , q2 and A8. See Beals and Sattinger~1993!.! They gave a more
transparent and simpler treatment for the monodromy problem of some general isomono
equations, including PainleveP, self-similar solutions of Korteweg-de Vries~KdV!, modified
KdV, nonlinear Schro¨dinger, and Boussinesq equations.

Under the framework of their results, we solve the monodromy problem forself-similar
ZS-AKNS flows with quadratic spectral variablesin this report. That is, instead of~1.1!, we
consider the linear system

]C

]x
5@z2J1zq~x!1p~x!#C,

~1.3!

z
]C

]z
5(

j 50

2n

zjAj~x!C,

with xPR, zPC. @The constraints satisfied byp, q, andAj will be explained in~2.1!, ~2.2! and
Theorem 1 of Sec. II.# In particular, meromorphic solutions for the Cauchy problem of the s
similar derivative nonlinear Schro¨dinger equation~DNLS! are obtained. We also characteriz
rational solutions of the isomonodromy deformation in our case. More precisely, we prove
generically all rational solutions of~1.3! can be reduced to those of~1.1!.

The paper is organized as follows. In Sec. II we introduce the ZS-AKNS flows and
similar ZS-AKNS flows. Then we derive the overdetermined system for self-similar ZS-AK
flows. In Sec. III we study the associated direct monodromy problem. We will construct a
priate holomorphic eigenfunctions and study their relations. Our monodromic data are cons
from these relations. We also characterize the monodromic data and justify that self-simila
AKNS flows are isomonodromy deformations. In Sec. IV we study the inverse monodromy
lem by solving a Riemann–Hilbert problem and use the analytic and algebraic arguments
inverse scattering theory in Beals and Caifman~1984! to solve the Cauchy problem of the sel
similar ZS-AKNS flow equation. Section V is devoted to the characterization of the rat
solutions of the self-similar ZS-AKNS flow equations.

II. ZS-AKNS AND SELF-SIMILAR ZS-AKNS FLOWS

We define the ZS-AKNS-flows according to the work of Lee~1989!. First of all, let J be a
constant diagonal, traceless matrix with diagonal entriesl1 ,l2 ,...,ld . Let Q(x,t) be off-
diagonal, the diagonal part ofP(x,t) equal to that ofQ(adJ)21Q, andQ, P be smooth. Then a

formal eigenfunctionF(x,z)5M (x,z)exz2J5
def

( j 50
` f j (x)z2 j exz2J of the first formula in~1.3! ex-

ists. That isf 051, (]/]x2z2 adJ2zQ2P)( j 50
k f jz

2 j5O(z2k11), k51,2,... . Moreover, letm
be any constant diagonal traceless matrix with diagonal entriesm1 ,m2 ,...,md , then

MmM 21;m1
F1

z
1

F2

z2 1¯ . ~2.1!

It can be shown that the coefficientsFj5Fj ,J,m(x,t) are independent of the choice of form
solutionM and satisfy

F05m,

@J,F1#1@Q,m#50,
~2.18!

F ]

]x
2P,FkG2@J,Fk12#2@Q,Fk11#50, k50,1,2,...,
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m1
F1

z
1

F2

z2 1¯ has the same characteristic or minimal polynomial asm.

ThereforeF2 j 11 andF2 j 12 are traceless polynomials in] rQ/]xr , ]sP/]xs, for r, sP$0,1,...,j %.
Definition 1: For tPR, xPR, the ZS-AKNS flow is defined by the system of nth order pa

differential equations

]Q

]t
5@J,F2n11#,

]P

]t
5@J,F2n12#1@Q,F2n11#,

with Fj defined by (2.1).
As is well known, the ZS-AKNS flow has the Lax pair:

]F

]x
~x,z,t !5@z2J1zQ1P#F~x,z,t !,

~2.2!
]F

]t
~x,z,t !5@mz2n1F1z2n211¯1F2n#F~x,z,t !,

whereFj are defined by~2.1!.
Definition 2: The ZS-AKNS flow is self-similar if one of the following equivalent condition

fulfilled:
(1) There exist constantsa, b, such that the eigenfunctionF of the Lax pair~2.2! is invariant

under Tl,a,b for ;lPC;
(2) There exist constantsa, b, g such that for;lPC,

lgQ~lax,lbt !5Q~x,t !,

l2gP~lax,lbt !5P~x,t !,

where Tl,a,b is the scaling operator: Tl,a,b f (x,z,t)5 f (lax,lz,lbt).
Lemma 1: For the scaling operator of self-similar ZS-AKNS flows, the indices(a,b,g)

5(22,22n,21).
Proof:

]

]x
~Tl,a,bF!5laTl,a,b~@z2J1zQ~x,t !1P~x,t !#F!5la@l2z2J1lzQ~lax,lbt !

1P~lax,lbt !#Tl,a,bF5@z2J1zQ~x,t !1P~x,t !#F.

Thusa522 andg521. Similarly we obtainb522n by equating

]

]t
~Tl,a,bF!5lbTl,a,b

]F

]t
5lb@~lz!2nm1~lz!2n21F1~lax,lbt !1¯

1F2n~lax,lbt !#Tl,a,bF5@z2nm1z2n21F11¯1F2n#F. h

Using the scaling operator, we derive the overdetermined system for the self-simila
AKNS flow.

Theorem 1: The ZS-AKNS flow (2.2) is self-similar if and only if
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]C

]x
~x,z!5@z2J1zq~x!1p~x!#C~x,z!, ~2.3.1!

z
]C

]z
~x,z!5@2n~z2nm1z2n21F1~x!1¯1F2n~x!!12x~z2J1zq~x!1p~x!!#C~x,z!

5
def

(
j 50

2n

Aj~z!zjC~x,z!5
def

A~x,z!C~x,z!, ~2.3.2!

with

mmm215m1
F1

z
1

F2

z2 1¯ ,

and mexz2J is a formal solution of (2.3.1). Moreover

Q~x,1!5q~x!, P~x,1!5p~x!, Fj~x,1!5F j~x!, F~x,z,1!5C~x,z!.

Proof: Suppose (Q,P) is a self-similar ZS-AKNS flow. Then Definition 2 and Lemma
imply that

F~x,z,t !5F~l22x,lz,l22nt !. ~2.4!

So F is a function ofx, z only. Setl22nt51. Let

F~x,z,t !5F~ t21/nx,t1/2nz,1![C~ t21/nx,t1/2nz!.

Differentiating ~2.4! with respect tol at l51, we get

22x
]F

]x
1z

]F

]z
22nt

]F

]t
50. ~2.5!

Evaluating att51 and using the Lax pair~2.2!, we obtain~2.3.1! and ~2.3.2!. So the if part is
proved. To show the other direction, supposeC(x,z) satisfies~2.3.1! and ~2.3.2!. Let F(x,z,t)
5C(t21/nx,t1/2nz). Thus F(x,z,t)5F(l22x,lz,l22nt)5F(t21/nx,t1/2nz,1). Therefore we ob-
tain the Euler equation~2.4!. Combined with~2.3.1! and ~2.3.2! this induces

]F

]x
~x,z,t !5@z2J1zt21/2nq~ t21/nx!1t21/np~ t21/nx!#F~x,z,t !

5
def

@z2J1zQ~x,t !1P~x,t !#F~x,z,t !,

]F

]t
~x,z,t !5@z2nm1z2n21t21/2nF1~ t21/nx!1¯1t21F2n~ t21/nx!#F~x,z,t !

5
def

@z2nm1z2n21F1~x,t !1¯1F2n~x,t !#F~x,z,t !.

Note that bothMmM 21 and m1F1 /z1F2 /z21¯ are invariant underT22,22n,21 . Here
F(x,z,t)5M (x,z,t)exz2J5m(t21/nx,t1/2nz)exz2J is a formal solution of ]F/]x5@z2J1zQ
1P#F. In addition, (MmM 21)(x,1)5mmm215m1F1 /z1F2 /z21¯5m1@F1(x,1)#/z
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1@F2(x,1)#/z21¯ . So MmM 215m1F1 /z1F2 /z21¯ . Therefore (Q,P) is a self-similar
ZS-AKNS flow. h

Theorem 2: The self-similar ZS-AKNS flow satisfies the nonlinear ordinary differential sys

2n@J,F2n11#1~2xq!x2q50,
~2.6!

2n@J,F2n12#12n@q,F2n11#1~2xp!x50,

where Fj are defined as in Theorem 1.
Proof: The theorem can be proved by equating the compatibility condition of~2.3.1! and

~2.3.2! and using the recursive formula~2.18! andF j (x)5Fj (x,1). h

Example 1:The derivative nonlinear Schro¨dinger equation~DNLS!,

ut5 iuxx6~ uuu2u!x ,

was first derived by plasma physicists@Mio et al. ~1976!, Mjothus ~1976!#. Kaup and Newell
obtained the soliton solutions of DNLS in Kaup and Newell~1978!, Lee~1989! solved the Cauchy
problem of DNLS by studying the associated scattering problem of

v t5
i

2
vxx7

1

2
v2v̄x1

i

4
vuvu4. ~2.7!

Note that~2.7! possesses the Lax Pair

]F

]x
5@z2J1zQ1P#F,

~2.8!
]F

]t
5@z4m1z3F11¯1F4#F.

with Q5(6 v̄
0

0
v), P5Q(adJ)21Q56uvu2/2i (0

1
21

0 ), J5m5( 0
2 i

i
0), F05m, F15Q, F25P, F3

51/2i (6 v̄x

0
0

2vx), andF45(1/(2i )3uvu461/(2i )2(vv̄x2vxv̄))(0
1

21
0 ). Applying Theorems 1 and 2

we then obtain the overdetermined system

]C

]x
5@z2J1zq1p#C,

z
]C

]z
5F4Jz414qz31~4p12xJ!z21S 2xq22i S 0 2vx

6 v̄x 0 D D z12xp

1S 2
1

2i
uvu47~vv̄x2vxv̄ ! D S 1 0

0 21D GC.

and nonlinear evolution equation of the self-similar DNLS

~2xv !x2v12ivxx72v2v̄x1 ivuvu450. ~2.9!

III. THE FORWARD MONODROMY PROBLEM

Given an initial value of the self-similar ZS-AKNS flow, we will construct special eigenfu
tion of the system~2.3.1! and ~2.3.2! and extract monodromy data from the relations betwe
these eigenfunctions. We first define the characteristic lines and sectors with respect to~2.3.1! and
~2.3.2!.

Definition 3: The characteristic lines and sectors are
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S~ j ,k!5$zPC: Rez2n~m j2mk!50%,

S5ø j ,kS~ j ,k!,

Ṽn5a region bounded by two rays fromS, and its interior contains

exactly one ray from eachS~ j ,k!.

Lemma 2: Suppose that(q,p) is a self-similar ZS-AKNS flow, i.e., satisfies (2.6). Then

;xPR, ;Ṽn , there exists a unique holomorphic solutionCn of (2.3.1) and (2.3.2). Moreover,

Cn11~x,z!5Cn~x,z!Sn , zPṼnùṼn11 ,

Cn5mnez2xJ1z2nm, mn;(
j 50

`

z2 j f j~x!, f 051.

Here Sn , certain constant matrices, are called the Stokes matrices.
Proof: Our proof follows from a close adaptation of the argument in Beals and Satti

~1993!. First of all, let f (x,z)5( j 50
2n z2 j f j (x), with f 051, (]/]x2z2adJ2zq

2p)( j 50
N z2 j f j (x)5O(z2N11), N51,...,2n. Now we look for a solution of~2.3.2! in the form of

C5 f Ĉ. Then

]Ĉ

]z
5~2nmz2n2112xzJ!Ĉ1r ~x,z!Ĉ, r ~x,z!5OS 1

uzu2D .

SetĈ5m̂eF, F5z2nm1xz2J. Then the above differential system is converted into

m̂~x,z!512E
gz

eF~z!2F~j!r ~j!m̂~x,j!e2F~z!1F~j!dj. ~3.1!

Note a proper contourgx in

Sx,z~ j ,k!5$jPC:Re$~z2n2j2n!~m j2mk!1~z22j2!~xl j2xlk!%50%

can be chosen to show the convergence of the integral representation~3.1!. So Cn exists, is

holomorphic inṼn , and satisfies~2.3.2!. The uniqueness ofCn follows from the asymptotic

behavior ofmn and the property that interior ofṼn contains exactly one ray from eachS( j ,k).

Now we need to justify thatCn satisfies~2.3.1!. Let C̃5@]/]x2(z2J1zq1p)#Cn . By ~2.6!,

we obtainC̃n5CnT(x). Hence

mn
21F ]

]x
2~z2J1zq1p!Gmn5eFT~x!e2F.

Comparing the off-diagonal entries of both sides of the above identity and observing that left
side grows polynomially, the right-hand side grows exponentially. SoT(x) must be a diagona
matrix. Moreover, the leading term of the left-hand side must be off-diagonal by the propert
J, q, andp. SoT(x)[0. h

To analyze the monodromy data at the origin, we first define a generic condition fo
potential (q,p).

Definition 4: The potential(q,p) is proper if (2.3.2) admits a fundamental solution of the fo

C~x0 ,z!5v~x0 ,z!zA0~x0!, v~x0 ,• ! entire, v~x0,0!51,
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where x0PR, and A0(x0)52x0p(x0)12nF2n(x0) is the leading coefficient of the right-hand sid
of (2.3.2).

By ~2.6! and the proper condition, we can construct an eigenfunction at the origin.
Lemma 3: Suppose that(q,p) is a proper self-similar ZS-AKNS flow. Then there is a fund

mental solutionC0(x,z) of (2.3.1) and (2.3.2) which has the form

C0~x,z!5 f ~x,z!zA0~x0!, zPC\0,

with f(x,•) entire, f (x0,0)51.
So the eigenfunctionC0 has monodromy dataA0(x0) at the origin. Comparing the eigenfunc

tions Cn andC0 obtained by Lemmas 2 and 3, we obtain the following lemma which descr
the relation between the monodromy data at the origin and the Stokes matrices~monodromy data
at the infinity!.

Lemma 4: Suppose that(q,p) is a proper self-similar ZS-AKNS flow. Then uniquely there e
constant connection matrices Cn such thatCnCn

21z2A0(x0) is regular and

Cn
21e22p iA0~x0!Cn5SnSn11¯Sn21 .

Proof: First we note that from Lemmas 2 and 3, we have thatCn andC0 satisfy~2.3.1! and
~2.3.2!. So there exist connection matricesCn , constant matrices, such that

Cn5C0Cn . ~3.2!

HenceCnCn
21z2A0(x0) is regular. Now by~3.2! and Lemma 3, we have

Cn~ze2p i !5C0~z!e2p iA0Cn ,

and thus

Cn~ze2p i !$SnSn11¯Sn22Sn21%
215Cn~z!Cn

21e2p iA0Cn .
h

Definition 5: The monodromy transform for a proper self-similar ZS-AKNS flow(q,p) is
defined by:

M ~q,p!5$A0~x0!,Cn ,Sn ,J,m%.

Note that through the proofs of Lemmas 2–4 and Coddington and Levinson (1955), this definiti
depends only on the n-jet of q and p at x0 .

So the nonlinear ordinary differential system~2.6! is an isomonodromy deformation. Note th
the monodromic data has the following constraints by Lemmas 2–4.

Theorem 3: For a proper self-similar ZS-AKNS flow, the monodromic data M(q,p)
5$A0 ,Cn ,Sn ,J,m% satisfies the necessary conditions

(1) tr A050,

(2) detCn51,
~3.3!

(3) e2FSneF is bounded as z→` in ṼnùṼn11 ,Sj j 51, F5z2nm1xz2J,

(4) Cn
21e22p iA0Cn5SnSn11 ...Sn21 .
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IV. THE INVERSE MONODROMY PROBLEM

We state the main theorem
Theorem 4: The Cauchy problem of the isomonodromy equation (2.6) can be solved uniq

Moreover, the solution can be extended meromorphically to xPC. So the self-similar ZS-AKNS
flow (2.6) is a Painleve transcendent.

Proof: Given an initial data $q(x0),(d/dx)q(x0),(d/dx)p(x0),...,(dj /dxj )q(x0),
(dj /dxj )p(x0),...,(dn21/dxn21)q(x0),(dn21/dxn21)p(x0)%, we get (dn/dxn)q(x0), and
(dn/dxn)p(x0) by solving the isomonodromic equation~2.6! at x0 . Then we can apply Lemma
2–4 to construct eigenfunctionC(x0 ,z), C0(x0 ,z) and obtain the monodromic dat
$A0(x0),Cn ,Sn ,J,m% such that the monodromy data satisfy the necessary condition~3.3!. @Note
that even if (q,p) is not proper, we still can obtain modified versions of Lemmas 3 and 4—B
and Sattinger~1993!.#

Now we formulate the Riemann–Hilbert problem: solving a piecewise holomorphic func
M5$M0 ,M n%, such that

M0 defined in $z:uzu<1%,

M n defined in the region bounded byS1,Gn11ù$z:uzu>1%, and Gnù$z:uzu>1%,

M n115M neFSne2F, on Gnù$z:uzu.1%, F5z2nm1xz2J, ~4.1!

M05M nCn
21z2A0~x0!, on S1

M ~x,• !tends to 1, asuzu→`,

whereGn is a ray in the intersectionṼnùṼn11 .
One can justify the cyclic product condition around each intersection point of the conto

fulfilled, since it is asx5x0 . Then the Riemann–Hilbert problem can be solved by applying
theory of Beals and Coifman~1984!, actually, we first find a piecewise rational functionu ~rational
except onGnù$z:uzu.1%øS1) such that the jumps ofu are close enough to those of~4.1!
@Lemma 10.2, Beals and Coifman~1984!#. Then ~4.1! is reduced to a solution of a small norm
Riemann–Hilbert problem@Lemma 10.18, Beals and Coifman~1984!#. Since the kernel of the
integral equation and the jumps ofu depend onx holomorphically, soM depends onx meromor-
phically.

Now let us setCn(x,z)5M neF, for zPVnù$zPC:uzu>1% and extendCn to zPVnù$z
PC:uzu<1% by settingCn(x,z)5M0zA0(x0)Cn . Here$Vn% are the components ofC\(øGn). To
prove the solvability, we need to show thatC(x,z) satisfies~2.3.1! and ~2.3.2!.

Definemn5Cn(x,z)e2F. Therefore detm is continuous, entire, and tending to 1 at`. Som
is invertible. Now we can justify that

H S ]

]x
2z2adJDmJ m21

is continuous, piecewise holomorphic, and of orderO(uzu), asuzu→`. Similarly

H S z
]

]z
22nz2nadm22xz2adJDmJ m21

is continuous, piecewise holomorphic, and of orderO(uz2n21u), asuzu→`. Therefore we have

]C

]x
5@z2J1zq1p#C,

~4.2!

z
]C

]z
5(

j 50

2n

Aj~x!zjC.
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Finally, note

(
j 50

2n

Aj~x!zj5m~x,z!~2nz2nm12xz2J!m~x,z!211O~z21!

52nz2nm~x,z!mm~x,z!2112xz2J

12xz~ f 1J2J f1!12x~ f 2J2 f 1J f11J f1
22J f2!1O~z21!

52nz2nm~x,z!mm~x,z!2112xz2J12xzq12xp1O~z21!.

Here we use the formulam( ẋ,z)511 f 1 /z1 f 2 /z21¯ ,

q52@J, f 1#, p52@J, f 2#2@J, f 1# f 1 . ~4.3!

So Theorems 1 and 2 and~4.2! imply that (q,p) satisfy ~2.6! with prescribed initial data.
By ~4.3! and the meromorphic property ofM (•,z), we prove (q,p) can be extended mero

morphically toxPC. Unique solvability and Painleve property follow from the unique solvabi
of the Riemann-Hilbert problem~4.1! and the meromorphic property of the extended solut
(q,p) constructed above. h

Corollary 5: We can obtain meromorphic solution of the Cauchy problem of the self-sim
derivative nonlinear Schro¨dinger equation.

Proof: This follows from the discussion of Example 1 and Theorem 4. h

V. CHARACTERIZATION OF RATIONALITY

One of the main tools in the inverse scattering methods to construct soliton or rational
tions is setting the continuous data to be trivial and then solving the reduced linear alg
equations to get them. In this section, we prove that all such proper rational self-similar ZS-A
flows satisfying~2.3! are actually self-similar ZS-AKNS flows satisfying~1.1!. That is, all such
proper rational self-similar ZS-AKNS flows with quadratic spectral variables can actuall
reduced to self-similar ZS-AKNS flows with linear spectral variables.

Lemma 6: If(q,p) is a proper self-similar ZS-AKNS flow with monodromy data Sn[1, then

m, p, and q are rational in x. HereC5mez2nm1xz2J is the eigenfunction obtained in Lemma 2.
Proof: Since Sn[1 and Lemmas 3 and 4 we obtainmn5m, and meF5mneF

5mnexz2J1z2nm5C0Cn5 f (x,z)zACn . ThusCn5Cn8 ande2p iA51. This implies thatA is diago-
nizable and has integer-valued eigenvalues. Som is rational inz with a unique pole at the origin
Write m as

m511
f 1

z
1¯1

f r

zr . ~5.1!

By ~4.3!, to prove our lemma, it is sufficient to showf 1 ,..., f r are rational inx. By ~5.1! and
the property thatmeFCn

21z2A is regular at the origin, we obtain the following linear system forf j

@Beals and Sattinger~1993!#:

f rV12r50,

~ f rC11 f r 21!V22r50,

]

~ f rCr 211¯1 f 1!V050,

~ f rCr1¯1 f 1C1!V152V1 , ~5.2!
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~ f rCr 111 f r 21Cr1¯1 f 1C2!V252C1V2 ,

]

~ f rCr 1s221¯1 f 1Cs21!Vs2152Cs22Vs21 ,

~ f rCr 1s211¯1 f 1Cs!Vs52Cs21Vs ,

where eF5( j 50
` zjCj (x), and s5s1>s2>¯>sd52r are eigenvalues ofC21AC with corre-

sponding eigenvectorsv1 , v2 ,..., vd . Finally Vk5(v j ,v j 21 ,...,v1), the set of eigenvectors with
eigenvalues>k. Note that the proper condition implies thatA5A052x0p(x0)12nF2n(x0). So
tr A50. Hence~5.2! is a nonempty system.

Now denotedj the dimension of the eigenspace corresponding to eigenvaluesj . We compute
the number of linear equations represented by~5.2!:

d@~d12r1d22r1¯ !1~d22r1d32r1¯ !1~d32r1¯ !1¯#

5d@d12r12d22r13d32r1¯#

5d@~12r !d12r1~22r !d22r1¯#1dr@d12r1d22r1¯#

5d@ tr A1rd2r #1dr@d2d2r #5rd2. ~5.3!

Note here we use the proper condition to obtain trA5tr A050. So~5.2! is a set ofrd2 equations
for rd2 entries of thef j . Lemma 6 will be proved by noting thatCj are polynomials inx, and
applying Fredholm theorem and the following lemma. h

Lemma 7: There is at most one solution of (5.2).
Proof: Suppose that there are two solutionf 5( f 1 , f 2 ,...,f r) and f̃ 5( f̃ 1 , f̃ 2 ,...,f̃ r) of ~5.2!.

Denote

m511
f 1

z
1¯1

f r

zr ,

m̃511
f̃ 1

z
1¯1

f̃ r

zr .

Hence ~5.2! is equivalent tomeFz2Â0 and m̃eFz2Â0 are regular at the origin, withÂ0

5Cn
21A0Cn . Besides, note that limz→` det(meFz2Â0)5limz→` det(m̃eFz2Â0)51. So we derive

det(meFz2Â0)5det(m̃eFz2Â0)[1. Som andm̃ are invertible. This impliesm̃m21 are entire. Com-
bining the condition that limz→`m5 limz→`m̃51, we provem5m̃. h

Lemma 8: Suppose that(q,p) is a proper rational solution of (2.5) with trivial Stokes matr
ces. Let r be the degree of the pole of m obtained by Lemma 2. Then r is even.

Proof: SinceF5z2xJ1z2nm, Ci50 for odd i. Hence the system~5.2! can be divided into
two independent groups ifr is odd. One is a system of

]odd5d~d12r12d32r13d52r14d72r1¯ !1d~d22r12d42r13d62r14d82r1¯ !

number of linear equations for (r 11)d2/2 entries off 1 , f 3 ,..., f r . The other is a system of

]even5d~d32r12d52r13d72r1¯ !1d~d22r12d42r13d62r14d82r1¯ !

number of linear equations for (r 21)d2/2 entries off 2 , f 4 ,..., f r 21 . Hence by~5.3! and the
uniqueness property from Lemma 7, we must have]odd2]even5d(d12r1d32r1d52r1d72r

1¯)5(r 11)d2/22(r 21)d2/25d2. That is d12r1d32r1d52r1d72r1¯5d. So dj50 for
; j odd. ButdrÞ0 by r is odd. So we get a contradiction. h
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Lemma 9: Suppose that(q,p) is a proper rational solution of (2.6) with trivial Stokes matr
ces. Then q50.

Proof: By ~4.3!, we prove this lemma by showing thatf 150 in ~5.1!. Again the system~5.2!
is divided into two groups by noting thatCi50, for odd i. The group forf 1 , f 3 ,..., f r 21 is

f r 21V22r50,

~ f r 21C21 f r 23!V42r50,

]

~ f r 21Cr 221 f r 23Cr 241¯1 f 1!V050,

~ f r 21Cr1 f r 23Cr 221¯1 f 1C2!V250,

]

~ f r 21Cr 1s221¯1 f 1Cs!Vs50, if s is even,

$or~ f r 21Cr 1s231¯1 f 1Cs21!Vs2150, if s is odd.%

Since the constant term in the above system is absent. Lemma 7 implies that all of th
terms f 1 , f 3 ,..., f r 21 vanish. h

Theorem 5: Proper rational self-similar ZS-AKNS flows satisfying (2.3) with trivial Stok
matrices are self-similar ZS-AKNS flows satisfying (1.1).

Proof: Suppose (q,p) is a proper rational self-similar ZS-AKNS flow satisfying~2.3!, or
equivalently,~2.6!. By Lemma 9, we getq50. Applying Theorem 1, Lemma 1 and Definition 2
we obtain

]F

]x
5@z2J1P~x,t !#F, ~5.4.1!

]F

]t
5@mz2n1F1z2n211¯1F2n#F, ~5.4.2!

with

P~x,1!5p~x!, l22P~l22x,l22nt !5P~x,t !, ~5.5!

MmM 21;m1
F1

z
1

F2

z2 1¯, M ~x,1!5m~x!, ~5.6!

andm is defined by~5.1!. The proof of Lemma 9 impliesf 1 , f 3 ,... vanish. HenceF2 j 21[0 and
~5.4! is reduced to

]Y

]x
~x,z,t !5@zJ1P~x,t !#Y~x,z,t !,

~5.7!
]Y

]t
~x,z,t !5@znm1zn21F̃11¯1F̃n#Y~x,z,t !,

with M̃ (x,z,t)exzJ5M (x,z2,t)exz2J, a formal solution to~5.7!, M̃mM̃ 21(x,z,t);m1F̃1 /z
1F̃2 /z21..., andF2 j (x,t)5F̃j (x,t). We then finish the proof by~5.5! and @~8.4!,BS#. h
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We present an approach to the construction of action principles~the inverse prob-
lem of the calculus of variations!, for first order~in time derivatives! differential
equations, and generalize it to field theory in order to construct systematically, for
integrable equations which are based on the existence of a Nijenhuis~or hereditary!
operator, a~multi-Lagrangian! ladder of action principles which is complementary
to the well-known multi-Hamiltonian formulation. We work out results for the
Korteweg–de Vries~KdV! equation, which is a member of the positive hierarchy
related to a hereditary operator. Three negative hierarchies of~negative! evolution
equations are defined naturally from the hereditary operator as well, in a concise
way, suitable for field theory. The Euler–Lagrange equations arising from the ac-
tion principles are equivalent to deformations of the original evolution equation,
and the deformations are obtained explicitly in terms of the positive and negative
evolution vectors. We recognize, after appropriate coordinate transformations, the
Liouville, Sinh–Gordon, Hunter–Zheng, and Camassa–Holm equations as nega-
tive evolution equations. The multi-Lagrangian ladder for KdV is directly mappable
to a ladder for any of these negative equations and other positive evolution equa-
tions ~e.g., the Harry–Dym and a special case of the Krichever–Novikov equa-
tions!. For example, several nonequivalent, nonlocal time-reparametrization invari-
ant action principles for KdV are constructed, and a new nonlocal action principle
for the deformed system Sinh–Gordon1spatial translation vector is presented. Lo-
cal and nonlocal Hamiltonian operators are obtained in factorized form as the
inverses of all the nonequivalent symplectic two-forms in the ladder. Alternative
Lax pairs for all negative evolution vectors are constructed, using the negative
vectors and the hereditary operator as only input. This result leads us to conclude
that, basically, all positive and negative evolution equations in the hierarchies share
the same infinite-dimensional sets of local and nonlocal constants of the motion for
KdV, which are explicitly obtained using symmetries and the local and nonlocal
action principles for KdV. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1609035#

I. INTRODUCTION

Hereditary or Nijenhuis operators1–3 play an important role in the description of integrab
systems: in terms of these operators, the very definition of the positive and negative hierarc

a!Electronic mail: miguelb@macul.ciencias.uchile.cl
b!Electronic mail: shojman@creavirtual.org
46520022-2488/2003/44(10)/4652/20/$20.00 © 2003 American Institute of Physics
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integrable evolution equations may be given,4 and they are used to construct, for these equatio
symmetries,4,5 constants of the motion,5 alternative Lax pairs~Ref. 16!, multi-Hamiltonian
structures6 and weakly nonlocal multisymplectic and multi-Hamiltonian structures.7–9

The problem of constructing multi-Lagrangian structures~i.e., an infinite ladder of action
principles! for the Korteweg–de Vries~KdV! equation has been tackled recently10,11 in the context
of localizable multi-Lagrangian structures, using the bi–Hamiltonian formulation. However
explicit expression of the action principles associated to each symplectic two-form require
integration of the respective two-forms, a task which is increasingly difficult as we move t
positive end of the ladder, because of the increasing complexity of the differential terms
~weakly-nonlocal9! two-forms. On the other hand, the symplectic two-forms are increasi
nonlocal as we move to the negative end of the ladder. The known way11,12 to get rid of the
nonlocality problem is to write the action principles in a ‘‘local’’ coordinate system~Darboux
coordinates! depending on the specific symplectic two-form in the ladder, a process that
recurrently harder as we move to the negative end. Then, again, the two-form must be inte
by hand in order to get the action principle.

In this work, we make use of the Galilean symmetry13 and the factorized form of the hered
tary operator14 for the KdV equation, to construct explicitly the action principles for KdV in t
positive and negative parts of the ladder. No integration of any two-form is needed, nor
search for a special coordinate system. The factorized form of the symplectic two-forms allo
the interpretation of the resulting Euler–Lagrange equations~arising from each action principle! as
deformed equations, with flows given by KdV1vectors in the positive and negative hierarchi
which are computed explicitly.

Explicit expressions for local and nonlocal constants of the motion for KdV are obtained
symmetries along with the local and nonlocal action principles.

From the action principles obtained for the KdV equation we construct action principle
flows defined by other positive and negative vectors. In particular, a new nonlocal action pri
for the Sinh–Gordon~ShG! equation15 ~a negative equation! are constructed.

It is a known result16 that alternative Lax pairs for the KdV equation and for positive Kd
flows may be constructed from the hereditary operator. Here we do the same construction
the negative KdV flows, and we conclude that the local and nonlocal constants of the moti
KdV, define conserved currents and constants of the motion for all the negative flows as w

The results here may be mapped to the following equations: a special cas
Krichever–Novikov,17,8 Harry–Dym,18 Camassa–Holm,19 Hunter–Zheng,20 ShG15 and Liouville,
all of which are essentially flows belonging to the KdV positive or negative hierarchies. We s
that the results are quite general and may be extended to other systems related to he
operators~e.g., nonlinear Schro¨dinger equation!.

This paper is organized as follows: Section II presents a preview and notation for the m
of construction of action principles for given differential evolution equations, and a brief surv
symmetries and constants of the motion in this context. Next, we show the relationship of
principles with Hamiltonian theories, and finally we introduce the hereditary property with
consequent construction of the positive and negative hierarchies of integrable evolution equ
In Sec. III we present and prove theorems on the explicit construction of ladders of a
principles and constants of the motion, based on the hereditary operator and the Galilean s
try ~whose definition is quite general and not restricted to KdV!, and we show how these actio
principles give rise to Euler–Lagrange equations which are deformations of the original equa
due to the fact that the symplectic operators have a nonzero kernel.

Section IV is devoted to examples of the above constructions for the KdV equation. We o
concise expressions for the negative vectors, for the action principles, and for the def
Euler–Lagrange equations. Symplectic operators are presented in factorized form~this allows for
factorized expressions for the Hamiltonian operators!. Some known integrable evolution equatio
are identified within the negative hierarchies. Nonlocal constants of the motion for KdV
concisely obtained using the internal symmetries and the negative action principles. In Sec
work out examples of new nonlocal action principles for the ShG equation, which in this co
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is identified as a negative vector; we construct Lax pairs for the negative equations, thus sh
that the local and nonlocal constants of the motion for KdV also work for negative equa
Finally, some concluding remarks are presented in Sec. VI.

For simplicity, we work in finite-dimensional notation. All assertions and theorems in Sec
and III are valid in finite dimensions, and they can be extended to the case of field theory in
instances dealt with in this paper. We have used a Mathematica code of our invention, to c
the validity of some of the obtained local and nonlocal action principles, symmetries and con
of the motion for KdV and related equations.

II. PREVIEW AND NOTATION

Consider the autonomous equations of motion

q̇a~ t !5Va@qb~ t !#, aPA. ~1!

A is a given ordered set called ‘‘label set:’’ the elements of it label the degrees of freedom
theory. From now on, we suppress the dependence of the coordinates$qa%aPA on time when it is
obvious.

Example 1:The KdV Equation for the fieldu(x,t), xP@x2 ,x1#, tPR, is

ut52uxxx212u ux ~2!

~suffixes denote partial differentiation!. The label set isA5@x2 ,x1#, andxPA is a continuous
index.

We will use standard boundary conditions for the field:u, ux , ¯→0 asx→x6 , and we will
setx656`, although the methods may be extended for the treatment of other boundary c
tions as well~in which case the Weiss action principle21 and the Witten–Zuckerman two-form22

come into play!.
The evolution equation~1! is naturally defined on a vector space spanned by the deriva

$ ]/]qa %aPA ~for the infinite-dimensional case, partial derivatives with respect to the coordin
become functional derivatives!. We callV5Va (]/]qa) the flow vector or evolution vector for the
system~1!, where here, and throughout this paper, Einstein summation convention over rep
indices is assumed~for the infinite-dimensional case, the summation is extended to an integr
over continuous indices!.

A. Action principles

The equations of motion~1! are related to a variational principle with action

S@qa~ t !,t#5E
t2

t1

dt ~Pa ~ q̇a2Va!1K !, ~3!

where the one-formP@qb# and the zero-formK@qb# satisfy the following equation:

Pa,bVb1PbV,a
b 5K ,a ,

with K ,a[ ]K/]qa.
We rewrite the above equation in terms of invariant structures:

L
V

P5dK, ~4!

whereLV is the Lie derivative along the vectorV, andd is the exterior differential~see Ref. 23 for
a definition of these operators!.

Definition 2:We call the pair (P; K) a standard Lagrangian pair forV if KÞ0. In the special
caseK50 we call P a nonstandard Lagrangian~one-form! for V: the latter case allows for the
construction of constants of the motion in a direct way24 ~see Theorem 9!.
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Remark 3:The above objects should not be confused with the usual ‘‘Lagrangian den
L@q, q̇, t#5Pa (q̇a2Va)1K, which is the thing that is integrated in time to give the actionS
5*L dt. The one-formP is also understood as a momentum map.11 When P is a nonstandard
Lagrangian, it solves the equation for a ‘‘conserved covariant.’’5

The general case of objects which depend explicitly on time is easily worked out,25 but there
is no need to do so in the applications of this paper. Nevertheless, for symmetries and cons
the motion the explicit time dependence will be necessarily taken into account. In the sequ
give the name ‘‘time-~in!dependent’’ to those objects which do~not! depend explicitly on time.

The Euler–Lagrange equations which come from the action~3! are

Sab~ q̇b2Vb!50,

whereS[dP is the symplectic two-form or Lagrange bracket whose components are

Sab5Pb,a2Pa,b .

It is worth mentioning that, in Ref. 22, a symplectic two-form is induced by an action princ
in essentially the same way we have derived the above symplectic two-form from the a
principle ~3!.

Notice that these Euler–Lagrange equations do not imply the original equations of motio~1!;
instead they imply deformed or mixed equations, where the deformation is represented
additive extra term which is an arbitrary linear combination of vectors belonging to the kern
the symplectic two-form. In the case of KdV, we will obtain the deformations explicitly. See
24 for examples in the finite-dimensional case.

The symplectic two-form associated to this action principle is easily shown to satisfy

d S50 ~closure!,
~5!

L
V

S50,

therefore the inverse process could be done: starting from a symplectic two-formS for the flow
vector V, we construct the standard Lagrangian one-form, fromd P5S and the 0-formK is
obtained by integration of Eq.~4!. This process suffers from technical difficulties, which increa
when the objects are infinite dimensional and nonlocal. Fortunately, for the KdV equation th
a constructive way of finding the action principles~see Theorems 6 and 7!.

B. Hamiltonian theories are induced from symplectic structures

The relationship of the symplectic two-form with the Hamiltonian formulation is v
simple:26 consider the formal inverse~i.e., except for a finite kernel that the operators may p
sess! of the above two-form, the time-independent~2,0! tensorJ such thatJ•S5I. It is possible
to show thatS is closed if and only ifJ satisfies the Jacobi identity, which we write in the for

L
J•U

J5J•dU•J, ; one-form U. ~6!

J is known as a Hamiltonian operator or Poisson bracket. Now, Eq.~5! implies LVJ50. There-
fore, according to the Jacobi identity~6!, a Hamiltonian theory for the flowV is induced by the
symplectic two-formS: the equationV5J•U implies dU50, thusV5J•dH, whereH is the
Hamiltonian, a time-independent 0-form.
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C. Symmetries

Symmetries play a crucial role in the construction of the action principles. A symmetry fo
system~1! is known as a vector with componentsha that takes solutions into solutions of Eq.~1!,
in the sense that given any solutionqa(t) such thatq̇a(t)5Va@qb(t)#, thenq̃a[qa1e ha@qb,t# is
also a solution up to ordere2, i.e., q8 a(t)5Va@ q̃b(t)# 1 O(e2).

It is easily seen27 that this condition leads to the equation (]/]t) ha1h ,b
a Vb2V,b

a hb50 or,
in a covariant way@(]/]t) 1LV#h50.

Example 4:The Galilean and the dilatation symmetries for the KdV equation are defi
respectively, by

hG@u,t#x5 1
8 2 3

2 t ux ,

~7!
hD@u,t#x5u1 1

2 x ux2t~ 3
2 uxxx118u ux!.

In Ref. 13, there is an open question concerning the role of the Galilean and dilatation symm
in the construction of constants of the motion for KdV. An answer to this question is given in
work: these symmetries actually lead to action principles for the KdV equation, which ar
volved in Noetherian and non-Noetherian constructions27 of constants of the motion~see Theo-
rems 6, 7, and 9!.

D. Constants of the motion

A constant of the motion for the system~1! is a functional~0-form! C@qa,t# which is con-
served in time under the evolutionary system: (D/Dt) C@qb,t#uon-shell[ (]/]t) C1C, a Va50,
where the partial time derivative accounts for the explicit time dependence andD/Dt denotes the
convective or total derivative along the variablet.

This equation is best written in a covariant way:27 @(]/]t) 1LV#C50.
We will usually work with time-independent constants of the motion: (]/]t) C5LVC50.

E. The Hereditary property: Hierarchies of evolution equations

Many integrable systems are related to a Nijenhuis or hereditary operator, which is a
independent~1,1! tensorR that solves:26 LR•hR5R•LhR, ; vectorh.

Out of the kernel of this operator, and of its inverse, hierarchies of integrable evol
equations arise which are symmetries of each other4 ~this will be worked out in detail for the KdV
case later on!.

According to Ref. 4, given a hereditary operatorR and a flow vector field~labeled with a
number! V1 such thatLV1

R50, i.e.,R is a recursion operator forV1 , then a hierarchy is defined
as a semi-infinite collection of evolution vectors:$Vj5Rj 21

•V1 , j 51, . . . ,̀ %, which are sym-
metries of each other:LVi

Vj50, i , j >1, and thus every evolution vector in the hierarchy defin
an evolution equation which is integrable. In the KdV hierarchy, the KdV equation is the se
member (V2). The first vector (V1) represents the translation symmetry, and it is shown
generate the kernel of the inverse hereditary operator,R21. By convention, we refer to the abov
as a positive hierarchy.

The hereditary property for the operatorR may be used to show formally thatR21 is also
hereditary.14 Therefore, we could conjecture that new hierarchies~referred to as negative hiera
chies! of evolution vectors may be constructed, which first members generate the kernel
operatorR, and successive members are defined by contraction of the first members with p
of the operatorR21. In the KdV case, there are three negative hierarchies. These new ne
equations include the ShG, Liouville, Camassa–Holm, and the Hunter–Zheng equations.
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F. Notation: The positive and negative hierarchies in terms of the hereditary operators

The analysis is restricted to the KdV hierarchies, but it is easily generalizable to other sy
related to hereditary operators.

We will adopt the following notation for evolution vectors in the hierarchies:

ut5Vn
(k)@u#,

wherek51 denotes the positive hierarchy;k5 21,22,23 for the three negative hierarchie
andn51, . . . ,` denotes the place of a vector within the hierarchy, so that we haven51 for the
first vector of each hierarchy, i.e., the relevant generator of the kernel ofR2sgn(k):

R21@u#•V1
(1)@u#50,

R@u#•V1
(21)@u#5R@u#•V1

(22)@u#5R@u#•V1
(23)@u#50. ~8!

Successive members in the hierarchies are defined by recurrence:

Vn11
(k) @u#5~R@u# !sgn(k)

•Vn
(k)@u#, n>1, k51,21,22,23.

In this way, the positive hierarchy begins with the vectorV1
(1)@u#52ux , continues with the

KdV vector V2
(1)@u#52uxxx212u ux , and so on~these vectors were calledV1 and V2 in the

preceding subsection!.
For the negative hierarchy, as the operatorR21 is harder to work with, there is a recurrent wa

of writing the negative vectors, in terms ofR:

Vn
(k)@u#5R@u#•Vn11

(k) @u#, n>1, k521,22,23. ~9!

The explicit expression for negative vectors relies on the factorized form14,28of the hereditary
operator, and will be realized in Sec. IV in terms of nonlocal fields which, however, are trac
in the same scheme as the local ones.

III. LADDERS OF ACTION PRINCIPLES AND CONSTANTS OF THE MOTION

Complementary to the well-known bi-Hamiltonian formulation,4 we may find a bi-symplectic
or multisymplectic structure starting from the hereditary property. Assume that we have a N
huis operatorR along with one closed two-formS (1) such thatS (2)[S (1)

•R be a closed two-
form: then, the two semi-infinite dimensional sets~symplectic ladders! of two-forms

$S (n)[S (1)
•Rn21, n51, . . . ,̀ % ~positive symplectic ladder!

and

$S (n)[S (1)
•Rn21, n50,21, . . . ,2`% ~negative symplectic ladder!,

contain only closed two-forms. The distinction between positive and negative ladders is som
arbitrary, for it depends on which hereditary operator,R or R21, is being used, and which
symplectic two-form is taken asS (1).

The proof of the above statement is very simple. In fact, it is equivalent to the proof fo
so-called Poisson pencil or set of compatible implectic operators4 for multi-Hamiltonian theories,
after defining the implectic or Hamiltonian operators as the inverses of the two-forms in the la

The above result is independent of any evolution vector. When we consider the vectors
hierarchies, however, it is easily checked~as it holds in the examples! thatLV1

S (1)50. Therefore,
using Leibnitz rule, all the two-forms in the ladder are symplectic operators for the first evol
vector in the hierarchy.
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Using the identityLR•hS2Lh(S•R)5 i R•hdS2 i hd(S•R), which holds for any vectorh,
~1,1! tensorR and two-formS, wherei h stands for interior product~contraction of the vectorh
with the left component of ap-form!, we obtain the important result for any hierarchy:

L
Vj

S (n)50, j 51, 2, . . . ,`, n52`, . . . ,̀ , ~10!

which means that a ladder of action principles may be constructed for every evolution vector
hierarchy~in particular, for the KdV equation!.

This fact is used in Ref. 11 to construct action principles, with the only drawback it nee
integrate the two-forms~Poincare´ lemma! in order to get the action principles.

Let us assume for the rest of this section that we have a Nijenhuis operatorR along with its
inverseR21, a symplectic ladder$S (n),n52`, . . . ,`%, and a hierarchy$Vj , j 51, . . . ,`%
with the corresponding properties mentioned above.

The purpose of the following section is to construct, for the second evolution vector i
positive hierarchy~though the analysis is easily extended for other positive and negative evol
vectors!, the action principles associated to each of the above symplectic two-forms. These
principles are involved in the explicit construction of constants of the motion for the evolu
equation.

A. Construction of action principles and constants of the motion out of symmetries
and symplectic operators

Heuristically, if we had a symmetry for a given evolution equation we could obtain in a d
way ~by contraction of it with any symplectic two-form! a Lagrangian one-form and therefore a
action principle for that equation.

We have done this procedure for any equation in the positive hierarchy, using the Ga
symmetry, obtaining as a result a ladder of action principles which are~explicitly! time-dependent
~in fact, linear in time!. For simplicity, however, we rewrite the actions as time-independ
objects, and the discussion will be restricted to the second vector~which corresponds to the KdV
equation!, which is from now on referred to as the vectorV2 .

The following definition will be a key to the construction of the ladder of action principles
the evolution vectorV2 , and it permits a generalization to the negative hierarchies as well a
other systems~e.g., nonlinear Schro¨dinger equation!.

Definition 5:The Galilean vector fieldhgal is a time-independent vector field, defined by thr
properties,

L
hgal

R5I,

L
hgal

S (1)50, ~11!

L
hgal

V25a V1 ,

wherea is a numeric constant.
As a consequence of the definition, it turns out thathgal is a Mastersymmetry29 for the

hierarchy$Vj , j 51, . . . ,`%. Explicitly, we haveLVj 11
hgal5(a1 j 21) Vj , for j 51, . . . ,̀ .

The aim is to construct time-independent standard Lagrangian pairs (P; K), whereLV2
P

5dK. The action principles will readS@qa(t)#5* t2

t1dt (Pa(q̇a2V2
a)1K), and the Euler–

Lagrange equations will involve the symplectic two-forms in the ladder, i.e.,dP5S.
Theorem 6: The one-forms defined by P(m)[ i hgal

S (m11), for m52`, . . . ,` are ‘‘inte-

grals’’ of the symplectic two-forms in the ladder. That is to say,
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dP(m)5m S (m), m52`, . . . ,`. ~12!

Proof: If we take the exterior derivatives of the one-forms, using the identity

L
h

5 i h d1d i h , ~13!

which holds~for every vectorh! when operating on anyp-form, we find

dP(m)5 L
hgal

S (m11)5 L
hgal

~S (1)
•Rm!5S (1)

• L
hgal

~Rm!5m S (1)
•Rm215m S (m), mPZ

after using the definition of Galilean vector and Leibnitz rule. h

In order to complete the action principles, there remains to find the second members
corresponding standard Lagrangian pairs.

Theorem 7: For each mPZ, the pair (P(m);K (m)) with K(m)[ a/(m1a) i V2
P(m), is a stan-

dard Lagrangian pair for the evolution equation q˙ a5V2
a, i.e., LV2

P(m)5dK (m). For mÞ0, the

action principle is

S(m)@qa~ t !#5E
t2

t1

P(m)
a S q̇a2

m

m1a
V2

aD dt. ~14!

Moreover, the0-forms K(m) are constants of the motion for the evolution equation,
mPZ:

L
V2

K (m)50.

The above is a Noetherian way to construct constants of the motion, for all the action
ciples in the ladder for KdV are naturally invariant under the KdV flowV2 itself @see Eq.~10!#.

Remark 8:The casem50 would lead to a trivial action principle from Eq.~14!, for the
Euler–Lagrange equations are identically zero: it is shown that this case leads to a time-dep
constant of the motion. This does not mean that the symplectic two-formS (0) defines a trivial
action principle. In fact, its associated action principle may be found by hand~see the end of this
section!, and it is related to the usual action principle for the ShG equation~see Sec. V B!.

Proof: Lagrangian pairs. For mPZ, take Lie derivatives of the one-formsP(m) along the
evolution vectorV2 , using Leibnitz rule:

L
V2

P(m)5 L
V2

i hgal
S (m11)52a i V1

S (m11)52a i V2
S (m). ~15!

But, using the identity~13! and the result~12! we rewrite the last expression to get

m L
V2

P(m)52a~ L
V2

P(m)2d i V2
P(m)!,

therefore

L
V2

P(m)5dS a

m1a
i V2

P(m)D[dK (m). ~16!

Proof: Constants of the motion. We use the above result~16!, to find

m1a

a
L
V2

K (m)5 i V2
L
V2

P(m)5 i V2
dK (m)5 L

V2

K (m),
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which impliesLV2
K (m)50, mÞ0.

For m50 we find a weaker result: Equation~15! implies dLV2
K (0)50. ThereforeLV2

K (0)

5c, is a number~usually equal to zero! that may be absorbed to define a time-dependent cons
of the motion:K̃ (0)(t)5K (0)2c t. h

For the KdV equation, whenm>21 we get the usual denumerably infinite set of constant
the motion.30 Notice that this theorem represents also a constructive method to obtain such
stants. On the other hand, whenm<22 the constants are numerical or vanishing boundary ter
Amazingly, this fact allows one to construct an infinite number of nonlocal constants of the m
for KdV, using the nonlocal action principles~see Sec. III C!.

Proof: Action principles. The action principles~14! arise directly from Eq.~3!, using the
definition of K (m). h

From the point of view of Theorem 7, the casem50 also leads to a time-dependent const
of the motion. From Eq.~12!, it follows thatP(0)5dC(0), and thusLV2

C(0)5K (0). But we know
thatLV2

K (0)5c is a number. We obtain the following time-dependent constant of the motion
the evolution vectorV2 :

C@qa~ t !, t#5C(0)2t K (0)1
c t2

2
. ~17!

Finally, for the casem50, a special~‘‘missing’’ ! action principle is constructed by hand fro
integration of the two-formS (0), which leads to the one-formP(M ), such thatdP(M )5S (0). We
will have LV2

P(M )5dK (M ), and the action is

S(0)@qa~ t !#5E
t2

t1

~Pa
(M ) ~ q̇a2V2

a!1K (M )! dt.

B. The Euler–Lagrange equations as deformed evolution equations

The Euler–Lagrange equations that arise from variation of each actionS(m), mPZ are, apart
from nonzero numeric factors,

Sab
(m)~ q̇b2V2

b!50, mPZ.

The kernel of the symplectic operators, KerS (m), is of importance here. For each action princip
we obtain an equivalent, deformed, evolution equation

q̇a5V2
a1(

j 51

Nm

u j h j ;m
a ,

whereNm5dim(KerS (m)), the vectors$h j ;m% j 51
Nm generate the kernel ofS (m), andu j5u j (t) are

arbitrary 0-forms: it can be said that these Euler–Lagrange equations and the action prin
acquire extra symmetries~as compared to the symmetries of the original equations!.

As the two-forms here are formed by contraction of powers of the hereditary operatorsR and
R21 with S (1), it is clear that the kernel of the two-forms are computed essentially from ve
in the kernel of the operatorsRm andR2m, for m.0: as we have mentioned, these are the posi
and negative evolution vectors. In Sec. IV, we will find explicitly the deformed equations fo
KdV equation in terms of the positive and negative vectors.

C. Construction of nonlocal constants of the motion from symmetries
and nonstandard Lagrangian one-forms

Let us assume, as it will be demonstrated in Sec. IV H for the KdV case~under usual boundary
conditions!, that the constants of the motion from Theorem 7 areK (m)50 or a numeric constan
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for m<22. This implies thatLV2
P(m)50, i.e.,P(m) is a nonstandard Lagrangian one-form for t

flow V2 . Assume also that the evolution equation defined by the flowV2 possesses a symmetryh.
Then

Theorem 9: The0-forms defined by Q(m)[ i hP(m), for m<22, are constants of the motion
for the flow V2 , i.e., (] t1LV2

)Q(m)50 for m<22.
Proof: The proof follows directly from Leibnitz rule. h

The above is a non-Noetherian way27 to construct constants of the motion, in the sense that
action principles need not be invariant under the relevant symmetry. In Sec. IV J we con
‘‘generating functions’’ for three infinite-dimensional sets of nonlocal constants of the motio
the KdV equation, settingh as a nonlocal internal symmetry for KdV.

IV. EXAMPLE: THE KDV EQUATION

A. Known objects

We begin by presenting the Nijenhuis operator relevant for the KdV hierarchy: as an ope4

R@u#5D218 u14 ux D21, where D and D21 are, respectively, the derivative and the antideriv
tive operators: Df (x)[ ] f (x)/]x, D21g(x)[*x2

x1e(x2x8) g(x8) dx8, with e(x2x8)

51/2 sign(x2x8).
Next, the positive hierarchy begins with the vectorV1

(1)@u#52ux . The second vector in the
positive hierarchy is obtained after application of the Nijenhuis operator on the latter ve
V2

(1)@u#5R@u#•V1
(1)@u#52uxxx212u ux[V2@u#. We see it represents the KdV equation~2!.

Next, we write the first symplectic two-form: as an operator,4 S (1)@u#5D21. The second
symplectic operator is constructed just by contracting the latter operator with the Nijenhu
erator:S (2)@u#5S (1)@u#•R@u#5D14 u D2114 D21 u. These operators are closed under us
boundary conditions for the vector fields: the ladder, then, contains only closed two-forms.
it is easy to show that these operators are symplectic for the flow defined byV1

(1) , therefore all
operators in the ladder are symplectic for the KdV flowV2

(1) , as it is stated in Eq.~10!.
Finally, the Galilean vector is just the time-independent part of the Galilean symmetry~7!:

hgal@u#5 1
8, and the constant in the last of the defining equations~11! is a53/2.

B. Explicit form of the KdV negative hierarchies: Linear generalization
and factorization of the hereditary operator

In order to find explicitly the KdV negative hierarchies, we factorize a generalization o
hereditary operatorR, which is obtained by addition of a multiple of the identity tensorI:

R~l!@u#[R@u#14 l I.

This is also a hereditary operator, for fixedl, which is taken as an arbitrary real number.
The idea behind this generalization, is that the kernel ofR(l)@u# contains all the negative

hierarchies in its Taylor expansion aroundl50, so we will write the negative hierarchies in
compact way.

Lemma 10: The vectors V1
(21)(l)@u#, V1

(22)(l)@u#, V1
(23)(l)@u#, defined by

V1
(k)~l!@u#[ (

n50

`

~24 l!n Vn11
(k) @u#, k521,22 23

generate the vectorial kernel of R(l)@u#.
Conversely, all vectors in the negative hierarchies may be obtained from the vectorial k

of R(l)@u#:

Vn11
(k) @u#5

1

n!
~24!2n

]n

]ln V1
(k)~l!@u#U

l50

, k521,22 23, n50, 1, . . . ,`. ~18!
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Proof: Consider the action ofR@u# on the vectorV1
(k)(l)@u#. Using Eqs.~8! and~9!, we get

R@u#•V1
(k)~l!@u#5 (

n50

`

~24 l!n R@u#•Vn11
(k) @u#5 (

n51

`

~24 l!n Vn
(k)@u#524 l V1

(k)~l!@u#,

thereforeR(l)@u#•V1
(k)(l)@u#5(R(l)@u#14 l)•V1

(k)(l)@u#50. h

The factorization process28 implies the definition of auxiliary fields, which are directly relate
to nonlocal prepotentials found in the literature14 and to the associated isospectral linear eig
value problem:31

cxx12 u c52l c, ~19!

wherec5c(x,t;l). As usual, we assumel t50, andu5u(x,t) is independent ofl.
Alternatively, we write the above equation asL(l)•c50, whereL(l)5D212 u1l or, in a

factorized way,L(l)5 (1/c) D c2 D (1/c), is the Lax operator. The elements in the kernel of t
operator are solutions of the linear problem~19!. Two linearly independent solutions arec(l)
[c(x,t;l) and

c̄~l![c~l!D21~1/c~l!2!. ~20!

The above eigenvalue problem may be understood as an extended coordinate system lab
c(x,t;l), with l as an additional variable~just like x), and which however must solve an ext
equation,L(l)•c(l)50, which we call constraint. This constraint lets us write derivatives of
field c(l) with respect tol in terms of the field itself, in a nonlocal way. This will be useful
the next section, when we write the negative ladder of action principles. We obtain, apart
integration constants,

]n

]ln c5~21!n n! L~l!2n c,

~21!
]n

]ln c̄5~21!n n! L~l!2n c̄, n>1,

whereL(l)215c D21 (1/c2) D21 c, c5c~l! and c̄5c̄(l).
Now, the factorization ofR(l)@u# is found to be

R~l!@u#5
1

c~l!2 D c~l!2 D c~l!2 D
1

c~l!2 D21.

It is remarkable that the above operator islinear in l, which is a consequence of the constra
~19!.

The kernel of the operatorR(l)@u# is easily found to be composed by three nonlocal vecto

ut5V1
(21)~l!@u#5~c~l!2!x ,

ut5V1
(22)~l!@u#5~c~l! c̄~l!!x , ~22!

ut5V1
(23)~l!@u#5~ c̄~l!2!x ,

wherec(l), c̄(l) @see Eq.~20!# are two linearly independent solutions of the constraint~19!.
These vectors contain the whole negative hierarchies ifl is left arbitrary, as lemma 10 states.
discrete infinite-dimensional representation of these negative vectors, as nonlocal symme
the KdV equation, is known.14 On the other hand, the continuous representation~22! of these
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vectors, more suitable for field theory, allows for considering them also as possible evo
equations, which will be recognized as known integrable equations in Sec. V A.

C. Explicit form and Kernel of the inverse hereditary operator RÀ1

The inverse hereditary operator,R21(l), is found easily after inverting every factor. Assum
ing appropriate boundary conditions on the fieldc, we get

R21~l!@u#5D c~l!2 D21
1

c~l!2 D21
1

c~l!2 D21 c~l!2.

It is easy to show that the kernel of this operator is generated by the vectorV1
(1)52ux .

D. Factorization of positive and negative symplectic and Hamiltonian operators

Using the factorized form of the hereditary operators, we get easily the symplectic ope
in factorized form. For the positive ones, we have

S (2)@u#5D21
1

c2 D c2 D c2 D
1

c2 D21,

S (3)@u#5D21
1

c2 D c2 D c2 D
1

c2 D21
1

c2 D c2 D c2 D
1

c2 D21,

and so on, wherec5c(l50). Notice that the inverses of these operators give new nonl
Hamiltonian operators for KdV.

For the negative ones, on the other hand, we have

S (0)@u#5c2 D21
1

c2 D21
1

c2 D21 c2,

~23!

S (21)@u#5c2 D21
1

c2 D21
1

c2 D21 c2 D c2 D21
1

c2 D21
1

c2 D21 c2,

and so on. By the way, the above expression forS (0)@u# turns out to solve a puzzle in the rece
literature,10 for it is the inverse of Magri’s Hamiltonian operator. As we see, we have go
inverses~in factorized form! of all Hamiltonian operators within the multi-Hamiltonian structu
for KdV.

There is another, concise way to write these negative operators, which resembles the w
wrote the negative vectors in terms of thel-dependent first one. We state the lemma witho
proof.

Lemma 11: The negative symplectic operators for KdV are written in terms ofS (0)(l)@u#
[S (1)

•R21(l)@u# in the following way:

S (2n)@u#5
1

n!
~24!2n

]n

]ln S (0)~l!@u#U
l50

, n>1.

A similar formula may be written for the nonlocal Hamiltonian operators.

E. Negative vectors as kernel of positive symplectic operators

The kernel spaces KerS (n)@u#, for n51, . . . ,`, are easily computed in terms of the kern
of positive powers ofR, from the fact that KerS (1)@u# is null. We get
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KerS (n11)5span$Vm
(k)@u#, k521,22,23, m51, . . . ,n%, n>0.

F. Positive vectors as kernel of negative symplectic operators

Finally we compute the kernel spaces KerS (n)@u#, for n50,21, . . . ,2`. It is easily seen
that the operatorS (0)@u# has a null kernel. This time we have to evaluate the kernel of nega
powers ofR. We get

KerS (2n)@u#5span$Vm
(1)@u#, m51, . . . ,n %, n.0,

so that, in particular, the action principle associated toS (22)@u# for the KdV equation has the
translation vector as well as the KdV vector as generators of its kernel, therefore the action
be time-reparametrization invariant.24

G. Action principles for KdV: Positive Lagrangian ladders

Remark 12:If Padua denotes a one-form, wherea[x is a continuous index, we will write the
componentPa of the one-form asP(x,t) ~which looks more like a density! when dealing with it
inside an integral sign.

Following Theorems 6 and 7, we write the action principles from Eq.~14!:

S(m)@u~x,t !#5E
t2

t1 E
x2

x1 P(m)@u#~x,t ! S ut1
m

m13/2
~uxxx112u ux! D dx dt, ~24!

for m.0, where

P(1)@u#~x,t !5 i hgal
S (2)@u#52~D14 u D2114 D21 u! 1

8 52 1
2 ~x u1D21~u!!,

and successive one-forms are defined by recurrence:P(m11)@u#(x,t)5R†@u#•P(m)@u#(x,t),
whereR†@u# is the transpose Nijenhuis operator.

The action principleS(1)@u(x,t)# gives rise to the following Euler–Lagrange equations:

D21~ut1uxxx112u ux!50,

which are equivalent to KdV. The associated constant of the motion is

H (1)@u#[ i V2
P(1)5

1

2 E dx ~x u1D21~u!!~uxxx112u ux!5
5

4 E dx ~ux
224 u3!,

which is a member of the known set.
The next action principle is written as Eq.~24!, with

P(2)@u#~x,t !5R†@u#•P(1)@u#~x,t !52 1
2 ~3 ux1x uxx16 x u214 u D21~u!16 D21~u2!!.

The Euler–Lagrange equations are 2 (D14 u D2114 D21 u)(ut1uxxx112u ux)50 or, in fac-
torized form, 2 D21 (1/c2) D c2 D c2 D (1/c2) D21 (ut1uxxx112u ux)50. These equations ar
not equivalent to the original equations: instead, they are equivalent to the deformed equa

ut52uxxx212u ux1u1 ~c2!x1u2 ~c c̄!x1u3 ~ c̄2!x ,

whereu j are arbitrary 0-forms that multiply the generators of KerS (2)@u#, andc5c(l50).
We could continue this process constructively, obtaining explicitly the constants of the m

and the action principles as well as the Euler–Lagrange equations: the original KdV equatio
deformed with vectors in the negative hierarchies, as it was mentioned before.
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H. Action principles for KdV: Negative Lagrangian ladders

Now we turn to the construction of the negative action principles for KdV, whose ac
functionals are defined by

S(m)@u~x,t !#5E
t2

t1 E
x2

x1 P(m)@u#~x,t ! S ut1
m

m13/2
~uxxx112u ux! D dx dt,

for m,0. We only need to evaluateP(2m)@u#(x,t)5(R†@u#)2m
•P(0)@u#(x,t), for m,0. This is

done easily after stating the following corollary~from lemma 11!.
Corollary 13: The negative one-forms are obtained from the first negative one as follow

P(2n21)@u#~x,t !5
1

n!
~24!2n

]n

]ln P(21)~l!@u#~x,t !U
l50

, n>1,

whereP(21)(l)@u#(x,t)52 1
8 c2 D21 1/c2 D21 1/c2 D21c2 or, using Eq.~21!,

P(21)~l!@u#~x,t !5 1
16 ~cl c̄2c c̄l!.

The first negative action principle from Eq.~24! is thus

S(21)@u~x,t !#5E
t2

t1 E
x2

x1 1

16
~cl c̄2c c̄l! S ut1

21

2113/2
~uxxx112u ux! D dx dt,

or, after some manipulations,S(21)@u(x,t)#5* t2

t1 *x2

x1 ( 1
16 (cl c̄2c c̄l) ut2

1
4 u) dx dt, where we

have to evaluate the fieldsc, c̄ at l50. This action principle is highly nonlocal, even in terms
the auxiliary fields@see Eq.~21!#. However, the Euler–Lagrange equations are obtained as u
varying the action with respect to the fieldu, and using the appropriate transformation matric
We obtain2S (21)@u#•(ut1uxxx112u ux)50, or explicitly, using the fact that the kernel of th
operator is generated byV1

(1),

ut52uxxx212u ux1u1 ux ,

whereu1 is arbitrary.
We stress there is no need to hesitate about the inclusion of auxiliary fields in the ne

action principles, for they are not varied independently. Alternatively, we may map the a
action into a mixed action principle, in which the fieldsc, u, and a Lagrange multiplierr are
varied independently,

S(21)@c~x,t !, u~x,t !, r~x,t !#5E
t2

t1 E
x2

x1 S 1

16

c t

c3 ~D21c2!1
1

8

cxx

c
1rS u1

cxx

2 c D D dx dt.

~25!

See Ref. 11 for a general discussion.
The next negative action principles are quite simple. Recall that the evolution vector itseV2

is in the kernel of the symplectic operatorsS (m), for m522, . . . ,2`, so that the action prin-
ciples should be time-reparametrization invariant.24 From Eq. ~14!, the only chance isK (m)

} i V2
P(m)50 or a numeric constant~which would not change the action principle!, for m<22.

This is easily shown, from the fact that the interior productI (l)5 i V
1
(1)P(21)(l)@u#

52 1
16 *x2

x1dx (cl c̄2c c̄l) ux , wherec5c(l), is a numeric constant for alll: I (l)52 1
32(x1

2x2). We get, then, manifestly time-reparametrization invariant actions:
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S(2n21)@u~x,t !#5
1

16~n! !
~24!2n E

t2

t1 E
x2

x1 ]n

]ln ~cl c̄2c c̄l!ul50 ut dx dt, n>1,

and we may use Eq.~21! in order to write thel-derivatives in terms of nonlocal expressions. F
example, the second negative action principle is

S(22)@u~x,t !#52
1

64Et2

t1 E
x2

x1

~cll c̄2c c̄ll!ul50 ut dx dt,

where cll52 c D21 (1/c2) D21 c2 D21 (1/c2) D21 c2 and c̄5c D21(1/c2); the Euler–
Lagrange equations are equivalent to

ut5u1 ~uxxx112u ux!1u2 ux ,

where, as usual,u j are arbitrary functionals. The invariancet→t(t) is evident.

I. The missing action principle for KdV, a time-dependent constant of the motion
and the internal vectors

So far we have obtained two ladders of action principles for the KdV equation: the po
~quasilocal! and the negative ladders~highly nonlocal!. However, there is a missing action prin
ciple: this is the casem50, which is actually twofold: first, the one-formP(0)@u#[ i hgal

S (1)@u#

52x/8 is closed:P(0)@u#5dC(0)@u#, whereC(0)@u#52*x2

x1dx x u/8. From Eq.~17!, we obtain

a known30 time-dependent constant of the motion for KdV:C@u,t#5 1
8 *x2

x1(6 t u22x u) dx.

Second, the action principle for the symplectic two-formS (0)@u# @see Eq.~23!# has to be
evaluated by hand. After some hard but straightforward calculations, we find that the one
P(M )@u#(x,t)[ (c2/4)D21@(1/c2) ln c# is a solution ofdP(M )5S (0).

In this case, we map to thec-coordinate system for simplicity. We get the action principle

S(0)@c,u,r#52
1

8 Ex2

x1S cx c t

c2 2
cxx

2

c2 1r S u1
cxx

2 c D D dx dt.

The Euler–Lagrange equations we obtain are as follows: for the fieldc,

1

c
D

1

c S c t1cxxx23
cxcxx

c D50,

for the fieldu, u52 (cxx/2c) ⇒ ut52uxxx212u ux , and for the Lagrange multiplier,r50.
Notice that the Euler–Lagrange equations forc are equivalent to

c t52cxxx13
cxcxx

c
1u1 c,

whereu1 is arbitrary. This symmetry is one of the three known14 internal symmetries~i.e., those
which do not affect the fieldu) of the eigenvalue problem~19!. In the c-coordinate system we
write it asc t5V0

(22)@c#52 1
2 c ~the numeric factor is only for simplicity!. In the cited reference

it is shown that all negative vectors and the internal symmetries span a loop algebra over SLR).

J. Nonlocal constants of the motion for KdV

As a final result, we will construct explicitly three new sets of constants of the motion fo
KdV equation, starting from the nonlocal objects we have obtained. We denotec5c(x,t;l50)
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for simplicity from here on, unless explicitly stated. Consider the action principle~25!: the term
which multiplies the velocityc t is the mapping of the Lagrangian one-formP(21)@u# into
c-coordinates:

P(21)@c#~x,t !5
1

16c3 ~D21c2!.

On the other hand, from Theorem 7 we haveLV2
P(21)5dK (21), where K (21)5 3

16

*x2

x1dx (cx
2/c2). Consider now the 0-form

H (22)@c#[216 i V
0
(22)P(21)52E

x2

x1

dx
1

c2 ~D21 c2!

or, more concisely,H (22)@c#5*x2

x1dx c c̄.

We use Leibnitz rule to show that this is a constant of motion for the KdV equation, whic
c coordinates readsV2@c#52cxxx13(cxcxx /c): as LV2

V0
(22)@c#50, we find LV2

H (22)@c#

5LV
0
(22)K (21)@c#50, where the last equality comes from the fact thatK (21)@c# is invariant

under scaling ofc.
ThusH (22)@c# is a nonlocal constant of the motion for the KdV flow. But if we recall that

fields c, c̄ are solutions of the linear problem~19!, and thatu does not change if these fields a
replaced by other arbitrary linear combinations, we get indeed three constants of the m
H (21)@c#5*x2

x1dx c2, H (22)@c#5*x2

x1dx c c̄, H (23)@c#5*x2

x1dx c̄2.

There is a reference that supports this construction: in Ref. 31, in the context of the eige
‘‘Schrödinger’’ problem ~19!, the author assumes that the total probability~here denoted by
H (21)@c#) is equal to 1. But it is indeed a constant of motion of its own. Moreover, these
indeed special cases~l50! of more general constants of motion. Along the same lines, we
three families, parametrized by the eigenvaluel,

H (21)~l!@c#5E
x2

x1

dx c~l!2,

H (22)~l!@c#5E
x2

x1

dx c~l! c̄~l!,

H (23)~l!@c#5E
x2

x1

dx c̄~l!2. ~26!

These are real new constants~indeed they contain, in their Taylor series aroundl50, the constants
of the motion from Theorem 9!. In order to evaluate them explicitly, take, for example, succes
derivatives of the first one with respect tol, evaluate atl50 and use Eq.~21!. We get

Q(21;n)@c#[E
x2

x1

dx c L2n c, n50, . . . ,`,

and we see they are increasingly nonlocal constants of the motion.
It is worth to mention that these nonlocal constants, when mapped to the coordinate sys

which the KdV equation maps into the Harry–Dym equation~see Ref. 18!, reproduce the results
obtained independently in a recent work,20 and add three more constants to the Harry–D
equation: the mappings of the nonlocal constants of motion~26! for l50 into the Harry–Dym
equationv t5(v21/2)sss for the field v(s,t), are H (21)@v#5*s2

s1ds v, H (22)@v#5*s2

s1ds sv,

H (23)@v#5*s
s1ds s2 v.
2
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V. RESULTS FOR OTHER KDV POSITIVE AND NEGATIVE EQUATIONS

A. Some positive, negative and internal vectors as known integrable equations

We write the internal vectors after transformation to Schwartzian coordinates, define
zx(x,t;l)5c(x,t;l)22. The internal vectors inz coordinates areV0

(21)@z#51, V0
(22)@z#5z,

V0
(23)@z#5z2.

The vectorsV0
(23), (V0

(23)2V1
(21))/2, and V2

(1) give the evolution equationsz t5z2, z t

5 1
2 z22 1

8(zxl /zx), and z t56 l zx1(3 zxx
2 /2zx) 2zxxx , where the fields are evaluated atl50.

The last of these equations is a special case of the Krichever–Novikov equation,8 and the first and
the second equations, via the transformationz5 ln(2zx), may be mapped to the Liouville equatio
zxt5expz, and the ShG equationzxt5sinhz. For completeness, we just mention that the ass
ated Camassa–Holm equation32 and the Hunter–Zheng equation20 are obtainable from the nega
tive vectorsV1

(22) and V1
(21) , respectively, via suitable coordinate transformations, and that

Harry–Dym equation,18 just like the above case of the Krichever–Novikov equation, is a map
of the KdV equation.

B. Action principles for the Sinh–Gordon equation

As a representative of the extension of the results on action principles for equations
negative hierarchies, we work out some examples for the ShG equation. The results in this
are new up to our knowledge, except when it is explicitly stated. We will work in thez-coordinate
system, where the ShG equation iszt5VShG@z#5D21 sinhz.

1. Pure ShG equation: Symplectic matrix S (0)

We look for a standard Lagrangian pair for the ShG equation of the form (P(M )@z#;
K (M ;ShG)@z#), whereP(M )@z#52 1

32 zx is the mapping ofP(M )@u# to z coordinates. The symplec
tic two-form S (0)@z#5 1

16 D has only one vector in the kernel, namelyV0
(22)@z#54. On the other

hand, the standard Lagrangian 0-form solves (d/dz) K (M ;ShG)@z#5LVShG
P(M )@z#52 1

32(sinhz

2zcoshz). We get after integration the usual action principle for the ShG equation,30

S@z~x,t !#5
1

32Et2

t1

dt dx ~2zx zt22 coshz!,

and the Euler–Lagrange equations are simplyzt5D21 sinhz1u1 , whereu1 is arbitrary.

2. ShG equation deformed with first positive vector: Symplectic matrix S (À1)

The next negative one-form,P(21), readsP(21)@z#(x,t)52 1
32 ez (D21 e2z). The associated

symplectic two-form isS (21)@z#52 1
32(e

z D21 e2z1e2z D21 ez), which inherits the kernel~gen-
erated fromV 1

(1)@z#52zx) from that in theu-coordinate system only for special boundary co
ditions: defining the boundary termsf̄ [ f 11 f 2 and f 65 f (x6), the expression

S (21)@z#•V 1
(1)@z#5 1

64 ~ez e2z2e2z ez!

is zero only for boundary conditionsz15z21 ip(2 n11), nPZ.
For other boundary conditions, however, this Lagrange bracket has no kernel, which will

up in the variational principle for the ShG vector by the fact that the Euler–Lagrange equatio
deformed by a factor of the vectorV 1

(1)@z#, which is not arbitrary: it depends on the bounda
conditions used for thez coordinates.

In the generic case whenezÞ0 ~invertible symplectic two-formS (21)), the action principle is
explicitly
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S@z~x,t !#5E
t2

t1

dt F2
1

32Ex2

x1

dx ez~D21e2z!~zt2D21 sinhz!1K (21;ShG)@z#G ,
and the Euler–Lagrange equations are

1
32 ~ez D21 e2z1e2z D21 ez!~zt2D21 sinhz1u@A1 , A2# zx!50

or, equivalently,

zt2D21 sinhz1u@A1 , A2# zx50,

whereK (21;ShG)@z#5*x2

x1dx ez(D21e2z)2/1281F@A1 , A2#, A6[*x2

x1dx e6z, andu, F solve the

equation:

dF@A1 , A2#52u@A1 , A2# ~e2z dA11ez dA2!1 1
8 A2 ~A222 A1! dA1 . ~27!

There are many solutions of the above equation for a given set of boundary conditions
limiting values ofz6 , so we discuss, as examples, only two representative, nonintersecting
of boundary conditions, for which the symplectic two-formS (21) is invertible:

~i! z152z21 ip(2 n), nPZ; coshz1Þ0.
A solution of Eq.~27! is u52A1 A2/4ez, F5A1 A2

2 /512, which is well defined becaus
of the boundary conditions used.

~ii ! z152z21 ip(2 n11), nPZ; sinhz1Þ0.
In this case, a solution of Eq.~27! is

u52~A1
2 2A2

2 !/8ez, F52~A1
2 A22 1

3 ~A1
3 1A2

3 !!/512.

The usual constant of the motion for the ShG equation,H@z#5*x2

x1dx coshz, works in this

case also: under the boundary conditions used, we get

Ḣ@z#5E
x2

x1

dx sinhz ~D21 sinhz2u zx!5u coshz50.

C. Alternative Lax pairs and constants of the motion for negative equations

In Ref. 16, the authors find alternative Lax pairs for the KdV equation~as well as for every
evolution equation in the KdV positive hierarchy! by making no ansatz: they just use the evoluti
equation and the hereditary operator.

We present a similar construction, this time for the negative vectors. By so doing w
answering an open question in Ref. 20.

As it is shown in Ref. 16, given an evolution equationut5V@u#, and a recursion operatorR
for V ~i.e., LVR50 ), it follows that

D

Dt
R5@V8, R#, ~28!

whereV8 denotes the Frechet derivative, and the square brackets are the commutators. Th
equation defines the alternative Lax pair (R, V8).

Now, take R as the hereditary operatorR@u#, and V as the negative vectorV1
(21)(l)@u#

5(c(l)2)x , for arbitrary n, l. We need to evaluate the Frechet derivative of this vector w
respect to the fieldu. Using the transformation matrixdc/du 522 c D21 (1/c2)D21 c2, where
c stands forc(l) from here on, we getV1

(21)(l)8@u#524 Dc2 D21 (1/c2)D21 c2. On the
other hand, the hereditary operator is
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R@u#5R~l!@u#24 l I5
1

c2 D c2 D c2 D
1

c2 D2124 l I,

and it is also written asR@u#5D218 u14 ux D21. Now we apply the Lax pair equation~28!,
getting after some rearrangements the operator equation 8ut14 uxt D

2158 (c2)x

14 (c2)xx D21, which impliesut5(c(l)2)x . Recall this equation contains all the negative ve
tors in the corresponding negative hierarchy, so that the Lax pair we have presented indeed
for all vectors in that hierarchy. Similarly, for the other two negative hierarchies we get the
pairs (R, B2) and (R, B3), with

B25V1
(22)~l!8@u#524 Dc2 D21 c̄ c21 D c̄ c21 D21 ~ c̄ !22 D21 c c̄,

B35V1
(23)~l!8@u#524 D c̄2 D21 ~ c̄ !22 D21 c̄2.

In this way, we may construct an infinite number of constants of the motion for the neg
vectors, from Adler traces of positive, semi-integer powers of the Nijenhuis operatorR: these are
just the usual~local! constants of the motion for the KdV equation.16 A natural conjecture is tha
Adler traces of positive, semi-integer powers ofR21 will give our nonlocal constants for KdV
defined in Eq.~26!. If that is true, we could infer that the nonlocal constants of the motion for K
should also work for the negative vectors, which can be explicitly checked. We present the
only for the hierarchyV1

(21)(l), because Lie derivatives of the results along the internal ve
V0

(23) map the objects into similar ones for the other two negative hierarchies.

VI. CONCLUSION

The Lagrangian point of view determines a unifying scheme for the study of integ
equations belonging to hierarchies related to hereditary operators. For all evolution vect
these hierarchies, nonlocal symmetries, Lax pairs, constants of the motion, conserved curre
an infinite ladder of action principles all come out in a constructive, explicit way from the s
structure. Moreover, new equations, which are mixed or deformed versions of known inte
equations, arise as the Euler–Lagrange equations of the action principles obtained. As an e
we apply this scheme to the KdV equation, and the results are directly mappable to other
equations in the positive KdV hierarchies~e.g., Harry–Dym and a special case of Kricheve
Novikov equations! as well as in the negative KdV hierarchies~e.g., Sinh–Gordon, Liouville,
Camassa–Holm, and Hunter–Zheng equations!: in particular, we obtain a new nonlocal actio
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principle for the Sinh–Gordon equation which leads to a deformed version of this equation, a
infinite number of nonequivalent, nonlocal action principles for KdV, possessing t
reparametrization invariance, are explicitly found. The construction of alternative Lax pair
negative equations arises naturally, without any ansatz, from this scheme, and it is show
negative equations essentially share the constants of the motion~local as well as nonlocal! for the
KdV equation.
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Liénard–Wiechert potentials in even dimensions
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The motion of point charged particles is considered in an even dimensional
Minkowski space–time. The potential functions corresponding to the massless sca-
lar and the Maxwell fields are derived algorithmically. It is shown that in all even
dimensions particles lose energy due to acceleration. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1613040#

I. INTRODUCTION

Recently Gal’tsov1 and Kazinskiet al.2 have considered the Lorentz–Dirac equation fo
radiating point charge in a Minkowski space–time of arbitrary dimension. They showed th
mass renormalization is possible only in three and four dimensions. In their discussion, the
also given the retarded Green’s functions of the D’Alembert equation in any dimensions w
was in fact constructed rigorously a long time ago.3 Motivated by these works, we are interest
in the radiation problem of accelerated point charges in all even dimensions~for the reason why
we did not consider odd dimensions, please see Appendix B!. Here we find the Lie´nard–Wiechert
potentials corresponding to the massless scalar and the Maxwell fields in all even dimensio
then use these potentials to relate the radiation from an accelerated point particle to its moti
the geometry of its trajectory. We derive the energy flux for this radiation and show that ac
ating point charged particles lose energy in all even dimensions.

In Sec. II, we develop the kinematics of a curveC in a D-dimensional Minkowski manifold
MD . In Sec. III we find the Lie´nard–Wiechert potentials of massless free scalar fields in an
dimensional Minkowski space. We calculate the energy radiated due to the acceleration. W
that in all even dimensions such particles lose energy, as can be expected. In Sec. IV, we de
the Liénard–Wiechert potentials for the Maxwell theory. We give a recursion relation betwee
vector potentials of the theory in two consecutive even dimensions. In Sec. IV, we also sho
particles carrying electric charges lose energy in all even dimensions. We construct explici
tions of the electromagnetic vector field due to the acceleration of charged particles in 4,
dimensions. We then find the energy fluxes in 4,6,8 dimensions due to acceleration. In App
A, we give the Serret–Frenet equations in an arbitrary Minkowski space–time and also
auxiliary tools used in the calculation of the energy flux integrals. In Appendix B, we give a p
of the recursion relation introduced in Sec. IV.

II. CURVES IN D-DIMENSIONAL MINKOWSKI SPACE

In our previous works,4–6 we developed a curve kinematics to be utilized in finding n
solutions and in calculating energy fluxes due to the acceleration in the framework of Eins
general theory of relativity. Here we use the same approach to solve the scalar and Maxwe

a!Electronic mail: gurses@fen.bilkent.edu.tr
b!Electronic mail: sarioglu@metu.edu.tr
46720022-2488/2003/44(10)/4672/9/$20.00 © 2003 American Institute of Physics
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equations in all even dimensions. For this purpose, we shall now give a summary of the geo
of a regular curve inMD , Minkowski space–time manifold of dimensionD.

Let zm(t) describe a smooth curveC in MD , wheret is the arclength parameter of the curv
From an arbitrary pointxm outside the curve, there are two null lines intersecting the curveC.
These points are called the retarded and the advanced times. LetF be the distance~world func-
tion! between the pointsxm andzm(t), then by definition it is given by

F5 1
2 hmn ~xm2zm~t!! ~xn2zn~t!!, ~1!

wherehmn5diag(21,1,...,1). HenceF vanishes at the retarded,t0 , and advanced,t1 , times. In
this work we shall focus on the retarded case only. The Green’s function for the vector po
chooses this point on the curveC.7,8 By differentiatingF with respect toxm and lettingt5t0 , we
get

lm[t ,m5
xm2zm~t0!

R
, R[ żm~t0! ~xm2zm~t0!!, ~2!

whereR is the retarded distance,lm is a null vector, and a dot over a letter denotes differentiat
with respect tot0 . The derivatives ofR andlm , using~2!, are given by

lm,n5
1

R
@hmn2 żm ln2 żn lm2~A2e! lmln#, ~3!

R,m5~A2e! lm1 żm , ~4!

where

A5 z̈m ~xm2zm!, żm żm5e50,61. ~5!

Heree50,21 for null and time-like curves, respectively. Furthermore, we have

lm żm51, lm R,m51. ~6!

Letting a5 A/R, it is easy to prove that

a,m lm50. ~7!

Similarly, other scalars (a1 ,a2 ,...), satisfying the same property~7! obeyed bya can be defined

ak[lm

dk z̈m

dt0
k , k51,2,...,n. ~8!

Moreover one has

ak,a la50, ~9!

for all k (k50 is also included if we leta05a). For a more detailed discussion, please refer
Ref. 4. Heren is a positive integer which depends on the dimensionD of the manifoldMD . An
analysis using Serret–Frenet frames shows that the scalars (a, ak) are related to the curvatur
scalars of the curveC in MD . The number of such scalars isD21.9 Hence we letn5D21.
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III. MASSLESS SCALAR FIELD

Let f describe a massless scalar field satisfying the free field equation

hmn
]2 f

]xm]xn 50. ~10!

Let D be a positive even integer, andf (D) and f (D12) denote the retarded solutions~Liénard–
Wiechert potentials! of the massless scalar field inD andD12 dimensions, respectively. Then

f (D12)5
1

R

d

dt
f (D). ~11!

In this recursion relation we emphasize that the expressions on the right-hand side are th
D-dimensions. Take the solutionf (D) in D-dimensions, take itst derivative and divide this by the
R of D-dimensions. The result is the solutionf (D12) of D12-dimensions. For the proof o
relation ~11! see Appendix B. In the following we explicitly give these solutions forD
54,6,8,10:

f (4)5
c

R
, ~12!

f (6)5
1

R2 @ ċ2pc#, ~13!

f (8)5
1

R3 @ c̈23pċ1~2a113p2!c#, ~14!

f (10)5
1

R4 Fd3c

dt3 26pc̈1~15p224a1!ċ1S 2a2110pa1215p31
1

R
ża

d3za

dt3 D cG , ~15!

wherec5c(t) is the ~time dependent! scalar charge andp[a2 e/R.
The flux of massless scalar field energy is then given by~see Refs. 7 and 11 for this definitio

and also for the integration surfaceS)

dE52E
S

żm Tf
mn dSn , ~16!

whereTmn
f 5]m f ]n f2 1

4 (hab ]a f ]b f)hmn is the energy momentum tensor of the massl
scalar fieldf. The surface element dSm on S is given by

dSm5nmRD23dt dV, ~17!

wherenn is orthogonal to the velocity vector fieldżm which is defined through

lm5e żm1e1

nm

R
, nm nm52eR2. ~18!

Here e1561. For the remaining part of this work we shall assumee521 (C is a time-like
curve!. One can considerS in the rest frame as a sphere of radiusR. Here dV is the solid angle.
Letting dE/dt5Nf , we have

Nf
(D)52E

SD22
żm Tf

mn nn RD23 dV, ~19!
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whereSD22 is the (D22)-dimensional sphere centered att5t0 on the curveC. At very large
values ofR the energy flux is given by

Nf
(D)52E

SD22
dV RD23 ~ ża ]a f!~nb ]b f!.

It turns out that the energy flux expression has a fixed sign for allD. The energy flux of the
massless scalar fieldf asR→` is given by

Nf
(D)52e1E

SD22
@j (D)#2 dV,

where we obtainR independent functions~for eachD) j (D) from

j (D)5 lim
R→`

@RD/2 f (D12)#.

As an example letD54. We takef (6) from ~13!, multiply it by R2 and letR→` ~thenp→a),
and finally we obtainj (4). The explicit expressions ofj (D) are as follows:

j (4)5 ċ2ac, ~20!

j (6)5 c̈23aċ1~2a113a2!c, ~21!

j (8)5
d3c

dt3 26ac̈1~15a224a1!ċ1~2a2110aa1215a3!c, ~22!

j (10)5
d4c

dt4 210a
d3c

dt3 1~45a2210a1!c̈2~5a2260aa11105a3!ċ

2~a3215aa2210a1
21105a1a22105a4! c. ~23!

Hence we have~assumingc5constant)

Nf
(4)52e1S 4p

3 D c2 k1
2 , ~24!

Nf
(6)52e1S 8p2

105D c2@20k1
417k̇1

217k1
2k2

2#, ~25!

Nf
(8)52e1S 16p3

10 395D c2$99@~ k̈124k1
32k1k2

2!21~2k̇1k21k1k̇2!21k1
2k2

2k3
2#

1k1
2 @900k1

411100k1
2k2

213597k̇1
2#%. ~26!

IV. ELECTROMAGNETIC FIELD

In the Lorentz gauge (]m Am50), the Maxwell equations reduce to the wave equation for
vector potentialAm , hmn ]m ]n Aa50. By using the curveC, we can construct divergence fre
~Lorentz gauge! vector fieldsAa satisfying the wave equation outside the curveC in any even
dimensionD. Similar to the case of the massless scalar field, such vectors obey the follo
recursion relation

Am
(D12)5

1

R

d

dt
Am

(D) . ~27!
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In the recursion relation aboveAm
(D) is the electromagnetic vector potential in evenD-dimensions,

with m50,1,...,D21. On the right-hand side of the recursion relation all operations are don
D-dimensions, just like the scalar case. However the result is to be considered as the elect
netic vector potential ofD12-dimensions, withm50,1,...,D11 on the left-hand side. As an
example we haveAm

(4)5 żm /R as the electromagnetic vector potential of four dimensions.8 Hereżm

is the four velocity,R andt are, respectively, the retarded distance and time in four dimens
Using the recursion relation~27! the right-hand side becomes

z̈m2ażm

R2 1e
żm

R3 .

We then regard this expression as the solutionAm
(6) of the Maxwell field equations in six-

dimensions. Indeed it satisfies both the Lorentz condition and the field equations o
dimensions, as can be verified separately. Starting fromD54, we can generate all even dime
sional vector potentials satisfying the Maxwell equations. For instance, the vector potentia
D54,6,8,10 are explicitly given by

Am
(4)5

żm

R
, ~28!

Am
(6)5

1

R2 @ z̈m2pżm#, ~29!

Am
(8)5

1

R3 Fd3zm

dt3 23pz̈m1~2a113p2!żmG , ~30!

Am
(10)5

1

R4 Fd4zm

dt4 26p
d3zm

dt3 1~15p224a1!z̈m1S 2a2110pa1215p31
1

R
ża

d3za

dt3 D żmG .
~31!

The flux of electromagnetic energy is then given by7 ~the integration surfaceS is also given in this
reference!

dE52E
S

żm Te
mn dSn , ~32!

whereTmn
e 5Fma Fn

a2 1
4 F2hmn is the Maxwell energy momentum tensor,Fmn5An,m2Am,n is

the electromagnetic field tensor andF2[Fab Fab .
Letting dE/dt5Ne ,10 we have

Ne
(D)52E

SD22
żm Te

mn nn RD23 dV. ~33!

At very large values ofR, for all evenD, we get

Ne
(D)52e1E

SD22
jm

(D) jn
(D) hmn dV, ~34!

where

jm
(D)5 lim

R→`

@Am
(D12) RD/2#, ~35!

so thatlm jm
(D)50 for all D.
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Here we have two remarks. The first one is on the gauge dependence of~35!. The only gauge
freedom left in our solutions isAm→Am1]mf, wheref satisfies the scalar wave equation~10!.
However we have already found the solutions of the scalar wave equation for all even dimen
It can be shown that the contribution of such scalar functions to the norm ofjm

(D) is zero in the
limit R→`. Our second remark is on the sign ofNe

(D) in ~34!. The vectorsjm
(D) in all even

dimensions are orthogonal to the null vectorlm , hence they must be either~i! space-like vectors,
~ii ! proportional tolm , or ~iii ! zero vectors.11 They are zero only when the curveC is a straight
line which leads to no radiation. They cannot be proportional to the null vectorlm either, because
this again leads to the trivial case of zero radiation. In the first three cases~4, 6, 8 dimensions! it
can be easily observed that zero radiation implies thatjm

(D) is a zero vector. Hencejm
(D) is a

space-like vector in all even dimensions. Therefore the sign of the right-hand side of~34! is the
same in all dimensions. These vectors are explicitly given as follows:

jm
(4)5 z̈m2ażm , ~36!

jm
(6)5

d3zm

dt3 23az̈m1~2a113a2!żm , ~37!

jm
(8)5

d4zm

dt4 26a
d3zm

dt3 1~15a224a1!z̈m1~2a2110aa1215a3! żm , ~38!

jm
(10)5

d5zm

dt5 210a
d4zm

dt4 1~45a2210a1!
d3zm

dt3 1~25a2160aa12105a3!z̈m

1~2a3115aa2110a1
22105a1a21105a4!żm . ~39!

These lead to the following energy flux expressions:

Ne
(4)52e1

8p

3
k1

2 , ~40!

Ne
(6)52e1

32p2

15 S k̇1
21k1

2k2
21

9

7
k1

4D , ~41!

Ne
(8)52e1

32p3

10395H 297F S k̈12
4

3
k1

32k1 k2
2D 2

1~2k̇1 k21k1 k̇2!21k1
2 k2

2 k3
2G

14k1
2 @300k1

41506k1
2 k2

21825k̇1
2#J . ~42!

To be compatible with the classical results,7,8 one should takee1521.

V. CONCLUSION

In this work we have considered radiation of scalar and vector fields due to accelerat
point charged particles. We first examined the geometric properties of their paths in an
dimensional Minkowski spaceMD . By using the curve kinematics we developed, we have fi
found the retarded solutions of the scalar field equations inMD . These solutions describe th
potentials of the accelerated scalar charges and we have examined the energy loss due t
radiation. We have shown that in all even dimensions such scalar point particles lose ener
have given explicit examples forD54,6,8,10. We then found the retarded solutions of the M
well field equations that describe the point particles carrying electric charges. Again, usin
curve kinematics we developed an algorithm to calculate the vector potentialAm in
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D12-dimensions from the one inD-dimensions. We have given explicit examples forD
54,6,8. We have calculated the energy flux in each case, and we have shown that particl
energy due to acceleration in all even dimensions.
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APPENDIX A: SERRET–FRENET FRAMES

In this appendix, we first give the Serret–Frenet frame inD dimensions. Here we shall assum
that the curveC described in Sec. II is time-like and has the tangent vectorTm5 żm. Starting from
this unit tangent vector, by repeated differentiation with respect to the arclength parametert0 , one
can generate an orthonormal frame$Tm,N1

m ,N2
m ,...,ND21

m %, theSerret–Frenet frame:

Ṫm5k1 N1
m , ~A1!

Ṅ1
m5k1 Tm2k2 N2

m , ~A2!

Ṅ2
m5k2 N1

m2k3 N3
m , ~A3!

¯

ṄD22
m 5kD22 ND23

m 2kD21 ND21
m , ~A4!

ṄD21
m 5kD21 ND22

m . ~A5!

Here k i ( i 51,2,...,D21) are the curvatures of the curveC at the pointzm(t0). The normal
vectorsNi ( i 51,2,...,D21) are space-like unit vectors. Hence at the pointzm(t0) on the curve
we have an orthonormal frame which can be used as a basis of the tangent space~of MD) at this
point. In Sec. II, we have defined some scalars

ak5
dkz̈m

dt0
k lm,

where

lm5eTm1e1

nm

R
.

Herenm is a space-like vector orthogonal toTm. It can be expressed as a linear combinat
of the unit vectorsNi ’s as

nm5a1 N1
m1a2 N2

m 1¯1aD21 ND21
m ,

where a1
21a2

21¯1aD21
2 5R2. One can choose the spherical anglesu,f1 ,...,fD24

P(0,p), fD23P(0,2p) such that

a15R cosu, a25R sinu cosf1 , a35R sinu sinf1 cosf2 , . . . ,

aD225R sinu sinf1¯ sinfD24 cosfD23 ,

aD215R sinu sinf1¯ sinfD24 sinfD23 .
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Hence we can calculate the scalarsak in terms of the curvatures of the curveC and the angles
(u,f1 ,...,fD23) at the pointzm(t0). We need these expressions in the evaluation of energy
formulas. As an example we givea anda1 :

a52ee1k1 cosu, a15k1
22ee1k̇1 cosu1ee1k1 k2 sinu cosf1 . ~A6!

The rest of the scalars can be determined similarly. It is clear that these scalars,ak , depend on the
curvatures and the spherical angles, for allk.

APPENDIX B: THE PROOF OF THE RECURSION RELATIONS „11… AND „27…

Here we give the proof for the vector potential case. The same type of proof applies al
the scalar case. Using the recursion relation~27! successively we get

Am
(D)5S 1

R

d

dt D ~D/2! 22 żm

R
. ~B1!

On the other hand, from Refs. 1 and 2, we have

Am
(D)5E G~x2z~t!! żm dt, ~B2!

where t is the parameter of the curveC. The integral here is carried on the range
tP(2`,`). HereG(x2z(t)) is the retarded Green function given by

G~x2z~t!!5u~x02z0! d~D/2! 22~F!. ~B3!

Here F is the world function given by~1!, u(x) is the Heaviside step function anddk(x)
[ (dk/dxk) d(x). Here we assume thatD is an even integer.@When D is an odd integer, the
expression for the Green function in~B3! contains the step function instead of thed-function.
Hence the potentials in all odd dimensions remain nonlocal~integral expressions!. This makes our
curve kinematics ineffective.# The zeros ofF denote the advanced and retarded proper times
the curveC, but the step functionu(x0) chooses the retarded one. Since the integration is ove
curve parametert in ~B2!, it is better to transform the derivative of the delta function with resp
to F to the derivative with respect tot. As a simple example consider theD56 case

d

dF
d~F!5F 1

dF/dt

d

dt
d~F!G

F50

. ~B4!

It is easy to show that dF/dt 52R. The delta functiond~F! can be expressed as follows:

d~F!5
d~t2t0!

R
1

d~t2t1!

R
.

The second term will vanish identically due to the step function in~B3!. Hence

Am
(6)5

1

R

d

dt

żm

R
,

or simply A(6)5(1/R)(d/dt) A(4). This verifies our relation~27!. For the general case, we nee
higher order derivatives ofd~F! at F50. We find such terms by using~B4! and taking successive
derivatives. In the general case, for allk50,1,2,... we obtain~whenF50)

dk

dFk d~F!5F S 21

R

d

dt D k

d~F!G . ~B5!
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Using this expression in the Green’s function~B3! for k5 D/222, inserting it in the integral
equation~B2!,

Am
(D)5E u~x02z0! dD/2 22~F! żm dt ~B6!

5E u~x02z0! S 21

R

d

dt D D/2 22

d~F! żm dt, ~B7!

and integrating by parts, we obtain~B1!.
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The Green–Kubo formula and power spectrum
of reversible Markov processes

Da-Quan Jianga) and Fu-Xi Zhangb)

LMAM, School of Mathematical Sciences, Peking University,
Beijing 100871, People’s Republic of China

~Received 30 May 2003; accepted 30 June 2003!

As is known, the entropy production rate of a stationary Markov process vanishes
if and only if the process is reversible. In this paper, we discuss the reversibility of
a stationary Markov process from a functional analysis point of view. It is shown
that the process is reversible if and only if it has a symmetric Markov semigroup,
equivalently, a self-adjoint infinitesimal generator. Applying this fact, we prove that
the Green–Kubo formula holds for reversible Markov processes. By demonstrating
that the power spectrum of each reversible Markov process is Lorentz-typed, we
show that it is impossible for stochastic resonance to occur in systems with zero
entropy production. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1610780#

I. INTRODUCTION

The question whether a steady system is in equilibrium, correspondingly, whether a stat
stochastic process is reversible, has attracted much interest from physicists as w
mathematicians.14,22,35,24–27,9,19,20,34In nonequilibrium statistical physics, the concept of entro
production was put forward to describe how far a specific state of a system is from its equili
state.14,22,35In Refs. 26 and 27, a measure-theoretic definition of entropy production rate is
for stochastic processes, unifying different entropy production formulas in various concrete
In fact, the entropy production rate of a stationary Markov process can be defined as the s
relative entropy of the probability distribution of the process on the path space with respect
of its time-reversal. If the state space of the process is a Polish space and its trajectories a
continuous having left limits, then by Theorem 10.4 in Varadhan,38 it is obvious that the entropy
production rate vanishes if and only if the process is reversible. A stochastic processj5$j t% t>0 is
called reversible if for each t.0, $js%0<s<t has the same distribution with its time-revers
$j t2s%0<s<t . For example, suppose thatj is a stationary, irreducible and positive recurre
continuous-time Markov chain on its canonical orbit space with finite state spaceX, transition
density matrixQ5(qi j ) i , j PX , and invariant distributionP5$p i% i PX . Let P andP2 be the dis-
tributions of the Markov chain and its time-reversal, respectively, and denote their restrictio
F 0

t 5s(js,0<s,t) by P[0,t) and P[0,t)
2 , respectively, then theentropy production rateof j is

defined as

epª lim
t→1`

1

t
H~P[0,t) ,P[0,t)

2 !,

where H(P[0,t) ,P[0,t)
2 ) is the relative entropy ofP[0,t) with respect toP[0,t)

2 and is defined by
EP[0,t) log(dP[0,t) /dP[0,t)

2 ) in case thatP[0,t) is absolutely continuous with respect toP[0,t)
2 , other-

wise, by1`. One sufficient and necessary condition forP[0,t) andP[0,t)
2 being mutually absolutely

continuous isqi j .0⇔qji .0, ; i , j PX. The formula forep is given in Refs. 25–27, in fact,

a!Electronic mail: jiangdq@math.pku.edu.cn
b!Electronic mail: zhangfxi@math.pku.edu.cn
46810022-2488/2003/44(10)/4681/9/$20.00 © 2003 American Institute of Physics
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ep5
1

2 (
i , j PX

~p iqi j 2p jqj i !log
p iqi j

p jqj i
>0. ~1!

Obviously,ep vanishes if and only ifj is in detailed balance~i.e.,p iqi j 5p jqj i ,; i , j PX), equiva-
lently, j is reversible. We refer the reader to Refs. 26–29, 31, and 33 for detailed discussion
the entropy production and reversibility of diffusion processes~see also Example III.5 below!.

For a stationary Markov process, the adjoint semigroup of its Markov semigroup reflec
evolution of the corresponding time-reversed process. In Sec. II we study its Markov semi
and the relationship with its adjoint semigroup. The following equivalent conditions for the
kov process being reversible are brought out:~1! the semigroup of the process is the same as
adjoint semigroup;~2! the infinitesimal generator of the process is symmetric; and~3! the infini-
tesimal generator is self-adjoint.

As is known, in the theory of statistical physics, the fluctuation–dissipation theorem hold
systems close to equilibrium in the linear response regime. The Green–Kubo formula is a v
of the fluctuation–dissipation theorem. It tells that the transport coefficients~respectively, the
susceptibility, i.e., the Fourier transform of the response function! corresponding to the thermo
dynamic forces in the system can be expressed as the integral of a time-correlation fu
~respectively, its Fourier transform! of the thermodynamic currents induced by the forces, wh
the correlation function is evaluated with respect to the equilibrium state of
system.3,4,7,10–13,15–18,21,36,37Thus the formula connects the energy dissipation in an irrevers
process to the thermal fluctuation in equilibrium. In the case of diffusion processes, the G
Kubo formula takes its earliest form, the Einstein relation, which says that the integral o
time-correlation function of velocities is equal to the mean value of the diffusion coefficien23,6

By means of matrix calculations, Qianet al.30 deduces the Green–Kubo formula for reversib
Markov chains with finite states and continuous time parameter. Ruelle shows in Ref. 34 th
Green–Kubo formula holds for some smooth dynamical systems.

In Sec. III, exploiting the results in Sec. II, we verify that the Green–Kubo formula holds
general reversible Markov processes. Concretely, suppose thatj5$j t% t>0 is a reversible Markov
process with initial invariant distributionm, and f ,g are two arbitrary observables in a certa
range. LetVf andD f ,g be, respectively, the drift coefficient and the diffusion coefficient ofj with
respect tof and$ f ,g% ~see Sec. III below for the definitions!, then

1

2 E D f ,g~x!m~dx!5E
0

1`

E@Vf~j t!V
g~j0!#dt.

Though our form of the Green–Kubo formula addresses the functions rather than the paths
selves, it holds for plentiful observables and can be widely applied to jump processes and
acting particle systems.

In Sec. IV, we apply the results in Sec. II to discuss the relationship between reversibilit
the occurrence of stochastic resonance. Traditionally,stochastic resonancemeans that the respons
of a nonlinear system to a periodic signal may be enhanced by an optimal strength of nois
it is marked by the indispensable biased peaky power spectrum. Now stochastic resonan
been extensively studied, ranging from the conventional one with a periodic driving2,1,8 to the later
extended one without any external periodic force.5,32 We prove that the power spectrum of ea
reversible Markov process is Lorentz-typed, which means that the spectrum peak is just ce
at the origin. Hence it is impossible for stochastic resonance to occur in systems with zero e
production. Previously, using matrix calculations, Qianet al.30 obtained such a result for reversib
continuous-time Markov chains with finite states.
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II. EQUIVALENT CONDITIONS FOR A MARKOV PROCESS BEING REVERSIBLE

Let j5$j t% t>0 be a stationary Markov process with Polish state space (X,B) and initial
distribution m. Denote byL2(X,m), or simply by L2, the Hilbert space of real functions onX
which are square-integrable with respect tom. For any f ,gPL2, let

^ f ,g&5E f ~x!g~x!m~dx!, i f i5A^ f , f &.

Denote the transition semigroup ofj by $T(t):t>0%, i.e.,

T~ t ! f ~x!5E@ f ~j t!uj05x#5E f ~y!p~ t,x,dy!,

wherep(t,x,dy) is the transition function ofj. Notice that

EuE~ f ~j t!uj0!u2<E@E~ u f ~j t!u2uj0!#5Eu f ~j t!u25E u f ~x!u2m~dx!,

sincem is an invariant measure. This implies thatT(t) is contractive onL2(X,m), i.e., iT(t)i
<1. Assume that$T(t)% is strongly continuous, i.e.,

lim
t↓0

iT~ t ! f 2 f i50, ; f PL2.

Then $T(t)% is a strongly continuous contraction semigroup onL2. Denote its infinitesimal gen-
erator byA, i.e.,

D~A!5$ f PL2:@T~ t ! f 2 f #/t converges inL2 as t decreases to 0%,

Af 5 lim
t↓0

T~ t ! f 2 f

t
, ; f PD~A!.

Remark II.1:The strong continuity of$T(t)% is weaker than the condition that$T(t)% is
normal, i.e., limt↓0iT(t) f 2 f i`50 for any f PB(X), where B(X) is the set of all essentially
bounded measurable functions equipped with the supreme normi f i`5 inf$M :u f (x)u
<M , m-a.s.%. The reason is thati•i` is stronger thani•i andB(X) is dense inL2(X,m) in i•i.

Now we consider the adjoint semigroup of$T(t)% with respect tom, which is denoted by
$T* (t):t>0%. By the definition ofT(t), for any f ,gPL2,

^ f ,T~ t !g&5E f ~x!T~ t !g~x!dm5E@ f ~j0!T~ t !g~j0!#

5E@ f ~j0!E~g~j t!uj0!#5E@ f ~j0!g~j t!#. ~2!

Hence

^T* ~ t ! f ,g&5^ f ,T~ t !g&5E@ f ~j0!g~j t!#

5E@E~ f ~j0!uj t!g~j t!#5E E~ f ~j0!uj t5x!g~x!m~dx!,

which yields

T* ~ t ! f ~x!5E~ f ~j0!uj t5x!. ~3!

T(t) is contractive, so isT* (t). $T* (t):t>0% can be restricted on its center of strong continu
to become a strongly continuous and contractive semigroup, whose generator is denoted bA 2.
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Remark II.2:There are two reasons to denote the generator of$ T* (t) % by A 2 rather than
A* . First, in the theory of functional analysis,A* is used to denote the adjoint operator ofA, i.e.,

D~A* !5$ f PL2u 'gPL2, s.t. ^ f ,Ah&5^g,h&,;hPD~A!%,

andA* fªg. Notice thatA 2,A* , since for anyf PD(A 2) and anyhPD(A), it holds that

^A 2 f ,h&5 lim
t↓0

K T* ~ t ! f 2 f

t
,hL 5 lim

t↓0
K f ,

T~ t !h2h

t L 5^ f ,Ah&.

Second, by~3!, $T* (t)% is actually the semigroup of the time-reversed process ofj.
Recall that a stationary Markov processj being reversible is equivalent to that (j t ,j0) has the

same joint distribution as (j0 ,j t) for any t>0. Therefore,j is reversible if and only ifT(t)
5T* (t) for any t>0, which illumines us to study the reversibility by the semigroup theory.

LC
2
ª$ f 1 ig: f ,gPL2%

be the complex Hilbert space, wherei 2521. Denote byT̃(t) the natural extension ofT(t) to LC
2 .

Then$T̃(t):t>0% is also a strongly continuous and contractive semigroup. Its generatorÃ acts on
the domainD(Ã)5$ f 1 ig: f ,gPD(A)% asÃ( f 1 ig)5Af 1 iAg.

Theorem II.3: The following statements are equivalent to each other:

(1) The Markov processj is reversible;
(2) T(t)5T* (t) for any t>0;
(3) $T* (t)% is a strongly continuous contraction semigroup on L2(X,m), and its infinitesimal

generatorA 25A;
(4) A is symmetric, i.e., ^Af ,g&5^ f ,Ag& for any f,gPD(A);
(5) Ã is self-adjoint.

Proof: (1)⇔(2): j is reversible if and only ifE@ f (j0)g(j t)#5E@ f (j t)g(j0)# for any f ,g
PL2 and t>0. By ~2!, it is equivalent to that̂ f ,T(t)g&5^T(t) f ,g&, i.e., T(t)5T* (t) for any t
>0.

(2)⇒(3) is obvious.
(3)⇒(4): SinceA5A 2, A,A* by Remark II.2. Therefore,A is symmetric.
(4)⇒(2): Let $R(l):l.0% be the resolvent operators of the semigroup$T(t)%. For any f

PL2, R(l) f PD(A). SinceA is symmetric,

^AR~l! f ,R~l!g&5^R~l! f ,AR~l!g&, ; f ,gPL2,l.0.

Since (lI 2A)R(l)5 id, ^ f ,R(l)g&5^R(l) f ,g& for any l.0. By the inverse Laplace trans
form, ^ f ,T(t)g&5^T(t) f ,g& for any t>0. HenceT(t)5T* (t) for any t>0.

(4)⇔(5): It is not hard to check thatA is symmetric ifÃ is self-adjoint. Suppose thatA is
symmetric. So isÃ. Denote, respectively, byr(Ã) ands(Ã) the resolvent set and the spectru
set ofÃ. SinceÃ is the generator of the strongly continuous and contractive semigroup$T̃(t)%, it
is closed, and from the Hille–Yosida theorem follows that (0,1`),r(Ã). Notice that the spec-
trum set of a closed symmetric operator can only be one of the following four cases:~1! the
closure of the upper half complex plane;~2! the closure of the lower half complex plane;~3! the
whole plane and~4! a subset of the real numbers. It follows thats(Ã),(2`,0#. HenceÃ is
self-adjoint. j

Remark II.4:The equivalence among~2!, ~3!, and~4! in Theorem II.3 is already known. We
present the proof here for the convenience of the reader and for the completeness of the
sion.
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III. GREEN–KUBO FORMULA FOR REVERSIBLE MARKOV PROCESSES

In this section we use Theorem II.3 to prove that the Green–Kubo formula holds for reve
Markov processes. As before, letj5$j t% t>0 be a stationary Markov process. ThenE@ f (j t1u)uj t

5x#5T(u) f (x) for any f PL2(X,m) and t,u>0.
Proposition III.1: For any fPD(A),

lim
u↓0

1

u
E@ f ~j t1u!2 f ~j t!uj t5x#5Af ~x! in L2~X,m!. ~4!

For any f,gPD(A) such that f gPD(A),

lim
u↓0

1

u
E@~ f ~j t1u!2 f ~j t!!~g~j t1u!2g~j t!!uj t5x#

5A~ f g!~x!2~gAf !~x!2~ fAg!~x! in L1~X,m!. ~5!

Proof: Equation~4! is just the definition of the infinitesimal generator. It is sufficient to pro
~5! in the caset50 sincej is stationary. For any functionsf ,g,

~ f ~ju!2 f ~j0!!~g~ju!2g~j0!!5~ f g!~ju!2~ f g!~j0!2 f ~j0!~g~ju!2g~j0!!

2~ f ~ju!2 f ~j0!!g~j0!.

We then obtain the result since

1

u
E@ f ~j0!~g~ju!2g~j0!!uj05x#5

1

u
f ~x!E@g~ju!2g~j0!uj05x#→ f ~x!Ag~x!

asu decreases to 0. j

Definition III.2: For any fPD(A), the drift coefficient ofj at point x with respect to f is
defined as

Vf~x!5 lim
u↓0

1

u
E@ f ~ju!2 f ~j0!uj05x#.

Sincej is stationary andVf(x)5Af (x), we haveE@Vf(j t)#50, ;t>0.
Definition III.3: For any f,gPD(A) such that f gPD(A), the diffusion coefficient ofj at

point x with respect to$ f ,g% is defined as

D f ,g~x!5 lim
u↓0

1

u
E@~ f ~ju!2 f ~j0!!~g~ju!2g~j0!!uj05x#.

Theorem III.4: @Green–Kubo Formula# Assume that the stationary Markov processj is
reversible. Then, for any f,gPD(A) such that f gPD(A),

1

2 E D f ,g~x!m~dx!5E
0

1`

E@Vf~j t!V
g~j0!#dt.

Proof: By Proposition III.1 and~2!,

E@Vf~j t!V
g~j0!#5E@Af ~j t!Ag~j0!#5^T~ t !Af ,Ag&. ~6!

Sincej is reversible, by Theorem II.3,Ã is self-adjoint. HenceÃ has a spectral representation
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Ã5E
2`

0

ldEl .

It follows that

T̃~ t !5E
2`

0

eltdEl , T̃~ t !Ã5E
2`

0

eltldEl .

SinceÃw5Aw and T̃(t)c5T(t)c for any wPD(A) andcPL2,

^T~ t !Af ,Ag&5K E
2`

0

leltdEl f ,E
2`

0

ldElgL 5E
2`

0

l2eltd^El f ,g&. ~7!

Denote byud^El f ,g&u the total variation measure of the sign measure d^El f ,g&, then by the
Fubini theorem and the Cauchy–Schwartz inequality,

E
0

1`E
2`

0

l2eltud^El f ,g&udt5E
2`

0 E
0

1`

l2eltdtud^El f ,g&u

5E
2`

0

~2l!ud^El f ,g&u

<F E
2`

0

~2l!diEl f i2G1/2F E
2`

0

~2l!diElgi2G1/2

5^2Af , f &1/2^2Ag,g&1/2,1`,

therefore, from~6! and ~7! it follows that

E
0

1`

E@Vf~j t!V
g~j0!#dt5E

0

1`E
2`

0

l2eltd^El f ,g&dt

5E
2`

0 E
0

1`

l2eltdtd^El f ,g&

5E
2`

0

~2l!d^El f ,g&

5K E
2`

0

~2l!dEl f ,E
2`

0

dElgL 52^Af ,g&.

It remains to prove that*D f ,g(x)m(dx)522^Af ,g&. By Proposition III.1,

D f ,g~x!5A~ f g!~x!2~gAf !~x!2~ fAg!~x!.

Sincej is stationary,*A( f g)(x)m(dx)50. Hence

E D f ,g~x!m~dx!5E @A~ f g!~x!2gAf ~x!2 fAg~x!#m~dx!

52E gAf ~x!m~dx!2E fAg~x!m~dx!522^Af ,g&,

which completes the proof. j
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Example III.5:Suppose thatj5$j t% t> 0 is a stationary diffusion process onRd with infini-
tesimal generator

A5
1

2
¹•~A~x!¹!1b~x!•¹5

1

2 (
i , j 51

d
]

]xi
ai j ~x!

]

]xj
1(

i 51

d

bi~x!
]

]xi
,

whereA(x)5(ai j (x))1< i , j <d , b(x)5(b1(x), . . . ,bd(x))T, the componentsai j (x) andbi(x) are
smooth functions onRd, and the diffusion coefficientA(x) is locally elliptic. By the construction
of j in Ref. 29, its invariant initial distribution has a strictly positive smooth densityr, and its
transition semigroup is strongly continuous onL2(Rd,r). As is shown in Refs. 26–29 and 31, th
entropy production rateep of j can be expressed as

ep5
1

2 ERd
~2A21b2¹ logr!TA~2A21b2¹ logr!~x!r~x!dx.

Moreover, j is reversible if and only ifep vanishes, equivalently, 2A21b5¹ logr. Suppose
xi ,xj ,xixjPD(A), ; i , j . For each fixedi , j , let f (x)5xi andg(x)5xj , then direct computation
yields that

Vi~x!ªVf~x!5bi~x!1
1

2 (
k51

d
]aik

]xk
~x!, Vj~x!ªVg~x!5bj~x!1

1

2 (
k51

d
]ajk

]xk
~x!,

andD f ,g(x)5ai j (x). In fact, they are just the drift coefficients and diffusion coefficients ofj. In
case thatj is reversible, by Theorem III.4, one can obtain the following Einstein relation:

E
0

1`

E@Vi~j0!Vj~j t!#dt5
1

2 ERd
ai j ~x!r~x!dx,; i , j .

IV. POWER SPECTRUM OF REVERSIBLE MARKOV PROCESSES

We keep the assumptions and notations as before. By the strong continuity assumption
transition semigroup$T(t):t>0%, for each observable functionf PL2(X,m), the autocorrelation
functionCf(t)5E@ f (j t) f (j0)#2E@ f (j t)#E@ f (j0)# of the stationary process$ f (js)%s>0 is a con-
tinuous function oft. Hence the process$ f (js)% is L2-continuous, i.e.,

lim
t→0

Eu f ~js1t!2 f ~js!u250, ;s>0.

Suppose

E
0

1`

uCf~ t !udt,1`, ~8!

then by the Wiener–Khinchin theorem, the spectral distribution function of$ f (j t)% has a non-
negative density

Sf~f!5
1

p E
0

1`

Cf~ t !cos~ft !dt, ;fPR.

Theorem IV.1: Suppose that the stationary Markov processj5$j t% t>0 is reversible, then for
each observable function fPL2(X,m) satisfying the condition (8), the spectral density Sf(f) is a
decreasing function on@0,1`), hence it is Lorentz-typed.

Proof: Let f̂ 5 f 2* f (x)m(dx), thenCf(t)5^ f̂ ,T(t) f̂ &. Sincej is reversible, by Theorem II.3
Ã is self-adjoint. HenceÃ has a spectral representation
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Ã5E
2`

0

ldEl .

By the dominated convergence theorem, one has

lim
t→1`

T~ t ! f̂ 5 lim
t→1`

E
2`

0

eltdEl f̂ 5E$0% f̂ ,

where the convergence is inL2 sense. Therefore,

lim
t→1`

Cf~ t !5^ f̂ ,E$0% f̂ &5iE$0% f̂ i2,

which together with the condition~8! implies E$0% f̂ 50. Then by the Fubini theorem, it follow
that

Sf~f!5
1

p E
0

1`

^ f̂ ,T~ t ! f̂ &cos~ft !dt5
1

p E
0

1`

cos~ft !dtE
(2`,0]

eltd^El f̂ , f̂ &

5
1

p E
0

1`

cos~ft !dtE
(2`,0)

eltd^El f̂ , f̂ &5
1

p E
(2`,0)

d^El f̂ , f̂ &E
0

1`

elt cos~ft !dt

5
1

p E
(2`,0)

ulu
l21f2 d^El f̂ , f̂ &,

hence the spectral densitySf(f) is a decreasing function on@0,1`). j

The Lorentz-typed power spectrum tells that noise could not induce any periodicity o
system modeled by the reversible Markov processj since the spectrum peak is just centered
f50. Therefore, it is impossible for stochastic resonance to occur in a reversible system,
entropy production rate vanishes.

Remark IV.2:As is shown above, if the Markov processj is reversible, thenCf(t) decreases
to iE$0% f̂ i2. Therefore, the condition thatT(t) f converges to* f (x)m(dx) in L2(X,m) is necessary
to define the spectral densitySf(f). It can be naturally weakened to

lim
t→1`

1

t E0

t

T~s! f ds5E f ~x!m~dx!.

Here we remark that for the stationary Markov processj, whether reversible or not, the distribu
tion P of j on its canonical orbit space~V,F! is ergodic with respect to the family of left-shif
operators onV if and only if its transition semigroup$T(t):t>0% is ergodic onL2(X,m) in sense
that for eachf PL2(X,m),

lim
t→1`

1

t E0

t

T~s! f ds5E f ~x!m~dx!,

where the convergence is inL2 sense.

ACKNOWLEDGMENTS

This work is supported by the 973 Funds of China for Nonlinear Science, the N
10271008, and the Doctoral Program Foundation of the Ministry of Education.
                                                                                                                



,’’ Phys.

y

,

. Phys.

versible

agnetic

,

s.

Fields

rder

.

rpre-

f the

temp.

tropy

nn.

A

on and

mpo-

ys.

v. Mod.

4689J. Math. Phys., Vol. 44, No. 10, October 2003 The Green–Kubo formula

                    
1Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A., ‘‘Stochastic resonance in climatic-change,’’ Tellus34, 10 ~1982!.
2Benzi, R., Sutera, A., and Vulpiani, A., ‘‘The mechanism of stochastic resonance,’’ J. Phys. A14, L453–L457~1981!.
3Callen, H.B., and Welton, T.A., ‘‘Irreversibility and generalized noise,’’ Phys. Rev.83, 34–39~1951!.
4de Groot, S.R., and Mazur, P.,Noneqilibrium Thermodynamics~North-Holland, Amsterdam, 1962!.
5Ditzinger, T., Ning, C.Z., and Hu, G., ‘‘Resonancelike responses of autonomous nonlinear systems to white noise
Rev. E50, 3508–3517~1994!.

6Fang, H.T., and Gong, G.L., ‘‘Einstein’s formula for stationary diffusion on Riemannian manifolds,’’Dirichlet Forms
and Stochastic Processes, Proceedings of the International Conference, Beijing, China, October 25–31, 1993, edited b
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Solvable models of Bose–Einstein condensates: A new
algebraic Bethe ansatz scheme
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A new algebraic Bethe ansatz scheme is proposed to diagonalize classes of inte-
grable models relevant to the description of Bose–Einstein condensation in dilute
alkali gases. This is achieved by introducing the notion ofZ-graded representations
of the Yang–Baxter algebra. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1605495#

I. INTRODUCTION

Theoretical studies into the behavior of Bose–Einstein condensates~BECs! continue at a
prolific rate, motivated by the experimental successes of producing condensates of atomic
gases1,2 and superpositions of atomic-molecular alkali gases.3,4 Many of the theoretical results to
date have been obtained through use of the Gross–Pitaevskii mean-field theory and gen
tions~see, e.g., Refs. 5–9!. However, such mean-field theory approaches have limited applicab
in regions of the parameter space where quantum fluctuations dominate. In these cases,
exact treatment of the model will give a reliable description of the physics.

In our recent work we have shown that one model describing Josephson tunneling be
two coupled BECs,10,11 and another that models coherent superpositions of atomic and mole
BECs,12 can both in fact be solved exactly in the framework of the algebraic Bethe ansatz
intention here is to develop a new mathematical approach which allows us to extend this m
to establish that very general classes of Hamiltonians for BECs admit exact solutions.
classes of Hamiltonians cannot be solved in the usual form of the algebraic Bethe ansatz.

In this article, three classes of solvable models relevant to Bose–Einstein condensa
dilute alkali gases are determined. This is achieved by formulating a new scheme for the alg
Bethe ansatz by introducing the notion ofZ-graded representations of the Yang–Baxter alge
The first model we will present is a six-parameter generalization of the canonical Jose
Hamiltonian7 ~which can also be considered as a two site Bose–Hubbard model! describing a
tunnel-coupled pair of trapped Bose–Einstein condensates. The Hamiltonian is also applic
model solid state Josephson junctions and coupled Cooper pair boxes.13 The second model we
present has six free parameters and the third one has ten parameters. They both describe
coupling between atomic and diatomic molecular BECs with additional interactions suc
S-wave scattering between the atoms, between the molecules, and between atoms and mo
Such effects were not included in Refs. 9 and 12 but are important for a quantitative desc
of experiments.14 Finally, we formulate the Slavnov formula for the scalar products betwee
Bethe eigenstate and an arbitrary Bethe vector, which facilitates the exact computation o
factors and correlations functions analogous to the results of Ref. 10.

II. BETHE ANSATZ FOR Z-GRADED REPRESENTATIONS OF THE YANG–BAXTER
ALGEBRA

The main ingredient in the study of exactly solvable quantum systems through the alg
Bethe ansatz,15,16 is the Yang–Baxter equation

a!Electronic mail: hqz@maths.uq.edu.au
b!Electronic mail: jrl@maths.uq.edu.au
46900022-2488/2003/44(10)/4690/12/$20.00 © 2003 American Institute of Physics
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R12~u2v !R13~u!R23~v !5R23~v !R13~u!R12~u2v !. ~1!

HereRjk(u) denotes the matrix in End (V^ V^ V) acting nontrivially on thej th andkth spaces
and as the identity on the remaining space. TheR-matrix solution may be viewed as the structur
constants for the Yang–Baxter algebra, denotedA, generated by the monodromy matrixT(u),

R12~u2v !T1~u!T2~v !5T2~v !T1~u!R12~u2v !. ~2!

The simplest case is that for thesl(2) invariantR-matrix, which will be the subject of our study
given by

R~u!5S 1 0 0 0

0 b~u! c~u! 0

0 c~u! b~u! 0

0 0 0 1

D , ~3!

with the rational functionsb(u)5u/(u1h) andc(u)5h/(u1h).
Setting

T~u!5S A~u! B~u!

C~u! D~u!
D , ~4!

it follows from the defining relations~2! that

@A~u!, A~v !#5@D~u!, D~v !#50,

@B~u!, B~v !#5@C~u!, C~v !#50,
~5!

A~u!C~v !5
u2v1h

u2v
C~v !A~u!2

h

u2v
C~u!A~v !,

D~u!C~v !5
u2v2h

u2v
C~v !D~u!1

h

u2v
C~u!D~v !.

Note that there are many more relations satisfied by the generators of the Yang–Baxter a
However, those given above are the only ones needed for the algebraic Bethe ansatz pr
which we investigate in the following. For convenience, we extendA by a unit elementI which
we will represent by the identity matrix in any representation.

We also introduce an auxiliary operatorZ, called thegrading operator, which satisfies the
relations

@Z, X~u!#5p$X~u!%.X~u!, ~6!

whereX5A, B, C, or D and p$A(u)%5p$D(u)%50,p$B(u)%51 and p$C(u)%521. We call
p$X(u)% P Z thegradationof X(u) and extend the gradation operation to the entire algebra by
requirement

p$u.f%5p$u%1p$f% ; u, f PA.

This definition for the grading operator is consistent with the defining relations ofA governed by
~2!.

Let us now define a new class of representations of the Yang–Baxter algebra which w
Z-graded representations. We say that a vector spaceV, equipped with an endomorphismz, is a
Z-graded vector space, denoted (V,z), if it admits a decomposition into subspaces
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V5 %
k52`

`

Vk

such that

zVk5k.Vk , k P Z.

Note that some of theVk may be trivial subspaces. Formally, the grading operator can be us
define the following projection operators:

Pk5 )
j 52`

j Þk

`
~z2 j I !

~k2 j !
~7!

such that

PkPl5dklPl , PkVj5dk jVk .

We say that aZ-graded vector space

V85 %
k52`

`

Vk8

is equivalentto V if for some j P Z there exists a vector space isomorphism betweenVk8 andVj 1k

for all k. This terminology is motivated by the fact that for a given (V,z) one can always generat
anotherZ-graded space (V8,z8) through the mappingsVk8→Vj 1k , z8→z2 j I for any j P Z.

For a givenZ-gradedV we say thatp: A→EndV provides aZ-graded representation ofA if
p(Z)5z and the relations~2! and ~6! are preserved. In such a case we can write

p~X~u!!5 (
j 52`

`

X~u, j !,

where the matricesX(u, j ) satisfy

X~u, j !Vk50 for j Þk.

More specifically, this means that foruck& P Vk we have

p~X~u!Y~v !!uck&5X~u,k1p$Y~u!%!Y~v,k!uck&.

In view of the equivalence of the above-definedZ-graded vector spaces, there can also e
equivalent representations. We can define a representationp8 equivalent top by specifying some
k P Z such that

p8~Z!5p~Z2kI !

and for

p8~X~u!!5 (
j 52`

`

X8~u, j !

the matricesX8(u, j ) are defined by

X8~u, j !5X~u, j 1k!, ; j P Z.
                                                                                                                



ch

ns, we

d look

4693J. Math. Phys., Vol. 44, No. 10, October 2003 Solvable models of Bose–Einstein condensates

                    
For anyZ-graded representation it follows from~5! that the following hold:

@A~u, j !,A~v, j !#5@D~u, j !,D~v, j !#50,

B~u, j !B~v, j 21!5B~v, j !B~u, j 21!,

C~u, j !C~v, j 11!5C~v, j !C~u, j 11!, ~8!

A~u, j !C~v, j 11!5
u2v1h

u2v
C~v, j 11!A~u, j 11!2

h

u2v
C~u, j 11!A~v, j 11!,

D~u, j !C~v, j 11!5
u2v2h

u2v
C~v, j 11!D~u, j 11!1

h

u2v
C~u, j 11!D~v, j 11!,

From the defining relations~2! the transfer matrix defined byt(u)5A(u)1D(u) commutes
for different values of the spectral parameteru; viz.

@t~u!,t~v !#50.

Moreover, we may express the representationp(t(u)) of the transfer matrix as

p~t~u!!5 (
j 52`

`

t~u, j !

such that

t~u, j !Vk50 for j Þk

and

@t~u, j !, t~v,k!#50, ; j , k.

Sincep$t(u)%50, the diagonalization ofp(t(u)) is thus reduced to the diagonalization of ea
of the matricest(u, j ) on theZ-graded componentVj , where we have

@t~u, j !, t~v, j !#50.

We may restrict our attention to the case oft(u,0), as eacht(u, j ) is equivalent to somet8(u,0)
through the use of equivalent representations as introduced earlier.

In order to formulate the algebraic Bethe ansatz solution for this class of representatio
assume the existence of a pseudovacuum vectorux&PVk such that

A~u,k!ux&5a~u,k!ux&,

B~u,k!ux&50,

C~u,k!ux&Þ0,

D~u,k!ux&5d~u,k!ux&.

The above implies thatux& is a maximal weight vector with respect toZ. Without loss of generality
we can choosek5M , again due to the equivalence of representations discussed earlier, an
for Bethe states defined by

C~v1 ,...,vM ![C~$v i%!5C~v1,1!C~v2,2!¯C~vM ,M !ux&. ~9!
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It is easy to check that this Bethe state is symmetric with respect to the variablesv i , a feature
which plays a crucial role in the following. ActingA(u,0) andD(u,0) on the Bethe state we hav

A~u,0!C~$v i%!5a~u,M !)
i 51

M
u2v i1h

u2v i
C~$v i%!

1(
i 51

M

Mi~u,$v j%!C~v1 ,...,v i 21 ,u,v i 11 ,...,vM !,

D~u,0!C~v1 ,...,vM !5d~u,M !)
i 51

M
u2v i2h

u2v i
C~$v i%!

1(
i 51

M

Ni~u,$v j%!C~v1 ,...,v i 21 ,u,v i 11 ,...,vM !, ~10!

with

Mi~u,$v j%!52
h

u2v i
a~v i ,M !)

j Þ i

M
v i2v j1h

v i2v j
,

~11!

Ni~u,$v j%!5
h

u2v i
d~v i ,M !)

j Þ i

M
v i2v j2h

v i2v j
.

Requiring

Mi~u,$v j%!1Ni~u,$v j%!50

forcesC(v1 ,...,vM) to be an eigenstate oft(u,0) and leads to the Bethe ansatz equations

a~v i ,M !

d~v i ,M !
5)

j Þ i

M
v i2v j2h

v i2v j1h
, i 51,...,M . ~12!

The corresponding eigenvalue of the matrixt(u,0) is

L~u,$v i%!5a~u,M !)
i 51

M
u2v i1h

u2v i
1d~u,M !)

i 51

M
u2v i2h

u2v i
.

III. EXPLICIT Z-GRADED REALIZATIONS

Next we give two nontrivialZ-graded realizations of the algebraA. One is expressible in
terms of two Heisenberg algebras with generatorsai , ai

† , i 51, 2 and readsX(u, j )5X̃(u, j )Pj

with

Ã~u, j !5u21huN1h2N1N22h~N12N2!v~N1 j I !2v2~N1 j I !1a2
†a1 ,

B̃~u, j !5~u1v~N1 j I !1hN1!a21h21a1 ,
~13!

C̃~u, j !5a1
†~u2v~N1 j I !1hN2!1h21a2

† ,

D̃~u, j !5a1
†a21h22.
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Above, Pj are the projections defined by~7!, Ni5ai
†ai , N5N11N2 and v(x) is an arbitrary

polynomial function ofx. Note that in the case whenv(x) is constant, the above-noted realizatio
reduces to that discussed in Refs. 10 and 11 and is factorizable into two local representat
the Yang–Baxter algebra expressible in terms of the two Heisenberg algebras. It is impor
note that for genericv(x) no such factorization exists.

The representation acts on the infinite dimensional Fock space spanned by the vector

um,n&5~a1
†!m~a2

†!nu0&, m, n50,1,2,. . . ,`. ~14!

For this representation, we choose the pseudovacuumux& as the Fock vacuumu0&. The represen-
tation of the grading operatorZ is chosen to be

p~Z!5M .I 2N.

We then have

a~u,M !5u22v2~M !, d~u,M !5h22 ~15!

and the Bethe ansatz equations become

h2~v i
22v2~M !!5)

j Þ i

M
v i2v j2h

v i2v j1h
~16!

for the diagonalization of the matrixt(u,0). The eigenstates~9! in this instance are also eigen
states of the total particle numberN with eigenvalueM .

AnotherZ-graded realization of the Yang–Baxter algebra isX(u, j )5X̃(u, j )Pj with

Ã~u, j !52hu21u~12h2~Kz1Nc!2hv~Kz1Nc1 j I !!1hKz

2h2Kzv~Kz1Nc1 j I !2h3NcKz1h2cK1 ,

B̃~u, j !5h~12hu2hv~Kz1Nc1 j I !2h2Nc!K22hc~u2hKz!,
~17!

C̃~u, j !5hc†~u1hKz!2hK1 ,

D̃~u, j !5u2hKz1h2c†K2 .

Here, the operatorsc, c† form a Heisenberg algebra, withNc5c†c, and the operators
Kz , K1 , K2 satisfy the relations of thesu(1,1) algebra@Kz , K6#56K6 , @K1 , K2#522Kz .
As in the previous example,v(x) is an arbitrary polynomial function ofx and the above realiza
tion is factorizable only in the case whenv(x) is constant.

For this representation, we choose the pseudovacuumux& as the tensor product of the Foc
vacuumu0& with a lowest weight state for the algebrasu(1,1) of weightk. The representation o
the grading operator may be chosen as

p~Z!5M .I 2Kz2Nc1k.

Then,

a~u,M !5~12hu2hv~M !!~u1hk!, d~u,M !5u2hk ~18!

and the Bethe ansatz equations are

~12hv i2hv~M !!S v i1hk

v i2hk D5)
j Þ i

M
v i2v j2h

v i2v j1h
. ~19!
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IV. THREE MODELS OF BOSE–EINSTEIN CONDENSATES

A. Model 1: Two coupled BECs

Consider the following general Hamiltonian describing Josephson tunneling between
coupled Bose–Einstein condensates

H5U11N1
21U12N1N21U22N2

21m1N11m2N22
EJ

2
~a1

†a21a2
†a1!. ~20!

The above-mentioned Hamiltonian generalizes the canonical Josephson Hamiltonian stu
Refs. 10 and 11 in that the couplingsU11,U22 for the S-wave scattering terms can be chos
arbitrarily. It also describes a pair of Cooper pair boxes with capacitive coupling.13 In the limit
U22→0, then^N2&@^N1&, which can be considered as a single Cooper pair box coupled
reservoir.

It is an algebraic exercise to show that the Hamiltonian is related with the matrixt̃(u,0)
5Ã(u,0)1D̃(u,0) through

H52
EJ

2
@ t̃~0,0!2h221~aN1b!22hsN2hdN2#.

Here we have chosenv(N)5aN1b and the coupling constants are identified as

h25
2~U111U222U12!

EJ
,

a5
U112U22

hEJ
,

b5
m12m2

hEJ
,

s5
m11m2

hEJ
,

d5
U111U22

hEJ
.

Noting that

N5h21
dt̃

du
~0,0!,

the above demonstrates that the Hamiltonian~20! is expressible solely in terms of the matr
t̃(u,0) and its derivative.

Since@H, N#50, the Hamiltonian is block diagonal on the Fock basis~14!. Thus on a sub-
space of the Fock space with fixed particle numberN, the diagonalization oft̃(u,0) is equivalent
to the diagonalization oft(u,0) presented earlier in the Bethe ansatz framework. We then de
that the solution of~20! for the energy spectrum is

E52
EJ

2 Fh22)
i 51

N
v i1h

v i
2~aN1b!2)

i 51

N
v i2h

v i
2h221~aN1b!22hsN2hdN2G , ~21!

where the parameters$v i% are subject to the Bethe ansatz equations
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h2~v i
22~aN1b!2!5)

j Þ i

N
v i2v j2h

v i2v j1h
.

B. Model 2: Homo-atomic-molecular BECs

Next we turn our attention to a two-mode model for an atomic-molecular Bose–Ein
condensate with identical atoms. The Hamiltonian takes the form

H5UaaNa
21UacNaNc1UccNc

21maNa1mcNc1V~a†a†c1c†aa!, ~22!

which acts on a basis of Fock states analogous to~14!. For the case of87Rb, all of these param-
eters have been estimated from experiment~see Ref. 8!. In the experiment described in Ref. 4, th
parameterUaa was varied significantly with a magnetic field.

The Hamiltonian commutes with the total atom numberN5Na12Nc . In terms of a realiza-
tion of the algebrasu(1,1) through

K15
~a†!2

2
, K25

a2

2
, Kz5

2Na11

4
, ~23!

one may establish the relation between the Hamiltonian and the corresponding transfer
t̃(u,0)5Ã(u,0)1D̃(u,0) arising from the the realization~17! of the Yang-Baxter algebra is

H5s1d~N/211/4!1g~N/211/4!212h22Vt̃~0,0!,

with

dt̃

du
~0,0!522h~h1a!~N/211/4!2hb.

Above we have chosen

v~Kz1Nc!5a~Kz1Nc!1b5a~N/211/4!1b

and the following identification has been made for the coupling constants:

h5
4Uaa1Ucc22Uac

2V
,

a5
Ucc24Uaa

2V
,

b5
2mc24ma14Uaa2Uac

4V
,

s5
Uaa22ma

4
,

d5
2mc2Uac

2
,

g5Ucc .

By the same argument as before, we conclude that the exact solution for the energy spec
~22! is determined by
                                                                                                                



the

er the
ec-

instein

ce
anging

of the

4698 J. Math. Phys., Vol. 44, No. 10, October 2003 Zhou et al.

                    
E5s1d~M1k!1g~M1k!2

12h21kVF ~12h~a~M1k!1b!!)
i 51

M
v i2h

v i
2)

i 51

M
v i1h

v i
G , ~24!

where the parametersv i satisfy the Bethe ansatz equations

@12hv i2h~a~M1k!1b!#S v i1hk

v i2hk D5)
j Þ i

M
v i2v j2h

v i2v j1h
. ~25!

For the representation~23! of the su(1,1) algebra there are two lowest weight vectors; viz.
Fock vacuumu0& and the one particle statea†u0&. It follows that the allowed values fork in ~24!
and~25! arek51/4, 3/4. This demonstrates that the solution of the model depends on wheth
total particle numberN52M12k21/2 is even or odd, the effects of which on the energy sp
trum can be seen through numerical analysis~cf. Ref. 12!.

C. Model 3: Hetero-atomic-molecular BECs

The previous construction can be extended to model an atomic-molecular Bose–E
condensate with two distinct species of atoms, denoteda and b. For this case the Hamiltonian
takes the form

H5UaaNa
21UbbNb

21UccNc
21UabNaNb1UacNaNc

1UbcNbNc1maNa1mbNb1mcNc1V~a†b†c1c†ba!, ~26!

which commutes with the total atom numberN5Na1Nb12Nc andI5Na2Nb . Here the model
acts on the Fock space spanned by the vectors

u l ,m,n&5~a†! l~b†!m~c†!nu0&.

In order to show the solvability of this model, we adopt the realization of thesu(1,1) algebra
given by

K15a†b†, K25ab, Kz5
Na1Nb11

2
, ~27!

and observe that the operatorI commutes with thesu(1,1) algebra in this representation, hen
taking a constant value in any irreducible representation. Due to the symmetry upon interch
the labelsa and b, we can assume without loss of generality that the eigenvalues ofI are
non-negative. In particular, note then that the lowest weight states for this realization are
form

um&5~a†!mu0&, m50,1,2, . . .

andKzum&5(m/211/2)um&. We conclude that the lowest weight labelsk can be taken from the
set $1/2, 1, 3/2, . . .% and the eigenvalue ofI on the irreducible representation labeled byk is
(2k21.)

For this case the relation between the Hamiltonian and the corresponding matrixt̃(u,0) is

H5s1d~N/211/2!1l~N/211/2!21rI1nI 21jI~N/211/2!1h22Vt̃~0,0! ~28!

with

dt̃

du
~0,0!522h~h1a!~N/211/2!2hbI2hg.
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Above we have chosen

v~Kz1Nb!5a~Kz1Nc!1b~2k21!1g5a~N/211/2!1bI1g

and the coupling constants are related through the relations

h5
Uaa1Ubb1Ucc1Uab2Uac2Ubc

V
,

a5
Ucc2Uaa2Ubb2Uab

V
,

b5
2Ubb22Uaa1Uac2Ubc

2V
,

g5
2Uaa12Ubb12Uab2Uac2Ubc12mc22ma22mb

2V
,

s5
Uaa1Ubb1Uab22ma22mb

4
,

d5
2mc2Uac2Ubc

2
,

l5Ucc ,

r5
Ubb2Uaa1ma2mb

2
,

n5
Uaa1Ubb2Uab

4
,

j5
Uac2Ubc

2
.

The exact solution in this instance reads

E5s1d~M1k!1l~M1k!21r~2k21!1n~2k21!21j~2k21!~M1k!

1h21kVF ~12h~a~M1k!1b~2k21!1g!!)
i 51

M
v i2h

v i
2)

i 51

M
v i1h

v i
G ,

where the parametersv i satisfy the Bethe ansatz equations

@12hv i2h~a~M1k!1b~2k21!1g!#S v i1hk

v i2hk D5)
j Þ i

M
v i2v j2h

v i2v j1h
~29!

and the total atom number is given byN52M12k21.
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V. WAVE FUNCTION SCALAR PRODUCTS

Recall that in the usual algebraic Bethe ansatz for the algebraA there is a formula originally
due to Slavnov17 ~see also Refs. 15 and 18! for the wave function scalar products. The Slavn
formula still applies in theZ-graded case and takes the usual form

SM~$uj%,$vk%!5F~$uj%!C~$vk%!5F~$vk%!C~$uj%!5
detT~$uj%,$vk%!

detV~$uj%,$vk%!
, ~30!

with the entries of theM3M matricesT andV given by

Tab5
]

]va
L~ub ,$vk%!, Vab5

1

ub2va
, a,b51,...,M .

F($ui%) is the left vector

F~u1 ,...,uM !5^xuB~uM ,M !¯B~u1,1!.

Above, we have adopted the usual convention to scale the Yang–Baxter algebra suc
d(u,M )51. Also, $vk% provide a solution of the Bethe ansatz equation~12! and the parameter
$uj% can be chosen arbitrarily.

The Yang–Baxter algebraA admits a conjugation operation †:A→A defined by

A~u!†5A~u!, B~u!†5C~u!, C~u!†5B~u!, D~u!†5D~u!

and extended to all ofA through

~u.f!†5f†.u†, ; u, f PA

such that the defining relations~2! are preserved. Consequently the right vectorF(v1 ,...,vM)† is
also an eigenvector of the transfer matrix whenever the Bethe ansatz equations for the par
$v i% are satisfied. However, it is apparent that theZ-graded representations~13! and~17! we have
introduced are not unitary, and generally

F~$v i%!†ÞC~$v i%!.

On the other hand, numerical analysis we have undertaken for the above models indicates
fixed particle numbers, and generic values of the coupling parameters, the energy spectrum
of degeneracies. This is presumably due to the fact that the only Lie algebra symmetries fo
models areu(1) invariances corresponding to conservation of particle numbers, and the n
generate spectra are examples of Hund’s noncrossing rule.19,20 Whenever this is the case, we ca
conclude that

F~$v i%!†5KC~$v i%!

for some constantK and the Slavnov formula can still be invoked for the computation of fo
factors and correlation functions~cf. the example of Ref. 10 where it was foundK561).

VI. CONCLUSION

In conclusion we have introduced a new scheme for the algebraic Bethe ansatz to diag
three classes of integrable models relevant to Bose–Einstein condensates of dilute alkal
The extension of this construction to other types of models, such as the Jaynes–Cum
model,21 and generalized Tavis–Cummings model discussed in Ref. 22, is straightforward.
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Let S be an integrable Pfaffian system. If it is invariant under a transversally free
infinitesimal action of a finite dimensional real Lie algebrag, we show that the
‘‘vertical’’ variational cohomology ofS is equal to the Lie algebra cohomology of
g with values in the space of the ‘‘horizontal’’ cohomology in a maximum dimen-
sion. This result, besides giving an effective algorithm for the computation of the
variational cohomology of an invariant Pfaffian system, provides a method for
detecting obstructions to the existence of infinitesimal actions leaving a given sys-
tem invariant. ©2003 American Institute of Physics.@DOI: 10.1063/1.1607513#

I. INTRODUCTION

We study here a problem that arises naturally in connection with the integration of differe
systems invariant under finite or infinitesimal group actions, the theory of such systems, a
ceived by Sophus Lie and later brought to its full light by E´ lie Cartan, being discussed in Ref. 7
Let D be such a differential system~viewed as a sub-manifold of some Jet or Grassmann
bundle! invariant under the action of a finite dimensional real Lie algebrag of infinitesimal
contact transformations and let us further assume thatD is integrable and of finite type~otherwise
we are led into the realm of infinite Lie pseudogroups! and that the infinitesimal action ofg
operates transitively in a direction transverse to each solution~Ref. 7, Sec. 13!. Then the integra-
tion of D can be reduced to the integration of a finite family of integrable Pfaffian systems
are invariant under the actions of Abelian or simple algebras, these infinitesimal actions
transversally free~Ref. 7, Sec. 4!.

The integration of differential equations, in the sense of devising methods that will even
lead to explicit solutions or at least that will contribute to simplify and reduce the integra
problem~e.g., reduce the order of the equations!, was a major theme in the second half of the la
century, as witnessed by Lie’s own writings~Refs. 8, 9, 11, 13!. It is therefore not surprising tha
Lie’s ultimate concern should have been precisely the search of such methods. Using the s
of continuous groups, he could easily say which, among the many integration methods kno
that time, were thebest~the sharpest, in the sense that they involved the least number of o
tions and the lowest orders for these operations! and would claim, with reason, that his were th
best~Refs. 8, 10, 11!. Inasmuch, he showed in Ref. 12 that ‘‘la méthode du dernier multiplicateur
de Jacobi’’ was the best on the grounds that the infinite continuous group of all volume prese
transformations is simple.

a!Electronic mail: rui@ime.usp.br
b!Electronic mail: kumpera@ufpa.br
c!Electronic mail: rubin@inln.cnrs.fr
47020022-2488/2003/44(10)/4702/11/$20.00 © 2003 American Institute of Physics
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Élie Cartan abandoned this pursuit, at least as a priority, since, as he claimed, in this en
we most often fail rather than succeed. He was the first to point out that we should actually
the structureunderlying an integration problem and, in understanding this structure, he cr
integration methods, for invariant differential systems, inconceivable at Lie’s time~Refs. 2–5!. For
such systems, this underlying structure has a very precise meaning and is a direct consequ
the structure ofg and of the prescribed invariant infinitesimal action~Refs. 1, 7, Secs. 5–6!.

If the differential systemD is invariant under the action of a contact Lie algebrag then its
associated Pfaffian systemS , obtained by restricting all the contact 1-forms to the underly
manifold R of D , is integrable and invariant by the restriction ofg . Conversely, if S is
invariant by the infinitesimal actionF of a Lie algebrag8 then we can extend each vector fie
F(v) , vPg8 , to an infinitesimal contact transformation so as to obtain a contact algebrag that
leaves D invariant and such thatF(g8)5guR . In general, the actions ofg and g8 are not
transversally free but, as evidenced in Ref. 7, Sec. 5, one can in many cases reach this app
setting essentially via restriction and prolongation operations. It therefore becomes relev
view of applying the Lie and Cartan theory, to know whether a given integrable Pfaffian systeS
admits a transversally free invariant infinitesimal action of a given Lie algebrag or, more gen-
erally, of some Lie algebrag . Showing the existence of such infinitesimal actions is a ra
delicate problem that has to be analyzed in each specific case since there does not seem
any general method. On the other hand, showing non-existence can be achieved by dis
some obstructions via cohomological methods and this is actually our main concern in this
One last word is due. Whereas the structure of a differential system is a global concep
integration of such a system can, in a first approach, be viewed as a local problem. Sin
integrable Pfaffian system admits locally many automorphisms, in fact, they form an infinit
pseudogroup of order one, there exist, in a neighborhood of each point, many transversa
infinitesimal actions leaving the system invariant and the Lie and Cartan theory can alwa
applied.

The Euler–Lagrange~variational! complex associated to an integrable Pfaffian systemS is
finite. As is usual, we callhorizontalthat part of the complex preceding the Euler operatorE and
vertical that part subsequent to this operator. The horizontal part is a finite augmentation ofE and
the vertical part a finite resolution. We show, in Sec. V~Theorem 1!, that if S is invariant under
a transversally free infinitesimal action of the Lie algebrag then the above finite resolution i
equivalent, in positive dimensions, to the Lie algebra complex ofg taking values in the horizonta
cohomology of maximum dimension. In particular, the resulting cohomology spaces are
whereupon any discrepancy between the two cohomologies will put in evidence an obstruc
the existence of such an infinitesimal action. The above equivalence also provides an ef
method for the computation of the vertical variational cohomology of an invariant Pfaffian sy

Throughout the years, several authors have given distinct though essentially equivale
mulations to the variational complex. We adopt here the approach described in Ref. 6 s
emphasizes the relationship of this complex with the algebra of generalized symmetries. Ina
as the usual de Rham complex on a manifoldM is the differential complex associated to th
algebra of all the vector fields onM , the horizontal part of the variational complex is a de Rh
complex associated to the algebra of all trivial symmetries~total derivatives! and the vertical part
is a de Rham complex associated to the algebra of all generalized symmetries. Our first t
this paper, consists in writing down explicitly the complex we shall be dealing with, namely
restriction of the general complex defined in Ref. 6 to an integrable Pfaffian system. This,
tunately, is a rather long and boring task hence we only state, in Sec. II , a well known lemm
provides all the necessary technical information relevant to the restriction procedure and the
construct directly, in Secs. III and IV , the desired complex. It turns out that the trivial symme
become simply the vector fields annihilated byS and the generalized symmetries become
equivalence classes of the infinitesimal automorphisms ofS modulo the trivial symmetries. Ther
is of course nothing new about this restricted complex, just a different make-up. Invariant sy
are examined in Sec. V and some examples are discussed in Sec. VI .

For simplicity, we assume that all the data areC` smooth though, in each specific case,Ck
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smoothness for somek will suffice. We also assume that all the manifolds are connected
second countable though not necessarily orientable and that all the objects such as fun
vector fields, differential forms, etc. are globally defined on these manifolds unless stated
wise ~e.g., local coordinates, local generators of Pfaffian systems and distributions!.

The second named author wishes to thank Piotr Mormul for some very helpful discuss

II. PFAFFIAN SYSTEMS AND THEIR PROLONGATIONS

Let S be a Pfaffian system, for the time being not necessarily integrable, andS5S' the
corresponding distribution, both defined on the manifoldM ~Ref. 7, Sec. 2!. In terms of partial
differential equations, it seems preferable to view the distributionS ~or the Pfaffian systemS) as
a section of the Grassmannian bundleG1

pM of linear contact elements of dimensionp
5rankS or, still better, as the submanifoldR of G1

pM , an image of this section~Ref. 6, p. 614!.
Since the dimensionp will remain unchanged throughout the present discussion, we abbre
Gk

pM by Gk , where k is the order of the contact elements under consideration. LetR1,G2

denote the first prolongation ofR .
Lemma 1: The distributionS is integrable (involutive) if and only ifR1 projects ontoR .

A proof of this result can be found in Ref. 7, Sec. 13 . This proof tells us, in particular, that a
(R1)X , XPR , is either empty or else contains a single element, sayY . The first order linear
holonomic contact elementSX

(1) associated toY is the unique holonomic element tangent toR
at the pointX . Since it does not make much sense to define the variational complex for othe
formally integrableequations~or at least equations that, after prolongation, become form
integrable at large enough orders!, we see that in the present situation it becomes natural to ass
that S is integrable. This does not mean, however, that variational complexes cannot be a
ated to nonintegrable Pfaffian systems. In this latter context, we ought to specify or determi
dimension q<p of linear contact elements for which asufficient numberof integral contact
elements do exist~e.g., Pfaffian systems that arein involution, in the sense of Cartan, at dimensio
q ) and consider the variational complex in the realm of the bundlesGk

qM . We shall nevertheless
restrict our attention to integrable systems.

When S ~or S ! is integrable, thenR1 is the set of all second order contact eleme
determined by the p -dimensional integral manifolds ofS and the assignementY
PR 1°SX

(1),TXR , X5r1,2(Y) , is an integrable distributionS (1) , defined on the manifoldR ,
equivalent to S via the diffeomorphismb15r0,1: R→M . In general, thek -th prolongation
Rk,Gk11 is the set of all (k11)-st order contact elements determined by thep-dimensional
integral manifolds ofS . Furthermore, the assignmentYPRk ° SX

(k),TXRk21 , X5rk,k11Y ,
where SX

(k) is the linear holonomic contact element at orderk associated toY , is an integrable
distribution S (k) , defined on the manifoldRk21 , equal to the annihilator of the restriction, t
Rk21 , of the canonical contact structureSk of Gk ( @S (k)#'5i* Sk , i:Rk21 � Gk ; cf. Ref. 6,
Sec. 2!. For any pair of integersh<k , the distributionsS (k) and S (h) are equivalent via the
diffeomorphismrh,k :Rk21→Rh21 ( R05R , S (0)5S ).

III. THE HORIZONTAL OPERATOR

We now construct directly the so calledhorizontalpart of the variational complex associate
to an integrable Pfaffian systemS , namely that part preceding the Euler operator. We denote
B the algebra of all the~globally defined! vector fields h tangent to the distributionS5S'

(hPG(S)) and by F the ring of all the~globally defined! C` functions on the underlying
manifold. The dual spaceH5B* , with respect to theF-module structure, is equal to the set
global sections of the dual bundleS* .T* M /S and, correspondingly,∧ H.G(∧S* ) . The
differential,

dH :∧sH → ∧s11H,

is defined by the usual formula:
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dHm ~h1 , ...,hs11!5(
i

~21! i 11u~h i ! m~h1 , ...,h î , ...,hs11!

1(
i , j

~21! i 1 jm~@ h i , h j #,h1 , ...,h î , ...,h ĵ , ...,hs11! , ~1!

where theh i are vector fields tangent toS , u(h i) is the usual Lie derivative and@ h i , h j # the
usual Lie bracket. Let (U ; x1, ... ,xp, y1, ... ,yq) be a foliated chart ofS for which the integral
manifolds, in U , are given by the equationsyl5cl . Then an element of∧H has the local
expression

m5( ai 1¯ i s
dxi 1∧¯∧dxi s ,

the coefficientsai 1¯ i s
being C` functions onU , and

dHm5( ~dai 1¯ i s
uS!∧dxi 1∧¯∧dxi s5(

]ai 1¯ i s

]xi dxi∧dxi 1∧¯∧dxi s , ~2!

where dai 1¯ i s
uS ~resp.,dxi ) stands for the restriction of this differential to the integral ma

folds of S .
We now extend the differential~1! by adding, in the cochains, a term that corresponds in R

6 to the moduleC of all the contact 1-forms. Here we considerC5G(S) to be the module of all
the global sections ofS , take the cochain spaceF r ,s5(∧ rC) ^ (∧sH) and consider its element
as horizontal forms with values in∧ rC . The extended differential,

dH :~∧ rC! ^ ~∧sH!→~∧ rC! ^ ~∧s11H!,

is then defined by

dH~v ^ m!~h1 , ...,hs11!5(
i

~21! i 11 u~h i ! @ m~h1 , ...,h î , ...,hs11!v #

1(
i , j

~21! i 1 j m~@ h i , h j #,h1 , ...,h î , ...,h ĵ , ...,hs11!v , ~3!

where h iPG(S) and u(h i) is the Lie derivative. The second term on the right hand side belo
of course to∧ rC , the same being true for the first term sinceS is integrable and consequent
u(h i) C,C . Let

~U ; x1, ... ,xp, y1, ... ,yq!

be a foliated chart for the distributionS in which the integral manifolds are given by the slic
yl5cl . Then a typical element ofF r ,s is locally a sum of terms,

m5a dyj 1∧¯∧dyj r ^ dxi 1∧¯∧dxi s

and

dHm5(
i

]a

]xi dyj 1∧¯∧dyj r ^ dxi∧dxi 1∧¯∧dxi s , ~4!

where dxi stands for the restrictiondxi uS . The last formula as well as the formula~2!, though
helpful in theoretical considerations, is most often useless in practice since it requires the
integration of S . We can nevertheless remedy this situation as follows: We consider any co
nate system (U ; xi , yj ) with the sole requirement that the family$dxi uS% be free at every point
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of U , thus providing a field of coframes forS* uU . Next, we consider the local basis$h i% of S
defined by ^h i ,dxj&5d i

j . Since S is integrable and since eachh i projects onto ]/]xi , it
follows that @ h i , h j #50 . A typical element ofF r ,s can now be written locally as a sum o
terms,

m5a v j 1∧¯∧v j r ^ dxi 1∧¯∧dxi s ,

where dxi stands fordxi uS and $vl5dyl2( iYi
l dxi% is a local basis ofS . The formula~3!

then reduces to

dHm5(
i

@u~h i !~a v j 1∧¯∧v j r !# ^ dxi∧dxi 1∧¯∧dxi s , ~5!

and a similar formula can replace~2!, the derivatives ]a... /]xi being then replaced by
u(h i)(a...) .

Let I r5I r(S) denote the module of all the~globally defined! invariant formsv of degreer
with respect to the Pfaffian systemS , namely those satisfying the following condition~Ref. 7,
Sec. 4!:

u~h!v50 , ; hPG~S'! .

Then, I 05I is the ring of all the~global! first integrals ofS , I r is a gradedI-sub-algebra of
A and the formula~3! shows that the sequence

0→I r→F r ,0→
dH

F r ,1 ~6!

is exact. We next show that the sequence

0→I→F0,0→
dH

F0,1→
dH

¯→
dH

F0,p→0 ~7!

is locally exact. In fact, let (U ; xi , yl) be a foliated chart forS . Then the formula~2! defines, for
each fixed set of valuesyl5cl , the differential of thede Rhamcomplex on the correspondin
slice, whereupon results the local exactness of~7! since the usual homotopy operators can
written incorporating the parametersyl . Let us finally show that

F r ,p21→
dH

F r ,p→0 ~8!

is locally exact. A typical element ofF r ,p is, locally, a sum,

v5( aj 1 , ¯ , j r
dyj 1∧¯∧dyj r ^ dx1∧¯∧dxp ,

hence, upon integrating for example alongx1 , we obtain the element

V5( Aj 1 , ¯ , j r
dyj 1∧¯∧dyj r ^ dx2∧¯∧dxp ,

]A[ j ]

]x1 5a[ j ] ,

such thatdH V5v .

IV. THE VERTICAL OPERATOR

Let us next construct the so calledvertical part of the Euler–Lagrange complex, namely th
part subsequent to the Euler operator. We denote byA the algebra of all the infinitesimal auto
morphisms ofS and by B the ideal of those vector fields that are tangent toS5S' . The system
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S being integrable, any vector field tangent toS is an infinitesimal automorphism. Based on t
lemma 1 , it can be shown that the algebraS~R! of generalized symmetries of the equationR
associated toS (S(D) in the notations of Ref. 6, Sec. 9! identifies with A/B . The following
remarks will be used later.

~a! A is a module over the ringI , B is a module overF , henceS is a module overI .
~b! If jPA is tangent to a leaf ofS at a point x0 , then it is also tangent to this leaf at a

of its points.
We now define J r5F r ,p/dHF r ,p21 ( p5dimS ), denote by qr :F r ,p→J r the quotient

map and observe thatJ r is an I-module sincedH I50 . An elementv ^ mP(∧ r C) ^ (∧s H)
can also be considered as anI-multilinear form on S~R! with values in ∧s H by setting

~v ^ m!~@j1#, ...,@j r # !5v~j1 , ...,j r !m , j iPA ,

where each@j i # is the class ofj i modulo B . In fact, when hPB , then (v ^ m) ( ...,h , ...)
50 and consequently (v ^ m) (@j1#, ...,@j r #) is well defined onS~R! . Furthermore~Ref. 6,
Sec. 11!, since

@dH~v ^ m!#~j1 , ...,j r !5dH@ ~v ^ m! ~j1 , ...,j r ! # ,

the form dH(v ^ m) , v ^ mP(∧ r C) ^ (∧p21 H) , considered as a multilinear form onS~R! ,
takes values that vanish under the projectionq 0 :F0,p→J0 . Hence, to any elementsPJ r , we
can associate anI-multilinear form @s# , defined onS~R! and taking values inJ0 , as follows:
We take V5( v i ^ m iPF r ,p such thatqr(V)5s and set

@s# ~@j1#, ...,@j r # !5q 0 V ~@j1#, ...,@j r # ! .

The mappings°@s# being injective~Ref. 6, Sec. 11!, we are led to consider the formula

dV„qr~v ^ m!… ~@j1#, ...,@j r 11# !

5q 0H(
i

~21! i 11u~@j i # ! @ v~@j1#, ...,@j i #̂, ...,@j r 11# !m#J
1q 0H(

i , j
~21! i 1 jv~@ @j i # ,@j j # #,@j1#, ...,@j i #̂, ...,@j j #̂, ...,@j r 11# !mJ , ~9!

where v ^ mPF r ,p and j iPA . The second term on the right hand side clearly belongs toJ0 .
As for the first term, let us write

m i5v~@j1#, ...,@j i #̂, ...,@j r 11# !mPF0,p,

and let us assume that somej j5hPB . If j Þ i , then m i50 and if j 5 i then, sincedHm i

50 ,

u~h!m i5 i ~h!dHm i 1 dHi ~h!m i5dHi ~h!m i

and consequentlyq 0 u(h)m i50 . In any case,~9! provides a well defined multilinear form o
S~R! taking values inJ0 and it can be shown~e.g., in coordinates! that the multilinear form
dV„qr(v ^ m)… is the image of an elementsPJ r 11 .

The Euler–Lagrange~variational! complex associated to the integrable Pfaffian systemS is
the finite sequence,

0→I→F0,0→
dH

F0,1→
dH

¯→
dH

F0,p21→
dH

F0,p→
E

J1→
dV

¯→
dV

Jq21→
dV

Jq→0 ,

where E , theEuler operator, is the composite,
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F0,p→
q 0

J0→
dV

J1 ,

and q5rank S . This complex is locally exact and reduces, locally, to~7! since J r vanishes on
account of~8!.

V. INVARIANT PFAFFIAN SYSTEMS

Let S be an integrable Pfaffian system invariant under the infinitesimal actionF:g
→x(M ) of the finite dimensional real Lie algebrag on the manifoldM ~Ref. 7, Sec. 3!. For
every vPg , F(v)PA , hence the action induces a Lie algebra morphismF:g→S(R) . If
further we assume that the actionF is transversally free~Ref. 7, Sec. 4!, i.e., if

~ i ! dimg5dimF~g!p , ; pPM ,

~ i i ! TpM5Sp% F~g!p , ; pPM ,

then the above morphism is injective and the following result holds.
Lemma 2: The algebraS~R! is generated byF(g) over the ring I of first integrals of S,

any R-basis of F(g) is an I-basis of S~R! and the I-dual S(R)* identifies withI 1 .
Let us next recall some properties of the invariant forms associated toS . By definition ~Ref.

7, Sec. 4!, the exterior formv is an invariant form ofS if u(h) v50 for all hPG(S') . It
follows that u( f h) v50 for any function f , hence v is an invariant if and only if i (h)v
5 i (h) dv50 , for all hPG(S') . Consequently,v is invariant if and only if it can be expresse
locally in terms of the first integrals ofS and their differentials. Whenv is invariant then so are
the forms f v , dv and u~j! v , where f is a first integral andj an infinitesimal automorphism
of S , hence the set of all invariant forms is a differential algebra over the ringI invariant under
the infinitesimal actionF via the Lie derivative. Let$v i% be a basis ofg . The linear forms
v iPC defined by the conditionŝF(v i), v j&5d i

j are a global basis of invariant forms ofS , a
so-called Cartan basis~Ref. 7, Secs. 6,8!, and

dv i5(
j ,k

cjk
i v j∧vk ,

where $2cjk
i % is the set of structure constants ofg with respect to the above basis. The re

subspaceV,G(T* M ) generated by formsv i only depends onF and acts as anR-dual to the
spaceh5F(g) . Let us denote byF be the ring ofC` functions onM and by ∧ V the exterior
algebra ofV over the fieldR . Since $v i% is a global basis of the Pfaffian systemS , it follows
that C.V ^ RF and, more generally, that

F r ,s5~∧ rC! ^ F~∧s H!.~∧ rV! ^ R~∧s H!.„∧ rS~R!* …^ I~∧s H! . ~10!

Furthermore, sincedv(j1 ,j2)52v(@ j1 ,j2 #) , for any vPV and j iPF(g) , it also follows
that the formula~9! reduces, whenevervP∧ rV andj iPF(g),S(R) , to the expression

@ dv ^ q 0m1~21!degv v∧dV ~q 0m! # ~j1 , ... ,j r 11! , ~11!

where dV (q 0m)(j) is the Lie derivativeq 0„u(j)m… . We shall see later that the above formu
still holds for any invariant formv since dHv50 implies dVv5dv .

We next consider the elementssPJ r as i I-multilinear ~and skew-symmetric! forms @s#
defined on S~R! and taking values inJ0 ~cf. Sec. IV!. Each form @s# restricts to an
R-multilinear form t5@s#R defined on the real subspacehPS(R) and conversely, on accoun
of Lemma 2 , eachR-multilinear form t defined onh and taking values insPJ0 extends, by
I-multilinearity, to a form @s# defined onS~R! and such that@s#R5t . Furthermore, since in
the realm of real vector spaces the subspacedH(F0,p21) admits a complement inF0,p , the form
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t lifts to a real form t̄ defined on h and taking values inF0,p5∧p H . Finally, using
F-multilinearity on h , t̄ extends to anF-multilinear form t̃ defined onx(M ) with values in
∧p H by requiring thati (h) t̃50 , for all hPG(S) . We thus obtain an elementt̃PF r ,p such
that @ t̃ #R5t and consequently the assignments°@s# of Sec. IV becomes bijective whenS is
invariant under a transversally free infinitesimal action. Identifyingg with h and thereafterV
with g* , the expression~11! or equivalently the formula~9! shows that the cochain comple
defining the cohomology ofg with values in J0 and relative to the representatio
r(v) (q 0m)5q 0„u(j)m… , vPg , mPF0,p and j5F(v) , is equal to

J0→
dV

J1→
dV

J2→
dV

¯ . ~12!

Since q 0 is surjective, we can rewrite the above complex by

F0,p→
E

J1→
dV

J2→
dV

¯ , ~13!

without affecting the cohomology groups in positive dimensions, the latter being the vertica
of the Euler–Lagrange complex associated toS , namely the finite resolution ofE .

Theorem 1:Let S be an integrable Pfaffian system invariant under a transversally
infinitesimal action of the Lie algebra g. Then the finite resolution of the Euler operator E
equal, in positive dimensions, to the cochain complex of the Lie algebra g with values inJ0 .

Since E5dV+q 0 , we also infer that the space of cocycles inF0,p ~i.e., ker E ) is equal to
the inverse image, byq 0 , of the 0-dimensional cohomology ofg , namely the inverse image o
the subspace of theg-invariant elements ofJ0 (r(v) (q 0m)50 , ; vPg). Given an integrable
Pfaffian systemS , we can now confront its variational cohomology with the cohomology ofg
taking values inJ0 and eventually detect obstructions to the existence of a transversally
infinitesimal action ofg leaving S invariant. When dimR J0 , ` ~which is very seldom the
case!, we usually have more information on the cohomology ofg . For instance, ifg is semi-
simple then its cohomology vanishes in dimensions one and two~Whitehead’s lemmas! and
consequently the same must hold for the variational cohomology.

VI. EXAMPLES

Throughout this section, we replace integrable Pfaffian systems by the corresponding in
foliations. Though all the foliations are naive, the resulting homological calculations are
always so. For the sake of not being too omissive on these calculations, we outline a few in t
example.

A. Example 1: The torus

Let F be the the foliation on the 2-dimensional torusT whose leaves are the cosets of
1-dimensional sub-groupH . Then F is invariant under the infinitesimal action generated by a
element of the Lie algebra ofT ([R2) this action being transversally free as soon as this elem
does not belong to the Lie algebrah of H . The variational cohomology atJ1 is equal to R
and, using Green’s formula, one shows that the cohomology class of an element@v#PJ1 iden-
tifies with the real number*T v . When the slope of a generating element ofh is rational, the
calculations are very simple and both spacesJ0 and J1 identify with the set of all global first
integrals ofF . When this slope is irrational, the global first integrals ofF reduce to the constant
and it becomes more involved to describe the spacesJ0 and J1 and to calculate the cohomo
ogy. This is an example where the advantage of the Lie algebra cohomology calculations be
apparent.
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B. Example 2: The Mo¨ bius strip

Let F be the foliation on the Mo¨bius strip M whose leaves are the ‘‘double’’ circles, exce
for the central circle~under the usual identification (1,y)[(21,2y) , F is the foliation induced
by the segments parallel to thex-axis!. Both spacesJ0 and J1 identify again with the set of all
global first integrals ofF which in turn identifies with the set of all the even functions defined
the interval ]21 ,1@ . The variational cohomology atJ1 vanishes and, whatever the represe
tation r:g5R→Der J0 , the cohomology ofg in dimension one is nontrivial~the derivative of
an even function usually ceases to be even!. This disagreement shows thatF cannot be invariant
by any transversally free infinitesimal action, a fact that is geometrically obvious since su
action would provide an orientation toM .

C. Example 3: Foliation with a compact attractor

We consider, on the infinite cylinderC5R3S1 with coordinates (t ,u) , the foliation F
obtained by integrating the vector field,

h5t
]

]t
1

]

]u
.

The nature of the spacesJ0 and J1 is rather involved but a straightforward calculation sho
that the cohomology atJ1 is null. On the other hand, whatever the representation of the
algebrag5R into Der J0 , the Lie algebra cohomology in dimension one cannot vanish. C
sequently, the foliationF does not admit any 1-dimensional transversally free infinitesimal ac
that leaves it invariant. This fact is also geometrically obvious since the local 1-parameter
(fu) generated by any such infinitesimal action would be defined, for smallu , on a whole
neighborhood of the limit circle$0%3S1 and would transform this circle into open compa
subsets of the neighboring leaves, this being of course excluded.

An entirely similar situation arises in the double solid torus~two solid tori glued by their
boundaries! upon taking the Reeb foliation inside each of the tori. The common boundary tor
the unique compact leaf.

D. Example 4: Spheres and rays

On the spaceM5Rp1120 , let F1 be the foliation whose leaves are the spheres centere
the origin andF2 the foliation whose leaves are the rays issued from the origin. We first con
thespherefoliation F1 and calculateJ0 , one possible argument being as follows: Each elem
mPF0,q identifies canonically with a differentiable 1-parameter family (m̄r) of differentiable
q-forms defined on the unit sphereSp and, under this identification,dHmPF0,q11 also identifies
with (dm̄r) . We next take a differentiable 1-parameter family (m̄ t) , t . 0 , of p-forms on Sp .
Then, upon choosing a fixed volume formV on Sp ~e.g., the volume form associated to th
induced Euclidean metric!, we can determine, by integration, a differentiable functionw:R1

→R such thatm̄ t2w(t) V is, for each t , a coboundary. Restating the Lemma 4.2~p. 123! of
Ref. 14 in its stronger version~as is proved in the subsequent two pages!, we can use it to establish
a stronger 1-parameter version of the Lemma 4.2~p. 126! and prove in the aforementione
context that there exists a differentiable 1-parameter family (h̄ t) of (p21)-forms defined onSp

such that m̄ t2w(t) V5dh̄ t . Returning to F0,p and taking the form Ṽ5r * V ,
r :X°(1/iXi) X , defined onM , we conclude that eachmPF0,p determines a differentiable
function w such thatm2w Ṽ5dHh , where hPF0,p21 , and consequently thatJ0 is equal to
the set of all the real-valued differentiable functions defined onR1 i.e., to the set of all the globa
first integrals ofF1 .

Let us now calculateJ1 . Observing thatdr is a global generator of the Pfaffian system th
annihilates F1 , any element h1PF1,q writes h15h∧dr , with hPF0,q , and dHh1

5(dHh)∧dr since dH(dr)50 . Consequently, the elementm15m∧drPF1,p is equal to
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dHh1 , with h1PF1,p21 , if and only if m5dHh hence the present calculation reduces to
previous one andJ1 is again equal to the set of all the global first integrals ofF1 .

It now becomes easy to show that the variational cohomology atJ1 is null. The foliationF1

is of course invariant under many 1-dimensional transversally free infinitesimal actions an
vanishing of the Lie algebra cohomology in dimension one is easily be checked.

We next take theradial foliation F2 . Here we can proceed locally, on open sets saturate
rays, and integration along these rays will show thatJq50 , 0<q<p . The variational as well as
the Lie algebra cohomologies vanish, their comparison not revealing the following geome
facts.

(a) When p is even, there cannot exist a transversally free infinitesimal action leaving
radial foliation F2 invariant. In fact, since the tangent spaces toF1 and F2 are complementary
any such infinitesimal action would project onto the spheres producing an infinitesimal a
operating tangentially to the spheres and, in restriction to these spheres, would be free. Ho
even dimensional spheres do not admit nowhere vanishing vector fields.

(b) When p is odd, such transversally free infinitesimal actions do exist only forp51 ,3 .
Their nonexistence forp57 is essentially a consequence of the fact thatS7 is not a Lie group
manifold and, for all the other values ofp , that the corresponding spheres are not paralleliza

We can enhance the variational cohomology by adding nontrivial cocycles to the spacM .
For example, let us take for the manifoldM the portion of Rp1120 in between the sphere
Sp(1) and Sp(2) and identify these two spheres by the radial map. ThenF1 induces a foliation
F̄1 in spheres,F2 a foliation F̄2 in circles ~in fact, M.Sp3S1 ) and one shows, for the
foliation F̄2 , that J0 is equal to the set of all the differentiable functions defined on the sp
Sp(1) or, equivalently, to the set of all the global first integrals ofF̄2 . Furthermore,J r is equal
to the product of (r

p) copies of J0 and Jp5J0 . As for the variational cohomology, we ca
again apply the 1-parameter version of the Lemmas 4.2 and conclude that it vanishes atJ r 11

whenever r 11 , p and that it is equal toR at Jp . Stokes’ formula will then show that the
cohomology class of an element@v#PJp identifies with the real number*M v .

Returning to the geometric facts described earlier, we can retrace (a) by looking at the
variational cohomology. In fact, since any vector field on an even dimensional sphere
singularity, whatever the representationr of a Lie algebrag into Der J0.x(Sp) , the corre-
sponding Lie algebra cohomology cannot vanish in dimension one. As for the property (b), it
requires a deeper analysis that seems to be out of reach in the present context. Neverthele
be shown that transversally free Abelian infinitesimal actions leavingF̄2 invariant cannot exist
since the corresponding Lie algebra cohomologies with values inJ0 would vanish in dimension
p thus contradicting the variational cohomology.
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The Dirac operator for a manifoldQ, and its chirality operator whenQ is even
dimensional, have a central role in noncommutative geometry. We systematically
develop the theory of this operator whenQ5G/H, whereG and H are compact
connected Lie groups andG is simple. An elementary discussion of the differential
geometric and bundle theoretic aspects ofG/H, including its projective modules
and complex, Ka¨hler and Riemannian structures, is presented for this purpose. An
attractive feature of our approach is that it transparently shows obstructions to spin-
and spinc-structures. When a manifold is spinc and not spin, U~1! gauge fields have
to be introduced in a particular way to define spinors, as shown by Avis, Isham,
Cahen, and Gutt. Likewise, for manifolds like SU~3!/SO~3!, which are not even
spinc , we show that SU~2! and higher rank gauge fields have to be introduced to
define spinors. This result has potential consequences for string theories if such
manifolds occur asD-branes. The spectra and eigenstates of the Dirac operator on
spheresSn5SO(n11)/SO(n), invariant under SO(n11), are explicitly found.
Aspects of our work overlap with the earlier research of Cahenet al. © 2003
American Institute of Physics.@DOI: 10.1063/1.1607514#

I. INTRODUCTION

When a groupG acts transitively on a manifoldQ with stability groupH at a pointp, we can
identify Q with the coset spaceG/H. Such spaces are important in the description of Goldst
modes created by the spontaneous breakdown ofG to H. Models of spacetime such as th
Minkowski spacetimeM3,1 or its compact Euclidean versionS4 are also of this sort. The groupG
in these cases is the Poincare` group and SO~5!, respectively, whileH is the Lorentz group and
SO~4!, respectively. In addition, coset spaces likeCPN and SN have begun to proliferate a
D-branes in string and boundary conformal field theories.

The Dirac operator for a manifoldQ, and its chirality operator whenQ is even-dimensional,
have a central role in noncommutative geometry. That is a good motivation for their study. I
work we focus on this enterprise whenQ is a coset space. In addition, in a subsequent paper
shall develop fuzzy versions of certain coset spaces and their Dirac and chirality operator
marily as a device to regularize quantum field theories thereon, and what we do here is
preparation for it.

We assume throughout thatG is a simple compact connected Lie group andH is a compact
connected group. Without loss of generality we assume also thatG is simply connected. Thes

a!Electronic mail: bal@physics.syr.edu
47130022-2488/2003/44(10)/4713/23/$20.00 © 2003 American Institute of Physics
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restrictions onG andH can be relaxed somewhat,G can be semi–simple for instance, and certa
noncompact Lie groupsG too seem approachable by our methods.

Not all G/H admit a spin-, or even a spinc-structure.3 One attractive aspect of our approach
that obstructions to spin- and spinc-structure show up transparently and we can also easily
when and how we can overcome them using suitable generalized spin-structures, spinK . The latter
in general involve groupsK of any dimension, whereas spinc (5spinU(1) in our notation! uses
U~1! of dimension 1. The role ofK is roughly that of a gauge group, so insisting on the existe
of spinors introduces nontrivial gauge symmetry and internal degrees of freedom. In ad
typically, spinK-theories are chiral, left- and right-chiral spinors transforming differently undeK.
This suggests that there may be a clever way to use fuzzy spaces to get the chiral fermion
standard model.

There is a simple global appoach to differential geometry onG/H. We introduce this formal-
ism after setting up the preliminaries in Sec. II. We follow this up in Sec. III, introducing spin-
spinK-structures. Their Dirac and chirality operators are formulated in Sec. IV. We call this ve
of the Dirac operator ‘‘Ka¨hler–Dirac operator,’’ as it is similar to the operator with the same na
on a complex manifold. There is another equivalent version using projective modules e
useful for fuzzy physics, which we have decided to call the projective Dirac operator. The ‘‘D
operator then refers to either of these two versions. Section V takes this up and also establi
equivalence to the Ka¨hler–Dirac operator. Along the way, the differential geometry of Sec. I
also translated to the language of projective modules. The cut-off versions of these expre
have an important role in fuzzy physics. In Sec. V we also explicitly consider the spheresSn and
CPn. In particular, for spheres, we compute the curvature and Dirac spectrum for the max
symmetric metric. In Sec. VI we extend the preceding considerations to gravity onG/H.4 Finally
in Sec. VII we discuss the complex and Ka¨hler structures of coset manifolds.

II. DIFFERENTIAL GEOMETRY ON GÕH

A. Preliminaries

G is a simple, simply connected, connected, compact Lie group with Lie algebraGI . HI is a
subalgebra ofGI which by exponentiation generates a compact connected Lie groupH.

We think of G concretely asN3N unitary matrices. The Lie algebraHI then has a basis
$T(a)% of Hermitian matrices„we follow physics conventions, more correctly$ iT(a)% spanHI …,
which are trace orthogonal:

TrT~a!T~b!5c dab , c5const.0. ~2.1!

Using trace to define scalar product,GI can be decomposed as the orthogonal direct sum,

GI 5HI %
'G/H. ~2.2!

Let $S( i )% be a basis forG/H with

TrS~ i !S~ j !5c d i j . ~2.3!

We also of course have

TrS~ i !T~a!50. ~2.4!

We denote the elements of the basis$T(a),S( i )% collectively asSA , AP$a,i %.
Let Ad denote the adjoint representation ofG. Then H,G leavesG/H invariant in this

representation:

h S~ i ! h215S~ j !~Ad h! j i , hPH. ~2.5!
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We refer to this representation ofH on G/H as AdG/H , and the corresponding representation ofHI
as adG/H . AdG/H(h) are real matrices as the Hermitian conjugation of~2.5! shows. They are also
orthogonal as conjugation leaves the relation~2.3! invariant. Thus, ifuGu, uHu and uG/Hu5uGu
2uHu denote the dimensions ofG, H andG/H, $AdG/H(h)% is a subgroup ofSO(uG/Hu):

$AdG/H~h!%#SO~ uG/Hu!. ~2.6!

The above discussion implies the following commutation relations:

@T~a!,T~b!#5 icabgT~g!,

@T~a!,S~ i !#5 ica i j S~ j !, ~2.7!

@S~ i !,S~ j !#5 ic i j aT~a!1 ic i jkS~k!. ~2.8!

The structure constantscABC are real and totally antisymmetric.
We will call ci jk the torsion of the spaceG/HI . Below we will see that it plays exactly the rol

of the usual torsion for the canonical covariant derivative onG/H.5 If ci jk50, the homogeneous
spaceG/H is said to be ‘‘symmetric.’’6 In that case,GI admits the involutive automorphism:

s : T~a!→T~a!, S~ i !→2S~ i !, ~2.9!

leavingHI fixed. s lifts to an involutive automorphismS of G leavingH fixed, S being defined
from

S : eiuaT(a)→eiuaT(a), eiu iS( i )→e2 iu iS( i ). ~2.10!

B. Tensor fields on GÕH

Let W be a fixed vector space with an orthonormal basis$ei% which carries the representatio
AdG/H of H, h : ei→ej AdG/H(h) j i . The vector spaceW^ n5W^ W^¯^ W (n factors! carries
the tensor product representation AdG/H

^ n 5AdG/H ^ AdG/H ^¯^ AdG/H (n factors!. Let C[W^ 0

also denote the one–dimensional complex vector space carrying the trivial represen
AdG/H

^ 0 : h→1.
Tensor fields of rankn on G/H can be defined to be equivariant functions onG with values

in W^ n. That means the following: forn50 we have scalar fieldsf (0), complex~or W^ 0) valued
functions onG invariant under the right–action ofH on G ~equivariance!:

f (0)5scalar fields: f (0)~gh!5 f (0)~g!, ; hPH. ~2.11!

A tensor fieldf (1) of rank 1 has values inW; we can write it as

f (1)5 f i
(1)ei , f i

(1) : g→ f i
(1)~g!PC. ~2.12!

Equivariance forn51 means the following transformation property under the right action ofH on
G:

f i
(1)~gh!ei5 f i

(1)~g!AdG/H~h! i j ej . ~2.13!

Therefore

f i
(1)~gh!5 f j

(1)~g!AdG/H~h! j i . ~2.14!

Let J label the inequivalent irreducible representations ofG by unitary matrices$DJ(g)%;
their matrix elements in a convenient orthonormal basis areDmn

J (g). We have that
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Dmn
J ~gh!5Dmn8

J
~g!Dn8n

J
~h!. ~2.15!

If the representationh→DJ(h) contains the identity representation ofH, we can choose the bas
in the representation space so that the indexn in ~2.15! transforms trivially whennP an appro-
priate index setI 0 :

Dmi0
J ~gh!5Dmi0

J ~g!, ; i 0PI 0 . ~2.16!

From this,~2.11! and Peter–Weyl theorem it follows that we can expandf (0) in the form

f (0)~g!5( jmi0
J Dmi0

J ~g!, jmi0
J PC. ~2.17!

jmi0
J is zero if h→DJ(h) fails to contain the trivial representation ofH.

Henceforth we assume for notational simplicity that the identity representation occurs
once in the restriction of the irreducible representationsJ of G to H, and so drop the indexi 0 from
jmi0

J . Otherwise a degeneracy index has to be included here and elsewhere.

In the same way, if the representationh→DJ(h) contains AdG/H , we can choose the basis i
the representation space so that the indexn in ~2.15! transforms by AdG/H if i , j belong to an
appropriate index setI :

Dmi
J ~gh!5Dm j

J ~g!@AdG/H~h!# j i , i , j PI . ~2.18!

~For notational simplicity we are assuming that AdG/H occurs only once in the representationJ,
otherwise a degeneracy index has to be added here and elsewhere.! Then we can expandf i

(1) in the
form

f i
(1)~g!5( jm

J Dmi
J ~g!, jm

J PC. ~2.19!

jm
J now is zero ifh→DJ(h) fails to contain AdG/H .

Continuing in this vein we see that tensor fields of rankn in component form look likef i 1¯ i n
(n)

and have the expansion

f i 1¯ i n
(n) ~g!5( jm

J Dm,$ i 1¯ i n%
J ~g!, i kPI , ~2.20!

Dm,$ i 1¯ i n%
J ~gh!5Dm,$ j 1¯ j n%

J ~g!@AdG/H~h!# j 1i 1
¯@AdG/H~h!# j ni n

. ~2.21!

We have used a convenient multi-index notation for the second index ofDJ. The rest should be
clear. Tensor fields of diverse permutation symmetries are readily constructed along simila

C. Covariant derivative

Let T (n) denote the space of tensor fields of rankn, with a typical memberf (n)5$ f i 1¯ i n
(n) %.

T (0) consists of functions, and it is also an algebra under pointwise multiplication. AllT (n) are
T (0)-modules. The covariant derivative¹ is a map,

¹ : T (n)→T (n11), f (n)→¹ f (n), ~2.22!

where¹ f (n) has components (¹ f (n)) i i 1¯ i n
. It has in addition to fulfill the following important

derivation property. Note that we can take tensor products ofT (n)-s ~over T (0), T (n) beingT (0)

modules!:
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T (n)
^ T (m)5T (n1m), f (n)

^ f (m)5 f (n1m), ~2.23!

where

f i 1¯ i nj 1¯ j m

(n1m) 5 f i 1¯ i n
(n) f j 1¯ j m

(m) . ~2.24!

Then we require that

¹~ f (n)
^ f (m)!5¹ f (n)

^ f (m)1 f (n)
^ ¹ f (m). ~2.25!

There is a natural choice for the covariant derivative in our case. We call it hereafter asX. The
action ofX on functions is

@X f (0)# i~g!5
d

dt
f (0)~geitS( i )!U

t50

. ~2.26!

¹ f (0) transforms correctly in view of~2.5!. In the same way the action onf (n) is

@X f (n)# i i 1¯ i n
~g!5

d

dt
f i 1¯ i n

(n) ~geitS( i )!U
t50

. ~2.27!

The right-hand side defines a vector fieldXi . UsingXi the covariant derivative in components
f i 1¯ i n

(n) → Xi f i 1¯ i n
(n) 5rhs of ~2.27!.

The torsion of the covariant derivative vanishes only if@Xi ,Xj # f (0)50. From the definition
and ~2.7!, we have

@Xi ,Xj # f (0)52ci jkXkf (0) . ~2.28!

So there is torsion ifci jkÞ0. But there is an easy way to construct the torsion–free cova
derivativeX̄i . Set

X̄i f
(0)5Xi f

(0),

X̄i f j
(1)5Xi f j

(1)1 1
2ci jk f k

(1),
~2.29!

]

X̄i f j 1¯ j n

(n) 5Xi f j 1¯ j n

(n) 1 1
2ci j 1 j

18
f j

18 j 2¯ j n

(n)
1 1

2ci j 2 j
28
f j 1 j

28¯ j n

(n)
1¯1 1

2ci j nj
n8
f j 1¯ j

n8
(n)

.

Then

@X̄i ,X̄j # f (0)5@Xi ,Xj # f (0)1ci jkXkf (0)50, ~2.30!

just as we want.
Gauge fields will certainly have a central role in further developments. So we briefly ind

what they are here. Let us first consider U~1! gauge fields. The general gauge potential isAi

5(jM
J DMi

J , jM
J PC. It is subject to the reality conditionĀi52Ai . Then if f (n) has chargee, its

covariant derivative is (X̄i1eAi) f i 1¯ i n
(n) , whereAi acts by pointwise multiplication. This definition

is compatible with equivariance. We can substituteXi for X̄i at the cost of possible torsion.
The gauge covariant derivative for a general gauge group as usual only involves reg

eAi(g), that isejM
J , to be Lie algebra valued, its action onf (n) in ~2.27! is then dictated by the

representation content of the latter.
                                                                                                                



s. The

,
ue

mo-

nce of
educe

4718 J. Math. Phys., Vol. 44, No. 10, October 2003 Balachandran et al.

                    
III. SPIN- AND SPINK-STRUCTURES

Spinorial fields are essential for physics. We can go about constructing them as follow
orthogonal group SO(uG/Hu) has a double cover Spin(uG/Hu). Associated with SO(uG/Hu), there
is also a Clifford algebraC,(uG/Hu) with generatorsg1 ,g2 ,...,g uG/Hu :

g ig j1g jg i52d i j I. ~3.1!

Here I denotes the unit matrix.~Its dimension should be clear from the context.! C,(uG/Hu) has
one or two inequivalent IRR’s of dimension 2n if uG/Hu52n or uG/Hu52n11. In the latter case
the two IRR’s are related by a change of sign of allg i ’s. In either case, they generate a uniq
faithful representation of Spin(uG/Hu) with generatorsS i j 5(1/4i ) (g ig j2g jg i) which we call
SpinC,(uG/Hu).

A recursive scheme for constructing anticommuting sets of Hermitiang-matrices goes as
follows. We start with a set of 2n2132n21 matricesg i , i 51, . . . ,2n21, satisfying Eq.~3.1!, and
such that (2 i )n21g1¯g2n2151, e.g., forn52, the three Pauli matrices. Then a set of 2n32n

matricesGl , l51, . . . ,2n11, satisfying Eq.~3.1!, and such that (2 i )nG1¯G2n115I is given
by

G i5S 0 g i

g i 0 D , i 51, . . . ,2n21, G2n5S 0 2 i I

i I 0 D , G2n115S I 0

0 2ID . ~3.2!

The matricesg1 , . . . ,g2n21 span C,(2n21), and the matricesG1 , . . . ,G2n span C,(2n),
whereasG1 , . . . ,G2n11 spanC,(2n11).

A. Spin manifolds

We say that G/H is a spin manifold if the commutative diagram exists, arrows being ho
morphisms (which need not be onto):

G . H → SpinC,~ uG/Hu!

↓ ↓Z2

AdG/H , SO~ uG/Hu!
. ~3.3!

The vertical homomorphisms are there by construction, so what is to be verified is the existe
the horizontal arrow. If it exists, a general spinor can be constructed as follows. We can r
SpinC,(uG/Hu) restricted toH into a direct sum% r of unitary irreducible representations ofH.
Let g→DJ(g) be the unitary matrix ofg in a representation ofG which on restriction toH
contains% r. Then we can restrict its second indexa to an index setI so that it transforms by% r
underg→gh:

Daa
J ~gh!5Dab

J ~g!Dba
J ~h!, a,bPI . ~3.4!

By construction we know how the Clifford algebra acts on the indexaPI . A general spinorc then
is a function onG with components

ca5( jM
J DMa

J . ~3.5!

Let us look at examples.
Example 1:CP15SO(3)/SO(2)5@Spin(3)5SU(2)#/@Spin(2)5U(1)#. So G5SU(2), H

5U(1)5$eis3u/2%, sA the Pauli matrices. ThenS( i )5s i , i 51,2, and

eis3u/2s ie
2 is3u/25s jRji ~u!, R~u!5S cosu sinu

2sinu cosu D PSO~2! . ~3.6!
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SpinC,(uG/Hu) is just H5$eis3u/2%, the homomorphism SpinC,(2)→SO(2) being eis3u/2

→R(u). Thus~3.3! exists and SU(2)/U(1)5S2.CP1 is spin.
For a thorough treatment of noncommutative geometry and a Dirac operator onS2, see Ref.

7.
Example 2:Similar arguments show that all the spheresSN5SO(N11)/SO(N)5Spin(N

11)/Spin(N) are spin.G for SN is Spin(N11) while H5Spin(N). AdG/H is SO(N), the
Z2-quotient of Spin(N). Since SpinC,(uG/Hu) is isomorphic to Spin(N), SN is spin.

Example 3:CP25SU(3)/U(2). SoG5SU(3), H5U(2). A basis for the 3-dimensiona
SU~3!-Lie algebra consists of the Gell-Mann matriceslA . The U~2! Lie algebra has basisl1 , l2 ,
l3 , l8 , the hyperchargeY being (1/)) l8 . The S( i ) are l4 , l5 , l6 , l7 . Under U~2!, they
transform as (K1,K0) or (2K̄0,K2) in particle physics notation. That means that AdG/H

5U(2). Regarding U~2! as 232 unitary matricesU, we can embed U~2! in SO~4! by the map

U→ 1

2 S U1U* i ~U2U* !

2 i ~U2U* ! U1U* D . ~3.7!

SpinC,(4) is the (12,0)% (0,1
2) representation of SU(2)̂SU(2). It is thedouble cover of SO~4!.

Now H is U~2! and SpinC,(4) has no U~2! subgroup. SoCP2 is not spin.1

Example 4: G5SU(3), H5SO(3). WithG as 333 unitary matrices,H consists of all real
orthogonal matrices and corresponds to the spin 1 representation of SO~3!. G/H is of dimension
5. It carries the spin 2 representation of SO~3!, isomorphic~but not equivalent!! to the spin 1
representation. There is no homorphism SO(3)→SpinC,(5) compatible with~3.3!, so that SU~3!/
SO~3! is not spin.3

Let us show this result in more detail. We can show it by establishing that the 2p-rotation in
SO~3! becomes a noncontractible loop in SO~5! under the embedding in~3.9!. Then the inverse
image of SO~3! under the homomorphism SpinC,(5)→SO(5) is SU~2!, giving us the result.

Now SO~3! acts on real symmetric traceless 333 matrices T5(Ti j ) according to T
→RTRT. This is its spin 2 representation. We can eliminate sayT33 using TrT50, thereby
representing it as real transformations on (T11,T12,T13,T22,T23). SO~5! consists of real transfor
mations on this five-dimensional vector, so we now have the needed explicit embedding of~3!
in SO~5!. Let

R~u! : S cosu sinu 0

2sinu cosu 0

0 0 1
D . ~3.8!

It generates the 2p-rotation loop in SO~3! as u increases from 0 to 2p. Consider T8
5R(u)TR(u)T. Then asu increases from 0 to 2p we have a 2p-rotation in theT132T23 plane.
But by the timeu5p, Tab (a,b<2) return toTab so that the rotations in their planes are by 4p
or/and 0@in fact, dab(T111T22) undergoes no change andTab2 1

2dab(T111T22) undergoes 4p-
rotation#. The corresponding loop of matrices in SO~5! is the product of an odd number o
2p-rotations and hence cannot be deformed to a point in SO~5!. That concludes the proof.

We will now explain the Dirac operators for Spin- and SpinK-manifolds after discussing
SpinK-structures.

B. Spin K-manifolds

K and H are compact connected Lie groups in what follows.We say that G/H is a
SpinK-manifold if the commutative diagram exists:
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G . H → H . SpinC,~ uG/Hu!

↓ ↓K ↙Z2

AdG/H , SO~ uG/Hu!
~3.9!

K andZ2 on the arrows are to show that they are the kernels of those homomorphisms
SpinU(1) in our language is what mathematicians call Spinc .
The intersection SpinC,(uG/Hu)ùK clearly containsZ2 . It cannot be larger, for that would

mean that the kernel for the slanting arrow exceedsZ2 .
ThusH.@SpinC,(uG/Hu)3K#/Z2 . Its quotient byK being exactly SO(uG/Hu), we conclude

that

H5@SpinC,~ uG/Hu!3K#/Z2 , ~3.10!

giving the following, also a commutative diagram:

G . H → H5@SpinC,~ uG/Hu!3K#/Z2 . SpinC,~ uG/Hu!

↓ ↓K ↙Z2

AdG/H , SO~ uG/Hu!
. ~3.11!

Let us denote the generators ofZ2 in SpinC,(uG/Hu) andK by zSpin andzK , they square to the
respective identities. The inclusion of SpinC,(uG/Hu) in ~3.3! is to be understood as follows. Th
elements ofH are the equivalence classes,

^hs,k&5^zspins,zKk&, sPSpinC,~ uG/Hu!, kPK. ~3.12!

Then the top inclusion is via the isomorphism

s→^s,eK&, eK5 identity of K. ~3.13!

As we think ofH as the concrete matrix group obtained by tensoring SpinC,(uG/Hu) with a
faithful unitary representation ofK wherezK is represented by2I,

H5SpinC,~ uG/Hu! ^ K, ~3.14!

we can write21 for zspin andzK . The inclusion of SpinC,(uG/Hu) is then justs→s^ I.
Let us motivate the new requirements in~3.9! and ~3.11!. For a physicist, a spinor change

sign under ‘‘2p rotation.’’ H is the group acting on SpinK-spinors. We have required it to conta
SpinC,(uG/Hu), so we can check this requirement by looking at the action of 2p-rotation
PSpinC,(uG/Hu),H. As for asking thatH→H, we can reduce the representation ofH into a
direct sum% r of irreducible representationsr of H just as in the discussion of spin structure
The action of the Clifford algebra on% r by construction is known. The wave functions
SpinK-spinors are then given by linear spans of representations ofG induced by% r; see~3.5!.
Later we shall see how the Dirac operator can be defined on these wave functions.

Example 5: G5SU(3), H5U(2), G/H5CP2. Here we chooseK5U(1). Elements of U~2!
can be written as the equivalence classes,

^s,u&5^2s,2u&, sPSU~2!, uPU~1!, ~3.15!

where we identify SU~2! with 232 unitary matrices of unit determinant andu with a phase.
SpinC,(4) is SU(2)̂ SU(2) andH consists of the equivalence classes

^s1 ,s2 ,u&5^2s1 ,2s2 ,2u&. ~3.16!

With elements of SO~4! represented aŝs1 ,s2&5^2s1 ,2s2&, the homomorphismH→SO(4) is
^s1 ,s2 ,u&→(s1 ,s2). The homomorphismH→H is also simple:
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@s,u#→^s,s,u&. ~3.17!

ThusCP2 is SpinU(1) or Spinc .
Example 6: G5SU(3), H5SO(3).
We return to the choicesG5SU(3), H5SO(3). ChoosingK5U(1) is not helpful now, as

we lack a suitable homomorphismH5SO(3)→H5SpinC,(5)^ Z2
U(1). So SU~3!/SO~3! is not

even SpinU(1) , a result originally due to Landweber and Stong.3 A better choice isK5SU(2).
Then we can find the homomorphismH→H as follows. The image of AdG/H in SO~5! is an SO~3!

subgroup SO(3)8. Its inverse image in SpinC,(5) is an SU~2! subgroup SU(2)8. Let SW andTW be
the angular momentum generators of SU(2)8 andK. If LW are the angular momentum generators
H, the map at the level of Lie algebras is justLW →SW 1TW . Hence SU~3!/SO~3! is SpinSU(2) . More
such examples can be found.

C. What is X̄„ i … now?

We need the extension of the torsion-free connection with componentsX̄i to spinors on
general spinK-manifolds. The first step in this direction is the extension ofXi .

A spinor fieldc5(ca) on a SpinK-manifold has the expansion

ca5( jM
L DMa

L , ~3.18!

wherea carries the action of the Clifford algebra. The definition ofXi on c is immediate from
~2.26!:

~Xic!~g!5
d

dt ( jM
L DMa

L ~geitS( i )!u t50. ~3.19!

The definition ofX̄i involves the extension ofci jk to spinors so that it can act on the indexa.
Now, the generators of the SO(uG/Hu)-Lie algebra areMi j , where

~Mi j !kl52 i ~d ikd j l 2d i l d jk!. ~3.20!

Its image in the spinor representation is (1/4i ) @g i ,g j #.
Now

ci j 8k8~M j 8k8!k j f k
(1)522ic ik j f k

(1) . ~3.21!

Hence

X̄i f j
(1)5Xi f j

(1)1
1

4i
ci j 8k8~M j 8k8!k j f k

(1). ~3.22!

From this follows the definition ofX̄i on spinors:

X̄ica5Xica2 1
16ci jk~@g j ,gk# !bacb . ~3.23!

A tensor formed of spinors will then transform correctly.
The introduction of gauge fields follows the earlier discussion.
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IV. THE DIRAC AND CHIRALITY OPERATORS

The massless Dirac operator for the torsion free connectionX̄i is just

DW52 ig i
RX̄i , ~4.1!

where the superscriptR indicates that theg’s act on spinors on the right. It is self-adjoint. Th
expression can be gauged, andX̄i can be substituted byXi if we can tolerate torsion.

If uG/Hu is even, e.g., ifG/H is a @co#adjoint orbit, there is also a chirality operatorg
anticommuting withDW :

g5~2 i !1/2 uG/Hug1¯g uG/Hu5g†, g25I. ~4.2!

The subscript ‘‘W’’ is to indicate that it is the form of the Dirac operator used by t
Watamuras.8 For evenuG/Hu there is also the unitarily equivalent Dirac operator,9

D5eigRp/4DWe2 igRp/45 igRDW, ~4.3!

which is central to fuzzy physics.

V. PROJECTIVE MODULES AND THEIR DIRAC OPERATOR

A. Projective modules

In the algebraic approach to vector bundles, their sections are substituted by eleme
projective modules~‘‘of finite type’’ !.10 A projective module is constructed as follows. LetA be an
algebra. It can be the commutative algebraA of C`-functions on a manifoldM if our interest is
in the algebraic description of its vector bundles. But it can also be a noncommutative alge
which case there is no evident correspondence with sections of differential geometric
bundles. ConsiderAN[A^ CCN with elementsa5(a1 ,...,aN), aiPA. Let P be anN3N projec-
tor with coefficient inA:

Pi j PA, P†5P5P2. ~5.1!

Then ANP ~whose elements are vectorsa with componentsaj Pji ) is a projective module. The
Serre-Swan theorem~Ref. 10! establishes that sections of any vector bundle can be obtained
someN andP.

It is very helpful for subsequent developments to have a projective module descripti
vector bundles. We can find the appropriate projectors by a known method described nic
Landi.11 It goes as follows.

Consider for example a rank 1 tensor field and any particularDJ matrix occurring in its
expansion, with elementsDr i

J . We have

~DJ! ir
† ~g!Dr j

J ~g!5d i j . ~5.2!

Let

PJ~g!rs5Dr i
J ~g!~DJ! is

† ~g!. ~5.3!

SincePJ(gh)5PJ(g) if hPH, Prs
J are functions onG/H. In view of ~5.2!, they are projectors

too. If PJ(g) are uJu3uJu matrices, a projective module describing rank 1 tensor fields is

A uJuPJ5^aJ5~a1
J ,...,a uJu

J !, a i
J5ak

JPki
J &. ~5.4!

There is no unique correspondence between projective modules and vector bundles. T
eachJ, we can find a projector and its module. But all such modules are equivalent, since the
elementsaJ5aJPJ andaK5aKPK which naturally correspond for differentJ andK:
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ar
J5( jM

L DMi
L ~DJ! ir

† , as
K5( jM

L DMi
L ~DK! is

† . ~5.5!

B. Differential geometry

There is much to be said on the differential geometry on projective modules, but for re
of brevity we limit ourselves to indicating how to extend the definitions ofX( i ) and X̄( i ).

Let us first focus on the tensorial case. Let

P5~Plr!, Plr5Dl i
J ~DJ! ir

† ~5.6!

be a projector appropriate for rank 1 tensors. Then what substitutes for the torsion-freeXi acting
on aJ is ¹l , which is defined by

¹lar
J~g!5( jM

L d

dt
DMi

L ~geitS( j )!U
t50

~DJ! ir
† ~g!~DJ! j l

† ~g!. ~5.7!

It belongs to the projective module for rank 2 tensors with the natural choiceP^ P of their
projectors. A more compact expression for the covariant derivative can be given in terms
right-invariant vector fields ofG, defined by

~LAf !~g!52 i
d

dt
f ~e2 i tSAg!U

t50

, ~5.8!

so that

LA~DJ!lm
† 5~DJ!lr

† ~SA!rm
J . ~5.9!

If functions onG/H are regarded as functions onG invariant by the right action ofH on G, LA

on these correspond to ‘‘orbital’’ operators of angular momentum.
The vector fieldsLA are related to the left-invariant vector fieldsXA by

~XAf !~g!5
d

dt
f ~geitSA!U

t50

52 i ~LBf !~g! ~Ad g!BA. ~5.10!

From this we may derive the following expression for the covariant derivative:

¹l52 i Ad gAi ~DJ! il
† JA, JA5 ‘ ‘ total angular momentum’’5LA2SA

R, ~5.11!

whereSA
R are the generators appropriate for representationJ acting on the right. In fact, applying

~5.10! and then~5.9! to the definition~5.7!, we find

¹lar
J52 i S L A( jM

L DMi
L DDir

J†~Ad g!A jD j l
J†52 i ~Ad g!A jD j l

J†
„~LA2SA

R!aJ
…r. ~5.12!

¹l maps tensors of rankk to k11. It also has the correct derivation property so that it is
covariant differentiation. Also,~5.7! shows that it corresponds to the operatorXi .

We can define the covariant derivative¹r on spinors corresponding toXi in the same way, just
changing the indexi to a in ~3.18!, and accordingly changing the choice ofJ as well.

The canonical torsionci jk generalizes for tensors to

Clrs5~DJ! il
† ~DJ! j r

† ci jkDsk
J . ~5.13!

A torsion-free covariant derivative on tensors whenci jkÞ0 is then defined from
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¹̄lar
J5¹lar

J1 1
2C lrsas

J . ~5.14!

As for spinors, following~3.23!, we define a spinorial torsion which is twice the expressi

2
i

4
ci jk

1

2i
~g jgk!ba52 1

8ci jk~g jgk!ba. ~5.15!

Let Js be the representation of choice for the projective module of spinors, andJT for rank 1
tensors. The transform of~5.15! onto spinorial modules is

2 1
8ci jk@DJs~g jgk!~DJs!†#s8s~DJT! ir

† , ~5.16!

while the torsion-free covariant derivative¹̄r acts on a spinoraJs represented as an element of
projective module as follows:

¹̄ras
Js5¹ras

Js2
1

8
a

s8

Js ci j 8k8„D
Js~g j 8gk8!~DJs!†

…s8s~DJT! ir
† . ~5.17!

C. The projective Dirac operator for spheres

The equations~5.5! tell us the invertible transformation of a spinor field of Sec. III C to
element of a projective module. So we can transform the Dirac operatorD to one acting on this
A-module. The result is not illuminating except in special cases like spheres andCPN, so we take
them up first.

1. Even spheres

For G/H5S2n, we can chooseG5SpinC,(2n11)5$g%, H5SpinC,(2n)5$h%, identifying
them with the representations given byg-matrices, SpinC,(2n11) and SpinC,(2n). We denote the
g-matrices ofH by g i , i 51,...,2n, and byg5(2 i )ng1¯g2n the additional gamma matrix ofG,
and refer to them collectively asGl5(g i ,g), l51,...,2n11. The generators ofH are S i j

5(1/4i ) @g i ,g j #, which together withS2n11,i5(1/2i ) gg i make up the full set of generatorsSmn

of G.
The Gl transform as vectors under conjugation byG. That lets us introduce coordinat

functionsx5(xl) for S2n, starting from an ‘‘origine’’x05(0, . . . ,0,1), as follows:

Glxl5gG2n11g21, gPSpin~2n11!, xlxl51. ~5.18!

We let subscriptA5(mn), m.n stand for either of the multi-indices (i j ), ~a of Sec. II!, or
(2n11,i ), (i of Sec. II!. For A5(2n11,i ), XA gives backX2n11,i[Xi of Sec. II, which is now
torsionless,G/H being symmetric.

SinceG2n11 commutes withS i j , DW can be written as

DW52 ig i
RXi5@G2n11 ,SA#RXA5@Glxl ,SA#RXA, at x5x0, ~5.19!

while

D5 iG2n11
R DW5 iGl

RxlDW, at x5x0. ~5.20!

We chooseJ to correspond to the preceding Clifford representation to fix the spinorial
jective module. We now show that on this module the above Dirac operators have the be
forms

DW5 i @Gl
Rxl ,SA

R#JA, D5 iGl
RxlDW, ~5.21!
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JA being again the total ‘‘orbital’’ plus ‘‘spin’’ generatorsLA and2SA
R of G. The matricesGl

R ,
SA

R act on the indexa of the spinor,

xa5( jM
K DMb

K ~DC,!ba
† , ~5.22!

on the right as in (Gl
Rx)a5xb(Gl)ba .

In fact, if we apply~5.21!, since by~5.9! JA(DC,)†50, we can see that

~DWx!a5 i( „LA~jM
K DMb

K !…~DC,!bc
† @SA ,Glxl#ca. ~5.23!

Inserting

@SA ,Glxl#5~Ad g!ABDC,~g!@SB ,G2n11#„DC,~g!…†

5 i ~Ad g!A,(2n11,i )D
C,~g!g i„D

C,~g!…†, ~5.24!

we get

~DWx!a52( ~L AjM
K DMb

K !~Ad g!A,(2n11,i ))~g i !ba8„D
C,~g!…a8a

† . ~5.25!

But the right-invariant vector fields are related to the left-invariant ones by Eq.~5.10!, so

~DWx!a52 i S Xi( jM
K DMb

K D ~g i !bc~DC,~g!!ca
† . ~5.26!

Writing ca5xa8Da8a
C, , ~5.26! shows that underDW : ca→(DWc)a , which is the action~5.19!. So

DW is equivalent toDW . In a similar mannerD is seen to be equivalent toD.
When acting on functions onS2n, we can use our coordinates to express the right-invar

vector fields in the form

Lmn52 i S xm

]

]xn
2xn

]

]xm
D , ~5.27!

and therefore the Dirac operators as

DW52xmGn
R~Lmn2Smn

R !, D52Smn
R Lmn1n. ~5.28!

To determine the spectrum and eigenspinors of the Dirac operator we need to be more e
about the group Spin(2n11). It has rankn, and IRR’s that can be labeled by the components
the highest weight (m1 , . . . ,mn), with the mi ’s all integers or all half integers, andm1>m2

>¯>mn>0. The Clifford representation SpinC, has highest weight (12,...,
1
2), dimension 2n and

quadratic Casimir operatorC2(C,)[C2(SpinC,)5 1
2SmnSmn5 1

4n(2n11). We indicate byL an
IRR associated with the setI 0 of Sec. II B; it has highest weight (l ,0,...,0), wherel is an integer,
and dimension and quadratic Casimir operator,

d~L !5
2l 12n21

l 12n21

~ l 12n21!!

l ! ~2n21!!
, C2~L !5 l ~ l 12n21!. ~5.29!

The final piece of required information is

L ^ C,5~ l 1 1
2,

1
2,...,

1
2! % ~ l 2 1

2,
1
2,...,

1
2!, ~5.30!

with
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dS j ,
1

2
,...,

1

2D52n
~ j 12n2 3

2!!

~ j 2 1
2!! ~2n21!!

, C2S j ,
1

2
,...,

1

2D5 j ~ j 12n21!1
1

2
~n21!S n2

1

2D .

~5.31!

With this background it is easy to show that the eigenspinors ofD are of the form

xa
JL5( jM

JL^JMuLN,C,a&DNi0
L , with J5S l 6

1

2
,
1

2
,...,

1

2D , ~5.32!

whereM , N and i 0 , anda label vectors in the IRR’sJ, L andC,. In fact,

~Dx!a5( jM
JL^JMuLN8,C,a8&~Smn!a8a~Smn

L !N8NDNi0
L 1nxa, ~5.33!

whereSmn
L is the representative ofLmn in the IRRL. ‘‘Completing the square’’ in this equation

one finds

^JMuLN8,C,a8&~Smn!a8a~Smn
L !N8N5~C2~J!2C2~L !2C2~C, !!^JMuLN,C,a&. ~5.34!

Using the expressions for the various quadratic Casimir operators, the eigenvalues corresp
to the the eigenspinors~5.32! are found to be

r56~ j 1n2 1
2!, for j 5 l 6 1

2. ~5.35!

2. Odd spheres

An odd sphereS2n215SO(2n)/SO(2n21) differs from an even sphereS2n in important
details. The Clifford algebraC,(2n21) has two inequivalent 2n21-dimensional representations
with (2 i )n21g1¯g2n215I and (2 i )n21g̃1¯g̃2n2152I; we may takeg̃ i52g i , which makes
clear that they give a single IRR’s of Spin(2n21), with generators (1/4i ) @g i ,g j #. They do give
however two inequivalent IRR’s of Spin(2n), with generators„(1/4i ) @g i ,g j #,2

1
2g i… and

„(1/4i ) @g i ,g j #,
1
2g i…, let us label themC,1 andC,2.

For covariance it is better to put these two representations together and work wit
2n-dimensionalGm , m51, . . . ,2n, built from theg i ’s as indicated in~3.2!; that particular con-
struction gives

G2n115~2 i !nG1 ¯ G2n5S I 0

0 2ID , G̃2n21[~2 i !n21G1 ¯ G2n215S 0 I

I 0D .

~5.36!

For C,(2n21), Gm splits into the two inequivalent IRR’s12(I6G̃2n21)G j[G j
(1,2) , 1< j <2n

21. The corresponding generators of SpinC,(2n) are

Smn5
1

4i
@Gm ,Gn#5H S i j 5S 1

4i
@g i ,g j # 0

0
1

4i
@g i ,g j #

D ; S2n,i5S 2
1

2
g i 0

0
1

2
g i

D J ,

~5.37!

and give, as expected, the direct sumC,1
% C,2; for the group elements of Spin(2n) we have

g5S DC,1
0

0 DC,2D ,
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split by the projectors12(I6G2n11).
Spinors carry the direct sum of these two IRR’s on their index, and we can use either

Dirac operators,

DW
(1,2)5

1

2
~I6G̃2n21!R~2 i G i

R!Xi , ~5.38!

or else we can accept fermion doubling and work withDW
(1)

% DW
(2) .

There is no chirality in odd dimensions, butG2n plays a role in space~time!-reflection, and can
be used to give Dirac operators equivalent toDW

(1,2) :9

D (1,2)5eiG2n
R p/4DW

(1,2)e2 iG2n
R p/45 1

2~I7G2n11
R ! G2n

R G i
R Xi . ~5.39!

We can introduce coordinates forS2n21, starting fromx05(0,...,1), by

Glxl5gGlxl
0g215gG2ng21 , xlxl51 . ~5.40!

Hence atx5x0,

DW
(1,2)5p~x0!(1,2)

R @Glxl
0 ,SA#RXA , D (1,2)5 1

2~I7G2n11
R !iGl

Rxl
0@Glxl

0 ,SA#RXA ,
~5.41!

p~x0!(1,2)5
1

2
~I6G̃2n21!5

1

2 S I6
~2 i !n21

~2n21!!
em1¯m2n

Gm1
¯Gm2n21

xm2n

0 D .

Their covariant forms follow:

D W
(1,2)5p~x!(1,2)

R i @Gl
Rxl ,SA

R#JA, D (1,2)52 1
2~I7G2n11

R !Gr
Rxr@Gl

Rxl ,SA
R#JA,

~5.42!

p~x!(1,2)5
1

2 S I6
~2 i !n21

~2n21!!
em1 ¯ m2n

Gm1
¯ Gm2n21

xm2nD5g p~x0! g21.

JA is defined as before.
Proceeding as we did for even spheres, withLmn as in Eq.~5.27! the Dirac operators can b

rewritten in the form

D W
(1,2)52p~x!(1,2)

R xmGn
R~Lmn2Smn

R !, D (1,2)5 1
2~I7G2n11

R !~2Smn
R Lmn1n2 1

2!. ~5.43!

Given their form, it is easy to find one set of eigenvalues and eigenspinors for the Dirac ope
D (1,2), by the same argument that led us to Eq.~5.32!. The IRR’s of Spin(2n) are labeled by
highest weights (m1 ,...,mn), m1>m2¯>umnu>0 with the mi all integers or all half integers

The two 2n21-D spinor representationsC,6 have (12,...,
1
2,6

1
2), with quadratic Casimir

C2(C,6)5 1
2SmnSmn5 1

4n(2n21). The IRR’s associated with the setI 0 of Sec. II B areL
5( l ,0,...), with dimensiond(L)5 ( l 1n21) (l 12n23)!/(n21) (2n23)! l !, and quadratic Ca-
simir C2(L)5 l ( l 12n22). Finally,

L ^ C,65~ l 1 1
2,

1
2,...,6

1
2! % ~ l 2 1

2,
1
2,...,6

1
2! . ~5.44!

For these last representations we haveC2( j , 1
2, . . . ,6 1

2)5( j 2 1
2)( j 12n2 3

2)1 1
4n(2n21).

With all this information, the analog of~5.33!, ~5.34! give for the eigenvalues

r656~ j 61n21!, with j 65 l 6 1
2. ~5.45!
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There are eigenstates for each of the two inequivalent representations of the Clifford algebra
are given by

x1,a6
JL 5S 0, ( jM

JLK S j 6 ,
1

2
,...,2

1

2D ,MUL,N8;C,2aL DN8 i 0

L D ,

~5.46!

x2,a6
JL 5S ( jM

JLK S j 6 ,
1

2
,...,

1

2D ,MUL,N8;C,1aL DN8 i 0

L ,0D .

However, from Eq.~5.39!, we have

Gl
Rxl D (1,2)52D (2,1) Gl

Rxl, ~5.47!

and this implies that there is another set of eigenvectors, with the same eigenvalues, give

x̃1,a6
JL 5Glxl x2,a7

J,L 5S 0,( jM
JLK S j 7 ,

1

2
,...,

1

2D ,M uDJuL,i 0 ;C,1a L Da a
C,2†D ,

~5.48!

x̃2,a6
JL 5Glxl x1,a7

J,L 5S ( jM
JLK S j 7 ,

1

2
,...,2

1

2D ,M uDJuL,i 0 ;C,2a L Da a
C,1†,0D .

D. The projective Dirac operators on CPN

For reasons of brevity, we focus onCP2, a case we have already treated in Ref. 12.CP2 is
SU~3!/U~2!. If la are the Gell-Mann matrices, it is the orbit ofl8 under SU~3!:

CP2 : $gl8g21 , gPSU~3!% . ~5.49!

Writing gl8g215lAjA analogously to~5.18!, we can regard thosejPR8 given by ~5.49!, as
points ofCP2. The stability group atl8 , or equally well atj05(0,...,0,1) is U~2!. Its generators
arel1 ,l2 ,l3 ,l8 .

If we can achieve a covariant–looking form forD andDW looking like ~5.19!, ~5.20!, we can
find covariantD andDW . Towards this end we introduce the Clifford algebra with eight gene
tors gA . They can be transformed by the adjoint representation of SU~3! without disturbing their
anticommutators:

gA85AdgABgB→$gA8 ,gB8 %52dAB. ~5.50!

The generatorsSA in this representation can actually be written usinggA :

SA5
1

4i
f ABCgBgC. ~5.51!

Consider the actiongA→@S8 ,gA# of S8 on gA . For this action, the eigenvalues ofS8 are
6)/2 and 0. The 0 eigenvalues are forgA with A51,2,3,8; thus

@S8 ,@S8 ,gA##50, if A51,2,3,8,

5 3
4gA , if A54,5,6,7. ~5.52!

This lets us write the Dirac operator in ‘‘covariant’’ form,

DW52 i
4

3
†S•j0,@S•j0,gA#‡RXA , ~XAf !~g!5

d

dt
f ~geitSA!u t50. ~5.53!
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The role ofSA andgA are reversed here for covariantization as compared to spheres.
For the projective module, for the representationDJ, we have the one given bySA . It is

28/2516-dimensional. The transformDW of DW onto this module is immediate:

DW52 4
3†S•j,@S•j,gA#‡RJA. ~5.54!

In addition toDW we can also write the Dirac operators,

D852 i
2

)
@S•j0,gA#XA , D5 iG~j0!DW , G~j0!52g4g5g6g7. ~5.55!

D8 becomesD852 i (2/)) @S•j,gA#JA on the projective module. To findD we need to find the
chirality operatorG~j! for all j. This is in Ref. 12 and is just

G~j!52
1

4!
eABCD~j!gAgBgCgD , eABCD~j!54~adS•j! [AB~ad S•j!CD] ~5.56!

(@ #5antisymmetrization). We cannot have ana in xa taking values from 1 to 16: that would giv
4 spinors. We must have it taking just 4 values and carrying the representation of justgA , A
54,5,6,7. The explanation of how this is done takes up some space in Ref. 12.

VI. ON RIEMANNIAN STRUCTURE AND GRAVITY

An inverse metric (h i j ) is a symmetric nondegenerate field, which defines a mapT (1)

^ T (1)→T (0) via f ^ f 8→h i j f i f j8 . As the f ’s transform by AdG/H underg→gh, (h i j ) transform
by the product AdG/H

21
^ AdG/H

21 of its contragradient representation. Or, the metric (h i j ) itself
transforms by AdG/H ^ AdG/H .

A particular metric is (d̂ i j ), whered̂ i j (g) is d i j (d5Kroneckerd!. The torsion-free covarian
derivative compatible withd̂ is X̄:

X̄d̂50 . ~6.1!

The corresponding curvature tensor ofG/H can be calculated in terms of the structure consta
of G. From their form we have that for any vector fieldf i tangent toG/H,

@X̄i ,X̄j #5Ri jkl f l5~ci j acakl1
1
4~2 ci jk 8ck8kl2cikk8ck8 j l 2ck jk8ck8 i l !! f l . ~6.2!

The scalar curvature is thenR5Ri ji j 5ci j aca i j 1
1
4ci jk 8ck8 i j . For Sn5Spin(n11)/Spin(n), we

found in Sec. V C that in a Clifford representation,@Sn11,i ,Sn11,j #5 iS i j . So, with the corre-
spondencesi↔(n11,i ), a↔( i , j ) we have thatci jk50, and the curvature isR5n(n21).

A more generalH-invariant metrich can be defined as follows. Let us decomposeG/H into
irreducible subspaces under AdG/H and let$Sm

(s)% be a basis for the unitary irreducible represe
tation s such that

TrSm
(s)†

Sn
(s8)5cdss8dmn. ~6.3!

~Here s and s8 can be equivalent representations.! Let Xm
(s) be the corresponding~in general,

complex! vector field, it is a linear combination ofXi . Then a generalH-invariant metrich on

vector fieldsXm
(s)† andXn

(s8) is the constant function defined by

h~Xm
(s)† ,Xn

(s8)!~g!5lsdss8dmn , ls a positive constant, ~6.4!

independent ofg. Such metrics are essential for certain Ka¨hler structures as we shall see in Se
VII.
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The general covariant differential¹ can be defined in the usual way:

¹ih jk5X̄ih jk1G i j
j 8h j 8k1G ik

k8h jk8. ~6.5!

The formula shows thatG transforms by AdG/H ^ AdG/H ^ AdG/H
21 under the structure groupH. As

X̄ is torsion-free, so is¹ if as usualG i j
k 5G j i

k . A standard calculation gives the metric-compatib
torsion-free¹, its G being given by

G i j
k 52 1

2h
kk8~X̄ih jk81X̄jh ik82X̄k8h i j !. ~6.6!

TheseG i j
k are not Christoffel symbols, for example, they vanish ifci jk50. Christoffel symbols are

defined with respect to some local coordinatesxa on G/H.
Next, introduceuG/Hu-beins or soldering formsei

a such that

h i j 5h~Xi ,Xj !5ei
aej

bhab. ~6.7!

The Christoffel symbols are defined fromhab in the usual way.
The spin connection is defined by

¹iej
a5X̄iej

a1G i j
k ek

a1ej
b~v i !ba50, ~6.8!

where (v i)ba52(v i)ab and transforms as a tensor field ini underH. The solution forv i is
standard:

~v i !ca52Ec
j @X̄iej

a1G i j
k ek

a#, Ec
j ej

a5dc
a or Ec

j 5h jkek
ahac. ~6.9!

The covariant derivative on spinorsc is given by

~¹ic!a5~X̄ic!a2 1
4~v i !cd~gcgdc!a. ~6.10!

The Dirac operator in the presence of a gravity field (h i j ) is thus

D5h i j ej
aga¹j . ~6.11!

All this stuff is very natural. It remains to transport it to projective modules. In the mod
pictureh i j gets transformed to

Glr5h i j ~DJ! il
† ~DJ! j r

† , ~6.12!

while h i j becomes

Glr5h i j Dl i
J Dr j

J . ~6.13!

The projector for the module is

Ps
l5GlrGrs5Dl i

J ~DJ! is
† . ~6.14!

The projective module analogue ofX̄i is the ¹̄r defined in Sec. V B. Adding the action of

Glm
n 5G i j

k ~DJ! il
† ~DJ! j n

† ~DJ!kn
† ~6.15!

to ¹̄r defines the action of¹r , the metric-compatible torsion-free covariant derivative on tens
(¹rGmn50).

The action of¹r on spinorial modules follows from~6.10!. We let Jr be the total angular
momentum for the representationJS chosen for spinors, and
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C rls
(S) 5Dlb

JS~ci jkg jgk!ba~DJS!as
† ~DJT! ir

† ,

Vrls5Dlb
JS~~v i ! jkg jgk!ba~DJS!as

† ~DJT! ir
† , ~6.16!

xs5ca~DJS!as
† .

Then, as can easily be shown from~5.17! above,

~¹rx!s52 i ~Jrx!s2xl~ 1
8C (S)1 1

4V!rls. ~6.17!

VII. COMPLEX STRUCTURES AND KÄ HLER MANIFOLDS

In favorable circumstances, we can push this program ahead and define more refined id
complex and Ka¨hler structures on tensorsT (n) and on their projective modules. We indicate ho
to treat them briefly.

We consider adjoint orbits only forG/H. Thus letkI be a fixed element ofGI from the Cartan
subalgebraC(GI ), andH its stability group:

H 5 ^hPG : hkI h215kI &, @kI ,T~a!#50 ; a, @kI ,S~ i !#Þ0 ; i . ~7.1!

The Cartan subalgebra ofHI , C(HI )5C(GI ), since any element ofGI which commutes withkI is in
HI . The manifoldG/H, being an adjoint orbit of the simple Lie groupG, has even dimension
These observations have the following implications.

Consider the eigenvalue equation

@kI ,Ea#5laEa . ~7.2!

ThenlaÞ0. TheEa will be of the form( ijaiS( i ), jaiPC, and span the complexification (G/H)c

of (G/HI ).
By ~2.7!, (G/HI )c is invariant under the adjoint action ofkI . Also, as AdG/H is a real, orthogo-

nal representation, the eigenvaluesla are real, while of course theS( i ) are Hermitian. So the
adjoint of ~7.2! shows thatEa

† corresponds to the eigenvalue2la , and that each positive eigen
value is paired with a negative one. The eigenvaluesla may be degenerate.

We chooseEa , a51, . . . ,12(uGu2uHu), to be solutions of~7.2! with la.0, E2a5Ea
† , and

the normalization

Tr Ea Eb5da1b,0 . ~7.3!

So, if Ea5ja iS( i ) ~for both signs ofa), j2a i5ja i* . We choosec51 in ~2.1! and ~2.3!. Then
~2.3! and ~7.3! show that the matrix$ja i% is unitary as well.

Let (G/H)c
6 denote the span of the eigenvectorsE6uau ~where we note thatuau.0). The

subspaces (G/H)c
6 are of precisely the same dimension and

~G/H !c5~G/H !c
1

% ~G/H !c
2 . ~7.4!

The elementsE15( ij
iS( i )P(G/H)c

1 generate vector fieldsX15j iXi which we define to be
holomorphic. LetH 1 denote the space of holomorphic vector fields. Likewise (G/H)c

2 gives rise
to the spaceH 2 of antiholomorphic vector fields. This splitting of the space of fieldsH as the
direct sumH 1

% H 2 gives us the complex structure. The~1,1! tensorJ of complex analysis is6 i
on H 6: for a vector fieldX5j iXi , JX5j j (a.0i (ja j* jai2ja jjai* )Xi .

This complex structure is Ka¨hler. To show it, let us introduce the Maurer–Cartan formsuA,
defined byg21 dg5 iSAuA, or, settingc51 in ~2.1!, by

uA52 iTr SA g21 dg. ~7.5!
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They are dual to the vector fieldsXA5(Xi , Xa), so that, for example,u i(Xj )5d i j , and fulfill

duA52
i

2
Tr~SA@SB ,SC# !uB`uC5 1

2cBCAuB`uC. ~7.6!

Consider the particular Maurer–Cartan form,

Q52 iTr kI g21 dg5Tr ~kI SA!uA5Tr„kI T~a!…ua. ~7.7!

In the last step we used~2.4!. For dQ we have

dQ52
i

2
Tr~kI @SB ,SC# !uB`uC. ~7.8!

But using ~7.1! we have TrkI @T(a),T(b)#5Tr@kI ,T(a)#T(b)50 and TrkI @T(a),S( i )#
5Tr@kI ,T(a)# S( i )50. Therefore

dQ52
i

2
Tr„kI @S~ i !,S~ j !#…u i`u j . ~7.9!

Remembering that the matrix$ja i% ~with a of both signs! is unitary, we may set

S~ i ! u i5Ea ja i* u i[Ea ua ~7.10!

~with an implied sum overa of both signs!, and rewrite~7.9! as

dQ52
i

2
~TrkI @Ea ,Eb# !ua∧ub52

i

2
la~Tr Ea Eb!ua∧ub52 i (

a.0
laua∧u2a, ~7.11!

where we have used~7.2! and ~7.3!. The vector fieldsXa5jaiXi are dual toua: ua(Xb)5da b .
Consequently, the two-formV5dQ can be specified by

V~Xa ,Xb!5dQ~Xa ,Xb!52 ilada1b,0. ~7.12!

Since alllaÞ0, it follows from ~7.11! thatV is a symplectic~i.e., closed and nondegenerate! form
on G/H. It has been extensively discussed in Ref. 13, where its physical implications are
explained. It fulfills the Ka¨hlerian condition

V~JXa ,JXb!5V~Xa ,Xb!. ~7.13!

For vector fieldsX5j iXi , Y5h iXi , we haveV(X,Y)5(a.0( ila)(jaija j* 2ja jjai* )j ih j .
The Kähler metrich on vector fields (Xa , Xb) is given by

h~Xa ,Xb!5V~JXa ,Xb!5ulauda1b,0. ~7.14!

The Levi-Civita connection corresponding to this metric is the torsion-less connection comp
with h. Its coefficients are given by the formula~6.6!:

1

2
cabc1Gab

c 5
1

2
cabc2

ulau2ulbu
2ulcu

cabc . ~7.15!

Note from ~7.3! and ~2.8! that cabc5Tr@Ea ,Eb#E2c . So we have the symmetries

cabc5cb,2c,2a5c2c,a,2b. ~7.16!

Also from Tr@kI ,@Ea ,Eb#E2c#50 and~7.2! we have that
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cabc and ~7.15! 5 0 if la1lb2lcÞ0. ~7.17!

Finally, we shall show that the Ka¨hler metric onG/H can be derived from a Ka¨hler potential
Fz . It is a function onG/H and depends on a parameterz. It has the property

XaX2bFz5h~Xa ,X2b!, ~7.18!

for la andlb of the same sign andulau<ulbu. The ordering is needed because of the torsion te
in ~2.8!. It can be discarded when the torsion is zero, that is for symmetric spaces. Note thFz

can in general be only locally defined onG/H.
The construction ofFz involves the member of a specific class of unitary representat

SK :g→SK(g) of G. Let sK be the associated representation ofGI . Any such representation
contains a normalized highest weight vectoruK& with eigenvalueK for sK(kI ), which is annihi-
lated by the orthogonal complement ofkI in HI and the positive rootsEa :

~a! sK~kI !uK&5KuK&, K.0,

~b! sK„T~a!…uK&50, if TrT~a!kI 50, ~7.19!

~c! sK~Ea!uK&50, for ; a.0.

A representation ofG fulfilling ~a! and ~b! always exists: it is induced from the unitary on
dimensional representation ofH given by ~a! and ~b!:

SK~ei jaT(a)!uK&5ei ~K/Tr kI 2!Tr„kI jaT(a)…uK&. ~7.20!

Here we have used

sK„jaT~a!…uK&5
K

Tr kI 2 Tr„kI jaT~a!…uK&. ~7.21!

As for ~a!, ~b! and~c! together, it gives the representation of the groupGc generated byHI andEa ,
a.0, induced from the representationsK(HI ), sK(Ea), a.0.

Let us fix an orthonormal basis$e1 ,e2 , . . . ,eM% in the representation space of dimensionM
~say! of SK(G). Choose a vectoruz)5( i 51

M z iei , z iPC, z5(z1 ,z2 , . . . ,zM), so that
(zuSK(g)uK&Þ0 wheng belongs to some open setO. Such auz) exists since„zuSK(g)uK&51 for
uz…5SK(g)uK&. Further, chooseO so that it is invariant underH-action. That is always possibl
since for (zuSK(g)uK& changes only by a phase under this action by~7.20!.

Now the functionvz , defined by

vz~g!5^zuSK~g!uK&, gPO, ~7.22!

has the properties

~Xavz!~g!5~X2av̄z!~g!50, for ;a.0,
~7.23!

1

vz~g!
~Xav!z~g!52

1

v̄z~g!
~Xav̄z!~g!5 i

K

Tr kI 2 Tr„kI T~a!….

Here the overbar denotes complex conjugation. The first line is a direct consequence of t
that uK. is the highest weight vector, the second line follows from the relationvz(gh)
5vz(g)SK(h) valid for anygPG, hPH, with the phase factorSK(h) given by ~7.20!.

If gPO, the Kähler potential is given by the formula
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Fz 5 2
Tr kI 2

2K
logvz~g! v̄z~g!. ~7.24!

Fz is a function onO/H#G/H, since in the product

vz~gh!v̄z~gh!5SK~h!vz~g!S̄K~h!v̄z~g!,

the phase factorsSK(h) andS̄K(h) cancel. The Ka¨hler potential is closely related to the one-for
Q introduced in~7.7!. Thus the exterior derivatived on G can be written asd5d11d21d0 ,
where

d6 f ~g!5~X6uau f !~g!u6uau, d0f ~g!5~Xa f !~g!ua . ~7.25!

Now, using~7.23! one obtains

i ~d12d2!Fz5 i ~XuauFz! u uau2 i ~X2uauFz! u2uau

52 i
Tr kI 2

2Kv̄z
~Xuauv̄z! u uau1 i

Tr kI 2

2Kvz
~X2uauvz! u2uau

5 i
Tr kI 2

2K
d log

vz

v̄z
1Tr„kI T~a!…ua5 i

Tr kI 2

2K
d log

vz

v̄z
1 Q. ~7.26!

It follows that

d i~d12d2! Fz5d Q5V. ~7.27!

The left hand side of~7.27! can be evaluated using the first line of~7.26! and~7.6!. Calculating its
values oniXa^ X2b for 0,la<lb and 0,2la<2lb , we get~7.18!. For this calculation, it is
also important thatcabc50 if la1lbÞlc .

In another open setO8,G, we may have to work with the Ka¨hler potentialFh . Then if
OùO8ÞB, the two potentials onOùO8 are related by

Fh5Fz 2
Tr kI 2

2K
log

vh

vz
1

Tr kI 2

2K
log

v̄h

v̄z
. ~7.28!

The mappingFz to Fh is often called a gauge transformation.
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Covariant realization of quantum spaces as star products
by Drinfeld twists

Christian Blohmanna)
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Covariance of a quantum space with respect to a quantum enveloping algebra ties
the deformation of the multiplication of the space algebra to the deformation of the
coproduct of the enveloping algebra. Since the deformation of the coproduct is
governed by a Drinfeld twist, the same twist naturally defines a covariant star
product on the commutative space. However, this product is in general not asso-
ciative and does not yield the quantum space. It is shown that there are certain
Drinfeld twists which realize the associative product of the quantum plane, quan-
tum Euclidean four-space, and quantum Minkowski space. These twists are unique
up to a central two-coboundary. The appropriate formal deformation of real struc-
tures of the quantum spaces is also expressed by these twists. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1602553#

I. INTRODUCTION

Noncommutative geometries are described by replacing the commutative algebra of fun
on an ordinary space with a noncommutative algebra. The noncommutativity is controlled
perturbation parameter, if it is a small deviation from ordinary geometry. The algebraic aspe
such a perturbation can be detached from questions of convergence and continuity by cons
formal power series. A noncommutative geometry is then described as a formal deformatio
commutative algebra1 or by a star product.2 Such a description has attracted a lot of attent
lately, due to its application to string theory3 and to the construction of gauge theories on no
commutative spaces.4

The description of physical space–time by an algebra alone would not distinguish Minko
space from, say, Euclidean four-space, which differs by the symmetry that acts on it. Deform
space algebra which transforms covariantly under a symmetry Lie group will, in general, bre
symmetry. But there are deformations, where the symmetry structure can be deformed to
with the space, so that covariance is preserved. Quantum spaces5–7 are such a class of deforma
tions, carrying a covariant representation of the Drinfeld–Jimbo deformation8,9 of the enveloping
symmetry algebra.

The deformation of an enveloping algebra into a Drinfeld–Jimbo algebra is well unders
As algebra over the ring of formal power series the deformed algebra is isomorphic to the
formed one. In fact, if the Lie algebra is semisimple, it can be shown by cohomological argu
that the enveloping algebra cannot be deformed at all.1 It is only the Hopf structure which is truly
deformed. The deformed and the undeformed coproduct are nonisomorphic but related b
automorphisms, called Drinfeld twists.10 Preserving covariance ties the deformation of the env
oping algebra closely to the deformation of the space algebra. Therefore, one ought to be
use the knowledge about the deformation of the symmetry in order to deform the space a
accordingly. Such an approach was suggested in Ref. 11, where a Drinfeld twist was u
realize a quantum space as star product on the undeformed space algebra~for a similar approach
see Ref. 12!. By construction, such a star product is covariant with respect to the action o

a!Electronic mail: c.blohmann@iu-bremen.de
47360022-2488/2003/44(10)/4736/20/$20.00 © 2003 American Institute of Physics
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Drinfeld–Jimbo algebra. However, the star product is in general not associative. The main
tion of this article is: Is there a Drinfeld twist which implements the associative product of a g
quantum space? We will give a positive answer for three particularly interesting cases: the
tum plane, quantum Euclidean four-space, and quantum Minkowski space.

In Sec. II we review quantum spaces as covariant deformations and relate them to sta
ucts defined by Drinfeld twists.11 We recall the definition and properties of Drinfeld twists in t
framework of formal algebraic deformations. Real structures of quantum spaces and of t
cording quantum algebras are taken into account: Gerstenhaber’s rigidity theorem for algeb1 is
extended to*-algebras~Proposition 1! and the deformation of space algebras is extended to
structures~Proposition 4!. In Sec. III we propose a general approach which reduces the alge
problem of finding a twist which implements the multiplication of a quantum space to a re
sentation theoretic problem. This works well for cases where the representation theory
symmetry quantum algebra is well understood: We determine the basis which reduces the q
plane, quantum Euclidean four-space, and quantum Minkowski space as module into its ir
ible highest weight subrepresentations, and calculate the multiplication map with respect
basis. Comparing the multiplication maps with the representations of the twists leads to the
result: There are Drinfeld twists which realize the quantum plane~Proposition 8!, quantum Eu-
clidean four-space~Proposition 9!, and quantum Minkowski space~Proposition 10! as covariant
star products. These twists are unique up to a central two-coboundary.

Throughout this article we assume thatg is a semisimple Lie algebra, denoting its envelopi
algebra byU~g!. An elementgPU(g) ^ (n11) is calledg-invariant if it commutes with then-fold
coproductD (n)(g)ªg^ 1^ n11^ g^ 1^ (n21)1¯11^ n

^ g of all gPg. The formal perturbation
parameter is\; the completion of a complex vector space or algebraA with respect to the\-adic
topology isA@@\##. The topological tensor product̂ˆ of two free\-adic vector spaces or algebra
is avoided by identifying A@@\## ^̂ A8@@\##[(A^ A8)@@\##. The \-adic Drinfeld–Jimbo
deformation8,9 of U~g! is denoted byU\(g). The equality of two elementsa, a8PA@@\## modulo
\n will be written in Landau notation asa5a81O(\n). Recall that ifa511O(\), thena is
invertible and its square root withAa511O(\) is defined and unique inA@@\## ~see, e.g., Ref.
13!. The symmetric\-adic quantum number is defined by@n#ª(e\n2e2\n)(e\2e2\)21 and for
naturaln the quantum factorial by@n#!ª@1#•@2#¯@n#.

II. QUANTUM SPACES AND DRINFELD TWISTS

A. Quantum spaces

Let g be the Lie algebra of the symmetry group of a space andX be the function algebra o
this space. The elementsgPg of the Lie algebra act onX as derivations,gxxy5(gxx)y
1x(gxy) for x, yPX. A generalized way of writing this is

gxxy5~g~1!xx!~g~2!xy! ~1!

for all gPU(g), where we introduce the coproduct of an enveloping algebra byg(1)^ g(2)

[D(g)ªg^ 111^ g on the generatorsgPg and extend it to a homomorphism
D:U~g!→U~g!^U~g! on the enveloping algebra.

Using the multiplication mapm:X^X→X, m(x^ y)ªxy of X we can write~1! as

gxm~x^ y!5m~D~g!x@x^ y# !, ~2!

the condition for the productm to be covariant with respect to the action ofU~g!, which is
meaningful not only forU~g! but for any Hopf algebra. In mathematical terminology, an algebrX
which carries a representation of some Hopf algebraH such that Eq.~1! holds is called an
H-module algebra. We will also call it anH-covariant space. The covariant spaces or mod
algebras of the quantum enveloping algebrasU\(g) are called quantum spaces.

As algebra,U\(g) for semisimpleg is not a true deformation ofU~g!, becauseU\(g) and
U~g!@@\## are isomorphic as algebras~see Sec. II C!. This means that every\-adic space algebraX
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which is aU~g!@@\##-module is also aU\(g)-module and vice versa. In other words, if we cons
ered only the algebra structure ofU~g!, then there would be no need to replace a commuta
space with a noncommutative one when passing from the symmetry algebra to its quantu
formation. It is the Hopf structure which is deformed in an essential way. That is, identif
U\(g) andU~g!@@\## as isomorphic algebras, we can view the quantum deformation as deform
of the Hopf structure ofU~g!@@\##, D→D\ , «→«\ , S→S\ . Since the covariance condition~1!
ties the algebra structure of a spaceX to the coproduct, the multiplication map of the space m
be deformed,m→m\ , along with the deformation of the coproduct,D→D\ , if the covariance is
to be preserved. Conversely, deforming the multiplication map of a covariant space, the cop
of the symmetry algebra must be deformed accordingly,

gxxy5~g~1!xx!~g~2!xy! ——→
D→D\

m→m\

gx~x!y!5~g~1\!xx!!~g~2\!xy!, ~3!

whereD\(g)5g(1\) ^ g(2\) and m\(x^ y)5x!y. While there may be a large class of deform
tions which are covariant in this sense, we will restrict our attention to quantum spaces.

B. Star products by Drinfeld twists

In the case of quantum spaces, the deformed coproduct belongs to the Drinfeld–Jimbo
mationU\(g)>(U(g)@@\##,D\ ,«\ ,S\). Drinfeld has observed~Theorem 1! that D\ is related to
the undeformed coproductD by an inner automorphism. That is, there is an invertible elem
FP~U~g!^U~g!!@@\## with F511O~\!, called Drinfeld twist, such that

D\~g!ªFD~g!F 21. ~4!

Comparing the covariance condition of the deformed multiplication,

gxm\~x^ y!5m\~D\~g!x@x^ y# !5m\~FD~g!F 21x@x^ y# ! ~5!

with the covariance property~2! of the undeformed product, we see that Eq.~5! is naturally
satisfied if we define the deformed product by11

m\~x^ y!ªm~F21x@x^ y# ! ⇔ x!yª~F @1#
21xx!~F @2#

21xy!, ~6!

where we suppress in a Sweedler-like notation the summation of( iF1i ^ F2i[F@1# ^ F@2# . Since
the elements of the Lie algebrag act on the undeformed space algebraX as derivations,F 21 acts
as \-adic differential operator onX^X. Hence, writing out the\-adic sum of F 2151
1(k\

kF k
21 we can define the bidifferential operators

Bk~x^ y!ªm~F k
21x@x^ y# !5~F k@1#

21 xx!~F k@2#
21 xy!, ~7!

such that the star product~6! can be written in the more familiar form

x!yªxy1\B1~x,y!1\2B2~x,y!1¯ . ~8!

Even though the twistF yields by Eq.~4! a coassociative coproduct, Eq.~6! will in general not
define an associative product. The associativity condition form\ reads

~x!y!!z5~F @1#~1!
21 F

@18#

21
xx!~F @1#~2!

21 F
@28#

21
xy!~F @2#

21xz!

5~F @1#
21xx!~F @2#~1!

21 F
@18#

21
xy!~F @2#~2!

21 F
@28#

21
xz!5x!~y!z!, ~9!

for all x, y, zPX. Defining the Drinfeld coassociator

Fª~D ^ id!~F 21!~F 21
^ 1!~1^ F!~ id^ D!~F!, ~10!
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the associativity condition~9! can be written as

~F@1#xx!~F@2#xy!~F@3#xz!5xyz. ~11!

The obvious question to ask is: For a givenU\(g)-covariant quantum space, is there a Drinfe
twist F which yields by Eq.~6! the associative product of the quantum space? We do not att
to answer this question in its generality. Instead, we will consider some prototypical and phys
important cases: the quantum plane, quantum Euclidean four-space, and quantum Min
space.

C. Drinfeld twists of quantum enveloping algebras

For the reader’s convenience we gather in this section some well-known results on f
deformations of algebras and Hopf algebras, essentially due to Gerstenhaber1 and Drinfeld.10,14

An \-adic algebraA8 is called a deformation of an algebraA if A8/\A8 andA are isomorphic
as algebras. Analogously, an\-adic Hopf algebraH8 is called a deformation of a Hopf algebraH
if H8/\H8 and H are isomorphic as Hopf algebras. Recall thatU~g! is a Hopf algebra with the
canonical Lie Hopf structure defined on the generatorsgPg as coproductD(g)5g^ 111^ g,
counit«(g)50, and antipodeS(g)52g. The Drinfeld–Jimbo algebraU\(g) is a deformation of
this Hopf algebraU~g!. This can be seen by developing the commutation relations and the
structure ofU\(g) as formal power series in\ and keeping only the zeroth-order terms, whi
yields the commutation relations and the Lie Hopf structure ofU~g!.

Gerstenhaber has shown1 that whenever the second Hochschild cohomology ofA with coef-
ficients inA is zero,H2(A,A)50, then all deformations ofA are trivial up to isomorphism. Tha
is, any deformationA8 of A is isomorphic to the\-adic completion of the undeformed algebr
A8>A@@\##. Algebras with this property are called rigid. The second Whitehead lemma state
the second Lie algebra cohomology of a semisimple Lie algebrag and, hence, the second Hoc
schild cohomology of its enveloping algebra is zero. Therefore, the enveloping algebraU~g! of a
semisimple Lie algebrag is rigid. In particular, there is an isomorphism of algebrasa:U\(g)
→U(g)@@\##, by which the Hopf structureD8, «8, S8 of U\(g) can be transfered toU~g!@@\##,

D\ª~a ^ a!+D8+a21, «\ª«8+a21, S\ªa+S8+a21, ~12!

such thata becomes an isomorphism of Hopf algebras fromU\(g) to U~g!@@\## with this deformed
Hopf structure. Leta8 be another such isomorphism andD\8 , «\8 , S\8 be defined as in Eq.~12! with
a8 instead ofa. Thena8 is an isomorphism of Hopf algebras fromU\(g) to U~g!@@\## with the
primed Hopf structure,

~U~g!@@\##,D\ ,«\ ,S\!←
a

U\~g!→
a8

~U~g!@@\##,D\8 ,«\8 ,S\8 !, ~13!

hence,a8+a21 is an isomorphism of Hopf algebras. We conclude that, while the Hopf struc
Eq. ~12! may depend on the isomorphisma, it is unique up to an isomorphism of Hopf algebra

As a consequence of the first Whitehead lemma, the first Hochschild cohomology o
enveloping algebraU~g! of a semisimple Lie algebra is zero. This implies that the two homom
phismsD andD\ from U~g!@@\## to ~U~g!^U~g!!@@\## with D\5D1O(\) are related by an inne
automorphism, as it was observed by Drinfeld.10,14

Theorem 1: Let g be a semisimple Lie algebra, and letD\ be defined as in Eq. (12). The
there is an invertible elementFP~U~g!^U~g!!@@\## such thatD\(g)5FD(g)F 21, which is called
a Drinfeld twist fromD to D\ .

On the first sight Theorem 1 only relates the coproducts. It turns out that the twist o
coproduct relates counit and antipode, as well.

Corollary 1: Let F be a Drinfeld twist fromD to D\ as in Theorem 1.

(i) If F8 is another Drinfeld twist, thenF 21F8 is invertible andg-invariant. Conversely, let
TP~U~g!^U~g!!@@\## be invertible andg-invariant. ThenFT is a Drinfeld twist.
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(ii) «\5«.
(iii) There is a twistF such that«(F@1#)F@2#515F@1#«(F@2#), which impliesF511O~\!.

Twists with this property are called counital.
(iv) The two elements ofU~g!@@\## defined as

s1
21

ªS~F @1#
21!F @2#

21, s2ªF@1#S~F@2#! ~14!

are invertible, s1
21s25s2s1

21 is central inU~g!@@\##, and s1S(g)s1
215S\(g)5s2S(g)s2

21 for
all gPU(g)@@\##.

(v) The coassociatorF defined as in Eq. (10) isg-invariant.
(vi) The deformed Hopf structure onU~g!@@\## is isomorphic to the undeformed one if an

only if there is a Drinfeld twist of the formF5(u^ u)Du21 for some invertible u
PU(g)@@\##.

A proof can be found in the Appendix. The multiplication of a twist with ag-invariant element
as in~i! is sometimes called a gauge transformation of the twist. Counitality (i i i ) is often part of
the definition of twists. Therefore, we will assume from now on that all Drinfeld twists
counital. It can be shown that there are twists for which the elementss1 and s2 of ( iv) are
equal.15 However, this is not the case for all twists. For example, assume thats15s2 for some
twist F, and assume that there is a cubic CasimircPU(g) with S(c)52c. ThenF8ªF@1^ (1
1\c)# is another Drinfeld twist for which s18

21s285s1
21s2(11\c)21S(11\c)5(1

1\c)21(12\c)Þ1. Part (v i ) of the corollary applies also to the case where Eq.~12! defines for
two different isomorphisma anda8 two different coproductsD\ andD\8 . Here, the automorphism
which relates the two coproducts isbªa8a21. Note that elements of the form (u^ u)Du21 are
two-coboundaries in the sense of Ref. 16. SinceD is cocommutative, two-coboundaries are sy
metric. Hence, the twist~4! of D by a coboundary yields a cocommutative coproduct. The cop
uct of the Drinfeld–Jimbo deformation is not cocommutative, so it cannot be isomorphic t
undeformed, cocommutative coproduct.

D. Real forms of enveloping algebras

Lie groups are usually viewed as real manifolds, even though they may be naturally defi
complex matrix groups. For example, the universal covering of the Lorentz group SL~2,C! is
viewed as real six-parameter Lie group, the generators being the three rotations and th
boosts. When considering the complexificationg̃ªC^ Rg of a real Lie algebra, we have to keep
mind that nonisomorphic real Lie algebras can have the same complexification. For examp2

and sl2(R) have the same complexificationA1 . A practical method to remember the real L
algebra which a complexification comes from is to observe that for any real Lie algebrag there is
an antihomomorphism* defined asg*ª2g for all gPg, which can be extended to a conjuga
linear antihomomorphism on the complexification by (a ^ Rg)*ªā ^ Rg* for all aPC, gPg. This
defines a*-structure ong̃, that is, a conjugate linear antihomomorphism, which is an involut
* 25 id. Given the*-structure we can reconstruct the real Lie algebra as being generated
elements of the form (g2g* )P g̃.

The identification of real forms of a complex Lie algebra with* -structures can be extended
the enveloping Hopf algebraU~g!. In general, a* -structure on a Hopf algebra is a conjugate line
antihomomorphism*, which is an involution and a bialgebra homomorphism,D(g* )
5(Dg)* ^ * . Algebras and Hopf algebras with such a*-structure are called*-algebras and Hopf
* -algebras, respectively. Finally, ifH is a Hopf * -algebra andX an H-module algebra with a
*-structure, such that in addition to Eq.~1! we have

~gxx!* 5~Sg!* xx* ~15!

for all gPH, xPX, thenX is called anH-module* -algebra, or a realH-covariant space.
Analogously as for algebras, an\-adic * -algebraA8 is called a deformation of a*-algebraA

if A8/\A8 andA are isomorphic as*-algebras.A is called rigid as*-algebra if for any deformation
A8 of A the \-adic completionA@@\## andA8 are isomorphic as*-algebras.
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Proposition 1: Let A be a* -algebra with zero first and second Hochschild cohomolo,
H1(A,A)5H2(A,A)50. Then A is rigid as* -algebra.

Proof: Let (A8,* 8) be a deformation of (A,* ) as * -algebra.H2(A,A)50 implies thatA is
rigid as algebra, so there is an isomorphism of algebrasb:A8→A@@\##. Define * bªb+* 8
+b21. Because* 8 is a deformation of* , we have* b5* 1O(\), and, thus, as* 25 id, * b+*
5 id1O(\). H1(A,A)50 implies that this algebra automorphism is inner, (g)* b+* 5ugu21 for
some invertibleuPA@@\##. Thus,g* b5(u* )21g* u* for all gPA@@\##. Since* b

25 id, we have
(g* b)* b5g5(u* )21ugu21u* , sou21u* 5u* u21 is central. Since* b is a deformation of* we
can chooseu such thatu511O(\) and, thus,u21u* 511O(\), so the square roots ofu* and
u21u* are defined and invertible. Define an isomorphism of algebrasa:A8→A@@\## by

a~g!ª~u* !1/2b~g!~u* !21/2. ~16!

Using that the square root of a central element is central, we get

g* a
ª~a+* 8+a21!~g!

5~u* !1/2~b+* 8+b21!@~u* !21/2g~u* !1/2#~u* !21/2

5~u* !1/2~u* !21~u!1/2g* ~u!21/2u* ~u* !21/2

5~u21u* !21/2g* ~u21u* !1/25g* , ~17!

which shows thata:(A8,* 8)→(A@@\##,* ) is an isomorphism of* -algebras. h

This proposition applies in particular to the real forms of enveloping algebras of semis
Lie algebras. In fact, if* is a * -structure onU~g! and * 8 is a * -structure onU\(g), such that
(U\(g),* 8) is a deformation of~U~g!,* ! as Hopf * -algebra, we can~and shall! always use an
isomorphism of* -algebrasa:(U\(g),* 8)→(U(g),* ) to transfer the Hopf structure by Eqs.~12!.
In this case there are twists with particularly interesting properties with respect to the*-structure:
We will call a twist unitary and real, respectively, if

unitary: ~* ^ * !~F!5F 21, ~18a!

real: ~* ^ * !~F!5~S^ S!~F21!. ~18b!

A twist which is both, unitary and real, is called orthogonal.
Proposition 2: There is an orthogonal Drinfeld twist fromD to D\ .
Proof: In Theorem 4.1 of Ref. 17 it was shown that there is always a twist with (S^ S)(F)

5F 21
21. By assumption, the*-structure is a homomorphism of coalgebras for both,D and D\ .

Thus, (* ^ * )(F 21)[(F 21)* is also a twist, soTªF 21(F 21)* 511O(\) is g-invariant and
F8ªFAT is another twist. It is easy to check thatF8 is unitary and real. h

E. Real structures on star products

The quantum spaces we want to consider here, the quantum plane and quantum Min
space, possess a real structure which is covariant with respect to a real form of the sym
algebra. That is,~U~g!,* ! is a Hopf* -algebra and~X,m,* ! is a module* -algebra, the action ofU~g!
on X and the*-structures satisfying Eq.~15!. For a general twist Eq.~6! will not define a
multiplication which is compatible with any real structure. Assume that we deform the pro
m→m\ of the real covariant space~X,m,* ! but not the*-structure. Then
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~x!y!* 5@~F @1#
21xx!~F @2#

21xy!#*

5~F @2#
21xy!* ~F @1#

21xx!*

5~@SF @2#
21#* xy* !~@SF @1#

21#* xx* !

5~F@2#@SF @2#
21#* xy!* !~F@1#@SF @1#

21#* xx!* , ~19!

which shows that the undeformed*-structure is an antihomomorphism with respect to the
formed product, ifF is chosen to be real in the sense of Eq.~18b!, which was proved to be
possible in Proposition 2. However, the undeformed*-structure ofX will in general not satisfy the
module* -algebra property~15!. Thus, while Proposition 1 shows that the undeformed and
formed*-structures of the symmetry algebraU~g!@@\## can~and shall! be chosen to coincide, thi
is not possible for the*-structures of the deformed and undeformed space algebras. How
there is a unique elements of the symmetry algebra which mediates the deformation* →* \ of the
real structure ofX by x* \

ªs21xx* . This element is characterized by the following.
Proposition 3: There is a unique elementsPU~g!@@\## such that

s511O~\!, S\~g!5s~Sg!s21, D\~s!5s ^ s. ~20!

Moreover, s*5s.
Proof: Let a:U\(g)→U(g)@@\## be the isomorphism of algebras which is used to define

deformed Hopf structure by Eqs.~12!. Let R be a universalR-matrix of U\(g) and

R\ª~a ^ a!~R!, ~21!

such thatR\ becomes a universalR-matrix with respect toD\ . It was shown in Proposition 3.16
of Ref. 10 and Theorem 4.1 of Ref. 17 that there is a Drinfeld twistF from D to D\ such that

R\5F21e
~\/2!~D~C!2C^ 121^ C!F 21 and ~S^ S!~F!5F 21

21, ~22!

with the canonical quadratic CasimirCªgigjK
i j , where$gi% is a basis ofg, Ki jªtr~adgiadgj ) is

the Killing metric, andKi j its inverse,Ki j K jk5dk
i .

Let s1
21 ands2 be defined for such a twist as in Eq.~14!, and letsªAs1s2. Sinces1

21s2

is central, so is its square root. Hence,S\(g)5s1(Sg)s1
215s1As1

21s2(Sg)As2
21s1s1

21

5s(Sg)s21.
From the second equation of~22! we deduceS(s2)5s1

21, so S(s)5s21. From the first
equation of~22! we computeuªS\(R\@2#)R\@2#5s1S(s1

21)q2C5s1s2q2C5s2q2C. From the
properties of universalR-matrices it follows thatuS\(u21)5s4 is grouplike with respect toD\ ,
D\(s1

4)5s1
4

^ s1
4. Sinces4 is grouplike, its fourth roots is grouplike, as well.

Now let s8511O~\! be another element withS\(g)5s8(Sg)s821 which is grouplike with
respect toD\ . Thenzªs8s21 is central and grouplike,D\(z)5z^ z5F 21(z^ z)F5D(z), with
respect to both coproducts. Sincez511O(\) there is ana such thatz5e\a. Sincez is grouplike
and centrala must be primitive,D(a)5a^ 111^ a, and central in every order ofa5( i\

iai .
Being primitive, theai are elements of the Lie algebra,aiPg,U(g). Sinceg is semisimple it does
not contain nontrivial central elements, soai50 for all i, that is,a50. Hence,z5s8s2151.

Clearly,s*511O~\!. FromS\5* +S\
21+* it follows thatS\(g)5s* (Sg)(s* )21. Sinces is

grouplike with respect toD\ , so is s* . By uniqueness of an element with properties~20! we
conclude thats*5s. h

Now we can show thats realizes the deformation of the real structure in the promi
manner:

Proposition 4: LetF be a twist fromD to D\ which is real in the sense of Eq. (18b) and l
~X,m,* ! be an\-adic module* -algebra of (U(g)@@\##,D,«,S,* ). Definem\ as in Eq. (6) and
* \ :X→X by
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x* \
ªs21xx* ~23!

for all xPX, where s is the unique element of Proposition 3. Then(X,m\ ,* \) is a module
* -algebra of(U(g)@@\##,D\ ,«\ ,S\ ,* ).

Proof: By construction,* \ is conjugate linear. We have to show that* \ is an algebra antiho-
momorphism. Writingm\(x^ y)5x!y, we get

~x!y!* \5s21x@~F @1#
21xx!~F @2#

21xy!#*

5s21x~F @2#
21xy!* ~F @1#

21xx!*

5s21x~@SF @2#
21#* xy* !~@SF @1#

21#* xx* !

5s21x~F @1#
21xy* !~F @2#

21xx* !

5~s~1!
21F @1#

21xy* !~s~2!
21F @2#

21xx* !

5~F @1#
21s~1\!

21 xy* !~F @2#
21s~2\!

21 xx* !

5~F @1#
21s21xy* !~F @2#

21s21xx* !

5~s21xy* !!~s21xx* !5~y* \!!~x* \!, ~24!

where we have used the module* -algebra condition~15!, the assumed reality~18b! of F, and that
s is grouplike with respect toD\ . Since

~x* \!* \5s21x~s21xx* !* 5s21~Ss21!* xx5s21s* xx5x, ~25!

* \ is an involution. Finally, the module* -algebra condition~15! holds,

~gxx!* \5s21x~gxx!*

5s21~Sg!* xx*

5~s21!* ~Sg!* xx*

5~S\g!* ~s21!* xx*

5~S\g!* x~s21xx* !

5~S\g!* xx* \, ~26!

where we have used the properties ofs from Proposition 3. h

F. Representations

The\-adic representations of the algebraU~g!@@\## we are most interested in are those whi
are the\-adic completion of the representations ofU~g!. If D5(V,r) is a U~g!-module with
complex vector spaceV and structure homomorphismr:U(g)→EndC(V), its \-adic completion
D̄5(V̄,r̄) is defined on V̄5V@@\## with an order by order extension ofr, r̄((k\

kgk)
ª(k\

kr(gk)PEndC(V)@@\##5EndC@@\##(V@@\##). In particular,V̄ is free overC@@\## and r̄ is
C@@\##-linear. Note that, even ifD is an irreducible representation ofU~g!, this is no longer true for
D̄. For example,\V̄ would be an invariant subspace ofV̄. D̄ is irreducible only in the sense tha
there is no subspaceU,V such thatŪªU@@\## is an invariant subspace ofV̄.

Let $Ek ,Hk ,Fkuk51,...,n% be a Cartan–Weyl basis of the semisimple Lie algebrag, andh be
the Cartan subalgebra which is generated by$Hk%. Clearly,h is a Lie subalgebra of the envelopin
algebra,h,U~g!@@\##. By construction, the\-adic Drinfeld–Jimbo deformation ofU~g! does con-
tain the Cartan subalgebra as a Lie subalgebra, as well,h,U\(g). Drinfeld has shown that the
isomorphism ofU~g!@@\## andU\(g) can be chosen to leave the Cartan subalgebra invariant
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Theorem 2 „Drinfeld, 14 Proposition 4.3…: Let g be a semisimple Lie algebra andh,g a
Cartan subalgebra. Then there exists an isomorphism of\-adic algebrasa:U\(g)→U(g)@@\##
such thata5id1O~\! and auh5 idh .

This has important consequences for the representation theory. Recall that every
dimensional irreducible representation ofU~g! is a highest weight representationD j5(Vj ,r j ),
generated by a highest weight vectorvPVj with r j (Ek)v50 andr j (Hk)v5 j kv for all k, where
j kP(1/2)N0 , jª( j 1 ,...,j n) being called the highest weight. Furthermore, there is a basis oVj

which consists of simultaneous eigenvectors ofHk , called the weight basis. The same is true
the finite-dimensional representations of the Drinfeld–Jimbo algebraUq(g) for a fixed value of
q,18,19the weight-j representationDq

j 5(Vj ,rq
j ) of Uq(g) being defined on the same weight basis

D j . By the substitution q°e\, Dq
j can be extended to an\-adic representationD\

j

ª(Vj@@\##,r\
j ). SinceU\(g) and U~g!@@\## are isomorphic as algebras, there is a bijection

tween their representations. Theorem 2 implies that the isomorphisma:U\(g)→U(g)@@\## can be
chosen, such that

r\
j 5 r̄ j +a. ~27!

If both r\
j and r̄ j are known, this equation can be used to calculate the isomorphisma.

III. CONSTRUCTING COVARIANT STAR PRODUCTS

A. The general approach

As explained in Sec. II B, we are asking if there are Drinfeld twists which implement
product of quantum spaces by Eq.~6!. To our knowledge, no Drinfeld twist for the Drinfeld–
Jimbo quantum enveloping algebra of a semisimple Lie algebra has ever been compute
suggests that it will be rather difficult to answer this question on an algebraic level. The r
sentations of Drinfeld twists, however, can be computed as we will demonstrate forU\(su2) in
Proposition 5. Therefore, we propose the following approach, which allows us to tackl
problem on a representation theoretic level:

Consider aU\(g)-covariant quantum space algebraXh and its undeformed limit, theU~g!-
covariant space algebraX.

~1! Determine the irreducible highest weight representations of all possible Drinfeld t
from D to D\ .

~2! Determine the basis$Tm,k
j % of the quantum spaceX\ which completely reducesX\ into

irreducible highest weight representations ofU\(g),

X\> %
j ,k

SpanC@@\##$Tm,k
j um weight of D\

j %, ~28!

such thatgxTm,k
j 5Tm8,k

j r\
j (g) m

m8 for all gPU\(g), wherem is a weight,j is the highest weight,
r\

j is the structure map of the\-adic highest weight-j representationD\
j of U\(g) as explained in

Sec. II F, and wherek labels the possibly degenerate highest weight-j subrepresentations.
~3! Calculate the multiplication mapm\ of X\ with respect to this basis. The undeforme

limit Tm,k8 j
ª lim\20 Tm,k

j then yields the basis which completely reduces the undeformed s
algebraX. The limit m5 lim\20 m\ is the commutative multiplication map with respect to th
basis.

~4! With respect to the basis$Tm1 ,k1
8 j 1 ^ Tm2 ,k2

8 j 2 % of ~X^X!@@\## the action of the twist is given

by the highest weight representations (r j 1^ r j 2)(F). Now we can check if one of the twist
realizes the deformed multiplication map by Eq.~6! as linear operator with respect to this bas

Since this procedure reduces the algebraic problem to a representation theoretic one, i
well for quantum spaces ofU\(su2), U\(so4), andU\(sl2(C)) where the representation theory
well understood.
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B. The Drinfeld twists of U\„su2…

We now consider the case ofg5A1 , the complex Lie algebra with Cartan–Weyl bas
$E,H,F% and relations@H,E#52E, @H,F#522F, @E,F#5H. The real form ofA1 , which
corresponds to the*-structureE* 5F, H* 5H, F* 5E, is su2 , the Lie algebra of the group o
unitary 232-matrices.

Definition 1: The complex\-adic algebra generated by E, H, F with commutation relation

@H,E#52E, @H,F#522F, @E,F#5
e\H2e2\H

e\2e2\
, ~29!

Hopf structure

D8~E!5E^ e\H11^ E, S8~E!52Ee2\H, «8~E!50,

D8~F !5F ^ 11e2\H
^ F, S8~F !52e\HF, «8~F !50, ~30!

D8~H !5H ^ 111^ H, S8~H !52H, «8~H !50,

and involution E* 85Fe\H, F* 85e2\HE, H* 85H is called U\(su2), the \-deformation of
U(su2).20,21 It is quasitriangular with universalR-matrix22

R5e\~H ^ H !/2(
n50

`

e\n~n21!/2
~e\2e2\!n

@n#!
~En

^ Fn!. ~31!

By construction, the commutation relations and Hopf* -structure maps ofUh(su2) coincide in
zeroth order of\ with those ofU(su2). Therefore,U\(su2) is a deformation ofU(su2) as Hopf
* -algebra. The\-adic deformation is obtained from theq-deformation by the substitutionsq
5e\, K5e\H, andK215e2\H. By the same substitution we obtain for eachj P(1/2)N0 theh-adic
spin-j * -representation

r\
j ~E!u j ,m&5eh~m11!A@ j 1m11#@ j 2m#u j ,m11&,

r\
j ~F !u j ,m&5e2\mA@ j 1m#@ j 2m11#u j ,m21&, ~32!

r\
j ~H !u j ,m&52mu j ,m&,

on the (2j 11)-dimensional freeC@@\##-module Vj@@\## with orthonormal weight basis
$u j ,m&,m52 j ,2 j 11,...,j %, which we denote byD\

j
ª(Vj@@\##,r\

j ). Using the coproduct, tenso
representations are constructed as

D\
j 1^ D\

j 2
ª~Vj 1^ Vj 2,r\

j 1^ j 2
ª~r\

j 1^ r\
j 2!+D8! ~33!

and analogously for the undeformed case. The decomposition of such a tensor representat
its irreducible subrepresentations is the Clebsch–Gordan series

D\
j 1^ D\

j 2>D\
u j 12 j 2u

% D\
u j 12 j 2u11

%¯% D\
j 11 j 2. ~34!

Let us denote the embedding of the irreducible spin-j component into the tensor representation
Cq

j 1 j 2 j and the projection onto this component by (Cq
j 1 j 2 j )21, such that

r\
j ~g!Cq

j 1 j 2 j
5Cq

j 1 j 2 j
r\

j 1^ j 2~g!5Cq
j 1 j 2 j

~r\
j 1^ r\

j 2!~D8g! ~35!
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for all gPUh(su2). Denoting the basis vectors ofD\
j 1^ D\

j 2 by u j 1 ,m1 ; j 2 ,m2& and those of the
irreducible spin-j subrepresentation byu j ,m&, theq–Clebsch–Gordan coefficients are defined

S j 1 j 2

m1 m2
U j
mD

q

ª^ j 1 ,m1 ; j 2 ,m2uCq
j 1 j 2 j u j ,m&. ~36!

The q–Clebsch–Gordan coefficients are not unique because the basis vectorsu j ,m& are only
determined up to a phase. We will follow the choice of Ref. 23, where

(
m1 ,m2

S j 1 j 2

m1 m2
U j
mD

q

S j 1 j 2

m1 m2
U j 8
m8D

q

5dmm8d j j 8 ,

~37!

(
j ,m

S j 1 j 2

m1 m2
U j
mD

q

S j 1 j 2

m18 m28
U j
mD

q

5dm1m
18
dm2m

28
.

Clearly, the representation theory ofU\(su2) is a deformation of the one ofU(su2). In the limit
\→0 or, equivalently,q→1 of Eq. ~36! we get back the undeformed Clebsch–Gordan coe
cients. SinceU\(su2) and U(su2)@@\## are isomorphic as*-algebras their representations a
isomorphic, as well. Due to Theorem 2 we can choose the isomorphisma:U\(su2)→U(su2)
3@@\## as in Eq.~27! such that

r\
j 5r j +a, ~38!

where r j :U(su2)@@\##→End(Vj )@@\## is the \-adically extended structure map of the und
formed enveloping algebra.@We omit the bar which denoted the\-adic completion in Eq.~27!.# If
we setg5a21(g8) in Eq. ~35!, we thus get

r j~g8!Cq
j 1 j 2 j

5Cq
j 1 j 2 j

~r j 1^ r j 2!~D\g8! ~39!

for all g8PU(su2), whereD\ is defined as in Eq.~12!.
It is rather obvious that the representations of Drinfeld twists should be given by a contra

of the deformed and undeformed Clebsch–Gordan coefficients, as it was already mentio
Ref. 24.

Proposition 5: LetF be a counital Drinfeld twist fromU(su2) to U\(su2). The irreducible
representations ofF are of the form

~r j 1^ r j 2!~F!
m

18m
28

m1m2 5(
j ,m

h~ j 1 , j 2 , j !S j 1 j 2

m1 m2
U j
mD

q

S j 1 j 2

m18 m28
U j
mD , ~40!

where for given values of j1 , j 2 , and j the factorh( j 1 , j 2 , j )PC@@\## is a formal power series in
\ with h( j 1 , j 2 , j )511O(\).

Proof: Within a D j 1^ D j 2 tensor representation we get for allgPU(sl2)

Cq
j 1 j 2 j

~r j 1^ r j 2!~F!~Cj 1 j 2 j 8!21r j 8~g!5Cq
j 1 j 2 j

~r j 1^ r j 2!~FDg!~Cj 1 j 2 j 8!21

5Cq
j 1 j 2 j

~r j 1^ r j 2!~~D\g!F!~Cj 1 j 2 j 8!21

5r j~g!Cq
j 1 j 2 j

~r j 1^ r j 2!~F!~Cj 1 j 2 j 8!21, ~41!

where we have used Eq.~39! and the analogous relation for the undeformed case. Let us dev
hªCq

j 1 j 2 j (r j 1^ r j 2)(F)(Cj 1 j 2 j 8)21 into an\-adic seriesh5(k\
khk . Then Eq.~41! implies that
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eachhk is a module map from the spin-j 8 to the spin-j irreducible subrepresentation of theD j 1

^ D j 2 tensor representation. By Schur’s lemma eachhk must be zero forj Þ j 8, while for j 5 j 8 the
hk areC@@\##-scalar multiples of the identity map idD j . Hence,

Cq
j 1 j 2 j

~r j 1^ r j 2!~F!~Cj 1 j 2 j 8!215h~ j 1 , j 2 , j !d j j 8idD j

⇔~r j 1^ r j 2!~F!5(
j

h~ j 1 , j 2 , j !~Cq
j 1 j 2 j

!21Cj 1 j 2 j , ~42!

where for givenj 1 , j 2 , j, h( j 1 , j 2 , j )PC@@\##. Taking matrix elements of the last equation a
using the definition~36! of the Clebsch–Gordan coefficients yields Eq.~40!. Finally, F511O~\!
implies h( j 1 , j 2 , j )511O(\). h

The Drinfeld twist with the canonically simplest representations would be the one
h( j 1 , j 2 , j )51. Such a twist exists, indeed.

Proposition 6: There is a unique Drinfeld twistFs, called the standard twist, for which th
irreducible representations of Proposition 5 are such thath( j 1 , j 2 , j )51 for all j 1 , j 2 , j.

Proof: Define a scalar conjugationu°ū on U(su2) by extending the identity map on th
Cartan–Weyl generators of su2 to a conjugate linear automorphism ofU(su2), e.g.,aEF5āEF
etc. Since both coproducts are real with respect to this conjugation,D(g)5D(ḡ) and D\(g)
5D\(ḡ), the conjugation of Eq.~4! shows that, ifF is a counital Drinfeld twist, so isF̄ and,
hence,F8ª1/2(F1F̄). In the representation~32! and its undeformed limit the Cartan–We
generators are represented by real matrices, thus,r j (ḡ) m8

m
5r j (g) m8

m . We conclude that if
h( j 1 , j 2 , j )5h are the factors of the representations ofF, h̄ are those ofF̄ andh85h1h̄ those
of F8. As in the proof of Proposition 2 the twistF9ªF8(F821(F8* )21)1/2 is unitary. The factors
h9 of the representations ofFs are real because those ofF8 are real, and unitaryh95h921

becauseF9 is unitary. Hence,h5h( j 1 , j 2 , j )51. Since any twoF with the same representation
are equal,F9 is the unique standard twist. h

Proposition 7: The standard twistFs is orthogonal.
Proof: It was shown in the proof of Proposition 6 thatFs is unitary. Moreover,

~r j 1^ r j 2!~~S^ S!~Fs!!
m

18m
28

m1m2 5(
j ,m

S j 1 j 2

2m18 2m28
U j
mD

q

S j 1 j 2

2m1 2m2
U j
mD

5(
j ,m

S j 2 j 1

m2 m1
U j
mD S j 2 j 1

m28 m18
U j
mD

q

5~r j 1^ r j 2!~F s21
21!

m
18m

28

m1m2 , ~43!

where we have used r j (Sg) m8
m

5(21)m2m8r j (g) 2m
2m8 and that (m1

j 1
m2

j 2 um
j )q

5(
2m2

j 2
2m1

j 1 u2m
j )q . We conclude that (S^ S)(Fs)5F s21

215(* ^ * )(Fs21). h

C. The quantum plane

The quantum plane5 is perhaps the simplest nontrivial example of a homogeneous qua
space. In analogy to the undeformed case, the generatorsx2 and x1 are defined to carry the
fundamental spin-1/2 representation ofU\(su2),

gxxmªxm8r\
1/2~g! m

m8 , ~44!

where the indices run through$2,1%5$21/2,11/2% ~summation over repeated upper and low
indices!. We also denote the generators byx[x2 and y[x1 . Let C^x2 ,x1&@@\## be the free
\-adic algebra generated byx2 andx1 . By construction, an algebra which is freely generated
a U\(su2)-module is aU\(su2)-module algebra. The quadratic termsxm1

xm2
thus carry a spin-

~1/2^1/2! tensor representation. If we want to divide the free algebra by quadratic relatio
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such a way that the quotient algebra is again aU\(su2)-module algebra, we must divide by a
ideal which is generated by a submodule of the representationD\

1/2
^ D\

1/2>D\
0

% D\
1 of all qua-

dratic terms. Dividing byD\
1 would yield a deformation of the exterior algebra, whereas divid

by the scalar partD\
0 yields the desired deformation of the commutative algebra of function

the two-dimensional plane. This amounts to the commutation relations

(
m1 ,m2

S 1/2 1/2

m1 m2
U00D

q

xm1
xm2

50 ⇔ xy5qyx, ~45!

whereq5e\.
Definition 2: The\-adic algebra freely generated by x[x2 and y[x1 with commutation

relations (45) is called the\-adic quantum planeX\(C2).
We now want to write the product of the quantum plane,m\(x1^ x2)ªx1x2 , explicitly as a

linear map with respect to a basis. For our purposes, the appropriate choice is the basis
reduces the quantum plane asU\(su2)-module into its irreducible subrepresentations. In order
find such a basis, we recall that, as in the undeformed case, finding the irreducible spin-j subrep-
resentations is the matter of finding the highest weight-j vectors, that is, the elements ofX\(C2)
which transform asu j , j & in Eqs.~32!. A simple ansatz shows that, up to scalar multiples, the o
element of the quantum plane with this property isx1

2 j . Acting onx1
2 j with the ladder operatorF

generates the other basis vectors of theD\
j -subrepresentation. Identifying in Eqs.~32! u j ,m& with

Tm
j , we have to define

Tm
j
ªq~1/2!~ j 2m!~2m2 j 11!A @ j 1m#!

@2 j #! @ j 2m#!
~F j 2mxx1

2 j ! ~46!

for mP$2 j ,2 j 11,...,j %, such that

gxTm
j 5Tm8

j r\
j ~g! m

m8 ~47!

for all gPU\(su2). The basis$Tm
j % then reduces the quantum plane into its irreducible subre

sentations,X\(C2)5D\
0

% D\
1/2

% D\
11¯ . Calculating Eq.~46! explicitly yields

Tm
j 5F 2 j

j 1mG
q22

1/2

x2
j 2mx1

j 1m , where FnkG
q22

ªqk~k2n!
@n#!

@n2k#! @k#!
~48!

is theq-binomial coefficient. By construction,Tm1

j 1 Tm2

j 2 carries a spin-(j 1^ j 2) tensor representation

which can be reduced using theq–Clebsch–Gordan coefficients. Hence, the elements

Am
j
ª (

m1 ,m2
S j 1 j 2

m1 m2
U j
mD

q

Tm1

j 1 Tm2

j 2 ~49!

are either zero or the basis of a spin-j subrepresentation ofX\(C2). SinceTm
j generates the only

spin-j subrepresentation.Am
j must be proportional toTm

j . Moreover, because of its homogeneo
commutation relations the algebraX\(C2) is graded. That is, the degree of the product of t
homogeneous elementsTm1

j 1 and Tm2

j 2 is the sum of their degrees, deg(Tm1

j 1 Tm2

j 2 )5deg(Tm1

j 1 )

1deg(Tm2

j 2 )52( j 11 j 2). As Am
j andTm

j are proportional, they must have the same degree. T

Am
j has to vanish unlessj 5 j 11 j 2 . Looking at the highest weight vectors we findAj 11 j 2

j 11 j 2

5x
1

2( j 11 j 2)
5Tj 11 j 2

j 11 j 2. Using the orthogonality relation~37! we can move theq–Clebsch–Gordon

coefficients to the left-hand side of Eq.~49!. As end result, the multiplication mapm\ of the
quantum plane is given with respect to the basis$Tm

j % by
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m\~Tm1

j 1 ^ Tm1

j 1 !5S j 1 j 2

m1 m2
U j 11 j 2

m11m2
D

q

Tm11m2

j 11 j 2 . ~50!

For the undeformed limit of the basisTm8
j
ª lim\→0 Tm

j and multiplication mapmª lim\→0 m\ one
gets

Tm8
j5S 2 j

j 1mD 1/2

x2
j 2mx1

j 1m , m~Tm1
8 j 1^ Tm1

8 j 1!5S j 1 j 2

m1 m2
U j 11 j 2

m11m2
DTm11m2

8 j 11 j 2 . ~51!

Comparing Eqs.~50! and ~51! with the representations~40! of the Drinfeld twists we obtain the
following.

Proposition 8: Letm\ be the multiplication map (50) of the\-adic quantum planeX\(C2),
m5 lim\→0 m\ its undeformed limit, andFs the standard twist of Proposition 6. Thenm\ is the
deformation (6) ofm by Fs, m\(x^ y)5m(F s

21x@x^ y#).
Finally, let us turn to real structures. Since according to Proposition 3.2Fs is real in the sense

of Eq. ~18b!, Proposition 4 applies. WithinU\(su2) we haveS82(g)5KgK21 with K5e\H for all
gPU\(su2). Clearly,K is grouplike,D8(K)5K ^ K. Recall that, in order for the representatio
of U(su2)@@\## and U\(su2) to be related by Eq.~38!, we chose the isomorphisma:U\(su2)
→U(su2)@@\## according to Theorem 2 such thata(H)5H. On the one hand,S\

2(g)5(a+S82

+a)(g)5KgK21. On the other hand,S\
2(g)5s2gs22, for the unique elements from Proposition

3. Hence,Ks225s22K is central, soS\(g)5K1/2(Sg)K21/2. SinceK1/2511O(\) is grouplike
the uniqueness ofs implies thats5K1/25e\H/2. Proposition 4 now tells us that for a give
covariant real structure* on the undeformed space algebraX[X(C2)5C@x2 ,x1#@@\## of the
plane, we have to define the deformed*-structure* \5* 1O(\) by

x* \5e2\H/2xx* ~52!

such that (X,m\ ,* \) becomes a module*-algebra ofU(su2)@@\## with respect to the deformed
Hopf structure.

D. The quantum Lorentz algebra

We recall the definition of quantum Euclidean algebra in four dimensions and the qua
Lorentz algebra.

Definition 3: The tensor product Hopf* -algebra U\(su2) ^ U\(su2) is the \-adic quantum
enveloping algebra ofso4 , U\(so4). Let R be the universalR-matrix (31) ofU\(su2). The Hopf
algebra obtained by twistingU\(so4) with R23

2151^ R21
^ 1 together with the* -structure

~a^ b!* 5R21~b* ^ a* !R21
21 ~53!

for a, bPU\(su2) is the\-adic quantum Lorentz algebraU\(sl2(C)).25

The tensor Hopf* -structure ofU\(so4) is given by« ^ 2
ª« ^ «, S^ 2

ªS^ S, D ^ 2
ªt23+(D

^ D), where t is the flip of the tensor factors,t(a^ b)5b^ a, and * ^ 2
ª* ^ * . Looking at

Corollary 1 (v) for the twistFªR23
21 we find that the coassociator is the unit,F51. Twists with

unital coassociator are two-cocycles in the sense of Ref. 16. The cocycle property guarante
the twisted coproduct is coassociative. For the antipodeS(a^ b)5s1(Sa^ Sb)s1

21 we have to
compute s1

215S(F @1#
21)F @2#

215(1^ SR@1#)(R@2# ^ 1)5R21
21. Whence, the Hopf structure o

U\(sl2(C)) reads explicitly

D~a^ b!5R23
21D ^ 2~a^ b!R23, S~a^ b!5R21~Sa^ Sb!R21

21, ~54!

while according to Corollary 1,~ii ! the counit stays undeformed.
In the undeformed case so4 and sl2(C) are real forms of the same complex Lie algebraA1

^ A1 , that is,U(so4) and U(sl2(C)) differ only by their * -structure, whereas in theq-deformed
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case the Hopf structures differ, as well. The reason for introducing the twist in the Hopf stru
of U\(sl2(C)) is that only then the quantum Lorentz algebra contains a Hopf* -subalgebra of
rotations, embedded by the coproductD:U\(su2)�U\(sl2(C)), which is an essential feature for it
physical interpretation. The*-structure ofU(sl2(C)) is not a twist of the product* -structure of
U\(so4), but of the flipped*-structuret+~* ^* !. While Eq.~53! clearly defines an algebra antiho
momorphism, the involution property* 25 id relies on the additional propertyR* ^ * 5R21 of the
R-matrix of U\(su2).

The twisting fromU\(so4) to U\(sl2(C)) can be extended to Drinfeld twists and modu
algebras.

Corollary 2: Let F 8 and F 9 be Drinfeld twists fromU(su2) to U\(su2), R the universal
R-matrix of U\(su2), and X an \-adic U\(su2) ^ U\(su2)-module.

(i) F 138 F 249 is a Drinfeld twist of fromU(so4) to U\(so4).
(ii) R23

21F 138 F 249 is a Drinfeld twist of fromU(sl2(C)) to U\(sl2(C)).
(iii) If ~X,m! is a module algebra ofU\(so4) with multiplication mapm, then(X,m̃) with the

twisted multiplication defined asm̃(x^ y)ªm(R23x@x^ y#) is a module algebra of
U\(sl2(C)).

(iv) If ~X,m,* ! is a module* -algebra of the Hopf algebraU\(so4) with flipped* -structure
t+~* ^* !, then (X,m̃,* ) is a module* -algebra ofU(sl2(C)).

Proof: ~i! F 138 F 249 5t23(F8^ F9) is clearly a tensor product twist of the tensor coprod
D ^ 25t23+(D ^ D)

~ii ! Twisting in two steps byF 138 F 249 from U(sl2(C))5U(so4) to U\(so4) and then byR23
21

from U\(so4) to U\(sl2(C)) is the same as twisting at once byR23
21F 138 F 249 from U(sl2(C))

to U\(sl2(C)).
~iii ! Note that m̃ is the twisted multiplication~6! for F5R23

21. All we have to check is
associativity. The defining properties of a universalR-matrix imply that the Drinfeld
coassociator~10! is equal to the unit. Hence, Eq.~11! is trivially satisfied.

~iv! Let us denote the flipped* structure by* tªt+(* ^ * ). We verify thatF5R23
21 is real in

the sense of Eq.~18b!,

~S^ 2
^ S^ 2!~F!51^ ~S^ S!~R21! ^ 1

51^ ~R21
21!* ^ * ^ 1

5~R@2#
21

^ 1!* t ^ ~1^ R@1#
21!* t

5~* t ^ * t!~F21!, ~55!

where we have used (S^ S)(R)5R andR* ^ * 5R21. Equation~19! shows that the*-structure
of X is an antihomomorphism with respect to both multiplications,m and m̃. Then we have to
check Eq.~15!. Denoting bySsl2(C) and* sl2(C) the antipode and*-structure ofU\(sl2(C)), we get

@Ssl2~C!~a^ b!#* sl2~C!5@R21~Sa^ Sb!R21
21#* sl2~C!

5R21@~R21
21~~Sb!* ^ ~Sa!* !R21!#R21

21

5~Sb!* ^ ~Sa!* 5@S^ 2~a^ b!#* t, ~56!

whence@(a^ b)xx#* 5@S^ 2(a^ b)#* t xx* 5@Ssl2(C)(a^ b)#* sl2(C)xx* . h

E. Quantum Minkowski space

Quantum Minkowski spaceX\(R1,3) is a noncommutative deformation of the function algeb
on real world 113-dimensional space–time.7 By definition, X\(R1.3) is the U\(sl2(C))-module
algebra whose generators carry the fundamental representation. It was shown in Corollary
anyU\(sl2(C))-module algebra is the twist of aU\(so4)-module algebra. We will first compute th
multiplication map of thisU\(so4)-module algebra, quantum Euclidean four-space, and then t

it to obtain the multiplication map of quantum Minkowski space.
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BecauseU\(so4) is the product Hopf algebra of twoU\(su2), any irreducible representation i
the product of two irreducible representations ofU\(su2),

D\
~ j , j 8!

ª~Vj
^ Vj 8,r\

j
^ r\

j 8!. ~57!

The generatorsXmm8 of the quantum Euclidean four-space are defined to carry the fundam
spin-~1/2,1/2! representation,

~g^ g8!xXmm85Xm̃m̃8r\
1/2~g! m

m̃ r\
1/2~g8! m8

m̃8 , ~58!

where the indices run through$2,1%5$21/2,11/2%. Using Eq.~34!, the Clebsch–Gordan decom
position of this representation reads

D\
~1/2,1/2!

^ D\
~1/2,1/2!5D\

~0,0!
% D\

~1,0!
% D\

~0,1!
% D\

~1,1! . ~59!

The subrepresentation by which we have to divide the free algebraC^Xmm8&@@\## for the right
noncommutative limit as\→0 is D\

(1,0)
% D\

(0,1) . This corresponds to the quadratic relations

(
m1 ,m2 ,m18 ,m28

S 1/2 1/2

m1 m2
U 1
mD

q

S 1/2 1/2

m18 m28
U00D

q

Xm1m
18
Xm2m

28
50,

~60!

(
m1 ,m2 ,m18 ,m28

S 1/2 1/2

m1 m2
U00D

q

S 1/2 1/2

m18 m28
U 1
mD

q

Xm1m
18
Xm2m

28
50,

wherem runs through$21,0,1%. Denoting the generators by (c d
a b)ª(Xmm8), i.e., d5X11 etc.,

relations~60! read

ab5qba, ac5qca, bd5qdb, cd5qdc,
~61!

bc5cb, ad2da5~q2q21!bc,

which are the well-known relations of the algebra of 232 quantum matrices.26 The quantum
determinant

detqªad2qbc ~62!

is scalar, (g^ g8)xdetq5«(g^g8)detq , and commutes with all generators.
Definition 4: The\-adic algebra freely generated by$a,b,c,d% with commutation relations

(61) is called the\-adic quantum Euclidean four-space or the\-adic algebra of 232 quantum
matrices M\(2).

Quantum Euclidean four-space andMq(2) are the same algebras, for SU\(2)
ªM\(2)/^detq51& is Hopf dual toU\(su2) in the sense of Ref. 27, which implies that th
comodule algebras of SU\(2) are the module algebras ofU\(su2). In fact, letD be the coproduct
of M\(2), D(Xik)5( jXi j ^ Xjk , let T:M\(2)→M\(2) be the transposition homomorphis
which is defined on the generators by (Xi j )

T
ªXji , and letp:M\(2)→M\(2)/^detq51& be the

canonical epimorphism,U j
i
ªp(Xi j ) the generators of SU\(2), andt the flip of tensor factors.

Then the mapw:M\(2)→M\(2)^ SU\(2)^ SU\(2) defined as

wª@ id^ ~p+T! ^ p#+t12+D~2!⇒w~Xi j !5Xi 8 j 8^ U i
i 8 ^ U j

j 8 ~63!
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is a homomorphism of algebras because it is a concatenation of homomorphisms, and a c
sentation becauseD(U k

i )5U j
i

^ U k
j . Hence,M\(2) together withw is a comodule algebra o

SO\(4)ªSU\(2)^ SU\(2). The dual of this coaction~63! is the action~58! by which Mq(2)
becomes aU\(so4)-module algebra.

A simple ansatz shows that the only homogeneous highest weight vectors ofM\(2) are
proportional to detq

kdl. In analogy to the quantum plane, we have to define the minimal de
irreducible weight vectors by

Tmm8
~ j , j !

ªq~1/2!@~ j 2m!~2m2 j 11!1~ j 2m8!~2m82 j 11!#

3A @ j 1m#! @ j 1m8#!

@2 j #! 2@ j 2m#! @ j 2m8#!
@~F j 2m

^ F j 2m8!xd2 j #, ~64!

for j P1/2N0 , such that they carry a spin-(j , j ) representation,

~g^ g8!xTmm8
~ j , j !

5Tm̃m̃8
8~ j , j !r\

j ~g! m
m̃ r\

j ~g8! m8
m̃8 . ~65!

The explicit calculation of Eq.~64! leads to

Tmm8
~ j , j !

5(
k

qk~m82m2k!F j 2m
k G

q22
F j 1m
j 1m82kG

q22
F 2 j
j 1mG

q22

1/2 F 2 j
j 1m8G

q22

21/2

3aj 2m2kbkcm2m81kdj 1m82k, ~66!

which reducesM\(2) into irreducible subrepresentations by

M\~2!5 %
j PN0/2

%
kPN0

SpanC@@\##$detq
k Tmm8

~ j , j ! um,m852 j ,...,j %. ~67!

Note that mapping this equation by the canonical epimorphismp onto SU\(2) yields the quantum
Peter–Weyl decomposition of SU\(2) ~see Ref. 23, Sec. 4.2.5!. As we argued for the quantum
plane, the reduction of the product of two irreducible weight vectors withq–Clebsch–Gordan
coefficients must again be an irreducible weight vector of the same degree as the product

(
m1 ,m2 ,m18 ,m28

S j 1 j 2

m1 m2
U j
mD

q

S j 1 j 2

m18 m28
U j 8
m8D

q

T
m1m

18

~ j 1 , j 1!
T

m2m
28

~ j 2 , j 2!
5d j j 8b j 1 j 2 j detq

j 11 j 22 j Tmm8
~ j , j ! ,

~68!

where theb j 1 j 2 jPC@@\## are\-adic scalar coefficients. These coefficients can be easily comp
by applying the counit« of M\(2), for which we have

«~Tmm8
~ j , j !

!5dmm8 , «~detq!51, ~69!

to Eq. ~68!. This yieldsb j 1 j 2 j51 for all j 1 , j 2 ,j. Finally, moving theq–Clebsch–Gordan coeffi
cients to the other side of Eq.~68! produces the desired expression for the productm\ of M\(2),

m\(T
m1m

18

~ j 1 , j 1!
^ Tm2m2

~ j 2 j z!)5 (
m,m8, j

S j 1 j 2

m1 m2
U j
mD

q

S j 1 j 2

m18 m28
U j
m8D

q

detq
j 11 j 22 j Tmm8

~ j , j ! . ~70!

Again, we compare this with the representations~40! and ~43! of the Drinfeld twists ofU\(su2)
and obtain the following.
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Proposition 9: Letm\ be the multiplication map (70) of\-adic Euclidean four-space M\(2),
m5 lim\→0 m\ its undeformed limit, andFs the standard twist of Proposition 6. Thenm\ is the
deformation (6) ofm by Fso4

ªFs13Fs24.
Now we can apply Corollary 2 in order to obtain the multiplication map and twist of quan

Minkowski space, twisting once more byR23
21. Of course, the multiplication map of quantu

Minkowski space will reproduce the well-known commutation relations of Ref. 7. For the twis
get the following.

Proposition 10: Letm\ be the multiplication map of\-adic quantum Minkowski spac
X(R1,3), m5 lim\→0 m\ its undeformed limit, andFs the standard twist of Proposition 6. Thenm\

is the deformation (6) ofm by Fsl2(C)ªR23
21Fs13Fs24.

Finally, we consider real structures. SinceFs is real in the sense of Eq.~18b!, so is Fso4
.

Moreover, sinceFsl2(C) is the twist ofFso4
by R23

21, which was shown to be real in the proof o
Corollary 2~iv!, Fsl2(C) is real, as well. Hence, Proposition 4 applies to both, quantum Euclid
four-space and quantum Minkowski space. From a reasoning which is completely analogous
one that led to Eq.~52! we conclude that the deformation* \5* 1O(\) of the real structure* of
the undeformed Minkowski space–time algebraX[X(R1,3) has to be defined by

x* \5~e2\H/2
^ e2\H/2!xx* ~71!

such that (X,m\ ,* \) becomes a module* -algebra ofU(sl2(C))@@\## with respect to the deformed
Hopf structure.

IV. CONCLUSION

It is possible to use Drinfeld twists in order to realize quantum spaces as covarian
products. We have shown this for three important examples, the quantum plane~Proposition 8!,
quantum Euclidean four-space~Proposition 9!, and quantum Minkowski space~Proposition 10!.
While it was known that the Drinfeld twists control the deformation of enveloping algebras
quantum enveloping algebras, it is now clear that certain twists also control the deformat
spaces into quantum spaces. This is not unexpected, since the covariance condition of the a
a symmetry on a space algebra ties the Hopf structure of the symmetry algebra closely
multiplicative structure of the space algebra. Our considerations included real structures of
tum enveloping algebras and quantum spaces. In Proposition 4 we have formulated a su
condition on the Drinfeld twist, its reality in the sense of Eq.~18b!, to be compatible with the rea
structure of a quantum space, and we have shown that there is a unique elements of the envel-
oping algebra which implements the deformation of the real structure.

Star products are often defined by identifying the vector spaces of two space algebrasX and
X\ by an vector space isomorphism,w:X→X\ , and transferring the multiplication byx!y
ªw21@w(x)w(y)#. The Moyal–Weyl product is an example of this procedure. The linear isom
phism w is called an ordering prescription because it defines how an ordered monomial
commutative algebraX has to be represented in the noncommutative algebraX\ . For example

w(xy)5 1
2 @ x̂ŷ1 ŷx̂#, where x̂ªw(x), ŷªw(y), for the symmetric ordering. The star produ

which is obtained by the standard twist of Proposition 8 amounts to the ordering prescr
which identifies the basis vectors which completely reduce the space and the quantum
respectively into its irreducible subrepresentations, which is a natural ordering in the cont
representation theory. For the quantum plane this is almost the lexicographic~Poincare´–Birkhoff–
Witt! ordering,

w~xkyl !5Fk1 l
k G

q22

1/2 S k1 l
k D 21/2

xkyl , ~72!

where we recall thatx[x2 , y[x1 . The basis of the spin-j subrepresentation is unique up
scalar multiples. A rescalingTm

j °b( j )Tm
j with b( j )511O(\) would change the multiplication
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map by multiplying the right-hand side of Eq.~50! with b( j )b21( j 1)b21( j 2). Identifying the
scale factors with the representationsb( j )5r j (z) of some invertible central elementz, the twist
which realizes the star product must be redefined byF°F(z^ z)Dz21. We conclude that the
twist of Proposition 8 which realizes the star product of the quantum plane is unique up
central two-coboundary. The standard twist is the unique twist with the additional propertyy* n

5yn. An analogous statement is true for quantum Euclidean four-space and quantum Mink
space.

To our knowledge, no Drinfeld twist for the Drinfeld–Jimbo deformation of a semisimple
algebra had so far been computed explicitly~see Ref. 15 for the Heisenberg algebra!. We have
circumvented this problem by reducing the algebraic questions to representation theoretic
AlthoughU\(su2) is the simplest case conceivable, an algebraic order-by-order calculation o
twist runs quickly into overwhelming combinatorial problems.28 An alternative approach would b
the reconstruction of the twist from its representations, which would profit from the computa
effort that has gone into the calculation of theq–Clebsch–Gordan coefficients.

APPENDIX: Proof of Corollary 1

Let throughout the proofgPU(g)@@\## be an arbitrary element of the\-adic enveloping
algebra.

~i! FD(g)F 215D\(g)5F8D(g)F821 implies thatF 21F8 commutes withD(g) for all g.
Conversely, letTD(g)T215D(g). ThenFTD(g)T21F 215FD(g)F 215D\(g) for all g.

~ii ! By the left counit property of«\ we get

«~g!5«~«\~g~1\!!g~2\!!

5«~«\~F@1#!F@2#«\~g~1!!g~2!«\~F @18#

21
!F

@28#

21
!

5«\~g~1!!«~g~2!!«\~F@1#!«~F@2#!«\~F @18#

21
!«~F @28#

21
!

5«\~g~1!«~g~2!!!5«\~g!. ~A1!

~iii ! Let us define the left and right counit constraints bylª«(F@1#)F@2# and r
ªF@1#«(F@2#). From the left counit property of«\5« it follows that g5«(g(1\))g(2\)

5«(F@1#)F@2#«(g(1))g(2)«(F
@18#

21 )F
@28#

21
5 lgl 21 and analogously for the right counit propertyg

5rgr 21. Hence, Tª«( l )(r 21
^ l 21) is g-invariant. By ~i! F8ªFT is a twist with l 8

ª«(F @1#8 )F @2#8 5«( l )«(F@1#r
21)F@2#l

215«( lr 21) l l 2151, where we have used «( l )
5«(F@1#F@2#)5«(r ). Analogously, we find thatr 851. SinceF8 is invertible,F85b11O~\! for
some complex numberbÞ0, and 15 l 85b1O(\) it follows that b51.

~iv! Defines1ªS\(F@1#)F@2# . Then

S\~g!s15S\~g~1!!s1g~2!S~g~3!!

5S\~F@1#g~1!~1!!F@2#g~1!~2!S~g~2!!

5S\~g~1!~1\!F@1#!g~1!~2\!F@2#S~g~2!!

5S\~F@1#!«~g~1!!F@2#S~g~2!!5s1S~g!, ~A2!

where we have used the left coinverse property ofS\ . Analogously, defining s2
21

ªF @1#
21S\(F @2#

21) and using the right coinverse property ofS\ we gets2
21S\(g)5S(g)s2

21. Since
F is invertible, so ares1 and s2

21. Thus, S\ and S are related by the inner automorphism
s1S(g)s1

215S\(g)5s2S(g)s2
21. The antipode is surjective, sos1

21s2 must be central. More-
over, (s1

21s2)(s1s2
21)5s1(s1

21s2)s2
2151, hence,s1

21s25s2s1
21. Finally,

s1
215s1

21S\~F@18#F @1#
21!F@28#F @2#

215s1
21S\~F @1#

21!s1F @2#
215S~F @1#

21!F @2#
21, ~A3!
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and, analogously,s25F@1#S(F@2#).
~v! From the coassociativity ofD\ we deduce

@~D\ ^ id!+D\#~g!5F12~D ^ id!~F!~D~2!g!~D ^ id!~F 21!F 12
21

5@~ id^ D\!+D\#~g!

5F23~ id^ D!~F!~D~2!g!~ id^ D!~F 21!F 23
21. ~A4!

Hence, the coassociator~10! commutes with allD (2)g.
~vi! Since every bialgebra isomorphism is automatically a Hopf algebra isomorphism

since by (i i ) the counit stays undeformed, we only have to consider the coproducts. LetD andD\

be related by a twistF5(u^ u)Du21. Theng°ugu21 mapsD to D\ . Conversely, assume tha
the two Hopf structures are isomorphic, so there is an algebra automorphismb with D\5(b
^ b)+D+b21. SinceD\5D1O(\) we can chooseb5id1O~\!. Sinceg is semisimple we have
H1(U(g),U(g))50, which implies that this automorphism is inner,b(g)5ugu21. h
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We study the supersymmetric extensions of the Harry Dym hierarchy of equations.
We obtain the susy-B extension, the doubly susy-B extension as well as theN
51 and theN52 supersymmetric extensions for this system. TheN52 supersym-
metric extension is particularly interesting, since it leads to new classical integrable
systems in the bosonic limit. We prove the integrability of these systems through
the bi-Hamiltonian formulation of integrable models and through the Lax descrip-
tion. We also discuss the supersymmetric extension of the Hunter–Zheng equation
which belongs to the Harry Dym hierarchy of equations. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1606527#

I. INTRODUCTION

Supersymmetric extensions of a number of well-known bosonic integrable models have
studied extensively in the past. The supersymmetric Korteweg–de Vries~sKdV! equation,1 the
supersymmetric nonlinear Schro¨dinger ~sNLS! equation2 and the supersymmetric two-Boso
~sTB! equation3 represent just a few in this category. A simple supersymmetric covariantizatio
bosonic integrable models, conventionally known as the B supersymmetrization~susy-B!, has also
attracted a lot of interest because of the appearance of such models in string theories. We h
instance, the B extensions of the KdV~sKdV-B! equation,4 the supersymmetric TB~sTB-B!
equation5 and so on. Supersymmetric extensions of integrable models using a numberN of
Grassmann variables greater than one6 and supersymmetric construction of dispersionless in
grable models7 have also been studied extensively in the past few years. The extended sup
metric models are particularly interesting because, in the bosonic limit, they yield new cla
integrable systems.

A classic bosonic integrable equation, the so-called Harry Dym~HD! equation,8 has attracted
much interest recently. The proprieties of this equation are discussed in detail in Ref. 9, a
simply emphasize that this equation shares the properties typical of solitonic equations, nam
can be solved by the inverse scattering transform, it has a bi-Hamiltonian structure and infi
many symmetries. In fact, the HD equation is one of the most exotic solitonic equations an
hierarchy to which it belongs, has a very rich structure.10 In this hierarchy we also have nonloc
integrable equations such as the Hunter–Zheng~HZ! equation,11 which arises in the study o
massive nematic liquid crystals as well as in the study of shallow water waves. The HD equ
on the other hand, is relevant in the study of the Saffman–Taylor problem which describ
motion of a two-dimensional interface between a viscous and a nonviscous fluid.12

An earlier attempt to supersymmetrize the HD equation is discussed in Ref. 13. Howeve
study of N51 supersymmetrization introduces a bosonic as well as an independent ferm
superfield, yielding a pair of coupled equations, and, consequently, is not in the conventiona
of minimal supersymmetrization. In this paper we intend to study the question of supersym
47560022-2488/2003/44(10)/4756/12/$20.00 © 2003 American Institute of Physics
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zation of the HD hierarchy systematically. The paper is organized as follows. In Sec. II we re
some of the essential results for the HD equation and its hierarchy. The simpler susy-B ext
~sHD-B! and the doubly B extension~sHD-BB! of the HD hierarchy as well their bi-Hamiltonia
formulation and Lax pairs are described in Sec. III. In Sec. IV we derive theN51 supersymmetric
extensions of the HD~sHD! equation. We find that, in this case, there exist two nontrivialN51
extensions. In the case of one of them, we have a bi-Hamiltonian description~we have not found
a Lax representation yet! while in the second case, we have a Lax description~we have not found
a Hamiltonian structure yet that satisfies the Jacobi identity!. We also describe the supersymmet
extension for the HZ equation. In Sec. V we describe theN52 supersymmetrization of the HD
hierarchy which yields four possibilities and we discuss their properties. We end with a
conclusion in Sec. VI.

II. THE HARRY DYM HIERARCHY

The Harry Dym equation

wt5~w21/2!xxx, ~1!

appears in many disguised forms, namely,

v t5
1
4 v3vxxx,

ut5
1
4 u3/2uxxx2

3
8 u1/2uxuxx1

3
16 u21/2ux

3, ~2!

r t5~r xx
21/2!x,

where v5221/3w21/2, u5v2, and r xx5w, respectively. In this paper, as in Ref. 10, we w
confine ourselves, as much as is possible, to the form of the HD equation as given in~1!.

The HD equation is a member of the bi-Hamiltonian hierarchy of equations given by

wt
(n11)5D1

dHn11

dw
5D2

dHn

dw
, ~3!

for n522, where the bi-Hamiltonian structures are

D15]3,
~4!

D25w]1]w,

and the Hamiltonians for the HD equation are

H215E dx ~2w1/2!,

~5!

H225E dx~ 1
8 w25/2wx

2!.

We note here that the second structure in~4! corresponds to the centerless Virasoro algebra w

D5D21cD1 ~6!

represents the Virasoro algebra with a central chargec. We note also that the recursion operat
following from ~4!, R5D2D 1

21, can be explicitly inverted to yield

R215 1
2]

3w21/2]21w21/2. ~7!
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Also, the conserved charges

H052E dx w,

H0
(1)5E dx ~]21w!, ~8!

H0
(2)5E dx ~]22w!,

are Casimirs~or distinguished functionals! of the Hamiltonian operatorD1 ~namely, they are
annihilated by the Hamiltonian structureD1). As a consequence of this, it is possible to obtain,
an explicit form, equations from~3! for integersn both positive and negative, i.e.,nPZ. As shown
in Ref. 10, forn.0, we have three classes of nonlocal equations. However, in this paper w
only study the hierarchy associated with the local CasimirH0 in ~8!. In this way, forn51, we
obtain from~3!, with the conserved charges

H15E dx
1

2
~]21w!2,

~9!

H25E dx
1

2
~]22w!~]21w!2,

the Hunter–Zheng~HZ! equation

wt52~]22w!wx22~]21w!w, ~10!

which is also an important equation that belongs to the Harry Dym hierarchy.
The integrability of the HD equation~1! also follows from its nonstandard Lax representatio

L5
1

w
]2,

~11!
]L

]t
522@B,L#,

where

B5~L3/2!>25w23/2]32 3
4 w25/2wx]

2. ~12!

Conserved charges, forn51,2,3,. . . , areobtained from

H2(n11)5Tr L ~2n21!/2. ~13!

A Lax representation for the HZ equation~10! is also known and is given by~11! with

B5 1
4 ~]22w!]1 1

4 ]21~]22w!]2. ~14!

However, in this case, the operatorB is not directly related toL, and, consequently, the La
equation is not of much direct use~in the construction of conserved charges, etc.!.
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III. THE susy-B HARRY DYM „sHD-B, sHD-BB … EQUATIONS

The most natural generalization of an equation to a supersymmetric one is achieved sim
working in a superspace. We note, from the HD equation~1!, that by a simple dimensiona
analysis, we can assign the following canonical dimensions to various quantities:

@x#521, @ t#53, and @w#54. ~15!

The N51 supersymmetric equations are best described in the superspace parametrized
coordinatesz5(x,u), whereu represents the Grassmann coordinate (u250). In this space, we
can define

D5
]

]u
1u

]

]x
, ~16!

representing the supercovariant derivative. From~16! it follows that

D25], ~17!

which determines the dimension ofu to be

@u#52 1
2. ~18!

Let us introduce the fermionic superfield

W5c1uw, ~19!

which has the canonical dimension

@W#5@c#5 7
2. ~20!

A simple supersymmetrization of a bosonic system, conventionally known as the B supe
metric ~susy-B! extension,4 is obtained by simply replacing the bosonic variablew, in the original
equation, by

~DW!5w1uc8, ~21!

whereW represents a fermionic superfield. This leads to a manifestly supersymmetric eq
and following this for the case of the equation~1!, we obtain the susy-B HD~sHD-B! equation

Wt5]2D~~DW!21/2!, ~22!

whereW is the fermionic superfield~19!.
This system is bi-Hamiltonian with the even Hamiltonian operators

D15]2,
~23!

D25D~DW!D211D21~DW!D,

and the odd Hamiltonians@which follow from ~5! under the substitutionw→(DW)]

H215E dz 2~DW!1/2,

~24!

H225E dz1
8 ~DW!25/2~DWx!

2.
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The Casimirs ofD1 can be easily identified with the ones following from~8!.
The sHD-B equation~22! has two possible nonstandard Lax representations. Let

L5~DW!21D41cWx~DW!22D3. ~25!

Then, it can be easily checked that the nonstandard Lax equation

]L

]t
5@~L3/2!>3 ,L#, ~26!

leads to the sHD-B equation~22! for c50,21. Here the projection ( )>3 is defined with respect to
the powers of the supercovariant derivativeD.

For any given integrable bosonic equation, we can also define a doubly susy-B extens
follows. Just as we defined a superspace in the case ofN51 supersymmetry, let us define
superspace parametrized byz5(x,u1 ,u2), whereu1 ,u2 define two Grassmann coordinates~anti-
comuting and nilpotent, namely,u1u252u2u1 , u1

25u2
250). In this case, we can define tw

supercovariant derivatives

D15
]

]u1
1u1

]

]x
,

~27!

D25
]

]u2
1u2

]

]x
,

which satisfy

D1
25D2

25], D1D21D2D150. ~28!

Such a superspace naturally defines a system withN52 supersymmetry. Let us consider a boson
superfield,W, in this space which will have the expansion~we denote it by the same symbol as
the case ofN51)

W5w01u1x1u2c1u2u1w1. ~29!

Then, we can simply replace the bosonic variable in the original equation by (D1D2W) which
leads to the doubly susy-B extension of a given equation. For the HD equation~1!, this leads to

Wt5]D1D2~~D1D2W!21/2!, ~30!

which defines the sHD-BB equation. This procedure can, of course, be generalized toN
extended supersymmetry and we do not pursue this any further. We simply point out that E~30!
is bi-Hamiltonian, as we would expect. For example, it is Hamiltonian with

H5E dz ~D1D2Wx!
2~D1D2W!25/2 ~31!

and

D52]W]22D1D22D1D2]22W]1D1]21WD22D2W]21D1

1D1D2]21W2WD1D2]211D1W]21D22D2]21WD1. ~32!

The second Hamiltonian structure can also be easily obtained.
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IV. THE SUPERSYMMETRIC NÄ1 HARRY DYM „sHD… AND HUNTER–ZHENG „sHZ…
EQUATIONS

As we have seen, the susy-B extension of a system is a very simple supersymmetri
However, to obtain nontrivial supersymmetrizations, we can follow one of the following
approaches. In this section, we will discussN51 supersymmetrization of the system and cor
spondingly, it is appropriate to work in the superspace defined in~16!–~19!.

With the superfield~19! as our basic variable, the first approach is to write the most gen
local equation in superspace which is consistent with all canonical dimensions and which re
to ~1! in the bosonic limit. This involves a free parameter and the equation takes the form

Wt5
1
8 @28~5a22!Wxxx~DW!23/212~65a26!Wx~DWxx!~DW!25/2

130~5a12!Wxx~DWx!~DW!25/2215~21a12!Wx~DWx!
2~DW!27/2

1W$8~5a26!~DWxxx!~DW!25/2110~a26!WxxxWx~DW!27/2

135~62a!WxxWx~DWx!~DW!29/2140~627a!~DWxx!~DWx!~DW!27/2

1105~3a22!~DWx!
3~DW!29/2%#, ~33!

wherea is the arbitrary parameter. In the case of the HD equation, it is possible to supersy
trize the two Hamiltonian structures in~3!, which is easily seen from the fact that the seco
Hamiltonian structure is the centerless Virasoro algebra. Thus, the supersymmetrized Hami
structures follow to be

D15D]2,
~34!

D25 1
2 @W]12]W1~DW!D#.

Requiring Eq.~33! to be bi-Hamiltonian with respect to~34!, namely, requiring

Wt5D1

dH21

dW
5D2

dH22

dW
, ~35!

determines the parameter to bea56. The Hamiltonians in~35!, in this case have the forms (dz
5dx du with *du50 and*du u51),

H215E dz 2W~DW!21/2,

~36!

H225E dz1
8 @Wx~DWx!~DW!25/2215WWxWxx~DW!27/2#,

and theN51 sHD equation assumes the simple form

Wt5D]2~2~DW!21/223WWx~DW!25/2!. ~37!

It is worth noting here that this equation differs from the sHD-B equation~22! in the presence of
the second term inside the parentheses on the right-hand side, which vanishes in the boson
@We would like to point out parenthetically that we do not generate the sHD-B equation in
approach because of our requirement that the equation be bi-Hamiltonian with respect
structures in~34!.#

It is easy to check that the HamiltonianH21 is a Casimir ofD2 and the conserved charge

H052E dz W ~38!

is a Casimir ofD1 . Furthermore, the Hamiltonian structureD2 can be written in the form
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D25 1
2 ~DW!1/2D~11X!~DW!1/2, ~39!

where

X[
3

2 S D
W

~DW!
D211D21

W

~DW!
D DD, ~40!

and therefore can be formally inverted. Thus, in this case also the associated recursion o
has a formal inverse.

It can be easily checked that the following charges

H15E dz
1

4
~D21W!~D22W!,

~41!

H25E dz
1

2
~D21W!~D22W!~D23W!,

are conserved and reduce to~9! in the bosonic limit. From

Wt5D1

dH2

dW
5D2

dH1

dW
, ~42!

we obtain theN51 supersymmetric HZ~sHZ! equation

Wt52 3
2 W~D21W!2Wx~D23W!2 1

2 ~DW!~D22W!. ~43!

Both the sHD and the sHZ equations are bi-Hamiltonian systems and the infinite set of comm
conserved charges can be constructed recursively. As a result, they decribe supersymmet
grable systems.

The second approach to finding a nontrivialN51 supersymmetrization of the HD equation
to start with the Lax operator in~11! and generalize it to superspace. Let us start with the m
general Lax operator involving non-negative powers ofD,

L5a0
2D41a1D31a1D21a2D1a2, ~44!

with the identification

a05~DW!21/2, ~45!

where italic coefficients are bosonic and Greek ones are fermionic. It is easy to verify that,
case, there are only three projections, ( )>0,1,3 ~with respect to powers ofD), that can lead to a
consistent Lax equation. Using this ansatz, we have not yet been able to obtain the sHD e
~22! using fractional powers of the Lax operator~44!. The Lax pair for this system, therefore
remains an open question.

On the other hand, when

a15cWx~DW!22, a15a2505a2 , ~46!

wherec is an arbitrary parameter, the nonstandard Lax equation

]L

]t
5@~L3/2!>3 ,L#, ~47!
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yields consistent equations only forc50,21,2 1
2. As we have pointed out in the preceding se

tion, for the values of the parameter,c50,21, we have the sHD-B equation. The third choice
the parameter, therefore, leads to a new nontrivialN51 supersymmetrization of the HD equatio
Namely, with

L5~DW!21D42 1
2 Wx~DW!22D3, ~48!

the Lax equation

]L

]t
5@~L3/2!>3 ,L#, ~49!

leads to a secondN51 supersymmetrization of the HD equation of the form

Wt5
1

16 @8D5~~DW!21/2!23D~WxxWx~DW!25/2!

1 3
4 ~DWx!

2Wx~DW!27/22 3
4 D21~~DWx!

3~DW!27/2!#. ~50!

This is manifestly a nonlocal susy generalization in the variableW which, however, is a com-
pletely local equation in the variable (DW).

Since this system of equations has a Lax description, it is integrable and the conserved c
can be calculated in a standard manner and the first few charges take the following forms

H15E dz Wx~DWx!~DW!25/2,

~51!

H25E dz Wx@16~DWxxx!~DW!27/2284~DWxx!~DWx!~DW!29/2

177~DWx!
3~DW!211/2#,

and so on. However, we have not yet succeeded in finding a Hamiltonian structure which sa
Jacobi identity~it is clear that the Hamiltonian structure is nonlocal, since the Hamiltonia
local!.

V. THE NÄ2 SUPERSYMMETRIC HARRY DYM HIERARCHY

The most natural way to discuss theN52 supersymmetric extension of the HD equation is
theN52 superspace introduced earlier in~27!–~29!. Looking at the bosonic superfieldW in ~29!,
we note that it has two bosonic components as well as two fermionic components. In the b
limit, when we set the fermions to zero, theN52 equation would reduce to two bosonic equ
tions. Since we have only the single HD equation~1! to start with, the construction of such
system is best carried out in the Lax formalism. This also brings out the interest in such ext
supersymmetric systems, namely, they lead to new bosonic integrable systems in the boson

As in ~44!, let us consider the most generalN52 Lax operator which contains differentia
operators in this superspace of the following form~taking a more general Lax involving onl
differential operators does not lead to equations which reduce to the HD equation!:

L5W21]21~D1W21!~k1D11k2D2!]1~D2W21!~k3D11k4D2!]

1~k5~D1D2W!W221k6~D1W!~D2W!W23!D1D2, ~52!

wherek i ,i 51,2,...,6 arearbitrary constant parameters. TheN52 supersymmetry corresponds
an internalO(2) invariance that rotatesu1→u2 ,u2→2u1 and correspondinglyD1→D2 ,D2→
2D1 ~thereby rotating the fermion components of the superfield into each other!. This invariance,
imposed on the Lax operator, identifies
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k45k1 , k352k2. ~53!

Using the computer algebra program REDUCE14 and the special package SUSY2,15 we are
able to study systematically the hierarchy of equations following from the Lax equation

]L

]t
5@~L3/2!>2 ,L#. ~54!

Here, the projection@which is the highest consistent projection as is also the case with the bo
HD equation in~12!# is understood as follows. Let us recall that a general pseudodiffere
operator inN52 superspace has the form

P5 (
n52`

n5`

~P0
n1P1

nD11P2
nD21P3

nD1D2!]n. ~55!

For such a pseudodifferential operator, the projection in~54! is defined as

P>25P3
0D1D21~P1

1D11P2
1D21P3

1D1D2!]1 (
n>2

~P0
n1P1

nD11P2
nD21P3

nD1D2!]n.

~56!

The consistency of the equation~54! leads to four possible solutions for the values of t
arbitrary parameters

~1! k15k25k55k650,
~2! k250, k15k552k6/251,
~3! k25k55k650, k15 1

2,
~4! k250, k15k55 1

2, k65 3
4.

We will now discuss the various cases separately in some detail.
The first and the second cases can be discussed together since they lead to the same d

equation. Namely, in this case, the two Lax operators take the forms

L (1)5W21]2,
~57!

L (2)5W21]21~D1W21!D1]1~D2W21!D2]2~D1D2W21!D1D2

52D1D2W21D1D2.

It can be checked that both these Lax operators lead to the same dynamical equation w
nothing other than the sHD-BB equations we have discussed earlier and, therefore, we
study this any further.

For the third choice of parameters, the Lax operator can be written in the simple form

L (3)5W21]21 1
2 ~~D1W21!D11~D2W21!D2!]

5 1
2 ~D1W21D11D2W21D2!]. ~58!

The Lax equation~54!, in this case, leads to a nontrivialN52 supersymmetric HD equation of th
form

Wt5
1

64 @2~W21/2!xxx212~D1Wxx!~D1W!W25/2212~D2Wxx!~D2W!W25/2

136~D1Wx!~D1W!WxW
27/2136~D2Wx!~D2W!WxW

27/2

16~D1W!~D2W!~D1D2Wx!W
27/229~D1W!~D2W!~D1D2W!WxW

29/2#. ~59!
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In the bosonic sector, where we set all the fermions to zero so that@see~29!#

W5w01u2u1w1, ~60!

the equation~59! reduces to

w0,t5
1
2 ~w0

21/2!xxx,
~61!

w1,t5
1

64 @216w1,xxxw0
23/2196w1,xxw0,xw0

25/2172w1,xw0,xxw0
25/22258w1,xw0,x

2 w0
27/2

26w1,xw1
2w0

27/219w1
3w0,xw0

29/22108w1w0,xxw0,xw0
29/21219w1w0,x

3 w0
29/2#.

The first of the equations in~61! is, of course, the HD equation~1!, but is decoupled from the
second component. Consequently, even though this set of equations represents a new in
system, it is not very interesting. Let us note that we can reduce theN52 supersymmetry of this
system toN51 supersymmetry in the following way. Let us define

W~x,u1 ,u2!5U~x,u1!1u2F~x,u1!, ~62!

and set the fermionic superfieldF(x,u1)50. This would, therefore, make the superfieldW inde-
pendent of the Grassmann coordinateu2 leaving us withN51 supersymmetry. Under such
reduction, it is straightforward to see that the Lax operator~58! and the equation~59! go over to
the ones in~48! and ~up to multiplicative factors! the corresponding equation~50! with the
identification

u15u, U~x,u1!5~DW~x,u!!. ~63!

The conserved charges for this system can be obtained from the Lax operatorL (3) in a standard
manner, but we do not go into the details of this.

The fourth case is probably the most interesting of all. Here, the Lax operator takes the

L (4)5W21]21 1
2 ~~D1W21!D11~D2W21!D2!]2W21/2~D1D2W21/2!D1D2

52~W21/2D1D2!2. ~64!

Interestingly enough, this Lax operator possesses two nontrivial square roots, namely,

L1
1/25 iW21/2D1D2,

~65!
L2

1/25W21/2]1 1
2 @~D1W21/2!D11~D2W21/2!D22~W21/2!x#1¯ .

We note here that a similar situation also arises in the study of theN52 sKdV hierarchy16 ~for the
case of the parametera54). In such a case, the general hierarchy of equations can be obt
from the Lax equation

]L

]tn
5@~L1

n/2L2
1/2!>2 ,L#, ~66!

wheren50,1,2,... . For example, the first two flows of the hierarchy take the following form

Wt1
5 1

8 @24~D1D2Wx!W
2116~D1D2W!WxW

216~~D1W!~D2Wx!26~D2W!~D1Wx!!W22

215~D1W!~D2W!WxW
23#,
~67!
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Wt2
5 1

16 @8~W21/2!xxx26~D1D2W!~D1D2Wx!W
25/2

19~D1D2W!2WxW
27/213~~D1W!~D1Wxx!1~D2W!~D2Wxx!!W25/2

29~~D1W!~D1Wx!1~D2W!~D2Wx!!WxW
27/219~~D1W!~D2W!~D1D2W!!xW

27/2

236~D1W!~D2W!~D1D2W!WxW
29/2# .

In the bosonic sector, the second equation in~67! gives

w0,t2
5 1

16 @8~w0
21/2!xxx26w1,xw1w0

25/219w1
2w0,xw0

27/2#,

~68!

w1,t2
5 1

32 @28w1,xxxw0
23/2148~w1,xw0,x!xw0

25/22144w1,xw0,x
2 w0

27/226w1,xw1
2w0

27/2

19w1
3w0,xw0

29/2112w1w0,xxxw0
25/22126w1w0,xxw0,xw0

27/21177w0,x
3 w1w0

29/2#.

This is a new bosonic system of coupled equations, which reduces on settingw150 to the HD
equation and is integrable.

The conserved charges for this last case ofN52 supersymmetrization can be constructed
follows:

H15E dz sResL2
1/25E dz ~D1W!~D2W!W25/2,

H25E dz sRes~L1
1/2L2

1/2!

5E dz@3~D1D2W!2W2313Wx
2W2212~~D1W!~D1Wx!

1~D2W!~D2Wx!!W231~D1W!~D2W!~D1D2W!W24#, ~69!

H35E dz sResL2
3/25E dz@128~D1D2Wx!WxW

27/2240~D1D2W!3W29/21¯#,

where dz5dx du1 du2 and ‘‘sRes’’ is defined as the coefficient of theD1D2]21 term in the
pseudodifferential operator. We can also perform theN51 reduction of this system. Requiring tha
the superfieldW has no dependence onu2 , it is clear from the form of the Lax operator in~64!
that it reduces to the one involving the secondN51 supersymmetrization~just asL (3) does!.

VI. CONCLUSIONS

In this paper, we have studied the question of supersymmetrization of the Harry Dym h
chy systematically. We have used the simpler B supersymmetrization to derive the sHD-
sHD-BB systems. The analysis of the nontrivialN51 supersymmetrization leads to two su
integrable systems. One has a natural bi-Hamiltonian description for which we have not bee
to find the Lax description. On the other hand, the second has a natural Lax description for
we have not yet found a Hamiltonian structure that satisfies the Jacobi identity. Both these s
are integrable. TheN52 supersymmetrization from the Lax approach yields four possible
operators. Two of these describe the sHD-BB system while the other two give nontrivialN52
supersymmetric extensions. In the bosonic limit, one of them leads to the HD equation dec
from the second component while the other genuinely gives a coupled two component sys
equations that is integrable.
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Given an irreducible representation of a groupG, we show that all the covariant
positive operator valued measures based onG/Z, whereZ is a central subgroup,
are described by trace class, trace one positive operators. ©2003 American Insti-
tute of Physics.@DOI: 10.1063/1.1598277#

I. INTRODUCTION

Usually, the observables in quantum mechanics are represented by self-adjoint operat
are in one-to-one correspondence with projection valued operator measures. However, in
applications~as, for example, quantum optics, quantum theory of measurement, quantizat
classical dynamical systems, and localization observables of relativistic massless particle! this
characterization is restrictive and one has to consider a more general description by me
positive operator valued measures~for a review of the applications in physics, see Refs. 3, 6,
9–11!.

In particular, it is of interest both in quantum mechanics and in signal analysis to des
positive operator valued measures that are covariant with respect to a unitary representati
symmetrygroupG ~for a review see Ref. 1 and references therein!. In this framework, it is well
known4,13 that, given a square-integrable irreducible representationp of a unimodular groupG
and a trace class, trace one positive operatorT, the family of operators

Q~X!5E
X
p~g!Tp~g21!dmG~g!

defines a positive operator valued measure~POVM! on G covariant with respect top (mG is a
Haar measure onG). In this article, we prove that all the covariant POVMs are of the above f
for someT. More precisely, we show this result for non-unimodular groups and for POVMs b
on the quotient spaceG/Z, whereZ is a central subgroup.

Let G be a locally compact second countable topological group andZ be a central closed
subgroup. We denote byG/Z the quotient group and byġPG/Z the equivalence class ofg
PG. If aPG and ġPG/Z, we leta@ ġ#5ȧġ be the natural action ofa on the pointġ.

Let B(G/Z) be the Borels-algebra ofG/Z. We fix a left Haar measuremG/Z on G/Z.
Moreover, we denote byD the modular function ofG and ofG/Z.

a!Electronic mail: cassinelli@ge.infn.it
b!Electronic mail: devito@unimo.it
c!Electronic mail: toigo@ge.infn.it
47680022-2488/2003/44(10)/4768/8/$20.00 © 2003 American Institute of Physics
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By representationwe mean a strongly continuous unitary representation ofG acting on a
complex and separable Hilbert space, with scalar product^•,•& linear in the first argument.

Let ~p,H! be a representation ofG. A positive operator valued measureQ defined onG/Z and
such that

~1! Q(G/Z)5I ;
~2! for all XPB(G/Z),

p~g!Q~X!p~g21!5Q~g@X# ! ;gPG

is calledp-covariantPOVM on G/Z.
Given a representation~s,K! of Z, we denote by (ls,Ps,H s) the imprimitivity system

unitarily induced bys. We recall thatH s is the Hilbert space of (mG-equivalence classes of!
functions f :G→K such that

~1! f is weakly measurable;
~2! for all zPZ,

f ~gz!5s~z21! f ~g! ;gPG;

~3!

E
G/Z

i f ~g!iK
2 dmG/Z~ ġ!,1`

with scalar product

^ f 1 , f 2&H s5E
G/Z

^ f 1~g!, f 2~g!&KdmG/Z~ ġ!.

The representationls acts onH s as

~ls~a! f !~g!ª f ~a21g!, gPG,

for all aPG. The projection valued measurePs is given by

~Ps~X! f !~g!ªxX~ ġ! f ~g!, gPG,

for all XPB(G/Z), wherexX is the characteristic function of the setX.
We recall some basic properties of square integrable representations modulo a centr

group. We refer to Ref. 2 forG unimodular andZ arbitrary and to Ref. 7 forG non-unimodular
andZ5$e%. Combining these proofs, one obtains the following result.

Proposition 1: Let~p,H! be an irreducible representation of G andg be the character of Z
such that

p~z!5g~z!I H ;zPZ.

The following facts are equivalent:
(1) there exists a vector uPH such that

0,E
G/Z

u^u,p~g!u&Hu2dmG/Z~ ġ!,1`; ~1!

(2) ~p,H! is a subrepresentation of(lg,H g).
If either of the above conditions is satisfied, there exists a self-adjoint injective po

operator C such that

p~g!C5D~g!2 1/2Cp~g! ;gPG,
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and an isometryS:H^ H* →H g such that
(1) for all uPH and vPdom C

S~u^ v* !~g!5^u,p~g!Cv&H , gPG;

(2) for all gPG

S~p~g! ^ I H* !5l~g!S;

(3) the range ofS is the isotypic space ofp in H g.
If Eq. ~1! is satisfied,~p,H! is calledsquare-integrable modulo Z. The square ofC is called

formal degreeof p ~see Ref. 7!. In particular, whenG is unimodular,C is a multiple of the
identity.

II. CHARACTERIZATION OF Q

We fix an irreducible representation~p,H! of G and let g be the character such thatpuZ

5gI H . The following theorem characterizes all the POVM onG/Z covariant with respect top in
terms of positive trace one operators onH.

Theorem 2: The irreducible representationp admits a covariant POVM based on G/Z if and
only if p is square-integrable modulo Z.

In this case, let C be the square root of the formal degree ofp. There exists a one-to-on
correspondence between covariant POVMs Q on G/Z and positive trace one operators T onH
given by

^QT~X!v,u&H5E
X
^TCp~g21!v,Cp~g21!u&HdmG/Z~ ġ! ~2!

for all u,vPdom C and XPB(G/Z).
Proof: Let Q be ap-covariant POVM. According to the generalized imprimitivity theorem5

there exists a representation~s,K! of Z and an isometryW:H→H s intertwiningp with ls such
that

Q~X!5W* Ps~X!W

for all XPB(G/Z).
Define the following closed invariant subspace ofK

Kg5$vPKus~z!v5g~z!v%.

Let s1 and s2 be the restrictions ofs to Kg and K g
' , respectively. The induced imprimitivity

system (ls,Ps,H s) decomposes into the orthogonal sum

H s5H s1% H s2.

If f PH s andzPZ, then

~ls~z! f !~g!5 f ~z21g!5 f ~gz21!5s~z! f ~g!, gPG.

On the other hand, ifuPH andzPZ, we have

~ls~z!Wu!~g!5~Wp~z!u!~g!5g~z!~Wu!~g!, gPG.

It follows that (Wu)(g)PKg for mG—almost everygPG, that is,WuPH s1. So it is not restric-
tive to assume that
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s5gI K

for some Hilbert spaceK. Clearly, we have

H s5H g
^ K, ls5lg

^ I K .

In particular,p is a subrepresentation oflg, hence it is square-integrable moduloZ.
Due to Proposition 1, the operatorW85(S* ^ I K)W is an isometry fromH to H^ H* ^ K

such that

W8p~g!5~p~g! ^ I H* ^ K!W8 ;gPG.

Since p is irreducible, given Hilbert spacesH1 and H2 , a standard result asserts thatC(p
^ I H1

,p ^ I H2
)5I H^ L(H1 ,H2). In the present case, this means that

W8u5u^ B ;uPH

for someBPH* ^ K. SinceW8 is isometric,B has Hilbert–Schmidt norm 1.
Let (ei) i>1 be an orthonormal basis ofH such thateiPdom C. Then

B5(
i

ei* ^ ki ,

wherekiPK and( i iki iK
2 51.

If uPdom C, one has that

~Wu!~g!5@~S ^ I K!~u^ B!#~g!

5(
i

S~u^ ei* !~g! ^ ki

5(
i

^u,p~g!Cei&H^ ki

5(
i

^Cp~g21!u,ei&H^ ki

5(
i

~ei* ^ ki !~Cp~g21!u!,

where the series converges inH s. On the other hand, for allgPG the series( i(ei* ^ ki)
3(Cp(g21)u) converges toBCp(g21)u, where we identifyH* ^ K with the space of Hilbert–
Schmidt operators. By uniqueness of the limit,

~Wu!~g!5BCp~g21!u, gPG.

If u,vPdom C, the corresponding covariant POVM is given by

^Q~X!v,u&H5^Ps~X!Wv,Wu&H s

5E
G/Z

xX~ ġ!^BCp~g21!v,BCp~g21!u&HdmG/Z~ ġ!

5E
X
^TCp~g21!v,Cp~g21!u&HdmG/Z~ ġ!,
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where

TªB* B

is a positive trace class trace one operator onH.
Conversely, assume thatp is square integrable and letT be a positive trace class trace on

operator onH. Then

BªAT

is a~positive! operator belonging toH* ^ H such thatB* B5T andiBiH * ^ H51. The operatorW
defined by

Wvª~S ^ I H!~v ^ B! ;vPH

is an isometry intertwining~p,H! with the representation (ls,H s), where

s5gI H .

DefineQT by

QT~X!5W* Ps~X!W, XPB~G/Z!.

With the same computation as above, one has that

^QT~X!u,v&H5E
X
^TCp~g21!u,Cp~g21!v&HdmG/Z~ ġ!

for all u,vPdom C.
Finally, we show that the correspondenceT°QT is injective. LetT1 andT2 be positive trace

one operators onH, with QT1
5QT2

. Set T5T12T2 . Sincep is strongly continuous, for all
u,vPdom C the map

G/Z{ġ°^TCp~g21!v,Cp~g21!u&H5D~ ġ!21^Tp~g21!Cv,p~g21!Cu&HPC

is continuous. Since

E
X
^TCp~g21!v,Cp~g21!u&HdmG/Z~ ġ!5^@QT1

~X!2QT2
~X!#v,u&H50

for all XPB(G/Z), we have

^TCp~g21!v,Cp~g21!u&H50 ;ġPG/Z.

In particular,

^TCv,Cu&H50,

so that, sinceC has dense range,T50. j

Remark 3: Scutaru shows in Ref. 13 that there exists a one-to-one correspondence b
positive trace one operators onH and covariant POVMs Q based on G/Z with the property

trQ~K !,1` ~3!

for all compact sets K,G/Z. Theorem 2 shows that every covariant POVM Q based on G/Z
shares property (3).
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Remark 4: If G is unimodular, then C5lI , with l.0, and one can normalizemG/Z so that
l51. Hence,

QT~X!5E
X
p~g!Tp~g21!dmG/Z~ ġ! ;XPB~G/Z!,

the integral being understood in the weak sense.
Remark 5: If T5h* ^ h, with hPdom C and ihiH51, we observe that

^QT~X!v,u&H5E
X
^Cp~g21!v,h&H^h,Cp~g21!u&HdmG/Z~ ġ!

5E
X
^v,p~g!Ch&H^p~g!Ch,u&HdmG/Z~ ġ!

5E
X
~WChv !~g!~WChu!~g!dmG/Z~ ġ!

for all u,vPdom C, where WCh :H→H g is the wavelet operator associated to the vector Ch. In
particular,

QT~X!5WCh* Pg~X!WCh .

III. TWO EXAMPLES

A. The Heisenberg group

In quantum mechanics, the study of positive operator valued measures covariant with r
to suitable representations of the Heisenberg group is motivated by two problems. They ap
a natural tool in the construction of coherent states associated with the quantum harmonic
lator ~see, for example, Ref. 1!. Moreover, they describe the possible localization observable
the phase space of a one dimensional classical particle~for an account, see Ref. 12!.

The Heisenberg groupH is R3 with composition law

~p,q,t !~p8,q8,t8!5S p1p8,q1q8,t1t81
pq82qp8

2 D .

The center ofH is

Z5$~0,0,t !utPR%,

and the quotient groupG/Z is isomorphic to the Abelian groupR2, with projection

q~p,q,t !5~p,q!.

The Heisenberg group is unimodular with Haar measure

dmG/Z~p,q!5
1

2p
dpdq.

Given an infinite dimensional Hilbert spaceH and an orthonormal basis (en)n>1 , let a, a* be
the corresponding ladder operators. Define
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Q5closure of
1

&
~a1a* !,

P5closure of
1

& i
~a2a* !,

It is known4,8 that the representation

p~p,q,t !5ei (t1pQ1qP)

is square-integrable moduloZ andC51.
It follows from Theorem 2 thatany p-covariant POVMQ based onR2 is of the form

Q~X!5
1

2p E
X
ei (pQ1qP)Te2 i (pQ1qP)dpdq, XPB~R2!,

for some positive trace one operator onH. Up to our knowledge, the complete classification of t
POVMs onR2 covariant with respect to the Heisenberg group has been an open problem til

B. The ax¿b group

Theax1b group is the semidirect productG5R38R1 , where we regardR as additive group
andR1 as multiplicative group. The composition law is

~b,a!~b8,a8!5~b1ab8,aa8!.

The groupG is nonunimodular with left Haar measure

dmG~b,a!5a22dbda

and modular function

D~b,a!5
1

a
.

Let H5L2((0,1`),dx) and (p1,H) be the representation ofG given by

@p1~b,a! f #~x!5a1/2e2p ibxf ~ax!, xP~0,1`!.

It is known8 that p is square-integrable, and the square root of its formal degree is

~C f !~x!5D~0,x!1/2f ~x!5x2 1/2f ~x!, xP~0,1`!,

acting on its natural domain.
By means of Theorem 2 every POVM based onG and covariant with respect top1 is

described by a positive trace one operatorT according to Eq.~2!. Explicitly, let (ei) i>1 be an
orthonormal basis of eigenvectors ofT and l i>0 be the corresponding eigenvalues. Ifu
PL2((0,1`),dx) is such thatx21/2uPL2((0,1`),dx), thep1-covariant POVM corresponding
to T is given by
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Renormalization for the Harper equation for quadratic
irrationals

J. Dalton and B. D. Mestela)

School of Mathematical Sciences, University of Exeter, Exeter, EX4 4QE, United Kingdom

~Received 29 May 2002; accepted 22 June 2003!

In this paper, we use renormalization methods to study self-similarity in the fluc-
tuationsh i of the Harper equation in the strong-coupling limit for quadratic irra-
tionals of the form (Aa2142a)/2 for aPN. Using the decimation method, we
obtain a second-order functional recurrence which we prove rigorously has an
entire fixed point. This fixed point governs the scaling of the fluctuationsh i in the
strong-coupling limit. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1605819#

I. INTRODUCTION

The Harper equation~also known as the almost Mathieu equation!,

c i 111c i 2112l cos~2p~ iv1f!!c i5Ec i , ~1.1!

is an important quantum mechanical model that has been studied extensively in the literatur~For
a review we refer the reader to Refs. 10 and 9.! In Eq. ~1.1! E is the eigenvalue corresponding
the eigenfunctionc i defined on the one-dimensional integer lattice indexed byi PZ. Forl.1, Eq.
~1.1! has exponentially decaying eigenfunctionsc i so that we writec i5e2gu i uh i , whereg5logl
~the Lyapunov exponent! ~see Ref. 1!, andh i is the fluctuation at sitei. In terms ofh i , the Harper
equation becomes, fori .0,

l21h i 111lh i 2112l cos~2p~ iv1f!!h i5Eh i . ~1.2!

In this paper we use renormalization methods to study self-similarity in the fluctuationsh i in the
strong-coupling limitl→`, E;2l, for the case ofv5(Aa2142a)/2, aPN, with the phase
f50. This follows from the work of Ketoja and Satija3 in which the golden mean case,v
5(A521)/2), is analyzed heuristically. Rigorous results in that case were obtained by M
Osbaldestin, and Winn.4 General Farey paths were considered by Ketoja and Satija in Re
although we have not followed this approach here.

Using the so-calleddecimationmethod of Ketoja and Satija,2,3 we shall show that the self
similarity in theh i is determined by a so-calledstrong coupling fixed pointof the renormalization
operator associated with the recursion

tn~x!5 )
i 50

a21

tn21~2vx2 i !tn22~v2x1av!. ~1.3!

In this paper we shall prove the existence of a fixed point of this recursion and thereby es
the theory on a firm basis. Specifically, we shall prove the following theorem.

Theorem 1: Let aPN and letv5(Aa2142a)/2. Then for each kPN, there exists a unique
entire function t such that

a!Corresponding author. Current address: Department of Computing Science and Mathematics, University of
Stirling FK9 4LA, United Kingdom. Electronic mail: B.D.Mestel@stir.ac.uk
47760022-2488/2003/44(10)/4776/8/$20.00 © 2003 American Institute of Physics
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t~x!5S )
i 50

a21

t~2vx2 i !D t~v2x1av!, ~1.4!

having a zero of order k at x51 and satisfying t(x).0 on (2v2(a21),1). For each k we have
t(x)5t* (x)k, where t* is the function corresponding to the case k51.

The outline of this paper is as follows. In Sec. II we give a brief review of the num
theoretic results, followed by a heuristic derivation of the recurrence~1.3! using the decimation
methods of Ketoja and Satija.2,3 In subsequent sections we give the proof of Theorem 1.
method of proof is an improvement on the techniques employed in Ref. 4.

II. DERIVATION OF THE RENORMALIZATION EQUATIONS

In this section we give a heuristic derivation of the renormalization functional recurre
based on the decimation method of Ketoja and Satija.

Let us briefly recall some elementary number-theoretic results on which the decim
method is based~see Ref. 8 for further details!. Let aPN be fixed and letvP~0,1! have continued
fraction expansion@0;a,a,...#. Thenv5(2a1Aa214)/2 and satisfies the quadratic equation

v21av51. ~2.1!

For these quadratic irrationals the rational convergentspn /qn satisfy pn5qn215Gn where
Gn115aGn1Gn21 , G050, G151. An important relation is the following:

Gnv2Gn2152~2v!n. ~2.2!

We now consider~1.2! in the strong-coupling limitl→`, at the band edgeE52l. SettingE
52l, dividing Eq. ~1.2! by l, and lettingl→` gives

h i 2112~cos~2p~ iv1f!!21!h i50. ~2.3!

Following Ketoja and Satija,3 we define a so-calleddecimationas follows:

h i 1Gn
5 t̂ n~ i !h i . ~2.4!

Note that this decimation differs from that in Ref. 3, since the coefficient ofh i 1Gn11
has been se

to zero and we have changed the sign oft̂ n . Consequently,~2.4! is only valid in the strong-
coupling limit l→`.

A general recurrence fortn may be obtained as follows. Evaluating~2.4! with i set equal toi,
i 1Gn , i 12Gn ,...,i 1(a21)Gn , gives

h i 1Gn
5 t̂ n~ i !h i

h i 12Gn
5 t̂ n~ i 1Gn!h i 1Gn

]

h i 1aGn
5 t̂ n~ i 1~a21!Gn!h i 1~a21!Gn

.

Second, evaluating~2.4! at n21 with i set equal toi 1aGn gives

h i 1Gn211aGn
5 t̂ n21~ i 1aGn!h i 1aGn

.

Eliminating h i 1Gn
,...,h i 1aGn

between these equations, and using the recurrence for theGn , we
obtainh i 1Gn11

5 t̂ n11( i )h i , where
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t̂ n11~ i !5S )
j 50

a21

t̂ n~ i 1 jGn!D t̂ n21~ i 1aGn!.

We now set the phasef50. Evaluating~2.4! at n50 and n51, we obtainh i5 t̂0( i )h i ,
h i 115 t̂1( i )h i , which, on comparing with~2.3! at i 11, with f50, gives

t̂0~ i !51, t̂1~ i !5
1

2~12cos~2p~ i 11!v!!
.

Following Ref. 3 we now transform from the discrete variablei to a continuous variablex. We
write x5(2v)2n$ iv% where $•% denotes the fractional part. This transformation must be d
carefully since the definition ofx depends on the indexn of the function. We now writetn(x)
5 t̂ n( i ), wheretn is a real function of a real variable of periodv2n. Then, we have, forn.1,

tn11~x!5tn11~~2v!2~n11!$ iv%!

5 t̂ n11~ i !

5S )
j 50

a21

t̂ n~ i 1 jGn!D t̂ n21~ i 1aGn!

5S )
j 50

a21

tn~~2v!2n$~ i 1 jGn!v%!D tn21~~2v!2~n21!$~ i 1aGn!v%!

5S )
j 50

a21

tn~~2v~2v!2~n11!$ iv1 j ~2~2v!n!%!!

3tn21~v2~2v!2~n11!$~ iv1a~2~2v!n!!%!

5S )
j 50

a21

tn~2vx2 j !D tn21~v2x1av!,

as required.@In deriving this equation we have implicitly used the periodicity of the functiontn

and ~2.2!.# The initial conditions are now

t0~x!51, t1~x!5
1

2~12cos~2p~2vx1v!!!
, ~2.5!

since, using$ iv%52vx ~for n51) and the periodicity of the cosine function, we havet1(x)
5t1((2v)21$ iv%)5 t̂1( i )51/(2(12cos(2p(i11)v)))51/(2((12cos(2p(2vx1v)))). Of par-
ticular interest is the singularity/zero structure of these initial conditions. We note that o
interval @2v2(a21),1#, the functiont1 has poles of order 2 at the end points2v2(a21) and
1, but no other zeros or singularities. From the recurrence~1.3!, we see thatt2(x) has a pole of
order 2 at 1, but no other singularities or zeros on the interval@2v2(a21),1#. It will then
follow that for all n>3, tn(x) has a pole of order 2 at 1, but no other zeros or singularities on
interval.

From numerical simulation of the recurrence~1.3!, it appears that, starting from the initia
conditions~2.5!, tn(x) converges to a solutiont(x) of ~1.4!, with t(x) having a pole of order 2 a
1, and no other singularities or zeros on@2v2(a21),1#.

In this paper we prove the existence of this fixed point. It is given byt(x)5t* (x)22, where
t* is the function given in Theorem 1.
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III. ITERATED FUNCTION SYSTEM

The analysis of the recurrence~1.3! is based on the iterated function system given by
scaling functions on the right-hand side of~1.3!. In this section we define the iterated functio
system and calculate its fixed point set. The fixed point set is an intervalI and the global behavio
of the recurrence~1.3! is determined by its behavior close toI.

Define f1,i(x)52vx2 i for i 50,...,a21 and let f2,a(x)5v2x1av. The functions
$f1,0,...,f1,a21 ,f2,a% are contractions which form an iterated function system~IFS! on R. Let I
be the real interval@2v2(a21),1#. ThenI is the unique compact fixed-point set inC of the IFS:

Proposition 1: The interval I satisfiesø i 50
a21f1,i(I )øf2,a(I )5I .

Proof: Writing c52v2(a21), we havec,0 and I 5@c,1#. We calculatef1,i(@c,1#)
5@2v2 i ,2vc2 i #, for i 50,...,a21, and f2,a(@c,1#)5@v2c1av,1#. We observe that
f1,(a21)(1)52v2(a21)5c, the left-hand end point ofI. Moreover, fork51,...,a21 we have
f1,k(c)5f1,k21(1), so that the right-hand end point off1,k(I ) is the left-hand end point o
f1,k21(I ). Thus ø i 50

a21f1,i(@c,1#)5@c,f1,0(c)#5@c,2vc#. Furthermore, we havef2,a(c)
5v2(2v2(a21))1av512v52vc5f1,0(c), so that ø i 50

a21f1,i(I )øf2,a(I )5I , as re-
quired. The locations of the intervals are shown in Fig. 1. h

One further observation which will be useful in what follows is that ifV is a nonempty open
set inC, containingI, and which is invariant for any one of the affine contractionsf1,0,...,f1,a21 ,
f2,a , thenV5C.

IV. THE RENORMALIZATION OPERATORS R AND N

In terms of the above-mentioned IFS, Eq.~1.4! may be written t(x)
5(P i 50

a21t(f1,i(x))) t(f2,a(x)). To obtaint* , we impose the conditiont(x);12x asx→1. We
also have an associated additive fixed-point equation,

T~x!5S (
i 50

a21

T~f1,i~x!!D 1T~f2,a~x!!, T~x!; log~12x! as x→1. ~4.1!

The solution of~1.4! is obtained from a corresponding solution of~4.1!, although care must be
taken over the logarithmic singularity atx51.

In order to solve~4.1!, we introduce the following linear operatorR on functionsT, given by

R~T!~x!5S (
i 50

a21

T~f1,i~x!!D 1T~f2,a~x!!. ~4.2!

A solution of ~4.1! corresponds to a fixed point ofR, but, unfortunately, the operatorR is not a
contraction. We may eliminate the unstable direction by introducing the operatorN given by
N(T)5R(T)2C(T) whereC(T) is

C~T!5
1

a S (
i 51

a21

R~T!~f1,i~0!!1R~T!~f2,a~0!!D . ~4.3!

In Fig. 2 we show of the solutiont* of Eq. ~1.4! for the casea52. This figure was obtained
as the limit of the iterations of the exponentiated operator expN starting from the initial condition
t0(x)512x.

Our strategy for the proof of Theorem 1 is as follows. We shall describe the functional an
properties of the operatorsR andN. In particular, they are compact operators on a suitable sp

FIG. 1. Diagram to show location of intervals.
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of analytic functions, andN is spectrally a contraction. Using this fact we prove that there
fixed pointT* of N with T* (x); log(12x) asx→1. The operatorN has been designed soT* is
also a fixed point ofR. We then exponentiate to get an analytic solution of the multiplica
equation~1.4! on a domain inC, which we then extend to the whole complex plane.

A. Function space and properties

In this section we shall define the space of analytic functions in which we shall work.r
satisfy max(1,(a21)/(12v)),r ,1/v. That such anr exists follows from 1/v2(a21)/
(12v)5(12av)/(v2v2).0, by ~2.1!. Let D5D(0,r )5$zPC:uzu,r %. We letF be the space
of real analytic functionsf :D→C, f (z)5( i 50

` f i(z/r ) i , such that theL1-norm i f i5( i 50
` u f i u

,`. The choice of domainD is motivated by the property

f1,i~D !#D for i 50,...,a21, f2,a~D !#D. ~4.4!

We prove ~4.4! as follows. Let xPD and 0< i<a21. Then uf1,i(x)u,vr 1 i ,vr 1a21
,vr 1(12v)r 5r , using (a21)/(12v),r . Also, uf2,a(x)u,v2r 1av,v2r 1avr 5r , since
r .1. Thusf1,i(D), f2,a(D)#D. From ~4.4! we may conclude that the operatorsR and N are
well defined onF.

B. Spectral properties of R and N

In this section we give a brief account of the spectral properties of the operatorsN andR and
we calculate their spectra explicitly.

Proposition 2: The operators N: F→F, R: F→F are compact. The spectrum of R consists
simple eigenvalues$mk5a(2v)k1v2k:k>0%, together with 0, while the spectrum of N onF
consists of simple eigenvalues$m̃k5a(2v)k1v2k:k>1%, together with 0, which is also an
eigenvaluem̃050. The eigenfunctions corresponding to the eigenvaluesmk and m̃k are both
polynomials of degree k. The spectral radius r(N),1.

Proof: The inclusions~4.4! imply that R and N are analyticity improving and, by standar
methods, using the Cauchy estimates to provide uniform bounds on derivatives, one m
Ascoli’s theorem to deduce compactness. We obtain the spectrum forN; the corresponding resul

FIG. 2. Graph of the solutiont* of Eq. ~1.4! for the casea52.
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for R is proved similarly. We note that all nonzero spectral values ofN are eigenvalues sinceN is
compact. LetmÞ0 be an eigenvalue ofN with eigenfunctionTPF, i.e., N(T)5mT:

mT~x!5N~T!~x!5 (
i 50

a21

T~2vx2 i !1T~v2x1av!2C~T!. ~4.5!

Defining the normigi I5sup$ug(x)u:xPI %, and differentiating, we haveiT( j )i I,` for j 50, 1, 2,
3,..., sinceI is a compact. Furthermore, we haveumuiT( j )i I5iN(T)( j )i I<(av j1v2 j )iT( j )i I .
Sinceav j1v2 j→0 as j→`, it follows that iT( j )i I50 for j sufficiently large, and, sinceT is
analytic, we haveT( j )50. HenceT is a polynomial of degree at mostj 21. To find the eigenvalues
of N, we may therefore assumeT is a polynomial, of degreek>0, say. Expanding~4.5! and
considering thekth-order terms, we have fork>1, m5(2v)ka1v2k. For k50, we haveT(x)
5a0Þ0, and, using~4.3!, we find m50. Moreover, it is straightforward to show that for eachm
there exists a one-dimensional polynomial eigenspace ofN. Finally, we prove thatr (N),1. In
fact, for alla>1, and for allk>0, we haveum̃ku<av,1. The casek50 is clear, sincem̃050. For
k51, we have um̃1u5av2v2,av,1, as required. Fork>2, we have um̃ku<v(v2k21

1avk21),v<av. Henceum̃ku,av,1, as before. We deduce thatr (N),av,1.

V. PROOF OF EXISTENCE OF A FIXED POINT OF R

We now prove the existence of a fixed point ofR. To do this we first of all obtain a fixed poin
of N and then deduce a fixed point ofR. Specifically we prove the following theorem.

Theorem 2: Let aPN and let v5(Aa2142a)/2. Let r.0 satisfy the inequality
max(1,(a21)/(12v)),r ,1/v. Then there exists a fixed point T* of the operator R such tha
T* (x)5 log(12x)1T** (x) where T** PF.

From Sec. IV B we know that the spectral radius ofN on F is r (N),1. We conclude that
there existsrP(r (N),1) and K.0 such that for allk>1, iNk(T)i<KrkiTi . Let T0(x)
5 log(12x), where~here, and in what follows! we take the principal branch of the logarithm. W
note thatT0 has a singularity at 1PD, so clearlyT0¹F.

We now define a sequence of functionsTn as follows: T15N(T0)2T0 , Tn5N(Tn21),
n>2. We claim thatT1PF so thatTnPF for all n>1. To prove the claim we observe that

T1~x!5R~T0!~x!2C~T0!2T0~x!

5(
i 51

a

log~ i 1vx!1 log~12~v2x1av!!2C~T0!2 log~12x!

5(
i 51

a

log~ i 1vx!1A,

whereA is a constant, and we have used~4.2! and log(12(v2x1av))2log(12x)5logv2. It is now
clear that the singularities ofT1 are atx5 i /v, for i 51,...,a21, and, sincer ,1/v, it follows that
all the singularities ofT1 lie outsideD̄ and soT1PF, and we are done.

We now prove Theorem 2. We haveNn(T0)5T01¯1Tn and it is now immediate tha
Nn(T0) converges to a functionT* 5T01T** where T** 5( i 51

` TiPF, since the series
( i 51

` iTi i<( i 51
` Kr i 21iT1i,`. It is clear T* is a fixed point ofN, i.e., N(T* )5T* , since

N(T** )5T** 2T1 andN(T0)5T01T1 .
We next show thatR(T* )5T* . SinceN(T* )5T* , we haveR(T* )5T* 1C(T* ). We show

that C(T* )50. Now T* (0)5( i 50
a21T* (f1,i(0))1T* (f2,a(0))2C(T* ), and, hence,C(T* )

5( i 51
a21T (f1,i(0))1T (f2,a(0)). Recalling~4.3!, we now have that
* *
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C~T* !5
1

a S (
i 51

a21

R~T* !~f1,i~0!!1R~T* !~f2,a~0!!D
5

1

a S (
i 51

a21

T* ~f1,i~0!!1T* ~f2,a~0!!1aC~T* !D
5

a11

a
C~T* !.

We deduce thatC(T* )50, as claimed. This concludes the proof of Theorem 2.

VI. PROOF OF THEOREM 1

We now give the proof of Theorem 1. LetT* be the fixed point ofR given by Theorem 2. Let
t* 5expT* . Then t* is analytic onD and we havet* satisfies Eq.~1.4! there. Moreover, since
T* (x); log(12x) asx→1, we have thatt* has zero of order 1 atx51. This constructs the bas
solutiont* of Theorem 1. We now extendt* to the whole ofC by analytic continuation, so that i
satisfies~1.4!. To do this we use the following lemma:

Lemma 1 (extension lemma): Let t be analytic and satisfy Eq. (1.4) on an open neighbo
U of @2v2(a21),1# in C. Then there exists an analytic extension of t to the whole ofC.

Proof: Consider the set of open, simply connected neighborhoodsV of @2v2(a21),1# in C
such thatf1,i(V)#V, for i 50,...,a21 andf2,a(V)#V and such that there is an analytic exte
sion of t to V. Clearly, since@2v2(a21),1# is the fixed-point set of the iterated function syste
defined in Sec. III, there existsV#U satisfying these conditions. Moreover, since the union of t
such neighborhoodsV is also such a neighborhood, it follows that there is a maximal s
neighborhood,V* , say. Then, by maximality, we have that at least one off1,i(V* )5V* , for i
50,...,a21 andf2,a(V* )5V* holds, and, thus, as observed in Sec. III,V* is the whole ofC.

h

It is now clear from the lemma that the extension oft* to C is possible, sincet* is analytic on
U5D, which contains@2v2(a21),1#. We are therefore able to define forkPN the function
t(x)5t* (x)k. Thent is entire, satisfies~1.4!, and has a zero of orderk at x51.

We next prove thatt is unique. LetkPN. Suppose thatt1 andt2 are entire functions satisfying
Eq. ~1.4!, with t1(x), t2(x).0 on @2v2(a21),1) and zeros of orderk at x51. Let us consider
the function t(x)5t1(x)/t2(x). Then, on an open neighborhoodU of @2v2(a21),1#, t is
analytic and nonzero and satisfies~1.4!. We now extendt to the whole ofC using the extension
lemma 1. From the multiplicative property of Eq.~1.4!, we have that ift(x)50, for some
xPC, thent(x8)50, for somex8PU, a contradiction. Thust is a nonzero solution of~1.4! on C,
and, in particular, onD, with t(x).0 on @2v2(a21),1#. We are therefore able to define logt,
giving a functionT which is a fixed point ofR in F, i.e., an eigenfunction with eigenvalue 1. Fro
the spectral analysis ofR ~Proposition 2!, we see that no such eigenfunction exists and t
T50. We conclude thatt51 on D and, by extension, onC. It follows that t15t2 on C.

The proof of Theorem 1 is complete.

VII. CONCLUSION

In this paper we have considered the strong coupling fixed point limit of the Harper equ
in the case ofv a quadratic irrational of the formv5(Aa2142a)/2, aPN, and have applied
renormalization techniques to study the self-similarity properties of the fluctuationsh i . Although
our analysis is only valid in the limitl→`, it is believed that it applies for a wider range ofl, and,
in particular, large but finitel.

There are a number of avenues for further research. First, our methods are likely to ext
more general irrationalv with continued fraction@0;a1 ,a2 ,...#. However, it appears that fo
generalv, the functionstn will not converge to a fixed point, and, indeed, the fundamental inte
I will also vary with n.
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Second, the theory for generala presented here can be applied to study problems in which
solutions of the recurrence~1.3! are piecewise constant. Such solutions have application to
study of the correlation function in strange nonchaotic attractors, other quasiperiodcally d
quantum mechanical models, as well as so-called barrier-billiard problems. In particular, the
in Refs. 5 and 6 may be extended from the golden-mean case to generala.

A third direction for future work is the generalization of the so-called Ketoja–Satija orch
renormalization strange set for a generalized Harper equation~see Refs. 3 and 7!. It is likely that
the Ketoja–Satiija orchid and the analysis of its structure can be generalized to irrational nu
other than the golden mean (A521)/2. Indeed, the goal is to extend the analysis in Ref. 7 to
irrational v.
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nÄ3 differential calculus and gauge theory on a reduced
quantum plane
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We discuss the algebra ofN3N matrices as a reduced quantum plane. A
n53-nilpotent deformed differential calculus involving a complex parameterq is
constructed. The two cases,q 3rd andNth root of unity are completely treated. As
an application, we establish a gauge field theory for the particular casesn52 and
n53. © 2003 American Institute of Physics.@DOI: 10.1063/1.1598278#

I. INTRODUCTION

In the literature, there exist different points of view1–6 to generalize the ordinary differentia
calculus (d250); see, for example, Refs. 7–8, to higher orders. An adequate way leading to
generalizations arises from the graded differential algebra.1–3 In fact in these references it is see
as a gradedq-differential algebra which is the sum ofk-graded subspaces, wherek
P$0,1, 2,. . . ,m21%. The relevant differential operator is an endomorphismd satisfyingdm50
and theq-Leibniz rule:

d~AB!5~dA!B1qAd~B!.

The most important property of this calculus is that it involves not only first differentialsdxi ,
i 51, . . . ,n, but also the higher-order differentialsdjxi , j 51, . . . .,m21.

On the other hand, the differential calculus (d250) on noncommutative spaces was al
studied by different authors; see Refs. 8–13. These differential calculi are covariant with re
to some symmetry quantum group.

In this paper, we construct a covariant differential calculusd350 on the algebraM3(C) of
333 matrices considered as a reduced quantum plane. We will show that our differential ca
is covariant under the algebra of transformations with a quantum group structure. The co
deformation parameterq ~3rd-root of unity! will play an important role in constructing gauge fie
theory onM3(C).

The paper is organized as follows
We start in Sec. II by defining the algebra ofN3N matrices as a reduced quantum plan

where the deformation parameterq is theNth root of unity. In Sec. III we construct the covaria
differential calculusd350 on the two-dimensional reduced quantum plane as in Refs. 1–3.
new objects,d2x andd2y, appearing in this construction are seen as the analogous of the d
ential elementsdx anddy in the ordinary differential calculus. In Sec. IV, we generalize this re
by considering a complex deformation parameterq Nth root of unity.

In Sec. V, we study the application of this new differential calculus (d350) to the gauge field
theory onM3(C). We recall in Sec. VI the differential calculusd250,8,11–13and we apply it to
derive a gauge theory onM3(C).

a!Electronic mail: moreagl@yahoo.co.uk
b!Electronic mail: lhassoun@fsr.ac.ma
c!Electronic mail: y-hassou@fsr.ac.ma
d!Electronic mail: hzakkari@hotmail.com
47840022-2488/2003/44(10)/4784/11/$20.00 © 2003 American Institute of Physics

                                                                                                                



e

ng

um
tions
uantum

ly pro-

y,

4785J. Math. Phys., Vol. 44, No. 10, October 2003 n53 differential calculus

                    
II. PRELIMINARIES ABOUT THE ALGEBRA M 3„C… OF NÃN MATRICES AS A REDUCED
QUANTUM PLANE

The associative algebra ofN3N matrices is generated by two elementsx andy14 satisfying
the relations

xy5qyx ~1!

and

xN5yN51, ~2!

where 1 is the unit matrix andq (qÞ1) is a complex parameterNth root of unity.
In the caseN53, an explicit matrix realization of generatorsx andy11,15 is given by

x5S 1 0 0

0 q21 0

0 0 q22
D , ~3!

y5S 0 1 0

0 0 1

1 0 0
D , ~4!

andq satisfies the relation

11q1q250. ~5!

The associative algebra, noted byCq @x,y#ªCq , of formal power series defined over th
two-dimensional quantum plane is generated byx and y with a single quadratic relationxy
5qyx. It is clear thatC1 @x,y# coincides with the algebra of polynomials over commuti
variablesx, y. If the generatorsx, y do not satisfy any additional relations, the algebraCq is
infinite dimensional.

In the case of the algebraM3(C) of 333 matrices over complex numbers, the generatorsx,
y satisfy the above quadratic relation~1! and the cubic onesx35y351. Thus the algebraC̃q of
formal power series overM3(C) is finite dimensional and generated by$1, x, y, x2, y2, xy, x2y,
xy2, x2y2%. In this case,C̃q5Cq

0/I whereCq
0 is the unital extension ofCq and I is the bilateral

ideal generated byx32150, y32150. That is, in the sense of Refs. 11, 15, the 333 matrices
over C are seen as a reduced quantum plane.

We note that the functions ofx andy are seen as a finite formal power series with a maxim
degree 3; this property will be extremely useful in what follows. In fact, the set of these func
is an associative algebra that is used to introduce a gauge field theory on the reduced q
plane. This idea will be developed in Secs. V and VII.

III. DIFFERENTIAL CALCULUS WITH NILPOTENCY nÄ3 ON REDUCED QUANTUM
PLANE, CASE q 3Ä1

Our aim in this section is to construct a covariantn53 nilpotent differential calculus by
mixing two approaches. Namely, we adapt to the reduced quantum plane an idea original
posed by Kerner,1–3 and we use Couquereaux’s technics11 to ensure covariance. We denote byV
the differential algebra generated byx, y, dx, dy, d2x andd2y, where the ‘‘2-forms’’d2x andd2y
are the second differentials of the basic variablesx andy.

Let us introduce the differential operatord that satisfies the following conditions: Nilpotenc

d350: ~6!
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and Leibniz rule,

d~uv !5d~u!v1qnud~v !, ~7!

whereu is a form of degreen andq is a 3rd root of unity.
By applying the Leibniz rule on the 1-form we obtain

d„f ~x! dx…5„d f~x!… dx1 f ~x! d2x; ~8!

f (x) are the 0-forms in the algebraV. The set of transformations leaving covariant our differen
calculus isF,Fun„SLq(2,C)… and the covariance is described by the left coaction. We star
explaining this coaction.16

The left coaction of the groupF on the reduced quantum plane is the linear transformatio
coordinates given by

S x1

y1
D5S a b

c dD ^ S x
yD .

We also introduce the line vectors with coordinate functions:

~x1, y1!5~x, y! ^ S a b
c dD ,

where the matrix elementsa, b, c andd do not commute with each other. We require thatx1 , y1 ,
x1, y1 satisfy the same relations asx andy. The two constraintsx1y15qy1x1 andx1y15qy1x1

lead to the relations

ac5qca, bd5qdb,

ab5qba, cd5qdc,

bc5cb, ad2da5~q2q21!bc.

The algebra generated bya, b, c and d is usually denoted Fun„GLq(2,C)…. The
q-determinantD5da2q21bc is in the center of Fun„GLq(2,C)…. If we set it equal to 1, we
define the algebra Fun„SLq(2,C)…. Assuming that the supplementary conditions (x)351 and
(y)351 are also verified by the coordinatesx1 , y1 , x1 and y1 implies a351, b350, c350, d3

51. These new cubic relations on Fun„SLq(2,C)… yield a new algebra that we denoteF. It is also
a Hopf algebra. Indeed, it has a coalgebra structure~coproduct! which is compatible with the
algebra one~product!, this defines a bialgebra structure. An antipode and a co-unit are
defined. For further details on such structures onF, see, for example, Ref. 11.

The mixture of Kerner’s idea and Coquereaux’s techniques allows us to construct th
covariant differential algebraV5$x,y,dx,dy,d2x,d2y%; see Appendix A. The commutation rela
tions between the generators ofV are as follows:

x dx5q2 dx x, ~9!

x dy5q dy x1~q221!dx y, ~10!

y dx5q dx y, ~11!

y dy5q2 dy y, ~12!

dy dx5q2 dx dy, ~13!

x d2x5q2d2x x, ~14!
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y d2x5q d2x y, ~15!

y d2y5q2d2y y, ~16!

x d2y5q d2y x1~q221!d2x y, ~17!

dx d2y5d2y dx1q~12q!d2x dy, ~18!

dy d2x5d2x dy, ~19!

dx d2x5q d2x dx, ~20!

dy d2y5q d2y dy, ~21!

d2y d2x5q2d2x d2y. ~22!

As in the standard way, we define the partial derivatives in directionsx andy through

d5
]

]x
dx1

]

]y
dy5]xdx1]ydy. ~23!

Consistency conditions as in Ref. 8 yield

]x ]y5q]y ]x , ~24!

]x x511q2x ]x1~q221!y ]y , ~25!

]x y5qy ]x , ~26!

]y y511q2y ]y , ~27!

]y y511q2y ]y , ~28!

~dx!35~dy!350. ~29!

The last equality, Eq.~29!, can be related to the nilpotency relation encountered in the
scription of the fractional statistics. More precisely, we recover the description of physical sy
that generalize fermions. In a forthcoming paper,17 we re-introduce these systems using this n
differential calculus by establishing an adequate correspondence between our differential c
and some deformed Heisenberg algebras, as it is done in Ref. 18 for the particular cad2

50).
Now, we generalize our differential calculus by considering the caseqN51.

IV. DIFFERENTIAL CALCULUS ON A REDUCED QUANTUM PLANE, CASE q NÄ1

A two-dimensional reduced quantum plane is an associative algebra generated byx andy with
relations~1! and ~2!. One can always define the differential operator ‘‘d’’ satisfying d350 (d2

Þ0) and the Leibniz rule

d~uv !5d~u!v1~ j !nud~v !, ~30!

uPVn andvPVm, whereVn andVm are the spaces ofn andm forms on the reduced quantum
plane, respectively.

In contrast to Eq.~7!, one has to distinguish between the deformation parameterq and thej
parameter,j 351 ( j Þ1) in Eq. ~30!.

Following the same method of Sec. III, we get the covariant differential calculus:
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x dx5 j 2dx x, ~31!

x dy52
jq

11q2 dy x1
j 2q221

11q2 dx y, ~32!

y dx5
j 22q2

11q2 dy x2
jq

11q2 dx y, ~33!

y dy5 j 2dy y, ~34!

dx dy5q dy dx, ~35!

x d2x5 j 2 d2x x, ~36!

x d2y52
jq

11q2 d2y x1
j 2q221

11q2 d2x y, ~37!

y d2x5
j 22q2

11q2 d2y x2
jq

11q2 d2x y, ~38!

y d2y5 j 2d2y y, ~39!

dx d2x5 j d2x dx, ~40!

dx d2y52
q

11q2 d2y dx1
jq22 j 2

11q2 d2x dy, ~41!

dy d2x5
j 2 j 2q2

11q2 d2y dx2
q

11q2 d2x dy, ~42!

dy d2y5 j d2y dy, ~43!

d2x d2y5q d2y d2x. ~44!

If q5 j , we recover the differential calculus obtained in Sec. III. As an application of this
differential calculusd350 on the reduced quantum plane, we construct in the section belo
gauge field theory onM3(C).

V. COVARIANT DERIVATIVE AND CURVATURE ON M3„C… AS A REDUCED QUANTUM
PLANE WITH d 3Ä0

In this section, we use then53 differential calculus constructed in Sec. III to establish
gauge theory on the reduced quantum plane.

As in the ordinary case, the covariant differential is defined by

DF~x,y!5dF~x,y!1A~x,y!F~x,y!, ~45!

where the fieldF(x,y) is a function onM3(C) and the gauge fieldA(x,y) is a 1-form valued in
the associative algebra of functions on the reduced quantum planeM3(C).

We have assumed that the algebra of functions onM3(C) is a bimodule over the differentia
algebraV.

As usual, the covariant differentialD must satisfy

DU21F~x,y!5U21DF~x,y!, ~46!
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whereU is an endomorphism defined on Fun@M3(C)#.
This leads to the following gauge field transformation:

A~x,y!→U21A~x,y!U1U21dU. ~47!

In general, the gauge fieldA(x,y) can be written as

A~x,y!5Ax~x,y!dx1Ay~x,y!dy. ~48!

The differential calculusn53 allows us to define the curvatureR as follows:2,19

D3F~x,y!5RF~x,y!. ~49!

Direct computations show thatR is a ‘‘three-form’’ given by

R5d2A~x,y!1dA2~x,y!1A~x,y!dA~x,y!1A3~x,y! ~50!

5d2A~x,y!1„dA~x,y!…A~x,y!1~11q!A~x,y!dA~x,y!1A3~x,y! ~51!

5d2A~x,y!1„dA~x,y!…A~x,y!2q2A~x,y!dA~x,y!1A3~x,y!. ~52!

One has to express the curvature written above in terms of 3-forms constructed from
generatorsdx, dy, d2x and d2y of the differential algebraV. Since we are dealing with a
noncommutative space~reduced quantum plane!, this task is not straightforward. In fact, th
noncommutativity prevents us from rearranging the different terms in Eq.~52! adequately. To
overcome this technical difficulty we require that the components of the gauge fieldAx(x,y) and
Ay(x,y) are expressed as formal power series of the space coordinatesx andy.20–23 The condi-
tion, Eq.~2! in Sec. II (N53), is extremely useful, in the sense that it limits the power serie
finite ones rather than infinite:

Ax~x,y!5amnx
myn; m,n50,1,2, ~53!

Ay~x,y!5bklx
kyl ; k,l 50,1,2. ~54!

Using the formulas~1!, ~31!–~44!, ~52!–~54!, and after technical computations, the desir
expression of the curvature arises as

R5qFxy
q d2x dy1Fyx

q2
d2y dx3@Rxxy1qRyxx1q2Rxyx1~12q!$]yAx~x,y!1q]xAy~x,y!

1]yAY~x,y!„~12q! f 2~y!2 f 1~x,y!…1q f4~x,y! f 0~x,y!2q2f 6~x,y!1Ay~x,y!„f 5~x,y!

1Ay~x,y!Ay~q2x,y!„~12q! f 2~y!2 f 1~x,y!…Ay~x,y!Ax~q2x,y! f 4~x,y!

1qAx~x,y!Ay~qx,q2y! f 0~x,y!1q2Ay~x,y! f 4~x,y!Ay~x,y!

1Ay~x,y! f 3~x,y!Ay~q2x,qy!%#dx dx dy1@Ryyx1qRyxy1q2Rxyy1~12q!

3$2q2]yAy~x,y! f 0~x,y!2q2Ay~x,y! f 7~x,y!2Ay~x,y!Ay~q2x,qy! f 8~x,y!%#dy dy dx,

~55!

where

Fxy
q 5]xAy~x,y!2q]yAx~x,y!1Ax~x,y!Ay~qx,q2y!2qAy~x,y!Ax~q2x,qy!,

~56!

Fyx
q2

5]yAx~x,y!2q2]xAy~x,y!1Ay~x,y!Ax~q2x,qy!2q2A~x,y!A~qx,q2y!,
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and the componentsRi jk , f n(x,y) ( i , j ,k5x,y; n50,1,. . . ,8) are given in Appendix B.
The expression of the curvature components, Eq.~80! Appendix B, and the deformed field

strength, Eqs.~56!, are formally the same as those obtained by Kerner.2,19 The functionsf i(x,y)
i 50, . . . ,8 can beinterpreted as a direct consequence of the noncommutativity property o
space.

The n53 covariant differential calculus constructed in Secs. III and IV, respectively, forq
3rd andNth-root of unity can be seen as a generalization of the casen52. However, one canno
seed250 as a certain limit of thed350 case. In the next section, we are reminded of
differential calculusd250.

VI. DIFFERENTIAL CALCULUS WITH NILPOTENCY nÄ2 ON A REDUCED QUANTUM
PLANE

We recall that the exterior differential ‘‘d’’ on the reduced quantum plane obeys the us
properties,8,11–13namelyi /linearity, i i /nilpotency,

d250. ~57!

i i i /Leibniz rule,

d~uv !5d~u!v1~21!nud~v !, ~58!

where

uPVn,vPVm and d~x!5dx, d~y!5dy, d150. ~59!

The q-deformed differential calculus satisfies

x dx5q2 dx x, ~60!

x dy5q dyx1~q221!dx y, ~61!

y dx5q dx y, ~62!

y dy5q2 dy y, ~63!

dy dx52q2 dx dy, ~64!

~dx!25~dy!250. ~65!

So, the differential algebraV is generated byx, y, dx anddy, V5$x,y,dx,dy%.
Using the standard realization of the differential ‘‘d: ’’

d5
]

]x
dx1

]

]y
dy5]x dx1]y dy, ~66!

one can prove that

]xx511q2x]x1~q221!y]y , ~67!

]yx5qx]x , ~68!

]xy5qy]x , ~69!

]yy511q2y]y . ~70!
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We apply this covariant differential calculus to study the related gauge field theory onM3(C).

VII. COVARIANT DERIVATIVE AND CURVATURE ON M3„C… AS A REDUCED QUANTUM
PLANE WITH d 2Ä0

The covariant differential is defined as in Sec. VI:

DF~x,y!5dF~x,y!1A~x,y!F~x,y!. ~71!

The expression of the curvature is

D2F~x,y!5„dA~x,y!1A~x,y!A~x,y!…F~x,y!5RF~x,y!. ~72!

The differential realization of ‘‘d, ’’ Eqs. ~66!–~70!, allows to rewrite the expression of th
curvatureR:

R5„]xAy~x,y!2q]yAx~x,y!…dx dy1Ax~x,y!dx Ay~x,y!dy. ~73!

Using the differential calculus, Eqs.~60!–~70!, on the reduced quantum plane and the expr
sions ofAx(x,y), Ay(x,y), Eqs. ~53!, ~54! as a formal power series, it is easy to establish
curvature expression:

R5@]xAy~x,y!2q]yAx~x,y!1Ax~x,y!Ay~qx,q2y!2qAy~x,y!Ax~q2x,qy!

1~12q!Ay~x,y!$2qb122b10y1q2b22x2q2b11y
21qb20xy1b21xy2%#dx dy; ~74!

this permits us to identify theq-deformed antisymetric field strength:

Fxy
q 5]xAy~x,y!2q]yAx~x,y!1Ax~x,y!Ay~qx,q2y!2qAy~x,y!Ax~q2x,qy!

52q$]yAx~x,y!2q2]xAy~x,y!1Ax~q2x,qy!Ay~x,y!

2q2Ax~x,y!Ay~q2x,qy!%

52qFyx
q2

, ~75!

The comparison of the two expressions of curvatured350, Sec. V andd250, will be given in
the following section.

VIII. DISCUSSIONS AND CONCLUDING REMARKS

In this paper, we have constructed a differential calculusn53 nilpotent on the reduced
quantum plane by mixing Kerner’s idea and Coquereaux’s techniques. The notion of cova
for this differential calculus is also given and we have shown that there is a quantum
structure behind this covariance. As an application, we have constructed a gauge field theor
on this calculus.

In the casen53, the expression of curvature, Eq.~55!, contains additional terms, Eqs.~80!,
~81! ~Appendix B! compared with Eq.~74! (n52). These terms can be interpreted as a gen
consequence of the extension of the differential calculusd250 to the higher orderd350.

We can also compare our results with those of Kerneret al.2,19 In fact, Eqs.~56!, ~80! are
formally the same as in Refs. 2, 19; they differ only by the appearance of the deform
parameterq. However, there is no analogy of Eq.~81! in Refs. 2, 19. It is a direct consequence
the noncommutativity of the space considered here.

In a forthcoming paper, we shall treat in a mathematical way the correspondence betwe
calculus and the Heisenberg algebra. This correspondence is based on the bargman Foc
sentation and will give a new oscillator algebra. To study the minimization of an uncert
principle, we will try to find the eigenvectors of the annihilation operator in a way to construc
corresponding Klauder’s coherent states.17
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APPENDIX A: THE CONSTRUCTION OF A COVARIANT DIFFERENTIAL CALCULUS ON
A TWO-DIMENSIONAL QUANTUM PLANE

We start by writinga priori x dx, x dy, y dx andy dy in terms ofdx x, dy x, dx y anddy y,
i.e.,

x dx5a1 dx x1b1 dy x1c1 dx y1d1 dy y, ~A1!

x dy5a2 dx x1b2 dy x1c2 dx y1d2 dy y, ~A2!

y dx5a3 dx x1b3 dy x1c3 dx y1d3 dy y, ~A3!

y dy5a4 dx x1b4 dy x1c4 dx y1d4 dy y. ~A4!

Differentiating the commutation relationxy5qyx and replacingx dx and x dy by their ex-
pressions in the formulas above, permits us to fix three unknown coefficients. This leaves u
nine independent parameters.

The left coaction ofF on a quantum plane is defined by

x15a^ x1b^ y,

y15c^ x1d^ y.

Hence

dx15a^ dx1b^ dy,

dy15c^ dx1d^ dy.

We impose that the relations betweenx1 , y1 and dx1 , dy1 be the same as the relation
betweenx, y anddx, dy; these conditions yield to

a25 a35 a45 b15b45c15c45d15d25d350 and d15 a4 ,

and the coefficientsb2 , b3 , c2 , andc3 can be expressed in the terms of one unknown coeffic
a1 :

b25
q~11a1!

11q2 , c25
a1q221

11q2 ,

b35
a12q2

11q2 , c35
q~11a1!

11q2 .

Differentiating the relations~76!–~79! and noticing thatdx dx, d2x, dy dy and d2y are
independent, we finda15q2. The left covariant differential calculus on a reduced quantum pl
is hence constructed, Eqs.~9!–~22!.
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APPENDIX B: THE CURVATURE COMPONENTS

In this appendix we give the explicit expression of the curvature components appearing
~55!:

Rxxy5]x]xAy~x,y!1]xAx~x,y!Ay~q2x,qy!2q2Ax~x,y!]xAy~qx,q2y!

1Ax~x,y!Ax~qx,q2y!Ay~q2x,qy!,

Ryxx5]y]xAx~x,y!1]yAx~x,y!Ax~x,y!2q2Ay~x,y!]xAx~qx,q2y!

1Ay~x,y!Ax~q2x,qy!Ax~x,y!,

Rxyx5]x]yAx~x,y!1]xAy~x,y!Ax~x,y!2q2Ax~x,y!]yA~qx,q2y!

1Ax~x,y!Ay~qx,q2y!Ax~x,y!, ~B1!

Ryyx5]y]yAx~x,y!1]xAy~x,y!A~x,y!2q2Ax~x,y!]yAx~qx,q2y!

1Ay~x,y!Ay~q2x,qy!Ax~qx,q2y!,

Ryxy5]y]xAy~x,y!1]yAx~x,y!Ax~x,y!2q2Ay~x,y!]xAy~qx,q2y!

1Ay~x,y!Ax~q2x,qy!Ay~x,y!,

Rxyy5]x]yAy~x,y!1]xAy~x,y!Ay~x,y!2q2Ax~x,y!]yAy~qx,q2y!

1Ax~x,y!Ay~qx,q2y!Ay~x,y!,

f 0~x,y!52b11y
22qb10y1q2b22x1b20xy1qb21xy22b21,

f 1~x,y!52a11y
22a10y1a22x1a20xy1a21xy22a12,

f 2~x,y!52b20y
22q2b21y2q2b22y,

f 3~x,y!52q2a11y
22a10y1q2a22x1qa20xy1a21xy22qa12,

f 4~x,y!52q2b11y
22b10y1q2b22x1qb20xy1b21xy22qb12, ~B2!

f 5~x,y!52qb21y
22b20y2qb22,

f 6~x,y!51qa12y
212a11y1qa21xy2qa22xy2,

f 7~x,y!51qb21y
22b11y1qb21xy22qb22xy2,

f 8~x,y!52b11y
22b10y1b22x2b20xy1b21xy22b12.
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Imaginary Killing spinors in Lorentzian geometry
Felipe Leitnera)

University of Edinburgh, School of Mathematics, JCMB–Kings’ Buildings,
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We study the geometric structure of Lorentzian spin manifolds, which admit imagi-
nary Killing spinors. The discussion is based on the cone construction and a normal
form classification of skew-adjoint operators in signature (2,n22). Derived geom-
etries include Brinkmann spaces, Lorentzian Einstein–Sasaki spaces and certain
warped product structures. Exceptional cases with decomposable holonomy of the
cone are possible. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1606524#

I. INTRODUCTION

A classical object of interest in differential geometry are Killing vector fields. These ar
definition infinitesimal isometries, which means that the flow of such a vector field preserve
metric. A spinorial analog are the so-called Killing spinor fieldsw, which occur on spin manifolds
and are defined as solutions of the field equation¹X

Sw5lX•w for all vector fieldsX and some
fixed lPC, where ¹S denotes the spinor derivative and the center dot denotes the Cli
multiplication.

In Riemannian geometry, it was proved in Ref. 12 that real Killing spinors realize the lo
bound of the eigenvalue estimation for the Dirac equation on compact spaces with positive
curvature. In the sequel Riemannian spaces admitting Killing spinors were intensively studie~cf.
Refs. 11 and 5! and a complete geometric description of such spaces was established. For th
of imaginary Killing spinors this was done by Baum in Ref. 3 and then for real Killing spinors
Ch. Bär using the cone construction and the holonomy classification of Riemannian space
parallel spinors~cf. Ref. 1!. Both results characterize Riemannian spaces with Killing spin
by the Einstein condition and the existence of certain differential forms, which can be unde
as generalized Killing vectors. Real Killing spinors in Lorentzian geometry were first studie
Ref. 9.

In this paper we will treat the Killing spinor equation to an imaginary Killing numberl on a
pseudo-Riemannian space with Lorentzian signature. As a technical tool we will use aga
cone construction for the investigation. Contrary to the Riemannian case, a holonomy desc
of the cone cannot be used, since there is no classification of indecomposable holonomy gro
pseudo-Riemannian manifolds. Moreover, the geodesical completeness of a Lorentzian m
does not imply that a cone with decomposable holonomy is flat. Instead, our geometrical de
tion is mainly based on a normal form classification of skew-adjoint operators in signaturen
22), which is more rich than in the Euclidean case~cf. Ref. 10!. The derived Lorentzian geom
etries are then described by the causal properties of the corresponding Dirac current a
existence of parallel spinors or certain Killing forms. Thereby, we will use the knowledg
structure results for Lorentzian manifolds admitting conformal gradient fields~cf. Ref. 13! and
twistor spinors with lightlike Dirac current~cf. Ref. 6!. Examples of geometries that occur are t
Brinkmann spaces with parallel spinors, the Lorentzian Einstein–Sasaki manifolds and c
warped product structures.

The order of the paper is as follows. In the next section we introduce the basic notation

a!Electronic mail: f.leitner@maths.ed.ac.uk
47950022-2488/2003/44(10)/4795/12/$20.00 © 2003 American Institute of Physics
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definitions appropriate for the study of Killing spinors and state basic curvature condition
their existence~cf. Proposition 2.1 and 2.2!. In Sec. III we recall the cone construction over
Lorentzian base manifold and the correspondence of ‘‘Killing objects’’ on the base and pa
objects on its cone~Theorem 3.1!. We present the normal form classification of skew-adjo
operators in signature (2,n22) due to the work of Boubel in Sec. IV. It turns out that there a
exactly four generic types of normal forms for skew-adjoint operators coming from a spino~cf.
Corollary 4.7!. The cone of a Lorentzian manifold admitting imaginary Killing spinors is f
nished with at least one parallel two-form, which corresponds to one of the generic types~Propo-
sition 5.1!. According to this type of a parallel two-form on the cone we undertake in three o
four generic cases a discussion of the geometry of Lorentzian manifolds with imaginary K
spinors. This happens in the last section. The results of the discussion are summerized in T
5.3.

II. BASIC FACTS ON KILLING SPINORS

In this section we recall the definition of Killing spinors on a spin manifold and fix so
notations. A basic integrability condition for Killing spinors is stated. For more details we ref
Ref. 5. Moreover, we will come across special Killing forms as they were introduced in Re

Let (Mn,k,g) be a semi-Riemannian spin manifold of dimensionn>3 and signature (k,n
2k) (k is the number of timelike vectors in an orthonormal basis at a point!. We denote byS the
complex spinor bundle and by a center dot the Clifford multiplication on spinors. The D
operatorD:G(S)→G(S) acting on smooth spinor fields is defined as superposition of sp
derivative¹S and Clifford multiplication. A spinor fieldwPG(S) is calledKilling spinor to the
Killing numberlPC if it satisfies the equation

¹X
Sw5lX•w for all vector fields X.

It follows immediately from this definition that a Killing spinorw is an eigenspinor of the Dirac
operatorD to the eigenvalue2nl andw is obviously a parallel spinor field with respect to th

modified spinor derivative¹̃l defined by

¹̃lª¹S2l idTM .

In particular, this implies that a Killing spinorw admits no zeros. It holds the following bas
integrability condition.

Proposition 2.1 (Ref. 5): LetwPG(S) be a Killing spinor to the Killing numberlPC.

(1) It is W(h)•w50 for any two-formh, whereW denotes the Weyl tensor.
(2) (Ric(X)24l2(n21)X)•w50, i.e., the image of the map Ric24l2(n21)idTM is totally

lightlike or trivial.
(3) The scalar curvature is constant and given byscal54n(n21)l2. The Killing numberl is

real or purely imaginary.

If the Killing number l is zero (scal50), w is a parallel spinor, in case thatl is real and
nonzero (scal.0), w is called real Killing spinor, and in case thatl is purely imaginary (scal
,0), w is called imaginary Killing spinor. We will treat in this paper the Killing spinor equat
with imaginary Killing number on a space of Lorentzian signature (21¯1).

So let (Mn,1,g) be a connected, oriented and time-oriented Lorentzian spin manifold. T
exists an indefinite non-degenerate inner product^•,•& on the spinor bundleS such that

^X•w,c&5^w,X•c&,

X~^w,c&!5^¹X
Sw,c&1^w,¹X

Sc&
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for all vector fieldsX and all spinor fieldsw,c. Each spinor fieldwPG(S) defines a vector fieldVw

on M , the so-calledDirac current, by the relationg(Vw ,X)ª2^X•w,w& for all vector fieldsX.
The Dirac current satisfies the following pointwise properties.

Lemma 2.1 (Ref. 14): Let(Mn,1,g) be a Lorentzian spin manifold and letw(p)Þ0 be a spinor
in a point pPMn,1. Then

(1) Vw(p)Þ0 and Vw(p) is causal (i.e., gp(Vw ,Vw)<0).
(2) If X•w(p)5rw(p) for some0ÞXPTpM and rPR then the vector X is parallel to Vw(p).

The lemma makes clear that the Dirac current to a Killing spinor on a Lorentzian manifo
everywhere causal. Moreover, it is now possible to prove a stronger curvature condition f
existence of Killing spinors.

Proposition 2.2: Let(Mn,1,g) be a Lorentzian spin manifold admitting a Killing spinorw,
whose Dirac current Vw is timelike. Then(M ,g) is an Einstein space.

Proof: Let us assume thatMn,1 is a non-Einstein space. Then there is an open setU in M ,
whereHªRic(X)2 (scal/n) XÞ0 is lightlike for some vector fieldX. The Clifford productH
•w vanishes and by Lemma 2.1 this implies thatH andVw are parallel, which is a contradictio
to the assumption. h

Especially, for imaginary Killing spinors it holds the following.
Proposition 2.3 (Ref. 5): Letw be an imaginary Killing spinor on a Lorentzian spin manifo

(Mn,1,g). Then the lengtĥw,w& is constant on Mn,1 and if ^w,w&Ó0 the space Mn,1 is Einstein.
Proof: It is X^w,w&5^lX•w,w&1^w,lX•w&50 and with Proposition 2.1 we calculate

1

4~n21!
Ric~X,Y!^w,w&5

21

4~n21!
Rê Ric~X!•w,Y•w&

52Rê l2X•w,Y•w&5l2g~X,Y!^w,w&

for all vector fieldsX andY, which shows that Ric(X)5 (scal/n) X in case that̂ w,w&Þ0. h

Propositions 2.2 and 2.3 imply that an imaginary Killing spinorw on a Lorentzian non-
Einstein spaceMn,1 must have vanishing lengtĥw,w&[0 and the Dirac currentVw to w must be
lightlike on an open subset ofMn,1. We will see later that in this caseVw is even lightlike
everywhere onMn,1. Moreover, the Dirac current satisfies

Proposition 2.4: Letw be an imaginary Killing spinor on a Lorentzian spin manifo
(Mn,1,g). The Dirac current Vw is a Killing vector field, which in addition satisfies¹X dVw

[5
24l2X[∧Vw

[ .
Proof: It holds

g~¹ei
Vw ,ej !52^lejei•w,w&2^ejw,lei•w&52g~¹ej

Vw ,ei !

for all i , j P$1,...,n%, where (e1 ,...,en) is an arbitrary orthonormal basis onMn,1. This proves that
Vw is a Killing vector field. Moreover,

dVw
b54l(

i , j
« i« j^eiej•w,w&ei

[∧ej
[ ,

¹X dVw
[54l2(

i , j
« i« j~^eiejX•w,w&2^Xeiej•w,w&!ei

[∧ej
[524l2X[∧Vw

[ .

h

In general, ap-form ap, which solves the equation

¹X dap5cX[∧ap for all vectors X
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and some fixedcPR, is called aspecial Killing p-form ~cf. Ref. 15!. Proposition 2.4 states tha
the dual of the Dirac current to an imaginary Killing spinor is a special Killing one-form. Kill
spinors also produce special Killing forms of other degree than 1. For this, we observe th
constructs ap-form aw

p to a spinorw by the rule

g~aw
p ,Xp!ª2 i p(p21)/2^Xp

•w,w& for all p-forms Xp

and, in fact, ifp is odd and the Killing numberl of a Killing spinorw is imaginary~or if p is even
andl is real! then the associatedp-form aw

p to w is special Killing.

III. THE CONE M̂

In the preceding section we define the Killing spinors and special Killingp-forms on a
Lorentzian manifold. In this section we will interpret these as parallel objects on thecone mani-
fold. The cone construction was originally applied in order to describe Riemannian geom
admitting real Killing spinors~see Ref. 1! and can be modified here for our requirements.
(Mn,1,g) be a Lorentzian manifold. We consider the coneM̂ of signature (2,n21) onMn,1, which
is defined as

M̂ª~M3R1 , ĝªr 2g2dr 2! .

Thereby, letp denote the natural projection ofM̂ to M . The 1-levelM3$1% of the coneM̂ is
naturally isometric to the base manifoldMn,1 itself. We denote byX̃ the pullback of an arbitrary
base vector fieldXPG(M ) to M̂ through the projectionp. Then we have the following rules fo

the Levi-Civita connection¹̂ on the cone:

¹̂]r
] r50, ¹̂]r

X̃5¹̂X̃] r5
1

r
X̃ ,

¹̂X̃Ỹ5¹XY2rg~X,Y!] r .

In case thatMn,1 is a spin manifold the coneM̂ is a spin manifold, too. Then we denote the spin
bundle of the cone withŜ. For n even the restriction ofŜ to the 1-levelM3$1% of the cone is
naturally isomorphic to the spinor bundleS on the base manifoldMn,1 by a map

F : S >ŜuM3$1%

with the propertyF(X•w)5X•F(w) for all XPTMn,1. Similar, if n is odd, there are isomor
phismsF6 :S>Ŝ6uM3$1% for the restricted half spinor bundles such that

2 iX•F1~w!5F2~X•w!,

for all tangent vectorsXPTMn,1. With respect to the metricĝ the projectionp gives rise to a
pullbackp* :G(ŜuM3$1%)→G(Ŝ) of spinor fields on the 1-level to the cone. Eventually, we den
by Kl(M ) the space of Killing spinors on (Mn,1,g) to the Killing numberl.

Theorem 3.1:(cf. Refs. 1 and 15) Let(Mn,1,g) be a Lorentzian manifold and Mˆ its cone with
signature(2,n21). The following correspondences exist.

(1) The special Killing p-forms on Mn,1 to the positive constant c5p11 are in 1-to-1correspon-

dence with the parallel(p11)-forms on the cone Mˆ . The correspondence is given by

aPVp~M!°rp dr ∧a2
r p11

p11
daPVp11~M̂ ! .

(2) If Mn,1 is spin andscal52n(n21) then there are natural isomorphisms
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Ki /2~M ! % K2 i /2~M ! > K0~M̂ !

w ° ŵªp* +F~w!
for n even

K6 i /2~M ! > K 0
6~M̂ !

w ° ŵªp* +F6~w!
for n odd,

whereK 0
6(M̂ ) is the space of parallel6-half spinors on the cone.

The Riemannian version of Theorem 3.1 is classical for the application to the case o
Killing spinors. The result for Killingp-forms on Riemannian manifolds was established in R
15. The proof for the correspondence here in case of imaginary Killing spinorsw in Lorentzian
geometry is based on the observation thatw is parallel with respect to the modified spinor deriv

tive ¹̃l coming from an affine connection one-form, which takes values in the subset

iR1,n21
% spin~1,n21!>spin~2,n21!

of the Clifford algebra Cliff1,n21
C . We remark for the application of Theorem 3.1 that the metrig

on Mn,1 can be rescaled by a positive constant such that the positive constantc to an arbitrary
special Killing p-form equalsp11 and the Killing numberl to an arbitrary imaginary Killing
spinor satisfiesl252 1

4.
The spinor bundleSn,2 on a time-oriented, pseudo-Riemannian spin manifold (Nn,2,h) of

signature (2,n22) is equipped with an invariant inner product^•,•&2,n22 ~cf. Ref. 2!. Similar to
the induced Dirac current of a spinor in Lorentzian geometry, a spinorgPG(Sn,2) induces a
two-form ag

2 on Nn,2 by the rule

h~ag
2 ,X2!ª2 i ^X2

•g,g&2,n22 for all two-forms X2.

In case thatM̂ is the cone over a Lorentzian spin manifoldMn,1 the inner product̂ •,•&2,n21

admits the property

^w,c&52^] r•F2~w!,F1~c!&2,n21 for n odd,

^w,c&5 i ^] r•F~w!,F~c!&2,n21 for n even,

on the 1-level ofM̂ , wherew, c are spinor fields onMn,1. Then the following relation is true.
Lemma 3.2: LetwPG(S) be a spinor with Dirac current Vw on a Lorentzian spin manifold

Mn,1 and letŵ be the corresponding(6 half ) spinor with associated two-formaŵ
2 on the cone Mˆ .

It holds Vw
[5] r4aŵ

2 on the 1-level Mn,1,M̂ .
Proof: With respect to an orthonormal basise5(e0 ,e1 ,...,en) with e05] r in an arbitrary

point of the 1-level it holds

] r4aŵ
2
52 i(

i , j
^eiej•ŵ,ŵ&2,n21•] r4ei* ∧ej*

52 i (
j 51

n

^] rej•ŵ,ŵ&2,n21ej*

52(
j 51

n

^ejw,w&ej* 5Vw
[ .

h

The lemma also shows thataŵ
2 is nontrivial for all ~half! spinorsŵÞ0 on the coneM̂ , since

the corresponding Dirac currentVw
[ on Mn,1 is nontrivial.
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IV. NORMAL FORMS FOR SKEW-ADJOINT OPERATORS IN SIGNATURE „2,nÀ2…

In this section we present a complete list ofnormal formsfor skew-adjoint endomorphism
acting on the pseudo-Euclidean spaceR2,n22 of dimensionn and signature (2,n22). This list was
established in Ref. 10. Parallel two-forms on the cone of signature (2,n21) over a Lorentzian
manifold correspond to parallel skew-adjoint operators and are therefore distinguished
normal forms of the list. This observation will be the crucial point in our description of Lorent
geometries admitting imaginary Killing spinors in the last section.

Theorem 4.1: ~cf. Ref. 10!: Let b be an arbitrary two-form on the pseudo-Euclidean spa
R2,n22. Then there exist vector spaces Vi such thatR2,n225 % iVi is an orthogonal direct sum and
the skew-adjoint endomorphism b, which corresponds tob, satisfies b(Vi),Vi for all i . More-
over, there is a basis(ei 1

,...,ei r ( i )
) for every Vi such that the corresponding matrices for the inn

product and for b are one pair of blocks as it occurs in the lines of Table I.
A basis ofR2,n22, in which a skew-adjoint operator takes a normal form, is called anadapted

basis. There is always an orthogonal decompositionR2,n225E% P to a skew-adjoint operatorb
such thatE is Euclidean andb preserves the decomposition. We call the normal form tob on E
an Euclidean blockand the normal form tob on P a pseudo-Euclidean block.

Example 4.2:

~a! Let v0ª( i 51
m e2i 21* ∧e2i* be the standard~pseudo!-Kähler form on R2,n22, where

(e1 ,...,e2m) is the standard basis. The normal form of the skew-adjoint operator corresp
ing to a multiplev5n•v0 of the Kähler form with respect to the adapted basis (e1 ,...,e2m)
is built up by one block of the formBII (n) ~pseudo-Euclidean block! and (m21) blocks of
the formB(n) ~Euclidean block! ~cf. Table I!.

~b! A two-form v5 l 1
[∧ l 2

[ on R2,n22, wherel 1 and l 2 are lightlike vectors, which span a totall
lightlike plane, corresponds as skew-adjoint operator with respect to some adapted ba
composition of a pseudo-Euclidean block of the formBIa and an Euclidean 0-block of lengt
n24.

~c! A two-form v5 l 1
[∧t1

[ on R2,n22, wherel 1 is lightlike, t1 is timelike and both vectors ar
orthogonal, corresponds as skew-adjoint operator with respect to some adapted ba
composition of a blockBIb and a 0-block of lengthn23.

Let ŵ be a spinor on the pseudo-Euclidean spaceR2,n21. There corresponds a two-formaŵ
2 to

ŵ on R2,n21 defined by the rule

~aw
2 ,x2!ª2 i ^x2

•w,w&2,n22 for all x2PL2~R2,n21* !,

where (•,•) denotes the induced inner product onL2(R2,n21* ) ~cf. Sec. III!. The following
statement is a version of Lemma 3.2 considered in a single point only and the proof for it w
the same as before.

Lemma 4.3: Letŵ be a (6-half ) spinor onR2,n21 and TPR2,n21 an arbitrary unit timelike
vector. The one-formaT,ŵªT4aŵ

2 is dual to the associated vector induced by the spinorw on the
Minkowski space T',R2,n21, which corresponds naturally toŵ.

The lemma imposes a condition on the nature of a two-form induced by a spinor in sign
(2,n22), since the associated vector to a nontrivial spinor on the Minkowski space is not
trary, but causal. With some simple calculations we can sort out the normal forms for skew-a
operators corresponding to two-forms, which do not satisfy the condition imposed by Lemm
and therefore cannot be induced by a spinor.

Corollary 4.4: Let v be a two-form in signature(2,n22) such that the covector T4v is
causal for every timelike vector TPR2,n22.

(1) If there is a timelike T such that T4v is lightlike then the normal form corresponding tov is
a composition of a pseudo-Euclidean block of the form BIa or BIb with an Euclidean 0-block.
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TABLE I. These are the building blocks for the normal forms of skew-adjoint operators in signature (2,n22). The
matrices in the first column~denoted byA) indicate an inner product~of index s<2) with respect to some basis and th
matrices in the second column~denoted byB) are skew-adjoint endomorphisms with respect to the inner produc
columnA and the chosen basis.

Signature (p,q) A5 inner product B5skew-adjoint operator

~0,1! ~1! ~0!
~0,2! S1 0

0 1
D B~m!5S0 2m

m 0
D mÞ0

~1,0! (21) ~0!
~1,2! S 0 0 21

0 1 0

21 0 0
D S0 1 0

0 0 1

0 0 0
D

~1,1! S0 1

1 0
D Sl 0

0 2l
D lÞ0

~2,2! S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D BIa5S0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

D
~2,1! S0 0 1

0 21 0

1 0 0
D BIb5S0 1 0

0 0 1

0 0 0
D

~2,4! S 0 0 2I2

0 I2 0

2I2 0 0
D S0 I2 0

0 0 I2

0 0 0
D

~2,0! S21 0

0 21
D BII~n!5S0 2n

n 0
D nÞ0

~2,2! S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D BIIa5S0 2n 1 0

n 0 0 1

0 0 0 2n

0 0 n 0

D nÞ0

~2,4! S 0 0 2I2

0 I2 0

2I2 0 0
D S0 2n I2 0

n 0 0 2n I2

0 n 0 0 2n

0 0 n 0

D nÞ0

~2,2! S0 I2

I2 0
D SlI2 0

0 2lI2
D lÞ0

~2,2! S 0 0 0 21

0 0 1 0

0 1 0 0

21 0 0 0

D Sl 0 1 0

0 2l 0 1

0 0 l 0

0 0 0 2l

D lÞ0

~2,2! S0 0 1 0

0 0 0 21

1 0 0 0

0 21 0 0

D BIIb5Sj 2n 0 0

n j 0 0

0 0 2j n

0 0 2n 2j

D j,nÞ0

~2,3! S0 0 0 0 1

0 0 0 21 0

0 0 1 0 0

0 21 0 0 0

1 0 0 0 0

D S0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0

D
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(2) If T4v is timelike for all timelike T then the normal form ofv is a composition of BII , BIIa

or BIIb (n2>j2) with an Euclidean block consisting of blocks of the form B(m) and/or a
0-block.

With stabilizerof a skew-adjoint operator~respectively, two-form! we mean in the following
the subgroup of the~pseudo!-orthogonal group, which leaves the operator~respectively, the two-
form! invariant under conjugated action. A simple consideration shows the following fact.

Lemma 4.5: The stabilizer of a normal form, which is built from a pseudo-Euclidean blo
the form BIIa(n) or BIIb(n,j) and some Euclidean block of length n24 is included inU(1,1)
3SO(n24) for all eigenvaluesn and jÞ0.

Definition 4.6: Let R2,n22 be the pseudo-Euclidean space of signature(2,n22) and v

PL2R2,n22* be a nontrivial two-form. We say thatv is of

• Type (Ia) if v5 l 1
[∧ l 2

[ for some vectors l1 and l2 , which span a totally lightlike plane.

• Type (Ib) if v5 l 1
[∧t1

[ for some lightlike vector l1 and a l1-orthogonal timelike vector t1 .

• Type (IIa) or Kähler type ifv is a nontrivial multiple of the standard Ka¨hler form.

• Type (IIb) if there exists a nontrivial Euclidean subspace E inR2,n22 such thatv restricted to
E vanishes andv is the (pseudo)-Ka¨hler form on the orthogonal complement of E inR2,n22.

Lemma 4.5 makes clear, which stabilizers of the normal forms occurring in Corollary 4.
maximal.

Corollary 4.7: A two-formv on R2,n22, which is of types (Ia), (Ib), (IIa) or (II b), is exclusively
distinguished by its properties that

(1) the covector T4v is causal for every timelike vector TPR2,n22 and
(2) its stabilizer Sv in SO(2,n22) is maximal, in the sense that there is no nontrivial two-fo

satisfying the first property, whose stabilizer properly contains Sv .

We observe that the stabilizer of a two-form of type (I a) and type (I b) acts indecomposable
but reducible onR2,n22, i.e., there exist nontrivial and invariant subspaces ofR2,n22, but the inner
product is degenerate on all of them. The stabilizer of a Ka¨hler-type form isU(1,m21) and acts
irreducible onR2,2m22. The stabilizer of a form of type (II b) acts decomposable onR2,n22.

V. IMAGINARY KILLING SPINORS

With the construction of the cone in Sec. III and the normal form classification for sk
adjoint operators in signature (2,n22) ~coming from a spinor! in the preceding section we ar
now in the position to discuss a geometric description of Lorentzian manifolds admitting im
nary Killing spinors.

In the following, the metricg on the Lorentzian spin manifoldMn,1 will be scaled such tha
the Killing numberl to any Killing spinor satisfiesl252 1

4. We start with a proposition, which
characterizes the coneM̂ of a Lorentzian manifoldMn,1 with imaginary Killing spinor and indi-
cates the different cases that are to be considered for the geometry of the base manifoldMn,1. We
remark that the normal form corresponding to a parallel two-form on the cone is in every poi
same.

Proposition 5.1: Let(Mn,1,g) be a Lorentzian spin manifold admitting an imaginary Killin

spinor. Then either there exists a parallel two-formv of type(II b) on the cone Mˆ or there exists

at least one parallel (half ) spinorŵ on M̂ such that the induced parallel two-formv5aŵ
2 is of

types(I a), (I b) or (II a).
Proof: Let c be an imaginary Killing spinor onMn,1. According to Corollary 4.4 the norma

form of the skew-adjoint endomorphism corresponding toa
ĉ

2
on the cone is a composition wit

one block of the formBIa , BIb , BII , BIIa or BIIb . In case that the normal form is built with
block of the formBIa or BIb the parallel two-formv5a

ĉ

2
is of types (I a) or (I b).
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In the other cases there exists a biggest numbers.0 such that the stabilizer of the norm
form to a

ĉ

2
is included in U(1,s21)3SO(n22s). This group includes the holonomy group of th

coneM̂ . In case that 2s5n the coneM̂ is a Kähler spin manifold. Moreover, sinceVc
[5] r4a

ĉ

2
is

everywhere timelike~Corollary 4.4!, the baseMn,1 is Einstein and hence the cone is Ricci-fla
This implies that there exists a parallel half-spinorŵ, which induces a Ka¨hler form on the cone.
If 2s,n there exists a parallel two-formv of type (II b). h

We discuss now a description of the Lorentzian geometries on the base manifoldMn,1 with
imaginary Killing spinor according to the cases (I a), (I b), and (II a) that occur in Proposition 5.1

A. Type „Ia…

In this case there exists a parallel~half! spinor ŵ on the coneM̂ , which induces a paralle
two-form vÞ0 that is locally of the forml 1

[∧ l 2
[ for some lightlike vector fieldsl 1 and l 2 , which

span a totally lightlike plane. The dualVw
[ of the Dirac current of the imaginary Killing spinorw,

which corresponds toŵ on M̂ , is equal to] r4v, which shows that the Dirac currentVw is
everywhere lightlike.

There is a known description of Lorentzian metrics admittingtwistor spinorswith lightlike
Dirac current. We call a Lorentzian space admitting a lightlike parallel vector field aBrinkmann
space. Two spinor fields on~pseudo!-Riemannian spaces are said to beconformally equivalentif
there exists a conformal diffeomorphism, which identifies both spinor fields. In particular, it h
the following.

Proposition 5.2 (see Ref. 6): Letw be a spinor field, which satisfies the twistor equati
¹X

Sw1 (1/n) X•Dw50 for all vector fields X, such that the Dirac current Vw is a lightlike Killing
vector field on Mn,1. If Ric(Vw ,Vw)50 then w is locally conformally equivalent to a paralle
spinor on a Brinkmann space.

This gives rise to the following.
Proposition 5.3: Letw be an imaginary Killing spinor on Mn,1 such thataŵ

2 on M̂ is of type
(Ia). Thenw is locally conformally equivalent to a parallel spinor on a Brinkmann space.

Proof: From Proposition 2.1 and Lemma 2.1 we know that Ric(Vw)5rVw for some real
function r. Then we can apply Proposition 5.2 to prove the result. h

B. Type „Ib…

There exists a parallel~half-! spinor ŵ on the coneM̂ , which induces a parallel two-formv
of type (I b). In this situation it holds as follows.

Lemma 5.1: The function fwªA2g(Vw ,Vw) to the imaginary Killing spinorw on Mn,1

satisfies the following:

(1) Hess( f w)5 f w•g, i.e., grad fw is a conformal gradient field, and fw
25g(grad f,grad f ),

(2) grad fwÞ0 and fwÞ0 on disjoint subspaces, whose complements are dense in Mn,1.

Proof: The two-form v can be written asr dr ∧Vw
[2 (r 2/2) dVw

[ ~Theorem 3.1!. The two-
dimensional parallel sub-bundleEv,TMn,1, which corresponds to the indecomposable two-fo
v is degenerate and there is a unique parallel lightlike direction inEv . In particular, there exists
a parallel lightlike vector fieldl 1 on M̂ . Moreover, we can find locally a timelike vectort1 of
constant length such thatv5 l 1

[∧t1
[ . We choose the parallel lightlike fieldl 1 with the scaling

ĝ(t1 ,t1)521. Since l 1 is parallel, there is a unique functionf on Mn,1 such thatl 1
[5 f dr

2r df and f 25g(gradf ,gradf ). The functionf is a special Killing 0-form onMn,1, i.e., gradf is
a conformal gradient field. Since neither dr nor the lift of df to the cone are parallel, it isf Þ0 and
gradf Þ0 on a dense subset ofMn,1.

We calculate the functionf with respect tow. The local fieldt1
[ is given by t1

[5A dr 1ru,
whereA is a function andu a one-form onMn,1. It follows thatVw

[5 f u1A df and
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g~Vw ,Vw!5 f 2g~u,u!1A2g~df ,df !12 f A•g~u,df !.

Sinceg(u,u)5211A2 and g(u,df )52A f , we can concludef 252g(Vw ,Vw), which shows
that f w has the claimed properties. h

The assertions of Lemma 5.1 imply together with Proposition 2.2 thatMn,1 is Einstein and
gradf w is a nonhomothetic conformal gradient field. There is a known description of~pseudo!-
Riemannian Einstein metrics admitting such conformal fields. In particular, there is the follo

Proposition 5.4 (cf. Ref. 13): Let(Mn,1,g) be a Lorentzian Einstein space admitting a no
constant solution f of the equation Hess( f )5 l •g for some function l. Then, in a neighborhood o
any point with vªg(grad(f ),grad(f ))Þ0, the metric g is a warped product«•dt21 f 82(t)k, where
«ªsign(v), k is an Einstein metric and f satisfies

f 921
« scalg

n~n21!
f 825

«scalk
~n21!~n22!

.

This leads to the following.
Proposition 5.5: Letw be an imaginary Killing spinor on Mn,1 such thataŵ

2 on M̂ is of type
(I b). Then, in a neighborhood of any point with Vw timelike, the metric g is a warped product o
the form dt21 f 2k, where k is a Lorentzian Einstein metric admitting a Killing spinor to t
Killing number

(1) lk50 and f5expt,
(2) lk5 1

2 and f5sinht or
(3) lk5( i /2) and f5cosht.

Proof: The function f w5A2g(Vw ,Vw) satisfies the assumptions of Proposition 5.4. Sin
f w

2.0, the warping functionf 5 f w8 must solve the ordinary differential equationf 822n(n21) f 2

5scalk . There are three different solutionsf 5expt, cosht and sinht according to the values
scalk50,6(n21)(n22). In each case the imaginary Killing spinorw induces a Killing spinor to
the Killing number scalk /(n21)(n22) on the space with Einstein metrick ~cf. Ref. 9!. h

C. Type „IIa…

Lemma 5.2: Let(Mn,1,g) be a Lorentzian Einstein manifold with a Killing vector V such th
g(V,V)521 is constant and V4W50 (W Weyl tensor). Then the operator J defined by J(X)
ª¹XV on TM satisfies

(1) J(V)50 and J2(X)5 scal/@n(n21)# (X1g(V,X)V),
(2) (¹XJ)(Y)5 scal/n(n21) (g(V,Y)X2g(X,Y)V).

Proof: BecauseV is Killing with constant length, it follows¹VV50 and g(¹XV,¹YV)
5R(V,X,Y,V), whereR denotes the Riemannian curvature tensor. It isR5W1g!L, where

L5
1

n22 S scal

2~n21!
g2RicD

is the Schouten tensor and! denotes the Kulkarni–Nomizu product~cf. Ref. 7!. Then from
V4W50 we obtain

g~J2~X!,Y!52g~J~X!,J~Y!!

52g~V,Y!L~X,V!2g~V,X!L~Y,V!

2L~X,Y!1g~X,Y!L~V,V! .

The relation forJ2 follows immediately, since forMn,1 an Einstein space it holds
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L52
scal

2~n21!n
g.

Moreover, it isg(¹ek
¹ei

V,ej )5R(ei ,ej ,ek ,V) for all i , j ,kP$1,...,n% in pPMn,1 arbitrary, where
(e1 ,...,en) is a local parallel frame inp. Then

g~~¹ei
J!~ek!,el !5R~ek ,el ,ei ,V!

5g~ek ,ei !L~el ,V!1g~el ,V!L~ek ,ei !

2g~ek ,V!L~el ,ei !2g~el ,ei !L~ek ,V! ,

which shows the identity for¹J in an arbitrary pointp of Mn,1. h

A Lorentzian manifold (Mn,1,g,V) with V a timelike Killing vector of constant length suc
that the operatorJ5¹V satisfies the both properties of Lemma 5.2, is called a Lorentzian Sa
manifold. It is well known that a Sasaki structure (V,J) on Mn,1 corresponds to a Ka¨hler structure
on the coneM̂ ~cf. Refs. 1 and 4!.

Proposition 5.6: A Lorentzian spin manifold(Mn,1,g) with an imaginary Killing spinorw,
whose Dirac current Vw is timelike and has constant length, is a Lorentzian Einstein–Sasaki

manifold. This is exactly the case when the liftŵ induces a Ka¨hler form on the cone Mˆ .
Proof: We have only to show thatVw4W50 on Mn,1 and then apply Lemma 5.2. With th

identity W(h)•w50 ~Proposition 2.1! and the relationX•h52X4h1X[∧h in the Clifford
algebra, whereX denotes a vector andh a two-form, we obtain

W~Vw ,X,Y,Z!5^w,W~X,Y,Z!•w&5^w,Z[∧W~X,Y!•w&PR for all X,Y,ZPTM.

But ^w,r3
•w&P iR for all three-formsr3, and thereforeVw4W50. h

We summarize the different cases as follows.
Theorem 5.3:Let (Mn,1,g) be a Lorentzian spin manifold with imaginary Killing spinorw.

(1) If Mn,1 is not Einstein then Mn,1 is locally conformally equivalent to a Brinkmann space w
parallel spinor.

(2) If g(Vw ,Vw) is constant then

(i) g(Vw ,Vw)50 and Mn,1 is locally conformally equivalent to a Brinkmann space w
parallel spinor or

~ii ! g(Vw ,Vw),0 and Mn,1 is a Lorentzian Einstein–Sasaki manifold.

(3) If the cone M̂is indecomposable and Vw does not change the causal type then M is eithe

(i) locally conformally equivalent to a Brinkmann space with parallel spinor,
~ii ! locally a warped product of the formdt21 f 2k, where k is a Lorentzian Einstein metri

admitting a Killing spinor and f5expt, cosht or sinht or

(iii) a Lorentzian Einstein–Sasaki space (and the cone Mˆ is irreducible!.

(4) If Vw changes the causal type then the set Zw,Mn,1, where Vw is lightlike, is a hypersurface
and Mn,1\Zw admits locally a warped product structure as in (3)(ii).

In case that the metric g does not belong to one of those listed in (3), then either Vw changes

the causal type or there is a parallel two-form of type(II b) on the cone Mˆ .
Remark 5.4:

(1) In fact, there exist examples of imaginary Killing spinors on non-Einstein spaces, whic
generated by an appropriate conformal change of certain non-Einstein Brinkmann sp
with parallel spinors (cf. Ref. 9).
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(2) Partial structure results and examples for Lorentzian metrics with parallel or real Kill
spinors are known (cf., e.g., Refs. 8 and 9). The warped product structure in case of typ(I b)
then provides a construction principle for imaginary Killing spinors on Lorentzian spa
The complete result in Ref. 13 for the description of Einstein spaces with conformal gra
fields does not apply when the field changes the causal type. A characterization in this c
not known and as consequence, Theorem 5.3 does not describe Lorentzian metrics with
nary Killing spinors when the Dirac current changes the causal type.

(3) There is a construction principle for Lorentzian Einstein–Sasaki spin spaces. They appear
S1-fiber bundles over Riemannian Ka¨hler–Einstein spin spaces of negative scalar curvatu
(cf. Ref. 4).

(4) In case that there exists a parallel two-form of type (IIb) the cone M̂ is decomposable
Different from the Riemannian case, this does not imply that the cone is flat, even if the
Mn,1 is geodesically complete. The geometry of the base Mn,1 with imaginary Killing spinor in
this case remains to be investigated and is subject of a forthcoming paper.

Example 5.5:Let Hn,1
ª$xPR2,n21 : ixi2521%,R2,n21 be the pseudohyperbolic space

signature (1,n21) with negative scalar curvature scal52n(n21). The spaceHn,1 is geodesi-
cally complete, time-orientable and spin. The cone overHn,1 is an open subset ofR2,n21. Each
parallel~half! spinor onR2,n21 restricted toHn,1 gives rise to an imaginary Killing spinor. It is no
difficult to see that every generic type (I a), (I b), (II a), and (II b) is realized by a two-form, which
comes from a parallel~half! spinor onR2,n21 and thus belongs to an imaginary Killing spinor o
Hn,1. This means that there are examples of imaginary Killing spinors onHn,1, n>3, for each
single case when the Dirac current is everywhere lightlike (I a), changes the causal type (I b),
timelike with constant length (II a) or everywhere timelike with nonconstant length.
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A matrix model for the b-Jacobi ensemble
Ross A. Lipperta)

Applied Biosystems, 45 West Gude Drive, Rockville, Maryland 20850

~Received 12 March 2003; accepted 20 May 2003!

This note presents a random matrix model for general (b.0) b-Jacobi ensembles.
This generalizes the well-known MANOVA models forb51,2,4 and eliminates the
quantization ofb ~and other parameters! present in the previously known models.
This model is a partial answer to an open problem presented by Dumitriu and
Edelman, where they also presented models for theb-Laguerre andb-Hermite
ensembles. ©2003 American Institute of Physics.@DOI: 10.1063/1.1604184#

I. INTRODUCTION

Classical random matrix theory is concerned with various joint distributions of matrix p
erties~e.g., eigenvalues and singular values! for matrices given by some distribution. The thre
classical joint distributions of matrix eigenvalues are the Hermite, Laguerre, and Jacobi dis
tions, which generalize the single variable Gaussian, Poisson, and beta distributions, respe
~see Ref. 7!. These distributions capture the statistical properties oflog-potentialgases~see Refs.
6 and 3! whereb is analogous to temperature.

Analytic formulas relating to these distributions were derived by Dyson2 over real, complex,
and quaternion matrix elements. The numerical type of the matrix element was nearly irrel
appearing only as a single exponentb which was 1~real!, 2 ~complex!, or 4 ~quaternion!. While
the formulas remain valid for more generalb ~realb.0), it was unknown whether random matr
models existed for such distributions.

Recently, Dumitriu and Edelman1 have demonstrated that two of the classical distributio
the Laguerre and the Hermite, have random matrix models for generalb, thereby removing the
artificial ‘‘quantization effect’’ of the numerical type from Dyson’s formulas. The models w
given in the form of real bidiagonal and tridiagonal matrices with independent random e
given by certain~b dependent! x distributions.

The question of the Jacobi model remained. No matrix model has yet been found
generates eigenvalues under the Jacobi distribution for a more general set ofb. This note presents
a model of the Jacobi for generalb employing arandom rank-1 updaterecurrence scheme.

In the following section, I briefly present a review of theb-ensemble results of Dumitriu an
Edelman, highlighting two important theorems which I am borrowing from their work. Beca
the model I present is of a fairly different character than the ones Dumitriu and Edelman pre
for the other two ensembles, I present a motivational section, showing how the form of this m
came about. Finally, the last section gives a proof of the correctness of this model.

A. Background

Let us denote byNv a real normally distributed, random variable with zero mean and varia
v, and by xm a chi distributed, random variable withm degrees of freedom. Notedens(xm

5y)}ym21e2(1/2)y2
, wherem andy may be any positive real. Every single occurrence of ax or

N symbol in the formulas below is independent.
Let us define aGaussianmatrix over a field~R or C! or skew field~H! to be a random matrix

whose elements are generated by independent, normally distributed Gaussian random pr
Gb (N1 for real,N11 iN1 for complex, andN11 iN11 jN11kN1 for quaternions!. A* denotes the

a!Electronic mail: ripper@eskimo.com
48070022-2488/2003/44(10)/4807/10/$20.00 © 2003 American Institute of Physics
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appropriate involution: transpose, Hermitian transpose, or symplectic transpose. Througho
will use words likeorthogonalandorthonormalto stand for the appropriate term~e.g.,unitary! for
the appropriateb. Finally, in any equations giving probability densities, we omit the normaliz
constants.

Let b51,2,4 for R, C, andH, respectively. Them-eigenvalues of a ‘‘symmetrized’’m3m
Gaussian matrix,12(A1A* ), give theb-Hermite ensemble, which has the distribution

dens~l1 ,...,lm!5)
i , j

ul i2l j ub)
i 51

m

e2~1/2!l i
2
.

The m-eigenvalues of a ‘‘squared’’n3m Gaussian matrix,A* A, give theb-Laguerre ensemble
which has the distribution

dens~l1 ,...,lm!5)
i , j

ul i2l j ub)
i 51

m

l i
ae2~1/2!l i,

wherea5 1
2b(n2m11)21,n>m andl i.0.

Finally, there is theb-Jacobi ensemble~also called MANOVA in Ref. 7!, which can be
modeled as the eigenvalues of them3m matrix

~A* A1B* B!21A* A

formed from two Gaussian random matrices,A andB, which aren13m andn23m ~resp.!. These
eigenvalues are always real, bounded between 0 and 1, and are distributed according to

dens~l1 ,...,ln!5)
i , j

ul i2l j ub)
i 51

m

l i
a~12l i !

b,

wherea5 1
2b(n12m11)21, b5 1

2b(n22m11)21, andm21,n1 ,n2 .
These are valid distributions forb.0 and more generala and b, yet the Gaussian matrix

based models above can only be applied whenb is 1,2,4 anda,b are in correspondence with th
integers. The first models for generalb,a,b were found by Edelman and Dumitriu in 2002.1 They
showed that a random tridiagonal matrix,

T5
1

& S N2 x (m21)b 0 ¯ 0 0

x (m21)b N2 x (m22)b ¯ 0 0

0 x (m22)b N2 ¯ 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ xb N2

D ,

has eigenvalues distributed according to theb-Hermite distribution. They also showed that th
eigenvalues ofLL* for a random bidiagonal matrix,

L5S x2a1(m21)b 0 0 ¯ 0 0

x (m21)b x2a1(m22)b 0 ¯ 0 0

0 x (m22)b x2a1(m23)b ¯ 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ xb x2a

D , ~1!

has eigenvalues distributed according to theb-Laguerre distribution.
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These results give models for theb-Hermite andb-Laguerre distributions in terms of spars
random matrices, and are thus expected to be computationally more efficient in addition to
more general than the Gaussian matrix models which first motivated them. They have the
that the corresponding characteristic polynomials can be calculated by a random three term
rence, generalizing classical three term recurrences satisfied by the Hermite and Laguere
mials, respectively. From this perspective, the generalb-Jacobi ensemble has been construc
~see Ref. 4!, but an associated tridiagonal matrix was not found.

B. Motivation and essential result

This section will present and provide the motivation for the matrix model presented fo
generalb-Jacobi distribution. We will start with the more restricted Gaussian matrix model
reduce it to a model in which the dependence onb,a,b is continuous. This merely gives a
alternate model for theb-Jacobi distribution which is guaranteed to be valid for the same se
b,a,b for which the Gaussian matrix model was valid. The proof of its more general validity
the next section.

We first reformulate the model in a way that avoids the ‘‘squaring’’ of theA andB Gaussian
matrices. We will assume generic properties of theA andB such as their being full rank. Then

~A* A1B* B!21A* A5~ I 1~A* A!21B* B!21,

allowing us to model theb-Jacobi eigenvalues,l i8 , with the eigenvalues,l i , of (A* A)21B* B via
the relationl i851/(11l i).

Let A5QARA* whereQA is orthogonal andRA* m3m lower triangular, and letB5QBRB* with
QB orthogonal andRB m3m lower triangular. ThenA* A5RARA* andB* B5RBRB* , so

~A* A!21B* B5~RARA* !21RBRB* 5~RA* !21RA
21RBRB* ;RA

21RBRB* ~RA* !215~RA
21RB!~RA

21RB!* .

Thus we see that the eigenvalues of (A* A)21B* B are the squares of them singular values,s i , of
RA

21RB .
We have employed factorizations forA andB into orthogonal and lower triangular matrice

There are a number of ways to carry out such factorizations. The one which we will employ
QL-decomposition, where one applies a Gramm–Schmidt process starting at the last colum
works back to the first. We state without proof an elementary result regarding the distribut
the L factor.

Lemma 1.1 (QL-factorization): Let A be an n3m Gaussian matrix with n>m. Let QL5A be
the QL-factorization. Then L is an m3m matrix distributed as

L5L (n,m)5S x (n2m11)b 0 0 ¯ 0

Gb x (n2m12)b 0 ¯ 0

Gb Gb x (n2m13)b ¯ 0

¯ ¯ ¯ ¯ ¯

Gb Gb Gb ¯ xnb

D .

It follows that with QARA* the QL-factorization ofA, RA is then distributed asL (n1 ,m)* .
Similarly, RB is distributed asL (n2 ,m)* . However, it is to our advantage to specify the latter as
equivalent matrix distributionR(n2 ,m) specified by
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R(n,m)5PL(n,m)P5S xnb Gb Gb ¯ Gb

0 x (n21)b Gb ¯ Gb

0 0 x (n22)b ¯ Gb

¯ ¯ ¯ ¯ ¯

0 0 0 ¯ x (n2m11)b

D ,

whereP denotes the reverse permutation,Pi ,n2 i 1151, Pi , j50 otherwise.
Let QARA* be the QL-decomposition ofA, with RA then distributed asL (n1 ,m)* , andQBPRBP

be the QL-decomposition ofB, with RB then distributed asR(n2 ,m).
We note the following recurrences forRA andRB :

RA5S a aW

0 R̃A
D ,

RB5S b bW

0 R̃B
D ,

where a5xb(n12m11) , aW 5@Gb¯Gb#, R̃A5Ln1 ,m21* , b5xbn2
, bW 5@Gb¯Gb#, and R̃B

5R(n221,m21) ~here, use has been made of the fact thatGb andḠb have the same distribution!.
Thus,

RA
21RB5S b/a bW /a2aW R̃A

21R̃B

0 R̃A
21R̃B

D . ~2!

At this point we see the basis for a recursive scheme. The lower right block of Eq.~2! is another
instance of the same expression with parametersm̃5m21, ñ15n1 and ñ25n221.

Let ŨS̃Ṽ* 5R̃A
21R̃B be the SVD of the lower right block. Then

S 1 0

0 Ũ*
D RA

21RBS 1 0

0 Ṽ
D 5S b/a

1

a
~bW Ṽ2aW ŨS̃ !

0 S̃
D .

The elements ofS̃ are related to ab-Jacobi distribution with parametersñ1 and ñ2 . Since the
density of Gaussian vectors,aW , bW , is invariant under orthogonal transformations,bW Ṽ2aW ŨS̃
5@Gb¯Gb#(I 1S2)1/2. Thus

B5S 1

x (n12m11)b
@xn2b~11s1

2!1/2Gb¯~11sm21
2 !1/2Gb#

0 diag~s1 , . . . ,sm21!
D ~3!

has singular values which are distributed according to theb-Jacobi distribution with parameter
n1 ,n2 , if s1 , . . . ,sm21 are distributed as them21 singular values related to anotherb-Jacobi
distribution with parametersn1 ,n221.

To remove the last integral dependence of Eq.~3! on b, we can, by a similarity transformation
remove the phases from theGb , replacing them with realuGbu5xb distributions.
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II. DETAILS OF THE DUMITRIU AND EDELMAN RESULTS

The proofs of the Hermite and Laguerre results1 rest on two lemmas about the relation
tridiagonal matrices to their eigenvalues and eigenvectors, which we will now review.

Given a real diagonal matrixL with m-eigenvalues,l i , and a real unit vectorv̂, a symmetric
tridiagonal matrix can be generated by the familiar recurrence~see Chap. 9 of Ref. 5!:

Tk,k5~L v̂ (k)2Tk11,kv̂
(k11)! tv̂ (k), k5m,...,2,

Tk,k21v̂ (k21)5L v̂ (k)2Tk11,kv̂
(k11)2Tk,kv̂

(k), k5m,...,2,

with

Tm,m5 v̂ tL v̂,

v̂ (m)5 v̂,

giving the tridiagonal elements,dk5Tk,k and nk5Tk11,k , and a sequence of orthogonal un
vectors,v̂ (k), which form the orthogonal eigenvector matrix,Q5@ v̂ (m),v̂ (m21),...,v̂ (1)# t, such that
T5QtLQ. This mapping,T:(l i ,v̂)→(d i ,n i), is a bijection when thel i are distinct and ordered
and the elements ofv̂ are non-negative. Two lemmas highlight important properties of this m
ping.

The first result gives a useful expression for the Jacobian of the tridiagonalization map
Lemma 2.1: Tridiagonal Jacobian. Given m ordered distinct real values, l i , and a unit

vector, v̂, with non-negative elements, the mapping T:(l i ,v̂)→(d i ,n i) is a diffeomorphism with
Jacobian given by

J5
]~d i ,n i !

]~l i ,v̂ i !
5

) i 51
m21n i

) i 51
m v̂ i

.

The second result expresses the product of differences of thel i in terms of v̂ and the
tridiagonal coefficients.

Lemma 2.2: Vandermonde Identity. Given n eigenvaluesl i and a unit vectorv̂, let (d i ,n i) be
the coefficients of the associated tridiagonal matrix, T(L,v̂). Then

)
i , j

ul i2l j u5
) i 51

m21n i
i

) i 51
m v̂ i

.

III. PROOF OF THE b-JACOBI RESULT

The starting point for this proof will be the reformulation of the Jacobi model origin
supported on 0,l,1, to be supported on 0<l,` with the change of variable,l85 1/(1
1l).

Definition 3.1 (modified Jacobi model): Themodified Jacobi modelwith parametersb,n1 ,n2

is the distribution on m variablesl i with density:

dens~l i ;n1 ,n2 ,m,b!5D~l i !
b)

i

l i
~1/2!b(n22m11)21

~11l i !
~1/2!b(n11n2) ,

whereD(l i)5) i , j ul i2l j u and 0<l,`.
Lemma 3.2: The m valuesl i are distributed according to the modified Jacobi model w

parametersb,n1 ,n2 , iff l i851/(11l i) are distributed according to the density
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dens~l18 ,...,lm8 !5)
i , j

ul i82l j8u
b)

i
~l i8!~1/2!b(n12m11)21~12l i8!~1/2!b(n22m11)21.

Proof: Let X51/2b(n12m11)21, andY51/2b(n22m11)21. By change of variables,

dens~l18 ,...,lm8 !)
i

dl i85)
i , j

ul i82l j8u
b)

i
~l i8!X~12l i8!Y)

i
dl i8 ,

dens~l1 ,...,lm!)
i

dl i

~11l i !
2 5)

i , j
U 1

11l i
2

1

11l j
Ub

)
i

S 1

11l i
D XS l i

11l i
D Y

)
i

dl i ,

dens~l1 ,...,lm!)
i

dl i5)
i , j

U l i2l j

~11l i !~11l j !
Ub

)
i

l i
Y

~11l i !
X1Y12 )

i
dl i

5)
i

S 1

11l i
D X1Y1b(m21)12

)
i , j

ul i2l j ub)
i

l i
Y)

i
dl i .

h

We now prove a recurrence for the modified Jacobi model.
Theorem 3.3:Let B be an m3m random matrix generated as follows:

B5S b/a wW /a

0 AQ
D ,

where a5xb(n12m11) , b5xbn2
, wW 5(A11u1xb ,...,A11um21xb), and AQ

5diag(Au1,...,Aum21) where the m21 valuesu i are distributed according to the modified Jaco
distribution,dens(u i ;n1 ,n221,m21,b). Then the eigenvalues of BtB are distributed according
to the Jacobi model with parameters(n1 ,n2 ,m,b).

Moreover, BtB is similar to the tridiagonal matrix

S d n 0 ¯ 0

n dm211
n2

d
nm22 ¯ 0

0 nm22 dm22 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 ¯ d2 n1

0 0 ¯ n1 d1

D ,

where

d5~b/a!2, n5~b/a2!iwW i ,

and (d i ,n i), i 51,...,m21, are the tridiagonal matrix entries constructed from the m21 positive
eigenvalues, u i , and the unit vector wˆ according to the recurrence given at the beginning of S
II.

Proof: We have that the density ofB in terms ofa,b,w, andu i @from the (m21)3(m21)
submatrixQ# is given by

dens~a,b,w,u i !5bbn221e2b2
ab(n12m11)21e2a2S )

i

wi
b21

~11u i !
~1/2!bD e2S i @wi

2/~11u i !#D~u i !,
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whereD(u i)5dens(u i ;n121,n2 ,m21,b).
Making a change of variablesx5b/a,zi5wi /a so that

B5S x z

0 AQ
D ,

we have

dens~x,a,z,u i !5~xa!bn221e2(xa)2
ab(n12m11)21e2a2S )

i

~azi !
b21

~11u i !
~1/2!bD

3e2S i [ ~azi )
2/~11u i !#D~u i !a

m,

which simplifies to

dens~x,a,z,u i !5ab(n21n1)21e2a2(11x21S i @zi
2/~11u i !] !xbn221S )

i

zi
b21

~11u i !
~1/2!bDD~u i !.

Sincea no longer appears explicitly inB it may be integrated out to give the density ofB:

dens~x,z,u i !5xbn221S 11x21(
i

zi
2

11u i
D 2~1/2!b(n21n1)S )

i

zi
b21

~11u i !
~1/2!bDD~u i !.

Given the positivity ofx,zi ,u i there is a one-to-one mapping fromB to BtB given by

BtB5S x2 xz

xzt Q1zztD 5S d v

v t Q1
1

d
vv tD ,

whered5x2, v i5xzi . Making this change of variables, we find that the density forBtB is given
by

dens~d,v,u i !5d~1/2!b(n22m11)21S 11d1
1

d (
i

v i
2

11u i
D 2~1/2!b(n21n1)

3)
i

v i
b21)

i
~11u i !

2~1/2!bD~u i !.

We may express the vectorv as a product of a unit vector and its magnitude,v5n v̂, and
make the change of variables,

dens~d,n,v̂,u i !5d~1/2!b(n22m11)21S 11d1
n2

d (
i

v̂ i
2

11u i
D 2~1/2!b(n21n1)

3nb(m21)21)
i

v̂ i
b21)

i
~11u i !

2~1/2!bD~u i !.

Substituting the induction,
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dens~d,n,v̂,u i !5d~1/2!b(n22m11)21S 11d1
n2

d (
i

v̂ i
2

11u i
D 2~1/2!b(n21n1)

nb(m21)21

3)
i

v̂ i
b21)

i
~11u i !

2~1/2!bD~u i !
b

~) iu i !
~1/2!b(n22m11)21

~) i~11u i !!~1/2!b(n21n121) .

Sinceu i.0 andv̂ is a unit vector with positive entries, the tridiagonal mapping is one-to-o
Let (d i ,n i) be given by

T25S dm21 nm22 0 ¯ 0

nm22 dm22 nm23 ¯ 0

0 nm23 dm23 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 ¯ d2 n1

0 0 ¯ n1 d1

D 5T~u i ,v̂ !

with, according to Lemma 2.1, the Jacobian given by

J5
]~d i ,n i !

]~u i ,v̂ i !
5

) i 51
m22n i

) i 51
m21v̂ i

.

Let Q2 be the eigenvector matrix ofT(u i ,v̂) with v̂ as the first row. Let

Q15S 1 0

0 Q2
D .

Then

T15Q1BtBQ1
t 5S d n 0 ¯ 0

n dm211
n2

d
nm22 ¯ 0

0 nm22 dm22 ¯ 0

¯ ¯ ¯ ¯ ¯

0 0 ¯ d2 n1

0 0 ¯ n1 d1

D
is a tridiagonalization ofBtB. We change variables fromu i ,v̂ to d i ,n i , setting dm5d and
nm215n, obtaining

dens~d i ,n i !5dm
~1/2!b(n22m11)21S 11dm1

nm21
2

dm
(

i

v̂ i
2

11u i
D 2~1/2!b(n21n1)

nm21
b(m21)

3)
i

v̂ i
bD~u i !

b
det~T2!~1/2!b(n22m11)21

det~ I 1T2!~1/2!b(n21n1) )
i

1

n i
,

where some expressions have been left in terms ofu i and v̂, though as functions ofd i ,n i .
ExpandingD(u i) with the Vandermonde identity according to Lemma 2.2,

D~u i !5
) in i

i

) i v̂ i
,
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shows

dens~d i ,n i !5dm
~1/2!b(n22m11)21S 11dm1

nm21
2

dm
(

i

v̂ i
2

11u i
D 2~1/2!b(n21n1)

nm21
b(m21)21

3
det~T2!~1/2!b(n22m11)21

det~ I 1T2!~1/2b(n21n1) )
i 51

m22

n i
b i 21 ,

which simplifies to

dens~d i ,n i !5dm
~1/2!b(n22m11)21S 11dm1

nm21
2

dm
(

i

v̂ i
2

11u i
D 2~1/2!b(n21n1)

3
det~T2!1/2b(n22m11)21

det~ I 1T2!1/2b(n21n1) )
i

n i
b i 21 .

We observe that det(T2)5dmdet(T1) and obtain

dens~d i ,n i !5S 11dm1
nm21

2

dm
(

i

v̂ i
2

11u i
D 2~1/2!b(n21n1) det~T1!~1/2!b(n22m11)21

det~ I 1T2!~1/2!b(n21n1) )
i

n i
b i 21 .

Let T3 be the (m23)3(m23) lower right submatrix ofT2 ~and also ofT1). Then

det~ I 1T1!5~11dm!S det~ I 1T2!1
nm21

2

dm
det~ I 1T3! D 2nm21

2 det~ I 1T3!

5~11dm!S det~ I 1T2!1
nm21

2

dm~11dm!
det~ I 1T3! D

5det~ I 1T2!~11dm!S 11
nm21

2

dm~11dm!

det~ I 1T3!

det~ I 1T2!
D

5det~ I 1T2!S 11dm1
nm21

2

dm
(

i

v̂ i
2

11u i
D ,

where we have observed that

det~ I 1T3!

det~ I 1T2!
5e1

t ~ I 1T2!21e15(
i

v̂ i
2

11u i
.

Thus we have

dens~d i ,n i !5
det~T1!~1/2!b(n22m11)21

det~ I 1T1!~1/2!b(n21n1) )
i

n i
b i 21 .

At this point, we change variables bydm218 5dm211 nm21
2 /dm , which has unit Jacobian an

expressT1 in the traditional tridiagonal form.
Let T15T(l i ,q̂) parametrizeT1 by its ~non-negative, ordered! eigenvaluesl i and the~non-

negative! unit vectorq̂. Applying the Vandermonde identity, Lemma 2.2, we have

dens~d i ,n i !5
det~T1!~1/2!b(n22m11)21

det~ I 1T1!~1/2!b(n21n1) ~D~l i !!b)
i

q̂i
b)

i
n i

21 .
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Recognizing the Jacobian](l i ,q̂i)/](d i ,n i) 5) i q̂i /) in i we change variables to obtain

dens~l i ,q̂i !5~D~l i !!b
) il i

~1/2!b(n22m11)21

) i~11l i !
~1/2!b(n21n1) )

i
q̂i

b21 ,

out of which theq̂i may be integrated to obtain

dens~l i !5~D~l i !!b
) il i

~1/2!b(n22m11)21

) i~11l i !
~1/2!b(n21n1) .

The base case of the induction is trivial. h

IV. DISCUSSION

The style of the model presented here is fairly different from that of the previous mode
the Hermite and Laguerre ensembles in that a Jacobi sample inm values is built up from sample
on 1,2,...,m21 Jacobi values, where at each step a rank-1 update is performed.

It is possible to cast the Hermite and Laguerre models in this form. For example, theL matrix
from Eq. ~1! can, instead, be written

L5L (n,m)5S l 0

lW L (n21,m21)D ,

wherel 5xnb and lW5@xb ,...,xb#. In this case, however, the recursive form is unnecessary, s
one can simultaneously bidiagonalizeL (n,m) and itsL (n21,m21) submatrix.

This simultaneous bidiagonalization is possible only because the elements of theL (n21,m21)

submatrix are not intermingled with the elements oflW as they are in the Jacobi case. Simi
reasoning applies to the Hermite case. This suggests that a wider class of random matrix
is available by using successive rank-1 updates than just sparse forms with independent e
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Using a technique@Mankoč Borštnik et al., J. Math. Phys.43, 5782 ~2002!# to
construct a basis for spinors and ‘‘families’’ of spinors in terms of Clifford algebra
objects, we define other Clifford algebra objects, which transform the state of one
‘‘family’’ of spinors into the state of another ‘‘family’’ of spinors, changing nothing
but the ‘‘family’’ number. The proposed transformation works—as does the
technique—for all dimensions and any signature and might open a path to under-
standing families of quarks and leptons@Mankoč Borštnik, Phys. Lett. B292, 25
~1992!; J. Math. Phys.34, 3731~1993!; Int. J. Theor. Phys.40, 315 ~2001!; Boršt-
nik Bračič and Mankocˇ Borštnik, hep-ph/0301029#. © 2003 American Institute of
Physics. @DOI: 10.1063/1.1610239#

I. INTRODUCTION

In Ref. 1 we presented the technique to construct a spinor basis as products of nilpoten
projections formed from the objectsga for which we only need to know that they obey th
Clifford algebra. Nilpotents and projections are odd and even objects ofga’s, respectively, and are
chosen to be eigenstates of a Cartan subalgebra of the Lorentz group in the sense that
multiplication of nilpotents and projectors by the Cartan subalgebra elements multiplies
objects by a number. The technique can be used to construct a spinor basis for any dimed
and any signature in a simple and transparent way. Equipped with graphic representation o
states, the technique offers an elegant means of seeing all the quantum numbers of sta
respect to the Lorentz group, as well as the transformation properties of states under C
algebra objects.

Multiplying products of nilpotents and projectors from the left-hand side by any of the C
ford algebra objects, we get a linear combination of these ‘‘basic’’ elements back: our basis
a left ideal, and has 2d/2 elements ford even and 2(d21)/2 elements ford odd.

But there are 2d products of nilpotents and projectors, all of them linearly independ
Mapping of ideals to spinor representations~treating all as Hilbert space! led accordingly to 2d/2

replicas of the usual spinor representation ford even andd(d11)/2 for d odd. We called these
replicas ‘‘families’’ of representations.

The proposed technique was initiated and developed by one of the authors of this
~N.M.B.!, when proposing an approach2–4 in which all the internal degrees of freedom of eith
spinors or vectors can be described in the space ofd-anticommuting~Grassmann! coordinates, if
the dimension of ordinary space is alsod.

In the approach of one of us, however, two kinds ofga operators—two kinds of Clifford
algebra objects—were defined, both fulfilling the same Clifford algebra relations, while one
anticommutes with the other kind. When one of the two kinds ofga’s is used to generate nilpo
tents and projectors, the products of which define when operating in a vacuum state basic

a!Electronic mail: norma@fiz.uni-lj.si
48170022-2488/2003/44(10)/4817/11/$20.00 © 2003 American Institute of Physics
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for the spinor representation of the Lorentz group, it causes another kind of transition a
‘‘families’’ of spinors, transforming one state of a ‘‘family’’ to a state with the same quant
numbers with respect to the Lorentz group as the starting state but belonging to another ‘‘fa

We show in this short paper that there are also operators which cause transitions
‘‘families’’ 5 within the simple technique presented in Ref. 1. While left multiplication of nilp
tents and projectors by Clifford algebra objects generates all the states of one spinor represe
~Sec. II!, right multiplication causes transitions among ‘‘families’’~Sec. III!. ~The reader should
see also Chevalley’s book.6!

We demonstrate transitions among ‘‘families’’ ford54 in Sec. III A.
In this paper, we assume an arbitrary signature of space–time so that our metric tensohab,

with a,bP$0,1,2,3,5,...% is diagonal with valueshaa561, depending on the chosen signatu
~11 for time-like coordinates and21 for space-like coordinates!.

II. TECHNIQUE TO GENERATE SPINOR REPRESENTATIONS IN TERMS OF CLIFFORD
ALGEBRA OBJECTS

We shall briefly repeat the main points of the technique for generating spinor represent
from Clifford algebra objects, following Ref. 1. We ask the reader to look for details and proo
this reference.

We assume the objectsga, which fulfill the Clifford algebra

$ga,gb%15I 2hab for a,b P$0,1,2,3,5,...,d%, ~1!

for any d, even or odd.I is the unit element in the Clifford algebra, while$ga,gb%65gagb

6gbga.
We assume the ‘‘Hermiticity’’ property forga’s,

ga†5haaga, ~2!

in order thatga are compatible with~1! and formally unitary, i.e.,ga†ga5I .
We also define the Clifford algebra objects

Sab5
i

4
@ga,gb#ª

i

4
~gagb2gbga! ~3!

which close the Lie algebra of the Lorentz group$Sab,Scd%25 i (hadSbc1hbcSad2hacSbd

2hbdSac). One finds from Eq.~2! that (Sab)†5haahbbSab and that$Sab,Sac%15 1
2h

aahbc.
Recognizing from Eq.~3! and the Lorentz algebra relation that two Clifford algebra obje

Sab,Scd with all indices different commute, we select~out of infinitely many possibilities! the
Cartan subalgebra of the algebra of the Lorentz group as follows:

S0d,S12,S35,...,Sd22 d21 if d52n,
~4!

S12,S35,...,Sd21 d if d52n11.

It is useful to define one of the Casimirs of the Lorentz group—the handedneG
($G,Sab%250). ~For the definition ofG for any spin in even-dimensional spaces, see Refs. 2
7 and 8.!

Gª~ i !d/2 )
a

~Ahaaga! if d52n,

~5!

Gª~ i !(d21)/2 )
a

~Ahaaga! if d52n11,
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for any integern. We understand the product ofga’s in ascending order with respect to indexa:
g0g1

¯gd. It follows from Eq. ~2! for any choice of the signaturehaa that G†5G, G25I .
We also find that ford even, the handedness anticommutes with the Clifford algebra ob

ga ($ga,G%150), while for d odd it commutes withga ($ga,G%250).
To make the technique simple, we introduce the graphic representation1 as follows:

~k!
ab

ª

1

2 S ga1
haa

ik
gbD ,

@k#
ab

ª

1

2 S 11
i

k
gagbD ,

~6!

s
1

ª

1

2
~11G!,

d
2

ª

1

2
~12G!,

wherek25haahbb. One can easily check by taking into account the Clifford algebra relation@Eq.
~1!# and the definition ofSab @Eq. ~3!# that if one multiplies from the left-hand side bySab the

Clifford algebra objects (k)
ab

and @k#
ab

, it follows that

Sab~k!
ab

5
1

2
k~k!

ab

,

~7!

Sab@k#
ab

5
1

2
k@k#

ab

,

which means that we get the same objects back multiplied by the constant1
2k. This also means tha

(k)
ab

and@k#
ab

acting from the left-hand side on anything~on a vacuum stateuc0&, for example! are
eigenvectors ofSab.

We further find

ga~k!
ab

5haa@2k#
ab

,

gb~k!
ab

52 ik@2k#
ab

,
~8!

ga@k#
ab

5~2k!
ab

,

gb@k#
ab

52 ikhaa~2k!
ab

.

It follows that Sac(k)
ab

(k)
cd

52 ( i /2) haahcc@2k#
ab

@2k#
cd

, Sac@k#
ab

@k#
cd

5 ( i /2)(2k)
ab

(2k)
cd

, Sac(k)
ab

@k#
cd

52 ( i /2) haa@2k#
ab

(2k)
cd

, Sac@k#
ab

(k)
cd

5 ( i /2) hcc(2k)
ab

@2k#
cd

. It is useful to deduce the following
relations:
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~k!
ab

†5haa~2k!
ab

, @k#
ab

†5@k#
ab

, ~9!

and

~k!
ab

~k!
ab

50, ~k!
ab

~2k!
ab

5haa@k#
ab

, ~2k!
ab

~k!
ab

5haa@2k#
ab

, ~2k!
ab

~2k!
ab

50,

@k#
ab

@k#
ab

5@k#
ab

, @k#
ab

@2k#
ab

50, @2k#
ab

@k#
ab

50, @2k#
ab

@2k#
ab

5@2k#
ab

,
~10!

~k!
ab

@k#
ab

50, @k#
ab

~k!
ab

5~k!
ab

, ~2k!
ab

@k#
ab

5~2k!
ab

, ~2k!
ab

@2k#
ab

50,

~k!
ab

@2k#
ab

5~k!
ab

, @k#
ab

~2k!
ab

50, @2k#
ab

~k!
ab

50, @2k#
ab

~2k!
ab

5~2k!
ab

.

We recognize in the first equation of the first row and the first equation of the second ro

demonstration of the nilpotent and the projector character of the Clifford algebra objects (k)
ab

and

@k#
ab

, respectively.
The reader should note that whenever the Clifford algebra objects apply from the left-

side, they always transform(k)
ab

to @2k#
ab

, never to@k#
ab

, and similarly@k#
ab

to (2k)
ab

, never to(k)
ab

.
According to Ref. 1, we define a vacuum stateuc0& so that one finds

^~k!
ab

†~k!
ab

&51,
~11!

^@k#
ab

†@k#
ab

&51.

Taking the above-given equations into account it is easy to find a Weyl spinor irredu
representation ford-dimensional space, withd even or odd.~We advise the reader to see Ref. 1!

For d even, we simply set the starting state as a product ofd/2, let us say, only nilpotents (k)
ab

,
one for eachSab of the Cartan subalgebra elements@Eq. ~4!#, applying it on an~unimportant!
vacuum state.1 Then the generatorsSab, which do not belong to the Cartan subalgebra, applied
the starting state from the left-hand side, generate all the members of one Weyl spinor,

~k0d!
0d

~k12!
12

~k35!
35

¯~kd21 d22!
d21 d22

c0 ,

@2k0d#
0d

@2k12#
12

~k35!
35

¯~kd21 d22!
d21 d22

c0 ,

@2k0d#
0d

~k12!
12

@2k35#
35

¯~kd21 d22!
d21 d22

c0 ,

] ~12!

@2k0d#
0d

~k12!
12

~k35!
35

¯@2kd21 d22#
d21 d22

c0 ,
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~k0d!
od

@2k12#
12

@2k35#
35

¯~kd21 d22!
d21 d22

c0 ,

]

All the states have handednessG, since$G,Sab%250, which is easily calculated by multiplying
from the left-hand side the starting state byG of Eq. ~5!. States belonging to one multiplet wit
respect to group SO(q,d2q), that is to one irreducible representation of spinors~one Weyl
spinor!, can have any phase. We chose the simplest one, setting all phases equal to one.

The above graphic representation demonstrated that ford even all the states of one irreducib
Weyl representation of a definite handedness follow from the starting state, which is, for exa

a product of nilpotents (k)
ab

, by transforming all possible pairs of (k)
ab

(k)
mn

into @2k#
ab

@2k#
mn

. There are
Sam, San, Sbm, Sbn, which do this. The procedure gives 2(d/221) states. A Clifford algebra objec
ga applied from the left-hand side transforms a Weyl spinor of one handedness into a Weyl
of the opposite handedness. Both Weyl spinors form a Dirac spinor. We call such a set of s
‘‘family.’’

For d odd a Weyl spinor also has in addition to a product of (d21)/2 nilpotents or projectors

either the factors
1

ª

1
2(11G) or the factord

2

ª

1
2(12G). ~See Ref. 1.! As in the case ofd even,

all the states of one irreducible Weyl representation of a definite handedness follow from a s

state, which is, for example, a product of1
2(11G) and (d21)/2 nilpotents (k)

ab

, by transforming

all possible pairs of (k)
ab

(k)
mn

into @2k#
ab

@2k#
mn

. But ga’s applied from the left-hand side do no
change the handedness of the Weyl spinor, since$G,ga%250 for d odd.1 A Dirac and a Weyl
spinor are ford odd identical and a ‘‘family’’ has accordingly 2(d21)/2 members of basic states o
a definite handedness.

We shall speak about left-handedness whenG521 and right-handedness whenG51 for
eitherd even or odd.

When the whole Clifford algebra is considered as states in a Hilbert space, then w
‘‘families.’’

III. ‘‘FAMILIES’’

When all 2d states are considered as a Hilbert space, we recognize that ford even there are
2d/2 ‘‘families’’ and for d odd 2(d11)/2 ‘‘families’’ of spinors.

We prove in this section~see also Ref. 5! that there exists an operation which transforms
state of one ‘‘family’’ into the state of another ‘‘family,’’ leaving all the properties with respec
the Lorentz group unchanged.

We saw in Sec. II that any Clifford algebra object when multiplying from the left-hand
products of nilpotents and projectors~operating on a vacuum state!—a state of a Dirac spinor—
transforms this state into a superposition of states of the same Dirac spinor. We refer to a
spinor as a ‘‘family.’’ Since there are 2d linearly independent states, one finds ford even 2d/2

‘‘families’’ and for d odd 2(d11)/2 ‘‘families’’ of Dirac spinors. ‘‘Families’’ form left ideals with
respect to the multiplication with the Clifford algebra objects.

The question then arises: Which operation transforms the state of one ‘‘family’’ into the
of another ‘‘family’’?

Statement 1: Right multiplication with the Clifford algebra objects transforms the state o
‘‘family’’ into the state of another ‘‘family.’’

Proof: The Clifford algebra object (k)
ab

transforms, when applied from the left-hand side

either ga ~or by gb), into @2k#
ab

@Eq. ~8!#. One finds this by simply multiplying (k)
ab

from the
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left-hand side by one of these two Clifford algebra objects and taking into account Eq.~1!

ga~k!
ab

5ga
1

2 S ga1
haa

ik
gbD5haa

1

2 S 11
i

2k
gagbD5haa@2k#

ab

. ~13!

@And similarly we getgb(k)
ab

52 ik@2k#
ab

. The product ofgagb transforms (k)
ab

into itself, multi-

plying it by 2 ik, since (k)
ab

was chosen to be the ‘‘eigen vector’’ of the Cartan subalgebra of
Lorentz algebra in the sense.#

Let us now multiply the same object (k)
ab

by ga from the right-hand side. It follows

~k!
ab

ga5
1

2 S ga1
haa

ik
gbDga5haa

1

2 S 11
i

k
gagbD5haa@k#

ab

. ~14!

We saw in Eq.~13! that multiplication from the left-hand side by any Clifford algebra obje

transforms (k)
ab

into @2k#
ab

, never to@k#
ab

. This means that@k#
ab

is going to be a building block of a

different ‘‘family’’ than @2k#
ab

.
Theorem 1: The two operations—left and right multiplication byga—commute.

Proof: To see this we need to show that the two objects (k)
ab

and@k#
ab

, the second obtained from
the first by right multiplication, have all the properties with respect to the Lorentz group~appli-
cation of the Lorentz algebra objects concerns the left multiplication! equal and that they differ

only in the ‘‘family’’ name. Left multiplication byga of the object (k)
ab

leads, as we know@Eq. ~8!#,

to @2k#
ab

, whoseSab@2k#
ab

52 (k/2)@2k#
ab

.

To check the properties of the two Clifford algebra objects (k)
ab

and @k#
ab

with respect to the
Lorentz group, we have to multiply each of the two Clifford algebra objects from the left-h

side by Sab, which is the Cartan subalgebra element. According to Eq.~7! we find Sab(kab)
ab

5 ( i /2) 1
2(g

agbga1 haa/ ik gagbgb)5 (k/2)(k)
ab

, Sab@k#
ab

5 (k/2) @k#
ab

.

Both objects, (k)
ab

and @k#
ab

, have the same eigenvalue for the Cartan subalgebra elemenSab,

namely1
2k. Since right multiplication of the object (k)

ab

does not change the properties of the obj
with respect to the Lorentz group~the properties of which are determined by left multiplicatio!
the two operations—left and right multiplication withga’s, both fulfilling the Clifford algebra
relation—must commute and the proof is completed.

Sincega’s are odd Clifford algebra objects, we would like to see the two operations—left
right multiplication withga’s—to anticommute rather then commute. With appropriate choic
a phase we can make them commute.

We define5 the Clifford algebra objectsg̃a’s as operations which operate formally from th

left-hand side~as ga’s do! on objects(k)
ab

and @k#
ab

, transforming objects to@k#
ab

and (k)
ab

, respec-
tively, as ga’s would if applied from the right-hand side, up to a phase i,

g̃a~k!
ab

ª2 i ~k!
ab

ga52 ihaa@k#
ab

, ~15!
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g̃b~k!
ab

ª2 i ~k!
ab

gb52k@k#
ab

. ~16!

One accordingly finds

g̃a@k#
ab

ª i @k#
ab

ga5 i ~k!
ab

, ~17!

g̃b@k#
ab

ª i @k#
ab

gb52khaa~k!
ab

. ~18!

We generalize the above definition ofg̃a to any Clifford algebra object as follows:

g̃aA5 i ~2 !(A)Aga, ~19!

with (2)(A)521, if A is an odd Clifford algebra object and (2)(A)51, if A is an even Clifford
algebra object.

We can prove thatg̃a obey the same Clifford algebra relation asga,

~ g̃ag̃b1g̃bg̃a!A52 i i ~~2 !(A)!2A~gagb1gbga!52habA ~20!

and thatg̃a andga anticommute

~ g̃agb1gbg̃a!A5 i ~2 !(A)~2gbAga1gbAga!50. ~21!

From Theorem 1and the above-given calculations, we may write

$g̃a,gb%150, while $g̃a,g̃b%152hab. ~22!

If we define

S̃ab5
i

4
@ g̃a,g̃b#5

1

4
~ g̃ag̃b2g̃bg̃a!, ~23!

it follows

S̃abA5A 1
4 ~gbga2gagb!, ~24!

manifesting accordingly thatS̃ab fulfill the Lorentz algebra relation asSab do. Taking into account
Eq. ~19!, we further find

$S̃ab,Sab%250, $S̃ab,gc%250, $Sab,g̃c%250. ~25!

One also finds

$S̃ab,G%250, $g̃a,G%250 for d even,
~26!

$S̃ab,G%250, $g̃a,G%150 for d odd,

which means that ind even transforming one ‘‘family’’ into another with eitherS̃ab or g̃a leaves
handednessG unchanged, while the transformation to another ‘‘family’’ ind odd with g̃a changes
the handedness of states, namely the factor1

2(16G) changes to1
2(17G) in accordance with wha

we know from before: In spaces with oddd changing the handedness means changing the ‘‘f
ily.’’

We advise the reader also to read Refs. 3 and 4 where the two kinds of Clifford algebra o
follow as two different superpositions of a Grassmann coordinate and its conjugate mome
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We present forS̃ab some useful relations

S̃ab~k!
ab

5
k

2
~k!
ab

,

S̃ab@k#
ab

52
k

2
@k#
ab

,

S̃ac~k!
ab

~k!
cd

5
i

2
haahcc@k#

ab

@k#
cd

,

~27!

S̃ac@k#
ab

@k#
cd

52
i

2
~k!
ab

~k!
cd

,

S̃ac~k!
ab

@k#
cd

52
i

2
haa@k#

ab

~k!
cd

,

S̃ac@k#
ab

~k!
cd

5
i

2
hcc~k!

ab

@k#
cd

.

According to Statement 1we transform the state of one ‘‘family’’ to the state of anoth
‘‘family’’ by the application of g̃a or S̃ac ~formally from the left-hand side! on a state of the first
‘‘family’’ for a chosen a or a,c. To transform all the states of one ‘‘family’’ into states of anoth
‘‘family,’’ we apply g̃a or S̃ac to each state of the starting ‘‘family.’’ It is, of course, sufficient
apply g̃a or S̃ac to only one state of a ‘‘family’’ and then use generators of the Lorentz gr
(Sab), and ford even alsoga’s, to generate all the states of one Dirac spinor.

One must notice that nilpotents (k)
ab

and projectors@k#
ab

are eigenvectors not only of the Carta
subalgebraSab but also ofS̃ab. Accordingly onlyS̃ac, which do not carry the Cartan subalgeb
indices, cause the transition from one ‘‘family’’ to another ‘‘family.’’

The starting state of Eq.~12! can change, for example, to

@k0d#
0d

@k12#
12

~k35!
35

¯~kd21 d22!
d21 d22

, ~28!

if S̃01 was chosen to transform the Weyl spinor of Eq.~12! to the Weyl spinor of another ‘‘family.’’
In what follows we demonstrate the appearance of ‘‘families’’ ford54 with the Minkowski

signature.
‘‘Families’’ for d 54. There are two (d/252) operators of the Cartan subalgebra of t

Lorentz algebra~which is closed by the operatorsS01, S02, S03, S12, S13, S23), for which we made
a choice, according to Eq.~4! of S03 andS12. Following Eq.~5! we findG5 ig0g1g2g3. There are
24, that is sixteen basic states, all of them being ‘‘eigenstates’’ ofS12 andS03 in the sense of Eq.
~7!

~6 i !
03

~6 !
12

5~ 1
2!

2~g07g3!~g16 ig2!, ~6 i !
03

@6#
12

5~ 1
2!

2~g07g3!~16 ig1g2!,

~29!

@6 i #
03

~6 !
12

5~ 1
2!

2~16g0g3!~g16 ig2!, @6 i #
03

@6#
12

5~ 1
2!

2~16g0g3!~16 ig1g2!,
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with the ‘‘eigenvalues’’ of the Cartan operatorS12 equal to61/2 for the6sign in the second
factor of the graphical presentation and the eigenvalues of the Cartan operatorS03 equal to6 i /2
for the 6 i sign in the first factor of the graphical representation. All sixteen basic state
orthonormal.1

We arrange these sixteen states into four ‘‘families’’ by first choosing the starting state o

first ‘‘family’’ as a product of two nilpotents (1 i )
03

(1)
12

. Then we useS01, for example, to find the

second state@2 i #
03

@2#
12

of one Weyl spinor.g0 generates from the first state of the first Weyl spin

the first state of the second Weyl spinor, namely,@2 i #
03

(1)
12

andS01 then the second state of th

second spinor (1 i )
03

@2#
12

. We set all the phases of the states equal to one.
We transform this first ‘‘family’’ into the second ‘‘family’’ by applyingS̃01 ~or S̃02, or S̃31, or

S̃32) to each of the states of the first ‘‘family.’’ By applyingg̃a to all the states of the first ‘‘family’’
we get the third ‘‘family.’’ We also can generate the third ‘‘family’’ from the second by apply
g̃1 ~or g̃2). The fourth ‘‘family’’ can be reached from the first one by the application ofg̃1 ~or g̃2),
but it can also be reached from any other with the appropriate choice of operations. For
‘‘families’’ the simplest choice of the relative phases, namely, the phase 1, is made.

Each ‘‘family’’ includes two Weyl spinors, one left- and one right-handed. These four ‘‘fa
lies’’ are presented in Table I.

We see in Table I that eitherg̃a, a50,1,2,3, orS̃01,S̃02,S̃31,S̃32, when applied, change th
‘‘family’’ but do not change either the handedness or the ‘‘eigenvalues’’ of the Cartan subalg
of the Lorentz algebra.

Any of the four ‘‘families’’ can be used to represent the solution of the Dirac equation f
massive spinor, while massless spinors are either left- or right-handed, so that only half
space of the massive case is needed to find the solution. The phases chosen for basic sta
the matrix representation ofga’s andSab equal to the usual ones.

IV. CONCLUSION

In Ref. 1 we constructed the basis for a left ideal out of products of nilpotents and proje
and identified the basis with the spinor space. There are 2d nilpotents and projectors. Mapping a
the ideals to spinor representations, that is treating all as a Hilbert space, leads to ‘‘familie
spinors. An irreducible representation of a spinor~a Dirac spinor, which is a Weyl bi-spinor with
2d/2 members ford even and a Weyl spinor with 2(d21)/2 members ford odd! depends on a
selection of a ‘‘starting’’ Clifford object. We have ford even 2d/2 different starting states and fo
d odd 2(d11)/2 different starting states, which can all be made orthogonal with the approp

TABLE I. Four ‘‘families’’ of the two Weyl spinors of the Lorentz group SO~1,3!. Basic vectors are eigenvectors of the tw
operators of the Cartan subalgebraS12 andS03. The eigenvalues of the operator of handednessG are also presented. All the
basic states are orthonormalized as discussed in Ref. 1. The simplest choice of relative phases is used—all p
assumed to be equal to11.

a i (ac i)1 (ac i)2 (ac i)3 (ac i)4 S12 S03 G

1 1
~1i!

03

~1 !
12

@1 i #
03

@1#
12

@1 i #
03

~1 !
12

~1 i !
03

@1#
12 1

2

i

2
21

1 2
@2 i #

03

@2#
12

~2 i !
03

~2 !
12

~2 i !
03

@2#
12

@2 i #
03

~2 !
12

2
1

2
2

i

2
21

2 1
@2 i #

03

~1 !
12

~2 i !
03

@1#
12

~2 i !
03

~1 !
12

@2 i #
03

@1#
12 1

2
2

i

2
1

2 2
~1 i !

03

@2#
12

@1 i #
03

~2 !
12

@1 i #
03

@2#
12

~1 i !
03

~2 !
12

2
1

2

i

2
1
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choice of an~unimportant! vacuum state. These are the different bases~that is different spinor
spaces, which have all the same properties with respect to the Lorentz group!, which we call
‘‘families’’ of spinors.

We have shown in this paper that while left multiplication with any Clifford algebra ob
makes from a ‘‘starting’’ state a superposition of basic states of one Dirac spinor,right multipli-
cation of a ‘‘starting state’’ with any Clifford algebra object makes a superposition of st
belonging to different ‘‘families’’ but having the same properties with respect to the Lorentz g
~defined by left multiplication of Clifford algebra objects! as the starting state. One comes acco
ingly from one ‘‘family’’ to another ‘‘family’’ ~up to an overall factor! by multiplying the ‘‘start-
ing’’ state from the right-hand side bySab’s for d odd and bySab’s andga’s for d even, if Sab

does not belong to the Cartan subalgebra of the Lorentz group.
We have defined in this paperg̃a’s andS̃ab with the properties that both transform nilpoten

and projectors, when multiplying them from the left-hand side asga’s and Sab would if multi-
plying nilpotents and projectors from the right-hand side. Since neitherg̃a’s nor S̃ab change
properties of nilpotents and projectors~and consequently of a state! with respect to the Lorentz
group, and since both—ga’s and g̃a’s—are Clifford algebra objects, it follows~with the appro-
priate choice of phases! that $g̃a,gb%150 and $g̃a,g̃b%152hab. Consequently,S̃ab fulfill the
same Lorentz algebra relation asSab. This can be understood since one could construct the sp
basis for a right ideal instead of a left ideal and then use left multiplication to generate ‘‘fami
~To understand this better, see Refs. 3, 4, 5, and 8.!

We have also demonstrated the application ofg̃a’s and S̃ab on a basis with the help of the
graphic technique introduced in Ref. 1. We demonstrated the procedure for generating ‘‘fam
in the~most familiar! case ofd5113, that is ford54 and one time coordinate, where the numb
of ‘‘families’’ is four.

In conclusion, we must ask ourselves whether the proposed generation of ‘‘families’’ ca
used to describe the ‘‘families’’ of quarks and leptons? This is certainly one of the open prob
of the Standard electroweak model. We believe that we have the right way to do this. Acco
to Refs. 4 and 5, one can generate ‘‘families’’ of quarks and leptons dynamically if in the cova
derivativeS̃ab appears as charges, accompanied by gauge fields likeṽc

ab, so that

po
a5pa2 1

2 S̃abṽabc2tAiAAia, ~30!

with tAi determining the known charges@U~1!,SU~2!,SU~3!# and AAia the corresponding gaug
fields. This possibility has been discussed in Ref. 5.

In the presented formalism we worked with the Clifford algebra objects only, using the
express not only the generators of the Lorentz algebra but also the operators transformi
‘‘family’’ into another ‘‘family’’ and even the spinor basis for one and several ‘‘families.’’~It is for
this reason that we get the ‘‘families’’ as explained.! One would accordingly ask oneself if there
possibly any physical reason that the Clifford algebra degrees of freedom are ‘‘more fundam
than the spinors.9

This is exactly what was taken as the starting point in the works by one of us2–5 ~and which
lead to the formalism, presented in this paper! but it is also what is really the case in the Kogut a
Susskind lattice fermion formalism.10 In the latter case the fermion degrees of freedom are in
preted as sitting really on the sites links plaquettes and cubes and hypercubes of a lattice w
double lattice constant. That corresponds to having fields of all the possible antisymme
tensor characters, which is just what the Clifford algebra elements have. One therefore has
the Kogut–Susskind fermions a way of having the Clifford algebra naturally more fundam
than the spinors. Not surprisingly we also get in this case the expected number 4 for fami
this lattice model. Also the paper of both of us@8# already introduced ‘‘families’’ of spinors with
the help of the Clifford algebra objects, but in a slightly different way—the spinor states hav
indices.
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The indefinite anti-self-dual metrics
and the Painleve´ equations

Shoji Okumuraa)

Department of Mathematics, Osaka University, Machikaneyama 1-1,
Toyonaka 5600043, Japan
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We classify the SU~2!-invariant anti-self-dual metrics with a signature~1, 1, 2,
2!. The metrics are specified by a solution of Painleve´ VI, V, III or II. Moreover,
we show the geometric meaning of the metrics specified by each type of Painleve´
function. © 2003 American Institute of Physics.@DOI: 10.1063/1.1604187#

I. INTRODUCTION

The aim of this article is to classify the anti-self-dual metrics in real dimension four admi
an isometric action of SU~2! with generically three-dimensional orbits. In this article, we study
only the definite metrics, but also the indefinite metrics with a signature~1, 1, 2, 2!.

Hitchin5 shows that the SU~2!-invariant anti-self-dual metric is generically specified by
solution of Painleve´ VI with two complex parameters. He used the twistor correspondence1,13 to
associate the anti-self-dual equation and the Painleve´ equation. On the twistor space, the lifte
action of SU~2! determines a prehomogeneous action of SU~2!, and it determines an isomonodro
mic family of connections onCP1, and then we obtain the Painleve´ equation.

In this framework, Hitchin5 classified the diagonal anti-self-dual metrics, and Dancer4 shows
that the diagonal scalar-flat Ka¨hler metric is specified by a solution of Painleve´ III with a param-
eter~0, 4, 4,24), where thediagonalmetric is the metric in the shape of~1! in Sec. II. Since the
anti-self-dual Einstein metrics are diagonal, the classification for diagonal metrics enough
Hitchin’s purpose. However, generically, the SU~2!-invariant metric is in the shape of~4! in Sec.
III. In this case, Hitchin shows that the metric is generically specified by a solution of Painlev´ VI,
but he does not go into detail. We study not only the diagonal metrics but also the nondia
metrics. The author10,11shows that the SU~2!-invariant anti-self-dual Hermitian metric is specifie

by a solution of Painleve´ III with a parameter~4u, 4(11 ū), 4, 24).
The metrics mentioned above are positive definite. In this article we study the inde

metrics with a signature~1, 1, 2, 2!. If the metric is definite, then the anti-self-dual equati
reduces to either Painleve´ VI or III. On the other hand, we show that, if the metric has a signat
~1, 1, 2, 2!, then the anti-self-dual equation reduces to not only Painleve´ VI or III but also
PainlevéV or II. The difference of types of Painleve´ is due to the difference of reality on th
twistor space.

PainlevéVI is shown to be a deformation equation for a linear problem,

S d

dz
2B1D S y1

y2
D50,

whereB1 has four simple poles onCP1.6 And Painleve´ V, IV, III, II are degenerated from Painlev´

a!Electronic mail: okumura@math.sci.osaka-u.ac.jp
48280022-2488/2003/44(10)/4828/11/$20.00 © 2003 American Institute of Physics
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VI:

This is the confluence diagram of poles ofB1 , where the Roman numerals represent the type
the Painleve´ equation, and the parenthesized numbers represent the orders of poles ofB1 . For
example, Painleve´ V is shown to be a deformation equation for a linear problem with one do
and two simple poles.

For the complexified metrics, any type of Painleve´ equation from I to VI is derived from the
anti-self-dual equation.8,9 However, it is important to study what types of Painleve´ equations are
derived from the real anti-self-dual equation.

For the metric with a signature~1, 1, 2, 2!, due to the reality of the twistor space, the pol
of B1 make two conjugate pairs. Therefore, the configuration of poles never becomes the t
PainlevéIV.

The multiple pole ofB1 on C\R determines a Hermitian structure, and the multiple pole oR
determines a structure of real twistor surfaces. In each case, we can calculate local expon
singularities. These local exponents corresponding to the parameter of the Painleve´ equation. This
is the geometric meaning of the metrics specified by each type of Painleve´ function:

~1! Generically, the anti-self-dual metrics are specified by a solution of Painleve´ VI with two
complex parameters.

~2! If the anti-self-dual metric is specified by a solution of Painleve´ III with one complex param-
eter, then there exists an SU~2!-invariant Hermitian structure.

~3! If the anti-self-dual metric is specified by a solution of Painleve´ V with one real and one
complex parameter, or Painleve´ II with one real parameter, then for anyxPM there exists one
real twistor surface passing throughx.

~4! If the anti-self-dual metric is specified by a solution of Painleve´ III with two real parameters,
then for anyxPM there exist two real twistor surfaces passing throughx.

II. THE DIAGONAL ANTI-SELF-DUAL EQUATIONS

In this section, we review the anti-self-dual equations on the SU~2!-invariant diagonal metrics
The SU~2!-invariant diagonal metric is represented in the following form:

g5w1w2w3 dt21
w2w3

w1
s1

21
w3w1

w2
s2

21
w1w2

w3
s3

2 . ~1!

w1 , w2 andw3 are functions oft, ands1 , s2 , s3 are left invariant one-forms on each SU~2!-
orbit satisfying

ds15s2∧s3 , ds25s3∧s1 , ds35s1∧s2 . ~2!
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Tod14 showed that the~scalar-flat! anti-self-dual equations on the SU~2!-invariant diagonal metric
are given by the following system:

ẇ152w2w31w1~a21a3!, ẇ252w3w11w2~a31a1!,

ẇ352w1w21w3~a11a2!, ȧ152a2 a31a1~a21a3!, ~3!

ȧ252a3 a11a2~a31a1!, ȧ352a1 a21a3~a11a2!,

wherea1 , a2 , a3 are auxiliary functions and the dots denote differentiation with respect tot. The
anti-self-dual equation~3! has a first integral

k5
a1~w2

22w3
2!1a2~w3

22w1
2!1a3~w1

22w2
2!

8~a12a2!~a22a3!~a32a1!
.

Furthermore, if we set

x5
a22a1

a22a3
, q5

w2~a12a2!~w2~w1
22w3

2!12A2k w1w3~a12a3!!

w1
2~w2

22w3
2!a11w2

2~w3
22w1

2!a21w3
2~w1

22w2
2!a3

,

then the system~3! generically reduces to a family of Painleve´ VI with a special parameter

~a,b,g,d!5S ~A2k21!2

2
,k,2k,

112k

2 D .

We will review the Painleve´ equation in the Appendix.

III. THE NONDIAGONAL ANTI-SELF-DUAL EQUATIONS

We can express an SU~2!-invariant metric in the form

g5 f ~t!dt21 (
l ,m51

3

hl m~t! s lsm . ~4!

Using the Killing form, we can diagonalize the metricg on each SU~2!-orbit. Then we can expres
the metric as follows:

g5~abc!2dt21a2dŝ1
21b2ŝ2

21c2ŝ3
2 ,

for somet5t(t), a5a(t), b5b(t), c5c(t) and

S ŝ1

ŝ2

ŝ3

D 5R~ t !S s1

s2

s3

D ,

whereR(t) is an SO~3!-valued function.
SinceṘR21Pso(3), weobtain

dS ŝ1

ŝ2

ŝ3

D 5R~ t !S s2∧s3

s3∧s1

s2∧s2

D 1Ṙ dt∧S s1

s2

s3

D 5S ŝ2∧ŝ3

ŝ3∧ŝ1

ŝ1∧ŝ2

D 1S 0 j3 2j2

2j3 0 j1

j2 2j1 0
D dt∧S ŝ1

ŝ2

ŝ3

D ,

for somej15j1(t), j25j2(t), j35j3(t).
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If j150, j250, j350, then the matrix (hl m) can be chosen to be diagonal for allt, and then
we say thatg is a diagonal metric.

In the following, we mainly study the nondiagonal case.
We setw15bc, w25ca, w35ab and determinea1 , a2 , a3 by

ẇ152w2w31w1~a21a3!,

ẇ252w3w11w2~a31a1!, ~5!

ẇ352w1w21w3~a11a2!.

Then the scalar curvatures is determined by

w1w2w3 s54~ ȧ11ȧ21ȧ32a2a32a3a12a1a2!

1
~w2

22w3
2!2

w2
2w3

2 j1
21

~w3
22w1

2!2

w3
2w1

2 j2
21

~w1
22w2

2!2

w1
2w2

2 j3
2 ,

and then the anti-self-dual equations are as follows:10,11

ȧ152a2a31a1~a21a3!1
1

4
~w2

22w3
2!2S j1

w2w3
D 2

1
1

4
~w3

22w1
2!~3w1

21w3
2!S j2

w3w1
D 2

1
1

4
~w2

22w1
2!~3w1

21w2
2!S j3

w1w2
D 2

2
w1w2w3 s

12
,

ȧ252a3a11a2~a31a1!1
1

4
~w3

22w1
2!2S j2

w3w1
D 2

1
1

4
~w1

22w2
2!~3w2

21w1
2!S j3

w1w2
D 2

1
1

4
~w3

22w2
2!~3w2

21w3
2!S j1

w2w3
D 2

2
w1w2w3 s

12
, ~6!

ȧ352a1a21a3~a11a2!1
1

4
~w1

22w2
2!2S j3

w1w2
D 2

1
1

4
~w2

22w3
2!~3w3

21w2
2!S j1

w2w3
D 2

1
1

4
~w1

22w3
2!~3w3

21w1
2!S j2

w3w1
D 2

2
w1w2w3 s

12
,

and

~w2
22w3

2!
d

dt S j1

w2w3
D5

j2

w3w1

j3

w1w2
~22w2

2w3
21w3

2w1
21w1

2w2
2!

1
j1

w2w3
~a2w2

22a3w3
213a2w3

223a3w2
2!,

~w3
22w1

2!
d

dt S j2

w3w1
D5

j3

w1w2

j1

w2w3
~22w3

2w1
21w1

2w2
21w2

2w3
2!

1
j2

w3w1
~a3w3

22a1w1
213a3w1

223a1w3
2!, ~7!
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~w1
22w2

2!
d

dt S j3

w1w2
D5

j1

w2w3

j2

w3w1
~22w1

2w2
21w2

2w3
21w3

2w1
2!

1
j3

w1w2
~a1w1

22a2w2
213a1w2

223a2w1
2!.

Remark 1: Ifj150, j250, j350 and s50, then the system of equations (5), (6) and (
reduces to a sixth-order system (3) given by Tod.14 Furthermore, ifa15w1 , a25w2 , a35w3 ,
then (5)–(7) reduce to a third-order system which determines the Atiyah–Hitchin family,1 and if
a150, a250, a350, then the system reduces to a third-order system which determines the B
family.3

Remark 2: If w25w3 , then we can setj150, j250 andj350 by taking another frame. This
is also a diagonal case. Therefore we assume(w22w3)(w32w1)(w12w2)Þ0.

IV. THE ISOMONODROMIC DEFORMATIONS

Let (M ,g) be an oriented Riemannian four manifold. We define a manifoldZ to be the unit
sphere bundle in the bundle of anti-self-dual two-forms, and letp: Z→M denote the projection
Each pointz in the fiber overp(z) defines a complex structure on the tangent spaceTp(z)M ,
compatible with the metric and its orientation.

Using the Levi-Civita connection, we can split the tangent spaceTzZ into horizontal and
vertical spaces, and the projectionp identifies the horizontal space withTp(z)M . This space has a
complex structure defined byz and the vertical space is the tangent space of the fiberS2>CP1

which has its natural complex structure.
The almost complex structure onZ is integrable if and only if the metric is anti-self-dual.2,13

In this situationZ is called the twistor space of (M ,g) and the fibers are called the real twist
lines.

The almost complex structure onZ can be determined by the following~1,0!-forms:

Q15z~e11A21e2!2~e01A21e3!,

Q25z~e02A21e3!1~e12A21e2!, ~8!

Q35dz1 1
2 z2~v1

02v3
21A21~v2

02v1
3!!2A21z~v3

02v2
1!1 1

2 ~v1
02v3

22A21~v2
02v1

3!!,

where $e0,e1,e2,e3% is an orthonormal frame, andv j
i are the connection forms determined b

dei1v j
i ∧ej50 andv j

i 1v i
j50. Then the anti-self-dual condition is

dQ1[0, dQ2[0, dQ3[0 ~mod Q1 ,Q2 ,Q3!. ~9!

Theorem 3: If the metric is positive definite, then the Pfaffian is invariant under conjug
action and z°21/z̄.2 If the metric has a signature~1, 1, 2, 2!, then the Pfaffian is invariant
under conjugate action and z° z̄.

Remark 4: Let TMC be a complexified tangent space of M. We call the setC5$a
PTMC u g(a,a)50% a null cone. For aPTMC, we consider

Q1S a1l
]

]zD50, Q2S a1l
]

]zD50, Q3S a1l
]

]zD50, ~10!

as algebraic equations ofl, z. Equations (10) have solutionslPC, zPCP1, if and only if a
PC.

If the metric is SU~2! invariant, we obtain
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S Q1

Q2

Q3

D 5S 0
0
1
D dz1S v1

v2

v3

D dt1AS s1

s2

s3

D , ~11!

wherev15v1(z,t), v25v2(z,t), v35v3(z,t); A5(ai j (z,t)) i , j 51,2,3.
If detA[0, then the metric turns to be diagonal, and the metric is in the BGPP family.3

If detAÞ0, then we obtain

S s1

s2

s3

D [2A21S S 0
0
1
D dz1S v1

v2

v3

D dtD , ~mod Q1 , Q2 , Q3!. ~12!

If we set

S s1

s2

s3

Dª2A21S S 0
0
1
D dz1S v1

v2

v3

D dtD , ~13!

then

dS s1

s2

s3

D [S s2∧s3

s3∧s1

s1∧s2

D , ~mod Q1 ,Q2 ,Q3!. ~14!

Sinces1 , s2 , s3 are one-forms on (z,t)-plane, the congruency equation~14! turns to be a plain
equation:

dS s1

s2

s3

D 5S s2∧s3

s3∧s1

s1∧s2

D . ~15!

If the metric is positive definite, thens1 , s2 , s3 are invariant under conjugate action an
z°21/z̄ by Theorem 3. And if the metric has a signature~1, 1, 2, 2!, thens1 , s2 , s3 are
invariant under conjugate action andz° z̄.

If we set

S5
1

&
S A21s2 2s11A21s3

s11A21s3 2A21s2 D ~16!

5..2B1 dz2B2 dt, ~17!

then

dS1S∧S50. ~18!

This is the isomonodromy condition for the the following linear problem,6

S d

dz
2B1D S y1

y2
D50. ~19!

B2 is determined byB1 from ~18!.
Lemma 5: The components of B1 are rational functions of z,
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B15
F~z!

G~z!
,

where F(z) is degree2 and G(z) is degree4. If the metric is positive definite, then B1°2 tB1

under conjugate action and z°21/z̄. And if the metric has a signature~1, 1, 2, 2!, then
B1°2 tB1 under conjugate action and z° z̄.

For this lemma, genericallyB1 has four simple poles. In this case, the deformation equatio
~19! is Painleve´ VI.

Theorem 6: The anti-self-dual equations onSU~2!-invariant metrics generically reduce to
PainlevéVI.

The idea of Hitchin5 is that the lifted action of SU~2! on the twistor spaceZ gives a homo-
morphism of vector bundlesa:Z3su(2)C→TZ, and the inverse ofa gives a flat meromorphic
SL~2,C!-connection, which determines isomonodromic deformations. Since one-f
Q1 , Q2 , Q3 on Z can be considered as infinitesimal variations, we can identifyS with a21.

First, we review the positive definite metric. By Lemma 5, the poles ofB1 make antipodal
pairsz0 ,21/z̄0 , andz1 ,21/z̄1 on CP1.

Therefore, we obtain two types of configuration of poles ofB1 :

~a! B1 has four simple polesz0 , 21/z̄0 , z1 , 21/z̄1 on CP1,

B15
A0

z2z0

1
2tĀ0

z11/z̄0

1
A1

z2z1

1
2 tĀ1

z11/z̄1

.

The deformation equation is Painleve´ VI with a parameter,

~a,b,g,d!5~ 1
2 ~u021!2, 1

2ū0
2 ,2 1

2 u1
2 , 1

2 ~11 ū1
2!!,

whereu0
252 trA0

2, u1
252 trA1

2.
~b! B1 has two double polesz, 21/z̄ on CP1,

B15
A2

~z2z!2
1

A21C

z2z
1

2A21C

z11/z̄
1

2 tĀ2 / z̄2

~z11/z̄ !2
,

whereC52 tC̄. The deformation equation is Painleve´ III with a parameter,

~a,b,g,d!5~4u,4~11 ū !,4,24!,
whereu252(tr(A2C))2/trA2

2.

Theorem 7: If the metric is positive definite, the anti-self-dual equations reduce to the
lowing Painleve´ equations:

(a) a family of Painleve´ VI with two complex parameters,

~a,b,g,d!5~ 1
2 ~u021!2, 1

2ū0
2 ,2 1

2 u1
2 , 1

2 ~11 ū1
2!!,

(b) a family of Painleve´ III with one complex parameter,

~a,b,g,d!5~4u,4~11 ū !,4,24!.

Remark 8: It is known that the anti-self-dual equations reduce to Painleve´ VI with the param-
eter as above.9,5 Dancer4 shows the diagonal scalar-flat Ka¨hler metric is specified by a solution o
PainlevéIII with a parameter(a,b,g,d)5(0,4,4,24). Now, Theorem7 ~b! is a generalization of
Dancer’s result.

From now on, we will classify the anti-self-dual metrics with a signature~1, 1, 2, 2!. By
Lemma 5 the poles ofB1 make conjugate pairsz0 ,z̄0 , andz1 ,z̄1 in CP1. Therefore we obtain five
types of metrics corresponding to configuration of poles ofB1 .

Theorem 9: If the metric has a signature~1, 1, 2, 2!, the anti-self-dual equations reduce t
the following five Painleve´ equations:
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(a) PainlevéVI with two complex parameters

~a,b,g,d!5~ 1
2 ~u021!2, 1

2ū0
2 ,2 1

2 u1
2 , 1

2 ~11 ū1
2!!,

(b) PainlevéV with one real and one complex parameters

~a,b,g,d!5~ 1
2 ~u01 ū01u`!2,2 1

2 ~u01 ū02u`!2,12u01 ū0 , 1
2!,

whereu`PR.
(c) PainlevéIII with one complex parameter

~a,b,g,d!5~4u,4~11 ū !,4,24!.
(d) PainlevéIII with with two real parameters

~a,b,g,d!5~4u1,4~11u2!,4,24!.
(e) Painleve´ II with one real parametera.

Proof: Since the poles ofB1 make conjugate pairsz0 ,z̄0 andz1 ,z̄1 , we obtain five types of
configuration of poles ofB1 . In each case, we can calculate local exponents at singular
These local exponents correspond to the parameter of the Painleve´ equation~see Ref. 7!.

~a! Generically,B1 has four simple polesz0 , z̄0 , z1 , z̄1 on C\R,

B15
A0

z2z0

1
2 tĀ0

z2 z̄0

1
A1

z2z1

1
2 tĀ1

z2 z̄1

.

The deformation equation is Painleve´ VI with a parameter,

~a,b,g,d!5~ 1
2 ~u021!2, 1

2ū0
2 ,2 1

2 u1
2 , 1

2 ~11 ū1
2!!,

whereu0
252 trA0

2, u1
252 trA1

2.
~b! If z05 z̄0(5h), thenB1 has one double poleh on R, and two simple polesz1 , z̄1 on C\R,

B15
C

~z2h!2
1

2A21 tĀ2

z2h
1

A2

z2z1

1
2 tĀ2

z2 z̄1

,

whereC52 tC̄. The deformation equation is Painleve´ V with a parameter,

~a,b,g,d!5~ 1
2 ~u01 ū01u`!2,2 1

2 ~u01 ū02u`!2,12u01 ū0 , 1
2!,

whereu0
252 trA2

2, u`
2 52(tr(A22 tĀ2)C)2/trC2.

~c! If z05z1(5z), thenB1 has two double polesz, z̄ on C\R,

B15
A3

~z2z!2
1

A21C

z2z
1

2A21C

z2 z̄
1

2 tĀ3

~z2 z̄ !2
,

whereC52 tC̄. The deformation equation is Painleve´ III with a parameter,

~a,b,g,d!5~4u,4~11 ū !,4,24!,

whereu252(trA3C)2/trA2
2.

~d! If z05 z̄0(5h0), z15 z̄1(5h1), thenB1 has two double polesh0 , h1 on R,

B15
C1

~z2h0!2 1
C2

z2h0
1

2C2

z2h1
1

C3

~z2h1!2 ,
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whereCi52 tC̄i ( i 51,2,3). The deformation equation is Painleve´ III with a parameter,

~a,b,g,d!5~4u1,4~11u2!,4,24!,

whereu1
252(trC1C2)2/trC1

2, u2
252(trC2C3)2/trC3

2.
~e! If z05 z̄05z15 z̄1(5h), thenB1 has one quadruple poleh on R,

B15
C1

~z2h!4 1
C2

~z2h!3 1
C3

~z2h!2 ,

whereCi52 tC̄i ( i 51,2,3). If detC1Þ0, then the deformation equation is Painleve´ II with a
parameter,

a5 1
2 ~11trC2C3!.

If detC150, then the deformation equation is Painleve´ I, but sinceC152 tC̄1 , this never
occurs.
Remark 10: The isomonodromic condition (18) determines the null coneC. B1 and B2 deter-

mineC as follows. For

a0

]

]t
1a1s1* 1a2s2* 1a3s3* PTMC,

we consider

a1

&
S 0 21

1 0 D 1
a2

&
S A21 0

0 2A21D 1
a3

&
S 0 A21

A21 0 D 52l B1~z!2a0 B2~z! ~20!

as an algebraic equation ofl, z, which is equivalent with (10). Equation (20! has solutionsl
PC, zPCP1, if and only if a0 (]/]t) 1a1s1* 1a2s2* 1a3s3* PC.

V. HERMITIAN STRUCTURE AND NULL SURFACES

In this section, we will study the geometric meaning of the metrics corresponding with
type of Painleve´ function.

Lemma 11: Let g be an anti-self-dual metric. If B1 has a multiple pole on z5z(t), then the
Pfaffian Q1uz5z(t) , Q2uz5z(t) is integrable. Conversely, if the PfaffianQ1uz5z(t) , Q2uz5z(t) is
integrable for somez(t), then B1 has a multiple pole on z5z(t).

Proof: If z5z(t) is a multiple zero ofG(z), then Guz5z(t) and dGuz5z(t) must be vanish.
Furthermore,Q3[0(modQ1 ,Q2 ,G,dG). Therefore, the PfaffianQ1uz5z(t) ,Q2uz5z(t) is inte-
grable.

Conversely, if the PfaffianQ1uz5z(t) , Q2uz5z(t) is integrable for somez5z(t), then
Q3uz5z(t)[0(modQ1 ,Q2). Therefore the denominatorG of B1 has zero onz5z(t). Further-
more,Q3uz5z(t)[0(modQ1 ,Q2 ,G) is equivalent todGuz5z(t)50, thereforez5z(t) is a double
pole of B1 .

In Refs. 10 and 11 we show that if a positive definite SU~2! invariant anti-self-dual metric is
specified by a solution of Painleve´ III with one complex parameter (4u,4(11 ū),4,24), then the
Pfaffian Q1uz5z(t) , Q2uz5z(t) (z5z(t) is a double pole ofB1) determines an SU~2! invariant
Hermitian structure.

In the same way, we obtain the following theorem for the metric with a signature~1, 1, 2,
2!.
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Theorem 12: If the anti-self-dual equations reduce to Painleve´ III with one complex param-

eter (4u,4(11 ū),4,24), then there exists anSU~2!-invariant Hermitian structure. Conversely,
there exists anSU~2!-invariant Hermitian structure, then the anti-self-dual equations reduce
PainlevéIII with the parameter above.

Definition 13: If g(X,X)50, then XPTM is said to be a null direction.
The PfaffianQ1uz5h(t) ,Q2uz5h(t)(h(t)PR) determines two dimensional null directions o

TM.
Definition 14: Let N be a two dimensional subspace of M. If g(X,X)50 for any XPTN, then

N is called a real twistor surface.
From Lemma 11, if z5h(t)PR is a multiple pole of B1 , then the Pfaffian

Q1uz5h(t) ,Q2uz5h(t) is integrable, and then for anyxPM there exists an SU~2!-invariant real
twistor surface passing throughx. Conversely, for anyxPM , if there exists an SU~2!-invariant
real twistor surface passing throughx, then the real twistor surface is represented by Pfaf
Q1uz5h(t) ,Q2uz5h(t) for someh(t)PR, and thenz5h(t) is a multiple pole ofB1

Theorem 15: If the anti-self-dual equations reduce to Painleve´ V with one real and one

complex parameter(1/2(u01 ū01u`)2,21/2(u01 ū02u`)2,12u01 ū0 ,1/2), where u`PR, or
PainlevéII with one real parametera, then for any xPM there exists oneSU~2!-invariant real
twistor surface passing through x. Conversely, for any xPM there exists oneSU~2!-invariant real
twistor surface passing through x, then the anti-self-dual reduces to Painleve´ V or II with the
parameter above.

If the anti-self-dual equations reduce to Painleve´ III with two real parameters(4u1,4(1
2u2),4,24), then for any xPM there exist twoSU~2!-invariant real twistor surfaces passin
through x. Conversely, for any xPM there exist twoSU~2!-invariant real twistor surfaces passin
through x, then the anti-self-dual equation reduces to Painleve´ III with the parameter above.

VI. SUMMARY

We classified the SU~2!-invariant anti-self-dual metric with a signature~1, 1, 2, 2! into the
five cases~a!–~e! ~Theorem 9!. The meaning of the types of the Painleve´ equations are as follows

~1! Generically, the anti-self-dual metric is, specified by a solution of Painleve´ VI with two
complex parameters.

~2! If the anti-self-dual metric is specified by a solution of Painleve´ III with one complex param-
eter, then there exists an SU~2!-invariant Hermitian structure.

~3! If the anti-self-dual metric is specified by a solution of Painleve´ V with one real parameter an
one complex parameter, or Painleve´ II with one real parameter, then for anyxPM there exists
one real twistor surface passing throughx.

~4! If the anti-self-dual metric is specified by a solution of Painleve´ III with two real parameters,
then for anyxPM there exist two real twistor surfaces passing throughx.
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APPENDIX: PAINLEVÉ EQUATIONS

We review the Painleve´ second order nonlinear differential equations without moving criti
points. We list six equations classified by Painleve´ and Gambier, wherea,b,g,d are parameters.12

~1! PainlevéI:

d2q

dx2 56q21x.
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~2! PainlevéII:

d2q

dx2 52q31xq1a.

~3! PainlevéIII:

d2q

dx2 5
1

q S dq

dxD
2

2
1

x

dq

dt
1

1

x
~aq21b!1gq31

d

q
.

~4! PainlevéIV:

d2q

dx2 5
1

2q S dq

dxD
2

1
3

2
q314xq212~x22a!q1

b

q
.

~5! PainlevéV:

d2q

dx2 5S 1

2q
1

1

q21D S dq

dxD
2

2
1

x

dq

dx
1

~q21!2

x2 S aq1
b

q D1
gq

x
1

dq~q11!

q21
.

~6! PainlevéVI:

d2q

dx2 5
1

2 S 1

q
1

1

q21
1

1

q2xD S dq

dxD
2

2S 1

x
1

1

x21
1

1

q2xD dq

dx

1
q~q21!~q2x!

x2~x21!2 H a1b
x

q2 1g
x21

~q21!2 1d
x~x21!

~q2x!2J .
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An invariant characterization of double warped space–times is given in terms of
Newman–Penrose formalism and a classification scheme is proposed. A detailed
study of the conformal algebra of these space–times is also carried out and some
remarks are made on certain classes of exact solutions. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1605496#

I. INTRODUCTION

Given two metric manifolds (M1 ,h1) and (M2 ,h2) and given two smooth real function
u1 :M1→R, u2 :M2→R ~warping functions!, one can build a new metric manifold (M ,g) by
settingM5M13M2 and

g5e2u2p1* h1^ e2u1p2* h2 , ~1!

where p1 ,p2 above are the canonical projections ontoM1 and M2 , respectively, and will be
omitted where there is no risk of confusion~thus writing, from now on:g5e2u2h1^ e2u1h2). One
such structure will be calleddouble warped product manifold, and gives rise to the so-calle
warped product manifoldwhenever one of the warping functions is constant, see Refs. 1 an

If dim M11dim M254 andg has Lorentz signature@i.e., one of the manifolds (Mi ,hi) is
Lorentz and the other Riemann#, then (M ,g) will be referred to as adouble warped space–time,
and again, if one of the warping functions is constant, one recovers the definition ofwarped
space–time ~see Refs. 3 and 4!.

In what is to follow and unless otherwise stated, we shall assume that we are dealin
‘‘proper’’ double warped space–times~i.e., neither of the warping functions is constant!; further,
and without loss of generality (M1 ,h1) will be assumed Lorentzian and (M2 ,h2) Riemannian.

The considerations in this work will be mainly local, thus we shall assume that for eap
PM there exists a neighborhoodU of p such that there is a coordinate systemxa, a50,...,3 on
U adaptedto the product structure in the sense that the line element associated withg can be
written as

ds25e2u2(xD)h1 ab~xg!dxa dxb1e2u1(xg)h2 AB~xD!dxA dxB; ~2!

wherexa,b,¯ and xA,B,¯ will designate the coordinates on the submanifoldsM1 and M2 of M
throughp, respectively, whilen1 andn2 denote their respective dimensions; thus, Greek ind
will run from 0 to n121 and capital Latin indices fromn1 to 3. Conversely, if a space–tim
contains an open neighborhoodU on which there exists a coordinate system as the one desc
above, then it will be referred to aslocally double warped space–time.

The aim of the present paper is to deal with double warped space–times in much the
way as warped space–times were dealt with previously~see Refs. 3 and 4 and references cit

a!Electronic mail: mpr@mct.uminho.pt
48390022-2488/2003/44(10)/4839/27/$20.00 © 2003 American Institute of Physics
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therein!; thus their geometrical properties will be deducted and studied starting from those o
lower dimensional factors (Mi ,hi) which are, in general, much easier to deal with.

The paper is structured as follows: in Sec. II an invariant characterization of these s
times is given, including their characterization in terms of the Newman–Penrose formalism,
classification scheme is put forward. Section III contains some results on the curvature struc
such space–times, whereas Secs. IV and V deal with their conformal algebra. Finally, in Se
a few remarks are made on double warped exact solutions.

II. INVARIANT CHARACTERIZATION AND CLASSIFICATION

Starting with the form~2! of the line element, let us re-write it as follows:

ds25e2(u1(xg)1u2(xD))@e22u1(xg)h1 ab~xg!dxa dxb1e22u2(xD)h2 AB~xD!dxA dxB#, ~3!

now, the two termse22u1(xg)h1 ab(xg) ande22u2(xD)h2 AB(xD) are metrics on the submanifold
M1 and M2 , say ĥ1 and ĥ2 . The sum of their associated line elements@that is, the expression
within the square brackets in~3!#, is the line element, say dŝ2 of a decomposable space–tim
(M ,ĝ) with M5M13M2 and ĝ5ĥ1^ ĥ2 ~Again, to be correct one should writeĝ5p1* ĥ1

^ p2* ĥ2 , p1 , p2 being the canonical projections ontoM1 andM2 , but since there is no risk o
confusion, we omit them for the sake of simplicity!, thus we have proven:

Lemma 1: A (locally) double warped space–time is always conformally related to a (locally
decomposable space–time, the conformal factor being separable in the coordinates associ
with the two factor submanifolds.

In what follows, we shall refer to the factor submanifolds in the decomposable space
(M ,ĝ) as (M1 ,ĥ1) and (M2 ,ĥ2), respectively, assuming that (M1 ,ĥ1) is Lorentz and (M2 ,ĥ2)
Riemann; and we shall write the metric of a double warped space–time asg5exp(2u)ĝ in the
understanding thatĝ is the metric of the underlying decomposable space–time andu separates as
the sum of two functionsu1 andu2 on M1 andM2 , respectively.

Now, the space–time (M ,ĝ) is locally decomposable if its holonomy group is nondegen
ately reducible~and globally decomposable if, on top of this, it is simply connected! ~see for
instance Ref. 5, and references therein!, its holonomy type being thenR2 , R3 , R4 , R6 , R7 , R10,
or R13 ~see Ref. 6!; one then has the following possibilities for (M ,ĝ).5

~1! (M ,ĝ) is 113 decomposable if it admits a global, non-null, nowhere zero covaria
constant vector fielduW . One then distinguishes between 113 spacelike~holonomy typeR13) or
113 timelike ~holonomy typesR3 , R6 or R10) depending on the nature of the three-dimensio
submanifold orthogonal to the covariantly constant vector field. In a coordinate system adap
the covariantly constant vector field, sayuW 5]u , the line element dŝ2 then takes the following
forms, respectively:

dŝ252du21ĥAB~xD!dxA dxB

or

dŝ25ĥab~xg!dxa dxb1du2. ~4!

If another non-null covariantly constant vector field exists in the space–time, then (M ,ĝ) decom-
poses further and can be referred to as being 11112 spacelike~type R4) or 11112 timelike
~type R2) in an obvious notation.

~2! (M ,ĝ) is 212 decomposable and then two global, linearly independent recurrent
vector fields exist~holonomy typeR7). This is equivalent to saying that in (M ,ĝ) there exist two
linearly independent covariantly constant tensor fields of rank 2, sayP andQ such that

ĝab5Pab1Qab
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with

Pab/c5Qab/c50; ~5!

a stroke denoting covariant derivative in (M ,ĝ); the line element reads in this case

dŝ25ĥ1 ab~xg!dxa dxb1ĥ2 AB~xD!dxA dxB, ~6!

whereĥ1 and ĥ2 are two two-dimensional metrics onM1 andM2 , respectively, such thatp1* ĥ1

5P andp2* ĥ25Q.
Going back to the double warped space–time (M ,g) conformally related to (M ,ĝ) via ~3!, it

appears natural to consider the following two classes of double warped space–times.
Class Awhenever the underlying space–time (M ,ĝ) is 113 decomposable. If necessary, a

following the same notation as in the case of warped space–times, we shall distinguish b
classesA1 (113 spacelike! and A2 (113 timelike!. Taking into account~3! and ~4!, we shall
write the canonical form of the line element of these space–times as

ds25e2(u1(u)1u2(xD))@2du21ĥAB~xD!dxA dxB#, ~7!

ds25e2(u1(xg)1u2(u))@ ĥab~xg!dxa dxb1du2#, ~8!

respectively.
Class Bwhenever the underlying space–time (M ,ĝ) is 212 decomposable. The canonic

form of the line element will be in this case

ds25e2(u1(xg)1u2(xD))@ ĥ1 ab~xg!dxa dxb1ĥ2 AB~xD!dxA dxB#. ~9!

In what is to follow and whenever no confusion may arise, we shall putu[u1(xg)1u2(xD) and
write accordingly

gab5e2uĝab ,

and also

ds25e2u dŝ2. ~10!

Also, we shall denote the covariant derivatives in (M ,g) and (M ,ĝ) by ¹ and ¹̂ or a semicolon
~;! and a slash~/!, respectively. Further, reference will be often made to conformal Killing vec
and their properties, hence it is in order at this point to recall their definition and basic prope
thus, given ann-dimensional manifoldV endowed with a metricg of arbitrary signature, a vecto
field XW on V is said to be aconformal Killing vector~CKV! iff LXW g52fg wheref is some
function of the coordinates~conformal factor! andLXW stands for the Lie derivative operator wit
respect to the vector fieldXW . The former equation can also be written in an arbitrary coordin
chart as

Xa;b5fgab1Fab ~11!

and then, from the Bianchi identities, it follows

Fab;c5RabcdX
d2fagbc1fbgac , ~12!

LXW Rab52~n22!fa;b2f ;c
c gab , ~13!

LXW R522fR22~n21!f ;c
c , ~14!
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LXW Rabcd52fRabcd2fa;cgbd1fa;dgbc2fb;dgac1fb;cgad , ~15!

wherefa[f , a , a semicolon stands for the covariant derivative with respect to the conne
associated with the metric,Fab52Fba is the so-calledconformal bivector, andRabcd, Rab , and
R stand, respectively, for the components in the chosen chart of the Riemann and Ricci tens
the Ricci scalar. The special casesf5constant andf50 correspond, respectively, toXW being a
homothetic vector~HV! and aKilling vector ~KV !, the associated bivector is then said to be
homothetic bivector, or Killing bivector, respectively. A CKV is said to beproper whenever it is
nonhomothetic~i.e., fÞconst); likewise, we shall use ‘‘proper homothetic’’ to designate a
which is not a KV ~i.e., f5constÞ0). A proper CKV is said to be aspecial CKV~SCKV!
whenever its associated conformal factorf satisfiesfa;b50 in any coordinate chart. Further, it i
easy to see that the CKV that (V,g) admits form, under the usual Lie bracket operation, a
algebra of vector fields which we shall designate asCr(V,g), r being its dimension. Similar
statements can be made regarding the SCKV, HV, and KV that (V,g) may admit@Lie algebras
Sr(V,g), Hr(M ,g) andKr(V,g) respectively~note from the above considerations it follows th
in any given space–timeCr$Sm$Hs$Kn , with r>m>s>n)#. We refer the reader to Ref. 7 fo
further details on CKV and their Lie algebra. Going back now to the problem of character
class A and B double warped space–times, we see that this can be carried out by ‘‘translatin
(M ,g) the properties of the preferred vector fields~non-null covariantly constant or null recurren!
that characterize the underlying decomposable space–times (M ,ĝ). Thus we get:

Theorem 1: The necessary and sufficient condition for(M ,g) to be a double warped class A

space–time is that it admits a non-null, nowhere vanishing CKV XW which is hypersurface orthogo

nal and such that the gradient of its associated conformal factorc is parallel to XW .
Proof: Let (M ,g) be a class A double warped space–time, its line element takes then the

~7! and ~8! and it is easy to see thatXW 5]u is a CKV which satisfies the required properties,
particular, its associated conformal factorc is c5u ,u which on account of the form thatu has
~separable inu and the rest of the coordinates! is c5c(u) and thereforec ,a}Xa .

The converse also holds for, assume that (M ,g) admits a non-null, nowhere vanishing CK
XW which is hypersurface orthogonal. SinceXW is nonvanishing and hypersurface orthogonal
coordinate chart exists, say$u,xk%, such that

XW 5]u , ds25ee2U(u,xk)du21hi j ~u,xk!dxi dxj ,

wheree561 ~see for example Ref. 8, p. 168!. Further, the conformal equations forXW above are
simply gab,u52cgab ~with c5c(u,xk)) which in turn implies

c~u,xk!5U ,u~u,xk!, hi j ~u,xk!5e2U(u,xk)ĥi j ~xk!

and the above line element can then be written as

ds25e2U(u,xk)@edu21ĥi j ~xk!dxi dxj #.

Finally, imposing thatc ,a}Xa yields c5c(u) and thereforeU(u,xk)5u1(u)1u2(xk) and the
resulting space–time is then class A double warped. h

The characterization of warped space–times can now be easily recovered as the fol
corollary shows:

Corollary 2: If the CKV XW in theorem 1 is a Killing vector (KV) then the space–time is warped

of class A2 in the classification given in Ref. 3. If XW is a proper (non-KV) gradient CKV (i.e., if the
associated conformal bivector vanishes Fab5Xa;b2Xb;a50) the space–time is class A1 warped
in that classification.

It is worthwhile noticing that Theorem 1 also provides an invariant characterization of sp
times conformal to 113 locally decomposable space–times:
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Corollary 3: The necessary and sufficient condition for(M ,g) to be conformally related to a
113 decomposable space–time (M ,ĝ) is that it admits a non-null, nowhere vanishing conform

Killing vector (CKV) XW which is hypersurface orthogonal.
Theorem 1 can be conveniently rephrased in terms of Newman–Penrose~NP! formalism9

through the two following theorems:
Theorem 4: (M ,g) is a class A1 double warped space–time if and only if there exist a

function U:M→R and a canonical complex null tetrad$ka ,l a ,ma ,m̄a% (kal a52mam̄a521) in
which:

DU5e1 ē, ~16!

nU52~g1ḡ !, ~17!

dU5k1p̄52~t1 n̄ !, ~18!

s1l̄50, ~19!

a1b̄50, ~20!

e1 ē1g1ḡ5r1m̄, ~21!

D~r1m̄ !52F, ~22!

n~r1m̄ !5F, ~23!

d~r1m̄ !5 d̄~r1m̄ !50, ~24!

whereF5F(u) is a real function of the timelike coordinate u.
Proof: With the notation of Theorem 1 we have that for a classA1 double warped space–tim

a coordinate chart$u,xk% exists such that the line element takes the form~7!, XW 5]u is then a
timelike hypersurface orthogonal CKV with associated conformal factorc(u)5u1,u(u), and uW
5e2U]u is a unit timelike vector field parallel toXW where we putU(u,xk)5u1(u)1u2(xk) for
convenience, it is then easy to see that, in the above coordinate chart, one has

ua;b5~U ,cu
c!gab2U ,aub ~25!

and also

c ,a5Fe2Uua , ~26!

whereF5F(u) is a real function of the timelike coordinateu @to be precise:F52u1, uu(u)].
One can define a canonical null tetrad as follows:

ka5
1

&
~ua1xa

1!, l a5
1

&
~ua2xa

1!, ma5
1

&
~xa

21 ixa
3!, ~27!

wherexa
1 , xa

2 , xa
3 are spacelike vectors orthogonal toua . Expressions~16!–~24! are then obtained

by contracting~25! and ~26! with the tetrad~27!.
On the other hand, contracting~16!–~24! with the dual of~27! one recovers expressions~25!

and~26!, which, according to Theorem 1, imply that the space–time is classA1 double warped.h
Theorem 5: (M ,g) is a class A2 double warped space–time if and only if there exist a

function U:M→R and a canonical complex null tetrad$ka ,l a ,ma ,m̄a% (kal a52mam̄a521) in
which one of the following sets of equations holds:
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DU5e1 ē, ~28!

DU52~g1ḡ !, ~29!

dU52k1p̄5t1 n̄, ~30!

s2l̄50, ~31!

a1b̄50, ~32!

e1 ē2~g1ḡ !5r2m̄, ~33!

D~r2m̄ !5F, ~34!

D~r2m̄ !5F, ~35!

d~r2m̄ !5 d̄~r2m̄ !50, ~36!

DU5s1 r̄, ~37!

DU52~ l̄1m!, ~38!

dU5ā2b, ~39!

dU1 d̄U5p1p̄52~t1 t̄ !, ~40!

k1k̄50, ~41!

n1 n̄50, ~42!

e2 ē50, ~43!

g2ḡ50, ~44!

d~p1p̄ !5 d̄~p1p̄ !5F8, ~45!

D~p1p̄ !5D~p1p̄ !50, ~46!

DU52s1 r̄, ~47!

DU5l̄2m, ~48!

dU5ā2b, ~49!

dU2 d̄U52p1p̄52t1 t̄, ~50!

k2k̄50, ~51!

n2 n̄50, ~52!

e2 ē50, ~53!

g2ḡ50, ~54!
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2d~p2p̄ !5 d̄~p2p̄ !52F9, ~55!

D~p2p̄ !5D~p2p̄ !50, ~56!

whereF,F8 and F9 are real functions of the spacelike coordinate u.
Proof: The proof follows along the same lines as that of Theorem 4. IfXW 5]u is the hyper-

surface orthogonal spacelike CKV anduW 5e2U]u is the unit spacelike vector field parallel to
whose existence are ensured by theorem 1, then a canonical tetrad can be constructed in o
following ways:

ka5
1

&
~ua1xa

3!, l a5
1

&
~2ua1xa

3!, ma5
1

&
~xa

21ıxa
1!, ~57!

ka5
1

&
~xa

21xa
3!, l a5

1

&
~2xa

21xa
3!, ma5

1

&
~ua1ıxa

1!, ~58!

ka5
1

&
~xa

21xa
3!, l a5

1

&
~2xa

21xa
3!, ma5

1

&
~xa

11ıua!, ~59!

whereua ,xa
1 ,xa

2 are spacelike vectors andxa
3 is a timelike vector.

Equations~28!–~36! are obtained contracting~25! and ~26! with tetrad~57!, ~37!–~46! arise
from contracting~25! and~26! with tetrad~58!, while contraction of~25! and~26! with tetrad~59!
gives rise to~47!–~56!. To recover expressions~25! and~26! one must in turn contract those se
of equations with the corresponding dual tetrad. h

Regarding the characterization of class B double warped space–times, we shall first rec
necessary and sufficient condition for a space–time to be conformally related to a 212 decom-
posable one, as it was given in theorem 3 of Ref. 3, and next give the condition on the con
factor that makes it separable in the two sets of coordinates adapted to the two two-dimen
factor submanifolds. We do this in the following theorem:

Theorem 6: The necessary and sufficient condition for(M ,g) to be conformally related to a
212 decomposable space–time (M ,ĝ) with g5exp(2u)ĝ (u being a real function), is that there

exist null vectors lW and kW ( l aka521) satisfying

l a;b5Ae2ul al b2u ,al b1~u ,cl
c!gab , ka;b52Ae2ukal b2u ,akb1~u ,ck

c!gab ; ~60!

for some function A. Further, (M ,g) is class B doublewarped if and only if

Ha
c~hb

du ,d! ;c12~hb
du ,d!~Ha

cu ,c!50,

where

hab[22k(al b), Hab[gab1hab . ~61!

Proof: The reader is referred to Theorem 3 of Ref. 3 for a proof of the first part of the theo
As for the second part, namely that characterizing double warped space–times within the
class of space–times which are conformal to 212 decomposable ones, notice that Eq.~61! is
nothing but the covariant expression of]a(]Au)50, where$xa% and$xA% are coordinate charts o
the two 2-dimensional submanifoldsM1 andM2 , respectively~see Sec. I!. h

As in the former case, Theorem 6 can be expressed in terms of the NP formalism. To
a complex null tetrad$ka ,l a ,ma ,m̄a%[$za

m% is chosen such thatkW and lW are the vectors in~60!;
i.e., kal a52mam̄a521 all other inner products vanishing.
One then has
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Theorem 7: The necessary and sufficient condition for(M ,g) to be conformally related to a
212 decomposable space–time (M ,ĝ), with g5e2uĝ, is that there exist a functionu:M→R and
a canonical complex null tetrad$ka ,l a ,ma ,m̄a% as described above such that

k5s5l5n5a1b̄5p1 t̄5r1~e1 ē !50,

Ae2u5m1~g1ḡ !, ~62!

r52Du, m5Du, t52du,

where A is the real function appearing in (60). Furthermore, (M ,g) is class B double warped i
and only if

dr522rt, dm522mt, rm50. ~63!

Proof: Equation~60! for lW andnW 5kW becomes in NP formalism

g1mn5bh1mh1n2u ,mh1n1hmnDu, ~64!

g2mn52bh2mh1n2u ,mh2n1hmnDu, ~65!

whereb[Ae2u, m,n,... aretetrad indices and the notation is the same as in Ref. 9. Contra
~64! and ~65! with the tetrad vectors,~62! are easily obtained.

On the other hand, the tetrad version of~61!, together with the information contained in~62!,
yields ~63!.

Conversely,~62! and ~63! contracted with the dual tetrad of$ka ,l a ,ma ,m̄a% give Eqs.~60!
and ~61!. h

The characterization of class A and class B double warped space–times given in Theo
and 6, or alternatively 4, 5, and 7 should prove useful in formulating an algorithm for classi
such metrics. This is so because this characterization is coordinate independent althoug
dependent. In what follows the tetrads described in Theorems 4, 5, and in Theorem 7 w
designated asdw tetrads of class A and B, respectively.

Thus, in order to determine whether a given metricg represents a double warped space–tim
one can either use Theorems 1, and 6~coordinate approach!, or else their counterparts 4, 5, and
through the following scheme:

~1! Determine the Petrov type of the Weyl tensor associated with the metricg and choose a
canonical tetrad$ka ,l a ,ma ,m̄a% such thatgab52@2 l (akb)1m(am̄b)#.

~2! Determine the NP spin coefficients and their NP derivatives in the chosen tetrad~1!.
~3! If the scalars determined in step~2! satisfy the relations of Theorem 4 or 5~respectively, 7! for

some functionU ~respectively,u!, then the space–time is double warped of class A~respec-
tively, B! and the algorithm stops here, otherwise continue the algorithm.

~4! If possible, find the Lorentz transformation of the invariance group that transforms tetra~1!
into a dw tetrad; i.e., such that the corresponding NP spin coefficients and NP derivative
the conditions in Theorem 4 or 5~respectively, 7!. If such a transformation exists, the spac
time is double warped of class A~respectively, B!, otherwise it is not double warped.

The Lorentz transformations considered in step~4! must belong to the invariance group of th
Petrov type of the metric since in step~1! one chooses a canonical tetrad. Thus, for instance, if
given metric is of the Petrov type D or N, then in step~4! one looks for spin and boost transfo
mations or for null rotations respectively.
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III. CURVATURE STRUCTURE

The purpose of this section is to study the Riemann tensor of double warped space–ti
connection with that of the underlying, conformally related, decomposable space–time, w
special emphasis on the algebraic Petrov and Segre types of the associated Weyl and Ricci
respectively.

First of all, notice that since the metricg of the double warped space–time is conforma
related to that of the decomposable space–timeĝ, their respective Weyl conformal tensors an
hence their Petrov types, will be equal. The Petrov types of decomposable space–times
easily calculated and are in most cases related to the holonomy type of the space–time; th
5 one has that if the space–time is 113 spacelike~holonomy typeR13) the Petrov type can only
be I , D, or O, whence it follows that classA1 double warped space–times can only be of tho
Petrov types. In the case of 113 timelike decomposable space–times the Petrov type of the W
tensor is unrestricted and the same will hold forA2 double warped space–times. Finally, th
Petrov type of 212 decomposable space–times~holonomy typeR7), and hence that of class B
double warped ones, can only beD or O. Further, if it is type D the null vectorskW and lW in
Theorem 6 are principal null directions of the Weyl tensorC bcd

a , since the corresponding nu
vectors in the underlying 212 decomposable space–time~that is: the recurrent null vectorsl̂ a

5e2ul a and k̂a5e2uka , see Ref. 3 for details! can be easily seen to be principal null directio
of the Weyl tensor in (M ,ĝ); i.e., Ĉ bcd

a ~which equalsC bcd
a ); see Ref. 10.

Regarding the Segre classification of the Ricci tensor, similar comments to those in the c
warped space–times hold; that is: conformal scaling does change the Ricci tensor and th
the Segre type of double warped space–times is unrestricted in principle. Further, in the c
class A warped space–times we have that the unit vector fielduW ~see proof of Theorem 1! is
always an eigenvector of the Ricci tensor3 ~and therefore the Segre type of classA1 warped
space–times is$1,111% or one of its degeneracies!, while in the case of double warped space–tim
this is no longer so for, from the Ricci identity specialized touW it follows ~see Ref. 11!:

R b
a ua52 2

3 Q ,b1 1
3 ~Q̇1Q2!ub ,

now, in order foruW to be an eigenvector of the Ricci tensor, it should be thatQ ,b}ub and then a
trivial calculation using the expressions foruW and the metric that appear in the proof of Theore
1 shows that eitherQ50 and then the conformal factor associated withXW is c50; i.e.,XW is a KV
and the space–time isA2 warped~see Corollary 2! or elseU(u,xk)5u1(u) the space–time thus
being typeA1 warped. Since the converse follows trivially, we have shown

Corollary 8: The necessary and sufficient condition for a class A double warped space–time

to be a class A warped space–time is that the CKV XW in Theorem 1 be a Ricci eigenvector (the
it is of class A1 if it is a proper CKV and of class A2 if it is a KV).

In the case of type B space–times, all Segre types are possible in principle.
To close this section, we next give the expressions of the Ricci tensors and the Ricci

They can be derived easily from Appendix D in Ref. 12. Notice that, in the notation establish
the previous section,ua,A5ua/A50,

Rab5R̂ab22@u1 a/b2u1 au1 b#2Sĥ1 ab ,

RaB52u1 au2 B , ~66!

RAB5R̂AB22@u2 A/B2u2 Au2 B#2Sĥ2 AB ,

where

S[u /d
d 12udud , ~67!
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that is:

S5
1

A2ĥ1

@A2ĥ1u1
m# ,m12ĥ1

mnu1 mu1 n1
1

Aĥ2

@Aĥ2u2
M# ,M12ĥ2

MNu2 Mu2 N , ~68!

whereĥ1[det(ĥ1)mn , ĥ2[det(ĥ2)AB, andu1 a[u1 ,a , etc., andR̂ab stands for the components o
the Ricci tensor associated with the decomposable metricĝ, which turn out to beR̂ab5R̂1 ab and
R̂AB5R̂2 AB that is: the Ricci tensors of the metricsĥ1 and ĥ2 , respectively. Notice thatS is
separable as a sum in the coordinatesxa andxA. For the Ricci scalar one easily gets

R5e22(u11u2)$R̂26@~2ĥ1!2 1/2~~2ĥ1!1/2u1
m! ,m1ĥ1

mnu1 mu1 n

1~ ĥ2!2 1/2~~ ĥ2!1/2u2
M ! ,M1ĥ2

MNu2 Mu2 N#%, ~69!

whereR̂ denotes the Ricci scalar of the metricĝ, which is simplyR̂11R̂2 , i.e., the sum of the
Ricci scalars associated with the metricsĥ1 and ĥ2 .

IV. THE CONFORMAL LIE ALGEBRA OF CLASS B DOUBLE WARPED SPACE–TIMES

The purpose of this section is to make a few remarks on the Lie algebra of CKV, inclu
Killing vectors ~KV ! and homothetic vectors~HV!, of class B double warped space–times.

A double warped space–time (M ,g) admits a CKVXW iff LXW g52cg wherec is some real
function. If c5constant thenXW is a HV and ifc50 it is a KV.

Now, since a double warped space–time (M ,g) is always conformally related to a decom
posable one (M ,ĝ), their respective conformal algebras will be equal; and as it turns out,
relatively simple to deal with the conformal algebra of the decomposable space–time (M ,ĝ).
Conformal algebras in locally decomposable space–times have been studied by Cole
Tupper,13 Capocci and Hall,14 and~following a different approach! by Tsamparlis.15 For the sake
of completeness, we next summarize the basic results and refer the reader to the above pa
detailed proofs.

Theorem 9: Let (M ,ĝ) be a 212 decomposable space–time; the following results hold
regarding its conformal Lie algebra:

(1) If (M ,ĝ) is conformally flat (CF) its conformal algebra is 15-dimensional, their generat
being those of Minkowski’s conformal algebra. In this case the two factor submanifolds
each be of constant curvature, say k1 and k2 , respectively, with k11k250.

(2) If it is not CF, the only CKV it may admit are KV or HV.
(3) If (M ,ĝ) is not CF its KV are the KV of the submanifolds(Mi ,ĥi), for i 51,2; that is: if

za5(z0,z1) is a KV of (M1 ,ĥ1), thenja5(z0,z1,0,0) is a KV of (M ,ĝ), etc. Also, (M ,ĝ)
will admit a HV if and only if each of(Mi ,ĥi) for i 51,2admit a HV, i.e., ifka5(k0,k1) and
la5(l2,l3) are HV of the 2-spaces (adjusted to the same numerical values of the resp
homothetic scalars), thenha5(k0,k1,l2,l3) is an HV of(M ,ĝ) with the same value for its
homothetic scalar.

For the case referred to in the above theorem, the reader is also referred to Ref. 16 w
thorough discussion of conformally decomposable 212 space–times is given, along with a cla
sification in terms of their conformal algebra.

V. THE CONFORMAL LIE ALGEBRA OF CLASS A DOUBLE WARPED SPACE–TIMES

We shall dedicate this section to the study of the conformal algebra of class A double w
space–times, which by our previous remarks, will be the same as that of the underlying13
decomposable space–time in each case. In so doing, we shall give some interesting res
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particular types of CKV~namely: gradient CKV or GCKV for short! in three-dimensional mani
folds which, to the best of our knowledge, are new. Most of the results on proper CKV in13
decomposable space–times can be found in Ref. 13 and also~although no explicit expressions ar
given! in Ref. 14, we re-derive them here following a different approach which provides inte
ing information on the geometry of three-dimensional manifolds, and renders along the way
and interesting results on particular types of CKV~namely: gradient CKV, GCKV for short! also
in three-dimensional manifolds which, to the best of our knowledge, do not exist in the litera

For this section alone, we shall change our notation slightly so as to avoid unnece
complications, thus, the line element of the decomposable space–time (M ,ĝ) will be written as

dŝ25@edu21hAB~xD!dxA dxB#, e561. ~70!

The three-dimensional submanifold coordinated byxA, A51,2,3 will be noted asV and its
metric ~of either signature! ash ~instead ofĥ). We shall represent the covariant derivative w
respect to the three-dimensional metrich by a slash~‘‘/ ’’ !, whereas a semicolon ‘‘ ; ’’ will be used
to note that with respect to the four-dimensional metricĝ. ~The reader is reminded that th
notation holds only in the present section: notice that, in the rest of the paper, a semicolon
for the covariant derivative associated withg, the metric of the double warped space–tim
whereas a slash stands for that associated withĝ, the metric of the decomposable space–tim!
The covariantly constant vector is thenuW 5]u ~i.e., ua;b50 and therefore it is a non-null gradien
KV !. Finally note that, in the above coordinate system, the covariant derivatives satisfy

Xab¯ ;u5Xab¯ ,u , Xab¯ ;A5Xab¯ /A

for any tensorXab¯ , and also that

Rua50, RAB5 R
~3!

AB,

where R
(3)

AB stands for the Ricci tensor associated to the 3-metrich on V.
In order to investigate its conformal algebra, we first make a few trivial remarks in

paragraphs that follow.
First of all, and making an obvious abuse in the notation, we shall represent points inM by

their coordinates in the above chart@that is: pPM with coordinatesxa(p)5(u,xA) will be rep-
resented simply as (u,xA)]; next we consider the three-dimensional submanifold~hypersurface!
consisting of all the points with the same value of thex0 coordinate, sayx05u, and note it as
V(u); i.e., V(u)5$(u,xA) : u fixed%; the induced metric onV(u) is h and, clearly, any two
such submanifolds are diffeomorphic amongst themselves@and diffeomorphic to (V,h)] by the
one-parameter group of isometries$t t% generated byuW @that is: t t :V(u)→V(u1t) where
t t(u,xA)5(u1t,xA) wherever this makes sense#.

Note thatt t* h5h; that is, the three-dimensional metrich is invariant under the isometrie
generated byuW . Further, a vector fieldXW in M will be invariant under these isometries (t t* XW

5XW ) iff @uW ,XW #50. In particular, ifXW is tangent to the submanifoldsV(u) it follows that it will be
invariant under$t t% iff its components with respect to the above coordinate basis do not depe
u, i.e., XW 5XA(xD)]A .

Finally, we shall use the notationCn(V,h) (Sn(V,h), Hn(V,h) or Kn(V,h)) to designate the
n-dimensional conformal~respectively: special conformal, homothetic or Killing! algebra of
(V,h). Such an algebra~and therefore all of its subalgebras! is finite dimensional, its dimension
being 10 at most~and (V,h) is then conformally flat!. If ( V,h) is nonconformally flat, then, a
remarkable theorem by Hall and Capocci~see Ref. 17! shows that its dimension can be at most
In our subsequent developments we will often have to refer to some basis ofCn(V,h), which we
will generically represent by$zW k%, k51,...,n with associated conformal factorsck ; that is
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LzWk
h52ckh. ~71!

Notice that any such basis is invariant under the isometries generated byuW ; that is: @uW ,zW k#

50, k51,...,n, hencezW k5zk
B(xD)]B and therefore alsock5ck(x

D). ~Some of the conforma
factors ck may be constant if they correspond to homotheties, or zero in the case of K
vectors.!

We can now consider the problem of finding the CKV of a 113 reducible space–time (M ,ĝ).
Let YW PCr(M ,ĝ), one then has

Ya;b1Yb;a52fĝab .

In the chosen coordinate chart,YW 5Yu(u,xB)]u1YA(u,xB)]A and the above equation then rea
~on account of our previous remarks!:

Yu,u5e1f, ~72!

Yu,A1YA,u50, ~73!

YA/B1YB/A52fhAB . ~74!

Now, ~74! effectively says that foru fixed the vector fieldYB(u,xD)]B is a CKV in V(u) @equiva-
lently: if a proper CKV is admitted in (M ,ĝ) then, its projection on the submanifoldsV(u) is a
CKV there#, therefore, given$zW k% a basis forC(V,h), it follows that it will also be a basis of
C(V(u),h) (u fixed but otherwise arbitrary! whence, onV(u) we shall necessarily hav
YB(u,xD)]B5lkzW k with lk5constant and summation overk51,...,n is to be understood; agai
this will be so for anyV(u) ~i.e.,u fixed but otherwise arbitrary!. Finally, since@uW ,zW k#50, we will
have

YW 5Yu~u,xB!]u1lk~u!zW k~xB!, ~75!

wherelk(u), k51,...,n aren functions of the coordinateu. Substituting this back into~72!–~74!

and puttingf[Ṡ, where a dot indicates differentiation with respect tou, yields

Yu5e1S, f5Ṡ5lk~u!ck~xB!, ~76!

e1S ,A1l̇kzk A50. ~77!

Further,l̇k(u)zW k is also a CKV in eachV(u) @since foru fixed it is a linear combination of the
CKV in the basis ofC(V,h)] which, on account of~77!, is locally a gradient, i.e.,l̇kzk A5
2e1S ,A . The question arises as to how many independent GCKV may (V,h) admit, what are
they; namely proper CKV, proper HV, or KV, and what does their existence imply on the 3-m
h.

Before proceeding, the following remarks, which follow trivially from the above equatio
are in order:

R0: If no GCKV exist in (V,h), thenl̇k50 @i.e.,lk(u)5constant] in the above equations an
f5lkck(x

B)5constant~since thenf5lkck(x
D)[f(xD), which yieldsYu5uf(xD)1B(xD),

but thenYu,A1YA,u50 impliesf ,A5B,A50.), that is:YW is homothetic in (M ,ĝ) @andlk(u)zW k is
also homothetic in (V,h)]. If ( V,h) is such that no HV are admitted, then the only CKV th
(M ,ĝ) admits are KV.

R1: Let jW be a KV in (V,h), thenjW is also a KV of (M ,ĝ).
R2: Let YW be a KV in (M ,ĝ). The following situations may then arise:
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~a! (V,h) admits no KV, thenYW 5a]u necessarily.
~b! (V,h) admits KV none of which is locally a gradient. Then, if$jW k% is a basis ofK(V,h), one

has

YW5a]u1bkjWk ~78!

with a,bk arbitrary constants.
~c! (V,h) admits KV some of which are locally gradients~and therefore, by the Killing equa

tion, covariantly constant vectors!. Then one can choose a basis forK(V,h), say

$jW1 ,...,jW p ,jW p11 ,...,jWn% ~with p<3) in a way such thatjW1 ,...,jW p are covariantly constant
Then

YW5A~xB!]u1asu jWs1bkjWk , ~79!

where as,bk are arbitrary constants, (s51,...,p, k51,...,n) and A(xB) satisfies A,B

5asjs B . Notice that if one of the gradient KV in (V,h) is non-null, the space–time (M ,ĝ)
decomposes still further, becoming a 11112 decomposable space–time. If (V,h) admits
two, then a third one is automatically admitted and the space–time (M ,ĝ) is locally flat. We
shall return to this later on in the paper.

R3: Let hW be a proper HV in (V,h) with homothetic constantk(Þ0), thenYW 5ku]u1hW is
also a HV of (M ,ĝ) with homothetic constantk. Further, if YW is a proper HV of (M ,ĝ) with
homothetic constantk(Þ0), then it is of the form

YW 5ku]u1hW , ~80!

hW being a~proper! HV in (V,h) scaled so as to have the same valuek for its homothetic constant
the above HV is unique up to the addition of KV such as those given by~78! and/or~79! ~if GKV
exist!.

The various possibilities regarding the existence of GCKV in (V,h) can be summarized a
follows:

~1! (V,h) admits no GCKV~either proper or homothetic, including Killing!. In that case~77!

implies l̇k50 and the rest of the equations imply then thatYW is a HV, see Eqs.~78! or ~80!
above. Thus, in this case (M ,ĝ) admits no proper CKV.

~2! The only GCKV that (V,h) admits are gradient KV~GKV!. In this case (M ,ĝ) admits a
proper CKV~which turns out to be a SCKV! if and only if the GKV is null and (V,h) admits
a proper SCKV~i.e., nonhomothetic! such that the gradient of its conformal factor is paral
to the null GKV. Otherwise the only CKV that (M ,ĝ) admits are HV.

~3! (V,h) admits proper gradient HV~GHV!; it may also admit GKV, but no proper GCKV exis
in (V,h). In this case, (M ,ĝ) does admit a proper CKV which turns out to be special~i.e.,
SCKV!; that is: its associated conformal factorf satisfiesfa;b50. This SCKV is unique up
to the addition of KV and HV which must then take the forms discussed above.

~4! (V,h) admits proper GCKV~GHV and/or GKV can also be admitted in principle!. In this
case, the space–time admits proper CKV.

Regarding the maximum number of GCKV that a three-dimensional space may admit, on
easily prove the following results:

Proposition 1: Let(V,h) be a three-dimensional Lorentz or Riemann space admitting

independent proper GCKV, sayzW andxW , with associated conformal factorsc andf, respectively,
then:

(1) The Lie bracket@zW ,xW #[jW is a KV.
(2) The conformal factors arec5kz and f5kx, where k is a constant andz and x are the
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functions whose gradients are the GCKVhW and xW , respectively.
(3) (V,h) is of constant curvature and therefore the Cotton–York tensor vanishes, thus bein

conformally flat.

Proof: SupposehW andxW are linearly independent GCKV satisfying

zA/B5chAB , xA/B5fhAB ,

wherezA5z , A , xA5x , A and also@see comments following Eq.~111!# c5c(z) andf5f(x).
Now, a direct calculation shows that

@zW ,xW #5fzW2cxW [jW

that is,hW andxW are surface-forming.
Compute next

L[ zW ,xW ]hAB5LzW~LxW hAB!2LxW ~LzWhAB!52~zDxD!~f̃2c̃ !hAB ,

wheref̃[df/dx and c̃[dc/dz, and also

LjWhAB5LfzW2cxW hAB5~f̃2c̃ !~zAxB1xAzB!

therefore

~f̃2c̃ !~zAxB1xAzB!52~zDxD!~f̃2c̃ !hAB .

An elementary consideration on the ranks of the tensors at both sides of the equation readily
that

f̃2c̃50;

therefore

c5kh, f5kx

andjW is then a KV given by

jW5k~xzW2zxW !,

which is not a gradient:jA/B5k(zAxB2xAzB).
Now, since bothzW and xW are GCKV their respective conformal bivectors are zero and~12!

applied to them yields

RABCDzD5k~zAhBC2zBhAC!,

RABCDxD5k~xAhBC2xBhAC!,

which in turn implies, upon contraction withhAC,

RBDzD522kzB , RBDxD522kxB .

Now, in three dimensions one has

RABCD5RAChBD2RADhBC1hACRBD2hADRBC1~R/2!~hADhBC2hAChBD!

hence, the above equations imply
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RACzB2zARBC1~k1R/2!~zAhBC2zBhAC50,

RACxB2xARBC1~k1R/2!~xAhBC2xBhAC50,

contracting the two equations above withzA and xA, respectively, we get, sincezAzA ,xAxA

Þ0:

RAC5~k1R/2!hAC2~3k1R/2!zAzC ,

RAC5~k1R/2!hAC2~3k1R/2!xAxC

contracting again both equations with, sayzC, equating and rearranging terms we get

~3k1R/2!zA5~3k1R/2!~zCxC!xA

but this contradicts our hypothesis of linear independence unless 3k1R/250, i.e., R526k
(5constant). ThenRAB522khAB and RABCD5k(hADhBC2hAChBD); that is: (V,h) is of con-
stant curvature and therefore the associated Cotton–York tensor11 is zero, i.e.,h is conformally
flat. h

The converse theorem also holds; namely: if (V,h) is a three-dimensional space or spac
time of constant curvature~and therefore conformally flat!, it admits two linearly independen
GCKV whose associated conformal factors are multiples~with the same multiplicative constan!
of the functions whose gradients they are.

Furthermore, with the same notation and hypotheses as in the preceding theorem and
ing a similar procedure to that outlined in its proof, it is easy to prove the following three res

Lemma 2: LetzW be a GCKV andjW a GKV (i.e.,jW is covariantly constant). ThenzW is neces-
sarily homothetic, that is, it is a GHV.

Proof: SincezA/B5chAB and jA/B50 it follows @zW ,jW #52cjW . Computing next the Lie de-
rivative of h in two different ways, as in the proof of Theorem 1, and then equating yields

2~jDcD!hAB5c̃~zAjB1jAzB!.

Again, considerations on the rank of the tensors that appear on both sides of the equation
cA50; that is:zW is a GHV. h

Lemma 3: LetzW be a GCKV andhW a GHV. ThenzW is necessarily homothetic and therefore
is the linear combination ofhW with some GKV.

Proof: Now zA/B5chAB andhA/B5khAB , and their Lie bracket is@zW ,jW #5kzW2chW . Comput-
ing as above the Lie derivative ofh in two different ways and then equating implies

2~hDcD!hAB5~hAcB1cAhB!,

which again impliescA50 and the result follows. h

Lemma 4: LethW and jW be a proper GHV and a GKV, respectively; (V,h) is then flat.
Proof: In this case we haveRABCDhD5RABCDjD50, henceRABhD5RABjB50, and taking

into account the expression of the Riemann tensor in terms of the metric and the Ricci tens~see
the proof of Theorem 1 and recall thathW cannot be null!, one gets RAB5(R/2)(hAB

2(hDhD)21hAhB); contracting withjB both sides and equating to zero yields immediat
hDjD5R50 ~sincehW andjW are linearly independent!, and this in turn impliesR5RAB50 and
thenRABCD50. h

The same result holds trivially if two linearly independent GKV exist; since in this case
linearly independent constant vector fields in a manifold of dimension three readily imply~con-
stancy of the metric! that a third one must also exist. Thus, we have proven:

Proposition 2: A three-dimensional space or space–time admitting two linearly independen
GHV (proper or Killing) is necessarily flat.
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Note that from the above Propositions 1 and 2, it follows that if two~or more! independent
GCKV exist in the three-space (V,h), then it is of constant curvature~and therefore conformally
flat, being flat in several cases! and then it admits 10 CKV~those of flat three-dimensional space!.
If this is not the case@i.e., (V,h) is not of constant curvature# then it can admit, at most, on
GCKV which will then give rise to a proper CKV in (M ,ĝ). If ( V,h) admits no GCKV, then no
proper CKV exist in (M ,ĝ), just HV ~case 1 above!.

In the following sections we shall deal with cases 2, 3, and 4 separately, assuming th
GCKV admitted in each case is unique.

A. „V,h … admits a GKV and no proper GHV or GCKV

From the preceding results it follows that unless (V,h) is conformally flat~in which case its
conformal algebra is completely known!, the GKV, sayjW , is the unique GCKV it admits. Taking
now a basis ofCn(V,h) as $jW ,hW ,zW k% where zW k and hW denote CKV~including KV! and a HV,
respectively@in case one exists in (V,h), if not, just sethW 50], we can write, from~74!

YA5l~u!jA1m~u!hA1lk~u!zA,

which substituted into~73! yields

2Yu,A5l̇~u!jA1ṁ~u!hA1l̇k~u!zA .

Since by hypothesis,jW is the only GCKV in (V,h) and jW , hW ~if nonzero! and zW k are linearly
independent vector fields, it follows thatṁ(u)5l̇k(u)50 @otherwise the above equation wou
imply that, for u fixed, ṁ(u)hA1l̇k(u)zA is a GCKV independent ofjW ]; hence m5a0

(5constant)@anda050 if (V,h) admits no proper HV#, andlk5ak (5constant). Therefore

YA5l~u!jA1a0hA1akzA

and substituting this back into~74!, ~72!, and~73! one has

f5Ṡ5a0k1akck~xD!, ~81!

Yu5e1~a0k1akck~xD!!u1B~xD!, e1~a0k1akck~xD!! ,Au1B~xD! ,A1l̇~u!jA50 ~82!

hence

l̇~u!5au1b,

i.e.,

l~u!5
a

2
u21bu1c

and also

akck~xD!5e1~2aj1m!, B~xD!52bj1n

and substituting this into the expressions for the covariant components ofYW , we would getYu

5(e1a0k1m)u2(au1b)j1n and YA5@(a/2)u21bu1c#jA1XA where XA[a0hA1akzk A .
Notice that the constantsn and c can be set equal to zero without loss of generality, as t
amount to adding multiples ofuW 5]u andjW , respectively. On the other hand,XA are the covariant
components of a CKV whose associated conformal factor ise1(2aj1m)1a0k @if no HV exists
in (V,h) then the CKV has componentsXA5akzk A and conformal factor2e1(2aj1m)], that is
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Yadxa5@~e1ka01m!u2~au1b!j#du1F S a

2
u21buD jA1XAGdxA, ~83!

where

XA5a0hA1akzk A

is such that

2X(A/B)52@e1~2aj1m!1a0k#hAB ~84!

and the conformal factor associated toYW is

f5e1~2aj1m!1a0k ~85!

and satisfiesfa;b50, that is:YW is a SCKV in (M ,ĝ), whereasXW is also a SCKV in (V,h).
Notice that some of the constants appearing in the above expressions could have b

moved by means appropriate redefinitions of the objects~functions and coordinates! in them.
However, as it turns out, it is useful to keep them as they appear because this makes the
quent analysis much more clear. The following possibilities now arise regarding the natureXW ;
namely

Case 1:(V,h) admits no proper SCKV nor proper HV, thena050 andXA5akzk A is a KV,
that isakck5e1(2aj1m)50; i.e., a5m50 and the conformal factorf above becomes zero
hence,YW is a KV which can be seen to be given by

Yadxa52bj du1bjA dxA1XA dxA, XW PK~V,h!. ~86!

Case 2:(V,h) admits no proper SCKV but it admits a proper HV~that is: a0Þ0). It then
follows thatakzk A must be a KV, henceakck5e1(2aj1m)50; and thena5m50 as before.
The conformal factor is then constantf5ka0 , YW then being a HV which can be written as

Ya dxa5a0@e1ku du1hA dxA#2bjdu1bjA dxA1XA dxA, ~87!

where the first term within square brackets is a proper HV and the remaining terms are
recognizable as a KV@see Eq.~86!#.

Case 3:(V,h) admits a proper SCKV,XW such that 2X(A/B)52@e1(2aj)#hAB ; i.e., aÞ0 and
the constantska0 ,m ~if nonzero! have been absorbed by suitably redefining the functionj. We
then have

XA/B52e1ajhAB1FAB ,

whereFAB is the conformal bivector. Computing now the Lie bracket ofjW andXW and making use
of the above expression together with the fact thatjA/B50 we get

@jW ,XW #5hW , hA52e1ajjA1FABjB ~88!

computing nowhA/C and making use of Eq.~12! it follows

hA/C52e1a~jDjD!hAC ~89!

that is: hW is either a GHV~wheneverjW is non-null, for in that case it can be scaled so th
jDjD5e2 , wheree2561), or elsehW is a GKV ~includinghW 50 as a special case!. In the former
case (hW is a GHV and thereforejDjD5e2), Proposition 2 above implies that (V,h) is flat. In the
latter case (hW is a GKV andjDjD50), one has from~88! that jDhD50 and therefore eithe
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hDhDÞ0, in which case again, proposition 2 implies that (V,h) is flat, or elsehW 5kjW wherek is
a constant which may be zero~if it is not zero, it can always be chosen equal to 1 by re-scalinXW

appropriately!. This is the only nontrivial case@in the sense that (V,h) is not necessarily flat#, and
it is easy to see that coordinatesv,w,y can be chosen so that the three-dimensional line elem
takes the form:

ds2522dv dw1p6~w!M2~y!@q6~w!22dw21dy2#, ~90!

where

q6~w!5n2w261, p1~w![q1~w!exp@e1kn/a cot21 nw#

~91!
p2~w![q2~w!exp@e1kn/a coth21nw#, n5constant,

the KV jW and SCKVXW being, respectively,

jW5]v , XW 5kv]v1
1

n2 q6~w!]w . ~92!

Alternatively, new coordinates can be chosen, which we still callv,w,y, so that Ref. 11 the line
element takes the more familiar form

ds2522dv dw22H~w,y!dw21dy2 ~93!

and still jW5]v but the functionH(w,y) satisfies then a partial differential equation andXW then
takes a form which depends onH. In this case, the Ricci tensor is

RAB5H ,yyl Al B, ~94!

wherel A5jA .

B. „V,h … admits a proper GHV and no proper GCKV

Since a proper HV is unique up to the addition of KV, we can assume that there is jus
GHV ~in the sense that, if another exists, then their difference must be a gradient KV—in
respect, if any GKV exists in (V,h) we shall consider that has been added to the GHV, theref
any remaining proper CKV or KV inC(V,h) will be nongradient!, sayhW with homothetic constan
k(Þ0); i.e.,hA[h , A for some functionh(xB).

At this point, it is easy to find an expression for the line element associated withh in
coordinates adapted to the GHVhW . First of all notice that fromhA/B5khAB it readily follows that
hW cannot be null; next and provided we are not in the vicinity of a fixed point of the HV, we
always choose a coordinate, sayx1[v adapted tohW , i.e.,hW 5]v , now the fact thathW is locally a
gradient and a HV with homothetic constantk readily implies~by a similar argument to that use
previously! that coordinatesxi[x2,x3 can be chosen so that the line element associated wih
reads

ds25e2kv~ ė2dv21h̄i j ~xk!dxi dxj !, e2561 ~95!

and thenhA dxA5e2 exp(2kv)dv, hence h5(e2/2k)exp(2kv). Also, since h̄i j (x
k) is a two-

dimensional metric, the coordinatesxi can be chosen so that it takes an explicit conformally
form, i.e.,

ds25e2kv~e2 dv21V2~xk!~e3~dx2!21~dx3!2!, e2 ,e3561, ~96!

whereV(xk) is some function of its arguments. The line element of (M ,ĝ) then reads
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dS25e1 du21e2kv@e2 dv21V2~xk!~e3~dx2!21~dx3!2!#, ~97!

where

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511.

Alternatively, the following change of coordinates can be carried out:

w[k21 exp~kv !, v5k21 ln kw, ~98!

which rendershW , h and the line element associated withh in the form

hW 5kw]w , h5
ke2

2
w2, ds25e2 dw21w2V2~xk!~e3~dx2!21~dx3!2! ~99!

hence

dŝ25e1 du21e2 dw21w2V2~xk!~e3~dx2!21~dx3!2!. ~100!

Now going back to the problem of finding the CKV that (M ,ĝ) admits in this case, let$hW ,zW k% be
a basis forC(V,h) with hW satisfying

hA/B5khAB ~101!

andzW k being CKV~including KV! such that no proper CKV~nor any linear combination of them!
is a gradient, we then have

zk A/B1zk B/A52ckhAB ,

whereck is the associated conformal factor.
Equation ~74! states thatYB(u,xD)]B is a CKV in everyV(u) for u fixed, and therefore

according to our previous developments, we may write

YB~u,xD!]B5l~u!hW 1lk~u!zW k, ~102!

which when substituted back again into~72!–~74! yields ~recall, the conformal factorf has been
renamed asṠ):

Ṡ~u,xB!5kl~u!1lk~u!ck~xB!, Yu5e1@km~u!1mk~u!ck~xB!1B~xA!#, ~103!

e1mkck, A1B,A1l̇hA1l̇kzk A50, ~104!

wherem(u) andmk(u) are such thatṁ(u)5l(u) andṁk(u)5lk(u), respectively, andB(xA) is
a function of integration which does not depend onu. Now, ~104! above implies that, foru fixed,
l̇kzk A must be a GCKV~sincehA is a gradient by assumption!, but since, by hypothesis there
none andhW , zW k are independent, it must bel̇k50, that islk5ak(5const). Plugging this back
again into~72! and ~73! we get

Yu5e1@km~u!1uakck~xB!1B~xA!#, e1uakck, A1B,A1l̇hA50, ~105!

which, when differentiated with respect tou yields

e1akck, A1l̈hA50 ~106!

and two possibilities arise:
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case 1: l̈50, i.e.: l5au1b, with a,b constants. Thenakck, A50, that is: akck5C
(5constant).

case 2:l̈5a ~constant!, hencel5a/2u21bu1c and thenB52bh1m and e1akck5ah
1C wherem,C are constants andh is the function such thath , A5hA .

Case 1:In this case it is straightforward to get from the equations above thatB52eah and
also thatakzW k must satisfy:

L akzWk
h52Ch

that is:akzW k is a HV, which, on account of the assumed independence ofhW , zW k can be set directly
equal to zero.@Alternatively, since homotheties are essentially unique, it would followakzW k

5(C/k)hW 1jW , wherejW is a KV, which can be absorbed by a suitable redefinition of the cons
b in l5au1b.] Taking all this into account, redefining nonessential combinations of cons
and subtracting any proper KV@i.e., linear combinations of]u and KV in (V,h) such asjW above#,
we get

YW 5FkS a

2
u21puD2e1ahG]u1~au1p!hW ,

wherep is a constant.
It is immediate to check that the above CKVYW , whose associated conformal factor isf

5k(au1p), is in fact a SCKV, that isfa;b50. Also note that the HVpu]u1phW can be sub-
tracted fromYW , the resulting vector

YW 85@k~a/2!u22e1ah#]u1auhW ~107!

being, indeed, a SCKV.
Case 2:We now havel5(a/2)u21bu1c, B52bh1m, and alsoe1akck5ah1C, where

a,b,m and C are constants. This implies thatXW [akzW k is a CKV in (V,h) whose associated
conformal factor is preciselye1(ah1C). A direct calculation using the forms~96! or ~99! readily
shows that no such CKVXW can exist, and therefore this case turns out to be impossible.

C. „V,h … admits a proper GCKV

Let us turn our attention now to the case in which (V,h) admits a proper GCKV. Before
analyzing the consequences this has on the conformal algebra of the 113 reducible space–time
(M ,ĝ), we shall first explore the situation in a three-space (V,h). To this end, letzW be a GCKV
in (V,h) with associated conformal factorc, we then have

zA/B5chAB , zA5z , A , ~108!

wherez5z(xD) is some function. The first equation above readily implies thatzW cannot be null
unless it is a KV. Taking a further covariant derivative we have

zA/BC5cChAB , cC5c ,C ~109!

and the Bianchi identities imply, sincezA/B5zB/A ,

RABCDzD5cAhBC2cBhAC . ~110!

Contracting both sides of the above equation withzC yields

05cAzB2cBzA ~111!
                                                                                                                



for

4859J. Math. Phys., Vol. 44, No. 10, October 2003 Double warped space–times

                    
and then, unlesszW is a HV ~in which case the equation above is satisfied identically! which we are
assuming is not, it follows thatc5c(z), hence, from now on we shall writecA5c̃zA , where the
tilde stands for the derivative with respect to the functionz, i.e., c̃5dc/dz. Also, differentiating
~111! and using~108! it follows that zW cannot be a SCKV~unless it is a KV!.

Following a procedure similar to the one in Sec. V B, we choose a coordinatev adapted tozW

and two other coordinatesx2,x3 so that

zW5]v , zA dxA5e2 exp~2V~v !!dv, z5e2E dv exp~2V~v !!, ~112!

ds25e2V(v)@e21V2~xk!~e3~dx2!21~dx3!2!# ~113!

the conformal factor then beingc5V8(v) where the prime indicates derivative with respect tov.
Note that

c̃5
dc

dz
5

dc

dv S dz

dv D 21

5e2V9e22V(v). ~114!

Alternatively, a new coordinatew can be defined such that

w[E dv exp~2V~v !! ~115!

and then

zW5M ~w!]w , M ~w!5exp~V~v~w!!!, zAdxA5e2M ~w!dw, and z5e2E dw M~w!,

~116!

ds25e2dw21M2~w!V2~xk!~e3~dx2!21~dx3!2! ~117!

the conformal factor isc5M 8(w) ~the prime now meaning derivative with respect tow) and, as
before,

c̃5
dc

dz
5

dc

dw S dz

dwD 21

5e2

M 9

M
. ~118!

The above metric describes the situation in which one proper~non-HV! GCKV exists in (V,h),
with h being of arbitrary signature.

Let us now go back to the original problem of finding CKV in the 113 reducible space–time
whose three-dimensional factor (V,h) we are assuming to admit a GCKV. We next reproduce,
the sake of convenience, the original equations~72!–~74! with the conformal factorf renamed as
Ṡ:

Yu,u5e1Ṡ, ~119!

Yu,A1YA,u50, ~120!

YA/B1YB/A52Ṡ hAB . ~121!

Again, ~121! implies thatYB(u,xD)]B is a CKV in everyV(u) for u fixed.
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Now, assume first that only one proper GCKV is admitted in (V,h), sayzW with conformal
factor c. From our previous developments it follows that no proper GHV or GKV can exis
(V,h); therefore we may consider a basis ofC(V,h) given by $zW ,xW k% where, again,xW k are
nongradient CKV~possibly HV and KV! with conformal factorsfk .

From the remark above it follows that

YB~u,xD!]B5l~u!zW1lk~u!xW k

which, upon substitution into~121!, yields

Ṡ5l~u!c~xD!1lk~u!fk~xD!

that can be formally integrated to give

S5c~xD!E du l~u!1fk~xD!E du lk~u!1B~xD!,

where the terms resulting from the constants of integration arising from (*dul(u)), etc., have
been absorbed into the function of integrationB(xD).

Substituting this into~120! and taking into account thatc ,A5c̃zA we get

S E du l~u! D c̃zA1S E du lk~u! Dfk, A1B,A1l̇~u!zA1l̇k~u!xk A50 ~122!

and this implies that, foru fixed, l̇kxk A must be a GCKV independent ofzA . Since this is not
possible from our assumptions, it follows thatl̇k50, that is lk5ak(5const). Therefore the
above-given equation reads now

F S E du l~u! D c̃1l̇~u!GzA1uakfk, A1B,A50 ~123!

and differentiating with respect tou,

@l~u!c̃1l̈~u!#zA1akfk, A50, ~124!

which readily implies:

c̃5k ~constant!, kl~u!1l̈~u!5a ~constant!, akfk52az1c, ~125!

wherec is a constant. Substituting this information back into~123! and taking into account tha
from c̃5k andkl(u)1l̈(u)5a it follows c̃*du l(u)1l̇(u)5a u, one easily gets

B,A50,

i.e.,

B5b ~constant! ~126!

and then, usingk*du l(u)1l̇(u)5a u, Eq. ~119! implies

Yu5e1~2zl̇1cu1b!.

Note thatb can be set equal to zero without loss of generality, since it simply amounts to a
a constant multiple of the KVuW 5]u , and we shall do that in what follows, thus writing
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Yu5e1~2zl̇1cu!. ~127!

Also, from the above-mentioned developments we get

YA5l~u!zA1XA , XA[akxk A , ~128!

wherel(u) satisfiesl̈1kl5a, the conformal factor associated with the GCKVzW is c5kz, and
XW is a CKV ~nongradient by assumption! whose associated conformalf8[akfk factor is, from
Eq. ~125! f852az1c.

Consider next the CKVZW defined byZW [(a/k)zW1XW . From the previous paragraph it follow
that

LZW hAB52chAB ,

that is:ZW is a HV with homothetic constantc, therefore, putXW above asXW 5ZW 2(a/k)zW and then

YA5S l~u!2
a

kD zA1ZA, ~129!

whereZW is a HV in (V,h) with homothetic constantc. If ( V,h) admits no HV, thenc5ZW 50
above; thus we finally have

YW 5~2zl̇1cu!]u1S l~u!2
a

kD zW1ZW .

Sincecu]u1ZW is a HV with homothetic constantc we can subtract it from the above to get

YW 5~2zl̇ !]u1S l~u!2
a

kD zW ~130!

andzW is now that given by~112! or ~99!, the corresponding three-dimensional line elements t
being ~113! or ~117!, thus we can finally write for the line element of (M ,ĝ) a 113 reducible
space–time admitting a CKV under these hypotheses:

dŝ25e1 du21e2 dw21M2~w!V2~xk!~e3~dx2!21~dx3!2!, ~131!

where

ea561 ~a51,2,3! e1e2e3521, e11e21e3511.

The CKV is then

YW 5~2zl̇ !]u1S l~u!2
a

kD M ~w!]w , ~132!

wherel(u) andM (w) must satisfy@see~118!#

l̈~u!1kl~u!5a, M 9~w!5e2kM. ~133!

These equations can be easily integrated fore2k.0,e2k,0 ande2k50 obtaining then explicit
expressions for both the line element dŝ2 and proper CKVYW .

In the next theorem, we make an attempt at summarizing the results thus far obtained
Theorem 10:Let (M ,ĝ) a 113 decomposable space–time; the following results hold regard

ing its conformal Lie algebra:
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(1) If (V,h) admits no GCKV then the only CKV that(M ,ĝ) admits are HV and KV—their forms
are those discussed in remarks R0-R3 at the beginning of this section.

(2) (M ,ĝ) can admit a proper CKV YW if and only if (V,h) admits a GCKV, which can be eithe

a GKV jW , or a GHV hW , or a (proper) GCKVzW .
(3) If two or more GCKV are admitted by(V,h), then (V,h) is of constant curvature and

conformally flat (and it is flat if one of the GCKV admitted is a GHV).
(4) If only one GCKV is admitted by(V,h), then:

(a) If it is a GKVjW , then(M ,ĝ) admits a proper CKV YW if and only ifjW is null and a proper

SCKV exists also in(V,h), XW , such that [jW ,XW ]5kjW ; the CKV YW is also a SCKV and the

metric is a special type of generalized pp-wave. Otherwise [i.e., if no proper SCKV XW

exists in(V,h) or it exists but it does not satisfy@jW ,XW #5kjW ] , then YW is a HV, possibly
KV.

(b) If it is a GHVhW then(M ,ĝ) admits a proper SCKV YW (unique up to the addition of HV)

The line element and YW are:

dŝ25e1 du21e2 dw21w2V2~xi !@e3~dx2!21~dx3!2#, ~134!

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511

YW 5S a

2
ku22e1e2

a

2
kw2D ]u1auhW , hW 5kw]w . ~135!

(c) If it is a GCKVzW then(M ,ĝ) admits a proper CKV YW (unique up to the addition of HV)

The line element and YW are:

dŝ25e1 du21e2 dw21M2~w!V2~xi !@e3~dx2!21~dx3!2#, ~136!

ea561 ~a51,2,3!, e1e2e3521, e11e21e3511,

YW 52zl̇~u! ]u1S l2
a

kD zW , z5e2E dw M~w!, zW5M ~w!]w ~137!

and the functionsl(u) and M(w) satisfy

d2l

du2 1kl5a,
d2M

dw2 5e2kM. ~138!

VI. EXAMPLES

In this section we shall briefly discuss instances of double warped space–times. Notic
warped space–times are special cases of double warped ones~i.e., whenever one of the warpin
functions is constant!, and they include relevant classes of space–times such as all the spher
plane and hyperbolic symmetric space–times, the whole class of Friedmann–Robertson–
solutions, the Bertotti–Robertson space–time and many others, see Refs. 3 and 4 for
information.

Fluid space–times.We have not been able to find a proper double warped~i.e., nonwarped!
perfect fluid solution due to the complicated form that the field equations take on account
Ricci tensor ~see Sec. III!. However, it is indeed possible to find anisotropic fluid solutio
satisfying the dominant energy condition~see Ref. 11!, as the following two examples show. Th
energy–momentum tensor is in both cases of the Segre type$1,1(11)%, and therefore can be
written as

Tab5muaub1p1zazb1p2@xaxb1yayb#, ~139!

where$ua ,za ,xa ,ya% form an orthogonal tetrad (2uaua5xaxa5yaya5zaza51, the rest of the
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products being zero!, ua is aligned with the velocity of the fluid, andm,p1 ,p2 are, respectively, the
energy density and two~different! pressures as measured by an observer co-moving with the fl
The dominant energy condition implies then

m>0, m6p1>0, m6p2>0. ~140!

Case 1:Consider the line element given by

ds25z~2dt21dx2!1t~dy21dz2!, ~141!

wheret andz are both non-negative. This space–time can be seen to represent an anisotrop
with an energy–momentum tensor given by~139! with

ua5~2z1/2coshF,0,0,t1/2sinhF!, za5~2z1/2sinhF,0,0,t1/2coshF!,

xa5~0,z1/2,0,0!, ya5~0,0,t1/2,0!,

coshF5A t

t2z
, sinhF52A z

t2z
for t2z.0

coshF5A z

z2t
, sinhF52A t

z2t
for z2t.0

and also

m5
uz2tu
4t2z2 , p15m, p25

z2t

4t2z2 .

This has to be understood as two different open submanifolds; namely, the one defined bt2z
.0 and that defined byz2t.0. In both cases the dominant energy condition~140! is satisfied. As
a final comment to this example, it can noted that the above metric admits the Killing ve
jW15]x , jW25]y , and the homothetic vectorhW 5t] t1x]x1y]y1z]z with homothetic constantc
53/2.

Case 2:Consider next the following line element:

ds25~m2kz2!~2dt21dx2!1~q1kt2!~dy21dz2!, ~142!

wherem,k,q are constants,m,q.0 andk>0 in order for the energy conditions and other po
tivity requirements to be satisfied, and the range of thez coordinate is restricted tom2kz2.0.
Again, this represents an anisotropic fluid with energy–momentum tensor given by~139! where

ua5~2~m2kz2!1/2coshF,0,0,~q1kt2!1/2sinhF!,

za5~2~m2kz2!1/2sinhF,0,0,~q1kt2!1/2coshF!,

xa5~0,~m2kz2!1/2,0,0!, ya5~0,0,~q1kt2!1/2,0!,

cosh 2F5
qz21mt2

uqz22mt212kt2z2u
.

The densitym and the pressuresp1 ,p2 are given in this case by

m5k~m2kz2!22~q1kt2!22$kuqz22mt212kt2z2u1~m2kz2!~q1kt2!%,

p15k~m2kz2!22~q1kt2!22$kuqz22mt212kt2z2u2~m2kz2!~q1kt2!%,
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p25
~23 qm22 kt2m12 qkz21k2t2z2!k

~2m1kz2!2~q1kt2!2

and it can be seen that the dominant energy condition~140! is satisfied.
Vacuum space–times.Notice from the second equation in~66! that any double warped space

time representing a vacuum solution of Einstein’s field equations, must in fact be warped~i.e.,
eitheru1, a50 or u2, A50). Examples in this class include Schwarzschild solution and its p
and hyperbolic symmetric equivalents.

The characterization of class A and class B double warped space–times given in Theor
5, and 7 should prove useful in formulating an algorithm for classifying such metrics. this
because this characterization is coordinate independent although tetrad dependent. In what
the tetrads described in Theorems 4, 5, and 7 will be designated as dw tetrads of class A
respectively. In order to determine weatherg represents a double warped metric we suggest
following classification scheme:

~1! Choose a coordinate system.
~2! Choose a canonical complex null tetrad$ka ,l a ,ma ,m̄a% and write their components in th

coordinate system chosen in~1!.
~3! Determine the NP spin coefficients and their NP derivatives in tetrad~2!.
~4! If the scalars determined in~3! satisfy the relations of Theorems 4 or 5~Theorem 7! then the

metric is a double warped space–time of class A~class B! and the algorithm stops here
otherwise go to step~5!.

~5! If possible, find the Lorentz transformations that transform tetrad~2! into a dw tetrad, i.e.,
such that the corresponding NP spin coefficients and their NP derivatives obey the con
of Theorems 4 or 5~Theorem 7!. If such transformations exist then the space–time is a do
warped space–time of class A~class B!, otherwise it is not double warped.

Unfortunately, step~5! of this procedure is not straightforward, since finding the Lore
transformation which maps tetrad~2! into a dw tetrad can be difficult and such a transformat
might not exist in which case the metric is not double warped.

The algorithm described here not only describes a way of determining whether a par
metric is double warped or not but also suggests a method for obtaining such space–tim
example, we suspect that one can obtain type D vacuum warped metrics of class B, for
r5m50, by following a similar integration procedure to the one performed by Kinnersley.18 In
this paper, Kinnersley chooses coordinates such thatl a5d2

a , makingx25r an affine paramete
along l a. These are the special coordinates given in Ref. 9. The idea would then be to exp
dw tetrad in these special coordinates, write the NP equations taking into account~63!. In order to
determine explicitly the tetrad components in these special coordinates one must integr
corresponding equations. By following this procedure we hope to obtain such metrics in
work.
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The first law of thermodynamics and Dyson–Lieb’s
perpetuum mobile
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Some consequences of Dyson–Lieb’sN(7/5) law for the condensation of Bose par-
ticles are discussed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1607515#

During the last week of July 2002, Lieb, Yngvason and one of us~HJB! were together in
Vienna. Sometimes at lunch we discussed the implications of the problem stability of matt
quantum field theory. Looking more closely at this problem I observed that Dyson–Lieb’s2N(7/5)

law for the ground-state of bosons leads to problems in particle physics. In this note we
discuss some of the problems.

The question of the stability of matter was first discussed by Dyson and Lenard.1 They
concluded that matter is stable as a consequence of the Pauli principle. But their calc
contained an estimate of the ground-state energy with errors some ten powers too larg
problem was taken up again by Lieb and Thirring with an estimate close to reality.2 ~These
investigations are based on nonrelativistic quantum mechanics with a classical Coulomb fie
shall not discuss the relativistic approach to this problem, which is not in a satisfactory stat
a review see Lieb and Loss.3! In order to show that these results hold only for particles obeying
Pauli principle, Dyson and Lieb and co-workers repeated the same investigation for scalar
and found that the ground-state energy behaves like2N(7/5). Dyson4 obtained the upper boun
and Lieb with co-workers5 showed the existence of a lower bound. This is based on the ass
tion that there exist different kinds of bosons with different electric charges. Moreover, the
considered is that of nonrelativistic quantum mechanics and a classical Coulomb field.
assumes that a result similar to the above holds also in relativistic quantum field theory w
quantized Coulomb field, then this would have drastic consequences provided scalar bose p
exist as stable or almost stable objects.

Let us denote the two types of particles byA andB. Since they are charged they must app
in pairsA1,A2 andB1,B2. We now construct two machines, one creating pairsA1,A2 and the
other pairsB1,B2. With help of magnetic fields the pairs may be separated andA1,B2 sent to
one andA2,B1 to another place. For the creation of the pairs we need the energy

EA1EB .

Each of the systems formed by one sort of pairs is attractive. If one adds an additional pair t
of the two lumps ofN21 pairs one gains the energy

~CA1CB!$N(7/5)2~N21!~7/5! %.~Ca81CB8 !N(2/5).

This means ifN is sufficiently large,

~CA81CB8 !N(2/5).EA1EB ,

a!Electronic mail: borchers@theorie.physik.uni-goettingen.de
48660022-2488/2003/44(10)/4866/2/$20.00 © 2003 American Institute of Physics
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holds, i.e., one gains energy.~For CA andCB exist only lower and upper bounds, but this does n
change the arguments.! This will be called ‘‘Dyson–Lieb’s perpetuum mobile.’’ Since this
forbidden by the first law of thermodynamics, one has to discuss the possibilities avoiding Dy
Lieb’s perpetuum mobile.

The simplest way would be to postulate that no stable scalar bosons exist. This is in
dance with the experimental experience up to now. But there are theories which include
symmetries. The GUT and the string theory are only two examples. Depending on the theo
super-symmetric partner of the electron and the proton will be stable or almost stable pa
This follows from the conservation of charge and nucleon number. Depending on the theor~see,
e.g., Ref. 6!, the super-symmetric partner will have spin 0 or 1. One knows that the proble
stability of matter in the relativistic situation with a quantized Coulomb field is very delic
Therefore, it is no danger to guess that also in the spin 1 situation the ground-state energy b
like 2Na with a.1. This also leads to Dyson–Lieb’s perpetuum mobile and one has to
about possibilities to avoid it.

The first possibility which comes into ones mind is the following. If the pair, say (A1,B2),
falls into a deep potential cavity, then it might create an electron–positron pair. If this rema
the surface of the lump and combines with particlesA1 and B2, respectively, then they creat
neutral particles containing a spin12 component which do not increase the numberN. In this case
the perpetuum mobile has stopped. But the surface effect will appear only occasionally.
lump is large enough, then the particles will form a crystal like an ionic crystal. Although
particles have no extension this could be B1~NaCl–! or B2 ~CsCl structure! in the Strukturbericht
designation~see Kleber7!, which are not close packed. Only at high pressures the system mig
forced into a close packed structure, since this gives problems with nearest neighbors o
charge. This then implies that the electron and positron will be trapped in the conduction
where they can annihilate each other. Therefore, this kind of interaction does not avoid D
Lieb’s perpetuum mobile. If one has in mind the super-symmetric partner of the electron
proton, then the formation of an ionic crystal might not be a good picture, but one should
about a system similar to hydrogen. Since condensed hydrogen forms are close packed
made out of neutral pairs, the electron–positron pair will destroy such a neutral molecule
occasionally. Therefore, also this is no way out of the perpetuum mobile problem.

The proton is composed of quarks. Therefore, its super-symmetric partner will probab
composed of the super-symmetric partners of the quarks. These will also have entire sp
therefore, one has to expect that the ground-state energy tends to2` with N to infinity.
Our personal conclusion of the discussion is the following:

The first law of thermodynamics forbids the existence of stable super-symmetric partne
the existence of super-symmetry in the naı¨ve sense.

This argument has some similarity with the conclusion that the second law, together wi
existence of the entropy of mixing, implies atomic nature of the matter. However, we think
our conclusion has a more solid base.
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Comment on ‘‘Time-dependent solution for a star
immersed in a background radiation’’ †H. Liu and Q. Zhang,
J. Math. Phys. 43, 4904 „2002…‡

K. S. Govindera) and M. Govenderb)

School of Mathematical and Statistical Sciences, University of Natal,
Durban 4041, South Africa

~Received 4 February 2003; accepted 8 April 2003!

In a recent paper@J. Math. Phys.43, 4904~2002!# Liu and Zhang present a time-
dependent solution for a star which is immersed in a background radiation. This
solution was obtained by analyzing equations arising from the analysis of a five-
dimensional solution that contained their solution. We show that, while their analy-
sis and conclusions are valid, their equations are unnecessarily restrictive when
applied to the four-dimensional case. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1610238#

Recently, Liu and Wesson1 presented a simple class of five-dimensional~5D! solutions. It was
further shown that the four-dimensional~4D! part of the 5D metric, together with two restriction
on the metric functions, represents a 4D spherically symmetric solution with heat flux. This
of the solution was further studied by Liu and Zhang2 in which they showed that the solution cou
be considered as an exterior of a collapsing star immersed in a homogeneous and is
background.

The form of the solution as reported by Liu and Zhang in coordinates (xa)5(t,r ,u,f) is

ds252B~r !dt21~12lt !2@A~r !dr 21r 2~du21sin2 u df2!#, ~1!

wherel is a constant and the metric functionsA andB obey the following equations:

B8

B
53l2r

A

B
1

A21

r
, ~2!

A8

A
53l2r

A

B
2

A21

r
, ~3!

where primes denote differentiation with respect tor . It was further shown by Liu and Wesson1

that metric~1! together with the above-given restrictions models a perfect fluid with heat flu
which the energy momentum tensor assumes the following form:

Tab5~r1p!uaub2pgab1qaub1uaqb , ~4!

wherer is the fluid energy density,p is the isotropic pressure,ua5(u0,0,0,0) is the fluid four-
velocity, andqa5(0,q1,0,0) is the radial heat flux vector. The heat flow vector satisfies
condition qaua50 relative to the fluid four-velocity vector. The nontrivial Einstein equatio
@taking ~2! and ~3! into account# are given by

a!Electronic mail: govinder@nu.ac.za
b!Electronic mail: govenderm43@nu.ac.za
48680022-2488/2003/44(10)/4868/3/$20.00 © 2003 American Institute of Physics
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r5
6l2

B~12lt !2 , ~5!

p5
2l2

B~12lt !2 , ~6!

q5
lB8

A1/2B3/2~12lt !2 , ~7!

whereq is a covariant measure of the heat flux (q25qaqa).
Equations~2! and ~3! were obtained by Liu and Wesson1 from the Ricci tensor for the 5D

metric within which~1! was embedded. They assumed that the scalar field was time-like w
forced some components of the 4D Ricci tensor to be zero, thus resulting in~2! and ~3!. An
interesting feature of these two equations is that, ifA(r ) andB(r ) satisfy these equations, then th
pressure isotropy condition is automatically satisfied and the matter content satisfies the ra
equation of state

r53p. ~8!

However, if one looks at the metric~1! in isolation, i.e., one does not concern oneself with
origin in the 5D metric, then Eqs.~2! and ~3!, while simplifying calculations, are unnecessar
restrictive. This is a consequence of the fact that the system consisting of the pressure is
equation, viz.

1

r 2 2
1

r 2 A
2

A8

2 r A2 2
B8

2 r A B
2

A8 B8

4 A2 B
2

B82

4 A B2 1
B9

2 A B
50 ~9!

and the equation of state

1

r 2 1
a

r 2 2
1

r 2 A
2

a

r 2 A
1

3 l2

B
1

a l2

B
1

A8

r A2 2
a B8

r A B
50 ~10!

@here we have given the general barotropic equation of statep5ar—settinga51/3 regains~8!#
is of higher order than the system~2! and~3!. Thus a solution of~9! and~10! need not satisfy~2!
and ~3! while a solution of the lattermustsatisfy the former.

The solutions presented by Liu and Zhang2 were only approximate. However, exact solutio
to ~2! and ~3! are possible, and indeed have appeared in the literature previously,3 though in the
guise of solutions to~9! and ~10!. That solution has the form

ds252 b2 Yo
2 dt21Y2~ t ! @2 Yo8

2 dr 21Yo
2 dV2# ~11!

up to the determination of the time-dependenceY(t). In addition to the general solution forY(t),
it was observed in Ref. 3 that a linear form forY(t) would also suffice.

In order to compare~1! and ~11! we need to set

b25
2l2~31a!

a21
, Yo5r , A~r !52, B~r !5b2r 2, Y~ t !5~12lt !. ~12!

Thus the metric

ds252b2r 2dt21~12lt !2@2dr 21r 2 dV2# ~13!

satisfies the pressure isotropy condition as well as the general barotropic equation of sta~10!.
Clearly it will satisfy the radiation equation of state~8! as well.
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While our metric~13! does satisfy the general equation of state~10!, an attempt to match this
metric to the Vaidya solution4 ~which describes the exterior space–time of a radiating star!

ds252S 12
2m~v !

r Ddv222dv dr1r2~du21sin2 u df2! ~14!

restricts the value ofa to 23 which is unphysical. Thus the solution we present will not satisfy~8!
if we match the solution to the Vaidya solution. Indeed, if we match a solution of~2! and ~3! to
~14!, we need to satisfy the condition

l5
B8

2~AB!1/2U
r 5r S

~15!

at the boundaryr 5r S . Thus, given a particular boundaryr S , one ought to be able to determin
l. We do not obtain this result in our solution~11! as we haveB}l2. It would be of interest5 to
find an exact solution to~8! and~9! which can be matched to~14! as the model can be interprete
as a radiating star with an extended atmosphere dissipating energy in the form of radial he

We observe that the time dependence in the metric~1! is linear. As a result, horizon-free
collapse6 is evident in this model when matching to~14! sincemS /r S is independent of time.

We conclude by noting that the solution we present,~13!, does not have the same interesti
physical properties that the approximate solution of Liu and Zhang2 does. However, it is an exac
solution. It would be useful to examine the full pressure isotropy equation~9! and the genera
equation of state~10! @or the radiation equation of state~8!# for further exact solutions that ma
provide similarly interesting physical applications.

1H. Liu and P. S. Wesson, J. Math. Phys.42, 4963~2001!.
2H. Liu and Q. Zhang, J. Math. Phys.43, 4904~2002!.
3S. M. Wagh, M. Govender, K. S. Govinder, S. D. Maharaj, P. S. Mukthibodh, and M. Moodley, Class. Quantum Gr18,
2147 ~2001!.

4P. C. Vaidya, Proc. Indian Acad. Sci., Sect. A33, 264 ~1951!.
5S. D. Maharaj and M. Govender, Pramana, J. Phys.54, 715 ~2000!.
6A. Banerjee, S. Chatterjee, and N. Dadhich, grc/0209035, 2002.
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Recovery of a potential from the ratio of reflection
and transmission coefficients

Tuncay Aktosun
Department of Mathematics and Statistics, Mississippi State University,
Mississippi State, Mississippi 39762

Vassilis G. Papanicolaou
Department of Mathematics, National Technical University of Athens, Zografou Campus,
157 80, Athens, Greece

~Received 12 July 2003; accepted 24 July 2003!

For the one-dimensional Schro¨dinger equation, the analysis is provided to recover
the potential from the data consisting of the ratio of a reflection coefficient to the
transmission coefficient. It is investigated whether such data uniquely constructs a
reflection coefficient, the number of bound states, bound-state energies, bound-state
norming constants, and a corresponding potential. In all three cases when there is
no knowledge of the support of the potential, the support of the potential is con-
fined to a half-line, and the support is confined to a finite interval, various unique-
ness and nonuniqueness results are established, the precise criteria are provided for
the uniqueness and the nonuniqueness and the degree of nonuniqueness, and the
recovery is illustrated with some explicit examples. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1614871#

I. INTRODUCTION

In this paper we investigate the recovery of the potential of the one-dimensional Schro¨dinger
equation from the data consisting of the ratio of a reflection coefficient to the transmission
ficient. We analyze the cases where the potential has no restriction on its support, half-line s
and compact support. We assume no information about the number of bound states, and in
try to recover that number as a part of our inverse problem.

Our work is motivated by the work of Rundell and Sacks1 where it was shown that a bounde
compactly supported potential with a sufficiently smallL2-norm is uniquely determined by th
corresponding ratio of a reflection coefficient to the transmission coefficient. In our paper we
exactly when such a determination is possible.

Consider the Schro¨dinger equation

c9~k,x!1k2 c~k,x!5V~x! c~k,x!, xPR, ~1.1!

where the potentialV belongs to the Faddeev class, i.e., it is real valued, measurable, a
L1

1(R). Here, Ln
1(J) denotes the class of measurable functions on an intervalJ such that

*Jdx (11uxun) uV(x)u is finite. The prime is used for the derivative with respect to the spa
coordinatex. The scattering solutions to~1.1! behave likeeikx or e2 ikx asx→6`, and they occur
for kPR\$0%. A bound state of~1.1! is a solution that belongs toL2(R) in the x variable, and it
is known2–7 that the bound states can occur only at certaink values on the positive imaginary ax
I1 in C1. We useC1 for the upper-half complex plane andI1

ª i (0,1`); later we will let C1

ªC1øR and I2
ª i (2`,0). We will useN to denote the number of bound states, which

known to be finite whenV is in the Faddeev class, and suppose that the bound states occuk
5 ik j with the ordering 0,k1,•••,kN .

Among the scattering solutions to~1.1! are f l and f r , the Jost solutions from the left and righ
respectively, satisfying the respective boundary conditions
48750022-2488/2003/44(11)/4875/9/$20.00 © 2003 American Institute of Physics
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e2 ikxf l~k,x!511o~1!, e2 ikxf l8~k,x!5 ik1o~1!, x→1`,

eikxf r~k,x!511o~1!, eikxf r8~k,x!52 ik1o~1!, x→2`. ~1.2!

From the spatial asymptotics

f l~k,x!5
eikx

T~k!
1

L~k! e2 ikx

T~k!
1o~1!, x→2`, ~1.3!

f r~k,x!5
e2 ikx

T~k!
1

R~k! eikx

T~k!
1o~1!, x→1`,

we obtain the transmission coefficientT, and the reflection coefficientsL andR from the left and
right, respectively. It is known2–7 that

T~2k!5T~k!* , R~2k!5R~k!* , L~2k!5L~k!* , kPR,

R~k!52
L~2k! T~k!

T~2k!
, uT~k!u21uL~k!u251, kPR, ~1.4!

where the asterisk denotes complex conjugation. In general,R andL are defined only for realk
values, butT has a meromorphic extension toC1. Each bound state corresponds to a~simple!
pole ofT in C1 and vice versa. GivenuT(k)u for kPR and the bound-state polesk5 ik j , one can
constructT as2–7

T~k!5S )
j 51

N
k1 ik j

k2 ik j
D expS 1

p i E2`

`

ds
loguT~s!u

s2k2 i01D , kPC1. ~1.5!

A potentialV in the Faddeev class is said to be generic ifT(0)50 and exceptional ifT(0)
Þ0. Generically we have

lim
k→0

2ik L~k!

T~k!
5~21!NuW0u1o~1!, k→0 in R, ~1.6!

where the WronskianW0ª f r(0,x) f l8(0,x)2 f r8(0,x) f l(0,x) is a nonzero constant. On the oth
hand, in the exceptional case we have

lim
k→0

L~k!

T~k!
5

g0
221

2g0
1o~1!, k→0 in R, ~1.7!

where

g0ª
f l~0,x!

f r~0,x!
5~21!NU f l~0,x!

f r~0,x!
U

is a nonzero constant.
A potential in the Faddeev class is uniquely determined from the data$L,$k j%,$cr j %% or

$L,$k j%,$g j%% by using any one of the available methods.2–7 Here, cr j , for each j 51, . . . ,N,
represents the bound-state norming constant andg j the dependency constant associated withk
5 ik j , and they are related to the Jost solutions as

cr jªF E
2`

`

dx fr~ ik j ,x!2G21/2

, g jª
f l~ ik j ,x!

f r~ ik j ,x!
. ~1.8!
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GivenV, we can remove2–7 all the bound states from the scattering coefficients and cons
the resulting potentialV[0] corresponding to the transmission coefficientT[0] and the left reflection
coefficientL [0] , where

T~k!5T[0]~k!)
j 51

N
k1 ik j

k2 ik j
, L~k!5~21!NL [0]~k!)

j 51

N
k1 ik j

k2 ik j
. ~1.9!

The potentialV[0] belongs to the Faddeev class wheneverV is in that class.
Without loss of any generality, our main problem can be reduced to the recovery of a po

V in the Faddeev class from the dataD(k)ªL(k)/T(k) in the following cases:

~i! V has no restrictions on its support.
~ii ! The support ofV is confined to a half-line.
~iii ! The support ofV is confined to a finite interval.

Our paper is organized as follows. In Sec. II we study case~i!; we see that our data cannot sa
anything about the value ofN in the exceptional case and henceNP$0,1,2, . . .%, and for each
suchN we have a 2N-parameter family of potentials corresponding to our data. On the other h
in the generic case from our data we getNP$0,2,4, . . .% or NP$1,3,5, . . .%, as indicated in~1.6!;
for each allowedN we again have a 2N-parameter family of potentials corresponding toD. Case
~ii ! is analyzed in Sec. III, and we show that our data puts a further restriction on the max
allowable value forN and thatN21 cannot exceed the number of zeros ofD on I1. In particular,
in the generic case whereD has no zeros onI1 and the limit in~1.6! is positive, we conclude tha
N50 and hence there is a unique potential corresponding toD. We also show that our dat
restricts the~open! intervals in which thek j can occur, depending on the sign ofD on I1. Then,
for each allowedN we obtain anN-parameter family of potentials supported on the posit
half-line corresponding to our data. We illustrate the nonuniqueness with some explicit exam
Finally, in Sec. IV, we analyze case~iii ! and show that our data further puts severe restrictions
the locations of thek j . In this case we show that for each allowedN, there can exist only a
discrete number of potentials corresponding to the sameD. We provide the exact criteria for th
uniqueness as well as the nonuniqueness and the degree of nonuniqueness, and we illus
theory with some explicit examples.

II. RECOVERY WITH NO RESTRICTION ON THE SUPPORT

We will analyze the construction ofV from the dataD by analyzing the construction o
$L,$k j%,$cr j %% from D.

Given D(k) for kPR, we can constructT[0] . This is because, as seen from~1.9! and the
second equation in~1.4!, we have

1

uT[0]~k!u2 5
1

uT~k!u2
511uD~k!u2, kPR, ~2.1!

and hence,~1.5! and ~2.1! imply that

T[0]~k!5expS 1

2p i E2`

`

ds
log~1/@11uD~s!u2# !

s2k2 i01 D , kPC1. ~2.2!

Having foundT[0] , from ~1.9! we get

L [0]~k!5~21!ND~k! T[0]~k!, L~k!5D~k! T[0]~k!S )
j 51

N
k1 ik j

k2 ik j
D . ~2.3!
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Thus, to constructL from D, we must know both the number of bound states and the bound-
energies. In the generic cases, as~1.6! implies, fromD we are only able to determine whetherN
is even or odd, but in the exceptional case even this is not possible, as implied by~1.7!. For N
50, as seen from~2.3!, D uniquely determinesL and hence alsoV.

In summary, given the dataD, we get, for each value ofN, a 2N-parameter family of
corresponding potentials, where$$k j%,$cr j %% represents the parameter set. IfD(k) is bounded at
k50 thenN can be any non-negative integer; ifD(k) is unbounded atk50, thenN is a non-
negative integer, which is odd or even depending on the sign of limk→0@2ik D(k)# as in ~1.6!.

Example 2.1:Let us demonstrate that we can tell fromD whetherN is even or odd in the
generic case, but not in the exceptional case. Consider

D~k!5
a

~k1 ic1!~k1 ic2!
, c6ª

A106Aa2136,

where aP@28,8# is a parameter. Note thata568 corresponds to the generic case anda
P(28,8) corresponds to the exceptional case. In the generic case from~1.6! we get 2ik D(k)
5a/A51O(k) ask→0, and henceN must be even ifa58 and odd ifa528. On the other hand
in the exceptional case, from~1.7! we getD(k)5a/A642a21O(k) ask→0, andN can be any
non-negative integer. In fact, the corresponding scattering coefficients foraP@28,8# are given by

L~k!5
~21!Na

~k12i !~k14i ! S )j 51

N
k1 ik j

k2 ik j
D , T~k!5

~k1 ic1!~k1 ic2!

~k12i !~k14i ! S )
j 51

N
k1 ik j

k2 ik j
D ,

whereL(0)521 andT(0)50 are assured in the generic case by the choiceNP$0,2,4, . . .% if
a58 andNP$1,3,5, . . .% if a528.

III. RECOVERY WITH SUPPORT ON A HALF-LINE

In this section we analyze the construction ofV from D when we further know that the
support ofV is confined to a half-line. Equivalently, we analyze the construction of$L,$k j%,$cr j %%
from our data.

There is no loss of generality in assuming that the support ofV is confined toR1. This can
be seen by the following argument. If the support of the potential is known to be confined
interval (a,1`) for some real constanta, then the value ofa can be extracted8 from D; the shift
V(x)°V(x2a) results inL(k)/T(k)°L(k) e2ika/T(k) and hence there is no loss of generality
assuming thata[0. On the other hand, if the support of the potential is known to be confine
R2, then, because of the first equation in~1.4!, our problem can also be formulated as t
recovery ofV from R/T, which is equivalent to the recovery ofV from D.

When the support ofV is confined toR1, it is already known9–14 thatL uniquely determines
V. In fact, the meromorphic extension ofL(k) from R to C1 uniquely determines$$k j%,$cr j %% as
indicated in Theorem 3.3 below. Thus, the number of arbitrary parameters appearing in the
tion coefficientL constructed from our data is the same as the number of parameters appea
the constructedV.

In Sec. II we have seen thatD in the generic case reveals whetherN is even or odd. We will
next show that knowledge that the support ofV is confined toR1 leads to an upper bound onN
both in the generic and exceptional cases.

Proposition 3.1: Assume V[0] is a potential in the Faddeev class, has support inR1, and has
no bound states. Suppose V is the potential obtained by adding N successive bound states[0]

at k5 ik j with 0,k1, ¯ ,kN , and let L[0] denote the left reflection coefficient for V[0] as in
(1.9). If the support of V is confined toR1, then(21) jL [0] ( ik j ).0 for j 51, . . . ,N, or equiva-
lently, (21)N2 jD( ik j ).0.

Proof: If V[0 for x,0, from ~1.2! and ~1.3! we see that
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f r~k,x!5e2 ikx, f l~k,x!5
eikx

T~k!
1

L~k! e2 ikx

T~k!
, x<0. ~3.1!

Hence, using 1/T( ik j )50, ~3.1!, and the second equation in~1.8!, we reach the conclusion tha
g j5(L/T)( ik j ). Then, with the help of~1.9!, we getL [0] ( ik j )5(21)Ng j T[0] ( ik j ). It is already
known thatT[0] (k).0 on I1 and (21)N2 jg j.0. Thus, (21) jL [0] ( ik j ).0 for j 51, . . . ,N. With
the help ofD(k)5(21)NL [0] (k)/T[0] (k), we equivalently claim that (21)N2 jD( ik j ).0. j

For kPI1 we know thatL [0] (k) is real valued and continuous and 1/T[0] (k).0; hence, from
Proposition 3.1 we obtain the following result.

Corollary 3.2: Assume V belongs to the Faddeev class, has N bound states, and has s
in R1. Let L[0] denote the left reflection coefficient for V[0] , which is obtained from V by removin
all the bound states, as in (1.9). Then, L [0] must have at least N21 zeros onI1, equivalently, D
must have at least N21 zeros onI1.

Let us note that the zeros ofL [0] on I1, or equivalently those ofD, need not be simple, a
indicated in Examples 3.8 and 3.9.

The following theorem gives a characterization of the left reflection coefficient correspon
to a potential in the Faddeev class with support confined toR1. Let

L̂~a!ª
1

2p E
2`

`

dk L~k! eika, R̂~a!5..2
1

2p E
2`

`

dk
L~2k! T~k!

T~2k!
eika. ~3.2!

Theorem 3.3: The left reflection coefficient L corresponds to a unique potential V in
Faddeev class with support inR1 and with N bound states at k5 ik j ( j 51, . . . ,N) if and only if
the following conditions hold:

~i! L is continuous onR, and L(2k)5L(k)* for kPR.
~ii ! uL(k)u<12Ck2/(11k2) on R for some positive constant C.
~iii ! L(0)P@21,1).
~iv! L has a meromorphic extension toC1 with N simple poles occurring at k5 ik j and

residuesResL( ik j )5 icr j
2 for some positive constants cr j . Of course, if N50 then the

extension of L toC1 is analytic there.
~v! L(k)5o(1/k) as k→` in C1.
~vi! The function k/T(k), where T(k) is given in (1.5) withuT(s)u5A12uL(s)u2, is continuous

in C1.
~vii ! The functions Lˆ and R̂ defined in (3.2) are absolutely continuous, L̂8PL1

1(2`,0), and

R̂8PL1
1(a,1`) for any a,0.

Proof: The proof is obtained by modifying the characterization conditions on the scatt
data5,7,15 corresponding to a potential in the Faddeev class in order to take into accoun
vanishing property of the potential onR2. It is known9–14 that ~iv! is equivalent to vanishing o
V on R2. The slight modification in~vii ! is also related to the vanishing of the potential onR2.

j

In the following we illustrate the recovery ofV, or equivalently ofL, by presenting some
explicit examples.

Example 3.4:Let our data for a potential with support inR1 be given by

D~k!5
2)~k2 i !~k23i !

~k1 i !2~k1A5i !~k13i !
.

Notice thatD(k) is bounded atk50 and hence this corresponds to an exceptional case. Pro
ing as in~2.2!, or equivalently by solving the Riemann–Hilbert problem@cf. ~2.1!#
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1

T[0]~2k!
5~11uD~k!u2! T[0]~k!, kPR,

we obtain

T[0]~k!5
~k1 i !~k1A5i !

~k1& i !~k12i !
.

From ~2.3! we get

L [0]~k!5~21!NA~k!, A~k!ª
2) ~k2 i !~k23i !

~k1 i !~k1& i !~k12i !~k13i !
.

Notice thatD has two zeros onI1. Hence, the number of bound states ofV cannot exceed 3. Sinc
this is the exceptional case,N is allowed to be any of 0, 1, 2, and 3. Recalling the fact thaL
uniquely determinesV because of the support property ofV, with the help of the sign restriction
indicated in Proposition 3.1, or equivalently, with the help of Theorem 3.3~iv!, we obtain all the
following possibilities forL and also forV:

~a! For N50, we haveL(k)5A(k), and the potentialV is uniquely determined.
~b! For N51, we haveL(k)5A(k) (k1 ik1)/(k2 ik1) , wherek1P(0,1)ø(3,1`) is the only

arbitrary parameter inV.
~c! For N52, we getL(k)5A(k)) j 51

2 (k1 ik j )/(k2 ik j ) , with k1P(1,3) andk2P(3,1`)
being the only two arbitrary parameters inV.

~d! For N53, we haveL(k)5A(k)) j 51
3 (k1 ik j )/(k2 ik j ) , wherek1P(0,1), k2P(1,3), and

k2P(3,1`) are the only three arbitrary parameters inV.

Example 3.5:Let D(k)5 8/k(k1 iA20) . This is the generic case becauseD(k) is singular at
k50. Using ~2.1! we obtain T[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that
limk→0@2ik D(k)#58/A5, which is positive, and thereforeNP$0,2,4, . . .%. Then, from the first
equation in~2.3! we getL [0] (k)5 8/(k12i )(k14i ) . SinceD has no zeros onI1, Corollary 3.2
implies that the only possibility isN50. Thus,L(k)5L [0] (k), and our data uniquely determine
L andV.

Example 3.6:Let D(k)5 28/k(k1 iA20) . As in Example 3.5, this is the generic case a
T[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that limk→0@2ik D(k)#528/A5,
which is negative, and henceNP$1,3,5, . . .%. Then, from the first equation in~2.3! we get
L [0] (k)5 8/(k12i )(k14i ) . SinceD has no zeros onI1, Corollary 3.2 implies that the only
possibility isN51. Thus, we getL(k)52L [0] (k) (k1 ik1)/(k2 ik1) , wherek1P(0,1`) is an
arbitrary parameter. Because the constructedL contains one arbitrary parameter, there exist
one-parameter family of potentials corresponding to our data.

Example 3.7:Let D(k)5 28(k23i )(k24i )/k(k1 iA20)(k13i )(k14i ) . As in Example
3.5, this is the generic case andT[0] (k)5 k(k1 iA20)/(k12i )(k14i ) . From ~1.6! we see that
limk→0@2ik D(k)#528/A5, which is negative, and henceNP$1,3,5, . . .%. Then, as in Example
3.5 we getL [0] (k)5 8(k23i )(k24i )/(k12i )(k13i )(k14i )2 . SinceD has two zeros onI1, N
cannot exceed 3. Thus, we must haveN51 or N53. In conjunction with Proposition 3.1 o
Theorem 3.3~iv!, for N51 we get the one-parameter familyL(k)52L [0] (k) (k1 ik1)/(k2 ik1)
with k1P(0,3)ø(4,1`) and forN53 we getL(k)52L [0] (k)) j 51

3 (k1 ik j )/(k2 ik j ) with k1

P(0,3), k2P(3,4), andk3P(4,1`). Thus, our data corresponds to a one-parameter famil
potentials whenN51, and it corresponds to a three-parameter family of potentials whenN53.

Example 3.8:Let D(k)5 8(k2 i )2/k(k1 iA20)(k1 i )2 . We see thatD has exactly one
~double! zero onI1. As in Example 3.5 we get
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T[0]~k!5
k~k1 iA20!

~k12i !~k14i !
, L [0]~k!5

8~k2 i !2

~k12i !~k14i !~k1 i !2 . ~3.3!

Note that limk→0@2ik D(k)#58/A5, which is positive, and hence~1.6! implies that N
P$0,2,4, . . .%. On the other hand, Corollary 3.2 implies thatN50 or N52; however, a sign
analysis ofD on I1 indicates thatD( ib),0 for bP(0,1)ø(1,1`) and D( ib)50 for b51.
Thus,N52 is incompatible with Proposition 3.1. Hence,N50 is the only possibility, andT and
L are uniquely determined by our data as equal toT[0] and L [0] , respectively, given in~3.3!.
Therefore, there exists a unique potential corresponding to our data.

Example 3.9:Let D(k)5 28(k2 i )2/k(k1 iA20)(k1 i )2 . The correspondingT[0] and L [0]

are the same as in~3.3!. From ~1.6! we see that limk→0@2ik D(k)#528/A5, which is negative,
and henceNP$1,3,5, . . .%, as implied by ~1.6!. A sign analysis ofD on I1 indicates that
D( ib).0 for bP(0,1)ø(1,1`) andD( ib)50 for b51. Hence, with the help of Corollary 3.2
we conclude thatN51 is the only possibility. We thus obtain

T~k!5
k~k1 iA20!~k1 ik1!

~k12i !~k14i !~k2 ik1!
, L~k!5

28~k2 i !2~k1 ik1!

~k12i !~k14i !~k1 i !2~k2 ik1!
,

with k1P(0,1)ø(1,1`). Therefore, our data corresponds to a one-parameter family of po
tials, wherek1 acts as the parameter.

IV. RECOVERY WITH COMPACT SUPPORT

In this section we analyze the recovery ofV, or equivalently ofL, from D when it is further
known that the support ofV is confined to a finite interval. In constructing$L,$k j%,$cr j %% from D,
all the results obtained in Secs. II and III are certainly valid in this section as well. We hav
following:

~i! In the generic case, we are able to tell via~1.6! whether the non-negative integerN
representing the number of bound states ofV is even or odd.

~ii ! Using ~2.2! and the second equation in~2.3!, we are able to constructT[0] and determineL
except perhaps for the values ofk1 , . . . ,kN .

~iii ! Let us useZ to denote the number of zeros ofD on I1. From Corollary 3.2 we conclude
that N<Z11. Moreover, Proposition 3.1 imposes a further restriction onN depending on
the sign ofD on I1.

~iv! The quantityT[0] , which is uniquely determined byD, has a meromorphic extension to th
entire complex plane due to the fact that the support ofV is confined to a finite interval. We
will show that the set$2 ik j% has to be a subset of the set of zeros of 1/T[0] on I2.

The following result is already known,2 and hence its proof is omitted. By writing the firs
equation in~1.9! as

k

T~k! )j 51

N
1

k2 ik j
5

k

T[0]~k! )j 51

N
1

k1 ik j
,

which is valid on the entire complex plane, the reader can compare the zeros of 1/T[0] (k) and of
1/T(k) on the imaginary axis and verify the result stated in~iv! above as well as those in followin
proposition.

Proposition 4.1: Assume V[0] is real-valued, is integrable, has support confined to a fin
interval, and has no bound states. Suppose V is the potential obtained by adding N suc
bound states to V[0] at k5 ik j with 0,k1,•••,kN , and let T[0] and T denote the transmissio
coefficients for V[0] and V, respectively. If the support of V is confined to a finite interval, th
k/T[0] (k) and k/T(k) are both entire, 1/T[0] has a simple zero at k52 ik j for j 51, . . . ,N, and
any other zero of1/T[0] on I2 must also be a zero1/T with the same multiplicity.
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In the first example below, we show that not every zero of 1/T[0] on I2 necessarily corre-
sponds to a bound state ofV. In the second example we illustrate the recovery ofL andV from
our data.

Example 4.2:Consider the square-well potential supported on the interval@0, 1# with depth
equal toca2 for somec,a.0. The corresponding transmission coefficient satisfies

1

T~k!
5eikFcosg1

k21g2

2ikg
singG

with gªAk21ca2. It can be easily checked that 1/T(2 ia)50 if we choose a5 ln 8
52.079 44̄andc58/9, where the overline on a digit indicates a roundoff. With these valueV

has exactly one bound state occurring atk5 ik with k51.307 82̄. We have 1/T( ia)Þ0 and
1/T( ik)51/T[0] (2 ik)50. In other words,k5 ia does not correspond to a bound state ofV even
though 1/T[0] (2 ia)50.

Example 4.3:Let D(k)5 2e eik sinAk21e/2ik Ak21e , wheree is a non-negative param
eter. In fact, one corresponding potential is the square well of depthe with support on the interva
@0, 1#. For each value ofe, let us obtain all the potentials corresponding toD(k) with support
confined to a finite interval. We have limk→0@2ik D(k)#52Ae sinAe, and hence the exceptiona
case occurs whenAe5pp for p50,1, . . . and the generic case occurs whenAeÞpp. In the
generic case we see that the sign of limk→0@2ik D(k)# is that of (21)p11 when pp,Ae,(p
11)p, and hence we can tell frome whetherp is even or odd. The sign analysis ofD on I1

shows thatZ mentioned in~iii ! in the beginning of this section is equal tobAe/p c, i.e., the greates
integer less than or equal toAe/p; in other words,D hasZ zeros onI1 occurring atk5 izj with
zj5Ae2( j 21)2p2 for j 51, . . . ,Z. In this particular example,D happens to haveZ zeros onI2

as well occurring atk52 izj symmetrically located with respect to the origin. With the help
~2.1! and ~2.2! we obtain

1

T[0]~k!
5eikFcosAk21e1

2k21e

2ikAk21e
sinAk21eG )

j 51

Z11
k1 ib j

k2 ib j
, ~4.1!

where the$b j% is the ordered set with 0,b1, ¯ ,bZ11 consisting of those positiveb values
satisfying tanAe2b25 (2b Ae2b2)/(e22b2) . According to~iii ! we must haveN<Z11. Us-
ing all these constraints, we can determine all the possibilities forN, the corresponding bound
states, reflection coefficientL, and potentialV. For example, we have the following:

~a! Whene55, the above analysis shows thatZ50 and thusN<1, we are in the generic cas
and N must be odd, the quantity 1/T[0] given in ~4.1! has one simple zero onI2 at k

52 ib1 , whereb151.5857̄, and another one atk52 ib2 with b251.543 34̄. In the former
case, we must haveN51 with the bound state occurring atk5 ib1 , and

L~k!5D~k! T[0]~k!
k1 ib1

k2 ib1
5

2e tanAk21e

2ik Ak21e1~2k21e! tanAk21e
.

~b! Whene510, we find thatZ51 with z150.036 110 2̄, and thusN<2, we are in the generic
case andN must be even, the quantity 1/T[0] given in ~4.1! has two simple zeros onI2 at
k52 ib j , whereb150.324 422̄andb252.547 59̄. Thus, we have either of the two cas
where N50 or N52. For N50, we getL(k)5D(k) T[0] (k). On the other hand, forN
52 we get

L~k!5D~k! T[0]~k!
~k1 ib1!~k1 ib2!

~k2 ib1!~k2 ib2!
.

                                                                                                                



ree

s

ur

dation
G02-

three
.

er

4883J. Math. Phys., Vol. 44, No. 11, November 2003 Potential from ratio of scattering coefficients

                    
~c! When e550, we find that we are in the generic case,N must be odd,Z52 with z1

53.2437̄andz256.334 86̄, and thusN<3; moreover, the quantity 1/T[0] given in ~4.1! has
four simple zeros onI2 at k52 ib j , whereb151.8715̄, b255.198 39̄, b355.426 49̄, and
b456.6376̄. Thus, we have either of the two cases whereN51 or N53. For the caseN
51 there is double nonuniqueness withL(k)5D(k) T[0] (k) (k1 ib1)/(k2 ib1) or L(k)
5D(k) T[0] (k) (k1 ib4)/(k2 ib4) , which is a consequence ofD( ib1).0, D( ib2),0,
D( ib3),0, andD( ib4).0. ForN53 we again have double nonuniqueness with the th
bound states occurring atk5 ik j with the ordered set$k1 ,k2 ,k3% being equal to either
$b1 ,b2 ,b4% or $b1 ,b3 ,b4%.

~d! When e5100, we find that we are in the generic case,N must be even,Z53 with z1

53.342 69̄, z257.7787̄, andz359.493 79̄, and thusN<4; moreover, the quantity 1/T[0]

given in ~4.1! has six simple zeros onI2 at k52 ib j , where b151.926 93̄, b2

55.710 38̄, b356.410 14̄, b458.546 07̄, b559.184 76̄, andb659.652 62̄. Thus, we have
either of the three cases whereN50, N52, orN54. ForN50 our data uniquely determine
L and V, with L(k)5D(k) T[0] (k). With L(k)5D(k) T[0] (k)) j 51

2 (k1 ik j )/(k2 ik j ) for
N52, we have fivefold nonuniqueness where the two bound states occurring atk5 ik j with
the ordered set$k1 ,k2% being equal to either of$b1 ,b2%, $b1 ,b3%, $b1 ,b6%, $b4 ,b6%, and
$b5 ,b6%. On the other hand, forN54 we have fourfold nonuniqueness where the fo
bound states occurring atk5 ik j with the ordered set$k1 ,k2 ,k3 ,k4% being equal to either of
$b1 ,b2 ,b4 ,b6%, $b1 ,b2 ,b5 ,b6%, $b1 ,b3 ,b4 ,b6%, $b1 ,b3 ,b5 ,b6%.
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Département de Physique, Faculte´ des Sciences, Parc Valrose,
06108 Nice cedex 2, France

Frédéric Patrasb)

CNRS UMR 6621, Universite´ de Nice, Mathe´matiques, Parc Valrose,
06108 Nice cedex 2, France

~Received 31 March 2003; accepted 1 July 2003!

The Hopf algebra structure of the fermionic Fock space is unravelled. The tools
provided by the Hopf algebra formalism are used to rederive in a more straightfor-
ward fashion some known theorems and to open the way to natural generalizations
of these results. The algebraic concepts of rank, depth and length of a wave func-
tion are given. They allow one to cast a wave function into a canonical form that is
simpler and more appropriate to a physical interpretation or a numerical treatment.
An original algorithm to re-expand a wave function with the least possible number
of spin orbitals is described. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1611266#

I. INTRODUCTION

The origin of the Hopf algebra formalism can be traced back1 to a conjecture regarding
topological invariant by Cartan in 1936.2 Hopf proved that the conjecture was true,3 essentially by
introducing the Hopf algebra formalism as we use it in the present paper. More precise
showed that the cohomology of compact Lie groups and of suitable generalizations of the
have the structure of an exterior algebra, the very structure of the fermionic Fock space.

Later on, the Hopf algebra formalism was extended to cover more general situation
different problems, e.g., the structure of group algebras, see Ref. 4. For example, in some
tions, the definition of an Hopf algebra had to include explicitely the definition of an ‘‘antip
map.’’ In the case of Lie groups, this map corresponds to the usual inverse map. Howev
antipode exists automatically in the case of the exterior algebra, see Ref. 5, and need
introduced in the definition of the Hopf algebra structure of the fermionic Fock space.

In the late 1970s, Rota and co-workers put forward the idea of using Hopf algebras to
with combinatorial aspects of Fock spaces~see, for example, Ref. 6!. Seemingly, the physicists
community did not echo their investigations. However, quantum groups appeared in phys
about the same period in the completely different context of the quantum inverse sca
method. Raychev7 reviewed the early uses made of quantum groups and quantum algeb
physics. Since then, Connes and Kreimer have introduced Hopf algebra techniques in the th
renormalization.8,9

The exterior algebra and the algebras coming from algebraic topology~precisely, from the
cohomology of topological spaces! are ‘‘fermionic’’ in nature. In these algebras, the formal pe
mutation of two elements of the algebra has to take into account a sign factor. This sign
does not appear when defining the Hopf algebra structure on group algebras and qu
groups.10 So, the Hopf algebras involved in the theory of group algebras and quantum grou
slightly different from the ones we are interested in here.

a!Electronic mail: cassam@unice.fr
b!Electronic mail: patras@math.unice.fr
48840022-2488/2003/44(11)/4884/23/$20.00 © 2003 American Institute of Physics
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The purpose of this paper is to exploit Hopf algebra techniques as a tool for investigatin
physical properties of systems of identical fermionic particles.

Our paper is organized as follows.
First, an elementary presentation of the Hopf algebra structure of the Fock space is give

properties defining an algebra are not all introduced here, as physicists are usually well acq
with the exterior algebra structure of the fermionic Fock space. We refer the reader to the ap
of Ref. 7 for a more comprehensive presentation intended for nonspecialists of the pro
defining an Hopf algebra. In contrast, the co-algebra structure and the Hopf algebra struc
the Fock space are not so familiar and all the properties defining these structures are prov

Then, we turn attention to the observables, and more particularly to the density ope
defined on the state space. We show how the Hopf algebra formalism simplifies the deriva
several famous results and how it suggests natural generalizations of the latter. Next, we
some new algebraic concepts to analyze and simplify the expansion of a fermionic wave fun
We obtain an original algorithm to re-expand a wave function in a more adapted basis set by
the new tools introduced in the preceding section.

We conclude alluding to the wealth of further studies and possible applications which
attract both physicists and mathematicians.

Notation: Let m be a positive integer, we denote bySm the symmetric group of orderm and
for any permutationsPSm , usu the signature ofs, equal to11 if s is even and to21 if s is odd.

For all non-negative integern<m, we denote byPm,n the set ofn element subsets o
$1,...,m%, ordered in increasing order. The set of ordered subsets of$1,...,m% is

Pmªø
n50

m

Pm,n .

For all I PPm,p , I 5( i 1 ,...,i p) we denote byĪª( ī 1 ,...,ī m2p) the element ofPm,m2p such that
I ø Ī 5$1,...,m%. For all I ,JPPm ,I 5( i 1 ,...,i p),J5( j 1 ,...,j q) we denote byI //J the sequence
( i 1 ,...,i p , j 1 ,...,j q). Note that the latter is not necessarily an element ofPm since it may not be in
increasing order and repeated integers may occur. In contrast, set operators such asI øJ are
assumed to give elements ofPm.

We further define the useful quantitiesr I ,J by

r I ,J50 if I ùJÞB,
~1!

r I ,J5~21! usu if I ùJ5B,

wheresPSp1q is the permutation that reordersI //J into I øJ. We easily note that,

r I ,J5~21!pqrJ,I . ~2!

For all I ,J,KPPm , denoting byIDJ the symmetrical difference of setsI and J, that is the
complement of their intersectionI ùJ in their unionI øJ, the reader can verify that the followin
relation is satisfied:

r I ,KrJ,K5r IDJ,Kr I ùJ,K
2 , ~3!

from which we deduce by settingI 5J,

rB,K51, ~4!

II. THE HOPF ALGEBRA STRUCTURE OF THE STATE SPACE

Classical and quantum physics can be described in a unified formalism relying on a d
relationship between an algebra of observables and a vector space of states.11,12In this section, the
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form embodied by quantum states in the formalism of Hopf algebras is presented, togethe
other mathematical objects of primary importance to express the quantum mechanics of a
of identical fermionic particles.

We have chosen to use a notation close to the notation currently found in the recent
ematical literature because first, we find it convenient and second, we hope to bridge th
between quantum physics and this field of mathematics where many ideas and results still
be exploited by physicists. In that sense, this work is a prolongation of the work accomplish
one of us to introduce exterior algebra techniques into quantum chemistry.13–16 As it will soon
become apparent to the reader, the basic tools of the Hopf algebra formalism are very sim
those of the ‘‘second quantization’’ formalism, so they suit naturally the treatment of prob
formulated in this framework. However, the Hopf algebra formalism also allows us similar fo
manipulations, and much more, within the frame of the ‘‘first quantization.’’

A. The graded algebra structure of the Fock space

We denote byH the one-particle Hilbert space which is the tensor product of an orb
Hilbert spaceH0 and a spin Hilbert spaceHs ,

H5H0^ Hs . ~5!

An elementc of H is called a spin orbital and is in general a finite sum of tensor product
orbitalsu iPH0 with spin functionst iPHs ,

c5(
i

u i ^ t i . ~6!

The n-fermion Hilbert space induced byH is thenth exterior power ofH, denoted by∧nH. An
elementC of ∧nH is ann-fermion wave function. It will be more specifically termed a ‘‘sing
configuration’’ ~SC! function if it can be cast in the form of a simple exterior product ofn spin
orbitalsc1 ,...,cn ,

C5c1∧c2∧¯∧cn, ~7!

which corresponds in the second quantization of a fermionic system formalism to the qu
state

C5a1
†
¯an

†u0&, ~8!

whereai
† is the creation operator of a fermion in the spin orbitalc i .

The fermionic Fock space of the second quantization∧H is the direct sum of all the∧nH,

∧Hª %
n>0

∧nH, ~9!

whereH is identified to∧1H and the field of complex or real numbers, denoted byK, is identified
to ∧0H through the ‘‘unit map,’’U,

U:K°∧H

l→U~l!5lP∧0H. ~10!

Provided with Grassmann’s exterior product,∧, which can be seen as a map from the ten
product∧H^ ∧H to ∧H,

X:∧H^ ∧H°∧H
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F ^ C→X~F ^ C!5F∧C, ~11!

it acquires the mathematical structure of an ‘‘exterior algebra.’’ Note that when one of its fa
is a scalarl, the exterior product reduces to the multiplication by this scalar,

l∧C5C∧l5lC. ~12!

The fermionic symmetry which traduces the Pauli exclusion principle is built-in in this exte
algebra because of the following antisymmetry relation between exterior products of one-p
functions:

X~f ^ c!5f∧c52c∧f52X~c ^ f!, ~13!

which entirely determines the behavior of ann-fermion wave function under the symmetric grou
Sn . That is to say, for ann-fermion single configuration:

c1∧¯∧cn5~21! usucs(1)∧¯∧cs(n) . ~14!

The general case is obtained from Eq.~14! by linearity.
Furthermore, the Fock space is what is termed ‘‘a graded algebra.’’ That is to say, Eq.~9! and

the following relation hold true:

X~∧pH^ ∧qH!#∧p1qH. ~15!

The latter relation simply means that the exterior product of ap-fermion wave function with a
q-fermion wave function is a (p1q)-fermion wave function. In fact, the graded algebra struct
of the Fock space is something physicists are familiar with. In contrast, it has an addi
coalgebra structure which has never been exploited, as far as we are aware.

B. The coalgebra structure of the Fock space

Inverting the arrows in Eq.~11!, we define an ‘‘exterior coproduct’’ or simply ‘‘coproduct’’ on
single configuration functions by

Y:∧H°∧H^ ∧H,
~16!

c1∧¯∧cn→Y~c1∧¯∧cn!5 (
I PPn

r I , Īc i 1
∧¯∧c i p

^ c ī 1
∧¯∧c ī n2p

.

The idea behind the coproduct is to split ann-fermion single configuration function into ap and
an (n2p)-fermion single configuration functions in all possible ways, wherep ranges from 0 to
n, the exterior product of the two parts so-obtained giving back the initial function, the sign o
reordering permutation being taken care of. The definition extends by linearity to general
functions.

As an example, let us write down the formula forY acting on a 3-fermion configuration,

Y~ca∧cb∧cc!5ca∧cb∧cc^ 11ca∧cb^ cc2ca∧cc^ cb1cb∧cc^ ca1ca^ cb∧cc

2cb^ ca∧cc1cc^ ca∧cb11^ ca∧cb∧cc . ~17!

The coproduct is coassociative, i.e.,

~Y^ Id!+Y5~ Id^ Y!+Y ~18!

~where Id is the identity map acting on the Fock space and+ the composition of mappings!, which
expresses the fact that when splitting a single configuration into a tensor product of three s
figurations by iterating the coproduct twice, the component of the tensor product chosen to
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the second coproduct does not matter. More generally, iterating the coproductn times splits a
single configuration into a tensor product ofn11 subconfigurations and the choice of the co
ponents on which the coproduct is successively applied is indifferent.

Another important mapping that is needed to obtain a coalgebra structure is the couni

V:∧H°K

C→V~C!50 if CP∧nH, n.0, ~19!

l→V~l!5l if lP∧0H.

The counit is compatible with the coproduct in the sense that

;CP∧H, ~V^ Id!+Y~C!5~ Id^ V!+Y~C!5C. ~20!

When the Fock space is endowed with the coproduct and the counit it becomes a coalgebra
next section, we show that the algebra and the coalgebra structures are compatible. This ma
Fock space a Hopf algebra.

C. The Hopf algebra structure of the Fock space

The compatibility relationship between the exterior productX and the exterior coproductY
which defines the Hopf algebra structure on the Fock space reads,

Proposition 1 (Hopf algebra fundamental relation):

Y+X5~X^ X!+~ Id^ T^ Id!+~Y^ Y!, ~21!

whereT is the twisting map

;FP∧pH, ;CP∧qH,
~22!

T~C ^ F!5~21!pqF ^ C.

The definition ofT extends to more general elements of the Fock space by linearity.
The fundamental Hopf algebra relation expresses the fact that the same decomposition

product of two single configurations into a tensor product of two subconfigurations is obtain
applying the coproduct to the exterior product of the two single configurations, or alterna
@second member of Eq.~21!#, by first splitting each single configuration separately (Y^ Y), then
grouping the first tensorial components of each decomposition together and the second c
nents together (Id̂ T^ Id), and finally by taking the exterior product of the first components
the one hand and the exterior product of the second components on the other hand (X^ X).

More explicitly we have

Y~c1∧¯∧cp∧f1∧¯∧fq!5 (
I PPp ,JPPq

r I , ĪrJ,J̄~21! l (p2k)c i 1
∧¯∧c i k

∧f j 1
∧¯∧f j l

^ c ī 1
∧¯∧c ī p2k

∧f j̄ 1
∧¯∧f j̄ q2 l

. ~23!

The proof of the formula follows almost immediately from the observation that to extract al
(k1 l )-element subsequences out of a sequence with (p1q) elements (1,...,p1q) amounts to
extracting k elements out of the sequence (1,...,p) and l elements out of the sequence (p
11,...,p1q) in all possible ways, wherek runs from 0 top and l from 0 to q.
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D. Hermitian structure of the Fock space

A complex~or Hermitian! Hilbert space is, by definition, endowed with an Hermitian prod
written ^ u &. ~If K5R, the words ‘‘complex’’ must be replaced by ‘‘real,’’ ‘‘Hermitian product
by ‘‘scalar product,’’ ‘‘sesquilinear’’ by ‘‘linear’’ . . . , in thepresent and the following sections.!

If E and F are two Hermitian spaces, then their tensor product is also Hermitian, with
Hermitian product defined by

;e, f PE, ;g,hPF, ^e^ gu f ^ h&ª^eu f &•^guh&. ~24!

An illustration of this situation is the one-particle Hilbert space of Eq.~5! whose Hermitian
product is formed by multiplication of the orbital Hermitian product (^ f ug&5* f * •g drW in L2) and
the spin Hermitian product~the standard Hermitian product in dimension 2S11).

Similarly, if H is an Hermitian space, an Hermitian product is induced on∧nH, by

^f1∧¯∧fnuc1∧¯∧cn&ªdet~^f i uc j&! i , j P$1,...,n% , ~25!

which extends by sesquilinearity to all∧H.
Then, making use of Eqs.~14!, ~24!, and~25!, the Hopf algebra fundamental formula, rewr

ten as Eq.~23!, immediately yields the Laplace formula to expand a determinant.17

Proposition 2 (Laplace formula): For anyf1 ,...,fn ,c1 ,...,cnPH and for any p<n, ;s
PSn we have

^f1∧¯∧fnuc1∧¯∧cn&5~21! usu^Y~f1∧¯∧fn!u~cs(1)∧¯∧cs(p)!

^ ~cs(p11)∧¯∧cs(n)!&, ~26!

which can be rewritten in a more familiar fashion,

det~^f i uc j&! i , j P$1,...,n%5 (
I PPn,p

r I , Ī ~21! usu det~^f i k
ucs( j )&!k, j P$1,...,p%

3det~^f ī k
ucs(p1 j )&!k, j P$1,...,n2p% . ~27!

The Laplace formula extended by sesquilinearity withs5Id, writes,

^X~Q ^ F!uC&[^Q∧FuC&5^Q ^ FuY~C!&, ~28!

which expresses the duality-like relationship between the exterior product and the coprodu

III. DENSITY OPERATORS ON THE FOCK SPACE

According to the standard axioms of quantum theory, the outcome of a physical experim
given by the expectation value of an Hermitian operator acting on the state space, cal
observable, over the von Neumann’s statistical operator,18 or ‘‘density operator,’’ characterizing
the physical state of the system. When the observable contains onlyp-particle operators (p<n the
total number of particle of the system!, its expectation value can be obtained from a more comp
mathematical object than the density operator, called the ‘‘p-particle reduced density operator.’’ I
this section, we present the form assumed by these operators in the Hopf algebra formali
some of their basic properties.

Remark:In fact, it is transitions between quantum states rather than expectation values
should play the central role in quantum axiomatic, because without transitions there is no ph
measurement nor observation possible. However, the importance of observables and den
erators in quantum physics remains.
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A. Creation, annihilation and density operators

The exterior product map,X, defines in a natural manner, for allCP∧H, the map,

XW C :∧H°∧H

F→XW C~F!5X~C ^ F!5C∧F, ~29!

called the ‘‘left exterior product byC’’ map, or in the second quantization terminology, the ‘‘~left!
creation operator ofC.’’ Similarly we can define a right creation operator by

XQ C :∧H°∧H

F→XQ C~F!5X~F ^ C!5F∧C. ~30!

The Hermitian product allows us to define the conjugate operatorO† of an operatorO acting in
∧H, by

;F,CP∧H, ^FuO~C!&5^O†~F!uC&. ~31!

So a left annihilation operator,IWCªXW C
† , also called the ‘‘left interior product byC’’ and denoted

by C‚ , is associated to the left creation operator,

IWC :∧H°∧H

F→IWC~F!5C‚F. ~32!

Similarly a right annihilation operator,IQCªXQ C
† , also called ‘‘right interior product byC’’ and

denoted byC� , is associated to the right creation operator,

IQC :∧H°∧H

F→IQC~F!5F�C. ~33!

The conjugation relationships write, for allQP∧q2pH, CP∧pH, FP∧qH,

^QuC‚F&5^C∧QuF&, ~34!

^QuF�C&5^Q∧CuF&. ~35!

Note that the left~respectively, right! interior product byC is an antilinear function ofC, so it
defines a sesquilinear~respectively, antisesquilinear! map on∧H3∧H, the left ~respectively,
right! interior product,‚ ~respectively,�!. Then from the exterior product property,

C∧Q5~21!p(q2p) Q∧C ~36!

we deduce

C‚F5~21!p(q2p)F�C, ~37!

which shows that the left and right interior products differ only by a sign factor. In the follow
the left interior product will often be referred to more simply as the ‘‘interior product.’’

Setting, Q51, in Eqs. ~34! and ~35! shows that for allp, the restriction of the interior
products to∧pH3∧pH reduces to the Hermitian product on∧pH.
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The expression of the density operator associated to a wave functionCP∧H translates
directly from the second quantization formalism. It corresponds, ifC is normalized,̂ CuC&51, to
the annihilation ofC followed by its creation:

GC5XW C+IWC . ~38!

If the wave function is that of a fixed number of particles,CP∧nH, for all FP∧pH, GC(F)
P∧pH, that is to say,GC preserves the number of particles. We will denote byGC

p its restriction
to ∧pH. For p,n, GC

p 50.
The density operators of general quantum states, or ‘‘mixed states,’’ or ‘‘ensemble states

linear convex combinations of density operators associated to wave functions, that is, assoc
‘‘pure states.’’

In the next sections we show that the reduced density operators related toGC have a particu-
larly elegant expression in the Hopf algebra formalism, and that the coproduct simplifies g
the investigation of their properties.

B. Reduced density operators

In this section we consider a fermionic system with a fixed number,n, of particles. A general
wave function,CP∧nH will have the form,

C5(
l

clc l ,1∧¯∧c l ,n , ~39!

with clPK and c l , jPH for all l , j . For anyK5(k1 ,...,kp)PPn , we denote byCK ^ C K̄ the
expression,

CK ^ C K̄ªrK,K̄(
l

clc l ,k1
∧¯∧c l ,kp

^ c l ,k̄1
∧¯∧c l ,k̄n2p

, ~40!

so that the coproduct writes,

Y~C!5 (
KPPn

CK ^ C K̄ . ~41!

Another useful self-explanatory notation is

^F1uCK&C K̄ªrK,K̄(
l

cl^F1uc l ,k1
∧¯∧c l ,kp

&c l ,k̄1
∧¯∧c l ,k̄n2p

, ~42!

^F1uCK&^F2uC K̄&ªrK,K̄(
l

cl^F1uc l ,k1
∧¯∧c l ,kp

&^F2uc l ,k̄1
∧¯∧c l ,k̄n2p

&. ~43!

The reduced density operator of a normalizedn-fermion wave function,DC acts on a wave
function,FP∧H in the following way:16

DC~F!5C�F‚C. ~44!

Here, one does not need to put parentheses indicating whether the left or the right interior p
has to be performed first, because the solution obtained is indifferent to the order. Like the d
operator,GC , the reduced density operator,DC , preserves the number of particles. ThereforeDC

is the direct sum of its restrictions to the∧pH, the so-called ‘‘p-order reduced density operators
DC

p ,
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DC5 (
p>0

DC
p . ~45!

Note thatDC coincides withGC on ∧nH,

DC
n 5GC

n , ~46!

and is null forp.n.
One of the difficulties in the study of the reduced density operator seems to have been th

of a suitable algebraic framework for handling computations. We propose, in the next sec
simple closed formula for these operators by using the coproduct. Owing to this formula an
formal rules governing the Fock space as a Hopf algebra, the solutions of many algebraic
lems related to reduced density operators becomenatural. Compare, for example, our proof o
Sasaki’s formula main corollary~Sec. III G below! with the classical one.19,20 We begin with
exhibiting the relationship between the interior products and the coproduct.
C. Generalization of the Greub formula and application to the reduced density
operator

Combining the conjugation relation, Eq.~35! with the generalized Laplace formula Eq.~28!
we obtain

^QuC�F&5^Q ^ FuY~C!&, ~47!

valid for all Q,C,FP∧H. If now we restrict ourselves to homogeneous elements of the F
space~i.e., belonging to a given exterior power ofH!, QP∧n2qH, CP∧nH, FP∧qH, we can
write further

^Q ^ FuY~C!&5K Q ^ FU (
KPPn

CK ^ C K̄L , by Eq. ~41!

5K Q ^ FU (
KPPn,n2q

CK ^ C K̄L ,

since Q is a ~n2q!2fermion function

5 (
KPPn,n2q

^QuCK&•^FuC K̄&, by Eq. ~24! and Eq. ~43!

5K QU (
KPPn,n2q

^FuC K̄&•CKL , by using Eq.~42!.

Since this holds for allQ we obtain through Eq.~47! the following closed formula for the righ
interior product:

C�F5 (
KPPn,n2q

^FuC K̄&•CK . ~48!

Similarly, we have for the left interior product,

F‚C5 (
KPPn,q

^FuCK&•C K̄ , ~49!

which is just a generalization by sesquilinearity of the Greub formula for single configuratio21

~f1∧¯∧fq!‚~c1∧¯∧cn!5 (
KPPn,q

rK,K̄ det~^f i uckj
&! i , j <q c k̄1

∧¯∧c k̄n2q
. ~50!
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We are now ready to return to the reduced density operator expression. Rewriting Eq.~44! for
FP∧qH, we have

DC
q ~F!5C�F‚C

5C�S (
KPPn,q

^FuCK&•C K̄D , by Eq. ~49!

5 (
KPPn,q

^CKuF&•~C�C K̄!, by antilinearity

5 (
KPPn,q

(
LPPn,q

^CKuF&•^C K̄uC L̄&CL, by Eq. ~48!

5 (
KPPn,q

(
LPPn,q

^C K̄uC L̄&XW CL
+IWCK

~F!.

In the last equation, the notation of Eq.~42! has been extended to encompass the case wher
functions appear as indices of creation or annihilation operators, that is to say, when we
C K̄∧, or C K̄‚ instead ofC K̄ in Eq. ~42!. Also, care must be taken that the coefficients of
expansion, Eq.~42!, encapsulated in the pairCK ,C K̄ are to be replaced by their complex conj
gates, because in fact it is the complex conjugate of Eq.~42! that appears above. Since the abo
equations hold for allF we have the following.

Proposition 3: The reduced density operator of order q associated toC written DC
q or simply

Dq when no ambiguity can arise from the notation, is given by

Dq5 (
K,LPPn,q

^C K̄uC L̄& XW CL
+IWCK

. ~51!

Note that the use of the creation and annihilation operators in Eq.~51! allows us to extend the
action ofDq to all ∧H. Remark also that, in contrast with similar expressions obtained previo
the functionsCL ,C L̄ ,CK ,C K̄ in this equation are not single configuration element of an indu
basis set, but general multiconfigurational functions.

D. Normalization of reduced density operators

To illustrate further how to manipulate the coproduct, we address the problem of the no
ization of reduced density operators. First, we establish some technical identities.

Proposition 4: LetCP∧nH, Yp,q denotes the component of the coproduct in∧pH^ ∧qH and
(p

n) the binomial coefficient, then we have

X+Yp,n2p~C!5S n
pDC, ~52!

X+Y~C!52nC. ~53!

Proof: Since the mapsX+Yp,n2p andX+Y are linear, we may assume in the proof thatC is a
single configuration wave function,C5c1∧¯∧cn . Recall then that

Yp,n2p~C!5 (
I PPn,p

r I , Ī c i 1
∧¯∧c i p

^ c ī 1
∧¯∧c ī n2p

.

Therefore
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X+Yp,n2p~C!5 (
I PPn,p

r I , Ī c i 1
∧¯∧c i p

∧c ī 1
∧¯∧c ī n2p

.

Since we have

c i 1
∧¯∧c i p

∧c ī 1
∧¯∧c ī n2p

5r I , Ī c1∧¯∧cn ,

r
I , Ī

2
51, and( I PPn,p

15(p
n), the proof of the first equation in the proposition follows. The seco

one is a straightforward corollary of the first.
Proposition 5: In the Hopf algebra (and so in the second quantization) formalism, the tra

the pth-order reduced density operator is equal to the the binomial coefficient, (p
n), if the wave

function is normalized, since,

Tr~Dp!5Tr~Dn2p!5S n
pD iCi2 . ~54!

~This is not true in certain formalisms where different normalization factors are imposed t
reduced density operators see, e.g., Ref. 22.!

Proof: From Eq.~51! we have

Tr~Dp!5 (
K,LPPn,p

^C K̄uC L̄&IWCK
~CL!

and, sinceIWCK
(CL)5^CKuCL&, the trace is the Hermitian product of two coproducts, so tha

Tr~Dp!5Tr~Dn2p!5^Yp,n2p~C!uYp,n2p~C!&. ~55!

From the generalized Laplace formula Eq.~28! we have

Tr~Dp!5^CuX+Yp,n2p~C!&,

then we conclude with the previous proposition.

E. Convolution and induction

A p-particle operator,Op, can be defined as an operator from∧H to ∧pH such that,
Op(C)50, if C¹∧pH. For example, the Coulomb repulsion, 1/irW12rW2i , between two electrons
is a two-electron operator. In this definition, the action of the operatorOp on ∧nH, nÞp, is trivial.
The actual observable induced byOp on all ∧H is given by

OªOp* IdªX+~Op
^ Id!+Y. ~56!

The operation denoted by* is called the ‘‘convolution’’ in the Hopf algebra formalism,

A* BªX+~A^ B!+Y. ~57!

The convolution by the identity is thus a convenient way to induce operators on∧H. The restric-
tion of the induced observable,O, to ∧nH for n<p is Op, and forn.p it is equivalent to the
usual operator used in quantum physics, e.g.,( i , j 1/irW i2rW j i in the case of the Coulomb repulsio
operator.

According to quantum physics ann-particle quantum state is determined by its density
eratorGn. As a matter of fact, the expectation value,^O&, of any observable,O, is given by

^O&5Tr@Gn+O#. ~58!
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The reduced density operator is of paramount importance in applications because ifO is the
induced operator by ap-particle operatorOp, then,;CP∧nH,

^CuOC&5^Cu~X+~Op
^ Id!+Y!C&

5^Y~C!u~Op
^ Id!+Y~C!&

5 (
K,LPPn

^CK ^ C K̄u~Op
^ Id!~CL ^ C L̄!&

5 (
K,LPPn,p

^CKuOp~CL!&•^C K̄uC L̄&

5TrF S (
K,LPPn,p

^C K̄uC L̄&XW CL
+IWCKD +OpG

5Tr@DC
p +Op#. ~59!

Therefore, only the knowledge ofDC
p , an operator acting on∧pH, and not that ofGC

n , an
operator acting on∧nH, is required to compute the expectation value of the observable induce
∧nH by ap-particle operator, withp,n. In particular, the energy of a Coulombian system can
expressed exactly in terms ofDC

2 since the Coulomb potential involves no more than two-part
interactions.

F. A new proof of Carlson and Keller duality property

The Carlson and Keller duality property for reduced density operators19 is a useful result
which has been used, for example, to prove the generalized Koopmans theorem.23 We now include
a simplified proof of the duality property. Recall that, since reduced density operators are H
ian, they can be diagonalized in an orthonormal basis and their eigenvalues are real and p

Proposition 6: The interior products withC send anyl-eigenvector of Dp, with lÞ0, to an
eigenvector of Dn2p associated to the same eigenvalue, and the‘‘ p-external space,’’ i.e., the

0-eigenspace of Dp ~if 0 is an eigenvalue), to the null vector space$0W %.
Proof: Let FP∧pH be an eigenvector forDp with eigenvaluel. Then, by definition

l•F5Dp~F!5C�F‚C.

If lÞ0 this shows thatF‚CÞ0 and we have

Dn2p~F‚C!5C�~F‚C!‚C5~C�F‚C!‚C5l•F‚C,

so thatF‚CP∧n2pH is an eigenvector forDn2p with the same eigenvalue. The same argum
shows thatC�FP∧n2pH is an eigenvector forDn2p, still with the same eigenvalue. Ifl50
then

05^FuC�~F‚C!&5^F∧~F‚C!uC& by Eq. ~35!,

5^F‚CuF‚C& by Eq. ~34!,

from which we deduce,F‚C5F�C50.
Of course, we can changep in (n2p) in the previous proposition. Thus, we see that t

interior products are isomorphisms from the nonzero eigenspaces ofDp to the nonzero eigens
paces ofDn2p, which is the Carlson and Keller duality property. We will call the space span
by the nonzero eigenspaces ofDp, the ‘‘p-internal space.’’ Its orthogonal complement is t
p-external space already defined. The extension of the interior product isomorphisms to t
ternal space does not seem of physical relevance.
                                                                                                                



es

mpha-

dy of
s these
book by
iven,

llary of
f the

e

ted to
This is

.

cts
to

4896 J. Math. Phys., Vol. 44, No. 11, November 2003 P. Cassam-Chenaı̈ and F. Patras

                    
G. A simple derivation of Sasaki’s formula main corollary

In the development of theN-representability conditions of reduced density matric
~RDM!,22,24 it was soon considered that the properties of partitioning a system ofn particles into
two subsystems should be one of the keys to the solution of the problem, and Coleman e
sized in particular the roˆle that Sasaki’s formula20,25 should play@‘‘this formula should be ex-
tremely useful whenever a system is partitioned into two subsystems’’~Ref. 24, pp. 677–678!#. In
this section we will not expand on the original Sasaki formula and its interest for the stu
reduced density matrices that we prefer calling reduced density operators in this work, unles
operators are represented in some finite basis set. We refer the reader to Chapter 3 of the
Coleman and Yakulov, Ref. 22, where various applications of the Sasaki formula are g
together with historical references on the subject. Instead, we show here that the main coro
Sasaki’s formula, from the point of view of applications, is obtained easily with the help o
coproduct.

This corollary, also due to Sasaki~Ref. 22, Thm. 3.3!, is the following.
Theorem 7: Assuming n5p1q, p<q, if f p (respectively, f q) is a complex square integrabl

function of p (respectively, q) variables, then,

^ f pf quA nf pf q&5(
j 50

p

~21! j S p
j D S q

j DTr@D f p
j D f q

j
#,

whereAn is the antisymmetrization operator acting on functions of n variables.
One expects that, in the exterior algebra formalism, the technical points of the proof rela

the symmetric group actions and the related combinatorial operations should disappear.
indeed the case. In the exterior algebra formalism, the previous result reads as follows.

Theorem 8: Let CP∧pH and FP∧qH and assume, for example, that q<p. Then

^C∧FuC∧F&5(
j <q

~21! j Tr~DC
j DF

j !. ~60!

Proof: We have, according to the generalized Laplace formula Eq.~28!,

^C∧FuC∧F&5^C ^ FuY~C∧F&!.

According to the Hopf algebra fundamental formula Eq.~23!, combined with the notation of Eq
~40! we can write@denoting card~K! the cardinal of set K#,

Y~C∧F!5 (
I PPp ,JPPq

~21!card(J)(p2card(I ))C I∧FJ^ C Ī ∧F J̄ ,

and therefore, making use of Eq.~24!,

^C ^ FuY~C∧F!&5 (
I PPp ,JPPq

~21!card(J)(p2card(I ))^CuC I∧FJ&^FuC Ī ∧F J̄&.

Notice that the terms with card(J)Þ(p2card(I )) vanish because they contain Hermitian produ
between functions of different particle numbers. Therefore the computed quantity is equal

(
j <q

(
I PPp,(p2 j ) ,JPPq, j

~21! j^CuC I∧FJ&^FuC Ī ∧F J̄&,

and, making use again of Eq.~28!, it is equal to
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(
j <q

(
I PPp,(p2 j ) ,JPPq, j

~21! j^Y~C!uC I ^ FJ&^Y~F!uC Ī ^ F J̄&

5(
j <q

(
I ,KPPp,(p2 j ) ,J,LPPq, j

~21! j^CKuC I&^C K̄uFJ&^FLuC Ī &^F L̄uF J̄&

which can be recast by renaming the indexesI ° Ī ,K°K̄ ~and noting thatrK,K̄r I , Ī 5r K̄,Kr Ī ,I), in
the form

5(
j <q

~21! j (
I ,KPPp, j

(
J,LPPq, j

^C K̄uC Ī &IWCK
~FJ!+^F L̄uF J̄&IWFL

~C I !

where we recognize inside the sum overj the trace of the operator,

(
I ,KPPp, j

^C K̄uC Ī &XW C I
+IWCK

+ (
J,LPPq, j

^F L̄uF J̄&XW FJ
+IWFL

,

which is according to Eq.~51!, the productDC
j DF

j , hence the result, Eq.~60!.

H. Generalization: partitioning a wave function into several blocks

The part played by the coproduct in the derivation of the previous results suggest some
generalizations, which are developed in the present section. The idea is now to split then-fermion
wave function in more than two blocks. To this end, we introduce a new notation. We deno
Y [k] the coproduct iteratedk times (k.0),

Y [k]
ª~ Id^¯^ Id^ Y!+¯+~ Id^ Y!+Y, ~61!

where in the last iteration factor (Id̂̄ ^ Id^ Y), the identity appearsk21 times. The action of
Y [k] is to split a wave function intok11 blocks and we recall that, because of the coassociati
property, Eq.~18!, the result does not depend upon the position of the coproduct in each f
Id^¯^ Id^ Y. From its definition we have the recursion formula

Y [k]5~ Id^¯^ Id^ Y!+Y [k21]. ~62!

We specify further byYi 0 ,...,i k
[k] the component of the iterated coproduct corresponding to

decomposition of a wave function into the tensor product of (k11) wave functions of
i 0 ,...,i k-particles.

In a dual manner we define recursively the exterior product iteratedk times (k.0), X [k] , by

X [k]
ªX+~X [k21]

^ Id!, ~63!

with X [0]
ªId.

X [k] acts on (k11)-component tensor products to form their (k11)-component exterior
product counterparts,

X [k]~C0^¯^ Ck!5C0∧¯∧Ck . ~64!

Endowed with these tools we first generalize Eqs.~52! and ~53!.
Proposition 9: LetCP∧nH, and i0 ,...,i k such that i01¯1 i k5n, then we have

X [k]+Y i 0 ,...,i k
[k] ~C!5S n

i 0 ,...,i k
DC, ~65!

X [k]+Y [k]~C!5~k11!nC. ~66!
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Proof: The generalized binomial coefficient (i 0 ,...,i k
n ) is the number of partitions of a set wit

n elements into an ordered sequence ofk subsets with, respectively,i 0 ,...,i k elements. That is,

S n
i 0 ,...,i k

D5
n!

i 0!...i k!
.

Since (k11)n is the number of partitions of a set withn elements intok11 subsets, the secon
part of the proposition follows from the first identity. We now prove the first identity by induc
on k.

The casek51 corresponds precisely to Eq.~52!. Assume then the property true up tok21,
and let show that it holds fork.

First we remark thatYi 0 ,...,i k
[k] can be constructed on∧nH from the coproduct in the following

manner:

Yi 0 ,...,i k
[k] 5~ Id^¯^ Id^ Yi k21 ,i k

!+¯+~ Id^ Yi 1 ,n2 i 02 i 1
!+Yi 0 ,n2 i 0

. ~67!

Remark also that,

X [k]5X+~X [k22]
^ X!. ~68!

Thus, we have,

X [k]+Y i 0 ,...,i k
[k] ~C!5X+~X [k22]

^ X!+~ Id^¯^ Id^ Yi k21 ,i k
!+~ Id^¯^ Id^ Yi k22 ,i k211 i k

!+¯

+~ Id^ Yi 1 ,n2 i 02 i 1
!+Yi 0 ,n2 i 0

~C!

5X+~X [k22]
^ ~X+Yi k21 ,i k

!!

+~ Id^¯Id^ Yi k22 ,i k211 i k
!+¯+~ Id^ Yi 1 ,n2 i 02 i 1

!+Yi 0 ,n2 i 0
~C!

5X+S X [k22]
^ S i k211 i k

i k
D IdD +Y i 0 ,...,i k22 ,i k211 i k

[k21] ~C!, by Eq. ~52!

5S i k211 i k

i k
DX [k21]+Y i 0 ,...,i k22 ,i k211 i k

[k21] ~C!, by Eq. ~63!

5S i k211 i k

i k
D •S n

i 0 ,...,i k211 i k
DC, by hypothesis,

and the proof follows since

S n
i 0 ,...,i k

D5S n
i 0 ,...,i k211 i k

D •S i k211 i k

i k
D .

Next we generalize Eq.~28!.
Proposition 10: For anyCP∧nH and for anyF0P∧ i 0H,...,FkP∧ i kH with i01¯1 i k

5n, we have

^F0∧¯∧FkuC&5^F0^¯^ FkuY [k]~C!&. ~69!

Proof: The proof proceeds by induction. The casek51 is precisely Eq.~28!. Let us suppose
that the property is true up tok21, then we have by Eq.~62!,

^F0^¯^ FkuY [k]~C!&5^F0^¯^ Fku~ Id^¯^ Id^ Y!+Y [k21]~C!&

5^F0^¯^ Fk22^ ~Fk21∧Fk!uY [k21]~C!&

5^F0∧¯∧Fk22∧~Fk21∧Fk!uC&, by hypothesis,
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where we can drop the parentheses thanks to the associativity of the exterior product.
By combining Eqs.~66! and ~69! we immediately deduce the following.
Proposition 11: LetC,FP∧nH. Then, for any k,

^CuF&5
1

~k11!n ^Y [k]~C!uY [k]~F!&. ~70!

Finally, we generalize Eq.~60!, by calculating the square norm ofF5F0∧¯∧Fk , where;m
P$0,...,k%,FmP∧ i mH. The latter can be expressed in the form

Fm5( lcm,l f l ,11(
j 50
m21i j

∧¯∧f l ,(
j 50
m i j

with

(
j 50

21

i j50 and (
j 50

k

i j5n.

That is to say, the indices of the spin orbitals ofFm run from i 01¯1 i m2111 to i 01¯

1 i m211 i m so that the indices of the spin orbitals ofF run from 1 ton.
We extend to more than two subsets the notation of Eqs.~40!–~43!, to encapsulate the sum

on single configuration functions. However, here we leave out of the notation the sign o
reordering permutation. For example,;mP$0,...,k%, for any partition of

H 11 (
j 50

m21

i j ,...,(
j 50

m

i j J
into k11 subsets,I m

0
ª$ j 1

0 ,...,j card(I
m
0 )

0
%,...,I m

k
ª$ j 1

k ,...,j card(I
m
k )

k
% we note,

^Q0uF I
m
0 ∧C0&¯^QkuF I

m
k ∧Ck&

ª(
l

cm,l ^Q0uf j
1
0∧¯∧f j

card(I m
0 )

0 ∧C0&¯^Qkuf j
1
k∧¯∧f j

card(I m
k )

k ∧Ck&. ~71!

By Eq. ~69!, we have

^F0∧¯∧FkuF0∧¯∧Fk&5^F0^¯^ FkuY [k]~F0∧¯∧Fk!&

5S I
m
l r I

0
0 ,...,I

k
0 ,...,I

0
k ,...,I

k
k ^F0uF I

0
0∧¯∧F I

k
0&¯^FkuF I

0
k∧¯∧F I

k
k&,

where the sum extends over all partitions

q
l P$0,...,k%

I m
l 5H 11 (

j 50

m21

i j ,...,(
j 50

m

i j J ,

for m50,...,k, and wherer I
0
0 ,...,I

k
0 ,...,I

0
k ,...,I

k
k is the signature of the permutation reordering t

sequence obtained by concatenation (I 0
0//¯//I k

0//¯//I 0
k//¯//I k

k), in increasing order.
Now because the scalar product is zero between functions of different number of particle

nonzero terms of the sum must not only satisfy,( l 50
k card(I m

l )5 i m , ;mP$0,...,k%, but also,
(m50

k card(I m
l )5 i l , ; l P$0,...,k%. We simply note,S I

m
l8 , the previous summation on theI m

l with

this additional restriction. We terminate our calculation by using again Eq.~69! and expanding the
iterated coproduct,Y [k] , in terms of another set of partitions,Jm

l , we obtain
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^F0∧¯∧FkuF0∧¯∧Fk&

5S I
m
l8 SJ

m
l8 r I

0
0 ,...,I

k
0 ,...,I

0
k ,...,I

k
krJ

0
0 ,...,J

0
k ,...,J

k
0 ,...,J

k
k^FJ

0
0uF I

0
0&¯^FJ

0
kuF I

k
0&¯

3^FJ
k
0uF I

0
k&¯^FJ

k
kuF I

k
k&, ~72!

where the complex conjugate of the notation defined in Eq.~71! has been used for the sums ov
the Jm

l , so that the notation encapsulates the summation,

(
l 0 ,...,l k

l 08 ,...,l k8

c0,l 0
* ¯ck,l k

* c0,l
08
¯ck,l

k8
.

IV. CANONICAL FORMS OF AN n-FERMION WAVE FUNCTION

So far we have dealt with general wave functions of the whole Hilbert space. The expa
Eq. ~39! of ann-fermion wave function was completely arbitrary, that is to say, we did not imp
any orthogonality condition on the spin orbitals, nor did we exclude linear dependencies
occurring in the expansion.

The physics does not depend upon the choice of the spin orbitals used to expand th
function, however for practical purposes certain choices are more advantageous than other
present section, we propose constraints to reduce the arbitrariness of the expansion Eq.~39!. These
constraints are based on algebraic concepts which, in general, admit a physical interpretati
resulting expansions have interesting properties for numerical calculations.

A. Miscellaneous definitions

Definition 12 (rank of a wave function): For anyFP∧H the rank ofF, r @F#, is the least
element k ofNø$1`%, such that,

'F#H, dimF5k and FP∧F,

wheredimF is the dimension of the Hilbert subspaceF, and where∧F is identified to a subspace
of ∧H in a natural way.

For the sake of simplicity and because we have in view numerical applications, from no
we only consider wave functions of finite rank, however most results could be extend
completely general wave functions.

Definition 13 (depth of a wave function): For anyFP∧nH the depth ofF, d@F#, is the
largest integer k, such that, 'C1P∧p1H,...,'CkP∧pkH, with p1 ,...,pk non-negative integers
allowing us to expressF in the form

F5C1∧¯∧Ck . ~73!

Definition 14 (length of a wave function): For anyFP∧nH the length ofF, l @F#, is the least
element k ofNø$1`%, such that, 'C1P∧nH,...,'CkP∧nH, with C1 , . . . ,Ck SC functions,
allowing us to expressF in the form

F5C11¯1Ck . ~74!

In the next sections, we exploit the concepts of rank, depth and length of a wave function t
a wave function into a simpler and less arbitrary form.

B. Internal spin orbital expansion

By Definition 12, the vector subspace,F, of dimensionr @C#, associated with a wave functio
C, is the smallest subspace ofH allowing us to expressC. It is precisely the 1-internal space
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denoted byI 1@C#, defined in Sec. III F. Its determination allows the expansion of a given w
function, C, with the least possible number of spin orbitals. The importance of the expansi
terms of internal spinorbitals has already been emphasized and taken advantage of in Refs
27. Here we present a new algorithm for reexpanding a wave function in terms of a set of in
spin orbitals suggested by Hopf algebra techniques.

1. Determination of the internal space

An alternative definition of the 1-internal space, or simply the ‘‘internal space,’’ is the foll
ing.

Definition 15: LetCP∧nH. The internal space ofC is the vector space

I 1@C#ª$fP∧1H,'FP∧n21H,F‚C5f%. ~75!

Notice that the substitution of 1 byp in Eq. ~75! gives an alternative definition of thep-internal
space,I p@C#. Potential applications of thep-internal spaces have been proposed in Ref. 16.

The definition, Eq.~75!, gives rise to a simple method for computing the internal spa
Choose a basis (F i) i PB of ∧n21H ~possibly adapted to the structure ofC, so that in general
choosing a suitable subset of the basis will be enough! and compute the set$F i‚C% i . The result
is a set of generators of the internal space, from which a basis set can be extracted.

Let us give an example. Consider a system of five spin-1
2 fermions whose wave function i

expanded in 16 single configuration functions, which are themselves constructed out of 12
normal spin orbitals~six of spina, f1

a ,...,f6
a , and six of spinb, f1

b ,...,f6
b),

C5 1
4 $f1

a∧f3
a∧f5

a∧f1
b∧f3

b1f1
a∧f3

a∧f6
a∧f1

b∧f4
b1f1

a∧f4
a∧f6

a∧f1
b∧f3

b

1f1
a∧f4

a∧f5
a∧f1

b∧f4
b1f1

a∧f3
a∧f5

a∧f2
b∧f3

b1f1
a∧f3

a∧f6
a∧f2

b∧f4
b

1f1
a∧f4

a∧f6
a∧f2

b∧f3
b1f1

a∧f4
a∧f5

a∧f2
b∧f4

b1f2
a∧f3

a∧f5
a∧f1

b∧f3
b

1f2
a∧f3

a∧f6
a∧f1

b∧f4
b1f2

a∧f4
a∧f6

a∧f1
b∧f3

b1f2
a∧f4

a∧f5
a∧f1

b∧f4
b

1f2
a∧f3

a∧f5
a∧f2

b∧f3
b1f2

a∧f3
a∧f6

a∧f2
b∧f4

b1f2
a∧f4

a∧f6
a∧f2

b∧f3
b

1f2
a∧f4

a∧f5
a∧f2

b∧f4
b%. ~76!

Let us compute, for example, the spin orbitalf obtained by evaluatingF‚C, whereF
5f4

a∧f5
a∧f1

b∧f4
b . By definition of the interior product, this amounts to extracting the remain

fifth spin orbital out of the exterior products containingF as a factor, and then combining the
linearly by using the expansion coefficients ofC. Only two SC in the development ofC have to
be taken into account, namely,f1

a∧f4
a∧f5

a∧f1
b∧f4

b and f2
a∧f4

a∧f5
a∧f1

b∧f4
b . We get there-

fore, f5f1
a1f2

a . For eachF running over a basis set of 4-fermion SC functions, a sim
calculation, gives either zero or an internal spin orbital. In fact, sinceC contains neitherf5

b nor
f6

b , only the subset of the functionsF which do not contain these spin orbitals, need to
considered. Standard linear algebra techniques permit one to eliminate the linear depende
the set of internal spin orbitals so-obtained, and if needed, to orthonormalize the set.
pedagogical example, the following set of eight spin orbitals is an orthonormal basis of the in
space,$c1

a ,c1
b ,f3

a ,f3
b ,f4

a ,f4
b ,f5

a ,f6
a%, where we have set

c1
a
ª

1

&
~f1

a1f2
a!, c1

b
ª

1

&
~f1

b1f2
b!. ~77!

A basis of the external space, its orthocomplement, is$c2
a ,c2

b ,f5
b ,f6

b%, with
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c2
a
ª

1

&
~f1

a2f2
a!, c2

b
ª

1

&
~f1

b2f2
b!. ~78!

2. Re-expansion of the wave function

In practical applications, the bottleneck of numerical codes expressing a wave funct
terms of a, possibly symmetry-adapted, basis set of internal spin orbitals, is not the determ
of the internal basis set itself, but the re-expansion of the wave function in the new basis.27 Here,
we describe a simple, original algorithm to express explicitly the wave function in the basis o
orbitals of the internal space.

One of the main advantages of this algorithm is that it does not require the determinat
the whole transformation unlike the re-expansion algorithm of Refs. 28 and 29. One or s
re-expansion coefficients can be specifically targeted to take advantage of, for example, the
edge of the population of the internal basis functions and thereby eliminate the less pop
functions as in Ref. 27.

The steps followed by the algorithm are

~1! ComputeY1,n21(C).
~2! Obtain a~non-necessarily orthogonal! basis (f1 ,...,fk) of the internal space,I 1@C#, and

target an elementF I5f i 1
∧...∧f i n

of the basis, (FJ)JPPk,n
, it induces in∧nI 1@C#.

~3! Form the linear combination of the components ofY1,n21(C), obtained in the first step
corresponding to the term,f i 1

^ C i 1
, of the decomposition,

Y1,n21~C!5(
i 51

k

f i ^ C i .

~4! ComputeY1,n22(C i 1
).

~5! Form the linear combination of the components ofY1,n22(C i 1
), obtained in the previous step

corresponding to the term,f i 2
^ C i 1 ,i 2

, of the decomposition,

Y1,n22~C i 1
!5(

i 51

k

f i ^ C i 1 ,i .

~6! Proceed iteratively up to the computation ofY1,0(C i 1 ,...,i n21
).

~7! Form the linear combination of the components ofY1,0(C i 1 ,...,i n21
), obtained in the previous

step, corresponding to the term,f i n
^ C i 1 ,...,i n

, of the decomposition,

Y1,0~C i 1 ,...,i n21
!5(

i 51

k

f i ^ C i 1 ,...,i n21 ,i .

C i 1 ,...,i n
is the targeted re-expansion coefficient.

This assertion follows from the following three properties:

~i! Eq. ~65!, which shows that

C5
1

n!
X [n21]+Y 1,...,1

[n21]~C!. ~79!

~ii ! The fact that by construction,

Y 1,...,1
[n21]~C!5 (

i 1 ,...,i n
C i 1 ,...,i n

f i 1
^¯^ f i n

. ~80!

~iii ! The property,;sPSn ,
Cs(i1),...,s(in)5~21!usuCi1,...,in

~81!

allowing one to show that, after taking the iterated exterior product in Eq.~79!, a factorn!
arises from the summation in the right-hand side of Eq.~80!.
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The latter property is a direct consequence of the co-commutativity of the coproduct, th
the fact that the coproduct is invariant under the twisting map,

T+Y5Y. ~82!

As a remark, we note that the algorithm can easily take advantage of the symmetry of the s
if we demand in the second step that the internal basis set be symmetry-adapted.

Let us illustrate the algorithm on the example of the preceding section and compu
coefficient of, sayc1

a∧f3
a∧f5

a∧c1
b∧f3

b . We obtain successively

Y1,4~C!5c1
a

^
1

2&
~f3

a∧f5
a∧f1

b∧f3
b1f3

a∧f6
a∧f1

b∧f4
b1f4

a∧f6
a∧f1

b∧f3
b1f4

a∧f5
a∧f1

b∧f4
b

1f3
a∧f5

a∧f2
b∧f3

b1f3
a∧f6

a∧f2
b∧f4

b1f4
a∧f6

a∧f2
b∧f3

b1f4
a∧f5

a∧f2
b∧f4

b!1¯ .

Denoting byC1a the 4-fermion function associated toc1
a above,

Y1,3~C1a!5f3
a

^
1

2&
~f5

a∧f1
b∧f3

b1f6
a∧f1

b∧f4
b1f5

a∧f2
b∧f3

b1f6
a∧f2

b∧f4
b!1¯ .

Denoting byC1a,3a the 3-fermion function associated tof3
a above,

Y1,2~C1a,3a!5f5
a

^
1

2&
~f1

b∧f3
b1f2

b∧f3
b!1¯ .

Denoting byC1a,3a,5a the 2-fermion function associated tof5
a above,

Y1,1~C1a,3a,5a!5c1
b

^
1
2 f3

b .

We immediately conclude that the targeted coefficient, denotedC1a,3a,5a,1b,3b , is 1
2 and that all the

other expansion coefficients containing the indexes (1a,3a,5a) are zero. Proceeding in the sam
manner for the other coefficients, we obtain the expansion ofC,

C5 1
2 $c1

a∧f3
a∧f5

a∧c1
b∧f3

b1c1
a∧f3

a∧f6
a∧c1

b∧f4
b1c1

a∧f4
a∧f6

a∧c1
b∧f3

b

1c1
a∧f4

a∧f5
a∧c1

b∧f4
b%, ~83!

which is, as expected, much simpler than the initial expansion, Eq.~76!.

C. Factorization of a wave function

The interest of an expansion achieving the depth~Definition 13!, is to factorize the fermionic
wave function into functions of a lesser number of particles. Note that in our definition we d
require the latter functions to be strongly orthogonal, that is to be such that their 1-internal s
are mutually orthogonal. Therefore there is a difference between the expansion we are inve
ing and those based on the group functions of McWeeny.30

Factorized wave functions arise naturally in quantum mechanics when certain particl
‘‘frozen’’ in a calculation, for example, the core electrons of an atom or a molecule. Howev
general wave function may well admit a hidden factorization.

In the present state of the art, little is known about the general problem of finding the de
a wave function. However, the particular case of the factorization of a wave function by
function is fully understood. The solution follows from Ref. 31@Lemma B, p.234#.

Proposition 16: Any linearly independent set of spin orbitalsc1 ,...,ck belonging to the kerne

of the creation operator, XW C , factorizesC.
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That is to say,C5c1∧ . . . ∧ck∧C8, whereC8 can be computed explicitely as

C85
~c1∧ . . . ∧ck!‚C

^c1∧ . . . ckuc1∧ . . . ck&
. ~84!

In particular, the factorization is optimal~that is,k is maximal!, if and only if k5dim Ker(XW C).
The physical content of the proposition is clear: a spin orbital is fully occupied in the w

function if and only if creating a fermion in this spin orbital gives 0.
For example, ifC is the wave function of Eq.~83!, let

c5x1
a .c1

a1x1
b .c1

b1x3
a .f3

a1x3
b .f3

b1x4
a .f4

a1x4
b .f4

b1x5
a .f5

a1x6
a .f6

a

be an arbitrary internal spin orbital and write

XW C~c!5C∧c50.

The exterior product can be expanded in terms of the 6-fermion SC basis functions of∧6I 1@C#
induced by the internal basis set. Then, the linear independency of the 6-fermion SC basi
tions gives

x3
a5x3

b5x4
a5x4

b5x5
a5x6

a50.

We deduce that, Ker (XW C) is spanned by (c1
a ,c1

b), and, in fact,

C5 1
2 c1

a∧c1
b∧~f3

a∧f5
a∧f3

b1f3
a∧f6

a∧f4
b1f4

a∧f6
a∧f3

b1f4
a∧f5

a∧f4
b!. ~85!

Note that the method could have been applied before the extraction of the internal spin orbit
the expansion, Eq.~76!, where the factorization is less obvious. Note also that, withk5n, the
number of fermions, the proposition provides a necessary and sufficient condition for a
function to be condensable into a SC function.

D. Decomposition into a direct sum

The potential usefulness of the concept of length of a wave function is obvious. Obtainin
shortest expansion of a given wave function would concentrate the physical information con
in it and facilitate both its retrieval and its interpretation. However, it is still an unsolved m
ematical problem, except in very specific cases.32,33 The only general result is for the case whe
the wave function admits a direct sum decomposition. Therefore we will only develop this
ticular case.

An n-fermion wave functionC admits a direct sum decomposition if it can be written a
sum ofk SC functionsV i ,

C5(
i 51

k

V i , ~86!

and if the dimension of its internal space,I 1@C# is n.k,

dimI 1@C#5n.k, ~87!

or equivalently, if

V1∧¯∧VkÞ0. ~88!

Note that the definition in Ref. 31 rewritten in Ref. 16 is not correct, because the conditio; i
Þ j ,V i∧V jÞ0 is not sufficient to have Eq.~87!.
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It is clear that a wave function satisfying Eqs.~86! and ~87! is of length k. However, a
function of lengthk does not have to satisfy Eq.~87!.

A general method to first diagnose the existence of a direct sum decomposition and t
derive it, has been proposed in Ref. 31. It relies on the observation, that there exists a dire
decomposition Eq.~86! if and only if there are exactlyk groups ofn (n21)-fermion functions of
the formc‚C, cPH, such that~i! Each (n21)-fermion functions can be condensed into a S
function.~ii ! In each group the internal spaces of the (n21)-fermion functions are included in th
samen-dimensional vector space.~iii ! Then.k (n21)-fermion functions are linearly independen

The application of the method to the part of the 3-fermion wave function inside the pare
ses in Eq.~85! has been treated in details in Ref. 16. Here, we only give the final result.
3-fermion wave function does admit a direct sum decomposition after the following chan
basis set:

c3
a
ª

1

&
~f3

a1f4
a!, c3

b
ª

1

&
~f3

b1f4
b!, ~89!

c4
a
ª

1

&
~f3

a2f4
a!, c4

b
ª

1

&
~f3

b2f4
b!, ~90!

c5
a
ª

1

&
~f5

a1f6
a!, c5

b
ª

1

&
~f5

b1f6
b!, ~91!

c6
a
ª

1

&
~f5

a2f6
a!, c6

b
ª

1

&
~f5

b2f6
b!. ~92!

In this new basis, Eq.~85! can be rewritten as

C5 1
2c1

a∧c1
b∧~c3

a∧c5
a∧c3

b1c4
a∧c6

a∧c4
b!. ~93!

Wave functions admitting a direct sum decomposition arise naturally in physics when se
resonant structures are needed to describe a quantum system. For example, the Weinbau
function for He2

1 ,34 can be cast in the form of the 3-fermion wave function in parentheses in
~93!. More general cases where a direct sum factors the wave function, like in Eq.~93! but
possibly more complex, have been given in Ref. 26. There are molecules where three el
share two centers like the nitroxidep-radicals or the HCO2 s-radical. Of course, resonant stru
tures involving more than three fermions are common too.

An important remark is that a direct sum decomposition of an-fermion wave function is
unique ifn.2. So, Eq.~93! is not only much simpler than the initial expansion, Eq.~76! but it is
also less arbitrary. In fact, this expansion can be considered as a canonical form for this
function since the~normalized! spin orbitals have been uniquely determined up to sign factor
we do not allow the mixing ofa- andb-spin orbitals, or up to a linear transformation of the sp
orbitals of the SC function factorizing the wave function in the general case.

V. CONCLUSION

In this paper, we have developed the Hopf algebra formalism for the fermionic Fock s
This formalism is immediately applicable to many fields of physics, ranging from solid
physics, quantum chemistry, and atomic physics, where it allows a formulation of all elec
structure problems, to nuclear physics, where it applies to nucleons.

More precisely, we have introduced new algebraic tools which facilitate the investigatio
theoretical and numerical problems in quantum physics. The simple proof of the Carlso
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Keller theorem and the derivation of Sasaki’s formula main corollary, that we have obta
illustrate the advantages of our formalism: The tedious action of the symmetric group is elim
and many numerical and sign factors are encapsulated in the formalism.

Among the new tools, the co-product defined in Sec. II, and its iterated version defined i
III, arguably stand out. They not only pave the way for a natural generalization of many re
based on the partitioning of a wave function into blocks, but they also allow a numerical c
lation to be broken into successive steps. This has been exploited in an original, parallel
algorithm to re-expand a wave function in the least possible number of spin orbitals.

However, if the re-expansion of a wave function in a set of internal spin orbitals is no
well-understood mathematical issue, the problem of extracting the spin orbitals that achie
~minimal! length of a wave function remains, except in the particular case where the wave
tion admits a direct sum decomposition. This is a longstanding problem and probably a har

In contrast, the concept of the depth of a wave function is new and the problem of facto
a wave function by more general functions than SC functions has not received much atte
Progress on this issue could be very important for physical applications because such a fa
tion allows a reduction in the dimensionality of many calculations and is the basis for gemin
more generally, group function methods. We hope to report new results on this topics in
coming studies.
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This paper is twofold. In a first part, we extend the classical differential calculus to
continuous nondifferentiable functions by developing the notion of scale calculus.
The scale calculus is based on a new approach of continuous nondifferentiable
functions by constructing a one parameter family of differentiable functionsf (t,e)
such thatf (t,e)→ f (t) when e goes to zero. This led to several new notions as
representations: fractal functions ande-differentiability. The basic objects of the
scale calculus are left and right quantum operators and the scale operator which
generalizes the classical derivative. We then discuss some algebraic properties of
these operators. We define a natural bialgebra, called quantum bialgebra, associated
with them. Finally, we discuss a convenient geometric object associated with our
study. In a second part, we define a first quantization procedure of classical me-
chanics following the scale relativity theory developed by Nottale. We obtain a
nonlinear Schro¨dinger equation via the classical Newton’s equation of dynamics
using the scale operator. Under special assumptions we recover the classical Schro¨-
dinger equation and we discuss the relevance of these assumptions. ©2003
American Institute of Physics.@DOI: 10.1063/1.1618923#

INTRODUCTION

The origin of the fundamental incompatibility betweenquantum mechanicsand Einstein’s
general relativitylies in the microscopic geometric structure of space–time. As pointed ou
Greene,27 Feynman,25 Cohen-Tannoudji and Spiro~Ref. 14, p. 131! and others, space–time is n
more adifferentiablemanifold at theatomicscale, contrary to the assumption of general relativ

From this fact, at least two theories have been constructed:

~i! the string theory, which implies a dimensional extension of space–time by allowin
closed dimension at the Planck scale;

~ii ! thescale relativity theorydeveloped by Nottale,37 which gives up the Einstein’s assumptio
of the differentiability of space–time by considering what he calls afractal space–time,
which can be interpreted as a scale dependant nondifferentiable manifold. He then e
Einstein’s relativity principle to scale, and develop thescale relativity principle.

In this article, we explore this second alternative.
Nottale37 has studied what are the consequences of the abandon of the differentiabi

space–time. This problem is difficult, in particular because the mathematical foundations o
a theory are not yet constructed. For example, Nottale asserts that there exists an ‘‘infin
geodesics on a fractal space–time.’’ This sentence is difficult to understand because we
know what is a fractal space–time.~We refer to Ref. 20 for a first definition of a fractal manifo
and a discussion of the special scale relativity theory.! Even if we identify this set to a nondiffer
entiable manifold, we do not know what is the sense of ‘‘geodesic.’’ As a consequence, we r
our attention to a far simpler problem, namely the consequences of the loss of differentiabi
a given trajectory. A first approach is to consider that onlyspaceis a nondifferentiable manifold

a!Electronic mail: cresson@math.univ-fcomte.fr
49070022-2488/2003/44(11)/4907/32/$20.00 © 2003 American Institute of Physics
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and to take the variablet as an absolute variable. As a consequence, trajectories of qua
particles are nondifferentiable curves parametrized by the time variablet. In this case, we have a
least the following two consequences.

~i! By Lebesgues theorem,46 the lengthof a nondifferentiable curveG is infinite. What does it
means from the physical view point ? That given a parametere.0, which has the sense of
resolution, the lenghtLe of the curve constructed by connecting small arcs of lengthe on points of
G, goes to infinity whene goes to zero. As a consequence, the role ofe is now fundamental asLe

loses any sense whene is going to zero, contrary to usual differentiable curves wheree is only a
parameter of precision andLe goes to a fixed constantL.

Nottale then introducefractal functions, which are resolution~or scale! dependent functions
f (x,e), which converge to nondifferentiable functions, and a~renormalization like! differential
equation satisfied byLe , called ascale law, which gives the behavior off (x,e) whene goes to
zero.

~ii ! The derivative along the curve has no sense. Nottale introduces a complex operator,
he calls thescale derivative. It takes into account the mean-backward and mean-forward deriv
along the curve.

Using these tools, he gives an informal derivation of theSchrödinger equationfrom the
classicalNewtonian equation of dynamics, via a quantization procedure which follows from a
extension of Einstein’s relativity principle called thescale relativity principle.

In this paper, we develop a mathematical framework in which we can explicit the quantiz
procedure, which we call thescale quantization procedure.

The plan of the paper is as follows.
In Part I, we define a natural extension of Leibniz differential calculus which can be use

nondifferentiable functions in order to precise points~i! and~ii !. We introduce theScale calculus,
which formalizes the concept ofe-differentiability. In particular, we define an operator called t
scale difference operator, which is the rigorous mathematical counterpart of Nottale’s scale
rivative.

In Part II, we define the scale quantization procedure. We give a precise definition o
quantization map, which allows us to associate to the classical Newtonian equation of dyna
quantized analog. This analog has the form of a generalized nonlinear Schro¨dinger equation. We
then discuss how to obtain the classical Schro¨dinger equation.

PART I

I. SCALE CALCULUS

A. Introduction

Nondifferentiable functions, and more generally nondifferentiable manifolds, become
and more important in many part of mathematics and physics, like Brownian motion,24 and
quantum mechanical path by Feynman and Hibbs.26 Despite many works, our understanding
nondifferentiable functions is nonsatisfactory.

A great deal of effort has been devoted to generalize, as long as possible, the cl
differential calculus of Leibniz and Newton. This leads to a different kind of fractional calc
~Riemann, Liouville, Weyl, . . .!. All this fractional calculus is based on a pure analytic gener
zation of the Cauchy formula. As a consequence, and despite their intrinsic interest, th
difficult to interpret~in particular, from the geometrical view point!.

The aim of this paper is to introduce a set of ideas, coming from physics, in order to rene
approach to nondifferentiable functions.

In physic, the nondifferentiability is not studied by itself. On the contrary, this is the effec
nondifferentiability with respect to a differentiable model which is being sought. For examp
explained by Greene~Ref. 27, Chap. 5!, in superstringtheory one is led to a new vision o
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space–time because the space–time, at the scale of atoms, cannot be considered differen
all, as in the general relativity scheme. Here, one focuses on fluctuations with respect to a
entiable character.

Moreover, one usually does not have access via measurement, to the nondifferentiable
~function, manifold!, but to an almost everywhere differentiable model of it. This explains also
previous remark: by measure we obtain a differentiable model, and we must see, when the
sion of measure increases, if there is no two strong fluctuations with respect to this model.
differentiable process, the fluctuations decrease. In the case of a nondifferentiable proce
expects larger and larger fluctuations.

This point of view leads to several new concepts: the representation of continuous non
entiable functions, fractals functions ande-differentiability. The idea is to associate to each co
tinuous nondifferentiable functionf (t), a one parameter family of differentiable functionf (t,e)
such thatf (t,e)→ f (t) whene goes to zero. The next step is to give a useful criterion, which s
that f (t,e) is a ‘‘good’’ model for the functionf . An important notion is then the minima
resolution which is, more or less, the precision under which, one cannot use a differentiable
without lacking many features of the underlying functionf . We then define quantum derivative
and the scale derivative, which reflects the nondifferentiable character of the underlying fu
f .

We discuss algebraic properties of quantum derivatives, and the scale derivative. The
erators act on the set of continuous real valued functions, denoted byC0. They are first introduced
in Ref. 4 in order to discuss the derivation of Schro¨dinger’s equation from the classical Newton
equation of dynamics using Nottale’s scale relativity theory.37

In this paper, we construct a natural structure of bialgebra, called quantum bialgebra,
specific properties of quantum derivatives. The quantum algebra can be considered as
deformation of a classical Hopf algebra. Although we are close to a problem related to qu
groups and quasitriangular Hopf algebras introduced by Drinfeld,22 we stress that quantum bia
gebras are new.

There is no natural bialgebra structure associated with the scale derivative. This follows
the lack of a natural composition rule for scale operators that we define in this paper.

We also discuss the natural geometric object associated with a continuous nondiffere
function. It turns out that this geometric object is, in the simplest case, the product of a diff
tiable curveG by a two points setA5$a,b%, so M3A. This is a simple example of a noncom
mutative space studied by Connes,15 as a preliminary to his noncommutative model of the st
dard model.

B. About nondifferentiable functions

The aim of this section is to develop a rigorous mathematical understanding of the id
fluctuation with respect to a differentiable model for continuous nondifferentiable functions

1. Representation theory and fractals functions

Here, we introduce two dual notions: the representation of nondifferentiable functions
fractal functions. Representations are well suited to develop a mathematical understandin
nondifferentiable function based on differentiable functions. Fractal functions take their orig
physical problems.

In the following, we denote byC0 the set of continuous real valued functions, and byC1 the
set of differentiable real valued functions.

Definition 2.1: Let fPC0; a representation of f is a one parameter family of operator Se ,
defined by

Se :
C0 → C1

f ° Se~ f !5 f e ,
~I.1!
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and such that the differentiable functions fePC1 converge, in C0-topology, toward f whene goes
to zero.

A basic example is obtained by approximatingf by mean functionsf e defined by f e(t)
5(1/2e)* t2e

t1e f (s)ds.
More generally, we can consider asmoothing functionF(s;t,e) depending on two param

eters,t ande, satisfying the normalization

E
2`

`

F~s;t,e!ds51. ~I.2!

For any continuous function, we define a representation by

f e~ t !5E
2`

`

F~s;t,e! f ~s!ds. ~I.3!

In practice, we never have access tof . An idea is to definef via a family of functions which
are not functionally dependent off like in ~I.1!. We are led to the notion offractal functions, first
introduced by Nottale37 ~see also Ref. 18!.

Definition 2.2: A fractal function is a parametrized function of the form f(t,e), depending on
e.0, such that the following occurs.

(i) For all e.0, the function f(t,e)PC1, except at a finite number of points,
(ii) There exists an everywhere nondifferentiable function f(t) such that f(t,e) converges to

f (t) whene goes to zero.

The main difference between Definitions 2.1 and 2.2 is that for fractal functions, one us
does not know an explicit form of the limit functionf , we only require an existence resu
Moreover, the set of functionsf (t,e) does not refer to the limitf in its definition, which is closest
to themeasurementprocess in physical experiment.

2.1.1. Examples of fractal functions: Nottale’s functions and iteration of affine systems. The
basic example of fractal functions isNottale’s functionsintroduced in Ref. 37:

For all e.0, and for all 0,m,e,

x~ t,e!5E Fe,m~ t,y!x~y,m!dy, ~I.4!

whereFe,m(x,y) is a differentiable function such that

E
2`

`

Fe,m~x,y!dy51, ; xPR, ~I.5!

called a smoothing function.
Definition 2.3: LetFe,m be a smoothing function satisfying (I.5). We denote byN(Fe,m), and

we call Nottale’s set associated withFe,m , the set of functions defined by (I.4).
We refer to Ref. 18 for basic properties of this set of functions, in particular for a us

equivalence relation.
An interesting example of fractal functions for which the limit function is not explicit is giv

by the iteration ofaffine systems.46

An affine map inR2, with a coordinates system (x,y), is a map of the form

FS x
yD5M S x

yD1T, ~I.6!

whereM is a 232 matrix andT is a translation vector.
An affine systemis given by
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~i! a positive integerN>2;
~ii ! N11 points ofR2, A5A1 , . . . , AN115B. We denoteAi5(xi ,yi), x15a, xN115b. We

assume that

a5x1,x2,¯,xN115b;

~iii ! N affine mapF1 , . . . ,FN such that

Fi~AB!5AiAi 11 .

We denote byF the map defined by

F~E!5 ø
i 51

N

Fi~E!. ~I.7!

Let z0 be the affine function on@a,b# whose graphG0 is the segmentAB. The imageG1

5F(G) is the graph of a continuous function, which is affine. For alln, we define the continuous
function zn whose graph isGn5F(Gn21). Following Ref. 46, p. 175, the sequence of functio
(zn)nPN converge uniformly to a continuous functionz` such thatF(G`)5G` .

2. e-differentiability and minimal resolution
a. Minimal resolution: Formal idea. In our point of view, nondifferentiability is always

studied via a one parameter familly of differentiable functionsf e . A basic question is the follow-
ing.

Whene goes to zero, can we find a valuee0 such that fore.e0 , we can assume that the lim
function is differentiable and fore.e0 , we are sure that the limit function is nondifferentiable

It is equivalent to ask if the nondifferentiable character of a function can be detected v
approximation.

If we can find a quantitye( f ) of this kind, then we call itminimal resolution. It is the best
order of approximation under which nondifferentiable effects must be taken into account.

In the following we give two ways in order to defined a minimal resolution, by taking
different effects of nondifferentiability.

b. First approach. A basic properties of differentiable functions is that the quantities,

¹1
e f ~ t !5

f ~ t1e!2 f ~ t !

e
and ¹2

e f ~ t !5
f ~ t !2 f ~ t2e!

e
, ~I.8!

keep sense whene goes to zero and are equal.
As a consequence, the following quantity,

ae f ~ t !5U f ~ t1e!1 f ~ t2e!22 f ~ t !

e U, ~I.9!

converges to zero whene goes to zero.
The underlying idea is that the two representations of a functionf , given by the forward and

backward mean function, defined as

f e
1~ t !5~1/2e!E

t

t1e

f ~s!ds and f e
2~ t !5~1/2e!E

t2e

t

f ~s!ds, ~I.10!

respectively, must have derivatives which coincide whene goes to zero.
This remark allows us to introduce the following notion ofe-h-differentiability.
Definition 2.4: Let h.0 be a given real number. A function fPC0 is said to be e-

h-differentiable at point t, if
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ae f ~ t !,h. ~I.11!

We can detect the nondifferentiable character of a function by investigating ite-
h-differentiability. Precisely, we define the notion of minimal resolution:

Definition 2.5: Let h.0 be a given real number and fPC0. The h-minimal resolution of f at
point t, denotede( f ,h)(t) is defined asinfe$ae f (t),h%.

Of course, if for a givenh, theh-minimal resolution is nonzero, thenf is nondifferentiable.
Remark 2.1: The reverse is wrong, as proved by the following example.
Let f:R→R be a function defined by

f :H t cos~1/t !, if tÞ0

0, if t50.
~I.12!

This function is derivable for all tÞ0. Then, we havee( f ,h)(t)50 for all tÞ0. This function is
not derivable at t50. However, we have ae( f ,h)(0)50 for all e.0 by parity. As a consequence,
e( f ,h)50, even if f is not derivable onR.

For all aP]0,1@ , we denote byCa the set of continuous real valued functions, defined
@0,1# such that the quantity

u f ua5 sup
0<xÞy<1

u f ~x!2 f ~y!u
ux2yua

~I.13!

is finite ~Hölderian functions of ordera!. Then, we have the following lemma.
Lemma 2.1: Let0,a,1 and fPCa. For all t P]0,1@ , and all h.0, the h-minimal resolution

of f at point t satisfies

e~ f ,h!~ t !<S h

2u f ua
D 1/a21

. ~I.14!

Remark 2.2: In this example, the minimal resolution depends onu f ua. As a consequence, fo
a quantum mechanical path, we expect that the minimal resolution depends on the momen
the particle. This is indeed the case in Nottale’s theory,37 where the minimal resolution is relate
to the de Broglie length of the particle.

A global order ofh-minimal resolution can be defined.
Definition 2.6: Let h.0 be given and fPC0. The h-minimal resolution of f, denotede( f ,h),

is defined bye( f ,h)5suptPDfe( f ,h)(t), whereDf is the definition domain of f.
In this definition it is important to take the sup ofh-minimal resolution off at point t. As a

consequence, iff is differentiable on a small set of point, theh-minimal resolution is however
nonzero.

Remark 2.3: We havee( f 1c,h)5e( f ,h) for all cPR. But, we havee(l f ,h)Þe( f ,h) for all
lÞ1, contrary to the case of Ref. 4. This inequality is related to the fact that a changing mo
tum induce a change of regularity for the curve. A physical consequence is that the m
resolution must depend on the momentum.

The connection to representation theory is done through the backward and forward
functions, f e

s , s56, introduced before. Indeed, backward and forward mean functions are
ferentiable functions. They can be used as a classical representation of a given continuous f
f . However, if f admits a nonzeroh minimal resolution, this means that these functions are
sufficient to capture the complete local behavior off as long ase,e( f ,h). Of course, this notion
depends onh. In physical problems, the constanth must correspond to a universal constraint, li
the Heisenberg constraint in quantum mechanics.

c. Order of divergence.The previous quantityae f (t) gives a criterion distinguishing differ
entiable and nondifferentiable functions based on the fact that in some case, the left an
                                                                                                                



al
the

t

tive
ns, we
More
s

wing.

o the
re left

s a
able
a

4913J. Math. Phys., Vol. 44, No. 11, November 2003 Scale calculus and the Schrödinger equation

                    
derivative of a nondifferentiable function~when they exist! are different. Of course, the gener
case is far more complicated. A complete characterization of differentiability is given by
following.

Let f be a continuous real function. We denote

Ds f ~ t !5 lim sup
e→0s

f ~ t1e!2 f ~ t !

e
, and Ds f ~ t !5 lim inf

e→0s

f ~ t1e!2 f ~ t !

e
, s56.

~I.15!

These quantities are always well defined and belong toR̄. By Refs. 45, 31, p. 319, we know tha
f is differentiable at pointt if and only if

D1 f ~ t !5D2 f ~ t !5D1 f ~ t !5D2 f ~ t !PR. ~I.16!

By Ref. 45, we know that the set of continuous functions for which the left and right deriva
exists and are distinct is of zero measure. By considering the set of nondifferentiable functio
then deduce that the left and right derivative does not exist on a set of full measure.
precisely, we have two cases: eitherDs f (t) andDs f (t) exist but are different, or these quantitie
diverge withe going to zero, fors56.

We denote byDm
s f (t), s56 the quantity

Dm
s f ~ t !5s

f ~ t1sm!2 f ~ t !

m
, s56, ~I.17!

and fore.0, we denote

d̄e
s f ~ t !5 sup

m<e
Dm

s f ~ t !,dI e
s f ~ t !5 inf

m<e
Dm

s f ~ t !. ~I.18!

A better object to measure the loss of differentiability is the following quantity:

Ae f ~ t !5
infe.0$ud̄e

1 f ~ t !2dI e
1 f ~ t !u,h,ud̄e

2 f ~ t !2dI e
2 f ~ t !u,h,

~121D15D1
!~121D25D2

!ud̄e
1 f ~ t !2d̄e

2 f ~ t !u,h,
~I.19!

whene goes to zero.
In the Hölderian case, i.e.,f PCa, 0,a,1, this quantity diverges asea21. As a conse-

quence, a possible extension of the notion of minimal resolution can be obtained by the follo
Definition 2.7: Let h.0; we call minimal resolution the following quantity:

e~ f ,h!5 inf
e.0

$Ae f ~ t !,h%. ~I.20!

When the left and right derivatives exist, or diverge, the previous quantity reduces t
minimal resolution defined in Sec. I B 6. However, this quantity can distinguish the case whe
and right derivatives are not defined but not infinite.

3. Scale law

For an everywhere nondifferentiable functionf , the lengthLe of the graph of the mean
function f e goes to infinity whene goes to 0. Of course, this property cannot be used a
definition of an everywhere nondifferentiable function. We can find curves which are rectifi
with infinite length ~see Ref. 6!. We want to quantify this divergence. A first idea is to find
differential equation which gives the behavior ofLe with respect toe like in ~Refs. 6, 18!.
However, this is difficult becauseLe is not differentiable with respect toe in general. In this
section, we define a less rigid definition of scale law and we discuss its properties.
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a. Definition: Let f be an everywhere nondifferentiable continuous function on the inte
I 5@0,1#. For e.0, we denote byf e the mean function associated withf on I , andLe the length
of its graph.

Definition 2.8: We say that f satisfies a scale law if there exist functions le.0 and Le.0 such
that

l e<Le<Le , ~I.21!

satisfying

Le5O~ l e!, Le5O~Le!, ~I.22!

and for which there exists a function E:R→R, such that

dle
d ln e

5E~ l e , ln e!,
dLe

d ln e
5E~Le , ln e!. ~I.23!

The function E is called a scale law.
Of course, when one knows a scale law off , we deduce a speed of drift forLe .
Basic examples of scale laws are given by the following:
~i! For a.0, E(x,t)5a,
~ii ! For b.0, E(x,t)5bx.
For ~i!, we obtain graph with logarithmic drift of orderuau ln(1/e). For ~ii !, we obtain the

classical power law drift of order 1/eb.
Using this notion, we are led to two different kind of problems.
~i! Let E be a given function. Find the set of functionE(E) such that for allf PE(E), a scale

law of f is E.
~ii ! Let E be a given set of functions. Find, if it exists, a scale law for eachf PE.

The first problem is equivalent to estimate a given class of functions by the speed of d
Le . This point is difficult and discussed in Ref. 6.

The second one is more natural and discussed in the following.
b. Scale law of Ho¨lderian functions. We first define an important class of continuous fun

tions.
Definition 2.9: We denote by Ha(c,C) the set of real valued continuous functions f such t

for all e.0 sufficiently small, andut2t8u,e, we have

cea<u f ~ t !2 f ~ t8!u<Cea. ~I.24!

The setHa corresponds to continuous functions which are Ho¨lder and inverse Ho¨lder of
exponenta.

Example:Let 0,a,1 andg(t) be the function of period 1 defined on@0,1# by

g~ t !5H 2t, if 0<t<1/2

222t, if 1/2<t<1.
~I.25!

The Knopp or Takagi function, defined by

K~ t !5 (
n50

`

22nag~2nt !, ~I.26!

belongs toHa ~see Ref. 46, Sec. 13.1!.
We use notations from Definition 2.8.
Theorem 2.1: Let 0,a,1 and fPHa(c,C) defined on an open interval U,R such that I

5@0,1#,U. For all e.0, we define
                                                                                                                



-

w

4915J. Math. Phys., Vol. 44, No. 11, November 2003 Scale calculus and the Schrödinger equation

                    
l e5ea21Ae2(12a)1c2,Le5ea21Ae2(12a)1C2. ~I.27!

A scale law for f is then given by

E~y,t !5~a21!~y21/y!. ~I.28!

Proof: We have

Le5
1

2e E0

1
A4e21„f ~x1e!2 f ~x2e!…2 dx. ~I.29!

As f PHa, we have

4c2e2a<„f ~x1e!2 f ~x2e!…2<4C2e2a. ~I.30!

As a consequence, we obtain

ea21Ae2(12a)1c2<Le<ea21Ae2(12a)1C2. ~I.31!

We deduce

l e<Le<Le , ~I.32!

for e sufficiently small.
By differentiatingLe with respect toe, we obtain

dLe

de
5

a21

e FLe2
1

Le
G . ~I.33!

Using

dLe

d ln e
5e

dLe

de
, ~I.34!

we obtain the scale functionE(y,t)5(a21)(y21/y). We verify thatl e satisfies the same differ
ential equations. h

The previous result is best analyzed in term of the new variables,

xe51/l e , Xe51/Le , Xe51/Le . ~I.35!

Whene goes to 0, we havexe , Xe andXe which go to 0. Moreover, the scale law for these ne
functions is

dx

dt
5~12a!~x2x3!. ~I.36!

Indeed, by making the change of variablesx51/y in the scale law,

dy

dt
5~a21!~y21/y!, ~I.37!

and using the relation

dx

dt
52~1/y2!

dy

dt
, ~I.38!
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we obtain the result.
The classical linearization theorem of Poincare´ ~Refs. 2 and 30! allows us to find, in a

neighborhood ofx50, an analytic change of variablesz5h(x), such that the differential equatio
~I.36! is transformed into

dz

dt
5~12a!z. ~I.39!

The set of Ho¨lderian functionsHa induces, up to analytic changes of variables, the linear s
law ~I.39!.

Remark 2.4: In Galilean scale relativity, the set of functions which admit a linear scale
allows us to define the Djinn variable (see Ref. 18, Sec. 3.2.5 and Sec. 3.3).

c. Nonuniform Ho¨lderian functions. In this section, we consider nonuniform Ho¨derian func-
tions.

Definition 2.10: Leta(t):R→]0,1@ . We denote by Ha(.) the set of continuous Ho¨lderian
functions satisfying, for all h.0 sufficiently small,

cha(t),u f ~ t1h!2 f ~ t !u,Cha(t), ~I.40!

where c.0, C.0 are constants.
For Ha(.) functions, we have not been able to derive a scale law. We then introduce a

notion.
Definition 2.11: We say that f admits weak-scale laws, if there exists le and Le such that

l e<Le<Le , ~I.41!

satisfying

Le5O~ l e!, Le5O~Le!, ~I.42!

and for which we can find two functions: E2 :R3R→R and E1 :R3R→R such that

dle
d ln e

5E2~ l e , ln e!,
dLe

d ln e
5E1~Le , ln e!. ~I.43!

For all e.0, we define

a i~e!5a~ i /e i 11/e!, ~I.44!

with i 50, . . . ,@1/e#, where@x# denotes the integer part ofx.
We define

g~e!5 min
i 50, . . . ,[1/e]

a i~e!,b~e!5 max
i 50, . . . ,[1/e]

a i~e!. ~I.45!

Theorem 2.2: Let fPHa(.). For all e.0 sufficiently small we assume that the expone
(I.45) are differentiable functions with respect toe. Then, f admits for weak-scale laws,

E2~x,t !5~12a2tg8!~x2x3!, E1~x,t !5~12a2tb8!~x2x3!. ~I.46!

C. Scale calculus

In Ref. 4, we introduce the notion ofquantum derivatives. In this section, we give a less rigi
definition, which allows us to discuss more easily algebraic properties of these operators.
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1. Left and right quantum difference operators

Let h.0 be given. If f possesses a nonzeroh-minimal resolution, then fore,e( f ,h), one
must take into account the nondifferentiable character off with respect to its forward and back
ward mean representations. A possible way to do it is to say that the backward and fo
derivatives off at e carry different information on the local behavior off . The idea of quantum
derivatives formalize this idea.

Definition 3.1: Let h.0, and f be a continuous, real valued function.
If e( f ,h).0, for all e( f ,h).e.0, we define left and right quantum difference operators o

at point t, the quantities

¹1
e f ~ t !5

f ~ t1e!2 f ~ t !

e
, ¹2

e f ~ t !5
f ~ t !2 f ~ t2e!

e
, ~I.47!

respectively.
If e( f ,h)50, and f is differentiable then

D1
0 f ~ t !5D2

0 f ~ t !5 f 8~ t !. ~I.48!

Remark 3.1: (1) We can give a more rigid definition of quantum derivatives by fixing thee to
be the minimal resolution of the function considered for a given h.0.

(2) By remark 2.1, we cannot extend the definition of the left and right quantum oper
whene( f ,h)50 in order to cover the set of nondifferentiable function with zero minimal res
tion.

2. The scale difference operator

The scale difference operator, first introduced in Ref. 4 following Nottale’s work,37 is intended
to summarize the information given by a quantum difference operator, needed to perform th
analysis of a given nondifferentiable function.

Definition 3.2: Let h.0, and f be a continuous function such thate( f ,h)>e.0. Thee-scale
difference operator of f at point t is a complex operator, denoted byhe /ht, defined by

he f

ht
~ t !5

1

2
„¹1

e f ~ t !1¹2
e f ~ t !…2 i

1

2
~¹1

e f ~ t !2¹2
e f ~ t !…, i 2521. ~I.49!

Whene50, and f is differentiable, we have the following useful property.
Lemma 3.1 (Gluing): Let f be a differentiable function. Then, we have

h f

ht
5

d f

dt
. ~I.50!

Moreover, if we denote byf e(t) the mean functionf e(t)5(1/2e)* t2e
t1e f (s)ds, we have that

ReS he f

ht
~ t ! D5~ f e!8~ t !, ~I.51!

where Re denotes the real part of a complex number. The imaginary part ofhe f /ht is the
fluctuation of the forward mean function with respect to the backward mean function.

3. Main result

We denote byHa the set of real valued functions which are Ho¨lder and inverse Ho¨lder of
exponenta, which means that for alle sufficiently small, andut82tu<e, there existsc.0 and
C.0, such that
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cea<u f ~ t8!2 f ~ t !u<Cea. ~I.52!

An important theorem, from the point of view of the scale relativity, is the following.
Theorem 3.1: Let h.0, f (x,t) be a Cn function, x(t) a continuous function such tha

e(x,h).0. Then, fore(x,h)>e.0, e sufficiently small, we have

he f „x~ t !,t…

ht
5

] f

]t
1(

j 51

n
1

j !

] j f

]xj „x~ t !,t…e j 21ae, j~ t !1o~e1/n!, ~I.53!

where

ae, j~ t !5 1
2 @„~D1

e x! j2~21! j~D2
e x! j

…2 i „~D1
e x! j1~21! j~D2

e x! j
…#. ~I.54!

The proof follows from the following lemma.
Lemma 3.2: Let f(x,t) be a real valued function of class Cn11, n>3, and let X(t) be a

continuous real valued function of class H1/n. For e sufficiently small, the right and left derivative
of f„X(t),t… are given by

¹s
e f „X~ t !,t…5

] f

]t
„X~ t !,t…1s(

i 51

n
1

i !

] i f

]xi „X~ t !,t…e21
„se¹s

e X~ t !…i1o~e1/n!, ~I.55!

for s56.
For n52, we obtain the so-called Itoˆ formula:

¹s
e f „X~ t !,t…5

] f

]t
~X~ t !,t !1

] f

]x
„X~ t !,t…¹s

e X~ t !1
1

2

]2f

]x2 „X~ t !,t…e~¹s
e X~ t !…21o~e1/2!.

~I.56!

Proof: This follows from easy computations. First, we remark that, asX(t)PH1/n, we have
ue¹s

e X(t)u5o(e1/n). Moreover,

f „X~ t1e!,t1e…5 f „X~ t !1e¹1
e X~ t !,t1e…. ~I.57!

By the previous remark, and the fact thatf is of orderCn11, we can make a Taylor expansion u
to ordern with a controlled remainder:

f „X~ t1e!,t1e…5 f „X~ t !,t…1 (
k51

n
1

k! (
i 1 j 5k

„e¹1
e X~ t !…ie j

]kf

] ix ] j t
„X~ t !,t…1o~„e¹1

e X~ t !…n11!.

~I.58!

As a consequence, we have

e¹1
e f „X~ t !,t…5 (

k51

n
1

k! (
i 1 j 5k

„e¹1
e X~ t !…ie j

]kf

] ix ] j t
~X~ t !,t !1o„~e¹1

e X~ t !…n11!. ~I.59!

By selecting terms of order less or equal to one ine on the rhs of this equation, we obtain

e¹1
e f „X~ t !,t…5eF ] f

]t
„X~ t !,t…1(

i 51

n
1

i !

] i f

]xi „X~ t !,t…e21
„e¹1

e X~ t !…i G1o~e2¹1
e X~ t !!. ~I.60!

Dividing by e, we obtain the lemma. h
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4. The complex case

In Sec. III, we need to apply the scale operator tocomplex valuedfunctions. We extend the
definition of he /ht in order to cover this case.

In the following, if zPC, we denote by Re(z) and Im(z), the real and imaginary part ofz.
Definition 3.3: Let h.0 and C(t) be a complex valued function. We denoteC(t)5Cr(t)

1 iCm(t), whereCr(t)5ReC(t) and Cm(t)5Im C(t). We defineheC/ht by

heC
ht

5
heCr

ht
1 i

heCm

ht
, ~I.61!

for 0,e,min„e(Cr ,h),e(Cm ,h)….
Remark 3.2: The extension of the scale calculus to complex valued functions is not triv

it mixes complex terms in a complex operator).
We then have the following.
Lemma 3.3: Let h.0 and C(x,t):R3R→C be a Cn complex valued function. Let x(t) be a

continuous function such thate(x,h).0. We denoteC(t)5C„x(t),t…. Then, for0,e<e(x,h)
sufficiently small, we have

heC
ht

5
]C

]t
1

hex

ht

]C

]x
1(

j 52

n
1

j !
ae, j~ t !

] jC

]xj e j 211o~e1/n!, ~I.62!

where

ae, j~ t !5 1
2 @~D1

e x! j2~21! j~D2
e x! j #2 i 1

2 @~D1
e x! j1~21! j~D2

e x! j #, j 52, . . . ,n. ~I.63!

D. Algebraic properties of quantum difference operators

In the following, we denote byC0 the set of continuous real valued functions.
Lemma 4.1: For alle.0, and all fPC0 and gPC0, we have

(i) ¹s
e ( f 1g)5¹s f 1¹sg, s56;

(ii) For all lPR, ¹(l f )5l¹s f , s56.

The proof is straightforward and left to the reader.
Our main goal is to compare quantum derivatives to classical derivatives. The main pro

of classical derivatives is the so calledLeibniz rule, which says that, (f g)85 f 8g1 f g8. In our
case, we have a more complicated formula.

Lemma 4.2: For alle.0, and all fPC0, gPC0, we have fors56,

¹s
e ~ f g!~x!5¹s

e f ~x!g~x!1 f ~x!¹s
e g~x!1se¹s

e f ~x!¹s
e g~x!. ~I.64!

Proof: Easy computations lead to the following formulas:

¹1
e ~ f g!~x!5¹1

e f ~x!g~x1e!1 f ~x!¹1
e g~x!,

¹2
e ~ f g!~x!5¹2

e f ~x!g~x!1 f ~x2e!¹2
e g~x!. ~I.65!

By definition of the quantum derivatives, we have

f ~x1e!5 f ~x!1e¹1
e f ~x!, g~x2e!5g~x!2e¹2

e g~x!. ~I.66!

By replacingf (x1e) andg(x2e) in ~I.65!, we obtain~I.64!. h

Of course, one can derived other formulas. However, Eq.~I.64! is the most symmetric one
Here, we give another expression.

For all e, we denote byte :C0→C0 the classical translation, defined by
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te~ f !~x!5 f ~x1e!, ;x. ~I.67!

We have the following lemma.
Lemma 4.3: For alle, we have¹2

e +te5¹1
e and te+¹s

e 5¹s
e +te .

As a consequence, we obtain the following version of Lemma 4.2.
Lemma 4.4: For alle.0, and all fPC0, gPC0, we have

¹1
e ~ f g!~x!5¹1

e f ~x!he~x!1 f ~x!¹2
e he~x!,

¹2
e ~ f g!~x!5¹2

e f ~x!ve~x!1 f ~x!¹1
e ve~x!, ~I.68!

where he5te+g andve5t2e+g.
In the following, we discuss what are the fundamental differences between quantum d

tives and classical derivations.

1. Derivations

We recall that an operatorD on an abstract algebra (A,.), is a derivation if for all (f ,g)
PA2, it satisfies the Leibniz relationD( f g)5D f .g1 f .Dg. We refer to Jacobson~Ref. 32, Chap.
1, Sec. 2, pp. 7–8! for more details.

We denote by Der(A) the set of derivations onA. Der(A) is a vector space, but not a
algebra. However, by posing@D1 ,D2#5D1D22D2D1 , the usual Lie bracket, the se
„Der(A),@ .,.#… is a Lie algebra.

We denote byR^^Der(A)&& the ring of formal power series on the alphabet Der(A). We can
define a coalgebra structure onR^^Der(A)&&. We refer to Bourbaki~Ref. 9, Chap. 3! for more
details about coalgebras and bialgebras.

Let u:R^^Der(A)&&→R be the homomorphism associating to each series its constant te
For eachDPDer(A) we define a linear mapD:Der(A)→Der(A) ^ Der(A) by D(D)5D

^ 111^ D. Then, the following diagram commutes:

A^ A →
D~D !

A^ A,

n↓ ↓n

A →
D

A,

~I.69!

wheren is the natural morphism defined by

n:
A^ A →A,

f ^ g ° f .g.
~I.70!

We can extendD such that for eachD(D1D2)5D(D1)D(D2), D1 , D2PDer(A), and the usual
product onR^^Der(A)&& ^ R^^Der(A)&&, (a^ b).(c^ d)5(ac^ bd). For each word,D1¯Dr ,
we defineD(D1 ¯Dr)5D(D1)D(D2 ¯Dr). We then extendD to R^^Der(A)&& by linearity.
With this definition ofD, for eachSPR^^Der(A)&&, the following diagram commutes:

A^ A →
D~S!

A^ A,

n↓ ↓n

A →
S

A.

~I.71!

As a consequence, we have the following lemma.
Lemma 4.5: The triple(R^^Der(A)&&,D,u) is a bialgebra.
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2. Quantum bialgebra

We follow the previous section on derivations.
Definition 4.1: For all e.0, and s56, we denote by¹s

e an operator acting on C0^ C0,
where^ is the classical tensor product, and defined by

¹s
e :

C0
^ C0 → C0

^ C0,

f ^ g ° ¹s
e f ^ g1 f ^ ¹s

e g1se¹s
e f ^ ¹s

e g.
~I.72!

Let Ve5$¹1
e ,¹2

e % be the alphabet of two letters¹1
e and¹2

e %. We denote byVe* the set of
wordsvI 5v1 . . . vn , v iPVe for all i 51, . . . ,n, wherev iv j denote the natural composition o
operators. For example, a possible word is¹1

e ¹2
e .

Remark 4.1: Here we consider the alphabet of quantum operators for a fixede.0. It is
possible that some particular problems of scale relativity require a complete alphabeV
5$¹s

e ,s56,e.0%.
We denote byAe5R^^Ve&& the algebra of formal power series constructed onVe ~with its

classical algebraic structure!.
We can define a linear map fromAe to Ae3RAe , denotedD. First, we defineD on ¹s

e by

Ae →
D

Ae ^ Ae ,

¹s
e °¹s

e
^ I 1I ^ ¹s

e 1se¹s
e

^ ¹s
e . ~I.73!

We have the following equality:

¹s
e +n5n+D~¹s

e !, ~I.74!

which is equivalent to the commutativity of the diagram,

C0
^ C0

→
D~¹s

e
!

C0
^ C0,

↓n ↓n

C0

→
¹s

e

C0.

~I.75!

We also defineD(I )5I ^ I in order thatI sn5nsD(I ).
We extendD to Ae by linearity.
Lemma 4.6: The linear mapD is an algebra homomorphism.
Proof: The proof is done by induction. Let¹s

e and¹s8
e be two letters ofVe . We have

¹s
e ¹s8

e
~ f g!5¹s

e ¹s8
e f .g1 f .¹s

e ¹s8
e g1¹s

e f .¹s8
e g1¹s8

e f .¹s
e g1e@¹s

e ¹s8
e f .¹s8

e g1¹s8
e f .¹s

e ¹s8
e g

1¹s
e ¹s8

e f .¹s
e g1¹s

e f .¹s
e ¹s8

e g#1e2¹s
e ¹s8

e f .¹s
e ¹s8

e g. ~I.76!

As a consequence, we have

D~¹s
e ¹s8

e
!5¹s

e ¹s8
e

^ I 1I ^ ¹s
e ¹s8

e
1¹s

e
^ ¹s8

e
1¹s8

e
^ ¹s

e 1e@¹s
e ¹s8

e
^ ¹s8

e
1¹s8

e
^ ¹s

e ¹s8
e

1¹s
e ¹s8

e
^ ¹s

e 1¹s
e

^ ¹s
e ¹s8

e
#1e2¹s

e ¹s8
e

^ ¹s
e ¹s8

e . ~I.77!

By definition, the classical product onAe ^ Ae is defined by the following: for alla^ b and c
^ d in Ae ^ Ae , we have

~a^ b!.~c^ d!5ac^ bd. ~I.78!
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An easy computation proves that

D~¹s
e ¹s8

e
!5D~¹s

e !D~¹s8
e

!. ~I.79!

By induction and linearity, we obtain the lemma. h

We define an algebra homomorphism fromAe to R, denoted byu, by associating to each
formal power series its constant term.

With u:Ae→R andD:Ae→Ae ^ Ae , we define a coalgebra structure onAe .
Lemma 4.7: The triple(Ae ,D,u) is a coalgebra.
Moreover, asu andD are homomorphisms, we obtain the stronger result.
Lemma 4.8: The triple(Ae ,D,u) is a bialgebra.
We have not found a natural graduation on this bialgebra.
Remark 4.2: (1) It will be interesting to discuss the possible relation to quantum gr

introduced by Drinfeld (Refs. 22, 23) and quasi-triangular Hopf algebra. We introduce the na
commutativity involution,

t:
Ae ^ Ae → Ae ^ Ae ,

a^ b ° b^ a.
~I.80!

Let Dop5t+D. The mapt is an algebra automorphism of Ae ^ Ae and the following diagram
commutes:

Ae →
D

Ae ^ Ae ,

idAe
↓ ↓t

Ae →
Dop

Ae ^ Ae .

~I.81!

If (Ae ,D,u) is a quasitriangular algebra, then, following Ref. 43, there exists an invertible
ment of Ae ^ Ae such that

Dop~a!5RD~a!R21, for all aPAe . ~I.82!

In our case, we easily haveDop5D so that(Ae ,D,u) so that R is trivial.
(2) A natural idea is to consider the quantum bialgebra as a ‘‘deformation’’ of the class

Hopf algebra associated with derivations. The word ‘‘deformation’’ must be taken with c
because a notion of deformation for Hopf algebra already exists and it is not clear if this is a
one to consider here.

(3) There is no natural extension of the quantum bialgebra in order to take into accoun
scale derivative. The basic problem being that the scale derivative is a complex valued op
on real valued functions. Then, we have no natural composition of these operators.

3. A remark on Rieman –Liouville fractional calculus and the local fractional calculus

A basic way to deal with nondifferentiable functions is to usefractional calculus. As an
example, one can consider the classical~left and right! Riemann–Liouville derivative, defined by

Dz
a f ~x!5

G~a11!

2p i E
0

z1

f ~ t !~ t2z!2a21 dt, ~I.83!

for aPC\$21,22, . . .%. The Riemann–Liouville derivative is not at all aderivation on the
algebra of continuous functions. Indeed, one has~see Ref. 40!
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Dz
a~uv !5 (

n50

` S a
n DDz

a2nuDz
nv. ~I.84!

Moreover, this operator, which is a direct analytic generalization of the Cauchy formula doe
have a clear geometrical interpretation, despite recent advances~see Ref. 3!.

In Ref. 5, we have obtain, following a previous work of Kolvankar and Gangal,29 a derivation,
called the~left and right! local fractional derivative, by localizing the ~left and right! Riemann–
Liouville derivative.

We have proven that this localization takes a simple form.
Definition 4.2: The right and left local fractional derivative of f at point x0 of order a is

defined by

lim
x→x0

1

f ~x!2 f ~x0!

~x2x0!a and lim
x→x0

2

f ~x0!2 f ~x!

~x02x!a , ~I.85!

respectively.
We have introduce the fractional derivative off at pointx0 by collecting the two quantities

d1
a f (x0) andd2

a f (x0) in a single quantity, i.e.,

da f ~x0!5 1
2 „d1

a f ~x0!1d2
a f ~x0!…1 i 1

2 „d1
a f ~x0!1d2

a f ~x0!…. ~I.86!

Moreover, we obtain a clear geometrical meaning by connecting the exponenta of differen-
tiation to the local maximal Ho¨lder regularity of the curve.

However, such a derivative has important problems. First, there exists nointegral operator
contrary to the Riemann–Liouville fractional derivative where there exists the Riemann–Liou
integral. Moreover, the set of points on which the local fractional derivative is nonzero is, in
of the cases, trivial, i.e., of zero measure. Precisely, we have the following theorem.

Theorem 4.1:The fractional differential equations of the form da f (x)5a(x)1 ib(x), 0,a
,1, where a(x) and b(x) are continuous functions such that there exists x0PR such that
ua(x0)uÞub(x0)u have no solutions.

This theorem solves a conjecture of Ref. 7. It must be pointed out that the cond
ua(x0)uÞub(x0)u is generic.

Proof: We have d1
a f (x)5c(x) and d2

a f (x)5d(x), where c(x)5a(x)1b(x) and d(x)
5a(x)2b(x) are continuous functions. By assumption, we havec(x0)Þ0 andd(x0)Þ0.

Let us assume thatc(x0).0 @the case wherec(x0),0 is similar#. By continuity, there exits
e.0 such that for allx in the open intervalI e(x0)5]x02e,x01e@ , we haveda f (x).0. Two
cases must be considered:~i! d2

a f (x0).0 and~ii ! d2
a f (x0),0.

In case~i!, we define an open intervalJe(x0) such that for allxPJe(x0) we haveda f (x)
.0. As a consequence, the functionf is Hölderian of exponenta ~see Ref. 4, Theorem 3.9!.
Moreover, the functionf is injective on the intervalxPKe(x0)5Je(x0)ùI e(x0). Indeed, if there
existsx1 ,x2PKe(x0) such thatf (x1)5 f (x2), then by the fractional Rolle’s theorem~Ref. 4! there
xPKe(x0) such thatd1

a f (x)d2
a f (x)<0, which is impossible by assumption. A continuous fun

tion which is injective is strictly monotone~see Ref. 28, Lemma 3.8, p. 207!. But a monotone
function is almost everywhere differentiable by the Lebesgue theorem~Ref. 31, p. 319!, in con-
tradiction with the assumption that 0,a,1.

In case~ii !, we define an open intervalJe(x0) such that for allxPJe(x0) we haveda f (x)
,0. Again the functionf is a Hölderian function of exponenta. Moreover, by Ref. 4, Theorem
4.9, all points inKe(x0)5Je(x0)ùI e(x0) are local minima. This is possible if and only iff is a
constant function, i.e., a differentiable function in contradiction with the fact thatf is Hölderian of
exponent 0,a,1. This concludes the proof of the theorem. h

We can characterize thespectrumof f , i.e., the set of values taken by the fractional derivat
of a continuous function.
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Corollary 4.1: The spectrum of a givena-differentiable function is discontinuous or zero.
Proof: The spectrum cannot be continuous and nonzero by theorem 4.1. As a consequen

spectrum can be zero or dicontinuous. h

We can be more precise on the nature of this spectrum.
Theorem 4.2: The set of fractional differential equations da f (x)5a(x)1 ib(x), where 0

,a,1 and the functions c(x)5a(x)1b(x), d(x)5a(x)2b(x) keep a constant sign on a give
interval of R, has no solutions.

Proof: This is the same proof as Theorem 4.1. The continuity assumption of Theorem
being only here to construct an interval wherec(x) andd(x) keep a constant sign. h

As a consequence, the spectrum is discontinuous but of very special form, as we cann
any interval ofR on which we have a constant sign. We define theDirichlet functionas follows:

D~x!5H 1, if xPQ

21, if xPR\Q.
~I.87!

Then, the functiona(x) andb(x) can be taken such that

a~x!5 3
2 D~x!, b~x!52 1

2 D~x!. ~I.88!

We can extend all the previous theorems to the case where the order of fractional diffe
tion is nonconstant, but a function ofx.

In Ref. 5, we have derived, in the fractional calulus framework, the Schro¨dinger equation from
Newton’s equation of dynamics under the assumption that one-dimensional quantum mec
trajectories satisfy

„ds
a f ~x!…252h̄/2m, s56, ~I.89!

whereh̄ is the reduced Planck constanth/2p andm is the mass of the particle. Of course, this
impossible by Theorem 4.1, as already proved in Ref. 7. But as the Schro¨dinger equation is a wel
established equation of physics, we propose in Ref. 7 to consider a small perturbation of co
~89!, like

„ds
a f ~x!…252h̄/2m1eas„t, f ~ t !…, s56, ~I.90!

where 0,e!1, in order to permit the existence of nontrivial solutions and to obtain a s
perturbation of the Schro¨dinger equation.

However, condition~I.90! lead to a deadlock. Indeed, fore sufficiently small, the quantities
ds

a f (x) keep a constant sign. As a consequence, by Theorem 4.2 we have no solutions.
All these problems are solved in Part II by using the scale calculus framework.

E. Quantum representation of nondifferentiable functions

We introduce the notion of a quantum geometric representation for a continuous nondif
tiable function. This notion is associated with minimal resolution and the scale derivative. It
out that a geometric space displaying the basic features of the quantum geometric represen
given by a simplified version of Connes’ formulation of the standard model of fundam
interactions within the framework of noncommutative geometry.

1. The quantum representation of a continuous nondifferentiable function

Our previous results allow us to define a natural notion of a scale derivative. The
derivative, which is a complex valued operator, contains the necessary information in or
perform a local analysis of continuous nondifferentiable functions, and take care of this n
ferentiability.
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Let f be a given continuous on a differentiable function. The basic functions associated
f , and from which we can deduce the scale derivative are the forward and backward
functions defined asf e

1(t)5(1/2e)* t
t1e f (s)ds and f e

2(t)5(1/2e)* t2e
t f (s)ds, respectively.

From a geometrical viewpoint, it means that in order to take into account the nondifferen
character off , one must consider the disjoint unionGe

1øGe
2 , whereGs is the graph off e

s , s
56.

Definition 5.1: Let h.0, f be a continuous nondifferentiable function, ande( f ,h) be its
minimal resolution. For alle.0, the quantum geometric representation of f, denoted Qe( f ), is
defined by the following:

(i) For all e.e( f ,h), Qe( f )5Ge ;
(ii) for all 0,e<e( f ,h), Qe( f )5Ge

1øGe
2 ,

whereGe , Ge
1 , Ge

2 , are the graphs of the mean function fe , the forward mean function and th
backward mean function, respectively.

The nondifferentiability off induces a change in the geometric structure of the geom
representation off .

In the following, we consider graphs of real valued functions as a submanifold ofR2. As f e
1

and f e
2 are differentiable functions, one deals with a disjoint union of differentiable submani

Ge
1 andGe

2 . The basic features of the quantum representation off , when 0,e,e( f ,h), is that
Qe is composed by two differentiable submanifolds, which are close to each other, their clos
being related toe.

As a consequence, a good understanding of the effects of a nondifferentiable function
obtained via the following simplified model.

Let M be a one dimensional differentiable submanifold ofR2. Let A5$a,b% be a two point
space. We considerQ5M3A. Then, Q is the union of two copies of the manifoldM :Q
5MaøMb .

Remark 5.1: A more accurate model is the following: Let Ae5$ae ,be% be a two point space
such that fore.e( f ,h), Ae reduces to a point, i.e., ae5be . The simplified model is then Qe
5M3Ae .

2. Noncommutative geometry

In this paragraph we only sketch a possible connect between our point of view on non
entiable functions and noncommutative geometry. The idea is, by the way, to obtain powerfu
to study nondifferentiable functions which will be relevant to physics.

In his book,15 Connes develops noncommutative geometry. The basic idea is to extend
noncommutative case the classical result of Gelfand and Naimark relatingC* -algebras and locally
compact spaces.

At the end of his book, Connes~Ref. 15, p. 568! discusses a particular example, where
theory already leads to interesting results~this example is viewed as a preliminary step toward
complete noncommutative model for the standard model of quantum particles!.

He considers a product of a differentiable manifold~the standardR4) by a discrete space,A
5$a,b%. Using noncommutative geometry, he can make an analysis on this space. In particu
defines a ‘‘differential’’ operator which contains three terms: the classical derivative on each
of R4 and a finite difference.

It will be interesting to discuss the relevance of this construction with respect to our app
to nondifferentiable functions.

PART II

II. SCALE RELATIVITY AND THE SCHRÖ DINGER EQUATION

A. Introduction

The Schro¨dinger equation is one of the basic pieces of quantum mechanics. Many att
already exist in order to derive it from the expected behaviors of trajectories of quantum pa
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or from classical equations of the dynamics. We can cite, for example, the Nelson stoc
approach,36 the Feynman perturbative approach,25 and Nottale’s approach by the Scale relativ
theory.37

In the following we discuss the derivation of the Schro¨dinger equation in the framework of th
Scale relativity of Nottale.37 The main point is that, contrary to the Nelson or Feynman appro
it is based on afirst principle, namely, thescale principle of relativity, which is an extension of the
Einstein relativity principle to scales~of time and lengths!.

The scale relativity principle introduced by Nottale has a direct consequence on the equ
of the dynamics for a given particle. Indeed, they must keep the same form under a scale
form, i.e., going from the classical scale to the atomic scale. Following Feynman and Hibb
principal difference between the microscopic and macroscopic scale is that typical paths b
nondifferentiable. Then, we must be able to transform the classical differential equations
dynamics for functions which are not at all differentiable.

This is done using the scale difference operator defined in Part I. The scale relativity pri
is then equivalent to changing the classical derivative by the scale difference operator
Euler–Lagrange equations of the dynamics.

This quantification procedure called the scale quantization can be precisely defined i
II B, by introducing a quantization map, associating with each classical variable and differ
operator its quantum counterpart. One of the main problems is then that the scale quan
procedure of the Euler–Lagrange equation is not unique. Indeed, we can first quantify th
grangian of the system and then define a quantized Euler–Lagrange equation, or we can q
directly the classical Euler–Lagrange equation. The main point, proved in the coherence lem
Sec. II D 2, is that these two procedures coincide.

The scale quantization procedure being precisely defined, we can specialize it to the qu
mechanical case. The principal free parameter in the quantization lies in the order of the reg
of the nondifferentiable curve, i.e., its Ho¨lder exponent. Using the Feynman–Hibbs character
tion of quantum paths, as well as the Heisenberg inequalities, we prove in Sec. II C that the¨lder
regularity of a quantum path is 1/2. Using this result, we prove in Sec. II D 4 that the quan
analog of the Newtonian equation of dynamics is a generalized nonlinear Schro¨dinger equation.
This is done by introducing a wave-function in Sec. II D 3, which is the direct consequence
complex nature of the speed, being itself a consequence of the nondifferentiability of the
Under special assumptions, which can be interpreted, we recover the classical Schro¨dinger equa-
tion.

B. Scale quantization procedure for classical Lagrangian systems

1. Classical Lagrangian systems and Euler –Lagrange equation

In this article, we only discuss classical Lagrangian systems defined as follows.
Definition 2.1: A Lagrangian L(x,v,t) is called classical if it is of the form kinetic energ

1potential, i.e.,

L~x,v,t !5K~v !1U~x,t !, ~II.1!

where K(v) is a quadratic form.
The basic example forK(v) is the classical kinetic energy of a particle of massm given by

K~v !5 1
2 mv2. ~II.2!

The dynamics associated to a Lagrangian system is determined by theEuler–Lagrange equa-
tions.

Definition 2.2: Let L(x,v,t) be a classical Lagrangian system. The Euler–Lagrange equation
associated with L is the following partial differential equation:
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d

dt S ]L

]v
„x~ t !,v~ t !,t…D5

]L

]x
„x~ t !,v~ t !,t…. EU

We denote byE the mapping associating toL its Euler–Lagrange equation~EU!.

2. The scale quantization procedure

In this section, we define thescale quantization procedure, which formalizes Nottale’s ap-
proach to quantum mechanics. The terminology suggests that the quantization procedure
ideas coming from the theory of thescale relativitydeveloped by Nottale.37

a. The scale quantization mapWe define a mapQ which acts on differential operators
variables and functions.

The classical variablesx, v, t have quantized analogs which are denoted byX5Q(x), V
5Q(v) andT5Q(t).

In Assumption 2.1, we have the following.
Assumption 2.1: We have Q(t)5t.
The time variable has then a specific role, being the only variable not affected by the

tization procedure.
We denote also by

X~ t !5Q„x~ t !…, V~ t !5Q„v~ t !…, ~II.3!

the quantized version of the position trajectory and speed.
The main point is that we do not know for the moment the regularity ofX(t) or V(t).
The first algebraic properties ofQ is the following.
Property 2.1 (Quantization of maps): We consider a map L:(x,v,t)°L(x,v,t). The quantized

map Q(L)5L is defined by

L:~X,V,t !°L~X,V,t !. ~II.4!

As a consequence, ifL is differentiable with respect to the variablex, v or t then L is
differentiable with respect toX, V or t.

In order to useQ on differential equations, we must precise its behavior with respec
differential operators.

Property 2.2 (Operator): We consider a map of the form f(t)5L„x(t),v(t),t…, where x(t) and
v(t) are differentiable functions. The differential operator d/dt acts on operator f. By the map Q,
we define a quantized operator Q(d/dt) such that

Q(d f /dt)5Q(d/dt).Q( f ),
where Q(d/dt) is on operator acting on Q( f ), depending on the regularity of Q( f ) with respect
to t:

~a! If Q( f )(t) is differentiable with respect to t, then Q(d/dt)5d/dt.
~b! If Q( f )(t) is nondifferentiable with respect to t, then Q(d/dt)5he /ht, where e(X,h)
.e.0, h being a constant.

The constanth must be fixed by physical constraint. In the following, we consider thath has
a free parameter.

As f (t)5L„x(t),v(t),t…, we haveQ( f )(t)5L„X(t),V(t),t…. Hence, the regularity ofQ( f )
with respect tot depends on the regularity ofX(t) andV(t) with respect tot.

Moreover, asv5dx/dt, we have

V~ t !5QS d

dtD @X~ t !#. ~II.5!

Hence, the regularity ofX(t) can induce a change in the form of the speedV(t).
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b. Scale quantization of the Euler–Lagrange equation. By the quantization procedure w
give the quantized version of the Euler–Lagrange formula~II.7!.

Lemma 2.1: The quantized Euler–Lagrange equation Q(EU) is given by

QS d

dtD F ]L
]V

„X~ t !,V~ t !,t…G5
]L
]X

. ~II.6!

Proof: The action ofQ on the classical Euler–Lagrange equation~EU! gives

QS d

dtD FQS ]L

]v
„x~ t !,v~ t !,t…D G5QS ]L

]x D . ~II.7!

As L is assumed to be differentiable with respect to the variablesv and x, we have, using
Property 2.1:

QS d

dtD F]Q~L !

]Q~v !
„Q~x!~ t !,Q~v !~ t !,t…G5

]Q~L !

]Q~x!
. ~II.8!

With our notations, Eq.~8! gives Eq.~6!. This concludes the proof of the lemma. h

As a consequence, in order to precise the quantization procedure, we only have to prec
regularity ofQ„x(t)…5X(t).

C. Generic trajectories of quantum mechanics

In order to precise the quantization procedure, we investigate the regularity of a qua
mechanical path.

1. Feynman and Hibbs genericity condition

Feynman and Hibbs have already noted in Ref. 26, pp. 176–177 that the typical pat
quantum mechanical particle is continuous and nondifferentiable. More precisely, there e
quadratic velocity, i.e., ifX(t) denotes the particle trajectory, then

lim
t→t8

„X~ t !2X~ t8!…2

t2t8
exists. ~FH !

As a consequence, we have the following result.
Lemma 3.1: Under Feynman–Hibbs characterization (FH), we have X(t)PH1/2.
We can deduce the following result on the Hausdorff dimension of typical paths of qua

mechanics:
Corollary 3.1: Under Feyman–Hibbs characterization (FH), the Hausdorff dimension of X

1/2.
Proof: As XPH1/2, this follows from Theorem 20.6, Ref. 46, p. 310. h

On the contrary, the fractal~or Minkowski–Bouligand! dimensionD is given by

D~X!522~1/2!53/2, ~II.9!

using ~Ref. 46, pp. 154–155!.
This result has been discussed in great detail by Abbott and Wise.1

2. Heisenberg uncertainty principle

The nondifferentiable character of typical paths of quantum mechanics can be see
consequence ofHeisenberg uncertainty relations. We refer to~Ref. 37, pp. 93–95! and Ref. 14, p.
130–131 for details.
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Let Dx, Dt, and Dp be the precision of the measurement of the positionx, time t and
momentum pof a given particle. The Heisenberg uncertainty relation on momentum and po
is

DpDx>h. ~II.10!

We have the following relations:

x~ t6Dt !5x~ t !6Dx,

ve~ t6Dt !5„x~ t1e!2x~ t !/e…6Dv, ~II.11!

wheree>Dt by definition ofDt, and

Dp5mDv. ~II.12!

Remark 3.1: The speed of a particlev(t) is defined as the limit of the mean-speedve(t)
5„x(t1e)2x(t)/e… whene goes to zero. As the time variable t is known only with precisionDt,
we must havee>Dt.

What are the relations betweenDv, Dx andDt?
As e>Dt by assumption, we have by taking the best possible valuee5Dt,

Dv;2Dx/Dt. ~II.13!

As a consequence, the Heisenberg uncertainty relation~10! gives

m
~Dx!2

Dt
;h. ~II.14!

We deduce that

Dx;
h

2m
Dt1/2. ~II.15!

Hence, we deduce that the Heisenberg uncertainty relation~10! induces the fact thatXPH1/2.
Of course, the previous reasoning can be reversed. If typical paths of quantum mechan

assumed to be inH1/2, then we obtain Heisenberg-like uncertainty relations.
Lemma 3.2: Let XPH1/2, and 0,Dt!1 be a small parameter. We denote byX the graph of

X, and byX(t)5„t,X(t)… a point belonging toXPR2. We denote byDx(t)5iX(t),X(t1Dt)i ,
wherei .i is the classical Euclidean norm onR2. We have

Dx;~Dt !1/2, ~II.16!

for all t PR.
Proof: This follows from a simple computation. We have

iX~ t !,X~ t1Dt !i25~Dt !21„X~ t1Dt !2X~ t !…2. ~II.17!

As XPH1/2, we obtain

iX~ t !,X~ t1Dt !i2<~Dt !21C2Dt;Dt, ~II.18!

for Dt sufficiently small. h

Of course, this result extends to arbitraryXPHa, with 0,a,1, for which we obtain

Dx;~Dt !a. ~II.19!
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D. Scale quantization of Newtonian mechanics

1. Quantization of speed

The fact that typical path of quantum mechanics belongs toH1/2 has many implications with
respect to the quantization procedure. The first one being that the quantized version of the
v is now complex.

Lemma 4.1 (Quantized speed): Let Q(x)5XPH1/2; then Q(v)5VPC. Precisely, we have

V5
heX

ht
. ~II.20!

Proof: This follows from the quantization procedure. We have

v5
dx

dt
. ~II.21!

By Q, we obtain

V5QS d

dtD ~X!. ~II.22!

As XPH1/2, we have

Q~d/dt!5he /ht, ~II.23!

which is a complex number by definition. h

2. Scale relativity and the coherence lemma
a. Scale relativity and Scale Euler–Lagrange equations.The scale-relativity theory devel

oped by Nottale~Refs. 37, 38! extends the Einstein relativity principle toscale. A heuristic version
of the new relativity principle can be written as follows:

‘‘ The equations of physics keep the same form under any transformation of scale (contra
and dilatations).’’

The mathematical foundation of such a theory is difficult. The main difficulty being
space–time is now a nondifferentiable manifold. We refer to the work of Nottale37 for more
details.

The scale relativity principle has a direct consequence on the form of the equation of m
for a particle.

We first introduce the following ‘‘Scale’’ Euler–Lagrange equation.
Definition 4.1: LetL(V,t) be a quantized Lagrangian. The Scale Euler–Lagrange equation

associated withL(X,V,t) is the equation

he

ht S ]L
]V

„X~ t !,V~ t !,t…D5
]L
]X

„X~ t !,V~ t !,t…. ~EU !

We denote byE the mapping associating equation (EU) to L.
The scale relativity principle is then equivalent to the following statement.
Statement 4.1~Scale relativity!: The equation of motion of a quantum-mechanical parti

satisfies the Scale Euler–Lagrange equation.
The main point is that the Scale Euler–Lagrange equation does not follow from the q

zation procedure, but from a first principle which fixes the form of the equation of motions.
b. Coherence lemmaAt this point, we can state thecoherence lemma, which ensures us tha

the quantization procedure is well defined. Indeed, the scale relativity principle gives an eq
of motion particle in quantum mechanics, i.e., (EU). But, the quantization procedure can be us
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to obtain an equation of motion for the particle as a quantized version of the classical E
Lagrange equation, i.e.,Q(EU). The main point is that this two constructions are equivalent,
Q(EU)5EU. Precisely, we have the following.

Lemma 4.2 (Coherence): The following diagram commutes,

L~x,v,t ! →
Q L~X,V,t !

E↓ ↓E
d

dt F]L

]v
~x~ t !,v~ t !,t !G5

]U

]x →
Q he

ht F]L
]V

~X~ t !,V~ t !,t !G5
]U

]X
.

~II.24!

Proof: This follows from a direct computation. h

In terms of mapping, the coherence lemma is then equivalent to

Q+E5E+Q. ~II.25!

3. Action functional and wave

A basic element of Lagrangian mechanics is the action functionalA(x,t) which is related to
speed via the equation

v5
1

m

]A

]x
. ~II.26!

The functionA(x,t) is differentiable with respect tox and t. By the quantization procedure, w
obtain the analog of the classical action functional for quantum mechanics.

Lemma 4.3 (Quantized action functional): The functionA5Q(A) is a complex valued func
tion A(X,t) which satisfies

V5
1]

m

A
]X

. ~II.27!

Proof: By Q the classical equation~26! gives

V5Q~v !5QS ]

]xDQ~A!. ~II.28!

As the classical actionA(x,t) is differentiable with respect tox, the quantized versionA(X,t) is
differentiable with respect toX. As a consequence, we have

QS ]

]xD5
]

]X
. ~II.29!

This concludes the proof. h

Moreover, the quantization procedure gives us the following relation.
Lemma 4.4 (Action): The quantized actionA(x,t) satisfies

L5
]A
]t

. ~II.30!

At this point, the main feature of quantum mechanics is to introduce complex speed and
functional. We can discuss the behavior ofA by introducing a complex valued function, which
called thewave function.
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Definition 4.2 (Wave function): We call wave function associated to X, the complex valued
function defined by

c~X,t !5expS iA~X,t !

2mg D , ~II.31!

wheregPR is a constant number.
The constantg is a normalization constant, which depends on the regularity property ofX(t).
The complex nature ofV leads naturally to the introduction of the wave function. The wa

formalism is then induced by the nondifferentiable character of typical paths of quantum me
ics.

4. The quantized Euler –Lagrange equation

The quantized Euler–Lagrange equation is given by

m
heV~ t !

ht
5

dU

dx
~x!. ~II.32!

The complex speedV is related to the wave function, so that Eq.~II.32! can be written in term of
c.

Theorem 4.1:Let X(t) be a continuous nondifferentiable function in H1/2 andc its associated
wave function. The quantized Euler–Lagrange equation is of the form

2igmF2
1

c S ]c

]XD 2S ig1
ae~ t !

2 D1
]c

]t
1

ae~ t !

2

]2c

]X2G5„U~x!1a~x!…c1o~e1/2!, ~II.33!

wherea(x) is an arbitrary continuous function, and

ae~ t !5
1

2
@„De

1X~ t !…22„De
2X~ t !…2#2 i

1

2
@„De

1X~ t !…21„De
2X~ t !…2#. ~II.34!

The equation~33! is called thegeneralized Schrodinger equationby Nottale.37

Proof: We have

V52 i2g
] ln~c!

]X
. ~II.35!

The Euler–Lagrange equation is now given by

2igm
he

ht S ] ln~c!

]X D5
dU

dX
. ~II.36!

We denote

f ~X,t !5
] ln„c~X,t !…

]X
~X,t !. ~II.37!

We apply the main lemma of Sec. I C 4 to computehe f „X(t),t…/ht for complex valued func-
tions. We have
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he

ht S ] ln~c!

]X
„X~ t !,t…D5

heX

ht

]

]X S ] ln„c~X,t !…

]X D „X~ t !,t…1
]

]t S ] ln„c~X,t !…

]X D „X~ t !,t…

1
1

2
ae~ t !

]2

]X2 S ] ln„c~X,t !…

]X D „X~ t !,t…1o~e1/2!. ~II.38!

Elementary calculus gives

] ln„c~X,t !…

]X
5

1

c

]c

]X
, and

]

]X S 1

c

]c

]XD5
1

c

]2c

]2X
2

1

c2 S ]c

]XD 2

. ~II.39!

Moreover, by definition of the wave functionc andV, we have

V52 i2g
] ln c~X,t !

]X
. ~II.40!

Hence, we obtain

heX

ht
5V52 i2g

] ln c~X,t !

]X
, ~II.41!

and

heX

ht

]

]X S ] ln„c~X,t !…

]X D ~X~ t !,t !52 i2g
] ln~c!

]X

]

]X S ] ln~c!

]X D „X~ t !,t…,

52 ig
]

]X F S ] ln~c!

]X D 2G„X~ t !,t…,

52 ig
]

]X F 1

c2 S ]c

]XD 2G„X~ t !,t…. ~II.42!

We then have

he

ht S ] ln„c~X,t !…

]X
„X~ t !,t…D5

]

]X F2 ig
1

c2 S ]c

]XD 2

1
] ln~c!

]t
1

1

2
ae~ t !F 1

c

]2c

]X2 2
1

c2 S ]c

]XD 2G G
1o~e1/2!,

5
]

]X F2
1

c2 S ]c

]XD 2S ig1
ae~ t !

2 D1
1

c

]c

]t
1

ae~ t !

2

1

c

]2c

]X2G1o~e1/2!.

~II.43!

As a consequence, Eq.~38! is equivalent to

]

]X F i2gmF2
1

c2 S ]c

]XD 2S ig1
ae~ t !

2 D1
1

c

]c

]t G1
ae~ t !

2

1

c

]2c

]X2G5
]U

]X
. ~II.44!

By integrating with respect toX, we obtain

i2gmF2
1

c2 S ]c

]XD 2S ig1
ae~ t !

2 D1
1

c

]c

]t G1
ae~ t !

2

1

c

]2c

]X2 5U~X!1a~X!1o~e1/2!,

~II.45!

wherea(X) is an arbitrary function. This concludes the proof. h
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5. Nonlinear Schro¨ dinger equations

Many authors have suggested that the quantum mechanics based on the linear Schr¨dinger
equation is only an approximation of some nonlinear theory with a nonlinear Schro¨dinger equa-
tion. Nonlinear wave mechanics was initiated by De Broglie11 in order to have a better unde
standing of the relation between wave and particle~see Ref. 12, p. 227–231!.

Many generalizations of the Schro¨dinger equation exist. We can mention, for example,
Staruszkievicz42 or Bialynicki–Birula and Mycielsky8 modification. All these generalizations ar
not a consequence of a given principle of physics. For example, the Bialynicki–Birula and
cielsky modification can be derived, using the hydrodynamical formalism proposed
Madelung,34 Bohm–Vigier10 and others, by adding apressure termto the Euler hydrodynamica
equation~see Ref. 41, Sec. 2!. Of course, one can justifya posterioria given modification by the
fact that it solves some relevant problems like thecollapseof the wave function or the Schro¨dinger
cat paradox~see Ref. 41!.

Recently Castro, Mahecha and Rodriguez13 have proposed a new nonlinear Schro¨dinger equa-
tion based on a generalization of Nottale reasoning.37 In the one-dimensional case, they obtain

ia
]c

]t
52

a Re~a!

2m

]2c

]x2 1U~x!c2 i
aIm~a!

2m S ]c

]x D 2 1

c
, ~II.46!

whereaPC.
If Im(a)50 anda5h̄, then one recovers the classical linear Schro¨dinger equation.
This generalization is done under two assumptions.

~i! They introduce a complex ‘‘Planck constant’’~i.e., a! by allowing that the normalization
constantg is complex.

~ii ! They consider acomplex diffusion coefficient, which has no counterpart in our case.

The problem is that there is no geometric interpretation of a complex diffusion coefficien
of a complex Planck constant. As a consequence, even if Nottale’s reasoning is kept in o
derive the new nonlinear Schro¨dinger equation~II.46!, this is anad hocmathematical generaliza
tion.

On the contrary, we have to obtain a nonlinear Schro¨dinger equation~33! directly from the
Scale relativity principle. All our constants have a clear geometrical meaning. Moreove
nonlinear term is not anad hocterm but is fixed by the theory.

E. Toward the Schro¨ dinger equation

The generalized Schro¨dinger equation can be simplified in some cases, by assuming
quantum-mechanical paths satisfy special regularity properties.

Theorem 5.1:Let X(t) be a continuous nondifferentiable function belonging to H1/2 such that

ae~ t !52 i2g. ~II.47!

Then, the quantized Euler–Lagrange equation takes the form

g2
]2c

]X2 1 ig
]c

]t
5„U~X,t !1a~X!…

c

2m
1o~e1/2!. ~II.48!

We can always choose a solution of Eq. (48) such that

a~X!50. ~II.49!

In this case, if
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g5
h̄

2m
, ~SC!

we obtain the classical Schro¨dinger equation

ih̄
]c

]t
1

h̄2

2m

]2c

]X2 5Uc. ~II.50!

Proof: The only nontrivial, but classical, part concerns the possibility of choosing a pha
the wave function such thata(X)50. The computations follow closely those of Ref. 4, Corolla
1.

Let c be a solution of~II.48!. The basic idea is that we can always modify the phase of
wave function in order to obtain a solution of~II.48! such thata(X)50. So, let us consider the
modified wave function

c̃~X,t !5expS i
A~X,t !

2mg
1u~X! D5c~X,t !Q~X!. ~II.51!

We have

]c̃

]X
5

]c

]X
Q1cQ8,

]2c̃

]X2 5
]2c

]X2 Q12
]c

]X
Q81cQ9, ~II.52!

]c̃

]t
5

]c

]t
Q,

whereQ8(X) andQ9(X) are the first and second derivative ofQ.
By replacing in~II.48!, and assuming thata(X)50, we obtain up too(e1/2) terms,

QS i2gm
]c

]t
12g2m

]2

]X2 2Uc D14g2m
]c

]X
Q812g2mcQ950. ~II.53!

As c(X,t) is a solution of~II.48! with a given valuea(X), we deduce thatQ(X) must satisfy
the following ordinary differential equation:

a~X,t !Q1b~X,t !Q81c~X,t !Q950, ~II.54!

where

a~X,t !5a~X!c, b~X,t !54g2m
]c

]X
, c~X,t !52g2mc. ~II.55!

This is a second order differential equation with nonconstant coefficients. By general theore
linear differential equations, there always exists a solution. As a consequence, we can
chooseQ(X) such thatf(X,t)Q(X) satisfies~II.48! with a(X)50. This concludes the proof.h

Difference equations and the Schro ¨ dinger condition

The Schro¨dinger condition~SC! can be precise. We have the following lemma.
Lemma 5.1: The Schro¨dinger condition (SC) is equivalent to the difference equation
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De
1X~ t !56Ah̄/m, ~II.56!

and the following relations:

De
1X~ t !5De

2X~ t !. ~P!

Proof: By the definition ofae(t) in ~II.34!, the Schrodinger condition is equivalent to th
following system:

„De
1X~ t !…22„De

2X~ t !…250,

„De
1X~ t !…21„De

2X~ t !…252h̄/m. ~II.57!

We deduce that„De
1X(t)…25„De

2X(t)…2 and „De
1X(t)…25h̄/m. Hence, we haveDe

1X(t)

56Ah̄/m, a constant independent oft. We obtain

De
2X~ t !5De

1~ t2e!56A2h̄/m5De
1X~ t !, ~II.58!

which concludes the proof. h

As a consequence, we are led to the study of difference equations of the form

De
sX~ t !5a, s56, ~II.59!

whereaPR is a constant. This kind of difference equations always have solutions of the for

X~ t !5X* ~ t !1Pe~ t !, ~II.60!

whereX* (t) is a particular solution, andPe(t) is anarbitrary periodic function of t of periode.
Remark 5.1: Most of the following can be generalized to general difference equations

form De
sX(t)5F(t), wheres56 and F(t) is a given function (see Ref. 35, Chap. 8).

Particular solutions always exist. Indeed, if one considers an arbitrary given functionX* (t)
defined on 0<t,e, then the difference equation definesX* (t) at every point exterior to this
interval. Of course, such kinds of solutions are in general notanalytic. We can define a specia
particular solution calledthe principal solutionfollowing Ref. 35, p. 200.

For ~II.59! the principal solution is given by~see Ref. 35, p. 204!

Xc* ~ t !5aS t2c2
e

2D , ~II.61!

wherec is an arbitrary constant.
Remark 5.2: For c50, v51, a51, we obtain the Bernouilli’s polynomial B1(t).
From this section, we deduce the followingstructure lemma.
Lemma 5.2 (structure): The Schro¨dinger condition is satisfied by continuous functions of

form

Xc~ t !56Ah̄/m S t2c2
e

2D1Pe~ t !, ~II.62!

where c is an arbitrary real constant, and Pe(t) is an arbitrary periodic function belonging to
H1/2.
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We call this set of functions theprincipal Schrödinger set. It gives the structure of typica
paths of quantum mechanics in the free case.

Remark 5.3: In Ref. 4, the Schro¨dinger equation is obtained from a generalized equat
under an assumption which is equivalent to a special fractional differential equation. In Ref.
have proved that in the framework of fractional calculus, this fractional equation has no solut.
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On decoherence
Gianfausto Dell’Antonioa)
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Using a quantum particle inR3 as a toy model, and following the rules of Schro¨-
dinger’s quantum mechanics, we discuss to which extent one may be able to use
‘‘decoherence’’ to view the quantum particle as a ‘‘classical’’ measuring apparatus
to measure position. We discuss also very briefly the measurement of momentum
and the case of quantum optics. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1616202#

I. INTRODUCTION

While Schrödinger’s quantum mechanics has an undisputable extraordinary success
model of the nonrelativistic behavior of atoms and molecules, the conceptual question ‘‘why
of the macroscopic bodies admit a classical description’’ has no satisfactory answer~and not even,
perhaps, a clear mathematical formulation!.

By ‘‘classical description’’ we mean here that the observables can be described as functi
a classical phase space.

On the contrary the superposition principle, which is a distinctive feature of quantum me
ics, allows for the existence of a pure state on which an observableA has no definite value.

It is sometimes stated that for large enough bodies the ‘‘classical behavior’’ should
because the only observable one is able to measure is the mean value of observables defi
‘‘microscopic’’ level, and our usual perception of the world is a result of an averaging with
small statistical fluctuations, according to some version of the law of large numbers.

But the criterion of how large is the body~i.e., how many atoms it contains!, fails. For
example, one has manufactured a Bose–Einstein condensate made of several thousands
and which still shows a quantum mechanical behavior for comparatively large times~of the order
of a few milliseconds! whereas the binding of a molecule~composed of a small number of atom!
can fairly well be described using models of rods and strings. It seems that one should mak
precise the class of bodies and the class of measurements for which a classical descri
legitimate.

For example, one is very far from a proof that, starting with a quantum mechanical descr
in terms of atoms and molecules, one is able to predict the time evolution of the macros
parameters so as to describe the bouncing of two ‘‘physical’’ balls. One has a further, r
problem: to explain what is the physical mechanism by which some quantum systems can~for all
practical purposes! act as classical apparatus. In this regard, let us remark that a solution o
problem would leave essentially untouched the measurement problem of quantum mecha
the apparatus can be viewed as a classical statistical Liouville ensemble, the probabilit
specific outcome of a measurement is given in terms of classical probability theory.

If an actual measurement of position of a particle is taking place, and the particle is fou
the domainD @with probability p(D)] the reduction~conditioning! of the probability distribution
cannot be traced back to conditioning with respect to the state of the environment, as in cl
mechanics, because when one takes into account also the environment one is lead to a the
bigger Hilbert space and to entangled states in which the rules of classical probability no

a!On leave from Department of Mathematics, University of Rome 1, ‘‘La Sapienza,’’ Rome, Italy.
49390022-2488/2003/44(11)/4939/18/$20.00 © 2003 American Institute of Physics
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hold. In other words, one cannot attribute to a specific final state of the environment the fa
a specific outcome of the mesurement has occured.

The more difficult ~and fascinating! problem of building in the theory something that r
sembles classical determinism and measurement theory without wave packet reduction, is
beyond the reach of~linear! Schrödinger quantum mechanics.

In recent years there has been a revival of interest in these issues from the part of re
groups interested in the foundations of nonrelativistic quantum mechanics.

Depending on taste and past experience, one has tried a more algebraic approach, ma
of the Heisenberg picture and working within theC* -algebras framework of quantum observab
~see, e.g., Refs. 1 and 2!, or a more function-analytic approach using Schro¨dinger’s quantum
mechanics.

In the first approach one seeks a relevant Abelian subalgebra of operators and a s
coupling to obtain a macroscopic measurement or otherwise a collection of ‘‘robust’’ clas
states for an open quantum system to describe the appearance of environment-induced s
rules. In the second approach, one tries to describe possible mechanisms within quantum m
ics through which some specific features~e.g., the superposition principle! are somehow sup
pressed.

In the authors’ opinion, in spite of the very interesting structures that have been constr
especially in the algebraic context, neither of these approaches has met full success. A
contribution has come from the field of quantum optics, in which one is able to construct ‘‘
roscopic states’’~essentially coherent states of the electromagnetic field in a cavity!, to construct
~experimentally! a superposition of two such states and to measure the time it takes for the s
to exhibit decoherence.3,4

Decoherence is attributed to the interaction with the boundaries of the cavity. Althoug
perimentally tested, this mechanism for decoherence, and therefore passage to a classical
tion, is very difficult to put in mathematical terms. One of the major challenges within mathe
cal physics is to describe it starting from the rules of quantum mechanics~or rather quantum
electrodynamics!.

We will come back later to the study of decoherence in quantum optics. In the following
place ourselves within Schro¨dinger’s quantum mechanics and describe a possible mechanis
generating at least partially some ‘‘classical’’ behavior in a quantum system.

We will take as apparatus the simplest quantum system, a particleA of massM in R3. This is
certainly not a classical system, but we will see that, if its massM is sufficiently large, andA
undergoes scattering with sufficiently many light particles, it behaves, after the interactio
taken place, as a statistical mixture.

We shall analyze the system according to the rules of Schro¨dinger’s approach to quantum
mechanics.

In general the quantum mechanical setup will be the following: the system we are consid
can be thought of as composed of three subsystems, that conventionally will be referred
observableO, apparatusA, and environmentE. They are described as vectors in a product Hilb
space

H5Ho^ Ha^ He . ~1!

The evolution is described in general by a Hamiltonian

H5Ho1Ha1He1Ho,a
int 1Ha,e

int 1Ho,e
int , ~2!

where, for example,He is the Hamiltonian that describes the evolution of the environmen
absence of the measuring apparatus and of the object to be measured, andHa,e

int describes the
interaction between the measuring apparatus and the environment. We assume, as usual,
interaction between the measuring apparatus and the environment is independent of the p
of the object to be measured.
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Our purpose is to find the amount of ‘‘decoherence’’ that is induced in the systemA if one
neglects the information on the state of the environment~so that one has access only to t
outcome of experiments that refer to the systemA!.

We shall assume that neglecting the information about the systemE can be represente
mathematically by taking the trace with respect toHe .

Notice that if one performs this operation starting with a state which is ‘‘entangled,’’
cannot be represented by a vectorCPH of the form

fo^ fa^ fe , fqPHq , q5s,a,e,

one obtains a state which is represented by a ‘‘density matrix’’~positive trace class operators o
trace one! in Ho^ Ha which is in general not a projection operator, and therefore is not assoc
to a vector in that space.

In this report, we shall consider first the case where the Hilbert spaceHo is absent; we view
this as corresponding to studying the decoherence induced in the~measuring! apparatus due to its
interaction with the environment.

We shall be interested in the structure of the resulting density matrix, in order to see whi
the ‘‘classical features’’ that can emerge.

One such classical feature could be that the resulting density matrix has~almost! diagonal
kernel in a specific representation~e.g., in the space representation, or in the momentum re
sentation!. We shall comment later on whether this can be considered as an indication that in
sense the measuring apparatus can be treated as a classical ensemble for the measurem
observable which defines the basis on which the kernel is ‘‘almost’’ diagonal.

II. A TOY MODEL OF DECOHERENCE

We will consider the case in which both the apparatusA and the environmentE are systems
composed ofNa , respectively,Ne particle.

The particles in the systemA may be in a bound state~the systemA may be a crystal!. The
particles inE are much lighter than those inA and are scattered byA. Decoherence results from
the scattering.

This model has been studied previously making some simplifying physical and mathem
assumptions.5–11 It has been treated rigorously and in much detail in Ref. 12 in the case of
interactions in one dimension, and in Ref. 13 still in one dimension in the case of a
interaction superimposed to a harmonic potential.

Here we shall study in some detail the caseNa5Ne51 andNa51,Ne.1 with no interaction
between the particles inE and comment briefly on the other cases.14

In the simplest caseNa5Ne51 one works in the tensor product of the Hilbert spaces

Ha5L2~R3,dx!, He5L2~R3,dy!,

and a generic~pure! state of the system is represented by a function

C~x,y!PL2~R6,dx dy!, iCi51.

The quantum mechanical evolution is given by

C~ t !5exp$2 iHt %C~0!,

whereH is the total Hamiltonian.
Without loss of generality~the evolution equations are linear! we shall assume thatC has the

form

C~x,y!5c~x!f~y!, x,yPR3

and consider first the case
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Ha52
1

2M
Dx , He52

1

2m
Dy , Ha,e

int 5V~x2y!, ~3!

whereD is the Laplacean in the indicated variable and the potentialV is sufficiently regular so tha
Ha1He1H int is self-adjoint.

We shall then discuss briefly the caseHa52 (1/2M ) Dx1W(x). Tracing out the degrees o
freedom inHe corresponds to consider only the expectation values of the observables asso
to systemA.

We prove first a simple Lemma.
Lemma 2.1: Consider the system described in (3). For any bounded operator inHa one has,

in the coordinate representation,

~e2 iHtC,Ae2 iHtC!5E c* ~x!At~x,x8!c~x8! f t
V,f~x,x8!dx dx8, ~4!

where

At5eiH x
0tAe2 iH x

0t, Vx~y!5V~y2x!, ~5!

f t
V~x,x8!5~exp$2 i ~He1Vx!t%f,exp$2 i ~He1Vx8!t%f%). ~6!

Remark 2.1:Notice that, by construction one hasf t
V,f(x,x)51 and for a generic potentialV

and a generic vectorc one hasu f t
V,f(x,x8)u,1 for xÞx8. Moreover it is easy to prove that

f t
0~x,x8!5 f 0

V~x,x8!51

and that

lim
t→`

f t
V~x,x8!5~W1

x f,W1
x8f!,

whereW1
x is the wave operator relative to the potentialVx(y)5V(y2x).

If the potential is a function which is periodic on the support ofc with lattice periodG one has

u f t
V,f~x,x8!u51, x2x8PG, x, x8Psupp~c!

so that if the kernel ofr is periodic underG, the reduced density matrix has also this propert
One should also notice that ifAt(x,x8)5at(x)d(x2x8) one has

~e2 iHtC,Ae2 iHtC!5~e2 iH x
0tc,Ae2 iH x

0tc!

and if A5 ia•¹x one has

~e2 iHtC,ia•¹xe
2 iHtC!5~c,ia¹xc!1S exp$ i ~He1Vx!t%f,iak

]V

]xk
exp$ i ~He1Vx8!t%f D .

j

Proof of Lemma 2.1:Notice first that one has

~e2 iHtF,Ae2 iHtF!5~e2 iHtF,UAU21e2 iHtF! ~7!

for any unitary inHe , sinceA commutes with any such operator.
Next, consider the change of variables

j5x2y, ~M1m!h5Mx1my
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with inverse

x5h2
M

m1M
j, y5h2

M

m1M
j.

With the notation

2
1

2M
Dx5Hx

0 , 2
1

2m
Dy5Hy

0 , 2
1

2m
Dj5Hj

0, 2
1

2n
Dh5Hh

0,

n5M1m, m215m211M 21,

one has

Ha
01He

05Hj
01Hh

0.

Recalling that

H5Hx
01Hy

01V~x2y!5Hj
01V~j!1Hh

0

and choosing in~6! U5e2 iH y
0t one has

e2 iH y
0teiHtF5e2 iH y

0teiH h
0 tei (Hj

0
1V(j))tF5eiH x

0te2 iH j
0tei (Hj

0
1V(j))tF.

Notice that~4! can be written

~e2 iHtF,Ae2 iHtF!5E r red~x,x8!A~x,x8!dx dx8, ~8!

where A(x,x8) is the kernel of A in the x-representation,r red5r0(x,x8;t) f (x,x8;t) and
r0(x,x8;t) is the kernel~in thex representation! of the free evolution of the initial density matrix

Therefore one has

~e2 iHtF,Ae2 iHtF!5~J t ,eiH x
0tAe2 iH x

0tJ t!, J t~x,y!5eiH j
0te2 i (Hj

0
1V(j))tc~x!f~y!.

Using the invariance under translations of the Laplacean, changing variables~for fixed x) j→j
1x5y and performing the integration overy completes the proof of Lemma 1.

h

Remark 2.2:It is easly seen that the same argument can be used in case the environm
composed ofN particles which do not interact with each other and interact with the particle iA
through potentialsVk that depend only onx2yk . The analysis follows the same lines as in t
previous case, with the same conclusions.

If the particles inA interact with each other or are acted upon by external potential for
with smooth enough potentials, Lemma 1@with the subsitution ofVx(y) with (1

NaVk(y2xk)]
holds up to terms of second order in the ratio of the mass of the particles inE relative to the
particles inA.

We give details of this for the caseNe5Na51 with an ‘‘external’’ potentialW(x). We remark
that one has
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exp$ i t @Hx
01W~x!1Hy

01V~y2x!#%

5exp$ i t @Hh
01W~x!1Hx

0i 1V~j!#%

5exp$ i t @Hh
01W~h!1Hj

02V~j!#%

1E
0

1

ds
d

ds FexpH i t FHh
01WS h1

m

m1M
sj D1Hj

01V~j!G J
5exp$ i t @Hx

01W~x!1Hy
0#%•expH i t FHh

01WS h1
m

m1M
sj D1Hj

01V~j!G J
2expH i t FHx

01WS h2
m

m1M
jsD1Hy

0G J exp$2 iH j
0t%exp$ iH j

0t1 iV~j!t%G .
Setting e5m/M the derivative with respect tos brings down a factore and the coefficient
vanishes itself ate50.

Therefore in this case, under suitable regularity assumption onW one has

~e2 iHtC,Ae2 iHtC!5E ~c~x!At~x,x8!c~x8! f t
V,f~x,x8!c~x8!~11O~e2!!,

where

At5e2 i (Hx
0
1W(x))tAe2 i (Hx

0
1W(x))t, Vx~y!5V~y2x!,

f t
V~x,x8!5~exp$ i ~He1Vx!t%f,exp$ i ~He1Vx8!t%f%).

Repeating the steps of Lemma 2.1 one has the same result. j

It should be emphasized that for each value oft the map

r~x,x8!→r0~x,x8;t ! f ~x,x8;t ! ~9!

is completely positive. This family of maps does not form a semigroup; whether one h
semigroup in the same limit is a very delicate issue, and we will not discuss it.

So far, the formulas we have are exact. To proceed further it is convenient to assume t
particles inE have a mass much smaller than those inA.

As we shall see, this introduces two different time scales, one forA and one forE. It is then
seen that a partial localization of the systemA with respect to the position variable is obtained
a time short compared with that of the natural spread of the functionc under free evolution.

In this sense the ‘‘decoherence’’ process considered takes place almost instantaneouslA
and in a very long time forE, so that forE it can be regarded as a scattering event~and therefore
justify the use of the scattering matrix, or rather of the wave operator used in Refs. 6, 8, an!.

III. VERY LIGHT PARTICLES AS ENVIRONMENT

We shall assume that the particles inE are much lighter than the particle inA; for concrete-
ness we setM51 for the particles inA andm5e, e!1 for those inE.

With the introduction of the parametere one has

f e~x,x8;t !5~Yt
x ,Yt

x8!, Yt
x5expH iH y

0 t

eJ expH 2 i ~Hy
01eVx!

t

eJ f. ~10!

It is now clear that we can chooseT so small that for 0,t,T the effect of the free evolution on
c is negligeable, and stillT/e@1 so that we can approximatef by a scattering regime, a
suggested by the presence oft/e in the exponential.
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It is also evident from~10! that in the units chosen the interaction is very weak~of ordere!
and therefore we are in need of having the environment consisting of a large number of pa
~of ordere21) to have a decoherence effect of order one.

If the number of light particles interacting withA in the interval of time@0,T# is still bigger,
one may be able to justify the statement that the environment causes ‘‘almost instantan
reduction to the diagonal of the kernel of the density matrix in the position representation.

Indeed each interaction would provide a factor approximately equal to (12e) f , f .0 but
since there are 0(Me21) such terms their product approaches zero whene→0, M→`. We
shall comment later on the relevance of this to the statement thatA may be used as a classic
apparatus for the measurement of position.

Remark 3.1:One should remark that this limit is very singular, in the sense that the sequ
of reduced density matrices converge to a state which is not represented by a density matrix
systemA. This is a common feature of limits in which the number of particles involved tend
infinity. j

Of course, to justify this setting requires that the initial data of the particles inE satisfy strong
hypothesis.

In order to proceed to a more detailed analysis we shall assume that the potentialeV(y)
satisfies the assumptions that assure the existence and unitarity of the wave operatorW1 . There-
fore,

s2 lim
t→`

FexpH 2 iH y
0 t

eJ expH i ~Hy
01eVx!

t

eJ 2W1
x Gf50 ~11!

for any vector vectorfPHe . In ~11! W1,e
x is the outgoing wave operator for the potent

eVx , Vx(y)5V(y2x).
It will be convenient to introduce the subset ofHe consisting of vectors for which the

convergence to zero in~11! is ‘‘sufficiently fast.’’
We define for anyd>0,

Kd[H fPHe : I FexpH 2 iH y
0 t

eJ expH i ~Hy
01eVx!

t

eJ 2W1,e
x Gf I<Cfe11dJ , ~12!

whereCf is a positive constant that may depend onf andd.
From the previous estimates one immediately has the following statement.
Lemma 3.1: If the initial statef of the light particle lies in Kd , d.0 one has

f S x,x8;
t

e D5~W1,e
x f,W1,e

x8 f!1O~e11d!511eGV~x,x8!1O~e11d!, 0,t,T, ~13!

where GV(x,x8) can be computed explicitely from the first order Born expansion of the solutio
the Lippmann–Schwinger equation for the potential V. h

To give an explicit expression ofGV(x,x8) in ~13! we recall thatfout
e is given by the

fout
e ~y!5E dk fout

e ~y,k! f̂ ~k!, ~14!

wherefout
e (y,k) is the unique solution of the Lippman–Schwinger equation

fout
e ~y,k!5eiky2

i

4p
eE dz

e2 i ukuuy2zu

uy2zu
V~z!fout

e ~z,k!,

which satisfies the condition limuyu→`(fout
e (y,k)2ei (y,k))50.

Therefore, to order one ine one has
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W1,e
x f5~cout

e ~x!!~y!5f~y!2
1

4p
eE dk dz

e2 i ukuuy2zu

uy2zu
V~z1x!ei (z,k)f̂~k!1o~e!. ~15!

From this it is easy to deduce the formula forGV(x,x8).
One can write Eq.~14! in the following form:

fout
e ~y!5f~y!2

e

4p E Tx~y,y8!f~y8!1o~e!

with an explicit form of the kernelT(y,y8).
Therefore

~fout,e
x ,fout,e8x !512

e

4
@~f̂,Txf̂ !1~Tx8f,f!#1o~e!, ~16!

wheref̂ is the Fourier transform off and

Tx5E dkE dz
exp$2 i ukuuz2yu%

uz2yu
V~x1z!exp$ i ~k.z!%.

Remark 3.2:A more accurate analysis, given in Ref. 12 and in Ref. 13, shows that under
stringent hypotesis on the potential one can obtain, much in the spirit of a Born–Oppenh
~adiabatic! approximation, an asymptotic expression for the state of the full system which s
quite explicitely that if the initial state is a product state after a time of ordere it becomes
entangled, and this produces the decoherence if one traces out the degrees of freedom of
particle. j

Remark 3.3:Of course, if eitherNa or Ne ~or both! are greater than 1, one has to deal with
N-body scattering and the expression of the wave operator becomes much more complicat
consequently a condition analogous to that of belonging to the subspaceKn is much more difficult
to verify, unless the light particles inE constitute a beam of particles incident on the heavy o
with a time delay sufficiently long so that the interaction can be described in terms of a succ
of scattering events~in the approximation to ordere considered! but sufficiently small so that it is
legitimate to neglect the free motion of the particle inA and therefore to consider that th
interaction has led ‘‘instantaneously’’ to decoherence. j

Assume that all the incoming particles inE belong toKd and if one assumes that they arriv
at the location ofA at times that are separated byKe21, 1!K,e2d. One has then an overa
effect

f t
e~x,x8!5P1

Nf tk ,fk
, N5Ke21

and since each of the factors forxÞx8 differs is smaller than one and differs from one for a te
of ordere one has limK→` lime→0f t

e(x,x8)50, xÞx8 ~and the convergence to zero is expone
tially fast!.

We comment now briefly on the conditions on the potential and the statef that imply thatf
belongs toKn

V , so that

I FexpH 2 iH y
0 t

eJ expH i ~Hy
01eVx!

t

eJ 2W1
x Gf I<Cfe11d.

It is convenient to introduce the following classWa of potentials:

V~x!5~11uxu!2a@V1~x!1V2~x!#, a.2, xPR3,

V1PL`, V2PL2, x• V1PL`1L2, ~11uxu!V2PL`1L2. ~17!
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We also introduce the following setDr of elementsf (x) in L2(R3),

Dr :$ f PL2, uxur f ~x!PL2, r.2, f 5j~H ! f % ~18!

for some functionjPC0
`(0,1`) @we have assumed, without loss of generality, that the spect

of H is absolutely continuous and coincides with@0,1`)]. The setDr is dense inL2.
The last condition in the definition ofDr means thatf has energy bounded away from zer

and equivalently that its asymptotic state has momentum bounded away from zero.
Then we have the following Lemma.

Lemma 3.2: Let VPWa , a.2 and let fPDr , r.2. Then there is ad.0 such that f
PKd i.e., for somed.0,

i@exp$2 iH 0t%exp$ i ~H01V!t%2W1#fi<Cifi t2(11d). ~19!

Proof: We shall only give a sketch of the proof. One has, withUt
05eiH 0t, Ut5eiHt ,

iUtf2Ut
0W1fi

5ij~H !Utf2j~H0!Ut
0W1fiij~H !~Ut2Ut

0!W1f1~j~H !2j~H0!!Ut
0W1fi

< I E
t

`

ds Usj~H !VUs
0W1f I1i~j~H !2j~H0!!~ uQu!aii~ uQu!2aUt

0W1fi

for everya.2.
The proof is now completed using the following estimates, which follow from geome

scattering theory~for short range potentials, the propagation outside a sufficiently large ba
essentially the same as in the free case, so thatt/uxu is of order one on the support ofUtf for t
very large!.

Let V satisfy the hypotheses given above,jPC0
`((0,1`). For every real numberbP@0,a#

and eache.0 there is a constantc.0 such that, for allt, s PR the following estimates hold
true:

i~ uxu11!2bj~H !Ut~ uxu11!2bi<~ I 1utu!2b1e,

i~ uxu11!2bj~H !Ut2sUs
0j~H0!~ uxu11!2bi<~11utu!2b1e.

We will not give here the proof of these inequalities~see, e.g., Refs. 15–17! but limit ourselves to
some comments, that should illustrate the role of the assumptions made on the statef and on the
potentialV.

First of all, one should remember that integration by parts provides, ifg(y) is a function of
classC` with support in (0,̀ ),

E g~y!eity dy5
i

t E g8~y!eity dy.

If one uses the spectral decomposition of the free Hamiltonian, and some Sobolev inequaliti
sees that this leads to a fast decrease in time of the sup norm ofeiH 0tf. A convenient way to
handle in the same spirit the groupeiHt is to introduce the generatorD of the dilation group,D
5 1/2 (P•Q1Q•P) (Q andP are the vector-valued operators that represent position and mo
tum!.

Notice that

@D,j~H0!#52iH 0j8~H0!, @D,V#5
i

2
~¹V P1P¹V! ~20!
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for any potentialV, and that by Sobolev imbeddingF(H01I )21 is a bounded operator inL2(R3)
if FPL2(R3) ~this the basis of the commutator method introduced by Mourre and which pla
crucial role in geometric scattering theory!.

Therefore for elementsf in L2(R3) such thatj(H0)f5f for some smooth functionj with
support in~0,̀ ! one can ‘‘exchange’’ some decrease at infinity inuxu for a better decrease in tim
of (Ut

0f)(x).
The same strategy can be made to work also for the groupUt but the commutator estimate

bring into play the potentialV, and the conditions we have stated are required to obtain estim
~24!, ~25! and therefore~23!, upon integration by parts in the relevant variable for the spec
densities ofH0 and ofH. h

Remark 3.4:One should remark that, since the particles have masse a lower bound on the
momentum implies a lower bound of ordere21 on the velocities wich means that we can have
general 0(e21) independent scattering events in unit time. IffPKd there is still room forMe21

collisions, withM very large. j

IV. ON THE RELEVANCE OF ‘‘ALMOST DIAGONAL SUPPORT’’ OF THE
REPRESENTATIVE KERNEL

In the preceding section we have seen that scattering by a large number of light particl
lead to ‘‘almost total’’ diagonalization of the reduced density matrix in the coordinate repres
tion. We want to comment now on the relation of this property with the fact that such red
density matrix may exhibit some features which can be considered analogous to those of a
ville distribution in configuration space, and therefore may be fit to describe a classical app
for the measurement of position.

Let us start with a simple example.
Consider a system defined inCn by the vectorf5$fk% corresponding to the projectio

operator

P:Pk,h5f̄kfh .

Suppose one modifiesP in Pe defined by

Pe:Pk,h
e 5expH 2

uk2hu2

e2 J Pk,h . ~21!

It is easy to check thatPe is a density matrix for every value of the parametere. For any density
matrix r define the dispersion with respect to a self-adjoint operatorA as

DA~r!25Tr~rA2!2~Tr~rA!!2 ~22!

~in the caser is a projection operator this coincides with the usual definition of the dispersi!.
Notice thatDA(r) is not a linear funcion ofr.
It is natural to define the effective dispersion ofr with respect toA as

DA
eff~r!5 infci ,r i( ciDAr i , r5( cir i , ~23!

where 0,ci<1, r i are density matrices, and the infimum is taken over all such decomposi
There is a decomposition ofr as an orthogonal sum of projection operators which comm

with A if and only if @r,A#50.
One has then, for any diagonal matrixA for e small enough,

DA
eff~Pe!<e.
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We may regard the functionDA
eff as a measure of the possibility of ‘‘measuring’’A with as little

dispersion as possible. One has

@A,r#50⇔DA
eff~r!50.

It is easy to prove that for any diagonal matrixA one has

DA
eff~Pe!<CeiAi

for some positive constantC, which may depend onN.
DefineP05 lime→0 Pe. One has

Pk,h
0 5ufku2dk,h ,

so that the density matrixP0 represents a statistical mixture of the statesfs5$fk,h
s 5ds,hds,k%

with weight ufsu2.
Consider now a measurement made with the apparatus in the stateP0 of an observableO

which is represented in the basis chosen by a diagonal matrixAk,h5akdk,h .
According to the statistical interpretation of quantum mechanics, the apparatus is in the

fk with probability ufku2. Let us denote byc the state of the systemO and bych the eigenstate
of A to the eigenvalueak , so thatc5( icic i with ciPC.

Let us assume that during the measurement the apparatus in the stateck clicks with probabil-
ity ucku2, which is the probability thatO be in the statefk .

The joint probability will be(kucku2ucku25Tr(P0Pc) wherePc is the orthogonal projection
on the vectorc and the average result of the measurement ofA will be Tr AP0, in accordance
with the rules of quantum mechanics.

If the observableA had continuous spectrum~and therefore the corresponding Hilbert space
infinite-dimensional! one expects that a limit procedure would produce the same result.

Returning now to our toy model of decoherence, these considerations lead to the foll
possible ‘‘scenario’’~here we follow the established definition of scenario as meaning a ro
general picture in which only very few preliminary essential details have been prove
sketched!.

Consider the kernel of the reduced density matrixr red
N at timeT in the coordinate represen

tation

r red
N ~x,x8;T!5c̄~x! c~x8! f T

N~x,x8!, x,x8PR3, ~24!

where the factorf T
N(x,x8) is due to the scattering ofN light particles as discussed in Sec. II.

Assuming that theN scattering events take place in time 05t1, ¯ ,tN5T such that
tk112tk50(e) and that such scattering events may be considered as independent, the funcf T

N

has the form

f T
N~x,x8!5P1

NFi ,t i
~x,x8!, ~25!

whereFi ,t i
is a kernel by which one should multiply the reduced density matrix at timet i ; it

contains the kernel due to the decoherence effect due to the interaction with thei th particle and
also the kernel which comes from the free propagation of the heavy particle between col
~recall that in the approximation considered, the effect of each collision is instantaneous!.

The explicit form of f T
N(x,x8), even with the approximations we have made, is difficult

find. From the form of eachFi ,t i
(x,x8) one can guess that it is a kernel that has value 1 w

x5x8 and decreases fast away from the diagonal, since each of the factors is less than
from the diagonal.

One may hope therefore thatr red
N (x,x8;T) is well approximated onSc ~the support ofc! by
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G~x,x8!5C exp$2e22~x2x8!2%c̄~x!c~x8!,

whereC is an appropriate normalization constant@notice that away fromSc the ‘‘guess’’ cannot be
true, since for each value of the indexk one has liminf$uxu,ux8u%→`Fk,tk

(x,x8)51] Define ck(x)
5cckj(Bxk ,e) where $xk% is a regular lattice of points with lattice spacinge11d and j is the
characteristic function of the ball centered inxk and of radiuse. Using the explicit form ofG one
can prove that

lim
e→0

DXr red50

so thatr red is almost dispersion free with respect to the position operatorX in R3 and therefore can
be considered, for all practical purposes, as a classical~Liouville! statistical ensemble with Liou
ville density ic(x)i2.

Remark 4.1:Notice that if r red is almost dispersion-free for the variable that represe
position, it must have very large dispersion with respect to the variable that represents mom
since Heisenberg’s uncertainty principle is valid also for density matrices, being a mathem
consequence of the properties of the Fourier transform.

This is easily understood as due to the fact that, by conservation of momentum, each co
changes the momentum of the heavy particle by a finite amount of ordere. After O(Ke21)
scattering events, withK very large, each component of the momentum of the heavy particle
be changed by an amount which can be of orderK. Therefore, if one does not keep track of th
momentum of the light particles which have been scattered, the uncertainty in each compo
the momentum of the heavy particles is of orderK.

j

We should add another remark.
Remark 4.2:According to Heisenberg’s uncertainty principle, if the localization in position

r red is to orderh the localization in momentum can be at most\/h.
This suggests that one should impose the further conditione.A\ if the resultingreff should

have a dispersion of the order ofA\ as expected from momentum conservation and the fact
the directions of the incoming light particles are random and that each of them has dispersio
in momentum and in position of the orderA\.

Of course, if the dispersion in position of the incoming light particles is of the order\j with
j. 1

2 one can allow a smaller lower bound fore. j

V. LOCALIZATION IN MOMENTUM

The construction of a reduced density matrix that may be almost diagonal in the mome
representation gives rise to serious mathematical difficulties. It requires models of the inter
of a charged quantum particle with the quantized electromagnetic field, and the construc
such models, even the ones which are only moderately realistic, presents formidable mathe
problems.

In essence, they are also scattering models, in the sense that the field is radiated to infi
space, and is traced out; in this asymptotic regime the charged particle becomes ‘‘dressed
cloud of photons, and the ‘‘dress’’ depends on the particle’s momentum. This description re
an infrared cutoff, to avoid divergences. When the cutoff is removed, in the momentum rep
tation the kernel of the reduced density matrix becomes ‘‘almost’’ diagonal; this is due to th
that in the Hilbert space representation of the joint system particle1field as direct integral over the
momentum of the particle the states of the field corresponding to different momenta of the p
become ‘‘orthogonal’’ to each other for different values of the momentum.

In fact the representations of the canonical commutation relations assigned to the fie
different values of the momentum tend to become inequivalent for different values of the mo
tum of the charged particle so that in the limit the reduced density matrix that describe
charged particle becomes diagonal in the momentum representation.
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We give here only a bare outline of the general scheme; in fact the theory, in spite o
formidable progess made recently, is not yet in its definitive form and the conditions under
the general picture given above is valid would require an analysis which will not be g
here.18–22

The Nelson model is a prototype for this model of interaction of a charged particle w
quantized electromagnetic field.

This model describes the interaction of a nonrelativistic spinless charged quantum p
linearly coupled to a quantized relativistic scalar Bose field, which is massless and rea
nonrelativistic scalar particles~systemA! is described by position and momentum variablesxk ,pl

which satisfy the usual Heisenberg relations; the scalar field~systemE! is described in Fock spac
model by creation and annihilation operatorsa(k), a* (k) which satisfy the standard commuta
tion relations;a(k) is the annihilation operator for a zero mass particle of momentumk.

Spatial translations are implemented by the total momentum operator

P5p1E ka* ~k!a~k!d3k. ~26!

The dynamics of the system is generated by the Hamiltonian

H5
p2

2m
1Hph1gE

0

K

~a~k!eikx1a~k!* e2 ikx!j~k!uku21/2d3k, ~27!

where

Hph5E ukua~k!* a~k!dk3.

The functionj(k) is a cutoff function for low momenta necessary to define in a rigorous way
entire theory~an ultraviolet cutoffK is also needed, but in our context is irrelevant because
we shall be interested only in infrared photons!.

The Hamiltonian is invariant under translations in physical space, and therefore adm
decomposition over the spectrum of the total momentumP,

H5E %

H~P!dP, H5E %

HP dP.

On eachHP the Hamiltonian can be written

HP5
uPph2pu

2m
1gE

0

K

~a~k!eikx1a~k!* e2 ikx!
j~k!

Auku
d3k ~28!

and admits a ground stateVP .
The dressed one particle wave packetsc f , f PL2(R3) defined by

c f~P!5 f ~P!VP

propagate according to

c f (t)5exp$2 iHt %c f , f ~ t !~P!5 f ~P!exp$2 iE~P!t%,

whereE(P) is the energy of a dressed charged particle of momentumP.
The system admits a wave operator18,19,21and has the property that the Hilbert space of

outgoing states@which in this case isL2(R3,dx)3F, whereF is the Fock space of the field# can
be written as the integral overR3 ~momentum space of the particle! of Fock-space states of th
field, H5* %H p d3p.
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One can prove that the asymptotic creation and annihilation operatorsaas(k), aas* (k) of the
photon field exist, satisfy the usual canonical commutation relations~CCR!, and commute with the
algebra of position-momentum of the dressed particle~at least in the one-particle sector!.

If an infrared cutoff is present, theaas, aas* give a represtentation of the CCR which
equivalent to the representation given by thea, a* . DefineWas to be the unitary operator tha
implements this unitary equivalence,

aas5WasaWas* , aas* 5Wasa* Was* .

For the sake of simplicity, we assume that the infrared cutoff functionj(k) is chosen such tha
12j(k) is the characteristic function of the intervaluku<e, so that the unitary operatorW de-
pends one.

Of course, the construction of the dressed states depends on the cutoff, so that fo
function f we have a family of dressed statesc f

e , and a family of unitary operatorsWas
e . When the

infrared cutoff is removed, i.e., in the limite→0, the two representations become inequivalent
one has21

lim
e→0

~c f
e ,cg

e !50,

whenever the support off in momentum space is disjoint from the support ofg.
In this sense, by tracing out the degrees of freedom of the outgoing radiation field

removing the infrared cutoff one has a reduced density matrix of the charged particles in dia
form in the momentum representation.

This effect can be understood in a qualitative form by remarking that the Hamiltonian o
system is at most quadratic in the creation and annihilation operators of the scalar fiel
therefore by a suitable Bogolijubov trasformation it can be written as the sum of a quadrati
in a new set of creation and annihilation operatorsb(k),b* (k) and a term which acts as th
identity in the Fock space of theb(k),b* (k).

We denote byWe the unitary transformation that implements this map in Fock space~due to
the presence of the infrared cutoff this unitary operator exists, but of course it depends
cutoff chosen!.

The unitary operatorWe depends on the momentum of charged particle, and can be see
dressing trasformation, and is in general different fromWas

e obtained considering the decouplin
due to the asymptotic behavior in time.

In order thatWe exists for all values ofp it is necessary that the following integral be finit

J5E
0

`

uj~k!u2uku23 d3k

~indeed it can be seen that if it exists for a value of the momentump then the same is true for a
the other values!.

Altough the operatorsWas
e andWe are not the same, it is expected that

~c f
e ,cg

e !50~CJ21!

when the supports off andg are disjoint.
Therefore the situation is indeed similar to the case of localization inx-space discussed earlie

with J21 playing the role ofe.

VI. DECOHERENCE IN QUANTUM OPTICS

We review briefly here the analysis that has been done in quantum optics, in particu
‘‘cavity quantum electrodynamics’’3,4 about decoherence and the appearence of classical pr
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ties. The contributions of quantum optics to a better understanding of the problem are spec
mostly due to the fact that its predictions have been tested experimentally.

In quantum optics one defines as ‘‘classical’’~or ‘‘quasiclassical’’! the coherent states of th
quantized electromagnetic field in a cavity.23 Since in a cavity the normal modes of the fre
electromagnetic field are numerable, quantization is done by associating creation and anni
operators to each degree of freedom in the normal form of the free Hamiltonian~i.e., in the
coordinates in which the free Hamiltonian is written as a sum of independent harmonic o
tors!, according to the Weyl rules~since the cavity is compact, these rules should be handled
care!.

For each degree of freedom, the coherent states are parametrized by a complex numbea and
are written explicitly as

ua&5C exp$~aa†2a* a!%,

where a†, a are the creation and annihilation operator associated to the degree of fre
considered andC is a normalization constant.

One can verify that the average number of ‘‘photons’’ in the statea is uau2 and under free
evolution the coherent stateua& evolves according to the ruleua&(t)5ua(t)& where a(t)
5eivta(0) with v the frequency of the mode.

In this sense the evolution is ‘‘classical;’’ moreover one sees that the dispersion~with respect
to the canonical variables! is independent ofa and is identical to that of the ‘‘vacuum’’ state
defined bya50.

The ‘‘almost classical’’ behavior of the field in a cavity with small value ofQ (Q5vt where
t is the lifetime of the mode andv its frequency! was demonstrated in Ref. 24.

Cavites with high value ofQ keep the coherent state of the electromagnetic field for a tim
the order of magnitude of one second~an extremely long time by the standards of mode
technology!. Coherent states have the further advantage that they can be physically realiz
turning on a microwave generator when the field is in the vacuum state.

The atoms are prepared in suitable states and detected after they have interacted with t
They serve two purposes: to manipulate the field in the cavity and also to measure its sta

The method for generating a quantum superposition of the coherent states, proposed in
and realized in Ref. 4, involves a beam of circular polarized atoms crossing a high-Q cavity C in
which a coherent state~a cat! has been previously injected~the use of circular polarized state wit
high angular momentum is due to their very strong coupling to microwaves and to their very
radiative decay times, due to the fact that their density has main support outside the nucle!.

On either side of the high-Q cavity C there are two cavitiesR1 and R2 ; these are low-Q
cavities~and therefore quasiclassical, see Ref. 24!. After having prepared a coherent state ins
the cavity by applying a suitable microwave field to the vacuum state~recall that the vacuum stat
of the quantized electromagnetic field inside the cavity is the lowest energy state, but conta
vacuum fluctuations! one introduces in the systemR1 ,C,R2 ~in this order! a beam of circular
polarized Rydberg atoms~rubidium or cesium!. Their velocities are controlled precisely~so that
their exit time from the cavity is known with great precision! and they are in very highly excited
levels ~so that they interact strongly by dipole interaction even with a very weak field!.

We shall calle the level of the atoms which are injected, and we assume that there is a sl
lower level, which we shall callg, and that the two level systeme, g (e for excited,g for
ground! is resonating with the microwave field inR1 and inR2 . The interaction with a resonan
electromagnetic field is analogous to the interaction of a spin with a magnetic field. Denoti
ue& andug& two representative vectors of the statese, g one can choose the intensity of the fie
in the cavitiesR1 and in R2 in such a way that one induces a rotation ofp/2 in the ‘‘plane’’
ue&, ug&.

Therefore the first cavity performs the following transformation:
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ue&→
1

&
~ ue&1ug&)

~the choice of the initial phases is irrelevant, since only relative phases count!.
The cavityC is tuned so that if the atom crosses the cavity in the statee there is an appre-

ciable phase shift of the field, due to a resonance betweene and an ‘‘ancilla’’ statea of the atom,
which resonates withe but not withg.

No appreciable phase shift is induced if the atom is in the stateg.
The velocity of the atom can be selected in such a way that this phase shift is~roughly! p.

After the beam has crossed the cavitiesR1 and C, the entangled state of the combined syst
atom plus coherent state of the field is therefore

1

&
~ ue& ^ u2a&1ug& ^ ua&).

Notice that one can choose for each atom the same representative~i.e., ue& rather theneifue& for
somef that may depend on the atom in the beam! in the Hilbert space description of the state
the atoms and of the coherent state of the field, since only a change in the relative ph
significant.

After having crossed the cavityC, the beam of atoms crosses the low-Q cavity R2 where, as
explained above, there is a further action on the states of the atoms

ue&→
1

&
~ ue&1ug&), ug&→

1

&
~ ug&2ue&).

Therefore, after exiting the sequence of cavitiesR1 , C, R2 the combined atom-coherent state
the field is as follows:

1
2 @ ue& ^ ~ u2a&2ua&)1ug& ^ ~ u2a&1ua&). ~29!

If one now makes a measurement of the state of the atom, to find out whether it is in the se
or in the stateg, one gets by reduction a quantum superposition of the two coherent statesua& and
u2a&, and therefore a quantum superposition of two ‘‘classical’’ states.

From the point of view of quantum mechanics, this is an obvious statement. The point
experiment is that now one can determine the time it takes for the quantum superposit
‘‘become’’ ~i.e., to behave in successive measurements as! a statistical mixture, namely, a sta
represented by a density matrix which is not a projector.

This can be done by injecting after a timeT in the same sequence of cavities an identical be
of particles.

If the state remains pure~i.e., if there has not been decoherence! one should record a perfec
correlation between the measurements on the first and the second atom; if, on the other e
decoherence is maximal~the density matrix has eigenvalues1

2!, the probability of detecting the
second atom in the statee is one-half independent of the state that was detected for the first a

The experiment was done in 1996 by the group of Haroche in Paris4 and the result was~in
accordance with the theoretical predictions in Ref. 3! that, at least for initial states withuau@1
~very classical from the point of view of coherent states! a sharp decay as a function ofT, within
an interval of time of the order of 1 millisecond, from the perfectly coherent superposition
maximal statistical mixture.

The passage from a pure quantum mechanical state to a statistical mixture is, in the p
context, attibuted to the interaction with the walls of the cavities. In fact, it is easy to see th
loss of one photon by the coherent stateua& transforms it in the stateau2a& ~since the coheren
stateua& is an eigenstate of the annihilation operator to the eigenvaluea!.
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In particular the coherent superpositionua&1u2a& is changed inua&2u2a& andvice versa
and therefore detecting an atom in the statee after an interaction with the wall projects the sta
of the electromagnetic field in a stateua&1u2a& whereas if the interaction had not taken place
projected state would beua&2u2a&.

Since one has no control of the interaction with the boundary, in the analysis of the ou
of the experiment with a beam of particles one ‘‘averages’’ over all possible interactions, and
a short time the outcome points to a statistical mixture.

The experiment by the Haroche group is really an impressive ‘‘demonstration’’ of the
decoherence sets in for ‘‘macroscopic’’ bodies, and points to decoherence times which a
small to be measured for a realistic ‘‘classical’’ body.

Still, the theoretical analysis carried out so far is too crude from the point of view of m
ematical physics~and in general from the point of view of a clear explanation of the way in wh
quantum mechanical objects can be regarded as classical! and a more detailed explanation remai
a challenge for the future.

VII. CONCLUSIONS

We have described three instances in which the quantum superposition of two~or more! states
of a quantum ‘‘macroscopic object’’ may be destroyed by the interaction with the environ
~decoherence!, and thereby may lead, as far as later measurements are performed, to the fa
the state is perceived as a statistical ensemble.

The first instance was the effect of the scattering of a large number of light particles
heavy quantum particle.

The analysis followed rigorously the lines of traditional Schro¨dinger’s quantum mechanics
with no extra assumptions or shortcuts. The weak point of the analysis is the difficulty of han
properly the scattering by a beam of particles~as compared to the scattering by one particle!; a
further disturbing point is to consider as ‘‘macroscopic object’’ a single heavy quantum par
This could be remedied by considering a bound state of very many quantum particles, b
mathematical difficulties become prohibitive.

The second instance was the interaction of a charged quantum particle with the qua
electromagnetic field. Here the observable to be measured is momentum. Only a simple mo
considered, and the phenomenon of decoherence was due to the presence after the interac
cloud of infrared photons accompanying the particle, the cloud being different for different
mentum of the asymptotic particle. Admittedly this is the weakest of the examples given, a
comment can be made on the time it takes for the decoherence to be measurable.

The third instance is the only one for which experimental results are available, and the
to some extent the most convincing one. The ‘‘macroscopic’’ systems are the coherent state
electromagnetic field in a cavity with perfectly conducting walls, the superposition of two coh
states is produced through a beam of atoms and the decoherence is probably due to the int
of the electromagnetic field with the wall of the cavities. A weak point of this example coul
the use of coherent states as an example of macroscopic body, and, from the formal point o
the unsatisfactory mathematical analysis of the interaction. In view of the major interest of
experiments, a more refined description of the interaction would be welcome.
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Some results on the eigenfunctions of the quantum
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We express the Hamiltonian of the quantum trigonometric Calogero–Sutherland
model related to the Lie algebraD4 in terms of a set of Weyl-invariant variables,
namely, the characters of the fundamental representations of the Lie algebra. This
parametrization allows us to solve for the energy eigenfunctions of the theory and
to study properties of the system of orthogonal polynomials associated with them
such as recurrence relations and generating functions. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1618362#

I. INTRODUCTION

Integrable models play a prominent role in theoretical physics. The reason is not on
direct phenomenological interest of some of them, but also the fact that they often provide
deep insights into the mathematical structure of the theories in which they arise and, some
they even reveal unexpected relations among different physical or mathematical theories. I
sical mechanics, integrability not only shows up itself in some of the most important and
honored problems, such as the Keplerian motion or the Lagrange or Kovalevskaya top; it a
also in a plethora of new hypothetical, highly nontrivial sytems discovered mainly during the
last decades of the past century~see Refs. 1 and 2 for comprehensive reviews!. Among these, the
so-called Calogero–Sutherland models form a distinguished class. The first analysis of a sy
this kind was performed by Calogero,3 who studied, from the quantum standpoint, the dynam
on the infinite line of a set of particles interacting pairwise by rational plus quadratic poten
and found that the problem was exactly solvable. Soon afterwards, Sutherland4 arrived at similar
results for the quantum problem on the circle, this time with trigonometric interaction, and M5

showed that the classical version of both models enjoyed integrability in the Liouville sense
identification of the general scope of these discoveries came with the work of Olshanetsk
Perelomov,6,7 who realized that it was possible to associate models of this kind to all the
sytems of the simple Lie algebras, and that all these models were integrable, both in the cl
and in the quantum framework.8,9 Nowadays, there is a widespread interest in this type of in
grable system, and many mathematical and physical applications for them have been foun
for instance, Ref. 10.

The eigenfunctions of the Calogero–Sutherland Hamiltonian associated with the root s
of a simple Lie algebraL are proportional to some polynomials which form a complete orthogo
system in the quantum Hilbert space. For the special valueska51, wherega5ka(ka21) are the
coupling constants, they coincide with the irreducible characters ofL. For L5An , these polyno-
mials provide natural generalizations ton variables of the classical orthogonal polynomials in o
indeterminate. In particular, for the case with a trigonometric potential, one obtains a gener

a!On leave of absence from the Institute for Theoretical and Experimental Physics, 117259, Moscow, Russia; el
mail: perelomo@mpim-bonn.mpg.de
49570022-2488/2003/44(11)/4957/18/$20.00 © 2003 American Institute of Physics
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system of Gegenbauer polynomials which can be identified with the Jack polynomials.11 As was
shown in Ref. 12 and, following a different approach, in Refs. 13–15, these generalized G
bauer polynomials obey a set of recurrence relations which constitute ak-deformation of the
Clebsch–Gordan series of the algebra. The finding of these recurrence relations opened the
obtain many concrete results on the system of polynomials, such as for example explicit e
sions, ladder operators, or generating functions.16,17 The recurrence relations are also the k
ingredient to formulate a perturbative approach to the most general among the Calo
Sutherland models, that involving the Weierstrass`-function as potential.18

We aim to extend some of the results which have been obtained forAn to the polynomials
related to other simple algebras. For that, we will follow a constructive approach: starting wi
Calogero–Sutherland HamiltonianH, once expressed in a suitable set of independent varia
~indeed, the fundamental characters of the underlying algebra!, we find that the polynomial part o
the solutions of the Schro¨dinger equation forms an orthogonal family of polynomials diagona
ing a second-order differential operator related toH; these polynomials, indexed by the highe
weights of the irreducible representations of the algebra, are defined by means of a re
formula, and some useful recurrence relations of the type character3polynomial are shown. We
think that it is a good idea to begin this program with a concrete case, and we choose to w
this article the problem associated withD4 because of the triality symmetry exhibited by th
algebra, which will helps us in simplifying the treatment.

The organization of the paper is as follows. In Sec. II, we explain how to express
Calogero–Sutherland Hamiltonian in terms of the fundamental characters of the algebra an
to solve the Schro¨dinger equation. Then, in Sec. III, we obtain the main recurrence relat
among the polynomials and use them to give algorithms to calculate some subsets of them.
IV is devoted to finding the generating functions for some classes of characters and mon
functions ofD4 . More recurrence relations and some other relevant results are included in S
and finally, in Sec. VI, we give some brief conclusions. Also, we offer two appendixes. In
pendix A, for the convenience of the reader, we collect some of the basic facts aboutD4 which we
use in the main text. In Appendix B we list some polynomials, characters, and monomial
tions.

II. THE EIGENVALUE PROBLEM

The Hamiltonian operator for the trigonometric Calogero–Sutherland model related t
root system of a simple Lie algebra of rankr has the form

H5
1

2
~p,p!1 (

aPR1
ka~ka21!sin22~a,q!, ~1!

whereq5(q1 ,...,qr), p5(p1 ,...,pr), ~ , ! is the usual Euclidean inner product inRr , R1 is the
set of positive roots of the algebra, andka are constants such thatka5kb if iai5ibi . In
particular, for the case of the algebraD4 ~see Appendix A!, this leads to the following Schro¨dinger
equation:

HCk5E~k! Ck,
~2!

H52
1

2
D1k~k21!S (

j ,k

4

sin22~qj2qk!1(
j ,k

4

sin22~qj1qk!D , D5(
j 51

4
]2

]qj
2 .

Theq coordinates are assumed to take values in the@0, p# interval, and therefore the equation ca
be interpreted as describing the dynamics of a system of four particles moving on the circ
us notice, however, that there is not translational invariance. We recapitulate some importan
about this model which follow from the general structure of the quantum Calogero–Suthe
models related to Lie algebras.9 The ground state energy and~non-normalized! wave function are

E0~k!52~r,r! k2528k2,

~3!
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C0
k~q!5H )

j ,k

4

sin~qj2qk!sin~qj1qk!J k

,

wherer is the standard Weyl vector,r5 1
2(aPR1a, with the sum extended over all the positiv

roots of D4 . The excited states depend on a four-tuple of quantum numbersm
5(m1 ,m2 ,m3 ,m4),

H Cm
k 5Em~k! Cm

k ,
~4!

Em~k!52~l1kr,l1kr!,

where l is the highest weight of the irreducible representation ofD4 labeled bym, i.e., l
5( i 51

4 mil i , andl i are the fundamental weights ofD4 . By substitution in~4! of

Cm
k ~q!5C0

k~q! Fm
k ~q!, ~5!

we are led to the eigenvalue problem

2DkFm
k 5«m~k! Fm

k ~6!

with

Dk5
1

2
D1k(

j ,k

4 S ctg~qj2qk!S ]

]qj
2

]

]qk
D1ctg~qj1qk!S ]

]qj
1

]

]qk
D D ~7!

and

«m~k!5Em~k!2E0~k!52~l,l12kr!. ~8!

Introducing the inverse Cartan matrixAjk
215(l j ,lk), we can give a more explicit expression fo

«m(k):

«m~k!52 (
j ,k51

4

Ajk
21 mjmk14k (

j ,k51

4

Ajk
21 mj52~m1

21m3
21m4

2!14m2
212~m1m31m1m4

1m3m4!14m2~m11m31m4!112k~m11m31m4!120km2 . ~9!

The main problem is to solve Eq.~6!. As has been shown for the case of the algebraAn ,13–15

the best way to do that is to use a set of independent variables which are invariant under th
symmetry of the Hamiltonian, namely, the characters of the four fundamental representati
the algebraD4 . Unfortunately, the expression of these characters in terms of theq-variables
~which play the role of coordinates on the maximal torus ofD4) is not very simple. Denoting the
character of the irreducible representation of maximal weightl j aszj , we find
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z15(
j 51

4

xj1(
j 51

4

xj
21,

z25(
i , j

4

xixj1(
i , j

4

~xixj !
211(

i , j

4

xi
21xj ,

z35 x̄(
i 51

4
1

xi
1

1

x̄ (
i 51

4

xi ,

z45 x̄1
1

x̄
1

1

x̄ (
i , j

4

xixj ,

wherexj5e2iq j , andx̄5Ax1x2x3x4. These expressions make the direct change of variables
qi to zk quite cumbersome. We refrain from trying that approach, and choose instead an in
route which has the further advantage of also being applicable to other algebras in whi
expressions for the characters are even more involved. We can infer from~7! the structure ofDk

when written in thez-variables:

Dk5 (
j ,k51

4

ajk~zi ! ]zj
]zk

1(
j 51

4

@bj
(0)~zi !1kbj

(1)~zi !#]zj
. ~10!

On the other hand, as is well known,12 the Fm
k are polynomials which, with some precise part

ordering for the monomials to be described later, start as follows:

Fm
k ~zi !5Pm

k ~zi !5z1
m1z2

m2z3
m3z4

m41¯ . ~11!

Therefore, making use of~9!, we conclude that

ajk~zi !52 Ajk
21 zjzk1 lower order terms,

~12!

bj
(r )~zi !5cj

(r )zj1dj
(r ) , r 50,1.

Now, to obtain the full expressions for these coefficients, we rely on the fact that, fork51, the
Pm

k polynomial gives the character of the irreducible representation ofD4 with maximal weight
( i 51

4 mil i , while for k50 the same polynomial is the corresponding symmetric monom
function.9 Both, characters and monomial functions, can be computed by using the inform
available in the literature~see, for instance, the ‘‘Reference Chapter’’ of Ref. 19!. In fact, the
following short list of polynomials

P2,0,0,0
(1) ~z!5z1

22z221,

P1,1,0,0
(1) ~z!5z1z22z3z4 ,

P1,0,1,0
(1) ~z!5z1z32z4 ,

P0,2,0,0
(1) ~z!5z2

22z1z3z41z2 ,

P2,0,0,0
(0) ~z!5z1

222z2
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is all we need to obtainDk. By substituting these polynomials in~6! and using~9!, ~10!, ~12! and
the triality symmetry~which here implies that the final expression forDk should be invariant
under permutations of the indices 1,3,4!, we get enough simple linear algebraic equations to fix
the coefficients. We give here only the final result:

1

2
Dk5~z1

222z228!]z1

2 1@2 z2
224~z1

21z3
21z4

2!22 z1 z3 z418 z2#]z2

2 1~z3
222z228!]z3

2 1~z4
2

22z228!]z4

2 1~2z1z226z3z428z1! ]z1
]z2

1~z1 z328 z4! ]z1
]z3

1~z1z428z3! ]z1
]z4

1~2z2z326z1z428z3! ]z2
]z3

1~2z2z426z1z328z4! ]z2
]z4

1~z3z428z1! ]z3
]z4

1~6k

11! z1 ]z1
1@2~5k11! z218~k21!# ]z2

1~6k11! z3 ]z3
1~6k11! z4 ]z4

. ~13!

Once the explicit expression for the operatorDk in the z variables is given, the Schro¨dinger
equation can be solved iteratively. By direct application ofDk to zm[z1

m1 z2
m2 z2

m3 z4
m4, we find

Dkzm5«m~k! zm2(
i 51

4

am
i zm2a i2(

j PI
bm

j zm2(a21a j )2 (
i j PT

cm
i j zm2(a21a i1a j )

22 am
2 (

i j PT
zm2(2a21a i1a j )2dm zm2(a112a21a31a4)24(

j PI
am

j zm2(a112a21a31a41a j ),

~14!

where the sets of indices areI 5$1,3,4% andT5$13,14,34%, and

am
i 54 mi~mi21!, bm

j 512m2mj ,

cm
i j 516mi mj , dm~k!516m2S 22m22k1(

j PI
mj D .

All monomials inDkzm take the formzm2m with m as a positive root. Thus, the polynomialPm
k

has the form

Pm
k ~z!5 (

mPQ1(m)

cmzm2m, ~15!

where we choose the normalizationc051 and, ifQ1 is the cone of positive roots,

Q1~m!5$mPQ1uzm2m is well defined if z1 z2 z3 z450%. ~16!

The above-mentioned partial ordering of monomials is given simply by the height ofm, i.e.,
zm2m1.zm2m2 if ht(m1),ht(m2). From ~14!, the coefficientscm obey the iterative formula

cm5
Nm

«m2m~k!2«m~k!
~17!

with
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Nm5(
i 51

4

am2(m2a i )
i cm2a i

1(
j PI

bm2(m2a22a j )
j cm2(a21a j )

1 (
i j PT

cm2(m2a22a i2a j )
i j cm2(a21a i1a j )

12 (
i j PT

am2(m22a22a i2a j )
2 cm2(2a21a i1a j )

1dm2(m2a122a22a32a4) cm2(a112a21a31a4)

14(
j PI

am2(m2a122a22a32a42a j )
j cm2(a112a21a31a41a j )

.

Used along with the explicit expressions for the roots given in Appendix A, this formula is sui
for the implementation on a symbolic computer program. A list of polynomials obtained thr
the use of the formula is offered in Appendix B.

III. THE STRUCTURE OF THE RECURRENCE RELATIONS

As is well known, all the systems of orthogonal polynomials in one indeterminatez, such that
Pm(z)5zm1¯ , satisfy a recursive formulaz Pm(z)5am Pm11(z)1bm Pm(z)1cm Pm21(z). In
particular, the orthogonal polynomials associated with the trigonometric Calogero–Suth
model for the case of two particles and Lie algebraA1 are the classical Gegenbauer polynomia
whose recursive formula is known to be

z Pm
k ~z!5Pm11

k ~z!1
m~m2112k!

~m211k!~m1k!
Pm21

k ~z!.

This formula is reminiscent of the Clebsch–Gordan series forA1 . In fact, for k51 it reduces
exactly to this Clebsch–Gordan series: the polynomials are the characters ofA1 and the coefficents
are equal to one. Immediately the question arises about the existence of analogous rec
relations, i.e., with the structure ofk-deformations of the corresponding Clebsch–Gordan se
for the polynomials related to Calogero–Sutherland models associated with other simp
algebras. As was shown in Ref. 13, the answer turns out to be in the affirmative for al
systems, but to obtain the expressions for the deformed coefficients it is necessary to p
through a case-by-case analysis. Once the coefficients are known, many applications are p
The aim of this section is to fix the structure of the basic recurrence relations for the caseD4

and to give a simple illustration of their use.
We will study the formulas forzi Pm

k (z), i 51,2,3,4, in full detail. Note, however, that ther
are different recurrence relations, obtained in a more general context, and sometimes kn
~generalized! Pieri formulas.20 Therefore, asPm

(1)(z)5zi for mj5(d j i ), and the recursive formula
are deformations of the Clebsch–Gordan series, we need to know the weights of the irred
representations whose integral dominant weights arel1 , l2 , l3 , andl4 . For the case ofl1 , l3 ,
andl4 , these representations have dimension eight. On the other hand, if we act on the h
weight with the Weyl group in the way explained in Appendix A, we obtain eight differ
weights. Thus, these representations include only one orbit of the Weyl group and we are
For the case ofl2 , the representation has dimension 28 and the orbit of the Weyl group conta
l2 has only 24 elements. Butl25a12

1 , the highest root, and thus this representation is the adj
one and includes a second orbit: the Cartan subalgebra, with four elements of weight zero
we can summarize.

• Weights inz1 : 6l1 , 6(l12l2), 6(l22l32l4), 6(l32l4).
• Weights in z2 : 6l2 , 6(l222l j ), 6(2l22l12l32l4), 6(l21l i2l j2lk), 6(l i

1l j2lk), 6(l22l12l32l4), 0, with i , j ,kPI .
• Weights inz3 : 6l3 , 6(l32l2), 6(l22l12l4), 6(l12l4).
• Weights inz4 : 6l4 , 6(l42l2), 6(l22l12l3), 6(l12l3).

With these weights, the structure of the recurrence relations results to be as follows:
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z1 Pm1 ,m2 ,m3 ,m4

k ~z!5Pm111,m2 ,m3 ,m4

k ~z!1am
1 ~k! Pm121,m2 ,m3 ,m4

k ~z!1bm
1 ~k! Pm111,m221,m3 ,m4

k ~z!

1cm
1 ~k! Pm121,m211,m3 ,m4

k ~z!1dm
1 ~k! Pm1 ,m211,m321,m421

k ~z!

1em
1 ~k! Pm1 ,m221,m311,m411

k ~z!1 f m
1 ~k! Pm1 ,m2 ,m311,m421

k ~z!

1gm
1 ~k! Pm1 ,m2 ,m321,m411

k ~z!,

z2 Pm1 ,m2 ,m3 ,m4

k ~z!5Pm1 ,m211,m3 ,m4

k ~z!1Am~k! Pm1 ,m221,m3 ,m4

k ~z!

1Bm~k!16 Pm162,m271,m3 ,m4

k ~z!1Bm~k!36 Pm1 ,m271,m362,m4

k ~z!

1Bm~k!46 Pm1 ,m271,m3 ,m462
k ~z!1Cm~k!6 Pm171,m262,m371,m471

k ~z!

1Dm~k!16 Pm161,m261,m371,m471
k ~z!1Dm~k!36 Pm171,m261,m361,m471

k ~z!

1Dm~k!46 Pm171,m261,m371,m461
k ~z!1Em~k!16 Pm171,m2 ,m361,m461

k ~z!

1Em~k!36 Pm161,m2 ,m371,m461
k ~z!1Em~k!46 Pm161,m2 ,m361,m471

k ~z!

1Fm~k!6 Pm161,m271,m361,m461
k ~z!1Gm~k! Pm1 ,m2 ,m3 ,m4

k ~z!,

z3 Pm1 ,m2 ,m3 ,m4

k ~z!5Pm1 ,m2 ,m311,m4

k ~z!1am
3 ~k! Pm1 ,m2 ,m321,m4

k ~z!1bm
3 ~k! Pm1 ,m221,m311,m4

k ~z!

1cm
3 ~k! Pm1 ,m211,m321,m4

k ~z!1dm
3 ~k! Pm121,m211,m3 ,m421

k ~z!

1em
3 ~k! Pm111,m221,m3 ,m411

k ~z!1 f m
3 ~k! Pm111,m2 ,m3 ,m421

k ~z!

1gm
3 ~k! Pm121,m2 ,m3 ,m411

k ~z!,

z4 Pm1 ,m2 ,m3 ,m4

k ~z!5Pm1 ,m2 ,m3 ,m411
k ~z!1am

4 ~k! Pm1 ,m2 ,m3 ,m421
k ~z!

1bm
4 ~k! Pm1 ,m221,m3 ,m411

k ~z!1cm
4 ~k! Pm1 ,m211,m3 ,m421

k ~z!

1dm
4 ~k! Pm121,m211,m321,m4

k ~z!1em
4 ~k! Pm111,m221,m311,m4

k ~z!

1 f m
4 ~k! Pm121,m2 ,m311,m4

k ~z!1gm
4 ~k! Pm111,m2 ,m321,m4

k ~z!,

where Bm(k)16 Pm162,m271,m3 ,m4

k (z) means Bm(k)11 Pm112,m221,m3 ,m4

k (z)

1Bm(k)12 Pm122,m211,m3 ,m4

k (z), etc., and it is understood that all polynomials involving negat

quantum numbers are zero. The recurrence relations reflect triality in the fact that not a
coefficients appearing in these formulas are independent. There are coincidences upon p
tions of the quantum numbers, for instance

am1 ,m2 ,m3 ,m4

1 5am3 ,m2 ,m1 ,m4

3 5am4 ,m2 ,m3 ,m1

4 , ~18!

and similarly forbm
j ,cm

j ,dm
j ,em

j , f m
j ,gm

j . In the same fashion, we have also

Bm1 ,m2 ,m3 ,m4

16 5Bm3 ,m2 ,m1 ,m4

36 5Bm4 ,m2 ,m3 ,m1

46 ~19!

and similarly forDm
j 6 ,Em

j 6 .
As an example, let us consider a simple case in which only one of the quantum numb

nonvanishing, namely,
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z1 Pm,0,0,0
k ~z!5Pm11,0,0,0

k ~z!1am~k! Pm21,0,0,0
k ~z!1cm~k! Pm21,1,0,0

k ~z!, ~20!

where we writeam(k)5am,0,0,0
1 (k) andcm(k)5cm,0,0,0

1 (k). Using formulas

Pm,0,0,0
k ~z!5z1

m2
m~m21!@4k214~m22!k1~m21!~m22!#

~m211k!~m2113k!~m221k!
z1

m222
m~m21!

m211k
z1

m22 z21¯ ,

Pm,1,0,0
k ~z!5z1

m z21
4 k~k21!~m2212k!

~m1115k!~m12k!~m211k!
z1

m1¯ ,

coming from~17!, we obtain the coefficients in~20!:

am~k!5
m~m12k!~m2114k!~m2116k!

~m211k!~m2113k!~m13k!~m15k!
,

cm~k!5
m~m2112k!

~m1k!~m211k!
.

As a by-product of triality, we can also write two other recurrence relations with the s
coefficients:

z3P0,0,m,0
k ~z!5P0,0,m11,0

k ~z!1am~k! P0,0,m21,0
k ~z!1cm~k! P0,1,m21,0

k ~z!,
~21!

z4 P0,0,0,m
k ~z!5P0,0,0,m11

k ~z!1am~k! P0,0,0,m21
k ~z!1cm~k! P0,1,0,m21

k ~z!.

The first of these recurrence relations can be used to devise an algorithm for the calcula
the polynomials of the formPm,0,0,0

k (z) and Pm,1,0,0
k (z). By multiplying ~20! by the differential

operatorDk2«m21,1,0,0(k), the term involvingPm21,1,0,0
k cancels. Using the explicit expression

~9! and ~13!, we find

Pm11,0,0,0
k 5

1

4~m1k!
@Dk,z1# Pm,0,0,0

k ~z!2
114k

2~m1k!
z1Pm,0,0,0

k ~z!

1
m~m12k!~m2114k!~m2116k!

~m211k!~m2113k!~m1k!~m13k!
Pm21,0,0,0

k ~z!,

where, from~13!,

@Dk,z1#54~z1
222z228!]z1

12 ~z1z328z4! ]z3
12 ~z1z428z3! ]z4

14 ~z1z223z3z424z1! ]z2
12~6k11! z1 .

Once the polynomialsPm,0,0,0
k (z) are known, the recurrence relation~20! provides a formula for

eachPm,1,0,0
k (z):

cm11~k! Pm,1,0,0
k ~z!5z1 Pm11,0,0,0

k ~z!2Pm12,0,0,0
k ~z!2am11~k! Pm,0,0,0

k ~z!. ~22!

IV. SOME GENERATING FUNCTIONS

We present in this section the generating functions for some characters and symmetric
mial functions. Let us consider first the case of the monomial functions with only one nonva
ing quantum number in the formPm,0,0,0

(0) (z). The generating function for this subset is
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F0~ t,z!5 (
m50

`

tm Pm,0,0,0
(0) ~z!. ~23!

In terms of thex variables, the general expression for these monomial functions is

Pm,0,0,0
(0) ~x!5(

j 51

4

~xj
m1xj

2m!, ~24!

and, in particular, we defineP0,0,0,0
(0) (z)58. In these variables, the computation ofF0(t,x) only

requires to sum the geometric series:

F0~ t,x!5(
j 51

4 S 1

12txj
1

1

12
t

xj

D . ~25!

The change to the originalz variables can be done by the inspection of the coefficients of
powers oft in both the numerator and denominator of this rational expression, with the res

F0~ t,z!5
N0~ t,z!

D~ t,z!
, ~26!

where

N0~ t,z!5827z1 t16z2 t225~z3z42z1! t314~z3
21z4

222z222! t4

23~z3z42z1! t512z2 t62z1 t7,
~27!

D~ t,z!512z1 t1z2 t22~z3z42z1! t31~z3
21z4

222z222! t42~z3z42z1! t51z2 t62z1 t71t8.

There is an alternative approach. As the monomial functions are eigenfunctions ofD (0) with
eigenvalues«m,0,0,0(0)52m2, we have

1

2
D (0) F0~ t,z!5 (

m50

`

m2tm Pm,0,0,0
(0) ~z!,

and, therefore, we can write a differential equation forF0(t,z):

@ 1
2 D (0)2~ t ] t!

2#F0~ t,z!50, F0~0,z!58. ~28!

One can verify by substitution that~26! satisfies this equation. WhenF0(t,z) is known, we can
easily obtain the generating function

G0~ t,z!5 (
m50

`

tm Pm,1,0,0
(0) ~z! ~29!

by only recalling~20!, which for k50 is simply

z1Pm,0,0,0
(0) ~z!5Pm11,0,0,0

(0) ~z!1Pm21,0,0,0
(0) ~z!1Pm21,1,0,0

(0) ~z!. ~30!

This gives

G0~ t,z!5
M0~ t,z!

D~ t,z!
~31!
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with

M0~ t,z!5z2241~6 z123 z3z4! t1~2822 z1
2210z22z2

214 z3
212 z1z3z414 z4

2! t2

1~10z115 z1z223 z1z3
224 z3z41z2z3z423 z1z4

2! t3

1~8 z224 z1
212 z2

22z2z3
214 z1z3z42z2z4

2! t41~26 z126 z1z22z3z41z2z3z4! t5

1~816z1
212 z22z2

2! t61~210z11z1z2! t71~42z2! t8.

The computation of the generating functions for the charactersPm,0,0,0
(1) and Pm,1,0,0

(1) goes through
similar arguments. In this case, the eigenvalues are«m,0,0,0(1)52m2112m. Hence,

F1~ t,z!5 (
m50

`

tmPm,0,0,0
(1) ~z! , P0,0,0,0

(1) ~z![1 ~32!

is the solution of

@ 1
2 D (1)2~ t ] t!

226t ] t#F1~ t,z!50, F1~0,z!51. ~33!

The Weyl character formula implies that the denominator ofF1(t,z) should be the sameD(t,z)
found before. Thus, we try an ansatz

F1~ t,z!5
N1~ t,z!

D~ t,z!
~34!

and obtain the simple answer

N1~ t,z!512t2. ~35!

Applying the recurrence relation~20! we obtain the generating functionG1(t,z) for the characters
Pm,1,0,0

(1) :

G1~ t,z!5
1

D~ t,z!
$z22z3z4t1~z3

21z4
222z221! t22~z3z42z1! t31z2 t42z1 t51t6%. ~36!

V. MORE RECURRENCE RELATIONS AND OTHER RESULTS

In this section, we give the remaining recurrence relations involving the product of a fu
mental character times a polynomial with only one nonvanishing quantum number. We also
ment on the existence of some peculiar values fork for which the polynomials associated wit
some special excited states are proportional to integer powers of the fundamental state
function.

To obtain the mentioned recurrence relations, it is necessary to compute the coefficien
limited number of terms of the polynomials involved. Once the form of these terms is known
can obtain the coefficients in the recurrence relations solving a system of linear algebraic
tions. We do not give here the full expressions for the coefficients of the required terms, be
some of them are too long, and only list them:

P1,0,m,0
k ~z!5z1z3

m1A z3
m21z41¯ ,

P0,m,0,0
k ~z!5z2

m1B z2
m211C z2

m221D z1z2
m22z3z41E z1z2

m23z3z4

1F ~z1
2z2

m221z2
m22z3

21z2
m22z4

2!1¯ ,

P1,m,0,0
k ~z!5z1z2

m1G z1z2
m21z41H z2

m21z3z41¯ ,
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P0,m,1,1
k ~z!5z2

mz3z41I z1z2
m1¯ ,

Pm,0,0,0
k ~z!5z1

m1J z1
m221K z1

m22z21¯ ,

Pm,1,0,0
k ~z!5z1

mz21L z1
m22z21N z1

m21z3z41M z1
m1¯ ,

Pm,0,1,1
k ~z!5z1

mz3z41N z1
m21z21O z1

m111¯ ,

P1,m,1,1
k ~z!5z1z2

mz3z41P z2
m1Q z1z2

m21z3z41R ~z1
2z2

m1z2
mz3

21z2
mz4

2!1S z2
m111¯ ,

P2,m,0,0
k ~z!5z1

2z2
m1T z2

m1U z1z2
m21z3z41W z2

m111¯ .

The use of the quantities denotedA to W in the previous formulas in the general structure
the recurrence relations give the following results:

• Formulas of typez1P0,0,m,0
k (z):

z1 P0,0,m,0
k ~z!5P1,0,m,0

k ~z!1bm~k!P0,0,m21,1~z!,

z1 P0,0,0,m
k ~z!5P1,0,0,m

k ~z!1bm~k!P0,0,1,m21~z!,

z3 Pm,0,0,0
k ~z!5Pm,0,1,0

k ~z!1bm~k!Pm21,0,0,1~z!,

z3 P0,0,0,m
k ~z!5P0,0,1,m

k ~z!1bm~k!P1,0,0,m21~z!,

z4 Pm,0,0,0
k ~z!5Pm,0,0,1

k ~z!1bm~k!Pm21,0,1,0~z!,

z4 P0,0,m,0
k ~z!5P0,0,m,1

k ~z!1bm~k!P1,0,m21,0~z!

with

bm~k!5
m~m2114k!

~m211k!~m13k!
.

• Formulas of typez1 P0,m,0,0
k (z):

z1 P0,m,0,0
k ~z!5P1,m,0,0

k ~z!1dm~k!P1,m21,0,0~z!1em~k!P0,m21,1,1
k ~z!,

z3 P0,m,0,0
k ~z!5P0,m,1,0

k ~z!1dm~k!P0,m21,1,0~z!1em~k!P1,m21,0,1
k ~z!,

z4 P0,m,0,0
k ~z!5P0,m,0,1

k ~z!1dm~k!P0,m21,0,1~z!1em~k!P1,m21,1,0
k ~z!

with

dm~k!5
2m~m1k!~m2113k!~m2114k!~2m2116k!

~m211k!~m2112k!~m13k!~2m2115k!~2m15k!
,

em~k!5
m~m2113k!

~m211k!~m12k!
.

• Formulas of typez2 Pm,0,0,0
k (z):
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z2 Pm,0,0,0
k ~z!5Pm,1,0,0

k ~z!1 f m~k! Pm22,1,0,0~z!1gm~k! Pm21,0,1,1
k ~z!1hm~k! Pm,0,0,0

k ~z!,

z2 P0,0,m,0
k ~z!5P0,1,m,0

k ~z!1 f m~k! P0,1,m22,0~z!1gm~k!P1,0,m21,1
k ~z!1hm~k! P0,0,m,0

k ~z!,

z2 P0,0,0,m
k ~z!5P0,1,0,m

k ~z!1 f m~k! P0,1,0,m22~z!1gm~k! P1,0,1,m21
k ~z!1hm~k! P0,0,0,m

k ~z!

with

f m~k!5
m~m21!~m2212k!~m12k!~m2114k!~m2115k!

~m221k!~m211k!2~m2113k!~m13k!~m14k!
,

gm~k!5
m~m2113k!

~m211k!~m12k!
,

hm~k!5
4@23k315k21~6m21!k1~m221!#

~m211k!~113k!~m1115k!
.

• Formula forz2 P0,m,0,0
k (z):

z2 P0,m,0,0
k ~z!5P0,m11,0,0

k ~z!1km~k! P0,m21,0,0~z!1pm~k! P1,m21,1,1
k ~z!1qm~k! P1,m22,1,1

k ~z!

1r m~k! @P2,m21,0,0
k ~z!1P0,m21,2,0

k ~z!1P0,m21,0,2
k ~z!#1sm~k! P0,m,0,0

k ~z!

with

km~k!

5
4m~m1k!2~m12k!~m2113k!~m2114k!2~2m2114k!~m2115k!~2m2116k!

~m211k!~m2112k!2~m13k!2~m14k!~2m2215k!~2m2115k!2~2m15k!
,

pm~k!5
m~m2112k!

~m211k!~m1k!
,

qm~k!5
2m~m21!~m1k!2~m2212k!~m2113k!3~2m2116k!

~m221k!~m211k!2~m2112k!2~m12k!2~2m2115k!~2m15k!
,

r m~k!5
m~m1k!~m2113k!~m2114k!

~m211k!~m2112k!~m12k!~m13k!
,

sm~k!5
24tm~k!

~k11!~m211k!~m1114k!~2m2115k!~2m1115k!
,

tm~k!5~2115m224m4!1~2125m27m2240m312m4!k1~20235m2123m2120m3!k2

1~2222115m163m2!k31~219165m!k4120k5.

Finally, we mention that fork52 1
2(n21), nPN, the polynomials associated with the dom

nant weight which isn times the Weyl vectorr are proportional to a power of the ground sta
wave function, namely,

Pnr
2 ~1/2!(n21)5~21!n 212nH )

j ,k

4

sin~qj2qk!sin~qj1qk!J n

.
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This formula can be verified quite easily by direct application ofD2(1/2)(n21) in the form~7! to the
right-hand side: one finds that the Schro¨dinger equation~6! with the appropriate eigenvalue i
satisfied. The most convenient way to fix the proportionality constant is by performing an an
continuation to complexqi and considering the regionxiPR andx1@x2@x3@x4@0. Then, the
polynomials are dominated by the leading order term,Pnr

2(1/2)(n21).z1
nz2

nz3
nz4

n , and, on the other
hand, using the formulas for the fundamental characters displayed in Sec. II, one findsz1z2z3z4

.x1
3x2

2x3 and ) j ,k
4 sin(qj2qk)sin(qj1qk).22212x1

3x2
2x3 . This gives the proportionality constan

written above.

VI. CONCLUSIONS

In this paper, we have shown how to solve the Schro¨dinger equation for the trigonometri
Calogero–Sutherland model related to the Lie algebraD4 and we have explored some properti
of the energy eigenfunctions. The main point is that the use of a Weyl-invariant set of vari
the characters of the fundamental representations, leads to a formulation of the Schro¨dinger equa-
tion by means of a second-order differential operator with polynomial coefficients simple en
to make feasible a recursive method for the treatment of the spectral problem. The eigenfu
provide a complete system of orthogonal polynomials in four variables, and these polyno
obey recurrence relations which are extensions of the Clebsch–Gordan series of the algeb
structure of some of these recurrence relations has been fixed and, for particular cases, th
ficients involved have been computed. Also, some generating functions for the polynomial
parameterk51 andk50 have been obtained. These generating functions can give some
about the form of the generating function for generalk, see Ref. 21.
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APPENDIX A: SUMMARY OF RESULTS ON THE LIE ALGEBRA D4

In this appendix, we review some standard facts about the root and weight systems of t
algebraD4 that the reader could find useful to follow the main text. More extensive and s
treatments of these topics can be found in many excellent textbooks, see for instance Refs.
22.

The most convenient explicit representation ofD4 is

D45H S m b

c 2mtD U m, b, c real 434 matrices andbt52b, ct52cJ .

This gives dimD4528. One can choose the following linear basis:

M jk5Ej ,k2E41 j ,41k , j ,k51,2,3,4,

Bjk5Ej ,41k2Ek,41 j , j ,k51,2,3,4, j ,k,

Cjk5E41 j ,k2E41k, j , j ,k51,2,3,4, j ,k

with (Ei , j )kl5d ikd j l . The Cartan subalgebra is

H5H h5(
i 51

4

ciM ii U ciPRJ
and this confirms that the rank ofD4 is four. The matrix commutators
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@h,M jk#5~cj2ck!M jk ,

@h,Bjk#5~cj1ck!Bjk ,

@h,Cjk#52~cj1ck!Cjk

allow us to classify the 24 roots in two groups

a jk~h!5cj2ck , j Þk,

a jk
6~h!56~cj1ck!, j ,k.

One can extract the following basis of simple roots:

a1[~1, 21, 0, 0!5a12, a2[~0, 1, 21, 0!5a23,

a3[~0, 0, 1, 21!5a34, a4[~0, 0, 1, 1!5a34
1 ,

where we have given the decomposition of these roots in the basis ofH* dual to diag(Mii), i
51,2,3,4. The Euclidean relations among the simple roots are

~a i ,a i !52, i 51,2,3,4,

~a2 ,a i !521, i 51,3,4,

~a i ,a j !50, i 51,3,4.

Thus, the Cartan matrix reads

A5S 2 21 0 0

21 2 21 21

0 21 2 0

0 21 0 2

D .

The positive roots area i j ,a i j
1 ,i , j , and they can be classified by heights as indicated in Tab

The Weyl group is easy to describe. The Weyl reflection on the hyperplane inH* orthogonal to the
root a is

sa~v !5v22
~a,v !

~a,a!
a.

Applying this formula toa i j ,a i j
6 , one readily finds that the most general Weyl reflection cons

in a permutation of the components ofv in the ei basis plus an even number of changes of
signs of these components. This givesuWu5192 for the order of the Weyl group. The fundamen
weightslk can be obtained from the equationa i5( j 51

4 Aji l j . They are

TABLE I. Heights of positive roots.

Height Positive roots

1 a1 , a2 , a3 , a4

2 a135a11a2 , a245a21a3 , a24
1 5a21a4

3 a145a11a21a3 , a14
1 5a11a21a4 , a23

1 5a21a31a4

4 a13
1 5a11a21a31a4

5 a12
1 5a112a21a31a4
                                                                                                                



to the

, one

lower

4971J. Math. Phys., Vol. 44, No. 11, November 2003 Eigenfunctions of Calogero–Sutherland model

                    
l15 1
2 ~2a112a21a31a4!5 1

2 ~2, 0, 0, 0!,

l25 1
2 ~2a114a212a312a4!5 1

2 ~2, 2, 0, 0!,

l35 1
2 ~a112a212a31a4!5 1

2 ~1, 1, 1, 21!,

l45 1
2 ~a112a21a312a4!5 1

2 ~1, 1, 1, 1!,

and the geometry of the weight system is summarized by the relations

il1i5il3i5il4i51, il2i5&,

~l i ,l2!51, i 51,3,4, ~l i ,l j !5 1
2 , i , j 51,3,4.

The Weyl vector is

r5
1

2 (
aPR1

a5(
j 51

4

l j53a115a213a313a45 ~3, 2, 1, 0!,

and the Weyl formula for dimensions applied to the irreducible representation associated
integral dominant weightm5m1l11m2l21m3l31m4l4 gives

dim r ~m!5 )
aPR1

~a,m1r!

~a,r!
5

P

1440

with

P5)
i 51

4

~mi11! )
j

~m21mj12! )
j ,k

~m21mj1mk13!

3~m11m21m31m4!~m112m21m31m4!,

where the indicesj ,k take the values 1, 3, 4. In particular, for the fundamental representations
finds:

dim r ~l1!58, dimr ~l2!528,

dim r ~l3!58, dimr ~l4!58.

APPENDIX B: SOME POLYNOMIALS, CHARACTERS, AND MONOMIAL FUNCTIONS

We list here all the polynomials, characters, and monomial functions with total degree
or equal to three up to triality.

Polynomials:

P1,0,0,0
k ~z!5z1 ,

P0,1,0,0
k ~z!5z21

4~k21!

5k11
,

P2,0,0,0
k ~z!5z1

22
2

11k
z22

8k

~11k!~113k!
,
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P0,2,0,0
k ~z!5z2

22
2

11k
z1z3z42

2~211k!

~11k!~112k!
~z1

21z3
21z4

2!1
4~2315k16k214k3!

~11k!~112k!~315k!
z2

1
16~211k!~3110k13k212k3!

~11k!~112k!~215k!~315k!
,

P1,1,0,0
k ~z!5z1z22

3

112k
z3z41

4~211k!~2112k!

~112k!~215k!
z1 ,

P1,0,1,0
k ~z!5z1z32

4

113k
z4 ,

P3,0,0,0
k ~z!5z1

32
6

21k
z1z21

6

~11k!~21k!
z3z42

12~112k12k2!

~11k!~21k!~213k!
z1 ,

P0,3,0,0
k ~z!5z2

32
6

21k
z1z2z3z41

6

~11k!~21k!
~z1

2z3
21z1

2z4
21z3

2z4
2!2

3~21k1k2!

~11k!2~21k!
~z1

2z2

1z2z3
21z2z4

2!1
6~10117k121k2110k312k4!

5~11k!3~21k!
z2

2

2
3~30153k14k2215k318k4!

5~11k!4~21k!
z1z3z42

12k~8110k1k21k3!

5~11k!4~21k!
~z1

21z3
21z4

2!

1
12~301119k1159k21124k3180k4124k514k6!

5~11k!4~21k!~415k!
z2

1
16~2301103k1440k21359k3198k4186k5120k614k7!

5~11k!4~21k!~315k!~415k!
,

P2,1,0,0
k ~z!5z1

2z22
2

11k
z2

22
113k

~11k!2 z1z3z41
4~211k!k2

~11k!2~315k!
z1

21
4

~11k!2 ~z3
21z4

2!

2
4~9127k128k2116k3!

~11k!2~213k!~315k!
z22

16~315k12k3!

~11k!2~213k!~315k!
,

P1,2,0,0
k ~z!5z1z2

22
2

11k
z1

2z3z42
113k

~11k!2 z2z3z42
2~211k!

~11k!~112k!
z1

31
52k

~11k!2 ~z1z3
21z1z4

2!

1
4~211k!~9119k110k214k3!

~11k!2~112k!~415k!
z1z22

4~211k!~2512k!~113k!

~11k!2~112k!~415k!
z3z4

1
8~29257k272k2128k322k414k5!

~11k!2~112k!~315k!~415k!
z1 ,

P1,1,1,0
k ~z!5z1z2z32

3

112k
~z1

2z41z3
2z4!2

8~211k!

~112k!~213k!
z2z4

1
4~12123k211k216k3!

~112k!~213k!~315k!
z1z32

8~3222k14k2!

~112k!~213k!~315k!
z4 ,

P1,0,1,1
k ~z!5z1z3z42

4

113k
~z1

21z3
21z4

2!1
12

~112k!~113k!
z21

16~115k!

~112k!~113k!2 .
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Characters:

P1,0,0,0
(1) ~z!5z1 ,

P0,1,0,0
(1) ~z!5z2,

P2,0,0,0
(1) ~z!5z1

22z221,

P0,2,0,0
(1) ~z!5z2

21z22z1z3z4 ,

P1,1,0,0
(1) ~z!5z1z22z3z4 ,

P1,0,1,0
(1) ~z!5z1z32z4 ,

P3,0,0,0
(1) ~z!5z1

322z1z21z3z422z1 ,

P0,3,0,0
(1) ~z!5z2

313z2
213z222z1z2z3z41z1

2z3
21z1

2z4
21z3

2z4
22~z1

21z3
21z4

2!z2

2z1z3z42z1
22z3

22z4
211,

P2,1,0,0
(1) ~z!5z1

2z22z2
22z1z3z41z3

21z4
222z221,

P1,2,0,0
(1) ~z!5z1z2

22z1
2z3z42z2z3z41z1~z3

21z4
2!2z1 ,

P1,1,1,0
(1) ~z!5z1z2z31z1z32~z1

21z3
2!z41z4 ,

P1,0,1,1
(1) ~z!5z1z3z42z1

22z3
22z4

21z212.

Monomial functions:

P1,0,0,0
(0) ~z!5z1 ,

P0,1,0,0
(0) ~z!5z224,

P2,0,0,0
(0) ~z!5z1

222z2 ,

P0,2,0,0
(0) ~z!5z2

222 z1z3z412 z1
212 z3

212 z4
224 z228,

P1,1,0,0
(0) ~z!5z1z223z3z412z1 ,

P1,0,1,0
(0) ~z!5z1z324z4 ,

P3,0,0,0
(0) ~z!5z1

323z1z213z3z423z1 ,

P0,3,0,0
(0) ~z!5z2

316z2
219z223z1z2z3z413z1

2z3
213z1

2z4
213z3

2z4
223~z1

21z3
21z4

2!z229z1z3z424,

P2,1,0,0
(0) ~z!5z1

2z222z2
22z1z3z414z3

214z4
226z228,

P1,2,0,0
(0) ~z!5z1z2

222z1
2z3z42z2z3z412z1

315z1~z3
21z4

2!29z1z225z3z426z1 ,

P1,1,1,0
(0) ~z!5z1z2z318z1z323~z1

21z3
2!z414z2z424z4 ,

P1,0,1,1
(0) ~z!5z1z3z424z1

224z3
224z4

2112z2116.
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This short note is devoted to the proof of Lifshitz tails and a Wegner estimate, and
thus, band edge localization, for the random hopping model. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1616998#

I. INTRODUCTION

The model we consider in this short note is defined as follows: foruP,2(Zd),

~Hvu!~x!5 (
ux2yu51

lv~~x,y!!u~y!, xPZd. ~1.1!

The coefficientslv((x,y)) are real valued, bounded i.i.d. random variables satisfying the min
symmetry requirement forHv to be self-adjoint. Namely, letE denote the set of edges$(x,y)
PZd3Zd; ux2yu51% ~here, uxu5ux1u1¯1uxdu if x5(x1 , . . . ,xd)); define the set of undi-
rected edges to beE8ªE/; @where (x,y);(x8,y8) if and only if (x,y)5(x8,y8) or (x,y)
5(y8,x8)]. The coefficientslv(e), ePE8 are supposed to be i.i.d. random variables. Let us n
here that~1.1! is a natural discrete analogue of the model studied in Ref. 4.

As Hv is homogeneous of degree one in the variableslv(e), ePE8, we may, without restric-
tion, assume that

ess-sup
v

ulv~e!u51. ~1.2!

Under these assumptions, for almost everyv, the operatorHv is bounded and self-adjoint. More
over, it isZd-ergodic~see, e.g., Refs. 2 and 9!; this guarantees that its spectrum is almost sur
constant. Call itS. Using the classical criterion of Ref. 3, under assumption~1.2!, one computes

S5@22d,2d#.

The absolutely continuous, singular continuous and pure point components of the spectr
also almost surely independent ofv.

The aim of the present note is to show that localization occurs near the edges ofS.
TheZd-ergodicity also guarantees the existence of a density of states. InZd, consider the cube

of sizeN (N.1) and center 0. Denote it byLN . Let PN be the projection~cutoff! on this cube.
Then, the integrated density of statesk(E) of Hv is defined by

a!Electronic mail: klopp@math.univ-paris13.fr
b!Electronic mail: shu@ms.u-tokyo.ac.jp
49750022-2488/2003/44(11)/4975/6/$20.00 © 2003 American Institute of Physics
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k~E!ª lim
N→1`

#$eigenvalues ofPNHvPN less thanE%

#LN
. ~1.3!

This limit exists almost surely~see Sec. II for more details!; it is a nondecreasing function tha
takes values in@0,1#. Its points of growth are the points ofS. It thus naturally defines a probabilit
measure supported inS; we denote this measure by dk.

It is well known~see, e.g., Refs. 1 and 10! that, in order to prove localization at spectral edg
for models of the type~1.1!, it is sufficient to prove that the integrated density of states satis
two conditions:

~1! a regularity condition: e.g.,k is Hölder continuous;
~2! a size condition: dk puts very little weight on the edges of the spectrum; this type of beha

is known as Lifshitz tails.

We prove the following.
Theorem 1.1:The integrated density of states satisfies

lim
«→01

logu logk~22d1«!u
log«

<2
d

2

and

lim
«→01

logu log~12k~2d2«!!u
log«

<2
d

2
. ~1.4!

To prove the regularity condition mentioned above, we need an additional assumption o
random variables. Letn be the distribution oflv(e). We assume the following.

(H1): n admits a locally Lipschitz continuous density, sayg(t).
Then, we prove the following.
Theorem 1.2:The integrated density of states is locally Lipschitz continuous inS\$0%.
As noticed above, using multiscale analysis, Theorem 1.1 and Theorem 1.2 are suffic

derive that the spectrum is exponentially and dynamically localized in a neighborhood o
points 2d and22d ~see, e.g., Refs. 11 and 10!.

II. SOME AUXILIARY OPERATORS

We now turn to the proofs of Theorem 1.1 and Theorem 1.2. We introduce some aux
periodic operators. ForNPN, define

~HN
vu!~x!5 (

ux2yu51
lN

v~~x,y!!u~y!, xPZd, ~2.1!

where

lN
v~~x,y!!5lN

v~~x1g,y1g!! for gP~2N11!Zd.

The operatorHN
v acting on,2(Zd) is (2N11)Zd-periodic. Using Floquet theory~see Ref. 6 for

details!, we know thatHN
v admits a density of states, saykN

v(E), that satisfies

kN
v~E!5

1

~2p!d E
[ 2 p/~2N11! ,p/~2N11!] d

#$eigenvalues ofMN
v~u! in @0,E#%du, ~2.2!
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where the (2N11)d3(2N11)d-matrix MN
v(u) only differs from PNHvPN by an operator of

rank at mostCNd21 ~for someC independent ofN, v, andu!. Moreover, as a consequence of t
Zd-ergodicity, one obtains, forwPC 0

`(R),

E@^w,dkN
v~E!&#ªES E w~l!dkN

v~l! D5E@^d0 ,w~HN
v!d0&#. ~2.3!

Equation~2.3! impliesE@dkN
v# converges whenN→1`; actually, one can show that the conve

gence ofE@dkN
v# is exponentially fast~see, e.g., Refs. 5 and 6!. The limit defines a positive

measure. Then,~2.2!, and the remark following this last equation imply that this measure is
density of states measure of the distribution function which is defined in~1.3!.

As a result of this discussion, we see that to prove Theorems 1.1 and 1.2, we only n
prove analogous statements forE@kN

v(E)# uniformly in N for N large enough.

III. THE PROOF OF THEOREM 1.1

Let us start with the Lifshitz behavior. First, we notice that we only need to deal with
lower edge of the spectrum; indeed, the unitary transform (Uu)(x)5(21)uxuu(x) conjugatesHv

to 2Hv.
To prove Theorem 1.1, it suffices to prove the following local energy estimate~see, e.g., Refs

7 and 8!.
Lemma 3.1: Fix aP(0,1). For uP,2(Z), one has

^u,HN
vu&>^u,WN

vu&1a^uuu,H0uuu& ~3.1!

where

(i) H 0 is the free Laplace operator ofZd ~i.e., it is equal to 2d1Hv when lv(e)51, ;e
PE); it is non-negative;

(ii) the potential WN
v is defined by

WN
v~x!5(

ePE
xPe

b~lN
v~e!! where b~ t !5H 2utu if utu>a

2a if utu,a.
~3.2!

(iii) For e PE, we say that xPe if e5(x,y) or e5(y,x) for some y.

Indeed, we note that the random potentialWN
v takes values in@22d,2d#, its minimum is

22d. One can then apply the standard argument for operators of the formH01Vv ~see, e.g.,
Refs. 5 and 6! to obtain the desired estimate onE@kN

v(E)# ~for N not too large!. The exponentially
fast convergence ofE@dkN

v# to dk then gives~1.4! exactly in the same way as in Refs. 5 and 6
Proof of Lemma 3.1:To alleviate notations, let us drop the sub- and super-indicesv andN.

One start with rewriting

^u,Hu&52 (
ePE8

l~e!Re~u~ i ~e!!u~ t~e!!!, ~3.3!

where, for an edgee5(x,y), we have definedi (e)5x and t(e)5y.
Note that

2 Re~u1u2!5~u1 u2!* S 0 1

1 0D S u1

u2
D . ~3.4!

Consider the spectrum of (l
0

0
l). Let us first assume thatl52t,0. Then,
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sF S 0 l

l 0D G5$l,2l%5$2t,t%, ~3.5!

respective eigenvectors beinge1W5(1/&
1/&) and e2W5(21/&

1/& ). Let P1 and P2 , respectively, be the
projectors one1W ande2W ; one computes

P15
1

2 S 1 1

1 1D and P15
1

2 S 1 21

21 1 D . ~3.6!

Using b(•) defined in Lemma 3.1, one writes

S 0 l

l 0D 5tP22tP1>b~ t !P11tP25b~ t !1~ t2b~ t !!P2>b~ t !1aP2 .

This with ~3.6! and ~3.4! implies that, forl,0,

2 Re~lu1u2!>b~l!~ uu1u21uu2u2!1auuu1u2uu2uu2. ~3.7!

This relation is proved in the same way and holds forl.0.
If we now apply~3.7! to each term in the sum~3.3!, we obtain

^u,Hu&5 (
ePE8

b~l!~ uu~ i ~e!!u21uu~ t~e!!u2!1a (
ePE8

uuu~ i ~e!!u2uu~ t~e!!uu2

5^u,Wu&1a^uuu,H0uuu&,

where the potentialW is defined by

W~x!5(
ePE
xPe

b~lN
v~e!!.

This completes the proof of~3.1! and thus of Lemma 3.1.

IV. THE PROOF OF THEOREM 1.2

To prove this lemma, we use the fact thatHv, hence alsoHN
v5PNHvPN , is homogeneous o

degree one with respect to the random variables (lv(e))ePE8 ; indeed, one has

(
ePE N

lv~e!
]

]lv~e!
HN

v5HN
v . ~4.1!

Here,EN denotes the set of edges that start and end inLN @i.e., such thati (e) andt(e) belongs to
LN]. Note thatEN is of cardinal bounded byC#LN ~for some fixedC.0).

One can use the classical argument of Wegner12 to derive Theorem 1.2. For the reader
convenience, we detail this proof now.

Pick a compact intervalD,(2`,0), say,D,(2`,2c#, c.0 fixed. Let EN
v(D) be the

spectral projector ofHN
v on the intervalD. Then, we need to estimate

#$eigenvalues ofPNHvPN less thanE%5tr~EN
v~D!!5trS E

D
]E1(2`,0]~HN

v2E!dED .

~4.2!

Here,1A is the characteristic function of the setA. Using ~4.1! one computes
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trS (
ePEN

lv~e!]lv(e)1(2`,0]~HN
v2E! D 5tr~2HN

v]E1(2`,0]~HN
v2E!!).

For EPD, this gives

tr@]E1(2`,0]~HN
v2E!#<

1

c
trS (

ePEN

lv~e!]lv(e)1(2`,0]~HN
v2E! D

hence, by~4.2!,

c•tr~EN
v~D!!<E

D
(

ePEN

tr~lv~e!]lv(e)1(2`,0]~HN
v2E!!)dE.

Taking the expectation in both sides of the previous equation, one obtains

c•E@ tr~EN
v~D!!#< (

ePEN

E )
e8Þe

g~lv~e8!!dlv~e8!E
D
dE Ge~E,v!, ~4.3!

where

G~E,v!5Ge~E,v!5E
21

1

g~l!l]ltr~1(2`,0]~HN
v~l,e!2E!!dl. ~4.4!

Here,HN
v(l,e) is the HamiltonianHN

v where the random variablelv(e)5l, and all other random
variables are unchanged.

By assumption,g, the common probability density of the random variables (lv(e))g , is
Lipschitz continuous. This enables us to integrate by parts in~4.4! and to obtain

G~E,v!5@g~l!lF~l,E,v!#21
1 2E

21

1

]l~g~l!l!F~l,E,v!dl, ~4.5!

where we have defined

F~l,E,v!5tr@1(2`,0]~HN
v~1,e!2E!21(2`,0]~HN

v~21,e!2E!#.

As the single-site perturbation]lv(e)H
v is of rank 2, the functionuF(l,E,v)u is bounded by 2.

Hence,uGu is bounded by a constant. Plugging this back into~4.3!, and using equations~4.2!, ~4.1!
and the fact thatD is bounded away from 0, one obtains

#$eigenvalues ofPNHvPN less thanE%

5E~ tr@EN
v~D!#!<C (

ePEN

E
v8

P~dv8!E
D
dE<CuDuuLu.

In view of the definition of the integrated density of states~1.3!, this completes the proof o
Theorem 1.2.
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The generalized MIC-Kepler system
Levon Mardoyan
International Center for Advanced Studies, Yerevan State University,
1, Alex Manoogian St., 375025, Yerevan, Armenia

~Received 9 July 2003; accepted 18 August 2003!

This paper deals with the dynamical system that generalizes the MIC-Kepler sys-
tem. It is shown that the Schro¨dinger equation for this generalized MIC-Kepler
system can be separated in spherical and parabolic coordinates. The spectral prob-
lem in spherical and parabolic coordinates is solved. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1619205#

I. INTRODUCTION

The system described by the Hamiltonian

Ĥ5
1

2
~2 i¹2sA!21

s2

2r 2 2
1

r
1

c1

r ~r 1z!
1

c2

r ~r 2z!
, ~1.1!

wherec1 andc2 are non-negative constants, later on will be called the generalized MIC-Ke
system.~We use the system of units for which\5m5e5c51.)

The MIC-Kepler integrable system was constructed by Zwanziger1 and rediscovered by McIn
tosh and Cisneros.2 This system is described by the Hamiltonian

Ĥ05
1

2
~2 i¹2sA!21

s2

2r 2 2
1

r
, ~1.2!

where

A5
1

r ~r 2z!
~y,2x,0!, and rotA5

r

r 3 .

Its distinctive peculiarity is the Coulomb hidden symmetry given by the following const
of motion ~1.2!:

Î5
1

2
@~2 i¹2sA!3 Ĵ2 Ĵ3~2 i¹2sA!#1

r

r
, Ĵ5r3~2 i¹2sA!2s

r

r
. ~1.3!

Here, the operatorĴ defines the angular momentum of the system, while operatorÎ is the analog
of the Runge–Lenz vector. These constants of motion, together with the Hamiltonian, for
quadratic symmetry algebra of the Coulomb problem. For fixed negative energy values the m
integrals make up algebra so~4!, whereas for positive energy values2so(3.1). Due to the hidden
symmetry the MIC-Kepler problem is factorized not only in the spherical but parabolic co
nates as well. Hence, the MIC-Kepler system is a natural generalization of the Coulomb pr
in the presence of Dirac’s monopole. In both cases the monopole numbers satisfies the Dirac’s
rule of charge quantizations50,61/2,61,... .

The MIC-Kepler system could be constructed by the reduction of the four-dimensiona
tropic oscillator by the use of the so-called Kustaanheimo–Stiefel transformation both on cla
and quantum mechanical levels.3 In the similar way, reducing the two- and eight-dimension
isotropic oscillator, one can obtain the two-~Ref. 4! and five-dimensional5 analogs of the MIC-
49810022-2488/2003/44(11)/4981/7/$20.00 © 2003 American Institute of Physics
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Kepler system. An infinitely thin solenoid providing the system by the spin 1/2, plays the ro
monopole in the two-dimensional case, whereas in the five-dimensional case this role is per
by the SU~2! Yang monopole,6 endowing the system by the isospin. All the above-mention
systems have Coulomb symmetries and are solved in spherical and parabolic coordinates
discrete and continuous parts of the energy spectra.7 There are generalizations of MIC-Keple
systems on the three-dimensional sphere8 and hyperboloid9 as well. The MIC-Kepler system ha
been worked out from different points of view in.10–14

For integer valuess the MIC-Kepler system describes the relative motion of the two Dira
dyons~charged magnetic monopoles!, where vectorr determines the position of the second dy
with respect to the first one.1 For half-integers the presence of the solenoid magnetic fie
endowing the system with the spin 1/2, is presupposed~see, e.g., Ref. 4!.

The Hamiltonian~1.1! for s50 andciÞ0 (i 51,2) reduces to the Hamiltonian

Ĥ52
1

2
D2

1

r
1

c1

r ~r 1z!
1

c2

r ~r 2z!
~1.4!

of the generalized Kepler–Coulomb system.15

The potential

V52
a

r
1

c1

r ~r 1z!
1

c2

r ~r 2z!
~1.5!

is one of the Smorodinsky–Winternitz-type potentials.16 The Smorodinsky–Winternitz type po
tentials where revived and investigated in 1990 by Evans.17 In the case wherec15c2 , the poten-
tial ~1.5! reduces to the Hartmann potential that has been used for describing axially sym
systems like ring-shaped molecules18 and investigated from different points of view in Ref
19–31. In particular, the~quantum mechanical! discrete spectrum for the generalized Keple
Coulomb system~1.4! is well known,24,27,29even for the so-called (q,p)-analog of this system.29

Furthermore, a path integral treatment of the potential~1.5! has been given in Refs. 23 and 2
Recently, the dynamical symmetry of the generalized Kepler–Coulomb system has been stu
Refs. 29–31, the classical motion of a particle moving in the potential~1.5! has been considere
in Ref. 30, and the coefficients connecting the parabolic and spherical bases have been id
in Ref. 31 as Clebsch–Gordan coefficients of the pseudo-unitary group SU~1,1!.

The purpose of the present paper is to further study the bound states of the gene
MIC-Kepler system in spherical and parabolic coordinates.

II. SPHERICAL BASIS

The Schro¨dinger equation with Hamiltonian~1.1! in spherical coordinates (r ,u,w) may be
solved by seeking a wave functionc of the form

c~r ,u,w!5R~r !Z~u,w!. ~2.1!

This amounts to finding the eigenfunctions of the set$Ĥ,Ĵz ,M̂ % of commuting operators, wher
the constant of motionM̂ reads

M̂5 Ĵ21
2c1

11cosu
1

2c2

12cosu
. ~2.2!

Here Ĵ2 is the square of the angular momentum,Ĵz5s2 i ]/]w its z-component, andĴzc5mc.
After substitution the expression~2.1! the variables in the Schro¨dinger equation are separate

and we arrive at the following system of coupled differential equations:
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1

sinu

]

]u S sinu
]Z

]u D1
1

4 cos2
u

2

S ]2

]w2 24c1DZ1
1

4 sin2
u

2

F S ]

]w
12isD 2

24c2GZ52AZ,

~2.3!

1

r 2

d

dr S r 2
dR

dr D2
A
r 2 R12S E1

1

r DR50, ~2.4!

whereA is a separation constant in spherical coordinates.
The solution of~2.3! is easily found to be

Zjm
(s)~u,w;d1 ,d2!5Njm~d1 ,d2!S cos

u

2D m1S sin
u

2D m2

Pj 2m1

(m2 ,m1)
~cosu!ei (m2s)w, ~2.5!

where m15um2su1d15A(m2s)214c1, m25um1su1d25A(m1s)214c2, m15(um1su
1um2su)/2, andPn

(a,b) denotes a Jacobi polynomial. The quantum numbersm and j run through
values:m52 j ,2 j 11, . . . ,j 21,j and

j 5
um1su1um2su

2
,
um1su1um2su

2
11, . . . .

The quantum numbersj , m characterize the total momentum of the system and its projectio
the axisz. For the~half!integers j, m are ~half!integers.

Furthermore, the separation constantA is quantized as

A5S j 1
d11d2

2 D S j 1
d11d2

2
11D . ~2.6!

The normalization constantNjm(d1 ,d2) in ~2.5! is given ~up to a phase factor! by

Njm~d1 ,d2!5A~2 j 1d11d211!~ j 2m1!!G~ j 1m11d11d211!

4pG~ j 2m21d111!G~ j 1m21d211!
, ~2.7!

wherem25(um1su2um2su)/2. The angular wave functionsZjm
(s) @see Eq.~2.5!# are convenient

to call the ring-shaped monopole harmonics by analogy with the term ‘‘monopole harmo
studied by Tamm.32 These ring-shaped monopole harmonics generalize the functions studi
Hartmann18 in the cases50,d15d2 . Due to the connecting formula,33

~l1 1
2!n Cn

l~x!5~2l!nPn
(l2 ~1/2! ,l2 ~1/2!)~x! ~2.8!

between the Jacobi polynomialPn
(a,b) and the Gegenbauer polynomialCn

l , the cases50, d1

5d25d yields

Zjm
(0)~u,w;d,d!52umu1dGS umu1d1

1

2DA~2 j 12d11!~ j 2umu!!
4p2G~ j 1umu12d11!

3~sinu! umu1dCj 2umu
umu1d1 ~1/2! ~cosu!eimw, ~2.9!

the result already obtained in Ref. 15.@In ~2.8!, (a)n stands for a Pochhammer symbol.# The case
d50 ~i.e., c15c250) can be treated by using the connecting formula

Pj
umu~x!5

~22! umu

Ap
GS umu1

1

2D ~12x2! umu/2Cj 2umu
umu1 ~1/2! ~x! ~2.10!
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between the Gegenbauer polynomialCn
l and the associated Legandre function.33 In fact for the

d50, Eq. ~2.9! can be reduced to

Zjm
(0)~u,w;0,0!5A~2 j 11!~ j 2umu!!

4p~ j 1umu!!
Pj

umu~cosu!eimw, ~2.11!

an expression~up to a phase factor! that coincides with the usual~surface! spherical harmonics
Ylm(u,w).

Let us go now to radial equation~2.4!. The introduction of~2.6! into the ~2.4! leads to

1

r 2

d

dr S r 2
dR

dr D2
1

r 2 S j 1
d11d2

2 D S j 1
d11d2

2
11DR12S E1

1

r DR50, ~2.12!

which is reminiscent of the radial equation for the hydrogen atom except that the orbital qua
numberl is replaced here byj 1(d11d2)/2. The solution of~2.12! for the discrete spectrum is

Rn j
(s)~r !5Cn j~d1 ,d2!~2«r ! j 1 @~d11d2!/2#e2«rF~2n1 j 11;2j 1d11d212;2«r !, ~2.13!

wheren5usu11,usu12, . . . . In ~2.13!, the normalization factorCn j(d1 ,d2) reads

Cn j~d1 ,d2!5
2«2

G~2 j 1d11d211!
AG~n1 j 1d11d211!

~n2 j 21!!
~2.14!

and the parameter« is defined by

«5A22E5
1

n1
d11d2

2

. ~2.15!

The eigenvaluesE are then given by

E[En
(s)52

1

2S n1
d11d2

2 D 2 . ~2.16!

In the limiting cased15d250, we recover the familiar results for charge-dyon bound system1

III. PARABOLIC BASIS

Let us consider the generalized MIC-Kepler system in the parabolic coordinates. In the
bolic coordinatesj,hP@0,̀ ),wP@0,2p), defined by the formulas

x5Ajh cosw, y5Ajh sinw, z5 1
2 ~j2h!, ~3.1!

the differential elements of length and volume read

dl25
j1h

4 S dj2

j
1

dh2

h D1jhdw2, dV5 1
4 ~j1h!djdhdw, ~3.2!

while the Laplace operator looks like

D5
4

j1h F ]

]j S j
]

]j D1
]

]h S h
]

]h D G1
1

jh

]2

]w2 . ~3.3!

The substitution
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c~j,h,w!5F1~j!F2~h!
ei (m2s)w

A2p
~3.4!

separates the variables in the Schro¨dinger equation and we arrive at the following system
equations:

d

dj S j
dF1

dj D1FE

2
j2

m1
2

4j
1

1

2
b1

1

2GF150, ~3.5!

d

dh S h
dF2

dh D1FE

2
h2

m2
2

4h
2

1

2
b1

1

2GF250, ~3.6!

whereb is the separation constant.
These equations are analogous with the equations of the hydrogen atom in the pa

coordinates.34 Thus, we get

cn1n2m
(s) ~j,h,w;d1 ,d2!5&«2Fn1m1

~j!Fn2m2
~h!

ei (m2s)w

A2p
, ~3.7!

where

Fnimi
~x!5

1

G~mi11!
AG~ni1mi11!

~ni !!
e2 ~«x/2!~«x!~mi /2!F~2ni ;mi11;«x!. ~3.8!

Heren1 andn2 are non-negative integers

n152
um2su1d111

2
1

b11

2«
, n252

um1su1d211

2
2

b21

2«
. ~3.9!

From the last relations, taking into account~2.16!, we get that the parabolic quantum numbersn1

andn2 are connected with the principal quantum numbern as follows:

n5n11n21
um2su1um1su

2
11. ~3.10!

Excluding the energyE from Eqs.~3.5! and ~3.6!, we obtain the additional integral of motion,

X̂5
2

j1h Fj ]

]h S h
]

]h D2h
]

]j S j
]

]j D G1
j2h

2jh

]2

]w2 1 is
j21h2

jh~j1h!

]

]w
2s2

j2h

2jh
1

2c1h

j~j1h!

2
2c2j

h~j1h!
1

j2h

j1h
~3.11!

with the eigenvalues

b5«S n12n21
um2su2um1su1d12d2

2 D ~3.12!

and eigenfunctionscn1n2m
(s) (j,h,w;d1 ,d2).

In Cartesian coordinates, the operatorX̂ can be rewritten as
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X̂5zS ]2

]x2 1
]2

]y2D2x
]2

]x]z
2y

]2

]y]z
1 is

r 1z

r ~r 2z! S x
]

]y
2y

]

]xD2
]

]z
2s2

r 1z

r ~r 2z!
1c1

r 2z

r ~r 1z!

2c2

r 1z

r ~r 2z!
1

z

r
, ~3.13!

so that it immediately follows thatX̂ is connected to thez-componentÎ z of the analog of the
Runge–Lenz vector~1.3! via

X̂5 Î z1c1

r 2z

r ~r 1z!
2c2

r 1z

r ~r 2z!
~3.14!

and coincides withÎ z whenc15c250.
Thus we have solved the spectral problem in spherical

Ĥc5Ec, M̂c5S j 1
d11d2

2 D S j 1
d11d2

2
11Dc, Ĵzc5mc ~3.15!

and in parabolic coordinates

Ĥc5Ec, X̂c5bc, Ĵzc5mc, ~3.16!

whereĤ, Ĵz , M̂ , andX̂ are defined by the expressions~1.1!, ~1.3!, ~2.2!, and~3.14!.
It is mentioned that all the formulas obtained fors50 yield the corresponding formulas fo

the generalized Kepler Coulomb system.15
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Random magnetic fields on line graphs
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We study the spectral and transport properties of Schro¨dinger operators on line
graphs with random magnetic fields. We show that it has a pure point spectrum with
exponentially decaying eigenfunctions on spectral edges, whereas there appears an
eigenvalue with infinite multiplicity due to the structure of line graphs. We compute
the electrical conductivity which is zero on spectral edges, but is nonzero and finite
on the isolated eigenvalue mentioned above. Some related problems are also
discussed. ©2003 American Institute of Physics.@DOI: 10.1063/1.1613377#

I. INTRODUCTION

Recently, the spectral theory of Schro¨dinger operators on graphs is paid much attention,
various interesting aspects, such as the relationship between the spectrum and the geo
structure of graphs, are studied. Shirai17 studied the spectrum of the Laplacian ond-regular infinite
graphs, and found a simple formula relating the spectrum of the Laplacian on graphs to t
their line graphs. Ogurisu15,16 gave a simple proof of results of Shirai17 by using the notion of
supersymmetry and extended them to the case where the magnetic flux is present. The su
this paper is to consider the Schro¨dinger operators on line graphs with a certain random magn
flux, where some unusual spectral properties appear. Mostly we discuss the line graph ofZ2, but
our results also apply to other graphs such as that of the triangular or hexagonal lattice dis
in Appendix A.

We first prepare notations and definitions. In this paper, a graphG is defined to be a pair
„V(G),E(G)… of a set of verticesV(G) and a set of oriented edgesE(G)5$xy:x,yPV(G)%. a
5xy stands for the edge with originx and terminusy and we writeo(a)5x, t(a)5y. For a
5xyPE(G), we denote the inverse edge byā5yx. E(G) is the set of unoriented edges whe
a,āPE(G) are identified and we denote byuau the corresponding element inE(G) ~i.e., uāu
5uau). We denote byl 2(G) the Hilbert space of complex-valued square summable function
V(G) with the inner product

^ f ,g&G5 (
xPV(G)

mG~x! f ~x!g~x!,

wheremG(x)5]Nx(G) „Nx(G)5$aPE(G):o(a)5x%… is the degree ofx. The line graphL(G)
of a graphG is defined as follows. Its vertex set is the set of edges inG: V„L(G)…5E(G) and
uau,ubuPE(G) are connected by an edgeuauubuPE„L(G)… if they have a vertex ofG in common.

We naturally regardZ2 as a graph withV(Z2)5$x5(x1 ,x2):x1 ,x2PZ%, E(Z2)5$xy:x,y
PV(Z2),ux2yu51% and letH be a bounded self-adjoint operator onl 2(Z2),

a!Electronic mail: nakano@math.tohoku.ac.jp; telephone: 022-217-6398; fax: 022-217-6400.
b!Electronic mail: nomura@math.titech.ac.jp
49880022-2488/2003/44(11)/4988/15/$20.00 © 2003 American Institute of Physics
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~Hu!~x!5 (
aPNx(Z2)

~u~x!2eiA(a)u„t~a!…!, xPV~Z2!. ~1.1!

A:E(Z2)→R is a vector potential satisfyingA(a)52A(ā),aPE(Z2). For x5(x1 ,x2)PZ2, let
f x5$x1 ,x111%3$x2 ,x211%„,V(Z2)… be the plaquette ofZ2 with x as one of its vertices and le

] f x5$x~x1e1!,~x1e1!~x1e11e2!,~x1e11e2!~x1e2!,~x1e2!x%

@,E(Z2)# be the set of edges encircling the plaquettef x counterclockwise@e15(1,0),e2

5(0,1)#. The magnetic flux onf x is then given by

F~ f x!5 (
aP] f x

A~a!P@0,2p! ~mod 2p!.

The spectral properties ofH is determined by$F( f x)%xPZ2 and does not depend on the choice
A with same$F( f x)%xPZ2. Given a vector potentialA:E(Z2)→R, we define the correspondin
one onL(Z2) by

AL~ uauubu!5
A~yx!1A~xz!

2
, ~1.2!

for uau5uyxu, ubu5uxzu„x,y,zPV(Z2)…. The HamiltonianHL on l 2
„L(Z2)…, which is the main

subject of this paper, is defined by

~HLu!~ uau!5 (
uauubuPE„L(Z2)…

„u~ uau!2eiAL(uauubu)u~ ubu!…, uauPE~Z2!. ~1.3!

The spectrum ofHL ,H satisfy the following relation:17,15,16

s~HL!5s~H !ø$8%. ~1.4!

In this paper, we consider the case where$F( f x)%xPZ2 are random variables. Let

Av~xy!5H 2Bv~2n11,m! „x5~2n11,m!,y5~2n11,m11!…,

Bv~2n11,m! „x5~2n11,m11!,y5~2n11,m!…;

0 ~otherwise!

(n,mPZ), with corresponding magnetic fluxes on each plaquettef x :

F~ f x!5H Bv~2n11,m! „x5~2n11,m!…,

2Bv~2n11,m! „x5~2n,m!….
~1.5!

We assume the following conditions on$Bv(2n11,m)%n,mPZ .
Assumption A:$Bv(2n11,m)%n,mPZ are real-valued i.i.d. random variables on a probabili

space(V,F,P) and the common distribution of$Bv(2n11,m)%n,mPZ has a density g such tha
supp g,@2p,2c#ø@c,p#, on which g is Lipshitz continuous, and6cPsupp g for some con
stant0,c,p.

The motivation to study the random flux model on line graphs is the work of Ludwig, Fis
Shanker, and Grinstein,10 where similar models are considered to study the transitions in
integer quantum Hall effect. In fact,HL is one of a few examples which has an isolated eigenva
with infinite multiplicity as is the Landau level of the Schro¨dinger operator onL2(R2) with a
constant magnetic field. By~1.4! and the fact that8 s(H)5@4(12cosc/4),4(11cosc/4)# a.s., we
have
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s~HL!5F4S 12cos
c

4D ,4S 11cos
c

4D Gø$8%, a.s.

The integrated density of states~IDS! of H,HL are defined as follows. LetZM
2 5$x5(x1 ,x2)

PZ2:uxj u<M , j 51,2% (MPN) and letHM5HuZ
M
2 ,HL

M5HLuL(Z
M
2 ) be the HamiltonianH,HL re-

stricted onZM
2 ,L(ZM

2 ), respectively@in other words,Z2 in ~1.1!, ~1.3! is replaced byZM
2 ]. The

IDS k(E),kL(E) of H,HL is given by

k~E!5 lim
M→`

1

]V~ZM
2 !

]$eigenvalues ofHM<E%,

kL~E!5 lim
M→`

1

]V„L~ZM
2 !…

]$eigenvalues ofHL
M<E%.

It is known thatk(E),kL(E) are almost surely deterministic. Our first result concerns the spec
and the IDS ofHL .

Theorem 1.1:Under Assumption A, we have the following.

(1) There exists a constant R.0 such that the spectrum of HL in I Rª@4(12cosc/4),4(1
2cosc/4)1R#ø@4(11cosc/4)2R,4(11cosc/4)# is almost surely a pure point with expone
tially decaying eigenfunctions (we say Anderson localization holds in such situations);

(2) 8 is an eigenvalue of HL with infinite multiplicity;
(3) kL(E) is discontinuous at E58: kL(8)2kL(82)51/2.

It is known that IDS is always continuous for Schro¨dinger operators onZd with metrically
transitive random fields. Theorem 1.1~1! follows from the result8 on Anderson localization forH
and the ‘‘supersymmetric method’’ discussed by Ogurisu.15,16 The condition that suppg,@2p,
2c#ø@c,p# is required to estimate the derivative of eigenvalues ofHM w.r.t. the magnetic fluxes
which is important to prove the Wegner estimate. To show Anderson localization forHL , we
consider an operatorc: l 2(Z2)→ l 2

„L(Z2)…2 @c and l 2
„L(Z2)…2 are defined in Sec. II# with c* its

adjoint. Then we haves(cc* )5s(c* c)ø$0% which is the main ingredient of the proof of~1.4!.
We show that this relation also ‘‘preserves’’ the dense point spectrum which proves Theore
~1!. Theorem 1.1~2!, ~3! is due to the structure of line graphs: there are infinite numbe
eigenfunctions of finite support, which is used in many areas of mathematical physics. F
stance, it is essential to construct an example of the ferromagnetic ground states of the H
model on line graphs.12 Theorem 1.1~2! holds for any configuration of magnetic fluxe
$F( f x)%xPZ2 ~Proposition 2.1!, and Theorem 1.1~3! holds whenever$F( f x)%xPZ2 are metrically
transitive random variables on (V,F,P) ~Proposition 2.2!. On the other hand, in finite graphs
dim ker(HL28) becomes different when the magnetic field is turned on~Theorem 3.1!.

The next topic in this paper is to discuss the transport properties ofHL . Let

s~E!5 lim
e↓0

se~E!, ~1.6!

se~E!5e2E (
xPL(Z2)

uxu2uGL~E1 i e;0,x!u2,

whereE is the expectation w.r.t.P, GL(z)5(HL2z)21,zPC\R is the Green’s function ofHL ,
and GL(z;x,y)5^dx ,(HL2z)21dy& l 2„L(Z2)…2

, x,yPL(Z2) is its matrix element@dx(y)51 (y
5x),50 (yÞx)#. s(E) may be regarded as the electrical conductivity ofHL for the Fermi
energyEPR. A formal derivation of Eq.~1.6! is given by McKane-Stone.11 Moreover, it is
possible to derive Eq.~1.6! by the linear response theory under some technical assumptions,2 or is
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also possible to relates(E) with the charge transport.14 Our result is thats(E) is equal to zero,
where the Anderson localization holds whiles(E) takes a finite and nonzero value on the isola
eigenvalue with infinite multiplicity.

Theorem 1.2:Under Assumption A, we have the following:

(1) s(E)50 for EPI R , where IR is the closed interval appearing in Theorem 1.1;
(2) 0,s(8),`.

To prove Theorem 1.2~1!, we show two estimates on the IDSkL(E) ~Wegner estimate and
Lifshitz tail! by the corresponding ones onH proved by Kloppet al.8 and the supersymmetri
argument. Then,s(E)50 is the natural conclusion of the exponential decay estimate of
Green’s function given by the multiscale analysis6 @this also gives an alternative proof of Theore
1.1 ~1!#. Theorem 1.2~2! comes from the fact that 8 is an isolated eigenvalue ofHL . We remark
that s is zero or infinity in many cases. For instance, in the case of a 1-dimensional Hamilt
with periodic potential, we havese(E);e21 if EPs(H)° andse(E);e2, if EPr(H).

In Secs. II, IV, we prove Theorems 1.1, 1.2, respectively. In Sec. III, we show other intere
properties of magnetic Schro¨dinger operators on line graphs. We study dim kerc* for finite
graphs and show that it becomes different depending on whether magnetic fluxes vanish
This is used to show that 8 is an eigenvalue ofHL with infinite multiplicity and to study the IDS
of HL . Moreover, we show, in addition to Eq.~1.4!, the nature of the spectrum is also preserv
~Theorem 3.3!.

In Appendix A, we discuss the extensions of results by Kloppet al.8 to triangular and hex-
agonal lattices. Then Theorem 1.1, 1.2 also applies to these graphs, telling us the corresp
spectral and transport properties on their line graphs. In Appendix B, we study a model on a
which may be called ‘‘the random graph model.’’ By using ideas similar to the one for Theo
1.1, we show that the Anderson localization holds on the whole spectrum. In Appendix C
discuss an application of the result on dim kerc* ~Theorem 3.1! to the cycles~defined in Sec. II!
and show the converse of the diamagnetic inequality in some cases.

II. PROOF OF THEOREM 1.1

For a graphG, we denote byl 2(G)2 the Hilbert space which is identical tol 2(G) as a set but
with an inner product,

^ f ,g&252 (
xPV(G)

f ~x!g~x!, i f i25A^ f , f &2.

Let cG : l 2(G)→ l 2
„L(G)…2 and its adjointcG* : l 2

„L(G)…2→ l 2(G) be

~cGf !~ uau!5
1

2 (
b5a,ā

ei @A(b)/2# f „t~b!…, aPE~G!,

~cG* F !~x!5
1

mG~x! (
aPNx(G)

ei @A(a)/2#F~ uau!, xPV~G!.

We write c5cZ2,c* 5cZ2* for simplicity. By direct computation, we have

c* c52
1

8
H11, cc* 52

1

8
HL11. ~2.1!

Equation~1.2! is used here. In what follows, we say thatEPR is the generalized eigenvalue ofH
if there existsu which satisfiesHu5Eu and grows at most polynomial order at infinity. In th
case, we callu the generalized eigenfunction ofH. Then8 there existsR.0, V0(,V) with
P(V0)51 such that forvPV0 , if EPI Rª@4(12cosc/4),4(12cosc/4)1R#ø@4(11cosc/4)
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2R,4(11cosc/4)# is a generalized eigenvalue, then the corresponding generalized eigenfu
u decays exponentially at infinity. FixvPV0 and letEPI R , v be generalized eigenvalue ofHL

and corresponding generalized eigenfunction, respectively. Then

cc* v5S 2
E

8
11D v, ~2.2!

and multiplyingc* on both sides, we haveH(c* v)5E(c* v) with c* v growing at most poly-
nomially at infinity. Therefore sincevPV0 , c* v and hencecc* v decay exponentially. By~2.2!,
v also decays exponentially which concludes the proof of Theorem 1.1~1!.

To prove Theorem 1.1~2!, it suffices to show dim kerc* 5` which follows from the lemma
given below. We say a subgraphC(,Z2) is a cycle of lengthN(>3) if there exists
x1 ,x2 ,...,xNPV(Z2), xjÞxk for j Þk such thata15x1x2 ,a25x2x3 ,...,a j5xjxj 11 ,...,aN21

5xN21xN ,aN5xNx1PE(Z2). We sayC is even~resp., odd! if its length is even~resp., odd!. The
flux on C is given by

F~C!5(
j 51

N

A~a j !~mod 2p !.

Lemma 2.1: Let C(,Z2) be a cycle of even length N. If F(C)50, there exists FPker c*
which is supported on E(C).

Proof: Set

F~ ua1u!51, F~ ua2u!5~21!expF2 i
A~a2!

2
2 i

A~a1!

2 G ,
F~ ua j u!5~21! j 21 expF2 i

A~a j !

2
2 i „A~a2!1¯1A~a j 21!…2 i

A~a1!

2 G ,
for 3< j <N andF(ubu)50 for ubu¹E(C). A direct computation givesc* F50. h

It is possible to take infinite number of even cycles inZ2, satisfying the assumption of Lemm
2.1. Thus we proved Theorem 1.1~2!. Moreover, we have the following.

Proposition 2.1: For any configuration of$F( f x)%xPZ2, we havedim ker c* 5`.
Proof: Let Gx be the subgraph ofZ2 with V(Gx)5 f xø f x1e1

and E(Gx)5$yz:y,z

PV(Gx),uy2zu51%. By Theorem 3.1, there exists a functionFx on E(Gx) such thatcGx
* Fx

50. Let F̃x(uau)5Fx(uau) for uauPE(Gx) and F̃x(uau)50 otherwise. Thenc* F̃x50. Since
F̃x ,F̃y are linearly independent forux2yu>2, we have dim kerc* 5`. h

If we have no magnetic flux, i.e.,F( f x)50 for anyxPZ2, then kerc* contains functions
supported onu] f xu5$uau:aP] f x%.

17,15 On the other hand, ifF( f x)Þ0 for anyxPZ2, the proof
of Lemma 2.1 implies that it is impossible and the supports of elements of kerc* must be bigger,
while Proposition 2.1 says the edges of two plaquettesu] f xuøu] f x1e1

u are enough.
Remark 2.1: It is also possible to construct ‘‘extended states’’ for any configuration of m

netic fluxes. To see this, choose the gauge such that the vector potential A vanishes on
parallel to the x1-direction: A(a)50 for a5x(x1e1). Let uan,muPE(Z2) be the edge connectin
the vertices(n,m) and (n11,m)PV(Z2). Then F(uau)5(21)n for uau5uan,mu, and F(uau)
50 otherwise, satisfies the desired properties.

Finally, we study the relationship between IDS ofH,HL .
Proposition 2.2: Suppose$F( f x)%xPZ2 are metrically transitive random variables on a prob

ability space~V,F,P!. Then IDS of H,HL satisfy
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kL~E!5H 1
2 k~E! ~E,8!,

1
2 k~E!1 1

2 ~E>8!.

Proof: DefinecM : l 2(ZM
2 )→ l 2

„L(ZM
2 )…2 asc restricted onZM

2 : cM5xL(Z
M
2 )cxZ

M
2 (xA is the

characteristic function ofA) and cM* : l 2
„L(ZM

2 )…2→ l 2(ZM
2 ) as its adjoint. Let H̃M58(1

2cM* cM), H̃L
M58(12cMcM* ) be local Hamiltonians of H,HL , respectively. Since

dim ker(cM* cM2E)5dim ker(cMcM* 2E) for EÞ0, and since ]V„L(ZM
2 )…2]V(ZM

2 )
<dim kercM* <]V„L(ZM

2 )…2]V(ZM
2 )11 ~Theorem 3.1 and Proposition 4.3 in Biggs4!, we have

kL~E!5H rk~E! ~E,8!,

rk~E!1~12r! ~E>8!,

wherer5 limM→` @]V(ZM
2 )/]V„L(ZM

2 )…51/2. h

Proposition 2.2 shows thatkL(E) is discontinuous and thus proves Theorem 1.1~3!. More-
over, it also implies thatHL has an eigenvalue with infinite multiplicity a.s.

Lemma 2.2: Under the assumption of Proposition 2.2, suppose that HL does not have eigen
values with infinite multiplicity on an open interval A(,R) a.s. Then the IDS of HL is continuous
on A.

Proof: For Borel setsB(,A), let

I ~B!ª lim
M→`

1

]V„L~ZM
2 !…

]$eigenvalues ofH̃L
M on B%.

We show lime→0I ((a2e,a1e))50 for aPA. Let uauPE(Z2). By Birkhoff’s ergodic theorem,

I ~B!5E
V

dPE
B

1

6
^dE~l!d uau ,d uau&L(b f Z2) , a.s.

wheredE(l) is the resolution of identity ofHL and

d uau~ ubu!5H 1 ~ ubu5uau!,

0 ~otherwise!,
ubuPE~Z2!.

Therefore it suffices to showI ($a%)50. We consider Lebesgue’s decomposition ofdE(l) into
continuous and singular parts:dE5dEc1dEs and letI (B)5I c(B)1I s(B) be the corresponding
decomposition ofI (B). SincedEc does not have an atom,I c($a%)50. If aPsp(HL), let $ f j% j 51

N

be the normalized eigenfunctions ofHL corresponding to the eigenvaluea. Then since( uau
PE(ZM

2 )6u f j (uau)u2<1,

I s~$a%!5 lim
M→`

1

]V„L~ZM
2 !… (

uauPE(ZM
2 )

6(
j 51

N

u f j~ uau!u250, a.s.

h

III. SOME PROPERTIES ON LINE GRAPHS

In this section, we show some related and interesting properties of magnetic Schro¨dinger
operators on line graphs. First of all, we supposeG is a finite graph and consider the operat
cG* : l 2

„L(G)…2→ l 2(G) defined in Sec. II. By definition, dim kercG* >]E(G)2]V(G). It is
known, if G is bipartite or is an odd cycle andA(a)50 for any aPE(G), dim kercG*
5]E(G)2]V(G)11 @Proposition 4.3 in Biggs;4 a graphG is said to be bipartite ifV(G) can be
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decomposed into two disjoint subsets:V(G)5AøB,AùB5B such thatx,yPV(G) are con-
nected by an edge inE(G) only if xPA,yPB or xPB,yPA]. The following theorem says the
situation becomes different when the magnetic flux is turned on.

Theorem 3.1: Let G be a finite and connected graph without self-loops and multiple ed
Suppose that for some cycle C on G, F(C)Þ0 (resp., p) if C is even (resp., odd). The
dim kercG* 5]E(G)2]V(G).

WhenG is a planar graph,]E(G)2]V(G)5]F(G)21 by Euler’s formula, whereF(G) is
the set of faces onG @the faces of a finite planar graphG is the bounded connected componen
of R22„V(G)øE(G)… regardingV(G)øE(G) as a closed subset ofR2].

Proof: We show rankcG* 5]V(G). Let D5$djk ;1< j <]V(G),1<k<]E(G)% be the
„]V(G)…3„]E(G)… matrix which is a representation of cG* on the basis
$dx%xPV(G) ,$d uau% uauPE(G) , where

dx~z!5H 1 ~z5x!,

0 ~otherwise!,
d uau~ ubu!5H 1 ~ ubu5uau!,

0 ~otherwise!,

and let$dj% j 51
]V(G)(,C]E(G)) be its row vectors. In what follows, we identifyV(G) with the finite

set $1,...,]V(G)%. Suppose that a linear relation is given:( j 51
]V(G)b jdj50, b jPC. We assume

bhÞ0 for somehP$1,...,]V(G)% and show that, for any cyclesC on G, F(C)50 ~resp.,p! if
C is even ~resp., odd!. The supposed linear relation implies that, foraPE(G) with i (a)
5k,t(a)5 l (k,l P$1,...,]V(G)%),

b l52
m~ l !

m~k!
eiA(a)bk . ~3.1!

Therefore, sinceG is connected,bhÞ0 for somehP$1,...,]V(G)% implies bkÞ0 for any k
P$1,...,]V(G)%. Let C be a cycle onG of length N. We write V(C)5$x1 ,...,xN% and leta1

5x1x2 ,...,a j5xjxj 11 ,...,aN215xN21xN ,aN5xNx1PE(C). By ~3.1!,

bxj 11
52

m~xj 11!

m~xj !
eiA(a j )bxj

, 1< j <N

(xN11[x1). SincebkÞ0 for anyk, we have (21)NeiF(C)51. h

Next, we come back to the caseG5Z2 and we show that, if magnetic fluxes are uniform
away from zero, all elements of kerc* can be obtained by restrictingc* on finite subgraph of
L(Z2). To be precise, letZM

2 5$x5(x1 ,x2)PZ2:uxj u<M , j 51,2% be the finite box of size 2M
11 and let

N5øM51
` ker cZ

M
2*

be the subspace of kerc* . By Theorem 3.1, dim kercZ
M
2* 54M221. We denote byF( f ) the

magnetic flux penetrating the facef PF(Z2).
Theorem 3.2: If uF( f )u>c.0 „f PF(Z2)… for some constant c.0, then N5kerc* .
Theorem 3.2 says we can take family of finitely supported elements as a basis of kec* ,

whose proof essentially relies on the fact that, because of the magnetic flux, 8 is an isolate
of s(HL). We prepare the following notations:

xM5xZ
M
2 , xM

L 5xL(Z
M
2 ) ,

cM5xM
L cxM , cM* 5xMc* xM

L ,

TM
L 5cMcM* 5xM

L cxMc* xM
L .
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We regardcM ~resp.,cM* ,TM
L ) as an operator onl 2(ZM

2 )2 ~resp.l 2
„L(ZM

2 )…2).
Lemma 3.1: For any MPN, cM* cM>d.0 for somed.0.
Proof: By direct computation,

~8cM* cMu!~x!5 (
yPZM

2 ,uy2xu51

„u~x!2eiA8(x,y)u~y!…, xPZM
2 ,

whereA8(x,y)5A(x,y)1p. Then (EM5E(ZM
2 ) @resp.,FM5F(ZM

2 )] is the set of directed edge
~resp., faces! on ZM

2 ),

^u,8cM* cMu&25 (
ePEM

uu„o~e!…2eiA8(e)u„t~e!…u2

> (
f PFM

(
eP] f

uu„o~e!…2eiA8(e)u„t~e!…u2

>2 (
f PFM

S 12cos
F~ f !

4 D (
xP f

uu~x!u252 (
xPZM

2
WF~x!uu~x!u2,

whereWF(x)5(xP] f , f PFM
(12cos@F(f )/4#).0. h

Proof of Theorem 3.2:We suppose that there existswPkerc* such thatiwi251, w'N and
would like to deduce a contradiction. Let

e5minH d

2
,
1

2J , wM5xM
L wP l 2

„L~ZM
2 !…2 .

SincewPkerc* andTM
L wM5xM

L cxMc* xM
L w, iTM

L wMi2,e2 for someMPN. We can assume
iwMi2.12e by takingMPN sufficiently large if necessary. LetT̃M

L 5TM
L u(ker T

M
L )' be the restric-

tion of TM
L on (kerTM

L )'. Since wMP(kercZ
M
2* )',(kerTM

L )', we haveiT̃M
L wMi25iTM

L wMi2

,e2. Suppose (2e,e),r(T̃M
L ). Then

12e,i~ T̃M
L !21T̃M

L wMi2<
1

e
•e25e,

which implies 1,2e and contradicts the definition ofe. Hence (2e,e)ùs(T̃M
L )ÞB and letl

P(2e,e)ùs(T̃M
L ) be an eigenvalue ofT̃M

L with corresponding eigenvectorf P(kerTM
L )',i f i2

51. We then have

TM
L f 5cMcM* f 5l f , ~3.2!

cM* cMcM* f 5lcM* f . ~3.3!

Becausef P(kerTM
L )', lÞ0. Then by~3.2!, we must havecM* f Þ0, which, by~3.3!, contradicts

Lemma 3.1. h

Remark 3.1: Theorem 3.2 can easily be extended to any planar infinite graph G sati
@n( f ) is the number of vertices in fPF(G)] (i) maxfPF(G)n(f ),`; (ii) for some c.0, uF( f )u
.c @resp., uF( f )2pu.c] if n( f ) is even (resp., odd).

In the rest of this section, we show that each component of the spectrum and the corre
ing spectral subspaces are also related in Eq.~1.4!, which holds in general situations. LetH G,H L

be Hilbert spaces and suppose that a bounded operatorc:H G→H L is given withc* :H L→H G

its adjoint. LetHG5c* c,HL5cc* be bounded self-adjoint operators onH G,H L and let
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H ]5H ac
]

% H sc
]

% H pp
] ,

H c
]5H ac

]
% H sc

] , H sing
] 5H sc

]
% H pp

] , ]5G,L,

be the decomposition ofH ] into the spectral subspaces w.r. t.H] (]5G,L). H ac
] ~resp.,

H sc
] ,H pp

] ) stands for the absolutely continuous~resp., singular continuous, pure point! subspace.
We assume that

ker c5$0%, ker c* Þ$0%,

which are true ifH G5 l 2(G),H L5 l 2
„L(G)…2 ,c5cG for an infinite graphG which is not a tree.

We note that, under this assumption,c,c* can be regarded as maps,

c:H G→~ker c* !', c* :~ker c* !'→H G,

with bounded inverses. Our assertion is that each component of spectrum and spectral su
are related as follows.

Theorem 3.3:

~1! sac~HG!5sac~HL!, cH ac
G5H ac

L , H ac
G5c* H ac

L ,

~2! ssc~HG!5ssc~HL!, cH sc
G5H sc

L , H sc
G5c* H sc

L ,

~3! spp~HL!5spp~HG!ø$0%, cH pp
G 5H pp

L ù~ker c* !',

c* „H pp
L ù~ker c* !'…5H pp

G ,

wherespp(H)5$eigenvalues ofH%.
As a preliminary of the proof, we note the following.
Lemma 3.2: Let P](•) be the spectral projection of H] (]5G,L). Then for any APB ~B is

the Borel set inR!,

cPG~A!5PL~A!c, PG~A!c* 5c* PL~A!.

Proof: By definition of HG,HL and the boundedness ofc,cHG
n 5HL

nc. Thence2tHG5e2tHLc
and by taking the Laplace transform, we havec(HG2z)215(HL2z)21c, zPC\R. By Stone’s
formula and regularity of the spectral measure, we have the first assertion. The second
proved similarly. h

Proof of Theorem 3.3:
~1! We show

cPac
G~A!H G5Pac

L ~A!H L, ~3.4!

for anyAPB. Pac
] (•) is the spectral projection of the absolutely continuous part ofH] @Psc

] (•) is
defined in the same way.# sac(HG)5sac(HL) follows from ~3.4!. Let f PPac

G(A)H G. By Lemma
3.2,

^cPG~AùB! f ,F&L5^PL~AùB!c f ,F&L ,

for any FPH L,BPB. ^•,•&] is the inner product onH ] (]5G,L). By the definition off , we
have

^cPac
G~B! f ,F&L5^PL~B!PL~A!c f ,F&L .

LHS50 wheneveruBu50 (u•u is the Lebesgue measure onR!. Letting F5PL(A)c f ,
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^PL~B!PL~A!c f ,PL~A!c f &L50, if uBu50.

SincePL(A)c f 5cPG(A) f 5c f , we havec f PPac
L (A)H L.

Conversely, letGPPac
L (A)H L

„,(kerc* )'
…, f 5c21G. For anyFPH L,BPB, we have

^PL~AùB!G,F&L5^cPG~AùB! f ,F&L .

By the definition ofG, we have

^PL~B!c f ,F&L5^PG~B!PG~A! f ,c* F&G .

LHS50 if uBu50. Substituting F5(c* )21PG(A) f , we have PG(A) f PPac
G(A)H G. Since

cPG(A) f 5G, we showedGPcPac
G(A)H G, proving ~3.4!. H ac

G5c* H ac
L follows similarly.

~2! As in the proof of~1!, we show

cPsc
G~B!H G5Psc

L ~B!H L, ~3.5!

for any BPB which also provesssc(H
G)5ssc(H

L). To provecPsc
G(B)H G,Psc

L (B)H L, let f
PPsc

G(B)H G. Without loss of generality, we can supposef Þ0. Let

msc
f ~• !5^PG~• ! f , f &G5^PG~•ùB! f , f &G

be a singular continuous measure whose supportB85suppmsc
f satisfiesuB8u50. For any A

PB,FPH L,

^c* PL~A\B8!F, f &G5^PG~A\B8!c* F, f &G50.

Substituting F5c f in LHS, we have ^PL(A\B8)c f ,c f &L50. Moreover, substitutingG
5(c* )21f , in the equalitŷ PL(B8)c f ,G&L5^cPG(B8) f ,G&L , we havePL(B8)c f Þ0 implying
c f PH sing

L . On the other hand for anybPB8, PL($b%)c f 5cPG($b%) f 50 implying c f PH c
L .

Thusc f PPsc
L (B)H L.

Conversely, letFPPsc
L (B)H L

„,(kerc* )'
…, FÞ0, f 5c21F and let

msc
F ~• !5^PL~• !F,F&L5^PL~•ùB!F,F&L ,

with suppmsc
F 5B8, uB8u50. For anyAPB,GPH L,

^PG~A\B8! f ,c* G&G5^PL~A\B8!F,G&L50.

Substituting G5(c* )21f , we have ^PG(A\B8) f , f &G50. Since ^PG(B8) f ,c* F&G

5^PL(B8)F,F&LÞ0, PG(B8) f Þ0 so thatf PH sing
G . For bPB8, cPG($b%) f 5PL($b%)F50 and

together with kerc5$0%, we havePG($b%) f 50 which implies f PH sc
G . Thus f PPsc

G(B)H G

proving ~3.5!. H sc
G5c* H sc

L follows similarly.
~3! Let

sp~H]!5$eigenvalues ofH]%, H p
]5$eigenfunctions ofH]%, ]5G,L.

Then it is easy to see that

sp~HL!5sp~HG!ø$0%,

cH p
G5H p

Lù~ker c* !', c* ~H p
Lù~ker c* !'!5H p

G .

By taking closure, we have the desired relations. h
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IV. PROOF OF THEOREM 1.2

To prove Theorem 1.2~2!, we show the Wegner estimate and Lifshitz tail to confirm t
assumption of multiscale analysis. By the relations(cZ

M
2 cZ

M
2* )5s(cZ

M
2* cZ

M
2 )ø$0% and the Weg-

ner estimate proved by Kloppet al.,8 we have the following: there exists a constantC.0 such that

P$dist ~E,s~HL
M !!,e%<CeM2, ~4.1!

for EPI R5@4(12cosc/4),4(12cosc/4)1R#ø@4(11cosc/4)2R,4(11cosc/4)# and for anye
.0, MPN. We used the fact that the operator of rank of orderM does not affect the inequality
~4.1!. Similarly, we can show the Lifshitz tail estimate:

lim sup
E↓E0

log„2 logkL~E!…

log~E2E0!
<21, ~4.2!

whereE054(12cosc/4). Estimates~4.1!, ~4.2! allow us to use the standard multiscale analysis
conclude that, forEPI R and anypPN,

PH sup
eÞ0

uGL
M~E1 i e;0,x!u<eg(M2uxu)J>12CpM 2p

for someg.0,Cp.0 and for any sufficiently largeMPN. GL
M(z;x,y)5^dx ,(HL

M2z)21dy&2 .
Thens(E)50 follows from Theorem 1.1 in Fro¨lich–Spencer.6

To prove Theorem 1.2~2!, let P be the orthogonal projection corresponding to the eigenva
E058. Then (dEl is the resolution of the identity!

se~E0!5e2 (
xPL(Z2)

uxu2EU 1

2 i e
^0uPux&1E

$lÞE0%

1

l2~E01 i e!
^0udElux&U2

5 (
xPL(Z2)

uxu2Eu i ^0uPux&1eG8~E01 i e;0,x!u2,

whereG8(z)5(QHLQ2z)21,Q5I 2P. SinceE0 is an isolated eigenvalue, the matrix eleme
P(x,y) of P decays exponentially asux2yu→` and so isQ. Therefore the matrix element o
QHLQ decays exponentially. Then by a version of the Combes–Thomas method1 and by E0

Pr(QHLQ), G8(E01 i e;0,x) decays exponentially asuxu→` uniformly w.r.t. e.0 and v
PV. Hence

s~E0!5 (
xPL(Z2)

uxu2Eu^0uPux&u2,`.

The rhs of the above equation is called the localization length3 which is nonzero by the covarianc
of P(x,y). Thus Theorem 1.2~2! is proved.

APPENDIX A

In this appendix, we discuss some examples in which the argument by Kloppet al.8 applies.
In all cases presented below, we can prove that the Anderson localization holds on spectra

Example 1@another distribution of random vector potential onZ2]: In this example, we
consider another distribution of the random vector potential onZ2 as described in Fig. 1. Thes
vector potentials$wn% are assumed to be i.i.d. random variables satisfying Assumption A. We
have

s~H !5F4S 12cos
c

4D ,4S 11cos
c

4D G , a.s.
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Example 2@triangular lattice#: For the triangular lattice, we put the random vector potential
diagonal edges, as indicated in the Fig. 2. The HamiltonianH is the same as defined in~1.1!. Then
we have the ‘‘staggered magnetic flux’’ as that onZ2 discussed in Sec. I. Under Assumption A, th
spectrum ofH is given by

s~H !5F6S 12cos
c

3D ,6S 11cos
c

3D G , a.s.

Example 3@hexagonal lattice#: To have the ‘‘staggered magnetic flux’’ on the hexagon
lattice, we put the random vector potential$wn%, as indicated in Fig. 3. Note that there are som
faces with no magnetic fluxes~marked as a3 in Fig. 2!. Under Assumption A, we have

FIG. 1. Square lattice.

FIG. 2. Triangular lattice.
                                                                                                                



e the

t

ce

e
a

-type
such
er.

5000 J. Math. Phys., Vol. 44, No. 11, November 2003 F. Nakano and Y. Nomura

                    
s~H !5F322A5

4
1cos

c

3
,312A5

4
1cos

c

3G , a.s.

Furthermore, by using the same argument as in the proof of Theorem 1.1, we hav
corresponding results for their line graphs@d54 ~resp.,d56, 3) for the square~resp., triangular,
hexagonal! lattice#. That is,

~1! s(HL)5s(H)ø$2d%, a.s., with Anderson localization on spectral edges;
~2! 2d is an eigenvalue ofHL with infinite multiplicity;
~3! kL(E) is discontinuous atE52d: kL(2d)2kL(2d2)512 2/d.

APPENDIX B

In this appendix, we study a model which is different fromHL discussed in Theorem 1.1, bu
for which similar argument works. LetL5$(x1 ,x2):x1PZ,x2561% be the ladder and let

~HLu!~x!5u~x1e1!1u~x2e1!1av~x1!u~x6e2!, uP l 2~L!,x2571.

We suppose$av(x1)%x1PZ satisfy the following conditions.
Assumption B:$av(x1)%x1PZ are real-valued i.i.d. random variables on a probability spa

~V, F, P! such that the common distributionn is of the Bernoulli type:

n5td~p!1~12t !d~q!, tP~0,1!, p,qPR, pÞq.

d(a) is the delta measure supported onaPR. When p51,q521, HL can be regarded as th
Bernoulli random flux model while, ifp50,q51, HL can be regarded as a free Hamiltonian on
random graph.

Theorem 6.1:Under Assumption B, we have the following.

(1) s(HL)5Jø(2J) a.s., where J5@22,2#1$p,q%, which is pure point with exponentially
decaying eigenfunctions.

(2) If upu is sufficiently large, then the density of states~the Lebesgue–Stieltjes measure
corresponding to IDS of HL) has a nontrivial singular component.

Remark 6.1: Although the one-dimensional technique is applicable to HL , the theory of
Lyapunov exponent is complicated in this case.7

The idea of the proof of Theorem 6.1 is to make use of the bipartite structure ofL which
allows us to reduce the problem to that in a one-dimensional Hamiltonian with a Bernoulli
random potential. Then Theorem 6.1 follows from the result of Anderson localization on
Hamiltonians by Carmona–Klein–Martinelli.5 It seems that this argument works only for a ladd

FIG. 3. Hexagonal lattice.
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Proof: For xPZ, we writex15(x,1),x25(x,21)PL. Let

~h„$a~x!%…f !~x!5 f ~x21!1 f ~x11!1a~x! f ~x!, xPZ

be the Hamiltonian onl 2(Z) with potentiala(x). By Theorem 2.1 in Carmona–Klein–Martinelli,5

there existsV0(,V) with P(V0)51 such that forvPV0 , h($av(x)%) has eigenvalues$Ej% j PN

with $Ej% j PN5J and the set of normalized and exponentially decaying eigenfunctions$ f j% j PN is
a C.O.N.S. onl 2(Z). Fix vPV0 and define functionsgj

1 ,gj
2 on L,

gj
1~x6!5 f j~x!,

gj
2~x1!5~21!xf j~x!, gj

2~x2!5~21!x21f j~x!, j PN.

It is straightforward to seeHLgj
15Ejgj

1 , HLgj
252Ejgj

2 , implying Ej ,2Ej are eigenvalues o
HL with exponentially decaying eigenfunctions. It suffices to show that$gj

1 ,gj
2% j PN is C.O.S. on

l 2(L). That they are orthogonal to each other is clear. To see that$gj
1 ,gj

2% j PN is complete, we
decomposeL5AøB, AùB5B where

A5$x2 :x is odd%ø$x1 :x is even%,

B5$x1 :x is odd%ø$x2 :x is even%.

Then we have

gj
1~y!1gj

2~y!5H 2 f j~y1! ~yPA!,

0 ~yPB!,

gj
1~y!2gj

2~y!5H 0 ~yPA!,

2 f j~y1! ~yPB!,

and from which the completeness of$gj
1 ,gj

2% j PN on l 2(L) follows.
To prove Theorem 6.1~2!, let LM5$x5(x1 ,x2)PL:ux1u<M %, ZM5$xPZ:uxu<M % and let

HLM
5HuLM

(5xLM
HxLM

), hM5huZM
be local Hamiltonians onLM , ZM , respectively. We de-

fine the IDS ofHL ,h as

kHL
~E!5 lim

M→`

1

]V~LM !
]$eigenvalues ofHLM

<E%,

kh~E!5 lim
M→`

1

2M11
]$eigenvalues ofhM<E%.

SincelPs(HLM
)⇔lPs(hM) or 2lPs(hM), we have

kHL
~E!5

1

2
kh~E!2

1

2
kh~2E!1

1

2
.

Theorem 6.1~2! then follows from Theorem 2.1 in Carmona-Klein–Martinelli.5 h

APPENDIX C

In this appendix, we consider an application of Theorem 3.1. LetC be the cycle of length
N : V(C)5$1,...,N%, E(C)5$a j5 j ( j 11), a j5( j 11) j :1< j <N% (N11[1) and let

~HCf !~x!5t uax21ue
2 iA(ax21) f ~x21!1t uaxue

iA(ax) f ~x11!1V~x! f ~x!,
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wheret uaxu.0, V(x)PR (x51,...,N, x1N[x). Eigenvalues ofHC are determined by the mag

netic flux onC: F(C)5(x51
N A(ax) (mod 2p ). Let E„F(C)… be the lowest eigenvalue ofHC .

Then the usual diamagnetic inequality says

E„F~C!…>E~F0!, where F05H 0 ~N: even!,

p ~N: odd!.

Note that diamagnetic inequality is reversed on the Hubbard model in some cases becaus
Fermi statistics~e.g., Lieb–Loss9 and references therein!. However, the converse statement, tha
E„F(C)….E(F0) if F(C)ÞF0 is not known to hold in general except the trivial case wheret uaxu

is constant andV(x)[0. Some examples~in the Hubbard model! in which E„F(C)…5E(F0) for
someF(C)ÞF0 are discussed in Nakano.13

Theorem 7.1:Suppose the potential V satisfies

V~x!5t uax21u1t uaxu ,

then E(FC).E(F0)50 if FCÞF0 .
In particular, if $t uaxu% is period 2~i.e., t uaxu5t uax12u), V is required to be constant.
Proof: We identify L(C) with C and regardHC as an operator onl 2

„L(C)…2 . Let
cC* : l 2(L(C))2→ l 2(C) be

~cC* F !~x!5At uax21u (
aPNx(C)

eiA(a)/2F~ uau!, FP l 2
„L~C!…2 ,

with cC its adjoint. ThencCcC* is unitarily equivalent toHC , for they have the same flux onC.
SincecCcC* F50⇔cC* F50, the conclusion follows from Theorem 3.1. h
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Radon–Nikodym derivatives of quantum operations
Maxim Raginskya)

Center for Photonic Communication and Computing, Department of Electrical
and Computer Engineering, Northwestern University, Evanston, Illinois 60208-3118
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Given a completely positive~CP! map T, there is a theorem of the Radon–
Nikodym type@W. B. Arveson, Acta Math.123, 141 ~1969!; V. P. Belavkin and P.
Staszewski, Rep. Math. Phys.24, 49 ~1986!# that completely characterizes all CP
mapsS such thatT2S is also a CP map. This theorem is reviewed, and several
alternative formulations are given along the way. We then use the Radon–Nikodym
formalism to study the structure of order intervals of quantum operations, as well as
a certain one-to-one correspondence between CP maps and positive operators, al-
ready fruitfully exploited in many quantum information-theoretic treatments. We
also comment on how the Radon–Nikodym theorem can be used to derive norm
estimates for differences of CP maps in general, and of quantum operations in
particular. © 2003 American Institute of Physics.@DOI: 10.1063/1.1615697#

I. INTRODUCTION

In the mathematical framework of quantum information theory,1 all admissible devices are
modeled by the so-called quantum operations2,3—that is, completely positive linear contraction
on the algebra of observables of the physical system under consideration. Thus it is of para
importance to have at one’s disposal a good analysis toolkit for completely positive~CP! maps.

There are many useful structure theorems for CP maps. The two best known ones,
Stinespring4 and Kraus,3 arede rigueurin virtually all quantum information-theoretic treatment
These theorems are significant because each of them states that a given map is CP if and
it is expressible in a certain canonical form. However, in many applications we need to co
whole families of CP maps. This necessitates the introduction of comparison tools for CP
e.g., when the family of CP maps in question admits some sort of~partial! order.

Mathematically, the set of all CP maps between two algebras of observables is a cone t
be partially ordered in the following natural way. IfS andT are two CP maps, we writeS<T if
T2S is CP as well. This partial order comes up in, e.g., the problem of distinguishing bet
two known CP maps with givena priori probabilities under the constraint that the avera
probability of error is minimized.5 A typical way of dealing with partially ordered cones is
exhibit a correspondence between the cone’s order and a partial order of some ‘‘simpler’’ o
This is accomplished by means of theorems of the Radon–Nikodym type, as in the case o
partial ordering of positive measures or positive linear functionals. There are a number of R
Nikodym theorems for CP maps~see, e.g., the work of Arveson,6 Belavkin and Staszewski,7

Davies,2 Holevo,8 Ozawa,9 and Parthasarathy10! that differ widely in scope and in generality. Thu
the results of Davies, Ozawa, and Holevo have to do with Radon–Nikodym derivatives o
instruments9 with respect to scalar measures. On the other hand, ideas common to the Arves
Belavkin–Staszewski theorems, with further developments by Parthasarathy, are directly
cable to the partial ordering of CP maps described above, and will therefore be the focus
present article. More specifically, we will demonstrate that certain problems encountered in
tum information-theoretic settings that involve characterization and comparison of CP map
best understood in this Radon–Nikodym framework.

The paper is organized as follows. We summarize the salient facts on CP maps and qu

a!Electronic mail: maxim@ece.northwestern.edu
50030022-2488/2003/44(11)/5003/18/$20.00 © 2003 American Institute of Physics
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operations in Sec. II. In Sec. III we review the Arveson–Belavkin–Staszewski formulation o
Radon–Nikodym theorem for CP maps and state several alternative, but equivalent, versio
Radon–Nikodym machinery is then applied to the following problems: partial ordering of q
tum operations~Sec. IV!, characterization of quantum operations by means of positive oper
~Sec. V!, and estimating norms of differences of CP maps~Sec. VI!. Finally some concluding
remarks are made in Sec. VII.

II. PRELIMINARIES

A. Completely positive maps

1. Definitions

Let A andB be C*-algebras; denote byA1 the cone of positive elements ofA. A linear map
T:A→B is calledpositive if T(A1)#B1. Given somenPN, let Mn be the algebra ofn3n
complex matrices. The mapT is calledn-positiveif the induced mapT^ idn :A^ Mn→B^ Mn is
positive, andcompletely positiveif it is n-positive for allnPN.

One typically considers mapsT:A→B(H), whereA is a C*-algebra with identity, andB~H!
is the algebra of bounded operators on a complex separable Hilbert spaceH. Then it can be
shown4 that T is CP if and only if, for eachnPN,

(
i , j 51

n

^h i uT~Ai* Aj !h j&>0 ;h iPH, AiPA; i 51,...,n. ~1!

2. Theorems of Stinespring and Kraus

A fundamental theorem of Stinespring4 states that, for any normal~i.e., ultraweakly continu-
ous! CP mapT:A→B(H), there exist a Hilbert spaceK, a * -homomorphismp:A→B~K!, and a
bounded operatorV:H→K, such that

T~A!5V* p~A!V ;APA. ~2!

We will refer to any such triple (K,V,p) @or, through a slight abuse of language, to the form~2!
of T# as aStinespring dilationof T. GivenT, one can construct its Stinespring dilation in such
way thatK5p~A!VH, i.e., the set$p(A)VcuAPA,cPH% is total in K. With this additional
property, the Stinespring dilation is unique up to unitary equivalence,11 and is called theminimal
Stinespring dilation.

For the special case of a CP mapT:B(H1)→B(H2), we can always find a Hilbert spaceE and
a bounded operatorV:H2→H1^ E, such that

T~A!5V* ~A^ 1E!V ;APA. ~3!

This follows from the fact that any normal* -representation of the C*-algebraB~H! is unitarily
equivalent to theamplification map A°A^ 1E for some Hilbert spaceE ~Ref. 12, Sec. 2.7!. Any
minimal Stinespring dilation ofT that has the form~3! will be referred to as itscanonical
Stinespring dilation. The canonical Stinespring dilation is likewise unique up to unitary equ
lence.

Another important structure theorem for CP maps is due to Kraus.3 It says that for any CP map
T:A→B(H), with A being a W*-algebra of operators on some Hilbert spaceH8, there exists a
collection of bounded operatorsVx :H→H8, such that

T~A!5(
x

Vx* AVx , ~4!
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where the series converges in the strong operator topology. If dimH5`, the set$Vx% can be
chosen in such a way that its cardinality equals the Hilbertian dimension~i.e., the cardinality of
any complete orthonormal basis! of H.11

The Stinespring dilation~3! and the Kraus form~4! of a CP mapT:B(H1)→B(H2) are
related to one another via the correspondence

Vc5(
x

Vxc ^ ex ;cPH2 , ~5!

where $ex% is an orthonormal system inE. Note that the Kraus operators$Vx% depend on the
choice of$ex%. The adjoint operatorV* :H1^ E→H2 acts on the elementary tensorsc ^ xPH1

^ E as

V* ~c ^ x!5(
x

^exux&Vx* c.

It is not hard to see that whenH1 andH2 are both finite-dimensional, any canonical Stinespr
dilation of T will give rise to at most dimH1•dimH2 Kraus operators. This is so because the
Kraus operators must be linearly independent elements of the vector spaceL(H2 ,H1) of all linear
operators fromH2 into H1 . Furthermore, the number of terms in such a Kraus decompositio
uniquely determined byT.13

3. Partial order of CP maps

The cone CP~A;H! of all normal CP maps ofA into B~H! can be partially ordered in the
following natural fashion. GivenS, TPCP(A;H), we will write S<T if T2SPCP(A;H). Fol-
lowing Belavkin and Staszewski,7 we will say thatS is completely dominated by T. Given a
nonnegative real constantc, we will say thatS is completely c-dominated by Tif S<cT. Using the
condition ~1!, we see thatS<T if and only if

(
i , j 51

n

^h i uS~Ai* Aj !h j&< (
i , j 51

n

^h i uT~Ai* Aj !h j& ;h iPH, AiPA; i 51,...,n

for eachnPN. We will use the notation CP(H1 ,H2) ~note the comma! for the set of all CP maps
of B(H1) into B(H2).

B. Quantum operations

Reversible dynamics of a closed quantum-mechanical system with the Hilbert spaceH is
given, in the Schro¨dinger picture, by the mappingr°UrU* , wherer is a density operator onH
~i.e., Trr51 andr>0!, andU:H→H is a unitary transformation. In the dual Heisenberg pict
same dynamics is described by the mappingA°U* AU for all APB(H). The two descriptions
are equivalent as they yield the same observed statistics, Tr(UrU* A)5Tr(rU* AU).

On the other hand, when the system is open because it is either coupled to an environm
is being subjected to a measurement, its most general time evolution is irreversible. T
captured mathematically by means of aquantum operation,3 i.e., a completely positive norma
linear mapT:B(H)→B(H) with the additional constraintT(1)<1. In terms of the Kraus form,
T(A)5(xVx* AVx , we have the bound(xVx* Vx<1. The corresponding Schro¨dinger-picture map
on density operators,r°T* (r), is defined14 by

Tr@T* ~r!A#5Tr@rT~A!# ;APB~H!,

and can then be extended to the linear span of the density operators, the trace classT~H!. It
follows at once that the mapT* is completely positive and trace decreasing in the sense
Tr T (X)<Tr X for any XPT(H). In order to retain proper normalization for density operato
*
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one usually writes the Schro¨dinger-picture evolution dual toT asr°T* (r)/Tr T* (r). Alterna-
tively, one says that the transformationr°T* (r) succeeds with probabilityTr T* (r); this prob-
ability is equal to unity for all density operatorsr if and only if T is unital, i.e.,T(1)51, so that
T* is trace-preserving. Unital quantum operations are also referred to asquantum channels.1

The Kraus theorem implies that we can write any quantum operationT as a sum ofpure
operations~Ref. 2, Sec. 2.3!, i.e., maps of the formA°X* AX with X* X<1 ~this is equivalent to
X being a contraction,iXi<1 wherei•i is the usual operator norm,iXi5supcPHiXci /ici). The
qualification ‘‘pure’’ is usually interpreted as referring to the fact that, for any pure stateuc&^cu, the
~un-normalized! stateXuc&^cuX* is pure as well.5 However, as we shall see later, it is a dire
consequence of the Radon–Nikodym theorem for CP maps thatT is a pure operation if and only
if all operations completely dominated by it are its nonnegative multiples. This is analogous
case of pure states on a C*-algebraA: a statev on A is pure if and only if all positive linear
functionalsw onA, such thatv2w is positive are nonnegative multiples ofv ~Ref. 15, Sec. 2.3.2!.

Given the canonical Stinespring dilation~3! of a quantum channelT ~in which caseV is an
isometry!, the Schro¨dinger-picture operationT* can be cast in the so-calledancilla form

T* ~r!5TrE U~r ^ uj&^ju!U* , ~6!

where TrE(•) denotes the partial trace overE, jPE is a fixed unit vector, andU is the unitary
extension of the partial isometryÛ from H2^ @ uj&^ju# to H1^ E defined byÛ(c ^ j)5Vc.3,16

~We use@P# to denote the closed subspace corresponding to the orthogonal projectionP.!
Finally, note that the input and output Hilbert spaces do not have to be the same; in ge

quantum operations are completely positive normal linear mapsT:B(H1)→B(H2) with T(1H1
)

<1H2
. The corresponding Schro¨dinger-picture operations are completely positive trace-decrea

mapsT* :T(H2)→T(H1). Most of the discussion in this section carries over to this case, mo
straightforward modifications; however, one must be careful with the ancilla representatio
general Schro¨dinger-picture channelT* . The key caveat here is that the initial ancillary space a
the final ‘‘traced-out’’ space need not be isomorphic. This yet again underscores the advanta
working in the Heisenberg picture.

C. The norm of complete boundedness

In many information-theoretic studies of noisy quantum channels one needs a quant
measure of the ‘‘noisiness’’ of a channel; this is, in fact, a natural departure point for va
definitions of information-carrying capacities of quantum channels.1,17,18 A good candidate for
such a measure is the normiT2 idi? , where the question mark refers to the fact that we have
yet specified a suitable norm.

The choice of the proper norm turns out to be a tricky matter.1 Let A andB be C*-algebras,
and consider a linear mapL: A→B. We cannot adopt the operator norm, defined by

iLi5sup$iL~A!iuAPA,iAi<1%, ~7!

where iAi is the ~unique! C*-norm on A, because the normiL ^ idni of the mapL ^ idn :A
^ Mn→B^ Mn can increase withn even ifL itself is bounded~see Chap. 3 of Ref. 19!. What we
need is a ‘‘stabilized’’ version of~7!. A mapL:A→B is calledcompletely bounded~CB for short!
if there exists some constantC>0 such that all the mapsL ^ idn :A^ Mn→B^ Mn are uniformly
bounded byC, i.e., iL ^ idni<C. The CB normiLicb is defined to be the smallest constantC for
which this holds, i.e.,

iLicb5 sup
nPN

iL ^ idni .
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All CB maps have the property of ‘‘factoring through a Hilbert space,’’ as shown in the follow
key structure theorem~Theorem 3.6 in Ref. 19!, given here in a slightly simplified form suitabl
for our needs.

Theorem II.1: (Haagerup–Paulsen–Wittstock) LetH and K be Hilbert spaces, and le
L:B~H!→B~K! be a CB map. Then there exist a Hilbert spaceE and operators V1 ,V2 :K→H
^ E with iV1iiV2i<iLicb (i•i stands for the operator norm), such that

L~A!5V1* ~A^ 1E!V2 . ~8!

Conversely, any mapL of the form (8) satisfiesiLicb<iV1iiV2i .
Note that the Stinespring and the Haagerup–Paulsen–Wittstock theorems together imp

any CP map is automatically CB. In fact, for a CP mapT, we haveiTicb5iT(1)i .20 Also, the
difference of two CP maps is always CB.

Theorem II.1 suggests an alternative way to define the CB norm of a mapL, namely, as

iLicb5 inf$iV1iiV2i%, ~9!

where the infimum is taken over all possible decompositions ofL in the form~8!. Moreover, the
theorem guarantees that the infimum in~9! is attained.

In quantum information theory one frequently deals with both the operationT:B(H)
→B(K) and its~pre!dual, T* :T(K)→T(H). As we mentioned in Sec. II B,T and T* are con-
nected by the relation Tr@T(A)B#5Tr@AT* (B)#, APB(H), BPT(K). This duality holds also for
any normal CB mapL:B~H!→B~K!, so that whenL is written in the form~8!, we have

L* ~A!5TrE V2AV1* ;APT~K!. ~10!

This motivates the definition of the dual CB norm,

iL* icb* 5 inf$iV1iiV2i%, ~11!

where the infimum is taken over all possible decompositions ofL* in the form ~10!. It is now
clear thatiLicb5iL* icb* for any normal CB mapL, so in the future we will always writeiLicb,
even when working withL* . In fact, the norm~11! was introduced by Kitaev21 under the name
‘‘diamond norm’’ ~Kitaev used the notationiLiL). The equivalence of the diamond norm and t
CB norm has been alluded to in the literature on quantum information theory17 but, to the best of
our knowledge, no proof of the equivalence was ever presented.

The duality relation betweenL:B~H!→B~K! andL* :T(K)→T(H) implies that we can also
write

iLicb5 sup
nPN

iL* ^ idni1 ,

where iL* i15sup$iL* (A)i1uAPT(K),iAi1<1% and iAi15TruAu[TrAA* A is the trace norm
~Sec. VI.6, Ref. 22!. For this purpose we can use the well-known variational characterizatio
the operator norm~Theorem 3.2 in Ref. 23!, namely,

iAi5 sup
BPT~H!
iBi1<1

uTr~AB!u ;APB~H!.

Then for any normal CB mapL:B~H!→B~K! we have
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iLi5 sup
APB~H!
iAi<1

iL~A!i5 sup
BPT~K!
iBi1<1

sup
APB~H!
iAi<1

uTr@L~A!B#u5 sup
BPT~K!
iBi1<1

sup
APB~H!
iAi<1

uTr@AL* ~B!#u

5 sup
BPT~K!
iBi1<1

iL* ~B!i15iL* i1 ,

which also implies thatiL ^ idni5iL* ^ idni1 for all nPN. Taking the supremum of both side
with respect ton does the job. In a nutshell, the CB norm of a map between algebras of bou
operators on Hilbert spaces can be defined through a variational expression involving the o
norm, whereas the CB norm of the corresponding dual map between the trace classes i
mined by a variational expression in the trace norm.

We now summarize the key properties of the CB norm. For any two CB m
L:B~H!→B~H8! andL:B~H8!→B~K8!, any APB(H), and anyBPT(H8), we have the follow-
ing:

~1! iL8+Licb<iL8icbiLicb,
~2! iL ^ L8icb5iLicbiL8icb,
~3! iL(A)i<iLicbiAi ,
~4! iL* (B)i1<iLicbiBi1 .

For proofs see, e.g., the article of Kitaev21 or the monographs of Pisier19 and Paulsen.20

III. THE RADON–NIKODYM THEOREM FOR COMPLETELY POSITIVE MAPS

In this section we review a theorem of the Radon–Nikodym type that allows for a com
classification of all CP mapsS that are completely dominated by a given CP mapT. As we have
already mentioned, this theorem can be distilled from the more general results of Arveso6 and
Belavkin and Staszewski.7 The work of Parthasarathy10 contains further developments, in partic
lar an analogue of the Lebesgue decomposition for CP maps. The idea is to express all mapS that
satisfyS<T in the form related to the~minimal! Stinespring dilation ofT; this ‘‘Stinespring form’’
of the theorem6,7 is stated in Sec. III A, with the proof included in order to keep the pa
self-contained. Then, in Sec. III B, we state and prove two ‘‘Kraus forms’’ of the Radon–Niko
theorem. Finally, some general remarks are given in Sec. III C.

A. The Stinespring form

Before we state and prove the Radon–Nikodym theorem, let us recall a standard pi
notation. Given a C*-algebraA and a*-homomorphismp:A→B~H!, the set$BPB(H)u@A,B#
[AB2BA50,;APp(A)% is called thecommutantof p and is denoted byp~A!8.

Theorem III.1: Consider S,TPCP(A;H), and let(K,V,p) be the minimal Stinespring dila
tion of T. Then S<T if and only if there exists an operator Fˆ Pp(A)8, such that0<F̂<1 and

S~A!5V* p~A!F̂V5V* F̂1/2p~A!F̂1/2V

for all APA. The operator Fˆ is unique in the sense that if S(A)5V* p(A)YV for some Y
Pp(A)8, then Y5F̂. We will refer to this operator Fˆ as the Radon–Nikodym derivative of S with
respect to T and denote it byDTS.

Proof: SupposeS<T, and let (K8,V8,p8) be the minimal Stinespring dilation ofS. Define an
operatorĜ:K→K8 by

Ĝ:p~A!Vh°p8~A!V8h ;APA,hPH,

and extend it to the linear span ofp(A)VH. For any finite linear combinationC
5( i 51

n p(Ai)Vh i we have
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iĜCi25 (
i , j 51

n

^h i uV8* p8~Ai* Aj !V8h j&

5 (
i , j 51

n

^h i uS~Ai* Aj !h j&

< (
i , j 51

n

^h i uT~Ai* Aj !h j&

5 (
i , j 51

n

^h i uV* p~Ai* Aj !Vh j&5iCi2.

Thus Ĝ is a densely defined contraction, and therefore extends to a contraction fromK into K8.
We will denote this extension also byĜ. For the adjoint mapĜ* , we have

^huV* Ĝ* p8~A!V8j&5^ĜVhup8~A!V8j&5^V8hup8~A!V8j&5^huV8* p8~A!V8j&[^huS~A!j&

for all h, jPH andAPA, which implies thatV* Ĝ* p8(A)V8h5S(A)h.
The mapĜ intertwines the representationsp andp8, i.e., Ĝp(A)5p8(A)Ĝ for any APA.

Indeed, for allA, BPA andhPH we have

Ĝp~A!p~B!Vh5Ĝp~AB!Vh5p8~AB!V8h5p8~A!p8~B!V8h5p8~A!Ĝp~B!Vh,

and the desired statement follows because of the minimality of the Stinespring dilation (K,V,p).
Taking adjoints, we also obtainp(A)Ĝ* 5Ĝ* p8(A). Letting F̂5Ĝ* Ĝ, we see that

F̂p~A!5Ĝ* Ĝp~A!5Ĝ* p8~A!Ĝ5p~A!Ĝ* Ĝ5p~A!F̂,

which shows thatF̂Pp(A)8. Finally, for all APA andhPH we have

V* F̂p~A!Vh5V* Ĝ* Ĝp~A!Vh5V* Ĝ* p8~A!V8h5S~A!h,

thus S(A)5V* F̂p(A)V5V* p(A)F̂V5V* F̂1/2p(A)F̂1/2V. The uniqueness ofF̂ follows from
the minimality of (K8,V8,p8).

The converse is clear. j

For the special caseS,TPCP(H1 ,H2) we can use the canonical Stinespring dilation~3! and
the fact that the commutant of the algebraB(H1) ^ C1E is isomorphic toC1H1

^ B(E) ~Theorem
IV.5.9 in Ref. 24!, to deduce the following.

Corollary III.2: Let S,TPCP(H1 ,H2), and let T(A)5V* (A^ 1E)V be the canonical Stine
spring dilation of T. Then S<T if and only if there exists a positive contraction FPB(E), such
that S(A)5V* (A^ F)V for all APB(H1).

As we already mentioned, the Radon–Nikodym theorem allows one to fully appreciat
term ‘‘pure operation.’’ LetH1 andH2 be Hilbert spaces, and consider the mapT(A)5X* AX,
whereX:H2→H1 is a contraction. Clearly,X* AX is the canonical Stinespring dilation ofT so, by
Theorem III.1, anySPCP(H1 ,H2) that satisfiesS<T must be of the formlX* AX for some
lP@0,1#.

Theorem III.1 can also be used to characterize completely all ways to write a givT
PCP(A;H) as a finite sum( iTi , with TiPCP(A;H) for all i. It is actually the resulting theorem
stated below, that is referred to as the ‘‘Radon–Nikodym theorem for CP maps’’ in the qua
information literature.18

Theorem III.3: Consider a map TPCP(A;H) with the canonical Stinespring dilation
(K,V,p). For any finite decomposition T5( iTi with TiPCP(A;H) there exist unique positive
operators F̂iPp(A)8 that satisfy( i F̂ i51K , such that Ti(A)5V* p(A)F̂ iV.
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Proof: Apply Theorem III.1 separately to each pair (Ti ,T), and letF̂ i5DTTi . Then T(A)
5( iV* p(A)F̂ iV5V* p(A)V, and( i F̂ i51K by the uniqueness part of Theorem III.1. j

Remark:The decompositionT5( iTi is a particularly simple instance of a CP instrument.2 As
such, it is not difficult to extract Theorem III.3 from more general results of Ozawa.9 h

B. The Kraus form

Theorem III.1 can be restated in a simple way in terms of the Kraus form of a CP ma
order to do this, we need some additional machinery~Sec. II.15 in Ref. 25!.

Let X be a set. Any functionK:X3X→C is called akernel on X. The setK(X) of all kernels
on X is a vector space, with the corresponding algebraic operations defined pointwise onX3X.
We say that a kernelKPK(X) is positive-definite, and writeK>0, if for eachnPN we have

(
i , j 51

n

cicjK~xi ,xj !>0 ;xiPX,ciPC; i 51,...,n.

Given a pair of kernelsK,K8PK(X), we will write K<K8 if K82K is positive-definite. Note tha
a positive-definite kernel is automatically Hermitian, i.e.,K(x,y)5K(y,x).

According to the fundamental theorem of Kolmogorov, for any positive-definite kerneK
PK(X) there exist a Hilbert spaceHK and a mapvK :X→HK such that ^vK(x)uvK(y)&
5K(x,y) for all x,yPX, and the set$vK(x)uxPX% is total inHK . The pair (HK ,vK) is referred
to as theKolmogorov decompositionof K and is unique up to unitary equivalence.

After these preparations, we may state our first result.
Theorem III.4: Consider two maps S,TPCP(H1 ,H2). Let $Vx%xPX be a Kraus decomposi

tion of T induced by the canonical Stinespring dilation T(A)5V* (A^ 1E)V, as prescribed in (5).
Then S<T if and only if

S~A!5 (
x,yPX

K~x,y!Vx* AVy

for some positive-definite kernel KPK(X) with K<I , where I is the Kronecker kernel I(x,y)
[dxy .

Proof: SupposeS<T. By Corollary III.2, S(A)5V* (A^ F)V for some positive contraction
FPB(E). Let $ex%xPX be the orthonormal system inE, determined byV and$Vx% from ~5!. Then
for any hPH2 we have

S~A!h5V* ~A^ F !Vh5V* S (
yPX

AVyh ^ FeyD 5 (
x,yPX

^exuFey&Vx* AVyh.

Define the kernelKPK(X) by settingK(x,y)ª^exuFey&. Then 0<F<1 implies that 0<K<I .
Conversely, suppose we are given

T~A!5 (
xPX

Vx* AVx

and

S~A!5 (
x,yPX

K~x,y!Vx* AVy

for someKPK(X) such that 0<K<I . Let (HK ,vK) be the Kolmogorov decomposition ofK, and
let fin(X) be the set of all finite subsets ofX. Define an operatorG:E→HK by
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G: (
xPX0

cxex° (
xPX0

cxvK~x! ;cxPC, X0Pfin~X!.

It is easy to see that, for anyX0Pfin(X),

I (
xPX0

cxexI 2

5 (
xPX0

ucxu250

implies cx50 for all xPX0 , and consequently

IGS (
xPX0

cxexD I 2

5 (
x,yPX0

cxcyK~x,y!< (
xPX0

ucxu250,

where the last equality above follows becauseK<I . Thus G extends to a well-defined linea
operator onE, which we will also denote byG. Let F5G* G. Then ^exuFey&5^vK(x)uvK(y)&
5K(x,y), and 0<K<I implies that 0<F<1E . Thus, for allAPB(H1) andhPH2 we have

S~A!h5(
x,y

K~x,y!Vx* AVy5 (
x,yPX

^exuFey&Vx* AVy5V* ~A^ F !V,

so thatS<T by Corollary III.2. j

Remarks: ~1! When the set$Vx% is finite, Theorem III.4 says thatS<T for T(A)
5(xVx* AVx if and only if S(A)5(x,yMxyVx* AVy for some matrixM5@Mxy# with 0<M<1.

~2! Since we deal only with separable Hilbert spaces, the index setX is at most countably
infinite. h

Another Kraus form of the Radon–Nikodym theorem can be proved directly, without reco
to the theory of positive-definite kernels.

Theorem III.5: Consider two maps S,TPCP(H1 ,H2). Then S<T if and only if there exist a
Kraus decomposition T(A)5(xWx* AWx , induced by the canonical Stinespring dilation of T, a
a set$lxulxP@0,1#%, such that S(A)5(xlxWx* AWx .

Proof: SupposeS<T. Let T(A)5V* (A^ 1E)V be the canonical Stinespring dilation ofT.
Then Corollary III.2 says thatS(A)5V* (A^ F)V for some positive contractionFPB(E). Write
down the spectral decompositionF5(xlxufx&^fxu, so thatlxP@0,1# and ^fxufy&5dxy . Let
$Wx% be the Kraus decomposition ofT determined from~5! by V and $fx%. Then for anyh
PH2 we have

S~A!h5V* ~A^ F !Vh5V* S (
y

lyAWyh ^ fyD 5(
x,y

ly^fxufy&Wx* AWyh5(
x

lxWx* AWx .

The converse follows readily from the fact that the mapA°(x(12lx)Wx* AWx is CP for any
choice of$Wx% and$lx% with lxP@0,1#. j

C. General remarks

Before we go on, we would like to pause and make some general comments abo
significance of the Radon–Nikodym theorem for CP maps at large.

The real power of this theorem lies in the fact that it contains the ‘‘traditional’’ forms of
Radon–Nikodym theorem as special cases. In order to see this, we will need the following
~see Corollary IV.3.5 and Proposition IV.3.9 in Ref. 24!: a positive mapT from a C*-algebraA to
another C*-algebraB is automatically completely positive whenever at least one ofA andB is
Abelian.

With this in mind, let us observe that any positive linear functionalw on a C*-algebraA is a
positive map fromA to C, and therefore is CP. When we apply the Stinespring theorem tow, we
simply recover the GNS representations~H,p,V! of A induced byw, whereH is the Hilbert space
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of the representation,p is a* -isomorphism betweenA and a suitable C*-subalgebra ofB~H!, and
VPH is cyclic for p, i.e., H5p(A)V. Of course, we have thenw(A)5^Vup(A)V& for all A
PA.

Consider first the Abelian case. LetX be a compact Hausdorff space, and letA be the
commutative C*-algebraC(X) of all complex-valued continuous functions onX. Let w be a
positive linear functional onC(X). By the Riesz–Markov theorem@see Theorem IV.14~Ref. 22!#,
there exists a unique Baire measurem on X such thatw( f )5*Xf (x)dm(x), ; f PC(X). If w is a
state@i.e., w(1X)51 where1X is, of course, the function onX that is identically equal to 1#, then
m is a probability measure. The GNS construction yields the cyclic representation~H,p,V!, where
H5L2(X,dm), @p( f )g#(x)5 f (x)g(x), andV51X , such that

w~ f !5^Vup~ f !V&5E
X

f ~x!dm~x!.

This is the minimal Stinespring dilation of the CP mapw:C(X)→C; more precisely, we have th
isometryV:C→L2(X,dm) defined byVc5cV, so thatw( f )5V* p( f )V. Now suppose we are
given another positive linear functionalh on C(X) such thath<w, i.e., h( f )<w( f ) for every
non-negativef PC(X). Then Theorem III.1 states that there exists a non-negative functior
Pp(C(X))8#L`(X,dm) such thath( f )5V* p( f )rV, i.e.,

h~ f !5^Vurp~ f !V&5E
X
r~x! f ~x!dm~x!.

Again, by the Riesz–Markov theorem, there exists a unique Baire measuren on X such that
h( f )5*Xf (x)dn(x). It is easy to see that the functionr is precisely the measure-theoret
Radon–Nikodym derivative dn/dm.

The noncommutative case is dealt with in a similar manner. Namely, ifw is a state on a unita
C*-algebraA that admits the cyclic representation~H,p,V!, then any positive linear functionalh
on A such thath<w has the formh(A)5^Vup(A)FV& for a unique positive contractionF
Pp(A)8. This is, of course, the familiar Radon–Nikodym theorem for states on C*-algebras~see
Theorem 2.3.19 in Ref. 15!.

IV. PARTIAL ORDERING OF QUANTUM OPERATIONS

The first series of problems we tackle by means of the Radon–Nikodym theorems of S
is connected to the partial ordering of quantum operations with respect to the relation of com
domination, defined in Sec. II.

As mentioned already, all quantum operationsT:B(H1)→B(H2) must satisfyT(1H1
)<1H2

. It
turns out that this normalization condition imposes severe restrictions on the structure o
order intervals. In particular, as shown in the following Proposition, no nontrivial differenc
quantum channels can be a CP map.

Proposition IV.1: Let S,TPCP(H1 ,H2) be quantum channels. Then T2SPCP(H1 ,H2) if
and only if S5T.

Proof: SupposeT2SPCP(H1 ,H2), or, equivalently,S<T. Then Theorem III.5 implies tha
there exists a Kraus decompositionT(A)5(xWx* AWx such thatS(A)5(xlxWx* AWx with 0
<lx<1. Because bothS and T are channels,S(1)5T(1)51, which implies that (x(1
2lx)Wx* Wx50. Since each term in this sum is a positive operator, the only possibility is
lx51 for all x, or S5T. The converse is obvious. j

Remark:To obtain an even simpler proof of this proposition, we can use the fact that, for
mapT, iTicb5iT(1)i ~cf. Sec. II C!. Indeed, ifSandT are channels, thenT(1)5S(1)51, and the
assumption thatT2S is CP yieldsiT2Sicb5iT(1)2S(1)i50, orS5T. In fact, the same method
shows that ifS andT are two CP maps withS(1)5T(1), thenS2T cannot be a CP map. h
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The only possible order relation between a pair of quantum channelsS andT is that, say,T
completelyc-dominatesS for somec.1. The latter condition follows from Proposition IV.1 an
from the fact thatS<cT implies 1<c1, which is ~trivially ! possible only ifc>1. In fact, as
pointed out by Parthasarathy,10 there are pairs of channelsT, T8 for which there exist constantsc,
c8.1 such thatT8<cT and T<c8T8. To show this, letS1 and S2 be arbitrary channels, an
define T5lS11(12l)S2 and T85l8S11(12l8)S2 , where 0,l, l8,1. Then, settingc
5@l(12l)#21 andc85@l8(12l8)#21, we see that indeedT8<cT andT<c8T8. In Parthasa-
rathy’s terminology,10 T andT8 areuniformly equivalent; this is writtenT[uT8, and is an equiva-
lence relation.

The next problem we consider has to do with an alternative way to~partially! order quantum
operations by means of orthogonal projections on a suitably enlarged Hilbert space. To this e
need to recall some facts about the so-calledpositive operator-valued measures~POVM’s for
short! ~Sec. 3.1 in Ref. 2!. Let X be a topological space,SX the s-algebra of all Borel subsets o
X, andH a Hilbert space. A mapM :SX→B(H) is a POVM on~the Borel subsets of! X if it has
the following properties:

~1! ~normalization! M (B)50 andM (X)51,
~2! ~positivity! M (D)>0 for all DPSX ,
~3! ~s-additivity! if $D i% is a countable collection of pairwise disjoint Borel sets inX, then

M (ø iD i)5( iM (D i), where the sum converges in the weak operator topology.

A POVM that satisfies an additional requirement that eachM (D) is an orthogonal projection
i.e., M (D)25M (D), is called aprojection-valued measure~PVM!. The resulting resolution of
identity is an orthogonal one. The celebrated Naimark dilation theorem~see Theorem 9.3.2 in Ref
2! says that for every POVMM :SX→B(H) there exist a Hilbert spaceK, a unitaryU:H→K, a
Hilbert spaceK̃ containingK as a closed subspace, and a PVME:SX→B(K̃), such that, for any
DPSX , M (D)5U* PE(D)PU, whereP is the orthogonal projection fromK̃ onto K. Further-
more, we can define the partial isometryV:H→K̃ ~with the final projectionP! by V5PU, so that
M (D)5V* E(D)V.26

With these lengthy preliminaries out of the way, we can proceed to state and prove our
Theorem IV.2: Consider quantum operations TiPCP(H1 ,H2), i 51,...,n, that satisfy T1

<T2<¯<Tn . Then there exist a Hilbert spaceH, an isometry V:H2→H1^ H, and orthogonal
projectionsP iPB(H) such that

(1) Ti(A)5V* (A^ P i)V, 1< i<n,
(2) P1<P2<¯<Pn .

Conversely, if items 1 and 2 above hold for quantum operations TiPCP(H1 ,H2) with some
H, V, and $P i%, then T1<T2<¯<Tn .

Proof: Suppose that$Ti% satisfy the hypothesis of the theorem. Without loss of generality
may takeTn to be a channel, for if not, then we can append to$Ti% i 51

n the channelTn11(A)
5M* AM1Tn(A), whereM :H2→H1 is an operator defined, up to a unitary, throughM* M51
2Tn(1), so that the resulting collection$Ti% i 51

n11 still satisfiesT1<T2<¯<Tn11 .
Define quantum operationsSi , i 51,...,n, by S15T1 and Si5Ti2Ti 21 , 1, i<n. Then Tk

5( i 51
k Si , 1<k<n. If Tn(A)5W* (A^ 1E)W is the canonical Stinespring dilation ofTn , Theo-

rem III.3 states that there exist positive operatorsFiPB(E) such thatSi(A)5W* (A^ Fi)W, and
( iFi51E . By the Naimark dilation theorem there exist a Hilbert spaceH, an isometryṼ:E
→H, and a PVM $Ei% i 51

n , EiPB(H), such thatFi5Ṽ* EiṼ, 1< i<n. Thus we can write
Si(A)5V* (A^ Ei)V, where the isometryV:H2→H1^ H is defined byV5(1H1

^ Ṽ)W.

For eachk, 1<k<n, let Pk5( i 51
k Ei . Since$Ei% is an orthogonal resolution of identity, eac

Pk is an orthogonal projection, andPk<P l for k< l by construction. Furthermore,

Tk~A!5(
i 51

k

Si~A!5(
i 51

k

V* ~A^ Ei !V5V* ~A^ Pk!V, 1<k<n,
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and the forward direction is proved. The proof of the reverse direction is straightforward.j

It is pertinent to remark that there are situations when the correspondence between P
with values in a suitable Hilbert space and decompositions of a given quantum channelT into
completely positive summands is not merely a nice mathematical device, but in fact ac
direct physical significance. For instance, Gregoratti and Werner27 have exploited this correspon
dence in a scheme for recovery of classical and quantum information from noise by mak
generalized quantum measurement~described by a POVM28! on the ‘‘environment’’ Hilbert space
of a noisy quantum channel@the Hilbert spaceE in the ‘‘ancilla’’ form ~6!#.

V. CHARACTERIZATION OF QUANTUM OPERATIONS BY POSITIVE OPERATORS

The correspondence between linear maps from a matrix algebraMm into a matrix algebra
Mn and linear functionals onMn^ Mm ~or, by the Riesz lemma, linear operators onCn^ Cm) has
been treated extensively in a variety of forms in the mathematical literature~see, e.g., Refs. 13
29–32 for a sampling of results related to positive and completely positive maps!. More recently,
this correspondence has been exploited fruitfully in some quantum information-theoretic con
such as optimal cloning maps,33 optimal teleportation protocols,34 separability criteria for en-
tangled states,35 or entanglement generation.36,37 In this section we will show that the one-to-on
correspondence between positive operators onCn^ Cm and CP mapsT:Mm→Mn ~known as the
‘‘Jamiolkowski isomorphism’’ in the quantum information community! can be derived using the
Radon–Nikodym machinery. We also comment on how this can be accomplished in the in
dimensional case with unbounded operators.

A. The Jamiolkowski isomorphism

In this section we consider quantum operationsT:B(H)→B(K) in the case of dimH5m
,` and dimK5n,`. Let $ei% i 51

m and$ f m%m51
n be fixed orthonormal bases ofH andK. ~We will

use italic indices for the ‘‘input’’ Hilbert space, and greek ones for the ‘‘output’’ Hilbert space.! Let
t be the tracial state onMm , t(A)5m21 Tr A, and consider the channelF(A)ªt(A)1K . It is
convenient to writeF in the Krans form

F~A!ª(
i 51

m

(
m51

n

Vim* AVim ,

whereVim5(1/Am)uei&^ f mu. Note that thesemn Kraus operators are linearly independent, wh
agrees with the minimality requirement. SettingE5K^H, we obtain the canonical Stinesprin
dilation F(A)5VF* (A^ 1E)VF , where

VFc5(
i 51

m

(
m51

n

Vimc ^ f m ^ ei .

Whenever we need to specify the dimensionsm andn explicitly, we will write Fm,n instead ofF,
Vm,n instead ofVF , etc.

We must emphasize again that the main result of this section, stated as Theorem V.1 be
not new. Indeed, it has appeared in numerous papers on quantum information theory.33–37 Our
contribution here is to present a new proof of this result that clearly exhibits the Jamiolko
isomorphism in the Radon–Nikodym framework.

Theorem V.1: In the notation described above, any CP map T:B(H)→B(K) is completely
m2-dominated byF. There exists a unique operator FTPB(E) with 0<FT<m21E , such that
DFT51H^ FT , i.e., T(A)5VF* (A^ FT)VF . The action of T on any APB(H) can also be ex-
pressed in terms of FT only, namely, as

T~A!5
1

m
TrH@~1K^ AT!FT#, ~12!
                                                                                                                



er

by

5015J. Math. Phys., Vol. 44, No. 11, November 2003 Radon–Nikodym derivatives of quantum operations

                    
where AT denotes the matrix transpose of A in the basis$ei%. Furthermore, T is a quantum
operation if and only ifTrH FT<m1K .

Proof: DefineC5(1/Am)( i 51
m ei ^ ei , and letHT5T^ id(uC&^Cu). The matrix elements of

HT are given explicitly by

^ f m ^ ei uHT~ f n ^ ej !&5
1

m
^ f muT~ uei&^ej u! f n&.

For all APB(H) andcPK we have

VF* ~A^ HT!VFc5
1

m (
i , j 51

m

(
m,n51

n

^ei uAej&^ f m ^ ei uHT~ f n ^ ej !&u f m&^ f nuc&

5
1

m2 (
m,n51

n

^ei uAej&^ f muT~ uei&^ej u! f n&u f m&^ f nuc&

[
1

m2
T~A!c,

so thatT<m2F and1H^ m2HT5DFT by Corollary III.2. LetFT5m2HT . From the uniqueness
of the Radon–Nikodym derivativeDFT it follows that FT determinesT uniquely.

To prove Eq.~12!, we need the following useful identity.
Lemma V.2: For all APB(H) and BPB(E), we have

VF* ~A^ B!VF5
1

m
TrH@~1K^ AT!B#.

Proof: Proceed by direct computation; for an arbitrarycPK, we have

TrH@~1K^ AT!B#c5S TrH (
i , j ,k51

m

(
m,n51

n

^ej uAei&^ f m ^ ej uB~ f n ^ ek!&u f m&^ f nu ^ uei&^eku Dc

5 (
i , j 51

m

(
m,n51

n

^ej uAei&^ f m ^ ej uB~ f n ^ ei !&u f m&^ f nuc&

[mVF* ~A^ B!VFc,

and the lemma is proved. j

This establishes Eq.~12!. Finally, if T is a quantum operation, thenT(1H)<1K . From Lemma
V.2 it follows that T(1K)5(1/m)TrH FT , that is, TrH FT<m1. Conversely, ifT(1H)5VF* (1K
^ FT)VF<1K , we have TrH FT<m1K by Lemma V.2. The theorem is proved. j

Let T(A)5V* (A^ 1F)V be the canonical Stinespring dilation ofT. Then it is easily shown
that dimH•dimF5rankDFT, that is dimF5rankFT . Indeed, Theorems III.5 and V.1 togeth
imply that for any CP mapT:Mm→Mn there exist operators$Ki

T% i 51
N from Mn into Mm , such

thatFm,n(A)5( i 51
N (Ki

T)* AKi
T andT(A)5( i 51

N l i(Ki
T)* AKi

T , where$l i% are the~non-negative!
eigenvalues ofFT . The Kraus operators$Ki

T% i 51
N are linearly independent, and are determined

the isometryVF and the eigenvectors$j i% i 51
N of FT throughVFc5( i 51

N Vi
Tc ^ j i . ThereforeN

[mn. The number of nonzero terms in the corresponding Kraus decomposition ofT is equal to
rankFT , so that dimF5rankFT .

Last we would like to show how the Radon–Nikodym derivativeDFT transforms under
composition of CP maps. Consider two CP mapsT1 :Mm→Mn andT2 :Mn→Md . According to
Theorem V.1 we can write
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T1~A!5Vm,n* ~A^ F1!Vm,n , T2~B!5Vn,d* ~B^ F2!Vn,d

for uniquely determined positive operatorsF1PMn^ Mm and F2 on Md^ Mn . For any A
PMm , we have

T2+T1~A!5Vn,d* ~T1~A! ^ F2!Vn,d

5Vn,d* ~Vm,n* ~A^ F1!Vm,n^ F2!Vn,d

5Vn,d* ~Vm,n* ^ 1d3n!~A^ F1^ F2!~Vm,n^ 1d3n!Vn,d ,

where 1d3n denotes the identity operator on the dilation spaceCd
^ Cn of T2 . Let $ei% i 51

m ,
$ f m%m51

n , and $fx%x51
d be orthonormal bases ofCm, Cn, and Cd, respectively. Then for anyA

PMm and anycPCd we have

T2+T1~A!c

5
1

mn (
i , j 51

m

(
m,n51

n

(
x,y51

d

^ei uAej&ufx&^fyuc&^ f m ^ ei uF1~ f n ^ ej !&^fx^ f muF2~fy^ f n!&

5
1

m (
i , j 51

m

(
x,y51

d S 1

n (
m,n51

n

^fx^ f muF2~fy^ f n!&^ f m ^ ei uF1~ f n ^ ej !& D ^ei uAej&ufx&^fyuc&.

Let V5(1/An)(m51
n f m ^ f m . Define an operatorF21 on Cd

^ Cm by

^fx^ ei uF21~fy^ ej !&5^fx^ V ^ ei u~F2^ F1!~fy^ V ^ ej !&.

Then it is evident from the calculations above that we can writeT2+T1(A)5Vm,d* (A
^ F21)Vm,d . By the uniqueness of the Radon–Nikodym derivative,1m^ F215DFm,d

(T2+T1). De-

fining the conditional expectationMV from Md^ Mn
^ 2

^ Mm onto Md^ Mm by

MV~A^ B^ C!5^VuBV&~A^ C! ;APMd , BPMn
^ 2, CPMm ,

we can write more succinctlyF215MV(F2^ F1).

B. Generalization to arbitrary faithful states

The construction described in Sec. V A also goes through if, instead of the tracial statet, we
take an arbitraryfaithful statev. As is well-known, for any such state there exist an orthonorm
basis$ei% i 51

m and a probability distribution$pi% i 51
m with pi.0, such thatv(A)5( i 51

m pi^ei uAei&
for all APB(H). Furthermore,v(A)5^Vu(A^ 1)V&, where V5( i 51

m Apiei ^ ei . ~This is, of
course, the canonical Stinespring dilation of the CP mapv by means of the GNS construction!
Let DvPB(H) denote the density operator corresponding tov, i.e., v(A)5Tr(DvA). Owing to
the faithfulness ofv, Dv is invertible.

Fix an orthonormal basis$ f m%m51
n of K, and define the channelFv :B(H)→B(K) through

Fv(A)5v(A)1K . The Kraus form ofFv is given byFv(A)5( i 51
m (m51

n Vim* AVim , whereVim

5Api uei&^ f mu, and the canonical Stinespring dilation byFv(A)5Vv* (A^ 1E)Vv , where again
E.K^H andVvc5( i 51

m (m51
n Vimc ^ f m ^ ei .

Consider the positive operatorFT,v5T^ id((Dv
21

^ 1)uV&^Vu(Dv
21

^ 1)), whose matrix ele-
ments are given bŷ f m ^ ei uFT,v( f n ^ ej )&5(1/Apipj )^ f muT(uei&^ej u) f n&. For all APB(H) and
cPK we then have
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Vv* ~A^ FT,v!Vvc5 (
i , j 51

m

(
m,n51

n

Apipj^ei uAej&^ f m ^ ei uFT,w~ f n ^ ej !&u f m&^ f nuc&

5 (
i , j 51

m

(
m,n51

n

^ei uAej&^ f muT~ uei&^ej u! f n&u f m&^ f nuc&[T~A!c,

so thatT<iFT,viFv , with iFT,vi<iDv
21i2iTicb.

Consequently, for any faithful statev on B~H! and any CP mapT:B(H)→B(K) there exists
a positive constantc such thatT is completelyc-dominated byFv ; thusT is uniquely determined
by the Radon–Nikodym derivativeDFv

T. Note that in the special case ofv being the tracial state
on Mm we simply recover the results of the preceding section.

C. Generalization to infinite dimensions

In the form stated above, both the Jamiolkowski isomorphism and its generalization to
trary faithful states are valid only for CP maps between finite-dimensional algebras. Howev
many problems of quantum information theory it is necessary to consider CP maps be
algebras of operators on infinite-dimensional Hilbert spaces.

Consider a normal CP mapT:B(H)→B(K), whereH andK are separable Hilbert spaces. F
a normal faithful statev on B~H!; then there exist a complete orthonormal basis$ei% of H and a
probability distribution$pi%, pi.0, such that, for anyAPB(H), v(A)5^Vu(A^ 1)V& with V
5( iApiei ^ ei . Let Dv denote the density operator corresponding tov. BecauseH is infinite-
dimensional, the inverse ofDv is an unbounded operator defined on a dense domain, namel
linear span of$ei%. Therefore the approach taken in the preceding section will not work; inst
we will characterizeT through the Radon–Nikodym derivative of another CP mapTv ~dependent
on bothT andv! with respect to the channelFv5v(A)1K .

Choosing a complete orthonormal basis$ f m% of K, we can writeFv in the Kraus form
Fv(A)5( i ,mVim* AVim , Vim5Api uei&^ f mu, where the series converges in the strong operator
pology. We also have the Stinespring dilation viaFv(A)5Vv* (A^ 1E)Vv , whereE.K^H and
Vvc5( i ,mVimc ^ f m ^ ei . To see that this Stinespring dilation is canonical, letA
5(1/Apk)uej&^eku andc5 f n . Thus

~A^ 1E!Vvc5ej ^ f n ^ ek ,

which shows that the set$(A^ 1E)VvcuAPB(H),cPK% is total in H^E.
Let FT,v5T^ id(uV&^Vu); the matrix elements are

^ f m ^ ei uFT,v~ f n ^ ej !&5Apipj^ f muT~ uei&^ej u! f n&.

Then for allAPB(H) andcPK we can write

Vv* ~A^ FT,v!Vvc5(
i ,m

(
j ,n

Apipj^ f m ^ ei uFT,v~ f n ^ ej !&^ei uAej&u f m&^ f nuc&

5(
i ,m

(
j ,n

pipj^ei uAej&^ f muT~ uei&^ej u! f n&u f m&^ f nuc&[T~DvADv!c.

We will write Tv(A) for T(DvADv). From the Radon–Nikodym theorem it follows thatTv is
completely dominated byFv , and thatDFv

Tv51H^ FT,v . We can determine the action ofT on
the ‘‘matrix units’’ uei&^ej u via T(uei&^ej u)5(pipj )

21Tv(uei&^ej u).
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VI. NORM ESTIMATES FOR DIFFERENCES OF QUANTUM OPERATIONS

In this section we will demonstrate the use of the Radon–Nikodym theorem for CP ma
deriving several useful estimates for CB norms of differences of quantum channels.

Consider two CP mapsT1 ,T2 :B(H)→B(K). Suppose that there exists a CP mapT:B(H)
→B(K), such thatTi<T, i 51, 2, and letT(A)5V* (A^ 1E)V be the canonical Stinesprin
dilation of T. By the Radon–Nikodym theorem, there exist positive contractionsF1 ,F2PB(E)
such thatTi(A)5V* (A^ Fi)V, i 51, 2. Then

~T12T2!~A!5T1~A!2T2~A!5V* ~A^ ~F12F2!!V,

and the Haagerup–Paulsen–Wittstock theorem immediately implies that

iT12T2icb<iVii~F12F2!Vi<iVi2iF12F2i .

If T is a quantum channel,V is an isometry, so thatiVi51. Therefore we get

iT12T2icb<iF12F2i . ~13!

In particular, if S<T, then iS2Ticb<i12Fi , where 1^ F is the Radon–Nikodym derivative
DTS.

Given two CP mapsT1 ,T2 :B(H)→B(K) with ~not necessarily minimal! Stinespring dilations
Ti(A)5Vi* (A^ 1E)Vi , i 51,2, on the common dilation spaceE, the norm iT12T2icb can be
bounded from above in terms ofV1 andV2 . Indeed, denoting byp the *-homomorphismB(H)
{A°A^ 1E , we can use the Haagerup–Paulsen–Wittstock theorem to obtain

iT12T2icb5iV1* +p+V12V2* +p+V2icb

<iV1* +p+V12V1* +p+V2icb1iV1* +p+V22V2* +p+V2icb

<~ iV1i1iV2i !iV12V2i . ~14!

If T1 andT2 are channels, thenV1 andV2 are isometries. Consequently,iV1i5iV2i51, and the
bound ~14! becomesiT12T2icb<2iV12V2i . As the lemma below shows, when the Hilbe
spacesH andK are finite-dimensional, one can find a common dilation spaceE and mapsV1 ,
V2 :K→H^ E, such thatiT12T2icb can be bounded from below.

Lemma VI.1: For any two CP maps T1 ,T2 :B(H)→B(K) there exist a Hilbert spaceE and
operators V1 ,V2 :K→H^ E such that Ti(A)5Vi* (A^ 1E)Vi , i 51, 2, and

iV12V2i<dimHAiT12T2icb. ~15!

Proof: Using Theorem V.1, we can writeE5K^H and Vi5ADFTiVF5(1H^AFTi
)VF .

ThenTi(A)5Vi* (A^ 1E)Vi . Next we prove the estimate~15!. We have

iV12V2i<i1H^AFT1
21H^AFT2

iiVFi5iAFT1
2AFT2

i<AiFT1
2FT2

i . ~16!

The last inequality in~16! holds because:~1! x°Ax is an operator monotone function on@0,̀ !,
i.e., AA<AB for all operatorsA, B satisfying 0<A<B ~Prop. V.1.8 in Ref. 38!, ~2! for any
operator monotone functionf with f (0)50 and any pair of positive operatorsA, B we have
i f (A)2 f (B)i< f (iA2Bi) ~Theorem X.1.1 in Ref. 38!, and~3! iXi5iAXi2 for anyX>0 by the
spectral mapping theorem. NowFTi

5(dimH)2Ti ^ id(uC&^Cu), where C5(1/AdimH)( iei

^ ei for some orthonormal basis$ei% in H. Thus, using the properties of the CB norm, we ge

iFT1
2FT2

i5~dimH!2iT1^ id~ uC&^Cu!2T2^ id~ uC&^Cu!i<~dimH!2iT12T2icb. ~17!

Combining Eqs.~16! and ~17! yields ~15!. j
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Inequality ~15! was also proved by Kitaev,21 but by quite different means. Here sever
warnings are in order. In the article of Kitaev21 the ‘‘canonical representation’’ of a CP ma
T:B(H)→B(K) is defined asT(A)5TrF WAW* with F.K^H. This is not to be confused with
the canonical Stinespring dilationof T, T(A)5V* (A^ 1E)V @or its dual, T* (A)5TrE VAV* ]
which must satisfy the requirement thatH^E is ~the closure of! the linear span of$(A
^ 1E)VcuAPB(H),cPK%. ThusE is, in general, a subspace ofF5K^H. Furthermore, Kitaev’s
version of the estimate~15! has dimK, and not dimH, multiplying the CB norm on its right-hand
side. This is due to the fact that, whereas we cast all CP maps in the Stinespring formT(A)
5W* (A^ 1F)W, Kitaev prefers to work with the dual representationT* (A)5TrF WAW* . Since
all ~bounded! operators on a finite-dimensional Hilbert space are trace-class,T* trivially extends
to a CP map fromB~K! into B~H!.

VII. CONCLUDING REMARKS

In this paper we have shown that the Radon-Nikodym theorem for completely po
maps6,7,10 is an extremely powerful and versatile tool for problems involving characterization
comparison of quantum operations. The upshot is that ifT(A)5V* (A^ 1E)V is the canonical
Stinespring dilation of a CP mapT, then the set of all CP mapsS for which T2S is also CP~we
say thatS is completely dominatedby T! is in a one-to-one correspondence with the posit
contractionsF on E, given explicitly by S(A)5V* (A^ F)V. As we have demonstrated, th
correspondence brings many seemingly unrelated problems into a common framework.

However, many important questions still remain unanswered. For instance, it is not diffic
convert the above ‘‘Stinespring form’’ of the Radon–Nikodym theorem into an equivalent ‘‘K
form’’ ~cf. Sec. III B!. The Kraus decomposition of a CP mapT involves at most countably man
terms, and all mapsScompletely dominated byT can be characterized in terms of positive-defin
kernels on the corresponding indexing set. However, it is not clear how to apply this the
directly to CP maps given in terms of a ‘‘continual’’ Kraus decomposition~as in, e.g., the quantum
operational model of Gaussian displacement noise39!. For example, ifUg is a strongly continuous
unitary representation of a compact topological groupG on a Hilbert spaceH, how do we describe
all CP maps completely dominated by the channel

T~A!5E
G

Ug* AUg dm~g!,

wherem is the~normalized! Haar measure onG, in terms of$Ug%? A partial step in this direction
has been taken by Parthasarathy,10 who constructed a Stinespring dilation ofT in terms of$Ug%
under the assumption that these operators are linearly independentm-almost everywhere, i.e.,

E
G

w~g!Ug dm~g!50⇔w~g!50 m2a.e.

for any wPL1(G,m). However, a general solution is still lacking. We hope to address this i
in a future publication.
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Harrell’s modified perturbation theory@Ann. Phys.~N.Y.! 105, 379 ~1977!# is ap-
plied and extended to obtain nonpower perturbation expansions for a class of sin-
gular HamiltoniansH52(d2/dx2)1x21(A/x2)1(l/xa) (A>0,a.2), known as
generalized spiked harmonic oscillators. The perturbation expansions developed
here are valid for small values of the couplingl.0, and they extend the results
which Harrell obtained for the spiked harmonic oscillatorA50. Formulas for the
excited states are also developed. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1616996#

I. INTRODUCTION

This is a detailed extension of Harrell’s modified perturbation theory1 for the class of singular
potentials

H52
d2

dx2
1x21

l

xa
~l.0,a.2!, ~1.1!

defined on suitable domains in the Hilbert spaceL2(0,̀ ) with solutions satisfying Dirichlet
boundary conditions. By singular we mean that the familiar Rayleigh–Schro¨dinger series either do
not exist or do not converge. The present work, motivated by Harrell1 and Greenlee,2 studies a
perturbative and variational analysis of the eigenvalues and eigenfunctions for the fam
singular Hamiltonians

H5H01lV52
d2

dx2
1x21

A

x2
1

l

xa
~A>0! ~1.2!

known as generalized spiked harmonic oscillator Hamiltonian.3–10 The extension lies in consider
ing A to range over all non-negative real numbers instead of non-negative integers of th
l ( l 11). The main results are the extensions of Harrell’s perturbative expansions1 for the ground-
state eigenvalues of the spiked harmonic oscillator HamiltonianA50. In his elegant investigation
Harrell mentioned briefly the possibility of extending his theory to the case ofA5 l ( l 11), where
l is the angular-momentum quantum number; however, his results mostly concern pertur
expansions for ground-state energies of the spiked harmonic oscillator Hamiltonian~1.1!. There
are two principal reasons for this choice:~1! The interesting Klauder phenomenon11–13occursonly
in the caseA50, to the effect that, for sufficiently singular potentials, the perturbation termV
cannot be smoothly turned off~l→0! in the HamiltonianH5H01lV to restore the free Hamil-
tonian H0 ; ~2! Rayleigh–Schro¨dinger perturbation series diverge at some finite order when
a.2.

Klauder’s phenomenon does not occur14–16 if A.0. This is the case, for example, inN
dimensions withA5( l 1 1

2(N21))(l 1 1
2(N23)) and l .0, or with l 50 andNÞ1 or 3. In such
50210022-2488/2003/44(11)/5021/21/$20.00 © 2003 American Institute of Physics
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cases the domain of the HamiltonianH is stable under the limitl→0. However, a perturbative
analysis for solutions that vanish at the origin is still interesting because of the divergence
Rayleigh–Schro¨dinger series at some finite order for anya.2. We are able to conclude in th
present paper that the Rayleigh–Schro¨dinger series will breakdown at the ordern>2n(g21) for
a.2 wheren51/~a22! andg511 1

2A114A. For example,a>2g causes the perturbation serie
to diverge at the first order; fora>g11 the second-order perturbation will diverge, etc. The
results and some others concerning the convergence of Rayleigh–Schro¨dinger series which rely
heavily of the application of Kato’s criterion17–19will be the subject of an independent investig
tion. In the present paper, we concentrate on the development of nonpower perturbation
sions for the Hamiltonian~1.2!.

Detwiler and Klander,20 in their variational study of the spiked harmonic oscillator Ham
tonian ~1.1!, have shown that for 2<a,3 the eigenvalues are given by asymptotic series to
order so long asl.0. But for a.3, the ground-state eigenvalues are given by

E0~l!531kln1o~ln!,

and, fora53, by

E0~l!531k8l log~l!1O~l!,

wherek andk8 are to be determined by variational means.20 Harrell, soon afterwards, modified th
Rayleigh–Schro¨dinger series by utilizing the standard WKB-approximation technique for the l
est few orders. This proved to be quite successful, and he continued to develop a special
bation theory, now known as singular perturbation theory, and obtained thereby the first few
of the perturbedl-expansion for different values ofa. This turned out to be a nonpower seri
expansion and in fact was of exactly the same order as that of Detwiler and Klauder.20 More
specifically, Harrell1 showed that the asymptotic series for the ground-state eigenvalues o
Hamiltonian~1.1! are explicitly given, forn51/~a22!.

For a>4,

E0~l!531
4n2nG~12n!

ApG~11n!
ln1O~l2n!.

For 3,a,4,

E0~l!531
4n2nG~12n!

ApG~11n!
ln2

4nGS 32
1

n

2
D

~12n!Ap
l1O~l2n!.

For a53,

E0~l!532
4

Ap
l log~l!2

10c

Ap
l1O~l2 log2~l!!

~c50.577 215 664 9 etc., Euler’s constant!.

For 5
2,a,3,

E0~l!531
4n2nG~12n!

ApG~11n!
ln1

2GS 32a

2 D
Ap

l1O~l2n!.
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The paper is organized as follows. In Sec. II, we briefly review the regular perturbation expan
for the Hamiltonian~1.2! and we identify the conditions under which the first- and the seco
order corrections of Rayleigh–Schro¨dinger series exists. In Sec. III, the main theorem used for
development of nonpower perturbation expansions will be introduced and proved. In Sec.
introduced a suitable trial wave function. In Secs. V and VI, we extend Harrell’s theory to trea
generalized spiked harmonic oscillator Hamiltonians~1.2! for the cases where the Rayleigh
Schrödinger series fails and thereby we show that asymptotic series for the eigenvalues
Hamiltonian~1.2! are explicitly given by the following.

For a>2~2g21!,

E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1O~l4n~g21!!.

For 2g,a,2~2g21!,

E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!

2

2nGS g2
1

2n D
~122n~g21!!G~g!

l1O~l4n~g21!!.

For a52g,

E0~l!52g2
1

~g21!G~g!
l log~l!1F2c~11g!12 log~2~g21!!

~g21!G~g! Gl1O~l2 log2~l!!.

For g11,a,2g,

E0~l!52g1
2n4n~g21!G~122n~g21!!

nG~g!G~2n~g21!!
l2n~g21!1

2nGS g2
1

2n D
~2n~g21!21!G~g!

l1O~l2!,

where n51/~a22! and g511 1
2A114A. The asymptotic expansions for the casea<g11 are

discussed in Sec. VII, along with some other cases. The connection with the region 0,a,5/2,
overlooked by Harrell, is also investigated. In Sec. VIII, the extension of the perturbation e
sions developed in Secs. V–VII to the excited states is discussed and some explicit formu
derived.

II. ASYMPTOTIC PERTURBATION EXPANSIONS

It is known that although many perturbation expansions diverge, they may actual
asymptotic expansions whose first few terms can yield good approximations. The class of s
Hamiltonian ~1.2! affords interesting examples of this phenomenon. Indeed, by regarding
Gol’dman and Krivchenkov Hamiltonian7 H052(d2/dx2)1x21(A/x2), which admits the exac
solutions

cn~x!5~21!nA 2~g!n

n!G~g!
xg21/2e21/2x2

1F1~2n,g,x2! ~2.1!

with exact eigenenergies

En54n12g, n50,1,2,..., g511 1
2A114A, ~2.2!
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as the unperturbed part, andV(x)5x2a as the perturbation potential, the first-order correction
the Rayleigh–Schro¨dinger series for the Hamiltonian~1.2! exists only for a,2g, while the
second-order correction will requireda,g11. The first conditiona,2g follows from E1

5(c0 ,x2ac0), while the second conditiona,g11 follows5 from

E25(
i 51

` u~c0 ,x2ac i !u2

Ei2E0
.

Under these conditions the perturbation expansions for the ground-state eigenvalues
second-order5 reads, for small values ofl,

E~l,a!5E01E1l1E2l21¯

52g1

GS g2
a

2 D
G~g!

l2l2
a2

16g 4F3S 1,1,11
a

2
,11

a

2
;2,2,g11;1D1¯ . ~2.3!

In the next sections we develop nonpower perturbation expansions for the cases where the
Rayleigh–Schro¨dinger series fails to exist; namely,a>2g anda>g11.

Before we proceed we should note that the functions1F1 and 4F3 , mentioned above, are
special cases of the generalized hypergeometric function21

pFq~a1 ,a2 ,...,ap ;b1 ,b2 ,...,bq ;z!5 (
k50

` )
i 51

p

~a i !k

)
j 51

q

~b j !k

zk

k!
, ~2.4!

wherep andq are non-negative integers, and none of theb j ( j 51,2,...,q), is equal to zero or to a
negative integer. If the series does not terminate~that is to say, none of thea i , i 51,2,...,p, is a
negative integer!, then the series, in the casep5q11, converges or diverges accordingly asuzu
,1 or uzu.1. Forz51, the series is convergent provided( j 51

q b j2( i 51
p a i.0.

Here (a)n , the shifted factorial~or Pochhammer symbol!, is defined by

~a!051, ~a!n5a~a11!~a12!¯~a1n21! for n51,2, . . . ~2.5!

and may be expressed in terms of the gamma function by (a)k5G(a1k)/G(a), whena is not a
negative integer2m, and, in these exceptional cases, (2m)k50 if k.m and otherwise (2m)k

5(21)km!/(m2k)!

III. THE MAIN THEOREM

It is clear that the perturbation approach mentioned in Sec. II cannot apply ifa>2g, since it
is clear in this case that the first-order perturbation correction diverges. We construct a mo
perturbation series for the operators in this region by considering the perturbation theo
families of self-adjoint operators by an application of the variational method. This is don
Kato’s generalization22,23 of Temple’s inequality,24–26 which can understood from the followin
discussion. The derivation of bounds on the eigenvalues for self-adjoint operators usually
from a consideration of the positive definite function given by

~m,m!5~@H2e#f,@H2e#f!5~Hf,Hf!2~f,Hf!21~e2~f,Hf!!2>0, ~3.1!

wherem is a function off and e, i.e., m5m~f,e!, H is the operator in question,e is a positive
parameter, andf is a suitably chosen normalized trial function. If we expand the normal
function f in terms of the complete set of eigenfunctions$fn% of H with eigenvaluesEn(l), f
5(nanfn , an5(f,fn), (f,f)515(nuanu2, we can express the positive definite function
~3.1! as
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~m,m!5(
n

uanu2~En~l!2e!2>0.

Let us assume that we have picked the value ofe for the closest approach to theith eigenvalueEi ,
i.e.,

~m,m!5(
n

uanu2~En~l!2e!2>~Ei~l!2e!2>0. ~3.2!

By combining~3.1! and ~3.2!, it can be easily seen that

e2AiHfi22~f,Hf!21~e2~f,Hf!!2

<Ei~l!<e1AiHfi22~f,Hf!21~e2~f,Hf!!2 . ~3.3!

Now, by setting26

e1@~Hf,Hf!2~f,Hf!21~e2~f,Hf!!2#1/25Ei 11
L ~l!, ~3.4!

whereEi 11
L (l) is a lower bound estimate ofEi 11(l), we can show that Eq.~3.4! possesses the

solution

e5
1

2 FEi 11
L ~l!1~f,Hf!2

~Hf,Hf!2~f,Hf!2

Ei 11
L ~l!2~f,Hf!

G ~3.5!

provided (f,Hf),Ei 11
L (l). Substituting~3.5! into the lower bound expression in~3.3! yields the

Kato–Temple expression for the lower bound:

Ei~l!>~f,Hf!2
~Hf,Hf!2~f,Hf!2

Ei 11
L ~l!2~f,Hf!

. ~3.6!

Similarly, setting

e2@~Hf,Hf!2~f,Hf!21~e2~f,Hf!!2#1/25Ei 21
U ~l!, ~3.7!

whereEi 21
U (l) is an upper bound estimate to the next lowest eigenvalue toEi(l), yields

Ei~l!<~f,Hf!1
~Hf,Hf!2~f,Hf!2

~f,Hf!2Ei 21
U ~l!

~3.8!

for Ei 21
U (l),(f,Hf). We let h5(f,Hf), and the residual norme5i(H2h)fi ~hencee2

5iHfi22h2), ande2,(Ei 11
L (l)2h)(h2Ei 21

U (l)), which follows by means of the inequali
tiesh2e2/(Ei 11

L (l)2h).Ei 21
U or h1e2/(h2Ei 21

U (l)),Ei 11
L (l). This indeed ensures that th

open interval (Ei 21
U (l),Ei 11

L (l)) contains a single isolated eigenvalue and no other piece o
spectrum. Then it follows from~3.6! and ~3.8! that

h2
e2

Ei 11
L ~l!2h

<Ei~l!<h1
e2

h2Ei 21
U ~l!

. ~3.9!

This formula is symmetric with respect to upper and lower bound, as we might expect. It s
be noted that~3.9! givesEi(l) within the error bound of the ordere2: this is very small ife is
small, i.e., iff is a good approximate eigenfunction. Indeed,~3.9! implies
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uEi~l!2hu<
e2

g
, ~3.10!

where g5min$h2Ei21
U (l),Ei11

L (l)2h%. Therefore, the error inh depends on the residual norm
squared, i.e., one2, and on the gapg.0 for the eigenvalue is isolated.1 If ~3.9! is applied to the
operatorH01lV2Ei

l , whereEi
l is a variational estimate for theith eigenvalue ofH01lV, there

results1 the following.
Theorem 1: If f is normalized trial function for the self-adjoint operator H5H01lV, where

H0 and V are self-adjoint and Ei
0 is an isolated, nondegenerate stable eigenvalue of H0 , and Ei

l

is a continuous function such that(f,@H01lV2Ei
l#f)→0 as l→0, and

i@H01lV2Ei
l#fi5o~~f,@H01lV2Ei

l#f!1/2!, ~3.11!

then the eigenvalue of H01lV which converges to Ei
0 satisfies

Ei~l!5~f,@H01lV#f!1O~ i@H01lV2Ei
l#fi2!. ~3.12!

Proof: To keep the notation simple, let us refer toEi 21
U (l) andEi 11

L (l) in ~3.9! by a andb,
respectively. Then, from the previous discussion, we have, forh5(f,@H01lV2Ei

l#f), that
a,h,b, ande2,(b2h)(h2a). Further, by applying the Kato–Temple inequality~3.9! to the
HamiltonianH01lV2Ei

l , we obtain, for normalizedf,

h2
e2

b2h
<Ei~l!2Ei

l<h1
e2

h2a
,

wheree25i@H01lV2Ei
l#fi22(f,@H01lV2Ei

l#f)2. If we divide byh, we obtain after some
simplifications

2

S i@H01lV2Ei
l#fi

h1/2 D 2

2h

b2h
<

Ei~l!2Ei
l

h
21<

S i@H01lV2Ei
l#fi

h1/2 D 2

2h

h2a
. ~3.13!

However, sincef is assumed to be normalized,

Ei~l!2Ei
l

h
215

Ei~l!2~@H01lV#f,f!

h
5

Ei~l!2~@H01lV#f,f!

i@H01lV2Ei
l#fi2 S i@H01lV2Ei

l#fi

h1/2 D 2

.

From ~3.11!, we have forl sufficiently small,

i@H01lV2Ei
l#fi

h1/2
<1.

Thus after dividing~3.13! by (i@H01lV2Ei
l#fi /h1/2)2, we have

UEi~l!2~@H01lV#f,f!

i@H01lV2Ei
l#fi2 U<H 12

h

S i@H01lV2Ei
l#fi

h1/2 D 2J maxH 1

b2h
,

1

h2aJ

<maxH 1

b2h
,

1

h2aJ <C ~constant!,

which leads to
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Ei~l!5~@H01lV#f,f!1O~ i@H01lV2Ei
l#fi2!,

as required. h

IV. TRIAL WAVE FUNCTION AND SOLUTION TO A DIFFERENTIAL EQUATION

In this section we shall introduce a suitable trial function in order to obtain eigenv
perturbation corrections by means of Theorem 1. For singular Hamiltonians of type~1.2!, the trial
functions are characterized by wave functions with non-integer exponent. This in
characterizes27–34almost all trial functions which have been used previously to study this typ
singular Hamiltonian~1.1! and ~1.2!. Furthermore, the trial functions have to satisfy the physi
initial conditions of the problem. In the classical Rayleigh–Schro¨dinger perturbation theory, the
lowest-order trial function for a given eigenvalue is chosen to be the unperturbed eigenfun
i.e., the exact solutions of the unperturbed Hamiltonian. This is no longer a good choice f
perturbationlV in ~1.2! with a>2g, for

E
e

`

x2g2a21e2x2
dx'e2a12g,

which approaches̀ ase goes to zero. Intuitively, it seems that if the unperturbed eigenfunc
was modified slightly near the singular point, so that the expectation value of singular termV was
no longer infinite, it would become a reasonable trial function to use to estimate the pert
eigenvalue. This was the basic idea of the trial wave function used by Detwileret al. to study the
Hamiltonian~1.1! and it was employed later by Harrell.1 Using the notation of Harrell, we star
with the ~un-normalized! trial wave function

c~x;l!5Wa~x;l!c i~x!, ~4.1!

wherec i(x) is given by~2.1! andWa(x;l) is to be determined. It should be noted that far aw
from the singularity, we expectc(x;l);c i(x) for largex, since~1.2! behaves as radial harmon
oscillator Hamiltonian for largex, which, in turn, implies limx→` Wa(x;l)51. Further, for an
arbitrary singular pointx0 , not necessarily at the origin,c(x0 ;l)50, an idea that was borrowe
from hard-core problems in quantum mechanics:20 this forcesWa(x0 ;l)50; therefore, we must
also have limx→0 Wa(x;l)50. Using the trial function~4.1!, the differential operator~1.2! leads
to

@H01lV2Ei #c~x;l!5F2
d2Wa~x;l!

dx2
22

dWa~x;l!

dx

d

dx
1lVWa~x;l!Gc i~x!, ~4.2!

where Ei[Ei
l is the variational estimate ofH. It is clear from ~2.1! that @dc i(x)/dx#'@(g

21/2)/x#c i(x) near the origin. Therefore, we may chooseWa(x;l) in ~4.2! such that

d2Wa~x;l!

dx2
1

2(g2 1
2)

x

dWa~x;l!

dx
2lVWa~x;l!50 ~4.3!

and must satisfy the initial conditions

lim
x→0

Wa~x;l!50 and lim
x→`

Wa~x;l!51. ~4.4!

Equation~4.3! allows us to write Eq.~4.2! as

@H01lV2Ei #c~x;l!52
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc i~x!. ~4.5!
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To solve~4.3! explicitly, we notice first that the parameterl can be removed from the equation b
a change of variablez5l2nx wheren is to be determined shortly. A straightforward calculati
shows that Eq.~4.3! becomes

d2Wa~z!

dz2
1

2~g2 1
2!

z

dWa~z!

dz
2

l~22a!n11

za
Wa~z!50.

So, withn51/~a22!, independent ofg, we have

d2Wa~z!

dz2
1

2(g2 1
2)

z

dWa~z!

dz
2

Wa~z!

za
50. ~4.6!

With another change of variableY(z)5zg21Wa(z), ~4.6! leads to

d2Y

dz2
1

1

z

dY

dz
2F ~g21!2

z2
1

1

zaGY50. ~4.7!

Finally with the further change of variablej52nz2(1/2n), we have from~4.7!,

d2Y

dj2
1

1

j

dY

dj
2F11

@2n~g21!#2

j2 GY50, ~4.8!

which is the equation of a modified Bessel function35 of order 2n~g21!. The solution of Eq.~4.8!
is

Wa~z!5c1z12gI 2n~g21!~2nz2~1/2n!!1c2z12gK2n~g21!~2nz2~1/2n!!,

whereI andK denote the modified Bessel functions of the first and second kind, respectiv35

The initial conditions limz→0 Wa(z)50, and limz→` Wa(z)51 yields c150 and c2

5@2n2n(g21)/G(2n(g21))# by means of

Kn~z!'
1

2
G~n!

zn

2
~4.9!

asz approach 0. Therefore, we have

Wa~z!5
2n2n~g21!

G~2n~g21!!
z12gK2n~g21!~2nz2~1/2n!!, or more explicitly

~4.10!

Wa~x;l!5
2n2n~g21!

G~2n~g21!!
ln~g21!x12gK2n~g21!~2nAlx2~1/2n!!.

Finally, we have for the~un-normalized! wave function~4.1! that

c~x;l!5
2n2n~g21!

G~2n~g21!!
ln~g21!x12gK2n~g21!~2nAlx2~1/2n!!c i~x!. ~4.11!

It is quite clear by means of Eq.~4.9! that liml→0 c(x;l)5c i(x) as expected. Consequently, th
normalization constantNl of c(x;l) must satisfy liml→0 Nl51. Some properties of the functio
Kn(z) are in order.35 The physical importance35 of the functionKn(z) lies in the fact that it tends
exponentially to zero asz→`. The functionKn(z) is defined, for unrestricted values ofn, by the
equation
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Kn~z!5
p

2 sin~np!
@ I 2n~z!2I n~z!#, ~4.12!

where

I n~z!5S z

2D n

(
k50

` ( 1
2 z2)k

k!G~n1k11!
. ~4.13!

The apparent discrepancy with~4.12! is resolved by the identityG~n!G~12n!5p/sin~np!. For
integer values or zero ofn in ~4.12!, it should be understood thatKn(z)5 limn→n Kn(z), where in
this case

Kn~z!5
1

2 S z

2D 2n

(
k50

n21
~n2k21!!

k! S 2
z2

4 D k

1~21!n11 logS z

2D I n~z!

1~2 !n
1

2 S z

2D n

(
k50

`

$c~k11!1c~n1k11!%
S z2

4 D k

k! ~n1k!!
, ~4.14!

while

K0~z!52S c1 logS z

2D D I 0~z!1(
r 51

` S z

2D ~2r !

~r ! !2 H 11
1

2
1

1

3
1¯1

1

r J . ~4.15!

Herec is Euler’s constantc50.577 215 664 9, etc. The following identity will also be used:

z
dKn~z!

dz
52nKn~z!2zKn11~z!. ~4.16!

V. LOWEST-ORDER ASYMPTOTIC PERTURBATION CORRECTIONS FOR a Ð 2g

In this section, we apply Theorem 1 and the trial function developed in Sec. IV in ord
obtain the eigenvalue perturbation expansions for the Hamiltonian~1.2!. We consider first the cas
of a>2g which leads to the divergence of the first-order correction of the regular Rayle
Schrödinger series. In a purely theoretical approach, Greenlee2 has shown that the asymptot
perturbation expansion should take the form

E0~l!5E01E1l2n~g21! ~5.1!

valid for 2g,a and 2n~g21!,1. We note, for consistency, that we have reproduced the expre
of Greenlee using our own notation. Equation~5.1! is in complete agreement with our predictio
a.2g or 2n~g21!,1 for n51/~a22! obtained by means of Theorem 1, as we shall show in
section. In order to apply Theorem 1, we need first the normalization constantNl of the trial wave
function c(x;l), namely Eq.~4.11!. This can be found by means of the conditionic(x;l)i2

51 which leads to expression

Nl
225

4n4n~g21!l2n~g21!

@G~2n~g21!#2 E
0

`

x2~12g!@K2n~g21!~2nAlx2~1/2n!!#2c i~x!2 dx. ~5.2!

Lemma 1: For the ground-state, i.e., i 50, we have
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Nl
2511

2n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1O~l4n~g21!!, ~5.3!

wheren51/~a22! and a.2g.
Proof: We note, by using~4.9! in ~5.2!, that Nl

2'1. To find the order of the error term
however, we used the identity~4.12! which leads toKn(z)5@G(n)/2#(z/2)2n2@G(12n)/2n#
3(z/2)n1¯ . Therefore

@K2n~g21!~2nAlx2~1/2n!!#25
@G~2n~g21!!#2

4
~nAlx2~1/2n!!24n~g21!

2
G~2n~g21!G~122n~g21!!

4n~g21!

1
@G~122n~g21!!#2

4n2
~nAlx2~1/2n!!4n~g21!1¯ . ~5.4!

For the ground state, we have from~2.1! that c0(x)5A2/G(g)xg21/2e2x2/2. Thus on substituting
~5.4! into ~5.2! we have, after some calculations,

Nl
25H 12

2n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1O~l4n~g21!!J 21

and the proof of the lemma follows by a very similar argument to that for Taylor’s expansio
1/~12d!.

The reason of quoting the expansion~5.3! only up to orderl4n(g21) was guided by the erro
term in ~3.12!, as the following lemma indicates.

Lemma 2: For the ground-state energy of the Hamiltonian (1.2), wherea.2g [or 2n~g21!
,1] , we have

E0~l!52g1
16

G~g!

n4n~g21!l2n~g21!11/2

@G~2n~g21!#2 E
0

`

x12~1/2n!e2x2
K2n~g21!~2nAlx2~1/2n!!

3K122n~g21!~2nAlx2~1/2n!!dx1O~l4n~g21!!. ~5.5!

Proof: Equation~4.10! with ~4.16! leads to

dWa~x;l!

dx
5

2n2n~g21!

G~2n~g21!!
ln~g21!11/2x2~1/2n!2gK122n~g21!~2nAlx2~1/2n!!. ~5.6!

Furthermore, usingc0(x)5A2/G(g)xg21/2e2x2/2, we find

dWa~x;l!

dx
F (g2 1

2)

x
2

d

dx
Gc0~x!5

2n2n~g21!ln~g21!11/2

G~2n~g21!!
A 2

G~g!
x1/22~1/2n!e2x2/2

3K122n~g21!~2nAlx2~1/2n!!, ~5.7!

which leads to
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2S Wa~x;l!c0~x!,
dWa~x;l!

dx
F (g2 1

2)

x
2

d

dx
Gc0~x!D

5
16

G~g!

n4n~g21!l2n~g21!11/2

@G~2n~g21!#2
3E

0

`

x12~1/2n!e2x2
K2n~g21!~2nAlx2~1/2n!!

3K122n~g21!~2nAlx2~1/2n!!dx. ~5.8!

In order to use theorem 1, however, the trial wave function must be normalized. This is equi
to multiplying ~5.8! by the normalization constantNl

2, as given by~5.3!. Now, sinceNl
2 is of order

l2n(g21), out of the second term in~5.3! the multiplication allows us to have~5.8! as quoted, plus
an error term of orderl4n(g21) as result of using~4.9!. What remains is to show that the expre
sioni@H01lV2E(l)#fli in ~3.12! is also of orderl2n(g21). This follows from~5.7! as follows:

i@H01lV2E0#c0i52I dWa~x;l!

dx
F (g2 1

2)

x
2

d

dx
Gc0~x!I

52F8n4n~g21!l2n~g21!11

G~g!@G~2n~g21!#2 E0

`

x12~1/n!e2x2

3@K122n~g21!~2nAlx2~1/2n!!#2 dxG 1/2

5O~l2n~g21!!,

where we have used

K122n~g21!~2nAlx2~1/2n!!'
G~122n~g21!!

2
~nAlx2~1/2n!!2n~g21!21.

The proof of the lemma then follows by use of Theorem 1, Eq.~3.12!, and the variational estimat
of E0

l by means of~2.2!. h

Because of the error term in~5.5!, it is not necessary to compute the integral in~5.5! exactly
but it is sufficient to estimate the integral using the asymptotic series expansions of the mo
Bessel functionsK2n(g21)(2nAlx2(1/2n)) andK122n(g21)(2nAlx2(1/2n)) by means of~4.12!, up
to the order cited. Since the order of the error term in~5.5! is l4n(g21) while the integral is of
orderl2n(g21), we may consider, for fixeda, two regions 0,2n~g21!<1

2 and 1
2,2n~g21!,1, or

equivalently 0,4n~g21!<1 and 1,4n~g21!,2. For the first region, we have for the ground-sta
energy of the Hamiltonian~1.2!

E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1O~l4n~g21!! ~5.9!

which follows from ~5.5! using the asymptotic expansions ofK2n(g21)(2nAlx2(1/2n)) and
K122n(g21)(2nAlx2(1/2n)) by means of~4.9!. In the caseg53/2 ~i.e., A50 or a>4!, Eq. ~5.9!
yields

E0~l!531
4n2nG~12n!

ApG~11n!
ln1O~l2n!, ~5.10!

wheren51/~a22!, as shown earlier by Harrell for the spiked harmonic oscillator Hamilton
~1.1!. Important conclusions follow from~5.9!. For a52~2g21! or 2n~g21!51

2, we have
                                                                                                                



ns

5032 J. Math. Phys., Vol. 44, No. 11, November 2003 Saad, Hall, and von Keviczky

                    
E0~l!52g1
2

G~g!
Al1O~l!. ~5.11!

This provides a single ground-state approximation formula for a wide class of HamiltoniaH
52(d2/dx2)1x21(A/x2)1(l/xa), wherea and g511 1

2A114A are related bya52~2g21!.
For example, forA50, i.e.,g53/2, which yieldsa54, we have

E0~l!531
4

Ap
Al1O~l!,

as noted by Harrell. Ifa56, which impliesg52 or A50.75, we have

E0~l!5412Al1O~l!.

For the second region 1,4n~g21!,2, or 2g,a,2~2g21!, by using~4.12!, we can easily
show that

K2n~g21!~2nAlx2~1/2n!!K122n~g21!~2nAlx2~1/2n!!

5
G~2n~g21!!G~122n~g21!!

2nAl
x~1/2n!

2
@G~2n~g21!!#2

4~122n~g21!!
n124n~g21!l1/222n~g21!x2~1/2n!12~g21!1¯ .

Consequently,~5.5! yields, for 1
2,2n~g21!,1,

E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!2

2nGS g2
1

2n D
~122n~g21!!G~g!

l

1O~l4n~g21!!. ~5.12!

Again the result of Harrell for the Hamiltonian~1.1! follows for the case ofg53
2, i.e.,A50, where,

in this case, 3,a,4 or 1
2,n,1, and

E0~l!531
4n2nG~12n!

ApG~11n!
ln2

4nGS 32
1

n

2
D

~12n!Ap
l1O~l2n!. ~5.13!

For the rest of this section, we consider the case of 2n~g21!51. For this specific value Eqs.~4.10!
and ~5.6! read, forz5l2nx,

Wa~z!5
z12g

g21
K1S z12g

g21D ~5.14!

and

dWa~z!

dz
5

z122g

g21
K0S z12g

g21D , ~5.15!

respectively. Using the asymptotic expansions
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K0~z!5@2c1 log~2!2 log~z!#1O~z2!, K1~z!5
1

z
1O~z! ~5.16!

which follow by means of~4.15! and ~4.14!, respectively, we obtain the following.
Lemma 3: For the ground state energy of the Hamiltonian (1.2), wherea52g [or 2n~g21!

51] , we have

E0~l!52g2
1

~g21!G~g!
l log~l!1F2c~11g!12 log~2~g21!!

~g21!G~g! Gl1O~l2 log2~l!!,

~5.17!

where c50.577 215 664 9, etc.,is Euler’s constant.
Proof: We should note first, in this case,

i@H01lV2E~l!#c0i25O~l2 log2~g!!,

which follows from

i@H01lV2E~l!#c0i25
2l2

~g21!2G~g!
E

0

`

x322ge2x2
K0

2S Al

g21
x12gD dx

by use of~5.7!. Since we are only interested in finding the order in terms of the parameterl, the
problem reduces to a search among the smallest value ofl2 log2(l), 2l2 log(l), andl2, for small
values of the parameterl. Therefore for sufficiently smalll we havei@H01lV2E(l)#c0i2

5O(l2 log2(l)) as noted. What remains is to compute

2S Wa~x;l!c0~x!,
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc0~x!D

5
4l3/2

~g21!2G~g!
3E

0

`

x22ge2x2
K0S Al

g21
x12gDK1S Al

g21
x12gD dx

by using the asymptotic expansions~5.16! up to the orderl2 log2(l). The lemma then follows
after some straightforward calculations. It is important to note that the normalization constanNl ,
as given by~5.2!, yields in this case

Nl
22511H 2n2~2112c12 log~n!!1

1

2
ncJ l

G~g!
1

2n2

G~g!
l logl1¯

and will contribute to the error term in a similar manner to that mentioned in lemma 2. h

The results of Harrell, the casea53, follows immediately from~5.17! for the case ofA50 ~or
g53/2!, i.e., n51, namely,

E0~l!532
4

Ap
l log~l!2

10c

Ap
l1O~l2 log2~l!!. ~5.18!

It is clear that these expressions are valid forl much smaller than unity.

VI. LOWEST-ORDER ASYMPTOTIC PERTURBATION CORRECTIONS FOR 2 g Ìa Ðg¿1

In this section, we discuss the case of 2g.a>g11 or equivalently the case of 1,2n~g
21!<2. It is clear by now that, for 1,2n~g21!<2, the first-order Rayleigh–Schro¨dinger correc-
tions exist but the second-order corrections diverge. Thus, the improved perturbation pro
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gives an explicit term between the first and the second order. Let us first consider the c
1,2n~g21!,2, here we rely on the asymptotic expansion of the modified Bessel functionK as
given by ~4.12!. We note from~4.5! and ~5.6! that

i@H01lV2E~l!#c0i25
32n4n~g21!l2n~g21!11

G~g!@G~2n~g21!!#2 E0

`

x12~1/n!e2x2
K2n~g21!21

2 ~2nAlx2~1/2n!!dx

as a consequence of the known identityKn(z)5K2n(z). Using ~4.9! we have

i@H01lV2E~l!#c0i25O~l2! ~1,2n~g21!,2!, ~6.1!

which leads to the following lemma.
Lemma 4: For the ground-state energy of the Hamiltonian (1.2) wherea.g11 [i.e., 1,2n~g

21!,2] , we have

E0~l!52g1
16

G~g!

n4n~g21!l2n~g21!11/2

@G~2n~g21!#2 E
0

`

x12~1/2n!e2x2

3K2n~g21!~2nAlx2~1/2n!!K2n~g21!21~2nAlx2~1/2n!!dx1O~l2!. ~6.2!

The proof of this lemma is similar to that of lemma 3, therefore we omit it. The computation o
integral in ~6.2! up to the order ofl2 yields the perturbation expansion

E0~l!52g1
2n4n~g21!G~122n~g21!!

nG~g!G~2n~g21!!
l2n~g21!1

2nGS g2
1

2n D
~2n~g21!21!G~g!

l1O~l2!,

~6.3!

as the result of

K2n~g21!~2nAlx2~1/2n!!5
G~2n~g21!!G~122n~g21!!

2 H ~nAlx2~1/2n!!22n~g21!

3F 1

G~122n~g21!!
1

~nAlx2~1/2n!!2

G~222n~g21!
G2~nAlx~1/2n!!2n~g21!

3F 1

G~112n~g21!!
1

~nAlx2~1/2n!!2

G~212n~g21!
G J 1¯ .

The result of Harrell1 follows immediately from~6.3! in the special caseA50, namely,

E0~l!531
4n2nG~12n!

ApG~11n!
ln1

2GS 32a

2 D
Ap

l1O~l2n!, ~6.4!

wheren51/~a22! and 5/2,a,3.
For the case 2n~g21!52, the normi@H01lV2E(l)#c0i can be computed easily by mean

of Eq. ~4.5!, which yields
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i@H01lV2E0#c0i252I dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc0~x!I 2

5
16l3

~g21!2G~g!
E

0

`

x22ge2x2FK1S 2Al

g21
x2~1/2n!D G2

dx5O~l2!,

as a consequence of

K1~z!5
1

z
1S 1

4
~2112c!1

1

2
~2 log~2!1 log~z!! D z1O~z2!.

Furthermore, since the trial wave function takes the form

c~x;l!52n2lx2~1/n!K2~2nAlx2~1/2n!!c0~x!,

we may compute the normalization constant Eq.~5.2! as

Nl
2511

nGS 1

2n D
G~g!

l1
n4

G~g!
l2 log~l!1O~l2!

in a similar fashion to the proof of lemma 1. Harrell, in his investigation, claims that the gro
state eigenvalue perturbation expansion for the spiked harmonic oscillator Hamiltonian~1.1!,
a55/2, is given by

E0~l!531
2G~ 1

4!

Ap
l1

16

Ap
l2 log~l!1O~l2!. ~6.5!

The following result does not confirm his claim, but shows that it is slightly different even
means of Harrell’s own methodology. As our calculation will show, the ground-state perturb
expansion in the case ofa55/2 is actually given by

E0~l!531
2G( 1

4)

Ap
l1

32

Ap
l2 log~l!1O~l2!, ~6.6!

with a multiple of 2 in the log term in contrast with~6.5!. In order to verify~6.6!, we adopt two
different approaches, first we use Harrell’s method then we apply our generalization. We ha
a55/2, the asymptotic perturbation expansion according to Harrell reads

E0~l!5312S W5/2c0 ,
dW5/2

dx S 1

x
2

d

dxDc0D1O~l2!,

wherec0(x)5(2/p1/4)xe2x2/2. ForW5/2, Harrell used the asymptotic approximation of the mo
fied Bessel function

K2~z!5
2

z2
2

1

2
1S 1

16S 3

2
22cD1

1

8
~ log~2!2 log~z!! D z21O~z3!

to show that
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W5/2~z!512
4

Az
1

4 log~z!

z
24~4~c1 log~2!!23!z1¯ for large z.

If we differentiateW5/2(z) with respect tox, keeping in mindz5l22x, we have, after some
calculations,

2S W5/2c0 ,
dW5/2

dx S 1

x
2

d

dxDc0D5
16l

Ap
E

0

`

x3/2e2x2
dx1

64l2 logl

Ap
E

0

`

xe2x2
dx1¯ ,

which yields ~6.6!, since*0
`xe2x2

dx5 1
2 and *0

`x3/2e2x2
dx5 1

8G( 1
4). Numerically, however, Eq.

~6.5! is more appealing than~6.6! for a wider range of the parameterl smaller than unity since
~6.6! reduces the applicable range ofl by almost one-half.

Lemma 5: For the ground-state energy of the Hamiltonian (1.2), where2n~g21!52, we have

E0~l!52g1

GS 1

2n D
G~g!

l1
2n3

G~g!
l2 log~l!1O~l2!. ~6.7!

Proof: For 2n~g21!52, we have, using Eq.~6.2!, that

E0~l!52g1
16n4l5/2

G~g!
E

0

`

x12~1/2n!e2x2
K2~2nAlx2~1/2n!!K1~2nAlx2~1/2n!!dx1O~l2!.

By means of the asymptotic expansions

K1~z!5
1

z
1S 1

4
~2112c!1

1

2
logS 1

2
zD D z1O~z2!

and

K2~z!5
2

z2
2

1

2
1S 1

16S 3

2
22cD2

1

8
logS 1

2
zD D z21O~z4!,

wherez52nAlx2(1/2n), we have, after some calculations up to orderl2, that

E0~l!52g1
4nl

G~g!
E

0

`

x11~1/n!e2x2
dx1

4n3

G~g!
l2 log~l!E

0

`

xex2
dx1O~l2!.

This leads to~6.7!, since*0
`x11(1/n)e2x2

dx5 1
2G(11(1/2n)).

VII. FURTHER CASES

The expansions developed above can be extended to the case of 2n~g21!.2 and the region of
a,5

2 which was not studied by Harrell.1 For example, in the case of 2,2n~g21!,3, the second
order of the perturbation correction exists but the third order diverges. By using the mo
perturbation theory we find
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E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1

2nGS g2
1

2n D
~2n~g21!21!G~g!

l

2

2~324n~g21!!n3GS g2
1

n D
~222n~g21!!~122n~g21!!2G~g!

l21O~l3!. ~7.1!

Again in the case ofg53/2, Harrell’s formula should read, for 7/3,a,5/2,

E0~l!531
4n2nG~12n!

ApG~11n!
ln1

4nGS 3

2
2

1

2n D
~n21!Ap

l2

4~322n!n3GS 3

2
2

1

n D
~22n!~12n!2Ap

l21O~l3!,

~7.2!

wheren51/~a22!. Furthermore, for 3,2n~g21!,4, we have

E0~l!52g1
4~g21!n4n~g21!G~122n~g21!!

G~g!G~112n~g21!!
l2n~g21!1

2nGS g2
1

2n D
~2n~g21!21!G~g!

l

2

2~324n~g21!!n3GS g2
1

n D
~222n~g21!!~122n~g21!!2G~g!

l22

2n5GS g2
3

2n D
G~g!~122n~g21!!2~222n~g21!!

l3

1O~l4!. ~7.3!

Similar expressions can be obtained forn,2n(g21),n11, n54,5,..., as well for 2n(g21)
5n. It is important, however, to note that there are an infinite number of cases asn increases to
infinity for a.2. For example, if we restrict the value ofg to 3/2, then in this case 2,a,5/2, and
obtain an infinite number of perturbation expansions consisting of analytic parts of degreeln in
addition to one correction term in each expansion as 21@1/(11n)#,a,21(1/n). Similarly, the
casesa521@1/(11n)#, n53,4,..., need special treatment, as we have mentioned above.
interesting to note that thel-term in ~7.1! or in ~7.3! is identical with the correspondingl-term in
the Rayleigh–Schro¨dinger series. This can be easily verified by a comparison of the coefficie
l in ~7.1! or in ~7.3! with the coefficient of thel-term in~2.3!. However this is clearly not the cas
for the l2-term.

VIII. EXCITED STATES

The perturbation expansions developed so far were restricted to the ground-state e
however, it is a matter of calculation to extend these results to the excited-state energies.
should be noted that the exact solution of the unperturbed part of the Hamiltonian~1.2! has very
little to do with the order of the error terms in the perturbation expansions. Therefore it is exp
that the order of the error terms remains the same for the excited states, i.e.,i 51,2,... . Following
the discussion in Sec. III, the asymptotic expansions for the eigenvalues for excited sta
given by means of Theorem 1 as

Ei~l!52~2i 1g!12S Wa~x;l!c i~x!,
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc i~x!D

1O~ i@H01lV2Ei
l#Wa~x;l!c i i2!, ~8.1!
                                                                                                                



5038 J. Math. Phys., Vol. 44, No. 11, November 2003 Saad, Hall, and von Keviczky

                    
wherec i(x), i 50,1,2,... are given by~2.1! and the energy of the unperturbed HamiltonianEi
l is

given by ~2.2!. In order to compute~8.1! explicitly, we notice first that

2S Wa~x;l!c i~x!,
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc i~x!D

5
16~g! i

i !G~g!

n4n~g21!l2n~g21!11/2

@G~2n~g21!#2
3E

0

`

x12~1/2n!e2x2

3F2~g1 i !

g 1F1~2 i ;g;x2! 1F1~2 i ;g11;x2!2@1F1~2 i ;g;x2!#2G
3K2n~g21!~2nAlx2~1/2n!!K122n~g21!~2nAlx2~1/2n!!,dx, ~8.2!

where1F1 is the confluent hypergeometric function mentioned earlier Eq.~2.4!. In producing~8.2!
we have used the following identity:35

d

dz 1F1~a;b;z!51F1~a;b;z!2
~b2a!

b 1F1~a;b11;z!.

For the case of 0,2n~g21!<1
2 or a>2~2g21!, we find, by means of~4.9!, that

2S Wa~x;l!c i~x!,
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc i~x!D

5
4~g! i

i !G~g!

G~122n~g21!!

nG~2n~g21!!
n4n~g21!l2n~g21!

3E
0

`

xe2x2F2~g1 i !

g 1F1~2 i ;g;x2! 1F1~2 i ;g11;x2!2@1F1~2 i ;g;x2!#2Gdx.

~8.3!

This result required the investigation of some integrals of the type

E
0

`

xe2x2

1F1~2 i ;g;x2! 1F1~2 i ;g11;x2!dx and E
0

`

xe2x2
@1F1~2 i ;g;x2!#2 dx.

Lemma 6: For d.0 and s.0,

E
0

`

td21e2st
1F1~a;b;kt! 1F1~a8;b8;k8t !dt

5s2dG~d! (
m50

`
~a!m~d!m

~b!m

S k

sD
m

m! 2F1S a8,d1m;b8;
k8

s D .

Proof: From the series representation, Eq.~2.4!, of the confluent hypergeometric series1F1 ,
namely,

1F1~a;b;kt!5 (
m50

`
~a!m

~b!m

~kt!m

m!
and 1F1~a8;b8;k8t !5 (

n50

`
~a8!n

~b8!n

~k8t !n

n!
,

we have
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E
0

`

td21e2st
1F1~a;b;kt! 1F1~a8;b8;k8t !dt

5 (
m50

`

(
n50

`
~a!m~a8!n

~b!m~b8!n

kmk8n

m!n! E0

`

e2sttd1n1m21 dt

5s2d (
m50

`

(
n50

`
~a!m~a8!n

~b!m~b8!n

kmk8n

m!n! S 1

sD nS 1

sD m

~d1m!nG~d1m!

5s2d (
m50

` F (
n50

`
~a8!n~d1m!n

~b8!n

S k8

s D n

n!
G ~a!mS k

sD
m

~b!m
G~d1m!

5s2dG~d! (
m50

`

2F1S a8,d1m;b8;
k8

s D ~a!m~d!m

~b!m

S k

sD
m

m!

with d.0 ands.0, and where we have used the series representation of2F1 as given by Eq.~2.4!
and the Pochhammer’s identityG(d1m1n)5(d1m)nG(d1m)5(d1m)n(d)mG(d). h

As a consequence of this lemma, we have

E
0

`

xe2x2

1F1~2 i ;g;x2! 1F1~2 i ;g11;x2!dx5
~g! i

2~g11! i
3F2~2 i ,12g,1;g,12g2 i ;1!

~8.4!

and

E
0

`

xe2x2
@1F1~2 i ;g;x2!#2 dx5

~g21! i

2~g! i
3F2~2 i ,2g,1;g,22g2 i ;1!, ~8.5!

where the Chu–Vandermonda identity

2F1~2n,a;c;1!5
~c2a!n

~c!n

has been used. Therefore, from~8.3!, we have

2S Wa~x;l!c i~x!,
dWa~x;l!

dx
F ~g2 1

2!

x
2

d

dx
Gc i~x!D

5
4~g! i

i !G~g!

G~122n~g21!!

nG~2n~g21!!
n4n~g21!l2n~g21!

3F 3F2~2 i ,12g,1;g,12g2 i ;1!2
~g21! i

2~g! i
3F2~2 i ,2g,1;g,22g2 i ;1!G .

~8.6!

For 0,2n~g21!<1
2 or a>2~2g21!, we have
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Ei~l!52~2i 1g!1
4~g! i

i !G~g!

G~122n~g21!!

nG~2n~g21!!
n4n~g21!l2n~g21!

3F 3F2~2 i ,12g,1;g,12g2 i ;1!2
~g21! i

2~g! i
3F2~2 i ,2g,1;g,22g2 i ;1!G

1O~l4n~g21!!, i 50,1,2,... . ~8.7!

Similar expressions can be obtained for the other cases by means of lemma 6. An imm
extension of Harrell’s expansions to excited statesi 51,2,... for the Hamiltonian~1.1! can be
obtained by settingg53

2 in ~8.7!.

IX. CONCLUSIONS

In this paper we have applied and extended Harrell’s modified perturbation theory to t
wider class of singular Hamiltonians given by~1.2!. Our extensions allow us to recover Harrell
formulas for the spiked harmonic oscillator Hamiltonian~1.1! as special cases. Further, we we
able to extend Harrell’s results to the exited-state energies, again as special cases of our
treatment. We have also now corrected the perturbation expansion~6.5! for the casea55

2: this
formula has been used without correction since the very early work of Harrell. Some inter
questions which remain to be answered are as follows. Is the modified wave function~4.11!
sufficient to extend the perturbation expansions presented here to higher orders, or will
modifications need to be introduced? Why can the second-order corrections in~7.1!, ~7.2!, and
~7.3! not be recovered from the corresponding terms in the regular Rayleigh–Schro¨dinger series?
Does this fact indicate that the trial wave function indeed requires additional modification
hope that the present work will encourage further research into this interesting class of si
Hamiltonians.
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An extension of Fourier analysis for the n -torus
in the magnetic field and its application to spectral
analysis of the magnetic Laplacian
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We solved the Schro¨dinger equation for a particle in a uniform magnetic field in the
n-dimensional torus. We obtained a complete set of solutions for a broad class of
problems; the torusTn5Rn/L is defined as a quotient of the Euclidean spaceRn by
an arbitraryn-dimensional latticeL. The lattice is not necessary either cubic or
rectangular. The magnetic field is also arbitrary. However, we restrict ourselves
within potential-free problems; the Schro¨dinger operator is assumed to be the
Laplace operator defined with the covariant derivative. We defined an algebra that
characterizes the symmetry of the Laplacian and named it the magnetic algebra. We
proved that the space of functions on which the Laplacian acts is an irreducible
representation space of the magnetic algebra. In this sense the magnetic algebra
completely characterizes the quantum mechanics in the magnetic torus. We devel-
oped a new method for Fourier analysis for the magnetic torus and used it to solve
the eigenvalue problem of the Laplacian. All the eigenfunctions are given in ex-
plicit forms. © 2003 American Institute of Physics.@DOI: 10.1063/1.1616203#

I. INTRODUCTION

In this paper we solve the Schro¨dinger equation for a particle in a uniform magnetic field
ann-dimensional torus. The problem looks plain at first sight but actually it turns out to be a
problem, which has not been solved before. Hence we begin this paper by a quick explana
the problem. After that we will describe our strategy to solve it. Subsequently we will br
mention studies by other people and describe our motivation of this study. At the end o
Introduction we will give guides for quick access to main results of this paper.

An n-dimensional torus, orn-torus, is defined asTn5Rn/Zn. In the coordinate a poin
(t1, . . . ,t j11, . . . ,tn) is identified with (t1, . . . ,t j , . . . ,tn) for each j 51, . . . ,n. The eigenvalue
problem of the ordinary Laplacian in the torus is the equation

2D f 52(
j 51

n S ]

]t j D 2

f 5« f ~1.1!

with the periodic boundary condition

f ~ t1, . . . ,t j11, . . . ,tn!5 f ~ t1, . . . ,t j , . . . ,tn!. ~1.2!

The eigenvalue problem can be immediately solved by Fourier expansion. A plane-wave fu

a!Electronic mail: sakamoto@phys.sci.kobe-u.ac.jp
b!Present address: Graduate School of Engineering, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Jap

tronic mail: stani@yukawa.kyoto-u.ac.jp
50420022-2488/2003/44(11)/5042/28/$20.00 © 2003 American Institute of Physics
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xk~ t1, . . . ,tn!5e2p i ( j 51
n kj t

j
~1.3!

with quantized momentakjPZ is a solution. The whole set of eigenfunctions$xk u (k1 , . . . ,kn)
PZn% constitutes a complete orthonormal set of the space of periodic functions over the
This is a well-known result.

In this paper we would like to solve an eigenvalue problem of the magnetic Laplacian
magnetic Laplacian is defined by replacing the partial derivative in the ordinary Laplacian
covariant derivative as

D f 5 (
j ,l 51

n

gjl S ]

]t j 22p iA j D S ]

]t l 22p iAl D f . ~1.4!

HereAl is a component of theU(1) gauge field

Al5
1

2 (
j 51

n

f j l t j1a l ~1.5!

with integers$f j l 52f l j % and real numbers$a j%. The gauge fieldA5( l 51
n Al dt l generates a

uniform magnetic fieldB5dA5(1/2)( j ,l 51
n f j l dt j∧dt l . Moreover, we would like to consider

general oblique torusTn5Rn/L; L is ann-dimensional lattice. Edges of the unit cell of the latti
do not necessarily cross at a right angle and they do not necessarily have a same length. H
introduce a metricgjl in the definition of the magnetic Laplacian~1.4! to take inclined and
stretched or shortened unit cells into account. The eigenvalue problem of~1.4! is accompanied by
the condition

f ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktkf ~ t1, . . . ,t j , . . . ,tn!, ~1.6!

which we call a twisted periodic condition. Thus the plain problem~1.1! with ~1.2! is generalized
to the magnetic problem~1.4! with ~1.6!. At first glance it looks rather straightforward to gene
alize the problem in this way but it is actually highly nontrivial and difficult to generalize
solution.

Let us see where the difficulty lies. In the case of the ordinary Laplacian, the plane-
solution ~1.3! is a simultaneous eigenfunction of the momentum operators

pj52 i
]

]t j ~ j 51, . . . ,n! ~1.7!

aspjxk52pkjxk . The Laplacian can be expressed in terms of the momentum operators a2D
5( j 51

n (pj )
2 and, of course, it commutes with the momentum operators. Thus inte

(k1 , . . . ,kn) are good quantum numbers. Then the whole set of simultaneous eigenfunction$xk%
forms the complete solutions of the Laplacian problem. This is the way how Fourier an
works. However, when we turn to the magnetic Laplacian, we may seek for a simulta
eigenfunction of magnetic momentum operators

pj52 i S ]

]t j 22p iA j D ~ j 51, . . . ,n!. ~1.8!

But such a simultaneous eigenfunction does not exist because magnetic momenta do not c
with each other and instead exhibit commutators

@ pj ,pl #52p i f j l . ~1.9!
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The magnetic Laplacian can be still expressed in terms of the magnetic momentum opera
2D5( j 51

n (pj )
2 but it does not commute withpj . Hence, the strategy of ordinary Fourier ana

sis does not work well for the magnetic Laplacian.
To solve the problem we developed a new method, which we call Fourier analysis fo

magnetic torus. This is a main subject of this paper. Let us describe our strategy: First, we w
a group of operators that commute with magnetic momentum operators. We call the gr
magnetic translation group. Second, we enlarge a family of operators to define an algebra,
includes magnetic momenta and magnetic translations as its elements. We call the alg
magnetic algebra and construct its representations. Third, we show that the space of
periodic functions over the torus is actually an irreducible representation space of the ma
algebra. By diagonalizing a maximal commutative subalgebra of the magnetic algebra we
a complete orthonormal set of twisted periodic functions. This set of orthogonal functions pro
a kind of unitary transformation as the set of plane-wave functions provides the Fourier tra
mation which bridges between the momentum space and the real space. We note that it is
diagonalize the Laplacian in the momentum space. Finally, we get a whole set of eigenfunct
the real space by applying the unitary transformation. In this procedure the third step is the h
part and is actually accomplished by lengthy cumbersome calculations. However, the stra
clear.

We would like to briefly review studies by other people on spectral analysis in magnetic
Brown1 first examined the symmetry structure of the Schro¨dinger equation for an electron in
lattice in a uniform magnetic field and found that the symmetry is described by a noncommu
discrete translation group. At almost the same time Zak2 also found the same symmetry structu
and named the group a magnetic translation group~MTG!. Zak3 immediately built a representatio
theory of the MTG in the three-dimensional lattice. From the viewpoint of functional anal
Avron, Herbst, and Simon have been studying spectral problems of the Schro¨dinger operators in a
magnetic field in a series of papers.4–6 Dubrovin and Novikov7,8 studied the spectrum of the Pau
operator in a two-dimensional lattice with a periodic magnetic field and intensively analyze
gap structure above the ground state. Florek9,10 constructed tensor product representations of
MTG to analyze a three-particle system in a lattice in a magnetic field. Kuwabara11,12 has been
studying quantum-classical correspondence from the viewpoint of spectral geometry. For ex
he11 proved that if the whole set of level spacings of the quantum spectrum is not denseR,
every trajectory of the corresponding classical particle is a closed orbit. Arai13 found a quantum
plane and quantum group structure in the quantum system in a singular magnetic field. Th
can see that quantum mechanics in a magnetic field has been an active research area. How
do not find a literature in which the quantum mechanics in ann-torus is solved.

Our study on quantum mechanics in magnetic fields originates from studies of e
dimension models of the space–time. In extra-dimension models the space–time is assume
a base space of a fiber bundle with a compact fiber or a noncompact fiber. The history of
dimension models is rather old, but an interest in these models is recently renewed as A
Hamed, Dimopoulos, and Dvali14 pointed out that the extra-dimension model may solve
hierarchy problem of high energy physics. Inspired with extra-dimension models we15 built a
model which has a circleS1 as a fiber over an any-dimensional space–timesRD21. Then we
found that a twisted boundary condition in theS1-direction causes spontaneous breaking of
translational symmetry. Based on this observation, we16 proposed a new mechanism of supersy
metry breaking. Next we17,18built a model which has a two-dimensional sphereS2 as a fiber over
the four-dimensional space–timesR4. We solved dynamics in the sphere in a magnetic monop
background and then found that the monopole induces spontaneous breaking of the ro
symmetry and theCP symmetry. We also built a model which has ann-dimensional torus as a
fiber and tried to analyze dynamics in the torus in a background magnetic field. Howev
analysis was not a straightforward task. Then we studied the symmetry structure of qu
mechanics in the torus in the magnetic field. We19 constructed the MTG in then-torus and
classified irreducible representations of the MTG.

Armed with these tools we are now ready to solve the spectral problem in then-torus Tn
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5Rn/L. We decide to solve the problem exhaustively; in our treatment the dimensions of the
is taken to be arbitrary, lengths and angles of edges of the unit cell ofL are arbitrary, and an
arbitrary constant magnetic field is applied to the torus. Thus we aim to solve the widest cl
quantum mechanics in then-torus in uniform magnetic fields.

For busy readers here we give guides for quick access to main results. In Sec. II we p
a geometric setting to define the problem. The problem to be solved is the eigenvalue prob
the magnetic Laplacian~2.13! with the twist condition~2.5!. In Sec. III we find a family of
operators that commute with the covariant derivative. Actually they are composition of ord
displacements and gauge transformations as shown at~3.2!. These displacement vectors form
restricted family of vectors as shown at~3.8!. These displacement operators generate the mag
translation group~MTG!, which is noncommutative as shown at~3.12!. Along ~3.16!–~3.28! we
construct irreducible representations of the MTG. In Sec. IV we introduce a coordinate sy
which will be revealed to be useful later. In Sec. V we define the magnetic algebra by a
differential operators~5.2!–~5.4! and multiplicative operators~5.9! to the MTG. Then we construc
and classify irreducible representations of the magnetic algebra. Section VI is devoted to c
tion of simultaneous eigenfunctions~6.8! of a maximal commutative subalgebra of the magne
algebra. Then we obtain a complete orthonormal set of functions over the magnetic torus,
provide an extension of Fourier analysis for the magnetic torus. This is one of the main pro
of this paper. In Sec. VII by applying this method we solve the original problem, the eigen
problem of the magnetic Laplacian. There we obtain a whole set of eigenfunctions~7.11! and
eigenvalues~7.12!. These are the main results of this paper.

II. GAUGE FIELD IN THE TORUS

Let t5(t1, . . . ,tn) denote a coordinate of ann-dimensional torusTn5Rn/Zn. Namely, a point
(t1, . . . ,t j11, . . . ,tn) is identified with (t1, . . . ,t j , . . . ,tn) in Tn. A uniform magnetic field is
generated by the gauge field

A5 (
k51

n

Ak dtk5
1

2 (
j ,k51

n

f jk t j dtk1 (
k51

n

ak dtk. ~2.1!

Here$f jk52fk j% and$a j% are real constants. Then the magnetic field is

B5dA5
1

2 (
j ,k51

n

f jk dt j∧dtk. ~2.2!

Therefore, the numberf jk represents magnetic flux which penetrates the (t j ,tk)-face of the torus.
We call the array of numbers (f jk) a magnetic flux matrix.

Let us introduce a complex scalar fieldf in the torus. The scalar field couples to the gau
field via the covariant derivative

Df 5df 22p iA f . ~2.3!

We put the coefficient 2p i in front of A for later convenience. Topology of the torus impose
boundary condition on the scalar field. The gauge field itself is not a periodic function onRn but
it changes its form as

A~ t1, . . . ,t j11, . . . ,tn!5A~ t1, . . . ,t j , . . . ,tn!1
1

2 (
k51

n

f jk dtk. ~2.4!

Therefore, if we make the gauge transformation
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f ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktkf ~ t1, . . . ,t j , . . . ,tn!, ~2.5!

the covariant derivative~2.3! remains covariant as

Df ~ t1, . . . ,t j11, . . . ,tn!5ep i (k51
n f jktk Df ~ t1, . . . ,t j , . . . ,tn!. ~2.6!

We call the condition~2.5! a twisted periodic condition. There are two ways to bring a po
(t1, . . . ,t j11, . . . ,tk11, . . . ,tn) to (t1, . . . ,t j , . . . ,tk, . . . ,tn). The first way is

f ~ t1, . . . ,t j11, . . . ,tk11, . . . ,tn!5ep i $f jk1( l 51
n f j l t

l % f ~ t1, . . . ,t j , . . . ,tk11, . . . ,tn!

5ep i $f jk1( l 51
n f j l t

l1( l 51
n fklt

l % f ~ t1, . . . ,t j , . . . ,tk, . . . ,tn!.

~2.7!

The other way is

f ~ t1, . . . ,t j11, . . . ,tk11, . . . ,tn!5ep i $fk j1( l 51
n fklt

l % f ~ t1, . . . ,t j11, . . . ,tk, . . . ,tn!

5ep i $fk j1( l 51
n fklt

l1( l 51
n f j l t

l % f ~ t1, . . . ,t j , . . . ,tk, . . . ,tn!.

~2.8!

To make these two expressions coincide we need to have

ep if jk5ep ifk j,

namely,

ep i (f jk2fk j)5e2p if jk51. ~2.9!

Therefore, compatibility of the periodic conditions~2.7! and~2.8! demands thatf jk is an integer.
Hence, the magnetic flux through each face of the torus is quantized. We call the torus wh
magnetic field has been introduced a magnetic torus.

Since two displacementst j°t j11 andtk°tk11 are commutative, we can write the twiste
periodic condition~2.5! in a more general form

f ~ t1m!5ep i ( j ,k51
n f jkmj tkf ~ t! ~2.10!

with an arbitrarym5(m1, . . . ,mn)PZn. An inner product of two twisted periodic functionsf (t)
andg(t) is defined by

^ f ug&5E
0

1

dt1
¯E

0

1

dtn f * ~ t!g~ t!. ~2.11!

Equipped with this inner product the space of twisted periodic functions becomes a Hilbert
To define the Laplacian we need to introduce a metric into the torus. LetL be an

n-dimensional lattice in the Euclidean spaceRn. We equip the torusTn with a Riemannian
structure by identifyingTn with the quotient spaceRn/L. Let $u1 , . . . ,un% be a set of vectors tha
generates the latticeL. Their inner products is denoted by

gjk5^uj ,uk& ~2.12!

and its inverse is denoted bygjk. Then the magnetic Laplacian is defined as
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D f 5 (
j ,k51

n

gjkS ]

]t j 22p iA j D S ]

]tk 22p iAkD f . ~2.13!

It is also referred to as the Bochner Laplacian in the literature. The purpose of this paper is to
the eigenvalue problem of the magnetic Laplacian accompanied by the twisted periodic con
~2.5!.

III. MAGNETIC TRANSLATION GROUP

Our goal is to find a complete set of eigenvalues and eigenfunctions of the magnetic Lap
~2.13! as announced above. A royal road to solving an eigenvalue problem is to detect sym
In this section we determine a group of operators that commute with the Laplacian and con
irreducible representations of the group.

The vector spaceRn acts on the torus as isometries. However, the gauge field restrict
admissible class of vectors as seen below. An arbitrary vectorvPRn displaces the gauge field~2.1!
as

A~ t!°A~ t2v!5A~ t!2dS 1

2 (
j ,k51

n

f jkv j tkD . ~3.1!

If we perform a gauge transformation of the scalar field simultaneously with the displacem

f ~ t!° f 8~ t!5~U~v! f !~ t!5ep i ( j ,k51
n f jkv j tkf ~ t2v!, ~3.2!

then the covariant derivative is changed covariantly

Df ~ t!°Df 8~ t!5ep i ( j ,k51
n f jkv j tk~Df !~ t2v!. ~3.3!

In other words, the transformationU(v) commutes with the covariant derivative as

~DU~v! f !~ t!5~U~v!Df !~ t!. ~3.4!

Hence it commutes with the magnetic Laplacian, which is defined in terms of the cova
derivative. The operatorU(v) is unitary with respect to the inner product~2.11!.

The displaced function~3.2! also must satisfy the twisted periodic condition. If the origin
function f satisfies the condition~2.10!, the displaced function changes its form as

f 8~ t1m!5e2p i ( j ,k51
n f jkv jmk

ep i ( j ,k51
n f jkmj tkf 8~ t! ~3.5!

for mPZn. Thus the displaced function satisfies the condition~2.10! if and only if

(
j ,k51

n

f jkv jmk ~3.6!

is an integer for an arbitrarymPZn. In other words,

(
j 51

n

f jkv j ~k51, . . . ,n! ~3.7!

must be an integer. We call such a restricted vectorv a magnetic shift. The set of magnetic shif
forms an Abelian group
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Vn5$vPRn u fvPZn%. ~3.8!

There is a sequence of Abelian subgroupsZn,Vn,Rn. In particular, an integer vectormPZn

induces a displacement

~U~m! f !~ t!5ep i ( j ,k51
n f jkmj tkf ~ t2m!.

However, owing to the twisted periodic condition~2.10!, this is reduced to the identity transfo
mation

~U~m! f !~ t!5 f ~ t!. ~3.9!

Thus we conclude that the groupG of effective transformations is generated by

$U~v! u vPVn/Zn%. ~3.10!

We call the groupG the magnetic translation group. A product of transformations is

U~v!U~w!5ep i ( j ,k51
n f jkv jwk

U~v1w!. ~3.11!

Their commutator is

U~v!U~w!U~2v!U~2w!5e2p i ( j ,k51
n f jkv jwk

. ~3.12!

We can say that the MTG is a central extension of the Abelian groupVn/Zn by U(1).
We can express the MTG in a standard form. LetL(n,Z) denote a group of then-dimensional

matrices$S% of integers such that detS561. The matrixSPL(n,Z) acts ontPRn by t°St and
this action induces an automorphism of the torusTn5Rn/Zn. It also induces a transformation o
the magnetic flux matrix as

f jk°f jk8 5 (
l ,p51

n

f lp S j
l S k

p . ~3.13!

The Frobenius lemma20 tells that for any integral antisymmetric matrix there exists a transfor
tion to bring it into a standard form

~f jk!51
0 q1

2q1 0

0 q2

2q2 0

�

0 qm

2qm 0

0

�

0

2 , ~3.14!

where$qi% are positive integers and they constitute a sequenceq1uq2u¯uqm , which implies that
qi dividesqi 11 . For example, we may have a sequence 3u6u12u48. Of course, 2m<n. The vector
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subspace of the zero eigenvalue of the matrixf has dimensionsn22m and it is called null
directions. In the following we suppose that the flux matrix is in the standard form~3.14!.

Now we can write the magnetic shifts~3.8! in a more explicit form. Let$e1 , . . . ,en% be the
standard basis ofRn in the (t1, . . . ,tn)-coordinate. Then any magnetic shift is uniquely expres
as

v5(
j 51

m S s2 j 21

qj
e2 j 211

s2 j

qj
e2 j D1 (

k51

n22m

u2m1ke2m1k ~3.15!

with integers$s1 , . . . ,s2m% and real numbers$u2m11 , . . . ,un%. Namely, the magnetic shifts ar
generated by$(1/qj )e2 j 21 ,(1/qj )e2 j u j 51, . . . ,m% with integral coefficients and$e2m1k u k
51, . . . ,n22m% with real coefficients. Hence, if the flux matrixf has null directionsn22m
.0, the MTG has a continuous component. Otherwise, the MTG is a completely discrete g

Here we summarize our discussion; the MTG is generated by the unitary operators

U j5US 1

qj
e2 j 21D , Vj5US 1

qj
e2 j D ~ j 51, . . . ,m! ~3.16!

and

Wk~u!5U~ue2m1k! ~k51, . . . ,n22m!. ~3.17!

According to~3.9!, ~3.11!, ~3.12!, and~3.14!, these generators satisfy the following relations:

~U j !
qj5~Vj !

qj51, ~3.18!

U jVjU j
21Vj

215e2p i /qj , ~3.19!

Wk~1!51, ~3.20!

Wk~u!Wk~u8!5Wk~u1u8!, ~3.21!

and other trivial commutators.
To solve the eigenvalue problem of the magnetic Laplacian we need to prepare the wh

of irreducible representations of the MTG. Let$ur 1 , . . . ,r m ;d1 , . . . ,dn22m&% be elements of a
representation space that are labeled by

r jPZ/Zqj
~ j 51, . . . ,m!, ~3.22!

dkPZ ~k51, . . . ,n22m!. ~3.23!

Then the generators~3.16! and ~3.17! are represented by

U j ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5ur 1 , . . . ,r j11, . . . ,r m ;d1 , . . . ,dn22m&, ~3.24!

Vj ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5e22p ir j /qj ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&,
~3.25!

Wk~u!ur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&5e22p idkuur 1 , . . . ,r j , . . . ,r m ;d1 , . . . ,dn22m&.
~3.26!

Thus
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Hd5 %
r 150

q1

¯ %
r m50

qm

Cur 1 , . . . ,r m ;d1 , . . . ,dn22m& ~3.27!

provides an irreducible representation space of the MTG. Its dimension is

dimHd5q13q23¯3qm . ~3.28!

The labelsr j anddk in ~3.22! and ~3.23! will become good quantum numbers for the Laplaci
~2.13!. The dimension~3.28! will give the degree of degeneracy of each eigenvalue.

IV. DIAGONALIZATION OF THE MAGNETIC FIELD STRENGTH

To solve the eigenvalue problem of the magnetic Laplacian we need to take the metric~2.12!
into account. Remember that the basis$u1 , . . . ,un% generates the latticeL in the Euclidean space
Rn and that the torus is isometric toRn/L. Let x5(x1, . . . ,xn) be an orthonormal coordinate o
Rn. It is related to the normalized coordinatet5(t1, . . . ,tn) via

x5t1u11¯1tnun5Ut. ~4.1!

In these coordinates the magnetic field~2.2! is expressed as

B5
1

2 (
j ,k51

n

Bjk dxj∧dxk5
1

2 (
j ,k,l ,p51

n

Bjk u l
j u p

k dt l∧dtp5
1

2 (
l ,p51

n

f lp dt l∧dtp. ~4.2!

The numberBjk is areal density of magnetic flux which penetrates the (xj ,xk)-plane. If we
perform a coordinate transformation

x5Ry ~4.3!

by an orthogonal transformationRPO(n,R), the components of the field strength is transform
as

B5
1

2 (
j ,k51

n

Bjk dxj∧dxk5
1

2 (
j ,k,l ,p51

n

Bjk R l
j R p

k dyl∧dyp. ~4.4!

By a suitable orthogonal transformation the field strength matrix (Bjk) can be brought into a
standard form

n5 tRB R51
0 n1

2n1 0

0 n2

2n2 0

�

0 nm

2nm 0

0

�

0

2 , ~4.5!
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where$n j% are positive real numbers. The (t1, . . . ,tn)-coordinate system block-diagonalizes t
magnetic flux in the form of~3.14! while (y1, . . . ,yn) block-diagonalizes the magnetic fiel
strength in the form of~4.5!. The transformations~4.1! and ~4.3! are combined into

y5 tRx5 tRUt5Lt. ~4.6!

Then we obtain relations among the matrices

f5 tUBU5 tUR n tRU5 tLnL. ~4.7!

The phase factor in~3.2! is rewritten as

(
j ,k51

n

v jf jktk5 (
j ,k,l ,p51

n

v jL j
l n lpL k

p tk

5 (
j ,l ,p51

n

v jL j
l n lp yp

5(
j 51

n

(
l 51

m

v j~L j
2l 21n l y

2l2L j
2l n l y

2l 21!. ~4.8!

The gauge field~2.1! is expressed in they-coordinate as

A5
1

2 (
j 51

m

n j~y2 j 21 dy2 j2y2 j dy2 j 21!1 (
j ,k51

n

a j~L21! k
j dyk. ~4.9!

We set

bk5(
j 51

n

a j~L21! k
j ~4.10!

for later use.
Actually, we can choose a transformation matrixL that has zeros in this pattern

L5S L 2p21
2i 21 L 2q

2i 21 L 2m1r
2i 21

L 2p21
2 j L 2q

2 j L 2m1r
2 j

L 2p21
2m1k L 2q

2m1k L 2m1r
2m1k

D 5S * 0 0

* * 0

* * *
D ~4.11!

with i , j ,p,q51, . . . ,m andk,r 51, . . . ,n22m. The inverse matrixL21 also has the same patter
of zeros. This distribution of zeros is proved in Appendix A. Then we can rewrite the mag
shift operators~3.16! and ~3.17! with a help of~4.8! in the y-coordinate as

U j f ~yi !5ep i ( l 51
m (1/qj )(L 2j 21

2l 21 n l y
2l2L 2j 21

2l n l y
2l 21) f ~yi2L 2j 21

i ~1/qj !!, ~4.12!

Vj f ~yi !5e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

f ~yi2L 2j
i ~1/qj !!, ~4.13!

Wk~u! f ~yi !5 f ~yi2L 2m1k
i u! ~4.14!

for j 51, . . . ,m andk51, . . . ,n22m. From ~4.11! and ~4.7! we get a formula
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n iL 2j 21
2i 21 5 (

l ,p51

m

n lL 2j 21
2l 21 L 2p

2l ~L21! 2i
2p

5 (
l ,p51

m

~L 2j 21
2l 21 n lL 2p

2l 2L 2j 21
2l n lL 2p

2l 21!~L21! 2i
2p

5 (
p51

m

qj d jp ~L21! 2i
2p 5qj~L21! 2i

2 j , ~4.15!

which will be repeatedly used later.

V. MAGNETIC ALGEBRA

In this section we introduce new operators which act on twisted periodic functions. Thes
operators and the operators in the MTG generate an algebra, which we call a magnetic alge
construct and classify its irreducible representations. In the next section we will prove th
space of twisted periodic functions is actually an irreducible representation of the magnetic
bra. In this sense, the magnetic algebra completely characterizes the quantum mechanic
magnetic torus.

Now we introduce a family of Hermite operators. Expanding the covariant derivative~2.3! in
terms of they-coordinate

D f 5 i(
l 51

n

Pl f dyl , ~5.1!

we define differential operators

P2 j 2152 i S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21D , ~5.2!

P2 j52 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j D ~ j 51, . . . ,m!, ~5.3!

P2m1k52 i S ]

]y2m1k 22p ib2m1kD ~k51, . . . ,n22m!. ~5.4!

These are Hermitian with respect to the inner product~2.11!. Since (y1, . . . ,yn) is an orthonormal
coordinate, the Laplacian~2.13! becomes

2D f 5(
i 51

n

~Pi !
2f . ~5.5!

Nontrivial commutators amongP’s are

@P2 j 21 ,P2 j #52p in j ~ j 51, . . . ,m!. ~5.6!

The other commutators vanish. We call the operators$P2 j 21 ,P2 j% transverse momenta while w
call the operators$P2m1k% longitudinal momenta. Since the covariant derivative commutes w
the magnetic shifts as seen at~3.4!, the momentum operators$Pi% commute with the shift opera
tors $U j ,Vj ,Wk%, which are defined at~3.16! and ~3.17!.
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Next we introduce another family of unitary operators. For this purpose we need an ob
tion; in thet-coordinate that expresses the magnetic flux matrix in the standard form~3.14!, t2m1k

(k51, . . . ,n22m) are genuine cyclic coordinates. That is to say, the twisted periodic func
~2.5! is periodic with respect to these coordinates as

f ~ t1, . . . ,t2m1k11, . . . ,tn!5 f ~ t1, . . . ,t2m1k, . . . ,tn! ~k51, . . . ,n22m! ~5.7!

and the magnetic shift~3.2! is reduced to an ordinary continuous shift

~Wk~u! f !~ t1, . . . ,t2m1k, . . . ,tn!5 f ~ t1, . . . ,t2m1k2u, . . . ,tn!. ~5.8!

Then we define an operatorTk for eachk51, . . . ,n22m which acts onf by multiplication

~Tkf !~ t!5e2p i t 2m1k
f ~ t!5e2p i ( i 51

n (L21) i
2m1k yi

f ~ t!. ~5.9!

Here we used the inverseL21 of the coordinate transformation~4.6!. The operators$Tk% are
unitary operators with respect to the inner product~2.11!. They satisfy

Wk~u!Tk5e22p iu TkWk~u!, ~5.10!

@Pi ,Tk#52p~L21! i
2m1k Tk ~ i 51, . . . ,n; k51, . . . ,n22m! ~5.11!

and commute with the other generators of the MTG.
Combining all the operators introduced above we define an algebraA with the generators

$Pi ,U j ,Vj ,Wk(u),Tk u i 51, . . . ,n; j 51, . . . ,m; k51, . . . ,n22m; uPR% and with the relations
~3.18!–~3.21!, ~5.6!, ~5.10!, ~5.11! and other trivial commutators. We call the algebraA a magnetic
algebra. In the following we will construct all the irreducible representations of the algebraA and
classify their unitary equivalence classes.

A subset of generators$P2 j 21 ,P2m1 l ,Vj ,Wl(u) u j 51, . . . ,m; l 51, . . . ,n22m; uPR% gen-
erates a maximal Abelian subalgebra ofA. Hence these generators are simultaneously diago
izable. Their simultaneous eigenstateuk,r ,d& is labeled byr jPZ/Zqj

of ~3.22! anddlPZ of ~3.23!
with new labels

k2 j 21 ,k2m1 lPR. ~5.12!

The generators$P2 j 21 ,P2m1 l% act on these states as

P2 j 21uk,r ,d&52pk2 j 21uk,r ,d&, ~5.13!

P2m1 l uk,r ,d&52pk2m1 l uk,r ,d&, ~5.14!

and $Vj ,Wl(u)% act as~3.25!, ~3.26!, respectively. The coefficient 2p was set for later conve
nience. Other generators$P2 j ,Tl u j 51, . . . ,m; l 51, . . . ,n22m% act on the states as

^cuP2 j uk,r ,d&5 in j

]

]k2 j 21
^cuk,r ,d&, ~5.15!

Tl uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlpdp%uki1D lki ,r ,dk1dk
l&, ~5.16!

with D lki5(L21) i
2m1 l . We will determine the (n22m)3(n22m) matrix Zlp later. Hereuc&

represents an arbitrary state. The rests$U j u j 51, . . . ,m% act as~3.24!. Therefore, in an irreducible
representation space the eigenvaluesk2m1 i are linked todl via
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k2m1 i5 (
l 51

n22m

dl~L21! 2m1 i
2m1 l 2b2m1 i5 (

l 51

n22m

~dl2a2m1 l !~L21! 2m1 i
2m1 l ~ i 51, . . . ,n22m!.

~5.17!

Here the real numberb2m1 i coincides with the one that appeared in~5.4!. We also used the
relations~4.10! and ~4.11!.

The matrixZlp is determined by the conditionTl 8Tl5TlTl 8. The action ofTl 8Tl gives

Tl 8Tl uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlpdp%

3e2p i $( j 51
m (k2 j 211D l k2 j 211D l 8k2 j 21)D l 8k2 j /n j 1(p51

n22mZl 8p(dp1dp
l )%

3uki1D lki1D l 8ki ,r ,dk1dk
l1dk

l 8& ~5.18!

while the action ofTlTl 8 gives

TlTl 8uki ,r ,dk&5e2p i $( j 51
m (k2 j 211D l 8k2 j 21)D l 8k2 j /n j 1(p51

n22mZl 8pdp%

3e2p i $( j 51
m (k2 j 211D l 8k2 j 211D l k2 j 21)D l k2 j /n j 1(p51

n22mZlp(dp1dp
l 8)%

3uki1D l 8ki1D lki ,r ,dk1dk
l 81dk

l&. ~5.19!

To give Tl 8Tl5TlTl 8 the matrixZll 8 must satisfy

(
j 51

m

~D lk2 j 21D l 8k2 j /n j !1Zl 8 l5(
j 51

m

~D l 8k2 j 21D lk2 j /n j !1Zll 8. ~5.20!

A general solution of the above equation is

Zll 85(
j 51

m

~D lk2 j 21D l 8k2 j /n j !1Sll 8. ~5.21!

Here we leave an arbitrary symmetric matrixSll 85Sl 8 l yet undetermined. Actually any choice o
Sll 8 results in an equivalent representation, and therefore we takeSll 850.

A restricted set of vectors$uk,r ,d&% that are labeled by the mutually independent parame

k2 j 21PR, r jPZ/Zqj
, dlPZ ~ j 51, . . . ,m; l 51, . . . ,n22m! ~5.22!

spans a Hilbert spaceHa for each fixed value of (a2m11 ,a2m12 , . . . ,an). Thus we conclude tha
a unitary equivalence class of irreducible representations of the algebraA has one-to-one corre
spondence with the parameter (a2m11 ,a2m12 , . . . ,an)PRn22m/Zn22m.

VI. FOURIER ANALYSIS FOR THE MAGNETIC TORUS

Now let us turn to the space of twisted periodic functions. It is a representation space
magnetic algebra. We will calculate the whole family of eigenfunctions of the maximal Abe
subalgebra of the magnetic algebra. These eigenfunctionsxk,r ,d(t1, . . . ,tn)5^tuk,r ,d& satisfy

P2 j 21 xk,r ,d52 i S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21Dxk,r ,d52pk2 j 21 xk,r ,d , ~6.1!

P2 j xk,r ,d52 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j Dxk,r ,d5 in j

]

]k2 j 21
xk,r ,d , ~6.2!
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P2m1 l xk,r ,d52 i S ]

]y2m1 l 22p ib2m1 l Dxk,r ,d52pS (
i 51

n22m

di~L21! 2m1 l
2m1 i 2b2m1 l D xk,r ,d ,

~6.3!

U j xk,r ,d5ep i t 2 j
xk,r ,dS t2 j 212

1

qj
D5xk,(r 11),d , ~6.4!

Vj xk,r ,d5e2p i t 2 j 21
xk,r ,dS t2 j2

1

qj
D5e22p ir j /qjxk,r ,d , ~6.5!

Wl~u! xk,r ,d5xk,r ,d~ t2m1 l2u!5e22p idluxk,r ,d , ~6.6!

Tl xk,r ,d5e2p i t 2m1 l
xk,r ,d5e2p i $( j 51

m (k2 j 211Dk2 j 21)Dk2 j /n j 1(p51
n22mZlpdp%xk1Dk,r ,(d11) , ~6.7!

for j 51, . . . ,m; l 51, . . . ,n22m, and uPR. Here (r 11) is an abbreviation of (r i1d i j ) and
(d11) is an abbreviation of (dp1dp

l). And Dki5(L21) i
2m1 l as given in~5.16!. Thenxk,r ,d is a

simultaneous eigenfunction of$P2 j 21 ,P2m1 l ,Vj ,Wl(u)%. In the rest of this section we will solve
the set of equations~6.1!–~6.7! to get the solutions

xk,r ,d~y1, . . . ,yn!5c expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j2

1

2 (
j 51

m

n j y
2 j 21y2 j J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j ,l 51

m

n lL 2i 21
2l 21 L 2j 21

2l ~qis i1r i !~qjs j

1r j !/~qiqj !1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G , ~6.8!

wherec is a common normalization constant. The coefficientsg j are given later at~6.13!. The fact
that the eigenfunctions are uniquely determined up to the common coefficientc implies that the
space of twisted periodic function is an irreducible representation space of the magnetic a
Consequently, the eigenfunctions~6.8! constitute a complete orthonormal set of the space
twisted periodic functions over the torus. This is one of the main results of this paper. Hen
arbitrary twisted periodic function over the torus can be expanded as

f ~y1, . . . ,yn!5 (
k,r ,d

lk,r ,d xk,r ,d~y1, . . . ,yn! ~6.9!

with unique coefficientslk,r ,d . Therefore, the complete set$xk,r ,d% provides a new basis fo
Fourier analysis in the magnetic torus.
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In the rest of this section we give detailed lengthy calculations to prove the above state
The reader may skip them to the next section, where we calculate solutions of the eige
problem of the magnetic Laplacian using the main result~6.8!. First, a simultaneous solution o
~6.1! and ~6.3! is

xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 212(1/2)n j y

2 j 21y2 j %e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3fk,r ,d~y2,y4, . . . ,y2m!, ~6.10!

wherefk,r ,d(y2,y4, . . . ,y2m) is an arbitrary function to be specified later.
Next let us turn to the other equation~6.5!. Using ~4.13! we can rewrite~6.5! as

e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

xk,r ,d~yi2L 2j
i /qj !5e22p ir j /qjxk,r ,d~yi !. ~6.11!

As discussed at~4.11! we have taken the matrixL such thatL 2j
2l 2150. Therefore, when~6.10! is

substituted, the LHS of~6.11! becomes

e2p i ( l 51
m (1/qj )L 2j

2l n l y
2l 21

xk,r ,d~yi2L 2j
i /qj !

5e2p i ( l 51
m $(k2l 211b2l 21)y2l 212(1/2)n l y

2l 21y2l %e2p i (p,l 51
n22mdp(L21) 2m1 l

2m1p y2m1 l

3e22p i (p,l 51
n22mdp(L21) 2m1 l

2m1p L 2j
2m1 l /qjfk,r ,d~y2i2L 2j

2i /qj !. ~6.12!

Hence, if we set

g j5 (
p,l 51

n22m

dp~L21! 2m1 l
2m1p L 2j

2m1 l , ~6.13!

~6.11! implies that

e22p ig j /qjfk,r ,d~y2i2L 2j
2i /qj !5e22p ir j /qjfk,r ,d~y2i !. ~6.14!

If we introduce another coordinate system (z1,z2, . . . ,zm) which is related to (y2,y4, . . . ,y2m) via

y2i5(
j 51

m

L 2j
2i ~zj /qj !, ~6.15!

then ~6.14! is rewritten as

fk,r ,d~z1, . . . ,zj21, . . . ,zm!5e2p i (g j 2r j )/qj fk,r ,d~z1, . . . ,zj , . . . ,zm!. ~6.16!

Moreover, if we set

ck,r ,d~z1, . . . ,zm!5e2p i ( j 51
m (g j 2r j )z

j /qj fk,r ,d~z1, . . . ,zm!, ~6.17!

then ~6.16! implies that

ck,r ,d~z1, . . . ,zj21, . . . ,zm!5ck,r ,d~z1, . . . ,zj , . . . ,zm!. ~6.18!

Henceck,r ,d is a periodic function with the period 1 and can be expanded in a Fourier seri

ck,r ,d~z1, . . . ,zj , . . . ,zm!5 (
s1 ,s2 , . . . ,sm52`

`

ck,r ,d,s e2p i ( j 51
m s j z

j
. ~6.19!

Note that the inverse transformation of~6.15! is given by
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~zj /qj !5(
i 51

m

~L21! 2i
2 j y2i . ~6.20!

Combining the above equations we can write down the eigenfunction~6.10! in a more specific
form as

xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 212(1/2)n j y

2 j 21y2 j %e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

ck,r ,d,s e2p i ( j ,l 51
m (qjs j 1r j 2g j )(L

21) 2l
2 j y2l

. ~6.21!

Moreover, referring to~4.11! and~4.14!, we can see that~6.21! satisfies~6.6!. Thus we have seen
that xk,r ,d is a simultaneous eigenfunction of$P2 j 21 ,P2m1 l ,Vj ,Wl(u)% as announced above.

The remaining task is to solve~6.2!, ~6.4!, and ~6.7!. Let us begin with~6.2!. The left-hand
side ~LHS! of ~6.2! is

2 i S ]

]y2 j 2p in j y
2 j 2122p ib2 j Dxk,r ,d

5 (
s1 ,s2 , . . . ,sm52`

`

2pS 2
1

2
n j y

2 j 211(
i 51

m

~qis i1r i2g i !~L21! 2j
2i 2

1

2
n j y

2 j 212b2 j D
3e2p i ( i 51

m $(k2i 211b2i 21)y2i 212(1/2)n i y
2i 21y2i %e2p i ( i ,l 51

n22mdi (L
21) 2m1 l

2m1 i y2m1 l
ck,r ,d,s

3e2p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i y2l

.

On the other hand, the right-hand side~RHS! of ~6.2! is

in j

]

]k2 j 21
xk,r ,d5 in j e2p i ( i 51

m $(k2i 211b2i 21)y2i 212(1/2)n i y
2i 21y2i %e2p i ( i ,l 51

n22mdi (L
21) 2m1 l

2m1 i y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

` S ]ck,r ,d,s

]k2 j 21
12p iy2 j 21 ck,r ,d,sD

3e2p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i y2l

.

Therefore, we have an equation

in j

]ck,r ,d,s

]k2 j 21
52pS (

i 51

m

~qis i1r i2g i !~L21! 2j
2i 2b2 j D ck,r ,d,s ~6.22!

and get its solution

ck,r ,d,s5c0,r ,d,s e22p i $( i , j 51
m (qis i1r i2g i )(L

21) 2j
2i k2 j 21 /n j 2( j 51

m b2 j k2 j 21 /n j %. ~6.23!

Thus ~6.21! becomes
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xk,r ,d~y1,y2, . . . ,yn!5e2p i ( j 51
m $(k2 j 211b2 j 21)y2 j 211k2 j 21b2 j /n j 2(1/2)n j y

2 j 21y2 j %

3e2p i ( j ,l 51
n22mdj (L

21) 2m1 l
2m1 j y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

c0,r ,d,s e2p i ( j ,l 51
m (qjs j 1r j 2g j )(L

21) 2l
2 j (y2l2k2l 21 /n l ).

~6.24!

Next we turn to~6.4!. With the aid of~4.12! and ~4.15! the LHS of ~6.4! becomes

ep i ( l 51
m (1/qj )(L 2j 21

2l 21 n l y
2l2L 2j 21

2l n l y
2l 21)xk,r ,d~yi2L 2j 21

i /qj !

5e2p i ( i 51
m $2b2i 21L 2j 21

2i 21 /qj 2(1/2)(L21) 2i
2 j L 2j 21

2i /qj % e22p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l /qj

3e2p i ( i 51
m $(k2i 211b2i 21)y2i 211k2i 21b2i /n i2(1/2)n i y

2i 21y2i %e2p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i y2m1 l

3 (
s1 ,s2 , . . . ,sm52`

`

c0,r ,d,s e22p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i L 2j 21

2l /qj

3e2p i ( i ,l 51
m (qis i1r i1d i j 2g i )(L

21) 2l
2i (y2l2k2l 21 /n l ). ~6.25!

To make this coincide with the RHS of~6.4! we have a recursive equation

e2p i ( i 51
m $2b2i 21L 2j 21

2i 21 /qj 2(1/2)(L21) 2i
2 j L 2j 21

2i /qj % e22p i ( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l /qj

3e22p i ( i ,l 51
m (qis i1r i2g i )(L

21) 2l
2i L 2j 21

2l /qj c0,r ,d,s5c0,(r 11),d,s . ~6.26!

Here (r 11) means (r i1d i j ). If we define anm3m matrix

Yi j 5(
l 51

m

~L21! 2l
2i L 2j 21

2l /qj5(
l 51

m

n lL 2i 21
2l 21 L 2j 21

2l /~qiqj !, ~6.27!

it is symmetric as

Yi j 2Yji 5(
l 51

m

~L 2i 21
2l 21 n lL 2j 21

2l 2L 2i 21
2l n lL 2j 21

2l 21 !/~qiqj !5f2i 21,2j 21 /~qiqj !50 ~6.28!

by virtue of ~4.7!. Then the solution of~6.26! is

c0,r ,d,s5c0,0,d,s e22p i ( i , j 51
m b2i 21L 2j 21

2i 21 r j /qje22p i ( j 51
m

( i ,l 51
n22mdi (L

21) 2m1 l
2m1 i L 2j 21

2m1 l r j /qj

3e22p i ( i , j ,l 51
m (qis i1(1/2)r i2g i )(L

21) 2l
2i L 2j 21

2l r j /qj . ~6.29!

Therefore,~6.24! becomes
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xk,r ,d~y1,y2, . . . ,yn!5expF2p i H (
j 51

m H ~k2 j 211b2 j 21!y2 j 211k2 j 21b2 j /n j2
1

2
n j y

2 j 21y2 j J
1 (

i ,l 51

n22m

di~L21! 2m1 l
2m1 i S y2m1 l2(

j 51

m

L 2j 21
2m1 l r j /qj D

2 (
i , j 51

m

b2i 21L 2j 21
2i 21 r j /qj1

1

2 (
i , j 51

m

Yi j r i r j J G
3 (

s1 ,s2 , . . . ,sm52`

`

c0,0,d,s expF2p i (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j

3S y2l2k2l 21/n l2(
i 51

m

L 2i 21
2l r i /qi D G . ~6.30!

Since (U j )
qj51 by ~3.18!, the substitutionr j°r j1qj must leavexk,r ,d invariant. This substitu-

tion gives

xk,(r 1q),d~y!5expF2p i H (
i 51

m H ~k2i 211b2i 21!y2i 211k2i 21b2i /n i2
1

2
n i y

2i 21y2i J
1 (

i ,l 51

n22m

di~L21! 2m1 l
2m1 i S y2m1 l2 (

p51

m

L 2p21
2m1 l r p/qpD 2 (

i ,l 51

m

b2i 21L 2l 21
2i 21 r l /ql

1
1

2 (
i ,p51

m

Yipr i r p2 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l 2(
i 51

m

b2i 21L 2j 21
2i 21 1(

i 51

m

Yi j r iqj

1
1

2
Yj j qjqj D J (

s1 ,s2 , . . . ,sm52`

`

c0,0,d,(s21) expF2p i H 2(
i 51

m

~qis i1r i2g i !Yi j qj

1 (
i ,l 51

m

~qis i1r i2g i !~L21! 2l
2i S y2l2k2l 21 /n l2 (

p51

m

L 2p21
2l r p/qpD J G . ~6.31!

Here (s21) is an abbreviation of (s i2d i j ). We used~4.15!. Then we have another recursiv
equation

c0,0,d,s5c0,0,d,(s21) expF2p i H 2 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l 2(
i 51

m

b2i 21L 2j 21
2i 21

1(
i 51

m

Yi j r iqj1
1

2
Yj j qjqj2(

i 51

m

~qis i1r i2g i !Yi j qj J G . ~6.32!

Remember thatqiqjYi j 5( l 51
m n lL 2i 21

2l 21 L 2j 21
2l 5qjqiYji is symmetric. The solution of~6.32! is

c0,0,d,s5c0,0,d,0 expF2p i H 2 (
i ,l 51

n22m

(
j 51

m

di~L21! 2m1 l
2m1 i L 2j 21

2m1 l s j2 (
i , j 51

m

b2i 21L 2j 21
2i 21 s j

1 (
i , j 51

m

Yi j r iqjs j2 (
i , j 51

m

~~1/2!qis i1r i2g i !Yi j qjs j J G . ~6.33!
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Substituting it into~6.30! and using~4.15!, we get

xk,r ,d~y!5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j

(
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
i ,l 51

n22m

di~L21! 2m1 l
2m1 i H y2m1 l2(

j 51

m

L 2j 21
2m1 l ~qjs j1r j !/qj J

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
l 51

m

L 2l 21
2 j 21 ~qls l1r l2g l !/qlJ J G . ~6.34!

Finally, we are going to solve~6.7!. Its LHS becomes

e2p i t 2m1 l
xk,r ,d

5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j

(
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,p51

m S qjs j1r j2g j1(
i 51

m

~L21! 2i
2m1 lL 2j

2i D ~L21! 2p
2 j H y2p2(

i 51

m

L 2i 21
2p ~qis i1r i !/qiJ

1 (
p,i 51

m

~L21! 2p
2m1 lL 2i 21

2p ~qis i1r i !/qi

1 (
i ,p51

n22m

~di1d i
l !~L21! 2m1p

2m1 i H y2m1p2(
j 51

m

L 2j 21
2m1p~qjs j1r j !/qj J

1 (
p51

n22m

(
j 51

m

~L21! 2m1p
2m1 l L 2j 21

2m1p~qjs j1r j !/qj

1(
j 51

m

~k2 j 211~L21! 2j 21
2m1 l !H y2 j 211b2 j /n j2 (

p51

m

L 2p21
2 j 21 ~qpsp1r p2gp!/qpJ

2(
j 51

m

~L21! 2j 21
2m1 l H b2 j /n j2 (

p51

m

L 2p21
2 j 21 ~qpsp1r p2gp!/qpJ J G . ~6.35!

We setD lki5(L21) i
2m1 l as before. The changedp°dp1dp

l causes a change ofg j as
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D lg j5 (
i 51

n22m

~L21! 2m1 i
2m1 l L 2j

2m1 i

5(
i 51

n

~L21! i
2m1 lL 2j

i 2(
i 51

m

~L21! 2i 21
2m1 l L 2j

2i 212(
i 51

m

~L21! 2i
2m1 lL 2j

2i

50202(
i 51

m

~L21! 2i
2m1 lL 2j

2i ~6.36!

via ~6.13! with ~4.11!. Moreover, we can see that

(
p51

m

L 2p21
2 j 21 D lgp /qp52 (

p,i 51

m

L 2p21
2 j 21 ~L21! 2i

2m1 lL 2p
2i /qp

52 (
p,i 51

m

~L21! 2j
2p ~L21! 2i

2m1 lL 2p
2i /n j

52(
i 51

m

~L21! 2i
2m1 ld 2j

2i /n j

52~L21! 2j
2m1 l /n j

52D lk2 j /n j . ~6.37!

Therefore~6.35! becomes

e2p i t 2m1 l
xk,r ,d

5c0,0,d,0 e2p i ( j 51
m n j y

2 j 21y2 j
expF2p i H (

j 51

m

~k2 j 211Dk2 j 21!Dk2 j /n j

2(
j 51

m

~L21! 2j 21
2m1 l S b2 j /n j1 (

p51

m

L 2p21
2 j 21 gp /qpD J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,p51

m

~qjs j1r j2g j2Dg j !~L21! 2p
2 j H y2p2(

i 51

m

L 2i 21
2p ~qis i1r i !/qiJ

1 (
i ,p51

n22m

~di1d i
l !~L21! 2m1p

2m1 i H y2m1p2(
j 51

m

L 2j 21
2m1p~qjs j1r j !/qj J

1(
j 51

m

~k2 j 211Dk2 j 21!H y2 j 211b2 j /n j2 (
p51

m

L 2p21
2 j 21 ~qpsp1r p2gp2Dgp!/qpJ J G .

~6.38!

In the course of calculation we used the fact(p51
n (L21) p

2m1 lL 2i 21
p 50. With the aid of~4.15!,

~6.36! and the definition~5.21! we can deduce that
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(
j ,p51

m

~L21! 2j 21
2m1 l L 2p21

2 j 21 gp/qp52 (
i 51

n22m

Zli di . ~6.39!

Thus we reach

e2p i t 2m1 l
xk,r ,d5e22p i ( j 51

m (L21) 2j 21
2m1 l b2 j /n j c0,0,d,0 c0,0,(d11),0

21

3e2p i $( j 51
m (k2 j 211Dk2 j 21)Dk2 j /n j 1( i 51

n22mZli di %xk1Dk,r ,(d11) . ~6.40!

To satisfy~6.7! we meet another recursive equation

c0,0,(d11),05e22p i ( j 51
m (L21) 2j 21

2m1 l b2 j /n jc0,0,d,0 ~6.41!

and we get the solution

c0,0,d,05e22p i ( j 51
m

( l 51
n22mdl (L

21) 2j 21
2m1 l b2 j /n jc0,0,0,0. ~6.42!

Substituting it into~6.34! we reach the final result

xk,r ,d~y!5c0,0,0,0expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j2

1

2 (
j 51

m

n j y
2 j 21y2 j J G

3 (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G . ~6.43!

This is the result~6.8! announced previously. The eigenfunctionxk,r ,d is determined up to a
unique normalization constantc0,0,0,0. Thus we conclude that the space of twisted periodic fu
tions over the torus is an irreducible representation space of the magnetic algebraA. Finally, we
have proved that the set of functions$xk,r ,d% is a complete orthonormal set in the space of twis
periodic functions over the torus as announced at~6.9!.

VII. EIGENFUNCTIONS OF THE MAGNETIC LAPLACIAN

In this section we will write down explicitly solutions of the eigenvalue problem of
magnetic Laplacian~2.13! or ~5.5!, which is expressed in they-coordinate as

D f 5(
j 51

m F S ]

]y2 j 21 1p in j y
2 j22p ib2 j 21D 2

f 1S ]

]y2 j 2p in j y
2 j 2122p ib2 j D 2

f G
1 (

k51

n22m S ]

]y2m1k 22p ib2m1kD 2

f . ~7.1!
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The functionf must satisfy the twisted periodic condition~2.5!. We will obtain solutions using the
Fourier analysis that is developed in the preceding section.

Here we would like to describe the outline of our method. As mentioned in the prece
section, the Laplacian commutes with the magnetic shift operators,$U j ,Vj ,Wk%. Hence the labels
(r ,d)5(r 1 ,r 2 , . . . ,r m ,d1 ,d2 , . . . ,dn22m), which are defined in~3.22!–~3.26!, are good quantum
numbers. Moreover, the Laplacian commutes with the longitudinal momentum operators$P2m1k%.
Hence the corresponding momentum eigenvalues$k2m1k% are also good quantum numbers and a
related to the labelsdl via ~5.17!. On the other hand, the Laplacian does not commute with
transverse momentum operators$P2 j 21 ,P2 j%. Hence the transverse momentum eigenval
$k2 j 21% do not remain good quantum numbers. The Laplacian admits a new set of good qu
numbers (n1 ,n2 ,...,nm), which will be introduced later. It will be revealed that eigenfunctions
the Laplacian are actually matrix elements of a unitary transformation,

cn,r ,d~k1 ,k3 , . . . ,k2m21!5^k,r ,dun,r ,d&, ~7.2!

which relates the quantum numbersn’s to k’s. In the k-space it is rather easy to get eigenfun
tions by the standard method of a harmonic oscillator. On the other hand, the set of eigenfun
of the momenta and magnetic shifts,

xk,r ,d~y1,y2, . . . ,yn!5^yuk,r ,d&, ~7.3!

plays a role a unitary transformation which bridges between the momentum space and t
space like the usual Fourier transformation. Hence the Laplacian eigenfunctions are trans
into they-coordinate representations by

cn,r ,d~y1,y2, . . . ,yn!5^yun,r ,d&5E
2`

`

dk1 dk3 ¯ dk2m21^yuk,r ,d& ^k,r ,dun,r ,d&. ~7.4!

This will give the desired result.
Now let us carry out the program outlined above. We define creation and annihilation o

tors associated with the transverse momenta as

aj
†5

1

A4pn j

~P2 j 212 iP2 j !, aj5
1

A4pn j

~P2 j 211 iP2 j ! ~ j 51, . . . ,m!. ~7.5!

It is easily verified that@aj ,ak
†#5d jk . Then the Laplacian~5.5! becomes

2D5(
j 51

m

4pn j S aj
†aj1

1

2D1 (
k51

n22m

~P2m1k!
2. ~7.6!

The eigenstateuV& for the lowest eigenvalue satisfies

05^kuaj uV&5
1

A4pn j

^ku~P2 j 211 iP2 j !uV&5
1

A4pn j
S 2pk2 j 211n j

]

]k2 j 21
D ^kuV&. ~7.7!

Here we used~5.13! and ~5.15!. The solution is

^kuV&5e2p( j 51
m (k2 j 21)2/n j . ~7.8!

States for higher eigenvalues are generated by creation operators as
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^kun&5
1

An1!¯nm!
^ku~a1

†!n1
¯~am

† !nmuV&

5
1

An1!¯nm!
)
j 51

m F 1

A4pn j
S 2pk2 j 212n j

]

]k2 j 21
D G nj

^kuV&

5
1

An1!¯nm!
ep( j 51

m (k2 j 21)2/n j )
j 51

m F 1

A4pn j
S 2n j

]

]k2 j 21
D G nj

e22p( j 51
m (k2 j 21)2/n j ~7.9!

for n1 ,n2 , . . . ,nm50,1,2, . . . . We are suppressing other labels (r ,d). In Appendix B we prove
that

E
2`

`

dk e2p ikz
•epk2/nS 2n

]

]kD n

e22pk2/n5An epnz2S 2 i
]

]zD
n

e22pnz2

5An~ iA2pn!ne2pnz2
Hn~zA2pn !. ~7.10!

In the second lineHn(j) is thenth Hermite polynomial. Substituting~6.43! and ~7.9! into ~7.4!
and applying~7.10! we obtain

^yun,r ,d&5E
2`

`

dk1 dk3 ¯ dk2m21 ^yuk,r ,d&^k,r ,dun,r ,d&

5c expF2p i H 2(
j 51

m

(
l 51

n22m

dl~L21! 2j 21
2m1 l b2 j /n j

2
1

2 (
j 51

m

n j y
2 j 21y2 j J G (

s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1(
j 51

m

b2 j 21H y2 j 212(
i 51

m

L 2i 21
2 j 21 ~qis i1r i !/qiJ

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ J G

3)
j 51

m FA n j

nj !
S i

&
D nj

e2pn j $y2 j 211b2 j /n j 2( i 51
m L 2i 21

2 j 21 (qis i1r i2g i )/qi %
2

3HnjS A2pn j H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ D G . ~7.11!

This is the main result of this paper. Using~5.17!, we can calculate eigenvalues of the Laplac
~7.6! as

2
1

2
Dcn,r ,d5F (

j 51

m

2pn j S nj1
1

2D1
1

2 (
k51

n22m H (
l 51

n22m

2p~dl2a2m1 l !~L21! 2m1k
2m1 l J 2Gcn,r ,d .

~7.12!
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Eigenvalues depend on quantum numbersn1 ,n2 , . . . ,nm50,1,2, . . . andd1 ,d2 , . . . ,dn22m50,
61,62, . . . but not onr 5(r 1 ,r 2 , . . . ,r m)PZq1

3Zq2
3¯3Zqm

. Thus each eigenvalue is dege
erated byq1q2¯qm folds as predicted in~3.28!. If a ratio n i /n j ( iÞ j ) is rational, degeneracy
happens more. On the other hand, ifa2m1 l50, the eigenvalue for2dl coincides with the one for
dl . If a2m1 l51/2, the eigenvalue for (2dl11) coincides with the one fordl . Moreover, for
specific values of$(L21) 2m1k

2m1 l % we may meet more multifold degeneracy.
Let us discuss physical meanings of the eigenvalue~7.12!. It is energy of an electrically

charged particle moving in the magnetic field in the torus. In~7.12! we set the coefficient21/2 in
front of D to adjust the equation to the conventional Schro¨dinger equation. In the context o
classical mechanics, the particle exhibits a cyclic motion with the frequencyn j in the
(y2 j 21,y2 j )-plane for eachj 51,2,. . . ,m. And it exhibits a uniform straight motion along th
y2m1k-axis. The whole motion is a superposition of those cyclic and straight motions. Whe
turn to quantum mechanics, energy of the cyclic motion is quantized and results in the so
Landau level 2pn j (nj11/2). On the other hand, the longitudinal momentumP2m1k associated
with the straight motion is quantized to be 2pk2m1k52p( l 51

n22m(dl2a2m1 l)(L
21) 2m1k

2m1 l

52p( l 51
n22mdl(L

21) 2m1k
2m1 l 2b2m1k with integers (d1 ,d2 , . . . ,dn22m) as explained in~5.17!.

Along the course of the straight motion the particle flies around the torus and picks u
so-called Aharonov–Bohm effect. Then the momentum is shifted by the Aharonov–Bohm p
eters (b2m11 , . . . ,bn). Accordingly, the kinetic energy of the straight motion is also quantiz
The total energy is then given as~7.12!.

Moreover, let us examine meanings of other Aharonov–Bohm parameters (b1 , . . . ,b2m).
These do not affect the energy~7.12! and hence they have a geometric significance rather th
physical significance. To understand their meaning we rewrite the eigenfunction~6.43! as

xk,r ,d~y!5c expF2p i H (
l 51

n22m

(
j 51

m

dl$~L21! 2j
2m1 lb2 j 212~L21! 2j 21

2m1 l b2 j%/n j2
1

2 (
j 51

m

n j y
2 j 21y2 j

1(
j 51

m

b2 j 21y2 j 21J G (
s1 ,s2 , . . . ,sm52`

`

expF2p i H 1

2 (
i , j 51

m

Yi j ~qis i1r i !~qjs j1r j !

1 (
j ,l 51

m

~qjs j1r j2g j !~L21! 2l
2 j H y2l2b2l 21/n l2(

i 51

m

L 2i 21
2l ~qis i1r i !/qiJ

1 (
k,l 51

n22m

dk~L21! 2m1 l
2m1k H y2m1 l2(

i 51

m

L 2i 21
2m1 l ~qis i1r i !/qiJ

1(
j 51

m

k2 j 21H y2 j 211b2 j /n j2(
i 51

m

L 2i 21
2 j 21 ~qis i1r i2g i !/qiJ J G . ~7.13!

To get the above expression we used

(
i 51

m

L 2i 21
2 j 21 g i /qi52 (

l 51

n22m

dl~L21! 2j
2m1 l /n j , ~7.14!

which is easily derived from~6.36!. Thus we can see that the parameters (b1 , . . . ,b2m) induce a
displacement

~y2 j 21,y2 j !→~y2 j 211b2 j /n j ,y2 j2b2 j 21 /n j ! ~7.15!

of the profile uxk,r ,d(y)u. This is the geometric significance of the transverse Aharonov–B
parameters.
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VIII. CONCLUSION

Here we summarize our discussions. As well-known, aU(1) gauge field replaces the parti
derivative by the covariant derivative and generates a magnetic field. As a natural extension
eigenvalue problem of the ordinary Laplacian in then-torus, we formulated the eigenvalue pro
lem of the magnetic Laplacian. The ordinary Laplacian admits continuous Abelian symmetr
therefore the usual Fourier analysis is applicable. However, the magnetic Laplacian does no
continuous Abelian symmetry and therefore the usual Fourier analysis is not applicable
Hence, we developed an alternative method, which became an extension of the usual
analysis. We identified symmetry structure of the magnetic Laplacian and defined the ma
translation group~MTG!, which is discrete and non-Abelian in general. Moreover, we defined
magnetic algebra by extending the MTG. We proved that the space of functions on whic
magnetic Laplacian acts is an irreducible representation space of the magnetic algebra. By
nalizing the maximal Abelian subalgebra of the magnetic algebra we obtained a complete
normal set of functions$xk,r ,d(y)% over the magnetic torus; those functions are labeled by a s
good quantum numbers (k,r ,d). It was rather easy to diagonalize the magnetic Laplacian in
k-space representation. Applying a unitary transformation by$xk,r ,d(y)% to the eigenstate of the
magnetic Laplacian, we finally obtained the eigenfunction in they-space representation. Th
eigenvalues of the magnetic Laplacian were naturally interpreted as sums of energies of
motions in the transverse directions to the magnetic field and energies of linear motions
longitudinal direction to it.

New results of this paper are the definition and representations of the magnetic algeb
proof of irreducibility of the space of twisted periodic functions as a representation space
magnetic algebra, the complete orthogonal set of functions~6.8! which provides a basis of the
extended Fourier analysis, the eigenfunctions~7.11! of the magnetic Laplacian in explicit forms
and the eigenvalues~7.12!.

Before closing this paper we would like to discuss briefly possible directions for fur
development. We treated only the Laplace operator in this paper but for application to physi
more desirable to treat the Schro¨dinger operator

H52 1
2 D1V, ~8.1!

which has a potential energy termV. The potentialV is a periodic function; in thet-coordinate it
satisfiesV(t1, . . . ,t i11, . . . ,tn)5V(t1, . . . ,t i , . . . ,tn) for eachi . It acts on the twisted periodic
function f (t) by multiplication. To take the potential term into account we may introduce
operatorsXk by

~Xj f !~ t!5e2p i t j
f ~ t! ~ j 51,2,. . . ,2m!, ~8.2!

which belong to the same family of operatorsTk of ~5.9!. Then any periodic potential operator ca
be expanded as

V~ t1, . . . ,tn!5 (
s1 ,s2 , . . . ,sn52`

`

cs e2p i (s1t11¯1sntn)

5 (
s1 ,s2 , . . . ,sn52`

`

cs ~X1!s1
¯~X2m!s2m~T1!s2m11

¯~Tn22m!sn. ~8.3!

We can easily calculate commutators ofX’s with other operators to get an algebra which is
extension of the magnetic algebra. The resulted algebra is isomorphic to the so-called no
mutative torus21 although we do not yet examine these relation thoroughly.
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Another direction for future development is to solve an eigenvalue problem of the D
operator in then-torus in the background magnetic field. We also construct supersymmetric
theory, which have both scalar and spinor fields as its constituents to pursue a new mecha
supersymmetry breaking.
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APPENDIX A: DISTRIBUTION OF ZEROS

As shown in~4.11! we prove existence of a transformation matrixL that has zeros in the
pattern

L5S L 2p21
2i 21 L 2q

2i 21 L 2m1r
2i 21

L 2p21
2 j L 2q

2 j L 2m1r
2 j

L 2p21
2m1k L 2q

2m1k L 2m1r
2m1k

D 5S * 0 0

* * 0

* * *
D ~A1!

with i , j ,p,q51, . . . ,m andk,r 51, . . . ,n22m.
In Rn we have an antisymmetric bilinear formB. We say that a vectoru is longitudinal with

respect toB if it satisfies

B~u,v!50 ~A2!

for arbitraryvPRn. We call

M05$uPRn u ;vPRn, B~u,v!50% ~A3!

a longitudinal vector subspace. Let (t1,t2, . . . ,tn) be the coordinate system that expressesB in the
standard form

B5
1

2 (
i , j 51

n

f i j dt i∧dt j5(
j 51

m

qj dt2 j 21∧dt2 j ~A4!

as in~3.14!. Let (y1,y2, . . . ,yn) be another coordinate system that is related to (t1,t2, . . . ,tn) by
a linear transformationyi5( j 51

n L j
i t j . The matrixL is not yet specified. Basis vectors generat

by these coordinates are related as

]

]t j 5(
i 51

n
]yi

]t j

]

]yi 5(
i 51

n

L j
i ]

]yi , ~A5!

]

]yj 5(
i 51

n
]t i

]yj

]

]t i 5(
i 51

n

~L21! j
i ]

]t i . ~A6!

Define vector subspacesM 2 andM 1 of Rn as

M 25R
]

]t1 % R
]

]t3 %¯% R
]

]t2m21 , ~A7!
                                                                                                                



.

re is
ace

nzero
two-

l

5068 J. Math. Phys., Vol. 44, No. 11, November 2003 M. Sakamoto and S. Tanimura

                    
M 15R
]

]t2 % R
]

]t4 %¯% R
]

]t2m . ~A8!

ThenM 2
% M 1

% M05Rn. Now let us remember thatRn is equipped with inner product structure
Then the two-formB:Rn3Rn→R can be regarded as an antisymmetric operatorB̂:Rn→Rn. As a
square of a linear operatorB̂2 is well-defined and becomes a symmetric operator and therefo
diagonalizable by an orthogonal transformation.B̂2 has nonpositive eigenvalues. The eigensp
W0 associated with the zero eigenvalue ofB̂2 coincides withM0. Of course,

H ]

]t2m11 ,
]

]t2m12 , . . . ,
]

]tnJ ~A9!

is a basis ofM05W0. We take an orthonormal basis

H ]

]y2m11 ,
]

]y2m12 , . . . ,
]

]ynJ ~A10!

of W0. This implies that

L 2m1r
2i 21 5L 2m1r

2 j 5~L21! 2m1r
2i 21 5~L21! 2m1r

2 j 50 ~A11!

in ~A5! and ~A6!.
Let us step into a difficult part of the proof. Each eigenspace associated with each no

eigenvalue ofB̂2 can be decomposed into two-dimensional subspaces such that each
dimensional subspaceWj is irreducible with respect to the action ofB̂. Thus we get an orthogona
decomposition

Rn5W1'W2'¯'Wm'W0. ~A12!

Next we define vector subspaces

Wj
15Wjù~M 1

% M0!, ~A13!

Wj
25Wjù~M 1

% M0!', ~A14!

then we can show that bothWj
1 and Wj

2 have one dimension. First, note that dimWj
1

1dimWj
25dimWj52. If dim Wj

152, Wj
1 coincides withWj itself. Since the two-formB is

degenerated on (M 1
% M0), it must be degenerated also onWj5Wj

1,(M 1
% M0). This contra-

dicts the fact thatWj is irreducible with respect toB̂. On the other hand, if dimWj
252, Wj

2

coincides withWj itself. Then we can take an arbitrary one-dimensional subspaceM 21,Wj

5Wj
2,(M 1

% M0)'. Since Wj is irreducible with respect toB̂, B is degenerated onM 21

% M 1
% M0. This contradicts the fact thatM 1

% M0 is a maximal degenerated subspace ofB.
Hence we conclude that dimWj

15dimWj
251.

We take a normalized vector]/]y2 j of Wj
1 . And we take another normalized vector]/]y2 j 21

of Wj
2 such thatn j5B(]/]y2 j 21,]/]y2 j ).0 for eachj 51, . . . ,m. Then we obtain a complete

orthonormal basis $]/]yi u i 51,2,. . . ,n% that expressesB in the standard form B
5( j 51

m n j dy2 j 21∧dy2 j .
Since]/]y2qPWq

1,M 1
% M0, we can say that

~L21! 2q
2i 2150 ~A15!

in ~A6!. By an elementary argument of linear algebra we can say that
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L 2q
2i 2150. ~A16!

The proof is over.

APPENDIX B: FOURIER TRANSFORMATION OF THE HERMITE POLYNOMIALS

In our convention the Hermite polynomial is defined as

Hn~j!5~21!n ej2 dn

djn e2j2
. ~B1!

The formula~7.10! can be deduced by a partial integration and a change of variables as

E
2`

`

dk e2p ikz
•epk2/nS 2

]

]kD n

e22pk2/n5E
2`

`

dk e22pk2/nS ]

]kD n

e2p ikz
•epk2/n

5epnz2E
2`

`

dk e22pk2/nS ]

]kD n

ep(k1 inz)2/n

5epnz2E
2`

`

dk e22pk2/nS 2
i

n

]

]zD
n

ep(k1 inz)2/n

5epnz2S 2
i

n

]

]zD
nE

2`

`

dk e2p(k2 inz)2/n22pnz2

5epnz2S 2
i

n

]

]zD
n

An e22pnz2
. ~B2!
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A class of vector coherent states defined over matrix
domains

K. Thirulogasanthara) and S. Twareque Alib)

Department of Mathematics and Statistics, Concordia University,
7141 Sherbrooke Street West, Montreal, Quebec H4B 1R6, Canada
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A general scheme is proposed for constructing vector coherent states, in analogy
with the well-known canonical coherent states, and their deformed versions, when
these latter are expressed as infinite series in powers of a complex variablez. In the
present scheme, the variablez is replaced by matrix valued functions over appro-
priate domains. As particular examples, we analyze the quaternionic extensions of
the canonical coherent states and the Gilmore–Perelomov and Barut–Girardello
coherent states arising from representations of SU~1,1!. Possible physical applica-
tions are indicated. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1617366#

I. INTRODUCTION

One way to define conventional coherent states, over complex domains, is by constr
linear superpositionsuz&, parametrized by a single complex numberz, of vectors$fm%m50

` , which
form an orthonormal basis in an infinite dimensional, complex, separable Hilbert spaceH:

uz&5N~ uzu!2 1/2(
m50

`
zm

Ar~m!
fm . ~1.1!

Here$r(m)%m50
` is a sequence of nonzero, positive numbers, chosen so as to ensure the c

gence of the sum in a nonempty open subsetD, of the complex plane, andN(uzu) is a normal-
ization constant, ensuring the condition^zuz&51. The coherent statesuz& are also required to
satisfy a resolution of the identity condition:

E
D

uz&^zudm5I , ~1.2!

wheredm is an appropriately chosen measure andI is the identity operator on the Hilbert spaceH.
These coherent states are known to have a large number of interesting properties, linking t
physical applications, orthogonal polynomials, generalized oscillator algebras, etc.2,8,13,15

In this article we extend this definition to matrix domains, thereby generating familie
vector coherent states. Vector coherent states are well-known mathematical objects, part
when they are defined as orbits of vectors under the operators of unitary representations of
~see, for example, Refs. 2, 4, 5, and 17!. However, in the present article we take a complet
different route for constructing them, although in special cases the link to a group represen
will also emerge.

a!Electronic mail: ksanthar@hotmail.com
b!Electronic mail: stali@mathstat.concordia.ca
50700022-2488/2003/44(11)/5070/14/$20.00 © 2003 American Institute of Physics
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II. VECTOR COHERENT STATES–THE GENERAL SETUP

Let R be a measure space, equipped with a measuredR, andK a second measure spac
equipped with a probability measuredK. For (r ,k,z)PR3K3@0,2p), let

Z5A~r !ei zQ(k) , ~2.1!

whereA(r ),Q(k) are two~measurable! n3n matrix-valued functions with the following proper
ties ~assumed to hold for almost allr PR, with respect to the measuredR and almost allk
PK, with respect to the measuredK):

Q~k! is Hermitian, that is, Q~k!5Q~k!† , ~2.2!

Q~k!25In5n3n unit matrix , ~2.3!

@A~r !,Q~k!#5A~r !Q~k!2Q~k!A~r !50, ~2.4!

A~r !A~r !†5A~r !†A~r ! . ~2.5!

It is then straightforward to verify~e.g., by direct power series expansion! that

Z5A~r !ei zQ(k)5A~r !@cosz1 iQ~k!sinz#. ~2.6!

Let D5R3K3@0,2p) and define the measuredm(r ,k,z)5dK(k)dR(r )dz on it.
Let x j , j 51,2,. . . ,n, be an orthonormal basis inCn. Then, $x j

^ fm% , j 51,2,. . . ,n, m

50,1,2,. . . ,` , is an orthonormal basis inĤ5Cn
^ H. For eachZ we define vector coherent state

~VCS! as follows:

uZ, j &5N~ uZu!2 1/2(
m50

` Z m

Ar~m!
x j

^ fm , j 51,2,...,n . ~2.7!

where, once again,N(uZu) is a normalization factor, which depends only on the positive p
uZu5@ZZ †#1/2 of the matrixZ, and$r(m)%m50

` is a sequence of nonzero positive numbers, w
r(0)51. These have to be chosen in a way such that the following two conditions are sat

normalization: (
j 50

n

^Z, j uZ, j &51, ~2.8!

resolution of the identity: (
j 51

n E
D

W~ uZu!uZ, j &^Z, j udm5In^ I , ~2.9!

whereW(uZu) is an appropriately chosen positive weight function.
A straightforward computation, using the fact that

Z m5A~r !meimzQ(k)5A~r !m~cosmz1 iQ~k!sinmz!,

shows that the normalization condition~2.8! implies the finiteness of the sum:

N~ uZu!5 (
m50

`
TruA~r !u2m

r~m!
, ~2.10!

(uA(r )u5@A(r )A(r )†#1/2 denoting the positive part of the matrixA(r )).
The resolution of the identity condition~2.9! imposes the following restriction on the weigh

function W(uZu) and the matricesA(r ):
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E
R

2pW~ uZu!uA~r !u2m

N~ uZu!
dR5r~m!In , ~2.11!

which can be interpreted as a sort of ‘‘matrix moment condition.’’
To see this we note that

E
D

W(uZu)(
j 51

n

uZ, j &^Z, j udm

5E
D

W(uZu)(
j 51

n

N(uZu)21 U (
m50

` Z m

Ar~m!
x j

^ fmL K (
l 50

` Z l

Ar~ l !
x j

^ f lUdm

5 (
m50

`

(
l 50

` E
D

W~ uZu!

N~ uZu!Ar~m!r~ l !
A~r !meimzQ(k)

3S (
j 51

n

ux j&^x j u DA~r ! l†e2 i l zQ(k)†
^ ufm&^f l udm .

Using

(
j 51

n

ux j&^x j u5In , Q~k!†5Q~k! and

E
0

2p

ei (m2,)zQ(k)dz5H 0 if ,Þm

2pIn if ,5m ,

we reduce the last line to

(
m50

` E
R
E

K

2pW~ uZu!
N~ uZu!r~m!

A~r !mA~r !m†
^ ufm&^fmudRdK

5 (
m50

` E
R
E

K

2pW~ uZu!
N~ uZu!r~m!

uA~r !u2m
^ ufm&^fmudRdK .

Since dK is a probability measure, using the fact that(m50
` ufm&^fmu5I and imposing the

condition ~2.11!, we immediately arrive at~2.9!.
There is an associated matrix-valued reproducing kernel,K(Z †,Z8), with matrix elements,

K j ,~Z †,Z8!5^Z, j uZ8,,&5 (
m50

`
1

r~m!AN~ uZu!N~ uZ8u!

3^e2 im(z8Q(k8)2zQ(k))A~r 8!m†A~r !mx j ux,&. ~2.12!

In view of ~2.9!, this kernel satisfies the reproducing condition,

E
D

K~Z †,Z9!K~Z9†,Z8!dm~k9,r 9,z9!5K~Z †,Z8! . ~2.13!

III. GENERALIZED ANNIHILATION, CREATION AND NUMBER OPERATORS

There are a number of operators, associated with the coherent states~1.1!, which define the
so-called generalized oscillator algebras.9,10,14,15Similar operators can also be constructed in
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context of the VCS~2.7!. In order to do that, let us first definexm5r(m)/r(m21), for m
51,2,3,.... Thus we writer(m)5xmxm21¯x15xm! and definex0! 51. The generalized annihi
lation or lowering operator, defined on the Hilbert spaceH, with respect to the basis$fm%m50

` is
then written as

afm5Axmfm21 with af050 . ~3.1!

In the case wherexm5m, we recover from this the standard annihilation operator for a harm
oscillator. It is also easy to see that this operator acts on the coherent statesuz& in the expected
manner:

auz&5zuz& .

Using a, we construct the creation or raising operatora† and the number operatorN85a†a:

a†fm5Axm11fm11 , N8fm5xmfm . ~3.2!

These three operators generate a Lie algebra~under composition given by the commutat
bracket!. This is the so-called generalized oscillator algebra, which we denote byAosc. In general,
the dimension of this algebra is not finite.

On the Hilbert space,Cn
^ H, of the VCSuZ, j &, we define the corresponding operators as

A5In^ a annihilation operator, ~3.3!

A†5In^ a† creation operator, ~3.4!

N5In^ N8 number operator. ~3.5!

They act on the VCS as

AuZ, j &5ZuZ, j & , ~3.6!

A†uZ, j &5N~Z!2 1/2(
m50

` Axm11

xm!
Zmx j

^ fm11 , ~3.7!

NuZ, j &5N~Z!2 1/2(
m51

`
xm

Axm!
Z mx j

^ fm , ~3.8!

and generate the Lie algebraIn^ Aosc, which again is generally not finite dimensional.
Using the operatorsa anda†, we may also define the~formally! self-adjoint operators,

q̂5
a1a†

&
and p̂5

a2a†

& i
, ~3.9!

and the related operators

Q5
A1A†

&
5In^ q̂ and P5

A2A†

& i
5In^ p̂ . ~3.10!

We shall need these operators later, when constructing minimal uncertainty states.
To end this section, let us note that, as a consequence of the resolution of the identity~2.9!,

there is a natural isometric embedding of the Hilbert space of the VCS into a space of
valued functions on the domainD. Indeed, letH̃5L2(D,dm). Then,
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W:Cn
^ H→Cn

^ H̃, where ~WC! j~Z!5^Z, j uC& , ~3.11!

is easily seen to be an isometry.

IV. QUATERNIONIC CANONICAL COHERENT STATES

As a first example of our general construction, we build in this section VCS using the com
representation of quaternions by 232 matrices. Using the basis matrices,

s05S 1 0

0 1D , is15S 0 i

i 0D , 2 is25S 0 21

1 0 D , is35S i 0

0 2 i D ,

wheres1 , s2, ands3 are the usual Pauli matrices, a general quaternion is written as

q5x0s01 ixI •sI

with x0PR, xI 5(x1 ,x2 ,x3)PR3 andsI 5(s1 ,2s2 ,s3). Thus,

q5S x01 ix3 2x21 ix1

x21 ix1 x02 ix3
D . ~4.1!

It is convenient to introduce the polar coordinates:

x05r cosu, x15r sinu sinf cosc, x25r sinu sinf sinc, x35r sinu cosf ,

wherer P@0,̀ ), u,fP@0,p# andcP@0,2p). In terms of these,

q5A~r !eius(n̂), ~4.2!

where

A~r !5rs0 , s~ n̂!5S cosf sinfeic

sinfe2 ic 2cosf D , and s~ n̂!25s0 . ~4.3!

We denote the field of quaternions byH.
The matricesA(r ) and s(n̂) satisfy the conditions~2.2!–~2.5!. Thus, with$fm%m50

` an or-
thonormal basis of an abstract Hilbert spaceH and x1,x2 an orthonormal basis ofC2, we can
define the VCS,

uq, j &5N~ uqu!2 1/2(
m50

`
qm

Axm!
x j

^ fmPC2
^ H , j 51,2, ~4.4!

whereN(uqu) andxm! have to be chosen appropriately.
In order to determine the normalization constantN(uqu), and the resolution of the identity

first note that in order for the norm of the vectoruq, j & to be finite, we must have

^q, j uq, j &5N~ uqu!21 (
m50

`
r 2m

xm!
,` .

Thus if limm→`xm5x, we need to restrictr to 0<r ,L5Ax for the convergence of the abov
series. In this case, we define

D5$~r ,u,f,c!u0<r ,L , 0<f<p , 0<u,c,2p% ,

and note that
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N~ uqu!5N~r !52 (
m50

`
r 2m

xm!
.

@In the special case whenxm5m , N(uqu)52 exp@r2# , andD5R13(0,2p#3S2, whereS2 is
the surface of the unit two-sphere and~f,c! are the angular coordinates of a point on it. Note t
in this case,D can also be identified withTS2, the tangent bundle ofS2.] On D we introduce the
measuredm(r ,u,f,c)5r drdudV(f,c) with dV(f,c)5 (1/4p) sinfdfdc.

To obtain a resolution of the identity, we now have to find a density functionW(uqu)
5W(r ), such that

E
D

uq, j &W~r !^q, j udm5I2^ I . ~4.5!

Since

E
0

2pE
0

2pE
0

p

ei (m2 l )us(n̂)sinfdfdudc5H 2p I2 if m5 l

0 if mÞ l ,

the moment condition~2.11! becomes

E
0

` 2pW~r !r 2m11

N~r !
drI25xm! I2 .

Writing W(r )5 @N(r )/2p#l(r ), this is equivalent to solving the moment problem

E
0

L

l~r !r 2m11dr5xm! , ~4.6!

for determining the auxiliary densityl(r ). With this choice ofl the resolution of the identity~4.5!
will be satisfied. As an example, ifxm! 5m! we haveL5` and thenW(r )5 2/p. We shall call
the corresponding VCS,

uq, j &5
e2 r 2/2

&
(

m50

`
qm

Am!
x j

^ fmPC2
^ H , ~4.7!

quaternionic canonical coherent states. These are the natural generalizations, to quaternions
the well knowncanonical coherent states.2

uz&5e2 r 2/2(
m50

`
zm

Am!
fmPH , ~4.8!

defined overC. Treating the vectorsuq,1& and uq,2& as elements of a basis, we shall define
general quaternionic VCS as a linear combination,

uq,x&5(
j 51

2

cj uq, j &, where c1 ,c2PC , uc1u21uc2u251 , x5(
j 51

2

cjx
j . ~4.9!

V. MINIMUM UNCERTAINTY AND ANALYTICITY PROPERTIES

It is well known that the canonical coherent states~4.8! are also states of minimum unce
tainty, in the sense that for any one of these statesuz&,

^Dq̂&z^D p̂&z5
1
2 ~assuming \51! , ~5.1!
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where, for any operatorA on H and any vectorfPH,

^DA&f5@^fuA2f&2~^fuAf&!2#1/2.

It is possible to construct quaternionic VCS with similar properties. To see this, first note th
matrix q can be diagonalized as

q5u~u,f!S z 0

0 z̄D u~u,f!† , ~5.2!

where

u~u,f!5S ieif/2 cos
u

2
2eif/2 sin

u

2

e2 if/2 sin
u

2
2 ie2 if/2 cos

u

2

D and z5reic .

Let x1(u,f) and x2(u,f) be the two~normalized! eigenvectors ofq, corresponding to the
eigenvaluesz and z̄, respectively. Define the two quaternionic VCS,

uq,1&5e2 r 2/2 (
m50

`
qm

Am!
x1~u,f! ^ fm5e2 r 2/2 (

m50

`
zm

Am!
x1~u,f! ^ fm , ~5.3!

uq,2&5e2 r 2/2 (
m50

`
qm

Am!
x2~u,f! ^ fm5e2 r 2/2 (

m50

`
z̄m

Am!
x2~u,f! ^ fm . ~5.4!

The normalization of these states has been chosen to ensure that^q,6uq,6&51. From the nature
of the operatorsQ andP, defined in~3.10!, it is then clear that these states also have minim
uncertainty:

^DQ&6^DP&65 1
2 . ~5.5!

Next, let us look a little more closely at the nature of the isometry~3.11!, for the quaternionic
VCS. Recall that in this case,D5R13(0,2p#3S2.TS2. Once again, letH̃5L2(D,dm). We are
interested in the isometry

W:C2
^ H→C2

^ H̃ with ~W C! j~q!5^Cuq, j &. ~5.6!

A general vectorCPC2
^ H has the formC5( j 51

2 x jc j , with c jPH. We write F5W C and
introduce the functions

f j~z!5 (
m50

`
zm

Am!
^fmuc j&H , j 51,2, f~z!5(

j 51

2

x j f j~z! ,

f j~ z̄!5 (
m50

`
z̄m

Am!
^fmuc j&H , j 51,2 , f~ z̄!5(

j 51

2

x j f j~ z̄! .

A straightforward computation then shows that the image of the isometry~5.6! consists of vector
valued functions of the type

F~z,z̄,u,f!5
1

&
e2 uzu2/2@P1~u,f!f~ z̄!1P2~u,f!f~z!# , ~5.7!
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where P6(u,f) are eigenprojectors corresponding to the eigenvectorsx6(u,f), respectively.
Thus, for fixed ~u,f!, each component functionF j (z,z̄,u,f) is a linear combination of two
holomorphic functionsf 1(z), f 2(z) and their antiholomorphic counterparts.

VI. RELATION TO THE WEYL–HEISENBERG GROUP

The canonical coherent states~4.8! can be expressed~see, for example, Ref. 2! in the form

uz&5eza†2 z̄af05ei (pq̂2qp̂)f0 , where z5
q2 ip

&
. ~6.1!

We now show that the quaternionic canonical coherent states~4.7! also have the analogous rep
resentation:

uq, j &5
1

&
eq^ a†2q†

^ ax j
^ f0 . ~6.2!

To see this, note that

@q†
^ a,q^ a†#5r 2I2^ I .

Next, since for two operatorsA andB, the commutator of which commutes with bothA andB,
the Baker–Campbell–Hausdorff identity,

eA1B5e2 ~1/2![A,B]eAeB ,

holds, we may write

eq^ a†2q†
^ a5e2 ~1/2![q^ a†,2q†

^ a]eq^ a†
e2q†

^ a.

Sinceamf050 for all m>1, we have

e2q^ ax j
^ f05x j

^ f0

and

eq^ a†
~x j

^ f0!5 (
m50

`
~q^ a†!m

m!
x j

^ f05 (
m50

`
qmx j

^ a†mf0

m!
5 (

m50

`
qm

Am!
x j

^ fm .

Thus,

1

&
eq^ a†2q†

^ ax j
^ f05

1

&
e2 r 2/2(

m50

`
qm

Am!
x j

^ fm5uq, j & .

To develop a group theoretical interpretation for the quaternionic canonical coherent stat
go back to the canonical coherent states as written out in~6.1!. The operatorsq̂,p̂ and I generate
an irreducible representation ofgW2H , the Lie algebra of the Weyl–Heisenberg groupGW2H , on
the Hilbert spaceH. A unitary irreducible representation ofGW2H on H is given by the operators
U(q,q,p)5ei (qI 1pq̂2qp̂). Thus, uz&5U(0,q,p)f0 . Turning now to the quaternionic canonic
coherent states, as expressed in~6.2!, we find, using~5.2!,

q^ a†2q†
^ a5u~u,f!S za†2 z̄a 0

0 z̄a†2zaD u~u,f!† .
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Thus,

eq^ a†2q†
^ a5u~u,f!S U~0,q,p! 0

0 U~0,q,2p!
D u~u,f!†. ~6.3!

Writing

Ũ~q,q!5Ũ~q,q,p,u,f!ªu~u,f!S U~q,q,p! 0

0 U~q,q,2p!
D u~u,f!† , ~6.4!

we observe that for fixed~u,f! these operators realize a unitary~reducible! representation of
GW2H on C2

^ H. In terms of these operators,

uq, j &5
1

&
Ũ~0,q!x j

^ f05
1

&
Ũ~0,q,p,u,f!x j

^ f0 , ~6.5!

in complete analogy with the case of the canonical coherent states.

VII. QUATERNIONIC VCS FROM SU„1,1… REPRESENTATIONS

As a second example of the construction of VCS using quaternions, we shall obtain ana
the Gilmore–Perelomov12,16 and Barut–Girardello6 coherent states in this section. Both the
families of states arise from the discrete series representations of SU~1,1!. Writing D15$z
PCuuzu,1%, the Gilmore–Perelomov coherent states, labeled by points ofD1 , are defined to be

uz;G2P&5~12r 2!k (
m50

` F ~2k!m

m! G1/2

zmfmPH , r 5uzu , k51,
3

2
,2,

5

2
,... , ~7.1!

where we have used the Pochhammer symbol,

~a!m5
G~a1m!

G~a!
5a~a11!~a12!¯~a1m21! ,

and, as before, thefm constitute an orthonormal basis of the Hilbert spaceH. The indexk labels
the unitary irreducible representation of SU~1,1!, to which the above coherent states are ass
ated. This representation is carried by the Hilbert spaceHhol(D1), which is the subspace of a
holomorphic functions inL2(D1 ,(2k21)dmk), where

dmk~z,z̄!5
~12r 2!2k22

p
rdrdu , z5reiu .

An elementgPSU(1,1) is a complex 232 matrix,

g5S a b

b̄ ā D , detg5uau22ubu251,

and the unitary irreducible representationUk, labeled byk, acts on vectorsf PHhol(D1) in the
manner

~Uk~g! f !~z!5~a2b̄z!22k f S āz2b

a2b̄z
D .

The monomials
                                                                                                                



of

rs

ors
iated

5079J. Math. Phys., Vol. 44, No. 11, November 2003 VCS over matrix domains

                    
um~z!5F ~2k!m

m! G1/2

zm

form an orthonormal basis inHhol(D1). Moreover, identifying the abstract Hilbert spaceH with
Hhol(D1) andfm with um , it can be shown2 that the coherent states~7.1! can also be written in the
form

uz;G2P&5Uk~Z!f0 , where Z5
1

A12r 2 S 1 z

z̄ 1D PSU~1,1! . ~7.2!

Observe that, in the notation introduced in~1.1!, in this case we have

N~ uzu!5~12r 2!22k, r~m!5F ~2k!m

m! G21

.

Thus,xm5m/(2k1m21) and since limm→` xm51, this determines the radius of convergence
the infinite series in~7.1! and hence the appearance of the unit disc.

The coherent states~7.1! satisfy the resolution of the identity,

2k21

p E
D1

uz;G2P&^z;G2Pu
rdrdu

~12r 2!2 5I . ~7.3!

The representation of the Lie algebra of SU~1,1! on Hhol(D1) is generated by the three operato
K1 ,K2 andK3 , which satisfy the commutation relations

@K3 ,K6#56K6 , @K2 ,K1#52K3 . ~7.4!

They act on the vectorsfm in the manner

K2fm5Am~2k1m21!fm21 , K15K2
† , K3fm5~k1m!fm . ~7.5!

ThusK2f050 and

fm5
1

Am! ~2k!m

K1
mf0 .

Furthermore, it can be shown11 that

uz;G2P&5ewK12w̄K2f0 , wPC , ~7.6!

wherez andw are related by

z5
w tanh~ uwu!

uwu
. ~7.7!

Equation~7.6! should be compared to~6.1!. Note, however, that unlike in that case, the operat
K1 andK2 appearing in~7.6! are not the creation and annihilation operators naturally assoc
with the expansion in~7.1! @see~3.1!#. Indeed, in the present case the operatora ~which we denote
aG2P) has the form

aG2Puz;G2P&5zuz;G2P& , aG2Pfm5A m

2k1m21
fm21 . ~7.8!
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On the other hand, it is possible to define6 a second set of coherent statesuw;B2G& for this same
representation of SU~1,1!, usingK2 as the generalized annihilation operator:

K2uw;B2G&ªaB2Guw;B2G&5wuw;B2G& , wPC . ~7.9!

These states, known as the Barut–Girardello coherent states, are defined for allwPC and they are
of the form

uw;B2G&5
uwu2k21

AI 2k21~2uwu!
(

m50

`
wm

Am! ~2k1m21!!
fm , ~7.10!

whereI n(x) is the order-n modified Bessel function of the first kind. These coherent states sa
the resolution of the identity

2

p E
C
uw;B2G&^w;B2GuK2k21~2% !I 2k21~2% !%d%dq5I , w5%eiq , ~7.11!

where, again,Kn(x) is the order-n modified Bessel function of the second kind.
It is now straightforward to write down quaternionic VCS which extend~7.1!:

uq, j ;G2P&5
~12r 2!k

&
(

m50

` F ~2k!m

m! G1/2

qmx j
^ fm , r 5uqu5@qq†#1/2, ~7.12!

where q is a quaternionic variable with domainD 13S2, and a similar set of VCS extendin
~7.10!:

uw, j ;B2G&5
r 2k21

A2I 2k21~2r !
(

m50

`
wm

Am! ~2k1m21!!
x j

^ fm , r 5uwu , ~7.13!

the quaternionic variablew being defined over the domainTS2.
In the case of the vectors~7.12!, it is also possible, using~7.2!, to give a representation

theoretic interpretation along the lines of~6.2!–~6.5!. Indeed, by virtue of~7.1!, ~7.2! and the
decomposition~5.2! of the quaternionq, we can immediately rewrite~7.12! as

uq, j ;G2P&5
1

&
u~u,f!S Uk~Z! 0

0 Uk~Z †!
D u~u,f!†x j

^ f0 .

Writing

Ũk~q!5u~u,f!S Uk~Z! 0

0 Uk~Z †!
D u~u,f!† ,

this yields

uq, j ;G2P&5
1

&
Ũk~q!x j

^ f0 , ~7.14!

which is the analog of~6.5!. Moreover, since by~7.6!

Ũk~q!x j
^ f05u~u,f!S ewK12w̄K2 0

0 ew̄K12wK2
D u~u,f!†x j

^ f0

with z andw being related by~7.7!, we can now transform this to
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uq, j ;G2P&5
1

&
ew^ K12w†

^ K2x j
^ f0 , ~7.15!

where now the quaternionic variablesq andw are related by

q5
w tanh~ uwu!

uwu
. ~7.16!

Note that while 0<uqu,1, for the transformed variablew we have 0<uwu,`.
Interestingly, there is yet another family of coherent states, again related to the SU~1,1! group,

which can be constructed using the two number operators,

NG2P5aG2P
† aG2P and NB2G5aB2G

† aB2G.

Indeed, from~7.8! and ~7.9!,

NG2Pfm5
m

2k1m21
fm and NB2Gfm5m~2k1m21!fm . ~7.17!

Thus we define a third number operatorNINT , essentially as one which interpolates between th
two:

NG2PNINT5NB2G⇒NINTfm5~2k1m21!2fm , ~7.18!

and the related annihilation operator,

aINTfm5~2k1m21!fm21 . ~7.19!

The corresponding coherent states, defined for allwPC, are

uw;INT&5N~r !2 1/2(
m50

`
wm

~2k1m21!!
fm , r 5uwu , ~7.20!

where the normalization constant is given by

N~r !5
1F2~1;2k,2k;r 2!

@G~2k!#2 ,

in terms of the hypergeometric function

1F2~a;b,c;x!5 (
m50

`
~a!m

~b!m~c!m
•

xm

m!
.

The moment problem for determining the resolution of the identity is now

pE
0

`

r ml~r !dr5@~2k1m21!! #2 .

This can be explicitly solved to yield

l~r !5
2

p
r 2k21K0~2Ar ! ,
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where, once again,K0 is the order-0 modified Bessel function of the second kind. Finally,
obtains

E
C
uw;INT&^w;INTudm INT~w,w̄!5I , ~7.21!

with

dm INT~w,w̄!5
2r 4k21

p@G~2k!#2 K0~2r ! 1F2~1;2k,2k;r 2!dudr . ~7.22!

The corresponding quaternionic VCS are then

uw, j ;INT&5
1

&

G~2k!

@1F2~1;2k,2k;r 2!#1/2 (
m50

`
wm

~2k1m21!!
x j

^ fm , ~7.23!

wherer 5uwu andwPTS2 .
The fact that the coherent states~7.20! are indeed related to the SU~1,1! group is brought out

more clearly by the following observation: computing the commutator@aINT ,aINT
† # we find

@aINT ,aINT
† #fm5@2~2k1m!21#fm .

Let us define a new ‘‘number operator’’ÑINT by the action

ÑINTfm5~2k1m2 1
2!fm ~7.24!

on the basis vectorsfm . Then we easily establish the commutation relations,

@aINT ,aINT
† #52ÑINT , @ÑINT ,aINT

† #5aINT
† , @ÑINT ,aINT#52aINT . ~7.25!

Comparing with~7.4!, we find that the three operatorsaINT ,aINT
† andÑINT satisfy exactly the same

commutation relations as the three generators,K2 ,K1 and K3 of su~1,1!, the Lie algebra of
SU~1,1!. Thus, they also realize a representation of this algebra onH. The two number operator
ÑINT andNINT are related as

NINT5ÑINT
2 2ÑINT1 1

4 5@ÑINT2 1
2#

2 . ~7.26!

A similar situation was seen to arise3 in the case of temporally stable coherent states related to
infinite well and Po¨schl–Teller potentials, where the Lie algebrasu~1,1! appeared as a dynamica
algebra. It ought to be pointed out, however, that the representation ofsu~1,1!, generated by the
operatorsK6 ,K3 in ~7.4! and ~7.5!, is different from the one generated by the operat
aINT

† , aINT and ÑINT . Indeed, computing the Casimir operators in the two cases, we find
1/2(K2K11K1K2)2K3

25k(12k) while 1
2(aINTaINT

† 1aINT
† aINT)2ÑINT

2 5 1
4.

VIII. CONCLUSION AND PHYSICAL APPLICATIONS

As amply evident from the above discussion, the method just elaborated for constr
vector coherent states is generic. One could in this manner associate families of VCS to
any hypergeometric function. More interestingly, the method enables one to associate V
certain Clifford algebras and to reducible representations from the principal series of lo
compact groups. Some of these results will be presented in a forthcoming publication.1

As far as physical applications are concerned, there is a range of possibilities. The q
nionic canonical VCS in~4.7! can be looked upon as amalgams of standard spin-coherent s
~as described, for example, in Ref. 16! and the~scalar! canonical coherent states. Thus,uq, j & can
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be considered as a coherent state wave function for a nonrelativistic spinning particle. Su
that such a particle is placed in a constant external magnetic fieldBW 5(B1 ,B2 ,B3). Its time
evolution is then governed by an interaction Hamiltonian of the typeVI5ksW •BW 5vQ(B̂), where
k is a constant,sW 5(s1 ,s2 ,s3), v5 ()/2)kiBW i , B̂5BW /iBW i and Q(B̂)5 (2/)) s(B̂). The
time evolution generated by this Hamiltonian on a stateCPC2

^ H is given by C(t)

5eivQ(B̂)tC. Thus, the quaternionic canonical VCS

uq~ t !, j &5
e2 r 2/2

&
(

m50

`
q~ t !m

Am!
x j

^ fm , q~ t !5iBW i eivQ(B̂)t , ~8.1!

have immediate interpretation ascoherentsuperpositions of time evolved basis states. The disc
sion in Sec. V now shows that such states have minimum uncertainty whenever the spin is
parallel or anti-parallel to the magnetic field. A second example of the use of quaternionic
arises in the study of two-level atoms interacting with a single mode of an electromagnetic
This leads to coherent states resulting from a Jaynes–Cummings7 type of Hamiltonian. A fuller
description of this construction has been given in Ref. 1. One might state, with justification
quaternionic VCS could be an extremely useful tool in the study of two-level atomic sys
placed in electromagnetic fields. As a third physical example, the creation and annihilation
tors for the VCS~7.23! would generate a dynamical algebra for a spin-1

2 particle placed in a
Pöschl–Teller potential, in analogy with the discussion in Ref. 3.
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Phase space methods for particles on a circle
S. Zhang and A. Vourdas
Department of Computing, University of Bradford, Bradford BD7 1DP, United Kingdom

~Received 15 March 2003; accepted 29 July 2003!

The phase spaceS3Z for a particle on a circle is considered. Displacement opera-
tors in this phase space are introduced and their properties are studied. Wigner and
Weyl functions in this context are also considered and their physical interpretation
and properties are discussed. All results are compared and contrasted with the
corresponding ones for the harmonic oscillator in theR3R phase space. ©2003
American Institute of Physics.@DOI: 10.1063/1.1616997#

I. INTRODUCTION

Since the work of Wigner1 and Moyal,2 phase space methods have been used extensive
quantum mechanics. A lot of this work is for the harmonic oscillator where both the position
momentum take values in the real lineR and the phase space is the planeR3R. There has also
been work on finite quantum systems,3,4 where both the position and momentum take values inZN

~the integers moduleN) and the phase space is the latticeZN3ZN . The purpose of this paper i
to study phase space methods for quantum particles on a circle. In this case the positio
values on a circleS and the momentum take discrete values inZ ~the integers times a factor!. In
this case the phase space isS3Z. We note that in any area where there is Fourier transfo
involved~e.g., in signal processing!, the phase space can beR3R or ZN3ZN or S3Z in the sense
that where one of the variables takes values inR or ZN or S, the dual variable take values inR or
ZN or Z, correspondingly.

Quantum mechanics on a circle is the simplest example of quantum mechanics in a non
topology and has been studied extensively in the literature.5,6 Physical applications include
Aharonov–Bohm phenomena,7 mesoscopic Aharonov–Bohm rings, Floquet–Bloch wave fu
tions in solid state systems, etc.

In Sec. II we introduce the basic formulism for position and momentum states and oper
taking into account the nontrivial topology of our system~described by the winding number!. In
Sec. III we introduce displacement operators and study their properties. In Sec. IV we
Wigner and Weyl functions. We show that the properties of the displacement operators l
analogous properties for the Wigner and Weyl functions. In Sec. V we discuss an example
on a theta wave function~which is the analogue in a circle, of a Gaussian wave function in a
line!. Numerical examples for the corresponding Wigner and Weyl functions are discusse
conclude in Sec. VI with a discussion of our results.

II. POSITION AND MOMENTUM STATES

An electric charge is moving on a circle parametrized by the variablex. The winding number
wx of x is defined as the integer part of thex/(2pr ) @for negativex it is the integer part of the
x/(2pr ) minus 1#. Let r be the radius of the circle. A magnetostatic fluxf is threading the circle
in the perpendicular direction. The wave functionR(x) obeys the quasiperiodic boundary cond
tion ~in units KB5\5c51),

R~x12pr !5R~x!exp~ ief!. ~1!

Similar functions also appear in solid state physics~Bloch functions!. They are normalizable
within each period,
50840022-2488/2003/44(11)/5084/11/$20.00 © 2003 American Institute of Physics
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1

2pr E0

2pr

uR~x!u2 dx51. ~2!

SinceR(x) is a quasiperiodic function, it can be written as the following Fourier expans

R~x!5 (
N52`

`

RN exp~ ipNx!, pN5
N1s

r
, s5

ef

2p
. ~3!

The inverse Fourier transform gives

RN5
1

2pr E0

2pr

exp~2 ipNx!R~x!dx. ~4!

R(x) andRN can be, respectively, considered as the position and momentum representations
stateuR&. So Eq.~3! and Eq.~4! can be written as

^xuR&5 (
N52`

`

^pNuR&exp~ ipNx!, ~5!

^pNuR&5
1

2pr E0

2pr

^xuR&exp~2 ipNx!dx. ~6!

Let ux&, upN& be position and momentum eigenstates, correspondingly. Then

ux&5 (
N52`

`

exp~2 ipNx!upN&, upN&5
1

2pr E0

2pr

dx exp~ ipNx!ux&, ~7!

^xuy&5~2pr !d@x2y12pr ~wy2wx!#exp@2 i2ps~wy2wx!#, ^pMupN&5dMN . ~8!

It is easily seen that

ux12prw&5exp~2 i2psw!ux&. ~9!

The completeness can can be expressed as

1

2pr E0

2pr

ux&^xudx5 (
N52`

`

upN&^pNu51. ~10!

Position and momentum operators are defined as

x̂5
1

2pr E0

2pr

xux&^xudx, p̂5 (
N52`

`

pNupN&^pNu. ~11!

We note that a different definition ofx̂ that involves integration fromt to t12pr leads to

x̂t5 x̂1Pt , Pt5E
0

t

ux&^xudx. ~12!

The x̂t is different fromx̂ by the projection operatorPt . In the special case thatt52prw where
w is an integer,P2prw52prw1. It is easily seen that

x̂ux&5~x22prwx!ux&, p̂upN&5pNupN&. ~13!
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III. DISPLACEMENTS AND PARITY

We define displacement operators as

D~a,K ![expS 2
iaK

2r DexpS i
K

r
x̂Dexp~2 ia p̂!, ~14!

D~a,K !ux&5expF iK

r S x1
a

2 D G ux1a&, ~15!

D~a,K !upN&5expS 2
iaK

2r Dexp~2 iapN!upN1K&. ~16!

It is easily seen that

D~a,K !D~b,M !5D~a1b,K1M !expF i S Kb

2r
2

Ma

2r D G , ~17!

D~a12prw,K !5~21!Kw exp~2 i2psw!D~a,K !, ~18!

D†~a,K !5D~2a,2K !, ~19!

where w is an integer ~the winding number!. For later purposes we note that th
D(a,K)exp(ias/r) is periodic ina. The period is 2pr if K is even and 4pr if K is odd number,

D~a12pr ,K !expF i ~a12pr !s

r G5~21!K expS ias

r DD~a,K !. ~20!

We also define the parity operator as

U05
1

2pr E0

2pr

ua&^2auexpS i2as

r Dda5 (
N52`

`

up2N&^pNu. ~21!

The flux factor exp(ias/r) has been included in the definition so that the integra
ua&^2auexp(i2as/r) is periodic. The parity operator obeys the relations

U05U0
† , U0

25I . ~22!

The flux breaks the parity symmetry. The parity operator acting on the stateup2N& @which has
momentum (2N1s)/r ] gives the stateupN& @which has momentum (N1s)/r ]; i.e., it is a parity
with momentum origins/r . The parity operator acting on the stateux& gives the state
u2x&exp(2 2ixs/r). The flux factor exp(2 2ixs/r) corrects the quasiperiodicity caused by the fl
into periodicity.

We note here that in the harmonic oscillator case the displacement operatorsD(z)5exp(za†

2z*a) obey the important relations8

E
2`

`

dzR D~z!5&pUp5
zI

&
L K p52

zI

&
U , ~23!

E
2`

`

dzI D~z!5&pUx5
zR

&
L K x52

zR

&
U , ~24!
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E d2z

2p
D~z!5U0 , ~25!

wherez5zR1 izI andU0 is here the harmonic oscillator parity operator~defined in Ref. 8!. These
relations are intimately related with the marginal properties of the Wigner and Weyl functio

Motivated by this we study here similar relations in our context of quantum mechanics
circle. We first define the function

D~x!5
1

2p E
0

2p

exp~ ibx!db5exp~2 ipx!
sin~px!

px
[exp~2 ipx!sinc~x!. ~26!

This is the sinc function~used extensively in areas like digital signal processing! with a phase
factor. For integersM ,N,

D~M2N!5d~M ,N!, ~27!

whered is Kronecker’s delta. Using Eqs.~15! and ~16! can prove that

(
K52`

`

D~a,K !5Ua2 L K 2
a

2U, ~28!

1

2pr E0

2pr

D~a,K !expS ias

r Dda5H up2M&^pMu, K52M ,

(
N52`

`

upN1K^pNuDS 2
K

2
2ND , K52M11.

~29!

We have explained earlier why the integrations involve the flux factor exp(ias/r). It is natural to
ask what is the result in Eq.~29! if we do not include the flux factor. We can prove

1

2pr E0

2pr

D~a,K !da5 (
N52`

`

upN1K&^pNuDS 2
K

2
2N2s D . ~30!

In Eq. ~29!, integration from 2pr to 4pr , gives the same result for evenK and the same result bu
with opposite sign for oddK,

1

2pr E2pr

4pr

D~a,K !expS ias

r Dda5H up2M&^pMu, K52M ,

2 (
N52`

`

upN1K^pNuDS 2
K

2
2ND , K52M11.

~31!

This is related to the fact@Eq. ~20!# that for oddK theD(a,K)exp(ias/r) is antiperiodic with
period 2pr ~it is periodic with period 4pr ). Therefore if we integrate from 0 to 4pr we get the
same result for evenK and zero for oddK.

Combining Eqs.~21! and ~29! we easily show that

(
K5even

1

2pr E0

2pr

D~a,K !expS ias

r Dda5U0 . ~32!

It is natural to ask what is the result in Eq.~32! if we sum over both even and odd integers. We c
prove

(
K52`

`
1

2pr E0

2pr

D~a,K !expS ias

r Dda5U01 (
M52`

`

(
N52`

`

upN12M21&^pNuDS 2M2N1
1

2D .

~33!
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The displaced parity operator is

U~a,K !5D~a,K !U0D†~a,K !5expS ias

r DD~2a,2K !U05expS 2
ias

r DU0D~22a,22K !.

~34!

U(a,K) is a periodic function ofa with the periodpr ,

U~a1pr ,K !5U~a,K !. ~35!

We next show that

(
K52`

`

U~a,K !5 1
2 ~ ua&^au1ua1pr &^a1pr u!, ~36!

1

2pr E0

2pr

U~a,K !da5upK&^pKu, ~37!

(
K

1

2pr E0

2pr

U~a,K !da51. ~38!

Equation~36! is proved if we use Eqs.~28! and ~34! in conjunction with the fact that

(
K5even

D~a,K !5
1

2 S Ua2 L K 2
a

2U1Ua2 1pr L K 2
a

2
1prU D . ~39!

For completeness we also mention that

(
K5odd

D~a,K !5
1

2 S Ua2 L K 2
a

2U2Ua2 1pr L K 2
a

2
1prU D . ~40!

Equation~40! can be proved using Eq.~15!. We note that in Eq.~36! we have projectors to the
diametrically opposite position statesua& andua1pr &. This is related to the fact that the displace
parity operator on the left-hand side of Eq.~36!, has periodpr . Equation~37! can be proved using
Eq. ~29!. Summation overK in Eq. ~37! gives Eq.~38!.

The displacement operators are related to the displaced parity operators through
dimensional Fourier transform. Multiplying the left- and right-hand sides of Eq.~32! with D(a,K)
and @D(a,K)#† correspondingly, we can prove

(
M5even

1

2pr E0

2pr

D~b,M !expS ibs

r DexpF i
Kb2Ma

r Gdb5U~a,K !. ~41!

IV. WIGNER AND WEYL FUNCTIONS

The Weyl and Wigner functions can be defined in terms of the displacement and
operator correspondingly, as

W̃~a,K !5Tr@ r̂D~a,K !#, ~42!

W~x,pN!5Tr@ r̂U~x,N!#. ~43!

Using the fact that the density matrix is Hermitian, we easily show that the Wigner function is
The Weyl function is in general complex. We can easily show the following formulas~which can
also be used as alternative definitions!:
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W̃~a,K !5
1

2pr E0

2pr K x2
a

2Ur̂Ux1
a

2 L expS i
K

r
xDdx ~44!

5 (
N52`

`

^pN2Kur̂upN&expF2 iaS pN2
K

2r D G . ~45!

W~x,pN!5
1

2pr E0

2pr

^x2aur̂ux1a&exp~ i2apN!da ~46!

5 (
K52`

`

^pN1Kur̂upN2K&expS 2ixK

r D . ~47!

The Wigner function describes the pseudoprobability of finding the particle in phase space
way consistent with quantum mechanics and the uncertainty principle. The Weyl function is
to the overlap of the displaced state with the original state. In this sense, thea,K are position and
momentumincrements. The Weyl function can be understood as ageneralized correlation func-
tion. If we have the wave functionR(x) in order to find the correlation we displace it intoR(x
1a) and take the integral ofR(x)R(x1a). In the Weyl function we perform a more gener
displacement in phase space i.e., a displacement in both position and momentum. There
correlation is a special case of the Weyl function witha50 ~or K50). We note that the momen
tum takes values (N1s)/r and depends ons. In contrast the momentum increments appearing
the Weyl function take valuesK/r and do not depend ons.

The Wigner function is related to the Weyl function through a two-dimensional Fourier tr
form

W~x,pN!5
1

2pr E0

2pr

(
K5even

W̃~a,K !expS 2 i
K

r
xDexp~ iapN!da. ~48!

This can be proved using Eq.~29! or Eq. ~49!. This result is intimately connected to the fact th
the displacement operator and displaced parity operator are related to each other through
dimensional Fourier transform@Eq. ~49!#.

Using Eqs.~18! and~35! we easily see that the Wigner function is periodic function ofx with
periodpr ; and the Weyl function is quasiperiodic with period 2pr :

W̃~a12prw,K !5~21!Kw exp~2 i2psw!W̃~a,K !, W~x1pr ,pN!5W~x,pN!. ~49!

The Wigner and Weyl functions depend on the magnetic fluxs although for simplicity in the
notation we have not shown this dependence explicitly. They obey the relations

W̃s~a,K !5W̃s11~a,K !, Ws11~x,pN!5Ws~x,pN11!. ~50!

This is related to the fact that the momentum ispN5(N1s)/r and as we go froms to s11 the
momentumpN is relabeled aspN11 .

The properties of the displacement and parity operator that we proved above can be tra
into properties for the Wigner and Weyl functions. Starting with the Weyl function we use
~28! and ~29! to prove that

(
K52`

`

W̃~a,K !5 K 2
a

2 UrU a

2 L , ~51!
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1

2pr E0

2pr

W̃~a,K !expS ias

r Dda5H ^pMurup2M&, K52M ,

(
N52`

`

^pNurupN1K&DS 2
K

2
2ND , K52M11.

~52!

We can make here a similar comment to that made for Eq.~29!. In Eq. ~52!, integration from 2pr
to 4pr , gives the same result for evenK and the same result but with opposite sign for oddK.
Therefore if we integrate from 0 to 4pr we get the same result for evenK and zero for oddK. We
can also show that

W̃~0,0!51, W̃~a,K !5W̃* ~2a,2K !, uW̃~a,K !u<1. ~53!

For the Wigner function we use Eqs.~36!, ~37!, ~38! to prove

1

2pr E0

2pr

W~x,pN!dx5^pNur̂upN&, ~54!

(
N52`

`

W~x,pN!5
1

2
~^xur̂ux&1^x1pr ur̂ux1pr &!, ~55!

1

2pr E0

2pr

(
N52`

`

W~x,pN!dx51. ~56!

We can also prove that

Tr~ r̂1r̂2!5
1

2pr E0

2pr

(
N52`

`

Wr1
~x,pN!Wr2

~x,pN!dx. ~57!

V. EXAMPLE

As an example, we consider a free particle descibed with the Hamiltonian

Ĥ5 p̂2. ~58!

We note that the particle feels a vector potential through the quasiperiodic boundary cond
We assume that att50 the wave function is a Gaussian on a circle, i.e., a theta function

order to explain this we introduce the Zak transform9 on a functionS(y) on a real line, defined as

R~x,s!5N (
w52`

`

S~y5x12prw !exp~2 i2psw!, ~59!

whereN is used to normalize the functionR(x,s) according to Eq.~2!. If S(y;A) is a Gaussian
wave function

S~y;A!5p21/4expS 2
y2

2
1&A•y2AARD , ~60!

whereA5AR1 iAI , then the Zak transform is

R~x,s;A!5N•p21/4expS 2
x2

2
1&Ax2AARDQ3@2ps1 ipr ~x2&A!; i2pr 2#, ~61!

whereQ3@u;t# is theta function,10 defined as
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Q3@u;t#5 (
n52`

`

exp~ iptn21 i2nu!. ~62!

We have takenr 51, A51 and calculated the Wigner and Weyl functions. Numerical results
shown in Figs. 1–3.

In Fig. 1 we present a contour plot of the Wigner functionW(x,N1s) as a function ofx and
for all values ofs. For a givens the Wigner function is defined only on the discrete values of
momentapN5(N1s)/r and the parallel black lines in the figure show the cases50.1. As
expected from Eq.~49!, the Wigner function is periodic function ofx with periodp. Also it has
been explained in Eq.~50! that the plotted values ofW(x,p1) for s51 represent theW(x,p2) for
s50.

In Fig. 2 we present the Wigner function as a function ofx at a particular momentump0

5s with s50.1. This is really an appropriate slice of the three-dimensional version of Fig
In Fig. 3 we present a contour plot of the absolute value of the Weyl function as a functi

a for K51 and for all values ofs. The black line in the figure shows the cases50.1.
We calculate the time evolution of this system. This is easily done in the momentum r

sentation as

^pNuR~ t !&5exp~ i tĤ !^pNuR~0!&. ~63!

We need the state of the system att50 in the momentum representation. IfS̃(p) is the Fourier
transform ofS(x):

FIG. 1. A contour plot of the Wigner function att50 as a function ofx and for all values ofs. The parallel black lines
in the figure show the cases50.1.

FIG. 2. A slice of the Wigner function of Fig. 1 withs50.1.
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S̃~p!5E
2`

1`

S~x!exp~2 ipx!dx, ~64!

then using Eq.~4!, Eq. ~59!, and Eq.~64! we can prove the relation

RN5
N

2pr
S̃~pN!. ~65!

Since the Fourier transform of Gaussian wave function Eq.~60! is

S̃~p;A!5&p1/4expS 2
p2

2
2 i&A•p1AAI D , ~66!

we obtain

^pNuR&5
Np1/4

&pr
expS 2

pN
2

2
2 i&A•pN1AAI D . ~67!

Inserting Eq.~67! into ~63! we get

FIG. 3. A contour plot of the absolute value of the Weyl function att50 for K51, as a function ofa ands. The black
line in the figure shows the cases50.1.

FIG. 4. A contour plot of the Wigner function att51 as a function ofx and for all values ofs. The parallel black lines
in the figure show the cases50.1.
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^pNuR~ t !&5
Np1/4

&pr
expF2S 1

2
2 i t D pN

2 2 i&A•pN1AAI G . ~68!

From that we have calculated fort51 the corresponding Wigner and Weyl functions to t
previous ones. Results are shown in Figs. 4–6. The results show the time evolution of the
in the language of Wigner and Weyl functions.

VI. DISCUSSION

Quantum mechanics on a circle has attracted a lot of attention in the literature. It uses
logical ideas in the context of quantum mechanics. In this paper we have studied phase
methods in this context. We have introduced displacement operators and studied their pro
There is clearly some analogy with the harmonic oscillator displacement operator prop
@given in Eqs.~23!, ~24!, and~25!#, but there are also considerable differences. In particular
flux s plays an important role in the properties of the displacement operators for particles
circle. Our main results here are Eqs.~28!, ~29!, and~32!.

We also introduced Wigner and Weyl functions and discussed their physical interpreratio
their properties, which are direct consequence of the displacement operator properties. A n
cal example for the theta wave function of Eq.~61! ~the analogue on a circle of the Gaussi
function on the real line! has been discussed.

The results can be used in the context of Aharonov–Bohm devices, Floquet–Bloch solid
systems, coherent states on a circle,11 quantum maps and classical and quantum chaos,12 etc.
Fractional Fourier transforms in this context have been discussed in Ref. 13.

FIG. 5. A slice of the Wigner function of Fig. 4 withs50.1.

FIG. 6. A contour plot of the absolute value of the Weyl function att51 for K51, as a function ofa ands. The black
line in the figure shows the cases50.1.
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Mathematical structure of the temporal gauge in quantum
electrodynamics
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The conflict between Gauss’ law constraint and the existence of the propagator of
the gauge fields, at the basis of contradictory proposals in the literature, is shown to
lead to only two alternatives, both with peculiar features with respect to standard
quantum field theory. In the positive~interacting! case, the Gauss’ law holds in
operator form, but only the correlations of exponentials of gauge fields exist~non-
regularity! and the space translations are not strongly continuous, so that their
generators do not exist. Alternatively, a Ka¨llen–Lehmann representation of the two
point function ofAi satisfying locality and invariance under space–time transla-
tions, rotations and parity is derived in terms of the two point function ofFmn ;
positivity is violated, the Gauss’ law does not hold, the energy spectrum is positive,
but the relativistic spectral condition does not hold. In the free case,u-vacua exist
on the observable fields, but they do not have time translationally invariant exten-
sions to the gauge fields; the vacuum is faithful on the longitudinal field algebra
and defines a modular structure~even if the energy is positive!. Functional integral
representations are derived in both cases, with the alternative between ergodic
measures on real random fields or complex Gaussian random fields. ©2003
American Institute of Physics.@DOI: 10.1063/1.1603957#

I. INTRODUCTION

In the treatment of gauge quantum field theories, even if the choice of the gauge, a
ingredient for the control of the dynamical problem, is irrelevant for the physical conclusio
crucially affects the mathematical structure of the formulation as well as the way the va
mechanisms~mass generation, gauge symmetry breaking,u-vacua, chiral symmetry breaking, etc!
are effectively realized. In the discussion of the nonperturbative aspects of quantum ch
dynamics~QCD!1 and of the Higgs mechanism,2 the temporal gauge has been widely used an
is therefore worthwhile to investigate its mathematical structure.

From a technical point of view~the only relevant for the gauge choice!, such a gauge has bee
preferred to others because it is believed to satisfy locality, positivity, and the Gauss’ law
straint in operator form, at the only expense of manifest Lorentz covariance. As such, it appe
intermediate between the Coulomb gauge, where locality is lost~besides manifest Lorentz cova
riance!, and the Feynman–Gupta–Bleuler~FGB! gauge,3,4 where locality holds but positivity and
the operator Gauss’ law constraint are lost.

The aim of this article is to critically examine the mathematical structure of the temp
gauge and the status of general properties like positivity, operator Gauss’ law, positivity o
energy, and relativistic spectrum condition.

The usual formulation of the temporal gauge relies either on canonical quantization as a

a!Author to whom correspondence should be addressed. Electronic mail: strocchi@sns.it
50950022-2488/2003/44(11)/5095/13/$20.00 © 2003 American Institute of Physics
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of the perturbative expansion or on a functional integral approach to the interacting theory,
space lattice regularization, which also gives a~lattice regularized! canonical structure. Thus, in
both cases one has a CCR algebra at equal times; actually, also in the presence of the inte
the subalgebra generated by divA and divE2j0 remains canonical, with an interaction indepe
dent commutator also at unequal times.

Contrary to the standard case, the CCR structure of the temporal gauge does not u
identify its vacuum representation; as a matter of fact, the form of the propagator of the
potential has been debated in the literature, but a classification of the possibilities is la
especially in connection with basic structural properties, so that also recent textbook presen
of the temporal gauge5 leave such basic points unsettled. The analysis of such a problem i
main content of this work: we shall classify all time translation invariant states on the CCR al
in the free case and discuss the implications on the interacting Abelian theory.

The results are the following. Both in the free and the interacting cases positivity and
translation invariance are incompatible with the existence of the correlation functions of the
div A, only its exponentials being defined. Positivity also implies that the vacuum satisfie
Gauss’ law constraint in operator form and that the space translations are not strongly cont
so that one cannot define their generators~the momentum! and the relativistic spectrum conditio
cannot even be defined. In the free case the condition of positivity of the energy spectrum is
to uniquely select the~nonregular! state considered in Ref. 6~see also Refs. 7 and 8!; other time
translational invariant pure states exist, which satisfy the spectral condition only on the o
ables.

On the other hand, the perturbative expansion and the standard functional integral ap
are based on the existence of the propagator of the gauge potential, whose form has been
discussed in the literaure, with no general sharp conclusion and with proposals often in c
with basic principles of standard quantum field theory, even in the free case~see Ref. 5!. To clarify
the problem, we derive a Ka¨llen–Lehmann representation of the two point function of the ga
potential in the interacting case under the general conditions of locality and invariance
space–time translations, rotations and parity. The resulting two point function violates pos
and the relativistic spectral condition~but not the positivity of the energy spectrum! and the
vacuum cannot be annihilated by the Gauss operator divE2j0 ~such features are shared by th
FGB gauge, where, however, there is no violation of the relativistic spectral condition!. In the free
field case, the quasi-free state defined by the two point function gives rise to an indefinite
product structure which can be discussed as in the FGB gauge in terms of a Hilbert–
structure.

The Euclidean functional integral representation is discussed in the positive and in the
nite case, also with the aim of clarifying the unsatisfactory proposals in the literature~which
ignore the violation of Nelson positivity, involve infinite normalizations, formal Faddev–Po
ghosts, improper realization of the Gauss constraint, etc.!. In the indefinite case, the representati
of the Euclidean fields requires, besides real Gaussian fieldsAi

tr(x,t), j(x,t), with j( f ,t) the
Wiener process, acomplexGaussian fieldz(x). In the positive case, the complex Gaussian fi
z(x) is replaced by a real random fieldJ(x) with functional measure defined by ergodic mea
The correlation functions of the exponentials of the~smeared! fields are therefore represented b
integration with the product of the above Gaussian measures and a measure over the spe
the Bohr algebra generated by the exponentials ofJ(g).

II. ALGEBRAIC STRUCTURE

At a formal level the temporal gauge is defined by the gauge conditionA050, by the canoni-
cal commutation relations~CCR!

@Ai~x!, ] t Aj~y!#5 i d i j d~x2y!, ~2.1!

and by the CAR relations of the charged fermion fieldsc(x), c̄(y). The gauge fields satisfy th
following equations of motion:
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] t
2 Ai2D Ai1] i div A5 j i , ~2.2!

where j m is the conserved gauge invariant electromagnetic current constructed in terms
charged fermion fields. We shall denote byFc the polynomial algebra generated by the zero ti
fields Ai , Ȧi , c, c̄, j m , smeared with test functions inS(R3), hereafter calledcanonical field

algebra, and byF the algebra generated by the fieldsAi , c, c̄, j u, smeared with test functions in
S(R4).

Equation~2.2! implies that divE2j0 is time independent so that;gPS(R3)

~div E2 j 0!~g,t ![~div E2 j 0!~g,h!, hPS~R!, E ds h~s!51,

is a well defined time independent operator and therefore its equal time commutators w
fields are well defined operator valued distributions. Such commutators are fixed by the con
thatG[div E2j0 generates time independent gauge transformations; such a property follows
canonical quantization if the gauge invariant point splitting regularization of the current am
to the addition of terms linear inAi , ]0Ai to the canonical fermion current. Under such a condit
one has

@Ai~x,t !, G~y,t ! #52 i ] id~x2y!. ~2.3!

As we shall see below, a positive realization of the temporal gauge can only be done in
of Weyl algebras. We then introduce the algebras:

~1! A[the polynomial algebra generated byA( f )[Ai( f i), ] tA(g)5E(g), f i , giPS(R3)
~gauge field algebra!, and W[the correspondinggauge Weyl algebragenerated by
expi@A(f )1E(g)#[W(f,g);

~2! Al[the polynomial algebra generated byA(]h)[Ai(] ih), (div E2j0)(g), h, gPS(R3),
called thelongitudinal field algebra, and Wl the correspondinglongitudinal Weyl algebra,
generated by expi@A(]h)1(div E2j0)(g)#[Wl (h,g).

By decomposing test functions into longitudinal and transverse~nonlocal! components and by
an analysis in momentum space, it is not difficult to see that in the free case the time evolu
W is relativistically local, formally,

a t~A~ f !1E~g!!5A~ f t!1E~gt!,

with supp ftøsupp gt contained in the causal shadow ofsupp føsupp g. The same analysis
shows that Eq.~2.2! has a relativistically causal Green function, so that, in the interacting case
relativistic locality of the gauge fields in the temporal gauge follows from the relativistic loc
of the observable fieldj i ; this implies local commutativity for the Wightman field algebraF, since
the fermion coupling is local. In contrast, in the Coulomb gauge, the fermion coupling is non
and local commutativity is lost.

The free time evolution of the longitudinal Weyl algebra is

a t~Wl~h, k!!5Wl~h,k1t h!, ~2.4!

so that the longitudinal fields describe an infinite set of free nonrelativistic particles. In fact,
a complete set$ f n% in L2(R3), with ( f n ,2D f m)5dn,m , the variables

qn[div A~ f n!, pn[div E~ f n! ~2.5!

are canonical and their time evolution is that of free particles

q̇n5pn , ṗn50.
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The above algebraic structure follows from canonical quantization at equal times. Its va
is independent of the presence of the interaction, provided an ultraviolet regularization~e.g., by a
space lattice cutoff! is introduced, so that the time evolution of the above algebras is well defi
Actually, by Eq.~2.3!, @eiA(] f ,t), (div E2j0)(g,s)# is independent ofs and therefore such a canon
cal commutator extends to unequal times and is independent of the interaction

@eiAi (] i h), ~div E2 j 0!~g,s!#52E d4x Dh~x! g~x! eiAi (] i h), hPS~R4!. ~2.6!

The field algebraF of the temporal gauge has the following infinite dimensional group
automorphisms@time independent (small) gauge transformations#: gL, L(x)PS(R3)

gL~A~ f !!5A~ f !2E d3x L div f , gL~E~g!!5E~g!, gLc~ f !5c~eiL f !. ~2.7!

The gL commute with the time translations, as a consequence of the gauge invariance
Lagrangian; they are generated byG(L) and are unitarily implemented by elements of the lo
gitudinal Weyl algebra.

The automorphisms of Eq.~2.7!, with L(x)5a•x, are calledlarge gauge transformationsand
are still denoted bygL. They commute with the time and space translations and are lo
generated by the local charges

GR
L[G~L f R!, f R~x!5 f ~ uxu/R!, f PD~R!,

in the sense that the variations of the fields are given by

dLB5 lim
R→`

2 i @QR
L , B#, ;BPF. ~2.8!

Theobservable subalgebrasFobs, Aobs, Wobs are characterized by pointwise invariance under
gL. Aobs is the algebra generated byA( f ),div f50 and byE(g); Fobs has a nontrivial center
which contains the algebra generated byG( f ), f PS(R3). The invariance of the vacuum unde
large gauge transformations is incompatible with the existence of the correlation functions
field algebraF and, as we shall see explicitly in the free case, only holds in the nonregular po
formulation.

The gauge field algebraA, as well as the gauge Weyl algebraW, have the following three
parameter group of automorphismsbu, uPR3:

bu~A~ f !!5A~ f !, bu~E~g!!5E~g!1u iE d3x gi , ~2.9!

which generate a background constant~classical! electric field.
The automorphismsbu, for simplicity called u automorphisms, commute with the spa

translations and have the following commutation relations with the gauge transformation
with the free time evolution

bu gL5gL bu, bu a t5a t bu g t u•x, ~2.10!

so that they commute with the free time evolution on the observable algebra. Theu automor-
phisms are generated onW ~and onA! by the local charges

QR[Ai~u i f R!. ~2.11!

Even if the automorphismsbu commute with the gauge transformations, the corresponding
erators do not. In conclusion, at least in the free case, such transformations have similar pro
to those of the chiral transformations in quantum chromodynamics.
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III. STATES AND REPRESENTATIONS

In the following we shall adopt the physicist terminology by which a linear normali
functional on a*-algebraA is briefly called astate, even if it is not positive with respect to th
* -operation defined on the algebra. A state in the above sense defines arepresentationpv of A
with a cyclic vectorCv and an inner product (pv(A) Cv , pv(B) Cv)5v(A* B). A semi-
definite representation of a*-algebraA is called irreducible if any bounded operator which
commutes withA is a multiple of the identity.

We shall show that the gauge conditionA050 does not uniquely fix the vacuum represen
tion of the longitudinal algebra. We shall discuss the general obstructions which arise if, gi
positive state on the observable field algebraFobs, one looks for extensions to the field algebraF.
Actually, independently of the interaction, we shall show that existence of the correlation
tions of the fields requires a nonpositive vacuum state, which cannot be annihilated by the
operator divE2j0, whereas a positive representation requires a nonregular state on the lon
nal algebraL generated by expiAi(]i h), expiG(h), hPS(R4). The two alternatives are shown t
have very different mathematical features and can in fact be distinguished on the basis
structural properties that one wants to preserve.

Proposition 3.1: Letv be a positive vacuum state onFobs, satisfying the cluster property
Then

(i) v does not have a positive extension toF,
(ii) any positive extensionV to L is nonregular and satisfies

V~Wl~0,g!!5v~Wl~0,g!!51, V~Wl~ f ,g!!50, if f Þ0, ~3.1!

(iii) all positive extensions ofv to an algebra containingL define a GNS representationpV

in which the space translations are not implemented by strongly continuous unitary ope
U(x), xPR3, and, therefore, the generator, the momentum, cannot be defined, and

(iv) all positive extensions ofv are invariant under the large (and small) gauge transform
tions:

~gL!* V5V, ~div E~x!2 j 0~x!! CV50. ~3.2!

Proof: ~i! Since@G(h), Fobs#50, by Theorem 4.4 of Ref. 9.

G~h! Cv5ch Cv , chPC, ~3.3!

and, by Lorentz invariance ofv on Fobs, ch50. By Schwarz’ inequality a positive extensionV
satisfies

V~G~h! B!50, ; BPF. ~3.4!

This implies

V~@div A~ f !, G~h!# !50, ; f ,hPS~R4!,

whereas the algebraic structure, Eq.~2.6!, gives

V~@div A~ f !,G~h!# !5 i E d4x f~x! Dh~x!.

~ii ! In fact,

uchu2 V~eiAi (] i f )!5V~Wl~0,2h! eiAi (] i f )Wl~0,h!!5ei *d4x fDh V~eiAi (] i f )!, ; f , hPS~R4!,

and, therefore, forf Þ0,
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V~eiAi (] i f )!50. ~3.5!

~iii ! In fact, one has

V~eiAi (] i h) U~2x! e2 iAi (] i h) U~x!!5V~eiAi (] i h2] i hx)!

and the right hand side vanishes for allxÞ0 and it is51 for x50.
~iv! In fact, by Eq.~2.7! one has

d

dl
V~glL~B!!5 lim

R→`

i V~@ GR
L , glL~B! # !50

as in Eq.~3.3!.
The above proposition clarifies the roots of the problems which arise in the quantization

temporal gauge, by reducing them to very basic structures. The solutions proposed in the
ture, relying on an analysis of the free case, involve a non-normalizable vacuum, or the vio
of time translation invariance, etc.~for an extensive review, see Ref. 5!, so that new problems ar
somewhat arbitrarily added, hiding the basic issues. The following analysis of the free case
clear that general properties, like time translation invariance and either positivity or existen
the correlation functions of the fields select exactly two alternatives, yielding solutions in ter
a time translation invariant vacuum over well defined operator algebras.

In particular, the existence of the ground state correlation functions of the fields requir
indefinite inner product space as in the Gupta–Bleuler gauge; alternatively, positivity ca
achieved at the price of regularity of the representation of the longitudinal Weyl algebra. A
analog of such a situation appears for free nonrelativistic particles when one asks for the ex
of a ground state~see Ref. 10!.

In general, given an algebraA, a time translation automorphisma t and a time traslationally
invariant Hermitian linear functionalV onA, we shall say that theenergy spectral conditionholds
if, ;A, BPA, the expectationsGAB(t)[V(A a t(B)) are continuous int and their Fourier trans-
forms

G̃AB~v!5~2p!21/2E dt GAB~ t !e2 iv t

are supported inR1.
Proposition 3.2: (1) LetV be a state on the gauge field algebraA invariant under the free

time evolution Then
(i) V cannot be positive and
(ii) if the restriction v of V to the observable gauge algebraAobs is semidefinite and satisfie

the energy spectral condition, then the GNS representationpv of Aobs is irreducible and
coincides with the standard vacuum representation of the electromagnetic field algeb

(2) Let V be a state on the Weyl gauge algebraW invariant under the free time evolution
satisfying the energy spectral condition, and let its restrictionv to Wobs be semidefinite. Then
pV(div E)50, the GNS representationpv of Wobs is irreducible and coincides with the standar
vacuum representation of the free electromagnetic field (Weyl) algebra.

Proof. ~1 i!. In fact, by time translation invariance,V(] t O)50,;OPA, and since, by the
equations of motion] t div E50, one has

V~~div E~ f !!2!5V~] t~div A~ f ! div E~ f !!!50, ~3.6!

so that positivity implies that the Hilbert space vectorCV , which representsV ~in the GNS
representation space!, satisfies
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div E~ f ! CV50, ; f PS~R3!.

This is incompatible with the CCR since

V~@Ai~x!, div E~y!# !52 i ] i d~x2y!.

~1 ii! By Schwarz’ inequality, Eq.~3.7! gives

V~O div E~h!!50, ;OPAobs.

Thus, the restrictionv of V to Aobs yields a representationpv such thatpv(Fm n) is a free
electromagnetic field with energy spectral condition and the usual argument gives the st
Fock representation; the one-point functionv(E)5v(Ȧ) vanishes by the time translation invar
ance ofV.

~2! In fact, time translation invariance implies that forhÞ0, V(Wl(h,k)) is independent ofk,
sayF(h). On the other hand, one has

ei [( ] h, ] k8)2(] k, ] h8)]/2 ei t (] h, ] h8)/2 V~Wl~h, k! a t~Wl~h8, k8!!!

5F~h1h8!, if h1h8Þ0,

5V~Wl~0,k1k81t h8!![G~k1k81t h8!, if h1h850.

Thus, the energy spectral condition requiresF(h1h8)50, wheneverh1h8Þ0, since otherwise,
by takingh5h8, one would get a negative point of the energy spectrum. It also requires tha
distributional Fourier transformG̃(v) of G(t h), with respect to the variablet, has support in
v50. In fact, puttingh852h, k5k850,d[(] h, ] h)/2, in the above formula we have

Gh~a t ![G~aht!5V~Wl~a h, 0! Wl~2a h,aht!! eit a2 d[H~ t !ei t a2d.

Taking the Fourier transform with respect tot, and using the positive support of the Fouri
transform ofH(t), we get

suppG̃h~v!5suppH̃~~v2a2 d!/a!#R1,

so that

suppvG̃~~v1a2d!/a!#R1 , suppG̃~v!#a21R12a d, ;aPR.

Then suppG̃#@2a d, `# for a .0, and suppG̃#@2`, 2a d# for a, 0, which implies
suppG̃ 5$0%. Since, by positivity ofV, G(t) is bounded, one hasG̃(v)5d(v) and

V~Wl~0, t k!!51, ~3.7!

so that divE is a regular variable and all its correlation functions vanish.
The above propositions imply that the representations of the temporal gauge in the fre

with positive energy are the following.

A. Positive gauge invariant representation

Proposition 3.3: Invariance under free time evolution and positivity of the energy uniq
determine the positive statesV on the Weyl field algebra to be of the following form:

V~W~ f ,g!!50, if div f Þ0, ~3.8!

V~W~ f , g1] k!!5V~W~ f ,g!!, ~3.9!

V~W~ f , g!!5e2w( f ,g), if div f 50, ~3.10!
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where kPSreal(R
3) and w( f ,g) is the standard transverse two-point function̂(A( f )

1E(g)) (A( f )1E(g))&0 , div f50.
Proof: In fact, by Eqs.~3.7! and ~2.1!, one has

05V~@W~ f ,g!, div E~k!# !52E d3x k div f V~W~ f ,g!!,

which implies Eq.~3.8!. Equation~2.4! and the invariance under time translation implies Eq.~3.9!.
The last equation follows from Proposition 3.2 which fixes the representation of the obse
algebra to be the standard Fock one.

It is not difficult to see thatV is pure8 and coincides with the state considered in Ref. 6. Th
as anticipated, we have a nonregular representation and the ground state correlation func
the vector potential do not exist. Nonregularity also follows from the requirement of Gauss
constraint by the results of Refs. 7 and 8. However, the selection of the above representationW,
Eqs. ~3.8!–~3.10!, crucially depends on the condition of positive energy; in fact, one may
other~nonregular! time translationally invariant pure states which define disjoint representatio
which the energy spectral condition is violated.

Proposition 3.4: In the free case, theu automorphisms are not unitarily implementable in t
GNS representationpV given by the stateV defined above, Eqs. (3.8)–(3.10). The statesbu * V
are space time translationally invariant and define disjoint nonregular representations of the
field algebra, in which the energy spectral condition is violated.

Proof: In fact, by using Eqs.~3.8!–~3.10! one has

V~ei E j ( f R)/R3
!5e2w(0, f R /R3) →

R→`

1,

which implies

s2 lim
R→`

ei E j ( f R)/R3
CV5CV .

By the CCR, the same equation holds for anyC of the formA CV , APW, i.e., on a dense set
and therefore on any vector of the representation, sinceW(0,R23 f R) is a unitary operator. On the
other hand, by Eq.~2.10!

lim
R→`

bu * V~eiE j ( f R)/R3
!5eiu j .

Thus, the statesbu * V define disjoint representations.
Space translation invariance follows frombu ax5ax bu and time translation invariance fol

lows from Eq.~2.9!,

~bu * V!~a t~W~ f ,g!!!5V~bu a t~W~ f ,g!!!5V~a t g t u•x bu~W~ f ,g!!!

5V~bu~W~ f ,g!!5~bu * V!~~W~ f ,g!!!.

The energy spectral condition is violated as a consequence of Proposition 3.2.
A characteristic property of theu-vacua is that they yield a nonvanishing expectation of

electric field, which is the time derivative of the vector potential. This is not incompatible
time translation invariance, becausebu * V(E( f ))50, if div f50 and, if divfÞ0, A( f ) is non-
regularly represented, namely its expectations do not exist, only those of its exponentials

Sincebu commutes witha t on the observable fields, the energy spectral condition holds
the correlation functions of observables and, in fact, each observable sectorHu has a unique
translationally invariant state, which is the lowest energy state.
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B. Indefinite regular representations

The perturbative expansion as well as the standard functional integral computations r
the use of the field variables and therefore implicitly make use of a representation of the
algebra~otherwise the propagator of the vector potential would not exist!. However, even in the
free case, there is a rich literature on the possible form of the propagator of the gauge fieldAi and
no general agreement on the conclusion~for a review of the contributions and a detailed biblio
raphy, see Ref. 5!.

At the roots of the problem debated in the literature is the identification of gauge invar
with the vacuum being annihilated by the Gauss operatorG5div E2j0 and the conflict of this
condition with canonical quantization. The solutions proposed, often in conflict with basic fea
of standard quantum field theory, do not seem to realize that the vanishing of the Gauss o
on the vacuum is only compatible with a nonregular representation, precluding the existence
propagator ofAi . As a consequence, see Proposition 3.1, a representation of the field a
requires to abandon positivity, to admit that not all vectors obtained by applying the fields
vacuum have a physical interpretation and to require the Gauss operator constraint only in
tations on the physical states~a feature common to other nonpositive gauges like the Feynm
Gupta–Bleuler gauge!.

Motivated by the lack in the literature of a satisfactory characterization of the two p
function of the gauge potential~even in the free case!, we shall analyze it under the gener
condition of space–time translational invariance. In our opinion it is difficult to live without s
a condition, as required by a momentum space analysis of the correlation functions or
Feynman diagrams, according to the general wisdom of quantum field theory~e.g., the positive
energy spectral condition needed for the analytic continuation to imaginary times and the
tional integral representation of the so obtained Schwinger functions!.

In the following, we shall characterize the two point function in the temporal gauge
interaction, under the assumption of locality discussed in Sec. II, in terms of a Ka¨llen–Lehmann
representation under the additional condition of rotational and parity invariance. The result
that (i) positivity of the energy spectrum is satisfied by the two point function, but not
relativistic spectral condition,(ii) the vacuum is a nonpositive functional on the field algebra,
(iii) the Gauss’ law constraint does not hold as an operator equation on the physical states
only be required to hold in expectations on such states.

Proposition 3.5: LetV be a state on the local field algebraF invariant under space–time
translations, rotations and parity, whose restriction to the observable field algebra satisfie
standard Wightman axioms for vacuum expectation values. Then the two point function
gauge potential has the following representation(y[x82x):

^Ai~x! Aj~x8! &[V~Ai~x! Aj~x8!!

5E d4k eikyE dr~m2!S d i j 2
ki kj

k21m2D d~k21m2! u~k0!

1
1

2
iy0 F ] i] j P~D!d~y!1E d3k e2 ik yE dr~m2! kikj~k21m2!21G

1] i] ja~x2!, ~3.11!

whereP is a polynomial and dr is the spectral measure of the two point function of the elec
magnetic field

^FmrFns&~y!5~grs ]m]n1gmn]r]s2grn]m]s2gms]n]r!F~y!,
~3.12!

F̃~k!5E dr~m2! d~k21m2!u~k0!.
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The condition of a canonical structure at equal times, apart from renormalization const
requires

P5const[Z.

The arbitrary function a(x) can be removed by a time independent operator gauge transfo
tion.

Such a two point function satisfies the positive energy but not the relativistic spectral c
tion.

In particular, in the free field case, we have

^Ai Aj&~y!5~d i j 2] i ] j ~D!21!D1~y!1 1
2 i y0 ] i] j~D!21d~y!. ~3.13!

Proof: Invariance under space–time translation, rotations and parity implies that the two
function can be written in the form

^Ai Aj&~x!5d i j H~x!1] i] jL~x!, ~3.14!

with H, L rotationally invariant distributions; such a decomposition is unique up to a redefin
H→H1h(x0), L→L2 1

2h(x0)x2, L being defined up to constants. A comparison between the
point function of the electric field given by Eq.~3.12! and that derived from Eq.~3.14! ~using
Ei5]0Ai) yields

d i j ]0
2~H2F !1] i] j~F1]0

2L !50.

Such an equation implies

H5F1h~ t !, ] i] j]0
2 L52] i] jF2d i j h~ t !,

and one can use the arbitrariness in the definition ofH, L to removeh(t). Hence one can write

] i] jL52~] i] j /]0
2!F1ai j ~x!1 i t bi j ~x!,

since the operator] i] j /]0
2 is well defined in momentum space, where it corresponds to mult

cation of the spectral measure by the bounded functionki kj (k
21m2)21; furthermore, by taking

the curl one getsai j (x)5] i] ja(x2), bi j (x)5] i] jb(x2).
Locality of the commutator̂@Ai(x), ]0Aj (y)#& requires

2b̃~k!5E dr~m2!~k21m2!211P~k2!,

and a canonical structure at equal times requiresP(k2)5Z. The residual gauge invariance of th
equations of motion and of the CCRs under time independent operator gauge transformat

Ai~x!→Ai~x!1] iw~x!, c~x!→:eiew:~x! c~x!

allows us to eliminate the functiona(x2).
The Fourier transform of the term linear in time has support on the planev50, k arbitrary, so

that the posivitity of the energy spectrum is satisfied, but not the relativistic spectral condit
In the free field case both divAC0 and divEC0 are vectors of zero indefinite product wit

themselves, briefly of zero norm or null vectors, which however cannot vanish.
As one shoulda priori expect, whenever a state yields a nontrivial representation of a g

dependent field algebra,11 the above indefinite states on the field algebra are not gauge inva
In fact, one hasV(gL(Ai))ÞV(Ai)50.
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Proposition 3.6: In the free case, the statesbu* V, with V any quasi-free (indefinite) stat
defined by Eq. (3.13) are space translationally invariant on the field algebra, but not time t
lationally invariant. Only their restrictions to the gauge invariant field algebra are time trans
tionally invariant.

Proof: In fact, ; f PS(R3), one has

bu * V~a t~A~ f !!!5V~A~ f !!1tE d3x u i f i~x!

and, if div f50, * dx u i f i(x)52* dx u"x div f(x)50.
In conclusion, the space and time translationally invariantu-states on the observable fie

algebra do not have regular time translationally invariant extensions to the field algebra~the time
invariant extension are nonregular!; in this sense they display a mechanism which is crucial
solving the problem arising in the Ward identities of chiral symmetry breaking in quan
chromodynamics.11,12

Since the new structures emerging with respect to the standard case are connected w
longitudinal algebra, it is worthwhile to have a better mathematical control on the properties
GNS representation given by the stateV of Proposition 3.5, at least in the free case. As mention
in Sec. II, Eqs.~2.5!, the longitudinal algebra can be discussed in terms of the field varia
div Al(fn), div Ȧl(fn), fnPS(R3). The problem is then reduced to the unique ground state~indefi-
nite! representation of the Heisenberg algebra associated to a countable number of free p
Such GNS representation has been analyzed in Ref. 10 and the result is the following.

Proposition 3.7: In the free case the quasi-free (indefinite) stateV defined by Eq. (3.13) is
faithful on the longitudinal algebraAl generated bydiv A, div E, and the commutant ofAl in the
corresponding GNS representation is isomorphic toAl .

The GNS representation is given as an infinite tensor product of Fock and anti-
representations13,14 of the canonical variables

Qn,6[~qn6pn8!/&, Pn,6[~6pn1qn8!/&,

with

qn8[ iS qn S, pn8[2 i S pn S, ;n,

and S the antiunitary KMS operator defined by

S AC05A* C0 , ;APAl .

Proof: The proof is the same as for a single free particle.10

IV. FUNCTIONAL INTEGRAL REPRESENTATION

We start by discussing the functional integral representation of the temporal gauge
indefinite case with free time evolution.

By analytic continuation to imaginary time the two point correlation function, Eq.~3.13!,
gives rise to the following Schwinger function,

Si j ~x2y!5~d i j 2D21 ] i ] j ! S~x2y!2 ] i ] j D21 d~x2y! ux02y0u/2, ~4.1!

whereS is the standard Schwinger function of a scalar field. The Schwinger function Eq.~4.1!
defines an inner product inS real

3 (R4),

^ f , f &5^ f , f & tr1^ f , f & l ,
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^ f , f & tr[E d4x d4y f i~x!~d i j 2D21] i] j ! f j~y! S~x2y!, ~4.2!

^ f , f & l[E d4x d4y ] f ~x! ] f ~y! D21 d~x2y! ux02y0u/2. ~4.3!

The transverse inner product^., .& tr is semidefinite and therefore it defines a Gaussian inte
with measuredm(Atr(x,t)) and a Euclidean Gaussian fieldAi

tr(x,t).
The longitudinal inner product̂ ., .& l is indefinite but not degenerate onSl(R

4)[$h
5] igi , giPSreal(R

4)%. Therefore, the longitudinal inner product defines the two point Schwin
function of a Gaussian vector field] if(x,t) with

^f~x,t! f~y,s!&5D21d~x2y! ut2su/2. ~4.4!

Thus, ; f PS(R3), f( f , t) is the analog of the variableq(t) describing the position of a free
particle and Eq.~4.4! corresponds to the ground state Euclidean representation of the Heise
algebra with free evolution.10 Following the results of Ref. 10, a functional integral representa
is obtained by introducing the random field

Ai~x,t!5Ai
tr~x,t!1] i@ j~x,t!1z~x!2 z̄~x!utu#, ~4.5!

wherez(x) is a complex Gaussian field with the following expectations

^z~x! z~y!&50, ^z~x! z̄~y!&52 1
2D

21d~x2y!,

corresponding toz5z11 iz2 , z1 ,z2 independent real Gaussian fields with

^z1
2&5^z2

2&52D21d~x2y!/4,

andj(x, t) is a real Gaussian field with

^j~x,t! j~y,s!&52 1
2 D21d~x2y! ~2ut2su1utu1usu!.

Clearly, the covariance ofj is a positive kernel, being the product of the positive kernel2D21 d
and of the Wiener kernel. Hence, the Schwinger functions are represented by

^Ai 1
~x1 ,t1! ¯ Ai n

~xn ,tn!&5E dm~Atr~x,t!! dw~j~x,t!! dn~z~x!!

3)
k51

n

~Ai
tr~xk ,tk!1] i~j~xk ,tk!1z~xk!2 z̄~xk!utku!!, ~4.6!

wheredm, dn, dw are the functional measures defined by the processes introduced above.
In the positive~nonregular! formulation of Sec. III A the construction of a functional integr

representation for the Euclidean correlation functions essentially reduces to the case of t
clidean correlation functions given by the~nonregular! positive ground state of a nonrelativist
particle, discussed in Ref. 10. In fact, the Euclidean correlation functions of exponentials of

V~eiA( f 1 ,t1)•••eiA( f n ,tn)!

obtained from Eqs.~3.8!–~3.10! have the same form as in Ref. 10, Eq.~C.2!, with ak replaced by
] if( f k) and vanish unless

] i f 1
i ~x!1¯1] i f n

i ~x!50. ~4.7!
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If this condition is satisfied, by Proposition 3.3 and Eqs.~4.2! and ~4.3! they coincide with the
correlation functions of the indefinite case. Moreover, Eq.~4.7! implies that in the exponential th
variablez is smeared with a vanishing test function, and the two point function ofz̄ vanishes.
Therefore, as in Ref. 10, the above correlation functions coincide with those of the exponent
Gaussian fields

Ai
tr~ f i ,t!1j~2] i f

i ,t! ~4.8!

with the measuresdm, dw introduced above in Eq.~4.6!.
As for a free particle, the above correlation functions are therefore given by the ergodic

over the real variablesJ(g), JPSreal8 (R3) of the correlation functions of exponentials

expi Ai
tr~ f i ,t! exp2 i ~j~] i f

i , t!1J~] i f
i !! ~4.9!

and, therefore, by the Riesz–Markov theorem, they can be represented as integrals o
spectrumS of theC* -algebra generated by expi J(g), gPSreal(R

3). S is the generalization of the
spectrum of the Bohr algebra,15 generated by expiax, xPR, with J corresponding tox andg to a.

In conclusion,

V~eiA( f 1 ,t1)•••eiA( f n ,tn)!5E dm ~Atr~x,t!! dw ~j~x,t!!

3E dnS~J~g!!)
s51

n

ei Ai
tr ( f j

i ,t j ) e2 i j(] i f j
i ,t j ) e2 i J(] i f j

i )

with dnS the measure onS representing the ergodic mean in all the variablesJ(g);10 the integral
vanishes if Eq.~4.7! does not hold and otherwise coincides with the expectation of a produ
exponentials of fields of the form~4.8!.
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The extension of the Campbell–Magaard embedding theorem to general relativity
with minimally coupled scalar fields is formulated and proven. The result is applied
to the case of a self-interacting scalar field for which new embeddings are found,
and to Brans–Dicke theory. The relationship between the Campbell–Magaard theo-
rem and the General Relativity Cauchy and initial value problems is
outlined. © 2003 American Institute of Physics.@DOI: 10.1063/1.1610237#

I. INTRODUCTION

There is currently a high level of interest in higher dimensional theories of gravity, motiv
in part by recent developments in both string theory and early universe cosmology. Ther
growing body of evidence1 supporting the conjecture that the five perturbative, 10D string theo
may correspond to different limiting cases of a more fundamental, nonperturbative, 11D
theory,’’ which reduces to 11D supergravity in the infrared limit.~For recent reviews, see, e.g
Ref. 2.! Inspired by these advances, the proposal that our observable universe may be rega
a domain wall or ‘‘brane’’ that is embedded in a higher-dimensional space–time has rec
become popular in early universe cosmology.3–6 In the braneworld scenario, the backreaction
the brane results in a higher-dimensional geometry that is nonfactorizable. Consequent
scenario is clearly distinct from the standard Kaluza–Klein compactification scheme. Inde
the five-dimensional Randall–Sundrum models, the extra dimension need not be compact6

An important question that arises in such braneworld scenarios is the relationship betwe
geometry of the apparent, lower-dimensional world and that of the embedding, higher-dimen
space–time. It is therefore important, in view of the above discussion, to develop embe
theorems that enable such questions to be concretely addressed~for an overview and extensive
bibliography, see Ref. 7!. An important theorem is due to Campbell and Magaard~CM!8,9 and
states that anyn-dimensional,~semi-!Riemannian manifold (Mn,g) can be locally and isometri
cally embedded in an (n11)-dimensional manifold (Nn11,g̃), where the Ricci curvature ofNn11

vanishes.8,9 The theorem was suggested by Campbell8 and a proof was later offered by Magaard9

The theorem has been discussed in a number of contexts in the literature.10–19

Recently, we showed16,17 how to extend this theorem to the class of embeddings wh
(Nn11,g̃) is an Einstein space, with a nonzero Ricci tensor that is directly proportional to
metric,g̃. Specific classes of embeddings, such as those of Einstein spaces within Einstein
were established.16

a!Electronic mail: j.e.lidsey@qmul.ac.uk
51080022-2488/2003/44(11)/5108/12/$20.00 © 2003 American Institute of Physics
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Einstein spaces can be viewed as solutions to General Relativity~GR!, where the Ricci
curvature is generated by a particular source—the cosmological constant. A natural ques
address is whether further extensions of the CM theorem are possible and, in particular, to
tigate embeddings in spaces that are sourced by dynamical matter fields. One of the s
models for matter is a scalar field. In this paper, we extend the CM analysis to include a min
coupled scalar field with a general potential energy arising through its self-interactions, a
Brans–Dicke theory.20

The paper is organized as follows. In Sec. II we extend the CM theorem to spaces sour
a scalar field, identifying the mathematical conditions that must be satisfied by such a field in
for the embedding of a given manifold to be possible in principle. In Sec. III A, it is shown
minimally coupled, self-interacting scalar fields satisfy these conditions. Examples of suc
beddings are given in Sec. III B. The Brans–Dicke field is then considered in Sec. III C. We
outline the clarifying relation between the CM theorem and the GR Cauchy21–23 and initial
value24–26 problems in Sec. IV. We conclude in Sec. V.

II. CAMPBELL–MAGAARD THEOREM WITH SCALAR FIELD

The proof of the Campbell–Magaard~CM! theorem8–10 and of its extension to the case whe
the embedding manifold is an Einstein space16,17 follows a scheme similar to the methods em
ployed when investigating the GR Cauchy problem, i.e., once the initial conditions for the m
in a three-dimensional hypersurface are given, one would like to know whether the Einstein
equations~EFEs! with a nontrivial source admit a unique solution.

In GR, the space–time metric is determined by the Einstein equations

Gmn52kTmn , ~1!

wherek is the Einstein constant andTmn is the energy–momentum tensor, which is a function
the matter fields and the metric. We consider a scalar fieldx̄ defined in a semi-Riemannia
manifold (Nn11,g̃ab). ~In this paper, Latin and Greek indices run from 1 ton and from 1 ton
11, respectively.! We assume that the energy–momentum tensor of this field is an ana
function of the fieldx̄, its first derivatives, and the metric tensorg̃ab :

T̃mn5T̃mnS x̄,
]x̄

]xa ,g̃abD . ~2!

Let us choose a coordinate system in which the metricg̃ab has the line element

ds25ḡikdxi dxk1«f̄2 dy2, ~3!

wherey5xn11, f̄5f̄(x1, . . . ,xn,y), ḡik5ḡik(x1, . . . ,xn,y) and«561.
We suppose that the evolution ofx̄ is governed by a second-order p.d.e. which may be writ

in the form

]2x̄

]y2 5PS x̄,
]x̄

]xi ,
]x̄

]y
,ḡab ,

]ḡab

]xi ,
]ḡab

]y
,

]2x̄

]xi]xkD , ~4!

whereP is analytic with respect to each of its arguments. We also make the physically reaso
assumption of energy–momentum conservation:

¹̃mT̃mn50, ~5!

where¹̃m is the covariant derivative with respect tog̃mn .
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We now claim that if conditions~2!, ~4!, and ~5! hold, it is possible to locally embed an
n-dimensional,~semi-!Riemannian manifold (Mn,g) in an (n11)-dimensional space sourced b
the scalar fieldx̄.

In the coordinates~3!, the EFEs take the form

R̃ik5R̄ik1«ḡ jm~V̄ ikV̄ jm22V̄ jkV̄ im!2
«

f̄

]V̄ ik

]y
1

1

f̄
¹̄i¹̄kf̄52kS T̃ik2

1

n21
gikT̃D , ~6!

R̃i
y5

«

f̄
ḡ jk~¹̄jV̄ ik2¹̄iV̄ jk!52kT̃i

y , ~7!

G̃y
y52 1

2ḡ
ikḡ jm~R̄i jkm1«~V̄ ikV̄ jm2V̄ jkV̄ im!!52kT̃y

y , ~8!

where

V̄ ik52
1

2f̄

]ḡik

]y
~9!

and the barred terms are calculated with the metricḡik induced on the hypersurfaceSc of constant
y5c.

We now state the following lemma:
Lemma 1: Let the functions gīk(x1, . . . ,xn,y), f̄(x1, . . . ,xn,y) and x̄(x1, . . . ,xn,y) be ana-

lytic at (0, . . . ,0)PS0,Rn11. Assume that the following conditions hold:
(i) ḡ ik5ḡki ;
(ii) det(ḡik)Þ0;

(iii) f̄Þ0.
Assume further that gīk and x̄ satisfy Eqs. (4) and (6) in the open set U,Rn11 which

contains0PRn11 and (7) and (8) atS0 . Then, ḡik , f̄, and x̄ satisfy (7) and (8) in a neighbor
hood of0PRn11.

Proof: The key point of the proof is given by~5!. First, let us define the tensorF̃ab5G̃ab

1kT̃ab . By assumption,x̄ satisfies~4! in a neighborhoodV,Rn11 of 0PRn11, whence~5! also
holds inV. It then follows thatF̃ab has vanishing divergence, so

]F̃b
y

]y
52

]F̃b
i

]xi 2G̃ml
m F̃b

l1G̃lb
m F̃m

l .

On the other hand, by expressing the Einstein tensor in terms of the Ricci tensor, we can

F̃k
i 5R̃k

i 2dk
i ~R̃j

j1G̃y
y!1kT̃k

i .

Again, by assumption,

R̃k
i 52kF T̃k

i 2
d j

i

n21
~ T̃j

j1T̃y
y!G

holds in V,Rn11 and it then follows thatF̃k
i 52dk

i F̃y
y in V. After some algebra we may the

deduce that

]F̃y
y

]y
52«f̄2ḡi j

]F̃ i
y

]xj 22G̃ iy
i F̃y

y1S 2«
]~f̄2ḡi j !

]yj 2«f̄2ḡi j G̃k j
k 1G̃yy

i D F̃ i
y ,
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]F̃ i
y

]y
5

]F̃y
y

]xi 12G̃yi
y F̃y

y1~ G̃yi
k 1«f̄2ḡk jG̃ i j

y 2G̃ym
m d i

k!F̃k
y

and since~7! and ~8! hold at the hypersurfaceS0 , it follows that F̃b
y 50 and hence tha

]F̃b
y /]yuy5050.
It is not difficult to show by mathematical induction that all the derivatives ofF̃b

y ~to any
order! vanish aty50. As F̃b

y is analytic, we may therefore conclude thatF̃b
y 50 in an open set of

Rn11. Thus,~7! and~8! also hold in an open set ofRn11 which includes the origin and this prove
the lemma. h

To proceed, we must now establish that the solutionsḡik , f̄, andx̄ do indeed exist. With this
in mind, let us now recall the Cauchy–Kowalewski~CK! theorem:27

Theorem †Cauchy–Kowalewski‡: Consider the set of partial differential equations

]2uA

]~yn11!2 5FAS ya,uB,
]uB

]ya ,
]2uB

]ya]yi ,D , A51, . . . ,m, ~10!

where u1,..,um are m unknown functions of the n11 variables y1, . . . ,yn,yn11, a51, . . . ,n
11, i 51, . . . ,n, B51, . . . ,m. Also, let j1, . . . ,jm,h1, . . . ,hm, be functions of the variables
y1, . . . ,yn, and be analytic at0PRn. If the functions FA are analytic with respect to each of the
arguments around the values evaluated at the point y15¯5yn50, there exists a unique solutio
of Eq. (10) which is analytic at0PRn11 and that satisfies the initial conditions

uA~y1, . . . ,yn,0!5jA~y1, . . . ,yn!, ~11!

]uA

]yn11 ~y1, . . . ,yn,0!5hA~y1, . . . ,yn!, A51, . . . ,m. ~12!

After solving ~6! for the second-order derivative ofḡik with respect toy we find that

]2ḡik

]y2
522«kf̄2S Tik2

1

n21
gikTD 1

1

f̄

]f̄

]y

]ḡik

]y

2
1

2
ḡ jmS ]ḡik

]y

]ḡ jm

]y
22

]ḡim

]y

]ḡ jk

]y
D 22«f̄S ]2f̄

]xi]xk
2

]f̄

]xj
Ḡ ik

j D 22«f̄2R̄ik . ~13!

Due to the symmetry of the tensors,ḡik andTik , we can rewrite~13! in terms of the component
of gik with i<k. This equation, together with the field equation~4!, form a set of 11n(n
11)/2 p.d.e’s for the 11n(n11)/2 unknown functions,ḡik ( i<k) and x̄. ~Note that f̄ is a
nonzero analytic function that is treated as a known.!

Thus, the p.d.e. system we have just obtained has the canonical form of~10! and, moreover,
it satisfies all of the conditions required for the use of the CK theorem. Indeed, by virtue o
properties~2! and~4! imposed onTab andP, the right-hand side of the equations is comprised
functions of the variables

x1, . . . ,xn,y;ḡik ,x̄,
]ḡik

]xj ,
]ḡik

]y
,

]x̄

]xj ,
]x̄

]y
;

]2ḡik

]xj]xm ,
]2x̄

]xj]xm ,

which are analytic with respect to each of their arguments at

x150,...,xn50,y50;ḡiku0 ,x̄u0 ,
]ḡik

]xj U
0

,
]ḡik

]y U
0

,
]x̄

]xj U
0

,
]x̄

]yU
0

;
]2ḡik

]xj]xmU
0

,
]2x̄

]xj]xmU
0

,
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if uḡiku0Þ0. Therefore, given analytic initial conditions

ḡik~x1,...,xn,0!5gik~x1,...,xn!,
]ḡik

]y
~x1,...,xn,0!5f̄~x1,...,xn,0!V ik~x1, . . . ,xn!,

x̄~x1,...,xn,0!5j~x1,...,xn!,
]x̄

]y
~x1,...,xn,0!5h~x1,...,xn!, ~14!

which satisfyugikuÞ0, there exists a unique set of functionsḡik andx̄ which solve Eqs.~4! and~6!
which are analytic at the origin. It should be noted that an important feature of these soluti
the propertyuḡikuÞ0 in some neighborhood of 0PRn11.

If we take the initial conditionsgik as being the metric components of a~semi-!Riemannian
spaceMn written in some coordinate system, then we can state the following theorem:

Theorem 1: Let Mn be an n-dimensional, semi-Riemaninan manifold with metric given
ds25gikdxidxk, in a coordinate system$xi% of Mn. Let pPMn have coordinates xp

15¯5xp
n

50. Then Mn has a local isometric and analytic embedding (at the point p) in
(n11)-dimensional space sourced by any arbitrary scalar fieldx̄ that is characterized by the
properties (2), (4), and (5) iff there exist functionsV ik(x1, . . . ,xn) ( i ,k51,...,n), j(x1,...,xn),
h(x1,...,xn) and f(x1,...,xn)Þ0 that are analytic at0PRn such that

V ik5Vki , ~15!

gjk~¹jV ik2¹iV jk!52«kfTi
y~j,h,gi j !, ~16!

gikgjm~Ri jkm1«~V ikV jm2V jkV im!!52kTy
y~j,h,gi j !. ~17!

Proof: (⇒) If Mn has an embedding in some arbitrary space sourced by a scalar field, t
can be proved17,28 that there exists a coordinate system in which the metric of the embed
space has the form ds25ḡikdxidxk1«f̄2dy2, where the analytic functionsḡik(x1, . . . ,xn,y) and
f̄(x1, . . . ,xn,y) are such thatf̄(x1, . . . ,xn,y)Þ0 and ḡik(x1, . . . ,xn,0)5gik(x1, . . . ,xn) in an
open set ofRn which contains the origin. Given that the embedding space is, by assump
generated by a scalar fieldx̄, it follows that ḡik andf̄ necessarily satisfy Eqs.~4!, ~6!, and~8! for
some fieldx̄(x1, . . . ,xn,y) in a neighborhood of 0PRn11. In particular, Eqs.~7! and~8! hold for
y50. Therefore, the functionsV ik(x1, . . . ,xn) ( i ,k51,...,n), j(x1,...,xn), h(x1,...,xn) and
f(x1,...,xn), as defined by

V ik5V̄ ik~x1,...,xn,0!, j5x̄~x1, . . . ,xn,0!h5
]x̄

]y U
y50

, f~x1,...,xn!5f̄~x1, . . . ,xn,0!

~18!

satisfy Eqs.~15!, ~16! and ~17!.
(⇐) Suppose that there exist functionsV ik(x1, . . . ,xn), j(x1,...,xn), h(x1,...,xn) and

f(x1,...,xn)Þ0 which satisfy ~15!, ~16!, and ~17!. Choose an analytic function given b
f̄(x1, . . . ,xn,y)Þ0 such thatf̄(x1, . . . ,xn,0)5f(x1,...,xn). By virtue of the CK theorem, there
exists a unique set of analytic functionsḡik(x1, . . . ,xn,y) andx̄(x1, . . . ,xn,y) that satisfy Eqs.~4!
and ~6! and the initial conditions~14!. Since, by assumption, the initial conditions satisfy E
~15!, ~16!, and~17!, Eqs.~7! and~8! are satisfied aty50 by ḡik ,f̄ andx̄. It follows from Lemma
1 that ḡik ,f̄, andx̄ also satisfy Eqs.~4!, ~6!, and~8! in an open set ofRn11 which contains the
origin. We conclude, therefore, that the (n11)-dimensional manifold whose line element~3! is
expressed in terms of the solutionsḡik and f̄ is a space generated by a scalar field. Thus,
~semi-!Riemannian manifold (Mn,g) can indeed be embedded in a space sourced by a s
field. h
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According to Theorem 1, the existence of solutions to Eqs.~15!–~17! is sufficient to ensure
that the local, analytic embedding ofMn is possible. The proof that these solutions do in fact ex
consists in showing that Eqs.~15!–~17! can be expressed in the canonical form required by the
theorem~here in its first-derivative version!. This can be done by following the method presen
in Ref. 10 with no significant modifications, and so we omit the details here. The idea is t
~17! to isolateV11 which is then substituted into~16! which is to be regarded as a system
p.d.e.’s forn unknown functions: then21 V1k for k>2 and one other component ofV, which we
call Q. These p.d.e.’s are in the correct canonical form to employ the CK theorem. Thus,
analytic functionsgik are given, there exist analytic functionsV ik which solve Eqs.~15!–~17! and
this leads us to the following theorem:

Theorem 2: Let Mn (n.1) be a piece of a (semi-)Riemannian space with line elementds2

5gikdxidxk, expressed in a coordinate system which covers a neighborhood of a point pPMn

whose coordinates are xp
15¯5xp

n50. If gik are analytic functions at0PRn, then Mn can be
embedded at p in some(n11)-dimensional space sourced by any arbitrary scalar field satisfy
conditions (2), (4), and (5). Moreover, the line element of the embedding space is unique
arbitrary functions to be chosen obey the following conditions:

(i) the @n(n21)/2#21 functionsV ik (i<k,i .1, and excluding the componentQ) are analytic
at 0PRn;

(ii) the n functions V1k(0,x2, . . . ,xn)5 f k(x
2, . . . ,xn) (k.1) and Q(0,x2, . . . ,xn)

5 f 1(x2, . . . ,xn) are analytic at0PRn21, with the coefficient ofV11 in (17) nonzero (to
permit the elimination ofV11 in order to set up the p.d.e. system),

(iii) a function f(x1, . . . ,xn11)Þ0, analytic at0PRn11, is chosen;
(iv) two functionsj(x1, . . . ,xn) and h(x1, . . . ,xn), analytic at0PRn, are chosen.

Note that when we refer to a space generated by a scalar field we have in mind a non
solution of the Einstein-scalar system. In other words, we are implicitly considering a sol
such that the associated energy–momentum tensor is nonzero. The exclusion of trivial solu
possible because the initial conditions of the field~the functionsj and h! are arbitrary and this
implies that they can be chosen in such a way thatTabÞ0 at S0 ~for somea and b!. Conse-
quently, continuity requirements imply that the energy–momentum tensor does not vanish in
neighborhood of 0PRn11.

We proceed in Sec. III to employ this theorem to establish specific classes of embedd

III. APPLICATIONS

A. Self-interacting scalar fields

In this section we consider a real scalar field,x, minimally coupled to Einstein gravity and
self-interacting through a potential,W(x). We assume that the potential is a well-behaved, a
lytic function of the field. The energy–momentum tensor of such a field is given by

Tab5¹ax¹bx2 1
2 gab~¹gx¹gx!2gabW~x!. ~19!

It easily follows that the energy–momentum tensor~19! has vanishing divergence ifx solves the
field equation

¹a¹ax2
dW

dx
50. ~20!

In the coordinate system~3! the field equation~20! takes the form of Eq.~4! with

P5«f2S 2gik
]2x

]xi]xk 2gabGab
g ]x

]xg 1
dW

dx D . ~21!
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Note that the functionP, which depends onx, ]x/]xi , ]x/]y , gab , ]gab /]xi , ]gab /]y, and
]2x/]xi]xk, is analytic with respect to each of these arguments.

Since conditions~2!, ~4!, and~5! are satisfied by a minimally coupled, self-interacting sca
field, we may conclude the following:

Corollary 1: Let Mn(n.1) be a piece of a (semi-)Riemannian space with line elementds2

5gikdxidxk, expressed in a coordinate system which covers a neighborhood of a point pPMn

whose coordinates are xp
15¯5xp

n50. If gik are analytic functions at0PRn, then Mn can be
embedded at p in some(n11)-dimensional space generated by any arbitrary, minimally coup
self-interacting scalar field.

Note thatMn is truly Riemannian for«521 and semi-Riemannian for«511.

B. Examples of embeddings with self-interacting scalar fields

We now employ this result to construct embeddings for a class of space–times into h
dimensional space–times sourced by such a scalar field. We begin with the ansatz

V̄ i j 5Cḡi j , ~22!

where C5C(xa) is a scalar function of the coordinates of the embedding metric. We fur
assume that the scalar field is independent of the embedded metric coordinates, i.e.,x5x(y), and
specifyk51 and«51 for simplicity.

Substituting~22! into ~16! implies that¹iC50 and, consequently, thatC must be a function
of the extra coordinatey alone. Choosing the normal coordinate form forf:

f51, ~23!

then implies that~9! can be integrated to yield the solution

ḡi j 5a2~y!gi j , ~24!

whereC[2d lna/dy.
When ~22! and ~23! are valid, the scalar field equation~20! simplifies to

d2x

dy2 1
n

a

da

dy

dx

dy
2

dV

dx
50 ~25!

and by substituting the appropriate components of the energy–momentum tensor~19! into ~6! and
~8!, we find that

R̄ik1V̄V̄ ik22V̄ imV̄k
m2

]V̄ ik

]y
52

2V

n21
ḡik , ~26!

R̄1V̄22V̄ j
i V̄ i

j5S dx

dyD 2

22V. ~27!

Furthermore, subtracting~27! from the trace of~26! and substituting for the ansatz~22! implies
that

n

a

d2a

dy2 52S dx

dy D 2

2
2V

n21
. ~28!

We may solve~28! and ~25! for an unknown self-interaction potential, by specifying t
functional forms ofa(y) andx(y):

a[~11ly!p, ~29!
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x[q ln~11ly!, ~30!

wherep, q, andl are constants. Substituting~29! and~30! into ~28! implies that this is consisten
if the scalar field potential has an exponential~Liouville! form:

V52l2S n21

2 D @np~p21!1q2#expS 2
2

q
x D , ~31!

and it then follows that the scalar field equation~25! is solved if

~p21!@q22p~n21!#50. ~32!

Thus, the embedding is established by solving~26! for the two cases, whereq25p(n21) or
p51. In the first case, substituting for~29!–~31! implies that the embedding metric,gi j , must
have vanishing Ricci tensor. We conclude, therefore, that there is an embedding ofn-D Ricci-flat
manifolds with metricgi j , in an (n11)-D manifold sourced by a scalar field, with metric give
by

ds25~11ly!pgikdxidxk1dy2, ~33!

where the scalar field~30! self-interacts through the exponential potential~31!. This generalizes
the 4D result of Ref. 29 to arbitrary dimension.

In the second case, wherep51, the above-mentioned procedure implies that~26! is solved if

Rik5
~q22n11!l2

~11ly!2 gik ~34!

and it follows that the embedded metric is an Einstein space with a nonzero Ricci curvatur
sign and magnitude of the effective cosmological constant of the embedded manifold dete
the self-interaction coupling,q, of the scalar field. Indeed, the potential~31! is negative-definite
for this embedding. An embedding of this type has been considered within the context of dil
braneworld scenarios.30 It is interesting that the functional form of the potential~31! is the same
for the two different classes of embedding. Moreover, potentials of this form arise in compac
supergravity theories.31

The above-given embeddings are specific in the sense that for the assumed form ofV ik given
in ~22!, the embedding is only consistent if the scalar field has an exponential potential. How
Corollary 1 states that an embedding is possible for any analytic potential. This would re
some other form forV ik to be chosen.

C. Brans–Dicke theory

The Brans–Dicke theory of gravity20 represents a natural extension of GR, where a nonm
mally coupled~‘‘dilatonic’’ ! scalar field parametrizes the space–time dependence of New
‘‘constant.’’ Nevertheless, it is well known that this theory is conformally equivalent to GR wi
minimally coupled scalar field. Therefore, the following corollary to the above-mentioned t
rems is deduced if one is prepared to work within the context of the conformally transfo
fields.

Corollary 2: Let Mn(n.1) be a piece of a (semi-)Riemannian space with line elementds2

5gikdxidxk, expressed in a coordinate system which covers a neighborhood of a point pPMn

whose coordinates are xp
15¯5xp

n50. If gik are analytic functions at0PRn, then Mn can be
embedded at p in some(n11)-dimensional space which is a solution of the vacuum, Bran–
Dicke field equations.
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IV. CAMPBELL–MAGAARD AND THE GR CAUCHY AND INITIAL VALUE PROBLEMS

In Sec. II, we referred to the close relationship between the CM theorem and the GR C
and initial value problems~CP and IVP, respectively!. There is a wealth of literature on the latte
problems within the context of (3,0)→(3,1) embeddings@we denote by (p,q) a manifold withp
spacelike andq timelike coordinates#, which makes it a valuable source of ideas for embedd
theorems. The first idea is to show how the CM theorem follows from a collection of kn
results. The second idea will be to question whether any of the dimension- or signature-dep
results of the GR CP have useful generalizations. This will lead to possible limitations of the
methods of constructing higher-dimensional solutions from lower-dimensional ones. We be
outlining the GR CP and IVP.

By use of the (311) split of the space–time line element~here,N is the lapse,Ni is the shift,
andhi j is the induced 3-metric!

ds25hi j ~Ndxi1Nidt !~N dxj1Nj dt !2~N dt !2, ~35!

the ten EFEs may be rewritten as six evolution equations and the four Gauss–Codazzi cons
The mathematics of this split is the same, up to the signature, as that of splitting the EFEs in
~6! and into Eqs.~7! and ~8!, if one identifies the lapse to bef and imposes the partial gaug
condition that the shift be zero. The GR CP is then the study of the evolution equations given
initial data that obeys the constraints.

It is standard knowledge21,22 that these evolution equations can be written in the correct f
required by the CK theorem, and so we are guaranteed that a solution exists locally and th
unique. Whereas self-consistency requires the evolution equations to propagate the constra
the initial hypersurface, it is immediately evident that this follows from the Bianchi identitie

There are additional results about the GR CP having a number of physically desirable fe
First, it is Hadamard well-posed27,21 so that in addition to the existence of a unique solution,
solution depends continuously on the prescribed data. Without this, an arbitrarily small cha
the data set could give rise to an arbitrarily large change in the form of the solution which pre
physical predictability. Second, it possesses the ‘‘domain of dependence’’ property, i.e., th
can only affect the evolution in regions that are in causal contact with that data, which
necessary criterion for the good behavior of hyperbolic systems.21,23 The continuous dependenc
and domain of dependence properties follow in harmonic coordinates from Leray’s theorem32,21

which is specific to hyperbolic operators. Finally, it is standard knowledge that the GR C
well-posed in the presence of scalar fields, electromagnetism, perfect fluids, Brans–Dicke
and certain higher-derivative theories.21

The IVP or data construction problem~solving the Gauss–Codazzi constraints! is considered
to be the most difficult step in the (311) formalism of GR.33 This problem is underdetermined
because there are twelve unknown functions~the components of the 3-metrichik and the second
fundamental formV ik), but only four equations. Hawking and Ellis34 apparently refer to a genera
result stating that if eight of the unknown functions are specified for a space–time wit
arbitrary matter content, the constraint equations may be solved for the remaining four. How
the work they refer to, Ref. 22, considers only two methods~the thin sandwich method and th
usual conformal method!, neither of which resemble Magaard’s method.

We now consider the CM theorem piece by piece. The structure of none of the a
mentioned results is dependent on the dimension. Neither the CK theorem nor the met
expressing the GR evolution equations in the correct form to invoke the CK theorem are af
by the signature. Furthermore the Bianchi identity which guarantees constraint propaga
geometrical and hence equally valid regardless of the signature. Hence, the first part of the
of the CM theorem~existence, uniqueness, and constraint propagation! follows directly from these
results holding for the (311)-D GR CP.

The second part of the proof, due to Magaard, is a subcase of the result in Hawking and34

generalized to arbitrary dimension. However, we emphasize that Magaard’s approach differ
that of the usual conformal data construction.24–26 The former considers the lower-dimension
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metric to be a known function, but the latter considers it to be known only up to a confo
factor. The former is of interest following the new motivation for studying higher-dimensi
space–times, whereas the latter has only been employed for three spacelike dimension
largely signature-dependent~that is, elliptical! methods.

If we are to interpret the CM theorem from a physical point of view, we are well-motivate
demand that the procedure for constructing embeddings is a well-posed problem. The ty
embeddings of interest are (n,1)→(n11,1) and (n,1)→(n,2), which are forms which are no
known to exhibit continuous dependence, respectively.~There is no simple way of investigatin
whether theorems that hold for one particular signature hold for any other. This is due to s
cant mathematical differences between elliptic and ‘‘hyperbolic’’ operators. From the poi
view of the function spaces that underly the analysis, Holder spaces are natural for the st
elliptic operators while Sobolev spaces are natural for the study of hyperbolic operators! The
former is termed the ‘‘sideways problem for a hyperbolic system,’’ and arises in a numb
nonrelativistic contexts, as summarized by Ames and Straughan.35 The only general result known
for simple examples of such problems is that, given certain bounds, the solution is Holder-
in some region,36 but this is not considered to amount to a sufficiently strong theorem to guara
continuous dependence. The latter is an ultrahyperbolic problem. These remain largely unex
since they were traditionally considered to be physically irrelevant~see, however, Ref. 37!. This
implies, for example, that there are problems with the physical interpretation of models bas
GR with two timelike dimensions38 ~as also pointed out in (1012)-D supergravity39!.

If we exclude this second possibility, it may be more promising to approach hig
dimensional embeddings with a two-step procedure of the form (3,0)→(4,0)→(4,1). The first
step could be a boundary problem along the lines considered in Ref. 40, while the second
a higher-dimensional version of the GR CP. This procedure would allow the bulk to influenc
hypersurface in a causal way~in the usual GR sense!, which is not possible in a (3,1)→(4,1) type
of embedding~except perhaps in a perturbative treatment!. It is clearly of interest to construc
models in which the bulk does play a role that is, in principle, observable and testable. Alth
the nature of causality in higher-dimensional theories may be substantially different to th
(311)-D GR,41 such models would be consistent with a direct extension of GR.

V. CONCLUSION

In this paper, we have proved an extension of the CM embedding theorem,8,9 where the
embedding metric is sourced by one or more scalar fields minimally coupled to GR. We emp
this theorem to establish classes of embeddings where the scalar field self-interacts thro
exponential potential. The relationship between the CM theorem and the Cauchy and initial
problems of GR was highlighted. This relationship will certainly permit CP and IVP techniqu
be adapted to provide further space–time into space–time embeddings.

Embedding theorems are important from both the mathematical and physical points of
They allow classification schemes for different space–times to be developed as well as pro
algorithms for generating new solutions.42 The primary physical motivation for developing mat
ematical embedding theorems arises from the resurgence of interest in higher-dimensional t
of gravity and cosmology, most notably the braneworld scenarios.3–6 In particular, the Randall–
Sundrum ‘‘type II’’ ~RSII! scenario,6 where a codimension one brane is embedded in fi
dimensional anti-de Sitter (AdS5) space, has attracted considerable attention. Embeddings are
of relevance to the induced ‘‘space–time–matter’’~STM! theory, whereby the 4D universe i
viewed as a slice of a 5D universe.43,44,19~For reviews, see, e.g., Refs. 14 and 45.! The CM theory
was recently employed within the context of both the RSII scenario and STM theory, whe
close similarities between the two approaches were highlighted and algorithms for employi
theorem in practice were outlined.19 The relationship between the two pictures has also b
emphasized in Ref. 44.

Although the RSII model was motivated in part by the Horaˇva–Witten theory for the strongly
coupled limit of theE83E8 heterotic string theory,4 it is an idealized system, in the sense that t
higher-dimensional space is assumed to be an Einstein space. It is therefore important to c
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more general settings that are inspired by string theoretic considerations. For example, the
gravity actions contain, in addition to the scalar dilaton field, a number of antisymmetric f
fields. Up on compactification from ten or eleven dimensions, the degrees of freedom asso
with these fields can manifest themselves as scalar fields that self-interact through one o
potentials. In particular, scalar fields arise when the form fields have a nontrivial flux ove
compactifying dimensions that is able to support a solitonic brane configuration. A specifi
ample is the compactification of the Horaˇva–Witten theory to five dimensions,5 where a scalar
field arises in the fifth~bulk! dimension with an exponential potential of the form considered
Sec. III B.

In view of the above discussion, it is important to develop the mathematical frame
through embedding theorems for studying braneworld models containing scalar fields in the
dimensions. Unlike almost all current analyses, our treatment in the present work is for thfull
Einstein-scalar field system rather than for some highly symmetric case. This general treatm
appropriate because we are establishing an existence and uniqueness theorem for embedd
space–times sourced by scalar fields.~This is also the starting point of the perturbative 4
treatment of domain walls presented in Ref. 46.!

It is worth emphasizing that by including scalar fields in our extension of the CM theory
mean additional, bulk scalar fields,x̄, and not the higher-dimensional metric component,f̄,
which is an effective scalar field in the Kaluza–Klein and STM approaches. The theorem we
proved therefore provides a starting point for considering a number of open physical que
such as the possible restrictions that may arise on the energy–momentum tensor of the
matter fields once the junction conditions are imposed. A related question is whether plausi
physics can generically be recovered and whether there are testable corrections to Newton
such as those in the RSII scenario.6 It would be interesting to consider these questions furthe

Finally, our generalization in this paper of the CM theorem implies that for a given
space–time, there are an infinite number of embedding space–times with one extra dimen
the sense that there is at least one possible embedding for each functional form of the
dimensional energy–momentum tensor, in particular, one per scalar interaction potential
surrounding 5D space–time.~In the embedding procedure, the energy–momentum tenso
viewed as a function of the coordinates and not as a function of the fields. This implies th
higher-dimensional models are merely encoding solutions rather than specific physical laws
pare with how Kaluza–Klein theory offered further predictions as a result of the geometrizat
the electromagnetic field.! This is arguably an undersirable feature for higher-dimensional th
ries, since it implies that unique physical predictions cannot be made in the absence o
founded principles thatselecta particular higher-dimensional space–time. This is similar to
well-known problem in string theory phenomenology, where different particle spectra aris
different Calabi–Yau compactifications.47 The introduction of discontinuities or branes is unlike
to remove this nonuniqueness property, since there are many possible brane configurations~single,
parallel, or intersecting! that could be considered and many possible forms for the higher dim
sional bulk space–time, but presently no established way to distinguish between them f
physical point of view. Perhaps, the number of fields and the form of the potential wou
restricted in some higher-dimensional theory and by requiring the recovery of~possibly corrected!
4D physics as discussed earlier. Our theorem provides a framework within which these and
questions can be addressed.
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Parametric phenomena of the particle dynamics
in a periodic gravitational wave field
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~Received 9 December 2002; accepted 18 August 2003!

We establish exactly solvable models for the motion of neutral particles, electrically
charged point and spin particles@U~1! symmetry#, isospin particles@SU~2! symme-
try#, and particles with color charges@SU~3! symmetry# in a gravitational wave
background. Special attention is devoted to parametric effects induced by the gravi-
tational field. In particular, we discuss parametric instabilities of the particle motion
and parametric oscillations of the vectors of spin, isospin, and color
charge. ©2003 American Institute of Physics.@DOI: 10.1063/1.1617364#

I. INTRODUCTION

Periodic external fields are known to induce parametric phenomena in physical system
includes such effects as parametric oscillations~the oscillation frequency becomes a period
function of time! and parametric instabilities~exponential growth of certain dynamica
quantities!.1–3 Classical examples are the parametric resonance in vibrations of mechanic
electrical systems1–3 and plasma instabilities in external electromagnetic fields.4,5 From a math-
ematical point of view, such phenomena are described by differential equations with pe
coefficients which are subject to Floquet’s theory.2,3,6–9As we shall demonstrate here, equations
this type naturally appear if one considers the motion of different kinds of particles in a gra
tional wave~GW! background. The gravitational wave may play the role of an external peri
pumping field. In fact, most of the attempts for a direct detection of gravitational waves re
this concept. The mathematical similarity to dynamical equations which are known to de
parametric oscillations and resonances then naturally suggests the possibility of gravitat
induced parametric effects.

The idea of parametric phenomena in GW fields is not new. For a linearized GW field i
discussed in Ref. 10. The first exactly solvable model for the evolution of a kinetic system
nonlinearGW field, demonstrating explicitly the possibility of parametric excitation of a rela
istic plasma by a periodic GW, has been established in Ref. 11. At the same time, in the ni
the problem of parametric resonance during the reheating phase of inflationary models has b
an intensely elaborated topic in a cosmological context~see, e.g., Refs. 12–16!. More recently,
investigations, concerning parametric phenomena in a GW field, have attracted attention
~see, e.g., Refs. 17–19!.

The purpose of the present paper is to clarify characteristic features of gravitationally in
parametric effects for simple dynamical configurations. As a first example we consider the m
of an electrically charged point particle which is simultaneously exposed to a constant ma
field and a gravitational wave with front plane orthogonal to the magnetic field. In the se
example we include an additional spin degree of freedom which is described by the Bargm

a!Electronic mail: Alexander.Balakin@ksu.ru
b!Electronic mail: Veronika.Kurbanova@ksu.ru
c!Electronic mail: zimdahl@thp.uni-koeln.de
51200022-2488/2003/44(11)/5120/21/$20.00 © 2003 American Institute of Physics
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Michel–Telegdi ~BMT! equations.20 In the third case the electrically charged spin-particle
replaced by a particle with isospin and the magnetic field is replaced by a corresponding
Mills field. The isospin dynamics is governed by Wong’s equation21 for the three-dimensiona
isospin vector. Finally, we consider the motion of particles with color charge, described by W
equation for the eight color degrees of freedom. Using suitably specified Yang–Mills field
establish a general scheme which allows a unified treatment of the particle dynamics for a
cases. We show that on a periodic GW background this dynamics is characterized by H
Mathieu equations. Well-known stability properties of the latter allow us to classify the pa
motion accordingly. This implies parametric oscillations and/or parametric instabilities as ge
phenomena. The precession dynamics of the vectors of spin, isospin, and color charge is c
to the particle motion and parametrically driven as well.

The paper is organized as follows. In Sec. II we establish the basic dynamic equations
Abelian and non-Abelian subcases to be discussed in the following. In Sec. III the Yang–
fields for the latter cases are specified. The~exact! gravitational background is characterized
Sec. IV. Section V is devoted to a compact, general solution for the particle dynamics. A ‘‘s
wich’’ GW is considered as a special case. The spin precession for an electrically charged p
is the subject of Sec. VI. Sections VII and VIII discuss the dynamics in the spaces of isosp
color charge, respectively. In Sec. IX we summarize our main results. We use units in wh\
5c51.

II. PARTICLE DYNAMICS: BASIC EQUATIONS

Let us consider the evolution of relativistic point particles with either an electric charge a
spin-vector, or an isospin, or a color charge. The concepts of classical particles with isosp@for
the SU~2! symmetry# or color charge@for the SU~3! symmetry# are generalizations of the electr
cally charged particles to the non-Abelian case~see, e.g., Ref. 22!. The dynamical equations fo
the particle momentumpi , for the spin-vectorSi , and for the chargeQ(A), where (A) is a group
index, are

Dpi

Dt
5F i ,

DSi

Dt
5G i ,

DQ(A)

Dt
5G (A) , ~1!

respectively. Here,D denotes the covariant differential,t is a parameter along the particle world
line, and F i is the force four vector which is orthogonal to the particle momentumpi

5mdxi /dt, i.e., piF i50. The quantityG i describes the spin rotation within the BMT theory. Th
quantityG (A) is a vector in the group space which determines the non-Abelian charge evo
and plays a similar role for the charge asF i plays for the momentum. The limiting case of neutr
particles is characterized byF i5G i5G (A)50.

A. Electrically charged point particles

In this case the relevant force is the Lorentz force

F i5
e

m
F
•k
i pk ~2!

with

Fik5¹iAk2¹kAi , ¹kF
ik50, ~3!

where Fik is the Maxwell tensor. The particle under consideration is regarded here as
particle. Moreover, the charge is constant which renders the third equation in~1! irrelevant.
                                                                                                                



mas
rator
n from

t

nal

-
s

nts a
t can
lized
those

5122 J. Math. Phys., Vol. 44, No. 11, November 2003 Balakin, Kurbanova, and Zimdahl

                    
B. Electrically charged spin particles

According to Ref. 20 the evolution of classical relativistic spin particles is governed by

Dpi

Dt
5

e

m
F
•k
i pk ~4!

and

DSi

Dt
5

e

2m FgF
•k
i Sk1

~g22!

m2 piFklS
kpl G . ~5!

Here, Si is the spin four-vector andg is the gyromagnetic ratio. Equation~5! describes the
precession of the magnetic moment. It generalizes earlier nonrelativistic equations by Tho23

and Bloch,24 which rely on the circumstance that the ‘‘expectation value of the vector ope
representing the ‘spin’ will necessarily follow the same time dependence as one would obtai
a classical equation of motion’’~cf. Ref. 20!. While the particle momentum according to Eq.~4! is
independent of the spin vector, the dynamics of the latter is coupled~at least via the covarian
derivative! to the particle motion.

C. Isospin particles

Here we have a tripletI (A) of scalar fields representing a vector in the three-dimensio
isospin space, i.e., (A)5(1),(2),(3). This space has an Euclidean metricG(A)(B) . The relevant
force

F i5
g

m
F

• k
(A) i pkI (B)G(A)(B), ~6!

where g is the interaction constant, has been obtained by Kerner25 and Wong.21 The isospin
dynamics is determined by Wong’s equation21

D

Dt
I (A)52

g

m
«

•(B)(C)
(A) Ai

(B)piI (C), ~7!

where we have used that the structure constants for the SU~2! group coincide with the three
dimensional Levi–Civita symbol«

• (B)(C)
(A) . The quantitiesAi

(A) are the vector potentials in term
of which the Yang–Mills field strength tensorF jk

(B) is given by

F jk
(B)5¹jAk

(B)2¹kAj
(B)1g«

• (K)(L)
(B) Aj

(K)Ak
(L). ~8!

The Yang–Mills field equations are

gi j @¹iF jk
(A)1g«

• (B)(C)
(A) Ai

(B)F jk
(C)#50. ~9!

Again we consider the particle motion in a given external field. Wong’s equation represe
non-Abelian generalization of the equation of motion for electrically charged point particles. I
be obtained as the classical limit from quantum field theory for the case of sufficiently loca
quantum states of the matter fields with characteristic length scales much smaller than
associated with the Yang–Mills fields.26,22
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D. Particles with color charge

For test particles with color charge the forceF i is given by

F i5
g

m
F

•k
(A) i pkQ(B)G(A)(B), ~10!

with the field strength tensor

F jk
(B)5¹jAk

(B)2¹kAj
(B)1g f

• (K)(L)
(B) Aj

(K)Ak
(L), ~11!

where thef
• (K)(L)

(B) are the structure constants of the SU~3!group. The field equations are

gi j @¹iF jk
(A)1g f

•(B)(C)
(A) Ai

(B)F jk
(C)#50. ~12!

The quantityQ(A) is the color charge with (A)5(1) – (8). Wong’s equation in this case reads

D

Dt
Q(A)52

g

m
f
• (B)(C)

(A) Ai
(B)pi Q(C). ~13!

The structure constantsf
• (B)(C)

(A) are characterized by the commutator relations

@l (A) ,l (B)#52i f (A)(B)(C)l
(C), ~14!

wherel (A) are the traceless, Hermitian Gell–Mann matrices~see, e.g., Refs. 27 and 28!. In detail
we have

f (1)(2)(3)51, f (4)(5)(8)5 f (6)(7)(8)5
)

2
,

~15!
f (1)(4)(7)5 f (2)(4)(6)5 f (2)(5)(7)5 f (3)(4)(5)52 f (3)(6)(7)52 f (1)(5)(6)5

1
2.

In the following we shall also use the completely symmetric coefficientsd(A)(B)(C) of the basic
representation which are given by the anti-commutation relations

$l (A) ,l (B)%5 4
3 d (A)(B)12d(A)(B)(C)l

(C) , ~16!

where29,22

d(1)(4)(6)5d(1)(5)(7)5d(2)(5)(6)5d(3)(4)(4)5d(3)(5)(5)52d(2)(4)(7)52d(3)(6)(6)

52d(3)(7)(7)5
1
2,

d(1)(1)(8)5d(2)(2)(8)5d(3)(3)(8)52d(8)(8)(8)522d(4)(4)(8)522d(5)(5)(8)

522d(6)(6)(8)522d(7)(7)(8)5
1

A3
. ~17!

III. YANG–MILLS FIELDS WITH ‘‘PARALLEL’’ POTENTIALS

It is known that for each solution of the general relativistic source free Maxwell equations
can construct a set of solutions of the general relativistic Yang–Mills equations.30 Following
Gal’tsov31 we will refer to the corresponding Yang–Mills potentials as ‘‘parallel’’ potentials. T
latter are characterized by

Ai
(B)5q(B)Ai , Fik

(A)5q(A)Fik, q(B)q(B)51, q(B)5const. ~18!
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Due to the antisymmetry of the structure coefficients the relations~8! and~11! as well as Eqs.~9!
and ~12! reduce to the linear Maxwell-type forms~3!. Nevertheless, compared with Maxwell
theory there exists an additional degree of freedom, namely, the direction of the vectorq(A) in the
group space.30 Additionally, the structure coefficientsf

• (K)(L)
(B) are different from zero which will

result in a qualitatively different dynamics.

A. Isospin particles

In this case the ansatz~18! transforms the first of equations~1! with ~6! into

Dpi

Dt
5

gI (A)q(A)

m
F
•k
i pk, ~19!

which has the structure of the equations of motion of a particle with chargee[gI (A)q(A) under the
influence of the Lorentz force~2!. Analogously, one can rewrite Eq.~7! for the isospin evolution,

d

dt
I (A)52V«

•(B)(C)
(A) q(B)I (C), V[

g

m
Aip

i . ~20!

Because of the antisymmetry of the Levi–Civita symbols, Eq.~20! admits a quadratic integral o
motion I (A)I (A)5const, which is a Casimir invariant,22 normalizable toI (A)I (A)51. In addition, we
obtain from~20!

q(A)

dI (A)

dt
[0 , → I (A)q(A)[I 5const. ~21!

Using the standard definition

@ IW,VW # (A)[«
• (B)(C)

(A) I (B)V (C), V (C)[Vq(C), ~22!

of the vector product, Eq.~20! may be written as an equation for the precession ofIW,

d

dt
IW 5@ IW,VW #. ~23!

The ‘‘longitudinal’’ componentI (A)q(A) , the projection of the dynamical variableI (A) on the
‘‘rotation axis’’ q(A), remains constant according to~21!.

B. Colored particles

Similar to the previous isospin case the color charge evolution equation~13! admits the
existence of a quadratic integral of motionQ(A)Q(A)5const which is the first Casimir invariant.22

The condition ~18! of parallelism in the color space provides a second integral of mo
Q(A)q(A)5const, as well. However, the corresponding eight-dimensional evolution equation

d

dt
Q(A)52VH

• (C)
(A) Q(C), V[

g

m
Aip

i , H
• (C)

(A) [ f
• (B)(C)

(A) q(B) , ~24!

are more complicated than Eq.~23! for the isospin precession. Different from the SU~2! model
there exists a second Casimir invariant

Q5d(A)(B)(C)Q
(A)Q(B)Q(C) , ~25!

whered(A)(B)(C) are the totally symmetric group coefficients~17! of the given basic representatio
of the SU~3! group. In detail it reads
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Q52
1

)
~Q(8)!31)Q(8)@~Q(1)!21~Q(2)!21~Q(3)!2#2

)

2
Q(8)@~Q(4)!21~Q(5)!21~Q(6)!2

1~Q(7)!2#13Q(1)@Q(4)Q(6)1Q(5)Q(7)#13Q(2)@2Q(4)Q(7)1Q(5)Q(6)#1 3
2Q

(3)@~Q(4)!2

1~Q(5)!22~Q(6)!22~Q(7)!2#. ~26!

IV. GRAVITATIONAL WAVE BACKGROUND

Our aim in this paper is to study the general dynamics outlined so far in the field
plane-fronted GW with parallel rays~PP wave!. We assume the latter to be an exact solution
Einstein’s vacuum field equations with a five-parametric group of isometriesG5 , including a
covariantly constant null Killing vector~KV !.32 Gravitational waves are usually described either
Fermi coordinates or in the transverse-traceless~TT! gauge. For the merits of each of these choic
and for issues of gauge-invariance in the linearized theory see, e.g., Ref. 33. In order to es
a comprehensive picture we start by sketching our basic setting for both cases. For compu
ease most of the analysis will then be done in TT coordinates.

A. PP wave in Fermi coordinates

The corresponding line element

ds252dū dv̄2dy22dz222H~ ū,y,z!dū2, ū5
t2x

&
, v̄5

t1x

&
, ~27!

contains a harmonic functionH, obeying

]2H
]y2 1

]2H
]z2 50 , ~28!

which is quadratic iny andz for a G5 symmetry group. Explicitly, we have32

2H~ ū,y,z!5A~ ū!~y22z2!12B~ ū!yz, ~29!

whereA(ū) andB(ū) are arbitrary functions of the retarded timeū. We may define a periodic GW
by assuming the variablesA andB to be periodic functions ofū. All nonvanishing components o
the Riemann tensor,Rzūzū52Ryūyū5A(ū) and Ryūzū52B(ū), are periodic for this case. Th
GW metric in Fermi coordinates is nonsingular for arbitrary retarded times because dgik)
[21Þ0. However, the weak field approximation maxugiku!1 is correct only close toy50, z
50.

B. PP wave in TT gauge

The line element in TT gauge has the form

ds252du dv2L2@cosh 2g~e2b~dx2!21e22b~dx3!2!12 sinh 2gdx2 dx3#, ~30!

whereu5(t2x1)/& and v5(t1x1)/& are the retarded and the advanced times, respectiv
For this metric the three KVs which form an Abelian subgroup ofG5 are

j (v)
i 5dv

i , j (2)
i 5d2

i , j (3)
i 5d3

i . ~31!

The KV j (v)
i is a covariantly constant null vector, orthogonal toj (2)

i andj (3)
i . The functions

b(u) andg(u) are arbitrary. We shall focus here on the case of periodic functionsb(u) andg(u).
This definition of periodicity does not, in general, coincide with the definition in Fermi coordin
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given above. However, both concepts of a periodic GW have the same weak-field limit, wh
the TT gauge is characterized byL51, ub(u)u!1 and ug(u)u!1. Generally, the functionL(u)
satisfies the Einstein equation:33

L̈1L~~ ḃ !2 cosh2 2g1~ ġ !2!50, ~32!

where a dot denotes the derivative with respect to the retarded timeu. We assume the hypersu
faceu50 to be the leading front of the GW with

b~0!5g~0!50, L~0!51, ḃ~0!5ġ~0!5L̇~0!50. ~33!

For the special caseg(u)[0 @equivalent toB(ū)[0], corresponding to only one polarizatio
direction, the transformation relations between Fermi and TT coordinates are

ū5u, v̄5v1 1
4 @~x2!2~L2e2b!•1~x3!2~L2e22b!•#,

~34!

y5Leb
•x2, z5Le2b

•x3, A~u!5b̈12ḃ
L̇

L
.

The last formula clarifies the relation between the different periodicity definitions given above
the physically relevant situation where the background factorL changes only slowly compare
with the change of the wave factorb ~cf. Ref. 33! the last term in the formula forA(u) in Eq. ~34!

can be neglected. Then we haveA(u)5b̈ and both periodicity definitions coincide.

V. PARTICLE DYNAMICS: SOLUTIONS

We are interested here in the particle dynamics in given external gravitational and Yang–
fields. The restriction~18! to Yang–Mills fields with ‘‘parallel potentials’’ simplifies the Kerner
Wong equations since the quantitiesI (A)q(A) and Q(A)q(A) remain constant. We introduce th
cumulative symbols for either e, or gI (A)q(A) , or gQ(A)q(A) , which allows us to write the
equation of motion with either~2!, or ~6!, or ~10! in the unified form

Dpi

Dt
5

s

m
F
•k
i pk,

dxi

dt
5

pi

m
. ~35!

The orthogonality of the force to the particle momentum corresponds to the quadratic in

gikpipk5m2. ~36!

One may solve this relation for one of the components of the momentum. In Fermi coordina
have

pū5
1

2pv̄
@m21py

21pz
222H~ ū,y,z!pv̄

2#. ~37!

The analogous formula in TT coordinates is

pu5
1

2pv
@m22gab~u!papb#, ~38!

where greek indices run from 2 to 3. Both in Fermi and in TT coordinates the covariantly con
null KV has the formj ( v̄)

i
5d v̄

i and j (v)
i 5dv

i , respectively. In the following we shall restric
ourselves to fields which satisfy
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j ( v̄)
i Fik5j (v)

i Fik50. ~39!

This implies that the quantitiesj ( v̄)
i pi andj (v)

i pi are integrals of motion~see e.g., Ref. 33!,

j ( v̄)
i pi5j (v)

i pi5pv5Cv5const. ~40!

Using the general relationship

m
du

dt
5pu5pū5pv5Cv, ~41!

one can reparametrize the remaining equations forCvÞ0, by means of the linear formula„notice
that ū5u @cf. Eq. ~34!# holds also in the general case…

t5t01
m

Cv
u. ~42!

We start our solution procedure by first recalling the reference case of neutral particles.

A. Neutral particles

For a vanishing generalized charges the equations of motion in TT coordinates are imme
ately integrated. The result is

pv~u!5Cv, p2~u!5C2, p3~u!5C3, pu5
1

2Cv
@m22gab~u! CaCb#, ~43!

whereC2 andC3 are constants. A particle moving in direction of the GW propagation before
infall of the latter, i.e.,p25p350, will not change its direction. If we additionally haveCv
5mc/&, the particle is at rest both before and after the GW infall, sincep1(u)5p2(u)
5p3(u)50 and p05mc. An observer at rest, characterized by a four-velocityVi5(1/&) (du

i

1dv
i )[d0

i , would measure the~invariant! particle energyE[pkVk5(1/&) (pu1pv). For neutral
particlespv andpu are given in Eq.~43!. Corresponding expressions for charged particles will
obtained in the following.

In Fermi coordinates the situation is as follows. The system~35! reduces to the set of equa
tions

ẏ52Cv
21py, ż52Cv

21pz,
~44!

Cv
21ṗy52A~u!y2B~u!z, Cv

21ṗz5A~u!z2B~u!y,

for y, z, py , andpz . If the latter set of quantities is known, the componentpu follows via ~37!.
The quantityv̄(u) may be found by solving

vG 5Cv
21pu12H~u,y,z!. ~45!

The set~44! is a linear, homogeneous first-order system of differential equations. For a
field with polarizationB(u)[0 and withA depending on the retarded time via the dimensionl
variableku, it can be written as

y92A~ku!y50, z91A~ku!z50 . ~46!

Differentiation with respect toku is denoted by a prime andA(ku)[A(u)/k2. For A(u)[0, i.e.,
in the absence of a gravitational field,y(u) andz(u) are linear functions of the retarded time~and
of the affine parametert!, and the particle has constant momentum. For a periodic functionA(u),
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Eq. ~46! is of the type of Hill’s equation.2,7,8 The solutions are Hill functions. For a dependen
A(ku)5d1« cos(ku) whered and« are constants, Eq.~46! reduces to Mathieu equations whic
have solutions of the type2,3,8

y}exp@mku#f~ku!1exp@2mku#c~ku! , ~47!

wheref andc are periodic functions with the period ofA(ku), i.e., in the present case,f(ku
12p)5f(ku) and c(ku12p)5c(ku). The solutions consist of products of an exponen
function and a periodic function of period 2p. The characteristic exponentm is a complex con-
stant. For Re(m)50 the solution is stable. In general, it is not periodic again but it is oscilla
~Ref. 7, p. 115!. For Re(m)Þ0 either the first or the second exponential function in~47! is
unbounded and the solution is unstable. The stability properties of Mathieu’s equations ar
known in the literature and may be visualized by stability regions in and–« diagram@see Ref. 2,
Eq. ~4.1! and Fig. 5.1#. Let us consider the stability region which is closest to the origind5«
50. For small positive values ofd and « the boundary of this region is determined by the li
d5 1

42 1
2«. Applied to the caseA(u)5A0 cos(ku), i.e., d50 and «5A0 /k2, this means stable

solutions for«5 A0 /k2,1/2. SinceA05b̈(0)5b0k2, we have alsob0,1/2. Under this condi-
tion neutral particles are parametrically oscillating in Fermi coordinates.

While equations of the type of Mathieu’s equation and questions of stability will play
essential role in the following investigations of the dynamics of charged particles~see Sec. V B 2!,
it is obvious that the description for neutral particles is more involved in Fermi coordin
Therefore, for computational ease and in order to separate charge effects from the neutral
motion we shall perform the following analysis in TT coordinates.

B. Charged particles

To obtain exactly solvable models for the particle motion we resort to simple field con
rationsFik

(A) . For particles with electric charge we focus on the motion of the latter in a con
homogeneous magnetic fieldH0 orthogonal to the GW front plane, which corresponds to a M
well tensor

F jk5H0~d j
2dk

32d j
3dk

2!. ~48!

A corresponding generalization for non-Abelian fields with parallel potentials accordin
~18! is

F jk
(A)5q(A)M ~d j

2dk
32d j

3dk
2!, M5const. ~49!

Both ~48! and~49! satisfy~39! with ~31!. This constitutes a model in which the gravitational wa
and the fields~48! or ~49! are given, external fields which are independent of each other. It
provide the basis of a perturbative treatment with respect to the GW amplitude within a linea
theory. It is worth mentioning that expressions~48! and ~49! are also solutions of the Maxwell
and Yang–Mills equations, respectively, on the background of the exact GW~30! @or ~27!#. This
allows a study of the corresponding field dynamics on a GW background, which, however,
the purpose of the present paper.

For the equations of motion in TT coordinates we obtain

dp2

dt
5

Ms

m
~g32p21g33p3!,

dp3

dt
52

Ms

m
~g22p21g23p3!. ~50!

Equivalent second-order equations are

d2p2

du2 1R2~u!
dp2

du
1W2~u!p250, p35

1

g33S 1

P
ṗ22g23p2D , ~51!
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or

d2p3

du2 1R3~u!
dp3

du
1W3~u!p350, p25

1

g22S 2
1

P
ṗ32g23p3D , ~52!

where we have introduced the notations

R2~u!52
ġ33~u!

g33~u!
52S L̇

L
2ḃ2ġ tanh~2g! D ,

~53!

R3~u!52
ġ22~u!

g22~u!
52S L̇

L
1ḃ2ġ tanh~2g! D ,

and

W2~u!5
P2

L4 1
2P

L2 S ḃ sinh~2g!2
ġ

cosh~2g! D ,

~54!

W3~u!5
P2

L4 1
2P

L2 S ḃ sinh~2g!1
ġ

cosh~2g! D ,

with

P5
Ms

Cv
5const. ~55!

The substitutionb→2b convertsR3 into R2 and vice versa, whileW3 is obtained fromW2 by
b→2b and simultaneouslyP→2P.

By the substitution

pa5Za~u!expH 2
1

2 E0

u

Ra~z!dzJ ~56!

Eqs.~51! and ~52! may be transformed into the Hill equations

Z̈a1Fa~u!Za50, ~57!

where

Fa5Wa2
Ra

2

4
2

Ṙa

2
. ~58!

The detailed form of relations~56! and ~58! is

p25Z2~u!Acosh~2g!
eb

L
, p35Z3~u!Acosh~2g!

e2b

L
, pa~0!5Za~0![Ca , ~59!

and

F2~u!5
P2

L4 1
2P

L2 S ḃ sinh~2g!2
ġ

cosh~2g! D1b̈1g̈ tanh~2g!1
3~ ġ !2

~cosh~2g!!2

1~ ḃ !2~sinh~2g!!212
L̇

L
ḃ12

L̇

L
ġ tanh~2g!22ġḃ tanh~2g!, ~60!
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F3~u!5
P2

L4 1
2P

L2 S ḃ sinh~2g!1
ġ

cosh~2g! D2b̈1g̈ tanh~2g!1
3~ ġ !2

~cosh~2g!!2

1~ ḃ !2~sinh~2g!!222
L̇

L
ḃ12

L̇

L
ġ tanh~2g!12ġḃ tanh~2g!, ~61!

respectively. In a next step we have to solve Hill’s equations~57!.

1. General solution of Hill’s equation

The structure of the solutions of the linear, second-order differential equations~57! is2,3,7–9

Z2~u!5C2H2~u!2PC3H3~u!. ~62!

The functionsHa(u) satisfy the initial conditions

H2~0!51, Ḣ2~0!50, H3~0!50, Ḣ3~0!51, ~63!

and represent the fundamental solutions of Hill’s equation~57! with unitary Wronsky determinant
For Z3(u) we have

Z3~u!5C3H3* 1C2PH2* , ~64!

where

H2* 52
L2

P2 cosh 2g
F Ḣ21H2S ġ tanh 2g1ḃ2

L̇

L
2

P

L2 sinh 2g D G , ~65!

H3* 5
L2

cosh 2g
F Ḣ31H3S ġ tanh 2g1ḃ2

L̇

L
2

P

L2 sinh 2g D G , ~66!

H2* ~0!5Ḣ2~0!50 , H3* ~0!5Ḣ3~0!51 . ~67!

In the absence of gravitational radiation, i.e., forb5g[0, L[1, the functionsFa in Eq. ~58!
reduce to

F2~u!5F3~u!5const5P2 . ~68!

Equation~57! then describes harmonic oscillations with

H25H3* [cosPu, H35H2* [
1

P
sinPu. ~69!

Since with~42! and ~55! we havePu→VHt whereVH[ eH0 /mc is the Larmor frequency, we
recover the corresponding particle rotation in flat space–time. Generally, the functionsH2 , H3 ,
H2* , andH3* cannot be written in terms of elementary functions but are given as series repr
tations. In the following section we shall be interested in expressions forF2 andF3 for which the
Hill equations ~57! specify to Mathieu equations. Then the functionsHa can be expanded in
powers of the GW amplitude, where the zeroth order is given by~69!.

The analysis so far may be summarized by writing the solution of the equations of motion~51!
and ~52! in the compact and elegant matrix form

S p2

p3
D5H~u!•S C2

C3
D , ~70!
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where

H~u![
Acosh 2g

L S eb 0

0 e2bD •S H2~u! 2PH3~u!

PH2* ~u! H3* ~u!
D . ~71!

The set of equations~70! and ~71! represents the general solution for the momentum of
charged particle in the GW field~30! and the Yang–Mills field~49!.

2. A simple model

Now we apply the general formalism to a ‘‘sandwich’’ GW~see, e.g., Ref. 33! with polariza-
tion g50. Let b be different from zero during a finite retarded time intervalT, i.e., b50 for u
<0 andu>T. Within the interval 0,u,T we assumeb to be periodic according to

b~u!5b0~12cos~ku!!, ~0,u,T!. ~72!

This impliesb(0)5b(2p/k)50 andḃ(0)5ḃ(2p/k)50. Furthermore, the time scaleT is
assumed to be small compared with the scale on which the background factorL changes.33 Under
these conditions we may neglect theL̇/L terms in~60! and~61! and use the latter expressions wi
L51. For this situation the potentialsF2 andF3 reduce to

F25P21b0k2 cos~ku!5P22R
•u2u
2 ,

~73!
F35P22b0k2 cos~ku!5P22R

•u3u
3

in the interval 0,u,T. Replacing now the variableu by ku and denoting the derivative with
respect toku again by a prime, Eq.~57! with ~73! specify to

Z291S P2

k2 1b0 cos~ku! DZ250,

~74!

Z391S P2

k2 2b0 cos~ku! DZ350.

Both Z2 and Z3 obey Mathieu equations. In the absence of the GW, i.e., forb[0, we have
Fa(ku)5P2/k25const @here we have used the redefinitionFa(ku)[Fa(u)/k2] and the equa-
tions of motion reduce to harmonic oscillator equations with solutions

Z25p25C2 cos~Pu!2C3 sin~Pu! , ~75!

Z35p35C3 cos~Pu!1C2 sin~Pu!. ~76!

Replacing hereP andu according to~55! and~42!, we find a particle rotation in thex20x3 plane
with the angular velocityVM[ Ms/m, which is, of course, the analogue of the Larmor frequen
Immediately after the wave front, i.e., atu5010 , we have

F2~0!5
P2

k2 1b0 , F3~0!5
P2

k2 2b0 . ~77!

The jump b0k2 of the curvature tensor at the front makes the evolutions of thep2 and p3

components different. They begin to oscillate with different frequencies and the particle traje
is no longer circular. Corresponding features hold for the second polarizationb[0 andgÞ0, for
which F2 andF3 differ in the term linear inP @cf. Eqs.~60! and ~61!#.
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The general solutions of Eq.~74! are of the type of ‘‘cosine elliptic’’ and ‘‘sine elliptic’’
functions~see Refs. 7 and 9!. As already mentioned, the latter may be expanded in powers ob0

with the zeroth-order terms~75! and ~76!.
Equation ~74! is of the same type as Eq.~46!. With the identificationsd→P2/k2 and «

→b0 , the stability discussion mentioned in Sec. V A may be applied here as well@see Ref. 2, Eq.
~4.1! and Fig. 5.1#. Depending on the parameter combinations the solutions may be stab
unstable. Within the stable regions the functionsZ2 andZ3 are parametrically oscillating which
according to~59!, implies a corresponding behavior of the particle momenta. The regions of s
solutions are characterized by stability zones in a (P/k)23b0 plane which are connected togeth
at the points (P/k)25n2/4, b050, wheren is an integer.2

The analysis of the neutral particle motion in Sec. V A corresponds to the caseP5n50. For
PÞ0 the relevant values for the transition points aren51,2,. . . . Forn51 we haveP/k51/2.
These points on the axisb050 ~which corresponds to the absence of the GW! are the only
transition points between stable regions which also belong to the stable region. All other bou
points of the stable regions are unstable points. Consequently, any deviation fromb050, i.e., even
a GW with arbitrary weak amplitudeb0 , induces an instability in these critical points. In partic
lar, this is true for the pointP/k51/2 ~see Ref. 2, Fig. 5.1!. This demonstrates that parametr
instabilities are a generic phenomenon for the motion of particles in all the cases considere
While we have obtained this result in TT coordinates, the transformations~34! allow us to find the
corresponding particle momenta in Fermi coordinates as well. The relevant transformation

pv̄5pv5Cv , py5p2~u!
e2b

L
2CvS L̇

L
1ḃ D y~u! ,

~78!

pz5p3~u!
eb

L
2CvS L̇

L
2ḃ D z~u! ,

where

y~u!5LebFy~0!2E
0

u

dzp2~z!L22~z!e22b(z)G ,
~79!

z~u!5Le2bFz~0!2E
0

u

dzp3~z!L22~z!e2b(z)G .
It is interesting to realize that there are astrophysical situations for which the existence o
kind of instabilities might be relevant. This can be seen with the help of the following orde
magnitude estimates. Equation~55! may be written asP5VMm/Cv with VM5Ms/m. For the
electromagnetic case one hass5e and M5H0 . The interstellar magnetic field is of the orde
3 – 631026 Oe.34 The integral of motionCv is equal toCv5(Am21pW 2(0)2p1(0))/&. For
nonrelativistic particlesCv}m/& and P}vH&. ~The coefficient& disappears if we use th
natural parametert instead of retarded timeu). Using the estimate34 vH}107

•H0(Hz) we find
vH'101– 102 Hz. This is well within the typical range 1 – 103 Hz for the frequencyk of a GW,
generated by rapidly rotating neutron stars~pulsars!. Thus, for nonrelativistic particlesP may be
of the same order as the GW frequencyk. The situation is different for ultrarelativistic particle
Since for particles that move in propagation direction of the GW (p1(0).0), we haveCv→0 for
m→0. Consequently, the quantityP becomes very large@cf. Eq. ~55!#, such thatP@k. However,
if the particles move in the opposite direction, i.e.,p1(0),0, any value ofCv is possible. In
particular,P is not excluded to be in the range of about 1023 Hz which is typical for infra-low-
frequency GW from relativistic compact binaries.

Since an ensemble of particles will generally not be characterized by a single value ofCv but
by a distribution, the quantityCv may play the role of a tuning parameter in the following sen
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Let us associate a mean value^Cv& for the system as a whole and let the system be outside
resonancevH /k5n/2 for this ^Cv&, but not very far from it. SinceP5vHm/Cv , we will very
likely find a particular particle with a specificCv such that for this particleP/k5n/2 exactly.
Consequently, certain particles of the ensemble might be resonant under these conditions

VI. EVOLUTION OF THE SPIN FOUR-VECTOR

In this section we focus on the solution of Eq.~5! in external gravitational and magnetic field
Equations~4! and~5! admit two integrals of motion, namelypiS

i50 andSiS
i52E0

25const.20 In
the present context this amounts to

pvSu1puSv1paSa50, 2SuSv1SaSa52E0
2, ~80!

which may be used to eliminate the componentsSv andSu according to

Su5
1

2pv
@2paSa7A~paSa!21~m22papa!~E0

21SaSa!#, ~81!

and

Sv5
1

2pu
@2paSa6A~paSa!21~m22papa!~E0

21SaSa!#, ~82!

respectively. After the reparametrization~42! the remaining equations are

dSa

du
5

1

2
gsrġraS Ss2ps

Sv

Cv
D1

e

2Cv
F gFakS

k1
~g22!

m2 paFklS
kpl G . ~83!

Furthermore, the equation forSv is

dSv

du
5

e~g22!

2m2 FklS
kpl . ~84!

In the following we shall restrict ourselves to the exactly integrable caseg52. Under this condi-
tion we find from~84! that

Sv5const5Ev . ~85!

After the substitution

Sa5Xa1
Ev

Cv
pa, ~86!

wherepa is assumed to be given by Eq.~70! in terms of Hill ~or Mathieu! functions, we obtain a
homogeneous equation for the new variableXa ,

dXa

du
5

1

2
gsrġraXs1

e

Cv
FasgslXl. ~87!

It is convenient to write this equation in the matrix form

d

du
X5S A1

P

L2 BD "X, ~88!

whereX is a column vector with elementsX2 and X3 . The two-dimensional matricesA and B
have the structures
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A5S L̇

L
1cosh2~2g!ḃ e2b~ ġ2sinh~2g!cosh~2g!ḃ!

e22b~ ġ1sinh~2g!cosh~2g!ḃ!
L̇

L
2cosh2~2g!ḃ

D , ~89!

and

B[S sinh 2g 2e2b cosh 2g

e22b cosh 2g 2sinh 2g D , ~90!

respectively. Equation~50! may be written in matrix form as well:

S p2

p3
D •5 P

L2 B"S p2

p3
D . ~91!

For the derivative of the combinationp2
21p3

2 we obtain

d

du
~p2

21p3
2!5

2P

L2 @~p2
22p3

2!sinh 2g22p2p3 cosh 2g sinh 2b#. ~92!

In general, the right-hand side of this equation is different from zero, i.e., the particle motion
longer circular in the GW field.

Equation~88! may be further simplified by changing to a new variableY, defined by

X5T"Y, ~93!

whereT is supposed to satisfy the differential equation

d

du
T5A"T. ~94!

This procedure~cf. Refs. 35 and 36! removes theA term in Eq.~88! and gives rise to

d

du
Y5

P

L2 B̂"Y ~95!

for Y with

B̂[T21"B"T. ~96!

By direct calculation one checks that the matrix

T5L•S eb 0

0 e2bD •S coshg sinhg

sinhg coshg D •S cosc 2sinc

sinc cosc D , ~97!

where

c[E
0

u

ḃ sinh 2g du ~98!

satisfies Eq.~94!. The determinants of each of the three two-dimensional matrices in~97! are equal
to one. In the absence of the GW field all of them are identical toI , i.e.,
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T~0!5I[S 1 0

0 1D . ~99!

The structure of the third matrix on the right-hand side of Eq.~97! suggests the interpretation a
a gravitationally induced rotation with phasec(u) and frequencyċ(u). For either of the polar-
izationsg50 or b50, however, we havec50 and the third matrix reduces toI .

Direct calculation of the matrixB̂ in ~96! with the help of expressions~90!, ~97!, and ~98!
yields the surprisingly simple result

B̂[T21"B"T5S 0 21

1 0 D . ~100!

It is remarkable, that the matrixB̂, different from B, doesnot depend on retarded time. Thi
property allows us to find the solution of Eq.~95! in terms of elementary functions as

S Y2~u!

Y3~u! D5R~u!•S Y2~0!

Y3~0! D , R~u![S cosF~u! 2sinF~u!

sinF~u! cosF~u!
D , ~101!

where

F~u![PE
0

u du

L2~u!
. ~102!

The combination

Y2
2~u!1Y3

2~u!5Y2
2~0!1Y3

2~0! ~103!

is preserved, i.e., the dynamics ofY represents a rotation in thex20x3 plane. The functionsS2(u)
andS3(u) in ~86! can now be expressed in terms of the three matricesH(u), T(u), andR(u),
given by expressions~71!, ~97!, and~101!, respectively:

S S2~u!

S3~u! D5T~u!"R~u!"S S2~0!

S3~0! D1
Ev

Cv
@ H~u!2T~u!"R~u!#S C2

C3
D . ~104!

While the matricesT(u) andR(u) are constructed out of elementary functions, the matrixH(u),
according to Eq.~71!, consists of Hill functions, which for the special case of Sec. V B 2 red
to Mathieu functions. The latter, in turn, can be expressed via ‘‘cosine elliptic’’ and ‘‘sine ellip
functions@see the discussion following Eq.~77!#. All these functions are assumed to be know
here. In the absence of the GW,

T~u![I , H~u!5R~u![R0~t!5S cosVHt 2sinVHt

sinVHt cosVHt D , ~105!

and we recover the standard flat space–time rotation of the spin particle,

S p2~t!

p3~t! D5R0~t!"S C2

C3
D , S S2~t!

S3~t! D5R0~t!"S S2~0!

S3~0! D . ~106!

Equation~104! represents the general solution for the spin dynamics in the GW field~30! and the
magnetic field~48!. The structure of the solution~104! allows us to interpret the spin dynamics
composed of three separate contributions, characterized by the matricesR(u), T(u), andH(u).
The matrix R represents a Larmor type precession with the frequencyP/L2(u). As already
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mentioned, the matrixT describes a gravitationally induced rotation with phasec(u) and fre-
quencyċ(u), and finally, the matrixH accounts for the coupling of the particle motion~70! to the
spin dynamics.

VII. ISOSPIN EVOLUTION

In this section as well as in the subsequent one we discuss the dynamics of non-A
charges under the influence of external gravitational and Yang–Mills fields. Let us conside
~20! for the SU~2! symmetry group. Since the structure constants for this group coincide with
Levi–Civita symbol, all three directions in the isospin space are equivalent. With the choicI (3)

5I (A)q
(A) we obtain the following equations for the isospin evolution:

dI (1)

dt
5V•I (2),

dI (2)

dt
52V•I (1). ~107!

The precession frequencyV in Eq. ~20! is calculated on the particle worldline withpi from ~70!
and the potential

Ai~u!5
1

2
M F S x2~u!2x2~0!2

C2

PCv
D d i

32S x3~u!2x3~0!2
C3

PCv
D d i

2G , ~108!

corresponding to the constant solutionF235M . Differentiating expression~108!, we recover the
field strength~49!. The frequencyV(u) in ~20! is given by

V~u!5
g

m
~A2p21A3p3!. ~109!

Here, the arbitrary constant was chosen such thatV(u50)50. In order to find the terms
x2(u)2x2(0) and x3(u)2x3(0) which are needed in~108!, we have to integrate the secon
equation in~35!. The formal solution is

xa~u!2xa~0!5
1

Cv
E

0

u

djgab~j!pb~j!, ~110!

which provides us with

V~u!5
gM

2mCv
H E

0

u

dj@p2~j!p3~u!2p3~j!p2~u!#2
1

P
@C2p3~u!2C3p2~u!#J . ~111!

Again we assume herep2(u) andp3(u) to be known, i.e., the particle dynamics is considered
be solved@cf. Eqs.~70! and ~71!#. The solution of the system~107! then becomes

I (1)5I cosC~u!, I (2)52I sinC~u!, C~u!5C~0!1
m

Cv
E

0

u

V~u!du. ~112!

The functionC(u) plays the role of the~generallyu-dependent! phase of the isospin precessio
in the external Yang–Mills field.37 The set of equations~112! with ~111! provides a complete
description for the isospin dynamics under the influence of the GW~30! and the Yang–Mills field
~49!.
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VIII. COLOR CHARGE EVOLUTION

The SU~3! case may be studied along similar lines although it is technically more exte
since more degrees of freedom are involved. As a result, we shall find a richer dynamical str
than in the SU~2! case. With the ansatz~18! and expression~15!, Eq. ~24! for the color charge
dynamics becomes

dQ(1)

dt
52VF ~q(2)Q(3)2q(3)Q(2)!1

1

2
~q(4)Q(7)2q(7)Q(4)!2

1

2
~q(5)Q(6)2q(6)Q(5)!G ,

dQ(2)

dt
52VF ~q(3)Q(1)2q(1)Q(3)!1

1

2
~q(4)Q(6)2q(6)Q(4)!1

1

2
~q(5)Q(7)2q(7)Q(5)!G ,

dQ(3)

dt
52VF ~q(1)Q(2)2q(2)Q(1)!1

1

2
~q(4)Q(5)2q(5)Q(4)!2

1

2
~q(6)Q(7)2q(7)Q(6)!G ,

dQ(4)

dt
52

V

2
@~q(7)Q(1)2q(1)Q(7)!1~q(6)Q(2)2q(2)Q(6)!1~q(5)Q(3)2q(3)Q(5)!#

2
)V

2
@q(5)Q(8)2q(8)Q(5)#,

~113!
dQ(5)

dt
52

V

2
@~q(1)Q(6)2q(6)Q(1)!1~q(7)Q(2)2q(2)Q(7)!1~q(3)Q(4)2q(4)Q(3)!#

2
)V

2
@q(8)Q(4)2q(4)Q(8)#,

dQ(6)

dt
52

V

2
@~q(5)Q(1)2q(1)Q(5)!1~q(2)Q(4)2q(4)Q(2)!1~q(3)Q(7)2q(7)Q(3)!#

2
)V

2
@q(7)Q(8)2q(8)Q(7)#,

dQ(7)

dt
52

V

2
@~q(1)Q(4)2q(4)Q(1)!1~q(2)Q(5)2q(5)Q(2)!1~q(6)Q(3)2q(3)Q(6)!#

2
)V

2
@q(8)Q(6)2q(6)Q(8)#,

dQ(8)

dt
52

)V

2
@~q(4)Q(5)2q(5)Q(4)!1~q(6)Q(7)2q(7)Q(6)!#.

The space of color charges may be split into three different subspaces, which correspond
structures of the SU~2!, SU(2)3U(1) and U~1! subgroups of the total group SU~3! ~see, e.g., Ref.
38!. In the following we consider the vectorq(A) to lie in the first, second, and third subspace
respectively.

A. First special case

Let the vectorq(A) have only the three nonzero componentsq(1), q(2), andq(3). It is then
evident that

~Q(1)!21~Q(2)!21~Q(3)!25const , ~114!
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~Q(4)!21~Q(5)!21~Q(7)!21~Q(7)!25const, ~115!

and

Q(8)5const. ~116!

For the color chargesQ(1), Q(2), andQ(3), which correspond to a SU~2! subgroup of the total
SU~3! group, the combination~114! is preserved. A similar relation holds for the setQ(4), Q(5),
Q(6), andQ(7), while Q(8) is separately conserved. Relations~114!–~116! are also obtained for the
case that the only nonvanishing components areq(4), q(5), q(6), andq(7), as well as for the choice
q(1)5q(2)5 ¯5q(7)50 andq(8)Þ0. Let us now further specify to the caseq(A)5d (1)

(A) . Then the
system~113! takes the form

dQ(1)

dt
50 ,

dQ(8)

dt
50 ,

dQ(2)

dt
5VQ(3),

dQ(3)

dt
52VQ(2),

~117!
dQ(4)

dt
5

1

2
VQ(7),

dQ(7)

dt
52

1

2
VQ(4),

dQ(5)

dt
52

1

2
VQ(6),

dQ(6)

dt
5

1

2
VQ(5).

The color chargeQ(1) remains constant because it is the projectionQ(A)q(A) of the vectorQ(A) on
the given preferred directionq(A) . The chargeQ(8) does not evolve, because for such aq(A) the
antisymmetric tensorH (A)(B) in ~24! does not contain a nonvanishing component with (A)
5(8). Theequations forQ(2), . . . ,Q(7) split into three two-dimensionalsubsystems with the pair
Q(2) and Q(3), Q(4) and Q(7), Q(5), and Q(6). The evolution of the first pair (Q(2) and Q(3))
corresponds to a precession in the group space with the frequencyV. It has a solution of the type
~112!. The dynamics of the pairsQ(4), Q(7) andQ(5), Q(6) is a precession with the frequencyV/2.

B. Second special case: q „A …Äd
„4…
„A …

Now we assumeq(A) to lie in the second subspace. As an example we consider the
q(A)5d (4)

(A) . For this choice the set of equations~113! can be transformed into

dQ(4)

dt
50,

d

dt S 2
)

2
Q31

1

2
Q8D50 ,

dQ(5)

dt
5VQ* ,

dQ*

dt
52VQ(5), Q* [

1

2
~Q(3)1)Q(8)!,

~118!
dQ(1)

dt
52

1

2
VQ(7),

dQ(7)

dt
5

1

2
VQ(1),

dQ(2)

dt
52

1

2
VQ(6),

dQ(6)

dt
5

1

2
VQ(2).

The quantitiesQ(4) and 2 ()/2) Q31 1
2Q

8 remain constant, the projectionsQ(5) and Q*
[ 1

2(Q
(3)1)Q(8)) precess with the frequencyV, the pairsQ(1), Q(7) andQ(2), Q(6) precess with

V/2. Furthermore, one has
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~Q(1)!21~Q(7)!25const , ~Q(2)!21~Q(6)!25const,
~119!

~Q(3)!21~Q(5)!21~Q(8)!25const.

C. Third special case: q „A …Äd
„8…
„A …

Finally, let q(A) be parallel to the basis vector in the U~1! subspace, i.e.,q(A)5d (8)
(A) . Here we

obtain

dQ(1)

dt
50,

dQ(2)

dt
50,

dQ(3)

dt
50,

dQ(8)

dt
50,

as well as

dQ(4)

dt
5
)

2
VQ(5),

dQ(5)

dt
52

)

2
VQ(4),

~120!
dQ(6)

dt
5
)

2
VQ(7),

dQ(7)

dt
52

)

2
VQ(6).

The pairsQ(4), Q(5) andQ(6), Q(7) precess with the frequency ()/2) V, while Q(1), Q(2), Q(3),
andQ(8) are constant.

D. Remarks on the general case

In the general case one expects the color vectorQ(A) to rotate in the hypersurface orthogon
to q(A) in the group space. This is illustrated by the following analogy. Let us consider the sta
decomposition of the Maxwell tensor with respect to a four-velocity vectorVi of an arbitrary
observer,

Fik5EiVk2EkVi2« ik j l H
jVl , ~121!

whereEi andHk are the corresponding four-vectors for the electric and magnetic fields, re
tively. For FikVk50 the comoving observer experiences a magnetic field only which, via
Lorentz force, generates a spatial particle rotation, i.e., a rotation in the hypersurface orthog
Vi .

In the present case the vectorq(A) plays the role ofVi . Instead of Maxwell’s tensor we hav
to consider@cf. Eq. ~24!# the antisymmetric tensorH (A)(C)5 f (A)(B)(C)q

(B). Since H (A)(C)q
(C)

50, this represents a group space analogue to the previous case of a pure magnetic
space–time. Consequently, the color vector rotates in the group space analogously to the m
tum vector of a charged particle in a pure magnetic field.

IX. CONCLUSIONS

Charged particles in electromagnetic fields are known to be parametrically influence
gravitational waves. Typical phenomena are parametric resonances and parametric oscillat
the present paper we have generalized and extended work in this field to include classic
particles and particles with non-Abelian charges in specific Yang–Mills fields. Moreover, no
field approximation was used for the GW. The electrically charged spin particle was describ
the Bargmann–Michel–Telegdi equations. For the dynamics of the non-Abelian charges w
Wong’s equations for the isospin@SU~2!-symmetry# and for the color charges@SU~3! symmetry#.
We derived exact general solutions for the parametric influence of the GW on the particle m
in each of the mentioned cases, including the dynamics of spin, isospin, and color charge.
case of a special sandwich GW the particle dynamics was reduced to a set of Mathieu equ
Using well-known stability properties of the latter we found that parametric instabilities a
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generic phenomenon for such kind of particle motion. Since spin, isospin, and color char
coupled to this motion, their dynamics is affected correspondingly. The spin dynamics was s
to be composed of three elements, namely a gravitationally modified Larmor precession, a p
to the coupling to the particle motion, and a pure gravitational part. The vectors of isospi
color charge carry out gravitationally influenced precession motions in their group spaces
we have classified for several cases.
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Symmetries of the energy–momentum tensor
of spherically symmetric Lorentzian manifolds
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Matter collineations of spherically symmetric Lorentzian manifolds are considered.
These are investigated when the energy–momentum tensor is nondegenerate and
also when it is degenerate. We have classified space–times admitting higher sym-
metries and space–times admitting SO~3! as the maximal isometry group. For the
nondegenerate case, we obtain eitherfour, six, seven, or ten independent matter
collineations in whichfour are isometries and the rest are proper. The results of the
previous paper@Sharif and Sehar~Gen. Relativ. Gravit.35, 1091~2003!# are recov-
ered as a special case. It is worth noting that we have also obtained two cases where
the energy–momentum tensor is degenerate but the group of matter collineations is
finite-dimensional, i.e.,four or ten. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1610779#

I. INTRODUCTION

Since the pioneering work of Katzin, Levine, Davis and their collaborators,1–5 the study of
symmetries has played an important role in the classification of space–times, giving rise to
interesting results with useful applications. The theory of General Relativity~GR!, described by
Einstein’s field equations~EFEs!, is highly nonlinear. Due to its nonlinearity, it becomes difficu
to find the exact solutions of the EFEs, in particular, if the metric depends on all coordin6

However, this problem can be overcome to some extent if it is assumed that the space–ti
some geometric symmetry properties. These symmetry properties are given by Killing v
~KVs!, which then lead to conservation laws.7–9 A large number of solutions of the EFEs wit
different symmetry structures have been found8 and classified according to their properties.10

As given by the pioneers, curvature and Ricci tensors play a significant role~in terms of
curvature and Ricci collineations! in understanding the geometric structure of metrics. They h
provided a detailed study of curvature and Ricci collineations in the context of the related pa
and field conservation laws. For a given distribution of matter, the contribution of gravitat
potential satisfying EFEs is the principal aim of all investigations in gravitational physics. Thi
been achieved by imposing symmetries on the geometry compatible with the dynamics
chosen distribution of matter. In an attempt to study the geometric and physical properties
electromagnetic fields, different types of collineations have been investigated11,12along with many
other interesting results. Symmetries of the energy–momentum tensor~also called matter collinea
tions! provide conservation laws on matter fields. These enable us to know how the physical
occupying in certain region of space–times, reflect the symmetries of the metric.13

There is a large body of recent literature which shows interest in the study of matter col
tions ~MCs!.14–22 In a recent paper,14 the study of MCs has been taken for static spherica
symmetric space–times~SSS! and some interesting results have been obtained. However, it
incomplete in the sense that~i! only the static case was considered and~ii ! some cases were
missing, in particular, for finite-dimensional MCs. In this paper, we extend the procedu

a!Present address: Department of Mathematical Sciences, University of Aberdeen, Kings College, Aberdeen
AB24 3UE Scotland, UK; electronic mail: msharif@maths.abdn.ac.uk
51410022-2488/2003/44(11)/5141/18/$20.00 © 2003 American Institute of Physics
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calculate MCs of SSS both for nondegenerate and also for degenerate cases with special e
on the metrics admitting higher symmetries and also SO~3! as the maximal symmetry. We relat
them with RCs and isometries. The rest of the paper is organized as follows. Section II con
brief review of MCs and we write down MC equations for SSS. In Sec. III, we shall solve t
MC equations when the energy–momentum tensor is nondegenerate and in Sec. IV MC eq
are solved for the degenerate energy–momentum tensor. Section V contains a summa
discussion of the results obtained.

II. MATTER COLLINEATIONS AND ITS EQUATIONS

Let (M ,g) be a space–time, whereM is a smooth, connected, Hausdorff four-dimensio
manifold andg is smooth Lorentzian metric of signature (1222) defined onM . The manifold
M and the metricg are assumed smooth (C`). We shall use the usual component notation in lo
charts, and a covariant derivative with respect to the symmetric connectionG associated with the
metric g will be denoted by a semicolon and a partial derivative by a comma.

The geometry and matter of a space–time are related through the EFEs given in eac
dinate system ofM by

Rab2 1
2 Rgab[Gab5kTab ~a,b50,1,2,3!, ~1!

wherek is the gravitational constant,Gab is the Einstein tensor,Rab is the Ricci andTab is the
matter~energy–momentum! tensor. Also,R5gabRab is the Ricci scalar. We have assumed he
that the cosmological constantL50. Using the Bianchi identities, it can easily be shown that

Gab;b50 ~⇔Tab;b50!. ~2!

A smooth vector fieldj is said to preserve a matter symmetry23 on M if, for each smooth local
diffeomorphismf t associated withj, the tensorT andf t* T are equal on the domainU of f t , i.e.,
T5f t* T. Equivalently, a vector fieldja is said to generate a MC if it satisfies

£jTab50 ⇔ £jGab50, ~3!

where £ is the Lie derivative operator,ja is the symmetry or collineation vector. Every KV is
MC but the converse is not true, in general. Collineations can be proper~nontrivial! or improper
~trivial!. We define a proper MC to be a MC which is not a KV, or a homothetic vector~HV!. The
MC Eq. ~3! can be written in component form as

Tab,cj
c1Tacj ,b

c 1Tcbj ,a
c 50. ~4!

The most general form of the metric for a spherically symmetric Lorentzian manifold is g
by

ds25en(t,r )dt22em(t,r )dr 22el(t,r )dV2, ~5!

where dV25du21sin2 u df2. The surviving components of the energy–momentum tensor, g
in Appendix A, areT00, T01 T11, T22, T33, whereT335sin2 uT22.

The MC equations can be written as follows:

T00,0j
01T00,1j

112T00j ,0
0 12T01j ,0

1 50, ~6!

T01,0j
01T01,1j

11T01j ,0
0 1T11j ,0

1 1T01j ,1
1 1T00j ,1

0 50, ~7!

T00j ,2
0 1T01j ,2

1 1T22j ,0
2 50, ~8!

T00j ,3
0 1T01j ,3

1 1sin2 uT22j ,0
3 50, ~9!
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T11,0j
01T11,1j

112T01j ,1
0 12T11j ,1

1 50, ~10!

T01j ,2
0 1T11j ,2

1 1T22j ,1
2 50, ~11!

T01j ,3
0 1T11j ,3

1 1sin2 uT22j ,1
3 50, ~12!

T22,0j
01T22,1j

112T22j ,2
2 50, ~13!

T22j ,3
2 1sin2 uT22j ,2

3 50, ~14!

T22,0j
01T22,1j

112 cotuT22j
212T22j ,3

3 50. ~15!

These are the first-order nonlinear partial differential equations in four variablesja(xb). We solve
these equations for the nondegenerate case, when

det~Tab!5T22
2 ~T00T112T01

2 !sin2 uÞ0 ~16!

and for the degenerate case, where det(Tab)50. It is noticed that whenT0150 we shall use the
notationTaa5Ta for the sake of brevity.

III. MATTER COLLINEATIONS IN THE NONDEGENERATE CASE

In this section, we shall evaluate MCs only for those cases which have nondegenerate e
momentum tensor, i.e., det(Tab)Þ0. This will be done as two cases; one whenM admits higher
symmetries and one when SO~3! is the maximal isometry group ofM . To this end, we set up the
general conditions for the solution of MC equations for the nondegenerate case.

When we solve Eqs.~6!–~15! simultaneously, after some tedious algebra, we get the follow
solution:

j05
T22

T00T112T01
2 @$~Ȧ1T112A18T01!sinf2~Ȧ2T112A28T01!cosf%sinu

1~Ȧ3T112A38T01!cosu1A4T112A5T01#, ~17!

j15
2T22

T00T112T01
2 @$~Ȧ1T012A18T00!sinf2~Ȧ2T012A28T00!cosf%sinu

1~Ȧ3T012A38T00!sinu1A4T012A5T00#, ~18!

j252~A1 sinf2A2 cosf!cosu1A3 sinu1c1 sinf2c2 cosf1c4 lnS tan
u

2D sinu, ~19!

j352~A1 cosf1A2 sinf!cscu1~c1 cosf1c2 sinf!cotu1c4f1c3 , ~20!

where c1 ,c2 ,c3 ,c4 are arbitrary constants andAn5An(t,r ), n51,2,3,4,5. Here dot and prim
indicate the differentiation with respect to time andr coordinate, respectively. When we repla
these values ofja in MC Eqs.~6!–~15!, we obtain the following differential constraints onAn with
c450:

2~T00T112T01
2 !~T22Ȧi !

•
1T22@~2T01Ṫ012T11Ṫ002T01T008 !Ȧi2~2T00Ṫ012T01Ṫ002T00T008 !Ai8#

50, ~ i 51,2,3!, ~21!
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~T00T112T01
2 !@~T22Ȧi !81~T22Ai8!

•
] 1T22@~T01Ṫ112T11T008 !Ȧi1~T01T008 2T00Ṫ11!Ai8#50,

~22!

2~T00T112T01
2 !~T22Ai8!81T22@~2T01T018 2T00T118 2T01Ṫ11!2~2T11T018 2T11Ṫ112T01T118 !Ȧi #

50, ~23!

~T11Ṫ222T01T228 !Ȧi1~T00T228 2T01Ṫ22!Ai812Ai50, ~24!

2~T00T112T01
2 !~T22A4!

•
1T22@~2T01Ṫ012T11Ṫ002T01T008 !A42~2T00Ṫ012T01Ṫ002T00T008 !A5#

50, ~25!

~T00T112T01
2 !@~T22A4!81~T22A5!

•
#1T22@~T01Ṫ112T11T008 !A41~T01T008 2T00Ṫ11!A5#50,

~26!

2~T00T112T01
2 !~T22A5!81T22@~2T01T018 2T00T118 2T01Ṫ11!A52~2T11T018 2T11Ṫ112T01T118 !A4#

50, ~27!

~T11Ṫ222T01T228 !A41~T00T228 2T01Ṫ22!A550. ~28!

Thus the problem of working out MCs for all possibilities ofAi ,A4 ,A5 is reduced to solving the
set of Eqs.~17!–~20! subject to the above-given constraints. We would solve these to classify
of the manifolds admitting higher symmetries than SO~3! and SO~3! as the maximal isometry
group.

A. MCs of the space–times admitting higher symmetries

Here we use the constraint equations~21!–~28! to evaluate MCs of the space–times given
Eq. ~5! which admit higher symmetries than SO~3!. The six cases admitting symmetry grou
larger than SO~3! are the following:

~1! SO(3)̂ R, whereR5] t if and only if
~a! n5n(r ), m5m(r ), l52 ln r or ~b! n5n(r ), m50, l52 lna,
wherea is an arbitrary constant,

~2! SO(3)̂ R, whereR5] r if and only if
~a! n5n(t), m5m(t), l52 ln t or ~b! n50, m5m(t), l52 lna,

~3! SO(3)̂ R, whereR5] t1e] r if and only if
n505m, l5l(t1er) with e561,

~4! SO~4! if and only if n50, m52 lnR(t), l52 lnR(t)sinr such that
RR̈2Ṙ221Þ0,

~5! SO(3)3R3 if and only if n50, m52 lnR(t), l52 lnR(t)r such that
RR̈2Ṙ2Þ0,

~6! SO~1,3! if and only if
~a! n50, m52 lnR(t), l52 lnR(t)sinhr such that
RR̈2Ṙ211Þ0, or
~b! n52 lnQ(r), m50, l52 lnQ(r)cosht such that
QQ92Q8211Þ0.

Case (1):In this case, we haveT0150 and alsoṪab50. Using these values, Eqs.~17!–~28!
reduce to
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j05
T2

T0
@~Ȧ1 sinf2Ȧ2 cosf!sinu1Ȧ3 cosu1A4#, ~29!

j15
T2

T1
@~A18 sinf2A28 cosf!sinu1A38 cosu1A5#, ~30!

j252~A1 sinf2A2 cosf!cosu1A3 sinu1c1 sinf2c2 cosf, ~31!

j352~A1 cosf1A2 sinf!cscu1~c1 cosf1c2 sinf!cotu1c3 , ~32!

where we have used the notationTaa5Ta for the sake of simplicity. Theseja are satisfied subjec
to the following differential constraints onAn :

T1Ȧ41T08A550, S T2

T0
A4D 8

1
T2

T0
Ȧ550,

~33!

S T2

AT1

A5D 8
50, T28A550,

2T1Äi1T08Ai850, SAT2

T0
Ȧi D 8

50,

~34!

S T2

AT1

Ai8D 8
50, 2T1Ai1T28Ai850.

It is interesting to note that this case reduces to the nondegenerate case of Ref. 14. Howe
possibility of seven MCs is recovered here which was missing there. Now the evaluation of
for all possibilities ofAi ,A4 ,A5 is reduced to solving the set of Eqs.~29!–~32! subject to the
constraints given by Eqs.~33! and ~34!. A complete solution of these equations is obtained
considering different possibilities ofT2 . The last equation of Eq.~33! implies that either

~a! T2850, or ~b! T28Þ0.

The first case whenT25b, where b is an arbitrary constant, Eq.~34! gives Ai50 and
consequently Eqs.~29!–~32! yield

j05A4~ t,r !, j15A5~ t,r !,
~35!

j25c1 sinf2c2 cosf, j35~c1 cosf1c2 sinf!cotu1c3 .

Further, if we assume that

F T0

AT1
S T08

2T0AT1
D 8G 8

Þ0,

we obtain four MCs identical to the usual KVs of spherical symmetry given by

j5c0

T0

b
] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f . ~36!

When
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F T0

AT1
S T08

2T0AT1
D 8G 8

50,

this implies that

T0

AT1
F T08

2T0AT1
G 8

5a,

wherea is an arbitrary constant which may be positive, zero, or negative. In each case, we
six MCs.
For a.0, we obtain

j5c0

T0

b
] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4S 2
T08

2bAaT1

sinhAat] t1
AT1

b
coshAat] r D

1c5S 2
T08

2bAaT1

coshAat] t1
AT1

b
sinhAat] r D . ~37!

If a50, we have

j5c0

T0

b
] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4F2
T0

b S g

2
t21

1

b E AT1dr D ] t1
AT1

b
t] r G1c5S T0

b
gt] t1

AT1

b
] r D , ~38!

where

T08

2T0AT1

5g,

an arbitrary constant. The casea,0 yields

j5c0

T0

b
] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!

1c3]f1c4S 2
T08

2bA2aT1

sinA2at] t1
AT1

b
cosA2at] r D

1c5S T08

2bA2aT1

cosA2at] t1
AT1

b
sinA2at] r D . ~39!

In case~b!, whenT28Þ0, it follows from Eqs.~33! and ~34! that for

T2

AT1
S T28

2T2AT1
D 8

11Þ0,

we obtain the same MCs as the usual minimal KVs for spherically symmetry.
If
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T2

AT1
S T28

2T2AT1
D 8

1150

and

S T28

AT0T1T2
D 8

Þ0,

we have seven MCs given by

j5c0] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4S 2
1

AT1

sinf sinu] r2X sinf cosu]u2X cosf cscu]fD
1c5S 1

AT1

cosf sinu] r1X cosf cosu]u2X sinf cscu]fD
1c6S 2

1

AT1

cosu] r2X sinu]uD , ~40!

where X5 T28/2T2AT1. If we have (T2 /AT1) (T28/2T2AT1)81150, (T28/AT0T1T2)850, and
(T08/T28)8Þ0, then we get four MCs.

When (T2 /AT1) (T28/2T2AT1)81150, (T28/AT0T1T2)850, andT08/T28 5d, an arbitrary con-
stant. Ford.0, we obtain

j5c0] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4F S T2

T0
XAd sinhAdt] t2

1

AT1

coshAdt] r D sinu sinf2~cosu sinf]u

1cscu cosf]f!X coshAdtG1c5F S 2
T2

T0
XAd sinhAdt] t1

1

AT1

coshAdt] r D sinu cosf

1~cosu cosf]u2cscu sinf]f!X coshAdtG1c6F S T2

T0
XAd sinhAdt] t

2
1

AT1

coshAdt] r D cosu1X coshAdt sinu]uG1c7F S T2

T0
XAd coshAdt] t

2
1

AT1

sinhAdt] r D sinu sinf2~cosu sinf]u1cscu cosf]f!X sinhAdtG
1c8F2S T2

T0
XAd coshAdt] t1

1

AT1

sinhAdt] r D sinu cosf1~cosu cosf]u

2cscu sinf]f!X sinhAdt1c9S T2

T0
XAd coshAdt] t2

1

AT1

X sinhAdt] r D cosu

1X sinhAdt sinu]uG . ~41!
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If d50, we have

j5c0] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4F S T2

T0
X] t2

1

AT1

t] r D sinu sinf2~cosu sinf]u1cscu cosf]f!tXG
1c5F S 2

T2

T0
X] t1

1

AT1

t] r D sinu cosf1~cosu cosf]u2cscu sinf]f!tXG
1c6F S T2

T0
X] t2

1

AT1

t] r D cosu1tX sinuG
1c7F S 2

1

AT1

sinu] r2X cosu]uD sinf2X cscu cosf]fG
1c8F S 1

AT1

sinu] r1X cosu]uD cosf2X cscu sinf]fG
1c9S 2

1

AT1

cosu] r1X sinu]uD . ~42!

For d,0, MCs are given by

j5c0] t1c1~sinf]u1cotu cosf]f!1c2~cosf]u2cotu sinf]f!1c3]f

1c4F S 2
T2

T0
XA2d sinA2dt] t2

1

AT1

cosA2dt] r D sinu sinf2~cosu sinf]u

1cscu cosf]f!X cosA2dtG1c5F S T2

T0
XA2d sinA2dt] t1

1

AT1

cosA2dt] r D sinu cosf

1~cosu cosf]u2cscu sinf]f!X cosA2dtG1c6F S 2
T2

T0
XA2d sinA2dt] t

2
1

AT1

cosA2dt] r D cosu1X cosA2dt sinu]uG1c7F S T2

T0
XA2d cosA2dt] t

2
1

AT1

sinA2dt] r D sinu sinf2~cosu sinf]u1cscu cosf]f!X sinA2dtG
1c8F2S T2

T0
XAd cosA2dt] t1

1

AT1

sinA2dt] r D sinu cosf1~cosu cosf]u

2cscu sinf]f!X sinA2dt1c9S T2

T0
XA2d cosA2dt] t2

1

AT1

X sinA2dt] r D cosu

1X sinA2dt sinu]uG . ~43!

From Eqs.~41! to ~43!, it follows that for each value ofd, we obtain ten independent MCs.
                                                                                                                



s

hing

to

f of

5149J. Math. Phys., Vol. 44, No. 11, November 2003 Energy–momentum tensor of Lorentzian manifolds

                    
Case (2): In this case, we haveT0150 and Ta850. If we use the transformation
t↔r , j0↔j1, T0↔T1 , the solution of this case can be trivially obtained as in case~1!.

Cases (4), (5), (6):The cases~4!, ~5! and~6a! describe Friedmann Robertson~FRW! space–
times whereas case~6b! describes FRW like space–times. For these metrics, the nonvanis
components of Ricci and energy–momentum tensors are given in Appendix B. If any ofTa is zero,
we get infinte dimensional MCs. For the nondegenerate case, we haveTaÞ0, which implies the
following possibilities:

~a!
T1

AT0
S Ṫ2

2T1AT0
D 2k50, ~b!

T1

AT0
S Ṫ2

2T1AT0
D 2kÞ0

with

~ i! Ṫ150, ~ ii ! Ṫ1Þ0,

wherek has the values 1,0,21 for closed, flat, and open FRW space–times, respectively.
In case~ai!, we must havek50 andT15aÞ0, a is an arbitrary constant. Thus, in addition

the nonproper MCsj (1) ,j (2) ,j (3) ,j (4) ,j (5) ,j (6) given in Appendix C, we obtain the following
proper MCs:

j (7)5
1

AT0

] t ,

j (8)5r S 1

AT0

] t2Y] r D sinu sinf2~cosu sinf]u1cscu cosf]f!Y,

~44!

j (9)5r S 1

AT0

] t2Y] r D sinu cosf2~cosu cosf]u2cscu sinf]f!Y,

j (10)5r S 1

AT0

] t2Y] r D cosu1Y sinu]u ,

whereY5 (1/ar) * AT0dt. This gives ten independent MCs in which six are the usual KVs o
closed FRW metric and the rest are the proper MCs.

Case~aii! also yields ten independent MCs for each value ofk. For the value ofk51, the
proper MCs are given by

j (7)5SAT0

T1
cotr ] t2Z sin2 r ] r D cscr ,

j (8)5F S T2

T0
Ż] t2Z sinr cosr ] r D sinu sinf2Z~cosu sinf]u1cscu cosf]f!cscr G ,

~45!

j (9)5F S T2

T0
Ż] t2Z sinr cosr ] r D sinu cosf2Z~cosu cosf]u2cscu sinf]f!cscr G ,

j (10)5F S T2

T0
Ż] t2Z sinr cosr ] r D cosu2Z]uGcscr ,

whereZ5 T2/2T1AT0. For k50, we have the following proper MCs:
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j (7)5S 1

AT0

] t2rZ] r D ,

j (8)5F H S rT2

2T0
Ż2

r

AT0
D ] t1S r 2Z

2
1E AT0

T1
dt ] r D J sinu sinf

2S r

2
Z2

1

r E AT0

T1
dt D ~cosu sinf]u1cscu cosf]f!G ,

~46!

j (9)5F H S rT2

2T0
Ż2

r

AT0
D ] t1S r 2Z

2
1E AT0

T1
dt] r D J sinu cosf

2S r

2
Z2

1

r E AT0

T1
dt D ~cosu cosf]u2cscu sinf]f!G ,

j (10)5F H S rT2

2T0
Ż2

r

AT0
D ] t1S r 2Z

2
1E AT0

T1
dt ] r D J cosu2S r

2
Z2

1

r E AT0

T1
dt D sinu]uG .

For the value ofk521, the four proper MCs are

j (7)5
1

T1
~AT0cothr ] t2T2Z] r !cschr,

j (8)5F S T2

T0
Ż] t1Z sinhr coshr ] r D sinu sinf2Z~cosu sinf]u1cscu cosf]f!Gcschr,

~47!

j (9)5F S T2

T0
Ż] t1Z sinhr coshr ] r D sinu cosf2Z~cosu cosf]u2cscu sinf]f!Gcschr,

j (10)5F S T2

T0
Ż] t1Z sinhr coshr ] r D cosu2Z]uGcschr.

Thus we obtain ten independent MCs for each value ofk in which six are the usual isometries o
FRW metric and the the remaining four are the proper MCs.

For the case~bi!, we must require thatkÞ0. Whenk51, we obtain one proper MC given b

j (7)5
T2

AT0a
csc2 r ] t . ~48!

For k521, proper MC is

j (7)5
T2

AT0a
csch2r ] t . ~49!

This case gives seven independent MCs in which six are nonproper and one is proper MC
be checked that the case~bii! gives six independent MCs for each value ofk which are usual KVs
of FRW space–times. Similarly, case~6b! can be solved to give either six, seven, or ten MCs
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B. MCs of the space–times admitting SO „3… as the maximal isometry group

In this section, we evaluate MCs of the spherically symmetric space–times which admit~3!
as the maximal isometry group. In these solutions, we take any additional MC~if it exists! to be
orthogonal to the SO~3! orbit. For this we must require thatAi[0 and consequently, it follows
from Eqs.~17! to ~20! that j05j0(t,r ), j15j1(t,r ), j250, j350. It is mentioned here that we
are considering only diagonal metrics for this case. The nondiagonal metrics can be solve
similar way. If we make use of the following substitutions

T2

T0
A45C~ t,r !,

T2

T1
A55D~ t,r !, AT05A~ t,r !, AT15B~ t,r !

in the constraint Eqs.~21!–~28!, then it follows that

Ċ52ȦC2A8D, ~50!

A2C81B2Ḋ50, ~51!

D852ḂC2B8D, ~52!

Ṫ2C1T28D50. ~53!

To solve this system of equations, we have the following possibilities:

~ i! Ṫ250, T28Þ0, ~ ii ! Ṫ2Þ0, T2850,

~ iii ! Ṫ2Þ0, T28Þ0, ~ iv! Ṫ250, T2850.

The first possibility does not provide any proper MC if we assume thatṪ1Þ0. However, the
assumptionṪ150, Ṫ0Þ0 gives infinite dimensional MCs.

The second case shows that there does not exist a proper MC with the constraintT08Þ0 but the
constraintsT0850, T18Þ0 provide infinite dimensional MCs.

In the third case, when

T0T28FT18Ṫ22Ṫ1T28

2AT1Ṫ2

1H lnS Ṫ2

T28
D J 8G1T1Ṫ2FT08Ṫ22Ṫ0T28

2AT0T28
1H lnS Ṫ2

T28
D J •GÞ0,

we do not have a proper MC. However, if

T0T28FT18Ṫ22Ṫ1T28

2AT1Ṫ2

1H lnS Ṫ2

T28
D J 8G1T1Ṫ2FT08Ṫ22Ṫ0T28

2AT0T28
1H lnS Ṫ2

T28
D J •G50.

and

S T08Ṫ22Ṫ0T28

2AT0Ṫ2

D 8
5FT28

Ṫ2

H Ṫ1T282T18Ṫ2

2AT1T28
2S Ṫ2

T28
D 8J G •

then there exists a proper MC given by

expS E T08Ṫ22Ṫ0T28

2AT0Ṫ2

dt D S ] t2
Ṫ2

T28
] r D . ~54!
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If

S T08Ṫ22Ṫ0T28

2AT0Ṫ2

D 8
ÞFT28

Ṫ2

H Ṫ1T282T18Ṫ2

2AT1T28
2S Ṫ2

T28
D 8J G •

then this case gives infinite number of MCs.
In the last case, we solve Eqs.~50!–~52!, which imply thatȦB82A8Ḃ[c(t,r ). If c50, then

we must haveĊ505D8 for a nontrivial solution. Thus the constraintsṪ0T182T08Ṫ150 together
with

T08Þ0, FT1

T0
S Ṫ1

T08
D •G •

50,

yield the following proper MC:

expS E T1

T0
S Ṫ0

T08
D •

dr D S ] t2
Ṫ0

T08
] r D . ~55!

However, forṪ0T182T08Ṫ150 together with

T0850, T18Þ0, FT1

T0
S Ṫ1

T18
D •G •

50,

we obtain the proper MC given by

expS E T1

T0
S Ṫ1

T18
D •

dr D S ] t2
Ṫ1

T18
] r D . ~56!

The constraintṪ0T182T08Ṫ150 along withT0850, T18505Ṫ1 , Ṫ0Þ0 gives infinite many MCs.
For cÞ0, we must haveĊÞ0, D8Þ0 for a nontrivial solution. Let us expressĊ andD8 as

E andF, respectively, so that

C52
B8

c
E~ t,r !1

A8

c
F~ t,r !, ~57!

D5
Ḃ

c
E~ t,r !2

Ȧ

c
F~ t,r !. ~58!

We obtain two linearly independent MCs which are orthogonal toTe(SO(3)) and aregiven by

X15
E

c
~2B8] t1Ḃ] r !, ~59!

X25
F

c
~A8] t2Ȧ] r !. ~60!

The Lie bracket of these vector fields is

@X1 ,X2#5
F~ȦE82A8Ė!

Ec
X11

E~ḂF82B8Ḟ !

Fc
X2 . ~61!
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For its closedness, we must haveF(ȦE82A8Ė)/Ec 5a1 andE(ḂF82B8Ḟ)/Fc 5a2 , wherea1

anda2 are constants. From here we have either~i! a1Þ0, a250, or ~ii ! a150, a2Þ0 or ~iii ! a1

505a2 . The first two possibilities contradict the assumption thatcÞ0. This shows that the third
possibility closes the Lie algebra. Thus we have

C85
B2

A2A821B2Ȧ2
@$A8~Ä2Ȧ2!2Ȧ~Ȧ82A8Ḃ!%C1$A8~Ȧ82ȦA8!2Ȧ~A92A8B8!%D#,

~62!

Ḋ52
A2

A2A821B2Ȧ2
@$A8~Ä2Ȧ2!2Ȧ~Ȧ82A8Ḃ!%C1$A8~Ȧ82ȦA8!2Ȧ~A92A8B8!%D#,

~63!

along with the compatibility constraint in the componentsT0 and T1 of the energy–momentum
tensor given by

S ln
A8

Ȧ
eA2BD 8S ln

Ḃ

B8
eB2AD 2S ln

A8

Ȧ
eA2BD S ln

Ḃ

B8
eB2AD 8

50. ~64!

IV. MATTER COLLINEATIONS IN THE DEGENERATE CASE

In this section only those cases will be considered for which the energy–momentum ten
degenerate, i.e., det(Tab)50.

A. MCs of the manifolds admitting higher symmetries

Here we would discuss the MCs of the manifolds admitting higher symmetries than S~3!.
For higher symmetries, all metrics haveT0150 except the case~3! of the last section. Thus we
would discuss the space–times for whichT0150 and det(Tab)50, i.e., when at least one of theTa

or their combination is zero. It can be shown that forT150, TkÞ0, k50,2 @case~1! of Sec. III#,
we obtain infinite dimensional MCs. The solution forT050, TlÞ0, l 51,2 @case~2! of Sec. III#
also gives infinite dimensional MCs. These have been discussed in detail elsewhere.14 Here we are
interested in exploring the possibilities of finite MCs.

When Tk8Þ0, (T0 /T2)8Þ0, we obtain four MCs which are the usual KVs of the spheri
symmetry. ForTk8Þ0, (T0 /T2)850, we obtain ten independent MCs. These are

j05b@~ ġ1 sinf2ġ2 cosf!sinu1ġ3 cosu#1c0 , j150,

j252~g1 sinf2g2 cosf!cosu1g3 sinu1c1 sinf2c2 cosf, ~65!

j352~g1 cosf1g2 sinf!cscu1~c1 cosf1c2 sinf!cotu1c3 ,

whereb5 T2 /T0 Þ0 is an arbitrary constant and the functiong satisfies the following constraint

bg̈i~ t !2gi~ t !50. ~66!

The solution for the nonstatic case can be obtained trivially, which turns out to be the sam
different constraints.

B. MCs of the manifolds admitting SO „3… as the maximal isometry group

The metrics which admit SO~3! as the maximal symmetry group yieldj2505j3 and the MC
equations reduce to six independent equations which involve
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Ṫ22j
01T228 j150. ~67!

This gives rise to the following four cases:

~ i! Ṫ2250, T228 Þ0, ~ ii ! Ṫ22Þ0, T228 50,

~ iii ! Ṫ22Þ0, T228 Þ0, ~ iv! Ṫ2250, T228 50.

If we solve these cases, we may have interesting physical consequences. These will be di
somewhere else.

V. CONCLUSION

In this paper, we have attempted to classify the most general spherically symmetric s
times according to their MCs. We have found a general solution of the MC equations fo
nondegenerate, diagonal, and nondiagonal energy–momentum tensor. Further, we have c
space–times admitting higher symmetries than SO~3! and those which admit SO~3! as the maxi-
mal isometry group for both nondegenerate and degenerate cases. It is found that for the
generate and degenerate cases, we recover the earlier known results14 as a special case. We als
obtain some interesting missing results in the earlier work. It is mentioned here that MCs
here coincide withRCsbut the constraints are entirely different. The summary of the results
be given below in Tables I–IV.

It can be seen from Tables I–IV that each case has different constraints on the en
momentum tensor. It would be interesting to solve these constraints or at least examples sh
constructed to check the dimensions of the MCs. We are able to classify MCs of the space
with SO~3! as the maximal isometry group only for the nondegenerate case. However, it ne
be completed for the degenerate case. Also, case~3! of Sec. III admitting higher symmetries i
kept open. These would be discussed in a separate work.

TABLE I. MCs of case~1! for the nondegenerate case admitting higher
symmetries. Notice that MCs for the case~2! are the same as for the case~1!
which can be obtained trivially by using the transformations given in the
Sec. III.

Cases MCs Constraints

1ai 4 F T0

AT1
S T08

2T0AT1
D 8G 8

Þ0

1aii 6 F T0

AT1
S T08

2T0AT1
D 8G 8

50

1bi 4 T2

AT1
S T28

2T2AT1
D 8

11Þ0

1bii 7 T2

AT1
S T28

2T2AT1
D 8

1150, S T28

AT0T1T2
D 8

Þ0

1biii 4 T2

AT1
S T28

2T2AT1
D 8

1150, S T28

AT0T1T2
D 8

50, S T08

T2
D 8

Þ0

1biv 10
T2

AT1
S T28

2T2AT1
D 8

1150, S T28

AT0T1T2
D 8

50, S T08

T2
D 8

50
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TABLE II. MCs of cases~4!, ~5!, ~6! for the nondegenerate case admitting
higher symmetries. It is noted here that the cases~4!, ~5! and ~6a! describe
FRW metrics and~6b! FRW-like metrics and have the same MCs in all cases
as given below.

Cases MCs Constraints

4ai 10
T1

AT0
S Ṫ2

2T1AT0
D •

2k50, Ṫ150

4aii 10
T1

AT0
S Ṫ2

2T1AT0
D •

2k50, Ṫ1Þ0

4bi 7
T1

AT0
S Ṫ2

2T1AT0
D •

2kÞ0, Ṫ1Þ0

4bii 6
T1

AT0
S Ṫ2

2T1AT0
D •

2kÞ0, Ṫ1Þ0

TABLE III. MCs for the nondegenerate case admitting SO~3! as the maximal symmetry.

Cases MCs Constraints

ia No proper Ṫ250, T28Þ0, Ṫ1Þ0
ib Infinite No. of MCs Ṫ250, T28Þ0, Ṫ150, Ṫ0Þ0
iia No proper Ṫ2Þ0, T2850, T08Þ0
iib Infinite No. of MCs Ṫ2Þ0, T2850, T0850, T18Þ0

iiia No proper Ṫ2Þ0, T28Þ0, T0T28FT18Ṫ22Ṫ1T28

2AT1Ṫ2

1H lnSṪ2

T28
DJ8G1T1Ṫ2FT08Ṫ22Ṫ0T28

2AT0T28
1H lnSṪ2

T28
DJ•GÞ0

iiib One proper Ṫ2Þ0, T28Þ0, T0T28FT18Ṫ22Ṫ1T28

2AT1Ṫ2

1H lnSṪ2

T28
DJ8G1T1Ṫ2FT08Ṫ22Ṫ0T28

2AT0T28
1H lnSṪ2

T28
DJ•G50,

S T08Ṫ22Ṫ0T2
0

2AT0Ṫ2

D 8
5FT28

Ṫ2

H Ṫ1T282T18Ṫ2

2AT1T28
2S Ṫ2

T28
D 8J G •

iiic Infinite No. of MCs Ṫ2Þ0, T28Þ0, T0T28FT18Ṫ22Ṫ1T28

2AT1Ṫ2

1H lnSṪ2

T28
DJ8G1T1Ṫ2FT08Ṫ22Ṫ0T28

2AT0T28
1H lnSṪ2

T28
DJ•G50,

S T08Ṫ22Ṫ0T2
0

2AT0Ṫ2

D 8
ÞFT28

Ṫ2

H Ṫ1T282T18Ṫ2

2AT1T28
2S Ṫ2

T28
D 8J G •

iva One proper Ṫ250, T2850, Ṫ0T182T08Ṫ150, T08Þ0, FT1

T0
S Ṫ1

T08
D •G •

50

ivb One proper Ṫ250, T2850, Ṫ0T182T08Ṫ150, T0850, T18Þ0, FT1

T0
S Ṫ1

T08
D •G •

50

ivc Infinite No. MCs Ṫ250, T2850, Ṫ0T182T08Ṫ150, T0850,

T18505Ṫ1 , Ṫ0Þ0

TABLE IV. MCs of degenerate case admitting higher symmetries.

Cases MCs Constraints

* 4 Tk8Þ0, S T0

T1
D 8

Þ0

** 10 Tk8Þ0, S T0

T1
D 8

50
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APPENDIX A

The surviving components of the Ricci tensor are

R005
1
4 en2m~2n91n822n8m812n8l8!2 1

4 ~2m̈1ṁ22 ṅṁ14l̈12l̇222ṅ l̇ !,

R0152 1
2 ~2l̇81l̇l82n8l̇2ṁl8!,

R115
1
4 em2n~2m̈1ṁ22 ṅṁ12ṁl̇ !2 1

4 ~2n91n822n8m814l912l8222m8l8!, ~A1!

R225
1
4 el2n~2l̈12l̇22 ṅ l̇1ṁl̇ !2 1

4 el2m~2l912l822m8l81n8l8!11,

R335R22sin2 u.

The Ricci scalar is given by

R5 1
2 e2m~2n91n822n8m812n8l822m8l813l8214l9!22e2l

2 1
2 e2n~2m̈1ṁ22 ṅṁ22ṅ l̇12ṁl̇13l̇214l̈ !. ~A2!

Using Einstein field equations~1!, the nonvanishing components of energy–momentum tensorTab

are

T005
1
4 ~ l̇212ṁl̇ !2 1

4 en2m~4l913l8222m8l8!1en2l, T015R01,

T115
1
4 ~l8212n8l8!2 1

4 em2n~4l̈13l̇222ṅ l̇ !2em2l,

~A3!
T225

1
4 el2m~2n91n822n8m81n8l82m8l81l8212l9!

2 1
4 el2n~2m̈1ṁ22 ṅṁ2 ṅ l̇1ṁl̇1l̇212l̈ !,

T335T22sin2 u.

APPENDIX B

The nonvanishing components of the Ricci tensor for FRW space–times are given by

R0523
R̈

R
,

R15
~R3!

••

3R
22k,

~B1!
R25R1S2~k,r !,

R35R2 sin2 u,

where
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S~k,r !5sinr , for k51,

5r , for k50,

5sinhr , for k521.

The Ricci scalar is given by

R52
6

R2 ~RR̈1Ṙ22k!. ~B2!

Now, the surviving components of energy–momentum tensor for FRW space–times are giv

T05
3

R2 ~Ṙ22k!,

T152~2RR̈1Ṙ2!1k,
~B3!

T25T1S2~k,r !,

T35T2 sin2 u.

APPENDIX C

Linearly independent KVs associated with the FRW space–times are given by Ref. 24k
51,

j (1)5sinf]u1cotu cosf]f ,

j (2)5cosf]u2cotu sinf]f ,

j (3)5]f ,
~C1!

j (4)5~sinu] r1cotr cosu]u!sinf1cotr cscu cosf]f ,

j (5)5~sinu] r1cotr cosu]u!cosf2cotr cscu sinf]f ,

j (6)5cosu] r2cotr sinu]u .

For k50, we have

j (1)5sinf]u1cotu cosf]f ,

j (2)5cosf]u2cotu sinf]f ,

j (3)5]f ,
~C2!

j (4)5S sinu] r1
1

r
cosu]uD sinf1

1

r
cscu cosf]f ,

j (5)5S sinu] r1
1

r
cosu]uD cosf2

1

r
cscu sinf]f ,

j (6)5S cosu] r2
1

r
sinu]uD .
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For k521,

j (1)5sinf]u1cotu cosf]f ,

j (2)5cosf]u2cotu sinf]f ,

j (3)5]f ,
~C3!

j (4)5~sinu] r1cothr cosu]u!sinf1cothr cscu cosf]f ,

j (5)5~sinu] r1cothr cosu]u!cosf2cothr cscu sinf]f ,

j (6)5cosu] r2cothr sinu]u .
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The solution is provided of a three-body problem in the plane, which is the third of
a trio recently identified as likely to display a particularly simple time-evolution
hence to be amenable to exact treatment. This conjecture, already validated by
providing the solution of the first two of these three models, is now complete-
ly proven by exhibiting the solution of the third. This finding also demonstrates
the conjectured super-Painleve´ character of certain nonlinear ordinary differential
equations, namely, the fact that theirgeneralsolution is anentire function of the
independent variable. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1610778#

I. INTRODUCTION

Recently theN-body problem in the plane characterized by the Newtonian equation
motion

rẄn5v k̂∧rẆn12 (
m51,mÞn

N

r nm
22~anm1ãnmk̂∧ !•@rẆn~rẆm•rWnm!1rẆm~rẆn•rWnm!2rWnm~rẆm•rẆm!# ~1!

has been much investigated.1–7 Here theN two-vectorsrWn[rWn(t) identify the positions, as fun-
tions of the~real! time variablet, of the moving point-particles in a plane which for notation
convenience is immersed in three-dimensional space, so thatrWn[(xn ,yn,0); k̂ is the unit three-
vector orthogonal to that plane,k̂[(0,0,1), so thatk̂∧rWn[(2yn ,xn,0); rWnm[rWn2rWm , hence
r nm

2 [rWnm•rWnm[(xn2xm)21(yn2ym)2; superimposed dots denote of course time derivativesv
is a positiveconstant, which sets the time scale and to which we associate the period

T5
2p

v
; ~2!

and the ‘‘coupling constants’’anm ,ãnm area priori arbitrary~of coursereal; a sufficient condition
for this system to be Hamiltonian2 is the requirement that these constants be symmetrical in
two indices,anm5amn ,ãnm5ãmn , as we hereafter assume!. Note that, in the special case witho
two-body forces (anm5ãnm50) this N-body problem describesN ~equal! charged particles, no
interacting among themselves, moving on a plane in the presence of a constant magnet

a!Electronic mail: francesco.calogero@roma1.infn.it
b!Electronic mail: jpf@ccr.jussieu.fr
c!Electronic mail: adolfo@matcuer.unam.mx
51590022-2488/2003/44(11)/5159/7/$20.00 © 2003 American Institute of Physics
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orthogonal to that plane~‘‘cyclotron’’ !; all solutions are thencompletely periodicwith periodT,
see~2!, since each particle moves with such a period on its circular trajectory~the center and
radius of which are determined by its initial position and velocity!.

To treat theN-body problem~1! it is generally convenient to identify thereal ‘‘physical’’
plane on which theN points rWn[(xn ,yn,0) move, with thecomplexplane in which the complex
numberszn[xn1 i yn move. Indeed via this correspondence these equations of motion~1! take the
following neater form:

z̈n2 i v żn52 (
m51,mÞn

N

anm

żn żm

zn2zm
~3!

with

anm5anm1 i ãnm . ~4!

Then one notes that, via the change of independent variable

zn~ t !5zn~t!, ~5a!

t[t~ t !5
exp~ ivt !21

i v
, ~5b!

the equations of motion~3! become

zn952 (
m51,mÞn

N

anm

zn8 zm8

zn2zm
. ~6!

Here and generally below primes denote of course differentiations with respect to the~complex!
independent variablet. Note that this change of independent variable~5! implies that thecomplex
variable t(t) is a periodic function of thereal variable t ~time! with period T @see ~2!#, and
moreover it entails the following very simple relations among the initial data forzn andzn :

zn~0!5zn~0!, żn~0!5zn8~0!. ~7!

Hence to obtain the solution of the equations of motion~3!, namely of the Newtonian equations o
motion ~1!, one can instead solve, with thesameinitial conditions @see~7!#, the equations of
motion ~6!, and then use the change of independent variable~5! to obtain the desired solution o
the equations of motion~3!. And this clearly implies that, if the solutionzn(t) of the equations of
motion ~6! is meromorphicin the complex variablet, the corresponding solutionzn(t) of the
equations of motion~3!, namely of the Newtonian equations of motion~1!, is completely periodic
with periodT, see~2!; unless one of the poles of the meromorphic solutionzn(t) of the equations
of motion ~6! happens to fall exactly on the circle with center att5 i /v and radius 1/v in the
complext-plane, which is traveled counterclockwise by the complex variablet as the real variable
t evolves from the initial condition att50, in which case the time evolution hits a singularity: th
corresponds to the~special! motions of theN-body problem in the plane characterized by t
Newtonian equations of motion~1! in which a singularity occurs in the time evolution, genera
corresponding to a particle collision.

It is therefore of interest to identify the particularN-body systems of type~3!, characterized by
a special choice of the number of particlesN and of the coupling constantsanm , see~4!, such that
the corresponding equations~6! only possess solutionszn(t) that aremeromorphicin t, or even
more remarkably, thatonly possess solutions which areentire in t. In the first case@‘‘ all solutions
zn(t) of ~6! are meromorphic’’ # one can then assert that these equations of motion~6! are en-
dowed with thePainlevéproperty; in the second case@‘‘ all solutionszn(t) of ~6! areentire’’ # one
can then assert that the equations of motion~6! are endowed with thesuper-Painleve´ property.3
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Note that the corresponding ‘‘physical’’N-body systems in the plane~1! only possess solutions
which arecompletely periodicwith periodT, see~2!, except for the special cases of motions th
run into singularities~generally due to particle collisions! in the first case, without any exceptio
in the second case. Hence such systems~1! provide examples ofnonlinear harmonic oscillators.7

On the basis of the local analysis of the singularities of the solutionszn(t) of the equations of
motion~6! made in Ref. 6, the conjecture has been proffered3 that, in the context of the three-bod
problem (N53), and excluding the cases in which two of the three constantsanm vanish~when
the three-body problem reduces to a two-body problem!, there are altogether 11 cases~correspond-
ing, up to permutations, to 11 different assignments of the triple of coupling constanta12

5a21, a235a32, a315a13) in which the equations of motion~6! arePainlevé, and out of these 11
cases there are three which aresuper-Painleve´. In this paper we focus on the latter three cases
particular on the one not hitherto solved.

The first super-Painleve´ case is characterized by equations of motion~6! ~with N53) with
one vanishing coupling constant and the other two equal to minus one-half, say~of course up to
permutations! a125a2150, a235a325a315a13521/2. In this caseall solutions zn(t) of the
equations of motion~6! ~have been obtained3 and! are indeedpolynomialin t.

The secondsuper-Painleve´ case is characterized by equations of motion~6! ~with N53) with
all three coupling constants equal to minus one-half,a125a215a235a325 a315a13521/2. In
this caseall solutionszn(t) of the equations of motion~6! ~have as well been obtained4 and! are
indeedexponentialin t @up to degeneracies, which yield apolynomialbehavior, and up to the
center-of-mass motion, which is of course uniform, see~6!#.

The third case is characterized by equations of motion~6! ~with N53) with one vanishing
coupling constant, one equal to minus one-half and one equal to minus unity, say~of course up to
permutations!

a125a2150, a235a32521/2, a315a13521. ~8!

This is the case treated in this paper, where we obtain in rather explicit form itsgeneralsolution
zn(t), and we prove that it is indeedentire in the complex variablet. These results are detailed i
the following Sec. II. The proof of these results is provided in Sec. III, and some final remark
in Sec. IV.

Let us end this introductory section by recalling that, in the case with all coupling cons
equal to unity,anm51, theN-body problem characterized by the equations of motion~6!—hence
as well that characterized by the equations of motion~3! @or equivalently by~1! with anm51,
ãnm50, see~4!#—is completely integrableindeedsolvable;2 in this case the solutionszn(t) of the
equations of motion~6! feature however a finite number of square-root branch points, hence
integrable case is not Painleve´. The remarkable characteristics of thisintegrable, indeedsolvable
~see, for instance, Ref. 2!, model suggested to call it a ‘‘goldfish,’’1 and it was subsequentl
suggested that this name be attributed to the general model~1! with arbitrary coupling constants
which also displays a very interesting phenomenology.6

II. RESULTS

In this section we exhibit the solution of the initial-value problem for the equations of mo
~6! with N53 and the assignment~8! of the coupling constants.

Let

z1~t!5x~t!1Z~t!, z2~t!5y~t!1Z~t!, z3~t!52x~t!2y~t!1 Z~t!, ~9!

which entails thatZ is the center-of-mass coordinate,

Z5 1
3 ~z11z21z3!, ~10!

hence, as clearly implied by the equations of motion~6!, it moves uniformly
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Z950, Z ~t!5Z~0!1Z8~0! t5Z~0!1V t. ~11!

Here and hereafter we indicate with

V5 1
3 @z18~0!1z28~0!1z38~0!# ~12!

the ~of courset-independent! center-of-mass speed.
We now assert~and in the following section we prove! thatx(t) is given, in terms ofy(t), by

the following formula:

x~t!522 y~t!1@y8~t!1V# ~t2t0!, ~13!

with the constantt0 ~here and below! given in terms of the initial data by the formula

t05
z3~0!2z2~0!

z28~0!
. ~14!

We moreover assert~and in the following section we prove! that y(t) is given by the follow-
ing formulas:

y~t!52 V ~t2t0!1F~a0 ,a1 ,a2 ;K;t2t0!, ~15a!

F~a0 ,a1 ,a2 ;K;z!5a0 F (0)~K;z!1a1 F (1)~K;z!1a2 F (2)~K;z!, ~15b!

where the three constantsa0 ,a1 ,a2 can be adjusted to fit the initial data, the constantK is given
in terms of these data as follows:

K5
z18~0! z28~0! z38~0!

@z3~0!2z2~0!# @z3~0!2z1~0!#2 , ~16!

and the three functionsF ( j )(K;z) are defined by the following formulas:

F ( j )~K;z!5zj (
m50

`

cm
( j ) ~2K !m z3m, ~17a!

c0
(0)51, cm

(0)52
~6m26!!

2 ~3m!! ~3m21!! ~3m22!!
, m51,2,3,. . . , ~17b!

c0
(1)51, cm

(1)52
~6m24!!

24~3m11!! ~3m!! ~3m21!!
, m51,2,3,. . . , ~17c!

c0
(2)5

1

2
, cm

(2)5
~6m22!!

120~3m12!! ~3m11!! ~3m!!
, m51,2,3,. . . . ~17d!

These formulas provide thegeneralsolution of the equations of motion~6! with N53 and the
assignment~8! of the coupling constants, since they contain the six constantsZ(0), V, t0,
a1 , a2 , a3 , which can be adjusted to fit the six initial conditionszn(0), zn8(0), n51,2,3. Ex-
pressions of the first three of these constants@as well as of the constantK, see~16!# in terms of the
initial data are already written above, see~10!, ~12!, ~14!, while the other three,a1 , a2 , a3 , can
be easily obtained from the following system of three linear equations~which is always solvable,
since the determinant of the coefficients in its left-hand side is unity, as proven below!:
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a0 F (0)~K;2t0!1a1 F (1)~K;2t0!1a2 F (2)~K;2t0!

5
1

3
@2z1~0!12z2~0!2z3~0!#1

2V @z3~0!2z2~0!#

z28~0!
, ~18a!

a0 F (0)8~K;2t0!1a1 F (1)8~K;2t0!1a2 F (2)8~K;2t0!

5 1
3 @2z18~0!12z28~0!2z38~0!#22V, ~18b!

a0 F (0)9~K;2t0!1a1 F (1)9~K;2t0!1a2 F (2)9~K;2t0!5
z28~0! z38~0!

z3~0!2z2~0!
. ~18c!

This concludes our display of thegeneralsolutionzn(t) of the equations of motion~6! with
N53 and the assignment~8! of the coupling constants, and as well of the solution of the co
spondinginitial-value problem. The fact that these solutionszn(t) areentire is plain, see~15! and
~especially! ~17!.

These findings provide an explicit solution of the two nonlinear third-order ODEs satisfie
y(t) andx(t), obtained in Ref. 3 and conjectured there to besuper-Painleve´. This conjecture is
thereby validated; but the fact that the solutions of these nonlinear ODEs also satisfylinear
~nonautonomous, third order! ODEs~as shown in the following section! presumably decreases th
interest of those nonlinear ODEs, at least for the aficionados of Painleve´ lore.

III. PROOFS

Let us begin by reformulating, following Ref. 3, the equations of motion~6! with N53 in a
more convenient form.

First of all we introduce for notational convenience the three coupling constantsa, b, c by
setting

a125a215a, a235a325b, a315a135c. ~19!

Next we point out that, as clearly implied by the equations of motion~6!, the center of mass
see~10!, moves uniformly.

We then introduce the coordinatesun relative to the center of mass,

un5zn2Z, n51,2,3, ~20!

which clearly satisfy the restriction

u11u21u350, ~21!

and we set@for notational convenience, and of course consistently with~21! as well as~9!#

u15x, u25y, u352x2y. ~22!

It is then a matter of trivial algebra to write the equations of motion~6! ~with N53) in terms
of the two variablesx andy,

x952 a
~x81V! ~y81V!

x2y
22 c

~x81V! ~x81y82V!

2x1y
, ~23!

y9522 a
~x81V! ~y81V!

x2y
22 b

~y81V! ~x81y82V!

2y1x
. ~24!

Let us also note the existence~implied by these equations of motion6! of the constant of motionK,
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K5~x81V! ~y81V! ~x81y82V! ~x2y! 2a ~2y1x! 2b ~2x1y! 2c, ~25!

where of courseV5Z8(0) @see~11!#.
We now restrict attention to the coupling constants assignmenta50, b521/2, keeping tem-

porarily still free the option to assign the third coupling constant,c @eventually, to be completely
consistent with the assignment~8!, we shall setc521]. Hence the equations of motion now rea
as follows:

x9522 c
~x81V! ~x81y82V!

2x1y
, ~26!

y95
~y81V! ~x81y82V!

2y1x
, ~27!

and the associated constant of integrationK reads as follows:

K5~x81V! ~y81V! ~x81y82V! ~2y1x!21 ~2x1y!2c. ~28!

We now introduce the auxiliary variable

h~t!5
2y~t!1x~t!

y8~t!1V
, ~29!

and we note that, as a consequence of~27!, there holds the remarkable relation

h8~t!51, ~30!

which of course entails

h~t!5t2t0 ~31!

@and note the consistency of the expression~14! of t0 with this formula~31!, via ~29! with ~9! and
~11!#.

We now note that~29! with ~31! yield ~13!, which is therefore now proven, while clearly vi
~28! and ~29! with ~31! we can rewrite~26! as follows:

x9522 c K ~t2t0! ~2x1y!22c21. ~32!

And the insertion of the expression~13! of x in this equation yields the following third-order OD
for y(t):

y-522 c K @2 ~t2t0! ~y81V!23 y#22c21. ~33!

This ODE becomes particularly simple for two choices of the coupling constantc: for c5
21/2, which corresponds to the case treated in Ref. 3; and forc521, which is the case treate
in this paper, to which attention is hereafter restricted. Then this ODE becomeslinear,

y-52 K @2 ~t2t0! ~y81V!23 y#. ~34!

To solve it we now set

y~t!52 V ~t2t0!1F~K;t2t0!, ~35!

and we thereby obtain forF(K;z) the neat ODE

F-52 K @2 z F823 F#, ~36!
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where of course the primes denote, here and hereafter, differentiation with respect to th
independent variablez5t2t0. It is now easy to check that thegeneralsolution of this linear
third-order ODE is provided by~15b! with ~17!. And it is moreover plain that the three indepe
dent solutionsF ( j )(K;z), j 51,2,3, see~17!, of this ODE~36! are characterized by the condition

F (0)~K;0!51, F (0)8~K;0!50, F (0)9~K;0!50, ~37a!

F (1)~K;0!50, F (1)8~K;0!51, F (1)9~K;0!50, ~37b!

F (2)~K;0!50, F (2)8~K;0!50, F (2)9~K;0!51, ~37c!

that clearly guarantee their linear independence, and moreover entail that their Wronskian,
is of coursez-independent@thanks to~36!#, equals unity,

detS F (0)~K;z! F (1)~K;z! F (2)~K;z!

F (0)8~K;z! F (1)8~K;z! F (2)8~K;z!

F (0)9~K;z! F (1)9~K;z! F (2)9~K;z!
D 51. ~38!

The proof of all the results reported in the preceding section is thereby completed.
It will remain to be seen whether the approach used herein can be exploited to solve

three-body problems of type~6!, and in particular some of those singled out in Ref. 3; an obvi
candidate is the model characterized by the coupling constantsa125a215a50, a235a325b
521/2, a315a135c523/2, to which the treatment given in this section is still applicable, le
ing again to the ODE~33!, but with a value ofc that causes the right-hand side of this ODE to
quadratic@rather than being linear, as is the case, see~34!, for the model treated in this paper#.
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The minimal coupling principle is revisited under the quantum perspectives of the
space–time symmetry. This revision is better realized on a group approach to
quantization~GAQ! where group cohomology and extensions of groups play a
preponderant role. We first consider the case of the electromagnetic potential; the
Galilei and/or Poincare´ group is~noncentrally! extended by the ‘‘local’’ U~1! group.
The resulting group can also be seen as a central extension, parametrized by both
the mass and the electric charge, of an infinite-dimensional group, on which GAQ
leads to the dynamics of a particle moving in the presence of an electromagnetic
field. Then we try the gravitational interaction of a particle by making the space–
time translations ‘‘local.’’ However, promoting to ‘‘local’’ the space–time subgroup
of the true symmetry of the quantum free relativistic particle, i.e., the centrally
extended by U~1! Poincare´ group, results in a new electromagneticlike force of
pure gravitational origin. This is a consequence of the space–time translations not
being an invariant subgroup of the extended Poincare´ group and constitutes a pre-
liminary attempt to a nontrivial mixing of space–time and internal gauge interac-
tions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1604183#

I. INTRODUCTION

In the Lagrangian formalism, formulated on the one-jet bundle,J1(E) of a vector bundleE on
Minkowski space–timeM ,1,2 promoting a given underlying rigid symmetry to ‘‘local,’’ i.e., ex
tending the corresponding Lie algebra by taking the tensor product of it by the algebra o
analytic functions onM , requires the introduction of a derivation law on the module of section
E, G(E), which is eventually interpreted as a potential providing the corresponding gauge
action. This is essentially the formulation of the so-called minimal coupling principle, w
culminates in Utiyama’s theory.3 Internal gauge invariance had originally led successfully
electromagnetic interaction associated with U~1!, then to Yang–Mills associated with isosp
SU~2! ~valid only at the ‘‘very strong’’ limit!, electroweak with (SU(2)̂ U(1))/Z2 , and finally to
strong interaction associated with color SU~3!. The same spirit is shared by later attempts to un
all of these into gauge groups such as SU~5!. On the other hand, the ‘‘local’’ invariance unde
external~space–time! symmetries, such as a subgroup of the Poincare´ group, has been used t
provide a gauge framework for gravity,4 although fully disconnected from the other~internal!
interactions. In fact, a unification of gravity and the other interactions would have suppo
required the nontrivial mixing of the space–time group and some internal symmetry, a

a!Electronic mail: valdaya@iaa.es
51660022-2488/2003/44(11)/5166/19/$20.00 © 2003 American Institute of Physics
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explicitly forbidden by the so-calledno-go theoremsby O’Raifeartaigh, Coleman, Mandula
Michel, etc.5–8 long ago, which stated that there is no finite-dimensional Lie group containing
Poincare´ group acting as diffeomorphisms of the base manifoldM , the Minkowski space–time
and any internal SU(n) group acting linearly on the fiber ofE, except for the direct product. It is
worth mentioning that supersymmetry was originally developed in the 1970s, mainly by S
and Strathdee,9 in an unsuccessful attempt to invalidate the no-go theorems.

However, the current skill in dealing with Lie group extensions and irreducible representa
of ~even infinite-dimensional! Lie groups tempts us into revisiting the question of the mixing
symmetries and, accordingly, the unification of interactions in terms of ordinary Lie groups
propose a simple, yet nontrivial, way of facing the problem of interaction mixing. This consis
identifying one of the U~1! Cartan subgroups in the internal symmetry with the U~1! phase
invariance in quantum mechanics. Then, turning the space–time translation subgroup of
trally extended Poincare´ group10–13into a ‘‘local’’ group automatically promotes the original rigi
internal symmetry to the gauge level in a nontrivial way from the physical standpoint.
provides a nontrivial mixing of gravity and the already introduced internal interaction assoc
with the given unitary symmetry. Here, we seek to demonstrate explicitly the ocurrence o
new phenomenon at least at a given approximation without exhausting all possibilities o
proposed algorithm. This means that our present computational outputs must be unders
being partial, although, at the nonrelativistic limit, they are exact and reveal with precisio
mixing effect.14

As is well known, the minimal coupling principle can also be formulated on a bundleE of the
form E5R33R→R, as corresponding to the case of mechanics, thus making the problem
nically easier while keeping the essential point to be discussed here. In this framework,
followed in the present article, the gauge principle will be revisited by simply substituting
quantum mechanical space–time symmetry for the standard~classical! one. In fact, in a previous
letter,14 we sketched an approach to the problem in this simple and economical way, i.e.
particle mechanics~versus field theory! framework, and we now undertake a more detailed a
formal presentation. A much more involved generalization to quantum field theory is under w15

Since the revision we attempt here lies entirely on symmetry grounds, a~quantum! mechanical
formulation tightly attached to a group structure is better suited. There is, in fact, a wa
associating physical dynamics with a specific symmetry group. This could be accomplish
means of the rather standard co-adjoint-orbits method of Kirillov,16 where the Lagrangian is see
as the local potential of the corresponding symplectic form. However, we shall proceed thro
group approach to quantization~GAQ!,17,18 which is directly related to the co-homological stru
ture of the symmetry group, and leads directly to the quantum theory, a fact that can be of
relevance in the near future in passing to the quantum-field-theory level. Co-homology para
will be directly identified with the physical coupling constants. In this sense, the association
parameter of the~symplectic! co-homology group of the Galilei group with the particle mass h
been emphasized by Souriau.19

As an intermediate step between the more standard Lagrangian version of the minima
action principle and the one to be presented here, we shall formulate a version ‘‘a` la Cartan,’’ i.e.,
in terms of the invariance of the Poincare´–Cartan form20–23rather than the Lagrangian, of the pa
of Utiyama’s theory concerning the particle in interaction with the field. Indeed, as menti
above, the dynamics of the gauge fields themselves will be considerd elsewhere.

The article is organized as follows. Section II is a thorough presentation of basic geom
aspects of classical and quantum mechanics, mainly those fundamental to the developmen
present work. Section III is devoted to the Cartan-like analysis of the minimal coupling prin
particularized for the case of electromagnetism and nonrelativistic gravity. In Sec. IV we pr
explicitly the GAQ with the example of a particle moving in an electromagnetic field. Finally
Sec. V, we directly present the chief problem of gauging the translation subgroup of the ce
extended Poincare´ group giving rise to the new phenomenon of an extra coupling constant m
nontrivially the geodesic force and the Lorentz one. Some outlooks are included at the en
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II. PHASE INVARIANCE IN QUANTUM MECHANICS

According to the standard approach to quantum mechanics~see, for instance, Ref. 24! a state
of the system is characterized by aray, rather than a vector, of a Hilbert space, i.e., normaliz
wave functions are determined up to a complex number of module 1 or phase. This is a
consequence of the definition of probability and constitutes a symmetry to be referred to a~1!
or phase invariance in quantum mechanics. Let us approach this symmetry from quite di
perspectives to highlight its fundamental features.

A. Behavior of the Schro ¨ dinger equation

We shall consider the behavior of the Schro¨dinger equation corresponding to the free quant
particle

i\
]

]t
C52

\2

2m
¹2C, ~1!

under the Galilei transformations

t85t1b,

xW85RxW1aW 1VW t, ~2!

vW 85RvW 1VW .

whereR represents rotations,bPR and aW PR3 time and space translations, respectively, andVW

PR3 Galilean boosts.
Equation~1! acquires an extra term,

i\
]

]t8
C1 i\VW •

]C

]xW8
52

\2

2m
¹82C, ~3!

which can be compensated only by also transforming the wave function. Allowing for a nont
phase factor in front of the transformed wave function, of the form

C85e~ im/\!(VW •RxW1 ~1/2!VW 2t)C, ~4!

the Schro¨dinger equation becomes strictly invariant:

i\
]

]t8
C852

\2

2m
¹82C8. ~5!

The need for a transformation such as~4! accompanying the space–time transformation~2! to
accomplish full invariance strongly suggests the adoption of a central extension of the G
group as the basic~quantum-mechanical! space–time symmetry for the free particle.25 The con-
stant\ is required to keep the exponent in~4! dimensionless.

The successive composition of two transformations in the extended Galilei groupG̃ immedi-
ately leads to the group law:

b95b81b,

aW 95aW 81R~eW8!aW 1VW 8b,

VW 95VW 81R~eW8!VW , ~6!
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eW95A12
eW 2

4
eW 81A12

eW82

4
eW 1

1

2
eW 8∧eW ,

eif95eif8eife~ im/\![VW 8R8aW 1 ~1/2! bVW 82] ,

whereeifPU(1), and wehave made the rotation parameterseWPR3 explicit, which are restricted
to 2 sin(x/2) 5ueW u, x being the rotation angle.

B. Semi-invariance in classical mechanics

This phenomenon of extending the space–time symmetry, although conceptually pure
tum mechanical, can also be recast within a~semi-!classical formalism, by requiring the simulta
neous extension of the classical phase space by a new variablef, transforming in a nontrivial way
under the U~1!-extended symmetry group. The need for such an extension is motivated by th
of strict invariance of the Poincare´–Cartan form associated with the free particle (H5pi ẋ

i2L
5 pW 2/2m),

QPC[pidxi2Hdt5S ]L

] ẋi ~dxi2 ẋidt!1LdtD5pidxi2
pW 2

2m
dt ~7!

under the Galilei group. In fact, it is left only semi-invariant by the infinitesimal transformat
associated with~2! in the sense that the Lie derivative ofQPC with respect to those generators
the differential of a function not necessarily zero:

Xb5
]

]t
⇒LXb

QPC50,

XaW5
]

]xW
⇒LXaW

QPC50,

~8!

XVW 5t
]

]xW
1m

]

]pW
⇒LXVW

QPC5d~mxW !,

XeW5xW∧
]

]xW
1pW ∧

]

]pW
⇒LXeW

QPC50.

The pathology of semi-invariance is parallel to the absence of a clean quotient by the
tions of motion. Let us see in some detail the quotient process in going to the solution man
In the Cartan formalism the trajectories of a general physical system are the orbits of the ke
dQPC :

QPC[pidxi2Hdt,
~9!

V[dQPC5dpi∧dxi2
]H

]xi dxi∧dt2
]H

]pi
dpi∧dt.

V has a one-dimensional kernel generated byXHPKerdQPC such thatdt(XH)51,

XH5
]

]t
1

]H

]pi

]

]xi 2
]H

]xi

]

]pi
, ~10!

and the associated equations of motion are the Hamilton equations:
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dt

dt
51,

dxi

dt
5

]H

]pi
, ~11!

dpi

dt
52

]H

]xi .

The vector fieldXH defines a one-parameter group which divides thespace of movementsR
3R33R3, parametrized by (t,xW ,pW ), into classes, andM[$R3R33R3%/XH constitutes the sym-
plectic phase spaceof the system characterized by the HamiltonianH; the symplectic form is
obtained by the projection ofV. The change of variables under which the equations of motion
the quotient become trivial is the Hamilton–Jacobi transformation. For the exampleH5 pW 2/2m,
corresponding to a free particle, this transformation is

H xi5
Pi

m
t1Ki

pi5Pi

t5t

⇔H Ki5xi2
pi

m
t,

Pi5pi ,

t5t,

~12!

where the constants of motionKi ,Pj parametrize the solution manifoldM . However, the form
QPC goes to the quotient except for a total differential:

QPC→PidKi1dS PW 2

2m
t D ,

~13!
v5dPi∧dKi .

C. Poisson algebra realization

Another equivalent analytical mechanics breakdown claiming a ‘‘generalization’’ is the u
relationship between the Lie brackets of basic symmetries and the corresponding Poisson b
of the associated Noether invariants. The symplectic form21–23 is a skew-symmetric ‘‘metric’’ and
defines an isomorphismv[:X(M )↔L1(M ) between the vector space of vector fields onM and
that of one-forms onM ,

XPX~M !°v~X,• ![ i XvPL1~M ! , ~14!

associating a bracket$,% on L1(M ) with the Lie bracket of vector fields. In particular, give
functionsf ,gPC`(M ), their differentials are associated withHamiltonian vector fields Xf ,Xg .26

This permits the definition of a Poisson bracket between functions, rather than one-forms, b
time the correspondence$,%→@,#,

$,%: f ,g°$ f ,g%/d$ f ,g%52 i [Xf ,Xg]v, ~15!

is no longer an isomorphism because constant functions have trivial Hamiltonian vector fie
particular, with regard to the exampleH5 pW 2/2m, and consideringKi ,Pj as the basic coordinate
for M , we find

$Ki ,Pj%5d j
i
•1°@XKi,XPj

#50, ~16!
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that is, a Lie algebra homomorphism whose kernel is the central subalgebra of constant fun
R, generated by 1. It is easy to realize thatXKi,XPj

are nothing other than the generatorsXVi,Xaj ,
respectively, of the action~2! of the unextended Galilei group on the space of movements, wr
on the solution manifold.27

The extension of phase space is required to represent faithfully the~classical! Poisson algebra
by means of the generators of the extended symmetry as first-order differential operators
that constitutes the Bohr–Sommerfeld approximation to quantization or prequantization,
language of geometric quantization.19,28–30Let us look at the preliminary steps towards the ge
metric attempts at quantization.

D. Geometric and group approach to quantization

The existence of a nontrivial kernel in the correspondence between functions and Hamil
vector fields is an essential failure of the naive geometric approach to quantizationˆ: f ° f̂ [Xf ,
which would associate the trivial operator to any constant. The simplest way of avoiding
problem consists of enlarging phase space~and/or movements space! with one extra variable
providing one extra component toXf , and generalizing accordingly the equationi Xf

dQPC

52d f so as to get a nontrivial new component even thoughf is a constant. On a quantum
manifold P, locally isomorphic toM3S1, with connection formQ such that the curvature two
form (dQ) coincides withdQPC , the equation above can be replaced by the set of equation19

i X̃f
dQ52d f ,

~17!
i X̃f

Q5 f ,

generalizing in this way the quantization map which now reads~except perhaps for a minus sign!

ˆ: f ° iX̃ f . ~18!

Note that Eq.~17! immediately implies the strict invariance ofQ underX̃f :

LX̃f
Q5diX̃f

Q1 i X̃f
dQ5d f2d f50. ~19!

Locally, we can writeQ5QPC1 dz/ iz , z5eiFPS1, and thenX̃f5Xf1@ f 2QPC(Xf)#
3( iz(]/]z)2 iz* (]/]z* )), and we immediately see that~17! has a unique solution associatin
the fundamental~vertical! vector fieldJ[ iz(]/]z)2 iz* (]/]z* )5]/]F, dual todz/ iz, with the
unity of R.

The quantization map̂ is now an isomorphism between the Poisson algebra onM and the
Lie subalgebra of vector fields onP that are solutions to~17!. For the basic functions, we have

$Ki ,Pj%5d j
i
•1↔@X̃Ki,X̃Pj

#5d j
i
•J. ~20!

It is again easy to realize that, in the case of the free particle, the operatorsX̃Ki,X̃Pj
are nothing

other than the generatorsX̃Vi,X̃aj of the action~2! and ~4! on the extended space of movemen
~with z[eifPS1) of the extended Galilei group, that is to say,

X̃b5Xb ,

X̃aW5XaW ,
~21!

X̃VW 5XVW 2
1

\
mxW

]

]f
,
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X̃eW5XeW ,

written on the solution manifold.
To pass to the solution manifold, we must take into account the evolution of the new va

zPU(1). In fact, the equations of motion in the extended@by U~1!# movement space are given b
the vector fieldX̌ in the kernel ofdQ andQ, simultaneously, satisfyingdt(X)51. Locally, and for
the choiceQPC5pidxi2Hdt, we find

X̌H5XH1H H2pi

]H

]pi
J J. ~22!

For the free particle,X̌H provides the following new equation, to be added to de Hamilton–Ja
set ~12!,

z5ze2 ~ i /\!~PW 2/2m! t⇔z5ze~ i /\!~pW 2/2m! t. ~23!

Now the formQ, originally written in the space of movements as

Q5pidxi2
pW 2

2m
dt1\

dz

i z
, ~24!

goes to the quotient, by applying the extended Hamilton–Jacobi transformation~12! and ~23!,
giving

Q5PidKi1\
dz

iz
. ~25!

The space of wave functionsC is constituted by the complex functions onP that satisfy the
U~1!-equivariance condition, turningC into a section of the principal bundleP→M :31

JC̃5 i C̃↔C̃~K,P,z!5zC~K,P! , ~26!

on which the vector fieldsX̃f act, defining theprequantum operators.
Unfortunately, the quantization mapˆ is faithful but not irreducible as a representation of t

Lie algebra of classical functions. At this prequantization level, we are able to reproduce on
Bohr–Sommerfeld–Wilson quantization rules.30 We know that this representation is reducib
because of the existence of nontrivial operators commuting with the basic quantum gen
K̂ i[ i\X̃Ki,P̂j[2 i\X̃Pj

. In fact, thinking of the simplest case, that of the free particle for
ample, and adopting forQ the local expression~25!, we get the following basic operators actin
on the untilded wave functionsC:

K̂ i5 i\
]

]Pi
1Ki ,

~27!

P̂j52 i\
]

]K j ,

and it is clear that the operatorsǨ i[ ]/]Pi do commute with them.
True quantization requires that all nontrivial operators commuting with basic quantum

erators should be trivialized. We must then impose a maximal set of mutually compatible c
tions in the formXC50, for X in some maximal vector space calledpolarization. For instance, in
the example above the operator]/]Pi would be trivial had we imposed the polarization conditi
(]/]Pi) C50→CÞC(P). Finding a polarization, however, is a nontrivial task in general,
cause two polarization conditionsâC50, b̂C50 are inconsistent if@ â,b̂#51̂ and, once a certain
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polarization has been imposed, the set of physical operators that preserve the polariza
severely restricted. Even more, the existence of an invariant polarization, i.e., a polari
preserved by the basic operators, is by no means guaranteed.

A stylish and even practical~at least for fundamental systems! solution to this and other
problems comes from the structure itself of the~classical! Poisson algebra seen as a fundamen
symmetry of the physical system to be quantized or, more precisely, the~quantum! physical
system to be studied. Looking again at the quantum symmetry of the free particle, the ex
Galilei group ~2!, we can adopt its structure as the basic block to provide the whole phy
system, including the space and time where the evolution takes place.17,18 The chief idea is to
replace the quantum manifoldP with a Lie groupG̃ bearing the structure of a principal bund
with structure group U~1! and a connection one-formQ selected from the canonical invarian
forms on the group. The simplest, though sufficiently broad, example of such a class of Lie g
is the case of a central extension of a given groupG by U~1!.25 In this situation, the centra
extensions are parametrized by the second co-homology group ofG in U~1!, H2(G,U(1)), and
the coordinates in this~vector! space are associated with fundamental constants such as the m19

or the electric charge~see Sec. IV!. Each co-homology constant is in turn associated with a
subalgebra of even dimension~in fact, a symplectic vector space! which will provide a set of
canonically conjugate pairs of operators. We shall call themdynamicalquantities, or the corre-
sponding parameters in the group~classical! dynamical variables.

The virtues of working on a Lie group are multiple, but, for the time being, let us point
that of possessing two sets of natural, mutually commuting operators, that is, the left- and
invariant vector fields, the latter of which can provide a unitary representation to be reduc
polarization conditions imposed by a subalgebra of the former. With this choice, the conn
one-formQ is the U~1! component of the left-invariant canonical one-form on the group, whic
automatically invariant under the right-invariant vector fields. The only apparent drawba
doing so is that the quotientG̃/U(1) is not necessarily a symplectic manifold since the curvat
two-form dQ may have a nontrivial kernel. However, this apparent problem is solved by inclu
in the polarization conditions, formulated in terms of a maximal horizontal subalgebraP of
left-invariant vector fields, the subalgebra of~left-invariant! vector fieldsGQ generating the char
acteristic module ofQ, i.e., KerQùKerdQ.

It should be stressed that, far from being a drawback, working on the precontact manifG̃
instead of a proper quantum manifoldP allows us to deal with quantum systems without classi
limit. In fact, the trajectories of the vector fields in the characteristic subalgebra generaliz
classical motion, and the solution of the corresponding equations can be bypassed by in
this subalgebra in the polarization as generalized Schro¨dinger equations.

III. CARTAN-LIKE VERSION OF THE MINIMAL-COUPLING PRINCIPLE: THE
ELECTROMAGNETIC AND NONRELATIVISTIC GRAVITATIONAL FORCES

Once the symmetry of the free particle has been posed through the strict invariance
corresponding extended Poincare´–Cartan~or quantization! form Q ~24! under the action of ex-
tended Galilei group, we may postulate the requirement of invariance of a generalizedQ under the
Galilei group~noncentrally! extended by the ‘‘local’’ group U(1)(xW ,t) ~of local phase transforma
tionseif(xW ,t)). This requirement, along with the minimal substitution inQ to achieve strict invari-
ance, constitutes the Cartan-like version of the minimal coupling principle for the U~1! rigid
symmetry and will lead to the motion of a particle in the presence of an electromagnetic fi

Let us consider the Lie algebraG̃ of the centrally extended Galilei groupG̃ ~only nonzero
commutators!:

@X̃Vi, X̃b#5X̃ai, @X̃Vi, X̃aj #5
m

\
d i j X̃f ,

~28!
@X̃e i, X̃e j #5e i j .

kX̃ek, @X̃e i, X̃Vj #5e i j .
kX̃Vk, @X̃e i, X̃aj #5e i j .

kX̃ak,
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which, as mentioned above, leaves strictly invariant the extended Poincare´–Cartan formQ

5pidxi2(pW 2/2m)1\df, that is,LX̃a
Q50,;X̃aPG̃.

Local U~1! transformations generated byf ^ Xf , f being a real functionf (xW ,t), are incorpo-
rated into the scheme by adding to~28! the extra commutators:32

@X̃a , f ^ Xf#5~LX̃a
f ! ^ Xf . ~29!

The Lie derivative of~24! with respect tof ^ Xf gives

L f ^ Xf
Q5d~ i f Xf

Q!1 i f Xf
dQ5d f .

Keeping the strict invariance requires modifyingQ by adding a connection termG5G idxi

1G0dt whose components transform under U(1)(xW ,t) as the space–time gradient of the functi
f .33 Additional conditions onG will be obtained by requiring strict invariance ofQ8[Q1G under
the complete group. The generators of the action of the whole group on the var
(t, xW , pW , GW , G0 ,f) are

X̃b5
]

]t
,

X̃aW5
]

]xW
,

X̃VW 5t
]

]xW
1m

]

]pW
1GW

]

]G0
1

m

\
xW

]

]f
, ~30!

X̃eW5xW∧
]

]xW
1pW ∧

]

]pW
1GW ∧

]

]GW
,

f ^ Xf52¹W f
]

]GW
1

] f

]t

]

]G0

2
f

\

]

]f
.

Then, the infinitesimal condition

LX~Q8!50

implies the following finite transformation properties of the components ofG:

GW 85RGW ,
~31!

G085G01VW •RGW ,

under a rotation and a boost, and

GW 85GW 1¹W f ,
~32!

G085G01
] f

]t
,

under an element of U(1)(xW ,t).
Let us now compute the simultaneous kernel ofQ8 and dQ8 and write the equations o

motion, rewriting the connectionG asG[qAidxi2qA0dt. We then have~omitting the prime over
Q8!
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Q5mvW •dxW2 1
2 mvW 2dt1qAW •dxW2qA0dt1\df, ~33!

X̌5
]

]t
1vW •

]

]xW
1

q

m F S ]Aj

]xi 2
]Ai

]xj D v j2
]A0

]xi 2
]Ai

]t G ]

]v i
2

1

\ F1

2
mvW 21q~vW •AW 2A0!G ]

]f
. ~34!

It states the equations of motion of a charged particle of chargeq in an electromagnetic field:

dxW

dt
5vW ,

m
dvW
dt

5qFvW ∧~¹W ∧AW !2¹W A02
]AW

]t
G , ~35!

df

dt
52

1

\ S pW 2

2m
2

q

m
AW •pW D .

The minimal coupling principle can also be applied to the case of Newtonian gravit
requiring the space and time translation parameters to depend on time. Unlike the electrom
gauge principle, which can be directly extended to the relativistic situation, relativistic grav
much more involved and will be analyzed in Sec. V, mixed with electromagnetism as our c
task.

For brevity, let us consider the 111-dimensional case. Starting with the unextended Ga
group, we promote the space and time translations to local in the more economical way, t
turning the corresponding group parameters into functions of time. The gauge algebra is t

@ f ~ t ! ^ Xb , Xb#52
] f

]t
^ Xb ,

@ f ~ t ! ^ Xb , Xa#50, ~36!

@ f ~ t ! ^ Xb , XV#5 f ~ t ! ^ Xa .

According to the minimal prescription, we introduce a connectionG[hdt to be added to the
free Poincare´–Cartan form, and an extra component in]/]h to the Galilei generators for nontrivia
realization of the current algebra~36!. Then the semi-invariance of

QPC8 5pdx2
p2

2m
dt1hdt ~37!

under the current algebra~36! fixes the new components inh, so that the complete expression
the Lie algebra of theunextendedGalilei group with local~depending only on time! space and
time translation subgroup becomes

f ~ t ! ^ Xb5 f
]

]t
1S p2

2m
2hD d f

dt

]

]h
,

f ~ t ! ^ Xa5 f
]

]x
2p

d f

dt

]

]h
,

~38!

XV5t
]

]x
1m

]

]p
,

f ~ t ! ^ Xh5 f
]

]h
,
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where we have had to introduce the new local generatorf (t) ^ Xh in order to close the curren
algebra. The new generator also leaves the form~37! semi-invariant. Strict invariance is now
achieved by adding to generatorsX new components in]/]f with coefficients equal to2g, g
being such thati XdQ85dg. This results in

f ~ t ! ^ Xb̃5 f
]

]t
1S p2

2m
2hD d f

dt

]

]h
2

f

\ S p2

2m
2hD ]

]f
,

f ~ t ! ^ Xã5 f
]

]x
2p

d f

dt

]

]h
1

1

\
f p

]

]f
,

~39!

X̃V5t
]

]x
1m

]

]p
2

m

\ S x2
p

m
t D ]

]f
,

f ~ t ! ^ Xh̃5 f
]

]h
2

f

\

]

]f
.

The reason for U~1!-extending after gauging is clear: both processes definitely do not comm
Proceeding the other way round leads, precisely, to the new results of Sec. V.

The Cartan-like equations associated with~37! lead directly to the Newtonian gravity equa
tions if we identifyh with the gravitational potential. This potential can be related to the com
nentg00 of a metric in the Newtonian limit of general relativity via the expressiong00'11h.

IV. GROUP APPROACH TO THE QUANTIZATION OF A PARTICLE MOVING IN AN
ELECTROMAGNETIC FIELD

In this and the next section, we shall adopt the GAQ formalism as a generalization o
geometrical approach to quantum mechanics, although we shall be interested, for now, prim
the classical equations of motion. As mentioned above, we seek to reproduce any dynam
kinematical quantity or variable out of a Lie group so that notation such ast,xW ,pW , etc. will refer to
group variables~although directly identifiable with ‘‘physical’’ ones once the equations of mot
are written!.

Let us start by exponentiating the algebra~28!1~29!, originally performed on a given move
ment space, in order to arrive at an abstract Lie group from which to obtain all physical struc
This algebra is infinite dimensional but, for real analytic functionsf , the dynamical-variable
content of it, in the sense of Sec. II D, is addressed by the~co-homological! structure of the
finite-dimensional subalgebra generated byG̃ along with those generatorsf ^ Xf with only linear
functions,t ^ Xf and xi

^ Xf , to be calledXA0 and XAi, respectively. The rest of the function
contribute only to the characteristic~nondynamical! subalgebra and can be decoupled from
theory. Let us callG̃E this finite-dimensional group. It proves to be enough to describe
dynamics of a particle moving in an electromagnetic field if we resort to the trick~see below! of
assuming an explicit dependenceAm5Am(xW ,t) once the one-formQ will be found. @This proce-
dure is suggested by the possibility of writing an analytic function in the formf (xW ,t)5f

1Am(xW ,t)xm, wheref5 f (0W ,0).] We shall not be involved here with the corresponding quan
field theory.

The groupG̃E can be given the following group law which extends that of the Galilei gro
~with parameterst,xW ,vW [ pW /m instead ofb,aW ,VW , respectively! and agrees with the finite transfo
mation ~31! and ~32!:

t95t81t,

xW95xW81R8xW1vW 8t,
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vW 95vW 81R8vW ,

R95R8R,

AW 95AW 81R8AW , ~40!

A095A081A01vW 8•R8AW ,

z95z8zei jm(g8,g)ei jq(g8,g),

jm~g8,g![2
m

\ FvW 8•R8xW1
1

2
tvW 82G ,

jq~g8,g![2
q

\
@AW 8•R8xW1t~vW 8•AW 82A08!#,

wherejm(g8,g) is a standard Bargmann-like cocycle associated with the Galilei~sub!group, in
particular with the symplectic submanifold of coordinates (xi ,v j ), andjq(g8,g) is a new cocycle,
parametrized by the electric charge, as we shall see, associated with the symplectic subman
coordinates (xi ,Aj ). Both satisfy the cocycle conditions

j~g8,g!1j~g8* g,g9!5j~g8,g* g9!1j~g,g9!,

j~0,g!5j~g8,0!50

intended to maintain the structure of group law after the extension. Since both cocycle
associated with intersecting symplectic submanifold (xW is in both! we should expect a mixed
momentum variable conjugated toxW , to be identified with the minimally coupled momentum. Th
is the essence of minimal coupling in GAQ.

From ~40! we derive left- and right-invariant vector fields and from the former
z-component of the left-invariant canonical one-form:

X̃t
L5

]

]t
1vW •

]

]xW
2

1

\ F1

2
mvW 21q~vW •AW 2A0!GJ,

X̃xW
L5RS ]

]xW
2

1

\
@mvW 1qAW #J D ,

X̃vW
L5RS ]

]vW D ,

X̃eW
L5A12

eW2

4

]

]eW
2

1

2
eW ∧

]

]eW
, ~41!

X̃
AW
L
5RS ]

]AW
1vW

]

]AW 0
D ,

X̃A0

L 5
]

]A0
,
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X̃z
L5 i S z

]

]z
2z*

]

]z* D[
]

]f
[J,

X̃t
R5

]

]t
,

X̃xW
R5

]

]xW
,

X̃vW
R5

]

]vW
1t

]

]xW
,

X̃eW
R5A12

eW2

4

]

]eW
1

1

2
eW ∧

]

]eW
, ~42!

X̃
AW
R
5

]

]AW
2qxWJ,

X̃A0

R 5
]

]A0
1qtJ,

X̃z
R5 i S z

]

]z
2z*

]

]z* D[
]

]f
[J,

Q[\u (z)L5mvW •dxW2
1

2
mvW 2dt1qAW •dxW2qA0dt1\

dz

i z
. ~43!

The commutation relations of~let us say! left generators~omitting rotations, which operate in
the standard way! are

@X̃t
L , X̃xi

L
#50, @X̃t

L , X̃v i
L

#52X̃xi
L , @X̃xi

L ,X̃v j
L

#5
m

\
d i j J,

@X̃t
L , X̃Ai

L
#50, @X̃t

L , X̃A0
L

#52
q

\
J, @X̃xi

L , X̃Aj
L

#5
q

\
d i j J, ~44!

@X̃xi
L , X̃A0

L
#50, @X̃v i

L , X̃Aj
L

#5d i j X̃A0
L , @X̃v i

L , X̃A0
L

#50.

If we compute the characteristic module ofQ, i.e., KerdQùKerQ for q50, as corresponding
to the free particle, we find that it is generated by a left subalgebra

GQuq505^X̃t
L ,X̃eW

L ,X̃
AW
L

,X̃A0

L &, ~45!

leading to the trajectories~12! and ~23! for the dynamical~symplectic! variablesxW and pW , and
additional ones for the kinematical~nonsymplectic! variableseW ,AW ,A0 which decouple from the
theory. The quotient ofG̃E /U(1) by the generalized equations of motion is a symplectic mani
~the solution manifold! of dimension 313. However, for nonzeroq, we have

GQ5 K X̃eW
L , X̃

AW
L
2

q

m
X̃vW

LL , ~46!
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leading to a symplectic manifold of dimension 414. We should note that no time evolutio
appears as an equation of motion. This is because the electromagnetic cocycle lends dy
character tot as conjugate toA0 . The only characteristic vector field, apart fromX̃eW

L , which again
simply decouples the variableseW , is the one defining the minimal coupling. In fact, the Noeth
invariantsi X̃Q are

i X̃
t
RQ52~ 1

2 mvW 21qA0!,

i X̃
xW
RQ5mvW 1qAW [PW ,

i X̃
vW
RQ52m~xW2vW t !1qAW t,

i X̃
AW
RQ52qxW ,

i X̃
A0

R Q5qt,

reproducing, in particular the ‘‘canonical momentun’’PW [mvW 1qAW .
Real dynamics appear when we impose the ‘‘constraint’’A0,i5A0,i(xW ,t) on Q, whose charac-

teristic module turns out now to be generated byX̌ in ~34!, thus reproducing the standard equ
tions of motion. The trick of introducing this constraint after the formQ associated withG̃E has
been computed can in fact be justified in mathematical terms, although at the price of introd
an explicit infinite parametrization of the fieldAm by means of, for instance, Fourier coefficien
am(kW ), an* (kW ), and, very importantly, an extra space–time translation group associated wit
field, let us sayxm . That is, the general space–time position on which the field lies concept
differs from the space–time position of the particle. Under these conditions a cocycle o
infinite-dimensional group can be introduced, contributing the formQ with the termqAW (xW ,t)
•dxW2qA0(xW ,t)dt where

Am~xW ,t !5E d3kW

2ko $am~kW !e2 ik•x1am* ~kW !eik•x% , ~47!

that is, the electromagnetic field evaluated on the trajectories of the particle. Now, the a
mentioned constraint proves to be as natural as stating that, on a trajectory, the particle s
field Am evaluated onxm rather than onxm . This precise construction, along with the~also
infinite-dimensional! cocycle providing dynamical content to the field variablesam(kW ), an* (kW )
themselves, deserves a separate work, which is in progress.

We should say to conclude this section that this study can be repeated with the ce
extended Poincare´ group P̃10,11 ~see also Refs. 13 and 14! by promoting tolocal the U~1! trans-
formations and considering the finite-dimensional subgroupP̃E analogous toG̃E .

V. MIXING THE ELECTROMAGNETIC AND GRAVITATIONAL FORCES

Let us now consider the gravitational interaction from our group-theoretical viewpoint~we
shall omit \ in this section!. To this end, we start directly with the centrally extended Poinc´

group P̃ and see how the fact that the translation generators produce the central term
commutation with some other generators~boosts! plays a singular role in the relationship betwe
local space–time translations and local U~1! transformations. Symbolically denoting the gene
tors of translations byP, P0 , those of boosts byK and the central one byJ, we find

@K, f ^ P#.~LKf ! ^ P1 f ^ ~P01J! . ~48!
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This means that turning the translations intolocal symmetry also entails thelocal nature of the
U~1! phase. We thus expect a nontrivial mixing of gravity and electromagnetism into an infi
dimensional electro-gravitational group.

We shall follow steps identical to those given in the former example. In turning the param
of space–time translationslocal, we replacexm with xm1hn

m(xW ,x0)xn, write a finite-dimensional
algebraPEG keeping only the linear part of local space–time translations (xm1hn

mxn, with con-
stanthmn), the generators of which will be calledXhmn, apply the GAQ formalism and impose th
‘‘constraint’’ hmn5hmn(xW ,x0), on the symplectic submanifolds~solution manifolds!. However, the
co-homological structure of this finite-dimensional electro-gravitational subgroup,P̃EG , is richer
than that of P̃E and the exponentiation of the Lie algebraP̃EG is by far more involved. As
mentioned in the Introduction, we attempt only a basic description of the new phenomen
which results from the present revisited gauge principle, although we seek, apart from the
Lorentz force, an approximate expression for the geodesic force in terms of the metrigmn

[hmn1hmn. Thus, we shall resort only to what seems to be the basic co-homological~fundamen-
tal! constants corresponding to the inertial massm, the electric chargeq, the gravitational massg
and themixing vertexcoupling constantk.

Let us write the algebraP̃EG in an almost covariant way~the central extensions and induce
deformations are necessarily non-covariant!. To this end, we parametrize the Lorentz transform
tions with emn as usual. The proposed explicit algebra is

@X̃xm
L ,X̃enr

L
#52hnmX̃xr

L
1hrmX̃xn

L
2~m1kq!c~hrmdn

02hnmdr
0!J,

@X̃xm
L ,X̃hnr

L
#52hnmX̃xr

L
2hrmX̃xn

L
1@2~g2mc!h0mdn

0dr
01mc~hrmdn

01hnmdr
0!#J,

@X̃xm
L ,X̃An

L
#52qhnmJ,

@X̃emn
L ,X̃eab

L
#52hanX̃emb

L
1hbnX̃ema

L
1hamX̃enb

L
2hmbX̃ena

L ,

~49!

@X̃emn
L ,X̃hab

l
#52hanX̃hmb

L
2hbnX̃hma

L
1hamX̃hnb

L
1hmbX̃hna

L
1

1

q
$kqc~handb

r dm
0 2hmadb

r dn
0

1hnbda
r dm

0 2hmbda
r dn

0!22~g2mc!@~handb
r dm

0 2hmadb
r dn

01hnbda
r dm

0

2hmbda
r dn

0!d0
r1da

0db
0~h0ndm

0 2h0mdn
r!#%X̃Ar

L ,

@X̃emn
L ,X̃Ar

L
#52hrnX̃Am

L
1hrmX̃An

L ,

@X̃hmn
L ,X̃hab

L
#52hanX̃emb

L
2hbnX̃ema

L
2hamX̃enb

L
2hmbX̃ena

L

1
1

q
$2kqc@handbm

0r 1hbndam
0r 1hamdbn

0r 1hbmdan
0r #

12~g2mc!@da
0db

0~h0ndm
r 1h0bdn

r!2dm
0 dn

0~h0bdb
r 1h0adb

r !#%X̃Ar
L ,

@X̃hmn
L ,X̃Ar

L
#52hrnX̃Am

L
2hrmX̃An

L ,

wheredbm
0r [db

0dm
r 2dm

0 db
r is the Kronecker tensor.

It bears mentioning that one of the central extension parameters, actuallyg, is really free at
the Lie algebra level but must acquire the valueg5mc if the present theory is intended t
reproduce the standard disconnected electromagnetic and gravitational forces fork50, i.e., when
the constant responsible for the mixing of both interactions is switched off. The appearan
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relationships between two co-homology constants, such asg5mc, indicates the compatibility of
further extensions of the algebraPEG with the constants already introduced. Such further ext
sions could generalize the present results.

This algebra must be exponentiated in order to have a group law from which to comput
and right-invariant vector field and the quantization one-formQ, just as in the pure electromag
netic example. As stated above, such a process is much more involved and, in principle, a
turbative’’ algorithm is in order. We shall resort to an approximation formula34 up to a given order
~order 3 in the fully relativistic case and 4 in the nonrelativistic limit given in Ref. 14, althoug
the latter the expressions obtained prove to be exact already at this order!, inspired in the theory
of formal groups,35 which generalizes that of Campbell–Hausdorff in the sense that it allows
expressions which more directly fit actual physical formulas~although the latter is as well valid!.
In fact, it has been used in a parallel calculation carried out with REDUCE. Here is the app
mate group law:

x9a5xa1x8a1hm[ndr]
ae8nrxm1hm(ndr)

ah8nrxm1 ¯ ,

e9vr5evr1e8vr2 1
4h [a[ndm]

[vdr]
b]e8mneab2 1

4h (a(ndm)
[vdr]

b)h8mnhab1 ¯ ,

h9vr5hvr1h8vr2 1
2h (a[ndm]

(vdr)
b)e8mnhab1 ¯, ~50!

A9r5Ar1A8r1~kch (a[ndm]
0db)

r!e8mnhab1hr[mdn]
ae8mnAr

1 1
2~kch (a(ndm)

[0dr]
b)!h8mnhab2hr(mdn)

ah8mnAr1 ¯ ,

w95w81w2~m1kq!chm[ndr]
0e8mnxr2mchm(ndr)

0h8nrxm1qhnmA8nxm

1 1
2$~2 1

4~m1kq!chr[sdg]
0h [a[ndm]

[sdg]
b]2~m1kq!chs[mdn]

0hr[adb]
s!!e8mne8abxr

2mchs(mdn)
shr[adb]

sh8mne8abxr1qhsmhr[adb]
sA8me8abxr

1@2 1
4~m1kq!chr[sdg]

0h (a(ndm)
[sdg]

b)2
1
2hrs~2kqch (a(ndm)

[0ds]
b)!#h8mnh8abxr

1qhsmhr(adb)
sA8mh8abxr%1 ¯ .

From this law we can proceed following identical steps as in the pure electromagnetic
and derive the approximate quantization formQ, approximate Noether invariants, Poincare´–
Cartan form, Lagrangian, etc. Let us write explicitlyQ,

Q5dw1H ~m1kq!chr[adb]
0eab1mchr(adb)

0hab2qharAa

1
1

4
~m1kq!c~hs[mdn]

0hr[bda]
s1hs[adb]

0hr[ndm]
s!emneab2

1

4
mc~hs(mdn)

0hr(bda)
s

1hs(adb)
0hr(ndm)

s!hmnhab1
1

2
@2~m1kq!chr(mhn)[adb]

01mchr[ahb](mdn)
0#

1
q

2
hnrhv[adb]

neabAv2
q

2
hnrhv(adb)

nhabAvJ dxr1 ¯ ,

and, before writingdQ, perform a change of variables in order to take this presymplectic t
form to almost ‘‘canonical’’~or standard! form:36
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Aa→Aa1hsg~eas1has!Ag
¯ ,

~m1kq!ce0i→~m1kq!ce0i1S j$
1
2~m1kq!c~e i j 2e j i !e0 j1gd i j h

00e0 j22~m1kq!chi j e0 j

1 ¯%,
~51!

h0 j→h0 j1S i
1
2~e i j 2e j i !h0i ,

h00→h002 1
4d i j h

0ie0 j .

After this changedQ acquires the expression

dQ5d e0i∧dx0~2~m1kq!c~e0i1h0i !!1~m1kq!cd e0i∧dxi1d h00∧dx02mc~122 h00!

1d h0i∧dx0~mch0i2~m1kq!c e0i !1d h00∧dximch0i1d h0 j∧dximc~~211h00!

3d i j 2 hji !2mcd hi j ∧dxih0 j2qdA0∧dx01qdAi∧dxi1 ¯ .

The equations of motion can now be obtained a` la Cartan by finding the kernel of thi
Poincare´–Cartan-like form. Then, we have

~m1kq!c
d2xW

dt2
5qFdxW

dt
∧¹W ∧AW 2]0AW 2¹W A0G

1mcF]0hW 1¹W h002
dxW

dt
∧¹W ∧hW

1
1

4 H 2]0~h00hW !1
dxW

dt
∧¹W ∧~h00hW !1]0~hWW •hW !2

dxW

dt
∧¹W ∧~hWW •hW !

22¹W ~h002
!1¹W ~hW •hW !J 1 ¯ G

1
kqc

2 F1

4
¹W ~hW •hW !1]0hW 2

dxW

dt
∧¹W ∧hW 1 ¯ G . ~52!

The first line in~52! corresponds to the standard~exact! motion of a particle in the presence of a
electromagnetic field, except for the value of the inertial mass, which is corrected bykq. The
second one reproduces the standard gravito-electromagnetic force,37 i.e., the approximation in
which the gravitational field looks like an electromagnetic one. The third and fourth are the
nonlinear corrections to gravity. The fifth, however, is quite new and represents a force that
also like the Lorentz force, at the present approximation, but generated by the gravitation
tentials, although proportional toq; it should not be confused with the above-mentioned grav
electromagnetic one. As far as the magnitude of the new Lie algebra co-homology constak is
concerned, it is limited by experimental clearance for the difference between particle and
particle mass, which for the electron is about 1028me . Even though this is a small value, ex
tremely dense rotating bodies could be able to produce measurable forces. Conversely, a m
electromagnetism and gravity predicts a mass difference between charged particles an
particles, which could be experimentally tested, by measuring, for instance, the Rydberg co

S ;
Mantiproton3Mpositron

Mantiproton1Mpositron
D

through the Lamb shift in anti-hydrogen.38,39

Let us remark the above-mentioned fact that one of the allowed Lie-algebra co-hom
extension parameters, that isg, has been fixed to the particular valueg5mc in order to recover
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the standard theory fork50. We might say that this requirement, along with another condition
‘‘analyticity in q’’ in the group law, constitutes a group-theoretical setting of the~weak! equiva-
lence principle.

Since the present theory has been formulated on the basis of our group approach to
zation, the quantum version of it would proceed in a rather straightforward manner. We sha
insist any more on this particle mechanical study while waiting for a wide generalization allo
for field degrees of freedom. In fact, a natural yet highly nonelementary attempt at an extens
the present theory to quantum field theory is in progress.15 A further generalization of the presen
work in which the U~1! subgroup of phase invariance is considered as a Cartan subgroup
larger internal symmetry group is also in order. Notice that including the phase invariance
instance SU(2)̂ U(1), would result in additional phenomenology such as the production oZ0

particles out of gravity.
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36This change might have been made in the group law by choosing a more appropriate Campbell–Hausdorff-like
but that choice is by no means a trivial task. We must stress on the fact that the quantum theory according to GAQ
of these requirements as we associate quantum operators directly with group generators and the final output
quantum representation is fully independent of any choice of coordinates in the group manifold. Even more, the c
theory can also be formulated in a fully invariant manner by using the Noether invariants as coordinates, but in t
the classical evolution is apparently hidden.

37R. M. Wald,General Relativity~University of Chicago Press, Chicago, 1984!.
38For a review, see M. Charlton, J. Eades, D. Horvath, R. J. Hughes, and C. Zimmermann, Phys. Rep.241, 65 ~1994!. See

also, G. Bauret al., Phys. Lett. B368, 251 ~1996!; G. Blanfordet al., Phys. Rev. Lett.80, 3037~1998!.
39M. Amoretti et al., Nature~London! 419, 456 ~2002!.
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In this paper, we consider the supercritical complex Ginzburg–Landau equation.
We discuss the existence of suitable weak solution inV, whereV is a bounded
domain inRn or the whole space. We also discuss the properties of the set of the
singular points of the suitable weak solution inRn, which means that the possible
singular points are located in a bounded ball for any given time and there is no
singular point on the whole space after limited time. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1618360#

I. INTRODUCTION AND RESULTS

In this paper we consider the following supercritical complex Ginzburg–Landau~CGL! equa-
tions:

ut5~11 im!Du2~11 in!uuu2su1Ru in V3@0,T!,

u~x,0!5u0~x!, xPV, ~1!

u~x,t !50, xP]V, 0,t,T,

whereu(x,t) is a complex-valued field, the initial datau0PL2, R.0, m,nPR and 2/n,s,(n
14)/2n , V is a bounded domain inRn or the whole space. WhenV5Rn, the third line of~1!
should be replaced byu(x,t)→0 as uxu→` for 0,t,T. This equation, most often considere
with a cubic nonlinearity andn53, has a long history in physics as a generic amplitude equa
near the onset of instabilities in fluid mechanical systems, as well as in the theory of
transitions and superconductivity. In this paper, we concentrate on mathematical questions
to the regularity of weak solutions. In the cases51, solutions of~1! have similar scaling prop-
erties as solutions of the Navier–Stokes equations. It might be a good model problem in c
tion with regularity questions regarding the Navier–Stokes equations.

For Eq.~1! in the periodic case, the existence of weak solutions in all cases was obtain
Ref. 1. It is pointed out in Ref. 1 that in the subcritical case (sn,2), all weak solutions are
regular. Whensn52, it is known that singularities cannot develop from sufficiently regular ini
data~see Ref. 2 for cases52, n52 and Ref. 1 for the general case!. Whensn.2, regularity
results are available only for special values ofm andn ~see Ref. 1!.

For Eq.~1!, the existence of a weak solution can be obtained by the Galerkin approxima
The full regularity for weak solutions of~1! in the subcritical and critical cases can be obtained

a!Electronic mail: lxfn2@263.net
b!Electronic mail: mjhy@zju.edu.cn
51850022-2488/2003/44(11)/5185/9/$20.00 © 2003 American Institute of Physics
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the usual bootstrap argument and a refined version of the standard bootstrap argument,
tively. In the supercritical case (sn.2) it is not known whether weak solutions are regular
general values ofm andn.

In Ref. 3, the following version of CGL was considered:

ut5~11 im!Du2 inuuu2su1Ru in V3@0,T!,

u~x,0!5u0~x!, xPV, ~2!

u~x,t !50, xP]V, 0,t,T.

The partial regularity of the suitable weak solution was discussed and the existence of the s
weak solution was mentioned but without proof in Ref. 3. In this paper we prove the existen
the suitable weak solution of~1!. Actually, it also works for~2!. For more details on~1! and~2!,
see Refs. 3, 1, and 2.

Now we give some notations. LetD5V3(0,T), Br be the ball inRn with radius r ,
Qr5Qr(x,t)5$(y,s):uy2xu<r ,t2r 2<s,t%. Let E0(u)5sup0,t,T 1/2*Vuuu2dx, E1(u)
5*0

T*Vu¹uu2dx dt, and E5E01E1 . Let H1(V)5$uPL2(V):¹uPL2(V)% and H0
1(V) be the

completion of C0
`(V) in H1(V) and H21(V) be the dual ofH0

1(V). We omit V if there is no
confusion.

The definition of suitable weak solution is the following.
Definition 1.1: We say u is a suitable weak solution of (1) on D, if the following conditions are

satisfied:

(i) uPL`(0,T;L2(V))ùL2(0,T;H1(V)).
(ii) u satisfies (1) in the sense of distributions on D.
(iii) (Generalized energy inequality) For each real-valuedfPC0

`(D) with f>0, the following
inequality holds:

2E E u¹uu2f dx dt1E E uuu2s12f dx dt

<E E uuu2~f812Df!dx dt12RH ~11 im!E E u¹ū¹f dx dtJ 12RE E uuu2f dx dt. ~3!

We have the following existence result.
Theorem 1.1:Let u0PL2(V). Then there exists a weak solution u of (1) on D satisfying

uPL2~0,T;H0
1!ùL`~0,T;L2!, ~4!

u~ t !→u0 weakly in L2 as t→0, ~5!

and if fPC`(D̄), f>0, and f50 near ]V3(0,T), then for0,t,T,

E
V3$t%

uuu2f12E
0

tE
V

u¹uu2f1E
0

tE
V

uuu2s12f

<E
V

uu0u2f~x,0!1E
0

tE
V

uuu2~f812Df!12RH ~11 im!E
0

tE
V

u¹ū¹fJ 12RE
0

tE
V

uuu2f.

~6!
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By the motivation of Ref. 4, we consider the property of the set of singular points o
suitable weak solution with more assumptions on the initial data. We consider~2! for simplicity
and have the following theorem.

Theorem 1.2:Suppose u0PL2(Rn), and

1

2 ERn
uu0u2uxudx5G,`. ~7!

Then there exists a weak solution of the initial value problem of (2) which is regular in the re
$(x,t):uxu2tn2 2/s.K1%, where K15K1(E,G) is a constant depending on E and G.

Remark 1.1: The above theorem means that the set of singular points is restricted
bounded domain for every time. Actually, there is no singular point inRn after a limited time, see
Lemma 3.1.

The following interpolation inequality is useful in our following proofs.
Lemma 1.1: If uPH1(Br), then

E
Br

uuuqdx<CS E
Br

u¹uu2dxD aS E
Br

uuu2D ~q/2! 2a

1
C

r 2a S E
Br

uuu2D q/2

, ~8!

where a5 (n/4) (q22), 2<q< 2n/(n22) , C independent of r. Moreover, if u has mean zero o
Br or if Br is replaced by all ofRn, then the second term on the right-hand side in (8) may
omitted.

In the remainder of this paper we prove these two theorems, respectively.

II. PROOF OF THE THEOREM 1.1

We begin with some lemmas concerning the relevant linear systems.
Lemma 2.1: Suppose fPL2(0,T;H21), uPL2(0,T;H0

1), and

ut5~11 im!Du1 f ~9!

in the sense of distributions on D. Then utPL2(0,T;H21),

d

dt EV
uuu2dx52RE

V
utū dx ~10!

in the sense of distributions on(0,T), and uPC(@0,T#;L2) after modification on a set of measu
zero. Solution of (9) is unique in L2(0,T;H0

1) for given initial data u0PL2.
Proof: The proof is standard, see Refs. 4 and 5.
Lemma 2.2: Let u0PL2 and wPC`(D̄;R) with w>0. Then there exists unique function

PC(@0,T#;L2)ùL2(0,T;H0
1) such that

ut5~11 im!Du2~11 in!wu1Ru ~11!

in the sense of distributions on D and u(0)5u0 .
Proof: The proof is similar to Ref. 4, and for the proof of uniqueness of solution we need

Grownwall inequality.
Lemma 2.3: Let u0PL2, wPC`(D̄;R) with w>0 and u be a solution of (11). Then for an

fPC0
`(D̄) with f50 near ]V3(0,T), for all t P(0,T),
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E
V3$t%

uuu2f12E
0

tE
V

u¹uu2f1E
0

tE
V

wuuu2f

5E
V

uu0u2f~x,0!1E
0

tE
V

uuu2~f812Df!12RH ~11 im!E
0

tE
V

u¹ū¹fJ
12RE

0

tE
V

uuu2f. ~12!

Proof: Suppose for the moment thatf also vanishes neart50; chooseV1 so thatV̄1,V and
suppf,V13(0,T). Writing F52(11 in)wu1RuPL2(D), we have

ut5~11 im!Du1F. ~13!

Mollifying ~in Rn11) each term of~13!, we obtain sequences of smooth functions$um% and$Fm%
such that

d

dt
um5~11 im!Dum1Fm , ~14!

with um→u in L2(D), ¹um→¹u in L2(D), andFm→F in L2(D). Multiplying ~14! by ūmf,
integrating by part onD, and taking the real part, by Lemma 2.1, we have

2E E uumu2f852RH ~11 im!F2E E u¹umu2f1E E um¹ūm¹f1E E uumu2Df G J
12RE E Fmūmf.

We pass to the limit asm→` and obtain

2E E uuu2f8522E E u¹uu2f12RH ~11 im!E E u¹ū¹fJ 12E E uuu2Df

12RE E Fūf.

On the other hand,

2RE E Fūf52RS E E 2~11 in!wuuu2f1Ruuu2f D522E E wuuu2f12RE E uuu2f.

So we have

2E E u¹uu2f1E E wuuu2f5E E uuu2~f812Df!12RE E uuu2f

12RH ~11 im!E E u¹ū¹fJ . ~15!

For the generalfPC`(D̄), f>0, by the argument in Ref. 4, we obtain~12!.
Utilize the ‘‘retard mollifier’’ Cd(u) as in Ref. 4, we have the following lemma.
Lemma 2.4: For any uPL`(0,T;L2)ùL2(0,T;H0

1),

sup
0,t,T

E
V

uCd~u!u2~x,t !dx<CE0~u!, ~16!
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E E
D

u¹Cd~u!u2dx dt<CE1~u!, ~17!

where C denotes an universal constant.
Now we are ready to prove Theorem 1.1. For any large integerN, let d5T/N, and solve

d

dt
uN5~11 im!¹uN2~11 in!Cd~ uCd~uN!u2s!uN1RuN , ~18!

uNPL2~0,T;H0
1!ùC~@0,T#;L2!, ~19!

uN~0!5u0 . ~20!

By induction, due to Lemma 2.2, suchuN exist on each (md,(m11)d), 0<m<N21. By ~10!,
we have

E
V3$t%

uuNu212E
0

tE
V

u¹uNu212E
0

tE
V

Cd~ uCd~uN!u2s!uuNu25E
V

uu0u212RE
0

tE
V

uuNu2,

then

E
V3$t%

uuNu2<E
V

uu0u212RE
0

tE
V

uuNu2.

By the Grownwall inequality, fortP(0,T),

E
V3$t%

uuNu2dx<exp~2RT!E
V

uu0u2,

then for tP(0,T),

E
V3$t%

uuNu212E
0

tE
V

u¹uNu212E
0

tE
V

Cd~ uCd~uN!u2s!uuNu2<~112RTexp~2RT!!E
V

uu0u2,

so we have

$uN% is bounded inL`~0,T;L2!ùL2~0,T;H0
1!. ~21!

We claim that

d

dt
uNPLp~0,T;H2s!, ~22!

wheres.n/2 for some 1,p,`.
By ~18! and~21!, it is sufficient to check thatCd(uCd(uN)u2s)uNPLp(0,T;H2s). By Lemma

1.1, we have

E
V

uuNu2s11<CS E
V

u¹uNu2D aS E
V

uuNu2D ~2s11!/2 2a

1
C

r 2a S E
V

uuNu2D ~2s11!/2

,

where

a5
n~2s21!

4
.
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For s,(41n)/2n, let p5 4/@n(2s21)#.1, we have

E
0

TS E
V

uuNu2s11dxD p

dt<C~E0
~2s11!/2 2a!pE11

CT

r 2ap E0
@(2s11)p#/2,`,

so Cd(uCd(uN)u2s)uNPLp(0,T;H2s).
WhenV is bounded inRn, by ~21!, ~22! and Theorem 2.1 in Chap. III in Ref. 5,$uN% stays

in a compact set ofL2(0,T;L2), then there exists a strongly convergent subsequence of$uN%, still
denoted by$uN%, andu* with

uN→u* in L2~0,T;L2!. ~23!

By Lemma 1.1, letr 05diam(V),

E
V

uuNu@2~n12!#/ndx<CS E
V

u¹uNu2dxD S E
V

uuNu2dxD 2/n

1
C

r 0
2 S E

V
uuNu2dxD ~n12!/n

,

then integrate from 0 toT,

E
0

TE
V

uuNu@2~n12!#/ndxdt<CE1E0
2/n1

CT

r 0
2 E0

~n12!/n,`,

so $uN% is bounded inL @2(n12)#/n(D). By ~23!, for 2<q,@2(n12)#/n,

uN→u* in Lq~0,T;Lq!. ~24!

WhenV5Rn, we can only obtain that there exists a subsequence, still denoted by$uN%, andu*
satisfying uN→u* strongly in L2(0,T;L loc

2 ), $uN% is bounded inL @2(n12)#/n(D) and thenuN

→u* strongly inLq(0,T;L loc
q ) for 2<q,@2(n12)#/n, which is enough to get our results.

By ~21!,

uN→u* weakly inL2~0,T;H0
1!, ~25!

and

uN→u* weak-star inL`~0,T;L2!. ~26!

By the definition ofCd , for somer ,(n12)/ns,

Cd~ uCd~uN!u2s!→uu* u2s in Lr~0,T;Lr !, ~27!

and

Cd~uN!→u* strongly in Lq~D !. ~28!

Sou* is the solution of~18! in the sense of distributions. From now on, the proof is similar to t
in Ref. 4.

III. PROOF OF THE THEOREM 1.2

In this section, we consider the initial value problem of~2! for simplicity. LetV5Rn andu be
a suitable weak solution of~2! on Rn3(0,̀ ) with initial data u0PL2, and forfPC0

`(Rn3R)
with f>0,
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E
V3$t%

uuu2f12E
0

tE
V

u¹uu2f<E
V

uu0u2f~x,0!12RE
0

tE
V

uuu2f1E
0

tE
V

uuu2~f812Df!

12RH ~11 im!E
0

tE
V

u¹ū¹fJ . ~29!

Here we need a corollary in Ref. 3.
Proposition 3.1: Leta.2, 2s11,a,@2(n12)#/n, there existse0.0, if u is a suitable

weak solution of (2) on Qr , and moreover,

1

r n122 a/s E E
Qr

uuua<e0 , ~30!

then u is Ca0 in Qr /4 for somea0P(0,1/2).
By the same idea in Ref. 3, we letv5e2Rtu, if u is a suitable weak solution of~2!, thenv is

a suitable weak solution of the following problem:

v t5~11 im!Dv2 ine2sRtuvu2sv in V3~0,T!,

v~x,0!5v0~x!, xPV, ~31!

v~x,t !50, xP]V, tP~0,T!,

and the corresponding generalized energy inequality

E
V3$t%

uvu2f12E
0

tE
V

u¹vu2f<E
V

uv0u2f~x,0!1E
0

tE
V

uvu2~f812Df!

12RH ~11 im!E
0

tE
V

v¹ v̄¹fJ ~32!

holds for any real-valuedfPC`(D) with f>0 andf(t)PC0
`(Rn) for eachtP@0,T#.

To prove Theorem 1.2, we need the following lemmas.
Lemma 3.1: There exists an absolute constant C such that if t>CE2s/(ns22), then u is regular

at (x,t).
Proof: By Lemma 1.1,

E
Rn

uuuadx<CS E
Rn

uuu2dxD ~a/2!(12n(1/22 1/a))S E
Rn

u¹uu2dxD ~na/2!(1/22 1/a)

,

then

E
0

TE
Rn

uuuadx dt<CS suptE
Rn

uuu2dxD ~a/2!(12n(1/22 1/a))E
0

TS E
Rn

u¹uu2dxD ~na/2!(1/22 1/a)

dt

<CE0
~a/2!(12n(1/22 1/a))E1

~na/2!(1/22 1/a)T12 ~na/2!(1/22 1/a)

<CEa/2T12 ~na/2!(1/22 1/a).

WhenE<(e0 /C)2/aTn/2 2 1/s, i.e., T>C(e0 ,a)E2s/(ns22),

E
0

TE
Rn

uuuadx dt<e0T~n12!/2 2 a/2s.

By Proposition 3.1, if
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E E
Qr

uuuadx dt<e0r n122 a/s,

thenu is regular inQr /4 , so Lemma holds.
Lemma 3.2: Lett5e1uxu, e>0. If

(i) r >2, g1 n/r .0, a1 n/2.0, b1 n/2.0, 1/2<a<1,
(ii) g1 n/r 5a(a1 (n22)/2)1(12a)(b1 n/2),
(iii) a (a21)1(12a)b<g<aa1(12a)b,

then

utguuL2<Cutau¹uuuL2
a utbuuL2

12a . ~33!

For n53, the proof of the lemma has been given in Ref. 4; for the general case, the pr
similar.

Lemma 3.3: Let u be a suitable weak solution of (2) with (29) holds and G,`. Then for a.e.
t.0,

1

2 ERn
uuu2uxudx1E

0

tE
Rn

u¹uu2uxudx dt<A~ t !, ~34!

whereA(t)5G1Ct1/2E.
Proof: By Lemma 3.2,

E
Rn

uuu2

uxu
dx<CS E

Rn
uuu2dxD 1/2S E

Rn
u¹uu2dxD 1/2

,

then

E
0

tE
Rn

uuu2

uxu
dx dt<CE0

1/2E1
1/2t1/2<CEt1/2.

Let x(t) be C` on s>0 with 0<x<1, x51 for s<1 andx50 for s>2. For constants 1
.l@e.0, we use the test functionf(x)5 1/2 (l22uxu2)1/2x(e/l uxu) in the energy inequality
~32!. It is easy to verify thatu¹fu<C, uDfu<Cuxu21, with C independent ofl ande. Then

E
Rn3$t%

uuu2f dx12E
0

tE
Rn

u¹uu2fdx dt<E
Rn

uu0u2uxudx1CE
0

tE
RnH uuu2

uxu
1uuuu¹uuJ dx dt.

Let e→0 and thenl→0,

E
Rn3$t%

uuu2uxudx12E
0

tE
Rn

u¹uu2uxudx dt<G1CEt1/2.

Now we prove Theorem 1.2. LetS be the set of singular points ofu. By Lemma 3.1, if
(x,t)PS, then

t,CE2s/~ns22!. ~35!

Let r 255/4t, Q5Qr(x,r 2), by Proposition 3.1,

E E
Q

uuuadx dt.Ce0tn12/22 a/2s. ~36!
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Let R5uxu and suppose for the moment thatR>2r . Take g5a5b5 1/2 , a5 n/(n12), and
p5 @2(n11)#/n, by Lemma 3.2,

uuxu1/2uuuuLp
p <Cuuxu1/2u¹uuuL2

2 uuxu1/2uuuuL2
4/n . ~37!

Integrate from 0 tot,

E
0

tE
Rn

uxu~n12!/nuuu@2~n12!#/ndx dt<CA~ t !2/nE
0

tE
Rn

uxuu¹uu2dx dt<CA~ t !~21n!/n.

By ~36! and the Ho¨lder inequality,

Ce0tn12/22 a/2s<E E
Q

uuuadx dt<r n122 an/2S E E
Q

uuu@2~n12!#/ndx dt D an/@2~n12!#

<Crn122 an/2R2 a/2A~ t !a/2<K~E,G!tn12/22 an/4R2 a/2,

so

R2tn2 2/s<K0~E,G,a!.

For R<2r ,

R2tn2 2/s<5tn1122s<C~E2s/~ns22!!n112 2/s.

Therefore, Theorem 1.2 holds withK15C max(K0,E2s/ns22(n112 2/s)).
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Multiplicative noise: A mechanism leading to nonextensive
statistical mechanics

Celia Anteneodo and Constantino Tsallis
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A large variety of microscopic or mesoscopic models lead to generic results that
accommodate naturally within Boltzmann–Gibbs statistical mechanics@based on
S1[2k*du p(u)ln p(u)]. Similarly, other classes of models point toward nonex-
tensive statistical mechanics@based onSq[k@12*du@p(u)#q#/@q21#, where the
value of the entropic indexqPR depends on the specific model#. We show here a
family of models, with multiplicative noise, which belongs to the nonextensive
class. More specifically, we consider Langevin equations of the typeu̇5 f (u)
1g(u)j(t)1h(t), where j(t) and h(t) are independent zero-mean Gaussian
white noises with respective amplitudesM andA. This leads to the Fokker–Planck
equation] tP(u,t)52]u@ f (u)P(u,t)#1M]u$g(u)]u@g(u)P(u,t)#%1A]uuP(u,t).
Whenever the deterministic drift is proportional to the noise induced one, i.e.,
f (u)52tg(u)g8(u), the stationary solution is shown to beP(u,`)}$12(1
2q)b@g(u)#2%1/(12q) @with q[ (t13M )/(t1M ) andb5 (t1M /2A)]. This dis-
tribution is precisely the one optimizingSq with the constraint^@g(u)#2&q

[$*du @g(u)#2@P(u)#q%/$*du @P(u)#q%5const. We also introduce and discuss
various characterizations of the width of the distributions. ©2003 American In-
stitute of Physics.@DOI: 10.1063/1.1617365#

Ubiquitous systems can be naturally described within Boltzmann–Gibbs~BG! statistical me-
chanics@based on the entropyS1[2k*du p(u)ln p(u)]. These systems have in common the fa
that they likeequallyto live everywhere they are allowed to, that is, they are ergodic in the e
phase space. However, there are other systems that, depending on the initial conditions, ma
a particular subspace. The BG scenario may not be appropriate any longer and an extensio
usual thermostatistical description, taking into account the features of such subspace, wo
required. If that subspace has a scale invariant geometry, a hierarchical or multifractal str
then the model points toward nonextensive statistical mechanics@based on the entropic formSq

[k @12*du @p(u)#q#/@q21# , qPR] 1 ~see Ref. 2 for reviews!. Among the models which be
long to this category, one finds low-dimensional dissipative and conservative maps,3 fractional and
nonlinear Fokker–Planck equations,4 Langevin dynamics with fluctuating temperature,5 growth of
many-body scale-free networks6 and long-range many-body classical Hamiltonians.7 The corre-
sponding value of the entropic indexq depends on the specific model, or, more precisely, on
nonextensivity universality class of the model. It is our purpose here to show a large fam
models with multiplicative noise which belongs to the nonextensive class.

Microscopic dynamics, containing multiplicative noise, may be encountered in many dyn
cal processes, such as in stochastic resonance,8 noise induced phase transitions,9 granular
packings,10 and others.11,12 Due to its significance, stochastic processes with multiplicative n
have been the subject of numerous studies in the last decades.13–15 Here we will consider pro-
cesses subject to both additive and multiplicative noises and described by the dimens
stochastic differential equation of the form

u̇5 f ~u! 1 g~u!j~ t ! 1 h~ t !, ~1!

where u(t) is a stochastic variable,f ,g are arbitrary functions@g(0)50#, and j(t),h(t) are
uncorrelated and Gaussian-distributed zero-mean white noises, hence satisfying
51940022-2488/2003/44(11)/5194/10/$20.00 © 2003 American Institute of Physics
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^j~ t !j~ t8!&52Md~ t2t8!, ^h~ t !h~ t8!&52Ad~ t2t8!, ~2!

whereM ,A.0 are the noise amplitudes and stand for ‘‘multiplicative’’ and ‘‘additive,’’ resp
tively. Clearly, some degree of correlation between the two noises can be of physical rele
however, this remains out of the present scope. The deterministic driftf (u) can be interpreted
either as a damping force~wheneveru is a velocity-like quantity! or as an external force~when
motion is overdamped andu represents a position coordinate!. Other interpretations are possib
as well, depending on the particular system treated.

It is interesting to note that additive and multiplicative terms in Eq.~1! could be gathered in
an effective multiplicative noise term,16 however we prefer to keep track of both sources indep
dently.

The stochastic differential equation~1! is not completely defined and must be complemen
by an additional rule. This is due to the fact that each pulse of the stochastic noise produces
in u, then the question arises: which is the value ofu to be used ing(u)? This is the well-known
Itô–Stratonovich controversy.15,17 In the Itô definition, the value before the pulse must be us
whereas in the Stratonovich definition the values before and after the pulse contribute in a
metric way. If noise were purely additive, then both definitions agree.

The Fokker–Planck equation for the probability densityP(u,t), associated to Eq.~1!, can be
obtained from the Kramers–Moyal expansion] tP5(n>1(2]u)n@D (n)P#, where the coefficients
are given by

D (n)~x,t !5
1

n!
lim
t→0

@u~ t1t!2x#n

t U
u(t)5x

.

These coefficients can be readily obtained following the standard lines found for instance i
15. Using the Stratonovich definition of stochastic integral, one gets

D (1)~u,t !5 f ~u!1Mg~u!g8~u![J~u!, ~3!

D (2)~u,t !5A1M @g~u!#2[D~u!, ~4!

while D (n)(u,t)50 for n>3. Then, one arrives straightforwardly at

] tP52]uj ~u!, ~5!

where j (u)[J(u)P2]u@D(u)P# is the current. In the Itoˆ calculation, Eq.~3! becomesJ(u)
5 f (u), that is, the noise-induced~or spurious! drift is missing. In what follows we will adopt the
Stratonovich definition. However, this choice will not affect the present discussion excepting
redefinition of some of the parameters that are involved.

Equation~5! can also be written as

] tP52]u~ f ~u!P!1M]u~g~u!]u@g~u!P# !1A]uuP. ~6!

In some processes, the deterministic and noise-induced drifts may have the same functiona
Let us set this condition as follows:

f ~u!52tg~u!g8~u!, ~7!

t being a proportionality constant. In other words,f (u) is derived from a potential-like function
V(u)5 (t/2) @g(u)#2. Let us note that the particular caseg(u)} f (u)}u, which is a natural first
choice for a physical system, verifies this condition. However, since no extra calculational
culties emerge, we will discuss here the more general case~7!. Notice that in the absence o
deterministic forcing, condition~7! is trivially satisfied for anyg by settingt50.

In the present paper we will restrict to the stationary solutions for no flux boundary cond
@i.e., such thatj (2`)5 j (`)5 j (u)50], although more general conditions could in principle a
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be considered. If~7! is verified, then, the stationary solutionPs(u) is of theq-exponential form
appearing in nonextensive statistical mechanics.1 More precisely, in that case, one obtains

Ps~u! } @11~q21!b@g~u!#2#1/~12q!, ~8!

whereb[ 1/kT5 (t1M )/2A ~where byT we generically mean the amplitude of an effecti
noise! and

q5
t13M

t1M
. ~9!

As an aside comment let us mention that if we had used the Itoˆ convention we would have
obtainedq5 (t14M )/(t12M ). Let us now go back to our Stratonovich choice.

Ps is normalizable ifug(u)u grows withuuu faster thanuuu1/(11t/M ) (t.2M ). This probabil-
ity distribution function~pdf! optimizes

Sq[k
12E du @P~u!#q

q21
, ~10!

with the constraint

^@g~u!#2&q[
E du @g~u!#2 @P~u!#q

E du@P~u!#q

5const. ~11!

The condition~7! is not necessary for having solutions of theq-exponential form, as it follows
along the lines of Refs. 18 and 19, in spite of the fact that the models therein consider
different from the present one.

Let us consider in more detail the case when both the forcing and the multiplicative
depend on the stochastic variableu as a power law, that is, when the Langevin Eq.~1! becomes

u̇52guuuur 21 1 uuuus21j~ t ! 1 h~ t !, ~12!

with r ,s>0 and a drift coefficientg typically positive. In this case, the deterministic drift
derived from a confining potential-like function of the formV(u)5guuur 11/(r 11). The corre-
sponding Fokker–Planck equation becomes

] tP 5 2]u~2guuuur 21P! 1 M]u~ uuus]u@ uuusP# ! 1 A]uuP. ~13!

Hence, its stationary solutionPs(u) is given by

Ps~u! 5
P0 e2h(u)

S 11
M

A
uuu2sD 1/2 , ~14!

P0 being the normalization constant and

h~u! [
guuu11r

A@11r # 2F1S 11r

2s
,1;11

11r

2s
;2

M

A
uuu2sD , ~15!

where2F1 is the hypergeometric function.
We shall analyze now some limiting cases.
~A! For vanishing deterministic forcing (g→0), Eq. ~14! becomes
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Ps~u! 5
P0

S 11
M

A
uuu2sD 1/2, ~16!

with

P0 5

~M /A!1/(2s) GS 1

2D
2 GS 11

1

2sD GS 1

2
2

1

2sD
for s.1. ~17!

This pdf is of theq-exponential form~with q53) as expected because, in this case, condition~7!
is trivially true since it corresponds tot50. Interestingly, in the presence of multiplicative nois
the steady statePs is normalizableeven in the absence of a confining potential, as long ass
.1. The so-called spurious drift which originates from the multiplicative noise term in the La
vin equation is responsible for kicking the system back close to the origin, where fluctuation
smaller. On the other hand, the additive noise plays an essential role, providing fluctuations
avoid the full concentration~at the origin! that would occur otherwise. This type of stabilizin
effect of the multiplicative noise is long known.20

~B! In the limit M→0, all other parameters being fixed, i.e., when no multipliciative nois
present, Eq.~14! becomes of the following stretched exponential form:

Ps~u! 5

F g

A@11r #G
1/~11r !

2 GS 11
1

11r D
e2 ~g/A[11r ] !uuu11r

. ~18!

In particular, for the linear forcing (r 51), the Gaussian pdf is recovered.
~C! In the limit A→0, i.e., for vanishing strength of the additive noise, the steady sta

normalizable fors,1 andp[r 1122s.0. The conditionp.0 implies that the potential of the
drift has to be steep enough to confine the system and yield a steady state. Then, we hav

Ps~u! 5

p F g

MpG ~12s!/p

2 GS 12s

p D
e2 ~g/Mp! uuup

uuus
. ~19!

VanishingA concentrates the probability at the origin. Again, the Gaussian distribution is re
ered forr 51 ~harmonic forcing! ands50 ~additive noise!.

The limits analyzed above are not generically interchangeable, that is, convergence
necessarily uniform.

In the general case where (A,M ,g) are all finite, the same dependence onu as that in Eq.~19!
is obtained for sufficiently largeuuu. In fact, if one defines the dimensionless variableū5u/l with
l[(A/M )1/2s, it is clear that the asymptotic expression of Eq.~14! for uūu→` corresponds to
both limits uuu→` andA→0.

For finite (A,M ,g), in thep50 marginal case where the drift and multiplicative-noise ex
nents are related through 11r 52s @hence condition~7! is verified witht5g/s], a q-exponential
pdf emerges at asymptotically long time. In fact, in that case, the hypergeometric in Eq~15!
becomes2F1(1,1;2;2z)5 ln(11z)/z and one gets

Ps~u! 5
P0

~11uu/lu2s!1/~q21! , ~20!
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with

q5
~g/s!13M

~g/s!1M
~21!

and

P0 5

GS 1

2
1

g

2sMD
2l GS 11

1

2sD GS 1

2
1

g

2sM
2

1

2sD
. ~22!

Ps(u) is normalizable fors1g/M.1. Notice thatq-exponential pdf’s can appear even for neg
tive g ~i.e., for repulsive deterministic forces!. The 11r 52s class includes the particular linea
caser 5s51, that has already been treated in the literature.11,21 In Fig. 1 we exhibit the steady
state pdf~20! for several values of the system parameters.

Assuming that̂ u&50, the width ofP(u,t) can be characterized in many ways, such as~i! the
inverse of the height at the origin, namely, 1/P(0,t); ~ii ! the width at half height,D; ~iii ! the square
root of the mean value ofu2; ~iv! the 2s-root of the mean value ofuuu2s; ~v! the square root of the
q-expectation values ofu2; ~vi! the 2s-root of theq-expectation value ofuuu2s, or even combi-
nations of these, for instance,~vii ! AD/P(0,t) ~see also Ref. 22!. Let us recall that the normalize
q-expectation ofc is defined as

FIG. 1. Steady state pdfs fors50.5 ~a!, 1 ~b!, and 2~c!, with r 52s21, A/g51 and different values ofM /g indicated in
the figure. Notice that the alternative representationl Ps(u) vs u/l with l5(A/M )1/2s would give profiles independent on
the particular choice ofA/g.
                                                                                                                



s is

ssary
idth

used as

tri-

5199J. Math. Phys., Vol. 44, No. 11, November 2003 Multiplicative noise

                    
^c&q~ t ![
E du c~u!@P~u,t !#q

E du @P~u,t !#q

, ~23!

hence,̂ c&1 equals the usual mean value^c&.
For the usual case whereP(u,t) is a Gaussian, all these definitions basically coincide. Thi

not so in general, as we shall illustrate in what follows for the stationary state of Eq.~20!.
~i! The inverse of the height at the origin

1

Ps~0!
5 l

2 GS 11
1

2sD GS 1

2
1

g

2sM
2

1

2sD
GS 1

2
1

g

2sMD . ~24!

~ii ! The width at half height

D 5 2l ~21/[~g/2sM! 1 1/2]21!1/2s. ~25!

~iii ! The square root of the mean value ofu2,

^u2&1/25 lAGS 3

2sD GS 1

2
1

g

2sM
2

3

2sD
GS 1

2sD GS 1

2
1

g

2sM
2

1

2sD
, ~26!

for g/M.32s ~otherwise it diverges!.
~iv! The 2s-root of the mean value ofuuu2s,

^uuu2s&1/2s 5
l

~g/M2s21!1/2s ~27!

for g/M.11s ~otherwise it diverges!.
~v! The square root of theq-expectation value ofu2,

^u2&q
1/25 lAGS 3

2sD GS 3

2
1

g

2sM
2

3

2sD
GS 1

2sD GS 3

2
1

g

2sM
2

1

2sD
, ~28!

for g/M.3(12s) ~otherwise it diverges!.
~vi! The 2s-root of theq-expectation value ofuuu2s,

^uuu2s&q
1/2s 5

l

~g/M1s21!1/2s , ~29!

for g/M.12s. Notice that this condition has already been encountered. Indeed, it is nece
for normalizability. An important remark is mandatory: of all the above characterizations of w
which are based on expectation values~i.e., ^u2&1/2, ^uuu2s&1/2s, ^u2&q

1/2, and^uuu2s&q
1/2s), only the

last one does not diverge in any admissible (i.e., normalizable) case. This is particularly remark-
able because this generalized expectation value is, as already seen, precisely the one to be
constraint in the optimization ofSq . In addition to this, it is worthy noticing that̂uuu2s&q

1/2s is in
all cases comparable toAD/Ps(0), asemiempirical quantity which takes into account the con
butions of both body and tails.
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In Fig. 2 we exhibit all these quantities as a function ofM /g for typical values ofs with r
52s21. As M /g increases, in all cases,Ps(u) becomes more peaky around the origin~D de-
creases!. Moreover, for increasingM /g ands51, the tail tends to 1/uuu @hencePs(0)→0]. Also
for s51/2, Ps(0)→0 as the pdf becomes more tailed, butM /g has the upper bound 2. Contraril
to the previous cases, fors.1, asM /g increases,Ps(0) also increases.

The q-exponential character is not exclusive of the steady state but it also emerges alo
time evolution of the pdf, as illustrated in Fig. 3. In this figure we employ the semi-lnq represen-
tation, where lnq x5(x12q21)/(q21). Notice in Figs. 3~b! and 3~c! that the curve fort→` is a
straight line. In Fig. 3~c!, curves are almost straight lines, thus indicating that the pdf’s are
close toq-exponentials along time.

In the presence of multiplicative noise, the system variables directly couple to noise. T
fore, behaviors are observed that can not occur in the presence of additive noise alone. In p

FIG. 2. Different parameters characterizing the ‘‘width’’ of the distribution as a function ofM /g for s50.5 ~a!, 1 ~b!, and
2 ~c!, with r 52s21 andA/g51. Forg.0, normalizability impliesM /g,1/(12s) if s,1; for s>1, the physical region
of M /g extends up to infinity.
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lar, q-exponential pdf’s of the form given by Eq.~8! can arise. For the present process
q-exponentials do occur either in the absence of forcing (g50) or for drifts verifying Eq.~7!,
which, for the power-law case, becomesr 52s21. The deterministic forcing does not need to
confining ~i.e., g,0 is allowed! for the formation of aq-exponential stationary pdf, provide
g/M.12s. In any case, if a repulsive effective force prevails for some period of time,
variableu can take large values and power law tails can arise. In particular, aq-exponential occurs
when the stochastic forcing is proportional to the deterministic one. Alternatively, during
intervals when the effective force is attractive, the probability tends to concentrate at the o
Then, at this stage, the additive noise plays a fundamental role allowing the existence
normalizable steady state by avoiding collapse of the pdf at the origin. When both kinds of
occur simultaneously, the presence of multiplicative noise can not be formally avoided by a s
transformation of variables. The particular interplay between additive and multiplicative nois
well as that between deterministic and stochastic drifts can lead to the appearan
q-exponentials.

It is worthy to emphasize at this point that the stationary solutions of the present problem

FIG. 3. Time evolution of the pdf forr 5s51, A5g51, andM50.2 at different times indicated in the figure, in differen
representations: linear~a!, semi-lnq with q5 (g13M )/(g1M ) ~b!, and semi-lnq8 , with time dependentq8 ~c!. We used

the ansatzP5P0(11(q821)bu2)1/(12q8), with P05Ap/b(q821) G(@1/(q821)# 2
1
2)/G(1/(q821)). In the inset we

presentq8 andb vs t. In particular,q(0)51, 1/b(0)50, q(`)54/3, and 1/b(`)55/3.
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the general form given by Eq.~14!. Theq-exponential pdf’s represent a special case, which in t
includes the Boltzmann–Gibss pdf as an even more special one, corresponding to the s
thermal equilibrium. Furthermore, theq-exponential pdf’s are unique in the sense that they o
mize, under appropriate constraints, the entropy functionalSq @Eq. ~10!#. This entropic form is in
turn unique in the sense that it is the only one which satisfies23 a set of conditions naturally
generalizing both the Shannon and the Kinchin axioms. Also,Sq is consistent with stability~or
robustness! of theq-exponential pdf’s in the sense described by Abe,24 whereas Renyi entropy an
the normalized version ofSq are not.

Let us conclude by stressing thatq-exponentials have also been observed in a variety
similar processes.5,18,25The mechanism leading to such distributions is expected to be prese
systems with long-range memory, long-range interactions, fractal or hierarchical structure
similar scenarios.

In what concerns the model defined by Eqs.~3!–~5!, it is clear that f (u) and g(u) are
generically independent functions. However, it does occur that when they are connected t
Eq. ~7!, theq-exponential form emerges naturally. It would no doubt be very interesting if we
a geometrical interpretation of this fact. Hints along this line would be welcome.

As illustrated in Fig. 3 ~deterministic drift proportional to the stochastic one!, the
q-exponential is exact fort→` and it is an excellent approximation;t.

The best characterizations of the width of the pdf’s clearly are those which remain finite
generic circumstances. In our case, this happens for 1/P(0,t), D, ^uuu2s&q

1/2s or combinations such
asAD/P(0,t). The latter two are preferable since they contain attributes of both body and ta
the pdf. For a mathematically convenient and generic characterization, clearly^uuu2s&q

1/2s is the
most appropriate.
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for partial financial support.

1C. Tsallis, J. Stat. Phys.52, 479 ~1988!; E.M.F. Curado and C. Tsallis, J. Phys. A24, L69 ~1991! @Corrigenda:24, 3187
~1991! and25, 1019~1992!#; C. Tsallis, R.S. Mendes, and A.R. Plastino, Physica A261, 534 ~1998!.

2Nonextensive Statistical Mechanics and Thermodynamics, edited by S.R.A. Salinas and C. Tsallis@Braz. J. Phys.29
~1999!#; Nonextensive Statistical Mechanics and Its Applications, edited by S. Abe and Y. Okamoto, Series Lecture No
in Physics~Springer-Verlag, Berlin, 2001!; Non Extensive Thermodynamics and Physical Applications, edited by G.
Kaniadakis, M. Lissia, and A. Rapisarda@Physica A 305 ~Elsevier, Amsterdam, 2002!#; Nonextensive Entropy-
Interdisciplinary Applications, edited by M. Gell Mann and C. Tsallis~Oxford University Press, Oxford, 2003!; Anoma-
lous Distributions, Nonlinear Dynamics and Nonextensivity, edited by H.L. Swinney and C. Tsallis@Physica D~in
preparation!#. A regularly updated bibliography on the subject is accessible at http://tsallis.cat.cbpf.br/biblio.htm

3C. Tsallis, A.R. Plastino, and W.M. Zheng, Chaos, Solitons Fractals8, 885 ~1997!; M.L. Lyra and C. Tsallis, Phys. Rev
Lett. 80, 53 ~1998!; U. Tirnakli, Phys. Rev. E62, 7857 ~2000!; E.P. Borges, C. Tsallis, G.F.J. Ananos, and P.M.C.
Oliveira, Phys. Rev. Lett.89, 254103~2002!; Y.S. Weinstein, S. Lloyd, and C. Tsallis,ibid. 89, 214101~2002!.

4A.R. Plastino and A. Plastino, Physica A222, 347 ~1995!; L.C. Malacarne, R.S. Mendes, I.T. Pedron, and E.K. Len
Phys. Rev. E63, 030101~2001!; E.K. Lenzi, C. Anteneodo, and L. Borland,ibid. 63, 051109~2001!; I.T. Pedron, R.S.
Mendes, L.C. Malacarne, and E.K. Lenzi,ibid. 65, 041108~2002!; L.C. Malacarne, R.S. Mendes, I.T. Pedron, and E.
Lenzi, ibid. 65, 052101~2002!.

5G. Wilk and Z. Wlodarczyk, Phys. Rev. Lett.84, 2770~2000!; C. Beck,ibid. 87, 180601~2001!; C. Beck and E.G.D.
Cohen, Physica A321, 267 ~2003!.

6R. Albert and A.L. Barabasi, Phys. Rev. Lett.85, 5234~2000!.
7V. Latora, A. Rapisarda, and C. Tsallis, Phys. Rev. E64, 056134~2001!.
8C.J. Tessone and H.S. Wio, Mod. Phys. Lett. B12, 1195~1998!.
9S.E. Mangioni, R.R. Deza, R. Toral, and H. Wio, Phys. Rev. E61, 223 ~2000!.

10C.F. Moukarzel, J. Phys.: Condens. Matter14, 2379~2002!.
11H. Nakao, Phys. Rev. E58, 1591~1998!.
12J.M. Deutsch, Physica A208, 445 ~1994!; Y.-C. Zhang, Phys. Rev. Lett.56, 2113~1986!.
13R.F. Fox, J. Math. Phys.13, 1196~1972!; N.G. Van Kampen, Phys. Rep.24, 171~1976!; R.F. Fox,ibid. 48, 179~1978!;

L. Arnold, W. Horsthemke, and R. Lefever, Z. Phys. B29, 367~1978!; A. Schenzle and H. Brand, Phys. Rev. A20, 1628
~1979!.

14N.G. van Kampen, Phys. Rep.24, 171 ~1976!; Stochastic Processes in Physics and Chemistry~North-Holland, Amster-
dam, 1981!.

15H. Risken,The Fokker-Planck Equation. Methods of Solution and Applications~Springer-Verlag, New York, 1984!
16Equation~1! can be rewritten asu̇5 f (u)1g̃(u)z(t), whereg̃(u)5A(A1M @g(u)#2)/C andz(t) is a Gaussian white
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On the generalized problem of the Boltzmann equation
and the moment method in kinetic theory of gases

M. Chen
Vanier College, St. Laurent, Quebec, Canada H4L 3X9

~Received 23 March 2003; accepted 15 July 2003!

In this paper we formulate the generalized problem of the Boltzmann equation
based on the kinetic entropy balance equation in conjunction with the maximum
entropy principle. First we prove that the solution of this generalized problem is
unique. We then prove that the entropy balance equation obtained by Eu in ex-
tended irreversible thermodynamics is valid, if, and only if, the one-particle distri-
bution functionf a is the solution of this generalized problem. As a by-product of
this result, we also obtain a statistical expression of the thermodynamic entropy
balance equation that shares the same formula as the kinetic entropy balance
equation. ©2003 American Institute of Physics.@DOI: 10.1063/1.1615696#

I. INTRODUCTION

In 1949 Grad constructed a formal solution of the Boltzmann equation~BE! by expanding the
one-particle distribution function as a generalized Fourier series in terms of a complete ort
mal system of tensor Hermite polynomials.1 Since then Grad’s moment method has been e
ployed as the kinetic foundation of extended irreversible thermodynamics. However the resu
satisfactory only in the first order approximation. On the other hand, several different appro
to extended irreversible thermodynamics~EIT! have been proposed in the past, particularly,
theory of EIT by Jou, Casas-Vazquez, and Lebon,2 the extended thermodynamics~ET! by Müller
and Ruggeri,3 and the modified moment method by Eu.4 The theories by Jouet al., and by Müller
and Ruggeri in particular, are based on the exploitation of the thermodynamic entropy b
equation, where the dynamical equations of the moments are constructed in accordance w
macroscopic entropy principle, while the statistical foundation of the theory is based o
method of maximum entropy principle~MEP!.5 Recently Boillat and Ruggeri6 further proved the
equivalence between the entropy principle and the closure of the moments by the method o
The kinetic foundation of EIT has been a challenging open problem, especially a complete a
on the relation between kinetic entropy balance equation and thermodynamic entropy b
equation is still lacking in the literature.

The main objective of this paper is to investigate the relationship between the entropy b
equation~EBE! and the moment method from the standpoint of kinetic theory based on
Boltzmann equation. First we formulate the generalized problem of BE in terms of kinetic
and the maximum entropy principle. This generalized problem is equivalent to the Boltz
equation if the entire set of moments are considered. We then prove that the solution
generalized problem is unique. Next, we apply the solution of the generalized problem to EI
prove that the thermodynamic EBE obtained by Eu is valid if and only if the one-particle d
bution function is the solution of the generalized problem of BE. As a byproduct of this resu
show that thermodynamic EBE is equivalent to kinetic EBE. Although there appears to be
overlaps between our work and those in Refs. 2–4 and 6, where MEP is employed to det
the structure of the one-particle distribution function in terms of the moments, howeve
ultimate goal of this work is to investigate the relationship between kinetic EBE and therm
namic EBE in terms of the thermodynamic variables via the Boltzmann equation. This pro
has not yet been explored in the literature.

Consider a system of molecules inr components in a region ofR3 with volumeV, where no
52040022-2488/2003/44(11)/5204/8/$20.00 © 2003 American Institute of Physics
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chemical reactions take place. Letf a be the one-particle distribution function of speciesa at
space–time (rW,t) with molecular velocityvW a . The Boltzmann equation of the system can
written as

] t f a1vW a"¹ f a5(
b

C~ f a , f b!, ~1!

whereC( f a , f b) is the Boltzmann collision integral.
In kinetic theory the entropy densityS, the entropy currentJW s and the entropy productions,

respectively, are defined by

rS52(
a
E f a @,n ~ f a!21#dvW a52(

a
^ f a , ,n ~ f a!21&, ~2!

JW s52(
a
E f acWa @,n ~ f a!21#dvW a52(

a
^ f a ,cWa @,n ~ f a!21#&, ~3!

s52(
a,b

E C~ f a , f b! ,n ~ f a!dvW a52(
a,b

^C~ f a , f b!,,n ~ f a!&, ~4!

where we have set the Boltzmann constantk51, andcWa5vW a2vW is the peculiar velocity withvW as
the mean velocity. Furthermore, we have adopted the notation^A,B&5*AB dvW a .

By ~1!–~4! we can easily obtain the kinetic EBE,

r dtS1¹"JW s2s52(
a

^B~ f a!,,n ~ f a!&50, ~5a!

s>0, ~5b!

where dt5] t1vW "¹ is the substantial differentation, andB( f a)5(] t1vW a"¹) f a2(bC( f a , f b). Al-
though~5a! and~5b! are rigorous results of BE; however, they are void of thermodynamic in
mation sinceS, JW s , ands are functions of (rW,t). In order to study irreversible thermodynamic
these quantities must be expressed as functions of the thermodynamic variables. Thus we
the following central moments of the molecular velocityvW a :

ra5^ f a ,ma&, ca5rar21, r5(
a

ra , ~6!

rvW 5(
a

^ f a ,mavW a&, ~7!

re5(
a

^ f a , 1
2 macWa"cWa&, ~8!

rf̂a,i
(m)5^ f a ,ha,i

(m)&. ~9!

Heree is the internal energy density,$ha,i
(m)% is a set of tensor Hermite polynomials constructed

Eu.4 Notice thatha,i
(m) , i 5( i 1 ,...,i m), 1< i k<3, is a tensor of orderm as well as a polynomial of

degreem. Moreover,ha,i
(m) is a linear combination of the tensor Hermite polynomialsHa,i

(n) ,n
<m, constructed by Grad.1 The detailed expressions ofHa,i

(m) andha,i
(m) can be found in Refs. 1 and

4, respectively. For simplicity, hereafter we drop the tensor indexi and denoteha,i
(m)

5ha
(m) , f̂a,i

(m)5f̂a
(m) . For future reference we setĥa

(0)5ma , ĥa
(m)5mavW a , ĥa

(e)5 1
2macWa"cWa ,ĥa

( i )
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5ha
( i ) , i>1. Thus f̂a

(1)5JWa is the diffusion flux,f̂a
(2)5pJ a is the symmetric traceless pressu

tensor,f̂a
(3)5QW a is the heat flux, etc. We callf̂a

( i ) ,i>1, the generalized fluxes.
In the classical theory of irreversible thermodynamics,7 the thermodynamic states are d

scribed by the conserved variables (e,y5r21,ca). In order to consider some nonequilibrium
phenomena such as ultrasound propagation, light or neutron scattering, etc., it is neces
include the dissipative fluxesf̂a

( i ) in addition to the conserved variablese,y,ca . Let x

5$e,y,ca ,f̂a
( i ) ; 1<a<r , 1< i<n%5(x1,x2,...,xN). Depending on the particular problem und

consideration,n can be taken as large as necessary. Henceforth we considerx as the set of
thermodynamic variables in EIT.

By the definitionB( f a)5] t f a1vW a"¹ f a2(bC( f a , f b), and ~6!–~9! we can easily prove the
following.

Lemma:The dynamical equations of the thermodynamical variablesx5(e,y,ca ,f̂a
(k)) can be

written as

(
a

^B~ f a!,ĥa
(o)&5dtr1r¹"vW 50, ~10!

^B~ f a!,ĥa
(o)&5r dtca1¹"JWa50, ~11!

(
a

^B~ f a!,ĥa
(m)&5r dtvW 1¹"PJ50, ~12!

(
a

^B~ f a!,ĥa
(e)&5r dte1¹"QW 1pJ :@¹vW # (2)1p¹"vW 50, ~13!

^B~ f a!,ĥa
(k)&5r dtf̂a

(k)1¹"Ca
(k11)2Z a

(k)2La
(k)50, k>1, ~14!

Z a
(k)5^ f a ,~dt1cWa"¹!ĥa

(k)&, La
(k)5(

b
^C~ f a , f b!,ĥa

(k)&.

In ~10!–~14!, PJ5pJ1pÎ is the pressure tensor,Î is the unit second order tensor,@¹vW # (2) is the
traceless symmetric part of¹vW , and ‘‘ : ’’ denotes the scalar product of tensors. Furthermo
Ca

(k11)5^ f a ,cWaĥa
(k)& is the flux of f̂a

(k) , Z a
(k) and La

(k) are the kinematic component and th
collisional component of the dynamics off̂a

(k) .
The proofs of~10!–~14! are cumbersome but straightforward. It should be noted that~10!–

~14! do not requireB( f a)50 althoughB( f a)50 does emerge ask→`. This viewpoint will be
further elucidated in the next section. The advantage of adoptingĥa

(0) ,ĥa
(m) ,ĥa

(e) , and ĥa
(k) is

mainly due to the fact that they are directly associated with the thermodynamic variables. Eq
~14! is due to Eu, however, similar expressions have also been obtained by Jouet al., and by
Müller–Ruggeri.

II. FORMULATION OF THE GENERALIZED PROBLEM OF BE

In this section we formulate the generalized problem of BE. LetR15@0,̀ ), andG1 ,G2 be
open subsets of the velocity spaceR3 and the spatial spaceR3, respectively. Consider (rW,t)
P G23R1 as continous parameters. Following the general theory in solving nonlinear prob
in PDE’s,8 we first formulate the equivalent problem of BE as follows.

Supposef a , ] t f a ,¹ f a P L2(G13G23R1). If

E
G1

B~ f a!u~vW a!dvW a5^B~ f a!,u~vW a!&50 ~15a!
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for all u(vW a)PC`(G1), thenB( f a)50 for every (rW,t) and a.e. forvW a PG1 . In particular, let$un%
be a complete orthonormal system of functions inL2(G1). Suppose

^B~ f a!,un&50 ~15b!

for all n. ThenB( f a)50 for every (rW,t).
ConsiderunP$Ha

(n)%n50
N in ~15b!, and set

f a
N5 f a

(0)(
n50

N
1

n!
Aa

n~rW,t ! Ha
(n)~vW a!,

where f a
(0) is the Maxwell Boltzmann distribution. By the orthonormality condition ofHa

( i ) , Aa
(n)

can be determined by the following procedure:

^B~ f a
N!,Ha

(m)&50, m<N,
~16!

Aa
(n)50, n.N,

whereAa
(n) are functions of the thermodynamic variables. Thus Grad’s moment method ca

formulated as a Galerkin scheme given by~16! for any finiteN.8 It is evident that~16! yields a
formal solution of BE asN→`.

Due to the term,n fa in ~2! and~3!, it is difficult to obtain simple expressions forS, JW s , and
s in terms of the thermodynamic variables. In order to overcome this difficulty we resort to
kinetic entropy balance equation~kinetic EBE! ~5a! and consider

^B~ f a!,,n fa&50. ~17!

Define

ĥa5~ ĥa
(0) ,ĥa

(m) ,ĥa
(e) ,ĥa

(k)!, k51, 2,...,n,

la5~la
(0) ,lW (m) ,le ,la

(k)!, k51, 2,...,n.

Herela
(0) andle are scalar functions,lW (m) is a vector function, whilela

(k) is a kth order tensor
function. These functions are functions of (rW,t). We look for f a that satisfies~17! under the
constraints~6!–~9!. In view of ~10!–~14! we set

,n fa5la
(0)ĥa

(0)1lW (m)"ĥa
(m)1leĥa

(e)1 (
k51

la
(k) :ĥa

(k)5la"ĥa e Span$ĥa
(0) ,ĥa

(m) ,ĥa
(e) ,ĥa

(k)%k51
n .

~18!

Thus we solve~17! with ,n fa given by~18! for appropriate choices ofla . Since bothla andĥa

are linearly independent sets, by~17! we have^B( f a),ĥa&50. This in turn gives rise to the
dynamical equations of the thermodynamic variables~10!–~14!. On the other hand,la can be
determined by the constraint conditions~6!–~9! that maximize the entropy density function~maxi-
mum entropy principle!. In analogy with Grad’s moment method, we now formulate the gene
ized problem of BE as follows:

~i! Solve ^B( f a),,n fa&50 with ,n fa given by ~18!.
~ii ! Determinela by the constraint conditions~6!–~9! that maximizes the entropy densit

function.

Notice that step~i! is equivalent to the dynamical equations~10!–~14!, while step~ii ! deter-
mines the structuref a that satisfies the maximum entropy principle. Since$ha

(m)% also forms a
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complete orthonormal system of functions inL2(G1), by ~15b!, the solution of this generalized
problem also yields a formal solution of BE asn→`. The advantage of this method is that EB
is satisfied for any finiten. In the next section we further consider the solution of this general
problem and its consequences.

III. RELATIONSHIP BETWEEN KINETIC EBE AND THERMODYNAMIC EBE

By ~18! f a can be expressed as

f a~vW a ,rW,t !5exp @la~rW,t !"ĥa~cWa!2e~cWa"cWa!n#, ~19!

where e is an infinitesimal positive real number which is required to ensure thatFa

5 lime→0* f advW a is finite. Thenwa5(Fa)21f a can be considered as a probability density functio
Next we determine the coefficient functionsla as follows:

ra5 lim
e→0

^ f a ,ĥa
(0)&5 lim

e→0
^ f a

(0) ,ĥa
(0)&, r5(

a
ra , ~20a!

rvW 5 lim
e→0

(
a

^ f a ,ĥa
(m)&5 lim

e→0
(

a
^ f a

(0) ,ĥa
(m)&, ~20b!

re5 lim
e→0

(
a

^ f a ,ĥa
(e)&5 lim

e→0
(

a
^ f a

(0) ,ĥa
(e)&, ~20c!

rf̂a
(k)5 lim

e→0
^ f a ,ĥa

(k)&. ~20d!

Consequently the solution of the generalized problem of BE can be written as

f a
(M )5expH ~maT21!ĥa

(0)2T21ĥa
(e)2 (

k51

n

~Xa
(k)T21!:ĥa

(k)2e~cWa"cWa!nJ
5expH 2T21F2mama1

1

2
macWa"cWa1 (

k51

n

Xa
(k) :ĥa

(k)G2e~cWa"cWa!nJ , ~21!

whereT is the local thermodynamics temperature,ma the chemical potential of molecular speci
a,7 andXa

(k)5T21la
(k) determined by~20d! is the generalized potential conjugate to the gene

ized fluxesf̂a
(k) . HereT, ma andXa

(k) are now functions of the thermodynamic variables that
governed by~10!–~14!.

In terms of f a
(M ) and the definitions of the entropy density function as well as the entr

current function, we have

SM5T21Fe1pn2(
a

maca1(
k

Xa
(k) :f̂a

(k)G10~e!, ~22a!

JW M5T21FQW 2(
a

maJWa1(
k

Xa
(k)"Ca

(k11)G10~e!5T21QW c10~e!. ~22b!

Since the term 0(e) does not contain any physical significance, hereafter we drop this term
simplicity. In general it is rather difficult to find exact solutions forXa

(k) from ~22d!,9 however,
approximate solutions forXa

(k) can be found in Refs. 2–4. It is well known in probability theo
that different probability density functions can have the same set of moments. Thus it is ina
priate to findXa

(k) via Aa
(k) in ~16!.10
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The exponential form off a
(M ) in ~21! has been proposed by Eu. Similar expression off a

(M ) has
also been proposed by Mu¨ller–Ruggeri. AsSM and JW M are functions of the thermodynami
variables, we callSM and JW M the thermodynamic entropy density function and entropy curr
function, respectively.11 Now we prove thatf a

(M ) is the unique solution of the generalized proble
of BE. To this end, we assume thatf a is another one-particle distribution function that satisfi
~17! and ~6!–~9!. With the aid of the inequality,nZ<Z21, we can easily prove

rS2rSM52(
a

^ f a ,,n fa21&1 lim
e→0

(
a

^ f a
(M ) ,,n fa

(M )21&

5 lim
e→0

(
a

H E f a,nS f a
(M )

f a
DdvW a1E ~ f a2 f a

(M )!dvW aJ
< lim

e→0
(

a
E @~ f a

(M )2 f a!1~ f a2 f a
(M )!# dvW a50,

where equality holds if and only iff a5 f a
(M ) . Therfore, among allf a’s that satisfy~17! and the

constraint conditions~6!–~9!, f a
(M ) is the unique one-particle distribution function that maximiz

the entropy density function.
Theorem 1: The solution of the generalized problem of the Boltzmann equation is uniq

given by ~21!.
Next we consider the thermodynamics EBE. By~22b! and the dynamical equations of th

thermodynamic variablesx in ~10!–~14!, we can obtain the following equation:4

rT21H dte1p dtn2(
a

ma dtca1(
a,k

Xa
(k) :dtf̂a

(k)J 1¹"JW M5SM , ~23a!

SM52T21H QW c"¹,nT1pJ :@¹vW # (2)1(
a

JWa"¹ma

2(
a,k

Ca
(k11)"~¹Xa

(k)!2(
a,k

Xa
(k) :~Z a

(k)1La
(k)!J . ~23b!

In order to identify~23a! with thermodynamic EBE andSM with thermodynamic entropy produc
tion, we follow the method by Mu¨ller–Ruggeri and consider the inequality

r dtSM1¹"JW M>0. ~24!

The minimization of~24! can be carried out by introducing a functionS>0 subject to the
constraint conditions~10!–~14!. Then we have

r dtSM1¹"JW M2H S2(
a

aa~r dtca1¹"JWa!2aW m"~r dtvW 1¹"PJ !2ae~r dte1rp dtn1¹"QW

1pJ :@¹vW # (2)!2(
a,k

aa
(k) :~r dtf̂a

(k)1¹"Ca
(k11)2Za

(k)2La
(k)!J 50, ~25a!

whereaa , aW m , ae , andaa
(k) are Lagrange multipliers. On the other hand,~25a! can be recast as

r dtSM1¹"JW M2S52(
a
E B~ f a!H aaĥa

(0)1aW m" ĥa
(m)1aeĥa

(e)1(
k

aa
(k) : ĥa

(k)J dvW a50.

~25b!
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But the right-hand side of~25b! is the same as~17! with ,n fa5âa"ĥa , âa5(aa ,aW m ,ae ,aa
(k)).

By ~20a!–~20d! we obtainaa5maT21, aW m50, ae52T21, and aa
(k)52T21Xa

(k) . Henceforth
SM5S>0, JW M5T21QW c , and the evolution ofSM is given by

T dtSM5dte1p dtn2(
a

madtca1(
a,k

Xa
(k) :dtf̂a

(k) , ~26a!

that can be transformed into the well-known Gibbs one-form2–4

T dS5de1p dn2(
a

ma dca1(
a,k

Xa
(k) :df̂a

(k) . ~26b!

Therefore, iff a5 f a
(M ) , then thermodynamic EBE is given by~23a! and ~23b!. For the converse

assume~23a! and ~23b!. Then f a5 f a
(M ) follows from ~24!, ~25a!, and~25b!.

Theorem 2: The thermodynamic entropy balance equationr dtSM1¹ "JW M2SM50 with
SM>0 is given by~23a! and~23b! if and only if f a is the solution of the generalized problem
the Boltzmann equation.

As a consequence of~25b! and Theorem 2 we have the following.
Corollary: The statistical expression of the thermodynamic entropy balance equation is

by

r dtSM1¹"JW M2SM52(
a

^B~ f a
M !, ,n~ f a

M !&50.

In other words, thermodynamic EBE and kinetic EBE share the same microscopic formula
We could have obtained the thermodynamic EBE~23a! from ~22a! in conjunction with the

dynamical equations of the thermodynamic variables~10!–~14!. However this approach relies o
finding the integral manifold of the Pfaffian equationj50 under the inaccessibility conditio
jLdj50,12 where

j5de1p dn2(
a

ma dca1(
a,k

Xa
(k) :df̂a

(k) .

Finally we examine the relationship betweens andSM . By ~23b! it is evident thatSM contains
s as well as other dissipative energies attributable to the dynamics of the moments v
evolution equations~10!–~14!. On the other hand, molecular collisions are the only contributo
s. ThereforeSM cannot be obtained from~4! by direct substitution off a5 f a

(M ) .

IV. CONCLUSION

Extended irreversible thermodynamics is a phenomenological science. The foundation
constructed by Jouet al. and by Müller–Ruggeri is based on the exploitation of the thermod
namic entropy balance equation, while the theory of EIT developed by Eu is based on the m
moment method closely related to the theory of Grad. According to Jouet al. and Müller–
Ruggeri, the dynamical equations of the moments are constructed such that the thermod
EBE is satisified. In the meanwhile, the statistical foundation of the theory is based o
maximum entropy principle that determines the structure of the one-particle distribution fun
in terms of the moments. Following the general theory in solving nonlinear problems in P
first we formulate the generalized problem of the Boltzmann equation in terms of kinetic EB
conjunction with the maximum entropy principle. This generalized problem ultimately gives
to a formal solution of the Boltzmann equation if the entire set of moments are considered. N
that there are many differentf a’s that satisfy the kinetic entropy balance equation~5a!. However
the maximum entropy principle can be satisfied if and only iff a5 f a

(M ) . Thus the solution of the
generalized problem of BE is uniquely given by~21!. We then apply this result to EIT and prov
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that thermodynamic EBE given by~23a! and ~23b! holds if and only if f a is the solution of the
generalized problem of the Boltzmann equation. As a byproduct of Theorem 2 we obt
statistical expression of thermodynamic EBE that shares the same formula as the kinetic E
~5a!. In other words, kinetic EBE is equivalent to thermodynamic EBE if and only iff a5 f a

(M ) .
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Stochastic dynamics of the scattering amplitude
generating K-distributed noise

Timothy R. Field
QinetiQ, Malvern Technology Park, Malvern WR14 3PS, United Kingdom

Robert J. A. Tough
TW Research, Harcourt Barn, Malvern WR14 4DW, United Kingdom

~Received 18 November 2002; accepted 21 July 2003!

We derive the stochastic dynamics of the complex valued amplitude resulting from
coherent scattering from a random population of scatterers when this becomes
asymptotically large. Considerations of a random walk model, introduced by Jake-
man, are used to derive stochastic differential equations for the amplitude and
corresponding intensity and phase stochastic processes. An analysis of the correla-
tion structure in the fluctuations is provided and interpreted geometrically in terms
of the gauge invariant properties of the field and the Markov property. A Fokker–
Planck description for the evolution of the probability density is given and the
equilibrium and detailed balance conditions shown to hold. Expressions for the
intensity autocorrelation function and power spectral density are provided in closed
form. The practical implications of the stochastic theory are discussed. ©2003
American Institute of Physics.@DOI: 10.1063/1.1611264#

I. INTRODUCTION

Recent developments in the diffusion based analysis of scattering from random med
ported in Field and Tough~2003!, have led to significant results that enable the identification
K-distributed noise processes in electromagnetic scattering. The results comprise various s
tic differential equations~SDEs! for the scattered amplitude, intensity, phase and scattering c
section motivated by a combination of theoretical considerations and analysis of empirical

The purpose of the present paper is to formulate the stochastic dynamics of the electr
netic field, scattered from a random medium that consists of a collection of independent c
nent scatterers, whose population size has fluctuations in accordance with the birth–
immigration~BDI! model~Bartlett, 1966!. This is achieved from first principles via consideratio
of the complex random walk model introduced by Jakeman~Jakeman, 1980!. Our results thus
provide the theoretical foundation of the anomaly detection technique reported earlier~Field and
Tough, 2003!, and extend the model to include a detailed description of the intensity autoc
lation function and power spectral density.

The paper is organized as follows. Section II begins with a derivation of the complex a
tude SDE in the case of a constant scattering cross section, i.e., Rayleigh scattering, from
erations of a complex random walk model, and extends this to theK-distributed case via the
insertion of step number fluctuations. The resulting SDE for the amplitude process is us
derive corresponding SDEs for the intensity and phase processes, and expressions for the
volatilities of each of these processes are provided. This framework is used to explain th
metrical structure of the correlations in the fluctuations of the complex amplitude.

In Sec. III we provide a Fokker–Planck description for the joint probability density of
scattering cross section and intensity processes and study the asymptotic behavior. It is
that the model possesses the joint probability appropriate to theK-distribution, and that the
condition for detailed balance is also satisfied.

Section IV provides a detailed analysis of the finite-time correlation properties of the sto
tic model. The Green’s functions arising from the Fokker–Planck description are compute
52120022-2488/2003/44(11)/5212/12/$20.00 © 2003 American Institute of Physics
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expressions for the intensity autocorrelation function and power spectral density are provi
closed form. We conclude in Sec. V with an account of the interpretation and practical im
tions of the theoretical framework proposed.

II. STOCHASTIC DYNAMICS OF AMPLITUDE PROCESS

A. Amplitude

We develop the random walk model with step number fluctuations due to Jakeman~see
Jakeman, 1980; Jakeman and Tough, 1988! as a continuous time diffusion process. It is shown
the Rayleigh case of a fixed step number that the amplitude obeys a complex Ornstein–Uhl
equation, and a corresponding SDE in theK-distributed case is derived.

1. Rayleigh scattering

In the Rayleigh case consider the random walk model for the scattered electric fiel~cf.
Jakeman, 1980; Tough, 1987; Jakeman and Tough, 1988!,

E t
(N)5(

j 51

N

exp@ iw t
( j )# ~2.1!

for constant population sizeN. Since Maxwell’s equations for the electromagnetic field poss
U~1! gauge invariance with respect to duality rotations, i.e., multiplication by exp(iL) for constant
L ~cf. Penrose and Rindler, 1984!, the assumption of independence of$w ( j )% implies that these
phases are uniformly distributed. Accordingly in~2.1! the phase factors$exp@iwt

(j)#% are indepen-
dent and uniformly distributed on the unit circle inC. Our ~phase! diffusion model therefore take
$w t

( j )% as a collection of~displaced! Wiener processes on a suitable time scale,w t
( j )5D ( j )

1B 1/2Wt
( j ) , with the random initializations$D ( j )% a set of independent random variables u

formly distributed on the interval@0,2p), and thus dw t
( j )5B 1/2dWt

( j ) , dw t
( j )25B dt. From Ito’s

formula ~e.g., Oksendal, 1998; Karatzas and Shreve, 1988! the Ito differential of~2.1! is

dE t
(N)5(

j 51

N S idw t
( j )2

1

2
dw t

( j )2Dexp@ iw t
( j )#. ~2.2!

The first term( j 51
N i dw t

( j ) exp@iwt
(j)# on the right-hand side of~2.2! consists of a sum of indepen

dent randomly phased Wiener processes, with variance equal toBN dt, while the second term is
independent of the scatterer labelj . Thus from~2.2! we can write

dE t
(N)52 1

2BE t
(N) dt1~BN!1/2dj t , ~2.3!

wherej t is a complex Wiener process satisfyingudj tu25dt, dj t
250. The processj t is adapted to

the filtration F (w)5ø jF ( j ), whereF ( j ) is the filtration appropriate to the component scatte
phasew t

( j ) . The amplitude processC t is then defined byC t5 limN→`@E t
(N)/N̄1/2# and satisfies the

SDE,

dC t52 1
2BC t dt1~Bx!1/2dj t , ~2.4!

where the continuous valued random variablex, the average scattering power, arises from
asymptotically large population viax5 limN→`@N/N̄#.

2. K-distributed noise

In the case of step number fluctuations in the random walk model~2.1!, we define the
amplitudeC t in a similar manner to the Rayleigh case above, with the modification tha
employ a time dependentNt such thatxt5 limNt→`@Nt /N̄#. Thus
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C t5 lim
Nt→`

H 1

N̄1/2
(
j 51

Nt

exp@ iw t
( j )#J ~2.5!

5 lim
Nt→`

H S Nt

N̄
D 1/2

1

Nt
1/2 (j 51

Nt

exp@ iw t
( j )#J ~2.6!

5xt
1/2g t , ~2.7!

whereg t5 limN→`@E t
(Nt)/Nt

1/2#. According to the arguments given in the Rayleigh case aboveg t

is a complex Ornstein–Uhlenbeck process which obeys the SDE

dg t52 1
2Bg t dt1B 1/2dj t . ~2.8!

Observe from~2.4!, therefore, thatg t is a unit power Rayleigh process. The above equation fog t

can be solved by considering the stochastic differential d@exp(12Bt)g t#, which leads to the solution

g t5expS 2
1

2
Bt D H g01B 1/2E

0

t

expS 1

2
BsDdjsJ . ~2.9!

We deduce the expectation formulas

E@g t#5exp~2 1
2Bt !g0 , ~2.10!

E@ ug tu2#511exp~2Bt !~ ug0u221!. ~2.11!

From ~2.11! it follows that limt→` E@ ug tu2#51 and so from~2.7! we find the intensity process
defined byzt5uC tu2, satisfiesE@zt#5xt . The SDE forC t , as determined by~2.7!, can now be
derived, via the Ito product formula d(XtYt)[Xt dYt1Yt dXt1dXt dYt . For this purpose it is
convenient to introduce the square-root cross sectionr t5xt

1/2 and thus, from~2.7!, we find dC t

5r t dg t1g t dr t . Observe that the cross term dr t dg t does not feature in this relation owing to th
independence ofWt

(x) andj t
(w) , which originate from the intrinsic scattering population and

scattered electromagnetic field, respectively.
The BDI model~Bartlett, 1966! posits a first order master equation for the populationNt ,

with respective generation and recombination ratesG5lN1n, R5mN. For an asymptotically
large population,N→`, we deduce~Tough, 1987; Jakeman and Tough, 1988; Field and Tou
2003! that the re-scaled population variatex°ax satisfies the SDE

dxt5A~a2xt!dt1~2Axt!
1/2dWt

(x) ~2.12!

for an independent Wiener processWt
(x) , where a5n/l. This leads to the asymptoti

G-distribution forxt ,

Ga~x!5
xa21 exp~2x!

G~a!
, ~2.13!

so that Var@x#5^x&5a. From Ito’s formula applied tor t5xt
1/2 we find dr t5dxt/2xt

1/2

2dxt
2/8xt

3/2, and thus from~2.12!,

dr t5AS 2~a2xt!21

4r t
Ddt1S A

2 D 1/2

dWt
(x) . ~2.14!

This leads to the following result.
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Proposition 2.1: In the K-distributed case the scattered amplitude is governed by the SD,

dC t

C t
52

1

2
B dt1

B 1/2

g t
dj t1AS 2~a2xt!21

4xt
Ddt1S A

2xt
D 1/2

dWt
(x) . ~2.15!

This evolution is invariant under the U(1) gauge transformationC t°exp(iL)Ct , for constantL.
In the above expressionA andB are independent constants with the dimension of freque

In most situations of interest, however, such as those reported in Field and Tough~2003!, the
wavelength of the illuminating radiation is such that the two corresponding reciprocal corre
time scales satisfyA21@B21. The description of Rayleigh scattering~i.e., constant scattering
cross section! is recovered whenA50. Proposition 2.1 implies the following result.

Corollary 2.2: The squared volatility of the amplitude processC t is given by

udC tu25S Bxt1
Azt

2xt
Ddt. ~2.16!

It is the linearity of the right-hand side above inzt that enables the anomaly detectio
mechanism, reported in Field and Tough~2003!.

B. Intensity

The stochastic differential of the intensity processzt can be expressed in terms of the amp
tude via the identity

dzt5C t* dC t1C t dC t* 1udC tu2 ~2.17!

which follows fromzt5uC tu2. From ~2.8! we find

C t* dC t1C t dC t* 5xt~g t* dg t1g t dg t* !12ug tu2r t dr t

52Bzt dt1B 1/2xt~g t* dj t1g t dj t* !1
2zt

r t
dr t . ~2.18!

The terms involving dj t above can be combined in terms of a real-valued Wiener processWt
(w)

according to

g t* dj t1g t dj t* [S 2zt

xt
D 1/2

dWt
(w) . ~2.19!

We deduce from~2.16!, ~2.17!, ~2.18! that

dzt52Bzt dt1~2Bztxt!
1/2dWt

(w)1
2zt

r t
dr t1S Bxt1

Azt

2xt
Ddt. ~2.20!

In combination with~2.14! this leads to the following result.
Proposition 2.3: The intensity SDE is given by

dzt5FB~xt2zt!1
Azt~a2xt!

xt
Gdt1S 2Bxtzt1

2Azt
2

xt
D 1/2

dWt
(z) ~2.21!

in which Wt
(z) is correlated with Wt

(x) of (2.12), and satisfies

S Bxtzt1
Azt

2

xt
D 1/2

dWt
(z)5~Bxtzt!

1/2dWt
(w)1S A

xt
D 1/2

zt dWt
(x) . ~2.22!
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The filtration ofWt
(w) arises from the constituent phasesw t

( j ) in the random walk according to
~2.19!, while that ofWt

(x) stems solely from the fluctuations in the endogenously specified p
lation model. Observe that, ifB50, ~2.22! implies W(z)5W(x), and from~2.8! g t is constant, so
ug tu25E@ ug tu2#51. Accordinglyzt5xt is a solution of~2.21!, as required by~2.7!. From Propo-
sition 2.3 we obtain the following result.

Corollary 2.4: The squared intensity volatility is determined by

dzt
25S 2Bxtzt1

2Azt
2

xt
Ddt. ~2.23!

Alternatively, in terms of the amplitude processC t, the squared volatility in the intensityzt

can be expressed as

dzt
2[C t

2 dC t*
21C t*

2 dC t
212ztudC tu2 ~2.24!

which, from ~2.15!, leads to the above expression for dzt
2 . Observe that forA!B the dominant

contribution to the squared intensity volatility is proportional to the instantaneous value o
intensity. Thus for a Rayleigh time scaleB 21, over whichxt remains approximately constant, th
time series data for dzt

2 andzt should exhibit strong correlation. This feature has been experim
tally verified in a case of optical scattering, and is reported in Sec. IV A of Field and Tough~2003!.

In terms of the square-root intensityRt5Azt an application of Ito’s formula to~2.23! yields
the following result.

Corollary 2.5: The squared volatility in the modulus amplitude is determined by

dRt
25

1

2 S Bxt1
Azt

xt
Ddt. ~2.25!

C. Phase

The complex amplitude process can be expressed in polar formC t5Rt exp(iut) and thus,
writing iu t5 log(Ct /Rt), we deduce from Ito’s formula that

i du t5
dC t

C t
2

1

2 S dC t

C t
D 2

2
dRt

Rt
1

1

2 S dRt

Rt
D 2

. ~2.26!

Since the left-hand side is purely imaginary we can express du t in terms ofC t alone as

du t5
1

2i F S dC t

C t
2

1

2 S dC t

C t
D 2D2S dC t*

C t*
2

1

2 S dC t*

C t*
D 2D G . ~2.27!

Accordingly, the squared phase volatility is determined by the identity

du t
2[

udC tu2

2zt
2

dC t
2

4C t
2 2

dC t*
2

4C t*
2 . ~2.28!

From ~2.15! we have

dC t

C t
2

1

2 S dC t

C t
D 2

5S A~a2xt21!

2xt
2

1

2
BDdt1S A

2xt
D 1/2

dWt
(x)1

B 1/2

g t
dj t . ~2.29!

Hence, from~2.27!, u t obeys the SDE,

du t5
B 1/2

2i ug tu2 ~g t* dj t2g t dj t* !. ~2.30!
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As in the derivation of the SDE for the intensity, we can express the terms involvingj t in ~2.30!
as a distinct real-valued Wiener processWt

(u) according to

1

2i
~g t* dj t2g t dj t* ![S zt

2xt
D 1/2

dWt
(u) . ~2.31!

Thus we obtain the following result.
Proposition 2.6: The total phaseu t of the complex amplitude processC t obeys the SDE,

du t5S Bxt

2zt
D 1/2

dWt
(u), ~2.32!

which has vanishing drift.
The result has the following consequence.
Corollary 2.7: The squared total phase volatility is given by

du t
25

Bxt

2zt
dt. ~2.33!

Alternatively ~2.33! can be derived by applying~2.28! to ~2.15!. This result accords with the
general scaling and symmetry arguments for the behavior of the squared phase volatil
forward in Sec. IV of Field and Tough~2003!. The situation should be contrasted with th
differentiable model for the processC t ~Jakemanet al., 2001! for which the intensity-weighted
phase derivative, instead of its square, has minimal variance.

These relations lead to expressions for the frequency constantsA, B as follows. With respect
to an average over the phase fluctuations dw t

( j ) there exists aresidual constant termin the squared
phase volatility, i.e.,

E@du t
2/dtuF (w)#5 1

2B. ~2.34!

In principle this enables the Rayleigh constantB to be deduced from scattering data~alternatively
an estimate of the Rayleigh correlation time scaleB 21 can be found from measuring the tim
difference between successive peaks in the intensity time series data$zt%). Expression~2.33!
implies that xt52B 21zt du t

2/dt and so the instantaneous values of the cross sectionxt ~and
thereforer t! are observable through the squared phase fluctuations. Consequently, the conA
can be deduced from the phase fluctuations through the square of~2.14!,

dr t
2

dt
5

1

2
A. ~2.35!

~Cf. Sec. III in Field and Tough, 2003, for an account of the observability of the squared vo
ties for discretely sampled time series data.!

D. Correlation of fluctuations

The stochastic dynamics presented in Proposition 2.1 enable one to deduce the cor
structure in the fluctuations of the complex amplitude processC t .

A geometric insight into these properties can be gained from the symmetry properties
processC t . Proposition 2.1 shows that the SDE forC t is invariant under the U~1! gauge trans-
formationC t°exp(iL)Ct . Since the drift in~2.15! is real valued, the identity~2.27! implies that
u t has vanishing drift, as seen explicitly from Proposition 2.6. The resulting asymptotic proba
distribution is therefore U~1! symmetric.

In respect of time evolution, the SDE~2.15! has the Markov property, that the evolution
determines depends on the instantaneous value ofC t and is independent of the history of th
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process$C t8ut8,t%. This feature yields a preferred symmetry, namely the instantaneous r
direction determined byC t. The diffusion tensors i j , determined by dC i dC j5s i j dt is real and
symmetric and therefore diagonalizes overC. In the nondegenerate case its eigenvectors const
a unique orthogonal pair corresponding to the directions in which the component Wiener
ments are independent. On grounds of the above symmetry we anticipate that the space o
directions contains the instantaneous radial~and attendant orthogonalu! direction. This geometri-
cal property can be verified explicitly from~2.19!, ~2.22!, and~2.31!, which imply the following.

Proposition 2.8: The cross-correlation between Wt
(z) , Wt

(u) vanishes identically, i.e.,
dWt

(z) dWt
(u)50. CorrespondinglydRt du t50, i.e., the fluctuations in Rt , u t are statistically inde-

pendent.
In terms of theI ,Q component representation the coordinate transformationsI 5R cosu, Q

5R sinu and the property dRt du t50 imply the geometric relation

dI t dQt5cosu t sinu t~dRt
22Rt

2 du t
2!. ~2.36!

This leads to the following result.
Proposition 2.9: The It , Qt components ofC t are independent if and only ifs (R)5Rs (u) ,

i.e., s (z)52zs (u) . A departure from this relation induces a correlation between the Wiener in
ments in It , Qt .

Alternatively, this result can be derived using the contravariance of the diffusion tensos i j ,
which enables one to translate between itsI ,Q and R,u components via the above coordina
transformation~e.g., Risken, 1989!. In the general case we find from~2.23!, ~2.33! that

s (z)
2

s (u)
2 54z21

4Az3

Bx2 . ~2.37!

This relation can be used to characterize the geometry of the fluctuations as follows.
Proposition 2.10: In the K-distributed case, AÞ0, the diffusion tensor is nondegenerate, a

the fluctuationsdI t , dQt are correlated. The (comoving) error surface S ofdC t , defined by the
quadratic forms II dI t

212s IQdI tdQt1sQQdQt
251, is an ellipse whose major axis lies in th

instantaneous radial direction defined byC t . Degeneracy occurs only in the Rayleigh case, A
50, for which S is a circle, i.e., the fluctuations inC t are isotropic.

We remark in general that the random variablesI t , Qt possess a joint probability distributio
that is U~1! symmetric, i.e., given by a surface of revolution about the perpendicular axis t
origin in the I ,Q-plane. NeverthelessI t , Qt are correlated in general, and become independ
only in the Rayleigh case,A50, for which the surface of revolution is Gaussian. In this case
componentI t , Qt processes can be described by the pair of~uncoupled! Ornstein–Uhlenbeck
processes determined as the real and imaginary parts of~2.4!.

III. ASYMPTOTIC BEHAVIOR

A. Equilibrium distribution

We recall the covariant form of the Fokker–Planck equation~FPE! for the asymptotic joint
distributionP(x,z,t) ~e.g., Risken, 1989!

]P
]t

52(
i

] i~biP!1
1

2 (
i , j

] i] j~s i j P!. ~3.1!

From ~2.12!, ~2.21!, ~2.22! the components of the diffusion tensor in thex,z coordinate represen
tation are given by

s ij 52S Ax Az

Az Bxz1Az2/xD ~3.2!
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while the drift vector has components

bi52S A~a2x!

B~x2z!1Az~a2x!/xD . ~3.3!

From ~3.1!, therefore, we deduce the following.
Proposition 3.1: The FPE for the joint distribution of the cross section xt and intensity zt is

]P
]t

5B$2]z@~x2z!P#1x]z
2@zP#%1AH 2]zS z~a2x!P

x D2]x~~a2x!P!J
1AH ]z

2S z2P
x D12]x]z~zP!1]x

2~xP!J . ~3.4!

This admits the asymptotic joint distribution

P5
xa22 exp~2x2z/x!

G~a!
. ~3.5!

Proof: The derivation of~3.4! follows immediately from~3.1!, ~3.2!, and ~3.3!, while the
following identities for the derivatives of the joint distribution:

]zP52P/x,

]z~zP!5~12z/x!P,

]z
2~zP!5S 2

2

x
1

z

x2DP, ~3.6!

]xP5S a21

x
1

z

x2 21DP,

]x
2P5H S a21

x
1

z

x2 21D 2

2
a21

x2 2
2z

x3JP,

enable one to verify that~3.5! is an asymptotic solution of~3.4!. h

Observe from~2.12! and ~3.4! that the model behavior of the scattering cross section
endogenously specified, i.e., the parameters involved arise from the population alone, inde
dently of the electromagnetic field. Thus~2.12! is independent ofzt . Nevertheless there exists
nonlinear coupling between thext , zt variables, owing to the presence ofxt in ~2.21! and the
correlation ofWt

(x) , Wt
(z) according to~2.22!. Thereforext , zt are statistically dependent rando

variables, which relation is symmetric. The situation in regard to the endogenous specifica
the evolution of the cross section through~2.12! should be contrasted with the previous discuss
given in Tough~1987!, and its generalizations in Field and Tough~2003! in which it is necessary
that the SDE forxt has an explicitzt dependence, and in which the Wiener processesWt

(x) , Wt
(z)

are considered to be independent. Although these analyses preserve the joint distribution
priate toK-distributed noise, these models are not so natural from a physical point of view.

B. Detailed balance

The covariant Fokker–Planck equation~3.1! can be re-expressed as the equation of contin

]P
]t

1(
i

] i~Pv i !50, ~3.7!
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where thecurrent v i is defined byv i5bi2 1
2P 21( j] j (s

i j P). In addition to the the equilibrium
condition]P/]t50, the condition for detailed balance states thatv i50. Explicit calculation using
~3.6! shows thatv i vanishes asymptotically. Alternatively, a more intuitive argument for t
property is as follows. From~2.7! we have the factorizationzt5xtut , whereut5ug tu2, in which
the factors xt , ut are independent random variables. The coordinate transform
xi°xi8:(x,z)°(x,u) recasts the joint distribution~3.5! and SDEs~2.12!, ~2.21! such that

bi85S Ab18~x!

Bb28~u!
D , s i8 j85S AS1818~x! 0

0 BS2828~u!
D ,

where the functionsb•(•), S•(•) are determined from~2.8!, ~2.12! and are independent ofA, B.
The equilibrium condition in the (x,u) representation, obtained by setting the left-hand side
~3.1! equal to zero, implies detailed balance, since this condition holds for arbitrary values
constantsA, B. Consequently,v i in the (x,z) representation also vanishes, sincev i transforms
homogeneously~i.e., tensorially! under coordinate transformations~see, e.g., Risken, 1989!.

IV. CORRELATION PROPERTIES

For simplicity we adopt a timescale such that the constantB of ~2.8! is equal to unity. The
independent constantA will then satisfyA!1 in most practical situations of interest~e.g., scat-
tering at radar wavelength!, although this condition is not necessary for the validity of the exp
sions that follow in this section.

A. Intensity autocorrelation

It is convenient to write the intensity process in the product representationzt5utxt . From
~2.8! the processut5ug tu2 satisfies the SDE,

dut5~12ut!dt1A2ut dWt
(u) , ~4.1!

whereg t dj t* 1g t* dj t5A2ut dWt
(u) . The propagator~i.e., Green’s function for the correspondin

FPE! for the processut is given by

P~u,tuu0!5
1

12exp~2t !
expS 2

u1u0 exp~2t !

12exp~2t ! D I 0S 2 exp~2t/2!Auu0

12exp~2t ! D , ~4.2!

where I a denotes the modified Bessel function~e.g., Jeffreys and Jeffreys, 1966!. In a similar
manner the propagator for~2.12! is given by

P~x,tux0!5
1

12exp~2At ! S x exp~At !

x0
D (a21)/2

expS 2
~x1x0 exp~2At !!

12exp~2At ! D
3I a21S 2 exp~2At/2!Axx0

12exp~2At ! D . ~4.3!

This can be re-expressed as a series expansion

P~x,tux0!5xa21 exp~2x! (
n50

`
n!

G~n1a!
exp~2Ant!Ln

a21~x!Ln
a21~x0!, ~4.4!

where the Laguerre polynomialsLn
a are defined by

Ln
a~x!5

x2a exp~x!

n! S d

dxD n

~xa1n exp~2x!! ~4.5!
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~cf. Wong, 1963 for corresponding derivations!. Combining ~4.2!, ~4.4! leads to the following
result.

Proposition 4.1: The propagator for (3.4) is given by

P~z,x,tuz0 ,x0!5
1

x~12exp~2t !!~12exp~2At !! S x exp~At !

x0
D (a21)/2

3expS 2
z/x1z0 exp~2t !/x0

12exp~2t ! DexpS 2
x1x0 exp~2At !

12exp~2At ! D
3I 0S 2 exp~2t/2!

12exp~2t !
Azz0

xx0
D I a21S 2 exp~2At/2!Axx0

12exp~2At ! D . ~4.6!

Thus a general two-point correlation function can be expressed as the integral

^F1~xt ,zt!F2~x0 ,z0!&5E
0

`

dx dz dx0 dz0 F1~x,z!F2~x0 ,z0!P~x,z,tux0 ,z0!

3
x0

a22 exp~2z0 /x02x0!

G~a!
. ~4.7!

As a consequence we have the following result.
Corollary 4.2: The intensity autocorrrelation function is given by

^ztz0&5^utu0&^xtx0&5a~a1exp~2At !!~11exp~2t !!. ~4.8!

B. Power spectral density

In the additional presence of a Doppler frequency shiftv0 ~the presence ofv0Þ0 is important
in radar applications; see, e.g., Helmstrom, 1960! the processg t of Sec. II is modified to obey the
SDE,

dg t5~2 1
2 1 iv0!g t dt1dj t . ~4.9!

The amplitude processC t determined by~2.15! is stationary, since there is no explicit time
dependence in~2.15!, the phase distribution is uniform, and the modulus amplitudeRt has a
stationary distribution in accordance with the stationaryK-distribution for the intensity~it is
assumed that the distributions of theinitial values ofC and its associated processes are given
their asymptotic stationary distributions!. Therefore, we apply theWiener–Khintchine theorem
which asserts that thepower spectral density S(v) is equal to the Fourier transform~denoted by
a tilde! of the autocorrelation function, i.e.,̂C̃(v)C̃(v8)&5pd(v2v8)S(v) where S(v)

5^C tC0*̃ &. The amplitude autocorrelation function satisfies

^C tC0* &5^Axtx0&exp~2utu/22 iv0t !. ~4.10!

Using the propagator expansion~4.4!, the evaluation of the factor̂Axtx0& proceeds according to
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^Axtx0&5E
0

`

dxE
0

`

dx0

x0
a21 exp~2x0!

G~a!
P~x,tux0!Axx05

1

G~a! (
n50

`
n!

G~n1a!
exp~2Ant!

3S E
0

`

xa21/2exp~2x!Ln
a21~x!dxD 2

5
1

G~a! (
n50

`
n!

G~n1a!
exp~2Ant!

3S G~a1 1
2!G~n2 1

2!

n!2Ap
D 2

5
G~a1 1

2!
2

G~a!2 2F1~21/2,21/2,a,exp~2At !!. ~4.11!

Here the hypergeometric function2F1 is identified from its series expansion. Whent→`, ~4.11!
approacheŝAx&2, as anticipated from the decorrelation ofxt , x0 over large times. Ast→0 we
find, from the identity due to Gauss,

2F1~a,b,c,1!5
G~c!G~c2a2b!

G~c2a!G~c2b!
, ~4.12!

that ~4.11! reduces to the anticipated form

lim
t→0

^Axtx0&5
G~a11!

G~a!
5a5^x&. ~4.13!

Expressions~4.10!, ~4.11! lead to the following result.
Proposition 4.3: The autocorrelation function of the complex amplitude processC t is given by

^C tC0* &5
G~a1 1

2!
2

G~a!2 2F1~21/2,21/2,a,exp~2At !!exp~2utu/22 iv0t !. ~4.14!

According to the Wiener–Khintchine theorem, a Fourier transform of this result has
following consequence.

Corollary 4.4: The power spectral density of the K-distributed noise process characterized
(2.15) is given by

S~v!52
G~a1 1

2!
2

G~a!2 E
0

`

2F1~21/2,21/2,a,exp~2At !!exp~2t/2!cos~~v2v0!t !. ~4.15!

Expanding the hypergeometric function2F1 as a series and integrating term by term, the resulti
series is recognized as a generalized hypergeometric function of unit argument. Thus

S~v!52RH 3F2~21/2,21/2,~1/21 i ~v2v0!!/A;a,11~1/21 i ~v2v0!!/A;1!

1/21 i ~v2v0! J G~a1 1
2!

2

G~a!2 .

~4.16!

These calculations illustrate how the product representation of the amplitude~2.7! facilitates
the analysis of the associated FPE~3.4!.

V. INTERPRETATION AND IMPLICATIONS

The study provides the first theoretical account ofK-distributed noise processes in which th
continuous time dynamical features of the electromagnetic scattering process are fully ca
This has been achieved via the formulation of stochastic differential equations for the sca
amplitude, using the primitive assumptions of the complex random walk model.

The results substantiate an earlier proposal for anomaly detection in the context o
processes~Field and Tough, 2003! based on the concept of observability in the fluctuations of
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complex amplitude process over a sample path. In this respect, Corollary 2.2 leads to a corr
between the observedudC tu2 and its predicted value of the formc(udC tu2,zt), which should
approximate unity within the domain of validity of the model. This feature enables an ano
detection mechanism forK-distributed noise processes, which has been successfully teste
experimental data, and is reported in Sec. IV B of Field and Tough~2003!. It is of considerable
importance that~2.16! can be derived from theoretical considerations alone.

The formulation of the continuous time dynamics is more fundamental than knowled
certain statistical properties of a model and, moreover, implies the form of all correlation func
and higher order statistics. In this respect we have provided closed form expressions f
intensity autocorrelation function and the power spectral density, which should be applica
situations of radar and laser physics. The tractability of such expressions is facilitated by t
of computational tools such asMathematica~Wolfram, 1999!.

The methodology we have described admits the generalization of the SDE for the sca
cross section~2.12! to more general endogenous models of population processes, such
scribed in Sec. II of Field and Tough~2003!. This could include corresponding descriptions of t
electromagnetic scattering processes that lead, e.g., to the Weibull distribution~applied to scatter
from land clutter!, the intensity compoundK-distribution for various radar parameters~e.g., ap-
plied to synthetic aperture radar! and other examples~cf. Jakeman and Tough, 1988!.

Corollary 2.7 implies that the instantaneous value of the scattering cross section is obse
from the scattered amplitude. The cross section is of primary significance in anomaly det
within a random scattering medium~e.g., the sea-surface, heterogeneous media!, which had pre-
viously been regarded as a hidden physical variable whose instantaneous values were no
ible from the scattering data. The expression~2.25! for the squared volatility in the modulu
amplitude should find application to problems in incoherent radar detection where the tota
tered phase information is not available.
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Interacting squares in arbitrary external field
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A model of a many-body system composed of squares with contact pair interactions
in an arbitrary external field is presented. The formulation uses a mapping of the
system onto polydisperse hard core mixtures. On the polydisperse level then, a
simplified Hamiltonian function is specified. This assumption together with a fur-
ther one about the global free energy functional for the pure hard core part of the
idealized mixture make the model solvable. It is expected to hold for high tempera-
tures, low densities, or low temperatures. The validity of the method of construc-
tion in the latter case is illustrated by a further application to a corresponding lattice
system, for which exact results to compare with are readily available when the
temperature is sufficiently low. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1613042#

I. INTRODUCTION

In the catalogues of solvable models in statistical mechanics~see, e.g., Refs. 1 and 2!, calcu-
lations of free energies in the presence of external fields are rarely listed. For example, ev
prominent Ising model onZ2 has only been solved in zero field. As a consequence of the diffic
of the problem, the analysis of many-body systems in external fields developed into a su
pline of statistical mechanics, with density functional theory as unifying approach. The basi
of density functional theory~for a review, see, e.g., Ref. 3! consists in representing thermodynam
potentials in terms of the local particle density%. Besides this well-known transformation to% as
new free variable, another profound idea emerged only recently, namely the concept of ove
plete density functional description. This method was introduced by Percus.4 In such a represen
tation of thermodynamic potentials, use is made of additional variables other than the local p
density to both clarify and better control the structure of the functionals.3 So far, several overcom
plete representations of the statistical mechanics ofD51 particle systems with next neighbo
interactions in an arbitrary external field have been deduced5,4,6 ~for a historic overview see, e.g
Ref. 6!. The purpose of this communication is to initiate the extension of the overcomplet
technique of Cuesta and Tutschka6 by considering a suitable chosen interacting particle system
R2 ~and onZ2).

From a physical point of view, their approach is that of introducing the sequence of
densities$% i% i>1 of blocks ~clusters, superparticles,5 or units! containing i particles connected
~bounded or associated7! due to the attractive part of the interaction as set of redundant varia
Since then the pair interaction among the blocks is per construction a hard core potenti
resulting free energy functional takes on the polydisperse, additive hard rods mixture form
sequently, the functional is parameterized by few sums~over the local block densities% i), which,
in turn, can be evaluated~for the D51 next neighbor case! in closed form. Based on this obse
vation, Cuesta and Tutschka6 show ~though indirectly! that the thermodynamic potentials ofD
51 particle systems with next neighbor interactions in an arbitrary external field are—anal
to the well-known uniform isothermal–isobaric technique~see, e.g., Ruelle8!—completely char-
acterized by pressure-like quantitiesp6, termed effective pressures.9,10

From a mathematical viewpoint, they lifted the representation of positive integersn ~physi-
cally interpreted as number of particles! as sums of other positive integers, known as partitions
n ~see, e.g., Andrews11,12!, to the thermodynamic level. Here, the central observation is that
52240022-2488/2003/44(11)/5224/19/$20.00 © 2003 American Institute of Physics
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number of partitions ofn is exponentially bounded~Hardy–Ramanujan formula—see, e.g
Andrews11,12!.

Cuesta and Tutschka6 developed these ideas along two examples, the sticky core mod
which the interaction has a 0-range attractive component at the edge of the core, and the
typical square-well potential. In particular, the full and explicit analysis of the former system
possible because of the contact nature of the adhesive interaction. That is, the particles o
are forced to lie, in relative coordinates, on the linear lattice.

While the logic of the overcompleteness scheme of Cuesta and Tutschka,6 with its resem-
blance to the isothermal–isobaric method, not only works for the simplifiedD51 setup, a math-
ematical analysis of the direct extension of the format toD.1 is not within reach. Correspond
ingly, this communication starts the extension of the overcomplete representation of Cues
Tutschka6 by looking atD52 examples with type of contact pair interactions. This choice
course is based on the very handy properties of theD51 sticky core model. Furthermore, we a
going to restrict ourselves to oriented hard square cores.

Our program consists of three steps. First, in Sec. II A, we shall give a reformulation o
sticky rods free energy functional. The topic will be the abstraction from theD51 nature of the
solution. Namely, that we are going to work backwards from the elegant and compact eff
pressures representation. In particular, we will avoid the closed-form evaluation of the sum
the local block densities~which will most likely not be possible inD52), as well as infer the
relation between% and the local block densities$% i% i>1 directly from the lattice structure of the
units ~instead from an identity of functional analysis as within thep6 format!—see formula~2.7!.
With these preliminary considerations in mind, we shall turn to the crucial part of our pro
~step two!, the extension toD52, pursued in Sec. II B. Following the logic of the Cuesta
Tutschka format, the central theme will be the control of the block configurations. Whereas f
D51 case, the units are completely characterized by the number of connected particlesi , in the
D52 case, the shape functions of the units are no longer defined by a single integer para
This means that while the mapping of our many-body system of squares with contact intera
onto a polydisperse, additive hard core mixture is formally possible, the Hamiltonian functi
this mixture will be, foremost due to the geometry of the hard cores~i.e., the units or blocks!,
hopelessly complicated, and therefore the evaluation of its free energy functional far b
reach. Hence, in order to set up an analytically tractable scheme, we are forced to sp
sufficiently simple polydisperse hard core mixture type Hamiltonian such that its thermodyn
potentials can be calculated. The idealization we are going to use will restrict the spatial str
of the units to a certain class of compact configurations. Clearly, this simplifying condition m
that the model will have a limited domain. In fact it will be easy to guess the thermodyn
region for which the approach is valid. But somewhat more quantitative estimates would ce
be preferable. This question provides the focus of the last step of our program. In Sec. I
procedure of Sec. II B will be applied to an interacting particle system with next neighbor i
actions onZ2, for which the coexistence curve is well-known~see, e.g., Refs. 1 and 2!. This will
provide us finally, at least for low temperatures, with an explicit comparison of our idealiz
with exact results.

II. NONUNIFORM CONTINUOUS SYSTEMS

A. One-dimensional sticky cores

This model is to be interpreted as meaning a system ofD51 hard balls with an additional
zero-range attractive interaction at the edge of the core. It can be regarded as a limiting ca
D51 particle system with square-well potential. In the latter system, the pair interactioV
between two particles at distanceq is ~selecting units such that the hard core diameter equal!

V~q!5H 2E if qP@1,11d!,

0 if qP@11d,`!,

1` otherwise,

~2.1!
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whered<1 is the width of the well andEPR1 the interaction strength. Upon introducing the pa
interaction Boltzmann factor

e~y,x!5H exp@2bV~y2x!# if y>x,

0 otherwise,
~2.2!

with x,yPR as the positions of two neighboring particles andbPR1 the reciprocal temperature
the pair interaction energy ofD51 adhesive systems is characterized through~2.1! as well as
~2.2! by the limit

lim
E→1`
d→01

e~y,x!ud exp(bE)→l5h1~y2x!1l d1~y2x!, ~2.3a!

whereda5ha8 , ha being the Heaviside function shifted to the right bya, andlPR1 the stickiness
~coupling or bonding7! parameter.

The formulation of the Hamiltonian function is completed via the definition of the lo
activity

z~x!5exp$b@m2U~x!#%. ~2.3b!

This term of the Hamiltonian gives the interaction energy between the external fieldU ~and the
chemical potentialmPR, respectively! and the particle atx.

For the Hamiltonian~2.3!, the free energy was first obtained by Percus in 1982 through
inverse operator format.13 Later on, Cuesta and Tutschka6 gave an alternative derivation, leadin
to a physically more transparent representation of the thermodynamic potentials in terms
fective pressuresp6. They also showed the equivalence of the two schemes.

The aim of this section is to infer a reformulation of the sticky rods functional most suit
for the transition toD52. We are going to avoid simplifications specific to theD51 nature of the
system. The emphasis will be on the geometric properties of the units. Thus, the functional w
less simple than in thep6 representation, and therefore, most notably, computationally less
cient, too.

Our reasoning is based on the transformation technique due to Cuesta and Tutschka6 This
method consists of three stages.

The analysis starts with a decomposition of theD51 sticky core system into units~mono-
mers, dimers, trimers, . . .! of i , via the attractive part of the pair interaction Boltzmann fac
~2.3a!, connected particles. By the contact nature of the adhesive interaction, these unit
diameteri . Furthermore, the pair interaction among them is per construction a hard core pot
Thus, the original system is mapped onto a polydisperse, additive hard rods mixture wit
interaction Boltzmann factor between componenti and j given as @cf. ~3.6! of Cuesta and
Tutschka6#

ei j ~y,x!5h~ i 1 j !/2~y2x!. ~2.4a!

In the second stage, the composition of the units is incorporated. That is, the partition fu
of an i -particle unit atx is represented by the local activityzi(x) of componenti of the mixture.
The total isothermal measure of a unit ofi particles~numbered from left to right, i.e.,x1<x2

<x3¯<xi), centered atx, is via ~2.3! given by

z~xi !E
Ri 21)k51

i 21

d1~xk112xk! z~xk! d~x1 , . . . ,xi 21!uxi5x1ni
,

where ni5( i 21)/2 , i PN1 . Upon using the properties of Dirac’sd-distribution, we therefore
have that@cf. ~3.5! of Cuesta and Tutschka6#
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zi~x!5l i 21 )
u j u<ni

z~x1 j !,

which transcribes via~2.3b! to the completely polydisperse form

zi~x!5Ci~l!exp$b@m i2Ui~x!#% ~2.4b!

with Ci(l)5l i 21, the chemical potentialm i of componenti equal toim, and the external field
given as

Ui~x!5 (
u j u<ni

U~x1 j !. ~2.5!

This shows the basic underlying lattice structure of sticky core units most clearly.
On following Percus,13,4 the local partial~or block! densities% iPL1(R) are now obtainable

by

% i~x!5
d ln J

d ln zi~x!
,

where J is the total Gibbs measure of~2.4! with the indices of the blocks determine
statistically,14,4 or, equivalently, of~2.3!.

The main property that makes the calculation of the free energy functionalF of the Hamil-
tonian function~2.4! rather straightforward is the close resemblance of the latter to the pol
perse additive pure hard rods mixture Hamiltonian, for which the free energy is known.14,4 Indeed,
for Ci(l)[1 the Hamiltonian~2.4! defines aD51 additive mixture of pure hard cores in a
external fieldUi . Therefore, upon writingF@$% i% i>1#5( i>1*R% i(x)Ui(x) dx1F̄@$% i% i>1#, so
that F̄ denotes the intrinsic free energy functional~see, e.g., Percus3!, we have due to Vanderlick
Davis, and Percus14 at once

bF̄@$% i% i>1#uCi (l)[15E
R
H (

i>1
% i~x!@ ln % i~x!21#2s~x!ln@12t~x!#J dx

with the linear transforms of the densities~cf. Percus13!

s~x!5(
i>1

E
R
s ( i )~x2x8!% i~x8! dx8, t~x!5(

i>1
E

R
t ( i )~x2x8!% i~x8! dx8,

and (h[h0)

t ( i )~x!5hS i

2
2uxu D , s ( i )~x!5

1

2
u]x t ( i )~x!u, xPR. ~2.6!

Thus we conclude using definition~2.4b! that

bF̄@$% i% i>1#5E
R
H (

i>1
% i~x!F ln

% i~x!

Ci~l!
21G2s~x!ln@12t~x!#J dx.

The calculus ends~third stage! by projecting the functionalF onto the sought free energyF of
D51 sticky cores. This transform inverse is accomplished by means of a variational prin
The free energy functional of the original system occurs via an evaluation of the varia
formula at the set of minimizing local partial densities.

Again upon using the discrete geometrical nature of the units, we obtain the partition
local particle density@cf. ~3.36! of Cuesta and Tutschka6#
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%~x!5(
i>1

(
u j u<ni

% i~x1 j !. ~2.7!

This yields

t~x!5(
i>1

E
x2 i /2

x1 i /2

% i~y! dy5E
x2 1/2

x1 1/2

%~y! dy

as well as

(
i>1

E
R
% i~x!Ui~x! dx5E

R
%~x!U~x! dx

by ~2.5!. HenceF becomes

bF@%,$% i% i>1#5E
R
H %~x!bU~x!1(

i>1
% i~x!F ln

% i~x!

Ci~l!
21G2s~x!ln@12t~x!#J dx.

From this our overcomplete format free energyF of D51 sticky balls in an external fieldU is
found through the usual minimum principle of classical density functional theory~see, e.g., Refs
15 and 3!. If we evaluate the minimum in two steps, then we infer that

bF@U#5 min
%PDn

minH bF@%,$% i% i>1#: L1~R!{% i~x!>0∧(
i>1

(
u j u<ni

% i~x1 j !5%~x!J ~2.8!

with Dn5$tPL1(R): t(x)>0∧*Rt(x) dx5n%, n fixed.
Given lPR1 and %PDn , F is convex in the local partial densities$% i% i>1 . Thus the

minimum in ~2.8! with respect to$% i% i>1 is attained at~settingmi5ni2
1
2)

% i~x!5Ci~l!
) u j u<ni

%1~x1 j !

) u j u<mi
@12t~x1 j !#

, i .1,

and%1 is found via~2.7!. ThereforeF simplifies to

bF@U#5 min
%PDn

E
R
H %~x!@bU~x!1 ln %1~x!#2(

i>1
% i~x!2

1

2 F%S x2
1

2D1%S x1
1

2D G
3 ln@12t~x!#J dx, ~2.9!

which generalizes the findings in Sec. 2.2 of Kierlik and Rosinberg7 for dimerizing hard rods,
controlled by%1 and%2 , to systems characterized by an arbitrary number of local partial de
ties. The equivalence of~2.9! and the inverse operator format sticky rods free energy function13

can be established through results shown in Sec. 3.2.1 of Cuesta and Tutschka.6

B. Plane case

At the outset we have to say what is meant by a many-body system of squares~having only
translational degrees of freedom! with ‘‘contact pair interactions.’’ Clearly, one would like to go o
with a system of sticky squares, in which the attractive part of the pair interaction Boltzm
factor is compressed to a Diracd-distribution on the boundary of the hard square core. But
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particle system is not thermodynamically stable. The proof of divergence of the partition fun
of sticky squares parallels that for sticky discs given by Stell,16 except that for the quadratic cas
a particle can interact simultaneously with at most eight neighbors.

As a remedy, we back away from the sticky limit. We look at a system of squares
square-well attraction of well-widthdPR1 as well as interaction strengthEPR1 , and let E
depend ond in such a way thatl5d@exp(bE)21# remains finite asd tends to zero. Then, fo
lPR1 and sufficiently smalld.0 ~see below!, we define the pair interaction Boltzmann factor
a particle system of squares with ‘‘contact pair interactions’’ as given by~selecting units so that the
side length of the hard square core equals 1!

e~x,y!5h1~ ux2yu`!1
l

d
h1,d~ ux2yu`! ~2.10a!

with x,yPR2 specifying the positions of the particles andha,b5ha2ha1b . That is, instead of
taking the limit d→0 ~the standard sticky limit—see, e.g., Stell16!, we consider a related pai
interaction function with arbitrarily small but fixeddÞ0. The reason for the term ‘‘contact inte
action’’ is that for sufficiently smalld.0 the range of the attraction in~2.10a! is negligible
compared to the size of the particles.

The definition of the Hamiltonian function is finished via the local activityz, which general-
izes without change to

z~x!5exp$b@m2U~x!#%, ~2.10b!

whereU is again the external field andm the chemical potential~implicitly including the momen-
tum contributions!.

1. Overcompleteness technique

Now we will extend the particular overcomplete form deduced in Sec. II A toD52. There is
no difference at all between the strategy we will use for the planar problem and the logic foll
above. There are significant differences in the realizations, however. The central theme ofD
51 analysis is the one-sided nature of the pair interaction Boltzmann factor~2.2!. That is, the
main properties that make the setup easier in theD51 context are

~a! the units are defined by a single integer variable, and
~b! the intrinsic free energy functional atCi(l)[1 is exact.

TheD52 case does not share these properties. Still, there are units in the planar problem t
be characterized by two integer variables, and there is a functional that extrapolates fro
polydisperse hard rod mixture functional to that of similarD52 particle systems. When we wan
our scheme to be analytically tractable, some suitable assumptions are needed. The guidi
ciple will be that of simplicity.

We begin again by mapping the given system~2.10! onto an additive polydisperse hard co
mixture. This transformation partitions the original system into units of connected particles.
these units are, in turn, regarded as components of a mixture, in which the interaction amo
components is of hard core type. Thus the transformation maps configurations of con
particles of the original system onto components of the mixture. Correspondingly, the Hamilt
function of this mixture is hopelessly complicated. In order to define a suitable idealiz
thereof, we restrict ourselves first to configurations of maximal connected particles. That is, v
contact nature of the interaction, we are left with units of square lattice type geometry. But
not enough. Moreover, in analogy with the characterization ofD51 units by a single intege
parameter, we allow only forD52 units of rectangle-like shapes. Hence we specify units aD
52 arrays ofi 13 i 2 ~with i 1 ,i 2PN1 interpreted as numbers of row and column particles, resp
tively! maximal connected particles. This extension of~a! to theD52 level is summarized in the
following rule.
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Assumption 2.1: The polydisperse representation of a nonuniform system of square
contact interactions is completely characterized by rectangular arrays of maximal conn
particles.

Here some comments are in order.

~1! The cases (i 151)∨( i 251) are to be interpreted as essentially one-dimensional, so that w
back to~a! when we specialize Assumption 2.1 toD51. Then, through Assumption 2.1 an
the contact nature of the interaction, the units become asymptotically asd→01 rectangles
Ri5$(x1 ,x2)PR2: uxku< i k/2 , k51,2%, where we introduced a double-indexi 5( i 1 ,i 2).

~2! Assumption 2.1 cannot possibly be exact. Only a certain class of configurations of conn
particles is included.

~3! On the other hand, it is expected to be a good approximation whenever monomers a
dominantly present in the system. That is, Assumption 2.1 holds for sufficiently high tem
tures and sufficiently dilute states.

~4! At sufficiently low temperatures, there is only a vanishing proportion of units of connecte
not maximal connected particles. Furthermore, by the contact nature of the interactio
dominant units of maximal connected particles tend to minimize their surfaces. Then we
think of the particle system as being composed of compact, quasi close-packed units.
quently, Assumption 2.1 is expected to be a good approximation for sufficiently low tem
tures.

~5! The high density limit has to be treated separately since there will be ‘‘percolation’’ of a
trarily long chains. So that at sufficiently high densities one can expect to enter a regi
which the validity of Assumption 2.1 is very questionable.

Thus, upon combing Assumption 2.1 with~2.10a! we have that the pair interaction Boltzman
factor between componentsi and j of the mixture is asymptotically asd→01 given by

ei j ~x,y!�xR2\Ri 1 j
~x2y!, ~2.11a!

wherexA is the characteristic function of the setA.
In the second stage, the definition of the model Hamiltonian on the polydisperse le

completed. Namely, the local activityzi(x) is used to encode the partition function of thei 13 i 2

particle unit atx. Again through Assumption 2.1 and thed-range of the attractive part of the pa
interaction, the local activity becomes asd→01,

zi~x!�Ci~l,d!exp$b@m i2Ui~x!#%. ~2.11b!

Here, the combinatorial part is given by

Ci~l,d!� lq( i )

~ i 1i 2!! dr ( i )

with q( i )54i 1i 223(i 11 i 2)12, as well asr ( i )50 if ( i 151)∨( i 251) and 2i 1i 223(i 11 i 2)
14 otherwise. Moreover, the chemical potential of componenti is found asm i5 i 1i 2 m, and the
external field is prescribed by the formula

Ui~x!� (
u j 1u<ni 1

,u j 2u<ni 2

U~x11 j 1 ,x21 j 2! ~2.12!

asd→01.
Accordingly, the local partial density% i 1i 2

of the original system is identified with the loca
particle density of componenti of the mixture. Through this interpretation the partial densities
again be used variationally for the original system—see below.
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Next we will turn to the calculation of the intrinsic free energy functional of~2.11!. In two
dimensions, exact solutions are in very short supply, even for pure hard core particle system
is therefore forced to evaluate the free energy atCi(l,d)[1 by means of some extrapolation typ
of scheme.

Several years ago, Zhang10 reexamined hard rods in an external field by extending the Re
Frisch–Lebowitz~RFL! scaled particle format to the nonuniform case. He showed that the
reasoning is exact for nonuniformD51 hard balls and constructed the ‘‘global free ener
functional’’ which serves as generating functional for all hard rods intrinsic free energy de
functionals. The physics of the nonuniform RFL approach is that locally the probability me
of creating a core of diametera at x, ma(x), characterizes the equilibrium state of the syst
completely. Hence the excess global free energy functional is equal to the intrinsic ideal ga
energy functional ofma . Later on, the scope of global free energy functionals was expanded17,18

Cuesta and Martı´nez-Rato´n17 generalized Zhang’s functional to hard rod mixtures. They a
observed that for any additive mixture of hard rectangles an intrinsic free energy functional c
extrapolated from the hard rod mixtures global functional and related it toD52 RFL scaled-
particle-type arguments. We apply their extrapolation technique in our extension of~b! to D52.

Assumption 2.2: The global free energy functional is the same for additive polydisperse
rod and hard rectangle mixtures.

We note some properties of the assumption~cf. Cuesta and Martı´nez-Rato´n17!

~1! Assumption 2.2 is exact for sufficiently rarefied gases.17

~2! It is believed that the hard rod mixtures global functional gives the correct order o
thermodynamic potentials for hard rectangle mixtures. Of course this does not mean th
relative errors are small on the whole thermodynamic domain. Assumption 2.2 is expec
be a good approximation up to~at least! intermediate densities. For numerical tests passed
RFL type functionals see, e.g., Ref. 17.

So let us writeF@$% i 1i 2
%#5( i 1 ,i 2>1*R2% i 1i 2

(x)Ui 1i 2
(x) dx1F̄@$% i 1i 2

%#, such thatF̄ is the
intrinsic free energy functional of Hamiltonian~2.11!. Then, on using Assumption 2.2, we hav
due to Zhang10 ~as well as Cuesta and Martı´nez-Rato´n17! immediately that

bF̄@$% i 1i 2
% i 1 ,i 2>1#uCi 1i 2

(l,d)[1

�E
R2H (

i 1 ,i 2>1
% i 1i 2

~x!@ ln % i 1i 2
~x!21#2s~x!ln@12t~x!#1

n1~x!n2~x!

12t~x! J dx,

where

s~x!5 (
i 1 ,i 2>1

E
R2

s ( i 1)~x12x18!s ( i 2)~x22x28!% i 1i 2
~x18 ,x28! d~x18 ,x28!,

n1~x!5 (
i 1 ,i 2>1

E
R2

s ( i 1)~x12x18!t ( i 2)~x22x28!% i 1i 2
~x18 ,x28! d~x18 ,x28!,

n2~x!5 (
i 1 ,i 2>1

E
R2

t ( i 1)~x12x18!s ( i 2)~x22x28!% i 1i 2
~x18 ,x28! d~x18 ,x28!,

t~x!5 (
i 1 ,i 2>1

E
R2

t ( i 1)~x12x18!t ( i 2)~x22x28!% i 1i 2
~x18 ,x28! d~x18 ,x28!

with s ( i ) andt ( i ) brought in via~2.6!. Correspondingly we find through definition~2.11b! that
                                                                                                                



the

stem

t-
um

5232 J. Math. Phys., Vol. 44, No. 11, November 2003 Christian Tutschka

                    
bF̄@$% i 1i 2
% i 1 ,i 2>1#

�E
R2H (

i 1 ,i 2>1
% i 1i 2

~x!F ln
% i 1i 2

~x!

Ci 1i 2
~l,d!

21G2s~x!ln@12t~x!#1
n1~x!n2~x!

12t~x! J dx.

We end~third stage! as in theD51 context by projecting the polydisperse functionalF onto
the desired free energyF of the original system. The transform inverse is obtained via
minimization ofF with respect to all the% i 1i 2

subject to the constraint

%~x!� (
i 1 ,i 2>1

(
u j 1u<ni 1

,u j 2u<ni 2

% i 1i 2
~x11 j 1 ,x21 j 2!, ~2.13!

which follows from the discrete geometry of the units asd→01. Thus,

t~x!5 (
i 1 ,i 2>1

E
x12 i 1/2

x11 i 1/2E
x22 i 2/2

x21 i 2/2

% i 1i 2
~x18 ,x28! d~x18 ,x28!�E

x12 1/2

x11 1/2E
x22 1/2

x21 1/2

%~x18 ,x28! d~x18 ,x28!,

as well as upon processing~2.12!,

(
i 1 ,i 2>1

E
R2

% i 1i 2
~x!Ui 1i 2

~x! dx�E
R2

%~x!U~x! dx.

ThereforeF takes on the form

bF@%,$% i 1i 2
% i 1 ,i 2>1#

�E
R2H %~x!bU~x!1 (

i 1 ,i 2>1
% i 1i 2

~x!F ln
% i 1i 2

~x!

Ci 1i 2
~l,d!

21G2s~x!ln@12t~x!#

1
n1~x!n2~x!

12t~x! J dx,

so that we finally infer from Assumptions 2.1 and 2.2 for the free energy of a nonuniform sy
of squares with contact interactions

bF@U#� min
%PDn

minH bF@%,$% i 1i 2
% i 1 ,i 2>1#: L1~R2!{% i 1i 2

~x!>0

∧ (
i 1 ,i 2>1

(
u j 1u<ni 1

,u j 2u<ni 2

% i 1i 2
~x11 j 1 ,x21 j 2!5%~x!J ~2.14!

with Dn5$tPL1(R2): t(x)>0∧*R2t(x) dx5n%, n fixed.
Given lPR1 , sufficiently smalld.0, and%PDn , the functional appearing on the righ

hand side~RHS! of ~2.14! is convex in the local partial densities. Hence it attains its minim
with respect to$% i 1i 2

% i 1 ,i 2>1 at
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% i 1i 2
~x!�Ci 1i 2

~l,d!
) u j 1u<ni 1

,u j 2u<ni 2
%11~x11 j 1 ,x21 j 2!

) u j 1u<mi 1
,u j 2u<mi 2

@12t~x11 j 1 ,x21 j 2!#

3 )
u j 1u<mi 1

exp@m2
( i 2)

~x11 j 1 ,x2!#

)sP$2,1%F12tS x11 j 1 ,x21s
i 2

2 D G1/2

3 )
u j 2u<mi 2

exp@m1
( i 1)

~x1 ,x21 j 2!#

)sP$2,1%F12tS x11s
i 1

2
,x21 j 2D G1/2 ~ i 1Þ1!∧~ i 2Þ1!.

Here we introduced forkPN

m1
(k)~x!5E

x12 ~k/2!

x11 ~k/2! n1~x18 ,x2!

12t~x18 ,x2!
dx18 , m2

(k)~x!5E
x22 ~k/2!

x21 ~k/2! n2~x1 ,x28!

12t~x1 ,x28!
dx28 ,

andmi5ni2
1
2, i PN1 @remember that we have letni5( i 21)/2)]. The local monomer density%11

is determined through~2.13!. ThusF simplifies to

bF@U#� min
%PDn

E
R2H%~x1 ,x2!@bU~x1 ,x2!1 ln %11~x1 ,x2!#2 (

i 1 ,i 2>1
% i 1i 2

~x1 ,x2!

2
1

4 (
s1 ,s2P$2,1%

%S x11
s1

2
,x21

s2

2 D ln@12t~x1 ,x2!#1
1

2 (
sP$2,1%

F%S x11
s

2
,x2D

3m2
(1)~x1 ,x2!1%S x1 ,x21

s

2Dm1
(1)~x1 ,x2!G2

1

2 (
i 1 ,i 2>1

(
sP$2,1%

F% i 1i 2S x11s
i 1

2
,x2D

3m2
( i 2)

~x1 ,x2!1% i 1i 2S x1 ,x21s
i 2

2 Dm1
( i 1)

~x1 ,x2!G1
n1~x1 ,x2!n2~x1 ,x2!

12t~x1 ,x2! J d~x1 ,x2!.

2. Uniform limit

Suppose we have a field-free situation with particle densityr and partial densities
$r i 1i 2

% i 1 ,i 2>1 . Then it follows from the above that the thermodynamic pressurep and specific free
energyf are

bp~b,r!� j0

12r
1S j1

12r D 2

, ~2.15!

b f ~b,r!�rF ln r112 ln~12r!1
2j1

12rG2j02
j1

2

12r
, ~2.16!

where for (i 1Þ1)∧( i 2Þ1)

r i 1i 2
�Ci 1i 2

~l,d! r11S r11

12r D i 1i 221FexpS j1

12r D G2i 1i 22( i 11 i 2)

with r5( i 1 ,i 2>1i 1i 2 r i 1i 2
, j15( i 1 ,i 2>1i 2 r i 1i 2

5( i 1 ,i 2>1i 1 r i 1i 2
, as well asj05( i 1 ,i 2>1r i 1i 2

.
It is natural to ask whether the model exhibits a phase transition~see, e.g., Ruelle8! at suffi-

ciently small d if l is large enough. Even more so since Lebowitz and Percus19 showed that
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already for a relatedD51 particle system a first-order phase transition occurs. A curve sho
bp as a function ofrP(0,1) for l50.15 andd50.0001 is depicted in Fig. 1 for whichr i 1i 2
50, (i 1.n)∨( i 2.n), n525. Also from this numerical evaluation one might reasonably exp
the existence of a first-order phase transition asn tends to infinity. Up to now we have no proof o
this conjecture.

III. LATTICE SYSTEMS

It would also be useful to have the transformation technique for lattice systems since
arise naturally in statistical mechanics. In this section we shall show that the method a
equally well to the prototypical particle system with next neighbor interactions onZ2. One reason
for this choice is that for this system the phase separation line is known~see, e.g., Refs. 1 and 2!.
This will allow us to compare our polydisperse modeling with exact results. Another notable
is the fact that the restriction of the particle positions toZ2 makes the system a perfectly reaso
able ‘‘toy model’’ of squares with contact pair interactions ifb is large enough. Namely that th
units of maximal connected particles are now by definition of square lattice geometry such th
next neighbor system onZ2 mimics the continuous one with contact interactions inR2 modulo the
discretized positions of the units.

As a preliminary we are going to start from theD51 case in Sec. III A. The correspondin
specific free energy will be calculated by means of elementary combinatorics and thro
mapping onto polydisperse hard rod mixtures. In analogy with the above development, the
formation technique will then be lifted toZ2 in Sec. III B. To see that it indeed gives sensib
thermodynamic properties, at least for sufficiently low temperatures, we will finally compare
with exact results.

A. Next neighbor interacting particles on Z

Throughout this subsection we will work in the ‘‘particle’’ representation of lattice systems~as
opposed to the ‘‘spin’’ representation or the ‘‘alloy’’ interpretation—see, e.g., Ruelle8!. Corre-
spondingly, we consider an intervalL,Z of n integers~points or sites!, numbered from left to
right, and assign to each sitei of L a variablexi which takes the value 1~occupied site! or 0
~empty site!. This means that each lattice site can be occupied by at most one particle. The n
of particles of a configurationx5$xi : i PL% is defined byN(x)5#$ i PL: xi51%. Furthermore,
we associate with each configurationx a Hamiltonian or pair interaction energy~cf. Baxter1!

H~x!52E(
i 51

n21

xixi 11 ,

FIG. 1. Finite approximation isotherm for the interacting squares model~2.15!: bp as a function ofrP(0,1) for l
50.15 andd50.0001. The upper summation limits of the sums in~2.15! were set equal to 25.
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whereEPR1 is again the interaction strength. Then the total Gibbs measure for a particle s
with next neighbor interactions onL is given by~cf. Ruelle8!

Z~b,m,n!5 (
m50

n

exp~mbm! (
xP$0,1%n

N(x)5m

exp@2bH~x!#

and the thermodynamic pressure as

bp~b,m!5 lim
n→`

1

n
Z~b,m,n!.

1. Partition of the particle density

To evaluate these, we decompose the system into units ofi by the negative, i.e., attractive pa
of the pair interaction connected particles. Consider an arbitraryn-site configurationxP$0,1%n

such thatN(x)5m>1. Denote byki the number of times a unit ofi connected particles appea
in x. Define correspondingly the set

Am5H k5~k1 , . . . ,km!: kiP$0, . . . ,m%∧(
i 51

m

ki i 5mJ
and let for fixedkPAm

C~n,m,k!5
~( i 51

m ki !!

k1!¯km! S n2m11

(
i 51

m

ki
D . ~3.1!

There areC(n,m,k) (n,m,k)-configurationsx with the same energyH(x). Hence the total Gibbs
measure becomes

Z~b,m,n!511 (
m51

n

exp~mbm! (
kPAm

C~n,m,k! lS i 51
m ( i 21)ki, ~3.2!

where we introducedl5exp(bE)>1.
We observe that the empty configuration has one partition, the empty partition.
We also observe the close resemblance of~3.1! to the corresponding formula for sticky rods

Sec. 2.1 of Cuesta and Tutschka.6 The additional binomial coefficient in~3.1! controls the number
of empty sites between successive units.

Since there are no more thann terms in the first sum, and since also the number of summa
of the second sum is exponentially bounded~cf. the theorem due to Hardy and Ramanujan on
number of partitions of a positive integer—see, e.g., Andrews11,12!, the leading order asymptoti
behavior ofZ is determined by the largest summands in~3.2! ~see, e.g., Ellis20!.

A weak form of Stirling’s formula, ln(n!)5n ln n2n1O(ln n), gives asn tends to infinity

1

n
ln C~n,m,k!5S 12

m

n D lnS 12
m

n D2S 12
m

n
2(

i 51

m
ki

n D lnS 12
m

n
2(

j 51

m
kj

n D
2(

i 51

m
ki

n
ln

ki

n
1OS ln n

n D .
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Here the uniform bound of the reminder can be proved via a binary partition of the su
( i 51

m O(ln ki). Therefore, upon introducing the particle densityr5 m/n and the partial densities
r i5ki /n asn→`, we infer that

bp~b,m!5 max
rP(0,1)

@r bm2b f ~b,r!#,

where the specific free energy is found to be

b f ~b,r!5 min
(r1 , . . . )PAr

F(
i>1

r i ln
r i

l i 21 1S 12r2(
i>1

r i D lnS 12r2(
i>1

r i D 2~12r!ln~12r!G
~3.3!

with Ar5$(r 1 , . . . ): r i>0∧( i>1r i i 5r%.
Fix l>1 andrP(0,1). Then the function appearing on the RHS of the overcomplete

energy~3.3! is convex in all ther i . Thus it attains its minimum at the unique value

r i55
r

@11l~u21!#2 if i 51,

r1

F11
1

l~u21!
G i 21 otherwise,

whereu[exp@bp(b,r)#. Through

(
i>1

r i5
r

11l~u21!
~3.4!

we have that

S 12
1

u D @11l~u21!#5
1

r2121
, ~3.5a!

or explicitly

u5
1

2l F211
1

r2121
12l1AS 12

1

r2121D 2

1
4l

r2121G , ~3.5b!

which is the known result~see, e.g., Lavis and Bell2!. Hencef simplifies to

b f ~b,r!5r ln~u21!2r ln@11l~u21!#2~12r!ln u.

Note the formal resemblance of these results to those forD51 sticky balls deduced in Sec
2.1 of Cuesta and Tutschka.6 This shows that the discrete geometrical nature of the units is
central property linking next neighbor interacting particles onZ and sticky rods. One could go
ahead and convert the treatment of nonuniformD51 sticky cores as presented in Ref. 6 to t
discrete case. Then this picture leads to the conjecture that there is a hard rods mixture fo
energy functional forD51 next neighbor lattice gases which is completely characterized
effective pressuresp6.9,10,6 These pressure-like quantities are determined by quadratic equa
@cf. ~3.47! of Cuesta and Tutschka6 as well as~3.5!#. The argument may be ended by noting th
in the original derivation of the free energy functional for this system by Percus,21 the solution of
the inverse problem is reduced to a quadratic equation, too.
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2. Mapping onto a polydisperse mixture

We end this section by adopting the transformation method of Cuesta and Tutschka6 to the
D51 discrete case.

First we observe that ani -particle unit is of ‘‘effective’’ sizeai5 i 11, i PN1 , since a unit of
i connected particles starts and terminates by definition with an empty site. Again these
interact through hard core potentials, so that a next neighbor lattice gas onZ can be mapped onto
an additive polydisperse hard rods mixture in which the diameter of componenti equalsi 11.

In the second stage, the internal partition function of ani -particle unit,l i 21, is incorporated.
As above, this amounts of encodingl i 21 into the activity of componenti . This completes the
transformation to aD51 polydisperse hard core mixture. Let us call this mixture for fut
reference ‘‘original’’ polydisperse mixture. However, in contrast to the continuous case, we c
directly evaluate the free energy of this mixture atl51. The complication being that the cente
of the hard rods do not necessarily lie onZ. To account for this, we go over to a suitable resca
additive polydisperse hard rods mixture.

So suppose we have aD51 additive polydisperse hard core mixture in an external field.
the pair interaction Boltzmann factor between componenti and j be given by@in the following a
bar signifies a quantity of the ‘‘rescaled’’ polydisperse mixture#

ēi j ~y,x!5xN~y2x2~ i 1 j 12!! ~3.6!

with x,yPZ denoting the positions of the hard rods. That is, we consider a mixture with even
core diametersāi52(i 11). As usual, the influence of the chemical potentialm̄ i and the external
field Ū i is represented via the local activityz̄i of componenti ~see, e.g., Refs. 14 and 18!. The
setup is ended by introducing all the local partial densities%̄ i accordingly.

For such a polydisperse mixture, the free energy density functional is known exactl14,18

Hence, on taking the uniform limit, we would immediately obtain, say, the equation of state fo
D51 next neighbor lattice gas if we would be able to project the excess free energy fo
rescaled hard rods mixture onto that for the original one atl51.

To do so, we first exclude certain configurations from the configuration space of the res
polydisperse system. Let us introduce the predicateP( i )⇔ i even. Then the configurations of th
original and the rescaled mixture are equivalent by the following rule. The local partial dens%̄ i

at xPZ is equal to 0 whenever

~ I! ¬P~ i !∧¬P~x! or P~ i !∧P~x!.

In order to have full equivalence between the two systems, we furthermore restrict the dom
the observables for the rescaled mixture to the set

~ II ! $xPZ: P~x!%.

Now let us put everything together. We start from the excess free energy density function
the rescaled pure hard rods mixture as characterized by the pair interaction Boltzmann facto~3.6!.
Imposing the boundary conditions~I! and ~II !, one gets an excess free energy functional wh
reduces in the uniform limit to the excess free energy for the originalD51 polydisperse hard core
mixture at l51. From this, upon incorporating the partition functions of the units,l i 21, the
function on the RHS of~3.3! is reproduced, as must be the case.

Finally it may be noted that an alternative form of the equation of state follows most re
from ~3.3! through one of the well-known thermodynamic relations~see, e.g., Ruelle8!. We find
that @cf. ~2.23! of Lafuente and Cuesta18#

bp~b,r!5 lnF 12( i>1ir i

12( i>1~ i 11!r i
G ,

which is via( i>1ir i5r and ~3.4! equivalent to~3.5!.
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B. Extension to Z2

We consider the standard example1 of a system with next neighbor interactions on the squ
lattice. As before, we use the ‘‘particle’’ representation, so that with every sitei PZ2 a state
variablexiP$0,1% is associated. Then the lattice energy is1

H52E(
( i , j )

xixj ,

where (i , j ) signifies an unordered next neighbor pair andE is as above the interaction strength
For such a system, several thermodynamic properties are known exactly. Our objectiv

transcribe the procedure of Sec. II B to this case, allowing us to study the validity of idealiza
such as Assumptions 2.1 and 2.2. The development goes through modulo changes due
discrete nature of the system. Therefore, there is probably no need to be too detailed i
follows.

1. Restricted overcomplete representation

As in the continuous case, we begin the construction with a decomposition of the syste
units of connected particles. Here, two particles are said to be connected if their pair inter
energy equals2E. By applying the transformation technique of Cuesta and Tutschka,6 this parti-
tion of the system can be turned into a mapping onto polydisperse hard core mixtures. Ho
as was argued in Sec. II B, a mathematical analysis of such a polydisperse mixture is b
reach. Thus, in order to build a solvable model, we restrict ourselves to a certain class of co
unit configurations. The lattice analogue of Assumption 2.1 reads as follows.

Assumption 3.1: The polydisperse representation of a particle system with next nei
interactions onZ2 is completely characterized by rectangular arrays of connected particles.

Recall that this idealization cannot possibly be exact, but that it is expected to be va
sufficiently high temperatures, low densities, or low temperatures. Again, the high density
has to be examined separately.

The units interact with each other via hard core potentials. Next the precise nature of
pair interactions will be defined. Fori 5( i 1 ,i 2), i 1 ,i 2PN1 , denote byRi,Z2 a rectangle of side
lengthsi 1 and i 2 , respectively, as well as byAi,Z2 the ‘‘effective’’ shape of ani 13 i 2 array of
connected particles. Then, in analogy with theD51 case, the interior of the setAi is given by
Ri 21 ; the boundary ofAi represents again the coat of empty sites on the circumference of
unit. Since every site has four next neighbors,Ai is equal toRi 11 only modulo the sites on the
corners ofRi 11 . Clearly, we cannot proceed analytically with a polydisperse mixture compose
particles of sortsAi . So that in contrast to the continuous case, Assumption 3.1 is not s
enough to specify a mathematically tractable polydisperse Hamiltonian. We therefore ma
following additional simplification.

Assumption 3.2: An i13 i 2 array of connected particles has effective shape Ri 11 .

The consequences of the assumption may be described as follows. If the system
sufficiently dilute state, then the additional excluded volume is negligible compared to the
free volume of the system. Hence Assumption 3.2 holds for sufficiently low densities. On the
hand, Assumption 3.2 should also be a good approximation whenever the predominant un
sufficiently large, since the boundary ofAi is of no consequence in the limiti 1 ,i 2→`. This means
that Assumption 3.2 is expected to be valid for intermediate and high densities ifb is sufficiently
large, too.

With Assumptions 3.1 and 3.2, the first stage of the transformation can be ended. By no
next neighbor square lattice gas is mapped onto an additive polydisperse mixture of har
angles with side lengthsi 111 andi 211, respectively.
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In the second stage, the partition function of ani -unit is appended to the activity of compone
i of the mixture. Through the next neighbor nature of the interaction, the total isothermal me
of an i 13 i 2 array of connected particles is found to beCi 1i 2

(l)5l2i 1i 22( i 11 i 2). This completes
the polydisperse setting.

Next we will construct the free energy for this polydisperse mixture atl51. Once this, say,
‘‘level-2’’ free energy is known, the free energy for the next neighbor interacting particle sy
on Z2 ~the ‘‘level-1’’ free energy, then! is obtainable via a variational formula~stage three of the
transformation technique—see above!.

To simplify the computation of the level-2 excess free energy, we can follow the s
procedure as in Sec. III A 2. That is, we introduce a nonuniform additive polydisperse mixtu
pure hard rectangles with even side lengths 2(i 111) and 2(i 211), respectively. This is our
‘‘level-3’’ system. Then the following four disjunctive rules guarantee that all with respect to
level-2 system spurious configurations are excluded from the level-3 configuration space. D
ing on the shape of the units, the local partial density of componenti of the level-3 system
vanishes at (x1 ,x2)PZ2 whenever

~ I! ~¬P~ i 1!∧¬P~ i 2!!∧~¬P~x1!∨¬P~x2!!,

~ II ! ~P~ i 1!∧¬P~ i 2!!∧~P~x1!∨¬P~x2!!,

~ III ! ~¬P~ i 1!∧P~ i 2!!∧~¬P~x1!∨P~x2!!, or

~ IV ! ~P~ i 1!∧P~ i 2!!∧~P~x1!∨P~x2!!.

There is a further condition for full equivalence. The domain of the observables is to be res
to the set

~V! $~x1 ,x2!PZ2: P~x1!∧P~x2!%.

These rules relate the level-3 excess properties and the sought level-2 excess thermod
functions atl51.

Like in the D52 continuous case, we are forced to evaluate the level-3 excess free e
functional by means of some extrapolation type of scheme. Recently, Lafuente and Cuesta18 wrote
down the discrete version of Zhang’s global free energy functional for continuous hard rod
tures. This RFL scaled-particle-type functional serves as our basic underlying level-3 exce
energy model.

Assumption 3.3: The global free energy functional is the same for additive polydisperse
rod mixtures onZ and additive polydisperse hard rectangle mixtures onZ2.

The same comments as above can be made. Assumption 3.3 is exact for sufficient
densities, and it is believed to hold up to~at least! intermediate or moderately high densities.18

We are now ready to deduce the free energy for next neighbor square lattice gases
Assumptions 3.1–3.3. First take the global free energy functional~Assumption 3.3! and generate
the excess free energy density functional for an additive mixture of rectangles with even
lengths 2(i 111) and 2(i 211), respectively. Next, introduce a related functional by apply
projection~I!–~V!. By construction, this functional gives in the uniform limit the excess par
@cf. ~3.13! of Lafuente and Cuesta18#

b f * ~b,r,$r i 1i 2
% i 1 ,i 2>1!uCi 1i 2

(l)[15 (
i 1 ,i 2 ,>1

r i 1i 2
ln r i 1i 2

1~12j!ln~12j!2~12n1!ln~12n1!

2~12n2!ln~12n2!1~12r!ln~12r!,

the specific free energy atl51 associated with the polydisperse Hamiltonian function speci
through Assumption 3.1 and 3.2. Here, the sequence$r i 1i 2

% i 1 ,i 2>1 represents the partial densitie
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of the system,r5( i 1 ,i 2>1i 1i 2 r i 1i 2
is the particle density,n15( i 1 ,i 2>1( i 111)i 2 r i 1i 2

, n2

5( i 1 ,i 2>1i 1( i 211) r i 1i 2
, and j5( i 1 ,i 2>1( i 111)(i 211) r i 1i 2

. Moreover, processing the idea
gas part we conclude that

b f * ~b,r,$r i 1i 2
% i 1 ,i 2>1!5 (

i 1 ,i 2 ,>1
r i 1i 2

ln
r i 1i 2

Ci 1i 2
~l!

1~12j!ln~12j!

2~12n1!ln~12n1!2~12n2!ln~12n2!1~12r!ln~12r!.

Finally recall that a variational principle relates the level-1 and level-2 free energy functions~stage
three of the transformation technique!, so that we infer from Assumptions 3.1–3.3 for the spec
free energy of a classical next neighbor square lattice gas

b f ~b,r!5 min
(r11 , . . . )PAr

b f * ~b,r,$r i 1i 2
% i 1 ,i 2>1!

with Ar5$(r 11, . . . ): r i 1i 2
>0∧( i 1 ,i 2>1i 1i 2 r i 1i 2

5r%.
Fix l>1 and suitablerP(0,1) ~cf. Assumption 3.2!. Then f * is convex in all the partial

densities. Hence the minimum is attained at

r i 1i 2
5r11S r11

12j D i 1i 221Fl~12h!

12j G2i 1i 22( i 11 i 2)

~ i 1Þ1!∧~ i 2Þ1!,

wheren15n2[h via spatial symmetry. Thereforef simplifies to

b f ~b,r!5r ln r111~124r!ln~12j!22~122r!ln~12h!1~12r!ln~12r!.

Furthermore, we have for the thermodynamic pressure

bp~b,r!5 lnF ~12h!2

~12j!~12r!G . ~3.7!

2. Exact coexistence curve

We come now to the final step~step three! in our program. Also for a feeling as to what t
expect for the continuous case ifb is sufficiently large, we will compare the pressure functi
~3.7! with the exact equation of state in the two-phase thermodynamic region of the system

In order to keep things simple, we takeE51, so that the phase separation line can be par
etrized byl5l(b)5expb @remember that we have setl5exp(bE)]. Then the exact thermody
namic pressure at phase equilibrium for a classical next neighbor square lattice gas is1,2

bp~b!5 lnS 11
1

l D1
1

p E
0

p/2

ln F1

2
~11A12k1

2 sin2 u!G du, l>lc , ~3.8a!

where

k15
2Ak

11k
, k5

4l

~l21!2 ,

andlc denotes the ‘‘critical’’ value ofl, determined by the quadratic equationk51. This yields
via the conditionl>1 the numberlc5312&. The exact ‘‘conjugate’’ particle densities at pha
equilibrium are found to be1,2

r6~b!5 1
2 ~16A8 12k2!, l>lc . ~3.8b!
                                                                                                                



ct
equi-

th
is

o
via

ncom-

sely as
the

eans,

ic

ura-
r class
e new
free

ent in

at

5241J. Math. Phys., Vol. 44, No. 11, November 2003 Interacting squares in arbitrary external field

                    
Two (bp,r) isotherms of~3.7! ~full lines! for l greater thanlc are shown in Fig. 2. Notice
that the upper summation limitn of the sums in~3.7! was set to 35. The broken curve is the exa
coexistence curve~3.8! and the broken horizontal lines are the corresponding exact phase
librium pressures~3.8a!.

While incrementing the summation limitn, the flattish part of the isotherms becomes bo
flatter and longer. Since the proportion of small units decreases whenn increases, the pressure
lower for n11, too. Thus one may conjecture that for sufficiently largen the pressure function
~3.7! is a good approximation over a wide range of densities ifl is large enough; according t
Fig. 2, an estimate isl>8. Clearly, what remains to be checked is that the error brought in
Assumption 3.3 will only be felt whenr is high. It may also be noted that for, say,l,8, at least
the r2 part of the phase separation line is overestimated. This defect of our model is not u
mon: it affects for example also the well-known mean field square lattice gas~see, e.g., Lavis and
Bell2!.

In summary, the numerical evaluation indicates that the lattice scheme behaves preci
expected whenb is sufficiently large. And this also gives—indirectly—some confidence in
soundness of the continuousD52 extension developed in Sec. II B.

IV. CONCLUDING REMARKS

The construction of the model inR2 carries over toRD, whereD>3, essentially without
change. But it shall ease the process if from the start we handle the model by symbolic m
since the calculations get a little involved, though, under passage to arbitraryD. While for D
52, the characteristic spatial structures are rectangles~cf. Assumption 2.1!, for generalD, these
sets generalize to (i 1 , . . . ,i D) type cuboids inD-dimensional space$(x1 , . . . ,xD)PRD: uxku
< i k/2 for k51, . . . ,D%, wherei 1 , . . . ,i DPN1 . Then, in analogy with Assumption 2.2, the bas
underlying free energy model for an additive polydisperse mixture of pureD-cuboids is obtained
via the global free energy functional for hard rod mixtures~cf. Cuesta and Martı´nez-Rato´n17!.

Clearly, to proceed to increasingly complex solvable models, ‘‘less’’ compact unit config
tions are to be included in a systematic fashion. The point here is not so much that a large
of unit configurations is introduced, i.e., that of expanding Assumption 2.1, but rather that th
configurations give rise to a polydisperse Hamiltonian function for which Zhang’s global
energy functional is no longer applicable~cf. Cuesta and Martı´nez-Rato´n17!. This means that
improvements in the polydisperse representation depend largely on the future developm
density functional theory for additive polydisperse pure hard core mixtures.

FIG. 2. Finite approximation isotherms~full lines! for the classical next neighbor square lattice gas model~3.7!: bp as a
function of rP(0,1) for l57 ~upper curve! andl58 ~lower graph!. The upper summation limitn of the sums in~3.7!
was picked to be 35. The broken lines are the exact phase separation line~3.8! and the corresponding exact pressures
phase equilibrium~3.8a!, respectively.
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Yet another obvious question to be considered is whether one can analyze system
square-well interactions under the milder condition of non-vanishing attraction ranges. The
interesting feature of this class of potentials is that we may now not merely forget the
parameterd of the interactions. Still, the construction proceeds as above when we are willi
start from aD51 particle system with square-well interactions in which the size of conne
next neighbor pairs is restricted to finitely many values. Thereafter, the deduction of the
energy for such a ‘‘discretized’’ square-well potential follows the method developed in Sec.
Like for the asymptoticd→01 case, the extension toR2 is then carried out by lifting this
particularD51 density functional representation toD52 and combining it with suitable ideali
zations in order to make the model solvable~cf. Assumptions 2.1 and 2.2!. Once the discrete
version is sufficiently well understood, we get what we really want by taking the continuum l

The main theme will be again the incorporation of the unit partition functions into the add
polydisperse hard core mixture format, only that now an asymptotic analysis of these tota
thermal measures asd→01 does not suffice. Progress in this direction will be reported in d
course.
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The existence of ring-like structures in exact Hopfion solutions is shown. ©2003
American Institute of Physics.@DOI: 10.1063/1.1612897#

I. INTRODUCTION

Extended solutions are of central importance in different applications of modern field th
from high energy to condensed matter physics. Their relevance is parallel to the difficulty
analysis of the nonlinear theories which encode them and the scarce exact results in
dimensions. To circumvent one of the main problems, the scaling instablity for scalar
beyond one spatial dimension found by Skyrme1 and formalized by Derrick,2 one obvious possi-
bility is nonpolynomial Lagrangians, which are not unfamiliar. Among those attempts the wo
Deser, Duff, and Isham,3 where the simplest choice of just the power required to balance
scaling is analyzed, is of special interest. As the authors discuss, such models have, of cou
free field expansion around a trivial vacuum. But they can have a semiclassical formulation a
nontrivial solutions and eventually a small time dependent perturbation of the static solutions
solution was found and the importance of global transformations was emphasized. This mod
further extended by Nicole4 and put in a more general framework by Kundu.5 It was rediscovered
independently in a series of papers6 in the context of a new proposal for a generaliz
integrability,7 finding infinitely many analytic solutions with general Hopf indices. This was
unsolved problem, which is important for soliton physics and because of the many applicati
those maps, combining topology and geometry. In their last paper,8 a new feature of the Hopfion
solutions was discovered, namely, a line singularity in an infinitely thin tube along thez axis from
a special current with a nonconserved charge, provided by the geometric method.

In this article we extend the analysis to find that there is in fact another solution of the
type, which is interesting, as ring structures are typical in higher dimensional soliton analysis
in numerical9 and analytical approximations.10 In fact, these currents and solutions should
relevant for the analytical study of soliton scattering. We also pay special attention to the sy
tries, including global aspects of the solution, as many aspects of the model are generic t
local formulations of topological degrees of freedom. Time dependence analysis is also a
possiblity in the generalized zero curvature approach, as it preserves Lorentz covariance.

II. THE RING-LIKE SOLUTIONS

As shown in Ref. 8, the only models involving the antisymmetric tensor in the complex
u,

hmn52 i ~]mu]nu* 2]nu]mu* !, ~1!

a!Electronic mail: adam@mat.univie.ac.at
52430022-2488/2003/44(11)/5243/7/$20.00 © 2003 American Institute of Physics
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which satisfy without constraints the integrability criterion of the geometric approach of R
~i.e., infinitely many conserved currents! and which can be derived from an action principle, a
those where the Lagrangian is a functional ofh2/ f 2, wheref is a real function ofu andu* . If one
further asks for scaling invariance to allow for stable static solutions, we are lead to the cl
models given by the Lagrangian density

L[S hmn
2

2 f 2D 3/4

, ~2!

which generalizes and explains choices and solutions found before.3–6

We assume from now on thatf only depends onuu* . If lim uxW u→`u(xW )5u05const is assumed

then the domain spaceR3 has the topology of the three-sphereS3. If, in addition, the target space
may be identified with the two-sphereS2 via stereographic projection, thenu may be interpreted
as a mapS3→S2, which is characterized by an integer winding number~the Hopf index!. In this
case there exists an infinite number of static, soliton-like solutions to the equations of mot
the model, and these all have integer Hopf index. These solutions were first found in Ref.
they are obtained by inserting into the static equations of motion

2hi j ]
ju] ih214h2] ihi j ]

ju1 i ~h2!2]u* f 50 ~3!

~whereh2[hi j h
i j ) the product ansatz

u~h,j,w![R~h!ei (mj1nw) ~4!

in toroidal coordinates

x5q21 sinhh cosw, y5q21 sinhh sinw,
~5!

z5q21 sinj; q5coshh2cosj.

As explained elegantly in Ref. 8, the ansatz~4! follows from the conformal symmetry of the
equations of motion. If one assumes thatf is a function ofT[R2[uu* only, ]u* f simplifies to
]u* f 5 f ,T u. With the ansatz~4!, this results in an ordinary differential equation forR(h), which
may be conveniently expressed in terms ofT[R2[uu* as

S ln
T,h

f D
,h

5
coshh

sinhh

n222m2 sinh2 h

n21m2 sinh2 h
~6!

andX,h denotes derivative ofX with respect toh. Further, we assumem2.n2 in the sequel. A first
integral may be found easily,

T,h

f
5k1

sinhh

~n21m2 sinh2 h!3/2 ~7!

~herek1 is a constant of integration!, whereas for a further integration the explicit form of th
function f (T) is needed.

In the end, we shall choosef 5(11T)2, because we are referring to the solutions of Babe
and Ferreira,8 but let us briefly mention a class of functionsf (T) that leads to a target space wi
the topology of the two-sphere and, therefore, to genuine Hopf solitons, which can have
applications. Forf 5(11T)2, the expressionhi j / f in the Lagrangian density~2! is, in fact, just
the pull-back under the mapu of the area two-form

dV52 i
dz dz*

~11zz* !2 ~8!
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on the two-sphere. A pull-back of this two-form under mapsS2→S2 will lead to further acceptable
area two-forms~i.e., area two-forms respecting the topology of the target space!. If we want to
maintain the simple dependencef 5 f (T), then a class of allowed maps is

f : z→Ag~zz* !eil arg(z). ~9!

These are indeed mapsS2→S2 provided thatg(0)50 and g(`)5`. Further, l must be an
integer. The pullback of the area two-form~8! is

f* ~dV!52 i
dz dz* lg8

~11g!2 , ~10!

therefore any functionf of the type

f ~T!5
~11g~T!!2

l g ,T
~11!

leads to a theory~2! with genuine Hopf solitons.
In the sequel we restrict to the simplest casef 5(11T)2 ~the area two-form on the two

sphere!. Then the first integral~7! may be easily integrated to yield

1

11T
5

k1

~m22n2!

coshh

~n21m2 sinh2 h!1/21k2 , ~12!

wherek1 andk2 are two constants of integration. These constants have to be fixed by imp
some boundary conditions on the fieldu. For this purpose let us introduce the unit vectornW related
to u via stereographic projection

nW 5
1

11uuu2 ~u1u* ,2 i ~u2u* !,uuu221! , u5
n11 in2

12n3
. ~13!

If u is supposed to be a true Hopf map, then the number of allowed boundary conditions is, i
very restricted. The point is that a true Hopf map should cover the whole targetS2, including the
north pole (nW 5(0,0,1), orT5`) and the south pole (nW 5(0,0,21), or T50). Therefore, the
boundary conditions should be chosen such thatT varies betweenT50 andT5`. Further, the
pre-images of the north pole and the south pole should be one-dimensional lines inR3. However,
the only values ofh which define one-dimensional lines~instead of two-dimensional tori, as is th
general case!, areh50, which defines thez axis ~together with spatial infinity!, andh5`, which
defines the circle

C5$xWPR3: z50 ∧ r 251%. ~14!

Therefore, there are two possible choices for the boundary conditions, namely,T(h50)50,
T(h5`)5`, or T(h50)5`, T(h5`)50.

In Ref. 8 the second option was chosen~which we callT(2) for convenience!,

T(2)5
coshh2An2/m21sinh2 h

A11m2/n2 sinh2 h2coshh
, T(2)~h50!5` , T(2)~h5`!50. ~15!

Let us now investigate our first option, for which we get

T(1)5~T(2)!21, T(1)~h50!50 , T(1)~h5`!5`. ~16!
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Now one could simply identify the solitons with the position of their singular valueuuu5`, then
the solitons of typeT(2) would be identified with the straight linex50,y50 ~the z axis!, and the
solitons of typeT(1) would be ascribed to the circleC. However, this identification is in principle
quite arbitrary, and requires a physical motivation.

In Ref. 8 it was shown that the solitions of typeT(2) can indeed be identified with thez axis
in a well-defined manner. More precisely, there exists a conserved currentJm which has the
property that for solitons of typeT(2) it is singular along thez axis. Moreover, a constant flow o
this current is emerging from the singular line~the z axis!. Here we want to investigate th
equivalent problem for solitons of typeT(1), which is relevant as rings are common in high
dimensional solitons.9,10

So let us briefly review and further develop some results of Ref. 8 on the above-men
conserved current, with some more details required for our purposes. There exists~among other
symmetries! a symmetry of the action under a transformation which is a combination of a di
tion on three-dimensional domain space plus a specific transformation on target space. The
tesimal version of this symmetry transformation is given in Ref. 8, but it is, in fact, not difficu
obtain the transformation for finite transformation parameter. Under a dilatation transform
x→L3x[e3lx ~the power three of the dilatation parameter is chosen for later convenience! the
action of the theory scales like

S→L23S, ~17!

therefore the theory is invariant if the dilatation is combined with a transformation of the t
space variable,u→v(u,ū), such that

du dū

~11ūu!2 → dv dv̄
~11 v̄v !2 5L2

du dū

~11ūu!2 . ~18!

If we introduce the real coordinates on target spaceu5T1/2eif ~angle and radius squared on th
Euclidean plane! and assume thatv5(T̃)1/2(T)eif ~i.e., u andv have the same argument, and t
modulus ofv is a function of the modulusT only! then we get

T̃8~T!dT df

~11T̃!2
5L2

dT df

~11T!2
~19!

or

T̃8

~11T̃!2
5

L2

~11T!2
~20!

with the solution

1

11T̃
5

L2

11T
1c, ~21!

wherec is a constant of integration. If we require the boundary conditionT̃(0)50 then we get

T̃5
L2T

L21~11T!~12L2!
~22!

or
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v5
Lu

@L21~11ūu!~12L2!#1/2. ~23!

This v indeed fulfills Eq.~18! as may be checked easily. In addition, it reduces to the trans
mation of Babelon and Ferreira8 for infinitesimal l ~i.e., L511l). Therefore Eq.~23! is the
required symmetry transformation on target space.~Observe that this transformation has the fun
property that it is well-defined only forL2<1, i.e., for scaling transformations which shrin
distances.!

The conserved Noether current related to this symmetry transformation is

Jm5xnQmn1 j m , ~24!

whereQmn is the canonical energy–momentum tensor of the theory, andj m is

j m52 i S h2

2~11T!4D 21/4 1

2~11T!3 hmn~u]nu* 2u* ]nu!. ~25!

Here, the first term ofJm ~containing the energy–momentum tensor! is due to the space dilatation
whereas the second term,j m , is due to the specific target space transformation~23!. The current
obeys the conservation equation]mJm50. For static configurationsu(xW ) this conservation equa
tion may be used to derive the relation

E[] tE d3xJ05E
S
d fW•JW , ~26!

whereE is the static energy of the static configuration,

E54p2Aumuunu~ umu1unu! , ~27!

and the integral on the right-hand side of~26! is an integral over surfacesS which surround the
singularities of the currentJW . It turns out that the first term of the current for static fields,xjQ i j ,
is regular everywhere and may, therefore, be ignored in the surface integral of~26! provided that
the integration surfaces are chosen such that the enclosed volume is infinitesimal. For the
jW we find after some calculation

jW5S U T,h

~11T!2U D 1/2 T

11T S n2

sinh2 h
1m2D 3/4

~coshh2cosj!2eWh , ~28!

whereeWh5(coshh2cosj)21¹h is a vector of unit length which is perpendicular to the surfaces
constanth ~tori!. Observe thateWh is pointing into the interior of the tori, becauseh is growing in
this direction. We may use the first integral of the equations of motion,~7!, for the first factor on
the right-hand side containingT,h , and find

jW5Aumuunu~ umu1unu!
T

11T

~coshh2cosj!2

sinhh
eW h . ~29!

If we ignore the factorT/(11T) for the moment, then we see that the remaining expressio
singular both forh50 ~along thez axis! and for h5` ~along the circleC). Depending on
whether we chooseT(1) or T(2) for T, one of the two singularities gets canceled, whereas the o
remains. ForT5T(2) ~the case which was studied in Ref. 8!, the singularity along thez axis
remains. In this case we choose a very large torush!1 as integration surface. For the regul
terms the limith→0 may be performed, such that the integration is extended to the whole s
For the singularjW the surface integral should be performed for a finiteh and the limith→0 should
be taken afterwards. The surface element on the torus surfaceh5const is
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dfW5eWh

sinhh

~coshh2cosj!2 dw dj, ~30!

therefore the surface integral is

E
h5const

jW•dfW5Aumuunu~ umu1unu!
T

11T E dw dj54p2Aumuunu~ umu1unu!
T

11T
. ~31!

For T5T(2) this should be evaluated in the limith→0 for which T(2)/(11T(2)) is equal to one.
Therefore the total flux emerging from the singular line~the z axis! is

flux54p2Aumuunu~ umu1unu!5E, ~32!

whereE is the static energy~27!.
On the other hand, forT5T(1) the singularity is located at the circleC, therefore a tiny torus

~largeh! should be excluded from the integration region. So we take the limith→` now in the
surface integral~31!. But T(1)/(11T(1)) is equal to one in this limit, so we find again for the flu
the same previous expression~32!.

Therefore, for solutions of the typeT(1) the singular line is the circleC and a nonzero flux of
total amount given in~32! emerges from this singular circle. As a consequence, the solution
typeT(1) are characterized by a ring-like structure, where the ring is located at the position
circle C, which, as said, is relevant for their physics and especially for the scattering.

III. DISCUSSION

So we indeed found that in addition to the solutions of typeT(2) originally obtained by Aratyn,
Ferreira, and Zimerman~AFZ! in Ref. 6, which are characterized by a straight line of singular fl
according to Babelon and Ferreira, there exist solutions where the singular flux is located alo
circle C, forming thereby a ring-like structure. In hindsight, this result is not so surprising, an
ring-like structure is, in fact, the generic case. To see this, let us invoke a further symmetry
model, namely, constant rotations of the target spaceS2. In domain spaceR3 such a rotation
rotates different level curves~i.e., curves of constantu5u0 for different values ofu0) into each
other, because these level curves are the pre-images of points of the targetS2 under the mapu.
Generically, these level curves are circles, with the only exception of thez axis. Therefore, any
rotation on target space which moves the north pole and the south pole will transform a so
of type T(2) into a new solution where the line of singular flux is located along a circle.

On the target space coordinateu such rotations are represented by modular transformat
u→(a1bu)/(c1du), where ad2bc51. A general modular transformation is, however, n
compatible with the simple ansatz~4! which was used by AFZ to find solutions. The only no
trivial modular transformation compatible with the ansatz~4! is the inversion mapu→(1/u). And
indeed, the composition of the inversion map with the map (m,n)→(2m,2n) ~which again maps
a solution to another solution with the same energy! precisely maps the AFZ solutionsT(2) to the
solutions of typeT(1) discussed in this paper.

Besides their interest for the scattering, the results can also be useful—given the g
features of the theory considered—for other higher dimensional models on the sphere and/o
similar scaling arguments, like Skyrme theory and its restriction to the SU~2!/U~1! coset, proposed
by Faddeev as an effective theory of QCD at long distances.11
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We investigate the weak Hopf algebras of Li based onUq@sln# and Sweedler’s
finite dimensional example. We give weak Hopf algebra isomorphisms between the
weak generalizations ofUq@sln# which are ‘‘upgraded’’ automorphisms ofUq@sln#
and hence give a classification of these structures as weak Hopf algebras. We also
show how to decompose these examples into a direct sum which leads to unex-
pected isomorphisms between their algebraic structure. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1616999#

I. INTRODUCTION

Since the introduction of quantum groups,1 the importance of Hopf algebras has been wid
recognized in both mathematics and physics. Generalizations of Hopf algebras have been
ered, usually motivated by some application in mathematical physics. The most well-know
ample of the generalizations may be quasi-Hopf algebras where the coassociativity of a
algebra is relaxed,2 but at the same time keeping the category of modules monoidal. A similar
of relaxation of coassociativity is also found in truncated quasi-Hopf algebras3 and rational Hopf
algebras.4 This is where the notion of a weak coproduct was introduced, such thatD(1)Þ1^ 1,
and was motivated by the study of symmetries in low dimensional quantum field theory.
problem that arose was the fact that the dual of these structures was not associative, whic
further problems in defining crossed products and a double construction.5 Although these issues
have already been addressed in Refs. 6 and 7, the question still arose as to the possib
defining a structure which could still provide nonintegral dimensions for the quantum field
ries in a similar way to the weak quasi-Hopf algebras,3 but at the same time be coassociative. T
was the motivation behind defining the weak Hopf algebras of Refs. 5, 8, and 9. Since the
not bialgebras, butalmostbialgebras,10 there were also axioms required to define a weak antipo
differing slightly from the usual ones of a Hopf algebra such that the category of finite dim
sional modules was still monoidal, and also with a rigidity structure defined through a gener
antipode.9 Another question then arose as to the possibility of defining a weak antipode on
gebras. Li has introduced the notion of a weak Hopf algebra to mean a bialgebra on wh
defined such a weak antipode.10,11 In this paper, we investigate these weak Hopf algebras
defined by Li.

The concept of a weak Hopf algebra is rather new. There are not many examples k
though several have appeared in the literature. One example is given by the semigroup alg
any regular monoid which gives a generalization of the well-known group algebra.11 The other
known examples were given in Ref. 12 where the authors presented two weak Hopf gene
tions of the quantized enveloping algebraUq@sl2#.

The purpose of this paper is twofold. First, we wish to propose some minor adjustments
examples given in Ref. 12. Second, we extend the construction to the case of other know
algebras such asUq@sln#13 and Sweedler’s Hopf algebra.14,15 It is also evident that we can defin
weak extensions of quantum superalgebras in a similar way. As a consequence, we shall ha
of new nontrivial examples of weak Hopf algebras. We believe that for a deeper understa
52500022-2488/2003/44(11)/5250/18/$20.00 © 2003 American Institute of Physics
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of weak Hopf algebras as well having some insight into their applications, it is important to
various examples.

The paper is organized as follows. In Sec. II we give a brief summary of the definitio
weak Hopf algebra. Following that, Sec. III has a closer look at the examples given in Ref. 1
we propose slightly modified versions of these examples. We then realize in Sec. IV th
Uq@sln# there is a plethora of examples which leads us to finding isomorphisms between
tures, thus giving a classification in some sense of weak Hopf algebras corresponding toUq@sln#.
The following section looks at weak extensions of Sweedler’s famous finite dimensional
algebra, where we also show that with our construction, in general we can decompose th
Hopf algebra into a direct sum of the original bialgebra with some other subalgebra. This le
‘‘unexpected’’ algebra isomorphisms between structures in some cases.

II. WEAK HOPF ALGEBRAS

For the reader’s convenience we recall the definition of a weak Hopf algebra in the se
Li and Duplij.10,12 Let (H,D,«,m,u) be a bialgebra over a fieldK, whereD:H→H ^ H is the
coproduct,«:H→K is the counit,m:H ^ H→H the product andu:K→H the unit of H. The
following properties defineH:

m~m^ id!5m~ id^ m!,

m~u^ id!5 id5m~ id^ u!,

~ id^ D!D5~D ^ id!D,

~« ^ id!D5 id5~ id^ «!D,

~m^ m!~ id^ s ^ id!~D ^ D!5D+m,

« ^ «5«+m.

Heres:H ^ H→H ^ H is the flip operators(h1^ h2)5h2^ h1 for all h1 ,h2PH.
H is a weak Hopf algebra if there is a weak antipodeT:H→H which is an algebra homo

morphism satisfying the two conditions

T* id* T5T, ~2.1!

id* T* id5 id, ~2.2!

with the convolution product* defined over maps onH by

a* b[m~a^ b!D:H→H.

Note that the antipode of a Hopf algebra is a weak antipode due to the fact thatu+«:H→H is
the identity of the convolution product* . Recall thatS:H→H is an antipode if it satisfies

S* id5u+«, ~2.3!

id* S5u+«. ~2.4!

For example, we see that

S* id5u+«

⇒ id* S* id5 id* u+«
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⇒ id* S* id5 id.

In fact S needs only be a left or right antipode, meaning it satisfies only one of the two equa
~2.3! or ~2.4!, in order for it to be a weak antipode.

III. WEAK Uq†sl 2‡

In this section we give a summary of the examples of weakUq@sl2# presented in Ref. 12. I
is notable that the defining relations of the ‘‘J-weak’’ quantum algebravslq(2) given in that paper
can be simplified, and we give a minor adjustment to this example and show that it is in
weak Hopf algebra. We also give one other example generalizingUq@sl2# which uses a mixture of
the two examples from Ref. 12.

We remind the reader that the usualUq@sl2# relations to which we refer, in terms of the fou
generatorsE,F,K,K21, are as follows:

K21K5KK2151, ~3.1!

KEK215q2E, ~3.2!

KFK215q22F, ~3.3!

EF2FE5
K2K21

q2q21 . ~3.4!

The coalgebra structure~coproductD, counit«! is given by

D~K61!5K61
^ K61,

D~E!5E^ K11^ E,

D~F !5F ^ 11K21
^ F,

«~E!5«~F !50,

«~K61!51.

It is clear that when we wish to determine the explicit action of the antipode, we appl
definition~2.3! and~2.4! to an arbitrary element in the algebra and solve. In all cases we can
explicitly due to the existence of the invertible group-like elements 1,K,K21. The obvious first
step in generalization to the weak Hopf case would be to attempt to remove the invertibil
these elements. This was the main idea in Ref. 12 when generalizing the above definition

First, all weak extensions ofUq@sl2# have generatorsE,F,K,K̄ satisfying

KK̄5K̄K[J, ~3.5!

KK̄K5K, K̄KK̄5K̄, ~3.6!

EF2FE5
K2K̄

q2q21 . ~3.7!

In what follows we usually write the generators with subscripts~following Ref. 12! to differentiate
the definitions.

Definition 1 (from Ref. 12): wslq(2) is the algebra generated by the four elementsEw , Fw ,
Kw , K̄w satisfying~3.5!, ~3.6!, ~3.7! along with the relations
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KwEw5q2EwKw , ~3.8!

K̄wEw5q22EwK̄w , ~3.9!

KwFw5q22FwKw , ~3.10!

K̄wFw5q2FwK̄w . ~3.11!

Here the invertibility ofK andK̄ has been relaxed, and instead of the identity, the elementJw has
been introduced. It can be seen that this elementJw satisfies

aJw5Jwa, ;aPwslq~2!.

To demonstrate this we check

EwJw 5
~3.5!

EwKwK̄w 5
~3.8!

q22KwEwK̄w 5
~3.9!

KwK̄wEw 5
~3.5!

JwEw . ~3.12!

A similar calculation is performed forFw and the calculations forKw and K̄w are trivial.
Also note that due to the relations~3.6!, Jw is an idempotent. Namely,

Jw
2 5Jw .

The coalgebra structure is defined as follows. The coproduct and counit are, respectively, gi

Dw~Ew!51^ Ew1Ew^ Kw ,

Dw~Fw!5Fw^ 11K̄w^ Fw ,

Dw~Kw!5Kw^ Kw ,

Dw~K̄w!5K̄w^ K̄w ,

«w~Ew!5«w~Fw!50,

«w~Kw!5«w~K̄w!51.

It can be verified that they are both algebra homomorphisms so that

Dw~xy!5Dw~x!Dw~y!

and

«w~xy!5«w~x!«w~y!

for all x,yPwslq(2), thus preserving the defining relations. With this coproduct a correspon
weak antipode can be determined by solving equations~2.1! and~2.2! with the above coproduct
The only possible weak antipode in this case is

Tw~1!51,

Tw~Kw!5K̄w ,

Tw~K̄w!5Kw , ~3.13!
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Tw~Ew!52EwK̄w ,

Tw~Fw!52KwFw .

It can be shown thatTw is an algebra antihomomorphism, that is,T(ab)5T(b)T(a). Note that
with the above bialgebra structure it is not possible to determine an antipode in the usual se
we mentioned previously, this was the motivation for relaxing~3.1! to ~3.5! in order to provide
weak antipodes which are not antipodes. For example, to solve the equation

S* id~K !5«~K !1 ⇒ S~K !K51,

we would need an inverse of the elementK.
Another possible definition given in Ref. 12 is the following.
Definition 2 (from Ref. 12):vslq(2) is the algebra generated by the four elementsEv , Fv ,

Kv , K̄v satisfying~3.5!, ~3.6!, ~3.7! along with the relations

KvEvK̄v5q2Ev , ~3.14!

KvFvK̄v5q22Fv . ~3.15!

In this case,Jv5KvK̄v satisfies the relation

Jva5aJv5a, ~3.16!

for a5Ev , Fv , Kv , K̄v ~and henceJv). To demonstrate, we have

EvJv 5
~3.5!

EvKvK̄v 5
~3.14!

q22KvEvK̄vKvK̄v 5
~3.6!

q22KvEvK̄v ~ 5
~3.14!

Ev! 5
~3.6!

q22KvK̄vKvEvK̄v

5
~3.14!

KvK̄vEv 5
~3.5!

JvEv .

For the generatorFv , a similar calculation can be done. For the casesKv andK̄v , the calculation
is trivial. The most remarkable consequence of this property is that the analogue of de
relation ~3.7! presented in Ref. 12 which was in the form

EvJvFv2FvJvEv5
Kv2K̄v

q2q21 ,

reduces to~3.7! by the above argument. Therefore in what follows we shall always use rel
~3.7! and not the relation above.

The coalgebra structure for this second definition is as follows:

Dv~Ev!5Jv ^ Ev1Ev ^ Kv ,
~3.17!

Dv~Fv!5Fv ^ Jv1K̄v ^ Fv ,

with the remaining actions coinciding precisely with the case of definition 1.
Moreover, relations~3.14! and ~3.15! can be manipulated to those of definition 1. We de

onstrate that

KvEv 5
~3.6!

KvK̄vKvEv 5
~3.5!,~3.16!

KvEvK̄vKv 5
~3.14!

q2EvKv .

The other relations can be verified in a similar way. Although the coproduct is different to th
definition 1, there exists a weak antipode which is the same as~3.13! in the case of definition 1.
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This indicates that much of the discussion in Ref. 12 relating tovslq(2) is redundant. How-
ever, we would like to make it clear that we consider the paper12 rich in ideas and an inspiration
to our current investigations.

There are other possibilities for defining weak extensions ofUq@sl2#. These involve mixtures
of definition 1 and definition 2 over the generatorsE,F. For example, we can say that one case
whereE satisfies the relations~3.8!, ~3.9! andF satisfies~3.15!, along with all the other relations
common to both definition 1 and definition 2. The coproduct would then have the action

D~E!51^ E1E^ K,

D~F !5F ^ J1K̄ ^ F,

along with the usual group-like coproduct forK andK̄. The weak antipode would still be the sam
as in definitions 1 and 2.

We can also swap this mixture of definitions and say thatE satisfies those relations o
definition 2, butF satisfies the relations of definition 1. This case is actually isomorphic to the
mixture, as we shall see later. In the section on weakUq@sln# we give a more formal way of
notating such mixtures.

So we now have some clues as to how we may approach the problem of defining
extensions ofUq@sln#. It is clear that there will be many possible combinations of genera
satisfying either of the two definitions in the general case. This then begs the question: how
we know which mixtures of the two definitions lead to isomorphic algebras? To this end we
an important observation regarding some of the automorphisms of the original quantum a
Uq@sln# which ‘‘lift up’’ to isomorphisms between weak Hopf structures. We shall look at th
isomorphisms in more detail in the next section.

In general, we say that a generator satisfying the relations of definition 1 is of type 1, a
type 2 if it satisfies the relations of definition 2.

IV. WEAK Uq†sl n‡

A. Mixing definitions

For the case ofwslq(n), which has simple generatorsEi , Fi , Ki andK̄ i ( i 51,...,n21), we
can choose either definition 1 or 2 to describe the relations between anyEi and theK j /K̄ j and
similarly for anyFi . This is what is meant by the word ‘‘mixture.’’ The relations satisfied by
generators are as follows, for alli , j unless specified otherwise:

KiK j5K jKi , K̄ i K̄ j5K̄ j K̄ i , KiK̄ j5K̄ jKi , KiK̄ i5J,

JKj5K jJ5K j , JK̄j5K̄ jJ5K̄ j ,

EiF j2F jEi5d i j

Ki2K̄ i

q2q21 ,

~4.1!
Ei

2Ei 612~q1q21!EiEi 61Ei1Ei 61Ei
250,

Fi
2Fi 612~q1q21!FiFi 61Fi1Fi 61Fi

250,

EiEj5EjEi , FiF j5F jFi , u i 2 j u>2.

We also need to specify the relations between theEi and theK j , for example. Letai j denote the
Cartan matrix forsl(n), aii 52, ai ,i 61521 and zero otherwise. IfEi satisfies

K jEi5qai j EiK j , EiK̄ j5qai j K̄ jEi , ; j , ~4.2!
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we sayEi satisfies definition 1, or simplyEi is type 1. However, ifEi satisfies

K jEiK̄ j5qai j Ei , ; j , ~4.3!

we sayEi satisfies definition 2, or simplyEi is type 2. The same convention holds forFi by
replacingEi with Fi andai j with 2ai j in the above relation. Notice also thatJ is defined for all
i , so, for example,

J5KiK̄ i5K jK̄ j , iÞ j .

The coproduct has the following action:

D~Ki !5Ki ^ Ki ,

D~K̄ i !5K̄ i ^ K̄ i ,
~4.4!

D~Ei !5H 1^ Ei1Ei ^ Ki , Ei is type 1

J^ Ei1Ei ^ Ki , Ei is type 2,

D~Fi !5H Fi ^ 11K̄ i ^ Fi , Fi is type 1

Fi ^ J1K̄ i ^ Fi , Fi is type 2,

while the action of the counit is

«~1!5«~Ki !5«~K̄ i !51, «~Ei !5«~Fi !50.

The weak antipodeT will always have the form

T~1!51,

T~Ki !5K̄ i ,

T~K̄ i !5Ki ,

T~Ei !52EiK̄ i ,

T~Fi !52KiFi ,

regardless of the type of the generatorsEi andFi .
In order to notate these mixtures forwslq(n) we use a binary notation, where a 1 indicates the

use of a type 1 generator and a 0 indicates the use of a type 2 generator. We list the 2(n21)
simple generatorsEi andFi , starting with theEi followed by theFi . We then write down a list
of 0’s and 1’s in the order corresponding to the generators determined by their type. Thi
gives an integer from 0 to 22(n21)21 in binary representation which contains all the informati
as to which particular mixture of definition we are using for the relations between the gene
Ei andFi and all theK j /K̄ j . We denote this integerd and the algebra is expressed aswslq

d(n). In
total there are 22(n21) possible mixtures forwslq

d(n).
Note that we cannot have different definitions for the relations between the same gen

with different Ki ’s because the coproduct could not possibly be consistent with those de
relations.

For example, in the case ofwslq(4) we have the simple generators~not including theKi),
E1 ,E2 ,E3 ,F1 ,F2 ,F3 . Hence there are 26564 different possibilities for relations with theKi .
The notationwslq

43(4) has the following meaning. Since the number 43 has the binary repre
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tation 101011, this is interpreted to mean that the simple generatorsE1 ,E3 ,F2 ,F3 are type 1 with
the remaining onesE2 ,F1 being type 2. This information is determined by superimposing the
of binary digits $1,0,1,0,1,1% with the list of simple generators in the orde
$E1 ,E2 ,E3 ,F1 ,F2 ,F3%.

It should also be noted that the algebrawslq
3(2) coincides withwslq(2) given in Ref. 12~and

in section III above! and the examplevslq(2) of Ref. 12 is preciselywslq
0(2) in our notation.

B. Isomorphic structures

Now we look in more detail at the weak Hopf algebras of typeUq@sln# using mixtures of the
two types of generators. In some cases whered1Þd2 , there exists a weak Hopf algebra isomo
phismwslq

d1(n).wslq
d2(n). It is therefore worth investigating all possible isomorphisms in or

to classify the weak extensions based on our criteria. As we shall see in this section, the i
phisms are derived from a subset of the set of automorphisms on the algebraUq@sln#. In other
words, a subset of the automorphisms onUq@sln# ‘‘lift up’’ to isomorphisms between the weak
Hopf extensions. The reason only a subset can be considered, as we shall see later, is
some of the automorphisms ofUq@sln# lose their invertibility when upgraded to act on the we
wslq

d(n), so therefore cannot be isomorphisms.
If ( A,D,«,T) and (B,D8,«8,T8) are weak Hopf algebras, then a weak Hopf algebra isom

phismc:A→B is an invertible algebra homomorphism satisfying

~c ^ c!+D5D8+c, ~4.5!

«5«8+c, ~4.6!

c+T5T8+c. ~4.7!

For example, consider the algebrawslq
1(2). This has generatorsE(1),F (1),K (1),K̄ (1) ~and 1(1))

satisfying

K (1)K̄ (1)5K̄ (1)K (1)[J(1),

K (1)K̄ (1)K (1)5K (1), K̄ (1)K (1)K̄ (1)5K̄ (1),

K (1)F (1)5q22F (1)K (1), K̄ (1)F (1)5q2F (1)K̄ (1),

K (1)E(1)K̄ (1)5q2E(1),

E(1)F (1)2F (1)E(1)5
K (1)2K̄ (1)

q2q21 ,

since the binary representation of 15$0,1% is superimposed with the list of generators$E(1),F (1)%
and soE(1) is type 2 andF (1) is type 1. Let us now consider the coalgebra structure of this alge
The coproductD and counit« are, respectively, given by

D~K (1)!5K (1)
^ K (1),

D~K̄ (1)!5K̄ (1)
^ K̄ (1),

D~E(1)!5J(1)
^ E(1)1E(1)

^ K (1),

D~F (1)!5F (1)
^ 1(1)1K̄ (1)

^ F (1),
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«~E(1)!5«~F (1)!50,

«~K (1)!5«~K̄ (1)!51.

Now consider the mapc:wslq
1(2)→wslq

2(2) defined by the action

c~E(1)!5F (2),

c~F (1)!5E(2),

c~K (1)!5K̄ (2),

c~K̄ (1)!5K (2),

where we have employed an obvious notation with superscripts. This map derives fro
so-called Cartan involution onUq@sl2#. In the weak case it can be seen to be a weak Hopf alg
isomorphism since it preserves the generator type~that is, it is consistent with the defining rela
tions! and is also consistent with Eqs.~4.5!–~4.7!.

In general the rule is that such an isomorphism must map a type 1 generator into a
generator and similarly for type 2. We demonstrate the sort of calculation required to
consistency with the relations. Take, for example,

lhs5c~K (1)!c~E(1)!c~K̄ (1)!5K̄ (2)F (2)K (2)5q2K̄ (2)~K (2)F (2)K̄ (2)!K (2)

5q2F (2)5q2c~E(1)!5rhs.

The other relations can be realized in a similar fashion. To demonstrate consistency w
coproduct, we can use Eq.~4.5! to determineD8 in this case. For example, applying both sides
~4.5! to E(1) gives

~c ^ c!D~E(1)!5~c ^ c!~J(1)
^ E(1)1E(1)

^ K (1)!5J(2)
^ F (2)1F (2)

^ K̄ (2),

D8~c~E(1)!!5D8~F (2)!.

This then gives the action ofD8 on F (2). The remaining actions are

D8~E(2)!5E(2)
^ 1(2)1K (2)

^ E(2),

D8~K (2)!5K (2)
^ K (2),

D8~K̄ (2)!5K̄ (2)
^ K̄ (2).

Note that this is not the coproduct given in Eqs.~4.4!, but it is in fact the opposite coproduc
Ds5s+D ~s being the flip operator!, which we know from the theory of bialgebras is a perfec
acceptable one. It is also straightforward to verify~4.6! holds. Because the action of the wea
antipode is dependent on the coproduct,T8 will be different to the one presented earlier. It
straightforward to verify that it does indeed exist, and that Eq.~4.7! is satisfied.

Although there are undoubtedly many other possibilities to extendUq@sl2# to a weak struc-
ture, the extensions presented in this paper based on that of Ref. 12 total three, namely,wslq

0(2),
wslq

1(2).wslq
2(2), andwslq

3(2). In each case the weak antipode has the same action, th
~3.13!.
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C. Number of unique structures

We now address the question of the number of possible weak Hopf algebra isomorp

c:wslq
d(n)→wslq

d8(n), dÞd8.
It is well known that forUq@sln# there are several types of automorphisms.16 The most

relevant to this paper are the Dynkin diagram automorphisms and the Cartan involution, sinc
give rise to Hopf algebra automorphisms and antiautomorphisms, respectively. We conside
rd and vd which have the same actions as the Dynkin diagram automorphism and the C
involution, respectively, but applied to the weak Hopf algebrawslq

d(n). These maps then becom
isomorphisms between weak Hopf structures. Their actions are given by

rd~Ei
(d)!5En2 i

(d8) , rd~Fi
(d)!5Fn2 i

(d8) , rd~Ki
(d)!5Kn2 i

(d8) , rd~K̄ i
(d)!5K̄n2 i

(d8) ,

vd~Ei
(d)!5Fi

(d9) , vd~Fi
(d)!5Ei

(d9) , vd~Ki
(d)!5K̄ i

(d9) , vd~K̄ i
(d)!5Ki

(d9) ,

where the indicesd ~corresponding to the source!, d8 and d9 ~corresponding to the targets! are
used to differentiate between the structures. Note thatrd andvd map into different spaces whic
justifies the use of the different indicesd8 andd9. With these actions, it can be easily verified th

rd8+rd5 id, vd9+vd5 id.

Lusztig17 has also given a set of algebra automorphisms defined on the quantized enve
algebras. However, when applied to our weak generalizations, they are found to be noninv
and therefore are not isomorphisms between weak Hopf algebras.

Although we know of the existence of other algebra isomorphisms which exist bet
structures, the only known weak Hopf algebra isomorphisms arerd and vd . We will comment
more on these algebra isomorphisms in Sec. V.

One important point is thatrd andvd both preserve the generator type, so for example ifEi
(d)

is a type 1 generator, so areEn2 i
(d8) andFi

(d9) . Thereforerd andvd must correspond to maps~say
r d andwd , respectively! defined on the non-negative integers such that

rd :wslq
d~n!→wslq

r d(d)
~n!,

vd :wslq
d~n!→wslq

wd(d)
~n!.

Once we know the action of the mapsr d and wd , this should allow us to be able to determin
which structures are isomorphic and hence lead to a classification.

To this end, we writed in terms of its binary expansion

d5~d0 ,d1 ,...,dn22udn21 ,...,d2n23!,

where the bar separates the values representing theEi andFi , and where thedi have values of
either 0 or 1. Thenr d(d) andwd(d) have the expansions

wd~d!5~dn21 ,...,d2n23ud0 ,...,dn22!,

r d~d!5~dn22 ,...,d0ud2n23 ,...,dn21!.

In terms of the components of the binary expansion we have

wd~dk!5d3n242k mod 2(n21)8 ,

r d~dk!5dn211k mod 2(n21)9 .
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This simplifies the problem of determining isomorphic structures and allows us to explicitly c
the number of unique structures for eachn.

It is worth noting thatr+v5v+r, so the only isomorphisms we need to consider arer, v and
r+v ~we have dropped the subscripts for convenience!. According to this prescription, there ca
only be at most four structures which are isomorphic. In some cases there could be two
others there could be no isomorphisms. These cases are referred to below as degener
situation can be summarized in the following diagram

where in some cases the arrows could be equalities, in which case there would be one
aforementioned degeneracies. In order to count the number of unique~nonisomorphic! weak
extensions ofwslq

d(n), we list all the possible degenerate cases;

~1! w(d)5d,
~2! r (d)5d,
~3! r (d)5w(d),

and consider their intersection (1)ù(2)ù(3), union (1)ø(2)ø(3) and their union’s comple-
ment (1)ø(2)ø(3) in order to count the total number of unique cases. We note that som
these cases will lead to exactly two isomorphic structures, and combinations of the above
will lead to no isomorphic structures. We aim to separate each of these situations and then
number of structures relating to each.

Case (1):The onlyd satisfyingw(d)5d is of the form

d5~d0 ,d1 ,...,dn22ud0 ,d1 ,...,dn22!.

Therefore the total number of cases satisfying case~1! is 2n21.
Case (2):We separate this case into two cases corresponding ton being odd and even. Fo

n52m11 the onlyd satisfying case~2! is of the form

d5~d0 ,d1 ,...,dm21 ,dm21 ,...,d0ud2m ,d2m11 ,...,d3m21 ,d3m21 ,...,d2m!,

so there are 22m52n21 possibilities. Forn52m the onlyd satisfying case~2! has the form

d5~d0 ,...,dm22 ,dm21 ,dm22 ,...,d0ud2m21 ,...,d3m23 ,d3m22 ,d3m23 ,...,d2m21!,

so there are 22(m21)12522m52n possibilities.
Case (3):The onlyd satisfying this case is of the form

d5~d0 ,d1 ,...,dn22udn22 ,...,d0!,

so there are 2n21 possibilities.
(1)ù(2)ù(3): Once again we treat the case forn is even and odd separately. Forn52m

11, d is of the form

d5~d0 ,d1 ,...,dm21 ,dm21 ,...,d0ud0 ,d1 ,...,dm21 ,dm21 ,...,d0!,

so there are 2m52(n21)/2 possibilities. Forn52m, d is of the form

d5~d0 ,...,dm22 ,dm21 ,dm22 ,...,d0ud0 ,...,dm22 ,dm21 ,dm22 ,...,d0!,
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giving 2m52n/2 possibilities.
(1)ø(2)ø(3): Combining the above three cases and subtracting twice their interse

gives the union, for which there are 3.22m22m11 possibilities forn52m11 and 22m1122m11

possibilities forn52m. The compliment of the union then has 24m23.22m12m11 possibilities for
n52m11 and 24m22222m1112m11 possibilities forn52m.

To calculate the exact number of unique structures we consider the fact that case~1! without
cases~2! or ~3! ~and permutations! will have precisely two structures which are isomorphic, or p
another way, isomorphic structures in these cases come in pairs. Therefore we need to h
number obtained above when counting the total number of structures. Similarly for the stru
which do not fall into these degenerate cases. There will be exactly four isomorphic structu
we need to divide the number corresponding to(1)ø(2)ø(3) by 4.

Therefore the number of nonisomorphic structures, sayZn , is

Z2m115
22m22m

2
1

22m22m

2
1

22m22m

2
12m1

24m23.22m12m11

4
524m221

3

4
.22m,

Z2m5
22m2122m

2
1

22m22m

2
1

22m2122m

2
12m1

24m22222m1112m11

4
524m24122m21.

Putting these two cases together gives

Zn52n24~71~21!n12n!,

which is the number of unique weak Hopf structures corresponding towslq
d(n).

This formula forZn has been verified up ton510 by directly applying the mapsr, v andr+v
and then counting the number of unique structures. To give the reader an idea of the num
structures, we have the table below.

n 2 3 4 5 6 7 8 9 10

Zn 3 7 24 76 288 1072 4224 16 576 66 048

We also list forn<4 all the values ofd, putting isomorphic values in brackets$,%. For n
52 we have already determined that the values

d50,$1,2%,3

give the three unique structures. Forn53 the values ofd for the seven structures are

d50,$1,2,4,8%,$3,12%,$5,10%,$6,9%,$7,11,13,14%,15.

For n54 the 24 values ofd are

d50,$1,4,8,32%,$2,16%,$3,6,24,48%,$5,40%,$7,56%,$9,36%,$10,17,20,34%,$11,25,38,52%,$12,33%,

$13,37,41,44%,$14,28,35,49%,$15,39,57,60%,18,$19,22,26,50%,$21,42%,$23,58%,$27,54%,

$29,43,46,53%,$30,51%,$31,55,59,62%,45,$47,61%,63.

All cases up ton510 have been calculated, but are obviously too unwieldy to include in
article.
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V. DIRECT SUM DECOMPOSITION AND SWEEDLER’S EXAMPLE

We now look in more detail at the algebraic structure and show that the upgraded qua
enveloping algebra automorphisms are not the only algebra isomorphisms between the
wslq

d(n).
First recall Sweedler’s example14 of a finite dimensional Hopf algebra, denotedH. H is

generated by elementsI ,G,X ~whereI is the identity element! satisfying the relations

G25I ,

GX52XG,

X250.

The coproduct is given by

D~G!5G^ G,

D~X!5X^ G1I ^ X,

and the counit given by

«~G!515«~ I !, «~X!50.

The antipodeS is given by the action

S~G!5G, S~ I !5I , S~X!5GX.

Clearly H is four dimensional with basis$I ,G,GX,X%.
In order to give an example of a weak Hopf algebra based on this structure with gene

$1,g,x% ~we now use lower case symbols!, instead of using the relationg251, we impose the
relationg35g. Moreover, we can choose either the relationgx52xg, in which case we refer to
x as a type 1 generator~analagous to the notion discussed at the end of Sec. III!, or we can choose
the relationgxg52x, in which case we callx a type 2 generator. A type 2 generator is also a ty
1 generator, but not conversely, sinceg2Þ1.

For the first case, we choosex to be type 1. Denote the algebra byH1 . The following relations
are satisfied:

g35g,

gx52xg,

x250,

along with the same coproduct and counit as in the usual Hopf case~given above!. Solving Eqs.
~2.1! and ~2.2! gives the weak antipode

T~1!51,

T~g!5g,

T~x!5gx,

which has the same action as the antipode from the Hopf case but nevertheless is not an a
The defining relations imply thatH1 is six dimensional with basis

$1,g,g2,x,gx,g2x%.
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Note that the elementg2 is a central idempotent. This is easily verified with the defining relatio
It is with this example that we demonstrate explicitly how to obtain a direct sum decom

sition for an algebra with a central idempotent. This procedure will then be extended to the
of wslq

d(n).
H1 has a direct sum decomposition

H15H1
0

% H1
1 ,

whereH1
0 is the subalgebra with basis$(12g2)x,12g2%, on which multiplication byg2 is zero

~indicated in the superscript!, andH1
1 is the subalgebra with basis$g,g2,gx,g2x% on which mul-

tiplication by g2 is the identity~also indicated in the superscript!. In fact, these two subalgebra
are determined by setting

H1
05~12g2!H1 ,

~5.1!
H1

15g2H1 .

It is straightforward to verify that the mapc:H1
1→H with the action

c~g!5G,

c~g2!5I ,

c~gx!5GX,

c~g2x!5X,

defines a weak Hopf algebra isomorphism, whereI ,G,X are the generators of the origina
Sweedler Hopf algebraH. SinceH appears as a subalgebra ofH1 , we can simply applyc21

^ c21 to the R-matrix ofH ~see Ref. 15! to obtain an R-matrixR of H1 satisfying

RD~a!5s+D~a!R, ;aPH1 ,

R13R235~D ^ id!~R!,

R13R125~ id^ D!~R!.

Such an R-matrix is then given by

R5g2
^ g222p^ p1a~g2x^ g2x22g2x^ px12px^ px!,

wherep5(g22g)/2 anda is an arbitrary parameter. ThisR is not invertible, but it satisfies the
regularity condition12

RR̂R5R, ~5.2!

R̂RR̂5R̂, ~5.3!

where

R̂5g2
^ g222p^ p1a~g2x^ g2x22px^ g2x12px^ px!.

It should also be noted that the Sweedler Hopf algebraH also appears as a subalgebra ofH1

with its generators defined by

I 51,
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G511g2g2,

X5~11ag!gx,

wherea is an an arbitrary constant. However, this is just an observation and has no conseq
to the results of our paper, since this subalgebra is only isomorphic toH as an algebra, not a
bialgebra.

Now we look at the algebraH2 , which corresponds to the choice of the generatorx to be of
type 2. This implies the following relations:

g35g,

gxg52x,

x250.

The only difference with the coproduct in this case is with the action defined on the generax,
which is now given by

D~x!5x^ g1g2
^ x,

and the counit is the same as usual. The algebraH2 is five dimensional with basis$1,g,x,gx,g2%.
Note thatg2 is a central idempotent. Defining

H2
05~12g2!H2 ,

H2
15g2H2 ,

the decomposition

H25H2
0

% H2
1

still holds, where the superscripts still refer to the action ofg2, but nowH2
0 has basis$12g2% and

H2
1 has basis$g2,g,x,gx%.

Once again it is possible to verify that there exists a weak Hopf algebra isomorphismw:H2
1

→H with the following action:

w~g2!5I ,

w~g!5G,

w~x!5X,

w~gx!5GX.

In a similar way to both of the examples above, for a quantized enveloping algebU
[Uq@sln#, its weak extensionUw and some other algebraic structureU0 , a decomposition of the
form

Uw5U0% U5~12J!Uw% JUw

exists due to there being a central idempotentJ whose existence derives from the relaxation of t
invertibility of group-like elements in the algebra. In fact it is straightforward to prove the fact
for any d,

Uq@sln#.J.wslq
d~n!.
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This result is another way of stating Proposition 1 from the paper.12

From another point of view, we could say that a weak extension is nothing but the or
Hopf algebra plus some other algebra in which is contained all the information regarding the
structure. In this case, it would help to know what conditionsU0 would have to satisfy in orde
thatUw has a weak Hopf structure. This has not been the approach of this paper as we saw
last section. Since there are no other weak Hopf algebra isomorphisms on the weakwslq

d(n), the
classificationas weak Hopf algebrasis complete. However, if we were to consider all possib
algebra isomorphisms, this direct sum decomposition is important since it leads to disco
several ‘‘unexpected’’ isomorphisms which do not arise from the action of the automorphis
the quantised enveloping algebra case.

Since we only need the presence of a central idempotent to achieve this direct sum d
position, we can apply this idea to the weak extensions ofUq@sln# from the previous section, sinc
the elementJ is always a central idempotent. However, it does not affect our classification o
weak Hopf algebra structure from the previous section. To demonstrate, we show that,
unexpectedly, there is an algebra isomorphismc:wslq

10(3)→wslq
9(3).

We first apply the direct sum decomposition toU5wslq
10(3) andV5wslq

9(3) such that

U5~12J!U % JU[U0% U1

and similarly

V5~12J8!V% J8V[V0% V1 .

Explicitly we have U0 generated by^(12J)E1 ,(12J)F1,12J& and U1 generated by

^J,JE1 ,JF1 ,E2 ,F2 ,K1 ,K2 ,K̄1 ,K̄2&. For V, denoting its generators by a prime, we haveV0

generated by^(12J8)E18 ,(12J8)F28,12J8& and V1 generated by^J8,J8E18 ,E28 ,F18 ,J8F28 ,
K18 ,K28 ,K̄18 ,K̄28&. It is straightforward to show that bothU1 andV1 are isomorphic as~weak! Hopf
algebras toUq@sl(3)#. It is also easy to verify thatU0 and V0 are both Abelian with the sam
number of generators and are therefore isomorphic as algebras. Combining these two facts
the isomorphismc:U→V, the action of which is given by

c~1!51,

c~E1!5~12J8!F281F18 ,

c~E2!5J8F28 ,

c~F1!5E18 ,

c~F2!5E28 ,

c~Ki !5K̄ i8 ,

c~K̄ i !5Ki8 .

The mapc is consistent with all the defining relations so is therefore an algebra homomorp
and it can be shown to have inverse

c21~E18!5F1 ,

c21~E28!5F2 ,

c21~F18!5JE1 ,
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c21~F28!5~12J!E11E2 ,

c21~Ki8!5K̄ i ,

c21~K̄ i8!5Ki .

Thereforec is an isomorphism.
If we set the action of the coproductD for U and allow the freedom to choose the coprodu

D8 of V consistently withc, then we end up having to compare the action of (c ^ c)+D with
D8+c. Applying both of these maps to the generators will clearly give a noncoassociativeD8.
Therefore thec only can be considered as an algebra isomorphism. However, it is unce
whether or not this coproductD8 would define a quasibialgebra.2 This certainly raises some
interesting questions relating to whether or not these isomorphisms could correspond to som
of Drinfeld twist. If so, then perhaps our classification is only a much smaller classification o
structures as quasibialgebras. This idea may warrant further investigation.

VI. CONCLUDING REMARKS

We have seen that it is possible to define weak extensions ofUq@sln# by only relaxing some
of the relations in the original algebra. As we saw in the work of Li and Duplij,12 one nice way of
doing this is to relax invertibility of the group-like elements to a more general regularity cond
and also to impose one of two relations on the other generators. This allows us to define
examples.

One observation is that it is also possible to extend the definition of a quantized superalg18

to the weak case by using the same idea of relaxing the invertibility of the generatorsK andK̄. We
demonstrate with the algebrawospq

d(2u1) which has generators$K,K̄,V1 ,V2%. We define the
parity of these generators to bep(K)5p(K̄)50, p(V6)51.

The following relations are satisfied:

KK̄5K̄K, KK̄K5K, K̄KK̄5K̄,

KV65q61V6K, K̄V65q71V6K̄, ~6.1!

$V1 ,V2%52
1

4

K2K̄

q2q21 .

Keeping in theme with the preceding sections, if in addition the following relations are sati

KXK̄5q61X,

whereX5V1 or V2 , then we callX a type 2 generator. Otherwise we callX a type 1 generator
This example is almost exactly like the case ofwslq

d(2) in that we have the same notion o
generators of type 1 and 2. The coalgebra structure is of the same form, and the on
difference is that the weak antipode is a graded algebra antihomomorphism, so it sa
T(ab)5(21)p(a)p(b)T(b)T(a).

All the weak Hopf algebras given in this paper have noncocommutative coproducts.
implies existence of universalR-matrices that could give new solutions of quantum Yang–Bax
equations as mentioned in Refs. 10 and 12. One direction for future work is to investigate th
of suchR-matrices. We expect the expressions would not be that different to those of the or
Hopf algebra due to the direct sum decomposition of Sec. V. In fact, in Sec. V we gave
possibleR-matrix for the finite dimensional weak Hopf generalization of Sweedler’s well-kno
example using these facts.
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Section V also demonstrates the fact that there are many algebra isomorphisms b
structures. In this paper we did not investigate all possible isomorphisms, but instead gave
existence proof that such isomorphisms do indeed exist. It would be interesting to classify
structures as algebras using this observation.

A question that arose during our investigation is one related to automorphisms and tw
especially in the usual quantized enveloping algebra case. As we have already mention
algebra automorphisms are well known for the quantized enveloping algebras, some of wh
also bialgebra automorphisms. We are currently unaware of whether or not, correspond
every algebra automorphismc:A→A, there exists a twist elementFPA^ A such that

~c ^ c!D~a!5F.D~c~a!!.F21, ;aPA.

1V. G. Drinfeld, in Proceedings of the International Congress on Mathematics, Berkeley, 1986, edited by A. M. Gleeso
~American Mathematical Society, Providence, RI, 1986!, pp. 798–820.

2V. G. Drinfeld, Leningrad Math. J.1, 1419~1990!.
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Givental formula in terms of Virasoro operators
A. Alexandrova)

ITEP, Moscow, Russia

~Received 26 February 2003; accepted 22 May 2003!

We present a conjecture that the universal enveloping algebra of differential opera-
tors ]/]tk over C coincides in the origin with the universal enveloping algebra of
the~Borel subalgebra of! Virasoro generators from the Kontsevich model. Thus, we
can decompose any~pseudo!differential operator to a combination of the Virasoro
operators. Using this decomposition we present the right-hand side of the Givental
formula @math.AG/0008067# as a constant part of the differential operator we in-
troduce. In the case ofCP1 studied in the paper by Song and Song@hep-th/
0103254#, the left-hand side of the Givental formula is a unit, which imposes
certain constraints on this differential operator. We explicitly check that these con-
straints are correct up toO(q4). We also propose a conjecture of factorization
modulo Hirota equation of the differential operator introduced and check this con-
jecture with the same accuracy. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1615695#

I. INTRODUCTION

It is well known thatN52 supersymmetric sigma-model with target spaceM , defined on the
genusg Riemann surface, through twisting, leads to the topological field theory.1 For D52
sigma-model, the correlation functions of such topological field theory are known to be
intersection numbers on the target space, and the fields of this theory, which we call primary
are in one-to-one correspondence with the elements ofH* (M ) ~see, for example, Ref. 2!. Thus,
for any genusg, the free energyFM

g (s) of the theory, as a function of couplingss to primary fields
~the space of such couplings is called small phase space! is a generating function for such inte
section numbers on the target space. The genus zero free energyFM

0 (s) is described by
associativity—WDVV equations.2,3

Coupling of the topological field theory to the topological gravity leads to the so-ca
topological string theory. The genusg free energyF M

g (t) of this theory, which depends o
infinitely many coupling constantst ~couplings to gravitational descendants!, describes intersec
tion theory on the compactified moduli spaces of genusg punctured Riemann surfaces. We w
denote coordinates on the big phase space ast, while on the small phase space, subspace of the
one, as s. Combining F M

g (t) for all g into the sum and exponentiatingtM(t)
5exp(g50\

g21F M
g (t), one gets a general object which depends on the manifold and is the

tion of infinitely many coupling constants. We call itt-function.4 This function can be considere
from many different points of view, which lead to different conditions ontM(t) ~Refs. 2, 5–7!
~Virasoro constraints, dilaton and divisor equations!. However, in general, they do not seem to
restrictive enough to determinetM(t) completely.

In fact, there are at least two examples of the manifoldM when the functiontM for topo-
logical field theory with the target spaceM turns out to be thet-function of integrable hierarchy
The first example is the point. Its functiont • , which corresponds to the pure topological gravit2

is the t-function for the KdV hierarchy.8,9 It can be realized as the matrix integral~famous
Kontsevich model10!

a!Electronic mail: alex@gate.itep.ru
52680022-2488/2003/44(11)/5268/11/$20.00 © 2003 American Institute of Physics
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t •~T!5

E dH e21/3Tr H31Tr M2H

E dH e2TrMH2
, ~1!

over N3N Hermitian matrix, the coupling constants, i.e., the times from the integrable poi
view, are defined as follows:

Tk52
1

k
Tr M 2k. ~2!

Invariance of this matrix integral with respect to the change of variables,11 namely,

H→H1ep , ~3!

with ep5M2p leads to the Virasoro constraintsLnt •(Tk)50, n>21 ~see, for instance, Refs
12–14 with Ref. 15!,

Ln5
1

2 (
k odd

kTk

]

]Tk12n
1

1

4 (
a1b52n

a,b odd and.0

]2

]Ta]Tb
1

T1
2

4
dn,211

1

16
dn,02

]

]T312n
, n>21.

~4!

These Virasoro operators form the Borel subalgebra of the Virasoro algebra,

@Ln ,Lm#5~n2m!Ln1m . ~5!

The second example,M5CP1, conjectured to correspond to the Toda hierarchy,6,16 has been
proved in the interesting paper.17 The t-function for it can also be represented as some ma
integral. By analogous consideration, this representation leads to the Borel subalgebra o
other Virasoro algebra which annihilates thet-function. Therefore, one could expect that t
functiontM associated with any manifold, is thet-function for some integrable hierarchy. This
one of the reasons why we generally call itt-function.

For several particular manifolds there exist some explicit formulas forFM
g . The example, of

M5CP1 is, in a sense, the only foreseeable: its whole free energy vanishes on the small
space, except genus zero and genus one, which are, correspondingly,18

FCP1
0

5 1
2 ~sP!2sQ1esQ ~6!

and

FCP1
1

52sQ/24. ~7!

For CP2 the genus zero free energy is of the form

FCP2
0

5
1

2
sP~sQ!21

1

2
~sP!2sR1 (

d51
Nd

(0) ~sR!3d21

~3d21!!
exp~sQd!, ~8!

and for the expansion coefficientsNd
(0) there is the recursive relation5

Nd
(0)5~3d24!! (

l 1k5d

Nl
(0)Nk

(0)

~3l 21!! ~3k21!!
k2l @3kl1 l 22k#. ~9!

Here the numbersNd
(0) andNd

(1) are numbers of degreed rational~elliptic! curves passing through
3d21 ~respectively, 3d) points.

For the genus one free energy
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FCP2
1

5
2sQ

8
1 (

d51
Nd

(1) ~sR!3d

~3d!!
exp~dsQ!, ~10!

analogous recursion relation was derived in Ref. 19, using Virasoro constraints forCPn and the
topological recursion relations~see also Ref. 20!

Nn
(1)5Nn

(0) 1

72
n~n21!~n22!1 (

k1 l 5n
~3n21!!

Nk
(0)

~3k21!!

Nl
(1)

~3l !!

l

9
~3k222k!. ~11!

However, in general, there are no expressions for higher genera similar to~9!, ~11!, and only a few
first terms in the series like~8!, ~10! are found.

The problem is to construct a regular procedure for findingFg
M(s). In this paper, we make a

modest contribution to solving this problem. It is based on the remarkable formula which
proposed in Ref. 21 with the help of the localization technique, and connects the Konts
t-function (t • , function for the point on the big phase space! with the t-function for some~for
instance, projective! manifold M on the small phase space, with the genus zero and one co
butions omitted22

e(g.1\g21FM
g (s)5FeDM(s))

j
t •~\D j ;t0

( j ) ,t1
( j ) , ...!G

t
k
( i )5T

k
i (s)

. ~12!

Heresi are coordinates on the small phase space for the manifoldM , indicesi , j run from 1 to
K5dim(H* (M )), andDM(s) is the bilinear pseudodifferential23 operator acting ontk

( i ) ,

DM~s!5
\

2 (
k,l 50

`

(
i , j

Vkl
i j ~s!D i

1/2~s!D j
1/2~s!] t

k
( i )] t

l
( j ), ~13!

Vkl
i j (s), D i(s), andTk

i (s) being some functions which can be presented in terms of the genus
potentialFM

0 (s), more precisely on its third derivatives~Refs. 21 and 24!.
Formula~12! was studied in Ref. 24 for the first nontrivial example of the manifoldM , CP1.
Since, as we know from the explicit form of the free energy on the small phase space foCP1

the lhs of~12! is unity, formula~12! can be considered as an equation imposed on the Kontse
t-function. We call it the Song equation.25

In Ref. 24 all the necessary coefficientsD,V, andT were calculated, and~12! was checked
extensively using the expansion in\ with the accuracy ofO(\4). This calculation involves the
explicit form of t •(t) as a series in times.

In our paper, we reformulate the problem of calculation on the right-hand side~rhs! of ~12! for
given V andT realizing some particular differential operatorDM8 easily connected withDM @see
~15!# via Virasoro operators.

Namely, the shift operator

exp(
i 51

K

(
k52

`

Tk
i ~s!] t

k
( i ) ~14!

obviously commutes withDM(s), and for the operator

DM8 ~s!5DM~s!1(
i 51

K

(
k52

`

Tk
i ~s!] t

k
( i ) ~15!

we have the equality
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FeDM(s))
j

t •~\D j ;t0
( j ) ,t1

( j ) , ...!G
t
k
( i )5T

k
i (s)

5FeDM8 (s))
j

t •~\D j ;t0
( j ) ,t1

( j ) , ...!G
t
k
( i )50

. ~16!

The general idea of the paper is to present the operatoreDM8 in the origin of the space of time
tk
( i ) in terms of the Virasoro operators~this means, that we consider rhs modulo term, proportio

to the positive powers of the timest) ~4!,

eDM8 U t505 (
[ l 1],[ l 2],...,[l K]

`

P[ l 1],[ l 2],...,[l K]
M ~s!L [ l 1] ^ L [ l 2] ^¯^ L [ l K]U

t50

. ~17!

HereL [ l ] are products of the Virasoro operators with the non-negative multiplicitiesmi , given by
multi-indices@ l #: for @ l #5(m21 ,m0 ,...,mr) we define

L [ l ]ªLr
mr
¯L0

m0L
21
m21 , ~18!

and, if all multiplicitiesmi vanish,

L [0]51, ~19!

where we denote@0#ª(0,0,...,0). Since all the Virasoro operators of the Borel subalgebra a
hilate the Kontsevicht-function, the action of the operator presented in this way on thet •’s at the
point t50 is trivial, that is, the only nonvanishing contribution to the left-hand side~lhs! of ~12!
is given by the constant term proportional to~19!:

e(g.1\g21FM
g (s)5P[0],[0],...,[0]

M ~s!. ~20!

In particular, the Song equation in terms ofD8 is

exp@DCP18 #t~\,x!t~\,y!uxn5yn5051. ~21!

In the case ofCP1, one can expand the operatorDCP18 in the series inqªexp(2 sQ/2) ,

eD
CP18 511 (

n51

`

qn (
[ l 1],[ l 2]

P[ l 1],[ l 2]
CP1(n) ~\!L [ l 1] ^ L [ l 2]U

t50

. ~22!

Since forCP1 the lhs of~12! is equal to 1, the Song equation is equivalent to the condition

P[0],[0]
CP1(n)50, n>1. ~23!

In this paper, we check this condition with the accuracy ofO(q4).
The paper contains two conjectures. The first conjecture which states that any diffe

operator in timest with constant coefficients can be presented as a combination of the Vira
operators with some multiplicities at the origin helps to deal with the Givental formula.
second conjecture, whose general structure is still unknown, in particular the case ofM5CP1

claims that the operatorDCP18 ~22! can be factorized into the sum of two parts, which are ten
squares of differential operators, modulo Hirota equations. Both of these conjectures are c
perturbatively in the example ofCP1 with the accuracy ofO(q4).

The paper is organized as follows: in Sec. II we represent the main results of Ref. 2
explicitly present the Virasoro and Hirota constraints which we use in our calculations. Sectio
and IV are devoted to our two conjectures, while Sec. V contains some concluding remark
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II. MAIN INGREDIENTS

In Ref. 24 it was shown that, denotingtn
(1)5xn and tn

(2)5yn , one has the following differ-
ential operator:

DCP1ª
\

2 (
k,l>0

~Vkl
11~]xk

]xl
1]yk

]yl
!12i ~21! l 21Vkl

12]xk
]yl

!, ~24!

and introducinga beingc-numbers

am1152
~2m11!2

8~m11!
am , a051, ~25!

we can represent times26 T1

Tn
15H 0, n50,1

2
an21

2n21 expF2~n21!sQ

2 G , n>2.
~26!

In the case ofCP we have two times on the small phase space but third derivatives of the
energy depend only on one coordinate,sQ . This means that all components of our construct
depend on this one coordinate.a beingc-numbers,

am1152
~2m11!2

8~m11!
am , a051. ~27!

CoefficientsV11 and V12 in ~24! can be presented as bilinear combinations ofTk
1 similar to

those in the paper~the proper formula has a slight mistake therein!:24

Vkl
115 (

n50

k21
~21!n~4~ l 1n11!~k2n!21!

~2l 12n11!~2k22n21!
Tl 1n12

1 Tk2n11
1 1~21!k11

Tl 1k12
1

2l 12k11
,

Vkl
125 i ~21! lF (

n50

k21
2~ l 12n112k!

~2l 12n11!~2k22n21!
Tl 1n12

1 Tk2n11
1 12~ l 1k11!

Tl 1k12
1

2l 12k11G .

~28!

Taking into account that, in~26! T0
15T1

150, one can explicitly substitute the Kontsevic
t-function to ~12! in the caseM5CP1, and check the equality, expanding the operator a
t-functions in the\-series,

exp@DCP1#t •~\,x!t •~\,y!uxn5yn5T
n
15..11 (

n51

`

an\n. ~29!

In this way, one gets an infinite family of equations on the coefficients of the decompositi
t •(\,t),

an50, ;n.0. ~30!

In Ref. 24, the first three equations were explicitly checked.
The Virasoro operators corresponding to our normalization of times, are~see, for example,

Ref. 27!
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m50
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1
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1

16
, n50

` G~n1m1 3! \
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(
m50

2

G~m1 1
2!

t̃m]m1n1
2 (

m50
~21!m11 2

G~2m2 1
2!

]m]n2m21 , n.0,

with t̃ mªtm2dm,1 , ]m5]/]tm . They annihilate the Kontsevicht-function,

Lnt •~\,t !50, n>21. ~32!

It is also known that any KdVt-function, in particular, the Kontsevich one, solves the Hiro
bilinear equations, the first three of which being~see, for instance, Ref. 28!

~\D0
4212D0D1!t~ t !•t~ t !50,

S 224D1
21\D0

3D11
\2

12
D0

6D t~ t !•t~ t !50,

S 2D1
21

\2

360
D0

61D0D2D t~ t !•t~ t !50, ~33!

which we denote for the sake of brevity as

H i50, i 51,2,3. ~34!

III. CONNECTION BETWEEN SONG AND VIRASORO EQUATIONS

Consider an arbitrary operator of the form

Bª]1
n1]2

n2
¯]k

nk , ni>0, (
i 51

k

nk.0, ~35!

for some finitek. We experimentally check for smallk andn that this operator can be present
as a combination of the Virasoro operators~31! at the origin of the space of timest,

B5 (
m21 ,...,mr50

`

cmr ,...,m0 ,m21
Lr

mr
¯L0

m0L
21
m21U

t50

5..(
[ l ]

c[ l ]L [ l ]U
t50

, ~36!

for some finite r , dependent on n and k, where we introduced multi-index@ l #
5(m21 ,m0 ,...,mr). Some of the multiplicitiesmi , and even all of them, can vanish. Namely, w
expressed 27 derivatives, which are necessary for our perturbative calculation~see below!, in
terms of the Virasoro operators. Using explicit form of the Virasoro operators we can get
answers for actions of the differetial operators on the tau-function, not representing them
combination of Virasoro operators, for example,

]

]T1

n0
]

]T3

n1t •~T1 ,T3 ,...!U
T15T35¯50

5
1

3 S 3

2D n1S 1

6\ D n0/3GS 2
n0

3 D
G~2n0!

G~n11 1
3 n01 1

24!

G~ 1
3 n01 1

24!
.

~37!
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For example,

]052L21u t50 ,

]0
25L21

2 u t50 ,
~38!

]0
352L21

3 u t501
1

\
,

]25
1

30
\L21

2 U
t50

2
4

15
L1U

t50

.

If this is correct for arbitraryB, one can present any pseudodifferential operator as a combin
of the Virasoro operators at the origin of the space of timest. Thus, one can present any tens
product ofN differential operators as a sum of tensor products of combinations of the Vira
operators

(
[ l 1],[ l 2],...,[l N]

`

P[ l 1],[ l 2],...,[l N]L [ l 1] ^ L [ l 2] ^¯^ L [ l N]U
t50

, ~39!

with P being some coefficients.
This representation can be appropriate for our consideration. In particular, one has

eDM8 5 (
[ l 1],[ l 2],...,[l K]

`

P[ l 1],[ l 2],...,[l K]
M ~s!L [ l 1] ^ L [ l 2] ^¯^ L [ l K]U

t50

. ~40!

Here the operator

DM8 ~s!5DM~s!1(
i 51

K

(
k52

`

Tk
i ~s!] t

k
( i ) ~41!

is the combination of theDM and the operator, which shifts the timestk
( i )5Tk

i to zero.
Since all the Virasoro operators of the Borel subalgebra annihilatet • , calculation of the action

of the operator on the product oft •’s in the origin is equivalent to calculatingP[0],[0],...,[0] . One
observes that the lhs of~12! is equal to the identity component of the decomposition of oper

eDM8 in terms of Virasoro operators

e(g.1\g21FM
g (s)5P[0],[0],...,[0]

M ~s!. ~42!

In our particular case, moving our times to the origin is equivalent to changing the operatorD: for
the operator

DCP18 5DCP11 (
n52

`

Tn
1S ]

]xn
1

]

]yn
D , ~43!

the Song equation is

exp@D8#t •~\,x!t •~\,y!ux5y5051. ~44!

Now we can check the Song equation perturbatively, not specifying the explicit form oft • . This
is the advantage of our approach, since the approach of Ref. 24 required the explicit formt • .
To study this equation perturbatively, we can expand the operator in the series inq,
                                                                                                                



5275J. Math. Phys., Vol. 44, No. 11, November 2003 Givental formula in terms of Virasoro operators

                    
exp@DCP18 #5..11 (
n51

`

qn (
[ l 1],[ l 2]

P[ l 1],[ l 2]
CP1(n) ~\!L [ l 1] ^ L [ l 2]U

t50

, ~45!

and all we must check is that

P[0][0]
CP1(m)50 ;m.0. ~46!

We check this up ton53.

The explicit expression for the operatoreD
CP18 ux5y50 acting ont •’s looks like

eD
CP18 t ^ tux5y50511~@2 1

30 L1t1~2 7
120L21

2 t1 1
8 ~L21t!2!\#q1@~ 1

3600~L1t!21 1
3600L1

2t

1 1
504L2t!1~ 109

50 400L21t1 53
8400L21L0t2 1

240L21tL21L1t1 7
7200L21

2 L1t

2 7
240L21tL0t1 7

7200L21
2 tL1t!\1~ 49

57 600L21
4 t2 7

960L21tL21
3 t

1 499
57 600~L21

2 t!2!\2#q21@~2 97
453 600L3t2 1

648 000L1
3t2 1

30 240L1L2t

2 1
216 000L1

2tL1t2 1
30 240L2tL1t!1~ 31

7200~L0t!21 14 951
3 024 000L21tL1t

2 53
504 000L21L0tL1t2 53

504 000L21L0L1t1 1
4032L21tL21L2t2 7

864 000L1
2tL21

2 t

1 1
28 800L21tL21L1

2t1 1
28 800~L21L1t!22 1

17 280L21
2 L2t2 1

17 280L2tL21
2 t

2 61
252 000L0

2t2 1319
1 814 400L21L1t1 7

14 400L21tL0L1t2 7
864 000L21

2 L1
2t

2 151
324 000L0t2 7

432 000L21
2 L1tL1t1 7

14 400L21L1tL0t!\1~ 7
57 600L21L1tL21

3 t

1 1121
1 728 000L21tL21

2 t2 53
288 000L21

3 L0t1 49
57 600L21

3 tL0t2 4567
12 0960 000L21

3 t

2 1103
288 000L21L0tL21

2 t1 7
57 600L21tL21

3 L1t1 661
403 200L21tL21

2 L0t

2 499
1 728 000L21

2 L1tL21
2 t2 49

3 456 000L21
4 L1t2 49

3 456 000L21
4 tL1t!\2

1~2 6643
13 824 000L21

4 tL21
2 t1 199

460 800~L21
3 t!21 49

460 800L21tL21
5 t

2 343
41 472 000L21

6 t!\3#q3!u t501O~q4!. ~47!

This form seems to be convenient, since the operatorDCP18 is symmetric inx andy. Now, if one
uses the explicit expression for thet-function t • , conditions~46! for m53n reproduce the con-
ditions an50 from ~30!. They are only those conditions that restrict the coefficientsV11, V12,
andT1.

IV. LINEAR EQUATION FROM THE BILINEAR ONE

The Song equation is quadratic int • . Thus, if one manages to presents the operatoreD
CP18 as

eD
CP18 5 f ~\,q,L ! ^ 212\qg~\,q,L ! ^ 2, ~48!

the Song equation is equivalent to the system of two linear equations

f ~\,q,L !t •u t5051,
~49!

g~\,q,L !t •u t5050.
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Here f andg are some operators expressed in terms of the Virasoro operators at the origin
It turns out that the conjecture~48! is slightly incorrect, instead, with the accuracy ofO(q4),

one gets

@eD
CP18 2 f ~\,q,L ! ^ 222\qg~\,q,L ! ^ 2#t ^ tu t50

5F \

768
q2H12S 11

12 288
H21

21

1024
H31

17

737 280
\2L21

2 H12
1

46 080
\L1H1Dq3GU

t50

,

~50!

whereH’s are combinations bilinear int which correspond to the Hirota equations

H1~ t50!5~~2L21
4 t28L21tL21

3 t16~L21
2 t!2!\18L21t216L21L0t116L21tL0t!u t50 ,

H2~ t50!5~32L0t2 64
3 L0

2t1 64
3 ~L0t!21~22L21

3 t1 4
3 L21

3 L0t12L21tL21
2 t24L21tL21

2 L0t

14L21L0tL21
2 t2 4

3 L21
3 tL0t!\1~2L21tL21

5 t1 1
6 L21

6 t1 5
2 L21

4 tL21
2 t

2 5
3 ~L21

3 t!2!\2!u t50 ,

H3~ t50!5~~ 16
15 L0t1 8

15 L21L1t2 8
15 L21tL1t2 8

9 L0
2t1 8

9 ~L0t!2!

1~2 1
15 L21

3 t1 1
15 L21tL21

2 t!\1~ 1
180L21

6 t2 1
30 L21tL21

5 t

1 1
12 L21

4 tL21
2 t2 1

18 ~L21
3 t!2!\2!u t50 . ~51!

The operatorsf andg are, respectively,

f ~\,q,L !511~2 1
60 L12 7

240\L21
2 !q1~2 13

3150\L211 19
1400\L21L01 1

1008L21 7
14 400\L21

2 L1

1 1
7200L1

22 101
57 600\

2L21
4 !q21 1

2 ~~2 97
453 600L32 1

648 000L1
32 1

30 240L1L2!

1~2 19
42 000L21L0L12 59

63 000L0
22 7

864 000L21
2 L1

22 1
17 280L21

2 L21 937
162 000L0

2 311
28 350L21L1!\1~ 101

3 456 000L21
4 L12 187

756 000L21
3 1 31

24 000L21
3 L0!\2

2 793
41 472 000L21

6 \3!q31O~q4!, ~52!

g~\,q,L !5 1
4 L211~2 1

240L21L11 1
320\L21

3 2 1
20 L0!q1~~ 97

6300L11 1
1200L0L1

1 1
4032L21L21 1

28 800L21L1
2!1~2 1

2400L21
2 2 47

33 600L21
2 L02 1

19 200L21
3 L1!\

2 1
460 800L21

5 \2!q21O~q3!. ~53!

V. CONCLUSION

In this paper, we presented two conjectures, which could help in the ‘‘experimental’’ w
with the Givental formula~12!, and perturbatively checked them for the simplest example of
manifold CP1. In spite of the lack of the complete proof for these conjectures, and even
formulation of the second one, they could be of some use. One way to use them is to pres
differential operator corresponding to the manifoldM , completely in terms of the Virasoro opera
tors with the constant coefficientsP[ l 1],[ l 2],...,[l N]

M @we should mention, that this is not equivalent

presentDM8 (s) in such form#,
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eDM8 (s)5Fexp (
[ l 1],[ l 2],...[ l N]

`

P[ l 1],[ l 2],...,[l N]
M L [ l 1] ^ L [ l 2] ^¯^ L [ l N] GU

t50

. ~54!

This is equivalent to finding thet-function of the manifoldM on the small phase space, if on
additionally knows the genus 1 free energy~the genus zero free energy explicitly enters t
coefficients on the rhs!. We do not know how to do this nonperturbatively, even forM5CP1. The
other way is to proceed with perturbative calculations of free energies, for example, in the c
M5CP2, using formula~12! and ideas of this paper.

Another interesting way to go is to study the formula analogous to~12! such that its lhs
contains the free energy~with genus 0 and 1 contributions subtracted! on the big phase space.1 It
gives almosttM , modulo genus zero and genus one contributions. However, the structure
rhs is far less transparent in this case.

One also can approach to the Givental formula~12! from another side. Namely, one can ta
some knownt-function, insert it on the lhs and study the structure of the differential operato
the rhs. The interesting example to deal with is provided by thet-function for the generalized
Kontsevich model.14
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Geometric phase and modulus relations for probability
amplitudes as functions on complex parameter
spaces

Alonso Boteroa)

Department of Physics and Astronomy, University of South Carolina,
Columbia, South Carolina 29208 and Centro Internacional de Fı´sica,
Ciudad Universitaria, Bogota´, Colombia

~Received 28 May 2002; accepted 29 July 2003!

We investigate general differential relations connecting the respective behaviors of
the phase and modulus of probability amplitudes of the form^c f uc&, whereuc f& is
a fixed state in Hilbert space anduc& is a variable state, treated as a section of a
U~1! bundle over a complex subspace of the corresponding ray spaceR5CPn.
Amplitude functions on such holomorphic line bundles, while not strictly holomor-
phic, nevertheless satisfy generalized Cauchy–Riemann conditions involving the
U~1! Berry–Simon connection on the parameter space. These conditions entail
invertible relations between the gradients of the phase and modulus, therefore al-
lowing for the reconstruction of the phase from the modulus~or vice versa! and
other conditions on the behavior of either polar component of the amplitude. As a
special case, we consider amplitude functions valued on the space of pure states,
the ray spaceR5CPn, where transition probabilities have a geometric interpreta-
tion in terms of geodesic distances as measured with the Fubini–Study metric. In
conjunction with the generalized Cauchy–Riemann conditions, this geodesic inter-
pretation leads to additional relations, in particular, a novel connection between the
modulus of the amplitude and the phase gradient, somewhat reminiscent of the
WKB formula. Finally, a connection with geometric phases is established. ©2003
American Institute of Physics.@DOI: 10.1063/1.1612895#

I. INTRODUCTION

The study of correlations between the behavior of the phase and modulus of complex
ability amplitudes is a relevant topic in a number of physical problems such as the ‘‘p
problem’’ in diffraction theory,1 the study of phase singularities2 and the semiclassical or WKB
approximation3 to name a few. In the phase problem, for instance, the aim is to infer p
information in the diffracted wave from the observed cross section, which only involves
magnitude of the wave. In the study of phase dislocations, it is known that regions of van
amplitude are characterized by surrounding regions of generally nonuniform vortex-type
singularities. Finally, in the semiclassical approximation, the phase gradient is in correspon
with the classical momentum and the behavior of the magnitude of the amplitude is correla
the phase gradient by Liouville’s theorem.

From a different standpoint, significant insight into the geometrical meaning of both
modulus and the phase of probability amplitudes has emerged from the study of the ray spR
~also known as projective Hilbert space!, particularly in connection with geometric phases,4–7

quantum information theory,8,9 and other topics falling under the general category of geome
quantum mechanics.10,11 From the work of Berry,4 Simon,5 and Aharonov and Anandan6 amongst
others, it is known that under cyclic evolution a geometric phase factor is acquired by the a

a!Current address: Departamento de Fı´sica, Universidad de los Andes, Apartado Aereo 4976, Bogota´, Colombia; Electronic
mail: abotero@uniandes.edu.co
52790022-2488/2003/44(11)/5279/17/$20.00 © 2003 American Institute of Physics
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tude, which is interpreted as the holonomy associated with a natural connection~the so-called
Berry–Simon connection! on the U~1! bundle overR, and which is proportional to the symplect
area enclosed by the circuit inR. Samuel and Bhandari7 have also shown that the so-calle
Pancharatnam phase difference between any two states can be expressed as a line integ
Berry–Simon connection along the geodesic connecting the two states, as measured w
Fubini–Study metric, the natural metric onR. Finally, there exists a natural geometric interpr
tation to transition probabilities in the ray space as the cosine of the geodesic distance with
to the Fubini–Study metric,10 a measure that is intimately related to information-theoretic m
sures of statistical distance between two probability distributions.8,9

In the present paper, the aim is to shed additional insight into the correlation betwee
phase and magnitude of transition probability amplitudes from the point of view of geom
quantum mechanics. Specifically, we study amplitudes of the form^c f uc&, whereuc f& is any fixed
state in Hilbert space anduc& is parametrized on a complex parameter subspaceM of the ray
spaceR, or, in particular, the ray space itself. We then obtain general geometric relations be
the two polar components of the amplitude arising from holomorphicity and metric constr
natural to such complex parameter spaces. We note that a number of state families of
physical interest are valued on complex parameter spaces, including the family of cohere
more generally squeezed states, the Bloch sphere of spin-1/2 states, as well as complex ex
of real parameter families.

A brief summary of the main results and the structure of the paper is in order. In Sec.
spell out in greater detail the geometric setting involved, which is more precisely that ofholomor-
phic line bundlesover the complex parameter spaceM. Such bundles share with the more gene
line bundles over arbitrary parameter spaces~arising, for instance, in connection with Berr
phases! two important geometric objects, namely, the Berry–Simon connectionA52 i ^cudc&
and the quantum geometric tensorH}^dcu ^ udc&2^cudc& ^ ^dcuc&. The symmetric part ofH
gives rise to a ‘‘quantum’’ metric onM ~the Fubini–Study metric whenM5R), while the
antisymmetric part, here denoted byV, is proportional to the field-strength tensor associated w
the connection. There are, however, additional constraints that follow from the fact thatM is a
complex submanifold ofR. In particular, state sections of the corresponding line bundle sa
generalized holomorphicity conditions and the base manifold inherits from the ray space its K¨hler
structure. These constraints are then used in Sec. III to show that the polar compone
^c f uc&5Ap eih satisfy a generalized version of Cauchy–Riemann conditions on the logarith
^c f uc&, the relations

¹ logAp5V•~¹h2A!,

~¹h2A!52V•¹ logAp,

where the inner product is with respect to the quantum metric onM. With the aid of these
conditions, it is then possible to reconstruct either polar component of the amplitude from
parametric dependence of the other, as well as to obtain additional constraints on the beha
p and h. A brief illustration of the the generalized Cauchy–Riemann conditions on the B
sphere is given in Sec. IV. In Sec. V we turn to the case whenM5R, where we explore the
consequences of previously obtained results in conjunction with an additional geometric re
that exists between the transition probabilityp and geodesic distances as measured by the Fub
Study metric. In particular, we give a generalization of the Samuel and Bhandari result fo
Pancharatnam phase for nongeodesic paths. More importantly, it is shown that the tra
amplitude can be parametrized entirely in terms of its phase according to the formula

^c f uc&5
eih

A11qi¹h2Ai2
, ~1.1!
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whereq is an arbitrary parameter in the definition of the metric. Prompted by a certain re
blance to the WKB formulacWKB(x)5eih(x)/Au¹hu, a trajectory interpretation to the phas
gradient onR is obtained. Finally, in Sec. VI, we establish a connection between our results
the geometric phase acquired during cyclic and noncyclic evolutions.

II. GEOMETRY OF HOLOMORPHIC LINE BUNDLES

We devote some time to introduce the relevant geometric aspects that are involved. L
mapc̃:M→H define a family of unnormalized state vectorsu c̃(z) &PH, which only depend on
a set of local holomorphic coordinatesza on M. The family uc& is then obtained by projectinguc̃&
onto the set of pure normalized state vectors according to

uc~z,z̄!&5
eig(z,z̄)

A^c̃~ z̄!uc̃~z!&

uc̃~z!& , ~2.1!

whereg is some~real! phase factor that for the moment will be assumed to be an arbitrary fun
of z and z̄.

It will also be convenient to keep in mind alternative parametrizations ofuc& in terms of the
set of real coordinates (xa,ya) related toza ( z̄a) as usual byza5xa1 iya ( z̄a5xa2 iya), and more
generally in terms of arbitrary real coordinates onM which will be denoted byjm with the index
m ranging from 1 to 2k @throughout the section we use italic indicesa,b, . . . ~ranging from 1 to
k) to denote complex coordinates or their real and imaginary components and greek ind
denote general coordinates#.

Neglecting for the moment the fact thatM is a complex manifold, we see that there is
correspondence between a point inM and a pure-state density matrixuc&^cu, and therefore a poin
in the ray spaceR, the equivalence class of states under the equivalence relationuc&;eifuc&. The
geometric setting is therefore that of the U~1! or line bundleP(M,U(1)) over the paramete
spaceM,5,12,13on which a choice ofuc& with a given phase factorg corresponds to a particula
choice of local section.

Now, as is well known in the context of geometric phases,14 there is a natural geometri
connection that can be defined on the line bundle over a parameter spaceM, which is expressed
locally by the so-called Berry–Simon~BS! connection one-formA5Amdjm, with components

Am52 i ^cu]mc& , ~2.2!

where]m5]/]jm in arbitrary coordinates. This connection is naturally induced by the Dirac in
product on Hilbert spacêfuc& in the sense that the horizontal motion defined by this connec
corresponds to infinitesimal variations orthogonal touc&, i.e., ^cudHorizc&50. The resulting cova-
riant derivative of a sectionuc&,

Dmuc&[@]m2 iAm#uc& , ~2.3!

therefore satisfieŝcuDmc&50. By virtue of Eq.~2.1!, it is clear that under a U~1! gauge trans-
formationuc&→eidguc&, Am transforms asAm→Am1]mdg, in such a way thatDmuc& transforms
homogeneously asDmuc&→eidgDmuc&. Furthermore, a U~1! gauge transformation may always b
introduced so that the connection form is set to zero at least at one point inM. As usual, the
failure of the covariant derivative to commute in different directions is measured by the curlA.

WhenM is a complex manifold as is the case in question, there is added richness br
about by the complex nature of the base space. In particular, it is possible to construct a
refined notion of the line bundle overM, namely aHolomorphic line bundle.12,13,15,16The notion
of such bundles rests on a generalization of the concept of a holomorphic function, in the
that by a suitable gauge transformation it is possible to have a section satisfy,at a given point, the
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standard holomorphic condition (]/] z̄a) uc&50. Let us see how this comes about with the para
etrization in Eq.~2.1!. By construction we have that the un-normalized vectoruc̃& satisfies the
holomorphic condition,

]

] z̄a u c̃~z! &50 , ~2.4!

with z̄a5xa2 iya. It is clear however, thatuc& is not strictly holomorphic, as the antiholomorph
coordinatesz̄a appear not only in the phase factorg, but more importantly in the normalizatio
factor which involves the antiholomorphic map^c̃( z̄)u. Thus we have in general that

]

] z̄a
uc&5F ]

] z̄a
log

eig

A^c̃uc̃&
G uc& . ~2.5!

Now, taking the inner product of this expression withuc& itself, we find that

^cu
]

] z̄a
uc&5F ]

] z̄a
log

eig

A^c̃uc̃&
G . ~2.6!

Expressing the BS one-form in the complex basis asA5Aadza1Aādz̄a, with

Aa52 i ^cu]ac& , Aā52 i ^cu] āc& ~2.7!

@where]a5(]/]za) , ] ā5(]/] z̄a)], and finally splitting the covariant derivativeD into holomor-
phic and antiholomorphic components, we have

Da5
]

]za 2 iAa , Dā5
]

] z̄a 2 iAā .

Thus, we find from Eqs.~2.5! and ~2.6! that the sectionuc& satisfies a generalized ‘‘gauge cov
riant’’ holomorphic condition

Dāuc& 50. ~2.8!

However, it is always possible to ‘‘gauge away’’ the BS connection at least at one point. A
point then, the section satisfies the usual holomorphic condition] āuc&50. Thus, modulo a U~1!
gauge transformation,uc& is a locally holomorphic section. For future reference, we shall also n
the dual, now antiholomorphic condition, on the bra^cu. This is given by

^Dacu5@]a1 iAa#^cu50 . ~2.9!

We now consider geometric aspects of the base spaceM and introduce additional objects tha
will be of use later. The horizontal motion associated with the BS connection on the line b
over M induces naturally on the base spaceM a gauge-invariant rank-2 Hermitian tensor

Hmn5 q ^DmcuDnc& , ~2.10!

which Berry17 has named thequantum geometric tensor. Here, q is any strictly positive real
number to be adjusted for convenience. The real part ofHmn is positive definite and symmetric
and thus defines a metricgmn on M, thequantum metric, with line element

ds25gmn djm djn5q@ ^dcudc&2^dcuc&^cudc& # . ~2.11!
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In turn, the imaginary part ofH is antisymmetric and is closely related to the curl of the
connection one-formA:

V5Im H5
q

2
^dcu∧udc&5

q

2
dA . ~2.12!

Sinced250 it follows thatV is automatically closed.
WhenM is the base space for the Hermitian line bundle, considerable simplifications fo

First of all, from the generalized holomorphic conditionuDāc&50 and its dual, we have that in
complex coordinates the quantum geometric tensor takes as components

Hāb5^DācuDbc& , Hab̄50 . ~2.13!

This implies that the metric, as well as the two-formV may be written out as

g5gab̄ dza
^ dz̄b1gāb dz̄a

^ dzb ,
~2.14!

V5 igab̄ dza∧dz̄b ,

wheregab̄5gb̄a5 1
2Hab̄ . Note that if the metric is nondegenerate~as we shall assume henceforth!,

it then follows, on the one hand, that the U~1! connectionA is nontrivial, and on the other, tha
both g andV admit inverses. In particular, the inverse metric takes the form

g215gab̄]a^ ] b̄1gāb] ā^ ]b , ~2.15!

wheregāb5gbā satisfiesgab̄g
b̄c5da

c .
To understand the significance of Eq.~2.14!, we now introduce the so-called complex stru

ture, the defining tensorial object for a complex manifold. In complex coordinates, the com
structure tensorJ takes the canonical form

Ja
b5 i da

b , Jā
b̄52 i d ā

b̄ ~2.16!

with the remaining components vanishing. The complex structure satisfiesJm
lJl

n52dm
n ~i.e.,

J2521) and implements the multiplication byi (2 i ) on vector fields with holomorphic~anti-
holomorphic! indices. In terms ofJ, it is readily verified that the metric satisfies

gmn5Jg
mJl

nggl . ~2.17!

In this case one says that the metric isHermitian. In turn, the two-formV is what is known as the
Kähler form of the metric, defined by

Vmn5glnJl
m , ~2.18!

i.e.,Vmn52Jmn . The expressions forg andV in Eq. ~2.14!, wheregab5gāb̄5Vab5V āb̄50, are
the canonical forms that a Hermitian metric and its Ka¨hler form take in complex coordinates.

When the Ka¨hler formV is closed, as in our case,M is known as a Ka¨hler manifold and the
metric a Kähler metric. The offshoot of this is a compatibility between the Hemitian and R
mannian structures of the manifold, embodied by the fact that

dV50⇔¹mJn
l50 , ~2.19!

where ¹m denotes covariant differentiation of ordinary tensor fields onM with respect to the
affine connection associated with the metricg. The conditiondV50 entails that the Hermitian
componentsgab̄ of the metric and the Ka¨hler form satisfy in complex coordinates the symme
conditions
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]cgab̄5]agcb̄ , ] c̄gāb5]zā]gc̄b . ~2.20!

From the definition of the affine connection in arbitrary coordinates,Gnl
m 5 1

2g
mg(]mgng1]ngmg

2]ggmn), it is then straightforward to verify that in complex coordinates the affine connec
takes the form

Ga
bc5gd̄a]bgcd̄ , G ā

b̄c̄5gād] b̄gdc̄ , ~2.21!

with the symbols mixing holomorphic and antiholomorphic indices vanishing. Covariant diffe
tiation with respect to a holomorphic~antiholomorphic! coordinate therefore acts like regula
differentiation on antiholomorphic~holomorphic! indices. Another way of saying this is that th
affineconnection preserves the separation between holomorphic and antiholomorphic tenso
We remark that in complex manifolds that are not Ka¨hler, it is still possible to define a Hermitia
connection taking the form of Eq.~2.21! and satisfying¹J50, but this connection will not
coincide with the affine connection.

A second consequence of the symmetry conditions in Eq.~2.20! is that the Ka¨hler metric may
be derived locally from a scalar potential function, the so-calledKähler potential, according to
gab̄5]a] b̄K(z,z̄). This can be seen by noting from Eq.~2.6! that

A5dg1
1

2i
]a log^c̃uc̃& dza2

1

2i
] ā log^c̃uc̃&dz̄a , ~2.22!

from which we see that

V5
q

2
dA5

iq

2
]a] b̄ log^c̃uc̃&dza∧dz̄b . ~2.23!

Consequently, from Eq.~2.14!, we have that

gab̄5
q

2
]a] b̄ log^c̃uc̃& , ~2.24!

so that an appropriateKähler potential is given by

K̃5 ~q/2!log^c̃uc̃& . ~2.25!

Note however that this potential is not uniquely defined, since one is free to add toK(z,z̄) any
function of the formf 1(z)1 f 2( z̄) without changinggab̄ . Note finally that a choice of gauge i
which g(z,z̄)5Re@f(z)#51

2@f(z)1f* (z̄)# for some arbitrary holomorphic functionf (z), is equiva-
lent to a reparametrization ofuc& in which in Eq. ~2.1!, the phaseg is set to zero and the
un-normalized vectoruc̃& gets replaced byuc̃8&5ef (z)uc̃&. In such case, all geometric objects
interest for us, namely, the Berry–Simon connection and the second-rank tensors obtaine
the quantum geometric tensor, can be derived from the Ka¨hler potentialK̃85(q/2)loĝ c̃8uc̃8& .18

The freedom that remains in the choice off corresponds to the freedom in the definition of t
Kähler potential.

III. GENERALIZED CAUCHY–RIEMANN CONDITIONS

We now explore the consequences on the behavior of the polar components of any tra
amplitude

^c f uc~j!&5Ap~j! eih(j) ,
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whereuc~j!& is a section of a holomorphic line bundle over a complex submanifoldMPR, i.e.,
of the form of Eq.~2.1!, as described in the preceding section, andj are arbitrary real coordinate
on M.

The first thing to note is that due to the arbitrariness in the definition of the phaseg in Eq.
~2.5!, the notion of phasêc f uc& is tied to the choice of gauge. Specifically, the phaseh
[arĝ cfuc&, transforms under the U~1! gauge transformationsuc&→eidguc& as

h→h1dg.

It then becomes convenient to introduce a gauge-invariant notion of phase variation by me
the BS-connection This is done by defining agauge invariant phase gradient

Vm[]mh2Am . ~3.1!

Clearly, the one-formV5Vmdjm is not closed but rather satisfiesdV52dA52 (2/q)V. The
modulus of^c f uc&, Ap[u^c f uc&u, is of course gauge invariant.

Now, sinceuc f& is assumed to be a constant vector, it follows from Eq.~2.8! that the ampli-
tude^c f uc& is as well subject to the generalized holomorphic~antiholomorphic! conditions when
expressed in local complex coordinates

F ]

] z̄a 2 iAāG^c f uc&50 , ~3.2!

F ]

]za 1 iAaG^cuc f&50 . ~3.3!

Assuming then that̂c f uc&Þ0, the logarithm of the amplitude can be defined analytically, and
find that

i @] āh2Aā#1] ā logAp50,
~3.4!

2 i @]ah2Aa#1]a logAp50 .

As mentioned earlier, by a suitable choice of gauge it is possible to have the sectionuc& satsify
ordinary Cauchy–Riemann conditions at a specified point. Correspondingly, the above con
can be brought locally to the form of ordinary Cauchy–Riemann conditions.

For our purposes, it will be more convenient to cast the above expression in terms
Kähler form V which has a more immediate interpretation in terms of the Berry–Simon con
tion A ~recall thatV5 (q/2)dA). Using the facts thatJn

mVn5JnmVn5VmnVn5Vm
nVn and that

in mixed-rank formJ25V2521, we then have the following alternative expressions:

]m logAp5Vm
n@ ]nh2An# , ~3.5a!

]mh5Am2Vm
n]n logAp . ~3.5b!

We shall refer to these as thegeneralized Cauchy Riemann conditionssatisfied by the polar
components of the amplitudêc f uc&. These conditions constitute the first important result of
paper, and will serve as a starting point for a number of additional relations that will be deriv
the forthcoming.

The most important consequence of Eq.~3.5! is the existence of the reconstruction formul
on M,

h~j!2h~j0!5E
j0

j

djm@Am2Vm
n]n logAp # ~3.6!
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and

A p~j!

p~j0!
5expF E

j0

j

djm Vm
n@ ]nh2An#G , ~3.7!

by means of which one polar component of the amplitude^c f uc& can be obtained from the othe
by line integration once the connection is specified. Since both formulas arise from exact
entials, the choice of integration path can be left arbitrary as long as any two paths m
deformed continuously into one another within a simply connected region excluding singula
However, since the individual terms in the integrands are not generally exact, all terms m
evaluated along the same path. This path independence must reflect itself, therefore, in a
relations that bothp andh have to satisfy in order to guarantee that the left-hand sides of
~3.5a! and ~3.5b! are exact differentials, conditions that will be examined in more detail sho

Before doing so, we use the fact that the quantum metric in Eq.~2.11! on M is a Hermitian
metric to establish relations on the magnitude and angle between the gauge invariant gr
¹h2A and¹ logAp on M. The Hermitian condition on the metric is that the complex struct
should preserve the inner product, i.e.,X"Y5(JX)•(JY). This implies from the generalized
Cauchy–Riemann conditions that the gauge invariant gradients have the same magnitude
fined in terms of the quantum metric,

u¹ logAp u5u¹h2Au . ~3.8!

A second property of a Hermitian metric is thatX"JX50, a property that in a Ka¨hler manifold
follows automatically from the antisymmetry of the Ka¨hler formV. It follows therefore from Eq.
~3.5! that

¹p •~¹h2A!50 . ~3.9!

A particular consequence is therefore that lines of constant phase and constant transition p
ity necessarily meet at right angles whereverA is made to to vanish by a choice of gauge.

Next, we turn to the previously mentioned integrability conditions. The most evident
comes from rearranging Eq.~3.5b! to readVm

n]n logAp5Am2]mh , in which case we see tha
the one-formV"d logAp is equivalent to the BS connection up to the gauge termdh. Correspond-
ingly, the curl of Vm

n]n logAp must lead to the same curl ofAm , which, up to a constant, is
nothing more than the Ka¨hler form. Using the fact that the Ka¨hler form is covariantly constant, we
then have

Vn
g¹m¹g logAp2Vm

g¹n¹g logAp5
2

q
Vmn .

Multiplying on both sides by the Ka¨hler form and usingV2521, the equation can then b
transformed to

@¹m¹n1Vm
aVn

b¹a¹b# logAp52
2

q
gmn . ~3.10!

The interpretation of this equation becomes more straightforward in complex coordinat
which case it reads

q¹a¹b̄ logAp52gab̄ . ~3.11!

Since¹a¹b̄ logAp5]a] b̄ logAp, we further see that the conditionis that 2q logAp is a Kähler
potential for the quantum metric onM. This can be seen more clearly by noting from Eq.~2.1!
that
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q logAp5
q

2
log@^c f uc&^cuc f&# 52

q

2
log^c̃uc̃&1q log^c f uc̃&1q log^c̃uc f& .

Apart from the purely holomorphic and antiholomorphic functions log^cfuc̃& and loĝc̃ucf&, respec-
tively, this is nothing more than minus the Ka¨hler potentialK̃5 (q/2) loĝ c̃uc̃& mentioned in Sec.
II.

Concerning the second integrability condition, we can use the fact that]m logAp is a gradient
to obtain from~3.5a! that

@¹mdn
b1Vm

aVn
b¹a#~¹bh2Ab!50 , ~3.12!

a condition that in complex coordinates takes the form

¹a~¹b̄h2Ab̄!1¹b̄~¹ah2Aa!50 . ~3.13!

Further insight into this condition is obtained from Eq.~2.22! in which case we see that¹aAb̄

1¹b̄Aa is nothing more than 2]a] b̄g. Therefore, under the restricted choice ofg5 1
2@ f (z)

1 f̄ ( z̄)# mentioned previously as the condition in which all geometric quantities can be de
from the Kaḧler potential, we have that]a] b̄g50 and therefore that

¹a¹b̄h50 .

In other words, the second condition expresses the fact that modulo a gauge term mixing
morphic and antiholomorphic coordinates, the phaseh is a linear combination of a purely holo
morphic and a purely antiholomorphic function. This can be seen most clearly by noting from
~2.1! that

h5g1
1

2i
log^c f uc̃&2

1

2i
log^c̃uc f& .

We see therefore that the integrability conditions, Eqs.~3.10! and~3.12!, ensuring the consis
tency of the generalized Cauchy–Riemann conditions in Eq.~3.5! are rather trivial consequence
of the parametrization of state sections on a holomorphic line bundle. Still, they lead to non
constraints on the behavior of the phase and modulus of the amplitude when the paramete
is viewed as a general Riemannian manifold.

In particular, by contracting indices in Eqs.~3.10! and~3.12! we determine that the phase an
modulus of^c f uc& satisfy locally the scalar conditions

¹•~¹h2A!50, ~3.14a!

¹2 logAp52
2k

q
, ~3.14b!

where k is the complex dimension ofM and ¹• and ¹2 are the divergence and Laplacia
operators onM associated with the quantum metric. Note that since it is always possib
choose¹•A50 ~for instance, with the restricted choice of gauge mentioned previously!, the first
condition can always be brought to the form¹2h50.

Finally, it is interesting to note that from the scalar conditions@Eq. ~3.14!# and Eqs.~3.8! and
~3.9!, one obtains

¹•@p ~¹h2A!#50, ~3.15!

1

2
u¹h2Au22

1

2

¹2Ap

Ap
5

k

q
, ~3.16!
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a set of equations analogous to the generalized Hamilton–Jacobi equation and the pro
conservation equation arising from the time-independent Schro¨dinger equation a free particle in
magnetic field. That the probability amplitude^c f uc& therefore satisfies onM the corresponding
Schödinger equation

2
1

2
~¹2 iA!•~¹2 iA! ^c f uc&5

k

q
^c f uc&

can be verified by noting that in complex coordinatesgab̄DaDb̄^c f uc&50 and using the commu
tation relation

@Da ,Db̄#52
2i

q
Vab̄5

2

q
gab̄ .

The analogy between (¹h2A) and a velocity field suggests that it may be possible to establi
trajectory interpretation for the invariant phase gradient. We shall see in Sec. V that su
interpretation is indeed possible on the ray space.

IV. PHASEÕMODULUS RELATIONS ON THE BLOCH SPHERE

Let us for the moment flesh out the preceding results with a simple concrete illustr
Consider the family of spin-1/2 statesun̂& represented by points on the Bloch sphere labeled by
usual polar anglesu,f,

un̂&5S cos
u

2

sin
u

2
eif
D , ~4.1!

where the basis used is the standardu6& eigenbasis ofs3 . As is well known, the two-sphere is in
fact a complex manifold, namely the complex projective spaceCP1. To see this, note that th
parametrization of the unnormalized stateuc̃&,

uc̃~z!&5S 1
zD , ~4.2!

maps, according to Eq.~2.1!, to the quantum state section@Eq. ~4.1!# after the identification

z5tan
u

2
eif , g50 . ~4.3!

The map corresponds to a stereographic projection of the sphere to the complex plane, m
the south pole intoz5`.

We proceed by calculating the geometric objects of interest. From the Kah¨ler potential,K̃
5 (q/2) loĝ c̃uc̃&5 (q/2) log(11zz̄), it is straightforward to compute the metric element, i.e.,

ds25q
dz dz̄

~11uzu2!2 5
q

4
@du21sin2 u df2# . ~4.4!

Choosingq54 for this example, the quantum metric reduces to the usual metric on the
sphere, with nonvanishing components

guu51, gff5sin2 u .
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The BS connection form is more straightforward to calculate from Eq.~4.1! and we find that

A5sin2
u

2
df5

1

2
~12cosu! df . ~4.5!

The BS connection leads therefore to the Ka¨hler form

V5
q

2
dA 5 sinu du∧df , ~4.6!

which is immediately recognized as the volume form for the unit two-sphere.
With this, it is then possible to express the generalized Cauchy–Riemann conditions f

polar components of some amplitude^c f un̂& in a more conventional form by embedding them
three-dimensional space. Lettingn̂ now stand forrW/r and using standard vector notation, th
connection becomes

AW 5
1

2r F12cosu

sinu G f̂ , ~4.7!

which is the usual ‘‘Dirac string’’ vector potential for a magnetic charge 1/2 located at the o
and with the string singularity along the south pole. Equations~3.5a! and ~3.5b! now read

¹W logAp52n̂3~¹W h2AW !,

¹W h5AW 1n̂3¹W logAp , ~4.8!

where p and h are assumed to depend only on the polar angles. We verify this in a si
example. Take

^2un̂&5sin
u

2
eif , ~4.9!

where from we see thatAp5sin (u/2) andh5f so that

¹W logAp5
1

2r
cot

u

2
,û

and¹W h5 (1/r sinu)f̂. The gauge invariant phase gradient is therefore

¹W h2AW 5
1

2r sinu F12
1

2
~12cosu!G f̂5

1

2r
cot

u

2
f̂

and thus we verify that¹W logAp52n̂3(¹W h2AW ).
More generally, we obtain a coordinate-independent geometric interpretation of the

gradient for a transition amplitudêm̂un̂& for fixed um̂& not necessarily on the same section asun̂&.
Since the transition probability is

p5u^m̂un̂&u25 1
2 ~11n̂•m̂! , ~4.10!

using¹W (n̂•m̂)5(m̂2(m̂•n̂)n̂)/r we obtain

n̂3¹W logAp5S 1

2r D n̂3m̂

11n̂•m̂
. ~4.11!
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But noting that the vector potential may also be expressed asAW 5(1/2r ) @ ẑ3n̂/(11n̂• ẑ)#, we see
by comparison thatn̂3¹W logAp, and hence the invariant phase gradient¹W h2AW , is the vector
potential in afixed gauge@specified by Eq.~4.11!# for a magnetic monopole of charge21/2
centered at the origin with the string singularity running along the2m̂ axis. Thus, the phase
gradient¹W h is nothing more than the sum of two vector potentials for two magnetic charge
opposite sign at the origin, with the respective Dirac flux strings running along the direction2 ẑ

and2m̂. Equivalently, we can say that the phase gradient¹W h is the local vector potential at th
exterior of single trapped-flux-line running along2 ẑ axis into the origin and exiting along th
2m̂ axis ~Fig. 1!, with the flux enclosed being 1/234p52p.

Some global properties of the phase dependence now become evident. First, the in
phase gradient has only one vortex-like singularity atn̂52m̂, where the amplitudêm̂un̂& van-
ishes, with a circulationr(¹W h2AW ) zd lW52p. On the other hand, the actual phase gradient h
generically, two such singularities with circulationr¹W h•dlW562p at the two points on the uni
sphere where the flux line crosses. One of these points is fixed to ben̂52m̂ corresponding to the
actual singularity at̂m̂un̂&50; the other point reflects the string singularity in the connection
is therefore dependent on the choice of sectionun̂&. Note that while additional singularities may b
created by means of singular gauge transformations, the string singularity associated w
connection cannot be removed. The exception is when the string singularity happens to b
cisely at n̂52m̂, in which case both singular points disappear and the phase is essenti
constant up to nonsingular gauge transformations.

V. ADDITIONAL PHASE ÕMODULUS RELATIONS ON THE RAY SPACE

So far, we have considered phase/modulus relations for transition amplitudes of the
^c f uc& whereuc& is a section of the holomorphic bundle over an arbitrary complex pure quan

FIG. 1. Interpretation of the gauge invariant phase gradient as the vector potential on the unit sphere for a magnet
21/2, and the phase gradient as the vector potential on the sphere for a trapped flux line of flux 2p.
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state manifold. Any such space is itself a complex submanifold of the so-called ray spaceR, the
entire space of pure quantum states modulo a phase transformation. Ifn11 is the dimensionality
of the Hilbert space of the quantum system, then the ray space is the complex projective
CPn21. A state sectionuc& over R is therefore a section over a holomorphic line bundle as w
and hence the results of the preceding section hold without change. However, on the ray s
is possible to establish an additional geometric relation between the transition probabip
5u^c f uc&u2 and geodesic distances onR as measured with the quantum metric. By virtue of t
generalized Cauchy–Riemann conditions~3.5!, this new relation has far-reaching consequenc
as we now show.

On the ray space, the quantum metric ds25q@ ^dcudc&2^dcuc&^cudc& # is known as the
Fubini–Studymetric, and is the most natural Riemannian metric on the ray space as it the on
invariant under unitary transformations. Geometrically, the metric arises quite naturally by
ing for two arbitrary rays in Hilbert space@ uf& # and @ uc& # ~represented by the normalized stat
uf& and uc&!, the distance function10

s~f,c!5Aq cos21u^cuf&u . ~5.1!

The Fubini–Study metric is then obtained by choosinguf& anduc& on the same section and takin
the limit whenuf& goes touc&, in which case

uf&.uc&1udc&1 1
2 ud2c& ,

thus yielding the infinitesimal distance function ds(f,c)5AqA^dcudc&2^dcuc&^cudc& .
From the above considerations it holds, therefore, that the modulus of the amp

^c f uc(j)& can be expressed as a function of the Fubini–Study geodesic distances(j) between the
rays @ uc& # and the fixed state@ uc f& ], according to

Ap~j!5cosS s~j!

Aq
D . ~5.2!

From this, we deduce that the gradient of logAp is given by

¹ logAp52
1

Aq
tanS s

Aq
D ¹s .

Now, since the modulus of the gradient measures the rate of change with respect to the
length, it is clear that

u¹su251 . ~5.3!

Translated in terms ofAp, we then have that

qu¹ logAp u25tan2S s

Aq
D 5

1

p
21 . ~5.4!

A brief comment on the statistical interpretation of this expression is in order. On the ray spa
may define for any observableÂ, the corresponding expectation value functionA(j)
5^cuÂuc&. It is then possible to show~see, e.g., Ref. 11! that the uncertainty^DA2&
5^cuÂ2uc&2A(j)2 is related to the gradient ofA(j) by

4

q
^DA2&5gmn~¹mA!~¹nA!5u¹Au2 ,
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wheregmn is the inverse to the Fubini–Study metric. TakingÂ to be the projection operatorP̂
5uc f&^c f u, we obtain^P&5p and ^DP2&5p(12p). Thus,

u¹p u25
4

q
^DP2&5

4

q
p~12p! , ~5.5!

which can be seen to follow directly from Eq.~5.4!. Therefore, the connection between t
transition probability and the Fubini–Study metric is such that the variation ofp with respect to
the geodesic distance is, up to a proportionality constant, the variance in the frequency with
uc f& is obtained givenuc&.8

Let us then proceed to explore a number of consequences that follow from this connec
conjunction with previously obtained results stemming from the generalized Cauchy–Rie
conditions in Eq.~3.5!. Thus far we have seen that from the phase of^c f uc& it is possible to
recover the functional dependence of its modulus by means of line integration. It is now e
show that in the ray space, the modulus of the amplitude can also be obtained bydifferentiationof
the phase. For this we note, as shown earlier, that from the generalized Cauchy–Riemann
tions and the definition of the quantum metric it follows thatu¹ logApu25u¹h2Au2 . Using Eq.
~5.4! we see therefore that

u¹h2Au251/p21 ,

and hence that the transition probability can also be expressed as

p5
1

11q u¹h2Au2
. ~5.6!

With this, the following expression for the amplitude emerges:

^c f uc&5
eih

A11q u¹h2Au2
, ~5.7!

signifying that, in a sense, all the information in the amplitude^c f uc& is already contained in its
phase factor.

It is also interesting to note that if the invariant phase gradient is treated as some velocit
as in semiclassical physics, then Eq.~5.7! for the amplitude bears a slight resemblance to
WKB formula c(x)}eih/Auh8u in one dimension~note however the different powers ofh8 in the
radical!. The resemblance is sufficiently intriguing to motivate an interpretation of the inva
phase gradient as a sort of velocity field of certain trajectories on the ray space. This can b
as follows. From the generalized Cauchy–Riemann condition, Eq.~3.5!, we have that

¹m logAp5VmnVn . ~5.8!

Using Eq.~5.6!, we substitutep5(11qVlVl)21 to obtain

2
q

2

¹m~VnVn!

11qVlVl 5VmnVn. ~5.9!

We now use the fact that

1

2
¹m~VnVn!5Vn¹mVn5Vn¹nVm1Vn~¹mVn2¹nVm!5Vn¹nVm2

2

q
VnVmn , ~5.10!

where we have used the fact thatdV5d(dh2A)52dA52 (2/q)V. Hence we have that
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¹VVm5
1

q
~12quVu2! Vm

nVn , ~5.11!

where¹V5Vn¹n is the covariant derivative along the vector fieldVm. Now note that because o
the antisymmetry ofV, the magnitude ofV is preserved along its integral lines, i.e.,¹VuVu250, in
consistency with the the fact that the transition probability is constant in the direction oV.
Parametrizing the integral curves ofV in terms of the geodesic distance along the curve asVm

5uVu (djm/ds) , we obtain the equation

d2jm

ds2 1Gnl
m djn

ds

djl

ds
5euVuF

m
n

djm

ds
, ~5.12!

whereeuVu is a specific constant to each curve given by

euVu5
12quVu2

2uVu
,

andFm
n is the field strength associated with the Berry–Simon connection (F5dA). From this we

see that integral curves of the invariant phase gradient vector fieldVm are in correspondence wit
trajectories on the ray space of charged particles subject to the magnetic field associated w
Berry–Simon connection. The significance of these trajectories will not be explored in the p
paper. Still, these results in conjunction with Eq.~5.7! suggest a procedure by which the who
transition amplitude may be obtained from the solution to a corresponding mechanical probl
the ray space.

To conclude this section, it is worth noting a simplification on the ray space of the s
integrability condition, Eq.~3.14b!, that follows from Eq.~5.4!, namely,

¹2p52
4~k11!

q Fp2
1

k11G . ~5.13!

Since the ray space is compact,*Rdm ¹2p50, and therefore a volume integration over the en
space of this equation entails that

^p&R5
*Rdm p

*Rdm
5

1

k11
,

in consistency with the fact that the average ofuc&^cu over the entire ray space should be t
completely mixed density matrix of ak11 dimensional Hilbert space. Equation~5.13! then tells
us that the deviation of the transition probability from its average value on the ray space
eigenfunction of the Laplacian operator with eigenvalue2 (4/q) (k11). This is easily verified for
the Bloch sphere (k51 and choosingq54), in which casep2 1

25 1
2n̂•m̂ is made up of spherica

harmonics of orderl 51.

VI. GEOMETRIC PHASES

To conclude, we connect the present results with known results on geometric phases. A
application we make a connection with a result of Samuel and Bhandari on the Pancha
phase. Pancharatnam19 suggested that an operational definition of what it meant for two quan
states to be ‘‘in’’ or ‘‘out of’’ phase was naturally provided by the inner product between the
states. The phaseh5arĝ cfuc& is therefore also called thePancharatnam phase difference. Samuel
and Bhandari7 have shown that this phase has an intrinsic geometric meaning as it can be ob
from the Berry–Simon connection using the geodesic rule, i.e.,
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h5E dj8m Am , ~6.1!

where the integral is evaluated along the geodesic connecting the ray@ uc f&] with @uc&# and where
it is assumed thatuc f& is an element of the same state section asuc&. With the aid of the
Cauchy–Riemann and the relationship betweenp and the geodesic distance, it is now seen that
an arbitrary integration path between the two rays Eq.~6.1! generalizes to

h5ho1E djm Am1
1

Aq
E djm Vm

n]ns tan
s

Aq
, ~6.2!

wheres denotes the geodesic distance from the initial ray to point of integration. If the pa
integration is chosen along the geodesic, then from the antisymmetry of the Ka¨hler form, the
differential djm Vm

n ]ns vanishes and equation is obtained up to the phase relatinguc f& with the
element of the sectionuc& at @ uc f& ].

Next, we turn to geometric phases under time evolution. As is well known, in the cour
time evolution the amplitude between the instantaneous state of a systemuc;t&, and the initial
stateuc;0& acquires a total phase that can be decomposed into dynamical and geometric p
has been shown by Aharonov and Anandan6 that when the system undergoes a cyclic evolution
that the state returns to the initial ray, the geometric contribution to the phase difference ac
is given by2rA. The result generalizes a previous result by Berry,4 in which the same geometri
phase difference is acquired in the course of adiabatic evolution if the initial state is initial
eigenstate of an adiabatically varying Hamiltonian.

We now wish to generalize the above results by showing that the phase difference betwe
exact stateuc;t& and any arbitrary stateuc f& can also be separated into dynamic and geome
contributions and give explicit formulas for the geometric component. The idea then is to co
the phase of an amplitudêc f uc;t&,

b5arĝ c f uc;t&,

where the stateuc;t& satisfies the evolution equation

i ] tuc;t&5Ĥ~ t !uc;t& .

We consider, as an intermediate step, some arbitrary state sectionuc~j!& on the U~1! bundle over
the ray space, so that at any given time the time evolved state may be written as

uc;t&5eif(t)uc~j~ t !!& .

Substituting into the Schro¨dinger equation and taking the inner product withuc;t&, we then find
that the phase factorf(t) satisfies

ḟ52^cuĤ~ t !uc&1 i ^c~j!u] tuc~j!&52^Ĥ~ t !&2Amj̇m .

Now, lettingh5arĝ cfuc&, we then have

ḃ5ḟ1ḣ ~6.3!

52^Ĥ~ t !&2Amj̇m1h ,mj̇m . ~6.4!

Thus we recognize the termh ,m2Am as the invariant phase gradient for the transition amplitu
corresponding to the state section in question. We can then apply the generalized Ca
Riemann conditions to deduce finally that
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ḃ52^Ĥ~ t !&2 j̇m Vm
n]n logAp~j! . ~6.5!

The result shows that in the course of time evolution, the amplitude arg^cfuc;t& acquires aside from
the dynamical phase, a geometric component

bg52E djm Vm
n]n logAp~j! . ~6.6!

To see the connection between this result and the cyclic geometric phase we recall that the
Vm

n]n logAp(j)djm is the same curl as the curl ofA. Thus, when the evolution on the ray spa
is cyclic, we obtain the usual geometric phase2rA. Note also that the present results can
extended to any complex submanifold ofR if under time evolution the state remains on t
manifold, for instance by virtue of adiabatic time evolution.
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A short review of the plethysm technique aiming to its application in finding
branching rules for the reduction of an irreducible representation of a group under
the restriction to one of its subgroups is given. The algebraic structure of the
interacting boson model and some of its extensions is given together with the
branching rules needed to classify their basis states, obtained by the use of
plethysms. ©2003 American Institute of Physics.@DOI: 10.1063/1.1611265#

I. INTRODUCTION

In the study of irreducible representations~irreps! of the full linear group GL(n) in n dimen-
sions an important role is played by the so called Schur functions.1–3 In a given irrep$l% of GL(n)
the character of each of its elementsA is the Schur function$l% evaluated with the eigenvalues o
A.

A Schur function is expressed in terms offundamental symmetrical quantities ai , hi , andsi ,4

polynomials inn unknowns that are left invariant under permutations of these unknowns.
plethysm of Schur functions turned out a powerful tool to determine branching rules fo
reduction of irreps of GL(n) subgroups under restriction to some of their subgroups.4,5 The
plethysm operation of Schur functions was discovered by Littlewood6 as a third way of combining
two Schur function to obtain a linear combination of Schur functions of a same degree. Wit
exceptions,4,7,8 it remainded almost unknown to physicists due to the great difficulties involve
its calculation. With the appearence of powerful computers the tedious labor of comp
plethysms was no more a problem and new efforts were made in order to find algorithm
computing them.5,9–13

In most applications to physical problems such as in nuclear structure5,7 and in the presen
work only a particular class of plethysm is needed, namely that in which the left factor
symmetric Schur function and in the expansion only those Schur functions with no more t
given number of rows are considered. In that case, using an induction formula for comp
plethysms with both factors being symmetric Schur functions given in Ref. 13, we develop
algorithm5 to compute plethysms with a symmetric Schur function in the left and all Sc
functions of a given degree at right.

A field in which the plethysm technique can show all its power is the interacting boson m
~IBM ! and its generalizations.

The IBM when originally introduced by Arima and Iachello14 is 1975 takes the nucleon
outside a core of an even–even nucleus couple then into pairs to form bosons with a
momentum 2(d-bosons! and 0(s-bosons!, no other degree of freedom, besides theirz-component
being taken into account. To work in the second quantization formalism they introduce 5~for
d-bosons! 11(for s-bosons)56 creation and annihilation boson operators. The space of stat
taken as polynomials of degreeN ~number of boson pairs! in creation operators acting on
vacuum realizing in this way the basis states of irreducible symmetric representations of~6!.
52960022-2488/2003/44(11)/5296/24/$20.00 © 2003 American Institute of Physics
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These bosons interact among themselves by interactions that preserve angular moment
number of boson pairs so that their Hamiltonian can be written in terms of Casimir invarian
U~6! subgroups.

This original verson is nowadays referred to as IBM-1. Some extensions of the m
appeared15 in order to account for other degrees of freedom and the inclusion of bosons with
angular momenta. The unitary group is enlarged and a very rich algebraic structure arise
basis states of the irreps of these unitary groups are labeled by labels of irreps of their sub
in chains ending with O1(3), therotation group in three dimensions. To this end one need
know how an irrep of a group branches into irreps of some of its subgroups. We will show in
paper how plethysms can be used to find these branching rules. Besides, the cases here stu
serve as examples for applications in other areas.

II. SUMMARY OF PLETHYSMS

A partition (l)[(l1 ,l2 , . . . ,ln) is a set of nonnegative integers~parts! l i such thatl1

1l21¯1ln5n. If, in addition, they satisfyl1>l2>¯>ln , the partition is calledstandard.
Since we will deal only with standard partitions we will omit the word standard. Usually
partition the null parts are omitted and the repeated ones are exponentiated. We will use
letters to denote a partition and italic letters to denote a single part of a partition. To each pa
one associates a Young diagram, an array ofn boxes withl1 boxes in the first row,l2 in the
second and so on. Due to that the nonzero parts of a partition are referred to asrows and the
conjugate partition of a given partition (l1 ,l2 , . . . ,lp,0, . . ., 0) is defined as the partition whos
Young diagram is obtained from that of~l! by interchange of rows and columns, i.e.,

~ l̃ !5~plp,~p21!lp212lp, . . . ,2l22l3,1l12l2!. ~1!

Given a set ofn variablesx1 ,x2 , . . . ,xn and a partition~l! of r , the Schur function$l%
associated to~l! is defined as4,6

$l%5
1

r !
uZr u [l] , ~2!

whereZ is the matrix

Zr5S s1 1 0 0 . . . . . . . . . 0

s2 s1 2 0 . . . . . . . . . 0

s3 s2 s1 3 0 . . . . . . 0

. . . . . . . . . .. . . . . . . . . . 0

sr 21 sr 22 . . . . . . . . . . . . s1 r 21

sr sr 21 . . . . . . . . . . . . s2 s1

D ~3!

andsi[si(x1 ,x2 , . . . ,xn) is the sum ofi th powers of each variablex1 ,x2 , . . . ,xn . In this notation
of Schur function the variables and their numbern are implied whiler , called itsdegree, is
obtained byr 5l11l21¯1l r .

In ~2!, uZu(l) is the immanant ofZ, an extension of the concept of determinant, given by

uZu(l)5(
P

x [l]~P!z1p1
z2p2

¯zrpr
, ~4!

where the sum is over all permutationsP5(p1 ,p2 , . . . ,pr) of the integers 1,2,. . . ,r andx [l] (P)
is the character of permutationP in the irrep@l# of the symmetric groupS(r ).
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As a consequence of definition~2! a Schur function is an homogeneous polynomial of deg
r in the variablesx1 ,x2 , . . . ,xn , being identically null for partitions~l! of r into more thann
nonzero parts.

Expression~2! can be worked out to produce an alternative definition6,9 of the Schur function

$l%5
u~xi !

l j 1n2 j u
u~xi !

n2 j u
, ~5!

whereu f j (xi)u denotes the determinant of a matrixM with elementsMi , j5 f j (xi).
A pair of Schur functions$l8%, $l9% of degreesr 8 andr 9 can be combined into three differen

ways to produce linear combination of Schur functions$l-% of degreer-: inner ~or direct!
product, outer product and plethysm. These three operations will be denoted, respectively

$l8%3$l9%5(
l-

a~$l8%3$l9%→$l-%!$l-%,

$l8%$l9%5(
l-

a~$l8%$l9%→$l-%!$l-%, ~6!

$l8% ^ $l9%5(
l-

a~$l% ^ $l9%→$l-%!$l-%,

wherea~¯! is a non-negative integer denoting the multiplicity of$l-% in the expansion. For
clarity we attach to it an argument denoting the kind of operation that produced it.

In the inner product the degrees of the Schur functions involved are all equal, i.e.,r-5r 8
5r 95n, and the expansion coefficientsa are the coefficients of reduction of the Kroneck
product ofS(n) irreps @l8# and @l9#.

In the outer product one hasr-5r 81r 9 and the coefficientsa are obtained by making the
product of a Schur function in variables (x1 ,x2 , . . . ,xn8) by another in variables (y1 ,y2 , . . . ,yn9)
and expressing it as a linear combination of Schur functions in variables (z1 ,z2 , . . . ,zn-) with
zi5xi for 1< i<n8 and zn81 i5yi for 1< i<n9. Littlewood obtained a procedure to find th
coefficients of the outer product known in the literature as ‘‘Littlewood’s rules.’’

To define plethysm one needs first to introduce the concept ofinvariant matrix.
Let T(A) be anm3m matrix whose elementst i j are given homogeneous polynomials

degreer in the elements ofA. Let T(B) be a matrix built with thesamepolynomialst i j now in the
elements ofB. If

T~A!T~B!5T~AB! ~7!

for any nonsingularm3m matricesA,B then the matrixT(A) is called an invariant matrix~of
degreer ) of A.

It follows from ~7! that, once the set of polynomialt i j is fixed, the set of matricesD T(A)
[T(A) is a representation of GL(n).

As the Kronecker product of two representations of a group is also a representation o
group, the Kronecker product of invariant matrices is also an invariant matrix, in general r
ible. Schur1 demonstrated thatif A is an n3n matrix, there are as many irreducible invarian
matrices of A of degree r as are the partitions of r with no more than n nonzero parts an
trace of them are the Schur functions of degree r in the eigenvalues of A. These irreducible
invariant matrices are then labeled by those partitions and denoted byA[m] . The details of con-
struction of irreducible invariant matrices can be found in Refs. 16 and 17.

Since an invariant matrix of an invariant matrix is also an invariant matrix of the orig
matrix, it can be decomposed into irreducible components
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@A[m] # [n]5(
l

klmnA[l] . ~8!

Let us denote byr m , r n , and r l , the degrees of$m%, $n%, and $l%, respectively. Since the
elements ofA[m] are polynomials of degreer m in the elements ofA and those of@A[m] # [n] are
polynomials of degreer n in the components ofA[m] , it follows that r l5r mr n .

Equation~8! led Littlewood6 to define a third composition rule of Schur functions denoted
the symbol^ and defined as

$m% ^ $n%5(
l

klmn$l%, ~9!

where the Schur functions$l% and the numerical coefficientsklmn are those given in~8!. This
operation was later on namedplethysm.

The plethysm operation has the following properties:4,6,8

$l% ^ ~$m% ^ $n%!5~$l% ^ $m%! ^ $n%, ~10!

$l% ^ ~$m%6$n%!5$l% ^ $m%6$l% ^ $n%, ~11!

~$l%1$m%! ^ $n%5 (
l8l9

a~$l8%$l9%→$n%!~$l% ^ $l8%!~$m% ^ $l9%!, ~12!

~$l%2$m%! ^ $n%5 (
l8 l9

~2 !r 9a~$l8%$l9%→$n%!~$l% ^ $l8%!~$m% ^ $l̃9%!, ~13!

$l% ^ ~$m%$n%!5~$l% ^ $m%!~$l% ^ $n%!, ~14!

~$l%$m%! ^ $n%5 (
l8 l9

a~$l8%3$ l9%→$n%!~$l% ^ $l8%!~$m% ^ $ l9%!, ~15!

@$l% ^ $m%#T5H $l̃% ^ $m% for r l even,

$l̃% ^ $m̃% for r l odd.
~16!

The sum in Eqs.~12!, ~13!, and ~15! includes the cases$l8%5$0%[1, $l9%5$n% and $l8%
5$n%, $l9%5$0%[1. Also, r 9 and r l are the degrees of$l9% and $l%.

In Eq. ~16! we used the notation

F(
i

ai$l%( i )GT

5(
i

ai$l%( i )̃, ~17!

whereai are numerical factors,$l%( i ) Schur functions and$l% ( i )̃ their conjugate.

A. Special plethysms

The plethysm calculation is, in general, a hard and tedious task. Nevertheless there are
cases with closed and simple expressions

$l% ^ $1%5$1% ^ $l%5$l% , ~18!

$l% ^ $0%5$0%, $0% ^ $l%5d$l%,$r l%$0%, ~19!
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$r % ^ $2%5 (
i 50

[ r /2]

$2r 22i ,2i %, ~20!

$r % ^ $12%5 (
i 51

[( r 11)/2]

$2r 2~2i 21!,~2i 21!%, ~21!

$2% ^ $r %5(
l

$l%even, ~22!

$12% ^ $r %5(
l

$l%eveñ, ~23!

$1r% ^ $2%5$12r%1 (
i 51

[ r /2]

$22i ,12r 24i%, r even, ~24!

$1r% ^ $12%5$12r%1 (
i 51

[ r /2]

$22i ,12r 24i%, r odd, ~25!

$1r% ^ $12%5 (
i 51

[( r 11)/2]

$22i 21,12r 22(2i 21)%, r even, ~26!

$1r% ^ $2%5 (
i 51

[( r 11)/2]

$22i 21,12r 22(2i 21)%, r odd. ~27!

Equation~18! follows from plethysms definition while Eq.~19! is set for consistency. In Eq
~22! $l%even means partition of 2r with all parts even. Equations~23!–~27! follow from conjuga-
tion of Eqs.~22!, ~20!, and ~21!. In Ref. 13 there are formulas for the calculation of plethys
$l% ^ $m% when both Schur functions are symmetric or/and antisymmetric. To explain them
need the following definition: ak-border stripof a Young diagram associated to a given partiti
~l! is a sequence ofk squares in which the first of them is the last one of the first line of~l! and
the next square to a given one is the one below it, if it exists, or the one to its left, otherw

For example, the three-border strips of (412), ~321!, and (2212) are the squares with th
symbol " in the figures below, respectively,

When $l% and $m% are both symmetric, one has

$n% ^ $m%5
1

m (
k51

m

$n%~xk!~$n% ^ $m2k%!, m>1, ~28!

with

$n%~xk!5(
n

Cn,k,n$n%. ~29!
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In ~29! the$n%’s are all Schur functions of degreenk. The coefficientsCn,k,n are obtained from
the Young diagram associated to~n! removing, in sequence,n k-border strips. If in all steps the
resulting diagram represents a standard partition then

Cn,k,y5~2 ! l ~30!

with l 5(number of lines in thek-border strips)2n. If in some step the resulting diagram does n
represent a standard partition, thenCn,k,y50. As example, from the figures above one has

C2,3,$412%5~2 !42251, C2,3,$321%5~2 !522521, C2,3,$2212%50.

Equation~28! allows one to relate the plethysm of two symmetric Schur functions with
plethysms of symmetric Schur functions of smaller degrees. In this way, using$n% ^ $1%[$n% as
starting point one computes all the plethysms of type$n% ^ $m%. This equation, together with

$n% ^ $1m%5~2 !m11$n% ^ $m%1 (
k51

m21

~2 !k11~$n% ^ $k%!~$n% ^ $1m2k%!, ~31!

$1n% ^ $1m%5~2 !m11$1n% ^ $m%1 (
k51

m21

~2 !k11~$1n% ^ $k%!~$1n% ^ $1m2k%!, ~32!

$1n% ^ $m%5H @$n% ^ $m%#T for n even,

@$n% ^ $1m%#T for n odd
~33!

allows us to compute plethysms with both Schur functions symmetric and/or antisymmetric
A very common situation which arises in applications is when one needs to com

plethysms of a same Schur function by many~sometimes all! Schur functions of a given degree t
the right.~This is the case of the applications that we will make in Secs. III–VII.! For such cases
we proposed in Ref. 5 the following algorithm that allows to compute, in a build up way
plethysms$l% ^ $m%r with $l% a fixed Schur function and$m%r all Schur functions of degreer ,
once the plethysms$l% ^ $r % and$l% ^ $m% r 8 , with r 8,r have already been computed.

~1! Find all partitions ofr and order them in descending order of all their parts read from
to right.

~2! For each partition $m%5$m1 ,m2 , . . . ,m t,0, . . . ,0% perform the outer produc
$m1 ,m2 , . . . ,m t21%$m t%, order the irreps in the reduction as in item~1!, then use Eqs.~11! to
obtain the equation

$l% ^ $m%5~$l% ^ $m1 ,m2 , . . . ,m t21%!~$l% ^ $m t%!2 (
$m8%a$m%

a~$m1 ,m2 , . . . ,m t21%$m t%

→$m8%!$l% ^ $m8%, ~34!

where the symbola means preceding, following the ordering in item~1!.
Since $m1 ,m2 , . . . ,m t21% and $m t% have smaller degree than$m%, the plethysms$l%

^ $m1 ,m2 , . . . ,m t21% and$l% ^ $m t% have already been computed in the induction process. On
other hand, the plethysms$l% ^ $m8% also have been computed since$m8% precedes$m%.

The formulas here given and the above algorithm suffice for calculating all plethysms n
in this work.

B. Special branching rules

The use of plethysms to compute branching rules is based in the theorem.4

If under the restriction G→H the character@–1 #– of group G decomposes as
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@–1 #–5 ~–a !–1 ~–b !–1 ¯ 1 ~–v !–, ~35!

then the character@–l #– of G decomposes into the characters(–r )– of H according to the char-
acters contained in the plethysm

@ ~–a !–1 ~–b !–1 ¯ 1 ~–v !– # ^ @–l #–. ~36!

This plethysm can be obtained expressing the characters ofG andH in terms of characters o
GL(n), computing the resulting plethysms of GL(n) characters and re-expressing the result
terms of characters ofH in order to obtain the final result.

Using the association irrep↔ character this theorem gives us the coefficients of the reduc
of the irrep @–l #– of G in the direct sum of irreps (–r )– of H.

To illustrate the use of this theorem, let us consider some general cases that will be use
on. The first step toward the use of Eq.~36! is to find the decomposition~35!. One way of finding
it is by constructing a realization of basis states of irreps and generators of groupsG andH.

One such realization is provided by theboson calculus18 in which a set of boson operatorsbi
†

~creation! and bi ~annihilation! is introduced and the generators and basis states of irreps
written in terms of them.

The boson operators satisfy the usual commutation relations

@bi ,bj
†#5d i j , @bi ,bj #5@bi

† ,bj
†#50, i , j 51,2,. . . ,n, ~37!

and thebi ’s annihilate the vacuum stateu0&.
For U(n) the generators are realized by

C i
j5bi

†bj , i , j 51,2,. . . ,n, ~38!

while the maximum weight basis states of symmetric irreps$N,0, . . . ,0%[$N% are realized by

u$N%m.w.&5
1

AN!
~b1

†!Nu0&, ~39!

from which it follows that the basis states of irrep$1% of U(n) are realized by

u$1% i &5bi
†u0&, i 51,2,. . . ,n. ~40!

The generators of U(n21) are theC i
j given in Eq.~38! for i , j 51,2,. . . ,n21. Acting then in~40!

one sees that the U(n) irrep $1% splits into two U(n21) irreps$1% and $0% with basis states

u$1% i &5bi
†u0&, i 51,2,. . . ,n21 and u$0%&5bn

†u0&. ~41!

Therefore one obtains

$1%5$1%1$0% for U~n!.U~n21!. ~42!

For O(n) the generators areL i
j5C i

j2C j
i and reduction~35! read as

$1%5~1!. ~43!

@We denote the irreps of unitary~U! and orthogonal~O! groups as quantities inside braces a
parentheses, respectively.#

Consider the case in which U(n) acts on a vector spaceE5E 81E 9 with dimensionsn8 and
n9 such thatn5n81n9. We then splitn into two termsn8 andn9 and consider U(n8) as the group

with generatorsC i 8
j 8 for i 8, j 851,2,. . . ,n8 and U(n9) that with generatorsC i 9

j 9 with i 9, j 95n8
11,n812, . . . ,n81n95n. The basis~40! splits into two
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u$1% i 8&5bi 8
† u0&, i 851,2,. . . ,n8,

u$1% i 9&5bi 9
† u0&, i 95n811,n812, . . . ,n81n95n, ~44!

realizing the basis states of irreps$1%8$0%9 and$0%8$1%9 of U(n8)�U(n9), respectively. We then
have

$1%5$1%8$0%91$0%8$1%9 for U~n81n9!.U~n8!�U~n9!. ~45!

For the case in which U(n) acts on a vector spaceE5E 8^ E 9 with dimensionsn8 andn9 one
uses boson operators with two indices, each one associated to transformations in each su

@bis ,bjt
† #5d i j dst , @bis ,bjt #5@bis

† ,bjt
† #50, i , j 51,2,. . . ,n8, s,t51,2,. . . ,n9. ~46!

The basis states of irrep$1% are realized by

u$1% is&5bis
† u0&, i 51,2,. . . ,n8, s51,2,. . . ,n9. ~47!

Since the U(n8) generatorsC i
j5(sbis

† bjs act on the first index and thoseCs
t 5( ibis

† bit of
U(n9) on the second, one concludes that

$1%5$1%8$1%9 for U~n8n9!.U~n8!3U~n9!. ~48!

Using Eq.~42! in Eq. ~36!, the branching rule for the reduction U(n).U(n21) is given by
computing the plethysm

~$1%1$0%! ^ $l%5 (
l8l9

a~$l8%$l9%→$l%!~$1% ^ $l8%!($0% ^ $l9%)

5 (
l8n9

a~$l8%$n9%→$l%!$l8%, ~49!

where use was made of~12!, ~18!, and~19!. By Littlewood rules, one sees that the Schur functio
that contain$l% in the expansion of its outer product by a symmetric Schur function are those$l8%
satisfying

l i>l i8>l i 11 , i 51,2,. . . ,i 21. ~50!

Then one concludes that under restriction U(n).U(n21) the U(n) irrep $l% reduces as

$l%5(
l8

$l8%, ~51!

where$l8% are the U(n21) irreps satisfying Eq.~50!. These are the well knownin-betweeness
conditions introduced by Gelfand19 in the labeling of basis states of U(n) irreps.

To compute the branching of irrep$l% of U(n81n9) into irreps of U(n8)�U(n9), according
to Eqs.~36! and ~45! we need to compute the plethysm

~$1%8$0%91$0%8$1%9! ^ $l%5(
mn

a~$m%$n%→$l%!~~$1%8$0%9! ^ $m%!~$0%8$1%9^ $n%!,

~52!

where use was made of Eq.~12!. Using Eq.~15! one has
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~~$1%8$0%9! ^ $m%!5(
gr

a~$g%3$r%→$m%!~$1%8^ $g%!~$0%9^ $r%!5$m%$0%5$m% ~53!

using Eqs.~18! and ~19! and the result$m%3$n%5$m% on inner product of Schur functions
Analogously ($0%8$1%9) ^ $n% gives $n% and one concludes that

$l%5(
mn

a~$m%$n%→$l%!$m%8$n%9 for U~n81n9!.U~n8!�U~n9!, ~54!

$m%8,$n%9 being irreps of U(n8) and U(n9), respectively.
To compute the branching of irrep$l% of U(n8n9) into irreps of U(n8)3U(n9), according to

Eqs.~36! and ~48! we need to compute the plethysm,

~$1%8$1%9! ^ $l%5(
mn

a~$m%3$n%→$l%!~$1%8^ $m%!~$1%9^ $n%!, ~55!

where use was made of Eq.~15!. Using Eq.~18! one concludes that

$l%5(
m,n

a~$m%3$n%→$l%!$m%8$n%9 for U~n8!3U~n9!, ~56!

$m%8,$n%9 being irreps of U(n8) and U(n9), respectively.
When $l% is a symmetric representation the inner product in Eq.~56! requires that the irreps

of U(n8) and U(n9) be the same.
Equation~43! is of no use for producing branching rules since it gives a trivial result. For

case one uses the known result.4,6

The character$l% of U(n) decomposes intoO(n) characters(l9) by the relation

$l%5(
l9

F(
l8

a~$l8%$l9%→$l%!G ~l9!, ~57!

where the sum is made in the irreps$l8% with even parts.
When $l% is a symmetric representation both Schur functions$l8% and $l9% are symmetric

and Eq.~57! gives

$N%5~N!1~N22!1¯1~0! or ~1! for U~n!.O~n!. ~58!

We give in Table I the branching rules in the reduction U(n).O(n) for the lowest degree
U(n) irreps with no more than three rows.

For small values ofn some O(n) characters in Eq.~57! may have more than the allowe
number@n/2# of rows. In this case, they are worked out usingmodified rules.20 For U(3).O1(3),
Eq. ~57! and the corresponding modification rules are equivalent to theElliott rules7 for the
branching of U~3! irrep $ f 1 , f 2 , f 3% into O1(3) irreps (L).

~1! Define

l5 f 12 f 2 , m5 f 22 f 3 , l̄5max~l,m!, m̄5min~l,m!. ~59!

~2! Introduce an extra labelK that can assume the values

K5m̄,m̄22, . . . ,0 or 1. ~60!

~3! To eachK corresponds a set ofL values

L5K,K11, . . . ,K1l̄, for KÞ0,
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L5l̄,l̄22, . . . ,0 or 1 forK50. ~61!

The inverse result, that is, the expression of O(n) characters in terms of those of U(n) is also
needed. It can be obtained by subtractions using tables of U(n).O(n) reductions or by use of the
result4,21

~l!5$l%1(
h

F(
g

(2) r /2a($g%$h%→$l%G$h%, ~62!

where r is the degree of$g% and these are taken among the set of Schur functions tha
Frobenius’ notation4 assume the form

S a11
a D , S a11 b11

a b D , S a11 b11 c11

a b c D , . . . . ~63!

When ~l! is symmetric one obtains from Eq.~58! and also from Eq.~62!,

~N!5$N%2$N22% for N>2. ~64!

Table B-4 in Ref. 4 gives a list of reductions~62! for irreps$l% of degree up to 16 and part
not greater than 4.

TABLE I. U( n).O(n) branching rules for U(n) irreps
with no more than three rows and the lowest degrees.

$0%5(0)
$1%5(1)
$2%5(2)1(0)
$12%5(12)
$3%5(3)1(1)
$21%5(21)1(1)
$13%5(13)
$4%5(4)1(2)1(0)
$31%5(31)1(2)1(12)
$22%5(22)1(2)1(0)
$212%5(212)1(12)
$5%5(5)1(3)1(1)
$41%5(41)1(3)1(21)1(1)
$32%5(32)1(3)1(21)1(1)
$312%5(312)1(21)1(13)
$221%5(221)1(21)1(1)
$6%5(6)1(4)1(2)1(0)
$51%5(51)1(4)1(31)1(2)1(12)
$42%5(42)1(4)1(31)1(22)12(2)1(0)
$32%5(32)1(31)1(12)
$412%5(412)1(31)1(212)1(12)
$321%5(321)1(31)1(22)1(212)1(2)1(12)
$23%5(23)1(22)1(2)1(0)
$7%5(7)1(5)1(3)1(1)
$61%5(61)1(5)1(41)1(3)1(21)1(1)
$52%5(52)1(5)1(41)1(32)12(3)1(21)1(1)
$43%5(43)1(41)1(32)1(3)1(21)1(1)
$512%5(512)1(41)1(312)1(21)1(13)
$421%5(421)1(41)1(32)1(312)1(221)1(3)12(21)

1(1)
$321%5(321)1(32)1(312)1(21)1(13)
$322%5(322)1(32)1(221)1(3)1(21)1(1)
$8%5(8)1(6)1(4)1(2)1(0)
$71%5(71)1(6)1(51)1(4)1(31)1(2)1(12)
$62%5(62)1(6)1(51)1(42)12(4)1(31)1(22)12(2)

1(0)
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III. IBM-1

In the original IBM, now named IBM-1, the valence nucleons of even–even nuclei are jo
in pairs to form as- or d-boson, without distinguishing protons from neutrons. Then the build
blocks are creation (s†,dm

† ) and annihilation (s,dm) boson operators satisfying the commutati
relations

@s,s†#51, @dm ,dm8
†

#5dmm8 , m,m850,61,62, ~65!

all other commutators vanishing. In a compact notation one can define, say,

br
† with br

†5dr23
† for r51,2,3,4,5 and b6

†5s† ~66!

and analogously forbr , recovering Eq.~37!. Using linear combinations of creation and annihil
tion operators that preserve the number of bosons, it is possible to construct O1(3) Racah tensors
of ranks,50,1,2,3,4. Linear combinations of these tensors realize15,22 the infinitesimal generators
of U~6! subgroups in the three chains ending with O1(3).O1(2),

↗ U~5! . O1~5! . O1~3! . O1~2! ~ I!,

U~6! → SU~3! . O1~3! . O1~2! ~ II !,

↘ O1~6! . O1~5! . O1~3! . O1~2! ~ III !.

~67!

With one-index boson operators only symmetrical irreps can be realized. Then the U~6! irrep
is $N% whereN denotes the number of bosons.

Let us examine the branching rules in chain~I! of Eq. ~67!. The U~5! labels are given by the
general result~51!. Then the U~5! irrep is symmetrical$Nd%, whereNd is the number ofd-bosons
and can assume the values

Nd5N,N21, . . . ,0. ~68!

Each U~5! irrep $Nd%, being symmetric, branches as~58! into O1(5) irreps

$Nd%5~Nd!1~Nd22!1¯1~0! or ~1!. ~69!

To find the branching in O1(5).O1(3) one observes that the generators of U~5! were con-
structed only with operatorsdm

† anddm so one has

~1!5~2! for O1~5!.O1~3!. ~70!

According to Eq.~36! the branching of ageneralO1(5) irrep $l% into O1(3) irreps is found
computing the plethysm (2)̂(l). The character~2! of O1(3) is given by (2)5$2%2$0%. Since
~l! is an O1(5) irrep it has at most two lines, then we expand it using Eq.~62! in terms of Schur
functions with up to two rows:

~l!5(
k

ak$k%1 (
m1 ,m2

am1 ,m2
$m1 ,m2%. ~71!

The plethysm (2)̂ (l) is then

~2! ^ ~l!5~$2%2$0%! ^ F(
k

ak$k%1 (
m1 ,m2

$m1 ,m2%G
5(

k
ak@$2% ^ $k%2$2% ^ $k21%#1 (

m1m2

am1m2
@$2% ^ $m1 ,m2%2$2% ^ $m121,m2%

2$2% ^ $m1 ,m221%1$2% ^ $m121,m221%#, ~72!
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where plethysms with Schur functions associated to nonstandard partitions are disregard
final result is obtained by expressing the Schur functions resulting from plethysms in ter
O1(3) irreps (L) using Eqs.~59!–~61!.

In IBM-1 the O1(5) irrep ~l! is symmetric, then one uses Eqs.~71! and ~72! with am1 ,m2

50. The terms witham1 ,m2
Þ0 will be used in IBM-2 and 3. In Table II the O1(5).O1(3)

branching rules for O1(5) irreps with the lowest degrees are given.
Now let us find the branching rules in chain~II ! of Eq. ~67!. To find the decomposition~35!

for U(6).SU(3) in chain~II ! one observes that the U~3! irreps must have the (L) multiplets~2!
and~0! contained in irrep$1% of U~6! @the reduction U(3).SU(3) has only one SU~3! irrep with
labels given by Eq.~59!#. Using Elliott’s rules~59!–~61! one sees that the U~3! irrep must be$2%.
We then have

$1%5$2%[~2,0! for U~6!.U~3! @or SU~3!#. ~73!

Using Eq.~73! and Eq.~36! one has that the U~3!@SU~3!# irreps contained in the irrep$l% of
U~6! are

$l%5(
m

a~$2% ^ $l%→$m%!$m%, ~74!

where in the plethysms only irreps with no more than three rows are considered and these p
SU~3! irreps (m12m2 ,m22m3) in Elliott’s notation. Table III presents the branchin
U(6).SU(3) for U~6! irreps with no more than three rows and the lowest degrees.

The branching rule in SU(3).O1(3).O1(2) is given by Elliott’s rules~59!–~61!.
Since in IBM-1 the U~6! irrep $l% is a symmetric irrep$N%, the plethysm in Eq.~74! is given

by Eq. ~22! and one obtains

TABLE II. O1(5).O1(3) branching rules for O1(5) irreps of degrees up to 8.

(0)5(0)
(1)5(2)
(2)5(2)1(4)
(12)5(1)1(3)
(3)5(0)1(3)1(4)1(6)
(21)5(1)1(2)1(3)1(4)1(5)
(4)5(2)1(4)1(5)1(6)1(8)
(31)5(1)1(2)12(3)1(4)12(5)1(6)1(7)
(22)5(0)1(2)1(3)1(4)1(6)
(5)5(2)1(4)1(5)1(6)1(7)1(8)1(10)
(41)5(1)1(2)12(3)12(4)12(5)12(6)12(7)1(8)1(9)
(32)5(1)12(2)1(3)12(4)12(5)1(6)1(7)1(8)
(6)5(0)1(3)1(4)12(6)1(7)1(8)1(9)1(10)1(12)
(51)5(1)1(2)12(3)12(4)13(5)12(6)13(7)12(8)12(9)1(10)1(11)
(42)5(0)1(1)12(2)12(3)13(4)12(5)13(6)12(7)12(8)1(9)1(10)
(32)5(1)12(3)1(4)1(5)1(6)1(7)1(9)
(7)5(2)1(4)1(5)1(6)1(7)12(8)1(9)1(10)1(11)1(12)1(14)
(61)5(1)1(2)12(3)12(4)13(5)13(6)13(7)13(8)13(9)12(10)12(11)1(12)1(13)
(52)5(0)1(1)12(2)13(3)13(4)13(5)14(6)13(7)13(8)13(9)12(10)11(11)1(12)
(43)5(1)12(2)12(3)12(4)13(5)12(6)12(7)12(8)1(9)1(10)1(11)
(8)5(2)1(4)1(5)1(6)1(7)12(8)1(9)12(10)1(11)1(12)1(13)1(14)1(16)
(71)5(1)1(2)12(3)12(4)13(5)13(6)14(7)13(8)14(9)13(10)13(11)12(12)12(13)1(14)

1(15)
(62)5(1)13(2)12(3)14(4)14(5)14(6)14(7)15(8)13(9)14(10)13(11)12(12)1(13)1(14)
(53)52(1)12(2)13(3)13(4)14(5)13(6)14(7)13(8)13(9)12(10)12(11)1(12)1(13)
(42)5(0)1(2)1(3)12(4)1(5)12(6)1(7)1(8)1(9)1(10)1(12)
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$N%5 (
m1 ,m2 ,m3

$2m1,2m2,2m3%[ (
m1m2m3

~2~m12m2!,2~m22m3!!, ~75!

where (m1 ,m2 ,m3) are ~standard!partitions ofN into three parts.
The branching for the first link U(6).O1(6) in chain~III ! is found using Eq.~57!. Note that

in ~57! the branching is for U(n).O(n) and we need a further reduction O(n).O1(n). For the
cases treated here the O~6! and O1(6) irreps are the same.

In IBM-1 the U~6! irrep $l% being symmetric implies that Eq.~57! has a simple expression

$N%5~N!1~N22!1¯1~0! or ~1! for U~6!.O1~6!. ~76!

To find the branching rule in the link O1(6).O1(5) one first observes that Eq.~42! gives

~1!5~1!1~0! for O1~6!.O1~5!. ~77!

TABLE III. Branching rules for U(6).SU(3) for U~6! irreps with no more than three rows and lowest degrees.

$0%5(0,0)
$1%5(2,0)
$2%5(4,0)1(0,2)
$12%5(2,1)
$3%5(6,0)1(2,2)1(0,0)
$21%5(4,1)1(2,2)1(1,1)
$13%5(3,0)1(0,3)
$4%5(8,0)1(4,2)1(0,4)1(2,0)
$31%5(6,1)1(4,2)1(2,3)1(1,2)1(2,0)1(3,1)
$22%5(4,2)1(0,4)1(2,0)1(3,1)
$212%5(5,0)1(2,3)1(1,2)1(0,1)1(3,1)
$5%5(10,0)1(6,2)1(2,4)1(4,0)1(0,2)
$41%5(8,1)1(6,2)1(4,3)1(5,1)1(2,4)1(3,2)1(4,0)1(1,3)1(2,1)1(0,2)
$32%5(6,2)1(4,3)1(5,1)1(2,4)1(3,2)12(4,0)1(1,3)1(2,1)1(0,2)
$312%5(7,0)1(4,3)1(5,1)12(3,2)1(0,5)1(1,3)12(2,1)1(1,0)
$221%5(5,1)1(2,4)1(3,2)1(4,0)1(1,3)1(2,1)1(0,2)
$6%5(12,0)1(8,2)1(4,4)1(6,0)1(0,6)1(2,2)1(0,0)
$51%5(10,1)1(8,2)1(6,3)1(7,1)1(4,4)1(5,2)1(6,0)1(2,5)1(3,3)1(4,1)1(1,4)12(2,2)1(1,1)
$42%5(8,2)1(6,3)1(7,1)12(4,4)1(5,2)12(6,0)12(3,3)12(4,1)1(0,6)1(1,4)13(2,2)1(1,1)1(0,0)
$412%5(9,0)1(6,3)1(7,1)12(5,2)1(2,5)12(3,3)12(4,1)1(1,4)1(2,2)12(3,0)12(0,3)1(1,1)
$32%5(6,3)1(5,2)1(6,0)1(2,5)1(3,3)1(4,1)1(2,2)1(3,0)1(0,3)
$321%5(7,1)1(4,4)12(5,2)1(6,0)1(2,5)12(3,3)13(4,1)12(1,4)13(2,2)1(3,0)1(0,3)12(1,1)
$23%5(6,0)1(3,3)1(0,6)12(2,2)1(0,0)
$7%5(14,0)1(10,2)1(6,4)1(8,0)1(2,6)1(4,2)1(0,4)1(2,0)
$61%5(12,1)1(10,2)1(8,3)1(9,1)1(6,4)1(7,2)1(8,0)1(4,5)1(5,3)1(6,1)1(2,6)1(3,4)12(4,2)

1(1,5)1(2,3)1(3,1)1(0,4)1(1,2)1(2,0)
$52%5(10,2)1(8,3)1(9,1)12(6,4)1(7,2)12(8,0)1(4,5)12(5,3)12(6,1)1(2,6)12(3,4)14(4,2)1(1,5)

12(2,3)12(3,1)12(0,4)1(1,2)12(2,0)
$512%5(11,0)1(8,3)1(9,1)12(7,2)1(4,5)12(5,3)12(6,1)12(3,4)1(4,2)12(5,0)1(0,7)1(1,5)

13(2,3)12(3,1)12(1,2)1(0,1)
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Next one writes the O1(6) irrep ~l! in terms of U~6! irreps $m%:

~l!5(
m

am$m% ~78!

and computes the plethysm

~~1!1~0!! ^ ~l!5(
m

am~~1!1~0!! ^ $m%5(
m

amF (
n8,k

a~$n8%$k%→$m%!$n8%G . ~79!

The resulting U~5! irreps are then converted into O1(5) irreps by use of Eq.~57!.
In IBM-1 the O1(6) irrep is symmetric and, in this case, Eq.~78! becomes

~0!5$0%, ~1!5$1% and ~k!5$k%2$k22% for k>2 ~80!

and Eq.~79! gives

~~1!1~0!! ^ ~k!5(
p,q

@a~$p%$q%→$k%!2a~$p%$q%→$k22%!#$p%. ~81!

Expressing$p% in terms of O1(5) irreps by means of Eq.~58! one has the final result

~k!5~k!1~k21!1 ¯ 1~0! for O1~6!.O1~5!. ~82!

For general O1(6) irreps (s)5(s1 ,s2 ,s3), computer calculations using Eq.~79! shows the
branching rule

~s!5 (
r15s2

s1

(
r25s3

s2

~r1 ,r2! for O1~6!.O1~5!, ~83!

the usual inbetweeness conditions for Gelfand labels.

IV. IBM-2

In IBM-2 two kinds of bosons are considered, one formed by proton pairs and othe
neutron pairs, denoted by

sp
† , dp,m

† , sn
† , dn,m

† , m50,61,62, p for protons, n for neutrons ~84!

and similarly for annihilation operators. The commutation relations are the same as Eq~65!
concerning angular momentum labels and neutron operators commute with proton operato

Using the compact notation

br,a
† , br,a , r5p,n, a51,2,. . . ,6, ~85!

the commutation relations become

@bra ,br8a8
†

#5drr8daa8 , @bra ,br8a8#5@bra
† ,br8a8

†
#50. ~86!

With these operators one constructs operators

C ra
r8a85bra

† br8a8 ~87!
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that under commutation close the Lie algebra of U~12!. The operatorsCa
a85C pa

pa8 and C” a
a8

5C na
na8 generate the Lie algebras of Up(6) and Un(6), respectively. We have then a particular ca

of the reduction U(n11n2).U(n1)�U(n2) studied in Sec. II B. Using the results there obtain
one has the branching rule

$l%5 (
l8,l9

a~$l8%$l9%→$l%!$l8%p$l9%n for U~12!.Up~6!�Un~6!. ~88!

With operators~84! @or ~85!# one can construct only symmetrical irreps$N% of U~12! and Eq.
~88! reduces to

$N%5 (
k50

N

$N2k%p$k%n for U~12!.Up~6!�Un~6!. ~89!

The basis states of irrep$N% must be also basis states for an irrep of Op1n
1 (3), thegroup of

simultaneous rotations of protons and neutrons. This can be achieved by use oflattice of algebras,
in contrast withchains of algebrasin IBM-1.

The simplest lattice is obtained when we use chains~I!, ~II !, and~III ! separately for protons
and for neutrons and only in the last step one couples Op

1(3) with On
1(3) to obtain Op1n

1 (3):

↗Up~5!. Op
1~5!↘

Up~6! →SUp~3! → Op
1~3!

↗ ↘Op
1~6!. Op

1~5!↗ ↘
U~12! Op1n

1 ~3!. Op1n
1 ~2!.

↘ ↗Un~5!. On
1~5!↘ ↗

Un~6! →SUn~3! → On
1~3!

↘On
1~6!. On

1~5!↗
~90!

This is a trivial extension of IBM-1 andLp andLn are coupled to give

Lp1n5Lp1Ln , Lp1Ln21, . . . ,uLp2Lnu. ~91!

Another lattice is

Up~6! Up1n~5!.Op1n
1 ~5! ~ I1!

↘ ↗ ↘
Up1n~6! → SUp1n~3! → Op1n

1 ~3!.Op1n
1 ~2! ~ II 1!

↗ ↘ ↗
Un~6! Op1n

1 ~6!.Op1n
1 ~5! ~ III 1!

~92!

in which the algebras of Up(6) and Un(6) are joined in the first step. In the first link one h
Up(6)3Un(6)→Up1n(6) and the branching rules are given by the Kronecker product of U~6!
irreps. In this case, the irreps of Up(6) and Un(6) are both symmetric by Eq.~89! and the irreps
of Up1n(6) can have one or two rows. Chains (I1), (II1), and (III1) are the same as~I!, ~II !, and
~III ! but now the U~6!, U~5!, O1(6), and O1(6) irreps can be two-rowed.

Another type of lattice of algebras is obtained by joining the neutron and proton algeb
the second step:
                                                                                                                



Up~6!.Up~5!

↘
Up1n~5!.Op1n

1 ~5!.Op1n
1 ~3!.Op1n

1 ~2! ~ I2!,

↗
Un~6!.Un~5!

Up~6!.SUp~3!

↘
SUp1n~3!.Op1n

1 ~3.Op1n
1 ~2!, ~ II 2!,

↗
Un~6!.SUn~3!

Up~6!.Op
1~6!

↘
Op1n

1 ~6!.Op1n
1 ~5!.Op1n

1 ~3!.Op1n
1 ~2! ~ III 2!.

↗

~93!
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Un~6!.On
1~6!

The branching rules for the irreps of the joined algebras are obtained by Kronecker pro
and the resulting irreps can be one- and two-rowed. The Kronecker product expansion of irr
unitary groups are given by the outer product of Schur functions:

$l%p$m%n5(
r

a~$l%$m%→$r%!$r%p1n . ~94!

The Kronecker product of O~6! irreps is done by expressing the O~6! characters in terms of Schu
functions, making the outer products and re-expressing the result in terms of O~6! irreps. In Table
IV we give the Kronecker product of O~6! irreps with the lowest product degrees.

V. IBM-3

This model was proposed by Elliott and White23 in order to take into account the isosp
degree of freedom. It differs from IBM-2 by the inclusion of a third kind of boson, thed-boson,
formed by a proton–neutron pair. There are 18 creation operators

sp
† , dp,m

† , sn
† , dn,m

† , sd
† , dd,m

† ~m50,61,62! ~95!

and the corresponding annihilation operators. Operators of different pairs of bosons com
among themselves while each setp, n andd satisfies bose commutation relations.

One has again lattices of algebras now starting with

U~18!.Up~6!�Un~6!�Ud~6! ~96!

and ending with Op1n1d
1 (3).Op1n1d

1 (2).
By an extension of the calculation done to obtain Eq.~54! one obtains

$l%5 (
m,s,r

a~$m%$s%$r%→$l%!$m%p$s%n$r%d for Up~6!�Un~6!�Ud~6!. ~97!

Since in IBM-3 the U~18! irrep is symmetric, Eq.~97! reduces to
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$N%5 (
p50

N

(
q50

N2p

$p%p$q%n$N2p2q%d for Up~6!�Un~6!�Ud~6!. ~98!

As in IBM-2, a trivial lattice is obtained joining the three algebras in the first step by the

Up~6!�Un~6!�Ud~6!.Up1n1d~6!. ~99!

In this case we will have a triple Kronecker product of U~6! irreps and the resulting
Up1n1d(6) irreps can be three-rowed. From this point on one follows chains~I!, ~II !, and~III ! in
which the irreps of U~5! and O~6! can be three-rowed and those of O~5! two-rowed.

A more interesting lattice, from the physical point of view, is the one that works separ
with space and isospin degrees of freedom and joins then at the end. To this end let us
creation and annihilation operators by

br,m
† , br,m ~r5p,n,d, m52,,2,11, . . . ,, !,

or

TABLE IV. Kronecker product of O~6! irreps with lowest
total degrees.

(1)(1)5(0)1(12)1(2)
(2)(1)5(1)1(21)1(3)
(12)(1)5(1)1(13)1(21)
(3)(1)5(2)1(31)1(4)
(21)(1)5(12)1(2)1(212)1(22)1(31)
(13)(1)5(12)1(212)
(2)(2)5(0)1(12)1(2)1(22)1(31)1(4)
(12)(2)5(12)1(2)1(212)1(31)
(12)(12)5(0)1(12)1(2)1(212)1(22)
(4)(1)5(3)1(41)1(5)
(31)(1)5(21)1(3)1(312)1(32)1(41)
(22)(1)5(21)1(221)1(32)
(212)(1)5(13)1(21)1(221)1(312)
(3)(2)5(1)1(21)1(3)1(32)1(41)1(5)
(21)(2)5(1)1(13)12(21)1(221)1(3)1(312)1(32)

1(41)
(13)(2)5(13)1(21)1(312)
(3)(12)5(21)1(3)1(312)1(41)
(21)(12)5(1)1(13)12(21)1(221)1(3)1(312)1(32)
(13)(12)5(1)1(13)1(21)1(221)
(5)(1)5(4)1(51)1(6)
(41)(1)5(31)1(4)1(412)1(42)1(51)
(32)(1)5(22)1(31)1(321)1(32)1(42)
(312)(1)5(212)1(31)1(321)1(412)
(221)(1)5(212)1(22)1(23)1(321)
(4)(2)5(2)1(31)1(4)1(42)1(51)1(6)
(31)(2)5(12)1(2)1(212)1(22)12(31)1(321)1(32)

1(4)1(412)1(42)1(51)
(22)(2)5(2)1(212)1(22)1(23)1(31)1(321)1(42)
(212)(2)5(12)12(212)1(22)1(31)1(321)1(412)
(4)(12)5(31)1(4)1(412)1(51)
(31)(12)5(2)1(212)1(22)12(31)1(321)1(4)1(412)

1(42)
(22)(12)5(12)1(212)1(22)1(31)1(321)1(32)
(212)(12)5(12)1(2)12(212)1(22)1(23)1(31)

1(321)
(3)(3)5(0)1(12)1(2)1(22)1(31)1(32)1(4)1(42)

1(51)1(6)
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bra
† , bra ~r5p,n,d, a51,2,. . . ,6! ~100!

so that the commutation relations read as

@bra ,br8a8
†

#5drr8daa8 , @bra ,br8a8#5@bra
† ,br8a8

†
#50. ~101!

The U~18! infinitesimal generators will then be realized by

C ra
r8a85bra

† br8a8 , ~102!

while

Cr
r85 (

a51

6

C ra
r8a and C” a

a85 (
r51

3

C ra
ra8 ~103!

are generator of the Lie algebras of US(6) ~space! and UT(3) ~isospin!, respectively.
We then have as first link in this lattice,

U~18!.US~6!3UT~3!. ~104!

The U~18! irrep will be symmetric and, according to Eq.~56!, the branching law in Eq.~104!
will be

$N%5 (
n1 ,n2 ,n3

$n1 ,n2 ,n3%S$n1 ,n2 ,n3%T , ~105!

where (n1 ,n2 ,n3) is a ~standard! partition of N into three parts.
For UT(3) one uses the chain UT(3).OT

1(3).OT
1(2) and the branching rule is given b

Elliott’s rules, Eqs.~59!–~61!.
From US(6) one can follow each of chains~I!, ~II !, and~III ! and use the results of Sec. III fo

three-rowed U~6! irreps.
For US(6).US(5), Eqs.~50! and ~51! give

$ f 1 , f 2 , f 3%5 (
f 185 f 2

f 1

(
f 285 f 3

f 2

(
f 3850

f 3

$ f 18 , f 28 , f 38%. ~106!

For U(5).O(5) one uses Eq.~57! and Table I. The three-rowed O1(5) irreps (v1 ,v2 ,v3) in
Eq. ~57! must be interpreted using the modification rules

~v1 ,v2,1![~v1 ,v2!, ~v1 ,v2 ,v3.1! disregarded. ~107!

For O1(6).O1(5) one uses Eq.~83!.
For US(6).SUS(3) one uses Eq.~74! where now Schur functions$m% with up to three rows

must be considered.

VI. IBM-4

In IBM-4, proposed by Elliott and Evans,24 the bosonic pairs, besides the spatial degree
freedom, have also spin–isospin degrees of freedom in the combinationS50, T51 andS51,
T50. The model has thus 636536 bosonic creation operators
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b(,m,)(SmS)(TmT)
† with ,50,2, 2,<m,<,,

S5mS50, T51, mT50,61,

S51, mS50,61, T5mT50 ~108!

and corresponding annihilation operators. The operators

C
(,m,)(SmS)(TmT)
(,8m,8)(S8mS8)(T8mT8 )

5b(,m,)(SmS)(TmT)
† b(,8m

,8)(S8m
S8)(T8m

T8 ) ~109!

generate the Lie algebra of U~36! while

C
(SmS)(TmT)
(S8mS8)(T8mT8 )

5(
,m,

C
(,m,)(SmS)(TmT)
(,m,)(S8mS8)(T8mT)8 and C”

,m,

,8m,85 (
SmSTmT

C
(,m,)(SmS)(TmT)
(,8m,8)(SmS)(TmT)

~110!

generate the Lie algebras of UST(6) and UL(6) in the chain

U~36!.UL~6!3UST~6!. ~111!

An arbitrary irrep of U~36! branches into irreps of UL(6)3UST(6) according to Eq.~56!.
Since the U~36! irreps that one can realize with~108! and~109! are only symmetric ones, Eq.~56!
gives

$N%5(
m

$m%L$m%ST, ~112!

where~m! are~standard! partitions ofN into six parts. For UL(6) one follows chains~I!, ~II !, and
~III !, now with all irreps in their greatest generality.

To treat UST(6) one observes that

C(00)(1m)
(00)(1m8) and C(1m)(00)

(1m)(00)

generate the Lie algebras of US(6) and UT(3) in the link

UST~6!.US~3!�UT~3!, ~113!

which allows us to treat spin and isospin separately. The branching rules in this link are giv
Eq. ~54!:

$l%5(
mn

a~$m%$n%→$l%!$m%S$n%T for UST~6!.US~3!�UT~3!. ~114!

The simplest case is when$l% is symmetric,

$N%ST5 (
k50

N

$N2k%S$k%T . ~115!

The next one is

$N21,1%5 (
k51

N21

$k%S$N2k%T1 (
k52

N

@$N2k%S$k21,1%T1$k21,1%S$N2k%T#. ~116!

Another chain of interest is
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UST~6!.SUST~4!.SUS~2!3SUT~2!. ~117!

To find the reduction~35! for this chain one observes that the basis states for irrep$1% of
UST(6) are

(
,m,

b(,m,)(SmS)(TmT)
† u0& with S5MS50, T51, MT50,61,

S51, mS50,61, T5mT50. ~118!

The states with the first and second sets of labels are basis states for irreps$0%S$1%T and
$1%S$0%T of SUS(2)3SUT(2), respectively. The U~4! irrep $11% has exactly this SUS(2)
3SUT(2) reduction, so one has

$1%5$11% for UST~6!.UST~4!@SUST~4!# ~119!

and according to Eq.~36! one has the branching rule

$l%5(
m

a~$11% ^ $m%→$l%!$m%, for UST~6!.UST~4!@SUST~4!#, ~120!

where only the Schur functions with up to four rows are considered in the plethysm. This ple
can be computed by use of Eq.~23! as input in the algorithm given in Sec. II A. In Table V on
gives the branching rules for the reduction UST(6).UST(4) for UST(6) irreps with the lowest
degrees.

The branching rules for the reduction U(4).SU(2)3SU(2) are given by Eq.~56!. Table
11-18 in Ref. 25 gives the branching rules for this reduction for U~3! irreps of degrees up to 10

VII. IBM-1 G AND F

IBM-1 can be extended by introducing bosons with angular momenta 3,4, . . . . Inorder to deal
with states of positive parity only bosons with even angular momenta are introduced. Boson
odd angular momenta are used to deal with spectra with even and odd parity levels.

The inclusion of boson pairs of angular momenta,54 in IBM-1 gave birth to IBM-1G. In
this model one has the boson creation operators

b,m with ,50,2,4, 2,<m<, ~121!

and the corresponding annihilation operators and the group involved will be U~15!. One then has
to search for chains ending with O1(3).O1(2). One ofsuch chains,

U~15!.SU~3!.O1~3!.O1~2! ~122!

was studied in Ref. 26. There, the generators of the Lie algebra of SU~3! in chain ~122! are
realized as

Xm
(1)5A1/7 @d†3d̃#m

(1)1A6/7 @g†3g̃#m
(1) ,

~123!
Xm

(2)5A1/70 $4A7/15 @d†3 s̃1s†3d̃ #m
(2)211A2/21 @d†3d̃#m

(2)

136A1/105 @d†3g̃1g†3d̃#m
(2)22A33/7 @g†3g̃#m

(2)#%,

where @T(k1)3T(k2)#m
(k) denotes coupling of O1(3) Racah tensors via Clebsch–Gordan coe

cients to producem components of O1(3) tensors of rankk and b̃, as in Ref. 15, is defined by
b̃,m5(2),2mb,2m .
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To find how the U~15! irrep $1% branches into irreps of chain~122! one observes that this irre
has three sub-bases with basis vectorss1u0&,dm

1u0&, andgm
1u0& that are left invariant by the action

of generatorsXm
(1) , showing that$1% containsL50,2,4 multiplets. On the other hand, the ge

eratorsXm
(2) mix these sub-bases showing that the SU~3! irrep contained in$1% is irreducible.

Examining theL-content of SU~3! irreps of dimension 15 one finds that the irrep$4% has theseL
multiplets. Therefore one has

$1%5$4% for U~15!.U~3!@SU~3!# ~124!

in chain ~122!.
From Eq.~36! one then obtains

$l%5(
m

a~$4% ^ $l%→$m%!$m% for U~15!.U~3!, ~125!

where in the plethysm only the Schur functions$m% with no more than three rows are considere
As before, only U~15! symmetric irreps are realized, so the onlyreducedplethysms needed ar
$4% ^ $m%. Table VI lists the U(15).SU(3) branching rules for U~15! symmetric irreps with
lowest degrees

TABLE V. UST(6).UST(4) branching rules for UST(6)
irreps with no more than 4 rows and lowest degrees.

$1%5$12%
$2%5$14%1$22%
$12%5$212%
$3%5$32%1$2212%
$21%5$321%1$2212%
$13%5$313%1$23%
$4%5$42%1$3212%1$24%
$31%5$431%1$3212%1$3221%
$22%5$422%1$3212%1$24%
$212%5$4212%1$322%1$3221%
$14%5$3221%
$5%5$3222%1$4212%1$52%
$41%5$541%1$4212%1$4321%1$3222%
$32%5$532%1$4212%1$4321%1$3222%
$312%5$5312%1$422%1$4321%1$423%1$331%
$221%5$5221%1$432%1$4321%1$3222%
$213%5$4321%1$423%1$331%
$6%5$34%1$4222%1$5212%1$62%
$51%5$651%1$5212%1$5421%1$4222%1$4322%
$42%5$642%1$5212%1$5421%1$5321%12$4222%1$34%
$412%5$6412%1$522%1$5421%1$5322%1$4231%1$4322%
$32%5$632%1$5421%1$4322%
$321%5$6321%1$543%1$5421%1$5321%1$5322%

1$4231%1$4222%1$4322%
$313%5$5421%1$5322%1$4231%1$4322%
$23%5$623%1$5321%1$43%1$4222%1$34%
$2212%5$5321%1$5322%1$4231%1$4322%
$7%5$4232%1$5222%1$6212%1$72%
$61%5$761%1$6212%1$6521%1$5222%1$5432%1$4232%
$52%5$752%1$6212%1$6521%1$6431%12$5222%

1$5432%1$4232%
$512%5$7512%1$622%1$6521%1$6422%1$5231%1$5432%

1$533%1$432%
$43%5$743%1$6521%1$6431%1$5222%1$5432%1$4232%
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In IBM-1F one considers boson pairs with angular momenta 0, 2, and 3 and the res
group is U~13!. For physical reasons it is interesting to single out the bosons with odd an
momentum and then one will have lattices of groups like

↗U~5!.O1~5! ↘
Usd~6! →SU~3! → Osd

1 ~3!

↗ ↘O1~6!.O1~5! ↗ ↘
U~13! O1~3!.O1~2!

↘ ↗
Uf~7!.O1~7! . Of

1~3!

.

~126!

The branching rules for the reduction U(13).Usd(6)�Uf(7) are given by Eq.~54! that, in
IBM-1F, reduces to

$N%5(
Nf

$N2Nf%$Nf% for U~13!.Usd~6!�Uf~7!. ~127!

Since, by Eq.~128!, the Usd(6) irrep is symmetric, thesd branch in~127! is exactly equal to
IBM-1 up to Osd

1 (3).
The Uf(7) irrep, being symmetric, produces the branch

$Nf%5~Nf !1~Nf22!1¯1~0! or ~1! for Uf~7!.O1~7!. ~128!

For the link O1(7).O1(3) one has obviously (1)5(3) and the branching rule is obtained b
calculating the plethysm

~3! ^ ~Nf !5~$3%2$1%! ^ ~$Nf%2$Nf22%!

5$3% ^ $Nf%2~$3% ^ $Nf21%!$1%1~$3% ^ $Nf22%!~$12%2$0%!

1~$3% ^ $Nf23%!~$1%2$13%!

2~$3% ^ $Nf24%!$12%1~$3% ^ $Nf25%!$13%, ~129!

TABLE VI. U(15).SU(3) branching rules for symmetric U~15! irreps of lowest degrees.

$0%5$0%
$1%5(4,0)
$2%5(0,4)1(8,0)1(4,2)
$3%5(0,0)1(0,6)1(2,2)1(3,3)1(4,4)1(6,3)1(8,2)1(6,0)1(12,0)
$4%52(4,0)1(0,2)1(1,3)12(2,4)1(3,5)12(4,6)1(12,2)12(8,4)1(5,1)1(4,3)12(6,2)1(8,1)

1(10,0)1(5,4)1(7,3)1(0,8)1(16,0)1(10,3)
$5%52(0,4)1(2,3)14(4,2)1(6,1)13(8,0)12(2,0)1(3,1)12(8,3)1(16,2)12(3,4)13(5,3)1(1,5)

13(2,6)12(4,5)14(6,4)1(14,3)1(1,8)1(3,7)1(5,6)12(7,5)1(0,10)1(20,0)12(4,8)1(6,7)
12(8,6)13(10,2)1(9,4)1(12,1)1(11,3)1(10,5)1(14,0)12(9,1)12(12,4)1(7,2)

$6%52(0,0)12(9,6)14(2,2)14(3,3)17(4,4)1(6,9)12(5,8)12(1,4)12(4,1)12(2,5)12(5,2)15(6,3)
14(0,6)15(6,0)13(7,1)17(8,2)12(4,10)12(10,1)14(12,0)15(5,5)13(4,7)14(7,4)16(6,6)
15(9,3)14(8,5)12(11,2)15(10,4)13(12,3)13(14,2)1(13,4)13(12,6)1(16,1)1(15,3)1(14,5)
1(18,0)1(24,0)12(16,4)13(8,8)1(18,3)1(20,2)12(1,7)14(3,6)14(2,8)12(7,7)12(13,1)
12(11,5)1(10,7)12(0,12)12(3,9)

$7%55(4,0)15(9,2)113(8,4)18(7,6)18(6,8)12(5,10)18(10,3)18(9,5)16(8,7)13(7,9)16(11,4)
18(10,6)13(9,8)15(12,5)13(11,7)12(13,6)13(0,2)1(2,1)13(1,3)13(3,2)19(2,4)14(5,1)
17(4,3)111(6,2)1(28,0)13(1,6)18(3,5)18(5,4)19(7,3)15(0,8)14(2,7)112(4,6)19(6,5)
18(5,7)14(4,9)12(3,11)1(19,3)13(4,12)1(6,11)13(8,10)12(10,9)15(3,8)15(2,10)1(1,12)
1(24,2)1(22,3)16(8,1)17(10,0)15(11,1)19(12,2)1(0,14)12(20,4)13(14,1)14(16,0)14(1,9)
1(22,0)16(13,3)12(15,2)16(14,4)13(16,3)12(17,1)13(18,2)12(15,5)1(17,4)13(12,8)
12(14,7)13(16,6)1(18,5)1(20,1)
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where the plethysms$3% ^ $m% with negativem’s are taken as null. After computing the plethysm
and the outer products one uses Elliott’s rules~59!–~61! to obtain the finalL f values. Branching
rules for O1(7).O1(3) resulting from Eq.~129! are given in Table VII forN51,2,. . . ,10.

One could obtain theL f values using the reduction U(7).O1(3) without the intermediate
group O1(7). In this case, Eq.~35! will be $1%5(3) and the result for U~7! symmetric irreps is

$Nf%5 (
k50

3

(
m

a~$3% ^ $Nf2k%→$m%!$m%$1k%, ~130!

where in the plethysms only Schur functions with up to three rows are considered. The U~3! irreps
resulting from the Kronecker products must be converted to O1(3) using Elliott’s rules. Obvi-
ously theL f values obtained using Eqs.~128! and ~129! and Eq.~130! are the same.

VIII. FINAL COMMENTS

The branching rules for IBM-1 are known in the literature, each one being obtained
different method. By the plethysm approach here presented all of them are obtained in a
unified way and the results obtained are used to other extensions of IBM. For some of
extensions the branching rules found in the literature are given only for simple cases with
explanation of how they were obtained, preventing the reader from extending tables when n
The material presented in this paper provides to the reader all the material to check our tab
extend them as long as he needs. Besides, the approach here used can be applied,mutatis mutandis
on other situations that need the knowledge of branching rules of subgroups of GL(n).

The tables here presented were obtained by computer programs which, by control, p
dimension tests. To avoid misprints, the output of these programs are read by another progr
produces the latex source files of the tables.
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Canonical factorization and diagonalization
of Baxterized braid matrices: Explicit constructions
and applications a…

A. Chakrabartib)

Centre de Physique The´orique,c! Ecole Polytechnique, 91128 Palaiseau Cedex, France

~Received 9 May 2003; accepted 23 July 2003!

Braid matricesR̂(u), corresponding to vector representations, are spectrally de-
composed obtaining a ratiof i(u)/ f i(2u) for the coefficient of each projectorPi

appearing in the decomposition. This directly yields a factorization (F

3(2u))21F(u) for the braid matrix, implying also the relationR̂(2u)R̂(u)
5I . This is achieved for GLq(n), SOq(2n11), SOq(2n), Spq(2n) for all n and
also for various other interesting cases including the eight-vertex matrix. We ex-
plain how the limitsu→6` can be interpreted to provide factorizations of the
standard~non-Baxterized! braid matrices. A systematic approach to diagonalization
of projectors and hence of braid matrices is presented with explicit constructions
for GLq(2), GLq(3), SOq(3), SOq(4), Spq(4) and various other cases such as the
eight-vertex one. For a specific nested sequence of projectors diagonalization is
obtained for all dimensions. The canonical property implemented in the diagonal-
izers is mutual orthogonality of the rows. In each factorF(u) our diagonalizer
again factors out all dependence on the spectral parameteru as a diagonal matrix.
Applications of our formalism to the construction ofL-operators and transfer ma-
trices are indicated. In an Appendix our type of factorization is compared to another
one proposed by other authors. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1613378#

I. INTRODUCTION

Let R̂(u) be a braid matrix Baxterized with a spectral parameteru and satisfying, in standard
notations,

R̂12~u!R̂23~u1 ú !R̂12~ ú !5R̂23~ ú !R̂12~u1 ú !R̂23~u!. ~1.1!

The term Baxterization refers to the inclusion of a spectral parameteru which has to be suitably
altered for each factor precisely as shown in~1.1!. In presence of such a parameter the ma
R̂(u) will be called Baxterized. In absence of such a spectral parameter we will simply us
term braid matrix. The latter will be systematically extracted from the Baxterized ones as lim
cases where the spectral parameters tend to infinity. This extraction will be performed exp
for each case in the following sections. In Secs. 2 and 3 of Ref. 1 we have shown in full deta
one solves a set of functional equations to obtain theu-dependence of the coefficients of th
projectors in spectral decompositions for unitary, orthogonal and symplectic cases for a
dimensions. Such derivations give the essential content of the term ‘‘Baxterization.’’ Here,
from u, R̂(u) can depend on other parameters such asq, which will not always be denoted
explicitly. Vector representations withN23N2 braid matrices are implied in all cases. The cor
spondingYB ~Yang-Baxter! martix is

a!This paper is dedicated to the memory of P’s elegant participation in my work.
b!Electronic mail: chakra@cpht.polytechnique.fr
c!Laboratoire Propre du CNRS UPR A.0014
53200022-2488/2003/44(11)/5320/30/$20.00 © 2003 American Institute of Physics
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R~u!5PR̂~u!, ~1.2!

where the permutation matrixP is defined to be@with i 5(1,2,. . . ,N)]

P5(
i j

Ei j ^ Eji . ~1.3!

The matrixEi j has zero elements except for a single unit one at (i j ).
We assume that the polynomial equation of minimal degree satisfied byR̂(u) has distinct

roots. When this holdsR̂(u) can be spectrally decomposed on a basis of projectorsPi , satisfying

Pi Pj5d i j Pi , (
i

Pi5I N23N2. ~1.4!

Suppressing arguments for the time being, if~with kiÞkj for iÞ j )

)
i 51

p

~R̂2ki I !50, ~1.5!

then defining

Pi5)
j Þ i

~R̂2kj I !

~ki2kj !
~ i 51,2, . . .p!, ~1.6!

the setPi can be shown to satisfy~1.4! and one obtains

R̂5(
i

p

ki Pi . ~1.7!

On the other hand, given~1.7! one obtains~1.5!. TheP’s on the right can, in general, depen
on parameters such asq. But in all cases they will be independent of the spectral parameteru. In
R(u) all u-dependence is to be found in the coefficientski . This is consistent with~1.6! and~1.7!
and is fundamental for the considerations below.

In all cases to be considered, not only will we obtain explicit spectral decomposition ofR̂(u),
but alsoa specific factorized formof eachki ,

ki~u!5
f i~u!

f i~2u!
~1.8!

when

R̂~u!5(
i

ki~u!Pi5(
i

f i~u!

f i~2u!
Pi . ~1.9!

This will be our first major step.
The number of projectors and their matrix elements are specific to the case considere

they always satisfy~1.4!. In Ref. 1, ~1.9! has been obtained explicitly for GLq(n), SOq(2n
11), SOq(2n) and Spq(2n) for all n. The results are recapitulated in Secs. II and III. In Se
IV–VII we obtain ~1.9! for various interesting cases, including the eight-vertex matrix.

An evident, but for us crucial, consequence of~1.4! is that for well-defined and mutually
commuting but otherwisearbitrary coefficients (ai ,bi),
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S (
i

ai Pi D S (
i

bi Pi D 5S (
i

aibi Pi D 5S (
i

bi Pi D S (
i

ai Pi D . ~1.10!

Hence, once a spectral decomposition~1.7! has been obtainedR̂ can be expressed as a produ
of arbitrary number of factors

R̂5)
n

S (
i

ki
(n)Pi D , S)

n
ki

(n)5ki D . ~1.11!

Of particular interest to us is the factorization

R̂~u!5(
i

f i~u!

f i~2u!
Pi5S (

i
f i

21~2u!Pi D S (
i

f i~u!Pi D 5~F~2u!!21F~u!, ~1.12!

where

F~u!5(
i

f i~u!Pi . ~1.13!

This implies the so-called ‘‘unitarity’’

R̂~2u!R̂~u!5I N23N2. ~1.14!

One obtains from~1.2!, sinceP25I ,

R~u!5~P~F~2u!!21P!PF~u!5~F21~2u!!21PF12~u!. ~1.15!

In ~1.12! and ~1.15! the key feature is the change of sign ofu in F21.
Other interesting choices are possible. Thus, for example, defining

F́~u!5(
i

S f i~u!

f i~2u! D
1/2

Pi5~ F́~2u!!21, ~1.16!

one obtains

R̂~u!5~ F́~2u!!21F́~u!5~ F́~u!!2 ~1.17!

and

R~u!5~ F́21~2u!!21PF́12~u!5~ F́21~u!!PF́12~u!. ~1.18!

Here, even for realR̂(u), for certain domains ofu the factorF́(u) can be complex.
Compare~1.15! and ~1.18! to a Drinfeld twist2–4 of P:

R9~u!5~F219 ~u!!21PF129 ~u!. ~1.19!

@This is presented for direct comparison with~1.15!. In this particular case such a twist is trivia
It is well known that in other contexts Drinfeld twists can play major roles.#

In ~1.15! there is (2u) on the left and in~1.18! there is no inversion ofF́21(u). P satisfies the
YB equation with the trivialR̂5P25I for the braid matrix. (P also satisfies the braid equatio
with R5P25I .) The properties ofR9(u) will depend on those ofF9(u) ~such as cocycle condi
tions!. In our case, since onestartsfrom solutions of~1.1! one does not have to verify ifF(u) and
F́(u) satisfy suitable constraints, so far as the braid equation is concerned.
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The present situation may also be compared to ‘‘contraction’’ ofYB matrices to nonstandard
Jordanian forms. Without even trying to explain the terminology we refer to two5,6 of our series of
relevant papers~where original sources are cited!. We mention this only to point out that, a
compared to~1.15!, ~1.18!, and~1.19!, the role ofP is, so to say, reversed. For the nonstand
caseR is a Drinfeld twist ofI ,

R5~F21!
21F, R̂5F21PF. ~1.20!

The nontrivial matrixR̂ is now ‘‘triangular’’ since from~1.20!

~R̂!25I . ~1.21!

The ambiguities arising in factorizing@compare~1.13! and ~1.16!#, or in definingf i(u) for a
given ki(u) in ~1.8!, become particularly relevant in considering the limitsu→6`. From ~1.9!
one has evidently

R̂~0!5(
i

Pi5I . ~1.22!

It will be seen in the following sections that in each case foru→6` one obtains the standar
~non-Baxterized! braid matrices (R̂ and the inverse! satisfying

R̂12R̂23R̂125R̂23R̂12R̂23. ~1.23!

This equation can be considered, consistently with~1.1! as the limiting form~with arguments
suppressed! as both (u,ú)→1`, say. If one denotes

lim
u→1`

R̂~u!5R̂, ~1.24!

then consistently with~1.14!

lim
u→2`

R̂~u!5R̂21. ~1.25!

In these limits special features arise concerning factorizations. It is helpful to consider a
simple but frequently encountered example. Suppose that for somef i(u) one has~dropping the
index i and settingq5eh)

f ~u!

f ~2u!
5

sinh~h2u!

sinh~h1u!
. ~1.26!

The evident singularity atu52h can be excluded by definition from the domain ofu. Now, as
u→6`,

f ~u!

f ~2u!
→2q72. ~1.27!

But what about the factorf (u)? How does it behave when separated in the factorF(u) or
F́(u) exhibited before?

~1! For the choice

f ~6u!5sinh~h7u!, ~1.28!

separately bothf (u) and f (2u) both diverge.
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~2! The choice

f ~u!5S sinh~h2u!

sinh~h1u! D
1/2

5
sinh~h2u!

~sinh~h2u!sinh~h1u!!1/2 ~1.29!

gives consistently with~1.27! finite but imaginary limits

f ~u!→6 iq71, f ~2u!→7 iq61. ~1.30!

~3! But more generally than in~1.29! one may choose for any well-definedy(u),

f ~u!5
sinh~h2u!

~y~u!y~2u!!1/2. ~1.31!

Setting, for example,

f ~u!5
sinh~h2u!

~cosh~h2u!cosh~h1u!!1/2, ~1.32!

one obtains real, finite limits consistent with~1.28!,

u→1`, f ~6u!→7q71, ~1.33!

with an evident analogous result foru→2`.
We will assume that eachf i(u) in F(u) has thus been suitably defined@choosing an appro-

priate y(u)]. Then evenR̂ satisfying~1.23! can be considered to be factorized as in~1.12!, the
implicit spectral parameter not being exhibited in the limitsu→6`. In this sense, the unitarity
~1.14! can still be considered to be implicit. Note that even if eachf i(u) has limits analogous to
~1.33! with different powers ofq, onecannotexpress the factorization as (F(2q))21F(q)) since
the projectors, in general, areq-dependent~though always independent ofu!. It is essential to
think in terms ofu even when it is, in the limits above, implicit. The implementation of a spec
parameter, the passage from~1.23! to ~1.1!, renders many aspects more complex. But it a
provides an extra margin of maneuver, making possible the canonical factorization~1.12! whose
interest will be studied later on.

Our factorizations are directly based on the resolution~1.9!. Other classes of factorizations ca
also be envisaged. One such class with upper and lower triangular factors for theYB matrix R(u),
leading to interesting properties, has been studied by Mailletet al. in a series of papers.7–9 This
formalism is compared with ours in Appendix A.

Since all braid matrices studied~Secs. II–VII! are systematically found to lead to spectr
decompositions with each coefficient of the form~1.8! and ~1.9! a more general study of suc
forms should be of interest. Here we will limit our observations to the following feature. Le

R̂8~u!5(
i

gi~u!

gi~2u!
Pi , ~1.34!

where, apart from being well-defined, theg’s are as yet arbitrary. In general,R̂8(u) doesnot
satisfy ~1.1!. But defining

H~u!5(
i

gi~u!

f i~u!
Pi[(

i
hi~u!Pi , ~1.35!

where f i(u) corresponds to~1.9!, a solutionR̂(u) of ~1.1! on thesamebasis of projectors is

R̂8~u!5~H~2u!!21R̂~u!H~u!. ~1.36!
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Any two matrices decomposable on the same spectral basis@satisfying ~1.4!# are always
related as above.

Substituing in~1.1!

R̂~u!5H~2u!R̂8~u!H~u!21, ~1.37!

one can rephrase~1.1! in terms ofR̂8 andH. One obtains

R̂128 ~u!X1R̂238 ~u1 ú !X2R̂128 ~ ú !X35X4R̂238 ~ ú !X5R̂128 ~u1 ú !X6R̂238 ~u!, ~1.38!

where

X15~H12~u!!21H23~2u2 ú !

and so on.
Now, along with the properties off i(u), those ofgi(u) will determine the content of this

equation forR̂8. Further study in this direction is beyond the scope of this work.
Our first basic step is the systematic expression of the solutions of~1.1! in the form~1.9!. The

next major one is the simultaneous diagonalization of each projectorPi in ~1.9! and hence of
R̂(u). Our approach is presented step by step in Sec. IX. Explicit examples of diagonalizati
lower dimensional cases of Secs. II and III@Glq(2),Glq(3),SOq(3),SOq(4),Spq(4)# are collected
together in Appendix B. At the end of Secs. IV–VII the diagonalizations are presented exp
for each case. Our Sec. VIII is an exception, where a nested sequence of projectors with
attactive features is presented for arbitrary dimensions without constructing explicit solutio
the braid equation. On the contrary, here the diagonalizer is obtained quite simply for arb
dimensions.

A canonicalfeature sought for in our formalism is themutual orthogonality of the rowsof the
matrix diagonalizingR̂(u). The elegant and useful consequences of such a feature are pointe
In the factorized form, our diagonalizer factors out again in each factor allu-dependence as
diagonal matrix.

Applications of our spectral decompositions and diagonalizations to the constructio
L-operators and to transfer matrices are discussed respectively in Secs. X and XI.

II. FACTORIZATION OF BRAID MATRICES OF GL q„N…, SOq„N… AND Spq„N…

We recapitulate below the relevant essential results of Ref. 1. The standardq-dependentN2

3N2 projectors10 are assumed to be known. For Spq alwaysN52n.
The same notations will be used for projectors in different cases though they are differen

overall normalizing factor forR̂(u) is chosen to obtain 1 for the element~11! at top left. ~See,
however, Sec. VII.!

For GLq(N) one has two projectors (P1 ,P2) satisfying ~1.4!. For R̂(u) satisfying ~1.1!,
settingh5 lnq, one obtains

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P2

5~P11~sinh~h1u!!21P2!~P11sinh~h2u!P2!

[~F~2u!!21F~u!. ~2.1!

To illustrate~1.12! we have implemented one simple possible choice forF(u). Ambiguities
discussed in Sec. I@from ~1.28! to ~1.32!# are always present in this and other examples to follo.
This statement will not be repeated in successive sections.
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For SOq(N), for N5(2n11) and also forN52n, one has a basis of three projecto
(P1 ,P2 ,P0) and two possibilities:

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P21

cosh~~N/2!h2u!

cosh~~N/2! h1u!
P0 ~2.2!

or

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P21

sinh~~N/221!h2u!sinh~h2u!

sinh~~N/221!h1u!sinh~h1u!
P0 . ~2.3!

For Spq(2n) one obtains

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P21

sinh~~n11!h2u!

sinh~~n11!h1u!
P0 ~2.4!

or

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P21

cosh~nh2u!sinh~h2u!

cosh~nh1u!sinh~h1u!
P0 . ~2.5!

The expressions forF(u) and (F(2u))21 are evident in each case. See, however, the rem
below ~2.1!. For each case

R̂~0!5I . ~2.6!

For u→6`, carefully taking limits, one respectively obtains for GLq(N)

R̂5P12q72P2 , ~2.7!

for SOq(N)

R̂5P12q72P21q7NP0 , ~2.8!

and for Spq(N)

R̂5P12q72P22q7(N12)P0 . ~2.9!

These are the standard~non-Baxterized! braid matrices10 satisfying~1.23!. Concerning factor-
ization see the relevant discussion in Sec. I@from ~1.23! to ~1.33!#.

For q51 (h50) all these matrices become trivial. This situation is to be contrasted with
corresponding one in Sec. III.

III. A NEW CLASS OF BRAID MATRICES FOR SO q„N… AND Spq„N…

This was presented in Sec. 4 of Ref. 1. The solution for SOq(3) appeared already in Ref. 11
The structure~1.9! is again present and hence also the factorization~1.12!.

We recapitulate:
Define

d5~11e@N2e#!215S 11e
qN2e2q2N1e

q2q21 D 21

, ~3.1!

where for SOq(N)

e51, N53,4,. . . ,
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and for Spq(N)

e521, N54,6,. . . .

Define also

tanhh5A124d2. ~3.2!

The reality ofh is implied by ~3.1! since 4d2,1. Now with such anh,

R̂~u!5P11P21
sinh~h2u!

sinh~h1u!
P0 ~3.3!

5I 1S sinh~h2u!

sinh~h1u!
21D P0 ~3.4!

can be shown1 to satisfy~1.1!. The promised srtucture is explicit in~3.3!.
One has as usual

R̂~0!5I ~3.5!

and foru→6`

R̂~6`!5P11P22e72hP0 ~3.6!

5I 2~11e72h!P0 , ~3.7!

where

e72h5
17A124d2

16A124d2
. ~3.8!

These provide a new class of~non-Baxterized! braid matricesR̂61 satisfying ~1.23!. The
R615PR̂61 are new solutions of theYB equation for SOq and Spq with e andN as given below
~3.1!.

Moreover, from~3.1!, for q51,

d5
e

N
, ~3.9!

and from~3.2!, for q51,

~ tanhh!(q51)5A12
4

N2[tanhĥ. ~3.10!

Denoting

~P0!(q51)5 P̂0 ~3.11!

and so on, one obtains from~3.3! and ~3.7!, respectively,

~R̂~u!!(q51)5 P̂11 P̂21
sinh~ ĥ2u!

sinh~ ĥ1u!
P̂0 ~3.12!

and
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~R̂(61)!(q51)5 P̂11 P̂22e72ĥP̂0 . ~3.13!

The braid matrix~3.13! satisfies a nontrivial Hecke condition

~R̂2I !~R̂1e22ĥI !50 ~3.14!

and cannot be twisted back toI . This situation should be compared to the corresponding on
Sec. II.

Note that we arenot expanding in powers ofh(5 lnq) to extract the so-called ‘‘classical
r -matrix. We are directly settingq51 and yet getting quite nontrivial results.

IV. TWO EXOTIC CASES „S03, S14…

Two special braid matrices arising in the classification of 434 YB matrices of Ref. 12 were
Baxterized in Ref. 13. Other aspects were already studied in previous papers of the series.14 Some
‘‘exotic’’ features are briefly recapitulated below in the present context:

~i! complex projectors forS03 ~for real R̂), and
~ii ! extended freedom of parametrization forS14.

Our solutions presented in Sec. III can be considered to be an exotic class in arbitrary d
sions (N23N2,N>3). For evenN one has two types, exotic orthogonal and exotic symplec

S03: The braid matrix

R̂5S 1 0 0 1

0 1 21 0

0 1 1 0

21 0 0 1

D ~4.1!

satisfies

~R̂2~11 i !I !~R̂2~12 i !I !50. ~4.2!

The corresponding projectors

P(6)5
1
2 ~ I 6 i ~R̂2I !! ~4.3!

provide the spectral decomposition

R̂5~12 i !P(1)1~11 i !P(2) . ~4.4!

Altering suitably the normalization of Ref. 13 gives the Baxterization~with z5eu)

R̂~z!5S f ~z!

f ~z21! D
1/2

P(1)1S f ~z21!

f ~z! D 1/2

P(2) , ~4.5!

where

f ~z!5~z1z21!1 i ~z2z21!. ~4.6!

Thus we obtain the form~1.9! and ~1.12! follows.
One can rewrite~4.5! in the explicitly real form

R̂~z!5~z21z22!2 1/2~~&z!21R̂1&zR̂21! ~4.7!
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and verify again

R̂~z21!R̂~z!5I . ~4.8!

The unitary matrixM , where

&M5S 1 0 0 i

0 1 2 i 0

0 2 i 1 0

i 0 0 1

D , ~4.9!

diagonalizesP(6) giving

MR̂M 215diag~12 i ,12 i ,11 i ,11 i ! , ~4.10!

~z21z22!1/2MR̂~z!M 215
1

&z
diag~12 i ,12 i ,11 i ,11 i !1

z

&
diag~11 i ,11 i ,12 i ,12 i !.

~4.11!

The diagonal elements are complex with real trace.
S14: Here

R̂5S 0 0 0 q

0 1 0 0

0 0 1 0

q 0 0 0

D . ~4.12!

The projectors~threeeven for a 434 R̂)

P(0)5S 0 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

D , 2P(6)5S 1 0 0 61

0 0 0 0

0 0 0 0

61 0 0 1

D ~4.13!

give

R̂5P(0)1q~P(1)2P(2)!. ~4.14!

Baxterization gives

R̂~z!5P(0)1v~z!~P(1)2P(2)! , ~4.15!

wherev(z) is arbitrary. ~See Ref. 13 for details.!
One can indeed set~with z5eu, say!

v~z!5
f ~z!

f ~z21!
, 2v~z!5

~z2z21!

~z212z!

f ~z!

f ~z21!
~4.16!

and factorize. But more freedom is present, as compared to~1.1! and all previous examples
DenotingR̂(v(z)) by R̂(v) one obtains

R̂12~v !R̂23~v8!R̂12~v9!5R̂23~v9!R̂12~v8!R̂23~v !, ~4.17!
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where (v,v8,v9) are mutually independent.
Amusingly, R̂ of S14 is diagonalized by~4.1!, the R̂ of S03 giving

diag~q,1,1,2q!. ~4.18!

V. AFFINE Uq„sl̂ 2…

We start below directly with the matrixR̄VV(z) @Eqs.~3.13! and~3.14!# of Sec. 3.2 of Ref. 15.
We obtain the spectral resolution and factorization@finding back the Baxterization of GLq(2) of
Sec. II#. Thus, apart from a possible overall factor, the braid matrix ofUq(sl̂2) is

R̂~z!5PR̄VV~z!5S 1 0 0 0

0 zc b 0

0 b c 0

0 0 0 1

D , ~5.1!

where

b5
~12z!q

~12q2z!
, c5

~12q2!

~12q2z!
. ~5.2!

Define the following basis satisfying~1.4!,

P(0)5S 1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1

D , ~q1q21!P(6)5S 0 0 0 0

0 q61 61 0

0 61 q71 0

0 0 0 0

D . ~5.3!

Note the specificq-dependence ofP(6) . Relabeling (P(0)1P(1)) asP(1) makes the relation
to GLq(2) clearer. On the other hand,~5.3! with q51 corresponds to the basis for the six-vert
model ~Sec. VI!.

Settingq5eh, z5eu one can write~5.1! as

R̂~u!5P(0)1P(1)1
sinh~h2 u/2!

sinh~h1 u/2!
P(2) , ~5.4!

where

sinh~h2 u/2!

sinh~h1 u/2!
5

~q22z!

~q2z21!
5

z21/2q2z1/2q21

z1/2q2z21/2q21 . ~5.5!

Factorizations of the type~1.12! are now evident. Also evidently from~5.4!

R̂~z21!R̂~z!5R̂~2u!R̂~u!5I . ~5.6!

Any supplementary overall factor, unless of the form

r~z!

r~z21!
, ~5.7!

will be incompatible with~5.6!. The results foru→6` are displayed below for comparison wit
the corresponding results for the six-vertex~Sec. VI! and the eight-vertex~Sec. VII! to follow.
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For u→`

R̂~u!→R̂5S 1 0 0 0

0 ~12q22! q21 0

0 q21 0 0

0 0 0 1

D . ~5.8!

For u→2`

R̂~u!→R̂215S 1 0 0 0

0 0 q 0

0 q ~12q2! 0

0 0 0 1

D . ~5.9!

For R5PR̂ one recognizes the familiar lower and upper triangularYB matrices of GLq(2).
Thus ~5.1! is, indeed, a Baxterized form of~5.8! and ~5.9! for a particular choice of basis an
parametrization.

The matrix

M5S 1 0 0 0

0 q 1 0

0 2q21 1 0

0 0 0 1

D ~5.10!

diagonalizes each projector, giving

MR̂~u!M 215diagS 1,1,
sinh~h2 u/2!

sinh~h1 u/2!
,1D . ~5.11!

We have factorized the basic matrix~5.1!. After supplementary quasi-Hopf twists15 one can
seek again a spectral resolution to study analogous possibilities provided that~5.6! is conserved.

VI. THE SIX-VERTEX MODEL

The more general eight-vertex case is treated in Sec. VII. But we introduce already a
stage a basis of projectors, satisfying~1.4!, adequate for the eight-vertex matrix.

Define

2P1(6)5S 1 0 0 61

0 0 0 0

0 0 0 0

61 0 0 1

D , 2P2(6)5S 0 0 0 0

0 1 61 0

0 61 1 0

0 0 0 0

D . ~6.1!

For the six-vertex we need only the subset

P(0)5P1(1)1P1(2) , P(6)5P2(6) . ~6.2!

Leaving aside all well-known relations, via reparametrizations and limiting processe
rational affine cases, we illustrate our approach using the trigonometric parametrization a
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particular, the ‘‘ferroelectric’’ regime. Extensive discussions and references can be found
review.16 @N.B. OurR̂ corresponds toR in the notation of Ref. 16. See, for example,~2.19! of Ref.
16.#

With our standard normalization~Sec. II! in view we define~with g.0, u.0)

x5
sinhg

sinh~g1u!
, y5

sinhu

sinh~g1u!
. ~6.3!

~Thoughu.0 for this regime, we will consider later the limitsu→6`.) The braid matrix is

R̂~u!5S 1 0 0 0

0 x y 0

0 y x 0

0 0 0 1

D . ~6.4!

Implementing~6.1! and ~6.2!,

R̂~u!5P(0)1~x1y!P(1)1~x2y!P(2)5P(0)1
cosh1

2 ~g2u!

cosh1
2 ~g1u!

P(1)1
sinh1

2 ~g2u!

sinh 1
2 ~g1u!

P(2) .

~6.5!

We have thus the structure~1.9! and hence the factorization~1.12!. From ~6.3! as

u→6`, x→0, y→e7g. ~6.6!

Hence the corresponding limits ofR̂(u) give respectively@see the discussion starting wit
~1.23!# for the non-BaxterizedYB matrix

R615~PR̂!615diag~1,e7g,e7g,1!. ~6.7!

This is a special class of even the simplest and the first solutionH3.1 in the classification of
434 YB matrices,12 namely,

R5diag~p,q,r ,s!. ~6.8!

In view of the eight-vertex case to follow it is convenient to choose the diagonalizerM
5M 21) as

&M5S 1 0 0 1

0 1 1 0

0 1 21 0

1 0 0 21

D . ~6.9!

Now

MR̂~u!M 215diag~1, x1y, x2y, 1!. ~6.10!

The crucial difference, for the parametrizations adopted, between~5.1! and ~6.4! is the extra
factorz in the second diagonal element of~5.1!. This leads to theq-dependent projectors in~5.3!
as compared to the elements6 1

2 only in ~6.1!. Finally one is led~for u→6`) to triangular and to
diagonalYB matrices in Secs. V and VI, respectively.
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VII. THE EIGHT-VERTEX BRAID MATRIX

The braid matrix of the quantum affine algebraAq,p(sl̂2) corresponds to the eight-verte
model. Some references relatively directly relevant to our purpose are Refs. 15 and 17–19
cite other basic sources.

Here the symmetrical structure of~6.4! is generalized~with z5eu) to

R̂~z!5S a~z! 0 0 d~z!

0 c~z! b~z! 0

0 b~z! c~z! 0

d~z! 0 0 a~z!

D . ~7.1!

There are well-known expressions for the elements in different equivalent forms in term
elliptic functions. The role of a specific class of overall factors for specific realization
(a,b,c,d) will be commented upon later on. Implementing now the full set~6.1! with a(z)5a and
so on,

R̂~z!5~a1d!P1(1)1~a2d!P1(2)1~c1b!P2(1)1~c2b!P2(2) . ~7.2!

We have thus a spectral decomposition in terms of the simple basis~6.1! with constant
coefficients6 1

2. The next steps@in order to implement~1.9! and hence~1.12# consist in explicit
constructions of functionsf 1(6)(z) and f 2(6)(z) such that~7.2! satisfies~1.1! for

~a6d!5
f 1(6)~z!

f 1(6)~z21!
, ~c6b!5

f 2(6)~z!

f 2(6)~z21!
. ~7.3!

These solutions aredirectly obtained from Eqs.~3.28! and~3.29! of Ref. 15 in terms of infinite
products

~x;a!`5 )
n>0

~12xan!. ~7.4!

Noting that

q
16q21z

16qz
56

q1/2z21/26q21/2z1/2

q1/2z1/26q21/2z21/2, ~7.5!

one obtains from the results cited above~writing z for z and slightly reordering the factors!

a6d5
~7p1/2q21z;p!`~7p1/2qz21;p!`

~7p1/2q21z21;p!`~7p1/2qz;p!`
, ~7.6!

c6b5
~q1/2z21/26q21/2z1/2!

~q1/2z1/26q21/2z21/2!

~7pq21z;p!`~7pqz21;p!`

~7pq21z21;p!`~7pqz;p!`
. ~7.7!

Our objectives are attained. We have arrived at~1.9! and ~1.12!. In view of the factored
structures of~7.6! and~7.7! the comments~Sec. I! concerning varied possibilities in selectingf (u)
are now particularly relevant. Several factors lead to more alternatives.

As u5 lnz→6`, z→` andz→0, respectively. The extra factor in (c6b) contributes

S q1/2z21/26q21/2z1/2

q1/2z1/26q21/2z21/2D
z→6`

56q71. ~7.8!
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The ratios of the infinite products@considering the leading term in~7.4! for n<k] give ~for
u→6`, respectively! for both ~7.6! and ~7.7! a factor

lim
k→`

q72k. ~7.9!

However, we are still free to choose an overall normalizing factor. One can choose
example, a factor (a1d)21. Such a factor absorbs the limiting factor~7.9!. From ~7.8! and~7.9!,
for

~a8,b8,c8,d8!5~a1d!21~a,b,c,d!, ~7.10!

lim
u→6`

~a8,b8,c8,d8!5~1,q71,0,0!. ~7.11!

Note that since (a(z)1d(z)) i.e., (a(u)1d(u)) is itself of the formx(u)(x(2u))21, such a
normalization conserves the unitarity~1.14! already satisfied by (a,b, c,d).

However, if one prefers to maintain the simpler symmetry of the parametrization~7.6! and
~7.7! one may choose to absorb the factors~7.9! by a normalizing factor, say

~q2z;1!`

~q2z21;1!`
. ~7.12!

This conserves~1.14! andagain gives the right hand side of~7.11! as limits @for (a,b,c,d)
normalized by~7.12!#. This is a particularly simple choice albeit, evidently, not unique. We do
propose to examine here normalizations adopted in the cited sources.

After such a normalization one obtains

lim
u→6`

~PR̂~u!!5diag~1,q71,q71,1!. ~7.13!

Thus indeed one finds again a diagonalYB matrix. Compare~6.7! and the comments preced
ing ~5.8!.

The diagonalizerM of ~6.9! gives now with any normalization factorN and ~7.2!

MR̂~u!M 215N diag~a1d,c1b,c2b,a2d!. ~7.14!

VIII. A NESTED SEQUENCE OF PROJECTORS FOR HIGHER DIMENSIONS

The eight-vertex matrix has complex features due to the presence of four functions (a,b,c,d)
and their realizations in terms of elliptic functions. On the other hand, its symmetry perm
spectral resolution on a basis of particularly simple symmetrical projectors withconstantelements
('61). For N23N2 matrices withN.2 one can construct different types of generalization
such a basis with constant elements. One example can be easily extracted from the mu
model presented in Sec. 4 of Ref. 16~where original sources are cited!. Let us consider the
simplest such case (N53).

Let Ei j be the matrices defined below~1.3!. A set of projectors satisfying~1.4! and suitable for
the specral decomposition of a particular class of 939 R̂(u) is

2P1(6)5~E111E996E196E91!, 2P2(6)5~E221E446E246E42!,
~8.1!

2P3(6)5~E331E776E376E73!, 2P4(6)5~E661E886E686E86!, P555E55.

Generalizations forN.3 are not difficult to write down.
Additional simplifications arise in~4.1! of Ref. 16 since the functions of~g,u! implemented

are of the six-vertex type. One feature should be noted. The action ofP for N53 interchanges the
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rows~2,4!, ~3,7! and~6,8!. Hence when the basis~8.1! is implementedR̂ andR(5PR̂) have fairly
analogous structures~as for the 434 six- and eight-vertex matrices!. Such a feature, though wort
noting, is not essential and is indeed not present in the standard cases of Sec. II. Ins
presenting full details concerning the above-mentioned possibility, we briefly present anothe
For N52 this coincides with~6.1!. This basis doesnot have~for N.2) the simple property of
~8.1! and its generalizations forN.3 under the action ofP. But it exhibits a particularly simple
canonical nested structure. The prescription for diagonalization is also particularly simple.

For n5N252l define

2Pi (6)5~Eii 1En2 i 11,n2 i 116Ei ,n2 i 116En2 i 11,i !, ~ i 51,2,. . . ,l !. ~8.2!

For n52l 11 one has in addition

Pl 115El 11,l 11 . ~8.3!

To diagonalize this set satisfying~1.4! now define

&M5&M 215(
i 51

l

~Eii 1Ei ,n2 i 111En2 i 11,i2En2 i 11,n2 i 11!1El 11,l 11 . ~8.4!

For n52l , the last term is absent.
One obtains

M Pi (1)M
215Ei ,i , M Pi (2)M

215En2 i 11,n2 i 11 ~ i 51,2,..l !. ~8.5!

When it is present,Pl 11 is already diagonal and commutes withM . Hence, if~with the last term
present only for oddn and with«56)

R̂~z!5(
i 51

l

(
«

S f i («)~z!

f i («)~z21!
Pi («)D1

f l 11~z!

f l 11~z21!
Pl 11 , ~8.6!

MR̂~z!M 215(
i 51

l S f i (1)~z!

f i (1)~z21!
Eii 1

f i (2)~z!

f i (2)~z21!
En2 i 11,n2 i 11D1

f l 11~z!

f l 11~z21!
El 11,l 11 . ~8.7!

The two sets@the one generalizing~8.1! for all n and the one given by~8.2! and~8.3!# can be
shown to be related through a similarity transformation. But the matrix of conjugation doe
possess a tensored structureG^ G ~and hence the tensored components of the base space a
transformed individually!. The question of existence and construction of solutions of~1.1! for the
parametrization~8.6! is beyond the scope of this article.

Let us conclude with a closer look at the simplest nontrivial case. ForN53, with a maximum
number of functions in the coefficients and suppressing arguments@x(u)5x and so on#,

R̂~u!5(
«

~~x1«y!P1(«)1~u1«v !P2(«)1~a1«d!P3(«)1~c1«b!P4(«)!1wP5 . ~8.8!

The diagonalizer is
                                                                                                                



&M5&M 2151
1 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0

0 0 1 0 0 0 1 0 0

0 0 0 1 0 1 0 0 0

0 0 0 0 & 0 0 0 0

0 0 0 1 0 21 0 0 0

0 0 1 0 0 0 21 0 0 2 . ~8.9!
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0 1 0 0 0 0 0 21 0

1 0 0 0 0 0 0 0 21

This generalizes~6.9! as one moves up from the 434 to the 939 case in our sequence. No
the central element@at ~55!# appearing for oddn(59):

MR̂~u!M 215diag~~x1y!,~u1v !,~a1d!,~c1b!,w,~c2b!,~a2d!,~u2v !,~x2y!!.
~8.10!

If, say,y50 one can redefine (P1(1)1P1(2)) as a single projectorP(1) and so on@continuing
to satisfy~1.4!#. The number of functions available increases with the number of projectors, b
does the number of constraints due to the braid equation~1.1!. Let us note, however, that fo
SOq(N) and Spq(N) after fixing the normalization one has only two functions to satisfy fo
complicated functional equations.1 Yet one emerges withthree independent solutions in both th
cases~Secs. II and III!. A close study of particular cases in the present context might also lea
interesting possibilities. One recognizes~7.2! and ~7.14! as subcases of~8.8! and ~8.10!, respec-
tively.

IX. DIAGONALIZATION AND FACTORIZATION

Diagonalization of braid matrices was studied in Ref. 1. It was used to elucidate ce
aspects of associated noncommutative spaces. Here it will be studied in the context of fac
tion.

For the 434 matrices~Secs. IV–VII! the diagonalizerM has been presented for each ca
explicitly. In Sec. VIII M has been obtained for the nested sequence explicitly for arbitray dim
sions. The results for the lower dimensional cases of (A,B,C,D)q type algebras are collected i
Appendix B. We will see how the diagonalizer leads to a striking structure for each fact
~1.12!. But to start with it is worthwhile to recapitulate some basic features noted in Ref. 1.

~i! From ~1.6! and~1.7! it is evident that if there exists an invertible matrixM diagonalizing
R̂(u) it must diagonalize each projectorPi separately.

~ii ! A projector, when diagonalized, can have only11 or 0 as diagonal elements.
~iii ! The number of unit elements on the diagonal is equal to the trace of the proje

obligatorily a positive integer. For differentPi in ~1.4! these elements can never coincide due
orthogonality. In standard notations10 one has for GLq(N)

P(1)1P(2)5I N23N2 ~9.1!

with

2TrP(6)5N~N61!. ~9.2!

For SOq(N) and Spq(N52n) one has

P(1)1P(2)1P05I N23N2, ~9.3!
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and withe561 respectively@as below~3.1!#

2TrP(6)5N~N61!7~e61!, TrP051. ~9.4!

~iv! If necessary, implementing a simple supplementary conjugation the elements o
diagonal can be reordered. Exploiting this possibility we introduce the following convention

For GLq(N) the unit elements ofP(2) are grouped at the top, followed by those ofP(1) .
Thus for GLq(3) and

R̂~u!5P(1)1vP(2) , ~9.5!

onceM is constructed we obtain

MR̂~u!M 215diag~v,v,v,1,1,1,1,1,1,!. ~9.6!

For SOq and Spq the chosen ordering is (P0 ,P(2) ,P(1)). Thus for SOq(3) and

R̂~u!5P(1)1vP(2)1wP(0) , ~9.7!

MR̂~u!M 215diag~w,v,v,v,1,1,1,1,1!. ~9.8!

Generalizations are evident.
~v! Since each diagonalizedPi ~denoted below byDi) is thuscompletelyfixed beforehand one

can ~assuming the invertibility ofM to be confirmeda posteriori! write separately for eachPi

with the sameM ,

M Pi5DiM . ~9.9!

Here bothPi andDi are known giving explicitlinear constraints on the elements ofM . One
avoids the construction ofM 21 to start with.

~vi! The block structures in~9.6! and~9.8! and their evident generalizations reveal the ext
to which M is arbitrary:

Let Mi denote a matrix of dimension (TrPi3TrPi), with a nonzero determinant but wit
otherwisearbitrary elements. Then, in obvious notations, a supplementary conjugation of~9.6! by
a block-diagonal (bd) matrix

~M (2) ,M (1)!(bd) ~9.10!

and one of~9.8! by

~M (0) ,M (2) ,M (1)!(bd) ~9.11!

leaves the diagonal forms invariant.
~vii ! The arbitrariness thus exhibited, instead of being a source of embarrassment, pro

wide margin of maneuver exploitable to select anM with particularly attractive properties. W
choose the following canonical feature:

mutual orthogonality of the rows of M.

@Except for the complex, unitaryM of ~4.9! for the exoticS03 such an orthogonality holds for a
the cases we study.#

Agreeable consequences are the following.
~1! The inverse ofM is obtained effortlessly. The prescription is: Take the transposeMT of M .

Normalize each element of the columnj of MT by thesamefactor cj such that for eachj
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S (
i

M i j
2 D cj51. ~9.12!

Thus one obtainsM 21. Examples can be found in Ref. 1.
~2! Each row ofM , transposed to a column, provides an eigenvector ofM and all together a

complete set.

A. Consequences for factorization

For

R̂~u!5(
i

f i~u!

f i~2u!
Pi , ~9.13!

MR̂~u!M 215diagS f 1~u!

f 1~2u!
, . . . ;

f 2~u!

f 2~2u!
, . . . ; . . .D . ~9.14!

Here the multiplicity of f i(u) is equal toTrPi . Note thatM is independentof u. It diago-
nalizes eachPi ~independent ofu! and hence alsoR̂.

Define

D~u!5diag~ f 1~u!, . . . ;f 2~u!, . . . ; . . .!, M ~u!5D~u!M . ~9.15!

Now, starting with~1.13!,

R̂~u!5~F~2u!!21F~u!5~M 21D~2u!M !21~M 21D~u!M !5~M ~2u!!21M ~u!. ~9.16!

In each factor allu-dependence is thus again factorized in a diagonal matrixD(u). Some
consequences will be studied in the following sections.

X. L -OPERATORS

Here we indicate the general features that arise as one implements our formalism
construction of L-operators. It is well known that the FRT definitions10 @with their R(1)

5(PRP) and withL2
«5PL1

«P]

~PRP!L1
6L2

65L2
6L1

6~PRP!, ~PRP!L1
1L2

25L2
2L1

1~PRP! ~10.1!

give in terms ofR̂5PR

R̂L2
6L1

65L2
6L1

6R̂, R̂L2
1L1

25L2
2L1

1R̂. ~10.2!

Taking one more step we define~with «56 below!

L2
«P5PL1

«[L̂« ~10.3!

when

L2
«L1

«85L2
«PPL1

«85L̂«L̂«8

and

R̂L̂«L̂«5L̂«L̂«R̂, R̂L̂1L̂25L̂2L̂1R̂. ~10.4!

All this is before Baxterization. When the spectral parameter is introduced a more ge
formulation is
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R̂~u2u8!L̂«~u!L̂«~u8!5L̂«~u8!L̂«~u!R̂~u2u8!,

R̂~u2u8!L̂1~u!L̂2~u8!5L̂2~u8!L̂1~u!R̂~u2u8!. ~10.5!

~For affine cases extra factorsq6c can appear in the argument ofR̂ in the last equation. But the
above formulation suffices to illustrate our approach.!

One can introduce a development such as

L̂«~u!5
1

r~u! (
n>0

~ L̂ («,n)e
nu1L̂ («,2n)e

2nu!. ~10.6!

But for clarity in our illustrative approach let us concentrate on a particularly simple ca20

When the spectral basis on the right of~1.9! has only two projectors,R̂(u) can be expressed quit
simply in terms ofR̂61. @A more general result is obtained~3.49! of Ref. 1.# Thus for GLq(N)
from ~2.1! one obtains

R̂~u!5
eh1uR̂2e2h2uR̂21

eh1u2e2h2u . ~10.7!

From ~3.3! @redefining (P11P2) asP1 , say# one obtains for this new class of solutions

R̂~u!5P11
sinh~h2u!

sinh~h1u!
P05

e(h1u)R̂2e(2h2u)R̂21

e(h1u)2e(2h2u) . ~10.8!

Hereh is defined for SOq(N) and Spq(N) as in~3.1! and~3.2!. @SettingR̂(0)5I one obtains
the linear relation betweenR̂ and R̂21.] For such cases, defining@analogously to~3.5.9! of Ref.
20, but in terms of ourL̂]

L̂~u![~euL̂12e2uL̂2!, ~10.9!

all the three relations~10.4! can be encapsulated in thesingleone

R̂~u2u8!L̂~u!L̂~u8!5L̂~u8!L̂~u!R̂~u2u8!. ~10.10!

@As ~10.10! is developed, inserting~10.8! and ~10.9!, the termsL̂6L̂7 appear in ‘‘wrong
order,’’ R̂L̂2L̂1 and so on. Now, expressingR̂ in terms ofR̂21 and vice versa, one can extract th
relations~10.4! with different factors depending on arbitrary (u,u8).]

We will use this compact formulation adapted to our special class of braid matrices~Sec. III!
to illustrate the consequences of our formalism. For more general cases@see~10.5! and~10.6!# the
basic features will be analogous along with more elaborate sets of equations. Some indi
will be given of such generalizations. Let us, however, come back to our special case:

Implementing~10.8! in ~10.10! one obtains

P0~ L̂~u!L̂~u8!2L̂~u8!L̂~u!!P050,

P1~ L̂~u!L̂~u8!2L̂~u8!L̂~u!!P150,
~10.11!

P0~~eh2u1u82e2h1u2u8!L̂~u!L̂~u8!2~eh1u2u82e2h2u1u8!L̂~u8!L̂~u!!P150,

P1~~eh1u2u82e2h2u1u8!L̂~u!L̂~u8!2~eh2u1u82e2h1u2u8!L̂~u8!L̂~u!!P050.
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Here, as in the general case~10.21! below, the constraints are exhaustive due to the resolu
of the identity provided by(Pi5I . This aspect is evident in the equivalent form obtained be
@~10.17!–~10.19!# via diagonalization.

Here thePi do not depend onu but only onq. So now implementing~10.9! dependence on
(u,u8) becomes entirely explicit. The coefficients ofe(nu1n8u8) for different (n,n8) must vanish
separately. Only the factorse6h, given by~3.1! and ~3.2! as

tanhh5A~124~@N2e#1e!22! ~10.12!

andq-dependent through@N2e#, characterize theL-algebra for this specific class of solutions
As emphasized in Sec. III, this class remains nontrivial even forq51. Now for both cases

(e561), denotingh as ĥ for q51,

tanhĥ56N21AN224. ~10.13!

But the projectors (P̂0 ,P̂1) are still different for the two cases (SOq ,Spq).
We now present the consequences of diagonalization~Sec. IX!. Both for SOq(N) and Spq(N)

~remembering thatP15P11P2) one obtains

M P0M 215diag~1,0,. . . ,0!, M P1M 215diag~0,1,. . . ,1! ~10.14!

with

TrP051, TrP15N221. ~10.15!

@Explicit expression forM are given, in Appendix B, only for SOq(3),SOq(4) and Spq(4).]
Define

K~u!5ML̂~u!M 215eu~ML̂1M 21!2e2u~ML̂2M 21!. ~10.16!

Here M is different for SOq(N) and Spq(N). See Sec. IX and our particularly simple pr
scription forM 21 when the rows ofM are mutually orthogonal. Our diagonalization leads to

~K~u!K~u8!2K~u8!K~u!! i j 50, ~ i , j !5~1,1! ~ i .1, j .1!, ~10.17!

and for j .1 to

~~eh2u1u82e2h1u2u8!K~u!K~u8!2~eh1u2u82e2h2u1u8!K~u8!K~u!!1 j50, ~10.18!

~~eh1u2u82e2h2u1u8!K~u!K~u8!2~eh2u1u82e2h1u2u8!K~u8!K~u!! j 150. ~10.19!

This is the most compact form of the constraints on theL-operators. Those on the elements
L̂(u) are now obtained from

L̂~u!5M 21K̂~u!M .

Then one can implement Gauss decomposition, if so desired, for the elements ofL6 to obtain
results more directly comparable to those for standard cases. Butall information is encapsulated in
~10.17!–~10.19!. All u-dependence can be extracted as exponential factors giving the final
straints as coefficients. For SOq(3), for example, our equations furnish the 16~for j 52, . . . ,9)
constraints which involveh.

For the more general case@~10.5!–~10.7!#, where

R̂~u!5(
i

p
f i~u!

f i~2u!
Pi , ~10.20!
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the set~10.11! is generalized to the followingp2 constraints:

Pi~ f i~u2u8! f j~2u1u8!L̂«~u!L̂«8~u8!2 f i~2u1u8! f j~u2u8!L̂«8~u8!L̂«~u!!Pj50,
~10.21!

where

~«,«8!5~~11 !,~22 !,~12 !! ~ i , j 51, . . . ,p!.

Diagonalization and the definition

K«~u!5ML̂«~u!M 215
1

r~u! (n
~ML̂«,nM 21enu1ML̂«,2nM 21e2nu! ~10.22!

reduce~10.21! to

f i~u2u8! f j~2u1u8!~K«~u!K«8~u8!! i 8, j 82 f i~2u1u8! f j~u2u8!~K«8~u8!K«~u!! i 8, j 850.
~10.23!

Here, for a given (i , j ), the ranges of (i 8, j 8) are fixed byTrPi , TrPj and the order chosen
~Sec. IX and Appendix B! for the elements unity in diagonalizing the projectors. A simple exam
is provided by~10.18! and ~10.19!. If the expansion~10.22! is a finite series@~10.9! being an
extreme example#, one can extract the limits foru and (u2u8)→6`, since the dependence o
these parameters can be made explicit as factored coefficients. But for a correct extract
functions f i(u) have to be properly defined@as noted below~1.33!#.

XI. TRANSFER MATRICES AND DIAGONALIZATION

A. General formulation

We start by introducing notations analogous to those of Sec. X for the row-to-row tra
matrix T(L)(u), satisfying

R̂~u2u8!~T(L)~u! ^ T(L)~u8!!5~T(L)~u!8^ T(L)~u!!R̂~u2u8!. ~11.1!

Here, apart from evident analogies~since we have again a class ofL-functions!, specific
features arise concerning the component blocks ofT(L). The dimensions of the blocks increas
with the length of the row according to standard prescriptions.

Matrix multiplication for aN23N2 matrix R̂(u) is defined by labelingT(L) for any L by N2

blocks. If I be theN3N unit matrix,

T(L)~u! ^ T(L)~u8!5~T(L)~u! ^ I !~ I ^ T(L)~u8!!5~P~ I ^ T(L)~u!P!~P~T(L)~u8! ^ I !P!

5~P~ I ^ T(L)~u!!~~T(L)~u8! ^ I !P!5~PT2
(L)~u!!~T1

L~u8!P!

5T̂(L)~u!T̂(L)~u8!, ~11.2!

where

T̂(L)[PT2
(L)5T1

(L)P

areN23N2 matrices in terms of blocks ofT(L).
Thus,

R̂~u2u8!~ T̂(L)~u!T̂(L)~u8!!5~ T̂(L)~u!8T̂(L)~u!!R̂~u2u8!. ~11.3!
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Thus the mixture of matrix multiplication and tensor product in~11.1! has been rephrased a
matrix multiplications ofR̂ and T̂. Instead of (T1 ,T2), the sameT̂ now appears throughout.

For ~1.9!, namely,

R̂~u!5(
i 51

p
f i~u!

f i~2u!
Pi , ~11.4!

one obtains, as in Sec. X, a complete set ofp2 constraints

Pi~ f i~u2u8! f j~2u1u8!T̂(L)~u!T̂(L)~u8!2 f i~2u1u8! f j~u2u8!T̂(L)~u8!T̂(L)~u!!Pj50.
~11.5!

Using the diagonalizerM of the braid matrix~Sec. IX and Appendix B! define

R̂d~u!5MR̂~u!M 21, K̂ (L)~u!5MT̂(L)~u!M 21. ~11.6!

One obtains from~11.3!, in terms of thediagonalmatrix R̂d ,

R̂d~u2u8!~K̂ (L)~u!K̂ (L)~u8!!5~K̂ (L)~u!8K̂ (L)~u!!R̂d~u2u8!. ~11.7!

This corresponds to

f i~u2u8! f j~2u1u8!~K̂ (L)~u!K̂~L !~u8!! i 8 j 82 f i~2u1u8! f j~u2u8!~K̂ (L)~u8!K̂ (L)~u!! i 8 j 850.
~11.8!

We have explained below~10.23! of Sec. X how the domain of (i 8 j 8) depends on the
conventions adopted for the diagonalizations of the projectorsPi andPj . It was also pointed out
before that such a set of constraints is exhaustive.

The elements ofK̂ (L)(u) are linear combinations of those ofT(L)(u), the coefficients being
independent ofu ~sinceM is so!. The bilinear algebraic relations due to~11.1! betweenTi j

(L)(u)
attain their simplest form in~11.8! in terms of these linear combinations. Construction o
‘‘ K̂-basis’’ ~a complete set of states specifically adapted to the action of the blocks ofK̂) would
permit a full exploitation of~11.8!.

B. Particular cases

We now consider two particular cases. The first one is chosen because it is familia
extensively studied. The content of~11.8! for the six-vertex case can be compared to well-kno
results.~See Refs. 7–9 and 16 and basic sources cited in these references.! The second one is
chosen as a relatively simple but new example of a multi-state model. It corresponds to our
class of solutions~Sec. III! for SOq(3). This can be compared to a different class of multist
models.16

1. The six-vertex case

Inserting in~11.6! the results of Sec. VI withM given by ~6.9!,

R̂d~u2u8!5diag~1,u,v,1! ~11.9!

where

u5
cosh1

2 ~g2u1u8!

cosh1
2 ~g1u2u8!

, v5
sinh1

2 ~g2u1u8!

sinh1
2 ~g1u2u8!

. ~11.10!
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@Other interesting choices ofM are possible. But~6.9! is adequate for our present purpose#
Now let

T̂(L)~u!5S A B

C DD , ~11.11!

where each entry is a 2L32L block obtained according to standard prescriptions~e.g., Secs. 2 and
3 of Ref. 16!. From ~6.9!, ~11.2! and ~11.6! one obtains

2K̂ (L)~u!5S A1D B1C B2C A2D

B1C A1D D2A C2B

B2C A2D 2A2D 2B2C

A2D B2C B1C A1D

D ~11.12!

5~A1D !S s0 0

0 2s3
D 1~A2D !S 0 2s2

s1 0 D 1~B1C!S s1 0

0 s2
D 1~B2C!S 0 s3

s0 0 D ,

~11.13!

where

s05S 1 0

0 1D , s35S 1 0

0 21D , s15S 0 1

1 0D , s25S 0 21

1 0 D .

Note that

TrK̂ (L)~u!5Tr~A1D !5TrT(L)~u!,

and if V is an eigenvector ofK̂(u), thenM 21V is one ofT̂(L)(u).
Now ~11.8! reduces to

~K̂ (L)~u!K̂~L !~u8!2xK̂(L)~u8!K̂ (L)~u!! i j 50, ~11.14!

where, (u,v) being given by~11.10!, one obtainsx as follows for values of (i , j ) indicated at right:

x51, ~ i , j !5~1,1!,~2,2!,~3,3!,~4,4!,~1,4!,~4,1!;

x5u, ~ i , j !5~1,2!,~4,2!; x5u21, ~ i , j !5~2,1!,~2,4!;
~11.15!

x5v, ~ i , j !5~1,3!,~4,3!; x5v21, ~ i , j !5~3,1!,~3,4!;

x5
u

v
, ~ i , j !5~3,2!; x5

v
u

, ~ i , j !5~2,3!.

Thus we obtain the simplest form of the constraints implied by~11.1! or ~11.3!.

2. A special class of multistate models [ SOq„3… example]

We consider now the class of braid matrices presented in Sec. III and explicitly diagon
for SOq(3), aswell as for SOq(4), in Appendix B. @We consider only SOq(N). For Spq(N)
certain states have negative weights.# The precise way in which the model is ‘‘nonminimal,’’ with
more than two possible states per link, will be explained at the end by comparing it with an
class of models studied in Sec. IV of Ref. 16~where original sources are cited!.

We start with~B8!–~B10!. Using the notations of~10.8! the braid matrix is~with h defined in
Sec. III!
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R̂~u!5P11
sinh~h2u!

sinh~h1u!
P05I 1S sinh~h2u!

sinh~h1u!
21D P0 . ~11.16!

For N53 ~see Sec. 4 of Ref. 1!,

~q1q2111!P05q21E11^ E331q21/2E12^ E321E13^ E311q21/2E21^ E231E22^ E221q1/2E23

^ E211E31^ E131q1/2E32^ E121qE33^ E11. ~11.17!

Settinge51 andN53 in ~3.1! and ~3.2!,

2 coshh5~q1q2111!, ~11.18!

and forM given by ~B10!

MR̂~u!M 215diagS sinh~h2u!

sinh~h1u!
,1,1,1,1,1,1,1,1D . ~11.19!

Hence~11.8! reduces to

~K̂ (L)~u!K̂~L !~u8!2K (L)~u8!K̂ (L)~u!! i j 50 ~11.20!

for ( i , j )5(1,1) and fori .1, j .1. For j 5(2,3,. . . ,9) one obtains

~sinh~h2u1u8!K̂ (L)~u!K̂ (L)~u8!2sinh~h1u2u8!K̂ (L)~u8!K̂ (L)~u!!1 j50, ~11.21!

~sinh~h1u2u8!K̂ (L)~u!K̂ (L)~u8!2sinh~h2u1u8!K̂ (L)~u8!K̂ (L)~u!! j 150. ~11.22!

Thus we obtain the complete set of constraints in the simplest and the most compact form
foregoing structure is directly generalizable to allN. But for N.4 one has either to construct th
correspondingM or to use~11.5! with ~11.16!. A study of theK̂-basis adapted to the foregoing s
of constraints is beyond the scope of this article. We conclude with some comments and co
sons.

In six- or eight-vertex models two states are possible for each link. But nonzero Boltzm
weights are associated to a subset of the 24 elements of the braid matrix. When three states
possible per link~of a plane lattice! one can implement a 939 matrix ~with 34 elements! attrib-
uting again nonzero weights to a subset of the possible states, corresponding to the n
elements of the matrix.

The number of nonzero elements in~11.16! is 15(53(2.321)). For SOq(N) this number, for
our class of solution of Sec. III, isN(2N21). In Sec. 4 of Ref. 16 a class of models is studi
where one has precisely the same number of nonzero weights out ofN4 elements~with the symbol
q for our N). Apart from this feature, the block structure in~4.12! of Ref. 16 @namely,
(11),(1j ),( j 1),(i j ) with ( i .1, j .1)] corresponds also to the structure of our set of constra
@~11.20!–~11.22!# for K̂(u). We will not study here the different possibilities concerning blo
structures but emphasize that in spite of the foregoing features the two classes are ba
different. ForN52 that of Ref. 16 reduces to the six-vertex case, whereras our special clas
not exist. Ours is obtained for SOq(N) and for allN>3 can be diagonalized to the form~11.19!
with (N221) unit elements.

Finally let us note the situation forq51. As pointed out at the end of Sec. III, this class
R̂(u) remains nontrivial, even quite interesting, forq51. There is, of course, additional simplicity
Thus denoting (P0 ,h) for q51 by (P̂0 ,ĥ) one obtains for SO~3!, for example,
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3P̂05E11^ E331E12^ E321E13^ E311E21^ E231E22^ E22

1E23^ E211E31^ E131E32^ E121E33^ E11 ~11.23!

and

coshĥ5
3

2
, sinhĥ5

A5

2
. ~11.24!

It is amusing to note the relation of sinhĥ with the Golden Mean.

XII. REMARKS

The first essential step in our approach has been the spectral decomposition of the
matricesR̂(u), obtaining the coefficient of the projectorPi in the form of a ratiof i(u)/ f i(2u).

The next major step was diagonalization. But here again the projectors play a basic rol
fact that the same matrixM must diagonalize each projector appearing in the decompos
permits a systematic extraction of the necessary constraints onM and also the exploitation of the
remaining freedom in an efficient fashion. This is explained in detail in Sec. IX. Along
diagonalization a remarkable new feature arises in the factorization. In each factor the depe
on the spectral parameteru can again be factorized out as a diagonal matrix by implementing
diagonalizer.

Various directions opened up deserve further exploration. The present work, despite its
stops short at various points. Applications of our formalism toL-operators and to transfer matrice
have merely been adumbrated. Thus the introduction of basis states specifically adapted
form of the constraints obtained~‘‘ K̂-basis’’! can be particularly helpful. For the braid matrices
Sec. II the diagonalizers have been constructed explicitly~Appendix B! only for lower dimen-
sions. While for GLq(N) the general prescription should not be difficult to obtain, for SOq(2n
11), SOq(2n) and Spq(2n) one has, among other things, to obtain the mutually orthogo
(2n11)-plets and 2n-plets~Appendix B!. The problem of solving the braid equation~1.1! imple-
menting the nested sequence of projectors of Sec. VIII has not been addressed.

We hope to study elsewhere some of the aspects mentioned above. But let us take fi
look back at the factorization phenomenon. We have exhibited our type of factorization esse
for all interesting cases. One may ask why it is present systematically? The answer at a g
level has already been noted below~1.10! and in ~1.11!. This involves also~1.5! and ~1.6!. For
braid matrices with simple roots, for~1.5!, one has always a spectral decomposition. And t
directly implies the possibility of factorizing such matrices in an unlimited number of ways.
have indeed studied braid matrices with multiple roots14 without straightforward spectral decom
positions. But they constitute a very restricted set of special cases. Even among the ‘‘ex
there are other spectrally decomposable cases.15 This is one reason for displaying the latter ones
Sec. IV. But one may yet ask why in spectral decompositions the form~1.8!, namely, f i(u)/
f i(2u), of the coefficients, leading to~1.12!, is ubiquitous? In this context one should rememb
that if R̂ is a solution of the braid equation~1.1!, then R̂21 is also one. Hence if the genera
solution of the functional constraints of Baxterization is obtained~as in Ref. 1, for example! in
terms of a single parameter,u then one must be able to invertR̂ by suitably changingu. The
simplest and most elegantly symmetrical form is obtained in a parametrization wheresuch an
inversion corresponds simply to a change of sign ofu. This is precisely what is achieved by~1.9!.
This in turn immediately gives~1.12!. The non-Baxterized standard braid matrices~each one with
its inverse! are then obtained~as shown always explicitly in the preceding sections! for the two
limiting valuesu→6`. The very naturalness of the factorization thus obtained should incite
to search for applications revealing its full significance. Our diagonalizations, directly relat
spectral decomposition and hence inevitably to the factorization, increase the scope signifi
Concerning such applications we have made a beginning in Secs. X and XI.
                                                                                                                



s

e.

its

ple

5346 J. Math. Phys., Vol. 44, No. 11, November 2003 A. Chakrabarti

                    
APPENDIX A: COMPARISON WITH TRIANGULAR FACTORIZATION

We compare here our factorization scheme with that proposed by Mailletet al.7,8 We start with
notations and general features.

For ourRq(u), whereq5eh, define

z15e(h2u), z25e(h1u). ~A1!

Then as

u→2u, ~z1 ,z2!→~z2 ,z1!. ~A2!

The unitarity~1.14! is now ~in terms ofR5PR̂)

R21~z2 ,z1!R12~z1 ,z2!5I . ~A3!

In Refs. 7 and 8 the proposed factorization is

R12~z1 ,z2!5~F21~z2 ,z1!!21F12~z1 ,z2!, ~A4!

where the aim is to obtain lower triangularF12. Our ~1.12! corresponds~implicitly with a different
F) to

R12~z1 ,z2!5~F21~z2 ,z1!!21PF12~z1 ,z2!. ~A5!

Note the presence ofP in ~A5!. In a complementary fashion, for the braid matrix~A4! leads
to

R̂12~z1 ,z2!5~F12~z2 ,z1!!21PF12~z1 ,z2! ~A6!

as compared to our~1.12!

R̂12~z1 ,z2!5~F12~z2 ,z1!!21F12~z1 ,z2!. ~A7!

This last form permits us to fully exploit the spectral decomposition.
Let us note the following features:
~i! Given aR(z1 ,z2) one has to extractF(z1 ,z2) from ~A4!. For higher dimensions this~and

in particular the explicit construction ofF21) is difficult. So, assuming invertibility, the author
start from

~F21~z2 ,z1!!R12~z1 ,z2!5F12~z1 ,z2!. ~A8!

For the 434 matrix of the six-vertex model~see our Sec. VI! explicit triangular factors in
~A4! are obtained. For constructing transfer matrices ‘‘partial’’F-matrices are defined.

Given our Baxterization,our type of factorization is obtained effortlessly as a byproduct. In
Ref. 1 the forms~1.9! ~reproduced here in Secs. II and III! were obtained in a quest for eleganc
Factorization was not a goal.

~ii ! The limiting casesu→6` corresponds to (z1 ,z2)→(0,̀ ),(`,0), respectively. We have
systematically extracted the standard~non-Baxterized! braid matrices as the corresponding lim
of theu-dependent braid matrices~Secs. II–VII! and explained in what sense precisely~Sec. I! the
factorization can still be considered to be conserved.

~iii ! It is instructive to compare different types of factorization explicitly for the sim
example of the six-vertex matrix.

Setting u5(l2m) in ~69! of Ref. 7 one obtains from~89! and ~90! of Ref. 7, using a
block-diagonal notation,
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F12~u!5~1,B,1!bd , ~A9!

where the 232 block B is

B5S 1 0

sinhh

sinh~h1u!

sinhu

sinh~h1u!
D . ~A10!

Using the results of Sec. VI one obtains for ourF,

F~u!5~1,C,1!bd , ~A11!

where

C5S e1/2(g2u) e21/2(g2u)

e21/2(g2u) e1/2(g2u) D . ~A12!

~iv! Define the diagonal matrices

D~u!5diag~1,cosh1
2 ~g2u!,sinh1

2 ~g2u!,1! , ~A13!

~D~2u!!215diag~1,~cosh1
2 ~g1u!!21,~sinh1

2 ~g1u!!21,1!. ~A14!

Now, using theM of ~6.9!, R̂(u) of ~6.5! and using~6.10!, one can write~with an M
independent ofu!

R̂~u!5~M 21~D~2u!!21!~D~u!M ![~M ~2u!!21M ~u!. ~A15!

Now in each factorM (u) all u-dependence is again factorized as a diagonal matrix. This
general feature of this approach.

We have compared different types of factorization. One can hope to implement fruitfu
different contexts their complementary features such as those indicated above.

APPENDIX B: EXPLICIT DIAGONALIZATIONS

In Sec. IX general aspects of diagonalization of braid matrices have been presented. H
give explicit expressions for matricesM diagonalizing R̂(u) for GLq(2), GLq(3), SOq(3),
SOq(4) and Spq(4).

The result for GLq(2) effectively appears in Sec. V in a form suited to the context. Here
give an equivalent form consistent with the canonical convention of Sec. IX@see~9.5! and~9.6!#.
Though we stop with GLq(3), one can see thegeneral structure ofM for GLq(n) emerging. For
the orthogonal and the symplectic cases the situation will be discussed at the end.

In each case below the rows of M will be mutually orthogonal.
HenceM 21, always given by the prescription~9.12!, will not be displayed explicitly.
For GLq(n) we adopt@with the matricesEi j defined below~1.3!# the normalization

Rq5(
i

Eii ^ Eii 1q21(
iÞ j

Eii ^ Ej j 1~12q22!(
j . i

Ei j ^ Eji . ~B1!

The braid matrix is

R̂q5PRq5P(1)2q22P(2) . ~B2!

With the notations of Sec. II,
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R̂q~u!5P(1)1
sinh~h2u!

sinh~h1u!
P(2)[P(1)1v~u!P(2) . ~B3!

The projectors depend onq(5eh) but not onu.
For n52 and

M5~E122q21E13!1~E221qE23!1E311E44, ~B4!

MR̂q~u!M 215diag~v~u!,1,1,1!. ~B5!

For n53 and

M5~E122q21E14!1~E232q21E27!1~E362q21E38!

1~E421qE44!1~E531qE57!1~E661qE68!1E711E851E99, ~B6!

MR̂q~u!M 215diag~v~u!,v~u!,v~u!,1,1,1,1,1,1!. ~B7!

The emerging general structure ofM for GLq(n) is as follows:
There are1

2n(n21) rows with two nonzero elements (1,2q21), suitably shifted horizontally
in successive rows to assure mutual orthogonality. Then there are1

2n(n21) rows with two non-
zero elements (1,q) in the corresponding columns@as in~B6!#. Then there aren rows with a single
nonzero element 1 in otherwise empty columns.

For SOq(3), SOq(4), and Spq(4)

R̂q~u!5P(1)1v~u!P(2)1w~u!P(0) . ~B8!

For the orthogonal case the three possibilities forv(u) andw(u) are given~with n53 and
n54, respectively! by ~2.2!, ~2.3!, and also~3.3! with e51. For the symplectic case the releva
equations are~2.4!, ~2.5! ~N.B. with n52 there! and ~3.3! with e521.

For SOq(3) define

s52q21/2~12q!, t52q23/2~11q!. ~B9!

Now,

M5~E131q1/2E151qE17!1~E222qE24!1~E362qE38!1~E431sE452E47!

1E511~E621q21E64!1~E731tE751q22E77!1~E861q21E88!1E99 ~B10!

gives

MR̂q~u!M 215diag~w~u!,v~u!,v~u!,v~u!,1,1,1,1,1!. ~B11!

For SOq(4)

M5~E141qE171qE1,101q2E1,13!1~E241qE272q21E2,102E2,13!1~E322qE35!1~E432qE49!

1~E582qE5,14!1~E6,122qE6,15!1~E742q21E771qE7,102E7,13!1E811~E921q21E95!

1~E10,31q21E10,9!1~E11,42q21E11,72q21E11,101q22E11,13!1~E12,81q21E12,14!

1~E13,121q21E13,15!1E14,111E15,61E16,16 ~B12!

gives

MR̂q~u!M 215diag~w~u!,v~u!,v~u!,v~u!,v~u!,v~u!,v~u!,1,1,1,1,1,1,1,1,1!. ~B13!
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For Spq(4)

M5~E141qE172q3E1,102q4E1,13!1~E242q21E271qE2,102E2,13!1~E322qE35!

1~E432qE49!1~E582qE5,14!1~E6,122qE6,15!1~E741qE771q23E7,101q22E7,13!

1~E842q21E872q21E8,101q22E8,13!1~qE921E95!1~qE10,31E10,9!

1~qE11,81E11,14!1~qE12,121E12,15!1E13,11E14,61E15,111E16,16 ~B14!

gives

MR̂q~u!M 215diag~w~u!,v~u!,v~u!,v~u!,v~u!,v~u!,1,1,1,1,1,1,1,1,1,1!. ~B15!

Note that the multiplicity ofv(u) is 6 in ~B13! and 5 in~B15!.
Other examples ofM can be found near the ends of Secs. IV–VII. In Sec. VIIIM is obtained

for arbitrary dimensions.
For GLq(n) one encounters as elements of different rows, apart from singlets~unity!, only the

mutually orthogonal doublets

~1,2q21!, ~1, q!.

But for SOQ(3) one has@implementing~B9!# also the mutually orthogonal triplets

~1, q1/2, q!, ~1, s,21!, ~1, t, q22!.

For SOq(4) and Spq(4), respectively, one similarly encounters the mutually orthogonal q
druplets

~1, q, q, q2!, ~1, q, 2q21, 21!, ~1, 2q21, q, 21!, ~1, 2q21, 2q21, q22!,

~1, q, 2q3, 2q4!, ~1, 2q21, q, 21!, ~1, q, q23, q22!, ~1, 2q21, 2q21, q22!.

In Sec. VII of Ref. 1 the relations of such multiplets with particular types ofq-deformed
surfaces~spheres, hyperboloids! have been pointed out. In constructingM for SOq(N) and
Spq(N) for higher dimensions a key feature would be the general structure of the correspondN
mutually orthogonalN-plets.
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The fourth Painleve ´ equation and associated special
polynomials

Peter A. Clarksona)

Institute of Mathematics & Statistics, University of Kent,
Canterbury, CT2 7NF, United Kingdom

~Received 27 February 2003; accepted 14 May 2003!

In this article rational solutions and associated polynomials for the fourth Painleve´
equation are studied. These rational solutions of the fourth Painleve´ equation are
expressible as the logarithmic derivative of special polynomials, the Okamoto poly-
nomials. The structure of the roots of these Okamoto polynomials is studied and it
is shown that these have a highly regular structure. The properties of the Okamoto
polynomials are compared and contrasted with those of classical orthogonal poly-
nomials. Further representations are given of the associated rational solutions in the
form of determinants through Schur functions. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1603958#

I. INTRODUCTION

In this article we are concerned with rational solutions and associated special polynomi
the fourth Painleve´ equation (PIV)

w95
~w8!2

2w
1

3

2
w314zw212~z22a!w1

b

w
, ~1.1!

where8[d/dz anda andb are arbitrary constants.
The six Painleve´ equations (PI2PVI), discovered by Painleve´, Gambier and their colleague

while studying second order ordinary differential equations of the form

w95F~z,w,w8!, ~1.2!

whereF is rational inw8 and w and analytic inz, have the property that the solutions have
movable branch points, i.e., the locations of multi-valued singularities of any of the solution
independent of the particular solution chosen and so are dependent only on the equation
now known as thePainlevéproperty~cf. Ref. 50!. For PIV , all local solutions can be analyticall
continued to single-valued meromorphic functions in the complex plane95 ~see also Refs. 47 an
79!. Although first discovered from strictly mathematical considerations, the Painleve´ equations
have arisen in a variety of important physical applications including statistical mechanics, p
physics, nonlinear waves, quantum gravity, quantum field theory, general relativity, non
optics and fiber optics. For example, PIV has relevance within the fields of fluid mechanics,111

nonlinear optics30 and quantum gravity.32,33 Further, the Painleve´ equations have attracted muc
interest since they arise in many physical situations and as reductions of the soliton equ
which are solvable by inverse scattering~cf. Refs. 1, 4, and 51, and references therein, for furt
details!.

The Painleve´ equations can be thought of as nonlinear analogs of the classical special
tions. Indeed Iwasaki, Kimura, Shimomura, and Yoshida52 characterize the six Painleve´ equations
as ‘‘the most important nonlinear ordinary differential equations’’ and state that ‘‘many speci
believe that during the twenty-first century the Painleve´ functions will become new members o

a!Electronic mail: p.a.clarkson@ukc.ac.uk
53500022-2488/2003/44(11)/5350/25/$20.00 © 2003 American Institute of Physics
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the community of special functions.’’ The general solutions of the Painleve´ equations are tran
scendental in the sense that they cannot be expressed in terms of known elementary functi
so require the introduction of a new transcendental function to describe their solution. Howe
is well-known that PII2PVI possess hierarchies of rational solutions for special values of
parameters~see, for example, Refs. 8, 10, 13, 31, 37, 46, 47, 62, 68, 74–77, 85–88, 105, 106
110, 113, and 115, and the references therein!. These hierarchies are usually generated from ‘‘s
solutions’’ using the associated Ba¨cklund transformations and frequently can be expressed in
form of determinants through ‘‘t-functions.’’

Vorob’ev109 and Yablonskii113 expressed the rational solutions of the second Painleve´ equation
(PII)

w952w31zw1a, ~1.3!

wherea is an arbitrary constant, in terms of the logarithmic derivative of certain polynom
which are now known as theYablonskii-Vorob’ev polynomials. Okamoto87 obtained analogous
polynomials related to some of the rational solutions of PIV ; these polynomials are now known a
theOkamoto polynomials. Further, Okamoto noted that they arise from special points in param
space from the point of view of symmetry, which is associated to the affine Weyl group of
A2

(2) . Umemura104 associated analogous special polynomials with certain rational and alge
solutions of PIII , PV and PVI which have similar properties to the Yablonskii-Vorob’ev polynomia
and the Okamoto polynomials; see also Refs. 11, 78, 102, 103, and 114. Subsequently, the
been several studies of special polynomials associated with the rational solutions of PII ,37,54,56,98

the rational and algebraic solutions of PIII ,55,84 the rational solutions of PIV ,37,57,82 the rational
solutions of PV ,73,81and the algebraic solutions of PVI .60,61,72,99,100However the majority of these
papers are concerned with the combinatorial structure and determinant representation of th
nomials, often related to the Hamiltonian structure and affine Weyl symmetries of the Pa´
equations. Typically these polynomials arise as the ‘‘t-functions’’ for special solutions of the
Painlevéequations and are generated through nonlinear, three-term recurrence relations wh
Toda equations that arise from the associated Ba¨cklund transformations of the Painleve´ equations.
The coefficients of these special polynomials have some interesting, indeed somewhat mys
combinatorial properties~see Refs. 78 and 102–104!. Additionally, these polynomials have bee
expressed as special cases ofSchur polynomials, which are irreducible polynomial representatio
of the general linear group GL(n) and arise ast-functions of the Kadomtsev–Petviashvili~KP!
hierarchy.53 The Yablonskii–Vorob’ev polynomials associated with PII are expressible in terms o
two-reduced Schur functions,54,56 and are related to thet-function for the rational solution of the
modified Korteweg–de Vries~mKdV! equation since PII arises as a similarity reduction of th
mKdV equation. The Okamoto polynomials associated with PIV are expressible in terms of three
reduced Schur functions57,82 since PIV arises as a similarity reduction of the Boussinesq equa
~cf. Ref. 23!, which belongs to the so-called three-reduction of the KP hierarchy.53

It is also well-known that PII2PVI possess solutions which are expressible in terms of
classical special functions; these are often referred to as ‘‘one-parameter families of solu
For PII these special function solutions are expressed in terms of Airy functions Ai(z),8,29,40,87for
PIII they are expressed in terms of Bessel functionsJn(z),65,75,77,88for PIV they are expressed in
terms of Weber–Hermite~parabolic cylinder! functionsDn(z),13,36,45,64,76,87for PV they are ex-
pressed in terms of Whittaker functionsMk,m(z), or equivalently confluent hypergeometric fun
tions 1F1(a;c;z),43,66,86,110and for PVI they are expressed in terms of hypergeometric functi

2F1(a,b;c;z);35,67,85see also Refs. 1, 44, 46, 48, and 97. Some classical orthogonal polyno
arise as particular cases of these special function solutions and thus yield rational solutions
associated Painleve´ equations, especially in the representation of rational solutions through d
minants. For PIII and PV these are in terms of associated Laguerre polynomialsLn

(k)(z),17,55,73,81for
PIV in terms of Hermite polynomialsHn(z),13,57,76,87and for PVI in terms of Jacobi polynomials
Pn

(a,b)(z).72,100In fact, all rational solutions of PVI arise as particular cases of the special solutio
given in terms of hypergeometric functions.74
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This article is organized as follows. The Okamoto polynomials, which were introduce
Okamoto,87 and associated rational solutions for PIV are studied in Sec. II. We relate these spec
polynomials to the determinantal form of rational solutions of PIV , and compare the properties o
these special polynomials with properties of classical orthogonal polynomials. In Secs. III a
the generalized Hermite polynomials and generalized Okamoto polynomials, which were
duced by Noumo and Yamada82 and are generalizations of the Okamoto polynomials, and a
ciated rational solutions for PIV are studied, respectively. In Sec. V we discuss the determina
form of rational solutions of PIV . Finally in Sec. VI we discuss our results and pose some o
questions.

II. FOURTH PAINLEVÉ EQUATION AND THE OKAMOTO POLYNOMIALS

A. Rational solutions of P IV

Lukashevich,64 Gromak,45 and Murata76 ~see also Refs. 13, 47, and 105! have proved the
following theorem.

Theorem 2.1:PIV has rational solutions if and only if

a5m, b522~112n2m!2, ~2.1!

or

a5m, b52 2
9 ~116n23m!2, ~2.2!

with m, nPZ. Further, the rational solutions for these parameter values are unique.
Three simple rational solutions of PIV are

w1~z;62,22!561/z, w2~z;0,22!522z, w3~z;0,2 2
9!52 2

3 z. ~2.3!

It is known that there are three families of unique rational solutions of PIV , which have the
solutions~2.3! as the simplest members. These are summarized in the following theorem~see
Refs. 13, 76, and 105 for further details!.

Theorem 2.2:There are three families of rational solutions ofPIV , which have the forms

w1~z;a1 ,b1!5P1,n21~z!/Q1,n~z!, ~2.4a!

w2~z;a2 ,b2!522z1P2,n21~z!/Q2,n~z!, ~2.4b!

w3~z;a3 ,b3!52 2
3 z1P3,n21~z!/Q3,n~z!, ~2.4c!

where Pj ,n(z) and Qj ,n(z), j 51, 2, 3,are polynomials of degree n, and

~a1 ,b1!5~6m,22~112n1m!2!, m,nPZ, n<21, m>22n, ~2.5a!

~a2 ,b2!5~m,22~112n1m!2!, m,nPZ, n>0, m>2n, ~2.5b!

~a3 ,b3!5~m, 2
9 ~116n23m!2!, m,nPZ. ~2.5c!

The three hierarchies given in this theorem are known as the ‘‘21/z hierarchy,’’ the ‘‘22z
hierarchy’’ and the ‘‘2 2

3z hierarchy,’’ respectively~see Ref. 13 where the terminology was intr
duced!. The ‘‘21/z hierarchy’’ and the ‘‘22z hierarchy’’ form the set of rational solutions of PIV

with parameter values given by~2.1! and the ‘‘22/3z hierarchy’’ forms the set with paramete
values given by~2.2!. The rational solutions of PIV with parameter values given by~2.1! lie at the
vertexes of the ‘‘Weyl chambers’’ and those with parameter values given by~2.2! lie at the
vertexes of the ‘‘Weyl chamber.’’105 These are summarized in Fig. 1, which depicts
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(a,A22b) plane, wherea andb are the parameters in PIV . The dots denote the rational solution
of PIV with parameter values given by~2.1! and the circles denote the rational solutions w
parameter values given by~2.2!. On the horizontal and diagonal lines, PIV possesses specia
function solutions, often called one-parameter families of solutions, which are expressible in
of Whittaker functionsMk,m(j) andWk,m(j), or equivalently parabolic cylinder functionsDn(j)
~see Sec. V A!.

B. Okamoto polynomials

In a comprehensive study of the fourth Painleve´ equation PIV , Okamoto87 ~see also Refs. 37
57, 82, and 102! defined two sets of polynomials analogous to the Yablonskii–Vorob’ev poly
mials associated with PII . These polynomials are defined in Theorems 2.3 and 2.5 below, w
they have been scaled compared to Okamoto’s original definition, where the polynomials
monic, so that they are for the standard version of PIV .

Theorem 2.3:Suppose that Qn(z) satisfies the recursion relation

Qn11Qn215
9

2 FQn

d2Qn

dz2 2S dQn

dz D 2G1@2z213~2n21!#~Qn!2 ~2.6!

or equivalently

Qn11Qn215@9Dz
212z213~2n21!#Qn"Qn , ~2.7!

whereDz is the Hirota operator defined by

DzF~z!"G~z!5F S d

dz1
2

d

dz1
DF~z1!G~z2!G

z15z25z

~2.8!

with Q0(z)5Q1(z)51. Then

wn5w~z;an ,bn!52
2

3
z1

d

dz H lnFQn11~z!

Qn~z! G J ~2.9!

satisfiesPIV with (an ,bn)5(2n,2 2
9).

Remarks 2.4:
~1! The first few polynomialsQn(z), which are referred to as theOkamoto polynomials, are

given in Table I.

FIG. 1. Special solutions of PIV.
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~2! The polynomialsQn(z) are polynomials of degreen(n21); in fact they are monic poly-
nomials in z5&z with integer coefficients, which is the form in which Okamoto87 originally
defined these polynomials. Further, the polynomialsQn(z) are even polynomials, i.e., moni
polynomials inz252z2 of degree1

2n(n21).
~3! Making the transformation

Qn~z!5cn2
tn~z!expH 2

z4

27
1

1

3
~122n!z2J ,

with c25 9
2 in ~2.6!, yields the Toda equation

d2

dz2 ~ ln tn!5
tn11tn21

tn
2 .

~4! The hierarchy of rational solutions of PIV defined by~2.9! can be derived using the
following Bäcklund transformation of PIV

w̃~z;ã,b̃ !5
~w82w222zw!212b

2w@w82w222zw12~a11!#
, ã5a12, b̃5b, ~2.10!

where w[w(z;a,b), which is the Ba¨cklund transformationT1 derived by Murata76 and the
Schlesinger transformationR@5# derived by Fokas, Mugan, and Ablowitz34 ~see also Ref. 14!.
Specifically

wn115
9@wn82wn

222zwn#224

18wn@wn82wn
222zwn14n12#

, ~2.11!

wherewn5w(z;2n,2 2
9), with ‘‘seed solution’’w05w(z;0,2 2

9)52 2
3z.

~5! The solutionswn are members of the so-called ‘‘2 2
3z’’ hierarchy of rational solutions of

PIV , recall Theorem 2.2, which is one of three hierarchies of rational solutions of PIV ~see, for
example, Refs. 13 and 76 for further details!.

The second set of polynomials introduced by Okamoto87 is defined in the following theorem
Theorem 2.5:Suppose that Rn(z) satisfies the recursion relation

Rn11Rn215
9

2 FRn

d2Rn

dz2 2S dRn

dz D 2G12~z213n!~Rn!2 ~2.12!

or equivalently

Rn11Rn215@9Dz
212~z213n!#Rn"Rn , ~2.13!

whereDz is the Hirota operator (2.8), with R0(z)51 and R1(z)5&z. Then

TABLE I. Okamoto polynomials I defined by~2.6!.

Q252z213
Q358z6160z4190z21135
Q4564z1211344z1019360z8130 240z6156 700z41170 100z21127 575
Q551024z20146 080z181817 920z1617 603 200z14141 731 200z121155 675 520z101493 970 400z8

11 886 068 800z615 304 568 500z415 304 568 500z213 978 426 375
Q6532 768z3012 703 360z28195 477 760z2611 916 006 400z24124 472 627 200z221212 580 910 080z20

11 332 821 952 000z1816 627 106 886 400z16130 481 566 192 000z141148 952 283 480 000z12

1702 723 772 951 200z1012 375 788 921 506 000z814 874 463 476 883 000z6

16 451 495 778 227 500z419 677 243 667 341 250z214 838 621 833 670 625
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w~z;an ,bn!52
2

3
z1

d

dz H lnFRn11~z!

Rn~z! G J , ~2.14!

for n>0, satisfiesPIV with (an ,bn)5(2n11,28/9).
Remarks 2.6:
~1! The first few polynomialsRn(z) are given in Table II.
~2! The polynomialsRn(z) are polynomials of degreen2, in fact they are monic polynomials

in z52z with integer coefficients, which is the form in which Okamoto87 originally defined these
polynomials.

~3! Making the transformation

Rn~z!5cn2
tn~z!expH 2

z4

27
2

2

3
nz2J ,

with c25 9
2 in ~2.12!, yields the Toda equation

d2

dz2 ~ ln tn!5
tn11tn21

tn
2 .

~4! The hierarchy of rational solutions of PIV defined by~2.14! can be derived using the
Bäcklund transformation~2.10! of PIV , derived by Murata76 and Fokas, Mugan, and Ablowitz.34

Hence

ŵn115
9@ŵn82ŵn

222zŵn#2216

18ŵn@ŵn82ŵn
222zŵn14n14#

, ~2.15!

whereŵn5w(z;2n11,2n2 8
9), with ‘‘seed solution’’

ŵ05w~z;1,2 8
9!52 2

3 z11/z. ~2.16!

~5! The solutionsŵn are also members of the so-called ‘‘2 2
3z’’ hierarchy of rational solutions

of PIV , recall Theorem 2.2.
~6! The two hierarchies of rational solutions of PIV given by~2.9! and~2.14! are linked by the

Schlesinger transformationsR@1# andR@3# for PIV given by Fokas, Mugan, and Ablowitz:34

TABLE II. Okamoto polynomials II defined by~2.12!.

R254z4112z229
R35&z(16z81192z61504z422835)
R45256z1617680z14180 640z121362 880z101453 600z821 905 120z6214 288 400z4

221 432 600z218 037 225
R55&z(4096z241245 760z2215 990 400z20177 414 400z181569 721 600z1612 246 952 960z14

11 600 300 800z12235 663 846 400z102275 837 562 000z821 103 350 248 000z6

21 737 776 640 600z413 258 331 201 125)
R65262 144z36127 525 120z3411 259 274 240z32133 195 294 720z301560 170 598 400z28

16 324 632 616 960z26147 742 002 880 800z241219 281 707 008 000z221228 319 944 652 800z20

25 825 689 309 440 000z18263 304 058 468 851 200z162412 776 567 979 776 000z14

21 810 902 281 636 448 000z1224 651 958 555 820 576 000z1024 025 733 365 613 960 000z8

111 272 053 423 719 088 000z6147 553 975 381 314 902 500z4147 553 975 381 314 902 500z2

211 888 493 845 328 725 625
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R@1#: w@1#5
~w81A22b!22w2@2A22b24a241~w12z!2#

2w~w212zw2w82A22b!
,

~2.17!
a@1#5a11, b@1#2 2

3 ~221A22b!2,

R@3#: w@3#5
~w82A22b!21w2@2A22b14a142~w12z!2#

2w~w212zw2w81A22b!
,

~2.18!
a@3#5a11, b@3#52 2

3 ~21A22b!2,

wherew[w(z;a,b), w@ j #[w(z;a@ j #,b@ j #). Specifically, forn>0

ŵn5
~wn81 2

3!
22wn

2@8n1 8
32~wn12z!2#

2wn~wn
212zwn2wn82 2

3!
, ~2.19!

wn115
~ŵn81 4

3!
21ŵn

2@8n1 16
3 2~ŵn12z!2#

2ŵn~ŵn
212zŵn2ŵn82 4

3!
. ~2.20!

~7! The Schlesinger transformationsR@1#, R@3#, andR@5# are related by

R@1#R@3#5R@3#R@1#5R@5# ~2.21!

from the definition given by Fokas, Mugan, and Ablowitz.34

Fukutani, Okamoto and Umemura37 and Kametaka58 have proved the following Theorem
concerning the roots of the Okamoto polynomials. Further Fukutani, Okamoto, and Umem37

also give a purely algebraic proof of Theorems 2.3 and 2.5.
Theorem 2.7:

(1) For every positive integer n, the polynomials Qn(z) and Rn(z) have simple roots.
(2) Each pair of polynomials$Qn(z),Qn11(z)%, $Rn(z),Rn11(z)%, $Qn(z),Rn(z)% does not have
a common root.

Kametaka58 also proved the following theorem.
Theorem 2.8:The polynomials Qn(z) and Rn(z) have the form

Qn~z!5 )
j 51

n~n21!

~z2an, j !, Rn~z!5)
j 51

n2

~z2bn, j !, z5&z. ~2.22!

If

An5 max
1< j <n~n21!

$uan, j u%, Bn5 max
1< j <n2

$ubn, j u%, ~2.23!

then for n>1

1
3 ~2n13!<An

2< 9
2 ~2n11!, 2

3 ~n221!/n<Bn
2<9~n21!. ~2.24!

In Figs. 2 and 3 plots of the locations of the roots for the Okamoto polynomialsQn(z)50,
defined by~2.6!, andRn(z)50, defined by~2.12!, for n53,4,...,8, respectively, are given. The
both take the form of two ‘‘triangles’’ with the polynomialsRn(z) having an additional row of
roots on a straight line between the two ‘‘triangles.’’
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III. GENERALIZED HERMITE POLYNOMIALS

Noumi and Yamada82 generalized the results of Okamoto87 and introduced thegeneralized
Hermite polynomials Hm,n(z), which are defined in Theorem 3.1 and discussed below in
section, andgeneralized Okamoto polynomials Qm,n(z), which are defined in Theorem 4.1 an
discussed in Sec. IV. Noumi and Yamada82 expressed both the generalized Hermite polynom
and the generalized Okamoto polynomials in terms of Schur functions related to the so-

FIG. 2. Locations of roots of some Okamoto polynomials I defined by~2.6!.

FIG. 3. Locations of roots of some Okamoto polynomials II defined by~2.12!.
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modified Kadomtsev–Petviashvili~mKP! hierarchy. Kajiwara and Ohta57 also expressed rationa
solutions of PIV in terms of Schur functions by expressing the solutions in the form of dete
nants. Further, Noumi and Yamada82 obtained their results on rational solutions of PIV by consid-
ering the symmetric representation of PIV given by the system

w181w1~w22w3!12m150,

w281w2~w32w1!12m250, ~3.1!

w381w3~w12w2!12m350,

wherem1 , m2, andm3 are arbitrary constants, withm11m21m351, and the constraintw11w2

1w3522z. Then eliminatingw2(z) and w3(z), w(z)5w1(z) satisfies PIV with (a,b)5(m3

2m2 ,22m1
2), which was derived by Bureau15—see also Refs. 7, 80, 83, 93, and 108.

First we discuss the generalized Hermite polynomialsHm,n(z).
Theorem 3.1:Suppose that Hm,n(z) satisfies the recurrence relations

2mHm11,nHm21,n5Hm,nHm,n
n 2~Hm,n8 !212mHm,n

2 , ~3.2a!

2nHm,n11Hm,n2152Hm,nHm,n
n 1~Hm,n8 !212nHm,n

2 , ~3.2b!

or equivalently

4mHm11,nHm21,n5~Dz
214m!Hm,n"Hm,n , ~3.3a!

4nHm,n11Hm,n2152~Dz
224n!Hm,n"Hm,n , ~3.3b!

whereDz is the Hirota operator (2.8), with

H0,05H1,05H0,151, H1,152z, ~3.4!

and m,n>0. Then

wm,n
~ I! 5w~z;am,n

~ I! ,bm,n
~ I! !52

d

dz H lnS Hm,n11

Hm,n
D J [22m

Hm11,nHm21,n11

Hm,n11Hm,n
, ~3.5!

wm,n
~ II ! 5w~z;am,n

~ II ! ,bm,n
~ II ! !5

d

dz H lnS Hm11,n

Hm,n
D J [2n

Hm,n11Hm11,n21

Hm11,nHm,n
, ~3.6!

is a solution ofPIV , respectively, for the parameters

am,n
~ I! 52~m12n11!, bm,n

~ I! 522m2, ~3.7!

am,n
~ II ! 52m1n11, bm,n

~ II ! 522n2. ~3.8!

Remarks 3.2:
~1! The rational solutions of PIV defined by~3.5! and ~3.6! include all the solutions in the

‘‘ 21/z’’ and ‘‘ 22z’’ hierarchies, as is easily verified by comparing the parameters in~3.7! and
~3.8! with those in~2.5a! and ~2.5b!. Further, they are the set of rational solutions of PIV with
parameter values given by~2.1!.

~2! Some generalized Hermite polynomialsHm,n(z) are given in Appendix A.
~3! Each generalized Hermite polynomialHm,n(z) is a polynomial of degreemn with integer

coefficients.82 In fact,Hm,n( 1
2x) is a monic polynomial inx of degreemnwith integer coefficients.
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~4! The polynomialHm,n(z) has only even powers ofz if mn is even and odd powers ofz if
mn is odd.

~5! The polynomialH2n,2n(z) is of the formpn(z4) wherepn(j) is a polynomial of degreen2

and the polynomialH2n11,2n11(z) is of the formzp̂n(z4) wherep̂n(j) is a polynomial of degree
n21n.

~6! The polynomialsHm,n(z) possess the symmetry

Hm,n~ iz!5 imnHn,m~z! ~3.9!

~note thatmn is the degree ofHm,n).
~7! Hn,1(z)5Hn(z) and H1,n(z)5 i2nHn(iz), whereHn(z) is the usual Hermite polynomia

defined by

Hn~z!5~21!n exp~z2!
dn

dzn $exp~2z2!% ~3.10!

or alternatively through the generating function

(
n50

`
Hn~z!xn

n!
5exp~2xz2x2!. ~3.11!

~8! Plots of the locations of the roots of the polynomialsHm,7(z), H7,n(z) for 4<m<6 and
4<n<6 are given in Fig. 4. These plots, which are invariant under reflections in the rea
imaginaryz-axes, take the form ofm3n ‘‘rectangles,’’ though these are only approximate re
angles as can be seen by looking at the actual values of the roots.

IV. GENERALIZED OKAMOTO POLYNOMIALS

In this section we discuss thegeneralized Okamoto polynomials Qm,n(z) which were intro-
duced by Noumi and Yamada82 and are defined in Theorem 4.1 below. We have reindexed t
polynomials by settingQm,n

@NY#(z)5Qm2n,n(z), i.e.,Qm1n,n
@NY# (z)5Qm,n(z), whereQm1n,n

@NY# (z) is the

FIG. 4. Locations of roots of some generalized Hermite polynomials defined by~3.2!.
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polynomial defined Noumi and Yamada,82 since we feel thatQm,n(z) is more natural, especially
when one studies the plots of the locations of the roots for various generalized Okamoto p
mials in Fig. 5.

Theorem 4.1:Suppose that Qm,n(z) satisfies the recurrence relations

Qm11,nQm21,n5 9
2 @Qm,nQm,n9 2~Qm,n8 !2#1@2z213~2m1n21!#Qm,n

2 , ~4.1a!

Qm,n11Qm,n215 9
2 @Qm,nQm,n9 2~Qm,n8 !2#1@2z213~12m22n!#Qm,n

2 , ~4.1b!

or equivalently

Qm11,nQm21,n5@9Dz
212z213~2m1n21!#Qm,n"Qm,n , ~4.2a!

Qm,n11Qm,n215@9Dz
212z213~12m22n!#Qm,n"Qm,n , ~4.2b!

whereDz is the Hirota operator (2.8), with

Q0,05Q1,05Q0,151, Q1,15&z. ~4.3!

Then

wm,n
~ I! 5w~z;am,n

~ I! ,bm,n
~ I! !52

2

3
z2

d

dz H lnS Qm,n11

Qm,n
D J , ~4.4!

wm,n
~ II ! 5w~z;am,n

~ II ! ,bm,n
~ II ! !52

2

3
z1

d

dz H lnS Qm11,n

Qm,n
D J ~4.5!

are solutions ofPIV , respectively, for the parameters

am,n
~ I! 522n2m, bm,n

~ I! 52 2
9 ~3m21!2, ~4.6!

FIG. 5. Locations of roots of some generalized Okamoto polynomials defined by~4.1!.
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am,n
~ II ! 52m1n, bm,n

~ II ! 52 2
9 ~3n21!2. ~4.7!

Remarks 4.2:
~1! The rational solutions of PIV defined by~4.4! and ~4.5! include all the solutions in the

‘‘ 2 2
3z’’ hierarchy, as is easily verified by comparing the parameters in~4.6! and ~4.7! with those

in ~2.5c!. Further, they are the set of rational solutions of PIV with parameter values given by~2.2!.
~2! Some generalized Okamoto polynomialsQm,n(z) are given in Appendix B.
~3! Each polynomialQm,n(z) is a polynomial of degreedm,n5m21n21mn2m2n with

integer coefficients.82 Further, Qm,n(z) is a monic polynomial inz5&z of degreedm,n with
integer coefficients.

~4! The polynomialsQ2m11,2n11(z) have only odd powers ofz while the other generalized
Okamoto polynomials have only even powers ofz.

~5! The polynomialQ2n,2n(z) is of the formqn(z4) whereqn(j) is a polynomial of degree
n(3n21) and the polynomialQ2n11,2n11(z) is of the formzq̂n(z4) whereq̂n(j) is a polynomial
of degreen(3n12).

~6! The original Okamoto polynomials defined in Theorems 2.3 and 2.5 are, respect
given by

Qm~z!5Qm,0~z!, Rm~z!5Qm,1~z!. ~4.8!

~7! The polynomialsQm,n(z) possess the symmetry

Qm,n~ iz!5exp~ 1
2 p idm,n!Qn,m~z!, ~4.9!

wheredm,n5m21n21mn2m2n is the degree ofQm,n .
~8! The hierarchies of rational solutions of PIV generated from the generalized Hermite po

nomials Hm,n(z) defined in Theorem 3.1 and the generalized Okamoto polynomialsQm,n(z)
defined in Theorem 4.1 are linked by the Schlesinger transformationsR@2# ~or R@4#) and R@5#

[R@1#R@3# given by Fokas, Mugan, and Ablowitz.34

~9! Plots of the locations of the roots of the polynomialsQm,7(z), Q7,n(z) for 4<m<6 and
4<n<6 are given in Fig. 5. The roots of the polynomialQm,n(z) take the form ofm3n ‘‘rect-
angles’’ with an ‘‘equilateral triangle,’’ which have eitherm21 or n21 roots on each of its sides
These are only approximate rectangles and equilateral triangles as can be seen by lookin
actual values of the roots. We remark that as for the generalized Hermite polynomials abo
plots are invariant under reflections in the real and imaginaryz-axes.

V. DETERMINANTAL FORM OF RATIONAL SOLUTIONS OF P IV

A. À1Õz and À2z hierarchies

Kajiwara and Ohta57 and Noumi and Yamada82 derived representations of the ‘‘21/z’’ and
‘‘ 22z’’ hierarchies of rational solutions for PIV in the form of determinants, which are describ
in the following theorem.

Theorem 5.1: Suppose thattm,n(z) and t̂m,n(z) are the n3n determinants of Hankel typ
defined by

tm,n~z!5U Hm~z! Hm11~z! ¯ Hm1n21~z!

Hm11~z! Hm12~z! ¯ Hm1n~z!

] ] � ]

Hm1n21~z! Hm1n~z! ¯ Hm12n22~z!

U , ~5.1!
                                                                                                                



5362 J. Math. Phys., Vol. 44, No. 11, November 2003 Peter A. Clarkson

                    
t̂m,n~z!5U Ĥm~z! Ĥm11~z! ¯ Ĥm1n21~z!

Ĥm11~z! Ĥm12~z! ¯ Ĥm1n~z!

] ] � ]

Ĥm1n21~z! Ĥm1n~z! ¯ Ĥm12n22~z!

U , ~5.2!

respectfully, withtm,0(z)51 and t̂m,0(z)51, where Hm(z), m50,1,2,...,are the Hermite polyno-

mials and Ĥm(z)5 i2mHm(iz). Then

wm,n
~ I! 5w~z;am,n

~ I! ,bm,n
~ I! !52

d

dz H lnF tm,n~z!

tm,n11~z!G J , ~5.3!

ŵm,n
~ I! 5w~z;âm,n

~ I! ,b̂m,n
~ I! !5

d

dz H lnF t̂m,n11~z!

t̂m,n~z! G J ~5.4!

are solutions ofPIV for the respective parameters

am,n
~ I! 52~m12n11!, bm,n

~ I! 522m2, m,nPZ, m>0, n>0, ~5.5!

âm,n
~ I! 5m12n11, b̂m,n

~ I! 522m2, m,nPZ, m>0, n>0, ~5.6!

and

wm,n
~ II ! 5w~z;am,n

~ II ! ,bm,n
~ II ! !522z1

d

dz H lnFtm,n11~z!

tm11,n~z! G J , ~5.7!

ŵm,n
~ II ! 5w~z;âm,n

~ II ! ,b̂m,n
~ II ! !522z2

d

dz H lnF t̂m,n11~z!

t̂m11,n~z! G J ~5.8!

are solutions ofPIV, respectively, for the parameters

am,n
~ II ! 5n2m, bm,n

~ II ! 522~m1n11!2, m,nPZ, m>0, n>0, ~5.9!

âm,n
~ II ! 5m2n, b̂m,n

~ II ! 522~m1n11!2, m,nPZ, m>0, n>0. ~5.10!

Remarks 5.2:
~1! The t-function tm,n(z) is related to the generalized Hermite polynomialHm,n(z) through

tm,n~z!5cm,nHm,n~z!, ~5.11!

for some constantcm,n .
~2! The t-function tm,n(z) can also be written as determinant of Hankel type

tm,n~z!52~n21!n/2)
k51

n21

~m1k!kUHm1n21~z! Hm1n218 ~z! ¯ Hm1n21
~n21! ~z!

Hm1n218 ~z! Hm1n219 ~z! ¯ Hm1n21
~n! ~z!

] ] � ]

Hm1n21
~n21! ~z! Hm1n21

~n! ~z! ¯ Hm1n21
~2n22! ~z!

U , ~5.12!

whereHn(z) is the Hermite polynomial, andHm
(n)(z)5dnHm /dzn sinceHn(z) satisfies the recur-

rence relations

Hn1122zHn12nHn2150, Hn1152zHn2Hn8 , Hn852nHn21 .
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Therefore the rational solutions of PIV expressed in terms of the generalized Hermite poly
mialsHm,n(z) are actually just special cases of the solutions of PIV which are expressible in term
of classical special functions. To show this we use the following theorem.

Theorem 5.3: If sn,n(z) is the n3n determinant of Hankel type defined by

sn,n~z!5U wn~z! wn8~z! ¯ wn
~n21!~z!

wn8~z! wn9~z! ¯ wn
~n!~z!

] ] � ]

wn
~n21!~z! wn

~n!~z! ¯ wn
~2n22!~z!

U , ~5.13!

wherewn(z) satisfies

wn922zwn812nwn50, ~5.14!

then

w~z;an,n
~ I! ,bn,n

~ I! !52
d

dz H lnFsn,n11~z!

sn,n~z! G J , ~5.15!

w~z;an,n
~ II ! ,bn,n

~ II !!522z1
d

dz H lnFsn,n11~z!

sm11,n~z!G J ~5.16!

are solutions ofPIV, respectively, for the parameters

an,n
~ I! 52~n1n12!, bn,n

~ I! 522~n2n11!2,

an,n
~ II !52n2n21, bn,n

~ II !522~n12!2.

Proof: See Ref. 87.
The general solution of Eq.~5.14! is

wn~z!5z21/2$AM~1/2!n11/4,1/4~z2!1BW~1/2!n11/4,1/4~z2!%exp~ 1
2 z2!, ~5.17!

or equivalently

wn~z!5$ADn~&z!1BD2n~&z!%exp~ 2
3 z2!, ~5.18!

whereA andB are arbitrary constants,Mk,m(j) andWk,m(j) areWhittaker functionswhich satisfy

d2u

dj2 5S m22 1
4

j2 2
k

j
1

1

4
D u, ~5.19!

andDn(j) is theparabolic cylinder functionwhich satisfies

d2u

dj2 5S 1

4
j22n2

1

2Du ~5.20!

~see Refs. 5 and 112 for further information on Whittaker and parabolic cylinder functions!. Thus
the rational solutions of PIV generated by the generalized Hermite polynomialsHm,n(z) are special
cases of the special function solutions, often calledone-parameter families of solutions, which are
expressible in terms of Whittaker functionsMk,m(j) and Wk,m(j), or equivalently parabolic
cylinder functionsDn(j).
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B. À 2
3z hierarchy

Kajiwara and Ohta57 and Noumi and Yamada82 also derived representations of the ‘‘2 2
3z’’

hierarchy of rational solutions for PIV in the form of determinants. First we consider the repres
tations in the form of determinants of the rational solutions for PIV arising from the Okamoto
polynomialsQn(z) andRn(z) defined by Theorems 2.3 and 2.5, respectively, which are descr
in the following theorem.

Theorem 5.4:Let pk(z) be the polynomial defined by

(
k50

`

pk~z!lk5exp~2&zl16l2! ~5.21!

with pk(z)50 for k,0, and tN,n(z) be the n3n determinant

tN,n~z!5U pN~z! pN11~z! ¯ pN1n21~z!

pN23~z! pN22~z! ¯ pN1n24~z!

] ] ¯ ]

pN23n13~z! pN23n14~z! ¯ pN22n12~z!

U ~5.22!

for N>2n22 and n>1. Then the Okamoto polynomials are given by

Qn~z!5cnt2n,n~z!, Rn~z!5dnt2n21,n~z!, ~5.23!

where cn and dn are positive integers, and so

wn
@1#~z!5w~z;an

@1# ,bn
@1#!52

2

3
z1

d

dz H lnFt2n12,n11~z!

t2n,n~z! G J , ~5.24!

wn
@2#~z!5w~z;an

@2# ,bn
@2#!52

2

3
z1

d

dz H lnFt2n11,n11~z!

t2n21,n~z! G J ~5.25!

satisfyPIV with (an
@1# ,bn

@1#)5(2n,2 2
9) and (an

@2# ,bn
@2#)5(2n11,2 8

9), respectively.
Proof: See Refs. 57 and 82.
The Okamoto polynomialsQn(z) andRn(z) can be expressed in terms of Schur polynomi

Qn~z!5cnS~2n,2n22,...,2!~x!, Rn~z!5dnS~2n21,2n23,...,1!~x!, ~5.26!

wherecn anddn are positive integers, (x)5(x1 ,x2 ,x3 ,...)5(2&z,6,0,...) and

S~ i 1 ,i 2 ,...,i m!~x!5U pi 1
~z! pi 111~z! ¯ pi 11m21~z!

pi 221~z! pi 2
~z! ¯ pi 21m22~z!

] ] ¯ ]

pi m2m11~z! pi m2m12~z! ¯ pi m
~z!

U ~5.27!

with the polynomialspk(z) defined by~5.21!.
Theorem 5.5:Let tN,M be the n3n determinant, with n5max(M,N), given in terms of Schur

polynomials

tN,M5H S~M12n,M12n22,...,M12,M2,~M21!2,...,12!~x!, for M,N5M1n

S~N12n21,N12n23,...,N11,N2,~N21!2,...,12!~x!, for N,M5N1n,
~5.28!
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where M>0, N>0, n>1, (x)5(x1 ,x2 ,x3 ,...)5(2&z,6,0,...) and S( i 1 ,i 2 ,...,i m)(x) is defined by

(5.27), with the polynomials pk(z) defined by (5.21). Then

wM ,N
~ I! 5w~z;aM ,N

~ I! ,bM ,N
~ I! !52

2

3
z2

d

dz H lnS tM ,N11

tM ,N
D J , ~5.29!

wM ,N
~ II ! 5w~z;aM ,N

~ II ! ,bM ,N
~ II ! !52

2

3
z1

d

dz H lnS tM11,N

tM ,N
D J ~5.30!

are solutions ofPIV , respectively, for the parameters

aM ,N
~ I! 52N2M12, bM ,N

~ I! 52 2
9 ~3M11!2,

aM ,N
~ II ! 52M2N11, bM ,N

~ II ! 52 2
9 ~3N12!2.

Proof: See Refs. 57 and 82.

VI. CONCLUSIONS

In this article we have studied properties of special polynomials associated with ra
solutions of PIV . In particular we have demonstrated that the roots of these polynomials h
very symmetric, regular structure. These are analogous to the results in Refs. 20 and 25, w
is shown that the roots of the special polynomials associated with rational solutions of PII and the
PII hierarchy and rational and algebraic solutions of PIII have a very symmetric, regular structur
For PII and PIII the roots of the special polynomials associated with rational and algebraic solu
have an approximate ‘‘triangular’’ structure, while for PIV the poles also have approximate ‘‘rec
angular’’ and combinations of rectangular and triangular structures. This seems to be yet a
remarkable property of the Painleve´ equations, indeed more generally of ‘‘integrable’’ different
equations.

Ablowitz and Segur3 demonstrated a close connection between completely integrable p
differential equations solvable by inverse scattering, so-called the soliton equations, and th
levéequations. For example, PIV arises as a symmetry reduction of a variety of significant par
differential equations including the Boussinesq and modified Boussinesq equations;18,19,23,45,90the
classical Boussinesq equation;24,59,92 the dispersive long wave equations;89 the Kadomtsev–
Petviashvili equation;27,28,96the cubic nonlinear Schro¨dinger equation;14,16,49the quintic nonlinear
Schrödinger equation;38,39 the derivative nonlinear Schro¨dinger equation;21,26,30 the Davey–
Stewartson equations;22 the potential and modified nonlinear Schro¨dinger equations and the po
tential anisotropic Heisenberg Spin Chain;91 the N-wave interaction equations;63,71 and the self-
dual Yang–Mills field equations.1,68 Thus the rational solutions of PIV described here generat
rational solutions of these partial differential equations and so one can study the motion of
of these rational solutions. There has been considerable interest in the motion of poles of r
solutions of completely integrable nonlinear partial differential equations, which is governe
Calogero–Moser type systems; for example, for the Korteweg–de Vries equation,2,6,9 the Bouss-
inesq equation,41 the classical Boussinesq system92 and the nonlinear Schro¨dinger equation.49

However, we shall not pursue this further here.
An application of rational solutions of the Painleve´ equations is given by Marikhin69 ~see also

Ref. 70! who discusses their Coulomb gas representation. It is shown that any rational solut
PIV determines some steady-state distribution of electric charges for the two-dimensional Co
gas in a parabolic potential. The Coulomb gas representation of a rational solution of PIV has the
form

w~z!5Bz1(
j 51

N
s j

z2zj
, ~6.1!
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wheres j561, B50, 22, 22
3 and zj , j 51,2,...,N are the locations of the poles. Further, t

locations of the poleszj satisfy

(
j 51,j Þk

N
s j

zk2zj
52~11B!zk , k51,2,...,N. ~6.2!

The results described in this article show that for the rational solutions of PIV , then either

~1! B50 or B522 andN5mn, with m andn positive integers, when the rational solutions a
expressible in terms of generalized Hermite polynomialsHm,n(z); or

~2! B52 2
3 and N5m21n21mn2m2n, with m and n positive integers, when the rationa

solutions are expressible in terms of generalized Okamoto polynomialsQm,n(z).

The special case of~6.2! with B50 ands j51 for j 51,2,...,N is called theStieltjes relations;94

see also Ref. 107 for a discussion on the relationship between the Stieltjes relations and
solutions of PIV expressed in terms of Hermite polynomials.

An important, well-known property of classical orthogonal polynomials, such as the Her
Laguerre and Legendre polynomials whose roots all lie on the real line~cf. Refs. 5, 12, and 101!,
is that the roots of successive polynomials interlace. Thus for a set of orthogonal polyno
wn(z), for n50,1,2,..., ifzn,m andzn,m11 are two successive roots ofwn(z), i.e.,wn(zn,m)50 and
wn(zn,m11)50, then wn21(zn21)50 and wn11(zn11)50 for somezn21 and zn11 such that
zn,m,zn21 , zn11,zn,m11 . Further, the derivativeswn8(z) and wn118 (z) also have roots in the
interval (zn,m ,zn,m11), that is wn8(jn)50 andwn118 (jn11)50 for somejn and jn11 such that
zn,m,jn , jn11,zn,m11 . An interesting open question is whether there are analogous resul
the generalized Hermite polynomialsHm,n(z) and the generalized Okamoto polynomialsQm,n(z).
Clearly there are notable differences since the generalized Hermite and generalized Ok
polynomials are polynomials with complex roots whereas classical orthogonal polynomialswn(z)
have real roots. The pattern of the roots ofHm,n(z) and Qm,n(z) are highly symmetric and
structured, suggesting that they have interesting properties. A particularly interesting ques
whether there is any ‘‘interlacing of roots’’ analogous to that for classical orthogonal polynom
Clearly this warrants further analytical study as does an investigation of the relative locatio
the roots forHm,n(z) andQm,n(z) and their derivatives. Again, we shall not pursue these quest
further here.

Some other interesting open questions for the generalized Hermite polynomialsHm,n(z) and
the generalized Okamoto polynomialsQm,n(z) include the following:

~1! Are there generating functionsF(x,y,z) andC(x,y,z) for the generalized Hermite poly
nomialsHm,n(z) and the generalized Okamoto polynomialsQm,n(z) such that

(
m50

`

(
n50

`

Hm,n~z!xmyn5F~x,y,z!, (
m50

`

(
n50

`

Qm,n~z!xmyn5C~x,y,z!?

~2! Do the generalized Hermite polynomialsHm,n(z) and the generalized Okamoto polyn
mials Qm,n(z) satisfy ordinary differential equations or pure difference equations, rather
differential-difference equations~3.2! and ~4.1!, respectively?
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APPENDIX A: THE GENERALIZED HERMITE POLYNOMIALS

Hn,05H0,n51, n>0,

H1,152z,

H1,254z212,

H1,358z3112z,

H1,4516z4148z2112,

H1,5532z51160z31120z,

H2,154z222,

H2,2516z4112,

H2,3564z6196z41144z2272,

H2,45256z811024z611920z41720,

H2,551024z1017680z8123 040z6119 200z4114 400z227200,

H3,158z3212z,

H3,2564z6296z41144z2172,

H3,35512z912304z524320z,

H3,454096z12112 288z10146 080z8130 720z6257 600z41172 800z2143 200,

H3,5532 768z151245 760z1311 105 920z1112 150 400z911 382 400z714 838 400z5

24 032 000z326 048 000z,

H4,1516z4248z2112,

H4,25256z821024z611920z41720,

H4,354096z12212 288z10146 080z8230 720z6257 600z42172 800z2143 200,

H4,4565 536z161983 040z1221 843 200z8132 256 000z416 048 000,

H4,551 048 576z2015 242 880z18135 389 440z16178 643 200z14168 812 800z12

1206 438 400z1011 290 240 000z823 612 672 000z623 386 880 000z423 386 880 000z2

1846 720 000,

H5,1532z52160z31120z,
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H5,251024z1027680z8123 040z6219 200z4114 400z21720011024z,

H5,3532 768z152245 760z1311 105 920z1122 150 400z911 382 400z724 838 400z5

24 032 000z316 048 000z,

H5,451 048 576z2025 242 880z18135 389 440z16278 643 200z14168 812 800z12

2206 438 400z1011 290 240 000z813 612 672 000z623 386 880 000z413 386 880 000z2

1846 720 000.

APPENDIX B: THE GENERALIZED OKAMOTO POLYNOMIALS

Q0,05Q0,151,

Q0,252z223,

Q0,358z6260z4190z22135,

Q0,4564z1221344z1019360z8230 240z6156 700z42170 100z21127 575,

Q0,551024z20246 080z181817 920z1627 603 200z14141 731 200z122155 675 520z10

1493 970 400z821 886 068 800z615 304 568 500z425 304 568 500z21397 8426 375,

Q1,051,

Q1,15&z,

Q1,254z4212z229,

Q1,35&z~16z82192z61504z422835!,

Q1,45256z1627680z14180 640z122362 880z101453 600z811 905 120z6214 288 400z4

121 432 600z218 037 225,

Q1,55&z~4096z242245 760z2215 990 400z20277 414 100z181569 721 600z16

22 246 952 960z1411 600 300 800z12135 663 846 400z102275 837 562 000z8

11 103 350 248 000z621 737 776 640 600z413 258 331 201 125!,

Q2,052z213,

Q2,154z4112z229,

Q2,2516z82504z42567,

Q2,35128z1421344z1226048z10175 600z82158 760z62238 140z421 071 630z21535 815,

Q2,452048z22264 512z201483 840z1813 144 960z16261 689 600z141297 198 720z12

2445 798 080z1021 114 495 200z825 851 099 800z6143 883 248 500z4

213 164 974 550z2119 747 461 825,
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Q2,5565 536z3224 325 376z301106 168 320z2821 021 870 080z2623 019 161 600z24

1169 374 965 760z2221 749 906 063 360z2018 630 650 828 800z18

216 958 158 963 200z16226 480 405 952 000z14287 626 070 604 800z12

13 976 032 953 692 800z10218 976 520 915 352 000z8128 464 781 373 028 000z6

164 045 758 089 313 000z2224 017 159 283 492 375,

Q3,058z6160z4190z21135,

Q3,15&z~16z81192z61504z422835!,

Q3,25128z1411344z1226048z10275 600z82158 760z61238 140z421 071 630z22535 815,

Q3,35&z~1024z202241 920z16112 700 800z122371 498 400z822 925 549 900z4

16 582 487 275!,

Q3,4532 768z302737 280z2827 741 440z261251 596 800z242377 395 200z22

221 398 307 840z20189 159 616 000z181740 024 812 800z1626 753 840 912 000z14

19 127 715 688 000z12235 598 091 183 200z101390 209 845 662 000z8

1646 926 849 387 000z621 617 317 123 467 500z4,

Q4,0564z1211344z1019360z8130 240z6156 700z41170 100z21127 575,

Q4,15256z1617680z14180 640z121362 880z101453 600z821 905 120z6214 288 400z4

1221 432 600z218 037 225,

Q4,252048z22164512z201483 840z1823 144 960z16261 689 600z142297 198 720z12

2445 798 080z1011 114 495 200z825 851 099 800z6243 883 248 500z4

213 164 974 550z2219 747 461 825,

Q4,3532 768z301737 280z2827 741 440z262251 596 800z242377 395 200z22

121 398 307 840z20189 159 616 000z182740 024 812 800z1626 753 840 912 000z14

29 127 715 688 000z12235 598 091 183 200z102390 209 845 662 000z8

1646 926 849 387 000z611 617 317 123 467 500z412 425 975 685 201 250z2

2727 792 705 560 375,

Q4,451 048 576z402920 125 440z361277 762 867 200z32240 649 991 782 400z28

12 948 686 820 352 000z242167 891 551 278 796 800z2012 734 590 598 399 296 000z16

1153 399 294 526 645 440 000z122560 866 170 613 047 390 000z8

16 795 109 374 734 997 225 000z411 528 899 609 315 374 375 625,
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Q4,5567 108 864z5222 617 245 696z50249 073 356 800z4812 944 401 408 000z46

21 987 470 950 400z4421 149 685 695 774 720z4218 060 089 065 799 680z40

1206 994 105 748 684 800z3822 405 543 476 808 908 800z36

215 932 255 610 765 312 000z341295 715 856 449 367 244 800z32

1468 712 752 961 801 420 800z30224 709 482 371 771 817 984 000z28

177 864 358 097 369 718 784 000z261795 923 196 743 966 054 400 000z24

24 243 708 209 176 903 061 504 000z22121 619 544 333 125 112 390 016 000z20

2299 508 747 778 795 635 400 320 000z181647 925 715 931 874 373 113 120 000z16

14 908 134 681 808 587 435 606 400 000z142531 714 590 529 263 638 857 360 000z12

227 117 444 116 992 445 581 725 360 000z101221 326 198 307 805 989 674 376 100 000z8

2251 235 144 025 077 069 360 102 600 000z62235 532 947 523 509 752 525 096 187 500z4

2423 959 305 542 317 554 545 173 137 500z21105 989 826 385 579 388 636 293 284 375

Q5,051024z20146 080z181817 920z1617 603 200z14141 731 200z121155 675 520z10

1493 970 400z811 886 068 800z615 304 568 500z415 304 568 500z213 978 426 375,

Q5,15&z~4096z241245 760z2215 990 400z20177 414 400z181569 721 600z16

12 246 952 960z1411 600 300 800z12235 663 846 400z102275 837 562 000z8

21 103 350 248 000z621 737 776 640 600z413 258 331 201 125!,

Q5,2565 536z3214 325 376z301106 168 320z2811 021 870 080z2623 019 161 600z24

2169 374 965 760z2221 749 906 063 360z2028 630 650 828 800z18

216 958 158 963 200z16126 480 405 952 000z14287 626 070 604 800z12

23 976 032 953 692 800z10218 976 520 915 352 000z8228 464 781 373 028 000z6

264 045 758 089 313 000z2224 017 159 283 492 375,

Q5,35&z~1 048 576z40162 914 560z381920 125 440z36214 722 007 040z34

2543 449 088 000z3223 594 009 968 640z30144 997 584 486 400z28

1748 655 463 628 800z2611 257 364 568 678 400z24246 066 277 117 952 000z22

2433 373 509 191 168 000z2021 556 239 013 941 248 000z18

22 809 510 888 766 400 000z1623 686 0782 860 615 168 000z14

2200 599 077 457 920 960 000z121368 158 306 863 949 056 000z10

14 271 211 606 976 283 970 000z815 694 948 809 301 711 960 000z6

114 949 240 624 416 993 895 000z4216 817 895 702 469 118 131 875!,
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Q5,4567 108 864z5212 617 245 696z50249 073 356 800z4822 944 401 408 000z46

21 987 470 950 400z4411 149 685 695 774 720z4218 060 089 065 799 680z40

2206 994 105 748 684 800z3822 405 543 476 808 908 800z36

115 932 255 610 765 312 000z341295 715 856 449 367 244 800z32

2468 712 752 961 801 420 800z30224 709 482 371 771 817 984 000z28

277 864 358 097 369 718 784 000z261795 923 196 743 966 054 400 000z24

14 243 708 209 176 903 061 504 000z22121 619 544 333 125 112 390 016 000z20

1299 508 747 778 795 635 400 320 000z181647 925 715 931 874 373 113 120 000z16

24 908 134 681 808 587 435 606 400 000z142531 714 590 529 263 638 857 360 000z12

127 117 444 116 992 445 581 725 360 000z101221 326 198 307 805 989 674 376 100 000z8

1251 235 144 025 077 069 360 102 600 000z62235 532 947 523 509 752 525 096 187 500z4

1423 959 305 542 317 554 545 173 137 500z21105 989 826 385 579 388 636 293 284 375

Q5,55&z~4 294 967 296z64210 050 223 472 640z6019 440 928 674 611 200z56

24 799 694 645 913 190 400z5211 479 019 198 616 174 592 000z48

2298 074 520 339 239 193 804 800z44140 130 199 529 452 261 605 376 000z40

23 950 308 378 552 575 299 420 160 000z361314 495 232 283 673 308 338 831 360 000z32

29 746 999 000 216 774 308 402 790 400 000z28

2505 448 497 430 935 762 827 679 395 840 000z24

148 584 980 146 093 597 896 433 359 616 000 000z20

2153 023 737 152 188 370 417 676 206 480 000 000z16

110 774 671 374 774 675 258 232 848 185 680 000 000z12

2124 404 922 781 115 493 935 517 424 775 450 000 000z8

2261 250 337 840 342 537 264 586 592 028 445 000 000z4

1183 691 643 793 990 846 514 162 447 520 000 390 625.
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111Winternitz, P., inPainlevéTranscendents, their Asymptotics and Physical Applications, edited by P. Winternitz and D.

Levi, NATO ASI Series B, Vol. 278~Plenum, New York, 1992!, pp. 425–431.
112Whittaker, E. E. and Watson, G. M.,Modern Analysis, 4th ed.~Cambridge University Press, Cambridge, 1927!.
113Yablonskii, A. I., ‘‘On rational solutions of the second Painleve´ equation,’’ Vestsi Akad. Navuk BSSR, Ser. Fiz.-Tek

Navuk 3, 30–35~1959! ~in Russian!.
114Yamada, Y., inCombinatorial Methods in Representation Theory, edited by K. Koike, M. Kashiwara, S. Okada,

Terada, and H. F. Yamada, Adv. Stud. Pure Math., Vol. 28~Kinokuniya, Tokyo, Japan, 2000!, pp. 391–400.
115Yuan, W.-J. and Li, Y.-Z., ‘‘Rational solutions of Painleve´ equations,’’ Can. J. Math.54, 648–670~2002!.
                                                                                                                



erms
tion is
for the
nd their

prob-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 11 NOVEMBER 2003

                    
On effective constraints for the Riemann–Lanczos system
of equations

S. Brian Edgara)

Department of Mathematics, Linkopings Universitet, S-581 83 Linkoping, Sweden

~Received 18 February 2003; accepted 21 August 2003!

There have been conflicting points of view concerning the Riemann–Lanczos prob-
lem in three and four dimensions. Using direct differentiation on the defining par-
tial differential equations, Massa and Pagani~in four dimensions! and Edgar~in
dimensionsn>3) have argued that there are effective constraints so that not all
Riemann tensors can have Lanczos potentials; using Cartan’s criteria of integrabil-
ity of ideals of differential forms Bampi and Caviglia have argued that there are no
such constraints in dimensionsn<4, and that, in these dimensions, all Riemann
tensors can have Lanczos potentials. In this article we give a simple direct deriva-
tion of a constraint equation, confirm explicitly that known exact solutions of the
Riemann–Lanczos problem satisfy it, and argue that the Bampi and Caviglia con-
clusion must therefore be flawed. In support of this, we refer to the recent work of
Dolan and Gerber on the three-dimensional problem; by a method closely related to
that of Bampi and Caviglia, they have found an ‘‘internal identity’’ which we
demonstrate is precisely the three-dimensional version of the effective constraint
originally found by Massa and Pagani, and Edgar. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1619203#

I. INTRODUCTION

In two recent papers Dolan and Gerber1,2 have revisited the Riemann–Lanczos problem,3 i.e.,
whether a Riemann tensorRabcd can be generated from a three-index tensor potentialHabc ,

Rabcd5 2Hab[c;d]12Hcd[a;b] , ~1!

where the potentialHabc satisfies

Habc5H [ab]c H [abc]50. ~2!

We follow the conventions of Ref. 4. Since there will be expressions which involve sums of t
with, respectively, the Ricci tensor and the square of the Ricci tensor, a consistent conven
essential. In particular it should be noted that in Refs. 5–7 a different convention was used
Ricci tensor and so there are some sign differences between some equations in this paper a
counterparts in Refs. 5–7.

In the literature there are two apparently conflicting answers to the Riemann–Lanczos
lem in four dimensions: Massa and Pagani5 have argued that

‘‘ . . . for the class of spacetime metrics satisfying Rab5lgab one of the integrability condi-
tions of the system (1) takes the form R222RabcdR

abcd50, i.e., it imposes a restriction on
the geometry itself,’’

whereas Bampi and Caviglia8 have argued that

a!Electronic mail: bredg@mai.liu.se
53750022-2488/2003/44(11)/5375/11/$20.00 © 2003 American Institute of Physics
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‘‘ . . . , in the four-dimensional case no integrability condition is required. In other wor
looking at the class of singular solutions allows a potential to exist without any restric
. . . on the geometric structure of the underlying Riemann manifold.’’

These two papers were written at the same time, and neither refers to the other. Of cour
uncertainty would be dispelled if there were explicit examples of Lanczos potentials in reaso
general spaces; however, the only known examples are a few in flat3,9 and conformally flat spaces9

and a few very special space–times in Ref. 1.
Dolan and Gerber1,2 rely on the results and to some extent on the method from Ref. 8,

state in Ref. 1 that the paper of Massa and Pagani in Ref. 5, and the subsequent work by E
Refs. 6 and 7,

‘‘ . . . used a different approach . . . and is not applicable here.’’

We agree with Massa and Pagani5 that if the representation~1! exists for arbitrary Riemann
tensors, then it would have very significant implications for both the mathematical viewpoin
physical applications of general relativity. Therefore it is important to determine whethe
representation~1! exists for all spaces~as argued in Refs. 8, 1, and 2!, or whether it only exists for
a restricted number of spaces~as argued in Refs. 5–7!. If the latter case, it would be interesting t
know whether there exist other effective constraints. Moreover, we believe that the work in
5–7 is very applicable to the work in Refs. 8 and 9 and Refs. 1 and 2, and a fuller understa
of the links between these two lines of investigation should clarify the apparent contradicti

So, in this article, we shall first look at the analogous flat space problem which illustrates
simply some of the important points. Then we demonstrate in a very simple unambiguous m
that~1! implies an integrability condition which is an effective constraint for dimensionsn.2 and
therefore limits the class of spaces which can permit a Lanczos potential with properties~2! via
~1!. Moreover, we will show explicitly, that the Lanczos potentials of those very special sp
found in Refs. 1, 3, and 9 satisfy this restriction. Furthermore, we demonstrate that the non
‘‘internal identity’’ found recently by Dolan and Gerber in the three-dimensional problem1 is
precisely the effective constraint found in Refs. 5–7, and we argue that the Bampi–Ca
analysis8 is therefore flawed. We propose that the Janet–Riquier approach used in Ref. 1 sho
applied to other dimensions.

II. EFFECTIVE CONSTRAINTS ON RIEMANN–LANCZOS SYSTEM

We consider first the more general problem inn-dimensional spaces of whether anyRiemann-

candidate tensor, R̂abcd—a tensor having the algebraic index symmetries of the Riemann tens
can be generated from a potentialHabc by

R̂abcd5 2Hab[c;d]12Hcd[a;b] , ~3!

where the potentialHabc satisfies~2!.

A. Riemann-candidate–Lanczos problem in n -dimensional flat spaces

It is trivial to show that in flat space, although at the first derivative level we can
eliminate one of the potential terms,

R̂[cd;e]
ab 52H [cd

[a;b]
;e] , ~4!

by taking another derivative we can obtain

R̂[ab
[de; f ]

c]50. ~5!

It is important to check whether~5! is aneffectiveconstraint for arbitraryR̂abcd—in the sense tha
not all Riemann-candidatesR̂abcd satisfy ~5!—or whether there are situations when the left-ha
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side is identically zero; it is obvious that the left-hand side is identically zero for dimension
52, but in all other dimensions it is an effective constraint. This is an important point, an
effectiveness of the constraint should not be taken for granted.~In the Weyl-candidate–Lanczo
problem9–13 a similar calculation gives an analogous equation which turns out to be triv
satisfied in four and five dimensions;14,15 this was because any trace-free tensorA[abc]

[de f] is
identically zero in dimensionsn<5.16,17! To prove the effectiveness of this constraint we c
simply choose a local Cartesian coordinate systemxi ,i 51, . . . ,n, for n.2 and construct a simple
counterexample, e.g.,R13125R12135sinx3 sinx2, all other Riemann tensor components zero.

Therefore the representation~3!, in flat space (n.2), is valid only for a subset of Rieman
candidates which satisfy~5!, and possibly other additional constraints, i.e.,~5! is obviously a
necessary condition for a potential to satisfy~3!, but whether it is a sufficient condition is an ope
question. This is an important example which illustrates two principles: it shows that a part
constraint on the geometry of the space, i.e., putting the curvature tensorRabcd50, can imply a
specific constraint on the Riemann candidateR̂abcd; on the other hand, although the constraint
quite restrictive, yet it does permit a significant class of exceptions, for instance, a set of Rie
candidates which satisfy the ‘‘flat space Bianchi equations,’’R̂ab[cd;e]50; in this caseHabc

5(hbc;a2hac;b) and R̂abcd has the form of the Riemann tensor in the linearized theory.3,9

Of course, the analysis in this subsection does not say anything directly about the Riem
Lanczos problem in curved spaces, since in flat space the constraint is trivially satisfied. Ho
we believe that the curved space analog of this constraint~5! is the crucial equation in the
Riemann-candidate–Lanczos problem and the Riemann–Lanczos problem.

B. Riemann-candidate–Lanczos problem in n -dimensional flat spaces

In general curved spaces we can carry out on~3! the same differentiation steps as led to~5!,
but this time the right-hand side of Eq.~5! becomes complicated. However, by taking traces,
can easily find a much simpler subset, with significant properties. Noting that

R̂ab[R̂i
aib52Hi

a[ i :b]12Hi
b[ i :a] and R̂[R̂i

i54Hi j
i : j , ~6!

we find that, after some rearranging of~3!,

R̂;a
a22R̂ab

;ab54Hi j
i ; j

a
a24~Hi

a[ i ;b]1Hi
b[ i ;a] !

;ab

52R,aHa j
j14RabHa

j
j ;b24Rab;cHcab12RabcdHabc;d . ~7!

In flat space this equation~7! is the triple trace of~5!. @The left-hand side of~7! is equivalent to
3R̂[ab

[ab;c]
c] for n.2; we begin instead withR̂;a

a22R̂ab
;ab which means that our analysis als

includes the casen52.] The next step is the important one: by substitutingR̂abcd in the last term
on the right-hand side we eliminate some of the remaining ackward potential terms as w
introducing the Riemann candidate explicitly also on the right-hand side,

R̂;a
a22R̂ab

;ab52R,aHa j
j14RabHa

j
j ;b24Rab;cH

cab1 1
2 Rai jkR̂ai jk . ~8!

By decomposingRabcd and R̂abcd into their trace-free parts withRab5Sab1Rgab /n, R̂ab

5Ŝab1R̂gab /n, we obtain the alternative form

2Ŝab
;ab1

22n

n
R̂;a

a5S 4

n
22DR,aHa j

j24SabHa
j
j ;b14Sab;cH

cab

2
1

2
CabcdĈabcd1

2

n22
SabŜab1

n22

n
RR̂. ~9!
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1. nÄ2

Equation ~9! is not valid for n52, but the previous equation~8! is. However, when we
substituten52 with Rabcd5Rga[cgd]b andR̂abcd5R̂ga[cgd]b into ~8! the constraint collapses to
trivial identity, and so in two dimensions this particular constraint is not effective.

2. nÌ2

We cannot conclude that~9! is aneffectiveconstraint on all geometries, and on all Riema
candidates, because of the existence of the potentialHabc and its derivatives alongside the Rie
mann candidateR̂abcd and the Riemann tensorRabcd. However, for Einstein spaces (Sab50
5R,a), we obtain an expression with no explicit terms in the potentialHabc ,

2Ŝab
;ab1

22n

n
R̂;a

a52
1

2
CabcdĈabcd1

n22

n
RR̂, ~10!

and, in particular, for spaces of constant curvature, we obtain

2Ŝab
;ab1

22n

n
R̂;a

a5
n22

n
RR̂. ~11!

Therefore, for Einstein spaces, we find that the existence of a potentialHabc in ~3! leads to an
effectiveconstraint because those terms which are explicit in the potential all disappear, and
a condition~10! which directly links the background space geometry via the Riemann tensorRabcd

with the Riemann-candidateR̂abcd.
There are some very special situations where this restriction~10! is satisfied trivially; e.g., if

the Riemann candidateR̂abcd satisfied a Bianchi-type equation,R̂ab[cd:e]50 and also has its Wey
and Ricci scalar parts zero,Ĉabcd505R̂. Of course we cannot conclude that in such situation
Lanczos potential will exist; we must also remember that there could be additional constra
this order, or at higher orders of differentiation.

Turning to spaces other than Einstein space, important questions arise: e.g., with resp
particular non-Einstein space, do there exist more constraints? Can all Riemann candid
some Riemann candidates or no Riemann candidates be generated by a potential from~3!? It is
easy to see that there must always be some Riemann candidates, since in a particular spa
choose a particular tensorHabc with the symmetries~2!, we can then define a subclass of Riema
candidates via~3! which will automatically satisfy the constraint~9!. However, our analysis is
unable to tell us whether, in all non-Einstein spaces, for arbitrary Riemann candidates there
a potentialHabc with the symmetries~2! such that both the system~3! and the constraint~9! are
satisfied.

Therefore what we are able to conclude for the Riemann-candidate–Lanczos problem

~i! for n52 the constraint~9! linking the Riemann-candidate tensor and the geometry
trivially satisfied;

~ii ! for n.2 the constraint~9! linking the Riemann-candidate tensor and the geometry
effective in some spaces, e.g.,~10!, and so not all Riemann-candidates can admit Lanc
potentials in all spaces via the representation~3!; and

~iii ! for n.2, we know that there are some spaces and Riemann-candidate tensors whi
admit Lanczos potentials via the representation~3! with ~9! also satisfied identically. We do
not know if there are more situations where Riemann-candidate tensors can admit La
potentials via the representation~3!, but if there are, then~9! will be satisfied identically.
We also do not know if there are more constraints.
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C. Riemann–Lanczos problem in n -dimensional curved spaces

When we specialize to the Riemann–Lanczos problem, i.e.,R̂abcd[Rabcd, we find that, as a
consequence of~1!, the left-hand side of~9! is identically zero via the contracted Bianchi identit
giving

05S 4

n
22DR,aHa j

j24SabHa
j
j ;b14Sab;cH

cab2
1

2
CabcdCabcd1

2

n22
SabSab1

n22

n
R2.

~12!

We can then conclude that forn.2 we cannot have a Lanczos potentialHabc for a space of
~nonzero! constant curvature, and forn>4 the only Einstein spaces which can have a Lanc
potential are those subjected to the restriction

Cai jkCai jk52
n22

n
R2. ~13!

This restriction iseffectivesince there are no explicit terms involving the potential, and what
have is a direct condition on the geometry, which clearly not all Einstein spaces satisfy; i
~13! is an additional invariant condition linking two Riemann scalar invariants in Einstein sp

This restriction~12! is only one scalar equation and so in general it, in itself, would not ap
to be a very strong restriction on the class of Riemann tensors. For instance, in four dimensi
know that there exist 14 Riemann scalar invariants—in general; however, when we specia
vacuum four-dimensional space–times we note that this constraint~13! excludes all Petrov types
of the Weyl tensor except the very specialized Petrov types N and III. So, in vacuum in
dimensional space–times,~13! is a very strong restriction. Although Petrov type N and III spa
are not restricted by~13!, we cannot immediately conclude that they admit Lanczos potentials
~1!; we must again remember that there could be additional constraints at this order, or at
orders of differentiation.

As regards spaces other than Einstein spaces, we know that there are a few explicit
examples of Riemann tensors with Lanczos potentials, e.g., some conformally flat spaces g
Ref. 9, and three four-dimensional spacetimes and one three-dimensional space given in

To confirm the significance of the integrability condition~12! for the Riemann–Lanczos
problem we have shown that all of these special examples~with the exception of the Kasne
space–time in Ref. 1 where the calculations were too complicated! are non-Einstein spaces and w
have demonstrated explicitly that they satisfy~12!. @In Ref. 8, three examples of conformally fla
four-dimensional spacetimes are given and it is simple to confirm that the respective La
potentials satisfy~12!. In Ref. 1, Lanczos potentials are given for an example of Debever
Godel four-dimensional spacetimes, and also a Lanczos potential is given for an examp
Godel three-dimensional space; in these spaces it is straightforward, with the he
GRTensorII,18 to confirm that~12! is satisfied.# Whether potentials can be found for the Riema
tensors of all non-Einstein spaces cannot be decided from the above analysis.

Therefore what we are able to conclude for the Riemann–Lanczos problem is that

~i! for n52 the constraint~12! on the Riemann tensor is trivially satisfied;
~ii ! for n.2 the constraint~12! on the Riemann tensor is effective in some spaces, e.g.,~13!,

and so not all Riemann tensors can admit Lanczos potentials via the representation~1!;
~iii ! for n.2, we do know that there are some special examples of Riemann tensors whic

admit Lanczos potentials via the representation~1!, and they also satisfy~12!. We do not
know if there are any others, but if there are, then the constraint~12! must be satisfied. We
do not know if there are any more constraints.

The existence of this constraint for the Riemann–Lanczos problem was originally de
strated in four dimensions by Massa and Pagani,5 who set up the problem in ordinary tens
notation, but carried out the actual derivation of the crucial constraint equation in tensor-v
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differential forms. This calculation was quite involved, and strictly four-dimensional.~In Ref. 5 a
different sign convention was used for the Ricci tensor from that used in this paper, an
convention was also used in Refs. 6 and 7; so there are some sign differences between this
of the equation and that in Refs. 5–7.! The tensor-valued differential form part of the derivation
the integrability condition was rederived by Edgar in Ref. 6 in ordinary tensor notation, bu
argument was still strictly four-dimensional. Subsequently, a more direct and complete deri
of the constraint equation—with no explicit dimension imposed—was given in Ref. 7, and an
simpler variation by Ho¨glund.19 The derivation given above for the Riemann-candidate–Lanc
problem is based on the version in Ref. 19.

III. EFFECTIVE CONSTRAINTS FOR THE PARALLEL PROBLEM

In their investigations Bampi and Caviglia8,9 did not in fact deal withR̂abcd andHabc directly
but rather with their respective counterpartsNabcd andTabc which satisfied

Nabcd5 2Tab[c;d]12Tcd[a;b] , ~14!

whereNabcd andTabc have only the respective symmetries,

Tabc5T[ab]c and Nabcd5N[ab][ cd]5Ncdab. ~15!

Their motivation for studying this parallel problem was that they were able to show that
problem and the Riemann-candidate–Lanczos problem were mathematically equivalent—in four
dimensions. For other dimensions, any positive results for the existence of potentials for allNabcd

would also apply to the narrower Riemann-candidate–Lanczos problem, and hence to th
narrower Riemann–Lanczos problem; but negative results for the parallel problem wou
general, be irrelevant to the narrower Riemann-candidate–Lanczos and Riemann–Lanczo
lems.

A. nÌ4

We can immediately find the integrability condition

N[abcd;e]50 ~16!

and confirm that this is always aneffectiveconstraint. So we can conclude that in this para
problem not all tensorsNabcd can be written in terms of a potential; this result does not permi
to draw any conclusion about the associated Riemann-candidate–Lanczos problem.

B. nÌ2

If we carry out again the antisymmetrization over five indices as in~16!, we just obtain the
trivial identity in dimensions 3 and 4. So, instead, to find effective constraints for 5.n.2, we
have to carry out the same procedure as in Sec. II involving two differentiations; but sinc
already know that there are restrictive integrability conditions for the Riemann-candidate–La
problem, there is no purpose in investigating further the parallel problem as a means of in
gating the narrower Riemann-candidate–Lanczos problem. However, for completeness w
out that in the calculations leading to the constraint~8!, the only index symmetries used were tho
of the type~15!, and so we can deduce that the parallel problem is subject to the constrain

N;a
a22Nab

;ab52R,aTa j
j14RabTa

j
j ;b24Rab;cT

cab1 1
2 Rai jkNai jk , ~17!

which in flat space simplifies to

N;a
a22Nab

;ab50. ~18!

As argued in the last section, these constraints are effective.
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In summary, we can conclude that, since our investigation found the existence of eff
constraints in the parallel problem, we cannot draw any conclusions about the original Rie
candidate–Lanczos problem, since in all cases the constraints in the parallel problem may
not be present in the narrower Riemann-candidate–Lanczos problem. However, the occur
the integrability conditions~16!–~18! and the role played by dimension will be of interest in t
next section.

IV. ‘‘GENERIC,’’ ‘‘ORDINARY,’’ AND ‘‘SINGULAR’’ SOLUTIONS

From the type of investigaton in Secs, II and III on the constraints due to integra
conditions, we are only able to directly draw limited conclusions. For more complete conclu
we need a procedure which will distinguish between the respective situations where the
indeed effective constraints~even if we cannot find them explicitly!, and where there are n
effective constraints and the existence of a potential is always guaranteed. This is clearly t
of Cartan’s local criteria of integrability of ideals of exterior forms,20–22 as set out in Refs. 8 and
9. Furthermore, if the system is not in involution and we do find some effective constraints, w
prolong the original system to take account of these constraints, and then also use Ca
criteria to analyze the prolonged system. If the prolonged system is not in involution, the
process can be repeated until either an involutive system is obtained, or we encounter in
tencies.

As noted in the last section, Bampi and Caviglia8 considered the parallel problem~14! for the
tensorsNabcd andTabc as a means of studying the Riemann-candidate–Lanczos problem~3!. We
shall now discuss their results, and compare with our results in the previous two sections.

A. nÌ4

In Ref. 8 it is stated that in higher dimensions there will be nontrivial restrictions on the
In fact we have obtained this result very easily in~16!. This result has no direct relevance to t
narrower Riemann-candidate–Lanczos problem.

B. nÄ4

In their first paper, Bampi and Caviglia9 showed that the equation~14! does not always admi
a solution for a givenNabcd. More precisely, they showed the nonexistence of solutions un
certain generic conditions onNabcd, or, as Massa and Pagani5 pointed out, Bampi and Caviglia9

showed that the representation~3! does not exhaust the totality of the set of tensorsNabcd ~which
in four dimensions is equivalent to the set of Riemann candidatesR̂abcd), and, hence, since th
Riemann tensors themselves are only a proper subset of this larger class of Riemann can
this result says nothing about the validity of~3! for Riemann tensors.

This generic result for the Riemann-candidate–Lanczos problem given by Bamp
Caviglia9 was strengthened in their second paper8 where it was stated in Theorem 1 that the
never exist ‘‘regular’’~‘‘ordinary’’ ! solutions to~14! for any tensorNabcd in four dimensions, so
this result now includes the Riemann–Lanczos problem, i.e., there never exist ‘‘regular’’~‘‘ordi-
nary’’! solutions to~1! for any Riemann tensorRabcd in four dimensions. If we interpret ‘‘regular’
solutions to mean the existence of the most general solutions with no constraints on the c
tensorsNabcd and the underlying space, then the conclusion in Theorem 1 does not contrad
results in Sec. III of this article.

The difficulty is with Theorem 2 in Ref. 8. The original system~14! is not in involution and
so is prolonged, and as a result of the analysis of the prolonged system, Bampi and Cavig
no constraints, and conclude in Theorem 28 that in four dimensions, although the representat
~14! never permits ‘‘regular’’~‘‘ordinary’’ ! solutions to~14!, it always admits ‘‘singular’’~‘‘non-
ordinary’’! solutions for all tensorsNabcd ~equivalently for all Riemann candidatesR̂abcd). There-
fore, in Ref. 8 the ‘‘singular’’ solutions are argued to have what appears to be exactly the
general properties as ‘‘regular’’ solutions, with no constraints on the dataNabcd or on the back-
ground space.23
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Normally we expect that such ‘‘singular’’ solutions would involve some restrictions on the
of tensorsNabcd and/or on the underlying space. However, Bampi and Caviglia8 claim that these
‘‘singular’’ solutions are, to their own surprise, not subject to any integrability conditions, and
state that

‘‘ . . . the class of ‘‘singular’’ solutions allows a potential to exist without any restriction
Nabcd and on the geometric structure of the underlying Riemann manifold. . . .’’

This conclusion in Theorem 28 contradicts the results in Sec. III of this article, in particular t
very simple obvious effective constraint~17! for flat space~flat space is not excluded in th
analysis in Ref. 8!. We suspect that this claim of no constraints on these ‘‘singular’’ solutions is
due simply to a misinterpretation of the properties of ‘‘singular’’ solutions but, more fundam
tally, to a fault in the calculations in Ref. 8. We would point out that the only constraint—
‘‘internal identity’’ A[abcde]50 in the notation of Ref. 8—discovered in the calculations for Th
rem 2 in Ref. 8 is precisely the very obvious integrability condition~18! which we found directly
in Sec. III, and which is of course trivially satisfied in four dimensions. What is most surpri
about the method of application of Cauchy’s criteria in Refs. 8 and 9 is that the possibil
constraints existing after two differentiations—involving linear combination of component
Babcde f in the notation of Refs. 8 and 9—does not arise; whereas, from our work in Sec. III
in particular the simple effective constraint equation~18!, it is clear that this is precisely where w
expect constraints. Unfortunately, it is not easy to check the accuracy of the argument in Re
this level, since no explicit details were given leading to the conclusion thats385s3 , for the Cartan
characters.

C. nÄ3

For the parallel problem, it is stated in Ref. 8 that, under ‘‘generic’’ conditions, there doe
exist any ‘‘regular’’ solution because of the existence of an ‘‘internal identity’’; however, in t
second paper,8 Bampi and Caviglia conclude, by the same argument as in four dimensions
there always exist ‘‘singular’’ solutions independently of the choice ofR̂abcd and the geometry of
the space. So we have here the same situation as in four dimensions, involving a contra
with the effective constraint found in Sec. III. Of course, we should remember that the pa
problem is not equivalent to the Riemann-candidate–Lanczos problem in three dimensions
negative result in the former has no direct relevance to the latter.

Significantly, in the next section, we will find that Dolan and Gerber,1 using an alternative bu
related method to Ref. 8 for the direct Riemann–Lanczos problem, have found an explici
straint which is effective, and this constraint is precisely the three-dimensional version o
effective constraint which we discussed in Sec. II.

D. nÄ2

In Ref. 9 it is stated that there will always be ‘‘regular’’ solutions, and there is no contradic
with the integrability condition~9! in Sec. II since with the substitutionn52 the constraint is
trivially satisfied. Finally, we turn to the results on the differential gauge. It is stated in Ref. 8
even when an arbitrary differential gauge condition onHab

c
;c ~e.g.,Hab

c
;c50) is put alongside

the condition~3!, there will always be ‘‘singular’’ solutions in four dimensions. As we ha
discussed above, we believe that the result that there are always ‘‘singular’’ solutions is fl
But the question arises, in those special cases where there are ‘‘singular’’ solutions~with a restric-
tion on the Riemann candidates and/or the geometry!, whether the differential gauge can b
chosen arbitrarily. We believe that this question of gauge is still, in general, open.

V. THE RIEMANN–LANCZOS PROBLEM BY THE JANET–RIQUIER APPROACH

Dolan and Gerber1,2 have considered the direct Riemann–Lanczos problem~1! with the sym-
metries~2! for some very special spaces from the exterior derivative viewpoint along the
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lines as in Refs. 8 and 9, but also they have considered the problem directly as a system of
differential equations in two and three dimensions1 using the related Janet–Riquier24,25 approach.
In fact, their analysis is valid also for the more general Riemann-candidate–Lanczos proble~3!.

A. nÄ2

This problem has been shown by the Janet–Riquier approach always to have solutions;
it is a very simple problem which has also been integrated directly in Ref. 1. There is no c
diction with the integrability condition~9! in Sec. II, since we have already noted forn52 that the
constraint is not effective.

B. nÄ3

Using the Janet–Riquier approach, Dolan and Gerber1 have found that the original Riemann
Lanczos problem is not in involution and so there are no ‘‘regular’’ solutions. After one pro
gation, obtained by adding one ‘‘internal identity,’’ they found that the prolonged system
involutive. They point out that their ‘‘internal identity’’ is not trivial, and they give it in invaria
form as

f (R)
12[12;3]31 f (R)

23[12;3]11 f (R)
31[12;3]250, ~19!

where

f (R)
abcd[Rabcd22Hab[c;d]22Hcd[a;b] . ~20!

This is precisely the constraint

f (R)
[abu[de; f ] uc]50 ~21!

since there is only one component of~21! in three dimensions; and since in three dimensions th
is no trace-free part tof (R)

abcd, the constraint~21! can be rewritten more compactly as

2 f (R)aib
i ;ab2 f (R) i j

i j
;a

a50 . ~22!

When the substitution~20! is made into this last equation, we obtain

R;a
a22Rab

;ab54Hi j
i ; j

a
a24~Hi

a[ i ;b]1Hi
b[ i ;a] !

ab , ~23!

which is precisely~the Riemann tensor version of! Eq. ~7!, and leads to an effective constraint~8!
as shown. Of course, for a Riemann tensor, the left-hand side will be indentically zero due
Bianchi identity, but we can see that the analysis also gives the constraint for the more g
Riemann-candidate–Lanczos problem.

Therefore, the ‘‘internal identity’’ above (19) is precisely the three-dimensional version o
effective constraint (12) for the Riemann–Lanczos problem found in Sec. II. Furthermore, since the
prolonged system, created by adding this constraint has been shown to be involutive in Ref.
must be the only constraint. Also in Ref. 1 there is an explicit example in three dimension
Lanczos potential, which can be interpreted as a singular solution for the unprolonged probl
as a regular solution for the prolonged problem. We have confirmed directly that it satisfie
constraint~9! in Sec. II @equivalently the ‘‘internal identity’’~19! which was found in Ref. 1#.

VI. CONCLUSION

We have confirmed that two successive differentiations of the defining equations~3! of the
Riemann-candidate–Lanczos problem leads to an effective constraint inn.2 dimensions, and
known solutions of the problem have been shown explicitly to satisfy this constraint. Further
we have shown that the results in Refs. 5–7 are directly relevant to the work of Dolan
Gerber;1,2 in particular the ‘‘internal identity’’ found in Refs. 1 and 2 for the three-dimensio
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Riemann–Lanczos problem is precisely the effective constraint found in Refs. 5–7. The exi
of this effective constraint contradicts the results in Ref. 8 for three and four dimensions.

It is significant that, using a method similar to the approach in Refs. 8 and 9, in
dimensions, Dolan and Gerber have found in Ref. 2 exactly the three-dimensional version
effective constraint originally found by Refs. 5–7. This reinforces our suspicion that the app
in Refs. 8 and 9 is flawed, and an attempt should be made to reinvestigate the prolonged
at the level of the second derivatives of the Riemann tensor for all dimensions from the ex
differential system viewpoint.~Dolan and Gerber2 have only briefly mentioned the problem i
some other dimensions from the exterior differential system viewpoint as used in Refs. 8
but have not developed it further.! However, it seems that the Janet–Riquier method for pa
differential equations is shorter and perhaps more transparent, and so it would be preferable
apply this approach, as used in two and three dimensions in Ref. 1, to other dimensions; th
could be compared with the exterior differential system approach.

We also note the significant role that the dimension of the space has played at a num
crucial places in our arguments; whether a constraint is effective or not can depend o
dimension. The constraint~8! is effective forn.2, but trivial for n52; in the parallel problem as
well as the constraint~17! for n.2, an additional constraint~16! occurs forn.4. The role of
dimension is even more subtle for the Weyl–Lanczos problem where complicated cons
involving the second derivatives of the Weyl tensor are valid only for dimensionsn>6, while
constraints involving the third derivatives of the Weyl tensor are valid only for dimensionn
>5; there are no constraints forn54.10–15

In summary, we note that not all Riemann candidates and Riemann tensors have poten
dimensionsn.2, because of the existence of an effective constraint, although there are s
cases where such potentials do exist. From Refs. 1 and 2 it is known that prolongation wi
one constraint gives an involutive system, in three dimensions and it is still an open qu
whether prolongation with this one constraint can lead to involution in higher dimensio
preliminary investigation of the flat space case by the Janet–Riquier approach would sugge
all the equations corresponding to~5! may be needed.
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Hierarchy of one and many-parameter families of random chaotic maps and one-
parameter random elliptic maps ofcn type with an invariant measure have been
introduced. Using the invariant measure~Sinai–Ruelle–Bowen measure!, the
Kolmogorov–Sinai entropy of the random chaotic maps have been calculated ana-
lytically, where the numerical simulations support the results. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1610240#

I. INTRODUCTION

The problem of the transition to chaos in deterministic systems has been the subject of
interest, and, for low-dimensional dynamics, it has been found that this transition most
occurs via a small number of often observed routes~e.g., period doubling and intermittency!.
Usually the analytic calculation of invariant measure of dynamical systems is a nontrivial
hence there are limited number of maps with invariant measure like, Ulam–von Neumann1

Chebyshev maps,2 Katsura–Fukuda map,3 piecewise parabolic map,4 Tent map,5 Elliptic map,6

and finally hierarchy of one and many-parameter families of trigonometric chaotic and
parameter elliptic chaotic maps ofcn type with their couplings.7–10

Here in this article we present a new hierarchy of random chaotic maps with an inva
measure, where using the invariant measure we discuss analytically the transition to chaos
random dynamical systems. Random chaotic maps have attracted the attention of physicist
realm of theoretical biology, disordered systems, and cellular automata for its possible appl
to studies of DNA replication, cell differentiation, and evolution theory.11,12Additionally, random
chaotic maps are of interest as models of convection by temporarily irregular fluid flows.13

In this paper we consider random chaotic maps where, on each iteration, the map fu
F(x,a) is chosen randomly from a hierarchy of maps with an invariant measure which is i
duced in our previous papers.7,8,10

There are two noticeable advantages of random chaotic maps that are presented throu
article. First they are measurable dynamical systems so they can be studied analytically. S
they have the property of being either chaotic or having stable period one fixed point.

The paper is organized as follows. Section II is devoted to the introduction of the ran
chaotic map models. Then, in Sec. III, we introduce the Sinai–Ruelle–Bowen~SRB! measure of
random chaotic maps. The calculation of Kolmogorov–Sinai~KS! entropy of random chaotic
maps via their SRB measure is presented in Sec. IV. Section V is devoted to the Lya
characteristic exponent and the paper ends with a brief conclusion in Sec. VI.

a!Electronic mail: jafarzadeh@tabrizu.ac.ir
53860022-2488/2003/44(11)/5386/15/$20.00 © 2003 American Institute of Physics

                                                                                                                



maps

be

ariant
tric and

d

;

5387J. Math. Phys., Vol. 44, No. 11, November 2003 Hierarchy of random chaotic maps

                    
II. HIERARCHY OF ONE- AND MANY-PARAMETER RANDOM CHAOTIC MAPS

The random chaotic map can be obtained via random choice from an ensemble of
according to some probability distribution. Therefore, for a given ensemble of mapsF i , i
51,2,... with probabilitypi>0 with (pi51, the corresponding random chaotic map can
defined as

F~x,p!5F i~x! with probabilitypi . ~2.1!

Here in this paper we try to construct the hierarchy of random chaotic maps with an inv
measure by choosing the ensemble of one and many parameters of maps of trigonome
elliptic types of Refs. 7, 8, and 10 as follows.

A. One-parameter random chaotic maps

The families of one-parameter maps of the interval@0,1# with an invariant measure are define
as the ratio of polynomials of degreeN:7

FN
a~x!5

a2S 11~21!N
2F1S 2N,N,

1

2
,xD D

~a211!1~a221!~21!N
2F1S 2N,N,

1

2
,xD 5

a2~TN~Ax!!2

11~a221!~TN~Ax!2!
, ~2.2!

whereN is an integer greater than one. Also

2F1~2N,N, 1
2 ,x!5~21!NT2N~Ax!

is a hypergeometric polynomial of degreeN and TN(x) is a Chebyshev polynomial of type I
obviously these map the unit interval@0,1# into itself, respectively.FN

a(x) is an (N21)-nodal
map, that is, it has (N21) critical points in unit interval@0,1# ~see Fig. 1!, since its derivative is

FIG. 1. Plot ofF2
a2(a)(x) andF3

a3(a)(x) map fora50.15. The location of maxima and minima and their values~0 or 1!
are independent of parametera, as shown.
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proportional to the derivative of the hypergeometric polynomial2F1(2N,N, 1
2,x), which is itself

a hypergeometric polynomial of degree (N21), hence it has (N21) real roots in unit interval
@0,1#. Defining the Shwarzian derivative14 S(FN

a(x)) as

S~FN
a~x!!5

FN
a -~x!

FN
a 8~x!

2
3

2 S FN
a 9~x!

FN
a 8~x!

D 2

5S FN
a 9~x!

FN
a 8~x!

D 8
2

1

2 S FN
a 9~x!

FN
a 8~x!

D 2

,

with a prime denoting differentiation with respect to variablex, one can show that

S~FN
a~x!!5S~2F1~2N,N, 1

2 ,x!!<0.

Therefore, the mapsFN
a(x) have at mostN11 attracting periodic orbits,14 also from the

definition of these maps, we see that for oddN, bothx50 andx51 belong to one of then cycles,
while for evenN, only x51 belongs to one of then cycles. In the following we giveF2

a(x) and
F3

a(x) as examples:

F2
a~x!5

a2~2x21!2

4x~12x!1a2~2x21!2 , F3
a~x!5

a2x~4x23!2

a2x~4x23!21~12x!~4x21!2 .

Using the hierarchy of families of one-parameter maps~2.2!, we can generate a new hierarch
of random chaotic maps with an invariant measure, denoted byFNi

a (x,pi), which can be written

as

FNi

a ~x,pi !5F
Ni

aNi
(a)

~x! with probabilitypi , ~2.3!

where( i 51
m pi51 and the parameteraN(a) is defined as

aN~a!5

(k50
[(N21)/2]C2k11

N S a

12a D 2k

(k50
[N/2]C2k

N S a

12a D 2k , ~2.4!

with the symbol@ # as the greatest integer part, and

Ck
n5

n!

k! ~n2k!!
.

As examples in the following we giveF2
a2(a)(x) andF3

a3(a)(x):

F2
a2(a)

~x!5
a2~2x21!2

x~12x!1a2~2x21!2 ,

F3
a3(a)

~x!5
x~4x23!2~2a11!2

x~4x23!2~2a11!21~12x!~4x21!2~322a!2 .

B. Many-parameter random chaotic maps

Even though one can define many-parameter random chaotic maps with an invariant m
for simplicity we restrict ourselves here in this paper to two-parameter ones.8 Random two-
parameter maps are defined as

FNi ,Nj

a i ,a j ~x,pi j !5FNi ,Nj

a i ,a j ~x! with probabilitypi j , ~2.5!
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where( i , j Pi j 51 andFNi ,Nj

a i ,a j (x)5FNi

a i (FNj

a j (x)) with

a i
215a j3

ANj
~a!

BNj
~a!

3

ANiS 1

hNj

a j ~a!D
BNiS 1

hNj

a j ~a!D
, hNj

a j ~a!5a j3S a

12a D3S ANj
~a!

BNj
~a!D 2

, ~2.6!

where the polynomialsA(x), B(x) are defined as

A~x!5 (
k50

[N/2]

C2k
N S x

12xD k

, B~x!5 (
k50

[ ~N21!/2]

C2k11
N S x

12xD k

. ~2.7!

FNi ,Nj

a i ,a j (x) consist of composition of maps with negative Shwarzian derivative, therefore

maps have atNiNj11 attracting periodic orbits.14 As it was shown,8 these maps have only singl
period one stable fixed points.

C. One-parameter random elliptic maps

The families of one-parameter elliptic maps ofcn15 at the interval@0,1# are defined as the ratio
of Jacobian elliptic functions ofcn types in the following form:10

FN
a~x!5

a2~cn~Ncn21~Ax!!!2

11~a221!~cn~Ncn21~Ax!!!2
. ~2.8!

Obviously, these map the unit interval@0,1# into itself. One can show that

S~FN
a~x!!5S~cn~Ncn21~Ax!2!!)<0,

since (d/dx) (cn(Ncn21(Ax)2))) can be written as

d

dx
~cn~Ncn21~Ax!2!!)5A )

i 51

N21

~x2xi !,

with 0<x1,x2,x3,•••,xN21<1, then we have

S~cn~Ncn21~Ax!2!!)5
21

2 (
J51

N21
1

~x2xj !
2 2S (

J51

N21
1

~x2xj !
D 2

,0.

Therefore, the mapsFN
a(x), are (N21)-nodal maps, that is, they have (N21) critical points

in unit interval@0,1#14 and they have only a single period one stable fixed point or they are erg
As an example, we give in the followingF2

a(x):

F2
a~x!5

a2~~12k2!~2x21!1k2x2!2

~12k212k2x2k2x2!21~a221!~~12k2!~2x21!1k2x2!2 .

Now, with the hierarchy of families of one-parameter elliptic maps~2.9!, we can generate a
new hierarchy of one-parameter random elliptic maps with an invariant measure denot
FNi

a (x,pi), which can be written as

FNi

a ~x,pi !5F
Ni

aNi
(a)

~x! with probabilitypi , ~2.9!

where( i 51
m pi51 andaNi

(a) is the same as given in~2.12!.
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III. INVARIANT MEASURE OF RANDOM CHAOTIC MAPS

Characterizing invariant measure for a given nonlinear dynamical system is a fundam
problem which connects dynamical theory to statistics and statistical mechanics. A well-k
example is the Ulam and von Neumann map which has an invariant measurem5 1/Ax(12x).1

Let us recall that for a deterministic mapF(x), the invariant probability measurem(x) is the
eigenfunction of the Perron–Frobenius~PF! operatorL related to maximum eigenvalue 1,16,17

Lm~x!5m~x!, ~3.1!

where the operatorL is defined as

L f ~x!5E d~y2F~x!! f ~y!dy5 (
z5F21(x)

f ~z!

uF8~z!u
. ~3.2!

In the case of random chaotic map, the average probability density can be found by the st
forward generalization of~3.1! as shown in the following:

L̄mav~x!5mav~x!, ~3.3!

where

L̄5(
i 51

m

piLi . ~3.4!

In the above-mentioned equationLi is the Perron–Frobenius operator associated with m
F i(x). It should be mentioned that for trigonometric maps,7 their composition8 and their coupling9

the eigenstate of PF operatorL corresponding to largest eigenvalues has already been obtain
our previous papers. Now, we choose the hierarchy of trigonometric mapsFNi

aN(a)(x), as the

ensemble of maps. ThenFNi

aN(a)(x,pi)-invariance of average densitymav(x,a) implies that the

average density should satisfy the following formal~PF! integral equation:

mav~y,a,p!5(
i 51

m

piE
0

1

d~y2F
Ni

aNi
(a)

~x!!m i~x,a!dx. ~3.5!

Obviously, Eq.~3.5! is the generalization of Eq.~3.2! for random trigonometric maps. A
shown in Ref. 7, each integral appearing on the right-hand side of~3.5! can be written as

m i~y,a!5 (
xi j «F21(y)

m i~xi j ,a!
dxi j

dy
. ~3.6!

Using the prescription of Ref. 7 one can show thatm i(x,a), the invariant measure associated w

trigonometric mapsF
Ni

aNi
(a)

(x), has the following form~for details refer to Appendix A!:

m i~x,a!5m~x,a!5
1

p

Aa~12a!

Ax~12x!~a1~122a!x!
, ~3.7!

that is, the invariant measurem i(x,a) given in ~3.7! satisfies Eq.~3.6!. Now, multiplying both
sides of Eq.~3.6! by pi and summing overi , we get

mav~x,a,p!5(
i 51

m

pim i~x,a!5m~x,a!5(
i 51

m

pi3 (
xi j «F21(y,pi )

m i~x,a!dxi j . ~3.8!
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Therefore, the densitym(x,a) given in ~3.7! is the average invariant measure for ensemble
trigonometric chaotic mapsFNi

a i (x) and it satisfies PF-equation~3.5!, hencemav(x,a) is the in-

variant or SRB measure17,18 of random trigonometric maps given in~2.4! defined on the interva
@0,1#. Also, as relation~3.7! showsmav(x,a)5m i(x,a), hence the average invariant measure
random trigonometric maps is equal to the invariant measure of each map of the ensembl

Also, one can show that the average densitymav(x,a) given in ~3.7! has the following
asymptotic form of delta function asa goes to zero and one, respectively, that is, we have

mav~x,a!a→05d~x!, ~3.9!

mav~x,a!a→15d~x21!, ~3.10!

where the first one corresponds to invariant measure associated with fixed pointx50 and the latter
one corresponds to the fixed pointx51. It is straightforward to show that the random trigon
metric maps are well defined fora.1, where they have fix point (x51),7 therefore, they posses
Dirac delta function invariant measure fora.1, too.

Similarly one can show that the average density of two-parameter~many-parameter! random
trigonometric maps is the same as the average invariant measuremav(x,a) given in ~3.7! ~for
details refer to Appendix A!.

Finally, in the case of elliptic random chaotic maps, as shown in Ref. 10, for small valu
elliptic parameterk, elliptic maps are topologically conjugated with trigonometric maps. Hen
for smallk the average invariant measure of one-parameter random elliptic maps ofcn type is also
the same as the average invariant measuremav(x,a) given in ~3.7!.

IV. KOLMOGOROV–SINAI ENTROPY OF RANDOM CHAOTIC MAPS

KS entropy or metric entropy17 measures how chaotic a dynamical system is and it is pro
tional to the rate at which information about the state of dynamical system is lost in the cou
time or iteration. Therefore, it can also be defined as the average rate of loss of information
discrete measurable dynamical system (F(x,p),mav). By introducing a partition a
5Ac(n1 , . . . ,ng) of the interval@0,1# into individual lapsAi , one can define the usual entrop
associated with the partition by

H~mav,g!52 (
i 51

n(g)

m~Ac!ln m~Ac!,

wherem(Ac)5*nPAi
mav(x,a)dx is the invariant measure ofAi . Defining annth refiningg(n) of

g:

gn5ø
k50

n21

~F~x,p!!2(k)~g!,

then an entropy per unit step of refining is defined by

h~mav,F~x,p!,g!5 limn→`S 1

n
H~mav,g! D ,

now, if the size of individual laps ofg(N) tends to zero asn increases, the above-mentione
entropy is reduced to the well-known KS entropy, that is,

h~mav,F~x,p!!5h~mav,F~x,p!,g!.

KS entropy is actually a quantitative measure of the rate of information lost with the refi
and it can be written as16
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h~mav,F~x,p!!5(
i 51

m

piE mav~x,a!lnUdF i~x!

dx Udx, ~4.1!

which is also a statistical mechanical expression of the Lyapunov Characteristic exponent,
is the mean divergence rate of two nearby orbits. The measurable random dynamical
(F(p,x),mav) is chaotic forh(mav,F(x,p)).0 and predictive forh(mav,F(x,p))50. Using the
fact that the invariant measure for these random chaotic maps is equal to invariant measure
map of ensemble of maps, one can show that KS entropy of these random chaotic maps
average KS entropy of maps of ensemble, that is we have

h~mav,F~x,p!!5(
i 51

m

pi3h~m i ,F i~x!!. ~4.2!

A. KS-entropy of one-parameter random trigonometric maps

With a description similar to the one that we presented in Ref. 7, one can calculate th

entropy of hierarchy of trigonometric mapsF
Ni

aNi
(a)

(x), where we quote only the result as follow

~for details refer to Appendix B!:

h~m i ,F
Ni

aNi
(a)

~x!!5 lnS Ni S 1

12a
12A a

12a D Ni21

S (k50
[Ni /2]C2k

Ni S a

12a D kD S (k50
[ ~Ni21!/2]C2k11

Ni S a

12a D kD D . ~4.3!

Therefore, substituting for KS entropy of one-parameter trigonometric map in Eq.~4.1!, we get the
following expression for KS entropy of one-parameter random trigonometric m
h(mav,FNi

a (x,pi)):

h~mav,FNi

a ~x,pi !!5(
i 51

m

pi lnS Ni S 1

12a
12A a

12a D Ni21

S (k50
[Ni /2]C2k

Ni S a

12a D kD S (k50
[ ~Ni21!/2]C2k11

Ni S a

12a D kD D .

~4.4!

Using the asymptotic Dirac delta function form of the average densitymav(x,a) for limiting
values ofa50, and 1 given in~3.9! and ~3.10!, respectively, one can show that KS entropy
one-parameter random trigonometric maps takes the following form:

h~mav,FNi

a ~x,pi !!5(
i 51

m

pi lnU dF
Ni

aNi
(a)

~x!

dx
U

x50
U5(

i 51

m

pi lnU Ni

aNi

2 ~a!U50 ~4.5!

asa→0, and

h~mav,FNi

a ~x,pi !!5(
i 51

m

pi lnU dF
Ni

aNi
(a)

~x!

dx
U

x51
U5(

i 51

m

pi lnuNiaNi

2 ~a!u ~4.6!

asa→1 and fora.1, respectively.
It is straightforward to see that each sum on the right-hand side of~4.4! has the asymptotic

form (12a)1/2 as a→12 . Thus h(mav,FNi

a (x,pi)) has the following asymptotic form as (a

→12)
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H h~mav,FNi

a→12~x,pi !!;~12a!1/2,

h~mav,FNi

a→01~x,pi !!;~a!1/2,
~4.7!

respectively. The above asymptotic form indicates that the mapsFNi

a (x,pi) belong to the same

universality class which are different from the universality class of pitch fork bifurcating map
their asymptotic behavior is similar to class of intermittent maps,19 even though intermittency
cannot occur in these maps for any values of parameteraN(a), since the mapsFNi

a (x,pi) and their

n-compositionF (n) do not have minimum values other than zero and maximum values other
one in the interval@0,1#.

B. KS entropy of many-parameter random trigonometric maps

Similarly, one can calculate KS entropy of many-parameter random chaotic maps by ref
to the method described in Ref. 8~for details refer to Appendix B!:

h~mav,FNi ,Nj

a ia j ~x,pi j !!5(
i , j

pi j 3 lnS NiNj S 11A12a

a D 2(Nj 21)

~11AhNj

a j ~a!!2(Ni21)

ANj
~a!BNj

~a!ANi
~hNj

a j ~a!!BNi
~hNj

a j ~a!!
D .

~4.8!

With respect to the one-parameter random trigonometric chaotic maps, the numerical and t
ical calculations predict different asymptotic behavior for many-parameter random trigonom

maps, as an example of asymptotic of the composed maps (f2,3
a1a2(x) and f3,2

a1 ,á2(x)), the KS
entropyh(mav,F) is presented in the following:

h~mav,F!5plnS 3~~12a!1Aa~12a!!4~~2a11!~12a!1a2
2~322a!Aa~12a!!2

~12a!3~112a!~322a!~~12a!~112a!21a2
2a~322a!2!

D
1~12p!lnS 3~~12a!1Aa~12a!!4~~2a11!~12a!1á2

2~322a!Aa~12a!!2

~12a!3~112a!~322a!~~12a!~112a!21á2
2a~322a!2!

D
~4.9!

with the following relation among the parameters:

a2
215

a1~12a!~112a!3

2~322a!~~12a!~112a!2a1a~322a!2!
,

á2
215

a1~12a!~112a!3

2~322a!~~12a!~112a!2a1a~322a!2!
,

which is obtained from relation~2.8!. Now choosinga25á2 anda5 a2
n/(11a2

n) , 0,n,2, the
entropy given by~4.9! reads:

h5plnS 3~11Aa2
n!4~113a2

n!~11a2
n12Aa2

n!

~31a2
n!~113a2

n!~~3a2
n11!1a2

n12~31a2
n!2!

D
1~12p!lnS 3~11Aa2

n!4~113a2
n!~11a2

n12Aa2
n!

~31a2
n!~113a2

n!~~3a2
n11!1a2

n12~31a2
n!2!

D , ~4.10!

which has the following asymptotic behavior:
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H h~mav,F!;a2
n/2 as a2→0~a→0!,

h~mav,F!;S 1

a2
D n/2

as a2→`~a→1!.

The above asymptotic behaviors indicate that for an arbitrary value of 0,n,2 the maps
F2,3

a1 ,a2(x,pi j ) belong to the universality class which is different from the universality clas
one-parameter trigonometric maps ofFNi

a (x,pi) ~2.2! or the universality class of pitch fork bifur

cating maps.

C. KS entropy of one-parameter random elliptic maps

For random one-parameter elliptic maps ofcn type, KS entropy, for small values of ellipti
parameter would be equal to KS entropy of one-parameter random trigonometric chaotic
presented in~4.3! ~considering the fact that random elliptic maps are topologically conjugated
random trigonometric maps10!.

V. LYAPUNOV EXPONENT OF RANDOM CHAOTIC MAPS

The Lyapunov exponentl provides the simplest information about chaoticity and can
computed considering the separation of two nearby trajectories evolving in the same realiza
the random process, and for random chaotic maps given in~2.3! and ~5.1!, it can be defined as20

l~x0!5 limn→`

1

n (
k50

n21

lnUdF~xk ,p!

dx U, ~5.1!

where

It is obvious that its negative values indicate that the system is in fix point~attractor! regime, while
its positive values indicate that the system is measurable~the Invariant measure given in~3.9,
12!!.20 Also, the Lyapunov number is independent of initial point, provided that the motion in
the invariant manifold is ergodic, thusl(x0) characterizes the invariant manifold of random m
as a whole. Birkhof ergodic21 theorem implies the equality of KS entropy and Lyapunov numb
of the measurable map likeF(x,p),

h~mav,F~x,p!!5l~x0!.

Also, comparing KS entropy of these maps with their Lyapunov exponent confirms this pred
@see Figs. 2~a!, 2~b!, and 3#. In chaotic region, random chaotic maps are ergodic as Birkhof erg
theorem predicts. In the nonchaotic region of the parameter, the Lyapunov characteristic ex
is negative definite, since in this region, we have only single period fixed points without bif
tion.

VI. CONCLUSION

In this paper we have discussed the dynamical characterization of systems whose evol
described by random chaotic maps. We have studied the application of Perron–Frobenius o
to the analysis of the dynamical behavior of random dynamical systems in order to deriv
invariant measure of the system. Again, this interesting property is due to the existence of
ant measure for a region of the parameter space of these maps.
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APPENDIX A: DETAIL OF DERIVATION OF INVARIANT MEASURE

In this appendix we try to obtain the invariant measure of mapsF3
a3(a)(x) andF2,2

a1 ,a2(x).

~a! First denotingF3
a3(a)(x) by y, we can write

16~a3
2~a!~y21!2y!x3224~a3

2~a!~y21!2y!x219~a3
2~a!~y21!2y!x1y50,

where

a3~a!5
2a11

322a

and solving it forx, we get

FIG. 2. ~a! The variation of KS entropy of one-parameter random trigonometric map for ensemble of (F2
a2(a)(x) and

F3
a3(a)(x)) in terms of parametersa and p. ~b! The variation of Lyapunov characteristic exponent of one-param

random trigonometric map for ensemble of (F2
a2(a)(x) andF3

a3(a)(x)) in term of parametersa andp.
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H xk5
1

2 S 11cosS arcsin~2z21!12kp

3
2

3p

2 D D , k51,2,3,

z5
y

a3
2~a!1~11a3

2~a!!y
.

Then, taking the derivative ofxk with respect toy, we obtain

Udxk

dy U5 Axk~12xk!

3a3~a!Ay~12y!
~a3

2~a!1~12a3
2~a!!y!, k51,2,3,

therefore, FP equation reads~3.6!

m~y,a!5
~a3

2~a!1~12a3
2~a!!y!

3a3
2~a!Ay~12y!

(
k51

3

Axk~12xk!m~xk ,a!. ~A1!

Now, by suggesting the following form formF
3

a3(a)(x),

m~x,a!5
1

Ax~12x!~a1bx!
, ~A2!

the last term in~A1! can be written as

(
k50

3

Axx~12xk!m~xk ,a!5
~3a212ab~x11x21x3!1b2~x1x21x1x21x2x3!!

~a31a2b~x11x21x3!1ab2~x1x21x1x31x2x3!1b3x1x2x3!
.

Using relation~A1!, we can write Shure’s invariant polynomials of rootsxk , k51,2,3 in
terms ofy:

FIG. 3. The variation of KS entropy of one-parameter random elliptic maps for ensemble of (F2
a2(a)(x) andF3

a3(a)(x)) in
terms of parametersa andp.
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5
x11x21x35 3

2 ,

x1x21x1x31x2x35 9
16 ,

x1x2x35
z

16
.

Then subsisting the results that obtained in~A1! we get

a1b51, a5
a

12a
, b5

122a

12a
, ~A3!

which leads to the invariant measure~3.7!.
~b! Also denotingF2

a2(a2)(x) by y andF2
a2(a1)(y) by z, respectively, we can write

H y5F2
a2(a2)

~x!,

z5F2
a2(a1)

~y!5F2,2
a1 ,a2~x!,

now, inverting the above-given equations, we get

x6,65
1

2 S 16A a2
2~a2!~12y6!

a2
2~a2!1~12a2

2~a2!!y6
D , y65

1

2 S 16A a2
2~a1!~12z!

a2
2~a1!1~12a2

2~a1!!z
D .

Then, taking the derivative ofx6,6 with respect toz, we obtain

dx6,6

dz
5

dx6,6

dy6

dy6

dz
5

a2~a1!

4

a2~a2!

4

1

A~12y6!~a2
2~a2!1~12a2

2~a2!y6!3

3
1

A~12z!~a2
2~a1!1~12a2

2~a1!z!3

and subsisting it in~3.6!, we get

m~z,a!5 (
6,6

dx6,6

dz
m~x6,6 ,a!.

Again using the anzatz~A2! for invariant measurem(x6,6 ,a), we get

m~z,a!5(
6

a2~a1!

4

a2~a2!

4

3
1

A~12z!~a2
2~a1!1~12a2

2~a1!!z!3

1

A~12y6!~a2
2~a2!1~12a2

2~a2!!y6!3

3(
6

1

Ax6,6~12x6,6!~a1bx6,6!
. ~A4!

Now, the last expression in~A4! can be written as
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(
6

1

Ax6,6~12x6,6!~a1bx6,6!

5
1

A~12y6!

2a1b~x6,21x6,1!

~a21ab~x6,21x6,1!1b2x6,2x6,1!

5
1

y6~12y6!

4~2a1b!

4~a21ab!~a2
2~a2!1~a2

2~a2!1~12a2
2~a2!!y6!1b2y6!

,

where we have used the following identity for rootsx6,1 andx6,2 :

H x6,21x6,151,

x6,23x6,15
y6

4~a2
2~a2!1~12a2

2~a2!!y6!
.

Therefore, we have

m~z,a!5(
6

a2~a1!

4

a2~a2!

4

1

A~12z!~a2
2~a1!1~12a2

2~a1!!z!3

3
1

y6~12y6!

1

a2
2~a2!1~12a2

2~a2!!y6

3
4~2a1b!

4~a21ab!~a2
2~a2!1~a2

2~a2!1~12a2
2~a2!!y6!1b2y6!

and substituting for sum and product of rooty6 , we get

a1b51, a5
a

12a
, b5

122a

12a
.

APPENDIX B: CALCULATION OF ENTROPY OF THE MAPS F2
a2„a…

„x … AND F2,2
a1 ,a2

„x …

In this appendix we calculate the entropy of the mapsF2
a2(a)(x) andF2,2

a1 ,a2(x).
~a! Using expression~4.1!, we have

h~m,F2
a2(a)

~x!!5
1

p E
0

`

dx
Aa~12a!

Ax~12x!~a1~122a!x!
lnU 1

a2
2~a!

d

dx S 4a2
2~a!x~12x!

114a2
2~a!x~12x!

D U
or

5
1

p E
0

`

dx
Aa~12a!

Ax~12x!~a1~122a!x!

3@ lnu4a2
2~a!~122x!u22 lnu4x~x21!~a2

2~a!21!21u#.

Now, making the following change of variable

x5
a~11cosu!

~11~2a21!cosu!
,

we get
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h~m,F2
a2(a)

~x!!5 ln~112Aa~12a!!, ~B1!

where in the evaluation of above integral we have used the following integral:

1

p E
0

2p

du ln~A1B cosu1C cos 2u!52 lnD,

D5
1

p
SAA23C1A~A1C!22B2

2
1

AA1B1C2AA2B1C

2
D .

The above integral has been evaluated by using the well-known mean values theorem of a
function

1

p E
0

2p

du lnu f ~z01R expiu!u5u f ~z0!u

by choosingf (z)5a1b expiu1g exp 2iu.
~b! Similarly using ~4.1!, we obtain the following expression for the entropy of the m

F2,2
a1 ,a2(x):

h~m,F2,2
a1 ,a2~x!!5

1

p E
0

`

dx m~x,a!lnU d

dx
F2,2

a1 ,a2~x!U
or

h~m,F2,2
a1 ,a2~x!!5

1

p E
0

`

dx m~x,a!F lnU d

dx
F2

a2(a2)
~x!U1 lnU d

dy
F2

a2(a1)
~y!UG . ~B2!

In order to calculate the last integral in~B2!, first we make the following change of variable b
inverting F2

a2(a2)(x),

x65
1

2 S 16A a2
2~a2!~12y!

a2
2~a2!1~12a2

2~a2!!y
D , ~B3!

then the last term in~B2! reduces to

5
1

p (
k56

E
xk

i

xk
f

dxk

aA12a

Axk~12xk!~a1~122a!xk!
lnU d

dy
F2

a2(a1)
~y!U, ~B4!

wherexk
i andxk

f denote the initial and end point ofkth branch of the inversion function (k51 and
k52). Then, taking the derivative ofx6 with respect toy, we obtain

dx6

dy
5

a2~a2!

4
.

1

A~12y!~a2
2~a2!1~12a2

2~a2!!y!3
.

Now, inserting the derivative ofx6 with respect toy in relation ~B4! and changing the order o
sum and integrating, we get
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5
1

4p E
0

`

dy
a2~a1!

A~12y!~a2
2~a2!1~11a2

2~a2!y!!3

3 lnU d

dy
F2

a2(a1)
~y!U (

k56

Aa~12a!

Axk~12xk!~a1~122a!xk!
.

Using relation~A5!, we can write

(
k56

Aa~12a!

Axk~12xk!~a1~122a!xk!
5

Aa2
2~a1!1~12a2

2~a1!!y

AyAa~12a!

.
a2

2~a2~a1!!1~12a2
2~a1!!y

a2
2~a1!1~12a2

2~a1!!y1
~122a!

~12a!2 y

,

therefore,~B4! reduces to

5
1

p E
0

`

dy
a2~a1!

Ay~12y!

Aa~12a!

~4a~12a!~a2
2~a2!1~12a2

2y!1y~122a!2!
lnU d

dy
F2

a2(a1)
~y!U

5 lnS 2Aa~12a!1a2~a2!

4a~12a!1a2
2~a2!

D .

Finally, we get

h~m,f2,2
a1 ,a2~x!!5 lnS ~112Aa~12a!!~a2~a2!12Aa~12a!!

a2~a1!14a~12a!
D . ~B5!
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Tau functions and residues
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We consider the residues of Laurent series of several variables as well as the
residues of pseudodifferential operators of several variables and establish relations
between such residues and tau functions associated to pseudodifferential operators
of several variables. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1621055#

I. INTRODUCTION

Integrable nonlinear partial differential equations have been studied in numerous pape
ing the past few decades, and they include many well-known equations in mathematical p
such as the Korteweg–de Vries~KdV! equation, Kadomtsev–Petviashvili~KP! equation, and
nonlinear Schro¨dinger equation. Such equations are also known as soliton equations becaus
possess solitary waves, or solitons, as solutions.

One way of systematically producing a large number of soliton equations is by using
equations, which describe certain compatibility conditions for pairs of differential or pseud
ferential operators. Indeed, a collection of soliton equations called the KP-hierarchy is deter
by a system of Lax equations. Thus, solutions of Lax equations determine solutions of the
ciated soliton equations. One of the important contributions of the Japanese school was th
pretation of solutions of Lax equations in terms of tau functions.1 Tau functions are closely relate
to Baker functions, which can be written as quotients of values of tau functions. Lax equation
also be interpreted as certain bilinear identities involving residues and Baker functions.

Pseudodifferential operators of one variable are formal Laurent series in the formal in
]21 of the differentiation operator]5d/dx with respect to the single variablex, and they are
essential components in the construction of Lax equations. For this reason pseudodiffe
operators have played a major role in the theory of soliton equations. In a recent paper, P2

studied pseudodifferential operators of several variables by considering formal Laurent se
the formal inverses of]1 ,...,]n with ] i5d/dxi for 1< i<n. Among other things, he introduced
generalization of the KP-hierarchy. More specifically, he constructed Lax equations, zero
ture ~or Zakharov–Shabat! equations, and Sato–Wilson equations by using pseudodiffere
operators of several variables. He also discussed a relation between this generalized KP-h
and some natural Poisson structure on the space of pseudodifferential operators of seve
ables. Some of Parshin’s results were extended further in Refs. 3 and 4. For example, in
Baker functions associated to the Lax equations of Parshin were introduced and were sh
satisfy some of the well-known properties of the usual Baker functions. Tau functions asso
to pseudodifferential operators of several variables and their connections with Baker fun
were studied in Ref. 4.

In this article we consider the residues of Laurent series of several variables as well
residues of pseudodifferential operators of several variables. We establish relations betwee
residues and tau functions associated to pseudodifferential operators of several variables.

II. PSEUDODIFFERENTIAL OPERATORS

Throughout this article we fix a positive integern, and consider the variablesx1 ,...,xn as well
as the corresponding differentiation operators

a!Electronic mail: lee@math.uni.edu
54010022-2488/2003/44(11)/5401/9/$20.00 © 2003 American Institute of Physics
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]15
]

]x1
, ..., ]n5

]

]xn
.

In this section we review pseudodifferential operators expressed in terms of]1 ,...,]n and the
associated Lax equations following Parshin.2

We first describe the usual multi-index notation, which will be used often in this article. G
a5(a1 ,...,an)PZn, we have

]a5]1
a1
¯]n

an , uau5a11¯1an ,

with ]5(]1 ,...,]n). We also writea>b for b5(b1 ,...,bn)PZn if a i>b i for eachi , and use0
and1 to denote the elements~0,...,0! and ~1,...,1! in Zn, respectively.

Let C((x1))¯((xn)) be the field of iterated Laurent series with respect to the varia
x1 ,...,xn over C, and denote byP the space of iterated formal Laurent series

P5C~~x1!!¯~~xn!!~~]1
21!!¯~~]n

21!!

in the formal inverses of]1 ,...,]n over the fieldC((x1))¯((xn)). Thus, for example, an elemen
cPP can be written in the form

c5 (
a<n

f a~x!]a ~1!

for somenPZn, wherex5(x1 ,...,xn). The Leibniz rule determines a multiplication operation
P given by

S (
a

f a~x!]aD S (
b

hb~x!]bD 5(
a,b

(
g>0

S a
g D f a~x!~]ghb~x!!]a1b2g, ~2!

where (g
a)5(g1

a1)¯(gn

an) for elementsa5(a1 ,...,an) andg5(g1 ,...,gn) of Zn with g>0.

We now set

Z1
n 5$aPZnua>0, uau>1%,

and assume that each coefficientf a(x) in ~1! is a function of the infinitely many variable
$tauaPZ1

n %. We allow this set to include the variablesx1 ,...,xn by using the identities

te1
5x1 ,...,ten

5xn , ~3!

where e15(1,0,...,0),..., en5(0,...,0,1) are the standard basis elements for theZ-module Zn.
Thus we may write the elementcPP in ~1! in the form

c5 (
a<n

f a~ t !]a

with t5(ta)aPZ
1
n . If the same elementc can be written in the form

c5 (
i 52`

nn

ai]n
i 5 (

i 52`

nn

ai~ t;]1 ,...,]n21!]n
i

with nn>0, we set
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c15(
i 50

nn

ai]n
i , c25c2c15 (

i 52`

21

ai]n
i ;

if nn,0, we setc150 andc25c. Thus we havec5c11c2 for all cPP, and thereforeP has
a decomposition of the form

P5P11P2 , ~4!

whereP1 is the set of elements ofP of the form( i 50
m ai]n

i for some non-negative integerm, and
P2 is the set of elements of the form( j 52`

k bj]n
j with k,0.

Let Pn be the Cartesian product ofn copies ofP, and consider an elementL5(L1 ,...,Ln)
PPn. Givena5(a1 ,...,an)PZ1

n , we set

@L1
a ,L#5L1

a L2LL1
a 5~L1

a L12L1L1
a ,...,L1

a Ln2LnL1
a !5~@L1

a ,L1#,...,@L1
a ,Ln# !PPn ~5!

and]a5] ta
5]/]ta , so that

]aL5~]aL1 ,...,]aLn!. ~6!

Then the generalized Lax equation is given by

]aL5@L1
a ,L# ~7!

for all aPZ1
n . By ~5! and ~6! we see that~7! is equivalent to the system of equations

]Li

]ta
5@L1

a ,Li # ~8!

for 1< i<n. We now consider the subsetP0
n of Pn defined by

P0
n5$~L1 ,...,Ln!PPnu@Li ,L j #50, 1< i , j <n%, ~9!

where@Li ,L j #5LiL j2L jLi .
Proposition II.1: (i) Let LiP] i1P2 for each i with 1< i<n. Then the operator L

5(L1 ,...,Ln)PPn belongs to P0
n if and only if there is an elementfP11P2 such that

Li5f] if
21

for each iP$1,...,n%, that is, L5f]f21.
(ii) Let f be an element of11P2 satisfying the condition

]af52~f]af21!2f ~10!

for aPZ1
n . Then the operator

L5f]f215~f]1f21,...,f]nf21!PPn ~11!

satisfies the Lax equation (7).
(iii) If L is an element of P0

n satisfying the Lax equation (7) for allaPZ1
n , then we have

]L1
b

]ta
2

]L1
a

]tb
5@L1

a ,L1
b # ~12!

for all a,bPZ1
n .

Proof: See Theorem 1 and Proposition 4 in Ref. 2. h
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Example II.2: We consider an element L5(L1 ,L2)PP0
2 satisfying (12) fora5(1,1) and b

5(1,2), where the pseudodifferential operators L1 ,L2 are given by

L15]11a]2
211b]2

221O~]2
23!,

~13!
L25]21c]1]2

211d]2
211e]2

221O~]2
23!

for some functions a, b, c, d, and e. We shall determine a system of partial differential equatio
satisfied by a, b, c, d, and e. If f is a function, we shall write fx and fy for ]1f and ]2f ,
respectively. Using the multiplication rule (2), we have

L1L25]1]21a1c]1
2]2

211~cx1d!]1]2
211~b1dx!]2

21

1~ac1e!]1]2
221~ad1ex!]2

221O~]2
23!,

~14!
L2L15]1]21a1ay]2

211b]2
211by]2

221c]1~]1]2
211a]2

22!

1d~]1]2
211a]2

22!1e]1]2
221O~]2

23!

5]1]21a1c]1
2]2

211d]1]2
211~ay1b!]2

21

1~ac1e!]1]2
221~ad1axc1by!]2

221O~]2
23!.

From these relations and the condition@L1 ,L2#5L1L22L2L150 in (9) we obtain

cx50, ay5dx , axc1by5ex . ~15!

From (14) we have

L1
a 5~L1L2!15]1]21a. ~16!

On the other hand, using (13) and (14), we obtain

L1
b 5~L1L2

2!15~~L1L2!L2!15]1]2
21a]212c]1

212d]11b12dx . ~17!

Keeping in mind the condition cx50 in (15), we have

L1
a L1

b 5]1
2]2

31]1~a]2
21ay]2!12]1~c]1

2]21cy]1
2!12]1~d]1]21dy]1!1]1~b]21by!

12]1~dx]21dxy!1a~]1]2
21a]212c]1

212d]11b12dx!

5]1
2]2

312a]1]2
21ax]2

212c]1
3]212d]1

2]21~ay1b14dx!]1]2

1~a21ayx1bx12dxx!]212cy]1
31~2dy12ac!]1

2

1~2ad1by14dyx!]11byx12dxyx1ab12adx .

Similarly, we have

L1
b L1

a 5]1
2]2

31]1~a]2
212ay]21ayy!1a]1]2

21a2]21aay12c]1
3]212c~a]1

212ax]11axx!

12d]1
2]212ad]112axd1~b12dx!]1]21ab12adx

5]1
2]2

312a]1]2
21ax]2

212c]1
3]212d]1

2]21~2ay1b12dx!]1]21~a212ayx!]2

12ac]1
21~2ad14axc1ayy!]11aay12axxc12axd1ab12adx1ayyx .

Thus we obtain

L1
a L1

b 2L1
b L1

a 5~2dx2ay!]1]21~bx12dxx2ayx!]212cy]1
322dy]1

2

1~4dyx1by24axc2ayy!]11byx12dxyx2aay22axxc22axd2ayyx .

~18!
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On the other hand, if we let ta5s and tb5t, by (16) and (17) the left hand side of (12) can
written as

]L1
b

]s
2

]L1
a

]t
5as]212cs]1

212ds]11bs12dxs2at . ~19!

Thus by comparing (18) and (19) we obtain

ay52dx , as1ayx5bx12dxx , cy50,

cs1dy50, ayy12ds14axc5by14dyx , ~20!

at1byx12dxyx5aay12axxc12axd1ayyx1bs12dxs .

Thus we see that the functions a, b, c and d satisfy the system of partial differential equations (
and (20).

III. BAKER AND TAU FUNCTIONS

In this section we review Baker functions and tau functions associated to pseudodiffer
operators of several variables discussed in Sec. II. More details can be found in Refs. 3 a

First, in addition to the infinite set$tauaPZ1
n % of variables considered in Sec. II, we need

introduce an additional set of complex variablesz1 ,...,zn . We then consider the formal serie
j(t,z) defined by

j~ t,z!5 (
aPZ1

n
taza, ~21!

wherez5(z1 ,...,zn) andza5z1
a1
¯zn

an for a5(a1 ,...,an). If fP11P2 is as in Sec. II satis-
fying ~10!, we define the associatedBaker function w(t,z) by

w~ t,z!5fej(t,z). ~22!

Sincexi5tei
for 1< i<n by ~3!, we see that

] ie
j(t,z)5

]

]xi
ej(t,z)5

]

]tei

ej(t,z)5zeiej(t,z)5zie
j(t,z).

Thus, if a5(a1 ,...,an)PZ1
n , we have

]aej(t,z)5]1
a1
¯]n

anej(t,z)5]e1

a1
¯]en

anej(t,z)5z1
a1
¯zn

anej(t,z)5zaej(t,z).

Hence, iff511(aaa(t)]aP11P2 , then the Baker function in~22! can be written in the form

w~ t,z!5ŵ~ t,z!ej(t,z), ~23!

whereŵ(t,z) is a formal power series inz1 ,...,zn given by

ŵ~ t,z!511(
a

aa~ t !za. ~24!

If L5(L1 ,...,Ln)5f]f21PPn is an element associated tofP11P2 satisfying~10! as in~11!,
then the Baker functionw5w(t,z) given by ~22! satisfiesLw5zw, that is,Liw5ziw for each
i P$1,...,n% ~see Lemma 3.1 in Ref. 3!. In addition, it can also be shown that
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]aw5L1
a w ~25!

for all aPZ1
n ~see Lemma 3.2 in Ref. 3!.

In order to discuss tau functions, for each vectors5(s1 ,...,sn)PCn, we define the operato
G(s) on the space of functions of the formf (t,z)5 f ((ta)aPZ

1
n ,(z1 ,...,zn)) by

G~s! f ~ t,z!5 f ~~ ta2a21s2a!aPZ
1
n ,z!, ~26!

where a21s2a5a1
21

¯an
21s1

2a1
¯sn

2an according to the multi-index notation. For eachk
P$1,...,n% we also define the differential operatorDk(z) by

Dk~z!5 (
aPZ1

n
aka

21z2a2ek]a2
]

]zk
. ~27!

If h(z)5h(z1 ,...,zn) is a Laurent series inz1 ,...,zn written in the formh(z)5(abaza, then
we define its residue with respect toz by

Reszh~z!5b215b(21,...,21) . ~28!

We consider a subsetP̂2 of P2 given by

P̂25H(
a

f a~x!]aUa<21 wheneverf a~x!Þ0J . ~29!

Assuming thatŵ(t,z) is the formal power series in~24! associated to the Baker function in~22!

with fP11 P̂2 , then the corresponding tau functiont(t) is a function oft5(ta)aPZ
1
n satisfying

the relation

Reszz
aDk~z!ln ŵ~ t,z!52ak~a112ek!21]a112ek

ln t~ t !. ~30!

It can be shown that the Baker function in~22! can be expressed in terms of this tau function

w~ t,z!5~G~z!t~ t !/t~ t !!ej(t,z),

whereG(z) is the operator in~26! ~see Ref. 4 for details!.

IV. TAU FUNCTIONS AND RESIDUES

Let P be the space of iterated Laurent series considered in Sec. II. In this section we de
residues of elements ofP as well as those of formal Laurent series inn variables. We then
establish relations between tau functions and such residues. These relations generalize cor
ing results in the one variable case~see Sec. 7.7 in Ref. 5!.

In addition to the residue with respect toz in ~28!, we consider the one with respect to] as
follows. Given an elementc5(a<n f a(t)]aPP, we define its residue with respect to] by

Res]c5 f 21~ t !5 f (21,...,21)~ t !.

If 1< i<n andn5(n1 ,...,nn), then the same elementcPP can be written in the form

c5 (
k<n i

Fk,i] i
k ,

where
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Fk,i5 (
a<n,a i5k

f a~ t !]1
a1
¯] i 21

a i 21] i 11
a i 11

¯]n
an .

Then the residue ofc with respect to] i is defined by

Res] i
c5F21,i .

The next theorem provides a relation between the tau function and the residue ofŵ(t,z) with
respect toz.

Theorem IV.1: Let ŵ(t,z) be the formal power series in (24) associated to the Baker func

as in (22) withfP11 P̂2 . Then the corresponding tau functiont(t) satisfies

]1]a ln t~ t !52]aReszŵ~ t,z! ~31!

for all aPZ1
n .

Proof: If a5ek with 1<k<n, then we have

ak51, a112ek51, za5zek5zk ;

hence in this case the relation~30! can be written as

ReszzkS (
aPZ1

n
aka

21z2a2ek]a2
]

]zkD ln ŵ~ t,z!52]1 ln t~ t !, ~32!

where we used~27!. GivenaPZ1
n , we have

]a ln ŵ~ t,z!5
]aŵ~ t,z!

ŵ~ t,z!
5

]a~w~ t,z!e2j(t,z)!

ŵ~ t,z!
5

~]aw~ t,z!!e2j(t,z)

ŵ~ t,z!
1

w~ t,z!]ae2j(t,z)

ŵ~ t,z!
.

However, we see that]aw5L1
a w by ~25! and

]ae2j(t,z)52zae2j(t,z).

Hence it follows that

]a ln ŵ~ t,z!5
L1

a w

w
2za5O~za2en!.

Thus ~32! reduces to

]1 ln t~ t !5ReszzkS ]

]zk
ln ŵ~ t,z! D5ReszzkS (aakaa~ t !za2ek

11(aaa~ t !za D
5ReszzkS (aakaa~ t !za

11(aaa~ t !zaD52a21~ t !;

hence we obtain~31!. h

We now state the relation between the tau function and the residue ofLa with L5f]f21

PPn andaPZ1
n with respect to] assuming that the dressing operatorf belongs to 11 P̂2 .

Theorem IV.2: Let f be an element of11 P̂2 satisfying (10), and let L5f]f21PPn be as
in (11). Then the tau function corresponding to the Baker function w(t,z)5fej(t,z) satisfies the
relation

]1]a ln t~ t !5Res]L
a ~33!

for all aPZ1
n .
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Proof: If L5(L1 ,...,Ln) and]5(]1 ,...,]n), from the relationL5f]f21 we obtain

f] i5Lif ~34!

for 1< i<n. SincefP11 P̂2 , the operatorsf andLi can be written in the form

f511 (
j <21

bj]
j , Li5] i1u0] i

211u1] i
211¯ ,

where thebj and uk are expressions involving]1 ,...,] i 21 ,] i 11 ,...,]n as well as t5$taua
PZ1

n %. Thus we have

f] i5] i1b211b22] i
211¯ ,

Lif5] i1b211~] ib211b221u0!] i
211O~] i

22!.

From these relations and~34! we obtain

u052] ib21 ,

which implies that

Res] i
L i52] iRes] i

f ~35!

for eachi P$1,...,n%. By ~8! each operatorLi satisfies

]aLi5@L1
a ,Li #5@La2L2

a ,Li #5@La,Li #1@Li ,L2
a #. ~36!

However, by Proposition II.1 the operatorL belongs toP0
n in ~9!; henceLi commutes withL j for

all i , j P$1,...,n%, and therefore we have

@La,Li #5@L1
a1
¯Ln

an ,Li #50.

Thus ~36! reduces to

]aLi5@Li ,L2
a #. ~37!

If Res] i
L2

a 5r , then we have

@Li ,L2
a #5~] i1u0] i

211¯ !~r ] i
211O~] i

22!!2~r ] i
211O~] i

22!!~] i1u0] i
211¯ !

5~] i r !] i
211O~] i

22!;

hence we see that

Res] i
@Li ,L2

a #5] i r 5] iRes] i
L2

a .

Using this,~35! and ~37!, we have

] i]aRes] i
~f!52Res] i

~]aLi !52Res] i
@Li ,L2

a #52] iRes] i
L2

a 52] iRes] i
La.

From this and the fact that the operators] i and Res] i
commute, we obtain

] i]aRes]f5] i]aRes]1
¯Res]n

f52Res]1
¯Reŝ] i

¯Res]n
] i]aRes] i

f52] iRes]L
a
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for eachi P$1,...,n%, where (• )̂ means suppressing~•!. Sincef is determined only up to multi-
plication by an element of 11 P̂2 with constant coefficients, we may conclude that

]aRes]f52Res]L
a.

On the other hand, using~31!, we have

]aRes]f5]aReszŵ~ t,z!52]1]a ln t~ t !.

Hence we obtain~33!, and the proof of the theorem is complete. h

V. CONCLUDING REMARKS

When the number of variablesn is equal to one, the setsP2 and P̂2 in ~4! and ~29!,
respectively, coincide. The setP0

n is also the same asPn for n51, and in this case the results i
Sec. IV are well known.5 Thus Theorems IV.1 and IV.2 extend the known results in the
variable case to the case of several variables.
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Tiling spaces are inverse limits
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Department of Mathematics, The University of Texas at Austin, Austin, Texas 78712

~Received 8 May 2003; accepted 17 July 2003!

Let M be an arbitrary Riemannian homogeneous space, and letV be a space of
tilings of M , with finite local complexity~relative to some symmetry groupG! and
closed in the natural topology. ThenV is the inverse limit of a sequence of compact
finite-dimensional branched manifolds. The branched manifolds are~finite! unions
of cells, constructed from the tiles themselves and the groupG. This result extends
previous results of Anderson and Putnam, of Ormes, Radin, and Sadun, of Bellis-
sard, Benedetti, and Gambaudo, and of Ga¨hler. In particular, the construction in this
paper is a natural generalization of Ga¨hler’s. © 2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1613041#

I. BACKGROUND

In the last few years, it has become clear that many spaces of tilings ofRd can be viewed as
inverse limit spaces. Anderson and Putnam1 began this program for substitution tilings. Given
substitution, they showed that the corresponding space of tilings ofRd is the inverse limit of a
branchedd-manifoldK under an expansive map fromK to itself. If the substitution has a propert
called ‘‘forcing the border,’’8 then the manifoldK is constructed by stitching all the tile type
together along possible common boundaries. If the substitution does not force the border, th
construction is similar, only using collared tiles.~A collared tile is a tile that is labeled by th
pattern of tiles that touch it.! For this construction to work, the tilings must involve only a fini
number of tile types~up to translation!, meeting full-face to full-face. In particular, the constru
tion does not apply to tilings like the pinwheel,11 where tiles appear in an infinite number
orientations.

Ormes, Radin, and Sadun9 extended the Anderson–Putnam construction to substitution til
of Rd on which the entire Euclidean group acts continuously. Tiles may appear in arb
orientations, but there can only be a finite number of tile typesup to Euclidean motion, and tiles
must meet full-face to full-face. The branched manifold has dimensiond(d11)/2, which is the
dimension of the Euclidean group.

In this construction, a cell in the branched manifoldK is not a tile. Rather, a cell is the produ
of a ~possibly collared! tile with SO(d), modulo any~finite!! rotational symmetry that the tile
might have. This gives a description of all the ways a tile containing the origin may be placed
substitution~call it s! replaces each oriented tile with a union of oriented tiles, giving a map f
K to itself. Such a union of tiles is called asupertileof order 1. The substitution applied to
supertile of order 1 gives a supertile of order 2, and so on.

A point (x0 ,x1 ,...) in theinverse limit←sK is a consistent description of a tiling, withx0

telling how the origin sits inside a tile,x1 telling how the origin sits inside a supertile of order
andxn telling how the origin sits inside a supertile of ordern. If the substitution forces its borde
~or if we are using collared tiles!, the sequence (x0 ,x1 ,...) gives a consistent description of
unique tiling ofRd.

More recently, Ga¨hler5 and Bellissard, Benedetti, and Gambaudo3 have each applied invers
limit methods to tilings that need not be generated by a substitution. Ifx is a tiling of Rd that has
finitely many tile typesup to translation, meeting full-face to full-face, then the continu

a!Electronic mail: sadun@math.utexas.edu
54100022-2488/2003/44(11)/5410/5/$20.00 © 2003 American Institute of Physics
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ous hull ofx ~i.e., the closure of the translational orbit ofx) is the inverse limit of a sequence o
compact branched manifoldsK0 , K1 , K2 , ..., under a sequence of mapssn :Kn→Kn21 , where
each branched manifoldKn is the union of~marked! tiles from the original tiling. Of the two
constructions, Ga¨hler’s is conceptually simpler, but that of Bellissard, Benedetti, and Gamba
appears to be calculationally stronger, leading to results such as gap-labeling theorems.2

This paper is an extension of Ga¨hler’s construction to tilings of arbitrary Riemannian hom
geneous spaces, with general symmetry group. The generalization of the Bellissard–Ben
Gambaudo approach to arbitrary spaces is being done independently by Benedet
Gambaudo.3

II. THEOREM AND PROOF

Before stating and proving the result, we must establish some notation. LetM be a Riemann-
ian homogeneous space~such asZd, Rd, H2, H23R3, etc.!, and pick a point to be the origin. Le
G be the group of isometries ofM , let G be a closed subgroup ofG, and letG0 be the subgroup
of G that fixes the origin. LetV be a collection of tilings ofM . We giveV the topology that two
tilings aree-close if they agree on a ball of size 1/e around the origin, up to the action of a
e-small element ofG. We assume thatV is closed under the action ofG ~i.e., V is a union of
G-orbits!, and thatV is compact. This implies thatV has finite local complexity, up to the actio
of G.

Theorem: V is the inverse limit of a sequence of compact branched manifolds K1 ,K2 ,...,
and continuous mapssn :Kn→Kn21 . The dimension of the branched manifold is the dimensio
G.

The idea of the proof is quite simple. A point in then-th approximantKn is a description of
a tile containing the origin, its nearest neighbors~sometimes called the ‘‘first corona’’!, its second
nearest neighbors~the ‘‘second corona’’! and so on out to then-th nearest neighbors.~For these
purposes, tiles that meet at a point are considered nearest neighbors.! The mapsn :Kn→Kn21

simply forgets then-th corona. A point in the inverse limit is then a consistent prescription
constructing a tiling out to infinity. In other words, it is a tiling.

What remains is to actually constructKn out of geometric pieces and show thatKn is a
branched manifold.

First suppose that the tiles are polytopes that meet full-face to full-face. We consider tw
t1 , t2 in ~possibly different! tilings of M to be equivalent if a patch of the first tiling, containin
t1 and its firstn coronas, is identical, up to the action ofG, to a similar patch aroundt2 . SinceV
has finite local complexity, there are only finitely many equivalence classes, each of wh
called ann-collared tile.

For eachn-collared tilet i , we consider how such a tile can be placed around the origin.
si,t i be the set of points where the origin may sit. By finite local complexity, there can onl
a finite number of connected components tosi , and each component is a submanifold oft i with
the same dimension asG/G0 .

If t i does not admit any symmetry, then for each pointpPsi , G0 acts simply transitively on
the ways to placet i down with the spotp landing at the origin. The set of ways to placet i is
therefore a principalG0 bundle oversi , which we denoteEi . The cellCi,Kn associated witht i

is then exactlyEi .
If there are no topological obstructions to trivializing this bundle, we make the identifica

Ci5Ei5si3G0 . ~1!

If M is flat, then there is acanonical trivialization of the frame bundle, and this descends to
canonical product~1!. If G acts transitively onM , thensi5t i is contractible, and the decompos
tion ~1!, while not canonical, is guaranteed to exist. Although there do exist tilings where ne
of these conditions are met, the author knows of no examples whereCi fails to be trivializable.
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If t i admits a discrete symmetry~e.g., is a regularn-gon in a tiling ofR2 or H2), then more
than one point insi3G0 may describe the same placement of a tile containing the origin. In
case, the cell associated tot i is the quotient of theG0 bundleEi by the symmetry. That is,

Ci5Ei /G t i
~5si3G t i

G0 , if Ei is trivializable!, ~2!

whereG t i
,G0 is the group of symmetries oft i . Sincet i is a collared tile,G t i

must be a discrete
subgroup ofG0 . ~Even if a tile had a continuous symmetry, its first corona could not.! By
construction,G t i

acts without fixed points onEi , so the interior ofCi is indeed a manifold.~For
instance, ifM5R2 andG is the Euclidean group, thenCi is a Seifert fibered space. There may
multiple fibers over points of symmetry, but the total space is smooth.!

A patch of a tiling in which the origin is on the boundary of two or more tiles is described
points on the boundary of two or more cells, and these points must be identified. The bra
manifold Kn is the disjoint union of the cellsCi , modulo this identification. Since we are usin
n-collared tiles withn>1, each of the points being identified carries complete information a
the placement of all the tiles that meet the origin, together with their firstn21 coronas.

We must show that a neighborhood of such a branch point is the union of topological
whose tangent spaces may be identified. Each such disk is obtained by taking a patch of a
which the above data is actually realized, and considering its orbit under the action of a
borhood of the identity inG. This shows that the dimension ofKn is the dimension ofG.

Finally, we remove the assumption that the tiles are polytopes that meet full-face to full
To a tiling by other shapes we may associate a pattern of marked points, where a special
chosen from each tile and labeled by the type of that tile. The Voronoi cells of those points ar
polytopes whose faces, properly subdivided, meet full-face to full-face. The original tiling an
tiling by Voronoi cells are mutually locally derivable,4 and so are described by the same topolo
cal space, and hence by the same inverse limit structure. j

In this construction, the groupG0 acts naturally on each spaceKn , and the mapssn are
equivariant, from which we have the following:

Corollary: The spaceV/G0 of tilings modulo rotation is the inverse limit of a sequence
compact branched orbifolds Kn /G0 .

III. EXAMPLES

~1! If M5G5Zd, then we have aZd subshift. The total spaceV is a Cantor set. Then-th
approximantKn is a finite collection of points, corresponding to a decomposition of the Canto
into a finite number of clopen sets. This decomposition becomes finer asn→`, and the Cantor se
is recovered as the inverse limit.

~2! If M5Rd and G5Zd, then ~up to a fixed translation! V is a space of tilings ofRd by
square tiles centered at the lattice points. This is a different description of the previous exa
In these examples, note thatV does not have to be the hull of a single tiling, and that theZd action
need not be minimal. TheZ subshift on two letters, in which one of the letters appears at m
twice, is neither minimal nor the closure of a single orbit, but is an inverse limit space.

~3! The (d-fold! suspension of aZd subshift hasM5G5Rd. This is a space of tilings ofRd

by unit cubes oriented parallel to the coordinate axes.
~4! A Zd subshift may be suspended in some directions but not in others. For instanc

suspension of aZ2 subshift in thex direction is a space of tilings ofR2 by square tiles, meeting
full-face to full-face, whose centers have an integraly coordinate. In this caseM5R2 and G
5R3Z.

~5! The Penrose tiling space, or any other tiling ofRd with a finite set of prototiles up to
translation, hasM5G5Rd. SinceG0 is trivial andG is the full translation group, the cellsCi can
be identified with the collared tilest i themselves. This is precisely Ga¨hler’s construction. Such a
space is homeomorphic to the suspension of aZd subshift.12
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~6! The pinwheel tiling space11 hasM5R2 andG the 2-dimensional Euclidean group.9

~7! In tiling hyperbolic space, there are a number of interesting choices forG. If G is a discrete
group, then we have the analog of a subshift, associating letters to a discrete set of points
space being tiled. At the other extreme, one can takeG to be the entire group of isometries ofHn.

~8! One-dimensional orientable hyperbolic attractors are either solenoids or one-dimen
tiling spaces.13,1 However, the dyadic solonoidcan be viewed as a tiling space, ofH2 rather than
R1, following a construction of Penrose.10 See Fig. 1. In the upper-half-plane model, the basic
looks like a rectangle, with the sides of the rectangle geodesics, with the top and bottom
horocyclic, and with the size chosen such that the bottom edge has twice the length of t
edge. Here the group isG5Z›R, acting onH2 by (n,t)(x,y)5(t12nx,2ny).

~9! More generally, any geometric substitution inRd gives rise to a space of tilings ofHd11,
with groupG5Z›Rd. As with the dyadic solenoid, it does not matter whether the substitutio
invertible, since theZ action enforces the hierarchy. Goodman-Strauss has adapted this con
tion to produce a strongly aperiodic set of prototiles forH2 ~Ref. 7! and to develop a genera
formalism for describing tilings of hyperbolic space.6

IV. CONCLUSIONS AND OPEN PROBLEMS

The inverse limit structure ofV implies that the Cˇ ech cohomologyH* (V) is the direct limit
of H* (Kn) under the pullback mapssn* . Every element ofH* (V) is the pullback, under the
natural projectionpn :V→Kn , of a cohomology class inKn , for n sufficiently large. If~and only
if ! H* (V) is finitely generated, then forn large enough the entire cohomology ofV is the quotient
of H* (Kn) by the kernel ofpn* .

To make effective use of this principle, however, requires specific knowledge of the
space in question. For substitution tilings, it is easiest to work with the Anderson–Putnam in
limit construction, rather than that constructed here, although in fact the two are shift equiv
For cut-and-project tilings with sufficiently nice ‘‘windows,’’ Ga¨hler5 has shown thatpn* is actu-
ally an isomorphism in cohomology forn sufficiently large, with the required size ofn comput-
able from the geometry of the window.

The inverse limit structure of tiling spaces is related to a possible fiber bundle stru
Locally, V looks like a piece ofG times a Cantor set. Can these neighborhoods be stitched tog
to yield a fiber bundle~with a Cantor set fiber! over a compact manifold? Is that manifold th
quotient of the identity component ofG by a co-compact subgroup? WhenM5G5Rd, the answer
to both questions is yes,12 but the general case is not known.

FIG. 1. Penrose’s dyadic tiling of hyperbolic space.
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A Grassmann integral equation
K. Scharnhorsta)

Humboldt-Universita¨t zu Berlin, Institut fu¨r Physik,
Invalidenstr. 110, 10115 Berlin, Federal Republic of Germany

~Received 15 May 2003; accepted 21 June 2003!

The present study introduces and investigates a new type of equation which is
calledGrassmann integral equationin analogy to integral equations studied in real
analysis. A Grassmann integral equation is an equation which involves Grassmann
~Berezin! integrations and which is to be obeyed by an unknown function over a
~finite-dimensional! Grassmann algebraGm ~i.e., a sought after element of the
Grassmann algebraGm). A particular type of Grassmann integral equations is
explicitly studied for certain low-dimensional Grassmann algebras. The choice of
the equation under investigation is motivated by the effective action formalism of
~lattice! quantum field theory. In a very general setting, for the Grassmann algebras
G2n , n52,3,4, the finite-dimensional analogues of the generating functionals of
the Green functions are worked out explicitly by solving a coupled system of

nonlinear matrix equations. Finally, by imposing the conditionG@$C̄%,$C%#

5G0@$lC̄%,$lC%#1const, 0,lPR (C̄k , Ck , k51,...,n, are the generators of
the Grassmann algebraG2n), between the finite-dimensional analoguesG0 andG of
the ~‘‘classical’’! action and effective action functionals, respectively, a special
Grassmann integral equation is being established and solved which also is equiva-
lent to a coupled system of nonlinear matrix equations. IflÞ1, solutions to this
Grassmann integral equation exist forn52 ~and consequently, also for any even
value ofn, specifically, forn54) but not forn53. If l51, the considered Grass-
mann integral equation~of course! has always a solution which corresponds to a
Gaussian integral, but remarkably in the casen54 a further solution is found
which corresponds to a non-Gaussian integral. The investigation sheds light on the
structures to be met for Grassmann algebrasG2n with arbitrarily chosenn. © 2003
American Institute of Physics.@DOI: 10.1063/1.1612896#

I. INTRODUCTION

The problem to be studied in the present paper is a purely mathematical one and one
arrive at it within various research programmes in mathematics and its applications. Our s
point will be ~lattice! quantum field theory1–4 and for convenience we will mainly use its term
nology throughout the study~incidentally, for a finite-dimensional problem!. However, one could
equally well rely on the terminology of statistical mechanics or probability theory throughout
will be interested in certain aspects of differential calculus in Grassmann~Graßmann! algebras5

and in particular in Grassmann analogues to integral equations studied in real analysis wh
will call Grassmann integral equations. A Grassmann integral equation is an equation wh
involves Grassmann~Berezin! integrations and which is to be obeyed by an unknown funct
over a~finite-dimensional! Grassmann algebraGm ~i.e., a sought after element of the Grassma
algebraGm). To the best of our knowledge this problem is considered for the first time in
paper. Of course, the following comment is due. Bearing in mind that in a Grassmann a
taking a~Grassmann! derivative and an integral are equivalent operations we could equally

a!Electronic mail: scharnh@physik.hu-berlin.de; Present address: Vrije Universiteit Amsterdam, Faculty of Exact Sc
Division of Physics and Astronomy, Department of Theoretical Physics, De Boelelaan 1081, 1081 HV Amsterda
Netherlands; Electronic mail: scharnh@nat.vu.nl
54150022-2488/2003/44(11)/5415/35/$20.00 © 2003 American Institute of Physics
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denote any Grassmann integral equation as a Grassmann differential equation. There is a
sive literature on supersymmetric extensions of differential equations. Corresponding resea
been performed in areas such as supersymmetric field theory~see, e.g., Ref. 6, Vol. 3!, supercon-
formal field theory, the study of supersymmetric integrable models~see, e.g., Refs. 7, 8!, and
superanalysis~for a review of the latter see the recent book by Khrennikov,9 in particular Chap. 2,
and references therein!. Only few mathematical references exist which treat pure Grassm
differential equations~understood in the narrow sense, i.e., in a nonsupersymmetric setting!.10–12

In the physics literature, specifically in the quantum field theoretic literature, such equatio~in
general, for infinite-dimensional Grassmann algebras! can be found in studies of purely fermion
models by means of the Schwinger–Dyson equations13–20or the Schro¨dinger representation~Refs.
21, 22 and follow-up references citing these!. Within the framework of supersymmetric genera
zations of conventional analysis, it is customary to consider all structures in strict analogy t
~complex! analysis. Consequently, as we will be lead to the problem of Grassmann int
equations from the corresponding problem in real analysis the choice of this term should no
to any objection. Incidentally, it might be interesting to note that Khrennikov9 mentions@at the end
of Chap. 2, p. 102~p. 106 of the English translation!# integral equations~item 9! among the
subjects which have not yet been studied in superanalysis.

Having characterized in general the subject of the present study we will now expla
somewhat greater detail the problem we are interested in and where it arises from. Our mot
for the present investigation derives from quantum field theory. Quantum field theory is a
subject with many facets and is being studied on the basis of a number of approaches and m
For the present purpose, we rely on the functional integral approach to Lagrangian quantu
theory ~see, e.g., Ref. 14, Ref. 15, Chap. 9, p. 425, Ref. 16, Ref. 6, Vol. I, Chap. 9, p. 376!. To
begin with, consider the theory of a scalar fieldf in k-dimensional Minkowski space–time. By th
following equations one defines generating functionals for various types of Green functions
field ~see, e.g., Ref. 14, Ref. 15,loc. cit., Ref. 16, Ref. 17, Chap. 6, Ref. 6, Vol. II, Chap. 16, p. 6!,

Z@J#5CE DfeiG0[f] 1 i *dkx J(x)f(x), ~1!

W@J#52 i ln Z@J#, ~2!

G@f̄#5W@J#2E dkx J~x!f̄~x!, ~3!

f̄~x!5
dW@J#

dJ~x!
. ~4!

From Eq.~3! one finds the relation

dG@f̄#

df̄~x!
52J~x!. ~5!

In Eq. ~1!, *Df denotes the~infinite-dimensional! functional integration over the scalar fieldf.
Z@J# is the generating functional of the Green functions,23,24 W@J# is the generating functional o
the connected Green functions while the~first! Legendre transformG@f̄# of W@J# is the generat-
ing functional of the one-particle-irreducible~1PI! Green functions.G0@f# is the so-called clas-
sical action of the theory andC some fixed normalization constant.G@f̄# is also called the
effective action of the theory and, in principle, any information one might ever be interested i
be derived from it.

Equation~1! defines a map,g1 :G0@f#→Z@J#, from the class of functionals called classic
actions to the class of functionalsZ. Furthermore, we have mappings,g2 :Z@J#→W@J#, @Eq. ~2!#,
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and g3 :W@J#→G@f̄# @Eq. ~3!#. These three maps together define a mapg3+g2+g15 f :G0@f#

→G@f̄# from the set of so-called classical actions to the set of effective actions~we will call f the
‘‘action map’’!. In general, the action map is mathematically not well-defined in quantum
theory due to the occurrence of ultraviolet divergencies and one has to apply a regular
procedure for making proper mathematical sense of the above equations. A widely appli
proach which is very natural from a mathematical point of view consists in studying quantum
theory not on a space–time continuum but on a space–time lattice~see, e.g., Refs. 1–4!. The map
f can be represented by the following single equation which can be derived from the Eqs.~1!–~3!:

eiG[ f̄]5CE DfeiG0[f1f̄] 1 i *dkx J(x)f(x). ~6!

J(x) is given here by Eq.~5!, consequently, Eq.~6! is only an implicit representation of the ma
f . For any quantum field theory, the properties of the action mapf are of considerable interest bu
are hard if not impossible to study in general. In the simplest case,G0 is a quadratic functional of
the field f ~reasonably chosen to ensure that the functional integral is well defined!. Then, the
functional integral is Gaussian and one immediately finds~free field theory; const is some consta
depending on the choice ofC)

G@f#5G0@f#1const. ~7!

There are very few other cases in which the formalism can explicitly be studied beyond p
bation theory. A number of exact results exist in quantum mechanics~which can be understood a
quantum field theory in 011-dimensional space-time; see, e.g., Refs. 25, 26!. For some quantum
field theoretic results see, e.g., Ref. 27.

It is common and successful practice in mathematics and physics to approach difficult in
dimensional problems from their finite-dimensional analogues. For example, in numerical s
within the framework of lattice quantum field theory the infinite-dimensional functional integr
present in Eq.~6! is replaced by a multidimensional multiple integral. The simplest fin
dimensional analogue of Eq.~6! is being obtained by replacing the infinite-dimensional functio
integral by an one-dimensional integral over the real line.@More precisely, we obtain it from the
Euclidean field theory version of Eq.~6! where the imaginary uniti in the exponent is replaced b
(2)1. g8 denotes here the first derivative of the functiong.]

e g(y)5CE
2`

1`

dx eg0(x1y)2g8(y)x. ~8!

Still, even the study of Eq.~8! represents a formidable task. The consideration of the~one-
dimensional! analogues of the Eqs.~1!–~6! is often pursued under the name of zero-dimensio
field theory@Refs. 28–42, Ref. 15, Subsec. 9-4-1, p. 463, Refs. 43–46, Refs. 18, 47–58, R
Chap. 9, p. 211, Refs. 60–64; we have included into the list of reference also articles on the
ultralocal single-component scalar model but left aside papers on the correspondingO(N) sym-
metric model#.

For simplicity, the above discussion has been based on the consideration of a bosonic q
field. However, fermionic~Grassmann valued! quantum fields are also of considerable physi
interest~for a general discussion of Grassmann variables see Ref. 5!. The analogue of Eq.~6! for
a purely fermionic field theory of the Grassmann fieldC, C̄ reads as follows:

eiG[ C̄,C]5CE D~x,x̄ ! e iG0[ x̄1C̄,x1C] 1 i *dkx (h̄(x)x(x)1x̄(x)h(x)), ~9!

h̄~x!5
dG@C̄,C#

dC~x!
, h~x!52

dG@C̄,C#

dC̄~x!
. ~10!
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Here,D(x,x̄) denotes the infinite-dimensional Grassmann integration and the functional de
tives used in~10! are left Grassmann derivatives. The finite-dimensional~fermionic! analogues of
the Eqs.~1!–~5! and ~9!, ~10! consequently read65–69

Z@$h̄%,$h%#5CE )
l 51

n

~dx l dx̄ l !e
G0[ $x̄%,$x%] 1( l 51

n (h̄ lx l1x̄ lh l ), ~11!

W@$h̄%,$h%#5 ln Z@$h̄%,$h%#, ~12!

G@$C̄%,$C%#5W@$h̄%,$h%#2(
l 51

n

~ h̄ lC l1C̄ lh l !, ~13!

C̄ l52
]W@$h̄%,$h%#

]h l
, C l5

]W@$h̄%,$h%#

]h̄ l
, ~14!

and

e G[ $C̄%,$C%]5CE )
l 51

n

~dx l dx̄ l !e
G0[ $x̄1C̄%,$x1C%] 1( l 51

n (h̄ lx l1x̄ lh l ), ~15!

h̄ l5
]G@$C̄%,$C%#

]C l

, h l52
]G@$C̄%,$C%#

]C̄ l

, ~16!

respectively. $C̄%, $C% denote the sets of Grassmann variablesC̄ l , l 51,...,n and C l , l
51,...,n, respectively, which are the generators of the Grassmann algebraG2n @more precisely, we
are considering a Grassmann algebraG4n as thex l , x̄ l in Eq. ~15! are also Grassmann variable
but we will ignore this mathematical subtlety in the following#. These generators obey the sta
dard relations

C lCm1CmC l5C̄ lCm1CmC̄ l5C̄ lC̄m1C̄mC̄ l50. ~17!

In this paper, we will concentrate on the explicit study of the Eqs.~15!, ~16! for small values ofn
(n52,3,4) ~some of the calculations have been performed by means of a purpose de
Mathematica program70!. The Eqs.~15!, ~16! define~implicitly ! a mapf between the elementsG0

andG of the Grassmann algebraG2n ~in analogy to the infinite-dimensional case, we call the m
f the action map!. As we will see, the Eqs.~15!, ~16! are equivalent to a coupled system
nonlinear matrix equations which however can successively be solved completely~for a general
exposition of matrix equations see, e.g., Refs. 71 and 72!. This way, we will explicitly work out
the action mapf for the following fairly general ansatz forG0 :

G0@$C̄%,$C%#5A(0) 1 (
l ,m51

n

Al ,m
(2)C̄ lCm 1 S 1

2! D
2

(
l 1 ,l 2 ,m1 ,m251

n

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1 S 1

3! D
2

(
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

n

Al 1l 2l 3 ,m1m2m3

(6) C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1 ¯

1 S 1

n! D
2

(
l 1 ,...,l n ,m1 ,...,mn51

n

Al 1¯ l n ,m1¯mn

(2n) C̄ l 1
¯C̄ l n

Cm1
¯Cmn

. ~18!

Here,A(0) is some constant and the coefficientsA...
(2k) , k.1, are chosen to be completely an

symmetric in the first and in the second half of their indices, respectively.
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Although the explicit determination of the action mapf betweenG0 and G for low-
dimensional Grassmann algebras represents previously unknown information, it may seem
study of the mapf for low-dimensional Grassmann algebras is a mathematical exercise of p
academic nature as quantum field theory and statistical mechanics are concerned with in
many degrees of freedom. To some extent this view may be justified for the time being bu
should also take note of the fact that results for the Grassmann algebrasG2n and G2(n21) are
closely related. To see this observe the following. Put in Eq.~18! considered in the case of th
Grassmann algebraG2n the coefficientAn,n

(2) equal to one but all other coefficientsA...
(2k) , k.1,

equal to zero whose index set$...% contains at least one index with valuen.

An,n
(2)51, ~19!

A...n...
(2k) 50, k.1. ~20!

Then, perform in Eq.~15! the Grassmann integrations with respect toxn , x̄n . Up to the factor
(expC̄nCn) present on both sides~no summation with respect ton here! Eq. ~18! then coincides
with Eq. ~18! considered in the case of the Grassmann algebraG2(n21) . Consequently, results
obtained for low-dimensional Grassmann algebras tightly constrain structures to be fou
Grassmann algebrasG2n with arbitrarily chosenn. In fact, we will use this observation in two
ways. On the one hand, we will rely on it in order to check the explicit results obtained fn
54 andn53 for compatibility with those obtained forn53 andn52, respectively. On the othe
hand, on the basis of the above observation we will extrapolate some results obtainedn
52,3,4 to arbitraryn which can be used later in the future as working hypothesis for fur
studies.

Having explicitly worked out the action mapf betweenG0 and G for low-dimensional
Grassmann algebras, we will not stop our investigation at this point but pursue our study st
step further. In the Refs. 28, 73, and 74 it has been argued~in a quantum field theoretic context!,
that it might be physically sensible and interesting to look for actionsG0@f# which are not
quadratic functionals of the fieldf ~i.e., which do not describe free fields! but for which Eq.~7!
also applies. For the purpose of the present investigation we will slightly extend our searc
will look for solutions to the equation (0,lPR)

G@$C̄%,$C%#5G0@$lC̄%,$lC%#1D f~l!. ~21!

l can be considered here as a finite-dimensional analogue of a wave function renormal
constant in continuous space–time quantum field theory.D f(l) is some constant which is allowe
to depend onl. Equation~21! turns the implicit representation of the mapf given by the Eqs.

~15!, ~16! into a Grassmann integral equation forG0@$C̄%,$C%# ~more precisely, into a nonlinea
Grassmann integro-differential equation!. As we will see, this Grassmann integral equation
equivalent to a coupled system of nonlinear matrix equations whose solution in turn is equi
to the solution of the considered Grassmann integral equation. In the present study, to us E~21!
is just a mathematical problem to be studied. The possible relevance of any solution of Eq.~21! to
physical problems will remain beyond the scope of the present paper. Some comments
respect can be found in Refs. 28 and 73.

The plan of the paper is as follows. In Sec. II we work out explicitly the action mapf between
G0 and G. Section II A contains some mathematical preliminaries while the following th
sections are devoted to the casesn52,3,4, respectively. Section II E finally studies the extrapo
tion of some of the results obtained to Grassmann algebrasG2n with arbitrarily chosenn. Section
III is concerned with the study of the Grassmann integral equation~21!. On the basis of the result
obtained in Sec. II, in Secs. III A–III C it is solved forn52,3,4, respectively. Then, Sec. III D
contains an analysis of certain aspects of the solutions of the Grassmann integral equation
for n54. In Sec. IV the discussion of the results and conclusions can be found. The pa
supplemented by three Appendixes.
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II. THE ACTION MAP FOR LOW-DIMENSIONAL GRASSMANN ALGEBRAS

A. Some definitions

To simplify the further considerations we introduce a set of (k
n)3(k

n) matricesA(2k) (k
51,...,n) by writing ~choosel 1, l 2,¯, l k , m1,m2,¯,mk),

ALM
(2k)5Al 1¯ l k ,m1¯mk

(2k) ~22!

~we identify the indicesL, M with the ordered stringsl 1¯ l k , m1¯mk ) or, more generally~not
requestingl 1, l 2,¯, l k , m1,m2,¯,mk)

ALM
(2k) 5 sgn@sa~ l 1 ,...,l k!#sgn@sb~m1 ,...,mk!#Al 1¯ l k ,m1¯mk

(2k) . ~23!

The indicesL,M label the equivalence classes of all permutations of the indicesl 1 ,...,l k and
m1 ,...,mk , respectively, andsa , sb are the permutations which bring the indicesl i ,mi ( i
51,...,k) into order with respect to the, relation @i.e., sa( l 1),sa( l 2),¯,sa( l k), sb(m1)
,sb(m2),¯,sb(mk)]. The matrix elements of the matrixA(2k) are arranged according to th
lexicographical order of the row and column indicesL, M . @We identify the indicesL, M with the
ordered stringssa( l 1)¯sa( l k), sb(m1)¯sb(mk), respectively.#

We also define a set of~dual! (k
n)3(k

n) matricesA(2k)! (k51,...,n) by writing

A(2k)!5E (k)A(2k)TE (k)T, ~24!

where the (k
n)3(k

n) matrix E (k) is defined by

E LM
(k) 5e l 1¯ l n2km1¯mk

, ~25!

consequently,

E (k)T5~21!(n2k)kE (n2k). ~26!

@Quite generally, for any (k
n)3(k

n) matrix B we defineB! by B!5E (k)BTE (k)T.] It holds (1r is the
r 3r unit matrix!

E (k)E (k)T51(
k
n), ~27!

E (k)TE (k)51(
k
n). ~28!

The transition from a matrixB to the matrixB! corresponds to applying the Hodge star operat
to the two subspaces of the Grassmann algebraG2n generated by the two sets of Grassma
variables$C̄% and $C% and interchanging them~cf., e.g., Ref. 75, Part II, Chap. 4, p. 50!. This
operation on the matrixB is an involution as (B!)!5B.

Furthermore, it turns out to be convenient to define arrays of partition functions~i.e., their
finite-dimensional analogues!. First, we choose

C5e2G0[ $0%,$0%] 5 e2A(0)
. ~29!

This choice in effect cancels any constant term in Eq.~18! ~in this respect also see Ref. 73, p. 288!.
Now, we define76 ~we apply the convention*dx i x j5d i j )

P5P(2n)!5CE )
l 51

n

~dx l dx̄ l ! e G0[ $x̄%,$x%] . ~30!
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We then define arrays of partition functionsP(2n22k)! @these are (k
n)3(k

n) matrices# for subsystems
of Grassmann variables wherek degrees of freedom have been omitted~in slight misuse of
physics terminology we denote a pair of Grassmann variablesC̄ l , Cm by the term degree o
freedom;l 1, l 2,¯, l k , m1,m2,¯,mk in the following!:

PLM
(2n22k)!5

]

]Al 1 ,m1

(2) ¯

]

]Al k ,mk

(2) P ~31!

5~21!k
]

]h l 1

]

]h̄m1

¯

]

]h l k

]

]h̄mk

Z@$h̄%,$h%#U
h̄5h50

. ~32!

Recursively, Eq.~31! can be written as follows@ l k. l k21 , mk.mk21 ; note the different meaning
of the indicesL, M on the left-hand side~lhs! and on the right-hand side~rhs! of the equation#:

PLM
(2n22k)!5

] PLM
(2n22k12)!

]Al k ,mk

(2) . ~33!

Let us illustrate the above definitions by means of a simple example. Choose

G0@$x̄%,$x%#5 (
l ,m51

n

Al ,m
(2)x̄ lxm. ~34!

Then

Z@$h̄%,$h%#5detA(2)e2h̄[A(2)] 21h ~35!

and

P(2n22k)!5C n2k~A(2)! ~36!

@cf. the references cited in relation to Eq.~A2! of Appendix A and Ref. 77, Sec. 2, Ref. 78, also s
Ref. 17, Chap. 1, Sec. 1.9#. Here,Cn2k(A(2)) is the (n2k)th supplementary compound matrix o
the matrixA(2) ~for a definition and some properties of compound matrices see Appendix A!. By
virtue of Eq.~A6! ~see Appendix A! it holds

P(2n22k)!P(2k)5P(2k)P(2n22k)!5detA(2)1(
k
n). ~37!

B. Explicit calculation: nÄ2

The case of the Grassmann algebraG4 (n52) to be treated in the present section is s
algebraically fairly simple but already exhibits many of the features which we will mee
considering the larger Grassmann algebrasG6 , G8 . Therefore, to some extent this section serve
didactical purpose in order to give the reader a precise idea of the calculations to be perfor
the following two sections. These calculations will proceed exactly by the same steps as
section but the algebraic complexity of the expressions will grow considerably. Also fro
practical, calculational point of view it is advisable to choose an approach which proceeds
wise from the most simple case (n52) to the more involved ones (n53,4) in order to accumulate
experience in dealing with this growing complexity. On the other hand, the casen52 is special in
some respect and deserves attention in its own right.

According to our general ansatz~18! we put

G0@$C̄%,$C%#5A(0)1 (
l ,m51

2

Al ,m
(2)C̄ lCm1A12,12

(4) C̄1C̄2C1C2 ~38!
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andG@$C̄%,$C%# can be written in the same way

G@$C̄%,$C%#5A(0)81 (
l ,m51

2

Al ,m
(2)8C̄ lCm1A12,12

(4)8 C̄1C̄2C1C2 . ~39!

No other terms will occur for symmetry reasons. One quickly finds for the partition function@cf.
Eq. ~30!#

P5e A(0)85P(4)!5detA(2)2A(4)!. ~40!

Of course, hereA(4)!5A12,12
(4) applies—again ignoring the fact that~very formally! these constants

live in different spaces, cf. Eq.~24!. The notationP(4)! is introduced in order to indicate how i
larger Grassmann algebras this partition function transforms under linear~unitary! transformations

of the two subsets$C̄%, $C% of the generators of the Grassmann algebra. Clearly,P(4)! then
transforms exactly the same way asA(4)! does and this fact suggests the chosen notation.~The
same will apply to any other partition functionP(2n)! for larger Grassmann algebrasG2n .) The
result of the mapg2+g1 reads~adjB denotes here the adjoint matrix of the matrixB!

W@$h̄%,$h%#5 ln P(4)! 2 (
l ,m51

2
~adjA(2)! lm

P(4)! h̄ lhm 1
A12,12

(4)

~P(4)!!2 h̄1h̄2h1h2 . ~41!

The only assumption made to arrive at this result is thatP(4)!Þ0. We can now proceed on th
basis of the general Eq.~13! specified ton52,

G@$C̄%,$C%#5W@$h̄%,$h%# 2(
l 51

2

~ h̄ lC l1C̄ lh l !. ~42!

We insert Eq.~39! onto the lhs of Eq.~42! and the explicit expressions forh̄, h found from Eq.
~39! according to Eq.~16! on its rhs. Comparing coefficients on both sides we find the follow
two coupled equations:

A(2)852A(2)82A(2)8
adjA(2)

P(4)! A(2)8, ~43!

A12,12
(4)8 54A12,12

(4)8 22
tr@A(2)8 adjA(2)#

P(4)! A12,12
(4)8 1S detA(2)8

P(4)! D 2

A12,12
(4) . ~44!

Equation~43! can immediately be simplified to read

A(2)85A(2)8
adjA(2)

P(4)! A(2)8. ~45!

From Eq.~45! one recognizes that the matrixA(2)8 is the generalized$2%-inverse of the matrix
adjA(2)/P(4)! ~cf., e.g., Ref. 79, Chap. 1, p. 7!.

We can now successively solve the Eqs.~43!, ~44!. Choosing detA(2)8Þ0 @By virtue of Eq.
~45! this entails detA(2)Þ0.], we immediately find from Eq.~45!

A(2)85S P(4)!

detA(2)D A(2). ~46!

Inserting this expression forA(2)8 into Eq. ~44! yields the following solution:
                                                                                                                



:

ns

case

5423J. Math. Phys., Vol. 44, No. 11, November 2003 A Grassmann integral equation

                    
A12,12
(4)8 5S P(4)!

detA(2)D 2

A12,12
(4) . ~47!

In analogy to Eq.~40!, we can now define a quantity

P(4)!85detA(2)82A(4)!8 ~48!

and from Eqs.~46!, ~47! we find @taking into account Eq.~40!#

P(4)!85
~P(4)!!3

~detA(2)!25S P(4)!

detA(2)D 2

P(4)!. ~49!

Taking the determinant on both sides of Eq.~46! provides us with the following useful relation

detA(2)85
~P(4)!!2

detA(2) . ~50!

Up to this point, very little is special to the casen52 and we will meet the analogous equatio
in the next sections.

We turn now to some features which are closely related to the algebraic simplicity of the
n52 and which cannot easily be identified in larger Grassmann algebras. The Eqs.~49! and~50!
can now be combined to yield the equation

P(4)!85
detA(2)8

detA(2) P(4)!, ~51!

which is converted (P(4)!,detA(2)8Þ0 entailP(4)!8Þ0) into

detA(2)8

P(4)!8
5

detA(2)

P(4)! . ~52!

An equivalent form of Eq.~52! is

A12,12
(4)8

detA(2)8
5

A12,12
(4)

detA(2). ~53!

From Eqs.~52! and~53! we recognize that forn52 the action mapf has an invariant which can
be calculated from the left- or right-hand sides of these equations.

We are now going to invert the action mapf .80 From Eqs.~49! and ~52! we easily find

P(4)!5
~detA(2)8!2

P(4)!8
5S detA(2)8

P(4)!8 D 2

P(4)!8. ~54!

Equation~52! also allows us to find the following inversion formulas for the mapf from Eqs.~46!,
~47!:

A(2)5S detA(2)8

P(4)!8 DA(2)8, ~55!

A12,12
(4) 5S detA(2)8

P(4)!8 D 2

A12,12
(4)8 . ~56!

From the above equations we see that forn52 the action mapf can easily be inverted~once one
assumesP(4)!Þ0, detA(2)Þ0, P(4)!8Þ0, detA(2)8Þ0).
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C. Explicit calculation: nÄ3

The casen53 is already considerably more involved in comparison with the casen52
treated in the preceding section. In the present and the next sections, as far as possi
appropriate we will apply the same wording as in Sec. II B in order to emphasize their
relation.

We start by parametrizingG0 andG according to our general ansatz@cf. Eq. ~18! and Eqs.
~38!, ~39!#.

G0@$C̄%,$C%#5A(0)1 (
l ,m51

3

Al ,m
(2)C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

3

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1A123,123
(6) C̄1C̄2C̄3C1C2C3 , ~57!

G@$C̄%,$C%#5A(0)81 (
l ,m51

3

Al ,m
(2)8C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

3

Al 1l 2 ,m1m2

(4)8 C̄ l 1
C̄ l 2

Cm1
Cm2

1A123,123
(6)8 C̄1C̄2C̄3C1C2C3 . ~58!

For the partition function we find@cf. Eq. ~30!#

P5e A(0)85P(6)!5detA(2)2tr~A(4)!A(2)!2A(6)! ~59!

522 detA(2)1tr~P(4)!A(2)!2A(6)!. ~60!

In analogy to Eq.~40!, here A(6)!5A123,123
(6) applies. In the lower line@Eq. ~60!#, we use the

notation@cf. Eqs.~31! and ~40!#

P(4)5C2~A(2)!2A(4), P(4)!5adjA(2)2A(4)! ~61!

@adjA(2) 5 C2(A(2))! #.
After some calculation we obtain the following expression forW@$h̄%,$h%# ~to arrive at it we

only assumeP(6)!Þ0):

W@$h̄%,$h%#5 ln P(6)! 2
Plm

(4)!

P(6)! h̄ lhm2
AML

(2)!

P(6)! h̄ l 1
h̄ l 2

hm1
hm2

2
1

2 S Plm
(4)!

P(6)! h̄ lhmD 2

1
1

P(6)! F1 2
tr~P(4)!A(2)!

P(6)! 1
2 detP(4)!

~P(6)!!2 G h̄1h̄2h̄3h1h2h3. ~62!

Here and in the following we use the notationBMLh̄ l 1
h̄ l 2

hm1
hm2

for a multiple sum overl 1 , l 2 ,
m1 , m2 with the restrictionsl 1, l 2 , m1,m2 applied;L5$ l 1 ,l 2%, M5$m1 ,m2%. The analogous
convention is also applied to multiple sums over more indices. To arrive at the further resul
useful to take note of the equation

~Plm
(4)!h̄ lhm!2522 C2~P(4)!!LM h̄ l 1

h̄ l 2
hm1

hm2
. ~63!

We proceed now exactly the same way as in Sec. II B. We insert Eq.~58! onto the lhs of Eq.~13!
and the explicit expressions forh̄, h found from Eq.~58! according to Eq.~16! on its rhs. Again,
comparing coefficients on both sides we find the following three coupled nonlinear matrix
tions:

A(2)852A(2)82A(2)8
P(4)!

P(6)! A(2)8, ~64!
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A(4)!854A(4)!81A(4)!8
A(2)8P(4)!2tr~A(2)8P(4)!!13

P(6)!

1
P(4)!A(2)82tr~P(4)!A(2)8!13

P(6)! A(4)!82adjA(2)8
P(6)!A(2)2adjP(4)!

~P(6)!!2 adjA(2)8,

~65!

A123,123
(6)8 56A123,123

(6)8 1
2

P(6)! H 2A123,123
(6)8 tr~P(4)!A(2)8!1tr~P(4)!adjA(4)!8!

1tr~A(2)adjA(2)8!tr~A(2)8A(4)!8!2detA(2)8tr~A(2)A(4)!8!1
~detA(2)8!2

2 J
1

2

~P(6)!!2 H detA(2)8tr~A(4)!8adj P(4)!!2tr@adj~A(2)8P(4)!!# tr~A(2)8A(4)!8!

2
1

2
~detA(2)8!2tr~P(4)!A(2)!J 1

2

~P(6)!!3 ~detA(2)8!2 detP(4)!. ~66!

Equation~64! is equivalent to the equation

A(2)85A(2)8
P(4)!

P(6)! A(2)8. ~67!

The matrixA(2)8 is the generalized$2%-inverse of the matrixP(4)!/P(6)! ~cf., e.g., Ref. 79, Chap
1, p. 7!.

In analogy to the procedure applied in Sec. II B, we can now successively solve the
~64!–~66!. Choosing detA(2)8Þ0 @by virtue of Eq.~67! this entails detP(4)!Þ0], we immediately
find from Eq.~67! an explicit expression forA(2)8. This can be inserted into Eq.~65! to also find
an explicit expression forA(4)!8. Finally, both these explicit expressions forA(2)8 andA(4)!8 can
now be inserted into Eq.~66! to solve it forA123,123

(6)8 . The results obtained read as follows:

A(2)85P(6)!@P(4)!#215
P(6)!

detP(4)! adjP(4)!, ~68!

A(4)!852
~P(6)!!2

detP(4)! F P(6)!

detP(4)! P(4)!A(2)P(4)!2P(4)!G , ~69!

A123,123
(6)8 5

~P(6)!!5

~detP(4)!!2 H 12
2

detP(4)! tr@adj~P(4)!A(2)!#J 1
3~P(6)!!4

~detP(4)!!2 tr~P(4)!A(2)!2
4~P(6)!!3

detP(4)! .

~70!

In deriving Eq.~70! we have made use of the identity~B2! given in Appendix B. In analogy to the
Eqs.~61! and ~59!, we can now define

P(4)!85adjA(2)82A(4)!8, ~71!

P(6)!85detA(2)82tr~A(4)!8A(2)8!2A(6)!8, ~72!

and from the Eqs.~68!–~70! we find

P(4)!85
~P(6)!!3

~detP(4)!!2 P(4)!A(2)P(4)!, ~73!
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P(6)!852
~P(6)!!5

~detP(4)!!2 H 12
2

detP(4)! tr@adj~P(4)!A(2)!#J 2
2~P(6)!!4

~detP(4)!!2 tr~P(4)!A(2)!1
2~P(6)!!3

detP(4)! .

~74!

Taking the determinant on both sides of the Eqs.~68! and ~73! provides us with the following
useful relations:

detA(2)85
~P(6)!!3

detP(4)! , ~75!

detP(4)!85
~P(6)!!9

~detP(4)!!4 detA(2). ~76!

Finally, also for the casen53 we derive equations which describe the inverse of the ac
map f ~the comment made in Ref. 80 of Sec. II B also applies here!. From Eqs.~68!, ~69!, ~73!, we
find

P(4)!5P(6)!@A(2)8#215
P(6)!

detA(2)8
adjA(2)8, ~77!

A(4)!5
P(6)!

detA(2)8 H P(6)!

~detA(2)8!3 adj~A(2)8P(4)!8A(2)8!2adjA(2)8J , ~78!

A(2)5
P(6)!

~detA(2)8!2 A(2)8P(4)!8A(2)8, ~79!

where nowP(6)! is being understood as a function of the primed quantities whose explicit s
remains to be determined. Inserting Eqs.~77!, ~78! into Eq.~74! allows us to derive the following
explicit representation of the partition functionP(6)! in terms of the primed quantities:

P(6)!5~detA(2)8!2H 2 detA(2)822 tr~P(4)!8A(2)8!1
2

detA(2)8
tr@adj~P(4)!8A(2)8!#2P(6)!8J 21

.

~80!

In principle, on the basis of this result also an explicit representation ofA123,123
(6) in terms of the

primed quantities can be established@relying on Eq.~59!# but we refrain from also writing it down
here. As one recognizes from Eq.~80!, in the casen53 the description of the inverse of the actio
map f already involves fairly complicated expressions and we will not attempt to generalize
in the next section to the casen54.

The results obtained in the present section can be checked for consistency in two ways
based on the procedure described in the Introduction in the context of Eqs.~19! and~20! one can
convince oneself that the results—wherever appropriate—are consistent with the results o

in Sec. II B for the case of the Grassmann algebraG4 (n52). Second, choosing forG0@$C̄%,$C%#
the form ~34! one can also convince oneself that thenA(2)85A(2) andA(4)!8, A123,123

(6)8 vanish as
expected.

D. Explicit calculation: nÄ4

We are now prepared to study the algebraically most involved case to be treated in the p
paper—the case of the Grassmann algebraG8 (n54). The calculational experience collected
the last two sections allows us to manage the fairly involved expressions.

We start again by parametrizingG0 andG according to our general ansatz@cf. Eq. ~18!#,
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G0@$C̄%,$C%#5A(0)1 (
l ,m51

4

Al ,m
(2)C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

4

Al 1l 2 ,m1m2

(4) C̄ l 1
C̄ l 2

Cm1
Cm2

1
1

36 (
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

4

Al 1l 2l 3 ,m1m2m3

(6) C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1A1234,1234
(8) C̄1C̄2C̄3C̄4C1C2C3C4 . ~81!

For G the analogous representation can be used,

G@$C̄%,$C%#5A(0)81 (
l ,m51

4

Al ,m
(2)8C̄ lCm1

1

4 (
l 1 ,l 2 ,m1 ,m251

4

Al 1l 2 ,m1m2

(4)8 C̄ l 1
C̄ l 2

Cm1
Cm2

1
1

36 (
l 1 ,l 2 ,l 3 ,m1 ,m2 ,m351

4

Al 1l 2l 3 ,m1m2m3

(6)8 C̄ l 1
C̄ l 2

C̄ l 3
Cm1

Cm2
Cm3

1A1234,1234
(8)8 C̄1C̄2C̄3C̄4C1C2C3C4 . ~82!

The partition function reads@cf. Eq. ~30!#

P5e A(0)85P(8)!5detA(2)2tr@A(4)!C2~A(2)!#1 1
2tr~A(4)!A(4)!2tr~A(6)!A(2)!1A(8)! ~83!

56 detA(2)22 tr@P(4)!C2~A(2)!#1 1
2tr~P(4)!P(4)!1tr~P(6)!A(2)!1A(8)!. ~84!

In analogy to Eq.~40!, hereA(8)!5A1234,1234
(8) applies. In the lower line@Eq. ~84!#, we have made

use of the expressions@cf. Eqs.~61!, ~59!#

P(4)!5C2~A(2)!!2A(4)!, ~85!

P(6)!5adjA(2)2Fa~A(2),A(4)!2A(6)! ~86!

(adjA(2) 5 C3(A(2))!). The formFa is defined as follows:

Fa~A(2),A(4)! lm5e lrK emsNAsr
(2)ANK

(4) . ~87!

In making the transition from Eq.~83! to Eq. ~84! we have used the relations

2 tr@C2~A(2)!A(4)!#5tr@Fa~A(2),A(4)!A(2)#, ~88!

C2~A(2)!C2~A(2)!!5C2~A(2)!!C2~A(2)!5detA(2)16 ~89!

@Eq. ~89! is a special case of Eq.~A6!, see Appendix A#. As next step, we can calculat
W@$h̄%,$h%# which reads~to arrive at it we only assumeP(8)!Þ0)

W@$h̄%,$h%#5 ln P(8)! 2
Plm

(6)!

P(8)! h̄ lhm2
PLM

(4)!

P(8)! h̄ l 1
h̄ l 2

hm1
hm2

2
1

2 S Plm
(6)!

P(8)! h̄ lhmD 2

1
1

P(8)! FA(2)! 2
Fa~P(6)!,P(4)!!!

P(8)! 1
2 C3~P(6)!!

~P(8)!!2 G
LM

h̄ l 1
h̄ l 2

h̄ l 3
hm1

hm2
hm3

1
1

P(8)! H 1 2
tr~P(6)!A(2)!

P(8)! 2
tr~P(4)!P(4)!

2 P(8)! 1
2 tr@P(4)C2~P(6)!!#

~P(8)!!2

2
6 detP(6)!

~P(8)!!3 J h̄1h̄2h̄3h̄4h1h2h3h4 . ~90!
                                                                                                                



The

t

atrix

5428 J. Math. Phys., Vol. 44, No. 11, November 2003 K. Scharnhorst

                    
In the following, we need a number of forms which we list here for further reference.
index convention applied here requires some explanation. For example, (A(4)!8E (2)) l tur up to the
sign denotes elements of the 636 matrixA(4)!8E (2). If l ,t, u,r , it denotes the matrix elemen
(A(4)!8E (2)) $ l ,t%$u,r % . If l .t, u,r , it denotes the matrix element (2A(4)!8E (2)) $t,l %$u,r % and if l
,t, u.r , it denotes the matrix element (2A(4)!8E (2)) $ l ,t%$r ,u% . And finally, if l .t, u.r , it
denotes the matrix element (A(4)!8E (2)) $t,l %$r ,u% . Of course, (A(4)!8E (2)) $ l ,t%$u,r %50 if l 5t or u
5r . In the following, summation is understood over repeated indices:

Fb~A(2)8P(6)!!LM5eLrk ~A(2)8P(6)!!sr eskM , ~91!

Fc~A(4)!8,P(6)!,A(4)!8! lm5~A(4)!8E (2)! l turPsr
(6)!~E (2)A(4)!8!stum, ~92!

Fd1~A(4)!8,A(2)8,P(4)C2~A(2)8!!! lm5~A(4)!8E (2)! lrtuAsr
(2)8@E (2)P(4)C2~A(2)8!!# tsum, ~93!

Fd2~C2~A(2)8!!P(4),A(2)8,A(4)!8! lm5@C2~A(2)8!!P(4)E (2)# lutrAsr
(2)8~E (2)A(4)!8! tusm, ~94!

Fe~A(2)8,A(4)8,A(4)8,A(2)8!LM5E Lab
(2) Ara

(2)8~E (2)A(4)8!rtbu~A(4)8E (2)!dtsuAcs
(2)8E cdM

(2) , ~95!

Ff~A(4)!8,A(2)8P(6)!,A(4)8! lm5~A(4)!8E (2)! lcda~A(2)8P(6)!!ba~E (2)A(4)8!bdcm, ~96!

Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!LM

5E Lab
(2) @E (2)C2~P(6)!!P(4)#arbtPrs

(6)!Ptu
(6)!@P(4)C2~P(6)!!E (2)#csduE cdM

(2) . ~97!

To arrive at the further results it is useful to take note of the equation

~Plm
(6)!h̄ lhm!2522C2~P(6)!!LMh̄ l 1

h̄ l 2
hm1

hm2
. ~98!

We now apply exactly the same procedure as in Secs. II B, II C. We insert Eq.~82! onto the lhs of
Eq. ~13! and the explicit expressions forh̄, h found from Eq.~82! according to Eq.~16! on its rhs.
Again, comparing coefficients on both sides we find the following four coupled nonlinear m
equations:

A(2)852A(2)82A(2)8
P(6)!

P(8)! A(2)8, ~99!

A(4)!854A(4)!82
Fb~A(2)8P(6)!!

P(8)! A(4)!82A(4)!8
Fb~P(6)!A(2)8!

P(8)!

2C2~A(2)8!!
P(8)!P(4)2C2~P(6)!!!

~P(8)!!2 C2~A(2)8!!, ~100!

A(6)!856A(6)!81
1

P(8)! $A(6)!8@A(2)8P(6)!2tr~A(2)8P(6)!!14#

1@P(6)!A(2)82tr~P(6)!A(2)8!14#A(6)!82Fc~A(4)!8,P(6)!,A(4)!8!

1Fd1~A(4)!8,A(2)8,P(4)C2~A(2)8!!!1Fd2~C2~A(2)8!!P(4),A(2)8,A(4)!8!

1adj~A(2)8!A(2) adj~A(2)8!%2
1

~P(8)!!2 $Fd1~A(4)!8,A(2)8,C2~A(2)8P(6)!!!!

1Fd2~C2~P(6)!A(2)8!!,A(2)8,A(4)!8!1adj~A(2)8!Fa~P(6)!,P(4)!!adj~A(2)8!%

1
2

~P(8)!!3 adj~A(2)8P(6)!A(2)8!, ~101!
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A1234,1234
(8)8 58A1234,1234

(8)8 1
1

P(8)! $22A1234,1234
(8)8 tr~P(6)!A(2)8!22 tr@P(6)!Fa~A(6)!8,A(4)!8!#

22 tr@A(2)8A(6)!8A(2)8Fa~A(2)8,P(4)!#2tr@P(4)Fe~A(2)8,A(4)8,A(4)8,A(2)8!#

2 1
2 tr@Fc~P(4)!C2~A(2)8!,14 ,A(4)!8A(4)8!#2 1

2 tr@Fc~A(4)8A(4)!8,14 ,C2~A(2)8!P(4)!!#

1tr@A(4)!8C2~A(2)8!Fb~~adjA(2)8!A(2)!#1tr@C2~A(2)8!A(4)!8Fb~A(2) adjA(2)8!#

1~detA(2)8!2%1
1

~P(8)!!2 $2 tr~A(2)8A(6)!8A(2)8P(6)!!tr~A(2)8P(6)!!

22 tr~A(2)8A(6)!8A(2)8P(6)!A(2)8P(6)!!1tr@A(2)8P(6)!A(2)8Fc~A(4)!8,P(6)!,A(4)!8!#

2tr@P(6)!A(2)8Ff~A(4)!8,A(2)8P(6)!,A(4)8!#1 1
2 tr@Fc~C2~P(6)!A(2)8!,14 ,A(4)!8A(4)8!#

1 1
2 tr@Fc~A(4)8A(4)!8,14 ,C2~A(2)8P(6)!!!#

2tr@Fa~P(6)!,P(4)!!Fa~14 ,A(4)!8C2~A(2)8!!adjA(2)8#

2tr@Fa~14 ,C2~A(2)8!A(4)!8!Fa~P(6)!,P(4)!!adjA(2)8#

2~detA(2)8!2@ tr~P(6)!A(2)!1 1
2 tr~P(4)!P(4)!#%

1
2

~P(8)!!3 $tr@A(4)!8C2~A(2)8!Fb~adj ~P(6)!A(2)8!!#

1tr@C2~A(2)8!A(4)!8Fb~adj ~A(2)8P(6)!!!#

1~detA(2)8!2tr@P(4)C2~P(6)!!#%2
6

~P(8)!!4 ~detA(2)8!2 detP(6)!. ~102!

Equation~99! is equivalent to the equation

A(2)85A(2)8
P(6)!

P(8)! A(2)8. ~103!

The matrixA(2)8 is the generalized$2%-inverse of the matrixP(6)!/P(8)! ~cf., e.g., Ref. 79, Chap
1, p. 7!.

For solving the Eqs.~99!–~102! we apply again the same method as in Secs. II B and I
Choosing detA(2)8Þ0 @by virtue of Eq.~103! this entails detP(6)!Þ0], we immediately find from
Eq. ~103! an explicit expression forA(2)8. This can be inserted into Eq.~100! to also find an
explicit expression forA(4)!8.

A(2)85P(8)! @P(6)!#21 5
P(8)!

detP(6)! adjP(6)!, ~104!

A(4)!852
~P(8)!!2

det P(6)! F P(8)!

detP(6)! C2~P(6)!!P(4)C2~P(6)!!2C2~P(6)!!G . ~105!

To arrive at Eq.~105! we have relied on the following calculation@cf. Appendix A, Eqs.~A6!,
~A5!#:
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C2~A(2)8!!5~P(8)!!2C2~@P(6)!#21!!5
~P(8)!!2

detP(6)! C2~@P(6)!#21!215
~P(8)!!2

detP(6)! C2~P(6)!!.

~106!

Having obtained explicit expressions forA(2)8 andA(4)!8 we can now insert them into Eq.~101!
to solve it. We find

A(6)!85
~P(8)!!5

~detP(6)!!2 P(6)!H A(2)2
1

2 detP(6)! Fd1~P(4),P(6)!,C2~P(6)!!P(4)!

2
1

2 detP(6)! Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!J P(6)!

1
3~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!2
4~P(8)!!3

detP(6)! P(6)! ~107!

5
~P(8)!!5

~detP(6)!!2 P(6)!A(2)P(6)!

1
~P(8)!!5

~detP(6)!!4 Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!

1
3~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!2
4~P(8)!!3

detP(6)! P(6)!. ~108!

The equivalence of Eqs.~107! and ~108! is based on the relation

~detP(6)!!P(6)!Fd1~P(4),P(6)!,C2~P(6)!!P(4)!P(6)!

5~detP(6)!!P(6)!Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!P(6)!

52Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!. ~109!

Finally, inserting Eqs.~104!, ~105!, ~108! into ~102! allows us to find the following explicit
solution forA1234,1234

(8)8 :

A1234,1234
(8)8 5

~P(8)!!7

~detP(6)!!2 $122tr@A(2)Fa~~P(6)!!21,P(4)!#%

1
~P(8)!!7

~detP(6)!!4 $tr@P(4)Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!#

2 1
2 tr@Fc~C2~P(6)!!P(4)P(4)!C2~P(6)!!!,14 ,C2~P(6)!!P(4)!#

2 1
2 tr@Fc~C2~P(6)!!!P(4)!P(4)C2~P(6)!!,14 ,P(4)C2~P(6)!!!#%

1
~P(8)!!6

~detP(6)!!2 H 11

2
tr~P(4)P(4)!!15 tr~P(6)!A(2)!

2
5

detP(6)! tr@Fa~14 ,C2~P(6)!!P(4)!Fa~14 ,P(4)!C2~P(6)!!!!#J
118

~P(8)!!5

~detP(6)!!2 tr@P(4)C2~P(6)!!#230
~P(8)!!4

detP(6)! . ~110!

In analogy to the Eqs.~85!, ~86! and ~83!, we can now define
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P(4)!85C2~A(2)8!!2A(4)!8, ~111!

P(6)!85adjA(2)82Fa~A(2)8,A(4)8!2A(6)!8, ~112!

P(8)!85detA(2)82tr@A(4)!8C2~A(2)8!#1 1
2tr~A(4)!8A(4)8!2tr~A(6)!8A(2)8!1A(8)!8, ~113!

and from Eqs.~104!, ~105!, ~108!, ~110!, we find

P(4)!85
~P(8)!!3

~detP(6)!!2 C2~P(6)!!P(4)C2~P(6)!!, ~114!

P(6)!852
~P(8)!!5

~detP(6)!!2 P(6)!H A(2)2
1

2 detP(6)! Fd1~P(4),P(6)!,C2~P(6)!!P(4)!

2
1

2 detP(6)! Fd2~P(4)C2~P(6)!!,P(6)!,P(4)!J P(6)!

2
2~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!1
2~P(8)!!3

detP(6)! P(6)! ~115!

52
~P(8)!!5

~detP(6)!!2 P(6)!A(2)P(6)!

2
~P(8)!!5

~detP(6)!!4 Fc~C2~P(6)!!P(4)C2~P(6)!!,P(6)!,C2~P(6)!!P(4)C2~P(6)!!!

2
2~P(8)!!4

~detP(6)!!2 P(6)!Fa~P(6)!,P(4)!!P(6)!1
2~P(8)!!3

detP(6)! P(6)!, ~116!

P(8)!85
~P(8)!!7

~detP(6)!!2 $122tr@A(2)Fa~~P(6)!!21,P(4)!#%

1
~P(8)!!7

~detP(6)!!4 $tr@P(4)Fg~C2~P(6)!!P(4),P(6)!,P(6)!,P(4)C2~P(6)!!!#

2 1
2 tr@Fc~C2~P(6)!!P(4)P(4)!C2~P(6)!!!,14 ,C2~P(6)!!P(4)!#

2 1
2 tr@Fc~C2~P(6)!!!P(4)!P(4)C2~P(6)!!,14 ,P(4)C2~P(6)!!!#%

14
~P(8)!!6

~detP(6)!!2 H tr~P(4)P(4)!!1tr~P(6)!A(2)!

2
1

detP(6)! tr@Fa~14 ,C2~P(6)!!P(4)!Fa~14 ,P(4)!C2~P(6)!!!!#J
112

~P(8)!!5

~detP(6)!!2 tr@P(4)C2~P(6)!!#216
~P(8)!!4

detP(6)!. ~117!

Taking the determinant on both sides of the Eqs.~104! and ~114! provides us with the following
useful relations:

detA(2)85
~P(8)!!4

detP(6)! , ~118!
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detP(4)!85
~P(8)!!18

~detP(6)!!6 detP(4)!. ~119!

In deriving Eq.~119! we have relied on the following~Sylvester–Franke! identity @cf. Appendix
A, Eq. ~A8!#.

detC2~P(6)!!5~detP(6)!!3. ~120!

We can finally check the obtained results for consistency in the same way as done at t
of the preceding section forn53. First, based on the procedure described in the Introduction in
context of Eqs.~19!, ~20! one can convince oneself again that the results—wherever appropri
are consistent with the results obtained in Sec. II C for the case of the Grassmann algebraG6 (n

53). Second, choosing forG0@$C̄%,$C%# the form ~34! one can also convince oneself that th
A(2)85A(2) and A(4)!8, A(6)!8, A1234,1234

(8)8 vanish as expected. Given the combinatorial fact
involved, this represents a fairly sensitive check of the present results.

E. Some heuristics for arbitrary n

Having gained a fairly broad calculational and structural experience in the preceding se
in considering the present formalism for the case of the Grassmann algebrasG2n , n52,3,4, we are
going to generalize now some of the obtained results to arbitrary values ofn. This analytic
extrapolation is a heuristic procedure with heuristic purposes. No proof is being attempte
which would need to be the subject of a separate study.

From Eqs.~46!, ~68!, ~104! and~47!, ~69!, ~105! we infer the following general~for arbitrary
values ofn) form of the matricesA(2)8, A(4)8 ~of course, the result forA(2)8 is elementary!,

A(2)85P(2n)!@P(2n22)!#215
P(2n)!

detP(2n22)! adjP(2n22)!, ~121!

A(4)852
~P(2n)!!2

detP(2n22)! F P(2n)!

detP(2n22)! Cn22~P(2n22)!!!P(2n24)!Cn22~P(2n22)!!!

2Cn22~P(2n22)!!!G . ~122!

Emphasizing the role of the effective propagatorP(2n22)!/P(2n)! @cf. Eq. ~121!# we can rewrite
Eq. ~122! in the following form:

A(4)852

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D
P(2n24)!

P(2n)!

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D 1

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D . ~123!

Unfortunately, the results obtained in the preceding sections do not yet admit any re
analytical ~heuristic! extrapolation to arbitrary values ofn for further quantities beyondA(2)8,
A(4)8. For example, to heuristically derive an analogous expression forA(6)8 one would have to
perform a calculation forn55 first in order to approach this task. However, in analogy to
preceding sections it is still possible to derive one further result for arbitraryn. Again, writing @cf.
Eqs.~48!, ~71!, ~111!#

P(4)!85C2~A(2)8!!2A(4)!8 ~124!

we find from Eqs.~121!, ~122! @cf. Eqs.~49!, ~73!, ~114!#
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P(4)85
~P(2n)!!3

~detP(2n22)!!2 Cn22~P(2n22)!!!P(2n24)!Cn22~P(2n22)!!!. ~125!

In analogy to Eq.~123!, this can equivalently be written as

P(4)85

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D
P(2n24)!

P(2n)!

Cn22S P(2n22)!

P(2n)! D !

detS P(2n22)!

P(2n)! D . ~126!

To arrive at Eq.~125! we have relied on the following calculation@cf. Appendix A, Eqs.~A6!,
~A5!#:

C2~A(2)8!5~P(2n)!!2C2~@P(2n22)!#21!

5~P(2n)!!2C2~P(2n22)!!21

5
~P(2n)!!2

detP(2n22)! Cn22~P(2n22)!!!. ~127!

Taking the determinant on both sides of the Eqs.~121! and~126! yields the relations@cf. Eqs.
~50!, ~75!, ~118! and ~76!, ~119!#

detA(2)85
~P(2n)!!n

detP(2n22)!, ~128!

detP(4)!85
~P(2n)!!3(2

n)

~detP(2n22)!!2(n21) detP(2n24). ~129!

In deriving Eq.~129! we have relied on the~Sylvester–Franke! identity @cf. Appendix A, Eq.~A8!#

detCn22~P(2n22)!!5~detP(2n22)!!(n23
n21). ~130!

III. THE GRASSMANN INTEGRAL EQUATION

Having obtained in the preceding section explicit formulas for the action mapf for the case of
the Grassmann algebrasG2n , n52,3,4, we can now concentrate on the study of certain partic

relations betweenG0@$C̄%,$C%# and G@$C̄%,$C%#. As explained in the Introduction we are in
terested in the equation (0,lPR)

G@$C̄%,$C%#5G0@$lC̄%,$lC%#1D f~l!. ~131!

D f(l) is some constant which is allowed to depend onl and which we choose to obey@in view
of Eq. ~29!, we have the freedom to do so#

D f~1!50. ~132!

For l51, Eq.~131! is the fixed point equation for the action mapf ~cf. Ref. 73, p. 288!. Equation
~131! applied to Eq.~15!, the latter reads (C̃5exp@2A(0)2Df(l)#)

e G0[ $lC̄%,$lC%]5C̃E )
l 51

n

~dx l dx̄ l ! e G0[ $x̄1C̄%,$x1C%] 1( l 51
n (h̄ lx l1x̄ lh l ), ~133!
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h̄ l5
]G0@$lC̄%,$lC%#

]C l

, h l52
]G0@$lC̄%,$lC%#

]C̄ l

. ~134!

Clearly, this a Grassmann integral equation forG0@$C̄%,$C%# ~more precisely, a nonlinear Gras
mann integro-differential equation!. In view of Eq. ~18!, Eq. ~131! is equivalent to

A(0)85A(0)1D f~l!, ~135!

A(2k)85l2kA(2k), k.0. ~136!

Equation~136! represents a coupled system of nonlinear matrix equations. We are now go
solve Eq.~133! @i.e., Eq.~131!# for n52,3,4 by solving Eq.~136!.

A. The case nÄ2

Applying Eq. ~136! for k51 to Eq.~46!, we find

P(4)!5l2 detA(2). ~137!

Equation~40! then immediately yields

A12,12
(4) 5~12l2!detA(2). ~138!

A(2) remains an arbitrary matrix with detA(2)Þ0. To determineA(0) imagine that the action

G0@$C̄%,$C%# specified by Eq.~138! would have been induced by some actionG21@$C̄%,$C%#

5G0@$l21C̄%,$l21C%# @by means of Eq.~15!—replacingG by G0 and G0 by G21 , respec-
tively# with the partition functionP(G21)5l22 detA(2) @cf. Eq. ~40!#. Then~cf. Ref. 80 of Sec.
II B !

A(0)5 ln P~G21!5 ln detA(2)22 lnl ~139!

and, consequently,

D f~l!54 lnl. ~140!

From the above considerations we see that forn52, Eq.~131! has always a solution for any valu
of l (0,lPR). For l51 the solution corresponds to a Gaussian integral while forlÞ1 it
corresponds to some non-Gaussian integral@cf. Eq. ~133!#. Consequently, for any even value ofn
Eq. ~131! has always a solution for any value ofl (0,lPR). This follows from the fact that
these solutions can be constructed as a sum ofn52 solutions with a common value ofl.

B. The case nÄ3

Applying Eq. ~136! for k51 to Eq.~68!, we find

P(6)!135l2P(4)!A(2)5l2A(2)P(4)! ~141!

5l2@detA(2)132A(4)!A(2)#5l2@detA(2)132A(2)A(4)!#. ~142!

Furthermore, combining Eqs.~75!, ~76!, ~71!, ~136! we obtain the relations

l6 detP(4)! detA(2)5~P(6)!!3, ~143!

l12
~detP(4)!!5

detA(2) 5~P(6)!!9. ~144!
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From these two equations we can conclude that

detP(4)!56l3~detA(2)!2, ~145!

P(6)!56l3 detA(2). ~146!

Taking into account the above equations, from Eq.~69! we find then

A(4)!52S 17
1

l DP(4)!. ~147!

By virtue of Eq.~61! this entails

A(4)!5~17l!adjA(2), ~148!

P(4)!56l adjA(2). ~149!

One easily sees that Eq.~149! is in line with the result~145!. Finally, applying Eqs.~136!, ~141!,
~145!, ~146! to Eq. ~70! we calculateA123,123

(6) . It reads

A123,123
(6) 5~l71!2~6l24!detA(2). ~150!

Applying the same procedure to Eq.~74!, we find the consistency equation

~l71!350, ~151!

which has only one solution, namelyl51 ~choose the upper sign!. This solution is just the
elementary one which corresponds to a Gaussian integral@cf. Eq. ~133!#.

C. The case nÄ4

Applying Eq. ~136! for k51 to Eq.~104!, we find

P(8)!145l2P(6)!A(2)5l2A(2)P(6)! ~152!

5l2@detA(2)142Fa~14 ,C2~A(2)!!A(4)!!2A(6)!A(2)#

5l2@detA(2)142Fa~14 ,A(4)!C2~A(2)!!!2A(2)A(6)!#. ~153!

Furthermore, combining Eqs.~118!, ~119!, ~111!, ~136! we obtain the relations

l8 detP(6)! detA(2)5~P(8)!!4, ~154!

l24 ~detP(6)!!65~P(8)!!18. ~155!

From these two equations we can conclude that

detP(6)!5l8~detA(2)!3, ~156!

P(8)!56l4 detA(2). ~157!

We can now apply Eq.~136! to the Eqs.~105! and~114!. Taking into account Eqs.~85!, ~111!, we
can derive from these two equations the following compound matrix equation:

C2~P(6)!A(2)!5~l2 detA(2)!216 . ~158!

Its solution reads@cf. Ref. 81, Sec. 3, p. 149, Eq.~11!#
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P(6)!56l2 adjA(2). ~159!

Equation~159! is in line with Eq.~156! @the signs on the rhs are fixed by making reference to E
~152!, ~157!#. We can now take into account Eq.~159! in considering Eq.~114! further. Eq.~114!
then yields the following matrix equation:

P(4)C2~A(2)!!56C2~A(2)!P(4)!. ~160!

By virtue of Eq.~85!, Eq. ~160! can equivalently be written as

A(4)C2~A(2)!!56C2~A(2)!A(4)!. ~161!

We will not study here the complete set of solutions of Eq.~161!. This would need to be the
subject of a study in its own. Here, it suffices to mention that for the ansatz~a is some arbitrary
constant,B some 434 matrix!

A(4)5aC2~B!!. ~162!

Equation~161! reads

C2~A(2)B!!56C2~A(2)B!. ~163!

For the upper sign, this is exactly the type of compound matrix equation studied in Ref. 8
course, Eq.~161! has solutions which correspond to twon52 solutions~with a common value of
l! discussed at the end of Sec. III A.82 Here, we want to go beyond these solutions.

For the present purpose, we consider in Eq.~161! only the upper sign on the rhs and study t
ansatz (kPR)

P(4)5kC2~A(2)!, ~164!

A(4)5~12k!C2~A(2)!, ~165!

which is a special version of Eq.~162!. Inserting this ansatz into Eq.~107! and taking into accoun
Eqs.~136!, ~157!, ~159!, we find

A(6)!5~l226k219k24!adjA(2). ~166!

Applying the same procedure to Eq.~115!, we obtain the following consistency condition:

l223k213k215l223k~k21!2150. ~167!

Furthermore, applying the ansatz~164! to Eq. ~110! and taking into account Eqs.~136!, ~157!,
~159! yields

A1234,1234
(8) 5~l4120l2224l2k172k32147k21108k230!detA(2). ~168!

Again, subjecting Eq.~117! to the same procedure we obtain yet another consistency condit

2l223l2k19k3215k219k225~223k!@l223k~k21!21#50. ~169!

Obviously, this equation is fulfilled ifl, k obey Eq.~167!. Consequently, we can restrict ou
attention to solutions of Eq.~167!.

From Eq.~167! we conclude that the ansatz~164! provides us with solutions of Eq.~131! for
any value ofl>1/2 ~if k assumes real values only!. Of particular interest to us are solutions of E
~167! for l51 ~see Refs. 28 and 73!. In this case, Eq.~167! reads

k~k21!50. ~170!
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Clearly, this equation has two solutions,

k I51, ~171!

k II50. ~172!

The corresponding expressions for the actionG05G then read as follows:

G0I@$C̄%,$C%#5G0I~Gq!5 ln detA(2)1Gq , ~173!

G0II@$C̄%,$C%#5G0II~Gq!5 ln detA(2)1Gq2 1
2Gq

21 1
2Gq

32 3
8Gq

4, ~174!

Gq5Gq@$C̄%,$C%#5 (
l ,m51

4

Al ,m
(2)C̄ lCm5C̄A(2)C. ~175!

As one can see from Eq.~133! G0I corresponds to a Gaussian integral whileG0II corresponds to
some non-Gaussian integral. While it is well known that for the actionG05G0I the equationG
5G0 applies it is indeed a remarkable fact that the same is true forG05G0II . However, this is not
yet the end of remarkable features of these actions. It is also instructive to work out fork I51 and
k II50 the corresponding expressions forW@$h̄%,$h%# on the basis of Eq.~90!.

WI@$h̄%,$h%#5WI~Wq!5G0I~Wq!5 ln detA(2)1Wq , ~176!

WII@$h̄%,$h%#5WII~Wq!5G0II~Wq!5 ln detA(2)1Wq2 1
2Wq

21 1
2Wq

32 3
8Wq

4, ~177!

Wq5Wq@$h̄%,$h%#52h̄@A(2)#21h. ~178!

Again, while the relationWI5G0I is well known in the present context the equalityWII5G0II

comes as a complete surprise and one can only wonder which general principle is manifesti
itself. We will explore this issue in the next section.

D. Further analysis

We can characterize the solutionsG0I , G0II of the equation~131! found forn54, l51, in the
preceding section by two properties which may be of general significance. The first one is r
to the identityW5G0 @Eqs.~176! and ~177!#. One immediately recognizes that for

@A(2)#25214 , ~179!

expG05expG0I(5expG5Z) and expG05expG0II are self-reciprocalGrassmann functions~of
course, this is a well-known property of expG0I ):

E )
l 51

4

~dx l dx̄ l ! e G0[ $x̄%,$x%] 1 h̄x 1 x̄h5e G0[ $h̄%,$h%] ~180!

@detA(2)51, cf. Eq.~179!#,83 i.e., they are eigenfunctions to the Fourier–Laplace transformati84

to the eigenvalue 1. The term self-reciprocal function is taken from real~complex! analysis where
it also denotes eigenfunctions of some integral transformation, in particular, the Fo
transformation.85–91

The second property of the solutionsG0I , G0II is related to the identityG5W @apply the fixed
point conditionG5G0 to the Eqs.~176!, ~177!#. Taking into account Eqs.~173!–~178!, Eqs.~13!,
~16! tell us that
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G~Gq!5G~Wq!2(
l 51

4

~ h̄ lC l1C̄ lh l !, ~181!

h̄ l5
]G~Gq!

]C l
52G8~Gq!~C̄A(2)! l , ~182!

h l52
]G~Gq!

]C̄ l

52G8~Gq!~A(2)C! l . ~183!

Here,

G8~Gq!5
]G~Gq!

]Gq
, ~184!

whereGq is treated as a formal parameter for the moment. In view of Eqs.~182!, ~183! it holds

Wq52Gq@G8~Gq!#2. ~185!

Taking into account the Eqs.~182!, ~183!, ~185!, Eq. ~181! can be written as

G~s!5G~2s@G8~s!#2!12sG8~s!, s5Gq. ~186!

Equation ~186! is of a very general nature. Its shape does not depend on the value ofn. Its
derivation depends on the fact only thatG, W are functions ofGq , Wq , respectively, and that the
identity G5W holds. As we demonstrate in Appendix C, Eq.~186! can also be derived unde
analogous conditions starting from a~Euclidean space–time! version of Eqs.~1!–~5! for a scalar
field on a finite lattice. Consequently, until further notice we disregard the fact thats is a bilinear
in the Grassmann algebra generators and simply understand Eq.~186! as an equation for a function
G5G(s). We will now analyze Eq.~186! further.

Equation~186! appears to be somewhat involved but it can be simplified the following w
We can differentiate both sides of Eq.~186! with respect tos. The resulting equation can b
transformed to read

$2s G9~s!1G8~s!%$12G8~s!G8~2s@G8~s!#2!%50 . ~187!

Equation~187! is being obeyed if either one of the two following equations of very differ
mathematical nature is respected:

2sG9~s!1G8~s!50, ~188!

G8~s!G8~2s@G8~s!#2!51. ~189!

The solution of the linear differential equation~188! reads

G8~s!;e2As ~190!

entailing

G~s!;~11As!e2As. ~191!

As G(s) depends onAs this solution is of no relevance in the context of Grassmann algebra
see this note that the functionG(s) contains odd powers ofAs in its ~Taylor! expansion~in terms
of t5As) around s50. If s is being interpreted as a bilinear form in the generators of
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Grassmann algebra these terms have no interpretation within the Grassmann algebra frame92

Consequently, in the following we can concentrate our attention onto the nonlinear func
equation~189!.

To gain further insight it turns out to be convenient now to define the following functions@the
definition in Eq.~193! could equally well readd(t)52 i b(t)]:

b~ t !5t G8~ t2! 5
1

2

]

]t
G~ t2!, ~192!

d~ t !5 ib~ t !. ~193!

Then, having multiplied both sides by2As Eq. ~189! can be written as (t5As)

d2~ t !5d~d~ t !!52t. ~194!

This is an iterative functional equation: the functiond(t) is the~second! iterative root of21 ~for
a review of iterative functional equations see Ref. 93, in particular Chap. 11, p. 421, Ref.
particular Chap. XV, p. 288, also see Ref. 95, Chap. 2, p. 36!. The functional equation~194! has
been studied by Massera and Petracca96 who have pointed out its relation to the equivale
functional equation

h~h~x!!5
1

x
. ~195!

@Define the involutionq(x)5(12x)/(11x). If h(x) is a solution of Eq.~195! the functionq
+h+q is a solution of Eq.~194!.# This functional equation characterizes functionsh for which
h2151/h ~note in this context Refs. 97–101, in particular Ref. 101, p. 712!. Equation~194! has
also been studied for real functions in Ref. 102, Chap. II, Sec. 5, p. 54, and in Refs. 103–1
course, in view of Eq.~193! in general we are concerned with complex solutions of Eq.~194!.

If the function G8(s) has a definite symmetry unders→2s Eq. ~194! can be simplified to
some extent@getting rid of the imaginary uniti present in Eq.~193!#. If G8(s) is an even function
@i.e., up to some constantG(s) is odd# Eq. ~194! can be written as

b2~ t !5b~b~ t !!5t. ~196!

This iterative functional equation is a special case of the functional equationbk(t)5t which is
being called theBabbage equation~it has been studied first by Charles Babbage.107–110See Ref.
94, Chap. XV, Sec. 1, p. 288, Ref. 93, Sec. 11.6, p. 450, for more information and refere
recent references not referred to in Refs. 94, 93 are Refs. 111, 112!. Solutionsb(t) of Eq. ~196!
~i.e., solutions of the Babbage equation fork52) are calledinvolutory functions@(second) itera-
tive roots of unity/identity, periodic functions/maps#. If, for example, the functionG(s) stands in
correspondence to a Gaussian integral@cf. Eq. ~133!#, G(s)5s and, consequently,

b~ t !5t. ~197!

This is the most elementary involutory function one can think of. Note, that the set of solutio
Eq. ~196! is very large as this set is equivalent to the set of even function~see, e.g., Refs. 113, 114
Ref. 93, p. 451!. If G8(s) is an odd function@i.e., G(s) is even# Eq. ~194! can be written as

b2~ t !5b~b~ t !!52t. ~198!

However, this case is not very interesting as real functions solving Eq.~198! are necessarily
discontinuous~Ref. 94, Chap. XV, §4, p. 299, Refs. 103, 97–101, 104, Ref. 93, Subsec. 11.2
425!.
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The above consideration can be applied to the solutions of the Grassmann integral eq
found in Sec. III C. Equation~173! is of course being described by Eq.~197! @bI(t)5t#. From Eq.
~174! we recognize that the functionGII(s) does not have a definite symmetry unders→2s. We
find

bII~ t !5t ~12t21 3
2 t42 3

2 t6!. ~199!

and one can check that the corresponding functiondII(t)5 ib II(t) indeed fulfills Eq.~194! at order
t7. @Going through the above arguments one can convince oneself that this is the appropriat
in t one has to take into account for the Grassmann algebraG8 . Ordert7 corresponds to orders3

in Eq. ~189!.#

IV. DISCUSSION AND CONCLUSIONS

While most of the explicit expressions obtained in the present paper for the Grass
algebrasG2n , n52,3,4, have been obtained here for the first time, some of them can be com
to results derived earlier by other authors. The point is that partition functions for specific~finite-
dimensional! fermionic systems have been obtained by a number of authors and some of
results can be used for direct comparison with the present results. For example, our expr
~40!, ~60!, ~84!, can be seen to agree with Eq.~8!, p. 694, of Ref. 115. Furthermore, our Eq.~40!
is in line with Eq.~13!, p. 1298, of Ref. 116, the same applies to our Eq.~60! and its counterpart,
Eq. ~14!, p. 1298, Ref. 116. Also Eq.~16!, p. 1298, Ref. 116~for n53, l 53 and n54, l
52,3,4) gives the same results as our Eqs.~60!, ~84!. And finally, our Eq.~84! agrees with Eq.
~10!, p. 1083, of Ref. 117~for N54).

Our consideration of the action mapf in the present paper has been motivated by the form
ism of ~lattice! quantum field theory. However, the consideration of certain modifications o
map f might also be of some interest from various points of view. Let us consider a special
modifications which can be described by replacing the Eqs.~16! by the equations

h̄ l5
]G̃@$C̄%,$C%#

]C l

, h l 5 2
]G̃@$C̄%,$C%#

]C̄ l

~200!

(G is replaced byG̃). For example, if one is just interested in the fixed point condition for
action mapf @i.e., in the Eq.~131! for l51] it might make sense to consider instead of the act
map f a different mapf̃ @described by the Eqs.~16!, ~200!, respectively# having the same set o
fixed points but which is algebraically or numerically easier to study. One such modific
consists in choosingG̃5G0 @cf. Ref. 73, p. 291, Eq.~2.9!#. The implicit representation of the ma
f given in Eqs.~15!, ~16! would then turn into an explicit representation of the mapf̃ which might
be easier to handle in some respect. As an aside in this context, we mention that for this maf̃ the
equations~43!, ~64!, ~99! ~replaceA(2)8 on the rhs byA(2)) exhibit aformal similarity to the main
equation for the Schulz iteration scheme for the calculation of the inverse of a matrix@see Eq.~7!,
p. 58, in Ref. 118#.119–123 The similarity, however, is only formal as in general the mat
P(2n22)!/P(2n)! is not invariant under the mapf̃ @for the simplest case,n52, for example, one can
convince oneself of this fact starting from Eqs.~43!, ~44! where one has to omit in this case th
primes on the rhs#.

As already mentioned the investigation performed in the present study within the frame
of Grassmann algebras has been inspired by a problem in quantum field theory which
simplest version~within zero-dimensional field theory! is a problem in real/complex analysis. Th
standard analysis analogue of the Grassmann integral equation studied in Chap. 3~for l51) reads
@cf. Eq. ~8!#
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e g(y)5CE
2`

1`

dx eg(x1y)2g8(y)x. ~201!

This is a nonlinear integro-differential equation for the real functiong(x). Clearly, the elementary
function g(x)52ax2/2, 0,aPR @C5Aa/(2p)# solves this equation. However, the interesti
question is if this equation has any other~nonelementary! solution which stands in corresponden
to a non-Gaussian integral. No qualitative information seems to be available in the mathem
literature in this respect. As pointed out in Ref. 28, Sec. 4, p. 859~p. 475 of the English transl.!,
Eq. ~201! is a very complicated equation. The main difficulty in explicitly finding any nonelem
tary solution to it~if it exists at all—we just assume this for the time being! consists in the fact tha
it is very difficult if not impossible to calculate for an arbitrary function expg(x) its Fourier~or
Laplace! transform explicitly. The question now arises if the analysis in Sec. III D of the solut
of the Grassmann integral equation found forn54, l51, might help in overcoming this problem
We do not have any final answer on this but in our view it makes sense to say: perhap
solutions of the Grassmann integral equation found forn54, l51, are characterized by two
properties which are not related to the anticommuting character of Grassmann variable
solutions were related, first, to eigenfunctions of the Fourier–Laplace transformation to the
value 1~i.e., to self-reciprocal functions! and, second, to some iterative functional equation. N
it seems to be reasonable to assume that also~some! solutions of Eq.~201! might be characterized
by these two properties. The two sets of functions obeying one of these two principles ar
large and one might think that the intersection of these two sets contains also other function
just the functions given byg(x)52ax2/2. The task of solving Eq.~201! then is equivalent to
studying eigenfunctions of the Fourier transformation to the eigenvalue 1, i.e., self-recip
functions expg(x).124–126They obey the equation

e g(y)5E
2`

1` dx

A2p
eiyxe g(x). ~202!

The consideration of eigenfunctions of the Fourier transformation solves the above men
problem of finding their Fourier transforms at once.127 There is a vast mathematical literature o
self-reciprocal functions~in particular for the Fourier transformation! but in our context it makes
sense to concentrate on a certain subclass of self-reciprocal functions. Klauder~Ref. 128, p. 375,
Ref. 59, Subsec. 10.4, p. 246! has pointed out the relevance of infinitely divisible characteris
functions in a quantum field theoretic context. This entails in our context that the self-recip
functions expg(x) should be self-reciprocal probability densities~positive definite ones, in addi
tion: without zeros—this follows from infinite divisibility!. The subject of self-reciprocal~positive
definite! probability densities has been studied for some time in probability theory~Refs. 129–
135, Ref. 136, Subsec. 7.5, p. 122, Refs. 137, 138, Ref. 139, Chap. 6, p. 148, Ref. 140; se
137, 139 for some further references!. Of most relevance to the present problem is the work
Teugels130 who describes explicit methods to construct solutions of Eq.~202! ~also note Ref. 140
in this respect!. From the solutions expg(x) of ~202! ~which are even functions! we define the
function G5G(2x2/2)5g(x).141,142The functiond(t) @Eq. ~193!# associated with it then has t
obey the functional equation~194! in order to ensure that the functiong(x) solves Eq.~201!. In
the case under discussion, the equations~192!–~194! can be reformulated the following way
Define the functions

b̃~x!52
]g~x!

]x
52

]

]x
GS 2

x2

2 D5xG8S 2
x2

2 D , ~203!

d̃~x!5 i b̃~x!. ~204!

Then, from Eq.~194! one can derive the following iterative functional equation which has to
fulfilled:
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d̃2~x!5d̃~ d̃~x!!52x. ~205!

As in Sec. III D, one can now assume a certain behavior of the functiong(x). Assuming again that
the functionG8(s) is an even function@i.e., up to some constantG(s) is odd# Eq. ~205! can be
written as

b̃2~x!5b̃~ b̃~x!!5x. ~206!

However, this case is not very interesting as it does not lead to any non-Gaussian function eg(x)
@Ref. 143, Theorem 3, p. 117~Teor. Veroyatn. Prim.!, p. 119~Theor. Prob. Appl.!; note that Lukacs
uses the term self-reciprocal in this article in a different sense than we do in the present p#.
Assuming thatG8(s) is an odd function@i.e., G(s) is even# Eq. ~205! can be written as

b̃2~x!5b̃~ b̃~x!!52x. ~207!

However, this case is also not very interesting as real functions solving Eq.~207! are necessarily
discontinuous~Ref. 94, Chap. XV, Sec. 4, p. 299, Refs. 103, 97–101, 104, Ref. 93, Subsec. 1
p. 425!. Consequently, Eq.~205! cannot sensibly be simplified by the above considerations. H
ever, the sketched program still faces another challenge. At first glance, it is not obvious h
combine the existent theory of self-reciprocal probability densities with the theory of iter
functional equations in an operationally effective way in order to find nonelementary solutio
Eq. ~201! ~or its multidimensional generalizations! which correspond to non-Gaussian integra
This will have to be the subject of further research.

This discussion has brought us to the end of the present study. What are its main results
a mathematical point of view, the paper introduces a new type of equation which has no
studied before—a Grassmann integral equation. The concrete equation studied has been s
be equivalent to a coupled system of nonlinear matrix equations which can be solved~Sec. III!.
From the point of view of standard quantum field theory, the main results of the present artic
as follows. For low-dimensional Grassmann algebras the present paper derives explicit e
sions for the finite-dimensional analogue of the effective action functional in terms of the
specifying a fairly general ansatz for the corresponding analogue of the so-called ‘‘clas
action functional~Sec. II!. This is a model study which in some way can be understood as
fermionic ~Grassmann! analogue of zero-dimensional field theory and which may turn out to
useful in several respect. Moreover, for an arbitrary Grassmann algebra~related to an arbitrary
purely fermionic ‘‘lattice quantum field theory’’—on a finite lattice! on the basis of the explici
results obtained for low-dimensional Grassmann algebras an exact expression for the four-f
term of the finite lattice analogue of the effective action functional is derived in a heuristic ma
@Sec. II E, Eq.~123!#. From the point of view of the conceptual foundations of quantum fi
theory, the present study demonstrates on the basis of a finite-dimensional example t
~Grassmann! integral equation proposed in Refs. 28, 73 can have solutions which are equiva
non-Gaussian integrals~Sec. III!. This certainly will be of interest in various respect. To illustra
this point let us repeat in compact form some of the results found for the Grassmann algebrG8 in
Sec. III C~these results are specific for this Grassmann algebra!. Define for an arbitrary invertible
434 matrix B (detBÞ0) the Grassmann bilinears

Gq5 (
l ,m51

4

Blmx̄ lxm5x̄Bx, ~208!

Wq52 (
l ,m51

4

@B21# lmh̄ lhm52h̄@B#21h. ~209!

Then, the following equation applies:
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E )
l 51

4

~dx l dx̄ l ! e (h̄x1x̄h) exp@Gq2 1
2 Gq

21 1
2 Gq

32 3
8 Gq

4#5detB exp@Wq2 1
2 Wq

21 1
2 Wq

32 3
8 Wq

4#.

~210!

This should be compared to the well-known, corresponding result for a Gaussian integral

E )
l 51

4

~dx l dx̄ l ! e (h̄x1x̄h) exp@Gq#5detB exp@Wq#. ~211!

Moreover, in Sec. III C it has been found that the~Grassmann! function Gq 2 1
2 Gq

21 1
2 Gq

3

2 3
8 Gq

4 is the ~first! Legendre transform of the functionWq 2 1
2 Wq

21 1
2 Wq

3 2 3
8 Wq

4 @cf. Eqs.
~181!–~183!#. This entails that these functions behave exactly the same way as the functioGq

and Wq . It is clear that any Grassmann algebraG8k , 1<kPN, supports equations of the typ
~210! @simply by multiplyingk copies of Eq.~210!#. Given the role that Gaussian integrals a
their properties play in quantum field theory, statistical physics and probability theory it wi
interesting to explore the implications and applications of the above results in the future.
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APPENDIX A

Here we collect some formulas for compound matrices.144 Let B, D be n3n matrices. The
compound matrix Ck(B), 0<k<n, is a (k

n)3(k
n) matrix of all orderk minors of the matrixB. The

indices of the compound matrix entries are given by ordered strings of lengthk. These strings are
composed from the row and column indices of the matrix elements of the matrixB the given
minor of the matrixB is composed of. Typically, the entries of a compound matrix are orde
lexicographically with respect to the compound matrix indices.~We also apply this convention.!
The supplementary (or adjugate) compound matrix Cn2k(B) ~sometimes also referred to as th
matrix of the kth cofactors! of the matrixB is defined by the equation@cf. Eq. ~24!#

Cn2k~B!5Cn2k~B!!. ~A1!

The components of the supplementary compound matrixC n2k(B) can also be defined by mean
of the following formula@here,l 1, l 2,¯, l k , m1,m2,¯,mk ; Ref. 145, Chap. IV, Sec. 89
p. 75, Ref. 146, Chap. 3, p. 18; also see our Eqs.~31!–~36!#

Cn2k~B!LM5
]

]Bl 1m1

¯

]

]Bl kmk

detB. ~A2!

This comparatively little known definition of~matrices of! cofactors~supplementary compoun
matrices! is essentially due to Jacobi~Ref. 147, Sec. 10, p. 301, p. 273 of the ‘Gesammelte Wer
p. 25 of the German transl.; also see the corresponding comment by Muir in Ref. 148, Part I,
IX, pp. 253–272, in particular pp. 262/263!.

For compound matrices holds (1r is the r 3r unit matrix,a some constant!

Ck~a1n!5ak1(
k
n). ~A3!

Important relations are given by theBinet–Cauchy formula

Ck~B!Ck~D!5Ck~BD! ~A4!
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from which immediately follows

Ck~B21!5Ck~B!21, ~A5!

the Laplace expansion

Ck~B!C n2k~B!5C n2k~B!Ck~B!5Ck~B!Cn2k~B!!5Cn2k~B!!Ck~B!5detB 1(
k
n),

~A6!

Jacobi’s theorem@a consequence of the Eqs.~A6! and ~A5!#

Ck~B21!5
1

detB
C n2k~B!5

1

detB
Cn2k~B!!, ~A7!

and theSylvester–Franke theorem

detCk~B!5~detB!(k21
n21). ~A8!

Compound matrices are treated in a number of references. A comprehensive discus
compound matrices can be found in Ref. 149, Chap. V, pp. 63–87, Ref. 150, Chap. V, pp. 90
and, in a modern treatment, in Ref. 151, Chap. 6, pp. 142–155. More algebraically or
modern treatments can be found in Ref. 75, Part I, Chap. 2, Sec. 2.4, pp. 116–159, Part II
4, pp. 1–164~very thorough!, Ref. 152, Chap. 7, Sec. 7.2, pp. 411–420, and Ref. 153, Vo
Chap. 2, Sec. 2.4, pp. 58–68. Concise reviews of the properties of compound matrices ar
in Refs. 154, 155. Also note Refs. 156 and 157.

APPENDIX B

Let B be a 333 matrix. Then, the following identities apply:

adjB5B22B trB1 1
2~ tr B!2132 1

2tr~B2!13 , ~B1!

tr~adjB!5 1
2~ tr B!22 1

2tr~B2!. ~B2!

Equation ~B1! can be derived by means of the Cayley–Hamilton theorem@cf. e.g., Ref. 158,
Subsec. 2.4, p. 264, Eq.~2.4.7!, Ref. 159, Sec. 7, p. 154, Eq.~29!#.

APPENDIX C

In this appendix we want to rederive Eq.~186! starting from a~Euclidean space–time! version
of the Eqs.~1!–~5! on a finite lattice withk sites. The equations~3!, ~5! then read

G@f#5W@J#2(
l 51

k

Jlf l , ~C1!

Jl52
]G

]f l
. ~C2!

In analogy to the Eqs.~175!, ~178! we define~B is a symmetrick3k matrix!

Gq5Gq@f#52
1

2 (
l ,m51

k

Blmf lfm52
1

2
fBf, ~C3!

Wq5Wq@J#5
1

2 (
l ,m51

k

~B21! lmJlJm5
1

2
JB21J. ~C4!
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Now we assume thatG, W depend onf, J only as functions ofGq@f#, Wq@J#, respectively, and,
in addition, that the identityG5W holds. Then, in analogy to the Eqs.~181!–~183! the Eqs.~C1!,
~C2! read

G~Gq!5G~Wq!2(
l 51

k

Jlf l , ~C5!

Jl52
]G~Gq!

]f l
52G8~Gq!~fB! l . ~C6!

Here, again

G8~Gq!5
]G~Gq!

]Gq
. ~C7!

In view of Eq. ~C6! it holds

Wq52Gq@G8~Gq!#2. ~C8!

Taking into account the Eqs.~C6!, ~C8!, Eq. ~C5! can be written as

G~s!5G~2s@G8~s!#2!12sG8~s!, s5Gq, ~C9!

and this equation completely agrees with Eq.~186!.
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A central extension of Uq sl „2z2…„1… and R-matrices
with a new parameter
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and Technology, Osaka University, Toyonaka 560-0043, Japan
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In this paper, using a quantum superalgebra associated with the universal central
extension of sl(2u2)(1), we introduce newR-matrices having an extra parameterx.
As x→0, they become those associated with the symmetric and antisymmetric
tensor products of the copies of the vector representation ofUq sl(2u2)(1). © 2003
American Institute of Physics.@DOI: 10.1063/1.1616251#

I. INTRODUCTION

The Yang–Baxter equation~YBE for short! has played important roles in study of statistic
mechanics, knot theory, conformal field theory, etc.,1 and many of its solutions are associated w
finite dimensional irreducible representations of quantum affine algebras2,3 and superalgebras.4 We
call the solutions of the YBE theR-matrices.

If a finite dimensional simple Lie superalgebra isA(m,n), B(m,n), C(n), D(m,n), F(4),
G(3), or D(2,1;a) (aÞ0,21), it is called abasic classical Lie superalgebra5,6 ~BCLS for
short!. We first recall thatA(m,n) coincides with sl(m11un11) if and only if mÞn, and that
sl(m11um11) is a one-dimensional central extension ofA(m,m). Let g be a BCLS andḡ the
universal central extension~UCE for short! of g. We also recall thatḡ5g if gÞA(m,m) for any
m, and thatA(m,m)5sl(m11um11) (m>2) andA(1,1)5d. Here d is the Lie superalgebra
calledD(2,1;21).7 Thed is a two-~respectively, three-! dimensional central extension of sl(2u2)
@respectively, A(1,1)]. The UCE of g^ C@ t,t21# is given by the affine versionḡ(1)5 ḡ
^ C@ t,t21# % Cc of ḡ .7 Motivated by this fact, we direct our attention to the quantum superalg
Uqd

(1) ~strictly speaking,Ũ5Ũqd
(1)) in order to give newR-matricesŘ(u,v;x) satisfying the

~twisted! YBE:

~Ř~v,w;x! ^ I !~ I ^ Ř~u,w;qnx!!~Ř~u,v;x! ^ I !

5~ I ^ Ř~u,v;qnx!!~Ř~u,w;x! ^ I !)~ I ^ Ř~v,w;qnx!! ~1!

for some integern, whereu, v, xPC are continuous parameters. This can be viewed as a qua
dynamical YBE~see the Appendix!. The R-matrices we will give are such that asx→0, they
become theUq sl(2u2)(1) R-matrices4,8–10associated with the symmetric and antisymmetric ten
products of the copies of the vector representationw of Uq sl(2u2)(1). One of our tools is a
four-dimensional irreducible representationrx of Ũ with the parameterx such thatr05w+p,
wherep:Ũ→Uq sl(2u2)(1) is the natural epimorphism.

The paper is organized as follows. In Sec. II, we introduceŨ and rx . In Sec. III, we give
Ř(u,v;x) associated withrx . In Sec. IV, we give all theŘ(u,v;x)’s mentioned above using th
fusion process.

a!Electronic mail: yamane@ist.osaka-u.ac.jp
54500022-2488/2003/44(11)/5450/6/$20.00 © 2003 American Institute of Physics
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II. A CENTRAL EXTENSION OF Uq sl „2z2…„1…

Let E5 % i 50
4 C« i be the five-dimensional vector space. Define the symmetric bilinear form~ , !

on E by («0 ,«0)50, («1 ,«1)5(«2 ,«2)51, («3 ,«3)5(«4 ,«4)521, and (« i ,« j )50 (iÞ j ). Let
a0ª«02«11«4 and a iª« i2« i 11 (1< i<3). Define the parityp(a i) to be (42(a i ,a i)

2)/4.
Then the Cartan matrix ofA(1,1)(1) is given by the 434 matrix (ai j ), where ai j

52(a i ,a j )/((a i ,a i)12p(a i)).
Throughout this paper, we assumeqPC to be such thatqÞ0 andqrÞ1 for every positive

integerr . Let Ũ5Ũqd
(1) be the associativeC-algebra presented by the generatorss, Ki

6 , Ei , Fi

(0< i<3) and the defining relations:

s251, sKis5Ki , sEis5~21!p(a i )Ei , sFis5~21!p(a i )Fi ,

KiKi
2151, KiK j5K jKi ,

KiEjKi
215q(a i ,a j )Ej , KiF jKi

215q2(a i ,a j )F j ,

@Ei ,F j #5d i j

Ki2Ki
21

q2q21 if ~ i , j ! is neither~2,0! nor ~0,2!,

K2@E2 ,F0#PZ~Ũ !, K2
21@E0 ,F2#PZ~Ũ !,

where@Ei ,F j #ªEiF j2(21)p(a i )p(a j )F jEi andZ(Ũ) is the center ofŨ. We viewŨ as the~non-
Z2-graded! Hopf algebra with the comultiplicationD:Ũ→Ũ ^ Ũ satisfying

D~s!5s^ s, D~Ki !5Ki ^ Ki ,

D~Ei !5Ei ^ 11Kis
p(a i ) ^ Ei1d i0~q2q21!s@E0 ,F2# ^ E2 ,

D~Fi !5Fi ^ Ki
211sp(a i ) ^ Fi2d i0~q2q21!F2^ @E2 ,F0#.

We do not give the antipode and the counit; we do not need them. We defineD (n21):Ũ→Ũ ^ n by
letting D (1)5D andD (m)5(idŨ ^ D (m21))+D (m>2).

Remark:~1! The above comultiplication is not standard. Taking the twisting11 for the Ũ, we
get the standard comultiplication of a quantum superalgebra defined for a Dynkin diagram
than the one associated with the Cartan matrix (ai j ) ~see above!; theA(1,1)(1) has the two Dynkin
diagrams.

~2! Let Ũ8 be the subalgebra ofŨ generated byKi
6 , Ei , Fi . ThenŨ5Ũ8% Ũ8s. There exists

a nonzero idealJ of Ũ8 such thatŨ8/J can be regarded asUqd
(1). We can get generators ofJ in

the same way as in Ref. 12. By the same argument as in the proof of Theorem 8.4.3 of Ref.
can get the natural epimorphism fromUqd

(1) to Uq sl(2u2)(1).
Let Vx5C4 be the four-dimensional vector space, wherexPC is a parameter. Setu( i )ª(1

2(« i ,« i))/2. Define the irreducible representationrx :Ũ→End(Vx) by

rx~s!5(
j 51

4

~21!u( j )Ej j , rx~Ki !5(
j 51

4

q(a i ,« j )Ej j ,

rx~E0!5E41, rx~E1!5E12,

rx~E2!5E231xE41, rx~E3!5E34,

rx~F0!52E142xq21E32, rx~F1!5E21,
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rx~F2!5E32, rx~F3!52E43.

Let Ũ05Ũqd be the subalgebra ofŨ generated bys, Ki
6 , Ei , Fi (1< i<3). Define the

vector subspacesVx
( i )5Vx,y

( i ) ( i 51, 2) of Vx^ Vy by

Vx
(1)
ªC~e3^ e3! % C~e4^ e4! % %

i , j

C~ei ^ ej2~21!u( i )u( j )qej ^ ei

1d i1d j 2~q2ye3^ e41xe4^ e3!!

and

Vx
(2)
ªC~e1^ e1! % C~e2^ e2! % %

i , j

C~ei ^ ej1~21!u( i )u( j )q21ej ^ ei !.

Lemma 1: Vx
(1) is an irreducible Ũ0-module. Moreover Vx^ Vy is a completely reducible

Ũ0-module if and only if y5qx. If this is the case, Vx
(2) is an irreducible Ũ0-module which is not

isomorphic to Vx
(1) ; in particular, Vx^ Vqx has an irreducible U˜ 0-submodule decompositio

Vx
(1)

% Vx
(2) .

Proof: For each 1< i<4, the weight space includingei ^ ei is one dimensional. Hence, i
Vx^ Vy is a completely reducibleŨ0-module, there exists an irreducibleŨ0-module including
ei ^ ei . Using this fact, we can check the lemma directly. h

III. R-MATRIX FOR THE VECTOR REPRESENTATION

DefinePx
( i )PEnd(Vx^ Vqx) ( i 51, 2) by Px

( i )(v)5d i j v (vPVx
( j )). Set

Řh~u,v;x!ª~q2u2v !Px
(1)1~q2v2u!Px

(2) , ~2!

whereu, vPC. Then

Řh~u,v;x!5~q2v2u!(
i 51

2

Eii ^ Eii 1~q2u2v !(
i 53

4

Eii ^ Eii 1~q221!(
i , j

~vEii ^ Ej j 1uEj j ^ Eii !

2q~u2v !(
iÞ j

~21!u( i )u( j )Ei j ^ Eji 1x~q221!~u2v !~qE31^ E422q2E32^ E41

2E41^ E321qE42^ E31!. ~3!

For uPC3, define xuPAut(Ũ) by xu(s)5s, xu(Ki)5Ki , xu(Ei)5u2d i0Ei and xu(Fi)
5ud i0Fi . Setru,v,xª(rx^ rqx)+(xu^ xv)+D. Using~2! and Lemma 1, we can directly check th

Řh~u,v;x!ru,v,x~X!5rv,u,x~X!Řh~u,v;x! ~4!

for XPŨ.
Theorem 1: The Řh(u,v;x) satisfies the YBE in the form of (1) with n51.
Proof: Let Ei8 , Fi8 , Hi8 (0< i<3) be the Chevalley generators of sl(2u2)(1). Then there exists

a representationĉu :sl(2u2)(1)→End(C4) sendingEi8 , Fi8 , Hi8 to the limits of rx+xu(Ei), rx

+xu(Fi), (q2q21)21rx+xu(Ki2Ki
21) as (q,x)→(1,0), respectively. Notice thatcªĉ1usl(2u2) is

an irreducible representation of sl(2u2) and that there exist a highest root vectorEa11a21a3
8 and a

lowest root vectorE2(a11a21a3)8 of sl(2u2) such that

uc~Ea11a21a3
8 !5ĉu~F0!, u21c~E2(a11a21a3)8 !5ĉu~E0!. ~5!
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Then, using~4!, together with the same argument used in the proof of Proposition 3 in Ref. 3
get the theorem. h

IV. R-MATRIX FOR THE „ANTI-…SYMMETRIC TENSORS

Here we use a similar process to the fusion process.13–15 To begin with, we recall some
facts16,17about the Hecke algebraHn(q2) associated with the symmetric groupSn ; theHn(q2) is
the associativeC-algebra presented by the generatorshi (1< i<n21) and the defining relations
(hi2q2)(hi11)50, hihi 11hi5hi 11hihi 11 andhihj5hjhi (u i 2 j u>2). We abbreviateHn(q2) to
H. We know that there exists aC-basis$h(s)usPSn% of H such thath(1)51, h(s i)5hi and
h(s8s)5h(s8)h(s) if ,(s8s)5,(s8)1,(s). Heres i is the simple transposition (i ,i 11) and
,(s) is the length ofs with respect tos i ’s.

Set

e1ª (
sPSn

h~s!, e2ª (
sPSn

~2q22!,(s)h~s!.

Thenhie15q2e1 , hie252e2 , and

e6
2 5S (

sPSn

q62,(s)De6 . ~6!

Now we treatR-matrices. LetWx
(n)
ªVx^ Vqx^¯^ Vqn21x . Set

Ři~u,v;x!ªI ^ i 21
^ Řh~u,v;qi 21x! ^ I ^ n2 i 11PEnd~Wx

(n)!.

By Theorem 1, we can defineŘ(a;xus)PEnd(Wx
(n)), aP(C3)n, andsPSn , inductively by

Ř~a;xu1!5I ^ n, Ř~a;xus i !5Ři~ai ,ai 11 ;x!

and

Ř~a;xus8s!5Ř~s@a#;xus8!Ř~a;xus! if ,~s8s!5,~s8!1,~s!,

wheres@a#ª(as21(1) ,...,as21(n)). By Theorem 1 and~2!, there exists a unique representati
px

(n) :H→End(Wx
(n)) such thatŘi(u,v;x)5px

(n)(uhi2vq2hi
21).

Let p6ª(1,q72,...,q72(n21))PCn. Let gnPSn be such thatgn( i )5n2 i 11.
Lemma 2: Let uPC. Then

Ř~up6 ;xugn!5u,(gn)a6~q!px
(n)~e6!

for some a6(q)PC3.
This can be checked directly; a similar formula has been given in Sec. 5 in Ref. 14.
Let V6,xªpx

(n)(e6)Wx
(n) . By ~6!, d6(n)ªdimV6,x does not depend onq or x. For a

P(C3)n, define the representationra,x :Ũ→End(Wx
(n)) by

ra,xª~rx^¯^ rqn21x!+~xa1
^¯^ xan

!+D (n21).

By ~4!, we have

Ř~a;xus!ra,x~X!5rs[a],x~X!Ř~a;xus! ~7!

for XPŨ. By Lemma 2 and~7!, we may define the representationru,x
6,(n) :Ũ→End(V6,x) by

ru,x
6,(n)(X)5rgn[up6],x(X) uV6,x

. Notice that
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ru,x
6,(n)5r1,x

6,(n)+xu . ~8!

We have a representationĉu
6,(n) :sl(2u2)(1)→End(Cd6(n)) sendingEi8 , Fi8 , Hi8 to the limits

of ru,x
6,(n)(Ei), ru,x

6,(n)(Fi), (q2q21)21ru,x
6,(n)(Ki2Ki

21) as (q,x)→(1,0). Define the representa
tion c6,(n) of sl(2u2) to be (ĉ1

6,(n)) usl(2u2) . Thenc1,(n) ~respectively,c2,(n)) is then-fold sym-
metric ~respectively, antisymmetric! tensor product of the vector representationc of sl(2u2). By
Ref. 18, we have the following.

Lemma 3: Thec6,(n) is irreducible. Moreover d6(n)Þ0.
Define tPS2n by t( i )5 i 1n, t(n1 i )5 i (1< i<n). For g, hPCn, let gøh

ª(g1 ,...,gn ,h1 ,...,hn)PC2n. Let Sn be embedded intoS2n in the natural way. By Lemma 2, we
have

Ř~gn@up6#øgn@vp6#;xut!~px
(n)~e6! ^ pqnx

(n)
~e6!!

5
~uv !2,(gn)

a6~q!2 Ř~gn@up6#øgn@vp6#;xut!Ř~up6 ;xugn!Ř~vp6 ;xutgnt!

5
~uv !2,(gn)

a6~q!2 Ř~up6øvp6 ;xugntgn!

5
~uv !2,(gn)

a6~q!2 Ř~vp6 ;xugn!Ř~up6 ;xutgnt!Ř~up6øvp6 ;xut!

5~px
(n)~e6! ^ pqnx

(n)
~e6!!Ř~up6øvp6 ;xut!.

Hence we may set

Ř6,(n)~u,v;x!ªŘ~gn@up6#øgn@vp6#;xut! uV6,x^ V6,qnx

PEnd(V6,x^ V6,qnx).
Let ru,v

6,(n)
ª(ru,x

6,(n)
^ rv,qnx

6,(n))D. Notice that

ru,v
6,(n)~X!5~rgn[up6] øgn[vp6],x~X!! uV6,x^ V6,qnx

. ~9!

By ~7! and ~9!, we have

Ř6,(n)~u,v;x!ru,v
6,(n)~X!5rv,u

6,(n)~X!Ř6,(n)~u,v;x! ~10!

for XPŨ.
Theorem 2: The Ř6,(n)(u,v;x) satisfies the YBE in the form of (1).
Proof: By ~5!, we haveuc6,(n)(Ea11a21a3

8 )5ĉu
6,(n)(F0) and u21c6,(n)(E2(a11a21a3)8 )

5ĉu
6,(n)(E0). Noting this fact and using~8!, ~10! and Lemma 3, together with the same argum

as in the proof of Proposition 3 in Ref. 3, we have the theorem. h
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APPENDIX: QUANTUM DYNAMICAL R-MATRIX

Here we show that theŘ6,(n)(u,v;x) can be viewed as a dynamicalR-matrix. Leth be a finite
dimensional commutative Lie algebra. LetV be a finite dimensional diagonalizableh-module, i.e.,
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V5 % mPh* Vm , whereVmª$vuh.v5m(h)v%. We say that a~meromorphic! function Ř8:C23h*
→End(V^ V) is a quantum dynamical R-matrix if it satisfies the quantum dynamical YBE~see
Ref. 19, for example!:

~Ř8~v,w,l! ^ I !Ř823~u,w,l2h(1)!~Ř8~u,v,l! ^ I !5Ř823~u,v,l2h(1)!~Ř8~u,w,l! ^ I !

3Ř823~v,w,l2h(1)!,

whereŘ823(u,v,l2h(1))PEnd(V^ 3) is defined by

Ř823~u,v,l2h(1)! uVm ^ V^ V5~ I ^ Ř8~u,v,l2m!! uVm ^ V^ V .

Let h95C and leth9 act onCd6(n) by z.v52nzv. Let aPC be such thatea5q. Define
Ř9:C23(h9)* →End(Cd6(n)

^ Cd6(n)) by Ř9(u,v,l)5Ř6,(n)(u,v;eal(1)). By Theorem 2,Ř9 is a
quantum dynamicalR-matrix.
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ERRATUM

Erratum: Canonical coherent states for the relativistic
harmonic oscillator †J. Math. Phys. 36, 3191 „1995…‡

V. Aldaya
Instituto de Astrofı´sica de Andalucı´a, Apartado Postal 3004, 18080 Granada, Spain
and Instituto de Fı´sica Teo´rica y Computacional Carlos I, Facultad de Ciencias,
Universidad de Granada, Campus de Fuentenueva, Granada 18002, Spain

J. Guerrero
Departamento de Matema´tica Aplicada, Facultad de Informa´tica,
Campus de Espinardo, 30100 Murcia, Spain
and Instituto de Fı´sica Teo´rica y Computacional Carlos I, Facultad de Ciencias,
Universidad de Granada, Campus de Fuentenueva, Granada 18002, Spain

© 2003 American Institute of Physics.@DOI: 10.1063/1.1615698#

In the mentioned paper1 we introduced higher-order~nonpolynomial!, relativistic creation and
annihilation operators,â,â†, with canonical commutation relation@ â,â†#51 rather than the co-
variant one@ ẑ,ẑ†#'energy and naturally associated with theSL(2,R) group. The canonical~rela-
tivistic! coherent states were then defined as eigenstates ofâ. Also, a canonical, minimal repre
sentation was constructed in configuration space by means of eigenstates of a canonical
operator.

Unfortunately, the expression of the operatork̂ ~closely related to the energy operator! just
after formula ~18!, then after formula~34!, was miswritten. In fact, we printed the classic
function of k in terms of the functionsz and z* @see Eq.~2!#, whereas the correct, quantu
expression is

k̂5
1

2N
1AS 12

1

2N
D 2

1
2

N
ẑ†ẑ.

This misprint had not been detected because we always used the power series ex
@formula ~17!#, which features a full independence on the~energy eigenstate! basis$un&%. How-
ever, very recently, Kastrup dealing with an analogous construction2 has detected the above
mentioned misprint.3 We are very grateful to him for pointing it out.

1V. Aldaya and J. Guerrero, J. Math. Phys.36, 3191~1995!.
2H. A. Kastrup, Quantization of the Optical Phase SpaceS 25$w mod 2p,I .0% in Terms of the Group SO(1,2),
quant-ph/0307069.

3H. A. Kastrup~private communication!.
54560022-2488/2003/44(11)/5456/1/$20.00 © 2003 American Institute of Physics
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Sharp reconstruction of unsharp quantum observables
Roberto Beneducia) and Giuseppe Nisticòb)

Dipartimento di Matematica, Universita` della Calabria, Istituto Nazionale di Fisica
Nucleare, Gruppo c. di Cosenza, 87036 Arcavacata, Rende (CS), Italy

~Received 28 May 2003; accepted 7 August 2003!

A well defined procedure exists which allows us to ‘‘reconstruct’’ a sharp, i.e.,
standard, quantum observableA starting from a given commutative unsharp ob-
servableF. In this work we prove that the outcomes of measurements ofF can be
consistently interpreted as the result of a stochastic diffusion of outcomes of its
sharp reconstructionA. Furthermore, for every sharp observableB, such thatF is
unsharp realization ofB, we explicitly construct a real mappingg such thatA
5g(B). © 2003 American Institute of Physics.@DOI: 10.1063/1.1623615#

I. INTRODUCTION

In order to describe general physical magnitudes of a quantum system described in a
spaceH, the notion ofunsharp observablehas been introduced and investigated by seve
authors:1–4

Definition 1: An unsharp observable is a mapping

F:B~R!→F~H!

so that
(u1) F(R)51,
(u2) F(øD j )5(F(D j ) if D jùDk5B when jÞk,

whereF(H)5$F:H→H, linear, and0<F<1% is the set of effects, and the series converge
the weak operator topology. @B~R! denotes the Borels-algebra on the setR of real numbers.#

In other terms, an unsharp observable is a positive operator valued~POV! measure, where
p(F;D)5^cuF(D)c& is interpreted as the probability that the outcome of a measurement o
observable represented byF belongs toD. Sharp observables, describing the observables
standard quantum theory,5 are projection valued~PV! measuresE:B(R)→E(H), where E~H!
denotes the set of all projection operators of Hilbert spaceH. Hence they form a particular subs
of the larger set of unsharp observables.

If F is a commutativeunsharp observable, i.e., if

@F~D1!,F~D2!#50, ;D1 ,D2PB~R!,

a sharp observableE can be explicitly constructed,6 together with a family$wD%DPB(R) of real
functions onR such that

F~D!5E wD~l!dEl ,

whereEl5E(2`,l# is the resolution of the identity of self-adjoint operatorA5*ldEl ~Sec. II!.
Since p(F;D)5*DwD(l)diElci2 and diElci25p(E;(l,l1dl#), these results sugges

that the outcomes of measurements ofF can be interpreted as the result of a stochastic diffus
of the outcomes ofE, by interpreting wD(l) as the probability that outcomel of E turns into an

a!Electronic mail: rbeneduci@unical.it
b!Author to whom correspondence should be addressed. Electronic mail: gnistico@unical.it
54610022-2488/2003/44(12)/5461/13/$20.00 © 2003 American Institute of Physics
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outcome inD for F. In short, we can say thatF is an unsharp realization of E. The physical cause
of such a diffusion could be the imprecision of the measuring apparatus, or some other
unknown cause. The main aim of the present work is to check the consistency of this interpr
for commutative unsharp observables. A first mathematical condition to be required is th
every possible valuel of sharp reconstructed observableE, mappingD→wD(l) must behave as
a probability measure. In Sec. III we prove that this is true for a ringR(S)5$D% of sets which
generates thes-algebra of Borel.

Furthermore, since a given commutative unsharp observableF is simultaneously the unshar
realization of many different sharp observablesEB, EC, etc., as well as of our own reconstructio
E, a more fundamental problem of consistency arises: the intepretation ofF as an unsharp
realization of sharp reconstructionE must be consistent with the inteprepretation ofF as an
unsharp realization ofEB, EC, etc. This second kind of consistency would fail, for instance
@E,EB#Þ0. In Sec. IV we show that, wheneverF is an unsharp realization of some sharp obse
able EB, we can concretely construct a real functiong so that every outcomel of the sharp
reconstructionE satisfies

l5g~m!,

wherem is the outcome ofEB. The existence of such a function is a condition, denoted by~C! in
Sec. IV, which ensures consistency. The fact that we have a way to construct mappingg allows us
to investigate concrete examples; for instance, in Sec. IV C we find that the sharp reconst
of the general 1-0 observable generated by an effectf is the sharp observable represented by j
self-adjoint operatorf itself.

Section V is devoted to interpret these results and to locate the present work with
literature about the subject.

II. SHARP RECONSTRUCTION OF UNSHARP OBSERVABLES

Let E be a sharp observable corresponding to the self-adjoint operatorA. Often it happens tha
the real apparatus used to measure this observable does not have an infinite precision.
suppose that this imprecision can be described by means of a family$wD%DPB(R) of non-negative
functions, defined on the spectrums(A), with the following interpretation:wD(l) is the prob-
ability that, when the outcome ofA is l, the measuring apparatus yields an outcomemPD. This
implies that

~PM! mapping w(•)~l!:B~R!→@0,1#, D→wD~l!

is a probability measure for every numberl in the spectrum of A.
The probability that the actually measured value belongs toDPB(R) is p(D)

5^cuwD(A)c&, where operatorwD(A)5*wD(l)dEl is an effect. The outcoming mappin
F:B(R)→F(H), D→ f (D) may be seen to be an unsharp observable. The outcomes ofF can be
considered as the result of the stochastic diffusion, described bywD(l), of the outcomes ofE.
Hence, for every sharp observableE and every family of functionswD satisfying~PM!, a corre-
spondence

E→F, F~D!5E wD~l!dEl , ~1!

can be established, which associates an unsharp observableF to E. We callF in ~1! an unsharp
realizationof E. In this section we show how correspondence~1! can be reversed.

The problem of reversing correspondence~1! consists in starting from a given unsharp o
servableF and then in looking for a sharp observableE so that~1! holds. It has been found tha
the reversing correspondence is successful ifF is a commutativeunsharp observable.7,6 In such a
case an explicit procedure has been established which allows us to obtain
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~i! a sharp observableE, calledthe sharp reconstruction of F;
~ii ! a family of functions$wD% so thatF(D)5wD(A),

whereA5*ldEl andEl5E((2`,l#). In the present section we outline such a reconstruc
procedure.

We can assume, without losing generality, that thephysical spectrums̃(F)5$lPRu;d
.0,F(l2d,l1d).0% of unsharp observableF we start from is bounded ands̃(F)#@0,1# ~Ref.
6! @(s̃(F) is the support of POV measureF and represents the set of possible outcomes ofF; for
a sharp observableE, s̃(E) coincides just with the mathematical spectrums(A) of the corre-
sponding self-adjoint operatorA].

Let us consider the countable familyS5$D j%, where

D j5H F0,
1

2pG if j 52p, pPN,

S j 22p

2p ,
j 22p11

2p G if 2p, j ,2p11, pPN.

~2!

Family S is a semi-ring of intervals which generates wholes-algebraB(@0,1#). We take into
account also the family of effects corresponding to these intervals:

$F j%, where F j5F~D j !. ~3!

The procedure consists of a sequence of steps, which allows us to determine sharp recons
E and functionswD j

up to an arbitrary degree of approximation.

A. Step n

At stepn, a n-dimensional hypercubeQ(n)5@0,1#n is considered, whose edges lying on t
axes are denoted byC1 ,C2 , . . . ,Cn . Effect F j5F(D j ) is assigned to edgeCj[@0,1# which is
decomposed into the following 2n21 subintervals:

Cj ,1
(n)5F0,

1

2n21G ,Cj ,2
(n)5S 1

2n21 ,
2

2n21G ,...,
~4!

Cj ,k
(n)5S k21

2n21 ,
k

2n21G ,...,Cj ,2n21
(n)

5S 2n2121

2n21 ,1G .
These decompositions give rise to the decomposition of hypercubeQ(n) into 2n(n21) sub-
hypercubes of the kind

Q(n)~k!5C1,k1

(n) 3C2,k2

(n) 3¯3Cn,kn

(n) ;

here (k1 ,k2 , . . . ,kn)[kP$1,2,. . . ,2n21%n picks out sub-hypercubeQ(n)(k) @k/2n21 is the vertex
of Q(n)(k) with the greatest distance from (0,0,. . . ,0)].

We will locate the spectrum of desired self-adjoint operatorA within real interval@0,1#. To
determine the resolution of the identity ofA we decompose such an interval@0,1# into N(n)
52n(n21) intervals

I 1
(n)5@0,l1

(n)#,I 2
(n)5~l1

(n) ,l2
(N)#,...,

~5!
I k

(n)5~lk21
(n) ,lk

(n)#,...,I N(n)
(n) 5~lN(n)21

(n) ,1#,

where
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l1
(n)5

1

N~n!
, l2

(n)5
2

N~n!
,...,lk

(n)5
k

N~n!
,...,lN(n)21

(n) 5
N~n!21

N~n!
, lN(n)

(n) 51. ~6!

Then, the resolution of the identityEl of A is defined on pointslk
(n) . To obtain this result, a

suitable projection operatorE(I k
(n)) is assigned to each subintervalI k

(n) in such a way that
E(I j

(n))'E(I k
(n)) if j Þk, and then we putEl

k
(n)5( j 51

k E(I j
(n)).

Projection operatorE(I k
(n)) is assigned in the following way. Since the number of su

hypercubes and that of intervalsI k
(n) is the same, a bijection

I :$Q(n)~k!%→$I k
(n)%

exists. Then, givenI k
(n) , we denote the projection ontoCj of sub-hypercubeQ(n)(k)5I 21(I k

(n)) by
Cj ,kj

(n) . For every j 51,2,. . . ,n, let El
( j ) be the resolution of the identity of self-adjoint operat

F j[F(D j ) defined in~3!. Then we put

E~ I k
(n)!5E(1)~C1,k1

(n) !•E(2)~C2,k2

(n) !¯E(n)~Cn,kn

(n) !, ~7!

whereEj (Cj ,kj

(n) )5*C
j ,kj

(n) dEl
( j ) .

At the same stepn we define, for everyj 51,2,. . . , n, a step functions j
(n) on @0,1#, con-

tinuous on the left, in the following way. Given intervalI k
(n)5(lk21

(n) ,lk
(n)#, we defines j

(n)(l), for
all lPI k

(n) , as the projection on edgeCj of the vertex of sub-hypercubeI 21(I k
(n)) with the greatest

distance from (0,0,. . . ,0). Foreach fixedj , these step functions are continuous on the left, a
they can be used to form a sequence$s j

(n)%nPN .

B. Main theorem

The following theorem collects the main results proved in Ref. 6.
Theorem 1: If bijection I:$Q(n)(k)%→$I k

(n)% satisfies the following conditions,

(i) Q (n11)( l 1 ,...,l n11)#Q(n)(k1 ,...,kn)3Cn11 then I(Q(n11)( l 1 ,...,l n11))#I (Q(n)(k1 ,
...,kn));

(ii) s j
(n11)(l)5s j

(n)(l) for all lPL(n11), where L(n)5$l0
(n)50,lk

(n) , k
51,2,. . . ,2n(n21)%,

then the following statements hold:
(1) Family $El%lPR#E(H), where Elc5 liml

k
(n)→l1 El

k
(n)c, may be seen to be a resolutio

of the identity.
(2) Once defined

A(n)5 (
k51

N(n)

lk
(n)@El

k
(n)2El

k21
(n) # where E

l
0
(n)

(n)
50, ~8!

we can see that A5*ldEl5 limn→` A(n) is a bounded self-adjoint operator and the lim
converges with respect to the operator norm.

(3) For every jPN, sequence$s j
(n)%n uniformly converges to a function wD j

which is con-

tinuous on the left on@0,1#, whereas we put wD j
(l)50 if l¹@0,1#.

(4) F(D j )5*wD j
(l)dEl5wD j

(A).
In Ref. 6 it is shown that bijectionI can be always explicitly defined in such a way that (i )

and (i i ) in Theorem 1 hold. Thus, we have an explicit well defined procedure allowing u
approach, up to an arbitrary degree of approximation, the sharp reconstruction

E:B~@0,1# !→E~H!, E~D!5E
D
dEl
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of a given commutative unsharp observableF, and also functionswD j
, for D jPS. In Sec. III C we

show how to findwD for everyDPB(@0,1#).

III. PROBLEM OF CONSISTENCY

The results shown in Sec. II prompt us to interpret a commutative unsharp observableF as an
unsharp realization of its sharp reconstruction Ein the following precise sense:

~J! The outcomes of unsharp observable F are interpreted as the result of a stoc
diffusion of the outcomes of sharp reconstruction E of F, wD(l) being the probability that the
outcome of F belongs toD when the outcome of E isl.

This interpretation allows us to establish and understand the physical relationships be
sharp and commutative unsharp observables. However, before adopting this interpretatio
necessary to verify its consistency. Interpretation~J! should imply that the probability that a
outcome ofF belongs to an intervalD jPS @see~2!# is

^cuF~D j !c&5E wD j
~l!diElci2.

Therefore the consistency of the interpretation requires the following conditions:

~i! All functions wD j
must have the Lebesgue–Stieltjes integral with respect toa(l)

5iElci2.
~ii ! MappingS→@0,1#, D→wD(l) must behave as a probability measure.

The following Secs. III A and B are devoted to showing that these conditions are really sat
In particular we prove that for everylPs(A), mappingD→wD(l) is a probability measure on
R~S!, the ring generated byS, which in its turn generatesB(@0,1#). As a consequence of such a
additivity and of thes-additivity of POV measureF, in Sec. III C we show that for everyD
PB(@0,1#) a functionwD can be defined such thatF(D)5wD(A). In Sec. IV we shall introduce
and solve a more fundamental problem of consistency.

A. Integrability

We recall8 that a functionf :@0,1#→R has the Lebesgue–Stieltjes integral with respect t
nondecreasing functiona:@0,1#→@0,1# ~hence, of bounded variation! if and only if f (l(a)) has
the Lebesgue integral~with respect to variablea! on the interval@0,1#, wherel~a! is the solution,
possibly many-valued, of equation

a~l~a!!5a.

In this case the Lebesgue–Stieltjes integral off is

E f ~l!da~l!5E f ~l~a!!da.

Every step functions j
(n) defined in Sec. II A has the Lebesgue–Stieltjes integral with respe

a(l)5^Elcuc&. Indeed, functionf j
(n)(a)5s j

(n)(l(a)) always has the Lebesgue integral, an

E s j
(n)~l~a!!da5(

k
s j

(n)~lk
(n)!@a~lk

(n)!2a~lk21
(n) !#5E s j

(n)~l!da~l!.

Therefore, functionus j
(n)(l(a))2s j

(n11)(l(a))u has the Lebesgue integral, too, and
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E us j
(n)~l~a!!2s j

(n11)~l~a!!uda

5E us j
(n)~l!2s j

(n11)~l!uda~l!<Supl$us j
(n)~l!2s j

(n11)~l!u%@a~1!2a~02!#

5
1

2n21 .

This means that sequence$s j
(n)(l(a))%nPN is Cauchy in the mean. Then its limitwD j

(l(a)) is
integrable and

E wD j
~l~a!!da5E wD j

~l!da~l!.

This shows that all functionswD j
(l) have their own Lebesgue–Stieltjes integrals.

B. Additivity

In this subsection we prove that ifD, D j 1
, D j 2

, . . . , D j r
PS, with D j i

ùD j k
5B when iÞk,

andD5økD j k
, thenwD(l)5(kwD j k

(l), for all lPs(A).

First we consider the case thatl is just an eigenvalue ofA, i.e.,lPsp(A); in this case there
is an eigenvectorc so thatAc5lc. This, according to a standard result of spectral theory~see,
for instance, theorem VII.2 in Ref. 9!, implies that wD(A)c5wD(l)c and wD j k

(A)c

5wD j k
(l)c. Since F(D)5(kF(D j k

) follows from D5økD j k
, we have wD(A)c5wD(l)c

5F(D)c5(kF(D j k
)c5(kwD j k

(A)c5(kwD j k
(l)c, i.e.,

wD~l!5(
k

wD j k
~l!.

Now we consider the case thatl is an interior point of continuous spectrumsc(A)
5s(A)\sp(A), so that there is an open interval (l2d,l1d)#s(A).

We recall the following result of standard spectral theory:
real numberm belongs to spectrums(C) of a bounded self-adjoint operator C iff h.0
implies E(l2h,l1h)Þ0 iff a sequence$wn%#H exists so thatiwni51 and limn(C
2m)wn50 ~see VII.3 in Ref. 9!.
For everyn there is a vectorcn , icni51, so thatE(l2 d/n ,l#cn5cn , otherwise interval

(l2 d/n ,l# would be not in the spectrums(A), against the hypothesis. We havei@wD(A)
2wD(l)#cni5i*@wD(m)2wD(l)#dEmcni5i*l2 d/n

l @wD(m)2wD(l)#dEmcni<maxmP(l2d/n,l]

3$uwD(m)2wD(l)u→0 asn→` becausewD j
is continuous on the left inl @see~3! of Theorem 1

in Sec. II B#. Similarly, i@wD j k
(A)2wD j k

(l)#cni→0 asn→`.

Then, by Definition 1,

uwøkDJk
~l!2(

k
wD j k

~l!u5 I FF~økD j k
!2(

k
F~D j k

!Gcn2FwøkD j k
~l!2(

k
wD j k

~l!GcnI
5 I @F~økD j k

!2wøkD j k
~l!#cn2(

k
~F~D j k

!2wD j k
~l!!cnI→0,

asn→`.

Therefore,wøkD j k
(l)5(kwD j k

(l).

The only case still to be considered is that of a numberl which is on the boundary ofs(A)
but l is not an eigenvalue ofA, so that Em is continuous inl. We redefine all functions
wD i

(l)5*D i
dm for thesel, wherem is the Lebesgue measure, so thatwøkD j

(l)5(kwD j
(l)
k k
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obviously holds. This redefinition does not affect relationsF(D i)5wD i
(A)5*wD i

(l)dEl because
these points are at most a countable family, andEm is continuous in all such points.

The additivity ofw(•)(l) on semi-ringS allows us to additively extendw(•)(l) on ringR~S!
generated byS.

C. Functions w D for D«B„†0,1‡…

If D is an open set in@0, 1#, then there is a disjoint, at most countable, sequence$D j k
%#R(S)

such thatD5økD j k
. By ~u2! in Definition 1, we have

F~D!5(
k

F~D j k
!5(

k
E wD j k

~l!dEl .

For every mPN, we have@0,1#5(øk51
m D j k

)øD̃, for a suitable setD̃PR(S) disjoint from

(øk51
m D j k

). Then 15w[0,1](l)5(k51
m wD j k

(l)1wD̃(l), sinceD→wD(l) is additive onR~S!.

Therefore sequence(k51
m wD j k

(l), increasing with respect tom, is bounded by 1, and it mus

converge for everyl. Thus

F~D!5(
k
E wD j k

~l!dEl5E (
k

wD j k
~l!dEl

follows, for instance, from theorem VII.2.d in Ref. 9.
Therefore, for every open setDP@0,1#, by using functionswD j k

we can construct a function

wD5(kwD j k
such thatF(D)5*wD(l)dEl . This result is a consequence of thes-additivity of

POV measureF we start from. Similarly, a functionwD such thatF(D)5wD(A) can be con-
structed for allDPB(@0,1#), as done in Ref. 6.

However, on the basis of these results, we cannot state thatD→wD(l) is s-additive, but only
that it is additive on ringR~S!. Thes-additivity would imply thatD→wD(l) can be extended to
a ~s-additive! probability measure onB(@0,1#). The problem of thes-additivity of D→wD(l) is
an open question we are facing for a further development of the present work.

IV. A MORE FUNDAMENTAL PROBLEM OF CONSISTENCY

Let F be a commutative unsharp observable, and letE be the sharp reconstruction ofF,
corresponding to self-adjoint operatorA, obtained by reversing correspondence~1! by means of
the procedure described in Sec. II. Let us suppose thatF is actually the unsharp realization of a
given, but unknown, sharp observableEB, with B5*mdEm

B , different from the sharp reconstruc
tion E. Our proposed interpretation~J! of F as the unsharp realization ofE could be inconsisten
with the simultaneous, inevitable, interpretation ofF as an unsharp realization ofEB. For instance,
the consistency would fail if@A,B#Þ0. In such a case there would be a fundamental problem
interpretingF as an unsharp realization ofE, because@A,B#Þ0 forbids assigning, even hypo
thetically, simultaneous values to observablesE andEB.

However, such a problem of consistency does not occur if the following condition hold
~C! If EB and $wD

B% are respectively a sharp observable and a family of functions satisf
condition (PM) in Sec. II, so that

F~D!5wD
B~B!,

then a real function g exists so that A5g(B).
If condition ~C! holds, then the above described problem of consistency cannot arise be
every outcomel of E can be interpreted, according to standard quantum theory, as the result
transformation of the outcomem of EB by means of mappingg, i.e., l5g(m) ~for instance, see
Ref. 5, assertionF, Chap. III!. In this case@A,B#50, of course.
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In this section we show that for every self-adjoint operatorB, with s(B)#@0,1# and resolu-
tion of the identityEm

B , such thatEB→F in the sense of~1!, it is possible to concretely construc
by an explicit procedure, a real functiong ~which is Lebesgue–Stieltjes integrable with respec
b(m)5^cuEm

Bc& for all cPH) so thatA5g(B). As a consequence, condition~C! is satisfied and
thus the problem of consistency pointed out above does not arise; in so doing we have the
advantage of having a well defined mathematical procedure to findg.

A. Basic proposition

Our result is based on Proposition 1 proven in this subsection.
By $wD

B%DPB([0,1]) we denote the family of functions defined ons(B) and Lebesgue–Stieltje
integrable with respect tob(l)5^El

Bcuc& so thatF(D)5wD
B(B)5*wB(m)dEm

B . Let Cj ,k
(n)#@0,1#

be one of the subintervals of edgeCj defined in~4! at stepn of the procedure outlined in Sec. I
and letEl

( j ) be the resolution of the identity ofF j5F(D j ). Then

E( j )~Cj ,k
(n)!5Ek/2n21

( j )
2Ek21/2n21

( j )
5E xC

j ,k
(n)~l!dEl

( j )5xC
j ,k
(n)~F~D j !!. ~9!

For everyj ,

F~D j !5E wD j

B ~m!dEm
B . ~10!

From ~9! we have

E( j )~Cj ,k
(n)!5xC

j ,k
(n)~F~D j !!5xC

j ,k
(n)~wD j

B ~B!!5E xC
j ,k
(n)~wD j

B ~m!!dEm
B .

The above expression follows from the rules of operator functional calculus~e.g., Ref. 8, pp.
342–347!.

Therefore,

E( j )~Cj ,k
(n)!5E x [w

D j

B ] 21(C
j ,k
(n))~m!dEm

B5EB~@wD j

B #21~Cj ,k
(n)!!. ~11!

Let us consider an interval of the kindI k
(n)5(lk21

(n) ,lk# in ~5!. Then

E~ I k
(n)!5El

k
(n)2El

k21
(n) 5)

j 51

n

E( j )~Cj ,l ( j ,k)
(n) ! by ~7!

5)
j 51

n

EB~@wD j
B #21~Cj ,l ( j ,k)

(n) !! by ~11!

where Cj ,l ( j ,k)
(n) is the projection on j th edge Cj of sub-hypercubeI 21(I k

(n)). We have
EB(D1ùD2)5EB(D1)•EB(D2), ;D1 ,D2PB(@0,1#), and then

E~ I k
(n)!5EB~ù j 51

n @wD j
B #21~Cj ,l ( j ,k)

(n) !!. ~12!

For every subintervalI k
(n) in ~5! we define the Borel set

c~ I k
(n)!5$ù j 51

n @wD j
B #21~Cj ,l ( j ,k)

(n) !%. ~13!

Now we shall prove the following proposition.
Proposition 1: Borel’s sets c(I k

(n)) defined by (13) satisfy the following conditions:

(i) E(I k
(n))5EB(c(I k

(n))).
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(ii) If I k
(n11)#I j (k)

(n) , then c(I k
(n11))#c(I j (k)

(n) ).
(iii) I k

(n)ùI i
(n)5B implies c(I k

(n))ùc(I i
(n))5B.

(iv) økc(I k
(n))5s(B).

Proof: Condition ~i! follows from ~12!.
~ii ! If I k

(n11)#I j (k)
(n) , then, by (i ) in Theorem 1, we obtainI 21(I k

(n11))#I 21(I j (k)
(n) )3Cn11 .

Therefore, subintervals Cj ,kj

(n11) and Cj ,k
j8

(n)
which are the respective projections of su

hypercubesI 21(I k
(n11)), I 21(I j (k)

(n) ) on j th edgeCj are such that Cj ,kj

(n11)#Cj ,k
j8

(n)
. Then, by~13!,

c~ I k
(n11)!#c~ I j (k)

(n) !. ~14!

~iii ! If I 21(I k
(n))5) j 51

n Cj ,l ( j ,k)
(n) and I 21(I i

(n))5) j 51
n Cj ,l ( j ,i )

(n) , then we can see thatI k
(n)ùI i

(n)

5B implies I 21(I k
(n))ùI 21(I i

(n))5B, becauseI is bijective.
Therefore, there existsj 0 so that Cj 0 ,l ( j 0 ,k)

(n) ùCj 0 ,l ( j 0 ,i )
(n) 5B; hence we haveB

5$@wD j 0

B #21(Cj 0 ,l ( j 0 ,k))
(n) %ù$@wD j 0

B #21(Cj 0 ,l ( j 0 ,i )
(n) )% @recall that XùY5B⇒ f 21(X)ù f 21(Y)5B

holds for any functionf ]. Thus, from~13!, c(I k
(n))ùc(I i

(n))5B follows.
~iv! For everyj , økCj ,l ( j ,k)

(n) 5@0,1# and @wD j

B #21(@0,1#)5s(B). Then

økc~ I k
(n)!5ù j 51

n $øk@wD j

B #21~Cj ,l ( j ,k)
(n) !%

5ù j 51
n @wD j

B #21~økCj ,l ( j ,k)
(n) !

5ù j 51
n @wD j

B #21~@0,1# !5ù j 51
n s~B!5s~B!.

B. Construction of function g

Now we define a sequence of functions$g(n)% which converges to a functiong
5 limn→` g(n) with respect to the uniform topology of bounded functions. We shall prove
A5g(B).

To construct sequence$g(n)% we make use of Proposition 1.
Let us consider the countable familyI5$I k

(n)%k,n of all intervals defined in~5!. By means of
~13!, we define mapping

c:I→B~R!, I j
(n)→c~ I j

(n)!#s~B!.

Fixed n, by ~iii ! and ~iv! in Proposition 1, for everymPs(B) a uniquek exists so thatm
Pc(I k

(n)). Then, it is possible to define the function

g(n):s~B!→ønL~n!, mPc~ I k
(n)!→g(n)~m!5lk

(n) . ~15!

Therefore, we can write

lk
(n)E~ I k

(n)!5lk
(n)EB~c~ I k

(n)!!5lk
(n)E xc(I

k
(n))~m!dEm

B . ~16!

Thus we haveg(n)(m)5(klk
(n)xc(I

k
(n))(m).

By replacing~16! in ~8! we obtain

A(n)5(
k

lk
(n)EA~ I k

(n)!5(
k
E lk

(n)xc(I
k
(n))~m!dEm

B

5E
s(B)

(
k

lk
(n)xc(I

k
(n))~m!dEm

B

5E
s(B)

g(n)~m!dEm
B , ~17!

having used Proposition 1.
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Now we can prove that functionsg(n) converge asn→` to a functiong:s(B)→@0,1# with
respect to the uniform topology.

Let mPs(B) be so thatmPc(I k
(n11)); then a unique indexj (k) exists, so that

I k
(n11)#I j (k)

(n) . ~18!

From Proposition 1 (i i ) it follows that

c~ I k
(n11)!#c~ I j (k)

(n) !, ~19!

hencemPc(I j (k)
(n) ). By ~15! and ~18! we obtain

g(n11)~m!5lk
(n11)P~l j (k)21)

(n) ,l j (k)
(n) # and g(n)~m!5l j (k)

(n) .

Therefore,ug(n)(m)2g(n11)(m)u< 1/2n(n21) for everymPs(B). Thus sequence$g(n)% uniformly
converges to a functiong:s(B)→@0.1#.

Finally, we can prove that functiong, so defined, is Lebesgue–Stieltjes integrable with resp
to b(m)5^Em

Bcuc&, for every c, and thatA5g(B). From~17! it follows that every function
defined in~15! is Lebesgue–Stieltjes integrable with respect tob(m)5^Em

Bcuc&, ; c.
Therefore, ug(n11)(m)2g(n)(m)u is Lebesgue–Stieltjes integrable, too. This implies t

ug(n11)(m(b))2g(n)(m(b))u is Lebesgue integrable and

E ug(n11)~m~b!!2g(n)~m~b!!udb5E ug(n11)~m!2g(n)~m!udb~m!<
1

2n(n21) . ~20!

Then sequence $g(n)(m(b))% is Cauchy in the mean, and therefore its limitg(m(b)) is Le-
besgue integrable andg(m) is Lebesgue–Stieltjes integrable. According to~17! we have

g~B!5E g~m!dEm
B5 lim

n
E g(n)~m!dEm

B5 lim
n

A(n)5A,

that is to sayA5g(B).

C. The general 1-0 observable

Now we shall concentrate on a particular kind of unsharp observable. Given any non
effect f, the1-0 unsharp observableF generated byf is

F~D!55
f if 1PD and 0¹D,

12f if 0PD and 1¹D,

1 if 1,0PD,

0 if 1¹D and 0¹D.

~21!

Unsharp observableF is nothing but the observable which takes value 1 whenf occurs and value
0 whenf does not occur. It is the most elementary kind of unsharp observable. We shall prov
in this simple case the self-adjoint operatorA representing the sharp reconstruction ofF coincides,
modulo a bijection, withf itself. The family$F(D)%DPB(R) contains only two nontrivial effectsf
and12f. Sincef itself is a self-adjoint operator, it has a resolution of the identityEl

f so that
f5*ldEl

f . If we put B5f, then we can immediately find the family$wf(D)%D so that
F(D)5wD

f(f):
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wD
f~m!55

m if 1PD and 0¹D,

12m if 0PD and 1¹D,

1 if 1,0PD,

0 if 1¹D and 0¹D.

~22!

Therefore, we can explicitly construct functiong so thatA5g(f), according to Sec. IV B, where
A is the sharp reconstruction ofF. We prove that this functiong is invertible. The injectivity ofg
means that the sharp observable represented byB5f differs from the sharp reconstruction on
for the scale used to measure their respective values, therefore they are essentially the sa

Having fixedn>5, given anymPs(f), let I k(n,m)
(n) 5(lk(n,m)21

(n) ,lk(n,m)
(n) # be the unique inter-

val among~5! so thatmPc(I k(n,m)
(n) ), according to (i i i ) and (iv) of Proposition 1. Then, accordin

to ~15!,

g(n)~m!5lk(n,m)
(n) .

Lemma 1: IfmPs(B), thenm5 limn s3
(n)(g(n)(m)).

Proof: Given mPs(B), for every fixed n, a unique indexk(n,m) exists so thatm
Pc(I k(n,m)

(n) ). Since by ~13! c(I k(n,m)
(n) )5ù j 51

n @wD j

f #21(Cj ,l ( j ,k)
(n) ), m must belong to all sets

@wD j

f #21(Cj ,l ( j ,k)
(n) ), j 51,2,...,n. In particular, by~22! we havewD3

f (m)5m, which implies

mP@wD3

f #21~C3,l (3,k)
(n) !5C3,l (3,k)

(n) )5S s3
(n)~lk(n,m)

(n) !2
1

2(n21) ,s3
(n)~lk(n,m)

(n) !G .
Since the length ofC3,l (3,k)

(n) vanishes whenn→`, we have

lim
n→`

s3
(n)~lk(n,m)

(n) !5m.

Lemma 2: Sequence$g(n)(m)%n is strictly decreasing.
Proof: By ~18! in Sec. IV B, we see thatg(n11)(m)5lk(n11,m)

(n11) <lk(n,m)
(n) therefore$lk(n,m)

(n) % is
not increasing.

On the other hand, using an argument similar to that of Lemma 1 we get

mP@wD5

f #21~C5,l (5,k)
(n) !, ;n.

SincewD5

f (h)50, then 0PC5,l (5,k)
(n) , which impliesC5,l (5,k)

(n) 5@0,1/2(n21)#. Therefore,

s5
(n)~lk(n,m)

(n) !5
1

2(n21) . ~23!

Then if lk(n,m)
(n) 5lk(n11,m)

(n11) , according to~ii ! in Theorem 1 we would have

s5
(n)~lk(n,m)

(n) !5s5
(n11)~lk(n11,m)

(n11) !,

which contradicts~23!.
Proposition 2: Function g:s(f)→@0,1#, g(m)5 limn g(n)(m) is injective.
Proof: Given m1 ,m2P@0,1#, we consider sequences$g(n)(m i)5lk(n,m i )

(n) %n , i 51,2. If g(m1)

5g(m2), then

lim
n→`

lk(n,m1)
(n) 5 lim

n→`

lk(n,m2)
(n) 5l.
                                                                                                                



an
not

harp

harp

insic

that

harp

ce

ure

r

d, the
ch,
on

s.

5472 J. Math. Phys., Vol. 44, No. 12, December 2003 R. Beneduci and G. Nisticò

                    
The terms of sequences$lk(n,m i )
(n) %n are the right bounds of intervalsI k(n,m i )

(n) , which satisfy

I k(,n11,m i )
(n11) ,I k(n,m i )

(n) ,;n. Therefore l5 limn→` lk(n,m i )
(n) is such that eitherlPI k(n,m i )

(n) or l

5lk(n,m i )21
(n) ,;n. In the second case the sequence is constant and equal tol. But, by Lemma 2,

sequence$lk(n,m)
(n) %n can never be constant. Thus we have to conclude thatlPI k(n,m i )

(n) , for both

i 51,2 and;n. Then,I k(n,m1)
(n) 5I k(n,m2)

(n) for all n; hence

lk(n,m1)
(n) 5lk(n,m2)

(n) , ;n.

According to Lemma 1,

m15 lim
n→`

s3
(n)~lk(n,m1)

(n) !5 lim
n→`

s3
(n)~lk(n,m2)

(n) !5m2 .

Thus, the proposition is proved.

V. INTERPRETATION OF RESULTS

The results proven in this work show that it is possible to assign a sharp observableE to each
commutative unsharp observableF, in such a way thatF can be consistently interpreted as
unsharp realization ofE, according to~J! in Sec. IV. The consistency of such an assignment is
a trivial problem, because correspondence~1! allows us to obtain the sameF starting from several,
different sharp observablesEB, EC etc. Every one of these sharp observables could be the s
observable actually turned intoF because of a stochastic diffusion of its outcomes.

But every one of them could not. Indeed, the stochastic diffusion leading from a s
observableED to a commutative unsharp observableF by means of correspondence~1! destroys
a certain amount of information, which is no longer recoverable. The loss of information intr
in this process impedes the determination of the starting sharp observableED from the outcoming
unsharp observableF. However, our results of Sec. IV B say that whatever sharp observableEB is
actually turned intoF, its outcomesm must be related to the outcomesl of our reconstructionE
by a mappingg so thatl5g(m).

Therefore, our reconstructionE is the unique sharp observable,moduloa bijection, which is
related in such a way to all sharp observables which have the possibility of being turned intoF via
~1!.

From the point of view of information theory, our result entails that the reconstructionE is the
unique sharp version of unsharp observableF which contains the same information carried byF.
All other sharp versions ofF have an information content which is redundant with respect to
of F.

In the literature we find10,11 successful attempts to relate an unsharp observable with a s
one, which are based on the following theorem of Neumark.8,10,11

Neumark’s Theorem: Let F:B(R)→F(H) be a POV measure which acts on Hilbert spa

H. Then there exists a Hilbert spaceH̃ in whichH is embedded as a subspace, and a PV meas

Ẽ:B(R)→E(H̃), which acts onH̃, such that F(D)5PẼ(D)P, where P is the projection operato

of H̃ which projects ontoH.
Our approach is basically different from the ones based on Neumark’s theorem. Indee

latter introducesdilations H̃,Ẽ, which have not a direct physical interpretation. In our approa
on the contrary, to every commutative unsharp observableF we associate the sharp reconstructi
E which pertains to thesame systemand to the same Hilbert spaceH of the original unsharp
observable; therefore, the problem of intepreting dilations does not arise.

It is also known that for every commutative unsharp observableF there is a unique PV
measureP:B(D)→E)(H), whereD is the space of probabilty measures onR, such thatF(D)
5*Dm(D)P(dm). This mathematical characterization10–15 found several interesting application
For instance, Twareque Ali16 used it for extending Mackey’s imprimitivity theorem17 to covariance
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systems based on commutative unsharp observables rather than on sharp ones. The cha
tion we deal with in the present work has a more physical nature, though we cannot exclu
existence of a link between these two characterization.
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Lüders theorem for coherent-state POVMs
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Lüders’ theorem states that two observables commute if measuring one of them
does not disturb the measurement outcomes of the other. We study measurements
which are described by continuous positive operator-valued measurements~or
POVMs! associated with coherent states on Lie groups. In general, operators turn
out to be invariant under theLüdersmap if theirP- andQ-symbols coincide. For
a spin corresponding to SU~2!, the identity is shown to be the only operator with
this property. For a particle, a countable family of linearly independent operators is
identified which are invariant under theLüders map generated by the coherent
states of the Heisenberg–Weyl group,H3 . TheLüdersmap is also shown to imple-
ment the anti-normal ordering of creation and annihilation operators of a
particle. © 2003 American Institute of Physics.@DOI: 10.1063/1.1623001#

I. INTRODUCTION

In this article we determine operatorsB which are invariant under a generalizedLüdersmap

B°L~B!5E
X
dm~V! E~V!BE~V! , ~1!

where eachE(V) is a projection operator labeled by a pointV of a manifoldX. These operators
constitute a continuous positive operator-valued measure, or POVM, with a resolution of u

E
X
dm~V! E~V!5I . ~2!

Any operatorB, bounded or not, will be calledLüders if it is invariant underLüders’ map,

L~B!5B . ~3!

The operatorB acts on a complex separable Hilbert spaceH, and the operatorE(V) is a member
of a ~over-! complete family of projectors on coherent statesuV& associated with an irreducible
unitary representation of a Lie groupG in the spaceH.

This setting generalizes the traditional approach to minimally disturbing~or ideal! Lüders
measurements. Given a self-adjoint operator with spectral decompositionA5( i

NaiEi , N<`, the
projectorsEi are complete and orthogonal,

(
i 51

N

Ei5I , EiEj5Eid i j , i , j 51,...,N<` . ~4!

a!Electronic mail: s.weigert@hull.ac.uk
b!Electronic mail: p.busch@hull.ac.uk
54740022-2488/2003/44(12)/5474/13/$20.00 © 2003 American Institute of Physics
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If a nonselective, ideal measurement ofA is performed on a quantum system with density opera
r, its state undergoes aLüders transformation:

r°L~r!5(
i 51

N

EirEi , ~5!

which extends to a linear, completely positive map. If, for some operatorB, one has

Tr @rB#5Tr @L~r!B# , for all r , ~6!

then theLüders measurement ofA does not disturb the measurement ofB. In other words, the
expectation value ofB with respect toany density operatorr is not affected by measuringA.
Introduce thedual LüdersmapLD, acting on operators defined onH, by

Tr @L~r!B#5Tr @rLD~B!# . ~7!

Since Eq.~6! is supposed to hold for anyr, one must have

LD~B!5B , ~8!

which, after dropping the superscript, is the discrete counterpart of Eq.~3!. Now we can state
Lüders’ theorem:

L~B!5B ⇔ @B,Ei #50 , for all i 51,2, . . . , ~9!

i.e., it is necessary and sufficient forA5( i
NaiEi to commute with a~bounded! operatorB if the

measurement ofA should not disturb any measurement ofB.
Originally, this theorem has been shown to hold for orthogonal projections;1 after generaliza-

tions to some discrete POVMs had been obtained,2 the theorem was expected to hold under ve
general conditions. However, the existence of a nonintuitive counterexample has been
nonconstructively in Ref. 3. It is our purpose to extend the validity ofLüders’ theorem tocon-
tinuousPOVMs which are associated with coherent states on Lie groups.

A. Outline and summary

In the following, we will consider POVMs which consist of continuous families of o
dimensional projections onto coherent states, or CS-POVMs, for short. The CS-POVMs for
and for a particle provide well-known examples, being associated with the group SU~2! and the
Heisenberg–Weyl groupH3 , respectively. However, coherent states can be defined for genera
groupsG while retaining many of their properties. We will begin to discuss theLüders map in
general terms and specialize to particular groups only later.

When consideringLüders’ map generated by coherent states of an arbitrary~simple and
simple connected! Lie groupG, a first general observation is that

• the P- and theQ-symbol of aLüdersoperator coincide for the CS-POVM associated with
Lie groupG.

Subsequently, we will derive a simple form of this constraint by expanding the symbol o
operator in terms of harmonic functions associated with the groupG. The resulting condition on
the expansion coefficients will be shown to imply that

• for the CS-POVM of aspin only multiples of the identity operator areLüders;

• for the CS-POVM of aparticle a countable family of linearly independent, unbound
Lüdersoperators exists, none of which commutes with the elements of the POVM.
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Thus, for both the groups SU~2! and H3 , multiples of the identity are found to be the on
bounded Lu¨dersoperator, and they commute with the elements of the corresponding CS-PO
consequently,Lüders’ theorem also applies to these CS-POVMs.

Finally, it will be shown that theLüders map implements antinormal ordering for operato
which can be written as power series of particle annihilation and creation operators.

II. LÜDERS THEOREM FOR POVMS OF COHERENT STATES

A. Coherent states on Lie groups and harmonic functions

Given any finite-dimensional~simple and simply connected! Lie groupG, there is a canonica
way to introduce coherent statesuV& labeled by the pointsV of a well-defined manifoldX. To do
so, consider a unitary irreducible representationT(g) on a Hilbert spaceH of the elementsg
PG. Following closely the presentation given in Ref. 4, we choose a reference~or fiducial! state
uc0& and define the set of coherent states by

ucg&5T~g!uc0& , gPG . ~10!

Up to a phase, the reference state is left invariant by the elementsh of the isotropy subgroup
H,G,

T~h!uc0&5eif(h)uc0& , hPH,G . ~11!

Therefore, each group element can be written as as product

g5Vh , VPX5G/H , hPH , ~12!

whereX is the coset space obtained from dividingG by its subgroupH. As the phase of a state ha
no physical relevance, the set of coherent states is in a one-to-one correspondence with th
V(g) of the manifoldX. This suggests to denote coherent states byuV&[ucV&. A fundamental
property of the coherent statesuV& is their completeness in Hilbert spaceH,

E
X

dm~V! uV&^Vu5I , ~13!

where integration is over the coset spaceX with ~approximately normalized! invariant measure
dm(V), andI is the identity inH.

Coherent statesuV& can be used to define symbolic representations of operators, i.e.,c-number
valued functions on the manifoldX which can be understood as the phase space of a clas
system associated with the Lie groupG.5 TheQ-symbol of an operatorB acting in Hilbert space
H is given by its expectation value in coherent states,

QB~V!5^VuBuV& , VPX ; ~14!

due to analyticity properties ofQB(V), these ‘‘diagonal’’ matrix elements are sufficient
uniquely determine the operatorB. The P-symbol ofB ~Refs. 6 and 7! arises if one expressesB
as a linear combination of projection operatorsuV&^Vu:

B5E
X
dm~V! PB~V! uV&^Vu . ~15!

The existence of the symbolsQB(V) andPB(V) depends in a subtle way on the properties of
operatorB ~Ref. 5! but they are unique whenever they exist. Furthermore, one can think o
symbolsQA(V) and PA(V) as being dual to each other~cf. Ref. 5!, and, at least for particle
coherent-states, they are related to normal and anti-normal ordering of creation and annih
operators.5,8
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It is useful to introduce the harmonic functionsYn(V) associated with the manifoldX and,
hence, with the groupG. Consider the Hilbert spaceL2(X,m) of square integrable functionsu(V)
on the manifoldX, with integration measuredm(V). The eigenfunctionsYn(V) of the Laplace–
Beltrami operator onX ~Ref. 9! constitute a complete orthonormal set of functions inL2(X,m)
since they satisfy

(
n

Yn* ~V!Yn~V8!5d~V2V8! , ~16!

the right-hand side being a delta function with respect to the measurem~V!, as well as

E
X
dm~V! Yn* ~V!Yn8~V!5dnn8 . ~17!

Depending on the manifoldX being compact or not, the right-hand side of~17! must be under-
stood as a Kronecker-delta or a Dirac-delta function~or suitable combinations thereof!. There is a
simple expression for the~modulus of! the overlap of two coherent states in terms of harmo
functions:

u^V8uV&u25(
n

tnYn~V8!Yn* ~V! , tnPR , ~18!

where the numbers or functionstn depend on the actual group.

B. Lüders map for CS-POVMs

It is straightforward to generalize theLüdersmap~1! to POVMs which can be written in term
of integrals of an operator valued density with respect to a positive measurem as follows. Let
(V0 ,S,m) be a measure space. Assume that, for the Hilbert spaceH5L2(V0 ,m), there is a
family of positive linear operatorsEvPL(H), vPV0 , which provide a resolution of unity,

E
V0

dm~v! Ev5I . ~19!

Then the operators

E~s!5E
s
dm~v! Ev , sPS , ~20!

define a POVM which is of the required form.
It is natural to associate with the POVM in~20! a Lüders map L(B) of an operatorB by

defining

L~B!5E
V

dm~v! Ev
1/2B Ev

1/2 , ~21!

which is a unital, completely positive linear map onL(H). Due to the completeness relation~13!,
the self-adjoint coherent-state projectors

EV[uV&^Vu5EV
1/2 , VPX , ~22!

are seen to define a POVM in the sense just described.
Any operatorB defined onL2(X,m) is Lüderswith respect to the CS-POVMEV ,VPX, if it

satisfies the relationB5L(B) with Ev in ~21! replaced byEV ,
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B5E
X

dm~V! uV&^VuBuV&^Vu5E
X

dm~V! QB~V!uV&^Vu . ~23!

Upon comparing this equation with~15!, we observe that theLüders property has, for any CS
POVM, the following general interpretation: an operatorB is Lüders if and only if its P- and
Q-symbols coincide,

PB~V!5QB~V! . ~24!

To the best of our knowledge, this set of operators—which we will callwell-ordered—has not
been introduced before.

The constraint~23! takes a particularly simple form upon expanding theQ-symbol of B in
harmonic functions,

QB~V!5(
n

BnYn~V! , ~25!

which is possible according to~16!. The expansion coefficients are given by

Bn5E
X

dm~V! QB~V!Yn* ~V! . ~26!

Take the expectation value of~23! in the coherent stateuV8& and use the relation~18! for the
overlapu^V8uV&u2. This leads to

QB~V8!5(
n

tnF E
X

dm~V!QB~V!Yn* ~V!GYn~V8!5(
n

tnBnYn~V8! , ~27!

where ~26! has been used. Uniqueness of the expansion~25! implies that the coefficients of a
Lüdersoperator must satisfy the condition

Bn5tnBn , for all n . ~28!

As mentioned above, the actual form of the quantitiestn depend on the groupG under consider-
ation. To proceed, we therefore need to specify the system of coherent states we work with,
the groupG. Explicit conclusions aboutLüdersoperators for CS-POVMs will be derived now fo
the groups SU~2! andH3 .

III. LÜDERS OPERATORS FOR THE CS-POVM OF A SPIN

Consider a Hilbert spaceHs of dimension (2s11), carrying an irreducible representation

the groupG5SU(2). Each spaceHs is associated with a spin of lengthsP$ 1
2,1,32,...%. To intro-

duce spin-coherent states, it is convenient to select states of highest~lowest! weight u6s& as
reference states~cf. Refs. 5 and 10!. These states are invariant under a change of phase, henc
isotropy group is given byH5U(1). Therefore, the coset space is the surface of a spherX
5SU(2)/U(1)5S 2, which corresponds to the phase space of a classical spin.

The resolution of unityI in Hs using spin-coherent statesun& reads

I 5E
S 2

dm~n! un&^nu , dm~n!5
2s11

4p
sinqdq dw , ~29!

where each unit vectornPR3 denotes a point with spherical coordinates~q,w!, located on the unit
sphereS 2. The continuous family of operators
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En5un&^nu , with I 5E
S 2

dm~n! En , ~30!

defines the CS-POVM of SU~2!. Being a projector, the positive square root of each operatorEn is
equal to itself:En

1/25un&^nu. Therefore, a self-adjoint operatorBPL(Hs) is Lüderswith respect to
the POVM ~30! if

B5E
S 2

dm~n!un&^nuBun&^nu[E
S 2

dm~n!QB~n!un&^nu . ~31!

Following the strategy outlined earlier, we will show now that any operatorB satisfying~31! must
be a real multiple of unity:B5lI , so thatB commutes with all elements of the CS-POVM for
spin,

@B,En#50 , nPS 2 . ~32!

Consider the expectation value of Eq.~31! in the coherent stateun8&,

QB~n8!5E
S 2

dm~n! QB~n!u^nun8&u2 . ~33!

The functionQB(n), theQ-symbol of the operatorB, is smooth on the sphereS 2, and it can be
written as a linear combination of (2s11)2 spherical harmonicsYlm(n),

QB~n!5A 4p

2s11 (
l 50

2s

(
m52 l

l

BlmYlm~n! , ~34!

with expansion coefficients

Blm5A 4p

2s11 ES 2
dm~n! QB~n! Ylm* ~n! . ~35!

Note that these expressions are connected to the general formulas through iden
Yn(V)↔A4p/(2s11)Ylm(n). Rewrite the scalar product~33! by means of the addition theorem
for spherical harmonics,

u^nun8&u25S 11n"n8

2 D 2s

5(
l 50

2s
2l 11

2s11 K s l

s 0
Us
sL

2

Pl~n"n8!

5
4p

2s11 (
l 50

2s

(
m52 l

l K s l

s 0
Us
sL

2

Ylm* ~n!Ylm~n8! , ~36!

where the functionsPl(x) are the Legendre polynomials. Upon inserting~34! and~36!, integration
of the right-hand side of Eq.~33! gives ~after replacingn8 by n!

QB~n!5A 4p

2s11 (
l 50

2s

(
m52 l

l K s l

s 0
Us
sL

2

BlmYlm~n! . ~37!

This expansion and Eq.~34! can only hold simultaneously if the coefficients of the harmon
satisfy

Blm5K s l

s 0
Us
sL

2

Blm , ~38!
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which is~28! for the group SU~2!. Them-independent Clebsch–Gordan coefficients correspon
the numberstn introduced in~18!, and they take values

K s l

s 0
Us
sL

2

5
~2s!! ~2s11!!

~2s2 l !! ~2s111 l !!
. ~39!

Since

K s 0

s 0
Us
sL 51 , 0,K s l

s 0
Us
sL ,1 , l 51,2,...,2s, ~40!

the coefficientsBlm with lÞ0 in ~38! must vanish; thus, the expansion~34! of a Lüdersoperator
satisfying ~31! contains only one nonzero term,B00, and B is proportional toY00(n), i.e., the
identity. Hence, it commutes with any operator, including the setEn , so that Eq.~32! follows. At
the same time we have shown that the identity is the only operator inHs such that itsQ- and
P-symbols coincide.

IV. LÜDERS OPERATORS FOR THE CS-POVM OF A PARTICLE

The kinematics of a quantum particle on the real lineR is described by the creation an
annihilation operatorsa and its adjointa† which satisfy@a,a†#5I . The operatorsa, a†, and the
identity I generate the Heisenberg–Weyl algebrah3 ; finite transformations, that is, elements of th
group H3 , are given by the phase-space displacement or shift operators

D~a!5exp@aa†2a* a# , aPC . ~41!

In fact, they provide an irreducible projective representation of the groupH3 in L2(R),

D~a!D~a8!5expF i

2
~aa8* 2a* a8!I GD~a1a8! . ~42!

The ~overcomplete! family of coherent statesua& in the Hilbert spaceL2(R) is obtained by
displacing the fiducial stateu0&, say, withau0&50, by arbitrary amountsaPC:

ua&5D~a!u0& . ~43!

The isotropy subgroup ofH3 is again isomorphic to U(1);exp@igI#,gP@0,2p), so that the mani-
fold labeling coherent states is given by the complex planeX5H3 /U(1)5C, corresponding
indeed to the phase space of a classical particle on the real line.

The completeness relation for the particle-coherent states reads

I 5E
C
dm~a! ua&^au , dm~a!5

1

p
d2a , ~44!

and it can be understood as defining a POVM for the continuous family of projection opera

Ea5ua&^au5Ea
1/2 , aPC . ~45!

The operatorB on L2(R) is Lüderswith respect to the POVMEa ,aPC, if it is invariant under
the LüdersmapB°L(B), i.e.,

B5E
C

dm~a! ua&^auBua&^au5E
C

dm~a! QB~a!ua&^au , ~46!
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where^auBua&5QB(a) is theQ-symbol of the operatorB. As shown earlier, this relation force
the Q-symbol of aLüdersoperator to coincide with itsP-symbol,

B5
1

p E
C

dm~a!P~a!ua&^au , ~47!

if it exists.
We will now search forbounded Lu¨dersoperatorsB which commute the membersEa of the

CS-POVM~44! for a particle. We begin to look at simple examples ofLüdersoperators, followed
by a systematic construction of all well-orderedLüders operators. In addition to the identity,
countable family ofunbounded, linearly independentLüdersoperators will emerge, none of whic
commutes with the elements of the CS-POVM. Finally, an unexpected relation of theLüdersmap
to operator orderings is established for particle coherent states.

A. Examples of unbounded Lüders operators

It is straightforward to apply the mapL to unbounded operators such as positionQ5(a
1a†)/2 and momentumP5(a2a†)/2i . Using the equationaua&5aua& and its adjoint implies
that

L~Q!5E
C
dm~a! ua&^auQua&^au 5E

C
dm~a!

1

2
~a1a* !ua&^au

5
1

2 EC
dm~a! aua&^au1

1

2 EC
dm~a! ua&^aua†5Q , ~48!

and similarly

L~P!5P . ~49!

While being invariant underL, the operatorsQ andP are neither positive nor bounded, and th
do not commute with the projectorsEa since the expectation value of the commutator in
coherent stateub& is, in general, different from zero:

^bu@Q,Ea#ub&5 1
2 ~~a2a* !2~b2b* !!u^aub&u2 . ~50!

Using the relationD†(a)aD(a)5a2a, its adjoint, and the commutation relations ofa anda†,
one shows thatLüders’ map acts on the operatorsQ2 andP2 according to

L~Q2!5Q212^0uQ2u0&I 5Q21 1
2 I ,

~51!

L~P2!5P212^0uP2u0&I 5P21 1
2 I .

Consequently, appropriate quadratic combinations of position and momentum turn out to bLüd-
ers,

LG~Q22P2!5Q22P2 . ~52!

However, this indefinite, unbounded operator does not commute with all projectionsEa as follows
from ^0u@Q22P2,Ea# u0&5(a22a* 2) u^0ua&u2, for example. In the next section a family o
similar Lüdersoperators will be constructed.
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B. Construction of Lüders operators

Let us turn now to the problem of finding all operators which areLüderswith respect to the
CS-POVMEa of a particle, i.e, all well-ordered operators. The argument will resemble the
given in the case of a spin.

Expand theQ-symbol of an operatorB as

QB~a!5E
C

dm~j! Bj exp@aj* 2a* j# , ~53!

where the coefficientsBj are given by

Bj5E
C

dm~a! QB~a!exp@2~aj* 2a* j!# . ~54!

Here, the functions exp@aj*2a*j# are the complete orthonormal set of harmonic functions in
complex plane, corresponding toYn(V). Since theQ-symbol of a Hermitian operator is rea
QB(a)5^auBua&* 5QB* (a), the coefficients must satisfy the relation

Bj* 5E
C

dm~a! QB* ~a!exp@2~a* j2aj* !#

5E
C

dm~a! QB~a!exp@2~a~2j!* 2a* ~2j!!#5B2j . ~55!

We will turn ~46! into a condition for the expansion coefficientsBj of a Lüdersoperator which can
be solved explicitly. Take the expectation value of the operatorB in ~46! in the coherent stateub&,
and use the identity

u^aub&u25exp@2ua2bu2#5E
C

dm~j! e2jj* exp@bj* 2b* j# exp@2aj* 1a* j# , ~56!

leading to

QB~b!5E
C

dm~j! e2jj* F E
C

dm~a! QB~a!exp@2~aj* 2a* j!#Gexp@bj* 2b* j# ,

5E
C

dm~j! e2jj* Bj exp@bj* 2b* j# , ~57!

where~54! has been used. Due to the uniqueness of the expansion~53!, the expansion coefficient
of any Lüdersoperators must satisfy

Bj5e2jj* Bj , ~58!

which is the equivalent of~38! for continuous variables. Consequently, the coefficientsBj are
necessarily zero for all values ofj exceptj50, and there are no solutions in terms of ordina
functions. If allowing for generalized functions,Bj is necessarily a distribution of finite order,11

that is, a linear combination of ad-distribution and finite derivatives of it,

Bj5 (
n1m50

N

bnm]j
n]j*

m d~j! , bnmPC , n,m50,1,2,... , N50,1,2,... . ~59!

The functionBj must satisfy~55! leading to

bnm5~2 !m1nbmn* , n,m50,1,2,... , ~60!
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and thed~j!-function is real,

d~j!5E
C

dm~a!exp@aj* 2a* j#5d~2j!5d* ~j! . ~61!

Only some of the distributions~59! will satisfy ~58! since one must have

QB~a!5E
C

dm~j!@DNd~j!#e2jj* eaj* 2a* j5E
C

dm~j!@DNd~j!#eaj* 2a* j , ~62!

where

DN5 (
n1m50

N

bnm]j
n]j*

m . ~63!

Partial integrations in~62! lead to the requirement

@DN
† e2jj* eaj* 2a* j#j5j* 505@DN

† eaj* 2a* j#j5j* 50 , ~64!

where the adjointDN
† of DN is obtained from replacingbnm by (2)n1mbnm in ~63!. It is shown in

the Appendix that this condition is satisfied if and only if

bnm50 , 1<m,n<N , ~65!

i.e., only termsbnm with at least one index~that is,m or n or both! equal to zero will contribute
to the symbol of a well-ordered operator. Therefore, only coefficients of the form

Bj5 (
n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j! ~66!

occur which, upon partial integration in~53!, give rise toQ-symbols ofLüdersoperators,

QB~a!5 (
n50

N

~bn0a* n1bn0* an! . ~67!

The operators corresponding to these symbols are given by

B5b0I 1 (
n51

N

~bn
qBn

q1bn
pBn

p! , ~68!

i.e., a linear combination of the identity and 2N Hermitian operators

Bn
q5

1

2
~an1a† n! and Bn

p5
1

2i
~an2a† n! , n51,2,...,N , ~69!

which satisfy~46!, and (2N11) real coefficients

b052b00 , bn
q5bn01bn0* , bn

p5
1

i
~bn02bn0* ! , n51,2,...,N . ~70!

If N52, for example, it follows that not only the operatorsQ,P, andQ22P2 areLüdersbut also
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B2
p5

1

2i
~a22a† 2!}QP1PQ . ~71!

Every bounded Lu¨dersoperator is necessarily a multiple of the identity.

C. Lüders map and operator ordering

It is easy to understand why the operatorsBn ,n51,2,...,N, in ~70! areLüders. Consider any
Hermitian operatorB given as a finite polynomial ina anda†. Using their commutation relation
one can bring the annihilation operators either to the right or to the left,

B~a,a†!5(
m,n

bnm
N a† man5(

m,n
bnm

A ama† n , ~72!

corresponding to normal and antinormal ordering ofB, respectively.12 It is straightforward to
calculate theLüders transform ofB if it is written in normal order:

L~B~a,a†!!5(
m,n

bnm
N L~a† man!5(

m,n
bnm

N ana† m , ~73!

since

L~a† man!5E
C

dm~a! ua&^aua† manua&^au5E
C

dm~a! anua&^aua* m

5anS E
C

dm(a) ua&^aU D a† m5ana† m . ~74!

Thus, the effect ofL is to push each creation operatora† to the right as if it would commute with
the annihilation operatora. In other words, the mapL provides an explicit form of the operatorA
which generates antinormal order of an operator.8 This operator and its twinN, which brings a
given operator into normal order, are useful tools to evaluate expectation values or B
Campbell–Hausdorff relations, for example.8

To conclude: if an operatorB is to be invariant underL, the normally and antinormally
ordered forms of an operatorB must coincide,

(
m,n

bnm
N ana† m5(

m,n
bnm

A ama† n , ~75!

that is,bnm
N 5bnm

A . This is obviously true for the linear combinations of powers ofa anda† given
in ~70!, defining the family of well-ordered operators.

V. DISCUSSION

We have shown that there is only oneLüdersoperator, the identity~and its multiples!, for the
CS-POVM of SU~2! while a countable family of linearly independent, unbounded, and w
ordered operators exists in the case ofH3 . Due to the linearity of mapL, all their linear combi-
nations are well-ordered as well. It is plausible that our study exhausts all possibilities which
arise for CS-POVMs of general~simple and simply connected! Lie groups: we expect only the
identity as aLüdersoperator forcompactLie groups such as SU~N!, and a countable family for a
CS-POVM associated with noncompact groups such as SU(N2n,n),1<n,N. If we restrict our
attention to bounded operators, we conjectureLüders’ theorem to hold with respect to the CS
POVM of any Lie groupG.

APPENDIX: CONSTRUCTION OF WELL-ORDERED OPERATORS

We will show here that any operator compatible with~46! must have aQ-symbol with
expansion coefficients of the following form:
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Bj5 (
n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j! , N,`; ~A1!

this means, in particular, that most of the coefficientsbnm are equal to zero:

bnm50 , for 1<m,n<N . ~A2!

In a first step, evaluate the right-hand-side of~64!:

F (
n1m50

N

~2 !n1mbnm]j
n]j*

m eaj* 2a* jG
j50

5 (
n1m50

N

~2 !mbnmama* n . ~A3!

To evaluate the left-hand side, use the relation

]j~e2jj* f ~j!!5e2jj* ~2j* 1]j! f ~j! ~A4!

and its complex conjugate for any smooth functionf . This leads to

]j
n]j*

m e2jj* 5e2jj* ~2j* 1]j!
n~2j1]j* !m5e2jj* (

n50

n

(
m50

m S n
n D S m

m D ~2j* !n2n]j
n~2j!m]j*

m2m .

~A5!

According to Eq.~64!, these operators must be applied to the functioneaj* 2a* j. Each derivative
]j* produces a factora, while the action of the derivatives]j is more complicated:

]j
n~~2j!meaj* 2a* j!5(

s50

n S n
sD ]~2j!m

]js

]n2seaj* 2a* j

]jn2s

5(
s50

n S n
sD m! ~2 !s

~m2s!!
~2j!m2s~2a* !n2seaj* 2a* j ; ~A6!

due to 1/G(2k)50,k50,1,2,..., there are no contributions to the sum ifs exceedsm. Now that
the derivatives have been evaluated, one can setj5j* 50 in the resulting expression: the term
with nonzero powers ofj or j* vanish, and the sums simplify according to

~2j!m2s→dms and ~2j* !n2n→dnn . ~A7!

The left-hand-side of~64! becomes

(
n1m50

N

~2 !mbnm(
s50

s0

s! S m
s D S n

sDam2sa* n2s , ~A8!

wheres05min(m,n). Note that the term withs50 in this expression is identical to the right-han
side of ~A3! which implies that the equality~62! is satisfied if

(
n1m50

N

~2 !mbnm(
s51

s0

s! S m
s D S n

sDam2sa* n2s50 ~A9!

holds for all complex numbersa. This equation does not restrict the coefficientsbn0 ,0<n<N,
and b0m ,0<m<N: if either m or n are equal to zero, the sum overs is empty sinces050.
However, all other coefficients must vanish as can be seen in the following way. Writina
5r exp@iw#, Eq. ~A9! turns into a sum of terms multiplying phase factors exp@i(m2n)w#
[exp@ikw#, k50,1,2,...,N21. Each of these terms must vanish individually due to the lin
independence of the exponentials. Their coefficients, in turn, are power series inr which can be
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shown to vanish identically only ifb1N50 for exp@i(N21)w#, b2N50, which implies that
b1 N2250 for exp@i(N22)w#, etc. Taking into account thatbnm5(2)m1nbnm* , the coefficientsBj

of Lüdersoperators finally read

Bj5S (
n50

N

bn0]j
n1 (

m50

N

b0m]j*
m D d~j!5 (

n50

N

~bn0]j
n1~2 !nbn0* ]j*

n
!d~j!. ~A10!
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Casimir force between surfaces close to each other
H. Ahmedova) and I. H. Durub)

Feza Gursey Institute, C¸ engelko¨y, Istanbul 81220, Turkey
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Casimir interactions~due to the massless scalar field fluctuations! of two surfaces
which are close to each other are studied. After a brief general presentation of the
technique, explicit calculations are performed for specific geometries. ©2003
American Institute of Physics.@DOI: 10.1063/1.1624471#

I. INTRODUCTION

Experiments to observe and measure Casimir forces have so far been performed w
geometrical setups involving two~actually disconnected! surfaces.1 The original parallel plate
Casimir interaction is exact for infinite plane surfaces,2 which in practice means that valid fo
planes very close to each other. Effect for the parallel plane geometry were first verified in 13

Recently the experiment for this geometry was improved to a higher precision of 15%.4 The
Casimir experiments other than the above mentioned ones have been performed for a sphe
to a plane configuration:5 which do not give rise the precise alignment problem of the para
planes. Note that the calculation for the sphere-plane geometry gets closed to be exact if the
of the sphere is small compared to the distance to the plane.6 Sphere–sphere geometry has a
been studied subject to the similar approximation as the sphere–plane problem.7

Single cavity experiments so far have not been realized,8 which we think would be very
interesting: For example, inserting the data from quantum dots~i.e., radius.1027 cm) into the
theoretical expression for the vacuum energy of a spherical cavity capable of confining e
magnetic field,1 one gets~in \5c51 units! 0.53106 cm21510 eV for the Casimir energy which
is of appreciable magnitude.9 This is comparable to the total energy between the parallel plate
the latest experiment,4 i.e., E5 (p2/720d3)(area of plates). @p2/720(531023)3# •(2
32) cm21.106 cm21. With the advances in nanotechnology, quantum dots can be constr
with variety of materials. If one can measure Casimir forces in cavities of different materials
we may learn more about the effect, i.e., whether it is purely geometrical, or it is dependent
microstructure of the confining walls.

Our purpose in the present work is to study some nontrivial two-boundary geometries
give simple, explicit formulas for the Casimir energies. The systems we deal with are ma
surfaces close to each other. We employ an approximation based essentially on assign
average constant value to the coordinates normal to the surfaces. In principle it is possible t
exact Casimir energy expressions for two boundary geometries with finite separations. Th
indeed such formulations for coaxial cylinders of infinite height;10,11 and for cocentric
spheres.8,11,12 These formulations however involve integrations over the ratios of the produ
Bessel functions; thus the explicit energy expressions seem available only in the limiting ca
small ~or perhaps large! separations. This is the case, for example, for the coaxial cylinders w
the explicit result is given for the close boundaries;10 and, for the cocentric spheres in ‘‘narro
slit’’ limit. 8

We perform our calculations for the vacuum fluctuations of massless scalar fields be
surfaces close to each other. For massive fields, for any realistic experimental setups the C
energies are extremely small. The expressions always involve a factore2mn, wherem is the mass

a!Electronic mail: hagi@gursey.gov.tr
b!Electronic mail: duru@gursey.gov.tr
54870022-2488/2003/44(12)/5487/17/$20.00 © 2003 American Institute of Physics
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and n is the separation; which for electron and for nanometer distances ise22,53101031027

.e22500; thus it is practically zero.
In Sec. II we give brief outline of our approach. We then proceed with specific exam

Coaxial infinite cylinders~for which our result agrees quite well with the recent calculations10!,
cocentric tori, coaxial cylindrical boxes of finite height, cocentric spheres~the result we get agree
with the one given in Ref. 8! and coaxial conical surfaces. We hope that, considering the re
advances in the stable nanotubes13 some of these geometries may be realized to offer experime
tests.

II. CASIMIR ENERGY FOR THE REGION BETWEEN TWO BOUNDARIES WHICH ARE
CLOSE TO EACH OTHER

We first choose the suitable spatial curvilinear coordinatesh j , j 51,2,3 for the geometry we
deal with. The corresponding Minkowski metric and the Klein–Gordon operator are then

ds25dt22gi j dh i dh j ~1!

and @g[det(gij)#

DKG5
]2

]t2 2
1

Ag

]

]h i gi jAg
]

]h j . ~2!

The Green function is~overbar stands for complex conjugation!

G5 (
l1 ,l2 ,l3

eiv(l)(t2t8)

2v~l!
Fv(l)~h!Fv(l)~h8!, ~3!

whereFv(l)(h) andv2(l) are the eigenfunctions and eigenvalues of the equation for the m
less scalar field

2
1

Ag

]

]h i gi jAg
]

]h j Fv(l)~h!5v2~l!Fv(l)~h!. ~4!

~For massive scalar field one only changesv2 by v21m2; with m being the mass.! We assume
that the above equation is separable in the spatial coordinatesh j . Here h and l stand for the
collection of the coordinatesh j and the corresponding quantum numbersl j ~which are specified
by the boundary conditions!, respectively. The functionsFv(l)(h) are normalized with respect t
the norm

iFi25E
A
d3hAguF~h!u2, ~5!

whereA is the domain of the coordinatesh j . The vacuum energy density can then be obtained
calculating the coincidence limit derivatives as

T5 RegF lim
t,h j→t8,h8 j

S ]2

]t]t8
1gi j

]2

]h i]h8 j DG~h,h8!G . ~6!

‘‘Reg’’ stands for regularization. In the specific examples it means that we have to subtra
terms~in the Plana sum formulas to be employed over the modes! corresponding to the vacuum
energy of the free space, the boundary energy, etc. To calculate the Casimir energy one ne
eigenvalues of the problem. The eigenvaluesv2(l) depend on three quantum numbersl j corre-
sponding to the degrees of freedom in directionsh j in which we assume that Eq.~4! can be
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separated. We further assume that after the separation of variables the eigenvalue equa
coordinatesh1,h2 can be trivially solved, and the corresponding quantum numbersl1 ,l2 are
easily obtained. This assumption does not introduce a strong restriction. In fact many probl
the literature are of that type. For example, when one studies the Casimir energy inside a sp
cavity, only the nontrivial problem is the radial equation in which one has to deal with the roo
the Bessel functions to impose the boundary condition.1

In this work we employ an approximation method to calculate the nontrivial spectral pa
eterl3 , which is valid if the problem involves two boundaries in directionh3, which are close to
each other.

After the separation, the problem in hand inh3 can be converted into the Schro¨dinger form

F2
d2

d~h3!2 1Wl1l2
~h3!GFl3

~h3!5E~l!Fl3
~h3!. ~7!

The form of the potentialWl1l2
(h3) and the relation betweenv2(l) and E(l) depend on the

choice of coordinate systems. The explicit examples are given in the following sections
boundary conditions we wish to impose for the type of geometries under investigation are

Fl3
~h0

3!50, Fl3
~h1

3!50, ~8!

whereh0
3,h1

3. In practice these boundary conditions require dealing with the roots of sp
functions which are quite involved. However, if the boundaries are close to each other, inst
~7! we can employ the simpler Schro¨dinger equation,

F2
d2

d~h3!2 1Vl1l2

0 ~h3!GFl3

0 ~h3!5E0~l!Fl3

0 ~h3!, ~9!

where the constant potential in the region is given by

Vl1l2

0 ~h3!5H `, h35h0
3 , h35h1

3,

Wl1l2
~Ah0

3h1
3!, h3P~h0

3 ,h1
3!.

~10!

The eigenvalue equation~9! has the following solutions:

E0~l!5S pl3

D D 2

1Wl1l2
~Ah0

3h1
3! ~11!

and

Fl3

0 ~h3!5A2

D
sinS pl3

D
h3D , ~12!

where D5h1
32h0

3 and l351,2,. . . . The system given by~9! is a good approximation if the
condition

max
h3P(h0

3 ,h1
3)

uWl1l2
~h3!2Wl1l2

0 u!min
l3

uE0~l!u ~13!

is satisfied.
In the following sections we apply this approximation method to the specific geometrie
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III. CASIMIR ENERGY IN THE REGION BETWEEN TWO CLOSE COAXIAL CYLINDERS

In the cylindrical coordinates, i.e., with the metric

ds25dt22dz22dr 22r 2 df2, ~14!

the eigenvalue problem we must solve is

2F1

r

]

]r
r

]

]r
1

1

r 2

]2

]f2 1
]2

]z2GF5v2F. ~15!

After solving for the trivial coordinatesz andf we have

F5
eipz1 imf

2pAr
vnm~r !. ~16!

Herevnm(r ) are the normalized wave functions corresponding to the radial equation

F2
d2

dr 2 1
m221/4

r 2 Gvnm5mnm
2 vnm , ~17!

with

vpnm5Ap21mnm
2 . ~18!

The quantum numbern should be determined from the boundary conditions on the coaxial
inders with the radiir 0,r 1 ,

vnm~r 0!50, vnm~r 1!50. ~19!

The solution of~17! satisfying the boundary condition atr 0 is given in terms of the Besse
functions as

vnm~r !5Amnmr
Jm~mnmr 0!Nm~mnmr !2Jm~mnmr !Nm~mnmr 0!

Vnm
, ~20!

whereVnm is obtained from the normalization

E
r 0

r 1
dr uvnm~r !u251. ~21!

In practice however the above integral is very difficult to calculate for arbitrary values ofr 0 and
r 1 . The spectrummnm should be determined from the boundary condition atr 1 which is a quite
involved equation. However, if the cylindrical surfaces are close to each other we can rely
approximation method summarized in the preceding section. Instead of the eigenvalue p
~17! we consider the following:

F2
d2

dr 2 1V~r !Gvnm
0 5~mnm

0 !2vnm
0 ~22!

with the constant potential
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V~r !5H `, r 5r 0 , r 5r 1 ,

m22 1
4

r 0r 1
, r P~r 0 ,r 1!.

~23!

The above equation is then trivially solved as

vnm
0 5A2

D
sin~mnm

0 ~r 2r 0!!, D[r 12r 0 ~24!

with the spectrum

mnm
0 5Ap2n2

D2 1
m22 1

4

r 0r 1
; n51,2,3,. . . . ~25!

For the present specific case the condition~13! is valid for D!r 0 . The Green function of the
system is then easy to deal with,

G5
1

Arr 8
(
n51

`

(
m52`

` E
2`

`

dp
eivpnm

0 (t2t8)1 ip(z2z8)1 im(f2f8)

8p2vpnm
0 vnm

0 ~r !vnm
0 ~r 8!, ~26!

where

vpnm
0 5Ap21~mnm

0 !2. ~27!

To obtain the vacuum energy density we insert the above Green function into the coincidenc
formula

T5 Reg F1

2
lim

t,r ,z,f→t8,r 8,z8,f8
S ] t] t81] r] r 81]z]z81

1

r 2 ]f]f8DGG , ~28!

where ‘‘Reg’’ stands for regularization which will be defined explicitly. The total vacuum ene
per unit height is

Ecyl5E
0

2p

dfE
r 0

r 1
r dr T5

1

2 E2`

` dp

2p (
m52`

`

Reg F (
n51

`

vpnm
0 G . ~29!

In the above equation the regularization is required inn summation for we have boundary in th
radial direction. The regularized sum is given by

Reg F (
n51

`

F~n!G5 i E
0

`

dt
F~ i t !2F~2 i t !

e2pt21
, ~30!

which is the part of the well-known Plana formula

(
n50

`

F~n!5
F~0!

2
1E

0

`

dn F~n!1RegF (
n51

`

F~n!G . ~31!

The integration over dn ~the second term! corresponding to the free space energy~the volume
singularity! and,n50 term ~the surface singularity! are substracted for regularization.1

We first apply~31! to the indexm in ~29! and arrive at

Ecyl5E01E1 , ~32!
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where

E05E
0

`E
0

` dp dm

p
RegF (

n51

`

vpnm
0 G ~33!

and

E15E
0

` dp

p
RegF (

m51

` FRegF (
n51

`

vpnm
0 G G G . ~34!

At this point we like to stress that the Reg(m in the above formula does not mean that there is
actual regularization inm summation. It is only a part of the Plana formula. Applying the Pla
formula to the indexn we may representE1 in the following form:

E15E111E121E13, ~35!

where

E115E
0

` dp

p (
n51

`

RegF (
m51

`

vpnm
0 G , ~36!

E125E
0

` dp

2p
RegF (

m51

`

vp0m
0 G , ~37!

and

E1352E
0

`E
0

` dp dn

p (
n51

`

RegF (
m51

`

vpnm
0 G . ~38!

We see that contributionsE0 andE13 have similar integral representation. Making suitable cha
of variables they can be represented as

E05
1

2R2 TS pR

D D , E1352
D

2pR3 T~1!, ~39!

whereR5Ar 0r 1 and

T~b!5E
0

`

z dz RegF (
n51

` AUz22
1

4
1b2n2UG . ~40!

For z> 1
2 the relation

A~ ix !21c25 iAx22c2, x>c ~41!

implies

RegF (
n51

` AUz22
1

4
1b2n2UG522E

~1/b!Az22
1
4

`

dn
Ab2n22z21 1

4

e2pn21
. ~42!

In a similar fashion forz, 1
2 we have
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RegF (
n51

` AUz22
1

4
1b2n2UG522E

~1/b!A1
4 2z2

`

dn
Ab2n22z21 1

4

e2pn21
. ~43!

Therefore

T~b!522E
0

`

z dzE
~1/b!Auz22

1
4u

`

dn
Ab2n22z21 1

4

e2pn21
~44!

or

T~b!52
b3

360
2

b3

8p4 E
0

~p/b!

dy f~y!, ~45!

where

f ~y!5y3E
1

`

dx
A11x2

eyx21
. ~46!

To calculateE0 , let b5 pR/D ~that isb@1) in ~44! and~45!. Sincef (0)50 andf (y) behaves as
a linear function in the neighborhood ofy50 the integration overy can be estimated as

E
0

p/b

dy f~y!.
1

2
f S p

b D p

b
~47!

or

E
0

p/b

dy f~y!.
1

2 S p

b D 2E
p/b

`

ds
As21~p/b!2

eyx21
.

p2

12 S p

b D 2

. ~48!

Combining~48! and ~39! we obtain

E0.2
p3R

720D3 2
p

192RD
. ~49!

It is easy to observe thatT(1) is negligibly small in comparision withT(pR/D); thus, contribu-
tion E13 is dropped.

The contributionsE11 and E12 appear to be of the higher order in small parameterD/R.
Indeed we have

E1252
1

8p2R2 S E
0

` x3 dx

A11x2
E

1

`

dy
Ay221

epxy21
1E

0

1 x3 dx

A12x2
E

1

`

dy
Ay211

epxy21D . ~50!

We can easily estimate the upper limit of the above integrals. The first one is smaller than1
7200,

while the second is smaller than16. Thus

uE12u,
1

48p2R2 . ~51!

Finally we evaluate the termE11 ~see the Appendix! which is exponentially small,

E11.2
1

4pRD
e22p2 ~R/D!. ~52!
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The final result for the Casimir energy between the close cylinders is then equal toE0 , that is we
have

Ecyl52
p3R

720D3 S 11
15

2p2

D2

R2D . ~53!

Note that the inclusion of the second term in the above expression does not contradict o
proximation of~23!, for the contribution of the first term after this approximation in the poten
would be of the orderD3/R3. It is easy to check that in theR/D →` limit the above result
becomes the same as the parallel plate energy.

Finally we like to remark that, for one-boundary geometries, for example, forD-dimensional
ball there are satisfactory techniques to deal with the problem involving the roots of B
functions.14 We hope that these techniques may also be adopted for geometries with two b
aries. For boundaries close to each other however, we can rely on the result of~53!, for it gives the
correct limit of parallel plates in theR/D →` limit.

IV. CASIMIR ENERGY IN THE REGION BETWEEN TWO TORI

The problem~see Fig. 1! differs from the previous one by the boundary condition. Instead
~19!, the solution of thee-value equation~15! should satisfy

Fur 5r 0
5Fur 5r 1

50, Fuz505Fuz5L , ~54!

whereL is the circumference of the tori. ForD!r 0 we have

F5
ei ~2pkz/h! 1 imf

2pAr
A2

D
sinS pn

D
~r 2r 0! D ~55!

and

vknm5AS 2pk

L D 2

1S m

RD 2

1S pn

D D 2

2
1

4R2 , ~56!

wherek, mPZ and n51,2,3,. . . ; andR25r 0r 1 as in the preceding section. The total ener
between the close tori is

Etor5
1

2 (
m52`

`

RegF (
k52`

`

(
n51

`

vknmG . ~57!

FIG. 1. Casimir energy in the region between two tori.
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Note that unlike the previous case, since the degree of freedom along the tori~i.e., along thez
coordinate! is also restricted, we have to perform regularization for thek-summation too. Applying
the Plana formula to the double sum overn andk we get

(
m52`

` E
0

`

dk(
n51

`

vknm5E
0

`E
0

`

dk dn vknm12E
0

`

dk RegF (
n51

`

vknmG
2E

0

`

dk vk0m12(
n51

`

RegF (
m51

`

vknmG . ~58!

Dropping the first and the third terms in the above expression we arrive at the regularized d
sum

RegF (
k52`

`

(
n51

`

vknmG52E
0

`

dk RegF (
n51

`

vknmG12(
n51

`

RegF (
m51

`

vknmG . ~59!

Thus,

Etor5Etor
0 1Etor

1 , ~60!

where

Etor
0 5 (

m52`

` E
0

`

dk RegF (
n51

`

vknmG ~61!

and

Etor
1 5 (

m52`

`

(
n51

`

RegF (
m51

`

vknmG . ~62!

We first observe thatEtor
0 is proportional to the Casimir energy for the coaxial cylinders conside

in the preceding section. Namely, we have

Etor
0 5LEcyl . ~63!

In the Appendix we show that

Etor
1 .2

3

32D
e22p ~L/D!, ~64!

which is negligible small. The total energy in the region between two tori is then equal to
given by ~63!,

Etor52
p3RL

720D3 S 11
15

2p2

D2

R2D . ~65!

V. COAXIAL CYLINDRICAL BOXES OF FINITE HEIGHT

Instead of~54!, the solution of thee-value equation~15! should satisfy

Fur 5r 0
5Fur 5r 1

50, Fuz505Fuz5L50 ~66!

with L being the height of the cylinders. ForD!r 0 we have
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F5

sinS pk

L
zDeimf

pArp
A 2

LD
sinS pn

D
~r 2r 0! D ~67!

and

vknm5AS pk

L D 2

1S m

RD 2

1S pn

D D 2

2
1

4R2 , ~68!

where mPZ and n,k51,2,3,. . . ; andR25r 0r 1 as in the preceding section. The total ener
between the close cylinders is then

Ebox5
1

2 (
m52`

`

RegF (
k51

`

(
n51

`

vknmG ~69!

or

Ebox5
1

2 (
m52`

` E
0

`

dk RegF (
n51

`

vknmG1
1

4 (
m52`

`

RegF (
n51

`

v0nmG1
1

2 (
m52`

`

(
n51

`

RegF (
k51

`

vknmG .

~70!

The first term on the right-hand side of the above formula is equal toLEcyl . The third term is
similar toEtor

1 . Namely, we have to multiplyEtor
1 by 1

2 and make a changeL→2L. For L@D it is
exponentially small

1

2 (
m52`

`

(
n51

`

RegF (
k51

`

vknmG.
pR

32LD
e24p ~L/D!. ~71!

Coming to the second term applying the Plana formula to the summation overm we get

1

4 (
m52`

`

RegF (
n51

`

v0nmG5
z~3!R

16D2 1OS 1

RD . ~72!

The final form is then summation of theLEcyl and the above term,

Ebox.2
p3RL

720D3 1
Rz~3!

16D2 . ~73!

Inspecting the above result we observe that the energy is positive aroundL< 3
2D ~within our

approximation!. Around this value of the height, the radial forceF rad52 ]E/]D is repulsive. The
force on the axial directionFaxial52 ]E/]L however, is repulsive for all values ofL, which
forces the cylinders to become of infinite length. WhenL becomes longer than32D, the radial force
also becomes attractive.

VI. CASIMIR ENERGY BETWEEN TWO CLOSE COCENTRIC SPHERES

We employ the spherical coordinates

ds25dt22dr 22r 2~du21sin2 u df2! ~74!

and insert the solution in terms of the spherical harmonics

F5Ym
l ~u,f!

v ln~r !

r
, l 50,1,2,. . . , 2 l<m< l ~75!
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into the Klein–Gordon equation~4!. The resulting radial eigenvalue problem we have to deal w
is

F2
d2

dr 2 1
~ l 1 1

2!
2

r 2 Gv ln~r !5~v ln!2v ln~r ! ~76!

subject to the boundary conditions

v ln~r 0!50, v ln~r 1!50. ~77!

Herer 0,r 1 are the radii of the spheres andn is the radial quantum number to be determined
the boundary conditions. To satisfy the boundary conditions one has to deal with the roots
radial wave functionvnl(r ) which as in the preceding section are the Bessel functions~with m
replaced byl 11/2). However, since we are interested inD[r 12r 0!r 0 limit, we can proceed as
we have done in the preceding section. For the radial wave functions and the eigenvalu
obtain

v ln
0 ~r !5A 2

Dr
sin~v ln

0 ~r 2r 0!!, ~78!

~v ln
0 !25

p2n2

D2 1
~ l 1 1

2!2

R2 , n51,2,. . . . ~79!

With the above approximated radial eigenfunctions and eigenvalues we can write the
function as

G5 (
n51

`

(
l 50

`

(
m52 l

l
eiv ln(t2t8)

2v ln
0 v ln

0 ~r !v ln
0 ~r 8!Ym

l ~u,f!Ym
l ~u8,f8!. ~80!

Integrating the vacuum energy density

T5 Reg F1

2
lim

t,r ,u,f→t8,r 8,u8,f8
F] t] t81] r] r 81

1

r 2 ]u]u81
1

r 2 sin2 u
]f]f8GGG ~81!

over the volume between two cocentric spheres we get the total energy

E5(
l 50

`

~ l 1 1
2! RegF (

n51

`

v ln
0 G . ~82!

Applying the Plana formula to then summation and dropping then50 term and the integration
over n we get

E52
2D

pR2 E
1

`

dn F~n!, ~83!

where

F~n!5 (
s5 1/2

`
s3

e2~D/R! sn21
. ~84!

To use the Plana formula1
                                                                                                                



sitive

5498 J. Math. Phys., Vol. 44, No. 12, December 2003 H. Ahmedov and I. H. Duru

                    
(
k50

`

f ~k1 1
2!5E

0

`

dy f~y!2 i E
0

`

dy
f ~ iy !2 f ~2 iy !

11e2py ~85!

we have to get rid of the poles of the functionF(n) at the imaginary axis 2(D/R) ns52ipm.
Thus we work with the function

Fb5 (
s5 1/2

`
s3

e2~D/R! x(s1b)21
~86!

with b.0. Then~83! becomes

E52
p3R

360D3 1E8, ~87!

where

E85
1

2pD
lim

b→0
E

0

` ds s3

e2ps11 E2D/R
dxAx22S 2D

R D 2S 1

ex(b1 is)21
1

1

ex(b2 is)21D . ~88!

Using 2D/R!1 we get

E8.2
p

288D
. ~89!

Thus the total energy in the region between the spheres is

E52
p3R2

360D3 S 11
5D2

4p2R2D . ~90!

In R/D →` it is obvious that the above energy approaches the parallel plate formula.

VII. CASIMIR INTERACTIONS OF TWO CLOSE COAXIAL CONES

The geometry we like to present in this section is two cones with common axis at po
z-direction and appeces at the origin~see Fig. 2!. By close cones we mean the appex anglesu1 and
u1 are close to each other, that is

D[u12u0!Asinu0 sinu1[Q. ~91!

In the above approximation the solutions we employ~in spherical coordinates! which vanishes at
the surfacesu5u0 andu5u1 are

Fnm
v 5Av

r
Jmnm

~vr !
eimf

ApD
sinS pn

D
~u2u0! D , ~92!

where

mnm5AS pn

D D 2

1S m

Q D 2

. ~93!

The energyv in ~92! is continuous. The Green function is~with the cutoff factorb!

G5 (
n51

`

(
m50

`

(
m52 l

l
e2bv1 iv(t2t8)

2v
Fnm

v ~r ,u,f!Fnm
v ~r 8,u8,f8!. ~94!
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Note that in this section we employ a different regularization method than in the previous
The cutoff method is more suitable for the continuous energy spectra. Inserting the Green fu
of ~94! into the coincidence limit formula and then integrating overu and f, we arrive at the
vacuum energy density atr ,

E5
1

4pr
Regb

F S ]2

]r 2 12
]2

]b2D (
n51

`

(
m52`

` Q21/21mnmS 11
b2

2r 2D
r

G . ~95!

Regb stands for the cutoff regularization, that is, we pick the finite part of the expressionb
→0 limit. In deriving ~95! we used the formula15

E
0

`

dv e2bv~Jn~vr !!25
1

pr
Qn21/2S 11

b2

2r 2D , ~96!

whereQn(x) is Legendre function of the second kind. We rewrite the expression~95! as

E5n
1

2pr 4 RegyF Ô(
n51

`

(
m52`

`

Q21/21mnm
~11y2!G ~97!

with

y[
b

&r
, Ô[112y

]

]y
1

y211

2

]2

]y2 . ~98!

Applying the Plana formula to the summation overm we arrive at

E5E01E1 , ~99!

where

FIG. 2. Geometry of two cones with common axis at the positivez-direction and appeces at the origin.
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E05
1

pr 4 RegyF Ô(
n51

` E
0

`

dm Q21/21mnm
~11y2!G ~100!

and

E15
1

r 4 Regy
F Ô(

n51

` E
pQn/D

`
dm tanhAS m

Q D 2

2S pn

D D 2

e2pm21
P2

1
2 1 iA~m/Q!22~pn/D!2~11y2!G .

~101!

Making use ofpQn/D @1, tanhx<1, and

Regy@ÔP21/21 is~11y2!#5
7

8
2

s2

2
~102!

we get

uE1u<
1

r 4
U(

n51

` E
~pQn/D

`

dm e22pmS 7

8
2

S m

Q D 2

2S pn

D D 2

2
DU . ~103!

That is,

uE1u<
Q

4pDr 4 e22p2~Q/D!. ~104!

ThusE1 is negligible small. To evaluateE0 , we apply the Plana formula to the summation ov
n in ~100!. The formula we obtain is

E05E1
QD

2pr 4 A2
Q

2pr 4 B, ~105!

where

E5
QD

2pr 4 E
0

`

dxE
x

`

dy
tanhAy22x2

e2Dy21 S 7

4
1x22y2D , ~106!

A5RegyF ÔE
0

`

ds sQ21/21s~11y2!G , ~107!

B5RegyF ÔE
0

`

ds Q21/21s~11y2!G . ~108!

Changing the variablesy5t, x25t22k2 ~106! can be rewritten as

E5
QD

2pr 4 E
0

` dt t

e2Dt21 E0

1 dk k

A12k2
tanh~kt!S 7

4
2k2t2D . ~109!

Inspecting the integrals overk, that is, the terms

f 1~ t !5E
0

1 dk k

A12k2
tanh~kt! ~110!
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and

f 2~ t !5E
0

1 dk k3

A12k2
tanh~kt!, ~111!

we see that both approach very fast from the valuef 1(0)5 f 2(0)50 to their respective asymptoti
valuesf 1(t→`)51 and f 2(t→`)50.665 2

3.
Let us treat the second term in~109! in detail. We approximatef 2(t) as

f 2~ t !.H at, tP@0,b#,

3
2, tP@b,`!,

~112!

wherea andb are both of order 1. The second term in~109! then becomes

E252
QD

2pr 4 S aE
0

b dt t4

e2Dt21
1E

b

` dt t3

e2Dt21D . ~113!

SinceD!1, we can approximate the denominator of the first integrand ase2Dt21.2Dt. In the
second integral making the change of variables 2Dt5s, we can replace the lower boundary
2bD.0. Thus~113! becomes

E2.2
QD

2pr 4 S ab4

8D
1

1

16D4 E
0

` ds s3

es21D 52
Qab4

16pr 4 2
Qp3

720r 4D3 . ~114!

It is obvious that the first term is negligible compared to the second. Similar treatment show
the first term in~109! gives contributions of ordersO(D) andO(1/D) both are small. Inspecting
~100! we see that the second and third terms inE0 are also negligible. Thus the final result for o
Casimir energy is

E.E2.2
Qp3

720r 4D3 . ~115!

Note that the above ‘‘density’’ is an expression obtained after integrating overQ and f. If we
divide ~115! to the angular integral

E
u0

u1
sinuE

0

2p

df.2pQD ~116!

we obtain the energy density averaged over the angular variables:

E.E252
p2

1440r 4D4 1O~D23!. ~117!

In small D limit the above result is in perfect agreement with the energy density in the re
between two infinite planes with angleD between them~i.e., the wedge problem!,16

E52
1

1440r 4D2 S p2

D2 2
D2

p2D . ~118!

VIII. SUMMARY AND CONCLUSIONS

We have calculated the Casimir energies for the massless scalar field for regions be
surfaces close to each other. In suitable limits, the results we obtained approach the ex
                                                                                                                



r the
stance

roblem

e have
gual

ay be

for
rkish

to

5502 J. Math. Phys., Vol. 44, No. 12, December 2003 H. Ahmedov and I. H. Duru

                    
parallel plate formula for the infinite coaxial cylinders and cocentric spheres. Formulas fo
infinite coaxial cylinders and cocentric spheres are in good agreement with the close di
limits of the recent results in the literature.10,8

For the geometry of coaxial cones the formula we obtained approaches the wedge p
with small angle, as expected.

In all the geometries considered the surfaces are attracted to each others. However, w
repulsive in the axial direction of the coaxial cylindrical boxes with finite height; and, centrifi
force in the radial direction for cocentric tori.

We hope that some geometries, for example, the coaxial cylinders and cocentric tori, m
materialized by virtue of the metallic nanostructures.
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APPENDIX „REF. 15…

Estimation of E11

We drop the factor 1/4R2 in the spectravpnm
0 . In Sec. II we have seen that this factor leads

the terms of the order (D/R)2 in comparision with the spectraAp21 (p2n2/D2) 1 (m2/R2). We
have

E11.2E
2`

` dp

p (
n51

` E
RAp21 ~p2n2/D2!

`

dm

Am2

R2 2p22
p2n2

D2

e2pm21
. ~A1!

Since forn51,2, . . . the integration variablem is greater thanRAp21 (p2n2/D2)@1 one can
make the approximation

E11.2E
2`

` dp

p (
n51

` E
RAp21 ~p2n2/D2!

`

dm e22pmAm2

R2 2p22
p2n2

D2 . ~A2!

Using the integral representation for the modified Bessel functions we get

E11.52
1

2p2 E
2`

` dp

2p (
n51

`
]K0~2pRsAp21~pn/D!2!

]R
. ~A3!

We first use the integral

E
0

`

dl K0~xAl21b2!5
p

2x
e2xb ~A4!

and then take summation overn and arrive at

E11.2
1

4pRD
e22p2 ~R/D!. ~A5!

Estimation of Etor
1

In a fashion parallel to the evaluation ofE11 making the advantage ofR@D we can bringEtor
1

into the following form:
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Etor
1 .

1

8p

]

]L (
n51

`

(
m52`

`

K0S 2LAm2

R2 1
p2n2

D2 D . ~A6!

From

(
m52`

`

K0S 2LAm2

R2 1
p2n2

D2 D 52E
0

`

dm K0S 2LAm2

R2 1
p2n2

D2 D

12pE
pRn/D

`
dm J0S 2LAm2

R2 1
p2n2

D2 D
e2pm21

, ~A7!

using the approximation 1/e2pm21 .e22pm for m> pRn/D we arrive at

(
m52`

`

K0S 2LAm2

R2 1
p2n2

D2 D 5pRS e22p ~L/D! n

2L
1

e22pn ~Ap2R21L2/D!

Ap2R21L2 D . ~A8!

Thus we have

Etor
1 .2

R

8

]

]L S 1

2L

1

e2p ~L/D!21
1

1

Ap2R21L2

1

e2p ~Ap2R21L2/D!21
D . ~A9!

SinceL52pR the dominant term in the above expression is

Etor
1 .2

3

32D
e22p ~L/D!. ~A10!
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In this work we present two rigorous results on the nonrelativistic Lee model
following a method proposed by Rajeev in an unpublished article~S. G. Rajeev,
hep-th 9902025!. Thus this short paper should be considered as a commentary on
Rajeev. In the unpublished paper of Rajeev, the renormalization of the Hamiltonian
is accomplished at the level of resolvents. We first establish that the renormalized
resolvent of the interacting Hamiltonian indeed defines a unique closed densely
defined operator acting on the free Fock space of bosons. Next we give a justifi-
cation in the mean field approximation that the ground state energy is bounded
from below and the system has a good thermodynamic limit by elaborating along
the original arguments of Rajeev. Our arguments in two dimensions do not yield
better bounds, but this could be due to the inadequacy of the method used. In both
cases though the ground state energy is not significantly altered to give a nontrivial
ground state energy per particle. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1624093#

I. INTRODUCTION

Originally the Lee model is introduced in Ref. 2 as a soluble simple relativistic model.
model was not meant to be realistic, but one wants to capture some nonperturbative asp
field theories which require a renormalization. Its nonrelativistic simplification also has som
these merits and it is even simpler. A detailed discussion of this model from the point of vie
the scattering matrix is given in the book by Henley and Thirring.3 They find the solution to the
quantum equations of motion and thus give an exact solution of the scattering matrix o
system. This is a model of a heavy particle which can be taken at rest at the origin and a fi
nonrelativistic bosons which can form a compound with the heavy particle due to an attr
interaction. The bosons should not be excited too high levels since then the nonrelativitic ap
mation will break down. There are some attempts to understand this model in depth,4 but a proper
analysis of any number of bosons was not given prior to Ref. 1. In a truly remarkable work R
took a fresh look at nonrelativistic models which require renormalization. The most intere
example in this article is the study of bosons which have an attractive local interaction in tw
three dimensions. Rajeev also looks at the nonrelativistic Lee model as a simpler application
method. He gives the complete solution of the bound state energies of this model for all
numbers as an operator equation. This equation can be written as an integral equation for th
functions and the energy levels. There are two questions left incomplete in his work: Ra
approach can be thought of as an extension of the ideas of Krein on the singular diffe
operators to the interacting field theory models~see for the modern point of view on thes
problems the valuable book by Albeverio and Kurasov5!. In fact, the interactions one talks abo
in these models are essentially singular ones when written as ordinary quantum mechanica
els. Rajeev’s method renormalizes the resolvent of the interacting Hamiltonian directly an

a!Electronic mail: turgutte@boun.edu.tr
55040022-2488/2003/44(12)/5504/13/$20.00 © 2003 American Institute of Physics
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point is that an attempt to write the renormalized Hamiltonian is futile because there is no s
way to write it; the interaction is at a point. One can say that the Hamiltonian looks like the
one but the boundary conditions of the wave functions will be different and this is what defi
different Hamiltonian~recall that in infinite dimensions and unbounded operator is defined b
action and its domain!. However in the field theoretical approach one must prove that the resu
family of renormalized resolvents actually defines the resolvent family of a unique closed de
defined operator. This is essential since the time evolution of the interacting quantum system
be given by a unitary operator family parametrized by time. Its infinitesimal generator i
Hamiltonian of the system by Stone’s theorem. We will show that this is indeed the case.

Using the mean field approximation Rajeev attempts to show that the ground state is bo
from below when the number of bosons go to infinity. Our contribution here is an attempt
a gap in his arguments. We are not completely successful since we could not really pro
original claim in the paper in its full generality but with a condition on the coupling constant
also give an argument in two dimensions and show that the Hamiltonian is bounded from
but in this case again we could not show that the minimum energy state is when all the boso
in zero momentum state and there is a composite with energym. However we can prove that th
ground state energy per particle is stillm, the rest energy of a free boson. In this sense
interaction is not stong enough.

The plan of the paper is the following: we first review the approach to nonrelativistic
model from Ref. 1~the reader should consult this work to understand the discussion here! then
prove that the resolvent family indeed defines a unique Hamiltonian. Next, we prove tha
ground state is bounded from below in three dimensions. We extend this discussion to th
dimensional case as well. The paper is rather technical, yet we relegated some of the
computations to an Appendix.

II. RAJEEV’S APPROACH TO THE NONRELATIVISTIC BOSONIC LEE MODEL

To facilitate the reading of the paper, we will review some of the aspects of the nonrelati
Lee model as it is presented in Rajeev’s work. We add some details as well. If the reader is a
familiar with the original work he or she can skim through this part. Let us write down
Hamiltonian of the nonrelativistic Lee model with a cut-off,

H5H01H1L , ~1!

where

H05E @dp#f†~p!f~p!v~p!, v~p!5m1
p2

2m
, ~2!

H1L5mL

12s3

2
1gE @dp#rL~p!@f~p!s21f†~p!s1#, ~3!

wheremL is a bare parameter to be adjusted~see below! ands6 ,s3 are the Pauli spin matrice
acting onC2. There is a conserved quantity,

Q5
12s3

2
1E @dp#f†~p!f~p!, ~4!

which means that we have an up state andn11 bosons or down state andn bosons. We can think
of the down state as a bound state of the system. By rewriting the resolvent of this op
Rajeev shows that the normal ordering and by the following choice of bare mass differenc

mL5m1g2E @dp#rL~p!2
1

v~p!2m
, ~5!
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the renormalized resolvent thus obtained remains well-defined asL→`. Here one should think of
m as the energy of the composite state which consists of a boson and the attractive heavy
at the center.

In this limit the resolvent becomes

R~E!5S a~E! b†~E!

b~E! F21~E!
D , ~6!

a~E!5
1

H02E
1

1

H02E E @dq#f†~q!F21~E!E @dp#f~p!
1

H02E
,

b~E!52F21~E!E @dp#f~p!
1

H02E
,

and we have Rajeev’s principal operator

F~E!5H02E1m14p2g2~2m!3/2@AH01m2E2Am2m#

2g2E @dp dq#f†~p!
1

H01v~p!1v~q!2E
f~q!.

The advantage of this approach now is clear, the scattering states of this Hamiltonian should
same as the free Hamiltonian but the bound states can only come from the zero eigenva
F(E). In fact there is a normalizable solution to this condition given by the state

S g

H02m E @dp#f†~p!u0&

u0&
D . ~7!

This will be a bound state if we takem,m which is physically meaningful if we want this mode
to describe the attractive interaction of such a two state system with bosons.

As indicated in Ref. 1 the last term has a negative sign and we will prove below that i
negative operator, and this complicates matters. The analysis given by Rajeev shows t
spectrum of the principal operator is bounded from below. The drawback of the method is th
estimate produces a bound which depends on the number of bosons and in three dimensi
bound does not have a good thermodynamic limit. We will show later on by modifying
argument due to Rajeev that if we use the mean field approximation this bound on the groun
energy can be drastically improved. In fact, our method will show that if the coupling consta
below a certain value the energy of the ground state is given by the naive expectation,m1nm,
wheren is the number of bosons.

Let us recall the key steps in deriving a lower bound on the spectrum, first note the diffi
that the principal operator is the difference of two positive definite operators, assumingE,(n
11)m, by rewriting it as

F~E!5H02E1m14p2g2~2m!3/2@AH01m2E2Am2m#

2g2E
0

`

dsF E @dp#e2sp2/2mf~p!G†

e2s[H012m2E]F E @dq#e2sq2/2mf~q!G .
To find a simple estimate we can write the Principal operator as

F~E!5K~E!1/2
„12Ũ~E!…K~E!1/2, ~8!

where
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K~E!5H02E1m14p2g2~2m!3/2@AH01m2E2Am2m#, ~9!

and

Ũ~E!5g2E @dp dq#f†~p!
1

K1/2
„E2v~p!…„H01v~p!1v~q!2E…K1/2

„E2v~q!…
f~q!.

~10!

Here clearly

K~E!>nm1~m2E!, ~11!

and we can give an estimate on the norm ofŨ(E), by using the arguments given in Ref. 1:

iŨ~E!i2<g4n2
~2m!3

@nm1m2E#
C, ~12!

whereC is a constant given explicitly as an integral in Ref. 1. Assuming we can chooseE such
that the norm is less than one and knowing that theŨ(E) is a positive operator we can find th
estimate

F~E!>iK~E!i„12iŨ~E!i…; ~13!

if this is a strictly positive operator we have an invertible operatorF(E), which gives us the
estimate for the lowest possible choice ofE for which the resolvent is well-defined as

E,nm1m2g4n2~2m!3C2, or Egr>nm1m2g4n2~2m!3C2. ~14!

Here notice thatE is chosen outside of the spectrum lying on the real axis. This is why when
talk about the ground state energy the inequality should be reversed since now we are
about the lowest value we can assign inside the spectrum. The use of the same symbolE for both
cases hopefully will not cause too much confusion. One can check that this choice indeed g
iU(E)i,1. This result unfortunately implies that the system does not have a good thermody
limit. If we assume that the mean field theory gives a good estimate of the ground state wn
→`, Rajeev shows that this result is not true and there is no difficulty in the thermodynamic
In two dimensions the same argument leads to

Egr>nm1m2ng22mC, ~15!

which implies that there is a good thermodynamic limit yet the ground state energy is mo
enough to cause the energy per particle to be different than that of the free theory. We will s
in fact the situation in two dimensions is not as good as in three dimensions when we use th
mean field theory estimates, but the interaction is not strong enough to validate the above c
sions based on rough estimates. It is an interesting open question to prove the same e
without using mean field theory, directly at the operator level.

III. DISCUSSION OF THE RENORMALIZED RESOLVENT

Since Rajeev derives the formula above for the resolvent by using a renormalization p
the resulting one parameter family of bounded operators does not necessarily define an o
That is, it may not be the resolvent family of a densely defined closed self-adjoint operator.
quantum system, the evolution of the system is always defined by a unitary operator a
infinitesimal form ~by Stone’s theorem! defines a closed densely defined self-adjoint opera
which corresponds to the Hamiltonian. We can show by a brute force computation that the
tor family indeed satisfies the resolvent equation below,
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R~E!2R~E8!5~E2E8!R~E!R~E8!. ~16!

This is a necessary condition but it is not sufficient; the following theorem giving a suffic
condition is taken from Ref. 6.

Theorem: Let us assume that we have a set of bounded operatorsR(z) on D,C, whereD is
an unbounded subset of the complex plane. We assume that this family satisfies the re
equation. If there is a sequencelnPD, such thatulnu→` asn→`, and

lim
n→`

2lnR~ln!x5x, for all xPH̃, ~17!

whereH̃ refers to the underlying Hilbert space in general, thenR(z) is the resolvent family of a
unique densely defined closed operator.

The resolvent acts on a subspace of the Fock space which hasn or n11 particles. Above we
have seen that the operator family is bounded if we chooseE,2(cost)n2, and this makes
iŨ(E)i,1. Thus we may choose a sequence of integersl , and definel l52ml2 and start
l .(cost)8n. This is not the only sequence we could use, but it is a simple choice and it sa
the hypothesis. Recall that the resolvent is given by

R~E!5S a~E! b†~E!

b~E! F~E!21D , ~18!

which acts on vectors of the type (f n11

f n ),F(H)‹C2.

The limit condition in the theorem becomes the following three conditions:

I F ml2

H01ml2
21G f 1F ml2

H01ml2
b†F~2ml2!21b

1

H01ml2G f I→0,

I ml2

H01ml2
bF~2ml2!21f I→0,

i@ml2F~2ml2!2121# f i→0, as l→`,

for all vectorsf with a fixed number of bosons in the Fock space. We will show how these ca
proved by using some operator estimates, which are given in the Appendix. The first term a
has a piece which is the resolvent of the free Hamiltonian, therefore it is enough to prove th
second part converges strongly to zero. In fact we have a better result,

I 1

H01ml2
b†I<

C1

l 1/2, ~19!

for some numberC1 . Thus we have now

I ml2

H01ml2
b†F~2ml2!21b

1

H01ml2
f I<ml2I 1

H01ml2
b†I iF~2ml2!21i Ib

1

H01ml2 I
< l 2

C1

l 1/2

C2

l 2~12C3 / l 2!

C1

l 1/2i f i<
C

l
i f i .

This implies that the last term in fact goes uniformly to zero~in a sector with a finite number o
bosons!. In the middle part we already used the estimate on the norm ofF(E), and our choice of
l is such thatiF(2ml2)i,1. Next we have
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I ml2

H01ml2
bF~2ml2!21f I<nC4~ l !i f i , ~20!

andC4( l )°0 asl→`. To show this one we will use the following inequality:

bK21/2~E!„12Ũ~E!…21K21/2~E!5bK21~E!1„bK21/2~E!Ũ~E!…„12Ũ~E!…21K21/2~E!.
~21!

We use now the norm estimates

I ml2

H01ml2
bK21/2~2ml2!~12Ũ~2ml2!!21K21/2~2ml2!I

< I ml2

H01ml2 I ibK21~2ml2!i1 I ml2

H01ml2 I ibK21/2~2ml2!Ũ~2ml2!i

3i„12Ũ~2ml2!…21K21/2~2ml2!i .

We can divide these terms in the manner shown because each one is actually bounded. In
first term will be shown to go to zero asl goes to infinity and the middle term in the second p
also goes to zero. More precisely we have the following inequalities:

ibK21~2ml2!i<
C5

l 1/2,

ibK21/2~2ml2!Ũ~2 l 2!i<
C6

l 1/4,

where the derivations of these estimates are given in the Appendix. To justify our approach
note that the operator family

ml2

H01ml2
~22!

is uniformly bounded since it is the resolvent ofH0 , which means it converges strongly to th
identity operator. This implies that the operator family is bounded acting on any vector i
Hilbert space, and now we can invoke the principle of uniform boundedness to conclude th
family is uniformly bounded. The last norm is also finite as can be verified easily. For the
condition we again use

K21/2~E!„12Ũ~E!…21K21/2~E!5K21~E!1„K21/2~E!Ũ~E!…„12Ũ~E!…21K21/2~E!, ~23!

to write the upper bound,

i@ml2K21~2ml2!21# f i1i l 2K21~2ml2!i iŨ~2ml2!i i~12Ũ~2ml2!!21ii f i . ~24!

Now the first term goes to zero which can be justified in a simple way, and the other on
i l 2K21(2ml2)i bounded and the normiŨ(2ml2)i goes to zero asl→`, which shows that the
last claim is satisfied. This concludes that the desired conditions hold and the above fam
operators indeed is the resolvent family of a unique closed densely defined operator act
F(H) ^ C2.
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IV. BOSONIC LEE MODEL IN THE LARGE n

In this section we will go over the details of the mean field approximation as presented
paper of Rajeev. We modify some of the original arguments and we believe we reach a rig
lower bound for the ground state energy. We follow exactly the same lines of reasoning up
equation~122! in Rajeev’s work:1 Let us assume that as the number of particles in the sys
increases the mean field approximation becomes valid. All the bosons occupy the same statu(p);
we normalize it to the boson number,

iui25E uu~p!u@dp#5n. ~25!

The energy levels of the system can be estimated asE5Emean(u)1O(n2b). Rajeev’s principal
operator becomes a principal function,

F~E,u!5h0~u!2E1m14p2g2~2m!3/2@Ah0~u!1m2E2Am2m#

2g2E @dp dq#
u* ~p!u~q!

h0~u!1v~p!1v~q!2E
,

and here

h0~u!5E @dp#v~p!uu~p!u2. ~26!

We must solve the equationF(E,u)50 to getE as a function ofu and we must find theu that
gives the smallest possible value ofE subject to the constraintiui25n. Since the functional form
of F is complicated a direct application of the variational calculus seems out of reach. R
shows that the energy can indeed be solved as a function ofu,

E5nm1m1~2m2m!nK~v !1 f 1~nU!@nK~v !21#, ~27!

where f 1 is the inverse function for

@l12m#21/2~l1m1~2pg!2~2m!2/3@Al1m2Am2m#!5nU, ~28!

andU is given as

U5g2~2m!3/2V5g2~2m!3/2E @dp dq#
v* ~p!v~q!

p21q211
, ~29!

and here

u~p!5An@2m~2m1l!#3/4v„A@2m~2m1l!#p…, ~30!

with

l5h0~u!2E. ~31!

This is allowed sincen is large but finite everywhere. We will first show thatU>0. To accomplish
this we rewriteV as follows:
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V5E @dp dq#
v* ~p!v~q!

p21q211
5E

0

`

dsE @dp dq#v* ~p!e2(p21q211)sv~p!

5E
0

`

ds e2sU E @dp#v~p!e2p2sU2

>0.

Thus its minimum value is zero.f 1 is an increasing function of its argument. We would like to fi
the minimum by choosing appropriate functions. Let us first note that to reduce the ener
should make the factor multiplyingf 1 negative. We can do this by scaling the kinetic ene
functionalK(va)5a2K(v) if va(p)5a23/2v(a21p). If we choosea5 1/n,

E5nm1m1~2m2m!
K~v !

n
2 f 1~nUa!F12

K~v !

n G . ~32!

If we set K(v),n, the last term is negative, thus increasing the argument off 1 gives a lower
bound for the energy. We note now that

E @dp dq#
va* ~p!va~q!

p21q211
<a2K~v !F E @dp dq#

~11p21q2!2p2q2G1/2

5a2K~v !4p3/2. ~33!

Using a5 1/n, and replacing the argument with this bigger value we get a lower bound fo
energy,

E>nm1m1~2m2m!
K~v !

n
2 f 1S 4p3/2~2m!3/2g2

K~v !

n D F12
K~v !

n G . ~34!

We will now replace this with even a lower estimate. Notice that the original function tha
inverted to findf 1 satisfies the following inequality:

s

As12m2m
, f 1

21~s!. ~35!

Now we use the following fact:

if f 2
21~s!, f 1

21~s! then f 1~x!, f 2~x!. ~36!

The inverse of function on the previous inequality is easy to find and if we replace the functif 1

with this upper bound we keep the lower bound. If we call the constants in front ofy5 K(v)/n as
c1 , we find that

E>nm1m~2m2m!y2 f 2~c1y!@12y#, ~37!

where 0<y,1 and

f 2~c1y!5
1

2
„c1

2y21Ac1
4y414~2m2m!c1

2y2
…, ~38!

we can use another estimate since 0<y,1,y4,y2,

f 2~c1y!,
1

2
Ac1

414~2m2m!c1
2S c1

2

Ac1
414~2m2m!c1

2
y21yD . ~39!

We note that now we have an inequality of the formf 1(y),A2(B2y21y) with the obvious
identifications ofA,B. If we place this back into the energy estimate,
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E>nm1m1@~2m2m!2A2~B2y11!~12y!#y. ~40!

SinceB2,1 the functionA2(B2y11)(12y) is a decreasing function for 0<y<1. We can set
y50 to make it maximum, and we have

E>nm1m@~2m2m!2A2#y. ~41!

Clearly when (2m2m).A2, the minimum of this function on the right is achieved ify50. This
gives us a lower bound,

E>nm1m. ~42!

We can show that for arbitrarily smalle we can choose wave functions which will give th
opposite inequality,

nm1m1e.E. ~43!

So we found a sufficient condition, which we can rewrite for the coupling constant,

g2,
1

8p3/2m
AS 22

m

mD ~&21!. ~44!

If we want to get a dimensionless ratio, we may compare the coupling constant to the boun
energy, this means we should write the above inequality as

g2m,
1

8p3/2AS 22
m

mD ~&21!
m

m
, ~45!

hereg2m is dimensionless.
It is interesting that the same analysis in 211 dimensions is harder. We follow the sam

reasoning. The equation forl then becomes

l1m1
1

2
g2mp lnF11

l1m

m2mG5n~2m!g2E @dp dq#
v* ~p!v~q!

p21q211
. ~46!

Clearly we can now invert the function ofl on the right, to find

E5nm1m1~2m2m!nK~v !2h1~nU!@12nK~v !#, ~47!

whereh1 represents this inverse function. We see that the inverse functionh1 is actually domi-
nated by the linear functionnU; thus we may change the equality to

E>nm1m1~2m2m!nK~v !2nU@12nK~v !#. ~48!

Again we assume that by a scaling argumentnK(v),1 is chosen~otherwise the energy has
bigger value!. Let us estimate the functionU in terms ofK(v). Here we face a problem, th
integral diverges. Instead we choose a small parametere, which at the end will be taken to zero i
a specific way. We can now show that

I ~e!5E @dp dq#

p222eq222e~p21q211!
5

1

e2 C11OS 1

e D , ~49!

whereC1 is a constant which can be found. Then,

U<F E @dp#p222euv~p!u2G I ~e!1/2. ~50!
                                                                                                                



ound
e

ound

er of

ber of
rmines

we

r could

e
nt

ghts.
of our

.T.T.’s

5513J. Math. Phys., Vol. 44, No. 12, December 2003 On the nonrelativistic Lee model

                    
We will now estimate the integral in parantheses by using an inequality,

x222e<d1F e

dG e/12e

x2, ~51!

where 0,d,1 and 0,e,1. This gives us

E @dp#p222euv~p!u2<d1F e

dG e/12eE @dp#p2uv~p!u2. ~52!

If we insert this back into our estimate for the energy we have the same inequality,

E>nm1m1~2m2m!y2~2m!g2Fnd1S d

e D yG I ~e!1/2~12y!, ~53!

where 0<y,1 is chosen. In our problem the interesting question is the behavior of the gr
state energy in the thermodynamic limit, that is, asn→`. Also physically one expects that th
mean field approximation is good ifn@1. In what follows we assume thatn→` but of course this
in reality represents the situation with a very large number of particles. To control the lower b
asn→` we assume thate5t(n) wheret is an increasing function ofn which tends tò asn
→`. If we put thee behavior ofI (e) into our estimate,

E>nm1m1~2m2m!y2~2m!g2C1
1/2
†ndt~n!1@t~n!d#1/12t(n)t~n!y‡~12y!. ~54!

If we want the largen behavior of the ground state energy to be least influenced by the numb
particles we can choosed(n)5 1/nt(n)2 and we see that in this limit

E>nm1m1~2m2m!y2~2m!g2C1
1/2@nt~n!#1/t~n!21t~n!y~12y!. ~55!

If we look at now the logarithm of the exponential we find

z5 ln@nt~n!#1/t~n!215
1

t~n!
ln@nt~n!#, ~56!

this will have a finite limit asn→` if, t(n)5 ln(n). Then we can replace the exponential~for
sufficiently largen) by e2,

E>nm1m1~2m2m!y2~2m!g2e2C1
1/2 ln~n!y~12y!. ~57!

This shows that the energy of the ground state may decrease by a logarithm of the num
particles in the system. Of course there is a linear piece proportional to mass, and this dete
the leading behavior of the system. If we define the average energy per particleE/n this will be m
the mass of each particle asn→`, which implies that the interaction becomes unimportant as
increase the number of particles.

An interesting possiblity appears if we assume that the coupling constant in each secto
be adjusted. Then if we setg2(n)ln(n)<(2m2m)/2me2C1

1/2 this will imply that the minimum
energy solution occurs wheny50, which gives usEgr5nm1m, that is when there is a composit
particle and all the other particles sit at thep50 state. Our analysis gives only a sufficie
condition and a more careful analysis may remove this condition and give a weaker one.
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APPENDIX: VARIOUS NORM ESTIMATES

We give an estimate of the norm of (H01ml2)21b†, by using the action of creation–
annihilation operators on normalizable Fock states. First let us find the action of this opera
such a stateu f & given by

u f &5E P i@dpi # f ~p1 , . . . ,pn!up1 , . . . ,pn&, ~A1!

1

H01ml2
b†u f &5E P i@dpi #@dq#

1

S i pi
2/2m1q2/2m1~n11!m1ml2

3 f ~p1 , . . . ,pn!up1 , . . . ,pn ,q&. ~A2!

The norm of this state satisfies the inequality

I 1

H01ml2
b†u f &I 2

<E P@dpi #@dq#S 1

q2/2m1ml2D
2

u f ~p1 , . . . ,pn!u2

<E @dq#
1

~q2/2m1ml2!2 E P@dpi #u f u2<
C1

l
i f i2.

Let us compute the same forbK21(2 l 2)u f .; this gives us

E Pk.1@dpk#

3S E @dp1#
gn f~p1 ,p2 , . . . ,pn!

~S j pj
21nm1m1ml214p2g2~2m!3/2@AS j pj

2/2m1nm1ml22Am2m#!
D

3up2 , . . . ,pn&.

The square of the norm of such a state can be estimated, by noting that we can ignore
positive contributions in the denominator, to be smaller than

E Pk.1@dpk#S E @dp1#
gnu f ~p1 , . . . ,pn!u

S j .1pj
2/2m1~n21!m1ml2

1

p1
2/2m1ml2D 2

<E Pk.1@dpk#g
2n2S E @dp1#u f ~p1 , . . . ,pn!u2E @dp#

1

~p2/2m1ml2!2D<C2n2i f i2
1

l
.

Before we start the estimate onbK21/2(2ml2)Ũ(2ml2) we will reorganize it at the operato
level as

bK21/2~2ml2!Ũ~2ml2!5gE @dq dp#K21~2ml22v~q!!@H01p2/2m1q2/2m12m

1ml2#21K21/2~2ml22v~p!!f~p! 1E @dp dr dq#f†~q!

3K21
„2ml22v~q!2v~r !…@H01p2/2m1q2/2m1r 2/2m13m

1ml2#21K21/2
„2ml22v~p!2v~r !…f~p!f~r !.
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This implies that we can estimate each operator separately: for the first, it is better to expr
effect on a stateu f &, in terms of the defining functionf ,

f ~p1 , . . . ,pn!°E @dpdq# f ~p,p2 , . . . ,pn!K21
„2ml22v~q!…@H01v~p!1v~q!

1ml2] 21K21/2
„2ml22v~p!…. ~A3!

Let us call this map (A f )(p2 , . . . ,pn). TheL2 norm of this resultingn21 particle wave function
can be estimated, by neglecting various positive terms in the denominator, to be less than

iA fi2,g2n2E P j .1@dpj #

3F E @dpdq#
u f ~p,p2 , . . . ,pn!u

@q2/2m1nm1ml2#@p2/2m1q2/2m1nm1ml2#@p2/2m1nm1ml2#1/2G2

,g2n2i f i2E @dp#F E @dq#

@q2/2m1ml2#@p2/2m1q2/2m1nm1ml2#G
2 1

p2/2m1nm1ml2

,C2g2n2i f i2E dp

@p2/2m1nm1ml2#113/4F E @dq#

@q2/2m1nm1ml2#115/8G2

,C28g
2n2

1

~nm1ml2!1/2.

The second term has a symmetrization and this gives various interference terms as wel
these terms as well as the noninterfering terms can be shown to be smaller than the fol
expression~the details of this computation are long but relatively straigthforward!:

E P i>3@dpi #@dq#F E @dp dr#u f ~p,r ,p3 , . . . ,pn!u
~q2/2m1r 2/2m1nm1ml2!~p2/2m1r 2/2m1nm1ml2!1/2

3
1

~p2/2m1q2/2m1r 2/2m1nm1ml2!G
2

;

now we can further estimate this by repeated application of the Cauchy–Schwartz inequa

<i f i2E @dr dq#

~q2/2m1r 2/2m1nm1ml2!2

3F E @dp#

~p2/2m1r 2/2m1q2/2m1nm1ml2!4G1/2F E @dp8#

~p82/2m1nm1ml2!2G1/2

<i f i2E @dq dr#

~r 2/2m1q2/2m1nm1ml2!13/4

C5

~nm1ml2!1/4<i f i2
C6

~nm1ml2!1/2;

thus the norm of this part of the operator is bounded byC7 / l 1/2 which goes to zero asl→`. Thus
the combination of these two types of terms indeed go to zero. In a simple way we can che
i@ l 2K(2ml2)21#u f .i→0, asl→`:
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i@ l 2K~2ml2!21#u f &i2

5E P j@dpj #u f ~p1 , . . . ,pn!u2

3
@S j pj

2/2m1nm1m14p2~2m!3/2~AS j pj
2/2m1nm1m1ml22Am2m!#2

@S j pj
2/2m1nm1m1ml214p2~2m!3/2~AS j pj

2/2m1~n11!m1ml22Am2m!#2

<E
upj u<mAl

P j@dpj #u f ~p1 , . . . ,pn!u2

3
@nm2l /2m1nm1m14p2~2m!3/2~Anlm2/2m1nm1m1ml22Am2m!#2

m2l 4

1E
upj u.mAl

P j@dpj #u f ~p1 , . . . ,pn!u2,
C8

l 2
i f i21E

upj u.mAl
P j@dpj #u f ~p1 , . . . ,pn!u2.

Note that the second term can be made smaller than anye.0, by choosingl sufficiently large,
sincei f i is finite; thus the result follows.
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Boundary conformal fields and Tomita–Takesaki theory
K. C. Hannabussa) and M. Sempliceb)
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Motivated by formal similarities between the continuum limit of the Ising model
and the Unruh effect, this paper connects the notion of an Ishibashi state in bound-
ary conformal field theory with the Tomita–Takesaki theory for operator algebras.
A geometrical approach to the definition of Ishibashi states is presented, and it is
shown that, when normalizable, the Ishibashi states are cyclic separating states,
justifying the operator state corespondence. When the states are not normalizable
Tomita–Takesaki theory offers an alternative approach based on left Hilbert alge-
bras, making possible extensions of our construction and the state-operator
correspondence. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1625872#

I. INTRODUCTION

Since their introduction and exploitation, particularly by Cardy, there has been a strong
est in boundary states in conformal field theory.3–6,14 However, there are many other interestin
examples of quantum field theories with boundary. For example, the Unruh effect,25 in which an
observer accelerating through a vacuum detects a thermal spectrum of particles, can be li
the splitting of two-dimensional Minkowski space into two Rindler-type space–times, and
horizon or boundary between them~see particularly Refs. 22, 25, and 2!. An even more obvious
example of a boundary, though in momentum rather than configuration space, is the Fermi
level. Although physically very different, these share mathematical features which we shall
in this paper, placing boundary conformal field theory within the broader context of ope
algebras associated with quantum field theories with boundaries. We shall concentrate
boundary states, where the broader context suggests an alternative mathematical descri
Ishibashi states, which avoids the normalizability problem. The key mathematical tool, sugg
already by the Unruh effect, is Tomita–Takesaki theory, whose primary physical use is usu
study thermal states and the KMS condition~see Sec. IV and Ref. 24!.

To see how this comes about we first consider the treatment of the Ishibashi boundary
in conformal field theory. In the physics literature conformal symmetry is usually express
terms of a Lie algebra which is the direct sum of two~commuting! copies of the Virasoro algebra
a central extension of the vector fields vect(S1) on a circle. The Virasoro algebra is generated
elementsLn ~or by L̃n for the other copy! for nPZ, with the Lie brackets given in terms of th
central chargecPR by

@Lm ,Ln#5~m2n!Lm1n1
cn~n221!

12
dm1n,0 ,

@ L̃m ,L̃n#5~m2n!L̃m1n1
cn~n221!

12
dm1n,0 .

IntroducingLn52L(zn11]/]z) andL̃n52L̃( z̄n11]/] z̄), these commutation relations define pr

a!Electronic mail: kch@balliol.oxford.ac.uk
b!Current address: Dipartimento di Matematica, Via Saldini, 50, 20133 Milano, Italy.
55170022-2488/2003/44(12)/5517/13/$20.00 © 2003 American Institute of Physics
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jective representationsL andL̃ of vect(S1) with essentially the same multipliers. We shall often

write L(X) for the representation of a general holomorphic vector fieldX, and L̃(Y) for an
antiholomorphic vector fieldY.

The Ishibashi statesV are supposed to satisfyLn* V5L̃nV, for all nPZ ~whereLn* 5L2n).
This condition can be regarded as a replacement for the highest weight condition thatLnV50
5L̃nV for n.0. Unfortunately, the vectorsV which occur in the physics literature are almo
always unnormalizable, that is, they are not really vectors in the representation space at a

Another useful feature of conformal field theories is the operator-state corresponden
which an algebra elementa is identified with the vectoraV. In fact, this identification map is
surjective just when the vectorV is a cyclic vector, and is one-to-one whenV is separating~that
is, aV vanishes only whena50). The operator-state correspondence also means that the al
can also be regarded as an inner product space, and so should in fact be some sort of
algebra~a *-algebra which is also a pre-Hilbert space with certain properties linking the mul
cation and inner product!. Now left Hilbert algebras and cyclic separating vectors are unite
Tomita–Takesaki theory.24,7,8,22Moreover, that theory can cope with the situation when ther
only the Hilbert algebra, but no cyclic separating vectorV, as happens when the Ishibashi sta
are not normalizable.

In this setting other features of conformal field theory find a natural place. For example
and right multiplication in the Hilbert algebra generate two commuting von Neumann algeb
operators, which Tomita theory shows to be anti-isomorphic. This is just the sort of stru
exhibited by the two algebras generated by theLn and theL̃n . In fact, we shall often find it
convenient to forget the detailed structure of the Virasoro algebra and simply work with
commuting~or graded commuting! algebrasA1 and A2 which are related by some conjuga
linear homomorphisma°ã, such thata55a. We associate to the boundary a left Hilbert algeb
A0 , having the given commuting anti-isomorphic algebras as its left and right von Neum
algebras. In some cases this Hilbert algebra can be generated by a generalized Ishibashi vV
satisfyinga* V5ãV, for all aPA1 .

In this paper we shall show how this viewpoint enables us to reconstruct various results
the physics literature. Section II explains how the geometrical link between boundaries and
lutions provides an easy characterization of a subgroup of the conformal group respecti
boundary, and of the Ishibashi states. This is extended in Sec. III to* -algebras having an antilinea
involutory automorphism. In Sec. IV it is shown that these definitions pick out cyclic separ
vectors, bringing the ideas into the framework of Tomita–Takesaki theory. Section V loo
properties of symmetries of such a system. The ideas are brought together in Sec. VI to sho
Tomita–Takesaki theory provides a replacement for Ishibashi states when, as usually ha
these are not normalizable. Finally we discuss the situation when a region has several
nected boundaries. The two appendices review the Unruh effect from the perspective of con
field theory and the fermion field theory arising as the continuum limit of the Ising model.

While working on this topic we became aware of work by Wassermann,27 which also inves-
tigates boundary conformal field theory using operator algebras, but with somewhat dif
objectives. The monograph by Evans and Kawahigashi9 explains the links between operator alg
bras and ordinary conformal field theory.

II. THE CONFORMAL GROUP

The vector fields are the Lie algebra of the orientation preserving diffeomorphisms o
circle H5Diff 1(S1). In practice, however, the Lie algebra action of vector fields does not alw
exponentiate to a well-defined action ofH, and, as Isham has remarked,13 it really makes more
sense to consider a pseudogroup of locally defined transformations. Alternatively, one might
for groups or Lie algebras by working in the context of a Hopf algebra, but, for simplicity, ha
signaled the technical obstacle, we shall proceed as though the group actions existed, lea
reader to reinterpret results in those few cases where necessary.
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The key to the study of boundaries in quantum conformal theory, as in its classical ana
the method of images. The boundary separates two regions, the physically interior region
reflection outside the curve. The reflection, which reverses the holomorphic structure, fix
boundary. For example, in two dimensions the unit circleC is the fixed point set of the antiholo
morphic involutionkC :z°1/z̄ which interchanges the unit disc and the exterior, while the
axis is the set fixed by conjugationkR :z° z̄. By the Riemann mapping theorem the interior of a
Jordan curve inC can be mapped to the unit disc by a mapF, so for any such curve there is a
antiholomorphic involutionk5F21kCF which interchanges the inside and outside of the cur
though one has to be careful about behavior on the curve itself.~In practice, it is more convenien
to use the mapF taking the interior to the upper half plane, andk5F21kRF, so thatk(z)
5F21F(z), whereF̄(z)5F( z̄).) The product of two antiholomorphic involutions is holomorph
~for example,kkR(z)5F21F̄(z)), and so products of even numbers of such involutions gene
a subgroup of the conformal group, which is clearly normal as the conjugate of a produ
involutions is the product of their conjugates. Using the fact that the conformal group i
product of two copies of the diffeomorphism group of the circle, together with Cartan’s resul
diffeomorphism groups have simple Lie algebras,12 we see that a group with the Lie algebra of t
whole conformal group is generated in this way.

The boundary involutions induce antilinear automorphisms of any algebras associate
the surface, and we shall argue that these provide a dense subalgebra with the structure of a
or modular Hilbert algebra, which encodes the information about the boundary normally des
using Ishibashi states.

A conformal transformation ofS can be reflected to give a conformal transformation in
subgroupGk commuting with the involutionk.

Lemma 2.1:The restriction of the multiplier toGk is trivial.
Proof: We start by considering the case of the upper half plane and involutionk5kR :z° z̄

defining the real axis. A conformal transformationF:z°F(z) commutes withkR if and only if
F( z̄)5F(z), or equivalentlyF5F̄. To find the effect on the multiplier we need to work at the L
algebra level, where a typical vector field has the form

X1Y5(
n

Xnzn11
]

]z
1(

n
Ynz̄n11

]

] z̄
.

We easily calculate that

k~X1Y!k5(
n

Ȳnzn11
]

]z
1(

n
X̄nz̄n11

]

] z̄
,

so thatX1Y commutes withk if and only if Yn5X̄n for all n ~or equivalentlyY5kXk). In the
real Lie algebra ofG we also haveXn52X̄2n . Thus in the real Lie algebra ofGk one hasXn

52Y2n , so that it is generated by elements of the formz2n11]/]z2 z̄n11]/] z̄. ~In more abstract
form the elements of this subalgebra have the formX1Xk, whereXk5kXk.)

The representations are thus generated byL2n2L̃n . Now, since theLm and L̃n commute,

@L2m2L̃m ,L2n2L̃n#1~m2n!~L2m2n2L̃m1n!5@L2m ,L2n#1~m2n!L2m2n1@ L̃m ,L̃n#

2~m2n!L̃m1n .

The first two terms give2dm1n,0cn(n221)/12, while the last pair gives the same withn replaced
by 2n, so that there is cancellation, and the multiplier vanishes on this subalgebra.

Although we have only proved the result forkR , any other involution is conjugate to this an
conjugation does not affect the triviality of the multiplier. h
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Note: The characterization of the elements of the Lie subalgebra as having the formX1Xk

works more generally, and these are represented byL(X)1L̃(Xk). For unitary representations o
the real algebraL(X)52L(X)* , so that the subalgebra is represented by elements of the
2L(X)* 1L̃(Xk). One then checks that, for any holomorphic vector fieldsX andY,

@2L~X!* 1L̃~Xk!,2L~Y!* 1L̃~Yk!#1L~@X,Y# !* 2L̃~@X,Y#k#)

5@L~X!* ,L~Y!* #1L~@X,Y# !* 1@ L̃~Xk!,L̃~Yk!#2L̃~@Xk,Yk#!

52~@L~X!,L~Y!#2L~@X,Y# !!* 1~@ L̃~Xk!,L̃~Yk!#2L̃~@Xk,Yk#!!,

which cancels to give 0.
The corresponding condition for the conformal groupG5H3H is obtained by taking the

tensor productV of the s-representationsV and Ṽ obtained by exponentiatingL and L̃:
V(exp(X))5exp(L(X)) and Ṽ(exp(X))5exp(L̃(X)). As we readily see, the subgroup commuti
with the involution is

Gk5$~x,xk!PH3H:xPH%.

We may look for a vectorVk in the representation space which is an eigenvector for all elem
gPGk :

V~g!Vk5l~g!Vk .

This is a quantum mechanical analog of the curve itself for a conformal field theory based
interior of the fixed point set ofk. ~For consistency the multiplier on the subgroupGk must be
trivial, but that is assured by the Lemma.!

The eigenvectorVk must also be an eigenvector for the Lie algebra ofGk and, when the
boundary is the real axis, we know that this is generated byL2n2L̃n5Ln* 2L̃n . The simplest case
is when the eigenvalues vanish~or Vk is actually fixed by the subgroupGk), giving (Ln*
2L̃n)Vk50, for all nPN, which is the Ishibashi condition. This condition can also be expres
in the formL(X)* Vk5L̃(Xk)Vk , valid for any boundary curve.~When the eigenvalue is non
vanishing one may subtract half of it from eachL and L̃, to obtain new operators satisfying th
same commutation relations whose kernel containsVk , so that the condition that the vector b
fixed by Gk is less special than appears at first sight.! We deduce the following result.

Lemma 2.2:The Ishibashi condition on a vectorVk is equivalent toVk being a vector fixed
by the representation ofGk , or annihilated by its Lie algebra.

Note: It follows from the definition of the Ishibashi boundary stateV that

^V,Ṽ~ x̃ j !V~xk!V&5^Ṽ~ x̃ j
21!V,V~xk!V&5^V~xj

21!* V,V~xk!V&5^V~xj !V,V~xk!V&

defines a positive matrix. In Euclidean algebraic field theory this is the reflection posi
condition.18,11

The advantage of this more abstract characterization is that similar constructions co
made for any groupG with a multiplier s with subgroupsH, on which the multiplier is totally
nondegenerate, andK on whichs is trivial, such thatHùK5$1% andG5HK. In some ways the
special feature of conformal field theory is that all boundaries are~more or less! equivalent. The
massm bosons in the positivez half of R3 with Dirichlet boundary conditions, for example, sti
have an obvious Green’s function

GR~r ,a!5
e2mur2au

4pur2au
2

e2mur2ãu

4pur2ãu
,
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whereã is the reflection ofa in the planez50. However, the same Dirichlet problem in the un
sphere has Green’s function

GC~r ,a!5
e2mur2au

4pur2au
2

e2mlur2ãu

4plur2ãu
,

whereã is now the inverse ofa with respect to the sphere, andl5uau, so that this nonconformally
invariant system has rather different forms of Green’s function for the two boundaries.

III. BOUNDARY STATES FOR ALGEBRAS

We may encode the effect of the boundary on the conformal Lie algebra by defining the

ak@L~X!1L̃~Y!#5L~Xk!1L̃~Yk!.

From the properties ofk it is clear thatak is an antilinear involution, and, using the sam
argument as in the alternative proof of Lemma 2.1,ak is an additive and multiplicative
* -homomorphism. It is therefore an antilinear automorphism.

Returning to the general situation, we writeA1 for the algebra of fields inS, A2 for those on
S̃, andV for the boundary state in a space on which both algebras operate. We assume
involutory antilinear* -isomorphismak :A1→A2 can be associated with the geometric invo
tion k. We shall sometimes writeak(a)5ã. This can be extended to an involutionak of the
algebras generated byA1 andA2 by definingakuA2

5ak
21uA2

. A boundary stateVk is required
to satisfy

a* Vk5ak~a!Vk ,

for all aPA1 , and sinceak is an involution, the same applies to the whole algebra generate
A1 , andA2 .

We have seen that these relations hold whenA1 is the enveloping algebra of one copy of th
Virasoro algebra andA2 the other, or whenA1 and A2 are suitable group algebras for th
corresponding groups. However, there are other examples such as the massless free fermio
which is the continuum limit of the Ising model10,16 ~see Appendix B!. Fermion theories are
described by canonical anticommutation relation algebras CAR(W) over a complex inner produc
spaceW, and are generated by creation operatorsc(w), depending linearly onwPW, and their
adjoint annihilation operators, satisfying the canonical anticommutation relations

@c~w!* ,c~z!#15^w,z&1, @c~w!,c~z!#150.

References 10 and 16 describe the boundary states in terms of a Bogoliubov transformaK.
This would normally be given in terms of Bogoliubov operatorsA ~linear! andB ~antilinear! on
W, which would be thought of as defining an automorphism of the CAR algebra:

c(A,B)~w!5c~Aw!2c~Bw!* .

The conditions for this to be an automorphism (c(A,B) and c satisfy the same anticommutatio
relations! can be written as

A* A1B* B51, A* B1B* A50.

WhenA is invertible we may introduce the antilinear operatorZ5BA21 and rewrite the second
condition asZ1Z* 50. The connection with the Ishibashi states comes from the observation
the conditionc(A,B)(w)* V50 ~for all wPW) defining a Fock vacuumV, can be rewritten as

c~w!* V5c~Zw!V,
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which looks like an Ishibashi condition withak(c(w))5c(Zw).
The problem with this approach is that in the case of the Ising modelZ is not a Hilbert–

Schmidt operator, and so~by the Shale–Stinespring criterion20! the Bogoliubov transformation is
not implementable, as the papers acknowledge, so thatV does not lie in the same representati
space as the Fock vacuum forc. However, in this case the spaceW decomposes intoW1

% W2 , the orthogonal direct sum of two subspaces, corresponding to the two sides of the b
ary and the Ishibashi criterion is needed not for allwPW, but only for w in the subspaceW1 .
This provides an alternative interpretation of the condition onV.

Suppose that~as happens in the example! A maps each ofW6 to itself, whileB sendsW6 to
W7 . The condition thatA* B1B* A should vanish is now automatically satisfied on the subsp
W1 , though the conditionA* A1B* B51 is still needed. We shall writec6 for the restriction of
c to W6 , and then we havec(A,B)(w)5c1(Aw)2c2(Bw)* , for wPW1 . This formula is es-
sentially the Araki–Powers–Størmer purification map,1,19 which realizes a quasi-free state ofW1

as the restriction of a Fock state for the ‘‘doubled’’ spaceW5W1 % W2 . ~Quasi-free states hav
all their n-point correlation functions given in terms of the two-point correlation functions by
same formulas as for Fock states, for example in the fermion case by Wick’s determinant for!
Purification is generally used whenZ is invertible ~so thatW really is a double!, andZ need no
longer satisfy a Hilbert–Schmidt condition. In the example of the Ising modelZ is indeed invert-
ible, and this provides a better interpretation of the Ishibashi condition.

Before stating the key result we note that this example shares with the conformal algeb
property that there are simple commutation relations betweenA1 andA2 ~which intersect only in
C1!. For the Ising modelA15CAR(W1), andA25CAR(W2). We shall assume that in gener
we have a relation of the sort

aak~b!5e~b,a* !ak~b!a,

with e(b,a* )PC, for all a,bPA1 . @In the case of the Virasoro algebrae(a,b) is identically 1,
and for homogeneous elements of the CAR algebra of degreesd(a) and d(b) it is
(21)d(a)d(b). ] For consistency we now require

ak~ab!Vk5b* a* Vk5b* ak~a!Vk5e~a,b!ak~a!b* Vk5e~a,b!ak~a!ak~b!Vk ,

suggesting thatk should satisfyak(ab)5e(a,b)ak(a)ak(b). In practice algebras such as th
Virasoro and CAR algebras are graded and we can use this formula as a way of generat
whole algebra from its degree one subspace, which is where the condition onVk is initially given.

When the algebra and its image enjoy a commutation relation of this sort they genera
algebraA5A1ak(A1). One can, if so desired, generalize the notion of crossed product to
setting and work with the crossed product^k&qA of the algebraA1ak(A1) by the group̂ k&
>Z2 generated byk.

IV. TOMITA–TAKESAKI THEORY

We now turn to a very important property ofVk , which does not seem to have been giv
much prominence. In the presence of a boundary the algebras are doubled due to reflecti
we have seen how this doubling can be interpreted as a version of the Araki–Powers–S
~APS! purification construction.~This already links it to numerous quite different physical situ
tions where quasi-free states appear naturally, as, for example, for systems at nonzero te
tures.!

The cyclic vector of the quasi-free states constructed by nontrivial doubling is usually
separating, that isaV50 for aPA1 only if a50. In fact this is easy to prove directly.

Theorem 4.1: Suppose thatA1 , ak , e are as above, and thatH is a module forA1ak(A1).
If there exists a cyclic vectorVk satisfyingak(a)Vk5a* Vk for all aPA1 , then it is cyclic and
separating forA1 .
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Proof: The commutation property forA1 and ak(A1) permits us to order any product o
elements ofA1 andA2 with the elements ofA1 to the left, and those ofA2 to the right. IfVk

is a cyclic vector for the double algebra then the space is the closure of the span of products
on Vk . Now, any element ofA2 has the formak(a) for aPA1 , and, ifak(a)Vk5a* Vk for all
aPA1 , then this can be replaced bya* Vk . Using the commutation propertya* can be taken to
the left of the other elements ofA2 acting onVk , and the process repeated until we have o
elements ofA1 acting onVk , showing thatA1 also generates the whole space fromVk . We
could have argued similarly thatVk is also cyclic forA2 , which is equivalent to its being
separating forA1 . ~For if aVk50 for aPA1 , then for anybPA1 we have

aak~b!Vk5e~b,a* !ak~b!aVk50,

and, sinceVk is also cyclic forA2 , this shows thata annihilates the whole space, so thata
50.) h

We may now define the Tomita operatorSk :aVk°a* Vk , for aPA1 . By definitionSk is an
involution and fixesVk , but also

SkaSkbVk5Skab* Vk5ba* Vk5bak~a!Vk5ak~a!bVk ,

showing thatak(a)5SkaSk . Thus we may obtain an action of the crossed product by sendik
to Sk .

We have already noted that a cyclic separating vector is precisely what is needed to just
state-operator correspondence, since there is a one-to-one correspondence between alg
mentsaPA1 and the vectorsaVk . ~This has long been known in quantum field theory in t
context of the Reeh–Schlieder theorem. A similar connection between cyclic separating v
and reflection properties has been used purely as a mathematical tool in Ref. 15.! In Tomita–
Takesaki theory this correspondence is used to give the algebra an inner product^a,b&
5^aVk ,bVk& with respect to which it is a left Hilbert* -algebra.24,7,8,23 ~This is a *-algebra,
which is also an inner product space, such that the mapa°a* is closable, the left multiplication
action of the algebra on itself defines a bounded nondegenerate* -representation.! In conformal
field theory one tends to work with the much smaller algebra of primary fields. This ha
advantage of giving a much smaller Frobenius algebra, but loses other structure such
adjoint.

Tomita–Takesaki theory gives us far more than this. The operatorSk , defined earlier, has a
polar decomposition with positive part given by the positive linear operatorDk5Sk* Sk , and
antiunitary partJk5SkDk

2 1/2, which is also an involution.~The association of boundary states
antiunitary operators has been noted in a somewhat different form by Watts. One can cons
representation of the cross product by mappingk to Sk , but whenDkÞ1 this is not antiunitary,
and so one does not obtain a*-representation.! It is then known that the state defined byV satisfies
the KMS condition at inverse temperature 1, with respect to the one-parameter unitary au
phism groupa°at5D i taD2 i t that is

^V,abV&5^V,bDaD21V&.

It is also known thatJ defines a spatial anti-isomorphism betweenA1 and its commutantA18 ~the
operators on the spaceA1V which commute withA1), that isA18 5JA1J21. @In the Ising model
the commutant is a modified version of CAR(W2).] In fact J is also an involution. In conforma
theories it can be considered as representingk in a unitary–antiunitary representation of th
conformal group extended byk.

V. SYMMETRIES OF THE SYSTEM

Usually the physical algebra will also have symmetries, acting as automorphisms, a
example, the conformal group acts as automorphisms of the CAR algebra. We can then fo
crossed product of the symmetry group and algebra. For boundary theories it makes se
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consider a groupG which contains the symmetry groupG0 as a normal subgroup of index 2
where we think ofG as the extension ofG0 by the addition of the boundary involutionk. The
group G0 acts by automorphismsag of A1 and elements of the nontrivial coset inG/G0 by
antilinear automorphisms. For consistency the mapg°ag is a homomorphism, which means th
akagak5akgk .

The *-representations of the crossed product algebra correspond naturally to covariant
sentations (V,p) consisting of a projective representationV of the group and a*-representationp
of the algebra, which satisfyV(g)p(a)5p(ag(a))V(g).

Lemma 5.1:Let (V,p) be a covariant representation of (G,A1), with consistency between
the involutions in the sense thatakagak5akgk , and suppose that there is a unique generali
Ishibashi vectorVk for A1 . ThenVk is also an eigenvector forG.

Proof: Using the covariance condition in the formV(g)p(a)* 5p(ag(a))* V(g), we there-
fore have

p~ag~a!!* V~g!Vk5V~g!p~a!* Vk5V~g!p~ak~a!!Vk5p~agak~a!!V~g!Vk .

WhengPGk this can be written asp(akag(a))V(g)Vk . Replacingag(a) by a gives

p~a!* V~g!Vk5p~ak~a!!V~g!Vk ,

so that by uniquenessV(g)Vk is a multiple ofVk , showing thatVk also defines a boundary sta
for G. h

VI. LEFT HILBERT ALGEBRAS

Unfortunately, although our reinterpretation of the boundary states avoids the infinities c
by nonimplementable Bogoliubov transformations, it still does not banish non-normalizable
tors completely.~There are other ways of circumventing this problem, for example using Con
composition of correspondences.27!

In diagonalizable minimal conformal field theories the representation space for the conf
group G5H3H decomposes into a finite number of copies of spaces equivalent toHV^ HV* ,
whereV is an irreducibles-representation ofH onHV , andV* denotes the dual representation
the dual spaceHV* , defined byV* (x) f 5 f +V(x)215 f +V(x)* . We may identifyHV^ HV* with the
Hilbert–Schmidt operatorsLHS(HV) on HV , and the projective representationsV and Ṽ as the
natural left and right actions on operators. Identifying the boundary stateVk with a linear operator
it must satisfy

Vk5V~g!Ṽ~gk!Vk5V~g!VkV~g!21,

so that, by irreducibility,Vk is a multiple of the identity, which~for infinite-dimensionalV) is not
Hilbert–Schmidt, so thatVk is not normalizable.

The situation is somewhat analogous to the Peter–Weyl theory for compact groups, wh
H3H representation spaceL2(H) decomposes into a direct sum ofLHS(HV) for irreducibleV,
and the Plancherel theorem tells us that thed function at the identity ofH is the sum of multiples
of the identity in each component, except that in this case theV are finite-dimensional. In fact, the
similarity can be taken much further, if we recall that the conformal group is a direct pro
group H3H, with H5Diff 1(S1), and the subgroupGk5$(x,xk):xPH% is almost a diagona
subgroup. Were we dealing with a square-integrable representation, the fact thatVk is fixed byGk

would tell us that the projective representation ofG is contained in that induced by the trivia
representation ofGk . @A vector c in the representation space defines a functiongPG°c8(g)
5^g•V,c&. Since V is fixed by hPGk , we havec8(gh)5s(g,h)c8(g), showing thatc8
satisfies the equivariance condition for the induced representation space, and for square-in
representations the mapc°c8 is unitary up to a scalar factor.# In practice this does not mak
sense becauseG/Gk>H is not locally compact so we lack a quasi-invariant measure neede
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the usual inducing construction. However, it formally resembles the construction of the proje
representation ofH3H induced from the diagonal subgroup. This would act onL2(G/Gk)
>L2(H), and is the product of the left regulars and right regulars̄-representations ofH, giving
a very clear analogy with the Peter–Weyl theory.

Fortunately Tomita theory was devised precisely to provide a remedy for the absenc
cyclic separating vector by using only a left Hilbert algebra. One can still define the antilinea
S as the closure ofS(a)5a* , andD5S* S, J5SD2 1/2. Then^b* ,a* &5^Sb,Sa&5^a,Db& for a
positive operatorD. As well as the obvious relation (ab)* 5b* a* we may set (ab)* 5ãb* . It
follows that

~ab!̃c* 5@~ab!c#* 5@a~bc!#* 5ã~bc!* 5ãb̃c*

andab̃5ãb̃, so that we have an antilinear homomoprhisma°ã as before. Moreover,

ãc* b* 5ã~bc!* 5~abc!* 5c* ~ab!* 5c* ãb* ,

whereã commutes withA1 . When the algebra has an identity 151* then

a* 15a* 5ã1,

showing thatV51 is a generalized Ishibashi vector, and we may think of the algebra as cons
of the aV.

This is the situation in which we find ourselves in the case of the Hilbert–Schmidt oper
In our case with our non-normalizable state being a multiple of the identity it is clear tha
should just take the Hilbert–Schmidt operators as the left Hilbert algebra.

In this case, since

^b* ,a* &5tr~b** a* !5tr~a* b!5^a,b&,

we see that the modular operator is in this caseDV51. This means thatSV is itself antiunitary,
providing a slightly different perspective on Watts’ identification of boundary states with ant
tary maps.6 This contrasts with the case of the free fermion model discussed earlier, whereD is
certainly not 1. At first sight this contradicts the fact that this is also a conformal model. How
those fermions were onR not the circle as in the minimal conformal model.

One immediate consequence of the fact thatSk is antiunitary is that we can extend ou
projective representationU of the conformal group to a unitary–antiunitary representation of
group which includesk, by settingU(k)5Jk5Sk . The standard Tomita–Takesaki theory tells
that A18 5JkA1Jk , and sinceA18 5A2 , this shows explicitly that the quantum action ofk
interchanges the quantum algebras of observables inside and outside the boundary.

VII. MULTIPLE BOUNDARIES

Similar methods can be applied when a region has several boundaries. For example
there are two boundaries associated with involutionsk1 and k2 , one has to look for a stateV
which is an eigenvector for the elements ofGk1 ,k2

5Gk1
ùGk2

. This subgroup can also be thoug
of asGk1

ùGk1k2
, that is the subgroup ofGk1

which commutes with the holomorphic transfo
mationk1k2 . In classical conformal problems there are two common approaches to proble
a wedge with anglep/N. One is to calculate the Green’s function using the images of the var
products of reflections in its two boundaries. The other is to carry out the conformal transf
tion z°zN which maps the wedge to the half-plane where the Green’s function is already k
~using a single image!. The approach we have been using shows a simple connection be
these, by producing the transformation which simplifies the problem. In fact, the holomo
functions invariant underk1k2 form a ring of holomorphic functions of a new variable which
the transform ofz.
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As examples we consider regions bounded by two straight lines. There are two ca
consider, the case when the lines meet in a point, which we take to be 0, and the case wh
are parallel in the finite plane. In the first case we denote byku the reflection in the half-line of
complex numbers with argumentu. This takesz to e2iuz̄, and so the productkuk0 associated with
the wedge where the argument lies in~0,u! is the rotation which takesz to e2iuz. When u
5p/N this rotation has finite orderN. By considering the Laurent expansion, any holomorp
function which is invariant under such rotations must be a function ofzN. The mapz°zN is
precisely the map from the wedge to the half-plane.

The other possibility for a region bounded by two straight lines is the strip between
parallel lines. For definiteness let us take the strip where the imaginary part ofz lies in ~0,1/2b!.
Reflection in the upper line takesz to z̄1 ib, and the product of the two reflections mapsz to z
1 ib. Again we see that the holomorphic functions invariant under this transformation are
morphic functions of exp(2pz/b), so that this time we have recovered the transformat
z°exp(2pz/b) which maps the strip to the half plane.

In a region with multiple boundaries one has involutionsJk i
representing the different invo

lutions and the mapk ik j is represented by the linear operatorJk i
Jk j

. In the example of the strip
double reflection of the upper half-plane maps it to a subset of itself, and accordinglyJk i

Jk j
gives

an endomorphism of the algebraA1 . This is very similar in form to the Longo canonical end
morphism ofA1 defined by its image subalgebra.17 ~That is in some ways more like the cas
whenb50, but with two different algebras sharing the same boundary.!
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APPENDIX A: THE UNRUH EFFECT IN CONFORMAL FIELD THEORY

Sewell showed how to understand the Unruh effect in terms of KMS states.22,26 This also
shows the role of the Rindler horizon in providing a boundary between two space–time alg
There is also a direct conformal field theory argument for the effect, modeled on an argum
Ref. 4.

The world line of an observer with uniform accelerationa in a fixed direction is given in
terms of the proper timet by

~ct,x!5
c2

a
~sinh~at/c!,cosh~at/c!!,

and this motivates the use of Rindler coordinates

~ct,x!5
c2

a
eaj/c2

~sinh~at/c!,cosh~at/c!!.

We may rewrite the transformation as

x6ct5
c2

a
exp~a~j6ct!/c2!.

This suggests, on performing a Wick rotationt° i t , the conformal transformationz
5c2/a exp(az/c2), from z5j1 ict to z5x1 ict. We calculate thatdz/dz5exp(az/c2).

Suppose now that the fieldf(z) has typical Fock correlation functions

^f~z1!* f~z2!&5uz12z2u22h,

and conformal weight (h,h), so that on transforming to the new coordinates
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^f~z1!* f~z2!&5ac22uehaz1 /c2
ehaz2 /c2

uueaz1 /c2
2eaz2 /c2

u22h

5ac22uea(z12z2)/c2
2e2a(z12z2)/c2

u22h.

Now the last expression is unchanged by the translationz1°z11 i2pc2/a, which in terms of the
original problem involves addingipc/a to t1 . Such a periodicity in imaginary time is the KMS
condition at inverse temperatureb52pc/a, thus giving the Unruh effect.

APPENDIX B: THE CONTINUUM ISING MODEL

It is known that the Ising model has a continuum limit~as the lattice spacing goes to 0!, which
is described by a canonical anticommutation relation algebra over the complex inner produc
W5S(R) ~the Schwartz functions!, and one has the smeared creation and annihilation opera

c~w!5E w~x!a* ~x! dx, c~w!* 5E w~x!a~x! dx.

In the case studied in Refs. 10 and 16 the boundary atx50 separates the positive real axis, whi
is the physically interesting part of the space, from its mirror image. Denoting byc(w1) the
operator which creates the fermion statew1 on the physically interesting side of the boundary
turns out that the boundary stateVk satisfiesc(w1)* Vk5c(Kw1)Vk , for a certain operatorK,
mostly simply expressed in terms of the Fourier transformFW1(p) by (FKw1)(p)
5K(p)(Fw1)(2p), whereK(p)52 ip/(Ep6m), Ep5Ap21m2 and the sign depends on th
type of boundary condition.~Reference 10 expressesK in terms of the rapidityu rather thanp
5m tanhu.) This fits our previous framework withak(c(w1))5c(Kw1).

Subtleties arise because the algebra is represented on the standard Fock–Dirac spac
ated by a vacuum killed by creators of negative energy states and by annihilators of po
energy states, so that there is a second boundary in momentum space, the Fermi level of
Dirac theory. Here the boundary separates positive from negative energies, and, as abo
Dirac vacuum stateV is killed by creators of negative energy states and by annihilators of pos
energy states. The annihilators of negative energy statesc(w2)* are then reinterpreted as creato
of a positron c̃(Cw2) ~C being charge conjugation!, and the defining identityc(w2)* V
5 c̃(Cw2)V can be interpreted as another example of the same class.

As mentioned in Sec. III,10,16 try to interpretK in terms of a Bogoliubov transformation wit
K5Z5BA21. However, the operatorK* K can be considered as the integral operator with
distributional kernelk(p,q)5uK(p)u2d(p2q), from which it is obvious that the Hilbert–Schmid
norm

tr~K* K !5E
R
k~p,p! dp

diverges, and so the Bogoliubov transformation is not implementable.
SinceK is normal, the conditionA* A1B* B51 reduces to (AA* )21511K* K, so we take

A5~11K* K !2 1/2:W1→W1 , B5KA:W1→W2 .

The adjoint antilinear mapK* :W2→W1 can be similarly used to extend the operatorsA andB
to W2 by defining

A5~11K* K !2 1/2:W2→W2 , B52K* A:W2→W1 .

~It can be shown that this choice is essentially unique.21! Then for wPW we set cK(w)
5c(Aw)2c(Bw)* .

The Fock vacuum vectorVk , killed by the annhilation operatorscK(w)* , therefore satisfies
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05cK~A21w1!* Vk5c~w1!* Vk2c~Kw1!Vk ,

giving the required image condition onVk . @There is a second condition that

05cK~A21w2!* Vk5c~w2!* Vk1c~K* w2!Vk ,

from which we deduce thatc(w2)* Vk52c(K* w2)Vk for all w2PW2 .]
As mentioned in Sec. III, the restriction to CAR(W1) of the state defined byVk is quasi-free.

The injection ofW1 into the doubleW is given byI Kw15Aw11Bw2 .
It is now easy to computeS at the one particle level, since we have

Sc~w1!Vk5c~w1!* Vk5c~Kw1!Vk

and, sinceS is an involution,

Sc~w2!* Vk5c~K21w2!Vk .

Similarly, we have

Sc~w2!Vk52c~K* w1!Vk , Sc~w1!* Vk52c~K* 21w1!Vk .

Thus on the one-particle spaceS has the matrix form

S;S 0 K21 0 0

K 0 0 0

0 0 0 2K* 21

0 0 2K* 0

D ,

giving

D;S* S5S K* K 0 0 0

0 ~KK* !21 0 0

0 0 KK* 0

0 0 0 ~K* K !21

D .

Thus in this case there is a nontrivial modular operator, andS is not antiunitary.
It is well known that the KMS condition facilitates the calculation of correlation functio

For example, we have

^c~w1!* c~z1!&5^c~z1!Dc~w1!* D&

5^c~z1!c~K* Kw1!* &5^K* Kw1 ,z1&2^c~K* Kw1!* c~z1!&,

so that^c((11K* K)w1)* c(z1)&5^K* Kw1 ,z1&, and

^c~w1!* c~z1!&5^~11K* K !21K* Kw1 ,z1&.

This illustrates the fact that this interpretation of the boundary states also provides a useful t
calculation.
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on the torus
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We define the Brownian motion on a torus group. We define the stochastic integral
of a one-form over each canonical cycle of the torus and the stochastic integral on
a two-form over the torus. We cannot apply martingale theory in order to define
these stochastic integrals. We define a stochastic cohomology in the Chen–Souriau
sense of the torus group, which allows us to define the stochastic Wess–Zumino
term on the torus group. We show that it is related to the stochastic holonomy over
a stochastic line bundle on the loop group. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1614870#

I. INTRODUCTION

Let us recall Segal’s axioms of conformal field theory. Consider the set of possibly dis
nected Riemann surfacesS with analytic parametrizationpi , i PI of the boundary loops, negativ
~positive! for i PI 2 (I 1) and with a Riemannian surface agreeing with the conformal structur
S, trivial around the boundary. Let us fix an Hilbert spaceH with an antiunitary involutionP.

Segal’s axioms: A real conformal field theory is an assignment

~S,pi ,g!→A~S,pi ,g!, ~1.1!

where

A~S,pi ,g!: ^ i PI 2
H→ ^ i PI 1

H ~1.2!

are trace-class operators~empty tensor are equal toC! satisfying to the following properties.
Property 1: If ( S,pi ,g) is the disjoint union of (Sa,pi a

a ,ga), then

A~S,pi ,g!5 ^ aA~Sa,pi a
a ,ga!. ~1.3!

Property 2: If we reverse the sense of the time inpi 0
, we get another loop calledp̃i 0

and if
i 0PI 1 , then

~A~S,p̃i 0
,pi 8 ,g!xi 0

^ x,y!5~A~S,pi ,g!x,Pxi 0
^ y! ~1.4!

with i 8Þ i 0 , xP ^ i PI 2
H, yP ^ i PI 12 i 0

H.
Property 3: If F is a conformal diffeomorphism fromS1 into S2, then

A~S1,pi
1,F* g2!5A~S2,F+pi

1,g2!. ~1.5!

Property 4: If S8 is obtained fromS by identifying the boundary loopsi 1PI 2 and i 2PI 1 ,
then

A~S8,pi8 ,g!5Tri 1 ,i 2
A~S,pi ,g!, ~1.6!

wherei 8 is different fromi 1 and i 2 and Tri 1 ,i 2
is the trace between factorsi 1 and i 2 in the tensor

product ofH.
55300022-2488/2003/44(12)/5530/39/$20.00 © 2003 American Institute of Physics
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Property 5: If S̃ is the complex conjugate ofS, then

A~S̃,pi ,g!5A~S,pi ,g!* . ~1.7!

Property 6: If s is a real smooth function onS vanishing in a neighborhood of]S, then

A~S,pi ,exp@s#g!5expF ci

24p E
S
~1/2]s∧ ]̄s1Rgs!GA~S,pI ,g!, ~1.8!

whereRg is the curvature form ofg andc is a positive constant.
These axioms as it is noticed by Gawedzki~Ref. 24, pp. 106–107! may be deduced from the

physicists intuitive representation of the amplitudesA by formal functional integrals.H is a space
of functions over the loop spaceLM of a finite dimensional spaceM. P consists on the time
reversing onLM combined with the complex conjugation. The amplitudesA are represented a
formal integrals over mapsc:S→M fixed on ]S ~we refer to Refs. 9, 24, 25, 19, and 63 fo
surveys!:

E
c+pi5 f i

dm~c!5E
c+pi5 f i

exp@2I ~c!#dD~c!5A~S,pi ,g!~ f i !, ~1.9!

where dD(c) is the formal Lebesgue measure over the sets of mapsc andI (c) the energy of the
mapc.

Felder–Gawedzki–Kupiainen23 have introduced a line bundle over the loop space of
compact manifoldM and have said that the Hilbert space of the theory is the Hilbert spac
section of this line bundle over the loop space. A particularly interesting case is when the s
S is a torus. In such case, we consider the double loop space, and by property 4, the theory
be related to the trace of the semi-group associated to the amplitude when we consider cy

Moreover, if we consider a finite dimensional spin manifoldM, the index of the Dirac operato
D overM is equal to an integral over the loop space ofM. There are several approaches of it. O
can use probability, and we refer to the survey of Le´andre33 for various proofs of the Index
theorem by using probability, including Bismut’s proof. The second approach uses phys
supersymmetric paths integrals, and we refer to the works of Rogers58,59 for a rigorous approach
to supersymmetric proofs of physicists of the Index theorem.

Over the loop space, the index of the Dirac–Ramond operator should be an integral ov
loop space of the loop space,68,60 that is an integral over random tori. This integral should be
partition function of the supersymmetric nonlinears-model. We refer to the two surveys o
Léandre41,42 for a beginning of Index theory over the loop space.

In the case where the manifold is the linear spaceRn, ~1.9! is a Gaussian measure, whic
corresponds to the free field measure. Since in two dimensions, the Green kernel associate
diagonal has a singularity on the diagonal, the random field associated to~1.9! is in fact a random
distribution~see Refs. 51, 64, and 26!: the random field is very irregular. It is difficult to state wh
is a distribution with values in a curved manifold, because the notion of distribution is linea

If S5@0,1#3@0,1#, there is another process indexed byS with values inR, which is the
Brownian sheet and which is continuous~as a matter of fact, the Brownian sheet is only Hoelde!.
(]2/]s]t)c is the white noise over@0,1#3@0,1#. On S, there is a natural order, and it is possib
after the works of Cairoli14 to study the stochastic differential equation in Itoˆ meaning:

ds,txs,t5A~xs,t!ds,tc ~1.10!

by using martingale theory, whereA is a vector field overR. This gives an example of a non
Gaussian random field parametrized by the square. In the Gaussian case, this gives the B
motion over the flat path space. Doss and Dozzi20 have studied the formal action which is ass
ciated to~1.10!, that is they have studied the large deviation theory. Le´andre and Russo46 studied
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the behavior of the density of the solutionxs,t of ~1.10! when (s,t)→(0,0) by using the Malliavin
calculus over the Brownian sheet.54 Norris52 has succeeded to give a geometrical meaning
~1.10! and has constrainedxs,t to live over a curved manifold.

But it is difficult to generalize~1.10! to the case where the world sheet is not the squ
@0,1#3@0,1#, because~1.10! uses the multiparameter martingale theory.

Airault–Malliavin in a series of papers~some of them are published, for instance, in Ref.!
have constructed the Brownian motion over a loop group. For that, they use the Brownian m
in a Sobolev space with values in the Lie algebra of the Lie groupG. This gives a random field
indexed by the cylinder@0,1#3S1 into G. Various works were done later~see Ref. 18, for in-
stance!. Fang and Zhang22 have studied the formal action which is associated to the Brown
motion over a loop group, that is they have performed the large deviations theory. The ac
hyperbolic with contrast of~1.9!. In the case of the flat Brownian sheet on@0,1#3@0,1#, the
Gaussian measure is given formally by

dn~c!5
1

Z
expF2E

@0,1#3@0,1#
U ]2

]s]t
c~s,t !U2

ds dtGdD~c!, ~1.11!

where dD(C) is the formal Lebesgue measure over the fields. Airault–Malliavin equation g
the Brownian motion over the loop group unlike the construction of the Ornstein–Uhlen
process over a loop space constructed by using the theory of Dirichlet forms, which gives a
process~see Refs. 2, 21, 41, and 45!.

Infinite-dimensional diffusion processes over infinite-dimensional manifolds have a long
tory initiated by Kuo32 in 1972. The Russian school has studied infinite dimensional proce
over infinite dimensional manifolds~see Refs. 4, 18, and 5!. We refer to Ref. 3 too for a theory o
stochastic processes over Hilbert manifolds.

Brzezniak–Elworthy11 have done a general theory of infinite dimensional manifolds o
M-type-2 Banach spaces. The interest ofM-type-2 Banach spaces is that there is a Doob inequa
for martingales over them. They apply their theory to the case of the free loop space of a ma
This produces random cylinders with values in a compact Riemannian manifold, or the Bro
motion with values in the loop space of a Riemannian manifold. The cylinders are only Ho

Brzezniak–Le´andre13 have extended the construction of Ref. 11 to the case where we con
Brownian pants. The world sheet has two output circle boundaries and one input circle bou
This gives an application fromEc^ Ec into Ec , where Ec is the Banach space of bounde
continuous functions over the loop space. This means that the Brownian pants are Felle
gives an approach to one of Segal’s axiom of conformal field theory,61 the Hilbert space of the
loop space being replaced by the Banach space of continuous functionals over it.

Felder–Gawedzki–Kupiainen23 have introduced a line bundle over the loop space in orde
understand the Hilbert space associated to the loop space, by using Deligne cohomolog
Hilbert space should be the Hilbert space of sections of this line bundle.

Léandre44 has considered random pants. The exit loops are random and Hoelder. The s
loop is a point. This defines a measure over the product of exit loop spaces, instead of a
measure as in Ref. 23 or in Ref. 25. Reference 44 applies the apparatus of Ref. 35 to defin
bundle over the product of exit loop spaces, with fiber almost surely defined. Therefore, R
defines the random parallel transport of an element of this line bundle. This leads to the defi
of two parameters stochastic integrals over a pant. Reference 33 gives a stochastic analo
the considerations of Ref. 23 with Hilbert spaces, instead of Banach spaces as in Ref. 13.

Reference 44 gives a generalization of Ref. 12, where the authors were considering a di
over C1 loop space endowed with a true line bundle. The parallel transport of an element o
line bundle over the random diffusion paths was studied in Ref. 12 and leads to two para
integrals, the internal time integral of the loop being a ordinary integral and the propagation
integral of the loop being stochastic.

The construction of Felder–Gawedzki–Kupiainen was done in order to understand th
called Wess–Zumino–Novikov–Witten model. In~1.10!, we replace dm~c! by
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dmk~c!5expF2I ~c!12ipkE
V
vGdD~c!, ~1.12!

whereV is a volume with boundaryc, v is the canonical three-form overM which is supposed to
be a compact simple simply connected Lie group andk is an integer.

In this work, we are motivated by the case whereS has no boundary, and is a torusT2 in order
to simplify the exposition. This means, we try to consider a trace in infinite dimension inste
considering the semigroup as it is motivated by Segal’s axiom.

First of all, we construct a measure over the torus groupT2(G), whereG is a Lie group. For
that, we consider the Brownian motion over the torus group, by considering Brzezniak–Elw
equation,11 where we consider the Brownian motion with values in a convenient Sobolev spa
functions fromT2 into Lie(G). This increases the number of parameters: there are two param
which come from the torus and one parameter which comes from the propagation of an elem
the Torus group. We get the heat kernel measure over the torus group. This measure is in
under the natural action ofT2 over T2(G).

The stochastic Wess–Zumino–Novikov–Witten model on the torus requires that one u
stand the topological Wess–Zumino term*Vv. This requires that one understand what are the
of Z-valued one-form over the space of random tori. It is the purpose of Sec. V of this work
give a definition of a stochastic differential calculus for the space of random tori in the mann
Chen–Souriau, and we show that the stochastic cohomology groups in the Chen–Souriau s
the space of random tori are equal to the determinsitic de Rham cohomology groups of the
of Hoelder mapsg(•):T2→G @we suppose thatT2(G) is connected#. This gives a two-
dimensional analogous to the stochastic Chen–Souriau calculus over the loop spa
Léandre.34,36–40,47This allows us to define a general stochastic Wess–Zumino term over the
group.

Moreover, overT2, there are two natural parameterss andt, which leads to a family of circles
St :s→(s,t). We suppose that the free loop groupL(G) is simply connected. Since there are lin
stochastic integrals over the circleSt , we can define a family of stochastic line bundlesj t over the
loop group. We define the stochastic parallel transportt0,t from j0 to j t along the path in the loop
group t→$s→g(s,t)% where g(•,•) is an element ofT2(G). This leads to a two-dimensiona
stochastic integral over the torus~we refer to the works of Pipiras–Taqqu56 for an analogous
approach of stochastic integrals for the fractional Brownian motion.~See Refs. 27, 43, and 44 fo
analogous approaches.! The main theorem of this paper is the following.

Theorem I.1: We find

expF2ipkE
V
vG5Tr t0,1. ~1.13!

This corresponds to a stochastic extension to the works of Konno30 in the classical case, i.e
the case where we consider the smooth torus group instead of strong Hoelder torus group
classical case, Konno constructed a line bundlej t over the loop group of loops→g(s,t), and
considered the parallel transportt0,t ~surely defined unlike in our case, where the stocha
parallel transport is almost surely defined! along the patht→$s→g(s,t)% and showed that
Tr t0,15exp@2ip*Vv# surely. In the classical case,~1.13! is true surely, instead to be true on
almost surely as in Theorem I.1.

This paper presents another point of view to construct random surfaces. It correspond
query of P. Le´vy to construct nonlinear random surfaces.

We refer to the two surveys of Le´andre41,42 about analysis over loop space and mathemat
physics.

We thank B. Julia and C. Schweigert for valuable comments.
We thank the Centre Emile Borel, Institut Henry Poincare´, where this work was done at th

occasion of an activity about string theory.
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II. BROWNIAN TORI IN A LIE GROUP

We consider a compact Lie groupG of dimension d, equipped of its bi-invariant Riemanni
metric. The scalar product over LieG is denoted bŷ,&. We can imbed it isometrically in a specia
orthogonal group.

Let T25S13S1 be the two-dimensional torus. (s,t)5S denotes one of its elements. W
consider the Hilbert space of mapsg(S) from T2 into Lie(G) endowed with the following metric:

igiT2
2

5E
T2

ug~S!u2 dS1E
T2K ]

]s
g~S!,

]

]s
g~S!L dS1E

T2K ]

]t
g~S!,

]

]t
g~S!L dS

1E
T2K ]2

]s]t
g~S!,

]2

]s]t
g~S!L dS,`. ~2.1!

By using an integration by parts formula, we can show that

igiT2
2

5E
T2

^g~S!,~2]2/]s211!~2]2/]t211!g~S!&dS

such that the operator of the theory isL5(2]2/]s211)(2]2/]t211) instead to be the Laplacia
over T2 as it would be the case in quantum field theory.

We consider the Brownian motion with values in the maps from the torus into LieG, with
reproducing kernel given by~2.1!. Let us denote byt→Bt(•) this infinite-dimensional Brownian
motion. We choose the Hilbert space structure~2.1! in order to simplify the exposition.

Namely, let us consider the free loop space of LieG endowed with the Hilbert structure

igiS1
2

5E
0

1

ug~s!u2 ds1E
0

1

ug8~s!u2 ds. ~2.2!

We can find an elemente(s) of this Hilbert space such that

g~0!5^g,e&S1, ~2.3!

where e(s)5l exp@2s#1m exp@s# for 0<s<1 such thate(0)5e(1) but e8(0)Þe8(1). Since
this Hilbert structure is invariant under the natural rotation of a loop, we have

g~ t !5^g,e~•2t !&S1. ~2.4!

Let us consider the mapE(S)5e(s)e(t). From the Hilbert structure chosen in~2.1!, we get ifg
is a map from the torus in Lie(G) that

g~0!5^g,E&T2 ~2.5!

and since the metric~2.1! is invariant by translation

g~S!5^g,E~•2S!&T2. ~2.6!

@We worked as if we were inR instead of Lie(G) in order to simplify the exposition.#
t→Bt(S) is a finite-dimensional Brownian motion with covarianceiE(•2S)iT2

2 . The corre-
lation betweenB•(S) andB•(S8) is given by^E(•2S),E(•2S8)&T25E(S82S). ~If we suppose
we work in R. In the other case, we look coordinates by coordinates.!

Let us writeS5(s,t) andS85(s1Ds,t1Dt). We have

B•~S8!2B•~S!5B•~s1Ds,t1Dt !2B•~s,t1Dt !1B•~s,t1Dt !2B•~s,t !. ~2.7!

We deduce, since the random field (u,S)→Bu(S) is Gaussian, that
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iBu~S8!2Bu~S!iLp
p <CAuDsup1CAuDtup. ~2.8!

We deduce by the Kolmogorov lemma~see Ref. 49! that the three-dimensional random fie
(u,S)→Bu(S) has an Hoelder modification.

We will construct the Brownian motion over the torus group, following the idea of Ref.
We consider a family of stochastic differential equations in the Stratonovitch sense:

dugu~S!5gu~S!duBu~S!,
~2.9!

g0~S!5e.

Theorem I.1: (u,S)→gu(S) has almost surely a modification which is Hoelder in (u,S) for
u<1.

Proof: We convert the equation in Itoˆ meaning. We find another linear equation. We write
order to simplify the notations:

dugu~S!5gu~S!duBu~S!1Cgu~S!du,
~2.10!

g0~S!5e,

whered denotes the Itoˆ integral.
We get

du~gu~S!2gu~S8!!5~gu~S!2gu~S8!!duBu~S!1gu~S8!~duBu~S!2duBu~S8!!1C~gu~S!

2gu~S8!!du. ~2.11!

By using ~2.8! and the Burkholder–Davies–Gundy inequality, we deduce that foru<1,

E@ ugu~S!2gu~S8!up#<CE
0

u

E@ ugv~S!2gv~S8!up#dv1Cd~S,S8!p/2, ~2.12!

where d is the Riemannian distance on the torus.
By using Gronwall lemma, we deduce that

E@ ugu~S!2gu~S8!up#<Cd~S,S8!p/2 ~2.13!

fou u<1. Moreover, clearly,

E@ ugu~S!2gu8~S!up#<uu2u8up/2. ~2.14!

We deduce the theorem by using Kolmogorov lemma~Ref. 49!. h

We can consider the lawm of the random mapS→g1(S) over the torus groupT2(G). We can
consider the torus groupTe,*

2 (G) ~see Sec. V for details! of mapsg(•) from the torusT2 into G
such that

lim
S→S8

d~g~S!,g~S8!!

d~S,S8!e
50 ~2.15!

uniformly over the torus whenS→S8. We can find ae such that by the previous theorem,m is a
measure overTe,*

2 (G).
Moreover, since the Hilbert structure~2.1! is invariant under translation in the torusT2, the

law m is invariant under translation forT2.
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III. LINE INTEGRALS

We get two families of random loops in the group deduced from the random fieldg(S). The
first family is the family of loops given bys→g(s,t) where we fixt and the second one is give
by t→g(s,t) when we fixs. Let v be a one form overG. We would like to define the Stratono
vitch line integral,

At
15E

0

1

^v~g~s,t !!,dsg~s,t !& ~3.1!

and the Stratonovitch line integral

As
25E

0

1

^v~g~s,t !!,dtg~s,t !&, ~3.2a!

wherev is a one-form overG conveniently extended in a one form overRN, if G is imbedded in
RN.

Since the computations in all the cases are similar, we will consider only the case ofA0
1.

Let dBu be a Brownian motion with values in the Lie algebra ofG. We consider the solution
of the stochastic differential equation which gives the Brownian motion starting frome in the Lie
groupG:

dugu5gu duBu . ~3.2b!

The equation of the differential of the stochastic flow associated to~3.2b! is given by~see Refs.
29, 31, and 6!:

dufu5fu duBu ~3.3!

and the inverse of the differential of the flow is given by an analogous equation.
Let us consider a finite-dimensional familyBu(a) of Brownian motions in the Lie algebra o

G, depending smoothly of a finite-dimensional parametera where Bu(a) lives in a finite-
dimensional family of Brownian motions. We consider the stochastic differential equation de
ing on a parameter

dgu~a!5gu~a!dBu~a!. ~3.4!

The solution of Eq. ~3.4! has a smooth version in the finite-dimensional parametera.
(]/]a)gu(a) is for instance the solution of the linear differential equation with second mem

]

]a
gu~a!5

]

]a
gu~a!dBu~a!1gu~a!du

]

]a
Bu~a!. ~3.5!

This equation can be solved by the method of variation of constant. We get

]

]a
gu~a!5fu~a!E

0

u

fv
21~a!dv

]

]a
Bv~a!. ~3.6!

We will write s→B•(s,0)5B•(s), and in order to define stochastic line integrals, we will follo
the method of Refs. 43 and 44, but in this case, it is much more simpler, because there
conditioning. By using the properties of the Hilbert structure~2.1!, the covariance betweenB•(s)
and B•(s8) is given by e(s2s8). Let us suppose that 0<s<s1Ds<t<t1Dt<1, and let us
compute the covariance ofB•(s1Ds)2B•(s) and ofB•(t1Dt)2B•(t). It is given by
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e~s1Ds2t2Dt !2e~s2t2Dt !2e~s2t1Ds!1e~s2t !5Ce9~s2t !DtDs1O~Dt1Ds!3

~3.7!

becausee is smooth over@21,0#;@0,1#. @We use the periodicity assumption overe(•). Theonly
singularity ine(•) comes from 0 identified to 1 in the circle.#

This shows us that we can diagonalize the four nonindependent Brownian motionsB•(s),
B•(s1Ds), B•(t), B•(t1Dt). We find two couples of independent Brownian motio
(w•(1),w•(2)) and (w•(3),w•(4)) such that

B•~s!5w•~1!,

B•~s1Ds!5a~s,Ds!w•~1!1b~s,Ds!w•~2!,
~3.8!

B•~ t !5w•~3!,

B•~ t1Dt !5a~ t,Dt !w•~3!1b~ t,Dt !w•~4!.

Moreover t does not belong to@s,s1Ds#, such that the covariance ofB•(s1Ds)2B•(s) and
B•(t) behaves asDs becausee(s1Ds2t)2e(s2t)•5e8(s2t)Ds1O(Ds)2.

Moreover,

a~s,Ds!5C1CDs1O~Ds!3/2, ~3.9!

b~s,Ds!5CADs1CDs1O~Ds!3/2, ~3.10!

becausee(s1Ds2s)2e(0)5e18 (0)Ds51O(Ds)2 becausee has semiderivatives in 0 andDs
.0 and B•(s1Ds) has a constant variance. From~3.7!, we deduce that̂ w•(1),w•(4)&
5O(ADt), ^w•(3),w•(2)&5O(ADs) and that the correlator̂w•(2),w•(4)&5O(ADsDt). We
remark that (]/]ADs)a(s,Ds)Ds5050.

We imbedG isometrically in a space of linear matrices. It follows from the previous con
erations that in law

g•~s1Ds!5g•~s!1ADsg•
1~s!1Dsg•

2~s!1o~Ds!3/2, ~3.11!

whereg•
1(s)5f •(w•(1))*0

• fu(w•(1))21(]/]ADs)b(s,0)dwu(2). We do notwrite the analogous
expression forg•

2(s). There is a double integral in dw•(2) where the simple derivative ofb(s,D)
in ADs appear and a simple integral where the second derivative inADs of a(s,Ds) andb(s,Ds)
appear.~•! is the time of the differential equation~2.9!. Moreover, in law

g•~ t1Dt !5g•~ t !1ADtg•
1~ t !1Dtg•

2~ t !1O~Dt !3/2. ~3.12!

Let f andh be two smooth functions over the matrix space. We suppose they are bounded a
as their derivatives of all orders. We have the estimate which follows from the properties
after ~3.8!, ~3.9!, and~3.10!:

E@ f ~gu~s!!gu
1~s!h~gv~ t !!gv

1~ t !#5C~s,t !ADsDt1O~ADs1ADt !3/2, ~3.13!

whereC(s,t) is continuous. Namely, we conditionate byw•(2) andw•(4). There are terms which
arew•(1) andw•(3) measurables in the expression we want to estimate. When we conditiona
w•(2) andw•(4), theexpressions belong to all the Sobolev spaces of Malliavin calculus inw•(2)
andw•(4). We canapply Clark–Ocone formula~Ref. 53! to these expressions. We deduce sin
^w•(3),w•(2)&5O(ADs) and^w•(1),w•(4)&5O(ADt) that the Itôintegral which appears in the
Clark–Ocone formula are inO(ADs)dw•(2) and inO(ADt)dw•(4). These lead to expressions o
the type
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O~ADs!E
@0,1#3

a~s1 ,s2 ,s3!dws1
~2!dws2

~2!dws3
~4!, ~3.14!

where we used either Itoˆ integral or Stratonovitch integral. We convert it in Skorokhod integ
~whose expectation is 0! and we find a counterterm inO(Ds) ~we can suppose thatDs5Dt as we
will do in the sequel!. For that we used the following result: letf be a smooth functional with
bounded derivatives of all orders in a finite number ofgu(s) or in gu(t). Let F be the associated
Wiener cylindrical functional. LetF̃5E@Fuw•(2),w•(4)#. It is a smooth functional in the sense o
Malliavin calculus in w•(2), w•(4) and its derivativesDkF̃(t1 ...,tk) have an estimate in
O(ADs)k.

We consider a smooth one-formvv in the spaces of matrices with bounded derivatives of
orders which depends smoothly from a finite dimensional parameterv. We suppose that the
derivatives in the parameterv are bounded.

We consider 2N, N being a big integer, and the dyadic subdivision of@0,1# associated to 2N.
We call it si with si,si 11 such thatsi 112si522N. If sP@si ,si 11#, we call

gu
N~s!5gu~si !1

s2si

si 112si
~gu~si 11!2gu~si !!, ~3.15!

s→g1
N(s) is piecewise differentiable. We consider the random variable

Av
N5E

0

1

^v~g1
N~s!,dsg1

N~s!&. ~3.16!

Let us give the following decomposition ofAv
N :

Av
N5( E

si

si 11

^v~g1
N~s!!2v~g1

N~si !!,dsgs
N~s!&1( E

si

si 11

^v~g1
N~si !,dsgs

N~s!&

5Av
N~^,&!1Av

N~d!. ~3.17!

The Itô term isAv
N(d) and the Stratonovitch counterterm isAv

N(^,&). The Itô term can be divided
into two pieces: the first one is when in~3.11! we take the term ing•

1(s) and the second one i
when we take in~3.12! the term ing•

2(s). We get the decomposition, of the Itoˆ term in Av
N(d1)

1AV
N(d2). The term which divergesa priori is Av

N(d1). But we can use~3.12!, and show that
whenN→`,

E@Av
N~d1!2#→E

S13S1

C~s,t !ds dt1E
S1

C~s!ds, ~3.18!

whereC(s,t) is continuous.
Moreover, the second part in the Itoˆ term checks clearly

E@Av
N~d2!2#→E

S13S1

C1~s,t !ds dt1E
S1

C1~s!ds. ~3.19!

Since the counterterm which is due to the Stratonovitch correction is aa priori less diverging, we
can see in an analogous way that

E@Av
N~^,&!2#→E

S13S1

C2~s,t !ds dt1E
S1

C2~s!ds. ~3.20!

These remarks justify but do not prove the following proposition.
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Proposition III.1: WhenN→`, the sequence of random variablesAv
N tends inL2 to a limit

random variable called*S1^vv(g1(s)),dsg1(s)&5Av . Moreover, there exists a smooth version
the line integralAv in v.

Proof: Let us forget for the moment the parameterv. Let us write

AN5(
i
E

@si ,si 11#
^v~g1

N~s!!,dsg1
N~s!&5( ~Bi

N1Ci
N!, ~3.21!

whereBi
N is the bracket term

Bi
N5E

@si ,si 11#
^v~g1

N~s!!2v~g1
N~si !!,dsg1

N~s!& ~3.22!

andCi
N is the Itô term,

Ci
N5^v~g1~si !!,Dsg1~si !&. ~3.23!

We write

Ci
N5Di

N1Ei
N1O~223N/2!, ~3.24!

where

Di
N5Asi 112si^v~g1~si !!,g1

1~si !& ~3.25!

and

Ei
N5~si 112si !^v~g1~si !!,g1

2~si !&. ~3.26!

First step:convergence of( Ei
N .

In g1
2(si) whose writing is derived from~3.5! by taking another derivative, there is a line

integral which comes from the second derivative ofa(si1Dsi), from a second derivative in
b(s,Ds) in ADs and a double integral which comes from taking only one derivative inb(s,Ds).
The term in the linear integral can be treated in the following way: we get( Ei ,1

N . If M.N,

S ( Ei ,1
N 2( Ej ,1

M D 2

5S (
i

S (
@s2 j ,sj 11##@si ,si 11#

Ei ,1
N 2Ej ,1

M D D 2

. ~3.27!

In order to compute(@sj ,sj 11##@si ,si 11#Ei ,1
N 2Ej ,1

M , we writesi 112si5( sj 112sj such that we can
write the sum to estimate

( (
@sj ,sj 11##@si ,si 11#

~sj 112sj !~^v~g1~si !,g̃1~si !&2^v~g1~sj !!,g̃1~sj !&!, ~3.28!

g̃1(si) is the term in the simple integral where we take the second derivatives inADs of a(s,Ds)
andb(s,Ds). The terms which are integrated depend continuously froms. Therefore the contri-
bution where we take two derivatives ofa(s,Ds) vanish. It remains to consider the contributio
where we take two derivatives ofb(s,Ds). We can replace the terms considered by

(
i

(
@sj ,sj 11##@si ,si 11#

^v~g1~si !!,ḡ1~si !&2^v~g1~sj !!,ḡ1~sj !&, ~3.29!
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where we have replaced the term in two derivatives byADsjB•(sj1Dsj )2B•(sj ). We write
B•(s1Dsi)2B•(si)5( B•(sj1Dsj )2B•(sj ) and we see that̂ B•(sj1Dsj )2B•(sj ),B•(sj 8
1Dsj 8)2B•(sj 8)&5O(DsjDsj 8) if j Þ j 8 and equal toO(Dsj ) if j 5 j 8. This shows that theL2

norm of

(
@sj ,sj 11##@si ,si 11#

~ ^v~g1~si !!,ḡ1~si !&2^v~g1~sj !!,ḡ1~sj !&! ~3.30!

behaves asO(1/N)Dsj becausev(g1(s)) depends continuously ofs and after using the disinte
gration argument used after~3.13!.

The problem arises when we take the double integral. In order to study the behavior
sum, we can replacew•(2) in ~3.8! by B•(si1Dsi)2B•(si) and take the double stochastic integr
which is associated by taking the derivative of the flowfu(si) associated to the equatio
dgu(si)5gu(si)dBu(si). Namely, we consider a double integral of the type

E
0,u,v,1

ADsifu
21 dwu~2!ADsifv

21 dwv~2!, ~3.31!

which behaves modulo an error term inO(Dsi)
3/2 as

E
0,u,v,1

fu
21Dsi

Bu~si !fv
21Dsi

Bv~si !. ~3.32!

For the convergence ofEi
N , we can assimilate (si 112si)gu

2(si) with the double integralau(si)
after performing these replacements. LetN8.N andsj be the dyadic subdivision which is ass
ciated. We sum over@sj ,sj 11##@si ,si 11#. We get

^v~gt~si !!,a t~si !!&2(
j

^v~gt~sj !!,a t~sj !&

5(
j

S ^v~gt~si !!2v~gt~sj !!,a t~sj !&1K v~gt~si !!,a t~si !2(
j

a t~sj !L D 5d i
N1e i

N .

~3.33!

The sum of the first term tends to 0 inL2. The difficult term to estimate is the term ine i
N . In the

double integral which composea t(si), we write

B•~si1Dsi !2B•~si !5 (
@sj ,sj 11##@si ,si 11#

B•~sj1Dsj !2B•~sj !. ~3.34!

We distribute the integrands. Over each dB•(si1Dsi)2dB•(si), there is in the double integral
term whichB•(si) is measureable, which is adapted and depends on a continuous way ofsi . Since
it depends on a continuous way fromsi , we can replace it when we distribute by the correspo
ing term insj in a t(si). After distributing ina t(si)2(a t(sj ), the diagonal terms are substracte
and it remains to study the process
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d t
N5(

i K v~gt~si !! (
@sj ,sj 11##@si ,si 11#,@sj 8 ,sj 811##@si ,si 11# j Þ j 8

E
0,u,v,t

r u~sj !duDsj
Bu~sj !

3r v~sj 8!dvDsj 8
Bv~sj 8!L . ~3.35!

We decompose the semimartingaled t
N into a finite variational part which converges by using~3.7!

to 0 and a martingale partMt
N . Namely, we can convert the double Stratonovitch integral wh

appears in~3.35! in an Itô integral. The boring term arises when we replace the double Strat
vitch integral by an Itoˆ integral in ~3.35!. We would like to show that this martingale tends to
For that, we compute its quadratic variation. We get a sum over all quadruple@sj 1

,sj 111#,

@sj 2
,sj 211#, @sj 3

,sj 311#, and@sj 4
,sj 411#.

First case:Let us suppose that all the elements of the quadruple are different. The contrib
of each quadruple is in 224N8 by the properties listed after~3.8!, ~3.9!, ~3.10! which express that
the covariance ofB•(sj1Dsj )2B•(sj ) and of B•(sj 811)2B•(sj 8) in term of DsjDsj 8 and the
covariance of (B•(sj1Dsj )2B•(sj )) and of B•(t) in Dsj if t does not belong to@sj ,sj 11#.
Namely, if the intervals@sj 1

,sj 111#, @sj 2
,sj 211# do not intersect and ifsj 3

andsj 4
do not belong to

these intervals, we have only to show by using the Itoˆ formula that

EF E
0,u,v

r u~sj 1
!duDsj 1

Bu~sj 1
!E

0,u,v
r u~ssj 2

!duDsj 2
Bu~sj 2

!r v~sJ3
!r v~sj 4

!G5O~Dsj 1
Dsj 2

!,

~3.36!

because the right bracket betweenDsj 3
B(sj 3

) and Dsj 4
B(sj 4

) is in O(Dsj 3
Dsj 4

). We take the

conditional expectation ofr v(sj 3
) and r v(sj 4

) along the Gaussian space spanned byB•(sj 1
),

B•(sj 2
), Dsj 1

B(sj 1
), andDsj 2

B•(sj 2
). We can suppose thatr v(sj 3

) andr v(sj 4
) are measurable ove

this Gaussian space. Butr v is solution of the stochastic differential equation giving the flow of t
Brownian motion over the Lie group, and is therefore a stochastic integral. We use the follo
rules for calculating different conditional expectation for the solution of this flow. We conside
solution of the stochastic differential equation starting from the identity

dAt5At~dBt1dB̃t!, ~3.37!

where Bt and B̃t are two independent Brownian motions. We can writeAt5WtVt where dVt

5Vt dBt and dWt5WtVt dB̃t Vt
21. After using this remark in order to calculate the condition

expectation, we disintegrate alongDsj 1
B•(sj 1

) andDsj 2
B•(sj 2

) as in ~3.13!, and we conclude by

using the consideration following~3.8!, ~3.9!, ~3.10!.
They are at most 22N24(N82N) such possibilities. The total contribution is 222N which tends to

0 whenN→`.
Second case:There are three different intervals@sj ,sj 11#. This can come from a concatena

tion of two times dv for u,v in the stochastic integral~3.28! after converting it in a double Itoˆ
integral or a concatenation of the same term du in the stochastic integral~3.28!. The contribution
of each term is 223N8 by doing as in the first case. They are at most 2N2(N82N)22(N82N)

523N8222N such possibilities. The total contribution behaves in 222N which tends to 0 whenN
→`.

Third case:There are two different intervals@sj ,sj 11#. The contribution of each elemen
which appears is in 222N8 by doing as in the first case. There are at most 2N22(N82N) such terms.
The total contribution is in 22N which converges to 0 whenN→`.

This shows us that( Ei
N is a Cauchy sequence inL2.

Second step:Convergence of the ltoˆ term ( Di
N .
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We write

a i
N5Di

N2 (
@sj ,sj 11##@si ,si 11#

D j
N8 ~3.38!

and we would like to show that(a i
N→0 in L2.

There are two terms to study.
~i! The contribution ofE@a i

Na i 8
N

# for iÞ i 8. By ~3.13!,

(
iÞ i 8

E@a i
Na i 8

N
#→2E

S13S1
C2~s,t !ds dt22E

S13S1
C2~s,t !ds dt50. ~3.39!

~ii ! The contribution of( iE@(a i
N)2#. By using the consideration of the first step, we can wr

modulo a term which vanishes

a i
N5^v~g1~si !!,Dsi

gi~si !&2 (
@sj ,sj 11#

^v~g1~sj !!,Dsj
g1~sj !&

5 (
@sj ,sj 11##@si ,si 11#

^v~g1~si !!2v~g1~sj !!,Dsj
g1~sj !&5(

j
b j

N . ~3.40!

To study its convergence, we write

B•~si !5w•~1!,

B•~sj !5a~si ,sj !w•~1!1b~si ,sj !w•~2!,

B•~sj5Dsj !5a~si ,sj ,Dsj !w•~1!1b~si ,sj ,Dsj !w•~2!1g~si ,sj ,Dsj !w•~3!, ~3.41!

B•~sj 8!5a~si ,sj 8!w•~1!1b~si ,sj 8!w•~4!,

B•~sj 81Dsj 8!5a~si ,sj ,Dsj 8!w•~1!1b~si ,sj 8 ,Dsj 8!w•~4!1g~si ,sj 8 ,Dsj 8!w•~5!.

We have g(s,t,Dt)5C(s,t)ADt1O(Dt), b(s,t,Dt)2b(s,t)5C(s,t)Dt1O(Dt)3/2, and
a(s,t,Dt)2a(s,t)5C8(s,t)Dt1O(Dt)3/2. We deduce that ^w•(5),w•(3)&5o(Dsj ),
^w•(5),w•(2)&5O(ADsj ), and ^w•(5),w•(1)&5O(ADsj ). In a similar way, we have
^w•(3),w•(1)&5O(ADsj ), ^w•(3),w•(4)&5O(Dsj ) ~we used the fact thatDsj5Dsj 8). With this
decomposition, we write the analogous of~3.11! and ~3.12! for g•(sj1Dsj ) by doing the condi-
tional expectation along the Gaussian processesw•(5),w•(4),w•(2),w•(3) and for g•(sj 8
1Dsj 8). We find if j Þ j 8E@b j

Nb j 8
N

#5o(I /N)222N8 and in the other casesE@ ub j
Nu2#

5o(1/N)22N8. Therefore,E@ uCi
N#2] 5o(1/N)22N and( iE@ uCi

Nu2#→0.
Third step:Study of the convergence of( Bi

N .
We write

v~g1
N~s!!2v~g1~si !!5

s2si

Asi 112si

g1
1~si !a~g1~si !!1O~s2si ! ~3.42!

and

dsg1
N~s!5

ds

Asi 112si

g1
1~si !1ds g1

2~si !1ds O~si 112si !. ~3.43!

The more singular term inBi
N is
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a i
N5E

si

si 11 s2si

si 112s2 i
^g1

1~si !,a~g1~si !,g1
1~si !&ds5~si 112si !^g1

1~si !a~g1~si !!,g1
1~si !&.

~3.44!

There is in the previous contribution a quadratic expression ing1
1(si). These expressions can b

treated exactly as in the first step of the convergence of( Ei
N , by writing ^g1

1(si),g1
1(si)& as a

double integral and replacing (si 112si)^g1
1(si),g1

1(si)& by a double stochastic integral where w
have removedADsiw•(1) by Dsi

B•(si). The sum of the others terms tends clearly to 0.
In order to show that*S1^vv(g1(s)),dsg1(s)& has a smooth version, we show that the syst

of derivatives ofAv
N in v converges inL2. We conclude by using the embedding Sobolev theor

as in Ref. 29. h

We consider a more intrinsic approximation of the line integral. We use ifg1(si ,t),g1(si 11 ,t)
are close,

FN~s,g1~si ,t !,g1~si 11 ,t !!5expF s2si

si 112si
log~g1~si 11 ,t !g1~si ,t !21!Gg~si ,t ! ~3.45!

conveniently extended over the set of all matrices. We set

g̃1
N~s,t !5FN~s,g1~si ,t !,g1~si 11 ,t !!. ~3.46!

We considerÃv
N as in~3.15! with this new approximation. If we look at the asymptotic expans

of FN , we see that the more singular term in dsg̃1
N(s,t) and dsg1

N(s,t) coincides. This justifies the
following theorem.

Theorem III.2: Ãv
N tends inL2 for theCk topology over each compact of the parameter se

the Stratonovitch integral*S1^vv(g(s,t)),dsg(s,t)& which has a smooth version inv.
Remark:We do not know if the Stratonovitch integrals of Theorem III.2 and of Proposi

III.1 coincide. In the sequel, we will use the version of Theorem III.1, because it is a geome
version.

Remark:Instead of integrating over a circle, we can integrate over a segment.

IV. INTEGRAL OF A TWO FORM

We imbedG into a matrix algebra isometrically. Letg(s,t) be the random field parametrize
by the torus with values inG. Let 2N be an integer, andsi be the associated dyadic subdivision
S1 and t j be the associated dyadic subdivision of a copy ofS1. We consider the polygona
approximation ofg(s,t), if ( s,t)P@si ,si 11#3@ t j ,t j 11#5Ti , j .

gN~s,t !5g~si ,t j !1
s2si

si 112si
~g~si 11 ,t j !2g~si ,t j !!1

t2t j

t j 112t j
~g~si ,t j 11!2g~si ,t j !!

1
t2t j

t j 112t j

s2si

si 112si
~g~si 11 ,t j 11!2g~si ,t j 11!2g~si 11 ,t j !1g~si ,t j !!

5g~si ,t j !1a1
N~s!1a2

N~ t !1a3
N~s,t !. ~4.1!

Let us consider a two-formv over G, conveniently extended in a two-formv over the matrix
algebra bounded with bounded derivatives of all orders. We suppose that the two-form depe
a finite-dimensional parameterv. We consider

Av
N5E

T2
~gN!* vv5E

S13S1
^vv~gN~s,t !!,dsg

N~s,t !,dtg
N~s,t !&. ~4.2!
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Let us denote byD t j
g(si ,t j ) the quantityg(si ,t j 11)2g(si ,t j ), by Dsi

g(si ,t j ) the quantity
g(si 11 ,t j )2g(si ,t j ) where we have imbedded the groupG in a linear space. IfiÞ i 8, j Þ j 8, we
will see later that

E@Dsi
g~si ,t j !D t j

g~si ,t j !Dsi 8
g~si 8 ,t j 8!D t j 8

g~si 8 ,t j 8!#1O~DsiDt jDsi 8Dt j 8!, ~4.3!

where we take a quadratic expression homogeneous in each term in each increment. Th
diverging term in the quantityAv

N is

(
i , j

^vv~g~si ,t j !!,Dsi
g~si ,t j !,D t j

g~si ,t j !&. ~4.4!

When the length of the subdivision tends to zero, theL2-norm of this expression tends to

E
T23T2

C~s,t,s8,t8!ds ds8 dt dt81E
S13T2

C~s,t,t8!ds dt dt8

1E
T23S1

C~s,s8,t !ds ds8 dt1E
S13S1

C~s,t !ds dt. ~4.5!

This justifies without to prove the following proposition.
Proposition IV.1:WhenN→`, the traditional integralAv

N tends for theCk topology over each
compact of the parameter space inL2 to the stochastic integral in the Stratonovich sense:

E
T2

g* vv5E
S13S1

^v~g~s,t !!,dsg~s,t !,dtg~s,t !&, ~4.6!

where the stochastic integral*T2g* vv has a smooth version inv.
Proof: We suppose first that there is no auxiliary parameter. We can write

AN5E
T2

^v~gN~s,t !!,dsa1
N~s!,dta2

N~ t !&1E
T2

^v~gN~s,t !!,dsa1
N~s!,dta3

N~s,t !&

1E
T2

^v~gN~s,t !!,dsa3
N~s,t !,dta2

N~ t !&1E
T2

^v~gN~s,t !!,dsa3
N~s,t !,dta3

N~s,t !&

5A1
N1A2

N1A3
N1A4

N . ~4.7!

Step I: Convergence ofA1
N . We repeat the considerations of Sec. III fors→B•(s,t j ) and t

→B•(si ,t). If we fix t j , we get by~3.11! an asymptotic expansion in order 3. We get expressi
in the asymptotic expansion ing•

1;•(si ,t j ), g•
2;•(si ;t j ), and g3;•(si ,t j ). If we fix si , we go in

~3.11! to an asymptotic expansion at order 3. We get derivatives in lawg•
•;1(si ,t j ), g•;2(si ,t j ), and

g•
•;3(si ,t j ).

We get

A1
N5(

i , j
^v~g~si ,t j !!,g~si 11 ,t j !2g~si ,t j !,g~si ,t j 11!2g~si ,t j !&

1(
i , j

E
Ti , j

^v~gN~s,t !!2v~g~si ,t j !!,dsa1
N~s!,dta2

N~ t !&

5B1
N1B2

N , ~4.8!

B1
N is the Itô term, which is apparently the most diverging whenN→`. B2

N is the Stratonovitch
counterterm.

Step I.1:Convergence of the Itoˆ term B1
N .

We write as in~3.11!,
                                                                                                                



e

5545J. Math. Phys., Vol. 44, No. 12, December 2003 Stochastic Wess–Zumino–Novikov–Witten model

                    
g~si 11 ,t j !2g~si ,t j !5Asi 112sig
1;•~si ,t j !1~si 112si !g

2;•~si ,t j !

1~si 112si !
3/2g3;•~si ,t j !1O~si 112si !

2 ~4.9!

and we write as in~3.11!,

g~si ,t j 11!2g~si ,t j !5At j 112t jg
•;1~si ,t j !1~ t j 112t j !g

•;2~si ,t j !

1~ t j 112t j !
3/2g•;3~si ,t j !1O~si 112si !

2. ~4.10!

This will lead to stochastic integrals inAsi 112sig
1;•(si ,t j ) and in At j 112t jg

•;1(si ,t j ) which
apparently do not converge and to integrals in (si 112si)g

2;•(si ,t j ) as in (t j 112t j )g
•;2(si ,t j )

which will lead to classical integrals. We deduce the following decomposition of the Itoˆ termB1
N :

B1
N5C1

N1C2
N1C3

N1C4
N1C5

N1error. ~4.11!

~i! C1
N is the double stochastic integral in the time directions and in the time directiont,

C1
N5(

i , j
ADsiADt j^v~g~si ,t j !!,g1;•~si ,t j !,g

•;1~si ,t j !&. ~4.12!

~ii ! C2
N is a stochastic integral in the directions and a classical integral in the directiont,

C2
N5(

i , j
ADsiDt j^v~g~si ,t j !!,g1••~si ;t j !,g

•;2~si ;t j !&. ~4.13!

~iii ! C3
N is a vanishing term,

C3
N5(

i , j
ADsiDt j

3/2^v~g~si ,t j !!,g1;•~si ,t j !,g
•;3~si ,t j !&

1(
i , j

~Dsi !
3/2ADt j^v~g~si ,t j !!,g3;•~si ,t j !,g

•;1~si ,t j !&. ~4.14!

~iv! C4
N is a classical integral in the time directions and a stochastic integral in the tim

direction t,

C4
N5(

i , j
DsiADt j^v~g~si ,t j !!,g2;•~si ,t j !,g

•;1~si ,t j !&. ~4.15!

~v! C5
N is a classical integral in the time directions and in the time directiont,

C5
N5(

i , j
DsiDt j^v~g~si ,t j !!,g2;•~si ,t j !,g

•;2~si ,t j !&. ~4.16!

C1
N is the morea priori divergent term whenN tends to` and C5

N will lead to a double
classical integral on the torus.

Step I.1.1:For integersN, N8 such thatN8.N, we considerC1
N5( i , jCi , j ,1

N .
We consider a bigger integerN8 thanN and we consider

Di , j ,1
N8 5Ci , j ,1

N 2 (
Ti 8, j 8#Ti , j

Ci 8, j 8,1
N8 . ~4.17!

Let us consider first the case where 0<s1Ds<s8<s81Ds8<1 and 0<t1Dt<t8<t81Dt8
<1. We get iff andg are smooth functions with bounded derivatives of all orders
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E@ f ~g~s,t !!h~g~s8,t8!!g1;•~s,t !g•;1~s,t !g1;•~s8,t8!g•;1~s8,t8!#

5C~s,t,s8,t8!ADsADtADsADt81error. ~4.18!

In order to see that, we begin by diagonalizingB•(s,t) andB•(s8,t8).

B•~s,t !5w•~1!. ~4.19!

We write

B•~s1Ds,t !5a~s,t,Ds!w•~1!1b~s,t,Ds!w•~3!,
~4.20!

B•~s,t1Dt !5a~s,t,Dt !w•~1!1b~s,t,Dt !w•~4!,

and the analogous formulas forB•(s81Ds8,t8) andB•(s8,t81Dt8) with some other new auxil-
iary Brownian motionsw•(5) andw•(6). Moreover

a~s,t,Ds!5C1CADs1CDs3/21O~Ds!2 ~4.21!

and

b~s,t,Ds!5CADs1CDs1C~Ds!3/21O~Ds!2 ~4.22!

the same asymptotic results being true when we reverse the role ofs, t.
The main result is the following:

^B•~s1Ds,t !2B•~s,t !,B•~u,v !&5O~Ds! ~4.23!

if u does not belong to ]s,s1Ds@ , the same equality being true if we reverse the role ofs and t.
We use the fact that the Green kernel associated to the two-dimensional problem is the pro
the Green kernels associated to the one-dimensional problem by the remark following~2.5!.

Moreover,

^B•~s1Ds,t !2B•~s,t !,B•~u,v1Dv !2B•~u,v !&5O~DsDv !. ~4.24!

It is equal, namely, to

e~s1Ds2u!e~ t2v2Dv !2e~s2u!~ t2v2Dv !1e~s1Ds2u!e~ t2v !2e~su!e~ t2v !

5~e~s1Ds2u!2e~s2u!!~e~ t2v2Dv !2e~ t2v !!, ~4.25!

if u does not belong to ]s,s1Ds@ and t does not belong to ]v,v1Dv@ . Moreover,

^B•~s1Ds,t !2B•~s,t !,B•~s81Ds8,u!2B•~s8,u!&5O~DsDs8! ~4.26!

if ] s8,s81Ds8@ù#s,s1Ds@50 by analogous reasons, and using the fact that the Green k
associated toB•(s,t) is the products of the one-dimensional Green kernels.

In order to simplify the exposure, we writeDt5Dt85Ds5Ds8. We conditionateB•(s,t) and
B•(s8,t8) by w•(3), w•(4), w•(5), w•(6). We use theformula ~3.38! in order to compute this
conditionating forg(s,t) andg(s8,t8), and after the Clark–Ocone formula~see Ref. 53! in order
to compute the conditional ofh(g(s,t)) as an Itoˆ integral inw•(3), w•(4), w•(5), andw•(5) with
term bounded byADs by ~4.23!. We get to take the expectation of the product of four Itoˆ integrals
or five or six. We can estimate its expectation by using the Itoˆ formula and~4.24!, ~4.25! by
applying iteratively the Itoˆ formula and the Clark–Ocone formula. We reduce iteratively the len
of the iterated integral we have to compute. The same result holds by the same argument
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E@ f ~g~s,t8!!h~g~s8,t !!g1;•~s,t8!g•;1~s,t8!g1;•~s8,t !g•;1~s8,t !#

5C~s,t,s8,t8!ADsADtADs8ADt81error ~4.27!

if we suppose thatDs5Ds85Dt5Dt8.
We deduce from the previous considerations that

EF (
iÞ: i 8; j Þ j 8

Di , j ,1
N8 Di 8, j 8,1

N8 G→2E
T4

C~s,t,s8,t8!ds dt ds8 dt822E
T4

C~s,t,s8,t8!ds dt ds8 dt850.

~4.28!

Let us now study the behavior of

EF (
i , j Þ j 8

Di , j ,1
N8 Di , j 8,1

N8 G ~4.29!

whenN8→`.
By the previous considerations, the contributions of theTk,l strictly interior toTi , j and of the

Tk8,l 8 strictly interior toTi , j 8 vanish. Therefore, it is enough to study the contribution of

Ci , j ,1
1,N85ADsiADt j ,^v~g~si ,t j !!,g1;•~si ,t j !,g

•;1~si ;t j !&

2(
i 8

ADsi 8ADt j^v~g~si 8 ,t j !!,g1;•~si 8 ,t j !,g
•;1~si 8 ,t j !& ~4.30!

for @si 8 ,si 811##@si ,si 11#. We would like to show thatE@( i , j Þ j 8Ci , j ,1
1,N8Ci , j 8,1

1,N8 # tends to 0 when
N8→`. We will see later ~see step I.1.2, step I.1.3, and step I.1.4! that we can replace
ADsig

1;•(si ,t j ) by Dsi
g(si ,t j ) andADt jg(si ,t j ) by D t j

g(si ,t j ). It is enough therefore to conside
the behavior of

Ci , j ,1
2,N85^v~g~si ,t j !!,Dsi

g~si ,t j !,D t j
g~si ,t j !&2(

i 8
^v~g~si 8 ,t j !!,Dsi 8

g~si 8 ,t j !,D t j
g~si 8 ,t j !&

~4.31!

and to show thatE@( i , j Þ j 8Ci , j ,1
2,N8Ci , j 8,1

2,N8 # tends to 0.
But

( Dsi 8
g~si 8 ,t j !5Dsi

g~si ,t j !. ~4.32!

Therefore

Ci , j ,1
2,N85( ^v~g~si ,t j !!2v~g~si 8 ,t j !!,Dsi 8

g~si 8 ,t j !,D t j
g~si ,t j !&

1( ^v~g~si 8 ,t j !,Dsi 8
g~si 8 ,t j !,D t j

g~si ,t j !2D t j
g~si 8 ,t j !&5Ci , j ,1

3,N81Ci , j ,1
4,N8 .

~4.33!

By using the techniques of the next steps, we can replaceDsi 8
g(si 8 ,t j ) by ADsi 8g

1;• (si 8 ,t j ) and

D t j
g(si 8 ,t j ) by ADt jg

•;1(si 8 ,t j ) and D t j
g(si 8 ,t j ) by ADt jg

•;1(si 8 ,t j ) and D t j
g(si ,t j ) by

ADt jg
•;1(si ,t j ). We get two quantitiesCi , j ,1

5,N8 andCi , j ,1
6,N8 .
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We compute( i , j Þ j 8E@(Ci , j ,1
5,N8Ci , j 8,1

5,N8 )#. There are two contributions. The first one is when
consider twice the samesi 8 . There are four types of increments which appear (si ,t j ), (si 8 ,t j ),
(si ,t j 8), and (si8 ,t j j 8). We take the conditional expectation alongDsi 8

B•(si 8 ,t j ), D t j
B•(si ,t j ),

Dsi 8
B(si 8 ,t j 8), andD t j 8

B•(si ,t j 8) or more precisely along the Brownian motion which arise fro
the diagonalization~4.20! of the Brownian motionsB•(si ,t j ), B•(si 8 ,t j ), B•(si ,t j 8), and
B•(si 8 ,t j 8). The Stratonovitch integralsg1;•(s,t) andg•;1(s,t) are in fact Itôintegrals. Moreover
we can compute the conditional law ofg(si ,t j ), g(si 8 ,t j ), g(si ,t j 8), g(si 8 ,t j 8) by using~3.38!
and the Clark–Ocone formula to express the quantities which appear in this way as sto
integral which are martingales and whose bracket with the others terms can be estimated by~4.20!.
There is a product of Martingale Itoˆ integrals, whose expectation can be estimated by u
successivly the Itoˆ formula and the Clark–Ocone formula. We conclude by using~4.23!, ~4.24!,
and ~4.26!. We get that the contribution when there is one coincidence leads to a ter
O(1/N)Dsi 8Dt jDt j 8 . When there is no coincidence, we condition byDsi 8

B•(si 8 ,t j ), D t j
B•(si ,t j ),

Dsi 9
B•(si 9 ,t j ), and D t j

B•(si ,t j 8), or more precisely by the Brownian motions arising from t
diagonalization~4.20!. We proceed as before, and we get a contribution ino(1/N)Dsi 8

Dsi 9
D t j

D t j 8

ThereforeE@( i , j Þ j 8Ci , j ,1
5,N8Ci , j 8,1

5,N8 #→0.
By the same type of trick and performing the conditional expectation along the incre

DsB•(s,t) and D tB•(s,t) or more precisley by conditioning along the Brownian motions wh

appears in the diagonalization~4.20! in Ci , j ,1
6,N8Ci , j 8,1

61,N8 and after using the Clark–Ocone formula, w

see that( i , j Þ j 8E@Ci , j ,1
6,N8Ci , j 8,1

6,N8 #→0. The same holds forE@( i , j Þ j 8Ci , j ,1
5,N8Ci , j 8,1

6,N8 #.

Let us study the behavior ofE@( i , j (Di , j ,1
N8 )2#. By the considerations which will follow in the

next step, it is enough to study the behavior of

K v~g~si ,t j !!,( Dsi 8
g~si 8 ,t j !,( D t j 8

g~si ,t j 8!L
2( ^v~g~si 8 ,t j 8!!,Dsi 8

g~si 8 ,t j 8!,D t j 8
g~si 8 ,t j 8!&

5H (
i 8, j 8

^v~g~si ,t j !!,Dsi 8
g~si 8 ,t j 8!,D t j 8

g~si ,t j 8!&

2 (
i 8, j 8

^v~g~si ,t j !!,Dsi 8
g~si 8 ,t j 8!,D t j 8

g~si 8 ,t j 8!&J 1( ^v~g~si 8 ,t j 8!!

2v~g~si ,t j !!,Dsi 8
g~si 8 ,t j 8!,D t j 8

g~si 8 ,t j 8!&5G̃i , j ,1
N8 1Gi , j ,1

3,N8 , ~4.34!

where we do the summation over@si 8 ,si 811##@si ,si 11# and@ t j 8 ,t j 811##@ t j ,t j 11#. In G̃i , j ,1
N8 , we

write

Dsi 8
g~si 8 ,t j !D t j 8

~g~si ,t j 8!2Dsi 8
g~si 8 ,t j 8!D t j 8

g~si 8 ,t j 8!

5~Dsi
g~si ,t j !2Dsi

g~si ,t j 8!!D t j 8
g~si ,t j 8!1Dsi 8

g~si 8 ,t j 8!~D t j 8
g~si ,t j 8!2D t j 8

g~si 8 ,t j 8!!,

~4.35!

and we deduce a decomposition ofG̃i , j ,1
N8 into Gi , j ,1

1,N81Gi , j ,1
2,N8 . In Gi , j ,1

1,N8 , Gi , j ,1
2,N8 , andGi , j ,1

2,N8 , we can
replaceDsi 8

g( i 8 ,t j ), D t j 8
g(si ,t j 8) by ADsi 8g

1;•(si 8 ,t j ) andADt j 8g
•;1g(si ,t j 8) andDsi 8

g(si 8 ,t j 8)

by ADsi 8g
1;•(si 8 ,t j 8) and D t j 8

g(si 8 ,t j 8) by ADt j 8g
•;1(si 8 ,t j 8) by ADt j 8g

•;1(si 8 ,t j 8). We get

Gi , j ,1
3,N8 andGi , j ,1

4,N8 .

We have six terms to estimate:E@( i , j (Gi , j ,1
1,N8)2#, E@( i , j (Gi , j ,1

2,N8)2#, E@( i , j (Gi , j ,1
3,N8)2#,

E@( i , jGi , j
1,N8Gi , j

2,N8#, E@( i , jGi , j ,1
1,N8Gi , j ,1

3,N8#, E@( Gi , j ,1
2,N8Gi , j ,1

3,N8#. We can do the multiplication term by
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term in each product that appears. In each term, we distribute another time. There are fou
where two expressions ing1;• andg•;1 appear. We condition by the set of increments in the lead
Brownian motion which appears in these expressions, or more precisely of the terms which
after the diagonalization~4.20! in DsB(s,t) and D tB(s,t). We use~3.38! and the Clark–Ocone
formula ~see Ref. 53!. We use~4.23!, ~4.24!, and~4.26!. When we develop, there is the possibili
that we get exactly 4 timessi 8 , si 9 , t j 8 , and t j 9 , which lead to a contribution in
O(1/N)( i 8Þ i 9, j 8Þ j 9Dsi 8Dsi 9Dt j 8Dt j 9 . There is a contribution when there are three differentsi ,
t j 8 , t j 9 or si 8 , si 9 , t j which lead to a contribution in( i , j 8Þ j 9O(1/N)DsiDt j 8Dt j 9 or
( i 8Þ i 9, jO(1/N)Dsi 8Dsi 9Dt j and a contribution where we get only two timessi andt j which leads

to a contribution in( i , jO(1/N)DsiDt j . Therefore,( i , jGi , j ,1
3,N8 tends to 0 inL2.

By the same argument,( i , jGi , j ,1
1,N8 and( i , j

2,N8 tend to 0 inL2. By using this type of argument
we can get the requested limits.

Step I.1.2:Study of the convergence of the termsC2
N andC4

N where we mix stochastic integra
and classical integral.

This term is simpler to treat than the double stochastic integral, which is most diver
which appears. But it leads to some complications, because ing•;2(s,t), there are some doubl
stochastic integral in the dynamical timeu which appears. We write

C2
N5(

i , j
Ci , j ,2

N . ~4.36!

We consider a bigger integerN8 and we write

Di , j ,2
N8 5Ci , j ,2

N 2 (
Ti 8, j 8#Ti , j

Ci 8, j 8,2
N8 . ~4.37!

We have the following behavior:

E@ f ~g~s,t !!h~g~s8,t8!!g1;•~s,t !g•;2~s,t !g1;•~s8,t8!g•;2~s8,t8!#

5C~s,t,s8,t8!ADsADs81error. ~4.38!

If Ds5Dt and if 0<s<s1Ds<s8<s81Ds8<1 and 0<t<t1Dt<t8<t81Dt8<1.
C(s,t,s8,t8) is continuous. Namely,g•;2(s,t) and g•;2(s8,t8) are given by double stochasti
integrals in the termw•(3) or w•(4) which appear in~4.20!. It is the far most complicated term
the terms in simple stochastic integrals can be treated as before. We condition after by the
ments D tB•(s,t), D t8B•(s8,t8), DsB•(s,t), and Ds8B•(s8,t8) or more precisely by the term
which arise from the diagonalization in~4.20!. We write the double Stratonovitch integral whic
appears ing•;2(s,t) or g•;2(s8,t8) as double Itoˆ integral and a simple integral. After using th
Clark–Ocone formula, the expectation of the product of at most eight terms and at least tˆ
integrals must be computed. We use Itoˆ formula successively and Clark–Ocone formula succ
sively in order to get our estimate.

We have analogous formulas we do not write. Therefore,

EF (
iÞ i 8; j Þ j 8

Di , j ,2
N8 Di 8, j 8,2

N8 G→2E
T4

C~s,t,s8,t8!ds ds8 dt dt822E
T4

C~s,t,s8,t8!ds ds8 dt dt850.

~4.39!

Let us study now the behavior of

EF (
i , j Þ j 8

Di , j ,2
N8 Di , j 8,2

N8 G . ~4.40!

By the considerations which will follow, it is enough to study
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Ci , j ,2
N8 5Dt j^v~g~si ,t j !!,Dsi

g~si ,t j !,g
•;2~si ,t j !&

2 (
i 8, j 8

Dt j 8^v~g~si 8 ,t j 8!!,Dsi 8
g~si 8 ,t j 8!,g

•,2~si 8 ,t j 8!&. ~4.41!

But we can write

Dsi
g~si ,t j !5( Dsi 8

g~si 8 ,t j ! ~4.42!

such that

Ci , j ,2
N8 5Dt j K v~g~si ,t j !!,( Dsi 8

g~si 8 ,t j !,g
•,2~si ,t j !L

2( Dt j 8^v~g~si 8 ,t j 8!!,Dsi 8
g~si 8 ,t j 8!,g

•,2~si 8 ,t j 8!&

5H (
i 8, j 8

Dt j 8^v~g~si ,t j !!,Dsi 8
g~si 8 ,t j !,g

•,2~si ,t j !&

2Dt j 8^v~g~si ,t j !,Dsi 8
g~si 8 ,t j 8!,g

•,2~si 8 ,t j 8!&%1 (
i 8, j 8

Dt j 8$^v~g~si ,t j !!

2v~g~si 8 ,t j 8!,Dsi
g~si 8 ,t j 8!,g

•,2~si 8 ,t j 8!!&%5Ci , j ,2
1,N81Ci , j ,2

2,N8 . ~4.43!

In Ci , j ,2
1,N8 andCi , j ,2

2,N8 , we can replace, by the considerations which will follow,Dsi 8
(g(si 8 ,t j 8)) by

ADsi 8g
1,•(si 8 ,t j 8) andDsi 8

(g(si 8 ,t j )) by ADsi 8g
1,•(si 8 ,t j ). We get expressionsCi , j ,2

3,N8 andCi , j ,2
4,N8 .

We distribute the term which appears in((Ci , j ,2
4,N8Ci , j 8,2

4,N8 ), there are four terms with incremen
ADsi 8g

1;•(si 8 ,t j 8), ADsi 9g
1;•(si 9 ,t j 9) and Dt j 8g

•;2(si 8 ,t j 8), Dt j 9g
•;2(si 9 ,t j 9) which appear. We

condition by the Brownian motions which are obtained after diagonalizing the increments o
leading Brownian motions which appear in these formulas and we get as before a normL2

which tends to 0.

We have to study three terms:E@(2 i , j Þ j 8Ci , j ,2
3,N8Ci , j 8,2

3,N8 #, E@( i , j Þ j 8Ci , j ,2
4,N8Ci , j 8,2

4,N8 #, and

E@( i , j Þ j 8Ci , j ,2
3,N8Ci , j 8,2

4,N8 #. The behavior ofE@( i , j Þ j 8Ci , j ,2
3,N8Ci , j 8,2

3,N8 # is the most complicated to treat.
We write

Ci , j ,2
3,N85H (

i 8, j 8
ADsi 8Dt j 8^v~g~si ,t j !!,g1,•~si 8 ,t j !,g

•,2~si ,t j !&

2 (
i 8, j 8

ADsi 8Dt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j 8!,g
•,2~si ,t j !&J

1H (
i 8, j 8

ADsiDt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j 8!,g
•;2~si ,t j !2g•;2~si 8 ,t j !&J

1H (
i 8, j 8

ADsi 8Dt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j 8!,g
•,2~si 8 ,t j !2g•;2~si 8 ,t j 8!&J

5Ci , j ,2
5,N81Ci , j ,2

6,N81Ci , j ,2
7,N8 . ~4.44!
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By the previous considerations, we have only to estimateE@( i , j Þ j 8Ci , j ,2
5,N8Ci , j 8,2

5,N8 #,

E@( i , j Þ j 8Ci , j ,2
6,N8Ci , j 8,2

6,N8 #, and E@( i , j Þ j 8Ci , j ,2
7,N8Ci , j 8,2

7,N8 # as well as the sum where there exist oth

coincidences of indicesi, i 8, j, j 8. We must estimate the analogous quantities where we mixCi , j ,2
5,N8

andCi , j 8,2
6,N8 , the term where we mixCi , j ,2

5,N8 andCi , j 8,2
6,N8 andCi , j 8,2

7,N8 , and the term where we mixCi , j ,2
6,N8

andCi , j 8,2
7,N8 . We will omit to write the details of the convergence of these mixed terms to 0. Cle

EF (
i , j j 8

Ci , j ,2
5,N8Ci , j 8,2

5,N8 G→0. ~4.45!

Namely, if we do the multiplication of each term in the sum, there are six increments which a
Dsi 18

B(si
18
,t j 1

), Dsi 18
B(si

18
,t j

18
), D t j 1

B(si 1
,t j 1

), Dsi 28
B(si

28
,t j 2

), Dsi 28
B(si

28
,t j

28
), and D t j 2

B(si 2
,t j 2

).

Their mutual covariances satisfy to~4.23!, ~4.24!, and~4.26! becausej 1Þ j 2 and because we do
not have to consider when we do the multiplication term by term the interaction bet
Dsi 18

(si
18
,t j 1

) andDsi 18
B(si

18
,t j

18
) and the interaction betweenDsi 28

B(si
28
,t j

28
) andDsi 28

B(si
28
,t j 2

). We

conclude after conditioning along these increments, or more precisely the Brownian m
which appear when we use the diagonalization~4.20!. This allows us to show~4.45!.

Moreover,

EF (
i , j Þ j 8

Ci , j ,2
6,N8Ci , j 8,2

6,N8 G→0. ~4.46!

Namely, when we do the product term by term in~4.46!, there are six increments whic
appearDsi 18

B(si
18
,t j

18
), D t j 1

B(si 1
,t j 1

), D t j 1
B(si

18
,t j 1

), D t j 1
B(si 1

,t j 1
), Dsi 28

B(si
28
,t j

28
), and the terms

D t j 2
B(si 2

,t j 2
), D t j 2

B(si
28
,t j 2

). We can apply~4.23!, ~4.24!, and~4.26! to these increments becaus

we do not have to take the covariance betweenD t j 1
B(si 1

,t j 1
) andD t j 1

B(si
18
,t j 1

) and the covariance

betweenD t j 2
B(si 2

,t j 2
) andD t j 2

(si
28
,t j 2

).

Let us consider the most complicated termCi , j ,2
7,N8 because ing•;2(si 8 ,t j ) and ing•;2(si 8 ,t j 8) in

~4.45!, it is not the same subdivision int j . But since we consider

EF (
i , j Þ j 8

Ci , j ,2
7,N8Ci , j 8,2

7,N8 G , ~4.47!

there are six increments to consider. They areDsi 18
B(si

18
,t j

18
), D t j 1

B(si
18
,t j 1

), D t j 18
B(si

18
,t j

18
),

Dsi 28
B(si

28
,t j

28
), D t j 2

B(si
28
,t j 2

), andD t j 28
B(si

28
,t j

28
), and we do not have to consider the correlati

betweenD t j 1
B(si

18
,t j 1

) andD t j 18
B(si

18
,t j

18
) and the correlationD t j 2

B(si
28
,t j 2

) andD t j 28
(si

28
,t j

28
). We

can apply~4.23!, ~4.24!, ~4.26! for the correlations we consider, and we can conclude as pr
ously.

By the same reason

(
iÞ i 8, j

E@Ci , j ,2
5,N8Ci 8, j ,2

5,N8 #→0, ~4.48!

(
iÞ i 8, j

E@Ci , j ,2
6,N8Ci 8, j ,2

6,N8 #→0. ~4.49!

The same arguments arise when we consider
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(
iÞ i 8, j

E@Ci , j ,2
7,N8Ci 8, j ,2

7,N8 #. ~4.50!

It remains to treat the case where there are two coincidences, that is to treat the c

( E@(Ci , j ,2
5,N8)2#, ( E@(Ci , j ,2

6,N8)2#, and ( E@(Ci , j ,2
7,N8)2#, after doing the same restriction about th

mixed terms. But as a matter of fact, we can show simply that

(
i , j

E@~Ci , j ,2
5,N8!2#→0. ~4.51!

We have, namely, the correlators between the following increments to consider:Dsi 18
B(si

18
,t j ),

Ds8 i 1
B(si

18
,t j

18
), D t j

B(si ,t j ), Dsi 28
(si

28
,t j ), and Ds

i 2
8 B(si

28
,t j

18
). But we havet j

18
>t j and t j

28
>t j .

Therefore

^Dsi 18
B~si

18
,t j

18
!,Ds

18
B~si

18
,t j&5e~ t j

18
2t j !~e~2Dsi

18
!1e~Dsi

18
!22e~0!!5CDsi

18
e~ t j

18
2t j !,

~4.52!

becauset j
18
>t j and becausee has half derivatives in 0. This remark allows us to repeat

previous considerations as well as to use~4.23!, ~4.24!, and~4.26!.
Moreover

( E@~Ci , j ,2
6,N8!2#→0. ~4.53!

We have no difficulty to show that because we do not have to consider the covariance
g1;0(si 8 ,t j ) and ag1;0(si 8 ,t j 8) and becausêg1;•(si 8 ,t j ), g1;•(si 9 ,t j )&5CO(ADsi 8Dsi 9

).

The difficult part is to show that( E@(Ci , j ,2
7,N8)2#→0, because two different subdivision

@ t j 8 ,t j 811# and @ t j ,t j 11# appear and becauset j 8P@ t j ,t j 11#. We write the details of this limit,
because it is the most complicated, the other limits are simpler. We write

Ci , j ,2
7,N85( Adsi 8Dt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j !,g

•;2~si 8 ,t j !2g•;2~si 8 ,t j 8!&

1( ADsi 8Dt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j 8!2g1;•~si 8 ,t j !,g
•;2~si 8 ,t j !&

2( ,ADsi 8Dt j 8^v~g~si ,t j !!,g1;•~si 8 ,t j 8!2g1;•~si 8 ,t j !,g
•;2~si 8 ,t j 8!&

5Ci , j ,2
8,N81Ci , j ,2

9,N81Ci , j ,2
10,N8 . ~4.54!

By the previous considerations, the termsE@((Ci , j ,2
9,N8)2# andE@((Ci , j ,2

10,N8)2# tend to 0. The main
difficulty is to show that

EF(
i , j

~Ci , j ,2
8,N8!2G→0. ~4.55!

If these results are true, the term where we mixCi , j ,2
8,N8 , Ci , j ,2

9,N8 , andCi , j ,2
10,N8 can be treated by

Cauchy–Schwartz inequality. We proceed for that as it was done in the previous part. We re
by the same considerations as in the first part, that it is enough to replaceDt jg

•;2(si 8 ,t j ) by a
double stochastic iterated integral*0,u,v,1au(si 8 ,t j )(dBu(si 8 ,t j 11)2dBu(si 8 ,t j ))av(si 8)
3(dBv(si 8 ,t j 11)2dBv(si 8 ,t j )) whereau and av are B(si 8 ,t j ) measurable. By the same argu
ment, we replaceDt j 8g

•;2(si 8 ,t j 8) by a double stochastic integral*0,u,v,1au(si 8 ,t j 8)
3(dBu(si 8 ,t j 811)2dBu(si 8 ,t j 8))av(si 8 ,t j 8)(dBv(si 8 ,t j 811)2dBv(si 8 ,t j 8)), where au(si 8 ,t j 8)
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andav(si 8 ,t j 8) areB•(si 8 ,t j 8) measurable. To study the behavior whenN8→`, we can replace
without difficulty in this last expressionau(si 8 ,t j 8) by au(si 8 ,t j ). We write

dB•~si 8 ,t j 11!2dB•~si 8 ,t j !5( dB•~si 8 ,t j 811!2dB•~si 8 ,t j 8! ~4.56!

and we distribute in the first term of~4.55!. The diagonal terms cancel, and we have to estim
whenN→` the behavior of

Ci , j ,2
11,N85( ADsi 8^v~g~si ,t j !!,g1,•~si 8 ,t j !& (

tkÞtk8
E

0,u,v,1
^a~u!~dBu~si 8 ,tk11!

2dBu~si 8 ,tk!!a~v !~dBv~si 8 ,tk811!2dBv~si 8 ,tk8!&, ~4.57!

where we sum over@ tk ,tk11##@ t j ,t j 1b1# and@ tk8 ,tk811##@ t j ,t j 11# for the sharper dyadic sub
division associated to 2N8. Instead of taking the following expression in time 1, let us take it

time r. We get a process( Ci , j ,2,r
11,N8 @we replaceg(si ,t j ) by gr(si ,t j ), g1;•(si 8 ,t j ) by gr

1;•(si 8 ,t j ),
and the double integral between 0 and 1 by a double integral between 0 andr#. Let us consider the

finite variational partVr
N85( Vi , j ,2,r

N8 and the martingale partMr
N85( Mi , j ,2,r

N8 associated to this
process.

Let us begin to study the finite variational part of this processVr
N8 . This can come from a

contraction betweenv(g(si ,t j )) andg1;•(si8 ,t j ) which leads to a term inADsi8, which is multi-
plied by a term inADsi8. But theL2 norm of the sum( tkÞtk8

can be estimated. We decompose fi
( tkÞtk

in a martingale term and a finite variational term. There is first a contraction betweeav

and dBv(si8 ,tk811)2dBv(si8 ,tk8) which leads to a term intk8112tk8 The stochastic integral inu
can be estimated. We see the martingale term. By Itoˆ formula i( tkÞtk8

*0
vau(dBu(si8 ,tk11)

2dBu(si8 ,tk)iL2
2 can be estimated in((tk8112tk8)(tk9112tk9)1((tk112tk)5(t j 112t j )

2

1(t j 112t j ). Therefore theL2 norm of this term behaves inAt j 112t j . But since there is
(tk8112tk8) in time u, we have a behavior of this contribution inDsi(t j 112t j )

3/2 whose sum
vanish when N→`. The second term comes from a contraction between dBu(si8 ,tk11)
2dBu(si8 ,tk) and dBv(si8 ,tk811)2dBv(si8 ,tk8) which leads to a term in (tk112tk)(tk8112tk8)
and therefore to a contribution in (t j 112t j )

2. Therefore the total contribution is inDsi(t j 11

2t j )
2, whose sum vanish whenN→`, becausêg1;•(s8i 8,t j ),g

1;•(si 9 ,t j )&5OADsi 8Dsi 9 .
There is a contraction betweenv(g(si ,t j )) and dBv(si8 ,tk811)2dBv(si8 ,tk8) which is in

(tk8112tk8). This term cancels, because when we take the square of theL2 norm of the sum, it
behaves in( i 8,i 9Dsi 8

Ds2 i 9I i 8,i 9 , whereI i 8,i 9 is a sum of quadrupletk8 , tk9 , tk3, tk4 which behaves
in O(t j 112t j )

3 and a sum( i 8Dsi 8I i 8 where I i 8 has a bound in (t j 112t j )
3/2. The sum of these

terms vanish, whenN→` ~see Sec. III for analogous considerations!.

Let us estimate the martingale termMi , j ,2,r
N8 . Let us estimate theL2 norm ofMr

N8 . We use Itoˆ
formula. It behaves as( i 8,i 9Dsi 9Dsi 8I i ,i 81( i 8Dsi 8I i 8 whereI i 8,i 9 has a bound in (t j 112t j )

3/2 and

I i 8 the same. Therefore theL2 norm of Mr
N8 vanish whenN→`.

Step I.1.3:Study of the behavior of the double classical integralC5
N .

We write

C5
N5( Ci , j ,5

N 5( DsiDt j^v~g~si ,t j !!,g2;•~si ,t j !,g
•;2~si ,t j !&. ~4.58!

We considerN8.N and study

Di , j ,5
N8 5Ci , j ,5

N 2 (
Ti 8, j 8#Ti , j

Ci 8, j 8,5
N8 . ~4.59!
                                                                                                                



all

5554 J. Math. Phys., Vol. 44, No. 12, December 2003 Rémi Léandre

                    
We write

Di , j ,5
N8 5Ci , j ,5

2,N81Ci , j ,5
3,N8 ~4.60!

with

Ci , j ,5
2,N85 (

Ti 8, j 8#Ti , j

Dsi 8Dt j 8^v~g~si ,t j !!2v~g~si 8 ,t j 8!!,g2;•~si ,t j !• ,g•;2~si ,t j !& ~4.61!

and

Ci , j ,5
3,N85 (

Ti 8, j 8#Ti , j

Dsi 8Dt j 8^v~g~si 8 ,t j 8!!,g2;•~si ,t j !,g
•;2~si ,t j !&

2^v~g~si 8 ,t j 8!!,g2;•~si8 ,t j8!,g•;2~si 8 ,t j 8!&. ~4.62!

It is clear that( Ci , j ,5
2,N8→0 in L2 becauseg2;2(si ,t j ) is bounded inL2.

In order to estimateCi , j ,5
3,N8 , we can replacev(g(si 8 ,t j 8)) by v(g(si ,t j )). We can replace

Dsi 8g
2;•(si 8 ,t j 8) by a double stochastic integral in the dynamical timeuI2;•(si 8 ,t j 8) as it was done

in ~4.57! and do the same transformation for the otherg2;• andg•;2 which appear inCi , j ,5
3,N8 such

that we have only to show that( i , j ,5
4,N8→0 in L2 where

Ci , j ,5
4,N85^v~g~si ,t j !!,I 2;•~si ,t j !,I

•;2~si ,t j !&2 (
Ti 8, j 8#Ti , j

^v~g~si ,t j !!,I 2;•~si 8 ,t j 8!,I
•:2~si 8 ,t j 8!&.

~4.63!

We write

dDsi
B•~si ,t j !5(

si 8

dDsi 8
B•~si 8 ,t j ! ~4.64!

and

dD t j
B•~si ,t j !5(

t j8
dD t j 8

B•~si ,t j 8! ~4.65!

and we distribute inI 2;•(si ,t j ) and I •;2(si ,t j ). We get that the expressionI 2;•(si ,t j ) is equal to
(s

i 8
1 ,s

i 8
2 P@si ,si 11#I

2;•(si 8
1 ,si 8

2 ,t j ) and that I •;25( t
j 8
1 ,t

j 8
2 P@ t j ,t j 11#I

•;2(si ,t j 8
1 ,t j 8

2 ) after distributing in

these stochastic integrals. Only the contribution wheresi 8
1

5si 8
2 and t j 8

1
5t j 8

2 do not vanish when
N8→`, by the same considerations as in~3.36!. These terms are nothing else, modulo some sm

error terms ofI 2;•(si 8 ,t j ) and I •;2(si ,t j 8). We have only to show that( i , jCi , j ,5
5,N8→0 in L2 where

Ci , j ,5
5,N85 (

Ti 8, j 8#Ti , j

^v~g~si ,t j !!,I 2;•~si 8 ,t j 8!,I
•;2~si 8 ,t j 8!&2^v~g~si ,t j !!,I 2;•~si 8 ,t j !,I

•;2~si ,t j 8!&.

~4.66!

But we can show that theL2 norm of I 2;•(si 8 ,t j )2I 2;•(si 8 ,t j8) is O(4/N8)Dsi 8 because the
right-hand bracket ofB•(si 811 ,t j )2B•(si 8 ,t j )2B•(si 811 ,t j 8)1B(si 8 ,t j 8) is in O((si 8112si 8)
3(t j2t j 8)).

Step I.1.4:Study of the vanishing termC3
N .

We writeC3
N5( i , j ,3

N where theL2 norm ofCi , j ,3
N is in O(DsiDt j

3/2). But we have ifsiÞsi 8 , by
using the previous techniques
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E@^v~g~si ,t j !!,g1;•~si ,t j !,g
•;3~si ,t j !&^v~g~si 8 ,t j 8!!,g1,•~si 8 ,t j 8!,g

•,3~si 8 ,t j 8!&#

5O~ADsiADsi 8!. ~4.67!

ThereforeE@(C3
N)2#→0.

Step I.2:Convergence ofB2
N .

We write in probability

v~gN~s,t !!2v~g~si ,t j !!5¹v~g~si ,t j !!~gN~s,t !!2g~si ,t j !1¹2v~g~si ,t j !!~gN~s,t !

2g~si ,t j !!21O~Dt j
3/2!1O~Dsi

3/2!. ~4.68!

The residual term converges to 0 by the previous arguments. It remains to treat the main te
recall

gN~s,t !2g~si ,t j !5
s2si

si 112si
~g~si 11 ,t j !2g~si ,t j !!1

t2t j

t j 112t j
~g~si ,t j 11!2g~si ,t j !!

1
t2t j

t j 112t j

s2si

si 112si
~g~si 11 ,t j 11!2g~si ,t j 11!2g~si 11 ,t j !1g~si ,t j !!.

~4.69!

Moreover

E
si

si 11 s2si

si 112si
ds5si 112si . ~4.70!

The integral of the first term of~4.69! leads to the convergence of the sum of random quantitie
a type analogous to already considered quantities, which contains some ‘‘brackets’’ of th
^¹v(g(si ,t j ))•Dsi

g(si ,t j ),Dsi
g(si ,t j ),D t j

g(si ,t j )& which converges by the methods used b
fore. We can treat by the same method the convergence of^¹v(g(si ,t j ))(g(si ,t j 11)
2g(si ,t j )),Dsi

g(si ,t j ),D t j
g(sj ,t j )& which converge by the same methods as before. The ter

(t2t j )(s2si)/(Dt jDsi) leads to analogous terms. If we consider the term where the squa
gN(s,t)2g(si ,t j ) appears, there is a term in̂¹2v(g(si ,t j ));Dsi

g(si ,t j )
2,Dsi

g(si ,t j ),D t j
g

3(si ,t j )& whose sum vanishes inL2 by the same considerations as in step I.1.4. The only prob
comes when we take sum of the type ( i , j^¹

2v(g(si ,t j ))•Dsi
g(si ,t j )

•D t i
g(si ,t j ),Dsi

g(si ,t j ),D t i
g(si ,t j )& whose treatment is similar to step I.1.3 by expanding

product of integrals into iterated integrals of length 2.
Step II: Convergence ofA2

N andA3
N .

The treatment forA2
N andA3

N are similar. So we will treat only the case ofA2
N .

We write

A2
N5(

i , j
^v~g~si ,t j !!,dsa3

N~s,t !,dta2
N~ t !&

5(
i , j

E
Ti , j

^v~gN~s,t !!2v~g~si ,t j !!,dsa3
N~s,t !,dta2

N~ t !&5B1
N1B2

N . ~4.71!

Step II.1:Convergence ofB1
N .
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E
Ti , j

^v~g~si ,t j !!,ds a3
N~s,t !,dta2

N~ t !,&

5E
Ti , j

ds

si 112si

~ t2t j !dt

~ t j 112t j !
2
^v~g~si ,t j !!,g~si 11 ,t j 11!

2g~si ,t j 11!2g~si11,t j !1g~si ,t j !,g~si ,t j 11!2g~si ,t j !&. ~4.72!

The integral overTi , j is constant.
We write

g~si 11 ,t j 11!2g~si ,t j 11!2g~si 11 ,t j !1g~si ,t j !

5$g~si 11 ,t j 11!2g~si ,t j 11!%2$g~si 11 ,t j !2g~si ,t j !%5g i , j
1 2g i , j

2 . ~4.73!

The term ing i , j
2 can be treated as in step I.1. The term ing i , j

1 can be treated as in step I.1, becau
the increments betweenDsi

B(si ,t j ) and^Dsi
B(si ,t j 11)& satisfy to~4.52!, and we can do as in the

treatment of~4.52!.
Step II.2:Convergence ofB2

N .
We use~4.68! and we conclude as in step I.2.
Step III: Convergence ofA4

N .
We write

A4
N5(

i , j
E

Ti , j

^v~g~si ,t j !!,dsa3
N~s,t !,dta3

N~s,t !&

1(
i , j

E
Ti , j

^v~gN~s,t !!2v~g~si ,t j !!,dsa3
N~s,t !,dta3

N~s,t !&

5B1
N1B2

N . ~4.74!

Step III.1:Convergence ofB1
N .

We write with the notations of~4.73!:

E
Ti , j

^v~g~si ,t j !!,dsas
N~s,t !,dta3

N~s,t !!&

52E
Ti , j

~ t2t j !dt

t j 112t j

ds

si 112si
^v~g~si ,t j !!,g i , j

1 1g i , j
2 ,g i , j

1 1g i , j
2 &. ~4.75!

The integral overTi , j is constant. In order to treat the sum, we write the secondg i , j
1 1g i , j

2 as
d i , j

1 1d i , j
2 where

d i , j
1 5g~si 11 ,t j 11!2g~si 11 ,t j ! ~4.76!

and

d i , j
2 52g~si ,t j 11!1g~si ,t j ! ~4.77!

and we perform the limit as in the previous considerations.
Step III.2:Convergence ofB2

N .
We write

E
Ti , j

aN~s,t !^v~gN~s,t !!2v~g~s,t !!,g i , j
1 1g i , j

2 ,d i , j
1 1d i , j

2 &ds dt ~4.78!
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and we use~4.68! for aN(s,t) a suitable function of (s,t).
When the form depends on a finite-dimensional parameter, we show that the approxima

the stochastic integrals converge for all the derivatives ofv and we conclude by using the Sobole
imbedding theorem as in Ref. 29. That is we consider the integrals

E
T2

^¹u
av~gN~s,t !!,dsg

N~s,t !,dtg
N~s,t !&, ~4.79!

which converge inL2 for all multiindicesa. h

We would like to get the same theorem with a more intrinsic approximationg̃N(s,t) of the
random fieldg(s,t). As in the Sec. III, the finite-dimensional approximations of the integ
*T2g̃N,* v will converge inL2, but we do not know if they will converge to the same limit integ
of *T2gN,* v.

For that if g(s,t j ) andg(s,t j 11) are close, we use the functions

FN~ t,g~s,t j !,g~s,t j 11!!5expF t2t j

t j 112t j
log~g~s,t j 11!g21~s,t j !!Gg~s,t j ! ~4.80!

conveniently extended to the whole sets of matrices.
We approximateg(s,t j 11), g(s,t j ) as follows:

FN~s,g~si ,t j 11!,g~si 11 ,t j 11!!5expF s2si

si 112si
log~g~si 11 ,t j 11!g21~si ,t j 11!!Gg~si ,t j 11!

~4.81!

conveniently extended over the whole matrix algebras as well as its inverse. Moreover,

FN~s,g~si ,t j !,g~si 11 ,t j !#5expF s2si

si 112si
log~g~si 11 ,t j !g

21~si ,t j !!Gg~si ,t j ! ~4.82!

conveniently extended as well as its inverse to the set of all matrices.
We take as approximation

g̃N~s,t !5expF t2t j

t j 112t j
log~FN~s,g~si ,t j 11 ,g~si 11 ,t j 11!!!

3~FN!21~s,g~si ,t j !,g~si 11 ,t j !!!GFN~s,g~si ,t j !,g~si 11 ,t j !!. ~4.83!

We have the asymptotic expansion

FN~ t,g~s,t j !,g~s,t j 11!!5g~s,t j !1
t2t j

t j 112t j
~g~s,t j 11!2g~s,t j !!

1OS S t2t j

t j 112t j
D 2

~g~s,t j 112g~s,t j !!2! D . ~4.84!

We imbed in this expression the approximation ofg(s,t j 11) and ofg(s,t j ). This shows that, in the
expansion ofg̃N(s,t), the more singular term is the same in~4.1!, modulo some more regula
terms which converge. The main Itoˆ integral is the same, but we do not know if the correcti
terms are the same.

We get the main result of this part.
Theorem IV.2: WhenN→`, the traditional integralÃv

N5*T2(g̃N)* vv converges inL2 to the
stochastic Stratonovitch integral,
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E
T2

g* vv5E
S13S1

^v~g~s,t !!,dsg~s,t !,dtg~s,t !&. ~4.85!

Moreover,*T2g* vv has a smooth version inv.
Remark:We ignore if the stochastic integral of Theorem IV.2 is equal to the stochastic int

of Proposition IV.1. In the rest of this paper, we will use the version of Theorem IV.2.
Remark:We can consider in the previous theorem a 2-tensor which is not necessa

two-form.

V. STOCHASTIC COHOMOLOGY OF THE SPACE OF RANDOM TORI

Let us suppose thatG is compact of dimensiond and let us consider the torusT2. We
introduce the quantitye of proposition II.3. We consider the spaceTe,*

2 (G) of strong Hoelder map
h~•! with parametere from T2 into G. Strong Hoelder with parametere means that uniformly

lim
S→S8

d~h~S!,h~S8!!

d~S,S8!e
50, ~5.1!

where d(h(S),h(S8)) denotes the Riemannian distance over the group betweenh(S) andh(S8)
and d(S,S8) denotes the Riemannian distance on the torus.

We can consider the setTe,*
2 (G) of strong Hoelder maps with parametere from T2 into G. It

is by general theory~Refs. 7 and 8! an infinite Banach dimensional manifold. By general theory7,8

there is a smooth partition of unity associated to a cover ofTe,*
2 (G) by open subsetsVi which is

locally finite.
Moreover the topology ofTe,*

2 (G) coincides with the trace topology ofTe,*
2 (RN) if we imbed

isometricallyG into RN: in others words, we can consider strong Hoelder maps fromT2 into RN

and constrain them to belong toG. Over Te,*
2 (RN), we have to add some conditions in order

define its topology. As a matter of fact, we choose as Banach norm overTe,*
2 (RN) the following:

sup
S,S8PT2

uh~S!2h~S8!u

d~S,S8!e
1supuh~S!u. ~5.2!

We can define a basis of contractible open sets ofTe,*
2 (G) as follows: letgsm(•) be a smooth

element ofTe,*
2 (G). Let us suppose that the following condition overg(•) holds:

sup d~e,h21~S!hsm~S!!,r

such that we can definec(S)5 log@h(S)hsm
21(S)# if r in * is small enough. Moreover, let us suppo

that the following condition holds:

sup
S,S8

uc~S!2c~S8!u

d~S,S8!e
,r 8.

We get an open subsetV(hsm(•),r ,r 8) of Te,*
2 (G) which constitutes a basis of the topology

Te,*
2 (G) when r and r 8 are small enough andhsm(•) describes the set of smooth elements

Te,*
2 (G). By similar considerations, we can produce an atlas of the infinite-dimensional man

Te,*
2 (G) without using the general considerations of Refs. 7 and 8. Moreover ifr andr 8 are small

enough,V(hsm(•),r ,r 8) is contractible. The retraction mapC(t,g(•)) ~t belonging in@0,1#! from
V(hsm(•),r ,r 8) to $hsm(•)% is constituted by

h~• !→$S→exp@ t log@h~S!hsm
21~S!##hsm~S!%. ~5.3!
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In order to show the continuity and the differentiability of the mapC(t,•), we seethat in the
previous trivialization the mapC(t,•) is nothing else than the mapc(•)→tc(•) which is clearly
smooth int andc~•! for the strong Hoelder topology. It can be proved too by using the follow
theorem.

Theorem V.1: Let F be a map fromT23RN into RN which is bounded with bounded deriva
tives of all orders. LetC be the Nemytski map fromTe,*

2 (RN) into Te,*
2 (RN):

h~• !→$S→F~S,h~S!%. ~5.4!

ThenC is smooth for the strong Hoelder topology.
Proof: Let us first check thatC(g(•)) belongs toTe,*

2 (RN). SinceF is bounded,C(g(•)) is
bounded. Moreover,

uF~S,h~S!!2F~S8,h~S8!!u<C~d~S,S8!1uh~S!2h~S8!u!. ~5.5!

This shows clearly that~5.1! is checked as well as~5.2! for C(g(•)).
Let us show the continuity ofC. Let h~•! andh1(•) in Te,*

2 (RN). We have to estimate

F~S,h~S!!2F~S,h1~S!!2F~S8,h~S8!!1F~S8,h1~S8!!5A12A2 , ~5.6!

where

A15E
0

1

^dF~S,h~S!1u~h1~S!2h~S!!!,h1~S!2h~S!&du ~5.7!

and

A25E
0

1

^dF~S8,h~S8!1u~h1~S8!2h~S8!!!,h1~S8!2h~S8!&du. ~5.8!

We haveA12A25B11B2 with

B15E
0

1

^dF~S,h~S!1u~h1~S!2h~S!!!,h1~S!2h~S!1h~S8!2h1~S8!&du ~5.9!

and

B25E
0

1

^dF~S,h~S!1u~h1~S!2h~S!!!2dF~S8,h~S8!1u~h1~S8!2h~S8!!!,h~S8!

2h1~S8!&du. ~5.10!

Since dF is bounded, we can estimateuB1ud(S,S8)2e in Cuh(S)2h1(S)2h(S8)
1h1(S8)ud(S,S8)2e. Moreover, we can estimateuB2ud(S,S8)2e by

C
d~S,S8!

d~S,S8!e
uh~S8!2h1~S8!u1C

uh~S!2h~S8!u

d~S,S8!e
u~h~S8!2h1~S8!u

1Cuh1~S!2h1~S8!2h~S!1h~S8!ud~S,S8!2euh~S8!2h1~S8!u. ~5.11!

This shows us the continuity ofC. In order to see that, notice that the supremum norm oS
→h(S) in term of the Hoelder norm of this map and that sup d(S,S8)/d(S,S8)e,` as well as
supuh(S)2h(S8)u/d(S,S8)e,`.

Let us show the differentiability. Let us considerh(S)1h(S), h being small.
C(h(•)1h(•))2C(h(•)) is thefunction defined by
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F~S,h~S!1h~S!!2F~S,h~S!!5^F8~S,h~S!!,h~S!&

1E
0

1

^F9~S,h~S!1uh~S!!,h~S!h~S!&du, ~5.12!

DC:h(•)→$S→^F8(S,h(S)),h(S)&% is continuous. Namely,

^F8~S,h~S!!,h~S!&2^F8~S8,h~S8!!h~S8!&5^F8~S,h~S!!2F8~S8,h~S8!!,h~S!&

1^F8~S8,h~S8!!,h~S!2h~S8!&. ~5.13!

But F8 is bounded with bounded derivatives andh(S)2h(S8) can be estimated in terms of th
Hoelder norm ofh as well ash(S). Moreover,S→F8(S,h(S)) is strong Hoelder. This shows tha
DC is a continuous linear application. Let us estimate

^F9~S,h~S!1u~h~S!!,h~S!h~S!&2^F9~S8,h~S8!1uh~S8!!,h~S8!h~S8!&5A11A2
~5.14!

with

A15^F9~S,h~S!1uh~S!!,h~S!h~S!2h~S8!h~S8!& ~5.15!

and

A25^F9~S,h~S!1u~h~S!!!2F9~S8,~h~S8!1u~h~S8!!!,h~S8!h~S8!&. ~5.16!

We have

uA2d~S,S8!2eu<C
uh~S8!u2

d~S,S8!e
~d~S,S8!1uh~S!2h~S8!u1uh~S!2h~S8!u!. ~5.17!

This gives an estimate in terms of the square of the norm ofh for the norm defining the topology
of Te,*

2 (RN), because the uniform norm ofS→h(S) can be estimated in term of the Hoelder nor
of h(•) and becauseuh(S)2h(S8)u/d(S,S8)e is bounded.

For A1 , we write

^F9~C!,h~S!h~S!2h~S8!h~S8!&5^F9~C!,h~S!•~h~S!2h~S8!!&

1^F9~C!,h~S8!~h~S!2h~S8!!& ~5.18!

@we used the symmetry ofF9 in order to establish the previous formula, that
^F9(C),h(S)h(S8)&5^F9(C),h(S8)h(S)&], in order to conclude.

We omit to write the proofs for higher order differentiability ofC. h

Remark:we can consider a familyCu parametrized byu belonging to an open subsetO of Rn:

Cu~h~• !!5$S→F~u,S,h~S!!%, ~5.19!

whereF is bounded with bounded derivatives of all orders and show thatCu(h(•)) is jointly
smooth inu andh~•!, for the strong Hoelder topology.

Let us recall briefly the machinery of sheaf cohomology. We refer to Ref. 67 for m
precisions. LetM be a topological space. It will be laterTe,*

2 (G).
Definition V.2:A presheafP5$G(U;P);r(U,V)% of R-vector spaces is a collection of vecto

spacesG(U;P) indexed by the open subsetsU of M and a restriction mapr(V;U):G(V;P)
→G(U;P) for u#V such that ifU#V#W we have

r~U;W!5r~U;V!+r~V;W! ~5.20!

and such thatr(U;U)5Id.
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Definition V.3:A sheafS̃5$G(U;S̃);r(U;V)% of R vector spaces is a presheaf such that
any coverUi by open sublets ofM, the following two properties are checked.

~i! If the restriction toUùUi of a sectionf belonging toG(U;S̃) equal the restriction to
UùUi of another sectiong of G(U;S̃), then f 5g.

~ii ! Let us give a system of sectionf i of G(Ui ;S̃) such that the restriction toUiùU j of f i is
equal to the restriction toUiùU j of f i . Then there exists a uniquef PG(U;S̃) such that its
restriction toUiùU are equal to the restriction off i . to UùUi .

Definition V.4:A morphism of sheaf d:S̃→S̃8 is a collection of linear mappings dU from
G(U;S̃) into G(U;S̃8) which are compatible with the operations of restrictions.

Definition V.5:A morphism of sheaf d:S̃→S̃8→S̃9 is exact if d250 and if for every open
subsetV, there exists an open subsetU included inV such that Im(dU)5Ker(dU).

This means that we have a kind of Poincare´ lemma.
Definition V.6:Let S̃5S̃21 be a sheaf. The sequenceS̃5S̃21→S̃0→¯→S̃k→S̃k11→¯ is

called a resolution of the sheafS̃ if all the mapsS̃i 21→S̃i→S̃i 11 are exacts.
Definition V.7:A sheaf overM is said to be fine if for each locally finite coverUi by open

subsets, there exists for eachi an endomorphisml i of the sheafS̃ such that

~i! Suppll i#Ui ,
~ii ! ( l i51.

The first condition means that ifUùUi5B, l i f 50 if f PG(U;S̃). $ l i% is called a partition of
unity, respectively, to the cover (Ui).

The main theorem-definition in sheaf cohomology is the following~see Ref. 67!:
Theorem-Definition V.8: Let S̃5S̃21 be a sheaf in real vector spaces. LetS̃5S̃21→S̃0

→¯→S̃k→S̃k11→¯ be a resolution ofS̃ by fine sheafsS̃k. Then KerG(M ;S̃k)d/ImG(M;S̃k21)d is
independent of the resolution of the sheafS̃ by fine sheaves and is called thekth cohomology
group of S̃.

As particular case of this theorem, we can consider the constant sheaf overTe,*
2 (G): over an

open setU we consider the set of constant maps overU. There is a natural restriction map.Ldet
k is

constituted from the sheaf ofk-forms. G(U;Ldet
k ) is the space of smoothk-form over the open

subsetU of Te,*
2 (G) for the strong-Hoelder topology. The~deterministic! exterior derivative

realizes an exact morphism of sheavesLdet
k →Ldet

k11→Ldet
k12, because we have, as we have seen

basis of the topology ofTe,*
2 (G) constituted of contractible sets, because the Nemytski maps

smooth for the strong Hoelder topology, which implies that we have a kind of Poincare´ lemma.
Moreover, there are partition of unity inTe,*

2 (G). We have exhibited a resolution of the consta
sheaf ofTe,*

2 (G) in fine sheaves.
We deduce.
Theorem V.9: The sheaf cohomology groups ofTe,*

2 (G) are equal to the de Rham cohomo
ogy groups ofTe,*

2 (G).
We would like to generalize this theorem for stochastic form, which are almost surely de

containing stochastic integrals as we will see for instance in the next part.
Let V be the probability space underlying the construction of the Brownian motiot

→Bt(•) of the first part.
Definition V.10:A stochastic plot of dimensionm of Te,*

2 (G) is given by a countable family
(O,f i ,V i) whereO is an open subset ofRm such that:

~i! The V i constitute a measurable partition ofV.
~ii ! f i(u)(•)5(S→F(u,S,h(S))) where F is a smooth function overO3T23RN with

bounded derivatives of all orders.
~iii ! Over V i , for all uPO, f i(u)(•)PTe,*

2 (G).
We identify two stochastic plots (O,f i

1,V i
1) and (O,f j

2,V j
2) if f i

15f j
2 almost surely as

applications defined overO over V i
1ùV j

2.
Definition V.11:Let V be an open subset ofTe,

2 (G). An elementGk(V,st)sV,st is given by

*
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the following data: let (O,f i ,V i) be a stochastic plot with values inTe,e,*
2 (G). Let Oi be the

reciprocal image overV i of V by f i . Over Oi , we associate a random smoothk-form sOi

5f* sV,st . Moreover, this system of random forms satisfies the following conditions.
~i! Let j a smooth deterministic map fromO1 into O2 be given, andf25(O2,f i

2,V i) be a
stochastic plot. We associate the composite plotf15f2+ j 5(O1,f i

1,V i) defined byf i
1(u1)

5f i
2( j (u1)). We have clearlyOi

15 j 21Oi
2 and we suppose that (f1)* sV,st5 j * (f2)* sV;st al-

most surely, or in other words, that overV i we have almost surely

sO
i
15 j * sO

i
2. ~5.21!

~ii ! If ( O,f i
1,V i

1) and (O,f i
2,V i

2) are two stochastic plots such thatf i
15f j

2+c on a set of
probability different of 0 for a given transformation of someV i

1 into someV j
2, then as finite-

dimensional differential forms, we have almost surely:

sO
i
15sO

j
2+c. ~5.22!

The following theorem is clear.
Theorem V.12: The system ofR-vector spacesGk(V;st) determines a sheaf overTe,*

2 (G),
denotedLk(st).

We have the following lemma.
Lemma V.13:The sheafLk(st) is fine.
Proof: Let Va be a locally finite open cover ofTe,*

2 (G) and let f a(h(•)) be anassociated
partition of unity. LetsV,st be a form inGk(V,st). We associatel asV,st as follows: if we consider
a stochastic plot (O,f i ,V i) and the associated finite-dimensional random formssOi

over

f i
21(V)5Oi over V i , we consider forl asV,st the form f a(f i)sOi

.
Definition V.14:We define the stochastic exterior derivative as a morphism of the sheafLk(st)

into the sheafLk11(st) as follows: we considersV,stPGk(V,st) and a stochastic plot (O,f i ,V i).
It corresponds to a finite-dimensional random formsOi

over Oi5f i
21U over V. The form cor-

responding to dsV,st by using this stochastic plot is dsOi
. By the naturality of the finite-

dimensional exterior derivative, the set of dsOi
satisfy clearly to the properties of Definition V.11

Lemma V.15:Let S̃21 be the constant real sheaf overTe,*
2 (G). S̃21→L0(st)→¯Lk(st)

→Lk11(st)¯ constitutes a resolution of the constant sheafS21.
Proof: The proof is exactly the same proof of Lemma 4.3. of Ref. 40. We use a contrac

neighborhoodU#V whereV is an open subset ofTe,e,*
2 (G) for the strong Hoelder topology as

was defined in the beginning of this part, and the retraction map defined in~5.3! g(•)
→C(t,h(•)) after extending the logarithm of the Lie group into a smooth bounded functi
with bounded derivatives over the whole spaceRN. If ( O,f i ,V i) is a plot, we use the extende
plot f i

ext(t,u)5C(t,f i(u)) defined overO3@0,1#. If Oi5f i
21(U) overV i , the main remark is

that (f i
ext)21(U) containsOi3@0,1# almost surely overV i . We conclude by using the Carta

formula which gives the Lie derivative of a form in terms of its exterior derivative as in Ref
and in Ref. 40. Letgl be the retraction (u,e)→(u,le). We get ifsU,st is a closed stochastic form
over U:

sOi3@0,1#
ext 5g0* sOi3@0,1#

ext 1dE
0

1

gl* i ~]gl /]l!sOi3@0,1#
ext dl. ~5.23!

If the degree ofsU,st is strictly positive,g0* sOi3@0,1#
ext 50 and

sOi3@0,1#
ext 5dE

0

1

gl* i ~]gl /]l!sOi3@0,1#
ext dl. ~5.24!

Therefore
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sOi3$1%
ext 5sOi

5duE
0

1

gl* i ~]gl /]l!sOi3@0,1#
ext dl ~5.25!

and*0
1gl* i (]gl /]l)s

Oi3@0,1#
ext dl defines a forms̄U,st over U.

If the degree of the stochastic form is equal to 0, we have

sOi
5sOi3$0%

ext 5sOi3$1%
ext 5C, ~5.26!

whereC is almost surely constant and does not depend of the plot by property~ii ! of Definition
V.11. h

We deduce from the previous two lemmas:
Theorem V.16: the stochastic de Rham cohomology of degreek of Te,*

2 (G) is equal to the
sheaf cohomology of degreek of Te,*

2 (G).
Corollary V.17: The stochastic de Rham cohomology groups ofTe,*

2 (G) are equal to the
deterministic de Rham cohomology groups ofTe,*

2 (G).
We could give the definition of a general stochasticZ-valued form onTe,*

2 (G) and the
definition of the boundary of a random simplex as it was done in Ref. 34. We could do
definition of a random cycle as it was done in Ref. 34. But for the sequel, we need only to d
for a one-form and for stochastic curves: let@a,b# be an interval and a random plot associated
this interval l ~we skip the technicalities coming up when we consider the closed interval@a,b#
and not an open interval ]a,b@). We writel 5(@a,b#,f i ,V i). Let sst be a stochastic one form. W
considerl * sst defined overV i by s i and overV i we define

E
l
sst5E

a

b

s i . ~5.27!

We can consider a sum or a differencel of oriented random plotsl k with oriented boundaries an
we say they constitute a one-dimensional cyclel if their random boundaries~which are constituted
by random points inTe,*

2 (G)) cancel. We set

E
l
sst5( E

l k
sst . ~5.28!

In the following, we will do the following hypothesis.
Hypothesis H.1: Te,*

2 (G) is connected.
This allows us to define a stochastic curve joininge(•) to h~•!. We work overV(h(•),r ,r 8).

If h~•! belongs to this contractible set, we choose by using~5.3! a distinguished curve joining
hsm(•) to g̃(•), and wechoose a deterministic curve joininge(•) to hsm(•). We find acountable
cover ofTe,*

2 (G) by such contractible open sets, and we deduce a measurable countable p
of V into V i such that over eachV i , h~•! belongs to only one of the selected contractible se
Te,*

2 (G). This allows to give an example of stochastic curve joininge(•) to g̃(•). It is a sum of
oriented stochastic intervalsl k (0<k<n, n deterministic! such that the end ofl j coincides with
the beginning ofl j 11 over each measurable setV i defining this plot and such that the end ofl n is
h~•!.

Let dm the image law ofh(•)5g1(•) over Te,*
2 (G).

Definition V.18:Let sst be a closedZ-valued one-form. Letk be an integer. The generalize
Wess–Zumino–Novikov–Witten model of levelk associated to the stochastic form on the torus
given by the measure overTe,*

2 (G):

dmk5expF i2pkE
l
sstGdm, ~5.29!

wherel is a stochastic curve joininge(•) to h~•!.
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We remark, since the formsst is Z-valued, that the expression exp@i2pk*lsst# does not depend
almost surely of the stochastic curve joininge(•) to h~•!. Namely, if l and l 8 are two stochastic
curves joininge(•) to h~•!, * lsst and* l 8sst differ by a random integer.

VI. STOCHASTIC WESS–ZUMINO TERM AND LINE BUNDLE

Let us consider the three-form closedv on the simple Lie groupG Z-valuedv and which, at
the level of the Lie algebra, is equal to

v~X,Y,Z!5
1

8p2
^@X,Y#,Z&. ~6.1!

We extendv in a three-form overRN. Let us introduce the stochastic one-form

sst5E
T2

v5E
T2

^v~h~s,t !!,dsh~s,t !,dt~h~s,t !!&, ~6.2!

sst is a stochastic one-form in the sense of Sec. V. LetuPO#Rm→$S→Fi(u,S,h(S))% be a
stochastic plot whereS→Fi(u,S,h(S)) belongs toTe,*

2 (G) over V i where theV i constitute a
measurable partition ofV. We write

sO~X!5E
T2

^v~Fi~u,S,h~S!!!,dsFi~u,S,h~S!!,dtFi~u,S,h~S!!,]XFi~u,S,h~S!!&, ~6.3!

whereX is a vector field onO. It realizes by theorem IV.2 a random one form overO#Rm, which
checks by the approximation procedures of the double stochastic integral, the condition o
patibility of definition V.11.

If we consider the polygonal approximationhN(S) of h(S) and if we replace inssth(S) by
hN(s), we get a random formsO

N over the finite-dimensional setO which tends inL2 for the Ck

topology over each compact ofO to sO .
Theorem VI.1: Let us supposeG simple, such thatv is closed andZ-valued. Thensst is a

stochastic form which is closedZ-valued.
Proof: sst defines a true forms over the space of piecewise differentiable maps fromT2 into

G, which is closedZ-valued becausev is closedZ-valued~see Refs. 50 and 23!. Let us show that
it is Z-valued. We consider a loop inTsm

2 (G) whereTsm
2 (G) denotes the set of piecewise diffe

entiable maps fromT2 into G. This gives sinceT2 has no boundary a three-dimensional cycleV
in G. But * ls5*VvPZ, becausev is Z-valued.

s is closed, because it corresponds to a Chen form over the loop space of the loop spa
associated two-form over the loop space isa5*S1^v(hs),dshs ,•,•&, which is closed over the
loop space. Therefore, dsO

N50 which tends inL2 for the Ck topology to dsO . Therefore dsO

50 almost surely.
Let l be a one-dimensional stochastic cycle in the spaceTe,*

2 (G) defined as in Sec. V. We ca
approach it by stochastic cyclesl N but with values in the set of piecewise differentiable maps fr
T2 into G. Moreover, by the rule of approximations of stochastic integrals,* l Ns→sst in L2. But
* l Ns belongs toZ almost surely. This shows that* lsst belongs toZ almost surely. h

Definition VI.2:The Wess–Zumino term is exp@2ipk*lsst# for l a random curve in the sense o
Sec. V, joining the constant torus tog(•). The Wess–Zumino–Novikov–Witten measure is

dmk5expF2ipkE
l
sstGdm. ~6.4!

Remark:There is a curvel st in some sense canonical with the definition of the measure w
joins e(•) to h(•)5g1(•). It is the curve u→gu(•). We could define the three-dimension
stochastic integral
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E
V
v5E

@0,1#3T2
^v~gu~S!!,dsgu~S!,dtgu~S!,dugu~S!&5E

l st

sst ~6.5!

such that the stochastic Wess–Zumino term satisfies almost surely to

expF2ipkE
l
sstG5expF2ipkE

l st

sstG . ~6.6!

We can introduce a stochastic two-formt~v! ~see Ref. 10!

tst~v!5E
S1

^v~h~S!!,dsh~S!,•,•& ~6.7!

and show it defines aZ-valued two-form over the loop spaceLt(G)s→h(s,t) by repeating the
considerations of Refs. 36, 37, 38, 34, 39, and 40 by considering the following poor diffeo

Definition VI.3:A stochastic plot of dimensionm of Lt(G) is given by a countable family
(O,f i ,V i) whereO is an open subset ofRm such that

~i! The V i constitute a measurable partition ofV.
~ii ! f i(u)(•)5$s→Fi(u,s,h(s,t))% where Fi is a smooth function overO3S13RN with

bounded derivatives of all orders.
~iii ! On V i , for all uPO, f i(u)(•) belongs to the loop groupL(G).

We identify two stochastics plots (O,f i
1,V i

1) and (O,f j
2,V j

2) if f i
15f j

2 almost surely over
V i

1ùV j
2.

If f i(u) is a stochastic plot,

f i* tst~v!~X,Y!

5E
S1

^v~Fi~u,s,h~s,t !!!,dsFi~u,s,h~s,t !!,]XFi~u,s,h~s,t !!,]YFi~u,s,h~s,t !!&

~6.8!

if ( X,Y) are two vector fields onO. We consider the stochastic one-form

bst51/2E
S1

^g~s,t !21 dsh~s,t !,h~s,t !•
21&ds. ~6.9!

Let us consider a stochastic plot (O,f i ,V i):

bO~X!51/2E
S1

^Fi~u,s,h~s,t !!21 dsFi~u,s,h~s,t !!,Fi~u,s,h~s,t !!21]XFi~u,s,h~s,t !!&

~6.10!

if u belongs to the finite-dimensional open setO of Rm andX is a vector field overO. It defines
by the rules of line integrals of Sec. III a stochastic one-form overLt(G) if we extendg→g21

into a smooth functional fromRN into RN with bounded derivatives of all orders.
We consider the canonical two-form overLt(G) ~see Ref. 57!,

sst5E
S1

^h~s,t !21•,ds~h~s,t !21• !&. ~6.11!

The pullback of this form through a plot is
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sO~X,Y!5E
S1

^F~u,s,h~s,t !!21]XF~u,s,h~s,t !!,ds~F~u,s,h~s,t !!21]YF~u,s,h~s,t !!&

1antisymmetry, ~6.12!

whereX andY are two vector fields over the parameter spaceO which defines the plot.
By using the approximations of the line integrals given in Sec. III, we get~see Ref. 57, p. 49!

dbst5tst~2pv!2sst . ~6.13!

We can look the apparatus of Refs. 35, 34, 36, and of Ref. 44 to define a stochastic line buj t

overLt(G), whose curvature is 2pktst(v) for k an integer. Let us recall how to do that~see Ref.
35, pp. 463–464!: let z i be a countable system of finite energy loops in the group such tha
ballsOi of radiusd for the uniform norm centered inz i determine an open cover ofL(M ). We can
suppose thatd is small. The loopz i constitutes a distinguished point inOi . We construct ifz
belongs toOi a distinguished curve joiningz to z i called l (z i ,z) sinced is smallz i(s) andz(s)
are joined by a unique geodesic for the Lie group structure.l u(z i ,z) is the loop s→expzi(s)

3@u(z(s)2zi(s))# wherez(s)2z i(s) is the vector of the unique geodesic joiningz i(s) to z(s) and
exp the exponential of Lie group associated to the canonical Riemannian structure over t
group. This allows us to define overOi a distinguished path joiningz~•! to z i(•). We get a
distinguished path joininge(•) to z i(•), l i(e(•),z i(•)) and, by concataining these two paths, w
get a distinguished path joiningz~•! to e(•) l i(z(•),z i(•)) over Oi .

The second step is to specify a distinguished surface bounded byl i(e(•),z(•)) and
l j (e(•),z(•)), wherez(•)POiùOj . We supposeOiùOj nonempty. Sinced is small, there is a
path u→expzi(•)

@u(zj(•)2zi(•))# joining z i(•) to z j (•). BecauseL(G) is supposed simply con
nected, we can fill in by a surface the deterministic triangle constituted by the path joininge(•) to
z i , the path joiningz i to z j and the path joiningz j to e(•). We canmoreover fill in the small
stochastic triangle constituted byl •(z i ,z), l •(z j ,z) and the pathu→expzi(•)

@u(zj(•)2zi(•))# by a
surface which uses exponential maps joiningl t(z i ,z)(s) and l t(z j ,z). We can glue the smal
stochastic surface and the big deterministic surface which are obtained by this procedure.
a surfaceBi , j

t (g(•)) which satisfies to our requirement. We can integratetst(2pv) over this
surfaceBi , j

t (z(•)) by using the techniques of Sec. III. We set

r i , j
t ~z~• !!5expF2A21kE

Bi , j
t

~z~• !!
tst~2pv!G ~6.14!

@see Ref. 35~2.28!#.
Definition VI. 4: A measurable sectionf of the line bundlej t associated to the stochast

transgressiontst(2pv) overLt(G) is a collection of random variablesa i
tLt(G) measurable over

Oi with values inC submitted to the rules

a j
t5a i

tr i , j
t ~6.15!

almost surely overOiùOj . The Hilbert space of sectionsJ t of the line bundlej t is the space of
measurable sections ofj t such that

E@ ia ti2#,`, ~6.16!

whereia ti5ia j
t i overOj , definition which is consistent becauser i , j

t is of modulus one in~6.15!.
In the sequel we considerL2(J t) ^ L2(m).
We have a process which appliesL0(G) to Lt(G) by usingt→(s→h(s,t)). Let us recall that

the parallel transport over a loopl in a simply connected manifoldM with curvatureR is equal to
exp@i2p*SR# whereS is a two-dimensional surface with boundaryl. In the present context, th
surface is obtained as follows: we consider the patht→$s→h(s,t)%, which defines if we conside
the two indices together a torus, and the distinguished path joining this path toe(•) in Te,

2 (G).

*
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This produces a distinguished stochastic surfaceS in L(G), and therefore a volumeV in G whose
boundary ish~•!. exp@2pA21k*Stst(v)#5exp@2pA21k*Vv#. The theory of Ref. 44, but in a
simpler case, because we do not have to use Deligne cohomology allows us to exhibit a sto
parallel transportt0,1 from L0(G) into L0(G) which realizes a map fromL2(J0) ^ L2(m) into
itself. ~See Fig. 1.! ~Also see Refs. 15–17, 28, 48, 55, 62, 63, 65, and 66.!

Theorem VI.5: We find

E dmk5Em@Tr~t0,1!#, ~6.17!

wheret0,1 is the stochastic parallel transport over the loop in the loop groupt→$s→h(s,t)%.
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9Bost, J. B., ‘‘Fibrés déterminants, de´terminants re´gularisés et mesures sur les espaces de modules de courbes
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Charge density and electric charge in quantum
electrodynamics

G. Morchio
Dipartemento di Fisica, Universita` di Pisa and INFN, Pisa, Italy

F. Strocchi
Scuola Normale Superiore and INFN, Pisa, Italy

~Received 17 March 2003; accepted 8 July 2003!

The convergence of integrals over charge densities is discussed in relation with the
problem of electric charge and~nonlocal! charged states in quantum electrodynam-
ics. Delicate points like the domain dependence of local charges as quadratic forms
and the class of time smearing ensuring strong convergence of integrals of charge
densities are analyzed and shown to be crucial in QED, also for the control of
vacuum polarization effects leading to time dependence of the charge~Swieca
phenomenon!. The possibility of constructing physical charged states in the
Feynman–Gupta–Bleuler gauge as limits of local state vectors is discussed, com-
patibly with the vanishing of the Gauss charge on local states. A modification of the
Dirac exponential factor which yields the physical Coulomb fields from the
Feynman–Gupta–Bleuler fields is shown to remove the infrared divergence of
scalar products of local and physical charged states, allowing for a construction of
physical charged fields with well-defined correlation functions with local
fields. © 2003 American Institute of Physics.@DOI: 10.1063/1.1623928#

I. INTRODUCTION

The simple relation between charge density and electric charge in classical electrodyn
does not extend trivially to the quantum case, because of problems due to vacuum polarizat
infinite volume integration.

Quite generally, the relation between local charges and global conserved charges ha
extensively discussed in the seventies, in relation with the proof of the Goldstone theorem1–4 and
it has become standard wisdom in the quantum field theory~QFT! framework in which all the
relevant information are carried by the local states.

The problem changes substantially if the relevant charged states are nonlocal, as it is th
of quantum electrodynamics~QED!.5 As a consequence, one cannot rely on the standard stra
of controlling the convergence of local charges on the domain of local states, and in fact the
of local charges, as quadratic forms, crucially depends on the domain which is considered.
over, as discussed by Swieca,6 on the charged states obtained by applying Coulomb fields to
vacuum, the local charge given by the integral of the density with the standard smearing in
and time does not converge to the electric charge and its limit is even time dependent.

This difficulty requires an analysis of the convergence of suitably time-smeared integr
the charge density; as we shall see, not only the standard time smearing does not work, b
Requardt’s space–time smearing prescription4 requires a modification in order to obtain the co
rect result for the renormalized charge. Actually, the basic point is the control of the constru
of charged states, which is related to the infrared problem and is a deep nonperturbative pr
both in the general algebraic approach and in the approach which uses fields operators.7

Even in perturbation theory a rigorous control on the construction of charged states is fa
trivial. In the ~positive! Coulomb gauge the~nonlocal! charged fields are difficult to handle8 and
the standard strategy is to use a local formulation at the expense of positivity, as in the Feyn
Gupta–Bleuler gauge. In this case, the charged states should be the obtained by an app
55690022-2488/2003/44(12)/5569/19/$20.00 © 2003 American Institute of Physics
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construction in terms of local~unphysical! states. Such a possibility has been advocated by D
and Symanzik9,8 who proposed explicit formulas for nonlocal charged~Coulomb! fields in terms
of the local Feynman–Gupta–Bleuler fields. Such a construction, which involves nontrivial
violet and infrared problems has recently been refined by Steinmann~DSS construction, Refs. 10
and 13! on the basis of a perturbative expansion.

An important issue is whether the above states can be constructed only in terms of ex
tions of the observables or they exist as vectors in a space in which local states are dense
latter case, the control of limits of local states requires a topology and the topology defined
Wightman functions of the local fields is too weak to give a unique space; thus, the possibi
reaching the physical charged states, characterized by a Coulomb delocalization, depends
choice of a topology. For example, the implicit use of the standard~Krein! metric on the
asymptotic fieldsAm

as excludes the presence of charged states in the corresponding physical
as pointed out by Zwanziger in his investigations on the infrared problem in QED.11 A possible
nonperturbative construction of physical charged states as limits of local states was discu
Ref. 12, with the use of a Hilbert–Krein topology which takes into account the effects o
infrared problem. In our opinion, the non uniqueness of such Hilbert–Krein majorant topolo
which are associated to the Wightman functions of the local fields in order to obtain w
complete inner product spaces of states, should not be regarded as a mathematical oddne
related to the allowed large distance behavior or ‘‘boundary conditions’’ at infinity.

The possibility of constructing physical charged states as limits of local state vectors in a
topology has been recently denied13 on the basis of an argument by which the local Gauss cha
corresponding to the integral of divE, vanishes on the local states and therefore on any w
closure of them; thus no weak closure of the local states could contain physical charged st
main conclusion of our analysis is that the assumptions involved in the argument underes
the delicate role of such topologies for the convergence of local charges in QED.

In view of the problems which arise in QED, in Sec. II we discuss in general charges de
as limits of quadratic forms, their crucial dependence on the domain and their relation to
charge operators; in particular, attention is paid to the case in which the relevant domains a
applying nonlocal field operators to the vacuum.

In Sec. III we consider the problem of weak convergence of local charges, which is sho
be very relevant for the Steinmann argument. Strong convergence on the vacuum is show
a general consequence of a stronger version of Requardt’s theorem, which also allows
improved time smearing procedure, necessary for obtaining the correct value of the cha
Coulomb charged states. Such a time smearing procedure avoids the time dependence eff
to vacuum polarization while preserving the correct value of the charge.

In Sec. IV, we discuss convergence of Gauss local charges on physical charged states
basis of the standard local formulations of QED, the Feynman–Gupta–Bleuler gauge. Quit
erally, independently of the use of a Hilbert–Krein topology, it is shown that the constructio
physical charged state vectors as limits of local states in a weak topology is incompatible
convergence, in the same weak topology, of the Gauss local charges, even with a time sme
la Requardt, on local states. A simple model is discussed which mimics the relation be
charge density and charge in QED and displays the compatibility between the vanishing
Gauss charge on a dense domain of local states and its strong convergence to a nonzero
charge on the physical space. In Sec. V we compare the construction of physical charged s
Ref. 12 with the DSS construction analyzed by Steinmann.10,13 We show that the infrared diver
gence in the matrix elements of physical charged states with local states is avoided by the m
DSS exponential used in Ref. 12, which only differs from the standard factor by a gauge te
this way one removes the obstruction pointed out by Steinmann13 as an argument for the impos
sibility of constructing physical charged fields with well-defined correlation functions with lo
fields.
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II. CHARGES AS LIMITS OF QUADRATIC FORMS

The analysis of the charge operator in QED presents subtle features arising from the Co
delocalization of charged states.5,12 It is therefore convenient to start by an analysis of charge
integrals over a local density on general~not necessarily local! domains.

In this section we shall show that~i! charges defined as limits of quadratic formsQR on dense
domainsD3D in general~including the quantum field theory case! crucially depend on the
domain; e.g.,QR may converge to zero onD3D and have a nonzero limit onD13D1 , if DùD1

is not dense,~ii ! such a phenomenon cannot occur ifQR converges weakly onD and onD1 .
Quite generally, in quantum field theory the problem of associating an~unbroken! chargeQ to

the integral over a local density

QR5E
uxu<R

dx j0~x,0!, ]m j m50,

is delicate and deserves special attention. Intuitively, one thinks of defining a state of chargq, as
satisfying

Q C5 lim
R→`

QRC5qC,

but as emphasized by Schoer and Stichel,14 the limit does not exist as a weak limit, even if som
smearing in time is made witha(x0), aPD(R) and even ifC is a local state, brieflyCPD0 . In
the latter case, the limit exists3 as a sesquilinear form onD03D0 ,

lim
R→`

~F, QRC!5Q~F, C!, F,CPD0 .

Furthermore, ifQR defines an unbroken symmetry on the local fields the limit sesquilinear f
defines an~Hermitian! operatorQ on D0 .

A. Domains and limits of quadratic forms

In general, the limit of Hermitian operatorsQR as forms on domainsD3D, crucially depends
on the domainD, in particular, the limit onD3D does not constrain the limit onD13D1 , D1

ÞD.
Such a domain dependence in general persists, as shown by the example below, eveQR

converges to an Hermitian sesquilinear formQ on D3D satisfying the boundedness condition

uQ~F,C!u<CC iFi , ;F, CPD, ~2.1!

and therefore identifies an~Hermitian! operatorQ with domainD. Furthermore, even if Eq.~2,1!
holds, it is not at all guaranteed that,; x,

~x, QC!5 lim
R→`

~x,QR C!, ;CPD. ~2.2!

In fact, such an equation means thatQRD converge weakly. By the convergence ofQR on D
3D, weak convergence ofQR D is equivalent to the boundedness of the normsuuQR Cuu, for each
fixed CPD.

In particular, as shown by the example below, even if (F, QR C) converges to zero;F, C
PD, one cannot conclude that;x, limR→`(x,QRC)50. @This also shows that the failure of Eq
~2.2! does not depend onQR converging to an unbounded or a bounded operator.#

The general phenomenon is that, ifQR converge to an operatorQ0 on D03D0 and to an
operatorQ1 on D13D1 , the two operatorsQ0 andQ1 are in general not related, in the sense
the following:
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Definition 2.1: Two densely defined Hermitian operators Q0 ,Q1 are said to berelatedif there
is an Hermitian operator Q of which Q0 and Q1 are restrictions. They will be said to beweakly
relatedif there is a densely defined Hermitian operator Q2 to which both Q0 and Q1 are related.

The above relations are symmetric and the second notion is strictly weaker, since, e.g
ferent self-adjoint extensions of an Hermitian operator are not restrictions of the same Her
operator. An example of limits of quadratic forms which define not weakly related operato
given below.

Example:Let us considerL2(@0,p#,dx), D0[the space ofC` functions vanishing at the
origin, D1[the linear span off 1(x)[1 and f n(x)[sinnx2an sinx, n>2, an[1/2*0

p sinnx, so
that (f 1 , f n)50.

Clearly, bothD0 andD1 are dense domains; in fact, iff is orthogonal toD1 one has

cn[~ f , sinnx!5an~ f , sinx!5anc1 , n>2.

Furthermore

05~p/2!E
0

p

dx f~x!5 (
n>1

cnE
0

p

dx sinnx52S (
n>2

an
2c11c1D

implies c150, i.e., f 50. Now, letQR be the multiplication operator by a regular functionqR(x)
converging tod(x) as a distribution; then

~D0 ,QRD0!→0, ~D1 , QRD1!→~D1 , P1D1!Þ0,

with P1 the projection onf 1 . Thus, the limits of the Hermitian operatorsQR define two bounded
operators which are not even weakly related.

Convergence ofQR on D03D0 to an operatorQ0 constrains convergence to an operator
any domainD3D, such thatDùD0 is dense.

Proposition 2.1: Let the Hermitian operators QR converge to an operator Q0 on D03D0 and
to an operator Q1 on D13D1 ;

(i) if D1ùD0 is dense, then Q0 and Q1 are weakly related;
(ii) if D1.D0 , then Q0 and Q1 are related;
(iii) in both cases, if Q0 is essentially self-adjoint onD1ùD0 , then Q1 is contained in the

closure of Q0 ;
(iv) if Q0 and Q1 are not related, then QR does not converge to an operator Q onD3D, D

5D01D1 .

Proof: The Hermiticity of QR implies that bothQi , i 50, 1 are densely defined Hermitia
operators and so is their restrictionQ to D1ùD0 . In case~ii ! Q1 extendsQ0 , in case~i! Q1 and
Q0 extendQ. If QR converge toQ onD3D, bothQ0 andQ1 are restrictions ofQ, so thatQ0 and
Q1 are related.

Proposition 2.2: If both QRD0 and QRD1 converge weakly, then the two limits define Herm
ian operators Q0 and Q1 which are related.

Proof: Hermiticity of the limit forms follows from that ofQR and the existence of weak limit
implies that the limit forms define operatorsQ0 onD0 andQ1 onD1 . The weak limit ofQR exists
also onD01D1 and by the same argument defines an Hermitian operatorQ which extendsQ0 and
Q1 .

As a result, ifQ0 is essentially self-adjoint,Q1 is contained in its closure and in particular
Q050, also Q150, in other terms ifQRD0 converges to zero weakly andQRD1 converges
weakly, thenQ150.
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B. Convergence of local charges in quantum field theory

A general situation which occurs in quantum field theory is described in terms of transla
invariant ~field! algebrasA0 , A1 , a ~unique translationally invariant! cyclic vectorC0 , domains

D05A0C0 , D15A1 C0 ,

and local Hermitian chargesQR , with domains containingD0 and D1 and with (C0 , QR C0)
50. In general,QR is the integral of the zero component of a local conserved~operator valued
tempered distribution! current j m with suitable smearing:

QR5E d4x j0~x,x0! f R~x! a~x0!5 j 0~ f R a!, ~2.3!

f R~x!5 f ~ uxu/R!PD~R3!, f ~x!51, if uxu<1, f ~x!50, if uxu>2,

aPD~R!, supp a,@2a, a#, a,1, E dt a~ t !51.

If A0 is a local ~field! algebra and (D0 , QRD0) converges asR→`, the limit defines an
operatorQ0 , iff

lim
R→`

~C0 , @QR , A0 #C0!50, ~2.4!

equivalently3 iff

lim
R→`

~D0 , QRC0!50. ~2.5!

Nonlocal algebras may be relevant in the discussion of nonlocal states, e.g., asymptotic st
charged states in the Coulomb gauge; a local and a nonlocal field algebra,A0 andA1 , occur in the
construction of charged states in QED.

Proposition 2.3: LetD5AC0 , A an algebra invariant under translations; if onD3D, QR

converge to an operator Q, then

lim
R→`

~D,QRC0!50. ~2.6!

Proof: The spectral representations of the space translations gives

~~U~a!21!4AC0 , QR C0!5E dJA~k!~eik"a21!4R3 f̃ ~Rk!, ;APA, ~2.7!

where dJA(k)5*dJA(k,k0) ã(k0) is a complex measure of polynomial growth. Now, since
any polynomialP(k),

u~eik"a21!4 R3 f̃ ~Rk! P~k!u<
uRk"au4

R
u f̃ ~Rk!P~Rk!uU P~k!

P~Rk!
U< C

R
→0,

in the limit R→`, the right-hand side~rhs! of Eq. ~2.6! converges to zero and therefore, by t
density ofD, one has

~U~a!21!4 Q C050, ; a.
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Then, sinceU(a)21 is a normal operator, it follows that (U(a)21) Q C050, and by the unique-
ness of the translationally invariant stateQC05lC0 ; actually Q C050, because (C0 , j 0C0)
50.

Thus, under the same assumptions, one has that the chargeQ8 defined in terms of the limit of
the commutator,15 coincides withQ, i.e.,

~D, Q8 AC0![ lim
R→`

~D, @QR , A# C0!5 lim
R→`

~D, QR AC0!. ~2.8!

The domain dependence of charge operators obtained as limits of quadratic forms appears
the above quantum field theory framework. In particular, as a result of Proposition 2.1,QR

converges to zero onD03D0 , the convergence to a nonzero operator onD13D1 is excluded if
D1ùD0 is dense, but may be allowed ifD1ùD0 is not dense, even ifC0PD1ùD0 .

Such features are illustrated and displayed by the following example.
Example. Let f be a massless scalar field,c a free Dirac field,A0 the algebra generated b

] if, i 51,2,3 and byc andA the algebra generated by] if and bycd , with

cd~x!5c~x! U~x!, U~x!5eif( f x),

f~ f x!5E dy f~y! f ~y2x!, f PD~R4!, E dx f~x!51.

Then we consider the local charges

QR
f[ ]0f~ f R a,!, QR

c[ j 0~ f R a!, j m~x!5..c̄gmc: ,

QR5QR
c1QR

f

and the Fock representation ofc, f, with Fock vacuumC0 . Since by locality

lim
R→`

@QR
f , A0#50, lim

R→`

~D0 , QR C0!50,

we have

lim
R→`

~D0 , QR D0!5~D0 , Qc D0!,

whereQc is the unbroken fermionic charge. On the other hand, since limR@QR , cd(g)#50 we
have

lim
R→`

~D, QR D!50.

In conclusionQR converge to the unbroken fermionic charge onD03D0 and to the zero charge o
D3D.

It is worthwhile to note that the limit of the operatorsQR does not define an operator o
Dext3Dext, whereDext5D01D ~since the corresponding bilinear form is discontinuous on
left!. Moreover, one has a symmetry breaking condition on the algebraAext generated byA0 and
A1 : @ QR , Aext # C0 converges weakly~actually strongly! and

lim
R→`

~C0 ,@ QR , c†cd# C0!Þ0.

This fact is actually a consequence ofQ0 andQ1 being not related. In general ifQR converges on
Di3Di , i 50,1 to operatorsQi which are not related, then, for the algebraA generated byA0

andA1 , one cannot have both weak convergence of@ QR , A# C0 and
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lim
R→`

~C0 , @ QR , A# C0!50. ~2.9!

In fact, by Eq.~2.6!,

~Di , Qi AC0![ lim
R→`

~Di , @QR , A #C0!, ;APAi .

Now, if Eq. ~2.9! holds, by a standard argument15 one gets an Hermitian operatorQ on D
[AC0 , which extendsQ0 andQ1 , in contrast with their being not related.

III. CONVERGENCE OF TIME SMEARED INTEGRAL OF CHARGE DENSITY. THE
VACUUM SECTOR OF QED

In this section we discuss weak and strong convergence of local charges, in particular
vacuum sector of QED.

As found by Requardt,2 the weak limit ofQR on local states can be obtained under gene
conditions by a suitable time smearing of the charge density, namely, by considering, withf R , a
as in Eq.~2.3!,

QR[ j 0~ f R aR!, aR~x0![a~ ux0u/R!/R. ~3.1!

Actually, one can strengthen Requardt’s theorem and obtain strong convergence~Proposition 3.1!,
also with a more general time smearingaT(R) , which will prove necessary in the charged sect
of QED.

We recall that ifj m is a Lorentz covariant conserved tempered current, the two point func
of the charge density is of the form

^ j 0~x! j 0~y!&52D J~x2y!,

with J a Lorentz invariant tempered distribution of positive type; we denote by dn(k2) the spectral
measure defined byJ.

Proposition 3.1: If the spectral measured dn satisfies the (infrared) regularity condition

dn~k2!5k2 ds~k2!, ds a measure,

then, setting QR,T(R)[ j ( f RaT(R)) one has

(i) s2 limR→` QR,R C050;
(ii) s2 limR→` QR,T(R) C050 for all functions T(R), with T(R)/R→0, satisfying T(R)

.R1/3 and R*0
«ds(s) s/(11T(R)2s2)2→0, «.0 (such T(R) exist for allds);

(iii) if, for k 2P@0,«), «.0, ds(k2)/dk2<C, the above strong convergence to zero is obtain
by choosing T5R1/3 1 d, d.0.

Proof: In fact, one has

iQR,T C0i25E dn~k2! d3q
uq f̃ ~q!u2

2A~ uqu/R!21k2)
R uã~TA~ uqu/R!21k2!u2.

Sincea is of fast decrease,; NPN,

uã~TA~ uqu/R!21k2!u2<
CN

11~~Tuqu/R!21T2k2!N <
CN

11~T2k2!N ,

and since dn is tempered there is anMPN such that (11k2)2M ds(k2)[ds8(k2) is a finite
measure. Then, by takingN5M12, one has
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iQR,T C0i2<C8
R

T E ds8~s2!
Ts

~11T2s2!2 [
R

T
G~T!.

The integrand function is bounded and converges to zero pointwise, whenT→`, so that by the
dominated convergence theoremG(T)→0. Thus~i! is proved; moreover strong convergence
zero holds if one choosesR5TG(T)211d, d.0 and~ii ! follows since; «.0,

E
«

`

ds8~k2! TAk2/~11T2k2!25O~1/T3!.

If the hypothesis of~iii ! holds one can bound the integral from 0 to« by

CE
0

«

ds2
Ts

~11T2s2!2 <
C

T2 E
0

`

du2
u

~11u2!2 5O~1/T2!.

Thus, the strong convergence to zero is obtained ifT(R)5R1/31d, d.0.
In the physical vacuum sectorH0 of QED the assumptions of Proposition 3.1 for the spec

measure of the electric current are satisfied since

^]F0~x! ]F0~y!&5E k2 dr~k2! d3k u2Ak21k2u21 k2eik(x2y), ]Fm[]nFmn ,

with dr(k2) the spectral measure of the two point function ofFmn . Hence, forT(R) as in~ii ! of
Proposition 3.1,

lim
R→`

i]F0~ f R ,aT(R)! C0i250 ~3.2!

and thereforeQR,T(R)5 j 0( f R aT(R)) converges strongly to zero on the dense domainD 0
ph obtained

by applying local bounded observable operators to the vacuum. Equation~3.2! with T5R was also
obtained by D’Emilio.16

The situation is completely different if one adopts the standard smearing,1,2 with a fixed
a(x0),

Q̃R5 j 0~ f R a!.

Proposition 3.2: The operators Q˜
R have the following properties:

(i) they converge to zero onD 0
ph3D 0

ph ;

(ii) Q̃ R C0 does not converge weakly inH0 , nor does Q̃R C, ;C5UC0 , U a bounded local
operator;

(iii) there are vectorsCPH0 such that

lim
R→`

^C,Q̃R C0&

depends on the time smearing test functiona (time dependence of the charge)
(iv) there are operators F such that,

lim
R→`

^C0 , @Q̃R , F#C0&Þ0

~Swieca phenomenon6!.
Proof: Since in the physical vacuum sectorQ̃R5((]F))( f R a), ~i! follows by locality and

Maison theorem.3

For ~ii !, the same calculation done above forQR now gives
                                                                                                                



nverge

f

e

the
ive
ecause
same

ng

taking a
the
t
crip-

andard
ined from

5577J. Math. Phys., Vol. 44, No. 12, December 2003 Charge density and electric charge

                    
iQ̃R C0i25RE k2 dr~k2! d3q
uq f̃ ~q!u2

2A~ uqu/R!21k2)
R uã~A~ uqu/R!21k2!u2,

so thatQ̃RC0 cannot converge weakly. Furthermore,;C5UC0 ,

Q̃RUC05@Q̃R , U#C01UQ̃RC0

and the first term on the rhs converges by locality; since the second term does not co
weakly, neither does the lhs.

In order to construct the vectorC of ~iii ! we consider

CR[F0 i~~] iD
21g! f R h! C0 , gPD~R3!, hPD~R!.

Such vectors converge strongly to a vectorCPH0 , for R→`, since the Fourier transform o
(D21g)(x) h(x0) is square integrable with respect to the measure dr(k2) d3k uk0u21uku2 k2 defined
by the Fourier transform of,(]F)0(x) (]F)0(y).0 . Then, we have

lim
R→`

^C, Q̃RC0&5 lim
R→`

E dr~k2! d3k u2k0u21 k2 f̃ R~k! ã~k0! gD ~k! hD ~k0!

→ gD ~0! E dr~m2! m ã~m! hD ~m!,

which displays the dependence ona.
The operatorsFR[F0 i((] iD

21g) f R h) converge strongly to an operatorF on the dense
domainAL C0 , AL5the algebra of strictly localized~bounded! observables, since they converg
strongly onC0 and @ FR , A #, APAL , becomes independent ofR, for R sufficiently large by
locality. Then, we have

lim
R→`

^C0 ,@Q̃R , F # C0&5gD ~0! E dr~m2! m ~ ã~m! hD ~m!2ã~2m! hD ~2m!!

which does not vanish in general.
The vectorC reflects the infrared behavior of ‘‘dipole states’’ of the formcc

†( f ) cc(g) C0 ,
where cc(g) is the electron field in the Coulomb gauge, constructed, e.g., according to
Dirac–Symanzik–Steinmann8,10 prescription. Thus, in QED, even in the vacuum sector, the na
idea of the charge as the integral of the charge density gives rise to substantial problems b
of vacuum polarization effects which disappear only with a suitable time smearing. The
problems arise in the charged sectors of the Coulomb gauge, as stressed by Swieca;6 they are a
general consequence of the nonlocality of the charged Coulomb fields.

In general, the standard procedure, Eq.~2.3!, corresponds to taking, in the correspondi
correlation functions in momentum space, the limitk→0 and gives ad function in v only in
expectations on local states. On the other hand, Requardt time smearing corresponds to
limit k, v→0 on the light cone; in expectations on local states, it coincides with that of
standard smearing and it isa independent. As discussed in the Appendix,a independence does no
hold on the~nonlocal! charged states of QED and therefore a modification of Requardt’s pres
tion is required for QED.

IV. CHARGE DENSITY AND CHARGE IN LOCAL FORMULATIONS OF QED

The discussion of charge integrals in the charged sectors is not covered by the st
analysis because, as a consequence of the local Gauss’ law, charged states cannot be obta
the vacuum by local fields. In this section we discuss the limit of the Gauss charges
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QR
G5~]F !0~ f R aR!

in the Feynman–Gupta–Bleuler formulation of QED and the implications on the possibili
constructing physical state vectors as weak limits of local states.

A direct discussion in the Coulomb gauge would involve the limit of local charges as
dratic forms on domains obtained from the vacuum by the nonlocal Coulomb fields, wit
problems discussed in Sec. II.

Even in perturbation theory the control of the Coulomb gauge is difficult and the stan
strategy is to use a local formulation at the expense of positivity; this is the case of the Fey
or Gupta–Bleuler gauge. In this case, the charged fields and the vector potentialAm are local but
their vacuum expectation values cannot satisfy positivity; the corresponding Wightman fun
define an indefinite inner product spaceD05FC0 ~with F the local field algebra!, with inner
product denoted bŷ., .&, which does not contain physical charged states.5,12

As suggested by perturbation theory, nonlocal physical charged states may be obtai
suitable limits of local unphysical charged state vectors. A possible nonperturbative constr
of physical charged state vectors along these lines was discussed in Ref. 12.

Quite generally, a crucial issue is that the definition and the control of the limit of l
charged state vectors requires a topology; even in the positive case the weak topologyD0

defined by the seminormspy(x)5u^x, y&u, i.e., by the Wightman functions is too weak; on th
other hand, the inner product spaceD0 does not identify a unique Hilbert–Krein majorant topo
ogy t ~Ref. 12! and one has different closuresKt5D0

t. For the physical interpretation, th
relevant space is the physical subspaceKt8,Kt , identified by a subsidiary condition~which in
QED selects gauge invariant states! and different topologies may give rise to isomorphic physi
spaces.

In general, Ref. 12 the dependence of the spaceKt8 on the topologyt should not be regarded
as a mathematical oddness, since different closures ofD0 reflect different ‘‘boundary conditions’’
at infinity. Even in the standard theory of unbounded Hermitian operators the local domainC`

functions of compact support may allow different self-adjoint extensions, corresponding to d
ent boundary conditions; in the physical applications the choice of one instead of the ot
dictated by physical considerations.12,17 In the QED case the lack of nonuniqueness reflects
physical fact that different Hilbert–Krein topologies, defined by majorant inner products~., .!,
correspond to different large distance behaviors of the limit states, classified in particular
velocity parameter of their Lienard–Wiechert electromagnetic fields at large distances.12 Thus, the
choice of the Hilbert–Krein topology is governed by physical considerations since it determ
the class of vector states which one can constructively associate to the Wightman function
the corresponding closureK of the vector spaceD0 . For these reasons it should not be a surpr
that D0 may allow different extensions. Even in the algebraic approach the construction o
charged states, which correspond to nonlocal morphisms of the algebra of observables,
under sharp control and in any case does not resolve the multiplicity associated to the
distance behavior.18

The choice of the Hilbert–Krein topology in local formulations of QED was discusse
length in Ref. 12 also in connection with the Zwanziger unsuccessful attempt to construct ph
charged states, as a result of a too restrictive Hilbert–Krein topology.

It has been argued13 that the Gauss charge converges weakly to zero on the local state
consequence of the vanishing of the Gauss charge commutators with local fields, and th
prevents the construction of physical state with nonzero Gauss charge as limits of local stat
shall examine the weak points of this argument in order.

First, the vanishing of the Gauss charge commutators with local fields implies the vanish
the Gauss charge as a quadratic form onD03D0 @see Eq.~2.8! and the Appendix#. The vanishing
of the Gauss charge on a closure ofD0 would follow ~see Proposition 4.2 below! if one had weak
convergence ofQR

GD0 in the topology which defines such a closure ofD0 .
As we shall see the validity of such a property is not constrained by the correlation func

of the local fields and does not hold in general. Actually~see the Example below and the follow
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ing section! one may find a Hilbert–Krein topologyt which avoids the weak convergence ofQR
G

and allows for the construction of physical charged state vectors.
The failure of thet-weak convergence ofQR

GD0 should not appear strange, since it involv
a topology whose role is merely that of linking the physical nonlocal charged states to th
physical local states. It should be stressed that the Gauss chargeQR

G may well converge weakly or
even strongly on a dense domainD ph of physical states, with respect to the intrinsic Hilbe
topology of the physical space. This means that;FPH ph, CPD ph ~equivalently;FPH8,
CPD8, whereH8 denotes the distinguished subspace ofK satisfying the subsidiary condition an
D8 a dense subspace ofH8), one has that

lim
R→`

^F,QR C&5 lim
R→`

^F,QR
G C&, QR[ j 0~ f R aR!

exists, equivalently

^QR
GC, QR

GC&5iQR
GCi2 ~4.1!

are bounded. This, however, does not mean thatQRD8 or QR
GD8 converge weakly with respect t

the Hilbert–Krein closureK, since weak convergence inK amounts to the boundedness of

iQR
G CiHK

2 [~QR
GC, QR

GC!,

where~.,.! is the majorant inner product which defines the Hilbert–Krein topology and the c
sponding closureK of the local statesD0 .

Actually, independently of any Hilbert–Krein majorant, there is a conflict between the
struction of the physical charged states in terms of the Wightman functions of the local
algebraF and the weak convergence ofQR

G in the corresponding extensionD of D0 . This
difficulty is an intrinsic one, since it only involves the Wightman functions ofF and the existence
of the physical charged states in an extensionD of D0 compatible with the inner product^ , &
defined by the Wightman functions, namely, such that the sequences of elements ofD0 which
define the extension, have convergent inner products^ , &.19 No reference is needed to a Hilbert
Krein majorant topology, even if, clearly, any Hilbert–Krein majorant defines a weak exten
To clarify this point we introduce the following.

Definition 4.1: Given two vector spaces D0 and D1 , with inner productŝ ,& (0) and ^,& (1), we
say that D1 can be realized in a weak extension of D0 if there exists an inner product vector spac
V containing a weakly dense inner product subspaces isomorphic to D0 and a subspace isomor
phic to D1 .

If D0 andD1 are defined by the vacuum correlation functions of two field algebrasA0 , A1 ,
the property ofD1 being realized in a extension ofD0 is implied by the existence of joint vacuum
correlation functions ofA0 andA1 . In the case of local formulations of QED, if the correlatio
functions of the physical field algebraF1 , e.g., of the field algebra of the Coulomb gauge, can
constructed in terms of the correlation functions of the local field algebraF, one has an extende
field algebraFext generated byF and F1 , and D15F1C0 is realized in an extension ofD0

5FC0 .
Proposition 4.1: Let D be a nondegenerate vector space with inner product^ , &, D0 a weakly

dense subspace and D1,D; let QR be Hermitian charges and

lim
R→`

^D0 , QR D0&50, ~4.2!

lim
R→`

^D1 , QR D1&Þ0. ~4.3!

Then, QR D cannot converge in the weak topology defined by^ , &.
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In concrete, if physical charged statesC may be obtained as limits of the local states ofD0 in
a Hilbert–Krein topologyt, i.e., they belong to a (Hilbert–Krein) extensionD of D0 and

lim
R→`

^D0 , QR
G C&5^D0 , QC&Þ0, lim

R→`
^D0 , QR

G C0&50, ~4.4!

then QR
GD0 cannot converge weakly with respect tot.

Proof: SinceD0 is dense andD is nondegenerate, Eq.~4.2! and weak convergence imply tha
QRD0 converges weakly to zero. Thus

^w2 lim
R→`

QRD, D0&5 lim
R→`

^D, QR D0&50

and, again by the density ofD0 , QR D converges weakly to zero, which is incompatible with E
~4.3!.

By Eqs.~4.4! and locality^D0 , QR
G D0&→0 and therefore, by the density ofD0 , weak con-

vergence impliesQR
GD0→0 and

^D0 , QC&5 lim
R→`

^D0 , QR
GC&5 lim

R→`
^QR

GD0 , C&50.

Thus, the construction of physical charged states in a Hilbert–Krein extension ofD0 is
incompatible with weak convergence of the Gauss chargeQR

G on D0 .
The failure of weak convergence ofQR

G C0 gives rise to the same problems and featu
discussed in Sec. II; in particular the domain dependence of the limits ofQR

G allows the vanishing
of such a limit onD03D0 compatibly with its being nonzero on a domain containing nonlo
states~as are the physical charged states!.

A Hilbert–Krein topology which allows the construction of physical charged states, avo
the weak convergence ofQR

G D0 , was discussed in Ref. 12 in terms of the properties of
asymptotic fieldsA m

as . The mechanism is clearly displayed by the following.
Example:Let c0 be a~canonical! free massive Dirac field andf1 , f2 two massless scala

fields satisfying the following~equal times! commutation relations:

@ f1 , f2 #50, @ p1 , p2 #50, @ f i , p i #50, p i[]0f i , i 51,2,

@ p1~x!,f2~y! #5@ p2~x!, f1~y! #52 i d~x2y!.

Then, the fields

f6[~f16f2!/&, p6[~p16p2!/&,
~4.5!

c~x![U~x!c0~x!, U~x![:ei f2:~x!

satisfy the following commutators and anticommutators:

@ f6~x!, f6~y! #56 i D ~x2y!, @ f6~x!, f7~y! #50,
~4.6!

@ f6~x!, c~y! #56 iD ~x2y!c~y!, $ c~x!, c̄~y! %5 iS~x2y!,

whereD, S are the standard commutator functions for massless scalar and Dirac fields. Thuf6

andc are local fields.
Our field theory model is defined by the vacuum correlation functions of the field algebF

generated byc, f1 and]mf2 , m50,1,...,3 and their Wick products; such correlation functions
not satisfy positivity.

Now, we consider the following local charges:
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QR
f[]0f1~ f RaR!, QR[ j 0~ f RaR!, QR

G[QR2QR
f , ~4.7!

where

j m~x!5..c̄ gm c:~x!5..c̄0 gm c0 :~x!.

The factorization of the correlation functions ofc0 andf6 implies thatQR converges to an
unbroken ~nonzero! ‘‘electron’’ charge in sense of quadratic forms onF C0 and in fact the
correlation functions with unequal numbers ofc and c̄ vanish. Actually,QR FC0 converges
strongly with respect to any Hilbert–Krein topology chosen to turnF C0 into a pre-Hilbert space
provided it is a product over fermion and boson Fock spaces since, by positivity of the corre
functions ofc0 ,

iQRC0iHK
2 5^QRC0 , QR C0&→0. ~4.8!

The chargeQR
G requires a quite different discussion. The field algebraF is neutral under

QR
G,

lim
R→`

@ QR
G , F #50. ~4.9!

Therefore, settingD0[F C0 , by the argument at the beginning of Sec. II B, one has

lim
R→`

^D0 , QR
G D0&5 lim

R→`
^D0 , QR

GC0&50.

In the analogy with the local formulation of QED, the local chargeQR
G plays the role of the

Gauss charge,QR plays the role of the electron chargej 0( f R aR) andQR
f plays the role of the

longitudinal charge]0]A( f R aR), all smeared in time a la Requardt. As in the QED case
correlation functions ofQR

f vanish.
The relevant question is whether by taking suitable limits of the local states ofD0 one can

construct the analog of the physical charged states, i.e., statesC satisfying the following condi-
tion:

~i! positivity, i.e.,

^C, C& >0;
~ii ! relativistic spectral condition;
~iii ! vanishing expectation of the ‘‘longitudinal’’ field]0f1 ,

^C, ]0f1C&50;
~iv! nonzero Gauss charge, i.e.,

lim
R→`

^C, QR
GC&5 lim

R
^C, QRC& Þ0.

In the following, such states will be briefly referred to as ‘‘physical’’ charged states.
Similarly to the QED case, the selection of states ofD0 satisfying ~i!–~iii ! is obtained by

means of a supplementary condition

]0f1
2C50, ~4.10!

which amounts to the exclusion off2 components.
As in the QED case, the subspaceD08,D0 satisfying the subsidiary condition has zero elect

charge; in fact one hasD085F08C0 , whereF08 is the field algebra generated byf1 and by the Wick
products

:c̄G c:5..c 0̄G c0 :,
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with G any element of the algebra generated by the gamma matrices. The problem is w
physical charged states may lie in some completion ofD0 ; as one can easily guess the candida
for the physical states are the free fermion statesAf C0 , Af5the algebra generated byc0 .

If one looks for a Hilbert–Krein completionK of D0 given by a Krein topology on the boso
space, a sufficient condition forAf C0 belonging toK is that the Hilbert–Krein majorant~ , ! has
a Fock structure and, at the level of the two point function^f i f j&, i , j 51,2, is given by a
measure~in k space! of the form

S uku2 b~ uku! 0

0 uku22 b~ uku!21D d3k

uku
,

with

b~ uku!; uku→0uku22d, b~ uku!; uku→` uku2d, d . 0.

This is in fact the condition which allows the construction of the fieldf2 and therefore ofU(x)
from the derivatives]mf2 , so thatc0 can be recovered fromc. More generally, the metric leadin
to a majorization may be chosen independently for each charged sector, i.e.,b may depend on the
chargeq.

It is instructive to discuss the relation between the existence of charged states and th
vergence properties ofQR

G , which play a crucial role in Steinmann argument. First

iQR
G C0i2[^QR

G C0 , QR
G C0&→0,

i.e., s2 lim QR
G C050 in the Hilbert topology defined by the semidefinite Wightman two po

function of j 02]0 f1 , exactly as in the QED case@Sec. III, Eq.~3.2!#.
However, the weak convergence ofQR

G C0 in K, i.e., with respect to the Hilbert–Krein spac
to which the physical charged states belong, requires the boundedness of the norm

iQR
G C0iHK

2 5~QR
G C0 , QR

G C0!

5E d3kuku21uku2 b~ uku!ã~Rk0!u2 uR3 f̃ ~Rk!u2

5E d3q uqu b~ uqu/R!uã~ uqu!u2 u f̃ ~q!u2;R2d,

which requiresd<0. A similar calculation for the weak convergence ofQR
Gc C0 in K involves

the choice of the majorization of the boson field correlations in theq51 sector and requires
dq51<0, whereas the existence of physical states with chargeq51 requiresdq51.0.

In conclusion, in the spaceK defined by the above metric withd . 0, there are two dense
domainsD05FC0 andD15F1C0 , with F1 the field algebra generated byc0 and byf1 , ]mf2 ,
with the properties

~1! QR
G converges to the zero operator onD03D0 .

~2! QR
GC0 converges to zero strongly in the Wightman~semidefinite! scalar product, but it does

not converge~even! weakly in the extended spaceK; moreoverQR
G on local charged state

does not converge weakly inK.
~3! QR

G converges to the nonzero ‘‘electron’’ charge onD13D1 .
~4! QR

G converges strongly on any vector ofD1 satisfying the supplementary condition@Eq.
~4.10!#, in the intrinsic Hilbert topology defined by the Wightman functions.

The model also displays the intrinsic conflict between the construction of the physical ch
states and the weak convergence ofQR

G in the extended space which contains them; in fact, in
model divergences appear in the limit of matrix elements^eif2C0 , QR

G C0&. The model also
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indicates that in QED the Gauss chargeconverges stronglyto the electric charge on a dens
domain of physical states~in the intrinsic Hilbert topology of the physical space!, a property which
is not shared in general by local charges in quantum field theories.

V. COMMENTS ON THE CONSTRUCTION OF PHYSICAL CHARGED STATES

The construction of physical charged states in local formulations of QED, like the Feynm
Gupta–Bleuler gauge, is a relevant issue because it is strictly related to a nonperturbative s
of the infrared problem and provides theoretical support and clarification of the standard p
bative calculations. In Ref. 13, it is argued that physical charged states cannot be obtained a
limits of the local states, which are at the basis of the perturbative expansion, and that th
only be defined as limits of morphisms of the algebra of observables. The arguments for
conclusion are on one side the convergence to zero of the Gauss charge in any weak closu
local states~the weakness of such an argument was discussed in the preceding section! and on the
other side the divergence of the matrix elements between local states and the physical c
states constructed according to the Dirac–Symanzik–Steinmann~DSS! prescription. In this sec-
tion we shall critically examine the latter argument and show that a modification of the
prescription along the lines discussed in Ref. 12, leads to convergent results for the construc
physical charged state vectors as weak limits of local states.

For this purpose, we adopt the general framework of Ref. 12 and in particular we shal
the discussion on the following assumptions.

~i! ~existence of asymptotic limits of the vector potential! the asymptotic limitsAm
as , as

5 in/out, of Am exist as~covariant! free fields with the local states in their domains.
~ii ! ~infrared coherence of ‘‘essentially local’’ states! there are statesC, in a weak extension of

D0 , with ^C, C& .0 having a decomposition into~improper! statesxa, with ^xa, xa&
51, which are coherent states forAm

in ~or for Am
out)

~Am
in!2~k! xa52d~k2! Fm

a,2~k! xa,
~5.1!kmFm

a,2~k!52e G~k!, G~0!51,

with G(k) a real symmetric rotationally invariant regular function.
For concreteness, the indexa, which labels the improper states, can be thought of as ari

in the direct integral decomposition with respect to the spectrum of the electron momentumPm
ch .

For nonperturbative and perturbative arguments, which support~I! and ~II !, we refer to Ref. 12.
We then introduce a functionFm

a(k), with kFa(k)5e signk0 G(k), determined by its restric-
tion Fm

a,2(k) to C25$k,2uku% and by the reality conditionFm
a(k)5Fm

a(2k), and an operator
valued distributionFm(k), with

@ Fm~k!, Ain #50, Fm
2~k! xa5Fm

a,2~k! xa.

Then, the field

Bm
in~k![Am

in~k!2d~k2! Fm~k!, ~5.2!

defined onDC[A inC, A in the field* -algebra generated byAm
in , satisfies

Bm
in,2~x! C50. ~5.3!

A physical charged stateCph is then obtained by setting

Cph5eie Bm
in( f m) C, ~5.4!

provided that the~real! function f m satisfies
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d~k2!km f̃ m~k!5 i d~k2! G~k!. ~5.5!

This equation corresponds to the Fourier transform of the Dirac condition]m f m(x)5d4(x) re-
stricted to the light cone, sinceBin is a free massless field, with ultraviolet regularization provid
by G(k). Clearly, all solutions of the Dirac conditionkm f̃ m(k)5 iG(k) are also solutions of Eq
~5.5!.

Equation~5.5! implies a singularity forf̃ m of order at least 1/k0 on the light cone and therefor
the construction ofCph , through Eq.~5.4!, involves the introduction of an infrared cutoff inf m .

The point is whether its removal can be done in the correlation functions ofeie Bm
in( f m) and local

fields ~i.e., Coulomb electron fields exist in the closure of the Gupta–Bleuler space! or only in the
expectation of observables onCph .

Since by Eq.~5.3! C provides a Fock representation ofBas, the existence ofCph in a
Hilbert–Krein closure ofDC can be reduced to the finiteness of the two point function

^Bm
in~ f m!C, h Bn

in~ f n! C&5~Bm
in~ f m!C, Bn

in~ f n! C!5E d4k Hm n~k! d~k2! fDm~k! f̃ n~k![i f̃ iHK
2 ,

~5.6!

whereh is the operator which defines the corresponding Fock Hilbert–Krein majorant topo
Such a majorization property implies that

i f̃ iHK
2 > u^Bm

in~ f m!C, Bn
in~ f n! C&u 5U E d4k gm n d~k2! fDm~k! f̃ n~k!U5u^ f , f &u ~5.7!

and therefore, in particular,f m should be chosen so that the indefinite product^ f , f & is finite.
The DSS solution ofkm r̃ m(k)5 i G(k), namely, r̃ i(k)52 i k iG(k) uku22, r̃ 0(k)50, does

not work, since one obtains

^r , r &5E d3k uku25ki kj gi j G~k!2/2,

which is logarithmically divergent fork→0 and therefore, by Eq.~5.7!, it excludes the conver-
gence ofi f̃ iHK for any choice of a majorant Hilbert–Krein topology. This corresponds to
divergence of the two point function̂C0 , c(x) C̄p(y) C0& pointed out by Steinmann~Ref. 13,
Chap. 12, p. 190!.

However, as discussed in Ref. 12, a suitable choice off m avoids the divergence of^ f , f & and
allows for a finite Hilbert–Krein norm.

In fact, all functions of the formf̃ m(k)5 r̃ m(k)2 ikm g̃(k) are solutions of Eq.~5.5!. Since
they differ from the DSS solution by a pure gauge, they lead to the same expectations
observables, but they have different indefinite inner products:

^ f , f &5E d3k G~k! ~G~k!12uku2 g̃! uku23/2,

which vanishes with the choiceg̃(k)52uku22G(k)/2. Such a choice gives

f̃ m52 i k̄m uku22 G~k!/2, k̄[~k0 , 2k!; ~5.8!

the corresponding operatorAm
in( f m) describes ‘‘zero norm’’~unphysical! in photons and their

control depends on the choice of the metric.
The above construction of charged states, based on Eqs.~5.4!–~5.8!, coincides with that of

Ref. 12, apart from an infrared convergent gauge term, since in Eq.~91! of Ref. 12 for the
‘‘infrared dressing’’U,
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cm~k!5~& uku!21 ~akm1bk̄m!, a b51,

hd1~ f !h1d1~ f !5~2uku!21/2am
1~kmh1 1

2k̄
muku22G~k!!,

with h(k)5O(uku221d), d .0.
It remains to characterize the conditions on the Hilbert–Krein topology which givei f̃ iHK

,`. For this purpose, in the photonk-space we introduce four orthogonal four vecto
«m

1 (k), «m
2 (k), km ,k̄m , where«m

1 (k), «m
2 (k) are ~transverse! polarization vectors. Thus, the mo

general rotation covariant form ofHm n(k) is

Hm n~k!5b~ uku! kmkn/2uku21g~ uku! k̄m k̄n/2uku21Pm n~k!,

wherePm n denotes the projection on the transverse polarization. Then, since

(
n

knkn52uku2, (
n

Hm n~k! kn5b~ uku! km, (
n

Hm n~k! k̄n 5g~ uku!k̄m

positivity of the matrixHm n requiresb, g . 0. Furthermore, since the metrich(k) is given by

~h21~k!!m n5(
s

gm s Hs n~k!,

the conditionh251 requiresb g51. Thus, one gets

i f̃ iHK
2 5E d3k G~k!2~4 uku3 b~ uku!!21,

which is finite if b(uku)>uku2d, d . 0, for k→0. This corresponds to the choice of the met
discussed in the Erice lectures Ref. 12, especially pp. 323 and 324, where one can also
characterization of the metric on the asymptotic fieldsAm

in under general condition on the Foc
structure of the representation ofAin given by Cph . Weak convergence of the gauge ter
]0 ]A( f R aR) C, which is expected to govern the weak convergence ofQR

G C ~C the ‘‘essen-
tially local’’ states at the basis of the construction!, would required <0, as in the Example of Sec
IV. In fact, one has

i]0 ]A~ f R aR! CiHK
2 5i~BR1CR! CiHK

2 , BR[]0 ]B~ f R aR!,

CR[2e/2E d3q G~q/R! f̃ ~q! @ã~ uqu!1ã~2uqu!#.

Now, iCR CiHK
2 remains bounded inR and

iBR CiHK
2 5E d4k u~k0! d~k2! k0

2 Hm n~k!kmkn u f̃ R~k! ãR~k0!u2

5E d3q uqu3 u f̃ ~q! ã~ uqu!u2 b~ uqu/R!

diverges ifd.0.
A similar discussion of the choice of the solution of the Dirac condition, can be done fo

DSS construction of the physical fields in terms of the local Gupta–Bleuler fields. Again
solution given by Eq.~5.8! yields states which differ from the DSS states by a gauge transfo
tion exp(ie]A(g)) and by the exponential exp(ie@ ]A(g), A(r) #) of an infrared divergent phase, s
that all the expectations of observables coincide with those of the DSS solution. Howeve
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easy to see that the above phase removes the divergence to ordere2 of the scalar product
^C0 , c(x)C̄(y) C0&, pointed out by Steinmann~Ref. 13, p. 190! as evidence of the claime
impossibility of constructing physical charged state vectors as weak limits of local states.

APPENDIX

In the standard case, locality and unitarity of space–time translations imply3 that, for expec-
tation on local statesC, Eq. ~2.8! applies and one has

lim
R→`

~C, j 0~ f R ,a! C!5 lim
R→`

~C, j 0~ f R ,aR! C!5 lim
T→`

lim
R→`

~C, j 0~ f R ,aT! C!. ~A1!

Actually, the argument for the vanishing of limR→` ^A j0( f R ,a)& only uses locality and the
property that the Fourier transforms of^A j0(x)&, A local, are measures. Perturbation theo
indicates that this holds in the Feynman–Gupta–Bleuler formulation of QED, where the van
of limR→` ^A ] iFi0( f R ,a)& also follows from the cluster property of the local fields in perturb
tion theory. For charged states in QED, obtained through a DSS-like construction, one may
sufficient localization properties so that the matrix elements^Cph , j 0(x,x0) Cph& differ by the
corresponding elements on local states, in the spacelike complement of a double cone, by
tions of orderuxu26, uniformly in ux0u^T0 , T0&0.20 However, the matrix elements ofj i on such
states decrease asuxu22:20

^Cph , j i~x, x0! Cph&5~e/4p!E d3z ] i
xux2zu21]0

2K~z, x0!1O~ uxu24!,

whereK is the commutator function of the electromagnetic field and Eq.~A1! does not hold for
the Gauss charge. In fact, one has

lim
R

^Cph , ]0] iFi0~ f R ,t !Cph&5 lim
R

^Cph , 2] i j i~ f R ,t !Cph&

5e E d3z ]0
2K~z,t !52 e E v dv ~vK̃ !~0,v! eivt.

The vanishing of the last expression for allt would imply

vK̃~0,v!5l d~v!

and therefore, by Lorentz covariance,

K̃~k!5l «~k0! d~k2!,

i.e., a free theory. Thus, the expectation value of the electric charge, i.e., the electric flux at
infinity, in a charged state defined by Coulomb charged fields is time dependent, even if it
derivative vanishes att50 ~by antisymmetry inv!. A current j i with nonzero flux at infinity is
therefore present, ‘‘induced’’ by vacuum polarization effects.

The renormalized charge is given by the limit of the matrix elements of the electric flux,
a suitable smearing in time@ f R , aT(R) as before#

lim
R→`

^Cph , ] iFi0~ f R aT(R)! Cph&.

In fact, by putting

K̃~k!5E dr~m2! «~k0! d~k22m2!,
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it follows

lim
R→`

^Cph , ] iFi0~ f RaT(R)! Cph& 5 e lim
R→`

E dr~m2! d3k R3 f̃ ~Rk! ã~T~R!Ak21m2!

5eE dr~m2! d3q f̃~q! ã~~T~R!/R!Aq21R2m2!.

Now, for m2.0, (T(R)/R)Aq21R2m2.T(R)m and (11m2)M ã(Tm) is bounded uniformly in
T by a function of fast decrease and converges pointwise to zero. Form250, the argument ofã
converges to zero ifT(R)/R→0 and is equal touqu if T5R. Then, by the dominated convergen
theorem, ifT(R)/R→0 one getsle, with l ther measure of the pointm250, which is one by the
renormalization condition of the asymptotic electromagnetic field. On the other hand, forT(R)
5R one gets

e lim
R→`

E d3q dr~m2! f̃ ~q! ã~Aq21R2m2! 5l e E d3k ã~ uku! f̃ ~k![l e C~a, f !, ~A2!

again by the Lebesgue dominated convergence theorem. Thus, Requardt’s prescription g
renormalized charge up to a factorC(a, f ).
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A geometric renormalization group in discrete quantum
space–time

Manfred Requardta)

Institut für Theoretische Physik, Universita¨t Göttingen,
Bunsenstrasse 9, 37073 Go¨ttingen, Germany

~Received 18 June 2003; accepted 11 August 2003!

We model quantum space–time on the Planck scale as dynamical networks of
elementary relations or time dependent random graphs, the time dependence being
an effect of the underlying dynamical network laws. We formulate a kind of geo-
metric renormalization group on these~random! networks leading to a hierarchy of
increasingly coarse-grained networks of overlapping lumps. We provide arguments
that this process may generate a fixed limit phase, representing our continuous
space–time on a mesoscopic or macroscopic scale, provided that the underlying
discrete geometry is critical in a specific sense~geometric long range order!. Our
point of view is corroborated by a series of analytic and numerical results, which
allow us to keep track of the geometric changes, taking place on the various scales
of the resolution of space–time. Of particular conceptual importance are the no-
tions of dimension of such random systems on the various scales and the notion of
geometric criticality. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1619579#

I. INTRODUCTION

Among the various approaches toquantum gravity@or ~quantum! space–time physics# there
exists one which assumes that physics and, in particular, space–time itself are basically disc
the presumed fundamental Planck level. This working philosophy is shared by a variety of
or less related research programs which, however, employ different technical concepts and
different lines of reasoning when it comes to the concrete realization of such a program~for a
small and incomplete list of papers of other groups see, e.g., Refs. 1–22; for further referen
below!.

Our own approach has been developed in Refs. 23–29. It generalizes the concept ofcellular
automatato so-calledcellular networkswhich live on, in general, very large irregular and d
namicalgraphs. That is, both the nodesand the bonds are assumed to be dynamical degree
freedom and interact with each other. An important ingredient of thedynamical lawsis the
possibility that bonds are switched on and off in the course of network evolution so that als
overall wiring or the geometry of the global network is a dynamically changing structure.

If one starts from such discrete model theories, two important points are the following:
the definition of a~class of! primordial dynamics, which, in one way or the other, have
potential to lead to our well-known effective~causal! dynamical evolution laws on an emerge
continuum space–time, and second~and closely related to the first problem!, the control of this
continum limit as a limit of a sequence of increasingly coarse grained intermediate theories
is, one of the central issues is it, to reconstruct and recover the ordinary continuum physi
mathematics, starting from the remote Planck level. Some steps in this direction have been
in the above mentioned papers. They depend of course crucially on the kind of model theory
adopted and the general working philosophy.

In the following we will develop a kind ofgeometric renormalization processleading, as we

a!Electronic mail: requardt@theorie.physik.uni-goettingen.de
55880022-2488/2003/44(12)/5588/28/$20.00 © 2003 American Institute of Physics
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hope, in the end to a fixed point~or rather, phase!, representing some continuum theory. O
renormalization scheme carries the flavor of our particular framework, that is, the global stru
and large scale patterns, existing in large networks and graphs. In some qualitative sen
inspired by thereal-space block variableapproach to renormalization in the critical regime
statistical mechanics. One should note, however, that the implementation of such a program
Planck scale is necessarily much more involved and ambitious as compared to the typical sc
standard physics. The reason is that both the patterns, livingin the ambient networkand this
ambient space itself, have to be renormalized, and it turns out to be a complicated enterp
keep track of the relevant geometric changes and characteristics on the various scales of re
of space–time. In particular, among other things, also the dimension of the underlying spac
change in general during the renormalization process.

Remark:We want to emphasize that, in the absence of a fixed and independent backg
space, the clue consists of performing the renormalization steps in anintrinsic way, without
referring to some embedding space or other external geometric concepts. On the other ha
technical methods being developed are expected to be useful also in other areas of modern
and can be employed in other coarse-graining schemes, for example in the field ofdynamical
triangulation andsimplicial complexes.

Before we begin with the discussion of the technical details of our program, we want to
some remarks about the wider physical context to which such ideas do belong. Illuminating
about discreteness on a fundamental level have already been entertained by Wheeleret al. ~see e.g.
the last pages in Ref. 30 or Refs. 31 and 32, respectively, another early source is Ref. 33!. There
even exist earlier sources which are, however, fueled by a slightly different complex of i
namely, extending the quantum mechanical concept of nonvanishing commutation relations
to the Planck scale. That is, one assumes Heisenberg-like commutation relations for the
time coordinates of events. Our point of view is a little bit different in so far as we try to de
such relations and quantum mechanics in general as an emergent phenomenon appear
mesoscopic scale compared to the Planck scale. But, nevertheless, we think that there
number of cross relations~see, for example, Refs. 34–36!.

Discrete structures like partial orders have, for example, been treated by Isham
co-workers.17 A broad and general approach towards discrete physics in general has been
oped by T. D. Lee and his group~for a collection see Vol. 3 of his selected papers37!. Last but not
least, there is the huge body of work subsumed under the catchwordrandom geometryor dynami-
cal triangulation~Ref. 38 or 39! which is, however, mostly concerned with the discretization o
preexisting continuous initial manifold. There may be interesting connections between our f
work and these other approaches, but, for the time being, we refrain from commenting on th
this article to keep our work within reasonable length.

As a last point we want to mention some interesting cross-fertilization. In the papers
tioned above we based our analysis on a class of dynamical network laws which incorpo
mutual interaction between the local states defined on the nodes of the underlying graph a
nearby bonds. This allows us to treat both the dynamics of the ordinary degrees of freedomon the
graph and the dynamical change of the geometry of the network on the same footing.

We recently observed that similar ideas have been entertained within the framework o
lular automata~see, e.g., Refs. 40 and 41!, the models being calledstructurally dynamic cellular
automataor SDCA. As far as we can see at the moment, the adopted technical framework
exactly the same, but we think a comparison of both approaches should turn out to be pro
We conclude this introduction with a brief description of what we are going to do in the follow

In the following, one of our central goals is to study characteristics of large graphs
networks with the help of statistical methods. Quite unexpectedly, we found that similar me
and techniques are developed at the moment in areas which, at first glance, seem to be q
from foundational space–time physics. In our view this shows that there may be a certain
trend towards the creation of a science of the behavior of large and intricatedly connecte
works ~see Refs. 42 and 43!.

In the next section we explain the basics of the framework we are employing. In Sec. I
                                                                                                                



ng

theory
which
le toy

ory
avior

d of
pic

in the

e are
o the
mple,
n

raliza-

f very
t such

ion of

t
re
ops (a
giving

made

ce
, all
ing

onds

cular

, e.g.,
s, the

5590 J. Math. Phys., Vol. 44, No. 12, December 2003 Manfred Requardt

                    
briefly introduce the concept of arandom graph. To establish some contact to other existi
approaches, we show in Sec. IV that our network naturally carries also the structure ofcausal sets.
The concrete construction of the renormalization steps towards an envisaged continuum
begins with Sec. V, which contains also a series of rigorous analytical and numerical results
are of technical relevance in the subsequent reasoning. In Sec. VI we study some simp
models which~despite their simplicity! show that there indeed do exist fixed points in the categ
of infinite graphs under our geometric renormalization process. In Sec. VII we study the beh
of the particularly important geometric concept ofgraph or network dimensionand its behavior
under renormalization and, in Sec. VIII, which is kind of a conclusion, we analyze the kin
geometric criticalitywhich is in our view essential in order to arrive at nontrivial macrosco
limit space–times.

We recently came upon a beautiful discussion of some work of Gromov,44 which shows that
there may be some deep and interesting connections between our framework, developed
following, and ideas of coarse graining in, for example, geometric group theory by Gromov~see
also Refs. 45–47 cited in Sec. VII!.

II. PROTOGEOMETRY AND PROTODYNAMICS

In a first step we want to motivate why we choose exactly the kind of model theory w
discussing in the following. On the one side, we have a working philosophy which is similar t
one expounded by ’t Hooft in, e.g., Refs. 20–22. That is, we entertain the idea that, for exa
quantum theory may well emerge as aneffective (continuum) theoryon the mesoscopic scale of a
underlying discrete more microscopic theory. As we want our underlying(pre)geometryto co-
evolvewith the patterns living in this substratum, we developed the above mentioned gene
tion of the more regular cellular automata.

Another essential property of suchdiscrete dynamical systemsis, while the basic ingredients
and elementary building blocks are reasonably simple, their potential for the emergence o
complex behavior on the more macroscopic scales, thus supporting the speculation tha
systems may be capable of generating viable continuum theories.

We now begin to introduce the necessary technical ingredients. We start with the definit
some notions of graph theory.

Definition 2.1: A simple, countable, labeled, undirected graph, G, consists of a countable se
of nodes or vertices, V, and a set of edges or bonds, E, each connecting two of the nodes. The
exist no multiple edges (i.e., edges, connecting the same pair of nodes) or elementary lo
bond, starting and ending at the same node). In this situation the bonds can be described by
the corresponding set of unordered pairs of nodes. The members of V are denoted by xi , the bonds
by ei j , connecting the nodes xi and xj .

Remarks:We could also admit a noncountable vertex set. The above restriction is only
for technical convenience. From a physical point of view one may argue that thecontinuumor
uncountable sets are idealizations, anyhow. The notionsvertex, nodeor edge, bondare used
synonymously. Furthermore, the labelling of the nodes is only made for technical convenien~to
make some discussions easier! and does not carry a physical meaning. As in general relativity
models being invariant undergraph isomorphisms~i.e., relabeling of the nodes and correspond
bonds! are considered to be physically equivalent.

In the above definition the bonds are not directed~but oriented; see below!. In certain cases it
is also useful to deal with directed graphs.

Definition 2.2: A directed graph is a graph as above, with E consisting now of directed b
or ordered pairs of nodes. In this case we denote the edge, pointing from xi to xj , by di j . There
may also exist the opposite edge, denoted by dji .

Observation 2.3: An undirected graph, as in Definition 2.1, can be considered as a parti
directed graph with ei j corresponding to the pair of directed edges, di j , dji .

Remark 2.4: We introduced and studied algebraic and functional analytic structures like
Hilbert spaces and Dirac operators on such graphs in Refs. 25 and 27. In such situation
bonds, ei j , di j , can be given a concrete algebraic meaning with
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ei jªdi j 2dji 52eji . ~1!

It is now suggestive to regard the edges between pairs of points as describing their~direct!
interaction. This becomes more apparent if we impose dynamical network laws on these
structures so that they become a particular class of discrete dynamical systems. Hencefo
denote such a dynamical network, which is supposed to underly our continuous space
manifold, by QX ~‘‘ quantum space’’ !. We want to make the general remark that thecellular
networks, introduced in the following, can either be regarded as mere models of a perhaps
hypothetical character, encoding, or rather simulating, some of the expected features of a su
quantum space–time or, on the other hand, as a faithful realization of the primordial substra
underlying our macroscopic space–time picture. Up to now, this is a matter of taste.

For technical convenience and to keep matters reasonably simple, we choose a discrete
clock-time~not to be confused with thephysical timewhich is rather supposed to be an emerg
and intrinsic characteristic, related to the evolution of quasi-macroscopic patterns in such lar
intricately wired networks!. In principle the clock-time can also be made into a local dynam
variable. Furthermore, we assume the node set of our initial network to be fixed and indep
of clock-time ~in contrast to the bonds!. We will see in the following sections that this proper
will change under the renormalization steps, i.e., on the highler levels, the class oflumps or
meta-nodesmay become dependent on time.

We assume that each node,xi , or bond,eik , carries an internal~for simplicity! discretestate
space, the internal states being denoted bysi or Jik . In simple examples we chose, for instanc

siPq•Z, JikP$21,0,11%, ~2!

with q an elementary quantum of information and

eki52eik⇒Jki52Jik . ~3!

In most of the studied cellular automata systems even simpler internal state spaces are cho
e.g.,siP$0,1%. This is at the moment not considered to be a crucial point. The above cho
only an example.

In our approach the bond states are dynamical degrees of freedom which,a fortiori, can be
switched off or on~see below!. Therefore, thewiring, that is, the puregeometry~of relations!, of
the network is a clock-time dependent, dynamical property and isnot given in advance. Conse
quently, the nodes and bonds are typically not arranged in a more or less regular array, a
lattice say, with a fixed near-/far-order. This implies thatgeometrywill become to some degree
relational ~Machian! concept and is no longer a static background.

As in cellular automata, the node and bond states are updated~for convenience! in discrete
clock-time steps,t5z•t, zPZ, with t being an elementary clock-time interval. This updating
given by somelocal dynamical law~examples are given below!. In this contextlocal means that
the node/bond states are changed at each clock-time step according to a prescription with in
overall state of a certain neighborhood~in some topology! of the node/bond under discussion.

A simple example of such a local dynamical law we have in mind is given in the follow
definition ~first introduced in Ref. 25!.

Definition 2.5 (example of a local law): At each clock-time step a certain quantum
exchanged between, say, the nodes xi , xk , connected by the bond eik such that

si~ t1t!2si~ t !5q•(
k

Jki~ t ! ~4!

(i.e., if Jki511 a quantum q flows from xk to xi etc.).
The second part of the law describes theback reactionon the bonds (and is, typically, mor

subtle). We assume the existence of two critical parameters0<l1<l2 with
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Jik~ t1t!50 if usi~ t !2sk~ t !u5..usik~ t !u.l2 , ~5!

Jik~ t1t!561 if 0,6sik~ t !,l1 , ~6!

with the special proviso that

Jik~ t1t!5Jik~ t ! if sik~ t !50. ~7!

On the other side,

Jik~ t1t!5H 61, Jik~ t !Þ0,

0, Jik~ t !50,
if l1<6sik~ t !<l2 . ~8!

In other words, bonds are switched off if local spatial charge fluctuations are too large or swit
on again if they are too small, their orientation following the sign of local charge differences
remain inactive.

Another interesting law arises if one exchanges the roles ofl1 and l2 in the above law, that
is, bonds are switched off if the local node fluctuations are too small and are switched on ag
they exceedl2 .

We make the following observation:
Observation 2.6 (gauge invariance): The above dynamical law depends nowhere on th

solute values of the node ‘‘charges’’ but only on their relative differences. By the same t
charge is nowhere created or destroyed. We have

DS (
QX

s~x! D 50 ~9!

(D denoting the change in total charge of the network between two consecutive clock-time
To avoid artificial ambiguities we can, e.g., choose a fixed reference level, taking as initial
dition at t50 the following constraint,

(
QX

s~x!50. ~10!

We resume what we consider to be the crucial ingredients of network laws. We are inte
in the following.

~1! As in gauge theory or general relativity, our evolution law should implement the mu
interaction of two fundamental substructures, put a little bit vaguely: ‘‘geometry’’ acting on
‘‘ matter’’ and vice versa, where in our context ‘‘geometry’’ is assumed to correspond in a loos
sense to the local and/or global array of bond states and ‘‘matter’’ to the structure of the node
states.

~2! By the same token the alludedself-referentialdynamical circuitry of mutual interactions i
expected to favor a kind ofundulating behavioror self-excitationabove a return to some
uninterestingequilibrium state~being devoid of stable structural details!, as is frequently the
case in systems consisting of a single component which directly acts back on itself
propensity for theautonomousgeneration of undulation patterns is in our view an essen
prerequisite for some form of ‘‘protoquantum behavior’’ we hope to recover on some coars
grained and less primordial level of the network dynamics.

~3! In the same sense we expect the large scale pattern of switching-on and -off of bo
generate a kind of ‘‘protogravity.’’
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Remark:The above dynamical law shows that bonds withJik50 at clock-timet do not
participate in the dynamics in the next time step. We hence may consider them as being tem
inactive. The shape of the network, neglecting all the internal states on the nodes and
together with the inactive bonds, we call thewiring diagram.

If one concentrates solely on thiswiring diagram, Fig. 1 describes one clock-time step in th
life of a dynamic graph. In the picture only a small subgraph is shown and the deletion
creation of edges~that is, elementary interactions among nodes or possible information chan!.
The new bonds are represented as bold lines. It should be emphasized that the graphnot
assumed to be a triangulation of some preexisting smooth manifold. This is emphasized
existence of edges, connecting nodes which are not necessarily close with respect to, e
Euclidean distance.

We have pictured our proto space–time on the Planck scale as a fluctuating netw
dynamic relations or exchange of pieces of information between a given set of nodes. A
fixed clock-time step there exist in this network certain subclusters of nodes which are partic
densely entangled and the whole graph can be covered by this uniquely given set of subclu
nodes and the respective induced subgraphs. We dealt with these distinguished clusters o
~called cliques or lumps! in quite some detail in, e.g., Ref. 26 or 28. We emphasize the intere
relations to earlier ideas of Menger and Rosenet al., which have been discussed in Ref. 28.

One of our core ideas is that the seemingly structureless~mathematical! points, making up our
ordinary continuous manifolds, would display a rich nested internal structure if looked at un
magnification or resolution so that the lumpy structure of space–time became visible. We
this hidden substructure will become particularly relevant when it comes to the interpretat
quantum phenomena~Ref. 29, where possible relations to some interesting ideas of Connes
been set up!.

From a more technical or practical point of view we need a general principle which allow
to lump together subsets of nodes, living on a certain level of resolution of space–time, to g

FIG. 1. Dynamic graph.
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building blocks of the next level of coarse graining~see below!. After a series of such coars
graining steps we will wind up with a nested structure of lumps, containing smaller lumps a
forth, which, after appropriaterescaling, may yield in the end some quasi-continuous but nes
structure. This principle is provided by the following mathematical concept.

Definition 2.7 (subsimplices and cliques): With G a given fixed graph and Vi a subset of its
vertex set V, the correspondinginduced subgraphover Vi (that is, its edges being the correspon
ing edges, occurring in G) is called a subsimplex, if all its pairs of nodes are connected by a
In this class, which is in fact partially ordered, the order being given by graph inclusion, t
exist certainmaximal subsimplices,that is, subsimplices so that every addition of another node
the underlying graph(together with the respective bonds existing in G pointing to other nod
the chosen subset) destroys this property. These maximal simplices are usually calledcliques in
combinatorics (we call them also lumps) and are the candidates for our construction ofphysical
points.Henceforth we denote them by Ci .

It has been described in detail in, e.g., Sec. 4 of Ref. 26 how these cliques can be cons
in an algorithmic way, starting from an arbitrary node. Note in particular that a given node w
general, belong to many different~overlapping! cliques or lumps. The situation is illustrated
Fig. 2. In this figure we have drawn a subgraph of a larger graph.~1! denotes a clique, i.e., a
maximal subsimplex. Subsets of nodes of such a clique support subsimplices~called faces in
algebraic topology!, the clique being the maximal element in this partial ordered set.~2! and ~3!
are other, smaller cliques which overlap with~1! in a common bond or node.~4! is an example of
a subgraph which is not a clique or subsimplex. Evidently, each node or bond lies in at lea
clique. The smallest possible cliques which can occur in a connected graph consist of two
and the corresponding edge.

III. DYNAMICAL NETWORKS AS RANDOM GRAPHS

A. The statistical hypothesis

As we are dealing with very large graphs, which are,a fortiori, constantly changing thei
shape, that is, their distribution of~active! bonds, we expect the dynamics to be sufficien
stochastic so that a point of view may be appropriate, which reminds us of the working philo
of statistical mechanics. This does, however, not imply that our evolving network is nothing bu

FIG. 2. Cliques.
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simple random graphas introduced below~cf. the remarks at the end of this section!. It rather
means that some of its geometric characteristics can, or should, be studied within this
developed context.

Visualizing the characteristics and patterns being prevalent in large and ‘‘typical’’ graphs
already a notorious problem incombinatorial graph theoryand led to the invention of therandom
graph framework~see the more complete discussion in Ref. 26!. The guiding idea is to deal with
graphs of a certain type in a probabilistic sense. This turns out to be particularly fruitful as
graph characteristics~or their absence! tend to occur with almost certainty in a probabilistic sen
~as has been first observed by Erdo¨s and Re´nyi!. The standard source is Ref. 48~for further
references see Ref. 26!.

Another strand of ideas stems from the theory of dynamical systems and cellular auto
where corresponding statistical and ensemble concepts are regularly employed. Typically,
looking for attractorsin phase space, which are assumed to correspond to large scale, that is
coarse grainingand rescaling, quasi continuous or macroscopic patterns of the system. Ex
ence shows that such a structure or the approach towards attractors is in many cases re
robust to the choice of initial configurations or microscopic details and, hence, suggests
semble picture.

Furthermore, since the early days of statistical mechanics, the ensemble point of view~see, for
example, Ref. 49! is, at least partly, corroborated by the philosophy that time averages ca
translated~under favorable conditions! into ensemble averages. In our context this means
following. Denoting the typical length/time scale of ordinary quantum theory by@ l qm#, @ tqm#, we
have

@ l qm#@@ l pl#, @ tqm#@@ tpl#, ~11!

the latter symbols denoting the Planck scale. Under renormalization the mesoscopic scale
prise a huge number of microscopic clock-time intervals and degrees of fredom of the ne
under discussion.

A fortiori, the networks, we are interested in, correspond to graphs, having typically a
vertex degree, i.e., number of independent channels being connected with a given typical no
the graph. That is, we expect large local fluctuations in microscopic grains of space or tim
differently, the network locally traverses a large number of different microscopic states in a ty
mesoscopic time interval,@ tqm#. This observation suggests that, on a mesoscopic or macros
scale, microscopic patterns will be washed out or averaged over.

B. The random graph framework

One kind of probability space is constructed as follows. Take all possible labeled graph
n nodes as probability spaceG ~i.e., each graph represents an elementary event!. The maximal
possible number of bonds isNª(2

n), which corresponds to the uniquesimplex graph~denoted
usually byKn). Give each bond theindependent probability0<p<1 ~more precisely,p is the
probability that there is a bond between the two nodes under discussion!. Let Gm be a graph over
the above vertex set,V, havingm bonds. Its probability is then

pr~Gm!5pm
•qN2m, ~12!

whereqª12p. There exist (m
N) different labeled graphsGm , having m bonds, and the above

probability is correctly normalized, i.e.,

pr~G!5 (
m50

N S N
mD pmqN2m5~p1q!N51. ~13!

This probability space is sometimes called the space ofbinomially random graphsand denoted by
G(n,p). Note that the number of edges is binomially distributed, i.e.,
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pr~m!5S N
mD pmqN2m ~14!

and

^m&5( m•pr~m!5N•p. ~15!

The really fundamental observation made already by Erdo¨s and Re´nyi ~a rigorous proof of this
deep result can, e.g., be found in Ref. 50! is that there are what physicists would callphase
transitions in theserandom graphs. To go a little bit more into the details we have to introdu
some more graph concepts.

Definition 3.1 (graph properties):Graph propertiesare certain particularrandom variables
(indicator functions of so-called events) on the above probability spaceG, i.e., a graph property,
Q, is represented by the subset of graphs of the sample space having the property under
sion.

Some examples are (i ) connectedness of the graph, (i i ) existence and number of certa
particular subgraphs~such as subsimplices, etc.!, (i i i ) other geometric or topological graph prop
erties, etc.

In this context Erdo¨s and Re´nyi made the following important observation.
Observation 3.2 (threshold function): A large class ofgraph properties(e.g., themonotone

increasing ones,cf. Ref. 48 or 50) have a so-calledthreshold function,m* (n), with m* (n)ªN
•p* (n), so that for n→` the graphs under discussion havepropertyQ almost surelyfor m(n)
.m* (n) and almost surely not for m(n),m* (n) or vice versa [more precisely: for
m(n)/m* (n)→` or 0; for the details see the above cited literature]. That is, by turning on
probability p, one can drive the graph one is interested in beyond the phase transition thre
belonging to the graph property under study. Note that, by definition, threshold functions are
unique up to ‘‘factorization,’’ i.e., m2* (n)5O(m1* (n)) is also a threshold function.

Calculating these graph properties is both a fascinating and quite intricate enterprise. I
26 we mainly concentrated on properties ofcliques, their distribution~with respect to their order
r , i.e., number of vertices!, frequency of occurence of cliques of orderr , degree of mutual
overlap, etc. We then related these properties to the various assumed stages and phase
space–time manifold.

We can introduce variousrandom functionon the above probability space. For each sub
Vi,V of order r we define the following random variable:

Xi~G!ªH 1 if Gi is an r -simplex,

0 else,
~16!

whereGi is the corresponding induced subgraph overVi in GPG ~the probability space!. Another
random variable is then thenumber of r-simplices in G, denoted byYr(G), and we have

Yr5(
i 51

(r
n)

Xi ~17!

with ( r
n) the number ofr -subsetsVi,V. With respect to the probability measure introduced abo

we have for theexpectation values

^Yr&5(
i

^Xi& ~18!

and
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^Xi&5 (
GPG

Xi~G!•pr~Gi5r -simplex in G!. ~19!

These expectation values were calculated in Ref. 26. We have, for example,

^Xi&5p(2
r ). ~20!

The probability that such a subsimplex is maximal, i.e., is a clique, is then

pr~Gr is a clique!5~12pr !n2r
•p(2

r ). ~21!

As there exist exactly (r
n) possible differentr -sets in the node setV, we arrive at the following

conclusion:
Conclusion 3.3 (distribution of subsimplices and cliques): The expectation value of the

dom variable‘‘number of r -subsimplices’’is

^Yr&5S n
r D •p(2

r ). ~22!

For Zr , the number ofr -cliques(i.e., maximal! r-simplices) in the random graph, we have th
the following relation:

^Zr&5S n
r D •~12pr !n2r

•p(2
r ). ~23!

These quantities, as functions ofr ~the order of the subsimplices! have quite a peculiar
numerical behavior. We are interested in the typicalorder of cliquesoccurring in a generic random
graph~where typical is understood in a probabilistic sense!.

Definition 3.4 (clique number): The maximal order of occurring cliques contained in G
called itsclique number,cl(G). It is another random variable on the probability spaceG(n,p).

It is remarkable that this value is very sharply defined in a typical random graph. Usin
above formula for̂ Zr&, we can give an approximative value,r 0 , for this expectation value and
get

r 0'2 log~n!/ log~p21!1O~ log log~n!! ~24!

~cf. Chap. XI.1 of Ref. 48!. It holds that practically all the occurring cliques fall in the interv
(r 0/2,r 0). We illustrate this with the following tables. Our choice forn, the number of vertices, is
10100. The reason for this seemingly very large number is that we want to deal with sys
ultimately simulating our whole universe or continuous space–time manifolds~see the more
detailed discussion in Ref. 26!. We first calculater 0 .

~25!

~for reasons we do not understand we made some numerical errors in the original Table 1
26, p. 2043!.

It is more complicated to give numerical estimates of the distribution of cliques, that is^Zr&.
After some manipulations and approximations we arrived~Ref. 26, p. 2051f! at the following
approximative formula and numerical table~the numerical values are given forp50.7; note that
for this parameter the maximal order of occurring cliques,r 0 , was approximately 1291!

log~^Zr&!'r • log~n!1n• log~12pr !1r 2/2• log~p! ~26!

~with r 2/2 an approximation ofr (r 21)/2) for r sufficiently large!.
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~27!

@In the original Table 2 of Ref. 26 the numerical values for small and larger ’s, lying outside the
interval (r 0/2,r 0), were wrong as we neglected numerical contributions which are only van
ingly small in the above interval.# The above table nicely illustrates how fast the frequency
cliques of orderr drops to zero outside the above interval.

As to the interpretation of these findings, one should remind the reader that the above
apply to the generic situation, that is, do hold for typical graphs~in very much the same sense
in corresponding discussions in the foundations of statistical mechanics!. An evaluation of the
combinatorial expressions in this and the following sections shows that frequently the sam
of extreme probabilistic concentration around, for example,most probable valuesoccurs as in
ordinary statistical mechanics.

What is not entirely clear is how far the random graph approach can be applied t
complex dynamical networks. Our working philosophy is that these results serve to show, wh
hope, is the qualitative behavior of such systems. As our systems follow deterministic dyna
laws, starting from certain initial conditions, the behavior cannot be entirely random in the
sense. This holds more so since we expect the systems to evolve towardsattracting setsin phase
space and/or generate some large scale patterns. On the other hand, due to the constan
tation of the bonds, being incident with an arbitrary but fixed node and the generically large v
degrees of the nodes, one may assume that the system is sufficiently random on small sc
that the random graph picture reproduces at least the qualitative behavior of such ext
complex systems.

To make this picture more quantitative, the general strategy is the following. We coun
typical number of active bonds in our evolving network at a given clock-timet, calculate from this
the corresponding bond probability,p(t), and relate this snapshot of our network to a rand
graph with the same! bond probability. This should yield at least some qualitative clues. Th
we expect that qualitative characteristics of our evolving network can, at each given clock-tim
related to the characteristics of a corresponding random graph. In this specific sense, on
regard thebond probability, p(t), as the crucialorder parameterof our network, regarded as
statistical system.~We note that we implemented such networks on a computer and made de
studies of their dynamical behavior and stochastic properties, see Ref. 51. Our investig
showed that at least qualitatively the expected phenomena came out correctly.!

IV. CELLULAR NETWORKS AS CAUSAL SETS

In this section we want to make contact with an approach to quantum gravity, being bas
the concept ofcausal sets. We again emphasize that, for reasons of technical simplicity, we t
timeas a global nondynamical quantity, being well aware that this may be a severe restrictio
the other hand, the notorious so-calledproblem of timehas not yet been settled anyhow
quantum gravity and needs an extra and careful treatment. Under this proviso we want to
that ourcellular networksand lump-spacesautomatically have the structure of causal sets, w
this extra structure being induced by our local dynamical laws. On the most elementary lev
start from our above initial network.

We argued above that we want to neglect the details of the~time dependent! internal states of
nodes and bonds and only keep track of the bonds which are in operation at a given clock-tt,
that is, the bonds withJikÞ0. Doing this, we arrive at the concept oftime dependent graphs,
G(t).

Definition 4.1: G(t) is a graph with a fixed (time independent) node set, V, but a time
dependent set of active bonds, E(t). In principle we could also make the node set time depend
the above assumption is mainly made for convenience.

The local dynamical laws can as well be viewed as a prescription, by which local p
~quanta! of information are transported between the active bonds of the network. The nodes,
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can be reached from a given node in a single clock-time step, are called itsnearest neighbors, nn,
the next-nearest neighbors, nnn, are correspondingly defined and so on.

What we have defined up to now corresponds to thefoliation of space–time into an aggrega
of spacelike slices. We now form the union of these slices and define

Gªø
t

G~ t !. ~28!

In our above mentioned papers~see, in particular, Ref. 23! we exploited the fact that graphs car
a natural metric structure

d~xi ,xj !ª inf$ length of paths, connectingxi andxj%, ~29!

where path length is the discrete number of edges of the path. This defines a neighb
structure on a graph

Ul~x0!ª$nodesxi with d~x0 ,xi !< l %. ~30!

We now will transformG into apartial ordered set~poset! by introducing additional~causal!
bonds and relabeling the nodes. From now on we denote the nodes inG(t) by xi(t), that is, one
and the same nodexi carries an additional time labeltPZ•t, depending on the time sliceG(t)
under discussion and is denoted byxi(t). For each node,xi(t) we draw new edges to the node
xj (t11) lying in G(t11), provided thatxj (t) is a nn of xi(t) in G(t) @including the nodexi(t
11) itself!#. For convenience we usually drop the extra time elementt.

Definition 4.2: We call the edges lying in G(t), that is the original edges of the (time depe
dent!) graph, thespatial edges(at time t), the edges which connect the neighbors in consecu
slices, G(t), G(t11), are dubbedcausal edges.That is, an elementarycausal neighborhoodof,
say, xi(t) consists of all the nodes, xj (t11), in G(t11), with xj (t), having spatial distance,
d(xi(t),xj (t))<1, in G(t) [that is, the node, xi(t11) itself plus the nodes having distance one

~It may be helpful to envisage the spatial edges as carrying a red color and the causal e
green one.!

We can now proceed by introducing theforward- or future coneandbackward- or past cone,
respectively.

Definition 4.3: To the forward cone of x(t) belong those nodes, y(t8), t8>t, which can be
connected by a causal edge sequence, g, starting in x(t). Such an admissible sequence consists
(t82t) elementary steps. An analogous definition holds for the members of the past cone.
two nodes, x(t), y(t8) with t8>t, we can intersect the forward cone of x(t) with the backward
cone of y(t8) and get the corresponding double cone.

Remark:Note that the causal and metric relations are relatively subtle as compared t
instance, ordinaryspecial relativity, where we deal with one and the same topological sp
structure for all times. In our space–time graph,G, the spatial wiring is constantly changing on
microscopic scale, due to the imposed local dynamical law. That is, two nodes may be
nearest neighbors inG(t) while being far apart for earlier or later times and vice versa. This
happen since bonds are permanently annihilated and created.

Conclusion 4.4: The above causal distance concept has already some of the crucial in
ents of the metric properties, known from general relativity. Furthermore, it is of a mark
stochastic character.

What we have said above creates in a natural way somepartial order on the set of nodes. We
do not want to reproduce all the technical notions, which are presumably well known o
be found in, e.g., the papers of Sorkinet al., mentioned above, or in, say, Ref. 52 or 53.
the definition of the partial ordered set~poset!, only the causal~green! bonds enter@with their
~non!existence being a consequence of the respective~non!existence of the spatial~red! bonds#.
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Definition 4.5: We have xj (t8)>xi(t), t8>t, if the nodes can be connected by a causal pa
lying in the forward cone. The nodes, lying on a causal edge sequence, we call chains;
mutually spacelike nodes are called antichains.

This order relation is clearly reflexive, antisymmetric and transitive. We remark the follow
point.

It trivially holds ~by assumption! that xi(t8)>xi(t), that is, for the same node at differe
times. This implies that for two nodes,xi , xj , it follows

xj~ t8!>xi~ t ! ⇒ xj~ t9!>xi~ t ! ~31!

for all times, t9>t8, as we can continue the causal path fromxi(t) to xj (t8) by the trivial path,
xj (t8)2xj (t9).

V. THE GEOMETRIC COARSE-GRAINING OR RENORMALIZATION PROCESS

A. The general picture

One of our central hypotheses is to regard the ordinary space or space–time as a m
having a complicated internal dynamical fine structure, which is largely hidden on the ord
macroscopic scales due to the low level of~only mesoscopic! resolution of space–time process
as compared to, e.g., the Planck scale. The corresponding process ofcoarse graining, described in
the following, may be also called ageometric renormalization, in which the resolution of the
details of space–time is steadily scaled down to the level of ordinary continuum physics.
preliminary ideas of this renormalization process have already been been decribed in Refs.
28.

In the following we deal with a generic large network or graph,G, as a typical representativ
of the members of the class$G(t)%, described above. The individual renormalization steps con
of the following constructions.

~i! Starting from a given fixed graph,G, pick the ~generic! cliques, Ci , in G, i.e., the sub-
graphs, forming maximal subsimplices or cliques inG with their order lying in the above
mentioned interval, (r 0/2,r 0).

~ii ! These cliques form the new nodes of theclique-graph, Gcl of G. The corresponding new
bonds are drawn between cliques, having a~sufficient degree of! overlap. Size, overlap and
distribution of cliques in a generic~random! graph have been analyzed in Ref. 26; for mo
details see the following subsection.

~iii ! That is, bothmarginalcliques~if they do exist at all! andmarginaloverlaps are deleted. In
this respect a coarse-graining step includes also a certainpurificationof the graph structure

Remark 5.1: What is considered to be a ‘‘sufficient overlap’’ depends of course on the ph
context and the general working philosophy. As we noted above, a particular node will in ge
belong to several, and in the case of densely entangled graphs to many, cliques. The m
possible overlap is given by a single common node. If, on the other hand, the cliques on a c
level of coarse graining are comparatively large, comprising, say, typically several hundred n
it may be reasonable to neglectmarginal, i.e., to small, overlaps as physically irrelevant an
define a sufficient degree of overlap to consist of an appreciable fraction of the typical c
order. Correspondingly, too small cliques, not lying in the above introduced interval, (r 0/2,r 0), are
deleted (if they do exist at all!, see the estimates in Sec. III). The numerical effect of such c
will be studied in the following.

Definition 5.2: We call the graph, defined above, the (purified) clique graph, Gcl , constructed
from the initial graph, G.

It is an important question whether graphs and networks are connected, that is, if there
a path or edge sequence, connecting each pair of vertices. This question becomes,a fortiori,
relevant in the following~sub!sections if the coarse-graining or renormalization steps are
formed on a given fixed graph. The following lemma is useful.
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Lemma 5.3: If G is a connected graph, that is, each pair of vertices, x,y can be connected b
a finite path or edge sequence, depicted as x5x02x12¯2xn5y, then the ordinary (unpurified)
clique graph, Gcl , is again connected.

Proof: Let x0 lie in a certain clique,C0 andy in a cliqueCn11 . By algorithmic construction
~cf. Ref. 26!, the verticesx02x1 ,x12x2 ,...,xn212xn are lying in certain cliquesC1 ,...,Cn with

C0ùC1ÞB, C1ùC2ÞB,..., CnùCn11ÞB ~32!

by construction (xiPCiùCi 11). Hence, each pair of cliques,C,C8, can be connected by a finit
sequence of pairwise overlapping cliques. In other words, the ordinary clique graph is
connected. h

This result is, for example, useful in cases where graphs are so sparsely connecte
viewed in the random graph picture, there is a nonzero probability that they are disconnecte
above construction shows that at least the consecutive sequence of unpurified clique graG0

→G1→G2→¯ consists of connected graphs, provided the initial graph,G0 , is connected, with
Gi 11 being the clique graph ofGi . On the other hand, if we take instead the purified clique gra
in which only overlaps of a certain degree are taken into account which are greater than
prescribed value, it may happen that the clique graph is no longer connected.

We want to repeat the above described coarse-graining process several or perhaps ma
~if necessary! without the necessity of introducing new principles at each step of the construc
The transition from a graph to its clique graph represents such auniversal principle, which works
on each level of the renormalization process. In the end we hope to arrive at a~quasi-!continuous
manifold, displaying, under appropriate magnification, an intricate internal fine structure.
should ~or rather, can only be expected to! happen if the original network has been in
~quasi-!critical state as will be described in the following~see in particular Sec. VIII!.

On each level of coarse-graining, that is, after each renormalization step, labeled byl PZ, we
get, as in the block spin approach to critical phenomena, a new level set of cliques or lumCi

l

( i labeling the cliques on renormalization levell ), consisting on their sides of (l 21)-cliques
which are thel -nodes of levell , starting from the levell 50 with G5:G0 . That is, we have

Cj
l 5ø

i P j

Ci
( l 21), Ci

( l 21)5ø
kP i

Ck
( l 22) , etc. ~33!

@ i P j denoting the (l 21)-cliques, belonging, as meta nodes, to thel -clique, Cj ]. These cliques
form the meta nodes in the next step.

Definition 5.4: The cliques, Ci
0 , of G5:G0 are called zero-cliques. They become the on

nodes, xi
1 , of level one, i.e., of G1 . The one-cliques, Ci

1 , are the cliques in G1 . They become the
two-nodes, xi

2 , of G2 , etc. Correspondingly, we label the other structural elements, for exam
one-edges, two-edges or the distance functions, dl(xi

l ,xj
l ). These higher-level nodes and edges a

also called meta-nodes and -edges, respectively.
Figure 3 shows how the~meta! nodes and bonds form in two consecutive steps. In

FIG. 3. Coarse graining.
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example and in the selected subgraph under discussion the cliques on level 0 are triangles
of them have a common bond but all of them are hanging together via a common~central! node.
In this example we draw a bond on level 1 if the cliques of level 0 have at least one no
common.

Remark 5.5: The picture may lead to the wrong impression that the network becomes s
after each step. Quite to the contrary, the number of cliques in Gcl may be much larger than the
number of nodes in the original graph, G [cf. the table in Eq. (27)]. This happens if there is a
appreciable overlap among the occurring cliques, that is, a given node may belong to
different cliques. On the other hand, after several renormalization steps, the picture bec
stable in the generic case (see the following subsection).

The above illustration can be understood in two different ways. On the one hand, read
left to right, the resolution of space appears to be reduced. The cluster of cliques on th
happens to be contracted to a single node of the next level. On the other hand, according
working philosophy, we can regard the node on the right as still containing the structure o
left, which could, in principle, be recovered when increasing the resolving power of our sp
time microscope, i.e., by increasing, e.g., the energy. This is expressed in Fig. 4~where for the
sake of graphical clarity, the mutual overlaps of the occurring cliques of the same level
represented!!. Understood in this latter sense we call these space–time points alsolumps, that is,
we regard them as objects, having an inner structure. Different aspects of this structure em
the respective scale of resolution or magnification. We provided arguments in Ref. 29 that
view even quantum theory is just such an emergent aspect which shows up at the typical qu
scale.

We want to briefly mention the possibly far-reaching interplay on the higher levels of co
graining between these deleted, too marginal, overlaps and the morelocal wiring stemming from
the nonmarginal overlaps. We discussed this point at length in Ref. 29. We argued there tha
deleted meta bonds are responsible for the translocal behavior of quantum theory. In the fol
we are, however, chiefly concerned with the emergence of smooth and local behavior, le
hopefully, to~quasi!classical space–time structures!.

B. The analytic and numerical results

We begin this subsection with a general remark concerning the character of our appro
tions.

FIG. 4. Lumps.
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Remark 5.6: As the individual terms in our combinatorial expressions are typically e
extremely large or small and are frequently, as in statistical mechanics, very sensitive to the
range of parameters, it is a quite delicate matter to make safe estimates. Among other thin
usually have to take logarithms and compare them. That is, if for examplelog(a)@log(b), we
sometimes choose to neglectlog(b) in a contribution likelog(a)1log(b) in the further calculations.
For the original expression this may have the effect that we replace b•a by a. To give an example
we sometimes approximate102

•10100 by 10100. Otherwise we had to take into account a lot of on
marginal contributions which would make the calculations rather cumbersome. On the
hand, this is of course only justified, if we are only interested in qualitative results and prov
that the final result is insensitive to such an approximation.

We made more detailed remarks in Ref. 26, formulas~62! ff., where we discussed the ap
proximation of, e.g., binomial coefficients and their logarithms.

We have seen that the cliques in a large generic random graph oforder n andbond probability
p are with high probability concentrated in the interval (r 0/2,r 0) with respect to their order,r ,
with

r 0'2 log~n!/ log~p21!1O~ log log~n!! ~34!

and with the expectation ofr -cliques

^Zr&5S n
r D •~12pr !n2r

•p(2
r ). ~35!

We can test our general working philosophy concerning the effects of coarse graining and
malization by analytically and numerically calculating various properties of theclique graphof a
generic random graph. These calculations become increasingly intricate with increasing co
ity of the asked questions. Some of the analysis has already been done in, e.g., Sec. 4.2 of
~called ‘‘The Unfolded Epoch’’ ! to which we refer the reader for more technical details.

The meta-nodes of the clique graph,Gcl , are the cliques ofG. The meta-bonds inGcl are
given by the overlap of cliques inG. As we want, on physical grounds, to ignore marginal, that
too small overlaps, it is important to calculate the expected number ofr 8-cliques,^N(C0 ;r 8,l )&,
having an overlap of orderl with a given fixedr -clique,C0 , with bothr andr 8 lying in the above
interval of generic cliques.

In Ref. 26, Sec. 4.2 we derived the following formula for this stochastic quantity (C0 being a
fixed r -clique!:

^N~C0 ;r 8,l !&5

S r
l D •S n2r

r 82 l D •p(2
r 8)2(2

l )

~12pr !n2r
•

•Pr 8,l ~36!

with Pr 8,l a lengthy combinatorial expression@formula ~69! in Ref. 26# which we can neglect for
the parametersn,r ,r 8, chosen by us, that is,

That is, in this regime we approximatedPr 8,l by one. It can not, however, be neglected if th
assumption is violated!

After some manipulations we arrive at the following approximative formula@Ref. 26, formula
~74!#, where we choose, for convenience,r 85r , as we are at the moment only interested
qualitative or generic results:

log^N~C0 ;r 8,l !&'~r 82 l !•~ log~n!2 log~r 82 l !!1 1
2•~r 8!2

• log~p!

' log^Zr 8&2 l • log~n!2r 8 log~r 8! ~37!

with

log^Zr&'r log~n!1 1
2•r 2

• log~p!. ~38!
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for this range of parameters@cf. also Ref. 26, formula~60! ff.#.
The total expected number ofr 8-cliques having an overlapl> l 0 with a givenr -clique is

(
l> l 0

^N~C0 ;r 8,l !& ~39!

~the admissiblel ’s being bounded by the minimum ofr and r 8). For l 50 we get the expected
number ofr 8-cliques, having zero overlap with the given fixedr -clique, C0 , that is we have
approximately~remember our simplifying assumptionr 5r 8)

log^N~C0 ;r 8,l 50!&' log^Zr 8&2r 8• log~r 8!. ~40!

As n is so large, the total number ofr 8-cliques, having overlapl> l 0 with C0 , can be
approximated by the number of cliques fullfilling the lower boundl 0 . On the other hand, the tota
number of expected generic cliques,Ncl , in the random graph,G, that is, the cliques with orde
lying in the respective interval (r 0/2,r 0), is roughly

Ncl'r 0/2•^Zr̄& ~41!

with r̄ an appropriate value in the above interval~this replacement can be made as the numer
values in this interval behave relatively uniformly!. We define thelocal groupof a generic clique
as the set of generic cliques, having nonmarginal overlap with the fixed given clique. Fro
above reasoning we can now infer the following important conclusion.

Conclusion 5.7:

^Nloc.gr.&'Ncl /~nl 0
• r̄ r̄ ! ~42!

with n the number of nodes in the graph, G, Ncl the number of generic cliques in the correspon
ing clique graph, l 0 the degree of overlap of the generic cliques, and r¯some appropriate value in
the interval@r 0/2,r 0#, n@r ,r 8@ l 0 being assumed (where the second@ is not so pronounced as
the first one; n is usually gigantic compared to the clique size r!).

Such estimates are central in the following as they provide information about the local
ture of the clique graph.

From the above formulas and numerical results we can now infer interesting properties
clique graph of a typical graph of order,n, and bond probability,p. The expected order of the
local group in the clique graph is, by the same token, theaverage vertex degreein the clique
graph, that is,

^vcl&'Ncl /~nl 0
• r̄ r̄ !. ~43!

From this we can immediately infer the bond probability of the clique graph,

pcl5^vcl&/~Ncl21!'^Nloc.gr.&/Ncl'n2 l 0
• r̄ 2 r̄ , ~44!

and see that it is already considerably smaller than the bond probability of the underlying m
scopic graph we started from which, in our numerical example, was assumed to be of orde

We take our above numerical example,n510100, p50.7, which impliesr 051291, and as-
sume that an appreciable overlap for generic cliques should be of the order of, say, 50 nod
typical clique size we taker̄ 5r 0/2 ~remember that we are at the moment only interested
qualitative results!. The clique graph has roughlyNcl'10104

generic cliques, that is, meta-nodes
the first level. With the bond probability in the clique graph,pcl'1027•103

, we now can calculate
the distribution and order of cliques of the first level, that is, cliques of cliques. This prov
important information about the near order of the clique graph and the effects of the renorm
tion steps.
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As the order of these cliques of the first level turns out to be already quite small,
reasonable to avoid our approximative formulas and determine the respective clique numbr 0 ,
by explicitly calculating the number wherêZr& drops from a very large number to effective
zero. The result shows that foroverlap550 of the original cliques~of the zero level!, the cliques
of the next higher level comprise only very few cliques of the zero level. That is, the near ord
G1ªGcl is already much coarser or less erratic as compared to the near order in the o
graph. The results are described in the following observation.

Observation 5.8: For the above numerical parameters we get a typical clique size on th
coarse grained level of order r52 or 3 and an expected number of cliques of the first level of
order of log(Ncl)5104 ~which is comparable to the number of cliques of the zero level!!.

We can control the sensitivity of our results to the chosen degree of overlap. We see
that the results do not depend critically on the numerical details as long as the paramet
roughly of the same order. For example, foroverlap530 we get, performing the correspondin
calculations, the following result.

Observation 5.9: For clique-overlap530 the clique size on the first level increases slightly
a value of r054.

In the following we present some more characteristics of the clique graph with overlap

~i! average vertex degree'10(10427•10313),
~ii ! expected number of bonds5^vcl&•0.5•^ncl&'0.5•105•103110416.

An important question is whether the~purified! clique graph,G1 , is still connected. In Ref. 26 we
gave the threshold value for the correspondingp* (n), which is

p* ~Ncl!5 log~Ncl!/Ncl'104/10104
5102(10424)!pcl'1027•103

, ~45!

that is,

pcl /p* ~n!'103•103
. ~46!

Conclusion 5.10: For the numerical data we employed the web of lumps isalmost surely
connected. On the other hand, after one renormalization step, the purified net of cliques is
sparsely connected than the initial microscopic net.

Summing up what we have accomplished so far in this subsection, we have the followin
of graph characteristics for the particular set of numerical parameters we employed:

~i! l 50: number of nodesn0510100, bond probabilityp050.7, clique numberr 051291.
~ii ! l 51: n1'10104

, p1'1027•103
, r 153, ^vertex degree&'100.3•104

.

The respective values were calculated by using the following approximative formulas:

p15n0
2 l 0

• r̄ 2 r̄ , l 0550 , n1'r 0/2•^Zr̄
(0)& ~47!

(^Zr
(0)& is the distribution function of cliques in the initial graph,G0 and r̄ is some average o

typical value!.
The expected order of cliques on level 1 is only 2 or 3. That is, taking the next step from

1 to level 2 we may assume an overlapl 151, i.e., we may take the ordinary clique graph. Wi
this value we can calculate the corresponding characteristics ofG2 , the graph having as node
cliques, consisting of nodes of level 1. Before we proceed with the numerical estimates w
have to check whether the approximations we have made above are still valid for this new r
of parameters!

Now, r ,r 8,l are very small and of comparable size. That is, our above approximative form
are no longer valid. On the other hand, forr ,r 8,l near one, it becomes possible to evaluate
combinatorial expressions directly. For the expected number of nodes on level 2, that is, ex
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number of cliques on level 1, we insert our parameters into the formula for^Zr
(1) @cf. formula~35!#

and get an approximate value,n2'10104
~which is of the same order asn1!).

The calculation of the vertex degree, that is,^N(1)(C0 ,r 8,l )& with, e.g., r 852,l 51, is nu-
merically more delicate since now we have to take into account also the termPr 8,l in formula~36!;
up to now we approximated by one. Furthermore, we now face the problem of having to dea
small differences of extremely large numbers in the various occurring expressions and/or
which are extremely small or large and tend to cancel each other.

Fortunately, there is a more direct way to get sufficiently precise results in this regime
saw that typical cliques inG1 are of order two or three. The assumed overlap isl 51. We can
hence infer that the expected number of cliques, overlapping with a fixed given clique,C0 , is
roughly the same as the number of nodes, being connected with one of the nodes ofC0 . We
conclude that

p25^N(1)~C0 ,r 8,l !&'p1'1027•103
. ~48!

With these values forn2 ,p2 , we can calculater 2 and again getr 253. We hence have forl 52

~i! n2'10104
~number of cliques of level 1! and

~ii ! p2'p1'1027•103
, r 253.

For the following levels the parameters are now stable and the same as for level two.
Conclusion 5.11: We see that after only two steps we have arrived at a coarse-grained

with a large number of nodes, a very small bond probability and small cliques, which show
the geometric near- and far-order has unfolded. We further conclude that the following reno
ization steps would no longer alter appreciably the graph characteristics calculated above fo
levels G1 ,G2 . That is, at least as far as these particular graph properties are concerned, we
already reached a quasi-stable regime, so that the assumption of the existence of fixed ph
attractors does not seem too far-fetched. We can also infer that all the graphs are almost
connected.

On the other hand, we do not expect that a smooth limit manifold, having, e.g., a fixed in
dimension, does emerge quasi automatically in the pure random graph framework. A fu
important ingredient will be the action of some appropriately chosen local law as we have
duced it above. (See the corresponding discussions in our mentioned prior work.!

IV. FIXED POINT BEHAVIOR

Starting from a sufficiently large network or graph,G5G0 , and performing the consecutiv
steps, described above, denoting the transition fromGl to Gl 11 , i.e., from a graph to its~purified!
clique graph, byR ~standing forrenormalization!, we have

R:Gl→Gl 11, Gl5RlG0, Rl5R¯R ~ l -times!. ~49!

The philosophy of the renormalization group is that initial systems, lying on thecritical
submanifold, approach afixed pointunderRl for l→`. In statistical mechanics the limit system
represent rather alimit phase, i.e., a statistical system with the finer details still fluctuating. In
same sense we can at best hope that our presumed limit network of lumps represents a
limit phase, that is, a network which is only invariant and homogeneous on a larger sc
resolution, while the fine structure is still constantly changing.

The geometric concepts, which have to be further clarified, are the notions ofgeometric (fixed)
phaseandcritical network state. We want to emphasize that we cannot expect that these ch
terizations will be a simple task. Quite to the contrary, both concepts represent subtle and d
properties. In general, the emerging array of lumps will not fit automatically into something w
does resemble a smooth macroscopic manifold, having for example a well-defined and
~macroscopic! dimension~among other things!. Possible obstacles are already well-known on
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much simpler level of simplicial complexes. In order that such a complex has the chan
approximate a manifold, a variety of subtle incident relations between the occurring indiv
simplices have to be fulfilled~see, e.g., Ref. 54!.

In our context these relations on the more coarse-grained scales will depend on the appr
choice of the microscopic local dynamical laws on the Planck scale we started from. Expe
with complex systems in general and cellular automata in particular tells us that the cla
appropriate laws will be a very small and peculiar set in the space of possible interaction law
the corresponding findings in the regime ofselforganized criticality,55 the catchword beingcom-
plexity at the edge of chaos.

In other words, as the whole approach appears to be relatively new and the task form
we will make what are perhaps only some first steps towards a solution of these problem
first step we will convince ourselves that the renormalization procedure described by us do
lead to nonsensical results~we have already previously seen that some gross characteristics
network seem to become stable after only a few renormalization steps!. We show that there do
exist examples of graphs which display fixed point or fixed phase behavior in a more micros
sense. These graphs are, however, simple and very regular and are not meant to represent
examples of networks, underlying our continuum space–time. They rather serve at best a
trative toy models.

In the following section we then introduce a geometrical core concept designed to cl
such irregular network structures, i.e., the notion ofgraph dimension. We show how it behaves
under our renormalization process. The corresponding analytic results indicate what kind ocriti-
cal behavioris presumably needed to have a physically reasonable limit behavior.

We illustrate our framework with the help of some simple examples~see also Fig. 5!. Note
that in the following examples the minimal admissible clique overlap is assumed to be
common node!

~1! The graphZ2: The set of nodes are parametrized as V5$( i , j ), i , j PZ%. Edges are drawn
between the following nodes:

~ i , j !,~ i 8, j 8! with u i 82 i u1u j 82 j u51. ~50!

We determine the cliques at the various levels, given byGl ~see also the following figure!.
(G0) A node, (i , j ), belongs to the following zero-cliques:

$~ i 11,j !,~ i , j !% $~ i , j 11!,~ i , j !% ~51!

and1 replaced by2, that is, the order of the zero-cliques is 2, the diameter~that is, the maximal
distance between two nodes! is 1, and the maximal mutual overlap is 1.

(G1) A zero-node, (i , j ) belongs to the following one-cliques,

$~ i , j !,~ i 61,j !~ i , j 61!%, ~52!

FIG. 5. Fixed point behavior.
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and the cliques formed around thenn-nodes of (i , j ). The order relative toG0 is 5, the diameter
is 2, and maximal overlap is 2.

(G2) The order of two-cliques relative toG0 is 13, diameter is 3, and maximal overlap is
Remark:Note that the above values of order and diameter refer to the start graphG0 .
With increasingl , the maximal overlap becomes large, due to the particular structure o

graph,Z2. One sees that for largel the hierarchical structure of the corresponding tower of grap
Gl , becomes very dense and entangled, a feature one would also expect from something
continuum.

On the other side, it is instructive to perform also the above mentioned rescaling and co
the various levels at the same scale, viz., inspect the pure graph structure. This will make e
the fixed point behavior we are particularly interested in.

(G0→G1) The one-nodes ofG1 ~i.e., the zero-cliques! we represent by the midpoints of th
edges of the start graph,G0ªZ2. Four of these zero-cliques meet at a common node, (i , j ), say.
We represent the one-edges as the line segments, connecting these midpoints. This yield
rotated lattice~plus two extra diagonal edges!.

(G1→G2) These four one-nodes~the one-cliques! form now the two-nodes. They form
simplex having six one-edges. We inscribe these two-nodes inG0 by placing them in the center
of the one-cliques, that is the original lattice points ofG0 . We draw a two-edge if two of thes
one-cliques have a common one-node~that is, a zero-clique!!. We can convince ourselves that th
emerging graph,G2 , is isomorphic to the start graph,G0 . We hence make the interesting obse
vation:

Observation 6.1: Starting from G05Z2, we see that G2 is combinatorially isomorphic to G0 ,
meaning that there exists an invertible map, F:G0→G2 , mapping nodes on nodes and bonds
bonds and preserving the combinatorial structure in the following way (with ei j an edge of G0):

ei j PE~G0!↔F~ei j ! connects F~xi !,F~xj !. ~53!

The same holds for G1 ,G3 , etc.
Conclusion 6.2: The sequence of graphs, G0 ,G1 ,G2 ,..., decomposes in exactly two sets

isomorphic graphs,

$G0 ,G2 ,...% , $G1 ,G3 ,...% ~54!

under the renormalization group

Rª$Ri%, Ri :G0→Gi , R2:Gi→Gi 12 . ~55!

Corollary 6.3: A corresponding observation can be made for a general lattice, Zn.
~2! The trivalent infinite tree:In order to get a better feeling for what can happen, we st

some more elementary examples. Let us take an infinite trivalent tree. The zero-cliques ar
two-sets of vertices or line segments, connectingnn. The graph,G1 , is again represented b
connecting the midpoints of these line segments. The resulting one-cliques are three-sets
angles. Taking them as the two-nodes ofG2 , we see thatG2 is again isomorphic toG0 as in the
Z2-case.

Observation 6.4: For a trivalent infinite tree, the sequence of graphs, G0 ,G1 ,G2 ,..., decom-
poses into two subsets. The situation is the same as for the preceding example.

~3! The triangulatedR2: We introduce another simple example. We triangulateR2 by using
the above lattice,Z2, and complement it by drawing the diagonals, pointing from (i , j ) to (i
11,j 11). The zero-cliques are these triangles. Without a purification, bonds in the graph,G1 , are
drawn if two zero-cliques meet at a common node or zero-edge. The emerging one-clique
the shape of hexagons, i.e., they are six-simplices. Repeating this process, one sees thG2 is
isomorphic toG1 .
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Observation 6.5: In the case of the above triangulation ofR2, we have a start graph, G0 ,
while all the graphs, G1 ,G2 ,..., are isomorphic. In other words, we now have a fixed point of
renormalization group.

Conclusion 6.6: We have seen that there exist examples in the category of graphs
display phenomena like invariant sets or fixed points under our geometric renormalization g.

These observations open up interesting vistas. While we have not yet shown that the
invariant sets or fixed points have the character ofattracting sets, that is, whether there exist larg
basins of attractionin the category of graphs under the repeated application of the map,R, we
strongly surmise that this is true. Furthermore, the concept ofself-similarity suggests itself~see
also the next section! a notion we have already introduced and studied in Ref. 23, to cons
graphs withfractal dimension.

VII. GRAPH DIMENSION UNDER THE RENORMALIZATION GROUP

We repeatedly mentioned the possibility ofgeometricor topological phase transitionsin
evolving networks of the kind we are having in mind. In Ref. 23 we developed and studie
concept ofgraph dimensionin quite some detail. We concluded that, from the physical poin
view, the number of nodes which can be reached by, say,l steps starting from a given node is a
important characteristic as is its limiting and scaling behavior as a function ofl . This is the crucial
and intrinsic property, which underlies implicitly most of the calculations in the physics of ph
transitions and many other phenomena, which are triggered by the collective interaction of
constituents. Its true significance is, however, frequently hidden as the reasoning is usua
formed by using the properties of the embedding space~viz., its ordinary dimension!.

Remark:We learned recently that such growth properties are also important characteris
geometric group theory and related subjects in pure mathematics~see, e.g., Refs. 45, 46, or 47!.

We will investigate the behavior of this quantity under the application of our renormaliza
group. In Ref. 23 we introduced the two variants, defined below. They are not strictly equiv
but coincide in the more regular situations. In the following, for the sake of brevity, we only
the first notion.

Definition 7.1 (internal scaling dimension): Let x be an arbitrary node of G. Let #(Un(x))
denote the number of nodes in Un(x). We consider the sequence of real numbers Dn(x)
ª ln(#(Un(x))/ln(n). We say DI S(x)ª lim infn→`Dn(x) is the lower and D̄S(x)
ª lim supn→`Dn(x) the upper internal scaling dimensionof G starting from x. If DI S(x)
5D̄S(x)5:DS(x), we say G has internal scaling dimension DS(x) starting from x. Finally, if
DS(x)5DS;x, we simply say G hasinternal scaling dimensionDS .

Definition 7.2 (connectivity dimension): Let x again be an arbitrary node of G. Let

#(]Un(x)) denote the number of nodes in the boundary of Un(x). We set D̃n(x)
ª ln(#(]Un(x))/ln(n) 11 and define DI C(x)ª lim infn→`D̃n(x) as the lower and D̄C(x)
ª lim supn→`D̃n(x) as theupper connectivity dimension.If lower and upper dimension coincide

we say G hasconnectivity dimensionDC(x)ªD̄C(x)5DI C(x) starting fromx. If D C(x)5DC for
all x we call DC simply theconnectivity dimensionof G.

Remark:The above does not imply that this notion is the only relevant topological chara
istic of large networks. It clearly is not sufficient to describeall of the mesoscopic or macroscop
properties, but we think it is, as in the continuum, a very important concept.

We already proved in Ref. 23 that this kind of dimension is stable under a variety of t
formations, in particular underlocal ones. In Sec. 5.2.5 of Ref. 23 we showed that, in orde
change the dimension of a graph, we have to introduce long-range effects or interactions
reminds one of the behavior ofcritical systems.

We now compare the dimension of a graph,G, with the dimension of its clique graph,Gcl ,
where, for the time being, we take the clique graph in its original meaning. That is, we dr
bond if two cliques have a nonvoid overlap of arbitrary size.

Let us assume, for convenience, thatG has the scaling dimension,D, that is, for every node,
x0 , we have
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lim
l

ln ~#~Ul !!/ ln l 5D. ~56!

Furthermore, we assume for simplicity that the node degree ofG is globally bounded, i.e.,

v i<v,` for all xi . ~57!

We choose a fixed node,x0 , lying in a fixed clique,C0 . We have to calculate the number o
one-nodes, that is, the number of zero-cliques, #(Ul

cl(C0)), lying in Ul
cl(C0) with the distance,

d1 , now measured in the clique graph,Gcl . That is, a clique,Cl , lies inUl
cl(C0) if C0 andCl can

be connected by a sequence ofl 8 cliques with l 8< l so that two consecutive cliques have
nonzero overlap. For each zero-node,xl8 , lying in someCl 8 with d1(C0 ,Cl 8)< l , we can estimate
the distance to the nodex0 in C0 . There exists, by definition, a sequence of overlapping cliqu

Co ,C1 ,...,Cl 8, l 8< l . ~58!

For two neighboring cliques,Ci ,Cj , we have

d0~xi ,xj !<2, xiPCi ,xjPCj . ~59!

For each intermediate consecutive pair of cliques we need one step~a bond from a node in the
overlapCi 21ùCi to a node inCiùCi 11), for the initial and final pair we need at most two step
We hence get

d0~x0 ,xl 8!< l 812. ~60!

Lemma 7.3: For two arbitrary nodes

x0PC0 ,xl 8PCl 8 with d1~C0 ,Cl 8!< l ~61!

we have

d0~x0 ,xl 8!< l 812 ~62!

and hence

uUl
cl~C0!u,Ul 12~x0! ~63!

with uUl
cl(C0)u the set of zero-nodes, lying in Ul

cl(C0) ~the latter set now understood as the set
its zero-nodes). This implies

#~ uUl
cl~C0!u!<#~Ul 12~x0!!. ~64!

From observation 4.2 of Ref. 26 we know that each node,xi , can lie in at most 2v i different
cliques, withv i<v. This yields the crude, buta priori, estimate

#~Ul
cl~C0!!<#~Ul 12~x0!!•2v, ~65!

which is the desired upper bound on the number of cliques, lying inUl
cl(C0). We conclude that,

for an infinite graph withv i<v,`, we have for the dimension of its clique graph

D̄cl<D ~66!

since

ln~#~Ul
cl~C0!!!/ ln~ l !< ln~#~Ul 12~n0!!!/ ln~ l !1v• ln~2!/ ln~ l !. ~67!
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For l→` we get the above result.
We want to prove a corresponding lower bound. Take an arbitrary node,xl 8 , in Ul(x0). By

definition, there exists a node-~edge-!sequence

x02x12¯2xl 8 with l 8< l . ~68!

On the other side, there exists a sequence of cliques,Ci , with each consecutive pair of node
(xi 21 ,xi)PCi . These cliques do exist because, starting from the connected pair, (xi 21 ,xi), we get
such a clique by extending this germ in one of~possibly! several ways to a clique~cf. Sec. 4 of
Ref. 26!. We can conclude that for each node,xl 8PUl(x0), andx0PC0 , we have

xl 8PuUl 11
cl ~C0!u. ~69!

~Note that the clique, containing bothx0 andx1 , may be different from the start clique,C0!!
We then have

Ul~x0!,uUl 11
cl ~C0!u and #~Ul~x0!!<#~ uUl 11

cl ~C0!u!. ~70!

With v i<v for all xi , the maximal order of a clique is bounded from above by (v11). This
implies

#~ uUl 11
cl ~C0!u!<~v11!•#~Ul 11

cl ~C0!! ~71!

and

#~Ul 11
cl ~C0!!>#~Ul~x0!!/~v11!. ~72!

We hence get

ln~#~Ul 11
cl ~C0!!!/ ln~ l 11!> ln~#~Ul~x0!!!/ ln~ l 11!2 ln~v11!/ ln~ l 11!. ~73!

With

ln~ l 11!5 ln~ l •~11 l 21!!5 ln~ l !1 ln~11 l 21! ~74!

and l→`, we see that

DI cl>D ~75!

and get the important theorem:
Theorem 7.4: Assuming that G has dimension D and globally bounded node degree, v i<v

,`, we have that Dcl also exists and it holds

Dcl5D. ~76!

Note that this result does hold for the ordinary clique graph, viz. arbitrary overlap, viz.,
purification. In other words, under these assumptions, the renormalization steps do not chan
graph dimension.

This result is reminiscent of a similar observation in statistical mechanics where the
coarse-grained Gibbsian entropy happens to be aconstant of motion. The same happens here.
the ordinary clique graph each original bond occurs in at least one clique, i.e., there is no re~or,
more precisely, not enough! coarse graining.

VIII. CRITICAL NETWORK STATES

In Sec. V B we derived formulas for the size of the so-called local group of a clique
random graph, that is the set of cliques with which a given clique has a~sufficient! common
                                                                                                                



cately
he
er of

by

s.
uction
hold
which

es of

ber

of a

oth
s the

erratic
e–time

sitions
s
esting

ave to
dis-
iew.
f
f.
ory

to its
k or

ues

5612 J. Math. Phys., Vol. 44, No. 12, December 2003 Manfred Requardt

                    
overlap. If one is in the parameter regime in which the cliques are still densely and compli
entangled~typically the first renormalization steps! and compares the number of bonds in t
purified clique graph, that is, bonds being defined by a sufficient! overlap, with the numb
bonds in the corresponding~unpurified! clique graph, the latter number exceeds the former one
many orders. Put differently, in this situation the number ofmarginaloverlaps of cliques is much
bigger. All these marginal overlaps are deleted in the purification or renormalization proces

The last theorem in the preceding section shows that we will not get a dimensional red
without sufficient purification. If we go through the proof, we see that the first part does
unaltered for the purified clique graph. In the second part, however, we used an argument
does only hold for ordinary clique graphs@see the remarks following formula~68!#. The existence
of the row of overlapping cliques, employed there, can only be guaranteed if the degre
overlap are left arbitrary. We hence can infer the following.

Corollary 8.1: For the purified clique graph, with overlaps exceeding a certain fixed num,
l 0 , we can only prove

Dcl<D. ~77!

Having for example the picture in mind, frequently invoked by Wheeler and others,
space–time foam, with a concept of dimension depending on the scale of resolution~see, e.g., Box
44.4 on p. 1205 in Ref. 30!, we infer from our above observations that this may turn out to be b
an interesting and not entirely trivial topic. We have to analyze under what specific condition
dimension can actually shrink under coarse-graining, so that we may start from a very
network on, say, the Planck scale, and arrive in the end at a smooth macroscopic spac
having perhaps an integer dimension of, preferably, value 4 or so.

We remarked already in the introduction that geometric change or geometric phase tran
are supposed to be related to some sort ofcritical stateof the network. Our previous observation
about the possibility of dimensional change under coarse graining together with an inter
observation already made in Ref. 23, lemma 4.10, allows us toalmost rigorouslyprove what kind
of criticality is in fact necessary to achieve this goal.

We showed there that it is not so easy to modify the dimension of a graph bylocal alterations.
Proposition 8.2: Additional insertions of bonds between arbitrarily many nodes, y,z, having

original graph distance, d(y,z)<k , kPN arbitrary but fixed, do not change DI (x) or D̄(x).
From this we learn the following. Phase transitions in graphs, changing the dimension, h

be intrinsicallynonlocal. That is, they necessarily involve nodes having an arbitrarily large
tance in the original graph. We think this is a crucial observation from the physical point of v
On the one side, it shows that systems have to becritical in a peculiar way, that is, having a lot o
distant correlations or, rather, correlations on all scales~cf. also Smolins’s discussion in e.g., Re
4 and elsewhere!. On the other side, it fits exactly with our working philosphy that quantum the
is a residualandcoarse-grainedeffect of such largely hidden long range correlations.29

If we apply these findings to our renormalization steps, that is, passing from a graph
associated~purified! clique graph, this implies the following. We saw that assuming a networ
graph,G, having a dimension,D, the unpurified clique graph still has

Dcl5D. ~78!

On the other hand, denoting the purified clique graph byĜcl , we have the estimate

D̂cl<Dcl5D. ~79!

The transition fromGcl to Ĝcl consists of the deletion of marginal overlaps among cliq
~with the necessary criteria provided by the physical context!. That is,Ĝcl lives on the same node
set~the set of cliques! but has fewer~meta!bonds. The above proposition shows that this doesnot
automatically guarantee that we really have
                                                                                                                



n in a

by the
nd

(with

p to

5613J. Math. Phys., Vol. 44, No. 12, December 2003 A geometric renormalization group

                    
D̂cl,Dcl . ~80!

Quite to the contrary, we learned that this can only be achieved if the bond deletions happe
very specific way.

On Gcl we have, as on any graph, a natural distance or neighborhood structure, given
canonical graph metric,dcl(Ci ,Cj ). Note that the above proposition holds as well for bo
deletions instead of insertions. We thus infer that bond deletions inGcl between cliques which are
not very far apart in the final purified graphĜcl cannot alter the final dimension ofĜcl . More
precisely, only bond deletions between cliques having distances inĜcl which approach infinity in
a specific way can have an effect.

Conclusion 8.3: We conclude that only the bond deletions between very distant cliques

respect to Gˆ cl), with this distance being unbounded, can decrease the dimension of Gˆ
cl as com-

pared to Gcl . More precisely, there has to be a substantial bond deletion on all scales u
infinity.

The above observation reminds one of thescale invarianceof critical systemsin other con-
texts. We exemplify this by a simple but instructive example~see Fig. 6!.

This @inhomogeneous; it slightly depends on the reference point~0,0!# construction has al-
ready been given in Sec. 5.2.5 of Ref. 23. One takes the lattice,Z2 , inscribes in it, starting from
the point~0,0!, two nonintersecting outwardly spiraling edge sequences:

~0,0!→~1,0!→~1,1!→~0,1!→~21,11!→~22,11!→~22,0!→¯ ~81!

and

~0,0!→~21,0!→~21,21!→~0,21!→~11,21!→~12,21!→~12,0!→¯. ~82!

We consider this inscribed graph as a representation of the one-dimensional lattice,Z1 , with the
node labeling running from2` to 1`.

0→1→2→3→4→5→¯ ~83!

and

0→21→22→23→24→25→¯ . ~84!

FIG. 6. Change of dimension.
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Remark 8.4: The embedded graph, being isomorphic toZ1 , is in fact aspanning treerelative
to the ambient graph, Z2 .

One can now see that the extra bonds, occurring inZ2 , not belonging to the representation
Z1 , connect nodes of a larger and larger distance with respect to the labeling ofZ1 . We have for
example bonds inZ2 between pairs of nodes with theZ1-labels,

0,3 ; 3,210 ; 210,21 ; 21,236 ... ~85!

and correspondingly for other sequences of nodes. That is, the embedded graph i
dimensional, lying in a two-dimensional graph, while the node sets are identical. The prec
discussion and the figure illustrate and confirm what we have said above about the ty
necessary criticality and long-range correlations.

To employ this example for our renormalization group approach, we can replace the or
nodes~with the Z1-labeling! by certain cliques of arbitrary order and choose the overlaps ap
priately, so that the above representation ofZ1 becomes thepurified clique graph of the total
graph. We arrive at a coarse-grained graph of dimension one, starting from an unpurified gr
dimension two or a larger dimension.
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Existence of the self-graviting Chern–Simons vortices
Dongho Chaea) and Kwangseok Choeb)
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We prove existence of multivortex solutions of the self-dual Einstein–Chern–
Simons–Higgs system, proposed by Cle´ment @Phys. Rev. D54, 1844–1847
~1996!#. We consider both the topological and the nontopological boundary condi-
tions for open, conformally flat manifolds. For nontopological boundary conditions
we use perturbation argument from a solution of the Liouville equation combined
with the implicit function theorem. Using this argument we have existence for
arbitrary positive number for the gravitational constant. For topological boundary
condition we construct solutions for small gravitational constant by using the super/
subsolution method. For sufficiently large gravitational constant we have a nonex-
istence result for the radially symmetric topological solutions. We also obtain the
decay estimates near infinity for both of the topological and the nontopological
solutions. © 2003 American Institute of Physics.@DOI: 10.1063/1.1625871#

I. THE EINSTEIN–CHERN–SIMONS–HIGGS MODEL

The well-known Abelian Chern–Simons–Higgs~CSH! model9,11 can be generalized to th
Einstein–Chern–Simons–Higgs~ECSH! model if we couple the CSH model to gravity.

The Abelian ECSH model is defined by the action:6

I 5E d3xH 2
1

16pG
AuguR2

k

4
«mnrFmnAr1Augu @gmnDmf~Dnf!* 2V~ ufu!#J , ~1.1!

where gmn is the (211) dimensional Lorentzian metric with the signature (1,2,2), R is a
scalar curvature,G.0 is a gravitational constant,Am (m50,1,2) is the gauge field,Fmn5]mAn

2]nAm , f is a complex scalar field,Dmf5(]m1 iqAm)f with q representing the charge of th
electron,«mnr is the skew symmetric tensor with«01251, andk is the Chern–Simons couplin
constant. The Higgs potentialV(ufu) shall be specified later on.

It has been shown by Valtancoli20 that the ECSH model admits the self-dual stationary m
tivortex solutions provided that a suitable eighth-order potential is chosen. Cangemi–Lee2 consid-
ered the Einstein–Maxwell–Chern–Simons–Higgs model, and obtained a set of self-dual
tions by imposing some additional conditions onAm , f and the real fieldN. When a certain limit
is taken, this model2 reduces to the ECSH model, and we can obtain self-dual equations fo
ECSH model. The ECSH model was also studied by Cle´ment,6 who obtained self-dual ECSH
system by imposing a weaker conditiong0051 and by decomposing Ricci tensorRmn . In this
paper we follow6 and establish existence results for our model equations. These mode
actually generalizations of the Einstein–Abelian–Higgs~EAH! model considered in Refs. 7, 12
and 23 which models the cosmic strings with the matter as the Abelian–Higgs fields. For the
model, only topological solutions are admissible for the finiteness of the total energy. See R
and 21 for the rigorous mathematical studies of the EAH model.

Unlike the Einstein–Abelian–Higgs model, ECSH model admits both topological and
topological boundary conditions to give finite total energy. The purpose of this paper is to

a!Electronic mail: dhchae@math.snu.ac.kr
b!Electronic mail: kschoe@math.snu.ac.kr
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struct multivortex solutions of the ECSH model with the topological and the nontopolo
boundary conditions, respectively.

The Euler–Lagrange equation for the action~1.1! is the Einstein equation

Rmn2 1
2 gmnR58pGTmn ~1.2!

coupled with the matter field equations for (Am ,f)

~k/2Augu!«mlnFml5 iqgnr~f* ~Drf!2f~Drf!* !, ~1.3!

~1/Augu!Dm~AugugmnDnf!52]V/]f* , ~1.4!

where the energy-momentum tensorTmn is given by

Tmn5~~Dmf!* ~Dnf!1~Dmf!~Dnf!* !2gmn~gab~Daf!* ~Dbf!2V!.

We make the ansatz for stationary solutions

ds25N
*
2 ~dt1v j dxj !21g jk dxj dxk,

~1.5!
Am dxm5A0~dt1v j dxj !1Āj dxj .

HereN* >0; N* , A0 , v j , Āj andg jk are functions of (x1,x2) only.
With the help of the Euler–Lagrange equations~1.2!–~1.4! and the decomposition of Ricc

tensorRmn , Clément has derived the self-duality condition

D̄ jf57~ i /Ag!g jk«klD̄ lf, ~1.6!

by imposing the conditionN* 5Ag00[1. ~See Ref. 6 for the details.! Moreover, it was shown in
Ref. 6 that if the Higss potentialV takes the specific form

V5
q4

k2 ufu2~ ufu22«2!222pGk2Fq2

k2 ~ ufu22«2!21CG2

,

then the self-dual equations for the stationary solutions of~1.2!–~1.4! are given as follows:

A056~q/k!~ ufu22«2!, ~1.7!

B̄52A0@~2q2/k!ufu228pGk~A0
21C!#, ~1.8!

Rg5~8pGk~A0
21C!!2116pG@g jk~D̄ jf!~D̄kf!* 22V#, ~1.9!

b528pGk~A0
21C!, ~1.10!

where«2,C are integration constants,D̄ jf5] jf1 iqĀjf with Āj5Aj2v jA0 , «kl is the skew
symmetric 2-tensor with«1251, g5det(gjk) and

B̄5~1/Ag!~]1Ā22]2Ā1!, b5~1/Ag!~]1v22]2v1!.

We may also choose a time gauge in which] jv j50 in conformal coordinates, so thatv j is the
curl of a real potentialv, which leadsDv52Ag b.

We note that a solution of~1.7!–~1.10! is also a stationary solution of~1.2!–~1.4!.
It is well-known that the Gauss–Codazzi equation coupled with~1.2! implies the constraint

equation~see, e.g., Ref. 7! Rg5216pGT00. The total stationary energyE is given by
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E52
1

16pG E
R2

RgAg dx.

The integration constantC in ~1.8!–~1.10! is subject to a physical constraint to give the fin
energy: at the spatial infinity, we assumeufu approaches uniformly to some constant valuef` and
B̄(`)50. We consider the two cases

~ i! f`50, C52q2«4/k2 ~nontopological boundary condition! ~1.11!

and

~ ii ! f`5«, C50 ~ topological boundary condition!. ~1.12!

We note that ifG50 and the metric~1.5! is set to be a (211)-dimensional Minkowski metric
~i.e., N* 51, v j[0, andg jk52d jk), the ECSH model reduces to the CSH model proposed
Hong–Kim–Pac9 and Jackiw–Weinberg.11 There are now some existence results available
vortices with the topological boundary condition,17,22 the nontopological boundary condition4,16

and the periodic boundary condition1,19 to the CSH model. In particular double vortex conde
sates, including some blow-up analysis, have been studied in relation to the existence of ex
functions for a Sobolev inequality of the Moser–Trudinger’s type.15

In this paper, we study the self-dual equations~1.7!–~1.10! of the ECSH model and construc
multivortex solutions with the topological and the nontopological boundary conditions res
tively. More precisely, we have

Theorem 1.1 „Existence of nontopological solutions…: Let N.0 and finite points
p1 ,...,pNPR2 be given. Then, there is a constantd05d0(G«2,N) such that for alldP(0,d0) the
system (1.7)–(1.10) has a smooth solution(g,A,f) with the following properties:

(i) (M ,g jk)5(R2,2ehd jk), i.e., (M ,g jk) is conformally flat.
(ii) f vanishes at p1 ,...,pN , and satisfies the boundary condition (1.11).
(iii) The conformal factor eh satisfies the decay estimate

eh~x!5O~uxu2 ~32pG«2(N11)!/~16pG«211! 28pG«2b1(d)! as uxu→` ~1.13!

for someb1(d) with b1(d)5O(d2) as d→0, and ufu2, B̄, uD̄fu2 satisfy

ufu21B̄1uD̄fu25O~uxu2 ~2N14132pG«2!/~16pG«211! 2b2(d)! as uxu→`

for someb2(d) with b2(d)5O(d2) as d→0.
(iv) The energy E has the value

E5p«2S 4N14

16pG«211
1b1~d! D , ~1.14!

which is obviously nonquantized.
In the above if G«2 is sufficiently small, thenb1(d).0. If 8pG«2N,8pG«211, then

b2(d).0.
Theorem 1.2 „Existence and nonexistence of topological solutions…: Let N.0 and

p1 ,...,pNPR2 be given.
Case 1: If G«2 is sufficiently small, then the system (1.7)–(1.10) has a smooth solution

(g,A,f) with the following properties:

(i) (M ,g jk)5(R2,2ehd jk).
(ii) f vanishes at p1 ,...,pN and satisfies the boundary condition (1.12).
(iii) The total energy E is given by

E52p«2N,
and obviously quantized.

(iv) The conformal factor eh satisfies the decay estimate

eh(x)5O~uxu216pG«2N! as uxu→`, ~1.15!
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and the terms«22ufu2, B̄, uD̄fu2 satisfy the decay estimates

uB̄u1uD̄fu21u«22ufu2u5O~exp~2~12d!muxu128pG«2N!! as uxu→`

for any d.0, where

m5
2q2«2

k

exp~24pG«2!

128pG«2N
.

Case 2: If G«2>1/8pN, then every radially symmetric solution(g,A,f) satisfies
limuxu→`uf(x)u51`.

Theorem 1.1 and Theorem 1.2 will be proved with the reduction of~1.7!–~1.10! to a system
of elliptic equations. If we transform conformally from (M ,g jk) into (R2,d jk) by g jk52ehd jk ,
then the equation~1.6! becomes

D̄1f7 iD̄ 2f50. ~1.16!

We choose the ‘‘plus’’ sign. Following the argument of Jaffe–Taubes~Ref. 10, Chap. 3! we can
deduce from~1.16! that the zeros off are finite, and we have the representationf(z)5(z
2pj )

nj f (z) in a neighborhood of a zeropj of f with the multiplicity nj for a smooth nonvanishing
function f .

Introducing a new variableu by

f5expS 1

2
u1(

j 51

N

i arg~z2pj !D , z5x11 ix2PC5R2, ~1.17!

where we allow the overlapping of zeros,pj ’s, we can deduce from~1.16! and ~1.17! that

ehB̄5
1

2q S Du24p(
j 51

N

dpj D . ~1.18!

From ~1.8! and ~1.18! we obtain

Du52
2q4

k2 eh~eu2«2!S 8pGe2u2~16pG«212!eu18pG
k2

q2 S C1
q2«4

k2 D D14p(
j 51

N

dpj
.

~1.19!

Moreover, it follows from~1.8! and ~1.16! that

g jk~D̄ jf!* ~D̄kf!5
i

2
e2h« jk] j~f* D̄kf2f~D̄kf!* !1qufu2B̄

5qufu2B̄2 1
2 e2hDufu252V1q«2B̄24pGk2~A0

21C!2

18pGk2C~A0
21C!2 1

2 e2hDufu2.

Then we obtain from~1.9! that

Rg516pG~q«2B̄18pGk2C~A0
21C!!28pGe2hDufu2.

SinceDh5Rgeh, we obtain from~1.7! and ~1.8! that
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D~h18pGeu!516pGehF28pG
q4«2

k2 e3u1S 24pG
q4«4

k2 1
2q4«2

k2 18pGq2CDe2u

2S 24pG
q4«6

k2 1
2q4«4

k2 124pGq2«2CDeu18pGk2S q2«4

k2 1CD 2G .
~1.20!

If ( h,u) is a solution of the elliptic equations~1.19!–~1.20!, then the solution (A,f,v j ) can
be recovered by~1.17!, ~1.7! and the formula

Ā15
1

q
Re~~ i ]12]2!ln f!, Ā25

1

q
Im~~ i ]12]2!ln f!,

v j52
1

2p E
R2

« jk~xk2yk!

ux2yu2
b~y!eh~y! dy

with b given by~1.10!. Therefore, we have shown that the self-dual equations~1.7!–~1.10! can be
reduced to the elliptic equations~1.19!–~1.20!.

II. EXISTENCE OF NONTOPOLOGICAL SOLUTIONS

In this section, we study the system of equations~1.19!–~1.20! with the nontopological bound
ary condition, i.e.,C52q2«4/k2.

Set a58pG«2 and l52q4«4/k2. Under the scalingu°u1 ln «2, we obtain the following
system of equations:

D~h1aeu!52laeh1u~ae2u22~a11!eu12!,
~2.1!

Du52leh1u~ae2u2~3a12!eu12~a11!!14p(
j 51

N

dpj
.

The system~2.1! is our main equation to study in this section.
Let us introduce some auxiliary functions

f ~z!5~N11!)
i 51

N

~z2pi !, F~z!5E
0

z

f ~z!dz, z5x11 ix2 ,

he,s~z!5
4

l~2a11!~11ueN11F~z!1su2!2 ,

re,s~z!5e2N12u f ~z!u2he,s~z!, r~r !5
4~N11!2r 2N

l~2a11!~11r 2N12!2 ,

wheres5s11 is2PC5R2. Notice that

D ln he,s522l~2a11!re,s .

It is easily seen that

~v1 ,v2!5S a

2a11
ln he,s ,

a11

2a11
ln he,sD

is a solution of
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Dv1522lae2N12u f ~z!u2ev11v2,

Dv2522l~a11!e2N12u f ~z!u2ev11v2.

The main idea of the proof is that the solution of~2.1! can be considered as a perturbation

S a

2a11
ln he,s , lnueN11f ~z!u21

a11

2a11
ln he,sD .

Let aP(0,1) be given. Following Ref. 4, we introduce the Banach spacesXa andYa as

Xa5H uPL loc
2 ~R2!U E

R2
~11uxu21a!uu~x!u2 dx,`J

equipped with the normiuiXa

2 5*R2(11uxu21a)uu(x)u2 dx, and

Ya5H uPWloc
2,2~R2!uiDuiXa

2 1 I u~x!

11uxu11a/2I
L2(R2)

2

,`J
equipped with the norm

iuiYa

2 5iDuiXa

2 1 I u~x!

11uxu11a/2I
L2~R2!

.

Proposition 2.1 [Chae–Imanuvilov (Ref. 4)]: LetaP(0,1).

(1) If vPYa is a harmonic function, thenv[const.
(2) There are constants C1.0 such that for allvPYa

uv~x!u<C1iviYa
~ln1uxu11!, ;xPR2,

whereln1uxu5max$ lnuxu,0%.
We recall some results about weighted spaceMs,d

2 which is the closure ofC0
`(R2) with respect

to the norm

ifiM
s,d
2 5 (

uau<s
is

*
(d1uau)]x

afiL2,

wheres* (x)5(11uxu2)1/2, s is a non-negative integer,dPR andfPC0
`(R2). It is well known

that Ms,d
2 has the following properties.

Lemma 2.1 (McOwen (Refs. 13 and 14)):

(1) Ms8,d8
2

,Ms,d
2 if s8>s andd8>d. If s8.s andd8.d, the inclusion is compact.

(2) If 21,d,0 then the LaplacianD, D:M2,d
2 →M0,d12

2 is an injection with closed range$ f
PM0,d12

2 u*R2f 50%, and iuiM
2,d
2 <CiDuiM

0,d12
2 with C independent of u@Cantor (Ref. 3)#.

(3) For anyd,l PR, the map f° f s
*
l is a continuous map from M2,d

2 into M2,d2 l
2 .

(4) Let s.1 and d,1. There is a constant C.0 such thati f s
*
d iL`<Ci f iM

s,0
2 for all f PC0

` .

Therefore, ifd.21 and fPM2,d
2 then i f s

*
b iL`<Ci f iM

2,d
2 for b,11d.

We note that foraP(0,1),

Xa5M0,11 ~a/2!
2

�L1~R2!, M2,211 ~a/2!
2

�Ya .

With the help of Lemma 2.1, we can also prove the following lemma~see, e.g., Ref. 14!.
Lemma 2.2: GivenvPYa , there exists a functionv PYa such that
*
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v~x!5
1

2p S E
R2

Dv~y! dyD ln~11uxu2!1/21v* ~x!, ;xPR2

with uv* (x)u<CiviYa
for some constant C. Moreover, v* (x)5v`1o(uxug) as uxu→` for

2a/2,g,0 and some constantv` .
Setting

z~z!5
1

a
h~z!2

1

2a11
ln he,s~z!,

and

v~z!5u~z!2 lnueN11f ~z!u22
a11

2a11
ln he,s~z!,

we can rewrite~2.1! as

D~z1ueN11f ~z!u2he,s
~a11!/~2a11! ev!

52lre,seaz1v@aueN11f ~z!u4he,s
~2a12!/~2a11! e2v22~a11!ueN11f ~z!u2he,s

~a11!/~2a11!ev12#

12lre,s , ~2.2!

Dv52lre,seaz1v@aueN11f ~z!u4he,s
~2a12!/~2a11! e2v2~3a12!ueN11f ~z!u2he,s

~a11!/~2a11! ev

12~a11!#12l~a11!re,s . ~2.3!

We denote

ge,s~z!5e22re,s~z/e!.

Note that lim(e,s)→0 ge,s(z)5r(uzu).
Making change of variablesz→z/e, and denotingh̃e,s(z)5he,s(z/e), z̃(z)5z(z/e) and

ṽ(z)5v(z/e), we can rewrite~2.2!–~2.3! as

D~z̃1ueNf ~z/e!u2h̃e,s
~a11!/~2a11! eṽ!

52lge,seaz̃1 ṽ@aueN11f ~z/e!u4h̃e,s
~2a12!/~2a11! e2ṽ22~a11!

3ueN11f ~z/e!u2h̃e,s
~a11!/~2a11! eṽ12#12lge,s , ~2.4!

D ṽ52lge,seaz̃1 ṽ@aueN11f ~z/e!u4h̃e,s
~2a12!/~2a11! e2ṽ2~3a12!

3ueN11f ~z/e!u2h̃e,s
~a11!/~2a11! eṽ12~a11!#12l~a11!ge,s . ~2.5!

To transform~2.4!–~2.5! further we consider the ordinary differential equation

L1w5
]2w

]r 2 1
1

r

]w

]r
12l~2a11!rw5 f in R1 . ~2.6!

The functionw0PYa defined byw0(r )5 (12r 2N12)/(11r 2N12) belongs to kerL1 .
Lemma 2.3 [Chae–Imanuvilov (Ref. 4)]. GivenaP(0,1/2), f 5 f (r ) with fPXaùC1(R1),

the ordinary differential equation (2.6) has a solution wPYa given by the formula

w~r !5w0~r !H E
0

r f f~s!2f f~1!

~12s!2 ds1
f f~1!r

12r J ~2.7!

with
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f f~r !5S 11r 2N12

12r 2N12D 2 ~12r !2

r E
0

r

w0~ t !t f ~ t !dt,

wheref f(1) and w(1) are defined as limits off f(r ) and w(r ) as r→1.
Lemma 2.4: Let

f0~r !5S 4

l~2a11! D
~a11!/~2a11! ~N11!2r 2N

~11r 2N12!~2a12!/~2a11! ,

and w0 be a solution of the equation

L1w052aDf01l~2a11!~a12!rf0 in R1 ,

obtained by substituting f52aDf01l(2a11)(a12)rf0 in the solution formula (2.7). Then
there holds the pointwise estimate

uw0~r !u<Cl2 ~a11!/~2a11! ln~r 11!, ;r .0

and the asymptotic formula

w0~r !52C̃l2 ~a11!/~2a11! ln r 1w`1o~1! as r→`,

where ẁ , C, C̃ are the constants independent of r andl.
Proof: We observe from formula~2.7! that

w0~r !5w0~r !E
2

r S 11s2N12

12s2N12D 2 I ~s!

s
ds1~bounded function ofr !

as r→`, where

I ~s!5E
0

s

w0~t!t~2aDf01l~2a11!~a12!rf0!~t!dt.

SinceDw0522l(2a11)rw0 ,

2E
0

`

aw0Df0~t!t dt52E
0

`

af0Dw0~t!t dt52la~2a11!E
0

`

rf0w0~t!t dt.

Substitutingt25t in the integrand ofI (`), then

I ~`!5C0E
0

` t2N~12tN11!

~11tN11!~8a15!/~2a11! dt

5C0E
0

1 t2N~12tN11!

~11tN11!~8a15!/~2a11! dt1C0E
1

` t2N~12tN11!

~11tN11!~8a15!/~2a11! dt

5C0E
0

1 t2N~12tN11!

~11tN11!~8a15!/~2a11! dt1C0E
1

0 s@2(a11)(N11)#/~2a11!~12sN11!

~11sN11!~8a15!/~2a11!

ds ~with substitutions5 1/t !

5C0E
0

1 t2N~12tN11!~12t @2(2aN1a11)#/~2a11!!

~11tN11!~8a15!/~2a11! dt,

whereC052(3a12)(N11)4(4/l(2a11))(a11)/(2a11). Then it is easily seen thatI (`) is posi-
tive ~respectively, negative! if and only if aN,a11 ~respectively, aN.a11).
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In view of Proposition 2.1 and Lemma 2.2, we obtain

w0~x!52I ~`!lnuxu1w`1o~1! asuxu→`

for some constantw` . h

Let f0 ,w0 be the functions given in Lemma 2.4. We definez0 andv0 as

z0~r !5S 2
a11

2a11
f01

1

2a11
w01laE

0

r 1

s E
0

s

rf0~ t !t dt dsD ,

~2.8!

v0~r !5S a~a11!

2a11
f01

a11

2a11
w02la2E

0

r 1

s E
0

s

rf0~ t !t dt dsD .

Thenz0 andv0 satisfy the asymptotic behaviors

z0~r !5S 2
1

2a11
I ~`!1laE

0

`

rf0~ t !t dt D ln r 1z`1o~1!,

~2.9!

v0~r !5S 2
a11

2a11
I ~`!2la2E

0

`

rf0~ t !t dt D ln r 1v`1o~1! asr→`,

for some constantsz` ,v` . Here,I (`) is given in the proof of Lemma 2.4.
Proposition 2.1 implies that givena andN, we can choose a neighborhoodVa of the origin

in Ya3Ya and a constante15e1(a,N).0 such that the mappingsP1 ,P2 :Va3R23(2e1 ,e1)
→Xa given by

P1~z,v,s,e!5D~z1z01ueNf ~z/e!u2h̃e,s
~a11!/~2a11! ee2(v1v0)!

1le22ge,see2(az1v1az01v0)@aueN11f ~z/e!u4h̃e,s
~2a12!/~2a11! e2e2(v1v0)

22~a11!ueN11f ~z/e!u2h̃e,s
~a11!/~2a11!ee2(v1v0)12#22le22ge,s ,

P2~z,v,s,e!5D~v1v0!1le22ge,see2(az1v1az01v0)@aueN11f ~z/e!u4h̃e,s
~2a12!/~2a11!e2e2(v1v0)

2~3a12!ueN11f ~z/e!u2h̃e,s
~a11!/~2a11! ee2(v1v0)12~a11!#22l~a11!e22ge,s

are well defined.
Define P(z,v,s,e)5(P1(z,v,s,e),P2(z,v,s,e)). Then the problem of solving equatio

~2.4!–~2.5! is reduced to that of finding a mappinge°(ze* ,ve* ,se* ) from (2e1 ,e1) into Ya

3Ya3R2, satisfying the functional equation

P~ze* ,ve* ,se* ,e!5~0,0!. ~2.10!

We note that once a solution (ze* ,ve* ,se* ,e) of ~2.10! is found, then our solution pair is recovere
by the formula

h~x!5
a

2a11
ln he,s

e*
~x!1ae2z0~ex!1ae2ze* ~ex!,

u~x!5 lnueN11f ~z!u21
a11

2a11
ln he,s

e*
~x!1e2v0~ex!1e2ve* ~ex!. ~2.11!

It follows from Lemma 2.4 and~2.8! that z0 andv0 satisfy
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Dz012lr~az01v0!52Df012l~a11!rf0 ,

Dv012l~a11!r~az01v0!5l~3a12!rf0 ,

which imply thatP(0,0,0,0)5(0,0).
Let us introduce a linear operatorA:Ya3Ya3R2→Xa3Xa defined by

A~z,v,s1 ,s2!5S Dz2
4~a11!

2a11
D~s1f0w11s2f0w2!12lr~az1v !

28lrS az01v02
~a11!~3a12!

2a11
f0D ~s1w11s2w2!,

Dv12l~a11!r~az1v !24lrS 2~a11!~az01v0!

2
~3a12!2

2a11
f0D ~s1w11s2w2! D

with the functionsw1(r ,u), w2(r ,u)PYa given by

w1~r ,u!5
r N11 cos~N11!u

11r 2N12 , w2~r ,u!5
r N11 sin~N11!u

11r 2N12 .

We note thatP:Va3R23(2e1 ,e1)→Xa3Xa is C1 with respect to (z,v,s), and isC0 with
respect toe. A straightforward calculation shows thatP(z,v,s)8 (0,0,0,0)5A.

Lemma 2.5: Let N.0. Then

E
R2

S l@2~2a11!~az01v0!2~a12!~3a12!f0#rw6
2 1

a~a11!

2a11
f0w6Dw6Ddx,0.

~2.12!

Proof: Note thatL1(az01v0)52aDf01l(2a11)(a12)rf0 , and

L1S 1

16~11r 2N12!2D5
~N11!2r 4N12

~11r 2N12!4 .

SinceDw6522l(2a11)rw6 , the left-hand side of~2.12! is computed as

~ lhs!5E
R2

~2l~2a11!~az01v0!rw6
2 2l~5a2110a14!rf0w6

2 !dx

5pE
0

` 8~N11!2r 4N12

~11r 2N12!4 ~az01v0!r dr 2pl~5a2110a14!E
0

`

rf0

r 2N12

~11r 2N12!2 r dr

5I 11I 2 .

Integrating by parts, we obtain

I 15pE
0

` 1

2~11r 2N12!2 L1~az01v0!r dr

5pE
0

` 1

2~11r 2N12!2 ~2aDf01l~2a11!~a12!rf0!r dr .

Therefore,
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~ lhs!5pE
0

` H 2aDf0

2~11r 2N12!2 1~12a2125a110!
lrf0

2~11r 2N12!2

2~5a2110a14!
lrf0

~11r 2N12!J r dr

5
p~N11!2

2 S 4

l~2a11! D
~a11!/~2a11!E

0

` H 2ar2N

~11r 2N12!~2a12!/~2a11! DS 1

~11r 2N12!2D
1

4~12a2125a110!

2a11

~N11!2r 4N

~11r 2N12!~10a16!/~2a11!

2
8~5a2110a14!

2a11

~N11!2r 4N

~11r 2N12!~8a15!/~2a11!J r dr .

Since

DS 1

~11r 2N12!2D528~N11!2S 3r 2N

~11r 2N12!4 2
2r 2N

~11r 2N12!3D ,

we have by substitutingr 25t

~ lhs!5C1~8a15!E
0

` t2N

~11tN11!~10a16!/~2a11! dt2C1~6a14!E
0

` t2N

~11tN11!~8a15!/~2a11! dt

5C1~2a11!
N

N11 E0

` H tN21

~11tN11!~8a15!/~2a11! 2
tN21

~11tN11!~6a14!/~2a11!J dt

52C1~2a11!
N

N11 E0

` t2N

~11tN11!~8a15!/~2a11! dt,0,

where we set

C15
p~N11!4~3a12!

2a11 S 4

l~2a11! D
~a11!/~2a11!

.

h

We define an operatorL:Ya→Xa by

Lv5Dv12l~2a11!rv.

Lemma 2.6 [Chae-Imanuvilov (Ref. 4)]: The operator L satisfies

kerL5span$w0 ,w1 ,w2%, Im L5H f PXaU E
R2

f w6 dx50J .

Proposition 2.2: LetaP(0,1/2) and N.0. The operator A:Ya3Ya3R2→Xa3Xa is onto
and kerA is four-dimensional. More precisely, we have

kerA5span$~w0 ,~a11!w0!,~w1 ,~a11!w1!,~w2 ,~a11!w2!,~1,2a!%3$~0,0!%.
~2.13!

Proof: Given f 1 , f 2PXa , we show that the following system of equations:
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Dz2
4~a11!

2a11
D~s1f0w11s2f0w2!12lr~az1v !

28lrS az01v02
~a11!~3a12!

2a11
f0D ~s1w11s2w2!5 f 1 , ~2.14!

Dv12l~a11!r~az1v !24lrS 2~a11!~az01v0!2
~3a12!2

2a11
f0D ~s1w11s2w2!5 f 2

~2.15!

has a solution inYa3Ya3R2.
Define

C0524lE
R2

~ 2~2a11!~az01v0!2~a12!~3a12!f0!rw6
2 dx2

4a~a11!

2a11 E
R2

f0w6Dw6 dx,

and letC65*R2(a f11 f 2)w6dx. Lemma 2.5 shows thatC0Þ0. Since ImL5$fPXau*R2f w6dx
50%, there existsw1PYa such that

Lw15a f11 f 21
4a~a11!

2a11
DS C1

C0
f0w11

C2

C0
f0w2D14lr@2~2a11!~az01v0!

2~a12!~3a12!f0#S C1

C0
w11

C2

C0
w2D .

Let w2PYa be the Newtonian potential ofh, where

h5~a11! f 12 f 21
4~a11!2

2a11
DS C1

C0
f0w11

C2

C0
f0w2D

24la~3a12!rS C1

C0
f0w11

C2

C0
f0w2DPXa .

Then

~z,v,s!5S w11w2

2a11
,
~a11!w12aw2

2a11
,
C1

C0
,
C2

C0
D

is a solution of the system~2.14!–~2.15!, which implies thatA:Ya3Ya3R2→Xa3Xa is onto.
On the other hand, suppose that (z,v,s1 ,s2)PkerA. Since

E
R2

w6~aP1(z,v,s)8 ~0,0,0,0!1P2(z,v,s)8 ~0,0,0,0!!~z,v,s!dx50,

it follows from Lemma 2.5 and Lemma 2.6 thats15s250. Thenaz1vPkerL and (a11)z
2v5const. Lemma 2.6 implies that kerA is four-dimensional and given by~2.13!. h

We are now ready to prove Theorem 1.1.
Proof of Theorem 1.1:Let

Y* 5span$~w0 ,~a11!w0!,~w1 ,~a11!w1!,~w2 ,~a11!w2!,~1,2a!%.

We decomposeYa3Ya5Y* % (Y* )' and set Ua5(Y* )'3R2. Proposition 2.2 shows tha
P(z,v,s)8 (0,0,0,0):Ua→Xa3Xa is a bijection foraP(0,1/2).

Then the implicit function theorem, applied to the functionalP:@(Y* )'ùVa#3R23
(2e1 ,e1)→Xa3Xa , implies that foraP(0,1/2) there exist a constante0P(0,e1) and a continu-
ous functione°(ze* ,ve* ,se* ) from (0,e0) into a neighborhood of 0 inUa such that
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P~ze* ,ve* ,se* ,e!5~0,0!, for all eP~0,e0!.

Let (h,u) be the functions recovered by the formula~2.11!. Theng jk52ehd jk and

f~x!5« expS 1

2
u~x!1(

j 51

N

i arg~z2pj !D ,

Ā15
1

q
Re~2i ]* ln f!, Ā25

1

q
Im~2i ]* ln f!,

A052
q

k
«2~eu(x)21!, v j5« jk]kv,

where]* 5(]11 i ]2)/2 and

v~x!52
1

2p E
R2

lnux2yueh(y)b~y! dy,

where b(x)528pG (q2«4/k) eu(x)(eu(x)22), give rise to a smooth solution (g,A,f) of the
system~1.7!–~1.10!. Indeed, the functionsz,v defined as

z~z!5
1

a
h~z!2

1

2a11
ln he,s~z!, v~z!5u~z!2 lnueN11f ~z!u22

a11

2a11
ln he,s~z!

are solutions of~2.2!–~2.3!. Elliptic regularity estimates imply thatz and v are smooth. On the
other hand, a straightforward calculation shows thatĀ1 and Ā2 are computed as

Ā152
1

2q S ]2v1
a11

2a11
]2 ln he,sD , Ā25

1

2q S ]1v1
a11

2a11
]1 ln he,sD

and henceĀ1 ,Ā2 are smooth. Following Jaffe–Taubes~Ref. 10, Chap. 3!, we deduce from~1.16!
that there exists a smooth functiona5a(z,Ā) such that we have the representationf(z)5(z
2zj )

njea near eachzj , and thusf is smooth near eachzj . (f is smooth onR2\ø j 51
N $zj%

obviously by the standard elliptic regularity.!
Now we check the asymptotic behavior of the solution (h,u) recovered by the formula~2.11!.

Let us define a normi•iVa
by i(z,v)iVa

5(iziYa

2 1iviYa

2 )1/2. Then

ze* ~ex!5
1

2p S E
R2

Dze* ~y!dyD lnuxu1O~1!e2 ln
1

e
,

~2.16!

ve* ~ex!5
1

2p S E
R2

Dve* ~y!dyD lnuxu1O~1!e2 ln
1

e
as uxu→`,

whereO(1) is uniformly bounded with respect touxu as well ase (e<r 0,1). From the continuity
of the functione°(ze* ,ve* ) from (0,e0) into Va , we havei(ze* ,ve* )iVa

→0 ase→0. Thus there
exist e2P(0,e0), b15b1(e), andb25b2(e) such thatb i(e)5O(e2) ( i 51,2) ase→0 and

h~x!52S 4a~N11!

2a11
1ab1~e! D lnuxu1O~1!e2 ln

1

e
,

u~x!52S 2N1414a

2a11
1b2D lnuxu1O~1!e2 ln

1

e
as uxu→`
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for all eP(0,e2). Here,O(1) is uniformly bounded with respect touxu as well ase (e<r 0,1).
Indeed, it follows from~2.9! that

b15
e2

2a11
I ~`!2lae2E

0

`

rf0~ t !t dt2
e2

2p E
R2

Dze* ~y! dy,

b25
~a11!e2

2a11
I ~`!1la2e2E

0

`

rf0~ t !t dt2
e2

2p E
R2

Dve* ~y! dy.

We notice that

E
R2

uDze* ~y!u1uDve* ~y!u dy<Ci~ze* ,ve* !iYa
→0 as e→0.

Theneh satisfies~1.13! and

ufu25eu5O~ uxu2 ~2N1414a!/~2a11! 2b2! as uxu→`.

Recall that

uxuu¹u~x!u<CS sup
V

uuu1sup
V

uxu2uDuu D ,
where V5$yPR2uuxu/2<uyu<uxu% with uxu sufficiently large~see, e.g., Ref. 8!. Since ~1.16!
implies thatD̄1f5f]u and D̄2f5 if]u,

uD̄1fu21uD̄2fu25 1
2 euu¹uu25O~ uxu2 ~2N1414a!/~2a11! 2b2! as uxu→`.

The decay estimate ofB̄ can be obtained from~1.8!.
We now compute the energyE.

E52
1

16pG E
R2

RgAg dx52
«2

2a ER2
Dh dx.

We can rewritehe,s
e*

as

he,s
e*
~r ,u!5

4

l~2a11!

1

~e2N12r 2N121p~r ,u!!2 ,

wherep(r ,u)5(k50
2N11qk(u)r k. Then

E
uxu5R

a

2a11

]

]n
ln he,s

e*
~z!ds52

4a~N11!

2a11 E
0

2p
e2N12R2N121R

]

]r
p~R,u!

e2N12R2N121p~R,u!
du

52
8pa~N11!

2a11
1O~R21!,

where]/]n is the outward normal derivative on the circle$uxu5R%. Also,
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r
]z0

]r
52

~a11!

2a11
r

]f0

]r
1

1

2a11
r

]w0

]r
1laE

0

r

rf0~ t !t dt

5o~1!1
1

2a11
w0~r !E

0

r

w0~ t !t f ~ t !dt1laE
0

r

rf0~ t !t dt.

~with f 52aDf01l~2a11!~a12!f0!5o~1!2
1

2a11
I ~`!1laE

0

`

rf0~ t !t dt as r→`,

whereI (`) was given in the proof of Lemma 2.4. Finally,

lim
R→`

E
uxu5R

e
]ze*

]r
~ex!ds5 lim

R→`
E

uxu5eR

]ze*

]r
~x!ds5 lim

R→`
E

uxu,eR
Dze* ~x!dx5E

R2
Dze* dx,

and

U E
R2

Dze* dxU<Ci~ze* ,ve* !iVa
5o~1! ase→0.

Therefore we obtain

E
R2

Dh5 lim
R→`

E
uxu5R

]h

]n
ds

52
8pa~N11!

2a11
12pe2S 2

a

2a11
I ~`!1la2E

0

`

rf0~ t !t dt D 1ae2E
R2

Dze* ~x!dx

52
8pa~N11!

2a11
22pab1 .

In view of ~2.11!, we can prove~1.14!.
The proof of Theorem 1.1 is complete. h

III. EXISTENCE AND NONEXISTENCE OF TOPOLOGICAL SOLUTIONS

In this section, we study the system of equations~1.19!–~1.20! with the topological boundary
condition, i.e.,C50. In this case, we can derive a single elliptic equation contrary to the no
pological case. As in the previous section, we consider the scalingu→u1 ln «2 and let a
58pG«2. The equations for the unknown (h,u) are given by

Du5
2q4

k2 «4eh~2eu~eu21!2a~eu21!3!14p(
j 51

N

dpj
~3.1!

and

D~h1aeu!5
2q4

k2 a«4eh~2eu~eu21!2a~eu21!3!. ~3.2!

Then the function

h2aS u2eu2(
j 51

N

lnux2pj u2D
is harmonic, and we assume it to be a constant. Then the metric is given by
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eh5C0ea(u2eu))
j 51

N
1

ux2pj u2a , ~3.3!

where we assumeC0>1. The metric~3.3! is everywhere regular, and is geodesically complet
and only if aN<1.

Define the background functions

u05(
j 51

N

lnS ux2pj u2

11ux2pj u2
D , w05(

j 51

N

ln~11ux2pj u2!.

Let u5u01v. Then the system~3.1!–~3.3! reduces to the single nonlinear elliptic equation

Dv5leav2aw02aeu01v
~2eu01v~eu01v21!2a~eu01v21!3!1g, ~3.4!

wherel5 (2q4/k2) C0«4 and

g5Dw05(
j 51

N
4

~11ux2pj u2!2 .

Equation~3.4! is our main equation to study in this section. Proof of Theorem 1.2, case 1 co
of Lemma 3.7-Lemma 3.9 below. We first construct a subsolution of the equation~3.4!. Define
Br(x)5$yPR2uux2yu,r %. For p1 ,...,pNPR2, choosea.0 so thatBa(pi)ùBa(pj )5B if i
Þ j , and fix a constantb so thatb.(N11/4)a4 exp(1/a2).

For eachj 51, . . . ,N, define

wj~x!5H 2b expS 1

ux2pj u22a2D if ux2pj u,a,

0 if ux2pj u>a,

and definew5w11¯1wNPC0
` .

Lemma 3.7: There exist constantsl0 , a0.0 such that ifl>l0 , a<a0 andla<1, then w is
a subsolution of~3.4!.

Proof: We may assume thata<1/N. If uxu is sufficiently large, then 2eu0(eu021)2(1/N)
3(eu021)3,0 and hence

uxu4e2aw02aeu0~2eu0~eu021!2a~eu021!3!

<uxu4e2 ~1/N!(11w0)S 2eu0~eu021!2
1

N
~eu021!3D→22e2 1/NN<22/e as uxu→`.

Since limuxu→`uxu4 g(x)54N, there exist two constantsR.a1sup1< i<Nupi u andl1.0 depend-
ing only onN such that ifuxu>R andl>l1 ,

Dw.leaw2aw02aeu01w
~2eu01w~eu01w21!2a~eu01w21!3!1g. ~3.5!

SinceDw(pj )54b (1/a4) exp(2 1/a2).4N11,

Dw.g11 in ø j 51
N Br 0

~pj !

for some constantr 0.0. Therefore ifla<1

Dw>leaw2aw02aeu01w
~2eu01w~eu01w21!2a~eu01w21!3!1g ~3.6!

in ø j 51
N Br 0

(pj ).
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Define two constantsm1 ,m2 by

m15 inf$eu0(x)1w(x)uxPBR~0!\ø j 51
N Br 0

~pj !%,

m25sup$eu0(x)1w(x)uxPBR~0!\ø j 51
N Br 0

~pj !%.

There exist constantsa0 ,C0.0 such that ifa<a0 ,

2mi~mi21!2a~mi21!3<2C0,0 ~ i 51,2!.

Then if a<a0 ,

2eu01w~eu01w21!2a~eu01w21!3<2C0

in BR(0)\ø j 51
N Br 0

(pj ).

Let M05 inf$w(x)2w0(x)2eu0(x)1w(x)uxPBR(0)\ø j 51
N Br 0

(pj )%. Then there exists a con
stantl0>l1 such that ifl>l0 ,

2l C0ea1M01igi`,2iDwi` .

Therefore ifl>l0 anda<a0 , then

leaw2aw02aeu01w
~2eu01w~eu01w21!2a~eu01w21!3!

<2lC0ea(w2w02eu01w)<2lC0ea0M0,Dw2g ~3.7!

in BR(0)\ø j 51
N Br 0

(pj ).
It follows from ~3.5!–~3.7! that if l>l0 , a<a0 andla<1, thenw is a subsolution of the

equation~3.4!. h

Hereafter we will assume thatl>l0 , a<a0 andla<1. Consider the maximal solutionvA of

Dv52leav2aw02aeu01v
~eu01v21!1g.

SincevA satisfies 0,vA,2u0 ~Ref. 21!, we can usevA as a supersolution of~3.4!.
Define

F~x,y!5leay2aw0(x)2aeu0(x)1y
~2eu0(x)1y~eu0(x)1y21!2a~eu0(x)1y21!3!,

and

K511 sup
y<vA~x!

U]F

]yU.
We apply the following iterative scheme:

~D2K !vn115F~x,vn!2Kvn1g, ~3.8!

vn11~x!→0 asuxu→`, n50,1,..., ~3.9!

v05vA .

Lemma 3.8: There holds the inequality

vn.vn11.w in R2, n50,1,2,... .
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Proof: SincevA ,gPL2(R2) anduF(x,v0)u<Cuu01vAu, there exists a unique smooth solutio
v1PH2(R2) of ~3.8!–~3.9! with n50. Then

~D2K !~v02v1!,0 in R2,

~D2K !~v12w!,~F~x,v0!2F~x,w!!2K~v02w!5S ]F

]y
~x,z0!2K D ~v02w!

,0 ~w,z0,v0!.

Since limuxu→`(v02v1)5 limuxu→`(v12w)50, maximum principle implies thatv0.v1.w.
Suppose thatvn21.vn.w for n>1. SinceuF(x,vn)u<Cuu01vnuPL2(R2), then there exists

a unique smooth solutionvn11PH2(R2) of ~3.8!–~3.9!. Then

~D2K !~vn2vn11!5~F~x,vn21!2F~x,vn!!2K~vn212vn!,0

and

~D2K !~vn112w!,~F~x,vn!2F~x,w!!2K~vn2w!,0

by the mean value theorem. Since limuxu→`(vn112w)5 limuxu→`(vn2vn11)50, maximum prin-
ciple implies thatvn.vn11.w. h

By the standard bootstrap argument, we see thatv[ limn→` vn is a smooth solution of the
equation~3.4!.

Decay estimates:We investigate the decay estimate of a solutionv of the equation~3.4!
satisfyingw<v<2u0 . Let u5u01v. Thenu is a solution of

Du5l)
j 51

N
1

ux2pj u2a eau2aeu
~2eu~eu21!2a~eu21!3! in R2\$p1 ,...,pN%.

It is easily seen that the metric~3.3! satisfies the decay estimate~1.15!.
Lemma 3.9: Suppose that aN,1. Givene.0, there are positive constants R(e), M (e) such

that

u~x!.2M ~e!e2(12e)muxu12aN
, m5

A2le2a/2

12aN
~3.10!

for uxu.R(e).
Proof: Given e.0, let w(x)5Me2(12e)muxu12aN

. Then

Dw52le2a~12e!2uxu22aNS 12
1

~12e!m
uxu211aNDw, uxu.0.

There existsR(e).0 such that

l)
j 51

N
1

ux2pj u2a eau2aeu
~2eu2a~eu21!2!~eu21!,2le2a~12e!2uxu22aNu

for uxu.R(e). Then

D~u1w!,2le2a~12e!2uxu22aN~u1w!
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for uxu.R(e). ChooseM (e) sufficiently large so that (u1w)u uxu5R(e).0. Then maximum prin-
ciple implies~3.10!. h

Let u be the solution of~3.1! andh be given in~3.3!. Theng jk52ehd jk , and

f~x!5« expS 1

2
u~x!1(

j 51

N

i arg~z2pj !D ,

Ā15
1

q
Re~2i ]* ln f!, Ā25

1

q
Im~2i ]* ln f!,

A052
q

k
«2~eu(x)21!, v j5« jk]kv,

where]* 5(]11 i ]2)/2, and

v~x!52
1

2p E
R2

lnux2yueh(y)b~y! dy,

whereb(x)528pG (q2«4/k) (eu(x)21)2, give rise to a smooth solution (g,A,f) of the system
~1.7!–~1.10! as in the preceding section.

From Lemma 3.9 we can show that

u«22ufu2u1uB̄u5O~e2(12d)muxu128pG«2N
! as uxu→` ~3.11!

for eachd.0.
Since ~1.16! implies that D̄1f5f]u and D̄2f5 if]u, and hence uD̄1fu21uD̄2fu2

5 1
2e

uu¹uu2. Recall that

uxuu¹u~x!u<C1~sup
V

uuu1uxu2supVuDuu!,

whereV5$yPR2uuxu/2<uyu<3uxu/2% ~see, e.g., Ref. 8!. Then,uD̄ jfu satisfies the decay estima
~3.11!.

The energy, as is computed in the previous section, is given by

E52E
R2

q«2B̄Augu dx52
«2

2 E
R2

leh~2eu~eu21!2a~eu21!3! dx5
«2

2 E
R2

Dw0 dx52p«2N.

This completes the proof of Theorem 1.2 in the case 1.
Case 2 of Theorem 1.2:In case that the field configuration is radially symmetric,~3.1! and

~3.2! imply thatH[h1aeu2au12aN lnuxu is harmonic and henceH must be a constant. There
fore, we obtain a single equation

Du5luxu22aNeau2aeu
~2eu~eu21!2a~eu21!3!14pNd0 , ~3.12!

wherel is a constant. Whenu5u(r ), ~3.12! is equivalent to5

urr 1
1

r
ur5lr 22aNeau2aeu

~2eu~eu21!2a~eu21!3!, r .0 ~3.13!

lim
r→0

u~r !

ln r
52N, lim

r→0
rur~r !52N.
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Under the new variables

t5 ln r , U~ t !5u~et!,

the equation~3.13! becomes

U9~ t !5le2(12aN)teaU(t)2aeU(t)
~2eU(t)~eU(t)21!2a~eU(t)21!3!

5le2(12aN)t
d

dU
~eaU2aeU

~eU21!2!, 2`,t,` ~3.14!

with limt→2` U(t)/t5 limt→2` U8(t)52N.
In case thataN>1, it can be shown that~3.13! has a solution via shooting method. Letu

5u(r ) be a solution of~3.13! andU(t)5u(et). We multiply both sides of~3.14! by U8(t) and
integrate over (2`,s). Then we obtain

~U8~s!!254N212le2(12aN)seaU(s)2aeU(s)
~eU(s)21!2

14l~aN21!E
2`

s

e2(12aN)teaU(t)2aeU(t)
~eU(t)21!2 dt. ~3.15!

Then ~3.15! implies thatrur(r )5U8(t)>2N for all r .0. Then

u~r !2u~1!>E
1

r 2N

t
dt52N ln r .

Thus the range ofu fills R.
The proof of Theorem 1.2 case 2 is now complete. h
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Einstein’s spherically symmetric interior gravitational equations are investigated.
Following Synge’s procedure, the most general solution of the equations is fur-
nished in caseT1

1 and T4
4 are prescribed. The existence of a total mass function,

M (r ,t), is rigorously proved. Under suitable restrictions on the total mass function,
the Schwarzschild massM (r ,t)5m, implicitly defines the boundary of the spheri-
cal body asr 5B(t). Both Synge’s junction conditions as well as the continuity of
the second fundamental form are examined and solved in a general manner. The
weak energy conditions for anarbitrary boostare also considered. The most gen-
eral solution of the spherically symmetric anisotropic fluid model satisfying both
junction conditions is furnished. In the final section, various exotic solutions are
explored using the developed scheme including gravitational instantons, interior
T-domains, andD-dimensional generalizations. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1621056#

I. INTRODUCTION

As motivation, let us consider various solutions of a toy model of the partial differe
equation

]2W~x,t !

]x2 2
]2W~x,t !

]t2 5T0 . ~1!

Here, T0 is a prescribed constant.~i! A particular solution is provided byW(x,t)5x2t
1 (T0/4) (x22t2) which satisfies the initial value problemW(x,0)5x1T0x2/4 and
@]W(x,t)/]t# ut50521. ~ii ! A class of general solutions of the same equation is given
W(x,t)5h(x1t)1T0/4(x22t2), whereh is of classC2 but otherwise arbitrary. This class con
tains infinitely many solutions but excludes infinitely many other solutions including the solu
in ~i!. ~iii ! The most general solution of this partial differential equation is furnished byW(x,t)
5 f (x2t)1g(x1t)1T0/4(x22t2). Here bothf and g are of classC2 and otherwise arbitrary
This class containsall possible~smooth! solutions of the equation.

Einstein’s gravitational field equations,Gj
i 18p (G/c2) Tj

i 50, inside matter are a system o
second order, quasilinear, coupled partial differential equations in four space–time variable

a!Electronic mail: das@sfu.ca
b!Electronic mail: adebened@sfu.ca
c!Electronic mail: nessim@lums.edu.pk
56370022-2488/2003/44(12)/5637/19/$20.00 © 2003 American Institute of Physics
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almost impossible to obtain the most general solution for such a system in case theTj
i ’s are

prescribed. However, if the space–time admits a group of motions or symmetry, then the equ
simplify considerably. In fact, in the arena of spherical symmetry, using the curvature coordi
Synge1 obtained the most general solutions whereT1

1 and T4
4 are prescribed~the most logical

prescription from a physical perspective!. The interior was continuously patched to the exter
Schwarzschild metric across the junction of the spherical material in the local sense. Howev
mathematical conditions assuring the existence of a boundary were not derived. Moreover
faction of Synge’s own junction conditions,Tj

i nu]D
j was not completed.

In Sec. II we write the spherically symmetric interior equations in curvature coordin
Then, we exhibit the most general solution following Synge’s prescriptions.

In Sec. III we prove the mathematical existence of a function,M (r ,t). Physically, this is the
‘‘total mass’’ of the spherical body with coordinate radiusr at coordinate timet. Under some
reasonable assumptions, the implicit function theorem2 guarantees the existence of a solution
r 5B(t) for the equationM (r ,t)5m, the Schwarzschild mass. The curver 5B(t) yields, in a
natural way, the desired boundary for the spherical body. It is important to note that this pa
is general and is therefore valid for junctions between various interior layers~as in, for example,
multilayered stars! as well as interior-vacuum patching.

In Sec. IV we obtain necessary and sufficient conditions for the satisfaction of Synge’s
tion conditions1 across the junction. Moreover, we also investigate the Israel–Sen–Lanc
Darmois ~ISLD! junction conditions3 across the junction and obtain general solutions of
problem.

In Sec. V we examine the weak energy conditions4 thoroughly for the spherically symmetri
scenario. We obtain the general solution of the inequalities in terms of four arbitrary slack
tions.

In Sec. VI the class of spherically symmetric@Tj
i # with real eigenvalues is critically studied

As a particular application, the anisotropic fluid model~which contains the perfect fluid as
special case! is explored exhaustively. Theorems are proved on the most general solution
corresponding field equations withboth junction conditions of Synge and those of ISLD. Oth
special examples~black holes, etc.! are also treated.

In the last section, exotic spherically symmetric solutions and their relation to the prop
scheme are explored. Signature changing metrics as well as the Euclidean gravitational inst5

are furnished. Next,T-domain6 equations and general solutions are provided. A special clas
T-domain solutions yields the so-called eternal black holes. Another special class ofT-domain
solutions involve complex eigenvalues of the stress-energy tensor. Such examples were
found in exotic black holes.7 Finally, we give motivation for, and briefly investigate, spherica
symmetric interior equations in arbitrary dimensionD>3. The corresponding general solution
provided.8

II. SOLUTION OF THE SPHERICALLY SYMMETRIC FIELD EQUATIONS

We adopt notations and conventions from Synge’s book,1 except that covariant derivatives a
denoted by¹k . Physical units are chosen so thatc51 andkª8pG.

Einstein’s gravitational equations are furnished by

Ei jªGi j 1kTi j 50, ~2a!

T i
ª¹jT

i j 50, ~2b!

¹jE i j 2kT i[0. ~2c!

It is assumed that the metric functions,gi j (x), are of classC3 and the functionsTi j (x) are of class
C1.

A spherically symmetric metric, in the curvature coordinate chart, and the natural orthon
tetrad are characterized by
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ds25ea(r ,t) dr 21r 2@du21sin2 u df2#2eg(r ,t) dt2,
~3!

e(1)
i 5e2a(r ,t)/2d (1)

i , e(2)
i 5r 21d (2)

i , e(3)
i 5~r sinu!21d (3)

i , e(4)
i 5e2g(r ,t)/2d (4)

i .

Nontrivial equations and identities from~2a!–~3! are provided by

E 1
15r 22@12e2a~11rg ,1!#1kT1

150, ~4a!

E 2
2[E 3

35
1

2
e2aF2g ,111

1

2r
~rg ,112!~a2g! ,1G1

1

2
e2gFa ,441

1

2
a ,4~a2g! ,4G1kT 2

250,

~4b!

E 4
15

1

r
~e2a! ,41kT4

150, ~4c!

E 4
45

1

r 2 @12~re2a! ,1#1kT4
450, ~4d!

T15T1,1
1 1T1,4

4 1
2

r F11
r

4
g ,1GT1

11
1

2
~a1g! ,4T1

42
1

2
g ,1T4

42
2

r
T2

250, ~4e!

T45T4,1
1 1T4,4

4 1
2

r F11
r

4
~a1g! ,1GT4

11
1

2
a ,4~T4

42T1
1!50, ~4f!

E 1,1
1 1E 1,4

4 1
2

r F11
r

4
g ,1GE 1

11
1

2
~a1g! ,4E 1

42
1

2
g ,1E 4

42
2

r
E 2

22kT1[0, ~4g!

E 4,1
1 1E 4,4

4 1
2

r F11
r

4
~a1g! ,1GE 4

11
1

2
a ,4~E 4

42E 1
1!2kT4[0. ~4h!

We study and solve these equations in a two-dimensional domain given by

Dª$~r ,t !: 0,r ,B~ t !, t1,t,t2%. ~5!

Note that one may relax the restriction to the domainr 0,r ,B(t) in which case radial integrals in
the following should possess the lower limit ofr 0 . In such a case, an inner boundary will exist
r 0 and the junction conditions discussed later should be applied to the inner boundary as we
outer boundary curve,r 5B(t), will be explicitly determined later~see Fig. 1!.

Synge’s strategy of solving the field equations is the following:

FIG. 1. The considered domain with boundary,]D, which separates the interior domainD and the vacuum domainD0 .
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~i! PrescribeT4
4[T(4)

(4) from desirable physical properties and solveE 4
450 to obtain e2a

5g11.
~ii ! PrescribeT1

1[T(1)
(1) or relate it toT4

4 by an equation of state and solveE 1
1 2E 4

450 to obtain
eg52g44.

~iii ! DefineT4
1 by the equationE 4

150.
~iv! DefineT2

2[T(2)
(2) by the conservation equationT150.

~v! By the preceding step, the identity~4g! implies thatE 2
250.

~vi! By the identity~4h!, the conservation equationT450 is satisfied.

At this stage,all the field equations, conservation laws and identities are satisfied. One may
impose further restrictions to the above scheme. For example, in the case of the perfect flu
conservation equation~4e! becomes a differential equation for the pressure~or the energy density
if an equation of state exists!, which must be solved. As well, one may require that furth
equations, such as matter field equations, need to be satisfied.

Regardless of the variants on the above scheme, all solutions must satisfy the following
general solution yielded by

e2a(r ,t)512
k

r F f 2~ t !2E
01

r

T4
4~x,t ! x2 dxG , ~6a!

eg(r ,t)5e2a(r ,t)H expFh~ t !1kE
01

r

@T1
1~x,t !2T4

4~x,t !#ea(x,t)x dxG J , ~6b!

T4
1~r ,t !ª

1

r 2 F2 f ~ t ! ḟ ~ t !2E
01

r

T4,4
4 x2 dxG , ~6c!

T2
2[T3

3
ª

r

2
@T1,1

1 1T1,4
4 #1F11

r

4
g ,1GT1

11
r

4
~a1g! ,4T1

42
r

4
g ,1T4

4 , ~6d!

with ḟ (t)ªdf (t)/dt. Here, f (t) andh(t) are two arbitrary functions of integrationwhich are of
classC3. Synge1 set f 2(t)[0 to avoid a singularity at the center. However, this function may
important in certain cases such as the study of wormholes. The functionh(t) was absorbed by a
transformation of the time coordinate though this is not always possible.8,9 We retain these func-
tions for generality and to satisfy junction conditions later.

III. CONSERVATION EQUATIONS, THE TOTAL MASS FUNCTION AND THE BOUNDARY

We notice from the equations~4c! and ~4d! the existence of twoadditional differential iden-
tities:

~r 2G4
1! ,11~r 2G4

4! ,4[0, ~7a!

~a1g! ,1G4
11a ,4~G4

42G1
1![0. ~7b!

However, because of¹kG4
k[0, only one of the above additional identities is independent. Th

fore, there must exist additional conservation equations

T4aª~r 2T4
1! ,11~r 2T4

4! ,450, ~8a!

T4bª~a1g! ,1T4
11a ,4~T4

42T1
1!50, ~8b!

dFk2 r 2T4
1~r ,t ! dt2

k

2
r 2T4

4~r ,t ! dr G50, ~8c!
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T 4[
1

r 2 @T4a1T4b#. ~8d!

The first of these equations has a simple physical interpretation. Integrating over a sphe
equation relates the rate of change of energy in a sphere of radiusr to the total energy flux
entering or leaving the boundary of the sphere. The equation~8a! in the star-shaped domainD
guarantees, by the converse Poincare´ lemma10 the existence of a functionM (r ,t) of class at least
C2 such that

dM ~r ,t !5
kr 2

2
@T4

1~r ,t ! dt2T4
4~r ,t ! dr #, ~9a!

M ,152
k

2
r 2T4

4~r ,t !, ~9b!

M ,45
k

2
r 2T4

1~r ,t !. ~9c!

From the equations~4d!, ~6a!, and~6c!, we conclude that

2M ~r ,t !5k f 2~ t !2kE
01

r

T4
4~x,t !x2 dx, ~10a!

lim
r→01

M ~r ,t !5
k

2
f 2~ t !, ~10b!

e2a(r ,t)512
2M ~r ,t !

r
, ~10c!

eg(r ,t)5F12
2M ~r ,t !

r Gexp@h~ t !1x~r ,t !#, ~10d!

x~r ,t !ªkE
0

r FT 1
1 ~x,t !2T4

4~x,t !

x22M ~x,t ! Gx2 dx. ~10e!

We tacitly assume thatr 22M (r ,t)Þ0 in D. The physical interpretation ofM (r ,t) is the ‘‘total
mass’’ contained in the spherical volume of ‘‘radius’’r and at ‘‘time’’ t.

Next we wish to study the level curves of the functionM (r ,t). For the existence of such
curves we state the following version of the implicit function theorem.2

Theorem 1: Let M(r ,t) be a function of at least class C1 in D such that for a point(r 0 ,t0)
in D, the function M(r 0 ,t0)5c, a constant. Suppose that M,1u(r 0 ,t0)Þ0. Then there exists a

function B(t;c) of class at least C1 in the neighborhood of(r 0 ,t0) such that r5B(t;c) is a
solution of M(r ,t)5c in that neighborhood with r05B(t0 ;c).

The boundary curver 5B(t) of the spherical body in the definition~5! is defined by the
following:

B~ t !ª lim
c→m2

B~ t;c!,

]Dª$~r ,t !:r 5B~ t !, t1,t,t2%, ~11!
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~see Fig. 1!. Here, m.0 physically represents the total Schwarzschild mass of the body.
assumed thatM.0, M ,1.0 or T4

4,0 in D.
It is clear from the implicit definition of the boundary curve,]D: r 5B(t) that

M ~B~ t !,t ![m,
~12!

Ḃ~ t !52FM ,4

M ,1
G

u]D

5FT4
1

T4
4G

u]D

.

The spherical body collapses in caseM ,4(r ,t).0 and expands in caseM ,4(r ,t),0.
In case the measurable speed of the boundary is less than the speed of light, we mus

eu]D
a2g@Ḃ~ t !#2,1,

@e2a~M ,1!
22e2g~M ,4!

2# u]D.0,
~13!

FT4
1

T4
4G

u]D

2

,F12
2m

B~ t !G
2

exp@h~ t !1x~B~ t !,t !#,

B~ t !Þ2m.

The interior domainD, the boundary]D, and the exterior~vacuum! domainD0 are explained
in the equations~6a!, ~6b!, and~11! and in Fig. 1. Following Synge, we shall now match contin
ously the interior metric to the exterior metric~transformable to the Schwarzschild chart!. We must
use the equations~10d!, ~10e!, and~11! to arrive at

g11~r ,t !5e2a(r ,t)55
12

2M ~r ,t !

r
for 0,r ,B~ t !, t1,t,t2 ,

12
2m

B~ t !
for r 5B~ t !, t1,t,t2 ,

12
2m

r
for B~ t !,r ,`, t1,t,t2 ,

~14!

2g44~r ,t !5eg(r ,t)55
F12

2M ~r ,t !

r Gexp@h~ t !1x~r ,t !# for 0,r ,B~ t !, t1,t,t2 ,

F12
2m

B~ t !Gexp@h~ t !1x~B~ t !,t !# for r 5B~ t !, t1,t,t2 ,

F12
2m

r Gexp@h~ t !1x~B~ t !,t !# for B~ t !,r ,`, t1,t,t2 .

~15!

The exterior metric can be easily transformed to the Schwarzschild coordinates. We sha
investigate both Synge’s1 and ISLD’s3 junction conditions.
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IV. JUNCTION CONDITIONS

A. Synge’s junction condition

Synge’s junction conditions read

Tj
i ni u]D50,

~16!
nin

i51,

with ni a unit normal at the boundary. In the present case, with the help of~13! we can write for
the relevant normal components

n,15
M ,1

Ae2aM ,1
2 2e2gM ,4

2 U
]D

,

~17!

n,45
M ,4

Ae2aM ,1
2 2e2gM ,4

2 U
]D

.

The equations~16! reduce to

@T1
1M ,11T1

4M ,4# u]D50, ~18a!

@T4
1M ,11T4

4M ,4# u]D50. ~18b!

By the equations~9b! and~9c!, the junction condition~18b! is identically satisfied. Moreover, the
other junction condition~18a! yields

UT1
1 T4

1

T1
4 T4

4U
]D

50

or

@eg2aT1
1M ,12T4

1M ,4# u]D50. ~19!

There exist two possible cases here. In case the boundary is static, we must have from~12! and
~19!,

Ḃ~ t ![0,

T1
1T4 u]D

4 [0, ~20!

h~ t ! is an arbitrary function. ~21!

This case doesnot imply that the interior metric is necessarily static.
In case the boundary is nonstatic, we obtain from~9b!, ~9c!, ~12!, and~19!,

Ḃ~ t !Þ0,

T1
1T4u]D

4 ,0,

eh(t)5F12
2m

B~ t !G
22

exp@2x~B~ t !,t !#@Ḃ~ t !#2UT4
4

T1
1U

u]D

.0. ~22!
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Thus, the functionh(t), which originated as an arbitrary function of integration, can be utilized
satisfy the junction conditions.

B. Israel–Sen–Lanczos–Darmois junction condition

Next we consider the ISLD junction conditions. Namely, we consider the continuity of
second fundamental form at the junction. For this purpose, the three-dimensional metric f
hypersurface corresponding to]D3S2 is obtained from~15! as

ds2
ªdsur 5B(t)

2 5B2~ t !@du21sin2 u df2#2H F12
2m

B~ t !Gexp@h~ t !1x~B~ t !,t !#2@Ḃ~ t !#2J dt2.

~23!

The extrinsic curvature components11 calculated from the interior and exterior metrics are t
following:

Kuu
6 5 lim

d→01

H 2
re2a

Ae2a2e2g@Ḃ~ t !#2J
ur 5B(t)6d

,

Kff
6 5sin2 u Kuu

6 , ~24!

2Ktt
65 lim

d→01

H 1

Ae2a2e2g@Ḃ~ t !#2
@2B̈~ t !1eg2ag ,11Ḃ~ t !~2a2g! ,41@Ḃ~ t !#2~a22g! ,1

2@Ḃ~ t !#3ea2ga ,4#J
ur 5B(t)6d

.

It is clear from~14!, ~15!, and~23! that

Kuu
2 2Kuu

1 [0, ~25!

Kff
2 2Kff

1 [0. ~26!

To show the continuity ofKtt across]D, we consider the function

2L6
ª lim

d→01

$eg2ag ,11Ḃ~ t !~2a2g! ,41@Ḃ~ t !#2~a22g! ,12@Ḃ~ t !#3ea2ga ,4% r 5B(t)6d .

~27!

The continuity ofL across]D implies, from ~15! and ~4a!–~4f! ~after a long calculation!, the
following algebraic equation:

0[2k21F12
2m

B~ t !Geh(t)1x(B(t),t)@L22L1#5U~ t !e2h(t)1V~ t !eh(t)1W~ t !. ~28!

Here,

U~ t !ªB~ t !F12
2m

B~ t !G
2

e2x(B(t),t)T1ur 5B(t)
1 ,

V~ t !ª2B~ t !Ḃ2~ t !$ex(B(t),t)~T1
12T4

4!% ur 5B(t) , ~29!
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W~ t !ª2B~ t !@Ḃ~ t !#4F12
2m

B~ t !G
22

T4ur 5B(t)
4 .

Analyzing the above quadratic~or possibly linear! equation foreh(t), we obtain the following
solutions:

Case I: T1u]D
1 5Ḃ~ t ! T4u]D

4 [0 and h~ t ! is arbitrary; ~30a!

Case II: eh~ t !5@Ḃ~ t !#2e2x~B~ t !,t !F12
2m

B~ t !G
22

for H ~ i ! T1u]D
1 [0, Ḃ~ t !T4u]D

4 Þ0,

~ i i ! ~T1
12T4

4!]D50,

~ i i i ! T1u]D
1 Þ0, T4u]D

4 50;

~30b!

Case III: T1u]D
1 .0, T4u]D

4 ,0, Ḃ~ t !Þ0,

and eh(t)52@Ḃ~ t !#2e2x(B(t),t)F12
2m

B~ t !G
22UT4

4

T1
1U

u]D

. ~30c!

It is clear that Synge’s conditions~21! and~22! satisfy the ISLD conditions~30a! and~30c!. Case
II represents a possible mathematical extension of the ISLD junction conditions to a nontim
boundary.

V. WEAK ENERGY CONDITIONS

Next the weak energy conditions in spherical symmetry are studied. We consider an ob
with an arbitrary boostwhich, to our knowledge, has not been calculated before.

In terms of the orthonormal components~denoted by indices in parentheses!, the weak energy
conditions4 can be stated as

T(a)(b)u
(a)u(b)>0 ~31!

for every timelike vectoru(a) satisfying

@u(1)#21@u(2)#21@u(3)#22@u(4)#2521, ~32!

with u(4).0 as dictated by reasonable physics.
The general solution of the above nonlinear algebraic equation~32! is given by

u(1)5sinhb cosu, u(2)5sinhb sinu cosf, u(3)5sinhb sinu sinf, u(4)5coshb,

bPR, uP~0,p!, fP~2p, p!. ~33!

For spherical symmetry, choosing the orthonormal basis of~3!, the inequality~31! together with
equations~33! yield

@T(1)(1)2T(2)(2)#x
2y21T(2)(2)x

212T(1)(4)xy1T(4)(4)>0, ~34!

xªtanhb, yªcosu.

Analyzing the inequality~34! for all (x,y)P@21,1#3@21,1#, we conclude, after much calcula
tion, that either

~ i! T(1)(1)[T(2)(2) , T(1)(4)[0, T(4)(4)>0, T(4)(4)1T(1)(1)>0, ~35a!

or else
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~ ii ! T(1)(1).T(2)(2) , ~T(1)(4)!
2<T(4)(4)@T(1)(1)2T(2)(2)#,

~T(1)(4)!
2<@T(1)(1)2T(2)(2)#@T(4)(4)1T(2)(2)#. ~35b!

We can solve the inequalities~35a! and ~35b! by utilizing slack functions

T4
45T(4)

(4)52E2~r ,t !, ~36a!

T2
25T(2)

(2)5P2~r ,t !2@E~r ,t !sinQ~r ,t !#2, ~36b!

T1
15T(1)

(1)5P2~r ,t !2@E~r ,t !sinQ~r ,t !#21H2~r ,t !, ~36c!

e(a2g)/2T4
15T(1)(4)52H~r ,t !E~r ,t !cosQ~r ,t !. ~36d!

Here, the slack functionsE(r ,t), P(r ,t), Q(r ,t), H(r ,t) are of classC1 but otherwise arbi-
trary.

VI. REAL EIGENVALUES OF †Tj
i
‡ AND ANISOTROPIC FLUID MODELS

First, we analyze and solve the problem of a spherically symmetricTj
i possessing real eigen

values. Recall that the eigenvalue problem forTj
i is given by

Tj
i E(a)

j 5l (a)E(a)
i . ~37!

In the spherically symmetric case,T2
15T3

15T4
25T4

3[0, T2
2[T3

3 . Therefore, the eigenvalues o
Tj

i are given by

l (2)[l (3)5T2
2 ,

2l (1)5T1
11T4

41AD,
~38!

2l (4)5T1
11T4

42AD,

Dª~T1
12T4

4!22ea2g~T4
1!2.

It is clear thatD,0 will imply complex eigenvalues. We restrict ourselves in this section to
case where the stress-energy tensor possesses real eigenvalues (D>0).

In a static model,T4
1[0 andD>0 is automatically valid. In case of the weak energy con

tions in ~35a!, ~35b! and the corresponding solutions in~36a!–~36d!,

D5P412P2~H21E2 cos2 Q!1~H2E2 cos2 Q!2>0, ~39!

and thus real eigenvalues are guaranteed.~However,D>0 maynot imply the weak energy con
ditions.!

Assuming the existence of real eigenvalues, the corresponding natural orthonormal eig
tors are furnished by

E(2)
i 5r 21d (2)

i ,E(3)
i 5~r sinu!21d (3)

i , E(1)
1 5 1

2 n (1)@T4
42T1

12AD#,

E(1)
2 5E(1)

3 [0, E(1)
4 52n (1)T1

4 , E(4)
1 52n (4)T4

1 , E(4)
2 5E(4)

3 [0,

E(4)
4 5 1

2 n (4)~T1
12T4

41AD!, ~40!
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@n (1)#
2
ª

2e2a

AD@T1
12T4

41AD#
,

@n (4)#
2
ª

2e2g

AD@T1
12T4

41AD#
.

The decomposition of the spherically symmetricTi j in terms of the real eigenvalues an
eigenvectors is accomplished by

Ti j 5@l (1)2l (2)#E(1)
i E(1)

j 1l (2)g
i j 1@l (2)2l (4)#E(4)

i E(4)
j . ~41!

It is worth noting that the above algebraic structure of the stress-energy tensor is common tomany
different physical arenas. For example, the anisotropic fluid is specified by

piªl (1) , p'ªl (2)[l (3)5T2
2 , mª2l (4) ,

ui
ªE(4)

i , si
ªE(1)

i ,

Ti j 5~m1p'!uiuj1p'gi j 1~pi2p'!sisj . ~42!

The physical quantities are the energy density~m! the radial pressure (pi) and the angular or
transverse pressures (p'). Anisotropic fluid models have received much attention mainly in
arenas of stellar structure theory, black holes, and cosmology.12–14 Note that the nomenclatur
‘‘anisotropic fluid’’ is misleading. The stress-energy tensor in~42! actually represents a fluid whic
is not necessarilyisotropic.

In casel (1)[l (2)[l (3) ~or pi5p'5..p), the equation~42! yields the well-known perfect
fluid stress-energy tensor,

Ti j 5~m1p!uiuj1pgi j . ~43!

This equation implies, by Eqs.~6d! and ~38!, the isotropy equation

A~T1
12T4

4!22e2a2h2x~T4
1!25rT1,1

1 1F12
r

2
a ,11

kr 2

2
ea~T1

12T4
4!G~T1

12T4
4!

2e2(h1x)/2@e2a2(h1x)/2T4
1# ,4 . ~44!

It is a formidable equation to solve in general~see Ref. 15 for detailed considerations of the sta
case!.

In case the spatial eigenvalues are identically zero, the stress-energy tensor in~42! reduces to
that of an incoherent dust.

In case we identifyp5l (2)[l (3) , m52l (4) , aªl (1)2l (2) , the stress-energy tensor is

Ti j 5~m1p!uiuj1pgi j 1asisj . ~45!

The aboveTi j is due to a perfect fluid plus a tachyonic~spacelike! dust. Such a stress-energ
tensor has been considered in a cosmological model13 where the dust contributes to the da
matter or dark energy component of the universe.

Now we are in a position to state and prove the main theorems of this section invo
anisotropic fluids.

Theorem 2: Let the spherically symmetric interior equations (4a)–(4d) and the conservation
equations (4e), (4f ) hold in the coordinate convex domain D defined by (5). Moreover, le
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stress-energy tensor Tj
i be that of an anisotropic fluid given by (42). Also, let the physical con

tions T4
4<0 and T1

12T4
4>0 be satisfied in D. Then, the most general solutions of all the equatio

and inequalities are furnished by the following:

0,q1,1, 0,q2,1, ~46!

2M ~r ,t !ªkq1H F2~q2t !1E
01

r

E2~x,q2t !x2 dxJ .0,

e2a(r ,t)512
2M ~r ,t !

r
,

eg(r ,t)5e2a(r ,t) exp@h~ t !1x~r ,t !#,

x~r ,t !ªkq1E
01

ea(x,t)@E2~x,q2t !cos2 Q~x,q2t !1P2~x,q2t !#x dx,

D~r ,t !5~q1!2@E2 cos2 Q1P2#22
4

k2r 4 ea2g~M ,4!
2>0,

2

q1
m~r ,t !5~q1!21AD1E2@11sin2 Q#2P2>0,

2

q1
pi~r ,t !5~q1!21AD2E2@11sin2 Q#1P2>0,

p'~r ,t !

q1
5

1

2r
@r 2~P22E2 sin2 Q!# ,1

1r H 1

4
~E2 cos2 Q1P2!g ,12~kq1!21e2(a1g)/2@e(3a2g)/2M ,4# ,4J ,

u152
2&

keg/2r 2D1/4

M ,4

Aq1~E2 cos2 Q1P2!1AD
, u25u3[0,

u45
1

&eg/2D1/4
Aq1~E2 cos2 Q1P2!1AD.0,

s157
1

&ea/2D1/4
Aq1~E2 cos2 Q1P2!1AD, s25s3[0,

s457
2&ea/22gM ,4

kr 2D1/4Aq1~E2 cos2 Q1P2!1AD
. ~47!

Here, the functions F(q2t), h(t), E(r ,q2t) (not identically zero) are of at least class C3 in D.
Aside from these restrictions, the functions are arbitrary.

For proof of the above theorem we used the equations~6a!–~6d!, ~10a!–~10e!, ~36a!–~36d!,
~38!, ~40!, ~41!, and~42!. The two parameters in~46! may appear to be superfluous. However, n
that in the limit q1→01 , the solutions in~46! yield the flat space metric. Moreover, for 0,q1
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,1 and limq2→01 , the metric goes over to a static one. Furthermore, sufficiently small pos
values ofq1 andq2 facilitate satisfaction of the complicated inequalities 12 (2M /r ).0 andD
.0.

We consider here a specific example of an exotic black hole. Consider the following:

F~q2t ![0, E2~r ,q2t !ª
j r j 23

~12q2t ! j , 3< j ,

2M ~r ,t !5kq1F r

12q2t G
j

, r 5B~ t !ªS 2m

kq1
D 1/j

~12q2t !,

e2a(r ,t)5F12
kq1r j 21

~12q2t ! j G ,
T1

1~r ,q2t !ªk22q1E2~r ,q2t !, )<k,

x~r ,q2t !52~11k22!lnF12
kq1r j 21

~12q2t ! j G ,
eg(r ,t)5F12

kq1r j 21

~12q2t ! j G21/k2

eh(t). ~48!

The above describes a mathematically rigorous collapse model for an anisotropic fluid black7

Now we shall consider the junction conditions for the solutions given in~48!. We state and
prove the following corollary to the preceding theorem.

Corollary: Let the conditions stated in the previous theorem be valid in D with E(r ,q2t)
Þ0. Moreover, let both Synge’s junction conditions Ti j M , j u]D[0 and the ISLD junctions condi
tions @Ki j #]D50 hold on]D. Then, either,

sin2 Q~r ,q2t ! E2~r ,q2t !5P2~r ,q2t !1@B~ t !2r #n2
N~r ,q2t !>0, n2P$1,2%ø@3,̀ !

and

F2~q2t !5~c0!21E
t

t2
dtH E

01

B(t)

x2
]

]t
@E2~x,q2t!# dxJ >0, ~49a!

or else

F2~q2t !5 f 2~q2t !1E
t

t2
dtH E

01

B(t)

x2
]

]t
@E2~x,q2t!# dxJ , ~49b!

E2~r ,q2t !5
P2

sech2@R~r ,q2t !#1sin2 Q
.0, ḟ ~q2t !Þ0,

and

eh(t)54H S 12
2m

r D 22

e2x(r ,t)FM ,4 cosh~R~r ,q2t !!

kq1r 2E2~r ,q2t ! G2J
ur 5B(t)

.0.

Here, N(r ,q2t), R(r ,q2t), and f(q2t) are functions of at least class C3 in D but otherwise
arbitrary.

Proof: By the equations~36c! and ~49a! it follows that
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~q1!21T1
152@B~ t !2r #n2

N~r ,q2t !, T1ur 5B(t)
1 [0.

Furthermore,

F2M ,4

kq1
G

ur 5B(t)

5
dF2~q2t !

dt
1E

01

B(t)

x2
]

]t
E2~x,q2t ! dx[0.

Therefore, by~21! and ~30a!, both Synge’s condition and the ISLD conditions are satisfied.
In the second case, by the equations in~36c! and ~49b! it is deduced that

k21T1
1~r ,q2t !5P22E2~r ,q2t !sin2 Q5E2~r ,q2t !sech2@R~r ,q2t !#.0. ~50!

Moreover,M ,4Þ0 and

eh(t)5S 12
2m

r D 22

e2x(r ,t)F ~T4
1!2

2T4
4T1

1G
ur 5B(t)

.

Thus, both equations~22! and ~30c! are satisfied. j

We have previously proved8 that under the two conditionsT4
1[0 andT1,4

1 [0, the solutions of
the equations~4a!–~4f! can be transformed into a static solution. This is the interior vers
Birkhoff’s theorem. We can investigate directly the static limit of equations~4a!–~4f!. Under
suitable assumptions, including@dM (r )/dr #.0, the boundary,]D, of the spherical body is given
by r 5b, a positive constant. Now, the general solution will be furnished in the following s
ment.

Theorem 3: Let the static version of the spherically symmetric field equations and
conservation law (4a)–(4f) hold in the domain Dª$(r ,t):0,r ,b, t1,t,t2%. Moreover, let the
stress-energy tensor be given by (42), satisfyingm(r ).0, m(r )1pi.0. If, in addition, both
Synge’s and the ISLD junction conditions hold at r5b, then the general solutions of the stat
equations are furnished by

0,q1,1, b.0, c0PR, n2P$1,2%ø@3,̀ !,

2M ~r !5kF ~c0!21E
0

r

x2m~x! dxG.0,

e2a(r )512
2M ~r !

r
,

x~r !ªkE
01

r

ea(x)@m~x!1pi~x!#x dx,

eg(r )5ex(r )2a(r ),

D~r !5@m~r !1pi~r !#2.0,

m~r !5q1E2~r !.0, pi5q1@P2~r !2~sin2 Q~r !!E2~r !#,

p'5
1

2r H r 2pi ,11
r

4
pig ,1J ,

ui5e2g(r )/2 d (4)
i , si56ea(r )/2d (1)

i ,

~sin2 Q~r !!E2~r !ªP2~r !1~b2r !n2
N~r !.0. ~51!
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Here, E(r ), P(r ), Q(r ), and N(r ) are functions of at least class C3. Moreover, these functions
and the parameters c0 andn are arbitrary save for the restrictions imposed above. Proof follows
from ~46! and~49a!. Note that to avoid a singularity atr 50 ~if this is included in the domain!, the
constantc0 should be set equal to zero so that limr→0 M (r )50.

An illustrative example will be provided in the following:

0,q1,1, b.0, c050,

E2~r !ª3, 2M ~r !5kq1r 3,

3 sin2 Q~r !ªP2~r !23kq1~b2r !H b1r

@3A12kq1b22A12kq1r 2#@A12kq1r 21A12kq1b2#
J

.0,

ea(r )512kq1r 2,

eg(r )5F3A12kq1b22A12kq1r 2

3A12kq1b221
G 2

,

m~r !53q1 , pi[p'5..p~r !53q1F A12kq1r 22A12kq1b2

3A12kq1b22A12kq1r 2G ,

p~b!50. ~52!

The above obviously yields the well-known interior Schwarzschild constant density solution
One final example which illustrates the use of this scheme is that of the inner layers of a

neutron star.16 In this case, the energy density,m5T(4)(4)52T4
4 is known from the quantum

mechanics of degenerate Fermions. As well, there is the ultrarelativistic fluid equation of
which should be valid in the inner layers of the star. We summarize as follows:

m~kF!5
8p2

h3 E
0

kF
k2~k21mn

2!1/2dk.

Here h is Planck’s constant,kF is the Fermi momentum andmn is the neutron mass. Since th
extreme relativistic limit is employed, the mass terms may be neglected compared to the
momentum so that a pressure calculation gives

pi[p'5 1
3 m. ~53!

Also, m(r ) is obtained by utilizing~53! along with the linear combinationG1
12G4

45 2
3km(r ).

Now the isotropy equation~44! of the general solution reads, in terms ofm(r ),

m~r ! ,r52
4

r 2 m~r !F12
2M ~r !

r G21Fkm~r !r 3

6
1M ~r !G . ~54!

Noting relation~9b! and assuming a series solution inr we arrive at the following:

M ~r !5
3

14
r , m~r !5

3

7kr 2 ,

which, from ~6a! and ~6b! yields
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eg5
4

7

r

r 0
, ea5

7

4
~55!

with r 0 a constant. The neighborhood aboutr 50 is excised as the singularity at this point is d
to the ultrarelativistic approximation. Also, this solution is not valid for outer layers of the
where deviations from the ultrarelativistic case are significant.

VII. EXOTIC SPHERICALLY SYMMETRIC SOLUTIONS

The exact solutions in~10a!–~10e! can be generalized by abandoning the weak energy c
ditions to express

2k21M ~r ,t !5 f 2~ t !2E
01

r

T4
4~x,t !x2 dx, ~56a!

e2a(r ,t)512
2M ~r ,t !

r
.0, ~56b!

eg(r ,t)5F12
2M ~r ,t !

r Gex(r ,t)H~ t !, ~56c!

x~r ,t !ªkE
01

r

ea(x,t)@T1
1~x,t !2T4

4~x,t !#x dx, ~56d!

H~ t !Þ0. ~56e!

There are many situations when the solutions to these equations may prove to be ‘‘exo
some sense. For example, the equations~56b!–~56e! reveal that the condition signature@gi j #5
12 maynot be preserved everywhere. A simple example may be considered in the exact va
metric given by

ds25S 12
2m

r D 21

dr 21r 2~du21sin2 u df2!1S 12
2m

r D t3 dt2. ~57!

In caset,0, the metric is obviously transformable to the Schwarzschild solution. However
t.0 the line element~57! yields the spherically symmetric vacuum gravitational instanton s
tion. In ~57!, limt→0 g44(r ,t)50, indicating the existence of a horizon. All the null rays from t
Schwarzschild universe suddenly halt on such a horizon. It may be called theinstanton horizon.
Signature changing metrics in general relativity have been studied in Refs. 7 and 17. The
general spherically symmetric instanton solution in curvature coordinates is furnished b
equations~56a!–~56e! with the choiceH(t)52eh(t),0.

Next, consider spherically symmetricT-domain solutions~Ref. 6 and references therein!. The
metric is locally expressible as

ds25el(T,R) dR21T2~du21sin2 u df2!2en(T,R) dT2,
~58!

DTª$~T,R!: T1,T,T2 , R1,R,R2%.

Einstein’s field equationsGj
i 1kQ j

i 50 can be solved with the metric~58!. The general solu-
tion @‘‘dual’’ to the solutions in~6a!–~6d!#, is furnished by

e2n(T,R)5
1

T Fs~R!2kET

~T8!2Q1
1~T8,R!dT8G215..

2J~T,R!

T
21.0 , ~59a!
T0
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el(T,R)5F2J~T,R!

T
21GexpH b~R!1kE

T0

T

en(T8,R)@Q4
4~T8,R!2Q1

1~T8,R!#T8 dT8J , ~59b!

Q1
4~T,R!ª

2

kT2 @J~T,R!# ,1 , ~59c!

Q2
2[Q3

35
T

2
@Q4,4

4 1Q4,1
1 #1F11

T

4
l ,4GQ4

41
T

4
~l1n! ,1Q1

42
T

2
a ,4Q1

1 , ~59d!

all otherQ j
i ’s[0.

Here, the functionss(R) and b(R) are of classC3 but otherwise arbitrary. The ‘‘total ten
sion’’ function, J(T,R) is generated by the tension density since, in theT domain, it isQ1

1 which
appears in~59a!. This class of solutions includes eternal black hole solutions.

Another special case ofT-domain solutions occurs whenever the stress-energy tensor m
@Q j

i # admits complex eigenvalues. The algebraic criterion of such occurrence is provided b
strict inequality

D]
ª~Q4

42Q1
1!214Q4

1Q1
4,0. ~60!

As an example, the followingQ j
i has appeared in the late stages of gravitational collapse stud7

0,q1,1, 0,q2,1, 3< j , )<k,

Q1
1~T,R!52

jq1Tj 23

~12q2R! j ,0,

Q4
4~T,R!5k22 jq1

Tj 23

~12q2R! j .0,

Q1
4~T,R!5

jq1q2Tj 22

~12q2R! j .0. ~61!

Finally, we shall consider the spherically symmetric field equations in an arbi
D-dimensional manifold~with D>3).8 There has been much study on the possibility of ex
dimensions in light of superstring theories. In the low energy sector, many of these th
reproduce a higher dimensional general relativity in which, above some energy scale, all d
sions may be considered noncompact. These higher dimensional field equations may th
have relevance in these theories.

The metric in curvature coordinates is provided by

ds25ea(r ,t) dr 21r 2 dV (D22)
2 2eg(r ,t) dt2 , ~62!

with

dV (D22)
2 5Fdu (0)

2 1 (
n51

D23

du (n)
2 S )

m51

n

sin2 u (m21)D G ,

D̃ª$~r ,u (0) ,...,u (D23) ,t !PRD: t1,t,t2 , 0,r 1,r ,r 2 ,

0,u (0) ,...,u (D24),p, 0<u (D23),2p%. ~63!

The D-dimensional field equations and conservation laws read
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E 1
15

D22

2r 2 @~D23!~12e2a!2re2ag ,1#1kT1
150 , ~64a!

E 2
252

e2g

4
@g ,4a ,42~a ,4!

222a ,44#2
e2a

4 F2g ,111~g ,1!
21

2~D23!

r
~g2a! ,12g ,1a ,1

1
2

r 2 ~D23!~D24!G1
2~D23!~D24!

r 2 1kT2
250, ~64b!

E 1
45

D22

2r
e2ga ,41kT 1

4 50 , E un

un[E 2
2 , ~64c!

E 4
45

D22

2r 2 @~D23!~12e2a!1re2aa ,1#1kT4
450 , ~64d!

T 15T1,1
1 1T1,4

4 1F1

2
g ,11

D22

r GT1
11

1

2
~g1a! ,4T1

42F1

2
g ,1T4

41
D22

r
T2

2G50, ~64e!

T 45T4,4
4 1T4,1

1 1
1

2
a ,4~T4

42T1
1!1

1

2
T4

1F ~a1g! ,11
2~D22!

r G50. ~64f!

The general solution of the Einstein field equations and conservation equations furn
utilizing the scheme in this paper is

e2a(r ,t)511
2k

~D22!r D23 E
r 1

r

T4
4~x,t !xD22 dx2

k f 2~ t !

r D23 5..12
2M ~r ,t !

r D23 , ~65a!

eg(r ,t)5e2a(r ,t) expH h~ t !1
2k

D22 Er 1

r FT1
1~x,t !2T4

4~x,t !

xD2322M ~x,t ! GxD22 dxJ . ~65b!

Again, the functionsf (t) andh(t) are of classC3 but otherwise arbitrary.

VIII. CONCLUDING REMARKS

In summary, the general solution to the spherically symmetric Einstein field equations
provided in the case when the energy density and parallel pressure are known. Both S
junction conditions and the Israel–Sen–Lancsoz–Darmois junction conditions have been s
and solved in general. The junction or boundary is defined by the existence of a total interio
which has been rigorously proved in Sec. III. The weak energy conditions in spherical sym
for arbitrary boost were presented and solved utilizing slack function methods. Specific m
models have also been considered including the anisotropic fluid satisfying both junction c
tions, which includes the perfect fluid as a special case. Finally, exotic extensions were cons
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Double structures and double symmetries for the general
symplectic gravity models
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By using the so-called double-complex function method, a doubleness symmetry
for each member of the class of stationary axisymmetric general symplectic gravity
models is found and exploited so that some double-complex (n11)3(n11) ma-
trix Ernst-like potential for any non-negative integern can be constructed and the
associated motion equations can be extended into a double-complex matrix Ernst-
like form. Then double symmetry symplectic groupsSp„2(n11), R(J)… of the
theories are given and verified that their actions can be realized concisely by
double-complex matrix form generalizations of the fractional linear transformation
on the Ernst potential. These results demonstrate that the theories under consider-
ation possess more and richer symmetry structures. The special casesn50 andn
51 correspond, respectively, to the pure Einstein gravity and the Einstein–
Maxwell-dilaton–axion theories. Moreover, as an application, for eachn
50,1,2,..., aninfinite chain of double-solutions of the general symplectic gravity
model is obtained, which shows that the double-complex method is more effective.
Some of the results in this paper cannot be obtained by the usual~nondouble!
scheme. ©2003 American Institute of Physics.@DOI: 10.1063/1.1624092#

I. INTRODUCTION

The double-complex function method~DCFM!,1 which organically combines the ordinar
complex with the so-called hyperbolic complex2 function theories, has been effectively used
some mathematical physics problems~see, e.g., Refs. 1,3–9!. In these studies, the DCFM and i
extended version8,9 have been extensively used to the dimensionally reduced Einstein gr
theories and the self-dual gauge field theories as powerful tools for finding new symmetrie
generating new solutions of the associated field equations. These results are important for
standing the related theories.

More recently, on the other hand, much attention had been paid to the study of symmetr
the dimensionally reduced low energy effective~super!string theories~see, e.g., Refs. 10–22!.
Such theories describe various interacting ‘‘matter’’ fields coupled to gravity. The 2-dimensio
reduced Einstein–maxwell-dilaton–axion~EMDA! theory14,15,19–22is a typical and important ex
ample of these models. In Ref. 23, Kechkin and Yurova developed a series of symplectic g
models, each of them is a generalization of the EMDA theory so that it describes a coupled s
of n Abelian vector fields and the symmetricn3n matrix extensions of the dilaton and th
Kalb–Ramond fields forn51,2,... . We shall call these general symplectic gravity models ‘‘SG
n’’ theories for brevity. Thus the EMDA theory corresponds to the case of SGM-1.

For the EMDA theory and its generalizations, the SGM-n theories, some symmetries an
solution generating techniques have been given,14,15,19–24moreover, some of their properties sim
lar to the reduced vacuum Einstein theory have been noted.19–21,23However, only the ordinary
complex functions are used in these schemes. In the present paper, we shall show that, b
the DCFM, a doubleness symmetry of the SGM-n theories can be found and exploited fully, the

a!Electronic mail: yajgao@jznu.edu.cn
56560022-2488/2003/44(12)/5656/8/$20.00 © 2003 American Institute of Physics
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more and richer symmetries and solution generating methods can be obtained, some o
results cannot be obtained by using only the ordinary~nondouble! schemes.

In a previous paper,25 we have given a double formulation of the 2-dimensionally redu
Einstein-dilaton–axion theory26,27 and obtained some new results. Now we generalize the s
further to the stationary axisymmetric~SAS! SGM-n theories. Since the Ernst-like potentia
involved here are matrices~rather than scalar functions!, the generalization is not trivial.

In the Preliminariesbelow, for use later, some related concepts and notations of the do
complex numbers1 are briefly recalled. In Sec. II, motion equations of the SAS SGM-n theories
are extended into a double-complex matrix Ernst-like form. Section III gives double symm
groups of the SGM-n theories, which are double-real 2(n11)-dimensional symplectic groups
Then the actions of these symmetry groups are explicitly written as convenient and co
double-complex matrix fractional linear transformation forms. In Sec. IV, the doubleness sy
try property of the SGM-n theories is further used and some double dual transformations
introduced. By using these dual transformations together with the double symmetry groups
in Sec. III, for eachn50,1,2,..., we obtain an infinite chain of double-solutions of the SGMn
theories considered. Finally, Sec. V gives some summary and discussions.

Preliminaries:1 Let J denote the double-imaginary unit, i.e.,J5 i ( i 2521), or J5« («2

511, «Þ61). If a series(n50
` uanu, anPR ~real number field!, is convergent, then

a~J!5 (
n50

`

anJ2n ~1.1!

is called a double-real number, which corresponds to a pair (aC ,aH) of ordinary real numbers,
where aCªa(J5 i ), aHªa(J5«). All of the double-real number with ordinary addition an
multiplication constitute a field, we call it double-real number field and denote it byR(J). When
a(J) andb(J) both are double-real numbers, then

c~J!5a~J!1Jb~J! ~1.2!

is called a double-complex number; it corresponds to a pair (cC , cH), wherecCªc(J5 i )5aC

1 ibC is an ordinary complex number,cHªc(J5«)5aH1«bH is called a hyperbolic complex
number. From the above definitions, we see that the double-imaginary unitJ takes the role of an
analysis link betweencC andcH . All double-complex numbers with usual addition and multip
cation constitute a commutative ring, which is denoted byC(J). The double-complex conjugatio
of a double-complex numberc(J) is defined byc(J)ªa(J)2Jb(J); this implies thatJ̄52J.

In this paper, we also use the double-imaginary unit commutation operator ‘‘+,’’ that is defined
as

+:J→ J̊, i̊ 5e, e̊5 i . ~1.3!

Obviously, J̊ is the double-imaginary unit, too.

II. DOUBLE-COMPLEX MATRIX ERNST FORMULATION FOR THE SGM- n THEORIES

Following Ref. 23, we consider a class of gravity models with action

S5E H 2R1TrF1

2
~]p p!22pFFT1

1

3
~pH!2G JA2gd4x, ~2.1!

wheregmn is the metric~signature1222,m,n50,1,2,3),R5Rmn
mn is the Ricci scalar ofgmn ,

g5det(gmn), p is a symmetricn3n matrix with scalar field components~for the EMDA case,p
5e22f, f is the dilaton field!, and

Fmn5]mAn2]nAm ,
~2.2!
                                                                                                                



or
-

-
extra

,
ne
it-

M-

re
of

ns, can

5658 J. Math. Phys., Vol. 44, No. 12, December 2003 Ya-Jun Gao

                    
Hmnl5]mBnl2 1
2 ~AmFnl

T 1FnlAm
T !1cyclic,

in which Bmn is a symmetricn3n matrix containing the antisymmetric Kalb–Ramond tens
fields~i.e.,Bmn

T 5Bmn , Bmn52Bnm) andAm is an31 column of Abelian vector fields. The SGM
n action ~2.1! gives the pure Einstein and the EMDA theories, respectively, whenn50 andn
51 and provides their generalization for an arbitrary non-negative integern. These special mod
els arise in the low energy limit of the heterotic string theory after the compactification of
dimensions on a torus.

Now we consider the 2-dimensional reduction of the above SGM-n theories. For definiteness
we consider the stationary axisymmetric~SAS! case, in which the 4-dimensional space–time li
element is chosen as the Lewis–Papapetrou form~the space–time coordinates are explicitly wr
ten asx05t, x15w, x25r, x35z):

ds25 f ~dt2v dw!22 f 21@e2g~dz21dr2!1r2 dw2#, ~2.3!

where f , v, andg are real functions ofr andz only.
After reduction to the SAS case, in addition to the above metric variables, the set of SGn

dynamical quantities contains two Lorentzian componentsA0 , A1 of then31 column 4-potential
Am , one nontrivial Lorentzian componentB01 of the n3n symmetric matrix Kalb–Ramond field
Bmn and then3n symmetric matrixp of the Lorentzian scalar fields. Also, all of these fields a
dependent only on the coordinatesr andz. In terms of these, the dynamical motion equations
the SAS SGM-n theory can be divided into two groups. The first group can be written as23

¹~r21P¹VP!50, ~2.4a!

¹~r¹PP211r21P¹VPV!50, ~2.4b!

where the gradient operator¹ª(]r ,]z) and the two (n11)3(n11) symmetric real matricesP
andV are defined by the so-called original~nondualized! field variables as

P5S f 22A0
TpA0 2&A0

Tp

2&pA0 p
D ,

~2.5!

V5S v 2&~A11vA0!T

2&~A11vA0! ~A11vA0!A0
T1A0~A11vA0!T22B01

D .

Thus, if P and V are known by solving the motion equations~2.4!, we can directly obtain the
original fields f , v, A0 , A1 , B01 andp.

The second group of the motion equations, namely the corresponding Einstein equatio
be written as

]rg5 1
4 Tr@r„~Jr

P!22~Jz
P!2

…1r21
„~Jr

V!22~Jz
V!2

…#,

]zg5 1
2 Tr@rJr

PJz
P2r21Jr

VJz
V#, ~2.6!

where we have introduced two matrix currents:

JP
ªP21¹P, JV

ªP21¹V,

and the components of these currents are defined asJr
P
ªP21]rP, Jz

P
ªP21]zP, etc. Subse-

quently, the functiong can be obtained by a simple integration of the equations~2.6! provided that
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the solution (P,V! of ~2.4! is known. The existence ofg is assured by Eqs.~2.4!. Sinceg is
completely determined byP andV, we shall focus our attention on Eqs.~2.4! in the following.

To find the double symmetric structures of the SGM-n theories, we note that the equation
~2.4! imply that we can introduce the transformations of the matrix functionsP,V as follows:

T: P→T~P!5rP21,
~2.7!

V: T~P!, V→VT(P)~V!5E r21P]zV P dr2r21P ]rV P dz

5E r„T~P!…21]zV„T~P!…21 dr2r„T~P!…21 ]rV„T~P!…21 dz.

It can be directly shown that the above transformationsT andV both are invertible. In fact, by a
suitable choice of the integration constants, we have

T2~P!5P, VPVT(P)~V!52V. ~2.8!

Now, by the transformation (P,V)→(PH ,VH)ª„T(P),V…, the equations~2.4! are written as

¹2VH5~¹PH!PH
21~¹VH!1~¹VH!PH

21~¹PH!,
~2.9a!

¹2PH5~¹PH!PH
21~¹PH!1~¹VH!PH

21~¹VH!,

where the Laplace operator¹2[]r
21r21]r1]z

2 ; and by the transformation (P,V)→(PC ,VC)
ª„P,VT(P)(V)…, the field equations~2.4! can be written as

¹2VC5~¹PC!PC
21~¹VC!1~¹VC!PC

21~¹PC!,
~2.9b!

¹2PC5~¹PC!PC
21~¹PC!2~¹VC!PC

21~¹VC!.

Therefore, now we can introduce a double-complex (n11)3(n11) matrix potential,

E~J!5P~J!1JV~J!, ~2.10!

and naturally obtain a double-complex SGM-n field equation,

¹2E~J!5¹E~J!P21~J!¹E~J!, ~2.11!

by combining Eq.~2.9a! with ~2.9b!, where P(J) and V(J) both are double-real (n11)3(n
11) symmetric matrix functions ofr andz. The equation~2.11! is a matrix-form generalization
of the double-complex Ernst equation in SAS vacuum Einstein theory.1,28 Thus the dynamical
motion equations of the SAS SGM-n theories have been written out in a double-complex ma
Ernst-like form. When takingJ5 i , thenEC5PC1 iVC and Eq.~2.11! gives the equations~2.9b!.
The ordinary complex matrix potentialEC has been introduced essentially in Ref. 23. On the ot
hand, when takingJ5«, thenEH5PH1«VH and Eq.~2.11! gives~2.9a!. The fact that the SAS
SGM-n field equations can be written into a single double-complex matrix Ernst-like equ
reflects that the theories under consideration for anyn>0 possess some so-called doublen
symmetry.

According to the discussions above and noticing that if (P,V) is a solution of Eqs.~2.4!, so
is (P,2V), it can be readily verified that if a double-complex solutionE(J) of Eq. ~2.11! is
known, then we can obtain a pair of real solutions of SAS SGM-n field equations~2.4! as follows:

~P,V!5„PC ,VPC
~VC!…,

~2.12!
~ P̂,V̂!5„T~PH!,VH…,
                                                                                                                



ethod
er-like
to
e
hod.

n

roup
le

of
t

5660 J. Math. Phys., Vol. 44, No. 12, December 2003 Ya-Jun Gao

                    
and the existence ofVPC
(VC) is ensured by Eq.~2.11!. Noted that the double-imaginary unitJ

takes a role of an analytical link in the DCFM,1 we call the two solutions in~2.12! to be dual to
each other. Similar to the discussions given in Ref. 1, we see that the double-complex m
presented above essentially implies an analytically continuation of the Neugebauer–Kram
transformation for the SGM-n theories.23,29 It is this analytically continuation that make us able
obtain two real solutions of SGM-n theory directly from a double-complex matrix Ernst-lik
potentialE(J). In the following sections, we give some applications of this doubleness met

III. DOUBLE SYMMETRY GROUPS OF THE SAS SGM- n THEORIES

Based on the results in Sec. II, if we introduce the 2(n11)32(n11) double-real matrix
function,

M ~J!5S V~J!P21~J!V~J!2J2P~J! V~J!P21~J!

P21~J!V~J! P21~J!
D , ~3.1!

then the double-complex matrix Ernst-like equation~2.11! can be written as

¹@rM 21~J!¹M ~J!#50. ~3.2!

It is obvious that the double-real matrix functionM (J) in ~3.1! satisfies the conditions

MT~J!5M ~J!, M ~J!hM ~J!52J2h, ~3.3!

where

hªS 0 I

2I 0D , I is the ~n11!-dimensional unit matrix. ~3.4!

Conversely, ifM (J) is a double solution of~3.2!, ~3.3!, we can obtain a double-complex solutio
of ~2.11! by

E~J!5M22
21~J!1JM12~J!M22

21~J!, ~3.5!

where we have expressed the 2(n11)32(n11) matrix M (J) in terms of (n11)3(n11)
blocks $MAB(J), A,B51,2% as

M ~J!5S M11~J! M12~J!

M21~J! M22~J!
D ,

and the conditions~3.3! assure that the double-real (n11)3(n11) matricesM22
21(J) and

M12(J)M22
21(J) both are symmetric. It is clear that the equations~3.2!, ~3.3! are invariant under a

double transformation as

M ~J!→MG~J!ªG~J! M ~J! GT~J!, ~3.6!

whereG(J) is a 2(n11)32(n11) double-real matrix satisfying

GT~J!hG~J!5h. ~3.7!

Therefore, the SAS SGM-n field equations possess a double-real symplectic symmetry g
Sp„2(n11),R(J)…. The symmetry transformation~3.6! includes the double gauge, double sca
and double Ehlers-like transformations, etc. of the SGM-n theories.

The double symmetry transformation~3.6! can also be more concisely expressed in terms
the double-complex matrix Ernst-like potentialE(J)5P(J)1JV(J). To this end, it is convenien
to write the elementG(J) of Sp„2(n11),R(J)… as
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G~J!5S a~J! b~J!

c~J! d~J!
D , ~3.8!

wherea(J), b(J), c(J) andd(J) are double-real (n11)3(n11) matrices satisfying

aT~J!c~J!5cT~J!a~J!, bT~J!d~J!5dT~J!b~J!,
~3.9!

aT~J!d~J!5cT~J!b~J!1I .

Now for a (n11)3(n11) matrix F, we define the action ofG(J) on F by the following
double-complex matrix fractional linear transformation:

G~J!@F#ª@a~J!F1Jb~J!#@J3c~J!F1d~J!#21. ~3.10!

Then, associated with a double-complex potentialE(J) in ~2.10!, we consider an elementGE(J)
of Sp„2(n11),R(J)… as

GE~J!ªS e~J! V~J!„eT~J!…21

0 „eT~J!…21 D , ~3.11!

where the double-real vielbeine(J) is defined such thatP(J)5e(J)eT(J), and by~3.10! we have

GE~J!@ I #5E~J!5P~J!1JV~J!. ~3.12!

Moreover, we find that the 2(n11)32(n11) double-real matrixM (J) in ~3.1! can be written, in
terms of the aboveGE(J), as

M ~J!5GE~J!K~J!GE
T~J!, ~3.13!

where

K~J!ªS 2J2I 0

0 I D . ~3.14!

From Eqs.~3.6!, ~3.10!, ~3.12! and ~3.13!, it follows that

M „E8~J!…ªMG~J!5G~J!M ~J!GT~J!5G~J!GE~J!K~J!GE
T~J!GT~J!5GE8~J!K~J!GE8

T
~J!;
~3.15!

here

GE8~J!5G~J!GE~J!. ~3.16!

Besides, it can be verified that the double-complex matrix fractional linear transformation~3.10! is
consistent with the group property:

G~J!@G8~J!@F##5„G~J!G8~J!…@F#. ~3.17!

Therefore, from~3.16! and ~3.12! we have

E8~J!ªGE8~J!@ I #5G~J!GE~J!@ I #5G~J!@E~J!#, ~3.18!

and finally we obtain theSp„2(n11),R(J)… symmetry transformation~3.6! expressed by the
action on the double-complex matrix potentialE(J) as

E8~J!5G~J!@E~J!#5@a~J!E~J!1Jb~J!#@J3c~J!E~J!1d~J!#21. ~3.19!
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This is a matrix form generalization of the double-complex fractional linear transformation o
double-complex Ernst potential in the case of vacuum gravity.1,30

IV. INFINITE CHAINS OF DOUBLE-SOLUTIONS OF THE SGM- n THEORIES

Noted the conditions~3.9!, the matrix generalized double-complex fractional linear trans
mation ~3.19! evidently contains the double matrix Ehlers-like transformation providedc(J)
Þ0. We denote the transformations of this type bya(J).

On the other hand, Eq.~2.11! @or equivalently, Eqs.~3.2!–~3.4!# allows us to introduce a
double duality mappingb(J) which is defined by

b~J!:E~J!→Ê~J!5 P̂~J!1JV̂~J!, ~4.1!

where

P̂~J!5T„P~ J̊!…, V̂~J!5 J̊2VP( J̊)„V~ J̊!…, ~4.2!

and the commutated double-imaginary unitJ̊ is defined by~1.3!. It can be verified that ifE(J) is
a double-complex solution of Eq.~2.11!, then so isÊ(J).

It should be pointed out thatE(J) andÊ(J) are equivalent in view of solving Eq.~2.4!, i.e.,
they give the essentially same SAS SGM-n solutions. However, it is important that under th
double transformationa(J), E(J) and Ê(J) give different solutions, i.e., in general we hav
b(J)a(J)Þ5a(J)b(J). Moreover,a(J), b(J) both are invertible in the sense of transform
tions acting on the solution spaces of the SGM-n theories. Thus, from a known double solutio
E0(J), we can obtain an infinite chain of double-complex solutions of Eq.~2.11! by usinga(J),
b(J) successively and alternately:

¯Ê22~J!
a~J!

Ê21~J! v
b~J!

E21~J!
a~J!

E0~J! v
b~J!

Ê0~J!
a~J!

Ê1~J! v
b~J!

E1~J!
a~J!

E2~J!¯ .
~4.3!

This gives a type of double solution generating techniques of the SGM-n theories and from each
obtainedEk(J) @or equivalentlyÊk(J)] for k50,61,62,..., and afixed n, we can get a pair of
dual real solutions of the SGM-n theory by using the formula~2.12!. This shows that the double
complex method is more effective. The double-solution chain~4.3! is a matrix form generalization
of the analogous results for pure gravity theory.1,31

V. SUMMARY AND DISCUSSIONS

The series of the symplectic gravity models developed in Ref. 23 is further studied by
the double-complex function method and then the doubleness symmetry of the SAS Sn
theories for any non-negative integern is found. In virtue of the double formulation, the doubl
ness symmetry is exploited more fully so that the dynamical motion equations of the the
under consideration can be written into double-complex Ernst-like forms; these are matrix
generalizations of the double-complex Ernst equation in the SAS vacuum Einstein gravity1,28 and
make us be able to obtain more symmetries and solutions of the SGM-n theories. We give the
double symmetry groupsSp„2(n11),R(J)… of the studied theories and verify that the actions
these symmetry groups on the SGM-n solution spaces can be realized concisely by doub
complex matrix form generalizations of the fractional linear transformation on the Ernst pote
Moreover, by introducing a double duality mappingb(J), an infinite chain of double-solutions o
the SGM-n theory~for eachn) can be generated from a known solutionE0(J); thus we obtain a
double-solution generating method. These results show that the considered SGM-n theories pos-
sess more and richer symmetry structures than previously expected.

There are some formal analogies between the SGM-n theories and the vacuum Einste
theory. However, because the potentials in the SGM-n (n>1) theories are noncommuting matr
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ces rather than ordinary scalar functions~as in the case of vacuum Einstein gravity!, the related
studies for the former are essentially complicated. Explicit representations of the Geroc
group actions and concrete soliton solution construction methods of the SGM-n theories and their
double forms need more investigations and will be considered in forthcoming works.
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Universes encircling five-dimensional black holes
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We clarify the status of two known solutions to the five-dimensional vacuum Ein-
stein field equations derived by Liu, Mashhoon, and Wesson~LMW ! and Fukui,
Seahra, and Wesson~FSW!, respectively. Both 5-metrics explicitly embed four-
dimensional Friedman–Lemaıˆtre–Robertson–Walker cosmologies with a wide
range of characteristics. We show that both metrics are also equivalent to five-
dimensional topological black hole~TBH! solutions, which is demonstrated by
finding explicit coordinate transformations from the TBH to LMW and FSW line
elements. We argue that the equivalence is a direct consequence of Birkhoff’s
theorem generalized to five dimensions. Finally, for a special choice of parameters
we plot constant coordinate surfaces of the LMW patch in a Penrose–Carter dia-
gram. This shows that the LMW coordinates are regular across the black and/or
white hole horizons. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1623617#

I. INTRODUCTION

Over the past few years, there has been a marked resurgence of interest in mode
noncompact or large extra-dimensions. Three examples of such scenarios immediately c
mind—namely, the braneworld models of Randall & Sundrum1,2 @henceforth RS# and Arkani–
Hamed, Dimopoulos and Dvali3,4 @henceforth ADD#, as well as the older space–time–mat
~STM! theory.5 The RS model is motivated from certain ideas in string theory, which sugges
the particles and fields of the standard model are naturally confined to a lower-dimension
persurface living in a noncompact, higher-dimensional bulk manifold. The driving goal behin
ADD picture is to explain the discrepancy in scale between the observed strength of the g
tional interaction and the other fundamental forces. This is accomplished by noting that in g
higher-dimensional models with compact extra dimensions, the bulk Newton’s constant is r
to the effective four-dimensional constant by factors depending on the size and number
extra dimensions. Finally, STM or induced matter theory proposes that our universe is an e
ded 4-surface in a vacuum 5-manifold. In this picture, what we perceive to be the source
four-dimensional Einstein field equations is really just an artifact of the embedding; or in
words, conventional matter is induced from higher-dimensional geometry.

Regardless of the motivation, if extra dimensions are to be taken seriously then it is use
have as many solutions of the higher-dimensional Einstein equations at our disposal as p
These metrics serve as both arenas in which to test the feasibility of extra dimensions, as
guides as to where four-dimensional general relativity may break down. This simplest ty
higher-dimensional field equations that one might consider is the five-dimensional vacuum

equationsR̂AB50. ~In this paper, uppercase italic indices run 0¯4 while lowercase greek indice
run 0̄ 3, and five-dimensional curvature tensors are distinguished from the four-dimens
counterparts by hats. Also, commas in subscripts indicate partial differentiation.! This condition is
most relevant to the STM scenario, but can also be applied to the RS or ADD pictures. The
a fair number of known solutions that embed 4-manifolds of cosmological or spherically sym

a!Electronic mail: ssseahra@uwaterloo.ca
b!Electronic mail: wesson@astro.uwaterloo.ca
56640022-2488/2003/44(12)/5664/17/$20.00 © 2003 American Institute of Physics
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ric character; one can consult the book by Wesson5 for an accounting of these metrics.
However, when searching for new solutions to vacuum field equations, one must keep in

a known peril from four-dimensional work; i.e., any new solution could be a previously dis
ered metric written down in terms of strange coordinates. Our purpose in this paper is to d
strate that two five-dimensional vacuum solutions in the literature are actually isometric
generalized five-dimensional Schwarzschild manifold. Both of these solutions have been
ously analyzed in the context of four-dimensional cosmology because they both embed su
folds with line elements matching that of standard Friedman–Lemaıˆtre–Robertson–Walke
~FLRW! models with flat, spherical, or hyperbolic spatial sections. In Sec. II A, we discuss the
of these 5-metrics, which was originally written down by Liu and Mashhoon6 and later rediscov-
ered in a different form by Liu and Wesson.7 We will see that this metric naturally embeds FLR
models with fairly general, but not unrestricted, scale factor behavior. Several different au
have considered this metric in a number of different contexts,8–11 including the RS braneworld
scenario. The second 5-metric—which was discovered by Fukui, Seahra, and Wesson12 and is the
subject of Sec. II B—also embeds FLRW models with all types of spatial curvature, but the
factor is much more constrained. We will pay special attention to the characteristics of th
bedded cosmologies in each solution, as well as the coordinate invariant geometric prope
the associated bulk manifolds.

The latter discussion will reveal that not only do the Liu–Mashhoon–Wesson~LMW ! and
Fukui–Seahra–Wesson~FSW! metrics have a lot in common with one another, they also exh
many properties similar to that of the topological black hole~TBH! solution of the five-
dimensional vacuum field equations, which we introduce in Sec. III. This prompts us to su
that the LMW and FSW solutions are actually isometric to topological black hole manifolds
confirm this explicitly by finding transformations from standard black hole to LMW and F
coordinates in Secs. IV A and IV B, respectively. We argue that the equivalence of the
metrics is actually a consequence of a higher-dimensional version of Birkhoff’s theorem in
IV C. In Sec. V, we discuss which portion of the extended five-dimensional Kruskal manifo
covered by the LMW coordinate patch and obtain Penrose–Carter embedding diagrams
particular case. Section VI summarizes and discusses our results.

II. TWO 5-METRICS WITH FLRW SUBMANIFOLDS

In this section, we introduce two 5-metrics that embed four-dimensional FLRW models.
of these are solutions of the five-dimensional vacuum field equations, and are hence s
manifolds for STM theory. Our goals are to illustrate what subset of all possible FLRW mo
can be realized as hypersurfaces contained within these manifolds, and to find out abo
five-dimensional curvature singularities or geometric features that may be present.

A. The Liu–Mashhoon–Wesson metric

Consider a five-dimensional manifold (MLMW ,gAB). We define the LMW metricAnsatzas

dsLMW
2 5

a,t
2~ t,, !

m2~ t !
dt22a2~ t,, ! ds (k,3)

2 2d,2. ~1!

Here,a(t,,) andm(t) are undetermined functions, andds (k,3)
2 is the line element on maximally

symmetric 3-spacesS3
(k) with curvature indexk511,0,21:

ds (k,3)
2 5dc21Sk

2~c!~du21sin2 u dw2!, ~2!

where

Sk~c![H sinc, k511,

c, k50,

sinhc, k521.

~3!
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It is immediately obvious that the,5constant hypersurfacesS, associated with~1! have the
structure of FLRW models:R3S3

(k) . We should note that the original papers~Refs. 6 and 7! did
not really begin with a metricAnsatzlike ~1!; rather, thegtt component of the metric was initially
taken to be some general function oft and,. But one rapidly closes in on the above line eleme
by direct integration of one component of the vacuum field equationsR̂AB50; namely,R̂t,50.
The other components are satisfied if

a2~ t,, !5@m2~ t !1k#,212n~ t !,1
n2~ t !1K
m2~ t !1k

, ~4!

whereK is an integration constant. As far as the field equations are concerned,m(t) andn(t) are
completely arbitraryfunctions of time. However, we should constrain them by appending
condition

a~ t,, !PR1⇒a2~ t,, !.0 ~5!

to the system. This restriction ensures that the metric signature is (12222) and t is the only
timelike coordinate. Now, ifa is taken to be real, then it follows thatn must be real as well.
Regarding~4! as a quadratic equation inn, we find that there are real solutions only if th
quadratic discriminant is non-negative. This condition translates into

K<a2~ t,, !@m2~ t !1k#. ~6!

If K is positive this inequality implies that we must choosem(t) such thatm21k.0. This relation
will be important shortly.

The reason that this solution is of interest is that the induced metric on,5constant hyper-
surfaces is isometric to the standard FLRW line element. To see this explicitly, consider th
element on the,5,0 4-surface:

ds(S,)
2 5

a,t
2~ t,,0!

m2~ t !
dt22a2~ t,,0! ds (k,3)

2 . ~7!

Let us perform the four-dimensional coordinate transformation

Q~ t !5E
t

a,u~u,,0!

m~u!
du⇒m~ t~Q!!5A8~Q!, ~8!

where

A~Q!5a~ t~Q!,,0!, ~9!

and we use a prime to denote the derivative of functions of a single argument. This pu
induced metric in the FLRW form

ds(S,)
2 5dQ22A 2~Q! ds (k,3)

2 , ~10!

whereQ is the cosmic time andA~Q! is the scale factor.
So, the geometry of each of theS, hypersurfaces is indeed of the FLRW type. But what ki

of cosmologies can be thus embedded? Well, if we rewrite the inequality~6! in terms ofA andA8
we obtain

K<A 2~A821k!. ~11!

Since A is to be interpreted as the scale factor of some cosmological model, it satisfie
Friedman equation:
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A822 1
3k4

2rA 252k. ~12!

Here,r is the total density of the matter energy in the cosmological model characterized byA~Q!
and k4

258pG is the usual coupling constant in the four-dimensional Einstein equations.
implies a relation between the density of the embedded cosmologies and the choice ofm,

m21k5 1
3k4

2rA 2. ~13!

This into the inequality~11! yields

K< 1
3k4

2rA 4. ~14!

Therefore, we can successfully embed a given FLRW model on aS, 4-surface in the LMW
solution if the total density of the model’s cosmological fluid and scale factor satisfy~14! for all
Q. An obvious corollary of this is that we can embed any FLRW model withr.0 if K,0.

There is one other point about the intrinsic geometry of theS, hypersurfaces that needs to b
made. Notice that our four-dimension coordinate transformation~8! has

dQ

dt
5

a,t

m
, ~15!

which means that the associated Jacobian vanishes whenevera,t50. Therefore, the transformatio
is really only valid in between the turning points ofa. Also notice that the original 4-metric~7! is
badly behaved whena,t50, but the transformed one~10! is not whenA850. We can confirm via
direct calculation that the Ricci scalar for~7! is

(4)R52
6m

a

dm

dt S ]a

]t D
21

2
6

a2 ~m21k!. ~16!

We see that(4)R diverges whena,t50, provided thatmm ,t /aÞ0. Therefore, there can be genuin
curvature singularities in the intrinsic 4-geometry at the turning points ofa. These features are
hidden in the altered line element~10! because the coordinate transformation~8! is not valid in the
immediate vicinity of any singularities, hence theQ-patch cannot cover those regions~if they
exist!. We mention that this four-dimensional singularity in the LMW metric has been rece
investigated by Xu, Liu, and Wang,13 who have interpreted it as a four-dimensional event horiz

Now, let us turn our attention to some of the five-dimensional geometric properties ofMLMW .
We can test for curvature singularities in this 5-manifold by calculating the Kretschmann s

RLMW[R̂ABCDR̂ABCD5
72K 2

a8~ t,, !
. ~17!

We see there is a singularity in the 5-geometry along the hypersurfacea(t,,)50. @Of course,
whether or nota(t,,)50 for any (t,,)PR2 depends on the choice ofm andn.# This singularity
is essentially a linelike object because the radiusa of the three-dimensionalS3

(k) subspace vanishe
there. Other tools for probing the 5-geometry are Killing vector fields onMLMW . Now, there are
by definition six Killing vectors associated with symmetry operations onS3

(k) , but there is also at
least one Killing vector that is orthogonal to that submanifold. This vector field is given by

jA
LMW dxA5

a,t

m
Ah~a!1m2~ t ! dt1Aa,,

2 2h~a! d,. ~18!

Here, we have defined
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h~x![k2
K
x2 . ~19!

Using the explicit form ofa(t,,) from Eq. ~4!, we can verify thatj satisfies Killing’s equation

¹BjA
LMW1¹AjB

LMW50, ~20!

via computer. Also using~4!, we can calculate the norm ofjLMW, which is given by

jLMW
•jLMW5h~a!. ~21!

This vanishes atka25K. So, if kK.0 the 5-manifold contains a Killing horizon. If the horizo
exists thenjLMW will be timelike for uau.AuKu and spacelike foruau,AuKu.

To summarize, we have seen that FLRW models satisfying~14! can be embedded on aS,

4-surface within the LMW metric, but that there are four-dimensional curvature singula
wherevera,t50. The LMW 5-geometry also possesses a linelike singularity wherea(t,,)50, as
well as a Killing horizon across which the norm ofjLMW changes sign.

B. The Fukui–Seahra–Wesson metric

For the time being, let us set aside the LMW metric and concentrate on the FSW solutio
a certain 5-manifold (MFSW,gAB), this is given by the line element

dsFSW
2 5dt22b2~t,w! ds (k,3)

2 2
b,w

2 ~t,w!

z2~w!
dw2, ~22a!

b2~t,w!5@z2~w!2k#t212x~w!t1
x2~w!2K
z2~w!2k

. ~22b!

This metric~22a! is a solution of the five-dimensional vacuum field equationsR̂AB50 with z(w)
andx(w) as arbitrary functions. Just as before, we call Eq.~22a! the FSW metricAnsatz, even
though it was not the technical starting point of the original paper.12 We have written~22! in a
form somewhat different from that of Ref. 12; to make contact with their notation we nee
make the correspondences

@F~w!#FSW[k2z2~w!, ~23a!

@h~w!#FSW[@x2~w!1K#/@z2~w!2k#, ~23b!

@g~w!#FSW[2x~w!, ~23c!

@K#FSW[24K, ~23d!

where@¯#FSW indicates a quantity from the original FSW work. A cursory comparison betw
the LMW and FSW vacuum solutions reveals that both metrics have a similar structure,
prompts us to wonder about any sort of fundamental connection between them. We defer th
to the next section, and presently concern ourselves with the properties of the FSW solutio
own right.

Just as for the LMW metric, we can identify hypersurfaces in the FSW solution with FL
models. Specifically, the induced metric onw5w0 hypersurfacesSw is

ds(Sw)
2 5dt22b2~t,w0! ds (k,3)

2 . ~24!

We see that for the universes onSw , t is the cosmic time andb(t,w0) is the scale factor. It is
useful to perform the following linear transformation ont:
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t~Q!5Q2
x0

z0
22k

, ~25!

where we have definedz0[z(w0) andx0[x(w0). This puts the induced metric into the form

ds(Sw)
2 5dQ22B 2~Q! ds (k,3)

2 , ~26a!

B~Q!5A~z0
22k!2Q22K

z0
22k

. ~26b!

Unlike the LMW case, the cosmology on theSw hypersurfaces has restrictive properties. Ifz0
2

2k.0, the scale factorB~Q! has the shape of one arm of a hyperbola with a semimajor ax
lengthA2K/(z0

22k). Note that this length may be complex depending on the values ofz0 , k,
and K. That is, the scale factor may not be defined for allQPR. When this is the case, th
embedded cosmologies involve a big bang and/or a big crunch. Conversely, it is not hard to
z0

22k,0 andK.0 then the cosmology is re-collapsing; i.e., there is a big bang and a big cru
However, ifz0

22k,0 andK<0, then there is noQ interval where the scale factor is real. We ha
summarized the basic properties of the embedded cosmologies in Table I. Finally, we note
z0

22k.0 then

lim
Q→`

B~Q!5~z0
22k!1/2Q. ~27!

Hence, the late time behavior of such models approaches that of the empty Milne univers
Lake14 has calculated the Kretschmann scalar for vacuum 5-metrics of the FSW type.

his formula is applied to~22!, we obtain

RFSW[R̂ABCDR̂ABCD5
72K 2

b8~t,w!
. ~28!

As for the LMW manifold, this implies the existence of a linelike singularity in the 5-geometr
b(t,w)50. We also find that there is a Killing vector onMFSW, which is given by

jA
FSWdxA5Ab,t1h~b! dt1

b,w

z
Az22h~b! dw, ~29a!

05¹AjB
FSW1¹BjA

FSW. ~29b!

The norm of this Killing vector is relatively easily found by computer,

jFSW
•jFSW5h~b!. ~30!

Hence, there is a Killing horizon inMFSW whereh(b)50. Obviously, thejFSW Killing vector
changes from timelike to spacelike—orvice versa—as the horizon is traversed.

TABLE I. Characteristics of the four-dimensional cosmologies embedded
on theSw hypersurfaces in the FSW metric.

z0
22k.0 z0

22k,0

K.0 Big bang Big bang and big crunch
K50 Big bang BPC for all QPR
K,0 No big bang/crunch BPC for all QPR
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In summary, we have seen how FLRW models with scale factors of the type~22b! are
embedded in the FSW solution. We found that there is a linelike curvature singularity inMFSW at
b(t,w)50 and the bulk manifold has a Killing horizon where the magnitude ofjFSW vanishes.

III. CONNECTION TO THE FIVE-DIMENSIONAL TOPOLOGICAL BLACK HOLE
MANIFOLD

When comparing equations~17! and~28!, or ~21! and~30!, it is hard not to believe that ther
is some sort of fundamental connection between the LMW and FSW metrics. We see that

RLMW5RFSW, jLMW
•jLMW5jFSW

•jFSW, ~31!

if we identify a(t,,)5b(t,w). Also, we notice that the LMW solution can be converted into
FSW metric by the following set of transformations/Wick rotations:15

c→ ic, t→w,

,→t, k→2k, ~32!

K→2K, dsLMW→ i dsFSW.

These facts lead us to the strong suspicion that the LMW and FSW metrics actually descr
same 5-manifold.

But which 5-manifold might this be? We established in the previous section that bot
LMW and FSW metrics involve a five-dimensional linelike curvature singularity and Kill
horizon if kK.0. This reminds us of another familiar manifold: that of a black hole. Consider
metric of a ‘‘topological’’ black hole~TBH! on a 5-manifold (MTBH ,gAB):

dsTBH
2 5h~R! dT22h21~R! dR22R2 ds (k,3)

2 . ~33!

The adjective ‘‘topological’’ comes from the fact that the manifold has the structureR23S3
(k) , as

opposed to the familiarR23S3 structure commonly associated with spherical symmetry in
dimensions. That is, the surfacesT5constant andR5constant are not necessarily 3-spheres
the topological black hole; it is possible that they have flat or hyperbolic geometry. One
confirm by direct calculation that~33! is a solution ofR̂AB50 for any value ofk, and that the
constantK that appears inh(R) is related to the mass of the central object. The Kretschm
scalar onMTBH is

RTBH5R̂ABCDR̂ABCD5
72K 2

R8 , ~34!

implying a linelike curvature singularity atR50. There is an obvious Killing vector in this
manifold, given by

jA
TBH dxA5h~R! dT. ~35!

The norm of this vector is trivially

jTBH
•jTBH5h~R!. ~36!

There is therefore a Killing horizon in this space located atkR25K.
Now, Eqs.~34! and ~36! closely match their counterparts for the LMW and FSW metri

which inspires the hypothesis that not only are the LMW and FSW isometric to one another
are also isometric to the metric describing topological black holes. However, while these c
dences provide fairly compelling circumstantial evidence that the LMW, FSW, and TBH me
are equivalent, we do not have conclusive proof—that will come in the next section.
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IV. COORDINATE TRANSFORMATIONS

In this section, our goal is to prove the conjecture that the LMW, FSW, and TBH solutions
the five-dimensional vacuum field equations are isometric to one another. We will do so by fi
two explicit coordinate transformations that convert the TBH metric to the LMW and F
metrics, respectively. This is sufficient to prove the equality of all three solutions, since it im
that one can transform from the LMW to the FSW metric—or vice versa—via a two-stage
cedure.

A. Transformation from Schwarzschild to Liu–Mashhoon–Wesson coordinates

We first search for a coordinate transformation that takes the TBH line element~33! to the
LMW line element~1!. We take this transformation to be

R5R~ t,, !, T5T~ t,, !. ~37!

Notice that we havenot assumedR5a(t,,)—as may have been expected from the discussion
the preceding section—in order to stress that we are starting with a general coordinate tr
mation. We will soon see that by demanding that this transformation forces the TBH metri
the form of the LMW metricAnsatz, we can recoverR5a(t,,) with a(t,,) given explicitly by
~4!. In other words, the coordinate transformation specified in this section will fix the functi
form of a(t,,) in a manner independent of the direct attack on the vacuum field equations
in Refs. 6 and 7.

When ~37! is substituted into~33!, we get

dsTBH
2 5Fh~R!T,t

22
R,t

2

h~R!
Gdt212Fh~R!T,tT,,2

R,tR,,

h~R! Gdt d,

1Fh~R!T,,
2 2

R,,
2

h~R!
Gd,22R 2~ t,, ! ds (k,3)

2 . ~38!

For this to match equation~1! with R(t,,) instead ofa(t,,) we must have

R,t
2

m2~ t !
5h~R!T,t

22
R,t

2

h~R!
, ~39a!

05h~R!T,tT,,2
R,tR,,

h~R!
, ~39b!

215h~R!T,,
2 2

R,,
2

h~R!
, ~39c!

with m(t) arbitrary. Under these conditions, we find

dsTBH
2 5

R ,t
2~ t,, !

m2~ t !
dt22R 2~ t,, ! ds (k,3)

2 2dy2, ~40!

which is obviously the same as the LMW metricAnsatz~1!. However, the precise functional form
of R(t,,) has yet to be specified.

To solve forR(t,,), we note Eqs.~39a! and ~39c! can be rearranged to give

T,t5e t

R,t

h~R!
A11

h~R!

m2~ t !
, ~41a!

T,,5e,

1

h~R!
AR ,,

2 2h~R!, ~41b!
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wheree t561 ande,561. Using these in~39b! yields

R,,56Ah~R!1m2~ t !. ~42!

Our task is to solve the system of PDEs formed by Eqs.~41! and ~42! for T(t,,) and R(t,,).
Once we have accomplished this, the coordinate transformation from~1! to ~33! is found.

Using the definition ofh(R), we can expand Eq.~42! to get

615
R

A~m21k!R 22K
]R
],

. ~43!

Integrating both sides with respect to, yields

A~m21k!R 22K5~m21k!~6,1g!, ~44!

whereg5g(t) is an arbitrary function of time. Solving forR gives

R25R 2~ t,, !5@m2~ t !1k#,212n~ t !,1
n2~ t !1K
m2~ t !1k

, ~45!

where we have defined

n~ t !56g~ t !@m2~ t !1k#, ~46!

which can be thought of as just another arbitrary function of time. We have hence seen th
functional form ofR(t,,) matches exactly the functional form ofa(t,,) in Eq. ~4!. This is despite
the fact that the two expressions were derived by different means:~45! from conditions placed on
a coordinate transformation, and~4! from the direct solution of the five-dimensional vacuum fie
equations.

When our solution forR(t,,) is set into Eqs.~41!, we obtain a pair of PDEs that expresses t
gradient ofT in the (t,,) plane as known functions of the coordinates. This is analogous
problem where one is presented with the components of a two-dimensional force and is as
find the associated potential. The condition for integrablity of the system is that the curl o
force vanishes, which in our case reads

05
?

e t

]

], S R,t

h~R!
A11

h~R!

m2~ t ! D 2e,

]

]t S 1

h~R!
AR,,

2 2h~R! D . ~47!

We have confirmed via computer that this condition holds whenR(t,,) is given by Eq.~45!,
provided we choosee t5e,561. Without loss of generality, we can sete t5e,51. Hence, Eqs.
~41! are indeed solvable forT(t,,) and acoordinate transformation from (33) to (1) exists.

The only thing left is the tedious task of determining the explicit form ofT(t,,). We spare the
reader the details and just quote the solution, which can be checked by explicit substitutio
~41!. For k561, we get

T~ t,, !5
1

k Et
H 1

m~u!

d

du
n~u!2F n~u!

m2~u!1kG d

du
m~u!J du1

1

k S m~ t !,2
K

2AkK ln
11X~ t,, !

12X~ t,, !D ,

~48a!

X~ t,, ![
k

AkK
@m2~ t !1k#,1n~ t !

m~ t !
. ~48b!

For k50, we obtain
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T~ t,, !5
1

K E
t
H n2~u!

m3~u!

d

du
n~u!2

n~u!@n2~u!1K#

m4~u!

d

du
m~u!J du

1
1

K H 1

3
m3~ t !,31m~ t !n~ t !,21Fn2~ t !1K

m~ t ! G,J . ~49!

Recall that in these expression,m andn can be regarded as free functions. Taken with~45!, these
equations give the transformation from TBH to LMW coordinates explicitly.

Before moving on, there is one special case that we want to highlight. This is define
kK,0, which implies that there is no Killing horizon in the bulk for real values ofR and we have
a naked singularity. If we have a spherical 3-geometry, then this is the case of a negative
black hole. We have thatAkK5 iA2kK, which allows us to rewrite Eq.~48! as

T~ t,, !5
1

k H m~ t !,1
K

A2kK arctanS k

A2kK
@m2~ t !1k#,1n~ t !

m~ t ! D J
1

1

k Et
H 1

m~u!

d

du
n~u!2F n~u!

m2~u!1kG d

du
m~u!J du. ~50!

In obtaining this, we have made use of the identity

arctanz5
1

2i
ln

11 iz

12 iz
, zPC. ~51!

To summarize this section, we have successfully found a coordinate transformation be
the TBH to LMW coordinates. This establishes that those two solutions are indeed isometri
are hence equivalent.

B. Transformation from Schwarzschild to Fukui–Seahra–Wesson coordinates

We now turn our attention to finding a transformation between the TBH and FSW
elements. The procedure is very similar to the one presented in the preceding section. We b
applying the following general coordinate transformation to the TBH solution~33!:

T5T~t,w!, R5R~t,w!. ~52!

Again, instead of identifyingR(t,w)5b(t,w) as given by~22b!, we regard it as a function to b
solved for. To match the metric resulting from this transformation with~22a! we demand

115h~R!T,t
2 2

R,t
2

h~R!
, ~53a!

05h~R!T,tT,w2
R,tR,w

h~R!
, ~53b!

2
R,w

2

z2~w!
5h~R!T,w

2 2
R,w

2

h~R!
. ~53c!

Here,z(w) is an arbitrary function. Compare this to the previous system of PDEs~39!. We have
essentially swapped and changed the signs of the left-hand sides of~39a! and ~39c!, as well as
replacedR,t with R,w andm(t) with z(w). This constitutes a sort of identity exchanget→w and
,→t. The explicit form of the TBH metric after this transformation is applied is
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dsTBH
2 5dt22R2~t,w! ds (k,3)

2 2FR,w~ t,w!

z~w! G2

dw2. ~54!

This matches the FSW metricAnsatz~22a!, but the functional form ofR(t,w) is yet to be
determined by the coordinate transformation~53!.

Let us now determine it by repeating the manipulations of the preceding section. We fin
R satisfies the PDE,

R,t56Az2~w!2h~R!, ~55!

which is solved by

R2~t,w!5@z2~w!2k#t212x~w!t1
x2~w!2K
z2~w!2k

. ~56!

Here,x is an arbitrary function. In a manner similar to before, we see that the coordinate
formation fixes the solution forR(t,w), and that it matches the solution forb(t,w) obtained
directly from the five-dimensional vacuum field equations~22b!.

The solution forT is obtained without difficultly as before. Fork561, we get

T~t,w!5
1

k Ew
H 1

z~u!

d

du
x~u!2F x~u!

z2~u!2kG d

du
z~u!J du1

1

k H z~w!t2
K

2AkK ln
11X~t,w!

12X~t,w!J ,

~57a!

X~t,w![
k

AkK
@z2~w!2k#t1x~w!

z~w!
. ~57b!

For k50, we obtain

T~t,w!5
1

K E
w
H x2~u!

z3~u!

d

du
x~u!2

x~u!@x2~u!2K#

z4~u!

d

du
z~u!J du

1
1

K H 1

3
z3~w!t31z~w!x~w!t21Fx2~w!2K

z~w! GtJ . ~58!

These transformations@Eqs.~56!–~58!# are extremely similar to the ones derived in the preced
section. Just as before, there are special issues with thekK,0 case that can be dealt with using th
identity ~51!; but we defer such a discussion as it does not add much to what we have estab

In conclusion, we have succeeded in finding a coordinate transformation from the TB
FSW metrics. Since we have already found a transformation from TBH to LMW, this allows
also conclude that a coordinate transformation between the FSW and LMW metrics exists a

C. Comment: the generalized Birkhoff theorem

Before moving on, we would like to make a comment about how the equivalence of the L
FSW, and TBH metrics relates to the issue of a generalized version of the Birkhoff theorem
the LMW and FSWAnsätzeare of the general form

ds25A2~ t,, ! dt22B2~ t,, ! ds (k,3)
2 2C2~ t,, ! d,2. ~59!

To this line element, we can apply the coordinate transformation

R5B~ t,, ! ~60!
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to obtain

ds25P2~ t,R! dt22R2 ds (k,3)
2 22N~ t,R! dt dR2Q2~ t,R! dR2. ~61!

Here,P, Q, andN are related to the original metric functionsA, B, andC, but their precise form
is irrelevant. Then, we apply the diffeomorphism

dt5M ~T,R! dT1
N~ t,R!

P2~ t,R!
dR, ~62!

whereM (T,R) is an integrating factor that should satisfy

1

M

]M

]R
5

]

]t

N

P2 , ~63!

in order to ensure that dt is a perfect differential. In these coordinates, the line element is

ds25 f ~T,R! dT22g~T,R! dR22R2 ds (k,3)
2 . ~64!

Again, f and g are determined by the original metric functions and the integrating factor.
structure is strongly reminiscent of the general spherically symmetric metric from
dimensional relativity. The only difference is that the line element on a unit 2-sphere dV2 has been
replaced by ds (k,3)

2 . In the four-dimensional case, Birkhoff’s theorem tells us that the only s
tion to the vacuum field equations with the general spherically symmetric line element i
Schwarzschild metric. The theorem has been extended to the multidimensional case by Bro
and Melnikov,16 who showed that the five-dimensional vacuum solution with line element~64! is
unique and given by the TBH metric. So, in retrospect it is perhaps apparent that the LMW,
and TBH solutions are equivalent—any five-dimensional vacuum solution that can be cast
form of ~59! must be isometric to the TBH metric. We conclude by noting that this type
argument extends to the case of five-dimensional Einstein spaces as well, because anoth
tion of Birkhoff’s theorem derived by Bronnikov and Melnikov is applicable. That is, if there
cosmological constant in the bulk—as in the popular Randall and Sundrum braneworld mod
metric solution of the form~59! will be equivalent to a deSitter or anti-deSitter TBH manifold. F
example, the ‘‘wavelike’’ solutions sourced by a cosmological constant found by Ponce de L17

should be isometric to five-dimensional Schwarzschild–AdS black holes.

V. PENROSE–CARTER DIAGRAMS OF FLRW MODELS EMBEDDED IN THE
LIU–MASHHOON–WESSON METRIC

We have now established that the LMW, FSW, and TBH solutions of the vacuum
equations are mutually isometric. This means that they each correspond to coordinate pat
the same five-dimensional manifold. Now, it is well known that the familiar Schwarzschild s
tion in four dimensions only covers a portion of what is known as the extended Schwarz
manifold.18 It stands to reason that if there is a Killing horizon in the TBH metric, then the (T,R)
coordinates will also only cover part of some extended manifoldM . This raises the question: wha
portion of the extended manifoldM is covered by the (t,,) or (t,w) coordinates? This is inter
esting because it is directly related to the issue of what portion ofM is spanned by the universe
embedded on theS, andSw hypersurfaces.

We do not propose to answer these questions for all possible situations because ther
wide variety of choices of free parameters. We will instead concentrate on one particular pro
namely, the manner in which the Liu–Mashhoon–Wesson coordinates cover the extended
fold M whenk511, K.0, and for specific choices ofm andn. The restriction to sphericalS3

submanifolds means that the maximal extension of the (T,R) coordinate patch proceeds anal
gously to the four-dimensional Kruskal construction. The calculation can be straightforw
generalized to the Fukui–Seahra–Wesson coordinates if desired.
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We first need to find the five-dimensional generalization of Kruskal–Szekeres coordinat
the k511 TBH metric. ~See Ref. 19 for background information about the four-dimensio
formalism.! Let us apply the following transformations to the metric~33!:

R* 5R1
1

2
m lnUR2m

R1mU, u5T2R* , v5T1R* , ~65!

where we have definedK[m2 such that the event horizon is atR5m. We then obtain

dsBH
2 5sgnh~R!

~R21m2!e22R/m

R2 e2u/mev/m du dv2R2 dV3
2 . ~66!

Here, we have changed the ‘‘TBH’’ label to ‘‘BH’’ to stress that we are dealing with an ordin
black hole with spherical symmetry. This metric is singularity free atR5m. The next transfor-
mation is given by

Ũ57sgnh~R! e2u/m, Ṽ56ev/m, ~67!

which puts the metric in the form

dsBH
2 5m2S 11

m2

R2 De22R/m dŨ dṼ2R2 dV3
2 . ~68!

This is very similar to the four-dimensional Kruskal–Szekeres coordinate patch on the Schw
child manifold. The aggregate coordinate transformation from (T,R) to (Ũ,Ṽ) is given by

Ũ57sgnh~R! e2T/meR/mAUR2m

R1mU, ~69a!

Ṽ56eT/meR/mAUR2m

R1mU. ~69b!

From these, it is easy to see that the horizon corresponds toŨṼ50. Now, what are we to make o
the sign ambiguity in these coordinate transformations? Recall that in four dimensions, th
tended Schwarzschild manifold involves two copies of the ordinary Schwarzschild space
interior and exterior to the horizon. It is clear that something analogous is happening her
mapping (T,R)→(Ũ,Ṽ) is double valued because the original (T,R) coordinates can correspon
to one of two different parts of the extended manifold. This is best illustrated with a Penr
Carter diagram, which is given in Fig. 1. As is the usual practice, to obtain such a diagra
‘‘compactify’’ the (Ũ,Ṽ) coordinates by introducing

U5
2

p
arctanŨ, V5

2

p
arctanṼ. ~70!

Figure 1 has all of the usual properties: null geodesics travel on 45° lines, the horizons ap
U50 or V50, the singularities show up as horizontal features at the top and bottom, and
point in the two-dimensional plot represents a 3-sphere. Also, in quadrant I theT coordinate
increases from bottom to top, while the reverse is true in quadrant II. We see that the top s
the coordinate transformation~69! maps (T,R) into regions I or III of the extended manifold
whereV.0, while the lower sign defines a mapping into II or IV whereV,0.

Having obtained the transformation to Kruskal–Szekeres coordinates, we can now p
trajectory of theS, hypersurfaces through the extended manifold by using~45! and~48! in ~69! to
find U(t,,) and V(t,,). But there is one wrinkle: we need to flip the sign of the (T,R)
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→(U,V) transformation whenever the path crosses theV50 line, which is not hard to accomplis
numerically. In Fig. 2 we present Penrose–Carter embedding diagrams ofS, andS t hypersurfaces
associated with the LMW metric for the following choices of parameters and free functions

m5 1
2, m~ t !5cott, n~ t !5

)

2
. ~71!

This gives

a~ t,, !5AS , csct1
)

2
sint D 2

1 1
4 sin2 t. ~72!

Our choices imply that it is sensible to restricttP(0,p). For ,Þ0, the cosmologies embedded o
S, do not undergo a big bang or big crunch anda→` ast→0 or p. The,50 cosmology simply
hasa(t,0)5sint. That is, we have a recollapsing model. The induced metric for that hypersu
is

ds(S0)
2 5sin2 t ~dt22dV3

2!, ~73!

that of a closed radiation-dominated universe.
In Fig. 2~a! we show theS, hypersurfaces of this model in a Penrose–Carter diagram. In

plot it is easy to visually determine where each trajectory begins whent50, but because of the
scale it is difficult to note precisely where they end up at whent5p. By careful analysis of the
numeric results, we have determined the following facts: The,50 trajectory emanates from th
middle of the singularity in the white hole region IV att50 and terminates on the future sing
larity in region III at t5p. The surfaces with,.0 begin atI 1 in I and terminate onI 2 in the
same region. The models with,,0 all begin onI 2 and terminate onI 1 in region II. We mention
in passing that this plot bears some qualitative resemblance to the figures of Mukohyamaet al.,20

who showed the equivalence of a known solution of the five-dimensional field equations w
cosmological constant and the topological Schwarzschild–AdS black hole in the context of b
world scenarios; but many details are significantly different.

One of the most striking features of this plot is the cusps present in the majority of thS,

curves. These sharp corners suggest some sort of singularity in the embedding at their locat
can search for the singularity by examining scalars formed from the extrinsic curvature of tS,

4-surfaces. Let us consider

habKab5
a,t,

a,t
13

a,,

a
. ~74!

FIG. 1. Penrose–Carter diagram of a five-dimensional black hole manifold.
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One can confirm directly that this diverges whenevera,t50 anda,t,Þ0. At such positions, we
find sharp corners in theS, hypersurfaces. This makes it clear that if we wanted to use the L
coordinates as a patch on the extended five-dimensional black hole manifold, we would h
restrictt to lie in an interval bounded by times defined by the turning points ofa. This is in total
concurrence with the analysis of singularities in the intrinsic 4-geometry performed in Sec. I
the cusps correspond to singularities in the induced metric onS, . Actually we have confirmed
that the curves with cusps generally have two curvature anomalies, but those additional fe
tend to get compressed into a region too small to resolve in Fig. 2~a!. What is also interesting
about these plots is how the LMW metric occupies a fair bit of territory inM ~some of theS,

hypersurfaces span regions I, II, and IV!. Like the Kruskal–Szekeres coordinates, the LMW pa
is regular across the horizon~s!.

The exact portion of the extended manifold spanned by our model is a little clearer in
2~b!. In this plot, we show theS t spacelike hypersurfaces—or isochrones—of the LMW met
These stretch from spacelike infinity in region II to a point onI 1 in region I. The LMW timet is

FIG. 2. ~a! S, hypersurfaces of the LMW metric for the special choices~71!. Each point in the Penrose–Carter diagra
represents a 3-sphere. We restricttP(0,p). The corresponding values of, range from;22.2 to 0.3 in equal logarithmic
intervals. Note that even though the two points markedt5p appear to be on theU50 line, they are actually located on
I 1 in region II andR50 in region III. This can be explicitly confirmed by greatly enlarging the scale of the plot.~b!
Isochrones of the LMW metric for the special choices~71!. We restrict,P(25,5). The corresponding values oft range
from 0 to;p/2 in equal logarithmic intervals. A portion of thet5p surface is also shown, which appears to be coincid
with H 1. However, in reality it is only parallel toU50, but the finite separation between the two surfaces is imposs
to discern without greatly enlarging the scale of the plot.
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seen to run from bottom to top in I andvice versain II. We also see clearly that there is a portio
of the white hole region IV that is not covered by the LMW metric withtP(0,p). The t5p line
appears to coincide withU50, but is in actuality displaced slightly to the left. Notice that the a
bounded by thet5p/2 andt5p curves is relatively small, from which it follows that the portion
of the S, surfaces withp/2&t&p tend to occupy an extremely compressed portion of
embedding diagram.

In summary, we have presented embedding diagrams for theS, andS t hypersurfaces asso
ciated with the LMW metric in the Penrose–Carter graphical representation of the exte
five-dimensional black hole manifold. This partially answers the question of which portion oM
is occupied by the LMW metric. However, the calculation was for specific choices ofm, n, andK.
We have no doubt that more general conclusions are attainable, but that is a subject for a d
venue.

VI. SUMMARY AND DISCUSSION

In this paper, we introduced two solutions of the five-dimensional vacuum field equation
Liu–Mashhoon–Wesson and Fukui–Seahra–Wesson metrics, in Secs. II A and II B, respe
We showed how both of these embed certain types of FLRW models and studied the coo
invariant properties of the associated 5-manifolds. We found that both solutions had lin
curvature singularities and Killing horizons, and that their Kretschmann scalars were vir
identical. These coincidences prompted us to suspect that the LMW and FSW metrics are a
equivalent, and that they are also isometric to the five-dimensional topological black hole m
introduced in Sec. III. This was confirmed explicitly in Sec. IV, where transformations f
Schwarzschild-type to LMW and FSW coordinates were derived. The strategy employed i
section was to transform the TBH line element into the form of the LMW and FSW m
Ansätze, which resulted in two sets of solvable PDEs. Therefore, those calculations com
independent derivations of the LMW and FSW metrics. In Sec. IV C, we showed how the
tionship between the LMW, FSW, and TBH metrics was a consequence of a generalized ver
Birkhoff’s theorem. Finally, in Sec. V we performed a Kruskal extension of the five-dimensi
black hole manifold and plotted theS, andS t hypersurfaces of the LMW metric in a Penrose
Carter diagram for certain choices ofm, n, andK.

Obviously, our main result is that the LMW and FSW metrics are nontrivial coordin
patches on five-dimensional black hole manifolds. We saw explicitly that the LMW coordin
could cover multiple quadrants of the maximally symmetric manifold, and that they were re
across the event horizon. This puts them in the same category as the Eddington–Finkelste~EF!
or Painleve´–Gullstrand~PG! coordinates associated with four-dimensional Schwarzschild b
holes,21 which are also horizon piercing patches that do not involve implicit functions, suc
R5R(U,V) in the Kruskal–Szekeres covering. The LMW coordinates differ from the EF or
patches in that they are five dimensional and orthogonal. All of these features make th
attractive tool for the study of black hole physics in five dimensions. In particular, they pro
‘‘rest-frame’’ coordinates for embedded four-dimensional universes. That is, in both the LMW
FSW coordinates, universes are defined simply as 4-surfaces comoving in, or w. And unlike
standard Schwarzschild-type coordinates, the LMW or FSW 5-metrics are regular as the un
crosses the black hole horizon~s!. Such coordinates may have some utility in the study of qu
tized braneworld models, where the bad behavior of coordinates across horizons apparently
in a complicated canonical phase-space description of the brane’s dynamics.22

Finally, we discuss the temptation to generalize these coordinates to other types of blac
and different dimensions. One could easily imagine repeating the manipulations of Sec.
different choices ofh(R), which could be selected to correspond to any spherically symm
black hole in any dimension. However, a difficulty arises when one tries to integrate equation

R,,56Ah~R!1m2~ t ! ~75!
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to obtainR5R(t,,) explicitly. It turns out that this in not necessarily easy to do ifh(R)Þk
2K/R 2. For example, ifh corresponds to anN-dimensional topological black hole@i.e., h(R)
5k2K/R N23] we obtain complicated implicit definitions ofR involving generalized hypergeo
metric functions. For evenN54, it is unclear how to invert such an equation to findR
5R(t,,) explicitly. So it seems that the five-dimensional case is somewhat special. Howeve
do not preclude the possibility that there are other special cases out there, that our procedur
be improved upon, or that one could find suitable coordinates by direct assault o
N-dimensional field equations. Such issues are best addressed by future work.
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Confined to the second derivative of the variation of a null geodesic, the proper
acceleration of the timelike curves obtained from the variation goes infinity as they
approach the null geodesic except that the variation vector is a generalized Jacobi
field on the null geodesic and the second variationb2 is constant on the null
geodesic. ©2003 American Institute of Physics.@DOI: 10.1063/1.1623931#

It is well-known that an observer in ‘‘hyperbolic’’ motion in Minkowski space–time ha
constant proper acceleration~the magnitude of the four-acceleration!. The proper acceleration o
the observers in the family approaches infinity as we consider those observers in the family
world lines approach the null curve.1 This is a well-known fact first written by Rindler in hi
book.1 The main purpose of an earlier paper2 is to generalize this result to curved space–times
a future-complete null geodesic, that is, given a null geodesicg0(l), up to the first derivative of
the variation, the variation ofg0(l) will give a smooth one-parameter family of timelike curv
whose acceleration approaches infinity as the timelike curves go to the null geodesic. The
many cases such that only the second variation is not zero~with the first variation zero!, for
example, with end points fixed, the variation of a null geodesic with a pair of conjugate
between the end points. This article mainly extends the result to similar cases and giv
condition that the acceleration of the timelike curves in the family goes to infinity as they app
the null geodesic.

We therefore suppose thatg0(l) is a null geodesic. Precisely, we have the following defi
tion of the variation ofg0(l):

Let (M ,gab) be a four-dimensional curved space–time andg0 : @0,lq#→M be a null geode-
sic, which will later be denoted byg0(l) with l its affine parameter, and withp, qPg0(l). We
define a variation ofg0 to be aC1 map3 s:(2«,«)3@0,lq#→M such that the following hold.

~1! s(0,l)5g0(l).
~2! There is a subdivision 05l1,l2,¯,ln5lq of @0,lq# such thats is C3 on each@0,«)

3@l i ,l i 11#.
~3! For each constantuP(2«,«) and uÞ0, s(u,l) is a timelike curve and is represented b

gu(l).
~4! The first derivative of the variation is zero.~Later, we will explain what is meant by the firs

derivative of the variation is zero.!

Denote by (]/]l)u
a[vu

a the tangent vector to the curvegu(l). Then (]/]l)0
a[v0

a satisfies the
null geodesic equation:

v0
b¹bv0

a50, ~1!

a!Electronic mail: tgh-2000@263.net
56810022-2488/2003/44(12)/5681/7/$20.00 © 2003 American Institute of Physics
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where¹a is the unique derivative operator associated withgab , i.e.,¹agbc50. Let (]/]u)a be the
tangent vector to the curves(u,l) with l5const, and define the variation vector fieldZa on
g0(l) by

Za5S ]

]uD aU
u50

. ~2!

Then it is not difficult to see that the Lie derivative of (]/]u)a with respect to (]/]l)a vanishes,3

i.e.,

L]/]lS ]

]uD a

50,

that is,

vu
b¹bS ]

]uD a

5S ]

]uD b

¹bvu
a . ~3!

If we denotegabvu
avu

b by 2au
2 , that is,

2au
25gabvu

avu
b , ~4!

and decompose2au
2 into Taylor series,

2au
25gabvu

avu
b52a0

21b1u1b2u21O~u3!, ~5!

where

a0
25gabv0

av0
b50. ~6!

From the requirement~4! of the variation, the first derivative of the variation is zero, that is

b15
]~2a2!

]u U
u50

50. ~7!

There are many cases withb15](2a2)/]u uu5050: ~1! the variation of a null geodesic with
end pointsp,q fixed when there is a pointr P(p,q) conjugate top along the null geodesic.~2!
When a null geodesicg0 , orthogonal to a spacelike two-surfacew, is from w to q with a point
r P(w,q) conjugate tow alongg0(l), there is a variation of the null geodesic fromw to q. These
variations belong to the case.

From Eqs.~7! and ~3!, it is easy to see

]~2au
2!

]u
5S ]

]uD c

¹c@gabvu
avu

b#52gabvu
aS ]

]uD c

¹cvu
b52gabvu

avu
c¹cS ]

]uD b

52vu
c¹cFgabvu

aS ]

]uD bG22gabS ]

]uD b

vu
c¹cvu

a

52
]

]l Fgabvu
aS ]

]uD bG22gabS ]

]uD b

vu
c¹cvu

a , ~8!

therefore, with Eq.~1!, one gets
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b15
]~2au

2!

]u
U

u50

52
]

]l
@gabv0

aZb#52
dh

dl
. ~9!

b150 induces that

h5gabv0
aZb ~10!

is constant along the null geodesicg0(l).
Therefore, one gets

2au
25gabvu

avu
b5b2u21O~u3!. ~11!

b25 1
2]

2(2au
2)/]u2 uu50 follows from Eq.~8! ~see detail in Ref. 3!:

1

2

]2~2au
2!

]u2 5
]2

]l]u Fgabvu
aS ]

]uD bG2S ]

]uD d

¹dFgabS ]

]uD b

vu
c¹cvu

aG
5

]2

]l]u Fgabvu
aS ]

]uD bG2Fgabvu
c¹cvu

aS ]

]uD d

¹dS ]

]uD bG
2F S ]

]uD aS ]

]uD d

¹d~vu
c¹cvua!G .

The term (]/]u)d¹d(vu
c¹cvua) in the third part of the above equation is simplified:

S ]

]uD d

¹d~vu
c¹cvua!5S S ]

]uD d

¹dvu
cD¹cvua1vu

cS ]

]uD d

¹d¹cvua

5S S ]

]uD d

¹dvu
cD¹cvua1vu

cS ]

]uD d

¹c¹dvua1Rdcaevu
cvu

eS ]

]uD d

5S S ]

]uD d

¹dvu
cD¹cvua1vu

c¹cF S ]

]uD d

¹dvuaG2S vu
c¹cS ]

]uD dD¹dvua

1Rdcaevu
cvu

eS ]

]uD d

5vu
d¹dS vu

c¹cS ]

]uD
a
D 1Rdcaevu

cvu
eS ]

]uD d

,

that is

S ]

]uD d

¹dÃua5S ]

]uD d

¹d~vu
c¹cvua!5vu

d¹dS vu
c¹cS ]

]uD
a
D 1Rdcaevu

cvu
eS ]

]uD d

, ~12!

where the relation¹c¹dvua2¹d¹cvua52Rdcaevu
e in the second step and Eq.~3! in the fourth step

have been used, andÃua is defined byÃua5vu
c¹cvua , and is different from the proper acceleratio

of the timelike curvegu(l) @see the following for the definition of the proper acceleration
gu(l)]. The equation~12! is very important in the later argument. Finally, one gets

1

2

]2~2au
2!

]u2 5
]2

]l]u Fgabvu
aS ]

]uD bG2Fgab~vu
c¹cvu

a!S ]

]uD d

¹dS ]

]uD bG
2F S ]

]uD a

vu
d¹dS vu

c¹cS ]

]uD
a
D 1Rdcaevu

cvu
eS ]

]uD aS ]

]uD dG , ~13!
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so

b25F1

2

]2~2au
2!

]u2 G
u50

5F ]2

]l]u S gabvu
aS ]

]uD bD G
u50

2@Zav0
d¹d~v0

c¹cZa!1Rdcaev0
cv0

eZdZa#,

~14!

where Eq.~1! has been used.
The parameterl of the timelike curve,gu(l), defined above is not, in general, the proper tim

of the curve. If one reparametrizes the curvegu(l) by its proper timet, i.e., the paramete
satisfying

gabS ]

]t D
u

aS ]

]t D
u

b

521,

then

S ]

]t D a

5S dl

dt D S ]

]l D
u

a

5S dl

dt D vu
a .

With Eq. ~4!, one has

S dl

dt D 2

5
1

au
2 . ~15!

The four-acceleration of the timelike curvegu is defined as

Aa5S ]

]t D b

¹bS ]

]t D a

5
dl

dt
vu

b¹bS dl

dt
vu

aD5S 1

au
2D Ãu

a2
1

2au
4 vu

avu
b¹bau

2 , ~16!

or one writes the above equation as

Ãu
a5au

2Aa1
1

2au
2 vu

avu
b¹bau

2 . ~17!

Select the pseudo-orthogonal basisE1
a , E2

a , E3
a , E4

a that is parallelly transported along the nu
geodesicg0(l) with

E4
a5v0

a , gabEi
aEi

b51, i 51,2; gabEi
aEi

b50, i 53,4;
~18!

gabEi
aEj

b50, i 51,2,j 53,4 gabE3
aE4

b521, gabE1
aE2

b50.

With Eq. ~10!, then it is easy to see

Za5Z1E1
a1Z2E2

a1hE3
a1Z4E4

a . ~19!

For constantl, the above basis is constant vectors, they can be equally parallelly transported
the curves(u,l), l5const, which are denoted byEi

a(u,l), i 51,2,3,4, and atu50, Ei
a(0,l)

5Ei
a . One can rewrite the vectorÃu

a as

Ãu
a5(

i 51

4

Ãu
i Ei

a~u,l!,

and
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F S ]

]uD d

¹dÃu
aG

u50

5(
i 51

4 FEi
a~u,l!S dÃu

i

du
D G

u50

5(
i 51

4

Ei
aS dÃu

i

du
D

u50

,

with Eq. ~12!, and taking the limitu→0, then

(
i 51

4

Ei
aS dÃu

i

du
D

u50

5v0
d¹d~v0

c¹cZ
a!1gabRdcbev0

cv0
eZd. ~20!

Denote byC̄a the termv0
d¹d(v0

c¹cZ
a)1gabRdcbev0

cv0
eZd, which is C̄a5( i 51

4 C̄iEi
a . Using Eqs.

~10! and~19!, and the the antisymmetry property of the Riemann tensorRabcd, that is, the second
term on the left side of Eq.~20! is contracted to zero by the vectorv0a , it is not difficult to see that
Eq. ~20! implies (dÃu

3/du)u505C̄350, that is,

F S ]

]uD d

¹dÃu
aG

u50

5S dÃu
1

du
D

u50

E1
a1S dÃu

2

du
D

u50

E2
a1S dÃu

4

du
D

u50

E4
a ~21!

5C̄1E1
a1C̄2E2

a1C̄4E4
a . ~22!

The detailed form of (dÃu
i /du)u505C̄i , i 51,2,4, is determined by Eq.~20!.

First one assumesC̄1C̄11C̄2C̄2.0, which means

Ãu
15uC̄110~u2!, Ãu

25uC̄210~u2!, Ãu
45uC̄41O~u2!, ~23!

gabÃu
aÃu

b5u2~C̄1C̄11C̄2C̄2!10~u3!, C̄1C̄11C̄2C̄2.0. ~24!

Now, by Eqs.~17! and ~11!, calculate

gabÃu
aÃu

b5au
4AaAa2

1

4
au

2F 1

au
2

]au
2

]l G2

~25!

5b2
2AaAau41

1

8b2
Fdb2

dl G2

u21O~u3!. ~26!

From Eq.~11!, one getsb2,0. UnlessA25AaAa approaches infinity, the equations~24! and~26!

are not compatible. Therefore, one gets that under the conditionC̄1C̄11C̄2C̄2.0, the magnitude
of the proper acceleration of the timelike curves in the family goes to infinity asu→0.

Second, one supposes thatC̄1C̄11C̄2C̄250 and C̄4Þ0 is retained generally on the rang
@0,l#. The assumption induces

Ãu
150~u2!,

Ãu
250~u2!,

~27!

Ãu
45uC̄410~u2!,

gabÃu
aÃu

b5010~u4!.

Equation~27! means vectorÃu
a is null up tou3. By Eq. ~26!, there are only two possibilities: on

is
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db2

dl
Þ0, ~28!

the other is

db2

dl
50. ~29!

When the first possibility~28! is selected, it is easy to see

lim
u→0

A→`; ~30!

while the second possibility~29! is satisfied, Eq.~30! may not be met.
Third, one supposes thatC̄15C̄25C̄450 is retained on the range@0,l#, which means the

variation vector fieldZa is a Jacobi field on the null geodesicg0(l). The equation~27! is satisfied;
the result is the same as in the caseC̄15C̄250 andC̄4Þ0.

In the second and the third cases, the variation vectorZa is really the generalized or stric
Jacobi field on the null geodesicg0(l). According to Ref. 3, the generalized Jacobi fieldJa on the
null geodesicg0(l) satisfies

d2Ji

dl2 1R4 j 4
i Jj50, i 51,2; ~31!

where the pseudo-orthogonal basis~18! has been used to write the above equation. The equa
~31! only concerns the spacelike components of the vectorJa, and is used to define the conjuga
points on the null geodesic.3 The strict Jacobi field on the null geodesicg0(l) is defined as3,4

v0
d¹d~v0

c¹cZ
a!1gabRdcbev0

cv0
eZd50. ~32!

In conclusion, when the variation vector fieldZa is not the generalized Jacobi field on the n
geodesicg0 , the timelike curvesgu(l), which come from the variation, have acceleration a
proaching infinity asu→0. When the variation vector fieldZa is the generalized Jacobi field o
the null geodesicg0 , there are two possibilities: one isdb2 /dl Þ0, which again induces the
infinity of the acceleration of the timelike curvesgu(l) asu→0; the other isdb2 /dl 50, only
this case makes the acceleration of the timelike curvesgu(l) finite possibly asu→0.5

The following are two applications of the above results:

~1! The null geodesicg0(l) with a point r in (p,q) conjugate top alongg0(l). The variation
s(u,l) of g0(l) satisfies the following conditions:s(u,0)5p and s(u,lq)5q, which
means the end-points of the variation are fixed, that is,gu(l), uÞ0 is a timelike curve from
p to q. The first variation is zero.3 In this case, becauseC̄15C̄250 in the range@0,l# means
that the end-pointq is conjugate to the end-pointp, which induces that the curvesgu(l),
uÞ0 are null geodesics and contradict the assumption of their being timelike. So,C̄15C̄2

50 in the range@0,l# can not be retained. The only selection isC̄1C̄11C̄2C̄2.0, therefore
the acceleration of the curvesgu(l), uÞ0, approaches infinity asu→0.

In Ref. 3, it is shown in detail that the timelike curvesgu(l), uÞ0, satisfy the requiremen
2au

25gabvu
avu

b,0 at every point ongu(l), uÞ0, in the rangelP@0,lq#. In the example of
Ref. 3 the variation vectorZa is not the generalized Jacobi field on the null geodesicg0 , that
is, using the above language,C̄1C̄11C̄2C̄2.0, so, the acceleration of the time-like curves
the example in the reference3 goes to infinity asu→0.

~2! When the null geodesicg0 , orthogonal to a spacelike two-surfacew, is from w to q with a
point r P(w,q) conjugate tow alongg0(l), there will be a variation ofg0(l) which will give
a timelike curve fromw to q. The first variation is also zero.3 Similarly, if the variation field
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Za is not the generalized Jacobi field, then the acceleration of the curvesgu(l), uÞ0, ap-
proaches infinity asu→0; on the contrary, whenZa is the generalized Jacobi field, th
variation may be the variation of the geodesicsgu(l),6 which means the curvesgu(l), u
Þ0, must be timelike geodesics whose acceleration is zero.

We reinforce the main points again. Under the second derivative of the variation of a
geodesic, there are two results concerning the proper acceleration of the timelike curves o
from the second variation of the null geodesic:

~1! When the variation fieldZa is not the generalized Jacobi field on the null geodesic, the pr
acceleration of the observers in the family approaches infinity as we consider whose
lines approach the null geodesic.

~2! When the variation fieldZa is the generalized Jacobi field on the null geodesic, their pro
acceleration approaches infinity as their world lines approach the null geodesic und
condition of the second derivative variationb2Þconst in the range@0,lq#; otherwise, their
proper acceleration may be finite as their world lines approach the null geodesic.
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Hamiltonian equations in R3

Ahmet Ay, Metin Gürses, and Kostyantyn Zheltukhina)

Department of Mathematics, Faculty of Sciences, Bilkent University,
06800 Ankara, Turkey
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The Hamiltonian formulation ofN53 systems is considered in general. The most
general solution of the Jacobi equation inR3 is proposed. The form of the solution
is shown to be valid also in the neighborhood of some irregular points. Compatible
Poisson structures and corresponding bi-Hamiltonian systems are also discussed.
Hamiltonian structures, the classification of irregular points and the corresponding
reduced first order differential equations of several examples are given. ©2003
American Institute of Physics.@DOI: 10.1063/1.1619204#

I. INTRODUCTION

The Hamiltonian formulation of a system of dynamical equations is important not on
mathematics but also in physics and other branches of natural sciences. They in general d
conserved systems. Among all possible odd dimensional cases, the three dimensional dy
systems have a unique position. The Jacobi equation in this case reduces to a single
equation for three components of the Poisson structureJ. Due to this propertyN53 dynamical
systems attracted much research to derive new Hamiltonian systems.6–12 More recently1,2 a large
class of solutions of the Jacobi equation inR3 was given. Poisson structures, in all dimensio
were also considered in Ref. 3. In this work, we consider a general solution of the Jacobi eq
in R3. We find the compatible Poisson structures and give the corresponding bi-Hamilt
systems. We give all explicit examples in a special section and Table I at the end.

Let us give necessary information about the Poisson structures inR3. A matrix J
5(Ji j ), i , j 51,2,3, defines a Poisson structure inR3 if it is skew-symmetric,Ji j 52Jji , and its
entries satisfy the Jacobi equation

Jli ] l Jjk1Jl j ] l Jki1Jlk] l Ji j 50, ~1!

where i , j ,k51,2,3. Here we use the summation convention, meaning that repeated indic
summed up. Let us introduce the following notations. For matrixJ put J125u, J315v, J235w.
Then the Jacobi equation~1! takes the form

u]1v2v]1u1w]2u2u]2w1v]3w2w]3v50. ~2!

It can also be rewritten as

u2]1

v
u

1w2]2

u

w
1v2]3

w

v
50. ~3!

@We assume that none of the functionsu, v andw vanish. If any one of these functions vanish
then Eq.~2! becomes trivial for the remaining two variables; see Remark 1.#

We consider the general solution of the Jacobi equation~3! and show that it has the following
form:

Ji j 5me i jk]kC, ~4!

a!Electronic mail: zhelt@fen.bilkent.edu.tr
56880022-2488/2003/44(12)/5688/18/$20.00 © 2003 American Institute of Physics
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wherem andC are arbitrary differentiable functions ofxi , i 51,2,3 ande i jk is the Levi–Civita
symbol. We also consider special solutions given by

u]1v2v]1u50, w]2u2u]2w50, which implies v]3w2w]3v50. ~5!

Such Poisson structures appear in many examples. We show that this special class of s
belongs to the general form~4!. We introduce these special solutions to study the irregular po
of the Poisson structures. All the irregular points of the Poisson structure matrixJ given in the
examples,1 we know so far, come from this special form. Hence they are also irregular poin
the form ~4! we give.

II. THE GENERAL SOLUTION

Assuming thatuÞ0, let r5 v/u andx5 w/u; then Eq.~2! can be written as

]1r2]2x1r]3x2x]3r50. ~6!

This equation can be put in a more suitable form by writing it as

~]12x]3!r2~]22r]3!x50. ~7!

Introducing differential operatorsD1 andD2 defined by

D15]12x]3 , D25]22r]3 , ~8!

one can write Eq.~7! as

D1r2D2x50. ~9!

Lemma 1: Let Eq. (9) be satisfied. Then there are new coordinates x1̄ ,x̄2 ,x̄3 such that

D15] x̄1
and D25] x̄2

. ~10!

Proof: If Eq. ~9! is satisfied, it is easy to show that the operatorsD1 andD2 commute, i.e.,

D1+D22D2+D150.

Hence, by the Frobenius theorem~see Ref. 4, p. 40! there exist coordinatesx̄1 ,x̄2 ,x̄3 such that the
equalities~10! hold. h

The coordinatesx̄1 ,x̄2 ,x̄3 are described by the following lemma.
Lemma 2: Letz be a common invariant function of D1 and D2 , i.e.,

D1z5D2z50, ~11!

then the coordinates x1̄ ,x̄2 ,x̄3 of Lemma 1 are given by

x̄15x1 , x̄25x2 , x̄35z. ~12!

Moreover from (11) we get

x5
]1z

]3z
, r5

]2z

]3z
. ~13!

Theorem 1: All Poisson structures inR3, except at some irregular points, take the form (4
i.e., Ji j 5m e i jk ]k z. Here m and z are some differentiable functions inR3

Proof: Using ~13!, the entries of matrixJ, in the coordinatesx̄1 ,x̄2 ,x̄3 , can be written as
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u5m]3z,

v5m]2z, ~14!

w5m]1z.

Thus matrixJ has the form~4! (C5z). h

Remark 1:So far we assumed thatuÞ0. If u50 then the Jacobi equation becomes qu
simpler,v]3 w2w]3 v50, which has the simple solutionw5v j(x1 ,x2), wherej is an arbitrary
differentiable ofx1 and x2 . This class is also covered by the general solution~4! by letting C
independent ofx3 .

A well known example of a dynamical system with a Poisson structure of the form~4! is the
Euler equations.

Example 1:Consider the Euler equations~Ref. 4, pp. 397–398!,

ẋ15
I 22I 3

I 2I 3
x2x3 ,

ẋ25
I 32I 1

I 3I 1
x3x1 , ~15!

ẋ35
I 12I 2

I 1I 2
x1x2 ,

where I 1 ,I 2 ,I 3PR are some~nonvanishing! real constants. This system admits a Hamilton
representation of the form~4!. The matrixJ can be defined in terms of functionC52 1

2(x1
21x2

2

1x3
2) andm51, so

u52x3 ,

v52x2 , ~16!

w52x1 ,

andH5 x1
2/2I 1 1 x2

2/2I 2 1 x3
2/2I 3 .

Recently, a large set of solutions of the Jacobi equation~3! satisfying~5! was given in Ref. 1.
For all such solutions the Darboux transformation and Casimir functionals were obtained; se
1.

Definition 1: For every domainVPR3 let Ia(V) be the set of all solutions of (5) defined inV
with u(x), v(x), and w(x) being C1(V).

Following Ref. 1 we have as follows.
Proposition 1: Leth(x1 ,x2 ,x3),c i(xi),f i(xi), i 51,2,3,be arbitrary differentiable functions

defined inV. Then the functions

u~x!5h~x1 ,x2 ,x3!c1~x1!c2~x2!f3~x3!,

v~x!5h~x1 ,x2 ,x3!c1~x1!f2~x2!c3~x3!, ~17!

w~x!5h~x1 ,x2 ,x3!f1~x1!c2~x2!c3~x3!,

define a solution of Eq. (5) belonging toIa(V).
Definition 2: For every domainVPR3, let Ib(V) be the set of all solutions of (5) defined

V where one of the functions u(x), v(x), and w(x) is zero and the others are not identically ze
in V.
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Following Ref. 1 we have Proposition 2.
Proposition 2: Leth(x1 ,x2 ,x3),j i(xi), i 51,2,3,be arbitrary differentiable functions define

in V. Then the functions

u~x!50, v~x!5h~x1 ,x2 ,x3!j2~x2!, w~x!5h~x1 ,x2 ,x3!j1~x1! ~18!

define a solution of Eq. (1) belonging toIb(V), u50. Similar solutions can be given in the cas
v50 and the case w50.

Remark 2:All of the Poisson structures described in Ref. 1 have the form~4!. For the Poisson
structure J, given by ~17!, assumec1 , c2 , and c3 to be nonvanishing and definem
5h(x1 ,x2 ,x3)c1(x1)c2(x2)c3(x3) and

C5Ex1 f1

c1
dx11Ex2 f2

c2
dx21Ex3 f3

c3
dx3 ;

thenJ has form~4!. For the Poisson structureJ, given by ~18!, definem5h(x1 ,x2 ,x3) andC
5*x1j1(x1)1*x3j2(x2); thenJ has form~4!.

Let us give two examples of systems that admit a Hamiltonian representation described
Proposition 1 and Proposition 2.

Example 2:Consider the Lotka–Voltera system,8,9

ẋ152abcx1x32bcm0x11cx1x21cnx1 ,

ẋ252a2bcx2x32abcm0x21x1x2 , ~19!

ẋ352abcx2x32abcn0x31bx1x3 ,

wherea,b,c,m0 ,n0PR are constants.
The matrixJ is given by

u5cx1x2 ,

v52bcx1x3 , ~20!

w52x2x3 ,

andH5abx11x22ax31n0 ln x22m0 ln x3.
Example 3:Consider the Lorenz system8

ẋ15
1

2
x2 ,

ẋ252x1x3 , ~21!

ẋ35x1x2 .

The matrixJ is given by

u5 1
4 ,

v50, ~22!

w52 1
2 x1 ,
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andH5x2
21x3

2. Many other examples are given in Sec. III.
In the derivation of the general solution, Theorem 1, we assumed that one of the comp

of matrix J is different from zero. In addition our derivation is valid only in a neighborhood o
regular point ofJ ~matrix JÞ0 at this point!. If pPR3 is an irregular point whereu(p)5v(p)
5w(p)50 it is not clear whether our solution is valid in a neighborhood of such a point. Her
shall show that the Poisson structures given by~4! preserve their form in the neighborhood of th
following irregular points.

Lemma 3: The solution of the equation (1) defined in Proposition 1 and Proposition 2
written in the form (4) preserve their form in the neighborhood of the irregular points, lines
planes inR3 defined below

(a) Irregular points. Let p5(p1 ,p2 ,p3) be such thatf1(p1)5f2(p2)5f3(p3)50 and
c i(pi)Þ0, i 51,2,3; then p is an irregular point where the general form (4) is preserve.

(b) Irregular lines or irregular planes. Let p5(p1 ,p2 ,p3)PR3 be such thath(p1 ,x2 ,x3)50
@h(x1 ,p2 ,x3)50 or h(x1 ,x2 ,p3)50] and c i(pi)Þ0, i 51,2,3; then x15p1 (x25p2 or
x35p3) is an irregular plane, where the general form (4) is preserved. Let x15p1 , x2

5p2 be such thath(p1 ,p2 ,x3)50 @h(p1 ,x2 ,p3)50 or h(x1 ,p2 ,p3)50] and c i(pi)Þ0,
i 51,2,3 then x15p1 , x25p2 (x15p1 ,x35p3 or x25p2 ,x35p3) is an irregular line, where
the general form (4) is preserved.

Proof: The solution given in Proposition 1 and Proposition 2 solves the following equa
~without any division!:

u]1v2v]1u50,

2u]2w1w]2u50, ~23!

v]3w2w]3v50.

The general form~4!, given in Remark 2, is also preserved at such points since we can d
m5h(x1 ,x2 ,x3)c1(x1)c2(x2)c3(x3) and

C5Ex1 f1

c1
dx11Ex2 f2

c2
dx21Ex3 f3

c3
dx3 ,

or if one of the components ofJ is zero, assumeu50, we definem5h(x1 ,x2 ,x3) and C
5*x1j1(x1)1*x3j2(x2). h

Example 4:For the Euler system considered in Example 1 the Poisson structure, give
~16!, has irregular pointp5(0,0,0). The irregular pointp5(0,0,0) satisfies the conditions o
Lemma 3, the functionsC52 1

2(x1
21x2

21x3
2), m51 in terms of which the Poisson structure

given, are well defined in a neighborhood ofp5(0,0,0).

III. BI-HAMILTONIAN SYSTEM

In general the Darboux theorem states that~see Ref. 4!, locally, all Poisson structures can b
reduced to the standard one~a Poisson structure with constant entries!. The above theorem
Theorem 1, resembles the Darboux theorem forN53. All Poisson structures, at least locally, ca
be cast into the form~4!. This result is important because the Darboux theorem is not suitabl
obtaining multi-Hamiltonian systems inR3, but we will show that our theorem is effective for th
purpose. Writing the Poisson structure in the form~4! allows us to construct bi-Hamiltonian
representations of a given Hamiltonian system.

Definition 3: Two Hamiltonian matrices J and J˜ are compatible, if the sum J1 J̃ defines also
a Poisson structure.

The compatible Poisson structures can be used to construct bi-Hamiltonian equations.
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Definition 4: A Hamiltonian equation is said to be bi-Hamiltonian if it admits two Ham
tonian representations with compatible Poisson structures,

dx

dt
5J¹H5 J̃¹H̃, ~24!

where J and J˜ are compatible.
Lemma 4: Let Poisson structures J and J˜ have the form (4), so Ji j 5me i jk]kC and J̃i j

5m̃e i jk]kC̃. Then J and J˜ are compatible if and only if there exists a differentiable functi

F(C,C̃) such that

m̃5m
]C̃F

]CF
, ~25!

provided that]C F[ ]F/]C Þ0 and ]C̃ F[ ]F/]C̃ Þ0.
This suggests that all Poisson structures inR3 have compatible pairs, because the condit

~25! is not so restrictive on the Poisson matricesJ andJ̃. Such compatible Poisson structures c
be used to construct bi-Hamiltonian systems.

Lemma 5: Let J be given by (4) and H(x1 ,x2 ,x3) is any differentiable function; then th
Hamiltonian equation,

dx

dt
5J¹H52m ¹C3¹H, ~26!

is bi-Hamiltonian with the second structure given by J˜ with entries

ũ~x!5m̃ ]3g„C~x1x2x3!,H~x1 ,x2 ,x3!…,

ṽ~x!52m̃ ]2g„C~x1x2x3!,H~x1 ,x2 ,x3!…, ~27!

w̃~x!5m̃ ]1g„C~x1x2x3!,H~x1 ,x2 ,x3!…,

and H̃5h„C(x1x2x3),H(x1 ,x2 ,x3)…, C̃5g„C(x1 ,x2 ,x3),H(x1 ,x2 ,x3)…, m̃5m (]C̃F/]CF).

Provided that there exist differentiable functionsF(C,C̃), h(C,H), and g(C,H) satisfying the
following equation:

]g

]C

]h

]H
2

]g

]H

]h

]C
5

F1~C,g!

F2~C,g!
, ~28!

whereF15]CFu(C,g) , F25]C̃Fu(C,g) .
Proof: By Lemma 4,J and J̃ are compatible and it can be shown by a straightforw

calculation that the equality~being a bi-Hamiltonian system!,

J̃¹H̃5J¹H, ~29!

or

m̃ ¹ C̃Ã¹H̃5m ¹ CÃ¹ H ~30!

is guaranteed by~28!. Hence the system

dx1

dt
5m]3C]2H2]2C]3H,
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dx2

dt
52m]3C]1H1]1C]3H,

dx3

dt
5m]2C]1H2]1C]2H, ~31!

is bi-Hamiltonian. h

Remark 3:The Hamiltonian functionH is a conserved quantity of the system. It is clear fro
the expression~31! that the functionC is another conserved quantity of the system. Hence fo
given Hamiltonian system there is a duality betweenH and C. Such a duality arises naturall

because a simple solution of the equation~28! is C̃5H, H̃5C and m̃52m. Thus we have a
hierarchy of Hamiltonians that start with a Casimir of the second structure and terminates
Casimir of the first structure. Such systems are equivalent to the quasi-bi-Hamiltonian syste
lower dimension with nondegenerate Poisson structures~see Ref. 5, pp. 185–220!.

Remark 4:Using Lemma 5 we can construct infinitely many compatible Hamiltonian re
sentations by choosing functionsF, g, h satisfying~28!. If we fix functionsF and g, then Eq.
~28! became linear first order partial differential equations forh. For instance, takingg5CH and
m̃52m, which fixesF, we obtainh5 ln H. Thus we a obtain second Hamiltonian representa

with J̃ given byC̃5CH and H̃5 ln H.

IV. EXAMPLES

Let us give examples of Hamiltonian systems. For each Hamiltonian system we giv
HamiltonianH and functionsC andm in terms of which the corresponding Poisson structure m
be written, using~4!. FunctionsH andC are first integrals of the system so one can use them
reduce the system to a first order ordinary differential equation. We give the reduced equat
the examples. We also give irregular points for the Poisson structures. For all examples
Example 7 the form of the Poisson structure~4! is preserved in a neighborhood of irregular poin
~function C andm are well defined!. For Example 7 the form of the Poisson structure~4! is not
preserved; the functionC is not defined in a neighborhood of irregular points but the Hamilton
function is also not defined at the irregular points. Hence this system does not have a Hami
formulation in the neighborhood of such points. Examples 6–12 satisfy the special case gi
Proposition 1 and Proposition 2. Please see Ref. 1 for the examples and related reference

Example 6:For the Euler system considered in Example 1 we gave a Poisson structu
terms of functionsC,m and the Hamiltonian. The reduced equations are

x15S C11
I 1~ I 32I 2!

I 3~ I 22I 1!
x3

2D 1/2

,

x25S C21
I 2~ I 32I 1!

I 3~ I 12I 2!
x3

2D 1/2

, ~32!

ẋ35S C11
I 1~ I 32I 2!

I 3~ I 22I 1!
x3

2D 1/2S C21
I 2~ I 32I 1!

I 3~ I 12I 2!
x3

2D 1/2

.

The Poisson structure is given by~16!. It has an irregular pointp5(0,0,0) ~the origin!.
Example 7:The Lotka–Voltera system considered in Example 2 has the matrixJ given by

C52 ln x12b ln x21c ln x3, m5x1x2x3 and the Hamiltonian H5abx11x22ax31n0 ln x2

2m0 ln x3.
The reduced equations can be obtained using equalities

2 ln x12b ln x21c ln x35C1 ,
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abx11x22ax31n0 ln x22m0 ln x35C2 . ~33!

The Poisson structure is given by~20!. It has irregular lines given byxi50 and xj50, i , j
51,2,3, j Þ i ~coordinate lines!. BothC andH are not defined at these points. So, the system d
not have a Hamiltonian formulation at these points.

Example 8:The Lorentz system considered in Example 3 has the matrixJ given by C
5 1

4(x32x1
2), m51 and the HamiltonianH5x1

21x3
2.

The reduced equations are

x15~C12x3!1/2,

x25~C22x3
2!1/2, ~34!

ẋ35~C12x3!1/2~C22x3
2!1/2.

The Poisson structure is given by~22!. It has no irregular points.
Example 9:Consider Kermac–Mackendric system,8,10

ẋ152rx1x2 ,

ẋ25rx1x22ax2 , ~35!

ẋ35ax2 ,

wherer ,aPR are constants.
The matrix J is given by C5x11x21x3 , m5x1x2 and the Hamiltonian isH5rx3

1a ln x1.
The reduced equations are

x25C11
a

r
ln x12x1 ,

x35C22
a

r
ln x1 , ~36!

ẋ152rx1S C11
a

r
ln x12x1D .

The Poisson structure is given by

u5x1x2 ,

v5x1x2 , ~37!

w5x1x2 .

It has irregular planesx150 andx250 ~coordinate planes!.
Example 10:Consider the May–Leonard system,8

ẋ152x2
2ax3

2a ,

ẋ252x1
2ax3

2a , ~38!

ẋ352x1
2ax2

2a .
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The matrix J is given by C5 @1/(12a)2# (x2
12a2x1

12a), m51 and the Hamiltonian isH
5x1

12a2x3
12a , a,0.

The reduced equations are

x25~C11x1
12a!1/~12a!,

x35~C21x1
12a!1/~12a!, ~39!

ẋ152~C11x1
12a!a/~12a!~C21x1

12a!a/~12a!.

The Poisson structureJ is given by

u50,

v5
x2

2a

a21
, ~40!

w5
x1

2a

a21
.

It has an irregular linex150, x250 ~coordinate line!.
Example 11:Consider the Maxvel–Bloch system,8

ẋ15x2 ,

ẋ25x1x3 , ~41!

ẋ352x1x2 .

The matrixJ is given byC52 (1/2y) (x2
21x3

2), m51 and the Hamiltonian isH5 1
2a(x2

21x3
2)

2 (1/y) (x31x1
2), yÞ0.

The reduced equations are

x15S C11
av
2

C22x3D 1/2

,

x25~C22x3
2!1/2, ~42!

ẋ352S C11
av
2

C22x3D 1/2

~C22x3
2!1/2.

The Poisson structure is given by

u5
21

y
x3 ,

v5
21

y
x2 , ~43!

w50.

It has an irregular linex250, x350 ~coordinate line!.
Example 12:Consider systems that are obtained from the Lorenz system,13
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ẋ5s~x2y!,

ẏ52y1rx2xz, ~44!

ż52bz1xy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the follow

~i! Lorentz„1… system:

ẋ15sx2e
(s21)t,

ẋ25x1e
(12s)t~r2x3e

22st!, ~45!

ẋ35x1x2e
(s21)t.

The matrixJ is given byC52 (r /4s) x1
2e(12s)t2 1

4x2
2e(s21)t2 1

4x3
2e(123s)t, m51 and the

Hamiltonian isH5x1
222sx3 .

The reduced equations are
x15~C112sx3!

1/2,

x25S C22
r

s
~C112sx3!e2(12s)t2x3

2e2(122s)tD 1/2

, ~46!

ẋ35~C112sx3!
1/2S C22

r

s
~C112sx3!e2(12s)t2x3

2e2(122s)tD 1/2

e(12s)t.

The Poisson structure is given by

u5 1
2 x3e(123s)t,

v5 1
2 x2e(s21)t, ~47!

w52
r

2s
x1e

(12s)t.

It has an irregular pointx150, x250, x350 ~the origin!.
~ii ! Lorentz„3… system:

ẋ15sx2e
(s21)t,

ẋ252x1x3e
2st, ~48!

ẋ35x1x2e
2st.

The matrixJ is given byC52 1
4x1

2e2st1(s/2) x3e(s21)t, m51 and the Hamiltonian is
H5x2

21x3
2.

The reduced equations are

x15~C1e
st12sx3e

(2s21)t!1/2,

x25~C22x3
2!1/2, ~49!

ẋ35~C1e
st12sx3e

(2s21)t!1/2~C22x3
2!1/2e2st.

The Poisson structure is given by
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u5 1
2 se(s21)t,

v50, ~50!

w52 1
2 x1e2st.

It has no irregular points.
~iii ! Lorentz„5… system:

ẋ15x2,

ẋ25rx12x1x3e
2t, ~51!

ẋ35x1x2e
2t.

The matrixJ is given byC5 1
4x1

2e2t2 1
2x3 , m51 and the Hamiltonian isH52rx1

21x2
2

1x3
2.

The reduced equations are

x15~C1et12x3et!1/2,

x25~C21rC1et12rx3et2x3
2!1/2, ~52!

ẋ35~C1et12x3et!1/2~C21rC1et12rx3et2x3
2!1/2e2t.

The Poisson structure is given by

u5 1
2 ,

v50, ~53!

w52 1
2 x1e2t0.

It has no irregular points.

Example 13:Consider systems that are obtained from the Rabinovich system,14

ẋ52n1x1hy1yz,

ẏ5hx2n2y2xz, ~54!

ż52n3z1xy.

Following Ref. 12, for an appropriate subset of parameters by recalling we have the follow

~i! Rabinovich „1… system:
ẋ15hx21x2x3e

22nt,

ẋ25hx12x1x3e
22nt, ~55!

ẋ35x1x2.

The matrixJ is given byC5 1
8x1

22 1
8x2

22 1
4x3

2e22nt, m51 and the Hamiltonian isH5x1
2

1x2
224hx3 .

The reduced equations are

x15~C11x3
2e22nt12hx3!

1/2,

x25~C22x3
2e22nt12hx3!1/2, ~56!

ẋ35~C11x3
2e22nt12hx3!

1/2~C22x3
2e22nt12hx3!1/2.
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The Poisson structure is given by

u5 1
2 x3e22nt,

v5 1
4 x2 , ~57!

w52 1
4 x1.

It has an irregular pointx150, x250, x350 ~the origin!.

~ii ! Rabinovich „2… system:

ẋ15hx21x2x3e
2nt,

ẋ25hx12x1x3e
2nt, ~58!

ẋ35x1x2e
2nt.

The matrixJ is given byC5 1
8x1

2e2nt1 1
8x2

2e2nt2 1
2hx3 , m51 and the Hamiltonian isH

5x1
22x2

222x3
2.

The reduced equations are

x15~C1e
nt1C21x3

212hx3e
nt!1/2,

x25~C1ent2C22x3
212hx3ent!1/2, ~59!

ẋ35~C1e
nt1C21x3

212hx3e
nt!1/2~C1ent2C22x3

212hx3ent!1/2e2nt.

The Poisson structure is given by

u52 1
2 h,

v5 1
4 x2e2nt, ~60!

w5 1
4 x1e

2nt.

It has no irregular points.
~iii ! Rabinovich „3… system:

ẋ15x2x3e
n3t,

ẋ252x1x3e
2n3t, ~61!

ẋ35x1x2e
(n322n)t.

The matrix J is given by C5 1
4x2

2e(n322n)t1 1
4x3

2e2n3t, m51 and the Hamiltonian isH
5x1

21x2
2.

The reduced equations are

x15~C12x2
2!1/2,

x35~C2e2n3t2x3
2e22(n2n3)t!1/2, ~62!

ẋ25~C12x2
2!1/2~C2e2n3t2x3

2e22(n2n3)t!1/2e(n322n)t.

The Poisson structure is given by

u5 1
2 x3e2n3t,

v5 1
2 x2e(n322n)t, ~63!

w50.
It has an irregular linex250, x350 ~coordinate line!.
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~iv! Rabinovich „4… system:
ẋ15hx2e

n1t1x2x3e
n1t,

ẋ25hx1e
2n1t2x1x3e

2n1t, ~64!

ẋ35x1x2e
2n1t.

The matrixJ is given byC52 1
4x1

2e2nt2 1
4x2

2en1t1hx3en1t, m51 and the Hamiltonian is
H5x2

21(h2x3)2.
The reduced equations are

x15~C1e
nt2„C22~h1x3!…e(n11n)t!1/2,

x25„C22~h2x3!2
…

1/2, ~65!

ẋ35~C1e
nt2„C22~h1x3!…e(n11n)t!1/2

„C22~h2x3!2
…

1/2e2n1t.

The Poisson structure is given by

u5hen1t,

v52 1
2 x2en1t, ~66!

w52 1
2 x1e

2nt.

It has no irregular points.
~v! Rabinovich „5… system:

ẋ15hx2e
2n2t1x2x3e

2n2t,

ẋ25hx1e
n2t2x1x3e

n2t, ~67!

ẋ35x1x2e
2n2t.

The matrixJ is given byC5 1
4x1

2en2t1 1
4x2

2e2n2t2hx3en2t, m51 and the Hamiltonian is
H5x1

22(h1x3)2.
The reduced equations are

x15„C11~h1x3!2
…

1/2,

x25~C2en2t2„C11~h2x3!…e2n2t!1/2, ~68!

ẋ35„C11~h1x3!2
…

1/2~C22„C11~h2x3!…e2n2t!1/2e2n2t.

The Poisson structure is given by

u52hen2t,

v5 1
2 x2e2n2t, ~69!

w5 1
2 x1e

n2t.

It has no irregular points.
~vi! Rabinovich „6… system:

ẋ15x2x3e
(n122n3)t,

ẋ252x1x3e
2n1t, ~70!

ẋ35x1x2e
2n1t.

The matrixJ is given byC52 1
4x1

2e2n1t2 1
4x2

2e(n122n2)t, m51 and the Hamiltonian isH
5x2

21x3
2.

The reduced equations are
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x15~C1e
n1t1x2

2e2(n12n2)t!1/2,

x35~C22x2
2!1/2, ~71!

ẋ252~C1e
n1t1x2

2e2(n12n2)t!1/2~C22x2
2!1/2e2n1t.

The Poisson structure is given by
u50,

v52 1
2 x2e(n122n2)t, ~72!

w52 1
2 x1e

2n1t.

It has an irregular linex150, x250 ~coordinate line!.
~vii ! Rabinovich „7… system:

ẋ15x2x3e
2n2t,

ẋ252x1x3e
(n222n3)t, ~73!

ẋ35x1x2e
2n2t.

The matrixJ is given byC5 1
4x1

2e(n222n3)t1 1
4x2

2e2n2t, m51 and the Hamiltonian isH
5x1

22x3
2.

The reduced equations are

x25~C1e
n2t2x1

2e2(n22n3)t!1/2,

x35~C21x1
2!1/2, ~74!

ẋ15~C1e
n2t2x1

2e2(n22n3)t!1/2~C21x1
2!1/2e2n2t.

The Poisson structure is given by
u50,

v5 1
2 x2en2t, ~75!

w5 1
2 x1e

n222n3t.

It has an irregular linex250, x350 ~coordinate line!.
Example 14:Consider systems that are obtained from the RTW system,14

ẋ5gx1dy1z22y2,

ẏ5gy2dx12xy, ~76!

ż522z~x11!,

for an appropriate subset of parameters by recalling. Following Ref 12 we have th
lowing.

~i! RTW „1… system:
ẋ15dx21x3e

22t22x2
2,

ẋ252dx112x1x2, ~77!

ẋ352x1x3,

whered is an arbitrary constant. The matrixJ is given byC5 1
2(x1

22x2
21x3e2t), m51 and

the Hamiltonian isH5x3(2x22d).
The reduced equations are
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x15SC12x3e
2t1SC21dx3

2x3
D2D1/2

,

x25
C21dx3

2x3
,

ẋ352S C12x3e2t1S C21dx3

2x3
D 2D 1/2

x3 . ~78!

The Poisson structure is given by

u5
1

2
e22t,

v5x2, ~79!

w5x1.
It has no irregular points.

~ii ! RTW „2… system:
ẋ15dx21x3e

2t22x2
2e2t,

ẋ252dx112x1x2e
2t, ~80!

ẋ352x1x3e
2t,

where d is an arbitrary constant. The matrixJ is given by C52 (d/2) (x1
21x2

2)
2x3x2e2t, m51 and the Hamiltonian isH5x1

21x2
21x3 .

The reduced equations are

x15SC22x32SC1e
t2

d

2
C21

d

2
x3D2D1/2

,

x25C1et2
d

2
C21

d

2
x3 , ~81!

ẋ35SC22x32SC1e
t2

d

2
C21

d

2
x3D2D1/2

x3e2t.

The Poisson structure is given by
u52x2e2t,

v52dx22x3e2t, ~82!

w52dx1.
It has an irregular pointx150, x250, x350 ~the origin!.

~iii ! RTW „3… system:
ẋ15~x322x2!e

2t,

ẋ252x1x2e
2t, ~83!

ẋ3522x1x3e
2t.

The matrixJ is given byC5(x1
22x2

21x3)e2t, m51 and the Hamiltonian isH5x2x3 .
The reduced equations are

x15SC1e
t2x32

C2
2

x3
2 D1/2

,

x25
C2

x3
, ~84!

ẋ3522SC1e
t2x32

C2
2

x3
2 D1/2

x3e2t.

The Poisson structure is given by
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u5e2t,

v52x2e2t, ~85!

w52x1e
2t.

It has no irregular points.
~iv! RTW „4… system:

ẋ15x3e
2(g12)t22x2

2egt,

ẋ252x1x2e
gt, ~86!

ẋ3522x1x3e
gt,

whereg is an arbitrary constant. The matrixJ is given byC5(x1
22x2

2)egt1x3e2(g12)t,
m51 and the Hamiltonian isH5x2x3 .

The reduced equations are

x15SC1e
2gt2x3e

22(g11)t1
C2

2

x3
2 D1/2

,

x25
C2

x3
, ~87!

ẋ3522SC1e
2gt2x3e

22(g11)t1
C2

2

x3
2 D1/2

x3egt.

The Poisson structure is given by
u5e2(21g)t,

v52x2e
gt, ~88!

w52x1e
gt.

It has no irregular points.
~v! RTW „5… system:

ẋ15dx21x322x2
2e22t,

ẋ252dx112x1x2e
22t, ~89!

ẋ3522x1x3e
22t,

where d is a nonvanishing constant. The matrixJ is given by C5 (de22t/2) (x1
22x2

2)
1 (d/2) x3 , m51 and the Hamiltonian isH5x1

21x2
21 (2/d) x2x3 .

The reduced equations are

x15SC1e
2t1x2

21e2t
C22C1e

2t22x2
2

d

2
x21e2t D1/2

,

x35
C22C1e2t22x2

2

d

2
x21e2t

, ~90!

ẋ252dSC1e
2t1x2

21e2t
C22C1e

2t22x2
2

d

2
x21e2t D1/2

12S C1e2t1x2
21e2t

C22C1e2t22x2
2

d

2
x21e2t D 1/2

x2e22t.
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The Poisson structure is given by

u5e2(21g)t,

v52x2egt, ~91!

w52x1egt.
It has no irregular points.

TABLE I. Examples of Hamiltonian systems given in the text. In each example we give a HamiltonianH and a Poisson
structureJ @J is given in terms ofm, C by Eq. ~4!#.

Poisson matrix Hamiltonian

System C m

Euler 2
1
2~x1

21x2
21x3

2! 1
x1

2

2I1
1

x2
2

2I2
1

x3
2

2I3

Lotka–Voltera ln
x3

cx2
bc

x1

x1x2x3 a~bx12x3!1x21ln
x2

n

x3
m

Lorenz 1
4~x32x1

2! 1 x2
21x3

2

Kermac–Mackendric x11x21x3 x1x2 a ln x11rx3

May–Leonard
1

~12a!2 ~x2
12a2x1

12a! 1 x1
12a2x3

12a

Maxvel–Bloch 2
1

2y
~x2

21x3
2! 1 1

2a~x2
21x3

2!2
1

y
~x31x1

2!

Lor.~1! 2S r

s
x1

21x2
2D e(s21)t

4
2x3

2
e(123s)t

4
1 x1

222sx3

Lor.~3! 2
1
4x1

2e2st1
s

2
x3e

(s21)t 1 x2
21x3

2

Lor.~5! 1
4x1

2e2t2
1
2x3

1 2rx1
21x2

21x3
2

Rab.~1! 1
8x1

22
1
8x2

22
1
4x3

2e22nt 1 x1
21x2

224hx3

Rab.~2! 1
8x1

2e2nt1
1
8x2

2e2nt2
1
2hx3

1 x1
22x2

222x3
2

Rab.~3! 1
4x2

2e(n322n)t1
1
4x3

2e2n3t 1 x1
21x2

2

Rab.~4! 2
1
4x1

2e2nt2
1
4x2

2en1t1hx3e
n1t 1 x2

21~h2x3!
2

Rab.~5! 1
4x1

2en2t1
1
4x2

2e2n2t2hx3e
n2t 1 x1

22~h1x3!
2

Rab.~6! 2
1
4x1

2e2n1t2
1
4x2

2e(n122n2)t 1 x2
21x3

2

Rab.~7! 1
4x1

2e(n222n3)t1
1
4x2

2e2n2t 1 x1
22x3

2

RTW.~1! 1
2~x1

22x2
21x3e

2t! 1 x3~2x22d!

RTW.~2! 2
d

2
x1

22Sd2x2
21x3x2De2t 1 x1

21x2
21x3

RTW.~3! ~x1
22x2

21x3!e
2t 1 x2x3

RTW.~4! ~x1
22x2

2!egt1x3e
2(g12)t 1 x2x3

RTW.~5!
de22t

2
~x1

22x2
2!1

d

2
x3

1 x1
21x2

21
2

d
x2x3
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V. CONCLUSION

We considered the Jacobi equation for the caseN53. We have found the most general Poiss
structureJ in the neighborhood of regular points. This form is quite suitable for the study o
multi-Hamiltonian structure of the system. We found all possible compatible Poisson stru
and corresponding bi-Hamiltonian systems. We studied our solution in the neighborhood
irregular points of the Poisson structure and showed that it keeps its form. As an application
results we gave several examples which were reported earlier8–15 as bi-Hamiltonian systems. In
these examples we give the Casimirs, components of the Poisson matrix, the reduced eq
and irregular points. Among all examples that we observed, only the Lotka–Voltera system
special position. Our solution is not valid in the neighborhood of irregular points for this sys
On the other hand the Hamiltonian function is not defined at such points as well. Henc
Lotka–Voltera equation does not have the Hamiltonian formulation in the neighborhood of
points.
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Lax pair and super-Yangian symmetry of the nonlinear
super-Schro¨ dinger equation
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We consider a version of the nonlinear Schro¨dinger equation withM bosons andN
fermions. We first solve the classical and quantum versions of this equation, using
a super-Zamolodchikov–Faddeev~ZF! algebra. Then we prove that the hierarchy
associated to this model admits a super-YangianY(gl(M uN)) symmetry. We ex-
hibit the corresponding~classical and quantum! Lax pairs. Finally, we construct
explicitly the super-Yangian generators, in terms of the canonical fields on the one
hand, and in terms of the ZF algebra generators on the other hand. The latter
construction uses the well-bred operators introduced recently. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1625078#

I. INTRODUCTION

The nonlinear Schro¨dinger ~NLS! equation is one of the most studied systems in quan
integrable systems~for a review, see, e.g., Ref. 1!, and its simplest~scalar! version played an
important role in the development of the~quantum! inverse scattering method.2 As usual in
quantum integrable systems, its integrability relies on the existence of an infinite-dimen
symmetry algebra. In integrable systems, natural candidates for such algebras are the ce
quantum groups associated to~affine! Lie algebras, or the Yangians. Indeed, it is known3 that the
quantum NLS model with spin 1/2 fermions and repulsive interaction on the line has a Ya
symmetryY(sl(2)). More generally, its vectorial version, based onN-component bosons or o
N-component fermions, was shown to possess aY(gl(N)) symmetry.4 The integrability can also
be grounded on the existence of an infinite series of mutually commuting Hamiltonians, w
thus generates a whole hierarchy of equations. In the case of scalar NLS equation, the hi
contains well-known models, such as the modified KdV equation.

It was natural to seek a supersymmetric version~including both bosons and fermions! of these
models which admits the super-Yangian based on superalgebrasgl(M uN) as symmetry algebra
Different versions of such a generalization were already proposed, from the simple boson-fe
systems related to NLS,5,6 or superfields formulation7,8 of NLS, up to more algebraic studies o
these models.9,10 The difficulty with such generalizations is to keep the fundamental notion
integrability while allowing for the existence of supersymmetry. Even when some of the sugg
supersymmetric systems were shown to pass some integrability conditions,11 the status of such
models remained not clearly established, and one is still looking for, e.g., their Lax presenta
their underlying infinite-dimensional symmetry algebra.

AnotherZ2-graded version of NLS was introduced by Kulish,12 the fields being super-matrix
valued and thus associated to both fermions and bosons. However, only the finite interv
studied, using the thermodynamical Bethe ansatz~see also Ref. 13!, and the explicit quantum
solutions are not known. The symmetry~super! algebra is also lacking in this presentation.

The aim of this article is to present a ‘‘super-vectorial’’ version~close to the matricial version
introduced by Kulish! of the NLS model on the infinite line which includesM bosonsand N

a!Electronic mail: caudreli@lapp.in2p3.fr
b!Author to whom correspondence should be addressed. Electronic mail: ragoucy@lapp.in2p3.fr
57060022-2488/2003/44(12)/5706/27/$20.00 © 2003 American Institute of Physics
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fermions fields. The advantage of this version relies on its manifest integrability and the exis
of quantum canonical solutions, which we will explicitly construct using a super-ZF algebra~Sec.
II !. Indeed, these solutions can be associated to a whole hierarchy of mutually commuting H
tonians, as it should be for an integrable model. It also admits, as we will show~Sec. III!, a Lax
presentation both at classical and quantum level~without using a superfield formalism!. As usual,
the Lax pair presentation allows us to recover the hierarchy of our super-NLS equation. F
this super-NLS hierarchy possesses a super-Yangian symmetry and we will construct it, both
the quantum canonical solutions or the super-ZF generators~Sec. IV!.

II. NONLINEAR SUPER-SCHRÖDINGER EQUATION

A. The usual nonlinear Schro ¨ dinger equation

The NLS equation reads

~ i ] t1]x
2!f i~x,t !52gf† j~x,t !f j~x,t !f i~x,t !, i 51,...,N, with g.0, ~2.1!

where summation over repeated indices is understood. It is obtained from the~time-independent!
Hamiltonian

H~f i ,f j
†!5E

2`

`

dx~]xf
† j~x!]xf j~x!1gf†i~x!f† j~x!f j~x!f i~x!! ~2.2!

using the Hamiltonian equation of motion] tF5$H,F%, valid for any functionalF(f i ,f j
†), where

the Poisson bracket~PB! is canonically associated tof andf†.
A solution à la Rosales14 can be written as follows:

f i~x,t !5 (
n50

`

~2g!nf i
~n!~x,t !, g.0, ~2.3!

with

f i
~n!~x,t !5E

R2n11
dnpdn11qlk1~p1!¯lkn~pn!lkn

~qn!¯lk1
~q1!l i~q0!

eiVn~x,t;p,q!

Qn~p,q,0!
,

Vn~x,t;p,q!5(
j 50

n

~qjx2qj
2t !2(

i 51

n

~pix2pi
2t !,

~2.4!

Qn~p,q,«!5)
i 51

n

~pi2qi 211 i«!~pi2qi1 i«!,

dnpdn11q5)
i 51
j 50

n
dpi

2p

dqj

2p
,

where we have denotedp5(p1 ,...,pn), q5(q0 ,...,qn).
The Rosales solution is fundamental since its structure is preserved upon quantization15 and

we shall see below that this result survives when one includes fermions. The NLS equation
hierarchy admit the YangianY(gl(N)) as symmetry, and the explicit construction of its generat
was given in Ref. 3@for sl(2), in terms of canonical fields# and Ref. 4@for sl(N), in terms of the
ZF generators#. A Lax pair formulation can be found in Refs. 16 and 17~for NLS equation! and in
Refs. 18 and 19~for its vectorial generalization!.
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B. Classical nonlinear super-Schro ¨ dinger equation

We consider a generalized version of the NLS equation which includes both boson
fermions. Due to the use of auxiliary spaces~see the Appendix!, the corresponding equation wi
formally look like the original one, but let us insist that the present version is a ‘‘supersymme
version of it. While the similarities allow us to build the solution of the nonlinear sup
Schrödinger equation, the differences will appear, for instance, in the nature of the sym
algebra~see below!.

We defineF(x)5( j 51
M1Nf j (x)ej , where ej is an (M1N)-column vector in the auxiliary

space and summation is understood for repeated indices. Heref j , j 51,...,M , and f j , j 5M
11,...,M1N, are the bosonic and fermionic components, respectively. By fermionic function
mean Grassmann-valued functions depending on the real variablex, the integrations throughou
the article being always in real~or complex! variables. For convenience, we setK5M1N. We
shall also need adjoints of the fields

F†~x!5f i
†~x!ei

† , xPR. ~2.5!

The Hamiltonian reads

H~F,F†!5E
2`

`

dx~]xF
†~x!]xF~x!1g~ uF~x!u2!2!, ~2.6!

or, in components,

H~F,F†!5E
2`

`

dx~]xf
† j~x!]xf j~x!1gf† j~x!f†k~x!fk~x!f j~x!!. ~2.7!

The canonical Poisson brackets for the basic fieldsF(x), F†(y) with corresponding component
f i(x), f j

†(y) take the following form:

$F1~x!,F2
†~y!%5 id12d~x2y!52$F2

†~y!,F1~x!% ~globally!, ~2.8!

$f j~x!,fk
†~y!%5 id jkd~x2y!52~21!@ j #@k#$fk

†~y!,f j~x!% ~ in components!. ~2.9!

The fieldF(x,t) of componentsf i(x,t) satisfies the following Hamiltonian equation of motio
which we call the classical nonlinear super-Schro¨dinger ~NLSS! equation:

i ] tF~x,t !52]x
2F~x,t !12guF~x,t !u2F~x,t ! ~globally!, ~2.10!

i ] tf j~x,t !52]x
2f j~x,t !12g~fk

†~x,t !fk~x,t !!f j~x,t ! ~ in components!. ~2.11!

These equations are simply derived from the Hamiltonian equations of motion] tF(x,t)
5$H,F(x,t)% and] tf i(x,t)5$H,f i(x,t)%. The equations of motion are~formally! the same as
the usual ones and the solutionà la Rosales~2.3! and ~2.4! is still valid in our case:

Theorem 2.1:The solution of the classical NLSS equation (2.11) is given by

f j~x,t !5 (
n50

`

~2g!nf j
~n!~x,t ! where ~2.12!

f j
~n!~x,t !5E

R2n11
dnpdn11q (

k1 ,...,kn51

K

lk1

† ~p1!¯lkn

† ~pn!lkn
~qn!¯lk1

~q1!l j~q0!
eiVn~x,t;p,q!

Qn~p,q,0!
,

~2.13!

using the same notations as in (2.4).
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Proof: Substituting into the NLSS equation, it amounts to the following identity being s
fied,

(
j 50

n

qj
22(

i 51

n

pi
22S (

j 50

n

qj2(
i 51

n

pi D 2

522(
c51

n21

(
a51

c

~pa112qa!~pc112qc11!,

which is readily seen to hold. j

Note that, due to theZ2-graded tensor product, the ordering of thel†’s and of thel’s,
respectively, matters.

C. Quantizing NLSS

1. Graded ZF algebra

We write a graded version of the ZF algebra,20,21using auxiliary spaces and entities containi
bosonic and fermionic components~see the Appendix!:

A~k!5ai~k!ei and A†~k!5ai
†~k!ei

† , kPR. ~2.14!

Definition 2.2: The graded ZF algebra reads

A1~k1!A2~k2!5R21~k22k1!A2~k2!A1~k1!, ~2.15!

A1
†~k1!A2

†~k2!5A2
†~k2!A1

†~k1!R21~k22k1!, ~2.16!

A1~k1!A2
†~k2!5A2

†~k2!R12~k12k2!A1~k1!1d12d~k12k2!, ~2.17!

where

R12~k!5
k1^ 12 igP12

k1 ig
~2.18!

is the R-matrix for the super-Yangian Y(gl(M uN))[Y(M uN), and P12 is the super-permutation
operator:

P125 (
i , j 51

K

~21!@ j #Ei j ^ Eji . ~2.19!

Note that for even vectorsu, v and even matricesB, C ~as defined in the Appendix!, one has
P12(u^ v)5v ^ u andP12(B^ C)P125C^ B.

The R-matrix has the following useful properties:

R21~k!5R12~k!, ~2.20!

R12~k12k2!R21~k22k1!51^ 1, ~2.21!

R12
† ~k12k2!5R21~k22k1!. ~2.22!

For quantities of definiteZ2-grade, we define their super-commutator by

vB,Cb5BC2~21!@B#@C#CB. ~2.23!

Then, after some calculations, one shows that the component version of the ZF algebra
( j ,k51,...,K)
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vaj~k1!,ak~k2!b5
2 ig

k22k11 ig
~aj~k2!ak~k1!1~21!@ j #@k#ak~k2!aj~k1!!, ~2.24!

vaj
†~k1!,ak

†~k2!b5
2 ig

k22k11 ig
~aj

†~k2!ak
†~k1!1~21!@ j #@k#ak

†~k2!aj
†~k1!!, ~2.25!

vaj~k1!,ak
†~k2!b5

2 ig

k12k21 ig S ~21!@ j #@k#ak
†~k2!aj~k1!1d jk (

,51

K

a,
†~k2!a,~k1!D 1d jkd~k12k2!.

~2.26!

Note that these relations ensure the existence of a PBW basis, generated by the monomials
a†’s on the left of thea’s, the a’s on one hand, and thea†’s on the other hand, being ordere
according to the magnitude of the ‘‘impulsions’’kj .

2. Fock representation
The previous algebra can be represented on a Fock space, which is most useful f

quantization of NLSS, and we follow the basic ideas of Ref. 15~further developed in, e.g. Refs. 2
and 23!. A detailed presentation of the graded version whenM5N51 has been given in Ref. 24
The general case follows the same lines, so that we just sketch the results, referring to Ref
more details about theZ2-graded case.

We introduceFR5 % n50
` HR

n whereHR
05C,

HR
15H w~p!5(

j 51

K

w j~p!ej s.t. w jPL2~R!, j 51,...,KJ [KL2~R!,

and forn>2

HR
n5H w1...n~p1 ,...,pn!

5 (
i 1 ,...,i n51

K

w i 1 ,...,i n
~p1 ,...,pn!~ei 1

^¯^ ei n
! s.t. w i 1 ,...,i n

PL2~Rn!,

i 1 ,...,i n51,...,K, and w1...i ,i 11...n~p1 ,...,pi ,pi 11 ,...,pn!

5Ri ,i 11~pi2pi 11!w1...i 11,i ...n~p1 ,...,pi 11 ,pi ,...,pn!.

There exists a~vacuum! vectorVPD which is cyclic with respect toA†(k) and annihilated by
A(k).

The scalar product which we define below onHR
n provides the usualL2 topology andFR is

the completed vector space overC for this topology.
The sesquilinear form̂,& defined onHR

n3HR
n , n>1, by

^w,c&5E
Rn

dnp w1...n
† ~p1 ,...,pn!c1...n~p1 ,...,pn!, ~2.27!

w1...n
† ~p1 ,...,pn!5~21!(k51

n21
~@ i 1#1¯1@ i k# !@ i k11#w̄ i 1¯ i n~ei 1

†
^ ei 2

†
^¯^ ei n

† ! ~2.28!

is a ~Hermitian! scalar product.
We introduce the finite particle spaceFR

0,FR , spanned by the sequence
(w,w1 ,...,w1¯n ,...) with w1¯nPHR

n andw1¯n50 for n large enough. As~2.27! is defined for all
n, it extends naturally toFR

0. In this context, the vacuum state isV5~1,0,...,0,...!, so that it is
normalized to 1.

We are now able to define the~smeared! creation and annihilation operatorsA(f) andA†(f) on
FR

0 through their action:A(f)V50 and forw0¯nPHR
n11,
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@A~ f!w#1¯n~p1 ,...,pn!5An11E
R
dp0 f0

†~p0!w0¯n~p0 ,p1 ,...,pn!. ~2.29!

Similarly, for w1...nPHR
n :

@A†~ f!w#0¯n~p0 ,...,pn!5
1

An11
w1¯n~p1 ,...pn! f 0~p0!1

1

An11
(
k51

n

Rk21,k~pk21

2pk!¯R0k~p02pk!w0¯k̂¯n~p0 ,...,pk̂,...,pn!fk~pk!, ~2.30!

where the hatted symbols are omitted.
It is easily checked that~2.29! and~2.30! are indeed elements ofHR

n andHR
n11, respectively.

Therefore, we have operators acting onFR
0 ~linearity in w obvious! with the additional property

that they are bounded~i.e., continuous! on each finite particle sectorHR
n . Another essential feature

is the adjointness of these operators with respect to^,&:

;wPHR
n , ;cPHR

n11, ;fPHR
1, ^w,A~ f!c&5^A†~ f!w,c&. ~2.31!

At this stage, the Fock representationsA(p), A†(p) of the generators of the ZF algebra appear
operator-valued distributions through the definition

A~ f!5E
R
dp f†~p!A~p!, A†~ f!5E

R
dp A†~p!f~p!. ~2.32!

It is readily shown from these definitions thatA(p) and A†(p) satisfy the exchange relation
~2.15!–~2.17!, thus providing the desired representation.

We now have all the ingredients to deduce results for the whole Fock spaceFR while working
on smaller and more intuitive spaces dense inFR , using the continuity of the operators. In ou
case, one has to define such a ‘‘state space’’D,FR in the sense of distributions as follows:D0

5C and

Dn5H E
Rn

dnp A1
†~p1!¯An

†~pn!Vf~p1 ,...,pn!; fPKnL2~Rn!J , n>1.

Then,D is spanned by the sequencesx5(x,x1 ,...,x1¯n ,...), wherex1¯nPDn andx1¯n50 for
n large enough. We also define

D0
05C, D0

n5$Ã1
†~ f1 ,t !¯Ãn

†~ fn ,t !V,f1s¯sfn%,HR
n , n>1, ~2.33!

where

Ã†~ f,t !5E
R
dxÃ†~x,t !f~x!,

Ã†~x,t !5E
R
dpA†~p!eiqx2 iq2t,

x,tPR, ~2.34!

and the spaceD0 is the linear span of sequencesx5(x,x1 ,...,x1¯n ,...), wherex1¯nPD0
n and

x1¯n50 for n large enough. We also introduce the following partial ordering relation:

fsg⇔; i , j 51,...,K, ;xPsupp~ f i !, ;yPsupp~gj !, x.y,

which is just the extension of the ordering of the momentaki in the definition of a state space bas
uk1 ,...,kn&. Then, one shows thatD andD0 are dense inFR .
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Summarizing, we have constructed a graded ZF algebra and its Fock representationFR and,
inspired by earlier works,15,16,25–27we shall see that this allows us to construct the quan
version of NLSS and its solution.

3. Quantization of the fields

Following Refs. 15 and 27, we simply write the quantum version off j
(n)(x,t) as

f j
~n!~x,t !5E

R2n11
dnp dn11q (

k1 ,...,kn51

K

ak1

† ~p1!¯akn

† ~pn!akn
~qn!¯ak1

~q1!aj~q0!
eiVn~x,t;p,q!

Qn~p,q,«!
~2.35!

using the same notations as in~2.4! and ani e contour prescription. The global field reads

F~x,t !5 (
n50

`

~2g!nF~n!~x,t ! with F~n!~x,t !5f j
~n!~x,t !ej . ~2.36!

From ~2.31!, we deduce

F†~x,t !5 (
n50

`

~2g!nF†~n!~x,t ! ~2.37!

with

F†~n!~x,t !5E
R2n11

dnp dn11qA†~q0!A1
†~q1!¯An

†~qn!An~pn!¯A1~p1!
e2 iVn~x,t;p,q!

Qn~p,q,2«!
.

~2.38!

Just like we dealt withA(f) andA†(f), we are naturally led to introduce

F~ f,t !5E
R
f†~x!F~x,t !, F†~ f,t !5E

R
F†~x,t !f~x!. ~2.39!

And just like we did in Ref. 24, one shows thatF(f,t) and F†(f,t) are indeed well-defined
operators on a common invariant domain which turns out to beD0 . These fields also satisfy th
following fundamental requirement.

Theorem 2.3: The quantum fieldsF(f,t), F†(g,t) satisfy the equal time canonical comm
tation relations as operators onFR

0

@F~ f,t !,F~g,t !#5@F†~ f,t !,F†~g,t !#50, ~2.40!

@F~ f,t !,F†~g,t !#5^f,g&. ~2.41!

Proof: The proof is the same as in the ordinary NLS equation, see Ref. 15 or 23 for de
j

One then deduces the equal time CCR in components for the operator-valued distrib
f j (x,t), fk

†(y,t):

vf j~x,t !,fk~y,t !b5vf j
†~x,t !,fk

†~y,t !b50, ~2.42!

vf j~x,t !,fk
†~y,t !b5d jkd~x2y!. ~2.43!

Let us remind that forj, k5M11,...K, the above CCR correspond to anticommutator, consis
with the fermionic nature of these fields.
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4. Time evolution

We first wish to emphasize that the form of the Hamiltonian~2.7! cannot be reproduced her
owing to the nature of the fields~products of distributions are not defined!. Fortunately, the power
of the ZF algebra and the quantum inverse method@leading to~2.35! and ~2.36!# rescues us by
delivering a simple, freelike Hamiltonian in terms of oscillators. Indeed, one easily checks th
Hamiltonian defined by

H5E
R
dp p2A†~p!A~p! ~2.44!

is self-adjoint, i.e.,H†5H. Moreover,

;wPD, @Hw#1¯n~p1 ,...,pn!5~p1
21¯1pn

2!w1¯n~p1 ,...,pn!, ~2.45!

which shows thatD is also an invariant domain forH and that this operator has the corre
eigenvalues. Finally,H generates the time evolution of the field:

F~ f ,t !5eiHtF~ f ,0!e2 iHt . ~2.46!

Therefore,H, so defined, is the Hamiltonian of our quantum system.
Note that~2.45! and~2.46! have to be understood as operator equalities and must be eval

on D.
The freelike expression forH in terms of creation and annihilation oscillators may be surp

ing at first glance, but it is actually a mere consequence of the rather complicated exc
relations~2.15!–~2.17!. One can say that the effect of the nonlinear term has been encoded di
in the oscillators instead of the Hamiltonian~or equivalently the Lagrangian! of the field theory,
yielding a ~possibly misleading! simple expression forH. One may finally wonder about th
coupling constant which seems to disappear. Once again, it is actually present throu
R-matrix in the exchange relations.

Besides, the quantum nonlinear super-Schro¨dinger equation holds in the following form:

;w,cPD, ~ i ] t1]x
2!^w,F~x,t !c&52g^w,:FF†F:~x,t !c&. ~2.47!

5. Correlation functions

Again following the case of NLS, one shows that forw,cPD, one has

fsg, ^w,F†~g,t !Ã†~ f,t !c&5^w,Ã†~ f,t !F†~g,t !c&, ~2.48!

for gsf i , i 51,...,n,

^w,F†~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V&5^w,Ã†~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V& ~2.49!

and for anyf1sf2s¯sfn ,

^w,F~g,t !Ã†~ f1 ,t !¯Ã†~ fn ,t !V&5(
j 51

n

^g,f j&^w,Ã†~ f 1 ,t !¯Ã†̂~ f j ,t !¯Ã†~ fn ,t !V&.

~2.50!

This proves that the correlation functions of the NLSS model are completely determined, e
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^V,F~g1 ,t !¯F~gm ,t !F†~ f1 ,t !¯F†~ fn ,t !V&5dm,n (
sPSn

)
i 51

n

^gs~ i ! ,f i&,

^w1¯p ,F~g1 ,t !¯F~gn ,t !F†~ f1 ,t !¯F†~ fm ,t !V&

5dm,n1p (
sPSn1p

S )
i 51

n

^gs~ i ! ,f i& D ^w1¯p ,gs~n11!¯gs~n1p!&.

Similar expressions can be obtained when dealing with the fieldsF(x,t) andF†(x,t).

III. LAX PAIR AND SUPER-YANGIAN SYMMETRY FOR NLSS

Let us stress once again that we aim at generalizing known results of integrability and
metry for the nonlinear Schro¨dinger equation to the case of an arbitrary number of bosonsand
fermions. This physical motivation can be carried out by using appropriately the graded form
presented in the Appendix. Furthermore, we also want to transport our results to the quantum
which leads us to adopt the convenient Hamiltonian form of our model.

A. Classical Lax pairs

We define the Lax even super-matrix ingl(M11uN)

L~l;x!5
il

2
S1V~x! with S5IK11,K1122EK11,K11 ~3.1!

and

V~x!5 iAg(
j 51

K

~f j~x!Ej ,K112f j
†~x!EK11,j !. ~3.2!

Let us stress that, as above, the elementary matricesEjk ~with 1 at positionj, k! areZ2-graded,
with @Ejk#5@ j #1@k#, @ j #5@K11#50 for 1< j <M and @ j #51 for M, j <K. With this con-
vention, thegl(M11uN) superalgebra has the unusual matrix form

S M3M M31

N3N

13M 131
D ,

where the size of the submatrices corresponding to bosonic generators have been ex
written.

Using the PB of thef’s, it is easy to compute that

$L1~l;x!,L2~m;y!%5 id~x2y!@r ~l2m!,L1~l;x!1L2~m;y!# ~3.3!

with

r ~l2m!5
g

l2m
P12, ~3.4!

where we have introduced the (K11)3(K11) super-permutation

P125 (
i , j 51

K11

~21!@ j #Ei j ^ Eji .

Definition 3.1: We define the transition matrix by
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]xT~l;x,y!5L~l;x!T~l;x,y!, x.y, ~3.5!

with the ‘‘initial condition’’ T (l;x,x)5I.
T(l;x,y) obeys the iterative equation

T~l;x,y!5E~l;x2y!1E~l;x!E
y

x

dzV~z!E~l;z!T~l;z,y!, ~3.6!

where we have introduced

E~l;x!5expS ixl

2
S D5eixl/2IK111~e2 ixl/22eixl/2!EK11,K11 . ~3.7!

Property 3.2:

$T1~l;x,y!,T2~m;x,y!%5@r ~l2m!,T~l;x,y! ^ T~m;x,y!#. ~3.8!

Proof: The equation~3.6! implies that

T~l;x,y!5 (
n50

`

T~n!~l;x,y!, ~3.9!

T~n!~l;x,y!5E
Rn

dnzu~x.z1.z2.¯.zn.y!E~l;x2z1!V~z1!

3E~l;z12z2!V~z2!¯V~zn!E~l;zn2y!. ~3.10!

It is then simple to show that

$F1~w!,T2~l;x,y!%5Agu~x.w.y!T2~l;x,w!s12
2 T2~l;w,y!, ~3.11!

$F2~w!,T1~l;x,y!%5Agu~x.w.y!T1~l;x,w!s21
2 T1~l;w,y!, ~3.12!

$F1
†~w!,T2~l;x,y!%5Agu~x.w.y!T2~l;x,w!s12

1 T2~l;w,y!, ~3.13!

$F2
†~w!,T1~l;x,y!%5Agu~x.w.y!T1~l;x,w!s21

1 T1~l;w,y!, ~3.14!

where we have defined

s12
2 5(

j 51

K

ej ^ EK11,j ; s12
1 5(

j 51

K

~21!@ j #ej
†

^ Ej ,K11 . ~3.15!

From the form~A5! one also computes

$F1~w!,T2~l;x,y!%5 i ~ej ^ I!
dT2~l;x,y!

df j
†~w!

, ~3.16!

$F2~w!,T1~l;x,y!%5 i ~I^ ej !
dT1~l;x,y!

df j
†~w!

, ~3.17!

$F1
†~w!,T2~l;x,y!%52 i ~21!@ j #~ej

†
^ I!

dT2~l;x,y!

df j~w!
, ~3.18!
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$F2
†~w!,T1~l;x,y!%52 i ~21!@ j #~I^ ej

†!
dT1~l;x,y!

df j~w!
. ~3.19!

This shows that the PB can be rewritten as

$T1~l,x,y!,T3~m,x,y!%5 i E
R
dw~$F2

†~w!,T1~l;x,y!%$F2~w!,T3~m;x,y!%

2$F2
†~w!,T3~m;x,y!%$F2~w!,T1~l;x,y!%!. ~3.20!

Inserting~3.11! and ~3.13! in this expression, one gets

$T1~l;x,y!,T2~m;x,y!%5 igE
y

x

dw T1~l;x,w!T2~m;x,w!~p122p21!T1~l;w,y!T2~m;w,y!,

where p125(
j 51

K

Ej ,K11^ EK11,j . ~3.21!

Finally, a direct calculation shows that

]

]w
~T1~l;x,w!T2~m;x,w!P12T1~m;w,y!T2~l;w,y!!

5 i
l2m

2
T1~l;x,w!T2~m;x,w!~p122p21!T1~l;w,y!T2~m;w,y!, ~3.22!

so that we get~3.8!. j

Property 3.3: The following limits are well defined:

T2~l;x!5 lim
y→2`

T~l;x,y!E~l;y!, ~3.23!

T1~l;y!5 lim
x→`

E~l;2x!T~l;x,y!, ~3.24!

T~l!5T1~l;z!T2~l;z!5 lim
x→`

y→2`

E~l;2x!T~l;x,y!E~l;y!. ~3.25!

T(l) is called the monodromy matrix.
Proof: Using the equalityE(l;x)V(z)5V(z)E(l;2x), valid for anyx, z, T(n)(l;x,y) can

be conveniently rewritten as

T~n!~l;x,y!5E~l;x!E
Rn

dnzu~x.z1.¯.zn.y!

3ES l;2(
j 51

n

~21! j zj D S )
k51

n

V~zk!DE~l;2y!, ~3.26!

which shows that the limits are well defined. j

Property 3.4:

$T1~l!,T2~m!%5r 1~l2m!T~l! ^ T~m!2T~l! ^ T~m!r 2~l2m! ~3.27!

with
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r 1~l2m!5
g

l2m
~P121EK11,K11^ EK11,K11!1 ipgd~l2m!~p122p21!, ~3.28!

r 2~l2m!5
g

l2m
~P121EK11,K11^ EK11,K11!2 ipgd~l2m!~p122p21!, ~3.29!

where P12 is the super-permutation in the space of K3K matrices.
Proof: Direct calculation, plugging~3.25! into ~3.8!, and using the Cauchy principal valu

liml→` p.v.(e6 ilx/x)56 ipd(x). j

Introducingt(l), the K3K submatrix ofT(l) with the last row and column removed, an
D(l)5TK11,K11(l), one finally computes:

$t1~l!,t2~m!%5
g

l2m
@P12,t~l! ^ t~m!#, ~3.30!

$D~l!,t~m!%50, ~3.31!

$D~l!,D~m!%50. ~3.32!

Equation~3.30! shows thatt(l) defines a classical version of the super-YangianY(gl(M uN)).
Equation~3.32! shows thatD(l) can be taken as a generating function for a hierarchy, and~3.31!
proves that the super-Yangian is a symmetry of this hierarchy. It remains to identify this hiera

Lemma 3.5: Only T(2n)(l), nPZ1 , contribute to the super-Yangian generators t(l) and to
the Hamiltonian generating function D(l).

Expanding t(l) andD(l) as series inl21, one has T(2n)(l)5o(l2n).
Proof: It is clear thatT(n)(l) contains the product of exactlyn matricesV, the other matrices

entering in its definition being diagonal. Due to the form ofV, only products of an even numbe
of such matrices will contribute tot(l) andD(l).

To show thel dependence, we consider the integration onz2 j and z2 j 11 , and perform an
integration by part, assuming that the fieldsF andF† are vanishing at infinity:

E
2`

z2 j 21
dz2 jE

2`

z2 j
dz2 j 11 E~l;2z2 j22z2 j 11!V~z2 j !V~z2 j 11!I j ,n~z2 j 11 ,...,z2n!

5
i

l
SE

2`

z2 j 21
dz2 jFV~z2i !

2I j ,n~z2 j 11 ,...,z2n!2E
2`

z2 j
dz2 j 11 E~l;2z2 j22z2 j 11!

3V~z2 j !]2 j 11~V~z2 j 11!I j ,n~z2 j 11 ,z2 j 12 ,...,z2n!!G .
Above,]k stands for]/]zk , andI j ,n(z2 j 11 ,z2 j 12 ,...,z2n) denotes the other integrals~depending
on zk , k>2 j ) which enters into the definition ofT(n)(l).

It is clear that one can do this integration for allz2 j , j 51,...,n, and any number of times, s
that the lowest power ofl21 is n. j

Property 3.6: The first Hamiltonians generated by D(l) read

D ~1!5 igN with N5E
2`

`

dx F†~x!F~x!, ~3.33!

D ~2!52
1

2
g2N21gP with P5E

2`

`

dx F†~x!]F~x!, ~3.34!
                                                                                                                



that

two

e

5718 J. Math. Phys., Vol. 44, No. 12, December 2003 V. Caudrelier and E. Ragoucy

                    
D ~3!52
ig3

6
N31 ig2NP1 igH, ~3.35!

H5E
2`

`

dx ]F†~x!]F~x!1gE
2`

`

dx~F†~x!F~x!!2. ~3.36!

This shows that D(l) generates the Hamiltonians of the NLSS hierarchy, so that (3.31) proves
Y(gl(M uN)) is a symmetry of this hierarchy.

Proof: We use the techniques given in the above proof, focusing on the (K11,K11) matrix
element. The bounds in the integrals are simplified using the property

~V~x1!]kV~x2!V~x3!] lV~x4!!K11,K115~V~x1!]kV~x2!!K11,K11~V~x3!] lV~x4!!K11,K11 .
~3.37!

j

B. Time evolution

Strictly speaking, we have, up to now, constructed only the linear operatorL(l;x) introduced
in the Zakharov–Shabbat scheme.2 This operator is only the first element of the Lax pair (L,M ).
It is sufficient to solve the problem, but for completeness, we now introduceM, the second
element of the Lax pair.

The Lax pair is a reformulation of the equations of motion as the commutativity of
differential operators:

F ]

]x
2L~l;x,t !,

]

]t
2M ~l;x,t !G50, ~3.38!

which amounts to the compatibility condition of the auxiliary system

]xu5L~l;x,t !u,
~3.39!

] tu5M ~l;x,t !u.

Starting from the definitions~3.1! and ~3.2!, it is a straightforward calculation to show that for

M ~l;x,t !52
il2

2
S1 igV~x,t !SV~x,t !2Ag~S]x1 il!V~x,t ! ~3.40!

the condition~3.38! is equivalent to

~ iS] t1]x
2!V~x,t !52guF~x,t !u2V~x,t !, ~3.41!

which just reproduces the equations of motion~2.10! and their counterpart forF†(x,t).
As it should be clear from the system~3.39!, M (l;x,t) is associated to time evolution in th

same wayL(l;x,t) is associated to spacial translation. This is confirmed by the following:
Property 3.7: The time evolution of the transfer and monodromy matrices is given by

] tT~l;x,y,t !5M ~l;x,t !T~l;x,y,t !2T~l;x,y,t !M ~l;y,t !, ~3.42!

] tT1~l;y,t !52
il2

2
ST~l;y,t !2T~l;y,t !M ~l;y,t !, ~3.43!

] tT2~l;x,t !5M ~l;x,t !T~l;x,t !1
il2

2
T~l;x,t !S, ~3.44!
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] tT~l;t !52
il2

2
@S,T~l;t !#. ~3.45!

Proof: The first equation is proven showing that

Z~l;x,y,t !5] tT~l;x,y,t !2M ~l;x,t !T~l;x,y,t !1T~l;x,y,t !M ~l;y,t !

obeys the differential equations (x.y):

]xZ~l;x,y!5L~l;x!Z~l;x,y!,

]yZ~l;x,y!52Z~l;x,y!L~l;y!,

together with the initial conditionZ(l;x,x,t)50.
The other equations are proved through the limitsx→`, y→2` using limuxu→` M (l;x,t)

52( il2/2)S. j

To conclude this section, let us remark that the time-evolution~3.45! shows that we have

T~l;x,y,t !5eitl2S/2T~l;x,y,0!e2 i tl2S/2 ~3.46!

in accordance with the ZF formulation of the Hamiltonian.

C. Quantum Lax pair

Following Sklyanin,28 we define the following.
Definition 3.8: The quantum transition matrixT(l;x,y) is the Wick (normal)-ordered classi

cal transition matrix T(l;x,y) regarded as a functional of the quantum canonical fieldsF(x),
F†(x):

T~l;x,y!5:T~l;x,y!:. ~3.47!

Here and below the normal ordering is defined as

:f j~x!fk
†~y!ª~21!@ j #@k#fk

†~y!f j~x!, ;x,y,

and extended to monomials inf, f† in the usual way, i.e., with all thef’s on the right of thef†’s,
keeping the original order between thef’s and between thef†’s.

For convenience, we also define a symbol ‡‡ which acts on operators and is not
confused with the symbol : :. It simply guarantees the ordering ofF, F† in an expression
containingL(l;x) and other~normal-ordered! functionals of the quantum fields without changin
the internal ordering of the functionals. For example, ifA5:a: andB5:b:, then

‡AL~l;x!B‡5
il

2
ASB1 iAg(

j 51

K

~~21!@ j #@A#f j~x!AEK11,jB2~21!@ j #@B#AEj ,K11Bf j
†~x!!.

The previous definition gives rise to many questions dealing with operator theory and
tional analysis which were answered for the bosonic case in the very detailed review1 by Gutkin.
But for the sake of brevity, we mimic the compact, albeit more formal, approach of Sklyanin
it contains all the fundamental and physical ideas, bearing in mind that everything is well de

In this sense, the quantum transition matrix is the fundamental solution of the qua
auxiliary problem

]xT~l;x,y!5‡L~l;x!T~l;x,y!‡ with T~l;x,x!51 ~3.48!

and satisfies
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]yT~l;x,y!52‡T~l;x,y!L~l;y!‡,

T~l;x,y!T~l;y,z!5T~l;x,z! for x,y,z or x.y.z,

whereL(l;x) is the Lax even super-matrix defined in~3.1! and ~3.2!.
This system of first-order differential equations together with the given initial conditio

equivalent to the following Volterra integral representations:

T~l;x,y!511E
y

x

dv ‡L~l;v!T~l;v,y!‡, ~3.49!

T~l;x,y!511E
y

x

dv ‡T~l;x,v!L~l;v!‡. ~3.50!

In order to reach our final goal there are several steps which all rely on one simple
extensively used in the inverse problem literature, that is two quantities are equal if and o
they satisfy the same first-order differential equation with the same initial condition. This is
is called ‘‘the differential equation approach’’ by Gutkin in Ref. 1. He criticized this approach
showed that it gives the correct answer using the ‘‘discrete approximation approach’’ w
amounts to the same line of argument but deals with finite differences on subintervals of@x,y#
instead of a true derivative.

The first step is to obtain the commutation relations of matrix elements of the transition m
and we need two preliminary lemmas.

Lemma 3.9:T1(l;x,y)T2(m;x,y) satisfies the following differential system:

]x$T1~l;x,y!T2~m;x,y!%5‡L12~l,m;x!T1~l;x,y!T2~m;x,y!‡, ~3.51!

T1~l;x,x!T2~m;x,x!5T2~m;x,x!T1~l;x,x!51^ 1, ~3.52!

where

L12~l,m;x!5L1~l;x!1L2~m;x!1gp12. ~3.53!

Proof: The idea is once again to use the equivalence between the differential problem a
Volterra integral representation of the solution. Indeed, taking care of the ordering of the
when using~3.49! and ~3.50!, one gets

T1~l;x,y!T2~m;x,y!51^ 11E
y

x

dv ‡L12~l,m;v!T1~l;v,y!T2~m;v,y!‡.

j

Lemma 3.10: The operatorL12(l,m;x) satisfies the following relation:

R12~l2m!L12~l,m;x!5L21~m,l;x!R12~l2m!, ~3.54!

whereR12(l2m)512 ir (l2m), and r(l2m) is given by (3.4).
Proof: Direct calculation using

@P12,L1~l;x!1L2~m;x!#5 i ~l2m!~p122p21!,

wherep12 has been defined in~3.21!. j

We can now formulate the basic result of this paragraph.
Theorem 3.11:The quantum transition matrixT(l;x,y) satisfies the following finite volum

commutation relations:
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R12~l2m!T1~l;x,y!T2~m;x,y!5T2~m;x,y!T1~l;x,y!R12~l2m!. ~3.55!

Proof: Using the fact thatR12(l) is a numerical, invertible~for l real and nonzero! matrix,
Lemmas 3.9 and 3.10 imply that the quantitiesT2(m;x,y)T1(l;x,y) and R12(l
2m)T1(l;x,y)T2(m;x,y)R12

21(l2m) satisfy the same first-order differential equation with t
same initial condition. j

Let us remark that if we restore the Planck constant in the canonical commutation rela
then R12(l2m)512 i\r (l2m) and we recover the relation~3.8! for the classical transition
matrix, given that as\→0, T(l;x,y)→T(l;x,y) and@ ,#→ i\$,% and keeping the terms of order\.

We are now in position to define the quantum monodromy matrix as an appropriate lim
the quantum transition matrix to obtain the infinite volume commutation relations correspo
to ~3.55!. The crucial difference with respect to the classical case comes from the non
commutation relations of the quantum fields, which produces the term proportional tog in
L12(l,m;x).

Therefore, one cannot define the limit as in~3.25! and insert it directly in the finite volume
commutation relations. Instead, we are led to compare the asymptotic behavio
T1(l;x,y)T2(m;x,y), for which we have information with that ofT1(l;x,y), T2(m;x,y) sepa-
rately, whose commutation relations in the infinite interval limit we are looking for.

Definition 3.12: The quantum equivalents of (3.23)–(3.25) are defined by

T 2~l;x!5:T2~l;x!:, T 1~l;y!5:T1~l;y!:, T~l!5:T~l!:, ~3.56!

and T(l)5T 1(l;z)T 2(l;z) is the quantum monodromy matrix.
E(l;x) being a numerical matrix, one immediately deduces

]xT 2~l;x!5‡L~l;x!T 2~l;x!‡, ~3.57!

]xT 1~l;x!52‡T 1~l;x!L~l;x!‡. ~3.58!

As a first step, we look for information onT 1
2(l;x)T 2

2(m;x) from what we know of
T1(l;x,y)T2(m;x,y). This is gathered in the following lemma.

Lemma 3.13:

lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!5T 1
2~l;x!T 2

2~m;x!C12~l,m!, ~3.59!

where, p12 being defined as in (3.21), we have introduced

j12~l,m;y!5expF S il

2
S11

im

2
S21gp12D yG , ~3.60!

C12~l,m!51^ 12
ig

l2m1 i«
p12. ~3.61!

Proof: Let

L~l,m;x!5 lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!, ~3.62!

L2~l,m;x!5T 1
2~l;x!T 2

2~m;x!. ~3.63!

Rewriting L12(l,m;x)5L0(l,m)1V1(x)1V2(x) with L0(l,m)5( il/2)S11( im/2)S2

1gp12, one easily gets from~3.51! the integral representation
                                                                                                                



5722 J. Math. Phys., Vol. 44, No. 12, December 2003 V. Caudrelier and E. Ragoucy

                    
T1~l;x,y!T2~m;x,y!5j12~l,m;x2y!1E
y

x

dv ‡T1~l;x,v!T2~m;x,v!~V1~v!

1V2~v!!‡j12~l,m;v2y!, ~3.64!

which shows thatL(l,m;x) is well defined and also satisfies

]xL~l,m;x!5‡L12~l,m;x!L~l,m;x!‡.

Now following the same line of argument as in Lemma 3.9, we get

]xL
2~l,m;x!5‡L12~l,m;x!L2~l,m;x!‡.

Consequently,

L~l,m;x!5L2~l,m;x!C12~l,m!, ;x, ~3.65!

and we can determineC12(l,m) from the asymptotic behavior asx→2`. From the physical
requirement that

lim
x→6`

uF~x!u50

and Eq.~3.64!, we see that

T1~l;x,y!T2~m;x,y! ;
y→2`

x→y

j12~l,m;x2y!,

implying

L~l,m;x! ;
x→2`

j12~l,m;x!. ~3.66!

On the other hand, from~3.57!, L2(l,m;x) can be represented as

L2~l,m;x!5E1~l;x!E2~m;x!1E
2`

x

dv ‡T1~l;x,v!T2~m;x,v!

3~V1~v!1V2~v!1gp12!‡E1~l;v!E2~m;v!,

so that

L2~l,m;x! ;
x→2`

E1~l;x!E2~m;x!1I ~l,m;x!,

where

I ~l,m;x!5gE
2`

x

dv j12~l,m;x2v!p12E1~l;v!E2~m;v!

can be evaluated from the knowledge of

j12~l,m;x!5E1~l;x!E2~m;x!12g
sin~@~l2m!/2#x!

l2m
p12

and ani« prescription to get
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I ~l,m;x!5
ig

l2m1 i«
e2 i @~l2m!/2#xp12.

Now, adopting the regularization

2g
sin~@~l2m!/2#x!

l2m
5

2 ig

l2m1 i«
@ei @~l2m!/2#x2e2 i @~l2m!/2#x#,

we see that~3.65! holds forC12(l,m) given in ~3.61!. j

Theorem 3.14:The commutation relations for the quantum matricesT 6(l;x) and T~l! for
real l and m take the following form:

R12~l2m!T 1
2~l;x!T 2

2~m;x!C12~l,m!5T 2
2~m;x!T 1

2~l;x!C21~m,l!R12~l2m!,

R12~l2m!C12~m,l!T 1
1~l;x!T 2

1~m;x!5C21~l,m!T 2
1~m;x!T 1

1~l;x!R12~l2m!,
~3.67!

R12
1 ~l2m!T1~l!T2~m!5T1~m!T2~l!R12

2 ~l2m!,

where, defining1K5( i 51
K Eii ,

R12
6 ~l2m!5

2 ig

~l2m!
1K ^ 1K1P121p211

~l2m!21g2

~l2m1 i«!2
p121

l2m2 ig

l2m
EK11,K11^ EK11,K11

6pgd~l2m!~1K ^ EK11,K112EK11,K11^ 1K!.

Proof: We start with the proof of the first equality. Lemma 3.13 gives

lim
y→2`

T1~l;x,y!T2~m;x,y!j12~l,m;y!5T 1
2~l;x!T 2

2~m;x!C12~l,m!,

which in turn yields

lim
y→2`

T2~m;x,y!T1~l;x,y!j21~m,l;y!5T 2
2~m;x!T 1

2~l;x!C21~m,l!.

Multiplying ~3.55! on the right byj12(l,m;y) and using the property

R12~l2m!j12~l,m;y!5j21~m,l;y!R12~l2m!

we get

R12~l2m!T1~l;x,y!T2~m;x,y!j12~l,m;y!5T2~m;x,y!T1~l;x,y!j21~m,l;y!R12~l2m!,

which gives the first equality in the limity→2`. The second equality is proved along the sa
line of argument. Now, combining the two equations and using the properties

T~l!5T 1~l;x!T 2~l;x! and T 2
1~m;x!T 1

2~l;x!5T 1
2~l;x!T 2

1~m;x!,

we get

R12~l2m!C12~m,l!T1~l!T2~m!C12~l,m!5C21~l,m!T2~m!T1~l!C21~m,l!R12~l2m!,

which take the form~3.67! if we define

R12
1 ~l2m!5C12

21~l,m!P12R12~l2m!C12~m,l!, ~3.68!
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R12
2 ~l2m!5C12~m,l!P12R12~l2m!C12

21~l,m!, ~3.69!

whose explicit calculation we leave to the reader. j

Let us extract the information contained in~3.67!. We start by particularizing some entries
the quantum monodromy matrix (i , j 51,...,K):

t i j ~l!5~T~l!! i j , ~3.70!

bj~l!5~T~l!! j ,K11 , ~3.71!

D~l!5~T~l!!K11,K11 . ~3.72!

Theorem 3.15:The exchange relations of the entries of the quantum monodromy matrix
as follows:

v t i j ~l!,tkl~m!b5 ig~21!@ j #@k#1@ i #~@ j #1@k# !
tk j~l!t i l ~m!2tk j~m!t i l ~l!

l2m
, ~3.73!

t i j ~l!D~m!5D~m!t i j ~l!, ~3.74!

D~l!D~m!5D~m!D~l!, ~3.75!

bj~l!bk~m!5
m2l

m2l2 ig
~21! jkbk~m!bj~l!2

ig

m2l2 ig
bj~m!bk~l!, ~3.76!

bj~l!D~m!5
l2m2 ig

l2m2 i«
D~m!bj~l!. ~3.77!

Proof: By direct calculation. j

Relations~3.73!–~3.75! are the quantum counterparts of Eqs.~3.30!–~3.32! and the same
interpretation holds but for the quantum hierarchy here. As such, the super-YangianY(gl(M uN))
is a quantum symmetry of the hierarchy generated byD(l), which is just the quantum analog o
Property 3.6 as can be seen from

D~l!511
ig

l
N1

g

l2 S P2
g

2
N~N21! D1

ig

l3 S H1g~N21!P2
g2

6
N~N21!~N22! D1OS 1

l4D .

D. ZF algebra from Lax pair

The two relations~3.76! and ~3.77! will allow us to recover the ZF algebra. Indeed, all th
quantities of Theorem 3.15 are functionals ofF, F†, themselves involving the ZF generators@cf.
~2.35!#, and one can get the ZF algebra out of them as follows.

Property 3.16: Defining aj (l)5(1/Apg)bj (l)D(l)21, Eqs. (3.76) and (3.77) give

aj~l!ak~m!5
m2l

m2l1 ig
~21! jkak~m!aj~l!2

ig

m2l1 ig
aj~m!ak~l!. ~3.78!

Proof: Direct calculation from Theorem 3.15. j

To complete our algebra, we need the exchange relations betweenaj (l) andak
†(m). Contrary

to the original one~bosonic! component case, this is not directly obtained from what we alre
have since there is no simple conjugate relationship for the entries of the monodromy matr
are naturally led to introduce a conjugate Lax super-matrix defined by
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L̄~l;x!52
il

2
S2 iAgf j

†~x!EK11,j1 iAgf j~x!Ej ,K11 ~3.79!

and the associated transition matrix

]xT̄~l;x,y!5‡T̄~l;x,y!L̄~l;x!‡. ~3.80!

Now, to obtain information between the entries ofT(l;x,y) and T̄(m;x,y) following the same
steps as in Lemmas 3.9 and 3.10 and Theorem 3.11, one sees that we actually need to wo
the super-transposed Lax matrix. The corresponding operation on an even super-maA
5( i , j 51

K11 Ai j Ei j reads

At5 (
i , j 51

K11

Ai j Ei j
t 5 (

i , j 51

K11

~21!@ i #~@ i #1@ j # !Aji Ei j . ~3.81!

It satisfies (At) t5A and (AB) t5BtAt for any even super-matricesA andB. We get

Lt~l;x!5
il

2
S1 iAg~21!@ j #f j~x!EK11,j2 iAgf j

†~x!Ej ,K11 ~3.82!

and the associated transition matrix

]xT t~l;x,y!5‡T t~l;x,y!Lt~l;x!‡. ~3.83!

Therefore, instead of~3.51! we get

]x$T̄1~l;x,y!T 2
t ~m;x,y!%5‡T̄1~l;x,y!T 2

t ~m;x,y!G12~l,m;x!‡, ~3.84!

]x$T 1
t ~m;x,y!T̄2~l;x,y!%5‡T 1

t ~m;x,y!T̄2~l;x,y!G128 ~l,m;x!‡, ~3.85!

with

G12~l,m;x!5L̄1~l;x!1L2
t ~m;x!1gp12

t2 ,

G128 ~l,m;x!5L1
t ~m;x!1L̄2~l;x!1gp12

t1 .

Now the key point is to find an invertible numerical matrixR128 (l) solution of the new Yang–
Baxter equation

R128 ~l,m!G12~l,m;x!5G21~l,m;x!R128 ~l,m!.

It is given by

R128 ~l,m!5
ig

l2m
P12

t1 1
l2m2 ig~M2N!

l2m
P12. ~3.86!

Following the same procedure as above, we finally deduce the infinite volume commu
relations under the form

R128
1~l2m!T̄1~l!T 2

t ~m!5T 1
t ~m!T̄2~l!R128

2~l2m! ~3.87!

with
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R128
6~l2m!5

ig

l2m
P12

t1 1
l2m2 ig~M2N!

l2m
~P121p121p21!

1
~l2m2 ig !~l2m2 ig~M2N!!

~l2m1 i«!2
EK11,K11^ EK11,K11

7pgd~l2m!~p21
t1 2p21

t2 !.

All these results are the generalization to the graded case of Ref. 19~K, the total number of
bosonic or fermionic particles is replaced in our case byM2N, the difference of bosonic and
fermionic particles!. Accordingly, we get the same conclusions collected in the following pro
sition.

Property 3.17: Let ai
†(l)5(1/Apg)(D21)†(l)bj

†(l). Then

ai~l!aj
†~m!5

l2m

l2m1 ig
~21!@ i #@ j #aj

†~m!ai~l!2d i j

ig

l2m1 ig (
,51

K

a,
†~m!a,~l!1d i j d~l2m!,

~3.88!

ai
†~l!aj

†~m!5
m2l

m2l1 ig
~21!@ i #@ j #aj

†~m!ai
†~l!2

ig

m2l1 ig
ai

†~m!aj
†~l!. ~3.89!

Proof: Noting that

bj~l!5T t~l!K11,j , D~l!5T t~l!K11,K11 ,

bj
†~l!5T̄~l!K11,j , D†~l!5T̄~l!K11,K11 ,

~3.87! gives

D†~l!D~m!5D~m!D†~l!,

D~m!bi
†~l!5

l2m2 ig

l2m1 i«
bi

†~l!D~m!, bj~m!D†~l!5
l2m2 ig

l2m1 i«
D†~l!bj~m!,

bi~l!bj
†~m!5

m2l2 ig

m2l1 i«
~21!@ i #@ j #bj

†~m!bi~l!1d i j

ig~m2l2 ig !

~m2l1 i«!2 (
,51

K

b,
†~m!b,~l!

1d i j pgd~l2m!D†~m!D~l!,

which in turn yields~3.88!. The proof of~3.89! is similar. j

IV. EXPLICIT CONSTRUCTION OF THE SUPER-YANGIAN GENERATORS

A. Super-Yangian generators in terms of canonical fields

We consider the classical case. The quantum case can be done in a similar way, with
tion terms due to the noncommutativity of the fieldsF, F†.

For anyK3K-matrix sPgl(M uN), we introduce

Qs
~0!5E dx F†~x!sF~x!5E dx (

j ,k51

K

f j
†~x!s jkfk~x!, ~4.1!

Qs
~1!5E dx F†~x!s]F~x!2

g

2 E dxdy sg~x2y!F†~x!sF~y!•F†~y!F~x!, ~4.2!
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Qs
~2!5E dx F†~x!s]2F~x!2

g

2 E dxdy sg~x2y!~F†~x!s]F~y!2]F†~x!sF~y!!F†~y!F~x!

1
g2

4 E dxdydz sg~x2y!sg~y2z!F†~y!F~x!•F†~x!sF~z!•F†~z!F~y!. ~4.3!

The coefficients in~4.2! and ~4.3! are fixed in such a way that

$H,Qs
~n!%50, n50,1,2, ~4.4!

so thatQs
(n) are indeed symmetry generators of the NLSS equation. With these definitions,

simple calculation to show

$Qs
~0! ,Qv

~n!%5 iQ vs,v b
~n! , n50,1,2, ~4.5!

$Qs
~1! ,Qv

~1!%5 iQ vs,v b
~2! 2 i S 2

g

2D 2E dxdydt S~x,y,t !~F†~x!sF~y!•F†~y!vF~ t !

2F†~x!vF~y!•F†~y!sF~ t !!F†~ t !F~x!,
~4.6!

S~x,y,t !5sg~ t2x!sg~x2y!1sg~x2y!sg~y2t !1sg~y2t !sg~ t2x!.

Equation~4.5! shows thatQs
(0) , sPgl(M uN), generates agl(M uN) superalgebra, and thatQs

(n)

~n fixed! form a representation of it. The second term in~4.6! reflects the nonlinear commutatio
relation of the super-Yangian.

Note that we have

QI
~0!5N and QI

~1!5P, ~4.7!

so that Eq.~4.5! shows thatQs
(n) commutes withN andP. Moreover, we have the supersymm

trylike relations:

$Qs
~0! ,Qs

~0!%52iN,

$Qs
~0! ,Qs

~1!%52iP,
as soon ass25I and @s#51. ~4.8!

However, let us remark thatQI
(2) is not the NLSS Hamiltonian:

QI
~2!5H1

g2

4 E dxdydz sg~x2y!sg~y2z!F†~y!F~x!•F†~x!sF~z!•F†~z!F~y!.

QI
(2) corresponds to a central generator which, if it were the Hamiltonian, would lead to non

equation of motion forF. On the contrary,H commutes with the generatorsQs
(n) and provides

local equation of motion.

B. Super-Yangian generators in terms of ZF generators

We have obtained the ZF-algebra~2.15! and ~2.17! from the commutation relations of th
quantum monodromy matrix. This shows the central importance of this algebra and one is
rally led to take it as a starting point. This is the very idea developed in Ref. 29 and we us
construct a realization of the generators of the super-Yangian symmetry in terms of the ZF
lators.

First of all, we need to generalize all the basic results of Ref. 29 to our graded formalis
is actually readily obtained since the fundamental idea of the properties given in Refs. 29 a
the possibility of relabelling the auxiliary spaces which holds for our global formalism as
reader can check. Thus, we are in position to apply any result from Ref. 29 in our context.
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is our strategy: we start from the ZF algebra~corresponding to the algebraAR in Ref. 29!,
introduce the associated well-bred vertex operatorT(l) and use the explicit expression of ou
R-matrix to derive the first two terms of the expansion ofT(l) in power series ofl21. Then we
show that this approach actually coincides with the previous Lax pair formulation so that we
a realization of the generators of the super-Yangian symmetry for the hierarchy associated
nonlinear super-Schro¨dinger equation in terms of the ZF oscillators. This completes and confi
the deep relationships between the quantum canonical field description~cf. Sec. IV A! and the ZF
algebra approach.

Definition 4.1: The vertex operators Ti j (l) ( i , j 51,...,K) associated to the ZF algebraAR are

defined by T(l)5Ti j (l)Ei j PAR^ CK2
with

T`~l!511 (
n51

`
~21!n11

n!
an¯1

† T`1¯n
~n! a1¯n , ~4.9!

where

an...1
† 5~a1¯n!†5an

†~kn!¯a1
†~k1!,

T`1¯n
~n! 5T`1¯n

~n! ~l,k1 ,...,kn!P~C^ K2
! ^ ~n11!~l,k1 ,...,kn!,

and integration is implied over the spectral parameters k1 ,...,kn (the summation over the auxil
iary spaces being understood as in the Appendix).

T`(l) is said to be well-bred (onAR) if

T`~l!a1~m!5R1`~m2l!a1~m!T`~l! and T`~l!a1
†~m!5a1

†~m!R`1~l2m!T`~l!
~4.10!

with R given by (2.18).
Then, from Ref. 29 we can directly assert the following.
Property 4.2: The well-bred vertex operators T`(l) obey Faddeev–Reshetikhin–Takhtajan

(FRT) relations

R``8~l2m!T`~l!T`8~m!5T`8~m!T`~l!R``8~l2m!, ~4.11!

so that they generate the super-Yangian algebra Y(gl(M uN)). In addition, they form a symmetr
super-algebra for the hierarchy H(n) defined by

H ~n!5E
2`

`

dk kna†~k!a~k!, nPZ1 , ~4.12!

forming an Abelian algebra of Hermitian operators and governing the flows of the scatte
operators a, a† as follows:

eiH ~n!ta~k!e2 iH ~n!t5e2 iknta~k!,

eiH ~n!ta†~k!e2 iH ~n!t5eiknta†~k!.

Now, recalling the results obtained in Sec. II C 4, Property 3.6 and Eqs.~3.73!–~3.75!, we see
that both descriptions of our integrable system~in terms of canonical fields or ZF scatterin
operators! are equivalent. But in this operation, we have gained an explicit realization o
super-Yangian generators.

To do this, we use the inductive relations obtained in Theorem 3.3 of Ref. 29 order by
in the spectral parameterl. Let us rewrite
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T`~l!511
ig

l (
p50

`

T`
$p%l2p, ~4.13!

where, accordingly,

T`
$p%5 (

n51

`
~21!n11

n!
an¯1

† T`1¯n
~n!$p%a1¯n

for someT`1¯n
(n)$p%P(C^ K2

) ^ (n)(k1 ,...,kn).
Our goal is to determineT`

$0% and T`
$1% , that is the first two ‘‘levels’’ of the super-Yangian

generators. To do this we note that the inductive relations of Theorem 3.3 in Ref. 29 at first
in l take the form

T`0¯n
~n11!5T`1¯n

~n! 2T`0¯n21
~n! 1O~l22!, ~4.14!

which, under the knowledge of

T`0
~1!$0%511P`0 ,

yields

T`0¯n
~n11!$0%5~21!n(

k50

n

~21!kS n
kD P`k ,

wherePi j is the super-permutation of auxiliary spacesi and j, so that

T`
$0%5 (

n50

`
~21!n11

n! (
k50

n

~21!n2kS n
kDan¯0

† P`ka0¯n . ~4.15!

Now that we have the explicit form ofT`
$0% we can use it to evaluate the commutator@T`8

$1% ,T`
$0%#

directly and compare the result to that obtained from the FRT relations~4.11! at orderl22. The
latter calculation yields

@T`8
$1% ,T`

$0%#5@P`8` ,T`
$1%#. ~4.16!

As for the former, the well-bred relations~4.10! at orderl22 read

@T`
$0% ,a0~m!#5~11P0`!a0~m!,

@T`
$1% ,a0~m!#5m~11P0`!a0~m!1 ig~11P0`!a0~m!~11T`

$0%!,

@T`
$0% ,a0

†~m!#52a0
†~m!~11P`0!,

@T`
$1% ,a0

†~m!#52ma0
†~m!~11P`0!1 iga0

†~m!~11P`0!~12T`
$0%!,

which will be useful in calculating

@T`8
$1% ,T`

$0%#5 (
n50

`
~21!n11

n! (
k50

n

~21!n2kS n
kD @T`8

$1% ,an¯0
† P`ka0¯n#.

Note that this procedure can be iterated to evaluateT`8
$n% for an arbitraryn through@T`8

$n% ,T`
$0%#.

Now,
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@T`8
$1% ,an¯0

† P`ka0¯n#5(
i 50

n

an¯0
† P`ka0¯@T`8

$1% ,ai #¯an1(
i 50

n

an
†
¯@T`8

$1% ,ai
†#¯a0

†P`ka0¯n

5@P``8 ,~mk2n21!an¯0
† P`ka0¯n#1an¯0

† @P``8 ,P`k#T`8
$0%a0¯n

1 (
i 50

k21

an¯0
† @P`k ,P``8#P`8 ia0¯n1 (

i 5k11

n

an¯0
† P`8 i@P`k ,P``8#a0¯n .

This expression can be considerably simplified in@T`8
$1% ,T`

$0%# using the properties of the
binomial coefficients to combine the last three terms. Inserting~4.15! and using the property

(
n5k

i 21 S N
n Dak

na i 2n
N2n5ak

N2a i
N , where ak

n5~21!k21S n21
k21D ,

proved in Ref. 4, we get~after a convenient relabeling of the auxiliary spaces!

@T`8
$1% ,T`

$0%#5F P``8 ,(
n51

`
~21!n

n! (
k51

n

ak
na1¯n

† H ~mk2 ign!P`k2 ig (
i 51

k21

P` i P`kJ an¯1G .

Comparing this last expression with~4.16!, we get the explicit form forT`
$1% ~up to a term

proportional toI`).
To conclude, we can recast this expression as

T`
$1%5 (

n51

`
~21!n

n! (
k51

n

ak
na1¯n

† S mkP`k2 ig (
i 51

k21

P`kP` i D an¯11 igT`
$0%T`

$0% . ~4.17!

In the case ofgl(N), we recover the results of Ref. 4, although in a different basis:

Ti j
$0%5 (

n50

`
~21!n11

n! (
k50

n

ak
nan¯0

† Eji
~k!a0¯n ,

Ti j
$1%5 (

n51

`
~21!n

n! (
k51

n

ak
na1¯n

† S mkEji
~k!2 ig (

,51

k21

(
m51

N

Ejm
~, !Emi

~k!D an¯11 ig~T$0%! j i
2 ,

whereEi j
(,) denotes theEi j matrix in the,th auxiliary space.

For gl(M uN), similar formulas may also be obtained, taking care of theZ2-graded tensor
products.

V. CONCLUSION

We solved a vectorial version of the nonlinear Schro¨dinger equation which contains fermion
and bosons at the same time. We first introduced it classically using aZ2-graded formalism. At the
quantum level, special attention was paid to the resolution using a super ZF algebra assoc
the R-matrix of the super-YangianY(gl(M uN)). The integrability and symmetry of our syste
was studied through a Lax pair formalism and it is worth stressing the deep interplay be
canonical and~ZF! algebraic formalisms. The ZF algebra allowed us to compute the correl
functions. Further investigations can be performed in this direction to study super-versio
known integrable systems. One can also study these super-versions when a boundary i
duced, using generalizations of the ZF algebra~boundary algebras!.
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APPENDIX: AUXILIARY SPACES

1. Graded spaces

We define in the auxiliary space, aK-column vectorej with 1 at row j and 0 elsewhere, its
transpose, the row vectorei

†5(0,...,1,...,0) and the matricesEi j , with 1 at position (i , j ).
Here and below, the vectorsei , ei

† , and the matricesEi j will be Z2-graded:

@ei #5@ei
†#5@ i #; @Ei j #5@ i #1@ j # with @ i #5H 0 for i 51,...,M ,

1 for i 5M11,...,N.

Accordingly, the tensor product of auxiliary spaces will be alsoZ2-graded, e.g.,

~I^ ei !~Ejk ^ I!5~21!@ i #~@ j #1@k# !Ejk ^ ei .

We will consider even objects in the following sense:v5v iei and U5Ui j Ei j ~summation on
repeated indices is understood! are even iff@v i #5@ i # and@Ui j #5@ i #1@ j #. For example, the field
F(x) is even.

Note that, when dealing with the tensor product of auxiliary spaces, one has to be care
to confuse~even! objects likel15l^ I5( i 51

K l iei ^ I with their (Z2-graded! componentsl i , i
51,...,K. As a~tentative! clarifying notation, we will use boldface letters for the even objects,
ordinary letters for their components.

Finally, in order to apply our formalism to derive the classical NLSS equation, we will use
global Kronecker symbol,

d125d i j ~ei ^ ej
†!5~ei ^ ei

†!, ~A1!

and, accordingly,

d215~21!@ i #~ei
†

^ ei !. ~A2!

2. Poisson brackets

For F andG two (F,F†)-functionals, their Poisson bracket is defined by

$F,G%5 i (
,51

K E
2`

`

dx~21!@F#@,#S ~21!@,#
dF

df,~x!

dG

df,
†~x!

2
dF

df,
†~x!

dG

df,~x!D . ~A3!

This bracket is a graded Poisson bracket, i.e., it is bilinear, graded antisymmetric, and obe
graded Leibniz rule and graded Jacobi identity.

To any graded PB, one can associate a ‘‘global’’ Poisson bracket, defined for the even
tionals F and G. We introduce the notationua to denote eitherei (a5(0,i ) and @a#5@ i #), ei

†

(a5( i ,0) and@a#5@ i #), or Ei j (a5( i , j ) and@a#5@ i #1@ j #), so that any even objectF can be
written F5(aFaua with @Fa#5@a#.

On any even object, one defines the global PB

$F1 ,G2%5(
a,b

$Fa ,Gb%ua ^ ub . ~A4!

It is bilinear, antisymmetric, and obeys Leibniz rule and Jacobi identity. Let us stress tha
global PB is not graded~because of the use of auxiliary spaces!, but its ‘‘component’’ version
indeed is graded.

Lemma A.1: The global PB (A4) corresponding to the graded PB (A3) can be rewritten
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$F1 ,G2%5 i E
R
dxS dF1

dF3/2~x!

dG2

dF3/2
† ~x!

2
dG2

dF3/2~x!

dF1

dF3/2
† ~x!

D , ~A5!

where we have introduced a third auxiliary space (labeled3
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Proof: Direct calculation. j
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A recent procedure based on truncated Painleve´ expansions is used to derive Lax
Pairs, Darboux transformations, and various soliton solutions for integrable (2
11) generalizations of NLS type equations. In particular, diverse classes of solu-
tions are found analogous to the dromion, instanton, lump, and ring soliton solu-
tions derived recently for (211) Korteweg–de Vries type equations, the Nizhnik–
Novikov–Veselov equation, and the (211) Broer–Kaup system. ©2003
American Institute of Physics.@DOI: 10.1063/1.1623929#

I. INTRODUCTION

The techniques of Painleve´ analysis1 are by now well known in the area of testing nonline
systems for integrability. In addition, various developments have taken place in the field ov
past decade or so. These include investigations of the reasons underlying the technique’s s
the study of ‘‘higher-order’’ truncations, the so-called ‘‘invariant’’ Painleve´ analysis, the judicious
application of two~or more! singular manifold functions where deemed necessary, and the u
truncated Painleve´ expansions to obtain analytic solutions for both integrable and noninteg
NLPDEs. We shall refer to select, relevant portions of this work subsequently.

Another branch of the subject, with a long history,2–5 involves the mutual interconnection
among various features or properties of integrable systems. Such interconnections were con
from the perspective of Painleve´ analysis in a seminal series of papers by Weiss.6 These papers
developed the approach, now known as ‘‘the singularity manifold method~SMM!’’ of truncating
the principal or general branch Painleve´ singularity expansion for the solution of the system
NLPDEs at the constant term, thereby imposing a specific choice of the singular manifold fu
which has come to be called ‘‘the singular manifold’’~as opposed to the infinite expansion em
ployed in the Painleve´ test where this function is arbitrary!. This singularity manifold function and
the truncated ‘‘singular part’’ expansion are then used to algorithmically derive an auto-Ba¨cklund
transformation~BT! between two different solutions of the NLPDE~s!, and also semialgorithmi-
cally derive the associated linear scattering problem or Lax Pair. Since the equations re
from the use of this truncated expansion result in an auto-BT, they are often referred to
‘‘Painlevé–Bäcklund equations’’ and this is a usage we will employ for brevity and convenie

Weiss’ original technique was extensively developed by others, notably in the encyclo
article on various aspects of Painleve´ expansions by Newell and his collaborators7 which, among
numerous other things, extended the Weiss SMM to derive Hirota tau functions as well. How
the original semialgorithmic nature of the derivation of the Lax Pair in Weiss’ procedure pers
One recent area of investigation in the Painleve´ analysis of single-component integrable NLPD
has been to attempt to extend the Weiss procedure significantly to derive the so-called ‘
substitution’’ which enables the Painleve´–Bäcklund equations to be linearized into the Lax Pa
thus improving a part of the Weiss procedure. An additional objective is to derive various
features of the integrable system such as Miura transformations, Darboux transformations,
soliton solutions, Hirota’s tau function, and similarity reductions. As is readily apparent, this
is motivated by earlier work in Refs. 4 and 7.

a!Electronic mail: choudhur@longwood.cs.ucf.edu
57330022-2488/2003/44(12)/5733/18/$20.00 © 2003 American Institute of Physics
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In this paper, we apply this procedure to systems in (211) dimensions. In particular, we
derive integrability characteristics for various members of a family of integrable (211) NLS-type
systems. The remainder of the paper is organized as follows. In Sec. II, we derive the La
Darboux transformation, and soliton solutions for an integrable (211) dimensional system. Hi-
rota’s tau function may also be obtained, but is not as useful here as for other systems. Sect
and IV contain brief treatments of two other integrable (211) NLS type systems. In Sec. V, w
conclude with a brief summary, as well as some comments on future prospects.

II. UNIFIED TREATMENT OF INTEGRABLE „2¿1… GENERALIZATIONS OF THE KAUP
EQUATION

In this section, we first develop the analysis using two members of the integrable (211) NLS
type systems considered by Mikhailov and co-workers8–10 as typical examples. We choose sy
tems in (211) dimensions intentionally so as to demonstrate the direct applicability of
analysis to systems in more than one spatial dimension. As we shall see, the analysis in (211) is,
as one might expect, somewhat more involved than for (111) systems. We shall mention appro
priate references as we proceed, but two background papers of general relevance are t
Estevez and co-workers.11,12

In particular, we shall consider the following two integrable generalizations of the K
equation:8,13

ut85uxx8 12p8ux8 , ~2.1a!

2v t85vxx8 22p8vx8 , ~2.1b!

py85~u1v !x , ~2.1c!

and

ut85uyy8 1~u821u8v8!y1q8, ~2.2a!

2v t85vyy8 2~v821u8v8!y1q8, ~2.2b!

qx85~v8ux82u8vx8!y . ~2.2c!

A. Preliminary analysis of „2.1…

We shall detail the calculations and the procedure for~2.1! first, and subsequently summariz
similar computations for~2.2! in Sec. III.

As usual, we first perform the leading-order analysis and assume

u8;u0f2a, v8;v0f2b, p8;p0f2g. ~2.3!

Balancing the most singular second derivative and nonlinear terms in the first two equ
yields

a1b522, ~2.4a!

g51, ~2.4b!

p05~a11!fx/2. ~2.4c!

At this point, it is tempting to look at the apparently symmetric way in which the variablesu and
v occur in~2.1! and thus assume thata5b521. However, it is straightforward to check that th
choice leads to a contradiction. One may obtain consistent choices by~a! balancing the left-hand
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side of ~2.1c! with the first term on the right, with the other term being less singular, or by~b!
balancing the left side of~2.1c! with the second term on the right. These correspond, respecti
to

a51, b523 ~2.5a!

or

a523, b51. ~2.5b!

However, another valid possibility is given by

a51, b50, g51. ~2.6!

Performing the resonance analysis1 for the branch~2.6! yields resonances atr 521,0,1,2,3.
Hence, this branch yields the full complement of arbitrary functions~four at the resonance 0, an
at the three positive integer resonances, and the arbitrary location off50 given by r 521).
Thus, this is the principal branch. The branch~2.5! does not yield four non-negative intege
resonances and is thus a singular branch. For branch~2.5!, the valid resonances corresponding
arbitrary coefficients in the Painleve´ expansion are atr 521,0,1, and 2, while the spurious res
nance is atr 523.

We shall detail the case corresponding to the principal branch~2.6! and summarize the analo
gous results for~2.4!/~2.5! subsequently. We shall next invoke the Weiss SMM by substitu
expansions for our variables truncated at the constant term~and with coefficients of all singula
terms explicity expressed in terms of derivatives of the singular manifold function!, and use the
resulting expansions to develop the method for deriving various properties of the integrabl
tem ~2.1!. For ~2.4!/~2.5!, the leading orderO(f23) terms in~2.1a! and ~2.1b! yield the coeffi-
cients of the singular terms inu andp explicitly as

u05fy , p05fx . ~2.7!

Using these, we substitute the truncated expansion

u85
fy

f
1u, ~2.8a!

v85vf01v1f1¯ , ~2.8b!

p85
fx

f
1p. ~2.8c!

Substituting these in~2.1! yields equations at various orders inf, the Painleve´–Bäcklund equa-
tions, which are contained in the Appendix. Notice that~A4! and ~A5! show that

v5v~y!. ~2.9!

Thus, ~A4! and ~A5! are identically satisfied. The only nontrivial equations surviving are~A1!–
~A3! and ~A6! which are given in the following for ease of comprehension in the follow
calculations:

f t22pfx2fxx50, ~2.10a!

2fyt12fxux12pfxy1fxxy50, ~2.10b!

py5ux , ~2.10c!
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2ut12pux1uxx50. ~2.10d!

Substituting~2.10c! in ~2.10b! and integrating with respect toy yields

2f t12pfx1fxx5l* ~x,t ! ~2.11!

which is the same as~2.10a! if the ‘‘constant’’ of integration on the right is taken to be zero. Thu
we may essentially just ignore~2.10b! since it is really they derivative of~2.10a!.

B. The singular manifold equation and Weiss substitutions

We now work with the remaining Painleve´–Bäcklund equations in~2.10! to derive the so-
called singular manifold equation~SME!. The essential idea in deriving the SME is to express
physical or field variables~or potentials in the language of scattering! in terms of functions of the
singularity manifold and, using these, to derive a consistency condition on this singularity
fold which is the SME. The motivation for this is that analysis of the SME yields a method
deriving the Weiss substitution and thus linearizing the Painleve´–Bäcklund equations to obtain th
Lax Pair. The details vary from case to case, but the essential ideas in deriving the SM
analyzing it are common to all examples. For this purpose, we also define the quantities14–16

V[fxx /fx , ~2.12a!

C1[f t /fx , ~2.12b!

C3[fy /fx , ~2.12c!

which satisfy the compatibility conditions

Vt5~C1x1C1V!x ~ from fxxt5f txx!, ~2.13a!

Vy5~C3x1VC3!x ~ from fxxy5fyxx!, ~2.13b!

C3t5C1y1C1C3x2C3C1x ~ from fyt5f ty!. ~2.13c!

Using ~2.10c! in ~2.10d! yields

ut5
]

]y
@p21px#,

~2.14!
ux5py .

Integrating the consistency conditionuxt5utx with respect toy yields

pt5]x@p21px#1l~x,t !. ~2.15!

From ~2.10a! and ~2.12!, we have

p5 1
2 ~C12V!. ~2.16!

Using this in~3.15! yields the SME

1
2 ~C12V! t5]x@

1
4 ~C1

222C1V1V2!1 1
2 ~C1x2Vx!#1l~x,t !. ~2.17!

The key to linearizing the Painleve´–Bäcklund equations is to perform a leading-order sing
larity analysis of the SME and the consistency conditions~2.13!, treated as an NLPDE inC1 and
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V, in a manner analogous to our earlier analysis. The reason is that the SME governs the b
of f and its derivatives, and thus analyzing it yields the correct behaviors forC1 andV. In other
words, we apply the first part of the SMM to the SME. Assuming

C1;c0xa, V;v0xb ~2.18!

and balancing the most singular terms~those within square brackets! in ~2.17! yields

a5b521 ~2.19!

and

c05v0 or c02v052xx . ~2.20!

Next, using~2.18!/~2.19! and balancing the most singular terms in~2.13a! yields

v05xx ~2.21!

which, with ~2.20!, implies

c053xx or c05xx . ~2.22!

Once this leading-order analysis of the SME is complete, we follow an approach d
Musette and Conte17–19and assign a separate singularity manifold, i.e., two distinctx’s, to each of
the two branches forC1 andV in ~2.18! to ~2.22!. Denoting these asc1 andc2 ~the connection
of these to the original singularity manifoldf will become apparent in the following step!,
~2.18!–~2.22! yield the following leading behaviors:

V[
fxx

fx
5

cx
1

c1 1
cx

2

c2 ~2.23!

and

C1[
f t

fx
5

3cx
1

c1 1
cx

2

c2 . ~2.24!

Integrating~2.23! with respect tox and using the result in~2.24! yields the connection of the
original singularity manifold variablef to thec’s, i.e.,

fx5c1c2 ~2.25!

and

f t53cx
1c21cx

2c1. ~2.26!

These last two equations are in fact the analogs of the Weiss substitutions. Note that, unlike
original procedure, they have been derived here completely self-consistently from the sing
analysis. More specifically, in Weiss’ original procedure,6 such substitutions were based on eith
guesswork or information regarding the order of the underlying linear scattering problem, b
which were based on extraneous knowledge about the system. These substitutions will be
linearizing the Painleve´-Bäcklund equations~2.10a!, ~2.10c!, and~2.10d! to yield the Lax Pair for
the system, and we proceed next to this step.
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C. The Lax Pair

Using ~2.23!/~2.24! in ~2.16! yields

cx
15pc1. ~2.27!

Using ~2.27! for p(x,t) in ~2.10c! and interchanging the order of the derivatives, the result
equation may be integrated with respect tox to yield

cy
15@u2l1~y,t !#c1. ~2.28!

The last two equations comprise the spatial part of the Lax Pair for~2.1! ~with unprimed variables
instead of primed ones!. It is straightforward to check that the compatibility condition for~2.27!/
~2.28! yields the governing equation~2.1c! for the system@using~2.9!#. Next, solving foru from
~2.28! and using the result in the first term in~2.10d! yields

l1t1
d

dt Fcy
1

c1G52pux1uxx . ~2.29!

This constitutes the temporal part of the Lax Pair and it is straightforward to verify tha
compatibility condition for~2.28! and ~2.29! yields the first governing equation~2.1a! for the
system~with unprimed variables!, while the compatibility of~2.27! and~2.29! simply yields thex
derivative of ~2.1a!. To the best of our knowledge, this is the first time this Lax pair has b
derived.

Notice that since~2.10b! is redundant and~2.10a! was used to obtain~2.16! and hence~2.27!,
we have linearized all the Painleve´–Bäcklund equations~2.10! to obtain the Lax Pair for~2.1!
~with unprimed variables!.

At this point, we remind ourselves that the above branch of the singularity analysis of~2.1!
corresponds to the principal branch~2.6!. Performing an exactly analogous analysis but using
singular branch instead corresponding to~2.4!/~2.5b! for comparison purposes results in@the c6

functions in~2.30! to ~2.37! are different from those in~2.23! to ~2.29!# the following.
~a! ~2.8!/~2.9! are replaced by

u850,

v852
fy

f
1v, ~2.30!

p852
fx

f
1p.

~b! ~2.23!–~2.26! are replaced by

V5
cx

1

c1 1
cx

2

c2 , ~2.31!

C152
cx

1

c1 2
3cx

2

c2 , ~2.32!

fx5c1c2, ~2.33!

f t52cx
1c223cx

2c1. ~2.34!

~c! The resulting linear equations are
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cx
252pc2, ~2.35!

cy
21@v2l2~y,t !#c250, ~2.36!

l2t2
d

dt Fcy
2

c2G52pvx2vxx . ~2.37!

Note that the consistency of the last three equations recovers the second and third go
equations~2.1b! and ~2.1c!, while u50 for this branch of the analysis and so~2.1a! is trivially
satisfied. However, sinceu[0, this is not a Lax Pair, which we would expect since we use
singular branch. Analogous results hold for the other singular branch~2.4!/~2.5a!.

D. The Darboux transformation

Once we have the Lax Pair, the next step in the analysis is to proceed to derive Da
transformations,20 i.e., transformations of the potentialsu, v, and p and the eigenfunctionsc
which leave the Lax Pair~s! invariant. Once again, a procedure may be formulated from the W
SMM. If nontrivial Darboux transformations~DTs! result, they may then be iterated20 in the usual
manner starting from relatively simple seminal solutions of the governing PDEs following
Crum procedure to generate more complex families of multisoliton solutions. It is worth
menting here that, for many systems, the iteration of DTs appears to work better than the ite
of auto-BTs where one often remains confined to the same family of solutions after a
iteration. In addition, the procedure for deriving DTs may be iterated to generate Hirota’
function. We shall lay out the basic ideas for the derivation of DTs next.

The key idea in deriving DTs is due to Konopelchenko and Stramp21 and involves treating the
Lax Pair itself as a system of NLPDEs in the field variables~potentials! u,p, and thecs. Assum-
ing a singular manifoldf1 , spectral parameterl1 and1/2 Lax Pair eigenfunctionsc1 associated
to starting~or seminal! solutionsu, v, andp of ~2.1! yields

f1x5c1
1c1

2 , ~2.38!

f1t53c1x
1 c1

21c1x
2 c1

1 , ~2.39!

c1x
1 5pc1

1 , ~2.40!

c1y
1 5@u2l1~y,t !#c1

1 , ~2.41!

l1t1
d

dt Fc1y
1

c1
1 G52pux1uxx . ~2.42!

Here, we have used~2.25!–~2.29!. New solutionsu8 andp8 may be constructed using the aut
BTs ~2.8a! and ~2.8c! ~with f replaced byf1 corresponding to the seminal solutions!, and asso-
ciating a singular manifoldf28 , spectral parameterl2 and 1/2 Lax Pair eigenfunctionsc28 to
these yields the analogous equations:

f2x8 5c28
1c28

2 , ~2.43!

f2t53c2x8
1c28

21c2x8
2c28

1 , ~2.44!

c2x8
15p8c28

1 , ~2.45!

c2y8
15@u82l2~y,t !#c28

1 , ~2.46!
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l2t1
d

dt Fc2y8
1

c28
1G52p8ux81uxx8 . ~2.47!

Next, following Ref. 21 and treating the Lax Pair~2.45!–~2.47! as a coupled system of NLPDE
in u8, p8, and thec28’s, we may apply the SMM to this system of NLPDEs and thus add
following truncated expansion for thec28

1 to those in~2.8a! and~2.8c! ~with f replaced byf1 for
the seminal solutions! to obtain

c28
15c2

12
c1

1u1

f1
, ~2.48!

u85
f1y

f1
1u, ~2.49!

p85
f1x

f1
1p. ~2.50!

Now, for a DT, the transformation of potentials and eigenfunctions given by~2.48!–~2.50!
must preserve the Lax Pair. In other words, the original starting solutions corresponding tou, p,
andc2

1 must satisfy the same Lax Pair equations~2.45!–~2.47! for the same eigenvaluel2 , i.e.,

c2x
1 5pc2

1 , ~2.51!

c2y
1 5@u2l2~y,t !#c2

1 , ~2.52!

l2t1
d

dt Fc2y
1

c2
1 G52pux1uxx . ~2.53!

Substituting the truncated expansions~2.48!–~2.50! in ~2.45!–~2.47! and using~2.38!/~2.39! and
~2.51! to ~2.53! yields, after some computer algebra withMATHEMATICA , the trivial result

u150. ~2.54!

Also, a leading-order singularity analysis of~2.13c!, in a manner similar to that performed o
~2.13a! while analyzing the SME~2.17! to derive~2.23!/~2.24! shows that

fy5k~3cx
1c21cx

2c1! ~2.55!

for some arbitraryk. Using ~2.38!, ~2.54!, and ~2.55! ~with f5f1) in ~2.38!–~2.50! yields the
following DT under which the Lax Pair~s! are invariant:

u85
k~3c1x

1 c1
21c1x

2 c1
1!

E c1
1c1

2dx

1u, ~2.56!

p85
c1

1c1
2

E c1
1c1

2dx

1p, ~2.57!

c28
15c2

1 . ~2.58!

Note that this DT may be iterated starting from simple seminal solutions of~2.1! and using the
Crum procedure.20 In order to do this, one would substitute the simple seminal solutions fou,
v5v(y), andp in ~2.40! to ~2.42! to obtain the first iterate forc1

1 . This may then be substitute
in ~2.56!/~2.57! to yield a second iterate for the potentialsu andp, and the process may then b
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iterated as long as closed-form solutions may still be readily obtained. Before attempting th
make one other comment. It is possible to iterate the singular manifold function itself to o
Hirota’s tau function. However,~2.58! makes it apparent that, for the present example~2.1!, only
trivial or identity iterates result for thec functions, and hence for thef’s @see ~2.25!#. We
therefore omit the discussion of Hirota’s method for this system.

E. Soliton solutions

In order to complete the treatment of~2.1!, we finally turn to a discussion of the iteration o
the auto-BT~2.8! for this equation in order to derive analytic solutions of~2.1!. The relevant
equations here will be~2.1!, ~2.8!, ~2.9!, and~2.10a!, ~2.10c!. Starting from the simplest vacuum
solutionsu5v5p50 as seminal solutions,~2.10a! yields the heat equation~in t andx) for the
first iterate off. Thus,

f~x,y,t !5
1

A4pt
e2x2/4tc1~y!1c2~y!. ~2.59!

Using this and the seminal solutions in~2.8! yields the next iterate for the solutions, i.e.,

u85
c18~y!12Apt c28~y!ex2/4t

c1~y!12Apt c2~y!ex2/4t
, ~2.60!

p85
xc1~y!

22tc1~y!24Apt3 c2~y!ex2/4t
. ~2.61!

It is straightforward to check that these are indeed solutions of~2.1! for v5v(y) and arbitrary
c1(y) andc2(y). One may try and iterate the process by using the last two equations in~2.10a! to
obtain a second iterate forf, but the solution becomes complicated and so we shall stop at
point. Figures 1–3 show plots of the solutions~2.60! and ~2.61! for

~a! plot of p for c1(y)5p, c2(y)5y5 at t51;
~b! plot of u for c1(y)5exp(2y2/4), c2(y)5y5 at t51;

and
~c! plot of p for c1(y)5y5, c2(y)5p at t51.

FIG. 1. Plot ofp for c1(y)5p,c2(y)5y5 at t51 for Eq. ~2.1!.
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In particular, note that these soliton solutions of this integrable (211)-dimensional system hav
free shape functionsc1(y) andc2(y) in the y directions which have been chosen arbitrarily. Th
is analogous to the free shape functions recently found in soliton solutions for other integ
systems in (211), including a (211) KdV equation~not KPI or II!, the Nizhnik–Novikov–
Veselov equation, and a (211) dimensional Broer–Kaup type system.22–25As for those systems
where a variety of dromions, lumps, breathers, instantons, and ring solitons are derived
Hirota’s approach or variable separation techniques, we find diverse solutions. In particular,
corresponds to a four~two! -lump solution~we could refer to it as a two-dromion; the terminolog
is somewhat ambiguous with exponentially localized structures being called dromions!. By con-
trast, the solutions in Figs. 2 and 3 show primarilyy modulations and a complex multi~three!
-lump structure, respectively. We shall encounter other types of solutions subsequently fo
systems.

This concludes our treatment of~2.1!, and we turn next to a relatively brief treatment of~2.2!.
In order to illustrate other features of the SMM method under consideration, we shall re

FIG. 2. Plot ofu for c1(y)5exp(2y2/4t),c2(y)5y5 at t51 for Eq. ~2.1!.

FIG. 3. Plot ofp for c1(y)5c2(y)5exp(2y2/4t) at t51 for Eq. ~2.1!.
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features of~2.2! which are analogous to those seen above for~2.1! only briefly. Our main con-
centration will be on features dissimilar to those discussed for~2.1!.

III. BRIEF ANALYSIS OF „2.2…

Attempting a leading-order analysis of~2.2! by substituting

u8;u0f2a, v8;v0f2b, q8;q0f2g ~3.1!

it is straightforward to check the possible consistent dominant balances and conclude the
ing.

~a! As for ~2.1! @see~2.5!/~2.6!#, consistent dominant balances exist witha and b having
unequal values. We do not consider these cases or branches of the singularity analysis fu
they are similar to the treatment in Sec. II.

~b! Unlike ~2.1!, ~2.2! admits a consistent dominant balance with

a5b51,
~3.2!

g53.

We shall concentrate on this branch as it illustrates somewhat different features of the a
from those discussed in Sec. II.

The leading-order analysis for the branch discussed in b above yields

$u0 ,v0,0%55
~0,0,0!

or
~0,2fy,0!

or
~fy,0,0!.

~3.3!

Using the last of these together with~3.1!, and substituting the resulting truncated expansions

u85
fy

f
1u, ~3.4a!

v85v, ~3.4b!

q85
q1

f2 1
q2

f
1q, ~3.4c!

into ~2.2! results in equations at different orders in powers off @analogous to those in th
Appendix for ~2.1!#. Solving these as in Sec. II yields

v5v~y,t !, ~3.5!

q152vfy
2, ~3.6!

q25fyvy1vfyy , ~3.7!

together with the conditions

22vfy
21f tfy22ufy

22fyfyy50, ~3.8!

2fyvy12vfyy12fyuy2fyt12ufyy1fyyy50. ~3.9!
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It is straightforward to check that~3.9! is they partial of ~3.8!. Careful inspection of~3.5!–
~3.8! and ~3.4c! reveals an insufficient number of equations to eliminate all field variables~or
potentials! u, v, andq and derive a SME. In fact, this is characteristic of a singular branch of
Painlevéanalysis. As is well known, such a branch may not be used to algorithmically deriv
various properties of the integrable system~2.2! as was done using a general or regular branch
~2.1! in the previous section. However, it may still be used to derive special analytic solu
~these are usually referred to as ‘‘singular’’ solutions, but in the sense of solutions not contai
the general solution and not necessarily in the sense of possessing singularities!. We shall use the
governing equations above for the chosen singular branch of the Painleve´ analysis to derive
special analytic solutions of~2.2!. The procedure used will be iteration of the auto-BT~3.4!, as
was done for~2.1! at the end of Sec. II@and ~3.4c!#, and we proceed to this next.

The relevant equations are~3.4!–~3.8!. Starting with vacuum solutionsu5v5q50 of ~2.2!,
~3.8! yields the heat equation~in t andy) for f. Solving this yields

f~x,y,t !5
e2y2/4td1~x!

A4pt
1d2~x!. ~3.10!

Using this and~3.5! to ~3.7! in ~3.4! yields the next iterate

u85
yd1~x!

22td1~x!24Apt3 d2~x!ey2/4t
, ~3.11a!

q850 ~3.11b!

for solutions of~2.2!. It is straightforward to check that these satisfy~2.2!. Figures 4–6 show the
singular solutions in~3.11a! for

~a! d1(x)5e2x2/4t, d2(x)5x5 at t510;
~b! d1(x)5ex2/4t, d2(x)5x5 at t51;

and
~c! d1(x)5x5, d2(x)5ex2/4t at t510.

Of these, the first is a two-lump solution, the second a complex multi-lump coherent stru
and the last a line soliton~front!.

FIG. 4. Plot ofu for d1(x)5exp(2x2/4t), c2(x)5x5 at t510 for Eq.~2.2!.
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IV. A THIRD NLS TYPE SYSTEM IN „2¿1…

In this section, we briefly discuss the system8

ut85uyy8 1u8@~u8v8!y1q8#, ~4.1a!

2v t85vyy8 2v8@~u8v8!y2q8#, ~4.1b!

qx85~v8ux82u8vx8!y , ~4.1c!

which is an integrable (211) dimensional generalization of the derivative NLS2 equation.10,26

Plugging in the truncated singular branch expansions

u85
u0

f
1u,

FIG. 5. Plot ofu for d1(x)5ex2/4t, d2(x)5x5 at t51 for Eq. ~2.2!.

FIG. 6. Plot ofu for d1(x)5x5, d2(x)5ex2/4t at t510 for Eq.~2.2!.
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v85v01v1f, ~4.2a!

q85
q0

f2 1
q1

f
1q

into ~4.1! yields

u05fy /v0~y!, v05v0~y!, v150,
~4.2b!

q052fy
2 , q15fyy .

Using these in~4.1! yields the nontrivial Painleve´–Bäcklund equations

f t22ufy2fyy50, ~4.3!

q5uy , ~4.4!

qu2ut1uuy1uyy50. ~4.5!

From ~4.5! and ~4.3!

ut5
]

]y
@u21uy#, ~4.6!

u5 1
2 @C12V̄# ~4.7!

with

V̄[fyy /fy ~4.8!

andC1 is defined by~2.12b!.
Using ~4.7! and~4.6! and performing a leading-order analysis of the resulting singular m

fold equation@see~2.18!–~2.24!# yields

v05cy ~4.9!

and

c05cy or 3cy . ~4.10!

Hence,

V̄5
cy

1

c1 1
cy

2

c2 ,

C̄15
f t

fy
5

3cy
1

c1 1
cy

2

c2

and thus

fy5c1c2, ~4.11!

f t5~3cy
1c21cy

2c1!. ~4.12!

Using these,~4.7!, ~4.4!, and~4.6! yields
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cy
15uc1 ~4.13!

and

d

dy
~cy

1/c1!5q, ~4.14!

c t
15@u21uy1l1~x,t !#c1. ~4.15!

These equations comprise a Lax-like system of eigenvalue problems/evolution equation, bu
limited sense thatv51 @see~4.1!# since a singular branch has been used in~4.2!. As is well
known, this is what one would expect from using a singualr branch. The compatibility cond
for these yield~4.1!.

We next iterate the truncated expansions~4.2a! and the auto-BT~4.3!/~4.4! to obtain analytic
solutions of~4.1!. Starting with the constant solutionsu5q50, v51 of ~4.1!, ~4.3! yields

f~x,y,t !5
1

A4pt
e2y2/4te1~x!1e2~x!.

Hence~4.2a! yields

q85
2e1~x!@At e1~x!1Ap~2t2y2!e2~x!ey2/4t#

2t3/2@e1~x!12Apt e2~x!ey2/4t#2
, ~4.16!

u85
ye1~x!

@22te1~x!24Ap t3/2e2~x!ey2/4t#
, ~4.17!

where, as before,e1(x) ande2(x) are free shape functions alongx.
Figures 7–10 show the solution~4.16! for

~a! e1(x)5coshx, e2(x)5sinx at t51;
~b! the time evolution in Fig. 7, i.e., withe1(x)5coshx, e2(x)5sinx, for y53;
~c! e1(x)5cosx, e2(x)5sinx at t51;

and

FIG. 7. Plot ofq for e1(x)5coshx, e2(x)5sinx at t51 for ~4.1!.
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~d! e1(x)5e2x2/4, e2(x)51 at t51.

Figures 7 and 9 are complex multilump solutions, Fig. 8 shows a fairly regular time evolution~for
eachx, at y53), and Fig. 10 shows a two-dromion. Figure 11 shows this two-dromion at a
time t52. Note that the dromion structures splay outwards in bothx and y directions~but stay
spatially coherent! and also decrease in amplitude as time increases.

V. CONCLUSIONS AND PROSPECTS

In this paper, we have employed a technique which has evolved over the last decade o
derive various properties of integrable (211) dimensional NLS-type systems from truncat
Painlevéexpansions. As should be apparent from the examples we have considered, the tec
has by now evolved to a point where it affords one form of unifying perspective on integ
systems, and also provides a method for investigating new integrable systems such as ne
grable hierarchies of equations.

FIG. 8. Time evolution ofq in Fig. 7 aty53.

FIG. 9. Plot ofq for e1(x)5cosx, e2(x)5sinx at t51 for ~4.1!.
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Future work will seek to develop and refine the method further. In addition, the method
probably continue to be used to investigate new integrable equations or hierarchies.

APPENDIX

Substituting~2.8! in ~2.1! yields the following.
From ~2.1a!:

OS 1

f2D : fy@f t22pfx2fxx#50, ~A1!

OS 1

f D : 2fyt12fxux12pfxy1fxxy50, ~A2!

O~1!: 2ut12pux1uxx50. ~A3!

From ~2.1b!:

FIG. 10. Plot ofq for ~4.1! with e1(x)5e2x2/4, e2(x)51 at t51.

FIG. 11. Plot ofq for ~4.1! with e1(x)5e2x2/4, e2(x)51 at t52.
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O~f21!: v152vx /fx50, ~A4!

O~1!: v t22pvx1vxx50. ~A5!

From ~2.1c!:

O~1!: 2py1ux1vx50. ~A6!
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NÄ4 characters in Gepner models, orbits
and elliptic genera
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We review the properties of characters of the N54 superconformal algebra in the
context of a nonlinear sigma model onK3, how they are used to span the orbits,
and how the orbits produce topological invariants like the elliptic genus. We derive
the same expression for theK3 elliptic genus using three different Gepner models
(16, 24, and 43 theories!, detailing the orbits and verifying that their coefficientsFi

are given by elementary modular functions. We also reveal the orbits for the 1322,
144, and 1242 theories. We derive relations for cubes of theta functions and study
the function (1/h) (nPZ(21)n(6n11)k q(6n11)2/24 for k51,2,3,4. © 2003
American Institute of Physics.@DOI: 10.1063/1.1624470#

I. INTRODUCTION

In the mid-1980s, many efforts were deployed to find the characters of the N52 supercon-
formal algebra~SCA!, culminating in the work of Refs. 15 and 7. The N52 characters are define
by tr qL02c/24yJ0 with L0 the Virasoro operator andJ0 the U~1! charge.@We use the common
variablesq5e2p i t andy5e2p iz wherez keeps track of the U~1! theta angle.# They fall into two
classes: those for continuous central chargec.3 and those for discretec,3, namely,c53k/(k
12) with k being the level.

In the first class, the characters for massive representations are proportional toq3(z)/h3 ~in
the NS sector!, while those for massless representations have an extra denominator
1ysign(m)qumu21/2, wherem is a quantum number labeling the conformal dimensionh and the U~1!
chargeQ. Unitarity constrains (h,Q) to lie inside a polygonal domain of the plane. Massle
representations are those hitting the unitary bound, i.e., with (h,Q) on the boundary of the
polygon. Massive representations are those with (h,Q) in the interior of the polygon; they hav
vanishing Witten index.

In the second class, with discretec,3, the characters are spanned by theta functions and
coefficients are the mysteriousstring functionsof Ref. 9.

In the late 1980s, characters for the N54 SCA were also unraveled.3 The N54 algebra
contains an affine su~2! Kac–Moody subalgebra of levelk, and the central charge of the SCA
c56k. For k51, the massive characters are proportional toq3(z)2/h3 ~in the NS sector!, while
the massless characters have again an extra denominator. For higher levelk, the characters have
an additional factor ofxk21

l , which denotes the su~2! affine characters~or a slight deformation of
them in the massless case! with l being the isospin quantum number, 0< l<k/2. Unitarity requires
h> l ~NS sector! and massless representations hit this bound. Massless N54 characters were

found to be expressible as( l 8Al ,l 8xk
l 8 for some branching functionsAl ,l 8 , and even expressible a

an infinite sum of N52 characters taken at double or triple points@these are special points in th
(h,Q) plane#.

This correspondence between N52 and N54 characters was furthermore enhanced in Ref
where Gepner models were used to write N54 characters—or ratherorbits—as tensor products o
several characters of the N52 minimal theories. Then finite sums over these orbits NSi or Ri yield

a!Electronic mail: grunberg@science.uva.nl
57510022-2488/2003/44(12)/5751/42/$20.00 © 2003 American Institute of Physics
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the traces for the N54 characters, modular invariant partition functions, elliptic genera, or o
topological invariants like

F5trNS,R
N54~21!FqL02c/24yJ05(

i
DiNSi8R̄i8

for some combinatorial factorsDi . Since these objects are topological, they should not depen
the particular Gepner model at hand. Gepner models are special points in the moduli spaceK3
surfaces13 where the above trace factorizes into a product of NS and R orbits. That is, we on
to points where the formula holds. At different such points, we have different sets of orbitsi

and of coefficientsDi . Moreover, each orbit should be expressible as a sum of a massless
massive N54 character: NSi(t,z)5cĥNS(t,z)1Fi(t)chNS(t,z).

In the context ofK3 compactifications, the nonlinear sigma model has central chargec56,
thus the su~2! subalgebra of the N54 SCA has levelk51. In the following, we shall give explicit
expression of the functionsFi(t) in the case of the 16 and 24 theories~and lay the cornerstone fo
the 43 theory! and find that they are essentially given by quotients of Dedekindh functions, thus
reflecting the modular nature of the characters and topological invariants. We also deri
expression forF in both theories and gather on the way useful results on theta functions and
tools of analytic number theory.

This introduction is followed by six more sections. In Sec. II, we recall the N54 characters
for thec56 SCA of the nonlinear sigma model withK3 target space. We also show how massl
and massive characters are used to span theorbits, without yet detailing the construction of thes
orbits. Section III is an expanded version of the results of Ref. 2 on topological invariants foK3
based on computations with the orbits. Sections IV, V, and VI are the crux of the paper, rev
in detail the orbits for the 16, 24, and 43 Gepner models, respectively, computing the functionsFi

and developing several lemmas on theta functions. Section VII studies Gepner models of
levels, like 1322, 144, and 1242—the first of which is a toroidal model and the other two areK3
models.

In Sec. IV, we also explore the functiona(t) which is essential in Ref. 1 for deriving
Ramanujan identities. In particular, we study the function

1

h (
nPZ

~21!n~6n11!k q(6n11)2/24

for k51,2,3,4~Proposition 4.51 and thereafter!, and relate sums of cubes of theta functions to
single theta function~Lemma 4.31!.

II. NÄ4 CHARACTERS

We first write down the characters of the N54 SCA with central chargec56 and levelk
51, i.e., corresponding to a sigma model withK3 target space. We give here explicitly th
characters of the NS sector, and refer to spectral flow for their counterparts in the R sector
depend on two variables,q5e2p i t and y5e2p iz for the modular parameter and the U~1! theta
angle, respectively. Representations are parametrized by highest weighth and isospinl and uni-
tarity impliesh> l ~NS sector!. Our N54 SCA is the enhancement of a N52 Gepner model by
adding SU~2! currentsJ6, and the latter’s characters are defined by

chNS~t,z!ªtrNSqL02c/24yJ0. ~2.1!
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A. The characters

We rewrite the familiar expressions of Ref. 3 for N54 characters in a more useful paramet
zation. There are two kinds of characters: we denote massless characters~with isospin l ) by
cĥl

NS(t,z) and massive ones~with highest weighth) by chh
NS(t,z).

Massless representations saturate the unitarity boundh5 l and l 50,1
2:

cĥ0
NS52

q3~z!

h3 (
n

qn2/221/8yn
12yqn21/2

11yqn21/252S q1~z!

q3
D 2

1S q21/8

h
22h3D S q3~z!

h D 2

,

~2.2!

cĥ1/2
NS5

q3~z!

h3 (
n

qn2/221/8yn
1

11yqn21/252S q1~z!

q3
D 2

1h3 S q3~z!

h D 2

,

with

h3~t!ª
1

hq3
(

qn2/221/8

11qn21/2. ~2.3!

The above equalities follow from the fact that the left-hand sides are so-called theta functio
characteristic (0,0;24p i ,22p i t) of degree 2~see Appendix A!, hence can be spanned b
q1(z)2 and q3(z)2. The coefficients are obtained by evaluating the lhs atz5 (11t)/2 and z
50, respectively, bearing in mind thatq3@(11t)/2#50 andq1(0)50. For z5 (11t)/2, note
that the term (12q0) in the product expression ofq3@(11t)/2# cancels the denominator of th
n50 term of the sum, yielding 2q21/4 and2q21/4 for the left-hand sides.

Massive representations are simpler and exist forh.0 andl 50,

chh
NS5qh21/8

q3~z!2

h3 . ~2.4!

Spectral flow yields the R character~idem for massive characters!:

cĥl
R~t,z!5yq1/4cĥ1/22 l

NS S t,z1
t

2D . ~2.5!

Thus, for instance, the Witten index is given by

I 5trR qL02c/24~21!F5cĥ1/22 l
R S t,

1

2D52q1/4 cĥl
NSS t,

11t

2 D5H 22, l 50

1, l 5 1
2

~2.6!

sinceq3@(11t)/2#50 andq1@(11t)/2#5q21/8q3 . For the massive characters, the Witten ind
vanishes:q3@(11t)/2#50 in ~2.4!.

B. The orbits

The nonlinear sigma models onK3 have three kinds of NS orbits: graviton, massless,
massive orbits. Their construction will be detailed in the explicit computations below, Secs
VI. For now, we only need to know that they can be spanned by massless and massive54
characters. The graviton orbit, for example, contains the massless character cĥ0

NS and a sum of
massive characters

(
n>1

cn chn
NS5S (

n>1
cnqnD ch0

NS5..F1~t! ch0
NS.
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Thus the graviton orbit has coordinates (1,F1) in the basis$cĥ0
NS,ch0

NS%. Similarly for the other
orbits. From the examples of the next sections, it will appear that the massless orbits have
coordinates (1,Fi), and the massive orbits have coordinates (0,F j ) ~hence the name!. We use the
subscripts 1,i , j for the different orbits: 1 for the graviton orbit,i 52, . . . ,d for the massless orbits
and j 5d11, . . . ,d1d8 for the massive orbits. Writing the N54 NSi characters~for the three
kinds of orbits! in the basis$cĥ0,1/2

NS ,ch0
NS% definesthe functionsFi(t):

NS1~t,z!5cĥ0
NS~t,z!1F1~t! ch0

NS~t,z!,

NSi~t,z!5cĥ1/2
NS~t,z!1Fi~t! ch0

NS~t,z!, ~2.7!

NSj~t,z!5F j~t! ch0
NS~t,z!.

The set of functionsFi is determined by the particular Gepner model under study. Spectral
generates again the Ramond counterparts, Ri , and subsequent (21)F insertion—denoted by a
prime—yields the Witten index of the orbit~nonvanishing for massless characters only!: R185I 1

522, Ri85I i51, Rj850.
The action of the modular group transforms all these orbits into each other. For instanc

S-transformation defines a real matrixSi j :

NSi~t,z!52(
j

Si j NSj S 2
1

t
,
z

t D e22p i z2/t.

DefineDiªS1,i /Si ,1 , which are combinatorial factors of tensoring representations when us
Gepner model. For instance, in the 16 theory:Di5(1,20,270,30). UsingDi , we form the modular
invariant partition function for theK3 s-model:

Z~t,t̄;z,tz!5tr qL02 ~c/24!q̄L̄02 ~ c̄/24!yJ0ȳJ̄05
1

2 (
i 51

d1d8

Di~ uNSi u21uNSi8u
21uRi u21uRi8u

2!,

~2.8!

where the prime represents (21)F insertion. The last term evaluated aty51 is but the Witten
index I and summing over it gives the Euler character:

x5 (
i 51

d1d8

DiI i
25D1221D21 ¯1Dd541h1,1524, ~2.9!

as the sum ofDi over the massless orbit always adds up to the Hodge numberh1,1 of the orbifold:
20 in our case ofK3.

III. TOPOLOGICAL INVARIANTS

A. K3 elliptic genera

In Refs. 2 and 10 the authors studied thec56 SCA of a sigma-model withK3 target space.
The holonomy of theK3 manifold allows for two more SU~2! currentsJ6, i.e., conformal fields
of weight 1 and U~1! chargeJ052J0

3562, that generate the transformation of double spec
flow ~i.e., NS→R→NS) and extend the N52 algebra to N54.

The elliptic genus of this (c,c̄)5(6,6) heterotic sigma model is, geometrically, a double s
whose coefficients are the indices of Dirac operators for certain vector bundles overK3:

F~t,z!5(
n,r

cn,r qnyr ,
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with cn,rª indD” En,r
5E

K3
ch~En,r ! td~K3!,

where the bundleEn,r is defined by

(
n,r

En,r qnyr
ªy21

^
n>1

~∧2qn21yTK3^ ∧2qn21y21T̄K3^ SqnTK3^ SqnT̄K3!,

and ∧qE5 % k>0qk∧kE, SqE5 % k>0qkSkE. (∧k and Sk denote thekth exterior and symmetric
products.!

The elliptic genus also has a topological expression, given by a trace over the left and
Ramond sectors with (21)F insertion:

F~t,z!ªtrR,R~21!FL1FRqL021/4q̄L̄021̄/4yJ0524S q3~z!

q3
D 2

12
q2

42q4
4

h4 S q1~z!

h D 2

, ~3.1!

where the second expression will be proved in the next section. Note that because we haveȳJ̄0

for the right movers, the (21)FR insertion in the R-sector yields only a contribution from the ze
modes (q̄0 terms!. Indeed, for any higher state, Susy ensures the existence of another stat
opposite (21)F eigenvalue. Thus the above expressions are independent ofq̄ and we could have
dropped that variable from the definition. Note also that the fermion parity operator (21)F

5(21)FL1FR5(21)FL2FR is sometimes writteneip(J02 J̄0). The U~1! chargeJ0 helps to distin-
guish between bosons and fermions, and its values are inZ for the NS sector and inZ1 c/6 for the
R sector. Thus the difference between left- and right-moving U~1! charge is always an integer fo
the NS–NS or R–R sectors.

At the special values ofz5 (11t)/2 , t/2 ,1
2 and 0, we obtain specific topological invariants2

using ~B14!,~B15! and dropping the extraq21/4 and2q21/4 in the first two cases:

Dirac index, F
Â

1
ªtrNS,R~21!FRqL021/452q3

2~q2
42q4

4!/h6,

F
Â

2
ªtrNS,R~21!FL1FRqL021/4522q4

2~q2
41q3

4!/h6;

~3.2!
Hirzebruch genus, FsªtrR,R~21!FRqL021/452q2

2~q4
41q3

4!/h6;

Euler character, FxªtrR,R~21!FL1FRqL021/4524.

Whence a shiftz→z1 t/2 generates spectral flow R→NS, while z→z1 1
2 is responsible for an

additional factor of (21)FL. The elliptic genus evaluated at specific points thus yields the part
function for different spin structures; atz50, we obtain the Witten index—or the bosonic partitio
function if we have no spin structures.

We note that the above indices or genera are universal and do not depend on theK3 moduli.
Since they hold for any complex structure, they are rightly called topological invariants.

B. Derivation by orbits

We shall prove~3.1! by actually computingF
Â

1
with its z dependence restored, i.e., w

consider the NS,R sector. This will allow us to work with the functionsFi which we defined by the
left-moving NSi orbits. Note that in the following, thet-dependence shall be understood and
always explicitly written. The prescription is to replace the trace by a sum over all orbits:

F
Â

1
~t,z!ªtrNS,Rq

L021/4yJ0~21!FRq̄L̄021̄/45 (
i 51

d1d8

Di NSi~t,z! R̄i8~ t̄,z̄50!.
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This factorization of NS and R sectors will be confirmed by the concrete examples of the
sections.~A thorough treatment of this factorization into tensor products of Hilbert spaces ca
found in Wendland’s Ph.D. thesis.17! Note that in the right-moving sector, Rī8( t̄,0) is but the
Witten index I 1522, I i51, andI j50. Hence the trace consists of two parts only, one for
graviton orbit and one from the massless orbit. In~2.2!, we can interpret the coefficient o
q1(z)2/q3

2 as 2I i for i 51, . . . ,d and similarly for the coefficient ofh3 . Bearing this in mind,
~2.7! gives us

Since this is a topological invariant, it should be independent of the Gepner model at hand,
the particular set of functionsFi(t). That is, for different Gepner models we have different s
~of variable length! of orbits NSi and functionsFi , but the above sum yields always the sam
result. In Secs. IV and V we show~for the 16 and 24 theories! how the large bracket yields
2(q2

42q4
4)/h4. Hence our Dirac index becomes

F
Â

1
~z!5224S q1~z!

q3
D 2

12
q2

42q4
4

h4 S q3~z!

h D 2

~3.3!

and thez50 value gives back the invariant of~3.2!.
To arrive at the elliptic genus~3.1!, we need to insert (21)FL and perform spectral flow for

the left-movers. This corresponds to shiftsz→z1 1
2 andz→z1 t/2, respectively. The first of thes

operations yieldsF
Â

2
(z)5( i 51

d Di NSi8(z)R̄i8(0) and combination with the second yieldsF(z)

5( i 51
d DiRi8(z)R̄i8(0) as in~3.1!.

C. Alternative derivation by orbifolds

The expression for the elliptic genus~3.1! can also be derived from orbifold models of theK3
surface, as was shown in Ref. 2. These models are formed by dividing the product of two co
tori T3T8 by the action of the symmetry groupZn ,

z1→z1 e2p i /n and z2→z2 e22p i /n. ~3.4!

Essentially four types occur, corresponding ton52,3,4,6.
The partition function for these models consists of an untwisted piece and a twisted on

untwisted piece is the fermionic contribution~in the NS sector, say! uq3(z)/hu times the bosonic
lattice functionG2,2(G,B)/uhu4.

The twisted piece consists of two complex fermions and two complex bosons, twiste
some power of theZn symmetry generatore2p i /n, that is the U~1! theta anglez52pu will be
shifted by (s1r t)/n. For the fermions~in the NS sector, say!, we have againq3(z)/h @yet with
twists in opposite direction, see~3.4!#, while for the bosons we haveh/q1 . Thus the twisted
partition function is the sum

( 8
r ,s

nr ,suZr ,su2, Zr ,sª
q3~z1~s1r t!/n! q3~z2~s1r t!/n!

q1~~s1r t!/n!2 , ~3.5!

where the prime on the sum signifies omission ofr 5s50. The weightsnr ,s are defined byn0,s

ª(s sin(ps/n))4/n and nr ,sªns,n2r . Concretely, these weights all equal 8 forn52 and 3 forn
53; while for n54 the three weights forming at the half-periods (r ,s50,2) equal 4 and the
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remaining 12 weights equal 1. Forn56, the three half-period weights equal 16/6, the eig
third-period weights equal 9/6 while the remaining 24 weights equal 1/6. In all cases, the i
tant observation is that the sum of the weights equals 24:( r ,s8 nr ,s524.

By the Riemann addition formula~B17!, the (r ,s)-block can be rewritten as

Zr ,s~z!5S q1~z!

q3
D 2

1S q3~~s1r t!/n!

q1~~s1r t!/n! D
2S q3~z!

q3
D 2

~3.6!

while its equivalent for the R-sector with (21)F insertion is

q1/4y Zr ,s~z1~11t!/2!5S q3~z!

q3
D 2

2S q3~~s1r t!/n!

q1~~s1r t!/n! D
2S q1~z!

q3
D 2

. ~3.7!

With these building blocks, we can now compute the elliptic genus:

F~t,z!5trR,R~21!FqL021/4yJ0q̄L̄021̄/4

5( 8
r ,s

nr ,sq
1/4yZr ,s~z1~11t!/2!q̄1/4 Z̄r ,s~~11t!/2!

5S ( 8
r ,s

nr ,sD S q3~z!

q3
D 2

2S ( 8
r ,s

nr ,sS q3~~s1r t!/n!

q1~~s1r t!/n! D
2D S q1~z!

q3
D 2

524S q3~z!

q3
D 2

12
q2

42q4
4

h4 S q1~z!

h D 2

, ~3.8!

where we have used~B33! to transform

( 8
r ,s

nr ,sS q3~~s1r t!/n!

q1~~s1r t!/n! D
2

5S q3

2ph3D 2

( 8
r ,s

nr ,s~`~~s1r t!/n!2const! ~3.9!

and this last sum equals224•const, by repeated use of~B35! for equal values ofnr ,s . The
constant itself equals (p2/3) (q2

42q4
4). So we do indeed recover~3.1!.

IV. COMPUTATIONS IN 1 6 THEORY

For clarity, we shall now detail the ideas developed at the beginning of this section, and
what we mean under ‘‘orbits’’ and functionsFi in the concrete example of the 16 theory. This
Gepner model is based on the tensoring of six times the samek51, N52 self-consistent field
theory~SCFT!. That is, the N54 characters will be tensor products of six N52 characters. So we
first present those N52 characters.

A. General considerations

In general, for values of the central charge between 0 and 3, unitary representations
52 superconformal algebras exist at discrete values of the central charge, namely atc53k/(k
12). The highest weight states have conformal dimension and U~1! charge parametrized by tw
quantum numbersl , m ~isospin and its third component!:14–16

hl ,m5
l ~ l 12!2m2

4~k12!
, Ql ,m5

m

k12
, ~4.1!
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where 0< l<k, 2 l<m< l , l[m mod 2. The NS characters of these N52 theories are linear
combinations of su~2! theta functions:

chl ,m
NS~y,q!5 (

m852k11

k

cl ,m8 u (k12)m82mk, k(k12)S t

2
,

z

k12D ,

~4.2!

um,k~t,z!ª (
nPZ1m/2k

qkn2
ykn, um,k5um12k,k .

For later purposes, note the behavior under full (z→z1t) spectral flow:

um, k(k12)S t

2
,

z

k12D ——→
z→z1t

q2 k/@2(k12)#y2 k/(k12) um12k, k(k12)S t

2
,

z

k12D .

The coefficientscl ,m are thestring functionsof Kac and Peterson9 for l[m mod 2; for the
su~2! affine Lie algebra they have an alternative definition via the Weyl–Kac formula:

u l 11,k122u2 l 21,k12

u1,22u21,2
5.. (

m52k11

k

cl ,mum,k . ~4.3!

Since the lhs and rhs have expansions with powers ofy in Z1 l /2 andZ1m/2, respectively, we see
that cl ,m50 if lÓm mod 2. Of course, for each levelk we have different set of string functions
Note also the symmetries:cl ,m5cl ,2m5cl ,m12k5ck2 l ,k2m . For the case of the affine su~2! alge-
bra A1

(1) , the string functions are merely proportional to Hecke indefinite modular forms,

cl ,m5h~t!23 (
2uxu,y<uxu

sgn~x! q(k12)x22ky2
, ~4.4!

wherex, y are such that (x,y) or ( 1
22x, 1

21y) arePZ21(( l 11)/2(k12) , m/2k).
For our present case ofk51, c51, the latter sum can be remarkably rewritten as

(
2uxu,y<uxu

(x,y)[(1/6,0) or (1/3 ,1/2)modZ2

sign~x! q3x22y2
5 (

j >0
u l u< j /2

~21! j 1 lq(3(2j 11)22(6l 11)2)/245h~t!2.

~4.5!

The last equality is another remarkable result of Ref. 9. Our string functions at level one
become

c0,05c1,15c1,215
1

h~t!
, c0,15c1,050. ~4.6!

B. Characters and orbits

We are in a position to write down the three minimal N52 characters, obtained forl 5m
50, l 5m51, andl 52m51,
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Aªch0,0
NS~y,q!5

1

h
u0,3S t

2
,
z

3D5
1

h (
Z

q~3/2! n2
yn5

1

h
q3~zu3t!,

Bªch1,1
NS~y,q!5

1

h
u2,3S t

2
,
z

3D5
1

h (
Z

q~3/2!(n1 1/3)2yn1 1/35
1

h
q1/6y1/3 q3~z1tu3t!, ~4.7!

Cªch1,21
NS ~y,q!5

1

h
u4,3S t

2
,
z

3D5
1

h (
Z

q~3/2!(n1 2/3)2yn1 2/3

5
1

h
q2/3y2/3 q3~z12tu3t!

5
1

h
q1/6y21/3 q3~z2tu3t!.

Under spectral flow, the three su~2! theta functions are shifted into each other,

um,3S t

2
,
z

3D ——→
z→z1 t/2

q21/24y21/6 um11,3S t

2
,
z

3D ——→
z→z1 t/2

q21/6y21/3 um12,3S t

2
,
z

3D , ~4.8!

so that under full spectral flow, the three characters are cyclicly permuted,

A ——→
z→z1t

B→C→A, ~4.9!

where we have omitted the incrementing factors ofq21/6y21/3.
To build the various orbits of the 16 theory, we consider all possible homogeneous poly

mials of degree 6 inA, B, C, respecting the following two rules:

~1! the orbit must be holomorphic, i.e., its Fourier expansion must have integer powers ofy;
~2! the orbit must be covariant under full spectral flow, NSi(z→z1t)5q21y22 NSi(z).

Condition~1! excludes combinations likeA5B, A4B2 or A3B2C, . . . . Condition~2! requires
invariance of the orbit under cyclic permutation ofA, B, C, and also guarantees it to be a the
function of characteristic (0,0;24p i ,2p i ) and degree 2. Thus each orbit can be spanned by cĥ0,1/2

NS

and ch0
NS, or alternatively byq1(zut)2 andq3(zut)2.

The four possible orbits respecting the above rules are

NS15A61B61C6,

NS25A3B31B3C31C3A3,
~4.10!

NS35A2B2C2,

NS45A4BC1B4CA1C4AB.

We recall the definition of the combinatorial factorsDi associated to a particular model: Th
above orbits can be checked to have the following modular behavior:2

NSi52(
j

Si j NSj S 2
1

t
,
z

t D e22p iz2/t, Si j 5
1

27S 3 60 270 90

3 221 27 9

1 2 9 26

3 6 254 9

D . ~4.11!
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Then theDi are defined byDiªS1,i /Si ,1 , that is ~1,20,270,30! in the present case of 16 theory.
Note that the first column (Si ,1) is just the number of summands in the orbit NSi , while the first
row (S1,i) is S1,1 times the number of permutations of the factors in any summand of NSi . The
same trick will allow a quick determination of theDi in the 24 or 43 theories.

We note that aty52q21/2, that isz5 (11t)/2, the massive character vanishes and so d
B, ch(h50)505B, while A5eip/3C5q21/24. Thus aty52q21/2:

NS152q21/45cĥ0
NSS z5

11t

2 D ,

NS252q21/45cĥ1/2
NSS z5

11t

2 D ,

NS350,

NS450, ~4.12!

and we recognize that the first orbit is the graviton orbit, the second is the massless orbi~only
one!, while the third and fourth orbits are massive.

C. The functions Fj

We will now compute the functionsF j for the massive orbits. ForF3 this is pretty easy, while
F4 is more involved.F1 andF2 do not seem to have appealing expressions. Let us start withF3 ,

NS35A2B2C25
q2/3

h6 ~q3~zu3t! q3~z1tu3t! q3~z2tu3t!!2

5
q2/3

h6 S q3~zut! )
~12q3n!3

~12qn! D 2

5
h~3t!6

h8 q3~zut!25
!

F3 ch0
NS5F3 q21/8

q3~zut!2

h3 ~4.13!

from which we find that

F35q1/8
h~3t!6

h5 . ~4.14!

Similarly, for F4 we have

NS45ABC~A31B31C3!

5
h~3t!3

h4 q3~zut! @q3~zu3t!31q1/2y q3~z1tu3t!31q2/3y2/3q3~z12tu3t!3#

5
!

F4 ch~h50!5F4 q21/8
q3~zut!2

h3 . ~4.15!

Thus we see that the large bracket with the sum of cubes of theta functions must be propo
to q3(zut). This is indeed the content of Lemma 4.31 below, and we then obtain forF4 ,

F45q1/8
h~3t!3

h4 a~t!, ~4.16!

wherea(t) is a function already studied in Ref. 1:
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a~t!ª
1

h (
Z

~21!n~6n11! q(6n11)2/245 (
k,l PZ

qk21kl1 l 2. ~4.17!

D. Dirac index

Although we could not find interesting expressions forF1 andF2 , we shall nonetheless deriv
~3.3!, that is we shall show the following.

Proposition 4.18:

(
i 51

d

Di NSi I i522 NS1120 NS25224
q1~zut!2

q3
2 12~q2

42q4
4!

q3~zut!2

h6 . ~4.19!

Proof: Because the Dirac index~lhs! is spanned by the massless and massive character0

and ch, or equivalently byq1(zut)2 andq3(zut)2, we only need to recover the constants mu
plying these two basis vectors. Due to~4.12! and the vanishing ofq3(zut) at z5 (11t)/2, we see
thatq1(zut)2 is correctly multiplied by224/q3

2. To check the constant in front ofq3(zut)2 would
only require settingz50, whereq1(zut) vanishes. The lhs then would give22(A612 B6)
120(B3(2A31B3)) becauseB5C at z50. However, we have not succeeded in showing direc
that this equals 2(q2

42q4
4) q3

2/h6. Presumably, this is an interesting corollary of the theorem
Rather, to find the constants multiplying the two basis vectors, we shall differentiate both

twice and setz5 (12t)/2. This last evaluation has the merit of making the characterC vanish,
and giving alsoA52B5 (1/h) q3((11t)/2 u3t). For NS1, we have

]z
2uz5 ~12t!/2 NS15]z

2uz5 ~12t!/2 ~A61B61C6!

5]z
2uz5 ~12t!/2 ~A61B6!

56A4@A915A8A#16B4@B915B8B#. ~4.20!

Recalling thatq3 andq39 are even functions ofz, while q38 is odd, and that they are all periodi
under z→z11, we note the following:q3((12t)/2 u3t)5q3((11t)/2 u3t) and similarly for
q39 , but with an additional minus sign forq38 . Thus for instance, we have atz5 (12t)/2:

A5q3~zu3t!,

Auz5 ~12t!/25q3S 11t

2 U3t D ,

~4.21!

A8uz5 ~12t!/252q38S 11t

2 U3t D ,

A9uz5 ~12t!/25q39S 11t

2 U3t D ,

B5q1/6y1/3 q3~z1tu3t!,

Buz5 ~12t!/252q3S 11t

2 U3t D ,

~4.22!

B8uz5 ~12t!/25F2
2p i

3
q32q38G S 11t

2 U3t D ,

B9uz5 ~12t!/25F2
4p i

9
q31

4p i

3
q381q39G S 11t

2 U3t D .

In particular,A8B1AB852 (2p i /3) q3 . Bearing this in mind, we obtain
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]z
2uz5 ~12t!/2 NS15

1

h6 q3S 11t

2 U3t D 4

@12 q39q3160 q38
2148p i q38q3216p2q3

2#S 11t

2 U3t D .

~4.23!

Similarly, for NS2 , we have

]z
2uz5 ~12t!/2 NS25]z

2uz5 ~12t!/2 ~A3B31B3C31C3A3!

5]z
2uz5 ~12t!/2 ~A3B3!

53A2B2 @AB912A8B81A9B#16AB@AB81A8B#2

5
1

h6 q3S 11t

2 U3t D 4

@26 q3q3916 q38
214p2 q3

2#S 11t

2 U3t D . ~4.24!

Thus the lhs altogether yields

]z
2uz5 ~12t!/2~22 NS1120 NS2!52

4

h6 @q3
5 ~36 q39124p i q3824p2q3!224p2 q3#

3S 11t

2 U3t D516p2q21/4 ~61E2!, ~4.25!

where we have noted thatq3((11t)/2 u3t)5q21/24h and that the curved bracket is proportion
to the second Eisenstein seriesE25(12/ip) ]t logh:

q1/24~36 q39124p i q3824p2 q3!524p2(
Z

~21!n~6n11!2 q(6n11)2/24

524p2
24

2p i
]t(

Z
~21!nq(6n11)2/24

524p2
24

2p i
]th524p2hE2 , ~4.26!

by virtue of ~B5!.
We now turn to the rhs of~4.19! and shall differentiate twice. To this effect, we note a fe

useful facts,

q18S z1
12t

2 Ut D5]z q21/8y1/2 q3~z!

5 ip q1S z1
12t

2 Ut D1q21/8y1/2 q38~zut! ——→
z50

2 ipq21/8 q3 ,

~4.27!

q38S z1
12t

2 Ut D5]z 2 iq21/8y1/2 q1~z!

5 ip q3S z1
12t

2 Ut D2 iq21/8y1/2 q18~zut! ——→
z50

22p iq21/8 h3,

where we used~B6!. Similarly, we find
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q19S 12t

2 Ut D52p2q21/8 q31q21/8 q39~0ut!,

~4.28!

q39S z1
12t

2 Ut D54p2q21/8 h3.

Thus equipped, we proceed for the rhs,

]z
2uz5 ~12t!/2q1~zut!25q21/4q3

2 @22p21q39/q3#,
~4.29!

]z
2uz5 ~12t!/2q3~zut!2524p2q21/4 h6.

Taking ~B25! into account, we have overall for the rhs,

]z
2uz5 ~12t!/2F224

q1~zut!2

q3
2 12~q2

42q4
4!

q3~zut!2

h6 G516p2q21/4 ~61E2!, ~4.30!

which was just the lhs. h

E. Lemmas and arithmetic results

Lemma 4.31:

q3~zu3t!31q1/2y q3~z1tu3t!31q2y2 q3~z12tu3t!35a~t! q3~zut!, ~4.31!

where

a~t!ª
1

h (
Z

~21!n~6n11! q(6n11)2/245 (
k,l PZ

qk21kl1 l 2. ~4.32!

Proof: That the rhs is proportional toq3(zu3t) follows from the second proof that we sha
give. To find the constanta(t), we differentiate both sides with respect to~wrt! z and setz
5 (12t)/2,

3 q3S 11t

2 U3t D 2 F22 q382
2p i

3
q3G S 11t

2 U3t D5a~t!~22p iq21/8 h3!. ~4.33!

Note that

q3S 11t

2 U3t D5q21/24h

and so we find

a~t!5
1

h (
Z

~21!n~6n11! q(6n11)2/24. ~4.34!

For the second expression fora, we offer an alternative proof,

lhs5S (
Z

q~3/2! n2
ynD 3

1S (
Z1 1/3

q~3/2! n2
ynD 3

1S (
Z1 2/3

q~3/2! n2
ynD 3

5(
n

q~3/2!(n1
2
1n2

2
1n3

2) y(n11n21n3), ~4.35!
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wheren5(n1 ,n2 ,n3) on the rhs sweeps through the setSªZ3ø(Z1 1
3)

3ø(Z1 2
3)

3. This set lies
in 1-to-1 correspondence with allkPZ3 via the following smart substitution:

n15~k11k22k3!/3, k15n11n21n3 ,

n25~k122k22k3!/3, k25n12n2 ,

n35~k11k212k3!/3, k352n11n3 . ~4.36!

Note that in the first definitions, all right-hand sides are equal to mod 1, which guarantees t
ni are in the same component of the setS; whence the 1-to-1 correspondence. Moreover,

n1
21n2

21n3
25 1

3 k1
21 2

3 ~k2
21k3

21k2k3!, n11n21n35k1 . ~4.37!

Hence,

lhs5S (
k2 ,k3PZ

qk2
2
1k2k31k3

2D(
Z

q1/2k1
2
yk15rhs. ~4.38!

h

Corollary 4.39:

For z50: q3~0u3t!312q1/2 q3~tu3t!35a~t! q3 ; ~4.39!

for z51/2: q4~0u3t!322q1/2 q3~tu3t!35a~t! q3 ; ~4.40!

for z53t/2: q2~0u3t!312q1/4 q2~tu3t!35a~t! q2 . ~4.41!

For the sake of instruction, we give a third proof of the above lemma, after reformulati
with a different constant of proportionality.

Lemma 4.41:

q3~zut!31q1/6y q3S z1
t

3 Ut D 3

1q2/3y2 q3S z1
2t

3 Ut D 3

5S 6
h~3t!3

h
1a~t! D q3S zU t

3D ,

~4.42!

a~t!ª
1

h (
Z

~21!n~6n11! q(6n11)2/24.

Proof: The advantage of having dividedt by 3 is that now all three terms on lhs and the r
are theta functions of degree 3 and characteristic (0,0;26p i ,3p i t). The space of such function
is three dimensional and can be spanned by

H q3S zU t

3D , q3S z1
t

9 U t

3D , q3S z1
2t

9 U t

3D J
or by

$q3~3zu3t!, y q3~3z1tu3t!, y2 q3~3z12tu3t!%,

etc. Replacingt→3t, the lhs as a whole is still a theta function of degree 1 and characte
(0,0;22p i ,p i t), hence must be proportional toq3(zut). That is, all we have to do is to comput
the constant of proportionality. To this end, we setz50 in the lemma and prove
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q3~0ut!312q1/6 q3~t/3ut!35S 6
h~3t!3

h
1a~t! D q3S 0U t

3D . ~4.43!

We quote from Ref. 5, p. 273, a property describing how the cubes of theta functions c
spanned by basis vectors:

ip

3
e~ ip/6!h q3S z1

11t

2 Ut D 3

52pe~ ip/6!q~25/24!y2 3/2h~3t!3 Fz1/2 q3S 3z1
11t

2 U3t D
2z21/2 q3S 23z1

11t

2 U3t D G1q8 q3S 3z13
11t

2 U3t D ,

~4.44!

where

q8ªq8@1
1/3#~0u3t!ª]zu0 e2p i /3q1/6y21/3 q1~z2tu3t!,

such that

2
3i

p
e2 ip/6

q8

h
5

1

h (
Z

~21!n~6n11!q(6n11)2/245a~t!. ~4.45!

Special cases of this property are

at z52
11t

2
: q3~0ut!356q1/6

h~3t!3

h
q3~tu3t!1a~t! q3~0u3t!,

at z52
1

2
1

t

6
: q3S t

3 Ut D 3

53
h~3t!3

h
@q21/6 q3~0u3t!1q3~tu3t!#1a~t! q3~tu3t!,

~4.46!

so that

q3~0ut!312q1/6 q3~t/3ut!35S 6
h~3t!3

h
1a~t! D @q3~0u3t!12q1/6 q3~tu3t!#.

~4.47!

Use Lemma 6.23 to rewrite the square brackets asq3(0ut/3). h

Combining Lemmas 4.31 and 4.41, we arrive at an interesting observation, already noti
Ref. 1.

Corollary 4.47:

a~t/3!56
h~3t!3

h
1a~t!. ~4.48!

For completeness, we also observe thata(t) can be written as the difference of two Lambe
series@i.e., ( @anqn/(12qn)#],
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a~t!5
q1/24

h
]yU

1
(
Z

~21!ny6n11qn(3n11)/2

5
q1/24

h
]yU

1

y q3S 6z1
11t

2 U3t D
5

q1/24

h
]yU

1

y ) ~12q3n!~12y6nq3n21!~12y26nq3n22!

5116(
n>1

S 2q3n21

12q3n21 1
q3n22

12q3n22D
5116( qnS (

dun
d[1(3)

12 (
dun

d[2(3)

1D 5116( d3,1~n!qn, ~4.49!

wheredk,l(n) is the number of divisors ofn which are (k2 l )/2 modk minus those which are
(k1 l )/2 modk. For example, a well-known result of Jacobi states that the number of int
solutions tox21y25n is 4d4,2(n).

Many more beautiful properties abouta(t) are found in Ref. 1, such as

a~t!5q3~0u2t! q3~0u6t!1q2~0u2t! q2~0u6t!. ~4.50!

We give a last property, of our own, relating toa(t)2.
Proposition 4.51:

2a~t!253E2~3t!2E2 . ~4.51!

Proof: We apply the previous trick—of differentiating a Jacobi product—to the sum alre
encountered in~4.26!,

E25
1

h (
Z

~21!n~6n11!2 q(6n11)2/24

5
q1/24

h

21

4p2 ]z
2U

0
( ~21!ny6n11qn(3n11)/2

5
q1/24

h

21

4p2 ]z
2U

0

y q3S 6z1
11t

2 U3t D
5

q1/24

h

21

4p2 ]z
2U

0

y ) ~12q3n!~12y6nq3n21!~12y26nq3n22!. ~4.52!

Abbreviating the last product byP, we have thatq1/24Pu05h, P85PS, and P95P(S2

1S8), where

Sª12p i (
n>1

S 2y6q3n21

12y6q3n21 1
y26q3n22

12y26q3n22D .

In this notation, we also haveSu052p i (a(t)21). Thus
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E25F11
1

ip
S2

1

4p2 ~S21S8!G
0

5112~a21!1~a21!2236 (
n>1

S q3n21

~12q3n21!2 1
q3n22

~12q3n22!2D
5a21

3

2
@E22E2~3t!#. ~4.53!

h

Since the sums (1/h) (Z(21)n(6n11)k q(6n11)2/24 yield enticing expressions for powersk
51,2 @a(t), E2 , respectively#, it is natural to wonder whether this extends to higher power.
have not found any alternative expression for the casek53, but can nonetheless relate it toa(t)
andE2 . Again, we mimic the trick of the previous proposition,

1

h (
Z

~21!n~6n11!3 q(6n11)2/24

5a31
3a

~2p i !2 S8U
0

1
1

~2p i !3 S9U
0

5a313a
3

2
~E22E2~3t!!1

1

~2p i !3 S9U
0

, ~4.54!

with

S9u05~2p i !363 (
n>1

S 2
q3n21~11q3n21!

~12q3n21!3 1
q3n22~11q3n22!

~12q3n22!3 D5~2p i !363 (
i>1

i 2
qi~12qi !

12q3i .

~4.55!

The same recursion for the casek54 is even more involved and is not worth writing in ful
due to the complicated nature ofS-,

1

h (
Z

~21!n~6n11!4 q(6n11)2/24

5a41
6a2

~2p i !2 S8U
0

1
4a

~2p i !3 S9U
0

1
3

~2p i !4 S8U
0

2

1
1

~2p i !4 S-U
0

5
1

h S 24

2p i
]tD 2

h53E2
222E4 . ~4.56!

The last line is obtained using the covariant derivative for modular forms; it shows that]t
k/2h ~for

k even! can be expressed as a polynomial inE2 , E4 , E6 . For instance, fork56 this is

1

h (
Z

~21!n~6n11!6 q(6n11)2/24516E6230E2E4115E2
3 . ~4.57!

V. COMPUTATIONS IN 2 4 THEORY

We mimic here the approach of the 16 theory, as detailed in the preceding section. T
Gepner model is obtained by tensoring 4 times thek52, N52 theory. Although we have more
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orbits and more cases to study, the mathematics are easier, due to the simpler properties
by theta functions witht divided by 4~instead of divided by 3 as in the 16 theory!.

A. Characters and orbits

This time we have six minimal N52 characters, obtained forl 50 (m50), l 51 (m561),
andl 52 (m50,62). The string functions at level 2, due to their symmetries, number only th

c005c22, c205c02, c1,215c11. ~5.1!

In the following characters, we use the shorthandum for the su~2! theta functionsum,8(t/2 , z/4):

Aªch0,0
NS~y,q!5c00 u01c02 u85

1

2h
Aq3

h
q3~zu2t!1

1

2h
Aq4

h
q4~zu2t!,

Bªch2,2
NS~y,q!5c02 u241c00 u45

1

2h
Aq3

h
q2~zu2t!1

1

2h
Aq4

h
i q1~zu2t!,

Cªch2,0
NS~y,q!5c02 u01c00 u85

1

2h
Aq3

h
q3~zu2t!2

1

2h
Aq4

h
q4~zu2t!,

~5.2!

Dªch2,22
NS ~y,q!5c02 u41c00 u245

1

2h
Aq3

h
q2~zu2t!2

1

2h
Aq4

h
i q1~zu2t!,

Eªch1,21
NS ~y,q!5c11~ u221u6!5

h~2t!

h2 q1/16y2 1/4 q3S z2
t

2 U2t D ,

Fªch1,1
NS~y,q!5c11~ u261u2!5

h~2t!

h2 q1/16y1/4 q3S z1
t

2 U2t D .

The su~2! theta functions are related to the standard~or ‘‘Ur-’’ ! Jacobi theta function via

um,8S t

2
,
z

4D5 (
nPZ

q[2n1 ~m/8!] 2
y2n1 ~m/8!5q(m/8)2 ym/8 q3S 2z1

mt

2 U8t D ,

~5.3!

um1um185q(m/8)2ym/8 q3S z1
mt

4 U2t D .

The rightmost column of~5.2! is obtained by rewritingac1bd as 1
2(a1b)(c1d)1 1

2(a2b)(c
2d) and using the explicit expression for the string functions from the next section.

Under spectral flow, these eight su~2! theta functions are shifted into one each other:

um,8S t

2
,
z

4D ——→
z→z1 t/2

q21/6y21/4 um12,8S t

2
,
z

4D ——→
z→z1 t/2

q21/4y21/2 um14,8S t

2
,
z

4D , ~5.4!

so that under full spectral flow, the six characters split into two groups which are cyclicly
muted:

A ——→
z→z1t

B→C→D→A, E→F→E, ~5.5!

where we have omitted the incrementing factors ofq21/4y21/2, etc.
To build the various orbits of the 24 theory, we consider all possible homogeneous poly

mials of degree 4 inA, B, C, D, E, F, respecting the following two rules:
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~1! the orbit must be holomorphic, i.e., its Fourier expansion must have integer powers ofy;
~2! the orbit must be covariant under full spectral flow, NSi(z→z1t)5q21y22 NSi(z).

Note thatA, C have integery-expansion,B, D half-integer, andE, F have powers ofy in Z
7 1

4, respectively. Thus, condition~1! excludes combinations likeA3B, A3E, A2BC, A2E, etc.
Condition ~2! requires invariance of the orbit under cyclic permutation ofA, B, C, D andE, F
separately, and also guarantees it to be a theta function of characteristic (0,0;24p i ,2p i ) and

degree 2. Thus each orbit can be spanned by ch0( l 50,1
2) and ch(h50), or alternatively by

q1(zut)2 andq3(zut)2.
The 12 possible orbits respecting the above rules are

NS15A41B41C41D4, NS75AB2C1BC2D1CD2A1DA2B,

NS25E41F4, NS85ABCD,

NS35A2B21B2C21C2D21D2A2, NS95ABE21BCF21CDE21DAF2,

NS45ABF21BCE21CDF21ADE2, NS105~A21B21C21D2!EF,

NS55B2D21A2C2, NS115E2F2,

NS65AC31BD31CA31BD3, NS125~AC1BD!EF.

The combinatorial factorsDi , defined after~4.11!, associated to these orbits are~1, 2, 6, 12, 12,
4, 12, 96, 12, 12, 24, 48!.

Due to the following relations among the characters

AC5BD,

AB1CD5F2, ~5.6!

AD1BC5E2

~proved in Lemma 5.24 witht replaced byt/2!, we find that several orbits coincide:

NS25NS4,

NS552 NS8, ~5.7!

NS65NS75 1
2NS95NS11.

B. String functions

Some explicit expressions for the string functions at level 2 are found in Ref. 9, p. 220

c115
h~2t!

h2 5
1

h
Aq2

2h
, c002c025

h~t/2!

h2 5
1

h
Aq4

h
. ~5.8!

The authors also give the complicated modular properties of the string functions. The
expression, c002c02, upon shifting t→t11, yields e2 ip/8(c001c02). Similarly, shifting
(1/h)Aq4 /h by t→t11 yields e2 ip/8 (1/h)Aq3 /h. Together with Lemma 5.23 below, thi
gives
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c001c025
1

h
Aq3

h
5

h

h~2t! h~t/2!
5

q21/16

q~t!2q1/2 q~3t!
,

~5.9!

c002c025
1

h
Aq4

h
5

h~t/2!

h2 5
q21/16

q~t!1q1/2 q~3t!
.

@The form (1/h)Aq i /h for the string functionsc11 and c006c02 is expected from the fact tha
h cml gives the character of the fieldfm

l in theZk parafermion model.6,8 For our case ofk52, the
Z2 parafermion model is just the Ising model, and its characters are the well known square
of theta functions~with different spin structures!. Thanks to Wendland for pointing at this and
her Ph.D. thesis~p. 50!17 which already contains the explicit expressions for~5.2!.# Here, and for
the remainder of this section, we use the shorthandq(z)ªq3(zu8t). Thus

c005q21/16
q~t!

q~t!22q q~3t!2 5q1/16
q~t!

h h~2t!
,

~5.10!

c025q21/16
q1/2 q~3t!

q~t!22q q~3t!2 5q1/16
q1/2 q~3t!

h h~2t!

and

c00
2 2c02

2 5
1

h h~2t!
5

q21/8

q~t!22q q~3t!2 ,

~5.11!

c00 c025q5/8
q~t! q~3t!

h2 h~2t!2 5
h~8t!2

h3 h~4t!
.

We now study the orbits at the special value ofz5 (11t)/2. Note first that at this value
um,8@t/2 , (11t)/8#5(21)m/8q((m/2)21m)/16 q3((m/211)tu8t). With Lemma 5.23, our charac
ters reduce to

A5c00 q~t!1c02 ~2q3/2! q~5t!5q21/16,

C5c02 q~t!1c00 ~2q3/2! q~5t!50,

B52 i @c02 q~t!2c00 q1/2 q~3t!#50,
~5.12!

D52 i @c02 q~t!2c00 q1/2 q~3t!#52 iq21/16,

E5
h~2t!

h2 q21/16e2 ip/4 q3S 1

2U2t D5e2 ip/4q21/16,

F5
h~2t!

h2 q3/16e2 ip/4 q3S 1

2
1tU2t D50.

Plugging these values into the orbits NSi yields NS152q21/4, NSi52q21/4 ( i 52, . . . ,4), while
the remaining NSj vanish (j 55, . . . ,12). We thus recognize from~2.7! the graviton, massless, an
massive orbits, respectively.
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C. The functions Fi , Fj and the Dirac index

In order to compute the functionsFi ~2.2!, we set z50, in which caseum,8(t/2,0)
5q(m/8)2 q(mt/2)5u2m,8 . Hence the characters simplify to

A1C5
1

h
Aq3

h
q3~0u2t!5

h~2t!4

h h~4t!2 h~t/2!
5E2/B,

A2C5
1

h
Aq3

h
q4~0u2t!5

h~t/2!

h~2t!
51/E,

B5D5
1

h
Aq3

h
q2~0u2t!5

h h~4t!2

h~t/2! h~2t!2 ,

E5F5
h~2t!

h~t/2!
5A1

2

q2

q4
. ~5.13!

With these observations and the fact thatAC5B2 at z50 ~5.6!, the massive orbits atz50 have
a rather simple form,

NS552NS852B4,

NS65NS75 1
2NS95NS115E4,

~5.14!
NS105E6/B25NS12NS6 /NS5,

NS1252B2E2.

Given that NSj5F j q2(1/8)(q3
2/h3) 5F j @q2(1/8)h7/h(2t)4h(t/2)4#, we find the following val-

ues forF j :

F552F852q1/8
h~4t!8

h3 h~2t!4 ,

F65F75
1

2
F95F115q1/8

h~2t!8

h7 ,

F105q1/8
h~2t!14

h9 h~4t!4 , ~5.15!

F1252q1/8
h~2t!2 h~4t!4

h5 ,

F5F105F6F12.

The massless orbits are a little less elegant, especially NS1 and NS3 which are not factoriz-
able. For the latter, we shall need the following observation, again having setz50:

~A21C2!5~A2C!212B251/E212B25~A1C!222B25E4/B222B2⇒E65B214B4E2

~5.16!

and
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1/E212B252
q4

q2
1

q2~0u2t!2

q2 q4
5

2q4
21q2~0u2t!2

q2 q4
5

3q4
21q3

2

2q2q4
. ~5.17!

We note that the last expression cannot be factorized and so we give the graviton1massless orbits
as they stand:

NS15~A21C2!25~1/E212B2!25S 3q4
21q3

2

2q2q4
D 2

,

NS25NS452E4,

NS35~3q4
21q3

2!
q3

2 q2~0u2t!2

8h6 5~3q4
21q3

2!
q3

22q4
2

4q2
2q4

2 5~3q4
21q3

2!
h h~4t!

2h~t/2!h~2t!
,

NS3
252 NS1NS5 ~5.18!

with extensive use of the formulas in Appendix B. Given that NSi5@h31Fi(q
21/8/h)#(q3

2/h2)
for i 52,3,4 ~andh3 replaced by22h3 for NS1), we find the following values forF1 andFi :

F15q1/8hF S 3q4
21q3

2

4h2 D 2

12h3G21,

~5.19!

F25q1/8hF2S h~2t!

h D 8

2h3G52F62q1/8hh3 ,

F35q1/8hF ~3q4
21q3

2!
h~4t!4

2h4h~2t!2 2h3G ,
~5.20!

F45F2 .

As in the 16 theory, we shall again derive~3.3!, that is we shall show the following.
Proposition 5.20:

(
i 51

d

Di NSi I i522 NS112 NS216 NS3112 NS45224
q1~zut!2

q3
2 12~q2

42q4
4!

q3~zut!2

h6 .

~5.21!

Proof: Due to ~5.12! and the vanishing ofq3(zut) at z5 (11t)/2, we see thatq1(zut)2 is
correctly multiplied by224/q3

2. We only need to recover the factor multiplyingq3(zut)2. Unlike
in 16 theory, settingz50 on both sides will easily do the job,

lhsu05
1

2 q2
2 q4

2 F2~3 q4
21q2

2!21~2112! q2
416~3 q4

21q3
2!

1

2
~q3

22q4
2!G . ~5.22!

The square brackets yield a total of 16(q2
42q4

4), while the prefactor is1
2(q3/2h3)2. Thus we

obtain the rhs. h

D. Lemmas

Lemma 5.23: With the shorthandq(z)ªq3(zu8t), we have
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(1) q q~5t!5q~3t!,

(2) q~0!2q q~4t!5q4~0u2t!5
h2

h~2t!
,

(3) q~0!1q q~4t!5q3~0u2t!5
h2

h~2t!
, ~5.23!

(4) q~t!1q1/2 q~3t!5q21/161
2q2~0ut/2!5q21/16

h2

h~t/2!
,

(5) q~t!2q1/2 q~3t!5q2~t/2u2t!5q21/16
h~2t! h~t/2!

h
.

Proof: These are all instances of the more general Lemma 6.21. Alternatively,

~1! directly from sum or product expression,

(2) lhs5(q4n2
2(q4(n1

1
2)2

5(q4(n/2)25q4(0u2t)5)(12q2n)(12q2n21)2

5)(12qn)(12q2n)215rhs,
~3! idem,

(4) lhs5q21/16((q4(n21/8)21q(q4(n13/8)2)5q21/16(q(n21/4)25q21/161
2(q(n2

1
2)2

5q21/161
2q2(0ut/2)5)(12qn/2)(11qn/2)25)(12qn)2(12qn/2)215rhs5q3(t/2u2t),

~5! idem.

h

Lemma 5.24:

q4S 0U t

2D ~q1~zut!21q4~zut!2!5q3S 0U t

2D ~q3~zut!22q2~zut!2!

5q3S 0U t

2D q3S z

2 U t

4Dq4S z

2 U t

4D ,

q3S 0U t

2D q2~zut!q3~zut!1q4S 0U t

2D iq1~zut!q4~zut!5q2S 0U t

2D q1/16y21/2 q3S z2
t

4 Ut D 2

,

~5.24!

q3S 0U t

2D q2~zut!q3~zut!2q4S 0U t

2D iq1~zut!q4~zut!5q2S 0U t

2D q1/16y1/2 q3S z1
t

4 Ut D 2

.

Proof: Both sides of the first equation are theta functions of degree two and characte
(0,0;24p i ,22p i t), i.e., elements of the two-dimensional vector spaceT2,22p i t ~see Appendix
A!. In the other two equations, all terms—upon extra multiplication withy—are elements of
T2,23p i t . So all we need to do is to verify the relations at two independent values ofz.

For all line, verification atz50,t/2 is immediate with~B19! and~B20!. The rhs gives a handy
factorized form of the lhs, which would not lend itself to straightforward factorization as the s
( iq16q4) cannot be made into a theta function. h
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VI. COMPUTATIONS IN 4 3 THEORY

We mimic here the approach of the two previous sections. This Gepner model is obtain
tensoring 3 times thek54, N52 theory. We have considerably more orbits and more case
study; the mathematics involve properties of theta functions witht divided by 3, 4, and 6.

A. Characters and orbits

This time we have 15 minimal N52 characters, obtained forl 50 (m50), l 51 (m561),
l 52 (m50,62), l 53 (m561,3), l 54 (m50,62,64). The string functions at level 4, due t
their symmetries, number only seven,

c005c44, c025c42, c045c40, c205c24, c22, c115c33, c135c31. ~6.1!

In the following characters,um is a shortcut for the su~2! theta function evaluated a
um,24(t/2 ,z/6):

Aªch0,0
NS~y,q!5c02 u2121c00 u01c02 u121c04 u24,

Bªch4,4
NS~y,q!5c02 u201c04 u2161c02 u241c00 u8 ,

Cªch4,2
NS~y,q!5c02 u2201c04 u281c02 u41c00 u16,

Dªch4,0
NS~y,q!5c02 u2121c04 u01c02 u121c00 u24,

Eªch4,22
NS ~y,q!5c02 u241c04 u81c02 u201c00 u216,

Fªch4,24
NS ~y,q!5c02 u41c04 u161c02 u2201c00 u28 , ~6.2!

Gªch2,2
NS~y,q!5c22 u2201c20 u281c22 u41c20 u16,

Hªch2,0
NS~y,q!5c22 u2121c20 u01c22 u121c20 u24, ~6.3!

Iªch2,22
NS ~y,q!5c22 u241c20 u81c22 u201c20 u216,

Jªch1,1
NS~y,q!5c13 u2221c11 u2101c11 u21c13 u14,

Kªch1,21
NS ~y,q!5c13 u2141c11 u221c11 u101c13 u22,

Lªch3,3
NS~y,q!5c11 u181c13 u2181c13 u261c11 u6 ,

Mªch3,1
NS~y,q!5c11 u2221c13 u2101c13 u21c11 u14,

Nªch3,21
NS ~y,q!5c11 u2141c13 u221c13 u101c11 u22,

Oªch3,23
NS ~y,q!5c11 u261c13 u61c13 u181c11 u218. ~6.4!

The su~2! theta functions are related to the standard Jacobi theta function via

um,24S t

2
,
z

6D5 (
nPZ

q12(n1 m/48)2 y4(n1 m/48)5q(m/8)2/3 ym/12 q3S 4z1
mt

2 U24t D . ~6.5!

Under full spectral flow, these su~2! theta functions are shifted into each other,
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um,24S t

2
,
z

6D ——→
z→z1t

q21/3y22/3 um18,24S t

2
,
z

6D , ~6.6!

so that the 15 characters split into three groups which are cyclicly permuted,

A ——→
z→z1t

B→C→D→E→F→A,

G→H→I→G, ~6.7!

J→K→L→M→N→O→J,

where we have omitted the incrementing factors ofq21/3y22/3, etc.
To build the various orbits of the 43 theory, we consider all possible homogeneous poly

mials of degree 3 inA,B, . . . ,O, respecting our usual rules. Note the following powers for
y-expansions:

A,D,H have powers ofy in Z, J,M in Z1 1
6,

B,E,I in Z2 1
3, K,N in Z2 1

6,

C,F,G in Z1 1
3, L,O in Z1 1

2.

The 23 possible orbits are

NS15A31B31C31D31E31F3,

NS25G31H31I 3,

NS35~BC1EF!H1~CD1FA!I 1~DE1AB!G,

NS45AO21BJ21CK21DL21EM21FN2,

NS55~JL1MO!G1~KM1NJ!H1~LN1OK!I ,

NS65AL21BM21CN21DO21EJ21FK2,

NS75A2D1B2E1C2F1D2A1E2B1F2C, NS165~L21O2!H1~J21M2!I 1~K21N2!G,

NS85ABC1BCD1CDE1DEF1EFA1FAB,

NS175~A1D !LO1~B1E!JM1~C1F !KN,

NS95AEC1BFD, NS185HLO1IJM1GKN,

NS105GHI, NS195AJK1BKL1CLM1DMN1ENO1FOJ,

NS115ADH1BEI1CFG, NS205DJK1EKL1FLM1AMN1BNO1COJ,

NS125~A21D2!H1~B21E2!I 1~C21F2!G,

NS215~JK1MN!H1~KL1NO!I 1~LM1OJ!G,
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NS135~BF1EC!H1~AC1DF !I 1~BD1AE!G,

NS225CJL1DKM1ELN1FMO1ANJ1BOK,

NS145~A1D !H21~B1E!I 21~C1F !G2,

NS235FJL1AKM1BLN1CMO1DNJ1EOK,

NS155~C1F !HI 1~A1D !IG1~B1E!GH.

The coefficientsDi , see after~4.11!, are thus~1; 2, 6, 3, 6, 3; 3, 6, 18, 36, 12, 3, 6, 3, 6; 3, 6, 1
6, 6, 6, 6, 6!.

B. String functions

Some explicit expressions for the string functions at level 2 are found in Ref. 9, pp. 219
We use the notationhn for h(nt):

c025
h12

2

h2 h6
, c002c045

1

h2
, c111c135

1

h1/2
,

~6.8!

c001c0422c0212c2022c225
h1/12

2

h2 h1/6
.

The behavior underS and T transformation is also outlined by the authors. For exampleT
transforms the third equation into

c112c135
h1/2 h2

h3 ,

where we discardedeip/24 on both sides. Similarly,T6 ~i.e.,t→t16) transforms the last equatio
into

2~c001c0412c0212c2012c22!52
h1/6

5

h2 h1/12
2 h1/3

2 , since h1/2→
T h3

h1/2 h2
eip/24. ~6.9!

Furthermore,

c00→
S 1

2A6
A i

t
~c001c0412c0212c2012c2212)~c111c13!!,

c04→
S 1

2A6
A i

t
~c001c0412c0212c2012c2222)~c111c13!!,

c02→
S 1

2A6
A i

t
~c001c0422c0212c2022c22!, ~6.10!

c20→
S 1

2A6
A i

t
~2c0012c0414c0222c2022c22!,

c00→
S 1

2A6
A i

t
~2c0012c0424c0222c2012c22!,
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and so

c001c04→
S 1

2A6
A i

t
~2c0012c0414c0214c2014c22!

5
1

2A6
A i

t S h1/6
5

h2 h1/12
2 h1/3

2 D→
S h6

5

h2 h12
2 h3

2 , ~6.11!

sincehn→
S

A2 i t/n h1/n for rationaln. We thus find

c001c045
h6

5

h2 h12
2 h3

2 5
q3~0u6t!

h2 ,

c002c045
1

h2
5

q4~0u2t!

h2 ,

c025
h12

2

h2 h6
5

q2~0u6t!

2h2 ,

c201c225
1

2h2 S h1/6
5

h1/12
2 h1/3

2 2q3~0u6t!2q2~0u6t! D
5

1

2h2 ~q3~0ut/6!2q3~0u3t/2!!

5
q1/12

h2 q3S t

2 U 3t

2 D ,

c202c225
1

2h2 S h1/12
2

h1/6
2q3~0u6t!1q2~0u6t! D

5
1

2h2 ~q4~0ut/6!2q4~0u3t/2!!

52
q1/12

h2 q4S t

2 U 3t

2 D ,

where we have used Lemmas 6.21 and 6.23. Thus

c205
q1/3

h2 q3~2tu6t!5
q1/12

h2 q2~tu6t!,

~6.12!

c225
q1/3

h2 q2~2tu6t!5
q1/12

h2 q3~tu6t!.

C. Relation with 1 6 theory

With the above values of the string functions, we shall show some coincidences o
characters of 43 theory with those of 16 theory. We first note
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um1um1245( q3(n1 m/24)2y2(n1 m/24)5q(m/8)2/3ym/12 q3S 2z1
mt

4 U6t D ,

um2um1245( ~21!nq3(n1 m/24)2y2(n1 m/24)5q(m/8)2/3ym/12 q4S 2z1
mt

4 U6t D ,

um1um1121um1241um1365( q~3/4!(n1 m/12)2yn1 m/125q(m/8)2/3ym/12 q3S z1
mt

8 D U3t

2 D ,

um2um1121um1242um1365( ~21!nq~3/4!(n1 m/12)2yn1 m/12

5q(m/8)2/3ym/12 q4S z1
mt

8 D U 3t

2 D , ~6.13!

um1um1122um1242um1365( dn q~3/4!(n1 m/12)2yn1 m/12,

dnª1,1,2,2 for n[0,1,2,3 mod 4,

for m[2 mod 8ª( ~q e2p i !~3/4!(n1 m/12)2yn1 m/12

5q(m/8)2/313/16ym/12h3 /~h6h3/2!q3S z1S 3

4
1

m

8 D tU3t D q3S z1S 3

4
2

m

8 D tU3t D ,

and for m[22 mod 8ª( ~21!n~q e2p i !~3/4!(n1 m/12)2yn1 m/12

5q(m/8)2/313/16ym/12
h3

h6 h3/2
q4S z1S 3

4
1

m

8 D tU3t D q4S z1S 3

4
2

m

8 D tU3t D .

The trick for the last formula is the same as in the special case leading to~6.18!.
Thus, using Lemma 6.27,

A1D52c02 q2~2zu6t!1~c001c04! q3~2zu6t!5
1

h2 q3~zu3t!25A2
[16 theory] ,

B1E5
q1/3y2/3

h2 q3~z1tu3t!25B2
[16 theory] ,

C1F5
q4/3y4/3

h2 q3~z12tu3t!25C2
[16 theory] ,

~6.14!
G5c22 q1/12y1/3 q3~2z1tu6t!1c20 q1/12y1/3 q2~2z1tu6t!

5
q1/6y1/3

h2 q3~zu3t! q3~z1tu3t!

5AB[16 theory] ,

H5
q5/6y

h2 q3~z1tu3t! q3~z12tu3t!5BC[16 theory] ,

I 5
q2/3y2/3

h2 q3~zu3t! q3~z12tu3t!5AC[16 theory] ,
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where the right-hand side are taken from~4.7!. In particular, this implies (A1D)H5GI, etc, and
for the orbits:

43 theory 16 theory

NS113 NS7 5NS1
NS2 5NS2

NS31NS13 5NS2
1
3 NS145NS105NS81NS9 5NS3

NS155NS1212 NS11 5NS4.

These relations will be useful for the study of Gepner models with mixed levels, in particula
144 theory.

D. Characters at zÄ „1¿t…Õ2

We now study the orbits at the special value ofz5 (11t)/2. Note first that at this value
um5um,24(t/2 , (11t)/12)5e2p im/24q(m2/8 1m)/24 q3((m/212)tu24t), as well as

u85u216, u22252u14, u21052u2 ,

um1um1121um1241um1365e2p i m/24q(m2/8 1m)/24 q4S S m

8
1

1

2D tU 3t

2 D , ~6.15!

um1um1122um1242um1365e2p im/24( dn q~3/4!(n1 ~m/12)!21 ~1/2!(n1 m/12),

wheredn51,1,2,2 for n[0,1,2,3 mod 4. Withoutdn , we would recover the sum of the fou
theta functions with only1 signs. Note thatdn can be removed if we replaceq1/2 with 2q1/2 in
the sum and additionally multiply the sum by some root of unity, sin
(21)(3/2)(n1 m/12)21n1 m/125 i m2/481 m/6 i 3n21(21 m/2)n. For m56 or 22, we recovere22p i /16dn .
Thus we obtain the last line from the sum with only1 signs by inserting2q1/2 in the latter’s
result. Form56 and22,

u61u181u2181u2652 iq21/16 q4S 2
t

4 U 3t

2 D52 iq21/12 hS t

2D ,

~6.16!

u221u101u221u2145q21/12 hS t

2D .

On the rhs, replacingq1/2 with 2q1/2 in q21/12 h(t/2) yields

q2 ~1/16!) ~12qn!~12qn21/2!→e22p i /16 q21/16) ~12qn!~11qn21/2!

5e22p i /16 q21/12
h3

h~t/2!h~2t!
. ~6.17!

Thus

u61u182u2182u2652 iq21/12
h3

h~t/2!h~2t!
,

~6.18!

u221u102u222u2145q21/12
h3

h~t/2!h~2t!
.
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This will be useful for the charactersK,L,N,O.
With Lemmas 6.29, 6.31, and 6.33 our characters atz5 (11t)/2 reduce to

B5C5D5E50,

F5e22p i /3 q21/12,

G5
q1/12

h2 q3~tu6t! ~u2201u4!1
q1/3

h2 q3~2tu6t! ~u281u16!50,

H50,

I 5e22p i /6 q21/12,

J5c13~u2221u14!1c11~u2101u2!50,

K5 1
2~c111c13!~u2141u221u101u22!1 1

2~c112c13!~2u2141u221u102u22!

5e22p i /12 q21/12,

L5M5N50,

O52 i q21/12.

Plugging these values into the orbits NSi yields NS152q21/4, NSi52q21/4 ( i 52, . . . ,6),
while the remaining NSj vanish (j 57, . . . ,23). We thus recognize from~2.7! the graviton,
massless, and massive orbits, respectively. Also, the value of the elliptic genus atz50 is F(0)
5( i 51

d Di uRi8(0)u2 5 ( i 51
d Di u2q1/4NSi @(11t)/2#u2 5 ( i 51

d Di I i
2 5 4D11D21 ¯ 1D6 5 24,

which is the correct coefficient for aK3 model~3.1!.

E. Characters at zÄ0

In order to compute the functionsFi or the Dirac genus, we setz50, in which case

um5um,24S t

2
,0D5( q12(n1 m/48)25q(m/8)2/3 q3S mt

2 U24t D5u2m ,

um1um1122um1242um1365( dnq~3/4!(n1 m/12)25( dnq~3/4!(n212 ~m/12)2,

~ for m5210,22:!5( dnq~3/4!(n2 1/6)25e22p i (m/8)2/3( ~21!n~2q1/2!~3/2!(n2 1/6)25
h3

h1/2 h2
,

wherednª1,1,2,2 and the last line is obtained by replacingq1/2 by q21/2 in h(t/2) ~same
trick as earlier!.

With Lemma 6.27, the characters atz50 take the following values:
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A5
1

2h2 q3~0u3t!21
1

2h2 q4~0u2t! q4~0u6t!5..A11A2 ,

B5F5
q1/3

2h2 q3~tu3t!21
q1/3

2h2 q4~0u2t! q4~2tu6t!5..B11B2 ,

~6.19!
C5E5B12B2 ,

D5A12A2 ,

G5I 5
q1/6

h2 q3~0u3t! q3~tu3t!,

H5
q1/3

h2 q3~tu3t!252B1

J5K5
q1/48

2h1/2
q3S t

4 U 3t

2 D1 1
25..J11 1

2, ~6.20!

L5O5
1

2h1/2
q2S 0U 3t

2 D ,

M5N5J12 1
2.

We did not succeed in factorizing them, as we did for the 16 and 24 theories. The correspondin
values for the orbits are not particularly enlightening. We only note the following coincide

NS225NS2352A1(J1
22 1

4)14LJ1B1 . Due to ~2.7!, this equality holds in general~not only atz
50) sinceF225F23.

Thus we shall also refrain from giving here horrendous expressions~unfactorized! for the
functionsFi and the Dirac index. But they can be easily written down on the basis of the a
information. For instance, proving the value of the Dirac index~3.3! boils down to verifying its
coefficient atz50,

(
i 51

d

Di NSi~0! I i522 NS112 NS216 NS313 NS416 NS513 NS6

532B1
324A1

3212A1A2
2248B1B2

214G3

124G~A1B11A2B21J1L !124B1J1
2112A1L2,

5
!

2
q2

42q4
4

h6 q3
2 ,

which is an arduous manipulation with theta functions identities~left to the reader!.

F. Lemmas and arithmetic results

Lemma 6.21:

q3~zut!5q3~2zu4t!1q2~2zu4t!, ~6.21!

q4~zut!5q3~2zu4t!2q2~2zu4t!. ~6.22!

Proof: Directly from Fourier expansion. h

Lemma 6.23:
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q2~0ut!5q2~0u9t!12q1/2 q2~3tu9t!,

q3~0ut!5q3~0u9t!12q1/2 q3~3tu9t!, ~6.23!

q4~0ut!5q4~0u9t!22q1/2 q4~3tu9t!.

Proof: Idem. For instance, the middle line goes like

lhs5( q(3n)2/21( q(3n11)2/21( q(3n12)2/25( q(3n)2/212( q(3n11)2/25rhs.

~6.24!

hLemma 6.25:

q3S 1

3 U 2t

3 D5q3~0u6t!2q1/3 q3~2tu6t!5q3~0u6t!2q1/12 q3~tu6t!, ~6.25!

q2S 1

3 U 2t

3 D52q2~0u6t!1q1/3 q2~2tu6t!52q2~0u6t!1q1/12 q3~tu6t!. ~6.26!

Proof: Idem. For instance, the first line

lhs5( qn2/3e2p in/35( q3n2/31~e2p i /31e22p i /3!( q3(n11/3)2/35rhs.

h

Lemma 6.27:

q3~zut! q3~z8ut!1q2~zut! q2~z8ut!5q3S z1z8

2 U t

2D q3S z2z8

2 U t

2D , ~6.27!

q3~zut! q3~z8ut!2q2~zut! q2~z8ut!5q4S z1z8

2 U t

2D q4S z2z8

2 U t

2D . ~6.28!

Proof: Idem. For instance, the first line

lhs5 (
Z2ø(Z11/2)2

q(m21n2)/2ymy8n5(
Z2

q(k21 l 2)/4y(k1 l )/2y8(k1 l )/25rhs,

where we made the substitutionk5m1n, l 5m2n.
For the second line, one just needs to introduce (21)2n and (21)k2 l in the two sums,

respectively. h

Lemma 6.29:

q3~0u6t! q3~tu6t!2q2~0u6t! q2~tu6t!5q21/12 h2,
~6.29!

q3S 0U t

6D q3S 1

6 U t

6D2q4S 0U t

6D q4S 1

6 U t

6D56h2,

q3S 0U 2t

3 D q2S 1

3 U 2t

3 D1q2S 0U 2t

3 D q3S 1

3 U 2t

3 D53h2,

~6.30!

q3S 0U 3t

2 D q4S tU 3t

2 D2q4S 0U 3t

2 D q3S tU 3t

2 D522q21/3 h2.

Proof: The first line is just Lemma 6.27 withz50 and (z8ut) replaced by (11tu6t). The
second line is obtained from the first byS transformation, i.e.,t→21/t. The third line is obtained
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by rewriting the second line asab1cd5(a1c)(b1d)/21(a2c)(b2d)/2 and using Lemma
6.21. The fourth line is again anS transformation of the previous line. Applying the rewriting tric
on this last line, we would of course fall back on the first line. h

We note that the first line in Fourier series gives us an interesting formula:h25(

(21)nq3(n21m2) where (m,n)P( 1
2,

1
3)ø(0,1

6)1Z2. This is to be compared with the previous fo
mula ~4.5!. The crucial difference is that we presently have a positive definite quadratic for
the exponent ofq, whereas previously the form was indefinite~this accounts for the extra con
straint onx,y there!.

In the first line, use Lemma 6.23 to replace 2q1/12 q3(tu6t) by q2(0u 2t/3)2q2(0u6t) and
similarly for 2q1/12 q2(tu6t), and obtain the following.

Lemma 6.31:

q2S 0U 2t

3 D q3~0u6t!2q3S 0U 2t

3 D q2~0u6t!52h2, ~6.31!

q4S 0U 3t

2 D q3S 0U t

6D2q3S 0U 3t

2 D q4S 0U t

6D54h2, ~6.32!

where anS transformation connects the two lines. Unlike in the previous lemma, performing
rewriting trick will not give two more variants; here this trick is just equivalent to theS transfor-
mation itself.

Now, in the third line of Lemma 6.29, use Lemma 6.25 to replaceq2( 1
3 u 2t/3) by

2q2(0u6t)1q1/3 q2(2tu6t) and similarly forq3( 1
3 u 2t/3), and obtain the first line of the fol

lowing lemma.
Lemma 6.33:

q3S 0U 2t

3 D q3~tu6t!2q2S 0U 2t

3 D q2~tu6t!5q21/12 h2,

~6.33!

q3S 0U 3t

2 D q3S 1

3 U t

6D2q4S 0U 3t

2 D q4S 1

3 U t

6D52h2,

q3~0u6t! q2S 2

3 U 2t

3 D1q3~0u6t! q3S 2

3 U 2t

3 D5h2,

~6.34!

q4S 0U t

6D q3S tU 3t

2 D2q3S 0U t

6D q4S tU 3t

2 D5q21/3 h2.

Proof: Again, the successive lines are obtained byS transformation, the rewriting trick, andS
transformation. h

VII. COMPUTATIONS IN MIXED THEORIES

We have met with success the construction of N54 characters inpure Gepner models like
16,24,43 theories. Other Gepner models for the N54 SCFT onK3 aremixedtensor products of
N52 theories, like 1322, 144, 1242, 2 62, 1 224, . . . . All these productsk1

n1
¯kj

nj are formed
with the requirement that the central charge equal six:c5(ni@3ki /(ki12)# 56. We shall inves-
tigate the first three cases of such theories with mixed levelski and see that they do not necessar
share the previous structure characteristic ofpure theories. Specifically, the notion of gravitationa
massless, and massive orbits, with values atz5 (11t)/2 equal to 2q21/4,2q21/4 and 0, respec-
tively expected from~2.7!, only applies toK3 models like the 144 or 1242 theories below. The
other CY twofold, the complex torus, gives a model whose orbits all vanish atz5 (11t)/2,
yielding a zero Euler characteristic as in the 1322 theory below.
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A. Computations in 1 322 theory

The NSi orbits are tensor products of three orbits from thek51 theory ~Sec. IV! and two
orbits from thek52 theory~Sec. V!. The former theory has charactersA, B, C ~with powers of

y in Z10, 1
3 , 2

3, respectively!, while the latter’s characters we denote byĀ,B̄,C̄,D̄,Ē,F̄ ~with

powers ofy in Z10, 1
2, 0, 1

2,2
1
4 , 1

4, respectively!. In order to have only integer powers ofy and
cyclic permutation in the orbits, the only possible combinations are products ofABC, A31B3

1C3 with ĀC̄1B̄D̄, ĒF̄, Ā21C̄21B̄21D̄2. Each of these products vanishes atz5 (11t)/2, so
all orbits are massive and the Dirac index vanishes. This is to be expected as both the 13 and the
22 theories are toroidal models~with complex and Ka¨hler moduli t5r5e2p i /3 and t5r5 i ,
respectively!, hence so is their tensor product. That is, the target space of the sigma model
K3 but a complex two-torus.

B. Computations in 1 44 theory

We denote the characters of thek54 theory by a bar over the letters. Our usual two ru
~integer powers ofy and invariance under cyclic permutation! restrict the orbits to be of the
following form:

NS15A4~Ā1D̄ !1B4~B̄1Ē!1C4~C̄1F̄ !, NS55ABC~AH̄1BĪ1CḠ!,

NS25A3B~B̄1Ē!1B3C~C̄1F̄ !1C3A~Ā1D̄ !, NS65A4H̄1B4 Ī 1C4Ḡ,

NS35A3C~C̄1F̄ !1B3A~D̄1Ā!1C3B~Ē1B̄!, NS75A3BĪ1B3CḠ1C3AH̄,

NS45A2B2Ḡ1B2C2H̄1C2A2 Ī , NS85A3CḠ1B3AH̄1C3BĪ .

Due to the relations between the 43 characters and the 16 characters established in~6.14!, the
orbits 2,3,4 are equal, and so are the orbits 6,7,8. Thus we obtain consecutively the orbit1 ,
NS2 , 3 NS3, and NS4 of 16 theory ~4.10!, which proves the equivalence of both models.

The coefficientsDi5S1,i /Si ,1 defined after~4.11! are ~1; 4,4,12; 24; 2,8,8!, where Si ,1

5(6;6,6,3;3;3,3,3) are the numbers of terms in each orbit andS1,i5(1;4,4,6;12;1,4,4) isS1,1

times the number of permutations of the factors in any term of orbit NSi ~look only at the 14

factors!. Thus for the Dirac index, we have correctly22 NS11(414112) NS2, as in~4.19!.

C. Computations in 1 242 theory

This time, we are even allowed to include the charactersJ,K,..,O from thek54 theory. The
orbits take the form

NS15A2~Ā21D̄2!1B2~B̄21Ē2!1C2~C̄21F̄2!,

NS25A2~ L̄21Ō2!1B2~ J̄21M̄2!1C2~K̄21N̄2!,

NS35A2~B̄1Ē!Ḡ1B2~C̄1F̄ !H̄1C2~D̄1Ā! Ī ,

NS45A2~C̄1F̄ ! Ī 1B2~D̄1Ā!Ḡ1C2~Ē1B̄!H̄,

NS55ABḠ21BCH̄21CAĪ2,

NS65AB~ĀB̄1D̄Ē!1BC~B̄C̄1ĒF̄ !1CA~C̄D̄1F̄Ā!,

NS75AB~ L̄ J̄1ŌM̄ !1BC~M̄ K̄1 J̄N̄!1CA~N̄L̄1K̄Ō!,
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NS85A2H̄21B2 Ī 21C2Ḡ2,

NS95AB~C̄1F̄ !Ḡ1BC~Ā1D̄ !H̄1CA~B̄1Ē! Ī ,

NS105ABH̄Ī 1BCĪḠ1CAḠH̄,

NS115A2~B̄C̄1ĒF̄ !1B2~C̄D̄1F̄Ā!1C2~D̄Ē1ĀB̄!,

NS125A2~B̄F̄1ĒC̄!1B2~C̄Ā1F̄D̄ !1C2~D̄B̄1ĀĒ!,

NS135A2 Ī Ḡ1B2ḠH̄1C2H̄ Ī ,

NS145A2~Ā1D̄ !H̄1B2~B̄1Ē! Ī 1C2~C̄1F̄ !Ḡ,

NS155AB~B̄1Ē!H̄1BC~C̄1F̄ ! Ī 1CA~Ā1D̄ !Ḡ,

NS165AB~Ā1D̄ ! Ī 1BC~B̄1Ē!Ḡ1CA~C̄1F̄ !H̄,

NS175A2ĀD̄1B2B̄Ē1C2C̄F̄,

NS185A2L̄Ō1B2J̄M̄1C2K̄N̄,

NS195ABC̄F̄1BCD̄Ā1CAĒB̄,

NS205AB~ĀĒ1D̄B̄!1BC~B̄F̄1ĒC̄!1CA~C̄Ā1F̄D̄ !,

NS215AB~ L̄M̄1ŌJ̄!1BC~M̄N̄1 J̄K̄ !1CA~N̄Ō1K̄L̄ !,

NS225A2~ J̄N̄1M̄ K̄ !1B2~K̄Ō1N̄L̄ !1C2~ L̄ J̄1ŌM̄ !,

NS235A2~ J̄K̄1M̄N̄!1B2~K̄L̄1N̄Ō!1C2~ L̄M̄1ŌJ̄!,

NS245ABK̄N̄1BCL̄Ō1CAJ̄M̄ ,

NS255AB~K̄21N̄2!1BC~ L̄21Ō2!1CA~ J̄21N̄2!,

NS265AB~C̄21F̄2!1BC~D̄21Ā2!1CA~Ē21B̄2!.

At z5 (11t)/2, the first two orbits give 2q21/4 and 22q21/4, respectively, while the nex
five orbits giveq21/4; the other orbits all give 0. This embarrassing second orbit prevents u
classify it as either a graviton, massless or massive orbit. The coefficientsDi are ~1,1,2,2,4,4,4;
2,4,8,2,2,4,2,4,4; 4,4,4,4,4,2,2,8,2,2!. So the value of the elliptic genus atz50 is F(0)
5( i 51

d Di uRi8(0)u25( i 51
d Di I i

254D114D21D31 ¯ 1D7524, so this is aK3 model with the
appropriate Euler character.

Due to the relations between the 43 characters and the 16 characters established in~6.14!, we
find the following relations between the orbits:
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1242 theory 43 theory 1242 theory 43 theory 1242 theory 43 theory

NS1 NS11NS7 NS85NS95NS10 NS1453 NS10 NS18 NS17
NS2 NS41NS6 NS11 2 NS8 NS19 NS11

NS35NS45NS5 NS31NS13 NS12 NS813 NS9 NS20 NS13
NS6 NS3 NS135NS145NS15 NS155NS1212NS11 NS21 NS21
NS7 NS5 NS16 NS7 NS22 NS221NS23

NS17 NS15 NS22 NS191NS20
NS24 NS18
NS25 NS16
NS26 NS12

In addition, some of these orbits match even those of 16 theory:

1242 theory 43 theory 16 theory

NS112 NS16 NS113 NS7 NS1
NS35NS45NS55NS61NS20 NS31NS13 NS2

NS85NS95NS10 NS1453 NS10 3 NS3
NS111NS12 3 ~NS81NS9! 3 NS3

NS135NS145NS15 NS155NS1212 NS11 NS4
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APPENDIX A: THETA FUNCTIONS OF GIVEN CHARACTERISTIC

A holomorphic functionT:C→C is called atheta function with periodt and characteristic
(a1 ,b1 ;a2 ,b2) if it is almost periodic on the lattice, i.e., if it transforms according to

T~v11!5ea1v1b1T~v !, and T~v1t!5ea2v1b2T~v !. ~A1!

We call nª(a1t2a2)/2p i the degreeof the function.
For example, the following functions are all theta functions with characteristic and deg

y1/2: ~0,ip;0,ipt! 0,

q1~v !: ~0,ip;22p i ,2 ip~t11!! 1,

q2~v !: ~0,ip;22p i ,2 ipt! 1,

q3~v !: ~0,0;22p i ,2 ipt! 1,

q4~v !: ~0,0;22p i ,2 ip~t11!! 1,

q1~2vu2t!: ~0,0;24p i ,22p i t2 ip! 2,

q2~2vu2t!: ~0,0;24p i ,22p i t! 2,

q3~2vu2t!: ~0,0;24p i ,22p i t! 2,

q4~2vu2t!: ~0,0;24p i ,22p i t2 ip! 2,

q i~v !2: ~0,0;24p i ,22p i t! 2, i 51, . . . ,4.
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Note that characteristics add up when multiplying theta functions. Note also thatq3(nvunt) and
q3(vu t/n) are of degreen and characteristic (0,0;22np i ,2np i t). As another example, con
sider the character functions of the levelk and isospinl representation of affine su~2! algebra:4

xk
l ~y!ª

q( l 11/2)2/(k11/2)21/8

)
n>1

~12qn!~12y2qn!~12y22qn21!

3 (
mPZ

q(k12)m21(2l 11)m~y2m(k12)12l2y22m(k12)22l 22!. ~A2!

This is a theta function of characteristic (0,0;24kp i ,22kipt) and degree 2k, i.e., it transforms
like xk

l (v1t)5q2ky22kxk
l (v).

Each theta function can be multiplied by trivial theta functions~i.e., of degree 0! so that the
resulting characteristic reads (0,0;22p in,b2) wheren the degree~an integer!. For fixedb2 , this
is a vector space of dimensionn as can be seen from the fact that contour integration around
lattice cell yieldsn zeros forT: P2Z5rT8/T5r] logT52n. We denote this complex vecto
space byTn,b2

. For b252np i t, it’s spanned byq3(nvunt),y q3(nv1tunt), . . . ,yn21 q3(nv
1(n21)tunt).

Thus for instance, all degree 2 theta functions of characteristic (0,0;24p i ,22p i t) should be
expressible as linear combinations ofq1(v)2 and q3(v)2 @or any two of the q i(v)2, i
51, . . . ,4] witht-dependent coefficients. This was the case for the N54 massless NS characte
~2.2!, for q2(v)2 or q4(v)2 as in ~B18!, or for the level 1 su~2! theta functions,

x1
0~y!ª

q21/24

)
n>1

~12qn!~12y2qn!~12y22qn21!
(

mPZ
q3m21m~y6m2y26m22!5

q3~2vu2t!

h
,

x1
1/2~y!ª

q25/24

)
n>1

~12qn!~12y2qn!~12y22qn21!
(

mPZ
q3m21m~y6m112y26m23!5

q2~2vu2t!

h
.

~A3!

The right-hand sides can be obtained by noting that these too belong toT2,22p i t ~and by checking
the equalities aty51, q1/2 say!. Alternatively, they are reproduced by the quintuple identity~B16!.

Similarly, any element ofT2,22p i t can be spanned by the N54 characters cĥ0,1/2
NS and ch0

NS, as
was done with the NS orbits in~2.7!.

APPENDIX B: FORMULAS FOR THETA FUNCTIONS

These are standard definitions and formulas for theta functions. Some of this material is
from Appendix A of Ref. 11.

Definition:

q@b
a#~vut!5 (

nPZ
q~1/2!(n2 a/2)2e2p i (v2 b/2)(n2 a/2) , ~B1!

wherea,b are real andq5e2p i t. We also sety5e2p iv.
Periodicity properties:

q@b
a12#~vut!5q@b

a#~vut! , q@b12
a #~vut!5eipaq@b

a#~vut! , ~B2!

q@2b
2a#~vut!5q@b

a#~2vut! , q@b
a#~2vut!5eipabq@b

a#~vut! ~a,bPZ! . ~B3!

In the usual Jacobi/Erderlyi notation we haveq15q@1
1#, q25q@0

1#, q35q@0
0#, q45q@1

0#.
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Product formulas:

q1~vut!52 i (
nPZ

~21!nq(n11/2)2/2yn11/252q1/8sin@pv# )
n51

`

~12qn!~12qny!~12qny21!,

q2~vut!5( q(n11/2)2/2yn11/252q1/8cos@pv#) ~12qn!~11qny!~11qny21!,

~B4!

q3~vut!5( qn2/2yn5) ~12qn!~11qn21/2y!~11qn21/2y21!,

q4~vut!5( ~21!nqn2/2yn5) ~12qn!~12qn21/2y!~12qn21/2y21!.

Define also the Dedekindh-function:

h~t!5q1/24)
n51

`

~12qn!5q1/24 q4~t/2u3t!52 iq1/6 q1~tu3t!

5
1

A3
q2S 1

6 U t

3D5q1/24(
Z

~21!nqn(3n11)/2 . ~B5!

It is related to thev derivative ofq1 :

]

]v U
v50

q1~v !5:q1852p h3~t! ~B6!

and satisfies

hS 2
1

t D5 A2 i t h~t! . ~B7!

The otherv-derivatives yield~at v50):

q19505q285q385q48 . ~B8!

v-periodicity formula:

q@b
a#S v1

e1

2
t1

e2

2 Ut D5e2 ~ ipt/4! e1
2
2 ~ ipe1/2!(2v2b)2 ~ ip/2! e1e2 q@b2e2

a2e1#~vut!, ~B9!

q@b
a#~v1 1

2!5q@b21
a #~v !,

q@b
a#S v1

t

2D5 i bq21/8y21/2 q@b
a21#~v !,

q@b
a#S v1

11t

2 D52 i b11q21/8y21/2 q@b21
a21#~v !, ~B10!

q@b
a#~v11!5~21!a q@b

a#~v !,

q@b
a#~v1t!5~21!bq21/2y21 q@b

a#~v !.
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That is,q@b
a# is a theta function of characteristic (0,ipa;22p i ,2 ip(t1b)) and degree 1, see

Appendix A.
At the half-periods (v50, e1,250,1), we are back to thetheta constants~‘‘Theta Nullwerte’’!:

q1S 1

2D5q2 , q1S t

2D5 iq21/8 q4 , q1S 11t

2 D5q21/8 q3 ,

q2S 1

2D50, q2S t

2D5q21/8 q3 , q2S 11t

2 D52 iq21/8 q4 ,

~B11!

q3S 1

2D5q4 , q3S t

2D5q21/8 q2 , q3S 11t

2 D50,

q4S 1

2D5q3 , q4S t

2D50, q4S 11t

2 D5q21/8 q2 .

At the quarter periods, we have

q4S t

4D52 i q1S t

4D5q21/2
h~t/4! h

h~t/2!
, q2S t

4D5q3S t

4D5q21/2
h~t/2!2

h~t/4!
. ~B12!

Useful identities:

q252
h~2t!2

h
, q35

h5

h~2t!2 h~t/2!2 , q45
h~t/2!2

h
, ~B13!

q2q3q452 h3,

q3~zut! q3~z8ut!1q2~zut! q2~z8ut!5q3S z1z8

2 U t

2D q3S z2z8

2 U t

2D ,

q3~zut! q3~z8ut!2q2~zut! q2~z8ut!5q4S z1z8

2 U t

2D q4S z2z8

2 U t

2D ,

q2~vut!42q1~vut!45q3~vut!42q4~vut!4. ~B14!

For v50, the latter is but Jacobi’sabstruse identity,

q3
45q2

41q4
4 . ~B15!

A more elaborate formula is thequintuple identity,

(
nPZ

~21!nq(3n21n)/2~y3n11/21y23n21/2!

5~y1/21y21/2!)
n>1

~12qn!~11yqn!~11y21qn!~12y2q2n21!~12y22q2n21!

5~y1/21y21/2!)
n>1

~12qn!
~12y2qn!~12y22qn!

~12yqn!~12y21qn!
. ~B16!

Here are few instances ofRiemann addition formulas:
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q3~u1v !q3~u2v !q3
25q3~u!2q3~v !21q1~u!2q1~v !25q4~u!2q4~v !21q2~u!2q2~v !2,

q4~u1v !q4~u2v !q4
25q3~u!2q3~v !22q2~u!2q2~v !25 ¯ . ~B17!

About 20 such formulas can be found on p. 20 of Ref. 12. As special cases (u50,1/2), we recover
formulas that generalize Jacobi’s abstruse identity:

q3~v !2q3
25q2~v !2q2

21q4~v !2q4
2 ,

q4~v !2q3
25q3~v !2q4

21q1~v !2q2
2 . ~B18!

Duplication formulas:

q2~0u2t!5
1

&
Aq3

22q4
2, q3~0u2t!5

1

&
Aq3

21q4
2 , ~B19!

q4~0u2t!5Aq3q4, h~2t!5Aq2 h

2
. ~B20!

The last two of these are readily seen, while the first two follow from~B13! and from the next
properties~most can be derived using the product form forq!:

q252q1/8q2~tu4t!52q1/8q3~tu4t!,

q3~vut!5q3~2vu4t!1q2~2vu4t!,

q4~vut!5q3~2vu4t!2q2~2vu4t!, ~B21!

q3
22q2

25q4~0ut/2!2,

q3
21q2

25q3~0ut/2!2,

q2q35
1

2
q2S 0U t

2D 2

52q1/8 q3S t

2 U2t D 2

52S h2/hS t

2D D 2

,

q2q45q21/8 q2S 1

4 U t

2D 2

52q1/8 q3S 11t

2 U2t D 2

52S hS t

2D h~2t!/h D 2

,

q3q45q3S 1

4 U t

2D 2

5q4~0u2t!25~h2/h~2t!!2. ~B22!

Heat equation:
The q-functions satisfy the following heat equation:

F 1

~2p i !2

]2

]v2 2
1

ip

]

]tGq@b
a#~vut!50, ~B23!

as well as

1

4p i

q29

q2
5]t logq25

ip

12
~E21q3

41q4
4! , ~B24!
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1

4p i

q39

q3
5]t logq35

ip

12
~E21q2

42q4
4! , ~B25!

1

4p i

q49

q4
5]t logq45

ip

12
~E22q2

42q3
4! , ~B26!

where theE2 is the second Eisenstein series. We note that~B24! can be rewritten as

]t log
q2

h
5

ip

12
~q3

41q4
4! , ~B27!

and more generally for (a,b)Þ(1,1),

]t log
q@b

a#

h
5

ip

12
~q4@b

a11#2q4@b11
a #1~21!bq4@b11

a11# ! . ~B28!

The Weierstrass function:

`~z!54p i ]t logh~t!2]z
2 logq1~z!5

1

z2 1O~z2! ~B29!

is even and is the unique analytic function on the torus with a double pole at zero.

`~2z!5`~z!, `~z11!5`~z1t!5`~z! , ~B30!

`~z,t11!5`~z,t!, `S z

t
,2

1

t D5t2 `~z,t! . ~B31!

The constant ofz in ~B29! has been chosen so as to cancel thez0 term in the Laurent expansion
and it equals also

4p i ]t logh~t!5
2p2

3
E25

1

3

q1-

q18
. ~B32!

Alternatively, performing the logarithmic derivative in an appropriate branch, we can ex
~B29! as

`~z!5S q18

q3
D 2 S q3

q1
~z! D 2

1const, ~B33!

where the constant equals

1

3

q1-

q18
2

q39

q3
524p i ]t log

q3

h
5

p2

3
~q2

42q4
4!.

If we divide the intervals@0,t# and @0,1# into n parts and consider the regular grid~on the
fundamental lattice! marked by the points (s1r t)/n for s,r 50, . . . ,n21, the`-values at these
points transform into each other under the action of SL~2,Z!:
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`S s1r t

n
,t D→T `S ~s1r !1r t

n
,t D ,

`S s1r t

n
,t D→S

`S 2r 1st

nt
,2

1

t D5t2`S 2r 1st

n
,t D . ~B34!

Putting all thesè -values—excepts5r 50—into a vector withn221 components, we obtain
vector-valued modular form of weight 2. Summing all components yields 0, as there is no mo
form of weight 2:

( 8
r ,s

`S s1r t

n D50, ~B35!

where the prime indicates exclusion ofs5r 50. Forn52, this is the well-known identity for the
half-periods,

`~1/2!1`~t/2!1`~~11t!/2!50, ~B36!

also derivable from~B33!.
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A new loop algebra and a corresponding integrable
hierarchy, as well as its integrable coupling

Fukui Guo and Yufeng Zhanga)

Institute of Mathematics, School of Information Science and Engineering,
Shandong University of Science and Technology, Taian 271019, China
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A type of new interesting loop algebraG̃M (M51,2,...) with a simple commuta-
tion operation just like that in the loop algebraÃ1 is constructed. With the help of
the loop algebraG̃M , a new multicomponent integrable system, M-AKNS-KN
hierarchy, is worked out. As reduction cases, the M-AKNS hierarchy and M-KN
hierarchy are engendered, respectively. In addition, the system 1-AKNS-KN, which
is a reduced case of the M-AKNS-KN hierarchy above, is a unified expressing
integrable model of the AKNS hierarchy and the KN hierarchy. Obviously, the
M-AKNS-KN hierarchy is again a united expressing integrable model of the mul-
ticomponent AKNS hierarchy ~M-AKNS! and the multicomponent KN
hierarchy~M-KN !. This article provides a simple method for obtaining multicom-
ponent integrable hierarchies of soliton equations. Finally, we work out an inte-
grable coupling of the M-AKNS-KN hierarchy. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1623000#

I. INTRODUCTION

Searching for new integrable hierarchies of soliton equations has been an importa
interesting topic in soliton theory. One took various efficient approaches to have obtained
integrable systems, such as AKNS hierarchy, KN hierarchy, Schro¨dinger system, and so on.1–9 As
far as the multicomponent integrable hierarchies are concerned, there have been develo
such as in Refs. 10 and 11. In Refs. 12 and 13, a systematic method for obtaining the inte
Hamiltonian hierarchies with multipotential functions were presented by constructing some
dimensional subalgebras of the loop algebraÃ1 and making use of the Tu scheme.8,14 However,
the results obtained by use of the above method contain the concrete number of potentia
tions, in general, less than eight. Ma Wenxiu once proposed a method for constructing the
component AKNS hierarchy in Ref. 15, whose number of entries of positive integer ism. In this
article, we propose a systematic method for generating multicomponent integrable hierarc
type of new interesting loop algebraG̃M is first constructed, whose commutation operation is
simple and straightforward as that in the loop algebraÃ1 . As an application example ofG̃M , a
M-AKNS-KN hierarchy of soliton equations is obtained by employing the Tu scheme. A
reduction case, a 1-AKNS-KN hierarchy is given, which is a unified expressing integrable m
of the celebrated AKNS hierarchy and the KN hierarchy. Obviously, the M-AKNS-KN hierar
is also a unified expressing integrable model of the multicomponent AKNS hierarchy an
multicomponent KN hierarchy. Finally, a type of integrable coupling of the M-AKNS-KN hier
chy is presented. The approach proposed in the present article can be used generally.

II. A NEW INTERESTING LOOP ALGEBRA G̃M

Let GM denote a matrix set as follows:

GM5$a5~ai j !M335~a1 ,a2 ,a3!%. ~1!

a!Author to whom correspondence should be addressed. Electronic mail: zhang–yfshandong1963@yahoo.com.cn
57930022-2488/2003/44(12)/5793/11/$20.00 © 2003 American Institute of Physics
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ThenGM consists of a linear space, whereai j are real or complex functions,ai ( i 51,2,3) denote
the i th column of the matrix, andM stands for an arbitrary positive integer.

Definition 1: Let a5(a1 ,a2 ,...,aM)T, b5(b1 ,b2 ,...,bM)T be two column vectors, thei
vector producta* b is defined as

a* b5b* a5~a1b1 ,a2b2 ,...,aMbM !T. ~2!

Introducing the diagonal matrixã5diag(a1,a2,...,aM), obviously, we have

a* b5ãb, ~3!

where the right-hand side of~3! stands for matrix multiplication.
Definition 2: Set a5(a1 ,a2 ,a3), b5(b1 ,b2 ,b3) to be both elements ofGM , and define a

commutation operation@a,b# as

@a,b#5~a2* b32a3* b2 , 2~a1* b22a2* b1!, 2~a3* b12a1* b3!!. ~4!

It is easy to verify that the operation~4! is linear and antisymmetric. Furthermore, a dire
calculation gives

@@a,b#,c#1@@b,c#,a#1@@c,a#,b#50, ~5!

i.e., the operation~4! satisfies the Jacobian identity, wherea,b,cPGM . Therefore,GM is a Lie
algebra with the commutation operation~4!, whose dimensional number in the real region is 3M ,
that is, dimGM53M . Denote

G̃M5$alm, aPGM , m50,61,62,...% ~6!

with the operation

@alm,bln#5@a,b#lm1n, a,bPGM . ~7!

ThenG̃M is a loop algebra.
SinceG̃1 is equal toÃ1 , we conclude thatG̃M is an extension of the loop algebraÃ1 .
We find G̃M has two features

~i! The commutation operation is the same, simple and straightforward, as that in the
algebraÃ1 ;

~ii ! By means ofG̃M , we proceed to simple calculations to be able to obtain various m
component integrable systems.

Consider linear isospectral problems as follows:
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fx5@U,f#, l t50,f,U,VPG̃M ,
~8!

f t5@V,f#,

whose compatibility gives rise to

fxt5@Ut ,f#1@U,@V,f##5f tx5@Vx ,f#1@V,@U,f##,
~9!

@Ut ,f#2@Vx ,f#1@U,@V,f##1@V,@f,U##50.

By employing~5!, the formula~9! can be rewritten as

@Ut ,f#2@Vx ,f#1@@U,V#,f#50. ~10!

Sincef is arbitrary, a condition of~10! holds if and only if the following equation does:

Ut2Vx1@U,V#50. ~11!

Hence, the compatibility of~8! leads to the zero-curvature equation~11!.

III. A MULTICOMPONENT INTEGRABLE HIERARCHY—M-AKNS-KN HIERARCHY

Consider the following isospectral problem

fx5@U,f#, l t50,
~12!

U5~l2I M , u11lu3 , u21lu4!,

where

I M5S 1
1
A
1
D

M31

, ui5S ui1

ui2

A
uiM

D , i 51,2,3,4.

To derive a related soliton hierarchy, we first solve the adjoint equation

Vx5@U,V#. ~13!

We assume that a solutionV is given by

V5 (
m50

`

~a~0,m!1la~1,m!,b~0,m!1lb~1,m!,c~0,m!1lc~1,m!!l22m,

where

a~0,m!5S am1
(0)

am2
(0)

A
amM

(0)
D , a~1,m!5S am1

(1)

am2
(1)

A
amM

(1)
D ,... .

Then, the adjoint equation~13! is equivalent to
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b~1,m11!5 1
2 bx~1,m!1u1* a~1,m!1u3* a~0,m!,

c~1,m11!52 1
2 cx~1,m!1u2* a~1,m!1u4* a~0,m!,

ax~0,m!5u1* c~0,m!2u2* b~0,m!1u3* c~1,m11!2u4* b~1,m11!,

ax~1,m!5u1* c~1,m!2u2* b~1,m!1u3* c~0,m!2u4* b~0,m!,

b~0,m11!5u3* a~1,m11!1 1
2 bx~0,m!1u1* a~0,m!, ~14!

c~0,m11!5u4* a~1,m11!2 1
2 cx~0,m!1u2* a~0,m!,

b~1,0!5c~1,0!5a~1,0!5b~0,0!5c~0,0!50,

a~0,0!5b5~b1 ,b2 ,...,bM !T, b~1,1!5b* u3 ,

c~1,1!5b* u4 , b~0,1!5b* u1 , c~0,1!5b* u2 .

Note

V1
(n)5 (

m50

n

~a~0,m!1la~1,m!,b~0,m!1lb~1,m!,c~0,m!1lc~1,m!!l2n22m,

V2
(n)5l2nV2V1

(n) .

Then ~13! can be written as

2V1x
(n)1@U,V1

(n)#5V2x
(n)2@U,V2

(n)#. ~15!

It is easy to find that the terms on the left-hand side in~15! are of degree>0, while the terms
on the right-hand side are of degree<0. Therefore, we find

2V1x
(n)1@U,V1

(n)#5~u4* b~1,n11!2u3* c~1,n11!,

2u3* a~1,n11!22b~0,n11!22b~1,n11!l,

2c~0,n11!22u4* a~1,n11!12c~1,n11!l).

Taking V(n)5V1
(n)1(]21(u4* b(1,n11)2u3* c(1,n11)),0,0)5V1

(n)1(2a(0,n)
1]21(u1* c(0,n)2u2* b(0,n)), it is easy to compute that

2Vx
(n)1@U,V(n)#5~O,A,B!,

with
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Thus, the compatibility of the following Lax pair,

fx5@U,f#, l t50,

f t5@V(n),f#,

leads to the zero-curvature equation

Ut2Vx
(n)1@U,V(n)#50, ~16!

which admits the Lax integrable system as follows:

ut5~~u1 ,u2 ,u3 ,u4!! t
T

5S A
B

2b~1,n11!12u3* ]21~u4* b~1,n11!2u3* c~1,n11!!

22c~1,n11!22u4* ]21~u4* b~1,n11!2u3* c~1,n11!!

D
5S 22u1* ]21u3* 22u3* ]21u1* 2u3* ]21u2* 12u1* ]21u4* 22u3* ]21u3* 2I M* 12u3* ]21u4*

2u2* ]21u3* 12u4* ]21u1* 22u2* ]21u4* 22u4* ]21u2* 22I M* 12u4* ]21u3* 22u4* ]21u4*

22u3* ]21u3* 2I M* 12u3* ]21u4* 0 0

22I M* 12u4* ]21u3* 22u4* ]21u4* 0 0

D
3S c~1,n11!

b~1,n11!
c~0,n11!
b~0,n11!

D
5
~3!S 22ũ1]21ũ322ũ3]21ũ1 2ũ3]21ũ212ũ1]21ũ4 22ũ3]21ũ3 2I 12ũ3]21ũ4

2ũ2]21ũ312ũ4]21ũ1 22ũ2]21ũ422ũ4]21ũ2 22I 12ũ4]21ũ3 22ũ4]21ũ4

22ũ3]21ũ3 2I 12ũ3]21ũ4 0 0

22I 12ũ4]21ũ3 22ũ4]21ũ4 0 0

D
3S c~1,n11!

b~1,n11!
c~0,n11!
b~0,n11!

D 5J1S c~1,n11!
b~1,n11!
c~0,n11!
b~0,n11!

D ~17!

5
~14!S bx~0,n!12u1* ]21~u1* c~0,n!2u2* b~0,n!!

cx~0,n!22u2* ]21~u1* c~0,n!2u2* b~0,n!!

2b~1,n11!22u3* ]21~u3* c~1,n11!2u4* b~1,n11!!

22c~1,n11!12u4* ]21~u3* c~1,n11!2u4* b~1,n11!!

D
5S 2u1* ]21u1* ]22u1* ]21u2* 0 0

]22u2* ]21u1* 2u2* ]21u2* 0 0

0 0 22u3* ]21u3* 2I m* 12u3* ]21u4*

0 0 22I M* 12u4* ]21u3* 22u4* ]21u4*

D S c~0,n!
b~0,n!

c~1,n11!
b~1,n11!

D
5S 2ũ1]21ũ1 ]22ũ1]21ũ2 0 0

]22ũ2]21ũ1 2ũ2]21ũ2 0 0

0 0 22ũ3]21ũ3 2I 12ũ3]21ũ4

0 0 22I 12ũ4]21ũ3 22ũ4]21ũ4

D S c~0,n!
b~0,n!

c~1,n11!
b~1,n11!

D 5J2S c~0,n!
b~0,n!

c~1,n11!
b~1,n11!

D ,

~18!

where
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A52b~0,n11!12u1* ]21~u4* b~1,n11!2u3* c~1,n11!!22u3* ]21~u1* c~1,n11!

2u2* b~1,n11!1u3* c~0,n11!2u4* b~0,n11!!,

B522c~0,n11!22u2* ]21~u4* b~1,n11!2u3* c~1,n11!!12u4* ]21~u1* c~1,n11!

2u2* b~1,n11!1u3* c~0,n11!2u4* b~0,n11!!,

whereI meansM degree unit matrix.
From ~14!, we can obtain the 434 matrix operatorL5( l i j )434 ,

l 115 l 125 l 145 l 215 l 225 l 2350, l 135 l 245I ,

l 3152
]

2
1ũ2]21ũ12

1

2
ũ4]21ũ3]1ũ4]21~ ũ2ũ32ũ1ũ4!]21ũ1 ,

l 3252ũ2]21ũ22 1
2 ũ4]21ũ4]2ũ4]21~ ũ2ũ32ũ1ũ4!]21ũ2 ,

l 335ũ2]21ũ31ũ4]21ũ11ũ4]21~ ũ2ũ32ũ1ũ4!]21ũ3 ,

l 3452ũ2]21ũ42ũ4]21ũ22ũ4]21~ ũ2ũ32ũ1ũ4!]21ũ4 ,

l 415ũ1]21ũ12 1
2 ũ3]21ũ3]1ũ3]21~ ũ2ũ32ũ1ũ4!]21ũ1 ,

l 425
]

2
2ũ1]21ũ22

1

2
ũ3]21ũ4]2ũ3]21~ ũ2ũ32ũ1ũ4!]21ũ2 ,

l 435ũ3]21ũ11ũ1]21ũ31ũ3]21~ ũ2ũ32ũ1ũ4!]21ũ3 ,

l 4452ũ1]21ũ42ũ3]21ũ22ũ3]21~ ũ2ũ32ũ1ũ4!]21ũ4 .

It is easy to verify thatL meets

J1L5L* J15J2 ,
~19!

S c~1,n11!

b~1,n11!

c~0,n11!

b~0,n11!

D 5LS c~0,n!

b~0,n!

c~1,n11!

b~1,n11!

D , S c~0,n!

b~0,n!

c~1,n11!

b~1,n11!

D 5LS c~1,n!

b~1,n!

c~0,n!

b~0,n!

D .

Hence,~17! and ~18! again can be written as

ut5J1S c~1,n11!

b~1,n11!

c~0,n11!

b~0,n11!

D 5J1LS c~0,n!

b~0,n!

c~1,n11!

b~1,n11!

D 5J2S c~0,n!

b~0,n!

c~1,n11!

b~1,n11!

D 5J1L2S c~1,n!

b~1,n!

c~0,n!

b~0,n!

D
5J1LnS c~1,1!

b~1,1!

c~0,1!

b~0,1!

D 5J1L2nS b* u4

b* u3

b* u2

b* u1

D , n>0. ~20!
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IV. A FEW REDUCTION CASES

Case 1:Whenu35u450, we have from the system~17!

S u1

u2
D

t

5S 0 2I

22I 0 D S c~0,n11!

b~0,n11! D ,

S c~0,n11!

b~0,n11! D 5
~14!S 2

]

2
1ũ2]21ũ1 2ũ2]21ũ2

ũ1]21ũ1
]

2
2ũ1]21ũ2

D S c~0,n!

b~0,n! D . ~21!

Obviously, takingM51, the system~21! is just an AKNS hierarchy.8 Therefore, we call it an
M-AKNS hierarchy.

Case 2:Whenu15u250, we can takea(1,m)5b(0,m)5c(0,m)50(m50,1,2,...). Then the
system~18! reduces to

S u3

u4
D

t

5S 2b~1,n11!22u3* ]21~u3* c~1,n11!2u4* b~1,n11!!

22c~1,n11!12u4* ]21~u3* c~1,n11!2u4* b~1,n11!! D
5S bx~1,n!

cx~1,n! D5S 0 ]

] 0D S c~1,n!

b~1,n! D5JS c~1,n!

b~1,n! D ,

S c~1,n11!

b~1,n11! D5S 2
]

2
2

1

2
ũ4]21ũ3] 2

1

2
ũ4]21ũ4]

2
1

2
ũ3]21ũ3]

]

2
2

1

2
ũ3]21ũ4]

D S c~1,n!

b~1,n! D5LS c~1,n!

b~1,n! D .

Thus,

S u3

u4
D

t

5JLn21S c~1,0!

b~1,0! D . ~22!

Taking M51, the system~22! reduces to the famous KN hierarchy, therefore we call~22! an
M-KN hierarchy. Summarizing the two cases above, the system~20! is known as an M-AKNS-KN
hierarchy of soliton equations, which is a multicomponent integrable system, also a unified
grable model of the multicomponent AKNS hierarchy and the multicomponent KN hiera
Obviously, the 1-AKNS-KN hierarchy is a unified expressing integrable model of the well-kn
AKNS hierarchy and KN hierarchy. This result simplifies the tedious computing courses in
16.

V. AN INTEGRABLE COUPLING OF THE SYSTEM „20…

A simple method for obtaining integrable couplings was proposed in Ref. 18. In this ar
we want to look for a type of integrable coupling of the system~20!. To the end, an expanding Li
algebraFM of the Lie algebraGM is constructed as follows:

FM5$a5~ai j !M355~a1 ,a2 ,a3 ,a4 ,a5!%, ~23!

with a commutation operation@a,b# defined as

@a,b#5~a2* b32a3* b2,2~a1* b22a2* b1!,2~a3* b12a1* b3!,a1* b42a4* b11a2* b5

2a5* b2 ,a3* b42a4* b31a5* b12a1* b5!, ~24!
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wherea,bPFM .
In what follows, we omit the symbol* for operation convenience.
A corresponding loop algebraF̃M is presented as

F̃M5$aln,aPFM ,n50,61,62,...% ~25!

with

@alm,bln#5@a,b#lm1n, ; a,bPFM ~26!

whose two subalgebrasF̃M(1) andF̃M(2) are defined as

F̃M~1!5$~a1 ,a2 ,a3,0,0!ln%,
~27!

F̃M~2!5$~0,0,0,a4 ,a5!ln%.

We find that

~ i! F̃M~1!>G̃M , F̃M5F̃M~1! % F̃M~2!, ~ ii ! @ F̃M~1!,F̃M~2!#,F̃M~2!,

where the symbol> stands for isomorphic relations.
In terms of~25!, an isospectral problem is established:

fx5@U,f#, U5~l2I M ,u11lu3 ,u21lu4 ,u51lu6 ,u71lu8!. ~28!

Set

V5 (
m>0

~a~0,m!1la~1,m!,b~0,m!1lb~1,m!,c~0,m!

1lc~1,m!,d~0,m!1ld~1,m!, f ~0,m!1l f ~1,m!!.

Solving the equation similar to~13! yields

b~1,m11!5 1
2 bx~1,m!1u1a~1,m!1u3a~0,m!,

c~1,m11!52 1
2 cx~1,m!1u2a~1,m!1u4a~0,m!,

ax~0,m!5u1c~0,m!2u2b~0,m!1u3c~1,m11!2u4b~1,m11!,

ax~1,m!5u1c~1,m!2u2b~1,m!1u3c~0,m!2u4b~0,m!,

b~0,m11!5u3a~1,m11!1 1
2 bx~0,m!1u1a~0,m!,

c~0,m11!5u4a~1,m11!2 1
2 cx~0,m!1u2a~0,m!,

dx~0,m!52u5a~0,m!1u1f ~0,m!2u7b~0,m!1d~0,m11!

2u6a~1,m11!1u3f ~1,m11!2u8b~1,m11!, ~29!
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dx~1,m!52u6a~0,m!2u5a~1,m!1u3f ~0,m!1u1f ~1,m!2u8b~0,m!2u7b~1,m!1d~1,m11!,

f x~0,m!5u2d~0,m!2u5c~0,m!1u7a~0,m!1u4d~1,m11!

2u6c~1,m11!1u8a~1,m11!2 f ~0,m11!,

f x~1,m!5u4d~0,m!1u2d~1,m!2u6c~0,m!2u5c~1,m!1u8a~0,m!1u7a~1,m!2 f ~1,m11!,

b~1,0!5c~1,0!5a~1,0!5b~0,0!5c~0,0!5d~0,0!5 f ~0,0!5 f ~1,0!5d~1,0!50,

a~0,0!5b, b~1,1!5bu3 , c~1,1!5bu4 , a~1,1!50, b~0,1!5bu1 ,

c~0,1!5bu2 , f ~1,1!5bu8 , d~1,1!5bu6 , f ~0,1!5bu7 , d~0,1!5bu5 .

Denoting

V1
(n)5 (

m50

n

~a~0,m!1la~1,m!, b~0,m!1lb~1,m!, c~0,m!1lc~1,m!, d~0,m!

1ld~1,m!, f ~0,m!1l f ~1,m!!l2n22m,

V2
(n)5l2nV2V1

(n) ,

then a direct calculation reads

2V1x
(n)1@U,V1

(n)#5~u4b~1,n11!2u3c~1,n11!,2u3a~1,n11!22b~0,n11!

22b~1,n11!l, 2c~0,n!22u4a~1,n11!12c~1,n11!l, 2d~0,n11!

1u6a~1,n11!2u3f ~1,n11!1u8b~1,n11!2d~1,n11!l,

2u4d~1,n11!1u6c~1,n11!2u8a~1,n11!1 f ~0,n11!1 f ~1,n11!l!.

Taking V(n)5V1
(n)1(]21(u4b(1,n11)2u3c(1,n11)),0,0), it iseasy to find that

2Vx
(n)1@U,V(n)#5~O,A,B,C,D !,

whereO, A, B are the same with those in~17!, and

C52u5]21~u4b~1,n11!2u3c~1,n11!!2d~0,n11!1u6a~1,n11!2u3f ~1,n11!

1u8b~1,n11!1l~2u6]21~u4b~1,n11!2u3c~1,n11!!2d~1,n11!!,

D5u7]21~u4b~1,n11!2u3c~1,n11!!2u4d~1,n11!1u6c~1,n11!2u8a~1,n11!2 f ~0,n

11!1l~u8]21~u4b~1,n11!2u3c~1,n11!!1 f ~1,n11!!.

Thus, the zero curvature equation similar to~16! gives
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ut5~u1 ,u2 ,u3 ,u4 ,u5 ,u6 ,u7 ,u8! t
T

51
A

B

2b~1,n11!12u3]21~u4b~1,n11!2u3c~1,n11!!

22c~1,n11!22u4]21~u4b~1,n11!2u3c~1,n11!!

u5]21~u4b~1,n11!2u3c~1,n11!!1d~0,n11!2u6a~1,n11!1u3f ~1,n11!2u8b~1,n11!

u6]21~u4b~1,n11!2u3c~1,n11!!1d~1,n11!

2u7]21~u4b~1,n11!2u3c~1,n11!1u4d~1,n11!2u6c~1,n11!1u8a~1,n11!2 f ~0,n11!

2u8]21~u4b~1,n11!2u3c~1,n11!2 f ~1,n11!

2
51

2u1]21u322u3]21u1 2u3]21u212u1]21u4 22u3]21u3 212u3]21u4 0 0 0 0

2u2]21u312u4]21u1 22u2]21u422u4]21u2 2212u4]21u3] 22u4]21u4 0 0 0 0

22u3]21u3 212u3]21u4 0 0 0 0 0 0

2212u4]21u3 22u4]21u4 0 0 0 0 0 0

2u5]21u32u6]21u1 u5]21u41u6]21u22u8 2u6]21u3 u6]21u4 u3 0 0 1

2u6]21u3 u6]21u4 0 0 0 0 1 0

u7]21u32u31u8]21u1 2u7]21u42u8]21u2 u8]21u3 2u8]21u4 0 21 u4 0

u8]21u3 2u8]21u4 0 0 1 0 0 0

2
3S c~1,n11!

b~1,n11!
c~0,n11!
b~0,n11!
f ~1,n11!
f ~0,n11!
d~1,n11!
d~0,n11!

D
5J1S c~1,n11!

b~1,n11!
c~0,n11!
b~0,n11!
f ~1,n11!
f ~0,n11!
d~1,n11!
d~0,n11!

D . ~30!

From ~29!, we can present a recurrence operator

L51
l 11 l 12 l 13 l 14 0 0 0 0

l 21 l 22 l 23 l 24 0 0 0 0

l 31 l 32 l 33 l 34 0 0 0 0

l 41 l 42 l 43 l 44 0 0 0 0

0 0 0 0 0 0 1 0

l 61 l 62 l 63 l 64 2] u2 0 u4

0 0 0 0 0 0 0 1

l 81 l 82 l 83 l 84 2u2 0 2u3 0

2 ,

with
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l 615u8]21S 2
u3

2
]1~u2u32u1u4!]21u1D2u51u7]21u1 ,

l 625u8]21S ~u1u42u2u3!]21u22
u4

2
] D ,

l 6352u61u7]21u31u8]21~u11~u2u32u1u4!]21u3!,

l 6452u7]21u41u8]21~2u21~u1u42u2u3!]21u4!,
~31!

l 8152
u6

2
]21u3]1~u6]21~u2u32u1u4!1u5!]21u1 ,

l 825u72
u6

2
]21u4]1~u6]21~u1u42u2u3!2u5!]21u2 ,

l 835u6]21u11~u6]21~u2u32u1u4!1u5!]21u3 ,

l 845u82
u6

2
]21u2]1~u6]21~u1u42u2u3!2u5!]21u4 .

Therefore, the system~30! can be written as

ut5~u1 ,...,u8! t
T5J1Ln~bu4 ,bu3 ,bu2 ,bu1 ,bu8 ,bu7 ,bu6 ,bu5!T. ~32!

In terms of the definition of integrable couplings,18 we conclude that the system~31! is a
multicomponent integrable coupling of the M-AKNS-KN hierarchy of~20!.

Remark:We proposed the method for generating multicomponent integrable hierarchi
soliton equations in this article. To the best of our knowledge, this method is new. However,
exists a shortcoming of the method, i.e., the multicomponent integrable systems generated
method are only Lax integrable. It is desirable to us that these hierarchies obtained are Li
integrable. This problem is worthwhile studying in the future.
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We consider Kolmogorov’s«-entropy of the global attractor for first and second
order dissipative lattice dynamical systems. By using the element decomposition
and the covering property of a polyhedron by balls of radii« in the finite dimen-
sional space, we obtain an estimate of the upper bound for Kolmogorov’s«-entropy
of the global attractor. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1626269#

I. INTRODUCTION

Lattice dynamical systems~LDSs! are infinite systems of ordinary differential equations~lat-
tice ODEs! or of difference equations.1 Lattice systems arise in many applications, for example
chemical reaction theory,2 image processing and pattern recognition,3 material science,4 biology,5

electrical engineering,6 laser systems,7 etc. LDSs possess their own form, but, in some cases,
arise as spatial discretizations of partial differential equations~PDEs!.

It is well known that in many cases the longtime behavior of dynamical systems, genera
evolutionary equations of mathematical physics, can be naturally described in terms of att
of the corresponding semigroup~see Ref. 8!. In LDSs, it is difficult to describe the geometri
structure of the attractor and to estimate the dimension of the attractor because, genera
attractor is infinite dimensional. One possible approach to handle this problem, which has
suggested in Ref. 9, is to estimate Kolmogorov’s«-entropy of the attractor. By definition, Kol
mogorov’s«-entropyK«(L) of an attractorL is the logarithm of the minimal numberN«(L) of
«-balls covering the attractor in the phase space.

In this article, we consider Kolmogorov’s«-entropy of the global attractor for first and seco
order dissipative lattice dynamical systems. By element decomposition and the covering pr
of a polyhedron by balls of radii« in the finite dimensional space, we obtain an estimate of
upper bound for Kolmogorov’s«-entropy of the global attractor.

II. PRELIMINARIES

We consider a (2n11)-dimensional regular polyhedronG5$u* 5(ui) u i u<nPR2n11:uui u
<r 0 , i PZ% with length 2r 0 . Let n«(G), «.0, denote the number of balls ofR2n11 of radii «/2
coveringG.

It is easy to see that the regular polyhedronG can be covered by (@2r 0A2n11/«#11)2n11

(@m# is the largest integer which is less than or equals to m) small regular polyhedrons with
length«/A2n11, and each such small regular polyhedron with length«/A2n11 has a circum-
scribed ball with the same center and radius«/2. Thus, the number of the balls of radii«/2
covering G is equal to that of regular polyhedrons with length«/A2n11, i.e., n«(G)
5(@2r 0A2n11/«#11)2n11.

a!Author to whom correspondence should be addressed. Electronic mail: zhoushengfan@sohu.com
58040022-2488/2003/44(12)/5804/7/$20.00 © 2003 American Institute of Physics
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We assume that the centers of thesen«(G) circumscribed balls areu1* , u2* , ..., un«(G)* ,

respectively~in fact, the center of each circumscribed ball is exactly the center of the corresp
ing small regular polyhedron with length«/A2n11).

Theorem 1:10 In the (2n11)-dimensional space R2n11, n«(G)5(@2r 0A2n11/«#11)2n11

«/2-balls centered at u1* , u2* , ..., un«(G)* with radius «/2 can cover the regular polyhedronG

5$u* 5(ui) u i u<n :uui u<r 0%.
Let M be a metric space andD be a precompact subset ofM . For a given«.0, N«(D)

5N«(D,M ) denotes the minimal number of«-balls in M which cover the setD ~this number is
evidently finite by Hausdorff criteria!. By definition, Kolmogorov’s«-entropy ofD in M is the
following numberK«(D)5K«(D,M )[ ln N«(D). For the detail study of this concept, see Ref. 1

Thus, Kolmogorov’s«-entropy K«(L) of an attractorL is the logarithm of the minimal
numberN«(L) of «-balls covering the attractor in the phase space, i.e.,

K«~L!5 ln N«~L!. ~1!

SinceL is compact,~1! is well defined and finite for every«.0.

III. KOLMOGOROV’S ENTROPY OF ATTRACTOR FOR FIRST ORDER DISSIPATIVE
LATTICE DYNAMICAL SYSTEM

We consider the first order dissipative lattice dynamical system

u̇i5n~ui 2122ui1ui 11!2lui2 f ~ui !1gi , i PZ, ~2!

with the initial data

ui~0!5u0,i , i PZ, ~3!

wheren, l.0, andg5(gi) i PZP,2 are given, andf is a C1 function satisfying

f ~s!s>0, ;sPR. ~4!

Equation ~2! can be regarded as a discrete analog of the following continuous reac
diffusion equation inR,

ut2nu1lu1 f ~u!5g~x!, xPR,

which has been widely studied. Equation~2! occurs in a wide variety of applications where th
spatial structure has a discrete character. Cellular neural networks with applications to
processing and pattern recognition are just two of many such examples. They also arise in
for the propagation of pulses in myelinated axons where the membrane is excitable o
spatially discrete sites, and in this context, we find much of the early theoretical developme
this case,ui represents the potential at thei th active site.

We denote by,2 the Hilbert space defined by,25$u5(ui) i PZ :( i PZuui u2,1`% with the
norm i•i and inner product~•,•! by iui5(( i PZuui u2)1/2 and (u,v)5( i PZuiv i for u5(ui) i PZ , v
5(v i) i PZP,2.

For u5(ui) i PZP,2, f̃ (u)5( f (ui)) i PZ . In the sequel, when no confusion arises we alwa
identify f̃ with f and use the same symbol to denote them. Define a linear operatorA on ,2 by
(Au) i52(ui 2122ui1ui 11), for eachi PZ. Then, system~2! and ~3! is equivalent to the fol-
lowing equation withu5(ui) i PZP,2:

u̇52nAu2lu2 f ~u!1g, t.0, ~5!

and
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u~0!5u0P,2. ~6!

We know from Ref. 12 that the existence and upper semicontinuity of the global attract
the semigroup

S~ t !:u~0!5u0P,2→u~ t !5S~ t !u~0!5u~ t !P,2, t>0,

defined by the solutions of system~5! and ~6! and the following facts.
Lemma 3.1:12 Assume that (4) holds and gP,2. Then system (5) and (6) has an absorbing

O5$uP,2:iui<M0%5O(0,M0),,2 (a bounded ball centered at0 and of radius M0), where
M05&igi /l is a constant depending on the data(l,igi) only, and system (5) and (6) has
connected global attractorL.

Lemma 3.2:12 Assume that (4) holds, gP,2 and u0PO [the bounded absorbing set of syste
(5) and (6)]. Then for every«.0, there exist T(«) and J(«) such that the solution u of problem
(5) and (6) satisfies(( u i u>J(«)ui

2(t))1/2<«/2, ;t>T(«), where J(«) and T(«) depend on«, g,
and l, J(«) is the least integer satisfying the inequality

C

J
1

1

l (
u i u>J

gi
2<

l«

2
, ~7!

where C is a constant independent of J, g5(gi) i PZ .
Lemma 3.3: Assume that (4) holds and gP,2. Then the global attractorL of system (5) and

(6) satisfiesL,O5O(0,M0), and for each u5(ui) i PZPL, (( u i u>J(«)ui
2(t))1/2,«/2, where J(«)

is defined by (7).
Proof: It is proved byL5v(O) and Lemma 3.2.
Theorem 2: For «.0, the global attractorL of system (5) and (6) can be covered

n«(L)5(@2M0A2J(«)11/«#11)2J(«)11 «-balls of ,2.
Proof: For u5(ui) i PZPL, we decomposeu into a sum of two parts:

u5~ui ! i PZ5~wi ! i PZ1~v i ! i PZ5w1v,

where

wi5 Hui ,u i u<J~«!,
0,u i u.J~«!, v i5 H0,u i u<J~«!,

ui ,u i u.J~«!.

By Lemma 3.3, we have thatuwi u<M0 and ivi< «/2.
By Theorem 1, n«(G)5(@2M0A2J(«)11/«#11)2J(«)11 «/2-balls centered atuj*

5(uj ,i* ) u i u<J(«) , j 51,2,...,n«(G), respectively, with radius «/2 can cover the
(2J(«)11)-dimensional polyhedronG5$w5(wi) u i u<J(«)PR2J(«)11:uwi u<M0%.

Setwj 05(wj 0,i) i PZP,2, where

wj 0,i5 H uj ,i* ,u i u<J~«!,
0,u i u.J~«!,

j 51,2,...,n«~G!.

Then forw5(wi) i PZ above, there existsj such that

iw2wj 0i,
«

2
.

Thus,

iu2wj 0i5iw2wj 01vi<iw2wj 0i1ivi,
«

2
1

«

2
5«.
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Hence the global attractorL of system ~5! and ~6! can be covered byn«(G)
5(@2M0A2J(«)11/«#11)2J(«)115n«(L) «-balls centered at wj 05(wj 0,i) i PZ ( j
51,2,...,n«(G)) with radius«, respectively.

By Theorem 2 and the definition of Kolmogorov’s«-entropy, we can easily obtain the fo
lowing theorem.

Theorem 3: Assume that (4) holds and gP,2. Then Kolmogorov’s«-entropy of the global
attractor L of system (5) and (6) has an upper bound(2J(«)11)ln(@2M0A2J(«)11/«#11),
where M05&igi /l and J(«) is defined by (7).

IV. KOLMOGOROV’S ENTROPY OF ATTRACTOR FOR SECOND ORDER DISSIPATIVE
LATTICE DYNAMICAL SYSTEMS

We consider the second order dissipative lattice dynamical system

üi1h~ u̇i !2~ui 2122ui1ui 11!1lui1 f ~ui !5gi , i PZ, ~8!

with the initial conditions

ui~0!5ui ,0 , u̇i~0!5u1i ,0 , i PZ, ~9!

wherel.0, g5(gi) i PZP,2 and f , hPC1(R,R) satisfy

f ~0!50, f ~s!s>nG~s!>0, ;sPR, ~10!

h~0!50, 0,a<h8~s!<b,1`, ;sPR, ~11!

heren, a, b are positive constants andG(s)5*0
s f (t)dt, sPR.

Equation~8! can be regarded as a model of coupled nonlinear oscillators and as a di
analog of the following continuous damped semilinear wave equation inR:

utt1h~ut!2uxx1lu1 f ~u!5g,

which arises in wave phenomena of various areas in mathematical physics.
Let ,25$u5(ui) i PZ :( i PZuui u2,`%. Define the linear operatorsB, A from ,2 to ,2 as

follows. For anyu5(ui) i PZP,2,

~Bu! i5ui 112ui ,
~Au! i52~ui 2122ui1ui 11!, ; i PZ. ~12!

For any two elements of,2, u5(ui) i PZ , v5(v i) i PZP,2, define bilinear forms as

~u,v !5( i PZuiv i , iui25~u,u!5( i PZuui u2;

~u,v !l5~Bu,Bv !1l~u,v !, ~13!

iuil
25~u,u!l5iBui21liui25( i PZ~ uui 112ui u21luui u2!.

It is easy to check that the above two bilinear forms~•,•! and (•,•)l in ~13! are both the inner
products, moreover, the normsi•i and i•il are equivalent to each other. Denote by,2, ,l

2 the
spaces with the inner products and norms in~13!, respectively,,25(,2,(•,•),i•i), ,l

25(,2,
(•,•)l ,i•il), then,2 and,l

2 are Hilbert spaces.
Let E5,l

23,2, endowed with the inner product and norm as forw j5(u( j ),v ( j ))
5((ui

( j )),(v i
( j ))) i PZPE, j 51,2,
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~w1 ,w2!E5~u(1),u(2)!l1~v (1),v (2)!5(
i

@~Bu(1)! i~Bu(2)! i1lui
(1)ui

(2)1v i
(1)v i

(2)#,

~14!
iwiE

25~w,w!E , ;wP,l
23,2.

Equation~8! is written as

ü1h~ u̇!1Au1lu1 f ~u!5g, t.0, ~15!

and the initial data~9! are

u~0!5~ui ,0! i PZ5u0 , u̇~0!5~u1i ,0! i PZ5u10, ~16!

whereu5(ui) i PZ , h(u̇)5(h(u̇i)) i PZ , f (u)5( f (ui)) i PZ , g5(gi) i PZ .
Let v5u̇1pu, wherep is chosen as

p5
al

b214l
.0. ~17!

Then system~15! and~16! is equivalent to the following initial value problem in Hilbert spaceE,

ẇ1C~w!5F~w!, w~0!5~u0 ,v0!T5~u0 ,u101pu0!T, ~18!

wherew5(u,v)T, v5u̇1pu, F(w)5(0,2 f (u)1g)T,

C~w!5S pu2v
Au1lu1p2u2pv D1S 0

h~v2pu! D . ~19!

From Ref. 13, we know the existence and upper semicontinuity of the global attract
system~18!, and the solutions of system~18! define the following semigroup:

S8~ t !:w~0!5~u0 ,v0!→w~ t !5S8~ t !w~0!5~u~ t !,v~ t !!, E→E, t>0, ~20!

wherev(t)5u̇(t)1pu(t).
Lemma 4.1:13 If (10) and (11) hold and gP,2, then there exists an absorbing set of syst

(18) in E: O85OE8 (0,r 0) (a bounded ball centered at0 with radius r0), where r0
252/am igi2,

m5min$2al/Ab214l(b1Ab214l) ,np%, and there exists a connected global attract
L8,E.

Lemma 4.2:13 If (10) and (11) hold gP,2 and w(0)5(u0 ,v0)PO8, then;«.0, there exist
T8(«) and J8(«) such that the solutionw(t)5(w i) i PZ5((ui(t)),(v i(t))) i PZPE of problem (18),
v(t)5u̇(t)1pu(t), satisfies

(
u i u>J8(«)

iw i~ t !iE
25 (

u i u>J8(«)
@~Bu~ t !! i

21lui~ t !21v i~ t !2#<«2/4,;t>T8, ~21!

where(Bu(t)) i5ui 11(t)2ui(t), and J8(«) is the least integer satisfying the inequality

8C0r 0
2

J8
1

1

a (
u i u>J8

gi
2<«2/4, ~22!

where C0 is a constant independent of J8, g5(gi) i PZ .
Lemma 4.3: If (10) and (11) hold and gP,2, then the global attractorL8 of system (18)

satisfiesL8,O85O8(0,r 0),E, and for eachw5(w i) i PZPL8,
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(
u i u>J8(«)

iw i~ t !iE
25 (

u i u>J8(«)
@~Bu~ t !! i

21lui~ t !21v i~ t !2#<«2/4.

Proof: By L85v(O8) and Lemma 4.2, Lemma 4.3 can be easily proved.
Theorem 4: For given «.0, the global attractorL8 of system (18) can be covered b

n«(L8)5(@2r 0A2J8(«)11/Al«#11)2J8(«)113(@2r 0A2J8(«)11/«#11)2J8(«)11 «-balls.
Proof: For ;w5(w i) i PZPL8, we can decomposew into two parts:

w5~w i ! i PZ5~yi ! i PZ1~zi ! i PZ5y1z,

where

yi5~ai ,bi !5H ~ui ,v i !, u i u<J8~«!,

0, u i u.J8~«!,
zi5~ci ,di !5H 0, u i u<J8~«!,

~ui ,v i !, u i u.J8~«!.

By Lemma 4.3, we know thatiyiE<r 0 and iziE< «/2 .
By iyiE<r 0 , iwiE

25i(u,v)iE
25( i PZ((Bu) i

21lui
21v i

2) and (Bu) i5ui 112ui , we have

r 0
2>iyiE

25 (
u i u<J8(«)

~~ai 112ai !
21lai

21bi
2!>liai21ibi2.

Therefore,iai< r 0 /Al , ibi<r 0 . Thenuai u< r 0 /Al , ubi u<r 0 .
For the polyhedronG85$y5(ai ,bj ) u i u,u j u<J8(«)PR2J8(«)113R2J8(«)11:uai u< r 0 /Al , ubj u

<r 0% in the (2J8(«)11)2-dimensional space, by Theorem 1,G8 can be covered byn«(G8)
5(@2r 0A2J8(«)11/Al«#11)2J8(«)113(@2r 0A2J8(«)11/«#11)2J8(«)11 «/2-balls.

Let the centers of these«/2-balls be wk* 5(ai ,k* ,bj ,k* ) u i u,u j u<J8(«)PR2J8(«)113R2J8(«)11, k
51,2,...,n«(G8), respectively. Choosewk5(wk,i , j ) i , j PZ , k51,2,...,n«(G8), where

wk,i , j5H wk* , u i u, u j u<J8~«!,

0, u i u.J8~«! or u j u.J8~«!.

Then, fory5(yi) i PZ5((ai ,bi)) i PZ above,

yi5~ai ,bi !5H ~ui ,v i !, u i u<J8~«!,

0, u i u.J8~«!,

there existsk such that

iy2wkiE,
«

2
, k51,2,...,n«~G8!.

Thus

iw2wkiE5iy1z2wkiE<iy2wkiE1iziE,
«

2
1

«

2
5«.

Hence the attractorL8 of ~18! can be covered byn«(G8)5(@2r 0A2J8(«)11/Al«#11)2J8(«)11

3(@2r 0A2J8(«)11/«#11)2J8(«)115n«(L8) «-balls centered atwk5(wk,i , j ) i , j PZ , k51, 2,...,
n«(L8), with radius«, respectively.

By Theorem 4 and the definition of Kolmogorov’s«-entropy, we can easily obtain the fo
lowing theorem.

Theorem 5: If (10) and (11) hold and gP,2, then an upper bound of Kolmogorov’s«-entropy
of the global attractorL8 of (18) is
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~2J8~«!11!S lnS F2r 0A2J8~«!11

Al«
G11D 1 lnS F2r 0A2J8~«!11

« G11D D ,

where r05&igi /Aam, and J8(«) is defined by (22).
Remark: For the first and second order dissipative lattice dynamical systems, we giv

following remark.
(i) If igi50, i.e., gi50,; i PZ, then the global attractorL (or L8) is exactly an equilibrium

which attracts every bounded set of,2 (or E). In this case, Kolmogorov’s«-entropy ofL (or L8)
is zero andL (or L8) is zero-dimensional.

(ii) If igiÞ0, then, in general, it is unknown for the exact geometric structure ofL (or L8),
but only knowing thatL (or L8) is included in a bounded ball O5O(0,M0) (or O85O8(0,r 0)),
where M05&igi /l Þ0 (or r 05(&igi /am) Þ0). Obviously, in this case, L (or L8) is generally
infinite dimensional.
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Almost all research on superintegrable potentials concerns spaces of constant cur-
vature. In this paper we find by exhaustive calculation, all superintegrable poten-
tials in the four Darboux spaces of revolution that have at least two integrals of
motion quadratic in the momenta, in addition to the Hamiltonian. These are two-
dimensional spaces of nonconstant curvature. It turns out that all of these potentials
are equivalent to superintegrable potentials in complex Euclidean 2-space or on the
complex 2-sphere, via ‘‘coupling constant metamorphosis’’~or equivalently, via
Stäckel multiplier transformations!. We present a table of the results. ©2003
American Institute of Physics.@DOI: 10.1063/1.1619580#

I. INTRODUCTION

In a previous paper1 we have studied superintegrability in a two-dimensional space of n
constant curvature, in particular one of the so-called Darboux spaces, given by Koenigs.2 In this
paper we study the remaining three spaces of nonconstant curvature from the point of v
superintegrability. This involves the addition of a potential to each of the spaces given by Ko
We recall that classical superintegrability relating to a HamiltonianH(x1 ,...,xn ,p1 ,...,pn)
5H(x,p) implies the existence of 2n21 globally defined constants of the motion. For the p
poses of this paper we restrict this definition to require that there exist 2n21 globally defined
functionally independent constants of the motionXi , i 51,...,2n21 that are quadratic in the
canonical momentapi . This clearly implies the relations

$H,X,%5(
i 51

n S ]X,

]xi

]H

]pi
2

]X,

]pi

]H

]xi
D50 , i 51,...,2n21 .

The concepts of integrability and superintegrability also have their analog in quantum
chanics. A superintegrable quantum mechanical system is described by 2n21 ~independent! quan-
tum observablesĤ5X̂1 ,X̂2 ,...,X̂2n21 that satisfy the commutation relations

@Ĥ,X̂i #5ĤX̂i2X̂i Ĥ50, i 51,...,2n21.

a!Electronic mail: e.kalnins@waikato.ac.nz
b!Electronic mail: jonathan@maths.unsw.edu.au
c!Electronic mail: miller@ima.umn.edu
d!Electronic mail: wintern@crm.umontreal.ca
58110022-2488/2003/44(12)/5811/38/$20.00 © 2003 American Institute of Physics
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The analog of quadratic superintegrability in this case is that each of the quantum observa
a second order partial differential operator. Systematic studies of superintegrable system
been conducted in spaces of constant curvature in two dimensions.3–7

In this paper we solve the following problem. Given a Riemannian space in two dimen
with infinitesimal distance ds25( i , j 51

2 gi j (u)dui duj , andu5(u1,u2), the classical Hamiltonian
has the form

H5 (
i , j 51

2

gi j pipj1V~u!

and the corresponding Schro¨dinger equation is

ĤC5
1

Ag
]ui~Aggik]ukC!1V~u!C5EC,

whereAg5det(gij). Koenigs found all free HamiltoniansH5(gi j pipj admitting at least two extra
functionally independent constants of the motion of the form

L5 (
i , j 51

2

ai j ~u!pipj , ai j 5aji .

He obtained a number of families of solutions; in particular, spaces that admitted three
quadratic constants. There must then be a functional relation between these and, furtherm
each case there is a Killing vector, i.e., a functionm5( i 51

2 ai(u)pi that satisfies$H,m%50. One
of the three quadratic constants is a square of the Killing vectorm.

The problem we solve here is supplemental to that of Koenigs: Suppose we have a H
tonianH5(gi j pipj1V(u) that admits a Killing vector. We determine thepotentialsthat corre-
spond to superintegrability, i.e., potentials such that we can find at least two extra functio
independent quadratic constants of the form

L5 (
i , j 51

2

ai j ~u!pipj1l~u! .

A necessary condition that this be possible is that the Riemannian space be one of the fou
by Koenigs:

~1! ds25(x1y)dx dy,
~2! ds25(a/(x2y)2 1b)dx dy,
~3! ds25(ae2(x1y)/21be2x2y)dx dy,
~4! ds25 @a(e(x2y)/21e(y2x)/2)1b#/(e(x2y)/22e(y2x)/2)2 dx dy.

The first of these spaces, type one, orD1 , has been treated in detail in an earlier paper.1 Here
we treat the remaining three Darboux spaces in a similar and unified way. Sections II, III, a
are devoted to the spacesD2 , D3 , andD4 , respectively. In each space we follow the same patte

~1! We first consider a classical free particle system and give the free HamiltonianH0 , the Killing
vector K, and the two Killing tensorsX1 and X2 in a space with a conformally Euclidea
metric ~real or complex!. We choose coordinatesu andv in which the first order constant i
K5pv , henceu is an ignorable variable, not appearing in the metric or in the Hamilton

~2! We present an embedding of the two-dimensional Darboux space into a three-dimensio
space.

~3! We present a polynomial relation between the four integrals of motionH, K, X1 , andX2 , and
also the polynomial algebra generated by these integrals.
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~4! We consider the quantum mechanics of a free particle in the corresponding Darboux
i.e., write the corresponding Hamiltonian and integrals of motion as linear operators. We
establish that the relations between these operators are the same as those between the
quantities.

~5! We use the fact that the Killing vectorK generates a one-dimensional Lie transformat
group to classify all integrals of motion

l5aX11bX21cK2 ~1.1!

into conjugation classes. Each class gives rise to a coordinate system in which the Ham
Jacobi and Schro¨dinger equations allow the separation of variables. We construct these
rable coordinate systems explicitly and solve the corresponding separated equations~classical
and quantum!.

~6! By construction, the free classical and quantum systems in Darboux spaces are all qu
cally superintegrable: they have three functionally independent integrals of motion. We
duce potentials that do not destroy this superintegrability. Thus we present systematica
superintegrable classical and quantum systems of the form

H5H01V~u,v!, ~1.2!

whereH0 is the free Hamiltonian in the spaceD2 , D3 , or D4 . To obtain this result we make
use of the fact that to be quadratically superintegrable, a Hamiltonian in a Darboux spac
allow the separation of variables in at least two coordinate systems.

A separate section, Sec. V, is devoted to the relation between superintegrable syst
Darboux spaces and two-dimensional spaces of constant curvature.

II. DARBOUX SPACES OF TYPE TWO

A. The free particle and separating coordinate systems

If we allow rescaling of the variablesx and y, as well as the HamiltonianH then we can
always takeH to be of the form

H05
~x2y!2

~x2y!221
pxpy . ~2.1!

In the coordinatesx5 1
2 (v1 iu), y5 1

2 (v2 iu) this Hamiltonian becomes

H05
u2~pu

21pv
2!

u211
.

Associated with the Hamiltonian are three integrals of the free motion

K5pv , X15
2v~pv

22u2pu
2!

u211
12upupv , X25

~v22u4!pv
21u2~12v2!pu

2

u211
12uvpupv .

These three integrals satisfy the following polynomial algebra relations:

$K,X1%52~K22H0!, $K,X2%5X1 , $X1 ,X2%54KX2 . ~2.2!

They are functionally dependent via the relation

X1
224K2X214H0X224H0

250 . ~2.3!

The corresponding problem in quantum mechanics can be obtained via the usual quan
rules and symmetrization:
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Ĥ05
u2

u211
~]u

21]v
2!, K̂5]v , X̂15

2v
~u211!

~]v
22u2]u

2!12u]u]v1]v ,

X̂25
1

u211
~~v22u4!]v

21u2~12v2!]u
2!12uv]u]v1u]u1v]v2

1

4
,

where the constant in the last expression is taken for convenience. The commutation relati
identical with those of the corresponding classical algebra,

@K̂,X̂1#52~K̂22Ĥ0!, @K̂,X̂2#5X̂1 , @X̂1 ,X̂2#52$K̂,X̂2%.

Here $K̂,X̂2%5 1
2(K̂X̂21X̂2K̂). The operator relation~that exists in analogy with the functiona

relation in the classical case! is

X̂1
222$K̂2,X̂2%14Ĥ0X̂224Ĥ0

22Ĥ014K̂250.

The line element ds25(du21dv2)(u211)/u2 can be realized as a two-dimensional surfac
embedded in three dimensions by

X5
vAu211

u
, Y2T5

Au211

u
, Y1T52

~2u415u218v2!Au211

8u
2

3

8
arcsinhu ,

in which case,

ds25dX21dY22dT25
u211

u2 ~du21dv2! .

We wish to determine all the essentially different separable coordinate systems for th
classical or quantum particle. In order to do this we need to consider a general quadratic c
of the form l5aX11bX21cK2. Under the adjoint action of exp(aK), X1 and X2 transform
according to

X1→X112a~K22H0!, X2→X21aX11a2~K22H0!.

From these transformation formulas we see that ifbÞ0 we can always takel in the form l
5X21bK2. If b50 then there are two representatives possible:X1 or K2. We have the following
cases:

X21bK2 , X1 , K2 . ~2.4!

We now demonstrate the explicit coordinates for each of these representatives using m
of our previous paper.1

1. Coordinates associated with X 2¿bK 2

If we chooseb5b2, bÞ0 suitable coordinatesv, w are

u5b coshv cosw, v5b sinhv sinw , ~2.5!

the standard form of elliptical coordinates in the plane. The classical Hamiltonian has the

H05
pv

2 1pw
2

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
.

The corresponding quadratic constant, expressed in these coordinates is
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X21b2K25
~sec2 w1b2 sin2 w!pv

2 1~sech2 v2b2 sinh2 v!pw
2

~sec2 w2sech2 v!1b2~cosh2 v2cos2 w!
.

The Hamilton–Jacobi equation is

S ]S

]v D 2

1S ]S

]w D 2

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
5E ,

with solutions of the form

S~v,w!5
bAE

2 S E 1

V
A~V1b1!~V1b2!

V21
dV1E 1

F
A~b12F!~F2b2!

12F
dF D ,

where b11b252l/Eb2, b1b2521/b2, F5cos2 w, V5cosh2 v. The corresponding Schro¨-
dinger equation

~]w
21]v

2 !C

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
5EC

has solutions of the form

C5Acosw coshv Sn
m( j )~ i sinhv,2 1

4Eb!Psn
m~sinw,2 1

4Eb! , j 51,2,

whereSn
m( j )(z,k) andPsn

m(t,k) are spheroidal functions8 andE5m22 1
4.

2. Coordinates associated with X 2

Here we use polar coordinates

u5r cosu , v5r sinu . ~2.6!

The classical Hamiltonian has the form

H05
r 2pr

21pu
2

r 21sec2 u

and the corresponding quadratic constant is

X25
r 2 sec2 u pr

22pu
2

r 21sec2 u
.

The Hamilton–Jacobi equation in these coordinates is

r 2S ]S

]r D 2

1S ]S

]u D 2

r 21sec2 u
5E ,

with solution
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S~r ,u!5AEr21l2Al arctanhAEr21l

l
2Al log~Al sinu1AE2l cos2 u!

1
1

2
AE arccoshS ~E1l!cos2 u22E

~E2l!cos2 u D .

The corresponding Schro¨dinger equation is

r 2
]2C

]r 2 1sinu
]

]u S 1

sinu

]C

]u D
r 21sec2 u

5EC ,

and has solutions of the form

C5Ar sinu C,1 1/2~A2E r !P,
m~cosu! , E5m22 1

4 ,

whereCn(z) is a Bessel function andP,
n(cosu) is an associated Legendre polynomial.8

3. Coordinates associated with X 1

A suitable choice of coordinates is

u5jh, v5 1
2 ~j22h2! . ~2.7!

The classical Hamiltonian in these coordinates has the form

H05
pj

21ph
2

j21h21
1

j2 1
1

h2

.

The corresponding quadratic constant is

X15

S h21
1

h2D pj
22S j21

1

j2D ph
2

j21h21
1

j2 1
1

h2

.

The Hamilton–Jacobi equation has the form

S ]S

]j D 2

1S ]S

]h D 2

j21h21
1

j2 1
1

h2

5E ,

which has the solution

S~j,h!52
AEj41E2lj2

j2 2
l

2AE
arctanhS lj222E

2AEAEj41E2lj2D 1AE log~AE~2Ej22l!

12EAEj41E2lj2!2
AEh41E1lh2

h2 2
l

2AE
arctanhS lh212E

2AEAEj41E1lj2D
1AE log~AE~2Ej21l!12EAEj41E1lj2! .
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The corresponding Schro¨dinger equation is

]j
2C1]h

2C

j21h21
1

j2 1
1

h2

5EC .

Typical solutions are

C5
1

Ajh
Mx,m~AEj2!M 2x,m~AEh2!,

whereMx,m(z) is a Whittaker function9 andE54m22 1
4.

4. Coordinates associated with K 2

The representativeK2 has associated with it the coordinatesu andv, in which the ignorable
variable has a fundamental role to play. The Hamiltonian and constant associated with this
ration have already been given. The Hamilton–Jacobi equation has the form

u2

u211 S S ]S

]uD 2

1S ]S

]v D 2D5E ,

which has solution, with separation constantc,

S~u,v !5Au2~E2c2!1E2AE arctanhAu2~E2c2!1E

E
1cv .

The corresponding Schro¨dinger equation has the form

u2

u211
~]u

2C1]v
2C!5EC.

Typical solutions are

C5Au Cn~Am22E u!emv,

whereE5n22 1
4.

It is no surprise that the Hamiltonian is separable in elliptic, parabolic, and polar coordin
since, if we write the classical equationH5E in u,v coordinates we obtain

pu
21pv

22ES 1

u2 11D50.

This equation is essentially the same form as a flat space superintegrable system with Ca
coordinatesu,v and potentiala/u2, viz.,

pu
21pv

21
a

u2 2E50.

It is known to be solvable via the separation of variables ansatz in elliptic, Cartesian, pola
parabolic coordinates. This correspondence between flat space superintegrable systems a
curved analogs is essentially the way all the curved superintegrable systems can be obtain
is discussed in more detail in Sec. V.
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B. Superintegrability for Darboux spaces of type two

In this section we address the problem of superintegrability for the Hamiltonian

H05
u2~pu

21pv
2!

u211
. ~2.8!

This is done in exactly the same manner as it was for the Darboux space of type 1 in a pr
paper.1 The free space Hamiltonian is given and we compute the possible potentials that
spond to superintegrability. There are four possibilities:

@A# H5
u2

u211 S pu
21pv

21a1S 1

4
u21v2D1a2v1

a3

u2D .

A basis for the additional constants of the motion is

R15X11
a1

2
vS u21

u214v2

u211 D1
a2

2 S u21
4v2

u211D2
2a3v
u211

,

R25K21a1v21a2v .

These, along withR5$R1 ,R2%, form a quadratic algebra

$R,R1%52
1

2

]R2

]R2
, $R,R2%5

1

2

]R2

]R1
~2.9!

that is determined by the identity

R2516R2
324a1R1

2232HR2
228a2R1R218a2HR1116~H21a1H2a1a3!R214a2

2H24a2
2a3 .

The classical equation of motionH2E50 is

pu
21pv

21a1S 1

4
u21v2D1a2v1

a32E

u2 2E50.

The basic form of this equation is a superintegrable system in flat space, but with rearr
constants, which is solvable via separation of variables in Cartesian and parabolic coordin

This accords with the fact that the leading part of a quadratic constant for this Hamilto
will be an element of the orbits represented byX1 andK2. So this Hamiltonian also separates
the ‘‘parabolic’’ coordinatesj, h ~2.7! and in these coordinates takes the form

H5

pj
21ph

21
1

4
a1~j61h6!1

1

2
a2~j42h4!1a3S 1

h2 1
1

j2D
j21h21

1

j2 1
1

h2

.

Adding the same potential and coordinate functions to the quantum HamiltonianĤ0 and its
corresponding commuting operatorsX̂1 and K̂2, we obtain the operators

Ĥ5Ĥ01
u2

u211 S a1S 1

4
u21v2D1a2v1

a3

u2D ,

R̂15X̂11
a1

2
vS u21

u214v2

u211 D1
a2

2 S u21
4v2

u211D2
2a3v
u211

,
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R̂25K̂21a1v21a2v .

R̂1 and R̂2 commute withĤ and along withR̂5@R̂1 ,R̂2#, obey the corresponding quantu
quadratic algebra relations

@R̂,R̂1#5224R̂2
214a2R̂1132ĤR̂228Ĥ228a1Ĥ16a118a1a3 ,

@R̂,R̂2#524a1R̂124a2R̂214a2Ĥ

and the operator identity

R̂2516R̂2
324a1R̂1

2232ĤR̂2
224a2$R̂1 ,R̂2%18a2ĤR̂1116Ĥ2R̂2116a1ĤR̂224a1~4a3211!R̂2

14~a2
218a1!Ĥ24b2

2~a31 3
4! .

@B# H5
u2

u211 S pu
21pv

21b1~u21v2!1
b2

u2 1
b3

v2D .

The additional constants of the motion have the form

R15X21
u21v2

u211 S b1~u21v2!2b22b3

u2

v2D , R25K21b1v21
b3

v2 .

The corresponding quadratic algebra relations can be determined, using~2.9!, from the identity

R2516R1R2
2216b1R1

2216HR1R2132b1~H2b22b3!R1116~H1b32b2!HR2

216~b11b3!H2132b1~b22b3!H216b1~b22b3!2 .

The equation of motionH2E50 becomes

pu
21pv

21b1~u21v2!1
~b22E!

u2 1
b3

v22E50 .

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, and elliptic coordinates. Again, this agrees w
observation that for this Hamiltonian we have quadratic constants with leading partsK2, X2 , and
X21bK2. In the latter two coordinate systems, the Hamiltonian takes the following forms:

~i! Elliptical coordinates~2.5!,

H5
pv

21pw
211

4b1b
2~sinh2 2v1sin2 2w!1b2~sec2 w2sech2 v!1b3~cosec2 w1cosech2 v!

sec2 w2sech2 v1b2~cosh2 v2cos2 w!
.

~ii ! Polar coordinates~2.6!,

H5
r 2pr

21pu
21b1r 41b2 sec2 u1b3 cosec2 u

r 21sec2 u
.

The corresponding quantum algebra relations are

@R̂,R̂1#528$R̂1 ,R̂2%18ĤR̂1112R̂228Ĥ218~b22b32 3
4!Ĥ ,

@R̂,R̂2#58R̂2
2216b1R̂128ĤR̂2116b1Ĥ216b1~b21b31 3

4! ,
                                                                                                                



5820 J. Math. Phys., Vol. 44, No. 12, December 2003 Kalnins et al.

                    
R̂258$R̂1 ,R̂2
2%28Ĥ$R̂1 ,R̂2%116Ĥ2R̂2216b1R̂1

2276R̂2
2132b1ĤR̂128b1~4~b31b2!13!R̂1

116~b32b21 19
4 !ĤR̂2216~b11b31 3

4!Ĥ
228b1~4~b32b2!13!Ĥ

1b1~36148b32~4~b32b2!13!2!.

@C# H5

pj
21ph

21c11
c2

j2 1
c3

h2

j21h21
1

j2 1
1

h2

.

The additional constants of the motion are

R15X11
c1j2~h411!1c2~h411!2c3~j411!

~j2h211!~j21h2!
,

R25X21
c1~j21h2!2c2~h421!2c3~j421!

4~j2h211!
.

The corresponding Poisson algebra can be determined from the identity

R254R1
2R22~c21c3!R1

2116HR2
224c1R1R212c1c3R1216H2R214~c21c3!H2

1~c1
224c2c3!H2c1

2c3 .

The Hamiltonian can be written in separable form for the following coordinate systems:

~i! Displaced elliptic coordinatesj5b8 coshv8 cosw8, h5b8 sinhv8 sinw8,

H5
pv8

2
1pw8

2
1c1b82~cosh2 v82cos2 w8!1c2~

2 w82sech2 v8!1c3~cosec2 w81cosech2 v8!

b84~cosh4 v82cos4 w82cosh2 v81cos2 w8!1sec2 w81cosec2 w81cosech2 v82sech2 v8
.

These coordinates are not those given in~2.5! and are related tou andv by

u5 1
4 b82 sinh 2v8 sin 2w8 , v5 1

4 b82~cosh 2v8 cos 2w811! .

~ii ! Polar coordinatesj5r 8 cosu8, h5r 8 sinu8,

H5
r 82pr 8

2
1pu8

2
1c1r 821c2 cosec2 u81c3 sec2 u8

r 841sec2 u81cosec2u8
.

These coordinates are not those given in~2.6! and are related tou andv by

u5 1
2 r 82 sin 2u8 , v5 1

2 r 82 cos 2u8 .

The corresponding quantum algebra relations are

@R̂,R̂1#522R̂1
222c1R̂1216ĤR̂218Ĥ226Ĥ,

@R̂,R̂2#52$R̂1 ,R̂2%2~c21c3!R̂122c1R̂21c1c3 ,

R̂252$R̂1
2 ,R̂2%116ĤR̂2

22~c21c314!R̂1
222c1$R̂1 ,R̂2%12c1~c312!R̂1216Ĥ2R̂2112ĤR̂2

14~c21c3!Ĥ21~c1
224c2c323~c21c3!!Ĥ2 1

4 ~314c3!c1
2.

The equation of motionH2E50 is
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pj
21ph

21c12E~j21h2!1
~c22E!

j2 1
~c32E!

h2 50.

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, and elliptic coordinates.

@D# H5
u2~pu

21pv
21d!

u211
.

The additional constants of the motion are

R15X11
2 dv

u211
, R25X21

d~u21v2!

u211
, K5pv .

The corresponding Poisson algebra relations are

$K,R1%52K222H12d , $K,R2%5R1 , $R1 ,R2%524KR2 .

The functional relation between these constants is

R1
224K2R214~H2d!R224H214 dH50 .

The Hamiltonian can be written in separable form for all the possible types of separable c
nates we have discussed, viz.,

~i! Elliptic coordinates~2.5!,

H5
pv

21pw
21b2 d~cosh2 v2cos2 w!

b2~cosh2 v2cos2 w!1sec2 w2sech2 v
.

~ii ! Polar coordinates~2.6!,

H5
r2pr

21pu
21dr 2

r 21sec2 u
.

~iii ! Parabolic coordinates~2.7!,

H5
pj

21ph
21d~j21h2!

j21h21
1

j2 1
1

h2

.

The corresponding quantum algebra relations have the form

@K̂,R̂1#52K̂222Ĥ12d, @K̂,R̂2#5R̂1 , @R̂1 ,R̂2#52$K̂,R̂2%.

The operator identity satisfied by the defining operators of the quantum algebra is

R̂1
222$K̂2,R̂2%14ĤR̂224 dR̂214K̂224Ĥ21~4d21!Ĥ50 .

The equation of motionH2E50 is

pu
21pv

21d2E2
E

u2 50.

This is a superintegrable system in flat space, but with rearranged constants, which is solva
separation of variables in Cartesian, polar, elliptic, and parabolic coordinates.
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III. DARBOUX SPACES OF TYPE THREE

A. The free particle and separating coordinate systems

With rescaling and translation of the variablesx andy the HamiltonianH has the form

H05
e(x1y)/2

11e2(x1y)/2 pxpy . ~3.1!

In coordinatesx5u2 iv, y5u1 iv we can write this Hamiltonian in positive-definite form

H05
1

4

e2u~pu
21pv

2!

eu11
.

Associated with the Hamiltonian are three integrals of the free motion

K5pv , X15
1

4

e2u

eu11
cosv pu

22
1

4

eu~eu12!

eu11
cosv pv

21
1

2
eu sinv pupv ,

X25
1

4

e2u

eu11
sinv pu

22
1

4

eu~eu12!

eu11
sinv pv

22
1

2
eu cosv pupv .

The integrals satisfy the polynomial algebra relations

$K,X1%52X2 , $K,X2%5X1 , $X1 ,X2%5KH0 .

They are functionally dependent via the relation

X1
21X2

22H0
22H0K250.

The corresponding problem in quantum mechanics can readily be obtained via the
quantization rules and symmetrization,

Ĥ05
1

4

e2u

eu11
~]u

21]v
2! , K̂5]v ,

X̂15
1

4

e2u

eu11
cosv]u

22
1

4

eu~eu12!

eu11
cosv]v

21
1

2
eu sinv]u]v1

1

4
eu cosv]u1

1

4
eu sinv]v ,

X̂25
1

4

e2u

eu11
sinv]u

22
1

4

eu~eu12!

eu11
sinv]v

22
1

2
eu cosv]u]v1

1

4
eu sinv]u2

1

4
eu cosv]v .

The commutator algebra obtained has the same form as the Poisson algebra, and the
relating the operators is

X̂1
21X̂2

22Ĥ0
22Ĥ0K̂21 1

4Ĥ050 .

The line element ds25(e2u1e22u)(du21dv2) can be realized as a two-dimensional surfa
embedded in three dimensions by

X5vAe2u1e22u , Y2T5Ae2u1e22u,

Y1T5~12v2!Ae2u1e22u1 log~112e2u12Ae2u1e22u!1 1
2 arctan~2Ae2u1e22u! ,

in which case,
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ds25dX21dY22dT25~e2u1e22u!~du21dv2! .

Just as we have done in other cases, we wish to determine all the essentially differen
rable coordinate systems for the free classical or quantum particle. To do this we need to co
a general quadratic constant of the forml5aX11bX21cK2. Under the adjoint action of
exp(aK), X1 andX2 transform according to

X1→cosa X12sina X2 , X2→sina X11cosa X2 .

From this transformation law we see thatl can take five different forms

K2, X1 , X11gK2, X11 iX2 , X11 iX22K2. ~3.2!

We now demonstrate the explicit coordinates in the case of each of these representati

1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordinatev and the Hamiltonian has
already been given in theu,v coordinates. The Hamilton–Jacobi equation is

1

4

e2u

eu11 S S ]S

]uD 2

1S ]S

]v D 2D5E ,

with solutions

S~u,v !52
A4E~11eu!2c2e2u

ceu 2
AE

c
arctanhS AE~eu12!

A4E~11eu!2c2e2uD
1 i log~ i ~c2eu22E!1cA4E~11eu!2c2e2u!1cv .

The corresponding Schro¨dinger equation is

1

4

e2u

eu11
~]u

21]v
2!C5EC,

with solutions of the form

C5e2u/2M 21/A2E, 6m~4A2E e2u!eimv.

2. Coordinates associated with X 1

For the second representative in~3.2!, a suitable choice of variables is

j52e2u/2 cos
v
2

, h52e2u/2 sin
v
2

. ~3.3!

In terms of these coordinates the classical Hamiltonian has the form

H05
pj

21ph
2

41j21h2

and the corresponding quadratic constant is

X15
~21h2!pj

22~21j2!ph
2

2~41j21h2!
.
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In j, h coordinates the classical Hamilton–Jacobi equation is

S ]S

]j D 2

1S ]S

]h D 2

41j21h2 5E ,

which has the solution

S5
1

2
jAEj212E2l1S 2E2l

2AE
D log~E1AEj212E2l!

1
1

2
hAEh212E1l1S 2E1l

2AE
D log~E1AEh212E1l! .

The Schro¨dinger equation is

~]j
21]h

2 !C

41j21h2 5EC ,

which has typical solutions

C5D (l22E)/A4E~6~4E!1/4j!D2(l1E)/A4E~6~4E!1/4h! ,

in terms of parabolic cylinder functionsDn(z).8,9

3. Coordinates associated with X 1¿gK 2

For the third case it is convenient to take the representative asb2X112K2. Here we identify
coordinates via

j5b coshv cosw , h5b sinhv sinw . ~3.4!

The classical Hamiltonian has the form

H05
pv

2 1pw
2

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

and the corresponding quadratic constant in these coordinates is

b2X112K25
~8 cos 2w2b2 sin 2w!pv

2 1~8 cosh 2v1b2 sinh 2v!pw
2

8b2~cosh 2v2cos 2w!1b4~cosh2 2v2cos2 2w!
.

In the w, v coordinates the classical Hamilton–Jacobi equation has the form

S ]S

]v D 2

1S ]S

]w D 2

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

5E ,

and has the solution

S~v,w!5
1

4
b2AES EA~V2a1!~V2a2!

V221
dV1EA~b12F!~F2b2!

12F2 dF D ,
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wherea11a252b12b2528/b2, a1a252b1b224l/Eb2, V5cosh 2v, F5cos 2w. The cor-
responding Schro¨dinger equation,

]v
2 C1]w

2C

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

5EC ,

separates withC5F(w)V(v) in the equations

~]w
212b2E cos 2w1 1

8 b4E cos 4w1l1 1
8 b4E!F50 ,

~]v
2 22b2E cos 2v2 1

8 b4E cos 4v2l2 1
8 b4E!V50 ,

which has typical solutions

C15gcm~w,bA2E,2bA2E!gcm~ iv,bA2E,2bA2E!,

C25gsm~w,bA2E,2bA2E!gsm~ iv,bA2E,2bA2E!,

with corresponding separation constant given bylm5mmb2(11b2)E/8. The functions appearing
here are even and odd Whittaker Hill functions.10

4. Coordinates associated with X 1¿ iX 2

In the case of a system specified by the fourth representative there are, in fact, no se
coordinates. However, in the coordinates

x5j1 ih , y5 1
2 ~j2 ih!2 ,

the classical Hamiltonian takes the form

H05
2pxpy

2y21/21x

and the corresponding constant is

X11 iX252yH02px
2 .

The solution of the Hamilton–Jacobi equation

2
]S

]x

]S

]y

2y21/21x
5E

is

S5xAEy2l1AE logS AE y2
l

2AE
1AEy22lyD .

The corresponding Schro¨dinger equation is

2]x]yC

2y21/21x
5EC,

which has solutions
                                                                                                                



oordi-

5826 J. Math. Phys., Vol. 44, No. 12, December 2003 Kalnins et al.

                    
C5
~2E3/2y2E1/212EAEy22ly!AEexAEy2l

AEy2l
.

5. Coordinates associated with X 1¿ iX 2ÀK 2

In the case of a system specified by the fifth representative an appropriate choice of c
nates is

j5
m2n

2Amn
1Amn , h5 i S m2n

2Amn
2Amn D . ~3.5!

The corresponding classical Hamiltonian has the form

H05
m2pm

2 2n2pn
2

~m1n!~21m2n!
,

and the quadratic constant is

X11 iX22K25
n2~m12!mpn

22m2~n22!npm
2

~m1n!~21m2n!
.

In the m, n coordinate system the classical Hamilton–Jacobi equation has the form

m2S ]S

]m D 2

2n2S ]S

]n D 2

~m1n!~21m2n!
5E ,

which has the solution

S~m,n!5AEm212Em1l1AE log~AE~11m!1AEm212Em1l!

2Al arctanhS l1Em

AlAEm212Em1l
D 1AEn222En1l1AE log~AE~12n!

1AEn222En1l!2Al arctanhS l2En

AlAEn222En1l
D .

The Schro¨dinger equation

m]m~m]mC!2n]n~n]nC!

~m1n!~21m2n!
5EC

separates withC5A(m)B(n) into the equations

~m]m~m]m!2Em222Em2r2!A~m!50 , ~n]n~n]n!2En222En2r2!B~n!50 ,

and has solutions, in terms of the Whittaker functionMl,x , of the form9

1

Amn
M AE,r~2AE m!M 2AE,r~2AE n!.

If we write the classical equationH5E in j, h coordinates, we obtain
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pj
21ph

22E~41j21h2!50.

This is in the form of a flat space superintegrable system which can be solved by separa
variables in Cartesian, polar, hyperbolic, and elliptic coordinates.

B. Superintegrability for Darboux spaces of type three

In this section we address the problem of superintegrability for the Hamiltonian

H5
1

4

e2u~pu
21pv

2!

eu11
. ~3.6!

We arrive at five possibilities:@A#, @B#, @C#, @D#, @E#.

@A# H5
pj

21ph
21a1j1a2h1a3

41j21h2 .

The additional constants have the form

R15X11
2a1j~21h2!22a2h~21j2!1a3~h22j2!

4~41j21h2!
,

R25X21
a1h~h22j214!1a2j~j22h214!22a3jh

4~41j21h2!
.

The corresponding quadratic algebra can be determined from the identity

R25HR1
21HR2

21 1
8 ~a2

22a1
2!R12 1

4 a1a2R22H31 1
2 a3H2

1 1
16 ~2a2

212a1
22a3

2!H2 1
32 a3~a1

21a2
2! .

This Hamiltonian separates in a family of coordinate systems obtained by translating the
separable system viaj→j1a, h→h2a. The corresponding quantum algebra relations are

@R̂,R̂1#52ĤR̂21 1
8 a1a2 , @R̂,R̂2#5ĤR̂11 1

16 ~a2
22a1

2! ,

R̂25ĤR̂1
21ĤR̂2

21 1
8 ~a2

22a1
2!R̂12 1

4 a1a2R̂22Ĥ31 1
2 ~a31 1

2!Ĥ
2

1 1
16 ~2a1

212a2
22a3

2!Ĥ2 1
32 a3~a1

21a2
2!.

As in the case of free motion, the equationH5E becomes

pj
21ph

21a1j1a2h1a32E~41j21h2!50 .

Again, this is a superintegrable system in flat space but with rearranged constants.

@B# H5

pj
21ph

21
b1

j2 1
b2

h2 1b3

41j21h2 .

The additional constants are

R15X11
2b1h2~h212!22b2j2~j212!1b3~h22j2!

4~41j21h2!
, ~3.7!
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R25K21
b1h2

4j2 1
b2j2

4h2 . ~3.8!

The corresponding quadratic algebra relations are determined by

R2524R1
2R22~b11b2!R1

214HR2
212~b12b2!HR11 1

2 b3~b22b1!R114H2R222b3HR2

1 1
4 b3

2R22~b11b2!H21~ 1
2 b3~b11b2!2b1b2!H2 1

16 b3
2~b11b2!.

This Hamiltonian separates in all the separable coordinate systems given in Sec. II A. The H
tonian has the following explicit forms:

~i! In u, v coordinates,

H5

e2uSpu
21pv

21 1
4 b1 sec2

v
2

1 1
4 b2 cosec2

v
2

1b3e2uD
4~eu11!

.

~ii ! In the elliptical coordinates~3.4!,

H5
pv

2 1pw
21b1~sec2 w2sech2 v!1b2~cosec2 w1cosech2 v!1b3b2~cosh2 v2cos2 w!

2b2~cosh 2v2cos 2w!1 1
4 b4~cosh2 2v2cos2 2w!

.

The corresponding quantum algebra relations have the form

@R̂,R̂1#52R̂1
224ĤR̂222Ĥ21~b31 1

2!Ĥ2 1
8 b3

2,

@R̂,R̂2#522$R̂1 ,R̂2%2~b11b211!R̂11~b12b2!Ĥ1 1
4 ~b22b1!b3 ,

R̂2522$R̂1
2 ,R̂2%2~b11b215!R̂1

214ĤR̂2
212~b12b2!ĤR̂11b3~b22b1!R̂114Ĥ2R̂2

2~2b321!ĤR̂21 1
4 b3

2R̂22~b11b222!Ĥ21~ 1
2 ~b31 3

2!~b11b2!2b32b1b22 1
2!H

2 1
16 b3

2~b11b222!.

As in the case of free motion, we observe that equationH5E becomes

pj
21ph

21
b1

j2 1
b2

h2 1b32E~41j21h2!50.

This is a superintegrable system in flat space, with rearranged constants, that separates var
Cartesian, polar, and elliptic coordinates.

@C# H5

m2pm
2 2n2pn

21c1~m1n!1c2

m1n

mn
1c3

m22n2

m2n2

~m1n!~21m2n!
.

The additional constants of the motion have the form

R15X11 iX22
c1m2n21c2mn12c3~11m2n!

mn~21m2n!
, R25K22c2

m2n

mn
2c3

~m2n!2

m2n2 .

The corresponding quadratic Poisson algebra relations can be determined from

R2524R2R1
218c2HR124c1c2R1116c3HR2116c3H214~c2

224c1c3!H14c1
2c3 .
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The quantum algebra relations are

@R̂,R̂1#52R̂1
228c3Ĥ , @R̂,R̂2#522$R̂1 ,R̂2%2R̂114c2Ĥ22c1c2 ,

R̂2522$R̂1
2 ,R̂2%18c2ĤR̂1116c3ĤR̂225R̂1

224c1c2R̂1

116c3Ĥ214~c31c2
224c1c3!Ĥ14c1

2c3 .

As in the case of free motion, equationH5E becomes

pj
21ph

212c11
8c2

~j1 ih!2 1
16c3~j2 ih!

~j1 ih!3 2E~41j21h2!50,

a superintegrable system in flat space with rearranged constants, that separates variables
and hyperbolic coordinates.

@D# H5
m2pm

2 2n2pn
21d1m1d2n1d3~m21n2!

~m1n!~21m2n!
.

The additional constants of the motion have the form

R15X11 iX22K22
mn~d1~n22!1d2~m12!12d3~n2m1mn!!

~m1n!~21m2n!
,

R25X12 iX22
~m2n!~~m2n!~d1m1d2n!22d3~m21n21mn~21m2n!!!

4mn~m1n!~21m2n!
.

The corresponding quadratic Poisson algebra can be determined from

R254R1R2
224HR1R21d3

2R124H2R212~d11d2!HR22d1d2R214H322~d11d2!H2

1 1
4 ~~d11d2!21d3~d22d1!!H2d3~d1

22d2
2!.

This classical system also separates in elliptical coordinates obtained by choosing new va
defined by the roots of the characteristic equation ofR11R2 , that is, the elliptical coordinate
~3.4! with b52i . In these variables the Hamiltonian has the form

H5
pv

2 1pw
212~d11d2!~cos 2w2cosh 2v!12~d12d2!~2i sin 2w1sinh 2v!12d3~sinh 4v12i sin 4f!

8~cos 2w2cosh 2v!14~cosh2 2v2cos2 2w!
.

The corresponding quantum algebra relations are

@R̂,R̂1#522$R̂1 ,R̂2%12ĤR̂11R̂212Ĥ22~d11d21 1
2!Ĥ1 1

2 d1d2 ,

@R̂,R̂2#52R̂2
222ĤR̂21 1

2 d3
2,

R̂252$R̂1 ,R̂2
2%25R̂2

222Ĥ$R̂1 ,R̂2%1d3
2R̂124Ĥ2R̂21~2d112d215!ĤR̂22d1d2R̂214Ĥ3

2~2d112d211!Ĥ21~ 1
4 ~d11d2!21d3~d22d1!!Ĥ2 1

4 d3~d32d1
21d2

2!.

As in the case of free motion we observe that equationH5E becomes
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pj
21ph

21d11d224d31
~d22d1!~j2 ih!

A~j2 ih!214
1

8d3~j1 ih!

A~j2 ih!214~j2 ih1A~j2 ih!214!2

5~E2d3!~41j21h2! ,

a superintegrable system in flat space with rearranged constants that separates variables i
and hyperbolic coordinates.

@E# H5
pj

21ph
21c

41j21h2 .

The additional constants of the motion are

R15X11
c

4

h22j2

41j21h2 , R25X22
c

2

jh

41j21h2 ,

andK. The corresponding Poisson algebra relations have the form

$K,R1%52R2 , $K,R2%5R1 , $R1 ,R2%5HK ,

and the functional relation between these constants is

R1
21R2

22HK22H21
c

2
H2

c2

16
50 .

This Hamiltonian separates in all of the four types of separable coordinate systems ava
and the corresponding expressions for the Hamiltonian can be deduced from Ref. 2 by
b35c, b15b250.

The quantum algebra relations are

@K̂,R̂1#52R̂2 , @K̂,R̂2#5R̂1 , @R̂1 ,R̂2#5ĤK̂ ,

and the associated operator identity is

R̂1
21R̂2

22ĤK̂22Ĥ21S c

2
1

1

4D Ĥ2
c2

16
50 .

IV. DARBOUX SPACES OF TYPE FOUR

A. The free particle and separating coordinate systems

With rescaling of the variablesx andy, the HamiltonianH can be taken in the form

H05
~ex2y2ey2x!2

ex2y1ey2x1a
pxpy . ~4.1!

In coordinatesx5v1 iu, y5v2 iu, we can write the Hamiltonian as

H052
sin2 2u~pu

21pv
2!

2 cos 2u1a
.

It admits constants of the motion

K5pv , X15e2v~2H01cos 2u pu
21sin 2u pupv!,
                                                                                                                



al

t sepa-
nsider

tion of
sses of

e

5831J. Math. Phys., Vol. 44, No. 12, December 2003 Superintegrable systems in Darboux spaces

                    
X25e22v~2H01cos 2u pv
22sin 2u pupv!.

These integrals satisfy the polynomial algebra relations

$K,X1%52X1 , $K,X2%522X2 , $X1 ,X2%528K324aKH0 .

They are functionally dependent via the relation

X1X22K42aK2H02H0
250.

The corresponding quantum operators are

Ĥ05
2sin2 2u

2 cos 2u1a
~]u

21]v
2! , X̂15e2v~2Ĥ01cos 2u~]v

21]v!1sin 2u~]u]v1]u!! ,

K̂5]v , X̂25e22v~2Ĥ01cos 2u~]v
22]v!2sin 2u~]u]v2]u!! .

Their algebra is determined by the relations

@K̂,X̂1#52X̂1 , @K̂,X̂2#522X̂2 , @X̂1 ,X̂2#528K̂324aK̂Ĥ024K̂,

and the operator identity is

1
2 $X̂1 ,X̂2%2K̂42aĤ0K̂225K̂22Ĥ0

22aĤ050 .

The line element ds25(2 cosu1a)(du21dv2)/sin2 2u can be realized as a two-dimension
surface embedded inE(2,1) by ~assuminga.2)

X5Aa12 cos 2uv, Y2T5Aa12 cos 2u,

Y1T5
~a22!

A2~a12!
FPS x,Aa22

a12

2

~r 111!
,pD 1PS x,Aa22

a12

2

~r 211!
,pD G2Aa12 cos 2uv2,

where

sinx5A~a12!~cos 2u11!

2~a12 cos 2u!
, p5

2

Aa12
,

andP is an elliptic integral of the third kind.8 Then ds25dX21dY22dT2.
Just as we have done in other cases, we wish to determine all the essentially differen

rable coordinate systems for the free classical or quantum particle. To do this we need to co
a general quadratic constant of the forml5aX11bX21cK2. Under the adjoint action of
exp(aK), X1 andX2 transform according to

X1→exp~22a!X1 , X2→exp~2a!X2 .

If we regard two such quadratic expressions as equivalent if they are related by a combina
group motions and the discrete transformation observed above, then the equivalence cla
these expressions can be chosen to have the following representatives:

K2 , X2 , gX21K2 , X11X21gK2. ~4.2!

In the last of these are three cases to distinguish:g50, g52, andgÞ0,2. The various separabl
systems involved can now be computed.
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1. Coordinates associated with K 2

These are the coordinates associated with the ignorable coordinatev and the Hamiltonian has
already been given in theu,v coordinates. The Hamilton–Jacobi equation is

2
sin2 2u

2 cos 2u1a S S ]S

]v D 2

1S ]S

]uD 2D5E .

It has typical solutions

S~u,v !52 i log~ i ~c2 cos 2u2E!1cAE~a12 cos 2u!1c2 sin2 2u!

1
1

2c
AE~a12! arctanhS E~a11!1c21~E2c2!cos 2u

AE~a12!~E~a12 cos 2u!1c2 sin2 2u
D

1
1

2c
AE~a22! arctanhS E~a21!1c21~E1c2!cos 2u

AE~a22!~E~a12 cos 2u!1c2 sin2 2u
D 1cv .

The corresponding Schro¨dinger equation is

sin2 2u

2 cos 2u1a S ]2C

]v2 1
]2C

]u2 D5EC ,

which has the solution

C52F1~ 1
2 ~l2e12e2!, 1

2 ~l1e11e2!,e11 1
2 ,sin2 u!elv ,

where

e65 1
2 1 1

2A12~a62!E , ~4.3!

and2F1 is a Gaussian hypergeometric function.11

2. Coordinates associated with X 2

If we choose new coordinates

x5 log~ 1
2 ~m2 in!! , y5 log~ 1

2 ~m1 in!! , ~4.4!

then the Hamiltonian takes the rational form

H052
4m2n2~pm

2 1pn
2!

~a12!m21~a22!n2 .

In this case the corresponding choice of coordinates has already been given, and the qu
constant in these coordinates is

X25
4~a12!m2pm

2 24~a22!n2pn
2

~a12!m21~a22!n2 .

The Hamilton–Jacobi equation

2

m2n2S S ]S

]m D 2

1S ]S

]n D 2D
~a12!m21~a22!n2 5E,
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has solution

S~m,n!5 iA~a22!E1lm22 iA~a22!E arctanhA~a22!E1lm2

~a22!E

1A~a12!E2ln22A~a12!E arctanhA~a12!E2ln2

~a12!E
.

The corresponding Schro¨dinger equation has Bessel function solutions of the form

C5Amn C1/2A12E(a22)~
1
2Alm! C1/2A12E(a12)~

1
2Al in! .

3. Coordinates associated with gX2¿K 2

In the case of the third representative the transformation

m5c coshv cosw , n5c sinhv sinw ~4.5!

gives the classical Hamiltonian

H5
4~pv

2 1pw
2 !

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The classical constant associated with this coordinate system is

2
c2

4
X21K25

~~a22!sec2 w1~a12!cosec2 w!pv
2 1~~a22!sech2 v2~a12!cosech2 v!pw

2

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The Hamilton–Jacobi equation in these coordinates is

4~pv
2 1pw

2 !

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
5E

and has solutions of the form

S~v,w!5
1

4
Al log~Al ~l cos 2w12aE!1lA8E14aE cos 2w2l sin2 2w!

2
1

4
A~a12!E arctanhS 2Ea18E2l1cos 2w~l12Ea!

2A~a12!E~8E14aE cos 2w2l sin2 2w!
D

2
1

4
A~a22!E arctanhS 22Ea18E2l1cos 2w~2l12Ea!

2A~a22!E~8E14aE cos 2w2l sin2 2w!
D

1
1

4
Al log~Al ~l cosh 2v24E!1lAl sinh2 2v28E cosh 2v24aE!

1Aa12 arctanS 4E1l14aE1cosh 2v~4E2l!

2A~a12!E~l sinh2 v28E cosh 2v24aE!
D

1Aa22 arctanS 24E1l14aE1cosh 2v~4E1l!

2A~a22!E~l sinh2 v28E cosh 2v24aE!
D .

The Schro¨dinger equation has the form
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4S ]2C

]v2 1
]2C

]w2 D
~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!

5EC

with corresponding solutions

C5~sinw sinhv!e2~cosw coshv!e1
2F1S e11e22l

2
,
e11e21l

2
,e21

1

2
,sin2 w D

32F1S e11e22l

2
,
e11e21l

2
,e21

1

2
,2sinh2 v D

with e6 defined by~4.3!.

4. Coordinates associated with X 1¿X2¿gK 2

For the coordinates corresponding to the fourth representative we make the transfor
u5arctan(expa), v5b/2, so our Hamiltonian has the form

H524
pa

21sech2 apb
2

a22 tanha
. ~4.6!

This can be realized in terms of projective coordinates on a two-dimensional complex sphe
s15cosha coshb, s25 i cosha sinhb, s35 i sinha wheres1

21s2
21s3

251. The Hamiltonian can be
written as

H54
J1

21J2
21J3

2

2is3

As1
21s2

2
1a

.

These two ways of realizing the classical Hamiltonian are useful in determining the va
possible separable coordinate systems.

We consider the most general case first, i.e.,gÞ0,2. We make use of the transformatio
equations

sinha5 i
XY11

2AXY
,

tanhb5
2A~A1X1A2!~A2X1A1!~A1Y1A2!~A2Y1A1!

~A1
2 1A2

2 !~XY11!12A1A2~X1Y!
,

applied to~4.6! to give classical Hamiltonian in the form

H5216XY
X~A1X1A2!~A2X1A1!pX

22Y~A1Y1A2!~A2Y1A1!pY
2

A1A2~X2Y!~~a12!XY2a12!
.

The corresponding classical constant associated with this coordinate system is
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X11X212
A1

2 1A2
2

A1
2 2A2

2
K2

516
~A1X1A2!~A2X1A1!~a~A1Y1A2!~A2Y1A1!22A1A2~Y221!!X2pX

2

A1A2~A1
2 2A2

2 !~X2Y!~~a12!XY2a12!

216
~A1Y1A2!~A2Y1A1!~a~A1X1A2!~A2X1A1!22A1A2~X221!!Y2pY

2

A1A2~A1
2 2A2

2 !~X2Y!~~a12!XY2a12!
.

The Hamilton–Jacobi equation has the form

216XY

X~A1X1A2!~A2X1A1!S ]S

]XD 2

1Y~A1Y1A2!~A2Y1A1!S ]S

]YD 2

A1A2~X2Y!~~a12!XY2a12!
5E

and solutions

S~X,Y!5
1

AA1A2

S lXE 1

X
A aX2X

~b2X!~c2X!
dX1lYE 1

Y
A aY2Y

~b2Y!~c2Y!
dYD ,

where lX2lY52(a12)EA1A2/16, aX5(a22)ElX/16, aY5(a22)ElY/16, b52A1 /A2 ,
c52A2 /A1 .

A further change of coordinates

X52
1

k
sn2~a81 iK 8,k! , Y52

1

k
sn2~b81 iK 8,k! , k5

A1

A2

is convenient for writing the Schro¨dinger equation

16S ]2C

]a82 1
]2C

]b82D
~a12!k4~sn2~a8,k!2sn2~b8,k!!1k2~a22!

5EC .

The separated equations are versions of Lame´’s equation.12 Indeed if we look for solutions of the
form C5A(a8)B(b8) then

]2A~a8!

]a82 1S 2
1

16
k4E~a12!sn2~a8,k!2l1DA~a8!50 ,

]2B~b8!

]b82 1S 2
1

16
k4E~a12!sn2~b8,k!2l2DB~b8!50,

wherel12l252E(a22)k2/16. Solutions of these separation equations can be represent
RiemannP functions13 of the form

P~z!5S 0 0 k22 `

0 0 0 1
4~12 1

2A41k2E~a12!! sn2~z,k!

1
2

1
2

1
2

1
4~11 1

2A41k2E~a12!!
D

for z5a8,b8.
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The caseg50 can easily be deduced by settingA15 iA2 , as can be seen from the expressi
for the associated classical constant.

If g52 then a convenient choice of coordinates is

x5 log~ tan~w82 iv8!! , y5 log~ tan~w81 iv8!! . ~4.7!

The corresponding classical Hamiltonian has the form

H52
pw8

2
1pv8

2

a12

sinh2 2v8
1

a22

sin2 2w8

.

The classical constant is

X11X212K25aH1
~a12!sin2 2w8pw8

2
2~a22!sinh2 2v8pv8

2

~a12!sin2 2w81~a22!sinh2 2v8
.

The Hamilton–Jacobi equation in these coordinates is

2

S ]S

]w8D
2

1S ]S

]v8D
2

a12

sinh2 2v8
1

a22

sin2 2w8

5E,

which has solutions

S~w8,v8!5
i

2
Al arctanA~a22!E

l
sec2 2w81tan2 2w8

2
i

2
A~a22!E arctanhAsec2 2w81

l

~a22!E
tan2 2w8

1
i

2
Al arctanA~a12!E

l
sech2 2v82tanh2 2v8

2
i

2
A~a12!E arctanhAsech2 2v82

l

~a12!E
tanh2 2v8.

The corresponding Schro¨dinger equation is

2

]2C

]w82 1
]2C

]v82

a12

sinh2 2v8
1

a22

sin2 2w8

5EC ,

which has solutions of the form

C5Asin 2w8 sinh 2v8 Pn
1/2A12(a22)E~cos 2w8!Pn

1/2A12(a12)E~cosh 2v8!,

wherePn
m(z) is a solution of Legendre’s equation.

This completes the list of possible coordinate systems which are inequivalent and sep
for this particular Hamiltonian. We notice in particular that the equationH2E50 can be written
in the equivalent forms
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m2~pm
2 1pn

2!1
1

4
ES a221~a12!

m2

n2 D50, J1
21J2

21J3
22ES 2is3

As1
21s2

2
1aD 50 ,

both superintegrable systems on the complex two-sphere, the first of which is written in
spherical coordinates.

B. Superintegrability for Darboux spaces of type four

There are various possibilities for the potential in this case:@A#, @B#, @C#, @D#.

@A# H52
4m2n2

~a12!m21~a22!n2 S pm
2 1pn

21a11a2S 1

m2 1
1

n2D1a3~m21n2! D .

The additional constants of the motion have the form

R15K21a1~m21n2!1a3~m21n2!2 ,

R25X21
2a1~~a12!m22~a22!n2!116a214a3~~a12!m42~a22!n4!

~a12!m21~a22!n2 .

The corresponding quadratic algebra relations are determined by

R2516R1R2
22256a3R1

2264a1R1R22256aa3HR121024a2a3R1

164a1HR22256a3H2264a1~a12!H2256a1
2a2 .

This Hamiltonian admits a separation of variables in coordinates corresponding to the equiv
first, second, and third classes of Sec. IV A. For the second this is covered by the cho
coordinatesm,n.

~i! For coordinates corresponding to the first equivalence class, we obtain the Hamilton
the form

H52
sin2 2u~pu

21pv
214a1e

2v14a2cosec2 2u14a3e4v!

2 cos 2u1a
.

~ii ! For coordinates corresponding to the third representative~4.5! the Hamiltonian takes form

H5
4~pv

21pw
2!14a1c

2~cosh2 v2cos2 w!

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!

1
16a2~cosech2 2v1cosec2 2w!1a3c4~sinh2 2v1sin2 2w!

~a22!~sech2 v2sec2 w!2~a12!~cosech2 v1cosec2 w!
.

The quantum algebra relations are

@R̂,R̂1#528$R̂1 ,R̂2%216R̂2232a1Ĥ ,

@R̂,R̂2#58R̂2
22256a3R̂12128aa3Ĥ232~a1

214a3116a2a3!

together with the operator relation

R̂258$R̂1 ,R̂2
2%2256a3R̂1

2280R̂2
22256aa3ĤR̂1264~16a2a31a1

214a3!R̂1164a1ĤR̂2

2256a3Ĥ2164a~4a32a1
2!Ĥ1128~a1214a318a2a322a1

2a2!.

As in the case of free motion we observe that the equationH5E is
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pm
2 1pn

21a11
a22 1

4 ~a22!E

m2 1
a22 1

4 ~a12!E

n2 1a3~m21n2!50 ,

a superintegrable system in flat space with rearranged constants, that separates in ellip
hyperbolic coordinates.

@B# H52

sin2 2uS pv
21pu

21
b2

sinh2 v
1

b3

cosh2 v D1b1

2 cos 2u1a
.

The additional constants are

R15X11X21

2b1 cosh 2v1~b21b3!~42a2!1~cos 4u12a cos 2u13!S b2

sinh2 v
2

b3

cosh2 v D
2 cos 2u1a

,

R25K21
b2

sinh2 v
1

b3

cosh2 v
.

The quadratic algebra is given by

R2516R1
2R2264R2

3264aHR2
2164~2b322b22b1!R2

2132a~b21b3!R1R2264H2R2

164~b21b3!HR11128a~b32b2!HR2216~~42a2!~b21b3!218b1~b22b3!!R2

1128~b32b2!H2264b1~b21b3!2 .

This Hamiltonian admits a separation of variables in coordinate systems corresponding
first and fourth equivalence classes of~4.2!. The defining expressions have already been give
terms of coordinates for the first. For the fourth, we distinguish two cases.

~i! gÞ2,

H516XY
X~A2X2A1!~A1X2A2!pX

21Y~A2Y1A1!~A1Y1A2!pY
2

A1A2~X2Y!~a222~a12!XY!

1

b1~XY11!1
4b2~A2

2 2A1
2 !XY

~A1Y1A2!~A1X1A2!
1

4b3~A2
2 2A1

2 !XY

~A2Y1A1!~A2X1A1!

a222~a12!XY
.

~ii ! g52,

H52

pw8
2

1pv8
2

1b1S 1

sinh2 2v8
1

1

sin2 2w8D1 4b2

cos2 2w8
1

4b3

cosh2 2v8

a12

sinh2 2v8
1

a22

sin2 2w8

.

The corresponding quantum algebra relations are

@R̂,R̂1#528R̂1
2196R̂2

2164aĤR̂2216a~b21b3!R̂1164~2b222b31b113!R̂2132Ĥ2

132a~2b222b311!Ĥ164b1~b22b3!28~a224!~b21b3!2132~b112b222b3! ,

@R̂,R̂2#58$R̂1 ,R̂2%116a~b21b3!R̂2216R̂1132~b21b3!Ĥ216a~b21b3! ,
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R25264R̂2
318$R̂1

2 ,R̂2%264aĤR̂2
2264Ĥ2R̂2280R̂1

2264~2b222b31b117!R̂2
2116a~b21b3!

3$R̂1 ,R̂2%164~b21b2!ĤR̂1164a~2b322b221!ĤR̂22160a~b21b3!R̂1116~~a224!

3~b21b3!218~b111!~b32b2!24b1132!R̂21128~b32b211!Ĥ21128a~b22b311!Ĥ

1~b21b3!2~128280a2264b1!2128~b112!~b32b221!2256.

As in the case of free motion, equationH2E50 is

J1
21J2

21J3
21

2b1

As1
21s2

2~s11As1
21s2

2!
1

2b2

As1
21s2

2~s12As1
21s2

2!
1b32ES 2is3

As1
21s2

2
1aD 50 ,

a superintegrable system on the complex sphere that separates variables in spherical, ellip
degenerate elliptic type 1 coordinates.

@C# H52

pw8
2

1pv8
2

1
c1

cos2 w8
1

c2

cosh2 v8
1c3S 1

sin2 w8
2

1

sinh2 v8D
a12

sinh2 2v8
1

a22

sin2 2w8

.

These are coordinates associated withg52 in the fourth representative from~4.2!. The constants
of the motion associated with this Hamiltonian are

R15X11X212K21aH1

a12

sinh2 2v8 S c3

sin2 w8
1

c1

cos2 w8D1
a22

sin2 2w8 S c3

sinh2 v8
2

c2

cosh2 v8D
a12

sinh2 2v8
1

a22

sin2 v8

,

R25X12X21
1

a12

sinh2 2v8
1

a22

sin2 v8

3F a12

sinh2 2v8 S c1 cosh 2v8 tan2 w82c2 cos 2w8

2
c3~2 cos2 w8~sinh2 v82sin2 w8!!11

sin2 w8 D1
a22

sin2 2w8 S c2 cos 2w8 tanh2 v81c1 cosh 2v8

2
c3~2 cosh2 v8~sinh2 v82sin2 w!11!

sinh2 v8 D G .

They satisfy the quadratic algebra determined by the identity

R2516R1
3216R1R2

2232aHR1
2132~c22c1!R1

2116~a224!H2R1132~~a12!c12~a22!c2

14c3!HR1216~2c3
22c1

22c2
216c3~c11c2!14c1c2!R1232~c22c3!~c12c3!R2

216~~a12!~c12c3!21~a22!~c22c3!2!H232~c12c2!~3c3
22c1c22c3~c11c2!!.

The Hamiltonian admits a separation of variables in a number of coordinates systems
sponding to various combinations of the operatorsR1 andR2 . We exhibit the various possibilities
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~i! For the constantR12R2 , the associated separable coordinates are those correspond
the third representative in~4.2! with g51. In these coordinates, the Hamiltonian is

H5

4~pv
21pw

2!1
c11c212c3

2 sinh2 2v
2

~c11c2!cosh 2v

2 sinh2 2v
1

c3 cos 2w

sin2 2w

~a22!S 1

cosh2 v
2

1

cos2 wD2~a12!S 1

sinh2 v
1

1

sin2 wD .

~ii ! In coordinates corresponding to rotations of the fourth representative in~4.2! with g
Þ0,2, that is,B1

2 X11(B1
2 2B2

2 )X21(2B1
2 2B2

2 )K2, the corresponding Hamiltonian ha
the form

H516F2X~B71X!~B61X!pX
21Y~B71Y!~B61Y!pY

21
c1

4 S 1

Y
2

1

XD1
c2

4
~X2Y!

1
c3

4
~B7

2 2B6
2 !S 1

11B7Y
2

1

11B7X
1

1

11B6Y
2

1

11B6XD G Y F ~B7
2 2B6

2 !

3S a22

11B6X
2

a22

11B6Y
1

a12

11B7Y
2

a12

11B7XD1S a22

X
2

a22

Y
1~a12!~X2Y! D G .

Here,B65B1 /B2 andB75B2 /B1 . The Hamiltonian associated withR2 can be obtained
from this last case by takingB25&B1 .

The quantum algebra relations are

@R̂,R̂1#58$R̂1 ,R̂2%116R̂2116~c12c3!~c22c3! ,

@R̂,R̂2#524R̂1
228R̂2

2232aĤR̂118~a224!Ĥ2132S c12c22
3

2D R̂1116~~a12!c12~a22!c2

1a164c3!Ĥ18c1
218c2

2216c3
2232c1c2248c3~c11c2!116~c12c2! .

The operator identity is

R̂2516R̂1
328$R̂1 ,R̂2

2%132S c22c12
7

2D R̂1
2280R̂2

2116~a224!Ĥ2R̂1132~~a12!c12~a22!c2

14c31a!ĤR̂1116~c1
21c2

222c3
226c3~c11c2!24c1c212~c12c2!28!R̂1232~c22c3!

3~c12c3!R̂2116~a224!Ĥ2216~~a12!~~c12c3!222c1!1~a22!~~c22c3!212c2!

28c324a!Ĥ232~c12c2!~3c3
22c1c22c3~c11c2!!132~c1

21c2
224c3~c11c2!22c1c2

12c122c2!.

As in the case of free motion, the equationH5E is

J1
21J2

21J3
22

i ~c11c212c3!s1

4As2
21s3

2
1

i ~c12c2!~s11 is22s3!

4&A~s11 is2!~s32 is2!
1

~2c32c12c2!~s11 is21s3!

A~s11 is2!~s31 is2!

1
i ~c12c2!

4&
2ES a1

2is1

As2
21s3

2D 50,

which is a superintegrable system on the complex sphere, with rearranged constants, that s
variables in elliptic and degenerate elliptic coordinates of type 1.
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@D# H52

4m2n2Fpm
2 1pn

21dS 1

m2 1
1

n2D G
~a12!m21~a22!n2 .

This Hamiltonian admits three classical constants of the motion

R15X11
d~m21n2!2

~a12!m21~a22!n2 , R25X21
16d

~a12!m21~a22!n2 , K5mpm1npn .

The Poisson quadratic algebra satisfies the relations

$K,R1%52R1 , $K,R2%522R2 , $R1 ,R2%528K324aKH216 dK.

These three extra constants are related via the identity

2R1R21K41aHK214 dK21H250 .

This Hamiltonian admits a separation of variables in all the coordinate systems tha
possible. We need only give the expressions in terms of the fourth representatives. In the
nate system associated with the fourth representative and for whichgÞ2 the Hamiltonian can be
written as

H516XY
X~A1X2A2!~A2X2A1!pX

22Y~A1Y1A2!~A2Y1A1!pY
2

~X2Y!~a222XY~a12!!A1A2

2
4dA1A2~X2Y1Y1XY21X!

~X2Y!~2a121XY~a12!!A1A2
,

and for the caseg52 this Hamiltonian has the form

H5

pw8
2

1pv8
2

1dS 1

sinh2 2v8
1

1

sin2 2w8D
a12

sinh2 2v8
1

a22

sin2 2w8

.

The corresponding quadratic algebra relations are

@K̂,R̂1#52R̂1 , @K̂,R̂2#522R̂2 , @R̂1 ,R̂2#528K̂324aĤK̂216 dK̂24K̂,

subject to the operator identity

2 1
2 $R̂1 ,R̂2%1Ĥ21aĤK̂21K̂41aĤ1~514d!K̂214d50 .

This completes the analysis of the superintegrable potentials associated with the four m
of Darboux.

V. RELATIONSHIP TO CONSTANT CURVATURE SUPERINTEGRABLE POTENTIALS

In Secs. II–IV we have found, by means of exhaustive calculation, all superintegrable p
tials in the Darboux spaces of revolution having two or more quadratic integrals. Once the
expressed in suitable coordinates, it is clear that each is simply a multiple of one of the su
tegrable potentials on the complex Euclidean plane or 2-sphere, that have been enumerated
7, though that was by no means evident in advance.

In each case we can start with a Hamiltonian of the form
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H5H01aV0 , ~5.1!

whereV0 is a function of the coordinatesx andy, anda is a constant. Dividing the Hamilton–
Jacobi equation,H5E, throughout byV0 and rearranging gives a new Hamilton–Jacobi equa
in which the roles of the energyE and parametera have been exchanged,

H85
H0

V0
2

E

V0
52a . ~5.2!

Clearly, the integrability and separability of one system guarantees that of the other. It i
relationship between the harmonic oscillator potential written in Cartesian coordinates an
Coulomb potential in parabolic coordinates that has been discovered by many authors. Tr
mations of this type relating integrable systems were described in a more general cont
Hietarintaet al. in Ref. 14 and calledcoupling constant metamorphosis. See also Ref. 15 wher
the Stäckel transformand its close connection with variable separation was emphasized.

The preservation of integrability under such a transformation can be demonstrated exp
by noting that if$H0 ,L0%50 and

H5H01aV0 and L5L01a,0 ~5.3!

are in involution, i.e.,$H,L%50, then so are

H85
H0

V0
and L85L02,0H8 . ~5.4!

Any identities involving integrals associated with~5.1!, give rise to corresponding identitie
involving integrals associated with~5.2! and are obtained by the replacements

a→2H8 and H→0 . ~5.5!

A. Generating the Darboux spaces of revolution by coupling constant metamorphosis

Taking each of the degenerate potentials from Ref. 7, that is, the potentials with Hamilto
having one first order and two quadratic integrals and performing a coupling constant me
phosis we arrive at a Hamiltonian having one first orderK and two quadratic constants,X1 and
X2 . These must be free Hamiltonians either on one of the four Darboux spaces of revolut
one of the constant curvature spaces,E2(C) or S2(C). After comparing the Hamiltonians s
generated, it can be seen that this approach generates all of the Darboux spaces of revol

Knowing the Poisson algebra for each Hamiltonian involved and how coupling con
metamorphosis modifies this algebra, we can determine which Hamiltonian has been gen
even if it appears in unfamiliar coordinates. Note that some transformations reproduce th
Hamiltonian onE2(C) or S2,C , and some Darboux spaces can be generated from two dis
constant curvature potentials.

For each Hamiltonian we have four linearly independent constants of the motion. T
however, cannot be functionally independent and there is always a polynomial identity inK, X1 ,
X2 , andH that is of fourth order in the momenta. We can use this identity to classify the pos
Hamiltonians. Up to freedoms in choosingX1 and X2 , scalings ofK and coupling constan
metamorphosis, we find that there are five classes of identities that involve all of the con
The correspondences between these identities, degenerate superintegrable potentials from
and the Darboux spaces of revolution are summarized in Table I. Note that because we
coupling constant metamorphosis,H has the same status as parameters in the potential an
coefficientsA andB appearing in the representative identities may be functions ofH. The labels
in bold ~e.g.,E3, S3,...! refer to Ref. 7. Those Hamiltonians in Table I on the complex 2-sph
that is,S3, S5, andS6, are represented with three coordinatess1 , s2 , ands3 constrained bys1

2

                                                                                                                



amil-

paces of

5843J. Math. Phys., Vol. 44, No. 12, December 2003 Superintegrable systems in Darboux spaces

                    
1s2
21s3

251 andJ15s2ps3
2s3ps2

, J25s3ps1
2s1ps3

, andJ35s1ps2
2s2ps1

. The potentialsE12,

E14, E4, and E13 are functions ofx2 iy and hence division ofpx
21py

2 by these potentials
reproduces the flat space Hamiltonian.

For example, starting from the algebraic identity for constants associated with the H
tonian and integrals

H5px
21py

21
a

x2 1a ~E6! ,

X15~xpy2ypx!px2
ay

x2 , X25~xpy2ypx!
21

ay2

x2 , K5py , ~5.6!

that is Ref. 7,

X1
21K2X22~H2a!X21aK250 ,

we find that applying the transformation~5.4! gives

TABLE I. Correspondences between constant curvature superintegrable potentials and Hamiltonians for Darboux s
revolution.

Degenerate superintegrable
potential onE2(C) or S2(C)

Hamiltonian for Darboux
space of revolution Representative identity

E5: 4x D1 :
pu

21pv
2

4u
X1

21AX21K41B50

E6:
1

x2 11 D2 :
u2~pu

21pv
2!

u211
X1

21K2X21AX21B50

S5:
1

~s12 is2!2 21

E12:
a~x2 iy !

A~x2 iy !21c2
1b

E2(C) X1
21K2X21A50

E14:
a

Ax2 iy
1b

E3: x21y214 D3 :
pu

21pv
2

41u21v2
X1X21AK21B50

E18:
2

Ax21y2
11

S3:
a12

s3
2 2a12 D4 :

pu
21pv

2

a12

u2 1
a22

v2

X1X21K41AK21B50

S6:
2is3

As1
21s2

2
1a

E4: a~x2 iy !1b E2(C) K2X11AX21B50

E13:
a

Ax2 iy
1b
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H85
px

21py
2

1

x2 11

, X185~xpy2ypx!px2
y

x2

px
21py

2

1

x2 11

5
y~py

22x2px
2!

x211
1xpxpy ,

X285~xpy2ypx!
21

y2

x2

px
21py

2

1

x2 11

5
~x21x42y2!py

21x2y2px
2

x211
22xypxpy , K85K ,

and using~5.5!,

X18
21K82X282H8X282H8K8250 .

Then

X1952X18 , X2952X281H8 , H95H8 , K95K8 ,

gives

X19
224K92X2914H9X2924H9250 ,

the identity~2.3! associated with the Darboux space of type two~2.1!.

B. Generating superintegrable potentials on Darboux spaces

The H0 in Eq. ~5.3! may itself contain potential terms and if these are chosen so thatH is
superintegrable, then so will beH8.

For example, taking the superintegrable Hamiltonian on the complex two-sphereS1,7

H5J1
21J2

21J3
21

a

~s12 is2!2 1
bs3

~s12 is2!3 1
g~124s3

2!

~s12 is2!4 1d

and dividing though by (s12 is2)2221 gives, after a change of coordinates, the superintegr
potential@A# in a Darboux space of type 2. The same Hamiltonian can be generated by div
E2 throughout byx2211.

Each potential in Table I is compatible with the addition of further terms while maintain
superintegrability, and in using the method demonstrated above, all superintegrable Hamilt
found in Secs. II–IV can be generated. The correspondences are given below.

1. Darboux spaces of type 1

The potentialE5, V054x, appears in each of

E2 : a~4x21y2!1bx1
g

x2 1d,

E38 : a~x21y2!1bx1gy1d,

E9 :
a

Ax2 iy
1bx1

g~2x2 iy !

Ax2 iy
1d .

The potential labeledE38 is a translation ofE3. Adding these potentials toH05px
21py

2 and
dividing by 4x produces the two real nondegenerate potentials found in Ref. 1 and an add
complex one given in this paper.@The details of the quadratic algebra and defining operators
the Hamiltonian derived fromE9 can be computed using~5.2!.#
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2. Darboux spaces of type 2

The potentialsE6 andS5 appear in each of the following:

E1 @B# : a~x21y2!1
b

x2 1
g

y2 1d,

E2 @A# : a~4x21y2!1bx1
g

y2 1d,

E16 @C# :
1

Ax21y2 S a1
b

x1Ax21y2
1

g

x2Ax21y2D 1d,

S1 @A# :
a

~s12 is2!2 1
bs3

~s12 is2!3 1
g~124z2!

~x2 iy !4 1d,

S2 @B# :
a

s3
2 1

b

~s12 is2!2 1
g~s11 is2!

~s12 is2!3 1d,

S4 @C# :
a

~s12 is2!2 1
bs3

As1
21s2

2
1

g

~s12 is2!As1
21s2

2
1d.

The superintegrable system generated after dividing byx2211 or (s12 is2)2221 as appropriate
is indicated by label the@A#, @B#, or @C#. The apparent over abundance of superintegrable po
tials generated in this way forD2 is resolved by noting that the same potential can appear in m
than one coordinate system.

3. Darboux spaces of type 3

The potentialsE3 andE18 appear in each of

E1 @B# : a~x21y2!1
b

x2 1
g

y2 1d,

E38 @A# : a~x21y2!1bx1gy1d,

E7 @D# :
a~x2 iy !

A~x2 iy !22c2
1

b~x1 iy !

A~x2 iy !22c2~~x2 iy !1A~x2 iy !22c2!2
1g~x21y2!1d,

E8 @C# :
a~x1 iy !

~x2 iy !3 1
b

~x2 iy !2 1g~x21y2!1d,

E16 @B# :
1

Ax21y2 S a1
b

x1Ax21y2
1

g

x2Ax21y2D 1d,

E17 @C# :
a

Ax21y2
1

b

~x1 iy !2 1
g

~x1 iy !Ax21y2
1d,

E19 @D# :
a~x2 iy !

A~x2 iy !224
1

b

A~x1 iy !~x2 iy12!
1

g

A~x1 iy !~x2 iy22!
1d,
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E20 @A# :
1

Ax21y2
~a1bAx1Ax21y21gAx2Ax21y2!1d.

As before, once the possibility of changes of coordinates in taken into account, the abo
produces only those superintegrable potentials found in Sec. III B.

4. Darboux spaces of type 4

The potentialsS3 andS6 appear in each of

S2 @A# :
a

s3
2 1

b

~s12 is2!2 1
g~s11 is2!

~s12 is2!3 1d,

S4 @A# :
a

~s12 is2!2 1
bs3

As1
21s2

2
1

g

~s12 is2!As1
21s2

2
1d,

S7 @B,C# :
as1

As2
21s3

2
1

bs2

s3
2As2

21s3
2

1
g

s3
2 1d,

S8 @C# :
as1

As2
21s3

2
1

b~s11 is22s3!

A~s11 is2!~s32 is2!
1

g~s11 is21s3!

A~s11 is2!~s31 is2!
1d,

S9 @B# :
a

s1
2 1

b

s2
2 1

g

s3
2 1d.

As before, once the possibility of changes of coordinates in taken into account, the abo
produces only those superintegrable potentials found in Sec. IV B.

VI. CONCLUSION

In this paper we have discussed in some detail three of the four Darboux spaces of rev
that have at least two integrals of classical motion quadratic in the momenta in addition
Hamiltonian. In each case we have also presented an exhaustive list of potentials for each o
spaces which when added to the Hamiltonians of these spaces preserve this property, i
there are still two extra integrals of the classical motion. These are the superintegrable s
associated with the systems of Darboux. The property of extra integrals also extends easily
case of the corresponding quantum systems. For each of these systems we have calcul
corresponding quadratic algebra relations and have shown that in each case the Hamiltoni
we obtain arise from constant curvature systems via a coupling constant transformation. W
also discussed the solutions of the corresponding classical and quantum problems in eac
inequivalent coordinate systems and have also given some of the embeddings of these sp
three dimensions. In the last section we have shown how the free Hamiltonians of Darbo
related to the superintegrable Hamiltonians on spaces of constant curvature via coupling c
transformations. We also list how the corresponding superintegrable systems of spaces of c
curvature are related in this way to the superintegrable systems that we have found. This
fication is comprehensive and complete.

Let us very briefly review the current status of superintegrability in two-dimensional sp
Most of the published work3–7 concerns quadratic superintegrability for classical, or quan
Hamiltonians of the form kinetic energy plus a scalar potential. Once a specific space is c
superintegrable systems in the space can be classified under the action of the corresp
isometry group. Systems in the same class are not only mathematically equivalent, but als
the same physical properties. In classical mechanics they will have the same trajectories
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trajectories will be periodic, if they are bounded. Similarly, in quantum mechanics superinteg
systems in the same class will have the same energy levels and eigenspaces.

Quadratically superintegrable systems exist in spaces of constant curvature and also
boux spaces. A Darboux space is defined by the fact that it allows one Killing vector and
~irreducible! Killing tensors. This paper completes the task of classifying all quadratically su
integrable systems in all of the above spaces.

The results are quite rich. Indeed, in the real Euclidean spaceE2 , we have fourE(2) classes
of superintegrable systems.3,4 They are physically quite diverse. One is an isotropic harmo
oscillator with additional terms, calledE1 in Sec. V. A second is an anisotropic harmonic oscilla
with additional terms~calledE2!. The third and fourth are Kepler~or Coulomb! systems with two
different types of additional terms, respectively. In complex Euclidean spaceE2(C), or corre-
spondingly in the pseudo-Euclidean spaceE(1,1), one obtains six more classes.5

Two classes of superintegrable systems exist on the real sphereS2 , four more on the complex
sphereS2(C).6 On the real Darboux spacesD1 ,...,D4 we have obtained 3, 4, 4, and 4 classes
systems, respectively. One more for the complex spaceD3(C).

From the mathematical point of view the situation is much more unified. As was stre
above, superintegrable systems that may correspond to quite different physical situations
related by coupling constant metamorphosis. Once we allow this type of equivalence, many
equivalence classes exist. For instance, in real Euclidean space we only have two classes,
the Kepler potentials with additional terms are equivalent to isotropic harmonic oscillators~in one
case with the additional terms!. All superintegrable systems in Darboux spaces are related
coupling constant metamorphosis to systems in spaces of constant curvature. ForD1 , D2 , andD3

this is always flat space, complex or real. Two of the systems inD4 are related to systems in rea
Euclidean space. The other two are related to systems on a complex sphere. The relatio
course not unique and depends on the choice of coordinates~see Sec. V!.

A typical feature of quadratic superintegrability for scalar potentials is that quantum
classical superintegrable potentials coincide. They allow separation of variables in at lea
coordinate systems in the Schro¨dinger and Hamilton–Jacobi equation, respectively.

Superintegrability involving third order integrals of motion has also been considered16,17

There the situation is quite different. Multiseparability is lost. More interestingly, quantum su
integrable systems exist~in real Euclidean space! that have no classical analog~in the classical
limit they reduce to free motion!.
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Semiclassical nonlinear Schro ¨ dinger on the half line
Spyridon Kamvissisa)

Max Planck Institute for Mathematics, Vivatsgasse 7, 53111 Bonn, Germany

~Received 29 November 2002; accepted 10 September 2003!

We are studying the semiclassical limit of the 111 dimensional integrable nonlin-
ear Schro¨dinger equation with defocusing cubic nonlinearity on the half line. Our
analysis relies on the recent theory of Fokaset al., which reduces boundary value
problems for soliton equations to Riemann–Hilbert factorization problems. We
employ the method of nonlinear steepest descent to asymptotically deform the
given Riemann–Hilbert problem to an explicilty solvable one. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1624091#

I. AN INITIAL-BOUNDARY VALUE PROBLEM FOR THE NONLINEAR SCHRO¨ DINGER
EQUATION

In recent years there has been a series of results by Fokas and others onboundary value
problemsfor soliton equations~see Ref. 1 for a comprehensive review!. The Fokas method goe
beyond existence and uniqueness. In fact, it reduces such problems to Riemann–Hilbert
ization problems in the complex plane, thus generalizing the existing theory which reducesinitial
value problemsto Riemann–Hilbert problems via the method of inverse scattering. One o
main advantages of the Riemann-Hilbert formulation is that one can use recent powerful res
the asymptotic behavior of solutions to these problems~as some parameter goes to infinity! to
derive asymptotics for the solution of the associated soliton equation. Such methods we
neered by Its and made rigorous and systematic by Deift and Zhou; the Deift–Zhou met
known as ‘‘nolinear steepest descent’’ in analogy with the linear steepest descent method w
applicable to asymptotic problems for Fourier-type integrals~see, e.g., Ref. 2!. A generalization of
the steepest descent method developed in Ref. 3 is able to give rigorous results for the so
‘‘semiclassical’’ or ‘‘zero dispersion’’ limit of the solution of the Cauchy problem for 111 di-
mensional integrable evolution equations, in the case where the Lax operator is self-adjoin
method has been further extended in Ref. 4 for the ‘‘non-self-adjoint’’ case, where in f
‘‘steepest descent’’ contour is, for the first time, introduced and its characterization and com
tion made systematic.

In this paper we consider the most basic example, that is the defocusing nonlinear Schro¨dinger
~NLS! equation.~In a recent paper5 we dealt with the simple problem of so-called linearizab
data, for both the defocusing NLS and Korteweg–de Vries equations.! We make use of the recen
results of Ref. 6 in order to study the so-called ‘‘semiclassical’’ limit of a particular init
boundary value problem. More precisely we consider the 111 dimensional, integrable, defocus
ing, nonlinear Schro¨dinger equation on the half-line

ihut~x,t !1h2uxx~x,t !22uu~x,t !u2u~x,t !50,

u~x,0!50, u~0,t !5 f 0~ t !, ~1a!

x>0, t>0,

wheref 0 is assumed to be in the Schwartz space of the positive real line. We also assume

a!Electronic mail: spyros@mpim-bonn.mpg.de
58490022-2488/2003/44(12)/5849/20/$20.00 © 2003 American Institute of Physics
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derivatives off 0(t) vanish att50. The special restriction of zero initial data is not essential
makes the computations and proofs somewhat easier. It is known7 that the above problem is
well-posed.

Our analysis is based on the results of Ref. 6, which considers thea priori overdetermined
problem:

ihut~x,t !1h2uxx~x,t !22uu~x,t !u2u~x,t !50,

u~x,0!50, u~0,t !5 f 0~ t !, ux~0,t !5 f 1~ t !, ~1b!

x>0, t>0.

However, following Ref. 6, we will eventually impose a compatibility condition~the so-called
‘‘global relation’’! on the dataf 0 , f 1 which will ensure the existence~and uniqueness under suc
a condition! of a solution to~1b!. It is also worthwhile noting~see Ref. 6! that given datau(x,0)
and u(0,t) only, the global relation implicitly selects a functionf 1(t)5ux(0,t) which comple-
ments the dataf 0 and the initial data, and which will then ensure the existence of a solution t~1!
and the validity of the Riemann–Hilbert formulation~see Theorem 1 below!.

For the convenience of the reader we include an Appendix at the end of this paper cont
a statement of some of the main results of Ref. 6.

It is well known that the above-mentioned equation admits a ‘‘Lax-pair’’ formulation. It ar
as the compatibility condition for the equationsLm50 andBm50 where the operatorsL, B are
given by

L5S ]x2 ik iu

2 i ū ]x1 ik D ,

B5S ih] t14ik21 i uuu2 22ku2 iut

22kū1 i ū t ih] t2 i uuu2 D .

Here the bar denotes complex conjugation,k is the spectral variable, andu5u(x,t) is the solution
of ~1a!.

The traditional method of solving initial value problems for soliton equations that adm
similar Lax-pair formulation is to focus on theL operator and apply the theory of scattering a
inverse scattering to that very operator. On the other hand, one of the main ideas of the
method is that for initial-boundary value problems the two operatorsL and B should be on an
equal footing. The scattering transform should be applied to both operators simultaneously
a global relation has to be imposed on the data to ensure compatibility.

II. THE RIEMANN–HILBERT PROBLEM

As shown in Ref. 6, problem~1a! can be reduced to the following Riemann–Hilbert proble
under the special assumption that the so-called global relation holds~see relation~3.18! of Ref. 6;
see also relation~5! below!. One way to look at the global relation is as a way of selectin
solution of problem~1b!. In fact it is known ~see Ref. 7!, using methods unrelated to invers
scattering theory, that~1b! has a unique solution. On the other hand, it has been shown in R
that given dataf 0 in ~1b!, there exists a functionf 1(t) such that the problem~1a! admits a
solution, which furthermore can be explicitly characterized via inverse scattering and a par
Riemann–Hilbert factorization problem. Indeed, letS be the contourRø iR with the following
orientation:

~i! the real axis is oriented from left to right,
~ii ! the positive imaginary axis is oriented from infinity toward zero,
~iii ! the negative imaginary axis is oriented from infinity toward zero.
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We use the following convention: the12side of an oriented contour is always to its le
according to the given orientation.

Letting M 1 andM 2 denote the limits ofM on S from left and right, respectively, we defin
the Riemann–Hilbert factorization problem

M 1~x,t,k!5M 2~x,t,k!J~x,t,k!,

where

J~x,t,k!5J4
21 , kPR1,

J1
21 , kP iR1,

~2!
J3

21 , kP iR2,

J25J3J4
21J1 , kPR2,

with

J15S 1 0

G~k!e2iQ 1D ,

J45S 1 2g~k!e22iQ

ḡ~k!e2iQ 12ug~k!u2 D ,

J35S 1 2Ḡ~ k̄!e22iQ

0 1
D ,

Q~x,t,k!5
u

h
,

where

u5kx12k2t.

The functionsg,G are defined in terms of the spectral functions of the problem@see Appendix
A, or Ref. 6,~2.28!, ~2.25!#, with important analyticity properties@see Appendix A, or~2.21! and
~2.22! of Ref. 6#. In particular note that

G~k!5
1

a~k!S a~k!
Ā~ k̄!

B̄~ k̄!
2b~k!D , ~3!

wherea, b are the spectral functions for thex problem andA, B are the spectral functions for th
t problem. The functionsa, b are analytic and bounded in the upper half-plane, whileA, B are
analytic and bounded in the first and third quadrants of thek plane. For our special choice of zer
initial data,b50, a51. Henceg50 andG(k)5 B̄( k̄)/Ā( k̄). Note thata, b, A, B, G all depend
on h.

The solution of~1a! can be recovered from the solution of~2! as follows:

u~x,t !52i h limk→`~kM12~x,t,k!!, ~4!

where the index 12 here denotes the~12!-entry of a matrix.
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The following ‘‘global relation’’~see Appendix A for motivation and derivation! is imposed on
the scattering data:

a~k!B~k!2b~k!A~k!5e4ik2Tc~k!,

wherec(k) is analytic and bounded for Imk.0, andc(k)5O(1/k) ask→`. HereT is the time
up to which we solve the initial boundary value problem for NLS. In generalA, B are functions
of T.

If ux(0,t) is denoted byf 1(t) then there is a complicated relation between the dataf 0 and f 1 ;
the global relation is the expression of this in the spectral space.

In our particular case@problem~1a!# T5` and the global relation becomes

a~k!B~k!2b~k!A~k!50, ~5!

for arg(k)P@0,p/2#. For the special choice of zero initial data, sinceb50, a51, one hasB50 for
arg(k)P@0,p/2#. In particular,G(0)50.

The following is proved in Sec. V of Ref. 6.
Theorem 1: Given a Schwartz functionf 0 , there exists a uniquef 1 , also Schwartz, such tha

the above-given global relation is satisfied, and such that all derivatives off 0 , f 1 vanish at 0~so
that f 0 , f 1 are compatible with NLS atx50,t50).

Using the theory developed in Ref. 6, we will then consider the~seemingly! overdetermined
problem~1b! which in fact does have a unique solution, and which of course is the solutio
problem~1a!.

We note that in both the negative half-line and the positive half-line the jump matrix is o
same form. For positivek,

J5S 12ug~k!u2 g~k!e22iQ

2ḡ~k!e2iQ 1 D ,

while for negativek,

J5S 12ug~k!2Ḡu2 ~g~k!2Ḡ !e22iQ

2~ ḡ~k!2G!e2iQ 1
D .

In fact, let

r ~k!5g~k!2Ḡ~k!5
bA2aB

āA2b̄B
, k,0,

r ~k!5g5
b~k!

ā~k!
, k>0.

Then, for all nonzero realk,

J5S 12ur ~k!u2 r ~k!e22iQ

2 r̄ ~k!e2iQ 1 D .

In the special case of zero initial data, the jump reduces to the identity for positivek, while for
negativek, r 5 2B/A, so
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J5S 12UB
A
U2

2B

A
e22iQ

B̄

Ā
e2iQ 1

D . ~6!

III. DIRECT SCATTERING AS h\0

It is important to have some information about the ‘‘spectral’’ coefficentr 52B/A, for real
values ofk.

Theorem 2: For k,0, the spectral functionr (k,h) has the following asymptotic expressio
There exist functionsr̃ ,R0 of k alone, such that

r ~k,h!; r̃ ~k!expS 2iR0(k)

h D , ~7!

as h→0, where r̃ (k) is analytic and bounded ask→`, and R0(k) is analytic. Whenk
P iR1, Re(iR0)<0. Also u r̃ u<1.

Proof: The representation~7! follows from the standard Wentzel–Kramers–Brillouin~WKB!
theory. Indeed,A, B admit representations of the forms(k)exp(iR(k)/h). Formula~7! thus follows.
The analyticity of r̃ , R0 follows from the analyticity ofA, B. The fact thatuA(k)u22uB(k)u2

51 ~for real k) implies u r̃ u<1.
More detailed information aboutr can be recovered after a detailed analysis of the spe

problem for the second Lax operator. An easy calculation shows that the associated s
problem reduces to a WKB problem of the type

h2ytt5S~ t,k!y,

whereS(t,k) is real. The spectral coefficientsA, B can then be asymptotically estimated along t
lines of Ref. 8~Sec. 10.6!. Eventually one is able to show the following.

Theorem 3: Let

f 2~ t !5
5

8•21/3@Re~ i f̄ 1~ t ! f 0~ t !!#4/31u f 0~ t !u42u f 1~ t !u2.

Let 2 f 5min$f2(t)% over the interval@0,̀ #. Without loss of generality, we assume2 f ,0. @Oth-
erwise the analysis becomes trivial; the coefficentr (k,h) is everywhere small.# On the real line,
the following holds.

For 2 f ,k,0,

r ~k,h!;2 ie@2is(k)#/h,

wheres is smooth in (2 f ,0) and takes real values. Alsos can be extended analytically in a sma
neighborhood of the segment (2 f ,0).

For values ofk away from the interval (2 f ,0), r (k,h) is either zero or uniformly expo-
nentially small inh.

Furthermore one has an asymptotic formula for 12ur (k)u2, 2 f ,k,0. Indeed,

12ur ~k!u2;expS 22t~k!

h D ,

wheret(k) is positive and can be extended analytically in a small neighborhood of (2 f ,0).
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Remark:An explicit integral formula fors and t in terms of the data can only be foun
assumingux5 f 1 is known. In general, even though the existence off 1 is guaranteed~given f 0)
via the global relation,f 1 is not effectively computable.

However, in the special case of so-called ‘‘linearizable data,’’f 1 ands are indeed effectively
computable~see Ref. 5!.

Proof of Theorem 3:We simply note that the turning curve for the t-spectral problem is gi
by

S~ t,k!54k41k Re~ i f̄ 1~ t ! f 0~ t !!1u f 0~ t !u42u f 1~ t !u250.

Indeed consider the t-problem

By5S ih] t14ik21 i u f 0u2 22k f02 i f 1

22k f̄01 i f̄ 1 ih] t2 i u f 0u2 D y50.

Applying the operator

B05S ih] t2 i u f 0u2 2k f01 i f 1

22k f̄02 i f̄ 1 ih] t14ik21 i u f 0u2D
we end up, up to errors of orderO(h), with

h2ytt5S~ t,k!y, ~8!

with S(t,k) as above.
Note here that realk for which there existL2-solutionsy of By50, area priori excluded~see

Ref. 6, p.16!. So we do not need to concern ourselves with the possibility of realk for which the
solutions to~8! are inL2 . We can then follow the WKB analysis of the semiclassical Schro¨dinger
operator without essential changes~e.g., Ref. 8, Sec. 10.6!. We can thus show that at allk such that
S(t,k)5k for somet, the reflection and transmission coefficients are given by the formulas ab
while otherwiser (k,h) is exponentially small~or zero!. A short calculation shows thatS(t,k) as
a function ofk has only one local minimum, atf 2(t), as defined in the statement of Theorem
The result follows immediately.

IV. REDUCING TO A PROBLEM ON THE REAL LINE

We next consider two Riemann–Hilbert problems with sole jumps given by

J1
21 , kP iR1,

J3
21 , kP iR2,

respectively.
We wantU to be a function analytic in the complex plane except the upper imaginary

with normalization limk→`U(x,t,k)5I . The jump is prescribed by

U1~x,t,k!5U2~x,t,k!J1
21~x,t,k!, kP iR1,

with
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J15S 1 0

G~k!e2iQ 1D ,

~9!

Q~x,t,k!5
u

h
,

where

u5kx12k2t.

~The symbolU stands for ‘‘upper’’ since the jump is on the upper half-plane. We will immedia
see however thatU is a lower triangular matrix.!

Similarly, we wantL to be a function analytic in the complex plane except the lower ima
nary axis, with normalization limk→`L(x,t,k)5I . The jump is prescribed by

L1~x,t,k!5L2~x,t,k!J3
21~x,t,k!, kP iR2, ~10!

with

J35S 1 2Ḡ~ k̄!e22iQ

0 1
D .

~The symbolL stands for ‘‘lower’’ since the jump is on the upper half-plane. HoweverL is an
upper triangular matrix.!

The two Riemann–Hilbert problems above can be easily solved explicitly, since the jump
triangular matrices. Indeed, direct calculations show that

U~x,t,k!5S 1 0

u~x,t,k! 1D , ~11!

where

u~x,t,k!5
1

2p i EiR1

G~s!e2iQ(x,t,s)ds

s2k

satisifies~9!. Similarly,

L~x,t,k!5S 1 l ~x,t,k!

0 1 D , ~12!

where

l ~x,t,k!5
1

2p i EiR2

2Ḡ~ s̄!e22iQ(x,t,s)ds

s2k

satisfies~10!. The direction of the integral contours is as prescribed in Sec. II, i.e., from infinit
zero.

Note thatu(k)52 l̄ ( k̄). Note also that the integrals in~11! and ~12! are not singular atk
50, asG(0)50.

We next show that the Riemann–Hilbert problem~2! is equivalent to a problem on the re
line. Indeed, let
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N~x,t,k!5M ~x,t,k!U21~x,t,k!, Im k.0,
~13!

N~x,t,k!5M ~x,t,k!L21~x,t,k!, Im k,0.

ThenN(x,t,k) is analytic inC\R, with limk→`N(x,t,k)5I , and acrossR the jump is given by

N1~x,t,k!5N2~x,t,k!L~x,t,k!J~x,t,k!U21~x,t,k!. ~14!

In fact, the new jump is given by

LJU215S 12u l ~k!1r ~k!e22iQu2 l ~k!1r ~k!e22iQ

2 l̄ ~k!2 r̄ ~k!e2iQ 1 D . ~15!

Note here that whiler (k) depends only onk but not onx,t,l (k) depends onx,t,h via Q by
~12!.

We have thus reduced the Riemann–Hilbert problem~2! to the problem~15! with only jump
on the real line.

V. THE g-FUNCTION

We next show how the Riemann–Hilbert problem can be ‘‘deformed’’ to a problem th
explicitly solvable. We are essentially following the ideas of Ref. 3~see also Ref. 4!.

The first idea involves the so-called ‘‘g-function.’’ We introduce a scalar functiong(k) which
is to be analytic inC\R and decay likeO(1/k) at infinity. This function will be uniquely specified
eventually.

Let

O~k!5N~k!expS ig~k!s3

h D .

If N satisfiesN15N2J, k,0, with J given by~6!, thenO solves a Riemann–Hilbert problem
with jump matrixvO , say, that is

O1~x,t,k!5O2~x,t,k!vO~x,t,k!, ~16!

vO~k!5S e@ i (g12g2)#/hS 12U l 1 B

A
e22iQU2D S l 2

B

A
e22iQD e@2 i (g11g2)#/h

S 2 l̄ 2
B̄

Ā
e2iQD e@ i (g11g2)#/h e2( ig12 ig2)/h D , k,0,

vO~k!5S e@ i (g12g2)#/h~12u l u2! l ~k!e@2 i (g11g2)#/h

2 l̄ ~k!e@ i (g11g2)#/h e@2( ig12 ig2)#/h D , k.0,

limk→`O~k!5I .

Hereg1 ,g2 denote the limits ofg from above and below the negative real axis, respectively
Note that problem~16! is exactly ~not just asymptotically! equivalent to the original

Riemann–Hilbert problem~2!. Formula~4! has to be replaced by

u~x,t !52i h limk→`~kO12~x,t,k!!12]xg̃, ~17!

whereg̃ is the residue ofg at infinity.
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VI. REDUCTION TO A SOLVABLE RIEMANN–HILBERT PROBLEM

Our first approximation involves getting rid of the functionsl ,u appearing in the jumps. The
reason is simple. By formulas~11! and~12! u,l can be shown to be at worstO(h) by use of the
Laplace method for asymptotic evaluation of integrals, since the phaseiR0 of Theorem 2 has
negative or zero real part. This suggests thatl can be eventually erased from formula~16!. In fact,
we shall see right away thatl can be neglected, not only because it is small, but also becaus
the precise factorization that follows.

Indeed, an easy calculation shows that the jumpvO of ~16! can be written as

vO5S 1 le2ig1 /h

0 1
D •S e@ i (g12g2)#/h~12uB/Au2! 2

B

A
e22iQe@2 i (g11g2)#/h

2
B̄

Ā
e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D

•S 1 0

2 l̄ e22ig2 /h 1
D , k,0, ~18!

vO5S 1 le2ig1 /h

0 1 D •S 1 0

2 l̄ e22ig2 /h 1D , k.0.

Sinceg takes real values onR @this will be clear later, see formula~28!# and sincel 5O(h), it
follows that the triangular factors in~18! can be taken as the identity plus a resulting error of or
at worstO(h) in formula ~18!.

We have asymptotically reduced the Riemann–Hilbert problem~16! to a new Riemann–
Hilbert problem for a matrix functionQ(z), say.

If Q is defined by

Q1~x,t,k!5Q2~x,t,k!vQ~x,t,k!,

vQ~k!5S e@ i (g12g2)#/h~12uB/Au2! 2
B

A
e22iQe@2 i (g11g2)#/h

B̄

Ā
e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D , k,0, ~19!

limk→`Q~k!5I ,

thenQ is asymptotically equivalent toO in a neighborhood of̀ . In particular,

u~x,t !;2ih limk→`~kO12~x,t,k!!12]xg̃. ~20!

The matrixvQ can be written as
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vQ5S e@ i (g12g2)#/h~12ur u2! r ~k!e22iQe@2 i (g11g2)#/h

2 r̄ ~k!e2iQe@ i (g11g2)#/h e@2( ig12 ig2)#/h D
5S e@ i (g12g2)22t#/h 2 ie@22iu2 i (g11g2)22is#/h

2 ie@2iu1 i (g11g2)12is#/h e@2( ig12 ig2)#/h D ,

if 2 f ,k,0, ~21!

;S e@ i (g12g2)#/h 0

0 e@2( ig12 ig2)#/hD , otherwise.

We remind the reader that the functionss,t where introduced in the statement of Theorem 3.
At this point it becomes obvious that we should also impose

g12g250, k.0, or k,2 f .

So g is to be analytic inC\@2 f ,0#.
Let

H52g12g222u22s.

In the spirit of Ref. 3, we seek to reducevQ to a jump of one of the three following types:

S 0 2 ieiH /h

2 ie2 iH /h 1 D , S 0 2 ieiH /h

2 ie2 iH /h 0 D , S 1 2 ieiH /h

2 ie2 iH /h 0 D .

~22!

The motivation is the following. We expect that~22! will be deformable to a RH problem that ca
be explicitly solvable in terms of finite genus theta functions. Such a problem will have a ‘‘fi
gap’’ structure. This means that the real line will be divided into a finite number of subinterva
some of them the jump matrix has to look like

S 0 2 ieiH /h

2 ie2 iH /h 0 D
and in others it has to be the identity. We know however~through ‘‘lens’’-type arguments, se
Appendix B! that matrices of the first or third form in~22! can be reduced to the identity. Henc
the ansatz~22!.

To arrive from~21! to ~22! we impose some seemingly artificial conditions on the functio
g,H. For any givenx,t, we will consider finite sequences of real numbers21<k1,k2<k3

,k4< ¯<k2G11,k2G12<1. We call the G11 intervals I 15@k1 ,k2#, . . . ,I G11

5@k2G11 ,k2G12# the ‘‘bands.’’ Both the integerG and the real numberskj , j 51, . . . ,2G12 are
to be eventually determined for eachx,t.

We make the ansatz that for eachx,t the interval@2 f ,0# can be subdivided into intervals b
suchkj , such that on each of the arising intervals one of the three conditions holds:

22i t5g12g2 and H8,0,

or

22i t,g12g2,0, and H850, ~23!

or

g12g250, and H8.0.
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H8 denotes the derivative ofH with respect tok. In particular, the intervals whereH850 are
to be the bandsI j , while on the intervals of which@2 f ,0#\øI j consists, either the first or the thir
condition has to hold.

We will eventually see that conditions~23! amount to a scalar Riemann–Hilbert problem th
can be solved explicitly, plus a set of algebraic conditions on the end pointskj defining the gap
structure, plus a set of inequalities which essentially pick up the appropriate number ofkj ’s.

Now differentiating~with respect tok) the scalar Riemann–Hilbert problem given by t
equalities in~23! and solving forg8 leads to

g8~k!5~p~k!!1/2S E
øI j

2s8~m!22u8~m!

~p~m!!1
1/2~m2k!

dm

2p i
1E

(2 f ,0)\øI j

22i t8~m!

~p~m!!1
1/2~m2k!

dm

2p i D ,

where

p~k!5P j 51
G11~k2k2 j 21!~k2k2 j !. ~24!

We have imposed the conditiong(k)5O(k21), as k→`. Easy calculations then show thatg8
has to satisfy the moment conditions

E
øI j

s8~k!2u8~k!

~p~k!!1
1/2 kldk1E

(2 f ,0)\øI j

2 i t8~k!

~p~k!!1
1/2kldk50, ~25!

l 50,1,2,. . . ,G.

Also, integratingg8 aroundI j and requiringH8,0, we obtain

E
I j

~g18 2g28 !dl522i ~t~k2 j 21!2t~k2 j !!, j 51, . . . ,G11. ~26!

Conditions~25! and ~26! form a set of 2G12 equations for 2G12 unknowns. They enable
us to solve forkj .

At this point, we note thatH is smooth in@2 f ,0#. We also note that it admits analyti
continuations in~possibly small! lens-like domains of the complex plane, not including the poi
kj .

In fact, conditions~25! and ~26! together with the inequalities in~23! reduce to the Euler–
Lagrange conditions of a variational problem. This is virtually the same variational pro
introduced by Lax and Levermore and the existence and uniqueness of its solution is guar
by the theory of variational problems of logarithmic potentials~see Ref. 9 for a discussion!. Since
a complete written proof has not appeared anywhere so far, we will simply state a hypothe

Hypothesis:Assume that the dataf 0 are real analytic and rapidly decaying~say Schwartz!.
Then for eachx,t there is a finite non-negative integerG for which both equalities and inequalitie
in ~23! have a solution. In other words, the ‘‘finite genus ansatz’’ can be eventually justified

Once the existence of an appropriate ‘‘g-function’’ is guaranteed, it is straightforwar
reduce our Riemann–Hilbert problem to its final form.

At the end of this procedure, and because of conditions~23!, the jump contour consists of th
bandsI j , j 51,...,G11 and on each band, the jump matrix is given by

wj5S 0 2 ieiH /h

2 ie2 iH /h 0 D .

Furthermore,H is constant on each band. We actually have
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wj5S 0 2 ieiV j /h

2 ie2 iV j /h 0 D , ~27!

where theV j are real constants.
The V j can be computed explicitly. But first, let us note that the Riemann–Hilbert prob

with jumps along the intervalsI j given by~27! can be explicitly solved in terms of theta function
To appropriately define those functions we first need to introduce an underlying Riemann su
together with some associated holomorphic differentials.

Let X be the two-sheeted Riemann surface of genusG associated with (p(k))1/2, obtained by
adjoining two copies of the slit planeC\økI k . On the ‘‘top’’ sheet (p(k))1/2;kG11 and on the
‘‘bottom’’ sheet (p(k))1/2;2kG11. The branch points of the surface will be the end points of
‘‘bands,’’ that is,k1 , . . . ,k2G12 . The homology cycles are defined in a standard way as follo
The cyclesAk lie on the top sheet and encircle slitsI k . The cyclesBk pass from the top shee
through the slitI 1 to the bottom sheet and back again throughI k .

The basisv5(v1 , . . . ,vG) of holomorphic differentials onX is determined by the normal
ization

E
Ai

v j5d i j ,1< i , j <G.

The Riemann-matrix of periods is

t5~t i j !5S E
Bi

v j D
1< i , j <G

.

By the Riemann bilinear relations,t is symmetric andi t is negative definite. We can thu
define the associated theta function

uG~s!5SmPZG exp~2p i ~m,s!1p i ~m,tm!!, sPCG,

where~.,.! is the real scalar product. Note thatuN is an even function.
Now, solving the scalar Riemann–Hilbert forg ~not its derivative! we get

g~k!5~p~k!!1/2S E
øI j

2s~m!22u~m!2V j

~p~m!!1
1/2~m2k!

dm

2p i
1E

(2 f ,0)\øI j

22i t~m!

~p~m!!1
1/2~m2k!

dm

2p i D . ~28!

Applying the condition thatg(k)5O(k21), as k→` once more, we get the conditions

E
øI j

~2s~k!22u~k!2V j !v l1E
(2 f ,0)\øI j

~22i t~k!!v l50,

l 51,2,. . . ,G.

Recalling the definition of the normalized differentialsv l , we immediately get the following:

V l5E
øI j

~2s~k!22u~k!!v l1E
(2 f ,0)\øI j

~22i t~k!!v l ,

l 51,2,. . . ,G. ~29!

We also define the following function:
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z~k!5FP i 51
G11 k2k2i

k2k2i 21
G1/4

,

wherez is meant to be analytic off the union of the ‘‘gaps,’’ i.e., the intervals between the ba
and z(k);1, ask→`. The functionz has the important property thatz6z21 hasG11 roots
(z j

6) j 51
G11 , lying in the bandsI j , one root in each band. Note also thatz15 i z2 across the gaps

We next define the ‘‘Abel map’’ integral, fork on the top sheet of the Riemann surfaceX. Let

u~k!5E
0

k

v,

where the integral is taken along any path on the top sheet. Note that it is well-defined moduZG.
Also define the constant vector

d52K2(
j 51

G E
0

P2(z j )

v,

whereK is the vector of Riemann constants andP2(z) denotes the preimage of a pointzPX in the
‘‘bottom’’ sheet. We can now state the following theorem.

Theorem 4:The functionQ defined by problem~19! is asymptotically equivalent, ash→0, to

diagS uG~u~`!1d!

uGS u~`!1
QG

2ph
1dD ,

uG~2u~`!1d!

uGS 2u~`!1
QG

2ph
2dD D

•S z1z21

2

uGS u~k!1
QG

2ph
1dD

uG~u~k!1d!
e~2 iH G11!/h

z2z21

2i

uGS u~k!1
QG

2ph
2dD

uG~u~k!2d!

e~ iH G11!/h
z2z21

22i

uGS 2u~k!1
QG

2ph
1dD

uG~2u~k!1d!

z1z21

2

uGS 2u~k!1
QG

2ph
2dD

uG~2u~k!1d!

D ,

~30!

whereQG5(V1 , . . . ,VG)T, theV j being given by~29!. The asymptotics is uniform in compac
subsets of the Riemann sphere with the bandsI j deleted.

The proof consists of a straightforward check of the jump relations. The important fact is
~because of our choice ofd) the zeros ofz6z21 exactly cancel the poles of the theta functio
quotients.

The semiclassical asymptotics for the solution of~1a! follows from ~30! and ~4!.
Theorem 5: The asymptotics foru(x,t,h), the solution of~1a!, ash→0, is given by

u~x,t,h!;@S j 51
2G12kj #e

~2 iH G11!/h
•

uG~u~`!1d!uG~u~`!1QG /~2ph!2d!

uG~u~`!2d!uG~u~`!1QG /~2p\!1d!
. ~31!

Formula~31! expresses a slowly modulated wave.

VII. CONCLUSION

Since we have been able to reduce our Riemann–Hilbert problem to one that arises
full-line problem, the results of Refs. 10, 11, and 3 on the phenomenology of the solutionh
→0 apply.

Semiclassically, the half-planex,t>0 can be divided in two regions. In the first~‘‘smooth’’ !
region the strong semiclassical limit exists and satisfies the formallly limiting Euler system. I
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second~‘‘turbulent’’ ! region fast oscillations appear that can be described in terms of sl
modulating finite-gap solutions. Weak limits of an infinite number of densities includ
uuu2, ih(uūx2uxū) exist.

We also note that the Whitham equations theory is still relevant. The functionskj (x,t) are in
fact the Riemann invariants of the Whitham equations. The equations themselves can be
by differentiating~25! and ~26! ~see, e.g., Ref. 4!.

Let us also note that, even though the assumption that the initial data are equal to zero
the analysis somewhat easier, it is not essential. In particular the above qualitative discus
the semiclassical limit is still valid.

Finally, let us speculate on the long time asymptotics of the semiclassical limit.
There are two ways of computing the long time semiclassical limit of the defocusing NL

the full line ~see Ref. 12 or 13!. One is to use the existing theory for times of order 1~as in Ref.
11! and take the limitt→`.

Alternatively, one should in principle be able to look at the long time behavior of the prob
with fixed e and then takee→0. This is by no means obviousa priori, but it turns out that this
idea gives the right results. See, for example, Ref. 12, where the author has computed th
time semiclassical limit of the defocusing NLS on the full line.

On the half-line, it is already known what the long time of the problem with fixede is. As in
the full-line case, any initial data degenerate into a sequence of finitely many separated s
~see Refs. 14 and 6!.

It then should follow, in exact analogy with the full line case,12 that the long time asymptotic
of the semiclassical limit in the half line case can be described by a sequence of solitons~in the
turbulent region!. The number of solitons is finite but increasing likeO(1/e) ase→0. Their width
is O(e) and they are separated by a distance of orderO(et). In the smooth region, the solutio
simply dies out.
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APPENDIX A: THE SCATTERING DATA FOR THE PROBLEM ON THE HALF LINE

In this appendix we quote freely from the paper of Fokas, Its and Sung~Ref. 6!. We introduce
the quantitiesa,b,A,B referred to in Sec. II and we state the analytic properties of these quan

We consider the NLS equation

iut1uxx22uuu2u50. ~A1!

Here we have seth51. For general positiveh one can reduce Eq.~1a! to Eq. ~A1! through the
obvious rescalingx→x/h, t→t/h. Equation~A1! admits the Lax pair

mx1 ik@s3 ,m#5Q~x,t !m,

m t12ik2@s3 ,m#5Q̃~x,t,k!m,

wheres35diag(1,21), and

Q~x,t !5S 0 u~x,t !

ū~x,t ! 0 D , Q̃~x,t,k!52kQ2 iQxs32 iluuu2s3 .

Let ŝ3 denote the commutator with respect tos3 , then (expŝ3)A can be computed easily:

ŝ3A5@s3 ,A#, eŝ3A5es3Ae2s3,
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whereA is a 232 matrix.
The Lax pair can be rewritten as

d~ei (kx12k2t)ŝ3m~x,t,k!!5W~x,t,k!, ~A2!

where the exact one-formW is defined by

W5ei (kx12k2t)ŝ3~Qm dx1Q̃m dt !.

Let Eq. ~A1! be valid for

0,x,`, 0,t,T,

whereT<` is a given positive constant. Assume that there exists a functionu(x,t) with sufficient
smoothness and decay. A solution of Eq.~A2! is given by

m* ~x,t,k!5I 1E
(x

*
,t
*

)

(x,t)

e2 i (kx12k2t)ŝ3W~j,t,k!, ~A3!

whereI is the 232 identity matrix, (x* ,t* ) is an arbitrary point in the domain 0,j,`, 0,t
,T, and the integral is over a~piecewise! smooth curve from (x* ,t* ) to (x,t). Since the
one-formW is exact,m* is independent of the path of integration. The analyticity properties
m* with respect tok depend on the choice of (x* ,t* ). It was shown in Ref. 15 that for a
polygonal domain there exists a canonical way of choosing the points (x* ,t* ), namely, they are
the corners of the associated polygon. Thus we define three different solutionsm1 , m2 , m3 ,
corresponding to (0,T), ~0,0!, (`,t). Also we choose the particular contours as follows: The fi
contour consists of the oriented linear segments (0,T) to (0,t) and (0,t) to (x,t). The second
contour consists of the oriented linear segments from~0,0! to (0,t) and from (0,t) to (x,t). The
third contour is parallel to thex axis and is oriented from (0,1`) to (x,t).

This choice implies the following inequalities:

m1 : j2x<0, t2t>0,

m2 : j2x<0, t2t<0,

m3 : j2x>0.

The second column of the matrix equation~A3! involves exp@i(k(j2x)12k2(t2t))#. Using the
above-mentioned inequalities it follows that this exponential is bounded in the following reg
of the complexk plane:

m1 :$Ik<0ùIk2>0%,

m2 :$Ik<0ùIk2<0%,

m3 :$Ik>0%.

Thus the second column vectors ofm1 , m2 andm3 are bounded and analytic for argk in (p,3p/2),
(3p/2,2p) and (0,p), respectively. We will denote these vectors with superscripts~3!, ~4!, and
~12! to indicate that they are bounded and analytic in the third quadrant, fourth quadrant, a
upper half of the complexk plane, respectively. Similar conditions are valid for the first colu
vectors, thus

m1~x,t,k!5~m1
(2) ,m1

(3)!, m2~x,t,k!5~m2
(1) ,m2

(4)!, m3~x,t,k!5~m3
(34),m3

(12)!. ~A4!
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We note that the functionsm1 andm2 are entire functions ofk. Equation~A4! together with the
estimate

m j~x,t,k!5I 1OS 1

kD , k→`, j 51,2,3, ~A5!

imply that the functionsm j are the fundamental eigenfunctions needed for the formulation of a
problem in the complexk plane. The jump matrix of this RH problem is uniquely defined in ter
of the 232-matrix valued functions

s~k!5m3~0,0,k!, S~k!5@e2ik2Tŝ3m2~0,T,k!#21. ~A6!

This is a direct consequence of the fact that~in the domain wherem3 is defined! any two solutions
of ~A3! are simply related,

m3~x,t,k!5m2~x,t,k!e2 i (kx12k2t))ŝ3m3~0,0,k!,
~A7!

m1~x,t,k!5m2~x,t,k!e2 i (kx12k2t))ŝ3@e2ik2Tŝ3m2~0,T,k!#21.

The functionss(k) andS(k) follow from the evaluations atx50 andt5T, respectively, of the
function m3(x,0,k) and ofm2(0,t,k) which satisfy the following linear integral equations:

m3~x,0,k!5I 1 Èx

eik(j2x)ŝ3~Qm3!~j,0,k! dj,

~A8!

m2~0,t,k!5I 1E
0

t

e2ik2(t2t)ŝ3~Q̃m2!~0,t,k! dt.

The fact thatQ andQ̃ are traceless together with~A5! imply detmj(x,t,k)51 for j 51,2,3. Thus

dets~k!5detS~k!51.

From the symmetry properties ofQ andQ̃ it follows that

~m~x,t,k!!115~m~x,t,k̄!22, ~m~x,t,k!!215m~x,t,k̄!12,

and thus

s11~k!5s22~ k̄!, s21~k!5s12~ k̄!, S11~k!5S22~ k̄!, S21~k!5S12~ k̄!.

We will use the following notation fors andS:

s~k!5S a~ k̄! b~k!

b~ k̄! a~k!
D , S~k!5S A~ k̄! B~k!

B~ k̄! A~k!
D .

The definitions ofm j (0,t,k), j 51,2, and ofm2(x,0,k) imply that these functions have large
domains of boundedness,

m1~0,t,k!5~m1
(24)~0,t,k!,m1

(13)~0,t,k!!,

m2~0,t,k!5~m2
(13)~0,t,k!,m2

(24)~0,t,k!!,

m2~x,0,k!5~m2
(12)~x,0,k!,m2

(34)~x,0,k!!.
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The definitions ofs(k), S(k) imply

S b~k!

a~k! D5m3
(12)~0,0,k!, S 2e24ik2TB~k!

A~ k̄!
D 5m2

(24)~0,T,k!,

where the vectorsm3
(12)(x,0,k) andm2

(24)(0,t,k) satisfy the following ODEs:

]xm3
(12)~x,0,k!12ikS 1 0

0 0Dm3
(12)~x,0,k!5Q~x,0!m3

(12)~x,0,k!, 0<argk<p, 0,x,`,

lim
x→`

m3
(12)~x,0,k!5S 0

1D ,

and

] tm2
(24)~0,t,k!14ik2S 1 0

0 0Dm2
(24)~0,t,k!

5Q̃~0,t,k!m2
(24)~0,t,k!, argkP@p/2,p#ø@3p/2,2p#, 0,t,T,

m2
(24)~0,0,k!5S 0

1D .

The above definitions imply the following properties:

a~k!,b~k! are defined and analytic for argkP~0,p!.

ua~k!u22ub~k!u251, kPR.

a~k!511OS 1

kD , b~k!5OS 1

kD , k→`.

Also A(k),B(k) are entire functions bounded for argkP@0,p/2#ø@p, 3p/2#. If T5`, the func-
tions A(k) andB(k) are defined and analytic in the quadrants argkP(0,p/2)ø(p,3p/2).

A~k!A~ k̄!2B~k!B~ k̄!51, kPC ~kPRø iR, if T5`!,

A~k!511OS 1

kD1OS e4ik2T

k
D , B~k!5OS 1

kD1OS e4ik2T

k
D , k→`.

All of the above properties, except for the property thatB(k) is bounded for argk
P@0,p/2#ø@p,3p/2#, follow from the analyticity and boundedness ofm3(x,0,k), m2(0,t,k), from
the conditions of unit determinant, and from the largek asymptotics of these eigenfunction
RegardingB(k) we note thatB(k)5B(T,k), where B(t,k)52exp(4ik2t)(m2

(24)(0,t,k))1 . The
above ODEs imply a linear Volterra integral equation for the vector exp(4ik2t)m2

(24)(0,t,k), from
which it immediately follows thatB(t,k) is an entire function ofk bounded for argk
P@0,p/2#ø@p,3p/2#.

We are now ready to derive the so-called global relation. We present the discussion Sec~2.4!
of Ref. 6. We in fact show that the spectral functions are not independent but satisfy an imp
relation. Indeed, the integral of the one-formW(x,t,k) around the boundary of the doma
$(j,t): 0,j,`, 0,t,t% vanishes. LetW be defined by~A2! with m5m3 . Then
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È0

eikjs3~Qm3!~j,0,k! dj1E
0

t

e2ik2tŝ3~Q̃m3!~0,t,k! dt1e2ik2tŝ3E
0

`

eikjŝ3~Qm3!~j,t,k! dj

5 lim
x→`

eikxŝ3E
0

t

e2ik2tŝ3~Q̃m3!~x,t,k! dt. ~A9!

Using the definition ofs(k) above and~A8! it follows that the first term of this equation equa
s(k)2I . Equation~A7! evaluated atx50 gives

m3~0,t,k!5m2~0,t,k!e22ik2tŝ3s~k!,

thus

e2ik2tŝ3~Q̃m3!~0,t,k!5@e2ik2tŝ3~Q̃m2!~0,t,k!#s~k!;

this equation together with~A8! imply that the second term of~A9! equals

@e2ik2tŝ3m2~0,t,k!2I #s~k!.

Hence assuming thatu has sufficient decay asx→` Eq. ~A9! becomes

2I 1S~ t,k!21s~k!1e2ik2tŝ3E
0

`

eikjŝ3~Qm3!~j,t,k! dj50, ~A10!

where the first and second columns of this equation are valid for argk in the lower and the uppe
half of the complexk-plane, respectively, andS(t,k) is defined by

S~ t,k!5@e2ik2tŝ3m2~0,t,k!#21.

Letting t5T and noting thatS(k)5S(T,k), Eq. ~A10! becomes

2I 1S~k!21s~k!1e2ik2Tŝ3E
0

`

eikjŝ3~Qm3!~j,T,k! dj50.

The ~12! component of this equation is

B~k!a~k!2A~k!b~k!5e4ik2Tc1~k!, argkP@0,p#,

c1~k!5E
0

`

eikj~Qm3!12~j,T,k! dk.

This is the global relation, for finiteT. For T5` and assuming thatf 0 is Schwartz,c1 has to
be set equal to zero.

APPENDIX B: THE ‘‘LENS’’ ARGUMENT

Suppose we have the following Riemann–Hilbert problem. We are seeking a matrixL, ana-
lytic in the complex plane except for a jump along the real interval@a,b#, oriented from left to
right. The normalization at infinity is to be limk→`L5I , and the jump across@a,b# is

L15L2S 0 2 ieiH /h

2 ie2 iH /h 1 D ,
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where dH/dk,0. We also assume thatH is real on@a,b# and admits an analytic continuation i
a small ‘‘lens’’-like domain bounded by two analytic arcsCu ,Cl joining the pointsa,b ~in that
direction! and lying entirely in the upper and lower half-planes, respectively. We note the fol
ing factorization of the jump matrix:

S 0 2 ieiH /h

2 ie2 iH /h 1 D 5S 1 2 ieiH /h

0 1 D •S 1 0

2 ie2 iH /h 1D .

This suggests the following definition. Let

L85L, outside the domain bounded byCuøCl ,

L85L•S 1 0

ie2 iH /h 1D , between@a,b# and Cu .

L85S 1 2 ieiH /h

0 1 D •L, between@a,b# and Cl .

The Riemann–Hilbert problem forL8 is as follows:

L18 5L28 •S 1 0

ie2 iH /h 1D , kP Cu ,

L18 5L28 •S 1 2 ieiH /h

0 1 D , kP Cl .

Now, since d ReH/dk,0 on the interval @a,b#, by the Cauchy–Riemann relation
dImH/dk,0 across the interval@a,b#, in the positive imaginary direction. This means th
Im H,0 on Cu if Cu is chosen to be close enough to@a,b#, except at the end pointsa,b.
Similarly ImH.0 on Cl if Cl is chosen to be close enough to@a,b#, except at the end point
a,b. Hence,

Re~2 iH !,0, kPCu ,

Re~2 iH !.0, kPCl ,

except at the end pointsa,b. In other words the jump matrix forL8 is the identity plus an
exponentially small quantity, at least away from the end pointsa,b. This implies that the contou
CuøCl can be erased, at least away from the the end pointsa,b.

Near the end points one can use a parametrix argument, which we omit~see, e.g., Ref. 4 for
details!.
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A symmetry analysis is conducted for a master 211-dimensional soliton system.
The classical symmetries are shown to constitute an infinite dimensional Kac–
Moody–Virasoro algebra. Finite symmetry group transformations are then used to
construct localized excitations of the system. ©2003 American Institute of Phys-
ics. @DOI: 10.1063/1.1625077#

I. INTRODUCTION

A decade or so ago, motivated by a class of infinitesimal Ba¨cklund transformations originally
introduced in a gasdynamics context by Loewner in 1952, Konopelchenko and Rogers were
construct a master 211-dimensional soliton system.1 The comprehensive nature of the latter
made evident by the fact that hierarchies of such so-called LKR systems have been show
compatible with generic multi-component KP and mKP hierarchies.2 Notable reductions include
integrable 211-dimensional versions of the sine–Gordon equation, the principal chiral
model, the Bruschi–Ragnisco system3 as well as Ernst–Weyl type equations.4–6

Here, a Lie-point symmetry analysis is conducted for the general LKR system. Its cla
symmetries are shown to admit structure associated with an infinite dimensional Kac–Mo
Virasoro-type algebra. Finite group transformations are used to construct dromions and bow
ring solitons of the LKR system via constant matrix seed solutions.

II. THE 2¿1-DIMENSIONAL LKR SYSTEM

The 211-dimensional LKR triad3

~ I N]x2S]y2P!C50, ~1!

~ I N]y] t2U] t2V]y2W!C50, ~2!

~ I N]x] t2Ũ] t2Ṽ]x2W̃!C50, ~3!

whereI N is anN3N unit matrix, was originally motivated by a class of infinitesimal Ba¨cklund
transformations as introduced by Loewner in a gas-dynamics context.7 In ~1!–~3!,
S,P,U,V,W,Ũ,Ṽ andW̃ denoteN3N matrix functions of three independent variablesx,y andt.

The corresponding nonlinear system, the LKR system,

St5@V,S#, ~4!

Pt5W̃2SW1VP, ~5!

a!Electronic mail: sylou@sjtu.edu.cn
58690022-2488/2003/44(12)/5869/19/$20.00 © 2003 American Institute of Physics
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Ũ5SU1P, Ṽ5V, ~6!

Ux2Ũy1@U,Ũ#50, ~7!

Vx2ŨV2W̃1~UV1W2Vy!S50, ~8!

Wx2W̃y1UW̃2ŨW1~UV1W2Vy!P50, ~9!

embodies the compatibility conditions of~1!–~3!.
The parametrization

U5f2yf2
21 , ~10!

Ũ5f2xf2
21 , ~11!

V5f11f2f3 , ~12!

W5f2~f2
21f1!y , ~13!

W̃5f2@~f2
21f11f3!x2f3yS#; ~14!

the LKR system~4!–~9! reduces it to consideration of the system

St5@f11f2f3 ,S#, ~15!

Pt5f1x2Sf1y2@P,f1#1f2@f3x2f3yS1f3P#, ~16!

f2x2Sf2y2Pf250, ~17!

f3xy2~f3yS!y1f3yP50. ~18!

The nonlinear system~4!–~9! or equivalently,~15!–~18!, incorporates various important re
ductions.

Reduction 1:For the constant matrixS and

f152f2f3 , ~19!

the nonlinear system~15!–~18! reduces to the 211-dimensional non-Abelian sine–Gordon mod

Pt5@S,f2f3y#, ~20!

f2x2Sf2y2Pf250, ~21!

f3xy2~f3yS!y1f3yP50. ~22!

Reduction 2:In the study of the LKR system, the special caseP50 is one of the most importan
reductions. ForP50, the system~15!–~18! reduces to

St5@f11f2f3 ,S#, ~23!

f1x2Sf1y50, ~24!

f2x2Sf2y50, ~25!

f3x2f3yS50. ~26!
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The remaining reductions listed in this section constitute special cases of~23!–~26!.
Reduction 3:The three-dimensional principal chiral field model

St5@f2f3 ,S#, ~27!

f2x2Sf2y50, ~28!

f3x2f3yS50, ~29!

or equivalently

St5@V,S#, ~30!

Vx2VyS2@S,UV#1@S,U#50, ~31!

Ux2~SU!y1@U,SU#50, ~32!

is related to~23!–~26! by

f15I N . ~33!

The two-dimensional principal chiral field model8

~VxV
21! t1~V tV

21!x50 ~34!

can be obtained from~30!–~32! with

S5 1
2 VxV

21, V5 1
2 V tV

21

andU5I N ,Sy5Vy50.
Reduction 4:The generalized Bruschi–Ragnisco system

St5@f11f3 ,S#, ~35!

f1x2Sf1y50, ~36!

f3x2~f3yS!50, ~37!

or equivalently

St5@V,S#, ~38!

Vx2VyS1@W,S#50, ~39!

Wx2~SW!y50, ~40!

is obtained as a reduction of~23!–~26! by takingf25I N , i.e.,

U5Ũ50. ~41!

The 111-dimensional Bruschi–Ragnisco system9

St5@]x
21@S,W#,S#, Wx50, ~42!

is retrieved from~38!–~40! by settingSy5Vy5Wy50.
Reduction 5: The most studied reduction of the LKR system is the so-ca

211-dimensional sine–Gordon system
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S fx

sinu D
x

2S fy

sinu D
y

1
fyux2fxuy

sin2 u
50,

S fx8

sinu D
x

2S fy8

sinu D
y

1
fy8ux2fx8uy

sin2 u
50, ~43!

u t5f1f8,

which is a symmetric integrable extension of the classical sine–Gordon equation. The cla
111-dimensional sine–Gordon equation in curvature coordinates is retrieved as the red
with fy85uy5fy50. The corresponding particular LKR triad of~43! reads3

F I N]x1S cosu sinu

sinu 2cosu D ]yGc50,

F I N] t]y1
1

2 S 0 u t

2u t 0 D ]y2
1

2 sinu S fy cosu2fx 2fy8 sinu

fy sinu fy81fx8 cosu
D Gc50, ~44!

F I N] t]x1
1

2 S 0 u t

2u t 0 D ]x2
1

2 sinu S fx cosu2fy 2fx8 sinu

fx sinu fx81fy8 cosu
D Gc50.

III. CLASSICAL LIE SYMMETRIES AND VIRASORO STRUCTURE OF THE LKR SYSTEM

Lie symmetries of the 211-dimensional sine–Gordon system have been extensively stu
in Refs. 10 and 11. Here, we investigate underlying symmetry structure of the general non
LKR system~4!–~9! by a procedure equivalent to the standard Lie approach.12

In the present context, a symmetry

s[~sS,sP,sV,s Ṽ,sU,s Ũ,sW,sW̃!T,

where superscriptT denotes the transposition of the matrix, is defined as a solution of the lin
ized system of~4!–~9!,

s t
S5@sV,S#1@V,sS#, ~45!

s t
P5s̃W2sSW2SsW1sVP1VsP, ~46!

s Ũ5sSU1SsU1sP, s Ṽ5sV, ~47!

sx
U2sy

Ũ1@sU,Ũ#1@U,s Ũ#50, ~48!

sx
V2s ŨV2ŨsV2sW̃1~sUV1UsV1sW2sy

V!S1~UV1W2Vy!sS50, ~49!

sx
W2sy

W̃1sUW̃1UsW̃2s ŨW2ŨsW1~sUV1UsV1sW2sy
V!P1~UV1W2Vy!sP50.

~50!

Thus, the system~4!–~9! is form invariant under the transformation

$S,P,V,Ṽ,U,Ũ,W,W̃%→$S,P,V,Ṽ,U,Ũ,W,W̃%1e$sS,sP,sV,s Ṽ,sU,s Ũ,sW,sW̃%, ~51!
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wheree is an infinitesimal parameter. To find Lie point symmetries from the symmetry equa

~45!–~50!, it is sufficient to assume that$sS,sP,sV,s Ṽ,sU,s Ũ,sW,sW̃% possesses the form

sS5XSx1YSy1TSt1FS, ~52!

sP5XPx1Y Py1TPt1FP, ~53!

sV5XVx1YVy1TVt1FV, ~54!

s Ṽ5XṼx1YṼy1TṼt1FṼ, ~55!

sU5XUx1YUy1TUt1FU, ~56!

s Ũ5XŨx1YŨy1TŨt1FŨ, ~57!

sW5XWx1YWy1TWt1FW, ~58!

sW̃5XW̃x1YW̃y1TW̃t1FW̃, ~59!

whereX,Y,T are scalar functions andFS,FP,FV,FṼ,FU,FŨ,FW andFW̃ are matrix functions of
x,y,t,S,P,V,Ṽ,U,Ũ,W andW̃.

Substitution of~52!–~59! into the symmetry equations~45!–~50! and subsequent cancellatio
of all the independent quantitiesṼ,Ũ,St ,Sxt ,Syt ,Stt ,Pt ,Pxt ,Pyt ,Ptt ,Ux ,Uxx ,Uxy ,Uxt ,Vx ,
Vxx ,Vxy ,Vxt ,Wx ,Wxx ,Wxy andWxt by means of~4!–~9! leads to an extensive set of determinin

equations to fixX,Y,T,FS,FP,FV, FṼ,FU,FŨ,FW andFW̃. For instance, substitution of~52! and
~54! into ~45! produces the following determining equations:

Xt5XS5XP5XV5XU5XW5XṼ5XŨ5XW̃50, ~60!

Yt5YS5YP5YV5YU5YW5YṼ5YŨ5YW̃50, ~61!

TS5TP5TV5TU5TW5TṼ5TŨ5TW̃50, ~62!

FP
S5FV

S5FU
S5FW

S 5F
Ṽ

S
5F

Ũ

S
5F

W̃

S
50, ~63!

Tt~VS2SV!1Ft
S1(

i 51

N

(
j 51

N

~FS!Si j
~VS2SV! i j 2@FV,S#2@V,FS#50, ~64!

whereXS50 denotes

XSi j
50, ; i , j .

Completion of similar analysis for all the symmetry equations shows that the general Lie
symmetry solution of the nonlinear system~4!–~9! reads
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S sS

sP

sV

s Ṽ

sU

s Ũ

sW

sW̃

D 5S XSx1YSy1TSt2XyS
21~Xx2Yy!S1YxI N1@g,S#

XPx1Y Py1TPt1~XxI N2XyS!P1@g,P#2Sgy1gx

XVx1YVy1TVt1TtV1@g,V#1gt

XṼx1YṼy1TṼt1TtṼ1@g,Ṽ#1gt

XUx1YUy1TUt1YyU1XyŨ1@g,U#1gy

XŨx1YŨy1TŨt1XxŨ1YxU1@g,Ũ#1gx

XWx1~YW!y1TWt1TtW1XyW̃1@g,W#2Ugt2Vgy1gyt

~XW̃!x1YW̃y1TW̃t1TtW̃1YxW1@g,W̃#2Ũgt2Ṽgx1gxt

D , ~65!

whereg is an arbitraryN3N matrix function of$x,y,t%, X andY are arbitrary scalar functions o
$x,y% andT is an arbitrary scalar function oft. That~65! is indeed a symmetry may be verified b
direct substitution of~65! into ~45!–~50! and use of~4!–~9!.

Symmetry studies of a variety of 211-dimensional integrable systems has revealed th
possession of an underlying centerless Virasoro symmetry algebra~Witt algebra! structure:13–18

ds~ f 1!,s~ f 2!c5s~ f 2 ḟ 12 f 1 ḟ 2!, ~66!

where f 1 and f 2 are arbitrary functions of a single independent variable. Here the dots ove
functionsf 1 and f 2 indicate derivatives of the functions with respect to their argument. In Ref.
the notion ofVirasoro integrabilitywas introduced for models that possess a generalized ce
less Virasoro type symmetry algebra. Therein, a method was described whereby such V
integrable scalar field models may be constructed. To ascertain whether the general LKR
admits underlying Virasoro symmetry structure or not, we set down the generators for the
metry ~65!, viz.,

s1~X![S XSx2XyS
21XxS

XPx1~XxI N2XyS!P
XVx

XṼx

XUx1XyŨ

XŨx1XxŨ

XWx1XyW̃,

~XW̃!x

D , ~67!

s2~Y![S YSy2YyS1YxI N

Y Py

YVy

YṼy

YUy1YyU

YŨy1YxU
~YW!y

YW̃y1YxW

D , ~68!
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s3~T![S TSt

TPt

TVt1TtV

TṼt1TtṼ
TUt

TŨt

TWt1TtW

TW̃t1TtW̃

D , ~69!

s4~g![S gS2Sg
gP2Pg2Sgy1gx ,

gV2Vg1gt ,

gṼ2Ṽg1gt ,
gU2Ug1gy ,

gŨ2Ũg1gx ,
gW2Wg2Ugt2Vgy1gyt ,

gW̃2W̃g2Ũgt2Ṽgx1gxt

D . ~70!

Next, we define the matrix Gateaux derivative and commutator for matrix functions

A[~A1 ,A2 , . . . ,A8!T, B[~B1 ,B2 , . . . ,B8!T,

whereAi ,Bi ,i 51,2,. . . ,8, areN3N matrix functions ofx,y,t,S,P,V, Ṽ,U, Ũ, W andW̃:

dA,Bc[A8B2B8A[1
A1S8 A1P8 A1V8 A

1Ṽ
8 A1U8 A

Ũ
8 A1W8 A

1W̃
8

A2S8 A2P8 A2V8 A
2Ṽ
8 A2U8 A

Ũ
8 A2W8 A

2W̃
8

A3S8 A3P8 A3V8 A
3Ṽ
8 A3U8 A

Ũ
8 A3W8 A

3W̃
8

A4S8 A4P8 A4V8 A
4Ṽ
8 A4U8 A

Ũ
8 A4W8 A

4W̃
8

A5S8 A5P8 A5V8 A
5Ṽ
8 A5U8 A

Ũ
8 A5W8 A

5W̃
8

A6S8 A6P8 A6V8 A
6Ṽ
8 A6U8 A

Ũ
8 A6W8 A

6W̃
8

A7S8 A7P8 A7V8 A
7Ṽ
8 A7U8 A

Ũ
8 A7W8 A

7W̃
8

A8S8 A8P8 A8V8 A
8Ṽ
8 A8U8 A

8Ũ
8 A8W8 A

8W̃
8

2 S
B1

B2

B3

B4

B5

B6

B7

B8

D
21

B1S8 B1P8 B1V8 B
1Ṽ
8 B1U8 B

Ũ
8 B1W8 B

1W̃
8

B2S8 B2P8 B2V8 B
2Ṽ
8 B2U8 B

Ũ
8 B2W8 B

2W̃
8

B3S8 B3P8 B3V8 B
3Ṽ
8 B3U8 B

Ũ
8 B3W8 B

3W̃
8

B4S8 B4P8 B4V8 B
4Ṽ
8 B4U8 B

Ũ
8 B4W8 B

4W̃
8

B5S8 B5P8 B5V8 B
5Ṽ
8 B5U8 B

Ũ
8 B5W8 B

5W̃
8

B6S8 B6P8 B6V8 B
6Ṽ
8 B6U8 B

Ũ
8 B6W8 B

6W̃
8

B7S8 B7P8 B7V8 B
7Ṽ
8 B7U8 B

Ũ
8 B7W8 B

7W̃
8

B8S8 B8P8 B8V8 B
8Ṽ
8 B8U8 B

8Ũ
8 B8W8 B

8W̃
8

2 S
A1

A2

A3

A4

A5

A6

A7

A8

D , ~71!
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where the operatorsAiS8 , BiP8 , etc. are partial linearized operators,

A1S8 h[ lim
e→0

d

de
A1~S1eh,P,V,Ṽ,U,Ũ,W,W̃! ~72!

for arbitraryh.
On use of the above, it can be established thats1 , s2 , s3 , ands4 constitute the following

closed symmetry algebra:

ds1~X1!,s1~X2!c5s1~X1xX22X2xX1!, ~73!

ds2~Y1!,s2~Y2!c5s2~Y1yY22Y2yY1!, ~74!

ds3~T1!,s3~T2!c5s3~T1tT22T2tT1!, ~75!

ds4~g1!,s4~g2!c5s4~g1g22g2g1!, ~76!

ds1~X!,s2~Y!c5s2~XYx!2s1~YXy!, ~77!

ds1~X!,s4~g!c5s4~Xgx!, ~78!

ds2~Y!,s4~g!c5s4~Ygy!, ~79!

ds3~T!,s4~g!c5s4~Tgt!, ~80!

ds1~X!,s3~T!c5 ds2~Y!,s3~T!c50. ~81!

Thus, it is seen that each ofs1(X), s2(Y) and s3(T) constitutes an infinite dimensiona
generalized centerless Virasoro symmetry algebra. Hence, the nonlinear LKR system~4!–~9! does
indeed exhibit Virasoro symmetry structure. The commutator relation~76! shows us that the
generators4(g) constitutes a gauge symmetry algebra.

IV. FINITE TRANSFORMATIONS

A symmetry ~51! transforms a known solution of the model to a new solution of the sa
model in infinitesimal form. In order to generate newexactsolutions from known seed solutions
it is necessary to construct the finite transformations from the obtained symmetries.

The general Lie symmetry group related to the Lie symmetry algebra can be obtain
solving the following ‘‘initial’’ problem:

dt8

de
5T8, t8ue505t, ~82!

dy8

de
5Y8, y8ue505y, ~83!

dx8

de
5X8, x8ue505x, ~84!

dS8

de
5Xy8

8 ~S8!22~Xx8
8 2Yy8

8 !S82Yx8
8 I N1@S8,g8#, S8ue505S, ~85!

dP8

de
5~Xy8

8 S82Xx8
8 I N!P81@P8,g8#1S8gy8

8 2gx8
8 , P8ue505P, ~86!
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dV8

de
5@V8,g8#2gt8

8 2Tt8
8 V8,V8ue505V, ~87!

dṼ8

de
5@Ṽ8,g8#2gt8

8 2Tt8
8 Ṽ8,Ṽ8ue505Ṽ, ~88!

dU8

de
52Yy8

8 U82Xy8
8 Ũ81@U8,g8#2gy8

8 ,U8ue505U, ~89!

dŨ8

de
52Xx8

8 Ũ82Yx8
8 U81@Ũ8,g8#2gx8

8 , Ũ8ue505Ũ, ~90!

dW8

de
5@W8,g8#2~Tt8

8 1Yy8
8 !W82Xy8

8 W̃81U8gt8
8 1V8gy8

8 2gy8t8
8 ,W8ue505W, ~91!

dW̃8

de
5@W̃8,g8#2~Tt8

8 1Xx8
8 !W̃82Yx8

8 W81Ũ8gt8
8 1Ṽ8gx8

8 2gx8t8
8 , W̃8ue505W̃, ~92!

whereX8[X(x8,y8),Y8[Y(x8,y8),T8[T(t8) andg8[g(x8y8t8).
The final result is summarized as follows:
Theorem 1: If $S5S(x,y,t),P5P(x,y,t),V5V(x,y,t),Ṽ5Ṽ(x,y,t),U5U(x,y,t),Ũ

5Ũ(x,y,t),W5W(x,y,t),W̃5W̃(x,y,t)% is an exact solution of the generalized LKR syste
~4!–~9!, then$S8,P8,V8,Ṽ8,U8,Ũ8,W8,W̃8% with

S85G~jxS~j,h,t!1hx!~jyS~j,h,t!1hy!21G21, ~93!

P85G$~jxhy2jyhx!~jyS~j,h,t!1hy!21P~j,h,t!G211~jxS~j,h,t!1hx!~jyS~j,h,t!

1hy!21~G21!y2~G21!x%, ~94!

V85t tGV~j,h,t!G211GtG
21, ~95!

Ṽ85t tGṼ8~j,h,t!G211GtG
21, ~96!

U85G@~hyU~j,h,t!1jyŨ~j,h,t!!G212~G21!y#, ~97!

Ũ85G@~jxŨ~j,h,t!1hxU~j,h,t!!G212~G21!x#, ~98!

W85G$t t@hyW~j,h,t!1jyW̃~j,h,t!#G211@hyU~j,h,t!1jyŨ~j,h,t!#~G21! t

1t tV~j,h,t!~G21!y2~G21!yt%, ~99!

W̃85G$t t@hxW~j,h,t!1jxW̃~j,h,t!#G211@hxU~j,h,t!1jxŨ~j,h,t!#~G21! t

1t tV~j,h,t!~G21!x2~G21!xt%, ~100!

wherej5j(x,y),h5h(x,y),t5t(t),G5G(x,y,t) are all arbitrary differentiable functions of th
indicated variables, is also an exact solution of the same system~4!–~9!.

Remark:In connection with the initial problem~82!–~92!, the following data are adjoined:

jue50[x8~x,y,e!ue505x, ~101!

hue50[y8~x,y,e!ue505y, ~102!
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tue50[t8~ t,e!ue505t, ~103!

Gue50[G~x,y,e!ue5051. ~104!

Theorem 1 is readily verified by direct substitution of~93!–~100! into the nonlinear system
~4!–~9!. Alternatively, if we set

j'x1eX, ~105!

h'y1eY, ~106!

t't1eT, ~107!

G5exp~eg!'11eg, G215exp~2eg!'12eg, ~108!

then ~93!–~100! become

S8'S1esS, P8'P1esP, V8'V1esV, Ṽ8'Ṽ1es Ṽ, ~109!

U8'U1esU, Ṽ'Ṽ1es Ṽ, W8'W1esW, W̃8'W̃1esW̃ ~110!

with sS, sP, sV, s Ṽ, sU, s Ũ, sW, sW̃ as in ~65!.
It is noted that the part of the invariance encoded in the arbitrary matrix functionG (j

5x,h5y,t5t) in the above theorem is nothing but the gauge transformation found
Konopelchenko and Rogers.3 The existence of this gauge transformation is due to the fact tha
nonlinear system~4!–~9! constitutes an underdetermined system of seven equations for
matrix functions. Thus, one of the matrix functions of the system can be gauged away.@It is
interesting to note that the pure gauge transformation withG5f2 takes solutions of the genera
ized Brushi–Ragnisco system~30!–~32! to solutions of the parametrised LKR system~15!–~18!.#

V. LOCALIZED EXCITATIONS OF THE LKR SYSTEM

Here, the finite transformation given in the last section applied to trivial seed solution
special LKR systems is used to generate new exact explicit solutions of the LKR system.

A set of constant matrix solutions of the nonlinear system~4!–~9! reads

S0[Sc
21 , P050, V05Ṽ05v0Sc ,

~111!
U05u0Sc , W05w0Sc , Ũ05u0I N , W̃05w0I N ,

whereSc is an arbitrary constant matrix andu0 , v0 and w0 are arbitrary constants. Theorem
applied to the trivial seed solution~111! produces the new solution

S15G1
21~jx1hxSc!~jy1hySc!

21G1 , ~112!

P15G1
21$~jx1hxSc!~jy1hySc!

21G1y2G1x%, ~113!

V15Ṽ15G1
21~t tScG12G1t!, ~114!

U15G1
21@~hySc1jyI N!G12G1y#, ~115!

Ũ15G1
21@~jxI N1hxSc!G12G1x#, ~116!

W15G1
21$w0t t~hySc1jyI N!G11~hySc1jyI N!G1t1t tScG1y2G1yt%, ~117!
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W̃15G1
21$w0t t~hxSc1jxI N!G11~hxSc1jxI N!G1t1t tScG1x2G1xt%, ~118!

wherev0 and u0 have been absorbed by redefinition of the arbitrary functionsj, h, t and the
constantw0 , for the LKR system~4!–~9!.

It can be seen that although the seed solution constitutes a trivial constant matrix solutio
new group-generated solution~112!–~118! will admit rich localized structures due to the intrusio
of the arbitrary scalar and matrix functions. To investigate the exact solutions in more deta
fix N52 in what follows.

For the special solution~112!–~118!, dromion-type solutions can be constructed by tak
jx ,jy ,hx andhy as constants and the elements of the matrixG as appropriate hyperbolic func
tions. Thus, if we set

j5x1y, h5x2
9

4
y, t5t, w051, Sc5S 1 4

5

18
1D , ~119!

G15S 2cosh~0.1x13y12t ! sech~2x10.1y12t !

2 sech~2x10.1y12t ! 2 cosh~0.1x13y12t !
D , ~120!

then ~112! yields

S15S S11 S12

S21 2S11
D , ~121!

where

S115
293 sech~2x10.1y12t !sech~0.1x13y12t !

45~11sech2~2x10.1y12t !sech2~0.1x13y12t !!
, ~122!

S125
28825 sech2~2x10.1y12t !sech2~0.1x13y12t !

45~11sech2~2x10.1y12t !sech2~0.1x13y12t !!
, ~123!

S215
52288 sech2~2x10.1y12t !sech2~0.1x13y12t !

45~11sech2~2x10.1y12t !sech2~0.1x13y12t !!
. ~124!

From the expressions~122!–~124!, it can be seen that the components ofS1 possess dromion
structure. Figure 1 depicts the details of the dromion structure for the components of the
function S1 .

The detailed expressions for the residual matrix functions with the specializations~119! and
~120!, P1 , . . . ,W̃1 , are given by~113!–~118!. Figures 2 and 3 represent, in turn, the correspo
ing structures of the components of the matrix functionsP1 andV1 expressed by~113! and~114!
respectively with~119! and ~120!. The corresponding representations for the other matrix fu
tions of the special solution~112!–~118!, namely,U1 , Ũ1 ,W1 ,W̃1 , have structures qualitatively
similar to those ofV1 and, accordingly, are not depicted.

In addition to the constant matrix solution~111!, there exist other kinds of constant matr
solutions of the LKR system. One such solution adopts the form

P5~12S!U, Ũ5U, W̃5W52UV, ~125!

whereS andU are arbitraryN3N constant matrices andV is an arbitrary constant matrix whic
commutes withS. If N52, then the following specification ofS,U andV,
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S015S 1 21

1 1 D , U015Ũ015S 1 1

21 1D , V015Ṽ015S 1 2

22 1D ,

~126!

P015S 1 21

1 1 D , W015W̃015S 1 23

3 1 D ,

leads, on use of Theorem 1, to the following boosted nonconstant matrix solution of the
system~4!–~9!:

S25G1
21S A B

2B ADG1 , ~127!

A5
jx~2jy1hy!1hx~jy1hy!

hy
212jy~jy1hy!

, B5
jyhx2jxhy

hy
212jy~jy1hy!

, ~128!

FIG. 1. Plots of the dromion structures for the matrix functionS5S1 expressed by~121! with ~122!–~124!.

FIG. 2. Plots of the components for the matrix functionP5P1 expressed by~113! with ~119! and ~120!.
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P25G1
21H ~jxhy2jyhx!S hy 22jy2hy

2jy1hy hy
DG11S2G1

21G1y2G1xJ , ~129!

V25Ṽ25t tG1
21S 1 2

22 1DG12G1
21G1t , ~130!

U25~jy1hy!G1
21S 1 1

21 1DG12G1
21G1y , ~131!

Ũ25~jx1hx!G1
21S 1 1

21 1DG12G1
21G1x , ~132!

W25G1
21H ~jy1hy!F t tS 1 23

3 1 DG11S 1 1

21 1DG1tG1t tS 1 2

22 1DG1y2G1ytJ , ~133!

W̃25G1
21H ~jx1hx!F t tS 1 23

3 1 DG11S 1 1

21 1DG1tG1t tS 1 2

22 1DG1x2G1xtJ ~134!

with arbitrary matrix functionG15G1(x,y,t), and arbitrary scalar functionsj5j(x,y), h
5h(x,y) andt5t(t).

The 211-dimensional sine–Gordon system was originally derived in Ref. 1 as a parti
reduction of the LKR system. Exact solutions of such special reductions may be used a
solutions in order to generate new solutions of the LKR system~4!–~9! via Theorem 1. Thus, for
instance, for the 211-dimensional sine–Gordon system@cf. ~44!# we have

S025S 2cosu 2sinu

2sinu cosu D , ~135!

P025U025Ũ0250, V025Ṽ02S 0 2
1

2
u t

1

2
u t 0

D , ~136!

FIG. 3. Plots of the components for the matrix functionV5V1 expressed by~114! with ~119! and ~120!.
                                                                                                                



ny au-
and

ction
ted by

trans-
rin-
.

ovsky
e

5882 J. Math. Phys., Vol. 44, No. 12, December 2003 Lou, Rogers, and Schief

                    
W025
1

2 S fy cotu2fx cscu 2fy8

fy fy8 cscu1fx8 cotu
D , ~137!

W̃025
1

2 S fx cotu2fy cscu 2fx8

fx fx8 cscu1fy8 cotu
D . ~138!

Use of Theorem 1 then leads to the new group-boosted solution of the LKR system:

S35G1
21S A1 B1

B1 2A1
DG1 , ~139!

U352G1
21G1y , ~140!

Ũ352G1
21G1x , ~141!

P352S3U31Ũ3 , ~142!

V35Ṽ35
t t

2
G1

21S 0 2u1t

u1t 0 DG12G1
21G1t , ~143!

W35G1
21H t t

2 S a cotu12b cscu1 2a8

a a8 cscu11b8 cotu1
DG11

t t

2 S 0 2u1t

u1t 0 DG1y2G1ytJ ,

~144!

W̃35G1
21H t t

2 S ã cotu12b̃ cscu1 2ã8

ã ã8 cscu11b̃8 cotu1
D G11

t t

2 S 0 2u1t

u1t 0 DG1x2G1xtJ ,

~145!

where

A1[
~jxhy2hxjy!cosu12hxhy1jxjy

jy
22hy

2 , B1[
~jxhy2hxjy!sinu1

jy
22hy

2 , ~146!

a[f1hhy1f1jjy , b[f1jhy1f1hjy , a8[f1h8 hy1f1j8 jy , b8[f1j8 hy1f1h8 jy ,
~147!

ã[f1hhx1f1jjx , b̃[f1jhx1f1hjx , ã8[f1h8 hx1f1j8 jx , b̃8[f1j8 hx1f1h8 jx ,
~148!

u1[u~j,h,t!,f1[f~j,h,t!,f18[f8~j,h,t!. ~149!

Localized solutions of the sine–Gordon system have been extensively studied by ma
thors. The Ba¨cklund transformation of the sine–Gordon system was constructed in Ref. 24
certain coherent solitonic solutions thereby derived. Solitonic solutions of an important redu
that arises in connection with triple orthogonal systems of surfaces have been investiga
Nimmo.25,26 Doubly periodic wave solutions have been constructed by Chow.27 Localized solu-
tions of the 211-dimensional sine–Gordon system were constructed via a binary Darboux
formation by Schief.28 In Ref. 29, Nimmo and Schief constructed nonlinear superposition p
ciples and an associated integrable discretisation of the 211-dimensional sine–Gordon system
Localized solutions of the model with nontrivial boundaries have been constructed by Dubr
and Konopelchenko30,31 and Dubrovsky and Formusatik.32 Geometric aspects of th
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211-dimensional sine–Gordon system were investigated by Schief.33 Extensive symmetry group
analysis of the system has been conducted both by Clarksonet al.11 and Lou.10 Radha and
Lakshmanan34 studied the Painleve´ property for the 211-dimensional sine–Gordon system a
have constructed dromion solutions. Plateau-type, basin-type, bowl-type and saddle-typ
soliton solutions are studied in Ref. 35. The system contains particular reductions to the PI
and PVI transcendents.4 In physical terms, it also contains the important pumped Maxwell–Bl
system.

The diversity of special solutions of the sine–Gordon system alluded to above can
group-boosted via Theorem 1 to generate solutions of the LKR system~4!–~9!. In general terms,
the structures of the new solutions of the LKR system are manifestly richer than the seed so
because of the intrusion not only of a three-dimensional arbitrary matrix function~due to the
gauge invariance of the model! but also due to two two-dimensional arbitrary functions and a
dimensional arbitrary function~consequences of three types of Virasoro invariance!.

The Moutard transformation30,20 or a variable separation approach21–23 can be used to con
struct the following special solution for the sine-Gordon system~43!:

u54 arctan@p~x1y,t !q~x2y,t !#, ~150!

f5
4p~x1y,t !qt~x2y,t !

11p~x1y,t !2q~x2y,t !2 , ~151!

f85
4pt~x1y,t !q~x2y,t !

11p~x1y,t !2q~x2y,t !2 , ~152!

with p(x1y,t) being an arbitrary function of$x1y,t% andq(x2y,t) being an arbitrary function
of $x2y,t%. On substitution of~150!–~152! into ~139!–~149!, we obtain a special type of loca
ized excitation of the LKR system with arbitrary functionsG,j,h,t, p(j1h,t) and q(j
2h,t).

In Fig. 4, a localized ring shape solution is plotted for the components of the matrS
expressed by~139! with ~146!, ~149!, ~150! and

p~j1h,t!5exp@2 1
10 ~j1h22t!213#, ~153!

FIG. 4. Plots of the matrix functionS5S3 expressed by~139! with ~146!, ~149!–~155! at t50 for the components:~a!
S22[S22 , ~b! S12[S125S21 andS11[S11 .
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q~j2h,t!5exp@2 1
10 ~j2h23t!211#, ~154!

G15I 2 , j5x12y, h5y2x, t5t ~155!

at t50.
Figures 5 and 6 show the corresponding structures of the matricesV5V3 and W5W3 ,

respectively, for the functionsG1 ,u,f,f1 ,j,h andt are same as in Fig. 4. The structures for t
components of the matrixW̃ is similar to those ofW.

In Ref. 35, multiple ring shape solitons corresponding to the specialisation~150! have been
constructed which possess the property of completely elastic interaction without phase
However, by suitable selection of the arbitrary functionsp and q in ~150! multiple ring soliton
solutions of the 211-dimensional sine–Gordon system may also be constructed which po
phase shifts.

Thus, Fig. 7 depicts the evolution of two bowl-type ring solitons for the componenS8
[S22 of S3 ,

S85

8FexpS 32
2

3
a22b2D1exp~32~a22t !22b2!G2

H 11FexpS 32
2

3
a22b2D1exp~32~a22t !22b2!G2J 2 , ~156!

FIG. 5. Plots of the matrix functionV5V3 expressed by~143! with ~149!–~155! at t50 for the componentV21[V21

52V12 .

FIG. 6. Plots of the matrix functionW5W3 expressed by~144! with ~149!–~155! at t50 for the components:~a! W11
[W11 , ~b! W12[W12 , ~c! W215W21 and ~d! W22[W22 .
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wherea[a(j1h,t) andb[b(j2h,t) are related to the ‘‘space–time’’ variables by

x8[j1h53y5a13 tanh~a22t !12 tanha, ~157!

y8[j2h52x1y5b1tanhb, ~158!

corresponding to the specifications

p~j1h,t!5exp@32 2
3 a2#1exp$32@a22t#2%, ~159!

q~j2h,t!5exp@2b2#, ~160!

G15I 2 , j5x12y, h5y2x, t5t ~161!

for the matrix~139! with ~146!, ~149!, and~150!.
Figure 7 reveals not only the elastic interaction between the two ring shape solitons, bu

the accompanying phase shifts. To make evident the phase shift it has proved convenient to
one ring soliton zero velocity. Prior to interaction, the small ring soliton is static and situat
$x853,y850% and the large ring soliton is moving with its center located at$x852t22,y8

FIG. 7. The evolution plots of two ring solitons for the componentS8[S22 of the matrixS5S3 expressed by~156! with
~149!–~150!, ~155! and ~159!–~158! at the times~a! t526, ~b! t523, ~c! t521.8, ~d! t50, ~e! t54 and ~f! t56,
respectively.
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50%. Following interaction, the static ring soliton remains static with shape unchanged b
center is shifted to$x8523,y850% while the moving ring soliton recovers its shape but its cen
is shifted to$x852t12,y850%.

The complete elastic interaction property and the phase shifts between two ring so
shown in Fig. 7 can be strictly proven by consideration of the asymptotic behavior of~156! with
~157! and ~158! as t→7`:

S8→S18
71S28

7 , t→6`, ~162!

whereS18
7 andS28

7 are given by

S18
752 sech2~32 2

3 a22b2!, ~163!

x85a12 tanha63, ~164!

y85b1tanhb, ~165!

and

S28
752 sech2~32~a22t !22b2!, ~166!

x85a13 tanh~a22t !72, ~167!

y85b1tanhb, ~168!

respectively.
Multiple ring soliton solutions with and without phase shifts may likewise be constructe

the LKR system.

VI. SUMMARY

Lie point symmetries of the general LKR system have been isolated by means of the cla
Lie approach. These symmetries constitute an infinite dimensional Kac–Moody–Virasoro
Lie algebra. The corresponding Lie symmetry group~finite transformation! has been constructed
There exist three generalized centerless Virasoro-type symmetry algebras.

The finite group transformation with seed, an exact solution of a special reduction of the
system, can be used to generate a rich class of new solutions of the LKR system. Loc
excitations of the LKR system may be generated thereby from trivial constant matrix seed
tions. In particular, dromion-type solutions and bowl-type ring soliton solutions with comple
elastic interaction and phase shifts have been constructed for the LKR system.

ACKNOWLEDGMENTS

The work was supported by Australian Research Council Grant~C.R. and W.K.S.!, the Na-
tional Outstanding Youth Foundation of China~No. 19925522!, the National Natural Science
Foundation of China~No. 90203001! and the Research Fund for the Doctoral Program of Hig
Education of China~Grant. No. 2000024832!.

1B. G. Konopelchenko and C. Rogers, Phys. Lett. A158, 391 ~1991!.
2W. Oevel and W. K. Schief, Rev. Math. Phys.6, 1301~1994!.
3B. G. Konopelchenko and C. Rogers, J. Math. Phys.34, 214 ~1993!.
4W. K. Schief, Phys. Lett. A267, 265 ~2000!.
5W. K. Schief, Proc. R. Soc. London, Ser. A446, 381 ~1994!.
6W. K. Schief and C. Rogers, ‘‘The geometry of the LKR system. Application of a Laplace-Darboux type transform
to Ernst-type equations,’’ inProceedings Nonlinear Physics, Theory and Experiment, edited by E. Alfinito, M. Boiti, L.
Martina, and F. Pempinelli~World Scientific, Singapore, 1996!, pp. 305–312.

7C. Loewner, J. Anal. Math.2, 219 ~1952!.
                                                                                                                



s

5887J. Math. Phys., Vol. 44, No. 12, December 2003 Virasoro structure and localized excitations

                    
8V. E. Zakharov and A. V. Mikhailov, Sov. Phys. JETP47, 1017~1978!.
9M. Bruschi and O. Ragnisco, Nuovo Cimento Soc. Ital. Fis., B88B, 119 ~1985!.

10S. Y. Lou, J. Math. Phys.41, 6509~2000!.
11P. A. Clarkson, E. L. Mansfield, and A. E. Milne, Philos. Trans. R. Soc. London, Ser. A354, 1807~1996!.
12P. J. Olver,Application of Lie Groups to Differential Equation~Springer, New York, 1986!.
13D. David, N. Kamran, D. Levi, and P. Winternitz, J. Math. Phys.27, 1225~1986!.
14K. M. Tamizhmani, A. Ramani, and B. Grammaticos, J. Math. Phys.32, 2635~1991!.
15S. Y. Lou, Phys. Rev. Lett.71, 4099~1993!.
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The main focus of the present work is to study the Feynman’s proof of the Maxwell
equations using the NC geometry framework. To accomplish this task, we consider
two kinds of noncommutativity formulations going along the same lines as Feyn-
man’s approach. This allows us to go beyond the standard case and discover non-
trivial results. In fact, while the first formulation gives rise to the static Maxwell
equations, the second formulation is based on the following assumptionm@xj ,ẋk#
5d jk1 imu jk f . The results extracted from the second formulation are more signifi-
cant since they are associated to a nontrivialu-extension of the Bianchi-set of
Maxwell equations. We find divu B5hu and (]Bs /]t) 1ek js (]Ej /]xk)
5A1 (d2f /dt2) 1A2 (df /dt) 1A3 , wherehu , A1 , A2 , andA3 are local functions
depending on the NCu-parameter. The novelty of this proof in the NC space is
revealed notably at the level of the corrections brought to the previous Maxwell
equations. These corrections correspond essentially to the possibility of existence
of magnetic charge sources that we can associate to the magnetic monopole since
divu B5hu is not vanishing in general. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1625891#

I. INTRODUCTION

Noncommutative geometry~NCG! stimulated recently by Connes1 and developed later on b
several pioneering authors2,3 have played an increasingly important role more notably in
attempts to understand the space–time structure at very small distance. Much attention h
paid also to quantum field theories on NC spaces, in particular NC Yang–Mills gauge theo
well as NC–QED, a subject which has matured as an area of intense research activity in
recent times.4–6 In fact it has been established by Seiberg and Witten2 that the existence o
noncommutativity in open string boundaries in the presence of the NS–NS B field results
D-branes to which the open string endpoints are attached. Related to these stimulating i
wide number of papers were devoted to study several aspects of the NC.7

One particular property of NCG framework is its richness and also the fact that we
discover the standard results just by requiring the vanishing of the deformed parameter
means also the vanishing of noncommutativity. Note that the passage from commutative
space–time is simply achieved by replacing the ordinary product, in the space of smooth fun
on R2 with coordinates (x,t), by the NC associative* product. Works having used this NC
formalism are various and the results found are numerous, we will limit ourselves to mention
of them, namely, Refs. 8–14.

The aim of this paper is to study another aspect of the noncommutativity framework ad
to the Feynman’s proof of Maxwell equations.15–19 As well known, a century ago, Maxwel
brought four basic laws dealing with electromagnetism, these laws describe the evolution i

a!Author to whom correspondence should be addressed; electronic mail: sedra@ictp.trieste.it
58880022-2488/2003/44(12)/5888/14/$20.00 © 2003 American Institute of Physics
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and space of the electric and magnetic fieldsE andB. Together with the Lorentz force law, th
Maxwell equations constitute a complete description of electromagnetism~the Maxwell theory!.
Furthermore these equations have different forms, vectorial, differential and can be prov
different way.

Feynman in 1948 has given a proof of these equations, assuming only Newton’s law of m
and the commutation relation between position and velocity for a single nonrelativistic pa
The importance of this proof emerged notably with the Dyson’s work.15 As signaled in this work,
the motivation of Feynman was to build a new theory outside the framework of convent
physics, but his assumptions using these commutation relations and the Newton’s equatio
not lead to new physics.15 This proof, although based on simple mathematical assumption
shown to give rise to nontrivial generalizations.16–19

Among many possible existing extensions, we are going to adapt thereafter the NC fram
to the Feynman’s proof, a fact which leads us to extract important results. We present two ki
NC formulations and show in a first one that the application of Feynman’s proof in NC s
leads to the static Maxwell equations. Focusing to obtain a new theory, we propose in our s
formulation to modify the Moyal bracket between the positionxi and the velocityẋ j . This task
can be easily accomplished by assuming that the velocity is space dependent and then
product betweenxi and ẋ j becomes nontrivial. This assumption will modify the Maxwell equ
tions, giving rise to a new theory where extra terms proportional to NCu-parameter appear. Th
results extracted from the second formulation are more significant as they are associate
nontrivial u-extension of the Bianchi-set of Maxwell equations, namely, divu B5hu and

]Bs

]t
1ek js

]Ej

]xk
5A1

d2f

dt2 1A2

df

dt
1A3 ,

wherehu , A1 , A2 , andA3 are local functions depending on the NCu-parameter.
Our objectives in reconsidering the Feynman’s proof are, on one hand, to put it in relie

on the other hand, to show its importance in the NC framework. The novelty of this p
formulated in the NC space is revealed notably at the level of the corrections brought
standard Maxwell equations. These corrections correspond essentially to the possibility o
tence of sources of magnetic charges that we can associate to the magnetic monopo
divu B5hu . Note that these extra termshu are absent in the ordinary case associated tou50.
These results may give new insights into the study of the electromagnetic duality and its v
physical and mathematical aspects.

This paper is organized as follows. In Sec. II we summarize some properties of the P
manifold and review the Feynman’s proof of the Maxwell equations. In Sec. III we present
useful identities of the star product, after that we examine Feynman’s proof of the Ma
equations in NC spaces. Section IV is devoted to our concluding remarks.

II. MAXWELL EQUATIONS: THE FEYNMAN’S PROOF

Maxwell equations have played a pioneering role in physics and they continue to no
several axes of research either in physics or in mathematics. Their formulations as well
survey of their solutions constitute a topic of big interest20 and it is in this context that are locate
the famous theories of Yang–Mills. Recently, we attended to a new approach leading
derivation of these equations and based on what is called the Feynman’s proof of Ma
equations. Details concerning this approach are presented in the Dyson’s work.15 Later on, several
authors took this approach and tried to put in relief the Feynman’s idea and to develop
sometimes to generalize it to other contexts.16–19 Before reviewing the Feynman’s proof of th
Maxwell equations, let us first start by introducing some basic algebraic properties of the u
lying Poisson manifoldM.
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A. Some algebraic properties

In fact the previous approach can be simply stated in the general way as finding all P
tensors on a phase space manifold such that they have Hamiltonian vector fields which corr
to second order differential equations such that$qi ,qj%50, with the symbol$,% standing for the
Poisson bracket defined usually as

$ f ,g%5
] f

]qi

]g

]pi
2

] f

]pi

]g

]qi
, ~1!

wheref andg are two functionals ofq andp. Denoting byA the algebra of classical observabl
on the manifoldM, one can define a Poisson structure$,%:A3A→A on this manifold as a
skew-symmetric bilinear map such that we have the following.

~a! ~A, $,%! satisfies the Jacobi identity

$F,$G,H%%1$H,$F,G%%1$G,$H,F%%50. ~2!

~b! The mapXF5$.,F% defines a derivation onM of the associative algebraA~M!, that is, it
satisfies the Leibnitz rule

$F,GH%5G$F,H%1$F,G%H. ~3!

A manifold endowed with such a Poisson bracket onA~M! is called a Poisson manifold
Furthermore, consider a Poisson manifoldP, for anyHPA(P), there is a unique vector fieldXH

on P such that

XHG5$G,H% ~4!

for all GPA(P). XH is nothing but the Hamiltonian vector field ofH. Now one can define a
dynamical system on the Poisson manifoldM just by considering for any functionHPA the
following differential equation:

dF

dt
5$F,H%. ~5!

Moreover, one can also express the Poisson bracket$F,G% in any set of local coordinates (xa) in
the following way:

$F,G%5XGF5$xa,G%
]F

]xa . ~6!

B. The Feynman’s proof

This section is devoted to an explicit reminder of the main steps involved in the Feynm
proof of the Maxwell equations in their classical form.15,16 Our objective is to present thes
calculations in order to make a comparison with the NC case to be discussed later. This p
essentially based on the Newton’s laws of the nonrelativistic classical mechanics and
relations of commutation joining the coordinates of position and velocity of a single nonrelati
particle. An extension to the relativistic case is naturally possible17,19 and may lead to importan
results more notably in connection with quantum field theory approaches. The manifold we
sider is parametrized by local coordinate variables (wa)5(xi ,ẋi) of a nonrelativistic particle
whose positionxj ( j 51,2,3) and velocityẋ j satisfy the Newton’s equation

mẍj5F j~x,ẋ,t !, ~7!

with commutation relations
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$xj ,xk%50, ~8!

m$xj ,ẋk%5d jk . ~9!

Then, there exist a couple of fieldsE(x,t) andB(x,t) that we can identify with the electric and th
magnetic fields, respectively, such that we get the Lorentz force law

F j5Ej1e jkl ẋkBl , ~10!

and the first couple of Maxwell equations

div B50, ~11!

]B

]t
1¹3E50. ~12!

The second couple of Maxwell equations

div E54pr, ~13!

]E

]t
2¹3B54p j , ~14!

merely defines the external charge and the current densitiesr and j , respectively.
The Feynman’s proof starts by differentiating the bracket~9! with respect to time and using

~7!, we have

$xj ,Fk%1m$ẋ j ,ẋk%50. ~15!

Then using the Jacobi identity

$xl ,$ẋ j ,ẋk%%1$ẋ j ,$ẋk ,xl%%1$ẋk ,$xl ,ẋ j%%50 ~16!

as well as the bilinearity of the Poisson bracket we find the following constraint equation:

$xl ,$xj ,Fk%%50. ~17!

Furthermore, since the bracket is antisymmetric the tensor$xj ,Fk% satisfies

$xj ,Fk%52$xk ,F j%, ~18!

and therefore we may write

$xj ,Fk%52
1

m
e jklBl . ~19!

This equation gives a definition of the fieldB whose components areBl . This shows thatB would
in general depend on coordinatesx, ẋ of the Poisson manifoldM and possibly timet. Combining
~17! with the equation forBl ~19! leads to

$xl ,Bm%50. ~20!

On account of the basic equations~8!–~9!, this means thatB is a function of the coordinatesx and
t of the particle. Therefore, it is shown that the vectorsE andB are not independent as we hav

$xm ,Ej%50, ~21!
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which says thatE is also a function ofx and t only.
Now we have two equations~15! and~19! that we naturally need to compare. The way to

this consists simply in writingB as

Bl5
m2

2
e jkl$ẋ j ,ẋk%. ~22!

Another application of the Jacobi identity gives

e jkl$ẋl ,$ẋ j ,ẋk%%50, ~23!

leading naturally to the first Maxwell equation divB50 ~11!, namely,

$ẋl ,Bl%50. ~24!

Indeed,

$Bl ,ẋl%5$xa ,ẋl%
]Bl

]xa
5

1

m

]Bl

]xa
dal5

1

m
div B50. ~25!

The proof of the second Maxwell equation~12! starts from deriving both sides of~22! with respect
to time. This gives

]Bl

]t
1 ẋm

]Bl

]xm
5m2e jkl$ẍ j ,ẋk%. ~26!

Now by virtue of ~7! and ~10!, the right-hand side of~26! becomes

2
im

\
e jkl$Ej1e jabẋaBb ,ẋk%5m~e jkl$Ej ,ẋk%1$ẋkBl ,ẋk%2$ẋlBk ,ẋk%!

5e jkl

]Ej

]xk
1 ẋk

]Bl

]xk
2 ẋl

]Bk

]xk
2mBk$ẋl ,ẋk%. ~27!

On the right-hand side of~27!, the last term is zero by virtue of~22!, the third term vanishes als
as it describes exactly the first Maxwell equation. Now identifying the left-hand side~lhs! and the
right-hand side~rhs! of ~26!, we get

]Bl

]t
5e jkl

]Ej

]xk
, ~28!

which is nothing but the second Maxwell equation~12!.
This is the way followed by Feynman to prove the Maxwell equations in their classical f

His motivation was to ‘‘discover a new theory not to reinvent the old one,’’ but the proof sho
him that his assumptions~7!–~9! were not leading to new physics. As was the case for sev
authors who find interesting the Feynman’s approach, we project in the forthcoming section
beyond this approach and setup the Feynman’s proof in a noncommutative space. The
apply the noncommutativity is by replacing the ordinary product by the star product and Po
bracket or ordinary commutators by the Moyal bracket.

III. THE FEYNMAN’S PROOF IN THE NC GEOMETRY FRAMEWORK

The passage to NC geometry, based essentially on the noncommutativity of space–ti
ordinates, is justified among others by its importance in different currents of research mor
ticularly in high energy physics. The deep idea behind the noncommutativity of coordinates
in a certain microscopic regime our standard conception of the space–time is not more app
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Such a regime is characterized by domains of areau where the space–time loses its condition
continuum and becomes subject to the following new structure@xm ,xn#* 5xm* xn2xn* xm

5 iumn , whereumn is a real antisymmetric constant matrix and@ .,.#* is the Moyal bracket.
One way of incorporating noncommutativity of coordinates in the context of field theo

through the Moyal product based on the*-product that will be introduced later on. To avoid ha
notations, we will later on simply denote the Moyal bracket by@.,.#. Before going on, let us firs
recall briefly some useful identities of the*-product.

A. Some properties of * -product

Recently the*-product marks a remarkable success due to its intervention in different as
of string theory greatly related to NC geometry. In this section, we give some useful propert
this * -product as well as of the Moyal bracket.9,10 To define this object, let us start by consideri
two functionsf (x) andg(x) such that

f ~x!* g~x!5e~ i /2! uab ~]/]ja!~]/]hb! f ~x1j!g~x1h!/j5h50, ~29!

whereuab is a constant, of dimension@L#2, known as the NC parameter~in all the parts of this
paper the parameteru is considered as a constant matrix!.

This formula leads naturally to what is often called the Moyal bracket of functions,

@ f ~x!,g~x!#5 f ~x!* g~x!2g~x!* f ~x!. ~30!

According to this definition, the commutation relation for the space coordinates becomes

@xi ,xj #5 iu i j . ~31!

Such a structure describes a NC space for which the space coordinates are not necessar
muting. Note by the way that the functionf (x) may depend on space coordinates as it can dep
on space–time coordinates. We collect here some useful properties.

~1! Associativity,
~f*g!*h5f* ~g*h!. ~32!

~2! Jacobi identity,
@f,@g,h##1@g,@h,f##1@h,@f,g##50. ~33!

~3! Leibnitz rule ,
@f,g*h#5g* @f,h#1@f,g#*h. ~34!

~4! Linearity ,
f* ~g1h!5~f*g!1~f*h!. ~35!

The *-product is also compatible with integration

E Tr~ f * g!5E Tr~g* f !, ~36!

where Tr is the ordinary trace of theN3N matrices, and* is the ordinary integration of functions
Another useful identity is given in terms of local coordinates (xa). For two functionsF(x)

andG(x), the coordinate expression for the Moyal bracket@F,G# is

@F,G#5@xa,G#
]F

]xa . ~37!
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More details about the origin of the*-product and other important properties are available
literature.9–13 Next, we will study the Feynman’s proof of Maxwell equations using the
framework, a fact which consist also in using the Moyal bracket instead of the Poisson brac
what follows we will present two kinds of NC framework associated to two distinguished
narios to conceive the proof of the Maxwell equations in a NC space. These two scenarios o
two possibilities to make the space NC permit among others to debate the novelty extracte
this extension relatively to each case.

B. Noncommutativity: First kind

One way to make the space NC is to consider the following commutation relations:

@xj ,xk#5 iu jk , ~38!

m@xj ,ẋk#5d jk , ~39!

where@,# stands for the Moyal bracket and where~38! is simply a NC extension of~8!. We assume
in this first kind of noncommutativity that the rhs of~39! is not affected by the deformatio
parameter. Differentiating this equation with respect to time and using~7! we find the same
equation as in the ordinary product~9!, since the NC parameteru jk is a constant

@xj ,Fk#1m@ ẋ j ,ẋk#50. ~40!

On the other hand, the bilinearity of the Moyal bracket implies

@@xi ,F j #,xk#1m@@ ẋi ,ẋ j #,xk#50. ~41!

Computing the second term of this equation, using the Jacobi identity ofẋi , ẋ j , andxk as well as
the Moyal bracket ofxj and ẋk ~39!, we find the following constraint:

@@ ẋi ,ẋ j #,xk#50, ~42!

or by virtue of ~40!

@@xi ,F j #,xk#50. ~43!

Compared to the standard computations, the present case shows a new property, nam
quantity @xi ,F j # is coordinate space independent, and hence the fieldB defined by

Bl5
m2

2
e jkl@ ẋ j ,ẋk# ~44!

is also independent ofxi . Consequently, the corresponding equations forB read as

div B5
]Bl

]xl
50 ~45!

and

rotB5¹3B50. ~46!

Moreover, using~39! and ~44!, the fieldE defined by the Lorentz force equation~10!, satisfies
then

@xm ,Ej #50. ~47!
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The above equation shows that the fieldE is also space independent which, in turn, gives
following equations:

div E50 ~48!

and

rotE50. ~49!

Few remarks are in order.
~1! One should signal the possibility to extract from~39! the following realization for the

velocity ẋk , namely,

ẋk52
i

m
u lk

21xl1g~ t !,

whereg(t) is an arbitrary pure time-dependent function. This shows in particular that the vel
is a linear function of the space coordinate. This gives also a possibility to express the forFk

5m ẍk in terms of the deformedu parameter and the functiong(t).
~2! The fact to introduce a parameter of noncommutativity to the manner of~38!, induces

necessarily the static Maxwell equations which means also the absence of the charge and
densitiesr and j . In fact, by virtue of~11–14! and~45–48!, we have]E/]t 505 ]B/]t leading
to the constant behavior of the electromagnetic field (E,B) and to the absence of the electr
densities~r,j ). We can advance at this level that the noncommutativity of the first kind is equ
lent to cancel the charge and current densities for the Maxwell equations.

~3! It is important to look for the meaning of the commutative limitu50. In fact, once the
previous limit is performed, the behavior of the Lorentz forceF as well as of the fieldB change
completely as they depend on the behavior of the space coordinatesxm . Settingu50 one dis-
covers the Poison bracket$xj ,xk%50 which, by virtue of the standard computations, means
restoration of the densitiesr and j .

C. Noncommutativity: Second kind

As it is shown through the previous calculations, the relation~9! constitutes a crucial step in
Feynman’s proof. Any changes at the level of this relation will necessarily lead to impo
modifications and all of the standards results are then suspected to change. Here we pro
consider the NC space~38! and modify the equation~39! while supposing that velocity is a
quantity that depends on spatial coordinates. We suppose the following NC expressions:

@xj ,xk#5 iu jk , ~50!

m@xj ,ẋk#5d jk1 imu jk f , ~51!

where f is a function which can depend onx and t and it is given by

f ~x,t ![S ] ẋl

]h l
~x1h! D

h50

. ~52!

This function describes in some sense the behavior of the velocity coordinates with respec
space–time coordinates. In a similar way as above, a possible realization of~51! is given explicitly
by

ẋk52
i

m
u lk

21xl1Ak~x,t !,
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such that

S ] ẋk

]hb
~x1h! D

h50.

52
i

m
ubk

211S ]Ak

]hb
D

h50

, ~53!

whereAk(x,t) is for instance a function depending on the coordinates (x,t) and which can be
related to the functionf as we will show later. Indeed, introducing this realization into~51!, drives
us to a constraint equation that we should solve, namely,

m@xj ,Ak#5 imu jk f .

Here, we are in the presence of several possibilities depending on whether the functionAk(x,t) is
linear on the space coordinate or not. A first possibility consists in considering a linear reali
namelyAk(x,t)5xkg(t) with g(t) a purely time-dependent function. This is a natural solution t
imposes a strong condition on the functionf 5g(t) which becomes purely time dependent. W
have

S ] ẋk

]hb
D

h50.

52
i

m
ubk

211dkbf ~ t !.

Now, we are ready to generalize the previous case by assumingAk(x,t) to be nonlinear in
spatial coordinates. A particular example is given by the quadratic realizationAk(x,t)5x2. Ãk(t)
with x2[xa* xa. Straightforward calculations lead to the following realization for the functionf ,
namely, f (x,t)52xkÃk(t).

It is an easy exercise to derive other nonlinear realizations of the functionf (x,t) by setting
Ak(x,t)5xn. Ãk(t) with xn[xa1* xa2* ¯ * xan

ha1 ¯an. The sharing property of the special cas
discussed above is the rich structure that exhibits the noncommutative algebra~50! and ~51! for
the different possibilities depending on whetherf is purely a time dependent functionf (t) or
space–time coordinatesf (x,t).

Now, having discussed some features of the noncommutative algebra~50! and ~51!, we will
focus thereafter to follow step by step the Feynman’s analysis15 using ~50! and ~51! and see the
contribution for the Maxwell equations as well as for the Feynman’s proof for arbitrary func
f (x,t). In fact, the derivation of~51! with respect to timet drives naturally to the following
expression:

m@ ẋ j ,ẋk#1mFxj ,
dẋk

dt G5 imu jk

df

dt
, ~54!

or equivalently

m@ ẋ j ,ẋk#1@xj ,Fk#5 imu jk

df

dt
. ~55!

Since the Moyal bracket is also bilinear we can write

@xl ,@xj ,Fk##52m@xl ,@ ẋ j ,ẋk##1 imu jkFxl ,
df

dt G . ~56!

Furthermore, using the Jacobi identity ofxl , ẋ j , and ẋk , the first term on the right-hand side o
Eq. ~56! gives

@xl ,@ ẋ j ,ẋk##5 i @~u lkẋ j2u l j ẋk!, f # ~57!

and we can write
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@xl ,@xj ,Fk##52 im@~u lkẋ j2u l j ẋk!, f #1 imu jkFxl ,
df

dt G . ~58!

Note that, in spite of the fact that~55! extends the standard relation~15! it preserves the
antisymmetry property ofxj andFk , because of the antisymmetry of the NC parameteru, namely,

@xj ,Fk#52@xk ,F j #, ~59!

and therefore the fieldB can also be defined as

@xj ,Fk#52
1

m
e jklBl . ~60!

Equations~58! and ~60! give the following Moyal bracket:

@xl ,Bs#5
im2

2
e jksS @~u lkẋ j2u l j ẋk!, f #2u jkFxl ,

df

dt G D , ~61!

which vanishes foru50, giving rise then to the standard Poisson bracket~20!.
The fieldB can be written using~55! and ~60! as follows:

Bs5
m2

2
e jks@ ẋ j ,ẋk#2 i

m2

2
e jksu jk

df

dt
. ~62!

This is a nontrivial form of the magnetic fieldBs due to the fact that the second term on t
right-hand side of~62! did not appear in standard calculations~22! for which u50. Such a term
did not contribute to a time-constant value of the functionf . On the other hand, using~60! as well
as the expression of the Lorentz force~10! we can write for the electric fieldE,

@xj ,Ek#52ekmnẋm@xj ,Bn#2 i ekmnu jmf Bn . ~63!

To make this expression much more explicit, one needs only to substitute the bracket@xj ,Bn#
andBn by their explicit formulas~61! and~62!. Now, in order to obtain the NC analogous of th
first Maxwell equation divB50, one should compute, as previously, the Moyal bracket betw
the velocity and the fieldB

@ ẋs ,Bs#5
m2

2
e jks@ ẋs ,@ ẋ j ,ẋk##2

im2

2
e jksu jkF ẋs ,

df

dt G , ~64!

or simply

@Bs ,ẋs#5
im2

2
e jksu jkF ẋs ,

df

dt G , ~65!

since the first term of~64! vanishes using the analogous of the Jacobi identity~23!.
Afterwards, using~37!, this equation becomes

~das1 imuasf !
]Bs

]xa
5 i

m3

2
e jksu jkF ẋs ,

df

dt G , ~66!

or equivalently

]Bs

]xs
5 i

m3

2
e jksu jkF ẋs ,

df

dt G2 imuasf
]Bs

]xa
. ~67!
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Using once again~61! and the following identity:

@Bs ,xs#5@xa ,xs#
]Bs

]xa
5 iuas

]Bs

]xa
, ~68!

the first NC Maxwell equation corresponding to~51! reads finally as

divu B[
]Bs

]xs
5 i

m3

2
e jksu jkF ~ ẋs12xs!,

df

dt G2 im3e jks@~uksẋj2us jẋk!, f #. ~69!

This equation can be simply rewritten as

divu B5hu , ~70!

where we have introduced the notation divu B[ ]Bs/]xs for the first NC Maxwell equation to
distinguish it from the standard case. A remarkable fact is that the rhs of~69! namely hu , is
completely dependent of the NC parameteru, settingu50 we obtain exactly the ordinary Max
well equation~24!. Here, one could anticipate and give a significance to this new immersing
hu as being a density of magnetic charges in analogy with the density of electric charge.

Next, to obtain the second NC Maxwell equation, we derive with respect to time the fieBs

~62!,

]Bs

]t
1 ẋm

]Bs

]xm
5m2e jksFd2xj

dt2 ,ẋkG2 i
m2

2
e jksu jk

d2f

dt2 , ~71!

this is because the magnetic fieldB is (x,t)-coordinates dependent, since the velocity is a
considered as depending on the space coordinate. Furthermore, using the Lorentz force~10!, one
has

]Bs

]t
1 ẋm

]Bs

]xm
5me jks@Ej1e jmnẋmBn ,ẋk#2 i

m2

2
e jksu jk

d2f

dt2

5m~e jks@Ej ,ẋk#1@ ẋkBs ,ẋk#2@ ẋsBk ,ẋk# !2 i
m2

2
e jksu jk

d2f

dt2 . ~72!

Explicitly we find the following expression for the second NC Maxwell equation:

]Bs

]t
1ek js

]Ej

]xk
5me jksf @Ej ,xk#1mẋkf @Bs ,xk#1 ẋs@ ẋk ,Bk#2 i

m2

2
emnkumn@ ẋk ,ẋs#

df

dt
, ~73!

leading then, after some algebraic manipulations, to the following compact formula:

]Bs

]t
1ek js

]Ej

]xk
5A1

d2f

dt2 1A2

df

dt
1A3 , ~74!

where the rhs term of~74! is a nonlinear second order differential equation in the arbitr
function f whose coefficients are explicitly given by
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A152 i
m2

2
e jksu jk ,

A252
m3

2
u j l $ukse j ls f 22 i e j lk@ ẋs ,ẋk#%,

A352
m3

2
$e j lk@ ẋs ,ẋk#1 iukse j ls f 2%@ ẋ j ,ẋl #2 ẋshu , ~75!

wherehu5divu B ~69! and ~70!. As we can easily check, all the local coefficients functionsA1 ,
A2 , andA3 areu-depending. Thus, the standard limitu50 is natural as it leads to the standa
Feynman’s proof computations.

Having presented the general analysis, we try now to discuss briefly the obtained resu
the different realizations of the functionf . To start, let us signal the remarkable property of t
purely time dependent functionf 5g(t) for which the magnetic fieldBs ~62! is nontrivial whereas
the first NC Maxwell equation~69! is similar to the standard case~11! div Bs50 since
(hu) f 5g(t)50. However the second NC Maxwell equation~71! is nontrivial and it is reduced to
~74! and ~75! for f 5g(t) andhu50.

The other possibility consists in considering, for example, the linear realization of the fun
f namely f (x,t)52xkÃk(t) leading to a simplification of the couple of NC Maxwell equatio
~69! and~71!. To avoid the heaviness of the formulas, we will limit ourselves to~69! in which we
introducef (x,t)52xkÃk(t) and the same analysis applies for~71!. In fact, it is easy to check tha
the last term of the rhs of~69! namely e jksÃa@(uksẋj2us jẋk),xa# is vanishing for reasons o
symmetry. Thus, the only terms that contribute are given by

divu B5 i
m3

2
e jksu jk@~ ẋs12xs!,~ ẋa .Ãa1xa .A8 a!#

whose calculation comes naturally from the NC algebra~50! and ~51! with A8 a5dÃa /dt.
To close this discussion, remark also that the second NC Maxwell equation~71! is expressed

in terms of the second derivatives of the functionf . In the present casef (x,t)52xkÃk(t), we can

write 1
2 f̈ 5( ẍaÃa12ẋaA8 a1xa0Ä̃a). Assuming for instance thatÃ(t)5const, we may writef

5(maxa with Ãa5const[ ma/2 . This gives a possibility to connect to the Lorentz force such
f̈ [F5(maẍa .

IV. CONCLUDING REMARKS

Let us summarize what has been the scope of this work. The importance of the so-
Feynman’s proof of the Maxwell equations was essentially revealed by the Dyson’s work.15 This
paper resuscitated a former idea of Feynman who made a proof of the Maxwell equations a
ing only the Newton’s law of motion and the commutation relations between position and vel
This proof that Feynman refused to publish, believing that it was a simple joke,21 was appreciated
and taken with a great seriousness by several scientists.16–19

However, one of the things that caused some discussions around the Feynman’s proo
fact that the derivation mixes classical and quantum concepts and the small confusion that
to appear when we see the relativistic Maxwell equations derived from the classical Newton
The point is that the consideration of nonrelativistic equations and the relations of commu
between position and velocity are only a process well arranged to get the Maxwell equatio

As it is signaled in Ref. 18, one may wonder then how truly relativistic Maxwell equations
derived from Newton’s classical assumptions? The confusion could be shaped if we rema
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the Feynman’s proof concerns only half of Maxwell equations, namely divB50 and (]B/]t)
1¹3E50, describing the Bianchi set of equations. It no longer poses a problem since this c
of equations are compatible with the nonrelativistic Galilean invariance.

Following the Feynman’s proof of the Maxwell equations, assuming only the Newton’s la
motion and the commutation relation between position and velocity, we try in this paper to
this proof using the NC geometry framework. To accomplish this task, we consider two kin
NC formulations going along the same way as Feynman’s approach. This allows us to disco
a first formulation, the static Maxwell equations.

Afterwards, motivated by the hope to find a new theory using NC framework, we assum
the velocity is also space dependent and write the modified NC relation~51!. The results extracted
from the second formulation are more significant as they are associated to a nontrivialu-extension
of the Bianchi-set of Maxwell equations, namely, divu B5hu and (]Bs /]t) 1ek js (]Ej /]xk)
5A1 (d2f /dt2) 1A2 (df /dt) 1A3 , whereA1 , A2 , andA3 are local coefficient functions depend
ing on the NC parameteru. The functionf introduced at the level of the NC algebra~51! depend
in general on the space–time coordinates. Some special realizations are discussed.

Our objectives in reconsidering the Feynman’s proof are, on the one hand, to put it in
and, on the other hand, to show its importance in the NC framework. The novelty of this pro
the NC space is revealed notably at the level of the corrections brought to the previous Ma
equations. These corrections correspond essentially to the possibility of existence of sou
magnetic charges that we can associate to the magnetic monopole since divu B5hu . Note that
these extra termshu are absent in the ordinary case associated tou50. These results may give
new insights into the study of the electromagnetic duality and its various physical and math
cal aspects.
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In this paper we study the Hilbert space structure underlying the Koopman–von
Neumann~KvN! operatorial formulation of classical mechanics. KvN limited them-
selves to study the Hilbert space of zero-forms that are the square integrable func-
tions on phase space. They proved that in this Hilbert space the evolution is unitary
for every system. In this paper we extend the KvN Hilbert space to higher forms
which are basically functions of the phase space points and the differentials on
phase space. We prove that if we equip this space with a positive definite scalar
product the evolution can turn out to be nonunitary for some systems. Vice versa, if
we insist in having a unitary evolution for every system then the scalar product
cannot be positive definite. Identifying the one-forms with the Jacobi fields we
provide a physical explanation of these phenomena. We also prove that the unitary/
nonunitary character of the evolution is invariant under canonical
transformations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1623333#

I. INTRODUCTION

In the 1930s Koopman and von Neumann~KvN!1 gave an operatorial formulation ofclassical
mechanics~CM!. They first introduced square-integrable functionsc(wa) on the phase spaceM
of a classical system with HamiltonianH(w) ~with wa we indicate the 2n phase-space coordinate
of the systemwa5q1•••qn,p1•••pn). According to KvN the Liouville phase-space distributio
r~w! are obtained fromc~w! as

r~w!5uc~w!u2. ~1.1!

The introduction of thec~w! is an acceptable assumption considering thatr~w!, having the mean-
ing of a probability density, is always positive semidefiniter(w)>0, and so one can always tak
its ‘‘square root’’ and obtainc~w!. Moreover, asc~w! is square integrable, i.e.,c(w)PL2, it turns
out thatr~w! is integrable as it should be

E d2nw c* ~w!c~w!5E d2nw r~w!,`. ~1.2!

KvN postulatedthe following evolution forc~w!:

i
]c~w,t !

]t
5L̂c~w,t ! ~1.3!

a!Electronic mail: deotto@mitlns.mit.edu
b!Electronic mail: gozzi@ts.infn.it
c!Electronic mail: mauro@ts.infn.it
59020022-2488/2003/44(12)/5902/35/$20.00 © 2003 American Institute of Physics
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whereL̂, defined as

L̂5 i
]H

]qi

]

]pi 2 i
]H

]pi

]

]qi , ~1.4!

is the Liouville operator. This equation of motion forc~w! and~1.1! lead to the same evolution fo
r~w!,

i
]r~w,t !

]t
5L̂r~w,t !. ~1.5!

This is the well-known Liouville equation satisfied by the classical probability densities. Note
r~w! obeys the same equation asc~w! becauseL̂ is first order in the derivatives. The same does n
happen in quantum mechanics where the analog of~1.3! is the Schro¨dinger equation whose
evolution operator is second order in the derivatives. We will not spend more time here
plaining the interplay between the quantum mechanical wave functionsc(q) and these ‘‘KvN
waves’’c~w!. The interested reader can consult Ref. 2 where many details have been worke

In order to have a true Hilbert structure a scalar product has to be introduced and KvN
the following:

^cuF&5E d2nw c* ~w!F~w!. ~1.6!

We have introduced an abstract^brau and uket& notation and we have used a particular represe
tion for the wave functions. This is thew representation which is the ‘‘analog’’ of thex represen-
tation in quantum mechanics. We could have used other representations and some of the
been analyzed in Ref. 2.

Sticking anyhow to the representation~1.6! it is easy to see that the Liouville operator~1.4! is
Hermitian

^L̂cuF&5^cuL̂F&. ~1.7!

The Hermiticity of L̂ is necessary in order to guarantee the unitarity of the evolution ope
which, in its infinitesimal form, is

U~Dt !5e2 i L̂Dt. ~1.8!

The unitarity of the evolution, on the other hand, is crucial in order to guarantee, via~1.1!, the
conservation of the total probability.

In differential geometry the operatorL̂ is known as the Hamiltonian vector field associated
the time evolution and it is usually3 indicated with (dH)#. It can be extended to an object know
as the Lie derivative along the Hamiltonian flow,3 which is usually written asL(dH)#. This is the
operator which makes the evolution of the higher forms

c~w,dw!5c0~w!1ca~w!dwa1cab~w!dwa∧dwb1¯ . ~1.9!

The first termc0(w) on the right-hand side~RHS! of ~1.9! is the zero-form whose evolution i
given by the LiouvillianL̂. We say thatL(dH)# is an extension ofL̂ just because it makes th
evolution of quantitiesc(w,dw) which are extensions of thec0(w). Moreover it is possible to
prove3 that

L(dH)#udw505 i L̂ . ~1.10!
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The differential geometry associated to classical mechanics is an old subject3 but it keeps arousing
the interest of physicists.4 The question we want to address in this paper is whether the spa
higher forms~1.9! can be turned into a Hilbert space like KvN did for the zero-forms. T
basically means that we want to see if it is possible to introduce a positive definite scalar p
in the space of the higher formsc(w,dw). At the same time we want to check if under this sca
product the Lie-derivativeL(dH)# is a Hermitian operator. Surprisingly we will see that this is n
possible, that means we will prove that both conditions, positive definiteness of the scalar p
and Hermiticity ofL(dH)#, cannot hold at the same time for every system.

Instead of working in the abstract differential-geometric framework outlined above, we
use a more physical one derived from a path integral formulation of CM.5 This formulation~from
now on we will call it CPI as acronym for Classical Path Integral! is the functional counterpart o
the operatorial method of KvN and it generates some extra structures which generalize th
approach. These structures are exactly the higher forms and the Lie derivative we men
above. The CPI is basically defined as follows~for more details consult Ref. 5!. Let us build the
following generating functional:

Zcl@J#5E Dw d̃@w2wcl# expF E Jw G , ~1.11!

wherewcl are the classical solutions of the equations of motion3

ẇa5vab
]H

]wb ~1.12!

with vab the symplectic matrix. In~1.11! we gave weight one to the classical trajectories a
weight zero to all the others. This is different than what is done in the quantum mechanica
integral where each path@w(t)# has weighteiS[w] . As wcl

a in ~1.11! are the zeroes of the following
function: @ẇa2vab (]H/]wb)#, we can rewrite~1.11! as

Zcl@J#5E Dw d̃F ẇa2vab
]H

]wbGUdb
a] t2vad

]2H

]wd]wbU expE Jw ~1.13!

and using 6n auxiliary variables (la ,ca,c̄a) ~whereca,c̄a have Grassmannian character! we can
rewrite ~1.13! in the following form:

Zcl@J#5E Dwa Dla Dca Dc̄a ei *dt L̃1*dt Jw, ~1.14!

where

L̃5laF ẇa2vab
]H

]wbG1 i c̄aF ċa2vad
]2H

]wd]wbGcb. ~1.15!

The Hamiltonian associated toL̃ is

H̃5lavab
]H

]wb 1 i c̄avad
]2H

]wd]wb cb. ~1.16!

The contact with differential geometry was first established in Ref. 5 and further developed in
6. In those references it was shown that the Grassmann variablesca can be identified with the
basis dwa of the space of forms and their associated wedge product is naturally taken into ac
by the Grassmannian character of the variablesca. The functionsc(w,c) can then be set into
correspondence with the inhomogeneous forms
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c~w,c!5c0~w!1ca~w!ca1cab~w!cacb1¯

⇔ c0~w!1ca~w!dwa1cab~w!dwa∧dwb1¯ . ~1.17!

From the path integral~1.14! one can derive an operatorial formalism and a commuta
structure,7 which is given by

@ŵa,l̂b#25 idb
a , @ ĉa,cC b#15db

a . ~1.18!

To implement~1.18! we can then realizela and c̄a as

l̂a52 i
]

]wa , cC a5
]

]ca . ~1.19!

In this representation the ‘‘wave functions’’ of the theory are functions which depend onlyw
andc, i.e., c(w,c) and these are precisely the inhomogeneous forms~1.17!. The relations~1.19!
turn theH̃ of Eq. ~1.16! into the following operator:

H̃52 ivab
]H

]wb

]

]wa 2 ivad
]2H

]wd]wb cb
]

]ca . ~1.20!

From now on we will use the same notation for the Hamiltonian~1.16! and the associated operat
~1.20!. The first term on the RHS of~1.20! is nothing else than the Liouville operatorL̂ which acts
only on the zero-formsc0(w), while the second term acts also on higher formsc(w,c). The
combined action of these two terms identifiesH̃ with the Lie-derivative along the Hamiltonia
flow.5 Also all the other standard differential geometric operations like exterior derivative, int
contraction with vector fields, Lie brackets, etc., can be rephrased in the language of the C
the details can be found in Refs. 5 and 6.

As we said previously, in this paper we would like to find out if the space of the higher fo
which now can be identified with the functionsc(w,c), can be endowed with a positive defini
scalar product as KvN did for the zero-forms and if the operatorH̃ is Hermitian under this scala
product. The reader may wonder which are thephysicalreasons which motivate us to study th
enlarged Hilbert space. The reasons are the following. It is well-known8 that such features like the
ergodicity of a dynamical system are indicated by thespectralproperties of the Liouvillian. In
particular a system is ergodic if the eigenstate associated to the zero eigenvalue of the Liou
is nondegenerate. Later on it was discovered9 that thespectralproperties ofH̃, which is the object
that generalizes the Liouvillian, gives us further physical information such as the Lyapuno
ponents or the dynamical and topological entropies of the system. So thespectrumof H̃ seems to
be the central object encapsulating the most important physical features of a dynamical sys
get the spectrum it is necessary first to study the Hilbert space in whichH̃ is defined and to find
out if it is a Hermitian operator or not. The previous studies9 did not rigorously explore these
mathematical features but derived the properties mentioned above in a ratherformal way by
functional techniques. In this paper we will only prepare the mathematical ground necess
prove rigorously the physical results contained in Ref. 9. Those rigorous proofs will appea
future works. Anyhow, even the mathematical machinery that we have prepared in this pap
reveal some surprising and interesting results as outlined below.

The paper is organized as follows. In Sec. II we will limit ourselves to the case of a
dimensional symplectic manifoldM, labeled by one coordinateq and one conjugate momentum
p. In this case, because of the features of the Grassmann variables, the expression of the
alized wave functions is particularly simple, and the most general inner product can be p
etrized in terms of a matrixgi j . Varying this matrix we will find out, as particular cases, som
scalar products which are well known in the literature and we will briefly analyze their feat
The strange and interesting property we will find is the following one: if we choose a s
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product which is positive definite thenH̃ turns out to be not Hermitian for some systems or, if
imposeH̃ to be Hermitian for any system, then the scalar product is not positive definite. In
III we will show that this feature holds for every scalar product and not just for those examin
Sec. II. This fact is related to the presence of the symplectic matrix within the HamiltonianH̃ and
to the Grassmannian nature of the variablesca. Moreover it is a peculiar feature of classic
mechanics and in fact it does not appear in a similar Hamiltonian which describes supersym
quantum mechanicalmodels10,11 where it is possible to find at least one scalar product wh
guarantees both the Hermiticity of the Hamiltonian and the positivity of the scalar product f
systems. An important thing to notice for the CPI is that the Hermitian/non-Hermitian charac
H̃ is invariant under canonical transformations and this is proved in details in Appendix C. In
IV we will show how the CPI can be reproduced starting from the completeness relations
ciated with the various scalar products. As some scalar products are not positive definite in
we will search for the subspace~of the full Hilbert space! made of positive norm states under tw
of the scalar products examined in Sec. II. In the same section we shall also look for the su
in which H̃ is Hermitian under a third scalar product examined in Sec. II. Our analysis reveal
in all three cases the subspace we searched for is made of the zero-forms and of a set o
ones isomorphic to the zero-forms. So we conclude that, in all three cases, the ‘‘physical s
are basically the zero-forms or other forms ‘‘isomorphic’’ to them. By ‘‘physical’’ we mean those
which have both a positive norm and on whichH̃ is Hermitian, and by ‘‘isomorphic’’ we mean
those which transform in the same manner as the zero-forms under the Lie derivative
Hamiltonian flow. In the Conclusions~Sec. VI! we will give somephysicalexplanations of the
phenomena we have encountered in this paper. Namely we will study those systems for wH̃
is not Hermitian under a positive scalar product, and try to understand why physically thi
happen. We will see that the same physical explanation applies when we have a HermitianH̃ for
those same systems and in that case we have to give up the positive definiteness of th
product. Some mathematical details of this paper are confined to three appendixes. More o
details can be found in Ref. 12.

II. SOME SCALAR PRODUCTS FOR THE CPI

In this section we want to investigate some possible scalar products for the Hilbert
underlying the CPI in the simple casen51 of a two-dimensional symplectic manifold whos
coordinates we indicate withwa[(q,p). Because of the properties of the Grassmann varia
ca[(cq,cp), a generalized wave functionc(w,c) can contain only four independent componen
which are complex functions ofw:

c~w,c!5c0~w!1c1~w!cq1c2~w!cp1c3~w!cqcp. ~2.1!

The most general inner product we can impose among these Hilbert space elements is the
ing one:

^tuc&5E dw t i* ~w!gi j c j~w!, ~2.2!

wheregi j is a 434 complex matrix andi , j can be~0,1,2,3!. From Eq.~2.2! it is easy to prove that
the bosonic operators of the theory are Hermitian,

ŵa†5ŵa,
~2.3!

l̂a
†5l̂a .

Therefore the bosonic part of the HamiltonianH̃bos5l̂avab]bH, which is nothing else than the
Liouvillian, is always Hermitian. For what concerns the fermionic part, different choices o
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matrix gi j in ~2.2! correspond to different choices of the Hermiticity conditions among the Gr
mann operators (ĉa,cC a) of the theory. Consequently the fermionic part of the HamiltonianH̃,
which is given by

H̃ferm5 icC avab]b]dHĉd, ~2.4!

can either be Hermitian or not. In the following sections we will choose some particular ma
gi j and we will analyze the properties and the features of the associated scalar products.

A. The SvH scalar product

The first choice we want to make is the following one:

gi j 5S 1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

D . ~2.5!

Inserting the previous matrix into~2.2! the scalar product becomes

^tuc&5E dw t i* ~w!c i~w!. ~2.6!

It is clear from the previous formula that the norms of the states are all positive definite:

^cuc&5(
i 50

3 E dw uc i~w!u2>0 ~2.7!

while the associated Hermiticity conditions for the Grassmann operators of the theory are

ĉa†5cC a , cC a
†5 ĉa. ~2.8!

This is the scalar product introduced by Salomonson and van Holten~SvH! in supersymmetric
quantum mechanics10 and this is why we have called it ‘‘SvH’’ scalar product. What we want to
now is to see whether the fermionic part of the HamiltonianH̃ferm is Hermitian under the SvH
scalar product. First of all let us writeH̃ferm as

H̃ferm5 icC aF d
aĉd, ~2.9!

whereF d
a5vab]b]dH. Then

H̃ferm
† 5~ i c̄aF d

acd!†5~2 i !~cd!†~F †!a
d~ c̄a!†52 i c̄d~F †!a

dca. ~2.10!

So H̃ferm would be Hermitian ifF †52F. As F is real, the relationF †52F implies thatF T

52F. Let us see if this happens by taking

F p
q5vqb]b]pH5vqp]p

2H5]p
2H ~2.11!

and comparing it with its transposed element

F q
p5vpb]b]qH5vpq]q

2H52]q
2H. ~2.12!

From these expressions we conclude thatin generalF is not equal to2F T and this implies that
H̃ is not in general Hermitian under the SvH scalar product. By the expression ‘‘in general’’ we
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mean that the Hermiticity of the Hamiltonian is not guaranteed for all systems. It can occu
some particular dynamical systems but not for all of them. For example, for the SvH s
product we note that for systems with Hamiltonian

H5 1
2 p21 1

2 q2, ~2.13!

we get thatF p
q52F q

p and this implies that the associatedH̃ is Hermitian. The system above is
particular harmonic oscillator and we thought, at first, that theH̃ would be Hermitian for all
harmonic oscillators or even all integrable systems. This is actually not the case as it is exp
in detail in Appendix C.

Even if the CPI5 has been proposed many years ago, many people have often said th
‘‘the same model as susy QM.’’ We have now proved that, differently than susy QM, the
HamiltonianH̃ is not Hermitian under the same scalar product~SvH! of susy QM. This definitely
proves that the CPI is not susy QM!

These considerations can be extended to an arbitrary number of degrees of freedom. T
becomes in that case

c5 (
m50

2n
1

m!
ca1 •••am

~w!ca1ca2•••cam ~2.14!

and the SvH norm turns out to be

^cuc&5K(
$ai %

(
m50

2n E dwuca1 •••am
~w!u2, ~2.15!

whereK is a positive number. The derivation is long but straightforward.

B. The gauge scalar product

Of course there are other possible choices of the scalar product, besides the SvH o
example we could implement the scalar product typically used in gauge theories.13 It corresponds
to the following choice of the matrixgi j in Eq. ~2.2!:

gi j 5S 0 0 0 2 i

0 0 2 i 0

0 i 0 0

i 0 0 0

D . ~2.16!

With this choice it is easy to show12 that the Grassmann operators of the theory are Hermitia

ĉa†5 ĉa,
~2.17!

cC a
†5cC a .

Consequently also theH̃ferm of ~2.9! is Hermitian. In fact

H̃ferm
† 52 i ĉcvab]b]cHcC a5 icC avab]b]cHĉc5H̃ferm, ~2.18!

where in the second step of~2.18! we have used the anticommutation relations@ ĉc,cC a#5da
c

together with the fact thatvab]b]aH50. Therefore the overall HamiltonianH̃ is Hermitian under
the gauge scalar product and this is a first important difference from the SvH case whe
analog ofH̃ was in general not Hermitian.
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If we come back and look at the expression~2.16! of the matrixgi j it is easy to realize tha
there are problems with the gauge scalar product. First of all,g0050, it implies that the zero-forms
have zero norm. This result is different than the original KvN case, where the zero-form
norm different from zero and equal to the total probability*dw r(w) of finding the particle
somewhere in phase space. This was one of the postulates of the KvN theory and it ha
maintained by any generalization to higher forms. So the gauge scalar product is not a
generalization of the KvN scalar product among the zero-forms. Second, if we diagonaliz
matrix ~2.16! we find out that there are two eigenvalues equal to 1 and two eigenvalues eq
21. This implies that there are negative norm states in the theory. This is particularly clea
from the explicit expression of the scalar product in terms of the components of the wave
tions. In fact, inserting~2.16! into ~2.2!, we get that

^tuc&5 i E dw @t3* c01t2* c12t1* c22t0* c3#. ~2.19!

From this expression it is very easy to realize that the states

a~w,c!5
1

&
a~w!@cqcp1 i #, b~w,c!5

1

&
b~w!@cp1 icq#, ~2.20!

wherea~w! andb~w! are square integrable functions, have negative norm. These generalized
functions correspond to the two eigenstates

a5a~w!S i /&
0
0

1/&
D , b5b~w!S 0

i /&
1/&

0
D ~2.21!

of the matrix~2.16! with eigenvalue21.

C. The symplectic scalar product

The gauge scalar product which we analyzed in the preceding section is not the on
under whichH̃ is Hermitian. In this section we will study another one which has the same fe
and whose Hermiticity conditions are

~ ĉa!†5 ivabcC b ,
~2.22!

~cC a!†5 ivabĉ
b.

Because of the presence of the symplectic matrixvab in ~2.22! we will call ‘‘symplectic’’ the
associated scalar product. If we takeH of the formH5 (p2/2) 1V(q), the fermionic part~2.4!
can be written asH̃ferm5 icC qĉp2 icC pV9ĉq whereV95 ]2V/]q2. Applying the Hermiticity condi-
tions ~2.22! we get

H̃ferm
† 5~ icC qĉp!†2~ icC pV9ĉq!†52 i ĉ p†cC q

†1 i ĉq†V9cC p
†

52 i ~2 icC q!~2 i ĉ p!1 i • icC pV9i ĉq

5 icC qĉp2 icC pV9ĉq5H̃ferm, ~2.23!

i.e., the fermionic part ofH̃ is Hermitian. It is easy to realize12 that the Hermiticity conditions
~2.22! are reproduced by the following choice of the matrixgi j :
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gi j 5S 1 0 0 0

0 0 i 0

0 2 i 0 0

0 0 0 21

D ~2.24!

or, equivalently, by the following scalar product expressed in terms of the components of the
functions:

^tuc&5E dw @t0* c01 i ~t1* c22t2* c1!2t3* c3#. ~2.25!

Sinceg0051 the zero-forms have finite norm, as in the original KvN scalar product. Unfortuna
the matrix~2.24! has two eigenvalues equal to 1 and two eigenvalues equal to21. This means that
there are states of negative norm also with the symplectic scalar product. For example the
a(w,c)5 a(w)/& @cp2 icq# andb(w,c)5b(w)cqcp, wherea~w! andb~w! are square integrable
functions, have negative norm. These states are nothing more than the eigenvectors

a5
a~w!

& S 0
2 i
1
0
D

and

b5b~w!S 0
0
0
1
D

associated to the eigenvalue21 of the matrix~2.24!. These considerations can be easily12 ex-
tended to an arbitrary number of degrees of freedom, where the explicit expression of the
plectic scalar product becomes

^tuc&5 (
m50

2n
i m

m! E dw ta1 •••am
* va1b1•••vambmcb1 •••bm

. ~2.26!

III. GENERALIZED SCALAR PRODUCTS

From the preceding section we can conclude that all the three scalar products we hav
lyzed have eitherH̃ non-Hermitian or the scalar product nonpositive definite. We shall show
this section that this is not just a feature of those particular scalar products that we have
duced: even the most general one cannot have bothH̃ Hermitian and no negative norm states.

Let us limit our analysis to the case ofn51 andH5 (p2/2) 1V(q). What we want to do is
to find out the most general Hermiticity conditions for (ĉa,cC a) under whichH̃ is Hermitian. After
this we will analyze whether any of the associated scalar products is positive definite. Sinceŵ

and l̂ we will stick to the standard Hermiticity conditions~2.3!, the bosonic part ofH̃ is always
Hermitian. Therefore we should only care about the fermionic part which is

H̃ferm5 icC qĉp2 icC pV9~q!ĉq. ~3.1!
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For this to be Hermitian, independently of the particular form of the potentialV(q), the two pieces
on the RHS of~3.1! must be separately Hermitian since the second one, differently from the
contains the potentialV. So we must have

~ icC qĉp!†5 icC qĉp, ~3.2!

~2 icC pĉq!†52 icC pĉq. ~3.3!

It is possible to prove12 that there are only three possible families of Hermiticity conditions on
Grassmann operators which satisfy both~3.2! and ~3.3!. The first one is given by

ĉp†5 ibcC q ,

cC q
†5

i

b
ĉp,

~3.4!
ĉq†52 ibcC p ,

cC p
†52

i

b
ĉq

with b a real number. The matrixgi j which reproduces~3.4! turns out to be

gi j 5S g00 0 0 0

0 0 2 ibg00 0

0 ibg00 0 0

0 0 0 2b2g00

D . ~3.5!

Let us first notice that ifg0051 andb521 then the matrix~3.5! reduces to~2.24! which is the
matrix associated with the symplectic scalar product~2.25!. To check whether~3.5! gives positive
definite scalar products, we should calculate the eigenvalues of~3.5! and see if they are al
positive. These eigenvalues are

l15g00,

l251bg00,
~3.6!

l352bg00,

l452b2g00.

So we see that there are always two eigenvalues with one sign and two with the opposite on
ultimately confirms that the scalar product associated to~3.5! is not positive definite.

In order to satisfy both~3.2! and ~3.3! another choice of Hermiticity conditions is given by

ĉp†5eiuaĉp,

cC q
†5 ig I ĉ

p1e2 iuacC q ,
~3.7!

ĉq†5eiuaĉq,

cC p
†52 ig I ĉ

q1e2 iuacC p

and leads to the following matrixgi j :
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gi j 5S ig03eiuag I 0 0 g03

0 0 g03eiua 0

0 2g03eiua 0 0

2g03e2iua 0 0 0

D , ~3.8!

whereg I andua are real numbers. The eigenvalue equation associated to this matrix is

~l21~g03!2e2iua!~l22 ig03eiuag Il1~g03!2e2iua!50. ~3.9!

Two of its eigenvalues are

l56 ig03eiua ~3.10!

and one sees from here that every choice ofg03 andua which makes one of these two eigenvalu
positive will make the other negative. This proves that even the scalar product which is asso
to the Hermiticity conditions~3.7! is not positive definite. This case is a generalization of
gauge scalar product~2.16!; in fact it reduces to~2.16! with the choiceg I50, g0352 i , ua50.

The last possibility12 to satisfy~3.2! and ~3.3! is given by

ĉp†5eiuaĉp1 ibcC q ,

cC q
†5e2 iuacC q ,

~3.11!
ĉq†5eiuaĉq2 ibcC p ,

cC p
†5e2 iuacC p

which corresponds to the matrixgi j ,

gi j 5S 0 0 0 g03

0 0 g03eiua 0

0 2g03eiua 0 0

2g03e2iua 0 0 2 ig03eiuab

D ~3.12!

whose eigenvalues are given by the solutions of the equation

~l21~g03!2e2iua!~l21 ig03eiuabl1~g03!2e2iua!50. ~3.13!

Two solutions are given by

l56 ig03eiua ~3.14!

and again we are in the same situation as in~3.10!. So, as the matrices~3.8! and ~3.12! have
negative eigenvalues, the associated scalar products are not positive definite. It should be
that also~3.12! is a generalization of the gauge scalar product which is obtained with the follo
choice of parameters:b50, ua50, g0352 i .

To summarize what we have done in this section, we can say that the whole set of con
scalar products under whichH̃ is Hermitian is the one associated to the three matrices~3.8!,
~3.12!, ~3.5!. The first two are generalizations of the gauge scalar product while the last on
generalization of the symplectic case. None of these three generalizations leads to a p
definite scalar product.

We can summarize all this by saying that if we choose a scalar product such that, whate
form of the potentialV(q), the operatorH̃ turns out to be Hermitianthen that same scalar
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product cannot be positive definite. As a consequence, based on standard rules of logic, we ca
that if we choose apositive definite scalar productthen the operatorH̃ cannot be Hermitianfor
any choice of the potentialV(q). It may be Hermitian for some particular potentials but not for
of them. This second case is exemplified in the SvH case.

IV. ABSTRACT HILBERT SPACE AND CPI

Up to now we have derived all our results starting from the representation in which
elements of the Hilbert space are given by functions ofw andc. Like in the standard formulation
of quantum mechanics this is not the only representation and it is possible to perform thing
completely abstract framework. This is what we want to do in this section and we will ex
things for the Salomonson–van Holten scalar product. Let us start building an abstract basis
Hilbert space. First we define the stateu02,02& which is the eigenstate ofĉq and ĉp with
eigenvalue 0:

ĉqu02,02&50,
~4.1!

ĉpu02,02&50.

In the stateu02,02& above the first ‘‘02 ’’ stays for the eigenvalue ofĉq and the second ‘‘02 ’’
for the eigenvalue ofĉp. We can define also the following other states:

u01,02&[cC qu02,02&,

u02,01&[2cC pu02,02&, ~4.2!

u01,01&[2cC qcC pu02,02&.

It is easy to prove12 that u01,02& is a common eigenstate forcC q and ĉp with eigenvalues 0 and
that u02,01& is the eigenstate forĉq andcC p with eigenvalues 0, whileu01,01& is the eigenstate
for cC q andcC p with eigenvalues 0. So the rule to indicate these states is that we put into theu & a
‘‘0 1 ’’ if it is an eigenstate~with zero eigenvalue! of a cC -operator and a ‘‘02 ’’ if it is an eigenstate
~with zero eigenvalue! of a ĉ-operator. Starting fromu01,01& and u02,02& it is possible to
construct the simultaneous eigenstates ofĉq and ĉp with Grassmannian odd eigenvaluesaq and
ap. They are

uaq2,ap2&[e2aqcCq2apcC pu02,02&, ~4.3!

while the states which are simultaneous eigenstates ofcC q andcC p with Grassmannian odd eigen
valuesbq andbp are

ubq1,bp1&[e2bqĉq2bpĉp
u01,01&. ~4.4!

Having now built all these states, it is easy to derive12 the various scalar products among them
equivalently the associated resolutions of the identity. The ingredients for these derivation10 are
the Hermiticity conditions among the various Grassmann operators and the choice of a n
ization among just one of the states. If we choose the following normalization,

^20,20u02,02&51 ~4.5!

and the SvH Hermiticity conditions~2.8!, then we can get the following resolutions of the ident
for the SvH case:
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E dc̄q dc̄puc̄q1,c̄p1&^2 c̄p* ,2 c̄q* u5I,

~4.6!

E dcp dcqucq2,cp2&^1cp* ,1cq* u5I,

where thec and c̄ stay for thea andb of ~4.3! and ~4.4!. The details of the derivation are ver
similar to those presented in Ref. 10 and can be found in Ref. 12. To make contact with th
scalar product in the (w,c)-representation, that is given in~2.6!, we should use the resolutions o
the identity~4.6! to define a scalar product among two generic states^tu and uc&,

^tuc&5E dp dq dcp dcq^tuq,p,cq2,cp2&^1cp* ,1cq* ,p,quc&

5E dp dq dcp dcq t1* ~q,p,cq,cp!c2~q,p,cq,cp!, ~4.7!

where

t1~q,p,cq,cp![^2cp,2cq,q,put&,
~4.8!

c2~q,p,cq,cp![^1cp* ,1cq* ,p,quc&,

and where we have included also the variables ‘‘p,q’’ in the resolution of the identity.
It is easy to prove12 that t1 andc2 have the form

c2~q,p,cq,cp!5c0~q,p!1cq~q,p!cq1cp~q,p!cp1c2~q,p!cqcp, ~4.9!

t1~q,p,cq,cp!5t2~q,p!1tp~q,p!cq* 2tq~q,p!cp* 2t0~q,p!cq* cp* , ~4.10!

and so we get

^tuc&5E dp dq @t0* c01tq* cq1tp* cp1t2* c2#, ~4.11!

which is exactly the SvH scalar product~2.6!.
We have used up to now the states written in the resolutions of the identity~4.6! but they are

much more than a basis for our Hilbert space. They are similar to the ‘‘coherent states’’ whic
an overcomplete basis. The real basis is actually much simpler. In fact it is easy to prove th
LHS of both equations in~4.6! are equal to

u01,01&^10,10u1u02,01&^10,20u1u01,02&^20,10u1u02,02&^20,20u ~4.12!

which means that there are the four states

u01,01&, u02,01&, u01,02&, u02,02& ~4.13!

which make a complete basis in the case of a two-dimensional phase space. We could have
this also in the following other manner. There are two commuting Hermitian operators w
make a complete set of operators for what concerns the Grassmannian part of the theory. T

N̂q5 ĉqcC q ,
~4.14!

N̂p5 ĉpcC p .
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The states~4.13! are just the eigenstates ofN̂q and N̂p with eigenvalues~0,0!, ~1,0!, ~0,1!, ~1,1!,
respectively,

N̂qu01,01&50, N̂pu01,01&50,

N̂qu02,01&5u02,01&, N̂pu02,01&50,

N̂qu01,02&50, N̂pu01,02&5u01,02&, ~4.15!

N̂qu02,02&5u02,02&, N̂pu02,02&5u02,02&.

Following a procedure similar to the one we used for the SvH scalar product, we can de
resolution of the identity also for the ‘‘gauge scalar product’’ and it turns out to be

i E dq dp dcq dcpuq,p,cq2,cp2&^2cp* ,2cq* ,p,qu5I ~4.16!

while for the symplectic case we get

E dq dp dcp dcquq,p, cq2,cp2&^ icp* 1,~2 icq* !1,p,qu5I. ~4.17!

From these two resolutions of the identity it is then easy to obtain the gauge scalar product~2.19!
and the symplectic one~2.25! in the (w,c)-representation. The details of these derivations can
found in Ref. 12.

We will conclude this section with an application of the resolutions of the identity~4.6!.
Originally the CPI model was formulated directly via path integrals without deriving it explic
from the operatorial formalism. In quantum mechanics instead the path integral was derive14 by
assembling infinitesimal time evolutions in operatorial form and inserting between them su
resolutions of the identity. We shall now do the same for the CPI and as resolutions of the id
we shall use the ones associated to the SvH scalar product. Before proceeding we should
ber that, besides the representation in whichŵa and ĉa are multiplicative operators whilel̂a

52 i (]/]wa) andcC a5]/]ca are derivative ones, we can also have a sort of ‘‘momentum’’ r
resentation in whichl̂a andcC a are multiplicative operators andŵa and ĉa are derivative ones,2

ŵa5 i
]

]la
,

~4.18!

ĉa5
]

] c̄a
.

The ‘‘wave functions’’ in this representation would depend onla ,c̄a and the resolution of the
identity involving l and c̄ would be12

E dlq dlp dc̄q dc̄pulq ,lp ,c̄q1,c̄p1&^2 c̄p* ,2 c̄q* ,lp ,lqu5I ~4.19!

to be contrasted with the one involvingw andc which is

E dw dcp dcquw,cq2,cp2&^1cp* ,1cq* ,wu5I. ~4.20!

The transition amplitude to go from some initial configuration (w i ,ci
q ,ci

p) to some final one
(w f ,cf

q ,cf
p) is given by the following kernel:
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K~ f u i !5^1cf
p* ,1cf

q* ,w f ue2 i H̃(t f2t i )uw i ,ci
q2,ci

p2&. ~4.21!

We note that the final bra in~4.21! is the state^1cf
p* ,1cf

q* ,w f u since this bra is just the
eigenstate ofĉq and ĉp with eigenvaluescf

q andcf
p .

Now, as it is usually done in QM, let us divide the intervalt f2t i in ~4.21! into N intervals of
lengthe, so thatNe5t f2t i . The amplitudeK( f u i ) of ~4.21! can then be written as

~4.22!

Let us now insert a resolution of the identity~4.19! in front of each exponential in~4.22! and a
resolution of the identity~4.20! behind each exponential. Evaluating each scalar product we fin
arrive at the following expression for the kernel of evolution:

K~ f u i !5E Dm

3expF i e(
j 51

N S lqj

qj 112qj

e
1lpj

pj 112pj

e
1 i c̄qj

~cj 11
q 2cj

q!

e
1 i c̄ pj

~cj 11
p 2cj

p!

e
2H̃j D G .

~4.23!

The subindexj on (q,p,lq ,lp ,cq,cp,c̄q ,c̄p) is the time label in the subdivision of the interv
(t f2t i) in N subintervals; the boundary conditions are

w05w i , wN115w f , c05ci , cN115cf , ~4.24!

and the measure is

Dm5dlq1
dlp1

dc̄q1
dc̄p1)j 52

N

dqj dpj dlqj
dlpj

dcj
q dc̄qj

dcj
p dc̄pj

. ~4.25!

This measure indicates that the initial and the final (w,c) are not integrated over. The continuu
limit of ~4.23! can be easily worked out:

K~ f u i !5E
(w i ,ci )

(w f ,cf )Dm expF i E dt L̃G ~4.26!

andL̃ turns out to be the Lagrangian in~1.15!. This confirms that, via the scalar products and
resolutions of the identity of SvH~4.19! and~4.20!, one gets just the CPI. So we can say that
Hilbert space structure of SvH leads to the CPI path integral.

The same discretized path integral can be obtained with the same procedure starting fr
other scalar products. In fact the differences in the resolutions of the identity between the
gauge and symplectic case are compensated by the different bra appearing in the kernel o
gation and by the differences in the scalar products among the states. For example the res
of the identity for the gauge scalar product in the (w,c)-representation is~4.16! and in the (l,c̄)
one is

i E dlq dlp dc̄q dc̄pulq ,lp ,c̄q1,c̄p1&^1 c̄p* ,1 c̄q* ,lp ,lqu5I ~4.27!

but the transition amplitudeK( f u i ) between an initial configuration (w i ,ci
q ,ci

p) and a final one
(w f ,cf

q ,cf
p) becomes
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K~ f u i !5^2cf
p* ,2cf

q* ,w f ue2 i H̃(t f2t i )uw i ,ci
q2,ci

p2&. ~4.28!

The final bra iŝ 2cf
p* ,2cf

q* ,w f u since just this bra is the eigenstate ofĉq and ĉp with eigen-
valuescf

q andcf
p in the gauge scalar product.

Analogously in the case of the symplectic scalar product the resolutions of the iden
~4.17! and in the (l,c̄)-representation,

E dlq dlp dc̄p dc̄qulq ,lp , c̄q1,c̄p1&^~2 i c̄ p* !2,i c̄q* 2,lp ,lqu5I ~4.29!

but also the kernel of propagationK( f u i ) is different. In fact it is given by

K~ f u i !5^ ic f
p* 1,~2 ic f

q* !1,w f ue2 i H̃(t f2t i )uw i , ci
q2,ci

p2&. ~4.30!

Also in this case the difference with respect to~4.21! and~4.28! is in the initial^brau which has the
form ^ ic f

p* 1,(2 ic f
q* )1,w f u because it is an eigenstate ofĉp andĉq with eigenvaluescf

p andcf
q .

Inserting the resolutions of the identity~4.17! and~4.29! inside the kernel~4.30! and evaluating all
the scalar products we can reproduce the CPI path integral also in the symplectic case. The
interested in the details of all the above mentioned calculations should consult Ref. 12.

V. ‘‘PHYSICAL’’ HILBERT SPACE

Let us now go back to the main issue of this paper which was the positivity/nonpositivi
the scalar product and the corresponding non-Hermiticity/Hermiticity of the operatorH̃. The
problem of having a nonpositive definite scalar product had appeared before in physics ma
gauge theory.13 There people addressed the question of finding the ‘‘physical’’ subspace of the full
Hilbert space that is the one made of positive norm states. In this section we will address a
problem and, with a little abuse of language, we shall call ‘‘physical’’ for the CPI a subspace o
full Hilbert space made of positive norm states and on whichH̃ is Hermitian. We shall perform
this analysis for all the three scalar products studied in the preceding sections starting fro
SvH one.

A. Salomonson–van Holten case

In this case all the states in the Hilbert space have positive definite norm butH̃ is not
Hermitian. This is an unacceptable feature because it would lead to the nonconservation
norm creating in this way difficulties in assigning the meaning of probability to the norm
generic state, differently from what happens in the zero-form case. The linear subspace of
Hilbert space on whichH̃ is Hermitian is defined by the following condition:

~H̃2H̃†!uc&50. ~5.1!

The next thing we have to guarantee is that the vector subspace defined by~5.1! be closed under
time evolution. This means that a stateuc8&, obtained via an infinitesimal time evolution from
physical stateuc&:

uc8&5e2 i eH̃uc&, ~5.2!

must still be physical, i.e.,

~H̃2H̃†!uc8&50. ~5.3!

Inserting~5.2! into ~5.3! we get
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~H̃2H̃†!uc8&5~H̃2H̃†!uc&2 i e~H̃2H̃†!H̃uc&

52 i e@H̃,~H̃2H̃†!#uc&5 i e@H̃,H̃†#uc& ~5.4!

which implies that foruc8& to be physical the following condition must also be satisfied:

@H̃,H̃†#uc&50. ~5.5!

Let us analyze the commutator structure of~5.5!. If we write H̃5H̃bos1H̃ferm we get that the
commutator contained in the LHS of~5.5! turns into the following expression:

@H̃,H̃†#5@H̃ferm,H̃ferm
† #1@H̃bos,H̃ferm

† #1@H̃ferm,H̃bos#. ~5.6!

Let us look at the first term on the RHS of~5.6!. The general expression ofH̃ferm was given in
~2.4! and, choosingH to be of the form

H5(
i 51

n

pi
2/21V~q1 ,...,qn!,

we get

H̃ferm5 icC qi
ĉpi2 icC pj

] i] jVĉqi. ~5.7!

Using the SvH Hermitian conjugation rules~2.8!, we obtain

H̃ferm
† 52 icC pi

ĉqi1 icC qi
] i] jVĉpj . ~5.8!

So the first term in~5.6! turns out to be

@H̃ferm,H̃ferm
† #5cC qi

ĉqi2cC pi
ĉpi1~] i] jV!~] l]mV!@cC pj

ĉpmd l
i2cC ql

ĉqid j
m# ~5.9!

while the second and the third term in~5.6! contain third order derivatives in the potentialV. To
find solutionsuc& of ~5.5!, whose form is independent of the potential, we should impose thauc&
be annihilated separately by the terms in~5.6! which contain no derivative inV, next by those
which contain first derivatives ofV and so on. By looking at~5.6! and ~5.9! the term with no
derivative ofV is (cC qi

ĉqi2cC pi
ĉpi); imposing it onuc& we get

~cC qi
ĉqi2cC pi

ĉpi !uc&50, ~5.10!

which implies

cqi
]

]cqi
uc&5cpi

]

]cpi
uc&. ~5.11!

If we representuc& as

c~w,c!5(
j 50

2n
1

j !
ca1a2 •••aj

~w!ca1ca2•••caj ~5.12!

then ~5.11! is satisfied by thosec(w,c) which contain the same number ofcq and cp. Clearly
these forms are Grassmannian even, which implies immediately that odd forms cannot be
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cal. Before going on to check whether also the terms in~5.9! with second derivatives inV
annihilate these forms, let us remember that we must also satisfy the condition~5.1!. The operator
H̃2H̃† with H of the form

H5(
i 51

n pi
2

2
1V~q1 ,...,qn!

has the expression

H̃2H̃†5~ icC qi
ĉpi1 icC pi

ĉqi !2 i ~cC pj
] i] jVĉqi1cC qi

] i] jVĉpj !. ~5.13!

Again, a physical form must be annihilated separately by the terms independent ofV and by those
depending on it. So, using~5.13!, ~5.1! gives the following two conditions:

~cC qi
ĉpi1cC pi

ĉqi !uc&50, ~5.14!

~cC pj
] i] jVĉqi1cC qi

] i] jVĉpj !uc&50. ~5.15!

Let us now remember that, because of~5.11!, the stateuc& must contain the same number ofcq and
cp. Therefore it is easy to realize that~5.14! implies that the following two relations must hol
separately

cC qi
ĉpiuc&50, ~5.16!

cC pi
ĉqiuc&50. ~5.17!

Analogously~5.15! implies that each term in it separately annihilatesuc&:

cC pj
~] i] jV!ĉqiuc&50, ~5.18!

cC qi
~] i] jV!ĉpj uc&50. ~5.19!

Let us now construct a linear combination of~5.16! and ~5.18! of the following form:

~ icC qi
ĉpi2 icC pj

] i] jVĉqi !uc&50. ~5.20!

It is easy to realize, looking at~5.7!, that ~5.20! is equivalent to

H̃fermuc&50. ~5.21!

Let us now construct instead a linear combination of~5.17! and ~5.19! of the form

~2 icC pi
ĉqi1 icC qj

] i] jVĉpi !uc&50. ~5.22!

We immediately notice that~5.22! is equivalent to

H̃ferm
† uc&50. ~5.23!

These are the two relations which complete our proof. In fact, using~5.21!–~5.23!, we have that
~5.1! becomes

~H̃2H̃†!uc&5~H̃ferm2H̃ferm
† !uc&50 ~5.24!

and that~5.6! is automatically satisfied because
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@H̃,H̃†#uc&5@H̃ferm,H̃ferm
† #uc&1@H̃bos,H̃ferm

† #uc&1@H̃ferm,H̃bos#uc&

52H̃ferm
† H̃bosuc&1H̃fermH̃bosuc&52H̃ferm

† uc8&1H̃fermuc8&50. ~5.25!

The last step is based on the fact thatuc8&[H̃bosuc& is still a physical state. In factH̃bos acts only
on the bosonic coefficients of the states and so it does not modify their Grassmannian struct
because of~5.21! and ~5.23! it is just this Grassmannian structure which determines wheth
state is physical or not.

Up to now we have proved that a state, to be physical, must be annihilated by the ferm
part of the HamiltonianH̃. What we want to do now is to give some explicit forms of such sta
Let us take a two-form withn degrees of freedom. In order to satisfy~5.11! the two-form must
contain one variablecq and one variablecp and so it must be of the form

c5cqi pk
cqicpk. ~5.26!

If we impose~5.17! on the state~5.26! we obtain

cqa
]

]cpa
c50⇒cqi pa

cqacqi50. ~5.27!

For the properties of the Grassmann variables the previous relation is satisfied if we takea5 i .
This means that we have to take a two-form of the type

c5cq1p1
cq1cp11cq2p2

cq2cp21¯1cqnpn
cqncpn, ~5.28!

i.e., a form in which eachcqi is coupled with the relativecpi. Let us indicate, for simplicity, the
various componentscqj pj

asc ( j )(w). Then~5.28! can be written as

c5(
j

c ( j )~w!cqjcpj . ~5.29!

Inserting~5.29! into ~5.18! and~5.19!, it is easy to prove that they can be satisfied only if all t
coefficientsc ( j )(w) in ~5.29! are the same

c ( j )~w!5K~w!. ~5.30!

So ~5.28! turns out to be

c5K~w!@cq1cp11cq2cp21¯1cqncpn#. ~5.31!

One sees that somehow the dependence on the indices of the coefficients of the two-for
disappeared. In general the coefficientsK(w) will change with the rank of the form. So fo
example a ‘‘physical’’ inhomogeneous form of rank up to 4 will be

c5c0~w!1K~w!(
i

cqicpi1S~w!(
i , j

~cqicpi !~cqjcpj !. ~5.32!

From the physical point of view the homogeneous physical forms, like~5.31!, are ‘‘somehow’’
isomorphic to the zero-forms. In factH̃ferm annihilates them, see~5.21!, and this is the same tha
happens on the zero-forms. BasicallyH̃ferm acts on the Grassmann variables in~5.31! annihilating
them and so we are left with onlyK(w) and thisK(w) evolves like a zero-form because onlyH̃bos

acts on it. An inhomogeneous state like~5.32! is made instead by a sum of terms, each isomorp
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to a zero-form; so we can say that it is like a linear superposition of the various zero-f
c0(w),K(w),S(w). Among these physical states we have the zero-forms and the 2n or volume-
forms.

Before concluding we should point out that the physical condition~5.1! limits the forms to be
of the type~5.32! only if we do not put any restriction on the potentialV. If we put restrictions
instead, for example choosing a harmonic oscillator potential or a separable potential, th
condition ~5.1! is satisfied by a wider class of forms than the ones in~5.32!. This concludes the
analysis of the SvH case.

B. Symplectic case

Let us now turn to the other scalar products and in particular to the symplectic one
HamiltonianH̃ in this case is Hermitian but not all the states of the Hilbert space have pos
norm. So the ‘‘physical’’ Hilbert space, which we will indicate withHphys, should be a vector
subspace of the full Hilbert space, made only of positive norm states. Anyhow this subspaceHphys

cannot be identified with the setH(1) of all the positive norm states. In fact it is easy to real
that H(1) is not a vector space because the linear combination of two states with positive
c[ac1

(1)1bc1
(2) wherea andb are complex coefficients, does not necessarily belong toH(1).

We will provide an explicit example of this fact in~5.51!. So Hphys can only be a particular
subspace ofH(1). In order to build it, it is better to change the variables, and pass from the
(q̂i ,p̂i ,l̂qi

,l̂pi
,ĉqi,ĉpi,cC qi

,cC pi
) to the following one:

ẑi[
1

&
~ q̂i1 i p̂ i !, zC i[

1

&
~ q̂i2 i p̂ i !,

l̂ i[
1

&
~ l̂qi

2 i l̂pi
!, lC i[

1

&
~ l̂qi

1 i l̂pi
!,

~5.33!

ĵ i[
1

&
~ ĉqi1 i ĉ pi !, jC i[

1

&
~2cC qi

1 icC pi
!,

ĵ i* [
1

&
~ ĉqi2 i ĉ pi !, jC i* [

1

&
~cC qi

1 icC pi
!.

From ~1.18! it is easy to work out the graded commutators among the new variables~5.33!. In
particular we will be interested in the following ones:

@ ĵ i ,jC j #52d j
i , @ ĵ i ,jC j* #50,

~5.34!
@ ĵ i* ,jC j* #51d j

i , @ ĵ i* ,jC j #50.

Under the symplectic Hermitian conjugation~2.22!, we get

ĵ i†5jC i , ĵ i* †5jC i* . ~5.35!

Note that this ‘‘Hermiticity’’ properties for the Grassmann variables (ĵ,ĵ* ),(jC ,jC * ) are the same as
the SvH one~2.8! for the variablesĉa,cC a . The crucial difference is in the anticommutator

@ ĵ i ,jC j #52d j
i ~5.36!
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which, for the analog SvH variables, had the opposite sign on the RHS:@ ĉqi,cC qj
#5d j

i . We shall
show that it is just this difference in sign which gives rise to negative norm states in the symp
case. Let us define in the casen51 the state:

ĵu02,02&5 ĵ* u02,02&50. ~5.37!

Applying the other operators onu02,02& we easily obtain the other basic states of the theor

u01,02&[jC u02,02&,

u02,01&[2jC * u02,02&, ~5.38!

u01,01&[jC * jC u02,02&.

These statesu06,06& are different from those defined in~4.2! via the operatorsĉ andcC because
they are eigenstates of different operators. Besides the Hermiticity conditions, let us choo
usual, a normalization for one of the statesu06,06&. In particular let us impose

~ u02,02&,u02,02&)521. ~5.39!

Via the definitions~5.38! and the commutation relations~5.34!, we can easily obtain12 the follow-
ing normalization conditions for the other states:

~ u01,02&,u01,02&)51,

~ u02,01&,u02,01&)521, ~5.40!

~ u01,01&,u01,01&)51.

From the definition~5.38! we could ‘‘represent’’ the states as follows:

u02,02&5jj* , u02,01&5j,
~5.41!

u01,02&5j* , u01,01&51.

From this ‘‘representation’’ one sees thatu01,01& is the basis of the zero-forms. This explains t
reason for the normalization~5.39! that we choose. In this way the normalization ofu01,01&
turns out to be11 and, as a consequence, the zero-form states have positive norm as in th
case. According to~5.41! the scalar products~5.39! and ~5.40! can be written as

~jj* ,jj* !521, ~j,j!521,
~5.42!

~j* ,j* !51, ~1,1!51,

and so a generic state

c~j,j* !5c01cjj1cj* j* 1c2jj* ~5.43!

has the following norm:

^cuc&5uc0u22ucju21ucj* u22uc2u2. ~5.44!

We will now generalize our treatment to the case ofn52. If we still want thatu01010
101& be the basis of the zero-forms and have positive norm like in the KvN case, then we s
not choose the analog of the normalization~5.39! but rather
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~ u02020202&,u02020202&)51. ~5.45!

With this choice it is easy to prove that we get

~ u01010101&,u01010101&)51 ~5.46!

and, as a consequence, the zero-forms have positive norm. In general, forn degrees of freedom, in
order to have positive norm for the zero-forms we should make the following choice fo
normalization of the stateu0202¯0202&:

^0202¯0202u0202¯0202&5~21!n. ~5.47!

For more calculational details see Ref. 12. We have now all the ingredients to start looking f
physical states. From the norms in~5.42! we infer that in general a homogeneous formc
5 (1/l !) ca1a2 •••al

ja1j* a2•••jal has positive norm if the number ofj variables is odd. This rule
holds not only forn51 but also for highern. For example, the ‘‘representation’’ ofu02020
2¯02& in n dimensions is

u020202¯02&5j1j1* j2j2*¯jnjn* ~5.48!

and its norm is~5.47!, i.e., (21)n, which is11 if n ~number ofj contained! is even and21 if
n is odd. So we have a criterion to look for positive norm states: if a generic homogeneous
(1/l !) cb1b2 •••bl

cb1cb2
¯cbl is given, we first transform thecb variables intoj i ,j i* variables via

~5.33!,

1

l !
cb1b2 •••bl

cb1cb2
¯cbl ⇒ 1

l !
c̃ i 1i 2 •••j

i 1j i 2*¯ ~5.49!

and then we count the number ofj: if they are even, the state has positive norm; if they are o
the state has negative norm. Of course this is asufficient and necessarycondition for homoge-
neous states but not fornonhomogeneousones. For example, the state

c5
1

2!
cab~w!jajb1ca~w!ja ~5.50!

is made of two parts, a two-formcabj
ajb, and a one-formcaja. From what we said above th

two-form has positive norm because it contains twoj, while the one-form has a negative one. S
the overall norm

^cuc&5 (
a,b

E dwucab~w!u22(
a
E dwuca~w!u2 ~5.51!

could not be positive. Indeed this is the statement that the subspaceH(1) of H is not a vector
space. In fact in the example~5.50! we have summed a vector ofH(1) with one ofH(2) and ended
up in a vector ofH(1). Anyhow it is possible to find a subspace ofH(1) which is a vector space

Let us stick to thehomogeneouspositive forms and let us check what happens under t
evolution. First we rewrite the HamiltonianH̃ in terms of the new variables~5.33! as

H̃5 i ]aH l̂ a2 i ]̄aHlCa1~ ĵkjC a1 ĵa* jC k* !]k]̄aH1 ĵa* jC k]̄a]̄kH1 ĵajC k* ]a]kH, ~5.52!

where]̄ i5]/] z̄i and] i5]/]zi . If we now take a generic homogeneous state of positive norm,
with an even number ofj,
                                                                                                                



even

es

osed
o those

norm
the last

neric

e closed

o
.
of

ts
ctic
e SvH

5924 J. Math. Phys., Vol. 44, No. 12, December 2003 Deotto, Gozzi, and Mauro

                    
c5
1

q!
c i 1i 2 ••• i q

j i 1j i 2*¯j i q, ~5.53!

in general the time evolution will turn it into a positive norm state becauseH̃ is Hermitian and the
evolution is unitary. Nevertheless the final state will be the sum of two terms, the first with an
number ofj and the second with an odd number. In fact the last two terms in~5.52! change the
number ofj andj* factors in the state~5.53!. For example, the first of these two terms remov
a j from ~5.53! and injects aj* into it. So the resulting state is aninhomogeneousform in j. This
is not surprising because, even ifH̃ conserves the form number inca, it does not conserve the
form number inj i and j i* separately. If we want a vector space of positive norm states cl
under time evolution we have to restrict the space of homogeneous positive norm states t
which are annihilated by the last two terms of~5.52!. In this way the time evolution will occur
only via the first four terms of~5.52! which will not modify the number ofj andj* contained in
the state. It is easy to check12 that the states of the form:

cphys[c0~w!1B~w!(
i , j

j ij i* j jj j* 1C~w! (
i , j ,k,l

j ij i* j jj j* jkjk* j lj l* 1¯ ~5.54!

are annihilated by the last two terms ofH̃. The features of these states are

~1! each homogeneous form contained in them is made of products of an even number ofj i and
j i* ;

~2! all indices are summed over;
~3! in the homogeneous forms each term has the same coefficient: in our exampleB(w) is the

coefficient of the four-form,C(w) is the coefficient of the eight-form.

The states~5.54! have positive norm because they are the sum of orthogonal positive
states. Moreover the time evolution turns them in states with the same features because
two terms inH̃, which could break the pairingj ij i* , give zero on states of the form~5.54!. So
this family of states is closed under time evolution. Last but not least, differently than ge
positive norm states, those of the form~5.54! makea vector space: the sum of two forms with
arbitrary coefficients is still a form which has the properties~1!, ~2!, ~3! which define this family.
So these states have all the features to be physical states: they have positive norm, they ar
under time evolution and they make a vector space. While it is easy to prove12 that the states
~5.54! are annihilated by the last two terms inH̃, it is a little bit more tricky to prove the vice
versa that means to show that a generic~at least homogeneous! state annihilated by the last tw
terms inH̃ has the form~5.54!. A proof for the two- and four-forms is provided in Appendix A
Hoping to have convinced the reader of this let us now note that not only the last two termsH̃,
but also the previous two containing second derivatives ofH, annihilate the states~5.54!:

@~ ĵkjC a1 ĵa* jC k* !]k]̄aH#cphys50. ~5.55!

The four terms containing second derivatives ofH are what we calledH̃ferm in the first part of this
section. So~5.55! implies that

H̃fermcphys50. ~5.56!

This feature is preserved under time evolution because@H̃,H̃ferm#cphys50. Note that~5.56! is the
same equation we obtained in the SvH case~5.21!. Therefore also for the states~5.54! there is no
evolution of the Grassmann variables. OnlyH̃bos evolves the states acting on the coefficien
c0(w),B(w),C(w) just like the Liouvillian on the zero-forms. In this sense also the symple
physical states, like the SvH ones, are ‘‘isomorphic’’ to a set of zero-forms. Nevertheless th
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physical states are many more than the symplectic physical ones. In fact if we take, for ex
a four-form in ~5.54!, by turning thej i ,j i* into cqi,cpi variables via~5.33!, we get

A~z,z̄!j ij i* j jj j* 5
Ã~w!

4
@~cqi1 icpi !~cqi2 icpi !~cqj1 icpj !~cqj2 icpj !#

5
Ã~w!

4
2icpicqicpjcqj2i 52Ã~w!cpicqicpjcqj ~5.57!

and this is a physical four-form also in the SvH case. But if we take a six-form an analo
calculation gives

A~z,z̄! j ij i* j jj j* jkjk* 52 iÃ~w! cpicqicpjcqjcpkcqk. ~5.58!

A six-form like this is physical in the SvH case because it is annihilated byH̃ferm and soH̃ is
Hermitian on it. Nevertheless in the symplectic case it cannot be a physical form since
negative norm because it contains an odd number ofj. So the class of physical states is wider
the SvH case than in the symplectic one.

C. Connection between symplectic and gauge case

What about the gauge scalar product? Actually we are less interested in it because th
forms have zero norm violating in this way the main feature of the KvN scalar product whic
wanted to maintain. Nevertheless in order to find the physical Hilbert space also in this ca
way to proceed is the following. Let us define the new Grassmann variables:

ĉa[
ĉa1 ivabcC b

&
,

~5.59!

cC a[
cC a1 ivabĉ

b

&
.

Using the symplectic hermiticity conditions~2.22! for the variables (ĉa,cC a), we get that

ĉa†5ĉa, cC a
†5cC a ~5.60!

which means thatĉa and cC a are Hermitian like the Grassmann variables in thegauge scalar
product ~2.17!. This is an interesting connection between the symplectic and the gauge
product which can be used to find the physical subspace. In fact it is easy to prove th
anticommutation relations among (ĉa,cC a) are the same as the ones among the variablesĉa:

@ĉa,cC b#5db
a , @ĉa,ĉb#50, @cC a ,cC b#50. ~5.61!

Furthermore the inverse transformations of~5.59! are

ĉa5
ĉa2 ivabcC b

&
,

~5.62!

cC a5
cC a2 ivabĉ

b

&
.

Having proved all this we can introduce, as in~5.33!, the Grassmann variables
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ĵ i5
1

&
~ ĉqi1 i ĉ pi !5

1

2
~ ĉqi1 i ĉpi2 icC pi

2cC qi
!,

ĵ i* 5
1

&
~ ĉqi2 i ĉ pi !5

1

2
~ ĉqi2 i ĉpi2 icC pi

1cC qi
!,

~5.63!

jC i5
1

&
~2cC qi

1 icC pi
!5

1

2
~2cC qi

2 i ĉpi1 icC pi
1ĉqi !,

jC i* 5
1

&
~cC qi

1 icC pi
!5

1

2
~cC qi

1 i ĉpi1 icC pi
1ĉqi !.

It is easy to realize that, ifĉ andcC satisfy the algebra and the anticommutation relations of
gauge scalar product, then the set of operatorsĵ,ĵ* ,jC ,jC * satisfy exactly~5.34! and~5.35!. There-
fore, even starting from the gauge scalar product, we can repeat the same kind of conside
made in the symplectic case in order to find out which is the subset of physical states.

VI. CONCLUSIONS

Despite the detailed mathematical analysis contained in this paper, the reader may
puzzled by the results we have gotten. In fact it is difficult to accept that in classical mechani
a generic potential, we cannot have at the same time a positive definite scalar product a
unitary evolution in the space of forms. In this section we would like to give some tent
physical explanations15 of this result.

Let us for example analyze chaotic systems that are, loosely speaking, those which
trajectories which fly away exponentially as time passes by. The variables which describ
behavior better are the so-called Jacobi fields which are defined as

dwa~ t,w0!5w2
a~ t,w01dw0!2w1

a~ t,w0!, ~6.1!

wherew1
a(t) andw2

a(t) are the two trajectories which start at timet50 very close to each other
respectively, inw0 andw01dw0 . We should notice that the evolution of the Jacobi fieldsdwa is
the same as that of the Grassmann variablesca:

Fdb
a] t2val

]2H

]w l]wbGdwb50. ~6.2!

The Euclidean square distance between the two trajectories in phase space is given by

D~w0 ,t ![idwai2 ~6.3!

and it is a function oft andw0 . In more precise mathematical terms chaotic systems are de
as those for which the following inequality holds:

lim
t→`

1

t
ln E d2nw0 D~w0 ,t !.0. ~6.4!

One immediately infers from~6.4! that the phase space of chaotic systems has regions of non
measure such that the trajectories which originate from there fly away exponentially as time
by.
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In Appendix B we will show that, in those regions, also the componentscq(w0), cp(w0) of
any one-formc5caca behave as the Jacobi fields. So the norm of these states in the SvH
product

E d2nw0(
a

uca~w0 ,t !u2 ~6.5!

diverges exponentially, analogously to~6.4!. Let us now take the sum of a zero-formc0 and of a
one-formc5caca,

c̃[c01caca. ~6.6!

The SvH norm ofc̃ is

ic̃i25E d2nw0uc0~w0 ,t !u21E d2nw0(
a

uca~w0 ,t !u2. ~6.7!

Let us now suppose that in the SvH scalar product theH̃ were Hermitian. If so then the norm o
c̃ would be conserved under the time evolution. Anyhow we also know that the second pi
~6.7! that is *d2nw0(aucau2 increases for chaotic systems and this implies, foric̃i2 to be con-
served, that the first term*d2nw0uc0u2 in ~6.7! cannot be conserved. The nonconservation of
last piece implies a violation of the Liouville theorem. To put things in simpler terms: if we h
chaotic systems, i.e., exponential behavior, we must be able to produce, from the oper

evolutione2 i H̃t, an exponential diverging behavior:

e2 i H̃t→Ke1Lt ~6.8!

with L a real number. This happens only ifH̃ is not Hermitian and has, as a consequence, com
eigenvalues which would produce something like~6.8!. This same kind of behavior can be pro
duced in the gauge and symplectic case. ThereH̃ is Hermitian but the scalar product is no
positive definite. In this case even Hermitian operators can have complex eigenvalues a
proof goes as follows. Let us start from the Hermiticity ofH̃, i.e.,

^cuH̃c&5^H̃cuc&, ~6.9!

whereuc& is an eigenstate ofc with eigenvaluel; then ~6.9! can be written as

l^cuc&5l* ^cuc&. ~6.10!

From this relation we cannot deduce thatl5l* because, in a nonpositive definite scalar produ
the stateuc& could be of zero norm and satisfy~6.10! whatever is the value, real or complex, ofl.

This analysis explains why for ageneric potential, as we have assumed throughout this pap
we have either positive definite Hilbert space orH̃ Hermitian but never both of them. This las
possibility can take place only forspecific potentials. For example, in the SvH case it can happ
for Hamiltonians of the form

H5 1
2 p21 1

2 q2 ~6.11!

for which H̃ is Hermitian@see Eqs.~2.11! and~2.12!#. As this is a harmonic oscillator the read
may be tempted to generalize the result and jump to the conclusion that, differently than c
systems, for integrable ones we could have bothH̃ Hermitian and the scalar product positiv
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definite. It is actually not so: even among harmonic oscillators only some of them hav
features above as explained in Appendix C. In the same appendix we prove that the Herm
condition ofH is invariant under canonical transformations.

The reader may wonder if all this formalism with Hilbert spaces and scalar produc
actually needed to study dynamical systems. After all, he may argue, the old fashioned H
tonian formalism was enough and no scalar product appears there. This is actually not so.
to study the ergodic/chaotic properties of a system in the standard Hamiltonian formalism o
to introduce by hand the Jacobi fields, like infinitesimal differences of canonical variables
define theirlength in order to get the Lyapunov exponents; so a scalar product, to get the le
above, somehow would enter also in the standard Hamiltonian approach. In our formalism i
we have automatically the Jacobi fields since they are related to the Grassmann variabl
having a Hilbert space, the introduction of a scalar product is much more explicit than i
standard Hamiltonian formalism. So the reader can see that the two approaches, the Ham
and the KvN one, are equivalent because even in the first case one has to introduce a
product. Moreover via our formalism we have an interesting manner to connect the Lyap
exponents to well-defined mathematical structures like the spectral properties of a c
operator.9 As we said in the Introduction in order to study the spectral properties of an opera
is crucial to know which are the features of the Hilbert space on which this operator ac
particular it is important to know which is the scalar product one uses, the Hermiticity charac
the Hamiltonian and all that. In Ref. 9 theconnectionbetween Lyapunov exponents and spect
properties of the Lie derivative had been studied but at a ratherformal level using the path integra
formalism. We felt it would be important to check theconnectionabove at a morerigorous level
using the operatorial formalism. What we have done in this paper is to prepare the mathem
ground for that analysis which will be carried on in later papers. Clearly all the work conta
here is of a puremathematicalnature but we feel that, combined with the physics studied in R
9, it could lead to further physical understanding of dynamical systems and of chaotic on
particular. Moreover, themathematicalmachinery prepared in this paper has brought to light so
unexpected phenomena, like the non-Hermiticity ofH̃ for some systems. This, we feel, is alrea
a rather interesting result which fully justifies the detailed mathematics presented here.

This concludes this paper. In a second paper16 we will analyze the same issues by using
entirely bosonicH̃ first introduced in Ref. 17. In the same paper we shall also analyze
happens when we change representations for the Grassmann variables.18

APPENDIX A

In this appendix we will show that homogeneous forms inj, in order to be annihilated by the
last two pieces ofH̃, must have the form that the homogeneous terms in~5.54! have. TheH̃ in
terms ofj,j̄ is given in ~5.52! and the condition that a stateuc& is annihilated by the last two
pieces ofH̃ is

~ ĵa* jC k]̄a]̄kH1 ĵajC k* ]a]kH !uc&50. ~A1!

If we want this relation to hold for any form ofH then each piece separately in~A1! must
annihilateuc& because in the first piece we have only]̄-derivatives onH and on the other only
]-derivatives, so

ĵa* jC k]̄a]̄kHuc&50, ~A2!

ĵajC k* ]a]kHuc&50. ~A3!

Let us choose, for simplicity, a generic state with twoj,

uc&5j ij jAi j ~A4!
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with Ai j antisymmetric because of the Grassmannian nature of thej. Inserting~A4! in ~A2! we get

ĵa* jC k]̄a]̄kHuc&522ja* ~j jAk j!]̄a]̄kH. ~A5!

For the RHS of~A5! to be zero for a genericH the only way is that its coefficientja* (j jAk j) be
antisymmetric ina andk. This can happen only ifAk j has the form

Ak j5jk* Bj ~A6!

but let us remember thatAk j must be antisymmetric ink, j and soBj can only be of the form

Bj5j j* B~w!. ~A7!

So the stateuc& must have the form

uc&5j ij jAi j 5j ij jj i* j j* B~w!. ~A8!

This state satisfies also~A3! and note that~A8! has exactly the form of the first homogeneous te
contained in~5.54!.

The same kind of proof we can do for a generic state containing fourj like

uc&5j ij jjzjwAi jzw . ~A9!

The function Ai jzw must be antisymmetric in all indices. Inserting~A9! in ~A2! we get that
24ja* j jjzjwAk jzw must be antisymmetric ina,k in order for ~A2! to hold for anyH. The only
way out is thatAk jzw be of the form

Ak jzw5jk* Bjzw . ~A10!

As Ak jzw must be totally antisymmetric in the indices the only solution is thatBjzw

5j j* jz* jw* C(w). This makes~A9! of the form

uc&5j ij jjzjwj i* j j* jz* jw* C~w!, ~A11!

which is exactly the form of the second term in~5.54!. We can proceed in this manner for a
higher terms. We think this is an acceptable proof of the fact that the states~5.54! are the only ones
annihilated by the last two terms ofH̃. The only criticism could come from the fact that in th
proof we started from homogeneous wave functions and not inhomogeneous ones. The p
that, even considering sums of forms with a different number ofj, H̃ could annihilate them only
if it annihilates every single term of the sum. There cannot be a compensation between
coming from forms with a different number ofj and the reason of this is simple: let us suppose
take the sum of a first form with a numberl of variablesj and a second form with a numbe
l 12 of variablesj. Then the term ofH̃ proportional to]̄a]̄bH decreases the number ofj of the
second form producing a term with a numberl 11 of j. Another term with a numberl 11 of j is
obtained by applying the term proportional to]a]bH on the first form. It is clear that a compen
sation between these terms can occur but it will be strictly dependent on theparticular formof the
HamiltonianH and this is not what we want.

APPENDIX B

In this appendix we show that for those systems~the chaotic ones! where the Jacobi fields
~6.1! diverge exponentially with time, the same happens with the componentsca of the one-forms
c5caca. Let us first change representation, that means let us turn to a ‘‘momentum’’ repr
tation for the Grassmann variables usingc̄ in place ofc. While in the SvH representation that w
have been using so far the notation~4.8! was
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^1cp* ,1cq* uc&5c01cqcq1cpcp1c2cqcp ~B1!

it is now natural to use the following other notation for thec̄ representation:

^2 c̄p* ,2 c̄q* uc&5c01cqc̄q1cpc̄p1c2c̄qc̄p . ~B2!

In this basis a completeness relation, analog to the first one of~4.6!, is then

E dc̄q dc̄puc̄q1,c̄p1&^2 c̄p* ,2 c̄q* u5I ~B3!

and inserting it into the LHS of~B1! we get the relation between~B1! and ~B2!, i.e.,

^1cp* ,1cq* uc&5E dc̄q dc̄p^1cp* ,1cq* uc̄q1,c̄p1&•^2 c̄p* ,2 c̄q* uc&

5E dc̄q dc̄p~11cqc̄q1cpc̄p2cqcpc̄qc̄p!•~c01cqc̄q1cpc̄p1c2c̄qc̄p!

52c22cpcq1cqcp1c0cqcp. ~B4!

Comparing this with the RHS of~B1! we get that

c052c2,

cq52cp,
~B5!

cp5cq,

c25c0.

The reason we have introduced thec̄ representation is because, as we will show below,
componentscq andcp transform, under time evolution, as the Jacobi fieldsdq,dp of ~6.1!. The
evolution of the wave functions~B2! is given by the HamiltonianH̃ expressed in the ‘‘momen
tum’’ representation. The fermionic part ofH̃ferm is

H̃ferm5 i c̄avab]b]dHcd5 i c̄aF d
acd, ~B6!

whereF d
a5vab]b]dH and its operatorial counterpart is

H̃ferm5 i c̄aF d
a ]

] c̄d
. ~B7!

The infinitesimal evolution will give

ca~e!c̄a~e!5e2 i H̃e ~ca~0!c̄a~0!!, ~B8!

where we have restricted ourselves to the part of the wave functions~B2! linear in thec̄ variables.
Inserting~B7! into ~B8! we get

ca~e!c̄a~e!5S 11e c̄bF d
b ]

] c̄d
Dca~0!c̄a~0!5~ca~0!1eF d

acd~0!!c̄a~0!. ~B9!

Expanding ine also the LHS of~B9! and comparing terms of the first order ine and proportional
to c̄a(0) we get
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ca~e!5ca~0!1eF d
acd~0!. ~B10!

If we now solve, for an infinitesimal time, the equation of motion of the Jacobi fields we ge

dwa~e!5dwa~0!1eF d
adwd~0!. ~B11!

This proves that the variableca and the Jacobi fieldsdwa evolve in the same way and if the latte
diverge exponentially witht, the same happens toca. This implies that the behavior witht of the
distanceD(w0 ,t) of ~6.3! is the same as the one of(auca(w0)u2. This also implies that, if~6.4!
holds, also the following inequality holds:

lim
t→`

1

t
ln E d2nw0(

a
uca~w0 ,t !u2.0. ~B12!

Via then the relations~B5! we can replace~B12! with

lim
t→`

1

t
ln E d2nw0(

a
uca~w0 ,t !u2.0. ~B13!

Note that the argument of the logarithm is exactly the SvH norm of the one-formca(w0 ,t)ca. We
should point out that the previous reasoning is correct for those forms which have no
components along diverging Jacobi fields.

APPENDIX C

We noticed in Sec. VI that, with the choice

H5 1
2 p21 1

2 q2, ~C1!

the HamiltonianH̃ is Hermitian in the SvH scalar product. Let us now insert the mass
frequency inH and see what happens,

H5
1

2m
p21

1

2
mv2q2. ~C2!

Now let us check ifH̃ is Hermitian under the SvH Hermiticity conditions

~ ĉq!†5cC q ,
~C3!

~ ĉp!†5cC p .

The only part ofH̃ which can encounter problems isH̃ferm which, with the Hamiltonian~C2!,
turns out to be

H̃ferm5 i
cC qĉp

m
2 icC pĉqmv2. ~C4!

Its Hermitian conjugate, using~C3!, is

H̃ferm
† 5 icC qĉpmv22 i

cC pĉq

m
. ~C5!

From ~C4! and ~C5! one sees thatH̃ferm is Hermitian only if
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1

v2 5m2. ~C6!

So, given the mass of the system, only those harmonic oscillators whose frequency is giv
~C6! are Hermitian. It is easy to see that the oscillators for which relation~C6! holds are those
whose trajectories in phase space are circles~see Fig. 1!. Note that in this case the norm of th
Jacobi fields, i.e., the arrows in Fig. 1, does not change with time that is what the Hermitic
H̃ under the SvH scalar product guarantees. In factif we use the SvH scalar product the norm
the Jacobi fields can be put in correspondence with the norm of one-forms as shown in Ap

B. So, as the Hermiticity ofH̃ preserves the norm of the one-forms, the same happens for the
of the Jacobi fields. In the case in which 1/v2 Þm2 the trajectories are ellipses~see Fig. 2!. One
sees from Fig. 2 that the norm of the Jacobi fields is not preserved during the time evolutio
this is just a consequence of the non-Hermiticity ofH̃ under the SvH scalar product.

The careful reader may object to the previous argument that, even when 1/v2 Þm2, it is
possible to perform the following canonical tranformation:

p5Amv p8, q5
1

Amv
q8 ~C7!

in order to bring the Hamiltonian~C2! into the form

FIG. 1. Phase space trajectories for a harmonic oscillator with 1/v2 5m2.

FIG. 2. Phase space trajectories for a harmonic oscillator with 1/v2 Þm2.
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H~q,p!5
1

2m
p21

1

2
mv2q2 → H~q8,p8!5

1

2
vp821

1

2
vq82. ~C8!

In the new phase space labeled by (q8,p8) the trajectories of the harmonic oscillator are given
circles and the associatedH̃ferm is

H̃ferm5 ivcC q8ĉ8p2 ivcC p8ĉ8q. ~C9!

What can we say about the Hermiticity of the operatorH̃ferm? Before the canonical transformatio
~C7! the HamiltonianH̃ferm in ~C5! was not Hermitian for 1/v2 Þm2. Is this property preserved o
not? To answer this question we must remember that under a canonical transformation, as
under a generic diffeomorphism in phase space, the Grassmann variables of the theory m
tranformed like a basis of differential forms and vector fields respectively, see Eq.~5.7! of the
second paper in Ref. 4:

c8a5
]w8a

]wb cb, c̄a85
]wb

]w8a c̄b . ~C10!

In our particular case the transformations on the Grassmann variables induced by~C7! are given
by

c8q5Amv cq, c8p5
1

Amv
cp,

~C11!

c̄q85
1

Amv
c̄q , c̄p85Amv c̄p .

To check the consistency of the formalism we can note that, by inserting the inverse of~C11! into
~C4! one obtains just the Hamiltonian in the primed variables~C9!. Furthermore the SvH scala
product~C3! in the primed variables becomes

~ ĉ8q!†5mv cC q8 ,
~C12!

~ ĉ8p!†5
1

mv
cC p8 .

Since we are interested in the casemvÞ1 we have that, after the canonical transformat
~C7!–~C11!, the original SvH scalar product~C3! changed its explicit form. Under this scala
product~C12! the Hermitian conjugate of the Hamiltonian~C9! is

H̃ferm
† 5 iv3m2cC q8ĉ8p2

i

m2v
cC p8ĉ8q. ~C13!

From~C9! and~C13! one sees that the operatorH̃ferm is not Hermitian if 1/v2 Þm2. Therefore the
property of non-Hermiticity ofH̃ferm is preserved by the canonical transformation (q,p,cq,cp)
→(q8,p8,c8 q,c8 p). @We want to stress that there exists a particular scalar product under w
the HamiltonianH̃ferm of ~C9! is Hermitian: it is the SvH scalar product in the primed variab
( ĉ8 a)†5cC a8 ; anyway this scalar product is different from the SvH one in the unprimed varia
~C3! that we originally imposed upon our Hilbert space. Once we fix a particular scalar pro
there exists only one particular harmonic oscillator whose HamiltonianH̃ferm is Hermitian.#
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Vice versa, let us suppose we consider the oscillatorH5 1
2q

21 1
2p

2 whose associatedH̃ferm is
Hermitian with the SvH scalar product~C3! and let us perform the following canonical transfo
mation withaÞ1: q5 (1/a) q8, p5a p8, which induces the following transformations on th
c and c̄:

cq5
1

a
c8q, cp5a c8p,

~C14!

c̄q5a c̄q8 , c̄p5
1

a
c̄p8 .

Under these transformations the HamiltonianH becomes

H~q8,p8!5
1

2a2 q821
1

2
a2p82,

while the fermionic part ofH̃ turns out to be

H̃ferm5 i c̄q8c8pa22 i c̄ p8c8q
1

a2 ~C15!

and the scalar product~C3! becomes

~ ĉ8q!†5a2 cC q8 ,
~C16!

~ ĉ8p!†5
1

a2 cC p8 .

With this scalar product it is easy to prove that the Hamiltonian~C15! is still Hermitian and this
confirms that the canonical transformations do not spoil the Hermiticity of the HamiltonianH̃.
This proof can be extended to the most general canonical transformation. In fact in the p
variables given by~C10! the fermionic Hamiltonian associated toH5 1

2q
21 1

2p
2 becomes

H̃ferm5 i
]w8b

]q

]p

]w8d cC b8ĉ8d2 i
]w8b

]p

]q

]w8d cC b8ĉ8d. ~C17!

The SvH scalar product, which givesĉa†5cC a , in the primed variables becomes

dk
a~ ĉ8d!†5

]w8b

]wk

]w8d

]wa cC b8 , db
k~cC d8!†5

]wk

]w8d

]wb

]w8 f ĉ8 f , ~C18!

and with this scalar product it is straightforward to prove that the Hamiltonian~C17! is still
Hermitian. This implies that the Hermiticity ofH̃ is an intrinsic~i.e., canonical invariant! property
of the system which can only change with the scalar product we choose.

Now the careful reader can ask: in the case described by~C15! the Hamiltonian of the system
is Hermitian but the norm of the Jacobi fields is not conserved since the trajectories in the
space labeled by (q8,p8) are ellipses. So in this case the Hermiticity of the HamiltonianH̃ cannot
imply that the Jacobi fields are conserved in time. The reason is easily understood if we co
that the matrixgi j which produces the scalar product~C16! in the primed variables is given by
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gi j 5S 1 0 0 0

0 a2 0 0

0 0 1/a2 0

0 0 0 1

D . ~C19!

Consequently the norm of the statec5c01cqcq 81cpcp 8 is

^cuc&5E dwS uc0~w!u21a2ucq~w!u21
1

a2 ucp~w!u2D . ~C20!

Remember that the piece*dwuc0(w)u2 in ~C20! is conserved becausec0(w) evolves with the
Liouvillian which is a Hermitian operator. Therefore the Hermiticity ofH̃ferm implies immediately
that the leftover piece in~C20!, which is

E dwS a2ucq~w!u21
1

a2 ucp~w!u2D ,

is conserved in time. But sinceaÞ1 this does not imply that the norm of the Jacobi fields
conserved. In fact the square of the length of the Jacobi field is given byudqu21udpu2 and,
according to what we proved in Appendix B, this quantity can be put in correspondence
ucqu21ucpu2. Therefore the length of the Jacobi field can be associated with the contribution
norm ofc given by the one-form only ifa51, i.e., only if we consider the SvH scalar product
the primed variablesĉ8 †5cC 8 . With all the other scalar products, including~C16! which is ca-
nonically ‘‘equivalent’’ to the original SvH one~C3!, the Hermiticity of the HamiltonianH̃ does
not imply that the length of the Jacobi fields is conserved. The same thing can be phra
follows: if we want that the condition of Hermiticity/non-Hermiticity ofH̃ precisely signals the
conservation/nonconservation of the length of the Jacobi fields, we must use always th
scalar product and not those canonically equivalent to it. So, for example, if we start with the
scalar product and those phase space coordinates in which the trajectories are ellipses, thH̃ will
not be Hermitian. The same feature will be inherited by the canonically transformedH̃ in which
the trajectories are circles but this feature~the non-Hermiticity! will appear only if we use the
canonically transformed SvH scalar product. If we instead use the original SvH scalar pr
only theH̃ of the circles in the original~unprimed! variables will be Hermitian.

To conclude this appendix we can note that the relation~C6! can be disrupted not only by
canonical transformation but also by changing the system of units which we use in measuv
andm. But we should note that, if we change the units, we have to change also the Herm
conditions~C3! for dimensional reasons. Under the new Hermiticity conditionsH̃ is again Her-
mitian. The reason why, by changing the system of units, we have to change the Herm
conditions~C3! can be explained as follows. Looking at the Lagrangian~1.15! we notice that the
kinetic term of the action is*dt c̄qċq and so the dimension ofcq is the inverse ofc̄q ,

@cq#5@ c̄q#21. ~C21!

The same for thecp,

@cp#5@ c̄p#21. ~C22!

From the interaction term*dt c̄p]q]qHcq of the action associated to theL̃ of ~1.15! we get that

@cp#5
M

T
@cq#. ~C23!
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These are the dimensional relations among the Grassmann variables. So the Hermiticity con
~C3! should be written as

~ ĉq!†5cC q•1q , ~ ĉp!†5cC p•1p , ~C24!

where1q ,1p are dimensionful quantities. Of course we could choosecq to be dimensionless at all
and so1q could be a number like 1. But ifcq is dimensionless thencp, because of~C23!, must
have dimension.1p would then have the dimension of@cp#2 and so it is a number which change
with the system of units. Let us, for example, choose the SI system of units and the Herm
conditions

~ ĉq!†5cC q ,
~C25!

~ ĉp!†5cC p .

The harmonic oscillators which are Hermitian are those for which

m5a•Kg,
~C26!

v5
1

a
sec21.

If we now pass to the CGS system the relation~C26! becomes

m5a•103g,

v5
1

a
sec21, ~C27!

andmv5103Þ1. But the Hermiticity relations~C25!, in the new units, become

~ ĉq!†5cC q ,
~C28!

~ ĉp!†5106 cC p ,

and with these new Hermiticity conditionsH̃ is Hermitian even under the condition~C27!.
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In this paper we analyze two different functional formulations of classical mechan-
ics. In the first one the Jacobi fields are represented bybosonicvariables and belong
to the vector~or its dual! representation of the symplectic group. In the second
formulation the Jacobi fields are given ascondensatesof Grassmannian variables
belonging to the spinor representation of the metaplectic group. For both formula-
tions we shall show that, differently from what happens in the case presented in
paper I, it is possible to endow the associated Hilbert space with a positive definite
scalar product and to describe the dynamics via a Hermitian Hamiltonian. The
drawback of this formulation is that higher forms do not appear automatically and
that the description of chaotic systems may need a further extension of the Hilbert
space. ©2003 American Institute of Physics.@DOI: 10.1063/1.1623334#

I. INTRODUCTION

In a previous paper with the same title1 we analyzed in detail the Hilbert space structu
associated to thestandardpath integral formulation2 of classical mechanics~CM!. We called
standardformulation the one in which the Jacobi fields~or the forms!2 are represented byGrass-
mannianvariables and belong to the vector~or its dual! representation of the symplectic group.
Ref. 1 we showed that the associated Hilbert space cannot have at the same time a positive
scalar product and a Hermitian Hamiltonian. As in Ref. 1 we shall indicate this formulation a
for ‘‘Classical Path Integral.’’

In Sec. II of this paper we will review a different functional approach3 to CM in which the
Jacobi fields are represented bybosonicvariables, instead ofGrassmannianones, but they still
belong to the vector~or its dual! representation of the symplectic group. We will indicate th
formulation as BFA for Bosonic Functional Approach. The operatorial version of the BF
studied in detail in Sec. III. There we will prove that it is possible to have both a positive de
Hilbert space and a Hermitian Hamiltonian differently from what happens in the CPI case.1 In the
Appendix we shall present a geometrical analysis of the BFA interpreting the various variab
basis for the forms and vector fields. Like in the CPI several symmetries make their appea
The analysis of these symmetries requires, in the bosonic case, a special care. A spec
requires also the construction of higher forms. Their construction is less straightforward th
the CPI case but it has its own consistency as proved in the Appendix.

Both in the CPI and in the BFA case, the Jacobi fields belong to the vector~or its dual!
representation of the symplectic group, but this is not the only representation we can use.
in Sec. IV we will review another functional approach to CM in which the Jacobi fields are
as condensates of Grassmannian variables belonging to the spinor representation of themetaplec-
tic group.4 We shall indicate this formulation as MFA for Metaplectic Functional Approach.

a!Electronic mail: deotto@mitlns.mit.edu
b!Electronic mail: gozzi@ts.infn.it
c!Electronic mail: mauro@ts.infn.it
59370022-2488/2003/44(12)/5937/21/$20.00 © 2003 American Institute of Physics
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shall show in Sec. V that also in the MFA case, like in the BFA one, it is possible to construct
a positive definite Hilbert space and a Hermitian Hamiltonian.

In the Conclusions, besides drawing an overall picture from the technical analysis contai
this paper and in Ref. 1, we explain why the problems~non-Hermiticity, etc.! apparently by-passed
by the BFA and MFA with respect to the CPI actually lead to other problems whose solution
lie in a further extension of the Hilbert space.14

II. BOSONIC PATH INTEGRAL

The CPI formulation of CM2 has, as starting point, the following generating functional:

Z@J#5E Dw d̃@wa~ t !2wcl
a ~ t !# expF E dt JawaG . ~2.1!

The variableswa are the phase space coordinates:wa[(qi ,pi) of a symplectic manifoldM2N with
a51,...,2N and i 51,...,N, andwcl

a (t) are the solutions of the Hamiltonian equations of moti

ẇa5vab
]H

]wb ~2.2!

with vab the standard symplectic matrix. Disregarding for a moment the currentJa , it is easy to
realize that we can writeZ@J# in ~2.1! as

Z@J#5E Dw d̃F ẇa2vab
]H

]wbGdetFd l
a] t2vab

]2H

]wb]w l G , ~2.3!

where the determinant appearing in~2.3! is the functional determinant needed to pass from
zeroes@in ~2.1!# of the functionF(w,ẇ)[ẇa2vab (]H/]wb) to the function itself in~2.3!. This
functional determinant is positive definite5 and thiscrucial property is based on the fact tha
between two phase space points there is at most only one classical trajectory. This proper
not hold between two points of configuration space and so the associated functional deter
would not be positive definite.

In the CPI formulation2 of CM the next step is to ‘‘exponentiate’’ the determinant in~2.3! via
Grassmannian variables like it is done in the Faddeev–Popov~FP! method of gauge theories. I
Ref. 3 we chose a different strategy. The trick we adopted was to substitute the determin
~2.3! with the inverse determinant~for details see Ref. 3!:

detFd l
a] t2vab

]2H

]wb]w l G5H detFd l
a] t1vab

]2H

]wb]w l G J 21

. ~2.4!

The next steps done in Ref. 3 were to use~2.4! in ~2.3! and then ‘‘exponentiate’’ the inverse matri
via bosonic variables (pa,jb) using the well-known formula

E dpa djb exp~ ipaAa
bjb!}$det@Aa

b#%21. ~2.5!

This formula of Gaussian integration applies only to matrices with positive determinant and
our case as we explained above. Note that this is no longer the case for the FP determinan
as signaled by the Gribov problem, is not positive definite. This is the reason why the FP
minant could not be exponentiated via bosonic variables. Various attempts exist in the litera
write fermionic determinants via bosonic variables6 but they are all different from the one we hav
presented here.

Let us now use the relations~2.4! and ~2.5! into theZ@J# of ~2.3!, the result is
                                                                                                                



he

mmu-
th

Schro

5939J. Math. Phys., Vol. 44, No. 12, December 2003 Hilbert space structure, classical mechanics. II

                    
ZBFA@J#5E Dwa d̃F ẇa2vab
]H

]wbG H detFd l
a] t1vab

]2H

]wb]w l G J 21

5E Dwa Dla Dpa Dja expS i E dt LBFAD , ~2.6!

where

LBFA5laF ẇa2vab
]H

]wbG1p lFd l
a] t1vab

]2H

]wb]w l Gja . ~2.7!

The variablesla are the same as in the CPI2 formulation of CM and are needed to produce t
Fourier transform of the Dirac deltad̃@ ẇa2vab (]H/]wb)#. The variablesla are bosonic like
p l ,ja which were introduced to exponentiate the matrix@d l

a] t1vab (]2H/]wb]w l)# and to pro-
duce its inverse determinant. Let us remember that in the CPI formulation of CM2 the Lagrangian
obtained was

L̃CPI5laF ẇa2vab
]H

]wbG1 i c̄aFd l
a] t2vab

]2H

]wb]w l Gcl , ~2.8!

which can be better compared withLBFA of ~2.7! if, in this last one, we interchangep l ,ja . The
result is

LBFA5laF ẇa2vab
]H

]wbG2jaFd l
a] t2vab

]2H

]wb]w l Gp l1~s.t.!, ~2.9!

where~s.t.! is a surface term. From~2.9! we see that, modulo the surface term, we get theLBFA

from L̃CPI by replacing the Grassmannian variablesi c̄a andcl with the bosonic ones2ja andp l .

III. OPERATORIAL FORMALISM

We should now build the operatorial formalism associated to the BFA. The nonzero co
tators among the basic variables (wa,la ,pa,ja) can be straightforwardly derived from the pa
integral ~2.6! by inspecting the kinetic term in~2.7!. They turn out to be

@ŵa,l̂b#5 idb
a ,

~3.1!
@ ĵa ,p̂b#5 ida

b ,

where we have now turned the path integral variables into operators. Next we choose the ‘‘¨-
dinger’’ representation in whichŵa andp̂a are realized as multiplicative operators whilel̂a andĵa

as derivative ones of the form

l̂a[2 i
]

]wa ,

~3.2!

ĵa[ i
]

]pa .

So in this representation the associated Hilbert space is made of the ‘‘wave functions’’c(wa,pa)
defined on the 4N-dimensional ‘‘configurational’’ space whose coordinates are (wa,pa). A very
natural, andpositive definite, scalar product that we can introduce in this space is
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^cuc8&[E d2Nwa d2Npa c* ~wa,pa!c8~wa,pa!. ~3.3!

It is extremely easy to check that the 8N operatorsŵa,l̂a ,p̂a,ĵa are all Hermitian under the scala
product~3.3!

ŵa†5ŵa,

l̂a
†5l̂a ,

~3.4!
ĵa

†5 ĵa ,

p̂a†5p̂a.

Let us now derive from the Lagrangian~2.7! the associated Hamiltonian and let us turn t
variables (wa,la ,pa,ja) into operators, the result is

ĤBFA5l̂avab]bH2p̂ lvab]b] lH ĵa . ~3.5!

It is straightforward to check that this Hamiltonian is Hermitian under the Hermiticity condit
~3.4!. For more details the reader can consult Ref. 7. So we can say that, differently than in th
case analyzed in Ref. 1, in the BFA case we can have both a positive definite Hilbert space
Hermitian Hamiltonian.

The reader may remember that in the Conclusions of Ref. 1 we gave somephysicalreasons of
why we could not have both a positive definite Hilbert space and a Hermitian Hamiltonian i
CPI case: basically in a chaotic system the Jacobi fieldsca(t) grow exponentially and, as a
consequence, some of the one-forms

c~w,c!5ca~w!ca ~3.6!

have a norm which also grows exponentially with time. This means that the norm is not cons
and for this to happen we need a nonunitary evolution or equivalently a non-Hermitian H
tonian. This kind of reasoning cannot be applied in the BFA case. In fact here the role of the
fields is taken by the variablespa whose equations of motion, derived from the LagrangianLBFA

of ~2.9!, are

ṗa5vad]d]bHpb, ~3.7!

and so the analog of the wave function~3.6! is

c~w,p!5ca~w!pa. ~3.8!

Unfortunately this wave function is not normalizable according to the scalar product~3.3!. So even
if the exponential increase inpa would imply, like for the wave function~3.6!, an exponential
increase of the norm of the state, this would not lead to the conclusion that the evolution
unitary. The reason is that the state~3.8! itself is not part of the Hilbert space already att50 since
it is not normalizable. Further details on the BFA formulation, especially regarding the geom
interpretation of the variablesp,j, have been confined in an appendix at the end of the pape

IV. METAPLECTIC REPRESENTATION

One of the crucial concepts we will use in the appendix is that of Lie derivative.8 In particular
we will see how it acts on vector fields~A8!, on forms ~A10! or on tensors in the case o
symplecticmanifolds. The notion of Lie derivative can be extended togeneralmanifoldsMn with
Diff( Mn) as group of diffeomorphisms andG asstructure group9 of the associated~co-!tangent
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bundle. Under the action of an element of Diff(Mn), which drags the field through an infinites
mal displacementdwa52ha(w), an arbitrary tensor fieldX on Mn is transformed as follows:

X 8~w!2X~w!5LhX~w!, ~4.1!

where Lh is the Lie derivative associated to the vector fieldh5ha]a . The general abstrac
expression ofLh is10

Lh5ha]a2]bhaG a
b , ~4.2!

whereG a
b are the generators of the structuregroup G in the representationto which X belongs.

We will indicate witha,b the group indices and witha,b the representationones. So the matrix
representation ofG b

a will be (G b
a ) b

a wherea are also the indices ofX, if we organize it as a
vector. Now the structure groupG could have also spinor representations. This means that we
introduce the concept of Lie derivative also for spinors but it is well known10 that we cannot do it
along all vector fieldsha. We have to restrict ourselves to the Lie derivative alongKilling vector
fields in the Riemann case10 and alongHamiltonian vector fieldsin the symplectic one. Basically
the reason is that only for those fields the usual commutator structure of the Lie derivat
preserved even for spinors.

Before proceeding let us rewrite~4.2! in a slightly modified form. Let us first introduce th
following objects:4

Kab~w![]a]bH~w!,
~4.3!

Sab[ i ~vcaG c
b 1vcbG c

a !.

Both are symmetric ina,b andKabS
ab52i ]bhcG c

b , so ~4.2! can be rewritten as

Lh5ha]a1
i

2
KabS

ab. ~4.4!

In the case of spinors we have to use forSab in ~4.4! the spinorial representation of Sp(2N). To
do that we have to pass to the universal covering group of Sp(2N) which is themetaplecticgroup
Mp(2N).11–13 The associated algebra is generated by4

Smeta
ab 5 1

4 ~gagb1gbga!, ~4.5!

where thega satisfy the relation

gagb2gbga52ivab ~4.6!

which is the analog of the Dirac one for the Lorentz groupgmgn1gngm52gmn. So a represen-
tation for the matricesga in ~4.6! gives rise to a corresponding representation for the genera
Smeta

ab in ~4.5!. In particular, because of the crucial minus sign on its LHS, the algebra~4.6! does
not admit finite dimensional unitary representations. In fact ifga were represented by finite
dimensional matrices, by taking the trace on both sides of~4.6!, we would get a contradictory
result. Therefore the only representations are infinite dimensional. We will indicate withV this
infinite dimensional Hilbert space and with ‘‘x’’ the indices of its vectors. In particular we wil
consider only representations in whichga is Hermitian with respect to the inner product inV. As
a consequence alsoSmeta

ab is Hermitian,

~ga!†5ga,
~4.7!

~Smeta
ab !†5Smeta

ab .
                                                                                                                



d
rg

is
e

the

5942 J. Math. Phys., Vol. 44, No. 12, December 2003 Deotto, Gozzi, and Mauro

                    
Explicit representations of the symplectic operatorsga have been worked out in the literature an
can be found in Ref. 4. In particular the algebra~4.6! is isomorphic to the standard Heisenbe
algebra

f̂af̂b2f̂bf̂a5 i\vab, a,b51,...,2N, ~4.8!

made off̂a5( p̂k,x̂k), i.e., of N positionsx̂k andN momenta operatorsp̂k. So ga can be repre-
sented as

ga5S 2

\ D 1/2

f̂a ~4.9!

and in the ‘‘Schro¨dinger’’ representation, in which the operatorsx̂k are diagonal, we have

~gk! y
x 5S 2

\ D 1/2

^xux̂kuy&5S 2

\ D 1/2

xkdN~x2y!,

~4.10!

~gN1k! y
x 5S 2

\ D 1/2

^xu p̂kuy&52 i ~2\!1/2]kd
N~x2y!,

wherex,y are the Hilbert space indices.
The geometrical picture which emerges4 is the following. We have a bundle: the base space

the phase spaceM2N and on its fibers, which are the Hilbert spaceV, we have requested that th
structure groupG5Sp(2N) acts no longer in thevectorrepresentation but in thespinorone. This
bundle is the analog of the well-known ‘‘spin-bundle’’9 but each of its fibers is a Hilbert spaceV.
So we end up in aHilbert bundlewhich we callVw to indicate that there is a fiberV at each point
~w! of the phase spaceM2N .

In this Hilbert bundle a section is locally given by a functionc,

c:M2N→V,
~4.11!

w→uc;w&PVw .

Here the notationuc;w& indicates that the vectorc lives in the local Hilbert space~fiber! V
associated to the pointw of the base manifold. At the level of matrix elements the indices are
x of ~4.10! and so the function~4.11! is defined by its components

cx~w!5^xuc;w&. ~4.12!

By replacingV with its Hilbert dualV* we can also construct the dual of the Hilbert bundle

Xx~w!5^X;wux&, ^X;wuPVw* . ~4.13!

In our formalism it is natural to consider also ‘‘multispinor’’ fields

w→X y1 •••yp

x1 •••xq~w! ~4.14!

which assume values in the tensor product

~4.15!
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The symplectic spinors and multispinors have been first studied in great details in Ref. 1
stricting ourselves to a spinor, its evolution equation4 under the Hamiltonian vector fieldha

5vab]bH is

] tXx~w,t !52LhXx~w,t !52E dyFd~x2y!ha]a1
i

2
Kab~w!~Smeta

ab ! x
y G•Xy~w,t !. ~4.16!

In general if we indicate the representation indices with greek letters~a,b! and the group~or
manifold! indices with italic ones (a,b) Eq. ~4.16! can be replaced by

] tXa~w,t !52LhXa~w,t !52Fda
bha]a1

i

2
Kab~w!~Smeta

ab ! a
b GXb~w,t !. ~4.17!

This is the equation of evolution of the spinorX in any representation.

V. METAPLECTIC HAMILTONIAN AND SCALAR PRODUCT

Up to now we have used the abstract differential geometric formalism one can find i
literature,8,9,12,13but now we would like to put it in the kind of language we use in Ref. 2. T
procedure is straightforward.4 Let us extendM2N to a new spaceMext labeled by the coordinate
(wa,la ,ha,h̄a) wherela are the same kind of variables we used in Ref. 2 and in the first pa
this paper whileha,h̄a are Grassmannian variables and they are as many as the indicesa intro-
duced in the preceding section. Note that in Ref. 2, since the vector~or form! representation has
the same dimension as the manifoldM2N , the Grassmannian variablesca,c̄a were as many as the
variableswa ~or la). Here instead the number of indicesa is equal to the dimensionM of the
representation that we are using. So the dimension ofMext is not 8N, as in the CPI case, bu
4N12M whereM is the dimension of the representation.

Next let us endowMext with the following extended Poisson structure~epb!:

$wa,lb%epb5db
a , $wa,wb%epb5$la ,lb%epb50,

~5.1!
$h̄b ,ha%epb52 idb

a , $ha,hb%epb5$h̄a ,h̄b%epb50,

and with the following Hamiltonian:

H̃MFA5ha~w!la1 1
2h̄aKab~w!~Smeta

ab ! b
a hb, ~5.2!

where the acronym MFA means ‘‘Metaplectic Functional Approach’’ and we have used it be
this Hamiltonian is the one appearing in a new functional approach which we will present lat
As last ingredient let us build the following hat ‘‘∧’’ map2 between the multispinor fields~4.14! of
the abstract formalism and the variables belonging toMext:

X~w! → X̂[
1

p!q!
X a1 •••ap

b1 •••bq~w!h̄b1
¯h̄bq

ha1
¯hap. ~5.3!

It is then a straightforward but very long calculation to show4 that the Lie derivative onX can be
realized via the extended Poisson bracket and the HamiltonianH̃MFA as

~LhX! →̂ 2$H̃MFA ,X̂ %epb. ~5.4!

It is also easy to show that the standard equation of motion~4.17! for the spinor field] tXa

52LhXa can be written in terms of the HamiltonianH̃MFA as

] tX̂5$H̃MFA ,X̂ %epb, ~5.5!
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where X̂ is given by ~5.3!. Via H̃MFA and the extended Poisson brackets one can obtain
evolution of all the variables (wa,la ,ha,h̄a) of the extended manifoldMext. The equations of
motion for wa are the standard ones2 of classical mechanics

ẇa5ha~w~ t !!, ~5.6!

while the equations for the Grassmannian variables are

ḣa52
i

2
Kab~Smeta

ab ! b
a hb,

~5.7!

hG a5
i

2
Kabh̄b~Smeta

ab ! a
b .

Let us notice that the last two equations are quite different from the one of the Jacobi fielddwa,

d

dt
~dwa!5] lh

a~w!~dw l !. ~5.8!

So we cannot identifyha with the Jacobi fields of classical mechanics. They are instead a so
‘‘square root’’ of the Jacobi fields4 in the sense that the composite objectsca(t) defined as

ca~ t ![h̄a~ga! b
a h̄b ~5.9!

have the same equations of motion as the Jacobi fields. The details can be found in Refs. 4
The extended Poisson brackets formalism presented in this section can be given a c

path integral version as explained in details in Ref. 4. The associated generating functiona

ZMFA5E Dw Dl Dh Dh̄ expi E dt@laẇa1 i h̄aḣa2H̃MFA#. ~5.10!

As we did for the CPI case2 one can derive the ‘‘operatorial’’ version of this MFA path integr
From the kinetic term in~5.10! one gets the followingZ2-graded commutators:

@ŵa,l̂b#5 idb
a ,

~5.11!
@hC b ,ĥa#5db

a .

All the commutators not indicated in~5.11! are zero. In a ‘‘Schro¨dinger-type’’ representation
whereŵa and ĥa aremultiplicativeoperators, the associated momenta operatorsl̂a , hC a have to
be realized asderivativeoperators in order to satisfy the algebra~5.11!,

l̂a52 i
]

]wa ,

~5.12!

hC a5
]

]ha .

The associated representation space is given by the set of functions

X~w,h![(
p

1

p!
Xa1a2 •••ap

~w!ha1ha2
¯hap ~5.13!

while the metaplectic Hamiltonian~5.2! is turned into the operator
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ĤMFA5H̃MFAS ŵ,l̂52 i
]

]w
,ĥ,hC 5

]

]h D . ~5.14!

The next step is to endow the space of functions~5.13! with a scalar product and check if th
ĤMFA is Hermitian under it. We will choose the analog of the SvH scalar product, introduce
Ref. 1 for the CPI case, by imposing the following Hermiticity conditions:

ĥa†5hC a ,

hC a
†5ĥa,

~5.15!
ŵa†5ŵa,

l̂a
†5l̂a .

Along the same lines developed in Ref. 1, it is easy to show that the scalar product induced
Hermiticity conditions~5.15! among the states~5.13! is

^tuX&5(
p

K~p!E dw t* a1 •••ap~w!Xa1 •••ap
~w!, ~5.16!

where K(p) is a positive combinatorial factor. One immediately notices that this is apositive

definitescalar product. Let us now check whether the HamiltonianĤMFA is Hermitian under this
scalar product. Let us first remember that the bosonic part ofĤMFA ~5.2!, which is the same as in
the CPI case, is Hermitian.1 So we have to check out only the Fermionic~or Grassmannian! part
which is

ĤMFA
ferm5 1

2 ]a]bHhC x~Smeta
ab ! y

x ĥy. ~5.17!

We have indicated the indices withx,y because, in the metaplectic case, as explained previo
they are a continuous set of indices labeling the infinite states of the Hilbert spaceV. Second,
let us remember thatSmeta

ab have to be chosen Hermitian in the metaplectic and in any uni
representation

~Smeta
ab !†5Smeta

ab . ~5.18!

This Hermiticity of course refers to the indices (x,y) and not to (a,b). So if we indicate the
elements (Smeta

ab )y
x as ^xuSmeta

ab uy& then ~5.18! implies that

^xuSmeta
ab uy&* 5^yuSmeta

ab †ux&5^yuSmeta
ab ux&, ~5.19!

which in normal matrix language means

~Smeta
ab ! y

x* 5~Smeta
ab ! x

y . ~5.20!

It is straightforward to prove the Hermiticity ofĤMFA
ferm . In fact,

~ĤMFA
ferm!†5~ 1

2 ~]a]bH !hC x~Smeta
ab ! y

x ĥy!†5 1
2 ~]a]bH !ĥy†~Smeta

ab ! y
x* hC x

†5 1
2 ~]a]bH !hC y~Smeta

ab ! x
y ĥx

5 1
2 ~]a]bH !hC x~Smeta

ab ! y
x ĥy5ĤMFA

ferm . ~5.21!

This proves that the fullĤMFA is Hermitian under the SvH scalar product. This does not hap
for the H̃ of the CPI.2,1 Let us understand why. It can be shown7 that also the usualH̃CPI can be
given a form similar toH̃MFA ,
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H̃CPI5hala1 1
2c̄eKab~w!~Svec

ab ! f
e cf , ~5.22!

where (Svec
ab ) f

e is theS associated to the transformations of vectors under Sp(2N) and is given by4

~Svec
ab ! f

e 52 i ~d f
avbe1d f

bvae!. ~5.23!

It is easy to check that thisS does not satisfy the analog of the relation~5.20!, which means

~Svec
ab ! f

e* Þ~Svec
ab ! e

f . ~5.24!

This explains whyH̃CPI is not Hermitian in the SvH scalar product.
There may be other scalar products in the metaplectic case which are both positive d

and under whichH̃MFA is Hermitian but for the moment we have not initiated any search for th
This search anyhow may be needed in the future as explained in the Conclusions.

VI. CONCLUSIONS AND OUTLOOK

In this paper we have analyzed two new operatorial extensions of the Koopman–von
mann ~KvN! approach which, differently from the standard CPI case studied in Ref. 1, pr
both a Hermitian Hamiltonian and a positive definite scalar product. Leaving for a moment
the metaplectic case~MFA! let us concentrate on the bosonic one~BFA!. The reader may prefe
this one over the CPI case but there are several drawbacks we want to point out. First of al
BFA approach the higher tensors and forms had to be built by hand introducing from the o
the operation̂ of tensor product~A36!, while in the CPI case, because of the Grassmann
nature of the variablesc, the higher tensors and forms were generated automatically as func
on the extended phase space which is the sole ingredient entering the associated path
Moreover at the operatorial level in the BFA case we had to build several copies~A38! of the basic
Hilbert space in order to get the higher tensors and forms. As a consequence the associa
integral ~A53! is quite awkward and it does not have a simple interpretation in terms of D
deltas on the classical trajectories. More serious than this drawback is another one that w
may affect the BFA. It concerns the following problem. We have seen in Ref. 1 that the
Hermiticity of H̃CPI or the nonpositive definiteness of the scalar product were crucial ingred
in order to describe chaotic systems. In fact such ingredients can imply the presence of co
eigenvalues forH̃CPI and this has as a consequence the exponential increase of the Jacobi
Nothing like that can happen with theH̃BFA which is Hermitian and with a positive definite scal
product. Does it mean thatH̃BFA cannot describe all systems? We feel it will but most probably
will have to further enlarge the Hilbert space of the BFA. People have gone in this dire
already with other Hermitian operators. For example, the authors of Ref. 14, in order to g
chaotic behavior out of the analog of the Hermitian KvN operator for zero-forms, enlarge
Hilbert space to a rigged Hilbert space where the operator was no longer Hermitian. This m
the road to pursue also in the BFA case. Before doing that anyhow one should really
whether this further extension to a rigged Hilbert space is needed or if some mathematical
ties of the BFA allow us to describe also chaotic systems without any further extension. We
not embarked on this study but we have, in this paper, prepared the mathematical ground to
by analyzing in all details the geometry underlying the BFA. That the CPI instead could des
chaotic systems was not only indicated in Ref. 1 by the presence of complex eigenvalues oH̃CPI

but it was shown explicitly in Ref. 15 where an explicit expression of the Lyapunov exponen
terms of the CPI generating functionalZCPI@J# was written down.

Let us now turn to the metaplectic case. Why did we study it here? We did first of a
present another example of an extension of the KvN zero-form formalism which has b
Hermitian Hamiltonian and a positive definite scalar product. These mathematical features
not studied in the first presentation4 of the MFA. Of course for this model, differently than the C
and the BFA, we do not have in mind applications to chaotic systems or similar things; wh
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have in mind is the light it may throw on the issue of quantization. It was used in that resp
Ref. 16. There quantization was achieved by first postulating a MFA dynamics for the exte
KvN dynamics and next introducing a flat connection on the Hilbert bundle defined in Sec. IV
main thing we want to understand of that project is why we need to start at the classical leve
the MFA dynamics. An answer to this question that we are currently exploring is the follow
Maybe the CPI should be considered the right classical dynamics not for the classical
functions but for theprobability densities

r~w,c!5r0~w!1ra~w!ca1rab~w!cacb1¯ ~6.1!

which are only integrable~i.e., belonging toL1) and not square integrable functions. Then to
the ‘‘classical wave functions’’ we should do a sort of ‘‘square root’’ of ther in ~6.1!. May it be
that these ‘‘square roots’’ are the MFA wave functions?

c~w,h!5(
p

1

p!
ca1¯ap

~w!ha1ha2
¯hap. ~6.2!

If so this would explain why we need the MFA evolution at the classical level. The reason we
this suspect is because theh are something like the ‘‘square roots’’~5.9! of the c,

ca5h̄a~ga! b
a h̄b. ~6.3!

What we actually need in the MFA is a new scalar product such that

w^cuh&^huc&w5r~w,h̄gh!5r~w,c!. ~6.4!

That means that we would like that theh,h̄ on the LHS of~6.4! get combined by this scala
product into those combinationsh̄gah which are basically theca. We want that they combine in
this way because the classical probability densities in~6.1! contain the formsc and noth or h̄.
The scalar product~6.4! is not the SvH one that we explored in Sec. V for the MFA. In fact
SvH scalar product of the MFA does not pull in theg matrices which instead are necessary in~6.4!
to get the combinationh̄gh inside ther. So far we have not succeeded in building the sca
product~6.4! but in order to get some practice we have asked ourselves how, from the va
components of thec appearing in~6.2!, we can build objects which at least have the same ind
and transformation properties as the various components ofr appearing in~6.1!. One solution we
found7 is the following one:

~6.5!

where withuc (p)& we indicate the components of the states~5.13! with p indices while with^ we
indicate the tensor product among the Hilbert spaces like in~4.15!. Thefirst thing to notice in~6.5!
is that if we transformuc (p)& according to the metaplectic transformations then the resul
rab•••d turns out to transform according to the symplectic one.

Second, let us notice thatuc (p)& has, in the metaplectic case, componentsca1 •••ap
whose

number of indices can run from zero tò, while r can have only at mostN indices. This means
we have much more information stored in theuc& that what is needed to build ther. What does this
mean?

Third, let us remember that while~6.5! produces ar out of a c, it is not clear whether the
inverse procedure is true and unique. That means whether, given ar with all its components, it is
possible to find auc& such that~6.5! or ~6.4! is satisfied.

This is the project we are currently working and this explains why it is crucial for this pro
to analyze the various scalar products associated to the MFA dynamics.
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APPENDIX: GEOMETRICAL ANALYSIS OF THE BFA AND ASSOCIATED SYMMETRIES

In Ref. 3 we tried a first geometrical analysis of the bosonic formalism. There we gav
interpretation of the variablespa,ja as componentsof vectors and forms whosebasis were,
respectively, the variablesc̄a andca:

V5pac̄a ,
~A1!

F5jaca.

The reason for this was that, under an infinitesimal diffeomorphism generated byHBFA over the
original phase space:

w8a5wa1evab]bH, ~A2!

the variablespa andja transform in the following way:

p8a5pa1evac]c]bHpb5
]w8a

]wb pb,

~A3!

ja85ja2evbc]c]aHjb5
]wb

]w8a jb ,

i.e., just as components of vectors and forms. In this interpretation the HamiltonianĤBFA of ~3.5!
cannot be given the meaning of a Lie derivative. In fact we know that the Lie derivativeL(dH)]

8

changes the components of a vector as follows:

dp l5~]ap l !vab]bH2~]av lb]bH !pa, ~A4!

while ĤBFA in ~3.5! induces onp̂ l the following transformation:

dp̂ l5@p̂ l ,i ĤBFA#5~2]av lb]bH !p̂a, ~A5!

which is clearly different from~A4!. So if we insist in the analysis presented in Ref. 3, we sho
first abandon the interpretation ofĤ of the BFA case as the Lie derivative along the Hamilton
flow. Second, if we insist in interpretingpa,ja as components, we should make them depend
on w and that implies that we should give a connection to glue the fibers ofT* (T* M) of which
pa andja are coordinates.3 This connection does not appear in a natural way in our formalism.
in order to bypass these two problems, we will interpretp̂a andĵa asbasis, respectively, of forms
and vector fields. One-forms and vector fields are then given by

F5Fa~ ŵ !p̂a,
~A6!

V5Va~ ŵ !ĵa .

As a consequence, it is easy to check that theĤBFA of ~3.5! can be interpreted as the Lie derivativ
~up to a constant factor!. In fact, the commutator betweeni ĤBFA and the vectorV of ~A6! gives
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@ i ĤBFA ,Ve~ ŵ !ĵe#5@~]aVe!vab]bH2~]aveb]bH !Va#ĵe ~A7!

and this is exactly how vector componentsVe change8 under the Lie derivative of the Hamiltonia
flow

dVe~w![V8e~w!2Ve~w!5~]aVe!vab]bH2~]aveb]bH !Va. ~A8!

Analogously, on the one-formsF5Fe(ŵ)p̂e of ~A6!, ĤBFA acts as follows:

@ i ĤBFA ,Fe~ ŵ !p̂e#5@~]aFe!v
ab]bH1~]ev

ab]bH !Fa#p̂e. ~A9!

This is exactly how one-forms componentsFe transform8 under the Lie derivative,

dFe~w!5Fe8~w!2Fe~w!5~]aFe!v
ab]bH1~]ev

ab]bH !Fa . ~A10!

Before giving to ĤBFA the meaning of a Lie derivative, another check we should do is
following. The commutator of two Lie derivatives has the property8

@L(dH1)],L(dH2)]#5L[(dH1)],(dH2)]] Lb
, ~A11!

whereH1 andH2 are the Hamiltonians entering the Lie derivative and@(dH1)],(dH2)]#Lb are the
Lie brackets~Lb! between the associated Hamiltonian vector fields (dH1)] and (dH2)]. Accord-
ing to our conventions the Lie brackets can be related to the Poisson brackets betweenH1 andH2

in the following way8

@~dH1!],~dH2!]#Lb5@vbc]cH1]bvad]dH22vbc]cH2]bvad]dH1#ja

52@vad]d~]bH1vbc]cH2!#ja52~d$H1 ,H2%!]. ~A12!

Therefore~A11! can be rewritten as

@L(dH1)],L(dH2)]#5L2(d$H1 ,H2%)]. ~A13!

As we associate to each Lie derivativeL(dH)] an operatori ĤH , the relation~A13! should turn into
the following one:

@ i ĤH1
,i ĤH2

#52 i Ĥ$H1 ,H2% , ~A14!

where we have put on theĤ of ~3.5!, the labelH1 , H2 or $H1 ,H2% to indicate the function
entering eachĤBFA . It is easy to prove that~A14! is satisfied using the commutators~3.1! and this
confirms that it is consistent to assign toĤBFA the meaning of a Lie derivative~for details see Ref.
7!.

In Ref. 2 it was found that, for the CPI, there were various conserved universal ch
associated to the Lie derivative. They were called BRS, anti-BRS, ghost and supersym
charges in analogy with similar objects present in gauge field theory. Despite these names t
well-known structures in symplectic geometry;8 for example the BRS charge is nothing but t
exterior derivative on phase space and its conservation is related to the fact that the e
derivative commutes with the Lie derivative.8 The ghost charge is basically the form numbe8

while the supersymmetry charge is connected to the concept of equivariant cohomology.17 Besides
their geometrically universal meaning, these charges and the associated symmetries so
signal the redundancy of the 8N variables (wa,la ,ca,c̄a) used in describing CM. We know in fac
that CM can be described using only the 2N phase space variables (wa) and so the other 6N
variables must be related to thewa via some symmetries which should be present for any sys
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Also in the bosonic case we have many extra variables (la ,pa,ja) besides the 2N phase space
variableswa and so we expect to find various symmetries like in the CPI.

The way we start our search for the symmetries in the bosonic case is rather naive but it
of the few we could think of. Basically, as the variablespa,ja take the place—in the bosoni
case—of the Grassmannian variablesca,c̄a , we simply rewrite the charges conserved in the C
and replace in themca and c̄a with pa andja . In the CPI the conserved charges are2,17

Qg5 icac̄a ghost charge,

N5ca]aH, ~A15!

N̄5 c̄avab]bH,

and

Q5 icala BRS charge,

Q̄5 i c̄avablb anti-BRS charge,
~A16!

QH5Q2N susy charge,

Q̄H5Q̄1N̄ susy charge.

So by replacing naivelyca with pa and c̄a with ja we get the two following sets of charges:

Qg
(B)5 ipaja ,

N(B)5pa]aH, ~A17!

N̄(B)5javab]bH

and

Q(B)5 ipala ,

Q̄(B)5 i javablb ,
QH

(B)5Q(B)2N(B),

Q̄H
(B)5Q̄(B)1N̄(B),

~A18!

where the superscript (B) on the charge indicates that it refers to the BFA case. The reader
complain that, by replacingca with pa and c̄a with ja , we have not really done the replaceme
which would bring theH̃ of the CPI into theH of the BFA ~3.5!. The difference is just in
multiplicative factors (6 i ) which cannot spoil the conservation of the charges. The careful re
may also notice that in the CPI there were two other conserved charges2 which are

K5 1
2 cavabc

b,

~A19!

K̄5 1
2c̄avabc̄b .

We did not list them because, via the substitution we did for the BFA case, the correspo
charges would be zero because of the bosonic character ofp andj and the antisymmetry ofvab ,

K (B)5 1
2 pavabp

b50,

~A20!
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K̄ (B)5 1
2 javabjb50.

Turning now back to the set of charges in~A17!, it is easy to check that they are all conserved, i

@Qg
(B) ,ĤBFA#5@N(B),ĤBFA#5@N̄(B),ĤBFA#50. ~A21!

On the other hand, the charges present in~A18! are apparently not conserved. In fact taking t
bosonic analog of the BRS charge and its commutator withĤBFA we get7

@Q(B),ĤBFA#52p lvab]b] l]cHpcja ~A22!

and for the anti-BRS charge

@Q̄(B),ĤBFA#52javabjsv
st~]b] t] lH !p l . ~A23!

Analogously the ‘‘supersymmetry’’ chargesQH
(B) ,Q̄H

(B) in ~A18! cannot be conserved because th
are a linear combination ofQ(B) andQ̄(B), which are not conserved, withN(B) andN̄(B) which are
conserved.

Let us now look at the RHS of~A22! and ~A23! which indicate by ‘‘how much’’ the conser-
vation law is violated. It is easy to notice that these RHS do not containla and so they commute
with the original phase space operatorswa. As a consequence the infinitesimal transformatio
generated byQ(B) and by the HamiltonianĤBFA commutewhen they are applied onw. In fact the
infinitesimal BRS transformations generated byQ(B) on a fieldA is given by the commutator o
Q(B) with the field:dQ(B)A5@eQ(B),A# wheree is an infinitesimal parameter. The same happ
for the transformations generated by the Hamiltonian:dHA5@ ē ĤBFA ,A#. Suppose we take forA
the original phase space variableswa. If we perform first an infinitesimal time evolution and the
a BRS transformation we obtain

dQ(B)dHwa5eē@Q(B),@ĤBFA ,wa## ~A24!

while, if we perform the transformations in the inverse order, we get

dHdQ(B)wa5eē@ĤBFA ,@Q(B),wa##. ~A25!

Now we can use the Jacobi identities to obtain

dQ(B)dHwa2dHdQ(B)wa5eē~@Q(B),@ĤBFA ,wa##2@ĤBFA ,@Q(B),wa## !

52eē@wa,@Q(B),ĤBFA##50, ~A26!

where in the last step we have used the fact that the RHS of~A22! commutes withwa. ‘‘Some-
how’’ we can say that the transformations generated byQ(B) andĤBFA commute on the origina
phase space. Of course the same will happen for the anti-BRS chargeQ̄(B) and for the supersym
metry chargesQH

(B) ,Q̄H
(B) .

Now we want to provide a geometrical interpretation of this fact at least for the BRS ch
Let us perform an infinitesimal BRS transformation onwa,

dQ(B)wa5@eQ(B),wa#5@e ipblb ,wa#5epa, ~A27!

wheree is an infinitesimal commuting parameter. The new phase space pointw8a reached after
this transformation is

w8a5wa1epa. ~A28!
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Remember now thatpa is a Jacobi field that means it satisfies the equation of the first varia
~3.7!. So if wa is a point on a trajectory, thenw8a is a point on a nearby trajectory as indicated
the diagram 1 below:

From Diagram 1 above we expect that we could move from the pointwa along its trajectory
via the HamiltonianĤBFA for an interval of timeDt, reach a pointw (1)

a and from there jump, via
a BRS transformation to a pointw (1)8a on the nearby trajectory. Moving then back on this seco
trajectory for an interval of timeDt we should reach the pointw8a that we originally reached via
a simple BRS transformation fromwa. All this is illustrated in Diagram 2 below:

This diagram expresses the fact that,in the w-space, the BRS transformation andĤBFA com-
mute that is what Eq.~A26! tells us.

Let us now turn to the bosonic analogs of the susy chargesQH
(B) ,Q̄H

(B) . As they are linear
combinations ofQ(B),Q̄(B),N,N̄ and these last two charges commute withĤBFA , from ~A22! and
~A23! we will get

@QH
(B) ,ĤBFA#52p lvab]b] l]cHpcja ,

~A29!

@Q̄H
(B) ,ĤBFA#52javabjsv

st~]b] t] lH !p l .

From these expressions we gather that as before also the transformations generated byQH
(B) and

Q̄H
(B) commute with those generated byĤBFA on the phase space variableswa. It would be

interesting to check whether they behave as true supersymmetry charges that means whe

@QH
(B) ,Q̄H

(B)#52ĤBFA . ~A30!

It is actually easy7 to work out the commutators ofQH
(B) ,Q̄H

(B) and the calculation gives

@QH
(B) ,Q̄H

(B)#52ĤBFA14pavde]e]aHjd . ~A31!

We see that we can get the standard supersymmetry algebra if the last term on the RHS o~A31!
were zero. Again this term does not containla and so on thewa variables we have that

dQ
H
(B)dQ̄

H
(B)wa2dQ̄

H
(B)dQ

H
(B)wa52dĤwa, ~A32!

i.e., the supersymmetry algebra holds.
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Usually supersymmetry is described as the ‘‘square root’’ of the time translation. Let us find
out whether there is anything like that in our bosonic case. Instead of the two chargesQH

(B) and
Q̄H

(B) , let us build the following ones:

Q1
(B)5Q(B)2N̄(B),

~A33!

Q2
(B)5Q̄(B)1N(B).

The transformations of our variables underQ1
(B) can be easily worked.7 The result is

dQ
1
(B)wa5epa,

dQ
1
(B)ja5ela ,

~A34!
dQ

1
(B)pa52 i evae]eH,

dQ
1
(B)la52 i ejbvbe~]e]aH !,

where e is an infinitesimal commuting parameter. Let us check whether, by performing t
transformations twice, we get a time translation. Using~A34! and restricting ourselves on th
original phase spacewa, we get

dQ
1
(B)

2
wa5dQ

1
(B)~epa!52 i e2vae]eH52 i e2ẇa. ~A35!

In the last step above we have used the equations of motion. The result seems to confirm thQ1
(B)

is the ‘‘square root’’ of the time translation. Equation~A35! is an infinitesimal time translation i
we equatee25Dt. So we could say that, in order to do an infinitesimal time translation, we c
perform twoQ1

(B) transformations in a row each with ‘‘infinitesimal’’ parametere related to the
‘‘square root’’ of Dt. We find that it is curious that, at least on some hypersurfaces of
8N-dimensional space, we could get something analogous to a square root of a time tran
without introducing Grassmannian variables and via purely bosonic charges.

Let us now go back to geometry and to the bosonic BRS chargeQ(B). As we have already said
in the Grassmannian case the BRS charge can be identified2 with the exterior derivative. One o
the properties8 of the exterior derivative is that it commutes with the Lie derivative. This is
longer the case for ourQ(B) as it is proved in~A22!. Even if Q(B) and HBFA commute in the
w-space, it is not enough. In fact the exterior derivative must commute with the Lie derivati
the full space of forms which is somehow an extension of the ordinary phase space. Actual
the space of higher forms which has to be properly defined in the BFA case and this is wh
will do next.

In Eq. ~A6! we have seen that it is possible to build one-forms using the operatorsp̂a instead
of the Grassmannian variablesca. The problem arises when we want to build higher forms: in f
it is difficult to define awedgeproduct∧ so that, for example, the basis dwa∧dwb for two-forms
is antisymmetric in the interchangea↔b. This operation was naturally incorporated in the Gra
mannian formalism:2 in fact by representing the forms dwa with the anticommuting variablesca,
the antisymmetry of dwa∧dwb was automatically reproduced by the antisymmetry of the prod
cacb. In the bosonic case we do not have Grassmannian variables and the formsp̂a commute
among themselves. Therefore we cannot represent a two-form dwa∧dwb asp̂ap̂b, because in this
way we would lose its anticommuting nature.

The way out seems to be the standard procedure used in the literature9 on differential geom-
etry, i.e., to introduce a tensor product among the cotangent spaces whose basis are thewa and
define the wedge product∧ as
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dwa∧dwb[ 1
2 ~dwa

^ dwb2dwb
^ dwa!. ~A36!

In our case the role of the dwa is taken by the operatorp̂a and, since we want to build tenso
products among them, we have to enlarge our Hilbert space. Originally it was made of fun
c(wa,pa) belonging to the tensor product of the two Hilbert spaces spanned byuwa& and upa&,

H[Hw ^ Hp . ~A37!

From now on the new Hilbert space we will use is the following one:

H2N[Hw ^ Hp(1)
^ Hp(2)

^¯^ Hp(2N)
, ~A38!

where we have made the tensor products of 2N copies of the spaceHp and labeled them with
Hp(1)

, ...,Hp(2N)
. If we limit ourselves to the caseN51 the space~A38! reduces to

H2[Hw ^ Hp(1)
^ Hp(2)

~A39!

and in this space we have that, for example, a two-form is represented as

F̂5Fab~ ŵ ! ^
1
2 @p̂ (1)

a
^ p̂ (2)

b 2p̂ (1)
b

^ p̂ (2)
a #. ~A40!

The operator~3.5! was the correct one to represent the Lie derivative, but only in the space~A37!.
To represent the Lie derivative on the new space~A39! we should generalizeĤBFA to this new
operator:

Ĥ[l̂avab]bH~ ŵ ! ^ 1(1)^ 1(2)2vbe]e]aH~ ŵ ! ^ ~p̂ (1)
a ĵb

(1)
^ 1(2)11(1)^ p̂ (2)

a ĵb
(2)!. ~A41!

Using as commutators the following natural generalization of those in~3.1!:

@p̂ ( i )
a ,p̂ ( j )

b #50,

@ ĵa
( i ) ,ĵb

( j )#50,

@ ĵa
( i ) ,p̂ ( j )

b #5 ida
bd ( j )

( i ) , ~A42!

@ŵa,p̂ ( i )
b #50,

@ŵa,ĵb
( i )#50,

it is easy7 to see that the action of theĤ presented in~A41! on the two-formF̂ of ~A40! is

@ i Ĥ,F̂#5vab@]bH]aFde1]b]dHFae1]b]eHFda# ^
1
2 ~p̂ (1)

d
^ p̂ (2)

e 2p̂ (1)
e

^ p̂ (2)
d ! ~A43!

and this is exactly the manner how two-forms transform under the Lie derivative.8 Equation~A43!

confirms that the choice ofĤ we made in~A41! is the correct one.
In the caseN51 we have only zero-, one-, and two-forms and if the two-forms are re

sented by Eq.~A40!, how are zero- and one-forms represented? The zero-formsĜ and the one-
forms Ĉ are, respectively,

Ĝ5G~ ŵ ! ^ @1(1)^ 1(2)#, ~A44!

Ĉ5Cd~ ŵ ! ^ @p̂ (1)
d

^ 1(2)11(1)^ p̂ (2)
d #. ~A45!
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It is easy to prove7 that the commutator ofi Ĥ with Ĉ gives the correct action of the Lie derivativ
on one-forms,

@ i Ĥ,Ĉ#5~]aCdv
ab]bH1vae]e]dHCa! ^ @p̂ (1)

d
^ 1(2)11(1)^ p̂ (2)

d #. ~A46!

So we can conclude that, in the caseN51, the operator~A41! represents a good extension of th
Lie derivative on the entire space of differential forms.

It is easy to generalize theĤ of ~A41! to a space with an arbitrary numberN of degrees of
freedom. It is the following one:

Ĥ[lavab]bH ^ 1^ 2N2vbe]e]aH ^ S@p̂aĵb^ 1^ (2N21)#, ~A47!

where by1^ 2N we indicate the tensor product of 2N identity operators, and withS the symme-
trizer of the operators contained in the square brackets. So, for example, forN52 we have

S@p̂aĵb^ 1^ 3#5p̂ (1)
a ĵb

(1)
^ 1(2)^ 1(3)^ 1(4)11(1)^ p̂ (2)

a ĵb
(2)

^ 1(3)^ 1(4)

11(1)^ 1(2)^ p̂ (3)
a ĵb

(3)
^ 1(4)11(1)^ 1(2)^ 1(3)^ p̂ (4)

a ĵb
(4) . ~A48!

Let us remember that the indices(1),(2),...,(2N) always indicate on which Hilbert spaceHp( i )

in ~A38! the operatorsp̂ ( i ) , ĵ ( i ), and 1( i ) act. In the same way it is possible to generalize
concept of differential form. Anm-form in a 2N-dimensional space is given by

P̂[SH 1

m!
Pa1¯am

~ ŵ ! ^ A$p̂ (1)
a1 ^ p̂ (2)

a2 ^¯^ p̂ (m)
am % ^ 1^ (2N2m)J , ~A49!

whereA indicates the antisymmetrizer of the basisp̂ ( i )
ai of them cotangent spaces needed to bu

an m-form. The position of thism operatorsp̂ inside the string of the 2N Hilbert spaces is
completely arbitrary. Therefore if we do not want to choose a particular position we can sy
trize the 2N2m identity operators with them operatorsp̂ by means of the symmetrizerS as we
did in Eq.~A45! for the one-forms. It is not difficult to prove7 that the commutator between~A47!
and~A49! reproduces the correct action of the Lie derivative on an arbitrary differential formP,

@ i Ĥ,P̂#5L(dH)]P. ~A50!

Before concluding this appendix let us notice that in the BFA approach the higher form
not represented bywave functionsof the theory likec(w,c) in the CPI case, but byoperatorslike
in ~A49!. In fact wave functions, in the bosonic case, are generic functionsc~w,p! and they would
not have the structure of the Grassmannian ones,

c~w,c!5c0~w!1ca~w!ca1cabc
acb1¯1cabc̄ lc

acbcc
¯cl . ~A51!

In the CPI case it was this structure which allowed us to identifyc0(w) with zero-forms,ca(w)ca

with one-forms,cabc
acb with two-forms, etc. In the bosonic case instead the wave funct

c~w,p! are generic functions ofp and this forbids the identification with forms. Moreover, as w
said in Sec. III, a one-form would be represented byc(w,p)5ca(w)pa which would be not an
acceptable wave function because it is not normalizable. Of course this does not mean tha
formalism given by~A47! we cannot introduce wave functions. It simply means that such w
functions cannot have the meaning of higher forms. Only operators like~A49! have this meaning.

The wave functions associated to the multiform formalism of the Hamiltonian~A47! are
basically those which make up the Hilbert space~A38! and so they are
c(wa,p (1)

a ,p (2)
a ,...,p (2N)

a ). It is possible to introduce also in this space the following posit
definite scalar product:
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^c1uc2&[E d2Nwa)
i 51

2N

d2Np ( i )
a c1* ~w,p!c2~w,p! ~A52!

and it is easy to prove7 that with this product the Hamiltonian~A47! is Hermitian.
The reader may remember that our originalĤBFA ~3.5! was derived from the path integra

formalism ~2.6!. Also the multiform Hamiltonian~A47! can be derived from the following pat
integral:

Z5E Dwa Dla)
i 51

2N

Dp ( i )
a Dja

( i ) expF i E dt LMFG , ~A53!

where the multiform~MF! LagrangianLMF is

LMF5laẇa1(
i 51

2N

p ( i )
a j̇a

( i )2HMF ~A54!

with

HMF5lavab]bH2(
i 51

2N

p ( i )
a vbe]e]aHjb

( i ) . ~A55!

It is straightforward to check that the HamiltonianHMF is Hermitian under the scalar produ
~A52!. Basically in the Hamiltonian~A55! we have a set of extra variables (p ( i ) ,j ( i )) for each
extra Hilbert spaceHp( i )

appearing in~A38!. It is actually then easier to work with the Hami

tonianHMF than with the one in~A47!. We can in fact turn thep ( i )
a ,ja

( i ) into operators by just
looking at the kinetic term of~A53! and deriving from it the commutators that we introduced
hand in ~A42! plus the usual one@ŵa,l̂b#5 idb

a . This confirms that the path integral~A53! is
basically the one behind the operatorial formalism~A47!. Unfortunately this path integral does no
appear to have a ‘‘natural’’ interpretation differently than the one in~2.6!, in the sense that the
latter is naturally related to~2.3! and ~2.1! which are just Dirac deltas on the classical path.
These Dirac deltas are natural objects in a functional approach to CM because they jus
weight one to classical paths and weight zero to nonclassical ones. Nothing like that can b
for the path integral~A53! which can be turned into a Dirac delta of the equations of motion
in ~2.3! but it gets multiplied not by one determinant but by 2N of them. This structure does no
allow us to pass to the Dirac deltas of the classical trajectories appearing in~2.1!. So somehow the
path integral~A53! does not have a simple intuitive understanding.This is the price we pay: we
have a formalism with a positive definite scalar product and a Hermitian Hamiltonian b
physical understanding is lacking. If on the contrary we keep the intuitive single particle pa
integral associated to the Hilbert space~A37! then the tensor product structurê, needed to build
higher forms like in~A49!, has to be given from outside and is not provided directly by the p
integral. On the contrary in the original CPI case2 the whole formalism, even for higher forms, ha
an intuitive understanding and construction~because it can be reduced to a Dirac delta on class
paths!, and no extra structure has to be brought in from outside, but the price we paid is th
have to give up one of the two conditions: either the positive definiteness of the scalar prod
the Hermiticity of the Hamiltonian.
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Gauge symmetry of the N-body problem
in the Hamilton–Jacobi approach

Michael Efroimskya)

US Naval Observatory, 3450 Massachusetts Avenue, Washington DC 20392

Peter Goldreichb)

Geological and Planetary Sciences Division, CalTech Pasadena, California 91125

~Received 21 June 2003; accepted 20 August 2003!

In most books the Delaunay and Lagrange equations for the orbital elements are
derived by the Hamilton–Jacobi method: one begins with the two-body Hamilton
equations in spherical coordinates, performs a canonical transformation to the or-
bital elements, and obtains the Delaunay system. A standard trick is then used to
generalize the approach to theN-body case. We reexamine this step and demon-
strate that it contains an implicit condition which restricts the dynamics to a 9(N
21)-dimensional submanifold of the 12(N21)-dimensional space spanned by the
elements and their time derivatives. The tacit condition is equivalent to the con-
straint that Lagrange imposed ‘‘by hand’’ to remove the excessive freedom, when
he was deriving his system of equations by variation of parameters. It is the con-
dition of the orbital elements being osculating, i.e., of the instantaneous ellipse~or
hyperbola! being always tangential to the physical velocity. Imposure of any
supplementary condition different from the Lagrange constraint~but compatible
with the equations of motion! is legitimate and will not alter the physical trajectory
or velocity ~though will alter the mathematical form of the planetary equations!.
This freedom of nomination of the supplementary constraint reveals a gauge-type
internal symmetry instilled into the equations of celestial mechanics. Existence of
this internal symmetry has consequences for the stability of numerical integrators.
Another important aspect of this freedom is that any gauge different from that of
Lagrange makes the Delaunay system noncanonical. In a more general setting,
when the disturbance depends not only upon positions but also upon velocities,
there is a ‘‘generalized Lagrange gauge’’ wherein the Delaunay system is symplec-
tic. This special gauge renders orbital elements that are osculating in the phase
space. It coincides with the regular Lagrange gauge when the perturbation is ve-
locity independent.
@DOI: 10.1063/1.1622447#

I. EULER AND LAGRANGE

A. The history

The planetary equations, which describe the evolution of the orbital elements, constitu
cornerstone of the celestial mechanics. Description of orbits in the language of Keplerian ele
~rather than in terms of the Cartesian coordinates! is not only physically illustrative but also
provides the sole means for analysis of resonant interactions. These equations exist in a va
equivalent forms~those of Lagrange, Delaunay, Gauss, Poincare! and can be derived by sever
different methods.

The earliest sketch of the method dates back to Euler’s paper of 1748, which address
perturbations exerted upon one another by Saturn and Jupiter. In the publication on the

a!Electronic mail: efroimsk@ima.umn.edu
b!Also at the Institute for Advanced Study, Princeton, NJ 08540. Electronic mail: pmg@sns.ias.edu
59580022-2488/2003/44(12)/5958/20/$20.00
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motion, dated by 1753, Euler derived the equations for the longitude of the node,V, the inclina-
tion, i, and the quantityp[a(12e2). Time derivatives of these three elements were expres
through the components of the disturbing force. Sixty years later the method was amend
Gauss who wrote down similar equations for the other three elements and, thus, obtained w
now call the Gauss system of planetary equations. The history of this scientific endeavou
studied by Subbotin~1958!, who insists that the Gauss system of planetary equations should r
be called Euler system. A modern but still elementary derivation of this system belongs to
~1976!.

In his mémoires of 1778, which received an honorable prize from the Acade´mie des Sciences
of Paris, Lagrange employed the method of variation of parameters~VOP! to express the time
derivatives of the orbital elements through the disturbing functions’ partial derivatives with re
to the Cartesian coordinates. In his me´moire of 1783, Lagrange furthered this approach, while
Lagrange~1808, 1809, 1810! these equations acquired their final, closed, shape: they expre
the orbital elements’ evolution in terms of the disturbing potentials’ derivatives with respect t
elements. Lagrange’s derivation rested upon an explicit imposure of the osculation conditio
of a supplementary vector equation~called the Lagrange constraint! which guaranteed that th
instantaneous ellipses~in the case of bound motions! or hyperbolae~in the case of flyby ones! are
always tangential to the physical trajectory. Though it has been long known~and, very possibly,
appreciated by Lagrange himself! that the choice of the supplementary conditions is essent
arbitrary, and though a couple of particular examples of use of nonosculating elements appe
the literature~Goldreich, 1965; Brumberget al., 1971; Borderies and Longaretti, 1987!, a com-
prehensive study of the associated freedom has not appeared until very recently~Efroimsky, 2002,
2003!.

In the middle of the 19th century Jacobi applied a canonical-transformation-based proc
~presently known as the Hamilton–Jacobi approach! to the orbital dynamics, and offered a meth
of deriving the Lagrange system. This technique is currently regarded standard and is offe
many books. Though the mathematical correctness of the Hamilton–Jacobi method is b
doubt, its application to celestial mechanics contains an aspect that has long been overloo~at
least, in the astronomical literature!. This overlooked question is as follows: where in t
Hamilton–Jacobi derivation of the planetary equations is the Lagrange constraint tacitly imp
and what happens if we impose a different constraint? This issue will be addressed in our

B. The gauge freedom

Mathematically, we shall concentrate on theN-body problem of celestial mechanics, a pro
lem that for each body can be set as

r¢̈1
m

r 2

r¢

r
5DF¢ , ~1!

DF¢ being the disturbing force that vanishes in the~reduced! two-body case andr¢ being the
position relative to the primary, andm standing forG(mplanet1msun). A solution to the unperturbed
problem is a Keplerian ellipse~or hyperbola!

r¢5 f¢~C1 ,...,C6 ,t ! ~2!

parametrized by six constants~which may be, for example, the Kepler or Delaunay elements!. In
the framework of the VOP approach it gives birth to the ansatz

r¢5 f¢~C1~ t !,...,C6~ t !,t !, ~3!

the ‘‘constants’’ now being time dependent and the functional form off¢ remaining the same as i
~2!. Substitution of~3! into ~1! results in three scalar equations for six independent funct
Ci(t). In order to make the problem defined, Lagrange applied three extra conditions
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(
i

] f¢

]Ci

dCi

dt
50 ~4!

that are often referred to as ‘‘the Lagrange constraint.’’ This constraint guarantees osculatio
that the functional dependence of the perturbed velocity upon the ‘‘constants’’ is the same
of the unperturbed one. This happens because the physical velocity is

r¢̇5g¢1(
i

] f¢

]Ci

dCi

dt
, ~5!

whereg¢ stands for the unperturbed velocity that emerged in the two-body setting. This veloc
by definition, a partial derivative off¢ with respect to the last variable:

g¢~C1 ,...,C6 ,t ![
] f¢~C1 ,...,C6 ,t !

]t
. ~6!

This choice of supplementary conditions is convenient, but not at all necessary. A choice
other three scalar relations~consistent with one another and with the equations of motion! will
give the same physical trajectory, even though the appropriate solution for nonosculating va
Ci will differ from the solution for osculating ones.

Efroimsky ~2002, 2003! suggested to relax the Lagrange condition and to consider

(
i

] f¢

]Ci

dCi

dt
5F¢ ~C1,...,C6 ,t !, ~7!

F¢ being an arbitrary function of time, ‘‘constants’’Ci and their time derivatives of all orders. Fo
practical reasons it is convenient to restrictF¢ to a class of functions that depend upon the time a
the ‘‘constants’’ only.~The dependence upon derivatives would yield higher-than-first-order
derivatives of theCi in the subsequent developments, which would require additional in

conditions, beyond those onr¢ and r¢̇, to be specified in order to close the system.! Different
choices ofF¢ entail different forms of equations forCi and, therefore, different mathematic
solutions in terms of these ‘‘constants.’’ A transition from one such solution to another
though, be a mere reparametrization of the orbit. The physical orbit itself will remain inva
Such invariance of the physical content of a theory under its mathematical reparametrizat
called gauge symmetry. On the one hand, it is in a close analogy with the gradient invaria
the Maxwell electrodynamics and other field theories. On the other hand, it illustrates
general mathematical structure emerging in the ODE theory~Newman and Efroimsky, 2003!.

If the Lagrange gauge~4! is fixed, the parameters obey the equation

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn
DF¢ , ~8!

@Cn Cj # standing for the unperturbed~i.e., defined as in the two-body case! Lagrange brackets:

@Cn Cj #[
] f¢

]Cn

]g¢

]Cj
2

] f¢

]Cj

]g¢

]Cn
. ~9!

To arrive at formula~8!, one should, according to Lagrange~1778, 1783, 1808, 1809!, differentiate
~5!, insert the outcome into~1!, and then combine the result with the Lagrange constraint~4!. ~In
the modern literature, this derivation can be found, for example, in Brouwer and Clemence~1961!,
Efroimsky~2002, 2003!, Newman and Efroimsky~2003!, Efroimsky and Goldreich~2003!.! In the
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simplest case the perturbing force depends only upon positions and is conservativDF¢
5]R(r¢)/]r¢. Then the right-hand side of~8! will reduce to the partial derivative of the disturbin
functionR(r¢) with respect toCn , whereafter inversion of the Lagrange-bracket matrix will enta
the Lagrange system of planetary equations~for Ci being the Kepler elements! or the Delaunay
system~for the parameters chosen as the Delaunay elements!.

As explained in Efroimsky~2003!, in an arbitrary gaugeF¢ Eq. ~8! will generalize to its
gauge-invariant form

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn
DF¢2

] f¢

]Cn

dF¢

dt
2

]g¢

]Cn
F¢ , ~10!

the Lagrange brackets@Cn Cj # being still defined through~9!. If we agree thatF¢ is a function of
both time and the parametersCi , but not of their derivatives, then the right-hand side of~10! will
implicitly contain the first time derivatives ofCi . It will then be reasonable to move them into th
left-hand side. Hence,~10! will be reshaped into

(
j

S @Cn Cj #1
] f¢

]Cn

]F¢

]Cj
D dCj

dt
5

] f¢

]Cn
DF¢2

] f¢

]Cn

]F¢

]t
2

]g¢

]Cn
F¢ . ~11!

This is the general form of the gauge-invariant perturbation equations of celestial mech

which follows from the VOP method, for an arbitrary disturbing forceDF¢ (r¢,r¢̇,t) and under the
simplifying assumption that the arbitrary gauge functionF¢ is chosen to depend on the time an
the parametersCi , but not on their derivatives.

For performing further algebraic developments of~10! and ~11!, let us decide what sort o
interactions will fall within the realm of our interest. On general grounds, it would be desirab
deal with forces that permit description in the language of Lagrangians and Hamiltonians.

II. DELAUNAY

A. Perturbations of Lagrangians and Hamiltonians

Contributions to the disturbing forceDF¢ generally consist of two types, physical and inerti
Inputs can depend upon velocity as well as upon positions. As motivation for this generali
we consider two practical examples. One is the problem of orbital motion around a prec
planet: the orbital elements are defined in the precessing frame, while the velocity-dep
fictitious forces play the role of the perturbation~Goldreich, 1965; Brumberget al., 1971; Efroim-
sky and Goldreich, 2003!. Another example is the relativistic two-body problem where the re
tivistic correction to the force is a function of both velocity and position, as explained,
example, in Brumberg~1992! and Klioner and Kopeikin~1994!. ~It turns out that in relativistic
dynamics even the two-body problem is disturbed, the relativistic correction acting as disturb
This yields the gauge symmetry that will cause ambiguity in defining the orbital elements
binary.! Finally, we shall permit the disturbances to bear an explicit time dependence. Such a
of generality will enable us to employ our formalism in noninertial coordinate systems.

Let the unperturbed Lagrangian ber¢̇2/22U(r¢). The disturbed motion will be described by th
new, perturbed, Lagrangian

L5
r¢̇2

2
2U~r¢!1DL~r¢,r¢̇,t !, ~12!

and the appropriately perturbed canonical momentum and Hamiltonian,
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p¢5r¢̇1
]DL
]r¢̇

, ~13!

H5p¢r¢̇2L5
p¢2

2
1U1DH, DH[2DL2

1

2 S ]DL
]r¢̇

D 2

. ~14!

The Euler–Lagrange equations written for the perturbed Lagrangian~12! are

r¢̈52
]U

]r¢
1DF¢ , ~15!

where the disturbing force is given by

DF¢[
]DL
]r¢

2
d

dt S ]DL
]r¢̇

D . ~16!

We see that in the absence of velocity dependence the perturbation of the Lagrangian pl
role of disturbing function. Generally, though, the disturbing force is not equal to the gradie
DL, but has an extra term called into being by the velocity dependence.

As we already mentioned, this setup is sufficiently generic. For example, it is convenie
description of a satellite orbiting a wobbling planet: the inertial forces, which emerge in
planet-related noninertial frame, will nicely fit in the above formalism.

It is worth emphasizing once again that, in the case of velocity-dependent disturbance
disturbing force is equal neither to the gradient of the Lagrangian’s perturbation nor to the gr
of negative Hamiltonian’s perturbation. This is an important thing to remember when comp
results obtained by different techniques. For example, in Goldreich~1965! the term ‘‘disturbing
function’’ was used for the negative perturbation of the Hamiltonian. For this reason, the gra
of a so defined disturbing function was not equal to the disturbing force. A comprehensive
parison of the currently developed theory with that offered in Goldreich~1965! will be presented
in a separate publication~Efroimsky and Goldreich, 2003!, where we shall demonstrate that th
method used there was equivalent to fixing a special gauge~one described in Sec. II C of thi
article!.

B. Gauge-invariant planetary equations

Insertion of the generic force~16! into ~10! will bring us

(
j

@Cn Cj #
dCj

dt
5

] f¢

]Cn

]DL
]r¢

2
] f¢

]Cn

d

dt S F¢ 1
]DL
]r¢̇

D 2
]g¢

]Cn
F¢ . ~17!

If we recall that, for a velocity-dependent disturbance,

]DL
]Cn

5
]DL
]r¢

] f¢

]Cn
1

]DL
]r¢̇

]r¢̇

]Cn
5

]DL
]r¢

] f¢

]Cn
1

]DL
]r¢̇

]~g¢1F¢ !

]Cn
, ~18!

then equality~17! will look like this:

(
j

@Cn Cj #
dCj

dt
5

]DL
]Cn

2
]DL
]r¢̇

]F¢

]Cn
2

] f¢

]Cn

d

dt S F¢ 1
]DL
]r¢̇

D 2
]g¢

]Cn
S F¢ 1

]DL
]r¢̇

D . ~19!

After subsequent addition and subtraction of1
2]((]DL/]r¢̇)2)/]Cn on the right-hand side, the gaug

function F¢ will everywhere appear in the company of1](DL)/]r¢̇:
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(
j

S @Cn Cj #1
] f¢

]Cn

]

]Cj
S ]DL

]r¢̇
1F¢ D D dCj

dt

5
]

]Cn
FDL1

1

2 S ]DL
]r¢̇

D 2G2S ]g¢

]Cn
1

] f¢

]Cn

]

]t
1

]DL
]r¢̇

]

]Cn
D S F¢ 1

]DL
]r¢̇

D , ~20!

the sum in square brackets being equal to2DH. While ~11! expressed the VOP method in th

most generic form it can have in terms of disturbing forcesDF¢ (r¢,r¢̇,t), Eq. ~20! furnishes the most

general form in terms of the Lagrangian perturbationDL(r¢,r¢̇,t) ~under the simplifying assumption
that the arbitrary gauge functionF¢ is set to depend only upon the time and the parametersCi , but
not upon their derivatives!.

The Lagrange brackets in~19! are gauge-invariant; they contain only functionsf¢ andg¢ that
were defined in the unperturbed, two-body, setting. This enables us to exploit the well-k
expressions for the inverse of this matrix. These look most simple~and are either zero or unity! in
the case when one chooses as the ‘‘constants’’ the Delaunay set of orbital variables. As
known, this simplicity of the Lagrange and their inverse, Poisson, brackets of the Dela
elements is the proof of these elements’ canonicity in the unperturbed, two-body, problem.
only a position-dependent disturbing functionR(r¢)5DL(r¢) is ‘‘turned on,’’ the Delaunay ele-
ments still remain canonical, provided the Lagrange gauge is imposed. This happens beca
is well known~Brouwer and Clemence, 1961!, the equations of motion together with the Lagran
constraint yield, in that case, the following equation,

(
j

@Cn Cj #
dCj

dt
5

]DL
]Cn

, DL5DL~ f¢~C1 ,...,C6 ,t !!5R~ f¢~C1 ,...,C6 ,t !!, ~21!

which, is its turn, results in the standard Delaunay system.
In our case, though, the perturbation depends also upon velocities; beside this, the gauF¢ is

set arbitrary. Then our Eq.~20! will entail the gauge-invariant Lagrange-type and Delaunay-t
systems of equations that are presented in Appendix A. Interestingly, the gauge-inv
Delaunay-type system is, generally, nonsymplectic. It regains the canonical form only in
special gauge considered below~a gauge which coincides with the Lagrange gauge when
perturbation bears no velocity dependence!. This can be proven by a direct substitution of th
special gauge condition into the gauge-invariant Delaunay-type system given in Appendix
easier way would be to fix the gauge already in~20!, and this is what we shall do in the nex
subsection.

C. The generalized Lagrange gauge: Gauge wherein the Delaunay-type system
becomes canonical

We transformed~17! into ~20! for two reasons: to single out the negative perturbation of
Hamiltonian and to reveal the advantages of the gauge

F¢ 52
]DL
]r¢̇

, ~22!

which reduces toF¢ 50 for velocity-independent perturbations. The first remarkable peculiarit
~22! is that in this gauge the canonical momentump¢ is equal tog¢ @as can be seen from~5! and
~13!#:

g¢5r¢̇2F¢ 5r¢̇1
]DL
]r¢̇

5p¢ . ~23!
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We see that in this gauge not the velocity but the momentum in the disturbed setting is the
function of time and ‘‘constants’’ as it used to be in the unperturbed, two-body case. S
differently, the instantaneous ellipses~or hyperbolae! defined in this gauge will osculate the orb
in the phase space. For this reason our special gauge~22! will be called the ‘‘generalized
Lagrange gauge.’’

Another good feature of~22! is that in this gauge Eq.~20! acquires an especially simple form

(
j

@Cn Cj #
dCj

dt
52

]DH
]Cn

, ~24!

whose advantage lies not only in its brevity, but also in the invertibility of the matrix emergin
its left-hand side.

As already mentioned above, the gauge invariance of definition~9! enables us to employ th
standard~Lagrange-gauge! expressions for@Cn Cj #

21 and, thus, to get the planetary equations
inverting matrix @Cn Cj # in ~19!. The resulting gauge-invariant Lagrange- and Delaunay-t
systems are presented in Appendix A. In the special gauge~22!, however, the situation is muc

better. Comparing~21! with ~24!, we see that in the general case of an arbitraryR5DL(r¢,r¢̇,t) one
arrives from~24! to the same equations as from~21!, except that now they will contain2DH
instead ofR5DL. These will be the Delaunay-type equation in the generalized Lagrange g

dL

dt
5

]DH
]~2Mo!

,
d~2Mo!

dt
52

]DH
]L

, ~25!

dG

dt
5

]DH
]~2v!

,
d~2v!

dt
52

]DH
]G

, ~26!

dH

dt
5

]DH
]~2V!

,
d~2V!

dt
52

]DH
]H

, ~27!

where

L[m1/2a1/2, G[m1/2a1/2~12e2!1/2, H[m1/2a1/2~12e2!1/2cosi . ~28!

We see that in this special gauge the Delaunay-type equations indeed become canonical,
role of the effective new Hamiltonian is played exactly by the Hamiltonian perturbation w
emerged earlier in~14!.

Thus we have proven an interestingTHEOREM: Even though the gauge-invariant
Delaunay-type system„A7…–„A12… is not generally canonical, it becomes canonical in one
special gauge„22… which we call the ‘‘generalized Lagrange gauge.’’This theorem can be
proved in a purely Hamiltonian language, as is done in Sec. III C.

III. HAMILTON AND JACOBI

A. The concept

A totally different approach to derivation of the planetary equations is furnished by
technique worked out in 1834–1835 by Hamilton and refined several years later by Jacobi.
lecture course shaped by 1842 and published as a book in 1866, Jacobi formulated his
theorem and applied it to the celestial motions. Jacobi chose orbital elements that were
combinations of the Keplerian ones. His planetary equations can be easily transformed in
Lagrange system by the differentiation chain rule~Subbotin, 1968!. Later authors used this metho
for a direct derivation of the Lagrange and Delaunay systems, and thus the Hamilton–
approach became a part and parcel of almost any course in celestial mechanics. To some
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sources we shall refer below. The full list of pertinent references would be endless, so it is
to single out a couple of books that break the code by offering alternative proofs: these exce
are Kaula~1968! and Brouwer and Clemence~1961!.

Brouwer and Clemence~1961! use the VOP method@like in Lagrange~1808, 1809, 1810!#,
which makes the imposition of the Lagrange constraint explicit. Kaula~1968! undertakes, by
means of the differentiation chain rule, a direct transition from the Hamilton equations
Cartesian frame to those in terms of orbital elements. As explained in Efroimsky~2002, 2003!, in
Kaula’s treatment the Lagrange constraint was imposed tacitly.

It is far less easy to understand where the implicit gauge fixing is used in the Hamilton–J
technique. This subtlety of the Hamilton–Jacobi method is so well camouflaged that throu
century and a half of the method’s life this detail has never been brought to light~at least, in the
astronomical literature!. The necessity of such a constraint is evident: one has to choose one
infinitely many sets of orbital elements describing the physical trajectory. Typically, one pr
the set of orbital elements that osculates with the trajectory, so that the physical orbit be a
tangential to the instantaneous ellipse, in the case of bound orbits, or to the instantaneous
bola, in the case of flybys. This point is most easily illustrated by the following simple exa
depicted on Fig. 1. Consider two coplanar ellipses with one common focus. Let both el
rotate, in the same direction within their plane, about the shared focus; and let us assume
rotation of one ellipse is faster than that of the other. Now imagine that a planet is located
of the points of these ellipses’ intersection, and that the rotation of the ellipses is such th
planet is always at the instantaneous point of their intersection. One observer will say th
planet is swiftly moving along the slower rotating ellipse, while another observer will argue
the planet is slowly moving along the fast-rotating ellipse. Both viewpoints are acceptable

FIG. 1. These two coplanar ellipses share one of their foci and are assumed to rotate about this common focus in
direction, always remaining within their plane. Suppose that the rotation of one ellipse is faster than that of the oth
that a planet is located at one of the points of these ellipses’ intersection,P, and that the rotation of the ellipses is such th
the planet is always at the instantaneous point of their intersection. We may say that the planet is swiftly moving al
slower rotating ellipse, while it would be equally legitimate to state that the planet is slowly moving along the fast-ro
ellipse. Both interpretations are valid, because one can divide, in an infinite number of ways, the actual motion of th
into a motion along some ellipse and a simultaneous evolution of that ellipse. The Lagrange constraint~4! singles out, of
all the multitude of evolving ellipses, that unique ellipse which is always tangential to the total, physical, velocity
planet.
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cause one can divide, in an infinite number of ways, the actual motion of the planet into a m
along some ellipse and a simultaneous evolution of that ellipse. The Lagrange constra~4!
singles out, of all the multitude of evolving ellipses, that unique ellipse which is always tange
to the total~physical! velocity of the body. This way of gauge fixing is natural but not necess
Besides, as we already mentioned, the chosen gauge~4! will not be preserved in the course o
numerical computations. Sometimes osculating elements do not render an intuitive picture
motion. In such situations other elements are preferred. One such example is a circular orbi
an oblate planet. The osculating ellipse precesses with the angular velocity of the satellite,
eccentricity is proportional to the oblateness factorJ2 . Under these circumstances the so-cal
geometric elements are more convenient than the osculating ones~Borderies and Longaretti 1987!.

We remind the reader that the Hamilton–Jacobi treatment is based on the simple facts t
same motion can be described by different mutually interconnected canonical sets (q,p,H(q,p))
and (Q,P,H* (Q,P)), and that fulfillment of the Hamilton equations along the trajectory ma
the infinitesimally small quantities

du5pdq2Hdt ~29!

and

dũ5PdQ2H* dt ~30!

perfect differentials. Subtraction of the former from the latter shows that their difference,

2dW[dũ2du5PdQ2pdq2~H* 2H!dt, ~31!

is a perfect differential, too. Hereq, p, Q, andP containN components each. If we start with
system described by (q,p,H(q,p)), it is worth looking for such a reparametrizatio
(Q,P,H* (Q,P)) that the new HamiltonianH* is constant in time, because in these variables
canonical equations simplify. Especially convenient is to find a transformation that nullifie
new HamiltonianH* , for in this case the new canonical equations will render the variables~Q, P!
constant. One way of seeking such transformations is to considerW as a function of onlyq, Q, and
t. Under this assertion, the above equation will entail

2
]W

]t
dt2

]W

]Q
dQ2

]W

]q
dq5PdQ2pdq1~H2H* !dt, ~32!

whence

P52
]W

]Q
, p5

]W

]q
, H1

]W

]t
5H* . ~33!

The functionW can be then found by solving the Jacobi equation

HS q,
]W

]q
,t D1

]W

]t
5H* , ~34!

whereH* is a constant. It is very convenient to make it equal to zero. Then the above equ
can be easily solved in the unperturbed~reduced! two-body setting. This solution, which has lon
been known, is presented, in a very compact form, in Appendix B. It turns out that, if the sph
coordinates and their conjugate momenta are taken as a starting point, then the eventual ca
variablesQ, P corresponding toH* (Q,P)50 are the Delaunay elements:

Q1[L5Ama, P152Mo ,
                                                                                                                



oks.
mal-

-body
f

r new
ed

o-

5967J. Math. Phys., Vol. 44, No. 12, December 2003 Gauge symmetry of the N-body problem

                    
Q2[G5Ama~12e2!, P252v, ~35!

Q3[H5Ama~12e2! cosi , P352V.

B. Where can free cheese be found?

The transition from two-body toN-body celestial mechanics is presented in numerous bo
However, none of them explain how the Lagrange constraint is implicitly involved in the for
ism.

Before we move on, let us cast a look back at what has been accomplished in the two
case. We started out with a Hamiltonian problem (q,p,H) and reformulated its equations o
motion

q̇5
]H
]p

, ṗ52
]H
]q

~36!

in terms of another set (Q,P,H* ):

q5f~Q,P,t !,
~37!

p5c~Q,P,t !,

so that the above equations are mathematically equivalent to the new system

Q̇5
]H*

]P
, Ṗ52

]H*

]Q
. ~38!

The simple nature of the two-body setting enabled us to carry out this transition so that ou
HamiltonianH* vanishes and the variablesQ andP are, therefore, constants. This was achiev
by means of a transformation-generating functionW(q,Q,t) obeying the Jacobi equation~34!.
After formula ~B12! for this function is written down, the explicit form of dependence~37! can be
found through the relationsP52]W/]Q. This is given by~B15!.

To make this machinery function in anN-body setting, let us first consider a disturbed tw
body case. The number of degrees of freedom is still the same~three coordinatesq and three
conjugate momentap!, but the initial Hamiltonian is perturbed:

q̇5
]~H1DH!

]p
, ṗ52

]~H1DH!

]q
. ~39!

Trying to implement the Hamilton-Jacobi method~32!–~34!, for the new Hamiltonians (H
1DH), (H* 1DH) and for some generating functionV(q,Q,t), we shall arrive at

2
]V

]t
dt2

]V

]Q
dQ2

]V

]q
dq5PdQ2pdq1@~H1DH!2~H* 1DH!#dt, ~40!

P52
]V

]Q
, p5

]V

]q
, H1DH1

]V

]t
5H* 1DH, ~41!

HS q,
]V

]q
,t D1

]V

]t
1H* . ~42!
                                                                                                                



it.
ts’’
ld

n
rating
eated
to

usion,

ngian.

an.
through

eserve

s

e
the

5968 J. Math. Phys., Vol. 44, No. 12, December 2003 M. Efroimsky and P. Goldreich

                    
We see thatV obeys the same equation asW and, therefore, may be chosen to coincide with
Hence, the new, perturbed, solution~q,p! will be expressed through the perturbed ‘‘constan
Q(t) andP(t) in the same fashion as the old, undisturbed,q andp were expressed through the o
constantsQ andP:

q5f~Q~ t !,P~ t !,t !,
~43!

p5c~Q~ t !,P~ t !,t !,

f andc being the same functions as those in~37!. Benefitting from this form-invariance, one ca
now master theN-particle problem. To this end, one should choose the transformation-gene
function V to be additive over the particles, whereafter the content of Sec. III A shall be rep
verbatim for each of the bodies, separately. In the end of this endeavour one will arriveN
21 Delaunay sets similar to~B15!, except that now these sets will be constituted byinstanta-
neousorbital elements. The extension of the preceding subsection’s content to theN-body case
seems to be most straightforward and to involve no additional assumptions. To dispel this ill
two things should be emphasized. One, self-evident, fact is that the quantitiesQ and P are no
longer conserved after the disturbanceDH is added to the zero HamiltonianH* . The second
circumstance is that a change in a Hamiltonian implies an appropriate alteration of the Lagra
In the simple case ofDH being a function of the coordinates and time only~not of velocities or
momenta!, addition ofDH to the Hamiltonian implies addition of its opposite to the Lagrangi
Since this extra term bears no dependence upon velocities, the expressions for momenta
the coordinates and time will stay form-invariant. Hence~if the Lagrangian is not singular!, the
functional dependence of the velocities upon the coordinates and momenta will, also, pr
their functional formv(q,p,t):

without perturbation: p[
]L~q,q̇,t !

]q̇
⇒ q̇5v~q,p,t !,

~44!

with perturbation: p[
]~L~q,q̇,t !1DL~q,t !!

]q̇
5

]L~q,q̇,t !

]q̇
⇒ q̇5v~q,p,t !,

where the new, perturbed dependenceq̇5v@q(Q(t),P(t),t),p(Q(t),P(t),t),t# has the same
functional form as the old one,q̇5v@q(Q,P,t),p(Q,P,t),t#. Together with~43!, this means that
the dependence of the newq̇ upon the newP(t) andQ(t) will have the same functional form a
the dependence of the oldq̇ upon the constantsQ andP:

d

dt
q~Q~ t !,P~ t !,t !5

]

]t
q~Q~ t !,P~ t !,t !. ~45!

In other words,

(
i 51

6
]q

]Di
Ḋi50, ~46!

whereDi denotes the set of perturbed variables (Q(t),P(t)). In the astronomical applications,Di

may stand for the Delaunay set.
This is the implicit condition under which the Hamilton–Jacobi method works~in the above

case of velocity-independent disturbance!. Violation of ~46! would invalidate our cornerston
assumption~38!. This circumstance imposes a severe restriction on the applicability of
Hamilton–Jacobi theory. In the astronomical context, this means that the Delaunay elements~B15!
must be osculating. Indeed, ifDi denote a set of orbital elements, then expression~46! is equiva-
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lent to the Lagrange constraint~4! discussed in Sec. I. There the constraint was imposed upon
Keplerian elements; however, its equivalence to~46!, which is written in terms of the Delauna
variables, can be easily proven by the differentiation chain rule.

C. The case of momentum-dependent disturbances

When the perturbation of the Lagrangian depends also upon velocities~and, therefore, the
Hamiltonian perturbation carries dependence upon the canonical momenta!, the special gauge~22!
wherein the Delaunay-type system preserves its canonicity differs from the Lagrange gaug
was proven in Sec. II C in the Lagrangian language. Now we shall study this in Hamiltonian t
Our explanation will be sufficiently general and will surpass the celestial-mechanics settin
this reason we shall use notationsq, p, not r¢, p¢ . The development will, as ever, begin with a
unperturbed system described by canonical variables obeying

q̇5
]H
]p

, ṗ52
]H
]q

. ~47!

This dynamics may be reformulated in terms of the new quantities (Q,P):

q5f~Q,P,t !,
~48!

p5c~Q,P,t !,

so that the Hamiltonian equations~47! are equivalent to

Q̇5
]H*

]P
, Ṗ52

]H*

]Q
. ~49!

For simplicity, we shall assume thatH* is zero. Then the new canonical variables will play t
role of adjustable constants upon which the solution~48! of ~47! depends.

We now wish to know under what circumstances a modified canonical system

q̇5
]~H1DH!

]p
, ṗ52

]~H1DH!

]q
, DH5DH~q,p,t ! ~50!

will be satisfied by the solution

q5f~Q~ t !,P~ t !,t !,
~51!

p5c~Q~ t !,P~ t !,t !

of the same functional form as~48! but with time-dependent parameters obeying

Q̇5
]DH
]P

, Ṗ52
]DH
]Q

. ~52!

This situation is of a more general sort than that addressed in Sec. III B, in that the pertur
DH now depends also upon the momentum.

Under the assumption of~48! being~at least, locally! invertible, substitution of the equalitie

Q̇5
]DH
]P

5
]DH
]q

]q

]P
1

]DH
]p

]p

]P
~53!

and
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Ṗ52
]DH
]Q

52
]DH
]q

]q

]Q
2

]DH
]p

]p

]Q
~54!

into the expression for velocity

q̇5
]q

]t
1

]q

]Q
Q̇1

]q

]P
Ṗ ~55!

leads to

q̇5
]q

]t
1S ]q

]Q

]q

]P
2

]q

]P

]q

]QD ]DH
]q

1S ]q

]Q

]p

]P
2

]q

]P

]p

]QD ]DH
]p

. ~56!

Here the coefficient accompanying]DH/]q identically vanishes, while that accompanyin
]DH/]p coincides with the Jacobian of the canonical transformation and is, therefore, unit

]q

]Q

]p

]P
2

]q

]P

]p

]Q
51. ~57!

So if we introduce, in the spirit of~6!, notation

g[
]q

]t
, ~58!

then ~56! will lead to

q̇5g1S ]DH
]p D

q,t

. ~59!

Expression~59! establishes the link between the regular VOP method and the canonical trea
It shows that, to preserve the symplectic description, one must always choose a particular
F5]DH/]p. Needless to say, this is exactly the generalized Lagrange gauge~22! discussed in
Sec. II C. A direct, though very short, proof is as follows.

On the one hand, the Hamilton equation for the perturbed Hamiltonian~14! is

q̇5
]~H1DH!

]p
5p1

]DH
]p

, ~60!

while, on the other hand, the definition of momentum entails, for the Lagrangian~12!,

p[
]~L~q,q̇,t !1DL~q,q̇,t !!

]q̇
5q̇1

]DL
]q̇

. ~61!

By comparing the latter with the former we arrive at

F[S ]DH
]p D

q,t

52S ]DL
]q̇ D

q,t

, ~62!

which coincides with~22!. Thus we see that transformation~48! being canonical is equivalent t
the partition of the physical velocityq̇ in a manner prescribed by~59!, whereF5]DH/]p. This
is equivalent to our theorem from Sec. II C. Evidently, for disturbances dependent solely up
coordinates, we return to the case explained in Sec. III B@Eqs. ~45! and ~46!#: in that case, the
Hamiltonian formulation of the problem demanded imposition of the Lagrange constraint~46!.
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To draw to a close, the generalized Lagrange constraint,F¢ 52]DL/]q̇, is stiffly embedded
in the Hamilton–Jacobi technique. Hence this technique breaks the gauge invariance and
~at least, in its straightforward form! to describe the gauge symmetry of the planetary equation
is necessary to sacrifice gauge freedom by imposing the generalized Lagrange constraint t
use of the Hamilton–Jacobi development.

In this special gauge, the perturbed momentum coincides with the unperturbed one~which
was equal tog¢). Indeed, we can rewrite~61! as

p[
]~L~q,q̇,t !1DL~q,q̇,t !!

]q̇
5q̇2F5g, ~63!

which means that, in the astronomical implementation of this theory, the Hamilton–Jacobi
ment necessarily demands the orbital elements to osculate in the phase space. Natura
demand reduces to that of regular osculation in the simple case of velocity-independentDL that
was explored in Sec. III B.

IV. CONCLUSIONS

We have studied, in an arbitrary gauge, the VOP method in celestial mechanics in th
when the perturbation depends on both positions and velocities. Such situations emerge
relativistic corrections to the Newton law are taken into account or when the VOP meth
employed in noninertial frames of reference~a satellite orbiting a precessing planet being one s
example!. The gauge-invariant~and generalized to the case of velocity-dependent disturban!
Delaunay-type system of equations is not canonical. We, though, have proven a theorem
lishing a particular gauge~which coincides with the Lagrange gauge in the absence of velo
dependence of the perturbation! that renders this system canonical. We called that gauge
‘‘generalized Lagrange gauge.’’

We have explained where the Lagrange constraint tacitly enters the Hamilton–Jacobi d
tion of the Delaunay equations. This constraint turns out to be an inseparable~though not easily
visible! part of the method: in the case of momentum-independent disturbances, theN-body
generalization of the two-body Hamilton–Jacobi technique is legitimate only if we use o
elements that are osculating, i.e., if we exploit only the instantaneous ellipses~or hyperbolae, in
the flyby case! that are always tangential to the velocity vector. Oddly enough, an explicit men
of this circumstance has not appeared in the astronomical literature~at least to the best of ou
knowledge!.

In the case of momentum-dependent disturbances, the above restriction generalizes, in
instantaneous ellipses~hyperbolae! must be osculating in the phase space. This is equivalent to
imposition of the generalized Lagrange gauge.

Comparing the good old VOP method with that based on the Jacobi theorem, we ha
acknowledge that the elegance of the latter does not outweigh the power of the former.
decide to explore the infinite multitude of gauges or to study the numerical-error-invoked g
drift, we shall not be able to employ the Hamilton–Jacobi theory without additional struc
However, the direct VOP method unencumbered with the canonicity demand will immed
yield gauge-invariant equations for the Delaunay elements obeying an arbitrary gauge con

(
i

] f¢

]Di

dDi

dt
5F¢ ~Di ,t !, ~64!

F¢ being some function of time and elementsDi . In Efroimsky ~2002! these equations wer
written down for the case of velocity-independent perturbation. If the disturbing force dep
also upon velocities, the Delaunay-type equations will acquire even more terms and will re
~A7!–~A12!. In the simple case of a velocity-independent disturbance, any supplementary c
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tion different from that of Lagrange will drive the Delaunay system away from its canonical f
If we permit the disturbing force to depend also upon velocities, the Delaunay equations will
their canonicity only in the generalized Lagrange gauge.

In the language of modern physics, this may be put in the following wording.N-body celestial
mechanics is a gauge theory but is not genuinely symplectic insofar as the language of
elements is used. It, though, becomes canonical in the generalized Lagrange gauge.

The applications of this formalism to motions in noninertial frames of reference wil
studied in Efroimsky and Goldreich~2003!. Some other applications were addressed in Slabin
~2003!.
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APPENDIX A: GAUGE-INVARIANT EQUATIONS OF LAGRANGE AND DELAUNAY
TYPES

We present the gauge-invariant Lagrange-type equations. They follow from~19! if we take
into account the gauge-invariance of matrix@Ci Cj # defined by~9!. We denote byDH the per-
turbation of the Hamiltonian, connected through~14! with that of the Lagrangian. The latter, in it
turn, is connected through~16! with the disturbing force~and acts as the customary disturbin
function when the perturbations are devoid of velocity dependence!:

da

dt
5

2

na F ]~2DH!

]Mo
2

]DL
]r¢̇

]

]Mo
S F¢ 1

]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D G ,

~A1!

de

dt
5

12e2

na2e F ]~2DH!

]Mo
2

]DL
]r¢̇

]

]a S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D G
2

~12e2!1/2

na2e F ]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v

2
] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A2!

dv

dt
5

2cosi

na2~12e2!1/2sin i F ]~2DH!

] i
2

]DL
]r¢̇

]

] i S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

] i
2

] f¢

] i

d

dt S F¢ 1
]DL
]r¢̇

D G1
~12e2!1/2

na2e F ]~2DH!

]e
2

]DL
]r¢̇

]

]e S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

]e
2

] f¢

]e

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A3!
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di

dt
5

cosi

na2~12e2!1/2sin i F ]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v

2
] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D G2
1

na2~12e2!1/2sin i F ]~2DH!

]V
2

]DL
]r¢̇

]

]V S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

]V
2

] f¢

]V

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A4!

dV

dt
5

1

na2~12e2!1/2sin i F ]~2DH!

] i
2

]DL
]r¢̇

]

] i S F¢ 1
]DL
]r¢̇

D
2S F¢ 1

]DL
]r¢̇

D ]g¢

] i
2

] f¢

] i

d

dt S F¢ 1
]DL
]r¢̇

D G , ~A5!

dMo

dt
52

12e2

na2e F ]~2DH!

]e
2

]DL
]r¢̇

]

]e S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]e
2

] f¢

]e

d

dt S F¢ 1
]DL
]r¢̇

D G
2

2

na F ]~2DH!

]a
2

]DL
]r¢̇

]

]a S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]a
2

] f¢

]a

d

dt S F¢ 1
]DL
]r¢̇

D G .

~A6!

Similarly, the gauge-invariant Delaunay-type system can be written down as

dL

dt
5

]~2DH!

]Mo
2

]DL

]r¢̇

]

]Mo
S F¢ 1

]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]Mo
2

] f¢

]Mo

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A7!

dMo

dt
52

]~2DH!

]L
1

]DL
]r¢̇

]

]L S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]L
1

] f¢

]L

d

dt S F¢ 1
]DL
]r¢̇

D , ~A8!

dG

dt
5

]~2DH!

]v
2

]DL
]r¢̇

]

]v S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]v
2

] f¢

]v

d

dt S F¢ 1
]DL
]r¢̇

D , ~A9!

dv

dt
52

]~2DH!

]G
1

]DL
]r¢̇

]

]G S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]G
1

] f¢

]G

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A10!

dH

dt
5

]~2DH!

]V
2

]DL
]r¢̇

]

]V S F¢ 1
]DL
]r¢̇

D 2S F¢ 1
]DL
]r¢̇

D ]g¢

]V
2

] f¢

]V

d

dt S F¢ 1
]DL
]r¢̇

D , ~A11!

dV

dt
52

]~2DH!

]H
1

]DL
]r¢̇

]

]H S F¢ 1
]DL
]r¢̇

D 1S F¢ 1
]DL
]r¢̇

D ]g¢

]H
1

] f¢

]H

d

dt S F¢ 1
]DL
]r¢̇

D ,

~A12!

where

L[m1/2a1/2, G[m1/2a1/2~12e2!1/2, H[m1/2a1/2~12e2!1/2cosi , ~A13!
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and the symbolsF¢ ,f¢,g¢ denote the functional dependencies of the gauge, position and vel
upon the Delaunay, not Keplerian, elements, and therefore these are functions different fromF¢ ,f¢,g¢
used in~A1!–~A6! where they stood for the dependencies upon the Kepler elements.@In Efroim-
sky ~2002! the dependenciesF¢ ,f¢,g¢ upon the Delaunay variables were equipped with tilde,
distinguish them from the dependencies upon the Kepler coordinates.#

The above equations do not merely repeat those derived earlier in Efroimsky~2002, 2003!, but
generalize them to the case of a perturbationDL which is both position and velocity dependen
For this reason, our gauge-invariant equations can be employed not only in an inertial fram
also in a wobbling one.

To employ the gauge-invariant equations in analytical calculations is a delicate task
should always keep in mind that, in caseF¢ is chosen to depend not only upon time but also up
the ‘‘constants’’~but not upon their derivatives!, the right-hand sides of these equation will im
plicitly contain the first derivativesdCi /dt, and one will have to move them to the left-hand sid
@much like in the transition from~10! to ~11!#.

APPENDIX B: THE HAMILTON–JACOBI METHOD IN CELESTIAL MECHANICS

The Jacobi equation~34! is a PDE of the first order, in (N11) variables (qn ,t), and its
complete integralW(q,Q,t) will depend uponN11 constantsan ~Jeffreys and Jeffreys, 1972
Courant and Hilbert 1989!. One of these constants,aN11 , will be additive, becauseW enters the
above equation only through its derivatives. Since both Hamiltonians are, too, defined up to
constantf, then the solution to~34! must contain that constant multiplied by the time:

W~q, a1 ,...,aN , aN11 ,t !5W̃~q, a1 ,...,aN , t !2~ t2to! f ~a1 ,...,aN!

5W̃~q, a1 ,...,aN , t !2t f ~a1 ,...,aN!2aN11 , ~B1!

where the fiducial epoch is connected to the constants throughto52aN11 / f , and the functionW̃
depends uponN constants only. As the total number of independent adjustable parametersN
11, the constantf cannot be independent but must rather be a function ofa1 ,...,aN ,aN11 . Since
we agreed that the constantaN11 is additive and shows itself nowhere else, it will be sufficient
considerf as a function of the restN parameters only.~In principle, it is technically possible to
involve the constantaN11 , i.e., the reference epoch, into the mutual transformations betwee
other constants. However, in the applications that we shall consider, we shall encounte
equations autonomous in time, and so there will be no need to treataN11 as a parameter to vary
Hence, in what follows we shall simply ignore its existence.! The new functionW̃ obeys the
simplified Jacobi equation

HS q,
]W̃~q,a1 ,...,aN ,t !

]q
,t D 1

]W̃~q,a1 ,...,aN ,t !

]t
5 f ~a1 ,...,aN!1H* . ~B2!

As agreed above,H* is a constant. Hence, we can state about this constant all the same as
the constantf: since the integralW can contain no more thanN11 adjustable parameter
a1 ,...,aN ,aN11 , and since we ignore the existence ofaN11 , the constantH* must be a function
of the remaining N parameters:H* 5H* (a1 ,...,aN).

Now, in caseH depends only upon~q, p! and lacks an explicit time dependence, then so w
W̃; and the above equation will very considerably simplify:

HS q,
]W̃~q,a1 ,...,aN!

]q
D 5 f ~a1 ,...,aN!1H* ~a1 ,...,aN!, ~B3!

where we deliberately avoided absorbing the constant HamiltonianH* into the functionf.
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Whenever the integralW can be found explicitly, the constants (a1 ,...,aN) can be identified
with the new coordinatesQ, whereafter the new momenta will be calculated throughP
52]W/]Q. In the special case of zeroH* , the new momenta become constants, because
obey the canonical equations with a vanishing Hamiltonian. In the case whereH* is a nonzero
constant, it must, as explained above, be a function of all or some of the independent para
(a1 ,...,aN), and, therefore, all or some of the new momentaP will be evolving in time.

Since it is sufficient to find only one solution to the Jacobi equation, one can seek it by m
of the variable-separation method: Eq.~B3! will solve in the special case when the generati
function ~B1! is separable:

W̃~q1 ,...,qN ,a1 ,...,aN!5(
i 51

N

W̃i~qi ,a1 ,...,aN!. ~B4!

This theory works very well in application to the unperturbed~two-body! problem~1! of celestial
mechanics, a problem that is simple due to its mathematical equivalence to the gravitat
bound motion of a reduced massmplanetmsun/(mplanet1msun) about a fixed center of massmplanet

1msun. If one begins with the~reduced! two-body Hamiltonian in the spherical coordinates

q15r , q25f, q35u ~B5!

~wherex5r cosf cosu, y5r cosf sinu, z5r sinf), then the expression for Lagrangian,

L5T2P5
1

2
~ q̇1!21

1

2
~q1!2~ q̇2!21

1

2
~q1!2~ q̇3!2 cos2 q21

m

q1
, ~B6!

will yield the following formulas for the momenta:

p1[
]L
]q̇1

5q̇1 , p2[
]L
]q̇2

5q1
2q̇2 , p3[

]L
]q̇3

5q1
2q̇3 cos2 q2 , ~B7!

whence the initial Hamiltonian will read

H5( pq̇2L5
1

2
p1

21
1

2q1
2 p2

21
1

2q1
2 cos2 q2

p3
22

m

q1
. ~B8!

Then the Hamilton–Jacobi equation~30! will look like this:

1

2 S ]W

]q1
D 2

1
1

2q1
2 S ]W

]q2
D 2

1
1

2q1
2 cos2 q2

S ]W

]q3
D 2

2
m

q1
2

]W

]t
2H* 50, ~B9!

while the auxiliary functionW̃ defined through~B1! will obey

1

2
S ]W̃

]q1
D 2

1
1

2q1
2 S ]W̃

]q2
D 2

1
1

2q1
2 cos2 q2

S ]W̃

]q3
D 2

2
m

q1
2 f 2H* 50. ~B10!

A lengthy but elementary calculation@presented, with some inessential variations, in Plumm
~1918!, Smart~1953!, Pollard~1966!, Kovalevsky~1967!, Stiefel and Scheifele~1971!, and many
other books# shows that, for a constantH* and in the ansatz~B4!, the integral of~B3! takes the
form
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W̃5W̃1~q1 ,a1 ,a2 ,a3!1W̃2~q2 ,a1 ,a2 ,a3!1W̃3~q3 ,a1 ,a2 ,a3!

5E
q1~ to!

q1~ t !
e1S 2~ f 1H* !1

2m

q1
2

a2
2

q1
2D 1/2

dq11E
0

f

e2S a2
22

a3
2

cos2 q2
D 1/2

dq21E
0

u

a3dq3 ,

~B11!

where the epoch and factorse1 , e2 may be taken as in Kovalevsky~1967!: time to is the instant
of perigee passage; factore1 is chosen to be11 whenq1[r is increasing, and is21 whenr is
decreasing; factore2 is 11 whenq2[f is increasing, and is21 otherwise. This way the quan
tities under the first and second integration signs have continuous derivatives. To draw c
sions, in the two-body case we have a transformation-generating function

W[W̃1t f ~a1 ,...,aN!5E
q1~ to!

q1~ t !
e1S 2~ f 1H* !1

2m

q1
2

a2
2

q1
2D 1/2

dq1

1E
0

f

e2S a2
22

a3
2

cos2 q2
D 1/2

dq21E
0

u

a3dq31t f , ~B12!

whose time-independent componentW̃ enters Eq.~B3!. The first integration in~B12! contains the
functions f (a1 ,...,aN) and H* (a1 ,...,aN), so that in the end of the dayW depends on the N
constantsa1 ,...,aN ~not to mention the neglectedto , i.e., theaN11).

Different authors deal differently with the sum (f 1H* ) emerging in~B12!. Smart~1953! and
Kovalevsky~1967! prefer to put

f 50, H* 5a1 , a152m/~2a!, ~B13!

whereupon the new momentumP152]W/]Q152]W/]a1 becomes time dependent~and turns
out to equal2t1to). An alternative choice, which, in our opinion, better reflects the advanta
of the Hamilton-Jacobi theory, is furnished by Plummer~1918!:

f 5a1 , H* 50, a15Ama. ~B14!

This entails the following correspondence between the new canonical variables~the Delaunay
elements! and the Keplerian orbital coordinates:

Q1[a15Ama, P152Mo ,

Q2[a25Ama~12e2!, P252v, ~B15!

Q3[a35Ama~12e2! cosi , P352V.

Everywhere in this article we follow the convention~B14! and denote the above variablesQ1 ,
Q2 , Q3 by L, G, H, correspondingly~as is normally done in the astronomical literature!.
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mémoires. Nouveaux Me´moires de l’Acade´mie de Berlin, 1778. Later edition: inŒuvres de Lagrange, Vol. IV
~Gauthier-Villars, Paris, 1869!.

Lagrange, J.-L.,Sur le Problème de la de´termination des orbites des come`tes d’après trois observations, 3-ie`me me´moire.
Ibidem, 1783. Later edition: inŒuvres de Lagrange, Vol. IV~Gauthier-Villars, Paris, 1869!.
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In this paper, we propose the difference variational approach with variable step-
length for discrete mechanics and field theory. Based upon the Hamilton’s principle
for the vertical variations and the horizontal variations, we get the equation of
motion and the relevant relations between the equation of motion and conservation
law of the energy/energy-momentum tensor for continuous as well as for the dis-
crete systems, respectively. For those discrete cases, these relations determine the
variable step-length of the differences. In addition, by taking the double operation
of vertical exterior differential on action, we show that there should exist the
Euler–Lagrange cohomology for both continuous and variable step-length differ-
ence cases in general. This indicates that the necessary and sufficient condition for
symplectic/multisymplectic structure preserving properties is the relevant Euler–
Lagrange one-form being closed in each case. Our approach can be applied to both
the Lagrangian formalism and the Hamiltonian formalism, via discrete Legendre
transformation, for the difference discrete mechanics and field theory. ©2003
American Institute of Physics.@DOI: 10.1063/1.1621058#

I. INTRODUCTION

Variation problems occupy a central role in continuum mechanics and field theories
considered from the perspective of Lagrangian or Hamiltonian formalisms~see, for example, Refs
8, 4, and 1!, which in many cases can transform each other via the Legendre transformation
of important issues are directly related to the variation problems with fixed or variable boun
These issues include the equations of motions, the~intrinsic! symplectic or multisymplectic pre
serving properties, conservation laws associated with certain symmetries, topological prop
and so on. In considering the discrete version of mechanics or field theories and their corre
ing symplectic and multisymplectic algorithms, discrete variation problems still play an impo
role, particularly, for the discrete Lagrangian formalism of these discrete systems. Only rec
the difference discrete variational approach has been proposed12,14 in the context of discrete
Lagrangian and Hamiltonian formalisms that relate each other by discrete Legendre trans
tion.

Within the content of the difference discrete version for mechanics, Lee suggested a d
variational approach to discrete Lagrangian mechanics and the relevant algorithm in the
1980s.19–21 Since time is regarded as a dynamical variable, Lee treated the time steps as
tional variables. Consequently, his approach preserves the energy discretely. Veselov30,26 also
proposed the discrete variational principle by the end of the 1980s. It is almost the same a
approach except without taking variation with respect to the discrete time. Therefore, it do

a!Electronic mail: hyguo@itp.ac.cn.
b!Electronic mail: wuke@itp.ac.cn
59780022-2488/2003/44(12)/5978/27/$20.00 © 2003 American Institute of Physics
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keep the conservation of the energy discretely in general. However, these two approach
merely applicable to discrete Lagrangian mechanics, since there is no discrete Legendre tr
mation.

In the same period, Ruth28 and Feng10 proposed the symplectic algorithm for Hamiltonia
mechanics. In this algorithm~for a review, see Ref. 29!, the time step-length is fixed and th
symplectic preserving property is discretely kept. However, the discrete version of energy c
vation cannot be maintained discretely in general. The symplectic algorithm plays very imp
role in computational mathematics and its applications cover various branches in sciences. I
further development of the structure-preserving algorithms. In these algorithms, the time
length is often fixed so that the price to be paid for keeping structure preserving is the loss o
conservation laws for the continuous cases in general.

It is widely accepted that in the course of computation the discrete systems should be th
of as the discrete counterparts of the corresponding continuous systems. However, in o
discretize continuous systems, a working guide line in needed. In Ref. 10, Feng wrote
natural to look forward to those discrete systems which preserve as much as possible the i
properties of the continuous system.’’ In fact, this statement should be regarded as a criteri
structure-preserving criterion, for constructing mostly quarried ones in all kinds of struc
preserving algorithms. However, in order to carry through this criterion, we must know ho
answer the following questions.

Problem set 1:What are the most important intrinsic ‘‘structures’’ in continuous systems
should be maintained in the course of discretization? What are the discrete counterparts o
‘‘structures’’ and how to preserve them in a certain discrete version? What is the minimal c
be paid for in the course of discretization?

It is well known that there are two classes of conservation laws in canonical conserv
mechanics. The first class is of phase-area conservation laws characterized by the sym
preserving property and another class is related to energy and all first integrals of the can
equations. Thus, the following questions can apparently be raised.

Problem set 2:Is it possible to establish a kind of discrete mechanics and/or struc
preserving algorithms in such a way that they not only discretely preserve the symplectic pr
but also some other conservation laws, especially the energy conservation? Can these
systems be established by a discrete variational approach? Does this discrete variational a
be applied to both discrete Lagrangian and Hamiltonian formalisms?

In Lee’s approach, it could be proved that in addition to discrete energy conservatio
symplectic structure is also preserved since Lee’s approach is a discrete variational appro
Ref. 18 this problem has been partly solved by defining a conserved discrete energy in Ve
approach. The complete resolving to this problem in Lee’s framework has been made unt
recently in Refs. 6 and 7. However the framework of either Lee’s approach or Veselov’s app
cannot be applied to the discrete Hamiltonian systems. To our knowledge, therefore, thes
lems are still partly open.

Recently, the symplectic algorithm has been generalized to the multisymplectic one in w
called ‘‘Hamiltonian formalism.’’5 Veselov’s discrete variation approach to the discrete mecha
has also been generalized to field theories in Lagrangian formalism to get ‘‘variational mult
plectic integrators.’’23,24 In both approaches, the step-lengths are fixed so that the en
momentum tensor cannot be conserved in general although the multisymplectic structure p
ing property in field theory can be maintained discretely in a certain manner. Thus a set of s
questions can also be raised to the discrete field theory and multisymplectic algorithms.

Problem set 3:Is it possible to establish a discrete variational approach to describe a ki
discrete field theory and/or multisymplectic algorithm in such a way that not only the multis
plectic property is discretely preserved but also the conservation laws such as energy-mom
conservation law are discretely maintained? Is it possible to apply such an approach in
discrete Lagrangian and Hamiltonian formalisms? To our knowledge, these problems are sti
as well.

Recently, it has been proposed for the difference discrete variational approach to d
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mechanics and field theories with fixed step-length differences, it can be applied to both La
ian and Hamiltonian formalisms.12,14 The key point of this approach is to regard the differenc
with fixed step-length as a kind of entire geometric object so that these differences ma
analogical roles with derivatives in continuous cases. Thus the following questions can a
raised.

Problem set 4:Is it possible to generalize the difference discrete variational approach
fixed step-lengths to the one with varied step-lengths so as to the discrete energy conserva
may be kept together with the symplectic and/or multisymplectic preserving properties?
cases of fixed step-length differences for independent variables such as time in mechan
space–time coordinates in field theories, certain noncommutative differential calculus~NCDC!
should be established and employed. What about the cases of variable step-length differe

In this paper, we present such an approach, the difference variational approach with v
step-lengths named variable difference variational approach~VDVA ! in order to carry through the
structure-preserving criterion. As was mentioned, this approach is a natural generalization
difference variational approach with fixed step-lengths proposed recently in Refs. 12 and
the ordinary discrete variation problems with fixed discrete domain. In fact, the approach in
12 and 14 is just a discrete vertical variation so that it is natural to keep the step-length fixe
crucial point of this approach is that in the course of calculation of variation problems in dis
mechanics and field theory, the differences with variable step-lengths are kept as entire ge
objects as much as possible. Consequently, this approach not only keeps the advantage
discrete variation, which conserves the energy of the system discretely, but also the advan
variation in Veselov type, which is symplectic or multisymplectic. In addition, this VDVA can
applied to both the Lagrangian and Hamiltonian formalisms for discrete mechanics and d
field theory, since the discrete canonical ‘‘momenta’’ and discrete version of Legendre tra
mation can be introduced in terms of variable step-length differences. For simplicity, we con
in this paper the discrete Lagrangian of first order of difference only and concentrate o
variable difference mechanics and field theory. As far as the generalization of the symplect
multisymplectic algorithms to the variable step-lengths, it is left for another paper. On the
hand, we also show that the Euler–Lagrange cohomology for both continuous and fixed
length difference cases12–14 can be generated. Namely, there should exist the Euler–Lagr
cohomology for both continuous and variable step-length difference cases in general. Thi
cates that the necessary and sufficient condition for symplectic/multisymplectic structure pr
ing properties is the relevant Euler–Lagrange one-form being closed, rather than the system
solution space only in each case.

This paper is organized as follows. In Sec. II we recall the variation problems in Lagran
and Hamiltonian mechanics. In Sec. III we present the VDVA and deal with the difference
grangian and Hamiltonian mechanics. In Sec. IV we recall briefly the variation problem
Lagrangian and Hamiltonian field theory with generic variables. In Sec. V, we apply the VDV
the discrete variation problems in difference discrete Lagrangian and Hamiltonian field t
with generic variables. Finally, we end with some remarks.

II. VARIATIONS FOR CLASSICAL MECHANICS

Let us recall briefly the variation calculi in classical continuum mechanics with the Eu
Lagrange cohomology introduced very recently.12–14

Let tPT.R be the time,M an n-dimensional configuration space. Consider a fiber bun
E(T,Q,p) with projection p:E→T on T, p21:t→Qt isomorphic toM is the fiber ontPT.
DenoteG(E) the sections onE, TE the tangent bundle ofE, TvE,TE the vertical sub-bundle o
TE, etc.

A. Variations in Lagrangian mechanics

We first consider the Lagrangian mechanics. The Lagrangian of the syste
L(qi(t),q̇i(t);t), i 51,...,n. For simplicity, the Lagrangian is taken as the first order. The ac
functional is
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S~@qi~ t !#;t1 ,t2!5E
t1

t2
dt L~qi~ t !,q̇i~ t !;t !. ~2.1!

Here qi ’s are coordinates on the fiber,qi(t) describes a curveCa
b with ending pointsa and b,

ta5t1 ,tb5t2 , andq̇i(t)5dqi(t)/dt.
Let us consider the general variation ofqi(t),

qi~ t !→q8 i~ t8!5qi~ t !1d tq
i~ t !, ~2.2!

accompanied with an infinitesimal reparametrization of timet,

t→t8~ t !5t1dt. ~2.3!

Hered tq
i(t) denotes the total variation that can be divided into two parts,

d tq
i~ t !5dvqi~ t !1dhqi~ t !,

dvqi~ t !5q8 i~ t !2qi~ t !,

dhqi~ t !5q8 i~ t8!2q8 i~ t !5qi~ t8!2qi~ t !1O~d2!5L jq
i1O~d2!, ~2.4!

wheredvqi(t) denotes the equal time variation or the vertical one anddhqi(t) the horizontal part
along the fiber induced by the reparametrization of the timet ~2.3!, j a variational vector field on
T

j~ t !ªdt
]

]t
, ~2.5!

Lj the Lie derivative ofqi(t) with respect to the variation vector field~2.5! ~see the following
remark 2.2!.

Similarly, for the general variation ofq̇i(t) we have

d tq̇
i~ t !5~dv1dh!q̇i~ t !,

dvq̇i~ t !5q̇8 i~ t !2q̇i~ t !,

dhq̇i~ t !5
d

dt8
q8 i~ t8!2

d

dt8
q8 i~ t !5

d

dt8
qi~ t8!2

d

dt
qi~ t !1O~d2!5L jq̇

i~ t !1O~d2!. ~2.6!

Note thatdhq̇i(t) is also the Lie derivative ofq̇i(t) with respect to the variational vector fiel
~2.5!. In fact, this is true for a kind of functionals ofqi(t), q̇i(t), andt,

dhF~qi~ t !,q̇i~ t !,t !5LjF~qi~ t !,q̇i~ t !,t !. ~2.7!

To the time change~2.3! is associated the change in the measure in~2.1! given by the Jacobi
formula

dt85
]t8

]t
dt5S 11

d

dt
dt Ddt, ~2.8!

i.e.,

d~dt !5d~ t1dt !2dt5dt
d

dt
dt. ~2.9!
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It is easy to see that this change in the measure is also the Lie derivative of the measu
respect to the variation vector~2.5!,

d~dt !5Lj dt5ddt.

Now the Lagrangian is changed to

LS qi~ t !,
d

dt
qi~ t !;t D→LS q8 i~ t8!,

d

dt8
q8 i~ t8!;t8D5LS qi~ t !,

d

dt
qi~ t !;t D1d tL, ~2.10!

and the action is also deformed to

S~@q8 i~ t8!#;t18 ,t28!5E
t18

t28dt8 LS q8 i~ t8!,
d

dt8
q8 i~ t8!;t8D5E

t1

t2 ]t8

]t
dt$L~qi~ t !,q̇i~ t !;t !1d tL%

5E
t1

t2
dtH L1S d

dt
dt DL1d tLJ 5S~@qi~ t !#;t1 ,t2!1d tS. ~2.11!

A more or less straightforward calculation shows

d tS5E
t1

t2
dtH @Lqi#d tq

i1F d

dt
H1

]

]t
LGdt1

d

dt S ]L

]q̇ j d tq
j2Hdt D J , ~2.12!

where@Lqi# is the Euler–Lagrange operator andH the energy~Hamiltonian!

@Lqi#ª
]L

]qi 2
d

dt S ]L

]q̇i D , Hª

]L

]q̇i q̇i2L. ~2.13!

The vertical and horizontal variations should be separated as the independent ones. Th
to

dvS5E
t1

t2
dtH @Lqi#dvqi1

d

dt S ]L

]q̇ j dvqj D J ~2.14!

and

dhS5E
t1

t2
dtH @Lqi#dhqi1F d

dt
H1

]

]t
LGdt1

d

dt S ]L

]q̇ j dhqj2Hdt D J . ~2.15!

For the vertical part, the Hamilton’s principle leads to the Euler–Lagrange equation ifdvqj u t1
5dvqj u t250,

]L

]qi 2
d

dt S ]L

]q̇i D50. ~2.16!

For the horizontal part, however, it is easy to check

@Lqi#q̇i1
d

dt
H1

]

]t
L50,

qª

]L

]q̇ j dhqj2Hdt5Ldt. ~2.17!

Therefore,
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dhS5E
t1

t2
dt

d

dt
~Ldt !50. ~2.18!

This is just the invariance of the actionS with respect to the reparametrization of time. Of cour
from the first equation of~2.17!, it still follows the conservation law for the energy if and only
the Euler–Lagrange equation is satisfied andL does not depend ont manifestly.

On the other hand, from~2.15! and ~2.18!, it also follows the first equation of~2.17!.
Remark 2.1:We may introduce exterior differential operators d, dv , and dh on T* (M3T),

T* M andT* T, respectively. They are nilpotent and satisfy

dªdv1dh , $dv ,dh%50. ~2.19!

Considering a vertical variational vector field

jqªdvqi~ t !
]

]qi , ~2.20!

then

dvqi~ t !5 i jq
dvqi5 i jq

dqi . ~2.21!

By means of the vector field~2.20! on TQ, dvS can also be expressed as its contraction w
one-form dvSPT* Q,

i jq
dvS5dvS. ~2.22!

We may calculate dvSPT* Q. Since dv commutes with the integral of dt ~see also, for example
the functional differential calculus in Ref. 27!, it is straightforward to get

dvS5E
t1

t2
dtH @Lqi#dvqi1

d

dt
uJ , ~2.23!

whereu is the Lagrange one-form

uª
]L

]q̇i dvqi . ~2.24!

Now by contracting with the vertical variational vector field~2.20! it follows straightforwardly
dvS in ~2.14!.

Furthermore, due to the nilpotency of dv , it is easy to get

dvE1
d

dt
v50, ~2.25!

whereE is called the Euler–Lagrange one-form,12–14 defined by

E~qi~ t !,q̇i~ t !;t !ª@Lqi#dvqi , ~2.26!

v is the symplectic two-form and in local coordinates

vªdvu5
]2L

]qj]q̇i dvqj∧dvqi1
]2L

]q̇ j]q̇i dvq̇ j∧dvqi . ~2.27!

From ~2.26!, ~2.23!, and~2.25!, the following theorem can be proved.12–14
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Theorem 1: For the Lagrangian with first order of derivatives on the bundle E(T,Q,p), the
following properties hold:
(1) There exists the Euler–Lagrange cohomology:

HLMª$EudvE50%/$EuE5dva%,

wherea5a(qi(t),q̇i(t);t) is an arbitrary function of(qi(t),q̇i(t);t).
(2) The necessary and sufficient condition for conservation of the symplectic two-form, i.e,

d

dt
v50, ~2.28!

is that the corresponding Euler–Lagrange one-form is closed, rather than the system on
solution space only.
Remark 2.2:From the definition of Lie derivative it can be seen that the horizontal variat

are given by the Lie derivative with respect to the variational vector field.
Let j be a vector field onT, exp(lj) the flow with parameterl, i.e., the one-paramete

diffeomorphism group, induced byj, f a differential form or a vector onT. The infinitesimal
change off under flow is described by its Lie derivative with respect to the vector fieldj,

Lj f ~ t !ª lim
l→0

1

l
$fl* f ~exp~lj!t !2 f ~ t !%5

d

dl U
l50

~fl* f ~ t8!!, t85exp~lj!t. ~2.29!

Herefl* is the bull-back for differential forms or the inverse differential for vectors, respectiv
Taking j5j(t)5j t in ~2.5!, it follows that the Lie derivative off (t) with respect toj t gives

rise to the horizontal variation off (t).
On the other hand, the time variationdt can be expressed by the contraction between

variational vector field~2.5! and one-form dht on T* T, i.e., dt on T* E,

i j t
dht5dt. ~2.30!

It is also feasible to express the variationdhqi(t) as contraction of a horizontal variatio
vector fieldjh with dvqi or dqi . To this purpose, we should introduce the variation vector fieldjh,q

along the fiber with respect to horizontal variations ofqi(t),

jh,qªdhqi~ t !
]

]qi . ~2.31!

Combining with the vector fieldj t in ~2.5!, the general horizontal variational vector fieldjh

should be defined as

jhªj t1jh,q5dt
]

]t
1dhqi~ t !

]

]qi . ~2.32!

Its contraction with dvqi or dqi leads to

i jh
dqi5dhqi~ t !. ~2.33!

In general, for any functional ofqi(t) andq̇i(t), F(qi(t),q̇i(t)):TQ→R, its ~horizontal! variation
induced by~2.3! is

F~qi~ t !,q̇i~ t !!→FS qi~ t8!,
d

dt8
qi~ t8! D5F~qi~ t !,q̇i~ t !!1dhF~qi~ t !,q̇i~ t !!,

dhF~qi~ t !,q̇i~ t !!5 i jh
dF~qi~ t !,q̇i~ t !!. ~2.34!
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Remark 2.3:For the total variation, a total variational vector field forqi(t) along the fiber can
also be introduced

j totalªjv1jh5dt
]

]t
1d tq

i~ t !
]

]qi 5dt
]

]t
1S dvqi~ t !1dt

d

dt
qi~ t ! D ]

]qi , ~2.35!

whose contraction with dqi leads to the total variationd tq
i(t),

i j total
dqi5d tq

i~ t !. ~2.36!

If we introduce the Lagrangian one-from

LªL~qi ,q̇i ,t !dt ~2.37!

and take 05d2L , it is easy to see that the theorem 1 still holds. This means that the total varia
keep the Euler–Lagrange cohomology as well as the necessary and sufficient condition fo
plectic structure preserving property in classical mechanics.

Remark 2.4:In some literatures~see, for example, Ref. 9!, it is required that Hamilton’s
principle holds for the total variation of the action, i.e.,d tS50, and regardd tq

i and dt as
independent variations. Thus it follows the Euler–Lagrange equation, the conservation relat
the energy and the surface term

]L

]qi 2
d

dt S ]L

]q̇i D50,

d

dt
H1

]

]t
L50,

q5
]L

]q̇ j d tq
j2Hdt. ~2.38!

If ( ]/]t) L50, i.e., the system is conservative, the energyH is conserved. However,d tq
i is

actually dependent ondt. Therefore, it should be better to regarddvqi and dt as independen
variations.

B. Variations in Hamiltonian mechanics

The action principle should also be applied to the Hamiltonian mechanics. In order to tra
to the Hamiltonian formalism, we introduce a set of conjugate momenta from the Lagra
L(qi(t),q̇i(t);t),

pj5
]L

]q̇ j , ~2.39!

and take a Legendre transformation to get the Hamiltonian

HªH~qi ,pj ;t !5pkq̇
k2L~qi ,q̇ j ;t !. ~2.40!

Now the action functional can be expressed as

S~@pi~ t !#,@qi~ t !#;t1 ,t2!5E
t1

t2
dt$pkq̇

k2H~qi ,pj ;t !%. ~2.41!

The total variation of the action can be calculated
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d tS5dvS1dhS,

dvS5E
t1

t2
dtH @Hpi

#dvpi2@Hqi#dvqi1
d

dt
~pidvqi !J ,

dhS5E
t1

t2
dtH @Hpi

#dhpi2@Hqi#dhqi1F d

dt
H2

]

]t
HGdt1

d

dt
~pidhqi2Hdt !J , ~2.42!

where@Hpi
#, @Hqi# are canonical operators

@Hpi
#ªq̇i2

]H

]pi
, @Hqi#ª ṗi1

]H

]qi . ~2.43!

Thus, the stationary requirement for the vertical variation of the actiondvS50 leads to the
canonical equations

q̇i5
]H

]pi
, ṗi52

]H

]qi . ~2.44!

While the time reparametrization invariance of the action, i.e.,dhS50 gives rise to an identity on
the condition of the energy,

@Hpi
# ṗi2@Hqi#q̇i1

d

dt
H2

]

]t
H[0. ~2.45!

And the boundary term that leads to so-called ‘‘extended symplectic potential’’ is a total d
gence

E
t1

t2
dt

d

dt
~pidhqi2Hdt !5E

t1

t2
dt

d

dt
~Ldt !50. ~2.46!

Similar to the Lagrangian mechanics, all remarks in the preceding section can be made
Hamiltonian formalism. Especially, the theorem 1 can also be established here.

III. VARIATIONS FOR DISCRETE MECHANICS

We have proposed a difference variational principle for the~vertical! variation in discrete
Lagrangian mechanics. The crucial point is to regard the differences with fixed time step-len
entire variables.12,14Main advantage of the approach is that it is applicable to both Lagrangian
Hamiltonian formalisms for the discrete mechanics, since there exists the discrete Legendre
formation. This approach can also be generalized to the variation for the differences with va
time step-length, i.e., the variable differences. We also regard the variable differences as
variables. Consequetly, the variable time step-length should be determined by an equation
by the variation problem with variable discrete integral boundary. In Lee’s words, discrete ti
regarded as a dynamical variable, but here the variable time differences are the variationa
able.

Now, the ‘‘time’’ t is difference discretized,

tPR→tPTD5$~ tk ,tk115tk1Dtk , kPZ!%, ~3.1!

and the step-lengthsDtk are determined by a variational equation. But, then-dimensional con-
figuration spaceMk at each momenttk ,kPZ, is still continuous and smooth enough.

Let N be the set of all nodes onTD with index set Ind(N)5Z, M5økPZMk the configuration
space onTD that is at least piecewisely smooth enough. At the moment lettk , Nk be the set of
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nodes neighboring totk . Let I k be the index set of nodes ofNk including tk . The coordinates of
Mk are denoted byqi(tk)5qi (k), i 51,...,n. T(Mk) the tangent bundle ofMk in the sense tha
difference attk is its base,T* (Mk) its dual. LetMk5ø l PI k

M l be the union of configuration
spacesMl at t l ,l PI k on Nk , TMk5ø l PI k

TMl the union of tangent bundles onMk , F(TMk),
andF(TMk) the function spaces on each of them, respectively, etc. In the difference varia
approach, we need these notions.

A. Variable difference Lagrangian mechanics

Let us consider the system with a discrete LagrangianLD
(k) on F(T(Mk3TD)). For simplic-

ity, the Lagrangian is of the first order of differences

LD
(k)5LD~qi (k),Dkq

i (k);tk!, ~3.2!

with the differenceDkq
i (k) of qi (k) at tk defined by

Dkq
i (k)

ª

qi (k11)2qi (k)

tk112tk
. ~3.3!

The discrete action of the system is given by

SD5 (
kPZ

~ tk112tk!LD
(k)S qi (k),

qi (k11)2qi (k)

tk112tk
;tkD . ~3.4!

The discrete total variations forqi (k)5qi(tk) should be defined as follows:

d tq
i (k)

ªq8 i~ tk8!2qi~ tk!5dvqi (k)1dhqi (k), tk85tk1dtk ,

dvqi (k)
ªq8 i~ tk!2qi~ tk!, dvtk50,

dhqi (k)
ªq8 i~ tk8!2q8 i~ tk!5qi~ tk8!2qi~ tk!1O~d2!. ~3.5!

It can be shown that horizontal variationdhqi (k) is given by

dhqi (k)5dtkDkq
i (k). ~3.6!

The discrete total variations forDkq
i (k) are defined as

d tDkq
i (k)

ª

q8 i~ tk118 !2q8 i~ tk8!

tk118 2tk8
2

qi~ tk11!2qi~ tk!

tk112tk
5dvDkq

i (k)1dhDkq
i (k),

dvDkq
i (k)

ª

q8 i~ tk11!2q8 i~ tk!

tk112tk
2

qi~ tk11!2qi~ tk!

tk112tk
. ~3.7!

From the definition of the difference with variable time step-length~3.3! and the Leibniz law for
it

Dk~ f (k)g(k)!5~Dkf (k)!g(k)1E f (k)~Dkg
(k)!, ~3.8!

whereE is the shift operator defined as

E f (k)5 f (k11), E21f (k)5 f (k21), ~3.9!

it follows
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d tDkq
i (k)5Dk~d tq

i (k)!2~Dkdtk!Dkq
i (k),

dhDkq
i (k)5dtk11D~Dkq

i (k)!. ~3.10!

Namely,

dvDkq
i (k)5Dkdvqi (k),

dhDkq
i (k)5Dkdhqi (k)2~Dkdtk!Dkq

i (k). ~3.11!

Using the above properties and

d t~ tk112tk!5Dk~d ttk!~ tk112tk!, ~3.12!

the total variations of the discrete Lagrangian can be calculated as follows:

d tLD
(k)5

]LD
(k)

]qi (k) d tq
i (k)1

]LD
(k)

]Dkq
i (k) d tDkq

i (k)1
]LD

(k)

]tk
d ttk

5@Lqi (k)#d tq
i (k)1Dk~pi

(k)Dkq
i (k21)!dtk

1
]LD

(k)

]tk
dtk1Dk~pi

(k11)d tq
i (k)2pi

(k)Dkq
i (k21)dtk!, ~3.13!

where@Lqi (k)# is the discrete Euler–Lagrange operator

@Lqi (k)#ª
]LD

(k)

]qi (k) 2DS ]LD
(k21)

]Dqi (k21)D , ~3.14!

andpi
(k) is the discrete canonical conjugate momenta

pi
(k)
ª

]LD
(k21)

]Dqi (k21) . ~3.15!

Thus the total variation of action is given by

d tSD5(
k

~ tk112tk!$~Ddtk!LD
(k)1d tLD

(k)%

5(
k

~ tk112tk!H @Lqi (k)#d tq
i (k)1S DkHD

(k21)1
]LD

(k)

]tk
D dtk

1Dk~pi
(k11)d tq

i (k)2HD
(k21)dtk!J , ~3.16!

whereHD
(k) is the difference Hamiltonian that can be introduced through the discrete Lege

transformation

HD
(k)
ªpi

(k11)D tq
i (k)2LD

(k). ~3.17!

Thus, the total variation of the discrete action~3.16! can be written as

d tSD5dvSD1dhSD ,

dvSD5(
k

~ tk112tk!$@Lqi (k)#dvqi (k)1D~pi
(k11)dvqi (k)!%,
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dhSD5(
k

~ tk112tk!H @Lqi (k)#dhqi (k)1S DHD
(k21)1

]LD
(k)

]tk
D dtk1D~pi

(k11)dhqi (k)

2HD
(k21)dtk!J . ~3.18!

The variational principle requiresdvSD50 and the discretized reparametrization invarian
with respect to discrete time may also lead todhSD50 if this invariance does exist. Thus
follows the discrete Euler–Lagrange equations forqi (k)’s,

]LD
(k)

]qi (k) 2DS ]LD
(k21)

]Dqi (k21)D50, ~3.19!

and the equation for the variable time step-length,

S ]LD
(k)

]qi (k) 2DS ]LD
(k21)

]Dqi (k21)D DDqi (k)1DHD
(k21)2

]HD
(k)

]tk
50. ~3.20!

It is more or less straightforward to show that if the time step-length is fixed the equ
~3.20! has no solution in general even if the Lagrangian does not depend on discrete time
festly. In other words, for the conservative discrete Lagrangian mechanics the time step-
should be variable in general so that the energy of the system can be kept conserved disc

Remark 3.1:We may introduce exterior differential operators dˆ, dv , and d̂h on T* (M
3TD), T* M andT* TD , respectively. They are nilpotent and satisfy

d̂5dv1d̂h , $dv ,d̂h%50. ~3.21!

Especially, dˆh is due to the difference onTD and satisfy Leibniz’s law for ordinary forms. In fac
some NCDC is needed to completely clarify the properties of dˆ

h . For the case thatDt is fixed, the
NCDC can be found in Refs. 16 and 17. For the case of variable time steps, similar NCD
also be established.

Remark 3.2:Actually, analog to the case with fixed time steps,12,14 we can establish the
difference version for the Euler–Lagrange cohomology and the necessary and sufficient co
for the difference conservation law of the discrete symplectic two-form.

From dvSD in ~3.18!, it is easy to see that we may take dv on SD to get

dvSD5(
k

~ tk112tk!dvLD
(k), dvLD

(k)5E D
(k)1DkuD

(k), ~3.22!

whereE D
(k), uD

(k) are the discrete Euler–Lagrange one-form and symplectic potential one-
respectively,

E D
(k)
ª@Lqi (k)#dvqi (k), uD

(k)
ªpi

(k11)dvqi (k). ~3.23!

Then due to the nilpotency of dv , it is straightforward to get

dvE D
(k)1DkvD

(k)50, vD
(k)
ªdvuD

(k)5dvpi
(k11)∧dvqi (k). ~3.24!

Therefore, we may get the discrete version for the theorem 1.12–14

Theorem 2: For the discrete Lagrangian with first order differences on the bun
E(TD ,Q,p).M3TD , the following properties hold:
(1) There exists the discrete version of the Euler–Lagrange cohomology: HDCM :

5$Closed Euler–Lagrange forms%/$Exact Euler–Lagrange forms%.
(2) The necessary and sufficient condition for conservation of the discrete symplectic two
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i.e.,
DkvD

(k)50, ~3.25!

is that the corresponding discrete Euler–Lagrange one-form is closed, rather than the syst
being on the solution space only.
Remark 3.3:In this paper,TD is an infinite chain. It is reasonable to consider an interval

TD . We will report the issues on this topic elsewhere.

B. Variable difference Hamiltonian mechanics

Now we consider the total difference variation on the phase space in the discrete Hamil
formalism with variable~time step-length! difference.

In order to transfer to the discrete Hamiltonian formalism, it is needed to introduce
discrete canonical conjugate momenta according to the equation~3.15! and express the discret
Lagrangian by the discrete Hamiltonian via Legendre transformation~3.17!. Thus, the discrete
action can be expressed as

SD5(
k

~ tk112tk!LD
(k)S qi (k),

qi (k11)2qi (k)

tk112tk
,tkD5(

k
~ tk112tk!~pi

(k11)D tq
i (k)2HD

(k)!.

~3.26!

And its total variation reads

d tSD5dvSD1dhSD

5(
k

~ tk112tk!H S Dqi (k)2
]H D

(k)

]pi
(k11)D d tpi

(k11)2S Dpi
(k)1

]HD
(k)

]qi (k) D d tq
i (k)

1S DHD
(k21)1

]LD
(k)

]tk
D dtk1D~pi

(k)d tq
i (k)2HD

(k21)dtk!J . ~3.27!

Similar to the discrete Lagrangian formalism, Hamilton’s principle requiresdvSD50 and the
discretized reparametrization invariance with respect to discrete time may also lead todhSD50 if
this invariance does exist. Thus we get the discrete canonical equations forpi

(k)’s andqi (k)’s,

Dqi (k)5
]HD

(k)

]pi
(k11) , Dpi

(k)52
]HD

(k)

]qi (k) , ~3.28!

and the equation for the variable time step-length,

S Dqi (k)2
]HD

(k)

]pi
(k11)DDpi

(k11)2S Dpi
(k)1

]HD
(k)

]qi (k) DDqi (k)1DHD
(k21)2

]HD
(k)

]tk
50. ~3.29!

It is also more or less straightforward to show that if the time step-length is fixed the equ
~3.29! has no solution in general even if the Hamiltonian does not depend on discrete
manifestly. In other words, for the conservative discrete Hamiltonian mechanics the time
length should be variable so that the energy of the system can be kept conserved discre
Refs. 19–21, 11, 18, this issue has been studied.

It should be mentioned that all remarks in the preceding section can be made here a
theorem 2 can also be established for the discrete Hamiltonian formalism.

IV. VARIATIONS FOR FIELD THEORY

We now briefly recall the variations in classical continous field theory. We also mention
Euler–Lagrange cohomology and its relation with the multisymplicity.12–14
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Consider a bundleE(X,Q,p), the fiber Q.M . For simplicity, let X5X(1,n21) be an
n-dimensional Minkowskian space as base manifold with coordinatesxm (m50,...,n21), M the
configuration space onX(1,n21) with a set of generic~scalar! fields ua(x) (a51,...,r ), TM the
tangent bundle ofM with coordinates (ua,um

a), whereum
a5]ua/]xm , F(TM) the function space

on TM, etc.
We also assume these fields to be free of constraints, although our approach can be g

ized to other cases.

A. Variations in Lagrangian formalism

The Lagrangian of the theory is supposed to be the first order of derivatives of the field
is dependent on the coordinates manifestly, i.e.,L(ua,um

a ;xm). The action is

S~@ua~x!#;xm!5E
V

d4x L~ua,um
a ;xm!. ~4.1!

Let us consider the variations of the fields, i.e., total variationd tu
a, vertical onedvua and

horizontal onedhua,

ua→u8a~x8!5ua~x!1d tu
a~x!,

d tu
a5dvua1dhua,

dvua~x!ªu8a~x!2ua~x!,

dhua~x!ªu8a~x8!2u8a~x!5ua~x8!2ua~x!1O~d2!5dxm]mua~x!5Ljx
ua~x!, ~4.2!

accompanying with the coordinates’ infinitesimal continuous transformation

xm→x8m5xm1dxm. ~4.3!

HereLjx
is the Lie derivative with respect to the horizontal variational vector field

jxªdxm]m . ~4.4!

The corresponding changes in the derivative of fieldsum
a are

]

]xm ua~x!→ ]

]x8m u8a~x8!5
]

]xm ua~x!1d tS ]

]xm ua~x! D ,

d tS ]

]xm ua~x! D5dvS ]

]xm ua~x! D1dhS ]

]xm ua~x! D ,

~4.5!

dvS ]

]xm ua~x! Dª ]

]xm u8a~x!2
]

]xm ua~x!,

dhS ]

]xm ua~x! D5dxn
]

]xn S ]

]xm ua~x! D5Ljx

]

]xm ua~x!.

Now the action~4.1! is also changed as follows:
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S~@ua~x!#;xm!→S8~@u8a~x8!#;x8m!

5E
V8

dnx8 L8~u8a~x8!,um8
8a

~x8!;x8m!

5E
V

dnx det~]x8/]x!$L~ua~x!,um
a~x!;xm!1d tL%5S~@ua~x!#;xm!1d tS.

~4.6!

Using Jacobi formula for the measure

dnx85detS ]x8

]x Ddnx5S 11
]dxm

]xm Ddnx1O~d2!, ~4.7!

we get

d tS~@ua~x!#;xm!5E
V

dnx$]mdxmL1d tL%

5E
V

dnxH @Lua#d tu
a1S ]mTmn1

]L

]xnD dxn

1]mS ]L

]~]mua!
d tu

a2Tm
ndxnD J , ~4.8!

dvS~@ua~x!#;xm!5E
V

dnxH @Lua#dvua1]mS ]L

]~]mua!
dvuaD J , ~4.9!

dhS~@ua~x!#;xm!5E
V

dnxH @Lua#dhua1S ]mTmn1
]L

]xnD dxn1]mS ]L

]~]mua!
dhua2Tm

ndxnD J
5E

V
dnx ]m~Ldxm!, ~4.10!

where@Lua# is the Euler–Lagrange operator andTmn the energy-momentum tensor

@Lua#ª
]L

]ua 2]mS ]L

]um
a D ,

Tmnª
]L

]~]mua!
]nua2Lhmn . ~4.11!

Thus d tS50, i.e., dvS50 due to Hamilton’s principle anddhS50 due to the invariance o
reparametrization of the coordinates that preserves the action. In general, the general coo
transformations may be considered and all formulas become covariant. This requires to
dvua anddxm as independent components and gives rise to the Euler–Lagrange equation

]L

]ua 2]mS ]L

]um
a D 50 ~4.12!

as well as an identity between the Euler–Lagrange operator and conservation property
energy-momentum tensor
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S ]L

]ua 2]mS ]L

]um
a D D ]nua1]mTmn1]nL50. ~4.13!

This equation shows that the energy-momentum tensor is conserved if and only if the E
Lagrange equation is satisfied and the Lagrangian does not depend manifestly on the coor

The boundary term vanishes as follows:

E
V

dnx
]

]xm S S ]L

]um
a D dvua1LdxmD 5E

]V
S S ]L

]um
a D dvua1LdxmDdsm50. ~4.14!

Remark 4.1:Introduce the nilpotent exterior differential operators dv , dh , and d satisfying

dªdv1dh , $dv ,dh%50, ~4.15!

where dv is along the fiberQ.M , dh and d onT* X andT* E, E5M3X, respectively. Conside
a vertical variational vector field

juªdvua~x!
]

]ua ~4.16!

such that

dvua~x!5 i ju
dvua5 i ju

dua. ~4.17!

By means of this vertical variational vector field~4.16! on TQ, dvS can also be expressed as
contraction with one-form dvSPT* Q,

i ju
dvS5dvS. ~4.18!

We may calculate dvSPT* Q. Since dv commutes with the integral and dnx ~see also, for
example, the functional differential calculus in Ref. 27!, it is straightforward to get

dvS5E
V

dnxH @Lua#dvua1
]

]xm umJ , ~4.19!

whereum are the Lagrange one-forms

um
ª

]L

]um
a dvua. ~4.20!

By contracting with the vertical variational vector field~4.16!, we get straightforwardlydvS.
Furthermore, due to the nilpotency of dv , it is easy to get

dvEu1
]

]xm vm50, ~4.21!

whereEu is the Euler–Lagrange one-form defined by

Eu~ua~x!,um
a~x!;x!ª@Lua#dvua, ~4.22!

vm are the multisymplectic two-forms and in local coordinates

vm
ªdvum5

]2L

]ua]um
b dua∧dub1

]2L

]un
a]um

b dun
a∧dub. ~4.23!
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From the definition~4.22!, Eqs.~4.19! and ~4.21!, the following theorem12–14 holds.
Theorem 3: For the Lagrangian with first order of derivatives on the bundle E(X,Q,p), the

following properties hold.

(1) There exists the Euler–Lagrange cohomology:

HCFTª$EuudEu50%/$EuuEu5db%,

whereb5b(ua(x),um
a(x);x) is an arbitrary function of(ua(x),um

a(x);x).

(2) The necessary and sufficient condition for conservation of the multisymplectic two-form,
]

]xm vm50, ~4.24!

is that the corresponding Euler–Lagrange one-form is closed, rather than the system being
the solution space only.
Remark 4.2:From the definition of the Lie derivative it can be seen that the horizo

variations are given by the Lie derivative with respect to the variational vector field.
Let j be a vector field onX, exp(lj) be the flow with parameterl, i.e., the one-paramete

diffeomorphism group, induced byj, f a differential form or a vector onX. The infinitesimal
change off under flow is described by its Lie derivative with respect to the vector fieldj,

Lj f ~x!ª lim
l→0

1

l
$fl* f ~exp~lj!x!2 f ~x!%5

d

dl U
l50

~fl* f ~x8!!, x85exp~lj!x. ~4.25!

Herefl* is the bull-back or the inverse differential for the differential form or vector, respectiv
Taking horizontal variational vector field for the coordinatesj5j(x)5jx ~4.4!, it follows that

the Lie derivative off (x) with respect tojx gives rise to the horizontal variation off (x).
On the other hand, the coordinate variationsdxm can be expressed by the contraction betwe

the variational vector field~4.4! and one-form dhxm on T* X, i.e., dxm on T* E,

i jx
dhxm5dxm. ~4.26!

It is also feasible to express the variationdhua(x) as contraction of a horizontal variation vect
field jh with dvua or dua. To this purpose, we introduce the horizontal variation vector fieldjh,u .
It is along the fiber with respect to horizontal variations ofua(x),

jh,uªdhua~x!
]

]ua . ~4.27!

Combining this vector field with the vector fieldjx in ~4.4!, the general horizontal variationa
vector fieldjh should be defined as

jhªjx1jh,u5dxm
]

]xm 1dhua~x!
]

]ua . ~4.28!

Its contraction with dvua or dua leads to

i jh
dua5dua

•jh5dhua~ t !. ~4.29!

In general, for any functional ofua(x) and um
a(x), F(ua(x),um

a(x)):TQ→R, its ~horizontal!
variation induced by~4.3! is

F~ua~x!,ua~x!!→FS ua~x8!,
]

]x8m ua~x8! D5F~ua~x!,um
a~x!!1dhF~ua~x!,um

a~x!!,
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dhF~ua~x!,um
a~x!!5 i jh

dF~ua~x!,um
a~x!!. ~4.30!

Remark 4.3:For the total variation, a total variational vector field forua(x) along the fiber can
also be introduced

j totalªjv1jh5dxm
]

]xm 1d tu
a~x!

]

]ua 5dxm
]

]xm 1S dvua~x!1dxm
]

]xm ua~x! D ]

]ua ,

~4.31!

whose contraction with dua leads to the total variationd tu
a(x),

i j total
dua5dua

•j total5d tu
a~x!. ~4.32!

B. Variations in Hamiltonian formalism

In order to transfer to the Hamiltonian formalism for classical field theory, we first define
of ‘‘momenta’’ canonically conjugate to the field variables

pa~x!5
]L

]u̇a , ~4.33!

and take a Legendre transformation to get the Hamiltonian density

H~ua,pa ,¹aua!5pa~x!u̇a~x!2L~ua,u̇a,¹aua!, ~4.34!

where¹a5 ]/]xa , a51,...,n21. The Hamiltonian then is given by

H~ t !5E
S
dn21x H~x!, ~4.35!

with the Legendre transformation

H~ t !5E
S
dn21x$pa~x!u̇a~x!2L~ t !%, L~ t !5E

S
dn21x L, ~4.36!

whereS,V is an (n21)-dimensional simultaneous spacelike hypersurface inV.
The actionS(@ua(x)#;xm) ~4.1! becomes

S~@ua~x!#;xm!5E
V

dnx$pa~x!u̇a~x!2H~ua,u̇a,¹aua!%. ~4.37!

The total variation of the action can be calculated similar to that in the preceding section, bu
pa(x), ua(x), and their derivatives should be varied independently. Thus we get

d tS~@ua~x!#;xm!5E
V

dnx$]mdxmL1d tL%

5E
V

dnxH @Hpa#d tp
a2@Hua#d tu

a1S ]mTmn1
]H

]xnD dxn

2]mS ]H

]~]mua!
d tu

a2Tm
ndxnD J , ~4.38!

where@Hua#, @Hpa# are the canonical operators
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@Hpa
#ªu̇a~x!2

]H

]pa
,

@Hua#ªṗa~x!1
]H

]ua 2¹aS ]H

]~¹aua! D . ~4.39!

Similar to the Lagrangian formalism,d tS50, i.e., dvS50 and dhS50, requires to regard
dvua, dvpa , anddxm as independent components. This leads to the canonical field equatio

u̇a~x!5
]H

]pa
,

ṗa~x!52
]H

]ua 1¹aS ]H

]~¹aua! D , ~4.40!

and an identity between the canonical operators and conservation property for the e
momentum tensor

@Hpa#]npa2@Hua#]nua1]mTmn2]nH50. ~4.41!

It should be mentioned that all remarks in the preceding section can be made here a
theorem 3 can be established as well.

V. VARIATIONS FOR DISCRETE FIELD THEORY

We now study the variation problems for the difference discrete field theory with var
step-lengths. For simplicity, we consider the cases of 111 or two-dimensional flat base manifold
i.e., X1,1 or X2 endowed with suitable signature of the metrics.

Let L2 be a right-angle lattice onX1,1 or X2 with nodesxm
( i , j )5(x1

i ,x2
j ),m51,2,(i , j )PZ3Z

and variable step-lengths on two directionsxm to be determined by discrete variation problems,N
is all nodes onL2. For a given node with coordinatesxm

( i , j ) , let MDªM ( i , j ) be the piece of
configuration space with a set of generic field variablesua(xm

( i , j ))5ua( i , j )PMD at the nodexm
( i , j ) ,

TM( i , j ) the tangent bundle ofM ( i , j ) with the set of field variables and their differenc
(ua( i , j ),Dmua( i , j ))PT(M ( i , j )), F(TM( i , j )) the function space onTM( i , j ). Let N ( i , j ) be the set of
nodes neighboring toxm

( i , j ) with index setI ( i , j )5Ind(N ( i , j )),a set of nodes related toxm
( i , j ) by the

differences,M ( i , j )5ø Ind(N)uI ( i , j )M ( i , j ) the union of the pieces of configuration space onX( i , j ).
F(T(M ( i , j ))) function space onT(M ( i , j )).

SinceL2 is a right-angle lattice, it should have only two possibilities for the variable s
lengths: either equal step-length variation along two directions simultaneously while along
direction the step-lengths are variable, or along one direction the step-length is fixed while
the other it is variable.

A. Variable difference Lagrangian field theory

The difference Lagrangian for a set of the generic fieldsua,a51,...,r , is a functional on
F(T(M ( i , j ))) and suppose to be the first order of differences of the fields for simplicity,

LD
( i , j )5LD~ua( i , j ),Dmua( i , j ),xm

( i , j )!, m51,2, ~5.1!

wherexm
( i , j )5(x1

( i ) ,x2
( j )), ua( i , j )5ua(xm

( i , j )) and

D1ua( i , j )5
ua( i 11,j )2ua( i , j )

x1
( i 11)2x1

( i ) , D2ua( i , j )5
ua( i , j 11)2ua( i , j )

x2
( j 11)2x2

( j ) . ~5.2!

The discrete actionSD now reads
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SD5(
i , j

D1x1
( i )D2x2

( j )LD
( i , j ), ~5.3!

whereD1x1
( i )5x1

( i 11)2x1
( i ) , D2x2

( j )5x2
( j 11)2x2

( j ) .
Let us consider the coordinates of nodes on the lattice subject to infinitesimal deform

that still keepL2 as a right-angle lattice

xm
( i , j )→xm8 ~x1

( i , j ) ,x2
( i , j )!5xm

( i , j )1dxm
( i , j ) , ~5.4!

the corresponding changes in the fields are

ua~x!( i , j )→u8a~x8!( i , j )5ua~x!( i , j )1d tu
a~x!( i , j ),

d tu
a~x!( i , j )5dvua~x!( i , j )1dhua~x!( i , j ),

~5.5!
dvua~x!( i , j )

ªu8a~x!( i , j )2ua~x!( i , j ),

dhua~x!( i , j )
ªu8a~x8!( i , j )2u8a~x!( i , j )5ua~x8!( i , j )2ua~x!( i , j )1O~d2!5dxm( i , j )Dmua~x!( i , j ).

For the differences of fields,Dmua(x)( i , j ), the corresponding changes are

Dmua~x!( i , j )→Dm8 u8a~x8~x( i , j )!!5Dmua~x!( i , j )1d tDmua~x!( i , j ),

d tDmua~x!( i , j )5dvDmua~x!( i , j )1dhDmua~x!( i , j ),
~5.6!

dvDmua~x!( i , j )
ªDmu8a~x!( i , j )2Dmua~x!( i , j ),

dhDmua~x!( i , j )
ªDm8 u8a~x8!( i , j )2Dmu8a~x!( i , j )5Dmua~x8!( i , j )2Dmua~x!( i , j )1O~d2!.

These can be calculated to obtain

dvDmua~x!( i , j )5Dm~dvua~x!( i , j )!,
~5.7!

d tDmua~x!( i , j )5Dmd tu
a~x!( i , j )2Dmdxn( i , j )

•Dnua~x!( i , j ).

Using the Leibniz law~3.8! for differences in each direction, it follows

d tD1ua~x!( i , j )5D1dvua~x!( i , j )1dxn( i 11,j )
•D1Dnua~x!( i , j ),

~5.8!
d tD2ua~x!( i , j )5D2dvua~x!( i , j )1dxn( i , j 11)

•D2Dnua~x!( i , j ).

The total variation of discrete action~5.3! can be calculated as

d tSD5(
i , j

D1x1
( i )
•D2x2

( j )~D1dx1
i LD

( i , j )1D2dx2
j LD

( i , j )1d tLD
( i , j )!. ~5.9!

Using formulas

D1dx1
i LD

( i , j )5D1~dx1
i LD

( i 21,j )!2dx1
i D1L D

( i 21,j ),
~5.10!

D2dx2
j LD

( i , j )5D2~dx2
j LD

( i , j 21)!2dx2
j D2L D

( i , j 21),

and
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d tLD
( i , j )5

]L D
( i , j )

]ua( i , j ) d tu
a( i , j )1

]LD
( i , j )

]~Dmua( i , j )!
d tDmua( i , j )1

]LD
( i , j )

]xm( i , j ) dxm( i , j )

5
]LD

( i , j )

]ua( i , j ) d tu
a( i , j )1

]LD
( i , j )

]~D1ua( i , j )!
~D1d tu

a( i , j )2~D1dxm( i , j )!•Dmua( i , j )!

1
]LD

( i , j )

]~D2ua( i , j )!
~D2d tu

a( i , j )2~D2dxm( i , j )!•Dmua( i , j )!1
]LD

( i , j )

]xm( i , j ) dxm( i , j )

5@Lua( i , j )#d tu
a( i , j )

1D1S ]LD
( i 21,j )

]~D1ua( i 21,j )!
d tu

a( i , j )2
]LD

( i 21,j )

]~D1ua( i 21,j )!
Dmua( i 21,j )dxm( i , j )D

1D2S ]LD
( i , j 21)

]~D2ua( i , j 21)!
d tu

a( i , j )2
]LD

( i , j 21)

]~D2ua( i , j 21)!
Dmua( i , j 21)dxm( i , j )D

1D1S ]LD
( i 21,j )

]~D1ua( i 21,j )!
Dmua( i 21,j )D dxm( i , j )

1D2S ]LD
( i , j 21)

]~D2ua( i , j 21)!
Dmua( i , j 21)D dxm( i , j )1

]LD
( i , j )

]xm( i , j ) dxm( i , j ), ~5.11!

we obtain

d tSD5dvSD1dhSD

5(
i , j

D1x1
( i )
•D2x2

( j )H @Lua( i , j )#d tu
a( i , j )1D1S ]LD

( i 21,j )

]~D1ua( i 21,j )!
d tu

a( i , j )

2S ]LD
( i 21,j )

]~D1ua( i 21,j )!
Dmua( i 21,j )2d1mLD

( i 21,j )D dxm( i , j )D
1D2S ]LD

( i , j 21)

]~D2ua( i , j 21)!
d tu

a( i , j )2S ]LD
( i , j 21)

]~D2ua( i , j 21)!
Dmua( i , j 21)2d2mLD

( i , j 21)D dxm( i , j )D
1D1S ]LD

( i 21,j )

]~D1ua( i 21,j )!
Dmua( i 21,j )2d1mLD

( i 21,j )D dxm( i , j )

1D2S ]LD
( i , j 21)

]~D2ua( i , j 21)!
Dmua( i , j 21)2d2mLD

( i , j 21)D dxm( i , j )1
]LD

( i , j )

]xm( i , j ) dxm( i , j )J
5(

i , j
D1x1

( i )
•D2x2

( j )H @Lua( i , j )#d tu
a( i , j )1Sm,n51,2DmS ]LD

( i , j )

]~Dmu( i , j )!
d tu

( i , j )

2Em
21TDn

m( i , j )dxn( i , j )D
1Sn,m51,2S DnEn

21TDm
n~ i , j !1

]LD
( i , j )

]xm( i , j ) D dxm( i , j )J , ~5.12!

whereEm ,m51,2, @Lua( i , j )# and TDmn
( i , j ) are shift operators, discrete Euler–Lagrange oper

and energy-momentum tensor, respectively,

E1f ( i , j )5 f ( i 11,j ), E1
21f ( i , j )5 f ( i 21,j ),
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E2f ( i , j )5 f ( i , j 11), E2
21f ( i , j )5 f ( i , j 21), ~5.13!

@Lua( i , j )#ª
]LD

( i , j )

]ua( i , j ) 2D1S ]LD
( i 21,j )

]~D1ua( i 21,j )! D2D2S ]LD
( i , j 21)

]~D2ua( i , j 21)! D , ~5.14!

TDmn
( i , j )

ª

]LD
( i , j )

]~Dmua( i , j )!
Dnua( i , j )2LD

( i , j )hmn . ~5.15!

Regardingdvua( i , j ) and dxn( i , j ) as independent variational bases,d tSD50, or dvSD50 and
dhSD50, lead to the discrete Euler–Lagrange equation

]LD
( i , j )

]ua( i , j ) 2D1S ]LD
( i 21,j )

]~D1ua( i 21,j )! D2D2S ]LD
( i , j 21)

]~D2ua( i , j 21)! D50, ~5.16!

and a relation between the Euler–Lagrange operator and the~difference! divergence of the discrete
energy-momentum tensor that may determine the step-lengths,

@Lua( i , j )#Dnua~x!( i , j )1Sm51,2H DmEm
21TDn

m( i , j )1
]LD

( i , j )

]xn( i , j ) J 50. ~5.17!

It is obvious that all of these discrete equations, relations, and properties have correc
tinuous limits, respectively. Furthermore, due to the discrete Lagrangian~5.1! depending on the
differences explicitly, it is possible to introduce the discrete canonical momentum and di
Legendre transformation to transfer to the discrete Hamiltonian formalism as will be shown
next section.

Remark 5.1:We may introduce exterior differential operators dˆ, dv , and d̂h on T* (M
3XD), T* M andT* XD , respectively. They are nilpotent and satisfy

d̂5dv1d̂h , $dv ,d̂h%50. ~5.18!

Especially, dˆh is dual to the difference onXD and satisfy Leibniz’s law for ordinary forms. In fac
some noncommutative differential calculus is needed to completely clarify the properties oˆ

h .
For the case thatDxm are fixed, this noncommutative differential calculus can be found in Refs
and 17. For the case of variable step-lengths, similar noncommutative differential calculu
also be established.

Remark 5.2:Actually, analog to the case with fixed step-lengths,12,14 we can establish the
difference version for the Euler–Lagrange cohomology and the necessary and sufficient co
for the difference conservation law of the discrete multisymplectic two-forms.

From dvSD in ~5.12!, it is easy to see that we may take dv on SD to get

dvSD5(
( i , j )

D1x1
i D2x2

j dvLD
( i , j ), dvLD

( i , j )5E D
( i , j )1DmuD

m( i , j ), ~5.19!

whereE D
( i , j ), uD

m( i , j ), m51,2 are the discrete Euler–Lagrange one-form and multisymple
potential one-forms, respectively,

E D
( i , j )

ª@LDua( i , j )#dvua( i , j ), ~5.20!

uD
1(i , j )

ª

]LD
( i 21,j )

]~D1ua(k21,l )!
dua(k,l ), uDL

2(i , j )
ª

]LD
( i , j 21)

]~D2ua(k,l 21)!
dua(k,l ). ~5.21!

Then due to the nilpotency of dv , it is straightforward to get
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dvE D
( i , j )1DmvD

m( i , j )50, vD
m( i , j )

ªdvuD
m( i , j ). ~5.22!

Therefore, we may get the discrete version for the theorem 3.12,14

Theorem 4: For the discrete Lagrangian with first order of differences on the bun
E(XD ,Q,p).M3XD , the following properties hold.

(1) There exists the discrete version of the Euler–Lagrange cohomology: HDFT

ª$Closed Euler–Lagrange forms%/$Exact Euler–Lagrange forms%.
(2) The necessary and sufficient condition for conservation of the discrete multisymplecti

forms, i.e.,
DmvD

m(i,j)50, ~5.23!

is that the corresponding discrete Euler–Lagrange one-form is closed, rather than the syst
being on the solution space only.
Remark 5.3:In this paper,L2 is an infinite lattice. It is reasonable to consider a finite latti

We will report the issues on this topic elsewhere.

B. Variable difference Hamiltonian field theory

ConsiderX(1,1), on which there is a right-angle latticeL2 with variable step-lengths in eac
direction, is the base space.

We first define a set of the discrete canonical conjugate momenta on the tangent
T(M ( i , j )) of M ( i , j )5ø Ind(N)uI ( i , j )M ( i , j ) the union of the pieces of configuration space onX( i , j ),
which are the set of nodes neighboring to the nodexm

( i , j ) ,

pa
( i , j )5

]LD
( i 21,j )

]~D tu
a( i 21,j )!

. ~5.24!

The difference Hamiltonian is introduced through the discrete Legendre transformation

HD
( i , j )~ua( i , j ),pa

( i 11,j ) ;x( i , j )!5pa
( i 11,j )D tu

a( i , j )2LD
( i , j ). ~5.25!

The action functional~5.3! is expressed as

SD5 (
( i , j )PZ3Z

Dmxm( i , j )~pa
( i 11,j )D tu

a( i , j )2HD
( i , j )!. ~5.26!

The total variation of the actiond tSD can be calculated and separated into two parts, i.e.,
vertical variationdvSD and the horizontal variationdhSD ,

d tSD5dvSD1dhSD , ~5.27!

dvSD5 (
( i , j )PZ3Z

Dmxm( i , j )H dvpa
( i 11,j )@Hpa

( i 11,j )#2@Hua( i , j )#dvua( i , j )

2Sm,n51,2DmS ]HD
( i , j )

]~Dmu( i , j )!
dvu( i , j )D J , ~5.28!
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dhSD5 (
( i , j )PZ3Z

Dmxm( i , j )H dhpa
( i 11,j )@Hpa

( i 11,j )#2@Hua( i , j )#dhua( i , j )

2Sm,n51,2DmS ]HD
( i , j )

]~Dmu( i , j )!
dhu( i , j )1Em

21TDn
m( i , j )dxn( i , j )D

1Sn,m51,2S DnEn
21TDm

n~ i , j !2
]HD

( i , j )

]xm( i , j ) D dxm( i , j )J . ~5.29!

Here

@Hpa
( i 11,j )#ªD tu

a( i , j )2
]HD

( i , j )

]pa
( i 11,j ) ,

~5.30!

@Hua( i , j )#ªD tpa
( i , j )1

]HD
( i , j )

]ua( i , j ) 2DxS ]HD
( i , j 21)

]~Dxu
a( i , j 21)!

D .

Regardingdvua( i , j ), dvpa
( i 11,j ), anddxn( i , j ) as independent variational bases,dvSD50 due

to discrete Hamilton’s principle anddhSD50 due to discretized reparametrization invariance
L2, i.e., d tSD50, lead to the discrete canonical field equations

D tu
a( i , j )5

]HD
( i , j )

]pa
( i 11,j ) ,

~5.31!

D tpa
( i , j )52

]HD
( i , j )

]ua( i , j ) 1DxS ]HD
( i , j 21)

]~Dxu
a( i , j 21)!

D ,

and the canonical form of the relation~5.17! that may determine the step-lengths,

@Hpa
( i 11,j )#Dnpa

( i 11,j )2@Hua( i , j )#Dnua( i , j )1Sm51,2H DmEm
21TDn

m( i , j )2
]HD

( i , j )

]xn( i , j ) J 50.

~5.32!

It should also be mentioned that all remarks in the preceding section can be made here
theorem 4 can also be established in this discrete Hamiltonian formalism for field theory.

VI. CONCLUDING REMARKS

In this paper, the VDVA with variable step-lengths has been proposed. It is a gener
version of the difference variational approach with fixed step-lengths proposed in Refs. 12 a
The approach has been applied to both Lagrangian and Hamiltonian formalism for discre
chanics and field theory. Although we deal with systems with first order differences, the key p
are available for the systems with higher order differences. Obviously, both approaches a
ferent from either Lee’s discrete variation with variable time steps19–21or Veselov’s one with fixed
time steps for the discrete classical mechanics.30,26 They are also different from the discre
variation approach to field theory in Ref. 24 that is a generalization of Veselov’s approach.
approaches the differences with either variable step-lengths or the fixed ones are rega
discrete derivatives. In other words, they are regarded as a kind of geometric object. This is
obvious and natural from the viewpoint of noncommutative geometry and more akin to the
tinuous mechanics and field theory. Therefore, in the continuous limit, the results given here
VDVA lead to the correct continuous counterparts not only for the equations of motion
symplectic or multisymplectic preserving properties, but also for the conservation laws, espe
for the energy conservation.
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In view of the structure-preserving criterion for the discrete systems, there are more a
tages for the VDVA. Eventually, this has already been seen in Ref. 6. Namely, in takin
continuous limits for the discrete variation problems, which is a generalized version of
Veselov’s variation, combining discrete objects into some difference form is more controlla6

With variable step-lengths it is, of course, more or less straightforward to generaliz
symplectic and multisymplectic schemes as ones that are not only symplectic and multisym
preserving but also discretely energy conserved as has been done for variational sym
energy-momentum integrators in discrete Lagrangian formalism,18,6 and in discrete Hamiltonian
formalism.7 But, these discrete formalisms do not transform to each other via discrete Leg
transformation.

The difference variational approach has been applied to the symplectic algorithm and
symplectic one for both Lagrangian and Hamiltonian formalisms in Ref. 14. It has been s
that the discrete integrands can be combined together in a certain manner as to certain ge
objects in order to construct some numerical schemes with fixed step-lengths as variation
grators such as the midpoint scheme in the symplectic algorithm and the Preissman schem
multisymplectic algorithm. Obviously, the VDVA should also be able to apply to the symple
and multisymplectic algorithms with variable step-lengths for both Lagrangian and Hamilto
formalisms. This issue will be reported in details elsewhere.

It has been found that the necessary and sufficient conditions for the symplectic two
preserving in mechanics and the multisymplectic two-forms preserving in field theories a
corresponding Euler–Lagrange one-form closed in the relevant Euler–Lagrange cohomolo12,13

This is also true for the discrete cases12,14 as well as the symplectic and multisymplect
algorithms.14 For the cases studied in this paper, the Euler–Lagrange cohomology should a
true for the various variation problems with variable domains or step-lengths. In fact, this m
is already indicated by the boundary terms in the vertical parts of these variation problem
will also explain this issue in more detail elsewhere.

We have almost completely employed the ordinary description in a coordinate depe
manner in this paper in order to be more easily understood and to deal with both continuo
discrete cases in an analogical manner. It should be mentioned, however, that both the v
problems and the Euler–Lagrange cohomology for continuous cases can be dealt with in
dinate free version in terms of jet bundle and variational bicomplex~see, for example, Refs. 2 an
3!. Although as far as the local issues are concerned, the essentials are almost the sam
coordinate free expression encodes more general and complicated cases with nontrivial to
On the other hand, however, for the discrete cases the ordinary jet bundle and variational
plex approach should be generalized to the ones that include NCDC in principle. We will pr
the variational bicomplex approach to these issues elsewhere, especially the one with NCDC
discrete cases.

More than one year after this paper was finished and appeared as an e-print, our atten
been drawn to an important paper22 in which what is called asynchronous variational integrat
have been proposed for nonlinear elastodynamics. One of the key points in their approach
time step-lengths are no longer fixed rather they are determined by the discrete energy b
equation step by step. This is in analog with the discrete variation introduced in Refs. 19–2
also with our approach. However, there are two main differences disregarded by others b
their approach and ours. First, for both the continuous and discrete cases, either symple
multisymplectic preserving properties are always proved on the solution spaces in Ref. 22.
the same as in ordinary approaches. However, the necessary and sufficient condition fo
symplectic or multisymplectic preserving is not on the solution space of the relevant equatio
the relevant Euler–Lagrange one-form is closed in our approach. In fact, in the case of cla
mechanics on symplectic manifold, it is a well-known issue. Namely, the necessary and suf
condition for the symplectic preserving is that the flow is symplectic rather than Hamilto
~phase flow!25 and the definition for the symplectic vector is just the relevant Euler–Lagra
closed one-form.31,15 Second, for the discrete variation, in order to get the discrete Eu
Lagrange equation the variation is taken with respect to the discrete variables only in Ref. 22
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is also the same as in Refs. 19 and 26. However, in our approach the difference of the va
with variable step-length as a whole is also taken as independent variable for the discrete va
This is the reason why it is called the~variable! difference variational principle. One of th
advantages is that the difference discrete Legendre transformation in both discrete mechan
field theory can be taken. Therefore, VDVP can also be applied not only for the discrete Lag
ian formalism but also the discrete Hamiltonian formalism as well.
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Entropy growth of shift-invariant states on a quantum spin
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We study the entropy of pure shift-invariant states on a quantum spin chain. Unlike
the classical case, the local restrictions to intervals of lengthN are typically mixed
and have therefore a nonzero entropySN which is, moreover, monotonically in-
creasing inN. We are interested in the asymptotics of the total entropy. We inves-
tigate in detail a class of states derived from quasi-free states on a CAR algebra.
These are characterized by a measurable subset of the unit interval. As the entropy
density is known to vanish,SN is sublinear inN. For states corresponding to unions
of finitely many intervals,SN is shown to grow slower than log2 N. Numerical
calculations suggest a logN behavior. For the case with infinitely many intervals,
we present a class of states for which the entropySN increases asNa wherea can
take any value in~0,1!. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1623616#

I. INTRODUCTION

In quantum statistical mechanics, one-dimensional lattice systems, the so-called spin
are far from fully understood. One of the obstacles for a systematic study is the compl
correlations that can occur. This is even possible for pure states, which are trivial for classic
chains. Due to these quantum correlations, it is often very hard to explicitly specify a state.
a few classes can be studied in detail, including the product states, the finitely correlated5

and the states derived from quasi-free states on the CAR algebra.3,4

Let us denote byrN the density matrix of the restriction of a translation-invariant stater on a
spin chain toN consecutive spins. The von Neumann entropySNªS(rN) has proved to be a very
useful quantity in the study of quantum correlations. For ergodic translation-invariant statesrN is
essentially concentrated on a subspace of dimension exp(Ns(r)).8 Here,s(r) is the entropy density
of r. The compression ofrN from the full dimensiondN of N spins to exp(Ns(r)) is a central
theme in quantum coding theory. It lies also at the basis of DMRG computations.11 One may
conjecture thats(r)50 for pure statesr, which should allow for a very efficient compression. F
pure states,SN is also the unique reasonable measure for the entanglement of this interval wi
rest of the chain10 and it measures therefore the resources of the state for quantum comp
purposes.

For pure product statesSN vanishes for allN; this is in fact completely analogous to th
classical spin chain. For pure finitely correlated statesSN is uniformly bounded, a behavior that i
certainly not expected to be generic.6

The entanglement of local spins with the remainder of a chain has been considered by
authors and is a topic of current interest. Various models have been studied in detail such

a!Electronic mail: mark.fannes@fys.kuleuven.ac.be
b!Electronic mail: bart.haegeman@fys.kuleuven.ac.be
c!Electronic mail: mosonyi@math.bme.hu
60050022-2488/2003/44(12)/6005/15/$20.00 © 2003 American Institute of Physics
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ground states of XY-models or Ising chains in a transverse field. It turns out that in these cas
entanglement grows logarithmically with the size of the localized system, see, e.g., Ref. 12
a numerical proof of this behavior is obtained. For an analytical treatment of such a m
together with more refined results on higher order corrections we refer to Ref. 9.

In this article, we study the entropySN for general translation-invariant pure states on a ch
of spin 1

2 particles derived from quasi-free states on the CAR algebra. Here, the entropy den
known to vanish and we investigate the sublinear growth of the entropySN whenN→`. For the
simplest quasi-free states, the entropy behaves as logN. This is precisely the behavior found i
Refs. 12 and 9. In fact, the ground states of XY and Ising in a tranverse field are part
examples of pure states derived from quasi-free Fermion states. We shall, however, also
more involved examples for which the entropy increases asNa with a arbitrarily close to 1.
Therefore the entanglement of local spins with the remainder of the chain can be much high
previously thought.

The construction of pure shift-invariant quasi-free states is recalled in Sec. II. Such stat
characterized by a subset of the unit interval. In Sec. III we prove that the asymptotics ofSN as
N→` can be obtained by a quadratic approximation of the entropy. The entropy grow
quasi-free states given by a set consisting of finitely many intervals is studied in Sec. IV. F
Sec. V is devoted to the infinitely many intervals case.

II. QUASI-FREE STATES ON THE SPIN CHAIN

In this section we show, following Ref. 4, how a quasi-free state on the CAR algebra c
used to define a state on the spin chain algebra. After the introductory definitions, we explai
both algebras can be retrieved as subalgebras of a larger algebra. This construction perm
transfer translation-invariant states from the CAR algebra to the spin chain algebra. This i
then applied to quasi-free states.

A. CAR algebra and spin chain algebra

Let H be the Hilbert space,2(Z), in which $dk : kPZ% forms an orthonormal basis, wheredk

is the characteristic function of the integer numberk. Let A be the CAR algebra corresponding
H. It is theC* -algebra generated by1 and$ck : kPZ%, satisfying the canonical anticommutatio
relations

ckcl52clck , ck* cl5dk,l12clck* .

The parity automorphisma on A is defined bya(ck)52ck . Let A1 be the fixed point algebra o
a, i.e., A15$aPA : a(a)5a%. The elements ofA1 are called even, while those ofA2ª$a
PA : a(a)52a% are odd. Obviously,A5A11A2 . The shift automorphismg is defined by
g(ck)5ck11 .

The quantum spin chain is the UHF algebra

Cª ^
k52`

`

M2 ,

whereM2 is the algebra of 232 matrices. Lete11
k , e12

k , e21
k ande22

k denote the standard matri
units of M2 embedded into thekth factor ofC. The following relations hold:

eab
k ecd

l 5ecd
l eab

k when kÞ l ,

eab
k ecd

k 5db,cead
k ,

~1!
~eab

k !* 5eba
k ,

e11
k 1e22

k 51.
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Any algebra generated by elements$Eab
k : a,bP$1,2%,kPZ% satisfying the above relations is iso

morphic toC.

B. Jordan–Wigner isomorphism

Let An be the algebra generated by$ck : 0<k<n21% and letCn5 ^ k50
n21M2 . It is well known

that An is isomorphic toCn for all nPN. An explicit isomorphism is given by the so-calle
Jordan–Wigner isomorphism given in terms of matrix units inAn by

E11
k
ªck* ck , E22

k
ªckck* , E12

k
ªAkck* , E21

k
ªAkck .

Here we introduced

sk
z
ª2ck* ck21, Akª)

l 50

k21

s l
z .

The set$Eab
k : a,bP$1,2%,0<k<n21% generatesAn and the operatorsEab

k satisfy the same
relations~1! as the matrix unitseab

k of Cn .
A first idea would be to extend this isomorphism to an isomorphism fromA to C. However, it

is impossible to extend this definition to negativek’s in such a way that the isomorphism inte
twines the shifts inA andC. This property is needed to transport translation-invariance fromA to
C.

One way to circumvent this problem is due to Araki.2 It consists in enlargingA to Â by
adding a new elementT that has the following properties

T* 5T, T251 ~ i.e., T is a self-adjoint unitary!,

TckT5H ck if k>0,

2ck if k,0.

Any element ofÂ can uniquely be written in the forma1Tb with a andb from A. Therefore,
Â5A1TA. Note that formallyT5)k521

2` sk
z .

A statew on A can be extended to a stateŵ on Â by ŵ(a1Tb)ªw(a) and the extensions o
the automorphismsa andg are

â~a1Tb!ªa~a!1Ta~b! and ĝ~a1Tb!ªg~a!1Ts0
zg~b!.

We define another automorphismb on Â by b(a1Tb)ªa2Tb. The fixed point algebra ofb21â

will be denoted byǍ, i.e.,

Ǎ5$a1TbPÂ : â~a1Tb!5b~a1Tb!%5$a1TbPÂ : a~a!5a, a~b!52b%5A11TA2 .

The restriction of a stateŵ on Â to a state onǍ will be denoted byw̌. Because the automorphism
â andĝ leave the subalgebraǍ invariant, they can be restricted toǍ. Denote these restrictions b
ǎ and ǧ.

Let w be an even state, i.e., it vanishes on odd elements or, equivalently,w+a5w. It is easy
to see that alsow̌+ǎ5w̌, thusw̌ is an even state onǍ. Similarly, let w be a translation-invarian
state onA, i.e., w+g5w, thenw̌+ǧ5w̌, thusw̌ is a translation-invariant state onǍ.

Now, define

Ẽ11
k
ªck* ck , Ẽ22

k
ªckck* , Ẽ12

k
ªTAkck* , Ẽ21

k
ªTAkck

with
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sk
z
ª2ck* ck21, Akª5 )

,50

k21

s,
z if k.0,

1 if k50,

)
,5k

21

s,
z if k,0.

One verifies that these operators satisfy the same commutation relations as the matrix uniC.
Moreover,ǧ(Ẽab

k )5Ẽab
k11 .

To summarize, we constructed an algebraÂ which contains bothA and Ǎ as subalgebras
This embedding is compatible with the translations on the subalgebras. Moreover, we esta
an isomorphism betweenǍ andC which is also compatible with the translations. This allows us
transfer translation-invariant states fromA to C.

Let w be a translation-invariant state. Such a state is automatically even and is comp
determined by the sequence (wn)n50

` , wherewn is the restriction ofw to An . The density matrix
@wn# of wn has entries

@wn# j,i5wF )
k50

n21

Ei kj k

k G .

Here i and j denote multi-indices (i 0 ,i 1 ,...,i n21) and (j 0 , j 1 ,...,j n21) in $1,2%n. The transferred
statew̌ is also translation-invariant and so completely determined by its restriction to the s
gebras$Cn : nPN% with density matrices

@w̌n# j,i5ŵF )
k50

n21

Ẽi kj k

k G , i, j P$1,2%n.

The expressions)k50
n21Ei kj k

k and )k50
n21Ẽi kj k

k are both either odd or even. When odd,@wn# j,i

5@w̌n# j,i50, while when even, sinceTck5ckT for k>0 and T251, we get that)k50
n21Ẽi kj k

k

5)k50
n21Ei kj k

k and so@wn# i,j5@w̌n# i,j . From this, we conclude that the statesw andw̌ have the same

reduced density matrices. It follows immediately that ifw is pure, then alsow̌ is pure.

C. Quasi-free states

We apply the construction of the previous section to quasi-free states on the CAR algeA.
For these states an explicit formula is known for the entropy of the restricted density ma
Because the corresponding states onC have the same restricted density matrices, the same ex
formulas are available, as we shall use in the following sections. The proofs of the the
mentioned in this subsection can be found in Ref. 1.

Let w be a quasi-free, gauge-invariant state onA, i.e., w is given by the rule

w~ci 1
*¯ci m

* cj n
¯cj 1

!5dm,n det~@Qi kj l
#k,l 51

n !,

whereQ is an operator onH, 0<Q<1, andQi j 5^d i ,Qd j& are the matrix elements ofQ in the
standard basis ofH. The operatorQ is called the symbol of the statew. Obviously,w is even.

The quasi-free statew is translation-invariant if and only if its symbolQ is a Toeplitz operator,
i.e., there exists a sequence$qk : kPZ% such thatQlk5q( l 2k). By the Fourier transform,

q∧~u!5(
kPZ

q~k!eiku and its inverse q~k!5
1

2p E
T
du q∧~u!e2 iku, ~2!
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with T the torus parametrized by@0,2p!, the symbol of a translation-invariant quasi-free state
unitarily equivalent with the multiplication operator byq∧ on L2(T,du). This functionq∧ satisfies
0<q∧<1 almost everywhere.

A quasi-free statew is pure if and only if its symbolQ is a projector. For a translation
invariant state this means that the Fourier transform of the symbolQ is a characteristic function
i.e., there exists a measurable setK,T such thatq∧(u)5xK(u).

The entropy of a quasi-free statew can be expressed in terms of its symbolQ. Define, for
0<x<1, the functionsh(x)ª2x logx and h̃(x)ªh(x)1h(12x). The von Neumann entropy
of the state restricted to an interval ofN spins is given by

SNªTr h~@wN# !5Tr h̃~QN!, ~3!

whereQN is the restriction ofQ to the N-dimensional space spanned by$dk : 0<k<N21%. It
follows by Szego¨’s theorem7 that the entropy density of a translation-invariant quasi-free s
equals

sª lim
N→`

SN

N
5

1

2p E du h̃~q∧~u!!.

In particular, the entropy density of a pure translation-invariant quasi-free state is zero.

III. ASYMPTOTICS FOR ENTROPY OF QUASI-FREE STATES

Quasi-free states are good approximations of true ground and equilibrium states for syst
Fermions, either at low density or with weakly interacting particles. The coordinateu appearing in
~2! has the meaning of momentum and the system is specified by a dispersion relationu°«(u)
which is the relation between effective energy and momentum. For a shift-invariant quas
state, determined by a symbolQ or, equivalently, by a measurable functionq∧ on the unit circle
with 0<q∧<1, the energy and particle densities are given by

e~«,q∧!ª
1

2p E
T
du «~u! q∧~u! and n~q∧!ª

1

2p E
T
du q∧~u!.

The ground state at densityl, 0<l<1, is obtained by minimizing the energy density under t
constraintn(q∧)5l. It is given byq∧5xK(e F(l)) , whereK(e)ª$uPT : «(u)<e% ande F(l) is
the Fermi level determined by the condition

uK~e F~l!!u5
1

2p E
«(u)<e F(l)

du5l.

For smooth dispersion relations with few oscillations inu, K(e F(l)) will typically consist of a
finite union of disjoint intervals. This case will be investigated in Sec. IV. Section V deals with
opposite situation whenK(e F(l)) has a Cantor-type structure.

The quasi-free states on the spin chainC, as introduced in the previous section, obey Eq.~3!
for the von Neumann entropy of the restricted density matrices. This will be the starting poi
our study of the asymptotic behavior of this entropySN asN→`.

A. Growth exponents

We use the following estimate for the entropy functionh̃(x)ªh(x)1h(12x),

x~12x!<h̃~x!<e2c loge x~12x!, 0<x<1

~see Fig. 1!. The upper bound forh̃ holds for c a constant independent of 0,e; moreover, for
0,e,e0 we may choosec511 o(e0). Therefore,
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Tr QN~12QN!<SN<eN2c loge Tr QN~12QN!.

By choosing a functione(N) for which e→0 asN→`, we obtain bounds for the entropySN in
terms of TrQN(12QN), e.g., puttinge(N)ª1/N,

Tr QN~12QN!<SN<11c logN Tr QN~12QN!. ~4!

We are particularly interested in the growth exponents of the entropy,

a2ª lim inf
N→`

logSN

logN
and a1ª lim sup

N→`

logSN

logN
.

With the inequalities~4!,

lim inf
N→`

log TrQN~12QN!

logN
<a2<a1< lim sup

N→`

log TrQN~12QN!

logN
.

We conclude that, if

lim
N→`

log TrQN~12QN!

logN
exists, then also lim

N→`

logSN

logN
exists, and

aª lim
N→`

logSN

logN
5 lim

N→`

log TrQN~12QN!

logN
. ~5!

B. Quadratic approximation

Equations~4! and~5! show the importance of the quantity TrQN(12QN). It can be expressed
in terms of the sequence$q(k)% or, equivalently, of the Fourier transformq∧(u)5xK(u) of the
symbolQN . Using Eq.~2!,

FIG. 1. A quadratic upper and lower bound for the entropy functionh̃.
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Tr QN~12QN!5Nq~0!2 (
n,m51

N

uq~n2m!u2

5Nq~0!2N (
n52N11

N21 S 12
unu
N D uq~n!u2

5Nq~0!2
N

4p2 E du1E du2 xK~u1!xK~u2! (
n52N11

N21 S 12
unu
N Dein(u12u2).

Define the Dirichlet kernel,

kN~w!ª (
n52N11

N21 S 12
unu
N Deinw5112 (

n51

N21
N2n

N
cosnw 5

1

N

sin2~Nw/2!

sin2~w/2!
.

This is a sequence of positive normalized functions, weakly converging to the Dirac distrib

kN~w!>0,
1

2p E dw kN~w!51.

Therefore,

Tr QN~12QN!5NF 1

2p E du xK~u!2
1

4p2 E duE dw xK~u!xK~u2w!kN~w!G
5

N

4p2 E duE dw xK~u!@12xK~u2w!#kN~w!

5
N

4p2 E dw kN~w!E du xK~u!@12xK~u2w!#

5
N

4p2 E dw kN~w! uK\~K1w!u. ~6!

Note that bothS(QN) and TrQN(12QN) are invariant for the replacement ofQN by 12QN . As
a consequence, Eq.~6! can be written in the form

Tr QN~12QN!5
N

4p2 E dw kN~w! uKc\~Kc1w!u. ~7!

IV. FINITELY MANY INTERVALS

As explained in Sec. II the subsetK of the torusT determines the statew we are studying. In
this section we study setsK composed of a finite number of intervals, whereas in the next sec
sets with an infinite number of intervals are treated.

A. Lower bound

By Eq. ~4! we have to bound TrQN(12QN) from below. We consider a setK with a finite
number of intervals, sayM . Let d.0 be a fixed number which is smaller than any of the interv
and the holes between two such intervals. Therefore,uK\(K1w)u>Mw for 0<w<d. Equation
~6! becomes
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SN>Tr QN~12QN!

5
N

4p2 E dw kN~w! uK\~K1w!u

>
NM

2p2 E
0

d
dw kN~w! w

5
NM

2p2 E
0

d
dw wF112 (

n51

N21
N2n

N
cosnwG

5
NM

p2 Fd2

4
1d (

n51

N21
sinnd

n
22 (

n51

N21
sin2~nd/2!

n2 G
1

M

p2 F2d (
n51

N21

sinnd2 (
n51

N21
cosnd

n
1 (

n51

N21
1

n G .

Using the identities,

(
n51

`
sinnd

n
5

p2d

2
and (

n51

`
sin2~nd/2!

n2 5
d~2p2d!

8
,

we obtain

SN>
NM

p2 F2d (
n5N

`
sinnd

n
12 (

n5N

`
sin2~nd/2!

n2 G1
M

p2 F2d (
n51

N21

sinnd2 (
n51

N21
cosnd

n
1 (

n51

N21
1

n G .

~8!

Next, we estimate the different terms in~8!. The first term on the first line is estimated as

U (
n5N

`
sinnd

n U5U (
n5N

` cos~n1 1
2!d2cos~n2 1

2!d

2n sin~d/2!
U< 1

N

1

usin~d/2!u
,

the second term on the first line as

U (
n5N

`
sin2~nd/2!

n2 U< (
n5N

`
1

n2 <E
N21

`

dx
1

x2 5
1

N21
,

the first term on the second line as

U (
n51

N21

sinndU< 1

usin~d/2!u
,

the second term on the second line, for anye.0 andN sufficiently large, as

U (
n51

N21
cosnd

n U<2 log@2 sind#1e,

and finally, the last term on the last line is

(
n51

N21
1

n
>E

1

N

dx
1

x
5 logN.
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Putting everything together in~8!, we find that there exists a constantc1.0 independent ofN
such that

SN>c1 logN. ~9!

B. Subadditivity

Before establishing the upper bound for the entropySN in case the setK is composed of a
finite number of intervals, we prove a general subadditivity property of this entropy. This
enable us to restrict the proof of the upper bound to the case of a single interval.

Suppose thatK1 andK2 are disjoint sets and putKªK1øK2 . Denoting the symbols of thes
states byQ, Q1 andQ2 , we shall prove the subadditivity property, namely,

Tr h̃~QN!<Tr h̃~~Q1!N!1Tr h̃~~Q2!N!. ~10!

To simplify notation, defineRªQN , R1ª(Q1)N and R2ª(Q2)N . First, note thatR5R11R2 .
Remember thath̃(x)52x logx2(12x)log(12x) and thush̃8(x)52 logx1log(12x). We assume
R1.0, R2.0 andR11R2,1. Otherwise, we can introduce operatorsR̃1ª(12e)R11 (e/2)1 and
R̃2ª(12e)R21 (e/2)1, prove the subadditivity for these two operators and then take the
e→0. Using the operator identity (d/dl)Tr f (A1lB)5Tr B f8(A1lB),

Tr h̃~R11R2!2Tr h̃~R1!5Tr h̃~R11lR2!ul50
1

5E
0

1

dl
d

dl
Tr h̃~R11lR2!

5E
0

1

dl Tr R2 log
12R12lR2

R11lR2
. ~11!

Because the inverse is operator decreasing,

12R12lR2

R11lR2
5

1

R11lR2
21<

1

lR2
215

12lR2

lR2
,

and, because the logarithm is operator increasing,

log
12R12lR2

R11lR2
< log

12lR2

lR2
.

Substituting this into Eq.~11!,

Tr h̃~R11R2!2Tr h̃~R1!<Tr h̃~R2!.

C. Upper bound

Due to subadditivity, it is enough to prove an upper bound for a setK consisting of a single
interval. We assume that the length of this intervaluKu<p. Otherwise, we can work withKc. By
Eq. ~4! we have to bound TrQN(12QN). In this case,

uK\~K1w!u5H w for uwu<uKu,

uKu for uKu<uwu<p.

By Eq. ~6!,
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Tr QN~12QN!5
N

2p2 E
0

p

dw F112 (
n51

N21
N2n

N
cosnwG uK\~K1w!u

5
N

4p2 F uKu~2p2uKu!28 (
n51

N21
sin2~nuKu/2!

n2 G1
2

p2 (
n51

N21
sin2~nuKu/2!

n
.

Using the identity,

(
n51

`
sin2~nuKu/2!

n2 5
uKu~2p2uKu!

8
,

we obtain

Tr QN~12QN!5
2N

p2 (
n5N

`
sin2~nuKu/2!

n2 1
2

p2 (
n51

N21
sin2~nuKu/2!

n
. ~12!

The first term is

(
n5N

`
sin2~nuKu/2!

n2 < (
n5N

`
1

n2 <E
N

`

dx
1

x2 5
1

N
.

The second term is

(
n51

N21
sin2~nuKu/2!

n
< (

n51

N21
1

n
<11E

1

N21

dx
1

x
511 log~N21!.

Putting everything together in~12!, we find that there exists a constantc2 independent ofN such
that

Tr QN~12QN!<c2 logN,

and, finally, by Eq.~4!, there exists a constantc3 independent ofN such that

SN<c3 log2 N. ~13!

D. Numerical results

Analytically, we determined the asymptotics of the entropySN between the logN lower bound
~9! and the log2 N upper bound~13!. In Fig. 2 we present the results of a numerical calculati
The setK consists of one interval of lengthuKu5p. The figure shows clearly the logN depen-
dence. By the subadditivity property~10!, we expect the same behavior for all setsK consisting of
a finite number of intervals. The leading terms in the expansion ofSN have been obtained for a
explicit model in Ref. 9.

V. INFINITELY MANY INTERVALS

For a setK consisting of finitely many intervals, the entropySN increases asymptotically
slower than any powerNa with a.0. However, it is easy to construct a state such thatSN

5N log 2. For example, one can take forK a set of 2N21 regularly spaced intervals, each of leng
22N11p. Note that this construction does not have an appropriate limit whenN→`. Neverthe-
less, it suggests that in the infinitely many intervals case the entropySN could have a richer
behavior. This will be shown in the present section by presenting a class of states for whi
growth exponenta can take any value in@0,1!.
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A. A Cantor-type construction

The standard Cantor set is constructed recursively by removing in stepm a fixed fraction of
the set obtained in stepm21. This would leave us with a set of zero Lebesgue measure. To a
this, we remove a fraction in stepm which decreases withm, such that the limit set has strictl
positive Lebesgue measure.

We start with the unit circle. Remove in the first step in a symmetrical way two open ar
the unit circle with lengths (12g(1))p. The resulting setK1 consists of two closed arcs each
lengthpg~1!. In the second step, for each of these two arcs, a fraction 12g(2) is removed in their
middle. This leaves us with a setK2 consisting of four closed arcs of lengthpg~1!g~2!/2. Con-
tinuing this procedure, in stepm we obtain a setKm of 2m closed arcs of length

,a~m!ª
p

2m21 )
n51

m

g~n!. ~14!

There are 2m holes in between such intervals, 2m21 of which are created in stepm. The latter have
a length

,h~m!ª,a~m21!~12g~m!!5
p

2m22 ~12g~m!! )
n51

m21

g~n!. ~15!

The Lebesgue measure of the limit setK is then 2p)n51
` g(n).

To construct an explicit example, we have to fix a functionm°g(m). We can as well specify
the functionm°,h(m)5aqm, where 0,q, 1

2 anda is chosen such that

2p. (
m51

`

2m21aqm5
a

2

2q

122q
.

The resulting set has Lebesgue measure 2p@12aq/(122q)#.

B. Lower bound

To bound TrQN(12QN) from below, we start from Eq.~6!. As before,Km denotes the se
obtained afterm steps in the construction of the Cantor-type setK. ThenKm is the union of 2m

arcs, each of length,a(m). BecauseK,Km , ~6! can be estimated by

FIG. 2. The entropySN as a function of the lengthN of the restriction, for an interval of lengthp as setK. Notice the
logarithmic scale.
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Tr QN~12QN!5
N

4p2 E
2p

p

dw kN~w!uK\~K1w!u>
N

4p2 E
2p

p

dw kN~w!uK\~Km1w!u,

and sincekN(w)>4N/p2 when uwu<p/N,

Tr QN~12QN!>
N2

p4 E
2 p/N

p/N

dw uK\~Km1w!u5
2N2

p4 E
0

p/N

dw uK\~Km1w!u.

For givenN, takem such that

,h~m!>
p

N
.,h~m11!. ~16!

As Km consists of 2m translations of the arc@0,,a(m)#, the Cantor-type setK consists of 2m

translations of another Cantor-type setK̃,@0,,a(m)#. Let us denote these translations byx,

1@0,,a(m)# andx,1K̃ for ,51,...,2m.
For wP@0,p/N#, w<,h(k) for all k51,...,m. This means that a translation byw of an arc of

length,a(m) in Km will never bridge the hole of length,h(k),k51,...,m, between this arc and
the next. Therefore, everyx,1K̃ will overlap with one and only onex,̃1@0,,a(m)#1w, namely,
the one with,̃5,. As a consequence,

uK\~Km1w!u52muK̃\~@0,,a~m!#1w!u52muK̃\@w,,a~m!#u52muK̃ù@0,w#u.

This quantity has to be estimated from below. ForwP(0,p/N#, taken such that,a(n)>w
.,a(n11). Then,

uK̃ù@0,w#u>,a~n11! )
k5n12

`

g~k!5
p

2n )
k51

`

g~k!,

and

w<,a~n!5
p

2n21 )
k51

n

g~k!,

which gives

uK̃ù@0,w#u
w

>
1

2 )
k5n11

`

g~k!>
uKu
4p

,

and so

uK̃ù@0,w#u>
uKuw
4p

,

which does not depend any longer onn. It follows that

Tr QN~12QN!>2m
2N2

p4

uKu
4p E

0

p/N

dw w5
2muKu
4p3 .

This is an estimate from below of TrQN(12QN) whereN andm are coupled by~16!. From the
latter we also have thatN,p/,h(m11). Therefore,
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log TrQN~12QN!

logN
.

log~~1/4p3!2muKu!
2 log~~1/p!,h~m11!!

.

The limit N→` corresponds to the limitm→`. Using the explicit form,h(m)5aqm, we finally
get

lim inf
N→`

log TrQN~12QN!

logN
>

log 2

2 logq
. ~17!

C. Upper bound

To get an upper bound for TrQN(12QN), we start from Eq.~7!. With C(w)ªuKc\(Kc

1w)u, it reads

Tr QN~12QN!5
N

4p2 E dw kN~w!C~w!.

For u.0, takem such that

,h~m!>u.,h~m11!. ~18!

We boundC(u) from above,

C~u!<(
k51

`

2k21 min$u,,h~k!%

5 (
k51

m

2k21u1 (
k5m11

`

2k21,h~k!

<~2m21!,h~m!1 (
k5m11

`

2k21,h~k!

<4p~12g~m!! )
n51

m21

g~n!12p (
k5m11

`

~12g~k!!)
n51

k21

g~n!. ~19!

Obviously, this bound increases withu. The kernelkN(w) satisfies

kN~w!<H N for uwu<u,

p2

N

1

w2 for uwu>u,

and so we find

Tr QN~12QN!<
N2

4p2 E
uwu<u

dw C~w!1
1

4 Euwu>u
dw C~w!

1

w2

<
N2

2p2 uC~u!1
1

4 (
k50

m

~,h~k!2,h~k11!!
C~,h~k!!

,h~k11!2

<
N2

2p2 ,h~m!C~u!1
1

4 (
k50

m
,h~k!C~,h~k!!

,h~k11!2 . ~20!

Take again the explicit form,h(m)5aqm. Then

~12g~m!! )
n51

m21

g~n!5
2m22

p
,h~m!5

a

4p
~2q!m,
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and ~19! becomes

C~u!<4p~12g~m!! )
n51

m21

g~n!12p (
k5m11

`

~12g~k!!)
n51

k21

g~n!

5a~2q!m1
a

2 (
k5m11

`

~2q!k

5
a~12q!

122q
~2q!m. ~21!

If u5,h(k), then, by~18!, we have to putm5k, and so

C~,h~k!!<
a~12q!

122q
~2q!k. ~22!

Substituting inequalities~21! and ~22! into ~20!, we find

Tr QN~12QN!<
N2

2p2 aqm
a~12q!

122q
~2q!m1

1

4 (
k50

m
aqk

~aqk11!2

a~12q!

122q
~2q!k

5
N2

2p2 aqm
a~12q!

122q
~2q!m1

1

4

1

q2

2~12q!

122q
~2m1121!

<
12q

2~122q! FN2a2

p2 ~2q2!m1
1

q2 2mG5..c1N2~2q2!m1c22m, ~23!

wherec1 andc2 are independent ofN.
To get an upper bound as a function ofN, we have to fix a functionm(N) and plug it into

~23!. Let

gª
log 2

2 logq
5

1

2 log2 q
,

then choosem to be

m5@ log2q2 Ng22#< log2q2 Ng225
log2 Ng22

log2 2q2 ,

where@a# denotes the integer part of the numbera. Then

N2~2q2!m<Ng,

and

2m<~2log2 Ng22
!1/log2 2q2

5N~g22!/~11 log2 q2!5Ng,

and so

Tr QN~12QN!<~c11c2!Ng,

from which we get the upper bound

lim sup
N→`

log TrQN~12QN!

logN
<g5

log 2

2 logq
. ~24!
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Combining the results~17! and ~24! we see that limN→` log TrQN(12QN)/ logN exists, which
implies that also limN→` logSN /logN exists, and

a5 lim
N→`

logSN

logN
5 lim

N→`

log TrQN~12QN!

logN
5

log 2

2 logq
.

Sinceq can be any number in the interval (0,1
2), the growth exponenta can take any value in

~0,1!.
A number of open questions remains unresolved in this context. Some of them were sug

by the referee whose interest is hereby acknowledged. We limited here our attention to a1
2

chain but the dimension of the single site spin should be irrelevant. The authors also belie
there is no fastest sublinear growth for the total entropy. Sharper estimates than these of
III B should allow to investigate in more detail the exponent one case. Finally, as mentioned
Introduction, the question whether the average entropy of a shift-invariant pure state is zero
open.
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On the generalized Borel transform and its application
to the statistical mechanics of macromolecules

Marcelo Maruchoa) and Gustavo A. Carrib)

The Maurice Morton Institute of Polymer Science, The University of Akron,
Akron, Ohio 44325-3909

~Received 30 May 2003; accepted 8 August 2003!

We present a new integral transform called the generalized Borel transform~GBT!
and show how to use it to compute distribution functions used to describe the
statistical mechanics of macromolecules. For this purpose, we choose the random
flight model~RFM! of macromolecules and show that the application of the GBT to
this model leads to the exact expression of the polymer propagator~two-point
correlation function! from which all the statistical properties of the model can be
obtained. We also discuss the mathematical simplicity of the GBT and its applica-
bility to macromolecules with other topologies. ©2003 American Institute of
Physics. @DOI: 10.1063/1.1618361#

I. INTRODUCTION

Consider a group ofn small molecules with identical molecular structures. Furthermore, le
assume that these small molecules are connected in a sequential manner such that each of
only two nearest neighbors with whom it forms chemical bonds. The small molecules at the
of the chain form only one bond~they have only one neighbor!. This macromolecule is called
polymer and each small molecule in the polymer is called a monomer. If the chain ends a
~they do not form a chemical bond!, then the polymer is said to have a linear topology~linear
polymer!. Figure 1 shows this topology. If the ends were to form a chemical bond, then
polymer is said to be a ring~cyclic! polymer as showed in Fig. 1. Another way of connecting
monomers is to growm linear polymers from a point where all the polymers form chemical bo
to each other. This is a well known topology called the star topology and defines anm-arm star
polymer. Combinations of these three topologies or new topologies like dendritic topologies
more complex macromolecules.

Let us now consider the case when there are different kinds of monomers. In other wor
us assume that there are many groups of monomers such that the molecular structures
groups are different. Then, we can connect these different monomers to form polymers wh
this case, are called copolymers. Again, linear, ring and star copolymers are possible. But,
the different molecular structures of the groups, the distribution of the different monomers
the polymer will influence its physical properties. Thus, the probability distribution of findin
monomer with a specific molecular structure along the polymer must be knowna priori so that the
physical properties can be computed.

In order to calculate the statistical properties of the aforementioned systems, we have
coarse-grained models. The procedure for this is well known:1 we have to groupm consecutive
monomers into a statistical~Kuhn! segment of lengthl (5Kuhn length!.2 Thus, we replace the
real polymer withn monomers by an equivalent polymer withn/m Kuhn segments such that th
long wavelength properties are not altered. This equivalent model is the random flight m
~RFM! of polymers.1,3,4 Figure 2 shows the RFM.

The statistical properties of the RFM are computed from distribution functions like the s

a!Electronic mail: marucho@polymer.uakron.edu
b!Author to whom correspondence should be addressed. Electronic mail: carri@polymer.uakron.edu
60200022-2488/2003/44(12)/6020/12/$20.00 © 2003 American Institute of Physics
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chain static structure factor~which is the density-density autocorrelation function in recipro
space!, the probability distribution of the end-to-end distance~polymer propagator! in a linear
polymer or its Fourier transform called the characteristic function.1,3–5 In particular, the polymer
propagator is a very useful quantity because all the statistical properties of the model c
calculated from it. For example, the partition function of the model is the integral of the poly
propagator. Therefore, in this article we focus on the exact calculation of the polymer propa
for flexible polymers/copolymers with different topologies. For this purpose, we describe a
integral transform called the generalized Borel transform6–8 ~GBT! and apply it to the computa
tion of the polymer propagator.

The polymer propagator of the RFM of linear polymers is defined as follows:

P~R,n!5E d$Rk%)
j 51

n

t~Rj !dS (
j 51

n

Rj2RD , ~1!

whereR is the end-to-end vector andRj is the bond vector between the (j 21)th andj th beads.
The Dirac delta imposes the condition that the sum of the bond vectors has to be equal
end-to-end vector.t(Rj ) is given by the formula

t~Rj !5
d~ uRj u2 l !

4p l 2 , ~2!

and fixes the length of each bond vector to the Kuhn length,l .

FIG. 1. Linear, ring and four-arm star topologies for flexible polymers.R indicates the end-to-end vector for the line
topology and the relative position of two segments in the case of a ring polymer.Rj indicates the position of the end of th
j th arm in the star topology.

FIG. 2. The random flight model of polymer chains.l is the Kuhn length andu is the bond angle.
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Small changes to Eq.~1! can be used to describe other topologies. For example, ring poly
can be described by Eq.~1! if the constraintd(( j 51

n Rj ) is included in the integrand and th

constraintd(( j 51
n Rj2R) is replaced byd(( j 5s

s8 Rj2R) where nowR is the vector going from the
s to the s8 segments. Similarly, other constraints can be included in Eq.~1! to describe other
topologies.

A generalization of Eq.~1! valid for copolymers under external fields has the followi
mathematical expression:

P~R,n,$pj
a%!5E d$Rk%)

j 51

n S (
a51

x

~pj
a t j

a~Rj !!D dS (
j 51

n

Rj2RD exp~2v~$Rj%!!, ~3!

wherex is the total number of different groups of segments forming the copolymer,pj
a is the

probability of finding thej th segment in theath group of segments andv($Rj%) has the math-
ematical form

v~$Rj%!5(
j 51

n

h~Rj !, ~4!

whereh~R! can be any function. In particular, the effects of external vectorial@h(R)52F"R# and
quadrupolar@h(R)5Qi j RiRj # fields can be studied.

Using the exponential representation of Dirac’s delta,9 Eq. ~3! can be written as follows:

P~R,n,$pj
a%!5E d3k

~2p!3 exp~2 iR"k!K~k,n,x,l ,$pj
a%!, ~5!

whereK(k,n,x,l ,$pj
a%) is the characteristic function. In the particular case of an isotropic sys

~i.e., no external fields!, Eq. ~5! becomes a Fourier sine transform which, for all the mod
described above, is exactly doable using the GBT technique.

For the purpose of simplicity, in this article we show how to apply the GBT to the case
linear polymer with only one kind of segment. Afterward, the results obtained for this cas
generalized to the case of ring andm-arm star polymers.

This article is organized as follows. In Sec. II we show how to calculate Fourier sine t
forms using the generalized Borel transform and present a brief summary of the mathem
aspects of this technique. In Sec. III we apply the GBT to solve exactly a particular Fourie
transform which is relevant to the computation of the polymer propagator of the RFM. This
is used to obtain the exact polymer propagator of the RFM. Finally, in Sec. IV we presen
conclusions of our work.

II. THE GENERALIZED BOREL TRANSFORM

In the previous section we have shown that the Fourier sine transform plays a very imp
role in the evaluation of the statistical properties of models for single macromolecules. Ther
let us start the description of the GBT by writing the general expression of a Fourier sine
form of a functionH(k,a),

Q~R,a!5E
0

`

sin~Rk!H~k,a!dk. ~6!

Furthermore, let us assume that the Laplace transform of the same function,S(g,a), exists. Then,
we can write

S~g,a!5E
0

`

H~x,a!exp~2gx!dx, g.0. ~7!
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Then, we observe that we can obtain the Fourier sine transform,Q(R,a), from the Laplace
transform,S(g,a), as the analytic continuation ofS(g,a) to the complex plane as follows:

Q~R,a!5Im$S~g52 iR,a!%. ~8!

Consequently, we will focus on the evaluation of Laplace transforms. For this purpose, w
employ the GBT technique described hereafter.

The main goal of the GBT is to obtain analytical solutions of parametric integrals of
Mellin/Laplace type6–8 for all the range of values of the parameters. Therefore, this techniq
very useful to study nonperturbative regimes. The basic idea of the method consists of intro
two auxiliary functions,S(g,a,n) andBl(s,a,n) ~the generalized Borel transform!. These func-
tions depend on auxiliary parameters calledn andl. These parameters have no physical mean
and are introduced for the sole purpose of helping in the computation of an explicit mathem
expression forS(g,a) valid for all values of the true parametersg anda.

Let us start with the mathematical definition ofS(g,a,n), which is the following:

S~g,a,n!5E
0

`

xnH~x,a!exp~2gx!dx, g.0. ~9!

We have explicitly extracted a factorxn from the function to be transformed. This integral
related to the Laplace transform, Eq.~7!, by the following relationship,

S~g,a,n!5~2 !n
]n

]gn S~g,a!, ~10!

which can be inverted to give

~11!

The finite sum comes from the indefinite integrations. Note that all the coefficients vanish w
ever the Laplace transform, Eq.~7!, fulfills the following asymptotic condition:

lim
g→`

S~g,a!50. ~12!

In addition, the expression given by Eq.~11! is valid for any value of the parametern, in particular
for n@1 where the GBT provides an approximate analytical expression forS(g,a,n) as we
describe below.

Let us define the generalized Borel transform ofS(g,a,n) as follows:

Bl~s,a,n![2E
0

`

exp@s/h~g!#F 1

lh~g!
11G2ls S~g,a,n!

@h~g!#2

]h~g!

]g
dg, Re~s!,0 ~13!

where l is any real, positive, and nonzero number, andh is defined as follows: 1/h
[l(exp(g/l)21). Then, it can be proved thatBl(s,a,n) is an analytic function for real values o
s less than zero. Moreover, the analytic continuation to the other half of the complex
generates an analytic function with a cut on the positive real axis.

In order to invert the transform defined by Eq.~13!, we note that the change of variable
u(g)51/h2l ln@111/lh# transforms the integral, Eq.~13!, into a Laplace transform,

Bl~s,a,n![E
0

`

exp@su#Ll~S,a,n,u!du, Re~s!,0, ~14!
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whereLl(S,a,n,u) depends onS(g,a,n). Consequently, the inverse Laplace transform of E
~14! provides a procedure for the evaluation ofS(g,a,n) by integratingBl(s,a,n) on the imagi-
nary axis or over the discontinuity ofBl(s,a,n) on the cut. After a change of variables we c
write S(g,a,n) as follows:

S~g,a,n!52l2~12exp~2g/l!!E
2`

` E
2`

`

exp@G~w,t,g,l,a,n!#dwdt. ~15!

G(w,t,g,l,a,n) is given by the following expression:6

G~w,t,g,l,a,n!52s~ t !u~g!1t2 ln$G@l~s~ t !1x~w!!#%

1$l@s~ t !1x~w!#21% ln~ls~ t !!2ls~ t !1w1 ln@x~w!nH~x~w!!#, ~16!

wheres(t)5l exp(t) andx(w)5exp(w).
Note that Eq.~15! is valid for any nonzero, real and positive value of the parametel.

However, the resulting expression forS(g,a,n) does not depend onl explicitly. Thus, each value
of the parameterl defines a particular Borel transform. Consequently, we can choose the va
this parameter in such a way that it allows us to solve Eq.~15!.

The dominant contribution to the double integral is obtained using steepest descent10,11 in the
variablest andw. For this purpose, we first compute the expressions of the saddle pointto(g,a,n)
andwo(g,a,n) in the limit l@1. The results are the following:

to~g,a,n!5 lnF xo
2~g,a,n!

f ~xo~g,a,n!,a,n!
G , wo~g,a,n!5 ln@xo~g,a,n!#, ~17!

wherexo(g,a,n) is the real and positive solution of the implicit equation coming from the
tremes of the functionG(w,t,g,l,a,n) in the asymptotic limit inl. Explicitly, the equation is

xo
2g25 f ~xo ,a,n!@ f ~xo ,a,n!11#, ~18!

where

f ~xo ,a,n![11n1xo

d ln@H~xo ,a!#

dxo
. ~19!

Afterward, we check the positivity condition12 @the Hessian ofG(w,t,g,l,a,n) at the saddle
point must be positive#. Let us call the HessianD(xo ,a,n). Its mathematical expression is

D~xo ,a,n![2xo

d f~xo ,a,n!

dxo
F1

2
1 f ~xo ,a,n!G1 f ~xo ,a,n!@11 f ~xo ,a,n!#. ~20!

Observe that in the range of the parameters wheref (xo ,a,n)@1, which is fulfilled whenn
@1, we can keep the second order term in the expansion ofG(w,t,g,l,a,n) around the saddle
point. Then, we can approximate the double integral in Eq.~15! as follows:

SAprox~g,a,n!54p
l2~12exp~2g/l!!

AD@xo ,a,n#
exp@G~wo ,to ,g,l,a,n!#. ~21!

In the limit l→` we obtain the following approximate expression forS(g,a,n):

SAprox~g,a,n!5A2pe21/2
Af @xo ,a,n#11

AD@xo ,a,n#
@xo#n11H@xo ,a#exp@2 f @xo ,a,n##. ~22!
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Note that Eq.~22! is valid for functionsH(x,a) that fulfill the following general conditions
First, the relationship given by Eq.~18! must be biunivocal. Second,D(xo ,a,n) must be positive
at xo . Third, f (xo ,a,n) must be larger than one. These conditions provide the range of valu
the parameters where the approximate solution, Eq.~22!, is valid.

Finally, we replace Eq.~22! into Eq. ~11! to obtain an approximate analytical expression
the Laplace transformS(g,a). In particular, in the limitn→`, we obtain the following analytica
solution forS(g,a):

~23!

One particular case of this result is the one whereH(x,a) does not contribute to the sadd
point. This is the case whenf (xo ,a,n) can be approximated by 11n @the derivative of
ln(H(xo ,a)) is negligible#. Then, the saddle point solution isxo(g,a,n).(n1 3

2)/g and the expres-
sion of SAprox(g,a,n) is

SAprox~g,a,n!.
G~n11!

gn11 H@xo~g,a,n!,a#, n@1. ~24!

Another important property of the expression given by Eq.~23! is that, in the limitn→`, the
approximate solution, Eq.~22!, becomes an exact solution for Eq.~9!. Thus, as long as then
indefinite integrals are calculated without approximations, then Eq.~23! is an exact solution for
Eq. ~7!.

In summary, the procedure to use the GBT to compute Fourier sine transforms is the f
ing. First, one has to solve the implicit equation, Eq.~18!, for n@1 to obtain the mathematica
expression ofxo(g,a,n). Replacing this expression into Eq.~22! and doing then indefinite
integrals in Eq.~23!, we get the expression forS(g,a). Finally, one has to compute the analyt
continuation ofS(g,a), Eq. ~8!, to get the solution of the Fourier sine transform, Eq.~6!.

In the next section we apply this technique to compute exactly the polymer propaga
flexible macromolecules.

III. APPLICATION TO THE RANDOM FLIGHT MODEL OF FLEXIBLE POLYMERS

Let us start by analyzing the polymer propagator predicted by the random flight model w
is given by Eq.~1!. Using the Fourier representation of the delta function,9 we obtain

P~R,n!5E d3k exp~2 iR"k!

~2p!3~4p l 2!n F E d$Rk%)
j 51

n

d~ uRj u2 l !expS i (
j 51

n

Rj•kD G
5E d3k

~2p!3 exp~2 iR"k!K~k,n,l !, ~25!

where the characteristic function,K(k,n,l ), is

K~k,n,l !5S sin~ uku l !
uku l D n

. ~26!

The evaluation of the angular integrals in Eq.~25! is straightforward. After rescalingR andk
with the Kuhn length,l , we obtain the final expression for the polymer propagator

P~R,n!5
2

~2p!2R E
0

`

dkFsin~kR!S sin~k!

k D n

kG , ~27!
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wherek5uku andR5uRu.
This integral representation of the polymer propagator is a Fourier sine transform and c

solve exactly using GBT. Then, our first step consists of expressing the polymer propagat
~27!, in terms of a Laplace transform. For this purpose we define the function

S~b,n![E
0

`

dwFexp~2wb!S sin~w!

w D n

wG , ~28!

from where we recover the expression of the polymer propagator, Eq.~27!, as the analytic con-
tinuation of the functionS(b,n) to the complex plane

P~R,n!5
2

~2p!2R
Im$S~b52 iR,n!%. ~29!

Let us now rewrite Eq.~28! as follows:

S~b,n!5
]n

]cn H E
0

`

dwFw exp~2wb!expS c
sin~w!

w D G J
c50

5
]n

]cn $GA~b,c!%c50 , ~30!

where

GA~b,c![E
0

`

dwwexp~2wb!H~w,c!, ~31!

and

H~w,c![expFc
sin~w!

w G . ~32!

Then, the integral expressed by Eq.~31! satisfies all the requirements of the GBT techniqu7

Consequently, we evaluate this integral in the following way:

~33!

where we have defined

S~b,c,N![E
0

`

dw@wN11 exp~2wb!H~w,c!#. ~34!

In the asymptotic limit ofN→`, the GBT provides an analytical solution for Eq.~34!.
Following the technique, we first solve the following implicit equation forwo , Eq. ~18!,

H N111wo

]

]wo
ln@H~wo ,c!#J H N121wo

]

]wo
ln@H~wo ,c!#J 5wo

2b2, ~35!

whose asymptotic solution is

wo.
N15/2

b
N@1. ~36!

Replacing this expression forwo in the expression provided by the GBT, Eq.~22!, we obtain
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S~b,c,N!.
G~N12!

bN12 HS N15/2

b
,cD , N@1. ~37!

Furthermore, we place Eq.~37! into Eq. ~33! and the resulting expression into Eq.~30!, then we
obtain

~38!

We now proceed to exchange the order of the operators; first we evaluate thenth derivative of
the functionH with respect toc and, afterward, we take the limit ofc→0. As a result, we obtain

S~b,n!5 lim
N→`

~2 !NE db¯E db
G~N12!

bN12 S sin~N/b!

N/b D n

. ~39!

Next, we solve theN integrations. Using properties of the function sin(x) we can writeS(b,n) for
any odd number of segments as follows:

S~b,n!5
1

2n21 (
k50

~n21!/2

~2 !~n21!/2 1kS n
kD M ~N,n,k,b!, ~40!

where

M ~N,n,k,b![ lim
N→`

~2 !N Im (
r 50

`
~ i ~n22k!!rNr 2n

r ! E db¯E db
G~N12!

bN122n1r . ~41!

We note that the only powers ofb in Eq. ~41! that fulfill the asymptotic behavior of the
function S(b,n), Eq. ~12!, are those that satisfy the conditionr>(n21). Consequently, theN
indefinite integrations are exactly doable; the result is

E db¯E db
1

bN122n1r 5
G~21r 2n!

G~N122n1r !

~2 !N

b21r 2n . ~42!

Placing Eq.~42! into Eq. ~41! and introducing the dummy variabler 5x1n21 we can write

M ~N,n,k,b![Im
1

b
~ i ~n22k!!n21(

x50

` S i ~n22k!

b D x G~x11!

G~x1n!
3 lim

N→`

Nx21G~N12!

G~N1x11!
, ~43!

which, after using the asymptotic properties of the gamma function,13

lim
N→`

Nx21G~N12!

G~N1x11!
51, ~44!

becomes

M ~n,k,b!5
1

b
Im (

x50

`

~ i ~n22k!!n21S i ~n22k!

b D x G~x11!

G~x1n!
. ~45!

The sum overx is doable, the result gives the following expression forM (n,k,b),
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M ~n,k,b!5
1

b
Im@~ i ~n22k!!n21FD~n,k,b!#, ~46!

where we have defined

FD~n,k,b![
G~ 1

2!3F2~@1,1,12#,@~n11!/2 , n/2#,2 ~n22k!2/b2!

ApG~n!

1
i ~n22k!

b
3F2~@1,1,32#,@~n11!/2 , ~n12!/2#,2 ~n22k!2/b2!

G~n11!
. ~47!

3F2(@ ,,#,@ ,#,x) is the generalized hypergeometric function.14 From Eq.~46! we can see that the
imaginary part affects only the functionFD(n,k,b). Thus, we obtain the final expression fo
S(b,n)

S~b,n!5 (
k50

~n21!/2

~2 !kS n
kD ~n22k!n

3F2~@1,1,32#,@~n11!/2 , ~n12!/2#,2 ~n22k!2/b2!

b22n21G~n11!
.

~48!

The last step to obtain the analytical expression of the polymer propagator consists of
ing Eq. ~48! into Eq. ~29! and computing the analytic continuation of the resulting expressio
the complex plane through the substitutionb52 iR. After doing these computations, we arrive
at the following expression for the polymer propagator,

P~R,n!5
1

2np2R3 (
k50

~n21!/2

~2 !k11S n
kD ~n22k!n

1

G~n11!

3ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J . ~49!

This expression can be simplified even further if we use the well known analytical prop
of the hypergeometric function14

3F2(z), which is an analytic function for values ofuzu,1 and its
continuation to the rest of complex plane generates one cut on the positive real axis star
Re(z)51. This implies that only values of (n22k)2/R2 >1 will contribute to the imaginary part o

3F2(z). Consequently, this condition reduces the number of terms in thek-sum such that the las
term of Eq.~49! is k5@(n2R)/2#.

The explicit evaluation of Im$3F2(@1,1,32#,@(n11)/2 , (n12)/2#, (n22k)2/R2)% can be found
in the Appendix. The final expression is

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J 52
R2p

2~n22k!n

G~n11!

G~n21!
@n22k2R#n22, n>2.

~50!

Finally, we place Eq.~50! into Eq. ~49! to obtain the exact expression for the polym
propagator:

P~R,n!5
1

2n11pR (
k50

[ ~n2R!/2]

~2 !kS n
kD @n22k2R#n22

G~n21!
. ~51!

Equation~51! is valid for an odd number of segments, but it is extended to polymers with
number of segments larger than two via analytic continuation. Therefore, we have obtain
well-known15,16exact analytical expression for the polymer propagator of flexible chains, Eq.~27!,
with any number of segments,n, and any end-to-end distance,R.
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Observe that Eq.~51! can be used to describe the statistical properties of polymers with o
topologies. For example, consider the case of a flexiblem-arm star polymer as shown in Fig. 1
Since the polymer is flexible, then each arm behaves independently from the other ones exc
the fact that all of them start at the origin. Thus, the probability of finding the end of thej th arm
in the shell of radiusRj with thicknessdRj centered at the origin is

4pRj
2P~Rj ,nj !dRj , ~52!

wherenj is the number of segments in thej th arm. If we consider all the arms, then the probabil
of finding the end of the first, second, etc. arms in the shells of radiiR1 , R2 , etc. with thicknesses
dR1 , dR2 , etc. centered at the origin is

~4p!m)
j 51

m

Rj
2P~Rj ,nj !dRj . ~53!

Other probability distributions for star polymers can also be computed easily.
Another example is the case of ring~cyclic! polymers. Figure 1 shows this topology. From th

figure and following the steps presented in this article for linear polymers, it can be proved th
probability of finding any pair of segments separated by a distanceR should be proportional to the
product of two propagators of the form given by Eq.~51!,

PRing~R,s,n2s!}P~R,s! P~R,n2s!, ~54!

wheren is the total number of segments in the ring ands is the number of segments~along the
contour of the polymer chain! between the two chosen segments.

The aforementioned two examples clearly show that the results obtained for linear pol
using the GBT can be used for polymers with other topologies, thus increasing the num
models that are mathematically tractable with the GBT.

IV. CONCLUSIONS

In this article we have described a new mathematical method called the generalized
transform and applied it to compute some statistical properties~polymer propagator! of models of
flexible polymers. Specifically, we showed how the GBT was constructed and how to use
compute Mellin/Laplace transforms. Moreover, some mathematical properties were presente
application of this technique to the statistical mechanics of single flexible polymers led t
exact solution for the polymer propagator of linear polymers. The propagator obtained turn
to be a finite sum of polynomials valid for any end-to-end distance,R, and number of segments
n. Furthermore, this result was used to compute distribution functions for two other topolo
rings and stars.

The exact computation of the polymer propagator of the RFM is a straightforward calcu
that requires simple mathematics when the GBT is used. Indeed, the GBT requires basic el
of calculus and complex variables. This mathematical simplicity of the technique make
potentially very useful computational tool for more complex models of single polymer ch
because it does not add any complexity to the physics of the starting model.

Equation ~51! together with its extensions to stars and rings, Eqs.~53! and ~54!, and the
discussion presented in the Introduction show that the GBT can solve exactly a wide ran
models for polymers. However, more advanced models of single polymer chains like the wor
chain model or helical polymers5 where the bond vectors are correlated with each other thro
potential interactions are not exactly solvable with the GBT at present. This is a conseque
the fact that the characteristic function of these models is not known exactly.5 This function is a
Fourier sine transform in 3n dimensions. Thus, a generalization of the GBT to multidimensio
integrals is required to address these models.
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APPENDIX: EVALUATION OF Im ˆ3F2„z…‰

In this appendix, we calculate the expression Im$3F2(z)%. For this purpose, we use the follow
ing integral representation of the hypergeometric function:17

3F2S F2n,
l

2
,
l11

2 G ,Fl1m

2
,
l1m11

2 G ,2 q2

w2D5@w2gql1m21B~l,m!#21

3E
0

q

xl21@q2x#m21@x21w2#ndx,

l,m.0, ReS q

wD.0, ~A1!

whereB(l,m) is the Beta function.17

We now assign the valuesn521, l52, m5n21, q5n22k, andw5b to the parameters
in Eq. ~A1! to obtain

3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G ,2 ~n22k!2

b2 D
5

1

b22~n22k!nB~2,n21!
E

0

n22k

x@n22k2x#n22@x21b2#21dx. ~A2!

This integral representation is valid only forn>2. Therefore, when we take the analytic contin
ation to the complex plane (b52 iR), we can express the imaginary part of the hypergeome
function as follows:

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J
52

R2

~n22k!nB~2,n21!
Im E

0

n22k

x@n22k2x#n22@x22R2#21dx. ~A3!

Thus, we need to evaluate

L[Im E
0

n22k

x@n22k2x#n22@x2R#21@x1R#21dx. ~A4!

After analyzing the analytical behavior of the integrand, we concluded that we can exchan
operations of integration and imaginary part to obtain

L5E
0

n22k

x@n22k2x#n22@x1R#21 Im$@x2R#21%dx. ~A5!

Thus, we have to compute

LS5ImH 1

~x2R!J , ~A6!

first and, afterward, we have to solve the integral given by Eq.~A5!.
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The analytical behavior of the function (x2R)21 is well known. It is an analytic function for
uxu.R but, its analytic continuation to the complex plane generates a cut on the real axis
range2R,Re(x),R. This cut generates its imaginary part, which is

ImH 1

~x2R!J 5pd~x2R!. ~A7!

Thus, placing Eq.~A7! into Eq. ~A5! and making the change of variablesy5x2R, we obtain

L5pE
2R

n22k2R

Fk~y,n,R!d~y!dy, ~A8!

where

Fk~y,n,R![~y1R!@n22k2R2y#n22@y12R#21. ~A9!

The result of the integration gives

L5
p

2
@n22k2R#n22. ~A10!

Finally, we place Eq.~A10! into Eq. ~A3! to obtain the final expression

ImH 3F2S F1,1,
3

2G ,Fn11

2
,
n12

2 G , ~n22k!2

R2 D J 52
p

2

R2

~n22k!nB~2,n21!
@n22k2R#n22.

~A11!
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We present two integrable spin ladder models which possess a general free param-
eter besides the rung couplingJ. The models are exactly solvable by means of the
Bethe ansatz method and we present the Bethe ansatz equations. We analyze the
elementary excitations of the models which reveal the existence of a gap for both
models that depends on the free parameter. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1627973#

I. INTRODUCTION

Spin ladder systems continue to attract attention motivated by experimental realizatio
quasi-one-dimensional systems.1 These materials display novel features and with the contin
development of new systems, there has been an impressive amount of progress in the the
understanding of such systems. However, a greater flexibility through the introduction of tu
free parameters within the well established mathematical frameworks would be of consid
advantage and forms the main aim of the present work.

It has been shown that ladder systems are reasonably well approximated by Heis
interactions, which involve bilinear exchanges.2 While these models are not exactly solvab
several more general systems have been proposed in which solvability is guaranteed thro
use of an extension of the symmetry algebra.3–6 There has also been the introduction of syste
involving interactions beyond nearest neighbor exchanges which demonstrate remarkably
esting behavior and also prove to be exactly solvable. For example, the general 2-leg spin
system with biquadratic interactions.7,8 The physical importance of these types of interactions
been addressed in Ref. 9.

Subsequently other generalized integrable spin ladders have been proposed.10–14 As is well
known, integrability facilitates the use of long established techniques in order to determin
physical properties of such systems. However, in these cases, no free parameters other
rung coupling are present due to the strict conditions of integrability. It is clear that this is a
that warrants further investigation, since the availability of tunable parameters yields a
phase structure.

In this article, we present two new integrable generalized spin ladders containing an
parameter, based on the Lie superalgebras symmetries of SU~1u3! and SU~3u1!. The free paramete
arises in the models as a special choice of the multiparametric versions.15 In Ref. 16, we note the

a!Author to whom correspondence should be addressed. Electronic mail: keh@fisica.uminho.pt
60320022-2488/2003/44(12)/6032/8/$20.00 © 2003 American Institute of Physics
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study of a family of spin ladder Hamiltonians which also have free parameters, although i
case the construction has a different mathematical origin.

The models are integrable in the sense that they contain an infinite number of conser
laws and can be derived from a solution of the Yang–Baxter equation. This property is a
physical importance as it provides a means to improve our understanding of general cor
systems~see, for example, Ref. 17!.

The Hamiltonians involve the usual bilinear Heisenberg interaction terms as well as b
dratic exchanges to ensure integrability. These four-spin terms represent interchain coupli
inter-rung coupling and the physical justification for these types of interactions has been sup
by experimental results. A discussion may be found in Refs. 8, 9, and 18. We present the
ansatz solution of these Hamiltonians from which the physical properties of the systems m
obtained.

An important characteristic of ladder systems, both from a theoretical and experimental
of view, is the quantum phase transition between gapped and gapless phases. The spin ga
for superconductivity to occur under doping, whilst from a mathematical perspective, the s
the gap is dependent on the relative strength of the rung interaction parameter. We addre
issue as we analyze the ground state and first excited states of the models. Interestingly,
able to show that for both systems a gap persists in the spectrum of the elementary excitatio
indeed the gap depends on the extra parameter.

II. GENERALIZED SU „1z3… SPIN LADDER MODEL

We begin by introducing the first generalized spin ladder model, for which the explicit g
Hamiltonian is of the form

H (1)5(
j 51

N

@ hj , j 111 1
2 J~sj .tj21! #, ~1!

and the local Hamiltonians are given by

hj , j 115 1
4 ~11s j

zs j 11
z !~11t j

zt j 11
z ! 1~s j

1s j 11
2 1s j

2s j 11
1 !~t j

1t j 11
2 1t j

2t j 11
1 !

1 1
2 ~11s j

zs j 11
z !~ t21 t j

1t j 11
2 1t t j

2t j 11
1 !1 1

2 ~ t21 s j
1s j 11

2 1t s j
2s j 11

1 !~11t j
zt j 11

z !

2 1
8 ~11s j

z!~11s j 11
z !~11t j

z!~11t j 11
z !.

The parameterssj and tj represent Pauli matrices acting on sitej of the upper and lower legs
respectively,J is the strength of the rung coupling that can take arbitrary real values, andt is a free
parameter. The number of rungs is denoted byN and periodic boundary conditions are impose

The integrability of this model is assured by the Quantum Inverse Scattering Method19 and by
the fact that it can be mapped to the Hamiltonian given in Eq.~2! below. This Hamiltonian can be
derived from anR-matrix obeying the Yang–Baxter algebra20 for J50, while for JÞ0, the rung
interactions take the form of a chemical potential term. We find that

Ĥ (1)5(
j 51

N

@ ĥ j , j 1122J Xj
00#, ~2!

where

ĥj , j 115 (
a50

3

Xj
aaXj 11

aa 1Xj
20Xj 11

02 1Xj
02Xj 11

20 1Xj
13Xj 11

31 1Xj
31Xj 11

13 1t~Xj
10Xj 11

01 1Xj
12Xj 11

21

1Xj
03Xj 11

30 1Xj
23Xj 11

32 !1t21~Xj
01Xj 11

10 1Xj
21Xj 11

12 1Xj
30Xj 11

03 1Xj
32Xj 11

23 !22Xj
00Xj 11

00 .
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In the above,Xj
ab5ua j&^b j u are the Hubbard operators withua j& being the orthogonalized eigen

states of the local operator (sj .tj ). The local Hamiltonianshj , j 11 and ĥ j , j 11 are related through
the following basis transformation:

u↑,↑&→u↑,↑&,

u↑,↓&→1/&~ u↑,↓&2u↓,↑&),

u↓,↑&→1/&~ u↑,↓&1u↓,↑&),

u↓,↓&.→u↓,↓&. ~3!

The R-matrix we use is a special case of a more general multiparametric version.~For a
general construction of multiparametric models, see Ref. 15.! For the purposes of the prese
work, it is necessary to only retain one parameter. TheR-matrix is as follows:

R~x!5

¨

w 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 0

0 t21b 0 0 u c 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 b 0 u 0 0 0 0 u c 0 0 0 u 0 0 0 0

0 0 0 tb u 0 0 0 0 u 0 0 0 0 u c 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 c 0 0 u tb 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 a 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 tb 0 u 0 c 0 0 u 0 0 0 0

0 0 0 0 u 0 0 0 b u 0 0 0 0 u 0 c 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 c 0 u 0 0 0 0 u b 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 c 0 u 0 t21b 0 0 u 0 0 0 0

0 0 0 0 u 0 0 0 0 u 0 0 a 0 u 0 0 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 tb u 0 0 c 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 c u 0 0 0 0 u 0 0 0 0 u t21b 0 0 0

0 0 0 0 u 0 0 0 c u 0 0 0 0 u 0 b 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 c u 0 0 t21b 0

0 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 a

©
,

~4!

with

a5x11, b5x, c51, and w512x,

and obeys the Yang–Baxter algebra,20

R12~x2y!R13~x!R23~y!5R23~y!R13~x!R12~x2y!. ~5!

The Hamiltonian originates from this solution~2! for J50 by the standard procedure,19

ĥ j , j 115P
d

dx
R~x!ux50 ,

whereP is the permutation operator.
The model is exactly solvable by the Bethe ansatz method21 and the resulting Bethe ansa

equations~BAE! are given by the expressions
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2~21!M1t (N22M3)S l l2 i /2

l l1 i /2D
N

5)
j 51

M2 l l2m j2 i /2

l l2m j1 i /2
,

t (N22M3))
j Þ l

M2 m l2m j2 i

m l2m j1 i
5)

i 51

M1 m l2l i2 i /2

m l2l i1 i /2 )
k51

M3 m l2nk2 i /2

m l2n i1 i /2
, ~6!

t (N22M112M2))
kÞ l

M3 n l2nk2 i

n l2nk1 i
5)

j 51

M2 n l2m j2 i /2

n l2m j1 i /2
.

The corresponding energy eigenvalues of the Hamiltonian~2! are

E5(
j 51

M1 S 1

l j
211/4

12JD 2~112J!N, ~7!

wherel j are solutions of the BAE~6!.
From the Bethe ansatz solution, we can determine the behavior of the ground sta

elementary excitations of the system. The reference state becomes the ground state w
relation J.211 1

2(t1t21) is satisfied. ForN sites, the ground state energy isE052(1
12J)N, which in terms of the Bethe ansatz calculations, corresponds to the reference
characterized byM15M25M350.

To describe an elementary excitation, we choseM25M350 andM151 in the BAE which,
from Eq. ~7!, yields an energy expression of the form

E15
1

l211/4
12J2~112J!N, ~8!

wherel5 ( i /2) ((t11)/(t21)). It is apparent that there is a gap of

D52~J112 1
2 ~ t1t21!!. ~9!

By solvingD50 for J we find the critical valueJc5211 1
2(t1t21), indicating the critical line at

which the quantum phase transition from the dimerized phase to the gapless phase occu
phase transition assumes a simpler form after a suitable reparametrization. We introduce
parameterK given byK5(t1t21)/2. In Fig. 1 the phase diagram is represented in terms ofK and
J. The phase boundary is now a straight line given byJ5211K.

In the limit t51, this solution corresponds tol→` indicating that a gap ofD52J persists.
We note that this is agrees with the suggested numerical and experimental results of spin
systems.1

The model also exhibits elementary bound state excitations. For example by choosin$M1

5M251,M350% there is solution of the Bethe ansatz equations given by

l150, m15
i

2

t211

t221

which describes an excited state of energyE542N12J(12N) and total spin zero.

III. GENERALIZED SU „3z1… SPIN LADDER MODEL

We move on to introduce the second integrable spin ladder model which also contains th
parameter. The global Hamiltonian reads
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H (2)5(
j 51

N

@kj , j 111 1
2 J~sj .tj21!#, ~10!

where

kj , j 115 1
4 ~11s j

zs j 11
z !~11t j

zt j 11
z ! 1~s j

1s j 11
2 1s j

2s j 11
1 !~t j

1t j 11
2 1t j

2t j 11
1 !

1 1
2 ~11s j

zs j 11
z !~ t21 t j

1t j 11
2 1t t j

2t j 11
1 !1 1

2 ~ t21 s j
1s j 11

2 1t s j
2s j 11

1 !~11t j
zt j 11

z !

2 1
8 ~12s j

z!~12s j 11
z !~12t j

z!~12t j 11
z !.

The exact solvability of the above Hamiltonian, as for the previous case, lies in the fac
it too can be mapped to a Hamiltonian given below by Eq.~11!, via the transformation~3!. Once
again this Hamiltonian is derived from anR-matrix solution of the Yang–Baxter algebra forJ
50, while for JÞ0 the rung interactions take the form of a chemical potential term. The Ha
tonian has the form

Ĥ(2)5(
j 51

N

@ k̂ j , j 1122JXj
00#, ~11!

where

k̂ j , j 115 (
a50

3

Xj
aaXj 11

aa 1Xj
20Xj 11

02 1Xj
02Xj 11

20 1Xj
13Xj 11

31 1Xj
31Xj 11

13 1t~Xj
10Xj 11

01 1Xj
12Xj 11

21

1Xj
03Xj 11

30 1Xj
23Xj 11

32 !1t21~Xj
01Xj 11

10 1Xj
21Xj 11

12 1Xj
30Xj 11

03 1Xj
32Xj 11

23 !22Xj
33Xj 11

33 .

For J50, the model is derived, in a similar manner as for the above case, from a multi
metricR-matrix for which only one parameter is relevant for the present discussion. TheR-matrix
is given by

FIG. 1. Rung couplingJ versus reparametrization parameterK. This graph represents the phase diagram between ga
and gapless phases. In this parametrization, the phase boundary is a straight line.
                                                                                                                



R~x!5

a 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 0

0 t21b 0 0 u c 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 b 0 u 0 0 0 0 u c 0 0 0 u 0 0 0 0

0 0 0 tb u 0 0 0 0 u 0 0 0 0 u c 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 c 0 0 u tb 0 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 a 0 0 u 0 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 tb 0 u 0 c 0 0 u 0 0 0 0

0 0 0 0 u 0 0 0 b u 0 0 0 0 u 0 c 0 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 c 0 u 0 0 0 0 u b 0 0 0 u 0 0 0 0

0 0 0 0 u 0 0 c 0 u 0 t21b 0 0 u 0 0 0 0
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¨ 0 0 0 0 u 0 0 0 0 u 0 0 a 0 u 0 0 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 tb u 0 0 c 0

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0 0 0 c u 0 0 0 0 u 0 0 0 0 u t21b 0 0 0

0 0 0 0 u 0 0 0 c u 0 0 0 0 u 0 b 0 0

0 0 0 0 u 0 0 0 0 u 0 0 0 c u 0 0 t21b 0

0 0 0 0 u 0 0 0 0 u 0 0 0 0 u 0 0 0 w

©

~12!

with

a5x11, b5x, c51 andw52x11,

and satisfies the Yang–Baxter algebra~5!. Utilizing the Bethe ansatz method this model can
solved and the resulting BAE are

t (N22M3)S l l2 i /2

l l1 i /2D
N

5)
lÞ i

M1 l l2l i2 i

l l2l i1 i )
j 51

M2 l l2m j1 i /2

l l2m j2 i /2
,

t (N22M3))
j Þ l

M2 m l2m j2 i

m l2m j1 i
5)

i 51

M1 m l2l i2 i /2

m l2l i1 i /2 )
k51

M3 m l2nk2 i /2

m l2n i1 i /2
, ~13!

2~21!M3t2(N22M112M2)5)
j 51

M2 n l2m j2 i /2

n l2m j1 i /2
.

The eigenenergies of the Hamiltonian~10! are given by

E52(
j 51

M1 S 1

l j
211/4

22JD 1~122J!N, ~14!

wherel j are solutions of the BAE~13!.
For N sites, the ground state is given by a product of rung singlets whenJ.11 1

2(t1t21) and
the energy isE05(122J)N. This is in fact the reference state used in the Bethe ansatz cal
tions and corresponds to the caseM15M25M350 of the BAE~13!. To describe an elementar
spin-1 excitation, we chooseM151 andM25M350 in the BAE which gives the minimal excite
state energy,
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E152
1

l211/4
12J1~122J!N, ~15!

wherel5 ( i /2) ((t21)/(t11)). Theenergy gap can easily be calculated and is found to be

D52~J212 1
2 ~ t1t21!!. ~16!

The valueJc511 1
2(t1t21) indicates the critical line at which the transition from dimeriz

phase to the gapless phase occurs. This graphic is presented in Fig. 2 in terms of the repa
zation variableK5(t1t21)/2.

The model also exhibits elementary bound state excitations. For example, by choosin$M1

5M251,M350% there is solution of the Bethe ansatz equations given by

l150, m15
i

2

t221

t211
,

which describes an excited state of energyE5241N12J(12N) and total spin zero.

IV. CONCLUSION

We have presented two new spin ladder models derived as special cases of multipara
versions of Lie superalgebra SU~3u1! and SU~1u3! invariant solutions of the Yang–Baxter equ
tion, maintaining one free parameter besides the rung couplingJ. Upon investigation of the
solutions of the BAEs to determine ground state and elementary excitations, we have show
both models exhibit a gap that depends on the extra parameter. Our results are suggestive t
multiparametic extensions will, in general, have an influence on the physical characteris
these models, and in particular the critical value of the rung coupling.
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FIG. 2. Rung couplingJ versus reparametrization parameterK. This graph shows a reparametrization of the curveJ
511(t1t21)/2 in terms ofK5(t1t21)/2. In this parametrization, the phase boundary is a straight line.
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Estimation of percolation thresholds via percolation
in inhomogeneous media

S. Zuyeva)
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J. Quintanillab)
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This paper mathematically justifies techniques used to estimate the percolation
thresholds of fully penetrable disks, or Boolean models of planar disks. Generali-
zations to systems of other particles in two or more dimensions are also discussed.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1624489#

I. INTRODUCTION

Accurate measurements of percolation phenomena are important in many areas of mat
cal physics.1–4 The Boolean model is a prototypical model for percolation studies. Recent
mates of the percolation threshold of the homogeneous Boolean model of random disk
simulations of nonhomogeneous Boolean models.5–8 In these articles, a nonhomogeneous Boole
model was simulated in a unit square, and the disks that were connected to the right edge
square were found. The ‘‘edge’’ of these disks, called thefrontier, was found by using either the
gap-traversal method or the more efficient frontier-walk method. Both methods saved com
resources by avoiding direct simulation of all disks within the unit square.

Using these methods, the critical density of disks of equal radiusR was found to belcrR
2

50.359 072(4), where the parentheses represents the standard deviation for the last digi

density corresponds to a critical disk area ofacr512e2plcrR
2
50.676 339(4).

These simulations were generalized8 to estimate the critical density for Boolean models w
disks of two different radii, where proportionf of the disks have radiusqR ~for 0,q,1) and the
remaining disks have radiusR. The presence of disks with two different radii increased the crit
disk area. The largest critical disk area simulated in Ref. 8 wasacr50.759 81(5); this was attained
usingq50.1 andf 50.99. Based on these simulations, it was conjectured thatacr is maximized
near f 512q2 for a fixed value ofq.

This paper provides a theoretical basis for the methods proposed in Refs. 5 and 6 for
tively estimating the percolation threshold of planar Boolean models of random disks. T
accomplished by coupling homogeneous and nonhomogeneous Boolean models on the sam
ability space. Because of this construction, classical results about homogeneous Boolean
may be applied to nonhomogeneous Boolean models. Generalizations to higher dime
spaces and more general grains are possible; however, the proofs of these generalizations
technical and will be reported elsewhere.

Let C5@0,1#2 be a unit square with ‘‘left’’ sideL5$0%3@0,1# and ‘‘right’’ side R5$1%
3@0,1#. Given a setS in R2, we will write tS5$ts:sPS% for the homothetical transform ofS, uSu
for its area, and diamS for the diameter supxPSixi of S. Finally, b(x,r ) will stand for a closed disk
of radiusr centered at a pointx.

We now formally describe the Boolean model of disks~or, more exactly, a family of models!.

a!Electronic mail: sergei@stams.strath.ac.uk; URL: http://www.stams.strath.ac.uk/;sergei
b!Electronic mail: johnq@unt.edu; URL: http://www.math.unt.edu/;johnq
60400022-2488/2003/44(12)/6040/7/$20.00 © 2003 American Institute of Physics
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We will do this in a way which is suitable for our purposes; namely, we will couple a rang
models on the same probability space.

Let P̃ be a Poisson process in the phase spacex5R13R23R1 with intensity measure
dt dx m(dr ), wherem(dr ) is a probability measure on the Borel subsets ofR15@0,̀ ). We will
also consider its subprocessP̃l , which is the restriction ofP̃ onto the set@0,l#3R23R1 . For
each realization$(si ,xi ,r i)% of P̃, we define

Jl
05 ø

~si ,xi ,r i !PP̃l

b~xi ,r i !,

which is a realization of thehomogeneous Boolean model of diskswith intensity ~density! l and
radius distributionm for the disks. The disksb(xi ,r i) in the above union, denoted byKi for short,
are calledgrains, and thexi are their correspondingcenters. By this construction,Jl

0 is an
increasing family of closed random disks, so thatJl1

0 ,Jl2

0 if l1,l2 .

This construction is equivalent to the usual definition of the Boolean model. The p
xi—the projection ofP̃l onto R2—are distributed according to a homogeneous Poisson pro
Pl with intensityl. Also, the radiir i of Ki are independently chosen for eachxi with probability
distributionm.

The critical percolation intensity for a homogeneous Boolean model is defined as

lcr5sup$l.0:P$Jl
0 contains an infinite cluster%50%.

Another important critical value is

lN5sup$l.0:El
0@Number of grains in the cluster containing 0 inJl

0#,`%.

HereEl
0 is thePalm expectationwith respect toPl ~roughly, conditional expectation ‘‘givenPl

has a point at the origin 0’’!. For a large variety of percolation models, it has been proven
lN5lcr . In particular, this equality holds for models of balls provided that the support of
radius distributionm is compact~see Refs. 9 and 10 and Ref. 11, Theorem 3.5!.

Along with Boolean modelsJl
0, we will also consider their scaled versions, defined

Jl
0(t)5t21Jl

0. It is easy to see thatJl
0(t) is distributionally equivalent to a Boolean model wi

grainsb(xi ,t21r i), xiPP t2l . Obviously, given a scalet, the critical intensities forJl
0(t) scale

correspondingly tot2lcr and t2lN .
The estimation methods proposed in Refs. 5 and 6 are based on consideration of anonhomo-

geneousmodel a compact ‘‘window’’C. This modelJF(t) is the union ofb(xi ,t21r i) over
(si ,xi ,r i)PP̃ such thatxiPC andsi<t2F(xi). In other words,JF(t) is a Boolean model inC
with balls of radiit21r i centered at the pointsxi of a nonhomogeneous Poisson processPF driven
by intensity measuret2F(x)dx. We assume that the functionF(x) is, in fact, a monotone function
of only the first coordinatex1 of x:F(x)5w(x1):@0,1#°R1 .

With this construction ofJF(t), the nonhomogeneous Boolean model has been coupled
homogeneous Boolean models. Take anyxP@0,1#, and letl5w(x). Then all grains ofJF(t)
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with xi<x are grains ofJl
0(t), and all grains ofJl

0(t) with xi>x are grains ofJF(t). This
coupling will be used in the proofs of the following section.

Each horizontal line$y5c% may intersect the frontier in a few points. For everyc for which
this intersection is nonempty, take the point with the smallest abscissa. The unionG t of such points
is a subset of the frontier and consists of its points ‘‘visible from the left,’’ which we will call
coastline. Actually, the mean first coordinate of the coastline points was used to estimat
percolation threshold in Ref. 6, while the mean first coordinate of the frontier was used in Re
7, and 8.

Recall also that the Hausdorff distance between the two sets is defined by

r~A,B!5max$sup
aPA

inf
bPB

ia2bi , sup
bPB

inf
aPA

ia2bi%.

II. MAIN THEOREM

Theorem 1: Assume there exists0,R,` such thatm$(0,R#%51. Assume also thatw(0)
,lcr,w(1). Define pcr5 inf$p:w(p).lcr% and Q5@pcr,1#3@0,1#. If w is strictly increasing at
the point pcr , thenr t5r(Q t ,Q)→0 in distribution.

Proof: We need to show thatP$r t.e%→0 ast→`. From the definition,r t.e implies at least
one of the following cases:

FIG. 1. ~a! A realization ofJF(t) for t520 andw(x)5x. The setQ t of points connected toR is shaded. The thick black
line on the left face ofQ t is the frontierD t . The two vertical lines depictd1(t) andd2(t). ~b! As in ~a!, except witht
5100.~c! A realization ofD t for t5400.~d! As in ~c!, except witht51000. Ast increases, bothd1(t) andd2(t) converge
in distribution topcr .
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r t85 sup
xPQ t

r~x,Q!.e, ~1!

r t95 sup
xPQ

r~x,Q t!.e. ~2!

We will now show that both cases have vanishing probabilities ast grows.
In case~1!, suchx cannot lie inQ, so there is necessarily a pointx of Q t with the first

coordinatex1,pcr2e. For t.8R/e, this implies the existence of a grainKt(yi)5
def

b(yi ,t21r i)
with pcr2e/2<yi

1<pcr2e/4 connected to @0,pcr2e#3@0,1# in JF(t)ù@pcr2e,pcr2e/4#
3@0,1#.

Consider now the homogeneous Boolean modelJl1

0 (t) with l15w(pcr2e/4). By the cou-

pling construction described in the Introduction, all grains ofJF(t) with xi
1<pcr2e/4 are also

grains ofJl1

0 (t). Therefore, the diameter ofJl1

0 (t) clusterWt(yi) containingKt(yi) is at least

e/4.
DenotingC15@pcr2e/2,pcr2e/4#3@0,1# and using the scaling, we can write

P$r t8.e%<PH ø
yPPl1

~ t !ùC1

$diamWt~y!.e/4%J
<ES (

yPPl1
~ t !ùC1

1$diamWt~y!.e/4% D
5ES (

yPPl1
ùtC1

1$diamW~y!.te/4% D 5l1utC1uPl1

0 $diamW~0!.te/4%,

wherePl1

0 is the Palm probability with respect to the homogeneous processPl1
. The last equality

is an application of the Campbell theorem~see, e.g., Ref. 13, p. 103!.
The homogeneous modelJl1

0 (t) does not percolate sincel1,lcr , and so the diameter of its

clusters has exponential bounds. Applying Lemma 3.3 from Ref. 11, p. 68~see also Ref. 14!, we
find that

P$r t8.e%<A1l1et2 exp$2A2te% ~3!

for someA1 , A2.0. We see that limt→` P$r t8.e%50 for any e.0, implying that limt→` r t8
50 in distribution.

Let us turn to the second possibility~2!. Let n.2/e, and partitionQe5@pcr1e#3@0,1# into
n blocks c(k)5@pcr1e,1#3@(k21)/n,k/n#, k51,...,n. If there is a LR crossing in eachc(k),
then the vertical distances between adjacent crossings is always less than 2/n<e. Therefore, there
is no diskb(x,e) with a centerxPQ such that none of its points are connected toR by a path of
JF(t) insideC. In other words, case~2! doesnot hold for t if these LR crossings occur.

Let l25w(pcr1e). By the coupling argument, every LR crossing of the homogeneous B
ean modelJl2

0 (t) lying in Qe is also a LR crossing ofJF(t). By scaling and stationarity, the

probabilityp t of crossing such a block inJl2

0 equals the probability of a LR crossing of the bloc

@0 ,t(12pcr2e)#3@2t/(2n)0 ,t/(2n)# in the percolating modelJl2

0 . According to the classica

RSW theorem~see Corollary 4.1 in Ref. 11, p. 114!, p t tends to 1 ast grows to infinity. In
summary,

P$r t9.e%<12P$LR crossings for eachc~k! in JF~ t !%

<12P$LR crossings for eachc~k! in Jl2

0 ~ t !%512~12p t!
n→0 as t→`.

h
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Remark 1: A natural way to estimate the percolation threshold is to conduct a serie
independent realizations of the Boolean modelJF(t) in a squareC for a range oft5t1 , t2 ,... .
The exponential form of the estimate~3! shows that limn→` r tn

8 50 almost surely if the series

(ntn exp$2A2etn% converges~e.g., if tn5n). For the second case, the RSW theorem itself does
contain an information about the speed at which the probabilityp t tends to 1, but the recent resul
for discrete percolation suggest that it is at least exponential@see formula~8.98! in Ref. 3#. If true,
the convergence ofr tn

in Theorem 1 is almost sure in the casetn5n.
Recall thatD t andG t denote the frontier and coastline ofQ t , respectively. Not only doesQ t

converge toQ in the Hausdorff metric, but also the first coordinates ofD t andG t converge topcr .
This is proved in the following theorem.

Theorem 2: Let pr1(D t) be the projection ofD t onto the first coordinate axis, and defin
d1(t)5 inf pr1(D t) and d2(t)5sup pr1(D t). Then both d1(t)→pcr and d2(t)→pcr as t→` or,
equivalently, r(pr1(D t),$pcr%)→0 in distribution. AsG t#D t , then alsor(pr1(G t),$pcr%)→0 in
distribution.

Equality ~4! is due to stationarity and isotropy of the modelJl3

0 (t), while ~5! is obtained after

scaling byt. By the RSW theorem,~5! converges to 1, thus concluding the proof. h

Remark 2:From simulations, it appears that the mean first coordinates of bothD t and G t

converge topcr at a rate proportional tot21, while the widthd2(t) –d1(t) converges to zero at a
rate proportional tot23/7.

III. GENERALIZATIONS AND SIMULATIONS

The proofs of the two previous theorems are based on two principal results for the hom
neous Boolean models: in the subcritical region, exponential decay of the cluster diameter
bution and, in the supercritical region, the RSW theorem establishing the high probabil
crossing of large blocks. The availability of these two results was the main reason for the
tions imposed on the Boolean model that were stated in the Introduction.

The proof of exponential bounds on the distribution’s tail can be generalized for Boo
models other than planar disks in all dimensions relatively easily by using the ‘‘spectral me
proposed in Ref. 14. However, generalization of the RSW theorem demands substantial te
work. As inclusion of the corresponding proofs would go astray from the main subject of
paper, they will be reported elsewhere. Here we just give the corresponding result without a
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Let K0 be a locally compact separable space of compact setsK,Rd containing the origin and
endowed with a suitables-algebra, and letm(dK) be a probability measure on it~see, e.g., Ref. 15
for details on random compact sets!. A random elementKPK0 realized with distributionm is
called atypical grain of a Boolean model. Consider a Poisson processP̃ in the phase spaceX
5R13Rd3K0 with intensity measure ds dx m(dK) and its subprocessP̃F , which is the restric-
tion of P̃ onto the set$(s,x):s<F(x)%3K0. Each realization$(si ,xi ,Ki)% of P̃ defines a random
set

JF5 ø
~si ,xi ,Ki !PP̃F

~xi1Ki !,

which is a realization of thenonhomogeneous Boolean model. As above, we will also consider it
scaled versionJF(t), which is a Boolean model in a unit cubeC with grainst21Ki1yi centered
at the pointsyi of a nonhomogeneous Poisson process with intensity measuretdF(x)dx. As
before, we assume that the functionF(x) is a monotone function of only the first coordinatex1 of
x:F(x)5w(x1):@0,1#°R1 .

We make the following assumptions about the grain distribution of the Boolean model:

~A! finite radius: there existsR.0 such thatm$KPK0:diamK<R%51;
~B! isotropy:m is rotation invariant;
~C! nondegenerate connected grains:m$KPK0:uKu.0%.0 and m$KPK0:K is connected%51;

and
~D! coincidence of percolation thresholds:lcr5lN .

FIG. 2. Realizations of inhomogeneous needles of lengtht21 in the unit circle.~a! In this figure,t510 and proportion
a50.8 of them are oriented horizontally. None of the needles outside of the thick solid line are connected to the cen
most of the interior needles are.~b! As in ~a!, except witht530. Only the needles connected to the center are drawn~c!
A magnification of the interior line fort5100; the needles are not shown. The interior pockets correspond to small
where needles are not connected to the center.~d! As in ~c!, except fort5300. Ast increases, the frontier of the connecte
needles become circular, and the radius of this circle estimates the critical percolation density for the corres
homogeneous model. From this and other similar simulations, it appears that conditions~B! and~C! can be omitted without
changing the conclusion of Theorem 3.
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Theorem 3: Assume the conditions (A)–(D) hold. Assume also that the functionw is such that
w(0),lcr,w(1) and strictly increasing at the point pcr . Then the statement of Theorem 1 hold.

A few remarks are in order. It was already mentioned in the Introduction that Condition~D!
holds if all the grains are balls of a bounded radius~Ref. 11, Theorem 3.5!. It also holds for a large
variety of other percolation models: for example, grains which are star-shaped with the set o
radius-vector functions being a compact in the spaceC(Sd21) of continuous functions on a spher
with sup-norm~see Refs. 9 and 10 for details!.

The example provided in Corollary 3.2 of Ref. 11, p. 52 shows that the condition~A! on finite
radius cannot, in general, be dropped without affecting the validity of condition~D!. If condition
~A! does not hold, one cannot expect the procedure to be stable, as all ofC may be covered with
a positive probability for all scalest.

Conditions~B! and~C!, in contrast, appear to be technical assumptions necessary for the
but unimportant for the estimation method to work. To see this, we consider the nonhomoge
model in a unit ball~rather than in a squareC!. We also takeF(x) to be a radially symmetric
function w(r ) with a pole in 0 and which decays to 0 whenr→1. Consider a range of Boolea
models whose grains are segments of lengtht21 so that proportiona of them are oriented
horizontally and 12a vertically. As seen in Fig. 2, despite the anisotropy of the model and em
volume of the grains, the frontier of the cluster in a neighborhood of the origin has a cir
shape. The radii of such frontiers estimate the critical percolation intensity for the correspo
models.
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2M. Sahimi,Applications of Percolation Theory~Taylor and Francis, London, 1994!.
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Yang–Mills connections over manifolds with Grassmann
structure
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Let M be a manifold with Grassmann structure, i.e., with an isomorphism of the
cotangent bundleT* M>E^ H with the tensor product of two vector bundlesE
and H. We define the notion of a half-flat connection¹W in a vector bundleW
→M as a connection whose curvatureFPS2E^ L2H ^ End W , L2T* M
^ End W. Under appropriate assumptions, for example, when the Grassmann struc-
ture is associated with a quaternionic Ka¨hler structure onM , half-flatness implies
the Yang–Mills equations. Inspired by the harmonic space approach, we develop a
local construction of~holomorphic! half-flat connections¹W over a complex mani-
fold with ~holomorphic! Grassmann structure equipped with a suitable linear con-
nection. Any such connection¹W can be obtained from a prepotential by solving a
system of linear first order ODEs. The construction can be applied, for instance, to
the complexification of hyper-Ka¨hler manifolds or more generally to hyper-Ka¨hler
manifolds with admissible torsion and to their higher-spin analogs. It yields
solutions of the Yang–Mills equations. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1622999#

I. INTRODUCTION

The Yang–Mills self-duality equations have played an important role in field theory an
differential geometry. They are the main source of examples of solutions of the Yang–
equations on four-dimensional manifolds.1 The self-duality equations* F¹5F¹ mean that the
curvatureF¹ of a connection¹ over a Riemannian four-foldM is an eigenvector of the Hodg
star operator, associated with the volume four-form, which acts on two-forms. This appa
four-dimensional construction has an analog in Riemannian manifoldsM of arbitrary dimensions.
Any four-form V on M defines an endomorphismBV of the space of two-forms and one ca
define~V,l!-self-duality as the condition,BVF¹5lF¹, that the curvature is an eigenvector ofBV

with eigenvaluel5constÞ0. Under appropriate assumptions onV ~for example, if it is co-
closed! this implies the Yang–Mills equations, just as in four dimensions. For instance, this w
for a constantV in flat space2,3 and for a parallel four-form on a Riemannian manifold with spec
holonomy~some examples are discussed in Refs. 4–8!. If V is, for example, the canonical paralle
four-form associated to a quaternionic Ka¨hler manifoldM of dimension 4m, then the eigenspace
of BV are the irreducible Sp(m)•Sp(1)-submodules of the space of two-forms. In terms of

a!Electronic mail: d.v.alekseevsky@maths.hull.ac.uk
b!Electronic mail: cortes@iecn.u-nancy.fr
c!Author to whom correspondence should be addressed. Electronic mail: devchand@math.uni-bonn.de
60470022-2488/2003/44(12)/6047/30/$20.00 © 2003 American Institute of Physics
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associated locally defined Grassmann structureT* CM5E^ H, i.e., the identification of the com
plexified cotangent bundleT* CM with a tensor product of two vector bundlesE andH of rank 2m
and 2, respectively, the eigenspace decomposition is given by

L2T* CM5S2E^ L2H % L0
2E^ S2H % vE^ S2H,

with correspondingBV-eigenvaluesl151,l2521/3,l352(2m11)/3.3,9 HerevE andvH are
two-forms onE* andH* such that the complex metric onTCM is given byvE^ vH andL0

2E
denotes the traceless part ofL2E with respect tovE . The eigenspaces ofBV can thus be de-
scribed in terms of the Grassmann structure, which is a natural generalization of the well-k
spinor decomposition of a vector in four dimensions. A two-form on any manifold with Gr
mann structure is called half-flat if it belongs to the eigenspaceS2E^ L2H and a connection¹
with half-flat curvature is called half-flat. If the Grassmann structure is associated with the q
nionic Kähler structure, then a half-flat connection is the same as an (V,l1)-self-dual connection
and hence satisfies the Yang–Mills equations. Inspired by the harmonic space approac10 we
develop a construction of locally defined holomorphic half-flat connections on a manifoldM with
holomorphic admissible half-flat Grassmann structure, namely, a holomorphic Grassmann
tureT* M5E^ H with holomorphic connections¹E and¹H in the bundlesE andH, respectively,
such that¹H is flat and the torsion of the linear connection¹5¹E

^ Id1Id^ ¹H has no compo-
nent in S3H ^ E* ^ L2E. The construction associates to a holomorphic prepotential a hal
connection through the solution of a system of linear first order ODEs. The construction c
applied, for instance, to the complexification of hyper-Ka¨hler manifolds or, more generally, t
hyper-Kähler manifolds with admissible torsion. Our construction of gauge fields on such cu
backgrounds extends that of Ref. 10, where flat torsion-free backgrounds were considered
over, we provide a geometric description of the harmonic space method of Ref. 10.

We note that using analytic continuation any real analytic connection¹ over a real analytic
Grassmann manifold allows extension to a holomorphic connection¹C over a holomorphic Grass
mann manifold and¹ can be reconstructed from¹C in terms of some antiholomorphic involution

The main idea of our construction is to pull-back a half-flat connection¹ in a holomorphic
vector bundlen:W→M to the harmonic spaceSH . The latter is the space of all symplectic fram
h5(h1 ,h2) in the vector bundleH* . The group Sp~1,C! acts freely onSH , with the orbit space
SH /Sp(1,C)5M . Hence, the projectionp:SH→M is an Sp~1,C!-principal bundle. Choosing a
~local! trivialization, M{x°(h1(x),h2(x))PSH , of p we can make the identificationSH

5Sp(1,C)3M . There exists a canonical decomposition,

TSH5TvSH % D1 % D2 ,

of the ~holomorphic! tangent bundle into the vertical subbundleTvSH and two ~holomorphic!
distributionsD1 andD2 spanned, respectively, by vector fieldsX1

e andX2
e canonically associated

with sectionse of the bundleE* . If the Grassmann structure is admissible and half-flat,
distributionsD1 andD2 are integrable. The vertical distributionTvSH is spanned by vector field
]0 ,]11 ,]22 , which correspond to the standard generators of the Lie algebrasp~1,C!. A half-flat
connection¹ in the bundlen:W→M induces the pull-back connectionp* ¹ in the pull-back
bundlep* n:p* W→SH . Since¹ is half-flat, the curvatureF of p* ¹ satisfies certain equation
~see Definitions 6 and 7!. A connection inp* n satisfying these equations is called a half-fl
connection overSH and is gauge equivalent to the pull-back of a half-flat connection overM . Any
half-flat connection overSH is flat along the leaves of the integrable distribution^D1 ,]0& spanned
by ]0 andD1 . We can therefore choose a frame of the vector bundlep* n which is parallel along
its leaves. Such a frame is called an analytic frame. With respect to such a frame a h
connection has no potentials in the directions of the distribution^D1 ,]0&. Starting from a matrix-
valued function~prepotential! A11 on SH , which is constant along the leaves of the distributi
D1 and satisfies the homogeneity condition]0A1152A11 , we construct a connection whic
satisfies almost all the conditions of half-flatness. We call such a connection an almost h
connection. It is half-flat if and only if its curvature satisfies the equationF(]22 ,D2)50. The
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construction of an almost half-flat connection reduces to the solution of first order linear O
Assuming that the almost half-flat connection¹ is defined globally along the fibers~over p21U,
whereU,M is a domain inM ) we can modify¹ to a half-flat connection overSH which is the
pull-back of a half-flat connection overM . In order to do this, we rewrite¹ with respect to a
‘‘central frame,’’ namely, a frame parallel along the fibers ofp. The transformation from the
analytic to the central frame reduces to the solution of the system of equations

]11F52A11F, ]0F50.

With respect to the central frame the potentialC(X1
e ) of the connection¹ in the direction of the

vector field X1
e PD1 has the formC(X1

e )5u1
a Ca

e , whereCa
e are matrix-valued functions on

M5M3$Id%,M3Sp(1,C) and u6
a ,a51,2, are matrix coefficients of Sp~1,C!. The matrix-

valued functionsC1
e ,C2

e define the desired half-flat connection onM given by

¹e^ h1

M 5e^ h11C1
e , ¹e^ h2

M 5e^ h21C2
e .

Moreover, any half-flat connection may be obtained in this way.
The above construction allows generalization to manifolds with spinm/2 Grassmann struc

ture. This means that the cotangent bundle is identified asT* M5E^ F5E^ SmH, whereE and
H are~holomorphic! vector bundles of rankp and 2, respectively. If a connection¹E on E and a
flat connection¹H on H are given, then the Grassmann structure is called half-flat. The conne
¹H defines a flat connection¹F on F5SmH and the linear connection¹5¹E

^ Id1Id^ ¹F. The
associated harmonic spacep:SH→M is defined as above, as the space of all symplectic fra
h5(h1 ,h2) in H* . Its tangent space has decomposition

TSH5TvSH % %
k50

m

Dk1 % %
k51

m

Dk2 .

Under certain conditions on the torsion of¹ the distributionD (1)
k

ª% i 50
k D(m22i )1 , k<m/2, is

integrable. Such a half-flat Grassmann structure is calledk-admissible. Generalizing the notion o
a half-flat connection, we may define ak-partially flat connection¹ over a manifold with half-flat
spin m/2 Grassmann structure such that the pull-back connectionp* ¹ has no curvature in the
directions of D (1)

k . The harmonic space method can be applied to constructk-partially flat
connections overk-admissible half-flat spinm/2 Grassmann manifolds. In the final section w
consider the case ofm53 and sketch the construction of zero- and one-partially flat connect
The latter are Yang–Mills connections.

II. GENERALIZED SELF-DUALITY FOR MANIFOLDS OF DIMENSION GREATER THAN
FOUR

A. Yang–Mills data

Let n:W→M be a real vector bundle overM and¹ a connection inn, that is a bilinear map

¹:X–~M !3G~n!→G~n!,

~X,s!°¹Xs,

which is C`(M )-linear in the vector fieldXPX–(M ) and satisfies the Leibniz rule¹X( f s)
5(X f )s1 f ¹Xs, for any functionf PC`(M ) and any section,sPG(n), of n. The map¹ can be
extended to a complex bilinear map,

¹:X–C~M !3G~WC→M !→G~WC→M !,

~X,s!°¹Xs, ~1!
                                                                                                                



e

d
o
a

fold

6050 J. Math. Phys., Vol. 44, No. 12, December 2003 Alekseevsky, Cortés, and Devchand

                    
where X–C(M ) is the space of complex vector fieldsX1 iY ; X,YPX–(M ) and WC→M is the
complexification of the vector bundlen. Note that¹ satisfies the reality condition

¹X̄s̄5¹Xs, XPX–C~M ! , sPG~WC→M ! , ~2!

where the bar denotes complex conjugation. Conversely, anyC-bilinear map ~1! which is
X–C(M )-linear and satisfies the Leibniz rule and the reality condition~2! defines a connection¹ in
the real vector bundlen. If the reality condition~2! is dropped, then~1! defines a connection in th
complex vector bundleWC→M .

Let w5(w1 , . . . ,w r) denote a local frame ofn such that for any sectionsPG(n), s
5(siw i5

..w•s, where si are the coordinates ofs with respect to the framew and s
5(s1, . . . ,sr) t. Then the connection¹ in n has local expression

¹Xs5¹X~siw i !5w•¹XsªS Xsi1(
j

Aj
i ~X!sj Dw i ,

where Aj
i (X)5(¹Xw j ,w i) and w* 5(w1, . . . ,w r) denotes the dual frame. The locally define

matrix-valued one-formA5(Aj
i ):M→gl(r ,R) is called the Yang–Mills potential with respect t

the framew. If the vector bundlen has structure groupG, i.e., if it is a bundle associated with
principal G-bundleP→M and a representationr:G→GL(r ,R), such thatW5P3GRr , then we
may always choose a framew for which the potential takes values in the Lie algebrag
5Lie r(G),gl(r ,R). We will symbolically write¹X5X1A , A5Aw. A change of frame~gauge
transformation! w85wU induces changess85U21s and w8(X1A8(X))s8 5 w8¹Xs8 5 w¹Xs
5 w(X1A(X))s 5w8U21(X1A(X))Us8, yielding the transformation rule for the potential,

A85U21~XU!1U21A~X!U5U21¹XU . ~3!

The curvature of the connection¹, F5F¹PVM
2 (End W)5G(L2T* M ^ End W), is given by

F~X,Y!5@¹X ,¹Y#2¹[X,Y]5XA~Y!2YA~X!1@A~X!,A~Y!#2A~@X,Y# !.

The Jacobi identity for¹X is equivalent to the Bianchi identity,d¹F¹50. Here the covariant
derivatived¹:Vp(End W)→Vp11(End W) is defined by

d¹~v ^ C!5dv ^ C1~21!pv∧¹C,

wherev is a p-form andC is a section of EndW. ~The connection¹ on W induces a connection
on EndW denoted by the same symbol.!

On any n-dimensional oriented pseudo-Riemannian~or complex Riemannian! manifold,
(M ,g) using the canonical volume form volgPLnT* M , we define the Hodge* operator which
interchanges forms of complementary degree,* :LpT* M→Ln2pT* M , by the relation
^a,b&volg5a∧* b , wherea,bPLpT* M and ^. , .& is the natural scalar product onLpT* M
induced by the metricg. We define * :LpT* M ^ End W→Ln2pT* M ^ End W by * (v ^ C)
ª(* v ^ C).

Definition 1: Let n:W→M be a real vector bundle over a pseudo-Riemannian mani
(M ,g). A YM connection ¹ in n is one which satisfies the Yang–Mills equation

d¹* F¹50.

On a closed manifold this is the Euler–Lagrange equation for the YM functional

iF¹i25E
M

uF¹u2 volg, ~4!
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where the norm onL2T* M ^ End W is induced by the pseudo-Riemannian metric onM and the
natural metric on EndW.

B. Self-duality conditions

On a Riemannian four-manifold, the* operator maps two-forms to two-forms and has eig
values61. The curvature tensor therefore has decomposition into the eigenspaces of the* opera-
tor,

F¹5F11
¹

% F21
¹ PVM

1~End W! % VM
2~End W!.

This splitting corresponds to the decomposition of the SO~4!-module L2R45L1
2

% L2
2 >so(4)

5sp(1)% sp(1) into its irreducible submodules. We call¹ and F¹ self-dual or anti-self-dual if
F21

¹
ª

1
2(F

¹2* F¹)50 or F11
¹

ª

1
2(F

¹1* F¹)50, respectively. For~anti-!self-dual connections
the YM equation,d¹* F¹50, is an immediate consequence of the Bianchi identity,d¹F¹50. On
closed manifolds~anti-! self-dual connections in fact minimize the YM functional~4!, since the
inequality

iF¹i25iF11
¹ i21iF21

¹ i2>uiF11
¹ i22iF21

¹ i2u58p2uc2~W!@M #u

is saturated. Herec2(W)@M #5 (1/8p2) *Mtr F¹∧F¹ is the evaluation of the second Chern cla
of the bundleW on the fundamental cycle.

The apparently four-dimensional notion of self-duality has an analog in higher dimens
The construction originally given in Ref. 2 for flat spaces extends to arbitrary manifolds (M ,g), of
dimension greater than four, as follows.

For VPV4(M ) we define a symmetric tracefree endomorphism fieldBV :L2T* M
→L2T* M by

BVvª* ~* V∧v! , ~5!

wherevPL2T* M . This endomorphism is zero if and only if the four-formV is zero. Moreover,
we have the following.

Lemma 1: Let

V5( V i jkl e
i∧ej∧ek∧el , v5( v i j e

i∧ej

be the expressions forV and v with respect to a frame ei of T* M . Then BV is given as the
contraction

BVv512( gii 8gj j 8 V i jkl v i 8 j 8 ek∧el .

Proof: It is sufficient to check the above formula for decomposable formsV5ei∧ej∧ek∧el

andv5em∧en, where theei form an orthonormal basis ofT* M . h

Definition 2: A four-form VPV4(M ) on a pseudo-Riemannian manifold M is calledappro-
priate if there exists a nonzero real constant eigenvaluel of the endomorphism field BV .

We note that on a Riemannian manifold the eigenvalues ofBV are real for any four-formV.
A generalization of the four-dimensional notion of self-duality may now be defined:

Definition 3: LetV be an appropriate four-form on a pseudo-Riemannian manifold(M ,g)
andlÞ0PR. A connection¹ in a vector bundlen:W→M is „V,l…-self-dual if its curvature F¹

satisfies the linear algebraic system

BVF¹5lF¹, ~6!
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~d* V!∧F¹50 . ~7!

Theorem 1: Let (M ,g) be a pseudo-Riemannian manifold with an appropriate four-formV.
Then any~V,l!-self-dual connection¹ is a YM connection.

Proof: Using ~6! and ~5! we obtain

d¹* F¹5
1

l
d¹* BVF¹56

1

l
d¹~* V∧F¹!56

1

l
~~d* V!∧F¹1* V∧d¹F¹!50,

in virtue of ~7! and the Bianchi identityd¹F¹50. h

Examples of manifolds admitting appropriate four-forms are easily obtained. LetV be a
pseudo-Euclidean vector space andG,SO(V) be a linear group preserving a nonzero elem
V0PL4V. Denote byV i jkl the components ofV0 with respect to an orthonormal basis ofV.
Given a manifoldM with a G-structure,p:P→M , i.e., a principalG-subbundle of the bundle o
frames onM , we can define a four-formVª(V i jkl e

i∧ej∧ek∧el , where (e1,...,en) is a coframe
dual to aG-frame p5(e1 ,...,en)PP. Since G,SO(V), M has the structure of an oriente
pseudo-Riemannian manifold and we can define the operatorBV . The matrix components o
BV5(Bi j

klei∧ej
^ ek∧el are constant for anyG-frame and so are its eigenvalues. HenceV is

appropriate if the endomorphismBV0
PL4V has a nonzero real eigenvaluel. This is automatic in

the Riemannian case.
There exist many examples of subgroupsG,SO(V) admitting nonzeroG-invariant four-

forms, as shown by the following construction. LetG,SO(V) be a closed subgroup of th
pseudo-orthogonal group SO(V) and g,so(V)>L2V* its Lie algebra. Assume thatg admits a
G-invariant symmetric nondegenerate bilinear formBPS2(g* )G, whereWG denotes the space o
G-invariant elements of aG-module W. We can then identifyg with its dual g* via B and
considerB as an element of (S2(g))G,(S2L2V* )G. A G-invariant four-form is then defined by
V0

G
ªaltBP(L4V* )G, where alt:S2L2V* →L4V* denotes alternation. We denote the cor

sponding four-form on a manifold withG-structure byVG. The following variant of a theorem by
Kostant11 provides a wealth of examples of nonzeroV0

G ’s.
Theorem 2: Let G,SO(V) be a closed subgroup whose Lie algebrag admits a nondegen

erate G-invariant bilinear form BP(S2g)G. If the G-module V is not equivalent to the isotrop
module of a pseudo-Riemannian symmetric space, then the four-formV0

G
ªaltBP(L4V)G is

nonzero.
Proof: Recall that the SO(V)-moduleS2L2V decomposes according toS2L2V5R(so(V))

1L4V, whereR(so(V)) denotes the space of curvature tensors of typeso(V), i.e., the space of
two-forms fulfilling the first Bianchi identity or the kernel of the map alt:S2L2V→L4V. If
V0

G5altB50, then B is a nonzero element ofR(so(V))ùS2(g)G5R(g)G. Since B is a
G-invariant two-form onV with values ing it can be used to define a Lie bracket@ • , • # on the
vector spacel5g% V thus,

~i! g is a subalgebra ofl,
~ii ! V is a g-submodule with action defined by the inclusiong,so(V), and
~iii ! @u,v#ªB(u,v)Pg if u,vPV.

The Jacobi identity follows from the Bianchi identity and theG-invariance. LetL be the simply
connected Lie group with Lie algebral. ThenL/G0 is a Riemannian symmetric space withV as its
isotropy module, whereG0,L is the connected Lie subgroup with LieG05g. h

Clearly, ~7! is automatic if the four-formV is co-closed,d* V50. This is the case, for
example, ifV is parallel. In the Riemannian case the Berger list of irreducible holonomy grou12

and a theorem of Kostant11 yield the following result.
Theorem 3: Let M be a complete simply connected irreducible Riemannian manifol

dimension n>4 with holonomy groupHol,SO(n), HolÞSO(n). Then M admits a nontrivial
parallel four-form if one of the following holds: (i) M is not a symmetric space or (ii) M is
symmetric space and has a nonsimple holonomy or, equivalently, isotropy group.
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Proof: By Berger’s theorem on Riemannian irreducible holonomy groups,12 we have

~a! M is not a symmetric space and its holonomy group is one of U(n/2), SU(n/2),
Sp(n/4)Sp(1), Sp(n/4), G2 , Spin~7!, or

~b! M is a symmetric space.

All the groups in~a! admit invariant four-forms. These are given below. A theorem of Kosta11

states that a simply connected irreducible Riemannian symmetric spaceG/K has no nonzero
parallel four-form if and only if the isotropy groupK is simple. h

In the following examples we explicitly describe parallel~hence appropriate! four-formsV on
Riemanniann-manifolds with holonomy groups HolÞSO(n) from Berger’s list.

~1! Kähler manifolds, Hol,U(m),SO(2m), n52m: V5v∧v, wherev is the Kähler form.
One can check that this is proportional toVSU(m) and that any parallel four-form is proportional t
v∧v if the holonomy group is SU(m) or U(m). If Hol,Sp(k),SU(2k),SO(4k), n54k.4,
i.e., if the manifold is hyper-Ka¨hler, there exist three skewsymmetric parallel complex structu
Ja ,a51,2,3. Then there exist six independent parallel four-formsva∧vb , a,b51,2,3, where
va is the Kähler form associated toJa . For low dimensional examples, eigenvalues and eige
paces ofBV are given in Ref. 2.

~2! Quaternionic Ka¨hler manifolds, Hol,Sp(m)Sp(1),SO(4m), n54m. In this case there
exist three locally defined almost complex structuresJa , with corresponding Ka¨hler formsva ,
such that the four-formVª(ava∧va is globally defined and parallel. This will be discussed
more detail in Sec. II C.

~3! Hol,G2,SO(7). LetV5O5R11Im O5R% R75R8 be the algebra of octonions. Reca
thatG25Aut(O) is the group of automorphisms of the octonions. We can decompose the pr
of two octonionsa,b into its real and imaginary parts as follows:

ab5a•b5^a,b&11 1
2 @a,b#,

where^a,b& is the scalar product and@a,b#5ab2ba is the commutator. We define a three-for
w and a four-formc on ImO5R7 by the formulas

w~x,y,z!ª^x•y,z&5 1
2 ^@x,y#,z&

c~x,y,z,w!ª^@x,y,z#,w& ,

where @x,y,z#5(xy)z2x(yz) is the associator. It is known thatc5* w. Notice thatG2 is the
group of isometries ofO5R8 which fix the identity element 1 and preserve the three-formw ~or
equivalently the four-formc! on ImO. The four-form c defines a parallel four-form on an
Riemannian seven-fold with holonomyG2,SO(7). It is known13 that L4R75Rc % V7(p1)
% V27(2p1), whereVd(p) is thed-dimensional real irreducible representation ofG2 with highest
weightp andp i denotes thei th fundamental weight ofG2 . From this it follows that the four-form
V0

G2 coincides withc up to scaling. The corresponding endomorphismBc of L2R75g2% R7 has
two distinct eigenvalues which correspond to the two irreducibleG2-submodulesg2 and
R7,L2R7 ~see Ref. 2!.

~4! Hol,Spin(7),SO(8). Using the three- and four-formsw andc on R7 introduced in the
G2-case, we construct the four-form

V5dt∧w1c,

wheret is the first coordinate onR85R11R7. In particular,

V~1,x,y,z!5w~x,y,z!, V~x,y,z,w!5c~x,y,z,w! , x,y,z,wPR7.

This four-form V defines a parallel four-form on any Riemannian eight-fold with holono
Spin(7),SO(8). It isknown thatL4R85RV % V7(p1) % V27(2p1) % L4R7. From this it follows
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that the four-formV0
Spin(7) coincides withV up to scaling. The corresponding endomorphismBV

of L2R85spin7% R7 has two distinct eigenvalues which correspond to the two irreduc
Spin~7!-submodulesspin7 andR7,L2R8 ~see Ref. 2!.

C. Quaternionic Ka¨hler case

Now we discuss in more detail the case of quaternionic Ka¨hler manifolds~Example 2 above!.
Riemannian manifolds (M ,g) with holonomy group Hol,Sp(m)Sp(1) are called quaternioni
Kähler manifolds. A quaternionic Ka¨hler manifold with holonomy group Hol,Sp(m) is called
hyper-Kähler. On any quaternionic Ka¨hler manifoldM , there exists a rank 3 vector subbund
Q,End TM, invariant under parallel transport, which is locally spanned by three almost com
structures (Ja)5(J1 ,J2 ,J35J1J252J2J1). The latter are in general only locally defined. Th
~globally defined! vector bundleQ is called thequaternionic structure of M . A local frame (Ja)
as above is called astandard frame for Q. Similarly, astandard basisof Q at mPM is a triple
I ,J,K5IJ52JIPQm of complex structures onTmM . A quaternionic Ka¨hler manifold is hyper-
Kähler if and only if there exists a globally defined parallel standard frame (Ja)5(J1 ,J2 ,J3

5J1J252J2J1).
Given a standard frame, we may locally define three nondegenerate two-formsvaªg(Ja•,

•). The four-form

Vª(
a

va∧va

is independent of the choice of standard frame and defines a global parallel four-form.
To describe the eigenspace decomposition ofV it is convenient to use the Grassmann stru

ture ~i.e., generalized spinor decomposition! of a quaternionic Ka¨hler manifold. Recall that a
Grassmann structureon a~real! manifoldM is defined as an isomorphismT* CM>E^ H of the
complexified cotangent bundle with the tensor product of two complex vector bundlesE andH
over M . Any quaternionic Ka¨hler manifold admits a~locally defined! Grassmann structure
T* CM5E^ H, whereH has rank 2, such that the holonomy group Hol,Sp(E) ^ Sp(H). This
follows from the fact that any complex irreducible representation of the group Sp(m)3Sp(1) is a
tensor product of irreducible representations of its factors.

The complex extensiongC of the Riemannian metric defines a complex bilinear metric
TCM , which locally factorizes asgC5vE^ vH , wherevE andvH are sections ofL2E andL2H,
defining complex symplectic forms on the fibers ofE* andH* , respectively. We callvE andvH

the symplectic forms of the symplectic vector bundlesE* andH* .
In terms of the Grassmann structure the eigenspacesVl of the endomorphismBV on L2T* CM

are given by3,9

Vl1
5S2E^ vH , Vl2

5L0
2E^ S2H, Vl3

5vE^ S2H,

whereL0
2E is the space ofvE-traceless two-forms and the eigenvalues arel151, l252 1

3 and
l352(2m11)/3. In particular thel1-self-duality condition takes the form

F¹PS2E^ vH ^ End W . ~8!

Note that sinceV is parallel it is appropriate and co-closed and hence the~V,l!-self-duality
equations~Definition 3! reduce to~6!, which implies the Yang–Mills equation. It is known~see
Theorem 1 of Ref. 4! thatl1- andl3-self-dual connections correspond to absolute minima of
Yang–Mills functional on compact quaternionic Ka¨hler manifolds.
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D. Self-duality as half-flatness

The l1-self-duality equation~8! in fact depends only on the existence of the factorizat
T* CM>E^ H and the symplectic structure inH* . A connection¹ in a vector bundleW over a
manifold M with a Grassmann structure is calledhalf-flat if its curvature satisfies the condition

F¹PS2E^ L2H ^ End W . ~9!

In general such half-flat connections arenot YM connections~with respect to some metric!, but it
is possible to impose further conditions onF¹ in order to enforce the YM equation. In fact, it i
the half-flatness of the connection, rather than the YM property, which is crucial for our cons
tion of solutions.

Proposition 1: A connection¹ in a vector bundle W→M over a quaternionic Ka¨hler manifold
is half-flat if and only if it isl1-self-dual. Hence any such connection is a Yang–Mills connection.

Proof: The result follows from~8! and~9! sinceL2H is the line bundle generated byvH .h
The Levi-Civita connection on a hyper-Ka¨hler manifold is an example of a half-flat linea

connection. Its complexification gives an example of what we call an admissible half-flat G
mann structure in the next section.

III. MANIFOLDS WITH HALF-FLAT HOLOMORPHIC GRASSMANN STRUCTURE

Our goal is to give a construction of half-flat connections in a vector bundlen:W→M over a
manifoldM . If all objects are real analytic, using analytic continuation we may obtain corresp
ing complex analytic objects. Specifically, assume that the manifoldM and the bundlen are real
analytic. ThenM is defined by an atlas of charts with analytic transition functions. Extend
these functions to complex holomorphic functions, we may extendM to a complex manifoldMC

with antiholomorphic involutiont such thatM5(MC)t, the fixed point set oft. Similarly, a real
analytic vector bundlen:W→M can be extended to a holomorphic vector bundlenC:WC→MC.
Moreover, an analytic connection¹ in n can be extended to a holomorphic connection¹ in nC. A
holomorphic extension of a Yang–Mills connection is also a Yang–Mills connection. In the re
this article, we shall assume that all objects~manifolds, bundles and connections! are holomorphic.
In Sec. IV we shall give a construction of half-flat connections in a holomorphic bundleW→M
over a complex manifoldM with holomorphic Grassmann structure. Now we describe the
quired geometrical notions. In particular, we provide a description of the harmonic spaces o
10 in geometric language. Our description affords application to the construction of ha
connections over more general manifolds than the flat torsion-free backgrounds previousl
sidered in the harmonic space literature~see, e.g., Ref. 10!.

A. Grassmann structure

Let M be a complex manifold with holomorphic Grassmann structureT* M5E^ H, the
isomorphism of the holomorphic cotangent bundle overM with the tensor product of holomorphi
vector bundlesE andH over M of rank p andq, respectively. ThenTM5E* ^ H* . A holomor-
phic linear connection¹ on M is called aholomorphic Grassmann connectionif it preserves the
holomorphic Grassmann structure. This means that for any vector fieldX on M and local sections
ePG(E) andhPG(H),

¹X~e^ h!5¹X
Ee^ h1e^ ¹X

Hh,

where¹E,¹H are connections in the bundlesE,H, respectively.
Definition 4: A holomorphic Grassmann structure, T* M5E^ H, on a complex manifold M

with a holomorphic Grassmann connection¹5¹E
^ Id1Id^ ¹H is calledhalf-flat if the connec-

tion ¹H in the holomorphic vector bundle H→M is flat. A manifold with such a half-flat holo
morphic Grassmann structure is called ahalf-flat Grassmann manifold.

Assumption:In this section we assume thatM is a manifold with a half-flat holomorphic
Grassmann structure (T* M5E^ H ,¹5¹E

^ Id1Id^ ¹H), such thatH has rank 2 and that a
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¹H-parallel nondegenerate fiber-wise two-formvHPG(L2H) in the bundleH* is fixed. If, in
addition, a¹E-parallel nondegenerate two-formvEPG(L2E) is fixed, then we can define
¹-parallel complex Riemannian metricg5vE^ vH on M . We do not assume, in general, that t
linear connection¹ is torsion-free.

The torsion of a linear connection belongs toTM ^ L2T* M . SinceT* M5E^ H, we have the
decomposition

TM ^ L2T* M5TM ^ ~L2E^ S2H % S2E^ L2H !

5E* H* ~L2ES2H % S2EvH!

>E* L2E~S3H % vHH ! % E* S2EvHH, ~10!

where we omit thê ’s and we identifyH* with H usingvH .
Definition 5: A half-flat connection is calledadmissibleif its torsion tensor has no componen

in E* ^ L2E^ S3H. A half-flat Grassmann manifold(M ,¹) is calledadmissible if ¹ is admis-
sible.

We remark that if the torsion of a half-flat connection isE-symmetric, i.e., if it belongs to
TM ^ S2E^ L2H5TM ^ S2E^ vH , then the connection is admissible. It follows from the abo
decomposition that the torsion tensor of any admissible connection can be written as

T~e^ h,e8^ h8!5T1~e,e8! ^ vH~h,h8!h11T2~e,e8! ^ vH~h,h2!h81T2~e,e8! ^ vH~h8,h2!h,

wheree,e8 are sections ofE* , h1 ,h2 are fixed sections ofH>H* , T1PG(E* ^ S2E) and T2

PG(E* ^ L2E). This shows that admissibility of the connection means that the torsion ca
represented as the sum of two tensors linear invH .

B. Harmonic space

Let M be a half-flat Grassmann manifold. We denote bySH the Sp~1,C!-principal holomorphic
bundle overM consisting of symplectic bases ofHm* >Hm>C2 , mPM ,

SH5$s5~h1 ,h2! u vH~h1 ,h2!51%.

The bundleSH→M is calledharmonic space.10 A parallel ~local! section

m°sm5~h1~m!,h2~m!!PSH

defines a trivialization

M3Sp~1,C!>SH ,

given by

~m,U!°smU5S h15 (
a51

2

hau1
a , h25 (

a51

2

hau2
a D , U5S u1

1 u2
1

u1
2 u2

2 D ;det U51.

We denote by]11 ,]22 ,]0 the fundamental vector fields onSH generated by the standard ge
erators of Sp~1,C!,

]11;S 0 1

0 0D , ]22;S 0 0

1 0D , ]0;S 1 0

0 21D .

They satisfy the relations

@]11 , ]22#5]0 , @]0 , ]11#52]11, @]0 , ]22#522]22 .
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Consider Mat~2,C!, the vector space of two by two matrices. The matrix coefficientsu6
a are

coordinates on this vector space. One can easily check that the vector fieldsu1
a ]/]u2

a , u2
a ]/]u1

a

and u1
a ]/]u1

a 2u2
a ]/]u2

a annihilate the function detU5ebgu1
b u2

g , whereebg are the matrix
coefficients of the standard symplectic form ofC2. Therefore these vector fields are tangent to
submanifold Sp(1,C)5$detU51%,Mat(2,C). One can easily prove the following lemma.

Lemma 2: In terms of the identification, SH>M3Sp(1,C), the fundamental vector fields o
SH generated by the standard generators ofSp~1,C! may be written

]115u1
a ]

]u2
a , ]225u2

a ]

]u1
a , ]05u1

a ]

]u1
a 2u2

a ]

]u2
a .

We say that a functionf on SH haschargec if ]0f 5c f . The charge measures the difference in t
degrees of homogeneity inu1 andu2 .

Note that any frame (h1 ,h2)PSH defines an isomorphismC2 →̃ Hm* given by
(z1,z2)°z1h11z2h2 . This induces an isomorphism

sp~1,C!5sp~C2!>S2C2 →̃ S2Hm* 5spanC$h1
2 , h2

2 , h1∨h2%,

where we have identifiedsp(C2) with S2C2 using the symplectic form ofC2. The generators of
sp~1,C! corresponding to h1

2 , 2h2
2 , 2h1∨h2 under this identification are precisel

]11 , ]22 , ]0 respectively.

C. Canonical distributions on harmonic space

Let SH5$(h1 , h2)uh65u6
a ha ,(u6

a )PSp(1,C)% be the harmonic space associated to a h
flat Grassmann manifoldM . Here we have fixed a parallel symplectic frame (h1 ,h2) of H* which
defines the trivializationSH5M3Sp(1,C) of the holomorphic bundleSH . In particular, the matrix
coefficientsu6

a of Sp~1,C! will be considered as holomorphic functions onSH . Together with local
coordinates (xi) of M , we obtain a system (xi ,u6

a ) of local ~nonhomogeneous–homogeneou!
coordinates onSH .

For any sectionePG(E* ) we define vector fieldsX6
e PX–(SH) by the formula

X6
e u(h1 ,h2)5e^ h6̃,

whereỸ stands for the horizontal lift of a tangent vectorY on M with respect to the connectio
¹H. Since the frameha is parallel, this horizontal lift coincides with the horizontal lift wit
respect to the splittingSH5M3Sp(1,C). This shows that the vector fieldsX6

e are tangent toM

3$(h1 ,h2)% and hence annihilateu6
a . If h65u6

a ha , thenX6
e 5u6

a Xa
ẽ , whereXa

e
ªe^ ha .

There exists a canonical decomposition

TSH5TvSH % D1 % D2

of the ~holomorphic! tangent bundle into the vertical subbundleTvSH and two ~holomorphic!
distributionsD1 and D2 spanned, respectively, by vector fieldsX1

e and X2
e associated with

sectionse of the bundleE* . The vertical distributionTvSH is spanned by the vector field
]0 ,]11 ,]22 , which correspond to the standard generators of the Lie algebrasp~1,C!.

Lemma 3: The vector fields X6
e PX–(SH) satisfy the following commutation relations:

@]0 ,X6
e #56X6

e , @]66 ,X6
e #50, @]66 ,X7

e #5X6
e ,

@X1
e ,X2

e8#5X
2

¹p
*

X
1
e e8

2X
1

¹p
*

X
2
e8e

2T̃~p* X1
e ,p* X2

e8!, ~11!
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@X6
e ,X6

e8#5X
6

¹p
*

X
6
e e8

2X
6

¹p
*

X
6
e8e

2T̃~p* X6
e ,p* X6

e8!,

where T is the torsion of the Grassmann connection, T̃(X,Y)ªT(X,Y)̃ denotes the horizontal lift
of the vector T(X,Y) and we have used the abbreviation¹Xeª¹X

Ee .
Proof: The first three equations follow fromX6

e 5u6
a e^ hã and the expression for the fun

damental vector fields given in Lemma 2. To prove the last equation we first compute th
bracket of two vector fieldsX5e^ h andX85e8^ h on M , whereh is parallel:

@X,X8#5¹XX82¹X8X2T~X,X8!5~¹Xe82¹X8e! ^ h2T~X,X8! . ~12!

Using this we calculate the commutator

@X6
e , X6

e8#5u6
a u6

b ~¹X
a
eXb

e8̃2¹X
b
e8Xa

ẽ2T̃~Xa
e ,Xb

e8!!

5~¹p
*

X
6
e e8^ h6!;2~¹p

*
X

6
e8e^ h6!;2u6

a u6
b T̃~Xa

e ,Xb
e8!

5X
6

¹p
*

X
6
e e82¹p

*
X

6
e8e

2T̃~p* X6
e ,p* X6

e8!.

The expression for@X1
e ,X2

e8# follows similarly. h

We shall use the abbreviationT(X6
e ,X6

e8)ªT̃(p* X6
e ,p* X6

e8).
Proposition 2: The following conditions are equivalent:

(i) For any parallel section hPG(H* ) the distribution E* ^ h on M is integrable.
(ii) The distributionD1 @associated to any parallel frame(h1 ,h2)] on SH is integrable.
(iii) The distributionD2 on SH is integrable.
(iv) The holomorphic Grassmann structure is admissible, i.e., it has admissible connect.

Proof: The formula~12!, whereh is parallel, shows that the distributionE* ^ h is integrable
if and only if

T~E* ^ h,E* ^ h!,E* ^ h . ~13!

Using the decomposition~10!, one can check that this condition is satisfied for all parallel sect
h if and only if the connection is admissible. This proves the equivalence of (i ) and (iv). Since
p* (X1

e u(h1 ,h2))5e^ h1 , the last equation in~11! shows that the distributionD1 is integrable if
and only if ~13! holds for allh. Thus (i ) is equivalent to (i i ). The equivalence of (i ) and (i i i ) is
proved similarly. h

IV. CONSTRUCTION OF HALF-FLAT CONNECTIONS OVER HALF-FLAT GRASSMANN
MANIFOLDS

A. Half-flat connections over half-flat Grassmann manifolds

In this section we describe theharmonic space method10 for constructing half-flat connection
¹ ~Definition 6 below! in a holomorphic vector bundlen:W→M over a complex manifoldM with
admissible half-flat holomorphic Grassmann structure. The basic ingredient of the construc
the lift of geometric data fromM to SH via p:SH→M . Let ¹ be a holomorphic connection in
holomorphic vector bundlen:W→M . Its curvature

F~e^ ha , e8^ hb!5vH~ha ,hb!F (ee8)1Fab
[ee8] , ~14!
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where (h1 ,h2) is the fixed parallel local frame ofH* and e,e8 are local sections ofE* . The

curvature componentF (ee8) is symmetric ine,e8 andFab
[ee8] is skew ine,e8 and symmetric ina,b.

Lifting ~14! to SH we obtain the curvature of the pull-back connectionp* ¹ in p* n:p* W→SH

with components,F(v , • )50 , ;vPTvSH , together with

F~X6
e ,X6

e8!5F66
[ee8]

ªu6
a u6

b Fab
[ee8] ,

F~X1
e ,X2

e8!5F (ee8)1F12
[ee8]

ªF (ee8)1u1
a u2

b Fab
[ee8] .

Definition 6: A holomorphic connection¹ in a holomorphic vector bundlen:W→M over a
complex manifold M with holomorphic Grassmann structure, T* M5E^ H, is calledhalf-flat if
its curvature F satisfies the equation

F~e^ ha , e8^ hb!5vH~ha ,hb!F (ee8) , ~15!

where(h1 ,h2) is a parallel local frame of H* and F(ee8) is symmetric in the local sections e,e8
of E* .

Note that~15! is equivalent to~9!. From this definition it follows that for anyhPH* we have
F(e^ h , e8^ h)50 .

Definition 7: A connection in a holomorphic vector bundle W→SH over harmonic space SH is
called half-flat if its curvature F satisfies the equations

F~X1
e ,X1

e8!50,

F~X1
e ,X2

e8!5F (ee8),
~16!

F~X2
e ,X2

e8!50,

F~v , • !50, ;vPTvSH,

where F(ee8) is symmetric in the local sections e,e8 of E* .
Definition 8: Let n:W→M be a holomorphic vector bundle and¹ a connection in

p* n:p* W→SH , wherep:SH→M . A local frame ofp* n defined onp21(U), where U is an
open subset of M, is called acentral frame with respect to¹ if it is parallel along the fibers of
the bundlep:SH→M .

Remark:If x5(x1 ,...,x r) is a local frame ofn, thenp* x will be a central frame with respec
to the pull-backp* ¹ of any connection¹ in n. The connection one-formA of p* ¹ with respect
to the framep* x satisfiesA(v)50 , A(X6

e )5u6
a Aa

e , where v is any vertical vector andAa
e

5A(Xa
ẽ) is a matrix-valued function onM . Conversely, any connection satisfying these con

tions is the pull-back of the connection overM with potentialA(Xa
e)5Aa

e .
Proposition 3: Letp:S→M be any fiber bundle with simply connected fibers over a sim

connected manifold M. There is a natural one-to-one correspondence between gauge equiva
classes of connections¹M in the trivial bundleCr3M and gauge equivalence classes of conn
tions ¹S in Cr3S satisfying the curvature constraint F(v, • )50 for all vertical vectorsv.

Proof: It is clear that the pull-back¹S5p* ¹M to S of a connection¹M defined overM
satisfies the curvature constraint. To prove the converse, we will apply the following eleme
lemma to the connection one-formA of a connection¹ over N5S.

Lemma 4: Letp:N→M be a submersion with connected fibers anda a p-form on N. Thena
is the pull-backp* b of a p-form b on M if and only if the inner productsiva5ivda50 for all
vertical tangent vectorsv.

Since the connection¹S is flat along the~simply connected! fibers ofp there exists a centra
framec5(c1 ,...,c r) for ¹S. Let A be the connection one-form of¹S with respect to this centra
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frame. We then haveA(v)50 for any vertical vectorv and the curvature conditionF(v, • )50
impliesdA(v, • )50. Now the above lemma shows thatA is the pull-back of a one-formB on M ,
which defines a connection¹M in the trivial bundleCr3M . Since any two central frames differ b
a gauge transformation which is a matrix-valued function onM the connection¹M is well defined
up to a gauge transformation. The pull-backp* ¹M is gauge equivalent to¹S since it has the same
expression with respect to the standard frame ofCr3S ~which is the pull-back of the standar
frame ofCr3M ) as¹S with respect to the central framec. It is clear that the pull-backs of gaug
equivalent connections overM are gauge equivalent connections overS. Applying a gauge trans-
formation to a connection¹S which has connection one-formA with respect to a central framec
we get a new connection (¹S)8, which has the same connection formA with respect to the
transformed framec8. The framec8 is therefore central with respect to (¹S)8 and the two
connections¹S and (¹S)8 define the same gauge equivalence class of connections overM . h

Proposition 4: Letn:W5Cr3M→M be a trivial vector bundle over a complex manifold M
with admissible half-flat holomorphic Grassmann structure andp* n:p* W5Cr3SH→SH its
pull-back to SH . Then any half-flat connection over SH is gauge equivalent to the pull-back of
half-flat connection over M.

Proof: It is clear that the pull-back of a half-flat connection is half-flat. To prove the conve
we apply Proposition 3, by which a half-flat connection¹S over SH is gauge equivalent to a
pull-back connectionp* ¹M, which is necessarily half-flat. This implies that¹M is half-flat. In
fact, if the connection¹M were not half-flat, then it would have a nontrivial curvature compon

Fab
[ee8] which would imply that its pull-backp* ¹M has, for instance, a nonzero curvature comp

nentF11
[ee8] . But this is impossible sincep* ¹M is half-flat. h

Corollary 1: The connection one-form A of a half-flat connection over SH with respect to a
central framec has the form

A~v !50, A~X6
e !5u6

a Aa
e ,

wherev is any vertical vector and Aa
e5A(Xa

ẽ) is a matrix-valued function on M.
Remark:This shows that the half-flat connection is completely determined by the potent

the D1-direction,A(X1
e )5u1

a Aa
e , with respect to a central frame.

Proof: This follows from Proposition 4 and the remark following Definition 8. h

B. The construction

In this section we construct half-flat connections in a bundlen:W→M over a manifoldM
with a half-flat admissible Grassmann structure. First we define the weaker notion of an a
half-flat connection overSH and show how to construct all such connections from appropr
prepotentials. Then we show that any almost half-flat connection overSH may be used to construc
a half-flat connection onM . Since our construction is local inM , we shall assume that the bundle
p, n andp* n are trivial, i.e.,p:M3Sp(1,C)→M , n:M3Cr→M and p* n:SH3Cr→SH .

1. Construction of almost half-flat connections

The restriction of a half-flat connection to a leaf of the integrable distribution^D1 ,]0& is
clearly flat.

Definition 9: A framew1 , . . . ,w r in the holomorphic vector bundlep* n:Cr3SH which is
parallel along leaves of the integrable distribution̂D1 ,]0& is called ananalytic frame.

With respect to an analytic frame a connection in the vector bundlep* n has components

¹]0

S 5]0 ,

¹X
1
e

S
5X1

e ,

¹]11

S 5]111A11 ª]111A~]11!,
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¹]22

S 5]221A22 ª]221A~]22!,

¹X
2
e

S
5X2

e 1A~X2
e !.

Definition 10: A connection¹S over SH is calledalmost half-flat if its curvature satisfies the
following equations:

F~X1
e , X1

e8!5F~X1
e , v !50, ;vPTvSH ,

~17!
F~]11 , • !5F~]0 , • !50 .

In fact, these equations are not independent; for instance the Bianchi identity with argu
(X1 ,]11 ,]22) together with F(]11 ,]22)5F(]66 ,X1

e )50 implies the equation
F(]11 ,X2

e )50.
Proposition 5: Any almost half-flat connection satisfies the following equation:

F~X1
e ,X2

e8!5F~X1
e8 ,X2

e !.

Proof: Using the integrability ofD1 andF(X1
e ,X1

e8)5F(]22 ,X1
e )50, we obtain

05@¹]22

S , F~X1
e ,X1

e8!#

5@¹]22

S , @¹X
1
e

S
, ¹

X
1
e8

S
##2@¹]22

S , ¹
[X

1
e , X

1
e8]

S
#

5@¹X
2
e

S
, ¹

X
1
e8

S
#1@¹X

1
e

S
, ¹

X
2
e8

S
#2¹

[X
2
e , X

1
e8]

S
2¹

[X
1
e , X

2
e8]

S

5F~X2
e ,X1

e8!2F~X2
e8 ,X1

e ! .
h

It follows that an almost half-flat connection is a generalization of a half-flat connection, satis
only those equations in~16!, that involve curvatures with]0 ,]11 or X1

e in one of the arguments
Proposition 6: An almost half-flat connection is half-flat if and only if it satisfi

F(]22 ,X2
e )50.

Proof: By Proposition 5 an almost half-flat connection is required to satisfy all the h
flatness equations~16! with the exception of

F~]22 ,X2
e !50 and F~X2

e ,X2
e8!50. ~18!

The second equation here follows from the first by virtue of the Bianchi identity with argum

(X1
e ,X2

e8 ,]22). h

The following proposition shows that an almost half-flat connection is completely determ
by the potentialsA11 andA22 with respect to an analytic frame.

Proposition 7: Let¹S be an almost half-flat connection in the vector bundlep* n:Cr3SH

→SH with potentials A11 , A22 and A(X2
e ) in an analytic frame. Then we have following.

( i ) The potential A11 is analytic and has charge12, i.e.,

X1
e A1150, ]0A1152A11 . ~19!

( i i ) The potential A22 satisfies

]11A222]22A111@A11 ,A22#50, ]0A22522A22 . ~20!

( i i i ) The potential A(X2
e ) is determined by A22 and has charge21:
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A~X2
e !52X1

e A22 , ]0A~X2
e !52A~X2

e ! . ~21!

Conversely, any matrix-valued potentials A11 , A22 and A(X2
e ) satisfying~19!–~21! define an

almost half-flat connection.
Proof: ~i! The curvature constraintsF(X1

e , ]11)50 , F(]0 , ]11)50, in an analytic frame,
take the form~19!.

~ii ! The further almost half-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give Eqs.
~20! for the potentialA22 .

~iii ! Having obtained A22 , we can find A(X2
e ) from the equationsF(X1

e , ]22)
5F(]0 , X2

e )50 , which take the form

X1
e A225A~@X1

e ,]22# !52A~X2
e !, ]0A~X2

e !52A~X2
e ! . ~22!

The second equation follows from the first. h

We can now write an algorithm for the construction of all almost half-flat connections:
Theorem 4: Let A11 be an analytic prepotential, i.e., a matrix-valued function on a dom

U5p21(V),SH , where V,M is a simply connected domain, satisfying (19). LetF be an
invertible matrix-valued function on U which satisfies the equations

]11F52A11F , ]0F50 . ~23!

It always exists. The pair(A11 ,F) determines an almost half-flat connection¹S5¹ (A11 ,F). Its
potentials with respect to an analytic frame are given by A11 , A2252(]22F)F21 and
A(X2

e )52X1
e A22 . Conversely, any almost half-flat connection is of this form.

Proof: We consider the connection defined byA11 and A(]0)50 along an orbitsB of the
Borel subgroup of SL~2,C!,

B5H S t0 t1

0 t0
21DU t0PC* , t1PCJ >C* 3C ~diffeomorphic!.

It is flat since the second equation of~19! is equivalent toF(]0 , ]11)50 ~vanishing of the
curvature alongsB). Moreover, it has trivial holonomy since the fundamental group ofB>C*
3C coincides with the fundamental group of theC* -factor and the potential is zero in the directio
of ]0 which is tangent toC* . An invertible solution to the system~23! exists and defines a paralle
frameF with respect to the flat connection with trivial holonomy defined along each orbit o
Borel group. Since the space of Borel orbits inU is diffeomorphic toV3CP1 and is therefore
simply connected, a solutionF exists on the domainU. Now, given any such solution of~23!, we
defineA22ª2(]22F)F21. This solves~20!, sinceF(]66 ,]0)5F(]11 ,]22)50 is the inte-
grability condition for the system]66F52A66F, ]0F50. Finally, we defineA(X2

e )
ª2X1

e A22 , obtaining an almost half-flat connection by Proposition 7. Now the converse s
ment follows also from Proposition 7. h

2. Transformation to the central frame

Since an almost half-flat connection¹5¹S is flat in vertical directions, it admits a centra
framec. The following lemma shows that the solutionF of Eq. ~23! gives a gauge transformatio
from an analytic framew to a central framec5wF for the almost half-flat connection¹ (A11 ,F).

Lemma 5: Let¹5¹ (A11 ,F) be the almost half-flat connection associated to the anal
prepotential A11 with respect to the analytic framew and an invertible solutionF of (23). Then
the framecªwF is a central frame for the connection¹, i.e., the potentials C(]66) and C(]0)
with respect to that frame vanish.

Proof: The result follows from the pure gauge form ofA(]66) andA(]0) and the transfor-
mation law~3! for potentials. h
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With respect to the central framec, the almost half-flat connection constructed above ta
the form

¹X
1
e

S
5 X1

e 1C~X1
e !5 X1

e 1F21 X1
e F,

¹X
2
e

S
5 X2

e 1C~X2
e ! 5 X2

e 1F21X2
e F1F21X1

e ~]22FF21!F,

¹]11

S 5 ]11, ¹]22

S 5 ]22, ¹]0

S 5 ]0 .

Moreover, the equationsF(]11 , X1
e )5F(]0 , X1

e )50 imply that the potentialC(X1
e ) satisfies

the equations

]11C~X1
e !50, ]0C~X1

e !5C~X1
e !. ~24!

3. Construction of half-flat connections

We assume now that the analytic prepotentialA11 is defined globally along the fibers o
p:SH→M . Then, restrictingM to an appropriate domain, we may assume thatA11 is defined
globally onSH . The previous construction then provides an almost half-flat connection overSH .
Using this connection, we may construct a half-flat connection onM . The crucial point is the
following:

Proposition 8: The potential C(X1
e ) of an almost half-flat connection¹ with respect to a

central frame is linear in u1
a , namely,

C~X1
e !5u1

a C~Xa
ẽ !5..u1

a Ca
e , ~25!

where(xi ,u6
a ) are the local coordinates associated with the trivialization SH5M3Sp(1,C) and

Ca
e5Ca

e(xi) is a matrix-valued function on M.
Proof: Due to Eqs.~24!, the result follows from Lemma 6.
Lemma 6: (i) If a holomorphic function f1 , defined on some domain

U,$u1
2 Þ0%,Sp~1,C!5H U5S u1

1 u2
1

u1
2 u2

2 D ;detU51J ,

satisfies

]11 f 150, ]0f 15 f 1, ~26!

then f15u1
a f a(u1

1 /u1
2 ). Here fa(u1

1 /u1
2 ) are holomorphic functions on U invariant under th

right action of the Lie algebra of upper-triangular matrices.
(ii) Moreover, if the function f1 is globally defined, then it is linear in u1

a , i.e., f 1

5u1
a f a , f a5const.
Proof: ~i! One can immediately check thatf 15u1

a f a(u1
1 /u1

2 ) is a solution of~26!. We note
that the quotient of any two solutions of~26! is a solution of the corresponding homogeneo
system,

]11 f 50, ]0f 50. ~27!

It is sufficient to check that any solution of~27! is a function ofu1
1 /u1

2 . To prove this we use the
local factorization of Sp~1,C! into the product of a Borel subgroupB and a nilpotent subgroup a
follows:
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S u1
1 u2

1

u1
2 u2

2 D 5S 1 0

c21 1D S a b

0 a21D , B5H S a b

0 a21D J .

Then c5u1
1 /u1

2 and ]0 ,]11 are generators of the right action ofB. This implies that the
solutions of~27! are precisely the local functions on Sp~1,C! invariant under the right action ofB.
In terms of the local coordinate system (a,b,c) on Sp~1,C! such functions are functions ofc
5u1

1 /u1
2 alone.

~ii ! The restrictionVuSp(1) to Sp~1! of any irreducible Sp~1,C!-module V of holomorphic
functions is a~finite dimensional! irreducible Sp~1!-module of smooth functions on Sp~1!. The
condition ~26! shows thatf 1 is a highest weight vector with weight11. Hencef 1 generates a
two-dimensional submodulêf 1&5span$ f 1 , f 2ª]22 f 1% of holomorphic functions. It remains
to show that any two-dimensional module of holomorphic functions on Sp~1,C! is spanned by
linear functions. We know two such modules, generated by the highest weight vectorsu1

1 andu1
2

respectively. On the other hand, by the Peter–Weyl theorem the multiplicity of the
dimensional irreducible representation of Sp~1! in L2(Sp(1)) is 2. h

Using Proposition 8, with respect to a central frame, we can write¹X
1
e 5X1

e 1u1
a Ca

e where the

coefficientsCa
e5Ca

e(xi) are matrix valued functions of coordinatesxi on M . Using them we
define a new connection in the trivial bundleCr3SH over SH by

¹̂X
6
e 5X6

e 1u6
a Ca

e ,

¹̂]66
5]66, ¹̂]0

5]0.

Our main result now follows:
Theorem 5: Let M be a complex manifold with a half-flat admissible Grassmann struct

Let A11 be an analytic prepotential, i.e., a solution of (19), andF an invertible solution of (23).

Then the connection¹̂5¹̂ (A11 ,F) constructed from the data(A11 ,F) is a half-flat connection in
the trivial vector bundleCr3SH→SH and it is the pull-back of the following half-flat connectio
¹M in the bundleCr3M→M :

¹X
a
e

M
5Xa

e1Ca
e . ~28!

Conversely, any half-flat connection over S~or M ) is gauge equivalent to one obtained from t
above construction.

Proof: The remark after Definition 8 shows that the connection¹̂ is the pull-back of the

connection¹M. It suffices now to show that¹M is half-flat. Note that the connections¹ and ¹̂
coincide in the direction ofX1

e . Hence, usingC1
e
ªu1

a Ca
e , we have

05F¹~X1
e ,X1

e8!5F ¹̂~X1
e ,X1

e8!5X1
e C1

e82X1
e8C1

e 1@C1
e , C1

e8#2C~@X1
e , X1

e8# !

5u1
a u1

b ~Xa
eCb

e82Xb
e8Ca

e1@Ca
e , Cb

e8#2C~@Xa
e , Xb

e8# !!

5u1
a u1

b F¹M
~Xa

e , Xb
e8! ,

sinceX1
e u1

b 50. This shows that the curvatureF¹M
(Xa

e , Xb
e8) is skew-symmetric ina,b, i.e., it

belongs toL2H ^ S2E^ End W. In other words, the connection¹M is half-flat.
Conversely, let¹S be a half-flat connection overSH . By Proposition 4 we may assume that

is a pull-back of a half-flat connection¹M over M . Since the restriction of¹S to the leaves of
^D1 ,]0& is flat, there exists an analytic frame@i.e., a frame such thatA(X1

e )5A(]0)50, in which
the potentialA(]11) satisfies the equations~19!#. Since¹S is flat along the~simply-connected!
fibers, there exists an invertible solutionF to the system
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]11F1A11F5]22F1A22F5]0F50.

This shows that¹S is gauge-equivalent to the almost half-flat connection¹ (A11 ,F)5¹̂ (A11 ,F).h

C. Application to hyper-Ka ¨hler manifolds with admissible torsion

The above construction can be applied to the complexification of hyper-Ka¨hler manifolds.
Recall that any hyper-Ka¨hler manifold admits a~locally defined! Grassmann structureT* CM
5E^ H, such that the Levi–Civita connection on the cotangent bundle¹5¹E

^ Id1Id^ ¹H is
half-flat, i.e., the connection¹H is flat. Since the hyper-Ka¨hler metric is Ricci flat, hence analytic
we may, using analytic continuation, extend the manifoldM to a complex manifoldMC with
holomorphic extension of the hyper-Ka¨hler structure, in particular, we have a holomorphic Ric
flat metric onMC with holonomy in Sp(n,C) and half-flat Grassmann structure. This Grassma
structure is admissible since the Levi–Civita connection onMC has no torsion. Hence we ca
apply the harmonic space method to construct half-flat connections on holomorphic vector b
W→MC. The complex version of Proposition 1 shows that such connections are Yang–
connections. More generally, the method of construction of half-flat connections extends t
analytic ~possibly indefinite! hyper-Kähler manifolds with admissible torsion, i.e., with torsio
which has zero component inS3H ^ E* ^ L2E. A hyper-Kähler manifold with admissible tor-
sion is defined as a pseudo-Riemannian manifold (M ,g) with a linear metric connection¹ with
holonomy in Sp(k,l ) which has admissible torsion. As in the~torsion-free! hyper-Kähler case
there exists a parallel four-form given byV5(ava∧va , vaªg(Ja•,•), and half-flat connec-
tions are characterized as connections with curvature inVl1

^ End W, where Vl1
is the

l1-eigenspace of the endomorphismBV associated toV. If the form V is co-closed, then any
half-flat connection will be (V,l1)-self-dual and thus a Yang–Mills connection. We remark t
co-closedness ofV is equivalent to a linear Sp(k,l )-invariant condition on the torsion.

V. GENERALIZATION TO HIGHER-SPIN GRASSMANN MANIFOLDS

A. Higher-spin Grassmann structures

The construction discussed in the previous section is in fact them51 specialization of a more
general construction of connections onspin m/2 Grassmann manifolds, which we discuss in this
section. These manifolds were considered in Ref. 14.

Definition 11: Aspin m/2 Grassmann structureon a (complex) manifold M is a holomorphi
Grassmann structure of the form T* M>E^ F5E^ SmH, with a holomorphic Grassmann con
nection ¹5¹E

^ Id1Id^ ¹F, where H is a rank 2 holomorphic vector bundle over M w
holomorphic symplectic connection¹H and symplectic formvHPG(L2H), and ¹F is the con-
nection in F5SmH induced by¹H. M is calledhalf-flat if the connection¹F is flat.

The bundleSmH is associated with the spinm/2 representation of the group Sp~1,C!. Any
frame (h1 ,h2) for H* defines a frame forSmH* (hAªha1

ha2
¯ham

), where the multi-indexA

ªa1a2¯am , a i51,2. The¹H-parallel symplectic formvH on H* induces a bilinear formvH
m

on F* 5SmH* given by

vH
m~hA ,hB!ªS

A
S
B

vH~ha1
,hb1

!vH~ha2
,hb2

!¯vH~ham
,hbm

!,

whereSA denotes the sum over all permutations of thea’s. This form is skew-symmetric ifm is
odd and symmetric ifm is even. To any sectionePG(E* ) and multi-indexA we associate the
vector fieldXA

e
ªe^ hA on M .

The construction of half-flat connections described in Sec. IV B may be adapted to o
certain ‘‘partially flat’’ connections in vector bundlesW→M , provided that the torsion of¹ obeys
certain admissibility conditions.

Definition 12: Let(M ,¹) be a half-flat spin m/2 Grassmann manifold. For any section
PG(E* ) we define vector fields
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X(m22i )1
e

ªu
2

a1
¯u

2

a iu
1

a i 11
¯u

1

amXA
e if m22i>0,

X(2i 2m)2
e

ªu
2

a1
¯u

2

a iu
1

a i 11
¯u

1

amXA
e if m22i ,0,

on the principal bundle SH of symplectic frames in H. The distribution spanned by these vect
fields is denoted byDk1ª ^Xk1

E & for k>0 , k[m mod 2 and Dk2ª ^Xk2
E & for k.0 , k

[m mod 2.We define also

D (6)
k

ª%
i 50

k

D(m22i )6 .

The Grassmann connection¹ is calledk-admissible if it preserves the distributionD (6)
k , i.e.,

T~D (6)
k ,D (6)

k !,D (6)
k . ~29!

The Grassmann manifold(M ,¹) is calledk-admissible if the connection¹ is k-admissible.
For smallm we shall writeX0

e , X1
e , X2

e , X11
e , etc. instead ofX01

e , X11
e , X12

e , X21
e , etc.

Proposition 9: Let(M ,¹) be a half-flat spin m/2 Grassmann manifold. Then the distributio
D (6)

k is integrable if and only if the torsion of the Grassmann connection¹ satisfies Eq. (29).
The proof is similar to that of Proposition 2.

B. Partially flat connections over higher-spin Grassmann manifolds

Let (M ,¹) be a half-flat spinm/2 Grassmann manifold andn:W→M a holomorphic vector
bundle. Since our constructions are local we will assume thatW is trivial. In the higher spin (m
.1) case, there exists, as a natural generalization of the notion of a half-flat connection, th
refined notion of ak-partially flat connection inn. The space of two-formsL2T* M has the
following decomposition intoGL(E) ^ Sp(1,C)-submodules:

L2T* M5L2~E^ SmH !5L2E^ S2SmH % S2E^ L2SmH,

where

S2SmH5S2mH % vH
2 S2m24H %¯% vH

2[m/2]S2m24[m/2]H,

L2SmH5vHS2m22H % vH
3 S2m26H %¯% vH

2[m/2]11S2m24[m/2]22H.

Here we use the convention thatSlH50 if l ,0.
Let ¹ be a connection in the vector bundleW→M . Its curvature has the following decom

position, corresponding to the above decomposition ofL2T* M into irreducible
GL(E)•Sp(1,C)-submodules:

F~XA
e ,XB

e8!5S
A
S
B

(
k50

[m/2]

~vH~ha1
,hb1

!¯vH~ha2k
,hb2k

! F
~2k!

a2k11¯amb2k11¯bm

[ee8]

1vH~ha1
,hb1

!¯vH~ha2k11
,hb2k11

! F
~2k11!

a2k12¯amb2k12¯bm

(ee8) !, ~30!

where the tensorsF (2k)PG(L2E^ S2m24kH) andF (2k11)PG(S2E^ S2m24k22H).
We note that half-flat connections are those which satisfy the conditions

F
~2i !

50 , for all i PN. ~31!
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For m.1 these conditions are not suitable for application of the harmonic space method.
ever, the following more refined restrictions on the curvature are amenable to the method~cf. Ref.
15!.

Definition 13: A connection¹ in the vector bundlen:W→M is called k-partially flat if
F ( i )50 for all i <2k. Here 0<k<@(m12)/2#.

Clearly, @(m12)/2#-partially flat connections are simply flat connections. We note that
m51 , zero-partially flat connections are precisely half-flat connections. For general odm
52p11 , zero-partially flat connections in a vector bundlen over flat spaces with spinm/2
Grassmann structure were considered by Ward.3 He choseE to be a rank 2 flat bundle and showe
that zero-partially flat connections, form.1, do not correspond to Yang–Mills connection
Therefore, in our more general setting, we clearly cannot expect zero-partially flat connecti
satisfy the Yang–Mills equations form.1. On the other hand, the penultimate case,k5@m/2#, is
particularly interesting for oddm:

Theorem 6: Let M be a half-flat spin m/2 Grassmann manifold M. If m is odd and the vector
bundle E* →M admits a ¹E-parallel symplectic formvE , then M has canonicalSp(E)
•Sp(H)-invariant metric g5vE^ vH

m and four-form VÞ0. If V is co-closed with respect to th
metric g, then any(m21)/2-partially flat connection¹ in a vector bundle W over M is (V,l)-
self-dual and hence it is a Yang–Mills connection.

Proof: To describeV we use the following notation:ea is a basis ofE* , ha is a basis ofH* ,
hA is the corresponding basis ofSmH* and XaAªea^ hA is the corresponding basis ofTM
5E* ^ SmH* . With respect to these bases, the skew symmetric formsvE , vH and vH

m are
represented by the matricesvab , vab andvAB , respectively. We defineV by

Vª( vab vcd vAC vBD XaA∧XbB∧XcC∧XdD,

whereXaA is the basis dual toXaA . This form is obviously Sp(E)•Sp(H)-invariant since we used
only vE and vH in the definition. One can easily check thatVÞ0. The connection¹ is (m
21)/2-partially flat if and only if its curvatureF belongs to the space

S2E^ vH
m

^ End W, S2E^ L2SmH ^ End W, L2~E^ SmH ! ^ End W.

Here we use the decomposition

L2SmH5vHS2m22H % vH
3 S2m26H %¯% CvH

m .

The Sp(E)•Sp(H)-submoduleS2E^ vH
m,L2T* M is irreducible. Therefore it is contained in a

eigenspaceVl of the Sp(E)•Sp(H)-invariant operatorBV :L2T* M→∧2T* M . It remains to
check thatlÞ0. By Lemma 1 it suffices to compute the contractionK5KcCdDXcCXdD of a tensor
S5SabvABeaeb

^ hAhB in S2E^ vH
m with V:

2KcCdD5SabvAB~vabvcdvACvBD1vacvdbvADvCB1vadvbcvABvDC2vbavcdvBCvAD

2vbcvdavBDvCA2vbdvacvBAvDC2vcavbdvCBvAD2vcbvdavCDvBA

2vcdvabvCAvDB1vdavbcvDBvAC1vdbvcavDCvBA1vdcvabvDAvCB!

54~m11!ScdvCD .

Herevab andvAB denote the inverses ofvab andvAB andSab5vaa8vbb8Sa8b8 . We have used
that SabvAB is skew-symmetric under interchange ofaA with bB and thatvABvAB52(m
11). The above calculation shows thatl524(m11)Þ0 and hence any (m21)/2-partially flat
connection is~V,l!-self-dual and is a Yang–Mills connection by Theorem 1. h

The analogous result does not hold ifm is even.
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Proposition 10: If m is even and the vector bundle E* →M admits a¹E-parallel metricgE ,
then M has canonicalSO(E)•Sp(H)-invariant metric g5gE^ vH

m and four-formVÞ0.
Proof: Analogously to the case ofm odd, we can defineV by

Vª( gab gcd vAC vBD XaA∧XbB∧XcC∧XdD.

Here gab5gE(ea ,eb) and we recall that for evenm the bilinear formvH
m is symmetric:vAB

5vBA . h

For evenm, a connection¹ in a vector bundleW over M is m/2-partially flat if and only if
its curvatureF belongs to the space

~L2E^ vH
m

% S2E^ S2H ^ vH
m21! ^ End W,~L2E^ S2SmH % S2E^ L2SmH ! ^ End W

5L2~E^ SmH ! ^ End W.

The SO(E)•Sp(H)-submoduleL2E^ vH
m

% S2E^ S2H ^ vH
m21,L2T* M is not irreducible, so un-

like the oddm case we cannot conclude that it is contained in an eigenspaceVl of the SO(E)
•Sp(H)-invariant operatorBV :L2T* M→L2T* M . In fact, examples are known~see Appendix B
of Ref. 16! whereBV has different eigenvalues on each irreducible summand ofL2T* M . There-
fore, in the case of evenm we cannot expect thatm/2-partial flatness implies the Yang–Mill
equations.

C. Construction of partially flat connections over higher spin Grassmann manifolds

Now we generalize the construction of half-flat connections over admissible half-flat G
mann manifolds to the case ofk-partially flat connections overk-admissible higher spin Grass
mann manifoldsM . The natural extension of the harmonic construction given in Sec. IV B yi
k-partially flat connections in the vector bundlen over thek-admissible spinm/2 Grassmann
manifold M . Again, we lift the geometric data fromM to SH via the projectionp:SH→M . The
pull backp* ¹ of a k-partially flat connection¹ in the trivial vector bundlen:W5Cr3M→M is
a connection in the vector bundlep* n:p* W→SH which satisfies equations defining the notion
a k-partially flat gauge connection onSH . One can also define the weaker notion of an alm
k-partially flat connection inp* n:p* W→SH . The latter may be constructed from a prepoten
and it affords the construction of ak-partially flat connection in the bundleW→M . To simplify
our exposition we explain the construction in them53 case. Here the decomposition~30! of the
curvature tensor takes the form

F~Xa1a2a3

e ,Xb1b2b3

e8 !5S
A

S
B

~ F
~0!

a1a2a3b1b2b3

[ee8] 1vH~ha1
,hb1

! F
~1!

a2a3b2b3

(ee8)

1vH~ha1
,hb1

!vH~ha2
,hb2

! F
~2!

a3b3

[ee8]

1vH~ha1
,hb1

!vH~ha2
,hb2

!vH~ha3
,hb3

! F
~3!

(ee8)!. ~32!

In this case we have two nontrivial notions of partial flatness:

zero-partial flatness: F
~0!

50, ~33!

one-partial flatness: F
~0!

5 F
~1!

5 F
~2!

50. ~34!

Clearly, two-partial flatness is tantamount to flatness. By Theorem 6, a one-partially flat co
tion is a Yang–Mills connection.
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1. Construction of zero-partially flat connections

Let M be a zero-admissible spin 3/2 Grassmann manifold with a zero-partially flat conne
¹ @satisfying~33!# in a holomorphic vector bundleW→M . The pull-back of such a connection¹
to a connection in the bundlep* W→SH , wherep:SH→M , has curvatureF with components
given by

F~X666
e ,X666

e8 !50,

F~X666
e8 ,X6

e !5u
6

a1u
6

a2u
6

a3u
6

b1u
6

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !

5612F
~1!

a1a2b1b2

(ee8) u
6

a1u
6

a2u
6

b1u
6

b25..612F
~1!

6666
(ee8) ,

F~X6
e ,X6

e8!5u
6

a1u
6

a2u
7

a3u
6

b1u
6

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !528 F
~2!

a1b1

[ee8]u
6

a1u
6

b15..28 F
~2!

66
[ee8] ,

F~X111
e ,X222

e8 !5u
1

a1u
1

a2u
1

a3u
2

b1u
2

b2u
2

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !

536~ F
~1!

a1a2b1b2

(ee8) u
1

a1u
1

a2u
2

b1u
2

b21 F
~2!

a1b1

[ee8]u
1

a1u
2

b11 F
~3!

(ee8)!

5.. 36~ F
~1!

0
(ee8)1 F

~2!

0
[ee8]1 F

~3!

0
(ee8)!, ~35!

F~X666
e ,X7

e8!5u
6

a1u
6

a2u
6

a3u
6

b1u
7

b2u
7

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !5624F
~1!

66
(ee8)112F

~2!

66
[ee8] ,

F~X1
e ,X2

e8!5u
1

a1u
1

a2u
2

a3u
1

b1u
2

b2u
2

b3F~Xa1a2a3

e ,Xb1b2b3

e8 !512F
~1!

0
(ee8)24 F

~2!

0
[ee8]212F

~3!

0
(ee8) ,

F~v , • !50,

where v,v8 are vertical vector fields onSH . The form of these components lead us to t
following definition.

Definition 14: A connection in a holomorphic vector bundle W→SH is zero-partially flat if
its curvature satisfies the equations

F~X666
e ,X666

e8 !50,

F~X666
e ,X6

e8!5F~X666
e8 ,X6

e !,

F~X6
e ,X6

e8!52F~X6
e8 ,X6

e !,

F~v , • !50, ;vPTvSH .

The restriction of a zero-partially flat connection to a leaf of the integrable distribution^D31 ,]0&
is clearly flat. In this case, ananalytic frame in the holomorphic vector bundlep* n:Cr3SH

→SH is a frame which is parallel along leaves of this integrable distribution. With respect to
a frame, a connection in the vector bundlep* n can be written as
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¹]0

S 5]0 ,

¹X
111
e

S
5X111

e ,

¹X
6
e

S
5X6

e 1A~X6
e !,

¹]66

S 5]661A~]66!,

¹X
222
e

S
5X222

e 1A~X222
e !.

Definition 15: A connection¹S over SH is calledalmost zero-partially flat if its curvature
satisfies the following equations:

F~X111
e ,X111

e8 !5F~X111
e ,v !5F~X6

e ,v !50, ;vPTvSH ,
~36!

F~]11 , • !5F~]0 , • !50 .

Following the construction of almost half-flat connections, we may construct almost
partially flat connections, which allow deformation to a zero-partially flat connection. As in
case of a half-flat connection~cf. Proposition 7!, an almost zero-partially flat connection is com
pletely determined by the potentialsA665..A(]66) with respect to an analytic frame.

Proposition 11: Let¹ be an almost zero-partially flat connection in the vector bun
p* n:Cr3SH→SH with potentials A11 , A22 , A(X6

e ) and A(X222
e ) in an analytic frame. Then

we have the following.
(i) The potential A11 is analytic and has charge2, i.e.,

X111
e A1150, ]0A1152A11 . ~37!

(ii) The potential A22 satisfies

]11A222]22A111@A11 ,A22#50, ]0A22522A22. ~38!

(iii) The potentials A(X6
e ) and A(X222

e ) are then recursively determined as follows:

A~X1
e !52 1

3 X111
e A22 ,

A~X2
e !5 1

2 ~]22A~X1
e !2X1

e A221@A22 ,A~X1
e !# !, ~39!

A~X222
e !5]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#,

and they have charges11,21, and 23, respectively, i.e.,

]0A~X6
e !56A~X6

e !, ]0A~X222
e !523A~X222

e !. ~40!

Conversely, any set of matrix-valued potentials A11 , A22 , A(X6
e ) and A(X222

e ) satisfying
(37)–(40) define an almost zero-partially flat connection.

Proof: ~i! The curvature constraintsF(X1
e , ]11)50 , F(]0 , ]11)50, in an analytic frame,

take the form~37!.
~ii ! The further almost zero-partial-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give

Eqs.~38! for the potentialA22 .
~iii ! Having obtainedA22 , we can findA(X6

e ) andA(X222
e ) from the equations
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F~]22 ,X111
e !50⇔2X111

e A225A~@]22 ,X111
e # !53A~X1

e !,

F~]22 ,X1
e !50⇔]22A~X1

e !2X1
e A221@A22 ,A~X1

e !#5A~@]22 ,X1
e # !52A~X2

e !,

F~]22 ,X2
e !50⇔]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#5A~@]22 ,X2
e # !5A~X222

e !.

Equations~40! follow from ~39!. h

Now, using this proposition, a modification of Theorem 4 gives an algorithm for the cons
tion of all almost zero-partially flat connections.

Theorem 7: Let A11 be an analytic prepotential, i.e., a matrix-valued function on a dom
U5p21(V),SH , V,M a simply connected domain, satisfying (37), andF an invertible matrix-
valued function on U which satisfies the equations

]11F52A11F , ]0F50 . ~41!

Such a functionF always exists. Then the pair(A11 ,F) determines an almost zero-partially fla
connection¹S5¹ (A11 ,F). Its potentials with respect to an analytic frame are given by A11 ,
A2252(]22F)F21 and (39). Conversely, any almost zero-partially flat connection is of
form.

The proof follows that for Theorem 4 and uses Proposition 1.1.
To deform an almost zero-partially flat connection into a zero-partially flat connection

need to find a transformation from the above analytic frame to a central frame. Analogou
Lemma 5 we may prove the following.

Lemma 7: Let¹5¹ (A11 ,F) be the almost zero-partially flat connection associated to
analytic prepotential A11 with respect to the analytic framew and an invertible solutionF of
(41). Then the framecªwF is a central frame for the connection¹, i.e., the potentials C(]66)
and C(]0) with respect to that frame vanish.

With respect to the central framec, the above almost zero-partially flat connection then ta
the form

¹X
111
e

S
5 X111

e 1C~X111
e !5X111

e 1F X111
e F21,

¹X
6
e

S
5X6

e 1C~X6
e !,

¹X
222
e

S
5X222

e 1C~X222
e !,

¹]11

S 5]11, ¹]22

S 5]22 , ¹]0

S 5]0 ,

where in terms of the analytic frame potentialsA(X), the central frame potentialsC(X) are given
by C(X)5F21A(X)F1F21(XF). Moreover, the equationsF(]11 , X111

e )5F(]0 , X111
e )

50 imply that the potentialC(X111
e ) satisfies the equations

]11C~X111
e !50, ]0C~X111

e !53C~X111
e ! . ~42!

The following proposition is analogous to Proposition 8 in the half-flat case.
Proposition 12: The potential C(X111

e ) of an almost zero-partially flat connection¹ with
respect to a central frame is cubic in u1

a ,

C~X111
e !5u1

a u1
b u1

g C~Xabg
ẽ !5u1

a u1
b u1

g Cabg
e , ~43!
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where the coefficients Cabg
e 5Cabg

e (xi), symmetric ina,b,g , are matrix valued functions of co
ordinates xi on M and (xi ,u6

a ) are the local coordinates associated with the trivialization SH

5M3Sp(1,C).
With respect to a central frame, we can therefore write¹X

111
e 5X111

e 1u1
a u1

b u1
g Cabg

e .

Using Cabg
e , we now define a new connection inp* n over SH by

¹̂X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e ,

¹̂X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e ,

¹̂X
2
e 5X2

e 1u2
a u2

b u1
g Cabg

e ,

¹̂X
222
e 5X222

e 1u2
a u2

b u2
g Cabg

e ,

¹̂]11
5]11 , ¹̂]22

5]22 , ¹̂]0
5]0 .

The following theorem is the analog of Theorem 5 in the half-flat case.

Theorem 8: The constructed connection¹̂ is a 0-partially flat connection inp* n over SH

and it is the pull-back of the following 0-partially flat connection¹M in n over M:

¹X
abg
e

M
5Xabg

e 1Cabg
e .

Proof: As in Lemma 1 we may show that the connection¹̂ is the pull-back of the connection

¹M. It then suffices to show that¹M is zero-partially flat. The connections¹ and¹̂ coincide in the
direction ofX111

e . Hence, usingC111
e

ªu
1

a1u
1

a2u
1

a3Ca1a2a3

e , we have

05F¹~X111
e ,X111

e8 !5F ¹̂~X111
e ,X111

e8 !

5X111
e C111

e8 2X111
e8 C111

e 1@C111
e , C111

e8 #2C~@X111
e , X111

e8 # !

5u
1

a1u
1

a2u
1

a3u
1

b1u
1

b2u
1

b3~Xa1a2a3

e Cb1b2b3

e8 2Xb1b2b3

e8 Ca1a2a3

e

1@Ca1a2a3

e , Cb1b2b3

e8 #2C~@Xa1a2a3

e , Xb1b2b3

e8 # !!

5u
1

a1u
1

a2u
1

a3u
1

b1u
1

b2u
1

b3 F¹M
~Xa1a2a3

e , Xb1b2b3

e8 !,

sinceX111
e u1

b 50. This shows that the componentF (0)50 in the decomposition~32!, i.e., the
connection¹M is zero-partially flat. h

2. Construction of one-partially flat connections

Let M be a one-admissible spin 3/2 Grassmann manifold with a one-partially flat conne
¹ @satisfying~34!# in a holomorphic vector bundleW→M . The pull-back of such a connection t
a connection in the bundlep* W→SH , wherep:SH→M , has curvatureF with components given
by

F~X666
e ,X666

e8 !50,

F~X666
e8 ,X6

e !50,
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F~X6
e ,X6

e8!50,

F~X111
e ,X222

e8 !536F
~3!

(ee8), ~44!

F~X666
e ,X7

e8!50,

F~X1
e ,X2

e8!5212F
~3!

(ee8),

F~v , • !50,

where v is any vertical vector field onSH . A connection in a holomorphic vector bundleW
→SH is one-partially flat if its curvature satisfies the above equations. The restriction o
one-partially flat connection to a leaf of the integrable distribution^D31 ,D1 ,]0& is clearly flat. In
this case, ananalytic frame in the holomorphic vector bundlep* n:Cr3SH→SH is a frame which
is parallel along leaves of this distribution. With respect to such a frame, a connection in the
bundlep* n can be written as

¹]0

S 5]0 ,

¹X
111
e

S
5X111

e ,

¹X
1
e

S
5X1

e ,

¹]11

S 5]111A11 ,

¹]22

S 5]221A22 ,

¹X
222
e

S
5X222

e 1A~X222
e !,

¹X
2
e

S
5X2

e 1A~X2
e !,

with potentialsA(X111
e )5A(X1

e )5A(]0)50. We look for solutions of the system~44! in this
analytic gauge.

Definition 16: A connection¹S over SH is called almost one-partially flat if its curvature
satisfies the equations

F~X111
e ,X111

e8 !5F~X111
e ,X1

e8!5F~X1
e ,X1

e8!50,
~45!

F~X111
e ,v !5F~X6

e ,v !5F~]11 , • !5F~]0 , • !50, ;vPTvSH .

In virtue of these equations, the potentialsA665..A(]66) determine all other potentials:
Proposition 13: Let¹ be an almost one-partially flat connection in the vector bun

p* n:Cr3SH→SH with potentials A11 , A22 , A(X2
e ) and A(X222

e ) in an analytic frame. Then
we have the following.

(i) The potential A11 is analytic and has charge2, i.e.,

X111
e A1150, X1

e A1150, ]0A1152A11 . ~46!

(ii) The potential A22 satisfies
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]11A222]22A111@A11 ,A22#50, ]0A22522A22. ~47!

(iii) The potentials A(X2
e ) and A(X222

e ) are then recursively determined as follows:

A~X2
e !52 1

2 X1
e A22 ,

~48!
A~X222

e !5]22A~X2
e !2X2

e A221@A22 ,A~X2
e !#,

and they have charges21 and 23, respectively; i.e.,

]0A~X2
e !56A~X2

e !, ]0A~X222
e !523A~X222

e !. ~49!

Conversely, any set of matrix-valued potentials A11 , A22 , A(X2
e ) and A(X222

e ) satisfying
(46)–(49) define an almost one-partially flat connection.

Proof: ~i! Equations~46! are equivalent toF(]11 ,X111
e ) 5 F(]11 ,X1

e ) 5 F(]0 ,]11)
50.

~ii ! The further almost one-partial-flatness conditions,F(]11 , ]22)5F(]0 , ]22)50, give
Eqs.~47!.

~iii ! Having obtainedA22 , we can findA(X2
e ) andA(X222

e ) from the equations

F~]22 ,X1
e !50⇔2X1

e A225A~@]22 ,X1
e # !52A~X2

e !,

F~]22 ,X2
e !50⇔]22A~X2

e !2X2
e A221@A22 ,A~X2

e !#5A~@]22 ,X2
e # !5A~X222

e !.

The equations~49! follow from ~48!. h

Now, starting from a prepotentialA11 , which solves~46!, we may construct an almos
one-partially flat connection. The potentialA2252(]22F)F21 is determined, as before, from
solutionF of ~41!. Then, with the remaining potentials in an analytic frame being given by~48!
and satisfying~49!, all the other equations in~45! follow. This shows that an almost one-partial
flat connection is determined by an arbitrary analytic prepotentialA11 and an invertible solution
F of ~41!. As before,F is a transition function from an analytic frame to a central frame, in wh
the above almost one-partially flat connection takes the form

¹X
111
e

S
5X111

e 1C~X111
e !5X111

e 1F X111
e F21,

¹X
1
e

S
5X1

e 1C~X1
e !5X1

e 1F X1
e F21,

¹X
2
e

S
5X2

e 1C~X2
e !,

¹X
222
e

S
5X222

e 1C~X222
e !,

¹]11

S 5]11, ¹]22

S 5]22 , ¹]0

S 5]0.

Moreover, the equationsF(]11 , X111
e )5F(]0 , X111

e )50 imply that the potentialC(X111
e )

satisfies the equations

]11C~X111
e !50, ]0C~X111

e !53C~X111
e !.

Proposition 14: The potentials C(X111
e ) and C(X1

e ) of an almost one-partially flat connec
tion ¹ with respect to a central frame have the form

C~X111
e !5u1

a u1
b u1

g Cabg
e , C~X1

e !5u1
a u1

b u2
g Cabg

e ,
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where Cabg
e is a function on M, symmetric ina,b,g.

With respect to a central frame, we can therefore write

¹X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e , ¹X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e .

We define a modified connection in the bundlep* n over SH by

¹̂X
111
e 5X111

e 1u1
a u1

b u1
g Cabg

e ,

¹̂X
1
e 5X1

e 1u1
a u1

b u2
g Cabg

e ,

¹̂X
2
e 5X2

e 1u2
a u2

b u1
g Cabg

e , ~50!

¹̂X
222
e 5X222

e 1u2
a u2

b u2
g Cabg

e ,

¹̂]11
5]11, ¹̂]22

5]22, ¹̂]0
5]0 .

As in the zero-partially flat case, we have the following.

Theorem 9: The constructed connection¹̂ is a one-partially flat connection inp* n over SH

and it is the pull-back of the following one-partially flat connection¹M in n over M:

¹X
abg
e

M
5Xabg

e 1Cabg
e . ~51!

Proof: As before one shows that the connection¹̂ is the pull-back of the connection¹M. It
remains to show that¹M is one-partially flat. Since any almost one-partially flat connection
almost zero-partially flat, we haveF (0)50 by Theorem 8. Next we show thatF (1)50. The

connections¹ and ¹̂ coincide in the direction ofX111
e andX1

e . Hence, using Eq.~35!, which
holds for zero-partially flat connections, we have

05F¹~X111
e ,X1

e8!5F ¹̂~X111
e ,X1

e8!512F
~1!

a1a2b1b2

(ee8) u
1

a1u
1

a2u
1

b1u
1

b2 .

This shows that the componentF (1) in the decomposition~32! vanishes. Similarly,

05F¹~X1
e ,X1

e8!5F ¹̂~X1
e ,X1

e8!528 F
~2!

a1b1

[ee8]u
1

a1u
1

b1

implies F (2)[ee8]50, and hence that¹̂ is one-partially flat. h

By Theorem 6, the one-partially flat connection¹X
abg
e

M
in ~51! is a Yang–Mills connection.
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We will consider a vector-valued Sturm–Liouville equation of the formR@U#
ª2(PU8)81QU5lWU, xP@0,b), with P21, W, QPL loc

1 (@0,b))m3m being
Hermitian and under some additional conditions onP21 and W. We give an
elementary deduction of the leading order term asymptotics for the Titchmarsh–
Weyl M -function corresponding to this equation. In the special case ofP5W
5I , QPL1(@0,̀ ))m3m and the Neumann boundary conditions at 0, we will also
prove thatM5 (1/A2l) (I 1R)(I 2R)21, where R5 limn→` Rn5(n51

` Qn , for
recursively defined sequences$Rn% and $Qn%. If QPL loc

1 (@0,b))m3m, 0,b
<`, the same formula is valid with an exponentially small error for largel. It is
clear that expansions of this type are helpful in finding representatives of the KdV
invariants. ForP5W5I , we prove that the spectral measure corresponding to the
equation R@U#5lU uniquely determinesQ as well as b and the boundary
conditions at 0 andb. We finally give a new proof of a local form of the Borg–
Marchenko theorem~cf. Gesztesy and Simon, ‘‘On local Borg–Marchenko unique-
ness results,’’ Commun. Math. Phys.211, 273–287~2000!, Chap. 3!; a theorem
which is due to Simon@see Simon, ‘‘A new approach to inverse spectral theory, I.
fundamental formalism,’’ Ann. Math.150, 1–29 ~1999!# in the scalar case. For
applications to physics, it is worth mentioning that vector-valued Sturm–Liouville
equations appear in some problems in magneto-hydro-dynamics. ©2003 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1618922#

I. INTRODUCTION

The main objective of study in this paper is a vector-valued Sturm–Liouville equation o
form

R@U#ª2~PU8!81QU5lWU, xP@0,b!, ~1.1!

which will be considered under the following hypothesis, where, as well as in the rest of the
B(@0,b))p3q, p,qPZ1, will denote the set of allp3q-matrices with complex entries of classB
on the interval@0,b). We will also let C p3q denote the set of allp3q-matrices with complex
entries.

Hypothesis 1.1: Assume that, in the equation (1.1),
(i) P21, W, Q5Q* PL loc

1 (@0,b))m3m, where mPZ1, P5P* , W.0 and 0,b<`;
(ii) 1/x *0

xP21 has an invertible limit P21(0), as x→0;
(iii) 1/x *0

xW has a limit W(0).0, as x→0.
Making these assumptions, we will give a very simple deduction of the leading order

asymptotics for the Titchmarsh–WeylM -function corresponding to a self-adjoint realization
~1.1!. We will also prove that, in the special case ofP5W5I ,

a!Electronic mail: Erik.Andersson@math.lu.se
60770022-2488/2003/44(12)/6077/24/$20.00 © 2003 American Institute of Physics
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M5
1

A2l
~ I 1R!~ I 2R!21,

where R corresponds to the reflection coefficient in the scalar case~i.e., in view of Lemma 2.2,
this means that we will relate the reflection coefficient to the spectral data of the self-a
operator induced by~1.1!!!, and that the spectral measure corresponding to~1.1! uniquely deter-
mines Q as well asb and the boundary conditions at 0 and atb ~cf. Refs. 12, 19, 20, 21, 23, 24
27, 32, and 33!. We end the presentation with a simple proof of a version of Simon’s lo
Borg–Marchenko theorem~cf. Refs. 15 and 16, Chap. 3!. The method is similar to that of Ref.
for the scalar case. These results will improve previous works in these areas in the following

Although the asymptotics for the Titchmarsh–Weylm-function corresponding to a Sturm
Liouville equation of the form

2u91qu5lu, xP@0,b!, ~1.2!

has been given much attention, the number of published papers in this area decreases sign
when passing to the slightly more general equation

2~pu8!81qu5lvu, xP@0,b! ~1.3!

~see Ref. 6 and further references there! or, even further, to the vector case corresponding to~1.2!,
i.e., the case of the equation

2U91QU5lU, xP@0,b!. ~1.4!

The relatively few papers which do treat the asymptotics for theM -function corresponding to
~1.4! ~see Refs. 4, 12 and further references therein! offer proofs involving fairly laborious meth-
ods even for determining the leading-order term of the asymptotic expansion. More specifi
Ref. 12 offers the analogs of Theorem 3.2 and Theorem 3.6, below, forDirichlet M -functions MD
corresponding to~1.4! ~i.e., for S50 and C52I in ~2.2! below!. They also prove that, ifQ has
N locally integrable derivatives, the sameM -functions can be written

MD~l!5A2lI 1 (
k51

N

~2l!2 k/2mk1o~ ulu2 N/2!,

for some recursively defined coefficientsmk . In contrast to this, we give an expansion ofM ,
valid with exponentially small errors asulu→`, assuming only thatQ is locally integrable. It is
clear that, using expansions of this type, one can prove trace formulas forQ(x) and certain
higher-order differential polynomials inQ(x), following an approach in Ref. 17. These tra
formulas are of use in proving certain results in inverse spectral theory for operators of type~1.1!,
in L2(R)m3m, in the case ofP5W5I . For instance, one has the following theorem, obtained
Ref. 13.

Theorem: Suppose thatR, in the case of P5W5I , is reflectionless and has spectru
@c,`) for some cPR. Then

Q~x!5cI.

Moreover, the aforementioned higher-order differential polynomials inQ(x) represent the
Korteweg–de Vries~KdV! invariants~i.e., densities associated with KdV conservation laws! and
hence open the link to infinite-dimensional completely integrable systems~see Ref. 29 and furthe
references therein!. Vector-valued Sturm–Liouville equations also appear in some problem
magneto-hydro-dynamics.

Regarding the inverse spectral theory results, the most satisfactory results in this ca
nearly half a century~results essentially due to Go¨ran Borg,10 Marchenko,28 and Gelfand and
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Levitan;14 for alternative variants, see also Refs. 25 and 26! concerned only the very simplest ca
of a scalar-valued Sturm–Liouville equation, namely, the case of~1.2!, and some other, closel
related, equations. However, recently Bennewitz8 proved that the more general equation~1.3!,
where 1/p,qPL loc

1 @0,b) are real-valued, is completely determined by its spectral measure u
equations which may be transformed into each other using only unitary Liouville transforma

Remark 1.2:Note that the equation~1.1! with notation

J5S 0 I

2I 0D , A5S Q 0

0 2P21D , K5S W 0

0 0D and V5S U
PU8 D

can be rewritten as the following Hamiltonian system:

2JV81AV5lKV, xP@0,b!. ~1.5!

Naturally associated with~1.1! is the spaceLW
2 (@0,b))m31 consisting of all~equivalence

classes of! m31-matrix-valued and complex Lebesgue measurable functionsU, for which
U* WU is integrable over@0,b). Provided with the inner product

^U,V&W5E
0

b

V* WU,

LW
2 becomes a Hilbert space.

Given this background, we proceed as follows. In Sec. II, we give some preliminaries
with some background information on the Titchmarsh–WeylM -function corresponding to a self
adjoint realization of~1.1!. In Sec. III, we give an elementary deduction of the leading order t
asymptotics forM , and we proceed by, in Sec. IV, proving thatM , in the special case ofP
5W5I , Q5Q* PL1(@0,̀ ))m3m and the Neumann boundary conditions at 0, can be wri
M5 (1/A2l) (I 1R)(I 2R)21, where R5 limn→` Rn5(n51

` Qn , for recursively defined se
quences$Rn% and $Qn%. In the case ofQ5Q* PL loc

1 (@0,b))m3m, 0,b<`, we shall see that
the same formula is valid with an exponentially small error. Finally, in Sec. V, we prove
Borg–Marchenko theorems mentioned above.

II. THE TITCHMARSH–WEYL MATRIX M

Let

F~x,l!5S w~x,l! u~x,l!

Pw8~x,l! Pu8~x,l!
D PC 2m32m, ~2.1!

where w,uPC m3m, be a fundamental matrix of the system~1.5!, such that

BªF~0,l!5S w~0,l! u~0,l!

Pw8~0,l! Pu8~0,l!
D 5S S C

2C SD ~2.2!

is unitary and symplectic, i.e., such that

F* ~0,l!F~0,l!5I and F* ~0,l!JF~0,l!5J,

with J as in ~1.5!. This means that the columnsw i , i P@1,m#, of w satisfy the symmetric
boundary condition

S* ~PU8!~0,l!1C* U~0,l!50, ~2.3!

and that
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HS* S1C* C5I
S* C5C* S and HSS* 1CC* 5I

CS* 5SC* . ~2.4!

It also follows that F* (x,l̄ )JF(x,l)5J for all lPC and all xP@0,b), since differentiation
and use of~1.5! shows that the left quantity is independent ofx. We thus have that

w* ~x,l̄ !~Pw8!~x,l!2~Pw8!* ~x,l̄ !w~x,l!50, ~2.5a!

w* ~x,l̄ !~Pu8!~x,l!2~Pw8!* ~x,l̄ !u~x,l!5I , ~2.5b!

u* ~x,l̄ !~Pu8!~x,l!2~Pu8!* ~x,l̄ !u~x,l!50. ~2.5c!

By standard results from the theory of ordinary differential equations, we also have thatw andu
are entire functions ofl, locally uniformly in x. In addition, we impose a boundary condition
b if needed forR, ~1.1!, to generate a self-adjoint operatorT in LW

2 (@0,b))m31. The case when
no boundary condition at all is needed atb will henceforth be referred to as the ‘‘limit-point’
case.

Remark 2.1:The choice of initial condition according to~2.4! is convenient for the following
reason. We are dealing with a problem where at least 0 is a regular point, and we want to i
separated boundary conditions. That the columns of (2C

S )PC 2m3m satisfy a self-adjoint boundary
condition, by~2.3!, then means thatS* C5C* S. Moreover, it is clear that the vectors, inC 2m,
satisfying the self-adjoint boundary condition~2.3! constitute them-dimensional nullspace of the
matrix (S

C)* PC m32m, and since one can always choose an ON-basis in this nullspace~in many
different ways!, it is no restriction to assume (2C

S ) to have orthonormal columns. It is the
well-known, and easy to see, thatBª(2C

S
S
C)PC 2m32m is unitary and symplectic; and it is

natural to choose a fundamental matrix with these initial conditions.
There now exists a uniquem3m-matrix-valued functionMB(l)PC m3m ~determined by the

boundary condition atb ) such that

C~x,l!5S c~x,l!

Pc8~x,l! D5F~x,l!S 2MB~l!

I DPC 2m3m ~2.6!

~where the indexB refers to the matrixBªF(0,l)PC 2m32m in ~2.2!! is unique~up to right
multiplication by nonsingularx-independentm3m-matrices! with the following properties.
~i! The columns c i(•,l), i P@1,m#, of c(x,l) are linearly independent and lie i

LW
2 (@0,b))m31 for lPC \R;

~ii ! c i(x,l) satisfy the self-adjoint boundary condition~if any! of T at b;
~iii ! _R@c i(x,l)#2lWc i(x,l)50.

The coefficientMB(l) is the so-calledTitchmarsh–Weyl M-functionof the self-adjoint op-
erator T, the spectrum of which coincides with the singularities ofMB(l), which can be seen to
be analytic outside ofR. Moreover, we have thatMB* (l)5MB( l̄ ) and thatMB(l) has positive
imaginary part (1/2i ) @MB(l)2MB* (l)# in the upper half plane, i.e.,MB(l) is a matrix-valued
Nevanlinna-function, so that we have the following representation formula.

Lemma 2.2: With MB(l) according to above, there is a unique increasing and left-continu
matrix-valued functionr with r(0)50 and unique Hermitian matricesC1 and C2>0 such that

MB~l!5C11lC21E
2`

` S 1

t2l
2

t

t211D dr~ t !.

Remark: In the present situation, one always has thatC250, which will follow from the
asymptotic formulas given later.

Remark 2.3: dr is called thespectral measureof T for the following reason.
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The spectral matrixr gives rise to a Hilbert spaceLr
2 of ~equivalence classes of! m31

matrix-valued functions with inner product

^Û,V̂&r5E
2`

`

V̂* ~ t !dr~ t !Û~ t !.

With notation from~2.5!, the spectral theory takes the following concrete form.
For UPLW

2 , the integral

Û~ t !5E
0

b

w* ~x,t !WU~x! dx

converges inLr
2 and gives a unitary mapF:U°Û between LW

2 and Lr
2 , so that iUiW

5iÛir . The inverse ofF is given by

U~x!5E
2`

`

w~x,t !dr~ t !Û~ t !,

with convergence inLW
2 . Furthermore,U is in the domain ofT if and only if tÛ(t)PLr

2 , and
then TÛ(t)5tÛ(t). The mapF is called the generalized Fourier transform forT, and thusF is
unitary and diagonalizesT.

For future reference, we also state the following lemma.
Lemma 2.4 (The Singular Value Decomposition (SVD)): Let pPZ1 and SPC p3p. Then,

there exists a unique diagonal matrix,

diag~d1 ,...,dp!5DPC p3p,

with real elements satisfying that di>dj>0, if i < j , and unitary matrices U,VPC p3p such that

S5U* DV. ~2.7!

Proof: See Ref. 18, Theorem 2.3.1! h

Convention 2.5:Note that if

USV* 5DS

is the SVD-decomposition of the matrixS in ~2.2!, it follows from ~2.4! that, if n5dimN(S)
.0 with N(S) denoting the nullspace of the matrixS,

UCV* 5L5L11L2 ,

where

L15S L11 0

0 0D , L11PC (m2n)3(m2n), L25S 0 0

0 L22
D , L22PC n3n,

and whereL22 is unitary. We could actually choose the matricesU and V so that L225I , and
from this point on, if not specifically stated otherwise, we will do exactly that.

III. THE LEADING ORDER TERM ASYMPTOTICS FOR MB„l…

Our main purpose with this section is to give a very simple deduction of the leading
term asymptotics forMB(l). This formula will be independent of the boundary condition atb
although depending on the boundary valueF(0,l). However, suppose thatF1(0,l) and
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F2(0,l) are two different initial values, of type~2.2!, with M1 and M2 being the corresponding
M -functions, using the same boundary condition atb. We then have that

M2~l!52@C122S12M1~l!#@S121C12M1~l!#21, ~3.1!

where

F2
21~0,l!F1~0,l!5S S12 C12

2C12 S12
D , S12,C12PC m3m,

is unitary and symplectic. Thus, asymptotic information onM1 will render asymptotic informa-
tion on M2 . We will therefore, from this point on, if not specifically stated otherwise, o
consider the case when theM -function arises from theNeumann boundary conditionsat 0, by
which we mean the case ofS5I and C50 in ~2.2!. This M -function will henceforth simply be
denoted by M . Thus, by the initial values satisfied byF, it follows that M (l)52c(0,l)
3(Pc8)21(0,l). In fact, sincec(x,l) is unique~up to right multiplication by nonsingularm
3m-matrices! with the properties~i!–~iii ! on page 6080, it follows that we must have that

M ~l!52U~0,l!~PU8!21~0,l! ~3.2!

for any nonsingularm3m-matrix U with columns solving~1.1! and satisfying the boundar
condition at b. Now, let xP(0,b) and consider the operator generated byR in LW

2 (@x,b))m31

under the Neumann boundary condition atx and the same boundary condition as before atb.
The correspondingM -function is then given byM̂ (x,l)52c(x,l)(Pc8)21(x,l), i.e., M̂ is
the NeumannM -function for the interval@x,b). In particular, we haveM (l)5M̂ (0,l). Since
the columns ofc are solutions of~1.1!, we have

~Pc8!85~Q2lW!c, ~3.3!

and hence, from~3.3!, that M̂ satisfies the following Riccati equation:

M̂ 85M̂ ~Q2lW!M̂2P21. ~3.4!

Our main result in this section is Theorem 3.2. below, where we apply the following conven
Convention 3.1:For any diagonalizable matrixA, with A5S21DS and D diagonal, we

define AA5S21ADS, whereAD is obtained by taking the principal root of each element ofD,

i.e., the argument of the root is in the interval (2p/2,p/2#. It is easily seen that this definesAA

uniquely.
Theorem 3.2:Under Hypothesis 1.1 and the above conditions, we have that

M ~l!5~P~0!A2lP21~0!W~0! !21@ I 1o~1!#, l5rm,

wherem is to be confined to a compact set inC \R and rPR1 is large.
Remark 3.3:Note that 2lP21(0)W(0) is diagonalizable since it is assumed thatW(0)

.0. Also note that in the special case of equation~1.4!, we have thatP(0)5W(0)5I in
Theorem 3.2, so that in this case

M ~l!5
1

A2l
@ I 1o~1!#.

In fact, with notation from~3.4!, this formula is easily seen to hold, locally uniformly inx, for
M replaced byM̂ (x,l) ~see Theorem 3.6 below!.

In order to prove Theorem 3.2, we put
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T ~r !5S r 21/4I 0

0 r 1/4I D ,

for r .0. Define also

Fr~ t,m!5T 21~r !FS t

Ar
,rm D T ~r !;

Ar~ t !5S Qr~ t ! 0

0 2Pr
21~ t ! D 5

1

Ar
T * ~r !AS t

Ar
D T ~r !5S r 21QS t

Ar
D 0

0 2P21S t

Ar
D D ;

~3.5!

Kr~ t !5S Wr~ t ! 0

0 0D 5ArT * ~r !KS t

Ar
D T ~r !5KS t

Ar
D .

Simple calculations then show thatFr is a fundamental matrix for the equation

2JVr81ArVr5mKrVr , xP@0,bAr !, ~3.6!

with Fr(0,m)5I .
In some sense, we clearly have that

Ar~ t !→S 0 0

0 2P21~0!
D and that Kr~ t !→S W~0! 0

0 0D , r→`,

and we may therefore expect thatFr tends to the fundamental solutionF` of the equation~3.7!
with initial data F`(0,m)5I . As we shall see, the scaling~3.5! corresponds to introducing
scaledM -function Mr(m)5ArM (rm), and we may expect thatMr converges to anM -function
M` for the equation~3.7!. If M` can be determined, we would get the asymptotic form
M (rm); (1/Ar ) M`(m). In order to carry this scheme out, we will make use of the follow
results, where we consider a locally integrable matrix-valued functionx°Ts(x) depending on a
parametersPRd, dPZ1. Letting i•i denote some suitable matrix norm, we may then defi
the total variation measure of the matrix-valued measureTs(x) dx to be iTs(x)i dx.

Proposition 3.4: Let TsPL loc
1 (@0,b))n3n be depending on a parameter sPO#Rd, and as-

sume that the total variation*0
xiTs(•)i is uniformly bounded, locally in(x,s). Assume also tha

the integral functions*0
xTs are jointly continuous in(x,s). Then any solution Us of the equa-

tion Us81TsUs50 with s-independent initial data depends continuously on(x,s).
Proof: See Ref. 9, Theorem 3.1! h

Proposition 3.5: Assume that, with notation from~3.5! and locally uniformly in x, *0
xAr

→*0
xA` and *0

xKr→*0
xK` , when r→`. Assume also that the total variations*0

xiAr i and
*0

xiKr i are bounded, when r→`, locally uniformly in x. Let F` be a fundamental solution o

2JF8̀ 1A`F`5mK`F` , F`~0,m!5I . ~3.7!

Then

E
0

x

Fr* KrFr→E
0

x

F *̀ K`F` , when r→`,
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locally uniformly in (x,m).
Proof: Setting s5(Rem,Im m, 1/r ), this is an immediate consequence of Proposition 3.4~cf.

Ref. 9, Corollary 3.3!. h

Proof (Theorem 3.2.):Assume thatM is an M -function corresponding to a self-adjoin
realization of~1.5!. For

C~ t,l!5F~ t,l!S 2M ~l!

I D ,

we then have that

E
0

b

C* KC5

1

2i
@M ~l!2M* ~l!#

Im l
5

Im M ~l!

Im l
. ~3.8!

In the limit-point case, this relation determinesM uniquely. A consequence of~3.8! is that M is
nonsingular whenlPC \R, since C* KC5c* Wc.0 implies that *0

bC* KC.0, and any
matrix with a strictly positive imaginary part is nonsingular. Now put

Mr~m!5ArM ~rm!.

It then follows that

E
0

bAr
C r* KrC r5

Im Mr~m!

Im m
, ~3.9!

where we have putC r5Fr( I
2Mr), i.e., Mr(m) could be considered a NeumannM -function

corresponding to~3.6!. This would require us to verify that the columns ofC r(t,m) satisfy am
independent boundary condition atbAr . However, all that we need is in fact the inequality

E
0

a

C r* KrC r<
Im Mr~m!

Im m
. ~3.10!

It immediately follows from~3.9! that this is true for anya.0, as soon asbAr .a. Since

M ~rm!5
1

Ar
Mr~m!, ~3.11!

we obtain an asymptotic formula forM , if we can show thatMr has a limit asr→`. We have

1

r E0

x

QS t

Ar
D dt5

1

Ar
E

0

x/Ar
Q~ t ! dt → 0,

E
0

x

P21S t

Ar
D dt5Ar E

0

x/Ar
P21~ t ! dt → xP21~0!

and

E
0

x

WS t

Ar
D dt5Ar E

0

x/Ar
W~ t ! dt → xW~0!,
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locally uniformly as r→`, by the assumptions made onQ, P21 and W in Hypothesis 1.1.
Writing

A`5S 0 0

0 2P21~0!
D and K`5S W~0! 0

0 0D ,

this means, by~3.5!, that

E
0

x

Ar→E
0

x

A` , and that E
0

x

Kr→E
0

x

K` , r→`,

locally uniformly in x.
Since K, and thusKr , is non-negative, it follows that in the modulus largest elements

these matrices, respectively, are positive and located on the main diagonal. It is then easi
that the total variation*0

xiKr i is bounded, asr→`, locally uniformly in x. Since P is not
assumed positive, however, it is possible that*0

xiAr i is not similarly bounded. We therefor
proceed as follows. Put

Ṽr~ t,m!5Zr
21~ t !Vr~ t,m!,

where Zr(0)5I , and Zr solves

2JZr81S 0 0

0 2Pr
21DZr50.

It then immediately follows that

Zr5S I E
0

t

Pr
21

0 I
D ,

and hence

Zr~ t !→Z`~ t !5S I tP21~0!

0 I D ,

locally uniformly. It also follows that

2JṼr81Zr* S Qr2mWr 0

0 0DZrṼr50,

so that Ṽr converges, locally uniformly, according to Proposition 3.4. This implies thatZrṼr

5Vr→V`5Z`Ṽ` , locally uniformly, and a direct calculation shows thatV` still solves the limit
equation~3.7!. Hence, it follows that

E
0

a

Fr* KrFr→E
0

a

F *̀ K`F` , r→`, ~3.12!

where F`(x,m) is the fundamental matrix-solution of~3.7!, for which

F`~0,m!5I .

We shall now determine theM -function of the limit equation~3.7!. With the notation
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K5A2mP21~0!W~0!,

it follows that ~3.7! is the equation

U952mP21~0!W~0!U.

Using Convention 3.1, it is clear that the general solution is

U~ t !5eKtC11e2KtC2 , C1 ,C2PC m3m,

sinceK is invertible. It is easy to see that all eigenvalues ofK have real part.0 if m is not real,
and thusU* W(0)U is integrable precisely ifC150. Thus the limit equation is limit-point, and
the NeumannM -function is obtained as in~3.2! for C150 and C25I . It follows that

M`~m!52U~0,m!„P~0!U8~0,m!…215„P~0!K…

215„P~0!A2mP21~0!W~0! …21,

and we finally need to show thatMr(m)→M`(m), as r→`. In order to do this, fix a
P(0,̀ ), mPC \R and consider the compact set ofm3m-matricesM defined by

~M* I !E
0

a

F *̀ ~•,m!K`F`~•,m!S M
I D<

Im M

Im m
.

That the set is compact is due to the fact that the left hand-side of the inequality defin
contains a positive quadratic term, and is bounded by a linear term. Because the equa
limit-point, the set shrinks to a point asa→`. Furthermore, ifV is a neighborhood of the set,
follows from ~3.10! that Mr(m)PV, if r is large. Hence, we conclude that

Mr~m!→M`~m!, r→`. ~3.13!

Thus, it follows from~3.11! and ~3.13! that

M ~l!5M ~rm!5
1

Ar
@M`~m!1o~1!#5„P~0!A2lP21~0!W~0! …21@ I 1o~1!#.

h

Note that, in the case of continuousP21 and W, it follows that, by replacingt/Ar by
t/Ar 1y, yP@0,c#, cP(0,b), in ~3.5!, the crucial inequality~3.10! becomes true, independen
of y, as soon asr .a2/(b2c)2 . Moreover, since, in this case, the total variationVs(x)
5*0

xiAr2mKr i , for s5(Rem,Im m, 1/r ,y), is bounded, locally uniformly in (x,s), and since
the integral functionsIs(x)5*0

x(Ar2mKr) are jointly continuous in (x,s), Proposition 3.4
gives that the convergence~3.12! is locally uniform in y, so that the proof of Theorem 3.2 show
that we have the following result.

Theorem 3.6:With P21 and W being continuous, W(y).0, for all y , and with notation
from (3.4), we have that

M̂ ~y,l!5„P~y!A2lP21~y!W~y! …21@ I 1o~1!#, l5rm,

with l as in Theorem 3.2, locally uniformly in y.
Remark 3.7:The method of proof above is adapted from a general scheme given in Re

IV. A QUOTIENT REPRESENTATION OF M„l…

To begin with, we make the following assumption.
Hypothesis 4.1: Assume that, in the equation
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2U91QU5lU, xP@0,̀ !, ~4.1!

we have that Q5Q* PL1(@0,̀ ))m3m.
Remark 4.2:Note that, with terminology and notation from Remark 1.2, equation~4.1! can be

rewritten as the system

2JV81AV5lKV ⇔ V85S 0 I

Q2lI 0DV, xP@0,̀ !, ~4.2!

where thusP5W5I .
We will prove the following theorem~for the scalar case, cf. Ref. 22!.
Theorem 4.3: Let, under Hypothesis 4.1, M (l) be the Neumann M-function of (4.2). Fur-

thermore, let the sequences$Rn% and $Qn%, Q15R1 , be defined by (4.16) and (4.22), (4.24
respectively. Then, there exists al0 such that

M ~l!5
1

A2l
lim

n→`

@ I 1Rn~0,l!#@ I 2Rn~0,l!#21, ~4.3!

M ~l!5
1

A2l
F I 1 (

n51

`

Qn~0,l!GF I 2 (
n51

`

Qn~0,l!G21

, ~4.4!

as soon asulu>l0 . For suchl, the convergence is uniform in both~4.3! and ~4.4!.
Remark:Note that R5 limn→` Rn(0,l) corresponds to the reflection coefficient in the sca

case!
Remark:For error estimates, see Remark 4.6.
In order to prove this theorem, we give the following lemma, which also turns out to be u

for later needs. This is an elementary result on finite-dimensional evolution equations, and c
be found in Ref. 12, Lemma 4.2 and Ref. 30.

Lemma 4.4: If A,B,CPL loc
1 (@0,b))m3m, where 0,b<`, then any m3m-matrix-valued

solution X(x) of

X8~x!5A~x!X~x!1X~x!B~x!1C~x!, ~4.5!

for a.a. xP@0,b), is of the form

X~x!5Z~x!D~x!Y~x!,

where Y and Z are fundamental matrices of the systems

Y8~x!5Y~x!B~x! and Z8~x!5A~x!Z~x!,

respectively, and where D is an m3m-matrix such that

D~x!5D~0!1E
0

x

Z21~ t !C~ t !Y21~ t ! dt.

Proof (Lemma 4.4):Setting D5Z21XY21, we obtain that

D85~Z21XY21!852Z21Z8Z21XY211Z21X8Y212Z21XY21Y8Y215Z21CY21,

so that

D~x!5D~0!1E
0

x

Z21~ t !C~ t !Y21~ t ! dt.

h
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Lemma 4.5: Let A5 (1/2A2l) Q, where QPL loc
1 (@0,b))m3m, 0,b<`. Then the solu-

tions of

Y85YA and Z85AZ

satisfy that

Y~x!5Y~0!S I 1OS 1

Aulu
D D , ~4.6!

Z~x!5S I 1OS 1

Aulu
D D Z~0!, ~4.7!

for large ulu, locally uniformly in x.
Proof: Since

Y~x!5Y~0!1
1

2A2l
E

0

x

Y~ t !Q~ t ! dt

and

Z~x!5Z~0!1
1

2A2l
E

0

x

Q~ t !Z~ t ! dt,

the lemma is a consequence of Gro¨nwall’s inequality~cf. Ref. 6, Lemma 1.3!. h

Proof (Theorem 4.3.):Taking ~4.2! of Remark 4.2as a starting-point, we diagonalize th
matrix (2lI

0
0
I ), which, for largel, is the important part of the coefficient matrix. With notatio

Ṽ5AV,

where

V5S U
U8 D , Ṽ5S Ṽ1

Ṽ2
D and A5

1

2 S I
1

A2l
I

I 2
1

A2l
I
D , ~4.8!

and hence

A 215S I I

A2lI 2A2lI
D ,

we then obtain that

Ṽ85AV85AS 0 I

Q2lI 0DA 21Ṽ5H S A2lI 0

0 2A2lI
D 1

1

2A2l
QS I I

2I 2I D J Ṽ.

~4.9!

Now, put R5Ṽ1Ṽ2
21 and note that2M5UU821. From ~4.8!, it follows that
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M5
1

A2l
~Ṽ11Ṽ2!~Ṽ22Ṽ1!215

1

A2l
~ I 1R!~ I 2R!21, ~4.10!

and, by~4.9!, that R will satisfy the Riccati equation

R852A2lR1
1

2A2l
QR1

1

2A2l
RQ1

1

2A2l
RQR1

1

2A2l
Q. ~4.11!

We may view this Riccati equation as an equation of type~4.5!, of Lemma 4.4, with

A52A2lI 1
1

2A2l
Q, B5

1

2A2l
Q

and

C5
1

2A2l
RQR1

1

2A2l
Q,

so that the systems to be considered are

Z85S 2A2lI 1
1

2A2l
QD Z and Y85YS 1

2A2l
QD . ~4.12!

Since the system

Z85S 2A2lI 1
1

2A2l
QD Z,

with notation Z̃5e22A2lxZ, can be written as

Z̃85
1

2A2l
QZ̃,

it follows from Lemma 4.5 that

Y~x!5Y~0!S I 1OS 1

Aulu
D D and Z~x!5S I 1OS 1

Aulu
D D Z~0!e2A2lx. ~4.13!

Since Y21 and Z̃21 solve the equations

~Y21!852
1

2A2l
QY21 and ~ Z̃21!852Z̃21S 1

2A2l
QD ,

similar arguments give that also

Y21~x!5S I 1OS 1

Aulu
D D Y21~0!,

Z21~x!5e22A2lxZ21~0!S I 1OS 1

Aulu
D D . ~4.14!
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With notation from~4.12!, we will now seek to find a solutionR(x) of ~4.11!, with R(`)
50. By Lemma 4.4, such a solution would satisfy

R~x!52
Z~x!

2A2l
S E

x

`

Z21~ t !@R~ t !Q~ t !R~ t !1Q~ t !#Y21~ t ! dtDY~x!. ~4.15!

Now, provided the integrals exist, we recursively define the sequence of functions$Rn(x)% by

R050,

Rn11~x!52
Z~x!

2A2l
S E

x

`

Z21~ t !@Rn~ t !Q~ t !Rn~ t !1Q~ t !#Y21~ t ! dtDY~x!. ~4.16!

Now, put

r n~x,l!5sup
t>x

iRn~ t,l!i and Ñx~l!5
1

2Aulu
E

x

`

iQ~ t !i dt.

Since

R1~x,l!52
1

2A2l
E

x

`

Z~x!Z21~ t !Q~ t !Y21~ t !Y~x! dt,

it follows immediately from~4.13!–~4.14! and their deductions that

iR1~x,l!i<
1

2Aulu
E

x

`

iQi S 11OS 1

Aulu
D D→0, ~4.17!

uniformly in x, when l→`, bringing us to the conclusion thatr 1(x,l) too has this property.
Furthermore, we have thatiR1(x,l)i<CÑ0(l) for some constantC, when l is large. Now
Ñx(l) is uniformly bounded inx, when ulu→`. Since alsor 1(x,l)<r 1(0,l), we thus con-
clude that there exists al0 such that

4r 1~0,l!CÑ0~l!,1, when ulu>l0 . ~4.18!

By ~4.16!, it now follows that

r n11~x,l!<r 1~x,l!1CÑx~l!r n~x,l!2, ~4.19!

and hence a simple induction yields

r n~x,l!<2r 1~x,l!, n51,2,... . ~4.20!

Now, put

dn~x,l!5sup
t>x

iRn~ t,l!2Rn21~ t,l!i .

Since, by~4.16!,
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Rn~x,l!2Rn21~x,l!52
1

4A2l
E

x

`

Z~x!Z21~ t !3$@Rn21~ t,l!2Rn22~ t,l!#Q~ t !@Rn21~ t,l!

1Rn22~ t,l!#1@Rn21~ t,l!1Rn22~ t,l!#Q~ t !@Rn21~ t,l!2Rn22~ t,l!#%

3Y21~ t !Y~x! dt,

it follows from ~4.20! that

dn~x,l!<4CÑx~l!r 1~x,l!dn21~x,l!.

As d15r 1 , it follows that

dn~x,l!<@4CÑx~l!r 1~x,l!#n21r 1~x,l!. ~4.21!

From ~4.18!, we then obtain thatRn(x,l) has to converge, uniformly inx andl, to the solution
of ~4.15!, as soon asulu>l0 .

Now, put Q1(x,l)5R1(x,l), where R1 is given by~4.16!. Thus, Q1 is the quantity ob-
tained by deleting the quadratic term in~4.15!. Also put S15R2Q1 . Then, S1 satisfies the
equation

S182A1S12S1B15
1

2A2l
~S1QS11Q1QQ1!,

where

A152A2lI 1
1

2A2l
~ I 1Q1!Q, B15

1

2A2l
Q~ I 1Q1!.

Deleting the quadratic termS1QS1 , the solution is

Q2~x,l!52E
x

`

Z1~x!Z1
21~ t !S 1

2A2l
Q1~ t !Q~ t !Q1~ t !D Y1

21~ t !Y1~x! dt,

where Z185A1Z1 and Y185Y1B1 . Now, by putting S25R2Q12Q2 and repeating this proce
dure, we obtain a sequenceQn , n51,2,..., where Qn satisfies that

Qn85An21Qn1QnBn211
1

2A2l
Qn21QQn21 , ~4.22!

and, with notationSn215( j 50
n21Qj ,

An2152A2lI 1
1

2A2l
Sn21Q, Bn215

1

2A2l
QSn21 , ~4.23!

where we have setQ05I . The solution of~4.22!, vanishing at̀ , is

Qn~x,l!52E
x

`

Zn21~x!Zn21
21 ~ t !S 1

2A2l
Qn21~ t !Q~ t !Qn21~ t !D Yn21

21 ~ t !Yn21~x! dt,

~4.24!

where
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Zn218 5An21Zn21 and Yn218 5Yn21Bn21 . ~4.25!

By ~4.17!, it follows that r 1(0,l)→0, l→`, so there exists al0 with the property that

r 1~0,l!,minS 1

2
,

1

2N̂0
D , when ulu>l0 , ~4.26!

where N̂x5 1
2*x

`iQi . By induction, we shall now see thatQn is well-defined, and that

iQn~x,l!i<r 1~x,l!@N̂xr 1~x,l!#2n2121. ~4.27!

For n51, ~4.27! is true by definition. Now, assume that~4.27! is true for n<N. By ~4.23!–
~4.25! and Lemma 4.5, we then have that

iQN11~x,l!i<
1

2uA2lu
E

x

`S 11OS 1

Aulu
D D iQiiQNi2

<@r 1~x,l!@N̂xr 1~x,l!#2N2121#2N̂x5r 1~x,l!@N̂xr 1~x,l!#2N21,

for largel. Now, since r 1(x,l)<r 1(0,l), it follows from ~4.26! that

iQN~x,l!i<r 1~0,l!@N̂0r 1~0,l!#2N2121<22N. ~4.28!

Thus, we conclude that the seriesS(x,l)5(n51
` Qn(x,l) converges uniformly inx and ulu

>l0 . Moreover, it now follows from~4.22! and ~4.28! that it is permissible with termwise
differentiation of the seriesS. By ~4.22!, it also follows that S satisfies~4.11!. That S(x,l)
→0, x→`, follows by dominated convergence. Thus, we conclude thatS satisfies~4.15!.

Since now, for a solutionR of ~4.11!, a straightforward calculation shows that a solution
~4.9! may be found by solving the equation

Ṽ2852A2lṼ22
1

2A2l
QṼ22

1

2A2l
QRṼ2

and then settingṼ15RṼ2 , our proof is complete in view of the fact that the Neuma
M -function for the interval@0,̀ ! is M (l)52U(0,l)U821(0,l). h

Remark 4.6:Note that it immediately follows from~4.27! that, for largel,

iQn~x,l!i<S ~11«!2

2uA2lu
E

x

`

iQi D 2n21

.

To see what happens if the condition ofQ in Hypothesis 4.1 is weakened toQ5Q*
PL loc

1 (@0,b))m3m, we shall make use of the following lemma, and from this point on, w
referring to anonreal sector, we will mean a closed sector with a vertex at the origin and
intersecting the real line.

Lemma 4.7: Suppose Q5Q* PL loc
1 (@0,b))m3m and cP(0,b). Then, put Q(x)5Q̃(x) for

xP@0,c) and Q̃(x)50 for x.c. Furthermore, let M˜ B be the M-function for the potential Q˜ ,
and corresponding to the boundary condition~2.2!, on the interval@0,̀ !. Then

MB~l!2M̃B~l!5O~e22(c2«)ReA2l!,

for all «.0, as l→` in any nonreal sector.
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Proof: Assume first thatS5I and C50 in ~2.2! ~i.e., the case of the Neumann bounda
condition at 0! and let M and M̃ denote the corresponding~Neumann! M -functions. Consider
the Riccati-equations~see~3.4!! satisfied byM and M̃ , respectively, on@0,c),

M 85M ~Q2lI !M2I ,

M̃ 85M̃ ~Q̃2lI !M̃2I ,

where it follows from Theorem 3.6 that

M ,M̃5
1

A2l
@ I 1o~1!#, ~4.29!

uniformly in x for xP@0,c#. Using the Riccati equations, it follows that

M 82M̃ 85~2 1
2 l~M1M̃ !1 1

2 ~M1M̃ !Q!~M2M̃ !

1~M2M̃ !~2 1
2 l~M1M̃ !1 1

2 Q~M1M̃ !!, ~4.30!

which is an equation of type~4.5! with

A52
1

2
l~M1M̃ !1

1

2
~M1M̃ !Q5A2l@ I 1o~1!#1OS 1

Aulu
D Q,

B52
1

2
l~M1M̃ !1

1

2
Q~M1M̃ !5A2l@ I 1o~1!#1QOS 1

Aulu
D ,

C5 0,

where the last equalities in the formulas above follow from~4.29!.
We now consider the equations

Y85AY, Y~c!5I ; ~4.31!

Z85ZB, Z~c!5I . ~4.32!

Since, by~4.29!, Ỹ(x)5eA2l(c2x)Y(x) satisfies the equation

Ỹ85S A2l o~1!1OS 1

Aulu
D QD Ỹ,

or, equivalently,

Ỹ~x!5I 2E
x

cS A2l o~1!1OS 1

Aulu
D QD Ỹ~ t ! dt,

it is now an immediate consequence of Gro¨nwall’s inequality that

Y~0!5O~e2(c2«)ReA2l !,

as l→` in the prescribed way. Analogous calculations forZ yield that also

Z~0!5O~e2(c2«)ReA2l !.
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Since now, by Lemma 4.4,

M ~l!2M̃ ~l!5Z~0!DY~0!,

for some matrixD, independent ofx, satisfying thatD5O(1/uA2lu), the lemma follows in
this special case.

In the general case, we have that~see~3.1!!

M̃B5~S2M̃C!21~C1M̃S! and MB5~S2MC!21~C1MS!. ~4.33!

Letting USV* 5DS be the SVD-decomposition of the matrixS according to Lemma 2.4 and
Convention 2.5, it follows that

VMBV* 5FDS2
1

A2l
L2G21

@ I 1o~1!#FL1
1

A2l
„I 1o~1!…DSG ,

which shows that every element ofMB is of order at mostO(Aulu ). Since, by above,M̃5M
1O(e22(c2«)ReA2l), it then follows from~4.33! that

M̃B5MB1O~e22(c2«)ReA2l!,

which concludes the proof of the lemma also in the general case. h

Remark 4.8:The same idea of proof can be found in, e.g., Ref. 16.
Under the weaker condition thatQ5Q* PL loc

1 (@0,b))m3m, of Hypothesis 4.1, and the serie
now being the one forQ̃, this thus proves that~4.3! and~4.4! are valid with exponentially smal
errors for lPC , ulu large, in some fixed nonreal sector.~cf. Ref. 22!.

V. THE BORG–MARCHENKO THEOREMS

In addition to the operatorT, again in the special case ofP5W5I in ~1.1!, with spectral
measuredr ~see Lemma 2.1!, we now consider another similar operatorT̃, with spectral mea-
sure dr̃, generated by an equation,

R̃@U#ª2U91Q̃U5lU, xP@0,b̃!,

with Q̃ as in Hypothesis 1.1, and with boundary conditions

S̃* U8~0,l!1C̃* U~0,l!50

at 0 and, if necessary to makeT̃ self-adjoint in L2(@0,b̃))m31, also boundary conditions atb̃.
For definiteness, we also assume thatb<b̃.

We will prove the following two theorems, where the second one~i.e., Theorem 5.2 below! is
a version of Simon’s local Borg–Marchenko theorem~cf. Ref. 16, Chap. 3!. From this point on,
when mentioning a ray, we will always mean a half line starting at the origin.

Theorem 5.1:The spectral matrices dr̃ and dr coincide if and only if T˜ and T differ by
conjugation by a constant and unitary matrix R, i.e., there exists such a unitary matrix so th

S̃5RS, C̃5RC, Q̃5RQR* , and b̃5b. In addition, we obtain thatc̃5Rc, where c̃ andc

satisfy the boundary conditions (if any) at b˜ 5b.
Theorem 5.2:Assume that S˜ 5S, C̃5C and that cP(0,b). Then Q̃5Q on @0,c) if and

only if

MB~l!2M̃B~l!5O~e22(c2«)ReA2l!,
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for every «.0, as l→` along some nonreal ray.
Remark 5.3:Note that a consequence of formula~3.1! is that two boundary conditions,

F~0,l!5S S C

2C SD and F̃~0,l!5S S̃ C̃

2C̃ S̃
D ,

corresponding to the same equation and being of type~2.2!, give rise to the sameM -function
precisely when there is a unitary matrixR1PC m3m such that

S S̃ C̃

2C̃ S̃
D 5S R1 0

0 R1
D S S C

2C SD .

This transformation changes the equation as described in Theorem 5.1, but leaves the
measure unchanged. Therefore, it is natural to consider two equationsequivalent, if they are
connected in this way. On the other hand, taking a unitary~and constant! matrix R2PC m3m and
making the transformation

S S̃ C̃

2C̃ S̃
D 5S S C

2C SD S R2* 0

0 R2*
D ,

leaves the equation unaltered, but changes theM -function and the spectral measure by conjugat
by R2 . In view of this, Lemma 2.4 and Convention 2.5, it is natural to considerF(0,l) and
F̃(0,l) equivalentif there exist unitary matricesR1 ,R2PC m3m such that

S S̃ C̃

2C̃ S̃
D 5S R1 0

0 R1
D S S C

2C SD S R2* 0

0 R2*
D ;

this implying that the matricesS and S̃ have the same SVD-decomposition. A naturalnormal
form for boundary conditions of type~2.2! would therefore be

S USV* UCV*

2UCV* USV* D 5S DS L

2L DS
D ,

where USV* 5DS is the SVD-decomposition of the matrixS according to Lemma 2.4 and
Convention 2.5. With boundary conditions, of type~2.2!, on this normal form, it will then follow
that the unitary matrixR in Theorem 5.1 is the identity.

To prove Theorem 5.1 and Theorem 5.2 above, we shall need the following results.
Proposition 5.4: If U solves (1.4), withl-independent initial values at0, we have that

U~x!5@cosh~xA2l !1exA2l~e~1/Aulu! *0
xiQi21!O~1!#U~0!1@sinh~xA2l !

1exA2l~e~1/Aulu! *0
xiQi21!O~1!#

1

A2l
U8~0!, ~5.1a!

U8~x!5@sinh~xA2l !1exA2l~e~1/Aulu! *0
xiQi21!O~1!#A2lU~0!1@cosh~xA2l !

1exA2l~e~1/Aulu! *0
xiQi21!O~1!#U8~0!, ~5.1b!

uniformly in x andl.
Proof: Solving the equationU91lU5QU by the method of variation of constants yield

for k5A2l,
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U~x!5cosh~kx!U~0!1
sinh~kx!

k
U8~0!1E

0

x sinh„k~x2t !…

k
Q~ t !U~ t ! dt. ~5.2!

Putting

g~x!5 IU~x!2cosh~kx!U~0!2
sinh~kx!

k
U8~0!Ie2x Rek,

straightforward estimates give

g~x!<
c~k!

uku E
0

x

iQi1
1

uku E0

x

iQig,

where c(k)5iU(0)i1 (1/uku) iU8(0)i . Integrating after multiplication by the integrating fact

iQ(x)ie2 (1/uku) *0
xiQi yields

g~x!<c~l!~e~1/Aulu! *0
xiQi21!, ~5.3!

from which the estimate forU immediately follows. Finally, differentiating~5.2! and using~5.3!
on the right hand-side gives the stated estimate forU8 as well. h

Corollary 5.5: Under the conditions made in Proposition 5.4, U has order1/2 as an entire
function ofl, locally uniformly in x.

Proof: Immediate from~5.1a!! h

Lemma 5.6: With notation from (2.1) and (2.6),

c~x,rm!w* ~x,r m̄ !→0, r→`, r PR1,

locally uniformly for mPC \R and xP(0,b).
Proof: Let xP(0,b) and consider the operator generated byR ~see~1.1!! in L2(@x,b))m31

under the Neumann boundary condition atx and the same boundary condition~if any! as before
at b. By the same reasoning leading to formula~3.4!, we then have that theM -function for the
interval @x,b) is M̂ (x,l)52c(x,l)c821(x,l). On the other hand, for the interval (0,x# with
x considered as the initial point and with the boundary condition of~2.2! at 0, we obtain that
M (x,l)5w(x,l)w821(x,l)5w8* 21(x,l̄ )w* (x,l̄ ) is the M -function for this interval. The
change in sign stems from the fact that the initial point of the interval concerned now lies t
right of the other endpoint. Sincew8* u2w* u85w8* c2w* c852I , by ~2.5b!, we obtain that

cw* 52c~w8* c2w* c8!21w* 52~M 211M̂ 21!21,

so that the theorem follows from Theorem 3.6. h

Remark 5.7:Note that

c~x,l!w* ~x,l̄ !

could be considered to beGreen’s function, on the diagonal, corresponding to the self-adjo
operatorT.

Lemma 5.8: If, with notation from~2.2!, N(S)5N(S̃), where N(S) denotes the null space o
the matrix S, we have that

w* 21~x,r m̄ !w̃* ~x,r m̄ !5O~1!,

locally uniformly for mPC \R and xP(0,b), as r→`.
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Proof: Let VSU* 5DS and ṼS̃5DS̃Ũ be the SVD-factorizations ofS and S̃, respectively,
according to Lemma 2.4 and Convention 2.5, and letn5dimN(S)5dimN(S̃). It then follows
that N(DS)5N(DS̃) is invariant underŨU* since

ṼS̃U* 5DS̃ŨU* .

Thus, we conclude that

ŨU* 5S U1 U2

U3 U4
D PC m3m,

with U1PC (m2n)3(m2n), U2 ,U3* PC (m2n)3n and U4PC n3n, where we have thatU250 and
thus also thatU350, since ŨU* is unitary. It so follows thatU1 and U4 too are unitary. By
Proposition 5.4, we thus have that

Vw* 21w̃* Ṽ* 5Vw* 21U* Uw̃* Ṽ* 5@ I 1o~1!#FDS1
1

A2l
L2* G21

3FUŨ* DS̃1
1

A2l
UŨ* L̃2* G @ I 1o~1!#,

where

UŨ* DS̃5S D1 0

0 0D , D1PC (m2n)3(m2n).

Thus, it follows thatw* 21w̃* 5O(1) in the desired way. h

We are now ready to state the final lemma, which will constitute the main part of the p
of Theorem 5.1 and Theorem 5.2 above.

Lemma 5.9: Let g, for some constantC, denote the entire function (ofl),

g~x,l!5u~x,l!w̃* ~x,l̄ !2w~x,l!ũ* ~x,l̄ !2w~x,l!Cw̃* ~x,l̄ !, xP@0,c!,

where cP(0,b#. If

g~x,l!→0, ~5.4!

pointwise in x, when l→` along two nonreal rays, then S˜ 5RS, C̃5RC and Q̃
5RQR21, on @0,c), for some unitary and constant matrix R.

Proof: By ~5.4!, g is, for each fixedxP@0,c), bounded on the given rays. Since in additio
by Corollary 5.5, g has order at most 1/2, the Phragme´n-Lindelöf theorem gives thatg is
bounded, and, hence, by Liouville’s theorem,g is constant. In view of~5.4!, this means thatg
50 for all lPC and all xP@0,c). This yields that

w21u2~ w̃21ũ !* 5C. ~5.5!

From ~2.5a! it follows that w* 21w8* 5w8w21, and from~2.5b! that w* 215u82w* 21w8* u, so
that

w* 215u82w8w21u.

Differentiating w21u thus gives

~w21u!85w21~u82w8w21u!5~w* w!21,
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so that differentiating~5.5! gives

w* w5w̃* w̃. ~5.6!

By differentiating~5.6!, followed by the use of~2.5!, we obtain that

w21w85w̃21w̃8, ~5.7!

which, in its turn, differentiated under use of~5.7! yields

w21w95w̃21w̃9. ~5.8!

Hence, using that the columns ofw and w̃ are solutions of their corresponding equations, t
gives, with notationR5w̃w21,

RQR215Q̃. ~5.9!

Differentiating the expression forw̃5Rw and multiplying by w̃21 from the left now yields

w̃21w̃85w̃21R8w1w21w8 or equivalently, by~5.9!, w̃21R8w50,

which means thatR is independent ofx. From the fact that

H w̃~0!5Rw~0!,
w̃8~0!5Rw8~0!, or, equivalently, H S̃5RS,

C̃5RC,

it now follows that R is unitary and independent ofl as well, which concludes the proof of th
lemma. h

Proof (Theorem 5.1):Let US* V* 5DS be the SVD-decomposition ofS* according to
Lemma 2.4 and Convention 2.5, and letMB and M̃ B̃ denote theM -functions corresponding to
the operatorsT and T̃, respectively. LettingM denote theNeumann M-function, it follows by
~3.1! that MB5(C* 1S* M )(S* 2C* M )21 , and hence that

UMBU* 5FL1
1

A2l
DS„I 1o~1!…G @ I 1o~1!#FDS2

1

A2l
L2* G21

, ~5.10!

where the last equality follows from Theorem 3.2. Thus, we conclude that every element oMB

is of order at mostO(Aulu ), i.e., C250 in the representation formula forMB , given in Lemma
2.2. In view of this fact, and our assumption thatdr5dr̃, Lemma 2.2 yields that

MB2M̃ B̃5C, ~5.11!

for some constantC. Moreover, it now follows from~5.10! that UMBU* is bounded precisely on
N(DS)', and hence thatMB is bounded precisely onN(S)'. Analogous reasoning forM̃ B̃

shows that thisM -function is bounded precisely onN(S̃)'. In view of ~5.11!, this implies that
N(S)5N(S̃). By the fact that

c~x,rm!w̃* ~x,r m̄ !5c~x,rm!w* ~x,r m̄ !w* 21~x,r m̄ !w̃* ~x,r m̄ !, ~5.12!

~5.11!, Lemma 5.6 and Lemma 5.8 give that

g~x,l!5c~x,l!w̃* ~x,l̄ !2~ c̃~x,l̄ !w* ~x,l!!* 5u~x,l!w̃* ~x,l̄ !2w~x,l!ũ* ~x,l̄ !

2w~x,l!Cw̃* ~x,l̄ !→0, l→`,
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along any nonreal ray, so that Lemma 5.9 gives thatS̃5RS, C̃5RC and Q̃5RQR21 for some
constant and unitary matrixR. Hence, forxP@0,b), we have thatw̃(x,l)5Rw(x,l), and since
g50 and cw* 5wc* ~which is a consequence of Remark 5.7! also that c̃(x,l)5Rc(x,l).
Moreover, this means that the columns ofũ and Ru satisfy the same equation and the sa
initial data, and hence we conclude thatũ(x,l)5Ru(x,l). This means thatMB5M̃ B̃ as well.
Finally, we also have thatb̃5b, since if b̃.b, c̃ would satisfy self-adjoint boundary condition
both at b and b̃, which would mean thatc̃ would be an eigenfunction corresponding to
nonreal eigenvalue of a symmetric operator. h

Proof (Theorem 5.2.):Assume first thatQ5Q̃ on @0,c). Then, Lemma 4.7 immediately
gives the first part of the theorem.

The second part follows from the following facts. By~5.12!, Lemma 5.6 and Lemma 5.8, w
have that

c~x,l!w̃* ~x,l̄ !→0,

when l→` along any nonreal ray, and hence also that

c~x,l!w̃* ~x,l̄ !2„c̃~x,l̄ !w* ~x,l̄ !…* 5w~x,l!„M̃B~l!2MB~l!…w̃* ~x,l̄ !1u~x,l!w̃* ~x,l̄ !

2w~x,l!ũ* ~x,l̄ !→0,

when l→` in the prescribed way. Since we now have made the assumption that

MB~l!2M̃B~l!5O~e22(c2«)ReA2l!,

it follows from Proposition 5.4 that, forxP@0,c), w(M̃B2MB)w̃* →0, when l→`. Thus, we
conclude that the entire function~of l!,

u~x,l!w̃* ~x,l̄ !2w~x,l!ũ* ~x,l̄ !→0, l→`, xP@0,c!,

so that Lemma 5.9 now concludes the proof of the theorem. h
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Goursat distribution and sub-Riemannian structures
A. Anzaldo-Menesesa) and F. Monroy-Pérez
Departamento de Ciencias Ba´sicas, Universidad Auto´noma Metropolitana-Azcapotzalco,
Mexico D. F., 02200, Mexico
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We obtain the Lie group whose action leaves invariant the sub-Riemannian struc-
tures associated with Goursat systems and Euclidean metrics. The group naturally
contains the Heisenberg group, the nilpotent group associated with the Martinet
case, and the group corresponding to systems of Engel type. We compute also the
Casimir functions of the associated nilpotent Poisson algebra. Our results general-
ize previous works on this problem of nonholonomic systems. A particular physical
problem described by our model is the motion of electric charges in certain static
inhomogeneous magnetic fields. We define a new algebraic curve in total space and
compute two examples of sub-Riemannian extremals in cotangent space. ©2003
American Institute of Physics.@DOI: 10.1063/1.1625417#

I. INTRODUCTION

In this work, we study rank two distributions equivalent to the Goursat distribution a
dynamical system associated with it. To have a simple system in mind, we will study the m
of an electric chargeq in the Euclidean planeM subject to an external perpendicular inhomog
neous magnetic field, from the point of view of sub-Riemannian geometry on a smooth ma
P.M . For simplicity, we consider only magnetic fields, which are polynomial of degreeN in a
single variable. Our main result provides the group which describes the symmetries of th
Riemannian structure, given in terms of a rank two distribution of vector fieldsD,TP and a flat
Riemannian metriĉ ,&. Nilpotent Lie groups are essential in our solution and contain as
simplest nilpotent subgroup the well-known Heisenberg group. The intrinsic geometry defin
this group onR3 provides a model for the higher dimensional cases, in this sense all of them
be thought of as deformations of it. Also the so-called ‘‘Martinet case’’ considered
Montgomery14 and by Bonnard and co-workers4 is naturally contained as a particular examp
corresponding to linear magnetic fields. Some general results concerning nonhomogeneou
netic fields were first given by Montgomery14 for electric charges, but here we present explicit a
detailed results. The one forms associated with the inhomogeneous magnetic fields lea
study Goursat distributions and the extension of the standard two-dimensional Lagrangian
space to higher dimensions associated with certain constants of motion. In the final sections
work, we define a new algebraic curve in the totalN13-dimensional space. We show that th
sub-Riemannian geodesics are defined by this curve and by the Pfaffian system of constra

The sub-Riemannian approach to this problem provides us with a Lie algebraic method
could be of certain importance in the study of other classical or quantum mechanical dyna
problems of theoretical physics. Further, the analysis of the quantum dynamics of particles
magnetic fields12,13 gives an important understanding of the quantum spectra, when consi
through the sub-Riemannian approach.14

II. SUB-RIEMANNIAN STRUCTURES

Let P be anN13-dimensional smooth manifold with coordinatesq5(x,y,u1 ,...,uN11), we
consider the following nonholonomic constraints:

a!Author to whom all correspondence should be addressed; electronic mail: alfons–rex@hotmail.com
61010022-2488/2003/44(12)/6101/11/$20.00 © 2003 American Institute of Physics
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q̇5 ẋZ1~q!1 ẏZ2~q!, ~1!

given in terms of the rank two distributionD5$Z1 ,Z2%. The vector fields ofD belong to the
tangent bundleTP of P. We will assume that the distributionD is bracket generating. This means
that there is an integern such thatDp

n5TpP for eachpPP. Here,D i 115@D,D i #, i 51,..., which
leads to the flagDp,Dp

2,¯,TpP. An important quantity here is thegrowth vector np of D at
the pointp, defined asnp5(n1p ,n2p ,...,nnp), wherenip5dimDp

i . Here,n1p52, and generically
we shall havennp5N13, but this last number can be smaller under some circumstances.

In this work we assume that the distributionD generates the nilpotent Lie algebrag with the
following nonzero brackets:

@Z1 ,Z2#5..Z3 , ..., @Z1 ,ZN12#5..ZN13 . ~2!

Observe thatZN13 is a central element ofg. The corresponding Lie groupG can be obtained
locally by exponentiation of the elements of the Lie algebra, which can then be regarded
family of left invariant vector fields with respect to the group law. The subalgebras generat
the fields$Zk , kÞ1% are Abelian. The subalgebrasgi generated by$Z1 ,Zi 11 ,Zi 12 ,...,ZN13% for
i>1 lead tog5g1.g2.¯.gN13 , wheregi 11 is an ideal ingi . The algebrag is solvable and we
have the flag of Abelian idealsg5 g̃1. g̃2.¯. g̃N13 , where g̃i is the ideal generated b
$Zi ,Zi 11 ,...,ZN13% for i .1.

The pairing (v,Z)5( f igi , written in a particular basis wherev5( f iei* andZ5(giei , such
that (ei* ,ej )5d i j , leads to the splittingTpP5Verp% Horp , where Verp is called the vertical
subspace atp and Horp the horizontal subspace atp of TpP. Here we have Hor5D, and Ver
5g0 whereg0 is the Abelian algebra generated by$Z3 ,... ,ZN13%.

Definition: A sub-Riemannian geometryis a triple$P,D ^,&p%, where^,&p is an inner product
in Dp,TpP for eachpPP. The set$D,^,&% is called asub-Riemannian structure.

We define the inner product onD by considering$Z1 ,Z2% to be an orthonormal set in such
way that^q̇,q̇&5( ẋ21 ẏ2)/2. We consider then the extremum of the action

S5E
o

T

^q̇,q̇&dt, ~3!

subject to the nonholonomic constraints given by Eq.~1!. The length of the curveq:@0,T#
→RN13 is given by

L5E
o

T

^q̇,q̇&1/2dt. ~4!

The infimum of the lengths of all curvesq(t) joining two points qi and qf , with q̇(t)
PD(q(t)) for almost eacht, is called thesub-Riemannian distancebetween the pointsqi andqf .

We consider the Euclidean spaceM,P as thebase spacewith coordinates (x,y). The rela-
tion ~1! defines thehorizontal lifts Z1 andZ2 of tangent vectors onTM. The horizontal lift gives
a smoothly varying family of linear mapssp :TxM°TpP, wherex5p(p)PM is the projection
of p by the submersionp : P→M . The subspacesp21(x),TpP are the fibers ofp. A connection
is defined by the horizontal distribution Hor, formed by the set of horizontal subspaces
horizontal lift satisfiesdpp+sp5 identity mappingon TxM and s(gp)5gs(p), with gPG0 ,
where G0 is the Lie group associated with the Abelian subalgebrag0 . Altogether, the natura
setting for this problem is theprincipal bundle(P,M ,p,G0), with total spaceP, base spaceM ,
and with Abelian structure groupG0 .

Theorem: The dynamical system defined by the metric( ẋ21 ẏ2)/2 and the non-holonomic
constraints q˙ 5 ẋZ1(q)1 ẏZ2(q) is invariant under the left action of G on P.

Proof: The result follows from the definition of left invariant vector fields. h
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III. GOURSAT DISTRIBUTION

A usual Pfaffian system onP is the so-called Goursat system which is defined by Ker$n i% with

n15du11ydx, n25du21u1dx, ... ,nN115duN111uNdx. ~5!

These forms have a well-defined degree. Setting deg(x)5deg(y)51, we get deg(ui)5 i 11. Par-
ticular cases for which some of these forms are absent could be of interest, in such ca
dimension of the manifold would be correspondingly lower. These one-forms define wh
known as achained system. By adding, as usual, the one-forms dx and dy one completes a linearly
independent set which encodes the constraints of Eq.~1! and yields a rank two distribution
$Y1 ,Y2%, with

Y15]x2 (
i 51

N11

ui 21]ui
, Y25]y , ~6!

here for notational reasons we takeu05y. As before,Yi 12ª@Y1 ,Yi 11#5]ui
for i 51,...,N11,

and theYi ’s satisfy the same algebra as theZi ’s. The vector fieldsYi are left invariant with
respect to left translations associated with the Lie groupG1 with product law a a85(a1

1a18 ,a21a28 ,a31a382a18a2 ,...,aN131aN138 2a18aN12). Thus, we have the following result.
Theorem: The dynamical system defined by the metric( ẋ21 ẏ2)/2 and the Kernel of the

one-formsn i , i 51,...,N11 is invariant under the left action of G1 .
Proof: The result follows once more from the definition of left invariant vector fields.h

IV. AN ALTERNATIVE DISTRIBUTION

In this section we give an alternative distribution which is equivalent to the Goursat dist
tion defined in the last section. An analytic map between the involved variables in both pro
can also be given. The geometrical problem consists now in the calculation of the extremum
action Eq.~3!, subject to nonholonomic constraints defined by the Pfaffian system Ker$vk , k
51,... ,N11%, in terms of the one-forms

vk5duk2
1

k!
xkdy, k51,...,N11. ~7!

Hereq5(x,y,u1 ,...,uN11) are the coordinates of the total spaceP and the nonholonomic con
straints of Eq.~1! are given in terms of the vector fields

X15]x , X25]y1 (
i 51

N11
1

i !
xi]u i

. ~8!

The Lie brackets lead in our problem to the same nilpotent Lie algebrag defined above with

Xj 125 (
i 5 j

N11
1

~ i 2 j !!
xi 2 j]u i

, j 51,...,N11. ~9!

The above vector fields are left invariant with respect to left translations associated wi
Lie groupG2 with product lawa•a85(a11a18 ,a21a28 ,... ,aN139 ), with

a395a31a381a1a28 ,..., ak95ak1ak81 (
j 52

k21
1

~k2 j !!
a1

k2 ja j8 ,...,

~10!

aN139 5aN131aN138 1
1

~N11!!
a1

N11a281
1

N!
a1

Na381¯1a1aN128 .
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Thus, we have the following result.
Theorem: The dynamical system defined by the metric( ẋ21 ẏ2)/2 and the Kernel of the

one-formsv i5du i2xidy/ i !, i 51,...,N11 is invariant under the left action of G2 .
Proof: The result follows once more from the definition of left invariant vector fields.h

V. EQUIVALENCE OF THE DISTRIBUTIONS

Both the kernel of the Goursat system and that of the alternative Pfaffian system enco
nonholonomic constraints~1!. In this sense, both systems under consideration are equivalent,
precisely:

Theorem: Ker$n j% and Ker$v j% are equivalent under the coordinate transformation

uj5
~2 ! j

j !
xjy 1 (

i 50

j 21
~2 ! i

i !
xiu j 2 i , u j5

1

j !
xjy 1 (

i 50

j 21
1

i !
xiuj 2 i . ~11!

Proof: By direct substitution. h

A different control problem which is also related to the Goursat distribution is the so-c
N-trailer problem. However, the proof of the equivalence of both distributions is by far m
involved.17 The study of the equivalence of Pfaffian systems goes back to Cartan8 and involves
fine theoretical issues that go beyond the purposes of this paper, see for instance Olver’s16

VI. TRAJECTORIES

Consider now a smooth curveC:@2«,«#→M , t°C(t), passing through the pointx0

5C(0) and withp0 in the fiberp21(x) at x0 . Then the parallel transport ofp0 alongC is given
by the curve defined by dĈ(t)/dt5spdC(t)/dt, with Ĉ(0)5p0 and Ĉ(t)5p. The curveĈ
projects byp onto the curveC. We select herex050.

By Chow–Rashevsky’s theorem,5,6,9,15if the distribution is bracket generating, then any tw
points can be connected by a smooth horizontal pathĈ, if the underlying manifold is connected
In this section we shall show how to integrate the equations of motion for the present prob

We will consider the trajectories only for the nonholonomic constraints Eq.~1! and the metric
( ẋ21 ẏ2)/2. The Lagrangian is given by

L5l0
1
2 ~ ẋ21 ẏ2!1l•~ q̇2 ẋZ1~q!2 ẏZ2~q!!, ~12!

with q5(x,y,u1 ,...,uN11), l5(0,0,l1 ,...,lN11), and theZi ’s acting onq coordinate by coor-
dinate. Here, thelk , k51,...,N11, are Lagrange parameters, in general time dependent an
numberl0 can take the values 0 or 1. Solutions forl051 are callednormal extremalsand those
for l050 areabnormal extremals. An extremal is calledstrictly abnormalif it is not the projec-
tion of a normal horizontal curve.4 In the Physics literature, the casel050 is known as the
exceptional case.10 Abnormal extremals have recently been treated mainly in the geometric co
theory and sub-Riemannian geometry literature, although they were considered already by3

and Carathe´odory.7 In the remainder of the paper we consider only normal extremalsl051. The
abnormal extremals and their physical significance shall be discussed elsewhere.

Now, for the particular Pfaffian system Eq.~7!, we have

L5
1

2
~ ẋ21 ẏ2!1 (

k51

N11

lkS u̇k2
1

k!
xkẏD . ~13!

The canonical momenta are given by

px5
]

] ẋ
L5 ẋ, py5

]

] ẏ
L5 ẏ2(

k

lk

k!
xk, pj5

]

]u̇ j

L5l j , j 51,...,N11. ~14!
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The equations of motion for this problem are thus

ẍ5eBz~x!ẏ, ÿ52eBz~x!ẋ, l̇ i50, ~15!

with

eBz~x!52 (
i 51

N11
l i

~ i 21!!
xi 21. ~16!

All Lagrange parametersl i are constant. Clearly, by varying thel i , we can represent any poly
nomial magnetic field in thex variable. For simplicity, we shall assumelN11Þ0. The first two
equations can be interpreted as the equations of motion of an electric chargee of unit mass in the
plane x–y subject to the action of an inhomogenoeus magnetic fieldBz in the perpendicular
direction to the plane. The horizontal trajectoryĈ(t) is given by the solutionsx(t) andy(t) and
by the solutions of the Pfaff systemu̇ i2xi ẏ/ i ! 50, for i 51,...,N11. For the Goursat system th
equations forx andy remain the same.

From the equations of motion we obtain as usual the statement of energy conservation,
the following quantity is constant along the trajectories:

E5 1
2 ~ ẋ2 1 ẏ2!. ~17!

For simplicity we takeE51/2, which impliesẋ21 ẏ251. This assumption is equivalent to me
suring trajectories by arc length.

Remark: Some other selections of constraints leading to the same equations of motion
base space can be interpreted as equivalent gauges for the magnetic vector potential on
A5l•(dq2Z1(q)dx2Z2(q)dy) with dA5Bz dx∧dy5d(A1df), for an arbitrary gauge scalar
functionf. These arbitrary gauge choices are related to the group of automorphisms of th
algebrag.

We integrate first

ẏ5 ẏ01r ~x!5 ẏ0 2 E
0

x

eBz~v !dv, ~18!

wherer (x) is a N11-degree polynomial.
Theorem: The x variable satisfies

j25p2N12~x!, ~19!

with j5 ẋ and the polynomial p2N125a01a1x1 ¯ 1a2N12x2N12 of degree2N12 in x with
known real coefficients. There are at most N11 regions of the x axis where the motion is allowe
The boundary points of these regions are the real zeros of p2N12(x).

Proof: The assertion follows from the substitution of Eq.~18! into Eq. ~17!, obtaining

p2N12~x!51 2 ~ ẏ01r ~x!!2. ~20!

Now, note thatx, ẋ, y, andẏ must be real in our problem, hence we needp2N12>0. But since
p2N12 is a polynomial, we infer that thex axis has allowed regions only forx such thatp2N12

.0 and forbidden regions forx such thatp2N12,0, with a set of boundary points given by th
real zeros ofp2N12 . We need at least two real roots in a nontrivial problem, and obtain a set
most N11 allowed regions such thatp2N12(x)>0, since the leading coefficient ofp2N12 is
negative and equal to2(lN11 /(N11)!)2.

Remark: It is clear the importance of knowing the number of real roots of p2N12(x), this
leads us in a natural way to see the holomorphic extension of Eq. (19). For x,jPC the associated
algebraic curve is hyperelliptic of genus N. The coefficients ai can lead to singular algebraic
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curves for certain initial conditions associated with multiple zeros ofj2.
Now, sinceẏ is a polynomial of degreeN11 in x, Eq. ~17! can be interpreted as the equatio

for conservation of energy for the one-dimensional motion of a point particle of unit mass
total energyE5T1V(x), kinetic energyT5 ẋ2/2 andeffective potential energy

V~x!5
1

2
ẏ25

1

2 S ẏ01(
i 50

N
l i 11

~ i 11!!
xi 11D 2

. ~21!

Similarly, Eq. ~15! for ẍ can be interpreted as the corresponding equation of motion. This i
pretation makes clear the existence of allowed and forbidden gaps for motion, accord
whether the energyE is larger or smaller than the effective potential energyV(x), respectively.

In terms of the polynomial defined in Eq.~19!, p2N125122V. Thus, the relation 1
>p2N12>0, which corresponds to an allowed gap, is equivalent to 1>2V(x)>0. Additionaly, we
note here that the maxima ofV(x) are points ofunstable equilibriumof this mechanical analogy
These points are associated with singular algebraic curves as we shall see.

Corollary: The time dependence of the coordinate x(t) is given by the inverse function of th
hyper-elliptic integral

t~x!5E
o

x(t) dz

Ap2N12~z!
. ~22!

Here, it is necessary that p2N12(z).0 for 0,z,x(t), with at most simple zeros atz50 and/or
z5x(t).

Proof: The result follows integrating Eq.~19!. To make sense of the integrand,t must be real,
so thatp2N12>0. Further, ifp2N12 has a double zero atxr , then asx approachesxr the integrand
behaves locally as a constant times 1/(z2xr) and the integral grows to infinity. h

Corollary: If there exist x(tr)5xr such that Bz(xr)50 and ẋ(tr)50, the polynomial
p2N12(x) has at least a double root at x5xr .

Proof: From Eq.~20! it follows that

d

dx
p2N12~x!52 2r 8~x!~ ẏ01r ~x!!. ~23!

Therefore, the derivative is also zero atxr , sincer 8(x)52eBz(x). Now, sinceẋ(tr)50 means
that p2N12(xr)50, this polynomial has at least a double zero atxr . h

For example, forẋ050 andl150, i.e.,a0505a1 , the curve has at least a double point f
N.0 at x50. Note that sinceeBz(x)52l12l2x1¯ , the example corresponds to a trajecto
along a line~the y axis! for which the magnetic field is zero. Since, for this last conclusion,
remaining parallel lines on which the magnetic field is zero can be at any other values ofx, the
same appliesfor all straight lines on whichBW is zero.

VII. MOMENTUM AND CASIMIR FUNCTIONS

Let us now introduce the so-called1 momentum functionspX associated with a vector fieldX
on a manifoldM as functions on the cotangent bundle

pX~x,p!5p~X~x!!, pPTx* M , p:TxM→R. ~24!

In coordinatesp5(pidqi , X5(Xi(x,p)]qi
andpX(x,p)5(Xi(x,p)pi .

Under this correspondence the Lie brackets are associated with the negative of the corre
ing Poisson brackets, in particular@]x ,x#51 yields $px ,x%521. To simplify the notation we
shall writep iªpXi

, then the Poisson bracket realization of the algebra is given by the non
brackets$p1 ,p i%52p i 11 for i 52,...,N12. We calculate now, in a coordinate free fashio
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Casimir functions of the universal enveloping algebra of the above nilpotent Poisson a
associated with the nilpotent Lie algebra given by Eq.~2!. ClearlypN13 is a Casimir function.

Theorem: The generators satisfy

pN13
i pN122 i5 (

j 521

i
a j 11

~ i 2 j !!
pN12

i 2 j , i 50,...,N, ~25!

where theak are arbitrary constants, a051 and a150.
Proof: It is sufficient to corroborate all commutators withp1 . h

Theorem: The following N quantities are Casimir elements of the algebra

cj5
~2 ! j

j !
pN12

j 1 (
k50

j 21
~2 ! j 2k21

~ j 2k21!!
pN13

k pN122k pN12
j 2k21 , j 52,...,N11. ~26!

Proof: All commutators can be easily shown to vanish. It follows thatc25pN13pN11

2 pN12
2 /2 for N>1. h

Corollary: The Casimir elements cj satisfy the following recursion formula:

ci 115pN13
i pN122 i 2 (

j 521

i 21
cj 11

~ i 2 j !!
pN12

i 2 j , i 51,...,N, c051, c150. ~27!

Proof: The formula follows immediately from the expression Eq.~25! for the generators,
identifying the arbitrary constantsa i with the ci ’s. h

Theorem: The normal extremals in cotangent space are given by the intersection o
cylinders with directrixes

cN11 2 pN13
N p2 1 (

j 521

N21
cj 11

~N2 j !!
pN12

N2 j 50, c051, c150, ~28!

and p1
21p2

22150, located on the planes(p2 ,pN12) and (p1 ,p2) respectively, in the
$p1 ,p2 ,pN12%-subspace, withpN135constant andp i , i 53,...,N11 given by Eq. (27).

Proof: The surfaces follow from Eq.~27! for i 5N and from Eq.~17! with E51/2. h

In particular, for the basis of Eq.~8!, the fields (]x ,]y ,]u i
) for i .2 are mapped to the

canonical momenta (px ,py ,pu i
), and with Eq.~14!

p15 ẋ, p25 ẏ, p j 125 (
i 5 j

N11
l i

~ i 2 j !!
xi 2 j , j 51,...,N11, ~29!

where we recognizep352eBz(x), pN125lN1lN11x, pN135lN11 , and the initial conditions
p1,05 ẋ0 , p2,05 ẏ0 andp i 12,05l i for i 51,...,N11. The following simple facts follow.

Corollary: In the basis of Eq. (8), the Casimir functions are given by Eq. (26) with
momentap i 12 for i .0 replaced by the constant parametersl i and p2 by ẏ0 .

Proof: The assertions follow from the equalities

p j 1252
dj 21

dxj 21 eBz~x!, l j52
dj 21

dxj 21 eBz~x!ux50 , j 51,...,N11. ~30!

h

Corollary: The trajectory in cotangent space is given in terms of the algebraic cu
f (a,b)50, of genus N, with
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f ~a,b!5c2Na22c2N1S cN11 1 (
j 521

N21
cj 11

~N2 j !!
bN2 j D 2

, ~31!

where a5p1 , b5pN12 , c52pN13 and $a,b%5c.
Proof: From Eq.~28!. h

The algebraic curve can be solved by quadratures forb since ḃ52ac. For N50, the curve is
rational, forN51, elliptic, and forN.1, hyperelliptic.

VIII. SUB-RIEMANNIAN GEODESICS IN TOTAL SPACE

Here we consider the trajectories in terms only of the coordinates of total space. For sim
we assume that all trajectories start atx(0)5y(0)5u1(0)5¯5uN50.

Lemma: The trajectories lie on the integral surface given by the cylinder

S ẋ0 2 (
i 51

N11

l iu i 21D 2

1 2V~x!2150. ~32!

On the planes(x,u i 21), i 51,...,N11, the cylinder has cross sections given by the real hype
liptic curves

~l iu i 212 ẋ0!2 1 2V~x!2150, 1>2V~x!. ~33!

Proof: Rewrite the equation forẍ as ẍ52( i 51
N11l i u̇ i 21 and integrate it to obtain

ẋ5 ẋ0 2 (
i 51

N11

l iu i 21 , ~34!

with u i(0)50 andu0(t)5y(t). Thus, Eq.~32! results, which contains only the coordinates
total space and no time derivatives of them. It is an algebraic curve in total space. h

Therefore, in total space coordinates$x,y,u i% the trajectory is given by energy conservatio
and the Pfaffian system du i2xi dy/ i ! 50 for i 51,...,N11.

Theorem: In terms of (Abelian) differentialsÃ i we have

dy5 ẏ0 Ã0 1 (
i 51

N11
l i

i !
Ã i , ~35!

with

Ã i5
xi

j
dx, ~36!

wherej5Ap2N12(x).
Proof: From the Pfaffian system, we obtain for the normal extremals

dy5
ẏ0 1 ( i 51

N11l ix
i / i !

A122V~x!
dx. ~37!

With the definition of theÃ i the result follows. h

The differentials$Ã i , i 50,...,2N% form a basis.2,11 All differentials Ãk with kPN can be
given recursively in terms of the basis using the following result.

Proposition: The differentialsÃ i satisfy
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~s1N11!a2N12Ãs12N115d~xs j! 2 (
i 50

2N11 S s1
i

2DaiÃ i 1s21 , s50,1,... . ~38!

Proof: The result follows after the computation of d(xs j) and using the expression forj2 in
terms ofx. For s>0, all Ãk with k.2N are obtained. Fors<21, all Ã j with j <21 are given
in terms of the setÃn with n521,0,1,...,2N. But a simple argument allows one to find a relati
between these last differentials and therefore, the set of differentials without theÃ21 is enough to
obtain allÃ i . h

The differentialsÃ j for j 50,1,...,N21 are holomorphic forx complex. The differentials
Ãk , with k5N,...,2N have two poles of orderk2N11. The following Abelian integrals are
important here. Let

I i~x!5E
0

x

Ã i . ~39!

Proposition:We have

y~ t !5 ẏ0 t1 (
i 51

N11
l i

i !
I i~x!, ~40!

where p2N12(x)>0 for x>0, and initial condition y050.

FIG. 1. Trajectory in cotangent space forN52, as intersection of two cylinders.

FIG. 2. Real part of the genus two curve corresponding to Fig. 1.
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Proof: The result follows from Eqs.~22! and ~35!, sincet5I 0(x). Time plays the role of a
local uniformizing parameter. h

Lemma: The differentials of the Pfaffian system can be expressed in terms of the b
Abelian differentials by means of

du i5
1

i !
ẏ0Ã i 1 (

j 51

N11
l j

i ! j !
Ã j 1 i , i 50,1,...,N11. ~41!

Proof: This relations result from the original Pfaffian system and the expression of dy in terms
of Abelian differentials. h

Theorem: The sub-Riemannian geodesics in total space are given by hyperelliptic integra

u i5
1

i !
ẏ0I i~x! 1 (

j 51

N11
l j

i ! j !
I j 1 i~x!, i 50,1,...,N11, ~42!

with y5u0 and x(t) given by the inverse function of Eq. (22).
Proof: The integration of Eq.~41! yields the result. h

IX. EXAMPLES

Here, we present some numerical examples for the simplest hyperelliptic case. Corresp
results for higher hyperelliptic curves are also obtainable. In Fig. 1 we show a simple nond
erated example forN52, where Eq.~28! is a cubic cylinderp4

3/61c2p41c32p5
2p250.

In Fig. 2, we show the real curve of genus two associated with Fig. 1. The closed curv
the allowed values for (b,a). In Fig. 3 the corresponding potential energy, Eq.~21!, is shown. The
horizontal line corresponds to the total energy. In Figs. 4 and 5 a degenerated genus two

FIG. 3. The potential energy associated with Fig. 2.

FIG. 4. The real part of a degenerated genus two curve in cotangent space. The double point of the left close
corresponds to an abnormal trajectory.
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exemplified. The double point in the left closed curve of Fig. 4 corresponds to unstable eq
rium.

X. CONCLUSIONS

We have reduced to quadratures the equations of motion of Goursat systems and a flat
The trajectories in total space are given in terms of hyperelliptic integrals. A set of alge
curves in cotangent space determine the normal trajectories. The Casimir elements of an
ated Poisson algebra have been computed explicitly. A physical problem with nonholon
constraints has been presented, which can be easily transformed into a variational problem
Goursat system. We have shown, as a simple example, a genus two case in the cotangen
The present new geometrical approach seems to allow future generalizations.
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Invariant integration over the unitary group
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Integrals for the product of unitary-matrix elements over the U(n) group will be
discussed. A group-theoretical formula is available to convert them into a multiple
sum, but unfortunately the sums are often tedious to compute. In this article, we
develop an alternative method in which these sums are avoided, and group theory
is rendered unnecessary. Only unitarity and the invariance of the Haar measure are
required for the computation. The method can also be used to get a closed expres-
sion for the simpler integral of monomials over a hypersphere. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1622448#

I. INTRODUCTION

The integral

E ~dU!Ui 1 j 1
* ¯Ui pj p

* Uk1l 1
¯Ukpl p

for the product ofn3n unitary matrix elements and their generating functions are useful in m
areas of physics. That includes two-dimensional quantum gravity,1 QCD, matrix models, and
statistical and condensed-matter problems of various sorts.2 These integrals are also useful in th
parton saturation problem at small Feynman-x.3 The monomial integral above can be comput
using a graphical method.4 A more powerful expression can be derived using the Itzykson–Zu
formula5 as a generating function, or directly from group theory6 using the Frobenius formula.7

Simplification can be obtained forn→`,8 but for finiten, the expression is quite complicated@see
Eq. ~A1!#. It involves multiple sums over an expression containing characters of the symm
groupSp , as well as the dimensions of irreducible representations ofSp and of the unitary group
U(n). One of the sums is taken over all the relevant irreducible representations, and the oth
taken over the symmetry groups of the index setsI 5( i 1¯ i p) andJ5( j 1¯ j p). These sums could
be long and tedious for largep, and for indices which have a high degree of symmetry.

In this article, we discuss an alternative method to calculate the monomial integral, us
input only the unitarity of the matricesU, and the invariance of the Haar measuredU. No
knowledge of group theory is required, and these complicated multiple sums are avoided. W
refer to this method as the ‘‘invariant method.’’

Invariance of the group measure produces various relations between the different int
which will be discussed in Sec. III A. The values of these integrals are obtained recursively
the unitarity relation, and that is discussed in Secs. III B to III D.

The invariant method is also applicable to the much simpler case of a monomial integra
a hypersphere. This simpler case will be used as a testing ground for the idea. It will be dis
in Sec. II, as a preparation for the computation of the unitary integral in Sec. III.

In a forthcoming paper, the relative advantages of the invariant method and the g
theoretical formula will be discussed. We will also examine relations that can be obtaine
combining both approaches.

a!Electronic mail: samuel.aubert@elf.mcgill.ca
b!Author to whom correspondence should be addressed. Electronic mail: lam@physics.mcgill.ca
61120022-2488/2003/44(12)/6112/20/$20.00 © 2003 American Institute of Physics

                                                                                                                



e

s with
their

ates to

6113J. Math. Phys., Vol. 44, No. 12, December 2003 Invariant integration over the unitary group

                    
II. INTEGRATION OVER A HYPERSPHERE

Let Vn21 be the unit sphere inn dimensions, defined by

(
i 51

n

xi
251, ~1!

and (dv) be its rotationally symmetric volume element, normalized to*(dv)51. We wish to
calculate the integral*(dv)Y over Vn21 , where Y is a monomial of the coordinatesxj ( j
51,2,... ,n). This integral is zero unless the power of everyxj is even, in which case it can b
written in the form

^JuJ&5E ~dv!XJXJ , ~2!

whereXJ[)a51
p xj a

is a monomial of degreep, indexed by the setJ5( j 1 j 2¯ j p).
One can attempt to calculate the integral in several ways. Three of them having analog

the U(n) integrals will be singled out, because the simpler setting of a sphere should make
relative merits more transparent. The first two are standard, both using the spherical coordin
calculate. The third one, which we wish to develop in this article, is aninvariant approach,
requiring no coordinate system in its computation.

A. Spherical coordinates

The spherical coordinates ofxj on the unit sphere are

xn5cosu1 ,

xn215sinu1 cosu2 ,

xn225sinu1 sinu2 cosu3 ,
~3!

¯

x25S )
i 51

n22

sinu i D cosf,

x15S )
i 51

n22

sinu i D sinf.

The range ofu i is between 0 andp, and the range off is between 0 and 2p. The volume element
is

~dv8!5S )
i 51

n22

~sinu i !
n2 i 21du i D df,

~4!

~dv!5
~dv8!

E ~dv8!

.

Using the formula
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E
0

1/2p

du~sinu!r 21~cosu!s215
1

2

G~ 1
2 r !G~ 1

2 s!

G~ 1
2 ~r 1s!!

~5!

and ~3!, the integral̂ JuJ& can be calculated for every index setJ.
For example, if all the indices inJ are equal ton, i.e.,J5(nnn̄ n)5(np), then the integral

is equal to

^JuJ&[S~p!5

E
0

p/2

~cosu1!2p~sinu1!n22du1

E
0

p/2

~sinu1!n22du1

5
1

Ap

G~p1 1
2!G~ 1

2 n!

G~p1 1
2 n!

. ~6!

However, if we replaceJ5(np) by J5(1p), namely, replacingxn
2p in the integrand byx1

2p ,
then the integral becomes much harder to calculate, because (n21) times more integrations mus
be performed. Yet, on account of the spherical symmetry, the result must come out to be th
as~6!. This complication arises because a choice of axes breaks the spherical symmetry. It
avoided in the invariant approach discussed below.

This method relies on an explicit parametrization ofVn21 via the spherical coordinates, a
well as formula~5! allowing the integrations to be carried out. Both become much more diffi
in the U(n) case, so much so that this method is really not very useful there. For that reason
shall be no futher discussion of this method.

B. Group theory

Alternatively, XJ can be expanded in terms of spherical harmonics, and the integral ca
transformed into a sum using the orthonormality of the spherical harmonics. Forn53, the expan-
sion is

XJ5(
,,m

a,mY,m~u,f!, ~7!

and the integral becomes

^JuJ&5(
,,m

ua,mu2. ~8!

For n.3, many more sums are involved in Eq.~8!.
There are two nontrivial tasks in this approach: to find the coefficientsa,m , and to carry out

the sum in~8!. These tasks become quite difficult in practice for largen or p.
There is an analogous group-theoretical technique to calculate the U(n) integral, which is

reviewed in the Appendix. Using the Frobenius relation, or the Itzykson–Zuber formula, a for
can be derived to turn the integral into a multiple sum. As mentioned in the Introduction, the
could be very involved, so in practice this method may not be the best way to obtain a resu
invariant approach discussed below and in the next section might be simpler.

C. The invariant approach

The integral in~2! can be calculated directly, using only condition~1! and the invariance of
(dv) under rotation. In particular, there is no need to employ the spherical coordinate system
no need to know any integration formula, nor group theory.

The invariant approach will be used in the next section to calculate integrals~of monomials of
unitary matrix elements! over the unitary group U(n). In that case,~1! is replaced by the unitarity
condition, anddv is replaced by the invariant Haar measuredU of the unitary group.

It is convenient to arrange thep indices inJ according to the distinct values~between 1 and
n) they take. Ifm1 of thesep indices take on a value,m2 of them take on a second value, and
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on, then the integral̂JuJ& will be denoted byS(m1m2¯mt), wheret is the number of nonvan
ishing mi ’s, and( i 51

t mi5p. Spherical symmetry guarantees that the integral is independe
the specific values the indices assume. This means, among other things, thatS is symmetrical in all
its arguments.

To calculateS, the invariance ofdv is used to relate the variousS’s to S(p). Then the value
of S(p) is calculated using the sphere condition~1!.

The invariance ofdv can be exploited in the following way. A rotation in thexixk plane by an
anglej,

xi→1cxi1sxk ,
~9!

xk→2sxi1cxk ,

wherec5cosj and s5sinj, will leave dv invariant. Equivalently, if we subject the integran
XJXJ in ^JuJ& to such a rotation, the integralS(m1¯mk) will remain unchanged.

Let us start out with the integralS(p) whose XJ is equal tox1
p . Under ~9!, with (i ,k)

5(1,2), the integrand becomes

~x1
2!p→~cx11sx2!2p5 (

e50

p S 2p
2eD ~cx1!2(p2e)~sx2!2e1¯ . ~10!

The ellipsis indicates terms odd inx1 andx2 , which can be dropped because they do not cont
ute to the integral. The invariance of the integral under this transformation then yields the re

S~p!5 (
e50

p S 2p
2eD c2(p2e)s2eS~p2e,e!. ~11!

Since this is true for allj, the right-hand side must be independent ofj. That requires

S~p2e,e!5

S p
eD

S 2p
2eD S~p!. ~12!

Similarly, we can apply~9! and the whole procedure to (i ,k)5(2,3) to get

S~p2e,e2 f , f !5

S e
f D

S 2e
2 f D

S~p2e,e!5

S p
eD

S 2p
2eD

S e
f D

S 2e
2 f D

S~p!. ~13!

Continuing thus, we finally obtain

S~m1 ,m2 ,m3 ,¯ ,mt!5

S (
i 51

t

mi D !

S )
i 51

t

mi ! D
S )

i 51

t

~2mi !! D
S (

i 51

t

2mi D !

S~p!. ~14!

To complete the calculation we must calculateS(p). This can be done by using condition~1!.
SinceS(p21,1) is independent of what coordinatexj the multiplicity 1 sits on, as long as it is no
on the coordinate whose multiplicity isp21, the sphere condition~1! can be translated to read

~n21!S~p21,1!1S~p!5S~p21!. ~15!

Using ~14!, we know thatS(p21,1)5S(p)/(2p21). Substituting this back into~15!, we get the
recursion relation
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S~p!5
2p21

n12p22
S~p21!. ~16!

With the initial valueS(0)51, ~16! can be solved to yield

S~p!5
~2p21!~2p23!¯1

~n12p22!~n12p24!¯n
5

1

Ap

G~p1 1
2!G~ 1

2 n!

G~p1 1
2 n!

, ~17!

which agrees with the answer given by~6!.
The general result is obtained by substituting~17! into ~14!.

III. INTEGRATION OVER THE UNITARY GROUP

Let Ui j denote the (i j ) matrix element of ann3n unitary matrix, andUi j* its complex
conjugate. The product)a51

p Ui aj a
is abbreviated asUIJ , with the index sets beingI

5( i 1i 2¯ i p) and J5( j 1 j 2¯ j p). We shall refer top as thedegreeof UIJ . Since the matrix
elements commute with one another, the order of the indices is irrelevant. Thus ifPPSp denotes
a permutation of the p indices, and the permuted index set is denoted byI P

5( i P(1)i P(2)¯ i P(p)), then

UIJ5UI PJP
. ~18!

We want to calculate the monomial integral

^I ,JuK,L&5E ~dU!UIJ* UKL ~19!

over the unitary group U(n). The degree ofUIJ* is assumed to bep and that ofUKL is assumed to
be q. The Haar measuredU appearing in~19! is left- and right-invariant, and normalized t
*(dU)51.

As mentioned in the last section, a group-theoretical formula to calculate the integ
available ~see the Appendix!. The integral is expressed as a multiple sum, with a summ
involving the character of the symmetric groupSp , the dimensions of the irreducible represen
tions of U(n) andSp , as well as the index structure ofI ,J,K,L. This formula is general, though
not always the best way to obtain the result, because the multiple sums are often tedio
difficult to do. In what follows, we shall develop another method to calculate the integral, u
the invariant approach discussed in the last section. With this approach, no knowledge of
theory is required, and multiple sums are avoided.

The invariant calculation relies only on the unitarity of the matrices in the integrand,

(
j 51

n

Ui j Ul j* 5(
j 51

n

U ji U jl* 5d i l , ~20!

as well as the invariance of the Haar measure. The latter implies

E ~dU! f ~U,U* !5E ~dU! f ~VU,V* U* !5E ~dU! f ~UV,U* V* ! ~21!

for any functionf , and anyVPU(n). We shall apply~21! to the functionf (U,U* )5UIJ* UKL .
The calculation is very similar to that in the last section, though more complicated.

spherical condition~1! is now replaced by the unitarity condition~20!, and the rotational invari-
ance ofdv is now replaced by the group invariance ofdU.
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A. Relations from invariance

Equation~21! is very powerful. Depending on the choice ofV, many relations can be derived
Here are some examples.

1. VijÄei fd i j

With this choice,f (UV,U* V* )5ei (q2p)f f (U,U* ). Hence the integral~19! is zero unless
p5q. For this reason we shall assumeq5p from now on.

2. VijÄei f id i j

With this choice,f (UV,U* V* )5ei j f (U,U* ), wherej5(a51
p (f l a

2f j a
). In order for the

integral ~19! not to be zero, this phasej must vanish. If allf i ’s are different, this happens onl
when the indices inL are permutations of the indices inJ. Similarly, one can show that the indice
in K must be permutations of the indices inI . If R andS are the permutations inSp that do the
job, then

K5I R , L5JS . ~22!

Using ~18!, we may assumeK5I , with the nonzero integrals~19! now being of the form

^I ,JuI ,JQ& ~23!

for someQPSp .
The nonzero integral over a sphere calculated in the last section is of the form^JuJ&, but the

nonzero integral over U(n) is of the form^I ,JuI ,JQ&. The presence of an additional index setI ,
and the possibility thatJQÞJ, both make it harder to calculate the unitarity integral than
spherical integral, though the idea is precisely the same.

If JQ5J, then the integral~23! is positive definite. We shall refer to integrals of that type
direct integrals. If JQÞJ, the sign is not guaranteed, and we shall refer to those integra
exchange integrals.

The direct integral looks deceptively similar to the spherical integral~2! in a complex
n2-dimensional space. By mappingUi j to xa , with a5( i , j ) running between 1 andn2, the

complex equivalent of~1!, namely(a51
n2

uxau25n, is guaranteed by the unitarity relation~20!. One
might therefore think that the direct integrals would turn out to be very similar to the sphe
integrals, whose result is given by~14! and ~17!. Unfortunately that is not the case, because
measuredU is not rotational invariant in then2-dimensional complex vector space. As a resu
even the direct integrals become more difficult to calculate than the spherical integrals of th
section.

3. Permutation

Now, chooseV to be a permutation matrix ofn objects. ThenVU is obtained fromU by
permuting its rows, andUV is obtained fromU by permuting its columns. With thisV, Eq. ~21!
implies that

^I ,JuK,L&5^I 8,JuK 8,L&5^I ,J 8uK,L 8&, ~24!

where I 8 is obtained fromI by a reassignment of the values of its indices, andK 8 is obtained
from K by the same reassignment. For instance, let us takep58 and n58. SupposeI
5(11555247) andK5(51524571)@recall from ~22! that K has to be a permutation ofI ]. If we
make the reassignment 1↔8,2↔5,4↔7, thenI 85(88222574) andK 85(28257248).

In other words, the integral is affected by whether the indices take on the same or dif
values, but is independent of what these values are.
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4. Row-column interchange

Since the measure is invariant under transposition,(dU)5(dUT), the integral is unaltered if
we interchange the rows with the columns:

^I ,JuK,L&5^J,I uL,K&. ~25!

5. Graphical representation

It is convenient to employ a graphical description of the integral^I ,JuI ,JQ&, as illustrated in
Fig. 1. The dots in the left-hand column represent the distinct values in the index setI , and the
dots in the right-hand column represent the distinct values of the index setJ. As per ~24!, the
integral does not depend on what these values are. SinceJQ is a permutation ofJ, it shares the
same distinct values, and hence the same dots asJ.

Factors ofUIJ* are shown as~thin! solid lines, and factors ofUIJQ
are shown as dotted lines

A number appearing above the solid line or below the dotted line denotes the multiplicity~i.e., the
power! of that matrix element. If the number is absent, the multiplicity is taken to be 1. Wh
pair Ui j* Ui j occurs together, we may choose to replace its pair of thin-solid and dotted lines
thick solid line. In that case the multiplicity designation refers to the multiplicity of the pair. T
a direct integral can always be drawn with only thick solid lines.

When multiplicity is taken into account, the number of solid lines and the number of d
lines connected to each dot must be equal. This simply reflects the fact thatJQ is a permutation of
J.

The integral̂ I ,JuI ,JQ& with I 5(11123345)5(1323245), J5(12277777)5(12275), andJQ

5(21777727)5(217427), is depicted in Fig. 1. The five left-hand dots represent the five dis
numbers 1,2,3,4,5 inI , and the three dots in the right-hand column represent the three dis
numbers 1,2,7 inJ andJQ .

The invariance of~25! means that we may switch the left-hand column of dots with
right-hand column of dots. Namely, a reflection about the vertical line halfway between the
columns will not change the integral.

6. Rotation

ChooseV5R(ab) to be the matrix which rotates the (ab) plane by an anglej. This matrix
has 1’s along the main diagonal, except at the (aa) and (bb) positions, where the matrix elemen
is c5cosj. The off-diagonal matrix elements are all zero, except at the positions (ab) and (ba),
where the matrix elements are respectivelys5sinj and2s.

The replacementU→UV causes the following change in the matrix elements:

FIG. 1. Graphical representation of the integral^I ,JuI ,JQ&, whereI 5(1323245),J5(12275), andJQ5(217427).
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Uia→1cUia1sUib ,

Uib→2sUia1cUib , ~26!

Ui j →Ui j ,

provided j Þa,b. Similar replacements onUia* and Uib* should also be made. The result is
changê I ,JuI ,JQ& into a sum of terms of the formMe(c

2)d2e(s2)e, whered is the total number
of column indices inUIJ* with valuea or b, ande varies between 0 andd. @Odd powers ofcs
never enter because of~22!.# The invariance condition~21! requires

^I ,JuI ,JQ&5 (
e50

d

Me~c2!d2e~s2!e. ~27!

In order for this to be true for allj, we must have

Me5^I ,JuI ,JQ&S d
eD5M0S d

eD , ~28!

where (e
d)5d!/e!(d2e)! is the binomial coefficient.

Let us see howMe is computed in the graphical language. Take any two dots on the right-
column to represent the valuesa andb. One of the two dots should have some lines attache
it, but the other one may or may not be empty. The total number of solid~or of dotted! lines
attached to the two dots isd. Now movee ~thin! solid ande dotted lines between the two dot
subject to the constraint that at the end of the move, each dot must have an equal number
and dotted lines attached to it~otherwise the integral is zero!. Assign a weight11 for a line
moved froma to b, and a weight21 for each line moved fromb to a. The quantityMe in ~28!
is simply the sum of all the resulting integrals after the move, weighted by the product o
factors61 associated with each move.

It is important to note that these relations are local. They involve only the indices ofJ andJQ

with valuesa andb. It does not matter whatI is and what the rest of the indices ofJ andJQ are.
Let us illustrate this graphical application of the rotational relation with two examples.
Example 1:Figure 2 represents part of a diagram. The whole diagram may have many

dots and lines. They are not drawn because the relation derived below is independent o
other dots and lines.

The values ofa andb must be different, and there must be no more lines coming out of t
than is shown in Fig. 2. The indicesi 1 ,i 2 ,i 3 ,i 4 may or may not have the same values, and th
may be many more lines attached to them than is shown, as long as these other lines
connect with eithera or b. If some of their values are the same, sayi 15 i 2 , then graphically the
two dotsi 1 ,i 2 simply merge together into a single dot. If the values are different, then other
must also come out of these dots in order to make the integral nonzero.

The integrals corresponding to Figs. 2~a!–2~d! will be denoted byI (2a), I (2b), I (2c), and
I (2d), respectively. In these diagrams we are dealing withd52, because there are two pairs
~solid and dotted! lines ending on the right-hand dots.

Let us apply rotation to Fig. 2~a!. We could either move two lines (e51), or four lines (e
52). By moving two lines, we getI (2b) ~two solid lines!, I (2c) ~two dotted lines!, and two
others,I 1 ~one solid and one dotted lines froma to b) andI 2 ~one solid and one dotted lines from
b to a). The graphs for the last two are not shown, but they can be obtained fromI (2a) by
merging thea and b dots. In this way we getM152I (2b)2I (2c)1I 11I 252(2I (2b)1I 1),
where~24! has been used in the last step. By using~28!, we conclude thatM152M052I (2a).
Hence we obtain the relation

I ~2a!52I ~2b!1I 1 . ~29!
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If we move all four lines, we getM25I (2d). The formula in~28! demandsM25M0 , or
I (2d)5I (2a). We already know this to be true from~24!.

Example 2: The fan relation:Figure 3~b! is a partial diagram of some integral. We assume t
there are no other lines connected to the dots on the right-hand column, though there may b
lines emerging from doti . There may also be many other dots and lines not shown in the diag

The multiplicities of the lines shown aremi (1< i<t), so the integrand is proportional t
uUiau2m1uUibu2m2

¯ . The corresponding integral is denoted byf (m1 ,m2 ,...,mt).
Using ~28! repeatedly, it will be shown below that

f ~m1 ,m2 ,...,mt!5

S )
i 51

t

mi ! D
S (

i 51

t

mi D !

f ~d!, ~30!

whered5( i 51
t mi and f (d)5 f (d,0,0,...,0).

f (d) is drawn in Fig. 3~a!. Having multiplicity d means that there ared ~thin! solid lines and
d dotted lines betweeni anda. Now movee5( i 52

t mi solid ande dotted lines froma to an empty

FIG. 2. Four diagrams illustrating how rotational invariance of the measure can be used to relate these four integ
Eq. ~29!.

FIG. 3. Using rotational invariance of the measure, the single line in~a! can be spread out into the fan of lines in~b! to get
the relation displayed in~30!.
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dot b. There are (e
d) ways of choosing the set of solid lines to move, and independently ther

also (e
d) ways to select the dotted lines. HenceMe5(e

d)2f (d2e,e). From ~28!, we know that
Me5(e

d)M05(e
d) f (d). Hence

f ~d2e,e!5
1

S d
eD f ~d!. ~31!

This process can be repeated by movingg5( i 53
t mi pair of lines fromb to an empty dotc.

Then we get

f ~d2e,e2g,g!5
1

S e
gD f ~d2e,e!5

1

S d
eD

1

S e
gD f ~d!. ~32!

By repeating this process again and again, we arrive at the fan relation~30!, which tells us how to
fan out a thick line with a high multiplicity intot different lines.

B. Results from unitarity

In the last subsection, relations between different integrals are obtained using the inva
requirement~21!. To calculate the actual value of any of these integrals, the unitarity cond
~20! must be used.

The unitarity sum~20! for iÞ l simply brings out more relations between different integra
But for i 5 l , a pair ofU,U* disappears on the right-hand side of (20), so~20! relates integrals of
degreep to integrals of degreep21. By using this repeatedly, eventually the degree comes d
to zero, and the integral is known to be 1. In this way the values of the integrals can be com
recursively.

This procedure will be illustrated by various examples in the rest of this section.

1. Direct integrals

(a) The fan integrals. The simplest (p51) direct integral is

^ i ,au i ,a&5
1

n
. ~33!

To get this result, we make use of the fact from~24! that ^ i ,au i ,a& is independent ofi and a.
Summing overa ~from 1 to n), and using~20!, we getn^ i ,au i ,a&51. Hence Eq.~33!.

This calculation can be generalized to the integral in Fig. 4~a! to give

^~ i m!,~ j m!u~ i m!,~ j m!&[F~m!5
~n21!!m!

~n1m21!!
. ~34!

Note that Fig. 4~a! is just the diagram Fig. 3~a!, but without any additional dots and lines.
To obtain this result, start from the integralF(m21,1), shown in Fig. 4~b!. The integral is

independent of the value of the index~dot! indicated by a downward arrow, as long as it does
take on the value of the other dot. Sum over this indicated index, from 1 ton. Equation~20!
implies

~n21!F~m21,1!1F~m!5F~m21!. ~35!

Now the fan relation~30! tells us thatF(m21,1)5F(m)/m. Substituting this into~35!, we get a
recursion relation betweenF(m) andF(m21), namely,
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F~m!5F~m21!
m

n1m21
. ~36!

Using the initial valueF(0)51, this recursion relation can be solved to get~34!.
Define the ‘‘fan integral’’F(m1 ,m2 ,...,mn) to be Fig. 3~b!, without any extra dots and lines

It follows from ~34! and ~30! that

F~m1 ,m2 ,...,mt!5

S )
i 51

t

mi ! D ~n21!!

S n1(
i 51

t

mi21D !

. ~37!

(b) The Z integrals. Next, consider the ‘‘Z integral’’ in Fig. 4~c!. We shall prove that

Z~m1 ,m2 ,m3!5
m1!m2!m3! ~n22!! ~n21!! ~n1m11m322!!

~n1m122!! ~n1m322!! ~n1m11m21m321!!
. ~38!

To do so, consider Fig. 4~d!. Summing over the index indicated by the vertical arrow, and deno
the integral in Fig. 4~d! by I (4d), the unitarity condition~20! gives

~n22!I ~4d!1Z~m1 ,m2 ,m3!1Z~m1 ,m211,m321!5Z~m1 ,m2 ,m321!. ~39!

The fan formula~30! tells us thatI (4d)5Z(m1 ,m2 ,m3)/m3 . Substituting this into~39!, we get a
recursion relation inm3 :

Z~m1 ,m2 ,m3!5
m3

n1m322
@Z~m1 ,m2 ,m321!2Z~m1 ,m211,m321!#. ~40!

Using the initial valueZ(m1 ,m2,0)5F(m1 ,m2)5(n21)!m1!m2!/(n1m11m221)!, therecur-
sion relation can be solved to yield~38!.

Relation~30! can also be used to fan out the two open ends of Fig. 4~c! and~38! to obtain the
‘‘fanned Z integrals.’’

FIG. 4. Diagram~b! shows how the integral in~a! can be obtained from unitarity by summing over the index indicated
an arrow. This leads to a recursion relation whose solution is~34!. Similarly, unitarity applied to the indicated index in~d!
yields a recursion relation whose solution gives~38! for the ‘‘Z integral’’ in ~c!.
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C. Exchange integrals

To illustrate how to compute exchange integrals, all second and third degree exchang
grals will be computed in this subsection.

1. pÄ2

All the second degree integrals are shown in Fig. 5. The integrals in Figs. 5~a! and 5~c!–~e!
are direct integrals, either of the fan type or theZ type, so they are known. The only exchan
integral isE(2) depicted in Fig. 5~b!. It can be computed either by rotation from a direct integr
or by unitarity. We will discuss both methods.

(a) By rotation. Starting from Fig. 5~d!, rotate two solid and two dotted lines from the dot
the right-hand column to an empty dot. This is a special case of example 1 of Sec. III A 6 an
2, but let us do it directly once again. Using the notation in~28!, we get

M152Z~1,0,1!12E~2!52M052F~1,1!. ~41!

Hence

E~2!5F~1,1!2Z~1,0,1!5
1

n~n11!
2

1

~n21!~n11!
52

1

n~n221!
. ~42!

(b) By unitarity. Summing over the indicated index in Fig. 5~b! from 1 to n yields (n
21)E(2)1F(1,1)50, hence

E~2!52
F~1,1!

n21
52

1

n~n221!
. ~43!

2. pÄ3

Figure 6 shows the two direct integrals which are not of the fan type or theZ type, and all the
exchange integrals of degree 3.

To getI (6a), the integral for Fig. 6~a!, carry out a unitarity sum on the indicated index. Th
yields (n21)I (6a)1F(1,1,1)5F(1,1), hence

FIG. 5. Integrals of the second degree.
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I ~6a!5
1

n21 S 1

n~n11!
2

1

n~n11!~n12! D5
1

~n21!n~n12!
. ~44!

This integral can also be computed by fanning out the bottom line ofZ(2,0,1)52(n11)(n
22)!/(n12)!.

To computeI (6b), take a unitary sum over the indicated index. This yields (n22)I (6b)
12I (6a)5Z(1,0,1). Hence

I ~6b!5
1

n22 S 1

n221
2

2

~n21!n~n12! D5
~n222!~n23!!

~n12!!
. ~45!

The exchange integrals can be obtained by taking the unitary sum on the indicated v
Note that the right-hand side of the sum is always zero in the case of exchange integrals.

In this way we obtain the relations

~n21!I ~6c!1F~1,2!50,

~n21!I ~6d!1F~1,2!50,

~n21!I ~6e!1F~1,1,1!50, ~46!

~n22!I ~6 f !1I ~6a!1I ~6e!50,

~n22!I ~6g!12I ~6e!50.

FIG. 6. Integrals of the third degree.
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The solutions are

I ~6c!5I ~6d!52
2~n21!!

~n12!! ~n21!
522

~n22!!

~n12!!
,

I ~6e!52
F~1,1,1!

n21
52

~n22!!

~n12!!
,

~47!

I ~6 f !52
1

n22
~ I ~6a!1I ~6e!!52n

~n23!!

~n12!!
,

I ~6g!52
2

n22
I ~6e!52

~n23!!

~n12!!
.

D. The X integrals

To illustrate how direct and exchange integrals may be coupled in the recursion relation,
look at the one-loop ‘‘X integrals’’ depicted in Fig. 7~a!. This integral, specified by the fou
weights r ,s,t,u of U* and the four weightsr 8,s8,t8,u8 of U, will be designated as
X(rstuur 8s8t8u8)5I (7a). Since the number of dotted lines and the number of solid lines em
ing from each vertex must be equal, there are three relations for these eight parameters,

r 81s85r 1s,

s81t85s1t, ~48!

t81u85t1u,

so only five independent parameters are required to specify all theX integrals.
It is fairly complicated to calculate all these integrals, so we will only derive the recur

relation here and illustrate how it can be used in the simplest case. Letr5r 1r 8 be the total
number of top lines inX, ands5s1s8 the total number of lines on one side. The idea is to fi
a recursion relation inr1s, each time reducing eitherr or s by 1. Eventually one gets down t
eitherr50 or s50, which are theZ integrals obtained before.

1. Recursion relation

Rotate one solid and one dotted line from ther 2s junction of Fig. 7~a! to an empty dot. The
result is Fig. 7~b!–7~e!. In the notation of~28!, we have

M15r 8sI~7b!1rs8I ~7c!1ss8I ~7d!1rr 8I ~7e!5~r 1s!M05~r 1s!I ~7a!, ~49!

whereI (7b) is the integral depicted in Fig. 7~b!, etc.
The parameters of Figs. 7~b!–7~e! are those of 7~a!, except where a ‘‘2’’ sign occurs, in which

case the corresponding parameter is reduced by 1. In Fig. 8 we will also use a ‘‘1’’ sign to indicate
where the parameter is increased by 1.

The unitarity sum, applied to the indicated index in Figs. 7~b!–7~e!, results in the relations

05~n22!I ~7b!1I ~7a!1I ~8b!,

05~n22!I ~7c!1I ~7a!1I ~8c!,
~50!

I ~8d2!5~n22!I ~7d!1I ~7a!1I ~8d1!,

I ~8e2!5~n22!I ~7e!1I ~7a!1I ~8e1!.
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A substitution of~50! into ~49! yields the desired recursion relation

I ~7a!52
r 8sI~8b!1rs8I ~8c!1ss8@ I ~8d1!2I ~8d2!#1rr 8@ I ~8e1!2I ~8e2!#

~r 1s!~r 81s81n22!
. ~51!

Let us illustrate the recursion relation by computing the simplest cases, withr1s52.
There are four possibilities withr 1r 81s1s852. Two of them are the knownZ-integrals,

namely, X(0,1,t,uu0,1,t,u)5Z(1,t,u) and X(1,0,t,uu1,0,t,u)5Z(1,u,t). The other two are ex-
change integrals which can be obtained from~51!:

X~1,0,t,uu0,1,t21,u11!52
I ~8c!

n21
52

F~ t,u11!

n21
52

t! ~u11!! ~n22!!

~n1t1u!!
, ~52!

X~0,1,t21,uu1,0,t,u21!52
I ~8b!

n21
52

F~ t11,u!

n21
52

~ t11!!u! ~n22!!

~n1t1u!!
. ~53!

In particular,~52! reduces toI (6d) of ~47! when t5u51.

FIG. 7. ~a! The ‘‘X integral’’ and its weights.~b!–~e! Diagrams obtained from~a! by rotating away a pair of lines from the
r 2s junction. The weights in these four diagrams are the same as those in~a!, except for the ones with a ‘‘2’’ sign, in
which case the corresponding weight is decreased by 1.
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IV. CONCLUSION

We have shown how an integral over the U(n) manifold can be computed recursively usin
only the invariance of the Haar measure and the unitarity condition. The same method can
used to get a closed expression for a monomial integral over a unit sphere.

In a forthcoming paper, we shall compare the relative advantages of the invariant m
developed here and the group-theoretical method reviewed in the Appendix. We will show ho
two methods can be combined to strengthen each other.
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APPENDIX: GROUP THEORETICAL CALCULATION

As shown in~23!, the nonzero integrals of~19! can be written in the form̂I ,JuI ,JQ&. Using
group theory, to be reviewed below, the integral can be turned into a multiple sum:

^I ,JuI ,JQ&5 (
RPGI

(
SPGJ

(
f

df
2

~p! !2d̃f

x f~SQR!, ~A1!

FIG. 8. Terms obtained from the unitarity sum of Figs. 7~b!–7~e!. The weights in these diagrams are the same as in
7~a!, except on those lines indicated by a ‘‘2’’ or a ‘‘ 1.’’ In those cases, the corresponding weights are decrease
increased by 1.
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wherep is the degree ofUIJ appearing in the integral~19!. ~C.S.L. wishes to thank Professo
Alessandro D’Adda for introducing him to this formula.! The other symbols will be explaine
below.

The irreducible representations of the unitary group U(n) are labeled by a Young’s tableau.
is defined by a sequence of non-negative integersf 5( f 1f 2¯ f n), with f i> f i 11 . All irreducible
representations contained in apth rank tensor have their Young’s tableaux restricted top boxes,
namely,( i 51

n f i5p. In that case clearlyf i50 for i .p. It is customary to drop the zeros when th
sequencef is written, sof can be written as (f 1f 2¯ f p), or even shorter if there are more zero

The dimension of the irreducible representationf of U(n), denoted byd̃f , is given by the
ratio of two Vandermonde determinants

d̃f5
D~,1 ,,2 ,¯ ,,n!

D~n21,n22,̄ ,0!
, ~A2!

where, i5 f i1n2 i , and

D~x1 ,x2 ,¯ ,xn!5 )
i: j 51

n

~xi2xj !. ~A3!

The irreducible representations of the symmetric groupSp are also labeled by Young’s tab
leaux f 5( f 1f 2¯ f p). The dimension of an irreducible representation ofSp is denoted bydf , and
the character for the elementPPSp is denoted byx f(P). Tables are available to give their value
for small p.

The characterx f(P) depends only on the class thatP belongs to. If a permutationP is written
in the cycle form, then permutations with the same cycle structure belong to the same clas
cycle structure can be labeled by a Young’s tableauc5(c1c2¯cp), wherec1 is the length of the
longest cycle inP, c2 is the length of the next longest cycle inP, etc. If PPc, we will also write
x f(P) as x f(c). The characters together are given bygp

2 numbers, wheregp is either the total
number of distinct classes inSp , or the number of inequivalent irreducible representations. I
equal to the number of partitions ofp, and is given by gp51,2,3,5,7,11,15, forp
51,2,3,4,5,6,7, respectively.

GI,Sp is the symmetry group of the index setI , andGJ,Sp is the symmetry group of the
index setJ. For example, ifI 5(111338888), thenGI5S33S23S4,S9 . If I 5(13254798), then
GI consists of the identitye only.

The sum in~A1! is over all the irreducible representationsf , all elementsR of the symmetry
groupGI , and all elementsS of the symmetry groupGJ .

The simplest integrals to calculate are those where the indices inI all take on distinct values
and similarly forJ. In that case,GI5GJ5e, so the sums in~A1! reduce to a single sum over th
irreducible representationsf . Sincex f(Q) depends on the classc in which Q lies, there aregp

distinct integralŝ I ,JuI ,JQ& of this type. It is convenient to denote these integrals byj(c). To
compute them, we need to use~A2! to computed̃f , a character table ofSp to computex f anddf ,
then we must sum upgp terms in~A1! before we getj(c).

More generally,~A1! can be written in terms ofj(c) as

^I ,JuI ,JQ&5(
c

N~ I ,J,Quc!j~c!,

where

N~ I ,J,Quc!5 (
RPGI

(
SPGJ

d~SQRPc! ~A4!
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is the total number ofSQR in classc. They are often quite tedious to compute. Once it
calculated, we still have to carry out thegp sums overc to get ^I ,JuI ,JQ&.

This completes the description of formula~A1!. In the remainder of this appendix, we wi
sketch how it is arrived at.

The orthonormal relation for the irreducible representationsD f(R) of the Sp group is

1

p! (
PPSp

@D f~P!# i l @Dg~P21!#m j5
1

df
d f gd i j d lm . ~A5!

This leads to the following relation for characters, true for anyQ andR in Sp :

1

p! (
PPSp

x f~PQ!xg~RP21!5d f g

1

df
x f~QR!. ~A6!

The corresponding character relation for U(n),

E ~dU!x̃ f~UV!x̃g~WU21!5d f g

1

d̃f

x̃ f~VW!, ~A7!

is true for anyV andW in U(n).
Given aUPU(n) and aPPSp , define (U)P to be( IUI I P

, where the sum is taken over a
the indices in the setI 5( i 1i 2¯ i p), each covering its full range of values from 1 ton. The index
setI P as well asUI I P

are defined at the beginning of Sec. III. IfP consists ofa i cycles of length
i , then

~U !P5)
i

~Tr~Ui !!a i. ~A8!

Since (U)P depends only on the cycle structure ofP, it is the same for twoP’s in the same class
The crucial input to the computation of the integral is the Frobenius formula,

~U !P5(
f

x̃ f~U !x f~P!. ~A9!

Applying it to (UV)e and (WU21)e , and using~A7! to integrate, one arrives at the expressio

E ~dU!~UV!e~WU†!e5(
f

df
2

d̃f

x̃ f~VW!, ~A10!

wheredf5x f(e) has been used. Next, use~A6! to introduce the factor

d f g5
1

p! (
PPSp

x f~P!xg~P21! ~A11!

to the right-hand side of~A10!, and use the Frobenius formula again@note that xg(P21)
5xg(P)]. This allows~A10! to be written as

E ~dU!~UV!e~WU†!e5 (
PPSp

(
f

df
2

p! d̃f

x f~P!~VW!P5 (
R,S8PSp

(
f

df
2

~p! !2d̃f

x f~RS8!~VW!RS8 .

~A12!

Introducing the shorthand
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dKI R
dJLS8

5S )
a51

p

dkai R(a)
d j a,S8(a)D , ~A13!

the sum overR andS8 on the right-hand side is

(
R,S8

x f~RS8!VLKWIJdKIdJLRS8
5 (

R,S8
x f~RS8!VLKWIJdKIdJR21LS8

5 (
R,S8

x f~RS8!VLKWIJR
dKIdJLS8

5 (
R,S8

x f~RS8!VLKWI R21JdKIdJLS8

5 (
R,S8

x f~RS8!VLKWIJdKI R
dJLS8

. ~A14!

SinceV and W are arbitrary, the coefficients ofVLKWIJ on both sides must be the sam
Hence

^I ,JuK,L&5E ~dU!UIJ* UKL5(
f

(
R,S8

df
2

~p! !2d̃f

dKI R
dJLS8

x f~RS8!. ~A15!

Let us now apply~A15! to the special casêI ,JuI ,JQ&. SinceK5I , the factor d I I R
is nonzero

if and only if RPGI . Similarly, sinceL5JQ , the factor dJLS8
equals dJJQS8

. HenceS5QS8

must be in the invariant groupGJ . Now the argument ofx f in ~A15! is RS85RQ21S. SinceR is
summed over a group and so isS, we may replaceR by R21 andS by S21. With this replacement,
the argument ofx f is (SQR)21, Usingx f(SQR)5x f((SQR)21), we finally arrive at the formula
shown in~A1!.

Formula~A1! can also be obtained from the following version of the Itzykson–Zuber form

E ~dU!exp@bTr~M1UM2U†!#5(
f

b u f udf

u f u! d̃f

x̃ f~M1!x̃ f~M2!, ~A16!

where the sum is over all the Young’s tableaux, andu f u5( i f i is the number of boxes in a
particular tableau. Using the orthonormal relation~A11!, Frobenius’s formula~A9! can be inverted
to read

E ~dU!exp@bTr~M1UM2U†!#5(
f

b u f udf

~ u f u! !3d̃f

(
R,S

x f~R!x f~S!~M1!R~M2!S . ~A17!

Next, use the formula

x f~R!x f~S!5
df

u f u! (P
x f~RPSP21!, ~A18!

which can be derived from~A5!, to combine the two characters into one,
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E ~dU!exp@bTr~M1UM2U†!#5(
f

b u f udf
2

~ u f u! !4d̃f

(
P,R,S

x f~RPSP21!~M1!R~M2!S

5(
f

b u f udf
2

~ u f u! !4d̃f

(
P,R,S8

x f~RS8!~M1!R~M2!P21S8P . ~A19!

Since (M2)S depends only on the class thatS lies in, the last factor is thus independent ofP.
Therefore the sum overP yields only a factoru f u!.

Identifying terms proportional tobp on both sides, one gets

(
I ,J,K,L

^I ,JuK,L&~M1! IK~M2!LJ5(
f

df
2

~p! !2d̃f

(
R,S8

x f~RS8!~M1! IK~M2!LJdKI R
dJLS8

,

~A20!

which agrees with~A15!.
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Global existence for small initial data
in the Born–Infeld equations

Dongho Chaea) and Hyungjin Huhb)

School of Mathematical Sciences, Seoul National University, Seoul 151-747, Korea

~Received 29 July 2003; accepted 19 August 2003!

We prove global existence of a classical solution for small initial in the Cauchy
problem of the Born–Infeld system describing nonlinear electromagnetism. For the
proof we crucially use the null form structure of the the nonlinear terms under the
Lorentz gauge condition. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1621057#

I. INTRODUCTION

Recently the Born–Infeld theory has received much attention mainly due to the fact th
Born–Infeld type Lagrangians naturally appear in string theories. Namely, it has been realize
they can describe the low energy dynamics of D-branes.@See, e.g., Polchinski~1996! and refer-
ences therein.# This state of affair triggered the revival of interests in the original Born–Inf
electromagnetism~Born and Infeld, 1934! and the exploration of Born–Infeld gauge theories
general~see, e.g., Gibbons, 1998!. We also remark that there is even a study of the theory in
connection to the hydrodynamics~Brenier, 2003!. The Born–Infeld Lagrangian inRn11 is

L5b2S 12A2detS hmn1
1

b
FmnD D , ~1.1!

where (hmn)5diag(21,1,...,1) is the (n11) dimensional Minkowski metric,Fmn5]mAn

2]nAm , 0<m,n<n with $Am%m50, . . . ,n the gauge fields, andb.0 is a parameter.
This theory may be thought of as a nontrivial alternative to the standard Maxwell theo

electromagnetism. The major motivations for the introduction of the Born–Infeld field theor
things such as overcoming the infinity problem associated with a point charge source
Maxwell theory, natural recovery of the usual Maxwell theory as a linear approximation, an
hope to find solitonlike solutions representing pointlike charged particles.

From a mathematical view point this theory is the highly nonlinear generalization o
Maxwell theory. Gibbons~1998! has lead to a systematic study of the Born–Infeld theory
obtained exact solutions in numerous situations. He links areas of physics and differential
etries such as Bernstein theorem for minimal surface equations~Osserman, 1986! or maximal
hypersurface equations~Calabi, 1970; Cheng and Yau, 1976! in Minkowskian spaces.

In Rn11(n52,3), the Euler–Lagrange equations for~1.1! are

]mGmn50, Gmn
ª

Fmn2 ~1/4b2! ~FabFab!F̃mn

A11 ~1/2b2! FabFab2 ~1/16b4! ~FabF̃ab!2
~1.2!

together with Bianchi identity

]mF̃mn50 ~]mF̃m50 for n52!, ~1.3!

a!Electronic mail: dhchae@math.snu.ac.kr
b!Electronic mail: hjhuh3@math.snu.ac.kr
61320022-2488/2003/44(12)/6132/8/$20.00 © 2003 American Institute of Physics
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whereF̃ab5 1
2e

abmnFmn (F̃a5 1
2e

amnFmn) is the Hodge dual ofFmn, andeabmn is totally skew-
symmetric tensor with the normalizatione012351(e01251). We note that the factorF̃ disappears
whenn52.

Whenn53, we can write the system~1.2! and~1.3! in a more familiar form introducing the
electric componentsEi5Fi0 and the magnetic componentsBi5

1
2e i jkF jk with i 51,2,3, respec-

tively. DenotingE5(E1 ,E2 ,E3) andB5(B1 ,B2 ,B3), we find that~1.2! corresponds to

div F 1

R H E1
1

b2 ~E•B!BJ G50,

]

]t F 1

R H E1
1

b2 ~E•B!BJ G5curl F 1

R H B2
1

b2 ~E•B!EJ G ,
where we denotedR5A12 (1/b2) (E22B2)2 (1/b4) (E•B)2, while ~1.3! corresponds to

div B50,
]B

]t
52curlE.

We observe that asb→`, we haveGmn→Fmn, and the system~1.2! and~1.3! formally converges
to the usual Maxwell equations in vacuum:

]mFmn50, ]mF̃mn50,

which can be written in terms of the electric and magnetic fields as

div E50,
]E

]t
5curlB, div B50,

]B

]t
52curlE.

We state the our main theorem.
Theorem 1.1:Let n52,3.Suppose f,gP@C0

`(Rn)# (n11) is given. We consider the initial valu
problem of the system (3.1)–(3.6) in Rn11 under the Lorentz gauge condition, ]mAm50 with the
initial data

Am~0,• !5« f , ] tA
m~0,• !5«g,

satisfying

]mGm050, ]mF̃m050, ]mAm~0,• !50.

Then, there exists«0 such that if«<«0 , then the smooth solution of (3.1)–(3.6) exists for all t
.0.

Remark 1:The proof actually does not require compact support of the initial data; approp
decays at infinity are enough.

Remark 2:Under the choice of Lorentz gauge our system~3.1!–~3.6! has null form structure,
and has some similar features to the simpler case of the minimal surface equations in (Rn11,hmn),
studied recently by Lindblad~2002!. ~See also the remark after proof in Sec. III.!

II. PRELIMINARIES

We briefly review the notions of the commuting vector field methods and the null fo
developed by Klainerman~1980, 1986!, Christodoulou~1986!, Christodoulou and Klainerman
~1990!. A point in the (n11)-dimensional Minkowski space will be denoted by (t,x)
5(xa)0<a<n . The space–time derivatives of a functionf :Rn11→R are denoted by] f
5(] t f ,]1f ,...,]nf ).
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We raise and lower indices with the Minkowski metrich5(hab)5h215(hab)
5diag(21,1,...,1). We also use the summation convention for the repeated indices. Therefo
wave operator is denoted byh5]a]a. Greek indices are used to denote 0,...,n, while Latin
indices are for 1,...,n. The vector fields

Vmn5xm]n2xn]m , S5xm]m

are the rotation and the scaling operators inRn11. In what follows, the vector fields
]m ,S,Vmn(m,n) will be denoted byGk , k50,...,n111 n(n11)/2. We shall also use the multi
index notationG I5G1

I 1
¯Gm

I m. We recall the commutation relations betweenh andG:

@h,S#52h,

@h,]m#50, 0<m<n, ~2.1!

@h,Vmn#50, 0<m,n<n.

We find easily the following relations:

@Gk ,]n#5ank
m ]m ,

for some suitable constant coefficientsank
m . Let us introduce the null forms

Q̃~f,c!5] tf] tc2] if] ic,
~2.2!

Qab~f,c!5]af]bc2]ac]bf, for a,b50,1,...,n.

Let Q stand for any of the above null forms. Then the following commutation relations h

GQ~f,c!5Q~Gf,c!1Q~f,Gc!1bmnQmn~f,c! ~2.3!

for some constantsbmn. The following lemma will be used to give time decay factor 1/(11t) to
the quadratic termsQ @see p. 57 in Sogge~1995! for a proof#.

Lemma 2.1: Let Q be one of the null forms in (2.2). Then if t.0,

uQ~f,c!~ t,x!u<
C

11t1uxu (
uI u51

uG If~ t,x!u (
uI u51

uG Ic~ t,x!u.

Combining the above lemma with~2.3!, one can easily verify@see p. 59 in Sogge~1995!# the
following.

Corollary 2.2: Let Q be one of the null forms in (2.2). Then if t.0,

~11t1uxu! (
uI u<M

uG IQ~f,c!u<CM (
1<uI u<M11

uG Ifu (
1<uI u< ~M12!/2

uG Icu

1CM (
1<uI u<M11

uG Icu (
1<uI u< ~M12!/2

uG Ifu. ~2.4!

To estimate theL2 norm of the solution itselfAn , use will be made of the following lemma
the proof of which is in Linblad~1990, 2002!

Lemma 2.3: If u solves the Cauchy problem

hu5 (
a50

n

]aGa , u~0,!5« f , ut~0,!5«g,
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then

iu~ t,• !iL2< (
a50

n E iGa~s,• !iL2ds1C~ f ,g,G0~0,• !!m~ t !«,

where m(t)51 if n>3, m(t)5 log(21t) if n52 and C( f ,g,G0(0,•)) is some constant dependin
on some weighted Sobolev norm of initial data f and g.

We also use the followingL12L` estimate without proof~see Hormander, 1997!.
Lemma 2.4: The solution u of

hu~ t,x!5F~ t,x!, u~0,• !5« f , ] tu~0,• !5«g, ~ t,x!PRn11

satisfies

uu~ t,x!u<C~11t1uxu!2 ~n21!/2S (
uI u<n21

E
0

t I G IF~s,• !

~11s1u•u!~n21!/2I
L1

ds1C~ f ,g!« D .

III. PROOF OF THE MAIN THEOREM

Before getting into the main parts of the proof we will present a few observations. We
rewrite ~1.2! in the form of the quasilinear wave equations,

2~11~2b2!21^F&22~16b4!21^F̃&4!hAn

5
1

2b2 ]m@^F̃&2F̃mn#S 11
1

2b2 ^F&22
1

16b4 ^F̃&4D
1S Fmn2

1

4b2 ^F̃&2F̃mnD S 1

2b2 ]m~^F&2!2
1

16b4 ]m~^F̃&4! D , ~3.1!

where we denoted̂F&25FabFab and ^F̃&25FabF̃ab . We note F̃50 for n52. Under the
condition of Lorentz gauge]mAm50, we have

1
2 ^F&25Q̃~Am,Am!1Qmn~Am,An!, ~3.2!

^F̃&252eabmnQab~Am ,An!, ~3.3!

Fmn]m~^F&2!5Q̃~An,^F&2!2Qna~Aa ,^F&2!, ~3.4!

Fmn]m~^F̃&4!5Q̃~An,^F̃&4!2Qna~Aa ,^F̃&4!, ~3.5!

F̃mn]m~^F̃&2!5 1
2 enabgQab~Ag ,^F̃&2!. ~3.6!

Note that for eachn the right hand side of~3.1! has the double null structure which produces
decay factor 1/(11t)2.

Proof of Theorem 1.1:We first verify that the gauge condition,]mAm50, and the two con-
straints,]mGm050,]mF̃m050, will be propagated along with the equations of motion~3.1!–~3.6!.
Let us set

U5]mAm, V5]mGm0, W5]mF̃m0.

If Eqs. ~3.1!–~3.6! for Am are satisfied, then after elementary computations we derive the fol
ing relations:
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] tU52RV,

] tV52
1

R
DU2] i S 1

RD ] iU, ~3.7!

] tW50.

The above equations are the linear equations with respect toU,V and W. If the initial data
Am(0,•),] tA

m(0,•) satisfy U(0,•)5V(0,•)5W(0,•)50, as is our case, then by the uniquene
result of the linear system we conclude thatU(t,•)5V(t,•)5W(t,•)50 in the interval (0,T), in
which the classical solutions of the equations~3.1!–~3.6! exist.

Next we turn to the question of local existence of solution. We can write the equa
~3.1!–~3.6! in the following forms:

hAn1D 21C namb]abAm50, n50,...,n, ~3.8!

whereD is the factor in front ofhAn in the left-hand side of~3.1!, andC namb5C namb(]A) are
polynomials of orderp, 2<p<4. In fact, the coefficientsC namb(]A) take the form of
Fsr

i Fgd
j (]mAm)k, 2< i 1 j 1k<4. We also note thatC(0)50, and, most importantly,

C namb~]A!5C mbna~]A!. ~3.9!

The system~3.8! with the above conditions forC mnab(]A) is similar to the elastic wave equation
studied in Dafermos and Hrusa~1985! and John~1988! where they proved the local well
posedness in the suitable Sobolev spaces, using the energy method.

For the latter use we derive the energy estimate for the following system:

hAn1C namb~ t,x!]abAm5 f n , n50,...,n, ~3.10!

under the assumptionsuCu5(uC nambu< 1
2 andC namb(t,x)5C mbna(t,x).

Multiplying ] tAn at eachnth equation of~3.10!, summing overn, and integrating overRn, we
obtain

E
Rn

] tAnhAn1] tAnC namb]abAm5E
Rn

]0An f n . ~3.11!

Using the fact thatC namb5C mbna and integrating by parts, we deduce

]0E
Rn

1

2
u]Au21C n im j] iAn] jAm2C n0m0]0An]0Am

5E
Rn

]0C n im j] iAm] jAn2] iC n im j]0Am] jAn2] jC n im j]0An] iAm

2E
Rn

]0An f n1] iC n0m0]0Am]0An1]0C n0m0]0Am]0An . ~3.12!

Integrating over@0,T#, and taking into account the smallness ofC namb ((uC nambu< 1
2), and ap-

plying the Hölder inequality on the right hand side of~3.12!, we obtain

i]A~ t !iL2<C expS E
0

t

u]C~t!udt D i]A~0!iL21CE
0

t

expS E
s

t

u]C~t!udt D i f ~s,• !iL2ds,

~3.13!
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whereu]C(t)u5(supxu]lC namb(t,x)u and the constantC depends only on theL` norm ofC namb.
Differentiation of ~3.10! with respect to time or the spatial variable shows that each pa
derivative ofAm satisfies a system with the same principal part as~3.10! and remainder terms
depending on the derivatives ofC, f andAm of lower order. Thus one can obtain energy estima
for the higher order derivatives ofAm .

Next we will present the main part of the proof. Below we concentrate on the case ofn52.
The casen53 is similar and even simpler due to the faster decays near infinity of the solutio
the linear wave equation. The Euler–Lagrange equations inR211 of ~1.1! under Lorentz gauge
~for simplicity we set the constantb51) can be written as

]mS Fmn

A11221FabFabD 50. ~3.14!

We can write~3.14! as wave equations, using the condition]mAm50,

hAn5]mFmn5]mS FmnS 12
1

A11221^F&2D D , ~3.15!

where 1
2^F&25Q̃(Am,Am)1Qmn(Am,An). Applying G I to the both sides of~3.15!, we get

hG IAn5 (
m50

2

]mS ( Gi 1 ,•,i k ,I 1 ,•,I k
~Q!] i 1

G I 1A¯] i k
G I kAD . ~3.16!

Note that the right hand side of~3.16! is in the divergence form andGi 1 ,•,i k ,I 1 ,•,I k
(Q) is bounded

function for smallQ. We can also write~3.14! as a wave equation with null forms

hAn5
1

2

Q̃~An,221^F&2!2Qna~Aa,221^F&2!

11221^F&2 . ~3.17!

Differentiating with respect toG I , we obtain

hG IAn2
1

2

Q̃~An,221^G IF&2!2Qna~Aa,221^G IF&2!

11221^F&2

5 (
k>3,uI 1u1••1uI ku<uI u11

uI i u< ~ uI u11!/2 ,i ,k,uI ku<uI u

Hi 1 , . . . ,i k ,I 1 , . . . ,I k
~A,Q~A,A!!~] i 1

G I 1A!¯~] i 1
G I 1A!, ~3.18!

where 221^G IF&25Q̃(Am,G IAm)1Qmn(Am,G IAn). Note thatH is a bounded function for smal
A,Q(A,A) and the coefficients of the highest order terms are symmetric in the sense of~3.9!
Finally, we write~3.14! in the form suitable for applying theL12L` estimate~Lemma 2.4!:

hG IAn5 (
k>3

uI 1u1•••1uI ku<uI u

KI 1 , . . . ,I k

i 0 , . . . ,i k~Q~A,A!!Qi 0i 1~G I 1A,Qi 0i 1~G I 2A,G I 3A!!

3Qi 4i 5~G I 4A,G I 5A!¯Qi k21i k~G I k21A,G I kA!, ~3.19!

wherei j 21i j is the index for denoting the several terms under a fixedI 1 ,...,I k .
We will prove that following bounds are guaranteed all the time ifK is sufficiently large and

« is sufficiently small:
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M1~ t !5 (
uI u<N

i]G IA~ t,• !iL2<K«~11t !d,

M2~ t !5 (
uI u<N

iG IA~ t,• !iL2<K«~11t !d, ~3.20!

N1~ t !5 (
uJu< ~N11!/2 11

iGJA~ t,• !iL`<K«~11t !2 1/2,

whereiG IA(t,•)iL25(a50
2 iG IAa(t,•)iL2 and 0,d, 1

2 fixed.
Applying the energy estimates~3.13! to ~3.18!, we have

M1~ t !<C« expS E
0

t

N1~t!2dt D 1E
0

t

expS E
s

t

N1~t!2dt DC~N1~s!!N1~s!2M1~s!ds ~3.21!

and Lemma 2.3 applied to~3.16! gives

M2~ t !<CS C~ f ,g!m~ t !«1E
0

t

C~N1~s!!N1~s!2M1~s!dsD . ~3.22!

Finally, Lemma 2.4 applied to~3.19!, Lemma 2.1 and the Cauchy Schwartz inequality give

N1~ t !<C~11t !2 1/2S C~ f ,g!«1E
0

t N1~s!

~11s!1/211 ~M1~s!1M2~s!!2dsD , ~3.23!

if ( N11)/2111n21<N, i.e., N>2n11. We note that the null condition produced an ex
power of (11s)21 in the integral~3.23!. Actually we have one more power but we do not use
here. From~3.20! we can get

expS E
s

t

N1~t!2dt D<expS «2K2E
s

t

~11t!21dt D 5S 11t

11sD
«2K2

, ~3.24!

so it follows from ~3.21!

M1~ t !<C«~11t !K2«2
1E

0

t

C«3K3S 11t

11sD
«2K2

~11s!d21ds<
K«

2
~11t !d ~3.25!

if K is sufficiently large and« is sufficiently small. Also, from~3.22! we get

M2~ t !<C« log~21t !1E
0

t

C«3K3~11s!d21ds<
K«

2
~11t !d ~3.26!

if K is sufficiently large and« is sufficiently small. Finally, from~3.23! we get

N1~ t !<C«~11t !2 1/21~11t !2 1/2E
0

t

C«3K3~11s!2d22ds<
K«

2
~11t !2 1/2 ~3.27!

if K is sufficiently large and« is sufficiently small, since 0,d, 1
2. Consequently, we get a boun

of N1(t) smaller than the assumption. Therefore the solution can be extended by con
argument. If we assume the maximal time of existenceT5T* (,`), the above result contradict
the maximality ofT* . We obtain the global existence of smooth solution. h
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Remark after Proof:We should mention that the main part of our proof is a direct adapta
of the argument given by Lindblad~2002!. The minimal surface equation studied in Lindbla
~2002!, on the other hand, can be considered as the special case of Nambu–Goto equatio
Lagrangian of which is given by~Gibbons, 1998!

L512A2det~hmn1]my]ny!,

wherey5(y1 ,...,ym). The casem51 corresponds to the equation of Lindblad~2002!. In m52
we can check the following (y15f,y25x):

2det~hmn1]my]ny!52det~hmn1]mf]nf1]mx]nx!

511Q̃~f,f!1Q̃~x,x!1 1
2 Qmn~f,x!Qmn~f,x!ªK.

The equation of motions forf is

K$hf1 1
2 Qmn~Qmn~f,x!,x!%5 1

2 $Q̃~f,Q̃~f,f!!1Q̃~f,Q̃~x,x!!

1Q̃~f, 1
2 Qmn~f,x!Qmn~f,x!!%

1 1
4 $Qmn~f,x!Qnm~x,Q̃~f,f!!1Qmn~f,x!Qnm~x,Q̃~x,x!!%

1 1
4 Qmn~f,x!Qnm~x, 1

2 Qab~f,x!Qab~f,x!!. ~3.28!

The corresponding equation forx can be obtained by replacingf by x in the above. The symmetry
of equations in the sense of~3.9! is also observed in the above system. Besides, here also we
double null form and the divergence structure. Hence, we can expect that the proof of
existence of the classical solution goes similar to the above one.
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Old and new results for superenergy tensors
from dimensionally dependent tensor identities

S. Brian Edgara) and Ola Wingbrantb)
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It is known that some results for spinors, and in particular for superenergy spinors,
are much less transparent and require a lot more effort to establish, when consid-
ered from the tensor viewpoint. In this paper we demonstrate how the use of
dimensionally dependent tensor identities enables us to derive a number of
4-dimensional identities by straightforward tensor methods in a signature indepen-
dent manner. In particular, we consider the quadratic identity for the Bel–Robinson
tensor TabcxT abcy5dx

y TabcdT abcd/4 and also the new conservation law for the
Chevreton tensor, both of which have been obtained by spinor means; both of these
results are rederived bytensormeans for 4-dimensional spaces of any signature,
using dimensionally dependent identities, and, moreover, we are able to conclude
that there are nodirect higher dimensional analogs. In addition we demonstrate a
simple way to show the nonexistense of such identities via counter examples; in
particular we show that there is no nontrivial Bel tensor analog of this simple
Bel–Robinson tensor quadratic identity. On the other hand, as a sample of the power
of generalizing dimensionally dependent tensor identities from four to higher di-
mensions, we show that the symmetry structure, trace-free and divergence-free
nature of the 4-dimensional Bel–Robinson tensor does have an analog for a class of
tensors in higher dimensions. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1624094#

I. INTRODUCTION

Investigations connected with the Bel–Robinson tensor1 in four dimensions are usually muc
simpler and more efficient when carried out in spinor formalism.2 Senovilla3 has demonstrated tha
a much larger class of tensors—superenergy tensors—share most of the desirable properties of t
Bel–Robinson tensor, and Bergqvist4 has shown howsuperenergy spinorsgive a simpler and more
efficient presentation of certain aspects of these superenergy tensors. Recently, Bergqvist
son, and Senovilla5 have obtained new conservation laws for the electromagnetic field u
superenergy spinor considerations, and emphasized that the proof of this result is far from o
from the tensor point of view.

It is reassuring to know that certain important but perhaps unexpected properties—dis
in the complexities of the tensor formalism—become more transparent in the spinor form
but the parallel and more transparent spinor investigations are restricted to 4-dimensional
times with Lorentz signature, and so this assistance is not available in higher dimensions
four dimensional spaces with other signatures. Deser6 has emphasized the significance of t
Bel–Robinson tensor in higher dimensions, and one of the important features of Seno
method of construction of superenergy tensors3 is that it is applicable to arbitrary fieldsin any
dimension; and so, for higher dimensions, it becomes an obvious concern whether there co
unexpected properties for superenergy tensors—disguised in the even deeper complex

a!Electronic mail: bredg@mai.liu.se
b!Electronic mail: ola@wingbrant.info
61400022-2488/2003/44(12)/6140/20/$20.00 © 2003 American Institute of Physics
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tensor formalism in higher dimensions—analogous to those properties revealed by the
formalism in four dimensions.

Deeper investigations into the interaction between dimension and tensor identities hav
instrumental in illustrating the uniqueness of some of the Bel-Robinson tensor’s properties i
dimensions,6 explaining the collapse of some Riemann scalar invariants in four dimensi7

resolving the apparent disparities between the spinor and tensors versions of the wave eq
for the Weyl tensor and Lanczos potential,8–11 respectively. Moreover, in higher dimension
worries concerning counterterms in Lagrangians12,13 have been dispelled, and the Bel–Robins
tensor has been shown to be fully symmetric in five dimensions~as well as in four dimensions!.3

Much earlier, Lovelock14 had pointed out that a number of apparently unrelated results w
all really consequences of a class of identities which he christeneddimensionally dependen
identities—identities which are a trivial, but subtle, consequence of dimension alone. Rec
Edgar and Ho¨glund15 have generalized Lovelock’s results, and demonstrated that the unde
principle in all of these investigations in Refs. 6–13, and some new ones, was the e
exploitation of dimensionally dependent identities. Furthermore, in algebraic Rainich th
Bergqvist and Ho¨glund16 have exploited these ideas further, and obtained results infive dimen-
sions involvingcubic terms in the energy momentum tensor—motivated by the familiar resul
four dimensions involvingquadratic terms;17 while Edgar and Ho¨glund18 have demonstrated th
crucial role that dimensionally dependent identities play in the existence of the Lanczos po
for the Weyl tensor in different dimensions.

Deser19 has applied the adjective ‘‘ubiquitous’’ to the Bel–Robinson tensor, and this des
tion is equally appropriate to dimensionally dependent identities, as can be seen by the wide
of the investigations in Refs. 6–13, the applications given by Lovelock,14 and the more recen
applications in Refs. 15, 16, 18. In fact, Deser has argued elsewhere6 that two identities~which are
examples of what we call dimensionally dependent identities in four dimensions! are in a sense
implicit in the familiar definitions of the Bel–Robinson tensor in four dimensions.

The purpose of this present paper is to emphasise the subtle interaction between dim
and tensor identities, and illustrate the important role which can be played byfundamental dimen-
sionally dependent identitiesin investigations where tensor identities are important, in particu
involving superenergy tensors.~We shall refer to the most fundamental dimensionally depend
identities as ‘‘fddis,’’ and to any identities constructed from these as ‘‘ddis.’’! Our overall aim is to
examine useful and significant properties in four dimensions—usually originating as s
identities—and identify the kernel 4-dimensional fddi; then we will use the higher dimens
analogs of the kernel fddi to try and establish analogous results in higher dimensions. Th
involve two different stages of investigation.

Step 1. The first step is to establish 4-dimensional signature-independent tensor versions
proofsof interesting spinor identities and/or reconcile apparent discrepencies between spin
tensor results. We stress the need forsignature-independentproofs for the following reason
results obtained using spinors strictly can claim to be valid only in 4-dimensional space–
with Lorentz signature. Of course there are results in such spaces which have no counterp
other signatures~e.g., results concerning principle null directions of the Weyl tensor!, but we
encounter an uncertain situation when we consider results which can be stated in tensors
apparent reference to signature, but which were derived in spinors, or derived in tensors bu
features which are signature dependent.20 The Bel–Robinson tensorTabcd tensor which is known
to satisfiy the identity

TabcxT abcy5dx
y TabcdT abcd/4, ~1!

in four dimensions, is an important example of such a situation; we would wish to under
whether dimension and signature have crucial roles in this result.21,22

In spinor calculations the dimension four is inbuilt into the formalism; in tensor calculat
a nonarbitrary dimension such as four has to be put in explicitly ‘‘by hand.’’ However, it is
always sufficient just to substituten54 in explicit calculations; in some cases the substitut
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needed is more subtle—it is achieved by the use of one or more fddis, but it is clear that th
no direct spinor analog of a 4-dimensional fddi—the spinor version is trivially zero.

So, for example, the Lanczos spinor potentialLABCD85L (ABC)D8 for the Weyl spinorCABCD ,
which satisfiesCABCD5¹(A

A8LBCD)A8 was found by Illge10 to satisfy the very simple equation,

hLABCD850, ~2!

in Ricci flat spaces, while the corresponding tensor equation for the Lanczos tensorLabc

5L [ab]c , Lc
ac505L [abc] is calculated to be9,11

¹2Labc1
2~n24!

n22
L [a

d
uc;dub]52L [b

edCa]dec2
1

2
CdeabL

de
c1

4

n22
gc[aCb] f edL

f ed, ~3!

whereCabcd is the Weyl tensor. In four dimensions, obviously it cannot be sufficient simpl
substituten54, since we know from the spinor version that the right hand side must disap
completely in four dimensions. But if we consider the 4-dimensional fddiC[ab

[cdd f ]
e][0 ~Refs.

14,15! ~quoted in Lemma 3 at the end of this section!, we find that, when contracted withLde
f , we

obtain the ddi,

2L [b
deCa]edc2

1
2 Lde

cCdeab12Lde fgc[aCb]de f[0, ~4!

which ensures that the entire right hand side of~3! disappears in four dimensions.10

Step 2. Once the 4-dimensional version is fully understood and the 4-dimensional kerne
obtained, the second step will be to determine what generalizations are possible using the
dimensional counterpart fddis of the 4-dimensional kernel fddi. Occasionally these generaliz
can be quite straightforward~e.g., discovering that a 4-dimensional result is also valid in fi
dimensions3,15!; or more complicated involving a restructuring of the 4-dimensional resul
higher dimensions~e.g., finding a 5-dimensional result involving triple products of Maxw
tensors as a generalization of a 4-dimensional result involving double products of Ma
tensors16!.

The remainder of the paper is organized as follows. In Sec. II we deduce four different s
identities which are special cases of one very simple general spinor identity; but in Sec. III w
that the 4-dimensional signature-independent tensor version of each of these identities req
very differenttensorproof—some of which are very complicated—although the unifying cha
teristic in all is the use of ddis. In Sec. IV we show that the Bel superenergy tensor does not
the same simple identity~1! in four dimensions, and in Sec. V we show that the Bel–Robin
tensor does not satisfy any analogous identity to~1! in fivedimensions. In Sec. VII we rederive th
new conservation laws for electromagnetic theory5 by using a number of 4-dimensional tens
ddis; these 4-dimensional tensor ddis cannot be replaceddirectly with higher-dimensional ddis
and so there is nodirect higher-dimensional analog of this law.

As noted above, the second step in such investigations is to attempt a generalization
4-dimensional results to higher dinensions once we have identified the kernel tensor fddi i
dimensions. In Sec. VI we give the 4-dimensional tensor counterparts to two trivial spinor r
involving the symmetry properties of the Bel–Robinson and Lanczos superenergy spinors
results both involve 4-dimensional fddis, and in the case of the Bel–Robinson superenergy
by means of the analogous 5-dimensional fddi we show that exactly the same result is true
dimensions.

A more ambitious generalization is proposed in Sec. VIII. We illustrate this approac
considering a superenergy tensor which is a natural generalization of the Bel–Robinson
and show that it shares its attractive properties of full index symmetry and zero divergen
seven and lowerdimensions, as well as being trace-free insix dimensions. A summary is given
and future developments are proposed in Sec. IX.
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It will be useful to have for reference a number of lemmas which are simply tensor dd
four dimensions. Many familiar identities ostensibly involve the Weyl or Riemann tensors dir
or indirectly, but on closer inspection have a more general character being simply alge
involving ‘‘candidates’’ for Weyl, Riemann, Lanczos or other tensors. In this paper, we shall
the results for the more general ‘‘candidates’’ where appropriate.~A ‘‘candidate’’ of a tensor such
as the Riemann or Weyl tensor is a tensor with the same index and trace properties, but sha
other properties, such as differential properties; we shall designate such candidates with th
bol ˆ. So, for example, a ‘‘Weyl candidate tensor’’Ĉabcd is defined by the propertiesĈabcd

5Ĉ[ab]cd5Ĉab[cd] , Ĉa[bcd]50, Ĉa
bca50. We shall follow the usual notation2 with

Rabcd, Cabcd, Sab , R for Riemann, Weyl, trace-free Ricci tensors and the Ricci scalar, res
tively; their ‘‘candidates’’ will be, respectively,R̂abcd,Ĉabcd,Ŝab ,R̂. We shall also follow the
usual notation for the Weyl and Ricci spinors, respectively,CABCD ,FABC8D8 , and scalarL
(5R/24); their ‘‘candidates’’ will be, respectively,ĈABCD ,F̂ABC8D8 , L̂. In addition we will use
the Lanczos spinorLABCD85L (ABC)D8 , and Lanczos tensorLabc5L [ab]c , Lc

ac505L [abc] ~Refs.
9,11! with corresponding ‘‘candidates’’L̂ABCD and L̂abc .)

The following lemmas can be found in Ref. 15, or can be deduced from results there
details are given in Ref. 25.

Lemma 1:In four dimensions, a 2-tensorAab satisfies

A[a
aAb

bAc
cAd

dde]
f [0, ~5!

which is equivalent to the Cayley–Hamilton Theorem for the 434 matrix Aa
b when written out

term by term.
~We shall be concerned with two special cases from this class of tensors: trace-free

candidatesŜab5Ŝ(ab) with Ŝa
a50, and Maxwell tensorsFab5F [ab] .)

Lemma 2:A Lanczos candidateL̂abc with propertiesL̂abc5L̂ [ab]c , L̂c
ac505L̂ [abc] , satisfies

L̂ [ab
[e dcd]

f g] [0, in four dimensions, ~6a!

L̂ [ab
[ f dcde]

ghi] [0, in five dimensions. ~6b!

Lemma 3:A Weyl candidateĈab
cd satisfies

Ĉ[ab
[de dc]

f ] [0, in four dimensions, ~7a!

Ĉ[ab
[e f dcd]

gh][0, in five dimensions. ~7b!

Lemma 4:In four dimensions, a Weyl candidateĈab
cd satisfies

~a! ĈabcxĈ
abcy[dx

y ĈabcdĈ
abcd/4, ~8a!

~b! Ĉyb
cdĈ

cd
e fĈ

e f
bx[dx

yĈab
cdĈ

cd
e fĈ

e f
ba/4, ~8b!

~c! Ĉyb
cdĈ

de
b fĈ

f c
ex[dx

yĈab
cdĈ

de
b fĈ

f c
ea/4, ~8c!

~d! Ĉyb
cdĈ

de
b fĈ

f g
ehĈ

hc
gx[dx

yĈab
cdĈ

de
b fĈ

f g
ehĈ

hc
ga/4, ~8d!

~e! Ĉyb
cdĈ

de
b fĈ

f gc
hĈh

egx[dx
yĈab

cdĈ
de

b fĈ
f gc

hĈh
ega/4. ~8e!

The first three of these lemmas are fddis obtained by skew symmetrizing overfive indices in
4-dimensional space~and six indices in 5-dimensional space!, and exploiting the fact that the
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appropriate tensors are trace-free; Lemma 4 gives ddis deduced from Lemma 3, but as can
from the details in Ref. 25, although~8a! is well-known, quite a lot of work is involved in
obtaining the remainder of Lemma 4.

It is obvious from the constructions that these identities for four/five dimensions are va
four/five and lowerdimensions. So, for instance~6b! is also valid in four dimensions, but the onl
nontrivial information is in its trace in four dimensions, which is equivalent to~6a!; on the other
hand, in five dimensions, the trace of the left hand side of~6b! is identically zero, giving a trivial
result. Of course no Weyl candidates exist in dimensions less than four, but for the other te
these lemmas are nontrivial in lower dimensions. However, we shall not be concerned
dimensions less than four in this paper. Although stated for Lanczos and Weyl candidates~which
is all we require in this paper!, a number of these results are valid for more general tensor
particular the antisymmetry propertyL̂ [abc]50 can be relaxed in Lemma 2, and the antisymme
Ĉa[bcd]50 can be relaxed in Lemma 3 and Lemma 4a, b, c, d.

II. SIMPLE SPINOR IDENTITIES

We begin with the following spinor result which generalizes Penrose’s original derivation2 for
Bel–Robinson tensors.

Theorem 1: A spinor which factorizes according toTSXS8X854VSXV̄S8X8 satisfies

TSXS8X8T
SYS8Y85eX

YeX8
Y8TSAS8A8T

SAS8A8/4, ~9!

whereS,S8 each represent anodd number of spinor indices.
Proof:

VSXVSY5VS
YVS

X1eX
YVSAVSA52VSYVSX1eX

YVSAVSA,

with the negative sign arising by ‘‘see-sawing’’ the odd number of indices inS. Hence

VSXVSY5eX
YVSAVSA/2. ~10!

Multiplying by the complex conjugate

V̄S8X8V̄
S8Y8VSXVSY5eX

YVSAVSAeX8
Y8V̄S8A8V̄

S8A8/4,

and substituting forTSXS8X8 , TSYS8Y8 gives the result. h

From Theorem 1 we see that the types of indices in the collection of indices representeS
do not matter; only the fact that there is an odd number. In this paper we shall be concentra
4-index tensorsTabcd equivalentlyTABCDA8B8C8D8 ; and in particular from Ref. 4~see also Ref.
26!:

~i! The superenergy spinor of the Weyl~candidate! spinor ĈABCD ~i.e., the Bel–Robinson
superenergy spinor! is given by

T @Ĉ#ABCDA8B8C8D854ĈABCDĈ
¯

A8B8C8D8 . ~11a!

~ii ! The superenergy spinor of the Ricci~candidate! spinorF̂ABC8D8 is given by

T @F̂#ABCDA8B8C8D854F̂ABC8D8F̂
¯

CDA8B8 . ~11b!

~iii ! The superenergy spinor of the Ricci~candidate! scalarL̂ is given by

T @L̂#ABCDA8B8C8D854L̂2~eACeBD1eADeBC!~eA8C8eB8D81eA8D8eB8C8!. ~11c!

~iv! The superenergy spinor of the Weyl–Ricci scalar~candidate! spinor x̂ABCD is given by
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T @ x̂#ABCDA8B8C8D854x̂ABCDx̄̂A8B8C8D8

54~ĈABCD1L̂~eACeBD1eADeBC!!„Ĉ
¯

A8B8C8D81L̂~eA8C8eB8D8

1eA8D8eB8C8!…

5T @Ĉ#1T @L̂#14L̂„Ĉ
¯

A8B8C8D8~eACeBD1eADeBC!1ĈABCD~eA8C8eB8D8

1eA8D8eB8C8!…. ~11d!

Theorem 1 immediately specializes to the following.
Theorem 2: The four superenergy spinors in~11! T @Ĉ#,T @F̂#, T @L̂#, T @ x̂# all obey the

identity

TABCXA8B8C8X8T ABCYA8B8C8Y85eX
YeX8

Y8T ABCDA8B8C8D8T ABCDA8B8C8D8/4. ~12!

h

The simplicity of the above theorems is due to the fact that the superenergy spinors
simple direct products involving a spinor times its conjugate; it should be noted that even
general identities could have been obtained for these four spinors, as well as for more g
spinors with the same simple product structure—not just from the point of view of relaxing
index symmetries, but also from freeing more indices.2

However the Bel superenergy spinor~the superenergy spinor for the Riemann~candidate!
spinor!2,4 and the Lanczos superenergy spinor~the superenergy spinor for the Lanczos~candidate!
spinor!,4 do not have such a simple structure as can be seen below:

BABCDA8B8C8D854~ x̂ABCDx̄̂A8B8C8D81F̂ABC8D8F̂̄CDA8B8!

54„ĈABCD1L̂~eACeBD1eADeBC!…3„Ĉ̄A8B8C8D81L̂~eA8C8eB8D81eA8D8eB8C8!…

14F̂ABC8D8F̂̄CDA8B8

54„ĈABCDĈ̄A8B8C8D81F̂ABC8D8F̂̄CDA8B81L̂2~eACeBD1eADeBC!

3~eA8C8eB8D81eA8D8eB8C8!1L̂ĈABCD~eA8C8eB8D81eA8D8eB8C8!

1L̂Ĉ̄A8B8C8D8~eACeBD1eADeBC!… ~13!

~where we have used the notationB rather than the more consistentT @R̂# simply for ease of
presentation!, and

T @ L̂#ABCDA8B8C8D852~ L̂ABCD8L̄̂A8B8C8D1L̂ABDC8L̄̂A8B8D8C!, ~14!

whereL̂ABCD85L̂ (ABC)D8 .
It is easy to see that simple identities such as~12! do not hold in these cases. However th

does not rule out the possibility of other, more complicated, identities. We shall look furth
both of these tensors in Sec. VI, and at possible identities for the Bel tensor in Sec. IV.

III. SIMPLE TENSOR IDENTITIES

We now wish to confirm the tensor versions of the four identities in Theorem 2 by te
means. We shall discover that although the above four identities had essentially the same
proofs, the proofs for their superenergy tensor counterparts require very different amou
calculations. We first give the correspondingn-dimensional basic superenergy tensors of
appropriate double 2-forms.
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In n-dimensional spaces from, Ref. 3 we have the following.

~i! The basic Bel–Robinson tensor1 ~equivalent to the Bel–Robinson spinorT @Ĉ#) is given
by

T @Ĉ#abcd5ĈapcqĈb
p

d
q1ĈapdqĈb

p
c
q2 1

2 gabĈrpcqĈ
rp

d
q2 1

2 gcdĈaprqĈb
prq

1 1
8 gabgcdĈsprqĈ

sprq. ~15!

~ii ! The basic trace-free Ricci superenergy tensor@equivalent to the superenergy spinor for t
Ricci ~candidate! spinor T @F̂#] is given—via the tensorÊabcd5(Ŝacgbd2Ŝadgbc

1Ŝbdgac2Ŝbcgad)/(n22)—by

T @Ê#abcd5Êaec fÊb
e
d

f1Êaed fÊb
e
c

f2 1
2 gabÊe f cgÊ

e f
d

g2 1
2 gcdÊae f gÊb

e f g

1 1
8 gabgcdÊe f ghÊe f gh

54S ŜabŜcd1
n24

2
Ŝa(cŜd)b2ŜbpŜ(d

pgc)a2ŜapŜ(d
pgc)b1

62n

4
ŜcpŜd

pgab

1
62n

4
ŜapŜb

pgcd1
n26

8
gabgcdŜpqŜ

pq1
1

2
ga(cgd)bŜpqŜ

pqD Y ~n22!2.

~16!

~Note that the superenergy tensor constructed for the trace-free Ricci candidate tensŜab

via the double 2-formÊabcd is different from the superenergy tensor constructed for
trace-free Ricci candidate tensor directly via the double 1-formŜab .3!

~iii ! The basic Ricci scalar superenergy tensor~equivalent to the superenergy spinor for t
Ricci ~candidate! scalarT @L̂#) is given—via the tensorĜabcd5R̂(gacgbd2gadgbc)/n(n
21)—by

T @L̂#abcd5Ĝaec fĜb
e
d

f1Ĝaed fĜb
e
c

f2 1
2 gabĜe f cgĜ

e f
d

g2 1
2 gcdĜae f gĜb

e f g

1 1
8 gabgcdĜe f ghĜ

e f gh

5R̂2S 2~n22!ga(cgd)b1
n229n116

4
gabgcdD Y n2~n21!2. ~17!

~iv! The basic superenergy tensor for thex̂ ~candidate! tensor@equivalent to the superenerg
spinor for the x̂ ~candidate! spinor T @ x̂#] is given—via the tensorx̂abcd5Ĉabcd

1R̂(gacgbd2gadgbc)/n(n21)—by

T @ x̂#abcd5x̂aec fx̂b
e
d

f1x̂aed fx̂b
e
c

f2 1
2 gabx̂e f cgx̂

e f
d

g2 1
2 gcdx̂ae f gx̂b

e f g1 1
8 gabgcdx̂e f ghx̂

e f gh

5T @Ĉ#abcd1T @L̂#abcd12R̂~Ĉacbd1Ĉadbc!/n~n21!. ~18!

In 4-dimensional space,3,30 we have the following.

~a! T @Ĉ#abcd is given in~15! in a dimension independent form, but by the ddi in Lemma 4
can be put in the simpler form in four dimensions, in which it is usually quoted

T @Ĉ#abcd5ĈapcqĈb
p

d
q1ĈapdqĈb

p
c
q2 1

8 gabgcdĈsprqĈ
sprq. ~19!

~b! T @Ê#abcd simplifies to
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T @Ê#abcd5ŜabŜcd1ŜapŜb
pgcd1ŜcpŜd

pgab23Ŝp(aŜb
pgcd)1

1
4 ŜpqŜ

pq~gacgbd1gadgbc

2gabgcd!. ~20!

~c! T @L̂#abcd simplifies to

T @L̂#abcd5R̂2~4ga(cgd)b2gabgcd!/144. ~21!

~d! T @ x̂#abcd simplifies to

T @ x̂#abcd5T @Ĉ#abcd1
R̂

6
~Ĉacbd1Ĉadbc!1T @L̂#abcd. ~22!

It is clear that all of the above superenergy tensors have the properties

Tabcd5T(ab)(cd) ,

and some have additional symmetry properties, e.g., for the Bel–Robinson tensor~in four and five
dimensions!, and the Lanczos superenergy tensor~in four dimensions!, Tabcd5T(abcd) as we shall
show in Sec. VI. All of the above are labeledbasic superenergy tensors to distinguish from t
more general superenergy tensors which can be obtained by taking linear combinations—
positive constant coefficients—of different basic superenergy tensors, obtained by
permutations.3

We now give the 4-dimensional tensor counterparts of Theorem 2.
Theorem 2a: In 4-dimensional spaces the Bel–Robinson tensorT @C#abcd in ~15! satisfies

T @Ĉ#abcxT @Ĉ#abcy5dx
y T @Ĉ#abcdT @Ĉ#abcd/4. ~23!

Proof: Substituting directly we obtain

T @Ĉ#abcxT @Ĉ#abcy2 1
4 dx

y T @Ĉ#abcdT @Ĉ#abcd

52Ĉyb
cdĈ

de
b fĈ

f g
ehĈ

hc
gx12Ĉyb

cdĈ
de

b fĈ
f gc

hĈh
egx22Ĉab

cdĈ
cd

ebĈ
e
gh

yĈa
gh

y

2Ĉyb
cdĈ

cd
ebĈ

e f
ghĈ

gh
x f1

1
2ĈabcdĈ

abcdCey
ghĈ

gh
ex1

1
4 dx

yĈab
cdĈ

cd
ebĈ

e f
ghĈ

gh
a f

2 1
16 dx

yĈabcdĈabcdĈ
e f ghĈe f gh2

1
4 dx

y~2Ĉab
cdĈ

de
b fĈ

f g
ehĈ

hc
ga12Ĉab

cdĈ
de

b fĈ
f gc

hĈh
ega

22Ĉab
cdĈ

cd
ebĈ

e f
ghĈ

gh
a f1

1
4 ĈabcdĈabcdĈ

e f ghĈe f gh!. ~24!

Using Lemma 4a a number of times gives the simpler expression

T @Ĉ#abcxT @Ĉ#abcy2 1
4 dx

y T @Ĉ#abcdT @Ĉ#abcd

52Ĉyb
cdĈ

de
b fĈ

f g
ehĈ

hc
gx12Ĉyb

cdĈ
de

b fĈ
f gc

hĈh
egx

2 1
4 dx

y~2Ĉab
cdĈ

de
b fĈ

f g
ehĈ

hc
ga12Ĉab

cdĈ
de

b fĈ
f gc

hĈh
ega!. ~25!

We can now apply Lemma 4d to the first and third terms, and Lemma 4e to the second and
terms, to obtain the required result. h

Theorem 2b: In 4-dimensional spaces, the superenergy tensorT @Ê#abcd given in ~20! satis-
fies

T @Ê#abcxT @Ê#abcy5dx
y T @Ê#abcdT @Ê#abcd/4. ~26!

Proof: Substituting directly we obtain
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T @Ê#abcxT @Ê#abcy2 1
4 dx

y T @Ê#abcdT @Ê#abcd

523Ŝy
bŜb

cŜ
c
dŜd

x1 3
2 ŜybŜxbŜcdŜ

cd1Ŝy
xŜ

a
bŜb

cŜ
c
a1 3

4 dx
yŜa

bŜb
cŜ

c
dŜd

a

2 3
8 dx

yŜabŜabŜcdŜ
cd. ~27!

But the right-hand side of this equation is precisely

d [x
y Ŝa

aŜb
bŜc

cŜ
d

d][0, ~28!

where we have made use of Lemma 1. h

Theorem 2c: In 4-dimensional spaces, the superenergy tensorT @L̂#abcd given in ~21! satis-
fies

T @L̂#abcxT @L̂#abcy5dx
y T @L̂#abcdT @L̂#abcd/4. ~29!

Proof: The result follows from a direct calculation. h

Theorem 2d: In 4-dimensional spaces, the superenergy tensorT @ x̂#abcd given in ~22! satis-
fies

T @ x̂#abcxT @ x̂#abcy5dx
y T @ x̂#abcdT @ x̂#abcd/4. ~30!

Proof:

T @ x̂#abcxT @ x̂#abcy5S T @Ĉ#abcx1T @L̂#abcx1
R̂

6
~Ĉacbx1Ĉaxbc! D

3S T @Ĉ#abcy1T @L̂#abcy1
R̂

6
~Ĉacby1Ĉaybc! D

5T @Ĉ#abcxT @Ĉ#abcy1T @L̂#abcxT @L̂#abcy1
R̂

6
„T @Ĉ#abcy~Ĉacbx1Ĉaxbc!

1T @Ĉ#abcx~Ĉacby1Ĉaybc!…1
R̂2

144
ĈabcdĈ

abcddx
y ,

where the last term was obtained using Lemma 4a.
We can apply Theorems 2a and 2c to the first and second terms, respectively, and ob

T @ x̂#abcxT @ x̂#abcy5
1

4
S T @Ĉ#abcdT @Ĉ#abcd1

1

4
T @L̂#abcdT @L̂#abcd1

R̂2

36
ĈabcdĈ

abcdD dx
y

1
R̂

6
„T @Ĉ#abcy~Ĉacbx1Ĉaxbc!1T @Ĉ#abcx~Ĉacby1Ĉaybc!….

To complete the proof we need to use the identity

T @Ĉ#abcy~Ĉacbx1Ĉaxbc!5 1
2 Ĉyc

bdĈ
e f bdĈxce f22Ĉyb

cdĈ
de

b fĈ
f c

ex1Ĉyb
cxĈbde fĈ

cde f

5 1
4 T @Ĉ#abcd~Ĉacbd1Ĉadbc!dx

y , ~31!

where we have used Lemma 4b on the first term, Lemma 4c on the second term and Lemm
the third term. h
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We note that in Theorems 2,a,b,d explicit 4-dimensional fddis were used in the proo
seems unlikely thatdirect generalizations can be obtained by using analogous fddis in hi
dimensions; more likely, higher order identities would need to be considered. Theorem 2
obtained by a direct calculation, and in fact an analogous identity is clearly obtainablen
dimensions because of the very simple structure of the superenergy tensor in this case.

IV. ABSENCE OF SIMPLE IDENTITIES FOR THE BEL SUPERENERGY TENSOR

The Bel tensor, the superenergy tensor for the Riemann tensor, inn dimensions3 is

Babcd5R̂apcqR̂b
p

d
q1R̂apdqR̂b

p
c
q2 1

2 gabR̂rpcqR̂
rp

d
q2 1

2 gcdR̂aprqR̂b
prq1 1

8 gabgcdR̂sprqR̂
sprq,

~32!

with the obvious properties

Babcd5B(ab)cd5Bab(cd)5Bcdab, B a
acd50. ~33!

~We continue to use the notationBabcd rather than the more consistentT @R̂#abcd.)
Substituting the usual decomposition of the Riemann tensor gives the alternative form3,15

Babcd5T @Ĉ#abcd1T @Ê#abcd1Qabcd, ~328!

where

Qabcd5
1

n22
„24Ĉi

(cd)(aŜb) i24Ĉi
(ab)(cŜd) i12Ŝi j ~Ĉa

j
(c

igd)b2Ĉc
j
d

igab1Ĉb
j
(c

igd)a2Ĉa
j
b

igcd!…

1
2R̂

n~n21!
~Ĉacbd1Ĉadbc!. ~34!

In four dimensions we get

Qabcd5
R̂

6
~Ĉacbd1Ĉadbc!.

This last simplification is not obvious in tensors, although it is in spinors~11d!; by tensors, it is
obtained either by manipulation with duals,3 or via a 4-dimensional ddi,15

Ŝe
f Ĉ[ab

[cdde]
f ] [0. ~35!

The Bel tensor is a generalization of the Bel–Robinson tensor, and an obvious question is w
it also satisfies similar types of quadratic identity in four dimensions as does the Bel–Rob
tensor. From spinor considerations it does not look very hopeful, so we investigate the pos
via examples rather than look for general results.

Because of the additional terms in the Bel tensor compared to the Bel–Robinson tens
introduce

B a
c
cb5Bab5Bba , B5B a

a , ~36!

and so we consider the most general quadratic identity with two free indices which could ex
would have to have the structure

k1BabcxB abcy1k2BabcxB acby1k3B abx
yB ab1k4B axb

yB ab1k5BaxB ay1k6BB x
y } dx

y ,
~37!
                                                                                                                



adratic

not
ls that

d

are

o, we

tric
entity
there

free,
e the

e the
pro-

wing

titute

6150 J. Math. Phys., Vol. 44, No. 12, December 2003 S. B. Edgar and O. Wingbrant

                    
with constantsk1 , . . . ,k6 . By substituting the Bel tensors of explicit spaces27 on the left hand
side, we are led to conjecture that, in 4-dimensional spaces, the Bel tensor satisfies the qu
identity

2Ba[bc]xB a[bc] y2BxaB ay12BabB a
[by]

x1 1
2 BB x

y

5dx
y ~2Ba[bc]dB a[bc]d22BabB ab1 1

2 B 2!/4. ~38!

So it appears that the Bel tensormayhave a quadratic identity, which rather surprisingly does
reduce to the Bel–Robinson identity in the vacuum case. However, closer inspection revea
this identity is trivial in the following sense: the propertiesB a

[bc]
d5B [a

[bc]
d]

5B[b
[ad]

c] , Ba[bcd]50 mean that we can considerBab
cd[B[c

[ab]
d] as a Riemann candidate an

~38! becomes

B̃abcxB̃
abcy5dx

y B̃abcdB̃
abcd/4, ~39!

whereB̃abcd is the trace-free part ofBabcd, i.e., its Weyl candidate. But~39! is just the identity in
Lemma 4a which is a consequence ofonly the trace-free 2-form structure and the fact that we
in 4-dimensional space;it has nothing to do with the superenergy structure ofBabcd as a linear
combination of products of Riemann candidates.

Hence this identity is of no interest to us in the context of superenergy tensors, and s
have the following.

Theorem 3: In 4-dimensional spaces, the only quadratic identity with the structure~37!
satisfied by the Bel superenergy tensor~32! Babcd, is thetrivial identity ~39!. h

V. ABSENCE OF SIMPLE IDENTITIES FOR BEL–ROBINSON SUPERENERGY TENSOR
IN HIGHER DIMENSIONS

As noted above, it has been found3,15 that the Bel–Robinson tensor is completely symme
in five ~and lower! dimensions. This raises the question as to whether the above quadratic id
for the Bel–Robinson tensor is also valid in five dimensions; or, more generally, whether
existsanyquadratic identity with two free indices for the Bel–Robinson tensor infivedimensions.

Since in five dimensions the Bel–Robinson tensor is still fully symmetric, but not trace-
the most general quadratic identity with two free indices which could exist would have to hav
structure,

k1TabcxT abcy1k2T abx
yT ab1k3TaxT ay1k4T T x

y}dx
y , ~40!

for constantsk1 ,k2 ,k3 ,k4 , where

Tabcd5T(abcd) , T abc
c5Tab5Tba , T a

a5T . ~41!

To try to retrace the complicated tensor calculations of Theorem 2a, and try to replac
4-dimensional fddis used there with higher-dimensional fddis would be a very complicated
cedure; so we try first to obtain a simple counterexample, and we easily obtain the follo
negative result.

Theorem 4: In 5-dimensional spaces, the Bel–Robinson tensorTabcd does not satisfy any
quadratic identity of the form~40!.

Proof: Generalizing the 4-dimensional Kerr metricgab
K to five dimensions asds2

5gab
K dxadxb1dx5

2 , we can calculate the Bel–Robinson tensor explicitly, and when we subs
it onto the left hand side of the above expression~40!, we obtain

k1TabcxT abcy1k2T abx
yT ab1k3TaxT ay1k4T T x

y5k1Kdx
y1„~k11k21k31k4!J2k1K…dx

5d5
y ,
~42!
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where

K5144M4/~x21a2y2!6, J5236M4~x6215a2y2x4115a4y4x22a6y6!2/~x21a2y2!12,

in Boyer–Lindquist coordinates. So clearly, fork1Þ0, there are no choices of the constan
k1 ,k2 ,k3 ,k4 which will give us an identity of the required structure. The only other possibi
k1505k21k31k4 , leading to an identity of the form,k2T abx

yT ab1k3TaxT ay1k4T T x
y50, is

easily ruled out by showing the incompatability of this identity for another 5-dimensional me
e.g., a 5-dimensional version of the van Stockum metric.28 h

Note that we have used Bel–Robinson tensors constructed from Weyl tensors and n
more general candidates in this proof. This not only gives a stronger result than if candidat
been used, but was obtained very simply usingGRTENSORII.29

In spaces of dimensionn.5 the Bel–Robinson tensor is no longer completely symmetric
so to investigate the most general possible quadratic identity with two free indices we would
to consider a much more complicated form than in~40!.

VI. INDEX SYMMETRY OF BEL–ROBINSON AND LANCZOS SUPERENERGY TENSORS

In this section we will determine the kernel fddi for two results in four dimensions; we
then show by considering the analogous higher-dimensional fddis how, in one case the
simple generalization to five~and only five! dimensions, while in the other there is no dire
generalization to higher dimensions.

The Bel–Robinson spinor~11a! is trivially symmetric in all indices. On the other hand, th
only obvious symmetries from the Bel–Robinson tensor~15! are Tabcd5T(ab)cd5Tab(cd)

5Tcdab. To check if it is fully symmetric inall indices we examine

T @Ĉ#a[bc]d5
1

4
Ĉade fĈbc

e f2Ĉea f[bĈc]
e
d

f2Ĉf ge[agd][ bĈc]
e f g1

1

8
ga[bgc]dĈsprqĈ

sprq. ~43!

We know from spinors that it must be symmetric in all indices in~at least! four dimensions, so the
structure of~43! invites comparison with the 4-dimensional ddi for the Weyl tensor in Lemm
contracted with another Weyl tensor, i.e.,

0[Ĉ[ ib
[kldc]

a]Ĉkl
id, ~44!

the right hand side of which when expanded coincides precisely with~43!.
To determine whether the same result is valid in five dimensions, we consider the ana

five-dimensional fddi in Lemma 3, and when we construct

0[Ĉ[bc
[ad d i j ]

kl]Ĉkl
i j , ~45!

we find that its expanded right hand side also coincides precisely with~43!.
So we have demonstrated that the fact that the Bel–Robinson tensor~15! is fully symmetric in

five (and lower) dimensionsis just a simple consequence of one 5-dimensional fddi.
5-dimensional result was originally obtained in Ref. 3 separately from the 4-dimensional r
using duals, and subsequently in Ref. 15, by exploiting the 5-dimensional ddi~45!.

@The five-dimensional ddi~45!,

1
4 Ĉade fĈbc

e f2Ĉea f[bĈc]
e
d

f2Ĉf ge[agd][ bĈc]
e f g1 1

8 ga[bgc]dĈsprqĈ
sprq[0,

which we have just exploited, is of course also valid in four dimensions; in four dimension
can use Lemma 4a on the penultimate term and obtain the similar but simplerfour-dimensional
ddi,

1
4 Ĉade fĈbc

e f2Ĉea f[bĈc]
e
d

f2 1
8 ga[bgc]dĈsprqĈ

sprq[0,
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which is just the identity~44!. Deser6 has pointed out the significance of this identity~44! in the
symmetry structure of the Bel–Robinson tensor in four dimensions; here we also see the
cance of the 5-dimensional counterpart~45! in the symmetry structure of the Bel–Robinson tens
in five dimensions.#

For higher dimensions, from the viewpoint of fddis, we note that the next fddiĈ[ab
[ f g dcde]

hi j ]

50 has too many indices to yield~43! by a contraction with one Weyl tensor. However, it is ea
to show conclusively thatT @Ĉ#abcd is not symmetric in higher dimensions by taking the dou
trace.3,15

The Lanczos superenergy spinor has the obvious symmetriesT @ L̂#ABCDA8B8C8D8
5T @ L̂# (AB)CD(A8B8)C8D85T @ L̂#AB(CD)A8B8(C8D8) and the more general Lanczos superene
spinor,

T̃ @ L̂#ABCDA8B8C8D85~T @ L̂#ABCDA8B8C8D81T @ L̂#CDABC8D8A8B8!, ~46!

is clearly symmetric in all indices.
The basic Lanczos superenergy tensor@equivalent to the superenergy spinor for the Lancz

~candidate! spinorT @ L̂#ABCDA8B8C8D8] is given by Refs. 3 and 15 inn dimensions,

T @ L̂#abcd5L̂aicL̂b
i
d1L̂aidL̂b

i
c2 1

2 gabL̂ i jc L̂ i j
d2gcdL̂ai j L̂b

i j 1 1
4 gabgcdL̂ i jk L̂ i jk . ~47!

It has the obvious propertiesT @ L̂#abcd5T @ L̂# (ab)(cd) , but not the block symmetryTabcd

5Tcdab. The more general superenergy tensor,

T̃ @ L̂#abcd5~T @ L̂#abcd1T @ L̂#cdab!/2, ~48!

which is equivalent to~46!, does not obviously appear to be completely symmetric, as we kno
must be in four dimensions at least. To determine ifT̃ @ L̂#abcd is symmetric overall indices we
examine

T̃ @ L̂#a
[bc]

d5 1
4 L̂bceL̂

ade2L̂ [a
e[bL̂c]

ue]d2 1
2 d [b

[aL̂ ue fuc] L̂
ue fud]2d [b

[aL̂c]e fL̂
d]e f1 1

4 d [b
a dc]

d L̂ i jk L̂ i jk .
~49!

The structure of~49! ~including two deltas! invites a comparison with the 4-dimensional ddi f
the Lanczos tensor in Lemma 2 contracted with another Lanczos tensor, i.e.,

0[L̂ [ab
[edcd]

f g] L̂cd
g , ~50!

the right hand side of which when expanded coincides precisely with~49!. So we retrieve the
result in Ref. 15,

Theorem 5: A Lanczos superenergy tensorT̃ @ L̂#abcd5(T @ L̂#abcd1T @ L̂#cdab)/2, with
T @ L̂#abcd given by ~47!, is symmetric in all indices in four dimensions. h

To determine whether a similar proof is valid in five dimensions, we consider the analo
five-dimensional fddi in Lemma 2, and we immediately see that there are too many free indi
yield ~49! by a contraction with one Lanczos tensor.

VII. TENSOR DERIVATION OF NEW ELECTROMAGNETIC CONSERVATION LAW

We now wish to look at a particular Lanczos candidate,

Labc5Fab;c , ~51!

whereFab is an electromagnetic field tensor which satisfies the source-free Maxwell’s equa

Fa
b;a505F [ab;c] , ~52!
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and so the propertiesLa
ba505L [abc] of a Lanczos candidate are automatically satisfied. He

we could choose the tensor~47! with the above substitution~51! and obtain

T @¹F#abcd5Fai;cFb
i
;d1Fai;dFb

i
;c2 1

2 gabFi j ;cF
i j

;d2gcdFai; jFb
i ; j1 1

4 gabgcdFi j ;kF
i j ;k,

~53!

as a superenergy tensor for the electromagnetic field. In fact, Senovilla3 has shown that a tenso
Cabcd, suggested by Chevreton31 as an analog for the Bel–Robinson tensor in an electromagn
field, is just a linear combination of two such superenergy tensors,

Cabcd5~T @¹F#abcd1T @¹F#cdab!/2. ~54!

This tensor was shown in Ref. 31 to have important propertiesin flat space:in particular it is
divergence-free, but this property is not valid, in general, in curved spaces. Recently Berg
Eriksson, and Senovilla5 have used the spinor equivalent of the Chevreton tensor and given
interesting propertiesin curved spacefor source-free Einstein–Maxwell fields:~i! the Chevreton
tensor is fully symmetric; and~ii ! the trace of the Chevreton tensor is divergence free.

We now wish to consider the tensor versions of these results. The first of these prope
just a special case of the result previously derived in tensors for Lanczos candida
4-dimensional spaces,15 and given at the end of Sec. IV. The second property was deduced
the spinor form of the divergence ofCabcd and Bergqvist, Eriksson, and Senovilla5 remark that the
proof of this result is far from obvious from the tensor point of view. We shall now demons
that the result in Ref. 5 can be obtained in a direct and straightforward manner—until the
plication at the last stages wheretwo fddis valid in four dimensionshave to be used explicitly.

Theorem 6: In four dimensions, the nonzero traceCab[C abc
c of the Chevreton superenerg

tensorCabcd is symmetric, trace-free and divergence-free, i.e.,C a
b

;b50.
Proof: The nonzero trace of the Lanczos superenergy tensor is given by

Cab[C abc
c52Lae fLb

e f1 1
4 gabLce fL

ce f, ~55!

and it is clear that it is symmetric and trace-free. The divergence is

C a
b

;b52Lae fL
be f

;b2Lae f;bLbe f1 1
2 Lce f;aLce f. ~56!

Now substituting~52! and simplifying gives

2C a
b

;b522Fae; fF
be; f

b22Fae; f bFbe; f1Fce; f aFce; f

522Fae; fF
be

;b
f22Fae; f~Rf

b
e
iF

bi2Rf
iF

ie!22Fae;b fF
be; f

22Fbe; f~Rf ba
iFie1Rf be

iFai!1Fce; f aFce; f

522Fae; fF
be

;b
f22Fae; f~Rf

b
e
iF

bi2Rf
iF

ie!23F [ae;b] fF
be; f

1Feb;a fF
be; f22Fbe; f~Rf ba

iFie1Rf be
iFai!1Fce; f aFce; f

522Fae; fF
be

;b
f23F [ae;b] fF

be; f1Feb; f aFbe; f12Fbe; fRa f e
iFib

22Fae; f~Rf
b

e
iF

bi2Rf
iF

ie!22Fbe; f~Rf ba
iFie1Rf be

iFai!1Fce; f aFce; f . ~57!

Using the source-free Maxwell’s equations~52! and rearranging gives

2C a
b

;b5 1
2 Fe f;aRe f

ibFbi12Fae; fR
f
iF

ie12Fbe; fRba f
iFie2Fbe; fRi

f beFai ~58!

and decomposing the Riemann tensor in four dimensions gives
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2C a
b

;b5 1
2 Fe f;aCe f

ibFbi12Fbe; fCba f
iFie2Fbe; fCi

f beFai

12Fa f;eS
f
iF

ie12Fie; fSi f F
ae2Fie; fSa fF

ie. ~59!

We have already noted that the 4-dimensional fddi in Lemma 3,C[ab
[cdd f ]

e][0, when contracted
with Lde

f gives the ddi~4!; a further contraction withFcb gives

0[2FcbL [b
deCc]eda2

1
2 FcbLde

aCdecb12Fa
bLde fCbde f

52FieLe
b fCi f ba2 1

2 FibL f e
aCf eib2Fa

iLbe fCi f be, ~60!

and the substitutionLabc5Fab;c into ~60! means that the first three terms on the right hand sid
~59! disappear. Next we use Einstein’s equations and equate the trace-free Ricci tensorSab to the
usual expression for the electromagnetic energy tensor,

Sa
b5Ta

b5FaeF
be2da

bFcdF
cd/4. ~61!

Then the last three terms on the right hand side of~59! can be rearranged to give

~F [b
bFc

cFd
dFe

eda]
f ! ; f[0, ~62!

since the expression inside the brackets is identically zero in four dimensions by virtue of Le
1, which in this context is equivalent to the algebraic Rainich identityTa

cT
c
b5da

b Ti j T
i j /4 where

the energy–momentum tensorTa
b5Fa

cF
c
b2da

b F ji Fi j /4.15 h

We note that, in the proof, 4-dimensional fddis have been used explicitly on two occa
@~60! and~62!#, as well as a decomposition of the Riemann tensor in four dimension. This is
the spinor proof appears much simpler, since the corresponding calculations in spinors jus
occur. The use of the Einstein equations for the electromagnetic energy momentum tensor~61! is
an important component of the proof; the last three terms on the right hand side of~59! cannot be
removed by other means, such as a 4-dimensional ddi which was the means used to rem
first three terms.

From the point of view of a direct generalization of this method to higher dimensions,
clear that the higher-dimensional analogs~e.g., the 5-dimensional fddi in Lemma 3! would not be
sufficient to reduce the first three terms of~59! to zero; nor would the 5-dimensional Cayley
Hamilton theorem be sufficient to reduce the last three terms of~59! to zero. So it would appea
that there is nosimple and directgeneralization of Theorem 6 in higher dimensions; but of cou
this does not rule out more involved generalizations. The fact that the algebraic Rainich id
was used in this 4-dimensional proof would suggest that higher-dimensional analogs wou
quire higher-dimensional algebraic Rainich identities; in five dimensions this has been sho
be a cubic identity in the energy–momentum tensorTa

b .
It may be of interest to note that the result is actually true more generally for the trace

superenergy tensorT @¹F#abcd.
For completeness we note that BES also obtained a result forelectromagnetic test fields in

Einstein spacesby spinor methods; Deser has subsequently deduced this result with tensor31

VIII. NEW SYMMETRIC BEL–ROBINSON TENSOR GENERALIZATIONS IN HIGHER
DIMENSIONS

We have noted in Sec. VI that althoughT @Ĉ#abcd is symmetric in four and five dimension
this result does not generalize to higher dimensions. However, the 5-dimensional fddi
established this result has a counterpart in other dimensions; so we now investigate whet
can obtain analogous symmetry properties for some other superenergy tensors in higher
sions.

Lovelock14 has pointed out that then-dimensional counterpart of Lemma 3 is as follows.
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Lemma 5: In n52p dimensions, the trace-free double (p,p)-form Vi 1i 2¯ i p

j 1 j 2¯ j p

5V[ i 1i 2¯ i p]
[ j 1 j 2¯ j p] satisfies

V[ i 1i 2¯ i p

[ j 1 j 2¯ j p d i p11]
j p11]

50. ~63!

This specializes insix dimensions (and lower)for a trace-free double~3,3!-form to

V[abc
[e f g dd]

h]50. ~64!

The more general results in Ref. 15 include the following.
Lemma 6: In n<2p11 dimensions, the trace-free double (p,p)-form Vi 1i 2 ¯ i p

j 1 j 2¯ j p

5V[ i 1i 2¯ i p]
[ j 1 j 2¯ j p] satisfies

V[ i 1i 2¯ i p

[ j 1 j 2¯ j p d i p11

j p11d i p12]
j p12]

50. ~65!

This specializes inseven dimensions (and lower)for a trace-free double~3,3!-form to

V[abc
[ f gh dde]

i j ] [0. ~66!

This fddi ~66! is the analog of the fddi~45! used to establish symmetry of the Bel–Robins
tensor in five and four dimensions. So we expect~66! to establish symmetry for some genera
zation of the Bel–Robinson tensor such as atrace-freedouble ~3,3!-form in seven (and lower)
dimensions.

Senovilla3 has given a basic superenergy tensor for the double~3,3!-form Kabc
de f

5K [abc]
[de f] in n-dimensions as

T @K#abcd5~KapqcrsKb
pq

d
rs1KapqdrsKb

pq
c
rs2 1

3 gabKpqrcstK
pqr

d
st2 1

3 gcdKapqrstKb
pqrst

1 1
18 gabgcdKpqrstuK

pqrstu!/4. ~67!

To keep things simple, and maintain the analogy with the Weyl candidateĈab
cd, we assume also

that Kabc
de f is trace-free and (block) symmetric, i.e.,

Kabc
dea50, Kabc

de f5Kde f
abc. ~68!

So T @K#abcd clearly has the symmetry properties inn-dimensions,

T @K#abcd5T @K# (ab)cd5T @K#ab(cd)5T @K#cdab. ~69!

To determine ifT @K#abcd is symmetric inall indices we examine

T @K#a
[bc]

d5~Ka
pq

d
rsK [b

pq
c]

rs1Kapq
[cursuKb] pq

drs2 1
3 d [b

a K upqru
c]stKpqr

dst2 1
3 d [c

d Kapq
urstuKb] pq

rst

1 1
18 d [b

a dc]
d Kpqr

stuKpqr
stu!/4. ~70!

The structure of~70! ~including two deltas! suggests that we exploit theseven-dimensional identit
~66! and investigate

0[K [e f g
[hi j dbc]

ad]Ke f g
hi j . ~71!

When we write out~71! as
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0[~ 1
3 Kbcp

qrsKadp
qrs2

1
2 Kpqc

f gdKpqa
f gb1 1

2 Kpqc
f gaKpqd

f gb2 1
6 ~Kpqi

f gaKpqi
f gbdc

d

2Kpqi
f gaKpqi

f gcdb
d1Kpqi

f gdKpqi
f gcdb

a2Kpqi
f gdKpqi

f gcdc
a!1 1

18 Kpqr
f ghKpqr

f ghdbc
ad!/4,

~72!

we easily see that the right hand side of~72! does not coincide with~70!, because of an apparen
discrepancy in the respective first terms.@Using the symmetry properties~68! enables us to match
up all the other terms.#

However, if we considerKabcde f to satisfy afirst Bianchi-type identity,

Kab[cde f]50 ~73!

—as well as being trace-free and~block! symmetric—then we find that the first term on the rig
hand side of~70! becomes

Ka
pq

d
rsK [b

pq
c]

rs52Ka
pqrs

dKbcpqrs5Kad
pqrsKbc

pqrs/3, ~74!

and now it is easy to see that the right hand side of~72! coincides term by term with~70!, and so
we have proved

Theorem 7: In seven~and less! dimensions a trace-free symmetric double~3,3!-form Kabc
de f

which also satisfiesKab[cde f]50 has a superenergy tensorT @K#abcd given by ~67! which is
symmetric in all indices. h

Again, in analogy with the Bel–Robinson tensor in four dimensions we can see from a
calculation on the index pair (ab) in ~67!, combined with Theorem 7, that the following occur

Corollary 7.1: In six dimensions, the trace-free symmetric double~3,3!-form Kabc
de f which

also satisfiesKab[cde f]50, has a superenergy tensorT @K#abcd, given by~67! which is symmetric
in all indices and trace-free on all pairs of indices. h

Let us considerKabcde f to be alsodivergence-free, i.e.,

Ka
bcde f;a50. ~75!

It is then straightforward to repeat the type of calculation which has been done for the diverg
free Weyl tensor in Ricci-flat spaces inn dimensions, and show the following.

Corollary 7.2: If in addition Kabc
de f also satisfiesKa

bcde f;a50 then its superenergy tenso
T @K#abcd is also divergence-free inn dimensions., i.e.,

T @K#a
bcd;a50. ~76!

h

We have given just this one application as a simple example to illustrate the power of the
in generalizing a result to a higher dimension. However, from this pattern, we would expe
generalize Theorem 7 to classes of (p,p)-forms in spaces of dimensionn52p11. Similarly it
appears likely that the result in Theorem 5 for Lanczos candidates in four dimensions, co
generalized to classes of (p,q)-forms in n5p1q11 dimensions.

IX. DISCUSSION

We have used ddis in many situations in this paper, both to rederive existing results,
efficient tensorial manner, and to obtain new results. The four quadratic identities, whic
consider in Secs. II and III, are all special cases of one spinor result which can be establishe
easily in spinors. We were able to derive the corresponding tensor identities in a manner in
dent of signature. However, the tensor versions are of varying degrees of difficulty: the fa
Bel–Robinson identity in Theorem 2a requires considerable preliminary work to establish le
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for the Weyl tensor, and Theorem 2d requires Theorem 2a together with a number of
lemmas, one involving a ‘‘mixed’’ identity. The tensor derivation of the new conservation law
electromagnetism5 given in Sec. VII also requires ‘‘mixed’’ ddis. These tensor derivations are v
complicated, and one wonders how long it would have taken to even conjecture the res
Theorems 2d and 6 without the parallel spinor~or null vector! results; but it seems that there is n
easier signature-free way in tensors, and we should train ourselves to recognize such struc
tensors. Of course, none of the fddis which we are using in this paper are ‘‘new,’’ but while
which involve only one tensor~such as quadratic identities for the Weyl tensor, or the Cayle
Hamilton theorem for the Ricci tensor!, are familiar, on the other hand, ‘‘mixed’’ ddis such as~4!,
~35!, ~60!, ~62! involving more than one tensor and/or derivatives are much less familiar; on
the purposes of this paper is to draw attention to such possibilities.

The amount of work required in these tensor calculations in four dimensions serves
warning of the even more complicated calculations which will be required to establish anal
results in higher dimensions; the existence of fddis as ‘‘signposts’’ will be invaluable.

It is clear from the above examples that the exploitation of dimensionally dependent ide
is a useful method, not only for confirming suspected tensor identities, but also for establ
new and perhaps unexpected results. For instance, when we have a particular tensor expre
study of its structure can suggest an overlap between some of its terms and the term
dimensionally dependent identity, and so we have an opportunity of exploiting the latter
discovering hitherto unexpected tensor relationships.~This is actually how the unexpected sym
metry property of the Lanczos superenergy tensor was first recognized in Ref. 15.! Furthermore,
once a new significant tensor relationship is established in four dimensions and the
4-dimensional fddi identified, then the analogous fddis in five dimensions and higher ca
investigated with the hope of establishing new tensor relationships in these higher dimens

Theorem 7 is an example of how to exploit this approach. We can continue to loo
higher-dimensional analogs of significant 4-dimensional results: the identity~63! for the trace-free
double (p,p)-form Vi 1i 2¯ i p

j 1 j 2¯ j p5V[ i 1i 2¯ i p]
[ j 1 j 2¯ j p] in dimensionsn52p leads to the qua-

dratic identity14

Vxi2¯ i p

j 1 j 2¯ j pVj 1 j 2¯ j p

yi2¯ i p5 dx
y Vi 1i 2¯ i p

j 1 j 2¯ j pVj 1 j 2¯ j p

i 1i 2¯ i p/2p.

The quadratic identity~1! for the Bel–Robinson tensor~i.e., the superenergy tensor for the We
tensor wherep52) in four dimensions motivates the question as to whether there exist
analogous quadratic identity for the superenergy tensor of~the block symmetric part of!
Vi 1i 2¯ i p

j 1 j 2¯ j p in dimensionn52p. The stronger versions, and the higher-dimensional gene
zations will be presented elsewhere. One criticism of this new generalized Bel–Robinson
T @K#abcd would be the apparent lack of explicit connection ofKabc

de f with physical fields; we
shall demonstrate in a future paper that there are indeed important links with the gravitationa
as described by the Weyl tensorCabcd, and that we can construct examples of the tensorKabc

de f

which inherit some of the properties ofCabcd.
The result in Theorem 7 has illustrated one possible way to exploit analogous fddis in h

dimensions: to generalize to forms of higher rank. Another approach has been taken in th
eralized Rainich problem,16 where higher-dimensional identities analogous to 4-dimensional
dratic identities were obtained as cubic and higher order identities—involving very long ma
lations. It seems clear from the tensor derivation of the new conservation law in electroma
theory, thatdirect generalization to higher dimensions are not possible. However, we would e
some sort of generalization exploiting the higher-dimensional counterparts of the kernel fddi
in four dimensions. With the generalized Rainich results16 as ‘‘signposts’’ we would speculate
there may be a generalization of the new conservation law in five dimensions for supere
tensors involvingcubic terms ofTab .

While obviously interesting and useful in themselves, the study of these identities is n
end in itself. What is of interest is to find identities which are sufficient as well as nece
conditions for a factorization result, and to be able to study a ‘‘generalized Rainich–Mis
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Wheeler problem.’’ Clearly then we will need the most general versions of such identities
instance Penrose2 has given the most general spinor version of the spinor identity~12! for the
Bel–Robinson tensor—a quadratic identity withall indices free—and shown that it is also suf
cient to achieve the factorization~11a!. The ddis which we have been studying in this paper w
give us the basic structures to continue these investigations.

Finally, we would also emphasize how simple it is to disprove conjectured identitie
counterexample;GRTENSORII,29 is an invaluable tool for this, and it can also be efficient in e
abling us to distinguish between trivial and nontrivial identities.32 We have also benefited from th
use ofTensign,33 making it possible to guarantee the accuracy in the extensive index manipil
required in some of the results.
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30M. Á. G. Bonilla and J. M. M. Senovilla, Gen. Relativ. Gravit.29, 91 ~1997!.
31M. Chevreton, Nuovo Cimento34, 901 ~1964!.
32S. Deser, Class. Quantum Grav.20, L213 ~2003!.
33Tensign, information at http://www.lysator.liu.se/;andersh/tensign/
                                                                                                                



ry
tants
hat is
al

have
re are

resent
the

ared in

of
e new
s been
by
ies of

have
that

ns in
Sec.

rnier
mic
ainleve

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 12 DECEMBER 2003

                    
Amalgamations of the Painleve ´ equations
Nikolai A. Kudryashov
Department of Applied Mathematics, Moscow Engineering and Physics Institute,
31 Kashirskoe Shosse, Moscow, 115409, Russia

~Received 2 July 2002; accepted 8 September 2003!

New hierarchies of nonlinear ordinary differential equations that are generalizations
of the Painleve´ equations are presented. These hierarchies are shown to contain the
Painlevéequations as special cases. Emphasis is on the sixth order ordinary differ-
ential equations. Special solutions for one of them are expressed via the general
solutions of theP1 , P2 equations and special cases of theP3 and P5 equations.
Special solutions of another sixth order ODE are determined by the general solu-
tions of theP2 , P4 , P3, andP5 equations. Five of six Painleve´ equations can be
considered as special cases of these sixth order ODEs. Isomonodromic linear prob-
lems to solve the Cauchy problems of hierarchies by the inverse monodromy trans-
form are given. ©2003 American Institute of Physics.@DOI: 10.1063/1.1623332#

I. INTRODUCTION

As is well known more than one century ago Painleve´ and his school discovered six ordina
differential equations~ODEs! that defined new transcendental functions with respect to cons
of integration. This was achieved by classifying second ODEs of a certain form having w
today referred to as the Painleve´ property~the general solution should be free of movable critic
points!.

Painlevéand his collaborators found 50 canonical classes of equations whose solutions
no movable critical points. Furthermore, they also showed that among 50 equations the
exactly six second-order ordinary differential equations that define new functions. At the p
these new functions are called Painleve´ transcendents; and equations with general solutions in
form of these transcendents are called Painleve´ equations. These six Painleve´ equations were first
discovered from strictly mathematical investigations but these equations have recently appe
several physical applications.1,2

Results of Painleve´ and his school led to the following problems: to classify other types
nonlinear differential equations and to search higher order differential equations that defin
transcendental functions with respect to constants of integration. Recently an attempt ha
made to find out new functions, other than the Painleve´ transcendents, again determined
nonlinear ODEs. With this aim several hierarchies of ODEs were introduced using hierarch
nonlinear PDEs that are solvable by inverse scattering transform.3–8

The aim of this work is to present new hierarchies of ordinary differential equations that
properties similar to the Painleve´ equations. A distinguishing feature of these hierarchies is
they have some Painleve´ equations as special cases.

The outline of this article is as follows. Methods to find new hierarchies for generalizatio
the Painleve´ equations is given in Sec. II. Hierarchies with linear potential are presented in
III. Hierarchies with quadratic potential are studied in Sec. IV.

II. METHOD USED

The Painleve´ equations are known to be written as isomonodromic linear problems. Ga
was the first9 who found that five of the six Painleve´ equations can be presented as isomonodro
linear problems. These problems can be used for solving the Cauchy problems of the P´
equations by the inverse monodromy transform.10,11
61600022-2488/2003/44(12)/6160/19/$20.00 © 2003 American Institute of Physics
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The linear problems for theP1 , P34 and special cases of theP3 and P5 equations can be
expressed as the system of equations12

Cxx5~P~x!2l!C,
~2.1!

v~l!Cl52A~x,l!Cx2Ax~x,l!C,

whereA(x,l) takes the form

A~x,l!5a1~x!1a0~x!l. ~2.2!

If one of parameters of the third~fifth! Painlevéequation is equal to zero, we say that there
a special case of the third~fifth! Painlevéequation. We denote further these special cases
equations as theP3* andP5* equations.

The compatibility condition for the system of equations~2.1!,

~Cxx!l5~Cl!xx , ~2.3!

can be written in the form of the following equation,8,13

vUl54UAx12UxA2Axxx , ~2.4!

where we use the potentialU(x,l) in the linear form

U~x,l!5P~x!2l. ~2.5!

Assuming~2.2! andv(l)51 in the system of equations~2.1! we have the linear problem fo
the first Painleve´ equation. Atv(l)5l we obtain the Lax pair for theP34 equation. Taking into
account~2.2! andv(l)5l2 andv(l)5l(l2l0) we get the linear problems for theP3* andP5*
equations.13

The compatibility condition~2.3! of the isomonodromic linear problem

Cxx52~l2y!Cx1Q~x!C,
~2.6!

v~l!Cl5C~x,l!Cx1D~x,l!C

can also be written as Eq.~2.4! if we assume

Q~x!5P~x!2yx2y2, C~x,l!52A~x,l!, ~2.7!

D~x,l!52Ax~x,l!~y2l!1v~l!x2Ax~x,l!, ~2.8!

and

U~x,l!5P~x!22ly~x!1l2. ~2.9!

Assuming~2.2! andv(l)51 in the system of equations~2.6! we have the Lax pair for the
second Painleve´ equation. In the case~2.2! andv(l)5l we get the linear problem for the fourt
Painlevéequation. Taking into account~2.2! andv(l)5l2 we obtain the Lax pair for the third
Painlevéequation. In the case~2.2! and v(l)5l(l2l0) we have the isomonodromic linea
problem for the fifth Painleve´ equation.

Equation~2.4! can be written as follows:

]

]x S 2UA22AAxx1
1

2
Ax

2D5vUlA. ~2.10!

One can see from Eq.~2.10! there exists an integral of this equation atv(l)50 in the form
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2UA22AAxx1
1
2 Ax

25const. ~2.11!

Equation~2.10! allows us also to look for integrals of Eq.~2.4! whenv~l! has the roots. We
are going to use this equation in Secs. III and IV of this work.

Using the compatibility condition~2.3! andA(x,l) in the form

A~x,l!5a2~x!1a1~x!l1a0~x!l2, ~2.12!

we found in our recent work8 several new fourth order ordinary differential equations that
analogies to the Painleve´ equations.

Assuming that

A~x,l!5(
i 50

n

ai~x!ln2 i , ~2.13!

below we are going to find several new hierarchies of ordinary differential equations with
erties similar to the Painleve´ equations

III. HIERARCHIES WITH LINEAR POTENTIAL „2.5…

Let us study Eq.~2.4! to find hierarchies that are generalizations of the Painleve´ equations.
First of all we use the linear potential~2.5! in Eq. ~2.4!.

Case 3.1:v(l)5v05const. SubstitutingU(x,l) in the form of Eq.~2.5! andv(l)5v0 into
~2.4! we have

4PAx12PxA2Axxx1v024lAx50. ~3.1!

Assuming thatA(x,l) is expressed by formula~2.13! and equating expressions at differentl
to zero we obtain

a0,x50, ~3.2!

4ak11,x54Pak,x12Pxak2ak,xxx ~k51, . . . ,n21!, ~3.3!

4Pan,x12Pxan,x2an,xxx1v050. ~3.4!

Equations~3.2!–~3.4! can be integrated overx. As a result we get

a0~x!5c0 , ~3.5!

a1~x!5 1
2 c0P~x!1c1 , ~3.6!

a2~x!52
c0

8
~Pxx23P2!1

1

2
c1P1c2 . ~3.7!

One can see the latter coefficient can be written in the form

a2~x!52
c0

8
L2@P#1

1

2
c1L1@P#1c2 , ~3.8!

where the operatorLk@P# is determined by the Lenard relation:14

d

dx
Lk11@P#524PLx

k@P#22PxL
k@P#1Lxxx

k @P#, L1@P#5P. ~3.9!
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Now we can formulate the following theorem.
Theorem 3.1:Coefficients am(x) (m51,...,n) that are solutions of equations (3.2) and (3.

are determined by the formula

am~x!5
1

2 (
i 51

m S 2
1

4D i 21

cm2 iL
i@P#1cm ~m51,...,n!. ~3.10!

Proof: This theorem is proved by the method of the mathematical induction. Atm51 and
m52 Eq.~3.10! is reduced to~3.6! and~3.7!. Assumingm5p in ~3.10! we obtain solution of Eq.
~3.3! at m5p11. h

Substitutingam(x) at m5n into Eq. ~3.4! we obtain after integration the following equatio

1

2 (
i 51

n11 S 2
1

4D i 21

cn112 iL
i@P#1cn1152v0x. ~3.11!

Denoting

P~x!5y~x!, v052a, a i5
1
2 ~2 1

4!
i 21cn112 i ~ i 51,...,n11!,

changing variablesx andy we have equation in the form

(
i 52

n11

a iL
i@y#5ax. ~3.12!

This hierarchy is the generalization of the first Painleve´ hierarchy that was found in Ref. 4 a
a reduction of the Schwarz–Korteveg–de Vries hierarchy using self-similar solutions.

Assuminga iÞ250, a251 we have the first Painleve´ equation. In the casea i50 (iÞ1,2),
a25b, a151 we obtain the fourth order nonlinear ordinary differential equation that was fo
in recent papers.8,15–17Some properties of this equation were studied in Refs. 18–22.

At n53 equation of hierarchy~3.12! takes the form

a4~yxxxxxx235y4221yxx
2 214yyxxxx228yxyxxx170y2yxx170yyx

2!

1a3~yxxxx25yx
2210yyxx110y3!1a2~yxx23y2!5ax. ~3.13!

Isomonodromic linear problem corresponding to Eq.~3.12! is expressed by the system o
equations~2.1! whereA(x,l) is ~2.13! and coefficientsai(x) are determined by formulas~3.10!.

Case 3.2:v(l)5v0l (v05const). UsingU(x,l) in the form of the linear potential~2.5! and
v(l)5v0l we have from Eq.~2.4!

4PAx12PxA2Axxx1v0l24lAx50. ~3.14!

SubstitutingA(x,l) in the form ~2.13! into ~3.14! and equating expressions at differentl to
zero we have

a0,x50, ~3.15!

4ak11,x54Pak,x12Pxak2ak,xxx ~k51,...,n22!, ~3.16!

4Pan21,x12Pxan212an21,xxx24an,x1v050, ~3.17!

4Pan,xan12Pxan,x2an,xxx50. ~3.18!
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From ~3.14! and ~3.15! at k<n22 we have the same equations as in the previous c
Substituting~3.10! at m51,...,n22 into ~3.16! we have

an21~x!5
1

2 (
i 51

n21 S 2
1

4D i 21

cn212 iL
i@P#1cn21 . ~3.19!

Substituting Eq.~3.19! into ~3.17! and denoting

P~x!5y~x!, ak5 1
2 ~2 1

4!
k21cn2k ~k51,...,n!, an~x!5u~x!, v052a,

we obtain the system of equations in the form

(
k51

n

akL
k@y#14u~x!5ax, ~3.20!

2yu22uuxx1
1

2
ux

22
d2

2
50. ~3.21!

Assumingu(x)5d50 we have from Eqs.~3.20! and ~3.21! hierarchy ~3.12!. In the case
ak50, atkÞ1, a151, we find

uuxx2
1

2
ux

222u2ax18u31
d2

2
50. ~3.22!

This is theP34 equation. It can be transformed to the second Painleve´ equation if we use the
variable in the form

S~x!5
ux1d

2u
. ~3.23!

As a result we obtain the second Painleve´ equation in the form

Sxx52S322axS14d1a. ~3.24!

Assumingn53 in the system of equations~3.20! and ~3.21! we have

a3~yxxxx25yx
2210yyxx110y3!1a2~yxx23y2!1a1y14u5ax, ~3.25!

uuxx2
1

2
ux

222yu21
d2

2
50. ~3.26!

We can consider that hierarchy~3.20! and ~3.21! is the generalization of the first Painlev´
hierarchy and the second Painleve´ equation.

Assuming~3.23! in Eq. ~3.21! we find

y5Sx1S2. ~3.27!

In this case Eq.~3.20! can be presented in the form

(
k51

n

akL
k@Sx1S2#14u5ax. ~3.28!
                                                                                                                



nd

m

ns

6165J. Math. Phys., Vol. 44, No. 12, December 2003 Amalgamations of the Painlevé equations

                    
Taking into consideration Eqs.~3.23! and ~3.28! we have the generalization for the seco
Painlevéhierarchy in the form

S d

dx
22SD (

k51

n

akL
k@Sx1S2#12axS2a24d50. ~3.29!

The isomonodromic linear problem for the hierarchy~3.20! and ~3.21! is expressed by the
system of equations~2.1! whereU(x,l) is Eq. ~2.5! andA(x,l) is ~2.13!.

Hierarchy~3.29! is a generalization of the the second Painleve´ hierarchy.3,4,10We expect that
equations of hierarchy~3.29! have special and rational solutions.

One can see that atn51 Eq. ~3.56! is the second Painleve´ equation. In the casen52 Eq.
~3.29! can be presented in the form

a2~Sxxxx210SSx
2210S2Sxx16S5!1a1~Sxx22S3!12axS2a24d50. ~3.30!

This equation was found recently in Ref. 23. One can see that Eq.~3.30! at a250 reduces to
the second Painleve´ equation but ata150 takes the second member for theP2 hierarchy.

At n53 from Eq.~3.29! we have the sixth order equation in the form

a3~Sxxxxxx256SSxSxxx214S2Sxxxx242SSxx
2 270Sx

2Sxx170S4Sxx1140Sx
2S3220S7!1a2~Sxxxx

210SSx
2210S2Sxx16S5!1a1~Sxx22S3!12xaS1a24d50. ~3.31!

Let us show that the equations of hierarchy~3.29! have some special solutions. With this ai
let us formulate the following theorem.

Theorem 3.2:Special solutions of Eq. (3.29) atd50 are expressed via the general solutio
of Eq. (3.12).

Proof: Equation~3.29! at d50 can be written in the form

S d

dx
22SD (

k51

m

akL
k@Sx1S2#12axS2a5S d

dx
22SD S (

k51

m

akL
k@y#2axD , ~3.32!

where we denote

y5Sx1S2. ~3.33!

From relation~3.32! one can see that there are special solutions of Eq.~3.29! at d50. These
solutions are expressed via the general solutions of Eq.~3.12! at m5n11 taking into account Eq.
~3.33!. The latter equation can be transformed to the linear equation

wxx5yw ~3.34!

if we assumeS5 wx /w in Eq. ~3.33!. h

Now let us find the birational transformations for the solutions of Eqs.~3.29!. With this aim let
us use the approach of Ref. 18.

Equations~3.29! can be written using two equivalent forms

S d

dx
22SD (

k51

m

akL
k@Sx1S2#12axS2a24d50, ~3.35!

2S d

dx
12SD (

k51

m

akL
k@2Sx1S2#12axS2a524d50. ~3.36!
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The latter equation was found taking into account the symmetry of the operatorLk@Sx

1S2#.
Let us denote

M5 (
k51

m

akL
k@Sx1S2#2ax ~3.37!

and

N5 (
k51

m

akL
k@2Sx1S2#2ax. ~3.38!

Then Eqs.~3.35! and ~3.36! can be presented in the form

Mx22SM24d50, ~3.39!

Nx12S8N12a14d850, ~3.40!

where we take into consideration

S[S~x,a14d!, S8[S8~x,a14d8!.

They are solutions of Eqs.~3.35! and ~3.36!.
Using Eqs.~3.39! and ~3.40! we have

S5
Mx24d

2M
, S852

Nx12a14d8

2N
. ~3.41!

SubstitutingS andS8 into Eqs.~3.37! and ~3.38! one can see these equations coincide atM
5N for two cases

2d81a522d, 2d81a52d. ~3.42!

The first equation in~3.42! corresponds to the symmetry of Eqs.~3.29! S→2S and 4d1a
→24d2a but the second equation in~3.42! leads to the equation which can be found from E
~3.41! at M5N:

S1
d

M
52S82

a12d8

M
. ~3.43!

The latter equation can be written in the form of the birational transformation

S~x,4d2a!52S~x,a14d!2
4d

(k51
m akL

k@Sx1S2#2ax
. ~3.44!

The latter formula can be used to look for the rational solutions of Eqs.~3.29!. One can see
there is the trivial solution of these equationsS50 at d52a/4. By the formula~3.44! usingS
50 in the right hand side atd52a/4 we have

S~x,22a!52
1

x
~3.45!

and so on. For example, for Eq.~3.30! we have
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S~x,24a!52
2~a11ax3!

x~ax322a1!
, ~3.46!

S~x,26a!52
3~40a1

2x224aa1x5248a2a1248a2ax3!

~ax322a1!~a2x6210aa1x3172a2ax220a1
2!

. ~3.47!

These solutions are generalizations of solutions for the second Painleve´ equation and for the
second member of theP2 hierarchy. Solutions for theS(x,2a), S(x,4a) and S(x,6a) can be
obtained from solutions~3.45!–~3.47! taking into account the symmetry of Eqs.~3.29!.

Case 3.3:v(l)5v0l2. Substitutingv(l)5v0l2 and ~2.5! into ~2.4! we obtain

4~P2l!Ax12APx2Axxx1v0l250. ~3.48!

AssumingA(x,l) in the form of ~2.13! we havea05c0 and

ak~x!5
1

2 (
i 51

k S 2
1

4D i 21

ck2 iL
i@P#1ck ~k51,...,n22!. ~3.49!

Additionally we have also three equations

4Pan22,x12Pxan222an22,xxx24an21,x1v050, ~3.50!

4Pan21,x12Pxan212an21,xxx24an,x50, ~3.51!

4Pan,x12Pxan,x2an,xxx50. ~3.52!

Using Eq.~3.49! we also have the integral in the form

1

2 (
i 51

n21 S 2
1

4D i 21

cn212 iL
i@P#1cn2152v0x ~3.53!

from Eq. ~3.50!.
One can find two integrals for Eqs.~3.51! and ~3.52! using ~2.10!. They take the form

an,xxan211an21,xxan12an
22an,xan21,x24Panan211cn50, ~3.54!

anan,xx2
1
2 an,x

2 22Pan
21cn1150. ~3.55!

Denoting

P~x!5y~x!, an21~x!5v~x!, an~x!5u~x!, v052a,
~3.56!

a i5
1

2 S 2
1

4D i 21

cn212 i ~ i 51, ...,n22!, cn5x, cn1152
d2

2
,

we have from Eqs.~3.53!–~3.55! the system of equations

(
i 51

n21

a iL
i@y#14v~x!5ax, ~3.57!

uxxv1vxxu12u22uxvx24yuv1x50, ~3.58!
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uuxx2
1

2
ux

222yu22
d2

2
50. ~3.59!

From Eq.~3.57! we obtain atn53 the following system of equations:

a2~yxx23y2!1a1y14v5ax, ~3.60!

uxxv1vxxu12u22uxvx24yuv1x50, ~3.61!

uuxx2
1

2
ux

222yu22
d2

2
50. ~3.62!

Assuminga i50 (i 51,...,n21) in Eq. ~3.57! we havev(x)5ax/4. Then from Eqs.~3.58!
and ~3.59! we obtain the special case of the third Painleve´ equation in the form

uxx2
ux

2

u
1

ux

x
2

8u214n

ax
2

2d2

u
50. ~3.63!

However, if we takeu(x)5v(x)5d5x50 we obtain from Eq.~3.57! the generalization for
the first Painleve´ hierarchy~3.12! One can see that the system of equations~3.57!–~3.59! can be
considered as the generalization for theP1 andP3* equations.

Obviously the system of equations~3.57!–~3.59! can be reduced to one equation. From E
~3.59! we have

y5
uxx

2u
2

ux
2

4u2 2
d2

4u2 . ~3.64!

Using Eqs.~3.57! and ~3.64! we obtain

(
i 51

n21

a iL
iFuxx

2u
2

ux
2

4u2 2
d2

4u2G14v5ax. ~3.65!

Using new functionF5 ln u in Eq. ~3.64! we have

y5
1

2 S Fxx1
1

2
Fx

22
d2

2
e2FD . ~3.66!

SubstitutingF5 ln u into Eq. ~3.65! we have an equation in the form

(
k51

m

akL
kF1

2 S Fxx1
1

2
Fx

22
d2

2
e22FD G14v5ax. ~3.67!

From Eq.~3.61! we also have

d

dx S d

dx
2FxD v1d2ve22F1xe2F12eF50. ~3.68!

The latter can be written as the hierarchy if we take into accountv(x) from Eq.~3.67!. We get

d

dx S d

dx
2FxD (

k51

m

akL
kF1

2 S Fxx1
1

2
Fx

22
d2

2
e22FD G1d2e22F(

k51

m

akL
kF1

2 S Fxx1
1

2
Fx

2

2
d2

2
e22FD G1

d

dx
~axFx!2ad2xe22F24xe2F1meF50. ~3.69!
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@Parameterm can be introduced in Eq.~3.69!.# Hierarchy~3.69! is a generalization of hierarch
~3.29! by the following theorem.

Theorem 3.3:Special solutions of Eq. (3.69) at m>2 are expressed via the general solutio
of the P1 , P2 and P3* equations.

Proof: Equation~3.69! is equivalent to the system of equations~3.57!–~3.59! Assumingu
5v5d50 we have the first Painleve´ equation atak50 (k.3). Therefore, special solution o
hierarchy~3.69! can be found using the general solution of theP1 equation.

Assumingd5x5m50 and f (x)5Fx we obtain from Eq.~3.69! at ak50 (k>2) after inte-
gration

S d

dx
2 f D S f x1

1

2
f 2D12ax f2b50. ~3.70!

~Hereb is a constant of integration.! The latter equation is the second Painleve´ equation. We have
that the special solution of Eq.~3.69! is also expessed via the general solution of theP2 equation.

Assumingak50 (k51, ...,m) in Eq. ~3.69! we have theP3* equation in the form

d

dx
~axFx!2ad2xe22F24xe2F1meF50. ~3.71!

The latter can be transformed to the canonical form of theP3* equation if we use transforma
tion F5 ln u. This takes the form

uxx5
ux

2

u
2

ux

x
1

d2

u
2

mu2

ax
1

4x

ax
. ~3.72!

One can see that Eq.~3.69! has also a special solution in the form of general solution of
~3.72!. h

Corollary 3.1: The P1 , P2 and P3* equations are special cases of hierarchy (3.69).
There is a sixth order ODE which generalizes theP1 , P2 andP3* equation. This one will be

presented below.
The isomonodromic linear problem for solving the system of equations~3.57!–~3.59! is given

by Eqs.~2.1! again.
Case 3.4:v(l)5v0l(l2l0). Substitutions ofv(l)5v0l(l2l0) and potential~2.5! into

Eq. ~2.4! lead to the equation

Axxx22PxA14~l2P!Ax1v0ll02v0l250. ~3.73!

Substituting~2.13! into Eq. ~3.73! and equating expressions at different powersl to zero we
obtain the system of equations.

We havea05c0 andak(x) (k51, ...,n22) in the form~3.49!. Additionally to these equa-
tions there are Eqs.~3.50! and ~3.52! We also obtain equation in the form

an21,xxx24Pan21,x22Pxan2114an,x1v0l050. ~3.74!

The integral corresponding to Eq.~3.74! can be found by analogy of Eq.~3.54! from Eq.
~2.10! at l5l0 .

One can see we obtain the system of equations in this case that is similar to Eqs.~3.57!–
~3.59!. Two equations coincide with Eqs.~3.57! and~3.59! but in place of Eq.~3.58! we have more
general equation.

Let us present here the system of equations atn53. Denoting P(x)5y(x), a3(x)
5u(x), a2(x)5v(x), c052a4 , c15a3 , c250,c35a1 , l05b, c4516d we have the following
system of equations:
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a4~yxx23y2!22a3y14v5ax, ~3.75!

uxxv1uvxx12u22uxvx24yuv1b~vvxx14uv22yv22 1
2 vx

21a3~uxx24uy!1a4~uyxx1yuxx

2uxyx24uy2!!1b2~2v21a3~vxx14u24yv !1a4~vyxx1yvxx24uy2vxyx24vy2

12uxx!!1b3~2a3~2v2a3y!1a3a4~yxx24y2!12a4~vxx14u22yv !1a4
2~yyxx22y3

2 1
2 yx

2!!12b4~4a4v22a3a4y1a4
2~yxx23y2!!1a150, ~3.76!

uuxx2
1
2 ux

222yu21d50. ~3.77!

Obviously the system of equations~3.75!, ~3.76! and~3.77! can be written as the sixth-orde
ODE. One can state the theorem.

Theorem 3.4:Special solutions of the system of equations (3.75)–(3.77) are expressed via th
general solutions of the P1 , P2 , P3* and P5* equations.

Proof: Assumingu5v5a15a35b5d50, a4Þ0 we have theP1 equation from~3.75!.
In the cased5a35b50 we obtain theP2 equation from Eqs.~3.75! and ~3.77! taking into

account transformations~3.23! and ~3.27!. Assuminga45a35b we get theP3* equation in the
form of ~3.72!.

Therefore the special solutions for the system of equations are expressed by the pr
theorem via the general solutions of theP1 , P2 andP3* equation.

In the casea45a350 we have equation from the system of equations~3.75!–~3.77! in the
form

buxx

u
1

4uxx

ax
2

bux
2

2u2 2
4ux

2

axu
1

4ux

ax2 2
16bu

ax
2

32u2

a2x2 1
8d

axu
1

bd

u2 1
b

2x2 2
16a1

a2x2 22b250.

~3.78!

The latter equation is transformed to theP5* equation. h

Assuminga150 andb50 in Eqs.~3.75!–~3.77! we have the fourth order ordinary differen
tial equation

a0S uxxxx24
uxuxxx

u
1

21

2

ux
2uxx

u2 23
uxx

2

u
2

9

2

ux
4

u3 25d2
ux

2

u3 2
d4

2u3 1
5d2

2

uxx

u2 D
22axuxx22aux12a212ax

ux
2

u
1

2axd2

u

50. ~3.79!

Equation~3.79! at a051 was obtained recently in Ref. 8. This one is the generalization of
P3* equation.

Corollary 3.2: The P1 , P2 , P3* and P5* are special cases of the system of equations~3.75!–
~3.77!.

Now we can see how other hierarchies can be found out from Eq.~2.4!.
The structure of these hierarchies is similar to the above presented hierarchy~3.57!–~3.59!.

These new hierarchies can be written in the form of the system of equations.
We have the theorem.
Theorem 3.5:Let Eq. (2.4) and A(x,l) be given by formula (2.13); then Eq. (2.4) leads to t

n11 hierarchies atv(l)5v0lm (m50, 1, ...,n).
Proof: This theorem is proved by means of calculations of all possible hierarchies atv(l)

5v0lm (m50, 1,¯ ,n). The new degreel of v~l! allows us to find the additional integral from
Eq. ~2.11!. h
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Case 3.5:v(l)5v0l3. Let us look for the new system of equations from~2.4! at v(l)
5v0l3. We have the set of equations similar to case 3.4. Additional integral takes the form

2Pan21
2 14Panan222an22an,xx24anan212an21an21,xx

2anan22,xx1an,xan22,x1 1
2 an21,x

2 2cn2250 ~3.80!

(cn22 is a constant!. Using integrals ~3.54!, ~3.55!, and ~3.80! and denoting P(x)
5y(x), an21(x)5v(x), an22(x)5w(x), cn5d, cn215m, cn225n we have the system of equa
tions in the form

(
k51

n22

akL
k@y#14w~x!5ax, ~3.81!

2yv214yuw2wuxx24uv2vvxx2uwxx1uxwx1 1
2 vx

22n50, ~3.82!

vuxx1vxxu12u22uxvx24yuv2m50, ~3.83!

uuxx2
1
2 ux

222yu22d50. ~3.84!

We can expect that the system of equations~3.81!–~3.84! is also generalization of the Painlev´
equations.

IV. HIERARCHIES WITH POTENTIAL „2.9…

Let us find hierarchies which generalize the Painleve´ equations in the case of potential~2.9!.
These hierarchies can be found from Eq.~2.4! again.

Substituting potential~2.9! A(x,l) in the form of Eq.~2.13! and v(l)5v0lm (m50,...,n
11) into Eq.~2.4! we have the system of equations

Ek22v0~dk,n112m2ydk,n122m!50 ~k50,...,n12!, ~4.1!

where we denote

Ek54ak,x24yxak2128yak21,x2ak22,xxx14Pak22,x12Pxak22 ~4.2!

anddk,n is the Kronecker delta.
In the system of equations~4.1! we have to take into account thata215a225an115an12

50 in correspondence with Eq.~2.13!.
The system of equations~4.1! has n13 equations to find outa0(x), a1(x),...,an(x) and

P(x). As a result we can also obtain the equation fory(x).
Case 4.1:v(x)5v0 . Assumingv5v0 we obtain from Eq.~4.2! the following system of

equations:

a05c0 , ~4.3!

a15c0y1c1 , ~4.4!

ak,x2yxak2122yak21,x1 1
2 Pxak221Pak22,x2 1

4 ak22,xxx50 ~k52,...,n21!, ~4.5!

2Pxan2114Pan21,x2an21,xxx28yan,x24yxan22v050, ~4.6!

2Pxan14Pan,x12v0y2an,xxx50. ~4.7!
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Let us consider the system of equations~4.5! and~4.6! at n52. At n52 we obtain from Eqs.
~4.5!

a2~x!5 3
2 c0y22 1

2 c0P~x!1c1y1c2 , ~4.8!

wherec0 ,c1 ,c2 andc3 ,c4 later are arbitrary constants.
Substituting~4.4! and ~4.8! into Eq. ~4.6! we have after integration

6c0Py210c0y32c0yxx12c1P26c1y224c2y22v0x1c350. ~4.9!

After substitution ofa2(x) from Eq. ~4.8! into ~4.7! we obtain an equation which can b
integrated if before we subtract Eq.~4.9! multiplied onyx . As a result we have

1
2 c0Pxx23c0yyxx2

5
2 c0yx

22 3
2 c0P213c0Py21 5

2 c0y42c3y1c42c1yxx12c1y312c1Py

12c2P12c2y212v0xy50. ~4.10!

Denotingci5a42 i ( i 50,1,2,3,4),P(x)5v(x), a150, v5a/2 in Eqs.~4.9! and ~4.10! we
have the system of equations

a4~6vy210y32yxx!12a3~v23y2!24a2y2ax50, ~4.11!

a4~ 1
2 vxx2

3
2 v213vy223yyxx1

5
2 y42 5

2 yx
2!1a3~2vy12y32yxx!12a2~v1y2!1a01axy50.

~4.12!

From the system of equations~4.11! and ~4.12! at a15a25a450 we have the second
Painlevéequation in the form

a3yxx28a3y322axy2a050. ~4.13!

At n53 a2(x) takes the form~4.8! anda3(x) can be written as follows:

a3~x!5 5
2 c0y31 1

4 c0yxx2
3
2 c0Py1 3

2 c1y22 1
2 c1P1c2y1c3 . ~4.14!

Substitutions ofa2(x) anda3(x) into Eq.~4.6! allows us to integrate this equation. It takes t
form

1
2 c0Pxx2

3
2 c0P225c0yyxx2

35
2 c0y42 5

2 c0yx
2115c0Py22c1yxx210c1y316c1yP26c2y2

12c2P24c3y22v0x1c450. ~4.15!

Multiplying Eq. ~4.15! by yx and subtracting this one from Eq.~4.7! we have after integration

2 1
4 c0yxxxx1

7
2 c0y52 25

2 c0yyx
22 15

2 c0y2yxx1
5
2 c0Pyxx2

9
2 c0P2y15c0Py31 5

2 c0yxPx

1 3
2 c0yPxx2

3
2 c1P213c1y2P2 5

2 c1yx
21 1

2 c1Pxx1
5
2 c1y423c1yyxx12c2yP2c2yxx

12c2y312c3P12c3y22c4y12v0yx50. ~4.16!

Denoting ci5a42 i ( i 50,1,2,3,4),v5a/2, P(x)5v(x) (a0 can be taken zero! we have
from Eqs.~4.15! and ~4.16! the following system of equations:

a4~ 1
2 vxx25yyxx2

5
2 yx

22 3
2 v2115vy22 35

2 y4!1a3~6vy210y32yxx!12a2~v23y2!24a1y

2ax50, ~4.17!
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a4~yxxxx214y5150yyx
2130y2yxx210vyxx118v2y220vy3210yxvx26yvxx!1a3~6v2

212vy2110yx
222vxx210y4112yyxx!14a2~yxx22y322yv !28a1~v1y2!24axy50.

~4.18!

Assuminga05a15a35a450 in the system of equations~4.17! and ~4.18! we have the
second Painleve´ equation again. We can consider the system of equations~4.17! and ~4.18! as a
generalization of the second Painleve´ equation.

The Cauchy problem for the system of equations can be solved by the inverse mono
transform taking into account Eqs.~2.6! whereU(x,l) andA(x,l) are determined by formula
~2.9! and ~2.13!.

Case 4.2:v(l)5v0l (v05const). Assumingv(l)5v0l in Eq. ~4.1! we can find the
system of equations to definea0(x), a1(x),..., an(x), P(x) andy(x). In this case equations fo
a0(x), a1(x) andak(x) (k52,...,n22) coincide with Eqs.~4.3!–~4.5!. However, we have to use
rather than Eqs.~4.6! and ~4.7! the following system of equations:

2Pxan2214Pan22,x2an22,xxx28yan21,x24yxan2122v014an,x50, ~4.19!

2Pxan2114Pan21,x2an21,xxx28yan,x24yxan12v0y50, ~4.20!

2Pxan14Pan,x2an,xxx50. ~4.21!

From Eq.~4.21! we obtain the equation after integration

2Pan
22anan,xx1

1
2 an,x

2 1cn1250 ~4.22!

~herecn12 is arbitrary constant!.
Let us consider Eqs.~4.19! and ~4.20! at n53. We havea0(x), a1(x) and a2(x) that are

determined by formulas~4.3!, ~4.4! and ~4.8!.
After integration Eq.~4.19! takes the form

6c0yP210c0y32c0yxx12c1P26c1y224c2y22v0x14a324c350. ~4.23!

Substitutinga2(x), a3(x) and ~4.14! into Eq. ~4.20! we have after integration

1
2 c0Pxx2

3
2 c0P225c0yyxx2

5
2 c0yx

22 35
2 c0y4115c0y2P210c1y316c1yP2c1yxx12c2P

26c2y224c3y1c422v0xy50. ~4.24!

Equation~4.22! at n53 can be written in the form

2Pa3
22a3a3,xx1

1
2 a3,x

3 1c550. ~4.25!

One can see that we have three unknown variablesy(x), P(x) and a3(x) in the system of
equations~4.23!–~4.25!.

DenotingP(x)5v(x), a3(x)5u(x), ci5a42 i ( i 50,1,2,3,4),c55d, a150,v05a/2 in Eqs.
~4.23!–~4.25! we have

a4~6yv210y32yxx!12a3~v23y2!24a2y14u5ax, ~4.26!

a4~ 1
2 vxx2

3
2 v225yyxx2

5
2 yx

22 35
2 y4115vy2!1a3~6yv210y32yxx!12a2~v23y2!1a0

5axy, ~4.27!

2vu22uuxx1
1
2 ux

21d50. ~4.28!
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Theorem 4.1:Special solutions of the system of equations (4.27) and (4.28) are express
the general solutions of the P2 and P4 equations.

Proof: Assuminga45a350 anda150 in Eqs.~4.26! and ~4.27! we have

4u24a2y2ax50, ~4.29!

2a2~v23y2!1a45axy. ~4.30!

Substitutingy(x) from Eq. ~4.29! into ~4.30! we have

v~x!52
1

16a2
2 ~a2x2216axu148u228a0a2!. ~4.31!

Assuminga450 in Eq. ~4.26! we have the system of equations that was studied recent
Ref. 24.

Substitutingv(x) from Eq. ~4.31! into ~4.28! we obtain the fourth Painleve´ equation in the
form

uxx2
ux

2

2u
2

d

u
1

a4u

a2
1

1

a2
2 S 2axu226u32

1

8
a2x2uD50. ~4.32!

Assumingu(x)50,d50 in Eqs.~4.26! and ~4.28! we have

a4S yxxxx

y
22

yxyxxx

y2 12
yx

2yxx

y3 210yx
22

3yxx
2

2y2 220yyxx140y4D
1a1S 8xy2

xyxx

y2 2
2yx

y2 1
2xyx

2

y3 D 112a02
a2x2

2a4y2 50. ~4.33!

This equation ata451 corresponds to the equation found in Ref. 8. Special solution of
~4.33! is expressed by the second Painleve´ equation and consequently special solutions of
system of equations~4.26!–~4.28! are expressed by the general solutions of theP2 andP4 equa-
tion. h

Corollary 4.1: The P2 and P4 are special cases of the system of equations (4.26) and (4
The isomonodromic linear problem for the system of equations~4.26!–~4.28! is determined by

Eqs.~4.6!.
Case 4.3:v(l)5v0l2. Assumingv(l)5v0l2 in Eq. ~4.1! we have that equations forak(x)

(k50,1,...,n23) coincide with Eqs.~4.3!–~4.5!. We obtain additionally four equations

2Pxan2314Pan23,x2an23,xxx28yan22,x24yan22,x14an21,x22v050, ~4.34!

2Pxan2214Pan22,x2an22,xxx28yan21,x24yan21,x14an,x12v0y50, ~4.35!

2Pxan2114Pan21,x2an21,xxx28yan,x24yxan50, ~4.36!

2Pan
22anan,xx1

1
2 an,x

2 1cn1250. ~4.37!

Equation~4.37! corresponds to~4.21! This one was found after integration. Equation~4.36!
can be also integrated if we take into account Eq.~2.10! at v(l)5v0l2. As a result we have

an,xxan211an21,xxan24yan
22an,xan21,x24Panan212cn1150, ~4.38!

wherecn11 is an arbitrary constant.
                                                                                                                



e

ions

6175J. Math. Phys., Vol. 44, No. 12, December 2003 Amalgamations of the Painlevé equations

                    
Let us consider Eqs.~4.34! and~4.35! at n53. We obtaina0(x) anda1(x) by formulas~4.1!
and ~4.2!. From Eq.~4.34! we get

a2~x!5 3
2 c0y21c1y2 1

2 c0P1 1
2 v0x1c2 . ~4.39!

Equation~4.35! can also be integrated. We have

4a3210c0y326c1y216c0yP2c0yxx12c1P24c2y22v0xy24c350. ~4.40!

Equation~4.38! at n53 takes the form

4ya3
21a2a3,xx1a3a2,xx2a3,xa2,x24Pa2a32c450. ~4.41!

Denoting ci5a42 i ( i 50,1,2,3,4),c552d, P(x)5v(x), a3(x)5u(x), v052a from Eqs.
~4.37!, ~4.40! and ~4.41! we have the system of equations in the form

a4~6vy2yxx210y3!12a3~v23y2!24a2y24a114u24axy50, ~4.42!

a4~ 3
2 uxxy

22 1
2 vuxx13uyx

213uyyxx2
1
2 uvxx23uxyyx1 1

2 uxvx26uvy212uv2!1a3~yuxx

1uyxx2uxyx24uyv !1a2~uxx24uv !2a01a~xuxx2ux24xuv !14yu250, ~4.43!

uuxx2
1
2 ux

222vu22d50. ~4.44!

Theorem 4.2:Special solutions of the system of equations (4.42)–(4.44) are expressed by th
general solutions of the P2 , P4 andP3 equations.

Proof: From Eq.~4.43! at a45a35a250 we obtain

4u24axy24a150. ~4.45!

From Eq.~4.45! we have

y5
a12u

ax
. ~4.46!

Substituting~4.43! into Eq. ~4.44! at a45a35a250 we get

axuxx2aux24axuv2
4a1

ax
u21

4

ax
u32a050. ~4.47!

One can findv(x) from Eq. ~4.47!. Then substitutingv(x) into Eq. ~4.44! we have equation
in the form

uxx2
ux

2

u
1

ux

x
1

4a1

a2x2 u22
4

a2x2 u32
2d

u
1

a0

ax
50. ~4.48!

The latter can be transformed to the third Painleve´ equation.
Assumingu(x)5v(x)50,a35a25a05d50 we have the second Painleve´ equation from

the system of equations~4.43! and ~4.44! in the form

a4yxx110a4y314a114axy50. ~4.49!

Assuminga450 in the system of equations~4.42!–~4.44! we have a generalization for theP4

equation. h

Corollary 4.2: The P2 , P4 and P3 equations are special cases of the system of equat
(4.42)–(4.44).
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We have found that the system of equations~4.42!–~4.44! is the generalization of the secon
and third Painleve´ equations.

Case 4.4:v(l)5v0l(l2l0). Let us consider Eq.~2.4! assumingv(l)5v0l(l2l0) and
A(x,l) in the form~2.12!. Substituting Eq.~2.12! into ~2.4! and equating expressions at differe
l to zero we have the following set of equations:

a05c0 , a1~x!5c0y1 1
2 v0x1c1 , ~4.50!

a2~x!5 1
2 v0xy2 1

2 v0l0x2 1
2 Pc01 3

2 c0y21c1y1c2 . ~4.51!

We also have two additional integrals

c1a2,xx1c0ya2,xx2
1
2 v0a2,x24Pa2yc01 1

2 v0xa2,xx1c0a2yxx22v0xPa2

2c0a2,xyx24c1Pa21~c0a2,xx2
1
2 v0

2x2P1c0c1yxx22c0
2Py21c0

2yyxx24c1c0Py

2 1
2 c0

2yx
222c1v0xP22c0Pyv0x22c1

2P1 1
2 c0v0xyxx24c0Pa22 1

2 c0v0yx2 1
8 v0

2!l0

1~c0
2yxx24c0

2yP22c0v0xP24c0c1P!l0
222l0

3c0
2P1c350, ~4.52!

a2a2,xx2
1
2 a2,x

2 22Pa2
21c450. ~4.53!

Denoting P(x)5v(x), a2(x)5u(x), c05a3 , c150, c25a2 , c45d, v054a, l05b, c2

5a2 we obtain from Eqs.~4.51!–~4.53! the system of equations

2ax~y2b!1 1
2 a3~3y22v !2u1a250, ~4.54!

uuxx2
1
2 ux

222u2v2d50, ~4.55!

a3~yuxx1uyxx2uxyx24yuv !1a012~xuxx24uvx2ux!1ba3
2~yyxx2

1
2 yx

222vy2!

1ba3~uxx24uv12axyxx22ayx28axyv !28ba2x2v

1b2a3~a3yxx28axv24a3yv !22b3a3
2v50. ~4.56!

Assumingb50 we get the system of equations~4.27! and ~4.28! of Ref. 8. Assuminga3

50 in ~4.54!–~4.56! we have

u~x!52axy22abx1a2 , ~4.57!

uxx1
2baxuxx

u
1

ux

x
2

ux
2

u
2

baxux
2

u2 1
ab

x
2

a3

2ax
2

2d

u
2

2abdx

u2 50. ~4.58!

The latter system of equations can be transformed to the fifth Painleve´ equation. Therefore the
system of equations~4.54!–~4.56! is a generalization of the fifth Painleve´ equation.

Let us present here the system of equations in the casev(l)5v0l(l2l0) at n53. Denoting
C05a4 , c15c250, c35a1 , c45a0 , c5516d, P(x)5v(x), a3(x)5u(x) we have the follow-
ing system of equations:

a4~yxx110y326vy!1ax~y2b!22u50, ~4.59!

uuxx2
1
2 ux

222vu21d50, ~4.60!
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a4~6yuyxx14uv213y2uxx1uxvx16uyx
22uvxx2vuxx212uvy226yyxux!1 1

4 a~xuxx2ux

24xuy!14yu21a01bB11b2B21bB31b4B422a4axb550, ~4.61!

where

B15a4~2uyxx22uxyx12yuxx124uy31 1
4 avx2 3

2 ayyx23axvy2216vuy1 3
2 axyyxx

1 3
2 axyx

22 1
4 axvxx1axv2!1a4

2~12v2y2118y3yxx26vyx
223y2vxx218vy41vvxx22v3

2 1
2 vx

216yyxvx26vyyxx!2 1
8 a2x2v22u212axyu, ~4.62!

B25a4~2uxx24uv14uy224axyv2 1
2 ayx16axy31 1

2 axyxx!

1a4
2~36y512yxvx22vyxx22yvxx118y2yxx112yv2248vy3!2axu1 1

4 a2x2y,

~4.63!

B35a4~axy218yu2axv !1a4
2~6v2116yyxx110yx

2130y4236vy222vxx!2 1
8 a2x2,

~4.64!

B45a4~2axy28u!1a4
2~40y314yxx224vy!. ~4.65!

Thus we have the following theorem.
Theorem 4.3:Special solutions of the system of equations (4.59)–(4.61) are expressed via th

general solution of the P2 , P4 , P3 and P5 equations.
Proof: It is clear this system of equations is a generalization of casev(l)5v0l2. Assuming

l050 in this sixth ODE we have case 4.3. However, assumingn51 in Eq. ~2.13! we have the
system of equations~4.57! and ~4.58! that is transformed to theP5 equation. h

We also have the corollary.
Corollary 4.3: The P2 , P4 , P3 and P5 equations are special cases of this new system

equations (4.59)–(4.61).
Taking into account the above mentioned equations one can see how to construc

equations with potential~2.9!.

V. CONCLUSION

Let us summarize the results presented in the article. Using the compatibility condition
responding to the Painleve´ equations we found several new hierarchies that generalize the
levéequations. In essence we considered two isomonodromic linear problems~2.1! and~2.6! that
can be written as the compatibility condition~2.4!. Then we obtained two types of generalizatio
for the Painleve´ equations. One of these generalizations corresponds to theP1 , P34, P2 , P3* , and
P5* equations. Another generalization was found for theP2 , P4 , P3, andP5 equations.

We observed that the above mentioned Painleve´ equations are special cases of the hierarch
found. Particular attention has been given to the sixth order nonlinear ordinary differential
tions. We showed that there are sixth order nonlinear equations that generalize theP1 , P34, P2 ,
P3* , andP5* equations. However, there are also sixth order equations that are the generaliz
of the P2 , P4 , P3, andP5 equations.

We have not investigated all Eqs.~3.12!, ~3.29!, ~3.69! and other new ordinary differentia
equations on the Painleve´ property taking into account the singularity analysis. Some of the fo
order ordinary differential equations were checked before in Refs. 5, 8, 2, and 23. Howev
doubt all equations have the Painleve´ property because the Cauchy problems for all these eq
tions can be solved by the inverse monodromy transform.

All nonlinear ordinary differential equations of this work are important because we hope
these equations give new transcendental functions with respect to constants of integration
of the fourth order ordinary differential equations from hierarchies~3.12! and~3.29! were proved
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to have general solutions in the form of essentially transcendental functions and they do no
any first integrals in the polynomial form.21,22 Now we need to prove the irreducibility of highe
order analogies of the Painleve´ equations. For the second order Painleve´ equations the notions o
irreducibility and essentially transcendental dependence on the initial conditions are equival
so far we have not found proof of equivalence at higher orders. It is unlikely that all higher
analogies of Painleve´ equations presented in this work depend on the Painleve´ transcendents bu
we need to have the strong proof of this fact. We think it will be the most important problem
the higher order analogies of the Painleve´ equations in future.

In the study of the Painleve´ equations before we thought that every Painleve´ equation can be
included in the corresponding hierarchy. In fact, we could observe such situation for the fir
second Painleve´ hierarchies. However, we can see from the results of this work there are h
chies that generalize several Painleve´ equations. It is difficult to say about Painleve´ hierarchy in
this case.

The results of this article allow us to assume the conjecture that there are higher
nonlinear equations that include all Painleve´ equations corresponding to the concrete isomonod
mic linear problem. More than that we believe there are the general solutions of the higher
ordinary differential equations in the form of the transcendental functions with respect to con
of integration that contain the Painleve´ transcendents of definite class as special cases. T
general transcendents can be found as solutions of the Cauchy problems by means of the
monodromy transform from the linear problems corresponding to the higher order ordinar
ferential equations.
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Multivariable orthogonal polynomials associated with
tensor products of the oscillator algebra b„1…

S. Lievensa) and J. Van der Jeugtb)

Department of Applied Mathematics and Computer Science, University of Ghent,
Krijgslaan 281-S9, B-9000 Gent, Belgium

~Received 19 November 2002; accepted 26 August 2003!

It is well known that the tensor product ofn11 lowest weight representations of~a
generalization of! the oscillator algebrab~1! can be depicted by a binary coupling
tree. With each such binary coupling tree, we associate a polynomialRl

(h)(x) that
will turn out to be ann-variable Hermite polynomial. We prove that the polynomi-
als Rl

(h)(x) associated with a fixed binary coupling tree are orthogonal over the
n-dimensional real space for some weight function, which is independent of the
shape of the considered binary coupling tree. The connection coefficients express-
ing a polynomial associated with a given binary coupling in terms of polynomials
associated with another binary coupling tree are the 3n j-coefficients of
b~1!. © 2003 American Institute of Physics.@DOI: 10.1063/1.1621059#

I. INTRODUCTION

General recoupling coefficients or 3n j-coefficients of Lie algebras play an important role
theoretical physics, but also have many mathematical applications, e.g., the 3j and 6j coefficients
of su~2! exhibit a close relationship with Hahn and Racah polynomials.1,2 In Ref. 3 Granovski� and
Zhedanov give a new method for the construction of 3n j-symbols. In Ref. 4 their method wa
applied to the Lie algebrassu~1,1! and b~1! to find addition formulas for various orthogona
polynomials. Generalizing the most important formulas in this article, we showed in Ref. 5
one can associate multivariable Jacobi and continuous Hahn polynomials with tensor prod
positive discrete series representations of the Lie algebrasu~1,1!. A convenient way to describe th
order of taking these tensor products~or couplings! is the use of binary coupling trees~see Ref. 6,
Topic 12 and Refs. 7 and 8. We will use tree terminology~e.g., leaf nodes, root node, subtree,!
that should be self-explanatory, but if in doubt see Ref. 9.

In this article, we will follow the same technique as in Ref. 5 to find multivariable Herm
polynomials that are associated with tensor products of lowest weight representations~an
extension of! the oscillator algebra. We will show that these multivariable Hermite polynom
are orthogonal onRn for a certain weight function that is independent of the order of taking ten
products, although the polynomials themselves are dependent on this order. The connectio
ficients between the different classes of polynomials will turn out to be~just as in Ref. 5! the
3n j-coefficients of the oscillator algebra.

In general, orthogonal polynomials in several variables give rise to certain difficulties tha
not present in the one variable situation. For example, orthogonal polynomials inn variables are
no longer uniquely defined by the regionV and the weight function on the region. This is close
related to the fact that there is no obvious natural order for polynomials in several variable

The space of all polynomials in the variablesx1 ,...,xn with real coefficients is denoted
R@x1 ,...,xn# or Pn for short. The degree of a polynomialPPPn is the highest degree of any o
its monomials. Let̂ •,•& be an inner product defined onPn. ThenP is an orthogonal polynomia
if ^P,Q&50 for all polynomialsQ with degQ,degP. This definition does not require thatP is
orthogonal with other~orthogonal! polynomials of the same degree.

a!Electronic mail: stijn.lievens@ugent.be
b!Author to whom correspondence should be addressed. Electronic mail: joris.vanderjeugt@ugent.be
61790022-2488/2003/44(12)/6179/16/$20.00 © 2003 American Institute of Physics
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In our case the inner product will be defined in terms of some~classical! weight functionW
on some~classical! regionV in Rn: ^P,Q&5*VP(x)Q(x)W(x) dx.

The rest of this article is organized as follows: In Sec. II we give the definition of the
algebrab~1! and a class of representations, together with expressions for its Clebsch–Gord
Racah coefficients. In Sec. III the method of Granovski� and Zhedanov is briefly explained and
~new! addition formula for Meixner polynomials is found. Whereas in Sec. III we confine o
selves to the tensor product of three representations, we turn in Sec. IV to the multivariable
We explain how to associate a multivariable Hermite polynomial to a binary coupling tree
prove the orthogonality of these polynomials. In the last section, we show how this leads
integral formula for 3n j-coefficients ofb~1!.

We conclude this introduction with some notational conventions. The notation for~general-
ized! hypergeometric functions is the standard one:10,11

pFqS a1 ,...,ap

b1 ,...,bq
; zD5 (

k50

`
~a1!k¯~ap!k

~b1!k¯~bq!k

zk

k!
, ~1!

with (a)k the Pochhammer symbol: (a)k5a(a11)¯(a1k21) for k.0, and (a)051. Conver-
gence issues will not arise since all the hypergeometric functions in this article are termin
~i.e., one of the numerator parameters is a negative integer!. Furthermore, for the one-dimension
orthogonal polynomials appearing in this article, we will adopt the notation and normalizati
Ref. 12. In particular, we denote the Hermite polynomials byHn(x), with

Hn~x!5~2x!n
2F0S 2n/2,2~n21!/2

2
;2

1

x2D . ~2!

These are orthogonal onR for the weight function exp(2x2):

E
2`

`

Hn~x!Hm~x!e2x2
dx5Ap2nn!dn,m . ~3!

II. THE LIE ALGEBRA b„1… AND TENSOR PRODUCTS FOR A CLASS OF
REPRESENTATIONS

The Lie algebrab~1!4,13 is four-dimensional, with basis elementsb6, H andN subject to the
relations

@b2,b1#5H, @N,b6#56b6 and @H,x#50, for x5b6,N, ~4!

where the basis elements obey the following unitary conditionsH†5H, N†5N and (b6)†

5b7. @More precisely, the Lie algebrab~1! is a !-algebra with!-operation defined byH!5H,
N!5N and (b6)!5b7; then the representation operators corresponding to the Lie algebra
ments satisfy the same conjugacy properties in the!-representations considered here.#

It is well known that this Lie algebra has a class of lowest weight representations,13 charac-
terized by two positive numbersh andk. These representations are infinite dimensional and h
a set of orthonormal basis vectorsuh,k,n&, with n50,1,2,... . The action of the operators corr
sponding to the Lie algebra basis elements on these basis vectors is given by

Huh,k,n&5huh,k,n&,

Nuh,k,n&5~k1n!uh,k,n&,
~5!

b2uh,k,n&5Ahnuh,k,n21&,

b1uh,k,n&5Ah~n11!uh,k,n11&.
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One can verify that these representations are unitary and irreducible whenh.0 andk>0.
Taking the tensor product of two such unitary and irreducible representations (h1 ,k1) and

(h2 ,k2) gives again a unitary representation that is completely reducible into representatio
the same type:

~h1 ,k1! ^ ~h2 ,k2!5 %
j 50

`

~h11h2 ,k11k21 j !. ~6!

We note that theh-labels are simply additive and that the difference between the resulting
consistingk-labels is a non-negative integer.

Now, one can express a basis vectoruh11h2 ,k11k21 j ,n& in terms of tensor product vector
uh1 ,k1 ,n1& ^ uh2 ,k2 ,n2&. The coefficients accomplishing this connection are called the Clebs
Gordan coefficients. Explicitly one has, in an obvious notation withk125k11k21 j ,

u~h1 ,h2!,k12,n&[u~h1 ,k1 ;h2 ,k2!h11h2 ,k11k21 j ,n&

5 (
n1 ,n2

Cn1 ,n2 ,n
h1 ,h2 , j uh1 ,k1 ,n1& ^ uh2 ,k2 ,n2&, ~7!

where the sum is over all positive integersn1 andn2 such thatn11n25n1 j . The labelsk1 and
k2 have been omitted from the notation of the Clebsch–Gordan coefficients as they are in
dent of them~Ref. 4, Sec. VI!. An explicit expression is given by

Cn1 ,n2 ,n
h1 ,h2 , j

5dn11n2 , j 1n~21!n2
~n11n2!!an1n2bn12n

An1!n2! j !n!
2F1S 2n,2n2

2 j 2n ;
1

a2D , ~8!

with

a5A h1

h11h2
, b5A h2

h11h2
, and thusa21b251. ~9!

We remark that although the denominator parameter in~8! is a negative integer, the hypergeome
ric notation is still well-defined because the denominator parameter is smaller than the num
parameters, which determine the termination.

The tensor product of three representations (h1 ,k1), (h2 ,k2), and (h3 ,k3) can be formed in
two different ways:

~~h1 ,k1! ^ ~h2 ,k2!! ^ ~h3 ,k3!, and ~h1 ,k1! ^ ~~h2 ,k2! ^ ~h3 ,k3!!. ~10!

The coefficients relating the two coupled bases, for which the notation is self-explanator
called the recoupling or Racah coefficients:

u~~h1 ,h2!h3!,k12,k,n&5 (
k235k21k3

k2k1

h1 ,h2 ,h3
Uk3 ,k,k23

k1 ,k2 ,k12u~h1~h2 ,h3!!,k23,k,n&. ~11!

This representation of the Lie algebrab~1! has the remarkable property that its Racah coefficie
are of the same type as its Clebsch–Gordan coefficients~Ref. 4, Sec. VII!. One has

h1 ,h2 ,h3
Uk3 ,k,k23

k1 ,k2 ,k125~21! j 12
~ j 1 j 12!! ã

j 121 j 8b̃ j 2 j 8

Aj 12! j 23! j ! j 8!
2F1S 2 j 12,2 j 8

2 j 122 j ;
1

ã2D , ~12!

with
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ã5A h1h3

~h11h2!~h21h3!
, b̃5A h2~h11h21h3!

~h11h2!~h21h3!
, and thus alsoã21b̃251. ~13!

Moreover, we denoted the non-negative integer differences by

j 125k122k12k2 , j 5k2k122k3 , j 235k232k22k3 , and j 85k2k12k23, ~14!

and thusj 121 j 5 j 231 j 8. We remark that the recoupling coefficients are only dependent on t
integer differences~and not on thek-labels themselves!. We choose, however, to adopt a notati
for the recoupling coefficients ofb~1! that resembles that of the recoupling coefficients ofsu~1,1!
in Ref. 5.

It is known1 ~and also immediately clear from the expressions given here! that both the
Clebsch–Gordan and Racah coefficients ofb~1! can be written in terms of the Krawtchou
polynomials.12

III. CONSTRUCTION OF CONVOLUTION IDENTITIES

In the seminal paper3 a new method for the construction of 3n j-symbols was introduced an
applied to thesu~1,1! case. This method can be extended to other Lie algebras, and in Ref.
was used to derive a generating function for the 9j -symbols of the oscillator algebra. In Refs.
and 15 this method was used to find addition formulas or convolution identities for orthog
polynomials.

In short, starting with a certain operatorX acting on the representation space of the L
algebra, one finds a quantityQn(x) that is the remainder of the overlap coefficient between
eigenvector ofX and the basis vectorun& after factoring out the ‘‘zero-amplitude’’ part, e.g., in th
b~1! case

^h,k,xuh,k,n&5^h,k,xuh,k,0&Qn~x;h,k!. ~15!

For certain choices ofX, the quantityQ will be a classical orthogonal polynomial. However, th
need not be so, and interesting applications exist withoutQ being an orthogonal polynomial.14

Next, one uses this polynomialQ and the~zero-amplitude! Clebsch–Gordan coefficients of th
considered Lie algebra to define a two-variable polynomialSj (x1 ,x2) that satisfies the importan
relation @written down for theb~1! case#

Sk122k12k2

k1 ,k2 ~x1 ,x2 ;h1 ,h2!Sk2k122k3

k12 ,k3 ~x11x2 ,x3 ;h11h2 ,h3!

5 (
k235k21k3

k2k1

h1 ,h2 ,h3
Uk3 ,k,k23

k1 ,k2 ,k12Sk2k12k23

k1 ,k23 ~x1 ,x21x3 ;h1 ,h21h3!Sk232k22k3

k2 ,k3 ~x2 ,x3 ;h2 ,h3!.

~16!

In Ref. 4 it was deduced that, when choosingX5b11b2, the expression for the polynomialS is
given by

Sj
(k1 ,k2)

~x1 ,x2 ;h1 ,h2!5
1

A2 j j !
H j SA h2

2h1~h11h2!
x12A h1

2h2~h11h2!
x2D . ~17!

Using the expressions~17! and ~12! in ~16! yields ~after some simple renamings! the following
identity for Hermite polynomials~Ref. 4, Formula 6.16!:

H j~av11bv2!Hn~2bv11av2!5 (
k50

j 1n S j 1n
k Dan1kbj 2k

2F1S 2n,2k
2 j 2n ;

1

a2DHk~v1!H j 1n2k~v2!,

~18!
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with a21b251.
Remark 1:Note that in~18! the variables of the Hermite polynomials on the left side are

orthogonal transformation of the variables on the right side. j

Remark 2:Recently Wu¨nsche16,17 inspired by the following~alternative! definition of the
Hermite polynomials,

Hm~x!5expS 2
1

4

]2

]x2D ~2x!m, ~19!

introduced his so-called Hermite 2D polynomials

Hm,n~A;x,y!5expS 2
1

4 S ]2

]x2 1
]2

]y2D D ~2x8!m~2y8!n, ~20!

where

S x8
y8 D5AS x

yD . ~21!

Herein,A is an arbitrary two-dimensional matrix. Wu¨nsche gave three different representations
the Hermite 2D polynomials. From one of them~Ref. 16, Formula 2.11!, it can be seen that the lef
hand side of~18! coincides with a Hermite 2D polynomial, providedA is an orthogonal matrix. In
this light it turns out that~18! is a special case of the representation~Ref. 16, Formula 2.8! for
Hermite 2D polynomials. j

It is interesting to investigate the Granovski� and Zhedanov method for another form for th
operatorX. Let X5H1N1b11b2 ~more general choices lead essentially to the same resul!; in
this case one identifies~by considering its three-term recurrence! the polynomialQ as being a
Charlier polynomial:12

Qn~x;h,k!5~21!nAhn

n!
Cn~x2k;h!5~21!nAhn

n! 2F0S 2n,2x1k
2

;2
1

hD . ~22!

Using the definition of theS-polynomial

Sj
k1 ,k2~x1 ,x2 ;h1 ,h2!5 (

n11n25 j
Cn1 ,n2,0

h1 ,h2 , j Qn1
~x1 ;h1 ,k1!Qn2

~x2 ;h2 ,k2!, ~23!

and the easily verified identity~expand the two hypergeometric series on the left side, intercha
the order of summation and apply the binomial theorem!

(
n11n25 j

~21!n2

n1!n2! 2F0S 2n1 ,y1

2
;a1D 2F0S 2n2 ,y2

2
;a2D5~a2! j

~y2! j

j ! 2F1S 2 j ,y1

12y22 j ;2
a1

a2
D ,

~24!

we arrive at the following explicit expression forS ~which we, for distinction with the Hermite
case, denote byS!:

S j
k1 ,k2~x1 ,x2 ;h1 ,h2!5A h1

j

j ! ~h11h2! jh2
j ~k22x2! j 2F1S 2 j ,k12x1

12 j 2k21x2
;2

h2

h1
D ~25!

5A h1
j

j ! ~h11h2! jh2
j ~k11k22x12x2! j 2F1S 2 j ,k12x1

k11k22x12x2
;11

h2

h1
D .

~26!
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It is thus clear that in this case theS-polynomial can be written in terms of a Meixne
polynomial:12

S j
k1 ,k2~x1 ,x2 ;h1 ,h2!

5A h1
j

j ! ~h11h2! jh2
j ~k22x2! j M j S x12k1 ;12 j 2k21x2 ,

h1

h11h2
D ~27a!

5A h1
j

j ! ~h11h2! jh2
j ~k11k22x12x2! j M j S x12k1 ;k11k22x12x2 ,2

h1

h2
D .

~27b!

If we now plug all the basic ingredients into~16!, we get a convolution identity for Meixne
polynomials.

Theorem 3: The Meixner polynomials satisfy the following identity:

~12 j 1x2! j~2s1 j !nM j S x1 ;12 j 1x2 ,
b

a

a21

b21D Mn~x11x22 j ;2s1 j ,a!

5S b

aD j 1nS a

a21D j

(
k50

j 1n S j 1n
k D S b21

b D k

~2s1k! j 1n2k~12k1x2!k

3 2F1S 2 j ,2 j 2n1k
2 j 2n ;

a

bD M j 1n2k~x1 ;2s1k,b!MkS s2x12x2 ;12k1x2 ,
b21

a21D ,

~28!

where s is some (arbitrary) constant.
Remark 4:We have written down two expressions in which theS-polynomials are Meixner

polynomials of degreej . There are four more of these expressions. This is because of th
Kummer solutions to the Gauss differential equation, there are six of them that have th
numerator parameter~in this case2 j ) fixed ~see Ref. 11!. j

Remark 5:From the introductory section it is clear that for the multivariable case, we res
ourselves to the Hermite case. One may ask oneself why this is the case. The reason is: o
nality. Indeed if one replacesx2 by 12x1 in ~17! it is immediately clear~and see also next section!
that S satisfies an orthogonality relation.

For theS-case things are different. The Meixner polynomials also satisfy a~discrete! orthogo-
nality, namely,

(
x50

`
~b!x

x!
cxMm~x;b,c!Mn~x;b,c!5

c2nn!

~b!n~12c!b dm,n , b.0 and 0,c,1. ~29!

We note that the conditions imposed onb andc are to ensure that the weight function is positiv
However, the orthogonality is valid whenever 0,ucu,1 and b is not a negative integer. We
cannot apply this orthogonality: e.g., in the case~27a! the parameterb ~after replacingx2 by 1
2x1) depends onx1 which is clearly not allowed; in the case~27b! the parameterc does in
general~i.e., for arbitrary values ofh1 andh2) not meet its requirement (0,ucu,1). The other
four ways of writingS have similar problems. j

IV. MULTIVARIABLE HERMITE POLYNOMIALS

When working with multivariable Hermite polynomials the classical region of integratio
the realn-dimensional spaceRn. In Ref. 18, Sec. 2.3.4, the weight function exp(2(x1

21¯1xn
2)) is

considered and two different orthogonal bases are given. One of them is just a producn
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classical Hermite polynomials. In Ref. 19, Sec. 12.8, another generalization of Hermite po
mials is considered; these are orthogonal with respect to the weight function exp(2w(x)) with
w(x)5( i , j ci j xixj whereC is a symmetric, square, and positive definite matrix. The multivaria
Hermite polynomials appearing in the (n11)-fold tensor product are orthogonal overRn for the
weight function

exp~2c~x!!, with c~x!5~x1 ,x2 ,...,xn ,s2s~x!!A~x1 ,x2 ,...,xn ,s2s~x!! t, ~30a!

whereAPR(n11)3(n11), s(x)5x11¯1xn ands some arbitrary constant. Moreover, it will tur
out that

Ai j 5
1

2hi
d i j 2

1

2uhu
, ~30b!

whereuhu5h11¯1hn11 .
We recall the expression for the two-variableS-polynomial ~where we have dropped th

superscriptsk becauseS is independent of them!,

Sj~x1 ,x2 ;h1 ,h2!5
1

A2 j j !
H j SA h2

2h1~h11h2!
x12A h1

2h2~h11h2!
x2D . ~31!

Since the Hermite polynomials are even~resp. odd! if their degree is even~resp. odd!, the
S-polynomials have the following property:

Sj~x1 ,x2 ;h1 ,h2!5~21! jSj~x2 ,x1 ;h2 ,h1!. ~32!

This property has an interpretation in terms of the twist operation on binary coupling trees8 ~see
Fig. 1!, which in turn stems from the corresponding property of Clebsch–Gordan coefficien
b~1!:

Cn1 ,n2 ,n
h1 ,h2 , j

5~21! jCn2 ,n1 ,n
h2 ,h1 , j . ~33!

~Note that this last equality is just Pfaff’s transformation20 for terminating2F1-series.!
The second identity satisfied by theS-polynomials can be interpreted in terms of the rotati

operation on binary coupling trees8 ~see Fig. 2!. It is thus related to the two ways in which one ca
couple threeb~1! representations. We repeat it here:

Sk122k12k2
~x1 ,x2 ;h1 ,h2!Sk2k122k3

~x11x2 ,x3 ;h11h2 ,h3!

5 (
k235k21k3

k2k1

h1 ,h2 ,h3
Uk3 ,k,k23

k1 ,k2 ,k12Sk2k12k23
~x1 ,x21x3 ;h1 ,h21h3!Sk232k22k3

~x2 ,x3 ;h2 ,h3!.

~34!

FIG. 1. A twist operation on binary coupling trees.
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Notice how the left side of~34! follows from the tree on the left side of Fig. 2. With each non-le
node ~i.e., with each intermediate or final coupling! one associates anS-polynomial. The first
~resp. second! variable of thisS-polynomial is the sum of all the variables associated with
leaves in the left~resp. right! subtree of the considered node. The same applies to the param
hi . The ~positive integer! lower parameter is the difference between the value of the cou
representationk-label and the consistingk-labels. TheS-polynomials on the right side of~34! are
formed in the same way but working with the tree on the right side of the figure. The recou
coefficient appearing in~34! is that associated with a recoupling of three representations as s
in Fig. 2.

Now, we generalize the way the left hand side of~34! is formed and we associate with th
tensor product ofn11 representations a product ofn S-polynomials, eachS-polynomial being
associated with a non-leaf node of the binary coupling tree. From the decomposition~6! it follows
that with each non-leaf node we can associate a non-negative integer. We will denote thesel i ,
such that we writeRl

(h)(x) for the resulting polynomial. In principle the notationRl
(h)(x) should

also contain a reference to its defining binary coupling tree; for the moment however, w
dealing only with arbitrary but fixed trees, so we drop this reference in the notation.

Example 6:Consider the following tensor product of fiveb(1) representations:

~~~h1 ,k1! ^ ~h2 ,k2!! ^ ~h3 ,k3!! ^ ~~h4 ,k4! ^ ~h5 ,k5!!,

depicted by the binary coupling tree in Fig. 3~where we omitted the additiveh-labels!.
With this tensor product, we associate the following polynomial:

Rl 1 ,l 2 ,l 3 ,l 4

h1 ,h2 ,h3 ,h4 ,h5~x1 ,x2 ,x3 ,x4 ,x5!

5Sl 1
~x1 ,x2 ;h1 ,h2!Sl 2

~x11x2 ,x3 ;h11h2 ,h3!Sl 3
~x4 ,x5 ;h4 ,h5!

•Sl 4
~x11x21x3 ,x41x5 ;h11h21h3 ,h41h5!

5
1

A2u l ul 1! l 2! l 3! l 4!
Hl 1SA h2

2h1~h11h2!
x12A h1

2h2~h11h2!
x2D

•Hl 2SA h3

2~h11h2!~h11h21h3!
~x11x2!2A h11h2

2h3~h11h21h3!
x3D

•Hl 3SA h5

2h4~h41h5!
x42A h4

2h5~h41h5!
x5D

•Hl 4SA h41h5

2~h11h21h3!~ uhu! ~x11x21x3!2A h11h21h3

2~h41h5!~ uhu! ~x41x5! D .

~35!

j

FIG. 2. A rotation on binary coupling trees.
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A. Change of variables

We introducen new variablesv i , eachv i being the argument of one of the Hermite polyn
mials in Rl

(h)(x). This, however, does not lead to a unique correspondence between then11
variablesx and then variablesv. To this end we introduce a linear constraint between
variablesx: x11¯1xn1xn115s with s some arbitrary constant. Note that this is consistent w
the definition ofc in ~30!.

The order in which the variablesv i ~and integersl i) are associated to the non-leaf nodes
immaterial, but for the sake of explicitness we do this in post-order.9

Example 7:For the tree in Fig. 3 the connection between the variablesv and x is the
following:

v15c1x12d1x2 ,

v25c2~x11x2!2d2x3 ,

v35c3x42d3x5 , ~36!

v45c4~x11x21x3!2d4~x41x5!,

s5x11x21x31x41x5 .

Here, we have used abbreviationsci anddi for the rather tedious combinations ofhi in ~35!, e.g.,

c25A h3

2~h11h2!~h11h21h3!
and d25A h11h2

2h3~h11h21h3!
. ~37!

The equations~36! can also be written in matrix form~settings5v5):

S c1 2d1 0 0 0

c2 c2 2d2 0 0

0 0 0 c3 2d3

c4 c4 c4 2d4 2d4

1 1 1 1 1

D S x1

x2

x3

x4

x5

D 5S v1

v2

v3

v4

v5

D . ~38!

j

Since the arguments of the Hermite polynomials are linear combinations of the variablesx, one
can write@becauseT is nonsingular, see~56!#

T•X5V⇔X5T21
•V, ~39!

FIG. 3. A binary coupling tree corresponding to the tensor product of fiveb~1! representations.
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whereX andV are both column vectors, andTPR(n11)3(n11). From ~39! it is clear that thekth
row of the matrixT concerns the variablevk , while the i th column concerns the variablexi .
Using the notationck anddk we have

Tki5H ck if xi is in the left subtree ofvk ,

2dk if xi is in the right subtree ofvk for 1<k<n and 1< i<n11,

0 otherwise,
~40a!

and

Tn11,i51 for 1< i<n11. ~40b!

The last row ofT corresponds of course to the constraintx11¯1xn115s5vn11 .
Making the notationck anddk explicit we have

ck5A (
of vk

right leaveshi

2~(
of vk

left leaveshi !~(
of vk

all leaveshi !
, and dk5A (

of vk

left leaveshi

2~(
of vk

right leaveshi !~(
of vk

all leaveshi !
. ~41!

When theR-polynomial is transformed using~39! it becomes, by definition of the transformatio
a product ofn independent Hermite polynomials. The orthogonality for the Hermite polynom
will be applicable provided thatc(x) of ~30! transforms intov1

21¯1vn
2 , i.e.,

~x1 ,...,xn11!A~x1 ,...,xn11! t5~v1 ,...,vn11!~T21! tAT21~v1 ,...,vn11! t5v1
21¯1vn

2 .
~42!

This, in turn, is equivalent to

~T21! tAT215S I n On31

O13n 0 D⇔A5TtS I n On31

O13n 0 DT, ~43!

whereI n denotes the identity matrix of ordern andOn3m is the zero-matrix of the given orde
This last equality provides us a way for calculating the explicit form of the matrixA, namely,

Ai j 5 (
k51

n

TkiTk j for 1< i , j <n11. ~44!

Lemma 8: For an arbitrary binary coupling tree on n11 leaves with leaf labels(hi ,ki),
i 51,...n11, and with transformation matrix T defined by~40!, we have

Ai j 5 (
k51

n

TkiTk j5
1

2hi
d i j 2

1

2uhu
. ~45!

The matrix A is thus independent of the shape of the binary coupling tree.
Proof: Let nln ~resp.nrn) denote the number of leaves in the left~resp. right! subtree ofvn ,

the root node of the tree. We can then split up our formula into three parts:

Ai j 5 (
k51

n

TkiTk j5 (
k51

nln21

TkiTk j1 (
k5nln

n21

TkiTk j1TniTn j . ~46!

Since the first~resp. second! sum of ~46! corresponds to theA-matrix of the left ~resp. right!
subtree of the root, we use induction on the number of internal nodes in the tree. It is
verified that the desired result is true for small values ofn.
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There are~essentially! two cases to consider:

~1! The variablesxi andxj belong both to the same subtree ofvn .
~2! The variablesxi andxj belong to different subtrees ofvn .

Let xi andxj both belong to the same, say left, subtree ofvn . This impliesTni5Tn j5cn , and thus

(
k51

n

TkiTk j5S 1

2hi
d i j 2

1

2~h11¯1hnln
! D 101

~hnln111¯1hn11!

2uhu~h11¯1hnln
!

5
1

2hi
d i j 2

1

2uhu
, ~47!

where the first sum in~46! is evaluated using the induction hypothesis, the second sum is
becauseTki5Tk j50 for k5nln ,...,n21, and the third term is simplycn

2 . ~We assumed, for the
sake of simplicity, that the leaves in the left subtree have labelsh1 up to hnln

.)
Second letxi belong to the left subtree andxj to the right subtree. In this caseTk j50 for

k51,...,nln21 andTki50 for k5nln ,...,n21. This implies

(
k51

n

TkiTk j52cndn52
1

2uhu
. ~48!

h

Thus we have established that the weight function~30! after transformation with~39! becomes a
product ofn classical Hermite weights.

B. The Jacobian of the transformation

The transformation between the variablesx andv is a simple linear transformation. If we wan
to show the orthogonality of theR-polynomials, we need the Jacobian of the transformation,
we want to know

J5Udet
]xi

]vk
U, with 1< i ,k<n. ~49!

From ~39! it is immediately clear that

det
]vk

]xi
5detT for 1< i ,k<n11. ~50!

However, we need the Jacobian between then independent variablesxi and then variablesvk .
The linear constraint between then11 variablesxi is equivalent to subtracting the last column
the matrixT from all its other columns; this does not affect the value of the determinant oT.
Since the (n11)-th row ofT now entirely consists of zeros, except for the last element, we h

det
]vk

]xi
5detT for 1< i ,k<n. ~51!

Since we use a linear transformation we now have

J5Udet
]xi

]vk
U5U 1

detTU. ~52!

It is thus sufficient to calculate the determinant of the matrixT.
Example 9:For the running example, the transformation matrixT equals
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T5S c1
! 2d1

! 0! 0 0

c2
! c2

! 2d2
! 0 0

0 0 0 c3
‡ 2d3

‡

c4 c4 c4 2d4 2d4

1! 1! 1! 1‡ 1‡

D . ~53!

We want to determineudetTu and to this end we transformT into an upper triangular matrix, usin
column transformations only.

In ~53!, the nine elements annotated with a! constitute the 333 transformation matrix
associated with the left subtree, and analogously for the four elements annotated with a ‡. P
the column transformations,C1←C12C2 , C2←C22C3 , andC4←C42C5 on T and one gets

T5S c11d1
! 2d1

! 0! 0 0

0! c21d2
! 2d2

! 0 0

0 0 0 c31d3
‡ 2d3

‡

0 0 c4 0 2d4

0! 0! 1! 0‡ 1‡

D . ~54!

Note that the nine starred elements form an upper triangular matrix; the same applies to th
double-daggered elements. Moreover, the column transformations performed so far onl
cerned either the left or the right subtree, but not both.

Subtracting the fifth column from the third and swapping columns yields an upper trian
matrix, with determinant:

~c11d1!~c21d2!~c31d3!~c41d4!. ~55!

j

We can easily extend the method of this example to prove the following lemma.
Lemma 10: For an arbitrary binary coupling tree on n11 leaves with labels(hi ,ki),

i 51,...,n11, and with transformation matrix T determined by~40!, we have

udetTu5)
i 51

n

~ci1di !5A uhu
2n~h1•h2•••••hn11!

. ~56!

Proof: Once again we letnln ~resp.nrn) denote the number of leaves in the left~resp. right!
subtree ofvn . In general the matrixT has the following structure:

T5S T̃l
O(nln21)3nrn

O(nrn21)3nln T̃r

cn ,...,cn 2dn ,...,2dn

1,...,1 1,...,1

D . ~57!

Herein, T̃l ~resp.T̃r) is a part of the matrix associated with the left~resp. right! subtree ofvn .
More particularly,

S T̃l

1,...,1D ~58!
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is the matrix associated with the left subtree ofvn .
The structure of the matrix suggests to use induction on the order of the matrix. We

assume that we can transform matrices smaller thanT into upper triangular matrices, using colum
transformations only, and that the elements on the diagonal are of the formci1di ~and one
element 1!. Schematically,

S T̃l

1,...,1D ——→
column tf S c11d1

0 c21d2

0 0 �

0 ¯ 0 cnln211dnln21

0 ¯ 0 0 1

D . ~59!

Performing the same column transformations on the extended matrix yields

S T̃l

O(nrn21)3nln

cn ,...,cn

1,...,1

D ——→
column tf S Tl8 *

O(nrn21)3nln

0 ¯ 0 0 cn

0 ¯ 0 0 1

D , ~60!

where T̃l8 is a square upper triangular matrix of the ordernln21 with diagonal elementsci

1di , wherei 51,...,nln21. The* stands for some column vector.
One can apply the same arguments to the matrix corresponding to the right subtreevn ,

finally leading to

T5S T̃l
O(nln21)3nrn

O(nrn21)3nln T̃r

cn ,...,cn 2dn ,...,2dn

1,...,1 1,...,1

D →S T̃l8 * O(nln21)3nrn

O(nrn21)3nln T̃r8 *

0,...,0 cn 0,...,0 2dn

0,...,0 1 0,...,0 1

D . ~61!

Subtracting the last column from thenln-th column and switching columns transformsT into an
upper triangular matrix with diagonal elementsci1di , with i 51,...n and one diagonal elemen
that equals one. The~absolute value of the! determinant ofT is thus

udet~T!u5~c11d1!•~c21d2!¯~cn1dn!.

Rewriting this in terms of parametershi is easy using induction and the simple fact that

cn1dn5A uhu
2~h11¯1hnln

!~hnln111¯1hn11!
.

This completes the proof of~56!, and thus

J5A2n~h1•h2•••••hn11!

uhu
. ~62!

h
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C. The orthogonality explicitly

It is immediately clear that ifx andv are connected through~39!, thatxPRn⇔vPRn.
With this last simple observation we are now in the position to prove the orthogonality o

R-polynomials.
Theorem 11: With the tensor product of n11 b~1! representations labeled(hi ,ki), with

i 51,...,n11, i.e., with every binary coupling tree with n internal nodes, we associate a s
polynomials Rl

(h)(x) in n variables. These polynomials are orthogonal onRn for the weight
function

w(h)~x!5exp~2c~x!!, with c~x!5~x1 ,x2 ,...,xn ,s2s~x!!A~x1 ,x2 ,...,xn ,s2s~x!! t,
~63!

and

Ai j 5
1

2hi
d i j 2

1

2uhu
. ~64!

Explicitly, the orthogonality reads

E
Rn

Rl
(h)~x!Rl 8

(h)
~x!w(h)~x! dx5A~2p!nh1¯hn11

uhu
d l ,l 8 . ~65!

Proof: The proof is easy since we have collected all the ingredients in this section. We

E
Rn

Rl
(h)~x!Rl 8

(h)
~x!w(h)~x! dx5E

Rn
J)

i 51

n Hl i
~v i !

A2l i l i !

Hl
i8
~v i !

A2l i8l i8!
e2v i

2
dv i

5JApnd l ,l 8

5A~2p!nh1•••hn11

uhu
d l ,l 8 . ~66!

h

Remark 12:It is an easy calculation to verify thatc(x), when written explicitly in terms ofxi

(1< i<n), has the following form:

c~x!5(
i 51

n
1

2hi
xi

21
1

2hn11
S (

i 51

n

xi D 2

2
s

hn11
(
i 51

n

xi1s2S 1

2hn11
2

1

2uhu D .

From this it is easily seen that the quadratic part ofc(x) is positive definite, which is neccessa
for the integrability of the left hand side of~65!. Observe that the minimum ofc(x) @i.e., the
maximum ofw(h)(x)] occurs atxi5shi /uhu, 1< i<n.

Theorem 11 is correct for any value ofs. For each value ofs one gets a different weigh
function and different polynomials. Thus, both the weight function and the polynomialsRl

(h)(x)
depend ons; in both cases the reference tos is dropped to make the notation easier. Wh
s50 the weight function simplifies andc becomes a purely quadratic form, which is thus as
Ref. 19. j

V. AN INTEGRAL FORMULA FOR RECOUPLING COEFFICIENTS

In this section we will show that the set of polynomialsRl ,T
(h)(x) associated with a fixed binar

coupling treeT and fixed representation labels (hi ,ki), but varying valuesl i forms a basis forPn.
This means that a polynomialRl ,T1

(h) (x) ( l fixed! associated with a binary coupling treeT1 can be
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written as a linear combination of polynomialsRl 8,T2

(h) (x) ( l 8 variable! associated with anothe

binary coupling treeT2 . The connection coefficients between these two bases are the recou
coefficients ofb~1!. The orthogonality of theR-polynomials, shown in Theorem 11, leads to
integral formula for these recoupling coefficients.

We start with a simple observation: for any binary coupling tree the degree ofRl
(h)(x) equals

u l u. This follows immediately from the fact thatSj (x1 ,x2 ;h1 ,h2) is a polynomial of degreej in x1

andx2 .
Theorem 13: For any binary coupling tree on n11 leaves, with fixed representation labe

(hi ,ki) ( i 51,...,n11), the set of polynomials Rl
(h)(x) associated with it forms a basis forPn.

Proof: The orthogonality of the polynomialsRl
(h)(x) immediately implies their linear inde

pendence. The theorem then follows by the same counting argument as in Ref. 5, Theoremh

Since theS-polynomials satisfy the two basic properties~32! and~34!, which are identical to
the properties of theS-polynomials in thesu~1,1!-case~see Ref. 5, Formulas 2.11 and 2.12!, one
can use exactly the same reasoning as in Ref. 5, Theorem 21, to prove the following theo

Theorem 14:Consider a binary coupling tree T1 , with fixed values(hj ,kj ) and li . Consider
a second binary coupling tree T2 with the same fixed values(hj ,kj ) but varying values li8 , such
that u l u5u l 8u. Then the polynomial Rl ,T1

(h) (x) can be written as a linear combination of polynomia

Rl 8,T2

(h) (x):

Rl ,T1

(h) ~x!5 (
u l 8u5u l u

Cl 8Rl 8,T2

(h)
~x!. ~67!

The connection coefficient Cl 8 is equal to the3n j-coefficient̂ T1( l ),T2( l 8)&.
Corollary 15: For two arbitrary binary coupling trees T1 and T2 with the same representatio

labels (hj ,kj ) the recoupling coefficient̂T1( l ),T2( l 8)& is given by

^T1~ l !,T2~ l 8!&5A uhu
~2p!nh1¯hn11

E
Rn

Rl ,T1

(h) ~x!Rl 8,T2

(h)
~x!w(h)~x! dx, ~68!

with w(h)(x) as in Theorem 11.
Proof: The result follows immediately from combining Theorems 11 and 14. h

Remark 16:In Sec. III we saw that the addition formula~18! is a direct consequence of th
basic relation~16! for S-polynomials. Clearly,~67! is an extension of this relation. If one chang
from variablesx to v on the right side of~67!, the variables on the left side will be an orthogon
transformation of the variablesv. This can be seen be using the ‘‘method of trees’’ and repe
application of~16!. It can also be understood by the fact that exp(2(v1

21¯1vn
2)) is invariant

under orthogonal transformations. j
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Properties of chord length distributions of nonconvex
bodies
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Cauchy’s formula which relates the mean chord length~isotropic uniform random
chords! of a convex body inRn with its volume and surface is extended to the case
of nonconvex bodies in the framework of integral geometry. This allows us to
generalize the extended Cauchy’s formula recently discovered by Blanco and
Fournier @Europhys. Lett.61 ~2!, 168 ~2003!#, in the field of diffusive random
walks, to nonconvex bodies. Monte Carlo simulations illustrate these points inR2

and inR3. © 2003 American Institute of Physics.@DOI: 10.1063/1.1622446#

I. INTRODUCTION

The study of chord length distributions across various kinds of geometrical shapes, inc
stochastic mixtures, is a topic of great interest in many research fields ranging from ecolo
neutronics. These distribution functions are a powerful tool for the description of size and sh
the intercepted object and have applications in various fields such as acoustics,1 ecology,2 image
analysis,3 stereology4 and reactor design.5,6 Besides, chord length distributions are fundamen
functions for the characterization of random media.7–9 One of the fundamental results is th
Cauchy formula. It states that for a convex body~here inR3) the mean chord lengthE@s# is
related to the volumeV and the surface areaS of the body

E@s#54
V

S
. ~1!

As noted by Gille,10 for nonconvex objects an isotropic uniform random~IUR! line may cross the
body K more than one time. Consequently, there are several definitions for the chord l
distribution~CLD!. The first distribution type in use operates with the sum of all chord segm
on one straight line as the random variable. Introduced as the OCD case, meaning one
distribution in Ref. 10, this type of distribution satisfies a modified Cauchy formula,

E@sOCD#54
V

S*
. ~2!

HereS* is the surface area of the convex hull ofK. A derivation of Eq.~2! is given in Ref. 11.
The second distribution function of importance consists of considering each chord l

segment insideK for itself as shown in Fig. 1. This distribution named the MCD case~multiple
chord distribution! in Ref. 10 corresponds to the natural case of small angle scattering,12 where the
concept of chord length distribution is used with success. A certain CLD is, in a mathem
sense, equivalent to the diffraction pattern of a microparticle system. There are serious diffic

a!Electronic mail: alain.mazzolo@cea.fr
b!Electronic mail: benoit.roesslinger@cea.fr
c!Electronic mail: gille@physik.uni-halle.de
61950022-2488/2003/44(12)/6195/14/$20.00 © 2003 American Institute of Physics
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however, in treating more complicated cases, such as hollow or composite particles, or d
packed microparticle systems. The purpose to develop this concept further cannot be ac
with physical experiments or based on Monte Carlo simulation techniques, whatever their
sion or strategy. Only mathematical deviations will lead to a final proof about an experim
supposition. This situation is also of interest in reactor physics, when considering a nonc
body ~or an assembly of nonconvex bodies! surrounded by an isotropic flux distribution o
neutrons.13 Other applications concern random packing of hard spheres where Cauchy formu
the nonconvex phase is needed in order to link the packing fraction of the system to the a
coordination number.14 However, for the latter, results are rare in the literature.10,15 In the present
article after first reviewing briefly the Cauchy formula for a convex body inRn, we will derive a
Cauchy formula for nonconvex bodies. Connection with diffusive random walks is prese
Finally, these points are illustrated by Monte Carlo simulations followed by a conclusion.

II. BRIEF REVIEW OF THE CAUCHY FORMULA FOR CONVEX BODIES IN Rn

One way to derive Cauchy’s formula inRn consists of using results of integral geometry
the chord power integrals. LetK be a convex body inRn and letM be a random line that intersec
K measured with the uniform densitydM which satisfies~Ref. 16, p. 237!

E
BnùMÞB

dM5
vn21

2
an . ~3!

Here,vn is the volume of the unit ballBn in Rn, andan is the surface area of the unit sphereSn.
We denote bys the chord length of the intersectionKùM . Then, the chord power integrals ofK
are defined by

I m~K !5E
MùKÞB

smdM, 0<m,`. ~4!

For the chord power integrals, several interesting formulas have been derived,16 namely,

I 0~K !5
vn21

2
S~K !,

~5!

I 1~K !5
an21

2
V~K !,

whereV(K) is the volume ofK andS(K) is its surface area. From Eq.~5! it is straightforward to
obtain the mean chord length,

E@s#5

E
MùKÞB

sdM

E
MùKÞB

dM

. ~6!

FIG. 1. Chord length distribution across the considered nonconvex bodyK: each chords0 ,s18 ,s19 contributes to the chord
length distribution.~a! the whole body,K5K0\K1 . ~b! the outer ‘‘part,’’K0 . ~c! the inner ‘‘part,’’ K1 .
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The denominator in Eq.~6! is needed in order to get a measure for all the chords acrossK possible
~normalized to unity, i.e., as a density probability measure!. Equation~6! is directly related to the
chord power integralsI m defined in Eq.~4!. Combined with Eq.~5! we get

E@s#5
I 1~K !

I 0~K !
5

an21

vn21

V~K !

S~K !
. ~7!

Since the coefficientsan21 andvn21 are given by

an215
2pn/2

G@n/2#
,

~8!

vn215
2p (n21)/2

~n21!G@~n21!/2#
,

where the symbolG denotes the EulerG function, we finally obtain the mean chord length

E@s#5~n21!Ap
G@~n21!/2#

G@n/2#

V~K !

S~K !
. ~9!

In R2 ~here, the denominator equals the perimeter L of K! and in R3 we recover the standar
results,

E@s#5H p
S

L
~ two-dimensional case!

4
V

S
~ three-dimensional case!.

~10!

III. CAUCHY FORMULA FOR A NONCONVEX BODY

Before giving a general, formal proof concerning the validity of Cauchy’s formula for n
convex bodies, some simple specific cases are first analyzed. These cases only require ele
results from integral geometry permitting an intuitive understanding of our general result.
A. Cauchy formula for a convex body with one convex hole

For a nonconvex bodyK in Rn involving a hollow part and therefore possessing outer a
inner surfaces, both enclosing convex shapes, and if each chord length segment insideK is taken
for itself, Cauchy’s theorem remains valid,

E@s#5~n21!Ap
G@~n21!/2#

G@n/2#

V~K !

S~K !
. ~11!

HereV(K) is the volume of the body andS(K) is the whole surface~inner plus outer surface!.
Proof: As a first step letK be a nonconvex figure consisting of a convex holeK1 of surface

S1 lying wholly inside a convex bodyK0 of surfaceS0 as shown in Fig. 1. The mean chord leng
is given by

E@s#5

E
MùKÞB

s dM

E
MùKÞB

ndM

. ~12!

Here dM is the isotropic uniform density of random lines andn is the number of segment
generated byM @n51 for the special case of a convex body, see Eq.~6!#. Note that for the
numerator what matters is to record all chords: hence considering the sum of the chords ge
by one random line or taking each chord independently amounts to the same. The only diff
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is that in the first case we are actually dealing with one random variable. Consequently, we
have written*MùKÞBsOCDdM for the numerator of Eq.~12!. Now, to account for the fact tha
each chord length is taken for itself and contributes independently tos, the denominator of Eq
~12! must be analyzed in greater detail, see Fig. 1. The denominator must reflect the mea
the segments acrossK, that is,

E
MùKÞB

ndM5EMùK0ÞB

MùK15B

1 dM1EMùK0ÞB

MùK1ÞB

2 dM. ~13!

In Eq. ~13! the integration has been performed over domains of constantn. Next, we will derive
some useful relations between the measures of segments across different regions ofK. Let p be
the probability that an IUR chord simultaneously cutsK0 andK1 . The density of having chords
*MùK0ÞB,MùK1ÞBdM is just the density of having chords acrossK0 times the probability of
hitting K1 ,

EMùK0ÞB

MùK1ÞB

dM5pE
MùK0ÞB

dM. ~14!

Moreover, since $MùK0ÞB%5$(MùK0ÞB)ù(MùK1ÞB)%ø$(MùK0ÞB)ù(MùK1

5B)% and$(MùK0ÞB)ù(MùK1ÞB)%ù$(MùK0ÞB)ù(MùK15B)%5B, we have

E
MùK0ÞB

dM5EMùK0ÞB

MùK1ÞB

dM1EMùK0ÞB

MùK15B

dM. ~15!

Combining Eqs.~13!–~15! leads to

E
MùKÞB

ndM5~11p!E
MùK0ÞB

dM, ~16!

and

E
MùKÞB

ndM5
11p

p EMùK0ÞB

MùK1ÞB

dM. ~17!

This relates the measure of chords acrossK to the measure of lines acrossK0 , Eq.~16!, and to the
measure of lines acrossK1 , Eq. ~17!.

Using Eq.~16!, we can rewrite Eq.~12!,

E@s#5F*MùKÞBsOCDdM

*MùKÞBdM GF *MùKÞBdM

*MùKÞBndMG ~18!

5E@sOCD#
1

11p
, ~19!

whereE@sOCD# is given by Eq.~2! with S* 5S(K0) in this case.
It remains to determine the probabilityp defined previously. Matai17 gives a derivation of this

geometric problem for convex bodies in the plane. Independently of this, Santalo16 gives the
following general result in terms of the Minkowski functionalsW1 ,

p5
W1~K1!

W1~K0!
. ~20!
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Moreover, the functionalsW1(K) of a convex bodyK are connected to the (n21)-dimensional
surfaceS(K) of K by W1(K)5S(K)/n. Thus we get

p5
S~K1!

S~K0!
. ~21!

Finally from Eqs.~19! and ~21! we obtain

E@s#5~n21!Ap
G@~n21!/2#

G@n/2# FV~K0!2V~K1!

S~K0!1S~K1! G5~n21!Ap
G@~n21!/2#

G@n/2#

V~K !

S~K !
. ~22!

HereV(K)5V(K0)2V(K1) is the volume ofK andS(K)5S(K0)1S(K1) is its whole surface
area. In particular inR2 and inR3

E@s#5H p
S

L
~ two-dimensional case!

4
V

S
~ three-dimensional case!.

~23!

Here, L is the whole perimeter. In other words, Eq.~22! expresses that the mean chord leng
across a convex object involving a convex hollow part does not depend on the position of the
This is a generalization of earlier works regarding the hollow sphere with central hole10 and the
infinitely long circular hollow cylinder.15

B. Cauchy formula for a convex body with two convex holes

The case of a convex bodyK0 @perimeter :L(K0)] ~in R2 for simplification purposes! perfo-
rated by two disjoint convex holesK1 @perimeter :L(K1)] and K2 @perimeter :L(K2)] is worth
spending some time on, since it will give us a broad idea of what makes our further generali
natural. Indeed in the following calculations, special terms related to the measure of random
crossing both holes actually vanish. In the following, we will denote the defined above meas
m12. It is possible to expressm12 ~see Ref. 17, p. 79! in terms of perimeters of convex shap
constructed fromK1 and K2 ~see Fig. 2!: keeping Mathai’s notation,g1 is the perimeter of the
convex bodyD15APWOTSA, g2 is the perimeter of the convex bodyD25OUQBRVO, and
g12 is the perimeter ofD125APQBRSAthe outer cover ofK1 andK2 . In the plane, since the
measure of random lines that intersect a convex body is just the perimeter of the body~Ref. 16, p.
237!, we have

m125g11g22g12. ~24!

Next we can write

E
MùKÞB

ndM513~L~K0!2@L~K1!2m12#2@L~K2!2m12#2m12!1 23~L~K1!2m121L~K2!

2m12!133~m12!5L~K0!1L~K1!1L~K2!. ~25!

Combining this result with Eq.~18! yields

E@s#5p
S~K0!2S~K1!2S~K2!

L~K0!1L~K1!1L~K2!
. ~26!

This is the two-dimensional Cauchy’s formula for our perforated body. Generalization toN con-
vex particles as well as connection to scattering experiments is made in the Appendix.
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C. Cauchy formula for an assembly of convex bodies

We begin with the special case of two convex bodies. Let us consider a nonconvex bodK as
the union of two convex bodiesK1 and K2 that do not overlap, i.e.,K5K1øK2 and K1ùK2

5$B or 1 point%. The mean chord length is again given by Eq.~12!. SinceK1 and K2 do not
overlap,

E
MùKÞB

ndM5EMùK1ÞB

MùK25B

1 dM1EMùK15B

MùK2ÞB

1 dM1EMùK1ÞB

MùK2ÞB

2 dM. ~27!

Hence, combining the last integral with the first two integrals on the rhs,

E
MùKÞB

ndM5E
MùK1ÞB

dM1E
MùK2ÞB

dM ~28!

and

E
MùKÞB

s dM5E
MùK1ÞB

s1 dM1E
MùK2ÞB

s2 dM. ~29!

Recalling that with the normalization chosen previously, Eq.~3!, the measure of lines that interse
a convex body isvn21S/2, we get

E
MùKÞB

ndM5
vn21

2
~S~K1!1S~K2!!. ~30!

Using Eq.~12! and Eqs.~29! and ~30! leads to

E@s#5F E
MùK1ÞB

s dM

E
MùK1ÞB

dM
GF E

MùK1ÞB
dM

E
MùKÞB

ndM
G1F E

MùK2ÞB
s dM

E
MùK2ÞB

dM
GF E

MùK2ÞB
dM

E
MùKÞB

ndM
G ,

5E@s1#
S~K1!

S~K1!1S~K2!
1E@s2#

S~K2!

S~K1!1S~K2!
. ~31!

FIG. 2. Nonconvex body with two holes,K5K0\(K1øK2). UT, VW, PQ andSRare the four common tangents ofK1

andK2 . O is the intersection ofUT andVW.
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Again, sinceK1 andK2 are convex bodies,E@s1# andE@s2# are given by the two special Cauch
formulas, Eq.~11!, thus

E@s#5~n21!Ap
G@~n21!/2#

G@n/2# FV~K1!1V~K2!

S~K1!1S~K2! G5~n21!Ap
G@~n21!/2#

G@n/2#

V~K !

S~K !
. ~32!

HereV(K)5V(K1)1V(K2) is the volume ofK andS(K)5S(K1)1S(K2) is its whole surface
area. However, for systems of nonoverlapping convex bodies, Eq.~31! allows us to derive the
CLD of K in terms of the CLD ofK1 andK2 . More precisely, Eq.~31! can be rewritten as

E@s#5
S~K1!

S~K1!1S~K2!
E

0

s1
s f 1~s! ds1

S~K2!

S~K1!1S~K2!
E

0

s2
s f 2~s! ds, ~33!

where f i(s) is the CLD ofKi ands i is the longest chord ofKi . Thus, we have

E@s#5E
0

max$s1 ,s2%
sF u f 1~s!u0

s1
S~K1!

S~K1!1S~K2!
1u f 2~s!u0

s2
S~K2!

S~K1!1S~K2!Gds ~34!

with the notation

u f ~x!ux1

x25H f ~x! if x1<x<x2

0 elsewhere.
~35!

Consequently,

f ~s!5u f 1~s!u0
s1

S~K1!

S~K1!1S~K2!
1u f 2~s!u0

s2
S~K2!

S~K1!1S~K2!
. ~36!

The generalization ton convex bodies that do not overlap is straightforward.

D. Cauchy formula for two overlapping convex bodies

In this section we consider a nonconvex bodyK made as the union of two overlapping conv
bodiesK1 andK2 in R2 ~again for simplification purposes!. We use the notations~see Fig. 3!

L15L~K !ùL~K1!,
~37!

L25L~K !ùL~K2!,

and

L185L~K1!\L1 ,
~38!

L285L~K2!\L2 .

We start from Eq.~19!,

E@s#5E@sOCD#F E
MùKÞB

dM

E
MùKÞB

ndM
G , ~39!

whereE@sOCD# is given by Eq.~2!, taking into account Ref. 16,

E
MùKÞB

dM5S* ~K !. ~40!
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For calculating the last integral in Eq.~39!, we use the same technique as before, i.e., decompo
over the respective domains of constantn,

E
MùKÞB

ndM5EMùK1ÞB

MùK25B

1 dM1EMùK15B

MùK2ÞB

1 dM1EMùK1ÞB,MùK2ÞB

Mù(K1ùK2)ÞB

1 dM

1EMùK1ÞB,MùK2ÞB

Mù(K1ùK2)5B

2 dM. ~41!

The first integral on the rhs of Eq.~41! is

EMùK1ÞB

MùK25B

dM5E
MùK1ÞB

dM2EMùK1ÞB

MùK2ÞB

dM5~12p!E
MùK1ÞB

dM5~12p! L~K1!.

~42!

Here,p5(L(K1)1L(K2)2L12)/L(K1) is the probability that a random IUR line which cutsK1 ,
also cutsK2 ~see Ref. 17, p. 78!. The lengthL12 is the perimeter of the outer cover ofK1 andK2

~see Fig. 3!. Consequently,

EMùK1ÞB

MùK25B

dM5L122L~K2!. ~43!

Similarly,

EMùK15B

MùK2ÞB

dM5L122L~K1!. ~44!

Since the intersection of two convex bodies is also convex, we have

EMùK1ÞB,MùK2ÞB

Mù(K1ùK2)ÞB

dM5L181L28 , ~45!

FIG. 3. Nonconvex bodyK made as the union of two overlapping convex bodiesK1 andK2 . L1 andL2 are the perimeters
of K1 andK2 , respectively.L18 is the part ofL1 included inK2 andL28 is the part ofL2 included inK1 .
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whereL181L28 is the perimeter of the hatched area in Fig. 3. The last integral on the rhs of Eq~41!
is

EMùK1ÞB,MùK2ÞB

Mù(K1ùK2)5B

dM5L~K1!1L~K2!2L122~L181L28!. ~46!

Using Eqs.~43!–~46! in the rhs of Eq.~41! leads to

E
MùKÞB

ndM5L~K1!1L~K2!2~L181L28!5L~K !. ~47!

Finally, using Eqs.~47! and~40! and insertingE@sOCD#5pS(K)/L(K)* into Eq.~39!, we obtain
the desired result,

E@s#5p
S~K !

L~K !
. ~48!

E. Cauchy formula for a compact differentiable manifold

In this section we derive the Cauchy formula for an arbitrary compact differentiable man
using more advanced results of integral geometry. So, letX be a compact differentiable manifol
of dimensionq embedded inEn , assumed piecewise smooth. Santalo16 ~p. 245! derives the
following result concerning the intersection ofX with randomr -planesMr having an isotropic
uniform measuredMr ,

E
XùMrÞB

s r 1q2n~XùMr !dMr5
an¯an2r a r 1q2n

a r¯a0 aq
sq~X!. ~49!

Heresq(X) indicates theq-dimensional volume ofX. For intersection with random linesr 51,
Eq. ~49! reduces to

E
XùMÞB

sq2n11~XùM !dM5
an an21 aq2n11

a1 a0 aq
sq~X!. ~50!

Here dM is the usual isotropic uniform density of random lines. Applying Eq.~50! with q5n
21 gives information regarding the measure of random lines throughtX, more precisely,

E
XùMÞB

NdM5
an

a1
S~X!. ~51!

whereS(X) is the surface of the manifold andN is the number of intersection ofM andX. Since
the number of intersectionsN is twice the number of chordsn, we have immediately

E
XùMÞB

ndM5
an

2a1
S~X!. ~52!

Likewise, applying Eq.~49! with q5n gives information regarding the measure of random s
ment throughX,

E
XùMÞB

sdM5
an21

a0
V~X!, ~53!

whereV(X) is the volume ofX. Thus, using both Eqs.~52! and~53! and the definition of the mean
chord length Eq.~12! leads to Eq.~54!, which agrees with Eq.~11!,
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E@s#52
an21 a1

an a0

V~X!

S~X!
5~n21!Ap

G@~n21!/2#

G@n/2#

V~X!

S~X!
. ~54!

IV. DIFFUSIVE RANDOM WALKS AND EXTENDED CAUCHY’S FORMULA

This section is a first stage for a mathematical demonstration of the ‘‘extended Cau
formula,’’ a result recently due to Blanco and Fournier.18 Indeed, these two authors discovered
invariance property of purely diffusive random walks which is linked to Cauchy’s formula. M
precisely, these authors consider a volumeV of envelopeS submitted to a uniform isotropic
particles incidence. This hypothesis is formally equivalent to a uniform isotropic measu
random lines.13 Next, they consider the following statistical event in which a particle enterV
throughS: The total trajectory lengthL is defined as the length of the multiple scattering traject
from an entry point to the first exit throughS. Then, they found, using physical principles such
statistical equilibrium, that the average lengthE@L# is independent of both the mean free path a
the single-scattering phase function fields,

E@L#54
V

S
. ~55!

Equation~55! is, as Blanco and Fournier quoted, a generalization of Cauchy’s formula~extended
Cauchy’s formula! since Cauchy’s formula corresponds to infinite mean free path. Moreove
the one hand, since the argument of Blanco and Fournier does not involve any hypothesis
body at all,18 it implicitly includes the nonconvex body case. On the other hand, the result o
present article is that Cauchy’s formula remains valid for nonconvex bodies~assuming that each
chord is taken for itself!. Consequently, Eq.~55! is also an extension of Cauchy’s formula for th
case of nonconvex bodies. Of course we do not offer a rigorous mathematical demonstration
extended Cauchy’s formula since part of our reasoning is based on Blanco and Fournier p
argument. However, the validity of Cauchy’s formula for nonconvex bodies, which is the
result of Sec. III, is a first step in building a rigorous proof of the extended Cauchy’s formul
open problem in the field of diffusive random walks in bounded spaces.

V. MONTE CARLO SIMULATIONS

In this section, Monte Carlo simulations are performed for various nonconvex geom
shapes in two and three dimensions. The Monte Carlo program that generates random line
plane or in space and then collects chords across the body has been described in Ref. 1
been tested for various convex geometrical objects as well as for the special cases of con
hollow disks and concentric hollow spheres, where the CLD for such nonconvex bodies is k
analytically. The CLD and its properties are obtained for two convex bodies with convex h
The first object is a rectangle within a disk, and the second is a disk within a rectangle as

FIG. 4. Examples of two-dimensional nonconvex bodies:~a! rectangle inside a disk,~b! disk inside a rectangle. For both
cases,d is the distance between the disk’s center and the rectangle’s center.
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on Fig. 4. The mean chord length for the first case isE@s#5pS/L5p(pR22ab)/(2pR12(a
1b)) ~with R52, a5 3

2, b51) while, for the second case, it isE@s#5pS/L5p(ab
2pR2)/(2pR12(a1b)) ~with R51, a54, b53). For both bodies, disk and rectangle are n
necessarily centered, and the parameterd describes the distance between the disk’s center and
rectangle’s center. Simulations were performed for three values ofd50.0, 0.5, 1.0. For each case
10 million straight lines were generated, and more than 6.4 million chords were collected
simulation takes less than 90 s on a pentium IV at 2.4 GHz. With such a number of chord
mean chord length has already very well converged to the theoretical value given by Ca
theorem. A summary of these results is presented in Table I. It shows that the mean chord
is, as expected, independent ofd. Table I also presents results for the case of a nonconvex b
made as the union of two overlapping disks whose centers are separated by a distance 2d ~see Fig.
5!. For such a body, the mean chord length isE@s#5p(pR22R2(a2sina)/2)/(2pR2aR).
Again, the Monte Carlo simulations fit very well theoretical predictions. Figure 6 shows the c
length distribution densities for two values ofd. In three dimensions, the CLD is obtained for
system of two touching, but not overlapping spheres of radiusr 51 andR54. For such a non-
convex shape, the CLD is known analytically~Sec. III!. Since the CLD for a sphere of radiusr is
us/(2r 2)u0

2r from Eq. ~36!, we get

f ~s!5
1

2~r 21R2!
@ usu0

2r1usu0
2R#. ~56!

FIG. 5. Nonconvex body made as the union of two overlapping disks whose centers are separated by a distanced.

TABLE I. Two-dimensional simulation results.

d No. of chordsa E@s# th
b E@s# Variance

rectangle in disk 0.000 9.323106 1.979 12 1.979 02 2.6931024

rectangle in disk 0.500 9.323106 1.979 12 1.979 06 3.0031024

rectangle in disk 1.000 9.323106 1.979 12 1.978 71 3.7731024

disk in rectangle 0.000 6.453106 1.372 05 1.372 43 3.2331024

disk in rectangle 0.500 6.453106 1.372 05 1.372 36 3.5331024

disk in rectangle 1.000 6.453106 1.372 05 1.372 76 4.3831024

two overlapping disks 0.200 9.673106 3.328 66 3.328 78 3.0731024

two overlapping disks 0.500 9.283106 3.558 63 3.558 48 3.5131024

two overlapping disks 1.000 8.893106 3.791 11 3.791 01 4.3831024

two overlapping disks 1.500 8.803106 3.785 89 3.787 21 5.0631024

two overlapping disks 1.800 9.013106 3.599 65 3.599 92 4.9131024

a103106 random lines were used for each simulation.
bE@s# th5pS/L.
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For this system, Monte Carlo simulations were performed with 1003106 random lines (31.6
3106 chords were collected!, and fit perfectly the theoretical predictions of Eq.~56! as shown in
Fig. 7.

Monte Carlo simulations, regarding the random walks purely diffusive process, were
formed across a nonconvex two-dimensional nonconcentric hollow disk. The external radius
to R51, the small radius is set tor 5 1

2, and the small disk’s center is at a distanced50.4 from the
big disk’s center as shown in Fig. 8. Simulations were performed for various values of the
free pathl, and 10 million random walks were generated for each simulation. Random w
starting points were chosen with a uniform distribution on either circles and the incidence a
sinus with a uniform distribution on@21,1#. This corresponds in the limit of infinite mean fre
paths to the isotropic uniform measure of random lines. In all simulations the single-scat

FIG. 6. Chord length distribution density for two overlapping disks whose centers are separated by a distance 2d: ~a! d
50.2 and~b! d51.8.

FIG. 7. Chord length distribution density across two nonoverlapping touching spheres of radiusr 51 andR54.
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phase function is isotrope. Simulated average trajectory lengthE@L# inside our nonconvex shap
is in very good agreement with the theoretical predictions as shown in Table II.

VI. CONCLUSION

Most authors, when faced with a problem requiring the use of Cauchy’s formula, re
themselves to convex bodies. Doing so, they actually follow the hypotheses that lead to a
derivation of this well-known formula. However, for many physical cases, such as random m
the analysis of nonconvex shapes is needed. In this article it is shown that if each chord is
for itself, the convex shape hypothesis can be omitted. Cauchy’s formula remains valid for b
enclosed by general smooth differentiable manifolds which correspond to most physical obje
is further remarkable, as was pointed out, that the result also applies to the case of purely d
random walks across nonconvex objects.

APPENDIX: ARRANGEMENT OF HARD PARTICLES IN SPACE, CONNECTION TO
SCATTERING EXPERIMENTS

Let us extend Fig. 2 toN, N→`, hard convex particles, randomly arranged in space.
simplification we assume that each single particle possesses a fixed volumeV1 and a fixed surface
areaS1 . Let Vt be the total volume of the particle system. Then, the volume fractionc of the
particles isc5N V1 /Vt . The volume of the connected region is (12c)Vt . There is a basic
connection betweenc, the mean chord length of the single particlem154 V1 /S1 and the mean
chord length of the nonconvex connected region between the particles,m2 ,

1

l p
5

1

m2 c
5

1

m1~12c!
5

1

m1
1

1

m2
. ~A1!

FIG. 8. Random walks generated with a mean free pathl50.05; the big circle’s radius is 1.0 and the small circle’s radi
is 0.5.

TABLE II. Random walks’ simulation results.

l E@L# th
a E@L# Variance Time~mns!

0.050 0.785398 0.786201 0.00052 ;2
0.010 0.785398 0.784719 0.00111 ;9
0.005 0.785398 0.783887 0.00157 ;14
0.001 0.785398 0.778345 0.00346 ;70

aE@L# th5pS/L5p(R2r )/2.
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Here, l p is Porod’s length parameter. This equation has been carefully studied in the fie
small-angle scattering. Equation~A1! has been ascertained in practice~materials research!. Elimi-
natingm2 yields

m25
12c

c
m15

12c

c

4 V1

S1
, ~A2!

which is a special form of the so-called Rosiwal theorem20 and agrees with the extension of th
Cauchy theorem discussed~see Fig. 2 and Secs. III A and III B!. The mean chord lengthm2 is
connected with the ratio whole system volume over whole inner surface area:

m25
4 ~Vt2N V1!

N S1
5

4 Vt~12c!

N S1
. ~A3!

The outer surface area is not important. It can be neglected for a large particle number. Taki
accountVt /N5V1 /c, we recognize the following: The contents of Eq.~A3! and Eqs.~A1! and
~A2! agree. The application of the Cauchy theorem for the nonconvex ‘‘matrix region’’ i
agreement with the fundamentals of small-angle scattering experiments.
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Deficiency indices of operator polynomials in creation
and annihilation operators

Peter Ottea)

Ruhr-Universita¨t Bochum, Falkuta¨t für Mathematik, Universita¨tstrasse 150, D-44780
Bochum, Germany

~Received 17 November 2002; accepted 26 August 2003!

We present a new method to compute deficiency indices of operators that are
homogeneous polynomials in one pair of creation and annihilation operators. To
this end we prove a classification theorem for special cubic forms by means of
SU~1,1! transformations and derive new non-self-adjointness criteria for Jacobi-like
matrices. The method presented illuminates and systemizes former results of
Rabsztyn. ©2003 American Institute of Physics.@DOI: 10.1063/1.1621060#

I. INTRODUCTION

Creation and annihilation operators were originally introduced in quantum mechanics
agonalize the harmonic oscillator and are now an indispensable tool in quantum theory be
building blocks for more complicated operators. Here we present a new method for computi
deficiency indices of symmetric operators that are homogeneous polynomials of degree t
one pair of those operators. Deficiency indices measure how far a symmetric operator~sometimes
especially in physics literature also called Hermitian or Hermitian symmetric operator! is from
being self-adjoint. To know them and, hence, to be able to decide whether or not a sym
operator is self-adjoint is important in physical applications because different self-adjoint e
sions of the same operator yield different descriptions of the system under consideration~see Ref.
10, X.1, for examples!. The opposition of self-adjointness and non-self-adjointness, whic
important in quantum mechanics, is reflected in classical mechanics where the latter corre
to a particle that will escape to infinity within a finite time whereas in the first case it will not~see
Ref. 10, App. X.1, for a detailed discussion of this analogy and its validity!.

Assume we are given a Fock representation of the canonical commutation relations~CCR!,
i.e., a linear operatora:D→H acting along with its adjointa* :D→H on some dense subspac
D,H of a Hilbert spaceH and satisfying onD

aa* 2a* a51.

Accessorily, there is a so-called vacuum vectorVPD, VÞ0, such thataV50 and D0

ªspan$(a* )nVunPN0% is dense inH. From a anda* one can build polynomials of which th
harmonic oscillatora* a11 is the most prominent example. It is essentially self-adjoint onD0 as
are all operators being symmetric polynomials of degree one and two. This result can be
via the ~sufficient! Carleman criterion for Jacobi matrices~see, e.g., Ref. 1, p. 24!, which unfor-
tunately fails to prove self-adjointness for degrees greater than two. Berezanski’s criterio~see
Theorem 3.1 below! suggests that from degree three onward self-adjointness will not be the
Some special cases of higher degrees have been considered thus far. The anharmonic o
being of degree four and serving as toy model for interacting quantum fields is proven
self-adjoint. Various methods of proof are presented in Ref. 10, Chap. X. For general polyno
up to degree four self-adjointness was established in the special case of semi-bounded oper
Jørgensen,5 who generalized Wouk’s theorem on semi-bounded Jacobi matrices~see Ref. 13 or
Ref. 1, p. 26! to arbitrary semi-bounded operators. His result is representative in that it is b

a!Electronic mail: peter.otte@rub.de
62090022-2488/2003/44(12)/6209/14/$20.00 © 2003 American Institute of Physics
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upon some positivity or semi-boundedness property. Since for degree three the operators ca
semi-bounded at all, Jørgensen’s as all the other former results leaves a gap which we shal
by exhaustively computing the deficiency indices of the operator

A~a3 ,a1!ªa3a313a1a* a213ā1~a* !2a1ā3~a* !3, a1 ,a3PC, ~1!

on a slightly larger domainD.D0 to be specified later. At this point we may assume without l
of generalitya151. Our main result~see Theorem 2.3! is that each operatorA(a,1) can be linked
to exactly one out of four normal forms

A~1,0!, A~0,1!, A~23,1!, A~1,1! ~2!

having deficiency indices 3,1,1,0, respectively. To which normal form an operator belong
pends, basically, on the sign of the discriminant of a cubic form. Amazingly, we shall see b
that the last case of a self-adjoint operator, which is the most eligible one for physicists, o
very rarely.

To have our operator cast into its normal form we employ a special kind of unitary tran
mations, the so-called Bogolyubov or canonical transformations, which formally replacea anda*
according to

a°sa1ta* , a* ° t̄ a1 s̄a* , s,tPC with usu22utu251,

and thus transforming the entire operator like

A~a,1!°A~ ã3 ,ã1!1ra1 r̄ a* , r PC, ~3!

wherein the linear terms are due to the CCR. The main part behaves like an~ordinary! cubic form

ax313x2y13xy21āy3, x,yPC,

under an SU~1,1! transformation. The normal forms of this cubic form can be classified by m
of the discriminantD(a) and are labeled byD(a).0 andD(a),0, which we call main cases
and by D(a)50, the exceptional cases, which require additionally the quadratic discrim
Q(a).

In the second step we compute the deficiency indices of the normal forms. We tre
exceptional cases in theL2(R) representation via solving ordinary differential equations. The m
cases are best understood in thel 2(N0) representation whereA(a3 ,a1) becomes a band matri
and the deficiency equation is a difference equation. ForD(a).0 we are faced even only with
Jacobi, i.e., tridiagonal matrix, wherefore we can refer to a classical result due to Berezans
caseD(a),0 requires a new criterion. Because of the linear terms in~3! we have a tridiagona
matrix added to a larger band matrix which makes Berezanski’s theorem inapplicable. We
like to remark that possibly contrary to one’s intuition these linear terms cannot be conside
small perturbation toA(ã3 ,ã1) whence we cannot use the Kato–Rellich theorem~see Ref. 10, Th.
X.12, and Ref. 12, Th. 6.1!. For even though the inequality

i~ra1 r̄ a* !wi2<gi~a31~a* !3!wi21diwi2

can be proved, the necessary conditiong,1 can be ensured if and only ifr is small.6

The deficiency indices ofA(a3 ,a1) were formerly computed by Rabsztyn,8 who worked in
the L2(R) realization by which means the deficiency equation becomes an ordinary differ
equation. To examine this equation he consults the theory of asymptotic solutions inste
deriving exact solutions. However, though this reduces heavily the number of calculations
carried out, there are a lot of cases to be distinguished, cases that have nothing to do w
normal forms above. Therefore, the actual origin of the deficiency indices is obscured and it
to be difficult to generalize the method to higher powers in a systematic way. Contrary to th
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method presented here explains the distribution of the deficiency indices in a more natural w
an algebraic criterion which can be generalized to forms of higher degree even though the
putational difficulties will increase.

II. SETTING AND RESULTS

Let H be a separable complex Hilbert space. For a symmetric operatorA:D(A)→H,
D(A),H a dense subspace, the deficiency indices~see, e.g., Ref. 10, Ch. X! are the numbers
n6(z)ªdim ker(A* 7z1), Im z.0, with A* being the adjoint operator and1 the identity. Since
n6(z) is constant in the upper and lower half-plane, respectively, we may simply writen6 . A
symmetric operator is essentially self-adjoint if and only ifn650.

A Fock representation with one degree of freedom of the CCR inH is given by two operators
a anda* satisfying the following conditions:

~1! a,a* :D→H with D,H being a dense subspace andaD,D anda* D,D.
~2! a* is the adjoint operator toa.
~3! aa* w2a* aw5w for all wPD.
~4! There is anVPD, VÞ0, such thataV50 andD0ªspan$(a* )nVunPN0% is dense inH.

For details and generalizations, see Ref. 3. In the sequel we shall work with the Fock repre
tion in l 2(N0) andL2(R).

Let H5 l 2(N0), i.e., the Hilbert space of sequences

c5~c0 ,c1 ,c2 ,...!, cnPC, (
n50

`

ucnu2,`.

Then, the operators

~ac!k5Ak11ck11 , ~a* c!k5Akck21 , kPN0 , ~4!

provide a Fock representation with vacuum vectorV5(1,0,...). Here and henceforth a negativ
index as inc21 always requiresc21ª0. We choose as domain of definition

Dª$c5~c0 ,c1 ,...!P l 2u;kPN: sup
nPN0

nkucnu,`%. ~5!

Lemma 2.1: Let the symmetric kth order difference operator A:D→ l 2(N0) be given by

~Ac!nªan
(0)cn1(

j 51

k

~an
( j )cn1 j1ān2 j

( j ) cn2 j !, ~6!

the coefficients obeying an
( j )5O(ng) with someg>0. Then D(A* )5D* where

D*ªH cP l 2~N0!U(
n50

` Uan
(0)cn1(

j 51

k

~an
( j )cn1 j1ān2 j

( j ) cn2 j !U2

,`J . ~7!

The deficiency indices of A are given by the number of linearly independent solutions
difference equation

an
(0)cn1(

j 51

k

~an
( j )cn1 j1ān2 j

( j ) cn2 j !5lcn, ImlÞ0, ~8!

that lie in l2(N0). In particular this is the number of linearly independent initial conditio
(c0 ,...,ck21) that yield l2(N0) solutions to (8).

Proof: Write down the quadratic form
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~Ac,d!5 (
n50

` S an
(0)cn1(

j 51

k

~an
( j )cn1 j1ān2 j

( j ) cn2 j !D d̄n

and note that because of the growth condition the order of summation may be interchanged
dPD* is only subject to the condition in~7!.

The first statement concerning the deficiency indices follows immediately from the first
of the lemma. The second statement is a consequence of the fact that we can choose
c0 ,...,ck21 as initial values in~8! ~notecj50 for j ,0). h

Under certain conditions the Fock representation of the CCR is unique up to unitary tra
mations~Ref. 7, § 4.14; Ref. 3, Th. 1.4!. We can conversely exploit this fact to construct a unita
transform by putting

bªsa1ta* , b*ª t̄ a1 s̄a*

with s,tPC, usu22utu251. Note thats and t are chosen in such a way thatb andb* satisfy the

CCR. Now it is crucial that there isṼPD, ṼÞ0, obeyingbṼ50. This was one of the reason
why we wanteda anda* to act onD in ~5! instead of justD0 . We thus have the following.

Theorem 2.2: The Bogolyubov or canonical transform U(s,t):H→H depending on two
parameters s,tPC with usu22utu251 is a unitary operator, which maps D into itself and tran
forms a and a* according to

U~s,t !aU~s,t !* 5sa1ta* , U~s,t !a* U~s,t !* 5 t̄ a1 s̄a* .

Finally, we describe the Fock representation inL2(R) with underlying Hilbert spaceH
5L2(R). Taking the Hermite functions as a basis forL2(R) yields a Hilbert space isomorphism
betweenL2(R) and l 2(N0) ~see Ref. 9, Appendix to V.3! whereby everything carries over from
l 2(N0) to L2(R) without further ado. In particularD5S(R), the Schwartz space, and

a5
1

&
S x1

d

dxD , a* 5
1

&
S x2

d

dxD . ~9!

Now everything is at hand to formulate our main result, the following classification for
deficiency indices ofA(a3 ,a1), which exactly mirrors the classification of cubic forms in The
rem A.4.

Theorem 2.3: For a150 we have n653. For a1Þ0 put aªa3ā1 /a1 and let D(a)ª27
(2uau416uau224(a1ā)13) be the cubic and Q(a)ª4(12a) be the quadratic discriminant
Then A(a3 ,a1) has the following deficiency indices:

(1) D(a),0: n653.
(2) D(a).0: n651.
(3) D(a)50, Q(a)Þ0: n651.
(4) D(a)5Q(a)50: n650.

When D(a)Þ0 the corresponding cases are referred to as main cases, otherwise as excep
cases.

Proof: First of all, we see by applyingU(21,0) thatn15n2 . For a150 the statement then
follows from Proposition 3.4. Assume nowa1Þ0. By dint of U(ā1 /ua1u,0) we conclude that
A(a3ā1 /a1

2,1) has the same deficiency indices asA(a3 ,a1). Due to the CCR

U~s,t !A~a,1!U~s,t !5A~ ã3 ,ãa1!1ra1 r̄ a* ,

where the cubic part of the operator behaves like the ordinary cubic form

ax313x2y13xy21āy3
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under a map from SU~1,1!. Hence, Theorem A.4 in the Appendix shows thatA(a,1) is unitarily
equivalent to exactly one of the operators

A~1,0!1ra1 r̄ a* , A~0,1!1ra1 r̄ a* , A~23,1!1ra1 r̄ a* , A~1,1!1ra1 r̄ a* ,

whose deficiency indices are given in Propositions 3.4, 3.2, 4.1, and 4.2. h

The interested reader may want to draw a picture showing the curveD(a)50 for himself to
visualize the regions of the deficiency indices.

III. DEFICIENCY INDICES: MAIN CASES

We start withD(a).0. The operator to be considered isA(0,1)1ra1 r̄ a* whose deficiency
equation inl 2(N0) reads

An11~n1r !cn111An~n211 r̄ !cn215lcn , nPN0 , ~10!

which can be treated by a classical result due to Berezanski~see Ref. 2, p. 507 or Ref. 1, p. 26!.
Theorem 3.1„Berezanski…: Let bnPR and anPC, nPN0 , such that

ubnu<M,`, nPN0 and anÞ0, uan21uuan11u<uanu2, n>n0 , (
n5n0

`
1

uanu
,`

with M>0 and some n0PN0 . Then c defined by c0ª1 and

ancn111bncn1ān21cn215lcn , n>0,

is in l2(N0) for all lPC.
This theorem can be applied immediately to our situation.
Proposition 3.2: The sequence defined by (10) is in l2(N0). In particular, for all rPC the

operator A(0,1)1ra1 r̄ a* has deficiency indices~1,1!.
Proof: Herean5An11(n1r ) andbn50 where a simple application of the inequality of th

geometric and the arithmetic mean shows the assumptions of Theorem 3.1 being satisfied.
k51 andc051 in Lemma 2.1 and using~10! prove the proposition. h

We turn to the caseD(a),0 with the corresponding operatorA(1,0)1ra1 r̄ a* having in
l 2(N0) the deficiency equation

A~n11!~n12!~n13!cn131rAn11cn111 r̄Ancn211An~n21!~n22!cn235lcn . ~11!

We abbreviate

anªA~n11!~n12!~n13!, bnªrAn11, nPN0 . ~12!

To begin with we introduce the auxiliary quantitiesen via

anen135an23en23 , n>3, e05¯5e551. ~13!

We need the asymptotics ofen .
Lemma 3.3: There are constants Kj.0, j 50,...,5,such that

e6k1 j5
K j

~k11!3/41OS 1

~k11!7/4D , kPN0 , j 50,...,5.

Proof: From the recursion formula~13! one can derive an explicit representation of theen .
Then Stirling’s formula yields the asymptotics. h

We put
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cn5tnendn with t6k1 j5t j , j 50,...,5, ~14!

andt j to be fixed below. Inserting this into~11! yields

dn131bndn112gndn1dndn211dn2350, ~15!

where we have abbreviated

bnª
bntn11en11

an13tn13en13
, gnª

ltnen

an23tn23en23
, dnª

b̄n21tn21en21

an23tn23en23
. ~16!

From the above lemma we conclude

U tnen

tn23en23
U<M,` ~17!

for n>3 and, having chosent0 ,...,t5 appropriately,

tn11en11

tn13en13
511OS 1

nD ,
tn21en21

tn23en23
511OS 1

nD ~18!

asn→`. From ~18! and ~17! we know

bn ,dn5OS 1

nD , gn5OS 1

n3/2D .

By introducing

SnªS 0 2bn gn 2dn 0 21

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

D
andynª(dn12 ,...,dn23)T we can write~15! in matrix form

yn115Snyn . ~19!

Now consider

yn165Sn15Sn14Sn13Sn12Sn11Snyn ~20!

instead of~19! and decompose the matrix product into

yn165Vn8yn1Wn8yn ,

where
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0 21 0 bn14 0 dn14

2dn13 0 21 0 bn13 0

0 2dn12 0 21 0 bn12D
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2bn11 0 2dn11 0 21 0

0 2bn 0 2dn 0 21

contains the terms up to order 1/n andWn8 the remaining products. We can further simplifyVn8 by
replacingbn ,...,bn15 anddn ,...,dn15 to first order byr̄ /n:

yn165S 211
1

n
VD yn1Wnyn ~21!

with the skew-symmetric matrix

VªS 0 0 r 0 r̄ 0

0 0 0 r 0 r̄

2 r̄ 0 0 0 r 0

0 2 r̄ 0 0 0 r

2r 0 2 r̄ 0 0 0

0 2r 0 2 r̄ 0 0

D .

The correcting terms are contained inWn5(Wn
jk) j ,k51,...,6 and obey

Wn
jk5OS 1

n3/2D , j ,k51,...,6. ~22!

Now we can prove the following
Proposition 3.4: For all rPC and all initial values c0 , c1 , c2 every solution to (11) is in

l 2(N0). In particular, the operator A(1,0)1ra1 r̄ a* has deficiency indices~3,3!.
Proof: Because of the asymptotics ofen in Lemma 3.3 it suffices to show that thedn in ~14!

are bounded. To this end we prove boundedness ofyn in the Euclidean normi•i2 on C6. We have
from ~21!

iyn16i2< I S 211
1

n
VD ynI

2

1iWnyni2 .

Now note thatV has purely imaginary eigenvalues and can be diagonalized by a unitary matrU,
V5U* DU. We obtain

iVnyni25 IU* S 211
1

n
D DUynI

2

<S 11
r

2

1

n2D iyni

with somer>0. The second norm may be estimated with less care:

iWnyni2<
K

n3/2iyni2

with some constantK.0 resulting from~22!. We thus have
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iyn16i2<S 11
r

2

1

n2 1
K

n3/2D iyni2 ,

wherefrom we derive inductively

iy6(k11)13i2<)
l 50

k S 11
r

2

1

~6l 13!2 1
K

~6l 13!3/2D iy3i2 .

The product converges because the corresponding series do.
We apply Lemma 2.1 to~11! by putting k53 and choose forc0 ,c1 ,c2 the surely linearly

independent vectors

~1,0,0!, ~0,1,0!, ~0,0,1!

wherewith the proposition is proven. h

IV. DEFICIENCY INDICES: EXCEPTIONAL CASES

We start with the caseD(a)50, Q(a)Þ0. It will turn out to be more convenient to appl
beforehand the Bogolyubov transformationU( i ,0). Puttingl5 im, mPR, we arrive at the defi-
ciency equation

S a31a* a22~a* !2a2~a* !31
r

3
a2

r̄

3
a* Dw5

m

3
w, ~23!

which in L2(R) reads

2x2
d

dx
w1

1

2 S 12
r 1 r̄

6 D d

dx
w2S 11

r 2 r̄

12 D xw52
m

3&
w. ~24!

We choosem523& and put

Fª
1

2 S 12
Rer

3 D , Gª

Im r

6
,

where

~F2x2!w82~ iG11!xw5w. ~25!

Any weak solution to~25! is a strong solution except, possibly, a finite number of isola
singularities~see, e.g., Ref. 4, XIII.2!. In other words, we obtain the complete solution by co
bining the strong solutions on the intervals having boundary points at the singularities. Sin
are allowed to choose zero as solution on some~not all! of these intervals it is possible to gai
more than one linearly independent weak solution notwithstanding the equation being of
one. To have the complete solution inL2(R) we must determine which of the partial solutions a
in L2(R).

Proposition 4.1: Equation (25) has exactly one linearly independent square integrable (w
solution. In particular, the operator A(23,1)1ra1 r̄ a* has deficiency indices~1,1!.

Proof: The formal solutionu of ~25! is given through

~ ln w!85
11~ iG11!x

F2x2 5..v~x!.
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In computing the primitive function ofv we distinguish the casesF,0, F.0, andF50. For the
sake of simplicity we shall henceforth suppress without loss of generality the constants o
gration.

F,0. SinceuFu52F,

E v~x! dx52E 1

uFu1x2 dx2~ iG11!E x

uFu1x2 dx

52
1

AuFu
arctan

x

AuFu
2

1

2
~ iG11!ln~ uFu1x2!.

We obtain

w~x!5expS 2
1

AuFu
arctan

x

AuFu
D expS 2

iG

2
ln~ uFu1x2! D 1

~ uFu1x2!1/2 ~26!

wherein the first two factors are bounded onR and the third factor is square integrable whi
shows the statement.

F.0. The function in front ofw8 has two distinct real zeros. First, foruxu,AF,

E 1

F2x2 dx5
1

2AF
ln

AF1x

AF2x
and E x

F2x2 dx52
1

2
ln~F2x2!.

The solution thus is

w~x!5S AF1x

AF2x
D 1/2AF

expS 2
iG

2
ln~F2x2! D 1

~F2x2!1/2. ~27!

Because ofF2x2.0 the second factor has absolute value 1. We conclude

uw~x!u25
~AF1x!1/AF

~AF2x!1/AF

1

~AF2x!~AF1x!
5

~AF1x!(1/AF)21

~AF2x!(1/AF)11
.

Sincew is not square integrable atx↗AF this part must not contribute to the solution

w~x!50 for 2AF,x,AF.

For x.AF we use

E x

x22F
dx5

1

2
ln~x22F ! and E 1

x22F
dx5

1

2AF
ln

x2AF

x1AF

to compute the primitive function ofv:

w~x!5S x1AF

x2AF
D 1/2AF

expS 2 iG

2
ln~x22F ! D 1

~x22F !1/2 ~28!

having absolute value

uw~x!u25
~x1AF !(1/AF)21

~x2AF !(1/AF)11
,

wherew is not square integrable atx↘AF and the corresponding part of the solution must vani
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w~x!50 for x.AF.

We arrive at the square integrable partx,2AF. The solution here is also given by~28!. However,
the first factor behaves differently. To see why we writex52y,y.0. Theny.AF:

uw~x!u25S 2y1AF

2y2AF
D 1/AF

1

~y2AF !~y1AF !
5

~y2AF !(1/AF)21

~y1AF !(1/AF)11
.

Because of 1/AF21.21 this function is square integrable fory.AF.
The only square integrable weak solution to~25! is thus given by

w~x!5H 0 for x>2AF,

~28! for x,2AF.

F50. Both zeros in the singular part of~25! coincide where there can be at most two linea
independent weak solutions. We have

E v~x! dx52~ iG11!lnuxu1
1

x
.

We obtain the solution

w~x!5exp~2 iG lnuxu!
1

uxu
expS 1

xD , xÞ0, ~29!

and, moreover,

uw~x!u25
1

x2 e2/x.

One sees immediately thatuwu2 is integrable only atx↗0 where the weak solution of~25! in
L2(R) is given by

w~x!5H 0 for x>0,

~29! for x,0.

This completes the proof. h

We conclude with the caseD(a)5Q(a)50 for which the result can be given without an
effort.

Proposition 4.2: The operator A(1,1) has deficiency indices~0,0!.
Proof: We have

A~1,1!5a313a* a213~a* !2a1~a* !35~a1a* !323~a1a* !.

In our L2(R) representationa1a* is just multiplication byx up to a factor whereA(1,1) too is
a multiplication operator and, thus, essentially self-adjoint onD. h

APPENDIX: CUBIC FORMS AND THEIR NORMAL FORMS

We want to reduce the cubic form

ax313xy213x2y1āy3, x,yPC, aPC, ~A1!

to certain normal forms by means of a linear mapBPSU(1,1), i.e.,
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B5S s t

t̄ s̄D , detB51. ~A2!

We know from algebra that we can do this by finding a fractional linear transformation:

z°hz5
sz1t

t̄ z1 s̄
~A3!

having the same coefficientss and t asB and acting on the polynomial associated to~A1!

pa~z!ªaz313z213z1ā. ~A4!

We indicate the relationship betweenh andB by writing h;B. Note that this correspondence
unique only up to a factor. For eachBPSU(1,1) the correspondingh is an element of the
automorphism group Aut(X1) of the unit discX1ª$zPCuuzu,1%. Moreover, the sets

X0ª$zPCuuzu51%, X2ª$zPCuuzu.1% ~A5!

are left invariant by those transformations. Since the action ofh on pa is uniquely determined by
the action on the zeros we need some information on these zeros.

Lemma A.1: LetaPC\$0% and z1 ,z2 ,z3 be the zeros of pa . Then eitheruzj u51, j 51,2,3,or
uz1u51, uz2uÞ0, z351/z̄2 up to permutations.

Proof: SinceaÞ0 we havezjÞ0. We note that along withz also 1/z̄ is a zero ofpa :

paS 1

z̄D5a
1

z̄3 13
1

z̄2 13
1

z̄
1ā5

1

z̄3 ~ ā13z13z21az3!50.

Furthermore, Vieta’s theorem tells usz1z2z352ā/a where uz1iz2iz3u51. When the first case
does not hold we may assume without loss of generalityuz2uÞ1 and hencez2Þ1/z̄2 . Then,

15uz1uuz2u
1

uz̄2u
5uz1u,

which proves the lemma. h

To decide which case holds we look at the discriminantD(a) of pa ~see, e.g., Ref. 11, p
102!:

D~a!ªa4W~a!2, W~a!ª~z12z2!~z12z3!~z22z3!. ~A6!

D(a) can be expressed solely by the coefficients ofpa :

D~a!527~2uau416uau224~a1ā !13!PR. ~A7!

Proposition A.2: LetaPC\$0% and let z1 ,z2 ,z3 be the zeros of pa . Then we have the follow
ing.

(1) D(a)<0: All zeros lie on the unit circle X0 . When D(a)50 there are multiple zeros.
(2) D(a).0: We haveuz1u51 and uz2u,1, z351/z̄2 up to permutations.

Proof: SincezjÞ0 we may write

W~a!5z1z2z3S z1

z3
2

z1

z2
1

z3

z2
2

z2

z3
1

z2

z1
2

z3

z1
D .

~1! Let uzj u51, i.e., 1/zj5 z̄j :
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W~a!52
ā

a
~z1z̄32 z̄1z31 z̄1z22z1z̄21 z̄2z32z2z̄3!52

ā

a
2i Im~z1z̄31 z̄1z21 z̄2z3!. ~A8!

Hence,

D~a!524uau4~ Im~z1z̄31 z̄1z21 z̄2z3!!2<0.

~2! When not allzj lie on the unit circle, then by Lemma A.1 1/z15 z̄1 , z351/z̄2 , and

W~a!52
ā

a
~2 Re~z1~ z̄22 z̄3!!1uz3u22uz2u2!.

Hence,

D~a!5uau4~2 Re~z1~ z̄22 z̄3!!1uz3u22uz2u2!2.0

because by Lemma A.1D(a)50 can only occur in case 1. h

To obtain normal forms forpa we transform its zeros to special points.
Proposition A.3: (1) Assumeuz1u51 and 0,uz2u,1. Then there is an hPAut(X1) such that

h~z1!521, h~z2!50, h~z3!5`. ~A9!

(2) Let z1 ,z2 ,z3PX0 be pairwise different points. Then there is an hPAut(X1) such that

h~z1!521, h~z2!5q, h~z3!5q̄ with qªeip/35~11) !/2 ~A10!

after zj having been renumbered suitably.
Proof: ~1! Notez351/z̄2 . A transformation satisfying~A9! can be written down immediately

hz52
z2z2

z21/z̄2

z121/z̄2

z12z2
5

z2z2

2 z̄2z11

z1z̄221

z12z2
.

We check thath has the form required. Because ofuz1u51 we see

Uz1z̄221

z12z2
U5Uz1z̄22z1z̄1

z12z2
U51,

where there is atP@0,2p@ such that

z1z̄221

z12z2
5ei t.

Thus,

h~z!5
z2z2

2 z̄2z11
ei t5

ei t/2z2ei t/2z2

2e2 i t/2z̄2z1e2 i t/2

has the correct form and the determinant is 12uz2u2.0 because ofuz2u,1. Hence we have (1
2uz2u2)1/2PR.

~2! We are seeking a transformationh satisfying~A10!. To begin with, the transformationh1

given by

h1;S z22z3 z1~z32z2!

z22z1 z3~z12z2!
D 5..M1
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maps

h1~z1!50, h1~z2!51, h1~z3!5`.

Analogouslyh2 ,

h2;S 2q 2q̄

q̄ q
D 5..M2 ,

maps

h2~q!50, h~21!51, h2~q̄ !5`.

Then hªh2
21h1 is an appropriate candidate. Because ofh2

21;2M2 , computingM1M2 and
getting rid of the productsz1z2 , z1z3 , z2z3 with the aid of Vieta’s theorem yield

h2h1
21;

1

a2 S a~2q̄z11~q1q̄ !z22qz3! ā~q z̄32~q1q̄ !z̄21q̄ z̄1!

a~qz12~q1q̄ !z21q̄z3! ā~2q̄ z̄31~q1q̄ !z̄22q z̄1!
D 5..

1

a2 M .

The matrixM generatesh2h1
21 as well asM /a2. We compute detM. Because ofq351 we have

2detM252q21q̄25q̄2q522i Im q52 i).

Furthermore,

detM15~z22z3!~z22z1!~z12z3!52W~a!52i
ā

a
Im~z1z̄31 z̄1z21 z̄2z3!,

where we used~A8!. Hence,

detM52detM2 detM152)uauIm~z1z̄21 z̄1z21 z̄2z3!.

By renumbering thezj we can always ensure Im(z1z̄31z̄1z21z̄2z3).0 whereAdetMPR. Then
M /AdetM satisfies~A2!. h

When the discriminant vanishes there are two possible cases. First, we have one sin
one twofold zero. This case can be treated by Proposition A.3. A simple polynomial is

pa~z!5z32z22z11. ~A11!

We can map the zerosz1 andz2 to 21 andq. The same holds for our prescribed image points21
and 1. The statement then follows from the group structure of Aut(X1).

When there is a threefold zeropa already has its normal form since in this casea51 which
follows from the quadratic discriminant vanishing~see Ref. 11, p. 102!:

4~12a!50.

Hencea51. We summarize our results for the cubic form~A1!.
Theorem A.4: Let D(a)527(2uau416uau224(a1ā)13) be the cubic and Q(a)54(1

2a) be the quadratic discriminant of the cubic form (A1). Then, there is anSU~1,1! map that
maps (A1) to one of the following normal forms:

(1) D(a),0: x31y3.
(2) D(a).0: x2y1xy2.
(3) D(a)50, Q(a)Þ0: x32x2y2xy21y3.
(4) D(a)5Q(a)50, i.e.,a51: x313x2y13xy21y3.
                                                                                                                



k

6222 J. Math. Phys., Vol. 44, No. 12, December 2003 Peter Otte

                    
1Akhiezer, N. I.,The Classical Moment Problem~Oliver & Boyd, Edinburgh, 1965!.
2Berezanski, J. M.,Expansions in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monograph 17~American
Mathematics Society, Providence, 1968!.

3Berezin, F. A.,The Method of Second Quantization~Academic, New York, 1966!.
4Dunford, N. and Schwartz, J. T.,Linear Operators, Part II: Spectral Theory~Interscience, New York, 1963!.
5Jørgensen, P. E. T., ‘‘Essential Self-Adjointness of Semibounded operators,’’ Math. Ann.237, 187–192~1978!.
6Otte, P., ‘‘Defektindices kubischer Operatoren in einer Fockdarstellung~Deficiency indices of cubic operators in a Foc
representation!,’’ diploma thesis, University of Go¨ttingen, 1992~unpublished!.

7Putnam, C. R.,Commutation Properties of Hilbert Space Operators and Related Topics~Springer-Verlag, Berlin, 1967!.
8Rabsztyn, S., ‘‘Deficiency Indices for Wickpowers in One Dimension,’’ Rep. Math. Phys.27, 161–168~1989!.
9Reed, M. and Simon, B.,Methods of Modern Mathematical Physics I: Functional Analysis~Academic, New York, 1972!.

10Reed, M. and Simon, B.,Methods of Modern Mathematical Physics II: Fourier Analysis, Self-Adjointness~Academic,
New York, 1975!.

11Waerden, B. L. v. d.,Algebra I, 8th ed.~Springer-Verlag, Berlin, 1971!.
12Weidmann, J.,Spectral Theory of Ordinary Differential Operators, Lecture Notes in Mathematics Vol. 1258~Springer-

Verlag, Berlin, 1987!.
13Wouk, A., ‘‘Difference equations andJ-matrices,’’ Duke Math. J.20, 141–159~1953!.
                                                                                                                



been
of
f the

undary
in the
ixed

s that
must

ming
infini-
ories,

ortant
in the

ector
like

t one
gu-

ionary
ork

roxi-
tion of

cally-

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 44, NUMBER 12 DECEMBER 2003

                    
The helically-reduced wave equation
as a symmetric-positive system

C. G. Torre
Department of Physics, Utah State University, Logan, Utah 84322-4415

~Received 9 June 2003; accepted 28 August 2003!

Motivated by the partial differential equations of mixed type that arise in the re-
duction of the Einstein equations by a helical Killing vector field, we consider a
boundary value problem for the helically-reduced wave equation with an arbitrary
source in 211 dimensional Minkowski space–time. The reduced equation is a
second-order partial differential equation which is elliptic in a disk and hyperbolic
outside the disk. We show that the reduced equation can be cast into symmetric-
positive form. Using results from the theory of symmetric-positive differential
equations, we show that this form of the helically-reduced wave equation admits
unique, strong solutions for a class of boundary conditions which include Sommer-
feld conditions at the outer boundary. ©2003 American Institute of Physics.
@DOI: 10.1063/1.1623930#

I. INTRODUCTION

Physical systems are typically governed by partial differential equations~PDEs! of a fixed
type: elliptic, hyperbolic, or parabolic. The mathematical properties of such equations have
extensively investigated~see, e.g., Refs. 1 and 2!. Considerably less is known about PDEs
mixed type, by which we mean equations whose type is different in different subdomains o
domain of interest, e.g., elliptic in one region and hyperbolic in another.3 Compared to elliptic,
hyperbolic, or parabolic equations, mixed type equations are rather unusual, both in the bo
conditions that can be imposed to get existence and uniqueness of solutions as well as
regularity of solutions that are obtained. Moreover, the lower-order terms in equations of m
type take on a more significant role than in equations of fixed type. This latter feature mean
it is difficult to obtain general results about PDEs of mixed type; to a large extent, one
investigate each set of equations, each set of boundary conditions, etc., separately.

In relativistic field theory on a fixed space–time, mixed type equations occur after perfor
a symmetry reduction of hyperbolic PDEs with respect to an isometry group which has an
tesimal generator that changes type from timelike to spacelike. In generally covariant the
such symmetry reductions may yield PDEs of mixed type in appropriate gauges. An imp
example of the latter type, currently of considerable interest in gravitational physics, arises
quasi-stationary approximation to the two-body problem in general relativity.4–6 Here one is
interested in solving the Einstein equations for space–times admitting a helical Killing v
field. The helical Killing vector field, which represents a rotating reference frame, will be time
near the bodies and spacelike far from the bodies. The reduced Einstein equations~modulo gauge!
can be expected to include nonlinear PDEs of mixed type on the 211 dimensional manifold of
orbits of the Killing vector field. The reduced equations can only be solved numerically, bu
naturally desires as mucha priori information about existence and uniqueness of solutions, re
larity of solutions, admissible boundary conditions, etc. as one can get. The quasi-stat
approximation to the relativistic two-body problem is the principal motivation behind the w
presented here.

As a warm-up for numerically solving the Einstein equations in the quasi-stationary app
mation, the wave equation and some of its nonlinear extensions, reduced by the assump
helical symmetry, have been examined, both analytically and numerically in Ref. 7. The heli
62230022-2488/2003/44(12)/6223/10/$20.00 © 2003 American Institute of Physics
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reduced wave operator is elliptic inside a ‘‘light cylinder’’ and hyperbolic outside the cylinde
was shown in Ref. 7 that one can give a formal series solution of the helically-reduced
equation for a source consisting of a pair of equal and opposite point charges, placed sym
cally with respect to the axis of helical symmetry. For these analytical solutions, Somme
conditions were prescribed at an outer boundary~which may be at infinity!.8 The choice of such
boundary conditions can be motivated on physical grounds, and the apparent analytic exist
unique solutions in the linear case and numerical solutions in the nonlinear case gives con
that the helically-reduced equation can be treated as a boundary value problem. However,
mathematical point of view it is not immediately cleara priori why such boundary conditions ar
admissible, that is, why one should expect unique solutions to exist. Our goal here is to unde
existence, uniqueness, regularity, etc.—in short, the well-posed nature of this problem—f
general point of view that does not rely upon explicitly constructing a solution to the PDE.
idea is that such a point of view can be used to better understand the helically-reduced E
equations, which will not yield so easily to a direct assault.

In the past, certain boundary value problems of mixed type have been addressed us
theory of ‘‘symmetric-positive’’ differential equations,9 which can be viewed as a generalization
elliptic and hyperbolic equations. Friedrichs9 and Lax and Phillips10 have given the basic existenc
and uniqueness results for linear symmetric-positive equations. In this article we shall sho
the helically-reduced wave equation with arbitrary sources in 211 dimensions can be cast int
symmetric-positive form. We can then deduce existence and uniqueness results for a c
boundary conditions that include the Sommerfeld conditions used in Ref. 7. These results p
support for the proposition that boundary value problems of mixed type arising from he
symmetry reductions—such as arise in the relativistic two-body problem—are well-posed.

II. THE HELICALLY-REDUCED WAVE EQUATION

We consider 211 dimensional Minkowski space–time (R3,h) and a helical Killing vector
field j. There will exist an inertial-Cartesian coordinate chart (t,x,y), such that

h52dt^ dt1dx^ dx1dy^ dy, ~2.1!

and

j5
]

]t
1VS x

]

]y
2y

]

]xD ~2.2!

for some constantV. In the corresponding inertial-polar coordinates (t,r ,f) we have

h52dt^ dt1dr ^ dr1r 2df ^ df, ~2.3!

and

j5
]

]t
1V

]

]f
. ~2.4!

Note thatj is not of a fixed type:

h~j,j!5r 2V2215
.0 for r .

1

V
,

50 for r 5
1

V
,

,0 for r ,
1

V
.

~2.5!
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We will call the set of space–time events withr 51/V the light cylinder.
The wave equation with sourcej :R3→R is given by

hF5 j . ~2.6!

In the inertial-polar chart, the wave operator acting on a functionF:R3→R takes the form

hF52] t
2F1

1

r
] r~r ] rF!1

1

r 2
]f

2 F. ~2.7!

We now restrict attention to fields and sources which are invariant under the one-para
isometry groupG generated byj. This is equivalent to requiring

j~F!505j~ j !. ~2.8!

These conditions imply thatF andj define functions on the manifold of orbitsR3/G, which shall
be denoted byC and f, respectively. Because the sourcej is assumedG-invariant, and becauseG
is an isometry group for the space–time, the wave equation~2.6! admitsG as a symmetry group
and it descends to define a PDE relatingC to f on R3/G.11,12 To obtain this differential equation
in local coordinates we proceed as follows. Group invariants onR3 are functions ofr and

wªf2Vt, ~2.9!

which define polar coordinates onR3/G'R2. In particular, granted~2.8!, we have

F~ t,r ,f!5C~r ,w!, j ~ t,r ,f!5 f ~r ,w!. ~2.10!

The reduced field equation onR3/G can be obtained by substituting~2.10! into ~2.6!, which gives

1

r
] r~r ] rC!1

1

r 2
x~r !]w

2C5 f , ~2.11!

where

x~r !512V2r 2. ~2.12!

Note that the light cylinder onR3 projects to alight circle at r 51/V on R3/G. Evidently,
~2.11! is elliptic inside the light circle and hyperbolic outside the light circle, which is a con
quence of the changing character~2.5! of the Killing vectorj. Thus~2.11! is a PDE of mixed type.

In Ref. 7 ~2.11! is solved on a disk of radiusR with sourcef corresponding to two equal an
opposite ‘‘scalar point charges’’ placed symmetrically relative to the origin. Sommerfeld co
tions are imposed at the boundary of the disk, and it is required thatC vanishes at the origin. The
solution is given as a formal infinite series. As noted in Ref. 7, despite the mixed type of the
and, in particular, despite the fact that a Sommerfeld condition was enforced in the region
the PDE is hyperbolic, a unique solution exists. Here we provide a somewhat more general v
of this result using the theory of symmetric positive equations. We consider~2.11! on a domain13

e<r<R, 0,e,1/V. We allow for a general sourcef and we employ a class of boundary cond
tions that include Sommerfeld conditions atr 5R, such as considered in Ref. 7. Specifically, w
will impose the following boundary conditions:

C~e,w!50, t~w!R] rC~R,w!1s~w!]wC~R,w!50, stÞ0, ~2.13!

wheres and t represent smooth functions on the outer boundaryr 5R. Sommerfeld boundary
conditions correspond to settingt51/R ands56V.
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Although we explicitly consider homogeneous boundary conditions~2.13!, because we allow
for an arbitrary sourcef in ~2.11! a large class of inhomogeneous boundary conditions

C~e,w!5k~w!, t~w!R] rC~R,w!1s~w!]wC~R,w!5 l ~w!, ~2.14!

can also be accommodated. This is done by choosing a smooth functionL5L(r ,w) which
satisfies the inhomogeneous boundary conditions~2.14! and then redefining

C→C̃5C2L, f→ f̃ 5 f 2
1

r
] r~r ] rL!1

1

r 2
x~r !]w

2L. ~2.15!

C̃ now satisfies~2.11! with sourcef̃ and homogeneous boundary conditions~2.13!, to which our
results apply.

III. SYMMETRIC-POSITIVE PDEs

Existence and uniqueness results can be obtained for linear PDEs of mixed type if they
cast into first-order, symmetric-positive form with appropriate boundary conditions.9,10 Here we
summarize the results from Refs. 9 and 10 which we shall need.

For our purposes, the data used to define a symmetric positive system of equation
admissible boundary conditions will be taken to be14

~i! a smooth manifoldM with smooth boundary]M ; we setM̄5Mø]M ;
~ii ! a smooth scalar density of weight-1 onM, denoted byv; and
~iii ! a finite-dimensional real vector spaceV with scalar product~•,•!.

Let u:M̄→V. We consider a first-order system of differential equations foru on M of the form

Lu[Aa¹au1Bu5h, ~3.1!

whereh:M̄→V and, at eachxPM , Aa andB are linear transformations:

Aa~x!:Tx* M3V→V, B~x!:V→V. ~3.2!

For simplicity we assume thatAa andB depend smoothly onxPM . The differential operator¹a

is the exterior derivative on functions defined by any basis forV.
Definition 3.1: The system (3.1) issymmetric-positive if (1) Aa defines a symmetric operato

(with respect to the scalar product on V),

~Aa~x!va!* 5Aa~x!va , ;vPTx* M and ;xPM , ~3.3!

and (2) the linear operator K(x):V→V, defined by

K5B2 1
2¹a~vAa!, ~3.4!

has a positive-definite symmetric part:

K~x!1K* ~x!.0, ;xPM . ~3.5!

We remark that¹a in ~3.4! is defined by its unique torsion-free extension to vector densitie
weight-1 onM taking values inV^ V* .

A class of boundary conditions onu:M̄→V has been determined such that there exist uni
solutions to symmetric-positive systems of PDEs. Following Friedrichs, we call these bou
conditionsadmissible. They are defined as follows.

Definition 3.2: Boundary conditions on u:M̄→V are the requirement that, at each
P]M , u(x) takes values in a linear subspace N(x),V, which varies smoothly with x.
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We fix an outwardly oriented normal one-form,na , to the boundary]M . This one-form is
uniquely determined up to multiplication by a smooth positive function on the boundary
define15

b5naAau]M . ~3.6!

Definition 3.3: Let u:M̄→V be subject to the system of equations (3.1). The boundary
ditions u(x)PN(x) on ]M are admissibleif N(x) is a maximal subspace such that the quadra
form u→(u,bu) is non-negative at each xP]M .

Note that the admissibility of a set of boundary conditions does not depend upon the sp
choice of covariant normal to the boundary. In the sequel we will make use of the follo
convenient characterization of admissible boundary conditions, which is due to Friedrichs.9

Proposition 3.4: Admissible boundary conditions, u(x)PN(x) on ]M , are equivalent to the
linear boundary conditionsb2u50 on ]M , whereb2 arises from a decomposition

b5b11b2 ~3.7!

such that, for all xP]M , (i) everyvPV can be decomposed via

v5v11v2 , b1v25b2v150, ~3.8!

and (ii)

mªb12b2 ~3.9!

has a non-negative symmetric part:

m1m* >0. ~3.10!

We now summarize the existence and uniqueness results of Refs. 9 and 10 for sym
positive systems. We say that a mappingu:M→V is in L2(M ,V) if

iui2[E
M

~u,u!v,`. ~3.11!

Definition 3.5: Let the mappings u:M→V and h:M→V be in L2(M ,V); u is a strong
solution to (3.1) satisfying the boundary conditions u(x)PN(x) on ]M if there exists a sequenc
of functions$uk%PC`(M̄ ,V), satisfying the boundary conditions uk(x)PN(x) on ]M , such that

uk→u, and Luk→h

in the L2 (semi-)norm (3.11).
Theorem 3.6„Friedrichs, Lax and Phillips…: If (3.1) is symmetric-positive, then it admits

unique, strong solution satisfying admissible boundary conditions.
We remark that the theorems appearing in Refs. 9 and 10 use~piecewise! continuously dif-

ferentiable functionsuk to define strong solutions. However, it is straightforward to check that
relevant results go through for$uk%PC`(M̄ ,V), which we use here.

IV. A SYMMETRIC-POSITIVE SYSTEM FOR THE HELICALLY-REDUCED WAVE
EQUATION

Here we show that the helically-reduced wave equation can be expressed in symm
positive form. We chooseM to be the annulusM5$(r ,w)ue,r ,R% equipped with the metric

g5dr ^ dr1r 2dw ^ dw, ~4.1!
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and associated volume density:

v5~detg!1/25r . ~4.2!

We setV5R2 and equip it with the standard scalar product

~u,v !5u1v11u2v2 . ~4.3!

We consider the following first-order system:

1

r
] ru21

1

r 2
x]wu15 f , ~4.4!

1

r
] ru12

1

r 2
]wu250. ~4.5!

Setting

u15]wC, u25r ] rC, ~4.6!

all classical (C2) solutions to~2.11! and~2.13! are solutions to~4.4! and~4.5!. The solutionu thus
obtained satisfies the boundary conditions

u1~e,w!50, s~w!u1~R,w!1t~w!u2~R,w!50, stÞ0. ~4.7!

Conversely, given a classical (C1) solution to~4.4! and~4.5! satisfying boundary conditions~4.7!,
the (C2) function C defined by

C~r ,w!5E
e

r

dr8
1

r 8
u2~r 8,w! ~4.8!

satisfies~4.6! and hence~2.11! and ~2.13!. In this sense the equations~2.11! and ~2.13! are
equivalent to~4.4!, ~4.5!, and~4.7!. We write the system~4.4! and ~4.5! as

~Ãa¹au2h̃!50, ~4.9!

where

Ãr5
1

r S 0 1

1 0D , Ãw5
1

r 2 S x 0

0 21D , h̃5S f
0D , ~4.10!

and

u5S u1

u2
D . ~4.11!

Now consider the following first-order system,

L~Ãa¹au2h̃!50, ~4.12!

where

L5S a 2cx

c a D , ~4.13!
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anda5a(r ) andc5c(r ) are smooth functions onM̄ . We require thata andc satisfy

a21c2xÞ0, ~4.14!

so that~4.12! is equivalent to~4.9!. We write ~4.12! as

Aa¹au5h, ~4.15!

where

Ar5
1

r S 2cx a

a cD , Aw5
1

r 2 S ax cx

cx 2aD , ~4.16!

and

h5S a f
c f D . ~4.17!

We now show that the functionsa andc can be chosen so that the system~4.15! is symmetric-
positive. The linear transformations defined byAa are symmetric for any choice ofa andc. Using
~3.4! we find that

K5K* 5
1

2 S ] r~cx! 2] ra

2] ra 2] rc
D . ~4.18!

Necessary and sufficient conditions for~3.5! are

] rc,0, ~] rc!] r~cx!,2~] ra!2. ~4.19!

A pair of smooth functions that satisfy~4.19! and ~4.14! for 0,e<r<R are of the form

a5const, c52a1e2V3r 3
, ~4.20!

provided the constantsuau anda.0 are chosen large enough, as is easily verified from

] rc523V3r 2e2V3r 3
, ] r~cx!5V2r $2a2e2V3r 3

~213Vrx!%. ~4.21!

Thus, with these choices fora andc, the equations~4.15! are symmetric-positive. We summariz
the preceding discussion as follows.

Proposition 4.1: The equations (2.11) and (2.13) are equivalent to the symmetric-po
system (4.15) and (4.7).

V. ADMISSIBLE BOUNDARY CONDITIONS

We now consider the boundary conditions~4.7! for which we have the following result.
Proposition 5.1: The constants a anda in (4.13) and (4.20) can be chosen so that t

boundary conditions (4.7) for (4.15) are admissible.
Proof: For the normal one-form to the boundary we use

n5H Rdr at r 5R,

2edr at r 5e.
~5.1!

We then have
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b~R!5S 2c~R!x~R! a

a c~R!
D , b~e!5S c~e!x~e! 2a

2a 2c~e!
D . ~5.2!

We consider boundary conditions of the form

su11tu250 on ]M , ~5.3!

where

s51, t50, at r 5e, ~5.4!

and

s5s~w!Þ0, t5t~w!Þ0, at r 5R. ~5.5!

Following Proposition 3.4, we define

b156NS 2t2cx2sta stcx1s2a

t2a2stc 2sta1s2cD , b256NS 2s2cx1sta 2stcx1t2a

s2a1stc sta1t2c D ,

~5.6!

where

N5
1

s21t2
, ~5.7!

so that

b5b11b2 . ~5.8!

In ~5.6! the plus/minus sign is to be used at the outer/inner boundary. The boundary cond
~5.3! are equivalent to

b2u50 on ]M . ~5.9!

At the inner boundary we have

1

2
~m1m* !5S 2c~e!x~e! 0

0 2c~e!
D . ~5.10!

We choosea sufficiently large so thatc(e),0 and we assume the inner boundary is within t
light circle so we havex~e!.0. Therefore~m1m* ! is non-negative at the inner boundary; the inn
boundary condition is admissible. At the outer boundary we have

1

2
~m1m* !5NS 22sta1~s22t2!cx 2stV2r 2c

2stV2r 2c 22sta1~s22t2!c
D

r 5R

. ~5.11!

Evidently, the outer boundary conditions are admissible in the casest.0 provideda is chosen
sufficiently negative.16 If st,0, the boundary conditions are admissible provideda is chosen
sufficiently positive.16 Thus the outer boundary conditions are admissible. h

We remark that the admissibility of the outer boundary conditions did not depend upo
location of the outer boundary. Therefore, the outer boundary conditions can be imposed o
inside, and evenon the light circle. We also note that the proof of Proposition 5.1 shows that a
outer boundary neither Dirichlet conditions~s51, t50! nor Neumann conditions~s50, t51! for
C are admissible.
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VI. CONCLUSIONS

From Propositions 4.1 and 5.1 and Theorem 3.6 we have the following basic existenc
uniqueness result for the helically-reduced wave equation in its symmetric positive form.

Theorem 6.1: The system (4.15) admits a unique, strong solution satisfying the boun
conditions (4.7).

While this theorem only establishes existence of distributional solutions to the first-order
of ~2.11! and ~2.13!, it does imply that classical solutions to~2.11! and ~2.13! are unique. Con-
siderable additional analysis is needed to establish existence ofC2 solutions to~2.11! and~2.13!.
However, using Theorem 6.1 the following regularity properties ofC can be immediately inferred

Let us defineH̃1(M ) as the completion in theH1 norm,

iCi1
25E

M
~C21gab¹aC¹bC!v, ~6.1!

of the space of smooth functionsC satisfying the boundary conditions~2.13!.
We can then deduce the following from Theorem 6.1.
Corollary 6.2: Let u be the strong solution to (4.15) and (4.7). The functionC, defined by

C5E
e

r

dr8
1

r 8
u2~r 8![I ~u!, ~6.2!

is in H̃1(M ) with (distributional) derivatives given by

u15]wC, u25r ] rC. ~6.3!

Proof: I is easily verified to be a bounded linear transformation from the dense sub
C`(M ,V),L2(M ,V) to L2(M ), so I can be extended to all ofL2(M ,V) thus definingC
PL2(M ) via ~6.2!. Let un :M→V be a sequence of smooth maps that converges to the s
solutionu. Clearly,

I ~u2n!ur 5e50, ~6.4!

so that the inner boundary condition is satisfied. We have

] r I ~u2n!5
1

r
u2n→

1

r
u2PL2~M ,V!, ~6.5!

and it is straightforward to verify that

]wI ~u2n!5I ~]wu2n!→u1PL2~M ,V!. ~6.6!

ThusC and its first derivatives are inL2 and satisfy

u15]wC, u25r ] rC, ~6.7!

so that the outer boundary conditions are satisfied as well. h

Physically, the sourcef in ~2.11! cannot be known with perfect precision. Furthermore, o
may only have an approximately correct source appearing in a numerical solution. It is the
important to note that the solution to~4.15! and~4.7! depends continuously upon the sourceh, so
small changes/errors in the choice ofh lead to correspondingly small changes in the solutionu ~or
C!. ~Here ‘‘small’’ is defined by theL2 norm.! To see this, we define a linear mappin
S:L2(M ,V)→L2(M ,V) that associates a solutionu5S(h) of ~4.15! and ~4.7! to each sourceh.
The existence of this mapping follows from Theorem 6.1. The uniqueness of strong solutio
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~4.15! and ~4.7! implies that the mappingS is closed and hence continuous by the closed gr
theorem~see, e.g., Ref. 17!. From Corollary 6.2 the mappingI:L2(M ,V)→H̃1(M ) is bounded—
hence continuous—and we then have the following corollary.

Corollary 4.3: CPH̃1(M ) defined by (4.8) depends continuously upon the sourc
PL2(M ).
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